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 “… it seems absurd to strive for more and more refinement of methods of stress-analysis if in 
order to determine the dimension of the structural elements, its results are subsequently 
compared with the so called working stress, derived in a rather crude manner by dividing the 
values of somewhat dubious material parameters obtained in conventional material tests by 
still more dubious empirical numbers called safety factors.” - Alfred Martin Freudenthal 

  



 
 

Abstract 

Properties like geometry and material of structures scatter in reality, which causes the load 
carrying capability of a real structure to be stochastically distributed. A robust and efficient 
design requires knowledge of the stochastic distribution of the collapse load. If the load 
carrying capability is limited by multiple criterions as stability and material failure, the joint 
probability distribution of these values must be considered for the derivation of a design load.  

In the framework of the current dissertation, a fast, probabilistic procedure is derived that 
allows determining the distribution of load carrying capability with respect to stochastically 
distributed input parameters. Furthermore, methods for efficient design optimization under 
consideration of scattering input parameters are given. 

The derived methods are applied to axially compressed cylindrical shells and stiffened panels 
made of fiber composite material. Thin-walled cylinders are prone to stability failure and 
sensitive to manufacturing inaccuracies, which leads to a large scatter of the collapse load. 
Therefore, cylindrical shells are well suited for validation of probabilistic methods. In the 
framework of this dissertation the stochastic distribution of a set of cylindrical shells is 
estimated, which compares well with the experimentally determined distribution. The 
probabilistically motivated design load appears to be robust and at the same time less 
conservative than the design load given by frequently used guidelines.  

The load carrying capability of stiffened panels is limited by loss of stability and by material 
failure. Therefore, this type of structure is well suited for the application of probabilistic 
analyses with respect to multiple failure modes. The probabilistic analyses provide the 
stochastic justification of recently developed, efficient design rules. 

The design of the regarded cylindrical shells and stiffened panels is optimized under 
consideration of scattering input parameters. Thereby, the additional design parameters 
provided by the laminate setup of fiber composites are exploited. The results show that 
considering scattering input parameters leads to a different optimal design than optimizing the 
perfect structure. Furthermore, optimization using the probabilistic approach yields a higher 
design load or weight saving, respectively, than optimization using conventional safety factor 
design. 
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Kurzfassung 

Eigenschaften wie Geometrie und Materialparameter realer Strukturen sind Schwankungen 
unterworfen, die bewirken, dass die Traglast einer realen Struktur stochastisch streut. Um eine 
Struktur sicher und wirtschaftlich bemessen zu können, muss die stochastische Verteilung der 
Traglast bekannt sein. Ist die Traglast durch mehrere Kriterien begrenzt, beispielsweise durch 
Material- und Stabilitätsversagen, muss die gemeinsame Verteilung zur Bestimmung der 
Bemessungslast betrachtet werde. 

Im Rahmen der vorliegenden Dissertation wird ein schnelles, probabilistisches Verfahren 
vorgestellt, mit dem sich auf Grundlage stochastisch verteilter Eingangsgrößen die Verteilung 
der Traglast bestimmen lässt. Darüber hinaus werden Methoden zur effizienten 
Entwurfsoptimierung unter Berücksichtigung streuender Eingangsparameter zur Verfügung 
gestellt. 

Die entwickelten Methoden werden auf axial belastete Kreiszylinderschalen und versteifte 
Paneele aus Faserverbundmaterial angewandt. Dünnwandige Kreiszylinderschalen versagen 
durch Stabilitätsverlust und sind besonders sensitiv gegenüber Fertigungsungenauigkeiten. 
Dies führt zu einer großen Streuung der Traglast, weshalb sich Kreiszylinderschalen 
besonders zur Validierung probabilistischer Verfahren eigenen. Die im Rahmen der 
Dissertation vorhergesagte Verteilung der Traglast der untersuchten Kreiszylinderschalen 
stimmt mit der experimentell bestimmten Verteilung gut überein. Die probabilistisch 
motivierte Bemessungslast stellt sich als sicher und zugleich weniger konservativ als die 
Bemessungslast nach gängigen Entwurfsrichtlinien heraus.  

Die Tragfähigkeit versteifter Paneele ist durch Material- und Stabilitätsversagen begrenzt, 
weshalb sich diese Strukturen besonders zur Anwendung probabilistischer Analysen unter 
Berücksichtigung mehrerer Versagensarten eignen. Die probabilistische Analyse liefert die 
stochastische Absicherung eines jüngst entwickelten, wirtschaftlichen Bemessungsverfahrens. 

Der Entwurf der betrachteten Kreiszylinderschalen und versteiften Paneele wird unter 
Berücksichtigung streuender Eingangsparameter optimiert, wobei auch der bei 
Faserverbundmaterialien als zusätzlicher Entwurfsparameter zur Verfügung stehende 
Laminataufbau ausgenutzt wird. Dabei zeigt sich, dass die Berücksichtigung streuender 
Parameter zu einem anderen optimalen Entwurf führt als die Betrachtung der perfekten 
Struktur. Außerdem führt der probabilistische Ansatz in der Optimierung zu einer höheren 
Bemessungslast bzw. Gewichtsreduktion als die Bemessung mittels konventioneller 
Abminderungsfaktoren. 

 

Schlagworte: probabilistische Bemessung; Beulen von Faserverbundstrukturen; 
Entwurfsoptimierung 
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1 Introduction 

The need for design methods that allow a further exploitation of the load carrying capabilities 
of composite structures is the motivation for the work performed and methods developed 
within the context of this thesis. In the current chapter, the state of the art in the relevant fields 
is summarized and the resulting need for further research is formulated as objective of this 
thesis. 

1.1 Motivation 
Fiber composite components are increasingly broadly used in aerospace structures. Examples 
are the Airbus A350 and the Boeing 787 Dreamliner, for which the fuselages are primarily 
made of carbon fiber composite. Due to their high specific strength and stiffness, composite 
structures provide a large weight saving potential. 

Since fiber composite parts are mostly thin-walled structures, stability failure is often decisive 
for design. Stability failure occurs, if a thin-walled structure is loaded in plane under 
compression. As the load exceeds a certain level, deflections perpendicular to the loading 
plane occur, accompanied by a significant loss of stiffness. Since for shell structures the 
pattern of lateral deflections usually consists of multiple buckles, this phenomenon is denoted 
as buckling. For bars and strait shells under compression the load can be further increased 
after buckling has occurred. In difference to that, circular shells lose their capability to carry 
the applied load when buckling occurs. Hence, cylindrical shells collapse suddenly when their 
load carrying capability is exceeded. The load carrying capability of circular shells however 
depends on the deviations from the ideal structure, where it cannot be stated that for a better 
manufacturing accuracy the buckling load is necessarily higher. Moreover, the pattern of the 
imperfections plays an important role. 

The sensitivity of circular shell is a problem when designing such a structure, since size and 
pattern of imperfections are unknown in the design phase. Actually, all measures of a real, 
manufactured structure deviate from the ideal structure, since all parameters are subjected to a 
certain scatter. Hence, also the structural response, the load carrying capability of a structure 
is of random nature. In order to design a structure as lightweight as possible and at the same 
time as reliable as necessary, the stochastic distribution of the load carrying capability must be 
known. This requires the application of probabilistic methods. 

In this context, two structural components are regarded in this thesis. Unstiffened cylindrical 
composite shells, which occur as parts of rocket boosters, show a high imperfection 
sensitivity, which leads to a large stochastic scatter of buckling load. Stiffened composite 
panels, as a part of an aircraft fuselage, are generally less sensitive to imperfections, but show 
a more complex buckling behavior. Here, the load carrying capability is not only limited by 
the buckling load, but also by material failure. Depending on the design, material degradation 
and stability failure can even interact. This causes additional challenges for the probabilistic 
method. 

Probabilistic analyses of composite structures on the one hand provide information about the 
reliability of components, and on the other hand offer possibilities to even further exploit the 
load carrying capability of the structure and therefore save weight. 
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1.2 State of the Art 
This section gives an overview of developments in buckling analyses of stiffened and 
unstiffened cylindrical shells and curved panels, where due to the historical development 
metallic structures are considered as well as structures made of composite material. For a 
comprehensive overview of the history of shell buckling the reader should refer to [1] or [2]. 
Furthermore, different probabilistic and deterministic design philosophies that have been 
developed are discussed. The focus of this thesis is on probabilistically motivated design 
approaches, which is why besides probabilistic analyses of thin-walled shells also 
probabilistic analyses of composite material in general are summarized. Finally, an overview 
is given of the probabilistic methods and tools that are used for probabilistic analyses in 
general.  

1.2.1 Buckling of Unstiffened Cylindrical Shells 

In the beginning of the 20th century, Lorenz [3], Timoshenko [4] and Southwell [5] in parallel 
derived the equation for the buckling load of a perfect, isotropic cylindrical shell, assuming a 
purely membrane stress state for the prebuckling range.  

 
( )

2

2

2

3 1
cl

E tP
v

π=
−

 (1.1) 

In first experimental tests by Lundquist [6] and Donnell [7] it turned out that there is a large 
discrepancy between test results and analytic solution, which could not be explained at that 
time. Taking into account all experimental data available at that time, Weingarten et al. [8] 
showed that for an increasing slenderness R/t, the discrepancy between analytical solution and 
test results increases and the ratio of experimentally buckling load P and classical buckling 
load Pcl = 2πEt2C decreases, respectively (see Figure 1-1). In Figure 1-1 the Poisson’s ration 
ν = 0.3 has been chosen, which yields a maximum buckling coefficient of 

( )
1

23 1 0.6C v
−

= − ≈ .  

 
Figure 1-1: Normalized buckling coefficient C over slenderness, lower bound proposed by Weingarten et 
al. and test results (black spots), from Weingarten et al. [8] (Reprinted with permission of the American 

Institute of Aeronautics and Astronautics.) 
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Koiter [9] showed that initial geometric imperfections significantly reduce the buckling load 
and hence, are one reason for the difference of the classical buckling load and test results. In 
order to describe the postbuckling behavior Koiter used an asymptotic approach at the 
bifurcation point.  

 2/ 1c a bλ λ ξ ξ= + + +…  (1.2) 

Here, λ/λc is the normalized buckling load expanded in ξ. For symmetric buckling problems, 
the factor a equals zero. The factor b describes the curvature of the load displacement at the 
bifurcation point and hence, can be used as a measure for the sensitivity of a shell to 
imperfections. Donnell and Wang [10] showed that even small imperfection amplitudes can 
decrease the buckling load significantly compared to the buckling load of a perfect shell, 
whereas Arbocz [11] demonstrated that in the deep postbuckling range the postbuckling paths 
of imperfect and perfect shells approach each other. 

Ohira [12] investigated the influence of boundary conditions and found that even small 
changes of the boundary conditions lead to significantly different buckling loads. While Ohira 
considered a perfect shell with linear, membrane prebuckling behavior, Almroth [13] 
determined buckling loads for eight combinations of boundary conditions with rigorous 
solution of prebuckling problem. His results show that not only the boundary conditions, but 
also nonlinear prebuckling behavior has a strong influence on the buckling load. However, the 
influence of these effects alone is not strong enough to explain the gap between 
experimentally obtained buckling loads and the classical buckling load. 

Donnell [7] gave the basic equations to solve the postbuckling problem for an infinitely long 
cylindrical shell. Using Ritz technique, von Kármánn and Tsien [14] found in their first 
postbuckling analyses that several equilibrium configurations exist for one load level. Several 
works followed taking more and more coefficients into account within the Ritz approach, 
until Hoff et al. [15] showed that the postbuckling load tends towards zero as the number of 
coefficients increases. 

Thielemann and Esslinger [16] demonstrated theoretically and experimentally that the 
buckling load of cylinders decreases with increasing length. They consequently concluded 
that realistic postbuckling loads can only be achieved by taking into account the finite length, 
which leads to a locally concentrated buckling pattern. 

Using high speed camera systems, Almroth et al. [17] and Esslinger [18] captured the highly 
dynamic buckling of cylindrical shells in experimental tests. They found that buckling is 
initiated by a single dimple, from where buckles spread over the cylinder surface and build an 
unstable mode, which then changes again until the stable postbuckling mode is reached. 

1.2.2 Buckling of Isotropic Stiffened Cylindrical Shells 

In 1963, Baruch and Singer [19] developed a theory to “smeared out” stiffeners for shell 
stability analyses, which turned out to be satisfactory for closely stiffened (cylindrical) shells 
that fail by general instability. Hutchinson and Amazigo [20] showed that for stringer-
stiffened cylindrical shells the effect of boundary conditions differs significantly from 
isotropic and ring-stiffened shells. Weller [21] furthermore stated that in difference to 
isotropic cylinders the effect of boundary conditions is predominant for stiffened shells.  

Byskov and Hutchinson [22] stated that in general the buckling load of axially stiffened 
cylindrical shells is always sensitive to initial imperfections, whereas the effect of interaction 
between local and general instability is to increase the sensitivity. Weller and Singer [23] 
showed that the imperfection sensitivity of stiffened cylinders depends on the geometry of 
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stiffeners and on the ration As/(b t), respectively, where As is cross-section area of the stringer, 
b the circumferential distance between stringers, and t the wall thickness of the shell. 

1.2.3 Buckling of Composite Cylindrical Shells 

Hilburger and Starnes [24] analyzed and tested a set of composite cylindrical shells to 
investigate the imperfection sensitivity. They raised the problem, that the existing test results 
for isotropic shells did not comprise any information about the structural behavior and the 
characteristic imperfections of composite shells. Zimmermann [25] earlier showed that the 
buckling load of composite shells can significantly be influenced by fiber orientations and 
stacking sequence. Geier et al. [26] demonstrated that the buckling load of composite 
cylinders can even be doubled by only changing the stacking sequence.  

Hühne et al. [27] showed experimentally and numerically that Esslinger’s observations 
concerning the highly dynamic buckling behavior can also be confirmed for composite shells. 
They furthermore showed that not only the buckling load, but also the imperfection sensitivity 
is significantly influenced by the laminate layup. 

Further, works on composite cylindrical shells have been performed on the framework of new 
design criteria and will therefore be discussed in sections 1.2.5 and 1.2.6. 

1.2.4 Knockdown Factor Design of Cylindrical Shells 

Weingarten et al. [8] proposed a lower bound of buckling load with respect to the ratio of 
radius R and wall thickness t (see Figure 1-1). This lower bound has been adopted by NASA 
in 1968 in the guideline NASA SP-8007 [28], which is still widely used. The knockdown 
factor γ is given by 

 ( ) 11 0.901 1   with  
16

Re
t

φγ φ−= − − =  (1.3) 

(In difference to the equation in Figure 1-1, not the buckling coefficient C, but the actual 
ration of experimental buckling load and ideal buckling load is considered as γ.) NASA SP-
8007 also gives a lower bound for orthotropic shells, where only the exponent φ  is modified. 

 *
4*

1    with   
29.8

x y

x y

D DR t
t E E

φ = =  (1.4) 

This lower bound can also be used for composite shells by inserting the entries of the ABD 
matrix.  

 * 11 224*
11 22

1    with   
29.8

D DR t
t A A

φ = =  (1.5) 

In his PhD thesis deVries [29] used the unified formulation 

 11 224* *
11 22

1 1 1    with   12
29.8 16 1612

D DR R R t
t t A At

φ +
+= = = =  (1.6) 

This way, the isotropic shell is a special case of the orthotropic shell. Still, the coupling of 
bending and membrane stresses that occurs for nonsymmetrical laminates is neglected.  

An alternative knockdown factor for metal shells is given by ECCS 56 [30]. Here, the KDF 
for a shell with small imperfections is given by 
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for 0.95L R R t≤ . The ECCS 56 also gives additional safety factors depending on the 
manufacturing accuracy. The same holds for the guidelines for steel shells Eurocode 3 [31] 
and the old German guideline DIN 18800 – Teil 4 [32]. Both guidelines propose to 
distinguish shells by the deepest initial dimple.  

Figure 1-2: Knockdown factor, assuming negligibly 
small imperfections 

Figure 1-3: Knockdown factors for an imperfection 
amplitude of t 

The KDFs delivered by the guidelines mentioned are plotted in Figure 1-2 and Figure 1-3 as 
functions of R/t. For Figure 1-2 the maximum depth of initial dimples was assumed to be 
zero, while for Figure 1-3 the maximum dimple depth was assumed to equal the wall 
thickness. The material properties of common steel are used for Eurocode 3 and DIN 18800. 
Within Eurocode 3 shells are subdivided into three categories depending on their deepest 
initial dimple and the KDF is determined with respect to the category. For the example 
considered, the category changes for a ratio R/t ≈ 600, which explains the jump in the KDF 
curve of Eurocode 3 in Figure 1-3. 

1.2.5 Probabilistic Design of Cylindrical Shells 

After it was found that geometric imperfections play an important role in the buckling of 
cylindrical shells, Bolotin [33] concluded that the buckling load must be analyzed 
probabilistically, since imperfections are of random nature. Bolotin [33] developed an 
imperfection sensitivity concept combined with probabilistic treatment of imperfections, 
using a simplified model for the imperfection. 

In various works Elishakoff and Arbocz (see e.g. [34] and [35]) performed probabilistic 
analyses of the buckling load of axially compressed cylindrical shells. Geometric 
imperfections have been described by buckling modes or Fourier series and the amplitudes or 
the Fourier coefficients have been regarded as random parameters, respectively. They 
proposed the first-order second-moment (FOSM) method for analyzing the stochastic 
distribution of shells and validated the analyses with Monte Carlo simulations. The buckling 
load calculations within the probabilistic procedures have mostly been performed with 
analytic and semi-analytic software tools. Arbocz [36] showed that Fourier series are well 
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applicable to describe the manufacturing signature of shells. In order to have an accurate 
description of the imperfection pattern, many Fourier coefficients have to be taken into 
account. The computational cost of the FOSM method increases with the number of random 
parameters. Hence, in most of their publication Elishakoff and Arbocz reduced the number of 
imperfection modes taken into account. Most investigations were based on imperfection 
measurements taken of cylinders with different dimension and types of stiffening. Hence, it 
was not possible to compare the estimated distribution of buckling load with an 
experimentally obtained distribution. In order to validate the probabilistic procedure, 30 beer 
cans have been measured and tested at TU Delft [37]. However, the deterministic model for 
the determination of buckling loads did not capture all types of imperfection and therefore, the 
estimated distribution of buckling load did not compare well with the experimentally obtained 
distribution. 

A different approach has been followed by Chryssanthopoulos [38], who analyzed geometric 
imperfection measurements statistically in order to determine a representative imperfection 
pattern for a type of shell. With this method the distribution of buckling load and hence, the 
probability of failure cannot be determined. 

In 2002 Arbocz and Hilburger [39] proposed a simple probabilistic design procedure for 
preliminary design purposes and applied it to a set of composite shells. There, the geometric 
imperfections are represented by two imperfection modes and the associated amplitudes are 
determined from the root mean square of the imperfection patterns. This very simplified 
method does not deliver the real distribution of buckling load and it has been shown that the 
method in some cases lead to a non-conservative and in some cases to an overly conservative 
design [40]. 

Biagi and Del Medico [41] proposed the Equivalent Imperfection Amplitude Concept. Its idea 
is to substitute the geometric imperfection in the simulation by a single mode and to 
determine the amplitude that leads to the same buckling load as the experimentally obtained 
one. This way, a collection of amplitudes is obtained that are somehow related to the tests and 
that can be used for a probabilistic simulation. Within this method all effects that occur for all 
types of shells are mixed and captured by one scalar value, the representative amplitude. 
Hence, also this procedure does not deliver a realistic distribution of buckling load and no 
statement about the reliability or probability of failure, respectively, can be made. 

Degenhardt et al. [42] preformed experimental tests of ten nominally identical composite 
cylindrical shells and hence, obtained a distribution that allows a validation of a probabilistic 
procedure. However, Degenhardt et al. did not attempt to estimate the distribution of buckling 
load, but derived less conservative KDFs from the tests. In their simulation only parameters 
that could not be measured for each test sample have been treated probabilistically. For 
material parameters that have been determined from coupon tests, the distribution was given, 
for a loading imperfection and the scatter of fiber orientation the stochastic parameters have 
been assumed. 

After performing Monte Carlo type simulations of static and dynamic buckling of composite 
cylindrical shells, Chamis and Abumeri [43] compared the stochastic distributions of the static 
and the dynamic buckling load. Furthermore, they determined and compared the probabilistic 
sensitivity of both buckling loads with respect to ply thickness, the fiber volume ratio and the 
fiber longitudinal modulus. However, geometric imperfections have not been considered by 
Chamis and Abumeri and comparisons with experimentally obtained distributions was not 
possible. 

Broggi et al. [44] used the measurements of Degenhardt et al. [42] to estimate the distribution 
of buckling load by performing a Monte Carlo simulation. In difference to Degenhardt et al., 
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Broggi et al. considered also geometric imperfections as randomly distributed and 
approximated the empiric distribution of buckling load very well. Broggi et al. used the 
results for an assessment of KDF, but did not propose a probabilistic design procedure. 

Kriegesmann et al. [45] performed Monte Carlo based probabilistic analyses of the shells 
investigated by Hühne et al. [27], considering geometric imperfections as well as boundary 
imperfections as random parameters. The probabilistically derived lower bounds turned out to 
be less conservative than NASA SP-8007 and undercut the experimental test results. 
However, due to the small sample size, the estimated distributions of buckling load could not 
be validated. 

In [29] and [46] Kriegesmann et al. applied an extension of the semi-analytic procedure 
proposed by Elishakoff and Arbocz (see e.g. [34] and [35]) to the set of shells investigated by 
Degenhardt et al. [42]. The stochastic distribution of buckling load was approximated well by 
both, the semi-analytic approach as well as a Monte Carlo simulation. The methodology of 
Kriegesmann et al. [46] is discussed in detail and further extended within this thesis. 

1.2.6 Deterministic Design Approaches for Cylindrical Shells 

In 2006 a deterministic design procedure has been proposed by Hühne et al. [27,47], which 
captures the imperfection sensitivity of axially compressed cylindrical shells, but does not 
require measurement data. Following many works that dealt with the influence of a single 
dimple or perturbation loads on the buckling load of shells (e.g. [48] and [49]), Hühne et al. 
derived a simple and promising design procedure, which is referred to as Single Buckle 
Approach (SBA) or single dimple approach or single perturbation load approach in the 
literature. For this concept, a single perturbation load is applied to the shell perpendicular to 
the cylinder axis in the simulation (see Figure 1-4, left). The buckling load is determined for 
different values of the perturbation load. From a certain value of the perturbation load on, the 
buckling load hardly decreases any further (see Figure 1-4, right). This value of the 
perturbation load is assigned to as P1 and the associated buckling load N1 is defined as design 
load. Steinmüller et al. [50] derived an empiric formulation to determine the approximate 
value of P1 from the laminate setup, which can decrease the required number of buckling 
analyses significantly. Hühne et al. [27] applied the procedure to a set of composite shells, 
where for one shell the design load exceeded the experimentally determined buckling load. 
Kriegesmann et al. [45] concluded that the single buckle approach is very promising, but 
further investigations are required to determine for which type of shell the approach is 
applicable. 

 
Figure 1-4: Concept of the single buckle approach 
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Ben-Haim and Elishakoff proposed the convex anti-optimization to account for uncertainties 
in structural analyses [51]. For this method, the space of input parameters is enclosed by a 
hyper ellipsoid, based on measurements. Then, the worst case combination of input 
parameters is determined within the enclosing hyper ellipsoid to obtain the worst case 
response of the structure. The method has been applied to buckling of shells using measured 
imperfection data by van den Nieuwendijk [52]. Elishakoff et al. [53] performed a convex 
anti-optimization of the composite cylindrical shells, which have been tested by Degenhardt et 
al. [42] and analyzed probabilistically by Kriegesmann et al. [46]. Elishakoff et al. [53] 
showed that for this set of composite cylinders the convex anti-optimization approach yields 
similar results as the probabilistic approach. Though convex anti-optimization requires 
measurement data to account for the scatter of input parameters, the method does not consider 
stochastic distributions, levels of reliability or other probabilistic aspects. Nevertheless, the 
method leads to a similar equation for the design load, which is shown in section 8.2. 

1.2.7 Buckling and Design of Stiffened Composite Panels 

In general, stiffened panels are curved or straight plates, referred to as skin, which are 
reinforced with stiffeners. Depending on the skin stiffness and the spacing and stiffness of the 
stringers, under in plane compression the skin can buckle between the stringers, while the 
stringers do not deflect laterally. This type of buckling is referred to as skin buckling or local 
buckling. Buckling of the whole panel is therefore referred to as global buckling or overall 
buckling. The interaction of local and global buckling has already been investigated by Koiter 
and Pignataro [54] for metallic panels. Stiffened panels as a part of an aircraft fuselage are 
exposed to axial compression when located at the center bottom, close to the wing box see 
(e.g. [55,56]). With the increasing application of composites in aircrafts (see e.g. [57]), 
buckling of stiffened composite panels has been addressed in several projects over the last 
decade. Within the EDAVCOS (Efficient Design and Verification of Composite Structures) “a 
key aspect was the development of predictive models for post-buckled stiffened structures and 
verification of these models” [58]. With the POSICOSS (Improved Postbuckling Simulation 
for Design of Fibre Composite Stiffened Fuselage Structures) and COCOMAT (Improved 
Material Exploitation of Composite Airframe Structures by Accurate Simulation of 
Postbuckling and Collapse) project, the mechanical response of stiffened composite panels 
was investigated with the goal to exploit the load carrying capability of these structures (see 
[59] and [60]). The POSICOSS project focused on the development of fast analysis tools. 
Within COCOMAT the postbuckling behavior including material degradation has been 
investigated and design rules for stiffened panels have been developed. In many investigations 
special attention has been paid to skin-stringer debonding (see e.g. [58,61–63]). 

The new design guidelines developed within the COCMAT project are summarized in [64]. 
There, the limit load or design load λLL is defined as the global buckling load λGB, divided by a 
safety factor γ. It furthermore must be ensured that the onset of degradation λOD is beyond the 
limit load, while local buckling of the skin is allowed (see Figure 1-5). Mathematically this is 
expressed by 

 ( )min ,d GB ODλ λ γ λ=  (1.8) 

Ghilai et al. [64] proposed to use 80% to 90% of the global buckling load as design load, in 
order to account for uncertainties, which equals a safety factor γ of 1.11 to 1.25. 

In the framework of the COCOMAT project Lee et al. [65,66] developed a robustness index 
for structures with scattering input parameters and applied his method to stiffened panels. It 
allows determining the influence of a certain input parameter on the scatter of the structural 
response. To overcome the problem of a small data base, Kelly et al. [67] presented a method 
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to estimate the scatter of geometric imperfections by simulating the curing process. However, 
the stochastic distribution of load carrying capability has not been determined and therefore, 
no safety factors have been derived from their investigations. 

 
Figure 1-5: Objective of the COCOMAT project - Current and future design scenarios for typical stringer 

stiffened composite panel, from [60] 

An optimization of a curved stiffened panel has been performed by Seibel et al. [68]. 
However, Seibel et al. considered the first buckling as load carrying capability and hence, did 
not allow local buckling, as it is proposed in the COCOMAT guidelines.  

When stiffened panels are mentioned in the literature, this term often refers to a strait plate 
that is reinforced with stiffeners (see e.g. [58] or [69]). Within this thesis the focus is on 
curved stiffened panels, as they are part of an aircraft fuselage. The buckling behavior of these 
type of panels has been studied for instance by Zimmermann et al. [70]. 

1.2.8 Probabilistic Material Failure Analysis of Composite Structures 

A multitude of failure criteria for unidirectional (UD) plies of fiber composite structures has 
been developed over the last decades. The most often used criterion is the one proposed by 
Tsai and Wu in 1971 [71]. A more advanced criterion, which, for the first time, differed 
between fiber failure and inter fiber failure, has been given by Puck and Schneider [72] and 
later has been enhanced by Hashin [73]. In 2004, Puck and Schürmann [74] developed a 
criterion that differs between different failure modes of inter fiber failure, for which the 
applicability has been proven in the World Wide Failure Exercise [75]. However, Puck’s 
criterion requires the iterative determination of the fracture angle of inter fiber failure and is 
therefore computationally costly. Furthermore, it requires material properties that are not 
given for composite material by default (see section 3.3). Vogler et al. [76] proposed an 
Invariant based Quadratic Criterion (IQC), which does not require the determination of the 
fracture plane and which is defined by fewer material parameters that have to be determined 
from experiments. Ernst et al. [77] used the material model proposed by Vogler et al. in the 
framework of a multi scale analysis and predicted the material failure of a textile composite 
structure on the macro scale based on the material properties of fiber and matrix.  
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No matter which failure criterion is used, parameters that describe the material resistance 
scatter in reality and therefore lead to scattering strength of composite structures. Starting at 
the micro scale, the stiffness and strength parameters of fiber and matrix are of random nature. 
Also the position of fiber in the matrix and their interface properties are stochastic. 
Furthermore, fiber waviness and void inclusions can occur randomly. All these effects cause 
the material parameters of unidirectional plies to be stochastically distributed. When 
determining the stochastic distribution of the stiffness and strength parameters from 
experiments, as for instance done by Camanho et al. [78], all these effects are covered. 
However, when regarding the properties of a whole laminate, void inclusions at the ply 
interfaces and inaccuracies of the fiber angle lead to additional scatter of structural response. 

Summarized, the material characteristics of fiber composite structures scatter on each scale 
and each scale again influences the distribution on the next higher scale. Several works 
analyzed the properties of composites on different scales probabilistically in order to estimate 
the scatter on the next scale. Engelstad and Reddy [79] used stochastic distributions of 
material characteristics of the UD ply in order to estimate the scatter in the structural response 
of a certain laminate for a metal matrix composite. Gurvich and Pipes [80,81] considered the 
properties of a sublaminate (e.g. in the form of [0,±Θ,90]) as randomly distributed in order to 
estimate the strength distribution of a laminate that consist of the sublaminates considered. 
They validated their results with bending tests of a [0]14 laminate and tensile tests of a 
[0,±45,90]4 laminate. Philippidis and Lekou [82] performed reliability analysis of a UD ply 
for given distribution of material strength parameters. Instead of providing stochasitc 
measures for the analysis on the next scale, they provided semi-analytical and numerical 
approaches that allow for determining the probability of failure of the single UD ply. 

A simple approach to probabilistically analyze the microscopic behavior of fiber composites 
has been proposed by Wu and Robinson [83]. They considered the tension strength of a single 
fiber section as random parameter to determine the stochastic distribution of the tensile 
strength of fiber bundles. A more advanced approach on the micro-scale is given by Ernst 
[84], who used a Monte Carlo type simulation to determine the stochastic distribution of 
homogenized material properties in the context of a multi-scale approach. Ernst regarded the 
fiber positions in a unit cell as randomly distributed and obtained distributions of stiffness and 
strength of the homogenized material, which then were utilized to analyze a textile composite 
structure. A full probabilistic multi-scale approach has been demonstrated by Chamis [85]. On 
the micro level, the stochastic distributions of matrix and fiber properties are used to 
determine the distributions of material parameters of the UD ply. These again are used as 
random input parameters for a probabilistic analysis of macro-scale structure. However, the 
scatters of global properties like geometric imperfections are neglected in this analysis. Shaw 
et al. [86] performed a probabilistic analysis of UD plies, considering fiber and matrix 
material properties as well as the void volume fraction as randomly distributed and showed 
that the estimated distribution is in good agreement with experimentally obtained results. As 
in other works, the consideration of void inclusions is kept rather simple. Investigations that 
focus on the effect of voids and their influence on the scatter of material properties are given 
by Czichon et al. [87]. Here, the actual void morphology is approximated by shape functions 
and included in finite element models. Thereby, Czichon et al. determined the stochastic 
distribution of stiffness and strength parameters due to realistically distributed voids. 

1.2.9 Probabilistic Analysis Methodologies 

The focus of this thesis is on the development of a probabilistic design approach, where 
existing simulation techniques will be utilized, if possible. Therefore, not the latest state of the 
art is given here, but an overview of well established methods that have already been applied 
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in engineering science. An overview of the methods presented in the following can for 
instance be found in [88–90]. 

 
Figure 1-6: General function of a probabilistic analysis 

The general objective of probabilistic analyses is to determine the stochastic distribution (or 
certain characteristics, like mean value and quantiles) of an objective function, which is 
dependent on scattering input parameters (see Figure 1-6). Since this problem cannot be 
solved exactly in most cases, a wide range of probabilistic analysis methods is given in the 
literature, which significantly differ in accuracy and computational cost. In general there is the 
tendency depicted in Figure 1-7, meaning that the more efficient a method is, the less accurate 
it is (though there are cases in which accuracy and efficiency are improved at the same time 
under certain conditions). 

 
Figure 1-7: Efficiency versus accuracy of different probabilistic methods 

The method that requires the fewest evaluations of the objective function is the first-order 
second-moment (FOSM) method. Within this method, the objective function is approximated 
by a Taylor expansion at the mean values of all input parameters. This approximation of the 
objective function is then used to determine mean value and variance of the objective 
function. While for the FOSM method only linear terms of the Taylor expansion are 
considered, the second-order third-moment (SOTM) method also considers the quadratic 
terms of the Taylor series. The basic approach however is the same. 

For first and second order reliability methods (FORM/SORM) the limit state function is 
approximated at the most probable point (MPP). The limit state function is the function that 
divides the random space into a save region and a failure region. The MPP is the point on the 
limit state function with the highest probability density and with the smallest distance to the 
mean values of all input parameters. For the FORM and SORM the MPP is searched in a first 
step. Then, the limit state function is approximated at the MPP by a linear function (FORM) 
or a quadratic function (SORM) and the probability of failure of the problem considered is 
determined. The MPP is found using optimization techniques, which makes the FORM and 
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SORM more computationally costly than FOSM approach. However, the probability of 
failure can be determined more accurately. 

For the Monte Carlo method, samples of the random parameters are generated based on the 
stochastic distributions of these parameters. Then, the objective function is evaluated for all 
generated samples. Doing so, most generated samples accumulate around the mean values. 
For reliability analyses however, values that are close to the limit state function and which 
usually occur with low probability are of higher interest. Therefore, Monte Carlo simulations 
are often improved by importance sampling. Here, samples are not generated based on their 
distribution function, but on some arbitrary function and then weighted with their probability. 
For instance, sampling techniques like Latin hypercube sampling can be used in order to 
ensure that the whole random space is captured. In difference to that, directional sampling (or 
line sampling) is used to generate samples e.g. around the limit state function. Adaptive 
sampling methods allow modifying the areas in which most samples are generated during the 
sampling procedure. No matter which type of sampling technique is used, the objective 
function must be evaluated a multitude of times for a Monte Carlo simulation. If a very large 
number of random parameters is considered, Monte Carlo simulations can be more efficient 
than methods like FOSM or FORM. However, for the number of parameters considered 
within this thesis, the Monte Carlo method is always the most costly one. 

Response surface (RS) methods can be used to reduce the number of evaluation of the 
objective function, required for a Monte Carlo simulation. Similar to the use of RS methods 
for optimization, the response surface of the objective function is approximated by generating 
a number of samples based on a design of experiments approach. The objective function is 
evaluated for these samples and the RS is obtained by interpolating between the obtained 
support values. Given a RS, the samples generated within a Monte Carlo simulation are 
evaluated by interpolation on the RS instead of actually evaluating the objective function. 
This increases the efficiency at the expense of accuracy. 

When applying a probabilistic method, the balance of accuracy and efficiency has to be 
found, which always depends on the problem considered. For this purpose, the most accurate 
as well as the most efficient methods are applied for probabilistic design within this thesis, 
namely the Monte Carlo method and a further developed FOSM/SOTM type approach. These 
approaches are discussed in detail in chapter 4. 

1.3 Objective and Outline 
Though several probabilistic analyses of structures prone to buckling have been performed in 
the past, almost no work compared the estimated distribution with experimentally obtained 
empirical distribution (with the exception of [44–46,91], which have been published during 
the preparation of this thesis and/or are part of this thesis). However, a less conservative but 
still reliable design load compared to existing guidelines can only be determined, if the 
distribution of buckling load is predicted accurately and if the probabilistic methods that are 
used in this context are validated. At the same time, this probabilistic method must be fast, if 
it is the objective to use it for design purposes. All probabilistic design procedures provided 
before are either fast but do not determine the real distribution of buckling load, or require too 
high computational costs to be applicable as a design method.  

The objective of the present work is to provide a validated probabilistic methodology that is 
on the one hand accurate enough to determine the actual stochastic distribution of load 
carrying capability and on the other hand fast enough to serve as a design tool and can even 
be applied within design optimization.  
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For stiffened composite panels, which are less sensitive to imperfections than cylindrical 
shells, but show a much more complex failure behavior, so far no probabilistic concept has 
been proposed to determine the probability of failure and the reliability of a design, 
respectively. Here, the objective of the present work is to probabilistically analyze stiffened 
composite panels and to furthermore derive a methodology for determining the reliability of 
stiffened panels under consideration of different failure modes. 

In the following chapter, the behavior of axially compressed cylindrical shells and stiffened 
panels made of composite material is described as it has been detected within experiments. 
Basis of all probabilistic analyses and other design concepts is a validated numerical model 
and a robust and accurate solution procedure. Different approaches for determining buckling 
loads and material failure of composite structures by numerical analyses are given in 
chapter 3. In chapter 4 the theoretical basics of probabilistic analyses is given and the 
proposed design procedures are summarized. In chapter 5 a simple example of an objective 
function is given, for which the stochastic distribution function is determined analytically and 
which is used to validate the implementation of the probabilistic methods considered. The 
probabilistic procedure is applied to a set of cylindrical shells in chapter 6 and the reliability 
of the design loads given by other design procedures is evaluated. The data basis for a 
probabilistic analysis of stiffened panels is discussed in chapter 7 and the proposed design 
concept for stiffened panels is applied. In chapter 8 the design of the cylindrical shells is 
optimized with respect to the probabilistically motivated design load. The optimization is also 
performed using other design procedures and the influence of the chosen design procedure on 
the optimal design configuration is determined. Procedures to optimize the design of a 
stiffened panel are described in chapter 9 and an enhanced design is derived. Chapter 10 
summarized major findings, consequential conclusions and open questions, as well as need 
for further research.  
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2 Experimental Behavior 

The validation of numerical simulation methods always requires the comparison with well 
defined experimental tests. For the validation of probabilistic methods, the same type of test 
has to be performed for numerous nominally identical structures. In the current chapter, the 
experimentally observed structural behavior of composite cylindrical shells and curved, 
stiffened panels under axial compression is described in general as well as especially for the 
tests that serve for the validation of the numerical models and probabilistic methods applied in 
chapter 6 and chapter 7. 

2.1 Unstiffened Cylindrical Composite Shells 
As stated in section 1.2, a multitude of experimental tests of cylindrical shells have been 
performed in the past. Esslinger [18,92] recorded the highly dynamic buckling process of 
metallic shells with high speed cameras and explained the mechanical mechanism that leads 
to the catastrophic collapse. Hühne et al. [27] monitored the buckling behavior of composite 
cylindrical shells with high speed digital image correlation system and were able to confirm 
Esslinger’s findings for composite shells. 

The buckling behavior of axially compressed cylindrical shells can be subdivided into three 
steps, namely the prebuckling range, the highly dynamic buckling process and the 
postbuckling range (see Figure 2-1). 

 
Figure 2-1: Load-displacement curve of an axially compressed composite cylindrical shell 

In the prebuckling range, the cylinder cross section widens due the axial compression, which 
causes tension in circumferential direction. For the classical solution of the buckling load, 
isotropic material and boundary conditions that only fixes axial translation are assumed, 
which leads to a pure membrane stress state (see Figure 2-2, left). However, in reality most 
cylindrical shells are clamped at the edges and a widening is inhibited there (see Figure 2-2, 
right). Therefore, significant bending stresses occur close to the edges. 

Furthermore, in composite shells with unsymmetrical laminate setup bending is induced by in 
plane forces. These effects can lead to nonlinearities in the prebuckling range. Of course, 
material nonlinearities can occur additionally. However, the cylindrical shells considered in 
the following did not show plastic deformations within the tests.  

The actual onset of buckling starts with a single buckle. Due to initial imperfections, the shell 
starts to deflect inwards at a certain location. Therefore, the circumferential tension decreases 
or even turns into compression. The stabilizing effect of the circumferential stress vanishes 
and a local loss of stiffness leads to the first initiating buckle. The load redistribution around 
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this buckle leads to further buckles adjacent to the initiating one. The buckles start to spread 
over the whole shell and several buckling patterns are passed through until the stable 
postbuckling pattern occurs. The spread of buckles is attended by a significant decrease of the 
load the shell is able to carry, which is displayed by a large drop in the load-displacement 
curve. 

 
Figure 2-2: Effect of boundary conditions on prebuckling deformation  

As the displacement is further increased in the postbuckling region, the oscillation induced by 
the dynamic buckling process fades away and load can be further increased, where the 
stiffness is significantly smaller than in the prebuckling range. In the deep postbuckling range, 
further buckling processes are attended by mode changes. However, since the first global 
buckling of a cylinder is considered as failure, the deep postbuckling behavior is not of 
interest within the framework of this thesis. 

Because the initiation of buckling is caused by small imperfections, the experimentally 
determined buckling loads scatter a lot and are much smaller than predicted buckling loads 
given by perfect shell analyses. 

Hühne et al. [27] tested six composite cylindrical shells with four different laminate setups. 
The experimentally determined buckling loads, the buckling loads given by numerical 
simulations of the ideal shells and the knockdown, the ration of experimental buckling load 
and perfect shell analysis, are given in Table 2-1. 

 

Shell Z07 Z08 Z09 Z10 Z11 Z12 

Experiment in kN 21.8 21.9 15.7 15.7 16.7 18.6 

Perfect shell analysis in kN 31.8 31.8 17.0 23.0 22.0 22.0 

Knockdown 0.686 0.689 0.924 0.683 0.759 0.845 

Table 2-1: Buckling loads for Z07-Z12 from [27] 

Degenhardt et al. [42] tested ten nominally identical composite cylinders with the same 
laminate setup as shell Z07, tested by Hühne et al. The perfect shell analysis of Degenhardt et 
al. delivered a buckling load 38.2 kN, which differs from the analysis of Hühne et al. due to 
differing material properties. The experimentally determined buckling loads and the 
associated knockdowns are given in Table 2-2. 

In Figure 2-3 the load-displacement curves of the cylinders tested by Degenhardt et al. [42] 
are depicted. The increasing slope at the beginning of the test is due to the fact that full 
contact has to be established at the beginning. The actual stiffness of the cylinders in the 
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prebuckling range is equal for all cylinders. While the deformations in the prebuckling range 
are influenced by the imperfections and therefore differ slightly for all shells, the postbuckling 
pattern is the same. An extensive description of the DLR test facilities and the experimental 
tests of the cylinders of set #2 as well as of the stiffened panels considered in chapter 7 are 
given in [93]. 

 

Shell Z15 Z17 Z18 Z20 Z21 Z22 Z23 Z24 Z25 Z26 

Experiment 
in kN 23.36 24.63 21.32 23.08 22.63 23.99 25.02 23.62 25.69 22.43 

Knockdown 0.612 0.645 0.558 0.604 0.592 0.628 0.655 0.618 0.673 0.587 

Table 2-2: Buckling loads for Z15-Z26 from [42] 

 
Figure 2-3: Load-displacement curves and displacement patterns for cylinders Z15-Z26 from [42] 

Waters [94] and Hilburger [24] tested cylindrical composite shells with different laminate 
setup, for which the buckling loads are given in Table 2-3. The shell AW-Cyl-5-1 was 
damaged prior to testing, but tested nevertheless. In [24] the cylinders AW-Cyl-92-01, AW-
Cyl-92-02 and AW-Cyl-92-03 are referred to as C1, C2 and C3. The normalized load-
displacement curves of these cylinders are shown in Figure 2-4. Unsurprisingly, these 
cylinders show different prebuckling stiffnesses. 

The experimental results show the large scatter of the knockdown for the different designs, 
but also for nominally identical shells. The shells tested by Hühne et al. [27] and Degenhardt 
et al. [42] all have the same nominal radius and wall thickness and therefore, the same 
knockdown factor would be applied using the existing guidelines, though the experimentally 
determined knockdown ranges from 0.558 for Z18 to 0.924 for Z09. The shells tested by 
Waters [94] and Hilburger [24] have the same radius, but different wall thickness. Since the 
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ply-thickness is equal for all shells, the shells AW-Cyl-2-1 to AW-Cyl-5-1 have a twice as 
thick wall thickness as the rest of the shell. Though it contradicts the guidelines given in 
section 1.2.4, for two of the thinner shells (AW-Cyl-11-1 and AW-Cyl-92-01) higher 
knockdown factors (KDFs) have been obtained. 

 

Shell Laminate Experiment 
in kN 

Perfect shell 
analysis in kN Knockdown 

AW-Cyl-1-1 [±45, 0, 90]s 134.2 184.1 0.729 

AW-Cyl-2-1 [±45, ∓ 45]2s 329.2 436.3 0.755 

AW-Cyl-3-1 [±45, 0, 90]2s 657.5 745.9 0.881 

AW-Cyl-4-1 [±45, 04, ∓ 45]s 558.6 621.4 0.899 

AW-Cyl-5-1* [±45, 904, ∓ 45]s 407.9 672.7 0.606 

AW-Cyl-11-1 [±45, 0, 90]2s 676.6 745.9 0.907 

AW-Cyl-92-01 [±45, 02]s 123.6 133.1 0.929 

AW-Cyl-92-02 [±45, 902]s 142.0 170.1 0.835 

AW-Cyl-92-03 [±45, 0, 90]s 152.0 184.1 0.826 
*Cylinder was damaged prior to testing 

Table 2-3: Buckling loads for AW-Cylinders from [39] 

The observations show the strong influence of the laminate setup on the buckling load as well 
as on the sensitivity. Therefore, the physical effect of the laminate setup must be taken into 
account in novel design procedures. 

 
Figure 2-4: Normalized load-displacement curves for AW-Cyl-92-01, AW-Cyl-92-02 and AW-Cyl-92-03 

from [24] 

2.2 Stiffened Curved Composite Panels 
For stiffened composite panels under axial compression the first point of instability is often 
given by buckling of the skin only. This point is often referred to as local buckling or skin 
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buckling. Local buckling is usually attended by a slight reduction of global stiffness, but the 
load can be further increased. As the stringers start to deflect laterally to the loading plane, the 
panel stiffness decreases significantly. Depending on the design, the global buckling in some 
cases corresponds to a decrease of the carried load and a drop in the load-displacement curve. 
When the axial displacement is further increased the load increases until material failure leads 
to the total collapse of the panel. An idealized, typical load-displacement curve of axially 
compressed stiffened panels is given in Figure 2-5.  

Depending on the panel design, the global buckling load can be lower than the local buckling 
load. This may be the case if the bending stiffness of the skin is high relative to the bending 
stiffness of the stringers and/or if the stringers are spaced closely. However, in the context of 
this thesis only designs are regarded for which local buckling occurs before global buckling. 

 
Figure 2-5: Load-displacement curve of a stiffened panel under axial compression 

Zimmermann et al. [70] tested eight composite stiffened panels, for which the experimentally 
determined local buckling load and collapse load are given in Table 2-4. The panels P09-P11 
have the same design, so do panels P12-P14 and P15-P16. The panels P12-P14 have one more 
stiffener and two more ply in the skin than the other panels. Panels P15-P16 have a smaller 
curvature radius than panels P09-P14. 

 

Shell P09 P10 P11 P12 P13 P14 P15 P16 

Skin buckling load in kN 11.2 9.5 9.6 28.8 29.6 38.9 29.4 23.9 

Global buckling load in kN* 42 43 42 70 66 72 75 73 

Collapse load in kN 56.1 54.3 58.7 87.3 89.4 100.6 75.4 73.3 
*The global buckling loads are not given explicitly in [70], but have been determined based on load-
displacement curves given in [70] and the criterion for global buckling given in section 3.2.6 

Table 2-4: Experimentally determined buckling loads for P09-P16 from [70] 

The load-displacement curves and the associated displacement fields shown in Figure 2-6 
confirm the already described typical behavior of stiffened panels. The prebuckling stiffnesses 
of the three nominally identical panels P12-14 are almost identical. Also in the postbuckling 
range the slope of the load-displacement curves compare well. However, the global buckling 
loads, detectable by the smooth decrease of reaction force in the load-displacement curves, 
show a noticeable scatter. 
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Figure 2-6: Load-displacement curves of panels P12-P14 and deformation patterns of P14 from [70] 

A further test result of a panel tested at DLR is given by Orifici et al. [61]. From the load-
displacement curve given in Figure 2-7 a global buckling load of 74.4kN and a collapse load 
of 83.6kN have been determined. Investigations of the failure mechanisms of this panel 
performed by Degenhardt et al. [62] show that large areas of the skin-stringer connection 
failed.  

 
Figure 2-7: Load-displacement curve of stiffened panel from [61] 

The results show that the load carrying capability of stiffened panels indeed can be exploited 
beyond local buckling, accepting small stiffness decreases. The load carrying capability is 
limited by global buckling and material failure, where both can interact.  
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3 Numerical Failure Analysis 

The fundamental basis for probabilistic analyses, which have the objective to predict the 
stochastic distribution of load carrying capability, is a reliable deterministic simulation of the 
structural behavior. In the framework of this thesis, the deterministic analyses are performed 
using the finite element method. Two failure modes are considered that limit the load carrying 
capability. On the other hand, a significant loss of structural stiffness and/or a decrease of the 
carried load due to buckling are considered as structural failure. One the one hand, a structure 
is considered to fail if material failure occurs somewhere in the structure. The material 
failures considered occur in combination with buckling and the focus lies on the phenomenon 
of instability.  

In this chapter, definitions of instability and analysis techniques for the numerical simulation 
of buckling are discussed. Furthermore, failure criteria for detecting the onset of material 
degradation in composite materials are given. 

3.1 Definition of the Instability of Structures 
In [95], El Naschie gives an overview of three criteria to define instability: the criterion of 
non-trivial equilibrium state, the dynamical criterion and the total potential energy criterion. 

The most commonly used criterion for instability is the potential energy criterion. The total 
potential energy Π of a structure equals the sum of the elastic strain energy, stored in the 
deformed structure, and the potential energy of the applied forces. If the first variation of Π 
equals zeros, equilibrium is satisfied. A stable equilibrium configuration is given, if the 
potential energy is a relative minimum and hence, the second variation is positive. If the 
second variation is negative, an instable configuration is present and hence, the critical state is 
given, if the second derivative equals zero. 

 
2

2

2

0 equilibrium
0 stable
0 instable
0 critical state

δ
δ
δ
δ

Π = ⇒

Π > ⇒

Π < ⇒

Π = ⇒

 (3.1) 

Another widely used definition of instability is the criterion of non-trivial equilibrium state. 
Here, an equilibrium state is considered instable, if there is an adjacent equilibrium state. 
Mathematically, this is the case is the stability determinate det(K), derived either from 
equilibrium condition or the second derivative of the energy function, equals zero. 

 

( )
( )
( )

det 0 stable

det 0 instable

det 0 critical state

> ⇒

< ⇒

= ⇒

K

K

K
 (3.2) 

The dynamical criterion provides the most general definition of instability. Here, stability is 
given if a system that is perturbated returns to its initial equilibrium state. In case of 
instability, the system converges towards a different configuration, which is the case if the 
frequency determinant vanishes.  

For conservative systems, all definitions deliver the same results. Following El Naschie [95], 
a system is conservative if the work is path independent. Considering no material 
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nonlinearities, but only geometric nonlinearity, no energy is dissipated and the inherent work 
is indeed path independent. Therefore, axially compressed cylinders as well as stiffened 
panels are considered conservative systems, at least until the onset of material failure. 

For buckling analyses it is relevant to differ between bifurcation problems and snap through 
problem. For perfectly straight beams or shells under axial compression there exists a load 
level where the primary equilibrium path is intersected by a secondary path, while for 
imperfect structures this is not necessarily the case. The classic example to describe the 
difference between bifurcation problems and snap through problems is the von Mises truss, 
depicted in Figure 3-1. Due to the geometry of the problem, there is a local maximum on the 
load-displacement curve, which is called limit point. Increasing the applied load at this point 
would lead to a dynamic snap trough of the truss. If the bending stiffness of the two beams is 
small enough, the beams will buckle before the limit point is reached. However, in a 
simulation with perfectly straight beams the system will not take the secondary path. To 
detect the secondary path, which the system would take in an experiment, a small 
imperfection or perturbation would have to be applied to at least one beam. 

 
Figure 3-1: Load-displacement curve of von Mises truss 

3.2 Buckling Analysis 
In the following, commonly used techniques to detect points of instability using the finite 
element method are described. 

3.2.1 Eigenvalue Analysis 

Following the total potential energy criterion the second variation of the potential energy of a 
structure equals zero at points of instability. From this approach the linear eigenvalue problem 
is derived (see Singer et al. [2] or Wriggers [96]). 

 ( )σλ φ⎡ ⎤+ + =⎣ ⎦L UK K K 0  (3.3) 

 σ= + +T L UK K K K  (3.4) 

KL is the linear stiffness matrix, KU the stiffness matrix that captures geometrically nonlinear 
behavior and the influence of initial deformations, respectively, and Kσ is the stiffness matrix 
that describes the stress depending stiffness. The eigenvalue λ is at the same time the load 
parameter and the eigenvector φ

 
describes the associated buckling mode. The classical 

eigenvalue problem does not consider the prebuckling deformation and hence, is given by  

 [ ]L σλ φ+ =K K 0  (3.5) 



3.2
 

Th
no
in
ac
Fi

F

In
eq
cu
us
eig
bi
lo
eq

 

wi

3.2

W
ge

 

R 
ve
(3

 

Th
di

 

2 

his 
onli
acc

ccur
gur

Figu

n or
quil
urre
sed 
gen
fur
ad 

qual

ith 

2.2

With
eom

is 
ecto
.7) 

he 
spl

B

wa
inea
cura
rate
re 3

ure 

rde
libr
ent 

to
nva
rcat
vec
l ze

the

2 N

h th
metr

the
or u
is 

cu
ace

Buck

ay, 
ar 
ate 
e is
3-3

3-2

r to
rium
sti

o d
alue
tion
cto
ero

e ei

No

he 
rica

e re
u, a
usu

urre
eme

klin

po
pre
res

s th
 ex

2: S

o o
m s
ffn
ete

e a
n po
r e
, th

igen

nlin

crit
ally

esid
and 
uall

nt 
ent 

ng A

oint
ebu
sult
he p
xem

ket
eig

obta
stat
ness
ect 
anal
oin
qua

he c

nve

nea

teri
y no

dua
P 

ly s

sti
ui.

Anal

s o
uck
ts. T
pre

mpla

ch –
genv

ain 
e, a

s m
bif

lysi
nt o
als 
curr

ecto

ar S

ia 
onl

al v
the
solv

iffn
. In

lysi

of in
kling
The

edic
aril

– lo
valu

th
a g

matr
furc
is 

or a
zer

ren

or φ

Stat

giv
ine

ect
e ve
ved

ness
n ea

s 

nsta
g b
e c

ctio
ly s

oad 
ue e

he d
geom
rix 
cati
for

a lim
ro, 

nt st

φ  a

tic 

ven 
ear 

tor, 
ecto
d w

s m
ach 

abi
beh
los

on g
show

sho
estim

disp
met
KT
ion
r th
mit
a b

tate

and 

An

in
ana

I i
or o

with 

mat
ite

ility
hav
ser t
giv
ws 

orte
mat

pla
tric

T be
n an
he 
t po
bifu
e eq

the

naly

n th
alys

is t
of e
Ne

trix
erat

y ar
vior
the
en 
the

enin
tes 

cem
call
eco
nd 
det

oint
urca
qua

T

T

φ
φ

e lo

ysis

he 
ses

R

the 
exte
ewt

K

 K
ion

re d
r, th
e di

by
e fi

ng cu

men
ly n
ome

lim
tec
t ha
atio

als a
T

T

P
P

oad

s 

pre
 tha

(R

vec
ern
ton

(TK

KT 
n ste

det
he 
spl

y th
irst 

urv

nt d
non
es s
mit 
ted
as 
on
a lim

0
0

=
≠

d ve

evio
at s

,λu

cto
nal f
n ite

( iu

and
ep,

u

erm
dir

lace
he s

bu

ve w

dep
nlin
sing

po
d e
bee
poi
mit

0
0
→
→

ecto

ous
solv

)λ
or o
forc
erat

) Δ
d t
 the

1+iu

min
rec
eme
solu
uckl

with 

pen
near
gul
oin
qui
en 
int 
t po

bi
lim

→
→

or P

s, p
ve t

= I

of in
ces
tion

+Δ iu

the 
e d

= u

ned 
ct s
ent
utio
ling

nden
r si
lar 
nts.
ilib
det
is r

oint

ifur
mit

P. 

poin
the

(I u

nter
s th
n gi

1+ =

re
isp

+iu

dir
solu
t fie
on o
g m

nt 
imu
if a
H

briu
tect
rea
t. 

rcat
t po

nts
 eq

) −
rna
at i
iven

= −R

esid
plac

+Δu

rec
utio
eld 
of 

mod

F

stif
ulat
a p
ow

um 
ted
ache

ation
oint

 of
quil

λP

al fo
is m
n b

(R

dua
cem

1+iu

tly 
on 
is t
the

de o

Figu

ffne
tion
poin
weve

sta
. If
ed, 

n p
t

f in
libr

=P

forc
mul
by 

,iu

al v
men

1

an
wi
to t

e ei
of s

re 3

ess
n m
nt o
er,
ate 
f th

wh

poin

nsta
rium

= 0

ces 
ltip

)λ
vec
t is

nd r
itho
the 
igen
shel

3-3:

 m
mus
of i

it 
in

he s
her

nt

abi
m o

and
plied

)
tor 

s in

rela
out 

rea
nva
ll Z

: Fir

matr
st b
inst
is 

n o
scal
reas

lity
of in

d a
d b

R
cre

ativ
co

al p
alue
Z07

rst 

rice
e p
tab

sti
orde
lar 
s if 

y c
nter

a fu
by a

R a
ease

vely
ons
poin
e p
 fro

buc

es K
perf
ility
ill 
er t
pro

f the

can 
rna

unct
a lo

are 
ed b

y fa
ide
nt o

prob
om 

ckli

KU
form
y i
va
to 
odu
e s

be
al an

tion
oad 

fun
by

ast. 
erin
of i
blem
[27

ng m

an
me
s r

alua
de

uct 
cal

e d
nd 

n o
par

nct

Ho
ng 
inst
m (
7]. 

mod

nd 
d. T
eac

able
eterm

of 
ar p

dete
ext

f th
ram

tion

ow
KU
tabi
(see

de o

Kσ 
The
che
e to
min

f eig
pro

ecte
tern

he d
met

ns 

weve
U c
ility
e F

of s

σ fo
e fa
d c
o p
ne 
gen
odu

ed 
nal 

dis
ter λ

of 

er, 
an 
y, t

Figu

 
hell

or a
fact 
can
per
wh

nve
uct 

by 
for

pla
λ. E

th

due
le

the 
ure 

l Z0

a c
th

n th
for
heth

ecto
doe

“u
rce

acem
Equ

e a

e to
ad 
mo
3-

07 

erta
at t

hen 
rm 
her

or a
es n

(3

usu
. 

(3

men
uati

(3

actu

(3

22

o a
to

ore
-2).

ain
the
be
an

r a
and
not

.6)

al”

.7)

nts
ion

.8)

ual

.9)

a 
 
 
 

n 
 
 

n 
a 
d 
t 

 

 

 

 
n 

 

l 

 



23 Chapter 3.   Numerical Failure Analysis 
 

where Δui+1 is obtained from equation (3.8).  

 
Figure 3-4: Load or displacement driven analysis of snap back problem 

If a snap back problem shall be solved, a dynamic process occurs (see Figure 3-4) that only be 
simulated using artificial damping. For that, viscous forces *cM u�  are introduced into the 
system of equations. 

 ( ) ( ) *,λ λ= − + =�cR u I u P M u 0  (3.10) 

Here, the damping factor c is multiplied by an artificial mass matrix M* and the vector of 
nodal velocities �u, which is approximated by  

 Δ=
Δ

�
t
uu  (3.11) 

Here, the time increment Δt “may or may not have a physical meaning in the context of the 
problem being solved.” [97] 

3.2.3 Path Following Algorithms 

In order to capture the load displacement curve of snap back problems, path following 
procedures like arc length methods can be used [96]. The basic idea is to consider the loading 
parameter λ as an additional degree of freedom and to extend the equation system that 
describes the equilibrium by a constrain equation f = 0. 

 
( )
( )

,
,
λ
λ

⎛ ⎞
=⎜ ⎟

⎝ ⎠f
R u

0
u

 (3.12) 

The linearization then reads  

 
1λ

λ +

−⎛ ⎞ Δ⎛ ⎞ ⎛ ⎞⎜ ⎟ = −∂ ⎜ ⎟ ⎜ ⎟⎜ ⎟ Δ∇⎜ ⎟ ⎝ ⎠ ⎝ ⎠∂⎝ ⎠

T

i
i

f ff

K P u R
 (3.13) 

Riks [98] proposed the following linear constrain equation. 

 ( ) ( ) ( )( )0 0 0 0λ λ λ λ= − − + − −Tf u u u u  (3.14) 

Here,
 ( ),

T
λ=w u  is the current state and ( )0 0 0, Tλ=w u  is the solution of a prediction step. 

The constraint equation is a plane perpendicular to the prediction step (see Figure 3-5, left). 

Chrisfield proposed the nonlinear constrain equation that describes a hyper sphere around the 
current state ( ),

T
λ=w u  with the radius Δs (see Figure 3-5, right). 

 ( ) ( ) ( )2Tf sλ λ= − − + − +Δu u u u  (3.15) 
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The advantage of this formulation is that always one solution is found, which is not ensured 
using Riks’ equation. The disadvantage is that multiple solutions may occur. 

 
Figure 3-5: Arc length method with Riks (left) and Crisfield (right) constraints equation 

The buckling of cylindrical shells is a snap back problem and therefore, arc length methods 
allow determining the whole equilibrium path. However, especially when regarding the 
perfect structure, many equilibrium paths, each connected to a certain buckling mode, are 
close to each other. It turned out that implemented arc length methods do not reliably find the 
desired equilibrium path.  

Wriggers [96] provided a method to directly determine points of instability by utilizing the 
fact that the stiffness matrix becomes singular for a point of instability as constrained 
equation. 

 1 0Tf lφ φ= = = − =K 0  (3.15) 

The additional equation l ensures the exclusion of the trivial solution 0φ = . By using (3.6) for 
the additional constrained equation, this methodology can even be utilized to search only 
bifurcation points or only limit points. It should be stressed that this methodology is actually 
not a path following method, but due to the similarities it is mentioned within this context. 

If only the buckling load is of interest, the limit point can be determined with a load 
controlled simulation and the use of an arc length method unnecessarily increases the 
computation time. 

3.2.4 Bisection Procedure 

No matter whether “usual” geometrically nonlinear analyses is performed, or path following 
algorithms are used to capture the buckling behavior of a structure, it is possible that due to a 
too large increment a bifurcation point is missed. This can be checked by regarding the 
eigenvalues of the stiffness matrix. If a bifurcation point is missed, the stiffness matrix 
becomes indefinite and negative eigenvalues occur. By restarting the simulation at the last 
stable equilibrium state [99], or changing the direction of the path following procedure [96], 
and reducing the step size, the interval, in which negative eigenvalues occur, is determined 
(see Figure 3-6). 

By introducing imperfections, the buckling of a cylindrical shell changes from a bifurcation 
problem to a snap through (or snap back) problem, where the limit point defines the buckling 
load. Therefore, the bisection procedure is required especially for analyses of perfect 
structures. 
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Figure 3-6: Bisection method for determining points of instability 

3.2.5 Explicit Time Integration 

Given the nonlinear differential equation of the time dependent displacement u(t) 

 ( ) ( ) ( )( ) ( )+ + =�� �t t t tM u C u I u P  (3.16) 

with the mass matrix M, the damping matrix C, the vector of internal forces I and the vector 
external forces P. By approximating velocity and acceleration at the time step tn by central 
differences 
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 (3.17) 

Equation (3.16) can be transformed to the linear system of equations 

 ( ) ( ) ( )( ) ( ) ( ) ( )2
1 1 12 2 2t t

n n n n n nt t t t t t tΔ Δ
+ − −⎡ ⎤ ⎡ ⎤+ = Δ − + + −⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦M C u P I u C u M u u  (3.18) 

which can be solved with respect to the displacements u at the time tn+1. Since the matrices M 
and C are time independent, the left hand side has to be decomposed only once. Because the 
right hand side is known, the system of equations can be solved very efficiently for each time 
step. The efficiency of the procedure is limited by the maximum time step Δt. Additional 
considerations have to be made for the initial conditions. For details the reader should refer to 
[96].  

Concerning the buckling analysis of shells, the explicit time integration appears to be less 
efficient than implicit algorithms until the onset of buckling. However, in order to capture the 
highly dynamical buckling process and the postbuckling behavior, the explicit time 
integration is well suited due to its robustness. 

3.2.6 Determination of Global Buckling of Stiffened Panels 

In difference to cylindrical shells, for stiffened panel it is often not the first point of instability 
that limits the load carrying capability. As described in section 2.2, the load still can be 
increased after the skin of a stiffened panel has buckled. The skin buckling can be detected for 
instance by the procedure given in section 3.2.1. The global buckling load however appears in 
the post buckling range and can only be captured using one of the methods described in 
section 3.2.2-3.2.5. The problem in identifying global buckling of stiffened panels is that due 
to imperfections or design it can appear that neither a bifurcation point nor a limit point 
occurs at the onset of global buckling. Hence, none of the definitions given in 3.1 applies. 
Nevertheless, large displacements lateral to the loading direction go along with significant 
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stiffness reduction and an upper bound must be defined for this phenomenon. For the 
identification of the global buckling load, three criteria are discussed in the following, for 
which an overview is given in Table 3-1.  

The most intuitive definition of global buckling is the onset of radial displacement of one of 
the stringers. However, if an imperfect structure is considered there is a small radial 
displacement of the stringers from the beginning of the simulation. The solution is to define 
an upper bound for the radial displacement of stringers. This upper bound is hard to justify 
and can significantly influence the value obtained for the global buckling load. 

Another technique for identifying global buckling, which is also used in experiments, is to 
monitor the axial strains on the stringer foot and below the skin at the same position of the 
shell. From the difference of the strains, the onset of bending of stringers can be detected. 
However, the same disadvantages as mentioned before are valid for this technique. 

 

Criterion Advantage Disadvantage 

Radial deformation 
of stringer / 
bending strains 

Close to the general 
understanding of global 
buckling 

In practice, an upper bound for lateral 
displacement/bending must be chosen, 
which does not necessarily coincide 
with drop in load-displacement curve 

Drop in load-
displacement curve 

Well defined point in the 
load-displacement curve 

Not applicable, if no drop occurs (e.g. 
due to imperfections) 

Global in-plane 
stiffness reduction 

Describes the actual 
problem of global buckling; 
captures drops in the load-
displacement curve 

Lower bound for stiffness reduction 
must be chosen 

Table 3-1: Advantages and disadvantages of different criteria for identifying global buckling 

A well defined point that indicates global buckling is a drop in the load-displacement curve, 
as it appears for many curved panels. However, not for every design this drop appears and 
even for panels, for which the simulation of the ideal panel delivers a drop in the load-
displacement curve, this drop can vanish as imperfections are introduced. The last criterion 
considered is given by the reduction of in-plane stiffness, which is obtained from the load-
displacement curve. Then, global buckling is defined as the state where the current stiffness 
is, say 50%, of the initial stiffness. If there is a drop in the load-displacement curve, the 
global buckling load is detected close to the drop. If no drop occurs, the global buckling load 
is detected at a state, where the buckling of the stringers leads to a significant stiffness 
reduction. Thus, the stringer deformation criterion as well as the drop criterion are captured 
by the global stiffness criterion. Furthermore, the last criterion is based on the actual 
technical problem of global buckling, because the significant reduction is the failure mode 
that shall be avoided when designing stiffened panels. The obvious disadvantage of this 
criterion is the fact that the percentage of allowed stiffness reduction must be chosen more or 
less arbitrarily. 

Figure 3-7 depicts the described criteria and the results they yield for a panel with a 
significant drop in the load-displacement curve (design A) and for a panel without drop in the 
load-displacement curve (design B). If the lateral deflection of stringers or the bending 
strains are monitored and a certain upper bound defines global buckling, there is the risk that 
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the obtained global buckling load does not coincide with the drop in the load-displacement 
curve of design A (Figure 3-7, right). If however the global stiffness is monitored, the global 
buckling load will always be found close to the drop (Figure 3-7, left). 

 
Figure 3-7: Different criteria for global buckling 

3.3 Material failure analysis 
In axially compressed stiffened panels material failure can occur before or after global 
buckling, and can even interact with stability failure. The panels that are considered in 
section 7 are designed such that material failure occurs after global buckling. Hence, no 
material degradation needs to be considered within the buckling analysis. However, the onset 
of degradation is relevant for design and therefore, criteria to detect material failure in fiber 
composites and in the skin-stringer connection are given in the following. Furthermore, only 
composite materials with unidirectional plies are considered. The failure criteria given in 
section 3.3.2 and 3.3.3 are applicable to these types of laminates with transversally isotropic 
plies, but e.g. not to textile composites. 

While the skin stringer connection will be modeled with cohesive elements, standard shell 
elements are used in the simulation for the skin and the stringers themselves (see section 7.2). 
Hence, no stresses in thickness direction occur (σ33 = 0). Due to this simplification, no 
delaminations can be detected in the laminate. To capture the influence of the stresses in 
thickness direction a multi scale approach as suggested in [67] and [100] could be used. 
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3.3.1 Cohesive Zone Failure 

In order to capture the onset of skin-stringer separation, cohesive elements are used to connect 
stringer foot and skin, and the quadratic nominal stress damage criterion [97] is used to detect 
the onset of separation. 
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Here, tn is the normal stress perpendicular to the cohesive zone, ts and tt are the shear stresses 
in the cohesive zone and 0 0 0,  and n s tt t t  are the maximum allowable stresses. Cohesive elements 
allow defining the thickness of the cohesive zone to be smaller than the element thickness. 
The element thickness is given by the distance of the center plane of the skin and the center 
plane of the stringer foot, but the cohesive zone equals the thickness of the adhesive layer, 
which is much smaller (see also section 7.2). 

3.3.2 Hashin Criterion for Intra Lamina Failure 

For detecting the onset of material failure in the plies, the Hashin criterion [73] can be used. 
Hashin’s criterion for fiber fracture is given by 
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With the simplification that σ33 = 0, the criteria for matrix cracking can be written as 
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and 
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While the criterion for fiber failure turned out to be sufficiently accurate, other failure criteria 
provide more satisfying results for inter fiber failure [75]. 

3.3.3 Puck Criterion for Inter Fiber Failure 

While Hashin’s criteria for failure in fiber direction (3.20) perform well, the criteria (3.21) 
and (3.22) for inter fiber failure showed potential for improvement. A more advanced inter 
fiber fracture criterion that allows differing between certain fracture modes has been proposed 
by Puck [74]. Puck formulated his criterion with respect to the stresses in the fracture plane 
σn, τnt and τn1. (see Figure 3-8) 

The criteria for inter fiber fracture are given by  
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and 
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with 
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Figure 3-8: Fracture plane in Puck’s inter fiber fracture criterion, from [101] 

Beside the strength parameters, the parameters ( )p +
⊥⊥  and ( )p −

⊥⊥ , which describe the slope of the 
failure surface at the transition from fiber lateral compression to tension (see Figure 3-9), have 
to be determined experimentally as described in [101]. 

 
Figure 3-9: Analytical solutions for the plane stress state of Puck’s inter fiber fracture criterion, from 

[101] 

As depicted in Figure 3-9, Puck’s criterion differs between three failure modes of inter fiber 
failure. If the stresses perpendicular to the fiber direction are positive, mode A failure is 
present and the failure criterion is given by (3.23). In case the UD ply is under compression 
perpendicular to the fiber direction, the criterion is given by (3.24) and a mode B or mode C 
failure is present. Depending on the fraction of shear stresses and normal stress, the fracture 
plane can be perpendicular to the normal stresses and parallel to the shear stresses, which is 
assigned as mode B. In case of a high fraction of compressive normal stresses, the fracture 
plane is inclined and a wedge like piece of the laminate is pushed out perpendicular to the 
normal stress and fiber direction (see Figure 3-9, left), which is called mode C failure. 
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In order to find the decisive fracture plane, which is described by the angle θ, the failure 
criteria are evaluated for several angles and the decisive plane is determined iteratively. 
Therefore, the evaluation of the criterion is time consuming. 

3.3.4 Invariant Base Quadratic Criterion for Inter Fiber Failure 

Vogler et al. [76] proposed a failure criterion for inter fiber fracture that is based on the 
invariants of the stress tensor, which is referred to as Invariant base Quadratic Criterion (IQC, 
see also [102]). The IQC is given by 

 2
1 1 2 2 3 3 32 3 1I I I Iβ β β β+ + + =  (3.26) 

where following invariants of the stress tensor are used by Vogler et al. 
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The vector a describes the fiber direction and σpind
 is the extra stress tensor, given by  

 ( ) ( )pind 1 1
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with A = a aT being the structural tensor of a. In case the fiber direction is given by 
a = (1,0,0)T and stress in thickness direction equals zero (σ33 = 0), the invariants are given by  
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The parameters β1, β2, β3 and β32 in (3.26) are depending on the strength parameters of the 
lamina. 
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Inserting (3.29) and (3.30) into (3.26) yields the simplified formulation of the IQC given by  
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Figure 3-10 shows the interaction of transverse shear and compression perpendicular to the 
fiber as taken into account by the invariant based quadratic criterion. The material law that 
Vogler et al. [76] proposed along with IQC turned out to give accurate results even for 
complex stress states, as occurring in ultra thick laminates [103]. Compared to Puck’s criteria, 
the IQC is relatively fast, since it does not require the determination of the fracture plane. 
Furthermore, IQC requires fewer parameters, which have to be determined from experiments. 
For a detailed comparison the reader should refer to [84]. 
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Figure 3-10: Yield and failure surface of the transversely-isotropic material model of Vogler et al., 
from [76] 
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4 Probabilistic Design Method 

The probabilistic methods that are the basis for the proposed design procedure are described 
in this chapter. This includes the modeling and reduction techniques for scattering input 
parameters, especially geometric imperfections. The probabilistic design approach itself is 
presented including a summarizing flow chart. Therefore, the current chapter can be regarded 
as the core of this thesis. Furthermore, the basic concept of the convex anti-optimization is 
given and the derivatives of the design loads according to the probabilistic approach and 
convex anti-optimization are derived, which can be used for design optimization. 

4.1 Representation of Geometric Imperfections 
The geometric imperfection of a shell ( ),W x y

 
is a two-dimensional random field. As shown 

in Figure 4-1, the geometric imperfections are defined inward positive, the coordinate x refers 
to the axial direction and the coordinate y refers to the circumferential direction on the surface 
of the ideal cylinder.  

For probabilistic analyses, this field must be parameterized in order to capture the 
characteristics of this field by a random vector. Furthermore, it is desirable to have as few as 
possible random parameters, since the number of parameters determines the computational 
cost of the introduced probabilistic procedures.  

 
Figure 4-1: Sign convention for geometric imperfections  

4.1.1 Fourier Series 

In general, the double Fourier series approximation fF of a periodic function f is given by  
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The derivation from the product of two one-dimensional Fourier series is given in 
Appendix A. Here, a is the period in the x-direction, and b is the period in the y-direction. Akl, 
Bkl, Ckl and Dkl are the Fourier coefficients. Theoretically, the Fourier series describes a 
function exact, if the number of coefficients considered is infinite. In practice the number of 
coefficients considered is limited by the bounds of the sums nx and ny. 

Elishakoff and Arbocz [34] proposed to describe the geometric imperfection field of 
cylindrical shells by double Fourier series. Since the imperfection pattern is a periodic 
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function only in the circumferential direction, the Fourier series approximation leads to 
inaccuracies at the boundaries (see Appendix A). Hence, two different series are proposed in 
the literature, the half wave cosine (4.2) and the half wave sine approach (4.3). 
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L, R and t are length, radius and wall thickness of the shell. x and y are the coordinate on the 
shell surface in axial and circumferential direction. L is assumed to equal the half period in x-
direction and the index k equals the number of axial half waves. The period in y-direction 
equals 2Rπ, which is why π disappears in the y-terms, and the index l equals the number of 
circumferential full waves. For the characterization of imperfections, the Fourier coefficients 
are normalized with the wall thickness t and hence, the series must be multiplied with t. 

Note that in the literature concerning buckling of cylinders, the factor two in (4.2) and (4.3) 
does not appear. Then, the Fourier coefficients as defined in Appendix A simply have to be 
doubled. In the framework of this thesis the Fourier series approximation will also be used for 
the imperfections of stiffened panels and hence, the more general double Fourier series (4.1) 
is the starting point and the Fourier coefficients are defined according to the general approach. 

Using the half wave sine approach, no imperfections are captured at the boundaries of the 
shell, because 

 sin 0    for    0  and  k x x x L
L
π = = =  (4.4) 

Thus, the half wave cosine approach leads to a more accurate approximation of measured 
geometric imperfections in most cases. The half wave cosine approach can also be 
represented by 
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with 2 2
kl kl klA Bξ = +  and 
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The representation (4.5) will be referred to as phase shift representation. Here, the Fourier 
coefficients are substituted by the amplitude klξ  and the circumferential phase shift klϕ . This 
way, a circumferential phase shift that is caused by the position of the cylinder during the 
measurements can be eliminated (see [45]).  

Why it is important to consider the circumferential shift is depicted by the following example. 
Consider one and the same imperfection pattern as two realizations, but with different 
circumferential shifting, as depicted in Figure 4-2, top. If the mean imperfection is determined 
from these patterns, in the obtained mean pattern the real imperfections are smeared out 
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(Figure 4-2, top right). If however the imperfection patterns are shifted in the way that the 
ovalization mode has a circumferential shift of zero, the original pattern is obtained when 
determining the mean pattern (Figure 4-2, bottom). 

 

Mean 
value  

 

  
 

Set shift of ovalization mode to zero 
 

 

 

Mean 
value  

  

 

Figure 4-2: Influence of referring the circumferential shift of imperfection patterns to the ovalization 
mode on the obtained mean imperfection 

Mathematically, this shifting is expressed as follows. The term in (4.5) that includes the phase 
shift can be written as  
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where the relation of the phase shift angle klϕ  and the corresponding coordinate shift kly  is 
given by  

       kl kl
kl kl

l y Ry
R l

ϕϕ = ⇔ =  (4.8) 

If now the phase shift angles shall be substituted by their relative shift with respect to e.g. the 
ovalization mode (k = 0 and l = 2), the imperfection function must be shifted in 
circumferential direction and the new coordinate shift mod

kly  is given by  

 mod
02= −kl kly y y  (4.9) 

In terms of phase shift angles, the relation (4.9) is given by  

 
Imperfection
Ovalization mode
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Note that here the ovalization mode only serves as an example. In general, any imperfection 
mode that is dominant can be used as the reference mode, where those imperfection modes 
are preferable, which describe a more or less global imperfection shape. If the geometric 
imperfection function shall be expressed relative to some dominant mode with the phase shift 

refϕmn , the modified phase shift angles modϕkl  are given by  

 mod refϕ ϕ ϕ= −kl kl mn
l
n

 (4.11) 

Of course, Fourier series are not the only possibility to parameterize the random field of 
geometric imperfections. Furthermore, the Fourier representation leads to inaccuracies at the 
boundaries where no periodicity is given. However, the Fourier series provide several 
advantages. Firstly, using a Fourier series for describing the imperfection pattern delivers the 
manufacturing signature of the shell. It furthermore provides a mesh independent 
representation of the imperfection measurement. A side effect is the fact that by using a 
Fourier series measurement noise is smoothed out. For cylindrical shell the representation 
(4.5) furthermore enables the elimination of circumferential phase shift. 

4.1.2 Multi Mode Imperfection Model 

For structures like columns, which are not sensitive to imperfections, it is common pratice to 
apply the eigenmode or buckling mode associated with the lowest eigenvalue in order to 
trigger buckling in numeric simulations. This is also possible for cylindrical shells, but the 
chosen amplitude decisively determines the buckling load. Depending on the boundary 
conditions and whether axisymmetry is assumed or not, the eigenmodes of cylindrical shells 
following the classical approach are given by 

  Axisymmetric Asymmetric  

 Simply  
supported ( ), sin πξ= i xW x y

L  
( ), sin cosπξ= ⋅i x j yW x y

L R  
(4.12)

 Clamped ( ), cos πξ= i xW x y
L  

( ), cos cosπξ= ⋅i x j yW x y
L R  

(4.13)

When choosing an eigenmode as initial imperfection pattern, the initial imperfection field 
( ),W x y  is given e.g. by  

 ( ),
sin cos= ⋅

W x y k x l y
t L R

πξ  (4.14) 

with the initial imperfection amplitude ξ . Koiter [9] used an axisymmetric single 
imperfection mode for his derivation of the imperfection sensitivity of shells. Within the 
design concept proposed by Biagi [41] a single mode imperfection model is used and the 
amplitude ξ  is treated as random parameter. Arbocz and Hilburger [39] chose a two-mode 
approach for the initial imperfection. 
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 ( ),
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The two mode imperfection is a superposition of an asymmetric and an axisymmetric mode. If 
the lowest eigenvalue corresponds to an asymmetric mode, the number of axial half waves of 
the axisymmetric mode i is determined from Koiter’s coupling condition i = 2 k. If the lowest 
eigenvalue is an axisymmetric mode, k is determined from the coupling condition and l is the 
number of circumferential full waves of the eigenmode with the smallest eigenvalue and with 
k axial half waves. For the amplitudes, Arbocz and Hilburger [39] used the root mean square 
value (rms-value), which is a measure that quantifies the averaged imperfections. If the rms-
value is determined with the Fourier representation, it can be divided into an axisymmetric 
Δaxi and an asymmetric part Δasy (for details see [40]).  

With a single mode as well as with the two mode approach the attempt is made to model the 
imperfection pattern as simple as possible and to capture the randomness of the buckling load 
by only one or two parameters that are somehow related to measurements. Such approaches 
include significantly simplifying assumptions and cannot be used for determining the real 
distribution of buckling load.  

In [104], Arbocz and Starnes modeled the imperfection patterns with the multimode approach 
(4.16), which is superposition of selected modes of the Fourier series. 

 
2,0 1,2 1,9 1,10

1,11 1,19 1,21

2 2 9 10cos sin cos cos cos

11 19 21cos cos cos

⎛= − + +⎜
⎝

⎞+ + + ⎟
⎠

W x x y y yA
t L L R R R

y y y
R R R

π π ξ ξ ξ

ξ ξ ξ
 (4.16) 

This approach leads to a more realistic representation of the imperfections patterns than single 
or two mode approaches. However, the negligence of phase shift leads to an accumulation of 
the imperfection mode amplitudes in one place, as it has been showed by Kriegesmann et al. 
[45]. The multimode approach delivers a conservative model and allows a probabilistic 
analysis with almost realistic imperfections, requiring a relatively small number of random 
parameters. Nevertheless, the real distribution of buckling load cannot be determined with this 
approach. Furthermore, it requires a selection of decisive modes, which again requires an 
intensive study of imperfections and eigenvalues in order to determine, which modes are 
dominant in the measured pattern and at the same time associated with small eigenvalues. 

4.1.3 Transformation to Uncorrelated Parameters and Parameter Reduction 

In order to reduce the number of random parameters, a variant of the Mahalanobis 
transformation is used, that has similarities with the principle component analysis. Note that 
in the following random parameters and random vectors are symbolized with capital letters, 
while the realizations are symbolized by lowercase letters. 

In general, the Mahalanobis transformation [105] is given by 

 ( )1 1
2 2and −= + = −x Σ z μ z Σ x μ  (4.17) 

Considering for instance geometric imperfections, the random vector X contains all Fourier 
coefficients.  

 ( )00 00 10 10, , , , , ,
x y x y

T

n n n nξ ϕ ξ ϕ ξ ϕ=X …  (4.18) 
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In practice, the mean vector μ and the covariance matrix Σ of X are estimated from 
measurements according to  

 ( ) ( )( ) ( )( )
1 1

1 1     and     
1

m m Ti i i

i im m= =

− −
−∑ ∑μ x Σ x μ x μ� � . (4.19) 

The entries of the random vector Z are uncorrelated with a standard deviation of one and a 
mean value of zero. 

As proven in Appendix B.2, the estimated covariance matrix Σ is singular, if the number of 
measurements m is smaller than the number of random parameters n. in this case, the root of 
Σ cannot be determined from Choleski decomposition, as proposed in [34], but it can be 
determined from the spectral decomposition of Σ. The matrix B is defined as 

 ( ) ( )1
2

1 1, , , ,r rdiag σ σ= =B Q D q q… …  (4.20) 

The columns of matrix Q are the eigenvectors of Σ and the diagonal elements of the matrix D 
are the eigenvalues 2

iσ  of Σ. As shown in Appendix B.3, the matrix B is a root of Σ. The rank 
r of Σ is smaller than the number of measurements m. When using the matrix B for the 
Mahalanobis transformation, the vector z must have the length r, since n r×∈B \ . 

 ( )1and −= + = −x Bz μ z B x μ  (4.21) 

Hence, if the number of measurements m is smaller than the number of origin random 
parameters n, the number of random parameters can be reduced to r by using (4.21). It is 
worth mentioning that by using (4.20) to determine the root of Σ, the Mahalanobis 
transformation is almost equal to the principal component analysis (4.22) or discrete 
Karhunen-Loève transformation. 

 ( )T= −y Q x μ  (4.22) 

In difference to the Mahalanobis transformation the Karhunen-Loève transformation does not 
normalize the standard deviations to one. For a detailed discussion on the relation of 
Mahalanobis transformation and principal component analysis see Appendix B.4. 

4.2 Representation of Non-traditional Imperfections 
After Koiter discovered that geometric imperfections explain the gap between experimentally 
determined buckling loads and analytical results, a multitude of investigations focused on the 
influence on geometric imperfections (see section 1.2.1). Later, also other types of 
imperfections started to be considered. Therefore, the term “traditional” imperfections has 
been established for geometric imperfections, while the term “non-traditional” imperfections 
is used for all other types of deviations from the ideal structure (see e.g. [24,104]). Non-
traditional imperfections that can occur in circular shell structures are imperfect boundary 
conditions or load applications, wall thickness deviations, residual stresses and scattering 
material properties. For fiber composite structures, deviations of the fiber angles or fiber 
waviness and void inclusions can occur additionally. 

If, for instance, the wall-thickness or a material property is considered as a random field in the 
sense that it can have a different value at each location of the shell, this random field can be 
described by double Fourier series, as it is done for geometric imperfection in the previous 
section. Often it is difficult to get samples of such random fields for non-traditional 
imperfections. For the cylinders considered in chapter 6 the wall thickness has been measured 
at each point for each shell. However, it has been shown in [106] that it is sufficient to only 
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consider the mean wall thickness of a shell as random parameter for the shells considered in 
chapter 6. 

The material properties of the unidirectional ply are not determined for the actually build 
structure, but from coupon test. Therefore, each material parameter is described by a single 
scalar; however, the material parameters are correlated in general. In such cases, the 
Mahalanobis transformation must be used to transform the set of parameters to a set of 
uncorrelated parameters, as described in section 4.1.3. 

If an imperfection can be described by a single random parameter, which is independent from 
all other random parameters, the treatment in the probabilistic analysis is quite straight 
forward. Examples are the fiber angle of a certain ply, a global inclination angle as discussed 
in section 6.3.4, or the mean wall thickness. 

4.3 Probabilistic Analysis Methodology 
In case the arguments of a mathematical function g(x), which is called objective function in 
the following, are randomly distributed and the stochastic distribution of this function g is to 
be determined, probabilistic analysis methods must be conducted. The scattering arguments 
are represented by the random vector X, where realizations of X are denoted as x. Within the 
probabilistic analysis of structures, the objective function g(x) is the load carrying capability, 
given by buckling or material failure, and the entries of the random vector X are the scattering 
parameters of the structure. 

In this section, the most straight forward numerical simulation technique to solve this problem 
is given. For a faster analysis, the objective of the probabilistic analysis can be restricted to 
only determine the stochastic moments of the objective function. Here, the existing second-
order third-moment approach is extended in the sense that the complete second order 
approach for determining stochastic moments is given. Furthermore, the same type of 
approach is used to determine the covariance of two objective functions. 

4.3.1 General Problem Description of Probabilistic Design 

The objective of probabilistic design is to find the value of the objective function gd, which is 
exceeded with a certain probability R, referred to as the level of reliability given by  

 ( )( )1= − ≤dR P g g x  (4.23) 

For determining the probability that a certain value g  of the objective function takes a value 
less than or equal to g(x), the cumulative distribution function Fg must be determined, which 
is given by the multidimensional integral (4.24). 

 ( )( ) ( )( ) ( )
( ):

g
g g

P g g F g f d
≤

≤ = = ∫ X
x x

x x x x  (4.24) 

While the probability density function fX(x) of the random vector X can be estimated from 
measurements, the objective function g(x) is often not given analytically in practice. Then, 
(4.24) must be solved numerically or approximated with analytic or semi-analytic approaches. 

4.3.2 Numerical Analysis - the Monte Carlo Method 

The Monte Carlo method is the most straight forward and numerically most intensive 
procedure to estimate the distribution of the objective function. Within this thesis, the Monte 
Carlo method is used to validate the semi-analytical, probabilistic procedures. 
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A Monte Carlo simulation basically consists of the following steps [107]. First, a large 
amount of realizations x is generated with respect to the distribution fX(x). Descriptively 
spoken, a large number of virtual test specimens is created. Then, for each realization x the 
objective function is evaluated and the discrete cumulative distribution function of the 
objective function is obtained. Because the required number of realizations x is not known 
initially, a convergence study is recommended with respect to the parameters of interest. 

The generation of random samples of course requires that the distribution fX(x) of the random 
vector is known, which is typically not the case in practice. In order to evaluate which type of 
distribution fits the real scatter best, a statistical test methods like the χ2 test or Kolmogorov-
Smirnov test (K-S test) can be used [88]. Compared to other tests, the K-S test has the 
advantage that it is applicable even if only a small number of samples is given, and it also 
allows comparing two empiric distributions. The K-S test is described in detail in 
Appendix C. For the generation of a single random number, a random number u, which is 
uniformly distributed in the interval [0,1], is generated by common mathematic software. 
Given a distribution function FX(x), a random number x can be generated by 

 ( )1−= Xx F u  (4.25) 

For those distributions functions, for which it is not possible to find the inverse of FX, the 
acceptance-rejection method can be used [90]. 

Because the random parameters Xi are transformed to uncorrelated variables Zi, the entries of 
the random vector Z can be generated individually with respect to the assumed distribution 
function. Then, each generated vector z is transformed to a vector x using (4.21). 

4.3.3 Stochastic Moment Approximation 

For the semi-analytic approach described in the following, the objective function is 
approximated by a Taylor expansion at the mean vector of input parameters. 

 ( ) ( ) ( ) ( ) ( ) ( )( )
2

1 1 1

1
2

n n n

i i i i j j
i i ji i j

g g
g g x x x

x x x
μ μ μ

= = =

∂ ∂
= + − + − − +

∂ ∂ ∂∑ ∑∑
μ μ

x μ …  (4.26) 

Instead of determining the cumulative distribution function Fg the idea of the Taylor series 
based approach is to determine the characteristic stochastic moments of the objective 
function, namely the mean value (first moment), the variance (second central moment) and 
the skewness (determined from the third central moment). Then, a type of distribution is 
assumed with respect to the stochastic moments. 

The mean value μg of the objective function is given by 

 ( )( ) ( ) ( )g E g g f dμ
∞

−∞

= = ∫ XX x x x  (4.27) 

Inserting the second order Taylor approximation (4.26) into (4.27) leads to the approximation 
of the mean value approximation (4.28). For the complete derivation see Appendix D.1. 

 ( ) ( ) ( )
2

1 1

1 cov ,
2

n n

g i j
i j i j

g
g X X

x x
μ

= =

∂
≈ +

∂ ∂∑∑
μ

μ  (4.28) 

For the mean value approximation (4.28) neither the objective function g(x) nor the 
probability density function fX(x) needs to be given analytically. Hence, in difference to 
Monte Carlo simulations, no assumptions are required concerning the type of distribution of 
X. Instead, the derivatives of the objective functions at the mean vector must be determined 
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and the stochastic moments of the input parameters must be known. The derivatives can be 
determined numerically (see section 4.5) and the stochastic moments are determined from 
measurements using the estimators to (4.73), (4.75) etc. 

When assuming independence of the random variables, the covariance of the input parameters 
equals zero and the approximation of μg is given by 

 ( ) ( ) ( )
2

2
1

1 var
2

n

g i
i i

g
g Z

z
μ

=

∂
≈ +

∂∑
μ

μ  (4.29) 

The variance of the objective function is given by  

 ( )( ) ( )( ) ( )22
g gvar g g f dσ μ

∞

−∞

= = −∫ Xx x x x  (4.30) 

For reasons of simplicity, the following abbreviations are introduced. 

 ( ) ( ) ( )2

, ,, ,i ij
i i j

g g
g g g g

z z z
∂ ∂

= = =
∂ ∂ ∂μ

μ μ
μ  (4.31) 

Assuming again independent random parameters, the second order approximation of the 
variance 2

gσ  is given by 

 

2 2 2 2
, ,2 , ,4 , ,2 , , ,3

1 1 1 1

2 2
, , ,2 ,2 , ,2 ,2

1 1 1 1

1
4

1
2

n n n n

g i i ii i ii i i ii i
i i i i

n n n n

ii jj i j ij i j g
i j i i j i

g g g g g g g

g g g

σ μ μ μ μ

μ μ μ μ μ

= = = =

= = + = = +

≈ + + + +

+ + −

∑ ∑ ∑ ∑

∑∑ ∑∑

μ μ

 (4.32) 

For the complete derivation see Appendix D.2., The third central moment of the objective 
function is approximated in the same manner as mean value and variance. 

 ( )( ) ( )( ) ( )33

,3g g gE g g f dμ μ μ
∞

−∞

⎡ ⎤= − = −⎣ ⎦ ∫ Xx x x x  (4.33) 

The second order approximation of μg,3 and its derivation are given in Appendix D.4. From 
the third central moment μg,3 the skewness of the distribution is calculated by 

 ,3
3

g
g

g

v
μ
σ

=  (4.34) 

Considering only the linear terms of the Taylor series, the approximations of mean value, 
variance and third central moment of the objective function are given by 

 ( )g gμ ≈ μ  (4.35) 

 2 2
, ,2

1

n

g i i
i

gσ μ
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≈∑  (4.36) 

 3
,3 , ,3

1

n

g i i
i

gμ μ
=

≈∑  (4.37) 

If only linear terms of the Taylor expansion are considered and only stochastic moments of 
second order are considered, the method is referred to as first-order second-moment (FOSM) 
method (see e.g. [35]). If also the quadratic terms of the Taylor expansion and stochastic 
moments of third order are taken into account, the method is referred to as second-order third-
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moment (SOTM) method (see [108]). Since the highest moments that occur when using the 
quadratic Taylor expansion are of sixth order, the full second order approach is referred to as 
second-order sixth-moment (SOSM) approach. As it will be discussed in section 4.5.1, it is 
reasonable to consider the SOSM approach, but neglect the terms with partial derivatives with 
respect to different variables. This approach will be referred to as incomplete second order 
approach (ISOA) in the following. 

4.3.4 Approximation of Covariance and Correlation 

In case different failure modes limit the load carrying capability of a structure, the joint 
distribution function of these failure modes must be considered. The stochastic moment that 
captures the characteristics of a joint distribution is the covariance. Therefore, two objective 
functions g(x) and h(x) are considered in the following. Their mean values and standard 
deviations can be estimated with the approximations given in section 4.3.3. The covariance 
Σgh of the objective functions is defined as 

 ( ) ( )( ) ( )( ) ( )( ) ( )cov ,gh g hg h g h f dμ μ
∞

−∞

Σ = = − −∫ Xx x x x x x  (4.38) 

Inserting the second order Taylor approximation of both objective functions into (4.38) and 
assuming independence of the entries of the random vector X leads to the second order 
approximation of the covariance. 
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 (4.39) 

The first order approximation of the covariance reads 

 , , ,2
1

n

gh i i i
i

g h μ
=

Σ ≈∑  (4.40) 

From the covariance and the standard deviations of each objective function, the coefficient of 
correlations ρgh is determined, which is a measure of the linear dependency of g and h. 

 gh
gh

g h

ρ
σ σ
Σ

=  (4.41) 

With knowledge of the covariance, an appropriate type of distribution can be chosen to 
describe the multivariate distribution of g and h. 

4.4 Convex Anti-Optimization 
An alternative approach to account for uncertainties is the convex anti-optimization method 
proposed by Ben-Haim and Elishakoff [51]. Though it is not a probabilistic procedure in 
principle, this approach shows similarities to the proposed concept and therefore, it is 
discussed in the following. 

The basic idea of anti-optimization is to find the combination of input parameters that leads to 
the lowest load carrying capability, whereas the input parameters scatter in a certain domain. 
In case only one input parameter is non-deterministic, the parameter scatters in an interval, in 
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which the lowest buckling load is to be found (see Figure 4-3). One possibility is to determine 
the minimum buckling load using standard optimization algorithms. Taking into account more 
scattering input parameters the definition of the domain space becomes difficult and the 
computational cost of usual optimization algorithms increases dramatically. Obviously, this 
approach is not useable as a design procedure. The goal of convex anti-optimization is the 
same: finding the minimum buckling load in the domain of scattering input parameters. 
However, by making use of some simplifying assumptions, a domain of input parameters is 
determined based on measurements, as it is discussed in the following section, and a lower 
bound of buckling load can be found by performing only a small number of buckling 
analyses. 

 
Figure 4-3: Sketch of a one dimensional minimization problem 

4.4.1 Minimum Volume Enclosing Hyper Ellipsoid 

It is assumed that the domain of input parameters is bounded by a hyper ellipsoid. The 
position and orientation of the ellipsoid is determined from measurements. Each set of 
measurements is interpreted as a vector. In Figure 4-4 a two dimensional example with ten 
pairs of measured values is shown. In order to bound the domain, the ellipse with the smallest 
area is search that includes all measurement vectors. In the general, higher dimensional case, 
the measurement vectors are bounded by the hyper ellipsoid with the minimum volume. This 
domain is referred to as minimum volume enclosing hyper ellipsoid (MVEE) in the following.  

 
Figure 4-4: Minimum area enclosing ellipse 

The surface of a hyper ellipsoid with semi-axes ai parallel to the coordinate system is given by 
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By moving the center of the ellipsoid xc and by rotating and changing the length of the semi-
axes, the hyper ellipsoid is modified so that it captures all measurement vectors. Procedures to 
find the MVEE are given for instance by Zhu et al. [109] and Elishakoff et al. [53]. 

4.4.2 Approximation of Pessimum 

For the approximation of the minimum value of the objective function gmin within the MVEE, 
the objective function g is approximated by a Taylor expansion in ζ at the center xc. 

 ( ) ( ) 1
2

T T
c cg g ϕ+ ≈ + + Ξx ζ x ζ ζ ζ  (4.43) 

with the gradient gϕ = ∇
 
and the Hessian gΞ = ∇∇ . If the inequality 

 1 1 1ϕ ϕ− −Ξ Ξ <T Ω  (4.44) 

holds, the minimum buckling load is found inside the minimum volume enclosing hyper-
ellipsoid and is given by the expression 

 ( ) 1
min 2

T
cg g ϕ ϕ= − Ξx  (4.45) 

If (4.44) does not hold, the input parameters that lead to the minimum buckling load are on 
the boundary of the minimum volume enclosing hyper-ellipsoid. Then the second order 
approximation of the minimum buckling load is given by 

 ( ) 1 1 11
min 2

T T
cg g ϕ ϕ ϕ ϕ− − −= − + Ξx M M M  (4.46) 

with 

 2γ= Ξ +M Ω  , 2 1
4γ ϕ ϕ= T G  and ( )1 2 2

1 , , ddiag a a−= =G Ω …  (4.47) 

Using the first order Taylor expansion the minimum buckling load is given by 

 ( ) ( ) ( ) 2

2
min

1

n
cT

c c i
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x
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=

⎛ ⎞∂
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∑
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For more details concerning the anti-optimization procedure, see [51]. 

As for the probabilistic approach, the derivatives of the objective function have to be 
estimated numerically, since the objective function is not given explicitly in practice. 

4.5 Numerical Derivatives of the Objective Function 
Since the approach given in section 4.3.3 and 4.4 are based on the Taylor expansion, the 
derivatives of the objective function at some point x̂  are required. For the probabilistic 
approach, this point x̂  equals the mean vector μ, for the convex anti-optimization the partial 
derivatives have to be estimated at the center of the MVEE xc. If the objective function is not 
given explicitly, the derivatives have to be determined numerically.  

If only the first derivatives have to be estimated, the fastest way to do so is using the 
approximation  

 
( ) ( ) ( )1ˆ ˆ ˆ ˆ ˆ, , , ,∂ + Δ −

≈
∂ Δ

… …i i n

i i

g g x x x x g
x x
x x

 (4.49) 
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This approximation is considered “fast” since it requires only n + 1 evaluations of the 
objective function to get all partial derivatives; one at x̂  and one for each random variable. A 
more accurate estimation is given by 

 
( ) ( ) ( )1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , ,

2
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≈
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g g x x x x g x x x x
x x
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 (4.50) 

This approximation is exact also for quadratic objective function. However, it requires 2 n + 1 
evaluations of the objective function. On the other hand, with the values evaluated for (4.50), 
the second partial derivatives with respect to one variable can be estimated according to  

 ( ) ( ) ( ) ( )2
1 1

2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , 2 , , , ,∂ + Δ − + − Δ
≈

∂ Δ
… … … …i i n i i n

i i

g g x x x x g g x x x x
x x

x x
 (4.51) 

However, the second derivative with respect to different variables requires additional 
evaluations of the objective function. Using the approach (4.52), the objective function has to 
be evaluated ½ (n2 – n) times additionally for each combination of variables.  
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Hence, for estimating all second derivatives, the 2 n + 1 + ½ (n2 – n) = 0.5 n2 + 1.5 n + 1 
evaluations of the objective functions are required. The approximation (4.52) is exact only for 
bilinear objective functions. A better approximations, that is exact for quadratic functions, is 
given by using a second order polynomial  

 ( ) ≈ + +T Tg cx x Ax b x  (4.53) 

with the coefficients ( )×∈ =\n n TA A A , ∈\nb  and ∈\c . First and second derivative are 
then given by 
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and 

 ( )2 ˆ
2

∂
≈

∂ ∂ ij
i j

g
A

x x
x

 (4.55) 

For determining the coefficients, the same number of support points is required as needed for 
the approach (4.52). 

4.5.1 Computational Cost of the Probabilistic Approach 

The numerical approximations of the derivatives determine the numerical effort or 
computational cost of the probabilistic method.  

In chapter 6 a probabilistic analysis with 15 random parameters is executed. An overview of 
the required number of evaluations of g(z) in general and for the considered set of 15 
uncorrelated random variables is listed in Table 4-1. 

When using the complete second order approach, the number of required evaluations of the 
objective function increases quadratically with the number of random parameters. A more 
efficient approach is to consider only those terms that do not include derivatives with respect 
to different variables. The standard deviation is then given by 
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where, compared to (4.32), only one term is neglected. The same holds for the approximation 
of the covariance, given in section 4.3.4. The second order approximation of the third central 
moment is reduced by the terms Gij in (D.52). Using the second order approximation of the 
stochastic moment, but neglecting the term with derivatives with respect to different 
variables, will be referred to as incomplete second order approach (ISOA) in the following. 

 

Approach Required number  
of calculations 

Required number of calculations 
 for analyses in chapter 6 

First order approach,  
using (4.49) nz + 1 16 

First order approach,  
using (4.50) 2 nz + 1 31 

Any second order approach,  
excluding derivatives with 
respect to different variables 

2 nz + 1 31 

Complete second order 
approach, using (4.52) or (4.55)  2 nz + 1 + ( )21

2 z zn n−  136 

Table 4-1: Required number of evaluations of the objective function for different Taylor series based 
approaches 

Summarized, this means by neglecting only a small number of terms in the approximations 
for mean value, variance and third central moment, the computational cost is only linearly 
dependent of the number of random parameters instead of quadratically. For the example 
considered in chapter 6, the ISOA approach requires only 31 buckling analyses instead of 136 
simulations for the full approach, which equals a reduction of computational costs by 77%. It 
will be demonstrated in chapter 6 that there is no noticeable loss of accuracy when using the 
ISOA instead of the full approach, which is why it is strongly recommended to make use of 
this approach.  

4.5.2 Influence of the Step Size 

Because the derivatives are estimated numerically, the quality of the Taylor series 
approximation that is used for the semi-analytic, probabilistic approach (section 4.3.3) as well 
as for the convex anti-optimization (section 4.4) is influenced by the step size Δx used for the 
numerical derivative. A small step size is expected to deliver the best approximation of the 
derivatives at the point considered; however, the best approximation of the objective function 
in a certain interval of interest is not necessarily given by a small step size.  

Figure 4-5 shows the function of buckling load for shell Z07 with respect to different random 
parameters. The real shape of the functions is approximated by a sensitivity study. Depending 
on the shape of the function of buckling load, the quality of its quadratic Taylor 
approximation can significantly depend on the step size chosen for the numerical derivatives.  
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Figure 4-5: Function of buckling load for shell Z07 with respect to different random parameters (see also 
chapter 6) 

The approximations (4.29) and (4.32) implicitly solve the integrals 

 ( ) ( )g g f dμ
∞

−∞

= ∫ Zz z z      and     ( )( ) ( )22
g g f dgσ μ

∞

−∞

= −∫ Z z zz  (4.57) 

where fZ(z) is the probability density function (PDF) of the transformed random vector Z, 
with uncorrelated entries. Assuming independence of the entries of Z, the PDF can be written 
as  

 ( ) ( ) ( )
1 1 nZ Z nf f z f z= ⋅ ⋅Z z …  (4.58) 

and hence, each random parameter can be regarded independently. The objective function 
g(z) must be approximated well for regions where the PDF fZ(z) is different from zero. This is 
the case for values of zi which are close to the mean value μi. Such an interval can be 
expressed as [μi – a · σi, μ + a · σi], where the choice of the scalar a is depending on the shape 
of the PDF. E.g. for the random parameter Z3 of the probabilistic analysis in chapter 6, the 
logistic distribution is assumed (see Appendix C) and the PDF of Z3 is significantly different 
to zero for -3 < z3 < 3 (see Figure 4-6) 

In order to find the stepsize Δz for which the discrepancy of Taylor approximation �g  and real 
function g is minimal in the interval of interest, the approximation error εg is defined as 

 ( ) ( ) ( ) ( ),
ig i i i i Z i iz g z g z z f z dzε

∞

−∞

Δ = − Δ∫ �  (4.59) 
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Figure 4-6: Probability density function f(z3) assuming logistic distribution 

The difference of g and g  is weighted by the PDF of Zi and summed up by integrating over zi. 
Since the Taylor expansion is a function of zi and Δzi, εg is a function of Δzi. The dimension of 
the approximation error εg equals the dimension of the objective function, because the 
uncorrelated random parameters Zi are dimensionless. By minimizing εg with respect to Δzi 
the optimal Δzi is obtained. Because g is not given analytically, also this problem has to be 
solved numerically. 

 
Figure 4-7: Functions of the approximation error εg in kN (left) and minimum approximation errors 

(right) for different step sizes Δzi for shell Z07 

In Figure 4-7 the approximation error εg is plotted over Δzi for all geometry parameters of the 
case considered in chapter 6. Since the function of buckling load is different for each laminate 
setup, also εg is depending on the laminate setup. However, by minimizing the approximation 
error εg with respect to Δzi the optimal derivative step size Δzi has been determined for all 
parameters and for all different laminate setups. In Figure 4-7 (right) only the minimum 
approximation errors and the associated optimal step sizes are plotted. 

The procedure of optimizing Δzi shall not be repeated each time the semi-analytical method is 
applied. Hence, the goal is to find a derivative step size that always delivers good 
approximations. The mean value of optimal step sizes of all parameters and all laminate 
setups considered equals 1.31 σi, which could be used as standard step size. For most 
parameters zi is has been found that the smaller the step size Δzi is, the more sensitive is εg to 
the choice of Δzi (see e.g. εg(Δz5) and εg(Δz7) in Figure 4-7). Thus, Δzi = 1.5 σi is chosen as the 
standard step size. From Figure 4-7 it becomes visible that the approximation errors for 
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Δzi = 1.5 σi and the minimum approximation errors have the same order of magnitude for all 
shells considered. This shows that Δzi = 1.5 σi indeed is a step size that can be used as a 
standard step size. However, it must be noted that this result is based on the considered set of 
measurements and therefore, it is not valid in general. A general derivation of the optimal step 
size appears to be impossible, since the approximation error given by (4.59) is dependent on 
the objective function and the PDFs of the input parameters. 

More important than the question how the step size influences the approximation error is the 
question, how the choice of step size influences the results of the probabilistic analysis. The 
results of the incomplete second order approach are plotted over the step size in Figure 4-8 for 
the application considered in chapter 6. It is concluded that for an increasing step size the 
results of the probabilistic analysis become less sensitive to the choice of Δzi. Note that the 
results do not converge to the correct solution, but converge to the solution that is obtained 
when assuming a constant objective function. The reason is that the objective function in this 
case has physical upper and lower bounds and therefore the approximation of the objective 
function flattens as the step size increases. 

 
Figure 4-8: Result of the incomplete second order approach with respect to the step size for Z07 

It cannot be concluded that a step size of Δzi = 1.5 σi provides good results independently of 
the given problem, but it seems to be reasonable, since the interval of interest is about  
[μi  - 3 σi, μ + 3 σi] for usual distribution functions. Furthermore, it always has to be assured 
that the chosen step size is large enough to significantly influence the objective function. E.g. 
for the material parameters considered the buckling load rarely changes if the parameters are 
increased by the standard deviation. Hence, the change of bucking load is too small in order to 
estimate the derivative accurately. Thus, a larger step size should be chosen in these cases. 

Summarized, the derivative step size should have an order of magnitude of 1.5 times the 
standard deviation and it should be large enough to yield a well conditioned estimation of 
derivatives. 

4.6 Probabilistic Design Procedure  
In this section the proposed procedure to define the lower bound of load carrying capability 
are summarized. 

4.6.1 Design of Cylindrical Shells 

For the design of axially compressed cylindrical shells, the objective function g(x) in the 
probabilistic analysis is the buckling load λ(x). The random vector X represents all scattering 
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It is proposed to estimate the stochastic moments with the incomplete second order approach 
(ISOA), as reasoned in section 4.5.1. The proposed probabilistic design procedure is 
summarized in Figure 4-10. Except for the first step, the procedure is applicable to all 
problems with only one objective functions, for which derivatives can be estimated. 

The previously proposed probabilistic design concepts that are discussed in section 1.2.5, 
simplified the imperfection models in order to reduce the number of random parameters or 
dealt with very large number of random parameters. The probabilistic design procedure 
proposed here combines a purely mathematical reduction technique (step 1) with the fast 
probabilistic method (step 3). This altogether provides a fast analysis tool that does not 
require simplifying imperfections and therefore allows for a realistic approximation of the 
stochastic distribution of the load carrying capability and provides a realistic lower bound. 

4.6.2 Reliability of Stiffened Panels 

For stiffened panels not only the global buckling load is decisive for design; it also must be 
ensured that no material degradation occurs. Hence, two objective functions and their joint 
probability density function (see Figure 4-11) have to be considered within the probabilistic 
analysis. The failure region of a stiffened panel is plotted in Figure 4-12. The design load is a 
lower bound for the global buckling load as well as for the onset of degradation, which is why 
the design load is a value on the bisection line. The yellow area equals the failure region in 
which the global buckling load or the onset of degradation load or both are smaller than the 
design load. 

Figure 4-11: Joint probability density 
function of global buckling and onset of 

degradation Figure 4-12: Failure region of stiffened panels 

Depending on the panel design it is possible that the load level at onset of degradation is 
smaller than the global buckling load, but the global buckling still occurs first (see Figure 
4-13). Hence, for determining the probability of failure (PoF) of a stiffened panel, the 
displacements should be considered as random output parameters. Then, the PoF of a 
stiffened panel equals the probability that the displacement at global buckling uGB or the 
displacement at onset of degradation uOD or both are smaller than the displacement connected 
to the design load level ud. 

 
( )

( ) ( ), ,
d d

d

GB d OD d

u u

GB OD OD GB GB OD OD GB
u

PoF P U u U u

f u u du du f u u du du
∞ ∞

−∞ −∞ −∞

= < ∨ <

= +∫ ∫ ∫ ∫U U

 (4.62) 
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Figure 4-13: Sketch of a load-displacement curve of a stiffened panel with significant dropoff and 

early onset of degradation 

If the critical displacements are assumed to be normally distributed, their joint probability 
density function is given by 

 ( ) 1
2

11 1, exp
22

T
GB uG GB uG

GB OD uGD
OD uD OD uDuGD

u u
f u u

u u
μ μ
μ μπ

−
⎛ ⎞⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= − − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦⎝ ⎠

U Σ
Σ

 (4.63) 

where μuG and μuD are the mean values of the critical displacements, which are estimated as 
described in section 4.3.3. The covariance matrix ΣuGD is given by  

 ( ) 1
1
uGD uG

uGD uG uD
uGD uD

ρ σ
σ σ

ρ σ
⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

Σ  (4.64) 

where σuG and σuD are the standard deviations of the displacement at global buckling and onset 
of degradation, and ρuGD is the correlation coefficient of the critical displacements, which is 
determined according to section 4.3.4. With this assumption, the integral (4.62) can be solved 
numerically. 

In general, the joint probability density function fU(uGB,uOD) is unknown and can be of any 
type of distribution. Compared to the one-dimensional case there is a smaller number of types 
of distributions that describe a multivariate distribution. However, if two random parameters 
X and Y are independent, their joint PDF fX,Y(x,y) can be written as the product of the PDFs of 
each random variable. 

 ( ) ( ) ( ), , = ⋅X Y X Yf x y f x f y  (4.65) 

Then, the type of distribution can be chosen independently for each random parameter. 
Hence, it is desirable to transform the objective values uGB and uOD to uncorrelated parameters 
using the Mahalanobis transformation (4.17) as illustrated in Figure 4-14. 

The Mahalanobis transformation of the critical displacements is given by 

 
1
2 1
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OD uD

u v
u v

μ
μ

⎛ ⎞ ⎛ ⎞⎛ ⎞
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⎝ ⎠⎝ ⎠ ⎝ ⎠
Σ  (4.66) 

In the space of v1 and v2, the design displacements vd,1 and vd,2 are given by  

 
1
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uGD
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vu
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Σ  (4.67) 
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Figure 4-14: Transformation of the failure region to a space of uncorrelated objective values 

Assuming independence of the transformed parameters, the probability density function can 
be written as 

 ( ) ( ) ( )
1 21 2 1 2, V Vf v v f v f v= ⋅V  (4.68) 

Now, the probability density functions of the two design variables can be regarded 
independently. The probability of failure then is determined from 
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d
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 (4.69) 

Due to the transformation (4.66), the integral bounds change as shown in Figure 4-14. The 
new integral bounds 1

Bv  and 2
Bv  read 

 ( ) ( )12 2 21 1
1 2 2 1

11 22

      and      B Bd uG d uDu v u vv v v vσ μ σ μ
σ σ

− − − −= =  (4.70) 

Here, 11 12 21 22, ,  and σ σ σ σ
 
are the entries of the root of the covariance matrix. 

 
1
211 12

21 22
uGD

σ σ
σ σ
⎛ ⎞

=⎜ ⎟
⎝ ⎠

Σ  (4.71) 

Summarized, it is proposed to estimate the stochastic moments of the displacements with the 
approximations given in section 4.3.3 and 4.3.4. Then, the PoF is to be determined from 
(4.69) for a given displacement at design load. The reliability of the associated design load is 
given by R = 1 – PoF. 

4.7 Provision for the Sample Size 
The mean vector and the covariance matrix of the random vector are determined from a set of 
samples obtained from measurements. When using the transformation discussed in section 
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4.1.3, the number of uncorrelated random parameters depends on the number of these 
samples. In turn, the number of random parameters determines the computational cost of the 
semi-analytic, probabilistic approach (see section 4.5.1). Hence, the smaller the sample size, 
the faster is the probabilistic method, which might lead to the conclusion that it is better to 
have a small data basis. This is of course not the case, because the smaller the sample size is, 
the less accurate is the estimation of mean values and variances of input parameters and 
hence, the less accurate is the probabilistic analysis. To make this issue more clear, some 
introductory remarks on the determination of stochastic moments from measurements are 
given in the following. 

Given a random number X with the probability density function fX. The exact mean value μX 
of X is given by  

 ( )μ
∞

−∞

= ∫X Xx f x dx  (4.72) 

Given a set of m realization x(i) of X (with i = 1,…,m), the mean value can be estimated.  

 ( )

1

1
=

= ∑
m

i

i
x x

m
 (4.73) 

Note that the estimator x , which is often referred to as samples mean value or empiric mean 
value, does not equal the exact mean value μX. Moreover, x  differs for different sets of 
realizations and is therefore a stochastically distributed variable itself. For m → ∞ the 
estimator x  converges towards μX and the scatter vanishes. 

The same considerations hold for the variance 2σ X
 
of X. The exact variance is given by  

 ( ) ( )22σ μ
∞

−∞

= −∫X X Xx f x dx  (4.74) 

and the estimator s2 of the variance is given by  

 ( ) 22

1

1
1 =

⎡ ⎤= −⎣ ⎦− ∑
m

i

i
s x x

m
 (4.75) 

Again, the estimator depends on the given set of realizations and is therefore a random 
number itself. 

Summarized, the smaller the sample size, the more scatter the estimators of mean value and 
variance and hence, the higher the probability that the estimated mean value and variance are 
not representative for the random number considered. In the context of probabilistic design 
this might lead to a non-conservative design, if for instance the variance of one input 
parameter is underestimated based on the present data. Therefore, the probabilistically 
motivated design load should be more conservative, the smaller the sample size is. In this 
section a concept to account for the uncertainties of the estimators is derived. 

4.7.1 Distribution of Estimators 

The estimator x  given in (4.73) is now regarded as a random number and will therefore be 
denoted as X . Given the realizations x(i) of the random number X are distributed 
independently, the mean value ( )E X  and the variance ( )var X  of the estimator are given by  

 ( ) ( )
2

    and    var X
XE X X

m
σμ= =  (4.76) 
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The assumption that the realizations are distributed independently is valid for the application 
considered within this thesis. For instance, the wall thickness of a shell is not dependent on 
the wall thickness of previously manufactured shells (though underlying the same 
distribution). 

The estimator s2 of the variance, given in (4.75), has a mean value ( )2E S  and variance 
( )2var S  given by 

 ( ) ( )2 2 2 4
,4

1 3    and    var
1X X X

mE S S
m m

σ μ σ−⎛ ⎞= = −⎜ ⎟−⎝ ⎠
 (4.77) 

where μX,4 is the fourth central moment of X. For the derivation of mean value and variance of 
the estimators the reader should refer to section 8.2 in [110]. 

4.7.2 Procedure to Account for Uncertainties of Estimators 

If a more conservative approach shall be used in order to account for the uncertainties, it is 
suggested to modify the estimator as follows. 

 ( ) ( )varmodx E x c x= ±  (4.78) 

 ( ) ( )2 2 2varmods E S c S= ±  (4.79) 

This way, the estimators are deviated from their mean values about their standard deviation 
times some factor c. It is suggested to chose the factor c = 2. Then, the conservative estimator 
is exceeded (or undercut, respectively) by 95% of the estimations using the standard 
estimator. However, it is not always obvious whether increasing or decreasing the estimator 
leads to a conservative design approach. 

According to equation (4.60) a decrease of the mean value of the objective function and an 
increase of the standard deviation of the objective function lead to a decreasing design load. 
Using the first-order second-moment approach, mean value and variance of the objective 
function g are given by  

 ( )g gμ ≈ μ  (4.80) 

and  

 2 2
, ,2

1

n

g i i
i

gσ μ
=

≈∑  (4.81) 

It is obvious that an increase of the variance μi,2 of an input parameters Xi always increases the 
variance of the objective function 2

gσ . Therefore, modifying the estimator 2
is  of the variance 

such that it overestimates the variance leads to a conservative approach. This conservative 
estimator is expressed as 

 ( ) ( )2 2 2
, vari con i is E S c S= +  (4.82) 

Since the real variance is unknown, the mean value and the variance of the standard deviation 
given by (4.77) must be determined using the estimated values. Then, the conservative 
estimator of the variance reads 

 2 2 4
, ,4

1 3
1i con i i i

ms s c s
m m

μ −⎛ ⎞= + −⎜ ⎟−⎝ ⎠
 (4.83) 

where ,4iμ  is the estimated fourth central moment of Xi. 
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Whether increasing or decreasing an estimated mean value x  leads to a higher or lower mean 
value of the objective function depends on the objective function itself. If increasing a random 
parameter Xi leads to a higher value of g and according to (4.80) to a higher μg, the estimator 
must be modified such that it decreases ix  in order to be conservative. If increasing Xi 
decreases μg, the estimator must be increased. Mathematically, this is expressed as 

 
( ) ( ) ( )

( ) ( ) ( ),

var    if   0

var    if   0

i i
i

i con

i i
i

g
E x c x

x
x

g
E x c x

x

∂⎧
+ <⎪ ∂⎪= ⎨

∂⎪ − >⎪ ∂⎩

μ

μ
 (4.84) 

When inserting (4.76), but using the estimated values, (4.84) reads 

 

( )

( ),

  if   0

  if   0

i
i

i
i con

i
i

i

gsx c
xm

x
gsx c

xm

∂⎧
+ <⎪ ∂⎪= ⎨

∂⎪ − >⎪ ∂⎩

x

x
 (4.85) 

Using the conservative estimators (4.85) and (4.83), and the FOSM method, the conservative 
probabilistic design load is given by  

 ( ) 2 2
, , ,

1

n

d con con i i con
i

b g sλ λ
=

= − ∑x  (4.86) 

For a small sample size, this design load is much smaller than the design load λd obtained with 
unchanged estimators. With increasing sample size, the conservative design load λd,con 
increases and converges against λd. An overview of discussed estimators and their mean 
value, variance and conservative modification is given in Table 4-3. 

 

Estimator ( )

1

1 m
i

i
x x

m =

= ∑  ( ) 22

1

1
1

m
i

i
s x x

m =

⎡ ⎤= −⎣ ⎦− ∑  

Mean value 
of estimator Xμ  2

Xσ  

Variance of 
estimator 

2
X

m
σ  4

,4
1 3

1X X
m

m m
μ σ−⎛ ⎞−⎜ ⎟−⎝ ⎠

 

Conservative 
estimator con

sx x c
m

= ±  2 2 4
,4

1 3
1con i i i

ms s c s
m m

μ −⎛ ⎞= + −⎜ ⎟−⎝ ⎠
 

Table 4-3: Properties and modifications of estimators for mean value and variance 

4.8 Design Optimization 
Compared to structures made of isotropic material, fiber composite structures have the fiber 
orientations of each ply as additional design variable and therefore provide additional design 
freedom for optimization. Using knockdown or safety factors for the design of composite 
structures, maximizing the design load is equivalent to maximizing the load carrying 
capability of the perfect structure. This does not take into account sensitivities to scattering 
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parameters. Hühne et al. [27] and Kriegesmann et al. [111] showed that for a composite 
cylinder under axial compression the optimal design changes in presence of an imperfection. 
Hence, the proposed design methods should be considered for design optimization. For this, 
the derivatives of the probabilistically motivated design load as well as the derivatives of the 
lower bound given by convex anti-optimization with respect to design variables are given in 
this section. This enables the application of gradient based optimization algorithms for design 
optimization.  

4.8.1 Optimization Procedures 

A multitude of optimization algorithms are given in the literature (see e.g. [112]). The 
methods can be divided into gradient based methods, like for instance conjugated gradient 
methods, and non-gradient based methods, like genetic algorithms. Gradient based methods 
often converge faster where non-gradient based methods are often more robust. If the design 
parameters are discrete and it is not possible to determine a gradient, non-gradient based 
methods must be used. In order to combine the advantages of both strategies, hybrid methods 
have been developed. There, the optimization may start with a genetic algorithm to avoid the 
risk that the following gradient based optimization only finds a local minimum and misses the 
global minimum. In case the design parameters are discrete, but can be regarded in a 
continuous space, gradient based methods can be used to find a good initial guess for the 
following genetic algorithm (see e.g. [113]). One example for such a problem is the 
optimization of a laminate setup, where the ply angles may only take the values 0°, 45°, -45° 
and 90°. 

The design procedures given in section 4.4 and 4.6 require a multitude of buckling analyses. 
Hence, maximizing the design loads given by these approaches appears to be only possible 
when using gradient based methods and/or having a relatively small number of design 
variables. 

Three gradient based optimization algorithms are discussed in the following. The goal is to 
minimize the objective function ( )f x  with the gradient ( ) ( )= ∇fg x x  and the Hessian 
= ∇∇fH . For each algorithm, a start vector x0 has to be chosen; the iteration stops when 

0≈ig  or ε≤ig , respectively. A very simple gradient based algorithm is given by 

 1+ = +i i ix x g  (4.87) 

For quadratic objective functions the Newton method (4.88) offers a more efficient algorithm 

 1
1

−
+ = −i i i ix x H g  (4.88) 

The conjugate gradient method is a gradient based optimization algorithm, which is frequently 
used to solve large linear systems of equation, since this problem is equivalent to finding the 
minimum of a quadratic function. In the first iteration step s0 = -g0. Then, according to Jarre 
and Stoer [112], the conjugate gradient algorithm consists of the following steps. 

1. λ −=
T
i i

i T
i i i

g s
s H s

 

2. 1 λ+ = +i i i ix x s  
3. ( )1 1+ +=i ig g x  ,  ( )1 1+ +=i iH H x  

4. 1 1
1γ + +
+ =

T
i i

i T
i i

g g
g g

 

5. 1 1 1γ+ + += − +i i i is g s  
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The convergence of the conjugate gradient method can be improved by preconditioning the 
problem. For instance, the Cholesky decomposition L LT = H can be used to optimize in the 
transformed space of z with z = L-T x and replace H by the better conditioned matrix LT H L-T 
[112]. The resulting modified and more efficient algorithm is for instance given in [114]. 

In the given form, all algorithms find minima, but they can also be used for maximization 
problems, since this only requires a change of the algebraic sign.  

When maximizing the design load, the simple gradient algorithm has the important advantage 
that it does not require the determination of the second derivatives. Hence, each iteration step 
needs significantly less buckling load calculations than the Newton algorithm and the 
conjugate gradient method. 

4.8.2 Gradient of Probabilistically Based Design Load 

Considering the buckling load function λ(x,y) as a function of random variables, subsumed in 
the vector x, and design variables, subsumed in the vector y, also the probabilistically 
motivated design load λd is a function of y, which is given by 

 ( ) ( ) ( )2
d bλ μ σΛ Λ= −y y y  (4.89) 

where b depends on the assumed type of distribution and the chosen level of reliability (see 
section 4.6.1). The first derivative with respect to one design variable yk equals 

 ( ) ( ) ( )2

2
d

k k k

b
y y y

λ μ σ
σ

Λ Λ

Λ

∂ ∂ ∂
= −

∂ ∂ ∂
y y y

 (4.90) 

As derived in Appendix E, the derivatives of the second order approximations of the mean 
value and the variance are given by 

 
( ) ( ),

k ky y
μ λΛ∂ ∂

≈
∂ ∂

y μ y
 (4.91) 

and 

 
( ) ( )

2 2 2 2 2

,2 ,2 ,32 2
1 1 1

2 2
σ λ λ λ λ λ λ λλ μ μ μ μΛ

Λ
= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂≈ − + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑

n n n

i i i
i i ik k i i k k i i i ky y x x y y x x x yμ

y
 (4.92) 

If the buckling load function is assumed to be linear, the derivative of the variance vanishes 
and the gradient of the design load equals the gradient of the mean value. If it is assumed that 
the objective function is linearly dependent of x, then the derivative of the variance is given 
by  

 
( )2 2

,2
1

2
n

i
ik i i ky x x y

σ λ λ μΛ

=

∂ ∂ ∂≈
∂ ∂ ∂ ∂∑

y
 (4.93) 

When using this approach, it is not necessary to estimate the second derivative of the buckling 
load with respect to the random parameters. However, this simplification does not decrease 
the computational costs significantly.  

In general, a design parameter can at the same time be a random parameter. This has to be 
considered by setting the design parameter yq equal to the random parameter xp and use 
equation (4.90)-(4.93) in an unchanged manner. The only difference is that the derivatives 
with respect to xp and yq only have to be determined once, of course. A more challenging case 
is given if the moments of the input parameters μi,k are dependent of design parameter. In this 
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case, the derivatives of the stochastic moments with respect to the design parameters 
,i k qyμ∂ ∂  must be estimated. This is only possible if either the stochastic moments are known 

for different values of the design parameters or can be estimated by simulation. 

4.8.3 Gradient of Design Load given by Convex Anti-Optimization 

Considering the buckling load function λ(x,y) as a function of scattering variables, subsumed 
in the vector x, and design variables, subsumed in the vector y, the minimum buckling load 
given by convex anti-optimization is a function of x and y. The first order approach of the 
minimum buckling load is given by 

 ( ) ( ) ( ) ( )min ,λ λ ϕ ϕ= − T
cy x y y G y  (4.94) 

According to the derivation in Appendix F, the first derivative with respect to one design 
parameter yj is given by  

 min 1λ λ ϕϕ
ϕ ϕ

∂ ∂ ∂= −
∂ ∂ ∂

T

T
j j jy y y

G
G

 (4.95) 

with the gradient of the buckling load with respect to the uncertainty parameters 

 
1

, ,λ λϕ
⎛ ⎞∂ ∂= ⎜ ⎟∂ ∂⎝ ⎠

…
T

dx x
 (4.96) 

and its derivative with respect to one design parameter 

 
2 2

1

, ,ϕ λ λ⎛ ⎞∂ ∂ ∂= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
…

T

j j d jy x y x y
 (4.97) 

4.8.4 Number of Buckling Analysis per Iteration Step 

Finding the maximum design load given by convex anti-optimization requires the estimation 
of the following derivatives of buckling load. 

 ( ) ( ) ( )2ˆ ˆ ˆ, , ,
   ,      and   

i k i kx y x y
λ λ λ∂ ∂ ∂
∂ ∂ ∂ ∂

x y x y x y
 (4.98) 

The same holds for the maximization of the probabilistic approach, if the simplified approach 
for the gradient of the variance (4.93) is used. Regarding the probabilistic analysis, x̂

 
equals 

the mean vector of random parameters μ, and in case of the convex anti-optimization x̂
 
is the 

center point xc of the MVEE. The vector y includes the design variables of the current step. 

Using the approximation (4.49) and (4.52) to estimate the derivatives (4.98), the buckling load 
function λ must be evaluated once at ( )ˆ,x y , once for each entry of x, once for each entry of y 
and once for each combination of xi and yk. Given p random or uncertainty parameters (p = nz 
or p = d, respectively) and q design parameters, the number of required buckling analyses per 
iteration step equals 1 + p + q + p q. 

When using the full approach for the derivatives of the variance (4.92) within the probabilistic 
approach, the second derivative of the buckling load with respect to the random parameters 
must be estimated additionally. Then, p additional buckling load calculations have to be 
performed in each iteration step, in order to estimate the second derivative according to 
(4.51). This also allows a more accurate estimation of the first derivative, using (4.50). 
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 Convex anti-optimization and 
probabilistic approach, using (4.93) 

Probabilistic approach,
using (4.92) 

Required derivatives 
( ) ( ) ( )2ˆ ˆ ˆ, , ,

, , 
i k i kx y x y

λ λ λ∂ ∂ ∂
∂ ∂ ∂ ∂

x y x y x y
 additionally ( )2

2

ˆ ,

ix
λ∂
∂

x y
 

Buckling load calculations 
per iteration step 1 + p + q + p q 1 + 2 p + q + p q 

Table 4-4: Required derivatives of the buckling load and resulting number of buckling load calculations 
per iteration step for gradient based design optimization under uncertainty (p: number of random or 

uncertainty parameters, p = nz or p = d, respectively; q: number of design parameters) 

The number of required buckling analyses per iteration step is summarized in Table 4-4 for 
the different design approaches that consider uncertain input parameters. The most buckling 
analyses are required for the estimation of the second derivative with respect to one 
uncertainty parameter xi and one design variable yk. Therefore, using the more accurate 
estimation of the derivative of the variance (4.92) hardly causes additional numerical costs. 
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5 Verification with Analytical Example 

When using numerical methods like the finite element method for evaluating the objective 
function of a probabilistic analysis, the objective function is never given in an explicit form, 
which requires the use of approximate methods as given in the previous chapter. However, in 
order to validate a probabilistic method itself, an example must be considered for which the 
stochastic distribution function of the objective function and its characteristic moments can be 
determined exactly. 

For this reason, an example function is considered in this chapter for which the stochastic 
distribution can be determined analytically from solving integral (4.24). By applying the 
probabilistic methods given in section 4.3 to the example, the methods and their 
implementations are verified. The example also can be used by other scientist for validating 
probabilistic methods in the future. 

5.1 Verification Example 
In the following, a simple distribution function for a random vector X and a linear objective 
function are given, which allow solving the integral (4.24) analytically. Furthermore, a 
quadratic objective function is considered in order to validate also the second order approach, 
given in sections 4.3.3 and 4.3.4.  

5.1.1 Example Distribution 

Given the random parameters X1 and X2 with the probability density functions (PDF) f1 and f2, 
given by  

 ( ) ( )23 3
1 14 4

1 1
2 for 1 3

0 else
x xf x

⎧− − + ≤ ≤⎪= ⎨
⎪⎩

 (5.1) 

and 

 ( )
( )
( )

1
2 23

2
2 2 2 23

1 for 1 3

4 for 3 4
0 else

x x

f x x x

− ≤ ≤⎧
⎪

= − − ≤ ≤⎨
⎪
⎩

 (5.2) 

which are plotted in Figure 5-1 and Figure 5-2.  

By solving the integral 

 ( ) ( )
x

X XF x f x dx
−∞

= ∫  (5.3) 

the cumulative distribution functions (CDF) F1 and F2 are obtained. 

 ( )
1

3 23 91
1 1 1 1 1 14 2 4

1

0 for 1

1 for 1 3
1 for 3

x

F x x x x x
x

≤⎧
⎪= − + − + ≤ ≤⎨
⎪ ≤⎩

 (5.4) 
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 ( )

2
21 1 1
2 2 26 3 6

2 2 2 81 1
2 2 23 3 3

2

0 for 1

for 1 3

4 for 3 4
1 for 4

x

x x x
F x

x x x
x

≤⎧
⎪ − + ≤ ≤⎪= ⎨
− + − ≤ ≤⎪
⎪ ≤⎩

 (5.5) 

Figure 5-1: Probability density function of X1 Figure 5-2: Probability density function of X2 

Now, the random vector X shall be defined as X = (X1,X2)T, and the joint PDF fX is chosen to 
equal 

 ( ) ( ) ( )1 1 2 2f f x f x= ⋅X x  (5.6) 

Note that, by definition, two random parameters are independent, if their joint PDF can be 
written as a product as in (5.6). Then, also the distribution function FX is given by the product 
of CDFs of the independent variables, since 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

1 2

2 1 1 1 2 2 2 1

1 1 1 2 2 2 1 1 2 2

x x x x

x x

F f dx dx f x f x dx dx

f x dx f x dx F x F x

−∞ −∞ −∞ −∞

−∞ −∞

= = ⋅

= ⋅ = ⋅

∫ ∫ ∫ ∫

∫ ∫

X Xx x
 (5.7) 

5.1.2 Characteristic Moments of the Example Distribution 

In the following, the characteristic moments of the random parameters are determined. The 
entries of the mean vector μ and the covariance matrix Σ are determined by 

 ( ) 1i i nx f dx dxμ
∞ ∞

−∞ −∞

= ∫ ∫ X x… …  (5.8) 

and 

 ( )ij i j i j i jx x f dx dx μ μ
∞ ∞

−∞ −∞

Σ = −∫ ∫ X x  (5.9) 

For the distributions considered, the mean values yield as follows.  

 ( ) ( )
3

23 3
1 1 1 2 1 2 1 1 1 2 2 1 1 14 4

1

1

, 2 2x f x x dx dx x f dx f dx x x dxμ
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

=

⎡ ⎤= = ⋅ = − − + =⎣ ⎦∫ ∫ ∫ ∫ ∫
��	�


 (5.10) 
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 ( ) ( )
3 4

81 2
2 2 2 2 2 2 23 3 3

1 3

1 4x x dx x x dxμ = − + − − =∫ ∫  (5.11) 

The entries of the covariance matrix equal  

 
( )

( )

2 2
11 1 1 2 1

3
22 23 3 21 1

1 1 14 4 5 5
1

2 2 4

x f dx dx

x x dx

μ
∞ ∞

−∞ −∞

Σ = −

⎡ ⎤= − − + − = − =⎣ ⎦

∫ ∫

∫

X x
 (5.12) 

 
( )

( ) ( ) ( )

2 2
22 2 1 2 2

3 4
22 2 8 15 64 71 2

2 2 2 2 2 23 3 3 2 9 18
1 3

1 4

x f dx dx

x x dx x x dx

μ
∞ ∞

−∞ −∞

Σ = −

= − + − − − = − =

∫ ∫

∫ ∫

X x
 (5.13) 

and 

 ( )12 1 2 1 2 1 2 1 1 1 2 2 2 1 2 0x x f dx dx x f dx x f dxμ μ μ μ
∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

Σ = − = ⋅ − =∫ ∫ ∫ ∫X x  (5.14) 

Summarized, mean vector and covariance matrix of the example joint PDF equal 

 
1
5

8 7
3 18

2 0
0
⎛ ⎞⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

μ Σ  (5.15) 

For the semi-analytic, probabilistic approach given in section 4.3.3 and 4.3.4, also higher 
order moments are required, which are defined as 

 [ ] ( ),
k

i k i ix f dμ μ
∞

−∞

= −∫ X x x  (5.16) 

In Table 5-1, the higher order moments of the example PDF are summarized. 

 

 μi,2 μi,3 μi,4 μi,5 μi,6 

X1 1/5 0 3/35 0 1/21 

X2 7/18 -2/27 49/135 -40/243 9661/20412 

Table 5-1: Higher order moments of the example distribution 

5.1.3 Distribution of a Linear Example Objective Function 

Given the linear objective function g as 

 ( ) 1 22g x x= +x  (5.17) 

with the gradient ( )1 2 Tg∇ = . For a fixed value of g the relation of x1 and x2 equals 

 ( )1
2 12x g x= −  (5.18) 

For the example considered, the integral (4.24) equals 
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 ( ) ( )
( )1

123

2 1
1 1

g x

gF g f dx dx
−

= ∫ ∫ X x  (5.19) 

since the PDF is only non-equal to zero for 1 ≤ x1 ≤ 3 and 1 ≤ x2 ≤ 4. Due to the fact that both 
PDFs are piecewise functions, also the integral (5.19) has to be solved piecewise, according to 
the cases depicted in Figure 5-3. The red box represents the integral bounds, the red dashed 
line represents the change of the definition of f2(x2) and the green line is the variable upper 
integral bound, which is depending on g. 

 
Figure 5-3: Cuts of the objective function g in the domain of the PDF fX for the example considered  

The CDF of g the can be expressed as 

 ( )

,1

,2

,3

,4

0 for 3
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for 5 7
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g

g
g

g

g

g
F g

F g
F g

F g

F g

g

≤⎧
⎪ ≤ ≤⎪
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 (5.20) 

with 

 ( ) ( )
( )1

122
5 4 3 25 9 63 271 1

,1 2 1 960 48 32 16 64 40
1 1

g xg

gF g f dx dx g g g g g
−−

= = − + − + − +∫ ∫ X x  (5.21) 

 ( ) ( )
( )1

123
2 271 1

,2 2 1 24 3 40
1 1

g x

gF g f dx dx g g
−

= = − +∫ ∫ X x  (5.22) 
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( )

( )
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1 12 26 63 3
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5 4 3 263 733 11255 71491 1
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− −− −

−

= + +

= − + − + −

∫ ∫ ∫ ∫ ∫ ∫X X Xx x x
 (5.23) 

and 

 
( ) ( ) ( ) ( )

( )1
1283 3 4 3

,4 2 1 2 1 2 1
1 1 1 3 8 3

5 4 3 25 33 9317 147211 121
480 48 16 6 96 80

g xg

g
g

F g f dx dx f dx dx f dx dx

g g g g g

−−

−

= + +

= − + − + − +

∫ ∫ ∫ ∫ ∫ ∫X X Xx x x
 (5.24) 

The PDF of g is the first derivative of the CDF, yielding 
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⎪
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 (5.25) 

The PDF and CDF of g are plotted in Figure 5-4. 

Figure 5-4: CDF (left) and PDF (right) of the objective function g for the example considered 

The mean value, variance and skewness of the objective function can either be determined 
based on its PDF according to 

 ( )g gg f g dgμ
∞

−∞

= ∫  (5.26) 

 ( ) ( ) ( )22 2 2
g g g g gg f g dg g f g dgσ μ μ

∞ ∞

−∞ −∞

= − = −∫ ∫  (5.27) 

and 

 ( )3 3
g g g gv g f g dgμ σ

∞

−∞

⎡ ⎤= −⎣ ⎦∫  (5.28) 

or based on the PDF of random vector X.  

 ( ) ( )g g f dμ
∞

−∞

= ∫ Xx x x  (5.29) 

 ( ) ( ) ( ) ( )22 2 2
g g gg f d g f dσ μ μ

∞ ∞

−∞ −∞

⎡ ⎤= − = −⎣ ⎦∫ ∫X Xx x x x x x  (5.30) 

 ( ) ( )3 3
g g gv g f dμ σ

∞
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⎡ ⎤= −⎣ ⎦∫ Xx x x  (5.31) 

For the given examples, the characteristic moments are 
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 22
3gμ = , 2 79

45 1.75gσ = =  and ( )
3
216 79

27 45 0.25476= − ≈ −gv  (5.32) 

5.1.4 Stochastic Moments of a Quadratic Example Objective Function 

Since the approximation given in section 4.3.3 accounts for quadratic terms, an example of a 
quadratic objective function is given. The objective function is given by 

 ( ) 2 21
2 1 2 12 2h x x x x= + − +x  (5.33) 

Gradient and Hessian of h equal 

 ( ) 2 1

2 1

1 1
       and       

2 1 2
x x

h h
x x
− −⎛ ⎞ ⎛ ⎞

∇ = ∇∇ =⎜ ⎟ ⎜ ⎟+ ⎝ ⎠⎝ ⎠
x  (5.34) 

At the mean vector ( )8
32 T=μ , the gradient is ( ) ( )2 22

3 3∇ = Th μ . Using equations (5.29)-
(5.31), the stochastic moments of h are obtained without determining the PDF first.  

 12.73hμ =             
2 20.217hσ =             0.052hv =  (5.35) 

The two objective functions g and h are functions of the same random vector X. The 
covariance Σgh of the two function considered can therefore be determined by 

 ( ) ( ) ( ),μ μ
∞ ∞

−∞ −∞

Σ = − −∫ ∫gh g h ghg h f g h dg dh  (5.36) 

which requires knowledge of the joint PDF fgh. The covariance can also be determined by 
integrating over the space of the random vector. 

 ( )( ) ( )( ) ( )μ μ
∞

−∞

Σ = − −∫gh g hg h f dXx x x x  (5.37) 

For the example considered, the covariance of the objective function equals 256
45 5.68Σ = =gh . 

According to (4.41) this yields a coefficient of correlation of
 
ρgh = 0.955.  

5.2 Monte Carlo Simulation of the Linear Example Objective Function 
Since the entries of the random vector X are independent, the realizations used for the Monte 
Carlo simulation are generated independently. Realization of X2 are generated using the 
inverse of F2, according to (4.25). Since F1 appears to be difficult to invert, the acceptance 
rejection method is used to generate realizations of X1 (see e.g. [90]). The discrete CDF of g 
equals the number of realizations, for which the objective value gi is smaller or equal to the 
value considered, divided by the number of realizations m. 

 ( )
1

1ig g

g
i

F g
m

≤

=

= ∑  (5.38) 

In order to evaluate the influence of the assumed type of distribution of the random vector, 
two Monte Carlo simulations are executed. For the first simulation the given distributions are 
considered, and for another one the random parameters are assumed to be normally 
distributed, but with the correct mean values and variances. 

Figure 5-5 shows the resulting CDFs compared to the exact solution. When using the actual 
distributions of the random parameters, the CDF given by Monte Carlo simulation matches 
the exact solutions very good, while a significant deviation is detected when assuming normal 
distribution for the random parameters. This not only shows that the implemented method 
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works, but also that the accuracy of the Monte Carlo simulation mainly depends on the right 
choice of distribution of the random parameters. 

 
Figure 5-5: CDF of the example objective function, obtained from Monte Carlo simulation 

5.3 Semi-Analytical Analysis of the Linear Example Objective Function 
Using the first order approximations given equations (4.35)-(4.37) to estimate the stochastic 
moments of the linear objective function g yields 
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3 2 3 3 162
,3 ,1 1,3 ,2 2,3 27 27

2 2 2

1 2 1.75

1 0 2

g

g

g

g

g g

g g

μ μ μ

σ μ μ
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≈ = + = + ⋅ =

≈ + = ⋅ + ⋅ =

≈ + = ⋅ + ⋅ − = −

μ

 (5.39) 

Since g is linear, the first order approach matches the exact solution. In order to obtain a 
distribution function based on the semi-analytic approach, a distribution type has to be 
chosen. When assuming g to be normally distributed with the obtained mean value and 
variance, the PDF and CDF plotted in Figure 5-6 are obtained. One could also e.g. choose 
Gumble distribution for the distribution functions, which is given by  

 ( ) 1 −−−− −=
g a

b
g a

eb
gf g e e

b
      and      ( )

−−
−=

g a
be

gF g e  (5.40) 

Figure 5-6: Distribution function of g given by the semi-analytic approach 
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The parameters a and b can be determined from mean value and variance according to 

 1 26π σ−= gb       and      μ γ= − ⋅ga b  (5.41) 

with the Euler–Mascheroni constant γ ≈ 0.5772. The resulting distribution functions are 
shown in Figure 5-6. 

Assuming normal distribution the exact solution is approximated much better than assuming 
Gumble distribution. This could already be seen when looking at the skewness. The normal 
distribution has a skewness of zero, which is closer to the actual skewness of -0.255 than the 
skewness of the Gumble distribution, which always equals 1.14.  

5.4 Semi-Analytic Analysis of the Quadratic Example Objective Function 
Applying the first order approaches (4.35)-(4.37) to the quadratic objective function h, the 
approximations of the stochastic moments are given by 

 ( ) ( )22 2 28 81 1
, 2 1 2 12 3 3 22 2 2 2 12, 4h FOSM hμ μ μ μ μ≈ = + − + = + ⋅ − ⋅ + =μ  (5.42) 

 ( ) ( )2 22 2 2 2 22
, ,1 1,2 ,2 2,2 3 30.2 0.38 21.00h FOSM h hσ μ μ≈ + = ⋅ + ⋅ ≈  (5.43) 

 ( ) ( ) ( ) 3
2

3 32 22 2
,3, ,3 3 27

29.2130 29.213 0.304
21.00h FOSM h FOSMvμ −≈ ⋅ + ⋅ − ≈ − ⇒ = ≈ −  (5.44) 

Unsurprisingly, the first order approximations do not equal the exact solutions, where it is 
noticed that with increasing order of the stochastic moment the deviation from the exact 
solution increases.  

The full second order approaches given in 4.3.3 and Appendix D provide an exact 
approximation of the stochastic moments of the quadratic objective function h. Following 
Equation (4.29), the mean value of h is given by 

 ( ) ( ),11 1,2 ,22 2,2
1 112.4 1 0.2 2 0.38 12.73
2 2

μ μ μ≈ + + = + − ⋅ + ⋅ =h h h hμ  (5.45) 

and the second order approach of the variance (4.32) yields 
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( ) ( ) ( )

( )

2 22 2 2 22
3 3

2 23 492 22 2 1
3 3 27 4 35 135

2 2

12.4 0.2 0.38 12, 4 0.2 2 0.38

1 0 2 1 2

1 1 2 0.2 0.38 1 0.2 0.38 12.73
2

20.217

σ ⎡ ⎤ ⎡ ⎤≈ + ⋅ + ⋅ + ⋅ − + ⋅⎣ ⎦⎣ ⎦
⎡ ⎤⎡ ⎤+ ⋅ − ⋅ + ⋅ ⋅ − + − ⋅ + ⋅⎣ ⎦ ⎣ ⎦

+ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ −

≈

h

 (5.46) 

The complete second order approach of the third central moment given by Equation (D.52) 
delivers μh,3 = 4.7245 and hence, the skewness is 

 3
2

,3
3

4.7245 0.0520
20.217

μ
σ

= = ≈h
h

h

v  (5.47) 

The first order approximation of the covariance (4.40) of g and h yields 

 7 7882 1 22
,1 ,1 1,2 ,2 ,2 2,2 3 5 3 18 1351 2 5.8370μ μΣ ≈ + = ⋅ ⋅ + ⋅ ⋅ = =gh g h g h  (5.48) 

Since all second derivatives of g equal zero, the second order approach (4.39) simplifies to 
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 (5.49) 

Again, the second order approach yields the exact solution of 5.68Σ =gh . Here, the first order 
approach is close to the exact solutions, because only one of the two objective functions is 
nonlinear. 

In order to evaluate the error that is made by the second-order third-moment (SOTM) method 
and by the incomplete second order approach (ISOA), the characteristic moments are also 
determined using these approaches. While the mean value approximation yields the same 
results as the complete second order approach, the variances given by SOTM and ISOA equal 

 2 2 2 2
, , ,2 , ,2 , , ,3

1 1 1
19.833

n n n

h SOTM i i h ii i i ii i
i i i

h h h h h hσ μ μ μ μ
= = =

≈ + − + + ≈∑ ∑ ∑μ μ  (5.49) 

and 

 2 2 2
, , ,2 ,2

1 1
20.139

n n

h ISOA h ij i j
i j i

hσ σ μ μ
= = +

= − ≈∑∑  (5.49) 

and the approximations of the skewness yield 

 , 0.526h SOTMv ≈ −       and     , 0.030h ISOAv ≈  (5.49) 

The covariance of g and h is approximated exactly by both approaches due to the linearity of 
g. 

5.5 Overview of Example and Results 
For the sake of comprehensibility, an overview of the example considered is given in this 
section. All information that is required as input for the probabilistic analyses are listed in 
Tables in section 5.5.1. The results obtained from solving the example analytically are 
summarized in section 5.5.2. 

 

Random 
variable 

Probability density 
function (PDF) 

Cumulative distribution 
function (CDF) 

 

X1 ( ) ( )23 3
1 1 14 4

0

2
0

⎧
⎪

= − − +⎨
⎪
⎩

f x x  ( ) 3 23 91
1 1 1 1 14 2 4

0
1

1

⎧
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⎪
⎩

F x x x x  
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x
x
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4
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⎧
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x x
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2
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for 1 3
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for 4

≤
≤ ≤
≤ ≤
≤

x
x
x
x

 

Table 5-2: PDFs and CDFs of the random variables considered in the current example  
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5.5.1 Input Information of the Example Considered 

The PDFs and CDFs of the two random parameters X1 and X2 considered in this chapter are 
summarized in Table 5-2. The mean value and the central stochastic moments of both 
distributions are given in Table 5-3. The two objective functions considered are given in 
Table 5-4. 

 

 μi μi,2 μi,3 μi,4 μi,5 μi,6 

X1 2 1/5 0 3/35 0 1/21 

X2 8/3 7/18 -2/27 49/135 -40/243 9661/20412 

Table 5-3: Stochastic moments of the example distributions 

 

Linear objective function Quadratic objective function 

( ) 1 22g x x= +x  ( ) 2 21
2 1 2 12 2h x x x x= + − +x  

Table 5-4: Objective functions considered in the current example  

5.5.2 Results of the Probabilistic Analysis of the Objective Functions Considered 

By solving the integral (4.24) analytically for the linear objective function (5.17), the PDF and 
the CDF of the objective function have been determined, which are given in Table 5-5. 
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Table 5-5: PDF and CDF of the linear objective function considered in the current example  
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The shape of the distribution function has been approximated very well by a Monte Carlo 
simulation using the given distribution functions for X1 and X2. When assuming X1 and X2 to 
be normally distributed, the resulting distribution function deviates significantly from the 
exact solution (see Figure 5-5). This shows how sensitive the Monte Carlo method is to the 
choice of the distribution functions of input parameters. 

Using the semi-analytic, probabilistic approach requires assuming a type of distribution to 
obtain a distribution function of the objective function. When assuming Normal distribution, 
the approximate distribution function matches the exact solution well, where assuming 
Gumbel distribution leads to a worse approximation (see Figure 5-6). However, even when 
assuming Gumbel distribution the distribution function is approximated better than by the 
Monte Carlo simulation under the assumption of normally distributed input parameters. This 
leads to the conclusion that (at least for the example considered) the results of the semi-
analytic approach are less sensitive to the choice of the type of distribution fg(g) of the 
objective function than the results of the Monte Carlo method are sensitive to the choice of 
the type of distribution fX(x) of the input variables. 

 

Objective 
function 

Mean 
value Variance Skewness Covariance 

g(x) 7.3μ =g  2 1.75σ =g  0.25476≈ −gv  
5.68Σ =gh  

h(x) 12.73hμ =  2 20.217hσ =  0.052=hv  

FOSM approach 
for h(x) 12, 4μ ≈h  

2 21.00σ ≈h  0.304≈ −hv  5.837ghΣ ≈

SOTM approach 
for h(x) 12.73hμ =  

2 19.833hσ ≈  0.526hv ≈ −  5.68Σ =gh  

ISOA for h(x) 12.73hμ =  
2 20.139hσ ≈  0.030hv ≈  5.68Σ =gh  

Table 5-6: Stochastic moments of the objective functions considered in the current example  

The stochastic moments of the two objective functions considered have been determined 
directly and are summarized in Table 5-6. Using the full second order semi-analytic approach, 
the stochastic moments are determined exactly. When using the FOSM approach for the 
quadratic objective function h(x), still reasonably good approximation of the mean value and 
the variance of h are obtained (last row of Table 5-6). The deviation of the skewness however 
is unacceptably large. Unsurprisingly, better approximations are given by the SOTM approach 
and the ISOA. While both approaches estimate the variance well, the skewness is estimated 
much better by the ISOA. This leads to the conclusion that the first order approach can be 
sufficiently accurate for estimating mean value and variance even for a nonlinear objective 
function and it is therefore expected that the use of a second order approach yields reasonably 
accurate results even is the objective function is of higher order. This conclusion however 
cannot be regarded as generally valid, since the accuracy of a lower order approach always 
depends on the regarded objective function. 
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6 Probabilistic Design of Composite Cylindrical Shells 

In this chapter, the probabilistic design procedure proposed in section 4.6.1 is applied to a set 
of cylindrical composite shells. 

6.1 Properties of the Shells Considered 
The shells considered have been manufactured, measured and tested at the German Aerospace 
Centre in Braunschweig (see Ref. [27] and [42]). All cylindrical shells considered have a 
nominal radius of 250mm and a laminate consisting of four plies with the nominal ply 
thickness of 0.125mm. The ratio of radius to wall thickness is hence R/t = 500 for all 
cylindrical shells considered. 

 

 Identifier Laminate setup 

Set #1 

Z07, Z08 

Z09 

Z10, Z11 

Z12 

[±24°, ±41°] 

[±41°, ±24°] 

[24°, ±41°, -24°] 

[±45°, 0, -79°] 

Set #2 
Z15, Z17, Z18, 

Z20-Z26 
[±24°, ±41°] 

Table 6-1: Laminate setups of the cylinders considered 

The shells considered are subdivided into two sets (see Table 6-1). The shells of set #1 have 
been investigated by Hühne et al. [27]. These shells with the identifiers Z07–Z12 have a free 
length of 510mm and four different laminate setups. The ten shells of set #2, which have been 
analyzed by Degenhardt et al. [42], all have the same laminate setup as Z07. Their free length 
is 500mm and the shells are denominate Z15, Z17, Z18 and Z20-Z26.  

 

 Set #1, Z07-Z12, 
from [27] 

Set #2, Z15-Z26, 
from [42] 

E11 125774MPa 157362MPa 

E22 10030MPa 10095MPa 

G12 5555MPa 5321MPa 

ν12 0.271 0.277 

Table 6-2: Elastic material properties of the panels considered 

As listed in Table 6-2, Hühne et al. and Degenhardt et al. gave different elastic material 
parameters. For the following probabilistic analyses imperfections measurements of set #2 
will be used and hence, the material properties given for this set are used in the following. 
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parameters. Additionally, inaccuracies of the fiber angle, fiber waviness and void inclusions 
can occur in fiber composite shells. 

For both sets of shells, geometric imperfections have been measured. For set #2 furthermore 
the wall thickness deviations and the standard deviations of the material properties E11, E22 
and G12 are available. Considering further imperfections in the probabilistic analysis would 
require unfunded assumptions. Only a loading imperfection is considered additionally, since 
the data could be estimated indirectly (see section 6.3.4). 

6.3.1 Geometric Imperfections 

The geometric imperfections have been measured with an optically measurement system 
ATOS [115]. Using the software tool VISTIM (see [47]) the position of the ideal cylinder has 
been determined with respect to the point cloud given by measurement. This allows 
determining the deviations from the ideal structure at each position of the cylinder. The 3D-
model of shell Z07 with scaled imperfection is shown in Figure 6-2 (left). The unwounded 
shell surface with the radial geometric imperfections as a two-dimensional function is given in 
Figure 6-2 (right). 

Figure 6-2: 3D-model (left) and unwounded measured imperfection pattern (right) of shell Z07 with 
scaling factor 

As discussed in section 4.1.1 the imperfection pattern is approximated by a double Fourier 
series. For the shells considered, the measured patterns are approximated sufficiently accurate 
for n1 = 10 and n2 = 20 and hence, 11 · 21 · 2 = 462 coefficients are taken into account.  

Using the half wave cosine approach (4.2) leads to the approximated imperfection pattern 
shown in Figure 6-4 shows the recalculated imperfection pattern using the half wave sine 
approach (4.3). Due to the large imperfections at the edges, the half wave cosine approach 
describes the measured surface much more accurate than the half wave sine approach (see 
Figure 6-3). Plotting the Fourier coefficients for different numbers of axial half waves over 
the number of circumferential full waves, as done in Figure 6-5, gives insight into the 
manufacturing characteristics of the shells. The imperfection patterns of set #1 are dominated 
by modes with small numbers of axial and circumferential full waves. The ovalization mode 
with two circumferential full wave and no axial waves is one of the modes with the biggest 
amplitude for all shells of set #1. The imperfections of set #2 show significantly smaller 
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imperfections and hence, modes with shorter wave lengths become more visible in the 
imperfection pattern and the Fourier spectra. 

 
Figure 6-3: Recalculated imperfection shape of Z07 using the half-wave cosine Fourier representation 

 
Figure 6-4: Recalculated imperfection shape of Z07 using the half-wave sine Fourier representation 

6.3.2 Scattering of Material Parameter  

The mean values and standard deviations of the material parameters E11, E22 and G12 have 
been determined experimentally from a set of Coupon tests. Due to the test procedure it was 
not possible to detect correlations between the parameters and hence, material properties are 
assumed to be uncorrelated even though it seems reasonable that e.g. the shear modulus G12 
increases at the same time as the Young’s modulus E22 increases. However, it is shown in 
section 6.5 that the scattering of material properties has minor influence on the scatter of 
buckling load. In [42] the mean values and standard deviation of E11, E22 and G12 are given 
and the parameters are assumed to be normally distributed.  
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Figure 6-5: Fourier coefficients for the shells Z07 (left) and Z08 (right) 

 

 E11 E22 G12 

Mean value in MPa 157362 10095 5321 

Standard deviation in MPa 3763 415 59 

Coefficient of variation in % 2.4 4.1 1.1 

Table 6-3: Stochastic moments of material properties, from [42] 

6.3.3 Wall Thickness Deviations 

The wall thickness has been measured with ultrasonic measurements [42] and varies for 
different shells, as well as within the surface of one shell. Orf [106] compared finite element 
buckling analyses of shells with measured wall thickness patterns and shells with a constant 
thickness and concluded that there is no significant difference, if the average wall thickness is 
equal. Thus, a constant wall thickness is regarded as random parameter for which the average 
wall thickness is the data base. If the distribution of the wall thickness over the shell surface 
has to be considered, this two dimensional function can be represented by Fourier series as 
well. 

The stochastic moments of the average wall thickness are obtained from the ten measurements 
of set #2. The mean value equals μt = 0.479mm and the standard deviation is σt = 0.012mm. 

6.3.4 Loading Imperfection 

A small inclination was applied unintentionally to the shells during tests. It was caused by the 
test setup, but has not been measured. Because of the significant influence of the resulting 
bending moment on the buckling load, the inclination should be considered and is determined 
indirectly. As demonstrated in Figure 6-6, in finite elemente simulations the shell is bended 
with the bending angle θ about an axis, which is described by the circumferential variation 
angle ω. Within these simulations the measured geometric imperfection pattern, the measured 
average wall thickness and the mean values of the material properties are applied. 

Figure 6-7 shows the numerically determined buckling load of one test shell with respect to 
the inclination. For the imperfect shell the position of the bending axis has an influence on the 
buckling load; however the position during test is unknown. In order to approach the applied 
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bending angle, the mean buckling load for fixed θ and varying ω is fitted to the experimental 
result. (E.g. for the example in Figure 6-7, a good approximation is given for θ = 0.009°.) 
This procedure is applied to the ten shells of set #2 and ten bending angles are obtained with 
mean value μθ = 0.01157° and standard deviation of σθ = 2.74°·10-3. 

 
Figure 6-6: Illustration of the FE-

simulation for the determination of 
bending angles 

Figure 6-7: Buckling loads for different inclinations of the 
imperfect shell Z15 

Because the value of ω is unknown during the tests, the estimation of θ includes measurable 
uncertainties. For the example given in Figure 6-7 the estimated bending angle θ equals 
0.009°. If the circumferential variation angle ω had a value of 45° during the test, θ must 
equal 0.01°. If ω was equal 135°, a bending angle of 0.008° would fit the test result. This 
shows that the estimation of θ has an accuracy of about 0.001°, which equals approximately 
10% of the obtained mean value, and which is larger than the estimated standard deviation. 

This shows the uncertainty that is included when determining mean value and standard 
deviation of the inclination angle. Both, mean value and standard deviation are probably 
overestimated or underestimated. It would be a conservative approach to solve this issue by 
increasing the standard deviation. However, this comprises the risk to end up with an overly 
conservative result. Since the objective of the probabilistic design procedure is to estimate the 
stochastic distribution as accurate as possible without introducing conservative assumptions, 
the indirectly determined inclination angles serve as measurement data as they are. 

6.4 Influence of Representation of the Geometric Imperfection  
Different representations of geometric imperfections are proposed in the literature, which 
often introduce simplifications in order to reduce the number of random parameters (see 
section 4.1). The influence of the representation of geometric imperfections on the result of 
probabilistic analyses is discussed in this section. For this, a Monte Carlo simulation with a 
relatively small number of realizations is performed, regarding only geometric imperfections 
as randomly distributed. The imperfection measurements of set #1 are used as data basis. 

According to the multimode approach proposed by Arbocz and Starnes [104], the multi mode 
representation (6.1) is used to investigate the performance of such a simplified representation 
of geometric imperfections within probabilistic analyses. It mainly differs from the original 
Fourier representation by neglecting the circumferential phase shift of each mode. This 
simplified approach is considered besides the Fourier representation in the following in order 
to show its influence on the results of a probabilistic analysis. 
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Figure 6-8 shows two virtually generated imperfection patterns based on the multimode 
approach. It is conspicuous that the imperfections accumulate in one point near the edge. This 
phenomenon is caused by neglecting the circumferential phase shift of each mode. 

 
Figure 6-8: Examples of generated imperfection shapes using the multi-mode approach with random 

amplitudes 

Monte Carlo simulations are performed for the buckling load of Z07 using 400 virtual 
samples. The Fourier coefficients are regarded as random parameters. Besides the multimode 
approach (6.1), also the half wave cosine approach (4.2) and the phase shift representation 
(4.5) are used. For the phase shift representation the phase shift angle of the ovalization mode 
is set to zero and only the relative phase shift of other modes is regarded. This way, the 
position of the shell during measurement is eliminated as discussed in section 4.1.1. 

The histograms in Figure 6-9 obtained from the Monte Carlo simulations show that by using 
the multi mode approach the buckling loads are underestimated significantly. From the 
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cumulative distribution functions given in Figure 6-10 it is seen that the obtained standard 
deviations compare well, but the mean values differ strikingly. Furthermore, it is noticeable 
that the cumulative distribution obtained using the phase shift representation is much 
smoother than the one determined with the standard Fourier approach. Obviously, the 
technique described in section 4.1.1 eliminating positioning of the shell during measurement 
indeed yields better results than neglecting this effect. 

 
Figure 6-9: Histograms of Monte Carlo simulations with different representations of imperfection 

patterns for Z07 

 
Figure 6-10: Cumulative frequency of Monte Carlo simulations with different representations of 

imperfection patterns for Z07 

The results of Monte Carlo simulations with the laminate setup of Z10 are similar to the 
results for Z07 (see Appendix G). However, Monte Carlo simulations with the laminate setup 
of Z09 show a considerable difference not only for the mean value, but also for the standard 
deviation given by the multimode approach compared to the two other approaches (see Figure 
6-11). While the mean value is underestimated, the standard deviation is overestimated 
heavily. Again, the cumulative distribution function given by the phase shift representation is 
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smoother than the one obtained with the standard Fourier approach. Monte Carlo simulations 
with the laminate setup of Z12 deliver similar results as Z09. 

 
Figure 6-11: Cumulative frequency of Monte Carlo simulations with different representations of 

imperfection patterns for Z09 

An underestimation of the mean value and an overestimation of the standard deviation will 
always lead to a more conservative approach of the lower bound of buckling load, compared 
to the accurate representations of imperfection patterns. Hence, it is concluded that the multi 
mode representation is usable for a conservative approach, but, due to the negligence of the 
phase shift, it is not appropriate for estimating the distribution of buckling load as accurate as 
possible. 

6.5 Semi-Analytic, Probabilistic Analysis 
The semi-analytic, probabilistic approach given in section 4.6.1 is applied to the shells of set 
#2. For that, the stochastic moments of the buckling load are determined using the 
approximations given in section 4.3.3. 

 

 µΛ in kN σΛ in kN νΛ 

First order approach, using (4.49) 24.36 2.25 0.012 

Second order third moment (SOTM) 
approach 23.10 2.20 0.469 

Incomplete second order approach (ISOA)  23.10 2.53 0.118 

Full second order approach (SOSM), using 
(4.53)-(4.55) 23.10 3.53 0.239 

Monte Carlo simulation (see section 6.7) 24.06 2.75 0.228 

Empiric distribution 23.58 1.31 -0.019 

Table 6-4: Results of the semi-analytic approaches for set #2 
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The results given in Table 6-4 show that all approaches overestimate the standard deviation 
and skewness. Even the Monte Carlo simulation overestimates the standard deviation, which 
will be discussed in the section 6.7. However, the full second order approach, or second-order 
sixth-moment (SOSM) approach, overestimates the standard deviation significantly more than 
the all other approaches. The reason is the term that is neglected by the ISOA, the last sum in 
(4.32), which is taken into account within the full approach. Each of the ( )21

2 n n−
 
summands 

of this term is always positive and hence, approximation errors in the mixed partial 
derivatives sum up and can have a significant influence compared to other terms, which 
turned out to be the case in the present study. 

In order to obtain a probability function a type of distribution has to be assumed. This choice 
influences the shape of the probability density function of buckling load. In Figure 6-12 
several probability density functions are plotted, which all have the mean value and standard 
deviation obtained from the incomplete second order approach. The skewness can help to 
choose an appropriate type of distribution. E.g. the Gumbel distribution always has a 
skewness of 1.14, but the estimated skewness is close to zero. Unfortunately, the normal, 
logistic and Laplace distribution all have a skewness of zero. Comparing the resulting 
cumulative distribution function with the experimentally obtained cumulative distribution 
does not allow definitely deciding which type of distribution matches best. The normal 
distribution is the most commonly used distribution. Its prevalence can be partially explained 
by the central limit theorem (see e.g. [105]). Therefore, normal distribution will be used 
subsequently, though a K-S test of the empiric distribution with the assumed distributions 
delivers a slightly better match for Logistic and Laplace distribution. 

 
Figure 6-12: Probability density function of 

buckling load for set #2 assuming different types of 
distribution 

 
Figure 6-13: Cumulative distribution function of 

buckling load for set #2assuming different types of 
distribution 

The incomplete second order approach matches the empiric distribution better than the first 
order approach, as it is seen when comparing the cumulative distribution functions (see Figure 
6-14). The reliability function given by R(λ) = 1 - FΛ(λ) is plotted in Figure 6-15 for the 
ISOA. Due to the small derivative of the reliability function in the region of high reliabilities, 
the design load is very sensitive to the chosen level of reliability. However, though the 
difference of levels of reliability of say 99.9% and 99.99% appears to be very small at first 
glance, it is equivalent to a change from one failure out of 1000 to one failure out of 10,000. 
Therefore, a reduction of the design load of about 10% is reasonable when increasing the 
level of reliability from 99.9% to 99.99%. 

As stated before, the design load not only depends on the level of reliability, but also on the 
chosen type of distribution. From the design loads listed in Table 6-5 it is concluded that the 
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distribution type can significantly influence the lower bound of buckling load, especially for 
high levels of reliability. 

 
Figure 6-14: Cumulative distribution function of 

buckling load of set #2 assuming normal 
distribution 

 
Figure 6-15: Reliability function of buckling load 

and lower bounds of set #2 given by ISOA 
assuming normal distribution 

 

 Assumed distribution 
Reliability Normal Logistic Laplace 
99.99 % 13.7kN 10.2kN 7.8kN 
99.9 % 15.3kN 13.5kN 12.0kN 
99 % 17.2kN 16.7kN 16.1kN 
90 % 19.9kN 20.0kN 20.2kN 

Table 6-5: Probabilistic based design loads for set #2 for different types of distribution 

Following the design approach summarized in section 4.6.1, the design load is given by  

 d bλ μ σΛ Λ= −  (6.2) 

In this formulation, the chosen level of reliability as well as the assumed type of distribution 
are captured by the factor b. Typical values for b and their relation to types of distribution and 
levels of reliability are listed in Table 4-2. 

Assuming normal distribution and choosing a level of reliability of 99.9% equals a factor 
b = 3 and leads to a design load of 15.3kN. If the assumption of normal distribution is wrong 
and the actual distribution is Laplace or logistic distribution, the real reliability of this design 
load is between 99% and 99.9% (see Table 6-5). This shows that a wrong assumption for the 
type of distribution does not lead to an inapplicable lower bound, but only to a different level 
of reliability than intentioned. Within the Six Sigma design philosophy [116], this issue is 
even neglected by expressing the level of reliability always by the factor b (e.g. b = 4 provides 
a higher reliability than b = 3). Still, one should always keep in mind that the choice of b 
implies not only the desired level of reliability, but also an assumed type of distribution. 

Without performing additional buckling analyses, the results of the semi-analytic approach 
can be used to determine the influence of each random parameter or of a group of random 
parameters on the distribution of buckling load. When treating all parameters as deterministic 
parameters and only regarding for instance geometric imperfections as randomly distributed, 
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the resulting standard deviation can be determined. Hence, a very descriptive measure of how 
the scatter of buckling load is influenced by a certain type of imperfection is given. 

 

Random parameters First order approach Incomplete second 
order approach 

 µΛ σΛ µΛ σΛ 

Geometry 24.36kN 1.11kN 24.01kN 1.17kN 

Material parameters 24.36kN 0.40kN 24.34kN 0.41kN 

Wall thickness 24.36kN 1.45kN 24.34kN 1.45kN 

Loading imperfection 24.36kN 1.61kN 23.48kN 1.67kN 

All 24.36kN 2.25kN 23.10kN 2.53kN 

Table 6-6: Semi-analytic approaches considering the random variables individually 

In Table 6-6 the mean values and standard deviations of buckling load when regarding only a 
set of parameters as randomly distributed are given. The results show that the material 
properties have a minor influence on the scatter of buckling load. The influences of geometric 
imperfections, wall thickness and loading imperfection have the same order of magnitude.  

6.6 Influence of the Sample Size 
The method for provision of the sample size given in section 4.7 is applied to the shells 
considered in order to check whether the relatively small sample size of ten has an influence 
on the accuracy of the semi-analytic method. Furthermore, set #2 is subdivided into two sets 
of five shells and the probabilistic analysis is repeated using only five samples with and 
without using the conservative estimators given in Table 4-3. As suggested in section 4.7.2, 
the factor c is set equal to 2. The results of the FOSM analysis for the complete set and the 
subset, with and without using the conservative estimators are summarized in Table 6-7. The 
FOSM approach is used because within this approach it is obvious whether increasing or 
decreasing an estimator is conservative (see section 4.7.2). For the numerical determination of 
derivatives the approximation (4.50) is used, instead of (4.49). Therefore, the results differ 
slightly from the results given in Table 6-4. 

The results of the standard approach considering the subset of five samples compare very well 
with the results considering all samples. Using the conservative estimators for the set of ten 
samples leads to a slightly more conservative design load λd than the standard approach. 
When considering only five samples, the conservative approach yields higher mean value of 
buckling load than the standard approach, which should not be the case. Obviously, the partial 
derivatives are misleading and therefore lead to a modified mean vector for which the 
buckling load is higher compared to the buckling load of the original mean vector. This effect 
can occur, if the original mean vector is close to a local minimum (see Figure 6-16) or if the 
step size of the numerical derivative is too large. However, the conservative approach with 
five samples still yields a significantly more conservative design load than the standard 
approach (see last row of Table 6-7). 
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Shells considered Complete  
set #2 

Z15, Z17, Z18, 
Z20, Z21 

Z22, Z23, Z24, 
Z25, Z26 

Standard FOSM 
approach 

μΛ in kN 

σΛ in kN 

λd
* in kN 

24.36  

2.455 

17.0 

24.26 

2.459 

16.9 

24.08 

2.339 

17.1 

Approach with 
conservative 
estimators 

μΛ in kN 

σΛ in kN 

λd
* in kN 

24.20 

2.461 

16.8 

24.87 

3.747 

13.6 

25.08 

3.232 

15.4 
* according to (6.2) with b = 3 

Table 6-7: Mean value and standard deviation of buckling load given by FOSM approach considering 
conservative estimators and shell subsets with small sample size 

 

 
Figure 6-16: Example of an estimated mean value close to a local minimum of the objective function 

The analyses with five samples show that using a conservative estimator for the mean values 
and standard deviations of input parameters indeed leads to a more conservative design load. 
However, for a sample size of ten the use of conservative estimators has a negligibly small 
effect on the design load. Hence, for the following considerations the standard approach is 
used. 

6.7 Monte Carlo Simulation 
In order to validate the semi-analytical, probabilistic analysis, a Monte Carlo simulation is 
executed. For determining the required number of virtual samples, the parameters of interest, 
namely the lower bound given by high levels of reliability, are observed within a convergence 
study (see Figure 6-17). The simulation convergences for about 1300 samples, however, the 
results for 2500 samples are used in the following. 

The discrete cumulative distribution function obtained by the Monte Carlo method is shown 
in Figure 6-18. The numerical procedure does not deliver more accurate results than the semi-
analytic approach. Both procedures overestimate the variance, which indicates that the 
deviations from the experimentally obtained distribution are due to uncertainties of the data 
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basis. The most uncertain data are the values of indirectly determined loading imperfection 
(see section 6.3.4). It is possible, that the inclination angle was exactly the same for each shell 
tested, and that the obtained scatter only results from the indirect determination procedure 
described in section 6.3.4. This would lead to a smaller variance of the buckling load and 
hence, to a better match with the experimental results. However, there is no way to verify this 
supposition. 

 
Figure 6-17: Convergence of Monte Carlo simulation for set #2 

Since both approaches, the Monte Carlo simulation and the semi-analytic approach, deliver 
similar results it is concluded that the inaccuracies of the probabilistic approaches are not 
caused by the methods themselves, but due to the uncertainties in the input parameters, 
namely the loading imperfection. 

 
Figure 6-18: Cumulative distribution function of buckling load of set #2 

6.8 Comparison with other Design Procedures for Different Laminate Setups 
The semi-analytic method and the Monte Carlo method are applied to the shells with the 
laminate setups of set #1. Still, the imperfection measurements of set #2 are used as data 
basis. This implies the assumption that the imperfections are independent from the laminate 
setup. Especially for the geometric imperfections, this assumption appears to be invalid at first 
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glance. However, the Fourier spectra of all measured imperfections indicates that for the 
shells considered the manufacturing process has a much more important influence on the 
imperfection pattern than the laminate setup. For all non-traditional imperfections the 
assumption of independence from the laminate setup appears to be reasonable. However, it is 
worth mentioning that the material properties of set #2 are used in the following even though 
they differ slightly from the properties given for set #1 in [27]. This assumption is necessary 
because no stochastic moments of material properties are given in [27]. 

The cumulative distribution function given in Figure 6-19 show that independently from the 
laminate setup the semi-analytic approach compares well with the Monte Carlo simulations. 
For the shells Z09, Z10/Z11 and Z12 only one or two experimental results are available and 
hence, no comparisons of empiric distributions and estimated distributions are possible. 
However, the results show that results of the probabilistic analysis are reasonable since the 
estimated distribution and the experimental results have the same order of magnitude. 

Figure 6-19: Cumulative distribution functions of buckling load for different laminate setups 
given by experiments, Monte Carlo simulation and incomplete second order approach 

The equivalent thickness t+ determined according to equation (1.6), and the knockdown factor 
γ given by equation (1.3) are given in Figure 6-7 for the four different laminates considered. 
By multiplying the KDFs with the buckling load of the perfect shell given by Hühne et al. 
[27], the design loads according to NASA SP-8007 are obtained (see Table 6-8). 

Hühne et al. [27] determined the lower bound given by the single buckle approach for the 
shells considered, which are given in Table 6-9. Using the convex anti-optimization approach 
as introduced in section 4.4 delivers the lower bounds given in Table 6-9. For this approach, 
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the lower bounds given by the first order approach differ significantly from the second order 
approach. For a details discussion of the results of convex anti-optimization see [53]. 

 

Shell Z07 Z09 Z10 Z12 

Equivalent wall thickness t+ in mm 0.5 0.5 0.48 0.48 

Knockdown factor γ 0.322 0.322 0.315 0.315 

Table 6-8: Equivalent radius and knockdown factors according to NASA SP-8007 [28] 

With the estimated distribution function of buckling load, levels of reliability are determined 
for the deterministic design procedures. The design loads given by NASA SP-8007 have 
levels of reliability very close to 100% for all shells. E.g. for Z07 the reliability equals  
1 - 4·10-9 and for Z10 the reliability equals 99.97%. 

 

Shell Z07 Z09 Z10 Z12 

Perfect shell analysis, from [27] 31.8kN 17.0kN 23.0kN 22.0kN 

Minimal buckling load  
of experimental tests 21.3kN 15.7kN 15.7kN 18.6kN 

Semi-analytic, 
probabilistic 
approach* 

for R = 99.9 % 
for R = 99 % 

15.3kN 
17.2kN 

8.5kN 
9.5kN 

7.0kN 
9.0kN 

14.8kN 
16.0kN 

Convex anti-optimization 
(first order approach) 17.1kN 9.8kN 11.7kN 16.7kN 

NASA SP-8007 10.2kN 5.5kN  7.2kN 6.9kN 

Single buckle approach, from [27] 17.4kN 14.7kN  13.8kN 20.2kN 
*Incomplete second order approach, assuming normal distribution 

Table 6-9: Design loads for the shells considered given by different design approaches 

The SBA delivers design loads with unacceptable reliabilities, except for Z07. For the 
determination of these reliabilities it is assumed that the calculated distribution functions are 
exact. For Z07 it has been shown that the variance is overestimated by the probabilistic 
methods and most probably this is also the case for the other laminate setups. Nevertheless, 
the design loads given by the SBA for Z09 and Z12 exceed the mean value of buckling load, 
which means that the reliability of the design load is definitely below 50% for these shells. 
The lower bounds given by convex anti-optimization have the order of magnitude as the 
design loads given by the probabilistic approach for a reliability of 99%. Only for Z10 the 
design load obtained from convex anti-optimization exceeds the probabilistically motivated 
design load remarkably, while it is still lower than the lowest experimental result. 
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6.9 Conclusions 
Summarized it is stated that the proposed probabilistic design procedure is well suited for an 
efficient design of composite cylindrical shells by exploiting the knowledge of imperfection 
data. 

Concerning efficiency and computational costs the convex anti-optimization approach is as 
well suited as the probabilistic approach. The advantage of the probabilistic procedure is that 
it additionally gives information about the reliability and that it can even be used to evaluate 
the reliability of other approaches. 

The knockdown factor approach leads to overly conservative design load. Furthermore, the 
safety margin differs for the different shells, which is caused by the fact that the different 
sensitivities are not captured by the knockdown factor philosophy. 

The single buckle approach provides unsatisfying results for two of the shells considered. Still 
this approach is considered to be very promising, since it does consider the imperfection 
sensitivity of a shell, but does not require actual imperfection measurements. Probabilistic 
analyses in which only geometric imperfections are considered as randomly distributed 
indicate that the SBA indeed covers the effect of geometric imperfections, but not the effect 
of imperfect boundary conditions [45]. What is lacking is a definition of the application limits 
of this approach. To underline the applicability of the SBA, a set of composite shells tested at 
NASA Langley Research Center is considered, for which no imperfection data are available 
to the author. The measures and laminate setups of these shells are given in section 2.1. 

 

Name BLperf  
in kN 

Experiment NASA SP-8007 SBA 

BL in kN KD γ · BLperf  
in kN KDF γ N1 in kN KDF 

AW-Cyl-1-1 184.1 134.2 0.729 83.6 0.454 120 0.652 

AW-Cyl-2-1** 436.3 329.2 0.755 253.3 0.581 
350 

305 

0.802 

0.699 

AW-Cyl-3-1 745.9 657.5 0.881 427.0 0.573 505 0.677 

AW-Cyl-4-1 621.4 558.6 0.899 357.6 0.575 465 0.748 

AW-Cyl-5-1* 672.7 407.9 0.606 390.5 0.581 420 0.624 

AW-Cyl-11-1 745.9 676.6 0.907 428.0 0.574 510 0.684 

AW-Cyl-92-01 133.1 123.6 0.929 62.1 0.467 115 0.864 

AW-Cyl-92-02 170.1 142.0 0.835 79.4 0.467 95 0.558 

AW-Cyl-92-03 184.1 152.0 0.826 83.6 0.454 120 0.652 
*AW-Cyl-5-1 was damaged prior to testing. 
**AW-Cyl-2-1 has a strong influence of plasticity. Calculations with a simple elastic-plastic material law for the 
matrix under shear lead to a N1 load of 305 kN. 

Table 6-10: Experimental results from [39] and SBA design loads for composite cylinder tested at NASA 
Langley Research Center 
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Table 6-10 summarizes the experimentally determined buckling loads and knockdown factors 
given in [39], as well as the design loads and corresponding knockdown factors given by the 
single buckle approach. The design load N1 is in almost all cases below the experimentally 
obtained buckling load. In case of cylinder AW-Cyl-5-1 the shell was damage prior to testing, 
but tested nevertheless. Therefore, it is not critical that the design load exceeds the 
experimental result for this shell. For shell AW-Cyl-2-1 the initially obtained design load of 
350kN exceeds the experimental value. However, this shell showed a significant material 
nonlinearity in the prebuckling range. Of course, if material nonlinearities occur before 
buckling, this has to be considered also within the SBA. Using a simple elastic-plastic 
material model for the unidirectional ply under shear, the SBA provides a design load of 
305kN, which is lower than the experimentally obtained buckling load. 

Since no measurement data are available for the set of shells tested by NASA, no probabilistic 
analysis has been performed. Therefore, a determination of the reliability of the design loads 
given by the SBA is not possible, but it is concluded that the SBA provides satisfying results, 
since it provides design load below the experimental results and it is less conservative than 
NASA SP-8007. It is the author’s opinion that the single buckle approach is a promising 
alternative to probabilistic design concept in cases where no imperfection data are available, if 
its application limits can be determined. 
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7 Probabilistic Design of Stiffened Composite Panels  

In this chapter the probabilistic design procedures proposed in section 4.6.1 and 4.6.2 are 
applied to a set of stiffened composite panels. In difference to the probabilistic analysis of 
cylindrical shells, not only one, but three objective values are considered, namely the local 
buckling load, the global buckling load and the onset of material degradation.  

7.1 Properties of the Panels Considered  
All panels considered have been manufactured and tested at the German Aerospace Centre in 
Braunschweig (see Ref. [70], [113] and [61]). Eight panels have been tested in the framework 
of the POSICOSS project (see e.g. [59]) and one panel tested within the framework of the 
COCOMAT project (see e.g. [60]) is considered. The nominal dimensions of the panels are 
summarized in Table 7-1. The POSICOSS panels only differ in radius, number of stringers 
(and hence stringer distances), and laminate setup of the skin. The COCOMAT panel has the 
same stringers as the POSICOSS panels and the same skin laminate setup as P12-14, but 
differs in the arc length and number of stringers, and has stringers at the longitudinal edges. 

 

 POSICOSS, from [70] COCOMAT, 

 P09-P11 P12-P14 P15-P16 from [62] 

Panel length Ltot  780mm  780mm 

Free length L  660mm  660mm 

Internal arc length La  419mm  560mm 

Internal radius R 1000mm 1000mm 400mm 1000mm 

Number of stringers ns 3 4 3 5 

Stringer height h  14mm  14mm 

Stringer width f 34mm (nominal: 37.9mm) 32mm 

Distance stringer  
to stringer 

La/ns = 
139.7mm 

La/ns = 
104.8mm 

La/ns = 
139.7mm 

La/(ns - 1) - f 
= 132mm 

Distance stringer to 
longitudinal edge  0.5 La/ns  f/2 = 16mm 

Laminate set-up of     

  -  skin [±45,0]s [90, ±45,0]s [±45,0]s [90, ±45,0]s 

  -  stringer blade  [±453,06]s  [±453,06]s 

  -  stringer foot [±453,06] with drop off, see Figure 7-1 [±453,06] 

Ply thickness tply  0.125mm  0.125mm 

Table 7-1: Characteristics of the panels considered 

In order to reduce peel stresses, the stringer feet of the POSICOSS panels have been 
manufactured with a ply drop off as depicted in Figure 7-3. In the framework of the 
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COCOMAT project one objective was to predict separation of stringers from skin and hence, 
the panel was design without ply drop off in order to stimulate skin-stringer debonding. 

 
Figure 7-1: Sketch of ply drop off at stringer foot 

7.2 Numerical Model 
The POSICOSS panels are modeled with an approximate element length of 8mmm where for 
the stringer foot a element width of 5mm was chosen. This discretization leads to 9602 nodes 
for the panels P09-11 and P15-16 and to 10902 for the panel P12-14. For the COCOMAT 
panel an element length of approximately 5mm was chosen for the whole model, which 
consisted of 26064 nodes. 

Four node shell elements with linear shape functions and reduced integrations (S4R elements 
in ABAQUS) have been chosen to model skin, stringer blade and stringer foot. The stringer 
foot has not been model in one element with the connected part of the skin. Moreover, the 
connection of skin and stringer has been model with cohesive elements as depicted in Figure 
7-2. The thickness of the cohesive zone is chosen equal to the thickness of the glue layer. 

 
Figure 7-2: Modeling of skin-stringer connection with cohesive elements 

In experiments, the clamping of the loaded edges has been realized by potting the ends in 
epoxy resin. In order to capture the axial load redistribution in this area, the potted region is 
model (red nodes in Figure 7-3), where only the axial translation is unrestricted for the nodes 
in this region. 

The longitudinal, unloaded edges are free for the COCOMAT panel. The POSICOSS panels 
were clamped in the experiments, where the longitudinal and radial translation was 
unrestricted. Zimmermann et al. [70] showed that the rotation about the edge was not rigid 
enough to assume the rotation about the cylinder axis to be zero. Hence, the longitudinal 
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edges are modeled with torsional springs as shown in Figure 7-4. The boundary conditions 
used in the numeric simulations are summarized in Table 7-2.  

 
Figure 7-3: Numerical model of the POSICOSS panels P12-14, red spots: potted region 

 

Boundaries POSICOSS COCOMAT 

Loaded edges clamped clamped 

Longitudinal edges ur = 0, uφ = free, uz = free, 
ψr = free, ψφ = 0, ψz = elastic free 

Table 7-2: Boundary conditions of the panels considered (in cylinder coordinates)  

 

 
Figure 7-4: Sketch of torsional springs for modelling elastic clamping at longitudinal edges of the 

POSICOSS panels 

For the panels considered, material damage occurs in the postbuckling range. Hence, material 
degradation has no influence on the local and global buckling loads. Therefore, linear elastic 
material behavior was assumed in the simulation. For detecting the onset of material 
degradation, the Hashin [73] criteria as given in section 3.3 is used for skin and stringers. The 
quadratic nominal stress damage criterion (3.19) are used to detect the onset of skin-stringer 
separation. In order to detect local buckling, the method described in section 3.2.1 is used. To 
capture the postbuckling behavior of the stiffened panels, geometrically nonlinear, 
displacement controlled simulations are performed using artificial damping, as described in 
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section 3.2.2. Global buckling is detected using the stiffness reduction criterion discussed in 
section 3.2.6. For the panel considered, the lower bound of axial stiffness that defines global 
buckling is chosen to be 33% of the initial stiffness, since this value provides comparable 
results for panel configurations with and without a limit point at global buckling. 

7.3 Perfect Shells Analysis 
The analysis of the perfect structure shows that all types of material damage, which are 
captured by the numerical model, occur in the postbuckling range (see Figure 7-5). The first 
onset of degradation occurs at the skin-stringer connection, which sets in at 1.88mm end 
shortening and 76.6kN. The global buckling load is 84.1kN and occurs at 1.57mm end 
shortening. From the linear eigenvalue analysis, the first buckling load is determined to 
47.7kN. 

 
Figure 7-5: Load-displacement curve of perfect panel P12-P14 

The first material failure detected is skin-stringer separation, given by the quadratic nominal 
stress criterion in the cohesive elements. The first intra lamina failure given by Hashin’s 
criterion is matrix cracking due to tension. In order to determine the influence of the chosen 
failure criterion for intra lamina failure, also the Puck criterion and the invariant based 
quadratic criterion (IQC) are applied (see also section 3.3). The latter two criteria determine 
inter fiber failure in exactly the same load increment as the first occurrence of matrix cracking 
according to Hashin’s criterion (see Table 7-3). Also the location of material failure in the 
panel matches for all three criterions considered (green arrow in Figure 7-6). It is therefore 
concluded that the Hashin criterion is sufficiently accurate for the investigations presented in 
the following. In Figure 7-6 the postbuckling pattern of P12-P14 is shown exemplarily, as 
well as the elements with matrix tension failure in the outermost ply, a few increments 
after the first intra lamina failure is detected. Since the onset of material degradation occurs 
after global buckling for the panels considered, no material degradation models are applied. If 
global buckling occurred after material failure, the material degradation would influence the 
global buckling behavior and therefore needed to be considered in such cases. 

 

Criterion Quadratic nominal stress Hashin Puck IQC 

Panel end shortening 1.88mm 2.48mm 2.48mm 2.48mm 

Failure mode Cohesive zone Matrix tension Mode A - 

Table 7-3: First occurrence of material failure using different failure criterions 
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also the stiffness after local buckling and global buckling are overestimated. Including the 
measured radius and the measured geometric imperfections in the numeric model yields a 
better approximation of the global buckling load, while the stiffness reductions are still 
underestimated. The reason and the resolution of this issue are discussed in section 7.4.5. 

7.4 Imperfection Measurements 
For stiffened composites panels no data sets with large sample size are available for one and 
the same design. Therefore, the eight panels measured at DLR are considered as one data set 
for the probabilistic analysis. This implicates the assumption that e.g. the geometric 
imperfections are independent from the design, which is not the case. However, since the 
variety of the imperfection patterns increases, it is assumed that mixing measurements of 
different design will leads to a larger scatter of the load carrying capability and can therefore 
be regarded as a conservative approach. 

For the scatter of wall thickness and fiber orientation, tolerance intervals are used to estimate 
the scatter of these parameters. The size and scatter of a boundary imperfection is determined 
indirectly. 

7.4.1 Geometric Imperfections of the Skin 

The geometric imperfections of the skin are given in [70]. The measurements are 
approximated by double Fourier series, as it is usually done within probabilistic analyses of 
cylindrical shells. However, using a Fourier series to describe imperfection patterns implicates 
the assumption that the pattern is periodic and axial as well as in circumferential direction. 
This leads to inaccuracies of the Fourier approximation at the boundaries of the imperfection 
pattern, if the full approach is used (see Appendix A). Therefore, a better approximation, 
especially at the boundaries, is obtained when using the half wave cosine approach in both 
directions.  

 ( )
0 0

, 4 cos cos
yx nn

kl
k l a

k x l yw x y t A
L L
π π

= =

= ∑∑  (7.1) 

 
Figure 7-8: Fourier approximation of the imperfection pattern of panel P09 
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As an example, the Fourier series approximation of the imperfection pattern of the panel P09 
is plotted in Figure 7-8. The influence of the three stringers is clearly visible and can also be 
detected within the Fourier spectrum in Figure 7-9. 

 
Figure 7-9: Fourier spectrum of the geometric imperfection pattern of panel P09, using the half wave 

cosine approach 

 

                
Figure 7-10: Sketch of dominant imperfection modes of panel P09 

Three imperfection modes dominate the imperfection pattern of P09. The largest amplitude is 
detected for a mode with two axial half waves and no circumferential waves (see Figure 7-10, 
top). The two other modes, which are predominant, have four and six circumferential half 
waves combined with no axial waves (see Figure 7-10, bottom). These modes represent large 
imperfections in between the stringers, which shows that the assumption of the independence 
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of geometric imperfection patterns from the design is not valid within the considered set of 
panels. However, using the imperfection patterns of P09-P12 and P15-P16 for a probabilistic 
analysis of P12-14 causes a broader diversity of geometric imperfections, including large 
deviations at the locations of the stringers of P12-14. Therefore, mixing the measurement data 
is regarded as a conservative approach. 

7.4.2 Radius 

The deviations from the nominal radii of the POSICOSS panels are given in [70]. It appears 
that each radius differs significantly from its nominal value (see Table 7-4). In order to regard 
all measured radii as one data set, the relative deviation of the measured radii Rmea from the 
nominal radius Rnom is regarded as random parameter. 

 mea nom

nom

R Rr
R
−=  (7.2) 

The relative deviations of the radii r are given in the last row of Table 7-4. 

 

Panel P09 P10 P11 P12 P13 P14 P15 P16 
Nominal radius Rnom in mm 1000 1000 1000 1000 1000 1000 400 400 
Measured radius Rmea in mm 1095 1688 1412 1069 1047 947 384 418 
Normalized radius r 0.095 0.688 0.412 0.069 0.047 -0.053 -0.041 0.044 

Table 7-4: Measured radii of the tested panels in mm, from [70] 

The normalized radius r has a mean value of 0.158 and a standard deviation of 0.258. For a 
nominal radius of Rnom = 1000mm this equals a mean value of μR = 1157.6mm and a standard 
deviation of σR = 258.2mm. For a nominal radius of Rnom = 400mm the stochastic moments 
are μR = 463.1mm and σR = 103.3mm. 

7.4.3 Wall Thickness 

For the wall thickness, no measurement data are given. Hence, the nominal wall thickness is 
assumed to equal the mean value. In aircraft industry a tolerance interval of ±5% is common 
practice. Since most types of distribution describe a concentration around the mean value, 
assuming a uniform distribution within the tolerance interval is regarded as a conservative 
assumption. The standard deviation σ of a uniform distribution in the interval [a,b] is given by 

 
12

b aσ −=  (7.3) 

Assuming the interval boundaries to be ±5% of the mean value μ leads to a coefficient of 
variation of 2.89%. 

 1.05 0.95 0.0289 2.89%
12

t t t
t t

t

μ μ σσ μ
μ

−= = ⇒ =  (7.4) 

7.4.4 Material Properties 

The panels have been made of the prepreg material IM7/8552. The elastic material properties 
have been determined by DLR and are given in [70]. Camanho et al. [78] tested the same 
material and came up with slightly different properties. Since no standard deviation is given in 
[70], the coefficients of variation given by Camanho et al. are assumed to be the same for the 
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given material properties. The elastic material properties and their standard deviation used in 
the following are summarized in Table 7-5. Wilckens et al. [117] also determined the mean 
values and coefficients of variation of the material properties. However, these investigations 
have not been published at the time when the following analyses have been performed.  

 

Parameter Material properties from [70] 
(assumed mean value) 

Coefficient of 
variation from 

[78] 

Standard  
deviation 

E11  146535MPa 1.39% 2037MPa 

E22  9720MPa 1.03% 100MPa 

G12  6054MPa 2.53% 153MPa 

ν12 0.34 6.18% 0.021 

Table 7-5: Elastic material properties of the panels considered according to [70] and [78] 

The material strength parameters are not given in [70] for the panels considered. Hence, the 
properties given in [78] and summarized in Table 7-6 are used subsequently. 

 

Parameter Mean value Coefficient of variation Standard deviation 

Xt 2326.2MPa 5.8% 134.1MPa 

Xc 1200.1MPa 12.1% 145.7MPa 

Yt 62.3MPa 8.5% 5.3MPa 

Yc 199.8MPa 10.2% 20.5MPa 

S⊥&  92.3MPa 0.7% 0.6MPa 

Table 7-6: Material strength according to [78] 

For the adhesive film that bonded skin and stringers the values given in [61] and Table 7-7 are 
used. Due to the lack of data, the material properties of the adhesive are assumed to be 
deterministic. 

 

E = 3000MPa 
ν = 0.30 
Maximum shear stress: 38MPa 
Maximum normal (tension) stress: 8MPa 

Table 7-7: Material properties of the adhesive taken from [61]  

7.4.5 Boundary Conditions 

For the experiments, the loaded edges of the panels have been potted in epoxy resign in order 
to realize clamped boundaries. Also the longitudinal edges have been potted, where the axial 
translation was left free. As shown in Figure 7-11 for panel P12, large discrepancies occur 
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between simulations and experiments in the postbuckling region. Zimmermann et al. [70] 
explained this by the imperfect boundary conditions at the longitudinal edges. The potting at 
the longitudinal edges was not rigid enough in order to keep rotations around the edges 
negligibly small. In their simulation, Zimmermann et al. [70] applied springs at the 
longitudinal edges and showed that the experimental behavior in the postbuckling region can 
be approximated this way 

 
Figure 7-11: Load-displacement curve of panel P12 with different longitudinal edge stiffness 

The spring stiffness that leads to the best fitting of the postbuckling behavior has been 
determined for each panel. Hence, the distribution of the spring constant k is obtained, that 
delivers a mean value of μk = 587N and a standard deviation of σk = 595N. Since k scatters 
between zero (simply supported edge) and infinity (clamped edge), Weibull distribution is 
assumed for the Monte Carlo simulation. 

7.4.6 Fiber Orientation 

No measurement data are available for the fiber orientations of the panels considered and 
hence, the nominal values are assumed to equal the mean value. For the fiber orientation, a 
tolerance interval of ±6° is common practice in aircraft industry. According to equation (7.3), 
assuming uniform distribution within an interval of ±6° leads to a standard deviation of 

 ( ) ( )6 6
3.464

12
ϕ ϕ

ϕ

μ μ
σ

+ ° − − °
= = °  (7.5) 

The number of plies of 6 or 8 plies in the skin and 24 plies in each stringer leads to a 
relatively large number of random parameters. For example the panels P12-P14 have 
8 + 4 · 24 = 104 plies with independently scattering fiber orientations. In order to be able to 
use the reduction technique introduced in section 4.1.3, 8 virtual panel samples are generated 
using the assumption that each fiber angle is uniformly distributed in an interval ±6° of the 
nominal value. 

7.4.7 Geometric Imperfections of the Stringers 

Geometric imperfections of the stringer v  are deviations from the ideal structure in 
circumferential direction. Deviations in radial direction are captured by the description of the 
imperfections of the skin w .  

Depending on the stringer profile, the description of imperfections can be relatively difficult. 
A simple and general description of the stringer imperfections is to consider only the 
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deviation of the cross section centroid. This allows representing the imperfections as a one-
dimensional function ( )v x . For blade stringers, the imperfections can also easily be described 
by a two-dimensional function ( ),v x z , which can be approximated by double Fourier series 
as described in section 4.1.1 (see Figure 7-12). The double half wave cosine approach is then 
given by 

 ( )
0 0

, 4 cos cos
x zn n

kl
k l

k x l zv x z t A
L H
π π

= =

= ∑∑  (7.6) 

 

 
Figure 7-12: Sketch of geometrically imperfect stringer 

However, no imperfection measurements are available for stringers. Therefore, a sensitivity 
study is performed in order to estimate the influence of stringer imperfections on the buckling 
behavior on the panels considered. All Fourier coefficients are set to zero except A01, which is 
varied for one stringer. Hence, the pattern of the stringer imperfection is a half wave cosine in 
axial direction, with the amplitude 4 t A01. Load-displacement curves for different values of 
A01 are shown in Figure 7-13. The largest value considered for A01 equals 2.5, at which the 
imperfection amplitude equals 4 · 2.5 = 8 times the stringer thickness. Even when applying 
this very large imperfection amplitude, the structural behavior of the panel hardly differs from 
the one with perfectly strait stringers. This finding however does not allow concluding that 
stringer imperfections have no influence on the buckling behavior in general. Moreover, 
different imperfection patterns had to be scrutinized and in order to investigate the actual 
influence on the buckling behavior, the scatter of imperfection amplitudes needed to be 
known. 

 
Figure 7-13: Load-displacement curves of panel P12 with imperfect stringer 

Since no imperfection measurements are available and the influence on the buckling behavior 
seems to be small in the considered case, the geometric imperfections of the stringers will not 
be treated as randomly distributed in the following probabilistic analysis. 
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7.5 Probabilistic Analysis of Panel P12-14 
With the assumed and measured scatter of input parameters, probabilistic analyses of the 
panel P12-14 are performed considering the local buckling load, the global buckling load and 
the onset of degradation as objective functions. 

Using the transformation given in section 4.1.3, the Fourier coefficients describing the 
geometric imperfections are transformed to seven independent random parameters. The same 
holds for the fiber orientations. Furthermore, radius, wall thickness, spring stiffness and 
material properties are regarded as random input parameters for the probabilistic analysis of 
the panel. Altogether, 7 + 7 + 1 + 1 + 1 + 9 = 26 uncorrelated random parameters are 
considered in the probabilistic analysis and hence, 2 · 26 + 1 = 53 buckling analyses have to 
be executed for the semi-analytic, probabilistic methods. For a Monte Carlo simulation, 1000 
virtual samples have been generated and tested numerically. 

In Table 7-8 the estimated stochastic moments given by first-order second-moment (FOSM) 
method, incomplete second order approach (ISOA) and Monte Carlo simulation are 
summarized. The moments with the subscript LB refer to the local buckling load, the 
subscript GB refers to the global buckling load and the subscript OD refers to the onset of 
material degradation. The correlation of local and global buckling load is denoted as ρLG, ρLD 
is the correlation of local buckling load and onset of degradation and ρGD is the correlation of 
global buckling load and onset of degradation. 

 

 Mean values in kN Standard deviations in kN Correlations 

 μLB μGB μOD σLB σGB σOD ρLG ρLD ρGD 

FOSM 37.9 62.9 70.5 3.70 6.30 5.16 0.61 0.75 0.74 

ISOA 37.8 66.6 67.1 3.41 5.83 3.80 0.41 0.66 0.65 

Monte Carlo 37.8 66.7 69.6 2.83 5.62 2.90 0.48 0.55 0.77 

Table 7-8: Mean values, standart deviations and correlations of buckling loads and onset of 
degradation of panel P12-14 

The mean values of local buckling load, global buckling load and onset of degradation, given 
by the different probabilistic approaches compare very well, where for the standard deviation 
larger discrepancies occur. Still, for all approaches the global buckling load scatters most and 
the onset of degradation has a slightly higher standard deviation than the local buckling load, 
though μOD is almost twice as high as μLB. Also concerning the correlations, the three 
approaches deliver differing results. However, all approaches show that the weakest 
correlation is between the local and the global buckling load. 

Considering the standard deviations and correlations, the ISOA approach compares better 
with the Monte Carlo simulation than the FOSM method. The biggest discrepancies occur for 
the onset of degradation, which also become visible from the distribution functions (see 
Figure 7-14). The Taylor series approximation implicates the assumption of a smooth 
objective function, which is not necessarily valid for the buckling loads and unlikely for the 
onset of degradation, because the failure mode may change due to the scatter of input 
parameters. This may lead to inaccuracies of the Taylor approximation based approaches and 
the difference to the Monte Carlo simulation results. 
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Figure 7-14: Cumulative distribution functions of the buckling loads and onset of degradation for 

panel P12-14, assuming normal distribution for the ISOA results 

By performing the probabilistic analyses under consideration of only a certain set of 
parameters, the influence of this set on the scatter of the objective values and their 
correlations is determined. In Table 7-9, the standard deviation and correlation given by the 
FOSM method, taking into account only a subset of random input parameters, are given.  

 

  Standard deviations Correlations 

 Parameter σ of input σLB σGB σOD ρLG ρLD ρGD 

FO
SM

 

Geometry  1.40kN 5.12kN 1.94kN 0.54 0.74 0.69 

Radius 258mm 2.26kN 3.25kN 4.47kN 1.0 1.0 1.0 

Wall thickness 2.9% 2.25kN 1.44kN 1.35kN 0.83 0.52 0.91 

Material properties ~2% 1.17kN 0.76kN 0.95kN 0.38 0.49 0.97 

Spring stiffness 595N 0.0kN 0.0kN 0.0kN - - - 

Fiber orientation 3.5° 0.45kN 0.57kN 0.26kN 0.00 -0.20 0.64 

All  3.70kN 6.30kN 5.16kN 0.61 0.75 0.74 

Table 7-9: Standart deviations and correlations of buckling loads and onset of degradation of the 
panels 

The sensitivity study shows that the global buckling load is most sensitive to geometric 
imperfections. The second most influence has the radius, which also has the most significant 
influence on local buckling load and onset of degradation. The reason for the large influence 
of the radius is its relatively high standard deviation. For very large radii the panel behaves 
more like plates, leading to a decrease of the global buckling load and an increase of the 
postbuckling stiffness, whereas for small radii the panel shows a more cylinder like behavior. 
Furthermore, the correlations of the three objective values with respect to the radius equal 
one, meaning that there is a linear relation between local and global buckling load and the 
onset of degradation. The scattering of material properties and fiber orientations have a small 
influence on all objective values. The study on the influence of the boundary conditions of the 
longitudinal edges in section 7.4.5 showed that the spring stiffness of the elastic clamping has 
no influence on the local and global buckling load. Hence, it is not surprising that also the 
probabilistic sensitivity study delivers this result, though the scatter of the spring constant 
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appears to be very large. Surprisingly, the spring stiffness also has not influence on the onset 
of degradation, despite its strong influence on the postbuckling stiffness. 

For determining the probability of failure as proposed in section 4.6.2, the stochastic moments 
of the displacements at global buckling uGB and onset of degradation uOD are determined (see 
Table 7-10). While the moments of uGB estimated by the ISOA compare well with the results 
given by Monte Carlo simulation, the FOSM method provides estimations closer to Monte 
Carlo results for uOD. Also the correlation of approximately zero is better approximated by the 
FOSM approach than by ISOA. Obviously, the function of the onset of degradation is 
approximated better by a liner approach than by a second order approximation. This does not 
allow concluding that the function of the onset of degradation is linear, since this case is also 
captured by the second order approach. Moreover, higher order nonlinearities can lead to the 
effect that a linear approximation is better than a quadratic, which is obviously the case, here. 

 

 Mean value Standard deviation Correlation 

 μuG μuD σuG σuD ρuGD 

FOSM 1.20mm 1.97mm 0.110mm 0.109mm 0.03 

ISOA 1.41mm 1.43mm 0.133mm 0.159mm -0.36 

Monte Carlo 1.41mm 1.80mm 0.167mm 0.105mm 0.05 

Table 7-10: Statistical measures of the critical displacements 

With the results of the Monte Carlo simulation, the integral (4.62) is solved numerically by 
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where nvs is the number of virtual samples generated within the Monte Carlo simulation, ud is 
the displacement at design load, and ( )i

GBu  and ( )i
ODu  are the displacements at global buckling 

and onset of degradation of the i-th virtual sample. Note that the approximation (7.7) becomes 
inaccurate for small probabilities of failure, because then only few samples deliver critical 
displacements below the design displacement ud. For a more accurate and efficient prediction 
of PoF with Monte Carlo simulations, advanced techniques like importance sampling could be 
used [90], as discussed in section 1.2.9. 

For determining the PoF from (4.62) using the semi-analytic analyses results, normal 
distribution is assumed. In Table 7-11 the PoF is given for different safety factors determined 
by the different probabilistic approaches. Ghilai et al. [64] proposed to reduce the global 
buckling load by 80% to 90% for deriving the design load. This corresponds to a safety factor 
of 1.11 to 1.25. The commonly used safety factor in aerospace industry is 1.5. Furthermore, 
the safety factors are determined that, according the ISOA approach, lead to probabilities of 
failure of 1% and 0.1%, respectively. The relation of design load and associated displacement 
is derived from the perfect shell analysis, since this analysis is the basis for design in practice. 

The probabilities of failure given by the ISOA compare much better with the Monte Carlo 
simulation than the results of the FOSM method. This is not surprising, since the stochastic 
moments given by ISOA and Monte Carlo compare well for global buckling (see Table 7-10) 
and for the panel considered, failure is driven more by global buckling than by material 
failure. For small probabilities of failure, the deviation of Monte Carlo and ISOA is relatively 
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large, since the standard Monte Carlo approach given by (7.7) becomes inaccurate for small 
PoFs. 

 

Safety factor γ 1.11 1.25 1.5  1.43 1.57 

Design load λd 75.7kN 67.3kN 56.1kN 58.9kN 53.4kN 

Displacement at 
design load ud 

1.37mm 1.21mm 0.98mm 1.04mm 0.93mm 

PoF – FOSM 95.0% 55.1% 2.2% 6.4% 0.66% 

PoF – ISOA 67.5% 14.7% 0.3% 1.0% 0.1% 

PoF – Monte Carlo 60.1% 15.6% 0.0% 0.1% 0.0% 

Table 7-11: Probability of failure of panel P12-14 for different safety factors 

Additionally to the presented analyses, probabilistic analyses of the panel P12-14 have been 
performed considering only the global buckling load as objective function, similar to the 
analysis of the cylindrical shells presented in chapter 6. The resulting PoFs are approximately 
the same as considering both, global buckling and onset of degradation. This is always the 
case, if the onset of degradation occurs in the deep postbuckling range and/or there is a strong 
correlation between global buckling and OoD. If the OoD occurs before global buckling 
and/or the correlation of global buckling and OoD is weak, it is essential to consider the OoD 
in the probabilistic analysis. This phenomenon is depicted in Figure 7-15. Consider two panel 
designs that lead to the same load-displacement curves and global buckling loads, but for 
which the onsets of material degradation occur differently. For one panel, the OoD occurs 
way beyond global buckling (see Figure 7-15, right). The joint probability density function of 
GB and OoD of this panel is plotted as green contour lines in central diagram in Figure 7-15. 
The ellipsoidal shape of the PDF indicates a strong correlation of GB and OoD. For this 
panel, the probability that the OoD occurs before GB is very small. Hence, deriving the 
ultimate load only from the distribution of GB will be sufficient. This is implicitly proposed 
by the COCOMAT design guideline, since it proposes to multiply the global buckling load 
with some safety factor to account for uncertainties, and then check whether the OoD occurs 
beyond the so derived design load. However, the following case is not captured by this design 
approach. Consider the second panel, for which the OoD occurs before GB (see Figure 7-15, 
top). The correlation of OoD and GB is very small and hence, the joint PDF, given by red 
contour lines in central diagram in Figure 7-15, is almost circular. Defining the ultimate load 
based on the GB leads to the same design load as for the first panel considered. However, the 
probability that the OoD is below that design load, indicated by the blue region in Figure 
7-15, is relatively high. Therefore, it would make more sense to define the ultimate load based 
on the OoD, as depicted by the red dashed line and the red dot in Figure 7-15. However, 
deriving a lower bound from the PoF determined based on the joint PDF always leads to a 
safe design. 

It must be stated that if material degradation initiates before GB, this can, of course, influence 
the global buckling load significantly, depending on the type of material failure. For an even 
more refined analysis of the reliability of stiffened panels, a deterministic model that captures 
progressive damage evolution should be used. Furthermore, it could be considered to differ 
between acceptable material damage (e.g. matrix cracking) and unacceptable material failure 
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(e.g. fiber cracking and skin-stringer debonding), and to define different allowable 
probabilities for these failures to occur. 

 
Figure 7-15: Relevance of the failure region given by material degradation depending on the panel 

design 

7.6 Probabilistic Analyses of Different Designs 
The semi-analytic analysis as performed for panel P12-14 is applied to the P09-11 panel 
design and to the COCOMAT panel. The load-displacement curves of the perfect and 
imperfect structures are summarized in Appendix H for all panels considered. The stochastic 
moments of local buckling load, global buckling load and onset of degradation given by the 
incomplete second order approach are summarized in Table 7-12. 

 

 Perfect shell results in kN Mean values in kN Correlations 

Panel LB GB OoD μLB μGB μOD ρLG ρLD ρGD 

P09-11 15.7 48.9 58.8 13.3 41.2 49.8 0.72 0.70 0.84 

P12-14 47.7 84.1 76.6 37.8 66.6 67.1 0.41 0.66 0.65 

COCOMAT 42.5 82.7 96.2 37.5 76.7 89.1 0.08 -0.05 0.25 

Table 7-12: Mean values, standard deviations and correlations of buckling loads and onset of 
degradation given by incomplete second order approach for all panels considered 

The perfect panel analysis results are unsurprisingly smaller for P09-11 than for P12-14 and 
the COCOMAT panel. Local and global buckling load have the same order of magnitude for 
P12-14 and the COCOMAT panel. While panel P12-14 has closer spaced stringers, the 
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COCOMAT panel has more stringers in total, which seems to compensate the stringer 
distance. Panel P12-14 is the only panel for which the global buckling load is higher than the 
load at the onset of degradation. The reason is that for the COCOMAT panel and P09-11, no 
drop occurs in the load-displacement curve of the perfect shell analysis. For panel P12-14 the 
drop decreases or even vanishes as imperfections are introduced. 

The coefficients of correlation are the highest for P09-11, which means that if one of the load 
levels considered increases due to the scatter of input parameters, most probably also the other 
load levels will increase. The smallest coefficients of correlation are obtained for the 
COCOMAT panel. This indicates that the probability that one load level increases while 
another one decreases is highest for this panel type. This can even lead to a change of the 
order in which the three different phenomena occur. However, the differences of the local and 
global buckling load and the onset of degradation are the biggest for the COCOMAT panel.  

For all panels the mean values of all load levels are smaller than the perfect shell analysis 
results. It is noticed that the relative deviation of the mean values is smallest for the 
COCOMAT panel, which indicates lower imperfection sensitivity. A better measure for the 
imperfection sensitivity is the standard deviation and the coefficient of variation, respectively. 
Hence, in order to compare the stochastic scatter of LB, GL and OoD with respect to the mean 
value, the coefficient of variation (CoV), which is given by 

 CoV σ
μ

=  (7.8) 

is regarded. From the CoV given in Table 7-13 it is seen that the relative variability of the 
local buckling load is higher for P09-11 compared to P12-14. It is interesting to note that the 
variability of the GB is the smallest for the COCOMAT panel. Due to the free longitudinal 
edges, the influence of the skin on the GB is smaller and hence, the scatter of geometric 
imperfections has a minor influence. The CoV of the OoD however is the largest for the 
COCOMAT panel. 

 

 Standard deviations in kN Coefficient of variation 

Panel σLB σGB σOD CoVLB CoVGB CoVOD 

P09-11 1.68 2.90 2.07 12.6% 7.0% 4.2% 

P12-14 3.41 5.83 3.80 9.0% 8.8% 5.7% 

COCOMAT 4.47 3.92 6.36 11.9% 5.1% 7.1% 

Table 7-13: Coefficient of variation of buckling loads and onset of degradation given by incomplete 
second order approach for all panels considered 

Using the incomplete second order approach, probabilistic analyses of the displacements at 
GB and OoD are preformed for all panels considered. With the results, the probability of 
failure is determined as described in section 4.6.2 for design loads given by different safety 
factors. 

Regarding the design loads given by the safety factor considered in Table 7-14 indicated that 
only a safety factor of 1.5 provides a satisfying probability of failure. For the POSICOSS 
panels (P09-14), one out of three panels globally buckled at the design load obtained when 
using a safety factor of 1.25, which underlines that a higher safety factor is necessary, here. 
For the COCOMAT panel a safety factor between 1.25 and 1.5 might be sufficient, since the 
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associated PoF is between 1.8% and 0.03%. Hence, if a certain reliability or probability of 
failure is desired, the COCOMAT panel allows less conservative design. In order to 
demonstrate this, the design loads obtained for a PoF of 1% and 0.1% as well as the 
corresponding safety factors are determined. 

 

Safety factor  1.11 1.25 1.5  GB of 
perfect shell  

Min. GB in 
experiment 

P09-11 
λd 

PoF 

44.0kN 

36.4 % 

39.1kN 

8.1 % 

32.6kN 

0.2% 
49.8kN 40kN (P09) 

P12-14 
λd 

PoF 

75.7kN 

67.5% 

67.3kN 

14.7% 

56.1kN 

0.3% 
84.1kN 67kN (P13) 

COCOMAT 
λd 

PoF 

74.4kN 

13.7% 

66.2kN 

1.8% 

55.1kN 

0.03 82.7kN 74kN 

Table 7-14: Probability of failure given by incomplete second order approach of all panels considered 
for different safety factors 

 

  PoF = 
1.0% 

PoF = 
0.1% 

GB of 
perfect shell 

Min. GB in 
experiment 

P09-11 
λd 

γ 

34.8kN 

1.40 

31.8kN 

1.54 
49.8kN 40kN (P09) 

P12-14 
λd 

γ 

58.9kN 

1.41 

53.4kN 

1.55 
84.1kN 67kN (P13) 

COCOMAT 
λd 

γ 

64.2kN 

1.29 

57.9kN 

1.43 
82.7kN 74kN 

Table 7-15: Probabilistically motivated design laods of all panels considered for different given 
probabilities of failure  

The results in Table 7-15 show that depending on the sensitivity, different safety factors are 
necessary for different design in order to obtain the same, desired level of reliability (or 
probability of failure, respectively). The knockdown factor based design yields almost the 
same design loads for P12-14 and the COCOMAT panel (see Table 7-14). Using the 
probabilistic design approach, the design load of the COCOMAT panel is significantly higher. 
This also fits to the experimental observations, since the experimentally determined global 
buckling load of the COCOMAT panel exceeds the global buckling load of P12-14, which 
ranges from 65kN (P13) to 72kN (P14) in the experiments. The onset of material failure has 
not be detected in the experimental tests. 
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7.7 Comparison of Design Approaches and Conclusions 
In industrial practice, two load levels are considered for design, the limit load (LL) and the 
ultimate load (UL). Limit load is a load level that the aircraft must be able to sustain under 
normal flight conditions, where the structure must be able to carry UL only once for three 
seconds. From the load exposure point of view, LL is a load level that occurs once in a 
lifetime of an aircraft. This statement is already of probabilistic nature, since the LL value of 
course does not occur exactly once in a lifetime of an aircraft. Moreover, it is a load level that 
is exceeded with a certain (small) probability. The ultimate load is obtained by multiplying 
the limit load by some factor of for instance 1.5 in order to provide safety margin. In general, 
local skin buckling is allowed under flight conditions. While for metallic panels the skin may 
buckling in the deep postbuckling region, only a small exceedance of the local buckling load 
(e.g. 10%) is allowed for composite panels. The exact factors depend on the company policy. 
For the following comparison it is assumed that the limit load equals 110%-120% of the local 
buckling load (LB). 

Since LL is the load level that represents some reduced load carrying capability by including 
safety margins, it is the load level that corresponds to what is called design load in the context 
of the probabilistic approach presented in this thesis. For reasons of consistency, the 
expression limit load is replaced by design load in the following. 

Within the COCOMAT project it has been proposed to determine ultimate load to be the 
global buckling load (GB) and to derive the limit load by dividing by some safety factor (see 
section 1.2.7). In the previous section it has been shown that a safety factor of about 1.5 is 
appropriate to obtain a robust design load. Alternatively, the limit load or design load can be 
derived from probabilistic analysis by determining the load level that e.g. 99.9% of the panels 
sustain. 

 

Panel 
Industrial design COCOMAT Probabilistic Min. GB in 

experiment 1.1 LB 1.2 LB GB/1.5 PoF = 0.1% 

P09-11 17.3kN 18.8kN 32.6kN 31.8kN 40kN (P09) 

P12-14 52.5kN 57.2kN 56.1kN 53.4kN 67kN (P13) 

COCOMAT 46.8kN 51.0kN 55.1kN 57.9kN 74kN 

Table 7-16: Limit loads or design loads, respectively, given by industrial design rules, COCOMAT 
design guideline and probabilistic design approach 

In Table 7-16 the design loads or limit loads, respectively, given by the different approaches 
are summarized for the panels considered. The safety margins obtained by defining the design 
load based on the local buckling load extremely differ for the panels considered. Panel P09-11 
has the smallest local buckling load relative to the global buckling load. Therefore, exploiting 
the larger postbuckling range unsurprisingly yields a significantly higher design load. For the 
COCOMAT panels and P12-14, the design load given by industrial design has the same order 
of magnitude as the COCOMAT design approach and the probabilistically motivated design 
load. 

It cannot be stated that one design approach yields a lower design load than the other 
approaches in general. Moreover, the different approaches will lead to different optimal 
designs. Using industrial design rules, skin and stringer spacing is chosen such that high local 



7.7 Comparison of Design Approaches and Conclusions 108 
 

buckling load is obtained. The stringers then must be design such that the panel sustains 
ultimate load. The ratio of local and global buckling load will always be the same. Following 
COCOMAT design rules, local buckling is not considered and therefore, the whole panel is 
designed such that the interacting skin and stringers yields a high global buckling load. This 
provides additional design freedom and therefore weight saving potential. The probabilistic 
approach provides even more weight saving potential, since it allows reducing the safety 
margin. This will be demonstrated in an optimization example in section 9. 

However, the reason for the very restricted design of composites in industrial practice is the 
relatively unexplored skin postbuckling behavior of panels with impact damages that can 
cause delaminations and delamination growths under repeated buckling, for which reliably 
analysis techniques are still lacking. These concerns of course must be dispelled before the 
skin postbuckling range is fully exploited in industrial practice. 
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8 Design Optimization of Composite Cylindrical Shells under Uncertainty  

In this chapter it is discussed whether and how the design procedure influences the optimal 
design configuration. In practice, the objective of design optimization is often to reduce the 
weight of the structure, while the load carrying capability must exceed a certain load level. 
Zimmermann [25] stated that maximizing the buckling load of a cylindrical shell is equivalent 
to minimizing the weight, while keeping the buckling load constant. Therefore, the objective 
of the following design optimization is the maximization of the buckling load, where the ply 
angles of the composite layers are regarded as design variables. As Hühne [47] pointed out, 
not only the buckling load, but also the sensitivity to imperfections strongly depends on the 
lay-up, which needs to be taken into account in order to obtained the optimal design for a real 
shell.  

For reasons of simplicity, visualization and comparison, the layup of four layers is restricted 
to be [±α, ±β] (see Figure 8-1). In order to get the response surface of this optimization 
problem, the two design parameters are varied in steps of 11.25° in the interval [0°,90°] and 
for each combination the design load is determined. Besides the layup, all properties of the 
cylinders considered in the following equal the properties of the cylinders of set #2 in 
chapter 6. 

 
Figure 8-1: Maximization of buckling load by 

optimization of laminate setup [±α, ±β] 
 

Figure 8-2: Buckling load of the perfect shell for 
different laminate setups [±α, ±β] 

When using the classical knockdown factor philosophy, optimizing the design load is 
equivalent to maximizing the buckling load of the perfect shell, since the KDF only scales the 
response surface. Even when applying the KDF given by NASA SP-8007 for orthotropic 
shells (see (1.3) and (1.5) in section 1.2.4), the KDF is independent from the values of α and 
β, which is derived in Appendix H. The buckling loads of the perfect shell for different 
combinations [±α, ±β] are given in Figure 8-2. 

8.1 Maximization of the Probabilistic Design Load 
Within the probabilistic approach the design load depends on the chosen level of reliability 
and the assumed type of distribution. Both are represented by the factor b in equation (4.60). 
Hence, in a first step the mean values and the standard deviations of buckling load are 
determined for each different ply angle combination (see Figure 8-3 and Figure 8-4). Then, 
different response surfaces for different values of b are obtained according to equation (4.60), 
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and plotted in Figure 8-5 and Figure 8-6. Due to the computational cost of the optimization 
approach, mean values and standard deviations are determined using the first-order second-
moment approach in combination with (4.49) for the estimation of derivatives. 

Assuming normal distribution, b = 3 corresponds to a reliability of 99.87% whereas for 
b = 4.5, which is used within the six sigma concept [116], the level of reliability equals 
99.9997% (see Table 4-2). Hence, both values considered can be regarded as realistic for 
design purposes. In both cases, the optimal design is found for a laminate setup of 
[±78.75°, ±67.5°]. 

 
Figure 8-3: Mean value of buckling load for 

different laminate setups [±α, ±β] 

 
Figure 8-4: Standard deviation of buckling load 

for different laminate setups [±α, ±β] 

 
Figure 8-5: Design load λd provided by 

probabilistic analysis with b = 3 for different 
laminate setups [±α, ±β] 

 
Figure 8-6: Design load λd provided by 

probabilistic analysis with b = 4.5 for different 
laminate setups [±α, ±β] 

For axially stiffening layups (α and β close to zero), the probabilistically motivated design 
load is negative (and set to zero in Figure 8-5 and Figure 8-6). Obviously, the assumption of 
normal distribution is not valid in these cases, but it is also obvious that the optimal design 
configuration cannot be found in this region. Hence, scrutinizing this area is unnecessary. It 
turns out that for realistic values of b the pattern of the response surface does not change 
significantly and the ply angle combination that leads to the maximum design load does not 
change either. While it is a non-trivial, societal and political decision, which level of 
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reliability is acceptable and hence, which value to choose for b, the optimal design 
configuration given by the probabilistic approach is independent from b. 

8.2 Maximization of the Convex Pessimum Design Load  
The response surface of optimizing the lower bound given by convex anti-optimization differs 
significantly from the response surface of the perfect shell optimization (compare Figure 8-7 
and Figure 8-2). However, it compares surprisingly well with the mean value of buckling load 
(see Figure 8-3) and therefore, also with the response surface of the probabilistic design load 
(Figure 8-5 and Figure 8-6). The optimal design, which is found to be [±78.75°, ±56.25°], is 
close to the optimal laminate setup given by the probabilistic approach. 

 
Figure 8-7: Design load λmin given by convex  

anti-optimization for different laminate setups [±α, ±β] 

Though the philosophies of the probabilistic approach and convex anti-optimization are 
completely different, the good agreement appears not to be surprising. The FOSM 
approximation of the probabilistic design load can be written as 
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When comparing (8.1) with the first order approach of the convex anti-optimum (8.2), the 
similarities of both approaches become obvious. 
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For both approaches, the buckling load is evaluated and differentiated at some point in the 
center of the measurement vectors, namely the mean vector μ and the center of the MVEE xc. 
In both approaches, the derivatives are multiplied by some measure for the scatter of the input 
parameters, the standard deviation 

iZσ  times b for the probabilistic approach and the semi 
axes ai of the MVEE for the convex anti-optimization. 

8.3 Comparison of Optimal Design Approaches 
The design load N1 according to the SBA is shown is Figure 8-8 for different layups. The 
perturbation load P1, which is an indicator for the imperfection sensitivity of a design, is 
plotted over the ply angles in Figure 8-9.  
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Compared to the results of 8.1 and 8.2 the optimization of N1 load delivers a significantly 
different optimal design. As mentioned in section 6.9 the SBA does not cover the effect of 
imperfect boundary conditions, which appears to be significant for the shells considered. 
Consequently, a different optimal design is obtained. However, the response surfaces of SBA 
and convex anti-optimization still show similarities, as there are local maxima for 
[±22.5°, ±78.75°] and a local minimum around [±45°, ±22.5°]. Furthermore, high values of 
P1, correlate with a low standard deviation, obtained from the probabilistic approach 
(compare Figure 8-9 and Figure 8-4). 

 
Figure 8-8: Design load N1 given by single buckle 
approach for different laminate setups [±α, ±β] 

 
Figure 8-9: Perturbation load P1 associated to the 

design load N1 for different laminate setups 
[±α, ±β] 

The maximal design loads given by SBA and convex anti-optimization compare well with the 
maximal probabilistically motivated design load for b = 3 (see Table 8-1). Optimizing the 
perfect shell and applying a KDF yields a way more conservative design load. Furthermore, 
the perfect shell optimization provides an optimal design, which is, according to the 
probabilistic approach, very sensitive to imperfections. 

 

 Maximum design load Optimal design 

Perfect shell 43.9kN [±22.5°, ±33.75°] 

NASA SP-8007 (γ = 0.322) 14.1kN [±22.5°, ±33.75°] 

Single buckle approach 23.5kN [±22.5°, ±78.75°] 

Convex anti-optimization 23.3kN [±78.75°, ±56.25°] 

Probabilistic design with b = 3 * 23.0kN [±78.75°, ±67.5°] 

Probabilistic design with b = 4.5 ** 20.9kN [±78.75°, ±67.5°] 
* equivalent to a reliability of 99.87%, assuming normal distribution 
** equivalent to a reliability of 99.9997%, assuming normal distribution 

Table 8-1: Results of the optimization of cylindrical shells 

Summarized, it is concluded that especially for optimization purposes of cylindrical shells it is 
essential to consider imperfection sensitivity and the uncertainty of input parameters. It is 
interesting to note that when using the probabilistic approach, the choice of the factor b, 
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which implicates the assumed type of distribution and the chosen level of reliability, does not 
influence the optimal design configuration. 

8.4 Gradient Based Design Optimization 
In section 8.1 and 8.2, a multitude of combinations of the two design variables are evaluated, 
which provides the response surface of the optimization problem considered. This approach of 
course is too computationally costly to be applied for design optimization, especially as the 
number of design variables increases. Moreover, efficient gradient based methods are 
preferable to be used for this purpose. 

In section 4.8.2 and section 4.8.3 the gradients of the probabilistically motivated design load 
and of the lower bound given by convex anti-optimization are given. These allow applying 
one of the gradient based optimization techniques given in section 4.8.1. Because of the 
shapes of the response surfaces and because of the computational cost per iteration step (see 
section 4.8.4), the simple gradient algorithm is used. As start vectors, the optimal design 
found by stepwise varying the ply angles are used.  

In order to show the potential applying gradient based optimization, the design optimization is 
not only performed for a [±α, ±β] laminate, but also regarding all four ply angles as 
independent design variables. For the optimization of the probabilistically based design load, 
b = 3 is chosen. 

  

 Maximum design load Optimal design 

Convex anti-optimization   

with 2 design variables 23.74kN [±79.4°, ±56.8°]  

with 4 design variables 23.78kN [84.1°, -75.2°, 57.5°, -55.5°] 

Probabilistic design with b = 3   

and 2 design variables 22.16kN [±78.1°, ±66.9°] 

and 4 design variables 23.00kN [78.4°, -78.1°, 66.2°, -67.6°] 

Table 8-2: Results of the gradient based optimization of cylindrical shells 

The results of the gradient based optimization given in Table 8-2 show only a slight change of 
the optimal design compared to the initial configuration given by the optimization in section 
8.1 and 8.2. The maximum design load obtained by the probabilistic approach is even smaller 
than the one found in section 8.1. The reason is that in the current chapter the ISOA is used, 
for which the gradient of the design load has been derived in section 4.8.2. In difference to 
that, the FOSM approach has been used in the previous section to determine the design load 
for each ply angle combination, in order to keep the computational cost of this costly 
procedure reasonable. 

The response surfaces shown in Figure 8-5 and Figure 8-7 indicate that there is a high risk of 
finding only local minima. Most probably, this also holds for the optimization in the four 
dimensional design space. This explains why the located maxima are close to the initial 
design. Optimization runs using other start vectors did not yield a higher maximum. 
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It is concluded that optimization techniques that combines genetic algorithms and gradient 
based methods, as discussed in section 4.8.1, should be consulted for an efficient optimization 
of cylindrical shells under uncertainty. 
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9 Design Optimization of Stiffened Composite Panels under Uncertainty 

In order to show the weight saving potential of using the probabilistic design approach, an 
optimized design of a stiffened panel under axial compression is derived in this chapter. As 
initial design, the POSICOSS panel P12-14 is regarded. The objective of the design 
optimization is to reduce the panel weight, while the probabilistically motivated lower bound 
is higher or at least the same as for the initial design. 

9.1 Restrictions and Objectives 
In order to perform an optimization close to industrial practice, the following constraints are 
introduced for the optimization. The length, the arc length and the radius of the panel are 
fixed. The thickness of a single ply is kept constant, the fiber orientations are restricted to 0°, -
45°, 45° or 90° and the laminate setup must be symmetric. All stringers are equal and equally 
spaced over the panel. T-stringers with a ply drop off in the foot are used. Design restrictions 
are summarized in Table 9-1. 

 

Parameter Constraint 

Panel length Ltot 780mm 

Free length L 660mm 

Internal arc length La 419mm 

Internal radius R 1000mm 

Distance stringer  
to stringer La/ns 

Distance stringer to 
longitudinal edge 0.5 La/ns 

Ply thickness tply 0.125mm 

Fiber orientations φi { }0 , 45 , 45 ,90ϕ ∈ ° − ° ° °i  

Table 9-1: Restrictions of the panel optimization 

For optimizing the design performance, the following design parameters are considered as 
optimization variables. The number of stringers, the stringer height and the stringer width are 
varied. The numbers of plies in the stringers as well as the number of plies in the skin are 
considered as free variables, while both values are restricted to even numbers. Furthermore, 
the fiber orientations in the stringer and the skin are modified with the mentioned restriction. 
The design parameters and their initial values are given in Table 9-2. 

9.2 Optimization Strategy 
Since most of the design variables are discrete, applying gradient based methods appears to be 
difficult. While fiber orientations could be considered as continuous variables and then later 
be shifted to their discrete values, this appears to be impossible for the number of plies and 
stringers. Hence, a genetic algorithm is used for the optimization of the panel. However, 
evaluating the probabilistically motivated design load for a panel appears to be very time 
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consuming. Therefore, to avoid that each generated panel is analyzed probalistically, the 
optimization strategy depicted in Figure 9-1 is used. 

 

Parameter  Initial value 

Number of stringers ns 4 

Number of plies in Skin 8 

 stringers 24 

Stringer height 14mm 

 width 34mm 

Fiber orientations in Skin [90, ±45,0]s 

 stringers [±453,06]s 

Table 9-2: Design parameters and their initial values of the panel optimization 

 
Figure 9-1: Panel optimization strategy based on a genetic algorithm 

The design of P12-14 is regarded as initial design and the first population is generated by 
mutation of this design. For each generated panel it is checked, if the weight wi of the panel is 
lower than the weight of the initial design w0. Only panels that are more lightweight than the 
initial design are further analyzed. In a second step, a buckling analysis of the perfect virtual 
panel is executed. If the global buckling load of the perfect panel λGB,i is lower than the design 
load of the initial design λd,0, the panel is not further considered. Otherwise, the panel is 
probabilistically analyzed and the design load λd,i is determined for a probability of failure of 
0.1%. If the design load of the virtual panel is at least as high as the design load of the initial 
design λd,0, the panel is further taken into account. 
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After one generation of virtual panel samples has run through this process, the remaining 
panels are sorted by weight and the best panels are used as basis for the generation of the next 
generation. 

One disadvantage of genetic algorithms is that convergence is hard to define. The only 
indicator that the optimization procedure has converged is that no better sample is found in a 
certain amount of generation. A big advantage is that the same buckling analyses can be used 
to find the optimal design considering the perfect panel analysis. The only difference to the 
procedure shown in Figure 9-1 is that instead of step 2 and 3 it is checked if the global 
buckling load of the virtual panel sample λGB,i is at least as high as the global buckling load of 
the initial design λGB,0.  

9.3 Improved Design Configuration 
Since for a genetic algorithm it is difficult to judge whether an optimization run has 
converged, the determined improved design is not necessarily an optimum, especially if a 
relatively small number of realizations has been checked. Due to the computational costly 
evaluation of the performance of a generated panel, the number of virtual samples tested is 
indeed comparatively small. Nevertheless, improved designs are found and the best of these 
designs is regarded as preliminary optimum. 

After evaluating 404 virtual samples that passed the weight check (see 1. in Figure 9-1), the 
best designs obtained from the genetic algorithm are given in Table 9-3.  

 

   Best panel designs 

  Initial design Probabilistic 
approach 

Perfect shell 
analysis 

Number of stringers ns 4 4 5 

Number of plies in skin 8 6 6 

 stringers 24 22 24 

Stringer height 14mm 16mm 13mm 

 width 34mm 33mm 34mm 

Fiber orientations in skin [90,±45,0]s [±45,0]s [±45,-45]s 

 stringers [±453,06]s 
[0,-452,45,90,0, 
-45,0,45,0,-45]s 

[-452,03,-45,0, 
-453,90,-45] 

Weight, relative to w0  100% 83.5% 90.3% 

λd for PoF = 0.1%  53.4kN 63.5kN 38.0kN 

GBperf/1.5  56.1kN 45.3kN 56.9kN 

Table 9-3: Design variables, weights and design loads of the initial panel and the best designs located by 
genetic optimization 

For comparison of the obtained weight savings, the design load should be kept constant 
during optimization and hence, the same design loads should be obtained for the optimal 
design configurations given by the probabilistic approach and the perfect shell analysis 
approach. However, since the determination of the design load is a noninvertible process, the 
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restriction that the design load is equal to or greater than the initial design load was defined in 
the optimization procedure (see Figure 9-1, 3.). The optimization using the probabilistic 
design approach provides a weight reduction of 16.5%, where the probabilistically motivated 
design load even exceeds the one of the initial design by about 10kN. At the same time, the 
COCOMAT based design load is reduced by about 10kN, which shows that the safety margin 
is reduced significantly without reducing reliability, and a less imperfection sensitive design is 
obtained. In contrast to that, optimizing the design under consideration of the buckling load of 
the perfect panel yields only 9.7% weight saving. Thereby, the design load is only slightly 
above the one of the initial design and the probabilistically motivated design load undercuts 
the one of the initial design by about 10kN. Note that the probabilistic design approach used 
here also accounts for material failure, which is neglected within the perfect panel 
optimization.  

From the results of the optimization procedures it is concluded, that taking into account the 
influence of imperfections in design optimization leads to a more robust design and provides 
more weight saving potential than optimizing the perfect structure. 
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10 Summary and Conclusion 

The derived methods and obtained results are summarized in this chapter. The main 
conclusions are given, and open issues and suggestions for further investigations are derived. 

10.1 Summary 
Estimators for stochastic moments of an objective function are given based on the second 
order Taylor expansions of the objective function. It has been shown that for reasons of 
efficiency the complete second order approach should be reduced and the modified approach 
has been given. Furthermore, the second order Taylor approximation based estimator for the 
covariance of two objective functions has been given for the first time. A modified version of 
the Mahalanobis transformation has been derived, which has similarities to the principal 
component analysis. It has been shown that combining this reduction technique with the 
stochastic moment approximation provides a probabilistic analysis method, which requires 
only as many evaluations of an objective function, as measurement data are available. 
Furthermore, a method to account for the sample size within the probabilistic approach has 
been provided. 

The influence of the numerical derivatives of an objective function on the computational cost 
as well as on the accuracy of the probabilistic method has been quantified. Furthermore, it has 
been shown that the step size for the numerical derivatives should equal 1.5 times the standard 
deviation of an input parameter. 

Based on the stochastic moment approximations, a fast, semi-analytic, probabilistic design 
procedure has been derived and applied to a set of composite cylindrical shells. The results of 
the semi-analytic procedure compares well with Monte Carlo simulations and empiric 
distributions. The probabilistic design procedure has been used to determine probabilistically 
motivated design loads, which are smaller than experimental test results in all cases 
considered, and at the same time less conservative than the design loads given by NASA SP-
8007. The results of the probabilistic analyses have been used to evaluate the reliability of 
alternative deterministic design approaches.  

The design load of composite cylinders has been maximized by optimizing the laminate setup. 
The influence of the design procedure on the optimization response surface, on the optimal 
design and the maximal design load has been investigated.  

A new concept has been derived for determining the probability of failure for stiffened panels, 
taking into account global buckling and onset of material degradation. The concept has been 
applied to a set of composite stiffened panels. With the results, the reliability of different 
safety factors for stiffened panels has been evaluated. The design of a stiffened composite 
panel has been enhanced using a genetic algorithm, under consideration of scattering input 
parameters. It has been shown that using probabilistically based design in optimization 
provides great weight saving potential. 

10.2 Conclusions 
The proposed semi-analytic, probabilistic procedure approximates the real distribution of load 
carrying capability not exact, but sufficiently well. Furthermore, Monte Carlo simulations do 
not provide more accurate results, which shows that inaccuracies are not caused by the 
probabilistic method itself, but by uncertainties in the data basis. Therefore, it is not 
worthwhile to consult advanced and more costly probabilistic procedures in such cases. 
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The proposed semi-analytic, probabilistic method is an efficient procedure for designing 
shells prone to buckling by exploiting the knowledge of manufacturing characteristics. 
Especially if only a small data basis is available, the procedure is well suited. The 
conservative modification of the new approach, which allows the provision for the sample 
size, showed that the relatively small sample size of ten cylindrical shells is a sufficiently 
large sample size to obtained reliably results from the semi-analytic approach.  

The evaluation of the reliability of design loads given by deterministic design approaches 
showed that the design load given by NASA SP-8007 is overly conservative in most cases and 
cannot be recommended for further use. For the single buckle approach it was found that the 
provided design loads do not have an acceptable level of reliability in all cases considered. 
Therefore, it is recommended to investigate the application limits of this promising approach. 
The convex anti-optimization delivers almost the same results as the probabilistic approach, 
while the computational cost are the same. However, the inherent assumptions are difficult to 
verify and no statement about the reliability is possible.  

Optimizing the perfect structures leads to a significantly different design than optimizing 
under consideration of imperfections. When optimizing the design of cylindrical shells by 
maximizing the design load given by probabilistic analysis, the assumed type of distribution 
and the chosen level of reliability have no influence on the optimal design configuration. 

The design load given by the COCOMAT design guidelines leads to a reliable lower bound, if 
a safety factor of about 1.5 is applied. This finding is only valid for the panels considered and 
should be further investigated by future probabilistic analyses of stiffened panels. 

Optimizing stiffened panels with respect to the probabilistically based design load provides 
significant weight saving potentials, because the imperfections sensitivity of the optimized 
design is decreased significantly. Therefore, the scatter of load carrying capability decreases, 
which yields a higher design load at less weight for the optimized design.  

10.3 Outlook 
For the stiffened panels considered the onset of material degradation occurred beyond global 
buckling. In order to be able to probabilistically analyze panels for which this is not the case, 
advanced numerical models have to be consulted in order to capture the influence of material 
degradation on the buckling behavior. With currently available methods this significantly 
increases the computational cost. Due to the amount of required simulations, this is critical in 
combination with probabilistic methods, and even more critical when combining optimization 
and probabilistic analyses. Therefore, a coupled multi scale analysis is proposed for these 
purposes. A multi scale approach in which the local model consists of solid continuum 
elements not only provides a more accurate prediction of in plane material failure, but 
furthermore allows the detection of delaminations. 

In the presented probabilistic design approach for stiffened panels, the stochastic distribution 
of the onset of degradation was considered as the first occurrence of any material failure. 
However, multiple, very different types of material damage can occur, which have 
significantly different impacts on the structural performance of a panel and are differently 
associated to the global panel behavior. Skin-stringer separation for instance has a significant 
influence on the global panel stiffness, but usually does not occur before globally buckling. In 
difference to that, matrix cracks potentially can occur at any stage, but do hardly influence the 
global behavior. Within a probabilistic design concept, the dependencies of different failure 
modes could be taken into account and their different impacts could be considered by e.g. 
allowing a higher probability for matrix cracking than for skin-stringer separation. This can 
lead to a less conservative approach and therefore, provide additional weight saving potential. 
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The proposed investigations of course require the enhancements suggested in the previous 
paragraph. 

In industrial design practice of stiffened composite panels, local skin buckling may only be 
exceeded slightly, which restricts the design freedom. The reason is a lack of reliable analysis 
techniques that enable accounting for the influence of impact damages or other operational 
induced defects on the buckling behavior. Further research effort should be spent on this field 
in order to fully exploit the load carrying capability of stiffened composite panels. 

The design optimization under uncertainty applied to cylindrical shells showed that using 
gradient based algorithms yields a high risk of finding local optima only. Genetic algorithms 
however are extremely costly. Therefore, it is proposed to use hybrid optimization techniques 
that combine genetic algorithms with gradient based methods for future design optimizations 
under uncertainty. 

The main reason for the fact that probabilistic methods did not find their way to broad 
application in industrial practice is on the one hand the computational cost, which this 
dissertation contributes to reduce significantly. On the other hand, there is often a lack of data 
concerning the considered structure. If this is resolved by arbitrarily assuming stochastic 
distributions of input data, the information obtained from probabilistic analyses are valueless 
and no alternative to safety factors based on expert opinions. The solution cannot be of course 
to always build several samples of a structure. This is only an option in mass production. In 
order to probabilistically analyze structures, which have not been built, yet, process 
simulation should be utilized. If the stochastic distributions of the decisive parameters of the 
manufacturing process are known, a probabilistic process simulation can provide the input for 
probabilistic analyses of the structural performance. This type of approach is applicable to 
large scale structures like panels as well as to smaller scale specimens, like Coupon samples. 
Therefore, the two step probabilistic approach can be performed on multiple scales and the 
probabilistic analysis results of the smaller scale serve as input parameters for the next higher 
scale. Such a multi step and multi scale analysis approach would have to be investigated in the 
framework of a large research project. 
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Appendix 

A Fourier Series  

Fourier series are appropriateto represent continuous, periodic functions. The Fourier series fF 
of a function :f →\ \  is in the interval [0, a] is given by 

 ( )
0
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F k k
k

k x k xf x a b
a a
π π

=

= +∑  (A.1) 

If f is approximated by fF it is implicitly assumed that f is periodic and continuous. This can 
lead to inaccuracies at the boundaries of the interval, as shown in Figure A-1, where the actual 
function is given by the black line and the Fourier series is given by the red line.  

 
Figure A-1: Example of a non-periodic function approximated by a Fourier series 

One possibility to solve this problem is to assume that the function is symmetric with the 
period 2a (see Figure A-2). Eq. (A.1) then simplifies to 
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This approach includes the assumption that the first derivative is zero at the boundaries. 

 
Figure A-2: Example of a non-periodic function approximated by a Fourier series assuming symmetry 

Alternatively, it can be assumed that the function is point symmetric, which leads to  

 ( )
0

2 cos
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a
π

=

= ∑  (A.3) 

As depicted in Figure A-3, this approach includes the assumption that the function is zero at 
the boundaries. 

Which series represents the original function best depends on the shape of the original 
function at the boundaries.  
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Figure A-3: Example of a non-periodic function approximated by a Fourier series assuming rotational 

symmetry 

In order to represent a function 2:f →\ \  by a Fourier series fF, the approaches for the one-
dimensional case are multiplied. 
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By introducing 
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fF can be written as 
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In the two-dimensional case, the Fourier coefficients are determined by 
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With α = ¼ for k = 0 and l = 0, α = 1 for k > 0 and l > 0 and α = ½ otherwise.  

If the function is assumed to be symmetric in x- or y-direction, the remaining coefficients 
have to be multiplied with two. If e.g. symmetry in x-direction is assumed, the Fourier series 
is given by  
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If point symmetry is assumed in y-direction, the Fourier approximation is given by 
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If, for instance, point symmetry is assumed for the x-direction and symmetry in the y-
direction, the Fourier series is given by  
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B Mahalanobis Transformation  

In general, the Mahalanobis transformation is given by 

 ( )1 1
2 2and −= + = −x Σ z μ z Σ x μ  (B.1) 

The random vector X has the covariance matrix Σ and the mean vector μ. The entries of the 
random vector Z are uncorrelated, with the standard deviation of one and the mean value of 
zero. The covariance matrix of Z is therefore the identity matrix. 

B.1 Mahalanobis Transformation is Independent of Type of Distribution 

Though often shown in the context of multi-normal distribution, the Mahalanobis 
transformation is not restricted to any type of distribution. To show this, the proof that the 
mean vector of Z is the zero vector and that the covariance matrix of Z is the identity matrix 
is given in the following. 

Firstly, it is shown that the mean vector of Z is zero. 

 ( ) ( ) ( ) ( ) ( )1 1 1 1 1
2 2 2 2 2E E E E E− − − − −⎡ ⎤= − = − = − =⎣ ⎦z Σ x μ Σ x Σ μ Σ x Σ μ 0  (B.2) 

Now, the covariance matrix of Z is determined.  

 ( ) ( )1
2Cov Cov= = +Σ x Σ z μ  (B.3) 

With ( ) ( ) TCov Cov=Ax A x A  and ( ) ( )Cov Cov+ =x b x   
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B.2 The Rank of the Covariance Matrix is Smaller Than or Equal to the Number of 
Measurements  

The covariance of two random parameters is estimated from measurements by 

 ( ) ( )( ) ( )( )
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1cov ,
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μ μ
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= Σ = − −
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m
k k

i j ij i i j j
k

X X x x
m

 (B.6) 

Here, m is the number of measurements, ( )k
ix  is the k-th measurement of i-th random variable. 

Considering a random vector X of the length n, the covariance matrix is estimated by  
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where ( ) ,   and  k n n n×∈ ∈x μ Σ\ \ . By defining  

 ( ) ( ) ( )( )1 , , , , ,k m n m×= − − − ∈X x μ x μ x μ X� �… … \  (B.8) 

the estimator (B.7) can be written as  
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Since 

 ( ) { }min ,≤�rank n mX  (B.10) 

and 

 ( ) ( ) ( )= =� � � Trank rank rankX X X Σ  (B.11) 

it follows  

 ( ) { }min ,≤rank n mΣ  (B.12) 

Since n n×∈Σ \ , Σ is singular if m ≤ n. 

B.3 The Matrix B is a Root of the Covariance Matrix 

The matrix B is defined as 

 ( ) ( )1
2

1 1, , , ,r rdiag σ σ= =B Q D q q… …  (B.13) 

Q = (q1,…,qr) is the matrix with eigenvectors of Σ, ( )2 2
1 , , rdiag σ σ=D …  is a diagonal matrix 

with the eigenvalues of Σ and r is the rank of Σ. B is a square root of Σ, because 
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The inverse of B is given by 
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B.4 Relation to Principal Component Analysis 

According to the consideration of section B.3, the Mahalanobis transformation is written as  

 
1
2= + = +x Bz μ QD z μ  (B.17) 

In this form, the transformation is similar to the principal component analysis [118], which is 
given by  

 = +x Qy μ  (B.18) 

and which is also known as Karhunen-Loève transformation. The entries of the vector Y are 
uncorrelated, but their standard deviation is not normalized to one, as it is for the vector Z 
given by the Mahalanobis transformation. The idea of the principle component analysis is to 
find the direction of the largest variance, second largest variance and so on (see Figure B-1, 
left). The random vector X is transformed to the random vector Y, whose mean vector equals 
the zero vector and whose entries are sorted by the variance. This also depicts why Y must 
have less entries than the number of measurements. As shown in Figure B-1, right, there is 
one direction with zero variance, if the number of measurement point equals the dimension of 
the random vector. Hence, the random vector can be transformed to a vector with one entry 
less. 

 
Figure B-1: Idea of principle component analysis 

In difference to the PCA, the Mahalanobis transformation additionally scales the coordinates 
in each direction as shown in Figure B-2, which yields a standard deviation of one in each 
direction. 

 
Figure B-2: Geometric interpretation of the Mahalonobis transformation  

C Kolmogorov-Smirnov Test 

Within Monte Carlo simulations, realizations of a random number a generated based on an 
assumed type of distribution. In order to evaluate which type of distribution describes a set a 
measured data best, the Kolmogorov-Smirnov test (K-S test) [88] can be used. For each 
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realization xi the empiric distribution function FE is compared with the assumed cumulative 
distribution function F0. The two distributions are assumed to be different, if the maximal 
difference between the distributions dmax exceeds an allowed value dallowed, which depends on 
the level of significance. Tables for dallowed are for instance given in [88].  
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= = …
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For the probabilistic analysis of composite cylindrical shells in chapter 6, ten measurement 
vectors x(i) with the length 462 are transformed to ten vectors z(i) with the length nine. The 
entries of z(i) are statistically analyzed. Furthermore, the bending angle θ and the average wall 
thickness t are analyzed. The material properties E11, E22 and G12 are assumed to be normal 
distributed, the circumferential variation angle ω is assumed to be uniformly distributed in the 
interval [0°,360°]. For the K-S test a level of significance of 5 % is chosen, which leads to an 
allowed difference of dallowed = 0.41. 

 

Distribution Random variables 

z1 z2 z3 z4 z5 z6 z7 z8 z9 θ t 
Uniform 0.287 0.161 0.342 0.268 0.360 0.280 0.202 0.321 0.217 0.366 0.202 
Beta  0.156 0.191 0.170 0.126 0.201 0.158 0.209 0.207 0.179 0.207 0.192 
Normal 0.167 0.155 0.144 0.176 0.201 0.192 0.204 0.252 0.128 0.247 0.193 
Gumbel  0.161 0.177 0.166 0.209 0.131 0.221 0.183 0.204 0.193 0.307 0.263 
Laplace  0.229 0.203 0.157 0.229 0.202 0.242 0.256 0.312 0.140 0.306 0.188 
Logistic 0.186 0.172 0.132 0.199 0.201 0.214 0.217 0.270 0.127 0.264 0.192 

Table C-1: dmax of the K-S test for the random variables of cylindrical composite shells 

In Table C-1 the results of the K-S test for the considered random parameters is shown, where 
the minimum dmax is bold for each random parameter. For the listed types of distribution dmax 
never exceeds dallowed, which is caused by the small sample size of the empiric distribution. 
Distributions that have a domain [x0,∞], where x0 is the lower bound, like the Weibull 
distribution of the logarithmic normal distribution mostly did not satisfy the K-S test. 

 

Distribution Random variables 

z1 z2 z3 z4 z5 z6 z7 r 
Uniform 0.277 0.227 0.538 0.530 0.231 0.334 0.339 0.550 
Beta  0.199 0.178 0.292 0.287 0.226 0.225 0.177 0.272 
Normal 0.150 0.166 0.295 0.338 0.179 0.236 0.196 0.346 
Gumbel  0.216 0.163 0.361 0.268 0.172 0.169 0.231 0.285 
Laplace  0.189 0.215 0.306 0.325 0.117 0.252 0.250 0.395 
Logistic 0.157 0.178 0.287 0.336 0.159 0.239 0.218 0.358 
Weibull 0.250 

Table C-2: dmax of the K-S test for the random variables of stiffened composite panels 
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For the Monte Carlo simulation of stiffened composite panels (see chapter 7) eight 
measurements of geometry and radius are available. The results of the K-S test of the seven 
uncorrelated random parameters that describe the scatter of geometry and the K-S test of the 
normalized radius are given in Table C-2. Choosing a level of significance of 5%, the upper 
bound for dmax is dallowed = 0.486.  

D Stochastic Moment Approximation 

For the approximation of the stochastic moments of the objective function, the objective 
function g(x) is approximated at the mean vector of input parameters μ. 
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The following abbreviations are used in the following. 
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For the derivation of the stochastic moment approximations, the following introducing 
remarks are helpful. 

The first moment of a random parameter Xi is given by 

 ( )i i X i ix f x dxμ
∞
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= ∫  (D.3) 

The k-th central moment of the random parameters Xi is referred to as 

 ( ) ( ),
k

i k i i X i ix f x dxμ μ
∞

−∞

= −∫  (D.4) 

Note that the first central moment is always equal to one. 

 ( ) ( ),1 0i i X X i ix f x dxμ μ
∞

−∞

= − =∫  (D.5) 

The joint central moment of the random parameters Xi and Xj is denoted as  

 ( )( ) ( ),ij i i j j X i j i jx x f x x dx dxμ μ μ
∞ ∞

−∞ −∞

= − −∫ ∫  (D.6) 

If the random parameters Xi are independent, the joint probability density function fX(x) can 
be written as product of the PDFs of the random parameters. 

 ( ) ( ) ( )1 1 n nf f x f x= ⋅ ⋅X x …  (D.7) 

D.1 Mean Value Approximation 

The second order approximation of the mean value of the objective function g is give by 
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Assuming independence for the random parameters yields 

 , ,2
1

1
2

n

g ii i
i

g gμ μ
=

≈ + ∑μ  (D.11) 

and the first order approximation equals  

 g gμ ≈ μ  (D.12) 

D.2 Variance Approximation 

Inserting the second order Taylor series into the definition of the variance of g yields  
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The squared Taylor series is 
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The summands in (D.14) can be integrated individually.  
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Summarized (D.13) can be written as 
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Assuming independence, the summands can be simplified further 
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and the approximation of the variance is given by  
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Sorted by approximations, the second order approximation of the variance of g equals  
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and the first order is given by 
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D.3 Covariance Approximation 

Two objective functions, g(x) and h(x), are considered, which are both approximated by 
Taylor series at the mean vector μ. Their covariance is given by 

 

( ) ( )( ) ( ) ( ) ( )

( ) ( )( )

( ) ( )( ) ( )

, .
1 1 1

, ,
1 1 1

1
2

1
2

gh g h g h

n n n

i i i ij i i j j g
i i j

n n n

i i i ij i i j j h
i i j

E g h g h f d

g g x g x x

h h x h x x f d

μ μ μ μ

μ μ μ μ

μ μ μ μ

∞

−∞

∞

= = =−∞

= = =

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤Σ = − − = − −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤
≈ + − + − − −⎢ ⎥

⎣ ⎦
⎡ ⎤
⋅ + − + − − −⎢ ⎥
⎣ ⎦

∫

∑ ∑∑∫

∑ ∑∑

X

μ

μ X

x x x x x x

x x

 (D.28) 

Expanding the product yields 
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Taking the integral into the sum and introducing the stochastic moments yields 
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which can be simplified to 
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Assuming independence for the entries of X yields 



135 Appendix D. Stochastic Moment Approximation 
 

 

( ) ( )

, , ,2
1

, ,2 , ,2
1 1

, ,3 , , ,3
1 1

, , ,2 ,2 , , ,2 ,2 , , ,4
1 1 1 1 1

1 1
2 2
1 1
2 2
1 1 1
4 2 4

n

gh g h g h i i i
i

n n

g ii i h ii i
i i

n n

i ii i ii i i
i i
n n n n

ii jj i j ij ij i j ii ii i
i j i j i

j i j i

g h h g g h

g h h g

g h g h

g h g h g h

μ μ μ μ μ

μ μ μ μ

μ μ

μ μ μ μ μ

=

= =

= =

= = = = =
≠ ≠

Σ ≈ − − + +

+ − + −

+ +

+ + +

∑

∑ ∑

∑ ∑

∑∑ ∑∑

μ μ μ μ

μ μ

n

∑

 (D.32) 

Sorted by approximations, the covariance of g and h is given by 

 

( )

( )

, , ,2
1

, ,2
1

, ,2 , ,3 , , ,3
1 1 1

, , ,2 ,2 , , ,4
1 1 1

first order approach

1
2

1 1 1
2 2 2
1 1
4 4

n

gh i i i
i

n

g h g h g ii i
i

n n n

h ii i i ii i ii i i
i i i

n n n

ii jj i j ii ii i
i j i

j i

g h

g h h g g h

h g g h g h

g h g h

μ

μ μ μ μ μ μ

μ μ μ μ

μ μ μ

=

=

= = =

= = =
≠

⎫Σ ≈ ⎬
⎭

⎫
⎪+ − − + + − ⎪
⎪
⎪+ − + + ⎬

+ +

⎭

∑

∑

∑ ∑ ∑

∑∑ ∑

μ μ μ μ μ

μ

, , ,2 ,2
1 1

ISOA

full second order approach
1
2

n n

ij ij i j
i j

j i

g h μ μ
= =

≠

⎪
⎪
⎪
⎪

⎫
⎪+ ⎬
⎪⎭

∑∑

 (D.33) 

and the first order approach is given by 
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D.4 Skewness Approximation 

The skewness of the objective function g is given by  

 ,3
3

g
g

g

v
μ
σ

=  (D.35) 

and can hence be determined from the variance and third central moment of g, which is given 
by 
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With 
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inserted into (D.36), the third central moment is given by 
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Inserting the Taylor series (D.1) into the first term of (D.38) yields 
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With the introduced abbreviations a, b and c, the sum that has to be integrated reads 

 [ ]3 3 3 3 2 2 2 2 2 23 3 3 3 3 3 6a b c a b c a b a c b a b c c a c b a b c+ + = + + + + + + + + +  (D.40) 

Each term of the sum is multiplied with fX(x) and integrated individually in the following. 
Furthermore, the assumption of independence of the entries of X is introduced from the 
beginning. 
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Inserting (D.41) to (D.50) into (D.40) and again into (D.39) yields 
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Inserting (D.51) into (D.38) leads to the second order approximation of the third central 
moment of g given by  



141 Appendix E. Derivatives of the Moment Approximations 
 

 

3
,3 , ,3

1

3 2 2
, ,2 , ,2

1 1

2 3
, , ,3

1

2 1

, , , ,2 ,2 ,2 , , , ,3 ,3
1 1 1

SOTM

first order approach

3 3
2

3 3

3 3
4 2

n

g i i
i

n n

ii i i i
i i

n

i ii i g g g
i

n n n

ii jj kk i j k ii ij jj i j
i j i k j j i

g

g g g g g

g g g

g g g g g g

μ μ

μ μ

μ μ σ μ

μ μ μ μ μ

=

= =

=

− −

= = + = + = +

⎫≈ ⎬
⎭

⎫+ + + ⎪⎪
⎬
⎪+ − −
⎪⎭

+ +

∑

∑ ∑

∑

∑ ∑ ∑

μ μ μ

μ

1

1 1

2 2 2
, , ,2 ,4 , ,6 , , ,2 ,2

1 1 1 1 1

1
2 2
, , ,4 , , ,2 ,2 , ,4

1 1 1 1

, , , ,3 ,2
1 1

3 1 3
8 8 2

3 3 3
2 2 4
3
2

n n

i

n n n n n

ii jj i j ii i i jj i j
i j i i j

j i j i

n n n n

i ii i ii jj i j ii i
i i j i i

n n

i ii jj i j
i j

j i

g g g g g

g g g g g g g

g g g

μ μ μ μ μ

μ μ μ μ

μ μ

−

=

= = = = =
≠ ≠

−

= = = + =

= =
≠

+ + +

+ + +

+

∑∑

∑∑ ∑ ∑∑

∑ ∑∑ ∑

∑

μ μ

2
, , ,5

1

1 2 1
2

, , ,2 ,2 ,2 , , , ,2 ,2 ,2
1 1 1 1 1 1

1
3
, ,3 ,3 ,

1 1

incomplete

second

order

approach

   

3
4

3 9
2 4

3
2

n

i ii i
i

n n n n n n

ii jk i j k ij ik jk i j k
i j k j i j i k j

j i k i

n n

ij i j
i j i

g g

g g g g g

g g

μ

μ μ μ μ μ μ

μ μ

=

− − −

= = = + = = + = +
≠ ≠

−

= = +

⎫
⎪
⎪
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪+ ⎪
⎪⎭

+ +

+ +

∑ ∑

∑∑ ∑ ∑ ∑ ∑

∑∑
1

2
, ,2 ,4 , , , ,2 ,2

1 1 1 1

1
2 2
, ,2 ,2 , , , ,2 ,3 , , ,3 ,2

1 1 1 1 1 1

full

approach
6  

3 3 3

n n n n

ij jj i j i j ij i j
i j i j i

j i

n n n n n n

ij i j i ij jj i j i ij i j
i j i i j i j

j i j i

g g g g

g g g g g g g

μ μ μ μ

μ μ μ μ μ μ

−

= = = = +
≠

−

= = + = = = =
≠ ≠

⎫
⎪
⎪
⎪
⎪⎪+ ⎬
⎪
⎪
⎪+ + + ⎪
⎪⎭

∑∑ ∑ ∑

∑ ∑ ∑∑ ∑∑μ

(D.52) 

The first order approach hence equals 

 3
,3 , ,3

1

n

g i i
i

gμ μ
=

≈∑  (D.53) 

E Derivatives of the Moment Approximations 

For the optimization of the probabilistically motivated design load with gradient based 
optimization algorithms, the gradients of the mean value and variance approximation are 
derived in the following.  

Assuming the objective function g(x,y) to be function of random variables, subsumed in the 
vector x, and design variables, subsumed in the vector y. The stochastic moments of the 
objective function are functions of the design variable vector y. E.g. the mean value of the 
objective function is given by 

 ( ) ( ) ( ) ( )
2

2
1

,1, var
2

n

g i
i i

g
g X

x
μ

=

∂
≈ +

∂∑
μ y

y μ y  (E.1) 

For optimization purposes the derivatives of the objective function with respect to the design 
variables are required. The partial derivative of μg with respect to the design variable yk is 
given by 
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Since the moment approximations are derived based on a second order Taylor series, 
derivatives of higher order than two are neglected. 

The abbreviations ( ),g g=μ μ y
 
is used subsequently. 

The variance 2
gσ  of the objective function is given by 
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The partial derivative of 2
gσ  with respect to the design variable yk is given by 

 

( )
N

2 22 2

,22 2 2 2
1

,2 ,4
1 1

2 22

2 22

,3
1

1
4

1
2

n

in n
ig i i i

i i
i ik k k k k

I II III IV

n
i ji i

i
i k

V

g g gg
g x x x

y y y y y

g gg g
x xx x

y

μ
σ

μ μ

μ

=

= =

=

⎛ ⎞ ⎛ ⎞ ⎡ ⎤∂ ∂ ∂∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎣ ⎦≈ + + +
∂ ∂ ∂ ∂ ∂

⎡ ⎤∂ ∂⎡ ⎤∂ ∂ ∂∂ ⎢ ⎥⎢ ⎥ ∂ ∂∂ ∂ ⎢ ⎥⎣ ⎦ ⎣ ⎦+ +
∂

∑
∑ ∑

∑

μ
μy

���	��
 ���	��
 ����	���


����	���


N

,2 ,2
1 1

2
2

2

,2 ,2
1 1

n n

i j
i j i k

VI

n n
i j g

i j
i j i k k

VIIIVII

y

g
x x

y y

μ μ

μ
μ μ

= = +

= = +

∂

⎛ ⎞∂∂ ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠+ −
∂ ∂

∑ ∑

∑∑

������	�����


������	�����


 (E.4) 

The derivatives of the summands are given in the following. 
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Summarized 
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Hence, the following derivatives of the objective function are required. 
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 for i = 1,…,n and j = 1,…,p  (E.15) 

F Derivatives of the Convex Anti-Optimum 

For the optimization of the design load given by convex anti-optimization with gradient based 
optimization algorithms, the gradients of minimum given by convex anti-optimization are 
derived in the following. 
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The first order approximation of the minimum of the objective function is given by 
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cg g ϕ ϕ= −y x y G yy  (F.1) 

The derivative with respect to one design variable yj is given by 
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The derivative of the second summand is 
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Hence, (F.4) can be expressed by 
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This leads to the first derivative of the minimum of the objective function. 

 min 1 T

T
j j j

g g
y y y

ϕϕ
ϕ ϕ

∂ ∂ ∂= −
∂ ∂ ∂

G
G

 (F.7) 

with 

 
2 2

1

, ,
T

j j d jy x y x y
ϕ λ λ⎛ ⎞∂ ∂ ∂= ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

…  (F.8) 

Note that  

 ( )
2

1
1

, , , ,    and   
T

T i
d

d j i j

g g g
x x y x y

ϕϕ ϕ ϕ
⎛ ⎞ ∂∂ ∂ ∂= = =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

… …   (F.9) 

Hence, the following derivatives of the objective function are required. 
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P09-11

 

P12-14

 

P15-16

 

COCOMAT panel 

 

Figure H-1: Load-displacement curves of the perfect panels 

 

In the analyses of imperfect panels, measured geometric imperfections and the measured 

radius have been included in the model. Furthermore, non-rigid longitudinal edges have been 

realized by applying rotational spring as shown in Figure 7-4 and discussed in section 7.4.5. 

For material properties, wall thickness and fiber orientation and the nominal values have been 

used. 

For the COCOMAT panel no measurement data are published. Panel P15-16 showed a less 

typical behavior compared to panels P09-11 and P12-14 and is therefore not analyzed any 

further. The load-displacement curves of the imperfect panels P09-P14 and the associated 

experimental results are given in Figure H-2. 
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P09

 

P12

 

P10

 

P13

 

P11

 

P14

 

Figure H-2: Load-displacement curves of the imperfect POSICOSS panels 

I Knockdown Factor given by NASA SP-8007 for [±α, ±β] Laminates 

For orthotropic shells, NASA SP-8007 [28] proposes determining the equivalent wall 

thickness t
*
 according to (1.4). When applying this approach to composite shells and using the 

unified formulation (1.6), the equivalent wall thickness t
+
 is given by 
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According to [119] the entries of the ABD matrix of fiber composites made of unidirectional 
plies are given by  
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Here, Aij and Dij are entries of the ABD matrix. ( )k
ijQ

 
is the entry of stiffness matrix of the k-th 

ply, tk is the wall thickness and zk is the center of gravity of the k-th ply. For a laminate with 
the layup [±α, ±β] and a ply thickness of tply = ¼ t, where t is the thickness of the whole 
laminate, the entries A11 and D11 of ABD matrix are given by 
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and 
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Due to the restriction of the laminate setup, the entries of the first two plies and the third and 
fourth ply are equal. 

 ( ) ( ) ( ) ( )1 2 3 4
11 11 11 11   and   Q Q Q Q= =  (I.6) 

Hence, (I.4) and (I.5) can be written as 
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The same holds for the entries A22 and D22, which are consequently given by 

 ( ) ( )1 31
22 22 222A t Q Q⎡ ⎤= +⎣ ⎦  (I.9) 

and 

 ( ) ( )1 331
22 22 2224D t Q Q⎡ ⎤= +⎣ ⎦  (I.10) 

Inserting (I.7)–(I.10) into the quotient in (I.1) yields 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 3 1 33 31 1
11 11 22 2224 24 411 22 1

1441 3 1 31 1
11 22 11 11 22 222 2

t Q Q t Q QD D t
A A t Q Q t Q Q

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦= =
⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦

 (I.11) 

Hence, the equivalent wall-thickness t+ equals 

 411 22 144 144
11 22

12 12D Dt t t
A A

+ = = =  (I.12) 

Summarized, for any laminate with a layup [±α, ±β], for which all ply thicknesses are equal, 
the equivalent wall thickness t+ equals the real wall thickness t. Consequently, the KDF for 
such laminates is independent from the actual values of α and β. 
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