Phylogenetische Studie der Remipedia Yager, 1981 basierend auf molekularen Markern

Von der Naturwissenschaftlichen Fakultät

der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation von Dipl.-Biol. Mario Hönemann geboren am 31.05.1977 in Hannover.

Referent:	Prof. Dr. Stefan Könemann
Korreferentin:	Prof. Dr. Ute Radespiel
Tag der Promotion:	16. April 2012

Erklärung zur Dissertation

Gemäß §6(1) der Promotionsordnung der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover für die Promotion zum Dr. rer. nat..

Hierdurch erkläre ich, dass ich meine Dissertation mit dem Titel: "Phylogenetische Studie der Remipedia Yager, 1981 basierend auf molekularen Markern" selbständig verfasst und die benutzten Hilfsmittel und Quellen sowie gegebenenfalls die zu Hilfeleistungen herangezogenen Institutionen vollständig angegeben habe. Die Dissertation wurde nicht schon als Masterarbeit, Diplomarbeit oder andere Prüfungsarbeit verwendet.

Unterschrift:

Mario Hönemann, den Gießen 15. November 2011

Inhaltsverzeichnis

Erklärung zur Dissertation	i
Inhaltsverzeichnis	ii
Abbildungsverzeichnis	iv
Tabellenverzeichnis	vi
Zusammenfassung	vii
Abstract	viii
Abkürzungen	ix
1 Einleitung	1
1.1 Habitat und Verbreitung	
1.2 Morphologie	5
1.3 Systematik	9
1.4 Stellung der Remipedia innerhalb der Crustacea	11
1.5 Strukturalinierungen in phylogenetischen Analysen	13
1.6 Grundlagen der Arbeit	17
1.7 Ziele der Arbeit	19
2 Material und Methoden	20
2.1 Markergene	20
2.2 Probenmaterial	21
2.3 Wahl der Außengruppe	21
2.4 Vorbereitung der Proben	22
2.5 DNA-Extraktion	22
2.6 Amplifikation	23
2.7 Sequenzierung	23
2.8 Sequenzaufbereitung	24
2.9 Alinierung	24
2.9.1 Alinierung der proteinkodierenden Gene	25
2.9.2 Manuelle Alinierung	26
2.10 Analysen	31
2.11 Genetische Distanz	32
3 Ergebnisse	33
3.1 Sequenzen	33
3.2 Phylogenetische Topologien	35
3.2.1 Lauf 1 (COI)	35
3.2.2 Lauf 2 (16S)	37
3.2.3 Lauf 3 (H3)	37
3.2.4 Lauf 4 (COI, 16S und H3)	
3.2.5 Lauf 5 (COI)	41
3.2.6 Läufe 6 + 7	44
3.3 Genetische Distanzen	44

4 C	Diskus	sion	46	
4.1	1 Def	initionen von morphologischen Begriffen	47	
4.2	2 Dis	kussion der Topologien / Systematik	48	
	4.2.1	Alternative Möglichkeit 1 (AM1)	48	
	4.2.2	Alternative Möglichkeit 2 (AM2)	53	
	4.2.3	Weitere alternative Möglichkeiten	63	
	4.2.4	Einordnung von fehlenden Taxa	63	
	4.2.5	Fazit der Diskussion der Topologien / Systematik	65	
4.3	3 Gei	netische Distanzen	67	
4.4	4 Eig	nung der Marker	67	
4.	5 Kor	ntaminationen	69	
4.6	6 Pro	benmaterial	70	
4.7	7 Faz	:it	71	
5 L	iterat	ur	72	
6 l	nterne	tadressen	82	
7 A	Anhan	g A Genetik	83	
7.1	1 PC	R-Parameter	83	
7.2	2 Prir	nerliste	84	
7.3	3 Sec	quenzierreaktion	85	
7.4	4 Auf	reinigung der Sequenzierreaktion	85	
7.	5 Dat	enmatrix	89	
7.6	6 Stru	ukturalinierung 18S	95	
7.7	7 MrE	Bayes-Blöcke	101	
	7.7.1	Lauf 1	101	
	7.7.2	Lauf 2	101	
	7.7.3	Lauf 3	101	
	7.7.4	Lauf 4 (6 + 7)	102	
	7.7.5	Lauf 5	102	
8 A	8 Anhang B Morphologie105			
9 A	Anhan	g C	110	
10 Danksagung112				
11	11 Lebenslauf und Publikationsliste113			

Abbildungsverzeichnis

Abbildung 1.1 Photographie von Speleonectes emersoni1
Abbildung 1.2 Beispiel einer anchialinen Höhle2
Abbildung 1.3 Tiefe und Alter von Indikatororganismen verschiedener Regionen der Welt3
Abbildung 1.4 Physikalische Wasserparameter einer anchialinen Höhle
Abbildung 1.5 Weltweite Verteilung von anchialinen Höhlensystemen5
Abbildung 1.6 Darstellung verschiedener Extremitäten mit Bezeichnungen der Segmente6
Abbildung 1.7 Übersicht über Klauentypen der 2. Maxillen und Maxillipeden der Nectiopoda.6
Abbildung 1.8 Übersichtszeichnung eines Remipedia, sowie Beispiele für verschiedene
Extremitäten8
Abbildung 1.9 A= Zeichnung der Kopfregion von Speleonectes tulumensis (ventrale Ansicht),
B = Photographie von <i>Speleonectes tanumekes</i> (dorsale Ansicht)9
Abbildung 1.10 Die frühere Einordnung der Remipedia in das System der Crustacea12
Abbildung 1.11 Schematische Darstellung der Anordnung der rRNA-Gene in Replikaten14
Abbildung 1.12 Strukturelle Einheiten einer rRNA am Beispiel eines Abschnitts der 16S-
rRNA von <i>A. salina</i> 14
Abbildung 1.13 Variabilitätskarte der kleinen Untereinheit der rRNA von Saccharomyces
cervisiae16
Abbildung 2.1 Mögliche Anwendungsbereiche einer Auswahl von molekularen Markern und
Genregionen für phylogenetische Studien20
Abbildung 2.2 Fließschema Labor / Daten
Abbildung 2.3 Prinzip der Handalinierung
Abbildung 2.4 Fließschema Erstellung Gesamtmatrix
Abbildung 3.1 A = Konsensusbaum Lauf 1 (COI) und B = Konsensusbaum Lauf 2 (16S)36
Abbildung 3.2 Konsensusbaum Lauf 3 (H3)
Abbildung 3.3 Konsensusbaum Lauf 4, 6 und 740
Abbildung 3.4 Konsensusbaum Lauf 543
Abbildung 4.1 Navajo Rug-Diagramm mit den wichtigsten Kladen aller Läufe46
Abbildung 4.2 Zeichnung der 1. Maxille von Speleonectes parabenjamini
Abbildung 4.3 Erklärung zu diagnostischen Merkmalen der Klade C am Beispiel von S.
kakuki
Abbildung 4.4 Darstellung der Frontalfilamente von A = L. entrichoma, B = S. lucayensis und
C = S. kakuki
Abbildung 4.5 Erklärung zu diagnostischen Merkmalen der Kladen D und E am Beispiel von
S. emersoni
Abbildung 4.6 Zeichnung einer Auswahl von Sternalleisten und Sternalplatten von K. pilosus,
S. parabenjamini und C. longulus64

Abbildung 7.1 Sekundärstrukturmodell 16S-rRNA (5'-Teil) von Artemia salina
Abbildung 7.2 Sekundärstrukturmodell 16S-rRNA (3'-Teil) von Artemia salina
Abbildung 7.3 Sekundärstrukturmodell 18S-rRNA von Daphnia pulex
Abbildung 8.1 Übersicht der Zeichnungen der 1. Maxillen aller bisher beschriebenen
Remipedia (Teil 1)105
Abbildung 8.2 A = Übersicht der Zeichnungen der 1. Maxillen aller bisher beschriebenen
Remipedia (Teil 2), B = Übersicht der Zeichnungen der 2. Maxillen aller bisher
beschriebenen Remipedia (Teil 1)106
Abbildung 8.3 Übersicht der Zeichnungen der 2. Maxillen aller bisher beschriebenen
Remipedia (Teil 2)
Abbildung 8.4 Übersicht der Zeichnungen der Maxillipeden aller bisher beschriebenen
Remipedia (Teil 1)
Abbildung 8.5 Übersicht der Zeichnungen der Maxillipeden aller bisher beschriebenen
Remipedia (Teil 2)
Abbildung 9.1 Darstellung der zeitlichen Reihenfolge der Artbeschreibungen

Tabellenverzeichnis

Tabelle 1.1 Übersicht über das System der Remipedia, mit allen derzeit beschriebenen
Arten
Tabelle 2.1 Liste der in der 18S-rRNA-Strukturalinierung eingesetzten Genbank-Sequenzen
Tabelle 2.2 Unterschiede der MrBayes-Parameter der verschiedenen Analysen
Tabelle 2.3 Gemeinsamer MrBayes-Block 32
Tabelle 2.4 Zusammenfassung der Analysenparameter der genetischen Distanz
Tabelle 3.1 Generierte Remipedia-Sequenzen nach Arten aufgelistet. 33
Tabelle 3.2 Genetische Distanzen (p-distances) des COI-Datensatzes von Lauf 5. 45
Tabelle 4.1 Morphologische Unterschiede zwischen den beiden neuen Gattungen von Klade
C54
Tabelle 4.2 Vergleich der Sternalleisten und Sternalplatten der rezenten Remipedia59
Tabelle 4.3 Neuordnung der Nectiopoda nach AM2, mit Einordnung der fehlenden Taxa66
Tabelle 7.1 Chemikalien und Enzyme der PCR für 16S, COI und H3
Tabelle 7.2 Chemikalien und Enzyme der PCR für 18S. 83
Tabelle 7.3 PCR-Profil für 16S, COI und H383
Tabelle 7.4 PCR Profil für 18S
Tabelle 7.5 Liste der in dieser Arbeit verwendeten Primer
Tabelle 7.6 BLAST-Ergebnis der Hutchinsonielle macracantha H3-Sequenz aus der
Datenmatrix
Tabelle 7.7 BLAST-Ergebnis der Micropacter yagerae H3-Sequenz aus der Datenmatrix. 104
Tabelle 9.1 Liste aller bekannten Remipedia-Arten und ihrer Fundorte110

Zusammenfassung

Das Ziel dieser Arbeit war die Durchführung einer umfassenden phylogenetischen Analyse der Klasse Remipedia Yager, 1981. Hierzu wurden Sequenzen für die folgenden Marker sequenziert: die große ribosomale Untereinheit (16S-rRNA), die erste Untereinheit des Cytochrom c Oxidase Komplexes, die kleine ribosomale Untereinheit (18S-rRNA) und ein Gen des Histon-Komplex 3.

Es konnten für 20 der 24 derzeit beschriebenen Remipedien-Arten, sowie für vier neue, bisher nicht beschriebene Arten zahlreiche neue Sequenzen generiert werden. Diese Daten wurden durch bereits bestehende Seguenzen aus internationalen Datenbanken (The European Molecular Biology Laboratory und Genbank) ergänzt. Als Außengruppentaxa wurden Campodea tillyardi Silvestri, 1931 (Diplura), Hutchinsoniella macracantha Sanders, 1955 (Cephalocarida), Penaeus monodon (Malacostraca) und Branchinella occidentalis Dakin. Fabricius. 1798 1914 (Branchiopoda) eingesetzt. Die Marker wurden einzeln und als kombinierte Datenmatrix mittels Bayesischer Analysen untersucht. Ein Novum in der Bearbeitung von molekularen Daten der Remipedia stellte der Einsatz von handoptimierten Strukturalinierungen neben den klassischen computerbasierten Verfahren dar. Hierbei wurden zunächst die strukturelle Veränderung und erst dann die Minimierung der Nukleotidveränderung optimiert.

Die Ergebnisse der Analysen zeigten Widersprüche zu der derzeitigen Systematik der Remipedia. So sind die Familien Speleonectidae Yager, 1981 und Godzilliidae Schram et al., 1986 und auch die Gattungen Speleonectes Yager, 1981 und Lasionectes Yager & Schram, 1986 paraphyletisch. Unter Berücksichtigung morphologischer Merkmale wurden daraufhin alternative Konzepte zur Neuordnung der Gruppe entwickelt und diskutiert. In dem Konzept, das die stabilsten Diagnosen zuließ, wurde das bestehende taxonomische System innerhalb der Nectiopoda nahezu vollständig verworfen und anhand der Kladen der Schram, 1986 phylogenetischen Analyse neu konstruiert. Lediglich die Micropacteridae Koenemann et al., 2007 blieben darin unverändert. Pleomothra Yager, 1989 wurde aus den ausgeschlossen und erhielt den Status einer Familie. Godzilliidae Die Speleonectidae wurden auf vier Arten reduziert. Insgesamt umfasst die Neuordnung Acht Familien mit insgesamt 12 Gattungen. Von einer vollständigen Revision der Klasse Remipedia wurde jedoch aufgrund von in Kürze zu erwartenden Neubeschreibungen abgesehen, da diese voraussichtlich zur Klärung der Verwandtschaftsverhältnisse beitragen werden.

Schlagworte: Remipedia, Phylogenie, Strukturalinierung

Abstract

The aim of this study was to perform a phylogenetic analysis of the class Remipedia Yager, 1981. For this purpose, sequences of four different molecular markers (18S-rRNA, 16S-rRNA, Histone 3 (H3) and Cytochrom c Oxidase subunit 1 (COI) were generated. The analyses included sequences from 20 of the 24 recent Remipedia species and four new, still undescribed species. The datamatrix was complemented with sequences from online databases (The European Molecular Biology Laboratory and Genbank). As outgroup species *Campodea tillyardi* Silvestri, 1931 (Diplura), *Hutchinsoniella macracantha* Sanders, 1955 (Cephalocarida), *Penaeus monodon* Fabricius, 1798 (Malacostraca) and *Branchinella occidentalis* Dakin, 1914 (Branchiopoda) were selected.

In addition to the classical computer based alignment methods used for the protein coding markers (H3 and COI), an alternative approach combining structural alignment and manual optimization was used for 16S-rRNA and 18S-rRNA. Therefore, it was possible to conduct the most comprehensive phylogenetic analysis of the class Remipedia known today.

It revealed several inconsistencies with the current taxonomic classification of this group of crustaceans. The families Godzilliidae Schram et al., 1986 and Speleonectidae Yager, 1981 are paraphyletic, as well as the genera Speleonectes Yager, 1981 and Lasionectes Yager & Schram, 1986. Different alternative options were developed by use of morphologic characters and the topologies of the phylogenetic analysis. The first is the preservation of all existing taxa to the greatest possible extent, with some changes in the definition. Alternatively and favored by the author, the second suggestion dismisses the existing taxonomic system in the Nectiopoda Schram, 1986 and a new construct on the basis of the phylogenetic analyses is established. While the Micropacteridae remain unchanged, Pleomothra Yager, 1989 is excluded from the Godzilliidae and represents now an own family. The Speleonectidae are reduced to two genera with four species. The remaining species are assigned to four new families including six new genera. However, this reassignment is rather a proposal, than an entire revision of the class, which is not recommended at this time. But it will be essential after the currently conducted description of new Remipedia species.

Keywords: Remipedia, Phylogeny, Structural Alignment

Abkürzungen

16S	16S-rRNA
18S	18S-rRNA
Α.	Artemia
Abb.	Abbildung
acc. nr.	accession number (Genbank Zugangsnummer)
В.	Branchinella
°C	Grad Celsius
C.	Cryptocorynetes
cf.	<i>confer</i> (lateinisch) = veraleiche
COI	Cytochrom c Untereinheit 1
COII	Cytochrom c Untereinheit 2
Cvtb	Cytochrom b
DMSO	Dimethylsulfoxid
DNA	deoxyribonucleic acid (Desoxyribonukleinsäure)
dNTPs	di-Nucleotidetriphosphate
FTS	external transcribed spacer
G	Godzillius
aaf	gegebenenfalls
Gn	Godzillioanomus
сп. Н	Hutchinsoniella
H₂O	Wasser
H3	Histon 3
HPI C	High Performance Liquid Chromatography
IGS	intergenic spacer
ITS	internal transcribed snacer
km	Kilometer
1	Lasionectes
	large subunit (Große Untereinbeit)
M	Micropacter
MCMC	Markov Chain Monte Carlo
min	Minuten
MaClo	Magnesiumchlorid
	NADH Debydrogenase Untereinheit 1
n sn	nova species aus lateinischen: Neue Art
NTS	non-transcribed spacer
P	Penaeus
PCR	nolymerase chain reaction (Polymerasekettenreaktion)
nn	posterior probability
nnm	parts per million (Teile pro Million)
nnt	parts per thousand (Teile pro Tausend)
RNA	ribonucleic acid (Ribonukleinsäure)
rRNA	ribosomal ribonucleic acid (Ribosomale Ribonukleinsäure)
RS	Rumpfsegment
S	Sneleonectes
с. с	siehe
5. SSU	small subunit (kleine I Intereinheit)
Tah	
7 B	i abelle zum Reispiel
Z.D.	

1 Einleitung

Während einer Tauchexkursion auf den Bahamas im Jahr 1979 wurden in einer anchialinen Höhle bis dahin unbekannte Krebstiere entdeckt und umgehend als eine neue Klasse der Crustacea Brünnich, 1772 anerkannt. Sie zählen damit zu den bemerkenswertesten Neufunden der letzten dreißig Jahre. Ihr Name ist Remipedia Yager, 1981 (Abb. 1.1).

Abbildung 1.1 Photographie von Speleonectes emersoni Lorentzen et al., 2007. (Ventrale Ansicht, aus LORENTZEN et al. 2007)

Aufgrund der späten Entdeckung und der Unzugänglichkeit ihres Lebensraums, der nur von erfahrenen und gut ausgebildeten Höhlentauchern aufgesucht werden kann, sind viele Aspekte zur Biologie der Remipedien (z. B. Paarungsstrategien und Entwicklungsgeschichte) noch nicht bekannt. Es ist bisher nicht gelungen Remipedien dauerhaft zu hältern oder gar zu züchten. CARPENTER (1999) konnte einige Exemplare über einen maximalen Zeitraum von 26 Tagen in Aquarien hältern, während die Exemplare von KOENEMANN *et al.* (2007a) 76 Tage überlebten.

1.1 Habitat und Verbreitung

Remipedien kommen fast ausschließlich in anchialinen Höhlensystemen vor (NEIBER *et al.* 2011). Als einzige Ausnahme lebt *Speleonectes kakuki* Daenekas *et al.*, 2009 in einer vollständig marinen Höhle unterhalb des Meeresspiegels auf Andros (Bahamas) (DAENEKAS *et al.* 2009; NEIBER *et al.* 2011). Nach STOCK (1986) bestehen anchialine Habitate aus halinen Wasserkörpern, die normalerweise eine eingeschränkte Exposition zur Oberfläche aufweisen und stets mehr oder weniger stark ausgeprägte Verbindungen zum Meer besitzen. Dabei unterliegen sie merklich

marinen aber auch terrestrischen Einflüssen. Abbildung 1.2 A zeigt am Beispiel Cottage Pond (North Caicos Island) das Tiefenschema einer anchialinen Höhle.

Abbildung 1.2 Beispiel einer anchialinen Höhle. A = Tiefenschema einer anchialinen Höhle. (Cottage Pond, North Caicos Island, aus KOENEMANN *et al.* 2004); B = Überflutete Karsthöhle (Carwash Cenote Cave, Yucatan-Halbinsel, Foto von Joerg Hess).

In Abbildung 1.2 B ist das Innere einer anchialinen Höhle dargestellt. Besonders auffällig sind die Tropfsteinformationen (Stalagmiten und Stalaktiten), die in vielen von Remipedien bewohnten Höhlensystemen vorkommen. Sie zeigen, dass der Meeresspiegel über einen längeren Zeitraum so niedrig gewesen sein muss, dass die Höhlen trocken fielen. Ein solch niedriger Meeresspiegel wurde im Pleistozän (1989)stellte mit Bohrungen erreicht. **FAIRBANKS** und radiometrischen Altersbestimmungen von Korallen vor Barbados fest, dass der Meeresspiegel vor ca. 17.000 Jahren zum Zeitpunkt der maximalen Gletscherbildung 121 ± 5 m unter dem heutigen gelegen hat. Es wird vermutet, dass die Höhlen nach der letzten Eiszeit, als der Meeresspiegel anstieg, geflutet wurden und die Remipedia diese besiedelten oder wiederbesiedelten. Die Schwankungen des Meeresspiegels der letzten 35.000 Jahre sind in Abb. 1.3 dargestellt.

Abbildung 1.3 Tiefe und Alter von Indikatororganismen verschiedener Regionen der Welt. Die durchgezogene Linie zeigt die Meeresspiegelschwankungen auf dem atlantischen Kontinentalshelf. Die gepunktete Linie zeigt die Meeresspiegelschwankungen auf dem Texasshelf. Die y-Achse gibt die Tiefe in Metern, die x-Achse das Alter in Jahrtausenden vor heute an. Die Symbole zeigen den Fundort und die Buchstaben die Gruppe der Indikatororganismen (MILLIMAN & EMERY 1968).

Das Oberflächenwasser anchialiner Höhlen bildet typischerweise eine Linse aus Süß- oder Brackwasser auf dem darunterliegenden dichteren salzhaltigen Höhlenwasser (s. Abb. 1.2 A). Letzteres steht über unterirdische Kanäle und Risse mit dem ozeanischen Wasserkörper in Verbindung und ist in Folge dessen auch den Auswirkungen der Tide ausgesetzt (Strömung, Wasseraustausch, Nährstoffeintrag, etc.). Beide Wasserschichten sind durch die sogenannten Halokline (Salzsprungschicht) von einander getrennt.

Nahezu alle Remipedien wurden bisher ausschließlich in den tiefen Regionen unterhalb der Halokline im Salzwasser gefunden (NEIBER *et al.* 2011). In diesen tieferen Regionen der Höhlen ist der Sauerstoffgehalt relativ gering (<1 ppm), die Salinität liegt meist bei 35 ppt, kann aber auch nur 18 ppt betragen und die Temperatur liegt im Bereich von 22 bis 26°C (NEIBER *et al.* 2011; KOENEMANN & ILIFFE *in press*). Die einzige Ausnahme ist *Speleonectes epilimnius* Yager & Carpenter, 1999. Diese Art wurde im sauerstoffreichen Oberflächenwasser einer anchialinen Höhle auf San Salvador (südöstliche Bahamas) entdeckt (CARPENTER 1999; NEIBER *et al.* 2011). Ein Beispiel für die physikalischen Parameter innerhalb einer anchialinen Höhle ist in Abb. 1.4 dargestellt.

Abbildung 1.4 Physikalische Wasserparameter einer anchialinen Höhle. Old Blue Hill Cave, Providenciales, vom 12. Juni 2003 (aus KOENEMANN *et al.* 2007b, verändert).

Remipedien zeigen ein disjunktes Verbreitungsmuster, welches typisch für viele marine, stygobiontische Invertebraten ist (KOENEMANN & ILIFFE *in press.*). Innerhalb der Crustacea finden sich zahlreiche Beispiele disjunkter Verbreitung: Amphipoda Latreille, 1816, Isopoda Latreille, 1817, Copepoda Milne-Edwards, 1840 und Pancarida (z.B. BOTOSANEANU & HOLSINGER 1991; COINEAU 1994; KOENEMANN & HOLSINGER 1999; STOCK 1984; WAGNER 1994; KOENEMANN & ILIFFE *in press*). Eine Art Zentrum der Remipedienverbreitung stellt die Karibikregion dar, mit der Inselgruppe der Bahamas, der Halbinsel Yucatan (Mexico), sowie Cuba und Hispaniola. Daneben wurden noch zwei Arten in einem Lavatunnel auf der Kanareninsel Lanzarote und eine Art in Westaustralien in einer Höhle der Cape Range Halbinsel entdeckt (s. Abb. 1.5).

Abbildung 1.5 Weltweite Verteilung von anchialinen Höhlensystemen. Anchialine Höhlensysteme auf kontinentalem Festland sind mit Kreisen gekennzeichnet, die auf isolierten Inseln vorkommenden mit Dreiecken. Der Großteil der bekannten Remipedienarten kommt in der Karibikregion vor (hier mit A bezeichnet): der Yucatan-Halbinsel, Kuba, der Dominikanische Republik, den Turks und Caicos Inseln und den Bahamas. Isolierte Arten sind in Höhlen auf Lanzarote (B, Kanarische Inseln) und in Westaustralien (C) zu finden (aus NEIBER *et al.* 2011).

1.2 Morphologie

Der Körper der Remipedia lässt sich in zwei Bereiche unterteilen: die Kopfregion (Cephalon) und den Rumpf. Die Kopfregion wird von einem chitinösen, dorsalen Kopfschild geschützt. Dieser überdeckt sechs Extremitäten tragende Somiten. Darunter liegen drei kräftige, einästige Fangbeinpaare (1. Maxillen, 2. Maxillen und Maxillipeden, siehe Abb. 1.6 und 1.9 A). Remipedien besitzen keinen Carapax (NEIBER *et al.* 2011).

Die ersten Maxillen tragen an ihren apikalen Segmenten eine Spitze, ähnlich einer Kanüle (s. Abb. 1.6 A). Von dieser wird vermutet, dass sie beim Beutegreifen ein Gift in das Beutetier injiziert (VAN DER HAM & FELGENHAUER 2007). Auf den zweiten Maxillen und den Maxillipeden tragen die Tiere komplexe Terminalklauen, welche auch als Merkmal zur Artbestimmung dienen. Jede Art zeigt dabei auf beiden Extremitätenpaaren den gleichen Typ von Klaue. Einzig *Micropacter yagerae* Koenemann *et al.*, 2007b und eine neue, noch unbeschriebene Art der Gattung *Godzillius* Schram *et al.*, 1986 zeigen unterschiedliche Klauentypen auf den 2. Maxillen und den Maxillipeden. Eine Übersicht über verschiedene Klauentypen zeigt Abb. 1.7.

Abbildung 1.6 Darstellung verschiedener Extremitäten mit Bezeichnungen der Segmente. A = 1. Maxille (*S. tulumensis*), B = 2. Maxille (*S. lucayensis*), C = Maxilliped (*S. minnsi*). Mit römischen Zahlen sind die Endite der Segmente gekennzeichnet (A: YAGER 1987b, B: SCHRAM *et al.* 1986, C: KOENEMANN *et al.* 2003).

Abbildung 1.7 Übersicht über Klauentypen der 2. Maxillen und Maxillipeden der Nectiopoda Schram, 1986. A = Hufeisentypus von *S. parabenjamini*, B = Hufeisentypus von *S. tanumekes*, C= Haken-Typus von *G. robustus* und D = Langfinger-Typus von *P. apletocheles*. Sternchen bezeichnen den jeweiligen Hauptzahn (KOENEMANN *et al.* 2007c).

Typischerweise zeigen alle rezenten Hauptgruppen der Crustacea am Rumpf mindestens zwei zu funktionellen und morphologischen Einheiten verschmolzene Körperregionen (Tagmata), z.B. Thorax und Pleon oder Thorax und Abdomen (SCHRAM & KOENEMANN 2004). Im Gegensatz dazu zeigt der Rumpf der Remipedia keinerlei Tagmosis (s. Abb. 1.8 A, 1.9 B). Besonders dieses Merkmal unterscheidet Remipedien von allen anderen Krebstieren (NEIBER *et al.* 2011).

Als typische Stygobionten sind Remipedia pigmentlos und blind. Daher nutzen sie unter anderem die zweiästigen 1. Antennen als sensorische Körperfortsätze (Abb. 1.8 B). Zwischen diesen 1. Antennen liegen am ventralen anterioren Rand des Kopfschildes die Frontalfilamente. Sie stellen keine echten gegliederten Extremitäten dar (NEIBER *et al.* 2011). Die Funktion der Frontalfilamente ist noch unbekannt, allerdings wird vermutet, dass sie ebenfalls sensorische Aufgaben haben (FANENBRUCK & HARZSCH 2005; NEIBER *et al.* 2011). Die 2. Antennen sind hingegen nicht sensorisch. Diese zweiästigen, paddelartigen und randständig mit zahlreichen Setae besetzten Extremitäten (s. Abb. 1.8 D) dienen vermutlich ausschließlich dem Nahrungserwerb, indem sie als Filterorgan fungieren (KOENEMANN *et al.* 2007a).

Segmente des Rumpfes sind Die homonomen extern durch Sterniten (Bauchplatten), Pleurotergiten (Rückenplatten) und Sternalleisten charakterisiert. Die tragen zweiästige paddelförmige Schwimmbeine, Rumpfsegmente die mit randständigen Setae besetzt sind (s. Abb. 1.8 C). Hiervon leitet sich auch der Name Remipedia ab, der "mit Schwimmfüßen ausgestattet" (im englischen Original "oar footed") bedeutet (YAGER 1981). Kaudal schließt der Rumpf mit dem Analsomiten ab. dieser trägt paarig angeordnete Kaudalanhänge.

Abbildung 1.8 Übersichtszeichnung eines Remipedia, sowie Beispiele für verschiedene Extremitäten. A = Habituszeichnung von *S. gironensis* (dorsale Ansicht), B = 1. Antenne (*S. tanumekes*), C = Schwimmbein (*S. tanumekes*) D = 2. Antenne (*S. lucayensis*) A: YAGER 1994, B + C: KOENEMANN *et al.* 2003, D: SCHRAM *et al.* 1986).

Abbildung 1.9 A= Zeichnung der Kopfregion von Speleonectes tulumensis (ventrale Ansicht) FELGENHAUER et al. (1992), verändert, B = Photographie von Speleonectes tanumekes (dorsale Ansicht) NEIBER et al. (2011), verändert). Die drei Fangbeinpaare sind in grau dargestellt. A = 1. Maxilla, B = 2. Maxilla, C = Maxilliped.

1.3 Systematik

Die Klasse Remipedia gliedert sich in zwei Ordnungen: Enantiopoda Birshstein, 1960 und Nectiopoda Schram, 1986. Die systematische Einordnung der Remipedia als Klasse folgt in dieser Arbeit der englischen Literatur. Als Referenz dafür und alle anderen Crustacea wird MARTIN & DAVIS (2001) verwendet.

Die Ordnung Enantiopoda wurde von BIRSHSTEIN (1960) beschrieben. Sie basiert auf dem Fossilfund *Tesnusocaris goldichi* Brooks, 1955 der im Jahr 1939 entdeckt wurde (NEIBER *et al.* 2011). Es handelt sich dabei um ein Fossil aus dem Karbon, das in der Tesnus-Formation (Oberes Mississippium / Unteres Pennsylvanium) im westlichen Texas gefunden wurde (BROOKS 1955). Brooks schlug eine mögliche Verwandtschaft von *Tesnusocaris* mit den Brachiopoda Latreille, 1817 vor (NEIBER *et al.* 2011). Nachdem jedoch die Remipedia von YAGER (1981) beschrieben wurden, haben SCHRAM & EMERSON (1986) das Typenmaterial von *Tesnusocaris goldichi* sowie zusätzliche Neufunde erneut untersucht. Die Autoren kommen zu dem Schluss, dass einige morphologische Merkmale mit denen der rezenten Remipedia übereinstimmen. Dazu gehören der homonom segmentierte Rumpf, ein einfacher Kopfschild, große zweiästige 1. Antennen mit unterschiedlichen Segmentmustern auf den zwei Rami und große, zum Beutegreifen geeignete Mundwerkzeuge. Insgesamt sind fossile Funde von Remipedia selten (NEIBER *et al.* 2011). Neben *Tesnusocaris* wurde nur noch eine zweite Art, *Cryptocaris hootchi* Schram, 1974, gefunden. Dieses Fossil stammt aus der Mazon Creek Formation (Mittleres Pennsylvanium) in Illinois und wurde von EMERSON & SCHRAM (1991) ebenfalls den Enantiopoda zugeordnet. Für eine genauere Betrachtung der Fossilfunde der Remipedia und der Enantiopoda siehe NEIBER *et al.* (2011) oder KOENEMANN & ILIFFE (*in press*).

Die Ordnung Nectiopoda Schram, 1986, bestehend aus drei Familien, umfasst alle rezenten Arten. Die Familie der Speleonectidae Yager, 1981 ist mit 17 Arten die größte, gefolgt von den Godzilliidae Schram *et al.*, 1986 mit fünf Arten. Die kleinste Familie mit nur einem Vertreter ist die der Micropacteridae Koenemann *et al.*, 2007. Eine Übersicht über die Systematik der Remipedia zeigt Tab. 1.1. Eine Liste aller derzeit bekannten Remipedia-Arten und deren Fundorte befindet sich im Anhang C (Tab. 8.1).

Tabelle 1.1 Übersicht über das System der Remipedia, mit allen derzeit beschriebenen Arten.

Klasse Remipedia Yager, 1981 Ordnung Enantiopoda + Birshstein, 1960 Ordnung Nectiopoda Schram, 1986 Familie Speleonectidae Yager, 1981 Speleonectes Yager, 1981 Speleonectes atlantida Koenemann et al., 2010 Speleonectes beniamini Yager, 1987 Speleonectes emersoni Lorentzen et al., 2007 Speleonectes epilimnius Yager & Carpenter, 1999 Speleonectes gironensis Yager, 1994 Speleonectes kakuki Daenekas et al., 2009 Speleonectes lucayensis Yager, 1981 Speleonectes minnsi Koenemann et al., 2003 Speleonectes ondinae (Garcia-Valdecasas, 1984) Speleonectes parabenjamini Koenemann et al., 2003 Speleonectes tanumekes Koenemann et al., 2003 Speleonectes tulumensis Yager, 1987 Speleonectes fuchscockburni n. sp. Speleonectes williamsi n. sp. Lasionectes Yager & Schram, 1986 Lasionectes entrichoma Yager & Schram, 1986 Lasionectes exleyi Yager & Humphreys, 1996 Cryptocorynetes Yager, 1987 Cryptocorynetes elmorei Hazerli et al., 2009 Cryptocorynetes haptodiscus Yager, 1987 Cryptocorynetes longulus Wollermann et al., 2007 Kaloketos Koenemann et al. 2004 Kaloketos pilosus Koenemann et al., 2004 Familie Godzilliidae Schram et al., 1986 Godzillius Schram et al., 1986 Godzillius robustus Schram et al., 1986 Godzilliognomus Yager, 1989 Godzilliognomus frondosus Yager, 1989 Godzilliognomus schrami lliffe et al., 2010. Pleomothra Yager, 1989 Pleomothra apletocheles Yager, 1989 Pleomothra fragilis Koenemann et al., 2008 Familie Micropacteridae Koenemann et al., 2007 Micropacter Koenemann et al., 2007 Micropacter yagerae Koenemann et al., 2007 1.4 Stellung der Remipedia innerhalb der Crustacea Aufgrund der homonomen Rumpfsegmente sah man die Remipedia in der

Vergangenheit als ursprüngliche Crustacea an (s. Abb. 1.10). In frühen phylogenetischen Analysen, durchgeführt anhand morphologischer Merkmale, wurden die Remipedia von Vornherein als Außengruppe definiert oder erschienen basal zu allen rezenten Crustacea (SCHRAM 1986; SCHRAM & HOF 1997; NEIBER *et al.* 2011).

Abbildung 1.10 Die frühere Einordnung der Remipedia in das System der Crustacea (Ax 1999, modifiziert).

In den letzten Jahren haben verschiedene Untersuchungen zunehmend Zweifel an der basalen Stellung der Remipedia innerhalb der Crustacea geweckt. So haben FANENBRUCK & HARZSCH (2005) in vergleichenden Untersuchungen der Hirnstrukturen von Remipedia und anderen Crustacea ein Schwestergruppenverhältnis von Remipedia und Malacostraca nahegelegt. Ebenso hat eine phylogenetische Rekonstruktion rezenter und fossiler crustaceenartiger Arthropoden Hinweise auf eine Verwandtschaft der Remipedia mit den Malacostraca, den meisten Maxillopoda und einigen Phyllopoda ergeben (SCHRAM & KOENEMANN 2004). SHULTZ & REGIER (2000) haben zwei nukleäre, proteinkodierende Marker (EF-1 alpha, Pol II) für eine phylogenetische Untersuchung verwendet und ein Schwestergruppenverhältnis zwischen den Remipedia und den Insecta gefunden. STEMME et al. (2010) verglichen serotonerge Neurone verschiedener Arthropoden miteinander und brachten diese in einen phylogenetischen Zusammenhang. Ihre Ergebnisse geben Hinweise auf eine Verwandtschaft der Remipedia mit den Malacostraca und den Hexapoda. Eine molekularbiologische Arbeit von ERTAS et al. (2009) zeigte, dass das Hämocyanin der Remipedia sehr große Ähnlichkeit mit dem der Hexapoda aufweist und beide zusammen die Schwestergruppe der Malacostraca bilden. Eine phylogenetische Analyse der Arthropoden, basierend auf den molekularen Markern Cytochrom c Oxidase Untereinheit 1 (COI), 16S-rRNA und 18S-rRNA zeigte eine Verwandtschaft Remipedia und Cephalocarida Sanders, 1955, die von zusammen ein

12

Schwestergruppenverhältnis zu den Protura Silvestri, 1907 und Diplura Börner, 1904 aufweisen (KOENEMANN *et al.* 2010). REGIER *et al.* (2010) haben eine phylogenetische Analyse mit 62 proteincodierenden nukleären Genen von 75 Arthropodenarten durchgeführt und fanden ein Schwestergruppenverhältnis von Remipedia und Cephalocarida. Sie nennen diese Klade Xenocarida. Zusammen mit den Hexapoda bilden sie wiederum die neue, übergeordnete Klade Miracrustacea.

1.5 Strukturalinierungen in phylogenetischen Analysen

Der Abgleich von Sequenzen wird auch Alinierung genannt. Die Alinierung dient laut WÄGELE (2001) der Homologisierung der Nukleotidpositionen (Positionshomologie). Da nach MORRISON (2006) das Alinierungsverfahren mindestens genauso wichtig wie die Strategie für die Baumsuche selbst ist, wird in diesem Abschnitt auf die Besonderheiten der Alinierung von rRNAs in phylogenetischen Untersuchungen eingegangen.

Typisch für rRNAs ist ihre Sekundärstruktur. Einzelsträngige Nukleinsäuren sind in der Lage definierte Strukturen zu bilden. Kommen innerhalb eines Einzelstranges zwei komplementäre Sequenzen zusammen, bildet sich eine Doppelhelix aus. Enthält diese Doppelhelix Abschnitte in denen es zu einer falschen Paarbildung kommt, führt dies zu einer lokalen Destabilisierung. Jedoch werden damit innerhalb der Doppelhelix Unregelmäßigkeiten geschaffen, die für eine übergeordnete Faltung oder andere Aspekte der Funktion von Bedeutung sein können (BERG *et al.* 2003). Die Fähigkeit der RNAs zur Bildung von Sekundärstrukturen ermöglicht es ihnen mit Proteinen und DNA zu interagieren.

Das 18S-rRNA-Gen ist Bestandteil des eukaryotischen Kerngenoms. Bei seinem Produkt handelt es sich ebenfalls um eine funktionelle rRNA. Das 18S-rRNA-Gen kommt in Transkriptionseinheiten gemeinsam mit dem 28S-rRNA-Gen und dem 5,8S-rRNA-Gen vor. Diese Transkriptionseinheiten sind wiederum in Tandem-replikaten angeordnet (siehe Abbildung 1.11). Die Anzahl der Replikate im Genom kann bis zu 5000 betragen (HwANG & KIM 1999). SPEARS & ABELE (1997) konnten für *Speleonectes tulumensis* zahlreiche 18S-rRNA Pseudogene nachweisen. Pseudogene wurden früher als DNA Sequenzen definiert, welche strukturell ähnlich zu funktionierenden Genen sind, allerdings entscheidende Defekte aufweisen die es ihnen unmöglich machen funktionierende Proteine zu bilden (D'ERRICO *et al.* 2004).

Jedoch muss diese Definition erweitert werden, da es möglich ist, dass Pseudogene während der Evolution neue Eigenschaften erwerben (D'ERRICO *et al.* 2004).

Wie bereits oben erläutert sind rRNAs in der Lage Sekundärstrukturen zu bilden. Eine solche Sekundärstruktur ist durch verschiedene Einheiten gekennzeichnet. Neben doppelsträngigen Helices, welche *stems* genannt werden, finden sich auch einzelsträngige Bereiche. Diese lassen sich nach ihrer Lage in *buldge loops* (einfache Verbindungen zwischen zwei *stems*) und *hairpin loops* (bei endständiger Lage) einteilen (siehe Abb. 1.12).

Abbildung 1.11 Schematische Darstellung der Anordnung der rRNA-Gene in Replikaten. (ITS = internal transcribed spacer, ETS = external transcribed spacer, NTS = non-transcribed spacer, IGS = intergenic spacer)

Abbildung 1.12 Strukturelle Einheiten einer rRNA am Beispiel eines Abschnitts der 16S-rRNA von A. salina. A = hairpin *loop*, B = geschlossener *stem*, C = interner *stem*, D = *buldge loop*.

Einleitung

Einige Regionen der RNA-Gene sind sehr stark konserviert und sind sogar in verschiedenen Domänen vorhanden, deren gemeinsame Vorfahren Milliarden von Jahren zurückliegen (GUTELL 1996). Dies bedeutet, dass jede Mutation in diesen Regionen erhebliche Auswirkungen auf die Funktion des Ribosoms haben muss (KJER *et al.* 2009). Andere Regionen weisen auch bei nahe verwandten Taxa eine hohe Variabilität auf, was auf eine größere Toleranz von Sequenzveränderungen in diesen Abschnitten hinweist (SCHNARE 1996). Diese Bereiche liegen auf der Oberfläche des Ribosoms und sind daher wenig kritisch für dessen Funktion (BAN 2000, CATE 1999, SCHLUEZEN 2000). Abbildung 1.13 zeigt eine Übersicht über die Variabilität der verschiedenen Regionen einer kleinen Untereinheit der rRNA von *Saccharomyces cervisiae* Meyen ex E.C. Hansen, 1883.

Aufgrund dieser starken Konservierung der Sekundärstruktur von rRNAs haben einige Autoren (z.B. KJER et al. 1994; KJER 1995, 2009; HOLZENTHAL et al. 2007; WHITFIELD & KJER 2007; STOCSITS et al. 2009; V. REUMONT et al. 2009) Konzepte zum Alinieren von rRNAs in phylogenetischen Analysen entwickelt. Sie stellen Alternativen zu dem häufig verwendeten Verfahren der Alinierung durch Computerprogramme dar, welche eine Minimierung der Nukleotidveränderungen als Optimalitätskriterium verwenden. Diese alternativen Konzepte basieren auf der Annahme, dass alle Sequenzen einer multiplen Alinierung (d.h. zwei oder mehr Sequenzen, die abgeglichen werden sollen) in dieselbe angenommene konservierte Struktur gefaltet werden können. Die Sekundärstruktur ist stärker konserviert als die Primärstruktur (Nukleotide) oder in anderen Worten, die Struktur einer rRNA verändert sich deutlich langsamer als die Nukleotide aus denen sie gebildet wird. Minimierung ..Daher macht die der Veränderungen der Nukleotide als Optimalitätskriterium für eine Alinierung keinen biologischen Sinn, wenn die Struktur zwischen Organismen stark konserviert ist, die Nukleotide innerhalb dieser Struktur aber relativ variabel sind. Aus diesem Grund erscheint es sinnvoll zunächst die strukturelle Veränderung zu optimieren und dann erst die Minimierung der Nukleotidveränderung" (aus KJER et al. 2009, Übersetzung des Autors). Entscheidend ist in diesem Zusammenhang die Tatsache, dass Nukleotide in paarigen Abschnitten (Helices) keine unabhängigen Merkmale sind. Wenn es eine Substitution von einem Nukleotid in einem möglichen Stamm gibt, wird auch eine Substitution an der Position seines Bindungspartners begünstigt (KJER et al. (2009). Diese Eigenschaft kann man sich auch zur Überprüfung der Seguenzen zu Nutze

15

machen. Findet sich in einem hochkonservierten *stem*-Bereich eine Substitution bei einem der beiden Bindungspartner, mit der eine korrekte Bindung nicht möglich ist, kann man mit großer Wahrscheinlichkeit von einem Sequenzierfehler ausgehen. Daher ist es sinnvoll die Daten erneut zu überprüfen. Auf die Bedeutung von Sekundärstrukturalinierungen für die Fehlerkorrektur der Daten haben bereits GILLESPIE *et al.* (2005) hingewiesen.

Abbildung 1.13: Variabilitätskarte der kleinen Untereinheit der rRNA von Saccharomyces cervisiae. Die Farbskala gibt die Variabilität der einzelnen Nukleotidpositionen an. Lila markierte Positionen sind bei den Eukaryoten hoch konserviert, graue Positionen sind wenig oder kaum konservierte Bereiche (http://bioinformatics.psb.ugent.be/webtools/rRNA/varmaps/Scer_ssu.html).

1.6 Grundlagen der Arbeit

"Die Taxonomie jeder neu anerkannten Gruppe ist gezwungenermaßen bloß ein Katalogsystem. Um eine Ordnung der Biodiversität zu erzwingen, werden Namen lose gruppiert." (KOENEMANN *et al.* 2007c, Übersetzung des Autors).

Dieses Zitat trifft auch auf die Klasse Remipedia zu. Ihre taxonomische Einteilung basiert hauptsächlich auf morphologischen Beschreibungen aus der Zeit als nur wenige Arten bekannt waren. Seit 2002 hat sich die Anzahl der Arten verdoppelt und mit dem Hinzufügen von neuen Arten erscheinen die morphologischen Definitionen der Familien und einiger Gattungen unsicher (NEIBER *et al.* 2011)(s. Abb. 9.1). Die Diagnosis der Familie Speleonectidae beispielsweise stammt von YAGER (1981) und wurde von SCHRAM *et al.* (1986) bei der Neubeschreibung von *Speleonectes ondinae* und *Speleonectes lucayensis* verbessert. Die Autoren weisen darauf hin, dass neu beschriebene Arten und die Einführung von zwei neuen Gattungen diese ohnehin schon labile Diagnosis weiter geschwächt haben (KOENEMANN *et al.* 2007b). YAGER (1994) diskutiert in der Neubeschreibung von *Speleonectes benjamini.* Und KOENEMANN *et al.* (2007c) empfehlen *Cryptocorynetes* eine eigene Familie zuzuweisen. Eine umfassende phylogenetische Analyse der Klasse Remipedia wäre daher sinnvoll um die bereits beschriebenen Taxa zu bestätigen oder neu einzuordnen.

Es existiert bereits eine phylogenetische Analyse der Remipedia aus dem Jahr 2007 (KOENEMANN et al. 2007c). In dieser Analyse wurden alle bis dahin bekannten Remipedia-Arten eingeschlossen. Diese ausschließlich auf morphologischen Merkmalen basierende phylogenetische Untersuchung gab ebenfalls Anlass zum Zweifel an der korrekten Einordnung der neuen Arten in das bestehende System der Remipedia. Die Analyse ergab zwei sich widersprechende Phylogenien im Bezug auf die Position der Micropacteridae innerhalb der Klasse (KOENEMANN et al. 2007c). Seit der Veröffentlichung dieser Arbeit sind sieben neue Arten beschrieben worden: Cryptocorynetes longulus, Speleonectes emersoni, Pleomothra fragilis, Speleonectes kakuki, Cryptocorynetes elmorei, Speleonectes atlantida und Godzilliognomus schrami. Zusätzlich sind gerade zwei neue Artbeschreibungen (Speleonectes williamsi n. sp. und Speleonectes fuchscockburni n. sp.) in Arbeit (pers. Mitteilung S. Koenemann). Daher stellt diese phylogenetische Analyse von 2007 nicht mehr den aktuellen Stand der Forschung dar. Zudem haben bereits

Einleitung

al. (2007c) der KOENEMANN et geschrieben, dass eine Klärung Verwandtschaftsverhältnisse innerhalb der Gruppe durch ausschließlich morphologische Merkmale nicht möglich ist. Eine neue phylogenetische Analyse der Klasse Remipedia alternativ zu klassischen morphologischen Methoden scheint daher nötig. Phylogenetische Analysen, die auf molekularen Markern basieren, sind ein vielversprechender Ansatz. Die Vorgehensweise hat sich bereits bei der Untersuchung verschiedenster Crustacea-Gruppen bewährt (z.B. GIRIBET et al. 2001, STENDERUP et al. 2006, KLAUS et al. 2009, KOENEMANN et al. 2010).

Schon früher wurden genetische Untersuchungen bei Remipedien durchgeführt. So konnten KOENEMANN et al. (2009a) mit Hilfe des COI-Markers den Nachweis erbringen, dass es sich bei der von ihnen in einer anchialinen Höhle gefundenen Larve um die eines Remipedia handelte. Und KOENEMANN et al. (2009b) konnten das Vorkommen einer neuen sympatrisch lebenden Art im Corona-Lavatunnel auf durch genetische Vergleiche bestätigen. Bei keiner Lanzarote dieser Untersuchungen handelt es sich um eine phylogenetische Analyse. Jedoch wurden bereits früher Sequenzdaten von Remipedia auch in phylogenetischen Analysen verwendet. So haben SPEARS & ABELE (1997) das 18S-rRNA-Gen von Speleonectes tulumensis sequenziert und als Marker verwendet. Ebenso haben KOENEMANN et al. (2010) Sequenzdaten von Speleonectes tulumensis und Pleomothra apletocheles für eine phylogenetische Analyse verwendet. In beiden Fällen allerdings waren nur ein oder zwei Vertreter der Remipedia vorhanden, da es sich um Untersuchungen zur Klärung der Crustacea-Phylogenie auf höherer taxonomischer Ebene handelte.

Es ist relativ einfach geworden DNA-Sequenzen von Genen zu bestimmen (HUELSENBECK & RONQUIST 2001). Bei molekularen phylogenetischen Analysen entstehen daher oft Datensätze mit einer großen Menge an Merkmalen. LARGET & SIMON (1999) haben gezeigt, dass im Vergleich Bayesische Analysen deutlich rechnereffizienter als die zu der Zeit üblichen Ansätze mit Maximum-Likelihood-Verfahren inklusive Bootstrap-Analyse sind. HUELSENBECK & RONQUIST (2001) haben mit MrBayes ein Programm zur Baumsuche entwickelt das Bayesische Analysen durchführt und so den Einsatz großer Datenmengen und vieler Taxa ermöglicht. Zudem gestattet der Anstieg der Computereffizienz zusammen mit dem Ansatz der bayesischen Marcov Chain Monte Carlo (MCMC) Analyse die Nutzung komplexerer und evolutionär realistischerer Modelle. MrBayes 3 verfügt zudem über eine parallele

18

Version für Computercluster oder Multikern-Rechner (RONQUIST & HUELSENBECK 2003). NEIBER *et al.* (2011) haben die erste molekulare Phylogenie der Remipedia, bei der auch Bayesische Analysen verwendet wurden, veröffentlicht. Ihre Analyse basiert jedoch nur auf einem Marker (COI) und stellt nur ein vorläufiges Ergebnis dar.

1.7 Ziele der Arbeit

In der hier vorliegenden Arbeit wird erstmalig eine umfassende phylogenetische Analyse der Klasse Remipedia anhand mehrerer molekularer Marker (einzeln und als kombinierte Datenmatrix) mittels einer Bayesischen Analyse durchgeführt. Dazu soll von allen bisher bekannten Arten DNA isoliert und spezielle Abschnitte des mitochondrialen und des nukleären Genoms seguenziert werden. Ergänzt werden diese Daten durch bereits bestehende Sequenzen internationaler Gendatenbanken (The European Molecular Biology Laboratory (EMBL) und Genbank). Als Zielgene im Mitochondrium werden zum einen die große ribosomale Untereinheit (16S-rRNA), zum anderen die erste Untereinheit der Cytochrom c Oxidase (COI) untersucht. Im Kerngenom wird ein Gen des Histon-Komplexes 3 (Histon 3) sowie die kleine, Untereinheit (18S-rRNA) verwendet. Erstmalig ribosomale werden neben computerbasierten Verfahren auch handoptimierte Strukturalinierungen bei der Untersuchung der Phylogenie der Remipedia eingesetzt. Die Ergebnisse der phylogenetischen Untersuchung werden ausführlich im morphologischen Kontext diskutiert um gegebenenfalls eine damit verbundene Revision der Systematik dieser Gruppe durchzuführen. Eine phylogenetische Analyse der Remipedia ist auch besonders vor dem Hintergrund der disjunkten Verbreitung wünschenswert, um neue Einblicke in die phylogeographische Geschichte dieser Gruppe zu erhalten.

2 Material und Methoden

2.1 Markergene

Die hier verwendeten Markergene lassen sich in zwei Gruppen unterteilen. Die der proteinkodierenden Gene (Histon 3 und Cytochrom c Oxidase Untereinheit 1 (COI)) und die der rRNAs (16S-rRNA und 18S-rRNA). Diese haben unterschiedliche Eigenschaften in Bezug auf Bau und Funktion und insbesondere ihrer Alinierbarkeit (siehe Abschnitt Alinierung). Des Weiteren kann man die Gene bezüglich ihrer Herkunft in Kerngene (18S-rRNA und Histon 3) und mitochondriale Gene (COI und 16S-rRNA) einteilen. Wegen der unterschiedlichen Substitutionsraten der verschiedenen Gene ist eine generelle Unterscheidung, welches Gen oder welche Genregion für die Untersuchung der jeweiligen Fragestellung bzw. taxonomischen Ebene geeignet ist und welches nicht, schwierig. Abbildung. 2.1 zeigt eine Einteilung, die auf verschiedenen Erfahrungswerten beruht (Hwang & KIM 1999).

	Reich	Stamm	Klasse	Ordnung	Familie	Gattung	Art	Population
Nukleäre rDNA SSU (16 - 18S) LSU (23 - 28S)								
5,8S				•				
IGS								
ITS								
125								
Protein codierende	Gene			-				
ND1							-	
ND2					-			
COI								
COII					-			
Cytb								
Kontrollregion						-		
Genanordnung								

Abbildung 2.1 Mögliche Anwendungsbereiche einer Auswahl von molekularen Markern und Genregionen für phylogenetische Studien (Hwang & Kim 1999, verändert). SSU = *small subunit* (Kleine Untereinheit), LSU = *large subunit* (Große Untereinheit), IGS = *intergenic spacer*, ITS = *internal transcribed spacer*, ND1 = NADH Dehydrogenase Untereinheit 1, ND2 = NADH Dehydrogenase Untereinheit 2, COI = Cytochrom c Oxidase Untereinheit 1, COII = Cytochrom c Oxidase Untereinheit 2, und Cytb = Cytochrom b Oxidoreduktase.

Neben den Markern, die sich speziell für Untersuchungen auf Art- und Familienebene eignen (COI, 16S-rRNA und 18S-rRNA), wird zusätzlich noch Histon 3 als Markergen in die Untersuchung einbezogen. Histon 3 ist relativ stark konserviert und eignet sich daher für die Betrachtung höherer taxonomischer Einheiten (GIRIBET *et al.* 2001; KLAUS *et al.* 2009).

2.2 Probenmaterial

Das für die Untersuchungen benutzte Material wurde von Prof. Thomas M. Iliffe (Texas A&M University, Galveston, U.S.A) im Rahmen von Forschungsreisen in der Karibik und auf der Yucatan Halbinsel gesammelt. Sämtliche Proben wurden mit der Genehmigung der Regierungen oder zuständigen Ministerien der jeweiligen Länder gesammelt. Weitere Proben wurden von Museen und Kollegen freundlicherweise zur Verfügung gestellt. So konnten Proben für fast alle bekannten Remipedia-Taxa verwendet werden. In der Analyse fehlen lediglich *Speleonectes tanumekes, Speleonectes minnsi* und *Speleonectes epilimnius*. Für diese Arten stand kein Material bei Museen und Sammlungen zur Verfügung, auch war es den Tauchern nicht möglich neue Proben zu sammeln.

Nicht bei allen Proben war eindeutig festzustellen unter welchen Bedingungen die Tiere fixiert und gelagert wurden. Beispielsweise sind nahezu alle während der Exkursion im Jahre 2006 auf Great Abaco Island gesammelten Proben vom Autor dieser Arbeit in 4°C kaltem 96%-igem Ethanol fixiert worden. Zudem wurden die Tiere zuvor auf 4°C heruntergekühlt. Einige kleinere Tiere wurden in RNAlater RNA Stabilization Reagent (Qiagen) fixiert. Die Proben wurden nach Ankunft in Deutschland bei -20°C gelagert. Die Vorgehensweise während anderer Exkursionen ist jedoch nicht bekannt. So wurden Proben anscheinend teils in Ethanol, teils in Formol fixiert und bei Raumtemperatur gelagert.

2.3 Wahl der Außengruppe

Erst kürzlich ist eine umfassende phylogenetische Studie erschienen, die die Stellung der Remipedia im System der Crustacea untersucht hat (KOENEMANN *et al.* 2010). Sie hat eine nahe Verwandtschaft zwischen Remipedia, Diplura, Cephalocarida und Malacostraca gezeigt. Daher wird in dieser Arbeit die Zahl der Außengruppentaxa auf diese drei Gruppen reduziert. Die Auswahl der Arten innerhalb der einzelnen Großgruppen erfolgte nach einem Vergleich der Verfügbarkeit der entsprechenden COI-, 16S-rRNA- und H3-Sequenzen in Genbank. Als Außengruppenspezies wurden *Campodea tillyardi* Silvestri, 1931 (Diplura) als Vertreter der Insekten, *Hutchinsoniella macracantha* Sanders, 1955 (Cephalocarida), *Penaeus monodon* Fabricius, 1798 (Malacostraca) und *Branchinella occidentalis* Dakin, 1914 (Branchiopoda) als Vertreter der Crustacea gewählt.

2.4 Vorbereitung der Proben

Für die DNA-Extraktion wurden zwischen vier und acht Schwimmbeine verwendet. Zur Sektion der Schwimmbeine wurden die Tiere in eine alkoholgefüllte Petrischale überführt und mit Hilfe zweier steriler DuMont-Pinzetten präpariert. Dabei wurde darauf geachtet, die Extremitäten möglichst nahe am Rumpf abzutrennen, um zumindest Teile des dorsalen Beinmuskels (siehe KOENEMANN & ILIFFE *in press*) mit aus dem Rumpf herauszuziehen. Hierbei wurde behutsam gearbeitet um den Darm nicht zu beschädigen, damit Kontaminationen durch Fremd-DNA aus der Nahrung ausgeschlossen werden konnten. Die Beinmuskeln wurden nach Möglichkeit mit aus dem Rumpf gezogen, da diese leicht zu lysieren sind und so die Ausbeute der DNA erhöht werden konnte.

Konnte mit Hilfe dieser Methode keine ausreichende Menge DNA gewonnen werden und brachte auch die Erhöhung der Anzahl der eingesetzten Beine kein positives Ergebnis, wurden in Ausnahmefällen Rumpfsegmente oder ganze Tiere eingesetzt. Dabei wurde das Risiko der Verunreinigung mit Fremd-DNA bewusst in Kauf genommen. Auch die Rumpfteile mit Extremitäten wurden in alkoholgefüllten Petrischalen mittels zweier Pinzetten vom Rest des Körpers getrennt. Kleine Tiere wurden ganz zur DNA-Extraktion herangezogen.

Anschließend wurden die Gewebeteile in ein 1,5 ml Reaktionsgefäß überführt und mit einer Tischzentrifuge kurz zentrifugiert um alle Gewebeteile und vor allem den Alkohol am Gefäßboden zu sammeln. Bei allen Proben wurde anschließend mit einer Pipette möglichst viel von dem am Boden des Gefäßes befindlichen Alkohol abgesaugt.

2.5 DNA-Extraktion

Die DNA-Extraktionen erfolgten mit dem Micro-, dem Mini- oder dem Blood and Tissue DNA-Extraktionskit (Qiagen) nach den Anweisungen des Herstellers. Es wurde das Protokoll für tierische Gewebe verwendet. Als zusätzlicher Schritt wurden die Schwimmbeine jeweils nach Zugabe des Lysepuffers mit Hilfe einer sterilen Pipettenspitze am Boden des Reaktionsgefäßes zerdrückt und zerrieben um den Zugang des Lysepuffers und der Enzyme zum Gewebe zu erleichtern. Aufgrund des Exoskeletts können die Schwimmbeine als einseitig geschlossene Röhren aufgefasst werden, in die der Lysepuffer und die Proteinkinase nur von der offenen Seite her eindringen kann. Die Lyse läuft dann sehr langsam und/oder unvollständig ab. Daher ist die DNA-Extraktion erschwert und die Ausbeute ggf. gering. Ein Aufbrechen der Cuticula ist zur Erhöhung der Ausbeute der DNA-Extraktion wünschenswert.

Der Erfolg der Extraktion wurde jeweils durch Gelelektrophorese mit einem Ethidiumbromid-gefärbten 0,8 % (w/v) *high pure low-melting* Agarosegel überprüft und digital dokumentiert.

2.6 Amplifikation

Für jede Probe wurde zunächst eine Verdünnungsreihe (1:10, 1:100, 1:1000 und 1:10.000) erstellt um die optimale Konzentration für die PCR zu ermitteln. Dabei wurden die verschiedenen Verdünnungen durch eine Standard-PCR mit den Primern LCO1-1490 und HCO1-2198 amplifiziert. Die so ermittelte optimale Konzentration für jede Probe wurde anschließend in den verschiedenen PCRs verwendet. In den Tabellen 7.1 und 7.2 sind die für die unterschiedlichen Gene verwendeten Reagenzien aufgelistet, in den Tabellen 7.3 und 7.4 die PCR Parameter. Eine Übersicht der verwendeten Primer findet sich in Tabelle 7.5. Zur Aufreinigung der PCR-Produkte wurde das NucleoSpin Extract II Kit von Macherey-Nagel entsprechend der Richtlinien des Herstellers verwendet.

2.7 Sequenzierung

Die aufgereinigten PCR-Produkte wurden zum Teil vom Autor mit einem MegaBACE-1000[™]-Kapillarsequenzierer analysiert. Die bei der Sequenzierreaktion verwendeten Primer entsprachen denen in der jeweiligen zugehörigen PCR. Das Protokoll der Sequenzierreaktion befindet sich in Anhang A. Die Aufreinigung der Sequenzierreaktionen geschah im dem Fall mit Sephadex G-50 Superfine (Sigma) in HTS Multiscreenplatten. Das Protokoll findet sich im ebenfalls im Anhang A (s. Aufreinigung Sequenzierreaktion). Die Ergebnisse der jeweiligen Sequenzierungen wurden als anotierte Elektropherogramme vom Gerät ausgegeben.

Der größte Teil der Proben wurde jedoch bei der Firma Macrogen Inc. in Südkorea sequenziert. Die Ergebnisse wurden als annotierte Elektropherogramme von dem firmeneigenen Server heruntergeladen.

2.8 Sequenzaufbereitung

Zunächst wurden die einzelnen Elektropherogramme mit dem Programm SeqMan II (DNAstar Lasergene) auf Unregelmäßigkeiten und Auffälligkeiten kontrolliert. Bei schlechten Sequenzierergebnissen (kurze Sequenzen, unregelmäßige Elektropherogramme oder Artefakte, etc.) hat Macrogen selbständig eine erneute Analyse mit veränderten Parametern durchgeführt. In einigen Fällen wurde eine Resequenzierung bei Macrogen Inc. angefordert. Führte auch dies nicht zu zufriedenstellenden Ergebnissen, wurden die Amplifikation und ggf. auch die DNA-Extraktion wiederholt. In einigen Fällen musste von alternativen Proben DNA extrahiert und die Amplifikation und Sequenzierung durchgeführt werden. Gleiches gilt auch für die Sequenzen, die mit dem MegaBACE-1000[™]-Kapillarsequenzierer erstellt wurden.

Wurden bei einem Taxon mehrere Fragmente vom selben Marker amplifiziert und sequenziert wurde anschließend daraus eine Konsensussequenz erstellt. Alle gewonnenen Sequenzen wurden mit Hilfe des Basic Local Alignment Search Tool (BLAST) (ALTSCHUL *et al.* 1997) des National Center for Biotechnology Information untersucht, um mögliche Kontaminationen der Proben sowie Fremd-DNA oder Pseudo-Gene zu erkennen (siehe auch die Abschnitte Kontaminationen in der Diskussion). Eindeutig als falsch erkannte Sequenzen wurden aus dem weiteren Verfahren ausgeschlossen; in diesen Fällen wurden die PCR sowie die Sequenzierung wiederholt (ggf. auch mit Alternativmaterial).

2.9 Alinierung

Aufgrund ihrer Eigenschaften gibt es einige grundlegende Unterschiede zwischen den verwendeten Markern im Bezug auf ihre Alinierbarkeit. Zwischen den hier verwendeten Markern kann man proteinkodierende (H3 und COI) und nichtproteinkodierende Gene (16S-rRNA) unterscheiden. In dieser Arbeit wurde für die proteinkodierenden Gene (H3 und COI) ein computerbasiertes Verfahren, für die 16S-rRNA Sequenzen ein computerbasiertes Verfahren mit anschließender manueller Optimierung gewählt (siehe unten).

2.9.1 Alinierung der proteinkodierenden Gene

Zunächst wurden alle Datensätze mit MUSCLE (EDGAR 2004) aliniert. Es wurden dabei die voreingestellten Parameter verwendet. Diese Alinierungen wurden auf Auffälligkeiten untersucht, welche ggf. in den Elektropherogrammen kontrolliert und korrigiert wurden. Diese veränderten Seguenzen wurden in die Matrix eingefügt und das Verfahren wiederholt. Bei der endgültigen, alinierten Matrix wurden per Hand die Enden getrimmt. d.h. die Überhänge. die zum arößten Teil keine Sequenzinformationen trugen wurden gelöscht. Dabei wurde versucht einen Kompromiss zwischen maximaler Länge des für die Analysen angestrebten Bereichs und der Minimierung von Sequenzbereichen ohne Information zu erreichen. Eine Übersicht der durchgeführten Schritte findet sich in Abbildung 2.2.

Zur Überprüfung der Sequenzen der proteinkodierenden Gene wurden die DNA-Sequenzen in Aminosäure-Sequenzen übersetzt. Da Insertionen oder Deletionen von ein oder zwei Nukleotiden zu Leserasterverschiebungen (*frame shifts*) führen, konnten diese anschließend leicht identifiziert werden, da sich die gesamte Aminosäure-Sequenz nach den Insertionen und Deletionen komplett verändert. Insertionen oder Deletionen von drei Nukleotiden führen zwar nicht zu einer Leserasterverschiebung, jedoch ist auch eine solche Veränderung anhand einer zusätzlichen oder fehlenden Aminosäure leicht zu erkennen. Waren entsprechende Auffälligkeiten sichtbar, wurde das bzw. die entsprechenden Elektropherogramme erneut untersucht und gegebenenfalls korrigiert. Die dadurch entstandene neue Sequenz wurde statt der alten eingesetzt und das gesamte Verfahren wiederholt (siehe Abb. 2.2). Konnten keine offensichtlichen Fehler in den Elektropherogrammen festgestellt werden, wurden die Sequenzierung oder sogar die PCR und die Sequenzierung wiederholt.

2.9.2 Manuelle Alinierung

Die Alinierungen der rRNA-Gene in dieser Arbeit wurden in folgender Art und Weise durchgeführt: Dem ungekürzten 16S-rRNA-Datensatz wurde zunächst die Sequenz von *Artemia franciscana* Kelloggs, 1906 (GenBank: X69067.1) als erstes Taxon in der Matrix zugefügt. Mit diesem Datensatz wurde dann eine computergestützte Alinierung mit dem Programm MUSCLE (EDGAR 2004) erstellt. Diese Alinierung wurde anschließend als Nexus-Datei mit der Darstellungsoption *interleaved* (120 Zeichen pro Zeile) exportiert.

Die Alinierung wurde mit Microsoft Word 2003 geöffnet und die Schriftart Courier New + Fett gewählt. Mit Hilfe der Suchen-und-Ersetzen-Funktion konnten die Buchstaben, welche die Basen darstellen, umgefärbt werden: A in Grün, C in Blau, T wurde in U umgewandelt und Rot gefärbt. G blieb Schwarz. Dieser Schritt erleichterte die Erkennung von Gemeinsamkeiten der verschiedenen Sequenzen, Muster und Motive. Als nächster Schritt wurden die graphischen Darstellungen der 16S-rRNA von *Artemia salina* Linnaeus, 1758 (d.233.m.A.salina.pdf und d.235.m.A.salina.pdf, s. Abb. 7.1 und 7.2) von der Internetseite The Comparative RNA Web Site heruntergeladen. Diese dienten als Grundlage für die manuelle Alinierung. Für die in die Alinierung eingebaute Sequenz von *Artemia franciscana* war keine graphische Darstellung der Sekundärstruktur verfügbar. Es wurde daher eine Darstellung der Sekundärstruktur der Schwesterart *Artemia salina* verwendet.

Mit der Such-Funktion von Microsoft Word 2003 wurde nach Motiven gesucht, insbesondere nach *stems*. War das entsprechende Motiv in der *Artemia*-Sequenz gefunden, wurde es markiert und das Gegenstück dazu gesucht. Es wurde zwischen drei Arten unterschieden: geschlossener *stem*, gekennzeichnet durch runde Klammern (), der dazugehörige *loop* gekennzeichnet durch eckige Klammern [], und interne *stems*, gekennzeichnet durch senkrechte Striche ||. Sonstige einzelsträngige Bereiche wurden nicht speziell gekennzeichnet. Die hier erlaubten Basenpaarungen waren: A - U, U - A, G - C, C - G, U - G und G - U. Diese Festlegung geschah vom Autor in Anlehnung an KJER (1995).

Als ein einfaches Beispiel soll die *stem/loop*-Region 65 der 16S-rRNA dienen (siehe Abb. 2.3 A). Der 5'-Teil von *stem* 65 besteht aus UGU, das Gegenstück dazu aus ACA. Es befindet sich 9 Basen entfernt in Richtung 3'. Also wurden alle von der Suchfunktion gefundenen Motive mit UGU darauf überprüft, ob sich auch ein ACA-Motiv nach 9 Basen Richtung 3' findet. War dies der Fall, wurde 5' von UCU eine runde Klammer eingefügt und 3' eine Eckige. 5' von ACA wurde die eckige Klammer geschlossen und 3' von ACA die Runde. Darüber wurde als Bezeichnung die Nummer 65 geschrieben. Auf diese Weise wurde die Sequenz in zwei Teile unterteilt, die Sequenz 5' und die Sequenz 3' von Region 65 (s. Abb. 2.3 B). Fanden sich mehrere solche Kombinationen, wurde eine benachbarte Struktur (z.B. *stem* 66) gesucht um die korrekte Zuordnung von *stem* 65 zu verifizieren.

Β

Abbildung 2.3 Prinzip der Handalinierung. A = Umsetzung von graphischen Information der RNA-Karte von *Artemia* auf die Strukturalinierung in Word. B = Die Sequenzen der Alinierung werden mit jeder neuen Zuordnung von Strukturen in Teilbereiche zerlegt, die die Zuordnung neuer Strukturen erleichtern. So muss zwischen stem 65 und stem 68 die stems 66 und 67 liegen.

Auf diese Weise wurden immer neue Motive gesucht und die Gesamtsequenz in immer kleinere Einheiten unterteilt. Konnte ein Motiv nicht gefunden werden, wurde ein anderes herangezogen, solange bis alle *stem*-Bereiche getestet waren. Mit der Zunahme der zugeordneten Region wurden die Zwischenregionen immer weiter differenziert. Im nächsten Schritt wurde geprüft ob sich die der Artemia-rRNA zugeordneten Motive auch in den anderen Sequenzen (Remipedia und Außengruppe) der voralinierten 16S-Matrix finden. Waren die Sequenzen identisch, konnte die Strukturinformation einfach übertragen werden, waren sie nicht identisch mussten die Strukturinformationen neu zugeordnet werden. Dies geschah auf zwei Arten:

- Mit dem webbasierten Programm Mfold (ZUKER 2003). Der entsprechende Abschnitt der Sequenz aus der Alinierung wurde in das Programm kopiert. Mfold schlug eine oder mehrere verschiedene Faltungen vor. Diese wurden mit den Faltungen der gleichen Abschnitte der anderen Remipedia verglichen. Die Faltung mit den größten Übereinstimmungen wurde ausgewählt.
- 2. Per Hand. Dabei wurde eine Zuordnung angestrebt, deren Struktur eine möglichst große Übereinstimmung mit der von Artemia salina aufweist.

Auf diese Art wurde jedes Nukleotid der gesamten Alinierung überprüft. Zur Überprüfung der Zuordnungen der Sequenzabschnitte zu den Strukturen wurde die Alinierung anschließend in eine bestehende Strukturalinierung integriert, die freundlicherweise von Karl Kjer (Rutgers University, Dept. Entomology, New Brunswick, USA) zur Verfügung gestellt wurde. Es handelt sich um eine Matrix aus 12S, 16S und einer transfer-RNA mit 123 Taxa, darunter auch Crustacea wie *Pagurus* Fabricius, 1775 und *Artemia* Leach, 1819, aber auch Insekten wie *Campodea* (Diplura).

Abschnitte, die keiner Struktur (*stem/loop*) zugeordnet werden konnten, wurden in der Alinierung markiert. Diese wurden per Hand optimiert, indem nach gemeinsamen Motiven aller Remipedia-Sequenzen gesucht und diese geordnet wurden. Diese Arbeit wurde unabhängig voneinander von drei verschiedenen Mitarbeitern der Arbeitsgruppe Könemann (Institut für Tierökologie und Zellbiologie, Stiftung Tierärztliche Hochschule Hannover) durchgeführt und die Ergebnisse in einer finalen Alinierung zusammengetragen.

Zum Schluss wurde die Alinierung in ein Nexus-Format übertragen und die Strukturinformation in der Punkt-Klammer-Schreibweise zugefügt. Die Leerzeichen, Klammern und Striche, die während des manuellen Bearbeitens eingefügt worden sind, wurden gelöscht und die Bindestriche (*gaps*) die sich außerhalb der sequenzierten Abschnitte befanden, durch Fragezeichen ersetzt. Fragezeichen stehen für unbekannte Nukleotide, Bindestriche für Deletionen. Die am Anfang eingefügte *Artemia*-Sequenz wurde wieder entfernt, da sie nur als Leitsequenz für die manuelle Alinierung diente.

Die Alinierung der 18S-rRNA-Sequenzen geschah nach dem gleichen Prinzip wie bei den 16S-rRNA-Sequenzen. Zur Vereinfachung wurde für die grobe Einteilung eine bereits bestehende Strukturalinierung von Karl Kjer (Insect 18S alignment_.rtf, http://www.mosquito.rutgers.edu/pdata.htm) eingesetzt. Als graphische Darstellung wurde die Sekundärstruktur von *Daphnia pulex* (Genbank Nummer AF014011) der European Ribosomal RNA Database verwendet (s. Abb. 7.3) verwendet. Die für die Strukturalinierung verwendeten Sequenzen aus Genbank sind in Tab 2.1 aufgelistet.

Artname	Genbank Nummer
Campodea tillyardi	AF173234.1
Semibalanus balanoides	EU370426.1
Calanus finmarchicus	AF367719.1
Penaeus semisulcatus	DQ079766.1
Paranebalia longipes	EF189630.1
Argulus nobilis	M27187.1
Hutchinsoniella macrocantha	L81935.1
Branchinella occidentalis	AY744888.1
Speleonectes tulumensis	L81936.1
Speleonectes gironensis	AF370794.1
Pleomothra apletocheles	GU067681

Tabelle 2.1 Liste der in der 18S-rRNA-Strukturalinierung eingesetzten Genbank-Sequenzen

2.10 Analysen

Es wurden fünf verschiedene Analysen durchgeführt (s. Tabelle 2.2). Die Gene wurden zunächst einzeln analysiert. Dazu wurden Matrizen der einzelnen Marker erstellt und die Enden getrimmt. Diese Matrizen wurden mit Modeltest v2 (NYLANDER 2004) analysiert und das nach dem "Akaike Information Criterion" AIC (AKAIKE 1974) empfohlene Substitutionsmodell ausgewählt. Parallel dazu wurden weitere Substitutionsmodelle erstellt (s. Abb. 2.4). Die verwendeten Substitutionsmodelle finden sich in den MrBayes-Blöcken im Anhang A. Die Bayesischen Analysen wurden mit dem Programm MrBayes 3.1.2 (HUELSENBECK & RONQUIST 2001) durchgeführt.

Tabelle 2.2 Unterschiede der MrBayes-Parameter der verschiedenen Analysen (ntax = Anzahl Taxa, nchar =Anzahl Merkmale, ngen = Anzahl Generationen, nchain = Anzahl der Marcov-Ketten).

Analyse	Gen(e)	ntax	nchar	ngen (Mio.)	nchains	
Lauf 1	COI	27	657	20	10	
Lauf 2	16S	25	694	20	10	
Lauf 3	H3	27	328	20	10	
Lauf 4	COI, 16S, H3	30	1679	20	10	
Lauf 5	COI	43	657	10	4	
Lauf 6	COI, 16S, H3	30	1679	20	10	
Lauf 7	COI, 16S, H3	30	1679	20	10	

Abbildung 2.4 Fließschema Erstellung Gesamtmatrix

Die so erhaltenen Bäume wurden hinsichtlich ihrer Auflösung und Stabilität bewertet. Die besten Kombinationen von Matrix und Substitutionsmodell wurden für die einzelnen Gene ausgewählt, in eine Gesamtmatrix integriert und analysiert.

Die BLAST-Ergebnisse der 16S-rRNA-Sequenz von *Speleonectes gironensis* waren nicht eindeutig. Daher wurden zwei alternative Läufe durchgeführt. In der Matrix von Lauf 4 ist die 16S-rRNA-Sequenz von *S. gironensis* enthalten, in der Matrix von Lauf 6 wurde sie ausgeschlossen. Da es ebenso Zweifel an der Korrektheit der COI-Sequenz von *Pleomothra fragilis* gab (siehe Diskussion Genetische Distanzen, Kapitel 4.3), wurde diese gemeinsam mit der 16S-rRNA-Sequenz von *Speleonectes gironensis* aus der Gesamtmatrix von Lauf 7 entfernt (Lauf 7). Sämtliche Parameter der beiden Analysen entsprachen dabei denen von Lauf 4. Die in allen Analysen verwendeten Parameter sind in der Tabelle 2.3 dargestellt. Die Substitutionsmodelle und *charactersets* finden sich in den MrBayes-Blöcken im Anhang A.

Tabelle 2.3 Gemeinsamer MrBayes-Block

seed=1234	temp=0.20
swapseed=1234	reweight=(0,0)
printfreq=1000	printall=yes
samplefreq=1000	printmax=8
nruns=2	mcmcdiagn=yes
swapfreq=1	diagnfreq=10000
nswaps=1	minpartfreq=0.1
savebrlens=yes	allchains=yes
-	allcomps=no

relburnin=yes burnin=0 burninfrac=0.25 stoprule=no stopval=0.01 startingtree=random nperts=0 ordertaxa=no;

2.11 Genetische Distanz

Die genetischen Distanzen des umfassenderen COI-Datensatzes wurden mit dem Programm MEGA 4.0.2 (TAMURA *et al.* 2007) ermittelt. Die Zusammenfassung der Parameter ist in Tabelle 2.4 dargestellt.

Tabelle 2.4 Zusammenfassung der Analysenparameter der genetischen Distanz.

Data Type: Analysis: Compute:	Nucleotide (Coding) Pairwise distance calculation Distance only
Include Sites	
Gap/Missing Data:	Complete Deletion
Codon Positions:	1 st +2 nd +3 rd +Noncoding
Substitution Model	-
Model:	Nucleotide: p-distance
Substitution to Include:	d: Transitions + Transversion
Pattern among Lineages:	Same (Homogeneous)
Rates among Sites:	Uniform rates

3 Ergebnisse

3.1 Sequenzen

Im Rahmen dieses Projekts konnten für eine Vielzahl von Arten der Remipedia zahlreiche neue Sequenzen der Gene Cytochrom Oxidase Untereinheit 1 (COI), 16S-rRNA und Histon Komplex 3) generiert werden (siehe Tab. 3.1).

Tabelle3.1GenerierteRemipedia-SequenzennachArtenaufgelistet.DieZahlenbezeichnendensequenziertenAbschnitt imBezug auf die jeweiligeReferenzsequenz(COI und 16S = S. tulumensis (GenbankNummerNC_005938)H3 = Homo sapiensNM_003493 (GenbankNummer).InKlammernnebendemNamen ist die Gesamtlänge (inBasenpaaren) derReferenzsequenzangegeben.

Art	Probennummer	COI ((1539)	H3 (H3 (411)		16S (1333)	
G. robustus	03-19	58	638	24	351	152	1216	
	AB-06-RS1	44	702	-	-	-	-	
Gn. frondosus	06-048-4	63	656	-	-	232	1196	
	06-047-8	-	-	24	351	-	-	
	06-50	-	-	24	351	-	-	
	AB06-SS-4.1	-	-	-	-	609	1196	
Gn. schrami	07-048-2	85	702	-	-	662	1246	
	07-49	-	-	24	351	-	-	
	BH-1 Eleuthera	85	702	-	-	-	-	
P. apletocheles	AB06-DC-5.1	20	1121	24	351	-	-	
	AB06-RS-2	101	702	-	-	638	1250	
	AB06-SS-2	90	661	-	-	697	1113	
	AB-06-L2	88	681	-	-	-	-	
P. fragilis	BH_EC	126	702	-	-	-	-	
P. n. sp.	07-038	44	702	24	351	662	1158	
C. elmorei	07-035B	44	702	24	351	231	1196	
C. haptodiscus	AB06-SS-1.1	20	674	24	351	130	1230	
C. longulus	C3-04-23	69	667	24	351	-	-	
	04-20	-	-	24	351	-	-	
L. entrichoma	03-16	223	684	24	351	648	1229	
L. exleyi	BES-10169	44	1066	24	351	136	1241	

Fortsetzung Tabelle 3.1

Art	Probennummer	COI (1539)		H3 (411)		16S (16S (1333)	
S. atlantida	LZ 2.3	95	702	-	-	169	1173	
	LZ 2.1	-	-	24	351	169	1132	
	Dzul 9999-GBIF	-	-	-	-	334	1132	
	LZ 1.1	-	-	-	-	294	1123	
S. benjamini	06-047-2	88	702	24	351	133	1209	
	06-046-1	44	702	24	351	-	-	
	04-23					606	1209	
	AB06-SS-3	46	702	-	-	620	1209	
	AB06-TM-1	44	1313	-	-	619	1209	
S. emersoni	05-020-01	85	702	-	-	-	-	
	05-020-02	44	702	-	-	-	-	
	05-022-01	66	702	24	351	153	1229	
	05-022-02	44	702	-	-	-	-	
	05-022-03	88	702	-	-	-	-	
S. fuchscockburni	09-005	85	702	24	351	-	-	
S. gironensis		-	-	24	351	668	1210	
S. kakuki	04-021-1	44	702	-	-	604	1234	
	04-021-2	44	637	-	-	-	-	
	BH-330	-	-	24	351	136	1234	
S. lucayensis	AB06-LR-1	44	702	24	351	657	1215	
S. n. sp. 2	AB-06-047-6	85	702	-	-	659	1082	
S. n. sp. 4	AB06-DC-1.1	217	943	-	-	649	1235	
S. ondinae	LZ 1.2	36	707	24	351	165	1171	
S. parabenjamini	04-023_SK	-	-	24	351	661	1068	
S. tulumensis		-	-	24	351	-	-	
S. cf. tulumensis	YUC-04-4C	63	1266	-	-	-	-	
	28 VIII 03	63	1266	-	-	-	-	
	CC-044B2	62	1266	-	-	-	-	
	06-41H	-	-	24	351	661	1084	
S. williamsi	08-033-4	44	702	24	351	713	1196	
M. yagerae	03-18	-	-	24	351	-	-	

Zusätzlich konnten im Rahmen dieses Projekts für einige Remipedienarten Abschnitte des 18S-rRNA-Gens (*Godzillius robustus, Cryptocorynetes elmorei, Cryptocorynetes haptodiscus, Lasionectes exleyi*) oder sogar das gesamte Gen (*Pleomothra apletocheles,* Genbank-Nummer GU067681) amplifiziert und sequenziert werden (s. Strukturalinierung 18S-rRNA, Kapitel 7.6).

3.2 Phylogenetische Topologien

3.2.1 Lauf 1 (COI)

In Lauf 1 wurde nur COI als Marker verwendet und dabei für jede Codonposition ein individuelles Substitutionsmodell definiert (siehe Anhang A Genetik). Das Ergebnis zeigt einen Konsensusbaum mit hoher Auflösung (siehe Abb. 3.1 A). Lediglich an der Basis findet man eine Polytomie bestehend aus einer Klade mit allen Remipedia (pp-Wert = 1,00), *Campodea tillyardi* (als Vertreter der Hexapoda) und einer Klade bestehend aus weiteren Vertretern der Außengruppe [(*Penaeus monodon* + *Hutchinsoniella macracantha*) + *Branchinella occidentalis*]. Eine zweite Polytomie findet sich an der Basis der *Speleonectes*-Klade. Die Remipedia selbst erscheinen monophyletisch. Sie teilen sich in zwei Gruppen. An der Basis befindet sich eine kleinere Gruppe bestehend aus [*Godzillius robustus* + (*Godzilliognomus frondosus* + *Godzilliognomus schrami*)] (Abb. 3.1 AA). Die Unterstützungswerte sind mit 0,91 und 1,00 sehr hoch.

Die größere Klade umfasst die Speleonectiden sowie *Pleomothra apletocheles* und *Pleomothra fragilis* Koenemann *et al.*, 2008. Fast alle Knoten in dieser Klade zeigen hohe Unterstützungswerte zwischen 0,83 und 1,00. An der Basis dieser großen Klade steht einzeln *Lasionectes exleyi*.

Anschließend zeigt sich die bereits oben erwähnte Polytomie. Sie besteht aus *Speleonectes benjamini*, der Klade der *Cryptocorynetes*-Arten und einer großen Gruppe von Speleonectiden, inklusive der *Pleomothra*-Arten. Die Gattung *Cryptocorynetes* ist monophyletisch (Abb. 3.1 AF). An der Basis der großen Gruppe steht eine Klade bestehend aus [(*S. atlantida* + *S. ondinae*) + (*S. emersoni* + *S. williamsi*)] (Abb. 3.1 AE). Weiter verzweigt sich die große Gruppe in zwei Hauptkladen (Kladen C und D, Abb. 3.1). Dieser Knoten hat nur einen geringen Unterstützungswert von 0,63. In Klade C bilden die Vertreter von der Yucatan-Halbinsel [(*Speleonectes tulumensis* + *Speleonectes cf. tulumensis*) + *Speleonectes fuchscockburni*] eine eigene Gruppe (Abb. 3.1 AC). Klade D beinhaltet [*L. entrichoma* + (*S. kakuki* + *S. lucayensis*)]. An deren Basis steht *S. gironensis* (Abb. 3.1 AD). Daneben befinden sich die beiden unbeschriebenen Arten gemeinsam im Schwestergruppenverhältnis zu der monophyletischen Gattung *Pleomothra* (Abb.

3.1 AB). *Micropacter yagerae* sowie *Speleonectes parabenjamini* sind in dieser Analyse nicht vertreten, da für diese Arten keine Sequenz generiert werden konnte.

Abbildung 3.1 A = Konsensusbaum Lauf 1 (COI) und B = Konsensusbaum Lauf 2 (16S). An den Knoten sind jeweils die pp-Werte angegeben.

3.2.2 Lauf 2 (16S)

In Lauf 2 wurde nur ein Marker (16S) mit einem GTR+G+I Modell verwendet. Bei dem resultierenden Konsensusbaum fällt als erstes die polytomische Außengruppe auf. Innerhalb der Klade der Remipedia stehen erneut die Godzilliidae (ohne *Pleomothra*) an der Basis (Abb. 3.1 BA). Die Gattung *Pleomothra* ist wieder monophyletisch. Auch die Klade B, bestehend aus [*L. entrichoma* + (*S. kakuki* + *S. lucayensis*)], ist vorhanden (Abb. 3.1 BB), ebenso die Klade D (*S. atlantida* + *S. ondinae*), die wiederum im Schwestergruppenverhältnis zu (*S. emersoni* + *S. williamsi*) (Abb. 3.1 BD). Folgende Punkte unterscheiden sich von Lauf 1:

- Die Unterstützungswerte sind niedriger.
- Lasionectes exleyi steht nicht mehr allein an der Basis der Speleonectidae (plus Pleomothra), sondern ist nun das Schwestertaxon der Gattung *Cryptocorynetes*. Allerdings ist die Unterstützung für diesen Knoten mit 0,54 nur sehr gering. Dieser Klade stehen (*S. benjamini* + *S. parabenjamini*) gegenüber, deren gemeinsamer Knoten auch nur mit 0,54 unterstützt wird. Insgesamt sind die pp-Werte relativ gering (Abb. 3.1 BF).
- Speleonectes fuchscockburni, S. gironensis und Cryptocorynetes longulus fehlen in dieser Analyse, da f
 ür diese Arten keine Sequenz generiert werden konnte.

3.2.3 Lauf 3 (H3)

Es handelt sich bei Lauf 3 um eine Analyse mit nur einem Marker (H3). Der Konsensusbaum ist relativ schlecht aufgelöst. Es finden sich mehrere Polytomien, Unterstützungswerte sind relativ niedrig. Die Remipedia sind die nicht monophyletisch. Die Godzilliidae (ohne Pleomothra) (Abb. 3.2 A) stehen nicht mehr an der Basis der Remipedia, sondern bilden eine Polytomie mit den Vertretern der monophyletischen Gattung Cryptocorynetes (Abb. 3.2 B) sowie den morphologisch sehr ähnlichen Arten S. benjamini und S. parabenjamini (Abb. 3.2 c). Die monophyletischen Pleomothra-Arten bilden mit der Gruppe [L. entrichoma + (S. kakuki + S. lucayensis)] sowie den Arten der Yucatan-Halbinsel eine Polytomie (Abb. 3.2 D). Speleonectes ondinae und S. atlantida sind Schwestertaxa. Speleonectes gironensis bildet zusammen mit Hutchinsoniella macracantha und einer großen Klade mit allen übrigen Remipedia eine Polytomie. *Micropacter yagerae* befindet sich als Schwestertaxon von Branchinella occidentalis in der Außengruppe.

Ergebnisse

Abbildung 3.2 Konsensusbaum Lauf 3 (H3). An den Knoten sind jeweils die pp-Werte angegeben.

3.2.4 Lauf 4 (COI, 16S und H3)

In Lauf 4 wurden die drei Marker COI, H3 und 16S in einer Matrix zusammengefasst und analysiert. Das Ergebnis ist ein Baum mit hoher Auflösung (siehe Abb. 3.3). Lediglich an der Basis befindet sich eine Polytomie bestehend aus einer Klade mit Remipedia, Campodea tillvardi (als Vertreter der Hexapoda), und einer Klade bestehend aus den Vertretern der Außengruppe [(Penaeus monodon + Hutchinsoniella macracantha) + Branchinella occidentalis]. Die Remipedia selbst erscheinen monophyletisch. An ihrer Basis steht einzeln als Schwestertaxon zu allen übrigen Remipedia *Micropacter yagerae*. Diese Position von *M. yagerae* wird jedoch durch einen pp-Wert von 0,61 nur gering unterstützt. Danach folgt eine Aufteilung in zwei Hauptgruppen (Klade A, sowie Kladen B-F), der pp-Wert hierbei ist 1,00. Eine der beiden Hauptgruppen ist eine kleinere Klade (Abb. 3.3 A) bestehend aus [Godzillius robustus + (Godzilliognomus frondosus + Godzilliognomus schrami)]. Fast alle Knoten dieser Gruppe zeigen maximale Unterstützung. Die große Klade auf der anderen Seite umfasst alle Speleonectiden sowie Pleomothra apletocheles und Pleomothra fragilis. Alle Knoten in dieser Klade zeigen hohe Unterstützungswerte zwischen 0,91 und 1,00. An der Basis dieser großen Klade steht einzeln Lasionectes exleyi. Im Folgenden findet man zunächst eine Aufspaltung in eine kleinere Gruppe (Abb. 3.3 F), die (Speleonectes benjamini + Speleonectes parabenjamini) als Schwestergruppe zu den Vertretern der Gattung Cryptocorynetes beinhaltet und eine größere Gruppe, die sich wiederum in zwei Hauptgruppen teilt. In der ersten Hauptgruppe erscheinen basal als Klade die beiden noch nicht beschriebenen Speleonectes-Arten. Ihre Schwestergruppe bilden einerseits die monophyletische Gruppe der Pleomothra-Arten (Abb. 3.3 B), andererseits eine Klade mit [Lasionectes entrichoma + (Speleonectes kakuki + Speleonectes lucayensis)] (Abb. 3.3 c). In der anderen Hauptgruppe bilden die Vertreter von der Yucatan Halbinsel [(Speleonectes tulumensis + Speleonectes cf. tulumensis) + Speleonectes fuchscockburni] eine eigene Klade (Abb. 3.3 E). Diese hat einen pp-Wert von 1,00. Allerdings ist der Wert am Knoten von (S. tulumensis + S. cf. tulumensis) nur 0,63. Ihnen gegenüber steht eine Klade bestehend aus [Speleonectes gironensis + ((Speleonectes atlantida + Speleonectes ondinae) + (Speleonectes emersoni + Speleonectes williamsi)] (siehe Abb. 3.3 D).

Ergebnisse

Abbildung 3.3 Konsensusbaum Lauf 4, 6 und 7. Da sich die Bäume der drei Läufe (bis auf die Außengruppe und das Fehlen von *P. fragilis* in Lauf 7) nur in ihren pp-Werten unterscheiden, wurden sie in einer Abbildung zusammengefasst. An den Knoten sind jeweils die pp-Werte in folgender Reihenfolge: Lauf 4/Lauf 6/Lauf 7 angegeben. Waren bei allen drei Analysen die Werte gleich, ist nur ein Wert angegeben. Das X bei *Pleomothra* signalisiert, dass dieser Knoten in der Analyse Lauf 7 nicht existierte. Die polytomische Außengruppe von Lauf 6 und 7 wurde aus Gründen der Übersichtlichkeit weggelassen.

3.2.5 Lauf 5 (COI)

In Lauf 5 wurde ebenfalls nur COI als Marker verwendet, im Unterschied zu Lauf 1 sind hier jedoch alle im Rahmen dieser Arbeit generierten COI Sequenzen der Remipedia eingesetzt worden. Daher sind manche Taxa mit mehreren Sequenzen vertreten, manche aber auch nur mit einer Sequenz. Das Ziel war, für möglichst viele Arten Proben mehrerer Standorte zu analysieren, um ggf. Hinweise auf die Verbreitung und / oder das Vorkommen kryptischer Arten zu finden. Es wurde das Codonmodell für Invertebratenmitochondrien verwendet.

Die Topologien der Konsensusbäume von Lauf 1 und Lauf 5 sind nahezu identisch. Lediglich in der Außengruppe bilden *Penaeus monodon* und *Branchinella occidentalis* eine Schwestergruppe, bei Lauf 1 sind es *Penaeus monodon* und *Hutchinsoniella macracantha*. Außerdem ist die Polytomie von Lauf 1, die unter anderem *Cryptocorynetes*-Arten und *S. benjamini* beinhaltet, in Lauf 5 aufgelöst (siehe Abbildung 3.4). Hier bilden *S. benjamini* und die *Cryptocorynetes*-Vertreter eine eigene Klade (E), allerdings ist der Unterstützungswert sehr gering (0,59). Deutlich gestiegen hingegen ist der pp-Wert für den Knoten der Klade, die sich aus den Kladen B, C und D zusammensetzt. In Lauf 5 ist er 0,92 gegenüber 0,63 von Lauf 1. Auch der Wert der *Pleomothra-Speleonectes n. sp.*-Klade steigt von 0,83 (Lauf 1) auf 0,96 (Lauf 5). Insgesamt sind die Unterstützungswerte für den Konsensusbaum sehr hoch.

Der Baum von Lauf 5 ist dem aus Lauf 4 sehr ähnlich. Auch hier sind die Remipedia monophyletisch und genau wie in Lauf 4 spalten sich die Remipedia in die Godzilliiden (ohne *Pleomothra*) und die übrigen Speleonectiden (sowie *Pleomothra*). An der Basis dieser Klade steht ebenfalls *L. exleyi* als einzelne Art.

Folgende Unterschiede zeigen sich im Vergleich zum Lauf 4:

- Innerhalb der Außengruppe gibt es einen Wechsel: war zuvor Penaeus näher mit Hutchinsoniella verwandt, bildet er nun eine Klade mit Branchinella.
- Micropacter yagerae und S. parabenjamini sind nicht vertreten.
- Die Pleomothra-Arten (Abb. 3.4 B) haben hier als Schwestergruppe die bisher nicht beschriebenen Speleonectes-Arten (S. n. sp. 2 + S. n. sp. 4). Ihnen gegenüber stehen nun die S. tulumensis-Vertreter sowie S.

fuchscockburni, die sich zuvor auf dem Ast der zweiten großen Speleonectidengruppe (Abb. 3.4 E und D) befanden.

- Speleonectes gironensis ist nicht mehr in der Klade [(S. ondinae + S. atlantida) + (S. emersoni + S. williamsi)] vertreten, sondern ist jetzt das Schwestertaxon zur Gruppe [L. entrichoma + (S. kakuki + S. lucayensis)]. Diese bilden eine eigene Klade innerhalb der Speleonectiden (Abb. 3.4 D).
- Die Klade aus den Cryptocorynetes-Arten und Speleonectes benjamini findet sich auch hier. Allerdings fehlt im Vergleich zu Lauf 4 S. parabenjamini und der Knoten wird mit 0,59 nur wenig unterstützt.

Abbildung 3.4 Konsensusbaum Lauf 5. An den Knoten sind jeweils die pp-Werte angegeben.

3.2.6 Läufe 6 + 7

Für einen besseren, direkten Vergleich wurden die Abbildungen der Konsensusbäume von den Läufen 4, 6 und 7 zusammengelegt (siehe Abb. 3.3).

Das Ergebnis von Lauf 6 (ohne 16S-rRNA-Sequenz von *S. gironensis*) entsprach in der Topologie genau dem vorangegangenen Baum aus Lauf 4, jedoch kollabierte hier die Außengruppe. Bezüglich der Unterstützungswerte zeigt sich in den meisten Fällen eine Verbesserung, allerdings sind auch einige wenige Knoten schlechter unterstützt (siehe Abb. 3.3).

Der Konsensusbaum von Lauf 7 (ohne die 16S-rRNA-Sequenz von *Speleonectes gironensis* und die COI-Sequenz von *Pleomothra fragilis*) entsprach dem von Lauf 6 (jedoch fehlte der Ast von *P. fragilis*). Nur ein pp-Wert stieg bei der *S. tulumensis*-Klade von 0,64 auf 0,65 (siehe Abb. 3.3).

3.3 Genetische Distanzen

Für den COI-Datensatz von Lauf 5 wurden die p-Distanzen ermittelt. Die Höchstwerte innerhalb der Remipedia liegen bei 0,29 (z.B. zwischen *Speleonectes benjamini* und *Pleomothra apletocheles*), der niedrigste interspezifische Wert bei 0,13 zwischen *Cryptocorynetes haptodiscus* und *Cryptocorynetes longulus*. Die intraspezifischen p-Distanzen liegen meist bei 0,00 und 0,01. Lediglich bei den beiden Proben von *G. robustus* lässt sich höhere p-Distanz von 0,12 feststellen. Auffällig ist außerdem die Distanz von 0,00 zwischen den Proben von *P. apletocheles* und der von *P. fragilis*. Sämtliche Werte sind in Tabelle 3.2 dargestellt.

 Tabelle 3.2 Genetische Distanzen (*p-distances*) des COI-Datensatzes von Lauf 5.

6n_schrami_H8_imsh22_02	4		
Gn_schrami_BH_1_EI	42		100
6£8722L3_zuzobnon_nD	41		111 112
f 29_608A_sutsudo1_D	\$		5 0 5 5 5
61_60_sutsudo1_D	ጽ		115 120 122 122 122 122 122 122 122 122 122
Pleomothra_nsp_07_038	38		27 26 0 0 26 0 0
P_fragilig_H8_siligent_9	37		25 0 0 28 0 0 28 0 0
f_20G_808A_2819420591q6_9	36		8 7 7 8 8 7 8 8 7 7 8 8 7 8
289780U2_2919420391q6_9	35		000 00 00 00 00 00 00 00 00 00 00 00 00
P_apletocheles_FI527840	25		00 00 00 00 00 00 00 00 00 00 00 00 00
8£8722L3_zələrtoctəlq6_9	33		22 00 0 23 00 0 28 0
1_1_0_008A_4qsn_2	32		23 0 0 0 1 23 0 1 23 0 1 24 0 1 1 24 0 1 24 0 1 24 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9_740_808A_Sqsn_2	31		01 10 10 10 10 10 10 10 10 10
200_60_6dl6dix_2	30		* * * 2 2 3 3 2 3 0 0
2d4_40_00_siznamulut_t0_2	29		21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5_cf_tulumensis_28VIII03	28		2 2 2 3 3 0 0 0 0 2 1 2 2 3 3 0 0 0 2 1 3 2 3 3 0 0 0
24_40_2UY_siznamulut_t2_2	22		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
8£6200_DV_siznemulut_2	26		10000000000000000000000000000000000000
7£0206L36nibno2	25		
rጸJ_siznevecul_2	24		
S_kakuki_04_021_2	23		222 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
r_r20_40_i4u464_2	22		221 00 00 00 00 00 00 00 00 00 00 00 00 00
r280763A_sizneno1ig_2	21		$ \begin{array}{c} 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1\\ 1.1$
4_EE0_80_izmsilliw_2	20		23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S_emersoni_05_022_3	19		LL 10 10 10 10 10 10 10 10 10 10 10 10 10
S_emersoni_05_022_2	18		000 1111 0 1111 0 1
5_emersoni_05_022_1	17		10000000000000000000000000000000000000
S_emersoni_05_020_02	16		
5_emersoni_05_020_01	15		000 000 000 000 000 000 000 000 000 00
ſ_ð₽0_ð0_inimsįn9d_2	14		N.17 0 N.17 0 N.17 0 N.117 0 N.119 0 N
E22_008A_inims[n9d_2	13	8	
rMT_808A_inims(n9d_2	12	0000	0.117 0 0.117
r#8522L3_inims[n9d_2	11	00.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
040206L3_ebitnelte_2	10		0.118 (0.
emodointna_J	6		0 2110 0
rexleyi	00		0 1202 00 1202
£2_40_52_sulugnol_2	5		0.21 0.21 0.21 0.22 0.22 0.22 0.22 0.22
7£8722L3_zupsibotqed_D	9	0.13 0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
C_elmorei_07_35B	5	0.15 0.15 0.15 0.15 0.15 0.15 0.19 0.19 0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	0.19 0.19 0.19 0.19 0.20 0.20 0.20 0.24 0.22 0.22 0.22 0.22
8-occidentalis_EF18966	4		0.28 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29
Pe_monodon_NC_002184	m	0.25	0.28 0.028 0.028 0.028 0.028 0.028 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.028 0.029 0.020000000000
e81824YA_ed3nesersem_H	2	0.29 0.29 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37	0.37 0.37 0.37 0.37 0.37 0.33 0.33 0.33
Ca_tillyardi_AF370844	1	0.29 0.23 0.28 0.28 0.29 0.29 0.29 0.29 0.29 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27	0.27 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	112 11 11 11 11 11 11 11 11 11 11 11 11

4 Diskussion

In der vorliegenden Arbeit wurde die Phylogenie der Remipedia mit Hilfe verschiedener molekularer Marker untersucht. Um eine Übersicht über die Ergebnisse der Läufe zu geben sind die wichtigsten Kladen der einzelnen Analysen noch einmal graphisch in Form eines sogenannten Navajo-Rug-Diagramms dargestellt (s. Abb. 4.1).

Abbildung 4.1 Navajo Rug-Diagramm mit den wichtigsten Kladen aller Läufe. Schwarze Felder bedeuten, dass die Klade / Gruppe monophyletisch ist, weiße Felder bedeuten eine nicht monophyletische Klade / Gruppe. 1 = plus *S. parabenjamini*, 2 = ohne *S. fuchscockburni*.

4.1 Definitionen von morphologischen Begriffen

Da die Ergebnisse im Zusammenhang mit morphologischen Merkmalen diskutiert werden, ist es nötig zunächst einige Begriffe zu definieren.

- Brachium Aus dem Lateinischen, bedeutet "Unterarm". Der Terminus bezieht sich auf alle Segmente distal des Ellenbogens, inklusive der Terminalklaue (KOENEMANN *et al.* 2007b).
- Dorn Kräftige, massive Seta (WOLLERMANN *et al.* 2007).
- Ellenbogen Der Punkt der die größte Beugung bei 1. Maxille, 2. Maxille und Maxilliped erlaubt. Er trennt den proximalen, meist stabilen Teil von dem distalen, eher schlanken Teil (KOENEMANN *et al.* 2007b).
- Heteromorph Dieser Ausdruck bezieht sich auf Sternalleisten die auf verschiedenen Rumpfsterniten des selben Tieres unterschiedlich geformt sind. Zum Beispiel ist bei einigen Taxa die Sternalleiste auf dem 14. Rumpfsegment (hier befinden sich die männlichen Gonoporen) als vergrößerte, lobenähnliche Struktur ausgebildet (KOENEMANN *et al.* 2007c). Die Veränderungen können sich aber auch über eine Anzahl von Rumpfsegmenten erstrecken (s. Tab. 4.2).
- Isomorph Dieser Ausdruck bezieht sich auf Fälle in denen die Sternalleisten gleich oder sehr einheitlich auf dem ganzen Tier sind, d.h. keine besonderen Strukturen auf Rumpfsegment 14 oder anderswo ausgebildet sind (KOENEMANN *et al.* 2007c).
- Lacertus Aus dem Lateinischen, bedeutet "Oberarm". Dieser Terminus bezieht sich auf das Segment von 1. Maxilla, 2. Maxilla und Maxilliped das proximal des Ellenbogens liegt und typischerweise stark vergrößert ist (KOENEMANN *et al.* 2007b).
- Rumpfsegmente Werden nach dem ersten Segment nach den Maxillipeden gezählt (KOENEMANN *et al.* 2007b).
- Setae In dieser Arbeit wird nach WOLLERMANN *et al.* (2007) jede cuticuläre gegliederte Erweiterung (d.h. die über eine Gelenkpfanne verfügt) als Seta bezeichnet.

4.2 Diskussion der Topologien / Systematik

Zunächst lässt sich feststellen, dass die Ergebnisse der in dieser Arbeit durchgeführten phylogenetischen Analysen grundlegend der derzeitigen taxonomischen Struktur widersprechen. Daher werden im folgenden Abschnitt alternative Möglichkeiten (AM) diskutiert. Soweit nicht anders kenntlich gemacht beziehen sich alle Kladen-Bezeichnungen im Folgenden auf den Konsensusbaum von Lauf 4 (siehe Ergebnisteil, Abbildung 3.3).

4.2.1 Alternative Möglichkeit 1 (AM1)

Bei diesem Konzept werden alle bisherigen Taxa nach Möglichkeit erhalten und bei Bedarf neu definiert.

Micropacteridae

Lauf 4 (mit den Markern COI, 16S und H3) unterstützt den Status der Familie Micropacteridae. *Micropacter yagerae* bildet dort das basale Taxon innerhalb der Remipedia. Allerdings ist die Unterstützung dieses Knotens mit einem pp-Wert von 0,61 relativ gering. Auch stand für *M. yagerae* als Marker für die phylogenetische Analyse nur eine H3-Sequenz zur Verfügung.

In dem Konsensusbaum der Analyse des H3-Datensatzes hingegen erscheint *Hutchinsoniella macracantha* innerhalb der Remipedia, *Micropacter yagerae* jedoch in der Außengruppe. Damit drängt sich der Verdacht auf, dass es sich um eine Verwechselung der Sequenzen der beiden Taxa handeln könnte. Eine erneute Überprüfung der H3-Sequenzen beider Datensätze mittels des Basic Local Alignment Search Tool (BLAST) ergab jedoch für *H. macracantha* die Bestätigung, dass es sich tatsächlich um die in Genbank eingetragene H3-Sequenz von *Hutchinsoniella* (AF110867.1) handelt. Es sollte hierbei jedoch berücksichtigt werden, dass auch nur diese eine H3-Sequenz für Cephalocariden zur Verfügung steht. Die BLAST-Analyse zeigt in der Ergebnisliste nach *H. macracantha* eine Reihe von Anneliden, sowie mehrere Nemertea und einen Mollusken. Der einzige Vertreter der Crustacea ist ein Maxillopode: *Lepas pectinata* Spengler, 1793 (s. Tab. 7.6). Dieses Ergebnis nährt Zweifel an der Korrektheit der Cephalocarida-Sequenz in Genbank.

Das BLAST-Ergebnis für *Micropacter yagerae* ergibt als beste Treffer überwiegend Insekten (Ephemerida Huang *et al.*, 2011 und Ensifera Chopard, 1920),

sowie mit *Raphitoma* sp. einen Mollusken. Auch Kinorhyncha Reinhard, 1887 (Hakenrüssler) sind in der Liste vertreten, aber keine Crustaceen-Arten (s. Abb. 7.7). Es ist nicht auszuschließen, dass eine Kontamination der *Micropacter*-Probe zu dem abweichenden Ergebnis der H3-Analyse geführt hat. Zusammenfassend lässt sich sagen, dass es sich bei einer der beiden oder sogar beiden H3-Sequenzen für *Micropacter* und *Hutchinsoniella* um Kontaminationen handeln könnte.

Micropacter yagerae ist der einzige bisher bekannte Vertreter der Familie Speleonectidae. Trotzdem haben **KOENEMANN** et al. (2007c), in einer phylogenetischen Untersuchung basierend auf morphologischen Merkmalen, den Status der Micropacteridae als Familie bestätigt. Obwohl hier nur eine einzige Micropacter-Sequenz für die phylogenetische Analyse zur Verfügung stand und die BLAST-Ergebnisse dafür kritisch zu bewerten sind, wird im Bezug auf den Status der Micropacteridae der Argumentation von KOENEMANN et al. (2007b) gefolgt. Sie weisen darauf hin, dass *M. yagerae* sich durch eine Reihe von Besonderheiten von allen anderen Nectiopoda unterscheidet. Diese Autapomorphien sind nach KOENEMANN et al. (2007b):

- · Körperende: oval mit verschmolzenen Segmenten
- 2. Maxilla und Maxilliped: ungleiche terminale Klauenkomplexe
- Sternalleisten und Pleurotergiten: nahezu vollständig reduziert
- Molare Fortsätze: mit relativ wenigen, aber massiven Dornen
- Frontalfilamente: mit dichotom verzweigtem subapikalem Fortsatz

Nach KOENEMANN *et al.* (2007b) ist eine Zuordnung von *Micropacter* zu den Godzilliidae problematisch, da deren Diagnose geschwächt würde. Da *Micropacter* nur einige wenige Symplesiomorphien mit den Speleonectidae teilt, erschiene auch eine Zuordnung zu den Speleonectidae nicht sinnvoll. Der Status der Familie Micropacteridae bleibt auch in der hier diskutierten Alternativen Möglichkeit 1 erhalten.

Godzilliidae

Im Falle der Godzilliidae wird *Pleomothra* aus der Familie ausgeschlossen. Dieser Ausschluss trägt zu einer deutlich stabileren Diagnose der Godzilliidae bei. Denn gleich mehrere Autapomorphien von *Pleomothra*, die mit den Synapomorphien von *Godzillius* und *Godzilliognomus* nicht vereinbar sind, entfallen. Dabei handelt es sich um:

- 1. Antenne: ventraler Ast aus 7 Segmenten bestehend
- 1. Maxille: 3. Endit fehlt vollständig; 4. Endit ist distal gerichtet
- 2. Maxille und Maxilliped: 3. Segment, Behaarung aus blattartigen (*P. fragilis*) oder kerzenförmigen (*P. apletocheles*) Setae bestehend;
 Klauenkomplex aus einem langen apikalen Dorn und kürzeren und kleineren subapikalen Dornen
- Kopfschild: mit zwei posterolateralen Fortsätzen
- 1. Maxille: zweiter funktioneller Ellenbogen zwischen Segment 3 und 4; Segment 4 massiv vergrößert, distal angeordneter Endit (bildet Greifeinheit gemeinsam mit Segment 5 und terminalem Fangzahn)

Die Godzilliidae ohne *Pleomothra* bleiben weiter bestehen.

Speleonectidae

Die Familie Speleonectidae bleibt erhalten. In diesem Falle muss aber *Pleomothra* aufgrund der Topologien der phylogenetischen Analysen den Speleonectidae als Gattung zugefügt werden. *Pleomothra* teilt folgende Synapomorphien der Speleonectidae (bezogen auf die Diagnose von KOENEMANN *et al.* 2003):

- Sternalleisten: isomorph
- 1. Antenne: ventraler Ast mit 7 15 Segmenten
- Mandibel: asymmetrisch
- 1. Maxille: Ellenbogen zwischen dem 3. und 4. Segment; Segment 2 mit gelappten Enditen; Segment 4 medialer Rand erweitert
- 2. Maxille: Ellenbogen zwischen Segment 3 und 4

Hierzu sind jedoch einige Dinge anzumerken:

1.) YAGER (1989) beschreibt *Pleomothra apletocheles* mit einer 1. Maxille die aus sechs Segmenten besteht. Auch KOENEMANN *et al.* (2008) führen bei *P. fragilis* sechs Segmente in der Beschreibung der 1. Maxille auf. Das Segment proximal des Terminalklauenkomplexes ist demnach nicht vorhanden. Sie diskutieren jedoch die Möglichkeit, dass dieses Sechste der ursprünglichen sieben Segmente der 1. Maxille nicht verloren gegangen, sondern stark modifiziert erhalten geblieben ist. Es ist also nicht ausgeschlossen, dass *Pleomothra* auch das Kriterium der sieben Segmente der 1. Maxille erfüllt.

2.) Bei dem Merkmal "1. Maxille: Segment 4 medialer Rand erweitert" unterscheidet sich die Ausprägung des Enditen von *Pleomothra* von der bei allen anderen Remipedia (siehe Autapomorphien in der Diskussion der Godzilliidae im vorherigen Absatz).

3.) Folgt man der Diagnose für die Speleonectidae von KOENEMANN *et al.* (2003) trifft das Merkmal "Ellenbogen der 1. Maxille zwischen dem 3. und 4. Segment" für *Pleomothra* zu. Jedoch ergeben sich dabei drei Probleme:

- Im Falle von *Pleomothra* handelt es sich um ein zweites funktionelles Gelenk das nicht homolog zu dem eigentlichen Ellenbogen der übrigen Remipedia ist.
- Dieses Merkmal ist in der Diagnose der Familie Speleonectidae von KOENEMANN *et al.* (2007b) nicht mehr aufgeführt.
- In der Veröffentlichung von KOENEMANN *et al.* (2003) scheint ein Fehler vorzuliegen. Nach der Diagnose der Familie Speleonectidae in KOENEMANN *et al.* (2003) befindet sich der Ellenbogen der 1. Maxille zwischen dem 3. und 4. Segment. Nach dem Wortlaut der Beschreibung der 1. Maxille von *S. parabenjamini* in eben dieser Veröffentlichung müsste die Nummerierung der Segmente wie in Abbildung 4.2 sein. Demnach wäre der Ellenbogen aber tatsächlich zwischen Segment 4 und 5 lokalisiert. Eventuell handelt es sich dabei aber auch nur um einen Schreibfehler.

Abbildung 4.2 Zeichnung der 1. Maxille von Speleonectes parabenjamini (aus KOENEMANN et al. 2003). Die Nummerierung der Segmente erfolgte nach den Angaben im Text. Der Pfeil deutet auf den Ellenbogen.

Die Diagnose der Familie Speleonectidae gründet auf der Beschreibung von *S. lucayensis* von YAGER 1981 und wurde von SCHRAM *et al.* (1986) und KOENEMANN *et al.* (2003) überarbeitet. KOENEMANN *et al.* (2007c) stellen fest, dass die ohnehin schon instabile Diagnose der Speleonectidae durch das Hinzufügen von neu beschriebenen Arten seit 1986 weiter geschwächt wurde.

Eine Einordnung von *Pleomothra* als Gattung in die Speleonectidae würde auch Autapomorphien mit einbringen, die im Widerspruch zu den Synapomorphien von *Cryptocorynetes, Lasionectes* und *Speleonectes* stehen. Bezogen auf die Diagnose von KOENEMANN *et al.* (2003) sind dies:

- Kopfschild: trapezförmig, mit posterolateralen Fortsätzen
- 1. Antenne: ventraler Ast, kurz
- 1. Maxille: aus 6 Segmenten bestehend (siehe Anmerkungen im vorherigen Absatz); Segment 3, Endit fehlt
- 2. Maxille und Maxilliped: Segmente distal vom Ellenbogen kürzer oder gleichlang als die Segmente proximal des Ellenbogens.

Diese Autapomorphien weichen die ohnehin geschwächte Diagnose der Speleonectidae weiter auf, daher ist die Alternative Möglichkeit 1 nicht sinnvoll und wird verworfen.

4.2.2 Alternative Möglichkeit 2 (AM2)

In diesem alternativen Konzept wird das bestehende taxonomische System innerhalb der Nectiopoda vollständig verworfen und anhand der Kladen der phylogenetischen Analyse neu konstruiert.

Klade A

Die Godzilliidae bleiben erhalten, jedoch wird Pleomothra aus der Familie ausgeschlossen (s. Diskussion AM1 Godzilliidae).

Klade B

Pleomothra erhält den Status einer Familie. Damit wird die bereits diskutierte Schwächung der Diagnose der Speleonectidae vermieden. Eine mögliche Diagnose für diese neue Familie ist:

- Kopfschild: trapezförmig, mit posterolateralen Fortsätzen
- 1. Antenne: ventraler Ast, kurz
- 1. Maxille: mit 6 Segmenten, Endit an Segment 3 nicht ausgebildet
- 2. Maxille und Maxilliped: Segmente distal vom Ellenbogen kürzer oder gleichlang, als Segmente proximal des Ellenbogens

Klade C

Die paraphyletischen Speleonectidae werden aufgespalten, so dass die ursprüngliche Familie nunmehr auf die drei Arten *S. lucayensis*, *S. kakuki* und *L. entrichoma* reduziert und neu definiert wird. Als Diagnose für diese überarbeitete Familie Speleonectidae kommen folgende Synapomorphien in Frage:

- Kopfschild: annähernd rechteckig bis leicht trapezförmig
- 1. Antenne: Anzahl Segmente dorsaler Ast 12, ventraler Ast 8 10 (s. Abb. 4.3 A)
- 2. Maxille: Setae entlang des distomedialen Randes in langen Reihen (s. Abb. 4.3 Bc)
- Maxilliped: mit vielen Setae besetzt, Rand durchgehend oder fast durchgehend behaart (s. Abb. 10.3 Cg), Segment 4 verlängert bis stark verlängert, bauchig/birnenförmig erweitert (siehe Abbildung 4.3 Df)
- 2. Maxille und Maxilliped: Segment proximal vom Ellenbogen länger als Segment distal vom Ellenbogen (s. Abb. 4.3 C a > b; d > e)

Kaudalanhänge: gleich lang oder kürzer als das Abdominalsegment (s. Abb.
 4.3 D h ≤ i)

Abbildung 4.3 Erklärung zu diagnostischen Merkmalen der Klade C am Beispiel von *S. kakuki*. A = 1. Antenne, B = 1. Maxille, C = 2. Maxille, D = Maxilliped, E = Abdominalsegment und Kaudalanhänge (aus DAENEKAS *et al.* 2009, verändert).

Diese neue Familie lässt sich in zwei Gattungen unterteilen. Die Erste besteht aus *Speleonectes kakuki* und *Speleonectes lucayensis,* die andere bildet *Lasionectes entrichoma.* Merkmale zur Unterscheidung sind in Tabelle 4.1 aufgeführt.

Tabelle 4.1 Morphologische Unterschiede zwischen den beiden neuen Gattungen von Klade C. (Seg. = Segment, Mx1 = 1. Maxille, Mx2 = 2. Maxille, Mxp = Maxilliped). Zeichnungen der 1. Maxillen, 2. Maxillen und der Maxillipeden aller beschriebenen Arten finden sich im Anhang B Morphologie)

	L. entrichoma	S. kakuki / S. lucayensis
Endit auf Seg. 4 Mx1	extrem ausgewölbt	asymmetrisch, distal flach auslaufend
Setae auf Mx2 und Mxp	gleich lang	unterschiedlich lang
Klauenkomplexe Mx2 und Mxp	Langfinger-Typ	Hufeisen-Typ
Verhältnis von Seg. 4 zu 5 (Mxp)	1,18:1	1,49:1 / 1,47:1
Frontalfilamente (s. Abb. 4.4)	segmentiert	unsegmentiert
	Fortsatz relativ lang	Fortsatz relativ kurz
	Ansatzstelle des Fortsatzes	Ansatzstelle des
	in der <u>unteren</u> Hälfte des	Fortsatzes in der <u>oberen</u>
	Frontalfilaments	Hälfte des Frontalfilaments

Ergänzend zu der Tabelle zeigen beide Gattungen unterschiedliche Sternalleistenmuster (s. Diskussion der Sternalleisten Klade C) und außerdem besitzt *L. entrichoma* im Gegensatz zu den beiden anderen Arten abgerundete Sternalplatten.

Diese Reduzierung der Familie Speleonectidae macht die Einführung zahlreicher neuer Familien und Gattungen nötig, um die ehemaligen Mitglieder der Familie zu ordnen. Die Kladen (D+E), F und *L. exleyi* werden in den Status einer Familie erhoben.

Abbildung 4.4 Darstellung der Frontalfilamente von A = L. entrichoma (YAGER & SCHRAM 1986), B = S. lucayensis (SCHRAM et al. 1986) und C = S. kakuki (DAENEKAS et al. 2009).

Klade D und E

Die Analysen zeigen unterschiedliche Ergebnisse im Bezug auf die Yucatan-Arten *S. tulumensis*, *S. cf. tulumensis* und *S. fuchscockburni*. In zwei Analysen bilden sie mit hohen Unterstützungswerten (Lauf 1: 0,96 bzw. Lauf 5: 1) die Schwestergruppe zu einer Klade bestehend aus den *Pleomothra*-Arten und *S.* n. sp. 2 sowie *S.* n. sp. 4. In Lauf 3 sind sie Teil einer polyphyletischen Gruppe mit *Pleomothra* und [*L. entrichoma* + (*S. kakuki* + *S. lucayensis*)]. In den Läufen 4, 6 und 7 bilden sie die Schwestergruppe zu der Kladen D bestehend aus [(*S. ondinae* + *S. atlantida*) + (*S. emersoni* + *S. williamsi*)]. Aufgrund der molekularen Phylogenien lässt sich diese Gruppe nicht eindeutig zuordnen.

Jedoch gibt es aus morphologischer Sicht einige Synapomorphien die sich die Kladen D [(*S. ondinae* + *S. atlantida*) + (*S. emersoni* + *S. williamsi*)] und E [(*S. tulumensis* + *S. cf. tulumensis*) + *S. fuchscockburni*] teilen:

- 1. Maxille: Segment 4, Endit klein und konisch (s. Abb. 4.5 Aa)
- 2. Maxille: Segment 3, Endit schmal, wenig bauchig (s. Abb. 4.5 Bd)
- 2. Maxille und Maxilliped: medialer Rand von Lacertus und Brachium mit wenigen vereinzelten Setae oder kleinen Büscheln aus wenigen Setae (s. Abb. 4.5 Be und Ch); Segment proximal und distal vom Ellenbogen etwa gleichlang (s. Abb. 4.5 B b ≈ c und C f ≈ g)
- Sternalleisten: isomorph
- Kaudalanhänge: länger als Abdominalsegment (s. Abb. 4.5 D i < j)

Aufgrund dieser Synapomorphien werden die Vertreter der Kladen D und E zu einer neuen Familie zusammengefasst. *Speleonectes gironensis* wird wegen der widersprüchlichen Topologien an dieser Stelle von der Diskussion ausgeschlossen. Eine Besprechung der möglichen Zuordnung von *S. gironensis* findet sich im Anschluss an diesen Abschnitt.

Abbildung 4.5 Erklärung zu diagnostischen Merkmalen der Kladen D und E am Beispiel von *S. emersoni.* A = 1. Maxille, B = 2. Maxille, C = Maxilliped, D = Abdominalsegment und Kaudalanhänge (aus LORENTZEN *et al.* 2007, verändert).

Die Topologien der phylogenetischen Analysen legen es nahe für jede der beiden Kladen eine Gattung zu definieren. Allerdings sind die morphologischen Unterschiede zwischen den beiden Gruppen sehr gering. Es lassen sich nur zwei wesentliche Synapomorphien feststellen: Alle Vertreter der Klade E verfügen über eine relativ große Anzahl von Rumpfsegmenten (z.B. 30 - 35 bei *S. fuchscockburni*, 35 - 42 bei *S. cf. tulumensis*). Die Vertreter der Klade D zeigen im Gegensatz dazu deutlich weniger Rumpfsegmente (z.B. *S. emersoni* 19 - 21 und *S. ondinae* 19 - 25). Zudem besitzen die Arten von Klade E sehr lange Setae auf den Maxillipeden, während diese bei den Arten der Klade D mittel lang sind (s. Abb. 8.4 und 8.5).

Speleonectes ondinae wurde ursprünglich als Morlockia ondinae Garcia-Valdecasas, 1984 beschrieben und eine eigene Familie Morlockiidae Garcia-Valdecasas, 1984 dafür eingeführt. Jedoch verwarfen SCHRAM *et al.* diese 1986 wieder. Die Bildung einer neuen Familie aus den Kladen D und E bietet die Möglichkeit den Namen Morlockiidae wieder einzuführen.

Klade F

YAGER (1994) weist bereits darauf hin, dass eine Neubewertung der taxonomischen Zuordnung von *Speleonectes benjamini* nötig ist. Die Autorin sieht in *S. benjamini* den am wenigsten typischen Vertreter der Gattung *Speleonectes*. Als Gründe führt sie folgende morphologische Unterschiede an: 1.) die sehr langen 1. Antennen, 2.) die gut ausgebildeten Sternalleisten mit posterolateralen Fortsätzen, 3.) weitere Unterschiede, die jedoch nicht weiter erläutert werden. Zu diesem Zeitpunkt waren neben *Speleonectes benjamini* noch *S. ondinae*, *S. epilimnius*, *S. lucayensis* und *S. tulumensis* als Vertreter der Gattung *Speleonectes* bekannt. Erst später wurden die weiteren Vertreter der Klade F, *Cryptocorynetes elmorei*, *C. longulus* und *S. parabenjamini*, beschrieben (siehe Abb. 9.1). KOENEMANN *et al.* (2007c) haben die Empfehlung ausgesprochen, *Cryptocorynetes* eine eigene Familie zuzuweisen. Dieser Vorschlag wird hier unterstützt, jedoch wird diese neue Familie um die Arten *S. benjamini* und *S. parabenjamini* erweitert.

Als Diagnose ist vorstellbar:

- Kopfschild: annähernd rechteckig, sich anterior verjüngend
- 1. Antenne: gut entwickelt, ventraler Ast lang (mindestens 50% der Körperlänge), aus mindestens 14 Segmenten bestehend
- 2. Maxille und Maxilliped: Terminalklauenkomplex Hufeisentyp
- Sternalplatten: mit spitzen posterior gerichteten Ecken
- Sternalleisten: Rumpfsegmente (RS) 1 bis 13 konkav, RS 14 groß und konvex (bzw. dreieckig), RS 15 bis Rumpfende konvexe Loben (*S. benjamini* und *S. parabenjamini*) oder RS 15 konkav, danach gerade, RS 19 konvexer Lobus (*Cryptocorynetes*) (siehe Tabelle 4.2)

Es wäre sinnvoll diese Familie in zwei Gattungen zu teilen. Die Gattung *Cryptocorynetes*, die im Wesentlichen durch die keulenartig verdickten Segmente der 2. Maxille und des Maxillipeden gekennzeichnet ist. Diese beiden Fangbeine sind mit discoiden Organen besetzt (s. Abb. 8.3 und 8.4). Bei der anderen Gattung, welche *S. benjamini* und *S. parabenjamini* umfasst, bestehen die 2. Maxille und der Maxilliped hingegen aus schlanken Segmenten. Die Segmente proximal und distal des Ellenbogens sind dabei deutlich verlängert. Discoide Organe sind hier nicht vorhanden (s. Abb. 8.2, 8.3, 8.4 und 8.5).

Таха	Sternalleisten 1 - 13	Sternalleiste 14	Sternalleisten 15 - Körperende	Sternalplatten
Godzilliidae				
Godzilliognomus	isomorph	isomorph	isomorph	
Godzillius	isomorph	isomorph	isomorph	
Pleomothra	isomorph	isomorph	isomorph	
Micropacteridae				
Micropacter	stark reduziert	konvexer Lobus	nicht vorhanden	
Speleonectidae				
Cryptocorynetes	konkav	groß, konvex (dreieckig)	15: konkav, danach gerade, 19: konvexer Lobus	mit Spitzen
S. benjamini	lang, leicht konkav	groß, konvex	konvexe Loben	mit Spitzen
S. parabenjamini	lang, leicht konkav	groß, konvex	konvexe Loben	mit Spitzen
Kaloketos	konkav	groß, konvex	konkav	mit Spitzen
L. entrichoma	klein, leicht konkav	groß, konkav	deutlich konkav	abgerundet
L. exleyi	lang, gerade	groß, dreieckig	15+16 leicht konvex, dann zunehmen dreieckig	
S. atlantida	isomorph	isomorph	isomorph	
S. ondinae	isomorph	isomorph	isomorph	
S. williamsi	isomorph	isomorph	isomorph	
S. emersoni	isomorph	isomorph	isomorph	
S. epilimnius	isomorph	isomorph	isomorph	
S. kakuki	klein, annähernd gerade	groß, konkav	15-20 annähernd gerade, 21-30 dreieckige Loben	
S. lucayensis	klein, annähernd gerade	groß, konkav	15-23 leicht konkav, 24-konvexer Lobus	
S. minnsi	isomorph	isomorph	isomorph	
S. tanumekes	isomorph	isomorph	isomorph	
S. gironensis	isomorph	isomorph	isomorph	
S. cf. tulumensis	isomorph	isomorph	isomorph	
S. fuchscockburni	isomorph	isomorph	isomorph	
S. tulumensis	isomorph	isomorph	isomorph	

Tabelle 4.2 Vergleich der Sternalleisten und Sternalplatten der rezenten Remipedia (Quelle S. Koenemann).

Taxa mit heteromorphen Sternalleisten sind neben den Vertretern der oben genannten Klade folgende Arten: *Micropacter yagerae*, *Kaloketos pilosus*, *Lasionectes entrichoma*, *Lasionectes exleyi*, sowie *Speleonectes kakuki* und *Speleonectes lucayensis*. Jedoch unterscheiden sich außer bei *Kaloketos* die Muster aller dieser Arten. Zwar ist bei *Micropacter yagerae* die Sternalleiste auf Rumpfsegment 14 konvex, jedoch auf den Rumpfsegmenten 1 bis 13 stark reduziert und ab Rumpfsegment 15 nicht vorhanden. Es ist zu beachten, dass *Micropacter* nur

über 16 Rumpfsegmente verfügt, wobei die letzten beiden Segmente verschmolzen sind. *Micropacter* besitzt keine spitzen Ecken an den Sternalplatten.

Bei *Speleonectes kakuki* und *Speleonectes lucayensis* sind die ersten 13 Rumpfsegmente klein und annähernd gerade, die von Rumpfsegment 14 groß und konkav. Bei *S. kakuki* sind die Sternalleisten der Rumpfsegmente 15 bis 20 annähernd gerade und die der Rumpfsegmente 21 bis 30 bilden dreieckige Loben. *Speleonectes lucayensis* besitzt auf den Rumpfsegmenten 15 bis 23 leicht konkave Sternalleisten, ab Rumpfsegment 24 sind sie als konvexe Loben ausgebildet. Beide Arten haben keine eckigen Spitzen an den Sternalplatten.

Auch das Sternalleistenmuster von der ursprünglichen Gattung *Lasionectes* unterscheidet sich von dem der in der oben genannten Klade vertretenen Arten. *Lasionectes exleyi* besitzt lange, gerade Sternalleisten auf den Rumpfsegmenten 1 bis 13 und einen großen, dreieckigen Lobus auf Rumpfsegment 14. Auf Rumpfsegment 15 und 16 sind die Sternalleisten leicht konvex und werden dann zunehmend dreieckig. *Lasionectes exleyi* und *L. entrichoma* verfügen auch nicht über spitze Ecken der Sternalplatten. Hier sind die Sternalplatten abgerundet und die Sternalleisten auf den Rumpfsegment 13 ist groß und konkav, jedoch nur leicht. Die Sternalleiste auf Rumpfsegment 13 ist groß und konkav, die der Rumpfsegmente 15 bis zum Rumpfende sind deutlich konkav.

Einzig das Sternalleistenmuster von *Kaloketos pilosus* zeigt Übereinstimmungen mit den Vertretern der Klade F und kann daher als diagnostisches Merkmal für die Zuordnung von *K. pilosus* zu dieser neuen Familie dienen (siehe Abschnitt "Einordnung fehlender Taxa").

Lasionectes exleyi

Die Ergebnisse der in dieser Arbeit durchgeführten Analysen werfen Zweifel an der Zusammengehörigkeit der beiden *Lasionectes*-Arten auf. Die isolierte Stellung von *L. exleyi* in den hier vorliegenden Topologien legt eine eigene taxonomische Einheit für *L. exleyi* nahe. Zudem bleibt durch die Zuordnung von *L. entrichoma* zu der überarbeiteten Familie Speleonectidae *L. exleyi* alleine übrig. Eine mögliche Diagnose für diese dann nur aus *L. exleyi* bestehende neue Familie ist:

- 1. Maxille: Segment 2, Endit apikal mit dichtem Büschel von langen Setae besetzt; Segment 3, Endit mit einer Seta mit breiter Basis und 5 mittellangen dornenähnlichen Setae besetzt; Segment 4, Endit dicht mit langen Setae besetzt
- 2. Maxille: Segment 3 bauchig, sehr stark erweitert, Endit stark vergrößert
- 2. Maxille und Maxilliped: Brachium länger als Lacertus, mit langen bis mittellangen Setae besetzt
- Kaudalanhänge: länger als Abdominalsegment

KOENEMANN *et al.* (2007c) haben in der Diskussion darauf hingewiesen, dass es per Definition nicht möglich ist ein höheres Taxon aufgrund einer einzelnen Art, die als monotypische Klade erscheint, zu gründen. Schließt man die Möglichkeit einer großen, um die Gattung *Pleomothra* erweiterten, Familie Speleonectidae aus (siehe Diskussion Alternative Möglichkeit 1), bleibt jedoch nur diese Möglichkeit für *Lasionectes exleyi.* Zum einen kann argumentiert werden, dass mit der Einführung der Familie Micropacteridae durch KOENEMANN *et al.* (2007b), welche nur auf der Art *Micropacter yagerae* basiert, in KOENEMANN *et al.* (2007c) ein Präzedenzfall geschaffen wurde. Zum anderen legt die basale Stellung von *L. exleyi* in den hier vorliegenden Topologien die Vermutung nahe, dass die Remipedia in der Vergangenheit deutlich weiter verbreitet waren, als es die Betrachtung der atlantischen Arten allein vermuten lässt. Es ist daher mit Entdeckungen von neuen Remipedien zwischen Australien und der karibischen Region zu rechnen (pers. Mitteilung F. R. Schram). Es ist zu erwarten, dass diese neuen Arten den Status der neuen Familie von *L. exleyi* weiter stützen.
Speleonectes gironensis

Die Zuordnung von *S. gironensis* ist schwierig, da sich die Topologien der einzelnen Analysen in diesem Punkt widersprechen. *Speleonectes gironensis* erscheint in Lauf 4 in der Klade [(*S. atlantida* + *S. ondinae*) + (*S. emersoni* + *S. williamsi*)], in Lauf 1 und Lauf 5 allerdings in der Klade [(*S. kakuki* + *S. lucayensis*) + *L. entrichoma*]. Es gibt daher zwei Möglichkeiten *S. gironensis* einzuordnen:

- 1.) Speleonectes gironensis wird der Klade C zugeordnet, welche nach AM2 den Status einer neuen Familie erhält. Für diese Möglichkeit sprechen die folgenden Synapomorphien, die *S. gironensis* mit den Vertretern dieser Klade teilt: Die Lacerti von der 2. Maxille und dem Maxillipeden sind fast durchgehend mit Setae besetzt, zudem sind sie länger als das Segment distal des Ellenbogens. Die Enditen der Lacerti von der 2. Maxille und dem Maxillipeden sind erweitert und besitzen eine Birnenform.
- 2.) Speleonectes gironensis wird der neuen Familie bestehend aus den Kladen D und E zugeordnet. Auch mit den Vertretern dieser Familie teilt sich S. gironensis Synapomorphien: Die Anzahl der Segmente des ventralen Astes der 1. Antenne ist 10, die Sternalleisten sind isomorph, die Kaudalanhänge sind länger als das Abdominalsegment.

Der Endit des 4. Segments der 1. Maxille trägt Merkmale von beiden neuen Familien. Er ist konisch, jedoch nicht klein, sondern lang ausgezogen.

Speleonectes gironensis kann in dieser Arbeit weder aufgrund der molekularen Phylogenie noch der Morphologie eindeutig einer Klade/Gruppe zugeordnet werden. Es wäre nötig, wenigstens eine der Diagnosen der beiden neuen Familien zu schwächen. Aber selbst dann müsste noch ein bisher nicht berücksichtigtes Merkmal den Ausschlag für die eine oder andere neue Familie geben. Eine detaillierte morphologische Untersuchung mittels Rasterelektronenmikroskopie der Terminalklauenkomplexe und / oder der Gonoporen könnte das Problem lösen.

Speleonectes n. sp. 2 und Speleonectes n. sp. 4

Die beiden in den molekularen Analysen vertretenen bisher unbeschriebenen Arten S. n. sp. 2 und S. n. sp. 4 können morphologisch nicht diskutiert werden, da zur Zeit keine Beschreibungen oder Zeichnungen vorliegen. Der Zugang zu dem Material zur persönlichen Betrachtung der Morphologie war nicht möglich. Die derzeit vorliegenden Topologien legen jedoch nahe, dass es sich um eine eigene Familie handelt. Hier müssen zunächst die Artbeschreibungen abgewartet werden.

4.2.3 Weitere alternative Möglichkeiten

Neben diesen beiden Möglichkeiten AM1 (die bereits bestehenden Familien bleiben erhalten) und AM2 (eine komplette Neuordnung) wären zahlreiche Varianten denkbar. Eine Alternative wäre, den Kladen D und E jeweils eine eigene Familie zuzuordnen und den Rest von AM2 zu übernehmen. Da jedoch, wie bereits beschrieben, die morphologischen Unterschiede zwischen den beiden Gruppen relativ gering sind, ergäbe sich keine stabile Diagnose für diese beiden Familien. Anderen alternative Möglichkeiten wie zum Beispiel die Einführung neuer Familien für die Kladen (B + C und die Arten S. n. sp. 2 / S. n. sp. 4), sowie für die Kladen (D + E) und für Klade F oder eine neue große Familie bestehend aus den Kladen B bis E, sowie einer neuen Familie für Klade F, wären morphologisch unsinnig oder würden in schwachen Diagnosen münden.

4.2.4 Einordnung von fehlenden Taxa

Für folgende Arten stand kein Material für die genetische Untersuchung zur Verfügung: *Speleonectes minnsi*, *S. tanumekes*, *S. epilimnius* und *Kaloketos pilosus*. Sie müssen daher aufgrund morphologischer Merkmale zugeordnet werden.

Kaloketos pilosus

Kaloketos pilosus verfügt über ein Muster der Sternalleisten, das mit dem der Vertreter der Klade F vergleichbar ist. Wie die Taxa dieser Klade besitzt auch *K. pilosus* eckige Spitzen der Sternalplatten (s. Abb. 4.6) und ein sehr langes dorsales Flagellum der 1. Antenne (das mehr als 50 % der Körperlänge erreichen kann). Außerdem besteht der ventrale Ast der 1. Antenne aus 18 Segmenten. Aufgrund dieser Synapomorphien kann diese Art der Gruppe bestehend aus *Cryptocorynetes elmorei, Cryptocorynetes longulus, Cryptocorynetes haptodiscus, Speleonectes benjamini* und *Speleonectes parabenjamini* zugeordnet werden.

Abbildung 4.6 Zeichnung einer Auswahl von Sternalleisten und Sternalplatten von *K. pilosus*, *S. parabenjamini* und *C. longulus*. Die Zahlen geben das jeweilige Rumpfsegment an. (A = KOENEMANN *et al.* 2003, B = KOENEMANN *et al.* 2004 und C = WOLLERMANN *et al.* 2007).

Speleonectes minnsi

Speleonectes minnsi lässt sich der Familie Speleonectidae (nach AM2) zuordnen, da diese Art alle diagnostischen Merkmale der Familie teilt. Weiterhin lässt sich *S.* minnsi der Gattung bestehend aus *S. kakuki* und *S. lucayensis* zuordnen, da *S.* minnsi alle Synapomorphien dieser neuen Gattung teilt.

Speleonectes epilimnius und Speleonectes tanumekes

LORENTZEN *et al.* (2007) haben festgestellt, dass *S. epilimnius* und *S. tanumekes* von allen Speleonectiden der von ihnen neu beschriebenen Art *S. emersoni* am ähnlichsten sind. Tatsächlich teilen *S. tanumekes* und *S. epilimnius* alle diagnostischen Merkmale der (nach AM2) neuen Familie (Kladen D und E) und werden dieser zugeordnet. Weiter wird *S. epilimnius* der neuen Gattung bestehend aus den Vertretern der Klade D zugeordnet, da auch *S. epilimnius* über mittellange Setae auf den Segmenten des Maxillipeden verfügt und nur eine geringe Anzahl (21) von Rumpfsegmenten besitzt. *Speleonectes tanumekes* hingegen besitzt lange Setae auf den Segmenten des Maxillipeden und verfügt mit 38 - 40 über eine hohe Anzahl von Rumpfsegmenten.

4.2.5 Fazit der Diskussion der Topologien / Systematik

Eine vollständige Revision der Klasse ist derzeit nicht sinnvoll, da in naher Zukunft zahlreiche neue Arten beschrieben werden. Dazu gehören neben einem Vertreter der Gattung *Godzillius* (pers. Mitteilung S. Koenemann) auch die in dieser Arbeit verwendeten Proben S. n. sp. 2 und 4. Zudem konnte *Speleonectes gironensis* weder anhand der Morphologie noch der molekularen Phylogenetik zugeordnet werden. Aus diesen Gründen wird auf eine vollständige Revision verzichtet, da diese wahrscheinlich nicht von langer Dauer wäre. Es konnte jedoch ein Vorschlag für eine mögliche Revision erarbeitet werden, in dem trotz fehlenden genetischen Materials die Taxa *S. epilimnius, S. tanumekes* und *S. minnsi* eingeordnet werden. Dieser Vorschlag ist in Tabelle 4.3 dargestellt und kann als Gerüst für künftige Untersuchungen dienen.

Tabelle 4.3 Neuordnung der Nectiopoda nach AM2, mit Einordnung der fehlenden Taxa. Die Namen der Familien und Gattungen die bestehen geblieben sind, sowie alle Arten sind beibehalten. Namensvorschläge sind in runde Klammern geschrieben, die neuen Familien und Gattungen mit X und einer Zahlenfolge gekennzeichnet.

Familie	Gattung	Art
Micropacteridae	Micropacter	M. yagerae
Godzilliidae	Godzillius	G. robustus
	Godzilliognomus	Gn. frondosus
		Gn. schrami
X1	X1.1 (Pleomothra)	P. apletocheles
		P. fragilis
		<i>P.</i> n. sp.
X2 (Speleonectidae)	X2.1 (Speleonectes)	S. kakuki
		S. lucayensis
		S. minnsi
	X2.2	L. entrichoma
X3	X3.1	S. n. sp. 2
		S. n. sp. 4
X4 (Morlockiidae)	X4.1 (Morlockia)	S. atlantida
х <i>,</i>		S. ondinae
		S. emersoni
		S. williamsi
		S. epilimnius
	X4.2	S. tulumensis
		S. cf. tulumensis
		S. fuchscockburni
		S. tanumekes
X5	X5.1 (Cryptocorynetes)	C. haptodiscus
		C. longulus
		C. elmorei
	X5.2	S. benjamini
		S. parabenjamini
X6	X6.1	L. exleyi
		[S. gironensis]

4.3 Genetische Distanzen

Auffällig ist die genetische Distanz zwischen den beiden *Godzillius*-Vertretern (s. Tab 3.2). Vergleicht man diese mit der intraspezifischen Variation anderer Arten von Remipedia, zum Beispiel mit der von den beiden *Godzilliognomus schrami* Proben (0,01) oder mit der von den *Speleonectes emersoni* Proben (0,00 / 0,01), so ist sie mit 0,12 relativ groß. Zumindest liegt sie deutlich über dem Durchschnitt der intraspezifischen Variation. Sie erreicht sogar annähernd die Distanz, die zwischen *S. ondinae* und *S. atlantida* (0,14) oder *Gn. frondosus* und *Gn. schrami* (0,17) besteht. *Speleonectes atlantida* wurde von KOENEMANN *et al.* erst 2009 als kryptische Art beschrieben, die sympatrisch mit *S. ondinae* in einem Lavatunnel auf Lanzarote vorkommt. *Godzilliognomus schrami* wurde 2010 von ILIFFE *et al.* als kryptische Art beschrieben. *Godzilliognomus schrami* kommt auf Eleuthera vor während *Gn. frondosus* auf Grand Bahama Island, Abaco Island und den Exuma Cays gefunden wurde.

Es ist daher sehr wahrscheinlich, dass es sich bei der *Godzillius*-Probe (im Folgenden als *G. cf. robustus* bezeichnet) aus Ralphs Sink auf Abaco Island um eine kryptische Art handelt, insbesondere vor dem Hintergrund der relativ großen geographischen Entfernung von über 700 km. Jedoch müsste diese Annahme mit der Analyse einer größeren Probenzahl von beiden Standorten geprüft werden.

Auffällig ist außerdem noch die fehlende genetische Distanz zwischen der *P. fragilis* Probe und denen von *P. apletocheles*. Die *P. fragilis* Sequenz hat zwar eine andere Länge als die *P. apletocheles* Sequenzen, die Sequenz selbst ist jedoch komplett identisch. Es ist daher von einer Falschbestimmung auszugehen, ein junges Tier von *P. apletocheles* könnte vielleicht mit dem zierlichen *P. fragilis*-Exemplar verwechselt worden sein.

4.4 Eignung der Marker

Cytochrom c Oxidase Untereinheit 1 zeigt den am besten aufgelösten Baum. Auch erfolgte die Amplifikation dieses Markers zumeist ohne größere Komplikationen, genauso wie die Sequenzierung der Amplifikate. Cytochrom c Oxidase Untereinheit 1 eignet sich daher gut um die Phylogenie der Remipedia zu untersuchen.

Bei der Analyse der 16S-rRNA ist die Klade der Remipedia gut gelöst, teilweise zeigen sich aber sehr geringe Unterstützungswerte (0,54 bei *Speleonectes*

benjamini | Speleonectes parabenjamini und *Cryptocorynetes* und *Lasionectes exleyi*). Außerdem stellt sich die Außengruppe polyphyletisch dar. Dennoch scheint auch das 16S-rRNA-Gen ein geeigneter Marker für die Untersuchung der Phylogenie der Remipedia zu sein.

Histon 3 hingegen scheint der falsche Marker für eine phylogenetische Analyse mit dieser Taxaauswahl zu sein. Der H3-Baum zeigt Gruppen, die bei COI und 16S gut aufgelöst sind, als Polytomien oder an anderer Stelle im Baum. Außerdem ist der Wechsel von *M. yagerae* in die Außengruppe und der von *H. macracantha* in die Klade der Remipedia ungewöhnlich. Betrachtet man die H3-Alinierung, finden sich relativ wenige Unterschiede in den Sequenzen untereinander. Dies kann ein Hinweis darauf sein, dass H3 zu stark konserviert für eine Analyse mit dieser Taxaauswahl.

Für den 18S-rRNA-Marker sind in Genbank nur wenige Remipedia-Sequenzen verfügbar:

- Eine fast vollständige Sequenz von Speleonectes tulumensis (Genbank-• Nummer L81936). Über diese schreiben KOENEMANN et al. (2010), dass ihnen während der Alinierung ihres 18S-rRNA-Datensatzes die ungewöhnliche Länge und Struktur dieser S. tulumensis-Sequenz aufgefallen ist. Sie vermuten ebenso wie schon SPEARS & ABELE (1997), dass es sich hierbei um ein Pseudogen handelt.
- Für Speleonectes gironensis sind mehrere kurze Fragmente verfügbar.
- Außerdem existiert eine ebenfalls fast vollständige Sequenz für *P. apletocheles* (Genbank-Nummer GU067681).

In der hier vorliegenden Arbeit konnten von fünf Proben komplette 18S-rRNA-Sequenzen amplifiziert und sequenziert werden, diese stellten sich jedoch als Kontaminationen heraus. Statt des 18S-rRNA-Gens von Remipedia wurden wahrscheinlich 18S-rRNA-Sequenzen von potentiell symbiontischen Eukaryoten gewonnen (siehe Abschnitt Kontaminationen). 18S-rRNA-Sequenzen von Remipedia konnten nur als Teilstücke für folgende Taxa sequenziert werden: *Lasionectes exleyi*, *Godzillius robustus, Cryptocorynetes elmorei* und *Cryptocorynetes haptodiscus*. Diese wurden einer Strukturalinierung unterzogen, diese befindet sich im Anhang A. Aufgrund der Kürze der Sequenzen und der geringen Anzahl von Taxa, sowie dem Mangel an Vergleichssequenzen wurde jedoch von einer phylogenetischen Analyse abgesehen.

4.5 Kontaminationen

Die BLAST-Analyse der vermeintlichen 18S-rRNA-Sequenzen der Proben *Cryptocorynetes elmorei* 07-35B, *P. apletocheles* AB06-DC-5.1, *S. benjamini* AB06-SS-3 und *C. haptodiscus* AB06-SS-1.1 zeigte, dass es sich dabei nicht um Sequenzen von Remipedia handelt. Tatsächlich handelt es sich vermutlich um Sequenzen von exuviotrophischen Apostomen. Die Sequenzen ähneln z.B. denen von *Hyalophysa* Bradbury, 1966 oder *Gymnodinioides pitelkae* Bradbury, 2005. *Hyalophysa* ist entlang der Küsten der Vereinigten Staaten von Amerika weit verbreitet und kommt bei Decapoden vor. *Gymnodinioides pitelkae* ist von dem im Litoral verbreiteten Amphipoden *Gammarus obtusatus* Dahl, 1938 bekannt. Vertreter der Gattung *Gymnodinioides* sind als Ciliaten beschrieben, die z.B. auf den Setae der Extremitäten, des Telson und der 1. Antennen enzystieren und dann in das Exoskelett des Wirts eindringen, um sich dort von Gewebeflüssigkeit zu ernähren (LANDERS *et al.* 2006).

KOENEMANN et al. (2007a) fanden bei toten Remipedia Ciliaten, von denen sie annehmen, dass es sich um die Art Euplotes iliffei Hill et al., 1986 handelt. Sie vermuten, dass diese Ciliaten mit dem ursprünglichen Höhlenwasser in die Aquarien gelangten. Ob es sich dabei um Parasiten oder Kommensalen handelt, konnten sie nicht aufklären. Auch FELGENHAUER et al. (1992) haben Protisten, Ciliaten und Suctorien gefunden und vermuten, dass es sich dabei um exuviotrophische oder parasitische Epibionten handelt, welche sich von Gewebsflüssigkeit der Remipedia ernähren. Mit großer Wahrscheinlichkeit handelt es sich bei den von KOENEMANN et al. (2007a) beschriebenen Ciliaten um exuviotrophische Apostomen. Es wäre sogar denkbar, dass eine massenhafte Vermehrung dieser Ciliaten aufgrund der Aquarienhaltung (geringes Wasservolumen und nur geringer Wasseraustausch) zum Tod der Remipedien geführt hat. Eine solche Zunahme würde auch zu dem erhöhten Putzverhalten passen, welches KOENEMANN et al. (2007a) beschrieben haben. Sie konnten beobachten, dass das Putzverhaltens von selten und kurz bis exzessiv kurz vor dem Tod zunahm. Ähnliches konnte auch CARPENTER (1999) beobachten, jedoch mit zusätzlichem Sezernieren von Mucus.

4.6 Probenmaterial

Die Qualität und das Alter des Probenmaterials unterscheiden sich zum Teil erheblich. Einige Proben stammen noch aus den 1980er Jahren, während andere zum Beginn der Untersuchung frisch gesammelt wurden. Auch die Größe der Tiere variiert erheblich. Das kleinste Tier, das beprobt wurde, war eine Larve von Pleomothra apletocheles mit einer Größe von 1,6 mm. Das größte Tier war Speleonectes cf. tulumensis (Yuc-04-4b2) mit 40 mm Gesamtlänge. Während einige augenscheinlich bereits Abbauprozessen Proben unterlegen waren (Tiere erschienen gelblich bis braun gefärbt oder komplett durchsichtig, während frisches alkohol-fixiertes Material normalerweise weiß ist), waren insbesondere die frisch gesammelten Proben der Abaco Island Exkursion von 2006 in sehr gutem Zustand. Dies zeigte sich auch bei der DNA-Extraktion. Die Qualität und Ausbeute von Proben dieser Exkursion war deutlich größer als von anderen Proben. Insbesondere bei L. exlevi und S. gironensis war die Ausbeute sehr gering. Die Art und Weise der Probennahmen, deren Fixierung und Lagerung scheint erhebliche Auswirkungen auf die Qualität der Seguenzen und damit auf die gesamten Analysen zu haben. Es wird geraten, bei weiterführenden Untersuchungen neues Material zu sammeln und die Proben, in Hinblick auf die Erhaltung der Menge und Qualität der DNA, möglichst zeitnah und mit reichlich vorgekühltem 96%-igen Ethanol zu fixieren. Zudem sollte eine Unterbrechung der Kühlkette vermieden werden.

Ein weiteres Problem ist die Verfügbarkeit von Proben. Von den Arten Speleonectes minnsi, Speleonectes tanumekes und Kaloketos pilosus konnte kein Material besorgt werden. Das Bild das wir sehen ist daher nur unvollständig. Insbesondere Material von K. pilosus wäre von großem Interesse, um die Annahme zu bestätigen, dass K. pilosus gemeinsam mit der Gattung Cryptocorynetes und den Arten S. benjamini und S. parabenjamini eine neue Familie bildet. Für eine weitergehende Untersuchung der Biogeographie wird eine möglichst flächendeckende Probennahme (alle bekannten Höhlen sollten vertreten sein) und eine Mehrfachbeprobung (aus jeder Höhle sollten für jedes Taxon mehrere Exemplare gesammelt werden) empfohlen.

4.7 Fazit

Es wurden zahlreiche neue Sequenzen für 20 der 24 derzeit beschriebenen Remipedien-Arten generiert, ebenso für vier neue bisher noch nicht beschriebene Arten. Für die folgenden Marker konnten Sequenzen erstellt werden: 16S-rRNA, 18S-rRNA, COI und H3. Damit konnte eine in diesem Maße bisher einmalige phylogenetische Analyse dieser Klasse durchgeführt werden. Erstmalig wurde dabei ein Verfahren zur Alinierung von rRNA-Sequenzen bei Remipedien angewendet, das zunächst die strukturelle Veränderung und erst dann die Minimierung der Nukleotidveränderung optimiert (Strukturalinierung). Das Ergebnis sind Topologien die zeigen, dass die derzeitige taxonomische Einteilung der Nectiopoda fehlerhaft ist. Neben der Familie Speleonectidae ist auch die Familie Godzilliidae paraphyletisch, ebenso wie die Gattungen Speleonectes und Lasionectes. Die basale Stellung von L. exleyi in den hier vorliegenden Topologien legt die Vermutung nahe, dass die Remipedia in der Vergangenheit deutlich weiter verbreitet waren, als es die Betrachtung der atlantischen Arten allein vermuten lässt. Es ist daher mit Entdeckungen von neuen Remipedien zwischen Australien und der karibischen Region zu rechnen.

Aufgrund der phylogenetischen Analyse und einer detaillierten Besprechung morphologischer Merkmale wurde ein Vorschlag für eine Revision des taxonomischen Systems der Remipedia erarbeitet, in den sich *Speleonectes epilimnius*, *Speleonectes tanumekes* und *Speleonectes minnsi* trotzt fehlenden genetischen Materials einordnen lassen. Einzig *Speleonectes gironensis* lässt sich nicht eindeutig nach dem hier entwickelten Konzept zuordnen.

Unbeabsichtig konnten durch kontaminierte Proben exuviotrophe Apostomen nachgewiesen werden, welche Hinweise auf das Verhalten oder gar die Todesursache von Remipedien in künstlicher Umgebung liefern könnten.

Zusätzlich konnte der Vergleich der zahlreichen COI-Sequenzen von Vertretern verschiedener Arten und Fundorten ein Hinweis auf das Vorhandensein einer kryptische Art (*Godzillius cf. robustus*) liefern.

5 Literatur

Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat. Contr. 19: 716–723.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic. Acids. Res. 25:3389-3402.

Ax P (1999) Das System der Metazoa II. Ein Lehrbuch der phylogenetischen Systematik. Gustav Fischer Verlag.

Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 Å Resolution. Science 289 (5481): 905-920.

Berg JM, Tymoczko JL, Stryer L (2003) Biochemie 5. Auflage, Spektrum Akademischer Verlag Heidelberg, Berlin.

Birshtein YA (1960) Podklass Cephalocarida. In: Chernysheva NE, Orlov YA, editors. Osnovy paleontologii: spravochnik dlya paleontologov i geologov SSSR. Chlenistonogie, trilobitoobraznye i rakoobraznye. Moskva: Gosudarstvennoe Nauchno-Tekhnicheskoe Izdadelstvo Literatury po Geologii i Okhrane Nedr. pp. 421-422.

Bradbury PC (1966) The life cycle and morphology of the apostomatous ciliate, *Hyalophysa chattoni* n. g., n. sp. J. Protozool. 13, 209–225.

Brooks HK (1955) A crustacean from the Tesnus Formation (Pennsylvanian) of Texas. J. Paleontol. 29: 852-856.

Brünnich MT (1772) Zoologiae fundamenta praelectionibus academicis accommodata. Hafniae et Lipsiae: Friedr. Christ. Pelt. 254 p.

Börner C (1904) Zur Systematik der Hexapoden. Zool. Anz. 27, 511-533.

Botosaneanu L, Holsinger JR (1991) Some aspects concerning colonization of the subterranean realm – especially of the subterranean waters: a response to Rouch & Danielopool, 1987. Stygologia 6: 11-13.

Carpenter JH (1999) Behavior and ecology of *Speleonectes epilimnius* (Remipedia, Speleonectidae) from surface water of an anchialine cave on San Salvador Island, Bahamas. Crustaceana 72: 979-991.

Cate JH, Yusupov MM, Yusupova GZ, Earnest TN, Noller HF (1999) X-ray Crystal Structures of 70S Ribosome Functional Complexes. Science 285 (5436): 2095-2104.

Coineau N (1994) Evolutionary biogeography of the Microparasellid isopod *Microcharon* (Crustacea) in the Mediterranean Basin. Hydrobiologia 287 (1): 77-93.

Chopard, L. (1920) Recherches sur la conformation et le développement des derniers segments abdominaux chez les Orthoptéres. Thése de la Faculté des Sciences de Paris. Imprimerie Oberthur, Rennes.

Daenekas J, Iliffe TM, Yager J, Koenemann S (2009) *Speleonectes kakuki*, a new species of Remipedia (Crustacea) from anchialine and sub-seafloor caves on Andros and Cat Island, Bahamas. Zootaxa 2016: 51-66.

Dahl E (1938) Two new Amphipoda of the genus Gammarus from Finmark. Kongelige Norske Videnskabers Selskab Fordhandlingar 10:125-128.

Dakin WJ (1914) Fauna of Western Australia. II. The Phyllopoda of Western Australia. Proc. Zool. Soc. Lond. 1914: 293–305, pls. I–II.

D'Errico I, Gadaleta G, Saccone C (2004) Pseudogenes in metazoa: origin and features. Briefings in functional genomics & proteomics, 3(2):157-167.

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5), 1792-97.

Emerson MJ, Schram FR (1991) Remipedia. Part 2. Paleontology. Proc. San. Diego. Soc Nat Hist 7: 1-52.

Ertas B, von Reumont BM, Wägele JW, Misof B, Burmester T (2009) Hemocyanin suggests a close relationship of Remipedia and Hexapoda. Mol. Biol. Evol. 26: 2711-2718.

Fabricius JC (1775) Systema Entomologiae, sistens Insectorum Classes, Ordines, Genera, Species, adjectis Sysnonymis, Locis, Descriptionibus, Observationibus. Flensburg & Leipzig: Officina Libraria Kortii. pp. 1–832. Fabricius JC (1798) Supplementum entomologiae systematicae. - pp. [1-3], 1-572. Hafniae. (Proft & Storch).

Fairbanks RG (1989) A 17,000-year glacio-eustatic sea level record influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation: Nature, v. 342, p. 637-642.

Fanenbruck M, Harzsch S (2005) A brain atlas of *Godzilliognomus frondosus* Yager, 1989 (Remipedia, Godzilliidae) and comparison with the brain of *Speleonectes tulumensis* Yager, 1987 (Remipedia, Speleonectidae): implications for arthropod relationships. Arthropod. Struct. Dev. 34: 343-378.

Felgenhauer BE, Abele LG, Felder DL (1992) Remipedia. In: Harrison, F.W., Humes, A.G. (Hrsg.). Microscopic Anatomy of Invertebrates; Volume 9 Crustacea. Wiley-Liss, Inc., New York, o.S..

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R, (1994) DNA primers for amplification of mitochondrial cytochrome C Oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294-299.

García-Valdecasas A (1984) Molockiidae new family of Remipedia (Crustacea) from Lanzarote (Canary Islands). EOS 60: 329-333.

Gillespie JJ, McKenna CH, Yoder MJ, Gutell RR, Johnston JS, Kathirithamby J, Cognato AI (2005) Assessing the odd secondary structural properties of nuclear small subunit ribosomal RNA sequences (18S) of the twisted-wing parasites (Insecta: Strepsiptera). Insect Molecular Biology, 14: 625–643 doi: 10.1111/j.1365-2583. 2005.00591.x

Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413 (6852):157-61.

Gutell RR (1996) Comparative Sequence Analysis and the Structure of 16S and 23SrRNA. In: Ribosomal RNA, Structure, Evolution, Processing, and Function in Protein Biosynthesis. Dahlberg AE, Zimmermann RA (eds), CRC Press. Boca. Raton: 111-128.

Hazerli D, Koenemann S, Iliffe TM (2009) *Cryptocorynetes elmorei*, a new species of Remipedia (Crustacea) from an anchialine cave on Eleuthera, Bahamas. Mar. Biodiv. 40: 71-78.

Holzenthal RW, Blahnik RJ, Prather AL, Kjer KM (2007) Order Trichoptera Kirby 1813 (Insecta), Caddisflies. In: Zhang, Z.-Q., and Shear, W.A. (Eds). 2007 Linneaus Tercentenary: Progress in Invertebrate Taxonomy Zootaxa. 58 pp. 1668:639-698.

Hill BF, Small EB, Iliffe TM (1986) *Euplotes iliffei* n.sp.: A new species of *Euplotes* (Ciliophora, Hypotrichida) from the marine caves of Bermuda. Journal of the Washington Academy of Sciences. Volume 76, Number 4, Pages 244-249.

Huang JD, Sinitshenkova ND, Ren D (2011) New mayfly nymphs (Insecta: Ephemeroptera) from Yixian Formation, China. Paleontological Journal 45(2):167-173.

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17: 754-755.

Hwang UW, Kim W (1999) General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics. Korean. J. Parasitol. 37(4):215-28.

Iliffe TM, Otten T, Koenemann S (2010) *Godzilliognomus schrami*, a new species of Remipedia (Crustacea) from Eleuthera, Bahamas. Zootaxa 2491: 61-68.

Ivey JL, Santos SR (2007) The complete mitochondrial genome of the Hawaiian anchialine shrimp *Halocaridina rubra* Holthuis, 1963 (Custacea: Decapoda: Atyidae). Gene 394, 35-44.

Kjer KM, Baldridge GD, Fallon AM (1994) Mosquito large subunit ribosomal RNA: Simultaneous alignment of primary and secondary structure. Biochim. Biophys. Acta 1217 (2) 147-155.

Kjer KM (1995) Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol. Phylogenet. and Evol. 4 (3) 314-330.

Kjer KM (2004) Aligned 18S and Insect phylogeny. Systematic Biology 53:506-514.

Kjer KM, Roshan U, Gillespie JJ (2009) Structural and evolutionary considerations for multiple sequence alignment of RNA, and the challenges for algorithms that ignore them. In: Rosenberg MS, ed. Sequence Alignment: Methods, Models, Concepts, and Strategies. University of California Press; 2009:105-149.

Klaus S, Brandis D, Ng PKL, Yeo DCJ, Schubart CD (2009) Phylogeny and Biogeography of Asian Freshwater Crabs of the family Gecarcinucidae (Brachyura: Potamoidea). In: Martin JW, Crandall KA, Felder DL (eds.) Crustacean Issues 18: Decapod Crustacean Phylogenetics, pp. 509-531. Boca Raton, Florida: Taylor & Francis/CRC Press.

Koenemann S, Iliffe TM, van der Ham JL (2003) Three new sympatric species of Remipedia (Crustacea) from Great Exuma Island, Bahamas Islands. Contrib. Zool. 72: 227-252.

Koenemann S, Iliffe TM, Yager J (2004) *Kaloketos pilosus*, a new genus and species of Remipedia (Crustacea) from the Turks and Caicos Islands. Zootaxa 618: 1-12.

Koenemann S, Schram FR, Iliffe TM, Hinderstein LM, Bloechl A (2007a) The behavior of Remipedia (Crustacea), with supporting field observations. J. Crust. Biol. 27: 534-542.

Koenemann S, Iliffe TM, van der Ham J (2007b) Micropacteridae, a new family of Remipedia (Crustacea) from the Turks and Caicos Islands. Org. Divers. & Evol. 7: 52.e1-52.e14.

Koenemann S, Schram FR, Hoenemann M, Iliffe TM (2007c) Phylogenetic analysis of Remipedia (Crustacea). Org. Divers. & Evol. 7: 33-51.

Koenemann S, Ziegler M, Iliffe TM (2008) *Pleomothra fragilis* n. sp. (Remipedia) from the Bahamas, with remarks on morphologic reductions and postnaupliar development. J. Crust. Biol. 28: 128-136.

Koenemann S, Olesen J, Alwes F, Iliffe TM, Hoenemann M, Ungerer P, Wolff C, Scholtz G (2009a) The post-embryonic development of Remipedia (Crustacea) - additional results and new insights. Dev. Genes Evol. 219: 131-145.

Koenemann S, Bloechl A, Martínez A, Iliffe TM, Hoenemann M, Oromí P (2009b) A new, disjunct speces of *Speleonectes* (Remipedia, Crustacea) from the Canary Islands. Mar. Biodiv. 39: 215-225.

Koenemann S, Jenner RA, Hoenemann M, Stemme T, von Reumont, BM (2010) Arthropod phylogeny revisited, with a focus on crustacean relationships. Arthropod. Struct. Devel. 39: 88-110.

Koenemann S, Iliffe TM Class Remipedia. In: Forest J, von Vaupel Klein JC, editors. Treatise on Zoology. Vol. 5. Paris, Milan, Barcelona: Masson. *In press.*

Landers SC, Gómez-Gutiérrez J, Peterson WT (2006) *Gymnodinioides pacifica*, n. sp., an exuviotrophic ciliated protozoan (Ciliophora, Apostomatida) from euphausiids of the Northeastern Pacific. European Journal of Protistology Volume 42, Issue 2, Pages 97-106.

Latreille M (1817) Les Crustacés, les arachnides et les insectes. In: Cuvier G (ed.), Le règne animal distribué d'après son organisation, pour servir de base à l'histoire naturelle des animaux et d'introduction a l'anatomie comparée. Tome III. Paris: Deterville. pp. I-XXIX, 1-653.

Larget B, Simons D (1999) Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees. Mol. Biol. Evol., 16, 750-759.

Leach WE (1815) A tabular view of the external characters of four classes of animals, which Linn., arranged under Insecta; with the distribution of the genera composing three of these classes into orders, &c. and descriptions of several new genera and species. Transactions of the Linnean Society of London 11:306–400.

Lorentzen D, Koenemann S, Iliffe TM (2007) *Speleonectes emersoni*, a new species of Remipedia (Crustacea) from the Dominican Republic. Zootaxa 1543: 61-68.

Martin JW, Davis GE (2001) An updated classification of the recent Crustacea. Science Series, 39. Natural History Museum of Los Angeles County: Los Angeles, CA (USA). vii, 123 pp. ISSN 1-891276-27-1.

Milliman JD, Emery KO (1968) Sea levels during the past 35,000 years: Science, v. 162, p. 1121-1123.

Milne Edwards H (1840) Histoire Naturelle des Crustacés, comprenant l'anatomie, la physiologe et la classification de ces animaux. *In*. Libraire Encyclopedique de Roret, Paris, p. 638.

Morrison DA (2006) Multiple sequence alignment for phylogenetic purposes. Australian Systematic Botany 19: 479-539.

Neiber MT, Hartke TR, Stemme T, Bergmann A, Rust J, Iliffe TM, Koenemann S (2011) Global Biodiversity and Phylogenetic Evaluation of Remipedia (Crustacea). PLoS ONE 6(5): e19627. doi:10.1371/journal.pone.0019627.

Nylander JAA (2004) MrModeltest v2 Evolutionary Biology Centre, Uppsala University.

Regier JC, Shultz JW, Zwick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463: 1079-1083.

Reinhard W (1887) Kinorhyncha (Echinoderes), ihr anatomischer Bau und ihre Stellung im System. Zeitschr. wiss. Zool., vol. 45.

Ronquist F, Huelsenbeck JP (2003) MrBaxes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572-1574.

Sanders HL (1955) The Cephalocarida, a new subclass of Crustacea from Long Island Sound. Proc. Natl. Acad. Sci. U S A 41: 61-66.

Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashas A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of Functionally Activated Small Subunit at 3.3 Å Resolution. Cell 102: 615-623.

Schnare MN, Damberger SH, Gray MW, Gutell RR (1996) Comprehensive comparison of structural characteristics in eukaryotic cytoplasmic large subunit (23S-like) ribosomal RNA. J. Mol. Biol. 256: 701-719.

Schram FR (1974) Paleozoic Peracarida of North America. Fieldiana Geol. 33: 95-124.

Schram FR (1986) Crustacea. New York: Oxford University Press. XIV+606 p.

Schram FR, Emerson MJ (1986) The Great Tesnus Fossil Expedition of 1985. Environ Southwest 515: 16-21.

Schram FR, Yager J, Emerson MJ (1986) Remipedia. Part I. Systematics. Mem San Diego Soc. Nat. Hist. 15: 1-60.

Schram FR, Hof CHJ (1997) Fossils and the interrelationships of major crustacean groups. In: Edgecombe G, editor. Arthropod Fossils and Phylogeny. New York: Columbia University Press. pp. 233-302.

Schram FR, Koenemann S (2004) Are crustaceans monophyletic? In: Cracraft J, Donoghue MJ, editors. Assembling the Tree of Life. Oxford, New York: Oxford University Press. pp. 319-329.

Shultz JW, Regier JC (2000) Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean + hexapod clade. Proc. R. Soc. Lond. B 267:1011-1019.

Silvestri F (1931) Nuovi Campodeidae (Insecta, Thysanura) della regione austaliana. Boll. Lab. Zool. Gen. Agr. Portici 25: 275-285.

Spengler I (1793) Om Slaegterne *Chaena*, *Mya* og *Unio*. *Skrifter af Naturhistorie Selskabet*, 3: 16–69.

Spears T, Abele LG (1997) Crustacean phylogeny inferred from 18S rDNA. In *Arthropod Relationships.* Systematics Association Special Volume Series 55. R. A. Fortey and R. H. Thomas, editors. Chapman and Hall, London. 169-187.

Stemme T, Harzsch S, Bicker G, Koenemann S (2010) First immunohistochemical description of serotonergic neurons in the central nervous system of Remipedia Yager, 1981 (Crustacea) and phylogenetic implications. 7th International Crustacean Congress, Program and Abstracts; Qingdao, (China) 20-25/06/2010.

Stenderup JT, Olesen J, Glenner H (2006) Molecular phylogeny of the Branchiopoda (Crustacea) - multiple approaches suggest a 'diplostracan' ancestry of the Notostraca. Molecular Phylogenetics and Evolution 41:182-194.

Stocsits R, Letsch H, Hertel J, Misof B, Stadler P (2009) Accurate and efficient reconstruction of deep phylogenies from structured RNAs. Nucleic Acids Research, 1-10.

Stock JH (1984) First Record of Bogidiellidae (Crustacea, Amphipoda) from the Pacific: Bogidiella (Xystriogidiella N. Subgen.) Capricornea New Species from the Great Barrier Reef. Bulletin of Marine Science 34 (3): 380-385(6).

Stock JH (1986) Deep-sea origin of cave faunas, an unlikely supposition. Stygologia 2: 105-111.

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599.

Van der Ham JL, Felgenhauer BE (2007) The functional morphology of the putative injecting apparatus of *Speleonectes tanumekes* (Remipedia). Journal of Crustacean Biology 27 (1): 1-9

Von Reumont BM, Meusemann K, Szucsich NU, Dell'Ampio E, Gowri-Shankar V, Bartel D, Simon S, Letsch HO, Stocsits R, Luan YX, Wägele JW, Pass G, Hadrys H, Misof B (2009) Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships. BMC Evolutionary Biology (2009) 9:119.

Wagner HP (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida) A study on their morphology, taxonomy, phylogeny and biogeography. Zoologische Verhandelingen 291 (1): 1-338.

Wägele JW (2001) Grundlagen der Phylogenetischen Systematik. 2., überarb. Aufl., -München : Pfeil, 2001.

Whitfield JB, Kjer KM (2007) Ancient rapid radiations of insects: Challenges for phylogenetic analysis. Annu. Rev. Entomol. 53:1-23.

Wollermann U, Koenemann S, Iliffe TM (2007) A new remipede, Cryptocorynetes longulus n. sp., from Cat Island, Bahamas. J. Crust. Biol. 27: 10-17.

Yager J (1981) Remipedia, a new class of Crustacea from a marine cave in the Bahamas. J. Crust. Biol. 1: 328-333.

Yager J, Schram FR (1986) *Lasionectes entrichoma*, n. gen., n. sp. (Crustacea, Remipedia) from anchialine caves in the Turks and Caicos, B. W. I. Proc. Biol. Soc. Wash. 99: 65-70.

Yager J (1987a) *Cryptocorynetes haptodiscus*, new genus, new species, and *Speleonectes benjamini*, new species, of remipede crustaceans from anchialine caves in the Bahamas, with remarks on distribution and ecology. Proc. Biol. Soc. Wash. 100: 302-269.

Yager J (1987b) *Speleonectes tulumensis* n. sp. (Crustacea: Remipedia) from two anchialine cenotes of the Yucatan Peninsula, Mexico. Stygologia 3: 160-166.

Yager J (1989) *Pleomothra apletocheles* and *Godzilliognomus frondosus*, two new genera and species of remipede crustaceans (Godzilliidae) from anchialine caves of the Bahamas. Bull. Mar. Sci. 44: 1195-1206.

Yager J (1994) *Speleonectes gironensis*, new species (Remipedia, Speleonectidae), from anchialine caves in Cuba, with remarks on biogeography and ecology. J. Crust. Biol.14: 752-762.

Yager J, Humphreys WF (1996) *Lasionectes exleyi*, sp. nov., the first remipede crustacean recorded from Australia and the Indian Ocean, with a key to the world species. Invertebr. Taxon. 10: 171-187.

Yager J, Carpenter JH (1999) *Speleonectes epilimnius* new species (Remipedia, Speleonectidae) from surface water of an anchialine cave on San Salvador Island, Bahamas. Crustaceana 72: 965-977.

Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic. Acids. Res. 31 (13), 3406-3415.

6 Internetadressen

Basic Local Alignment Search Tool (BLAST)

http://www.ncbi.nlm.nih.gov/

Crandall Database

http://crandalllab.byu.edu/PrimerDatabase.aspx

Genbank

http://www.ncbi.nlm.nih.gov/genbank/

Introduction to Physical Oceanography http://oceanworld.tamu.edu/resources/ocng_textbook/contents.html

MUSCLE web server

http://www.ebi.ac.uk/Tools/msa/muscle/

National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov/

The Comparative RNA Web Site www.rna.ccbb.utexas.edu

The European Molecular Biology Laboratory (EMBL) http://www.embl.de/

7 Anhang A Genetik

7.1 PCR-Parameter

Alle PCRs und Sequenzierreaktionen wurden mit einem Mastercycler ep Gradient (Eppendorf) und Mastercycler personal (Eppendorf) durchgeführt.

Reagenzien	Konzentration	Volumen
10 x PCR Puffer ¹ (Bioline)		2,5 µl
MgCl ₂ (Bioline)	2 mM	1 µl
dNTPs (Bioline)	0.4 mM	1 µl
Vorwärtsprimer (Biomers)	10 mM	1 µl
Rückwärtsprimer (Biomers)	10 mM	1 µl
Taq Polymerase (Bioline)	1 u/µl	0,2 µl
HPLC-H ₂ O		17,3 µl
DNA Vorlage		1 µl
Gesamtvolumen		25 µl
1 = ohne MgCl ₂		

Tabelle 7.2 Chemikalien und Enzyme der PCR für 18S.

Reagenzien	Konzentration	Volumen
5 x KAPA2G Puffer A ¹ (Peqlab)		5 µl
MgCl ₂ (Peqlab)	50 mM	0,5 µl
dNTPs (Peqlab)	10 mM	0,5 µl
Vorwärtsprimer (Biomers)	10 mM	1 µI
Rückwärtsprimer (Biomers)	10 mM	1 µI
KAPA2G robust DNA Polymerase (Peqlab)	5 u/µl	0,1 µl
HPLC-H ₂ O		15,9 µl
DNA Vorlage		1 µI
Gesamtvolumen		25 µl
¹ =beinhaltet MgCl ₂		

Tabelle 7.3 PCR-Profil für 16S, COI und H3.

16S + COI + H3	Temperatur	Zeit	
Initial denaturation	94°C	3:00 min	
Denaturation	94°C	0:30 min	
Annealing	50°C	0:50 min	40 Zyklen
Elongation	72°C	1:00 min	
Final elongation	72°C	5:00 min	

Tabelle 7.4 PCR Profil für 18S.

18S	Temperatur	Zeit	
Initial denaturation	95°C	3:00 min	
Denaturation	94°C	0:30 min	
Annealing	55°C	0:30 min	40 Zyklen
Elongation	72°C	2:00 min	
Final elongation	72°C	2:00 min	

7.2 Primerliste

Tabelle 7.5 Liste der in dieser Arbeit verwendeten Primer.

Name	Orientierung	Sequenz 5´- 3´	Quelle
COI			
LCO1-1490 (MH50)	fw	GGTCAACAAATCATAAAGATATTG	1
HCO1-2198 (MH51)	rev	TAAACTTCAGGGTGACCAAAAAATCA	1
T7MH51		TAATACGACTCACTATAGGGTAAACTTCAGGGTGACCAAAAAATCA	
Sp6MH50		ATTTAGGTGACACTATAGAATGGTCAACAAATCATAAAGATATTG	
COI as	rev	CGTCG(AT)GG(CT)AT(AT)CC	
COI s	fw	T(AGT)AT(CT)GGAGGATT(CT)GG	
16S			
CRUST16SF	fw	TAATTCAACATCGAGGTCGCAA	2
CRUST16SR	rev	TTTGTACCTTKTGTATTAGG	2
Sp6MH11		ATTTAGGTGACACTATAGAATCGCCTGTTTATCAAAAACAT	
T7MH14		TAATACGACTCACTATAGGGCCGGTCTGAACTCAGATCACGT	
mt16S-ar (MH11)	rev	CGCCTGTTTATCAAAAACAT	3
mt16S-br (MH14)	fw	CCGGTCTGAACTCAGATCACGT	3
Н3			
H3 AF	fw	ATG GCT CGT ACC AAG CAG ACV GC	1
H3 AR	rev	ATA TCC TTR GGC ATR ATR GTG AC	1
Universal			
Sp6		ATTTAGGTGACACTATAGAAT	
Τ7		TAATACGACTCACTATAGGG	

1 = FOLMER et al. (1994), 2 = IVEY & SANTOS (2006), 3 = Trisha Spears, 4 = http://crandalllab.byu.edu/PrimerDatabase.aspx

Der Vorwärtsprimer T7MH51 besteht aus einer Kombination von LCOI-1490 und einem Universalprimer T7, der Rückwärtsprimer SP6MH50 aus einer Kombination von HCOI-2198 und Sp6. Auch die Primer T7MH14 und Sp6MH11 sind eine Kombination aus genspezifischem Primer und Universalprimer. Der genspezifische Anteil dient der Amplifikation des Zielfragments. Während der PCR wird der Universalprimersequenz in die entstehenden Amplifikate mit eingebaut. Anschließend können die Universalprimer T7 und Sp6 zu sequenzieren genutzt werden. Dies führt zu qualitativ hochwertigere Sequenzen.

7.3 Sequenzierreaktion

Die Sequenzierreaktionen wurde mit DYEnamic[™] ET Dye Terminator Kit der Firma Amersham Biosciences durchgeführt. Sie fanden in Ansätzen von 10 µl statt, welche sich aus 1,5 µl ET-Mix, 0,5 µl Dilutionspuffer, 0,75 µl 10 pmol Primer, sowie aufgereinigtem PCR-Produkt und HPLC-Wasser zusammensetzten. Das Temperaturprogramm für die Sequenzierreaktion lautete:

- Denaturierung: 20 s bei 95°C
- Annealing: 15 s bei 52°C
- Elongation: 2 min bei 60°C
- 30 Zyklen.

7.4 Aufreinigung der Sequenzierreaktion

- Sephadex G-50 superfine (Sigma) wird mit der Maßplatte (Platte mit 96 Vertiefungen a 50 µl) portioniert. Die befüllte Maßplatte wird auf die Aufreinigungsplatte (HTS-Multiscreen-Platte) gelegt, so das die jeweiligen Öffnungen der Maßplatte und der Aufreinigungsplatte übereinander liegen. Durch drehen beider Platten wir das Sephadex von der Maßplatte in die Aufreinigungsplatte überführt.
- 280 µl HPLC-H₂O werden jeweils zum Sephadex zu gegeben. Die Platte wird über Nacht bei COCA oder 3 Std. bei Raumtemperatur inkubiert.
- Die Aufreinigungsplatte wird auf Raumtemperatur gebracht und zentrifugiert bei 910 x g für 5 Minuten, das Eluat wird verworfen.
- Die Platte wird zweimal mit je 200 μ l HPLC-H₂O gewaschen und zentrifugiert für 5 Minuten bei 910 x g.
- Die Sequenzierreaktion wird mit 10 µl HPLC-H₂O aufgefüllt und gemischt. Der Mix wird auf die Mitte Sephadex-Säule gegeben.
- Die Aufreinigungsplatte wird auf eine PCR-Platte mit 96 Vertiefungen aufgesetzt beide zusammen werden 5 Minuten bei 910 x g zentrifugiert.
- Das Eluat wird zum sequenzieren eingesetzt, ggf. wird mit HPLC-H₂O auf 15 µl aufgefüllt.

Abbildung 7.1 Sekundärstrukturmodell 16S-rRNA (5´-Teil) von Artemia salina (Genbank Nummer X12965). Quelle: The Comparative RNA Web Site, http://www.rna.icmb.utexas.edu.

Abbildung 7.2 Sekundärstrukturmodell 16S-rRNA (3´-Teil) von Artemia salina (Genbank Nummer X12965). Quelle: The Comparative RNA Web Site, http://www.rna.icmb.utexas.edu.

Abbildung 7.3 Sekundärstrukturmodell 18S-rRNA von *Daphnia pulex* (Genbank Nummer AF014011). Quelle: The European Ribosomal RNA Database, http://rrna.uia.ac.be. Die Zahlen geben die Nummerierung der Regionen an.

7.5 Datenmatrix

S tulumensis

S_williamsi S xibalba

#NEXUS [Remipedia COI,	H3, 16S rDNA]
begin data; dimensions n format dataty matrix	tax=30 nchar=1679; /pe=dna missing=? gap=- interleave=yes;
[COI, 657 nt, co Campodea Penaeus Branchinella Hutchinsoniella	donstart=1] ACGTTATATATATATTTTGGATCTTGAAGAGCTCTTGTCGGGACAGCCCTTAGAATACTTATTCGTACTGAGTTAGGTCAGCCGGGGAGTTTAATTGGTG ACTCTATATTTTATTT
G_robustus Gn_frondosus Gn_schrami	??????????AGGATTCTGAATAGGAACATTCGGCCTAGGCTTAAGTCTCCTAATTCGAGCAGAATTAGGAACCCCAGGTAACCTATTAGGAG ???????????AGGATTTTGAGGAGGAATATTAGGAATAAGATTAAGACTATTAAATTCGATTAGAACTTGGAACTCCAGGAAGACTATTAGGAA ??????????????????????????????
P_apletocheles P_fragilis P_nsp	ACCCTCTATTTACTTCTAGGATTCTGAAGAGGATTTGTAGGTTTGGCCCTAAGATTCCTCATTCGTCTAGAACTAGGTACCCCCGGTCCAGTCATTGGCC ?????????????????????????????????
M_yagerae C_elmorei C_haptodiscus C_longulus L_entrichoma L_exlevi	ACACTCTEATATAATTATGGGTTTCTGGAGAGGGTTCGTAGGACTAGGACTAAGAATAACTAATTCGAGCCGAACTCGGGTCGCCGGGAACAATAATCGGAG ACCCTGTACATAATTACAGGATTTTGAAGGGGTGGATTCATTGGACTAGGACTAAGAATACTGGATCCGAGCGGACCAGGGACCACAGGACAATAATTGGAG ???????????????????????CTGAAGAGGGTGGGTCGGCCTAGGACTAAGAATACTGATCCGAGCCGAATTAGGCTTCCCCAGGCACAATGATCGGAG ??????????????????????????????????
S_atlantida S_benjamini S_emersoni	??????????????????????????????????????
S_gironensis S_kakuki S_lucayensis	??????????????????????????????????????
S_nsp2 S_nsp4 S_ondinae S_parabenjamini	??????????????????????????????????????
S_tulumensis S_williamsi S_xibalba S_cf tulumensis	ACACTATATATATATATCCTAGGGTTCTGAAGAGGGTTCGTAGGATTAGGACTTAGTGTCATTATTCGCATAGAACTAGGATCACCGGGGACAGTAATTGGGG ACCCTATACCTAATCACAGGCTTTGTGAAGAGGCTTTATCGGACTAGGACTATAGAACTAGGATCATCGGAGCACGGAACTATAATTGGGG ????????????????????????????
 Campodea Penaeus	ATGACCAAATTTATAATGTTGTAGTCACTGCCCATGCTTTCGTAATAATTTTTTTT
Branchinella Hutchinsoniella G_robustus	$\label{eq:construct} argate construct a construction of the cons$
Gn_frondosus Gn_schrami P_apletocheles	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
P_fragilis P_nsp M_yagerae C_elmorei	AAAACCATCTATTTAATGTAATCATCACCGCCCACGCATTAATTA
C_haptodiscus C_longulus L entrichoma	ACGATCAAACGATACCGTAATCGTTACAGCCCACGCCCTAATTATAATCTTCTTCATGGTTATACCCATGCTAATTGGAGGATTTGGAAACTGAATACT ACGATCAAACGATACCGTAATCGTAACAGCCCACGCCCTAATCATGATCATGATCTTCTTCATAGTCATGCCAATACTAATCGGGGGGATTCGGAAACTGAATACT ?????????????????????????????????
L_exleyi S_atlantida S_benjamini	$\label{eq:construct} argate construction of the structure of the structu$
S_emersoni S_gironensis S_kakuki	ACGACCAAACATACAACGTAATCGTCACAGCACACGCCTCTAATTATAATCTTCTTTATAGTAATACCAATATTAATTGGAGGATTCGGAAACTGAATACT ACGACCAAATCTACAATGTAGTAGTAACAGCACATGCACTTATTATAATCTTCTTTATAGTTATACCAATACTTATTGGGGGGACTAGGTAACTGAATACT AAGATCATCTATATAACGTAATTGTTACAGCACACGCACTTATTATTATAATCTTCTTTATAGTTATACCAATACTTATTGGGGGGACTGGGAACTGGATACT
S_lucayensis S_nsp2 S_nsp4 S_ondinae	ARGACCATTTATATAACGTAATGTAACTGCAACAGCACTCATTCAT
S_parabenjamini S_tulumensis S_williamsi	??????????????????????????????????????
S_xibalba S_cf_tulumensis	AAGACCACACTGATAATGTAATCGTAACAGCACATGCCCTAATTATAATCTTCTTTATAGTTATACCAGTATTAATTGGAGGATTTGGAAGATTGGAAGATTGAATACT AAGACCACACCTATAACGTAATCGTAACAGCACACGCCCTAATTATAATCTTCTTTATAGTAATACCAATACTTATCGGAGGATTCGGAAATTGAATATT
Campodea Penaeus Branchinella	ACCATTAATACTAGGGGCTCCAGATATAGCTTTCCCTCGAATAAATA
G_robustus Gn_frondosus Gn_schrami	ACCATTGATAATCGGAGCACCAGATATAGCATTCCCACGATTAAACAACCTTAGGATTATTACCACCACCACCATCATCACCCCCTTATTAAGAACGACGAC ACCATTGATAATCGGATCCCCAGATATAGCATTCCCACGACTTAACAACCTAGGATTCTGACTATTATCACCACCACCACCATCATTATAGTATCAAGAACAAC ACCATTGATAATTGGATCCCCAGACATAGCATTCCCGCGCTCTTAATAATTTAAGATTTTGGATTACTACCTCCCACCATATTATTACTTATTCCAAGAAAT
P_apletocheles P_fragilis P_nsp	$\label{transmission} to construct a cons$
M_yagerae C_elmorei C_haptodiscus C_longulus	CCCCTCAATACTGGGAGCACCAGACATAGCATTCCCACGAATAAATA
L_entrichoma L_exleyi S atlantida	TCCATTAATACTAGGAACAACCAGACATAGCATTCCCACGAATAAACAACCTAAGATTCTGACTATTACCACCCATCACTTAACATCCTATAATAAGAGG CCCCCTTATATTAGGAACACCAGACATAGCATTCCCACGAATAAACAACCTAAGATTCTGACTATTACCACCACCATCACTTAACACTCCTATTAACAAGGG CCCCCTTATATTAGGAACACCAGAXATAGCMTTYCCCACGAATAAACAACCTAAGGATTTGACTATTACCACCACCATCACTTACCTAATAAGAGG ACCAATCATACTAGGCTCACCAGATATGGCTTTCCCACGAATAAACAACCTAAGGATTTTGACTATTACCACCACCATCACTTTCACTAATAAGAGG
S_benjamini S_emersoni S_gironensis	$\label{eq:cocctation} CCCCCTATATAGGAGGCACCAGATATAGGATTCCCACGATAAATAA$
S_kakuki S_lucayensis S_nsp2	$\label{transmission} to constant a constan$
S_nsp4 S_ondinae S_parabenjamini	CCCACTAATATTAGGAACACCAGATATAGCATTCCCACGAATAAACAACTTAAGATTTGACTTTTACCTCCCCCCTCTCAGGATATAATAATAAAGAGGC CCCAATCATAGTAGGAGCACCAGATAGGCCTTCCCACGAATAACAACCATAAGATTCGACTATCATACTACCACCACACCTTACACATGCACACCAAAGAGGC ????????????????????????

ACCAATTATATTAGGATCACCAGATATAGCATTTCCACGAATAAACAACCTAAGATTTTGACTTCCCCGCCATCACTACTATTATTATTAATAAGTGGA S of tulumensis ACCAATTATATATAGGATCACCAGATATAGCATTTCCACGAATAAACAACCTAAGATTTTGACTTCCCCGCCATCACTACTATTATTACTAATAAGTGGA

Campodea Penaeus Branchinella Hutchinsoniella G_robustus Gn frondosus Gn schrami P apletocheles P fragilis P_nsp M_yagerae C elmorei C haptodiscus C_longulus L entrichoma L_exleyi S_atlantida s benjamini Semersoni S gironensis S kakuki S lucayensis S nsp2 S_nsp4 S ondinae S_parabenjamini S tulumensis S_williamsi S xibalba

Campodea Penaeus Branchinella Hutchinsoniella G robustus Gn frondosus Gn_schrami P apletocheles P_fragilis P nsp M_yagerae C_elmorei C haptodiscus C_longulus L entrichoma L_exleyi S_atlantida S benjamini Semersoni S gironensis S_kakuki S lucayensis S_nsp2 S_nsp4 Sondinae S_parabenjamini S tulumensis S_williamsi S_cf_tulumensis

Campodea Penaeus Branchinella Hutchinsoniella G_robustus Gn frondosus Gn schrami P apletocheles P_fragilis P nsp M_yagerae C_elmorei C_haptodiscus C_longulus L_entrichoma L^{_}exleyi S_atlantida S_benjamini S_emersoni Sgironensis S kakuki S lucayensis S_nsp2 S nsp4 Sondinae S_parabenjamini S^{tulumensis} S_williamsi S xibalba S_cf_tulumensis

TTAGTTGAAAGAGGGGCAGGAACAGGTTGAACTGTCTACCCCCCTCTCTTCTAATATTGCTCATATAGGAGCCTCTGTTGATTTAACTATTTTTTCA ͲͲͲϬͲϿϬϿϿϬͲͲϬϾϿϬͲϬϾϾͲϷϹϿϾϾϾͲͲϾϾϿϹϾϾͲͲͲϿͲϹϹϹϹϹϹͲϹͲͲͲϹϾϾϾϾϾϾͳͲͲͲϿϾϾϿϹϿͲϹϹͲϾϾͲϹϹͲϾϹͲϾϾͲͲϾϿͼϾϿͳϿϲͲϿͲͲͲͲͲͲͲͲ TTANTAGAANAGTGAGAGAGGAGGAGGATGAACAATCTATCCACCACTTTATCATCANACATAGCTCACTCGGACCATCCGTTGATTAGCAATCTTCTCAT ATAATTGAGAGAGGAGTAGGAACAGGATGAACAATCTTATCCACCACTTTCATCANATATTACACATTCAGGACCATCTGTAGATATAGCAATCTTTTCAC CTAGTAGAAAGAGGCGTAGGAACAGGCTGAACAATTTACCCCCACACTATCATCGAACATATCTCACCCAGGCCCATCAGTAGACATGGCAATCTTCTCCC CTATTTGAAAGAGGAGTAGGAACAGGCTGAACAGTATATCCCACCATTAGCATCAGTTACTTCACACTCAGGCGCATCAGTAAACCTAGCCATCTTCTCAT TTAGTAGAAAGAGGAGTTGGAACAGGATGAACTATTTATCCCCCTCTCTCATCAACAATTTCTCAGGTGCATCAGTTGATATAGCAATCTTTTTCCC CTAGTAGAAAGAGGAGTTGGAACAGGATGAACAATTTACCCGCCACTATCATCAAATATATCACATTCAGGAGCATCAGTAGATATAGCAATCTTCTCCC CTAGTAGAAAGAGGCGTAGGCACAGGATGAACAGTATACCCCCCCTATCAGCAAATATATCACACTCAGGCCCACCAGTAGACATAGCAATCTTCTCAT S cf tulumensis CTAGTAGAAAGAGGAGTTGGAACAGGATGAACAATTTACCCCACCACTATCAACAATATATCACATTCAGGAGCATCAGTAGATATAGCAATCTTCTCCC

> TACATTTAGCAGGGGTCTCAATCATAAGGAGCTGTAAACTTTATAACGACCGTTATCAATATACGATCTACAGGGATAACTATAGACCGAATACCACT TTCACTTAGCAGGGATCTCTTTCAATTTTAGGGGCAGTTAATTATTATAACAATCGGCCACAATCTATAACTATAGATCGAATACCAT TACATTTAGCTGGTGTTTCTTCTATTTTAGCTTCTGTGAATTTTATTACAACTATGATTAATATACGAGCTGGGGTATTATCTCTGGAACGTGTTTCTTT TACATTTAGCAGGAGCATCATCATCCTTGGAGCTATTAACTTCATCACTACAATCATTAATATACGATCAATCGGAATATCATTAGAACAAATACCTTT TTCACCTAGCAGGTGCATCTTCTATCCTCGGAGCCATCAACTTTATAACCACAATCATCATCAATATACGACCATCAAACATATTGCCAGAAAAAATACCCCT TCCACTTAGCAGGCGCRTCWTCAATTCTAGGTGCAATCAACTTCATAACAACAACAATTAACAATACGACCAACAAGAAATAACCACT TCCACCTAGCTGGAGCCTCATCAATTCTAGGTGCTATCAATTCATCACAACAGTTATTAATAATACGACCCAACTCTATAAAAATTGGAACAAATACCCTT TACATTRAGCAGGAGCATCATCATCCTAGGAGCATCAACTTTATAACAACAGTAATCAATATAACGACCTAATAAACATAAAAATAGGAACAAATAACCCCT TACACCTCGCAGGAGCATCATCATCCTAGGAGCCATCAACTTTATAACAACAGTAATCAATATAACGACCTAATAAAAATAGAAAAATGGAACAAATAACCACT TTCACCTASCASGASCCTCATCAATTTTAGGASCAATCAACTTCATAACAACAGTAATTAACATACGACCATACAACATTAAAACTAGAACAAATAACCTCT TTCACCTASGCAGGASCCTCATCAATTTTAGGASCCAATCAACTTCATAACAACAGTAATTAACATACGACCATACAAACTAAAAATTAGAACAAATAACCACT TACATCTTGCAGGAGCCTCATCAATTTTAGGAGCAATCAACTTTATAACTACAGTAATTAACGATACGTCCCAAAAAACATGAAAATGGAACAAAATACCCCT TTCACTTAGCAGGGGCATCATCGATTCTAGGAGCCATCAATTTATAACAACAACCATCAATAATGGAACTAATCACATGAAATTAGAACAAATAACCTTT

> ATTTGTTTGGTCAGTTTTTATTACAGCTATTCTCCCCCTCCTGTCCTGTCCTGTCCTGCCGGTGCCATTACATACTTTTAACTGATCGAAATTTAAAT ATTTGTGTGATCTATTTTATTACTGCCTATTTTGTTGTTATTATCTTTGCCTATTTTGGCTGGGGCTATTACTATGTTGTTAACTGATCGTAATATTAAT ATTTGTATGATCAGTATTAATTACAACACCTCCTCTTAATTCTTTCACTTCCAGTTTTAGCAGGAGCAATCACAATATTACTAACAGATCGAAA??????? ATTCGTATGATCAATTTTCGTCACTACTACCCCCCTTACTACTACCAGTCTTAGCAGGAGCCATCACTATATTACTAACAGACCGAAACCTTAAC ATTCGTATGAGCAACCCTTATCACAACCACCCTCCTACTATTATCATTCCCAGTCCTAGCAGGCGCAATCACAATACTCCTAACAGATCGAAACATTAAT ATTCACATGGTCAGTACTCATCACCACAACATTACTACTACTAGCTCTCCCAGTCCTCGCAGGAGCCATCACAATACTCCTAACAGACCGAAACCTAAACAGACCGAAACCTAAACAGACCGAGTGCCATTACCACATACTCTTACAGATCGCAACCTAAAT ATTTGTGTGAGCAATCTTTATCACAACAACAACTATTATCATTAGCCTTACCAGTACTAGCTGGTGCTATTACAATATTACTAACAGACCGAAATCTAAAA ATTTGTATGAGCAATTTTCATTACAACAACCACCTATTACTTCTAGCCCTACCAGTATTAGCTGGTGCCATCACAATACTACTACAGACCGAAATATAAAC ATTTGTATGAGCAGTATTCATTACTACAACCCCTACTACTATTAGCACTCCCCAGTATTAGCCGGAGCAATTACCATATTACTAACAGATCGCAACCCTAAACAGATCGCAACCCTAATAGCAGCAGGAGCAATTACCATATTAACAGATCGCAACCCTAACA ATTTGTATGATCAGTACTAATCACAACAACAACAACTACTTCTTTTAGCACTACCAGTTCTAGCAGGAGCAATCACTATACTCCTTTACAGACCGCAACCTAAAC GTTCGTATGATCAGTCTTCATTACAACAACTCTACTATTACTAGCATTACCAGTACTAGCAGGAGCAATCACAATATTACTAACAGACCGAAATCTAAAC ATTTGTATGGTCAGTATTCATTACAACCACACCCCCCCTTCTAGCCTTACCCGTACTAGCAGGAGCAATTACCATACTTCTAACAGATCGAAACCTAAACAAATTCATAGATCAGTATTATTACAACAACAACAGATCTTTTATTAGCATTGCCAGTCTAGCAGGAGCAATCGCCAATACTGCCAACAGACCAAAATATAAGT GTTCGTATGATCAGTCTTCATTACAACAACTCTACTATTACTAGCGGTTACCAGGAGCAGCAATCACAAATATTACTAACAGACCGAAAATCTAAAA

Campodea	A
Penaeus	A
Branchinella	A
Hutchinsoniella	A
G_robustus	?'
Gn_frondosus	A
Gn_schrami	A
P_apletocheles	A
P_fragilis	A
P_nsp	A
M_yagerae	?'
C elmorei	A
C haptodiscus	A
Clongulus	A
L entrichoma	A
L exleyi	A
S_atlantida	A
S benjamini	A
S_emersoni	A
S_gironensis	A
S kakuki	A
S lucayensis	A
S nsp2	A
S nsp4	A
S ondinae	A
S parabenjamini	?'
S tulumensis	A
S williamsi	A
S xibalba	A
	-

CTTCTTTCTTTGACCCTGCCGGGGGGGGGGGGGCCCTATCCTTTATCAACACTTATTT СТАСТТТТТТСАТССТАТССССССССТСТСТТТТТСТАТСААСАТТТСТАТС CATCATTCTTTGATCCAACAGGAGGAGGAGATCCTATTCTATTCCAACACTTATTC CATCATTCTTTGATCCAACAGGAGGGGGGGGATCCAATCCTTTCCAACATCTATTC **Ċ**᠌ᡈᡣĊᡎᡎᡎᢗᡆᡣᡊᡄ᠋ᠴ᠘ĊĊᡎᢗᡆᢄᢙᡆᢗᢓᡆᢗᢓᡆᢗᢓᡆᠧᢕ᠋ᠴ᠋ᠴᡎᢕᠧᡎᠧᢕᠴ᠘ᢕ᠘ᡎᢕᡎᠴᡎᡢ CATCTTTTTTGATCCAACAGGAGGCGGTGACCCAATTCTTTTCCAACACCTATTC CATCATTTTTCGACCCCACGGGGGGGGGGGGGAGACCCAATCCTATTTCAACACCTATTC CATCATTCTTTGACCCAATAGGAGGAGGTGATCCAATCCTGTTCCAACACCTCTTT CATCTTTCTTTGACCCTACAGGAGGAGGAGGAGATCCAATCCTATTCCAACACCTCTTC CATCATTCTTTGATCCTACAGGAGGAGGTGATCCTATTTTATTTCAACACTTATTT CATCATTTTTTGATCCAACAGGAGGTGGAGACCCTATCCTTTTCCAACACCTATTC **こまれこまれが中央の中国のとのないのでのないのでは、そのでものでになったのでのです。** CATCATTTTTTGATCCTATAGGAGGAGGTGACCCAATCCTATTCCAACACTTATTT CGTCCTTCTTTGACCCTACCGGAGGAGGAGACCCAATTCTGTTTCAACACCTATTC CATCATTTTTTGACCCTACCGGTGGCGGTGACCCAATCCTATTTCAACACCTATTC S cf tulumensis ACATCATTTTTTGACCCTACCGGTGGCGGTGACCCAATCCTATTTCAACACCTATTC

[H3, 328 nt, codonstart=2] Campodea Penaeus Branchinella Hutchinsoniella G robustus Gn_frondosus Gn schrami P apletocheles **P** fragilis Pnsp M_yagerae C elmorei C_haptodiscus C longulus L_entrichoma L_exleyi S_atlantida S_benjamini Semersoni S_gironensis S kakuki S^{lucayensis} S_nsp2 S nsp4 S ondinae S parabenjamini S_tulumensis S_williamsi S_xibalba S cf tulumensis

2CGTARATCTACTGGAGGAGAGGCTCCTCGCAAACAACTCGCCACTAAGGCCGCCAGGAAGAGTGCCCCAGCTACCGGTGGAGTGAAGAAGCCTCATCGT ACGTAAGTCTACCGGAGGCAAGGCCCCCCGCAAGGAGTTGCCCACCAAGGCAGCWCGYAAGTCTGCCCCTGCTACCGGAGGTGTCAAGAAGCCCCATCGT 2CGCAAGTCCACCGCGGGAAAGGCCCCCCAGAAAGCAGCTCGCCACCAAGGCAGCACGCAAGTCGGCCCCCGCGCGGGGGCTCAAGAAACCCCCATCGT ?AGGAAATCTACCGGCGGCAAAGCCCCGCGTAAACAGCTCGCCACAAAGGCAGCTCGCAAGAGTGCACCGGAGGTGTGAAGAAGCCTCACAGG CAGGABATCCACGGGAGGCAAGGCCCCCCGGAAGCAACTGGCCACCAAAGCAGCCAGAAAGAGTGCCCCCGCCACMGGAGGAGTGAAGAAACCCCCATCGY CAGGAAATCCACTGGAGGCAAGGCTCCACGTAAGCAACTGGCCACCAAAGCAGCCAGAAAGAGTGCCCCCGCCACAGGAGGAGTGAAGAAACCCCATCGC AAGGAAGTCCACTGGAGGCAAGGCGCCACGCAAGCAGCTGGCAACCAAGGCAGCTCGGAAAAAGCGCCCCTGCCACTGGCGGAGTGAAGAAGCCCCCATCGT TICGTARATCCALCGGAGGCAAGGCGCCCCCCGCAAGCAACTGCCCACCCACGCCCCCGCCACCGCCACCGCGGCGTGGTGGAGAAGAACCCCCATCGT CAGGAAATCCALCGGTGGCAAGGCGCCCCCGCAAGCAACTGGCCGCCCAGGCACCGCGCGCCGCGGCGGCGTGAGAGAAGCCCCCATCGA CAGGANATCCACTGGTGGCAAGGCGCCACGAAGCAGCTGGCGACCAAGGCCGCTCGGAAGAGCGCCCCAGCGACGGCGTGAAGAAGCCCCATCGC GAGGAAATCCACTGGTGGCAAGGCGCCACGCAAGCAACTGGCTACCAAGGCTGCTCGGAAGAGCGCCCCAGCGACGGAGTGAAGAAGCCACATCGT CAGGAAATCCACCGGAGGCAAGGCGCCACGCAAGCAGCTCGCCACCAAGGCAGCTCGCAAGAGCGCCGCCGCCGCGGGGGCCAAGAAGCCCCATCGG CAGAAAGTCCACGGGAGGCAAGGCGCCCCGCAAACAACAACTCGCCACGAAGGCCGCCGCCACGGGGCGCCACGAGAAGAGCCCCCACGG GAGGAAATCCACTGGCGGCAAGGCGCCACGCAAGCAGCTGGCAACTAAGGCTGCTCGCAAGAGTGCCCCAGCCACTGGAGGAGTTAAGAAGCCACATCGT GAGGAAGTCCACTGGCGGCAAGGCGCCACGCAAACAGCTGGCAACCAAGGCTGCTCGAAAGAGCGCCTCCAGCCACTGGAGGAGTTAAGAAGCCCCCATCGT AAGAAAGTCCACTGGAGGCAAAGCGCCACGCAAGCAGCAGCCACGCAAGGCTGCCAGGAAGAGCGCCCCCGCCACAGGCGGTGTCAAGAAGCCCCCACCGT

Campodea Penaeus Branchinella Hutchinsoniella G robustus Gn_frondosus Gn schrami P_apletocheles P fragilis P_nsp M_yagerae C elmorei C_haptodiscus C longulus L_entrichoma L exleyi S atlantida s benjamini Semersoni S_gironensis S kakuki S_lucayensis S nsp2 S_nsp4 S_ondinae S_parabenjamini S_tulumensis S williamsi S cf tulumensis

TACAGGCCCGGCACGGTCGCCCTCAGAGAGATCCGTCGCGTATCAGAAGAGCACCGAGCTTCTCATCAGGAAGCTCCCCTTCCAGCGGCTGGTCAGGGAAA TACCGACCTGGAACCGTCGCCCTGCGAGAAATCAGACGTTACCAGAAGTCCACCGAGCTTCTGATCAGGAAATTGCCCTTCCAGAGGCTTGTCCGTGAGA TACAGGCCGGGCACAGTCGCCCTCAGGGAGATAAGACGCTACCAGAAGAGCACAGAGCTGCTCATCCGCAAGTTGCCCCTTCCAGAGACTGGGGGGAGAAA TACAGGCCAGGCACAGTCGCCCTCAGGGAGATCAGACGCTACCAGAAGAGCACAGAGCTGCTCATCCGCAAGTTGCCCTTCCAGAGAACTGGTGCGAGAAA TACAGGCCAGGCACAGTCGCCCTCAGGGAGATCAGACGCTACCAGAAGAGCACAGAGCTGCTCATCCGCAAGTTGCCCTTCCAGAGATTGGTGCGAGAAA TACAGGCCAGGAACCGTGGCCCTCAGAGAAATCAGACGTTACCAGAAGAGCACTGAACTGCTCATCCGCAAGTTGCCATTCCAAAGATTGGTGCGCGAGA TACAGGCCAGGAACCGTCGCCCTCGAGAGAAATCAGACGTTACCAGAAGAGCACTGAACTGCTCATCCCGCAAGTTGCCATTCCAGAGATTGGTCCGCGAGA TACAGGCCCGGCACCGTGGCTCTCCGAGAAATCCGTCGTTACCAGAAGAGCACTGAGCTCCTCATCCGCAAGCTGCCCTTCCAGCGCCTGGTCCGAGAAA TACCGACCAGGAACCGTCGCGCTCAGGGAAATCAGGCGCTACCAGAAGAGCACAGAGCTGCTGATTCGCAAGCTGCCCTTCCAGAGACTAGTTCGCGAGA TACCGGCCAGGGACGGTCGCGCTCAGGGAAATCAGGCGTTACCAGAAGAGCACAGAGCTGCTCATCCGCAAGCTGCCCTTCCAGAGACTGGTACGCGAGA TACCGACCAGGTACCGTCGCGCTGAGGGAAATCAGGCGCTACCAGAAGAGCACAGAGCTGCTGCTGATTCGTAAGCTGCCCTTCCAAAGACTAGTTCGCGAGA TACAGGCCAGGGACTGTGGCGCTAAGAGAGATCAGACGTTATCAGAAGAGTACCGAGCTACTCATCCGCAAGTTGCCTTTCCAGCGACTGGTGCGCGAGA TACAGGCCCGGCACCGTCGCGCTCAGGGAGATCAGACGCTACCAGAAGAGCACCGAGCTGCTCATACGCAAGCTCCCTTCCAGCGACTGGTGCGAGAGA TACAGGCCCGGGACCGTCGCCCTCAGGGAGATCAGACGTTACCAGAAGAGCACCGAACTGCTCATCCGCAAGCTGCCTTTCCAGCGTCTAGTGCGCGAGA TACAGGCCCGGGACCGTCGCGCTCAGGGAGATCAGACGCTACCAGAAGAGCACAGAGTTGCTCATCCGCAAGCTTCCCTCCAGAGATTGGTGCGCGAGA TACAGGCCAGGGACYGTCGCCCTCAGGGAGATCAGACGTTATCAGAAGAGCACCGARCTGCTGATCCGCAAGTTGCCCCTTCCAGCGTTTGGTGCGCGAGA TACAGGCCCGGGACCGTCGCCCTGCGAGAGATCAGACGTTACCAGAAGAGCACCGAACTGCTGATCCGCAAGCTGCCCTTCCAGCGCCTGGTGCGGGAGA TATAGGCCAGGAACAGTCGCGCTCAGGGAGATCAGACGTTATCAGAAGAGCACTGAGCACTGAGCTACTCATCCGTAAGCTGCCTTTCCAGCGACTGGTACGCGAGA TACAGGCCAGGAACCGTCGCGCCAGGGAGATTAGACGTTATCAGAAGAGCACTGAGCCACTGATCCGCAAGCTGCCTTTCCAGCGACTGGTGCGCGGAGA TACAGGCCCGGGACGGTCGCCCTCAGGGAGATCAGGCGTTACCAGAAGAGCACCGAACTGCTCATCCGCAAGCTGCCCTTCCAGCGTCTGGTGCGCGAGA TACAGACCAGGGACCGTCGCCCTCAGGGAGATCAGGCGTTACCAGAAGAGCACTGAGTTCCTGATCCCCAAGTTGCCTTCCAGCGTCGGCGCGGAGA TACAGGCCTGGTACAGTCGCCCTCAGGGAAATCAGACGCTACCAGAAGAGCACCGAACTGCTCATCCGCAAGCTGCCCTTCCAGCGACTGGTGCGTGAG

Campodea Penaeus Branchinella Hutchinsoniell G robustus Gn frondosus Gn schrami P_apletocheles P fragilis P_nsp M yagerae C elmorei C_haptodiscus C longulus entrichoma L exleyi S_atlantida S benjamini S emersoni S_gironensis S⁻kakuki S_lucayensis S_nsp2 S_nsp4 S_ondinae S parabenjamini S_tulumensis s williamsi S xibalba S_cf tulum ensis

TCGCCCAGGACTTCAAGACYGACCTGCGTTTCCAGAGCTCGGCCGTCATGGCCCTGCAAGAGGCCAGCGAAGCCTACCTGGTGGGTCTCTTCGAGGACAC TCGCCCAAGACTTCAAGACCGATCTACGTTTCCAGAGCTCAGCCGTCATGGCTCTGCAGGAAGCCAGCGAGGCATACCTGGTGGGTCTATTCGAGGAGACAC TCCCCCAGGATTTTAAGACGGACCTACGTTTCCAGAGCTCCCCCGTCATGGCTCTCCAGGAGGCTAGCGAAGCGTATCTGGTGGGTCTGTTCGAGGACAC TCCCCCAAGACTTCAAGACCGATCTACGTTTCCAGAGCTCCGCCGTGATGGCTCTCCAGGAGGCCAGCGAGGCATACCTAGTGGGTCTCTTCCAGGACAC TCGCTCAGGACTTCAAGACCAGATCTTCGCTTCCAAAAGCTCCGCCGTCATGGCTCTGCAGGAGGCCAGCGAAGCCTATCTGGTCGGGCTCTTCGAAGACAC TCGCCCAGGACTTCAAGACGGACCTGCGCTTCCAAAGCTCCGCCGTGATGGCTCTGCAAGAAGCCAGCGAGGCGTACCTGGTCGGCCTCTTCGAAGAACAC TCGCGCAGGACTTCAAGACCGGACCTCCGTTTCCAGAGCTCCGCCGTCATGGCCCTGCAGGAGGCCAGCGAGGCCTACCTGGTCGGCCGGTCTTCGAGGACACCTGAGGACGACGAGGCTACCTGGTCGGCCTCTCCGAAGACAACCTGGAGGACGCTACCGGAGGCTACCTGGTCGGGCCCTCTCGAAGAACACCTGGAGGCCAAGCAAACCTGGTCGGGCCTCTCCGAAGAAAACCTGGAGGCCAAGCAAACCTGGTCGGGCCTCTCCGAAGAAAACC TCGCTCAGGACTTCAAGACAGATCTTCGCTTCCAAAGCTCCGCCGTCATGGCTCTACAAGAGGCTAGCGAAGCATATCTGGTCGGGCTCTTCGAAGAAGACAC TCGCCCAGGACTTCAAGACCGACCTCCGCTTCCAGAGCTCAGCCGTCATGGCCCTGCAGGAGGCCAGCGAGGCCTATCTGGTCGGCCTCTTCGAGGACAC TCGCCCAGGACTTCAAGACAGACCTGCGTTTCCAAAGTTCCGCAGTGATGGCTCTGCAGGAGGCCAGCGAGGCGTACCTAGTAGGTCTGTTCGAGGACAC TCCCCCAGGACTTCAAGACCAGACCTCCGCCTTCCAGAGCTCCCGCCGTCATGGCACTGCAGGAGGCCAGCGAAGCGTACTTGGTCGGCCTCTTCGAAGACAC TCCCCCAGGACTTCAAGACCGACCTCCGCCTTCCAGAGCTCCGCCGTCATGGCCCTGCAGGAAGCGAGGCGAGGCCTACCTGGTCGGCCTCTTCCGAGGACAC TCGCCCAGGACTTCAAGACAGACCTCCGCTTCCAGAGCTCCGCCGTCATGGCACGGAGGCCAGCGAAGCGTACTTGGTCGGCCTCTTCGAAGACAC TCGCCCAGGACTTCAAGACAGACCTCCGCTTCCAGAGCTCCGCCGTCATGGCACTGCAGGAGGGCCAGCGAAGCGTACTTGGTCGGCCTCTTCGAAGACAC CAATTTGTGCGCCATTCATGCTAAG?? CAACCTGTGCGCTATCCATGCTAA???? CAACCTCTGCGCCATCCACGCCAAGAG CAACTTGTGCGCCATCCATGCCAAGCGC AAACTTGTGTGTGCCATCCATGCCAAGCGT AAACTTGTGTGCCATCCATGCCAAGCGT

TAGCCCAGGATTTCAAGACTGACCTGCGTTTCCAGAGCTCTGCTGTCATGGCTTTGCAGGAGGCCCAGCGAGGCCTATCTCGTGGGTCTGTTCGAGGACAC

Penaeus Branchinella Hutchinsoniella G robustus Gn_frondosus Gn_schrami P_apletocheles P fragilis P_nsp M yagerae C_elmorei C_haptodiscus C longulus entrichoma L exleyi S_atlantida S_benjamini Semersoni S_gironensis S^{_}kakuki S_lucayensis S nsp2 S_nsp4 S_ondinae Sparabenjamini S_tulumensis S williamsi xibalba

Campodea

AAACTTGTGTGCCATCCATGCCAAGCGT CAACCTGTGCGCCATCCACGCAAAGAGG CAACTTGTGCGCCATCCACGCCAAGCGT CAATCTGTGCGCCATTCACGCTAAGAGG CAATCTGTGCGCCATCCACGCAAAGAGG CAATCTGTGCGCCATCCATGCAAAGAGG CAATCTCTCCCCCATCCACCCTAACACC CAATCTCTGCGCGATCCACGCCAAGCGC CAACCTCTGCGCCATCCAYGCCAAGAGG CAATCTGTGCGCCATTCACGCCAAGAGA CAAYCTCTGCGCCATCCACGCCAAGA?? CAACTTGTGTGCCATCCACGCCAAGAGG TAATCTCTGCGCCATCCACGCCAAGAGG CAACCTCTGCGCCATCCACGCGAAGAGA CAACCTGTGCGCCATCCACGCCAAGAGG CAATCTCTGCGCCATCCACGCAAAGAGA TAACCTCTGTGCCATCCACGCCAAGAGG CAATCTCTCCCCCATCCACCCCAAGAGA S_cf_tulumensis CAATCTCTGCGCCATCCACGCCAAGAGA

[16S rDNA, 694 nt] Campodea Ponaoiie Branchinella Hutchinsonie G_robustus Gn frondosus Gn_schrami P apletochel P_fragilis P_nsp M_yagerae C_elmorei C_haptodiscus C_longulus L entrichoma L^{_}exleyi S_atlantida s benjamini

5 emersoni S gironensis S kakuki S^{lucayensis} S^{nsp2} S_nsp4 S ondinae parabenjam s tulumensis S_williamsi S_xibalba S_cf_tulumen

	TATTTTTTAA-TAATTAAGCAAATAAGCGCTCGCCTGTTTATCAAAAACATGGTTTTTTGACTATAAAAAAATTTGG-CCTGCT
	GTATAATTAAGGAACTCGGCAAAT-ACTACTTTTGCCTGTTTATCAAAAACATGTCTATATGATTGTTATATAAAGTCTAG-CCTGCC
	??????????????????????????????????????
lla	CTTAATTCAAGGAACTCAGCAAAAATAACTTCCCGCCTGTTTAATAAAAACATGTCTTCCTGTACATAATA-GGAA-GTCCAACTCTGCC
	TCATTCAGAAGGAACTTGTCAATT-ATAATTTCCGCCTGTTTATCAAAAACATGGCTTCTTGTATAATTAAGAGGTCGTA-CCTGCC
	TTATTTTTAAGGAATTTGGCAAAA-CAAGTTTCCGCATGTTTATCAAAAACATGGCCTTTCGAATAGAAAAATGTAAGTTCTGA-CCTGCC
	??????????????????????????????????????
es	????????????????????CAC-TATAGAATCGCCTGTTTATCAAAAACATGGCCTTTTGTGTTTTGATATATAAGGTCTGA-CCTGCT

	??????????????????????????????????????

	TCATCGTGAAGGAACTCGGCAAAT-GTGGTTTCTGCCTGTTTAACAAAAACATGGCCTTTTGTGGATATATAAGGTCGGG-CCTGCC
5	TTGTTGTAAAGGAACTCGGCAAAT-ATGGTTTCTGCCTGTTTATCAAAAACATGGCCTTTTGTGAAAATATAAGGTCGGG-CCTGCC

	??????????????????????????????????????
	ATGTTATGAAGGAACTCGGCAAAT-AACTTCTCTGCCTGTTTATCAAAAACATGGCTTCTTGTTGGAGATAAGAGGTCTTTTCCTGCT
	TTTCAGTAAAGGAACTAGGCAAAA-ATAGCATCTGCCTGTTTATTAAAAAACATGGCTTTTTGTTATATATAATAAGACTCTGG-CCTGCT
	GTGTTATTAAGGAATTCGGCAAAT-ATGGTTTCTGCCTGTTTATCAAAAACATGGCCTTTTGTGTGGTTGATATATAAGGTCTGG-CCTGCC
	TTAAGTTAAAGGAATTAGGCAAAA-ATGATATCTGCCTGTTTAATAAAAACATGGCTTCTTGTTATAGGTTTAATAAAAAAAA
	??????????????????????????????????????
	GTTATATGAAGGAACTTGGCAAAT-TTAATGTCTGCCTGTTTAATAAAAACATGGTCTTTTGTTGATATAAAAGGTCTGA-CCTGCC
	??????????????????????????????????????
	??????????????????????????????????????
	??????????????????????????????????????
	TTTTAATAAAGGAATTAGGCAAAAGATAATGTCTGCCTGTTTAATAAAAACATGGCTTTTTGTTTAATAATAATAAGATCTGG-CCTGCC
ini	??????????????????????????????????????
	TTTACATAAAGGAACTCGGCAAAT-AACACTTCCACCTGTTTATTAAAAAACATGGCCTCTTGTGCAGTTTGATATAGGAGGTCGGA-CCTGCT

sis	22222222222222222222222222222222222222

Campodea Penaeus Branchinella Hutchinsoniella G robustus Gn_frondosus Gn schrami P_apletocheles P fragilis Pnsp M yagerae C elmorei C_haptodiscus C longulus _____entrichoma L^{_}exleyi S_atlantida 5 benjamini S emersoni S_gironensis S⁻kakuki S_lucayensis S_nsp2 S_nsp4 S_ondinae S parabenjamini S_tulumensis s williamsi xibalba S cf tulum ensis

ACTGA---TAGTAG----TTGAAGGGCCGCAGTAATTCTGACTGTGCTAAGGTAGCGTAATCATTTGTCATTTAATTGTTGAATTGTATGAATGGTTTG ACTGA---GGTTACAC---TTAAAGAGCTGCAGTATATCTGACTGTACGAAGGTAGCGTGATAATTTGTCTATTAATTGTAGACTTGGATGAATGGTTTG ACTGA---GGTAAAAC---TTAAAGAGCTGCAGTATACCTGACTGACTAAGGTAGCGTGGTAATTTGTCTATTAATTGTAGACTTGTATGAATGGTTTG GCTGT--TTAG-----ATGAAGGGCTGCGGTATACTTGACCGTACAAAGGTAGCATAATGGTTTGCCTATTAATTGTTGGCTTGTATGAATGGCTTG TCTGA-TATCATTATA---TTGAAGAGCTGCAGTATACTTGACTGTACAAAGGTAGCATAGTAGTTTGCCTATTAATTGTTGGCTTGTATGAATGGTTTG GCTGA-ATGGATATGG---TTGAAGGGCTGCAGTATAT-TAACTGTACAAAGGTAGCGTGATAATTTGTCTATTAAATGTTGACTTGGATGAATGGATGAATGGTTTG GCTGA-TAAGTTTTA----GCTGA-TAAGTTTTA----TTAAAGGCTGCAGTATATTTAACTGTACAAAGGTAGCGTAGTAATTTGTTTATTAATTGACTTGACTTGTATGAATGGTTTGACTTGTATGAATGGTTTGACTTGACTTGAATGGTTGAATGGTTTGAATGGTTGAATGGTTGAATGGTTGAATGGTTGAATGGTTGAATGGTTGAATGGAATGGTTTGAAGTAGAATGGTTGGAATGGTTGGAATGGTTGGAATGGAATGGTTGGAATGGAATGGTTGGAATGGAATGGTTGGAATGGAATGGTTGGAATGGAATGGTTGGAATGGAATGGTTGGAATGGAATGGAATGGTTGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAAGTAAGGAAGGTAAGGAAGGTAGGAAGGTAAGTAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAAGAAGGAAGGAAGGAAGGAAGGAAGAAGAAGAAGAAGAAGAAGGAAG TCTGA-TATTTGATAA---TTGAAGGGCTGCAGTATACTTGACTGTACAAAGGTAGCATAGTAGTATTGTTGCCTATTAATTGTTGGCTTGTATGAATGGTTTG

Campodea Penaeus Branchinella Hutchinsoniella G robustus Gn frondosus Gn_schrami P_apletocheles P fragilis P_nsp M yagerae C_elmorei C_haptodiscus Clongulus L_entrichoma L exleyi S_atlantida S_benjamini Semersoni S_gironensis S^{_}kakuki S_lucayensis S nsp2 S_nsp4 S_ondinae s parabenjamini S_tulumensis S williamsi S_cf_tulumensis

Br Hu G_ Gn

G P P M C C C L L S S S S S S S S S S S S

ACGGAGTGTTTACTTTTTAAAAATAT---TAA-TTGAATTTTA-TAATT-TAG-TGAAAAAGCTAAGATATGGATAAGGGACGATAAGACCCTATAGA ACGAGAAACTAGCTGTCTCTTCTATTT-----AC-TTGAAGTTAA-TTATT-TGG-TGAAAAAGCTAAATTTCTCTTAGAGGAACGAATAAGACCCCTATAGA ACGAGGTAGTATCTGTCTCCTAATAAA----TAT-TAAAAATTTACCT-TT-AAG-TGAAAAAGCTTAAATAAATCATAAG-ACGACAAGACCCCGTAGA ACGARAAGTTGAATGTCTCCTGTTGTG---TTTA-TTGAATTTTA-TTTTT-TAG-TGAAGATGCTTGAATGTTGCTGAGGGCGACGAGAAGACCCTGTAGA ACGAGAAATTGAATGTCTTAATAGTAT---TTAA-GTGAATTTTACT--TTCCG-TGAGGAGGCTAGAATTTTGTTGAGGGACGACGAGAAGACCCCTGTAGA ACCAGAAATTAACTGTCTTAATAGTAT---TTTT-ATGAATTTTACT--TT-TAG-TGAAGAGCTAGAATATTATTAAGGGACGACGAAGACCCCTGTAGA ACAAGGAGGAAACTGTCTCTTTTGAAA---ATTG-TTGAATTTCA-TTTTT-TAG-TGAGGAAGCTAGAATGATTCCAAGGGACGAAAAGACCCTATAGA ACAAGATGTTGACTGTCTCTATTGTAA--GTATA-TTTAATTTTACCTCCTAAAG-TGAAGAGGCTAGGATGGTTCTGAGGGACGAAAAGACCCTAATAGA ACAAGAGATCTACTGTCTCTATAATAA---TATA-TTGAATTTCACTT-CCTTAG-TGAAGAGGCTAGGATTTAGCCAAGGGACGAGAAGACCCTGTAGA ACAAGATATTGACTGTCTCTGATTTAT---TGAC-TTTAAATTCACTTTCCTAAG-TGAAGAGGCTGGAATGTATTTGAGGGACGAGAAGACCCTATAGA ACGAGATGTTAGCTGTCTCCATTTAATGAATAATTTAAATTTAA-TTTT-TAG-TGAAGAAGCTGAAATGTTTTTAAGGGACGAAAAGACCCTATAGA ACGAGATATTAACTGTCTCCATATAAT---TTTT-TTGAATTTAA-TTTTT-TAG-TGAAGAAGCTAGGATGTGTTTAAGGGACGAAAAGACCCTATAGA ACGTGATACTGACTGTCTTCTGGCATAATTATTG-TTGAAATTTACTT-TT-TAG-TGAAGAGGCTAAAATGTTTCCCAGGGACGAAAAGACCCTATAGA ACGTGATACTGACTGTCTTCTGGCATAATTATTG-TTGAAATTTACTT-TT-TAG-TGAACGAGGCTAAATGTTTCCAAGGGACGAAAAGACCCTATAGA ACAAGATGTTAACTGTCTCTAATATATAT--ATG-TTTAATTTTACCTCCTTAAG-TGAATAGGCTAGGATGTTCTGAGGGACGAAAGACCCCTATAGA ACAAGAGACATTGCTGCTCTCAGTAGTAT---TAGA-TTGAATTCACATTTC--AG-TGAGGAGGCTGGGATTTTACCCAGGAACAACACCCTGTAGA ATGAGATGTGATCTGTCTCTGTGTTAT--GATAG-TAGAATTTCACTT-TG-TGG-TGAATAGGCCATAATGTTTCCGAGGGACGAAAAGACCCTAATAGA ACRAGATGTTWMCTGTCTCCWTTGTAA---ATGA-TTGAMATWCMCTT-CCTTAMKTGAAGAGGCTAGGATGTTTTTGAGGGACGAAAAGACCCTAATAGA GCTAATTAT-----TTAATAGA-----TTATTG-TTTAATTTA-G-GTG-AATTAA-----TTATTG-TTAATTG-TTAAG--

Campodea	GCTAATTATTTAATAGATTATTG-TTTAATTTAG-GTG-AATTAATTATTG-TTAAG
Penaeus	ACTTAACAATAATTTGATTAAATTATAAATTG-TTAG-TATAAACTTGATTTTAA-TTA-ATGT
Branchinella	TCTTTATAAAATTATATATATAGATTTTTTA-GA-TG-TTATCAATTATATAATA-GG?
Hutchinsoniella	ACTTCATACAAAAATTTAAAAATATTAG-TTCTTTATAAAAAAAT
G robustus	GTTTTAGTGTGTATTTTCATCATAATTGTGTGAGTGTATG-GTTATGTATATTAT
Gn frondosus	TTTTTAGTAA-TGTTGTA-TAAA-TAATA
Gn schrami	TTTTAAATATAGTTTTATTGAA
P apletocheles	TTTTTAGTAAATTGATTTAT-GATAGGTTAGTTAATGTTT-AAATTGTATCGACGG-AGAAGT-TTAGGTCTG
P fragilis	***************************************
Pnsp	TTTTTAGTAATTGGTTTTTCGTTATTAGTTA-TGTTTATAATT-TAGTTGAGTATTGAGTCTG
M yagerae	***************************************
Celmorei	TTTTTAATTTCCTGC-TTT-GTTGGGGTTAGTA-TGTTTGA-TCTTGAGTTTAAAGATTTGTT
C haptodiscus	TTTTTAATTTCTTA-GTTTTGTTGGGATT-GGTATTGTTTGG-TTTTGATGTGTTTAGAATGGATT
Clongulus	***************************************
L_entrichoma	TTTTTAATTTTTGATTTTTAGTTGTTGATGATTA-TGTTGTATTG-GA-TTG-AGG-T-TTAG-
L_exleyi	TTTTTATTATTTATAATTGCTTGGTTTATTATGTGTTATGCTTATGATTTG-TTT-T-TAAT
S atlantida	TTTTTACTTATTG-ATTT-ACTTATG-TTTATTAGGAG-CGAATTTA-TGTTATT-AGTTGTTTGTA-TAATAGA
S_benjamini	TTTTTTAGTT-CTGTTTGGGAATGAGAATTGTTA-TGTTAAGTTTTGTTC-TTGAGTA-G
S_emersoni	TTTTTATTAATTG-TTTGTTTAATAATTTTA-TAAA-TTTA-TGTTTTAATTTTATTTTA-ATTTTA-TAAT
S_gironensis	TTTTTATACCAAAAAGAATTATTATAAG-AAATTAATTAACCGTCTAACTGTAA-TAA-TCC-A-ATAG
S kakuki	TTTTGAGTATTATCAATTTGTTTATATTAGGTTTAGATAGATAGA-TTT-TTT
<pre>S_lucayensis</pre>	TTTTGAATTATTTTGTTTTGTTTGG-TTT-AGT-A-ATGTTTAGATAAG-TTT-AGT-A-ATGT
S_nsp2	TTTTTAGTTGTATTTTA-ATGTTAATGAATTTA-TGTTTAGTTTTT-GTTGTTATTTAATAC
S_nsp4	TTTTTAGTTGTATTTTA-ATGTTAATGAATTTA-TGTTTAGTTTTT-GTTGTTATTTAATAC
S_ondinae	TTTTTACTTAATG-ATTT-ATATATATTATT-GGCGAAATTA-TGT-ATTAA-TCGTTGTA-TAATGTA
<pre>S_parabenjamini</pre>	TTTTGAGTTTATGCGAAAGT-GGAG-TTAATTA-TGTTTGTGATGTTTTGCTTTGTGTATG
S tulumensis	TTTTTAGCTTGTATTATATGT-ATTATCA-TGTTAATGTTTAAGTGTAATCATATTTAA
S_williamsi	TTTTTATTAATTA-TG-TATTTGATTTTATTAGTTA-TGTTTGGAAATATTTAGGTATAGTAAT
S_xibalba	***************************************
S cf tulumensis	TTTTTAGCTTGTATT-ATATGT-GTTATCA-TGTTAATGTTT-AAGTGTAATCATATTTAA

Campodea Penaeus Branchinella Hutchinsoniell G robustus Gn frondosus Gn schrami P_apletocheles P fragilis P_nsp M yagerae C elmorei C_haptodiscus C longulus entrichoma L exleyi S_atlantida 5 benjamini S emersoni S_gironensis S⁻kakuki S_lucayensis S_nsp2 S_nsp4 S_ondinae S parabenjamin: S_tulumensis s williamsi S xibalba S cf tulumensis

	TAAGATTACTGGGGCGGTATAGTTTTTTCAAATTATTTGATA-GTTATTGATCATATTA	
	TTGTTGCGTTGGGGCGACGGGAATATAATTAGTAACTGTTCTTAAATATTTTATTAACAAGTATAATTGAAGAATAATTGATCCTTTAT-T	
	TTTTATTTCGTTGGGGCGACGTTGAGGGTTGAGATATCTCTCAAAATGTTTTTACATTAATAAATGATTTTTGATCCTTTAG	
a	TTGTATTTCGTTGGGGTGACCAAT-TTTAAAAATAAACAAAAACTTATTTTAACATATATAA-ATGAAACTTTATTGACCCAGATATT	
	ATTTTGGTTGGGGCGATTAAT-TAAGATACGTATCTTAATTTTAGTTTTAATCAGTGTTGGCTG-AATTTTATAGATCCATTAT-T	
	ACTTTGGTTGGGGCGATTTTA-AAAGAAAAATATCTTTTGTTTAATGATTTATCAATTATTTTTGTTTTATTGATCCAGAAT-T	
	ATTTTAATTGGGGCGATTTAA-AAAGAAGATTATCTTTTAATTATTATTATTTTTCAGATGTTTTTGTTTTATTGATCCAGAAT-T	
	ATTTTTGCTGGGGCGGCCAGTT-GAAGAAAAGTATCTTCAGTTATAAGTAAATCATTTGTGGATGAGATGATCCCATAT-T	

	ATTTTTGCTGGGGTGGCAGTT-GAAGATAAGAATCTTCAGTTATTTTAAAGTCATTTATGGGTGAATTGATCCTTTAT-T	

	GATGTTTTAGCTGGGGCGGCTGTG-AGAGAGACTGATCTCTTATTTGTGTTTGGCATTTGTGGGATGTTGTGATCCTTTAT-T	
	GATGTTTTAGCTGGGGCGGCCGGCGGGGGGATGAATATCTCCCCGGTTGGATGGGCAATTATGGTTGTATTGATCCTTTAT-T	

	ATTTTTGCTGGGGCGGCAGTT-GAGGAAGAAAAACTTTCAGTTTTTTTGATCATTGGTGGGTGATTTGAYCCTTTATAT	
	AATTTAGCTGGGGCGGCTATT-GAAGATGAGGATCTTCAGT-TGATTTTTGGCAGATTTGTTTGTAGTGATCCTTTAT-T	
	AG-TTTTACTGGGGCGGTAGTT-AAAGATATGGATCTTTAGTTTGATAGTAATGCACTGATGGGTGTAATGATCCTTTAT-T	
	ATTTTTGCTGGGGTGGCTGTT-GAAGATGAGAATCTTCAGTTTATTTGGTTGGCATTGTTGAGTGTAATGATCCTTTAT-T	
	$\texttt{A} \texttt{TTTTACTGGGGCGGTATTT-GAAGATCCGGATCTTCAAATTTT-ASTGATATTT \texttt{CATTTGTGG}\texttt{GTG}TATTGATCCTTTAT-TTTATTGTGGCGTG$	
	GATTTACTGGGGCGGTGCTCTGAAGAAAAAAATCTTCAAGTATTTAATATTCACCAATCAGTGATCTGATCCCTTAT-T	
	ATTTTTGCTGGGGCGGCCGATT-GAAGATGTGAATCTTCAGTTGGTTAGAAGCATTGTTGGGTGTGGTGATCTTGTGT-T	
	ATTTTTGCTGGGGCGGCCGGTT-GAATGTAATGATCTTCAGTTGTTATGTATTGCATTAGTGAGTGTAATGATCCTTTAT-T	
	TTGCTGGGGCGGCTGTT-GAAGATAAGAATCTTCAGTTTTTGTTGTTGCGAATTAATTGTTGTTTGTTGATCCTGTATTT	
	TTTTGCTGGGGCGGCTGTT-GAAGATAAGAATCTTCAGTTTTTGTTGTTGCAATTAATT-GTTGTTTGTTGATCCTGTATTT	
	GA-G-TTTTACTGGGGCGGTAGTT-AAAGATATAGATCTTTAGTTTATTTAATTCACTTATAAGTGTGGTGATCCTTTAT-T	
L	ATTTTTACTGGGGCGGTTGTT-GAAGATGAGGATCTTCAGTTTTTTTAATTTCACCGGTGGGTGTTTTG?????????	
	AG-GTTTTTACTGGGGCGGTATTT-GAAGAAGTAGATCTTCAGATTTTTAATGAGATTTTACACTCACT	
	GTTTTGCTGGGGCGGCAATT-GAGGATTTTTATCTTCAGTATATTTTAAATCATCTATGG-ATGTAATGATCCTTTAT-T	

5	${\tt AG-GTTTTTACTGGGGCGGTATCT-GAAGAAGTAGATCTTCAGATTTTTAATGAGGTTTACACCTCACTTGTGGGTATTGTTTTGATCCTATATATTTACTGAGGTTTACACCTCACTTGTGGGTATTGTTTTGATCCTATATATTTTAATGAGGTTTACACCTCACTTGTGGGTATTGTTTTGATCCTATATATTTAATGAGGTTTACACCTCACTTGTGGGTATTGTTTTGATCCTATATATTTAATGAGGTTTACACCTCACTTGTGGGTATTGTTTTGATCCTATATATTTAATGAGGTTTACACCTCACTTGTGGGTATTGTTTTGATCCTATATATTTAATGAGGTTTACACCTCACTTGTGGGTATTGTTTTGATCCTATATATTTTAATGAGGTTTACACCTCACTTGTGGGTATTGTTTTGATCCTATATATTTTAATGAGGTTTACACTCACT$	

Campodea Penaeus Branchinella Hutchinsoniella G robustus Gn_frondosus Gn_schrami P_apletocheles P fragilis P_nsp ____ M yagerae C_elmorei C_haptodiscus Clongulus entrichoma L exleyi S_atlantida S_benjamini Semersoni S_gironensis S^{_}kakuki S_lucayensis S nsp2 S_nsp4 S_ondinae Sparabenjamini S_tulumensis S williamsi S xibalba S cf tulumensis

Campodea Penaeus Branchinell Hutchinsoni G_robustus Gn_frondosu Gn_schrami P_apletoche P fragilis Pnsp M yagerae C_elmorei C_haptodiscu C longulus L_entrichom L exlevi atlantida s⁻benjamini Semersoni S_gironensi S kakuki S_lucayensi S nsp2 S_nsp4 S_ondinae S_parabenjar S_tulumensis S williamsi xibalba S cf tulume

--ATAAAATTAGTGAAAGTTACCTTAGGGATAACAGTATAATTATTTTTGAGAGTACAAATTGACAAAATAG--TTTATAACCTCGATGTTGAATTAAA AAAGATTAAAAGATT-AAGTTACTTTAGGGATAACAGCGTAATCTTCTTTGAGAGTCCTCATCGACAAGAAGG--TTTGCGACCTCGATGTTGAAATTAAG -TGA--ATTAGGATAAAGTTACCTTAGGGATAACAGCGTAATTTTCTTGAGAGTCCTTATCGACAGAAAAG--TTTGCGACCCCGATGTTGGTCGTTCAGG TCTGATT-AAAAGAACAAGTTACCTCGGGGATAACAGCGTAATTCTTTTCAAAAGCACCACTAACAAAAGAG--ATTGCGACCTCGATGTTGGACTAAG ATTGGTTAAAAGATC-AAATTACCTCAGGGATAACAGCGTTATTGTATTTTAGAGTTCTTATCGATAATATAG--TTTGCGACCTCGATGTTGAATTAGG TTGATTATARAGATT-AAAATACCTCAGGGATAACAGCGTAATTTTTTTAAGAAGTTCTTATTGAATAAAAG--TTTGCGACCTCGATGTTGAATTAAG TTTGATTATAAGATT-AAAATACCTCAGGGATAACAGCGTAATTTTTTTGAGAAGTTCTTATTTGAATAAGAG--TTTGCGACCTCGATGTTGAATTAAA AIGGATAATAAGAT - AAAATACCTTAGGGATAACAGCGTTATTTCTTCGAGAGTTCTTATCGATAGAAGTA - TTTGCGACCTCGATGTTGAATAAG ATGGATAATAAGATT-TAAAATACCTTAGGGATAACAGCGTTATTTTTTCTGAGAGATTCTTATCGACGAATAATGATTTGCGACCTCGATGTAGAATTAAG ATGGATAATAAGATT-AAAATACCTCAGGGATAACAGCGTTATTTTGCTTGAGAGTTCTTATTGATAGGAAG--TTTGCGACCTCGATGTTGAATTAAG ATGGATAAGAAGA---AAAATACCTTAGGGATAACAGCGTTATTTTTTCGGAGAGTTCTTATTGATAGAAAATA--TTTGCGACCTCGATGTTGAATTAAG AGGGATAACAAGAAA-CAAATACCTTAGGGATAACAGCGTTATTTTCTCCCAAGAGCCCGTATCGAAGAGAATGA-TTTGCGACCTCGATGTTGAATTTAG ATAAATAAGAAGAAA-AAAATACCTTAGGGATAACAGCGTTATAGATCTTGAGAGTTCTTATCGACAGATTTG--TTTGCGACCTCGATGTTGAATTAGG ATGGATAATAAGATA-AAAATACCTTAGGGATAACAGCGTTATTTTCTTTGAGAGTTCTTATCGACAGGAAAG--TTTGCGACCTCGATGTTGAATTAGA ATGGATAGTAAGATT-TAAATACCTTAGGGATAACAGCGTTATTCTTGTGAGAGTTCTTATCGACGAATGTGA-TTTGCGACCTCGATGTTGAATTAGG ATGGATAAGAGGAAA-TAAATAACCTTAGGGATAACAGCGTTATCTTCCCTGAGAGTTCTTATCGACGGGGGGG--TTTGCGACCTCGATGTTGAATTAGA ATGGAAAGAAAGAA--TAAATACCTTAGGGATAACAGCGTTATTTTTCCGGAGAGTTCTTATCGATGGAAATGA-TTTGCGACCTCGATGTTGAATTAGG

	${\tt GTAT-CC-T-TATAATGCAGCAGTTACAAAGGAAGGTCTGTTCGACCTTTAAATCCTTACATGATTTGAGTTCAGACCGG}$
a	GTTC-CT-TTA-GGCGCAGCAGCTATAGTAAGGTAGTCTGTTCGACTACTAAATCCCTACG????????????????????????????????
ella	AAAC-CT-A-TAA-AATGCAGCAGTTTTATAAGAAGGTCTGTTCGACCTTTAATATCTTACATGATCTGAGTTTAAACCGG
	TTAC-GT-G-G-ATG-GGTGTAGAAGTTCTC-YTGGG-TARTCTGGTCGACTATTGGATACCTACGTGTCGG??????????????????????????
s	$\mathbf{GGTT}-\mathbf{ATTG}-\mathbf{A}-\mathbf{TA}-\mathbf{GGTGTA}\mathbf{GTTGTT}\mathbf{A}\mathbf{T}-\mathbf{C}-\mathbf{GT}-\mathbf{TTTA}\mathbf{A}\mathbf{T}\mathbf{C}\mathbf{T}\mathbf{G}\mathbf{A}\mathbf{C}\mathbf{T}\mathbf{A}???????????????????????????????????$
	GATT-TA-C-A-ATA-GGTGTAGCAGCTTAT-TTA-ATTAGTCTGTTCGACTAATAGTTCTTTACGTGATCTC?????????????????????????
les	AGTG-AGTAGTTA-GGTGTAGGAGCTTAAAT-TCTGGGTCTGTTCGACCTTTAAATTTCTACGTGATCTGAGTTCAGACCGG

	???????????????????????????????????????

	GGTG-GAAA-TTT-GGTGTAGGGGGCTAAA-T-GTT-GTGGGTCTGTTCGACCC???????????????????????
us	${\tt GGTG-GA-G-TTT-GGTGTAGGGGCTGAA-TGTAGTGGGTCTGTTCGACCCTTAAAGTTTTACGTGATCTGAGTTCAGACCGG}$
	???????????????????????????????????????
a	AGTA-GA-A-ATG-GATGGAAGGATTCAA-TTGGCTAGGTCTGTTCGACCTTTAAATTTCTACGTGATCTGAGTT-AGACCGG
	AGTAAGA-T-TAG-GGTGTAAGGGGGCTTTA-ATTACTGGGTCTGTTCGACCTTTTATTTTTTACGTGATCTGAGTTCAGACCGG
	GTAA-GTAGAT-TTT-GGTGTAGTAGTTA???????????
	AAAT-TA-C-CTT-GGTGTAGAGGCCTTTG-GTTGGAAGGTCTGTTCGACCTTTAATATTTTAC???????????????????
	ATTT-GG-A-ATTTT-GGTGTAGTAGCTGGT-TTTCTTGGTCTGTTCGACCATTAATAATTCTACGTGATCTGAGTTCAGACCGG
s	GAAA-AA-G-AAA-GGCGCAGAAGCCTAC-TCAGA-TGGTCTGTTCGACCAACACGTTTCCT-TCA??????????????????????????
	AGTG-GT-A-G-TA-GGTGGAAGGATTTAA-TTTAC-C-AGGTCTGTTCGACCTTTGAAATTCTACGTGATCTGAGTTCAAGACCGG
s	ATTAAGT-G-ATG-GGTGGAAGGACTTAT-T-TACTAGGTCTGTTCGACCTTTTAAATTCTACGTGATC???????????????

	ATAA-GG-G-TTATGATGTAGGAGTCTAA-TTTTG-TGGTCTGTTCGACCGTTTAAAAGTAATATTCTACGTGATCTGAGTTCAGACCGG
	GTAA-GAAGAT-TTT-GGTGTAGTAGT?????????????
mini	???????????????????????????????????????
s	ATTA-AT-C-CTA-TAAGTAGTCATATGG-GTTATTTGGTCTGTTCGACCATTAAATATTCTTCATGATTTGAGTTTAAACCGG
	GTTT-GA-A-TTTTG-TGTGAAGTAG??????????????
	???????????????????????????????????????
nsis	???????????????????????????????????????

ATTT-AT-T-ATTAGTGAAGAAGCTAGTAAAAT-----AGGTCTGTTCGACCAATAAA-----ATTTTACATGATTTGAGTTCAGACCGG

end;

7.6 Strukturalinierung 18S

Die Nummerierung der verschiedenen Regionen ist über den Sequenzen angegeben. Sie richtet sich nach dem Strukturmodell von *Daphnia pulex* (s. Abb. 7.3). *Cryptocorynetes macropodus* ist mittlerweile unter dem Namen *Cryptocorynetes elmorei* beschrieben.

ſ	1	1
Artemia franciscana	UAC CUGGU -UGA UCCU GCCAG U AG-CAUAU-GCU UGUC UCAAAGAUU-AA GCCAUGC AU (GUCUAAGUACAAG	cc
Hutchinsoniella macracantha	C CUGGU -UGA UCCU GCCAG U AGCGAUAU-GCU CGUC UUAAAGAUU-AA GCCAUGC AA (GUCUCAGUACAGA	CUG
Campodea tillyardi	- UGAUAU-GCU UGUC UCAAGGGCU-AA GCCAUGC AU (GUCUAAGUAGAAG	ccc
Semibalanus balanoides	-UGA UCCU GCCAG U AGUGAUAU-GCU UGUC UUAAAGAUU-AA GCCAUGC AU (GUAUCAGUACAAG	CCG
Calanus finmarchicus	CCG U A-UCAUAU-GCU UGUC UCAAAGAUU-AA GCCAUGC AU (GUCCAAGUACAAG	000
Penaeus semisulcatus		
Paranebalia longipes	- CAUAU-GCU UGUU UCAAGGAUU-AA GCCAUGC AU (GUCUAAGUACAU-A	CCA
Argulus nobilis	C [CUGGU -UGA UCCU GCCAG U AGUUAUAU-GCU UGUC UCAAAGAUU-AA GCCAUGC AU (GUCUAAGUACAAA-G	CC-UA
Branchinella occidentalis		CC
Speleonectes tulumensis	C CUGGUUGA UCCU GCCAG U IAAUUGUAU-GCU UGUU UUGAAGGUU-AA GCCAUGC AA (GGUUAAAUCGACCAG	CC
Lasionectes exleyi		0G
Speleonectes gironensis		
Cryptocorynetes elmorei		
Cryptocorynetes haptodiscus		GG-CII
Pleomothra apletocheles		AG-CU
[]
[6]
Artemia franciscana	CCCAGUGGG-CGAAACC-GC) GAAUGG CUC AAUAAAU CAGUUAUGGUUCC-UUAGAU CGUAC UAUAU	C
Hutchinsoniella macracantha	UAAUAAAG-UGAAGCC-NC) GAAUGG CUC AGUAAAA CGGUUGUGAUCCGC-UGAGAC GGAGA GAUC-	
Campodea tillyardi	GCCU-CUGGCGGG-CGAGACC-GC) AAAUGG CUC CUUACAA CAGUCCCAGUUUA-CUGGAU GAUCG UGGC-	
Semibalanus balanoides	CACUAAGG-UGAAACC-GC) GAAUGG CUC AUUAAAU CAGUUAUUUAUUUA-CUGGCC GAGAC AGUG-	
Calanus finmarchicus	CACUAAGG-UGAAACC-GC) GAAUGG CUC AUUAAAU CACACCUAAUCUA-CUGGAU AGUUA ACAG-	
Penaeus semisulcatus	GG-CGAAACC-GC) GGACGG CUC AUUAAAU CAGAUAUAACUCA-UUGGAU CUCUG CUGAA	CCGCA
Paranebalia longipes	AACUCAGG-UGAAACC-GC) GAAUGG CUC AUUAAAU CAGUUAUGGUUUA-CAAGAU GCAGC CCAG-	
Argulus nobilis	CAAGGC-UGAAACC-GC) GAAUGG (CUC AUUAAAU (CAGUUGUGGUUUA-CUAGAU (CGUAC CAAUU	
Branchinella occidentalis		
Speleonectes tulumensis		
Spoloopostos giropopsis		
Godzillius robustus		
Cryptocorynetes elmorei		
Cryptocorynetes haptodiscus	GACUCC-AUAGGAGAGACCUG-GGAAACCACA) GAU-GG CUC AGUGGAA CAGACGCAAUUCUUUUGGGC GUGGA GGU	
Pleomothra apletocheles	GACUCCCACAGGAGAGACUUGGGAAACC-GC) AGACGG CUC AGUAGAA CGGACGCAAUUCCUUUGGGC GUGGG GGA	
[]
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus] CGG GCGGU GGGGG GUUGG CGAGG CAAGG ACGGG GG
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles] CGG GCGGU GCGGG GCGGG GUUGG CAAGG ACGGG GU CCAGG ACGGG GG
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana	9. .10] CGG GCGGU GCGGU GGCGGG GUUGG GU CGAGGG ACGGG ACGGG GG
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha] CGG GCGGU GCGGGG GUUGG GU CGAGG CAAGG ACGGG GG
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi] CGG GCGGU GCGGU GGGGGG GUUGG CAAGG CAAGG ACGGG CAAGG ACGGG GU CGAGG GU CGAGG JUGACU UGACU UGACU
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides] CGG GCGGU GCGGG GUGGG GUGGG GUGGG CAAGG ACGGG
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus]
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus]
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes] CGG GCCGU GGCGC GGCGC GGCGC CGAGG ACCGG ACCGG ACCGG GG GG G G G
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis	9.]
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Paranebalia longipes Argulus nobilis Branchinella occidentalis]
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis]
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Panaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Smelaonectes gironenzia] CGG GCCGU GGCGGU GGCGGU CGAGG CCAGG CCAGG ACCGG GG CCAAGG ACCGG GG UCAACU UGAACU UGAACU UGAACU UGAACU UGAACU UGAACU UGAACU UGAACU
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes gironensis Lasionectes exleyi Speleonectes gironensis]
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei]
[Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei] CGG GCCGU GGCGG GGCGGU GGCGG CAAGG ACGGG GU CAAGG ACGGG GU CAAGG GU CAAGG UGACU U

[
Artemia franciscana	CUGAAUA-A) CUAUAGCCGA (UCGC-ACGGU-CUCGC ACCGGCGA) CGU GUCUUU-CAAAUGUCU
Hutchinsoniella macracantha	CGGAACANA) CAGUCGA (UCGC-ACGGU-CAAGU-ACCGGCGA-CGC GUCUCG-AUGGUGACC
Campodea tillyardi	CAAACGA-A) CUGGCCGA (UCGC-GCGGC-GUGCAAGC-GCCCGCGA-CGC GUCCUU-CAAGCGUCU
Semibalanus balanoides	CACAAUA-A) CAUU
Calanus finmarchicus	
Penaeus semisuicatus Parapobalia longinos	
Argulus pobilis	
Branchinella occidentalis	
Speleonectes tulumensis	UCA-G) -UUUCCACAGCAAGGGACUGA (UUACUGAUGCCCCAUAGG-GCAAGUGA) CAA ACCCAG-CGACCACCC
Lasionectes exleyi	CCGUC-G-A) -UUUCCAGAGCAAGGGACCGA (UCGCUCGUGCCCCGUGGG-GCAGGCGA) CAC GCCCAG-UGAUCGUCC
Speleonectes gironensis	CC-AUUG-A) -UUUCCAGAGCAAGGGUCAAA (UUGCUCAUGCCCCGUGGG-GCAGGUGA)
Godzillius robustus	C-UGUCA-A) -UUUCCAGAGCAAGGGACCGA (UCGCUCAUGCCCCAGGG-GCAGGCGA)
Cryptocorynetes elmorei	
Cryptocorynetes haptodiscus	CC-AUUG-A) -UUUCCAGAGCAAGGGUCAAA (UUGCUCAUGCCCCGUGGG-GCAGGUGA) UAU GCCCAG-UGAUUGUUG
Pleomothra apletocheles	C-UGUCA-A) -UUUCCAGAGCAAGGGACCGA (UCGCUCAUGCCCCAGGG-GCAGGCGA) CAC GCCCAG-UGAUCGUCC
[
Artemia franciscana	G -C (CUUAUCA-ACUUUCGAUGGUAGGCUAUGCCACCAUGGUUGCAACGGG) UAA- (CGGGGAAUCGGGGUUCGAUUCCG) GAG A (G
Hutchinsoniella macracantha	G - A (CURANCA-ACUGUAGAGCGGCUGGGUAUGNCCCNCCGUGGUACCACGGG UAA- (CGGGGAAUCAGGGUUCAC) GAG A (A
Campodea tillyardi Semibalarus balarsidas	
Colonus firmanchique	
Penaeus semisulcatus	
Paranebalia longines	
Argulus nobilis	G - A (CUUAUCA-ACUGUCGAUGGUGGUGGUGGCCUACAUGUUGUCACGGG) UAA- (CGGGGAAUCAGGGUUCGAUUCCG) GAG A (G
Branchinella occidentalis	G -C (CUUAUCA-ACUGUCGAUGGUAGGUUAUGCGCCUACCAUGGUUGCAACGGG) UAA- (CGGGGAAUCGGGGUUCGAUUCCG) GAG A (G
Speleonectes tulumensis	A AC (CU-AGUA-UAAGAUCAGUGGUUAGUAGCCCCAUGUGGUGGUGGUGAUGGG) UGA- (UGGGGGGAUCAGGGAUCAGUUCUG) GAG A (G
Lasionectes exleyi	G AC (CU-AUUA-CGACCAGACCGGUGGUAGUGGCCCCCGGUGGUUGUGAUGA) UGUA (CGGGGAAUCAGNGUUCGNUUCC-) - (-
Speleonectes gironensis	
Godzillius robustus	- ())(
Cryptocorynetes elmorei	- ())() -(-
Cryptocorynetes haptodiscus	U AC (UUAUUACAACCAGACCGGUGGAUAGUGGCCGCCAGUGGUUUUGAUGGG) UGA- (CUGGGGUUCGAUUCGG) GAC A (G
Pleomothra apletocheles	G AC (CUAUUACGACCAGACCGGUGGGUAGUGGCCCCCGGUGGUUGUGAUGGG) UGA- (CGGGGAAUCAGGGUUCGAUUCCG) GAG A (G
_	
[\ldots 14 \ldots 15 \ldots $5'$ \ldots 16 \ldots $4'$]
Artemia franciscana	GGAG [CCUGAGAAACGGCUACC] A (CAUCCAA-GGAAG) GCA [GCAGGC] GCGCAAA (UUACCCCACUCCCAGCACGGGAGGUA) GU [GACG]
Hutchinsoniella macracantha	GGAG [CCUGAGAGACGCCUACU) A (CAUCCAA-GGAAG) GCA [GCAGCC] GGCGAA (UUACCCAAUCCCUGAACGGGGAGGUA) GU [GACG]
Campodea tillyardi Somibalanus balancidos	GGAG [CCUGAGAGAGGCUACC) A (CAUCUAA-GGAAG) GCA [GCAGC] [GCGCAAU (UUACCCCCUCCCGCACGGGAGGUA) GU [GACG]
Calanus finmarchicus	
Paranebalia longines	AGG L CUIGAGAACAGCCAUC) A CAUCCAA-GGAAG GC A GCAGG L GCGCAAA (UIACCCACUCCUAGCCCAGGAGGAIA) GC L GACG
Argulus nobilis	GGAG [CCUGAGAAACGGCUACC] A (CAUCCAA-GGAAG) GCA GCAGGC GCGUAAA (UUACCCACUCCCGGCACGGGAGGUA) GU GACG
Branchinella occidentalis	GGAG [CCUGAGAAACGGCUACC) A (CAUCCAA-GGAAG) GCA GCAGGC GCGCAAA (UUACCCACUCCCGGCACGGGGAGGUA) GU GACG
Speleonectes tulumensis	GGAA [CCUGAGAGACAGCUACC) A (C-CCCUAUGAGAG) GCA UCAGGU GCACCAC (UUAUCCAAUCCUGGCAUGGGAAGGUA) GU GAGG
Lasionectes exleyi	[(
Speleonectes gironensis	[
Godzillius robustus	[(
Cryptocorynetes elmorei	[()-()
Cryptocorynetes haptodiscus	GGAG [CAUGAGACAUGGCUACA) A (U-CCCAAUGGGAG) GCA GCAGGC GUGCAAC (UUACCCAAUCCCGGCAUCAGGUGGUA) GU GAGG
Pleomothra apletocheles	GGAG [CCUGAGAGAGUGGCUACC) A (C-CCCUAUGGGAG) GCA GCAGGC GCGCAAC (UUACCCAAUCCUGGCACGGGAAGGUA) GU GAGG
[]]
Artemia Iranciscana	AAAAAAA (CCA-UGCAGGACUCAUCCGAGGCCCUGUGAU-UC) GAAGA(GUACACUUUAAAUCCUUUAAC) GAGGAUCCA (UUGGA
Autoninsoniella macracantha	
Campodea ciliyardi Semibalarus balaraidas	
Calanus firmarchique	
Panaous somisulcatus	
Paranebalia longines	
Argulus nobilis	AAAAAUAA (CAA-UACGGGACUCAUCCGAGGCCCCCGUAAU-UG) GAAUGA (GUACACUUUAAAUCCUUUAAC) GAGGAUCCA (UUGGA
Branchinella occidentalis	AAAAAUAA (CGA-UGCAGGACUCAUCCGAGGCCCUGUGAU-UG) GAAUGA (GUACACUUUAAAUCCUUUAAC) GAGGACCUA (UUGGA
Speleonectes tulumensis	AGAAAUAC (CAG-UG-GGGGCGUUGGUAUGAGGCCCUGCUCC-UG) GAAUGA (CCACUCCCAAGCCCAGUAAC) AAGGAGCCA (UCAGA
Lasionectes exleyi	
Speleonectes gironensis	AGAACUAA (CGG-UGCGGGCCACYGUACGGUGGCUUGCUCCCG) GAUUGA (GCGUCUCCGAAAGUCCUCGCC) GAGGAGCCA (UCGGA
Godzillius robustus	() ()) (
Cryptocorynetes elmorei	() () ()) ()
Cryptocorynetes haptodiscus	AGAAAUAA (UUG-UGCGGGGUAUAGGCACUAGGCCCUGCUCCUG) GAAUGA (GCACUUCCCAAACAGCGAC) GAGGAGUCA (ACAGA
Pleomothra apletocheles	AGAAAUAA (CAG-UGUGGGGUGUCAGCAUGAGGCCCCCGCUUCCG) GAAUGA (GUGCUUCCUAAAUGCCACAGC) GAAGAGCCA (UCGGA
r	
Artomia franciscore	
ALCENIA IIANCISCANA	
Campadaa tilluardi	
Semibalanus balanoidee	
Calanus finmarchicus	GIGGCIAAGUCUGGUGCCAIGCIAIGCIACIGCIGGUGAAUUCCAGCUCCAAUIAGUUAAAGUUGUUGUGUGUGGIGUIAAAAAAGUC
Penaeus semisulcatus	G GCC AAGUCUGGUGCCA GC C CCC GC GCUAAUUCCAGCUCCAC) U AGCGUAUAUU AAAGUUGUG CGC UU GAA A C GCUC
Paranebalia longipes	G GCC AAGUCUGGUGCCA GC A GCC GC GC GCUAUUCCAGCUCCAA) U AGCGUAUUU AAAGUUGCUG GCG UU AAA A A GCUC
Argulus nobilis	G GCC AAGUCUGGUGCCA GC A GCC GC GCGUAAUUCCAGCUCCAA) U AGCGUAUAUU AAAGUUGCUG CGG UU AAA A A GCUC
Branchinella occidentalis	G GCC AAGUCUGGUGCCA GC A GCC GC GGUAACUCCAGCUCCAA) U AGCGUAUAUU AAAGUUGCUG CGG UU AAA A A GCUC
Speleonectes tulumensis	G GGC AAAUCUGGUACCA GC A GCC AU GGUAAUUCCAGCUCCAA) U AGUAUACAUU GAAGCUGCUG CAG UU AAA G C ACUC
Lasionectes exleyi	-
Speleonectes gironensis	G GC AAGUCUGGUGCCA GC A GCC GC GGUAAUUCCAGCUCCGA) U AGCGUACAUU AAAGUUGCUG CAG UU AAA U A GCUC
Godzillius robustus	-
Cryptocorynetes elmorei	-
Cryptocorynetes haptodiscus	G GUC AAGUGUGGUGCCA GC A GUU GU GGUAAUUCCAGCUCCAA) U AGCAUACAUU AAAGUUGCUG CUA UU AAA G A GCUC
Fleomothra apletocheles	G GGC AAGUCUGGUGCCA GC A GCC AC GGUAAUUCCAGCUCCGA) U AGCAUACAUU AAAGUUGCUG CAG UU AAA G C GCUC

[V4				
Artemia franciscana	GU AGUUG-G AUAU-CG (GUC			
Hutchinsoniella macracantha	GU AGUUG-G AUGUUCA (UUCUC	GAGCUCACGGUG-UCAGCUAGCCUGACUUACCGUGGUG		
Campodea tillyardi	GU CGCCG-G AUAU-CG (GCCUC	GGAGGGGCGGUU-CGCCGGAGGGCGAC ACUUCCCCGUUCCGGGCGC-		
Semibalanus balanoides	GU AGUUG-G AUAU-CA (GUGCG			
Penaeus semisulcatus	GU AGUUU-G ACUU-CU (GCUCC)	GGAACUAUU		
Paranebalia longipes	GU AGUUG-A AUCU-CA (GUUCG	AGAUCAGAGUUUGUC-CG		
Argulus nobilis	GU AGUUG-G AUCC-CA (GUUGC	AGACGGGCCGGUC-CGCCUCAUGGCCGUUC		
Branchinella occidentalis	GU AGUUG-G AUAU-CC (GGUCG	CGAUCAGGCGGUG-CCGCCUCG-CGGUGUG-C		
Speleonectes tulumensis		GAGGGUCCA-UGCUGGUCAGCGUC-CCUCGGGGGUCCA-UGCUGACCUGGUUCUGU		
Speleonectes gironensis	GG AGUUG-G AGGU-GG GGUGG	CGACAGGGUCGCGGGCCACAUUGGUGUCGUUGAUCUC-CAGGGUCGGCGUCGCCACCGGCUC		
Godzillius robustus				
Cryptocorynetes elmorei				
Cryptocorynetes naptodiscus Pleomothra apletocheles				
Fieldentia apietocheies	GG [AG00G-G]AGG0-GG (AG00G			
[E23-1'	E23-4]		
[.on.9	egion.10		
Artemia franciscana	ACUG-CCUCGA			
Campodea tillvardi	AGUG-GCGCGGCCAUGUCGGUUGG	GUGU-CGGGGGCCCUUCGCCGCCUCGCCUUCGGGCUUG		
Semibalanus balanoides	ACUG-CUGGGCUCCCAAAUAUCGG	CUGGCCGCAUUCAAUCGUGCCGGAUCCGUCG		
Calanus finmarchicus	ACUG-CCCUAUAGUCCGU	AGUUUUGCCAGAGGUUUCG		
Penaeus semisulcatus	ACUGCCGGGUUCCGAGCUGUGU			
Argulus nobilis	ACUG-CCUC CUU			
Branchinella occidentalis	ACUG-CCUAGA	JUGGACAAUCCACCGGACUGUCCG		
Speleonectes tulumensis	GCAGGUUUGCCGGAUU-GACUU			
Lasionectes exleyi				
Speleonectes gironensis	GCUGCCCUAGAC	UGUGGAGCUAGCUGCAGUGG-GUCGGCA-CCCUUUGGUGGGUGCGGGCUUUCCCUAGCGG		
Cryptocorynetes elmorei				
Cryptocorynetes haptodiscus	-UUUGCUAG	A		
Pleomothra apletocheles	-UUUGCCUG	AUG-GACCGCGGGUGCCU		
r	F23-4/	E23-9 E23-11 1		
[
Artemia franciscana	UCGG (GGUGCUCUUA-ACCGAGUG	JC) CU-GGGUG- G-CCGAUAC-GU UUA -CUUUGAACAAA-U UA GA GU GC UUA		
Hutchinsoniella macracantha	CUUCCGUCUCUCUC-ACUGAGUU	JC) GG-CUUG- GGCUGGCGGCAGUGAAA UUA -CCUUGAAAAAA-U UA GA GU GC UCA		
Campodea tillyardi				
Calanus finmarchicus	(AGGUGCUCUUA-AUCGAGUG	JC) CC-GGGAU G-CUGGCA-G-GU UUA -CUUUGAAAAAA-U UA GA GU GC UCA		
Penaeus semisulcatus	GG <mark>U</mark> G	JC) CC-CCUGUG G-CCGGCA-C-GU UUA -CUUUGAAAAAA-U UA GA GU GC UCA		
Paranebalia longipes	GGGGUGCUCUUC-AUCGAGUG	JC) CC-GAGUA G-ACGGCA-C-GU UUA -CUUUGAAGAAA-U UA GA GU GC UCA		
Argulus nobilis				
Speleonectes tulumensis	GGGCGCUGGUU-AG-GGAUG	JC) CC-GGGOG G-CCGGOA-C-GO UUA CCUU-GAAAAAAAU GA GA GU GC UUA		
Lasionectes exleyi				
Speleonectes gironensis	CUGG ACUGU GGUGCG	-GU CACCUGGAAAAA UA GA GU GC UC .		
Godzillius robustus		!!!!!!!!!!!		
Cryptocorynetes elmorei				
Pleomothra apletocheles	GCCGGGGAUGCGGCAGAAGG	UUA CCUUG-AAAAAA-U UA GA GU GC UCC		
_				
[E23-12			
Artemia franciscana	IAA-IGCI (AGGU [GCACCGC			
Hutchinsoniella macracantha	AA- UC (AGGC UCAUU]GUCU) GAA (UA) CG-GAUGCU UGG AA UAA UGGAAGAGG ACCACGAGUC CUAGUU		
Campodea tillyardi	GA-GC (AGGC UGCUCAG] GCUC) GCA (CA) GG-AGUGCA UGG AA CUA GCCCAUCGG UCCCGGCCCG UCUUUCU		
Semibalanus balanoides	AA-IGCI (AGGC [UCUGAAU] GCCU) GUA (UA) CA-UAUUCA UGG AA UUG GAGAAUACG UCCCUGGCUC GAUUUGG		
Penaeus semisulcatus				
Paranebalia longipes	AA- GC AGGC UCAAAC] GCCU) GAA (UA) GU-UGUGCA UGG AA UAA UGAAAUAGG ACCUCGGUUC UAUUUUG		
Argulus nobilis	AA- GC (AGGC [GAUG] GCCA) GAA (UA) AU-GGUGCA UGG AA UAA UGGAAUAGG ACCUCGGUUC UAUCUUG		
Branchinella occidentalis	AA- GC (AGGU [GCUCCGC	JGCCU) GAA (UA) UC-ACAGCA UGG AA UGA UGGAAUAGG ACCUCGGUCU UAUUUUUG		
Lasionectes exlevi]GCOG/GGA(OA)GAGGAAOCA[OGG/AA]OG/AA]OGOCA-GGG/GAAOG/GCAOGAAOG/GCCAOGAAA		
Speleonectes gironensis	AAG GC GGGC ACCUGUUC-]GCCC) ACA (UA) GGCGAUUCA -GG AA UGA CGAUGAGAG CAGGGAUGCG		
Godzillius robustus	([])-GA (UA) GAGGAAUCA UGG AA UAA CAGAAAGGG GAUAGCCUGU		
Cryptocorynetes elmorei	([
Pleomothra apletocheles LE] GCCU) GGA (UA) GAGGAAUCA UGG AA UAA OAGAAAGGG CA-GGGGUGG		
		······································		
[E23-14′			
L	Region.13			
Hutchinsoniella macracantha	CCUGUUGGUC GGACCUCGUGGU-			
Campodea tillyardi	GUCGGCUUCA GGGGCCGGGUC	CAGGGUCAAUG GGGACGGCCGGGGGCA UU (GGUACUGCGACG		
Semibalanus balanoides	UUGGUUUUGA GAGUCGAAGGGA-	AAUGAUUAAUA GGGACUGACGGAGGCA UU (CGUAUUGCGACG		
Calanus finmarchicus	UUGGUUUUCG GAAAUC-GAGUU-	AUGAUUAACA GGGACAAUUGGGGGCA UU (AGUAUUCAGACG		
renaeus semisulcatus Paranebalia longines	-UUGGUUUUC GGAACCCGAGGU-			
Argulus nobilis	UUGGUUCUUC GGAACACGAGGU-	AAUGAUUAAUA GGGACGGGGGGA UU (CGUAUUGCGACG		
Branchinella occidentalis	UUGGUUUUCU GGACUU-GAGGU-	AAUGGUUAAUA GAGACAGACGGGGGCA UU (CGUACUGCGACG		
Speleonectes tulumensis	GUUGCCUGCC UGAGGGUGAUGG-	AGCCAUCAGUCCAAAGCCAUGUCGUAGACAACUGAA AGGGGUGGCUGGGGCA UU (GGUGCUGC		
Godzillius robustus	UCAUU-GCCA GAGU			
Cryptocorynetes elmorei	CCAUUU-CCC GAGGUCA	-CCGUUGGUCUGAGGCCAUGUCGUAGAUGAUUGAGA AAGAUGGCUGGGGGCA UU (GGUACUGUGGGG		
Cryptocorynetes haptodiscus	CUGUUUGCCC AGAUCA	-CCGCUGGUCCGAUGCCAUGUCUCAGAUGAUUGAAA GGGACUGCCGGGAACA UA(GGUACUGUUAGG		
up a mathema an latachalas	CUGUU-GCCC AGGU	- CCGUUGGUCCAAGGCCACGUUAUAGACAAUUGAGA GGGAUGGCUGGGGGCA UU (GGUACUGUGGGG		
Artemia franciscana	CUA GAGGUGAAA UUC UUGGACCGUCGCAAGACG) AACAACU (GCGAAAGC) AUU I UGCCAAGAAUGUUUU I CAUUAAUCAAGAACGA I AA			
--	---			
Hutchinsoniella macracantha				
Compedea tilluardi				
Semibalanus balanoides	CGA GGGGUGAAA UCC UGUGACCGUCGCACGACGACGACGACGACGACGACGACGACGACGACGA			
Calanus finmarchicus	ACA GAGGUGAAA UUC UUGGACCGUCUGAAGACU) GACUACU (GCGAAAGC) AUU UGCCAAGAGUGUUUU CAUUAAUCAAGAACGA AA			
Penaeus semisulcatus	CUA GAGGUGAAA UUC UUAGACCGUCGCAUGACG) ACCUACU (GCGAAAGC) AUC UGCCAAGGAUGUUUU CAUUGAUCAAGAACGA AA			
Paranebalia longipes	CUA GAGGUGAAA UUC UUGGACCGUCGCAAGACG) AACUACA (GCGAAAGC) AUU UGCCAAGAACGCUUU CAUUAAUCAAGAACUA AA			
Argulus nobilis	UUA GAGGUGAAA UUC UUGGAUCGUCGCAAGACG) AACUACU (GCGAAAGC) AUU I UGCCAAGAAUGUUUU I CGUUAAUCAAGAACGA AA			
Branchinella occidentalis	CUA GAGGUGAAA UUC UUGGACCGUCGCAAGACG) AACAACU (GCGAAAGC) AUU UGCCAAGAAUGUUUU (CAUUAAUCAAGAACGA AA			
Spalespectes tulumensis				
spereonectes turumensis				
Lasionectes exleyi				
Speleonectes gironensis	CGA GAGGUGAAA UUC UGGGACCCUCGCAAGACC) GACCGCG (GCGAAGGC) UUC UGCCAAGCACGCCUU CGUUAAUCCAGAACGA AA			
Godzillius robustus.	UAA GAGGUGAAA UUC UAGGACCCUCACAAGACC) CACCACA (AUGAAAGC) ACG UGCCAAGAAUGUCUU CCUUAAUCCAGAAUGA AA			
Cryptocorynetes elmorei				
Cryptocorypotos haptodiscus				
ciyptocorynetes naptourseus				
Pleomothra apletocheles	CGA GAGGUGAAA UUC UGGGACCCUUGCAAGACC) CACCACA (GCGAAAGC) AUU UGCCAAGAAUGUCUU CCUUAAUCCAGAACGA AA			
[
Artemia franciscana	(GUUAGAGGUUCGAAGGCGAUCAGAUACCGCCCUAGUUCUAAC) CAUAAACGAU GCCAAC C (AGCGA-UCCGCGGACGUUACUU-G			
Hutchinsoniella macracantha				
Compades tilluardi				
Campodea tillyardi	(GUCGAGGCUCGAAGGCGAUCAGAUACCGCCCUAGUUCUAAC) CUUAAACGAU GCCGAC C (GGCGA-UCCGCCGCAGGAGGCGCACAU-			
Semibalanus balanoides	(GUUAGAGGUUCGAAGGCGAUCAGAUACCGCCCUAGUUCUAAC) CGUAAACGAU GUCGAC C (AGCAA-UCCGCAACGGUCACUAC-			
Calanus finmarchicus	(GUUAGAGGUUCGAAGGCGAUCAGAUACCGCCCUAGUUCUAAC) CAUAAACGAU GCCA-C U (AGCGA-UCUGCCGAGUUUUUUUU-			
Penaeus semisulcatus	(GUUAGAGGUUCGAAGGCGAUCAGAUACCGCCCUAGUUCUAAC) CUUAAACGAU GCUGAC U (AGCGA-UCCGCCGCAGUUAUUCC-			
Paranebalia longines	(GUUAGAGGUUCGAAGGCGAUCAGAUACCGCCCUAGUUCUAAC) CUUAACGAU I GCCAAC I C (ACCGA-UCCGCAGAAGUUAUUUU-			
Angulus nobilis				
Argurus nobilis				
Branchine∐a occidentalis	(GUUAGAGGUUCGAAGGCGAUCAGAUACCGCCCUAGUUCUAAC) CAUAAACGAU GCCAAC C (AGCGA-UCCGCAGACGUUACUUC-			
Speleonectes tulumensis	(GUCAGAGGAUCAAAGGCGAUUAGAUACCACUCUAGUUCCGAC) CAUAAACAUU GCAAAC U (GGUAA-UCCAUGGCAUUUGUAG-			
Lasionectes exlevi	(-(
Speleonectes gironensis	(GUCAGAGGAUCGAAGGCGAUUAGAUACCGCUCUAGUUCUGAC) CGUAAACGAU I GUCGAC I C (GCCGA-UCCGUGACGUUGGCCA-			
Codzillius robustus				
GOULTITUS TODUSTUS.	(Get regeneration of the construction of th			
Cryptocorynetes elmorei	(GUCGGGGGAUCGAAGACGAUUAGAUACCACUGUAGUUUUGAC) UGUAAACGUU GCUGAC U (GGCAA-UCCAUGGCAUUUAUAU-			
Cryptocorynetes haptodiscus	(GUCAGAGGGAUUGAAGGCGAUUAAAUACCCCUCUAGUUCUGAC) UGUAAUCAGU GCCAAC C (AGCAACUCGUGGCA-UUUGUAG-			
Pleomothra apletocheles	(GUCAGAGGGAUCGAAGGCGAUUAGAUACCGCUCUAGUUCUGAC) CGUAAAUGGU GCCGAC C (GGCAA-UCCGUGGCGUUUGUAG-			
-				
r	30 V/ 29/ V/ 22/ 31 1			
L				
Artemia franciscana	AAUGACUC-CGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUGUUUGGGU U (CCG GGGGAA-GUAU(GG			
Hutchinsoniella macracantha	GUGAAGCC-UGGUCAGAC) UCCCUC (GGGA AA CC) A-AA GUUUUUGGGC U (CCU GGGGAA-GUAC(GG			
Campodea tillyardi	GGCGCCUC-GGCGGGCAGCC) CGCCC- (GGGA AA CC) C-GA GUGUUCGGGC U (CCG GGGGGA-GUAU(GG			
Semibalanus balanoides	ACGGACUG-UGCGGGCAGCU) UCCCCG (GGGA AA CC) A-GA GUGUCUGGAC U (CCG GGGGAA-GUAU(GG			
Calanus finmarchicus				
Deserve emissionitous				
Penaeus semisulcatus				
Paranebalia longipes	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) AUAA GUCUUUGGGU U (CCG GGGGAA-GUAU(GG			
Argulus nobilis	AAUGACCC-GACGAGCAGCU) UCC (GGGA AA CC) A-AA GUUUCUGGGU U (CCG GGGGAA-GUAU(GG			
Branchinella occidentalis	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU(GG			
Branchinella occidentalis Speleonectes tulumensis	AblGACCC-UGCGGCGCGCU)UCC(GGA AA CC)A-AA GUUUUUGGGU U (CCG GGGAA-GUU			
Branchinella occidentalis Speleonectes tulumensis	AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGGAA-GUAU(GG UCUGAACGCCAUGGGC-U-C) UCCC(GGGA AA CC) A-AA GUCUUUGGAC U (AUG GUGUGU-GUGUGUGUGUCGGGGGUAC (AG			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi	AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC)A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU(GG UCUGAACGCCAUGGGC-U-C)UCCC(GGGA AA CC)A-AA GUUUUGGGC U (AUG)GUGUGU-GUGUGUGUGUGCGGGGGUAC(AG 			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U CCG GGGGAA-GUAU(GG UCUGAACGCCAUGGGC-U-C) UCCC (GGGA AA CC) A-AA GUUUUUGGAC U (AUG GUGUGG-GUGUGUGUGCGGGGGUAC(AG 			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU(GG UCUGAACGCCAUGGGC-U-C) UCCC (GGGA AA CC) A-AA GUCUUUGGAC U (AUG GUGUGU-GUGUGUGUGUGGGGGGGUAC (AG 			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorvnetes elmorei	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUUGGGU U (CCG GGGGAA-GUAU(GG UCUGAACGCCAUGGGC-U-C) UCCC (GGGA AA CC) A-AA GUUUUUGGAC U (AUG GUGUGU-GUGUUGUGUCGGGGGUAC (AG			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes hantodiscus	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Plasmethra anlatacholos	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU (GG UCUGAACGCCAUGGGC-U-C) UCCC (GGGA AA CC) A-AA GUUUUUGGAC U (AUG GUGUGU-GUGUGUGUGCGGGGGUAC (AG			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGC U (CCG GGGGAA-GUAU (GG UCUGAALGCCAUGGGCCUCC) UCCC (GGGA AA CC) A-AA GUCUUUGGAC U (CUG GUGUGT-GUGUGUGUCGGGGGUAC (AG GACGAACGAUGCGGGCCUCC) UCCC (GGGA AA CC) A-AA GUCUUUGGAC U (CUG GGGGGA-GUAC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCACCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU(GG UCUGAACGCCAUGGGC-U-C) UCCC (GGGA AA CC) A-AA GUUUUUGGAC U (AUG GUGUGU-GUGUUGUGUCGGGGGUAC (AG			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillus robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana	AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC)A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU(GG UCUGAACGCCAUGGCC-U-C) (CGC(GGGA AA CC)A-AA GUCUUUGGCL U (AUG GACGAACGAUGCGGGCCUCC) UCCC (GGGA AA CC)A-AA GUCUUUGACC U (CUG GGGGA-GUAC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Autemia franciscana	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC)A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC)A-AA GUUUUUGGGU U (CUC GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes	AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC) A-AA GUUUUUGGGU U) (CUC GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Arqulus nobilis	AAUGACUC-UGCGGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillus robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis	AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC) A-AA GUUUUUGGGU U) (CUC GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC) A-AA GUUUUUGGGU U (CUC GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes gironensis	AAUGACUC-UGCGGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Autchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei	AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC) A-AA GUUUUUGGGU U) (CUCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes suleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speloenectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei	AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU(GG UCUGAACGCCAUGGCC-U-C) (CCC (GGGA AA CC) A-AA GUGUUUGGAC U (CUG GGGGA-GUAC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGGU U (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes suleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Mutchinsoniella macracantha	AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA [GUUUUUGGGU] [U] (CCG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Spleomethra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi	AAUGACUC-UGCGGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi	AAUGACUC-UGCGGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC(GGGA AA CC)A-AA GUUUUGGGU U (CUG GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCCC (GGGA AA CC) A-AA [GUUUUUGGGI U] (ACG [GGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Cryptocorynetes elmorei Spleomethes apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus	AAUGACUC-UGCGGGCAGCU) UCCC (GGGA AA CC) A-AA [GUUUUGGGC [U] (ACG [GGGAA-G0AUGUUGUCGGGGGGUAC (AG UCUGAACCCCAUGGCC-UCC) UCCC (GGGA AA CC) A-AA [GUUUUGGAC [U] (ACG [GGGGAA-G0AC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCACU) UCC (GGGA AA CC) A-AA [GUUUUUGGG[I] [I] (AUG [GUGGGA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Cryptocorynetes elmorei Schemothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis	AAUGACUC-UGCGGGCACU) UCC (GGGA AA CC) A-AA [GUUUUUGGG[I] [I] (AUG [GUGGGA-GUAC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Penaeus semisulcatus Paranebalia longipes Argulus nobilis	AAUGACUC-UGCGGGCACU) UCC (GGGA AA CC) A-AA [GUCUUUGGAC I U (AUG [GUGUGU-GUGUUGUGUGUGGGGGGGUAC [AG UCUGAAACCCCAUGGGC-UCC) -C (CCC (GGGA AA CC) A-AA [GUCUUUGGAC I U (AUG [GUGUGU-GUGUUGUGGGGGGGUAC [AG UCCAACUGACCCAGGGCCUCC) UCCU (GGA AA CC) A-AA [GUCUUUGGAC I U (CUG GGGGAAGUAC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis	AADGACUC-UGCGGGCACCU) UCCC (GGGA IAA [CC) A-AA [GUUUUGGGU] [U] (CUG [GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Spleonethes apletocheles [AAUGACUC-UGCGGGCACU) UCCC (GGGA IAA [CC) A-AA [GUUUUGGGUI [U] (CUG [GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Plecmothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi	AAUGACUC-UGCGGGCACU) UCCC (GGGA IAA [CC) A-AA [GUUUUGGGU] [U] (CUG [GGGGAA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Schemothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes guronensis Lasionectes exleyi Speleonectes tulumensis Lasionectes kulumensis	AAUGACUC-UGCGGGCAGCU) UCC (GGGA] AA ICC) A-AA IGUUUUUGGCU IU (AUG [GUGGUC-GUGUUUGUGGGGGUAC (AG UCUGAAACCAUGGGC-UC-C) UCCC (GGGA] AA ICC) A-AA IGUUUUUGAC [IU] (AUG [GUGGUC-GUGUUUGUGGGGGUAC (AG GACGAACGAUGCGGCUCC) UCCU (GGGA] AA ICC) A-AA IGUCUUUGACC [IU] (CUG [GGGGAA-GUAC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCIGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Lasionectes tulumensis Lasionectes tulumensis Lasionectes tulumensis Lasionectes cironensis Godzillius robustus	AAUGACUC-UGCIGGCAGCU) UCC			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AANGACUC-UGCGGGCAGCU) UCC (GGGA] AA] CUC)A-AA] GUUUUUGGCU U (CAG [GUGGGAA-GUAD			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynets elmorei Campodea tillyardi Semibalanus balanoides [Artemia franciscana Hutchinsoniella macracantha Autemia finmarchicus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Lasionectes senisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes selwyi Speleonectes dironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei	AAUGACUC-UGCGGGCAGCU) UCC (GGGA] IA] (C) A-AA [GUUUUGGACI [10] (CCG [GGGGA-GUAU			
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes valeyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [AAUGACUC-UGCGGGCAGCU) UCC (GGGA AA CC) A-AA GUUUUUGGACI UI (CCG GGGGA-GUAU			

[40	4a.]
Artemia franciscana	GCCGUU CUUA GUUGGU (GGAGCGAUUU) GUC (UGGUAAAUUCCG) AUA ACGAAC GAGA CUC UAG (CCUGCUAAAUAGACGA	
Hutchinsoniella macracantha	NCCGUU CGUA GUUGGU (GGAGUGAUCU) GUC (AGGUUAAUUCUG) AUA ACGAAC GAGA CAU UUG (UCUAUUAAUAGAGUC	CGCG
Campodea tillyardi Somibalarus balaroidos		GGGC
Calanus finmarchicus	GCCGUU (CUUA (GUUGGU) (GGAGUGAUUU) GUC (UGGUUAAUUCCG) AUA (ACAAC (GAGA) CUC) UGU (CCUGCUAAUAGUGUC	UGCU
Penaeus semisulcatus	GCCGUU CUUA GUUGGU (GGAGUGAUCU) GUC (UGGUUAAUUCCG) AUA ACGAAC GAGA CUC UAG (CCUGCUAAAUAGUCGA	CGGG
Paranebalia longipes	GCCGUU CUUA GUUGGU (GGAGCGAUUU) GUC (AGGUUAAUUCCG) AUA ACGAAC GAGA CUC UAG (CCUACUAACUAGUAGA	CGGG
Argulus nobilis	GCCGUU CUUA GUUGGU (GGAGCGAUUU) GUC (UGGUUAAUUCCG) AUA ACGAAC GAGA CCC UUU (CCUGCUAAUAGGCGG	AAGA
Branchinella occidentalis	GCCGUU (CUUA [GUIGGU] (GGAGCGAUUU) GUC (UGGUUAAUUCCG) AUA ACGAAC GAGA CUC UAG (CCUGCUAAUAGAUGG	CGUG
Lasionectes evlevi		
Speleonectes gironensis	GCCGUU (CAUA GUUGGU (GGAGUGAUUU) GUC (UGGUCAAUUCCG) GUA ACGAAC GAGG UCC GAU (CCChGGGUUGGGGCAU	GGGC
Godzillius robustus	GCUGUU CUUA GUUGGU (GGAGUGAUUU) UUC (UGGUCAAUUCUG) GUA AUAAAC AAGG UUC UAC (CCCUCAGCCAUGGUGU	GGGC
Cryptocorynetes elmorei	GCUGUU CUUA GUUGGU (GGAGUGAUUU)) GUC (UGAUCAAUUCUG) GUA ACGAAU GAGG UUG CAC (CCCGUGUUUGUGGUGU	GGGA
Cryptocorynetes haptodiscus	GCCAUU CUUA GUUGGU (GGAGUGAUUU) GUC (UGGUCACUUCCG) GUA GCAAAC -AAG UUC CGU (CCCUCGGUUGUGGGCGU	UGGC
Pleomothra apletocheles	GCCGUU CUUA GUUGGU (GGAGUGAUUU) GUC (UGGUCAAUUCCG) GUA AUGAAC GAGG UUC CAC (CCCUCGGUUGUGGGCGU	GGG <mark>C</mark>
r	42 145 145	,
Artemia franciscana		· · · ·]
Hutchinsoniella macracantha	G GACCGAACUAGGGGAUGCUUGAGUUUGAAGCGUGCCAAGCGUAGGUUGUCUCUCAGUGUCGGGUCCG	UCCC
Campodea tillyardi		
Semibalanus balanoides		
Calanus finmarchicus	U CUCU	
Penaeus semisulcatus	U CUCUCGCCCAGCCUUCGCCCUCGGGCUCGGCUUCGGUUCCCCUAAACCCGGCCGUCGCGGGGCC-UCCACCGUCGGUUGGUUAG	CGCC
Paranebalia longipes	U UUCCAUAAAAUGGCCGUCU	
Arguius nobilis	U CCUCAUGCAGUGUCUAAC	
Branchinella occidentalis		
Issionactos exloui	C AGAUCAUGU-CUAUGUCCA-ACACUUGACUGGCCAUGUGUAGG-GCCAUGU-C-C-CCAAUGUAGGAAUGCAUCUCUGUAGCA	
Speleonectes gironensis	n AAGGUGCCAA-CUG-UGG	
Godzillius robustus	C AAACCCUCUCA-CUGCUCUUCCCCUGCCCUCU	
Cryptocorynetes elmorei	C AACU-CUUCAUGGGCUCGGCCCUCCUACUCUCCC-CCAACCCUGUGCCUGCU	c
Cryptocorynetes haptodiscus	U GAUGU-CCCCAUGGGCUCAUCACCCCACGUCUCCCCCUACC-CC-ACGCAUGCCCAAAAAGGG	G
Pleomothra apletocheles	C GAAAU-CUCCAGGCACCACAUCUUCUC-CCGACCCUAACUUCCUUCCAGGG	G
_		
[]
Artemia franciscana		
Autoninsoniella macracantha	ACAGCUGAGAGCACCUCUGGUCACUGUCUGAAGCCAGGCGUUUUGAAAAAGUCCCCGGC	
Semibalanus balanoides		
Calanus finmarchicus		
Penaeus semisulcatus	GCCGGCGCGCCCCCGCGGCCCGGAAACUGGCGUCCGCUUCGCAGU	
Paranebalia longipes		
Argulus pobilis		
AIGUIUS HODIIIS		
Branchinella occidentalis		
Branchinella occidentalis Speleonectes tulumensis	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGGCCUGUUG	UCCA
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGGCCUGUUG	UCCA
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis		UCCA
Branchinella occidentalis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAAGGAGGAUGCUGUUGCAGCAGG	
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA CCAU CCAU
Regults notifies Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles	UGUUGGGGUGGUAAGAUCCCUGUCUGGGCCAGGAGAUGCUGUUGCAGCAGG	UCCA CCAU CCAU CCAU CCAA CCAU
Regardina nella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA CCAU CCAU CCAU CCAA CCAU
Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA CCAU CCAU CCAU CCAU CCAU
Arguits norths Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA CCAU CCAU CCAU CCAU CCAU CCAU CCAU
Arguits norms Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Gramada tillumedi	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG- -CCUG -AGAGUUGG -CCUG -AGAGUUGG -CGAGGCCAAUCCU CACCUGGUGAUGG -GGAGGCCAAUCCU UGU -GAGGUGGCAUGG UGU -GCAGGCCAAUCCU CACCUGGUGAUGG -GGAGGCAAUCCU UGU -GCAGGCCACUCUUGGCCUGUG-G-UGUUG UGU	UCCA CCAU CCAU CCAU CCAU CCAU CCAU CCAU
Rights holits Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGGAGG.	UCCA CCAU CCAU CCAU CCAU CCAU CCAU CCAU
Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA CCAU CCAU CCAU CCAU CCAU CCAU UCCAU UGCC UGCC
Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAAGGAGGAUGCUGUUGCAGCAGG -CUUGG GAGUUGG GAGG	UCCA CCAU CCAU CCAU CCAU CCAU CCAU UCCAU UGCC UGCC
Rights incluse Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG- -CCUG	UCCA CCAU CCAU CCAU CCAU CCAU CCAU CCAU
Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGGAGG	UCCA CCAU CCAU CCAU CCAU CCAU CCAU UCCA UGCC UGCC
Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA CCAU CCAU CCAU CCAU CCAU UGCC UGCC
Arguits notifis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAAGGAGGAUGCUGUUGCAGCAGG -CUUG GAGUUGG GCAGGCCAAUCCU GAG	UCCA CCAU CCAU CCAU CCAU CCAU UGCC UGCC
Arguits notifis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG- -CCUG GAGUUGGAGGUCAGUGGUUGCGCA	UGCA CCAU CCAU CCAU CCAU CCAU CCAU UGCC UGCC
Arguits norths Branchinetla occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGGG	UCCA CCAU CCAU CCAU CCAU CCAU CCAU CCAU
Arguits incluse contents Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Sociallius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA UCCA CCAU CCAU CCAU CCAU CCAU CCAU
Arguits incluse contents Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cruptocorynetes elmorei	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG -CUUG GAGUUGG GAGGGCAGGCCAAUGCU GAGUUGG GAGGUCGUCGUGGGCA GAG	UCCA UCCA CCAU CCAU CCAU CCAU CCAU UCCC UGCC UG
Arguits incluse Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGGAGG	UCCA UCCAU CCAU CCAU CCAU CCAU CCAU UCCAU UGCC UGCC
Arguids normalia Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA CCAU CCAU CCAU CCAU CCAU CCAU UCCA UCCA UGCC UGCC
Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUUGGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA CCAU CCAU CCAU CCAU CCAU UCCA UGCC UGCC
Arguits incluse contractions and an arguits in a second and a second and a second and a second a secon	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAAGGAGGAUGCUGUUGCAGCAGG -CUGGUUGCAGGGAGGCCCUGUCUGGCCAGGAGGAUGCUGUUGCAGCAGGCCCUGCUGCAGCCAAUCCUCCAGGCCAAUCCUCCAGGCGAUAUCAU -AGAGUUGGGGGAUCCUUGGCUGUG-G-UGUUG -GAGGGCACACUGCAGACCCACGCCAGACCAUCCU CACCUGGUGAUGGGGGAGGAUCCUUGGCCUGUG-G-UGUUG -GA-GGUGGCACACUGCAGACCAUCCU GACUGUCGCAUCCUUGGCCUGUG-G-UGUUG -GA-GGUGGCACACUGCAGACCCAUCCU GACUUUCUUAAGAGG) ACAAGCUGGCG-G-CCCA-GCCGUUCAGCAGCCCGUCGU .42' UCUUCUUAAGAGG) ACGGGCGCGCG-GCCCAA GCCCA) AUGAAGGACUC [GGC] C (AAU AACAGGUCUGUGA .42' UCUUCUUAAGAGGA ACGG	UCCA CCAU CCAU CCAU CCAU UCCA UGCC UGCC
Arguius normation and a state of the second st	UGUUGGGGUGGUAAGGAUCCCUGUUGGGCCAGGAGGAUGCUGUUGCAGCAGGG	CCAU CCAU CCAU CCAU CCAU CCAU CCAU UGCC UGCC
Arguits norths Branchine Cocidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes dironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	
Arguits incluse contrast Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Sopeleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Lasionectes exleyi Speleonectes faptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	
Arguits norths Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes elmorei Silemothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCGGGCCAGGAGGAUGCUGUUGCAGCAGGAGG	
Arguiss norms Branchine Cocidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUUGGGCCAGGAGGAUGCUGUUGCAGCAGGG	
Arguits incluse contracts and	UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG	CCAU CCAU CCAU CCAU CCAA CCAU CCAA CCAU UGCC UGCC
Arguits norths Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobeliis	UGUUGGGGUGGUAAGAUCCCUGUCUGGGCAGAGAGAUGCUGUUGCAGCAGG	UCCA UCCA CCAU CCAU CCAU CCAA UGCC UGCC
Arguiss norms Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Sopeleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCUGUCUGGCCAGGAGGAUGCUGUUGCAGCAGG- CCUG	
Arguits norths Branchine Cocidentalis Speleonectes tulumensis Lasionectes exleyi Soleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCUGUCGGCCAGGAGGAUGCUGUUGCAGCAGG- CCUGG-	
Arguiss norths Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes tulumensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGCCAGGAGGAUGCUGUUGCAGCAGG	UCCA UCCA CCAU CCAU CCAU CCAU UGCC UGCC
Arguiss norms Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGGAUGCUGUUGCAGCAGG CCUG	
Arguiss norms Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [UGUUGGGGUGGUAAGGAUCCCUGUCUGGGCCAGGAGAUGCUGUUGCAGCAGG- CCUGG- CUUGG -AGAGUUGGAGGGAGGGCAG-UGGCCUACG	
Arguits norths Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes faptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionetes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocota tulyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei	UGUUGGGGUGGUAAGGAUCCCUGUCGGGCCAGGAGAUGCUGUUGCAGCAGG	
Arguiss norms Branchinella occidentalis Speleonectes tulumensis Lasionectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes elmorei Cryptocorynetes haptodiscus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Pleomothra apletocheles [Artemia franciscana Hutchinsoniella macracantha Campodea tillyardi Semibalanus balanoides Calanus finmarchicus Penaeus semisulcatus Paranebalia longipes Argulus nobilis Branchinella occidentalis Speleonectes tulumensis Lasionectes exleyi Speleonectes gironensis Godzillius robustus Cryptocorynetes elmorei Cryptocorynetes haptodiscus	UGUUGGGGUGGUAAGGADCCCUGUCGGGCCAGGAGAUGCUGUUGCAGCAGG	

ſ	
[Begion 17
Artemia franciscana	
Hutchinsoniella macracantha	
Campodea tillvardi	
Semibalanus balanoides	AGUA (AGCGCAGGUCACUAGCCUGCGUU) GAUUAAGUCCC (UGCCCUUUGUACA CACC (GCCCGUCGCUACUACCAU - GGAUGAUUUGGUG
Calanus finmarchicus	
Penaeus semisulcatus	
Paranebalia longines	
Argulus pobilis	
Branchinella occidentalis	
Speleonectes tulumensis	
Lasionectes exlevi	
Speleonectes gironensis	· / / / / / / / / / /
Godzillius robustus	
Cryptocorynetes elmorei	
Cryptocorynetes bantodiscus	
Bloomethra apletocholos	
Pieomothra apietocheies	CON CONCERNMENT CARCENOLOGIC CONCOUNT A LACE CONCENT AND CONCENTRATE
r	1
Artomia franciscana	1
Hutchingoniolla magragantha	
Campodoa tilluardi	
Campodea ciliyardi Semibalarua balanaidaa	
Calapus firmarchique	
Poppous somisulatus	
Penaeus Semisuicatus	
Paraneballa longipes	
Arguius nobilis Propohinelle escidentelie	
Spalaepostes tulumonais	
Issionatos arlavi	
Spoloopostos giroponsis	
Codrillius robustus	
Crumtaganunatag almanai	Addactor
Cryptocorynetes enmorei	
Discustory and the shales	
Pieomothra apietocheies	AGGCCUUGGACUGGGGACCAGAGCACCGCCACCAAGGCGGGGCGAGACAGAC
r	,
Artomia franciscana	
Arcemia franciscana	
Campodoa tilluardi	
Somibalanus balancidos	
Calanua finmanahiaua	
Calanus IIImarchicus	UAAAAGUCGUAAC
Penaeus semisulcatus	
Paraneballa longipes	
Argurus HODIIIS Branchinolla oggidontalic	
Spoloopostos tulumonsis	
Jacienestes euleui	
Lasionectes exleyi	
Spereonectes gironensis	
GOGZIIIIUS TODUSTUS	
Cryptocorynetes eimorei	
Cryptocorynetes haptodiscus	
Pleomothra apletocheles	UAAAAGUCGUAACAAGGUUUCCGUAGGUGAACCUGCGGAAGGAUCAUUA

7.7 MrBayes-Blöcke

7.7.1 Lauf 1

[Define character sets] charset COI1st = $1 - 657 \setminus 3$; charset COI2nd = $2 - 657 \setminus 3$; charset COI3rd = $3 - 657 \setminus 3$;

[Define partition] partition by_codon_and_gene = 3:COI1st, COI2nd, COI3rd;

[Select partition] set partition = by_codon_and_gene;

[Selects the GTR+G+I model with 4 gamma categories for 1st codon position of COI] lset applyto = (1) nst=6 rates=invgamma ngammacat=4;

[Selects the GTR+G+I model with 4 gamma categories for 2nd codon position of COI] lset applyto = (2) nst=6 rates=invgamma ngammacat=4;

[Selects the HKY+G model with 4 gamma categories for 3rd codon position of COI] lset applyto = (3) nst=2 rates=gamma ngammacat=4;

[Unlink parameters across partitions] unlink statefreq=(all) revmat=(all) shape=(all) pinvar=(all);

[Allow rates to vary across all partitions] prset ratepr = variable;

7.7.2 Lauf 2

[Selects the GTR+G+I model with 6 gamma categories for 16S] lset nst=6 rates=invgamma ngammacat=6;

[Unlink parameters across partitions] unlink statefreq=(all) revmat=(all) shape=(all) pinvar=(all);

[Allow rates to vary across all partitions] prset ratepr = variable;

7.7.3 Lauf 3

[Selects the GTR+G+I model with 5 gamma categories for H3] lset nst=6 rates=invgamma ngammacat=5;

7.7.4 Lauf 4 (6 + 7)

 $[Define character sets] \\ charset COI1st = 1 - 657 \ 3; \\ charset COI2nd = 2 - 657 \ 3; \\ charset COI3rd = 3 - 657 \ 3; \\ charset COI3rd = 3 - 657 \ 3; \\ charset H3 = 658 - 985; \\ charset 16S = 986 - 1679; \\ \end{cases}$

[Define partition] partition by_codon_and_gene = 5:COI1st, COI2nd, COI3rd, H3, 16S;

[Select partition] set partition = by_codon_and_gene;

[Selects the GTR+G+I model with 4 gamma categories for 1st codon position of COI] lset applyto = (1) nst=6 rates=invgamma ngammacat=4;

[Selects the GTR+G+I model with 4 gamma categories for 2nd codon position of COI] lset applyto = (2) nst=6 rates=invgamma ngammacat=4;

[Selects the HKY+G model with 4 gamma categories for 3rd codon position of COI] lset applyto = (3) nst=2 rates=gamma ngammacat=4;

[Selects the GTR+G+I model with 5 gamma categories for H3] lset applyto = (4) nst=6 rates=invgamma ngammacat=5;

[Selects the GTR+G+I model with 6 gamma categories for 16S] lset applyto = (5) nst=6 rates=invgamma ngammacat=6;

[Unlink parameters across partitions] unlink statefreq=(all) revmat=(all) shape=(all) pinvar=(all);

[Allow rates to vary across all partitions] prset ratepr = variable;

7.7.5 Lauf 5

[Selects invertebrate mitochondrial genetic code] lset code=metmt;

[Selects a codon model] lset nucmodel=codon;

[Selects the GTR+G+I model with 4 gamma categories] lset nst=6 rates=invgamma ngammacat=4; Tabelle 7.6 BLAST-Ergebnis der Hutchinsonielle macracantha H3-Sequenz aus der Datenmatrix.

Sequences producing significant alignments:

AF110867. Hutchinsoniella macracantha histon H3 (H3) gene, partal cds 597 597 100% 1.00E-167 99% EU431151. Paranalis sp. AN-2008 voucher SMNH-SWE-A. 346 346 97% 6.00E-92 86% EU431161. Paranalis sp. AN-2008 voucher SMNH-SWE-F. 346 346 97% 6.00E-92 86% EU431142.1 Paranalis sp. AN-2008 voucher SMNH-SWE-F. 346 346 97% 6.00E-92 86% EU431142.1 Paranalis sp. AN-2008 voucher SMNH-SWE-A. 346 346 97% 6.00E-92 86% EU431142.1 Paranalis sp. AN-2008 voucher SMNH-SWE-A. 346 346 97% 6.00E-92 86% EU431143.1 Paranalis sp. AN-2008 voucher SMNH-SWE-F. 346 346 97% 6.00E-92 86% EU431143.1 Paranalis sp. AN-2008 voucher SMNH-SWE-F. 346 346 97% 6.00E-92 86% EU431143.1 Paranalis sp. AN-2008 voucher SMNH-SWE-F. 946 346 97% 6.00E-92 86% AU43141.1 Paranalis sp. AN-2008 voucher SMNH-	Accession	Description	Max score	Total score	Query coverage	E value	Max ident
EU431151.1 Paranalis sp. AN-2008 voucher SMNH-SWE>-A. 346 346 97% 6,00E-92 86% EU431160.1 Paranalis sp. AN-2008 voucher SMNH-SWE>-F. 346 346 97% 6,00E-92 86% EU431143.1 Paranalis sp. AN-2008 voucher SMNH-SWE>-A. 346 346 97% 6,00E-92 86% EU431143.1 Paranalis sp. AN-2008 voucher SMNH-SWE>-A. 346 346 97% 6,00E-92 86% EU431144.1 Paranalis sp. AN-2008 voucher SMNH-SWE>-A. 346 346 97% 6,00E-92 86% EU431144.1 Paranalis sp. AN-2008 voucher SMNH-SWE>-A. 346 346 97% 6,00E-92 86% EU431144.1 P. x. spm. 3 histone H3 (H3) gene, partial cds 346 346 97% 6,00E-92 86% EU431141.2 P. aranalis vanhome H3 (H3) gene, partial cds 346 346 97% 6,00E-92 86% EU431141.2 P. aranalis vanhome Voucher SMNH-SWE>-F. 846 346 97% 6,00E-92 86% EU431141.2 P. aranalis vanhome Voucher SMNH-SWE>	AF110867.1	Hutchinsoniella macracantha histone H3 (H3) gene, partial cds	597	597	100%	1,00E-167	99%
EU431150. Paranalis sp. AN-2003 voucher SMNH-SWE>F. 346 346 97% 6,00E-92 86% EU431143. Paranalis sp. AN-2008 voucher SMNH-SWE>A. 346 346 97% 6,00E-92 86% EU431143. Paranalis sp. AN-2008 voucher SMNH-SWE>A. 346 346 97% 6,00E-92 86% EU431147. Paranalis sp. AN-2008 voucher SMNH-SWE>A. 346 346 97% 6,00E-92 86% EU431145.1 Paranalis sp. AN-2008 voucher SMNH-SWE>A. 346 346 97% 6,00E-92 86% EU431145.1 Paranalis sp. AN-2008 voucher SMNH-SWE>F. 346 346 97% 6,00E-92 86% EU431145.1 Paranalis van brone H3 (H3) gene, partial cds 346 346 97% 6,00E-92 86% EU431142.1 P_w. spm_4 histone H3 (H3) gene, partial cds 346 346 97% 6,00E-92 86% EU431142.1 P_w. spm_4 histone H3 (H3) gene, partial cds 346 346 97% 6,00E-92 86% EU431142.1 P_w. spm_4 histone H3 86% </td <td>EU431151.1</td> <td>Paranaitis sp. AN-2008 voucher SMNH<swe>:A. Nygren P_k_spm_8 histone H3 (H3) gene, partial cds</swe></td> <td>346</td> <td>346</td> <td>97%</td> <td>6,00E-92</td> <td>86%</td>	EU431151.1	Paranaitis sp. AN-2008 voucher SMNH <swe>:A. Nygren P_k_spm_8 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
EU431149.1 Paranalis sp. AN-2008 voucher SMNH-SWE>A. 346 346 97% 6.00E-92 86% EU431148.1 Paranalis sp. AN-2008 voucher SMNH-SWE>F. 346 346 97% 6.00E-92 86% EU431147.1 Paranalis sp. AN-2008 voucher SMNH-SWE>F. 346 346 97% 6.00E-92 86% EU431145.1 Paranalis sp. AN-2008 voucher SMNH-SWE>F. 346 346 97% 6.00E-92 86% EU431145.1 Paranalis walnbergi voucher SMNH-SWE>F. 346 346 97% 6.00E-92 86% EU431141.1 Paranalis walnbergi voucher SMNH-SWE>F. Piejel 2.symm 316 346 346 97% 6.00E-92 86% EU431142.1 Paranalis walnbergi voucher SMNH-SWE>F. Piejel 346 346 346 97% 6.00E-92 86% EU431142.1 Paranalis walnbergi voucher SMNH-SWE>F. Piejel 346 346 97% 6.00E-92 86% A/32021.1 Paranalis walnbergi voucher SMNH-SWE>F. Piejel Yasymm Ymmonalinypienorus walnbergi vou	EU431150.1	Paranaitis sp. AN-2008 voucher SMNH <swe>:F. Pleijel P_k_spm_7 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
EU431148. Paranatis sp. AN-2008 voucher SMMH-SWE>-F. 346 346 97% 6,00E-92 86% EU431147.1 Paranatis sp. AN-2008 voucher SMMH-SWE>-A. 346 346 97% 6,00E-92 86% EU431146.1 Paranatis sp. AN-2008 voucher SMMH-SWE>-A. 346 346 97% 6,00E-92 86% EU431145.1 Paranatis sp. AN-2008 voucher SMMH-SWE>-F. Pleigle 346 346 97% 6,00E-92 86% EU431141.1 Paranatis wahbergi voucher SMMH-SWE>-F. Pleigle 346 346 97% 6,00E-92 86% EU431141.1 Paranatis wahbergi voucher SMMH-SWE>-F. Pleigle 346 346 97% 6,00E-92 86% EU431141.1 Paranatis wahbergi voucher SMMH-SWE>-F. Pleigle 346 346 97% 6,00E-92 86% AJ36989.1 Procephalotrix spirals paratial rds 337 337 98% 3,00E-88 85% AJ36989.1 Procephalotrix spirals paratial rds 335 335 98% 1,00E-88 85% AJ36989.1 Procephalotrix spirals paratial rds </td <td>EU431149.1</td> <td>Paranaitis sp. AN-2008 voucher SMNH<swe>:A. Nygren P_k_spm_6 histone H3 (H3) gene, partial cds</swe></td> <td>346</td> <td>346</td> <td>97%</td> <td>6,00E-92</td> <td>86%</td>	EU431149.1	Paranaitis sp. AN-2008 voucher SMNH <swe>:A. Nygren P_k_spm_6 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
EU431147. Paranalis sp. AN-2008 voucher SMMH-SWE>A. Nygren P.K. spm. A histore H3 (H3) gene, partial ads Paranalis sp. AN-2008 voucher SMMH-SWE>A. Nygren P.K. spm. 3 histore H3 (H3) gene, partial ads Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel Ad6 346 97% 6,00E-92 86% FL431141 Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel Paranamphiporus elongatus voucher MCZ 337 337 98% 3,00E-89 85% AJ436989.1 Procephalotink spiralis partial H3 gene for histone H3 335 355 98% 1,00E-88 85% AJ436981.1 Capsella variegata histone H3 gene, partial dds 322 329 98% 6,00E-87 85% AJ436981.1 Capsella variegata histone H3 gene, partial dds 318 318 98% 1,00E-88 85%	EU431148.1	Paranaitis sp. AN-2008 voucher SMNH <swe>:F. Pleijel P_k_spm_5 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
EU431146. Paranalis sp. AN-2008 voucher SMMH-SWE>A. Nygren P.K., spm. 3 histone H3 (H3) gene, partial cds Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel EU431141. 346 346 97% 6,00E-92 86% EU431145. Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel P.K., spm. 2 histone H3 (H3) gene, partial cds Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel 346 346 97% 6,00E-92 86% EU431141. Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel 346 346 97% 6,00E-92 86% EU431141. Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel Paranamithis vahlbergi voucher SMMH-SWE>F. Pleijel 346 346 97% 6,00E-92 86% FU431141. Paranalis vahlbergi voucher SMMH-SWE>F. Pleijel Paranamphiporus elongatus voucher MOZ 337 337 98% 3,00E-89 85% AJ436980. Procephalotrix spiralis partial H3 gene for histone H3 335 335 98% 1,00E-88 85% AJ436961. Nanaloricus sp. MVS-2008 histone H3 gene, partial cds 327 327 99% 2,00E-86 84% HM162550. Capsella variegata histone H3 gene, partial cds 324 324	EU431147.1	Paranaitis sp. AN-2008 voucher SMNH <swe>:A. Nygren P_k_spm_4 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
EU431145. Paranatis sp. AN-2008 voucher SMNH-SWE>-F. 346 346 97% 6,00E-92 86% EU431144.1 Paranatis wahbergi voucher SMNH-SWE>-F. Piejel 4431143.1 9aranatis wahbergi voucher SMNH-SWE>-F. Piejel 446 346 346 97% 6,00E-92 86% EU431142.1 Paranatis wahbergi voucher SMNH-SWE>-F. Piejel 4431142.1 346 346 97% 6,00E-92 86% EU431142.1 Paranatis wahbergi voucher SMNH-SWE>-F. Piejel 4431141.1 346 346 97% 6,00E-92 86% EU431141.1 Paranatis wahbergi voucher SMNH-SWE>-F. Piejel 94, gene, partial cds 337 337 98% 3,00E-89 85% JF277702.1 DNA10636 histone H3 (gene, partial cds 337 335 98% 1,00E-88 85% AJ436980.1 Procephalotrix spiralis partial H3 gene for histone H3 333 333 98% 4,00E-88 85% AJ436986.1 Nanaloricus sp. MVS-2008 histone H3 gene, partial cds 327 327 98% 3,00E-85 85% AJ436956.1 Nanaloricus voucher CASI2/T1177 histone H3 324 324 97%	EU431146.1	Paranaitis sp. AN-2008 voucher SMNH <swe>:A. Nygren P_k_spm_3 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
EU431144.1 Paranalis wahlbergi voucher SMNH-SWE>F. Piejel 346 346 97% 6,00E-92 86% EU431143.1 Paranalis wahlbergi voucher SMNH-SWE>F. Piejel 346 346 97% 6,00E-92 86% EU431142.1 Paranalis wahlbergi voucher SMNH-SWE>F. Piejel 346 346 97% 6,00E-92 86% EU431142.1 Paranalis wahlbergi voucher SMNH-SWE>F. Piejel 346 346 97% 6,00E-92 86% EU431141.1 Paranalis wahlbergi voucher SMNH-SWE>F. Piejel 346 346 97% 6,00E-92 86% JF277702.1 DNA10636 histone H3 (gna) gene, partial cds 337 337 98% 3,00E-88 85% AJ436986.1 Procephalotrix spiralis partial H3 gene for histone H3 333 333 98% 4,00E-88 85% AJ436958.1 Nanaloricus ap. MVS-2008 histone H3 gene, partial cds 327 327 99% 2,00E-86 84% HM16250.1 Tritroin anatracta voucher ASIZT17177 histone H3 324 324 97% 3,00E-85 84% HM12641.1	EU431145.1	Paranaitis sp. AN-2008 voucher SMNH <swe>:F. Pleijel P_k_spm_2 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
EU431143.1 Parianitis wahibergi voucher SMNH-SWE>:F. Piejei 346 346 97% 6,00E-92 86% EU431142.1 Parianitis wahibergi voucher SMNH-SWE>:F. Piejei 346 346 97% 6,00E-92 86% EU431141.1 Parianitis wahibergi voucher SMNH-SWE>:F. Piejei 346 346 97% 6,00E-92 86% Faranatis wahibergi voucher SMNH-SWE>:F. Piejei 346 346 97% 6,00E-92 86% Al436980.1 Procephalotix signalis partial H3 gene for histone H3 335 335 98% 1,00E-88 85% Al436986.1 Procephalotix signalis partial H3 gene for histone H3 335 335 99% 1,00E-88 85% Al436986.1 Poseidonemertes sp. 508 partial H3 gene, partial 331 331 98% 4,00E-88 85% Al436986.1 Capselio variegata histone H3 gene, partial 329 329 98% 6,00E-87 85% AV070158.1 Capselia variegata histone H3 gene, partial cds 327 327 99% 2,00E-86 84% H182560.1 Tritonia antar	EU431144.1	Paranaitis wahlbergi voucher SMNH <swe>:F. Pleijel P_w_spm_4 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
EU431142.1 Parianitis wahlbergi voucher SMNH-SWE>:F. Piejei 346 346 97% 6,00E-92 86% EU431141.1 Parianitis wahlbergi voucher SMNH-SWE>:F. Piejei 346 346 97% 6,00E-92 86% FJ277702.1 DNA 10636 histone H3 gene, partial cds 337 337 98% 3,00E-89 85% AJ436989.1 Procephaldrix spiralis Partial H3 gene for histone H3 335 335 98% 1,00E-88 85% AJ436986.1 Prosephaldrix spiralis Partial H3 gene for histone H3 335 335 99% 1,00E-88 85% AJ436986.1 Proseidonemertes sp. 508 partial H3 gene for histone 333 333 98% 4,00E-88 85% AJ436986.1 Nanaloricus sp. MVS-2008 histone H3 gene, partial 329 329 98% 6,00E-87 85% AV070158.1 Capsella variegata histone H3 gene, partial cds 327 327 99% 2,00E-86 84% HM16250.1 Tritonia antarctica voucher CASIZ171177 histone H3 324 324 97% 3,00E-85 85% HM124641.1<	EU431143.1	Paranaitis wahlbergi voucher SMNH <swe>:F. Pleijel P_w_spm_3 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
EU431141.1 Paranaltis wahlbergi voucher SMNH-SWE>:F. Pleijel Pw., spm., 1 histone H3 (19) gene, partial dos Psammamphiporus elongatus voucher MCZ DNA10636 histone H3 gene, partial dos AL436989.1 346 346 97% 6,00E-92 86% AJ436989.1 Procephalotrix spiralis partial H3 gene for histone H3 335 335 98% 1,00E-88 85% AJ436986.1 Procephalotrix spiralis partial H3 gene for histone H3 335 335 99% 1,00E-88 85% AJ436986.1 Poseidonemertes sp. 508 partial H3 gene for histone H3 331 331 98% 2,00E-87 85% AJ436986.1 Poseidonemertes sp. 349 partial d3 gene, partial Cds 322 329 98% 6,00E-87 85% AJ436956.1 Capsella variegata histone H3 gene, partial Cds 322 329 98% 0,00E-85 85% AV070158.1 Capsella variegata histone H3 gene, partial cds 324 324 97% 3,00E-85 85% H1124641.1 Strineta mestrualis isolate XCHXX0205 histone 3 318 318 318 98% 1,00E-83 84% EU37949.3 Chenicta anuulata histone H3 gene, pa	EU431142.1	Paranaitis wahlbergi voucher SMNH <swe>:F. Pleijel P_w_spm_2 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
JF277702.1 Psammamphiporus elongatus voucher MCZ DNA 10636 histone H3 gene, partial cds 337 337 98% 3,00E-89 85% AJ436989.1 Procephalotrix spiralis partial H3 gene for histone H3 335 335 98% 1,00E-88 85% AV923971.1 Anatoma euglypta isolate S34 histone H3 (H3) gene, partial cds 333 333 98% 4,00E-88 85% AJ436966.1 Poseidonemertes sp. 508 partial H3 gene for histone H3 331 331 333 98% 4,00E-88 85% AJ436965.1 Nanaloricus sp. MVS-2008 histone H3 gene, partial cds 327 327 99% 2,00E-86 84% M1162550.1 Tritonia antarctica voucher CASIZ171177 histone H3 324 324 97% 3,00E-85 84% HM124641.1 Sunetta menstrualis isolate XCHXX0205 histone 3 318 318 318 98% 1,00E-83 84% EU379493.1 Ctenoides annulata histone H3 gene, partial cds 318 318 98% 1,00E-83 84% EU379493.1 Ctenoides annulata histone H3 gene, partial cds 318 318 97%	EU431141.1	Paranaitis wahlbergi voucher SMNH <swe>:F. Pleijel P_w_spm_1 histone H3 (H3) gene, partial cds</swe>	346	346	97%	6,00E-92	86%
AJ436989.1 Procephalotrix spiralis partial t3 gene for histone H3 335 335 98% 1,00E-88 85% AY923971.1 Anatoma euglypta isolate S34 histone H3 (H3) gene, partial cds 335 335 99% 1,00E-88 85% AJ436966.1 Poseidonemertes sp. 508 partial H3 gene for histone H3 331 331 331 98% 4,00E-88 85% AJ436966.1 Nanaloricus sp. MVS-2008 histone H3 gene, partial cds 321 331 331 98% 2,00E-87 85% AV070158.1 Capsella variegata histone H3 gene, partial cds 3227 327 99% 2,00E-85 85% AF519294.1 Amphiporus sp. AMNH1 histone H3 gene, partial cds 324 324 324 98% 3,00E-85 84% FJ977737.1 Gibbul cineraria voucher MCZ:DNA102440 histone H3 318 318 318 318 98% 1,00E-83 84% EU015851.1 Toxicochlespira pagoda voucher MNL*1N17035 318 318 318 318 98% 1,00E-83 84% EU015753.1 voucher MNHN:IM:200717935 histone 3 (JF277702.1	Psammamphiporus elongatus voucher MCZ DNA10636 histone H3 gene, partial cds	337	337	98%	3,00E-89	85%
AY923971.1 Anatoma euglypta isolate S34 histone H3 (H3) gene, partial cds 335 335 99% 1,00E-88 85% AJ436966.1 Poseidonemertes sp. 508 partial H3 gene for histone H3 333 333 98% 4.00E-88 85% AJ436958.1 Poseidonemertes sp. 349 partial H3 gene for histone H3 331 331 98% 2.00E-87 85% EU669451.1 Nanaloricus sp. MVS-2008 histone H3 gene, partial cds 322 322 92% 2,00E-86 84% AY070158.1 Capsella variegata histone H3 gene, partial cds 322 324 97% 3,00E-85 85% AF51929.1 Amphiporus sp. AMNH1 histone H3 gene, partial cds 324 324 98% 3,00E-85 84% FJ977737.1 Gibbula cineraria voucher MCZ:DNA102440 histone H3 (H3) gene, partial cds 318 318 98% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher MNHN:MX:200717825 histone 3 (H3) gene, partial cds 318 318 98% 1,00E-83 84% DQ184886.1 Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds 316 316	AJ436989.1	Procephalotrix spiralis partial H3 gene for histone H3	335	335	98%	1,00E-88	85%
AJ436966.1 Poseidonemertes sp. 508 partial H3 gene for histone H3 333 333 98% 4,00E-88 85% AJ436958.1 Poseidonemertes sp. 349 partial H3 gene for histone H3 331 331 98% 2,00E-87 85% EU669451.1 Nanaloricus sp. MVS-2008 histone H3 gene, partial cds 327 327 99% 2,00E-86 84% AY070158.1 Capsella variegata histone H3 gene, partial cds 327 327 99% 2,00E-86 84% HM162550.1 Tritonia antarctica voucher CASIZ171177 histone H3 324 324 97% 3,00E-85 84% M124641.1 Sunetta menstrualis isolate XCHXX0205 histone 3 318 318 98% 1,00E-83 84% EU379493.1 Ctenoides annulata histone H3 gene, partial cds 318 318 97% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher 318 318 318 97% 1,00E-83 84% EU015845.1 Radima sp. 3 BCOD-2008 voucher BMNH1(E)678912 316 316 98% 5,00E-83 84% DQ184886. Chamelea gallina voucher FMNH 306542 histone 3 316 316	AY923971.1	Anatoma euglypta isolate S34 histone H3 (H3) gene, partial cds	335	335	99%	1,00E-88	85%
AJ436958.1 Poseidonemertes sp. 349 partial H3 gene for histone H3 331 331 331 98% 2,00E-87 85% EU669451.1 Nanaloricus sp. MVS-2008 histone H3 gene, partial cds 329 329 98% 6,00E-87 85% AY070158.1 Capsella variegata histone H3 gene, partial cds 327 327 99% 2,00E-86 84% HM162550.1 Tritonia antarctica voucher CASIZ171177 histone H3 (H3) gene, partial cds 324 324 98% 3,00E-85 84% AF519294.1 Amphiporus sp. AMNH1 histone H3 gene, partial cds 318 318 98% 1,00E-83 84% FJ977737.1 Gibbula cineraria voucher MC2:DNA102440 histone H3 (H3) gene, partial cds 318 318 97% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher MNHN.IM:200717925 histone 3 (H3) gene, partial cds 318 318 97% 1,00E-83 84% EU015845.1 Namala is SOD-2008 voucher BMNH:(E)678912 histone 3 gene, partial cds 316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 316 </td <td>AJ436966.1</td> <td>Poseidonemertes sp. 508 partial H3 gene for histone H3</td> <td>333</td> <td>333</td> <td>98%</td> <td>4,00E-88</td> <td>85%</td>	AJ436966.1	Poseidonemertes sp. 508 partial H3 gene for histone H3	333	333	98%	4,00E-88	85%
EU669451.1 Nanaloricus sp. MVS-2008 histone H3 gene, partial cds 329 329 98% 6,00E-87 85% AY070158.1 Capsella variegata histone H3 gene, partial cds 327 327 99% 2,00E-86 84% HM162550.1 Tritonia antarctica voucher CASIZ171177 histone H3 (H3) gene, partial cds 324 324 98% 3,00E-85 85% AF519294.1 Amphiporus sp. AMNH1 histone H3 gene, partial cds 318 318 98% 1,00E-83 84% HM124641.1 Sumetta menstrualis isolate XCHXX0205 histone 3 (H3) gene, partial cds 318 318 98% 1,00E-83 84% EU379493.1 Ctenoides annulata histone H3 gene, partial cds 318 318 98% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher MNHN:IM:200717825 histone 3 (H3) gene, partial cds 318 318 91% 1,00E-83 84% EU015753.1 voucher MNHN:IM:200717835 histone 3 (H3) gene, partial cds 318 318 94% 1,00E-83 84% DQ184886.1 Chamelea gallina voucher FMNH 306542 histone 3 316 316 98%	AJ436958.1	Poseidonemertes sp. 349 partial H3 gene for histone H3	331	331	98%	2,00E-87	85%
AY070158.1 Capsella variegata histone H3 gene, partial cds 327 327 99% 2,00E-86 84% HM162550.1 Tritonia antarctica voucher CASIZ171177 histone H3 324 324 324 97% 3,00E-85 85% AF519294.1 Amphiporus sp. AMNH1 histone H3 gene, partial cds 324 324 324 98% 3,00E-85 84% HM124641.1 Sunetta menstrualis isolate XCHXX0205 histone 3 318 318 318 98% 1,00E-83 84% EU379493.1 Ctenoides annulata histone H3 gene, partial cds 318 318 318 98% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher 318 318 318 318 97% 1,00E-83 84% EU015753.1 voucher MNHN:IM:200717925 histone 3 (H3) gene, partial cds 318 318 318 98% 1,00E-83 84% DQ184886.1 Chamelea gallina voucher FMNH 306542 histone H3 316 316 98% 5,00E-83 84% MH124642.1 Sunetta menstrualis isolate XCHXX1308 histone 3 315 315 316 98% 5,00E-83 84%	EU669451.1	Nanaloricus sp. MVS-2008 histone H3 gene, partial cds	329	329	98%	6,00E-87	85%
HM162550.1 Tritonia antarctica voucher CASIZ171177 histone H3 (H3) gene, partial cds 324 324 324 97% 3,00E-85 85% AF519294.1 Amphiporus sp. AMNH1 histone H3 gene, partial cds 324 324 324 98% 3,00E-85 84% HM124641.1 (H3) gene, partial cds 318 318 318 98% 1,00E-83 84% FJ977737.1 Gibbula cineraria voucher MCZ:DNA102440 histone H3 (H3) gene, partial cds 318 318 318 98% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher MNHN:IM:200717925 histone 3 (H3) gene, partial cds Benthomangelia cf. trophonoidea MNHN 17835 318 318 318 97% 1,00E-83 84% EU015753.1 voucher MNHN:IM:200717925 histone 3 (H3) gene, partial cds 318 318 318 98% 1,00E-83 84% DQ184886.1 Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds 316 316 98% 5,00E-83 84% DQ184886.1 Chamelea gallina voucher KACb00291 histone H3 (H3) gene, partial cds 315 315 315 98% 2,00E-82 84% DQ4584506.1 Chamelea gallina histone H3 ge	AY070158.1	Capsella variegata histone H3 gene, partial cds	327	327	99%	2,00E-86	84%
AF519294.1 Amphiporus sp. AMNH1 histone H3 gene, partial cds 324 324 98% 3,00E-85 84% HM124641.1 Sunetta menstrualis isolate XCHXX0205 histone 3 318 318 318 98% 1,00E-83 84% FJ977737.1 Gibbula cineraria voucher MCZ:DNA102440 histone H3 (H3) gene, partial cds 318 318 318 98% 1,00E-83 84% EU379493.1 Ctenoides annulata histone H3 gene, partial cds 318 318 318 98% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher MHNI:MI:200717925 histone 3 (H3) gene, partial cds Benthomangelia cf. trophonoidea MNHN 17835 318 318 318 97% 1,00E-83 84% DQ15753.1 voucher MNHN:IM:200717835 histone 3 (H3) gene, partial cds Benthomangelia cds 318 318 318 94% 1,00E-83 84% DQ184886.1 Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds 316 316 316 98% 5,00E-83 84% DQ534780.1 Elysia cf. papillosa ALB-2006 isolate EPAP6 histone H3 gene, partial cds 315 315 315 98% 2,00E-82 84% EU082362.1 Lepas pect	HM162550.1	Tritonia antarctica voucher CASIZ171177 histone H3 (H3) gene, partial cds	324	324	97%	3,00E-85	85%
HM124641.1 Sunetta menstrualis isolate XCHXX0205 histone 3 (H3) gene, partial cds 318 318 318 98% 1,00E-83 84% FJ977737.1 Gibbula cineraria voucher MCZ:DNA102440 histone H3 (H3) gene, partial cds 318 318 318 97% 1,00E-83 84% EU379493.1 Ctenoides annulata histone H3 gene, partial cds 318 318 318 98% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher MNHN:M::200717925 histone 3 (H3) gene, partial cds Benthomangelia cf. trophonoidea MNHN 17835 318 318 318 97% 1,00E-83 84% EU015753.1 voucher MNHN:IM::200717935 histone 3 (H3) gene, partial cds 318 318 318 94% 1,00E-83 84% DQ184886.1 Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds 316 316 316 98% 5,00E-83 84% DQ534780.1 Elysia cf. papillosa ALB-2006 isolate EPAP6 histone H3 gene, partial cds 315 315 315 316 2,00E-82 84% EU082362.1 Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds 315 315 315 98% 2,00E-82 <td< td=""><td>AF519294.1</td><td>Amphiporus sp. AMNH1 histone H3 gene, partial cds</td><td>324</td><td>324</td><td>98%</td><td>3,00E-85</td><td>84%</td></td<>	AF519294.1	Amphiporus sp. AMNH1 histone H3 gene, partial cds	324	324	98%	3,00E-85	84%
FJ977737.1 Gibbula cineraria voucher MCZ:DNA102440 histone 318 318 318 97% 1,00E-83 84% EU379493.1 Ctenoides annulata histone H3 gene, partial cds 318 318 318 98% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher 318 318 318 97% 1,00E-83 84% EU015753.1 voucher MNHN:IM:200717925 histone 3 (H3) gene, partial cds 318 318 91% 1,00E-83 84% EU015753.1 voucher MNHN:IM:200717835 histone 3 (H3) gene, partial cds 316 316 98% 5,00E-83 84% DQ184886.1 Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds 316 316 98% 5,00E-83 84% DQ534780.1 Elysia cf. papillosa ALB-2006 isolate EPAP6 histone H3 gene, partial cds 315 315 98% 2,00E-82 84% EU082362.1 Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds 315 315 915 2,00E-82 84% FN908644.1 Balanoglossus clavigerus partial cds 313 313 313 98% 6,00E-82 84% FN561	HM124641.1	Sunetta menstrualis isolate XCHXX0205 histone 3 (H3) gene, partial cds	318	318	98%	1,00E-83	84%
EU379493.1 Ctenoides annulata histone H3 gene, partial cds 318 318 318 98% 1,00E-83 84% EU015845.1 Toxicochlespira pagoda voucher MNHN:IM:200717925 histone 3 (H3) gene, partial cds Benthomangelia cf. trophonoidea MNHN 17835 318 318 318 97% 1,00E-83 84% EU015753.1 voucher MNHN:IM:200717925 histone 3 (H3) gene, partial cds Partial cds 318 318 318 94% 1,00E-83 85% EU874555.1 Radima sp. 3 BCOD-2008 voucher BMNH:(E)678912 histone 3 gene, partial cds 316 316 98% 5,00E-83 84% DQ184886.1 Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds 316 316 316 98% 5,00E-83 84% DQ534780.1 Elysia cf. papillosa ALB-2006 isolate EPAP6 histone H3 gene, partial cds 315 315 98% 2,00E-82 84% EU082362.1 Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds 315 315 97% 2,00E-82 84% FN908644.1 Balanoglossus clavigerus partial histone H3 gene, partial cds 313 313 313 98% 6,00E-82 84% FN561785.1	FJ977737.1	Gibbula cineraria voucher MCZ:DNA102440 histone H3 (H3) gene, partial cds	318	318	97%	1,00E-83	84%
EU015845.1Toxicochlespira pagoda voucher MNHN:IM:200717925 histone 3 (H3) gene, partial cds Benthomangelia cf. trophonoidea MNHN 1783531831831897%1,00E-8384%EU015753.1voucher MNHN:IM:200717835 histone 3 (H3) gene, partial cds31831831894%1,00E-8385%EU874555.1Radima sp. 3 BCOD-2008 voucher BMNH:(E)678912 histone 3 gene, partial cds31631698%5,00E-8384%DQ184886.1Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds31631698%5,00E-8384%DQ534780.1Elysia cf. papillosa ALB-2006 isolate EPAP6 histone (H3) gene, partial cds31531598%2,00E-8284%EU82362.1Sunetta menstrualis isolate XCHXX1308 histone 3 (H3) gene, partial cds31531598%2,00E-8284%EU082362.1Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds31531597%2,00E-8284%FN908644.1Balanoglossus clavigerus partial histone H3-VII gene31331398%6,00E-8284%FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate 6031331331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331331398%6,00E-8284%	EU379493.1	Ctenoides annulata histone H3 gene, partial cds	318	318	98%	1,00E-83	84%
Benthomangelia cf. trophonoidea MNHN 17835EU015753.1voucher MNHN:IM:200717835 histone 3 (H3) gene, partial cds31831894%1,00E-8385%EU874555.1Radima sp. 3 BCOD-2008 voucher BMNH:(E)678912 histone 3 gene, partial cds31631698%5,00E-8384%DQ184886.1Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds31631698%5,00E-8384%DQ534780.1Elysia cf. papillosa ALB-2006 isolate EPAP6 histone H3 gene, partial cds31631698%5,00E-8384%HM124642.1Sunetta menstrualis isolate XCHXX1308 histone 3 (H3) gene, partial cds31531598%2,00E-8284%EU082362.1Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds31531597%2,00E-8284%FN908644.1Balanoglossus clavigerus partial histone H3 gene, partial cds31331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	EU015845.1	Toxicochlespira pagoda voucher MNHN:IM:200717925 histone 3 (H3) gene, partial cds	318	318	97%	1,00E-83	84%
Partial cdsEU874555.1Radima sp. 3 BCOD-2008 voucher BMNH:(E)678912 histone 3 gene, partial cds31631698%5,00E-8384%DQ184886.1Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds31631698%5,00E-8384%DQ534780.1Elysia cf. papillosa ALB-2006 isolate EPAP6 histone H3 gene, partial cds31631698%5,00E-8384%HM124642.1Sunetta menstrualis isolate XCHXX1308 histone 3 (H3) gene, partial cds31531598%2,00E-8284%EU082362.1Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds31531597%2,00E-8284%DQ458506.1Chamelea gallina histone H3 gene, partial cds31531598%2,00E-8284%FN908644.1Balanoglossus clavigerus partial histone H3-VII gene31331398%6,00E-8284%FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate K631331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	EU015753.1	Benthomangelia cf. trophonoidea MNHN 17835 voucher MNHN:IM:200717835 histone 3 (H3) gene,	318	318	94%	1,00E-83	85%
DQ184886.1Chamelea gallina voucher FMNH 306542 histone H3 (H3) gene, partial cds31631698%5,00E-8384%DQ534780.1Elysia cf. papillosa ALB-2006 isolate EPAP6 histone H3 gene, partial cds31631698%5,00E-8384%HM124642.1Sunetta menstrualis isolate XCHXX1308 histone 3 (H3) gene, partial cds31531531598%2,00E-8284%EU082362.1Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds315315917%2,00E-8284%DQ458506.1Chamelea gallina histone H3 gene, partial cds31531598%2,00E-8284%FN908644.1Balanoglossus clavigerus partial histone H3-VII gene31331398%6,00E-8284%FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate K631331398%6,00E-8284%	EU874555.1	partial cds Radima sp. 3 BCOD-2008 voucher BMNH:(E)678912 bistone 3 gape, partial cds	316	316	98%	5,00E-83	84%
DQ534780.1Elysia cf. papillosa ALB-2006 isolate EPAP6 histone H3 gene, partial cds31631698%5,00E-8384%HM124642.1Sunetta menstrualis isolate XCHXX1308 histone 3 (H3) gene, partial cds31531531598%2,00E-8284%EU082362.1Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds31531531597%2,00E-8284%DQ458506.1Chamelea gallina histone H3 gene, partial cds31531598%2,00E-8284%FN908644.1Balanoglossus clavigerus partial histone H3-VII gene31331398%6,00E-8284%HM746768.1Travisia pupa histone H3 gene, partial cds31331397%6,00E-8284%FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate 6031331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	DQ184886.1	Chamelea gallina voucher FMNH 306542 histone H3	316	316	98%	5,00E-83	84%
HM124642.1Sunetta menstrualis isolate XCHXX1308 histone 3 (H3) gene, partial cds31531598%2,00E-8284%EU082362.1Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds31531531597%2,00E-8284%DQ458506.1Chamelea gallina histone H3 gene, partial cds31531531598%2,00E-8284%FN908644.1Balanoglossus clavigerus partial histone H3-VII gene31331398%6,00E-8284%HM746768.1Travisia pupa histone H3 gene, partial cds31331397%6,00E-8284%FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate 6031331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	DQ534780.1	Elysia cf. papillosa ALB-2006 isolate EPAP6 histone	316	316	98%	5,00E-83	84%
EU082362.1Lepas pectinata voucher KACb00291 histone H3 (H3) gene, partial cds31531597%2,00E-8284%DQ458506.1Chamelea gallina histone H3 gene, partial cds31531598%2,00E-8284%FN908644.1Balanoglossus clavigerus partial histone H3-VII gene31331398%6,00E-8284%HM746768.1Travisia pupa histone H3 gene, partial cds31331397%6,00E-8284%FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate 6031331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	HM124642.1	Sunetta menstrualis isolate XCHXX1308 histone 3 (H3) gene nartial cds	315	315	98%	2,00E-82	84%
DQ458506.1Chamelea gallina histone H3 gene, partial cds31531598%2,00E-8284%FN908644.1Balanoglossus clavigerus partial histone H3-VII gene31331398%6,00E-8284%HM746768.1Travisia pupa histone H3 gene, partial cds31331397%6,00E-8284%FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate 6031331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	EU082362.1	Lepas pectinata voucher KACb00291 histone H3 (H3) gene partial cds	315	315	97%	2,00E-82	84%
FN908644.1Balanoglossus clavigerus partial histone H3-VII gene31331398%6,00E-8284%HM746768.1Travisia pupa histone H3 gene, partial cds31331397%6,00E-8284%FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate 6031331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	DQ458506.1	Chamelea gallina histone H3 gene, partial cds	315	315	98%	2,00E-82	84%
HM746768.1Travisia pupa histone H3 gene, partial cds31331397%6,00E-8284%FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate 6031331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	FN908644.1	Balanoglossus clavigerus partial histone H3-VII gene	313	313	98%	6,00E-82	84%
FN561785.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate 6031331398%6,00E-8284%FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	HM746768.1	Travisia pupa histone H3 gene, partial cds	313	313	97%	6,00E-82	84%
FN561786.1Melanoscirtes shengenae partial h3 gene for histone h3, isolate X631331398%6,00E-8284%	FN561785.1	Melanoscirtes shengenae partial h3 gene for histone h3, isolate 60	313	313	98%	6,00E-82	84%
	FN561786.1	Melanoscirtes shengenae partial h3 gene for histone h3, isolate X6	313	313	98%	6,00E-82	84%

Tabelle 7.7 BLAST-Ergebnis der Micropacter yagerae H3-Sequenz aus der Datenmatrix.

Sequences producing significant alignments:

Accession	Description	Max score	Total score	Query coverage	E value	Max ident
GQ118323.1	Ephemera simulans voucher BYU:IGCEP038 histone H3 gene, partial cds	440	440	99%	3,00E-120	91%
EU874573.1	Penaphlebia chilensis voucher UCMS:79A histone 3 gene, partial cds	440	440	99%	3,00E-120	91%
JF750981.1	Surrepifungium ingridae voucher RMNH95318 histone 3 (H3) gene, partial cds	429	429	99%	6,00E-117	90%
FM882070.1	Conocephalus saltator partial h3 gene for histone H3, isolate N65	429	429	100%	6,00E-117	90%
EU015813.1	Raphitoma sp. NP-2008 voucher MNHN:IM:200717882 histone 3 (H3) gene, partial cds	429	429	99%	6,00E-117	90%
AY428836.1	Pycnophyes greenlandicus histone H3 gene, partial cds	429	429	98%	6,00E-117	90%
AY749713.1	Penaphlebia sp. EP076 histone H3 (H3) gene, partial cds	429	429	99%	6,00E-117	90%
AY749709.1	Mystaxiops venatoris histone H3 (H3) gene, partial cds	427	427	96%	2,00E-116	90%
HQ834193.1	Bullacta exarata isolate LSGB25302 histone H3	425	425	99%	7,00E-116	90%
HM162561.1	Marionia sp. 14 MP-2010 voucher CASIZ177659 histore H3 (H3) gene partial cds	424	424	100%	3,00E-115	89%
HM162502.1	Mandelia mirocornata voucher CASIZ176263 histone	424	424	100%	3,00E-115	89%
DQ300101.1	Xenosiphon branchiatus isolate DNA101086 histone	424	424	100%	3,00E-115	89%
HQ616802.1	Babakina festiva voucher CASIZ182205 histone 3	422	422	99%	9,00E-115	89%
HQ616801.1	Babakina festiva voucher CASIZ182204 histone 3	422	422	99%	9,00E-115	89%
AY749708.1	Baetis tricaudatus histone H3 (H3) gene, partial cds	422	422	96%	9,00E-115	90%
AY749702.1	Thraulodes sp. EP014 histone H3 (H3) gene, partial cds	422	422	97%	9,00E-115	90%
HM162562.1	Tritonia sp. G MP-2010 voucher CASIZ176233 histone H3 (H3) gene, partial cds	418	418	100%	1,00E-113	89%
HM162549.1	Tritonia pickensi voucher CASIZ175718 histone H3 (H3) gene, partial cds	418	418	100%	1,00E-113	89%
HM162534.1	Pseudobornella orientalis voucher CASIZ174989 histore H3 (H3) gene partial cds	418	418	100%	1,00E-113	89%
FN561789.1	Melanoscirtes usambarensis partial h3 gene for histore h3 isolate B5	418	418	100%	1,00E-113	89%
FN561790.1	Melanoscirtes usambarensis partial h3 gene for histore h3 isolate R12	418	418	100%	1,00E-113	89%
FM882061.1	Conocephalus kibontense partial h3 gene for bistone H3 isolate 38	418	418	100%	1,00E-113	89%
FM882068.1	Conocephalus longiceps partial h3 gene for histone	418	418	100%	1,00E-113	89%
FM882067.1	Conocephalus longiceps partial h3 gene for histone	418	418	100%	1,00E-113	89%
FM882064.1	Conocephalus ictus partial h3 gene for histone H3,	418	418	97%	1,00E-113	90%
FM882063.1	Conocephalus conocephalus partial h3 gene for	418	418	100%	1,00E-113	89%
FM882087.1	Conocephalus kibonotense partial h3 gene for	418	418	100%	1,00E-113	89%
GU123871.1	Penthimiola sp. JNZ-2010 histone H3 gene, partial	418	418	99%	1,00E-113	89%
FU874571 1	cos Nousia sp. 2 BCOD-2008 voucher UCMS:74A	418	418	98%	1 00F-113	90%
EU874564 1	histone 3 gene, partial cds Jappa sp. BCOD-2008 voucher UCMS:76A histone 3	418	418	99%	1 00F-113	89%
EU669446.1	gene, partial cds Echinoderes collinae histone H3 gene, partial cds	418	418	100%	1,00E-113	89%
EU015847 1	Daphnella sp. NP-2008 voucher MNHN:IM:200717927 histone 3 (H3) gene partial	418	418	99%	1.00F-113	89%
	cds	440	440	070/		000/
DQ284386.1 AY749714 1	Elactilistociels ovalis historie H3a gene, partial Cds Meridialaris diguillina historie H3 (H3) gene, partial	418 418	418 418	97% 99%	1,00E-113	90% 89%
ΔΥ326207 1	cds Siphonosoma vastum MCZ DNA100625 histone H3	418	41Q	100%	1 00E-113	80%
71020201.1	gene, partial cds	-10	-10	100 /0	1,002-113	03/0

8 Anhang B Morphologie

Abbildung 8.1 Übersicht der Zeichnungen der 1. Maxillen aller bisher beschriebenen Remipedia (Teil 1).

Abbildung 8.2 A = Übersicht der Zeichnungen der 1. Maxillen aller bisher beschriebenen Remipedia (Teil 2), B = Übersicht der Zeichnungen der 2. Maxillen aller bisher beschriebenen Remipedia (Teil 1).

Abbildung 8.3 Übersicht der Zeichnungen der 2. Maxillen aller bisher beschriebenen Remipedia (Teil 2).

Abbildung 8.4 Übersicht der Zeichnungen der Maxillipeden aller bisher beschriebenen Remipedia (Teil 1).

Abbildung 8.5 Übersicht der Zeichnungen der Maxillipeden aller bisher beschriebenen Remipedia (Teil 2).

Art	Fundorte
Micropacteridae (eine Gattung)	
Micropacter yagerae Koenemann <i>et al.</i> , 2007	Turks und Caicos Inseln – Providenciales Island: Airport Cave (TL), Old Blue Hill Cave
Godzilliidae (3 Gattungen)	
Godzilliognomus frondosus Yager, 1989	Bahamas - Grand Bahama Island: Sagittarius Cave (TL), Virgo Cave, Lucy's Cave, Asgard Cave; Abaco Island: Dan's Cave
Godzilliognomus schrami lliffe et al., 2010.	Bahamas - Eleuthera
Godzillius robustus Schram et al., 1986	Turks und Caicos Inseln - North Caicos Island: Cottage Pond (TL?)
Pleomothra apletocheles Yager, 1989	Bahamas - Abaco Island: Dan's Cave (TL); Grand Bahama Island: Sagittarius Cave
Pleomothra fragilis Koenemann et al., 2008	Bahamas - Exuma Cays: Oven Rock
Speleonectidae (4 Gattungen)	
Cryptocorynetes elmorei Hazerli et al., 2009	Bahamas - Eleuthera
Cryptocorynetes haptodiscus Yager, 1987a	Bahamas - Abaco Island: Dan's Cave (TL); Grand Bahama Island: Old Freetown Cave
Cryptocorynetes longulus Wollermann et al., 2007	Bahamas - Cat Island: Big Fountain (Orange Creek)
Kaloketos pilosus Koenemann <i>et al.</i> , 2004	Turks und Caicos Inseln - North Caicos Island: Cottage Pond
Lasionectes entrichoma Yager & Schram, 1986	Turks und Caicos Insein - Providenciales Island: Old Blue Hill Cave (TL), Airport Cave; North Caicos Island: Cottage Pond
Lasionectes exleyi Yager & Humphreys, 1996	West-Australien - Cape Range Peninsula: Cave C-28 (TL)
Speleonectes attantida Koenemann et al., 2009	Kanarische Inseln - Lanzarote: Tunel de la Atlantida (TL)
Speleonectes benjamini Yager, 1987a	Bahamas - Grand Bahama Island: Asgard Cave (TL), Sagittarius Cave; Abaco Island: Dan's Cave
Speleonectes emersoni Lorentzen et al., 2007	Dominikanisch Republik – near Santo Domingo: Cueva Los Jardines Orientales (TL); Cueva Taina.
Speleonectes epilimnius Yager & Carpenter, 1999	Bahamas - San Salvador Island: Major's Cave (TL)
Speleonectes gironensis Yager, 1994	Cuba - Matanzas Province: Cueva de los Carboneros (TL)
Speleonectes kakuki Daenekas et al., 2009	Bahamas - North Andros: Guardian Cave (TL), Conch Sound Blue Hole, Stargate Blue Hole; Cat Island: Gaiter's Blue Hole
Speleonectes lucayensis Yager, 1981	Bahamas - Grand Bahama Island: Lucayan Cavern (TL); Cat Island: Big Fountain Blue Hole?; Abaco Island?
Speleonectes minnsi Koenemann et al., 2003	Bahamas - Great Exuma Island: Basil Minns Blue Hole (TL)
Speleonectes ondinae (Garcia-Valdecasas, 1984)	Kanarische Inseln- Lanzarote: Tunel de la Atlantida (TL)
Speleonectes parabenjamini Koenemann et al., 2003	Bahamas - Great Exuma Island: Basil Minns Blue Hole (TL)
Speleonectes tanumekes Koenemann et al., 2003	Bahamas - Great Exuma Island: Basil Minns Blue Hole (TL)
Speleonectes tulumensis Yager, 1987b	Mexico - Yuacatan Peninsula: Carwash Cenote (TL), Najaron Cenote
Speleonectes fuchscockburni n. sp.	
Speleonectes williamsi n. sp.	

Tabelle 9.1 Liste aller bekannten Remipedia-Arten und ihrer Fundorte (TL = Type Locality).

9 Anhang C

Abbildung 9.1 Darstellung der zeitlichen Reihenfolge der Artbeschreibungen. Die Zahlen geben die Jahre 1981 - 2011 an. Arten in Klammern stellen Überarbeitungen dar. *Speleonectes ondinae* wurde 1984 unter dem Namen *Morlockia ondinae* veröffentlicht, wird hier aus Gründen der Übersichtlichkeit aber unter *S. ondinae* geführt.

10 Danksagung

Als Allererstes möchte ich mich ganz herzlich bei Prof. Dr. Stefan Könemann für seine Betreuung und das Überlassen dieses spannenden und interessanten Themas, sowie für seinen Rat und seine Unterstützung bedanken. Ich danke Prof. Dr. Ute Radespiel für die Übernahme der Korreferenz, ebenso Prof. Dr. Hansjörg Küster für den Vorsitz der Prüfungskommission.

Prof. Thomas M. Iliffe möchte ich ganz herzlich für das Sammeln der vielen Proben danken, ebenso Brian Kakuk, Lara Hinderstein und Brad Gonzales. Jill Yager, William Humphreys, T. Chad Walter und Gonzalo Giribet danke ich für das Überlassen von Probenmaterial. Auch dem United States National Museum und der Smithsonian Institution bin ich zu Dank verpflichtet. Prof. Dr. Fred Schram danke ich für die Ideen und Hinweise zur Diskussion der Morphologie. Ich danke Karl Kjer für seine 16S und 18S Alinierungen, die die Strukturalinierung erheblich erleichtert haben.

Ich danke der Deutschen Forschungsgemeinschaft für die Finanzierung des Projektes (DFG KO 3483/1-1) und dem Boehringer Ingelheim Fond für mein Reisstipendium. Ich danke ganz herzlich allen (ehemaligen) Mitgliedern der Arbeitsgruppe Könemann für ihre Hilfe und ihren Beistand, insbesondere Torben Stemme und Marco Neiber.

Ein besonderer Dank für all die Unterstützung und den Zuspruch gilt meiner Familie und meiner Frau Anna-Dinah.

11 Lebenslauf und Publikationsliste

MARIO HÖNEMANN

Dipl.-Biol. Gießener Str. 79 35415 Pohlheim

Deutschland

PERSÖNLICHE DATEN

Geburtsort:	Hannover, Deutschland
Staatsangehörigkeit:	deutsch
Familienstatus:	verheiratet

AUSBILDUNG Promotionsstudent an der Gottfried Wilhelm Leibniz Universität seit 1. April 2006 Hannover Oktober 1997 – März 2005 Studium der Biologie an der Gottfried Wilhelm Leibniz Universität Hannover (Diplomstudiengang), Abschluss: Diplom, Note: Sehr gut Diplomarbeit am Institut für Tierökologie und Zellbiologie der Stiftung Tierärztliche Hannover, Thema: Hochschule Experimentelle Untersuchung von Bau und Funktion von Opsingenen in Trichoplax adhaerens 1989 - 1996 Schule Georg-Büchner-Gymnasium in Letter (Seelze), Abschluss: Abitur, Note: 2,4 **MILLITÄRDIENST** Oktober 1996 - Juni 1997 Wehrdienst im Stab Fliegenden Gruppe Lufttransportgeschwader in Wunstorf, Grundausbildung beim 10./Luftwaffenausbildungregiment 1 in Goslar FORTBILDUNGEN "Gentechnische Sicherheit" Staatlich anerkannter Lehrgang nach § 13. - 14. April 2010 15 GenTSV für Projektleiter und Beauftragte für Biologische Sicherheit", Hannover, durchgeführt von der Medizinischen Hochschule Hannover "Workshop on Molecular Evolution" Marine Biolological Laboratory 27. Juli – 8. August 2008 in Woods Hole MA, USA

ABSTRACTS, VORTRÄGE UND POSTERBEITRÄGE

Klimas D., **Hönemann M.**, Ruf S.: Non-Syndromic oligodontia: A Genetic Review of Gene Mutations. Abstract Book, 87th Congress of the European Orthodontic Society, 19-23 June 20011 Istanbul - Turkey

Hoenemann, M. & Koenemann, S. 2008: Phylogeny of Remipedia (Crustacea) – current status. Program and Abstracts, Systematics 2008, Göttingen, Deutschland.

Hoenemann, M., Koenemann, S., Held, C., Schram, F.R., Bloechl, A. & Iliffe, T.M. 2006. Development of Remipedia (Crustacea). Abstractband; 96stes Jahrestreffen von "Deutsche Zoologische Gesellschaft"; Münster, Deutschland.

Hoenemann, M. & Koenemann, S. 2006. Die larvale Entwicklung der Remipedia (Crustacea). Abstractband; Jahrestreffen von "Deutsche Gesellschaft für Limnologie"; Dresden, Deutschland.

Koenemann, S., **Hoenemann, M.**, Held, C., Schram, F.R., Bloechl, A. & Iliffe, T.M. 2006. Naupliar Development of Remipedia (Crustacea). Abstracts; 18th International Symposium of Biospeleology; Cluj-Napoca, Rumänien.

Hoenemann, M., Koenemann, S., Schram, F.R. & Iliffe, T.M. 2006. Phylogenetic relationships of Remipedia (Crustacea). Abstracts; 18th International Symposium of Biospeleology; Cluj-Napoca, Romania.

PUBLIKATIONSLISTE

Sehr K., Bock N., Serbesis C., **Hönemann M.**, Ruf S. 2011. Schwergradige apikale Wurzelresorption - lokale oder genetische Prädisposition? Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Volume 72, Number 4, 321-331.

Koenemann, S., Jenner, R.A., **Hoenemann, M.**, Stemme, T. & Reumont, B.M. von. 2010. Arthropod phylogeny revisited, with a focus on crustacean relationships. Arthropod, Structure & Development 39: 88-110.

Koenemann, S., Bloechl, A., Martinez, A., Iliffe, T.M., **Hoenemann, M.** & Oromi, P. 2009. Discovery of a new species of Speleonectes (Remipedia, Crustacea) on the Canary Islands. Marine Biodiversity 39 (3): 215–225.

Koenemann, S., Olesen, J., Alwes, F., Iliffe, T.M., **Hoenemann, M.**, Ungerer, P., Wolff, C. & Scholtz, G. 2009. The post-embryonic development of Remipedia (Crustacea) - additional results and new insights. Dev Genes Evol 219: 131-145; DOI 10.1007/s00427-009-0273-0.

Koenemann, S., Schram, F.R., Bloechl, A., **Hoenemann, M.**, Iliffe, T.M. & Held, C. 2007. Postembryonic development of remipede crustaceans. Evolution & Development 9 (2): 117-121.

Koenemann, S., Schram, F.R., **Hoenemann, M.** & Iliffe, T.M.: Phylogenetic analysis of Remipedia (Crustacea). Organisms, Diversity & Evolution 7 (2007) 33-51.