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Abstract 

 

Somatic embryogenesis (s.e.) enables a clonal propagation which is especially 

desirable for valuable crops. Particularly for plant species where clonal 

propagation by cuttings is not feasible, s.e. offers great potential for achieving 

mass propagation. This includes the economically important ornamental crop, 

Cyclamen persicum, that has been established as a model plant for s.e. In spite 

of its potential for encouraging high rates of propagation, the application of s.e. 

to commercial plant propagation is very low. This can be mainly attributed to the 

insufficient reproducibility of empirically developed propagation protocols as well 

as the restrictions imposed by the frequent occurrence of developmental 

aberrations and non-embryogenic callus. 

 

To date, it has been standard practice to change protocols empirically to improve 

the outcome. But the present approach pursued the idea of using the information 

obtained from gene expression profiling to better understand the underlying 

processes and thereby develop proposals on the targeted improvement of the 

existing protocol for in vitro s.e. For this purpose, putative underlying 

physiological processes were discussed and hypotheses on the improvement of 

the in vitro-protocol were deduced based on the data achieved by a cDNA 

microarray (1,216 transcripts). 

 

Selected hypotheses on the impact of putative glutathione S-transferases (GST) 

and pectin-modifying enzymes were analysed in more detail by qRT-PCR. 

Therefore, qRT-PCR protocol have been established and optimised for Cyclamen, 

especially with regard to the reference genes. Both validation approaches 

demonstrated that in their cases the initial hypothesis could not be supported. 

However, the approach involving putative GST homologues gave insights into the 

responsiveness of a putative GST homologue to abiotic stress in embryogenic cell 

cultures of Cyclamen and the study on putative genes of pectin modifying 

enzymes identified their correlation with the texture of the callus. 
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Zusammenfassung 

 

Die somatische Embryogenese (S.E.) ermöglicht eine klonale Vermehrung, was 

insbesondere für wertvolle Kulturpflanzen erstrebenswert ist. Vor allem für 

Pflanzenspezies, bei denen eine klonale Vermehrung über Stecklinge nicht 

möglich ist, bietet die S.E. ein großes Potential, eine Massenvermehrung zu 

verwirklichen. Das schließt auch die wirtschaftlich bedeutende Zierpflanze 

Cyclamen persicum ein, die bereits als Modellpflanze der S.E. etabliert wurde. 

Trotz dieses hohen Potentials, hohe Vermehrungsraten zu fördern, findet die S.E. 

in der kommerziellen Pflanzenvermehrung kaum Anwendung. Das ist vor allem 

auf die schlechte Reproduzierbarkeit empirisch entwickelter Vermehrungs-

protokolle sowie die Einschränkungen durch das häufige Auftreten von 

Fehlentwicklungen und nicht-embryogenem Kallus zurückzuführen. 

 

Bisher ist die empirische Änderung von Protokollen zur Verbesserung der 

Ergebnisse das übliche Verfahren. Dieser Ansatz hingegen verfolgt die Idee, 

Genexpressionsinformationen zu nutzen, um die zugrunde liegenden Prozesse 

besser zu verstehen und dadurch Ansätze zu entwickeln, das bestehende 

Protokol für die S.E. in vitro gezielt zu verbessern. Zu diesem Zweck wurden 

vermeintlich unterliegende Prozesse diskutiert, und basierend auf den Daten 

eines cDNA-Microarrays (1216 Transkripte) wurden Hypothesen zur 

Verbesserung des in vitro-Protokolls abgeleitet. 

 

Ausgewählte Hypothesen zum Einfluss von Genen putativer Glutathione S-

Transferasen (GST) und pektinmodifizierender Enzyme wurden mittels qRT-PCR 

detaillierter untersucht. Hierfür wurde ein qRT-PCR Protokoll etabliert und für 

Cyclamen optimiert, insbesondere hinsichtlich der Referenzgene. Beide 

Validierungsansätze haben gezeigt, dass in diesen Fällen die ursprünglichen 

Hypothesen nicht bestätigt werden konnten. Allerdings ermöglichte die 

Untersuchung zu den putativen GST Homologen Erkenntnisse zur Empfindlichkeit 

einer putativen GST auf abiotischen Stress in embryogenen Zellkulturen. Die 

Studie zu putativen Genen pektin-modifizierender Enzyme konnte deren 

Korrelation mit der Kalluskonsistenz zeigen. 
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1. General foreword 

 

 

1.1 Summary of the project objectives  

 
The results described below were part of the DFG project “Expression analysis for 

the molecular physiologically founded progression of somatic embryogenesis in 

the horticultural model culture Cyclamen persicum” (A.H. (HO 2100/2-1) and 

S.A.R. (RE 1697/3-1)).  

 

The project was essentially divided into two parts:  

 

A In the first part, a cDNA microarray had already been developed. For this 

purpose 1,216 already functionally annotated transcripts from C. persicum 

embryogenic cell cultures were used. These transcripts represented mainly 

candidate genes for probable involvement in somatic embryogenesis that 

were identified in a preceding EST-project (Rensing et al. 2005). The 

expression of the represented genes was investigated during the 

development of zygotic and somatic embryos under standard conditions on 

the one hand and in cultures with raised malformations or loss of 

embryogenic competence on the other. Based on the resulting data, 

hypotheses on the potential roles of different genes and functional gene 

groups were deduced.  

All microarray analyses were conducted in cooperation with the Faculty of 

Biology of the Albert-Ludwigs-University Freiburg (PD Dr. Stefan A. 

Rensing). 

 

B In the second part, exemplary results of the microarray were initially 

validated by quantitative realtime-PCR (qRT-PCR). For this purpose, this 

method first had to be established, or rather modified, for C. persicum. 

Selective microarray data were analysed in more detail using qRT-PCR to 

deduce hypotheses that identify possible reasons for malformations and/or 

the loss of embryogenic competence. Furthermore, these hypotheses 

should be used to modify the existing micropropagation-protocol in a more 
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target-oriented manner. For selective functional gene groups (focusing on 

glutathione S-transferases and pectin modifying enzymes), detailed 

quantitative expression analyses were carried out using qRT-PCR.  

Developmental stages were analysed histologically using differentiating 

staining methods.  

 

The basic idea of the presented approach was to better understand the 

underlying processes that lead to malformation or non-embryogenic cell cultures. 

Understanding these underlying processes should enhance the development of 

suggestions for targeted improvements of the propagation protocol. 

 

 

1.2 Introducing Cyclamen persicum 

 
Cyclamen is a genus of plants that, according to (Grey-Wilson 2003), contains 22 

species. Traditionally, they were classified as part of the Primulaceae family 

(Grey-Wilson 1997) but Källersjö et al. (2000) re-classified them into the 

Myrsinaceae family. In the wild, their distribution is centred around the 

Mediterranean, making them native to parts of Europe, Western Asia and parts of 

North Africa (Grey-Wilson 1997).  

 

The genus also provides florist varieties in the form of cultivars based on 

Cyclamen persicum. This is the species of highest economical importance and 

one of the most popular ornamental plants, especially in the Netherlands, 

Germany and Italy (Grey-Wilson 1997). 

 

According to the last survey of the Statistisches Bundesamt, about 22 million 

plants were produced in Germany in 2008 (Statistisches Bundesamt 2008). 

Annual worldwide production is estimated to be around 150 to 200 million plants 

(Winkelmann 2010). Figure 1 shows that in Germany Cyclamen are ranked at 

number 3 in the Top 10 of flowering potplants.  
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Figure 1: Germany’s flowering potplants’ Top 10 for 2009 (total market (private and 

commercial consumption): € 1.23 bn). Reproduced from Hanke 2010 (AMI Berechnungen, Figure 

2).  

 

 

1.3 Propagation of Cyclamen persicum 

 

Traditionally, Cyclamen persicum have been propagated via seeds for commercial 

and private use. But this is still cost intensive due to manual pollination (up to 

€ 0.20 per seed) (Winkelmann 2010). With the increasing popularity of 

Cyclamen, problems such as inbred depression, inhomogeneity in some cultivars, 

and the high costs of manual labour involved in seed production have become 

concerns for commercial cyclamen growers (Winkelmann et al. 2004).   

 

Vegetative propagation of Cyclamen persicum is more difficult than with many 

other potplants. Cyclamen tubers have few growing points, making mass 

propagation by cuttings or tuber division impractical (Winkelmann 2010). 

Takamura and Miyajima (1997) reviewed that the first report on in vitro 

regeneration via organogenesis from tuber segments of Cyclamen was described 

by (Mayer-Hörster 1956). Because tuber tissues contain systematic 

microorganisms, micropropagation of these explants is very difficult (Takamura 
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and Miyajima, 1997). Additionally, Schwenkel and Grunewaldt (1988) reported 

that also other investigations were carried out to propagate Cyclamen using in 

vitro methods (Geier 1977; Fersing et al. 1982; Hoffmann and Preil, 1987). 

Nevertheless, it was observed that fundamental problems remain, namely highly 

contaminated explants, low regeneration rates, the regeneration of single leaves 

without meristems at the basis, and pronounced genotypic specificity for in vitro 

propagation ability. An alternative propagation system for Cyclamen is somatic 

embryogenesis (Wicart et al. 1984; Kiviharju et al. 1992; Kreuger et al. 1995; 

Schwenkel and Winkelmann 1998). 

 

 

1.4 Somatic embryogenesis 

 

Somatic embryogenesis is an asexual form of plant propagation that almost 

replicates the process of zygotic embryo formation. They are bipolar and bear 

typical embryonic organs (von Arnold 2008). In this process, somatic cells 

develop into plants through a series of characteristic morphological changes (de 

Jong et al. 1993). Although somatic embryos undergo most of the stages that 

are observed with zygotic embryos, differences also exist: 

 

• the lack of endosperm 

• a missing or retarded suspensor development 

• no embryo desiccation or dormancy and 

• the embryogenic competence of a somatic cell is achieved prior to the 

initiation of embryo development  

(Fehér et al. 2003). 

 

Naturally, it occurs to a limited extent in species such as Malaxis paludosa, where 

somatic embryos form spontaneously on the leaf tips (Taylor 1967) or in some 

species of the genus Kalanchoë, that form somatic embryos when placed under 

stress, or others that form them spontaneously on leaves (Garcês et al. 2007). 

Also, this process can be induced by the experimental manipulation of tissues 

and cells in vitro. Reinert (1958) and Steward et al. (1958) are widely credited 

for describing somatic embryogenesis in Daucus carota for the first time, but 

according to Merkle et al. (1995) this recognition should instead be given to 
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Levine (1947). Levine (1947) reported the recovery of carrot “seedlings” from 

tissues exposed to low levels of α-naphthaleneacetic acid. Since then, Daucus 

carota has become a model plant for researching somatic embryogenesis. In 

recent years, somatic embryogenesis has been described in a large number of 

plant species, including those from plant families such as Ranunculaceae, 

Rutaceae, Apiaceae and Poaceae (Pierik 1997). Among the dicotyledonous 

herbaceous plants, about 180 species from 37 families have developed somatic 

embryos in vitro (Brown et al. 1995) and to date more will have been followed.  

 

Somatic embryos can either differentiate directly out of a single cell of organised 

tissue, such as a leaf or stem segment, ovules, from protoplasts or microspores 

without any intervening callus phase, or indirectly via an intermediary step of 

callus culture (Williams and Maheswaran 1986).  

 

Some of the most important factors required for successful plant regeneration 

are the culture medium and environmental incubation conditions as well as the 

explant type and genotype. Plant growth regulators (PGR) in the tissue culture 

medium are used to induce callus formation and are often subsequently changed 

to induce embryos to form from the callus. The ratio of different PGR that is 

required to induce callus or embryo formation varies depending on the plant 

species or genotype. Plant regeneration via somatic embryogenesis in Cyclamen 

according to the protocol of Schwenkel and Winkelmann (1998) comprises the 

following three steps: 

 

1. Embryogenic cultures are initiated by culturing the primary explant on a 

medium supplemented with PGRs (2.0 mg/l 2,4-D and 0.8 mg/l 2iP). 

2. Embryogenic cultures are proliferated by subculturing on a semi-solid or in 

a liquid medium that is supplemented with PGRs as in the initiation 

medium. 

3. Somatic embryo development is initiated by transfer to a PGR-free 

medium. 

 

In vitro somatic embryogenesis is an important prerequisite for the use of many 

biotechnological tools for genetic improvement, as well as for mass propagation 

(Santacruz-Ruvalcaba et al. 1998).  
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Since somatic embryogenesis was first recognised, a substantial amount of 

information has become available. Regardless of this, the successful induction of 

somatic embryos and the subsequent development of viable plants is not 

efficient for the majority of plant species (Merkle et al. 1995). Likewise, Hohe 

(2010) summarised that even though today the knowledge of the process of 

somatic embryogenesis is great, in fact, almost no ornamental plants have been 

propagated through somatic embryogenesis to date.  

 

It is well known that the development of embryogenic or non-embryogenic cell 

types can be influenced by several factors (e.g. stress, pH, PGRs and genotype) 

(Fehér et al. 2002). However, little is known about the detailed biological 

background (Fehér 2008). Kennedy and Norman (2005) collected the current 

125 most important scientific questions that in general point to the gaps in 

knowledge. Among the 25 questions they highlighted was also the one asked by 

Vogel (2005) : “How Does A Single Somatic Cell Become A Whole Plant?”. Even if 

there was great progress in the identification of key molecular factors involved in 

this process, the clarification of how dedifferentiation leads to cellular 

totipotency, and why it is expressed only in certain cells or genotypes remains 

elusive (Fehér 2008). Similarly, also processes leading to physiological disorders, 

asynchronous development and malformed embryos have not been completely 

understood until now. Based on current knowledge, Fehér (2008) arranged a 

schematic description of his hypothesis on the induction of somatic 

embryogenesis that is given in Figure 2.  
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Figure 2: Schematic description of a hypothesis on the induction of somatic embryogenesis. 

Although plant cells are likely to have the capability for s.e. in general, the acquisition of 

embryogenic competence depends on many circumstances (reproduced from Fehér 2008, Figure 

1). 

 

Gene expression profiling has shown to be a promising tool for generating 

hypotheses that identify key molecular factors and their functions in somatic 

embryogenesis. In recent years, an increasing number of articles have analysed 

gene expression pattern in s.e. (e.g. Imin et al. 2008; Che et al. 2006; Thibaud-

Nissen et al. 2003). 

 

 

1.4.1 Gene expression during somatic embryogenesis  

 

Several systems have been investigated to assist with understanding the 

mechanisms of gene regulation during the developmental process of somatic 

embryogenesis (Chugh and Khurana 2002). These include model plants (e.g. 

Arabidopsis (Hecht et al. 2001; Magioli et al. 2001), cotton (Wu et al. 2009), 

maize (Che et al. 2006), Medicago (Imin et al. 2008), soybean (Thibaud-Nissen 

et al. 2003) and wheat (Singla et al. 2007)) as well as non-model plants (e.g. 



1. General Foreword 

  
8 

alfalfa (Domoki et al. 2006), chicory (Lucau-Danila et al. 2010) and Elaeis 

guineensis (Lin et al. 2009)).  

Various studies have concentrated on how the general expression profiles of 

genes that are potentially involved in somatic embryogenesis were generated 

(e.g. Thibaud-Nissen et al. 2003; Che et al. 2006; Imin et al. 2008; Wu et al. 

2009; Lucau-Danila et al. 2010). In their study on gene expression patterns 

during the somatic embryogenesis of maize Hi II callus cultures, Che et al. 

(2006) identified genes that might be used as developmental markers or targets 

to optimise the regeneration procedure. Imin et al. (2008) described 

transcriptional differences between the M. truncatula super-embryogenic line 

2HA and its non-embryogenic progenitor Jemalong. Their data facilitated the 

mapping of regulatory metabolic networks involved in gaining totipotency and 

regeneration capacity and it provided candidate genes for functional analysis 

(Imin et al. 2008). They were able to demonstrate that the two different cell 

lines did not only differ in many aspects of biochemical pathways but also in their 

response to auxin and cytokinin (Imin et al. 2008). Microarray analysis of two 

different chicory genotypes differing in their responsiveness to s.e. induction 

permitted Lucau-Danila et al. (2010) to identify several putative key genes 

related to the process of s.e. in chicory. These studies show the high potential of 

gene expression profiling for generating hypotheses on the mechanisms of the 

process of somatic embryogenesis. Nonetheless, as Chugh and Khurana (2002) 

have already summarised in their review on recent advances in gene expression 

during somatic embryogenesis, the precise mechanisms controlling plant gene 

expression and the detailed steps by which these genes direct the process of 

somatic embryogenesis are still not clarified by this observation. 

 

However, other studies (e.g. Hecht et al. 2001; Malinowski et al. 2004; Aberlenc-

Bertossi et al. 2008; Stone et al. 2008; Chiappetta et al. 2009) focused on single 

genes or aspects. The first gene specifically identified as being involved in s.e. 

was a somatic embryogenesis receptor-like kinase (SERK) (Schmidt et al. 1997). 

In Arabidopsis it has been shown that the AtSERK1 gene was highly expressed 

during somatic embryo formation and early embryogenesis of zygotic embryos 

while it was no longer detectable in the mature somatic embryo or in any part of 

the developing seed (Hecht et al. 2001). It was also concluded that an increased 

AtSERK1 level was sufficient to confer embryogenic competence (Hecht et al. 
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2001). Another gene regulating many distinct aspects of embryogenesis is LEAFY 

COTYLEDON2 (LEC2) (Stone et al. 2001). Stone et al. (2008) hypothesised that 

LEC2 induces s.e. through two mechanisms: (1) By activating other genes that 

are also expressed during the maturation phase, LEC2 appears to increase the 

embryogenic competence of cells; (2) LEC2 seems to promote auxin activity and 

thereby induces s.e. in competent cells. Besides, other genes were also identified 

for their role in embryogenesis, for example, in Vitis vinifera, the WUSCHEL-

related homebox (WOX) genes (Gambino et al. 2010). Thus, a series of genes 

have now been identified as being involved in s.e. In the review of Chugh and 

Khurana (2002), various genes were represented to influence s.e. in higher 

plants (e.g. hormone-responsive genes, housekeeping genes, signal 

transduction, homeeotic genes, genes coding for extracellular proteins and 

maturation genes). 

 

Studies aiming to improve the protocol of mass propagation by the use of gene 

expression profiles are still rare. An approach for establishing a connection 

between gene expression profiles and the development and optimisation of the 

protocol of s.e. induction was represented by Stasolla et al. (2003) and Stasolla 

et al. (2004). Both studies analysed gene expression patterns in response to 

medium supplementation with the aim to improve the s.e. maturation in Pinus 

glauca (Stasolla et al. 2003; Stasolla et al. 2004). 

 

In Cylamen persicum the process of s.e. was analysed by various proteomic 

studies (Winkelmann et al. 2006; Lyngved et al. 2008; Bian et al. 2009; Rode et 

al. 2010; Rode et al. 2011). Whilst in the proteomic study of Winkelmann et al. 

(2006) somatic and zygotic embryos of Cyclamen were compared, Lyngved et al. 

(2008) analysed embryogenic and non-embryogenic callus cultures before s.e. 

induction. Bian et al. (2009) analysed the proteome of somatic embryos in 

different developmental stages along with non-embryogenic callus and zygotic 

embryos. Rode et al. (2010) first established proteome reference maps of 

somatic and zygotic embryos. Later they conducted a comparative analysis of the 

proteomes (Rode et al. 2011) to obtain a profound knowledge of the 

physiological processes in Cyclamen embryogenesis for overcoming problems 

such as physiological disorders and asynchronous development. They supposed 

that the glycolytic enzyme enolase plays an important role in Cyclamen 



1. General Foreword 

  
10 

embryogenesis because it was detected most frequently (Rode et al. 2011). 

Nevertheless, none of these studies primarily aim to improve the in vitro culture 

system and still deal with fundamental aspects of embryogenesis in Cyclamen. 

Therefore, this represented gene expression study was conducted based on a 

cDNA microarray representing transcripts that were identified in a preceding EST 

analysis (Rensing et al. 2005). Hence, this study was restricted to a number of 

genes known to be expressed during the embryogenesis of Cyclamen. By 

analysing different stages of somatic and zygotic embryos, as well as 

embryogenic and non-embryogenic callus lines, along with different cultivated 

callus lines, this study offers the potential to identify key physiological pathways 

that are fundamentally involved in Cyclamen embryogenesis as well as to 

generate hypotheses for improving the in vitro protocol. 

 

 

1.5 Gene expression profiling 

 

One of the key regulatory mechanisms of living cells to sustain and execute their 

individual function is the control of gene expression (Aharoni and Vorst 2002). 

Therefore, measuring mRNA levels has proved to be a valuable molecular tool 

even though the final activity of a gene is determined by the encoded protein 

(Aharoni and Vorst 2002). 

 

Gene expression profiling is the measurement of the simultaneous activity 

(expression) of thousands of genes and holds enormous promise for analysing 

regulatory mechanisms and transcriptional networks that underlie biological 

processes (Alba et al. 2004). Extensive transcriptome analysis should enable the 

identification and dissection of complex genetic networks that underlie processes 

that are critical to physiology, development and responses to different stimuli. 

Further characterisation of these gene networks in plants will help in the 

understanding of the molecular basis of plant processes (Alba et al. 2004). 

 

In recent years, expressed sequence taqs (ESTs), microarrays, large-scale gene 

expression (transcriptome) profiling and associated informatics technologies are 

rapidly becoming routine in the plant sciences (Alba et al. 2004). These methods 

have been established to analyse the expression of hundreds or even thousands 
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of genes in a single experiment (Lee and Tranel 2008). By now, microarrays 

have become the standard method for gene expression experiments (Galbraith 

and Birnbaum 2006). 

 

 

1.5.1 Microarrays 

 

Microarrays were developed by Schena and co-workers in the early 1990s at 

Stanford University (Schena 2003). The basic principle is the detection of 

hybridisation of complementary nucleic acid strands (see Figure 3). Phimister 

(1999) recommended a nomenclature for referring to the hybridisation partners: 

A “probe” is the tethered nucleic acid whereas a “target” is the free nucleic acid. 

Before, there existed two nomenclature systems in the literature: What one 

described as “probes”, others described as “target”, and vice versa (Phimister 

1999). In spite of this recommended nomenclature, the usage of “probes” and 

“targets” is still contentious. In this study, the nomenclature recommended by 

Phimister (1999) will be used throughout. 

 

Microarrays are physical substrates, such as glass slides, 96- or 384-well plates 

or quartz chips, on which many samples of biological probes are spotted (Boutros 

2006). Even if largely nucleic acids are spotted on microarrays, proteins are still 

used too (a thousand times more papers using nucleotide than protein assays 

exist) (Boutros 2006). Similarly, fluorescent detection is the most common 

method, but additionally, a variety of fluorophores and radioisotopes are used 

(Boutros 2006). 
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Figure 3: Schematic description of the events of a cDNA-microarray experiment: For target 

preparation, RNAs of the samples are isolated to synthesise cDNA. cDNAS are labelled with a 

fluorescence dye. Templates of genes of interest (probe) are then amplified and spotted to a 

physical substrate (e.g. glass microscope slides). Subsequently, targets and probes are hybridised 

and scanned to measure intensity. Each spot binds specifically and glows with an intensity 

proportional to the expression of each gene. This figure was reproduced in parts from Schena 2003 

(Figure 1.3) and further aspects were added. 

 

Typically, competitive fluorescent hybridisation is used. Here, two different 

cDNAs (e.g. sample and reference) are labelled in discrete labelling reactions 

with different fluorescence dyes (Cy3/Cy5) and are hybridised on a chip. For 

each gene, the signal ratio of both fluorescence dyes (Cy3/Cy5) is indicated. For 

visualisation these data are represented by overlaying red (Cy5) and green (Cy3) 

picture elements. Therefore, a green signal represents a gene that is up-

regulated under one condition (e.g. control/reference condition) more than under 

another (e.g. test situation). Consequently, a red signal represents a gene that is 

expressed under contrary conditions whilst the signal appears yellow in the case 

of the same transcript abundances of a gene under the compared conditions 

(Twellmeyer 2007).  
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There are different experimental designs for microarrays available as the two 

examples show in Figure 4. Currently, no clear statement is available in the 

literature as to which design is preferred (depending on the experiment’s 

objectives and conditions) (Twellmeyer 2007). In the present study, a common 

reference design, as proposed by Dudley et al. (2002), was used that is 

represented schematically in Figure 4 b.  

 

a sample-to-sample

1 2 31 3
52

1 …

4

R

b sample-to-reference

 
 

Figure 4: Schematic description of two examples of microarray designs. Every chip is 

represented by an arrow. In the sample-to-sample (a) design, all samples are compared with each 

other directly whilst in the sample-to-reference, or common reference design, (b) every sample is 

compared to a reference (fluorescence labelled antisense oligonucleotide). 

 

To quantify the expression levels, the principle is used that the amount of 

fluorescence measured is directly proportional to the amount of nucleic acid with 

the complementary sequence of the analysed sample (Tarca et al. 2006). 

Microarrays were evolved to compare relative transcript abundances between 

different samples, but they should not be applied to compare transcript 

abundances between different genes within the same sample (Clarke and Zhu 

2006).  

 

Depending on the material placed onto the slides, microarrays are specified as, 

for example, DNA microarray, RNA microarray or protein microarray, but DNA 

microarrays are the most commonly used (Hovatta et al. 2005). Principally, the 

classification of microarrays can be performed by using at least three criteria: 

length of the probes, manufacturing method, and number of samples that can be 

profiled on one array simultaneously (Tarca et al. 2006). 

 

cDNA microarrays include a collection of gene sequences, usually each spot 

includes the cDNA clone of a known gene (PCR product), ranging in size from 
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100 to 2,000 bp (Murphy 2002). These PCR products are applied individually on 

a solid matrix (e.g. glass or nylon) (Murphy 2002). In contrast, oligo microarrays 

comprise synthesised single-stranded probes on the basis of sequence 

information available in databases and thus no PCR-product is needed (Murphy 

2002). The oligo microarray industry leader is Affymetrix 

(http://www.affymetrix.com/estore/) (Murphy 2002). The major advantage of 

Affymetrix GeneChips is that there is no need to prepare and verify the probes, 

such as PCR products or cDNAs, and thus they are “ready to use” (Murphy 

2002). Admittedly, these kinds of chips are only available for model organisms 

(e.g. Arabidopsis, Medicaco, cotton). However, it could be demonstrated that 

some microarrays could be used for related species. Van Zyl (2002) conducted a 

heterologous array analysis in Pinaceae and hybridised Pinus tadea cDNA 

microarrays with cDNA from needles and embryogenic cultures of P. taeda, P. 

sylvestris and Picea abis. Because of the high level of sequence conservation 

between Pinus and Picea, they investigated the use of arrays from one genus for 

gene expression studies in the other (van Zyl 2002). It has been concluded that 

cDNA microarrays from loblolly pine were useful for gene expression studies in 

other pines or spruces (van Zyl 2002). Similarly, Bar-Akiva et al. (2010) was 

able to demonstrate the use of cross-species hybridisation Brunfelsia cDNAs to 

potato cDNA microarrays in their study on metabolic networking in Brunfelsia 

calycina petals after flower opening. 

 

The methods for analysing microarray data are constantly being refined, but the 

increasing amount of microarray experiments has demanded general guidelines, 

which were formulated by (Brazma et al. 2001) in the so-called MIAME 

Standards (Minimum Information About a Microarray Experiment). Meanwhile, 

most journals are calling for adherence to these standards. Numerous statistical 

methods have been developed to improve the validity of microarray results, but 

nevertheless it is still recommended that the microarray data are randomly 

verified using another testing method such as quantitative realtime-PCR (qRT-

PCR). 

 

Over recent years, the use of microarrays has expanded enormously. For several 

plant species, large amounts of genomic data have been generated. The number 

of publications retrieved by the PubMed search engine rose from about 500 
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articles in 1998 to about 2,200 in 2004 when using the keywords “gene 

expression” AND “clustering” OR ”classification” (Asyali et al. 2006). Today 

(March 2011), the same keywords produce more than 550,000 results. This 

clearly underlines how rapidly this method is developing and has become 

increasingly important. 

 

 

1.5.2  Quantitative realtime-PCR (qRT-PCR) 

 

Quantitative realtime-PCR (qRT-PCR) has become an outstanding tool for the 

quantitative analysis of nucleic acid sequences (Kubista et al. 2006). This 

technique represents a refinement of the original PCR developed by Kary Mullis 

and co-workers in 1983 (Dorak 2006). Higuchi et al. (1993) first reported a 

method of realtime PCR. They used ethidium bromide intercalation and a 

modified thermocycler that irradiated the samples with ultraviolet light and then 

detected the fluorescent signal with a CCD camera (Higuchi et al. 1993). Today, 

other dyes, especially SYBR® Green I, are predominantly applied because of 

superior signal-background-ratio (Mülhardt 2008). Overall, the detection 

chemistries applied to qRT-PCR can be divided into two basic groups: non-

specific chemistries and target-specific chemistries. Non-specific chemistries 

detect fluorescence of DNA binding dyes (e.g. SYBR® Green I) whilst target-

specific chemistries utilise fluorescent probes and/or primers (e.g. TaqMan® or 

Molecular Beacons) (Anonymous 2009). 

In 1996 qRT-PCR became commercially available when Applied Biosystems 

released the 7700 instrument (Heid et al. 1996). By then, some other companies 

had also developed qRT-PCR thermocyclers. The major differences concern the 

excitation and emission of available wavelength, and the speed and number of 

reactions performed in parallel (Kubista and Zoric 2004). By now, many people 

have access to this technology due to the increasing number of suppliers and the 

decreasing prices of qRT-PCR thermocyclers as well as of reagents (Ginzinger 

2002).  

 

qRT-PCR is the reliable detection and measurement of PCR products generated 

during each cycle of the PCR process until an end point that is set after a 

predefined number of cycles (Ginzinger 2002). The fluorescence signals of every 
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reaction are transferred to a numerical value for every probe (Dorak 2006). The 

schematic description in Figure 5 outlines the general steps performed during 

qRT-PCR, from RNA isolation to data analysis.   

 

RNA isolation and characterisation

cDNA synthesis
(performed during the qRT-PCR (one-step) or

In a separate step (two-step))

data acquisition

raw fluorescence data

adjustment to baseline

fluorescent data

average assay replicates

set cycle treshhold

normalisation against ROX dye

generation of normalisation factors

data normalisation

data analysis

biological replicates compiled and
averaged

outliers identified and removed

statistical tests
 

Figure 5: Schematic description of the steps performed when measuring gene expression 

using qRT-PCR. Firstly, RNA is isolated and characterised for quantity and integrity. That is followed 

by the cDNA-synthesis. If performing a one-step reaction, reverse transcription occurs during the 

PCR run while performing a two-step reaction, cDNA is synthesised in a separate step and then 

used as a PCR template. The steps carried out in the realtime-PCR-Cycler are highlighted in blue: 

the raw fluorescence data are collected, adjusted and manipulated to generate output data for 

further analysis. For the normalisation of the results with reference genes, a normalisation factor 

has to be calculated for each individual sample (reproduced from Wong & Medrano (2005, Figure 

1). 

 

Since first mentioned by Higuchi et al. (1993), qRT-PCR has been continually 

improved and refined. In particular, this includes the requirements for 

methodological standardisation associated with the selection of an appropriate 

normalisation strategy (Bustin et al. 2009). Initially, most studies used 

potentially constitutively expressed control genes without further verification of 

their transcript abundance stability (Vandesompele et al. 2002). It has been 

demonstrated that this may have generated incorrect results (Vandesompele et 
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al. 2002; Pfaffl et al. 2004). Besides, it has been shown that the normalisation of 

gene expression with a single reference gene may cause defective results 

because even the expression levels of housekeeping genes can vary significantly 

by the effect of different developmental or environmental conditions (Jain et al. 

2006; Hong et al. 2008; Silveira et al. 2009). Thus, the verification of expression 

stability of every potential reference gene, as well as the normalisation with 

multiple reference genes, has recently established a new standard for qRT-PCR 

(Tong et al. 2009; Artico et al. 2010; Lee et al. 2010; Maroufi et al. 2010). 

 

In the following study, the approach will be to at first focus on the evaluation of 

the microarray data and from there, hypotheses on what may explain some of 

the underlying processes of s.e. as well as deducing how the directed 

improvement of the in vitro protocol (chapter 2.1) may be achieved. 

Furthermore, according to the increased requirements of methodological 

standardisation of qRT-PCR, a protocol optimised for Cylamen should be 

established (Section 2.2). In addition, selective hypotheses should be validated 

by further detailed analyses (Section 2.3).  
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• Generating of hypotheses for improvement of somatic embryogenesis in 

Cyclamen by microarray based expression profiling (chapter 2.1), 

• improvement of a qRT-PCR protocol for Cyclamen cell cultures (chapter 

2.2.) and  

• detailed examination of selected hypotheses (chapter 2.3). 
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2.3 Detailed examination of selected hypotheses 

 

2.3.1 Expression of putative genes of several glutathione S-

transferases 

 

Gene expression of a putative glutathione S-transferase is responsive to 
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Abstract 

Gene expression of five putative glutathione S-transferase (GST) homologues in embryogenic 

cell cultures of Cyclamen persicum were examined in liquid and semisolid culture systems 

using quantitative PCR. Transcript abundances were analysed with special regard to the 

responsiveness to auxin regulation and abiotic stress during the crucial culture step of transfer 

to plant growth regulator (PGR) free medium. The most distinct results were displayed by the 

transcript abundances of CpGST1 which were manifold increased in the samples 4 h after 

transfer to PGR-free medium compared to samples 0 h after medium exchange. Comparing 

samples 4 h and 72 h after transfer the expression of CpGST1 was clearly repressed during 

continuing culture. Hence, in contrary to preliminary data, no auxin-dependent regulation of 

GST transcript abundances could be demonstrated. Rather mechanical or drought stress 

imposed by the subculture procedure might be responsible for the strong and transitional 

induction of CpGST1. 

 

Introduction 

Cyclamen persicum is an ornamental potted plant with international economic importance. 

Because of the plant habitus and the regeneration characteristics conventional vegetative 

propagation (e.g. via cuttings) is not possible. Therefore, Cyclamen are traditionally 

propagated through seeds although this is associated with problems regarding variability (in 

case of population cultivars) inbreeding depression (in case of generation of F1-parent lines) 

and high costs (in case of production of F1-seed) (Ruffoni et al. 2000). Accordingly the 

establishment of a vegetative propagation system in vitro is highly desirable. In Cyclamen one 

of the most efficient micropropagation systems is a protocol for somatic embryogenesis 

starting from unfertilised ovules (Schwenkel and Winkelmann 1998). From these explants 

callus develops on medium containing 2,4-D and 2iP as plant growth regulators (PGRs). 

Callus can be propagated by regular sub-culturing on identical medium. Besides, Winkelmann 

et al. (1998) described suspension cultures in liquid medium of the same composition (lacking 

Gelrite). The differentiation of somatic embryos is initiated by transfer of callus to PGR-free 

medium. In order to learn more about the developmental processes of this propagation system 

a microarray analysis has been undertaken investigating the expression of 1,216 genes in 

various stages and tissues (Hoenemann et al. 2010, Rensing et al. 2005).  

In this analysis a group of five putative genes of glutathione S-transferases (GSTs) displayed 

differential expression during important steps of the micropropagation protocol. GSTs are 

enzymes that catalyse the conjugation of the tripeptide glutathione to a wide variety of 
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hydrophobic, electrophilic and cytotoxic substrates. Many GSTs also act as glutathione-

dependent peroxidases by catalysing the reduction of organic hydroperoxide to the less toxic 

monohydroxy alcohols (Marrs 1996). GSTs were found to be present at every stage of plant 

development from early embryogenesis to senescence and in every tissue type examined (Jain 

et al. 2010; McGonigle et al. 2000; Sari-Gorla et al. 1993). However, the function and 

temporal-spatial appearance of the different GST isoenzymes is highly specific (e.g. Moons 

2003; Sari-Gorla et al. 1993). GSTs have been subdivided into eight distinct classes, of which 

seven (namely phi, tau, zeta, theta, lambda, dehydroascorbate reductase (DHAR) and 

tetrachlorohydroquinone dehalogenase (TCHQD)) classes are soluble (cytoplasmatic) 

whereas the eighth is microsomal (Basantani and Srivastava 2007). Plant GSTs have been 

intensively studied for their ability to detoxify herbicides (Reade et al. 2004). Besides, a major 

focus of research on GSTs in plants aims at its roles in phytohormone physiology, especially 

auxin (Bilang and Sturm 1995; Jones 1994). Moreover, they play an important role in the 

response to biotic and abiotic stresses (e. g. Marrs 1996). Due to their complex field of action 

on the cellular level they are also important for many developmental processes. E.g. GSTs are 

known for their relevance during somatic embryogenesis of plants as described by Pan et al. 

(2009) for Citrus sinensis. 

Our study aims at analysing transcript abundances of different GST homologues in the process 

of somatic embryogenesis of C. persicum during the crucial step of transfer to PGR-free 

medium which triggers the realisation of embryo development. By this we want to learn more 

about the role of different in vitro manipulation steps, e.g. auxin removal and mechanical 

stress. 

   

Materials and Methods 

Tissue culture 

The cell line of the genotype “56/2” (kindly provided by Traud Winkelmann, Institute of 

Floriculture and Woody Plant Science, Leibniz University Hannover) was established as 

described by Schwenkel and Winkelmann (1998) from unfertilised ovules of a single plant of 

the cultivar ‘Maxora Light Purple’ (Varinova, Berkel en Rodenrijs, The Netherlands). The 

cell line was cultivated on MS medium containing 2,4-D and 2iP as plant growth regulators 

(in the following called “standard medium”) as described by Schwenkel and Winkelmann 

(1998). Subculturing was performed by transfer to fresh standard medium every four weeks. 

As described by Winkelmann et al. (1998) suspension cultures were established and 

maintained by transfer to fresh standard medium every two weeks. Embryo development was 
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induced by transfer of the cells to PGR–free standard medium (Schwenkel and Winkelmann 

1998). Subculturing of callus as well as of cell suspension comprised severe mechanical 

manipulations by disintegration of cell clumps (callus) and sieving through a 500 µm-mesh 

(cell suspension). Therefore, mechanical manipulations were performed four days before 

transfer to PGR-free medium (with continuing culture on fresh standard medium for four 

days) in order to separate mechanical manipulations from medium change. After four days 

cells were gently transferred to either solid or liquid standard medium lacking PGRs. In case 

of cell suspensions, cells were collected on a 200 µm-mesh and have subsequently been 

washed three times in PGR-free medium. Culture density on PGR-free medium was 

standardised to 500 mg/jar for cultures on semisolid medium and to a packed cell volume of 

4% for cell suspensions. A flow chart of the experimental procedure is given in Fig. 1. 

Cell material was collected 0, 4 and 72 h after transfer to PGR-free medium for RNA 

isolation. Each analysed tissue was represented by three independent biological replicates. 

 

Isolation of RNA and cDNA synthesis 

For RNA isolation the RNeasy Plant Mini Kit (Qiagen) was used according to the 

manufacturer’s instructions except for modifications as described by Dhanaraj et al. (2004). 

The protocol was carried out using the original buffers including a modified ‘RLT’ lysis 

buffer (Dhanaraj et al. 2004) which was supplemented with 0.5% (v/v) beta-mercaptoethanol, 

1.25% (w/v) polyvenylpyrrolidone-3000 (PVP 3000) and 2% (w/v) sodiumsarcosyl. 

According to the manufacturer’s instructions the on-column DNase digestion was applied for 

eliminating genomic DNA contamination. RNA was quantified using the Quibit fluorimeter 

(Invitrogen). 

The QuantiTect Reverse transcription Kit (Qiagen) was used to synthesise first strand cDNA 

from up to 1 µg of total RNA. 

 

Quantitative realtime PCR 

Partial sequences of five putative GST genes have been obtained by EST sequencing (Rensing 

et al. 2005; http://www.cyclamen-est.de: CYC01T7_E12, CYC32T7_B11, CYC29T7_E07, 

CYC16T7_B04, CYC33T7_F07). In the following the putative GST genes are named 

CpGST1 - 5 (table 1). Specific primers for each of the genes have been designed using 

Primer3 (Rozen and Skaletsky 2000, available from the internet: 

http://biotools.umassmed.edu/bioapps/primer3_www.cgi). 
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PCR amplification was performed with a Stratagene Mx3000P realtime PCR System 

(Stratagene, La Jolla, CA, USA) using SYBR Green as described by Hoenemann and Hohe 

(2011). Primer concentrations for optimal amplification results have been determined for each 

gene (table 1). The reactions were performed in triplicate for each of three independent 

biological samples. For evaluating primer efficiency standard curves were calculated with the 

Mx3000P Software (MxPro) and all passed successfully. 

The values measured were normalised to the mean value of the reference gene (a putative Ef-

Tu) as described by Hoenemann et al. (2010). The relative quantity was calculated according 

to Hoenemann et al. (2010) by the ∆∆Ct-method (Livak and Schmittgen 2001). The 

calculated relative quantity for one tissue is given as the ratio (fold change) to the tissue to 

which it was compared. If this value was less than one, the (negative) reciprocal is given. 

Every reported fold change represents the arithmetic mean of three independent experiments 

and three biological replicates. Differential gene expression was statistically calculated using 

a two-sample t-test (p ≤ 0.05). 

 

Results and Discussion 

In a broad microarray experiment comparing the expression of 1,216 transcripts in various 

stages of somatic embryogenesis in Cyclamen persicum genes of five putative GSTs were 

found to be differentially expressed in at least one of the experiments that are specified with 

tissue IDs in figure 1. Regarding the crucial step of transfer to PGR-free medium (which 

triggers the development of somatic embryos) a previous study showed that two out of the 

five GST-homologues diplayed a reduced transcript abundance in cells 72 h after transfer to 

PGR-free medium as compared with cells right before the transfer (Hoenemann et al. 2010). 

This might be interpreted as a hint on auxin-regulated gene expression which should be 

validated by additional experiments. 

In the microarray experiments expression of genes in cells right before the transfer to PGR-

free medium was compared to that of cells 4 h and 72 h after transfer. Here, it had been 

concluded that major changes in transcript abundances did only occur between 4 h and 72 h 

after transfer to PGR-free medium (Hoenemann et al. 2010). Therefore, in a first additional 

experiment gene expression of the five different GST-homologues 72 h after transfer to PGR-

free standard medium (tissue 3.3.1) has been compared to that only 4 h after transfer (tissue 

3.2.1). Fig. 2 shows that especially the transcript abundance of the CpGST1 was extensively 

decreased after transfer to the PGR-free medium (fold-change: 99). This result supports the 

initial hypothesis that transcription of this gene was induced by auxin and repressed upon 
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auxin-removal. The GST enzyme group is quite diverse and some GSTs are considered to be 

auxin induced (Domoki et al. 2006; Flury et al. 1995;  Singla et al. 2007; Van der Kop et al. 

1996). Moreover, this hypothesis has been supported by a sequence comparison to GST-genes 

of other plants showing high similarities of the here presented CpGST1 to GSTs from Malva 

pusilla (NCBI Acc. No. AAO61854), Ricinus communis (NCBI Acc. No. XP_002532823 and 

XP_002515772), Populus trichocarpa (NCBI Acc. No. ADB11373 and ADB11374) and 

Glycine max (NCBI Acc. No. AAG34800). According to the data given by NCBI all these 

GSTs are related to the tau-class, which is described to be auxin induced (Marrs 1996). Singla 

et al. (2007) also described a strong repression of the expression of GST-homologues upon 

auxin removal in tissue cultures of Triticum aestivum, however they do not relate the GSTs 

encoded by these genes to one of the different GST classes as described by Basantani and 

Srivastava (2007). 

In order to validate the putative auxin-responsive gene expression of CpGST1 it is necessary 

to check changes of the transcript abundance over time. This has been done in an additional 

experiment comparing the expression of the GST-homologues in cells 4 h and 72 h after 

transfer to PGR-free medium to that right before transfer. The results are presented in Fig. 3. 

Again, transcript abundances of CpGST1 displayed the most distinct results while changes in 

the transcription level of other putative GST-transcripts were much less pronounced. Indeed, 

the expression of all putative GST-transcripts was repressed in the period between 4 h and 72 

h after auxin removal (Fig. 3b, white bars) which is highly comparable to the preceding 

experiment (Fig. 2). However, comparing samples 0 h and 4 h after transfer to PGR-free 

medium transcript abundance of CpGST1 was manifold increased in the samples 4 h after the 

medium exchange regardless whether cells were transferred to liquid or to solidified medium. 

This observation clearly contradicts our initial hypothesis about the auxin-responsiveness of 

the expression of CpGST1, because in this case transcript abundance was expected to be 

reduced upon auxin removal. Thus – in order to avoid misinterpretations - it seems to be very 

important in this context to analyse a time period (Fig. 3) rather than randomly chosen time 

points (Fig. 2), especially since transcript abundances of the GST-homologues change rather 

fast. This is in line with results of Zhu et al. (2008) who analysed GST expression during 

initial cellular dedifferentiation in cotton seedlings. They described high GST expression 

levels only within a time period from 6 h to 24 h after induction by PGR treatment. These 

results of Zhu et al. (2008) imply that also in our experiments the high expression levels of 

CpGST1 are probably not the result of stored auxins or of a late reaction to the exchange of 

PGR-containing medium 4 d before transfer to PGR-free medium. Therefore, we expect other 
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factors than auxin to be responsible for the pronounced changes in transcript abundance of 

CpGST1 upon transfer to the PGR-free medium. 

Levine et al. (1994) and Tenhaken et al. (1995) mentioned the function of GST-homologues in 

oxidative ore mechanical stress response. As described we tried to separate severe mechanical 

manipulations from the change of medium by a sequential subculture procedure. However, 

even during the gentle procedure of medium change, mechanical stress cannot be completely 

avoided, since upon transfer of cell suspensions to the PGR-free medium, the cells have been 

collected on a 200 µm-mesh and have subsequently been washed three times in PGR-free 

medium before they were inoculated into the new flasks. This procedure might impose stress 

by the mechanical treatment as well as by sudden exposure of the submeresly growing cells to 

dry clean bench air. Accordingly, a new hypothesis on induction of CpGST1-expression has 

been formulated saying that it might be induced by mechanical and/or drought stress. 

Therefore, transcript abundances of the GST-homologues have also been compared in cells 

growing in different culture systems, i.e. on semisolid medium in petri dishes and as 

suspension culture in shake flasks (Fig. 4). Except for CpGST3 all other putative GST-

transcripts were downregulated in the cells cultured in liquid medium (tissue 3.1) compared to 

the cells on semisolid medium (tissue 2.1). However, whereas fold-changes were only 

marginal for CpGST2-5, transcript abundance of the CpGST1 was reduced 60-fold in shake 

flask compared to petri dish culture. Whereas mechanical stress is only imposed on cells in 

shake flask culture, cells transferred to petri dish culture have to cope with sudden exposure to 

dry air. The same comparison has been made 4 h after transfer to PGR-free medium (Fig. 4b). 

Again all putative GST-transcripts were repressed in suspension culture compared to the 

tissue cultivated on semisolid medium. However, the fold-change of CpGST1 amounts only to 

factor 7 in this comparison. Since these cells have undergone the washing procedure 4 h 

before the samples were taken, we believe that in this experiment, the large effect of this 

treatment (Fig. 3) has masked a part of the differences induced by the different culture 

systems. Nevertheless, again the transcript abundance of CpGST1 was increased in petri dish 

culture compared to suspension culture. 

If expression of CpGST1 was induced by drought stress, no significant changes in the 

transcript abundance should occur, if only cells from semisolid media of different culture 

stages are compared, because these cells do not undergo environmental humidity changes 

when transferred to different media. Therefore transcript abundances in cells that have only 

been cultured on semisolid medium have been compared right before the transfer to PGR-free 
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medium as well as 4 and 72 h later (Fig. 5). it becomes apparent how inhomogeneous the 

callus cultures were compared to cells in suspension culture.  

Responsiveness of GST gene expression to abiotic stresses has been demonstrated in other 

plant systems. In Arabidopsis thaliana seedlings a drought-associated oxidative stress induced 

accumulation of a GST transcript that is a homologue of an extremely conserved subgroup of 

tau GSTs (Bianchi et al. 2002). This is of interest as also in our study CpGST1 shows 

homologues to GST genes of other plants that belong the tau-class (see above). Diao et al. 

(2010) demonstrated that the expression LbGST1 was differentially regulated by various 

abiotic stresses in Limonium bicolor. Transcript levels of a tau class GST from Oryza sativa 

were shown to vary significantly in response to chlorodinitrobenzene, hydrogen peroxide and 

atrazine treatments, indicating diverse regulation mechanisms in response to abiotic stresses 

(Yang et al. 2009). In the study of Jain et al. (2010) the overlap of response of GST genes to 

various stimuli (hormones, abiotic and biotic stresses) and developmental processes were 

analysed and provided evidence for the role of GSTs in mediating crosstalk between various 

stresses and hormone response. 

 

Therefore, we tend believe that our results demonstrate responsiveness of CpGST1 to abiotic 

stress in vitro, namely especially drought stress. It has long been discussed that suspension 

culture of plant cells might impose strong mechanical stress, because plant cells are 

comparatively large and possess rigid cell walls (e. g. Dunlop et al. 1994; Namdev and 

Dunlop 1995), whereas other authors showed that the mechanical sensitivity of plant cells was 

less pronounced than expected (e.g. Scragg 1995).  These inconsistent conclusions might be 

attributed to the use of different experimental systems but also to effects of unconsidered 

factors. Our results might be interpreted as a hint that other abiotic stresses, e.g. possibly 

drought stress upon subculturing of cell suspensions and transfer to semisolid culture, are 

more important with regard to the comparison of different culture systems in plant tissue 

culture than has been expected. 
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Table 1: Primer sequences, primer concentrations, product sizes and annealing 

temperatures for amplification of putative Cyclamen persicum GST genes. 
abbreviated 

gene 
designation 

putative gene product GenBank No. Cylamen 
EST databased 

Forward Primer (F) 
Reverse Primer (R) 

5’ � 3’ 

Product 
size 
[bp] 

Primer  
concentration 

[nM] 
CpGST1 Probable glutathione S-

transferase parA 
AJ886042 CYC01T7_E12 F: CATCCTGGGAGAACAATGTG 

R: 
ACCCCCAAAGTAGGGTTTGT 

118 200 

CpGST2 Probable glutathione S-
transferase 

AJ886910 CYC32T7_B11 F: 
GCTCGGGATTTTGCTAGAAG 
R: 
TTCCCTGATGACAGAGCAAT 

109 200 

CpGST3 Glutathione S-
transferase GST 20 

AJ887722 CYC29T7_E07 F: GTTGGGACCGATCGAAGTA 
R: CAAGTGGAAGCTCGAGGAA 

101 200 

CpGST4 Glutathione-S-
transferase/glutaredoxin 

AJ887143 CYC16T7_B04 F: AAGGGCATGAGGTGGATTT 
R: CTCATCAGCCTCGCTATGG 

98 100 

CpGST5 Putative glutathione S-
transferase 

AJ886941 CYC33T7_F07 F: TGTGAAGCTGCTCGATGAA 
R: TGGGATCGCATTTTTCACT 

91 100 
 

Ef-Tu Elongation factor tu  AJ886626 CYC16T7_A05 F: TATCCAGAGGGGGATGGTT 
R: TGCCTACCTCCCTCTTCCT 

102 200 

 

Figure 1: Flow chart of the experimental procedure. Samples taken for further analysis 

are encircled by boxes and are specified with tissue IDs. 
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Figure 2: Transcript abundances of GST homologues in samples 72 h after transfer to 

PGR-free standard medium (tissue 3.3.1) compared to 4 h (tissue 3.2.1) presented as x-

fold-change. Positive values describe up-regulation while negative values describe down-

regulation. 

 
 
Figure 3: Gene expression of GST homologues 0, 4 and 72 h after transfer to PGR-free 

medium. a: culture on semisolid medium; b: suspension culture. 

(dark grey bars: 4 h compared to 0 h after transfer to PGR-free standard medium, light 

grey bars: 72 h compared to 0 h after transfer to PGR-free standard medium, white 

bars: 72 h compared to 4 h after transfer to PGR-free standard medium). Positive values 

describe up-regulation while negative values describe down-regulation. 
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Figure 4: Gene expression of GST homologues in cells growing in suspension culture 

compared to cells on semisolid medium presented as x-fold-change (a: before transfer to 

PGR-free medium; b: 4h after transfer to PGR-free medium). Positive values describe 

up-regulation while negative values describe down-regulation. 

 

 

Figure 5: Gene expression of GST homologues in callus cultured for 4 h (dark grey bars, 

tissue 1.2) or for 72 h (light grey bars, tissue 1.3) compared to cells before transfer to 

PGR-free medium (tissue 1.1) presented as x-fold-change. Positive values describe up-

regulation while negative values describe down-regulation. 
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Abstract 

Gene expression of four different pectin modifying enzymes (a putative pectinacetylesterase 

(PAE) homologue, a putative pectinesterase (PE) homologue and two different putative 

pectate lyase (PL) homologues) was examined in different callus cell lines of Cyclamen 

persicum as well as in the corresponding explants using quantitative PCR. Transcript 

abundances were analysed with special regard to potential correlations with callus texture and 

embryogenic competence. No correlation has been detected between gene expression of the 

putative pectin modifying enzymes and the embryogenic competence of the different cell 

lines. However, expression of the putative PAE homologue correlated with the callus texture: 

transcript abundances of the putative PAE homologue were higher the more friable the tissue 

was, in callus as well as in explant the tissue. Histological analyses supported the conclusion 

that callus texture was influenced by the explant type. 

 

Keywords: cell wall adhesion, explant type, histological analysis, somatic embryogenesis 

 

Abbreviations: 

pectate lyase - PL  

pectinacetylesterase - PAE  

pectinesterase - PE  

plant growth regulator - PGR 

ruthenium red - RR 

somatic embryo – s.e.  
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Introduction 

In indirect somatic embryogenesis callus, i.e. cells in morphologically unorganised growth, 

develops from the explant. Subsequently, either spontaneously or because of a change of the 

growth conditions, callus cells start to differentiate into somatic embryos. Such systems 

exhibit a high potential as very efficient propagation systems. However, the development of 

different callus lines with variable characteristics represents a major problem for use of 

indirect somatic embryogenesis in commercial plant propagation. In this context, particularly 

the development of embryogenic and non-embryogenic cell lines is of interest. Differences 

between embryogenic and non-embryogenic cell lines from the morphological to the 

molecular level have been analysed in various systems (e. g. in Daucus: Feirer and Simon 

1991; Kikuchi et al. 1995; in Medicago: Martin et al. 2000; Pouisen et al. 1996; in Picea: du 

Jardin et al. 1996; in Cyclamen: Winkelmann et al. 1998).  

One of the characteristics of special interest in this regard is cell adhesion, i.e. callus texture. 

More friable callus is often selected due to better mangeability. On the other hand cell 

adhesion is also an important physiological factor. For organisation of plant tissues a spatial 

and temporal control of intercellular attachment and communication is essential and therefore 

critical for normal development and morphogenesis (Iwai et al. 2002). Cell wall structure is 

continually modified to accommodate to the developmental stage and the environmental 

condition. The primary cell wall is supposed to contribute significantly to cell wall structural 

integrity, cell adhesion and signal transduction. The major fractions of the primary cell wall 

are pectic polysaccharids (Caffall and Mohnen 2009). The strength of intercellular contacts 

depends on cell wall structures, which include polysaccharide components, in particular 

pectin that is localised mainly in the primary cell wall, middle lamella and cell corners (Iwai 

et al. 2002). Principally, pectin consists of the pectic polysaccharides homogalacturonans 

(HGs), substituted HG (rhamnogalacturonan II, xylogalacturonan and apiogalacturonan) and 

rhamnogalacturonan I (Mohnen 2008). Compared with cellulose and hemicellulose little is 

known about the synthesis and assembly of pectin (Iwai et al. 2002). 

A potential causal connection between cell adhesion conferred by pectin characteristics of the 

middle lamella and embryogenity of different cell lines has been discussed by several authors 

(e. g. Suzuki et al. 1990; Kikuchi et al. 1995). Besides analyses of pectin characteristics in 

particular, also callus texture in general has been discussed with regard to embryogenic 

competence: In carrot suspension culture Iwai et al. (1999) demonstrated that carrot 

embryogenic callus forms larger and tighter cell clusters than non-embryogenic callus does. 
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Quiroz-Figueroa et al. (2006) confirmed a correlation between callus appearance and 

embryogenic competence in Coffea arabica. Here embryogenic callus could be identified by 

brown colour and compact texture while non-embryogenic callus was pale and friable. 

In a preceding microarray analysis (Hoenemann et al. 2010) four different pectin modifying 

enzymes were differentially expressed in the comparison of an embryogenic and a non-

embryogenic cell line of Cyclamen persicum. From these results it has been inferred, that 

gene expression of pectin modifying enzymes might be correlated with the embryogenic 

competence. This hypothesis as well as a putative correlation between gene expression of 

pectin modifying enzymes and callus texture has been investigated in detail in the current 

study. 

 

Methods 

Tissue culture 

The callus lines 3-0805 and 3738-12G are the same cell lines as given by Hoenemann at al. 

(2010) (tissue IDs in the latter publication: 2.1.1 and 2.3.1). 

New callus lines were established as described by Schwenkel and Winkelmann (1998) from 

unfertilised ovules, placenta and peduncles, respectively, from genotypes 3 and 17 of the 

cultivar ’Sierra Purple Flame’. Callus was cultivated on MS based plant growth regulator 

(PGR) -containing medium (“standard medium”) as described by Schwenkel and 

Winkelmann (1998), transferred to fresh standard medium after eight weeks and cultivated 

there for another four weeks. Somatic embryo development was induced by transfer of the 

cells to PGR–free standard medium (Schwenkel and Winkelmann 1998). Development of 

somatic embryos and callus texture were evaluated three weeks after transfer to PGR–free 

standard medium. For RNA isolation cell material was collected  right before transfer to PGR-

free medium. Each analysed tissue was represented by three independent biological replicates 

at three different dates. 

 

Quantitative realtime PCR 

Isolation of RNA and cDNA synthesis for qRT-PCR was carried out as described by 

Hoenemann and Hohe (2011). 
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PCR amplification was performed in a Stratagene Mx3000P realtime PCR System 

(Stratagene, La Jolla, CA, USA) using ABsolute QPCR SYBR Green ROX Mix (ABgene, 

Epsom, Surrey KT19 9AP, UK). PCR reactions were carried out according to Hoenemann 

and Hohe (2011). The reactions were performed in triplicate for each of the three independent 

biological samples. All primer sequences are specified in table 1. Standard curves were 

calculated for evaluating primer efficiency and all passed successfully. 

The values measured were normalised to the mean value of four reference genes as 

recommended by Hoenemann and Hohe (2011). The relative amount of PCR product 

generated from each primer set was determined on the basis of the cycle threshold (Ct) value. 

The relative quantity was calculated using the the ∆∆Ct-method (Livak and Schmittgen 

2001). The calculated relative quantity for one tissue is expressed as the ratio (fold change) to 

the tissue to which it was compared. If this number was less than one the (negative) reciprocal 

is given. The reported fold changes represent the arithmetic mean of the three independent 

experiments and three biological replicates. Differential gene expression was statistically 

assessed using a two-sample t-test (p ≤ 0.05). 

 

Histological analysis 

Different tissues (callus as well as explants) were fixed in FAA solution containing 67% 

ethanol, 20% H2O, 1.8% formaldehyde and 5% glacial acetic acid for 24 h. The tissues were 

dehydrated using ethanol series and embedded in paraffine (J.T. Baker, Deventer, The 

Netherlands). Sections of 3 µm were prepared using a rotary microtome (RM 2155, Leica 

instruments, Nussloch, Germany). All samples were stained with W3A solution according to 

Wacker (Wacker 2006) (Morphisto, Frankfurt, Germany) and ruthenium red (RR) solution 

(Johansen, 1940) (Morphisto, Frankfurt, Germany). Pictures were taken using a light 

microscope (Zeiss, Axio Imager, Jena, Germany).  

Results and discussion 

Microarray analyses of various embryogenic and non-embryogenic tissue cultures of 

Cyclamen persicum revealed differential expression of four different putative genes of pectin 

modifying enzymes in the comparison of embryogenic and non-embryogenic callus lines 

(Hoenemann et al. 2010).  

In order to possibly verify a putative link between expression of pectin modifying enzymes, 

pectin content, callus texture and embryogenic competence in the system of Cyclamen 
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persicum we first analysed histologically the two cell lines 3-0805 (embryogenic, tissue ID 

2.1.1) and 3738-12G (non-embryogenic, tissue-ID 2.3.1 compared by Hoenemann et al. 

(2010)(Fig. 1). W3A-stainings confirmed structural differences of the callus lines. The 

embryogenic cell line showed tight and relatively big cell clusters whereas the non-

embryogenic line displayed a loose structure (Fig. 1 ai and bi). Moreover, a more intense 

orange to red staining of the cell walls in the embryogenic cell lines might be a hint on 

lignification. RR-staining has been applied to visualise the pectin content and distribution. 

Here, cell walls of the embryogenic cell line in fact looked more red indicating a higher pectin 

content (Fig. 1 aii and bii). These data seem to support the hypothesis on a correlation 

between pectin-conferred cell adhesion and embryogenic competence. However, these two 

cell lines did not have the same genetic background.  

As Schwenkel and Winkelmann (1998) described the development of cell lines showing 

variation in embryogenic competence according to the explant tissue used for induction, new 

callus lines have been induced in two different embryogenic genotypes (namely 3 and 17) 

starting from three different explant types (placenta, ovule, peduncle). The texture of the 

callus was evaluated visually as well as the development of somatic embryos three weeks 

after transfer to PGR-free medium (table 2). Regarding the texture of the callus the results 

were very consistent and in line with previous data. Callus originating from ovules was 

friable, while callus resulting from placenta was even more friable. In contrast all cell lines 

developing from peduncle segments displayed a quite compact structure. However, in 

opposite to the original hypothesis, no general correlation between callus texture and 

embryogenic competence was detected.  

Nevertheless, it should be checked whether gene expression of the pectin modifying enzymes 

(a putative pectinacetylesterase (PAE) homologue, a putative pectinesterase (PE) homologue 

and two different pectate lyase (PL) homologues) was at least correlated with the callus 

texture. Therefore, expression of the putative genes was investigated by qRT-PCR before 

transfer to PGR-free medium in order to verify if their expression could be causal for callus 

texture. Moreover, callus texture was analysed by histological staining. 

Comparing gene expression data (genotype 17, Fig. 2) with those of the microarray 

(Hoenemann et al. 2010) the hypotheses deduced from the microarray results could not be 

reproduced except for the putative PAE homologue: In the microarray transcripts of putative 

PE and PL homologues were more frequent in the compact cell line, whereas in the actual 

analysis this was only true for the comparison of callus derived from ovules and peduncle 

segments. However, comparing cell lines derived from placenta tissue, which were even more 
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friable than those derived from ovules, transcripts of putative PE and PL homologues were 

more frequent in the friable callus. In contrast, expression of the putative PAE homologue 

correlated well with the callus texture: In both analyses transcripts of the putative PAE 

homologue were more abundant the more friable the callus was. 

Histological analyses of the callus lines originating from the different explants (genotype 17) 

confirmed the differences in texture that have been evaluated visually (Fig. 3): Whereas the 

cell structure of callus originating from peduncles was very dense and the W3A staining 

indicated lignification (Fig. 3 a i), callus originating from placenta tissue displayed a very 

loose structure and nearly no lignification (Fig. 3 c i). However, no clear difference in the 

pectin content as indicated by RR staining could be detected (Fig. 3 a ii – 3 c ii). Thus, RR-

staining did not show the expected effect and did not confirm the assumed differences in 

pectin content. On the other hand, RR might stain a relatively large amount of different 

polysaccharide compounds and is therefore not entirely specific for pectins (Shevell et al. 

2000). 

To date, only a few plant PAEs have been functionally investigated. Pilatzke-Wunderlich and 

Nessler (2001) analysed transcripts of PAE and PL homologues in opium poppy. Here, 

transcripts of the PAE homologue were detected only in the latex, whereas the PL homologue 

showed very high expression levels in latex as well, but also low expression levels in other 

tissues. Deduced from the proposed role of a PAE in mung bean by Breton et al. (1996), 

Pilatzke-Wunderlich and Nessler (2001) suggest, that PAE might be involved in cell wall 

degragation and expansion. Likewise, in Erwinia chrysanthemi PAE action probably favors 

pectin degragation by making the substrate more readily available for cleavage by pectate 

lyases that are responsible for the symptom of maceration (Shevchik and Hugouvieux-Cotte-

Pattat 2003). In our study the expression of a putative PAE homologue was highly increased 

in friable compared to more compact callus which might be a hint on the involvement of PAE 

in the generation of loose cell-to-cell contact in these cell cultures. 

Hence, the possible correlation between transcript abundance of the putative PAE homologue 

and callus texture has been rechecked in the cell lines originating from explants of genotype 3 

(Fig. 4). As in genotype 17, expression of the putative PAE homologue was repressed in the 

more compact callus lines, regardless if it was compared to callus originating from ovules or 

from placenta tissue. These observations support our hypothesis that the expression of the 

putative PAE homologue correlated with the callus texture.  

It is assumed that the differences in transcript abundances have been conferred to the callus 

lines from the explant tissue. Therefore, also the explants (ovules, placenta and peduncles of 
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genotype 3) were analysed with respect to transcript abundances of the putative PAE 

homologue (Fig. 5). Due to their similarity in callus texture, tissues of ovules and placenta 

were analysed as a pooled sample. Differences in transcript abundance of the putative PAE 

homologue in the explant tissues correlated well with those in the deduced callus lines, so that 

this correlation might be causal.  

However, histological analyses of callus lines and the corresponding explant tissues (Fig. 6 

and 7, genotype 3) only partially confirm these similarities: Longitudinal sections of 

peduncles showed the presence of lignification, indicated by vermilion staining (Fig. 6 a i) 

Likewise callus originating from peduncle explants showed more red to orange stained cells, 

indicating the presence of lignin, than callus originating from ovules (Fig. 7 b i) and placenta 

tissue (Fig. 7 c i). Likewise, differences in cell size of the explant tissues were reflected by 

those in the originating callus lines. This was especially obvious in the comparison of callus 

originating from placenta tissue (Fig. 7 c), whose cells were relatively large, with callus 

originating from ovules (Fig. 7 b) and peduncles (Fig. 6 b). However, RR staining did not 

show any essential differences in the amount of pectin between the callus lines originating 

from different tissues (Fig. 6 b ii, 7 b ii and 7 c ii), whereas there was a clear difference in the 

amount of red stained pectin comparing ovules and placenta tissue (Fig. 7 a). Again, this 

might be a consequence of poor specificity of the RR-staining (Shevell et al. 2000). 

Other studies about differences in callus texture mainly concentrate on the influence of 

different media and PGR supplementations (e.g Akande et al. 2009; Akbaş et al. 2009; Hassan 

et al. 2009; Koli et al. 2009; Sharma and Nautiyal 2009; Tiwari and Tripathi 2005). In 

addition Karimi et al. (2010) report an impact of the genotype and the explant position on the 

callus texture of Cereus peruvianus. In Indian cotton cultivars Tripathy and Reddy (2002) 

observed different callus textures depending on the explant type, the genotype and the 

medium composition. Comparing different explants (leaf, node and internode) Sadeak et al. 

(2009) concluded from their studies in Stevia rebaudiana  that the callogenic response and 

therefore the callus texture depends amongst other factors on the type of explant. None of 

these studies specified the tissue texture of the explant. Accordingly, our results cannot be 

compared directly to these studies with regard to the question if the tissue structure of the 

explant has any impact on the texture of the resulting callus. Nevertheless, our results support 

the conclusion of other studies (Sadeak et al. 2009; Tripathy and Reddy 2002) that callus 

texture is influenced by the explant type.  

Summing up, it has to be stressed, that many more factors not tested in our study affect pectin 

composition, cell wall adhesion and most notably the embryogenic competence of a specific 
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cell line. Moreover, due to the complexity of the system, it seems improbable to identify a 

“master switch” or a general physiological marker. On the other hand, the PAE expression 

level might be another important piece in the huge puzzle. 
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Table 1: Primer sequences, primer concentrations, product sizes and annealing temperatures.  

gene  putative gene product GenBank 
Forward Primer (F) 
Reverse Primer (R) 

5’ � 3’ 

Product 
size 
[bp] 

Primer  
concentration 

[nM] 

Pectinacetylesterase 
(PAE) 

Homolog of 
pectinacetylesterase 
family protein 

AJ887083 
F: ACAATGTTTCTTCCCCCAAT 
R: CGTATGCTGAGTTCCCACAC 

72 500 

Pectinesterase (PE) 
Pectinesterase 3 
precursor 

AJ886797 
F: ACTGACAGCCCCTTGCTAAT 
R: ATGCCGGTGTTTTGGTTAAT 

76 400 

Pectate lyase 1 
(PL1) 

Probable pectate lyase 
P18 precursor 

AJ887596 
F: GCGAATGGAGGACATGGAA 
R: TTAAGCTCGAAGCCCTAGCA 

115 200 

Pectate lyase 2 
(PL2) 

Pectate lyase AJ887577 
F: GCGAATGGAGAACATGGAA 
R: AGAGCCCACGAGCGAAGAT 

144 200 

ABC transporter 
ATPase 

ABC transporter 
ATPase  

AJ886326 
F: TGGCGAAACGTATTGAGAA 
R: AGTTGCTGGGGTTAGCATTT 

98 100 

V-ATPase G  
subunit 1 

V-ATPase G  
subunit 1  

AJ887447 
F: GAGATCGGGTGCTAATGTGA 
R: AATCCCAGCATCGTTTTTCT 

79 400 

COG complex 
component 

putative conserved 
oligomeric Golgi 
(COG) complex 
component  

AJ887962 
F: TATCCAACGCCGACAAAATA 
R: GGAATGCTTCGATTTTTGCT 

105 200 

H3-K9-HMTase 4 
Histone H3-K9 
methyltransferase 4  

AJ885940 
F: GGGTGTGAGATCTTGGGATT 
R: GTCAAGCCCCTTCATTGTTT 

148 200 

 

Table 2: Texture and embryogenic competence of different cell lines depending on the explant type 

explant texture embryogenic competence 
  genotype 3 genotype 17 genotype 3 genotype 17 

ovule friable friable low moderate 
placenta very friable very friable none high 
peduncle compact compact low none 
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Fig. 1: Histological analysis of embryogenic (cell line 3-0805) (a) and non-embryogenic (cell line 3738-12G) (b) 

callus stained with W3A (a i and b i) or with ruthenium red (a ii and b ii). 
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Fig. 2: Relative expression levels of putative genes of different pectin modifying enzymes in callus lines that 

were induced on various explants of genotype 17. White columns show the results obtained in microarray 

experiments published (Hoenemann et al., 2010) for better comparison. Positive values describe up-regulation 

while negative values describe down-regulation. 

 
 

Fig. 3: Histological analysis of callus developing from peduncles (a) ovules (b) and placenta (c) stained with 

W3A (a i, b i and c i)) or with ruthenium red (a ii, bii and c ii) (genotype 17). 
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Fig. 4: Relative gene expression levels of a putative gene of a pectinacetylesterase (PAE) in callus lines 

developing from different explants of genotypes 3 and 17. Positive values describe up-regulation while negative 

values describe down-regulation. 
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Fig. 5: Relative gene expression levels of a putative gene of a pectinacetylesterase (PAE) in callus lines 

developing from different explants compared to the relative gene expression levels in the corresponding 

explants. Positive values describe up-regulation while negative values describe down-regulation. 
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Fig. 6: Histological analysis of peduncles (explant, longitudinal section) (a) and corresponding callus (b) stained 

with W3A (a i and b i) or with ruthenium red (a ii and b ii) (genotype 3). 
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Fig. 7: Histological analysis of ovules and placenta (explant) (a) and corresponding callus of ovules (b) and 

placenta (c) stained with W3A (a i, b i and c i)) or with ruthenium red (a ii, bii and c ii) (genotype 3). 
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3. General Discussion 

 

3.1 Methodology 

 

3.1.1 Summary of results 

 

The starting point for the microarray development was a preceding EST-study 

(Rensing et al. 2005). From this, 1,216 transcripts were chosen for further 

microarray analysis. The prior aim of this analysis was the generation of new 

hypotheses to optimise the present protocol for somatic embryogenesis (s.e.) in 

Cyclamen persicum.  

 

In order to achieve this, a total of 21 experiments comprising 17 different tissues 

and covering a range of different conditions have been compared (Figure 1 in 

Section 2.1). Of these, eight experiments comparing ten different tissues were 

selected for further detailed analysis.  Across the complete set, a total of 417 

genes were revealed as being differentially expressed, whilst within the reduced 

set this was found to be the case in a total of 279 genes.  

 

The identification of pathways was carried out by subjecting the achieved data to 

Gene Ontology (GO) annotations.  There was further analysis of which GO terms 

were either significantly overrepresented or underrepresented among the 279 

differentially expressed genes in comparison to the complete set of genes 

represented on the array (Figure 2 in Section 2.1).  

 

On the basis of GO-annotations, as well as on single observations of genes in 

individual comparisons, a total of seven hypotheses have been deduced from the 

expression data for a putative improvement of s.e. in Cyclamen (Hoenemann et 

al. 2010). These include, amongst others, potential physiological markers such 

as pectin modifying enzymes, chitinase and POX activity with regard to their 

impact on cell adhesion or proper epidermis formation. Additionally, other 

putative indicators for determining embryogenic, or rather non-embryogenic 

callus, for example, AGO, GST or SERK could be identified. As has already been 
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preliminarily mentioned, it has been demonstrated that there is a high level of 

correlation between, especially SERK gene expression (Section 1.4.1), and s.e. 

Therefore, it is worth reiterating that out of a total of five genes that are 

homologues to genes annotated as SERK (Rensing et al. 2005), in this study, 

only one was found to be differentially expressed (Hoenemann et al. 2010). Also, 

as already noted, (Section 2.1, Hoenemann et al. 2010), POX has already been 

identified as having an essential role in the s.e. development of D. carota 

(Cordewener et al. 1991) and other authors can demonstrate the important role 

of GST in the regulation of s.e. of Triticum aestivum (Singla et al. 2007) and 

Citrus sinensis (Pan et al. 2006). In the cases of differential gene expression of 

GST, POX and chitinase homologues under different experimental conditions, 

hypotheses were formed focusing on aspects of the in vitro protocol (pH-control, 

media composition).  

 

In order to examine the reliability of the microarray results, ten differentially 

expressed genes were chosen randomly and validated by qRT-PCR. As shown in 

Figure 3 in Section 2.1, nine of these were confirmed qualitatively while for eight, 

the results also corresponded quantitatively. Consequently, the microarray data 

were agreed to be reliable. The high reproducibility of the three independent 

biological replicates could be approved by the demonstration of a principal 

component analysis (PCA) (Figure 4 in Section 2.1).  

 

This reproducibility could only be observed when using the probe material of the 

microarray experiment. When repeating parts of the experiment with the same 

cell line, several subcultures later, or even with a different cell line, the transcript 

abundances of genes of putative gluthatione S-transferases (Hoenemann et al., 

submitted in July 2011, Section 2.3.1) and putative pectin modifying enzymes 

(Hoenemann et al., submitted in October 2011 chapter Section 2.3.2) obtained 

by qRT-PCR diverged when compared to those achieved with the microarray. 

 

Initially, the reference gene for normalisation of qRT-PCR was selected because 

microarray results showed stable expression values for this gene (Ef-Tu) in all 

tissues. Responding to the increasing number of publications recommending 

further examination of the reliability of reference genes, an optimisation of the 

initial protocol for normalisation was carried out. It has been demonstrated that 
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there are other and even better alternatives (see Figure 1 in Section 2.2). 

Moreover, it was shown that it is better to use more than one single reference 

gene. 

 

 

3.1.2 Discussion and Conclusions 

 

3.1.2.1 Microarrays 

 

Microarrays have become widely accepted for gene expression analysis during 

recent years because they are an important tool able to generate information 

quickly. This method enables the presentation of thousands of genes of an 

organism in parallel (Wong and Chang 2005). They are mainly used for 

generating expression patterns: 

• Where within the organism are all these genes expressed? 

• In what way do these expression profiles influence the organism? (Murphy 

2002) 

Consequently, microarrays present a method for locating genes, gene regulation 

and identification of gene expression that defines disease states as well as 

assisting with research into drugs (Murphy 2002). However, the identification of 

biological relationships out of the mass of up and down regulated genes is 

usually challenging. The challenge is in interpreting which biological processes 

the alteration of expression of so many genes underlies and which of the 

analysed genes assume a key function (Wong and Chang, 2005). Thus, further 

bioinformatic strategies (e.g. Cluster, Gene Ontology) have been developed to 

provide tools that enable easier identification of regulatory networks. 

 

In spite of all the benefits of microarray technology, there are also some 

drawbacks. Errors can occur due to: 

• a lack of standardisation and reproducibility, 

• variability of sources, 

• sequence errors, 

• degradation of RNA during isolation, 
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• insufficient computer-based tools, 

• statistical problems, 

• inadequate sensitivity, 

• effects of probe length, 

• cross-hybridisation and 

• variability of outcome. 

(Hinton et al. 2004; Kareem 2004; Lee et al. 2003) 

It becomes apparent, therefore, that every stage in the progress of the 

experiment is susceptible to error and that this should be considered when 

interpreting the results. There have been particular developments in the 

optimisation of computer tools and statistics over recent years. Nevertheless, 

other methods should be explored for validating microarray data such as 

quantitative realtime-PCR (qRT-PCR).  

 

In addition to the specified benefits and drawbacks of microarray technology in 

general, there are also some depending on the kind of microarray (cDNA- or 

oligo(nucleotid) microarray) being used. In cDNA-microarrays, each spot includes 

the cDNA clone of a known gene (PCR product). Hence, any sample can be used 

to spot on the array and therefore enables a flexible and customised design (Fält 

2006; Murphy 2002). On the other hand, this also has the effect that cDNA- 

arrays never being as uniform as oligo arrays (Fält 2006). Furthermore, samples 

have to be synthesised, cleaned and stored, which can lead to errors (Murphy 

2002). Moreover, this method is relatively accessible and cost effective (Murphy 

2002). Because of their long length, cDNA microarrays allow a high level of 

specificity. By analysing this longer length, the likelihood of finding differences is 

enhanced and thus the differentiation of two transcripts is straightforward 

(Boutros 2006). However, cDNA arrays are unable to differentiate between 

transcripts which are very similar and are therefore less sensitive (Boutros 

2006). 

 

In contrast, oligo arrays are based on sequence information and thus no PCR 

product is necessary, which reduces the chances of samples being mixed up. 

Other major advantages of short oligonucleotide platforms such as the Affymetrix 
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arrays are, amongst others, that the manufacturing technique used tends to 

produce highly reproducible results and also the array-to-array variation is lower 

compared to cDNA microarrays (Boutros 2006). There is also some degree of 

internal replication because each feature is represented by multiple sequences 

(Boutros 2006). Nevertheless, oligo arrays present some disadvantages. It is 

necessary to revert to commercial manufacturer because special equipment is 

required. Hence, they are more expensive and customisation of the design is 

relatively restricted (Murphy 2002). Since the individual sequences are relatively 

short, it is possible to use them to interrogate the expression of small features 

(e.g. single exons, mutational status of specific SNPs) (Boutros 2006). Thus, 

they provide a finer resolution and therefore a higher sensitivity than cDNA 

microarrays (Boutros 2006). Even if the short length produces greater 

sensitivity, the sequences might be too short to provide sufficient specificity 

(Boutros 2006). 

 

By comparing the two platforms it becomes apparent that both have their 

advantages as well as disadvantages and that these should be considered in the 

context of the questions to be answered and functions to be fulfilled. The starting 

point (e.g. whether sequence information is available or not) will be a crucial 

criterion for selecting the platform. Barrett and Kawasaki (2003) summarised 

that some authors (e.g. Li et al. 2002) expect better results with oligo 

microarrays but others (e.g. Yuen et al. 2002) prefer cDNA microarrays.  

 

According to the Affymetrix homepage (http://www.affymetrix.com), GeneChips 

are available for various plants such as Arabidopsis, barley, Citrus, Medicago, 

cotton, maize, rice, soybean, tomato, sugar cane and wheat. In any case, these 

arrays are only available for relatively few organisms (Ophir et al. 2010). Other 

commercial manufacturers currently provide customised (e.g. Agilent and 

Nimblegen) oligo arrays (Ophir et al. 2010). These customised oligo arrays have 

great potential as a useful tool for other agricultural or horticultural crops, as 

demonstrated by Ophir et al. (2010) in their study on high throughput marker 

discovery in melons. 

 

As only a fraction of the great volume of data produced by microarray 

experiments can be evaluated by a single workgroup, public repositories (e.g. 
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ArrayExpress or Gene Expression Omnibus (GEO)) were established to collect 

expression data. Therefore, strict standardisation of the experimental conditions 

is required. But – depending on the complexity of the biological system – not all 

experimental factors are amenable to standardisation. The Microarray Gene 

Expression Data Group (MGED group) addressed these problems and released 

relatively strict guidelines for the submission of microarray data for publication 

(Minimum Information About a Microarray Experiment (MIAME)) (Anonymous 

2002; Brazma et al. 2001). Since that time, an increasing number of journals 

insist on compliance with these rules as well as on the release of the data to a 

repository such as ArrayExpress or GEO. The introduction of common standards 

for data input, annotation, information about the experimental design and data 

normalisation should assist with providing the resulting data in a comprehensible 

format (Mah et al. 2004). This will be extremely helpful in removing much of the 

confusion that occurs when attempting to interpret microarray data (Barrett and 

Kawasaki 2003). 

 

Furthermore, the question is raised whether results generated from different 

platforms (oligo and cDNA) are comparable. Mah et al. (2004) evaluated whether 

the results obtained by using oligo and cDNA microarrays match with regard to 

the genes identified as expressed using RNA obtained from human colonic 

mucosa. Whilst the overlap of the results of the two platforms was just moderate 

with respect to the tagging of genes, the expression levels obtained for genes 

represented on both microarrays did not match at all (Mah et al. 2004). 

Differences between the two platforms in all stages of the experiment, from 

platform design, experimental conditions, spot quantitation, to the processing of 

data may have contributed to this divergence of the results (Mah et al. 2004). 

Mah et al. (2004) thus concluded that the platforms may be too different to be 

expected to give global expression results that can be directly correlated. 

Generally, even if the same platforms are compared, there might, nevertheless, 

be substantial differences between experiments such as, for example, slight and 

often unknown differences between materials and methods practiced in different 

laboratories (Mah et al. 2004). This conclusion is also supported by the results of 

this thesis. Initially, the data obtained from the cDNA microarray could be 

validated by qRT-PCR when using the same materials. Later, when repeating 

parts of the experiment with other probe materials, great discrepancies were 
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observed. This meant that when using the same cell line several subcultures 

later, or even with a different cell line, the transcript abundances of selected 

genes obtained by qRT-PCR diverged when compared to those achieved with the 

microarray. 

  

Guidelines such as MIAME and repositories such as ArrayExpress or GEO 

guarantee that the presentation of microarray data is in a standard format that 

makes the design of microarray experiments comprehensible to other working 

groups (Mah et al. 2004). However, even when these tools are employed, they 

do not eliminate the difficulties with respect to reproducibility of results, as 

described above. Therefore, comparisons between different experiments have to 

be examined very critically.  

 

 

3.1.2.2 Quantitative realtime-PCR (qRT-PCR) 

 

In recent years it has become good experimental practice to validate the 

reliability and reproducibility of microarray experiments by quantitative realtime- 

PCR (qRT-PCR). qRT-PCR is an appropriate method for the validation of 

expression data because it is quantitative, fast and needs 1000-fold less RNA 

than other assays (Rajeevan et al. 2001). It has been estimated that large parts 

of expression changes observed with microarrays are often different when 

compared to those of other technologies (e.g. qRT-PCR) (Tarca et al. 2006). 

Generally, microarray data show reduced fold-changes in comparison to those 

derived from qRT-PCR (Tarca et al. 2006). Alike, Rajeevan et al. (2001) 

demonstrated differences in expression levels measured with qRT-PCR when 

compared to the microarray data: out of 14 validated and confirmed differentially 

expressed genes, 10 genes showed higher expression than in the microarray. In 

the comparison of qRT-PCR results to Arabidopsis Affymetrix chips, qRT-PCR 

proved to be much more sensitive (Czechowski et al. 2004). With the Affymetrix 

chip, transcript levels were estimated to be about 100 times lower compared to 

the qRT-PCR results. In addition, the array data were less accurate especially 

with respect to low expressed genes (Czechowski et al. 2004). In the study of 

Yuen et al. (2002), a commercial oligo as well as a custom cDNA microarray for 

the endocrine cell line LβT2 were compared with regard to measurement 
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accuracy. It could be demonstrated that both platforms underestimate the 

relative changes of mRNA expression when compared to qRT-PCR (Yuen et al. 

2002). For cDNA microarrays the fold-changes were 250-fold less than the fold- 

changes observed with qRT-PCR (Yuen et al. 2002). Accordingly, microarrays are 

more suitable for measuring ratios than absolute expression levels (Tarca et al. 

2006).  

In particular where qRT-PCR is applied for validation of results obtained by other 

technologies and because of its sensitivity, it becomes apparent that special 

attention should be directed to accuracy and robustness. Therefore, the overall 

method, or rather the most decisive steps of the technique, should be critically 

analysed for possible improvements. One crucial factor is the choice of reference 

genes, because the stability of their expression is crucial to the outcome of the 

experiment. Initially in many studies (e.g. Chiappetta et al. 2009; Castellarin et 

al. 2007; Domoki et al. 2006), potential reference genes were selected on the 

basis of their predicted housekeeping function without further validation of their 

actual expression stability. Subsequently it became commonplace to establish 

only one reference gene for normalisation (Vandesompele et al. 2002). However, 

this practice increases the risk of obtaining biased or false results (Vandesompele 

et al. 2002; Brunner et al. 2004; Pfaffl et al. 2004) because it has been revealed 

that even the transcript abundances of housekeeping genes may vary in 

response to different experimental conditions (Nicot et al. 2005; Jain et al. 2006; 

Hong et al. 2008; Silveira et al. 2009). Hence, the only conclusion could be to 

validate the adequacy for every reference gene in each experiment. Furthermore, 

the results from a single reference gene should not be regarded as being 

reliable: during recent years, normalisation with multiple reference genes has 

become the accepted standard. This is especially apparent with regard to the 

great number of publications focusing on this subject, particularly over the last 

two to three years (e.g. Tong et al. 2009; Artico et al. 2010; Lee et al. 2010; 

Maroufi et al. 2010).  

 

During the course of this research, the established qRT-PCR technology has been 

improved with respect to the application of reference genes. For validation of the 

microarray results (Hoenemann et al. 2010) (Section 2.1), as well as in the study 

about expression of putative glutathione S-transferase genes (Hoenemann et al., 

submitted in July 2011, Section 2.3.1), the normalisation of qRT-PCR was carried 
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out using only a single reference gene (Ef-tu). This one was selected because of 

its known suitability as a housekeeping gene and as it had displayed stable 

expression levels in the microarray experiments. It should be noted that, until 

then, stability of expression levels had not been proven by qRT-PCR. Because of 

the increasing number of publications introducing the use of normalisation 

factors based on multiple reference genes, this practice had been reconsidered. 

Vandesompele et al. (2002) recommended that potential reference genes should 

be validated specifically as they may be suitable under certain special conditions 

but this may not be transferable to other conditions and therefore should be 

validated individually. This has been borne out by our study (Hoenemann and 

Hohe 2001, Section 2.2), because of all the potential reference genes examined, 

Ef-tu proved to be the least reliable. 

 

 

3.1.2.3 Complexity of the biological system 

 

Another important methodological constraint of the studies in this thesis is also 

caused by the complexity of the biological system. This complexity can be 

regarded on several levels: 

1. The complexity of the ‘embryogenesis’ developmental process itself 

2. A multitude of variable factors in the microarray experiment 

3. The instability of the system throughout the study. 

 

The pattern formation in the early plant embryo have been analysed at the 

molecular level in several studies (e.g. De Smet et al. 2010; Peris et al. 2010; 

Tebbji et al. 2010). Peris et al. (2010) reviewed formative events during plant 

embryogenesis and discussed the molecular mechanisms regulating these 

processes focusing on Arabidopsis. De Smet et al. (2010) mentioned, amongst 

others, the important role of various phytohormones in embryogenesis but 

stressed in particular that their intricate cross-talk should be clarified in more 

detail. In general, the study of De Smet et al. (2010) brought the research a step 

forward by elucidating on some basic regulatory processes that control 

embryogenesis in Arabidopsis. Nevertheless, there are still many aspects left to 

investigate before the developmental and physiological mechanisms that control 

embryogenesis are better or even completely explained (De Smet et al. 2010). 
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Important developmental processes in this context are, for example, the 

establishment of polarity, specification and maintenance of cell identities, 

determination of the organismal axes and the control of orientation of cell 

division planes (De Smet et al. 2010). Although these studies focused on zygotic 

embryogenesis, the discussion about complexity is compatible with the current 

research.   

 

A consolidated view of all the factors analysed indicates how complex the 

biological system was that has been dealt with in this study. A large number of 

different factors influenced the experiment, the most significant are: 

• different levels of ploidy, 

• different media compositions, 

• various developmental stages, 

• somatic as well as zygotic embryos and 

• developmental aberrations (loss of the ability to develop torpedo-shaped 

embryos; loss of embryogenic competence). 

 

This multitude of factors clearly reveals the basic reasons for the complexities. 

When drawing comparisons, it was observed that more than one factor had 

changed (e.g. ploidy and developmental aberrations).   

 

Moreover, one has to take into account the instability of the system throughout 

the studies: a change of the ploidy level as well as the loss of the ability to 

develop torpedo-shaped embryos occurred spontaneously, just shortly before the 

beginning of the experiments. In addition, the embryogenic competence varied 

during the course of a study, as had been described in other systems as well. 

Changes in embryo shape have already been described by Hadfi et al. (1998) in 

zygotic Brassica juncae embryos and they concluded that this represented 

arrests in different auxin-regulated steps. In Triticum aestivum callus cultures, 

Jiménez and Bangerth (2001) observed a loss of embryogenic competence due 

to prolonged culture times that occurred concomitantly with a reduction in free 

IAA concentrations, comparable to concentrations detected in non-embryogenic 

callus. In Coffea arabica, Etienne and Bertrand (2003) observed increasing 

somaclonal variations with cell suspension age. Zhang et al. (2006) measured 
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the DNA-content of 35 citrus calli of different genotypes over a period of four 

years and demonstrated that 71.4 % of the genotypes showed a progressive 

increase in cells with varied DNA content but correlation analysis suggested that 

there was no significant correlation between the percentages of cells with varied 

DNA content and embryogenic competence. This result corresponds with the data 

presented by Borchert et al. (2007) in Cyclamen, demonstrating that also 

embryos with altered DNA content might have the ability to develop into adult 

plants.  

Correspondingly, the complexity of this biological system impedes the 

reproducibility of results, especially if experiments are repeated with other 

genotypes months, or even years, later. Thus, it appears that it is not 

exceptional that even if the microarray could be reproduced with qRT-PCR when 

using the same samples, as shown in Hoenemann et al. (2010), this was not 

possible when repeating parts of the experiment with a different cell line or even 

with the same cell line only several subcultures later. The factors discussed 

probably contribute to the divergence of results obtained for analyses of 

transcript abundances of genes of putative gluthatione S-transferases 

(Hoenemann et al., submitted in July 2011, Section 2.3.1) and pectin modifying 

enzymes (Hoenemann et al., submitted in October 2011 Section 2.3.2) by qRT-

PCR compared to those achieved with the microarray. 

 

 

3.2 Suitability of the approach for in vitro-protocol     

optimisation 

 

3.2.1 Summary of results 

 

Two of the hypotheses for improving the process of s.e. in Cyclamen were 

analysed in more detail. As one of the major problems in the Cyclamen-s.e.-

system concerns the development of non-embryogenic cell lines, genes that were 

differentially expressed in the comparison of embryogenic and non-embryogenic 

cell lines were chosen.  
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The first approach focused on glutathione S-transferases (GST) to evaluate the 

hypothesis that GST homologues might be crucial for early somatic embryo 

development. Accordingly, this hypothesis had to be validated by the screening 

of a different cell line and under different conditions. Special attention was paid 

to the responsiveness of the transcript abundances of five putative GST 

homologues to auxin regulation and abiotic stress during the transfer to a 

medium free of plant growth regulators (PGR). By presenting the experimental 

procedure, the flow chart shown in Figure 1 of Section 2.3.1 illustrates that 

various experimental conditions and dates of sampling were compared. However, 

this detailed analysis with a cell line other than that used in the array could not 

validate the initial observations of the microarray with regard to the 

responsiveness of the expression of putative GST homologues to auxin 

supplementation. Rather, it seems to be responsive to mechanical or drought 

stress caused by the subculture procedure. 

 

The second approach concentrated on genes coding for pectin modifying 

enzymes to evaluate the hypothesis of an impact of pectin-mediated cell 

adhesion on the embryogenic competence of a cell line. Again, the detailed 

analysis of this hypothesis using newly established cell lines could not validate 

the original hypothesis. Already the evaluation of callus texture and embryogenic 

competence, as presented in Table 2 of Section 2.3.2, showed that the 

anticipated correlation between callus texture and embryogenic competence 

could not be proven. Likewise, gene expression analysis of four different pectin 

modifying enzymes (pectinacetylesterase, pectinesterase and two pectate lyases) 

using qRT-PCR did not confirm any correlation between transcript abundances of 

the genes of these pectin modifying enzymes and the embryogenic competence 

(see Figure 2 in Section 2.3.2). However, a correlation between the expression 

level of the putative gene of a pectinacetylesterase and callus texture had been 

revealed (Figures 4 and 5 in Section 2.3.2). 

 

Both approaches to validating hypotheses on improving or better understanding 

the process of s.e. in Cyclamen failed with regard to proving the initial 

hypothesis. Largely, the microarray results could not be reproduced when 

repeating analogous experiments with different cell lines or even with the same 

cell line after additional subcultures. Thus, even if the microarray data enabled 
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the deduction of multiple hypotheses on possible aspects for improving the 

process of s.e. in Cyclamen, selected detailed approaches could not lead to an 

improvement in the existing protocol. Likewise, it was not possible to reveal 

substantial physiological interrelationships in the process of s.e. in cyclamen. 

 

 

3.2.2 Discussion and conclusions 

 

The major aim of the project was to improve the in vitro protocol through 

targeted protocol changes based on revealing the underlying physiological 

processes by expression profiling. In summary, this ambitious aim has not been 

achieved. Although several hypotheses for optimising the existing protocol have 

been generated (Hoenemann et al. 2010, Section 2.1), the two selected for 

validation could not be proven. 

 

The complexity of the biological system has already been discussed and it is this 

crucial factor that limits the suitability of the expression profiling approach for in 

vitro protocol optimisation. In retrospect, the combination of so many variants 

was unfeasible, particularly because the number of putative genes covered by 

the microarray was comparatively small. Biological systems are generally 

complex and the reduction on single genes is accordingly problematic.  

 

Grandpierre (2005) worked on an approach to shed light on the complexity of 

biological systems. Initially, it had been reflected if perhaps just simple physical 

rules control the appearance of such outstanding complexity that has perhaps 

not been discovered until now (Grandpierre 2005). Finally, it has to be assumed 

that biology cannot be explained through physics because its genetic, 

algorythmic and symbolic information content is much higher than that of 

physics (Grandpierre 2005). Nevertheless, an aim is to develop approaches that 

can evolve theoretical biology into a science that has an exactness almost 

matching that of physics (Grandpierre 2005). 

 

Furthermore, the high level of complexity of the present system also determined 

the poor reproducibility when repeating parts of the experiments with other 

genotypes or even subcultures some time later. Indeed, the microarray 
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experiment included a multitude of different tissues but this involved mainly 

different kinds (e.g. somatic or zygotic embryo) and stages of tissues as well as 

different culture conditions (e.g. media composition or culture method) to cover 

a wide range of aspects of s.e. However, the number of different cell lines 

analysed by the microarray was relatively low and the impact of this became 

apparent when regarding the poor reproducibility of the results with other 

genotypes.   

 

The relatively low number of genes covered by the microarray genes is mainly 

due to the available technical options when starting the study with EST 

sequencing in 2004. This is also the reason for being limited to protein coding 

genes that represent the smallest part of DNA. Only 3 to 5 % of RNA is mRNA, 

whilst most of the total cytoplasmic RNA is rRNA (Fält 2006). Furthermore, a 

group of non-coding RNAs have been identified: siRNA and miRNA that can bind 

on the complementary mRNA as antisense RNA and then cause degradadation of 

the RNA or translational repression (Fält 2006). The great impact of miRNAs and 

siRNAs in plants has already been assessed by Sunkar and Zhu (2007) in their 

review focusing on this subject in plants. Current studies increasingly analyse the 

expression of miRNA and siRNA (e.g. (Schmitz and Chu 2011; Song et al. 2011; 

Yang et al. 2011; Varkonyi-Gasic et al. 2010; Zanca et al. 2010). For example, 

one of these studies analyses a correlation of the expression of several miRNA 

families with the so-called cropping syndrome that compromises the harvest of 

Rehmannia glutinosa plants (Yang et al. 2011). Potential targets of the 32 

differentially expressed miRNAs are mainly involved in transcription, plant 

development and signal transduction (Yang et al. 2011). Indeed, Song et al. 

(2011) have demonstrated that 82 % of the miRNA targets in their study were 

transcription factors (e.g. auxin-response, growth regulator factors) and that 

miRNA was the key regulator of these genes. It could be shown that miRNA 

abundances were organ specific and miRNAs regulate gene expression not only 

by mRNA cleavage but also by repression of translation (Song et al. 2011). Alike, 

Varkonyi-Gasic et al. (2010) were able to show differential expression of miRNAs 

when comparing different apple tissues. In addition, many miRNA families 

showed a line and species specificity (Varkonyi-Gasic et al. 2010). 

 



3. General Disussion 

  
 

99 

The possible involvement of RNAi processes in the generation of embryogenic 

and non-embryogenic cell lines from identical explants and the loss of 

embryogenic competence have also been suggested in Section 2.1. When 

comparing embryogenic and non-embryogenic cell cultures, a putative argonaute 

homologue was significantly up-regulated in the non-embryogenic cell line.  

 

 

3.3 Perspectives 

 
Major drawbacks of this study were the relatively small number of genes covered 

by the microarray and being limited to protein coding genes. The relative new 

technologies – next-generation sequencing (NGS) – seem to have great potential 

for overcoming these drawbacks. These new technologies have been developed 

during the last five years (Shendure and Ji 2008). According to Eckardt (2009), 

first analyses of the transcriptome in Arabidopsis using NGS were performed by 

Meyers et al. (2004) and Lu et al. (2005). Advantageously, costs for sequencing 

are reduced by two orders of magnitude and results are obtained in just a few 

days that would have previously taken months to generate using the classical 

Sanger approach (Dechamps and Campbell 2010). These platforms have become 

accessible in high dimensions and enable individual analyses (Shendure and Ji 

2008). 

Even if various approaches for NGS exist that fundamentally differ, they do 

pursue similar strategies: 

1. Shearing of DNA at random (via nebulisation or sonication) 

2. Ligation of universal adapters at both ends of the DNA fragments 

3. Immobilisation and amplification to generate clustered amplicons 

(Deschamps and Campbell 2009). 

 

Although the output is higher and costs are considerably reduced, the error rates 

of these techniques are (still) ten times higher than with Sanger sequencing 

(Deschamps and Campbell 2009). In addition, another difference compared to 

Sanger sequencing is the quality because DNA sequences produced by NGS are 

much shorter (Pop and Salzberg 2008). However, the massive output produces 

plenty of sequence data that could be used to screen for sequence errors and 

separate them from real variations (Hillier et al. 2008). The progress of these 
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new technologies took place extremely rapidly, including the development of 

robust protocols for the construction of libraries of data, new approaches for data 

analysis as well as continuously rethinking the designs of experiments (Shendure 

and Ji 2008). NGS were shown to have much potential for accelerating biological 

and biomedical research because an extensive analysis of genome, transcriptome 

and interactome is made possible through a systematic and well-priced approach 

(Shendure and Ji 2008). Direct sequencing methods such as NGS offer the 

potential for higher sensitivity (detection of more new and low-abundance 

transcripts) than conventional EST-sequencing or microarray analysis (Eckardt 

2009).  

 

The new technologies make possible the discovery of hitherto unknown DNA-

methylations, contexts and levels of the methylation as well as the observation 

of local sequence effects caused by methylation (Lister et al. 2008). The most 

essential objective of functional genomics is the understanding of regulatory 

networks that control genome activity, promoting the development of organisms 

and responses to environmental influences more than identifying and revealing 

when and where genes are expressed (Eckhardt 2009). For this purpose, 

understanding the epigenome and “small regulatory RNAs” as components of the 

transcriptome are important (Eckhardt 2009). Direct sequencing methods have 

demonstrated their usefulness in exploring these regions of the genome 

(Eckhardt 2009). Thus, NGS allowed new insights into the identification, 

biogenesis and function of “smallRNA” in various plant and animal species 

(Eckhardt 2009). Through the simultaneous study of three interrelated 

phenomena (genomic distributions of methylcytosins, smRNAs and transcripts) in 

wild type plants and mutants defective in DNA methyltransferase or 

demethylase, Lister et al. (2008) could illuminate interactions existing between 

the localisation of smRNAs and DNA methylation in Arabidopsis. This led to the 

altered transcript abundances of hundreds of genes, transposons and not-

annotated intergenic transcripts due to modifications of the DNA-methylation 

status (Lister et al. 2008). Analysis of the impact of DNA-methylation on the 

somatic embryogenesis of Medicago showed that treatment with a demethylation 

drug caused the loss of the regenerative capacity of an embryogenic line (Santos 

and Fevereiro 2002). Therefore, it was concluded that embryogenic competence 

was correlated with DNA-demethylation and that the formation of somatic 
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embryos depended on a certain level of DNA-methylation (Santos and Fevereiro 

2002). According to their own account, Harismendy et al. (2010) presented the 

first study using NGS not only for analysing coding regions but also contiguous 

genomic intervals and could therewith discover DNA variants for two candidate 

genes. Even if the study by Harismendy et al. (2010) was not to focus on plant 

biology, but instead was applied to the human body mass index, their 

conclusions, such as discovering of variants will be helpful in advancing the level 

of sensitivity in genetic studies, can be transferred to other biological systems. 

 

NGS offers much potential for drastically increasing the availibilty of sequence 

data, which is an interesting proposition, particularly for non-model plants where 

genome sequence information is absent (Desgagné-Penix et al. 2010). However, 

model plants such as Arabidopsis thaliana do not cover all plant genes. Hence, 

economically important species should be examined individually (Hsu et al. 

2011). Mardis (2008) reviewed a subset of studies using different NGS-platforms 

to evaluate their potential. He summarized that early studies already 

demonstrated the power of these new methodologies, but time and ingenuity and 

associated limiting factors will prompt the modification of genetic technologies 

(Mardis 2008). Undoubtedly, microarrays and conventional sequencing will 

continue to contribute essential information, at least in the near future (Eckardt 

2009). Through the new technology, more data, as well as new kinds of data are 

provided (Pop and Salzberg 2008). Eckardt (2009) summarized that studies such 

as that of Wang et al. (2009) using NGS for analysing the maize epigenome and 

its relationship to mRNA and smRNA transcriptomes has already demonstrated 

its usefulness. Further optimisation of costs and efficiency, as well as of the 

computer and bioinformatical analysis of the sequence data, will encourage the 

further promotion of this method (Eckardt 2009). 

 

Besides broadening the number of genes analysed by NGS technologies, for 

example, also the precise localisation of gene expression might improve the 

insights gained by expression analyses. A traditional technique in this context is 

the use of reporter genes such as GUS, GFP or luciferase fused to the promoter 

of the gene of interest. By transformation of embryogenic cultures of Arabidopsis 

thaliana with AtSERK1::GUS, (Salaj et al. 2008) were able to report on the 

precise spatial localisation of the AtSERK1 gene expression during the early 
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stages of somatic embryogenesis. Kwaaitaal and de Vries (2007) analysed the 

GUS expression of SERK1 in Arabidopsis too and were able to observe a tissue 

specific expression in the presence of 2,4-D. These examples show that these 

approaches represent useful tools for developing a better insight into the process 

because they are not only able to describe the expression level of a gene, but 

also enable the precise localisation. Clearly, this requires a functional 

transformation protocol. Another possibility for specifying the localisation of gene 

expression is by applying in-situ hybridisation. Malinowski et al. (2004) examined 

spatial and temporal expression patterns of Xyloglucan endotransglucosylase 

/hydrolase (XTH) during somatic embryogenesis in cucumbers with in-situ 

hybridisation to study their involvement in somatic embryo formation. Thus they 

were able to show the localisation of two XTH genes in different stages of 

cucumber somatic embryos and revealed that Cs-XTH1 transcripts were largely 

accumulated within the presumed cotyledon primordia of somatic embryos 

(Malinowski et al. 2004). Using this method, Morcillo et al. (2007) were able to 

investigate the expression patterns of EgAP2-1 (a transcription factor) in somatic 

and zygotic embryos of Elaeis guineensis (oil palm) in more detail. Thus, they 

revealed that EgAP2-1 expression was concentrated in proliferating tissues 

(Morcillo et al. 2007). On sunflower immature zygotic embryos (IZE), either 

organogenesis or s.e. can be induced, depending on the culture conditions 

(Thomas et al. 2004). In their study, Thomas et al. (2004) compared the spatial 

expression of a sunflower SERK of s.e. and shoot organogenesis during the 

induction phase using qRT-PCR and in situ hybridisation. Thereby, it could be 

demonstrated that IZE cultured on the organogenic medium were still able to 

form somatic embryos when transferred onto the highly embryogenic medium as 

long as SERK transcripts were accumulated in their morphogenic zone (Thomas 

et al. 2004).  

 

The combination of several methods and technologies was shown to be a 

beneficial approach for producing versatile genetic information. In their study on 

orchids, Hsu et al. (2011) used an approach that combined multiple tools (cDNA-

microarray, BAC library and bombardment assay) and thus offered a fast, easy 

and comfortable strategy for generating useful genetic information. Transient 

transformation offers information about biological processes and is a helpful tool 

for identifying the subcellular localisation of proteins (Briesemeister et al. 2010). 
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Meanwhile, Desgagné-Penix (2010) applied an integration of NGS and enhanced 

LC-MS/MS analysis to establish a deep coverage of transcriptome and proteome 

in their study on the reaction of the opium poppy (source for several 

pharmaceutical benzylisoquinoline alkaloids such as sanguinarine) on the 

treatment with a fungal inductor. Through this, they provided an effective 

platform to catalogue the components of secondary metabolisms and to identify 

the genes coding uncharacterised enzymes and thus their approach supports a 

better integration between genes, enzymes and pathway components 

(Desgagné-Penix et al. 2010).  

 

In order to understand cellular processes, it is necessary to integrate proteomic, 

gene expression and other biomolecular data (Fagan et al. 2007). Certainly, the 

linkage between the expression of a gene and its protein remains complicated 

because of post-transcriptional and translational regulations (Fagan et al. 2007). 

This also becomes apparent in the study by Griffin et al. (2002) which used an 

integrated genomic and proteomic approach in the yeast Saccharomyces 

cerevisiae growing under two different conditions. It was observed that, in many 

cases, the response measured at the mRNA level correlated with the response at 

the protein level (Griffin et al. 2002). Nevertheless, in other cases they found 

significant differences (Griffin et al. 2002).  

 

The high complexity of the represented system may result in misinterpretations 

when focusing on a small number of cell lines or genotypes. This has become 

apparent when repeating parts of the experiment with another genotype or even 

the same cell line just a few subcultures later. By analysing a multitude of 

genotypes and cell lines, their gene expression can be examined in parallel. 

Thus, the reproducibility of gene expression under a certain aspect can be 

investigated in various genotypes in parallel. Through the discovery of similarities 

in all of the analysed genotypes, general mechanisms may be uncovered that 

regulate the process of s.e. 

 
In conclusion, it can be summarised that the microarray data was useful for 

generating a number of hypotheses for optimising the s.e. protocol in cyclamen. 

However, results obtained in the microarray analysis could not be reproduced by 

subsequent detailed quantitative gene expression studies. Hence, these 
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hypotheses turned out to be unsuitable for providing approaches for improving 

protocols. However, the hypotheses generated using the microarray data that 

have not been analysed in more detail should not be altogether discarded. It is 

possible that one or another hypothesis might represent a useful basis for 

protocol improvement. However, because of the great complexity of this 

biological system, it seems more reasonable to investigate selected single 

aspects of the system with expanded genotypes as well as a greater number of 

genes. A broadening of genes can be enabled by the use of NGS technologies 

because much more sequence data will become available than was the case in 

the present approach. Furthermore, analysis of the precise localisation of gene 

expression might provide useful information. Last but not least, the integration of 

transcriptomics methods with proteomics approaches might result in producing 

more reliable data.  
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