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Vorwort des Herausgebers 
 
Die Berechnung von Erddrücken und Erdwiderständen ist ein zentrales Problem der 
Bodenmechanik, da sie bei der Lösung fast jeder grundbaulichen Fragestellung erforderlich 
ist. In den meisten Anwendungsfällen kann man in guter Näherung annähernd 
zweidimensionale Verformungszustände, d.h. einen ebenen Verzerrungszustand, unterstellen. 
Zumindest aus Sicht der Praxis ist das Problem des zweidimensionalen Erddrucks 
weitestgehend gelöst. Es existieren allgemein anwendbare Lösungen sowohl für die Größe 
des Erddrucks bzw. Erdwiderstands im Bruchzustand als auch für die Entwicklung des 
Erddrucks mit zunehmender Verschiebung des betrachteten Bauteils. Für Bauteile mit 
begrenztem Verhältnis von Breite zu Einbindetiefe kann es jedoch sinnvoll oder auch 
notwendig sein, das räumliche Erddruckproblem zu betrachten. Beim Erdwiderstand wird die 
resultierende Kraft durch die räumlichen Effekte größer. Gleichzeitig ist davon auszugehen, 
dass sich auch die Charakteristik des Kraft-Verschiebungs-Zusammenhangs durch die 
räumlichen Effekte verändert. Diese Problematik ist bislang bei weitem nicht so intensiv 
untersucht worden wie das entsprechende zweidimensionale Problem. 

Nachdem sich Herr Dr. tom Wörden mit räumlichem aktiven Erddruck befasst hatte (Heft 68 
dieser Reihe), hatte sich Herr Dr. Ghassoun die Untersuchung des dreidimensionalen 
Erdwiderstandsproblems in Sandböden zur Aufgabe gemacht. Als Untersuchungsmethode hat 
er numerische Simulationen gewählt, in denen der verschiebungsabhängige Erdwiderstand auf 
starre Wände bei unterschiedlichen Bewegungsmoden bestimmt wurde. Als Stoffgesetz hat er 
dabei Hypoplastizität gewählt, sodass er auch die durch die Druckabhängigkeit des 
Reibungswinkels (Barotropie) bedingte Abhängigkeit des Erdwiderstandsbeiwerts von der 
Wandhöhe untersuchen konnte. In diesem Sinne schließt die Arbeit auch an die Dissertation 
unseres Oberingenieurs am Institut für Geotechnik, Herrn Dr. Abdel-Rahman, an, welche 
dieser 1999 an der TU Dortmund angefertigt hatte. 

Herr Dr. Ghassoun erhält sehr interessante Ergebnisse und entwickelt daraus auch neue 
Berechnungsansätze für räumlichen Erdwiderstand. Diese Ansätze bedürfen natürlich noch 
der – insbesondere experimentellen – Validierung, stellen aber eine sehr gute Grundlage für 
weitergehende Untersuchungen dar. 

 

         M. Achmus  
 
 





 

Abstract 

The best visualization for the passive earth pressure problem can be done by observing the 
movement of a rigid wall with a spatial ratio n (n = B/H, width B, embedded depth H) against 
a soil body. The experimental results show that the value of the passive earth pressure reaches 
a  higher value at smaller values of spatial ratio n, which is defined as the spatial passive earth 
pressure Ep3D.This value decreases by increasing the spatial ratio n till it reaches a plane strain 
value at n = ∞. 

The following thesis shed a spot light on the spatial earth pressure problem which is 
considered in the calculation of many soil construction problems such as retaining walls, 
anchors plates, piles, foundations, bridge abutment and many other different cases. The spatial 
passive earth pressure in many studied cases can be calculated using guidelines and 
recommendations obtained from previous research as well as the German standard DIN 4085.  

The goal of this thesis arises from the need for more understanding about the spatial passive 
earth pressure problem under the influence of different factors which were neglected by the 
previously mentioned methods. These factors are briefly the effect of the stress level and the 
mobilization of the spatial passive earth pressure as a function of the corresponding wall 
displacement. On the other side the general factors such as soil-wall friction angle, spatial 
ratio and the initial soil density on the correction factor μ which is defined as μ=Kp3D / Kp2D. 
For this purpose, a numerically investigation of the spatial passive earth pressure behind rigid 
vertical walls was done using the FEM. The soil therefore was modeled by using the 
hypoplasticity constitutive law. This study lighted many other sides of the spatial passive 
earth pressure problem such as the form of the spatial failure body volume, the value of the 
peak displacement and the spatial stress distribution along the wall. The results emphasize 
the importance of this thesis for the development of the calculation methods, and add new 
aspects for the calculations. 

 

Keywords: spatial passiv earthpressure, FEM, German Standard DIN 4085, scale effect, 
rigid walls 

  



Kurzfassung  

Die beste Visualisierung für das Problem des passiven Erddrucks kann man aus der 
Beobachtung der Bewegung einer starren Wand (mit einem Verhältnis  n = B / H, Breite B, 
Einbindetiefe H) gegen einen Bodenkörper gewinnen. Experimentelle Ergebnisse zeigen, dass 
die Größe des Erdwiderstandes bei kleinen Verhältnissen von n einen höheren Wert annimmt. 
Dieser höhere Wert wird als räumlicher Erdwiderstand Ep3D bezeichnet. Mit größer 
werdendem Verhältnis n nimmt der Erdwiderstand ab und erreicht einen minimalen Wert für 
n = ∞, was dem ebenen passiven Fall Ep2D entspricht. 

Die folgende Dissertation beschäftigt sich mit dem Problem des räumlichen Erddrucks. Der 
bei einer Vielzahl von Fragestellungen, wie z.B. der Berechnung von Stützmauern, 
Ankerplatten, Pfählen, Fundamenten und Brückenwiderlagern berücksichtigt werden muss. 
Der räumliche Erdwiderstand kann in vielen Fällen anhand von Leitlinien und Empfehlungen 
aus früheren Untersuchungen aber auch aus der deutschen Norm DIN 4085 ermittelt werden. 

Das Ziel dieser Arbeit ergibt sich aus der Notwendigkeit ein größeres Verständnis für das 
Problem des räumlichen Erdwiderstand unter dem Einfluss verschiedener Faktoren zu 
schaffen, welches durch die zuvor genannten Methoden nicht gegeben ist. Diese Faktoren 
sind der Effekt des Spannungsniveaus und die Mobilisierung des passiven räumlichen 
Erddrucks als eine Funktion der Verschiebung der Wand. Darüber hinaus müssen andere 
Faktoren, wie die Reibung zwischen Boden und Wand, das räumlichen Verhältnis (n) und der 
Einfluss der Anfangsdichte des Boden auf den Korrekturfaktor μ,  der  als μ = Kp3D / Kp2D 
definiert ist, berücksichtigt werden. Zu diesem Zweck wurde eine numerische Studie des 
räumlichen Erdwiderstands hinter starren vertikalen Wänden mit der finiten Elemente 
Methode (FEM) durchgeführt. Dabei erfolgte die Modellierung des Bodens mit Hilfe des 
hypoplastisches Stoffgesetzes. Im Rahmen dieser Arbeit werden darüber hinaus auch noch 
viele andere Seiten des räumlichen Erdwiderstands beleuchtet, wie die Form des räumlichen 
Bruchkörpers, die Maximalverschiebung und die Spannungsverteilung entlang der Wand. Die 
Ergebnisse unterstreichen die Bedeutung dieser Arbeit für die Weiterentwicklung von 
Berechnungsmethoden und geben neu Aspekte für die Berechnungen. 

Schlagworte. räumlicher passiver Erddruck, FEM, DIN 4085, Maßstabseffekt, starre Wände 

 

 



TABLE OF CONTENTS  Page I 

Table of Contents 

 

FIGURES .................................................................................................................... V 

TABLES .................................................................................................................. XIII 

NOTATIONS AND ABBREVIATIONS ..................................................................... XV 

1  INTRODUCTION ................................................................................................. 1 

1.1  Objective and methodology ..................................................................................................................... 3 

1.2  Structure of the thesis .............................................................................................................................. 4 

2  LITERATURE REVIEW ....................................................................................... 5 

2.1  Plane Strain (2D) passive earth pressure ............................................................................................... 5 

2.1.1  Classical theories of plane strain earth pressure .................................................................................... 5 

2.1.2  Experimental Investigations on plane strain passive earth pressure .................................................... 13 

2.1.3  Passive earth pressure approach of German Standard DIN 4085 (2007) ............................................. 24 

2.1.4  Numerical Simulations for plane strain passive earth pressure ........................................................... 25 

2.2  Spatial Passive earth pressure .............................................................................................................. 31 

2.2.1  Theoretical aspects of spatial passive earth pressure ........................................................................... 32 

2.2.2  Experimental investigations of spatial passive earth pressure ............................................................. 37 

2.2.3  The German Standard DIN 4085 / OE – Standard B 4434 .................................................................. 59 

2.2.4  Numerical modeling of spatial passive earth pressure ......................................................................... 60 

3  FINITE ELEMENT MODELING ......................................................................... 71 

3.1  Introduction ............................................................................................................................................ 71 

3.2  Finite Element Program ABAQUS ....................................................................................................... 74 

3.2.1  Constitutive material law “Hypoplasticity” implemented in ABAQUS .............................................. 74 

3.2.2  Simulation of the contact surface in ABAQUS ................................................................................... 75 

4  NUMERICAL MODELING ................................................................................. 77 

4.1  Introduction ............................................................................................................................................ 77 



Page II  TABLE OF CONTENTS 

4.2  The Constitutive Model ......................................................................................................................... 77 

4.3  Estimation of the internal soil friction angle ....................................................................................... 82 

4.4  Verification of the initial stress condition ............................................................................................ 85 

4.5  Modeling Procedure ............................................................................................................................... 87 

4.6  The effect of the mesh density and the size of the discretized regions ............................................... 89 

4.7  Effect of contact algorithm .................................................................................................................... 93 

4.8  Model Verification ................................................................................................................................. 94 

5  NUMERICAL MODELING RESULTS ................................................................ 97 

5.1  Introduction ............................................................................................................................................ 97 

5.2  Parallel movement ................................................................................................................................. 98 

5.2.1  Passive earth pressure at peak .............................................................................................................. 98 

5.2.2  Wall displacement at peak ................................................................................................................. 104 

5.2.3  Passive earth pressure distribution ..................................................................................................... 105 

5.2.4  Failure mechanisms ........................................................................................................................... 110 

5.3  Rotation around the top ...................................................................................................................... 116 

5.3.1  Passive earth pressure at peak ............................................................................................................ 116 

5.3.2  Wall Displacement at the peak .......................................................................................................... 121 

5.3.3  Passive earth pressure distribution ..................................................................................................... 122 

5.3.4  Failure mechanism by rotation around the top .................................................................................. 125 

5.4  Rotation around the toe ....................................................................................................................... 127 

5.4.1  Passive earth pressure at peak ............................................................................................................ 127 

5.4.2  Passive earth pressure distribution ..................................................................................................... 131 

5.4.3  Failure mechanism by rotation around the toe mode ......................................................................... 133 

5.5  Frictional wall ...................................................................................................................................... 133 

6  EVALUATION OF THE NUMERICAL RESULTS ........................................... 139 

6.1  Introduction .......................................................................................................................................... 139 

6.2  Comparison of the three types of movement ..................................................................................... 139 

6.3  Displacement at peak ........................................................................................................................... 146 

6.4  Correction factor µ .............................................................................................................................. 153 



TABLE OF CONTENTS  Page III 

6.5  The scale effect ..................................................................................................................................... 158 

6.6  Mobilization function for the passive earth pressure ........................................................................ 161 

7  SUMMARY AND CONCLUSION ..................................................................... 171 

8  REFERENCES ................................................................................................ 175 

ANNEX: MORE RESULTS FOR THE SPATIAL PASSIVE EARTH PRESSURE . 183 

 

 





FIGURES  Page V 

Figures 

 

Figure 1-1:  Rigid wall displacement modes relative to backfill ....................................................................... 1 

Figure 1-2:  Earth pressure E as a function of wall displacement U by parallel movement [31] ...................... 2 

Figure 2-1  Acting forces by earth pressure using Coulomb’s wedge supported by 
a smooth wall (δ = 0) ..................................................................................................................... 5 

Figure 2-2:  Coulomb solution for an inclined backfill surface and granular material ...................................... 8 

Figure 2-3:  Rankine passive earth pressure theory [68] ................................................................................... 9 

Figure 2-4 :  Rankine’s theory in Mohr’s circles .............................................................................................. 10 

Figure 2-5:  Log spiral failure mechanism (Duncan and Mokwa [28]) ........................................................... 11 

Figure 2-6:  Coefficients for active and passive earth pressure using log spiral method [45] ......................... 12 

Figure 2-7:  Numerical and experimental results for horizontal earth pressure load ۶ as a function 
of the wall displacement U according to [47] .............................................................................. 14 

Figure 2-8:  Schematic cross section of the model developed by Vogt [90] ................................................... 15 

Figure 2-9:  Earth pressure coefficient as a function of relative displacement [90] ........................................ 16 

Figure 2-10:  The earth pressure distribution along the wall depending on the relative 
displacements [90] ....................................................................................................................... 17 

Figure 2-11:  Earth pressure coefficient as a function of relative displacement for sandy soil 
(D = 65 %) with different values of soil-wall friction angle δ [48] ............................................. 18 

Figure 2-12:  Dimensions and the setup of passive earth pressure model [30] .................................................. 19 

Figure 2-13:  Earth pressure distribution measured by Fang et al. [30] ............................................................. 20 

Figure 2-14:  Mobilizing approach for passive earth pressure coefficient as a function of relative 
displacement for medium dense sand (D = 50 %) [8] .................................................................. 22 

Figure 2-15:  Mobilization function for passive earth pressure vs. relative displacement [4] ........................... 23 

Figure 2-16:  Stress level effect on the normalized passive earth pressure load for dense sand [4] .................. 24 

Figure 2-17:    2D passive earth pressure for nonlinear failure curve (vertical wall and horizontal 
ground surface) [31] .................................................................................................................... 24 

Figure 2-18:  The mesh of the FEM model [47] ................................................................................................ 26 

Figure 2-19:  Geometrical mesh model used for earth pressure problem [23]. ................................................. 27 

Figure 2-20:  Earth pressure using the different constitutive laws a) non-dilatant b) with dilatantcy 
c) parallel and rotation movement (non-dilatant) by Christian [23] ............................................ 27 

Figure 2-21:  Earth pressure results by Schweiger [75]. .................................................................................... 28 

Figure 2-22:  A comparison for earth pressure stress distribution results for different modes of 
movement between Shields with Tolunay and Chang [22]. ........................................................ 29 

Figure 2-23:  FEM mesh for upper-lower bound method for a model of the passive earth pressure for 
a vertical wall α = 0 with horizontal ground surface β = 0 [77] ................................................... 29 



Page VI  FIGURES 

Figure 2-24:  Results of upper-lower bound method for the passive earth pressure coefficient as a 
function of soil friction angle φ and wall-soil friction angle δ [77] ............................................. 30 

Figure 2-25:  Earth pressure coefficient vs. relative displacement by Widuliriski [97] .................................... 30 

Figure 2-26:  Mesh geometry for FEM test [3] ................................................................................................. 31 

Figure 2-27:  Numerical and experimental results [3] ....................................................................................... 31 

Figure 2-28:  Blum’s failure surface for spatial passive earth pressure [10] ..................................................... 32 

Figure 2-29:  Comparisons of measured and computed load deflection curves by Duncan and 
Mokwa [28] ................................................................................................................................. 33 

Figure 2-30:  Hyperbolic horizontal load deflection relationship used by Duncan and Mokwa [28] ................ 34 

Figure 2-31:  Failure mechanism upper-bound method [80] ............................................................................. 36 

Figure 2-32:  Comparison between 3D passive earth pressure coefficients for different blocks M1, Mn 
and Mnt for different spatial ratios B/H [80]................................................................................. 37 

Figure 2-33:  Possibility of the boundary conditions for planar failure mechanism by considering 
active and passive pressure [59] .................................................................................................. 38 

Figure 2-34:  (A) Earth pressure distribution (B) Passive earth pressure on anchor plate [17] ......................... 39 

Figure 2-35:  Factor ωR [91] .............................................................................................................................. 44 

Figure 2-36:  Geometry and load in the failure body [25] ................................................................................. 44 

Figure 2-37:  Ideal failure body at the upper face surface by Colling [25] ........................................................ 45 

Figure 2-38:  Experimental apparatus made by Ovesen [58] ............................................................................ 46 

Figure 2-39:  Geometrical parameters for anchor slab with limited height and limited length [58] .................. 47 

Figure 2-40:  (A) Vertical and horizontal movement related to the measured load  (B) Passive earth 
pressure load as function of the wall dimensions [103] [104] ..................................................... 48 

Figure 2-41:  Experimental apparatus for passive earth pressure problem [43]. ............................................... 49 

Figure 2-42:  Experimental apparatus for passive earth pressure problem [44] ................................................ 50 

Figure 2-43:  Comparisons between approaches of Weissenbach, Brinch Hansen and Kaercher [43] ............. 51 

Figure 2-44:  Stress distribution for earth pressure at peak along the wall at corner and middle [39] .............. 53 

Figure 2-45:  Description and Mechanism of experimental model by Al Diban [2] ......................................... 54 

Figure 2-46:  Neuberg experimental apparatus [56] .......................................................................................... 55 

Figure 2-47:  Plate laterally pressed into the tunnel side. Left: side view; Right: cross section [53] ................ 55 

Figure 2-48:  Finite element mesh used in the simulations of the model [53] ................................................... 56 

Figure 2-49:  Experimental and FEM results a) for DD sand b) for OO sand [53] ........................................... 56 

Figure 2-50:  Earth pressure experimental test [65]. ......................................................................................... 58 

Figure 2-51:  Experimental Mobilization approaches for the passive earth pressure (M) due to 
relative displacement (λ) [65] ...................................................................................................... 58 

Figure 2-52:  DEM model [56] .......................................................................................................................... 61 



FIGURES  Page VII 

Figure 2-53:  Mobilization functions in relation to the compactness of the packing [56] ................................. 62 

Figure 2-54:  Stress distribution at different displacement [56] ........................................................................ 62 

Figure 2-55:  FEM and experimental measurement results for the wall horizontal movement along 
the total height of the excavation’s wall [42]. .............................................................................. 64 

Figure 2-56:  FEM and experimental results for the passive earth pressure distribution along the 
embedded depth [42] ................................................................................................................... 64 

Figure 2-57:  Comparison of the passive earth pressure mobilization approach as a function of 
relative displacement between Besler, Neuberg and Jung [42] ................................................... 65 

Figure 2-58:  Mobilization function of Subgrade coefficient and earth pressure distribution [42] ................... 65 

Figure 2-59:  FEM Model using FLAC software [7] ......................................................................................... 66 

Figure 2-60:  Spatial passive earth pressure for different friction angles [7] ..................................................... 66 

Figure 2-61:  Surface plane of the failure body at peak as a function of the friction angle ϕ [7] ...................... 67 

Figure 2-62:  Correction factor µ for passive earth pressure [89] ...................................................................... 68 

Figure 2-63:  Correction factor of the spatial passive earth pressure coefficient Kp3D/Kp2D as a 
function of the spatiality ratio B/H [89]. ...................................................................................... 69 

Figure 2-64:  Representation of the relative magnitude of the velocity fields obtained in determining 
soil weight passive earth pressure coefficients for B/H=1 for φ = 15°, 30°and 40° [89]. ............ 69 

Figure 4-1:  Experimental triaxial test results for dense Karlsruhe sand [46] ................................................. 79 

Figure 4-2:  Mesh element for the numerical model of the soil direct shear test ............................................. 82 

Figure 4-3:  Mesh element at the failure step after shearing ............................................................................ 83 

Figure 4-4:  Reaction Force in the horizontal direction for dense sand (e0 = 0.55) by different 
vertical stresses (σv = 100, 200 and 400 kN/m2) .......................................................................... 84 

Figure 4-5:  Reaction Force in the horizontal direction for vertical stress σ2 = 100 kN/m2 ............................. 84 

Figure 4-6:  Mohr Shear stress envelope for three different initial void ratios (e0 = 0.55, 0.65, 0.75) ............ 85 

Figure 4-7:  The result of the vertical and horizontal stresses due to the FEM oedometer 
compression test........................................................................................................................... 86 

Figure 4-8:  Oedometer compression test results for the strain as a function of the vertical 
stresses σv .................................................................................................................................... 87 

Figure 4-9:  Geometrical model for spatial passive earth pressure .................................................................. 88 

Figure 4-10:  Finite element mesh for spatial passive earth pressure ................................................................ 89 

Figure 4-11:  The model with the different lengths the heights which are defined in displacement 
directions ..................................................................................................................................... 89 

Figure 4-12:  Earth pressure coefficient Kph for three different models with mesh lengths by 80 m, 
100 m and 120 m ......................................................................................................................... 90 

Figure 4-13:  Finite element model using the three different meshes. Respectively from the top; 
medium, fine and very fine mesh. ................................................................................................ 91 

Figure 4-14:  Passive earth pressure coefficient of a wall with B = 20 m and H = 10 m for dense sand .......... 92 



Page VIII  FIGURES 

Figure 4-15:  Passive earth pressure coefficient for a wall B = 20 m H = 10 m in medium dens sand ............. 93 

Figure 4-16:  Passive earth pressure for two different interface approaches (node to surface and 
surface to surface, n=5, H = 10 m, eo = 0.55, parallel movement) ............................................... 94 

Figure 4-17:  Passive earth pressure coefficient as a function of the wall displacement for parallel 
movement (H = 10 m, n = 1). ...................................................................................................... 95 

Figure 5-1:  Passive earth pressure coefficient as function of the relative displacement (n = 1, 
B = 10 m, H = 10 m) .................................................................................................................... 99 

Figure 5-2:  Passive earth pressure coefficient as function of the relative displacement U/H 
(H = 10 m, e0 = 0.55) ..................................................................................................................100 

Figure 5-3:  Correction factor µ as function of spatial ratio n=B/H (H = 10m) ..............................................100 

Figure 5-4:  Definition of the imaginary width B0 and height H0 with respect to the dimensions of 
the failure body ...........................................................................................................................104 

Figure 5-5:  Relative displacement of the maximum value at the peak Up/H as a function of the 
spatial ratio n = B/H (wall height H = 10 m) ..............................................................................105 

Figure 5-6:  Horizontal passive stress distributions at peak state in the symmetric plane (x = 0.5 m) 
for a wall with H = 10 m and B = 10 m (n = 1) ..........................................................................106 

Figure 5-7:  Stress distributions at peak state in the symmetric plane (x = 0.5 m) for different spatial 
ratios n (e0 = 0.55) .......................................................................................................................107 

Figure 5-8:  Stress distributions in the symmetric plane at different displacements for a wall of 
spatial ratio n=1 (x = 0.5 m, e0 = 0.55)........................................................................................108 

Figure 5-9:  Path geometry along the wall with width B = 50 m and height H = 10 m (x denotes the 
horizontal distance of the path from the plane of symmetry) .....................................................109 

Figure 5-10:  Horizontal stress distributions by peak state eph at different distances x of symmetric 
plane at x = 0.5 (B = 50 m, H = 10 m,e0 = 0.55) .........................................................................109 

Figure 5-11:  Vector plot of displacements at peak state for parallel movement (H = 10.0 m, n = 1, 
eo = 0.55).....................................................................................................................................110 

Figure 5-12:  Distribution of horizontal displacements (U2) at peak state along a line at ground 
surface perpendicular to the moved wall for parallel movement (n = 1 and 5, e0 = 0.55) ..........111 

Figure 5-13:  Void ratio e of the soil at the peak state for parallel movement (n = 1, e0 = 0.55) ......................111 

Figure 5-14:  Void ratio e along lines perpendicular to the moved wall with different depths at the 
peak state for parallel movement (n = 1, e0 = 0.55) ....................................................................112 

Figure 5-15:  Side view of failure body approximately at peak state for two different walls (n = 1 and 
5, e0 = 0.55) .................................................................................................................................113 

Figure 5-16:  Plan view of failure body approximately at peak state for two different walls (n = 1 and 
5, e0 = 0.55) .................................................................................................................................113 

Figure 5-17:  Side view of failure body at the peak state for a wall of n = 1 and different soil densities 
respectively from left to right: dense sand e0 = 0.55, medium sand e0 = 0.65 and loose 
sand e0 = 0.75 ..............................................................................................................................114 



FIGURES  Page IX 

Figure 5-18:  Plan view of failure body at peak state for a wall of n = 1 and different soil densities 
respectively from top to bottom: dense sand e0 = 0.55, medium dense sand e0 = 0.65 and 
loose sand e0 = 0.75 .....................................................................................................................115 

Figure 5-19:  Passive earth pressure coefficient as function of relative displacement (n = 1, 
B = 10 m / H = 10 m) ..................................................................................................................116 

Figure 5-20:  Passive earth pressure coefficient as function of relative displacement U/H (H = 10 m, 
e0 = 0.55) .....................................................................................................................................117 

Figure 5-21:  Correction factor µ as function of spatial ratio n=B/H (H = 10 m) .............................................118 

Figure 5-22:  Relative displacement of the maximum value at the peak Up/H as a function of the 
spatial ratio n (wall height H = 10 m) .........................................................................................121 

Figure 5-23:  Distribution pf passive earth pressure coefficient Kph as a function of relative 
displacement (n = 1, e0 = 0.55) ...................................................................................................122 

Figure 5-24:  Horizontal passive stress distributions at peak state in the symmetric plane (x = 0.5 m, 
n = 1) ...........................................................................................................................................123 

Figure 5-25:  Stress distributions at peak state in the symmetric plane for different spatial ratios n 
(x = 0.5 m, e0 = 0.55) ..................................................................................................................124 

Figure 5-26:  Stress distributions in the symmetric plane at different displacements for a wall of 
spatial ratios n = 1 (x = 0.5 m, e0 = 0.55) ....................................................................................125 

Figure 5-27:  Vector plot at the failure state for rotation around the top (H = 10.0m, n = 1, e0 = 0.55) ...........126 

Figure 5-28:  Horizontal displacement distribution at the failure state by peak state for rotation 
around the top movement ( H = 10.0m, n = 1,e0= 0.55) .............................................................126 

Figure 5-29:  Void ratio e of the soil at the peak state for rotation around the top (n = 1, e0 = 0.55) ...............127 

Figure 5-30:  Passive earth pressure coefficient as function of relative displacement U/H 
(H = 10 m,e0 = 0.55) ...................................................................................................................128 

Figure 5-31:  Correction factor µ as function of spatial ratio n (H = 10 m) .....................................................128 

Figure 5-32:  Stress distributions at peak state in the symmetric plane (x = 0.5 m) for different spatial 
ratios n (e0 = 0.65) .......................................................................................................................131 

Figure 5-33:  Stress distributions in the symmetric plane at different displacements for a wall of 
spatial ratios n = 1 (x = 0.5 m, e0 = 0.55) ....................................................................................132 

Figure 5-34:  Void ratio e of the soil at the peak state for rotation around the toe (n=1, e0=0.55) ...................133 

Figure 5-35:  Passive earth pressure coefficient as function of relative displacement for different soil- 
wall friction angles δ (e0 = 0.65 for n = 1 and e0 = 0.55 for n = ∞, H = 10 m) ...........................134 

Figure 5-36:  FEM Mesh for2D passive earth pressure using PLAXIS ...........................................................135 

Figure 5-37  Passive earth pressure coefficient as a function of soil wall friction angle δ for PLAXIS 
and ABAQUS and German standard 4085 [31]. .........................................................................136 

Figure 5-38  Correction factor µ as function of spatial ratio n (e0 = 0.55, H = 10 m) for different wall 
friction angles .............................................................................................................................137 

Figure 5-39:  Top view for the failure body volume at peak state for different soil wall friction angles 
for dense sand (e0 = 0.55) ............................................................................................................138 



Page X  FIGURES 

Figure 5-40:  Side view for the failure body volume at peak state for different the soil wall friction 
angles for dense sand (e0 = 0.55) ................................................................................................138 

Figure 6-1:  Kph as a function of the initial void ratio e0 (n= 1) ......................................................................140 

Figure 6-2:  Kph as a function of the initial void ratio e0 (n= 2) ......................................................................141 

Figure 6-3:  Kph as a function of the initial void ratio e0 (n= 5) ......................................................................142 

Figure 6-4:  Kph as a function of the initial void ratio e0 (n= ∞) .....................................................................143 

Figure 6-5:  Passive earth pressure coefficient Kph as function of the relative displacement by 
different modes of movement (n = 1, B = 10 m / H = 10 m, e0 = 0.55) ......................................144 

Figure 6-6:  Factor Ftop as a function of the spatial ratio n .............................................................................145 

Figure 6-7:   Factor Ftoe as a function of the spatial ratio ................................................................................146 

Figure 6-8:  An illustration of relative peak displacement Up/H as a function of spatial ratio 
(H = 10 m, e0 = 0.55) ..................................................................................................................147 

Figure 6-9:  Relative displacement at the peak Up/H as a function of the spatial ratio n (H = 10 m) ............148 

Figure 6-10:  Factor FU-top as a function of the spatial ratio n ...........................................................................148 

Figure 6-11:  Comparison of relative displacement at peak Up/H (n = 1, H = 10 m) between FEM 
results and the German standard DIN4085 .................................................................................149 

Figure 6-12:  The relative displacement as a function of relative density according to the German 
standard DIN 4085 and FEM results (e0 = 0.55, 2D case) ..........................................................150 

Figure 6-13:  FEM results and analytical function of Equation [6.5] as function of spatial ratio n ..................152 

Figure 6-14:  Correction factor µ as function of spatial ratio n (e0 = 0.55) – rotation around top ....................153 

Figure 6-15:  Correction factor µ as function of spatial ratio n (e0 = 0.55) – parallel movement .....................153 

Figure 6-16:   Correction factor µ as function of spatial ratio n (e0 = 0.55, H = 10 m) for different wall 
friction angles – parallel movement ............................................................................................154 

Figure 6-17:   Correction factor µ by FEM-ABAQUS, Ramanso and Antäo [89] and by Benmebarek 
[7] ...............................................................................................................................................155 

Figure 6-18:  Constants D and F as function of the void ratio ..........................................................................155 

Figure 6-19:  Correction factor µ as function of spatial ratio n for FEM results and analytical function 
of Equation [6.11] (H=10m) .......................................................................................................157 

Figure 6-20:  Passive earth pressure coefficient Kph as function of the relative displacement for 
different wall dimensions (n = 1, e0 = 0.55) ................................................................................158 

Figure 6-21:  Passive earth pressure coefficient Kph as function of the embedded height H (e0=0.55) ............159 

Figure 6-22:  Passive earth pressure coefficient Kph as function of the embedded height H (e0=0.65) ............159 

Figure 6-23:  Factor FH as function of the spatial ratio n (F5, F15) ....................................................................160 

Figure 6-24:  Passive earth pressure coefficient as function of the embedded depth H (FEM results 
and mobilized function, n = 1) ....................................................................................................161 

Figure 6-25:  Factor λ and the passive earth pressure coefficient Kph as a function of U/UP (n=1, 
e0=0.55).......................................................................................................................................162 



FIGURES  Page XI 

Figure 6-26:  Factor λ as a function of U/Up (n = 1, H = 10 m, e0 = 0.55) .......................................................163 

Figure 6-27:  Factor λ as a function of U/Up (n = 1, H = 10 m) .......................................................................163 

Figure 6-28:  Factor λ as a function of U/Up (n = 1, e0 = 0.55) parallel movement ..........................................164 

Figure 6-29:  Calculated constant A as function of the spatial ratio n ..............................................................164 

Figure 6-30:  Factor λ as a function of U/Up from FEM results and from the analytical function of 
Equation [6.7] (e0 = 0.55) ...........................................................................................................165 

Figure 6-31:  Factor λ as a function of U/Up from FEM results, after Neuberg and from the analytical 
function (e0 = 0.55) .....................................................................................................................166 

Figure 6-32:  Factor λ as a function of U/Up (e0 = 0.55) ...................................................................................167 

Figure 6-33:  Factor λ as a function of U/Up for FEM results and analytical function (n = 1, e0 = 0.55) .........167 

Figure 6-34:  Factor λ as a function of U/Up from FEM results and the analytical function (e0 = 0.55) ..........168 

Figure 6-35:  Factor λ as a function of U/Up (e0 = 0.55) ...................................................................................168 

Figure 6-36:  Factor λ as a function of U/Up (H = 10 m, n = 1) .......................................................................169 

Figure 6-37:  Factor λ as a function of U/Up for FEM results and analytical function (Factor A = 3, 
e0 = 0.55).....................................................................................................................................169 

 





TABLES  Page XIII 

Tables 

 

Table 2-1:  Constants for the mobilization function in DIN4085 ................................................................... 25 

Table 2-2:  Example for hyperbolic model parameters [28] .......................................................................... 35 

Table 2-3:  2D passive earth pressure coefficients by Streck [93] ................................................................. 41 

Table 2-4:  Results of Ovesen for infinite anchor at ground surface .............................................................. 47 

Table 2-5:  Experimental set up parameters ................................................................................................... 48 

Table 4-1:  Index properties of Karlsruhe medium sand [37] [38] ................................................................. 78 

Table 4-2:  Input Parameters for Hypoplastic material law, Karlsruhe Sand [37] [38] .................................. 79 

Table 4-3:  Soil friction angle φ as function of the soil densities .................................................................. 85 

Table 4-4:  Earth pressure at rest vs. initial void ratio .................................................................................... 86 

Table 4-5:  Input parameters for primary stress state ..................................................................................... 87 

Table 4-6:  Passive earth pressure for three different meshes with (B = 20 m, H = 10 m, eo = 0.55) ............ 92 

Table 4-7:  Passive earth pressure for three different meshes (B = 20 m, H = 10 m, eo = 0.65) ..................... 93 

Table 4-8:  Passive earth pressure for two models (n = 5, H = 10 m, eo = 0.55, parallel movement) ............ 94 

Table 4-9:  Comparison of earth pressure coefficients from numerical simulation and from the 
German Standard DIN 4085. ....................................................................................................... 95 

Table 5-1:  Numerical simulation results for parallel movement (H = 5.0 m) ..............................................101 

Table 5-2:  Numerical simulation results for parallel movement (H = 10.0 m) ............................................102 

Table 5-3:  Numerical simulation results for parallel movement (H = 15.0 m) ............................................103 

Table 5-4:  Numerical simulation results for rotation around the top (H = 5.0 m) ........................................119 

Table 5-5:  Numerical simulation results for rotation around the top (H = 10.0 m) ......................................119 

Table 5-6:  Numerical simulation results for rotation around the top (H = 15.0 m) ......................................120 

Table 5-7:  Dependence of the correction factor μ and the passive earth pressure coefficient Kph on 
the absolute height H of the wall (for a spatial ratio n = 2) ........................................................120 

Table 5-8:  Numerical simulation results for rotation around the toe (H = 5.0 m, U/H = 0.2) ......................129 

Table 5-9:  Numerical simulation results for rotation around the toe (H = 10.0 m, U/H = 0.2) ....................130 

Table 5-10:  Numerical simulation results for rotation around the toe (H = 15.0 m, U/H = 0.2) ....................130 

Table 5-11:  The soil parameters in the PLAXIS 2D model by using hardening soil constitutive 
model ..........................................................................................................................................135 

Table 6-1:  Relative displacement as a function of the embedded depth H for (e0 = 0.55) and spatial 
ratio n = 1 and n = 2. ...................................................................................................................151 

Table 6-2:  Values of the constants D and F for the correction factor function. ...........................................156 



Page XIV  TABLES 

Table 6-3:  The constants G and J as functions of the initial void ratio e0. ...................................................161 

Table 6-4:  Constant K for different spatial ratios (parallel movement) .......................................................165 

Table 6-5:  The value of the exponent p depends on the void ratio e0...........................................................165 

Table 6-6:  Constants K by different spatial void ratio (rotation around the top) .........................................167 

 



Notations and Abbreviations  Page XV 

Notations and Abbreviations 

Latin Lower Case Letters 

 

Symbol Dimension / 
Unit Meaning 

c kN/m² The soil cohesion 

e0 - The initial void ratio 

ec - The void ratio at the critical state 

eco - The void ratio at critic state at isotropic pressure (ps=0) 

ed - The void ratio at a maximum compaction using small shear cycles 

edo - The void ratio at a maximum compaction at isotropic pressure (ps=0) 

ei - The void ratio at isotropic compression 

eij  - The deviator matrix which describes the strain by a constant volume (shear strain) 

eio - The void ratio at isotropic compression at isotropic pressure (ps=0) 

f kN The force which is the resultants of normal and friction forces 

fB - The relative displacement due to the soil limit state 

fD - Factor for the density 

fM - Factor for the scale effect 

fS - Factor for the degree of saturation 

fλ - Factor for the friction of the wall 

g m/sec2 The gravity acceleration 

hs MN/m2 The stiffness of the granular soil particles 

mα - A function of the Rankine passive earth pressure coefficient in 2D case. 

n - The spatial ratio 

n - The constant parameter related to the soil particles stiffness 

ng - An acceleration scale factor due to the gravity acceleration 

v cm or mm The displacement at 50% of the ultimate state 

 

Latin Upper Case Letters 

 
Symbol Dimension / 

Unit 
Meaning 

B m The width of the wall  

D - The soil relative density 

E kN or kg Earth pressure load  

Ea kN or kg Active earth pressure load 

Ei kN /m2 The initial tangent modulus 

Ep kN or kg Passive earth pressure load 
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H m The height of the wall  

H m Embedded height of the wall 

ID - The soil density index 

K0 - The earth pressure coefficient at rest 

K2D - Earth pressure coefficient in 2D case 

K3D - Spatial Earth pressure coefficient (3D case) 

Kah - Horizontal aktive earth pressure coefficient 

Kc - Earth pressure coefficient due to coesision  

Kmax kN /m2 The initial stiffness of the soil deflection load curve 

Kmax kN /cm/m Secant stiffness modulus at serviceability limit  

Kph - Horizontal passive earth pressure coefficient 

Kpγ - Passive earth pressure coefficient due to soil weight 

Kq - Earth pressure coefficient due to surcharge loading q 

M - The Ovesen-Brinch Hansen 3D correction factor 

N kN The normal force acting on the failure plane  

P kN /m2 Passive earth pressure 

Pult kN /m2 Passive earth pressure at the peak 

Q kN The reaction force on the retaining wall acting normal to the vertical back of the 
wall.  

Qa kN The active reaction force on the retaining wall acting normal to the vertical back 
of the wall.  

Qp kN The passive reaction force on the retaining wall acting normal to the vertical back 
of the wall.  

Rf - The failure ratio between asymptotical and curved value for the deviatoric stress 

T kN The cohesive and frictional forces 

U cm or mm The displacement of the wall 

U(Z) cm or mm The moblized displacement of the wall as a function of the depth Z 

U/H - The relative displacement of the wall 

UB cm or mm The wall displacement at the peak 

UBd mm The displacement at limit state (at peak) 

UG cm or mm The wall displacement at the half amount of the peak 

UGb mm The displacement at at half the failure load (serviceability) 

Umax mm or cm Displacement at peak  

Up cm or mm The displacement of the wall at the peak 

Up/H - The relative displacement of the wall at the peak 

W kN The weight of the soil  

We - Mobilization function of displacement 

Z m The depth starting from the soil ground surface 
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Greek Lower Case Letters 

 
Symbol Dimension / 

Unit 
Meaning 

 χR୬ - A dimensionless factor, defined according to mobilization earth pressure coefficients  

δ୧୨ - The unit tensor 

 ୫ - The volumetric strainߝ

 ோ - A dimensionless factor, defined according to mobilization relative displacementsߣ

α ° Back face inclination of the structure 

β ° Inclination of the ground surface 

γ kN /m3 The unit weight of the soil 

ε - The strain of the soil 

ηpv - Factor for the consideration of a conformity between the theoretical Equation and the 
experimental results 

θ ° The angle between the failure plane and the horizontal 

ξ - The relative displacement at peak 

ξ G - The relative displacement at the serviceability limit 

σv kN /m2 Soil vertical stress 

 The soil poasson factor - ߥ

߮ ° The soil friction angle  

δ ° The soil wall friction angle 

εi,j - The element axial strain vector 

γi,j - The element shear strain 

μ - The correction factor for the earth pressure  

σh kN /m2 Soil horizontal stress 

 

Greek Upper Case Letters 

 
Symbol Dimension 

/ Unit 
Meaning 

 ஻௥ mm Displacement at peak݈߂

∑e Πa
e J Sum of the potential outer energy over all elements e 

∑e Πi
e J Sum of the potential internal energy over all elements e 

Π J The total potential energy of the system 

Πa J The potential outer energy of the system 

Πi J The potential internal energy of the system 

  mm Mobilized displacement ݈߂
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1 Introduction 

Retaining walls are usually constructed in order to support soil surfaces that are either vertical 
or inclined. The resultant earth pressure developed between a retaining wall and a retained 
soil system is dependent upon several factors such as mode of wall movement, the shear 
strength developed on the wall - soil interface, the soil shear strength parameters, the wall 
geometry and rigidity in addition to the generated soil failure body.  

There are three main modes of retaining wall movement namely: parallel translation, rotation 
around the toe and rotation around the top. During parallel translation, the wall is simply 
displaced horizontally towards or away from the retained soil mass. For rotation around the 
toe, the top of the wall is displaced towards or away from the retained soil mass while the 
bottom remains fixed and acts as a pivot point. On the other hand for rotation around the top, 
the bottom of the wall moves towards or away from the soil while the top acts as a pivot 
point. The three main wall movement modes are illustrated in Figure 1-1 below.  

Figure 1-1: Rigid wall displacement modes relative to backfill 

The earth pressure developed behind rigid earth retaining walls, in which no deformation and 
wall relative displacement to the soil occurs, is termed as earth pressure at rest. If the wall is 
allowed to move away from the soil, the earth pressure decreases after a relatively small 
displacement and attains a minimum value termed as the active earth pressure. The active 
earth pressure remains constant for further wall displacement from the soil. On the other hand, 
if the wall is moved from its original position towards the soil, the earth pressure increases 
until a maximum constant value is reached, this requires a much greater displacement than in 
the active earth pressure case. This maximum value is called passive earth pressure.  

According to the German Standard (DIN 4085) [31] the retaining wall displacement at failure 
in dense sand by parallel movement lies within the range of 0.03·h to 0.05·h for the passive 
earth pressure case and between 0.0005·h to 0.001·h for the active earth pressure case, where 
h is the embedded wall depth. Figure 1-2 illustrates the passive and active earth pressure for a 
sandy soil. 
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Figure 1-2: Earth pressure E as a function of wall displacement U by parallel movement [31] 

The compressible nature of soil results in the development of a much larger failure wedge in 
the passive earth pressure state. Furthermore, the fact that the minor principal stress in the 
passive earth pressure state is vertical, as opposed to the active earth pressure state in which 
the minor principle stress is horizontal coupled with the fact that the deviatoric stress in the 
passive case is higher than its value in the active case, necessitates larger displacements in the 
passive earth pressure state in order to attain failure. 

Earth pressure calculations generally use coefficients derived from analytical methods based 
on the classical theories for defined boundary conditions such as the mode of movement of a 
rigid wall of defined dimensions. 

In reality most retaining walls are not rigid and often do not move according to parallel 
translation, or rotation around the toe or the top. In some instances, other modes of wall 
movement occur. Examples of such movements may include a combination of parallel with 
rotation movements, or pivoting of the wall about any other point excluding the top or bottom 
of the wall. Experience has shown that retaining walls designed using the theory based on 
these three main modes of wall movement with the inclusion of the requisite factors of safety 
have stood the test of time without collapsing. This implies that the theory based on the three 
wall movement modes is a fairly good approximation of the reality. The earth pressure 
problem is further subdivided into the classical two dimensional (2D) and the three 
dimensional (3D) passive or active earth pressure. Classical earth pressure theory, used by 
many geotechnical engineers, considers earth pressure as a 2D case. In the course of the 
development of the geotechnical engineering field, the measurements on the structures 
designed using the classical earth pressure theories however, frequently displayed variances 
from computations in special cases such as piles. The development of new construction and 
design methods in the geotechnical engineering field such as slurry walls and I-profile walls 
has led to the definition of a phenomenon later termed as spatial earth pressure. The spatial 
earth pressure may for simplicity be interpreted as an extrusion of the 2D earth pressure into a 
space volume. This phenomenon has greatly enhanced the understanding and description of 
the earth pressure problem including the stresses, the strains and soil behavior within a space 
volume perspective. 

E Earth pressure  
U displacement  
Ea active earth pressure 
Ep passive earth pressure 
E0 Earth pressure at rest  
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Extensive investigations have been carried out on the two dimensional earth pressures. Civil 
engineers encounter the spatial earth pressure problem frequently either as passive or active 
earth pressure. Spatial active earth pressure has been extensively investigated by many 
researchers. The most recent spatial active earth pressure research was done by tom Wörden 
[86]. He studied the effect of the soil density, mode of movement and wall dimensions on the 
spatial active earth pressure. The three dimensional passive pressure on the other hand, has 
not been as extensively researched. Examples of situations, in which the spatial passive earth 
pressure is encountered, include special cases such as anchor blocks, anchor plates, the 
reaction obtained while moving an embedded rigid body of limited dimensions within a soil 
such as retaining walls with limited breadths to depth ratio or retaining walls with varying 
penetration depths, pile walls such as the I-Profile walls (soldier pile and lagging soil 
retaining systems) and finally in stability analysis of structure foundations such as columns, 
bridges and arching structures. 

The 3D passive pressure problem has an influence on the design of some structures such as 
laterally loaded embedded beams, pile caps and supporting walls used in tunnel (or pipes) 
heading construction methods. The spatial earth pressure is influenced by many parameters, 
which are majorly considered in the global earth pressure concept as previously mentioned, in 
addition to other parameters such as the wall dimensions and scale effect not majorly included 
in the global earth pressure concept. The research work carried out on these parameters is not 
yet exhaustive. There is a requirement for further research to be carried out on various aspects 
of the spatial passive earth pressure. Most of these factors will be discussed in the thesis in 
hand.  

1.1 Objective and methodology 

The objective of this thesis is to study the 3D passive earth pressure phenomenon in a 
granular sandy soil. For this purpose, a 3D-FEM model that consisted of different rigid walls 
with a horizontal soil surface was developed to simulate 3D passive earth pressure 
phenomenon. The hypoplastic constitutive material law was used in the numerical model.  

The numerical model was validated by studying the effect of varying the following 
parameters on 3D earth pressure: 

• The height of the wall H 
• The width of the wall B 
• The initial void ratio e0  
• The mode of the wall movement 

The ratio of the wall width to wall height was defined as the spatial ratio ቀB
H

ቁ. The effect of 

the spatial ratio was investigated by moving walls with varied height to width ratio towards 
the soil. This was done for parallel translation, rotation around the top and rotation around the 
bottom wall movements and varied soil densities. It is to be noticed that the almost all  the 
studied cases in this thesis are for spatil ratio n>1. 
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1.2 Structure of the thesis 

The introduction, problem statement and methodology are presented in chapter one. The 
classical spatial earth pressure theories, literature review of previously carried out 
experimental and numerical researches on this phenomenon are presented in chapter two. 
Chapter three presents the finite element modeling method. A brief description of the 
ABAQUS program that was used for carrying out the numerical modeling of spatial earth 
pressure in this thesis is also included in this chapter. Chapter four highlights the 
hypoplasticity constitutive material law, the description of the spatial passive earth pressure 
modeling, the modeling procedure and the model verification. The results obtained from the 
numerical spatial earth pressure simulations for the three main modes of movement are 
documented in chapter five. Chapter six deals with the evaluation of the results presented in 
chapter five. Finally the summary, conclusions and recommendations drawn from the 
evaluation of the results are presented in chapter seven.  
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2 Literature review 

The design of earth retaining structures requires good expertise in the behavior of the earth 
pressure against these structures. The earth pressure problem dates back to the beginning of 
the 18th century. Since then many theoretical and experimental researches have been carried 
out, especially during the last decades, in order to improve the design of such structures in 
terms of safety and economy. Some of the experimental investigations carried out, the 
analytical methods and numerical methods developed for the solution of the earth pressure 
problem are hereby highlighted.  

2.1 Plane Strain (2D) passive earth pressure 

2.1.1 Classical theories of plane strain earth pressure 

The classical methods that have been widely used to estimate passive earth pressures are 
based on the Coulomb [26], Rankine [68] and Terzaghi [81] theories. The following is a 
review of these three theories: 

Coulomb theory (1776):  

The Coulomb theory [26], which was published in 1776 as ``Essai sur une application des 
règles de maximis & minimis ä quelques problem de statique``, is one of the most widely 
used methods for calculating earth pressure in the world. Coulomb’s theory, which is based 
on total stress, considers a rigid wedge shaped mass of soil that has a vertical back face and a 
horizontal topographic profile. The wedge shaped soil mass is considered to be sliding upon 
an inclined shear surface behind a rigid retaining wall assuming a frictionless soil-wall 
interface as shown in Figure 2-1. The forces that act on the sliding wedge are: the weight of 
the soil (W), the cohesive and frictional forces (T) acting on the shear surface, the normal 
force acting on the failure plane (N) and the reaction force (Qa) on the retaining wall acting 
normal to the vertical back of the wall.  

 

Figure 2-1 Acting forces by earth pressure using Coulomb’s wedge supported by a smooth wall (δ = 0) 



Page 6 Plane Strain (2D) passive earth pressure Section 2.1 

While analyzing the mathematical equilibrium of the forces, Coulomb observed that the 
inclination of the shear surface was unknown but that there is a critical shear surface for 
which a critical value (maximum for active and minimum for passive case) of the wall force 
Q is obtained. The following Equations [2.1] and [2.2] are obtained by resolving the forces in 
Coulomb’s model along two axes (parallel and normal to the shear plane) for granular sandy 
soils. 

ܰ ൌ ܹ cos ߠ ൅ ܳ sin  [2.1]  ߠ

ܶ ൌ ܹ sin ߠ െ ܳ cos  [2.2]  ߠ

Where:  

θ The angle between the failure plane and the horizontal 
N The normal force acting on the failure plane  
T The shear force on the failure plane 

And at failure the weight of the failure body is: 

ܹ ൌ ଵ
ଶ

ଶܪߛ cot  [2.3]  ߠ

Then by resolving the forces on the failure slip of a soil with a friction angle ߮ 

்
ே

ൌ tan ߮  [2.4] 

Q ൌ ଵ
ଶ
γHଶ cot ߠ tanሺߠ െ ߮ሻ  [2.5] 

In order to obtain the maximum value of Q, δQ/δθ is set to δQ/δθ =0 which results in the 
active case of then following value of angle θ as shown below: 

ߠ ൌ 45 ൅ ቀఝ
ଶ

ቁ  [2.6] 

And substituting into Equation [2.5] gives 

ܳ௔௛ ൌ ଵ
ଶ

௔௛ܭଶܪߛ ൌ ଵ
ଶ

ଶܪߛ ቀሺଵିୱ୧୬ ఝሻ
ሺଵାୱ୧୬ ఝሻቁ  [2.7] 

Where: Kah is the active earth pressure coefficient. 

Having considered the addition of the force due to cohesion and expressed the retaining force 
Q as a function to the depth y, Coulomb gave the following Equation [2.8], in the active case, 
by moving the wall away from the soil. 

ܳ௔௛ ൌ ଵ
ଶ

௔௛ܭଶܪߛ െ ௔௛ܭܪ2ܿ ൌ ଵ
ଶ

ଶܪߛ ቀଵିୱ୧୬ ఝ
ଵାୱ୧୬ ఝ

ቁ െ ටଵିୱ୧୬ܪ2ܿ ఝ
ଵାୱ୧୬ ఝ

  [2.8] 
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Coulomb observed that the planar shear surface assumed for his theory was sufficiently a 
good approximation for a smooth wall δ = 0. He further observed that the soil wall friction 
angle affected the distribution of the failure slope. 

Coulomb’s theory can be also used to predict the passive earth pressure and forces, when the 
wall moves towards the soil. The angle of the shear surface to the horizontal (θ) due to the 
minimum passive earth pressure load Qph is: 

ߠ ൌ 45 െ ቀఝ
ଶ

ቁ  [2.9] 

And the passive force for a cohesive soil can be expressed as in Equation [2.10]: 

ܳ௣௛ ൌ ଵ
ଶ

௣௛ܭଶܪߛ ൅ ௣௛ܭܪ2ܿ ൌ ଵ
ଶ

ଶܪߛ ቀଵାୱ୧୬ ఝ
ଵିୱ୧୬ ఝ

ቁ ൅ ටଵାୱ୧୬ܪ2ܿ ఝ
ଵିୱ୧୬ ఝ

  [2.10] 

Where: Kph is the passive earth pressure coefficient. 

As shown in Figure 2-1 Coulomb obtained a solution in terms of total stresses based on 
special conditions, a planar shear surface, a soil mass with a horizontal ground surface 
bounded by a single failure surface and a wall with a vertical back surface. The equation by 
Coulomb’s theory was developed in a general solution for frictional, non-cohesive planar 
boundaries with a sloping back wall surface. A presence of frictional force between the soil 
and the wall was considered by Mayniel [24].  

Mayniel obtained the critical angle of the planar shear surface θ using Equation [2.11]: 

௖௥௜௧ߠ ൌ tanିଵ ൬tan ߮ ൅ sec ߮ට ୲ୟ୬ ఝ
୲ୟ୬ሺఝାఋሻ

൰   [2.11] 

Substitution of the critical angle θ in Equation [2.11] into Equation [2.5] yields: 

ܳ௔௛ ൌ
1
2 ଶܪߛ ൬

1 െ ݊݅ݏ ߮
ݏ݋ܿ ߜ ൅ ሺ݊݅ݏሺ߮ ൅  ሻሻ൰ [2.12]ߜ

One more time the solution in Equation [2.12] was extended by removing the restrictive 
hypotheses proposed by Coulomb and taking into consideration the effect of an inclined 
backfill surface and the existence of friction in the wall-soil interface to give a general 
solution as shown in Figure 2-2. Equation [2.13] was obtained with modified passive earth 
pressure coefficient applicable for non-cohesive soils. 

ܳ௣௛ ൌ ଵ
ଶ

 ௣௛  [2.13]ܭଶܪߛ

Where:  

Kph The horizontal passive earth pressure coefficient for the case of an inclined backfill 
surface. Kph is given by the expression in Equation [2.14] for non-cohesive soil:  
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௣௛ܭ ൌ ୱ୧୬మሺఈିఝሻ

ୱ୧୬మሺఈ ሻୱ୧୬ሺఋାఈሻቈଵିට౩౟౤ሺകశഃሻ ౩౟౤ሺകశഁሻ
౩౟౤ሺഀశഁሻ ౩౟౤ሺഀశഃሻ቉

మ  [2.14] 

φ Angle of internal friction of soil 
δ Angle of friction between the soil and the wall 
β Inclination of the ground surface 
α Back face inclination of the structure 

 

Figure 2-2: Coulomb solution for an inclined backfill surface and granular material 

All the previous solutions according to Coulomb’s theory were developed in the terms of total 
stresses for a rigid (incompressible) failure wedge without any consideration of pore water 
pressure for failure on a critical planar shear surface. In reality however, the surface of the 
sliding in the backfill behind a retaining wall is slightly curved. Coulomb assumed a plane 
surface in order to simplify the computations. The error due to this assumption is quite small 
as long as the friction angle between the soil and the wall is small or equal to zero. This 
implies that the wall sliding surface is almost smooth. However, according to Terzaghi [81] 
the error by passive pressure is excessive when wall friction angle (δ) exceeds the value ஦

ଷ
. 

The planar shear surface should not be used in this case. Furthermore, the curvature of the 
sliding surface must also be taken into account. 

The Mohr-Coulomb method offers the advantage of simple applicability by using Kph values 
from tables or curves. It is also applicable for the use of all soil-wall interface friction angle 
values. The limitation of the Mohr-Coulomb method is that it can only be used with simple 
conditions. Increasing complexity of the conditions such as a high wall friction angle leads to 
a decrease of the accuracy. Therefore another solution is to be illustrated by Rankine in the 
following. 
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Rankine (1875):  

Rankine [68] assumed that the soil behind a retaining wall is in a condition of incipient 
failure. The whole soil behind the wall is in state of plastic equilibrium (see Figure 2-3), but 
the translation between elastic and plastic conditions does not occur until the wall moves into 
the soil more than a certain limit of the displacements.  

Figure 2-3: Rankine passive earth pressure theory [68] 

He extended the earth pressure theory by deriving a solution for a complete soil mass in a 
state of failure. Rankine assumed that the resultant force on the wall acts parallel to the 
ground surface. Therefore the value of the soil wall friction angle is equal to the inclination of 
the ground surface and cannot be varied. The Rankine condition for a horizontal ground 
surface is only applicable to walls with smooth back surfaces δ = 0. 

Whereas the Coulomb’s solution considered a soil mass bounded by a single failure surface, 
Rankine assumed that every element within the sliding wedge is on the verge of failure in his 
solution. Rankine considered an element of the sand symmetrical with reference to a vertical 
plane having a depth Z and a cross-sectional area equal to unity, for the development of his 
theory as shown in Figure 2-3. In the case of passive earth pressure, when the structure moves 
towards the soil, the element of soil is compressed. As a result of the compression σh and the 
earth pressure coefficient K ൌ σ౞

σ౬
 increase while σv is constant and smaller than σh. The 

coefficient K increases from K0 (the earth pressure coefficient at rest) till it becomes equal to 
Kph (the passive earth pressure coefficient). The minor principle stress in this passive case by 
Rankine is vertical and the angle of the sliding surface is θ ൌ 45° െ φ

ଶ 
 . 

In 1882 Mohr [24] presented the relation between stresses and strains on and within an 
element in a solid in plastic equilibrium as a circle as shown in Figure 2-4.  
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Figure 2-4 : Rankine’s theory in Mohr’s circles 

Rankine used later the Mohr circle to obtain the solution of the passive and active earth 
pressure. Mohr’s circle represents the stress conditions in a soil element located at a depth (Z) 
below the ground surface as shown in Figure 2-3. When the structure starts moving toward 
the backfill in the passive earth pressure case, the lateral stress σh increases while the vertical 
stress σv essentially remains constant. The lateral stress reaches its maximum possible value, 
when the Mohr-coulomb failure criteria becomes tangent to Mohr’s circle. In Rankine’s 
simple solution there is no shear stress on either the vertical or the horizontal planes of the 
element. Rankine obtained a solution for passive earth pressure coefficient in a case of a soil 
with horizontal surface and a vertical back face of a rigid wall as shown in Equation [2.15].  

௣௛ܭ ൌ ቀଵାୱ୧୬ ఝ
ଵିୱ୧୬ ఝ

ቁ  [2.15] 

For the case of a soil mass with its ground surface inclined to the horizontal at an angle β, 
under the consideration that at failure the Mohr circle must touch the failure envelope or the 
Mohr–coulomb failure criterion and the horizontal stress σh is acting parallel to the ground 
surface, Rankine obtained the following solution in Equation [2.16] for the passive earth 
pressure coefficient. 

௣௛ܭ ൌ cos ߚ ୡ୭ୱ ఉାሺୡ୭ୱమ ఉିୡ୭ୱమ ఝሻ
భ
మ

ୡ୭ୱ ఉିሺୡ୭ୱమ ఉିୡ୭ୱమ ఝሻ
భ
మ
  [2.16] 

Where:  

β Inclination of the ground surface 
φ Angle of internal friction of soil 

Rankine’s theory is a simple method, but it assumes that the wall friction angle is equal to the 
ground surface inclination. Rankine is better suited for simple conditions such as horizontal 
ground surface or homogeneous soil. 
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Log Spiral Method (1938): 

The Log spiral method is an extension of Coulomb’s theory [26]. This method is based on the 
determination of the actual shape of the failure surface in the soil. It is less widely used than 
the theories of Coulomb and Rankine. The failure slip surface in this method consists of a 
spiral part and linear part as shown in Figure 2-5. The soil within the area between the wall 
and the upper straight part of the failure slip surface is assumed in the passive Rankine state, 
but the resultant passive earth pressure and its distribution over the contact area between the 
wall and the soil depends on the behavior of the interface contact area. 

Figure 2-5: Log spiral failure mechanism (Duncan and Mokwa [28]) 

The curved part of the slip surface is assumed to be a logarithmic spiral. This spiral is tangent 
to the straight part of the slip surface. The forces acting on the soil wedge are: the weight of 
the soil (W), the force (f) which is the resultant of normal and friction forces, the cohesion 
force on the curved part of the slip surface (c) and the force EPR as shown in Figure 2-5. The 
value of the passive force on the wall is obtained by taking the moment of the forces around 
the center of the spiral part (O). Similar computations are performed for other arbitrarily 
selected slip surfaces. The geometry of the critical sliding surface is established through a 
minimization of the passive earth pressure force required to maintain equilibrium with the soil 
at failure along the shear surface, by varying the position of the spiral centre, until the 
smallest passive pressure is approached. Tables and diagrams for Kph were established by 
Caquot and Kerisel [45] based on the Log-spiral theory as shown in Figure 2-6. 
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Figure 2-6: Coefficients for active and passive earth pressure using log spiral method [45] 

In this method the form of the non linear failure slope is intermediate between an arc of a 
circle and of a spiral. The error due to replacing this non linear failure slope with either a 
circular or logarithmic spiral is very small. 

The log spiral theory is a good approximation and offers a high accuracy for any values of 
soil-wall friction angle δ. It is also applicable for spatial earth pressure using Ovesen - Hansen 
correction factors, which will be illustrated later. The solution of earth pressure problems 
using the log spiral method requires numerical programs. These numerical programs are 
mostly applicable only for simple conditions such as level ground surface, vertical wall and 
homogeneous soil. The Log spiral method yields higher accuracy in comparison to the Mohr 
Coulomb theory for wall friction angles δ > 0.4φ. 
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2.1.2 Experimental Investigations on plane strain passive earth pressure 

Laumans (1977): 

Laumans [47] carried out experiments using an embedded wall model that rotated around a 
point near the wall bottom. Furthermore the occurrence of bending deformation is permitted. 
The model wall was embedded to a depth of 80.0 cm. Dry poorly graded coarse sand with 
densities of Dr = 35.0 % and Dr = 54.0 % were used. 

The results of his work deal with the maximum values, the displacement magnitude and the 
mobilization function characteristic in addition to the point of action for the resultant passive 
earth pressure.  

Furthermore finite element calculations were made with the consideration of the material 
properties of granular sandy soil. A non-linear Equation was developed by using a hyperbolic 
mobilization curve for the passive earth pressure.  

Laumans developed the following hyperbolic mobilization approach: 

௠௢௕ܭ ൌ ௣௛ܭ
௎ା௏

௎
  [2.17] 

Where: 

Kmob The mobilized earth pressure coefficient 
Kph The earth pressure coefficient at peak 
ܷ The displacement of the top 
V The displacement at 50% of the ultimate state (Serviceability) 

Figure 2-7 below shows a comparison between the numerical and experimental results by 
Laumans for the normalized horizontal earth pressure load Hഥ as a function of the wall top 
displacement U for two different soil densities γ = 16.0 and 16.5 kN/m3 with different friction 
angles. 
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Figure 2-7: Numerical and experimental results for horizontal earth pressure load ۶ഥ  as a function of 
the wall displacement U according to [47] 

It was observed that the results of the numerical model and the experimental test did not agree 
well with each other. Laumans attributed this to the accuracy of the laboratory tests used to 
determine the soil parameters and the assumptions made for the numerical model.  

Vogt (1984): 

Laumans’ Equation was modified by Vogt [90] using finite element calculations and 
experimental investigations. In his experiments the embedded wall was allowed to rotate 
around a point in the lower third of the wall as shown in Figure 2-8. Vogt used carbon rods 
instead of sandy soil in order to visualize the failure mechanism. He applied modified 
Equation assumptions to other modes of wall movement. 
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Figure 2-8: Schematic cross section of the model developed by Vogt [90] 

Vogt made the following assumptions to develop a mobilization earth pressure function: 

• The earth pressure depends on the relative displacement of the wall ௎ሺ௓ሻ
௓

. 

• The initial soil stress condition of the earth pressure at rest (K0) is simply added to the 
soil stress condition developed as a result of the wall displacement. 

The following Equation [2.18] describes the mobilization function of the earth pressure 
coefficient K୫୭ୠ: 

௠௢௕ܭ ൌ ଴ܭ  ൅ ሺܭ௣௛ െ ଴ሻܭ ቈ
ሺೆሺೋሻ

ೋ ሻ

ሺ௔ାೆሺೋሻ
ೋ ሻ

቉  [2.18] 

Ko Earth pressure coefficient at rest 
a Constant parameter which is determined according to the soil stiffness 
Kph Horizontal passive earth pressure coefficient at peak 
௎ሺ௓ሻ

௓
  Relative displacement 

Figure 2-9 shows a comparison between the mobilization function of the passive earth 
pressure by Vogt (black line) and the experimental results for the three main wall movement 
modes at a point with a constant depth. 
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Figure 2-9: Earth pressure coefficient as a function of relative displacement [90] 

It is observed from Figure 2-9 that a good agreement between the experimental results and the 
mobilization function occurs for small mobilized displacements. By increasing the 
displacement, the mobilization function is in good agreement with the experimental values of 
passive earth pressure coefficient only for rotation around the toe. 

In his experiments Vogt also investigated the development of the earth pressure distribution 
along the wall depth as a function of the wall displacements for different wall movement 
modes as shown in Figure 2-10. 
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Figure 2-10: The earth pressure distribution along the wall depending on the relative displacements [90] 

Mao (1993): 

Mao [48] carried out experiments with several models in order to investigate the dependence 
of passive earth pressure in sandy soil for different modes of wall movement, wall friction 
angles, degrees of saturation, embedded depths (t) and soil densities. Therefore Karlsruhe 
coarse sand with relative densities between Dr = 35 % to 80 % was used. The height of the 
model wall was varied between h = 0.10 m and h = 0.25 m. The results of his experiments 
deal with the maximum passive earth pressure value, the corresponding displacement 
magnitude and the mobilization function in addition to the position of the resultant force. 
Figure 2-11 shows results for ratios of the mobilized passive earth pressure load Eph to the 
maximum passive earth pressure load at peak max Eph (Eph/maxEph) as a function of 
displacement for different wall friction angles δ. 
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Figure 2-11: Earth pressure coefficient as a function of relative displacement for sandy soil (D = 65 %) 
with different values of soil-wall friction angle δ [48] 

Fang, Chen and Wu (1994): 

Fang, Chen and Wu [30], [21] examined different modes of wall movements in their passive 
earth pressure experiments as shown in Figure 2-12. A rubber layer was used between wall-
soil interfaces to reduce friction. Ottawa sand (emax = 0.76, emin = 0.50, D60 = 0.36 mm, 
D10 = 0.23 mm, γs = 26.5 kN/m3) was used in the experiment. The initial density of the sand at 
the beginning of the experiment was 15.5 kN/m3. The dimensions of the model wall were: 
Height H = 0.50 m, Width B = 1.0 m and Thickness t = 0.12 m.  
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Figure 2-12: Dimensions and the setup of passive earth pressure model [30] 

In addition to determining the maximum earth pressures, the displacement magnitudes, the 
mobilization function and the earth pressure distributions were illustrated at different stages of 
the wall movement as shown in Figure 2-13. The Figure shows an increase of the earth 
pressure due to an increase of displacement. A peak pressure was reached at approximately 
relative displacement Up/H = 0.01, then the pressure decreased with further wall movement 
because of the soil softening behavior. In Figure 2-13 the earth pressure according to 
Coulomb’s and Terzaghi’s theories are also given for comparison. 
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Figure 2-13: Earth pressure distribution measured by Fang et al. [30] 

Besler (1997): 

Besler [8], [9] developed two non-linear Equations based on the results of Mao’s experiments 
in order to describe the deformation behavior of excavation walls and to verify the validity of 
the Equations with the deformation of a laboratory scale model. He developed deformation 
curves of two practically executed excavations using the non-linear Equations and compared 
these with actual field measurements. Displacements at peak for passive earth pressure were 
determined by Besler [8] according to the following Equation: 

 ܷீ,஻ ൌ ஽݂ ఒ݂ ௌ݂ ஻݂ ெ݂[2.19]  ܪ 

Where: 

UG wall displacement at the half amount of the peak 
UB wall displacement at the peak 
fD factor for the density 
fλ factor for the friction of the wall 
fS factor for the degree of saturation 
fB  The relative displacement due to the soil limit state  
fM factor for the scale effect 
H embedded height of the wall 

The values of the previous factors fD, fλ, fS and fB are published in tables by Besler [8] as 
functions of the soil density, saturation degree and soil conditions (serviceability or limit 
state) while the scale effect factor fM is calculated by using the following Equation [2.20]  
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ெ݂ ൌ ቀ ு
଴.ଵ଻ହ

ቁ
஻

  [2.20] 

Where: 

H The wall height in m 
B A constant with the value of B = 0.33 for a smooth wall and B = 0.14 for a friction wall 

Besler also obtained the following equation [2.21] for the passive earth pressure coefficient 
mobilization-function: 

ሻߦ௠௢௕ሺܭ ൌ ܣ ൅ ቀ ஻
஼ାక

ቁ  [2.21] 

Where: 

Kmob(ξ) Mobilized passive earth pressure. 

The other constants are calculated as follows  

ܥ ൌ ௄೛೓ξG
ଶ൫௄೛೓ି௄బ൯ξGାଶKబିK౦౞

  [2.22] 

ܣ ൌ ௣௛ܭ ൅ ௣௛ܭ൫ܥ െ  ଴൯  [2.23]ܭ

ܤ ൌ െሺܥ ൅ ௣௛ܭଶሻ൫ܥ െ  ଴൯  [2.24]ܭ

Where:  

Ko The earth pressure coefficient at rest 
Kph The earth pressure coefficient at peak 
ξ The relative displacement at peak 
ξ G  The relative displacement at the serviceability limit 

The following Figure 2-14 shows a result of the mobilized earth pressure approach by Besler 
compared against measurement values by Mao. The results agree well with each other. 
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Figure 2-14: Mobilizing approach for passive earth pressure coefficient as a function of relative 
displacement for medium dense sand (D = 50 %) [8] 

Bartl/Franke (1997): 

Bartl and Franke [4] carried out centrifugal experimental tests to investigate the passive earth 
pressure problem. They investigated the mobilized earth pressure as a function of the wall 
displacement and the effect of the stress level as a function of the depth (scale effect). They 
used a model wall with a rotational movement around its top. The model consisted of a wall 
with a height of H = 0.12 m and width B = 0.25 m in a box of length L = 0.46 m. The 
acceleration due to gravity was varied between 1 g and 35 g. Dry poorly graded fine to coarse 
grained quartz sand was used. The experimental results clearly showed the dependence of 
maximum passive earth pressure and the corresponding displacement on the gravitational 
acceleration and therefore on the stress level as a function of wall height. Bartl also developed 
the following mobilization approach as shown in Equations [2.25] and [2.26].  

 χR୬ ൌ ሾ1 െ ሺ1 െ ሺߣோሻ ሻ௕ ሿ௖  [2.25] 

Where  χR୬ and ߣோ are dimensionless factors which are defined according to earth pressure 
coefficients and relative displacements as follows 

 χR୬ ൌ Kౣ౥ౘିKబ
KP౞ିKబ

 , ோߣ ൌ ௎೛

௎
 [2.26] 

Where:      

Ko Coefficient of earth pressure at rest 
Kph Passive earth pressure coefficient 
Kmob Mobilized earth pressure coefficient 
Up Maximum wall displacement at peak 
U Mobilized wall displacement 
b,c constants  

Based on his experimental results Bartl recommended a value of 0.7 for the constant c for 
different wall movement modes and soil density. The constant b on the other hand was 
recommended to be varied as a function of the wall movement modes and the soil density. 
Figure 2-15 below shows a comparison between the experimental results and the mobilization 
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function for passive earth pressure coefficient according to Bartl considering the three main 
modes of wall movement. 

Figure 2-15: Mobilization function for passive earth pressure vs. relative displacement [4] 

Bartl also obtained the relative displacement at peak U౦

H
 as a function of the relative density ID 

as follows in equation [2.27]: 

௎೛

ு
ൌ െ0,09ܫ஽ ൅ ሺ௎೛

ு
ሻ଴  [2.27] 

Where ሺU౦

H
ሻ଴ is the relative displacement at peak for a relative density ID = 0. It is to be varied 

according to the movement mode. 

Bartl also studied the effect of the stress level on the value of the normalized passive earth 
pressure load K୰୬୮ (including passive earth pressure coefficient Kph) and found that the 
normalized passive earth pressure load K୰୬୮ decreases with increasing the stress level as 
shown in Figure 2-16. The following equation [2.29] was also obtained for dense sand.  

௥௡௣ܭ ൌ 6.01 ቀு௡೒

ଵ
ቁ

ି଴.ଵଶ
  [2.28] 

Where: 

H The embedded height of the wall 
ng An acceleration scale factor due to the gravity acceleration. 
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Figure 2-16: Stress level effect on the normalized passive earth pressure load for dense sand [4] 

2.1.3 Passive earth pressure approach of German Standard DIN 4085 (2007) 

The 2D passive earth pressure coefficient is calculated in the German standard DIN 4085 [31] 
considering a non-linear failure mechanism. The passive earth pressure coefficient Kph is 
calculated as shown in Figure 2-17 below as a function of internal soil friction angle φ and 
soil - wall interface friction angle δ. 

Figure 2-17:   2D passive earth pressure for nonlinear failure curve (vertical wall and horizontal ground 
surface) [31] 

A function of the displacement at the peak is developed in the German standard DIN 4085 as 
follows: 

For rotation around the bottom and parallel movement  

௎೛

ு
ൌ െ0.08ܦ ൅ 0.12  [2.29] 
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For rotation around the top  

௎೛

ு
ൌ െ0.05ܦ ൅ 0.09  [2.30] 

Where: 

D The relative density 
Up Displacement at peak 
H Embedded depth of the wall 

A mobilization approach for passive earth pressure as a function of displacement and mode of 
movement is presented in DIN 4085 as shown in Equation [2.31]  

 

ாᇱ೛೒೓ିாబ೒೓

ா೛೒೓ିாబ೒೓
ൌ ቈ1 െ ൤1 െ ௎

௎೛
൨

௕
቉

௖

  [2.31] 

Where:  

 ௣௚௛  Mobilized Earth pressure′ܧ
 ଴௚௛  Earth pressure at restܧ
 ௣௚௛  Earth pressure at peakܧ
U Mobilized displacement at ܧ′௣௚௛ 
ܷ௣  Displacement at peak 
b, c Constants defined as in the following Table 2-1 

Table 2-1: Constants for the mobilization function in DIN4085 

Wall mode of movement 
exponent of the 

mobilization approach 
b c 

rotation around bottom 1.07 

0.7 parallel movement 1.45 

rotation around top 1.72 

The previously presented mobilization function is defined only for 2D case. This will be 
compared later in the thesis with the case of 3D spatial passive earth pressure. 

2.1.4 Numerical Simulations for plane strain passive earth pressure  

A review of numerical earth pressure simulations previously done for the plane strain 
conditions is presented in the following paragraphs. 
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Duncan and Chang [29] developed a hyperbolic constitutive law which was widely used in 
most of the numerical models. The model described the stress-strain behavior using the 
following Equation [2.32]:  

σଵ െ σଷ ൌ ε
భ

E౟
ା εR౜

ሺσభషσయሻ౜

  [2.32] 

Where: 

σ1 - σ3 The deviatoric stress 
(σ 1 - σ3)f The deviatoric stress at failure conditions 
Rf The failure ratio between asymptotical and curved value for the deviatoric stress 
ε The strain of the soil 
Ei  The initial tangent modulus 

The constitutive law included six parameters which can be determined from triaxial and plane 
strain compression tests. Duncan and Chang described successfully the stress-strain nonlinear 
behavior and stress dependency of the stiffness. Laumans [47] added the hardening behavior 
to the description of the passive earth pressure problem using an elasto-plastic constitutive 
material law as a function of the stress level. The soil was modeled using 4 node elements. On 
the contrary, the wall was modeled using disc elements. Laumans considered the nonlinearity 
in his analysis by using an iterative method to obtain the tangential stiffness of the soil. Figure 
2-18 shows the geometry of the model by Laumans.  

Figure 2-18: The mesh of the FEM model [47] 

Christian et al [23] applied three constitutive models which are based on the Mohr-Coulomb 
constitutive law to establish the relationship between earth pressure mobilization and wall 
displacement in different movements. He simulated the problem of earth pressure in parallel 
and rotation around bottom movements for smooth and frictional walls. Christian used his 
FEM soil model simulations to compare three different constitutive laws namely: an 
elasto-plastic formulation derived from Mohr Coulomb, a law without plastic dilatancy using 
a non-symmetric stiffness and finally a strain hardening model with a capped yield criterion. 
By studying the effect of the mesh Christian noted that very fine element divisions in areas 
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with high stresses are requested for good results. Figure 2-19 shows the geometry mesh for 
the simulation of the earth pressure problem and Figure 2-20 shows the results of Christian’s 
model for the non dilatancy model in parallel and rotation around bottom movements.  

Figure 2-19: Geometrical mesh model used for earth pressure problem [23]. 

  a b c 

Figure 2-20: Earth pressure using the different constitutive laws a) non-dilatant b) with dilatantcy 
c) parallel and rotation movement (non-dilatant) by Christian [23] 

Nakai [54] used an elasto-plastic constitutive material law with two yield surfaces in a 
numerical simulation to obtain the mobilized passive earth pressure as a function of the 
displacement for different modes of wall movement. Potts [63] developed a numerical model 
for the purpose of numerical investigation of passive earth pressure as a function of the 
displacement for granular soils with the Mohr-Coulomb constitutive law considering the three 
main movement modes. Potts also made a parametric study by varying the dilatancy angle, 
the initial earth pressure coefficient and the soil stiffness. In his study of the mobilization 
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earth pressure Ugai [87] carried out numerical simulations based on the elasto-plastic 
constitutive law verified with laboratory experiments. 
Schweiger [75] investigated the problem of passive earth pressure as a function of the 
displacement. He compared the results of his FEM simulations that had been done using 
several variations of the Drucker-Prager constitutive laws with other results obtained by using 
the Mohr-Coulomb constitutive law. Schweiger recommended that the Drucker-Prager 
constitutive law is a poor approximation for the soil passive earth pressure problem in 
comparison with the Mohr–Coulomb failure criterion for different circular approximations as 
shown in Figure 2-21. As a result of his study, Schweiger suggested that a proper 
Mohr-Coulomb failure surface for a numerical solution of the earth pressure problem is to be 
preferably used. Figure 2-21 shows the results for the 2D passive earth pressure of 
Schweiger’s model as a function of displacement.  

Figure 2-21: Earth pressure results by Schweiger [75]. 

A Discrete-Element-Method (DEM) was used by Chang [22] to simulate the problem of the 
passive earth pressure against a gravity retaining wall for the three main wall movement 
modes.  

The soil was modeled as comprising blocks connected to each other using elasto-plastic 
Winkler-springs, which enabled, to highlight the effect of the shear stresses at the failure 
plane on the resulting passive earth pressure. Figure 2-22 shows the stress distribution on the 
wall for the three main movement modes by Chang. The results were compared with other 
results by Shields and Tolunay. 
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Figure 2-22: A comparison for earth pressure stress distribution results for different modes of 
movement between Shields with Tolunay and Chang [22]. 

Shiau [77] modeled the problem of passive earth pressure using FEM formulation of the 
lower/upper bound theorem (Figure 2-23).  

Figure 2-23: FEM mesh for upper-lower bound method for a model of the passive earth pressure for a 
vertical wall α = 0 with horizontal ground surface β = 0 [77] 

The analyses assume associated flow, which restricts the direction of plastic flow. The model 
consisted of a rigid retaining wall with an inclined back of angle α to the horizontal. The 
ground surface of the cohesionless soil slope has an angle of β to the horizontal. The passive 
earth pressure coefficients are found firstly by upper-lower bound theorem equating the 
energy expended by the external loads to the energy dissipated internally by plastic 
deformations. On the contrary, the lower-bound theory based on the fact that any equilibrium 
state of stress can be found, taking the soil conditions into consideration. Figure 2-24 shows 
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the results of upper-lower bound method for the passive earth pressure coefficient as a 
function of the soil friction angle φ and the wall-soil friction angle δ. 

Figure 2-24: Results of upper-lower bound method for the passive earth pressure coefficient as a 
function of soil friction angle φ and wall-soil friction angle δ [77] 

Widuliriski [97] investigated the passive earth pressure problem as a quasi-static model at 
failure state in dense sand. The problem of earth pressure was simulated by using discrete 
element method (DEM). The model consisted of a rigid, very rough wall in a Karlsruhe sandy 
soil that was subjected to parallel and rotation around the bottom movements. The behavior of 
the Karlsruhe sand was simulated using a three dimensional spherical discrete model, which 
offered grain rolling resistance. The soil was modeled using the micro-polar hypoplasticity 
constitutive law, which offered a good description for the non-linearity of the stress strain 
behavior depending on the void ratio. Figure 2-25 illustrates the results of the passive earth 
pressure coefficient by Widuliriski for parallel movement (a), rotation around the top (b) and 
rotation around the toe (c).  

Figure 2-25: Earth pressure coefficient vs. relative displacement by Widuliriski [97] 
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Al-Jamal [3] also investigated the problem of passive earth pressure using the Plaxis® FEM 
software. The passive earth pressure problem was simulated in a plane strain FEM model with 
triangular 15-node elements as shown in Figure 2-26. The soil parameters were specified in 
laboratory experimental tests and modeled by using the hardening soil constitutive (HSM) 
law. The FEM simulation was also done for different types of soil such as silty sand (SM), 
clay sand (SC) and for soil named Test 2. Test 2 was investigated experimentally and also 
numerically. Passive earth pressure was developed by prescribing a horizontal displacement 
boundary condition for the wall plate. Free vertical displacements were allowed. The results 
were compared with an experimental field test result as shown in Figure 2-27. 

Figure 2-26: Mesh geometry for FEM test [3] 

Figure 2-27: Numerical and experimental results [3] 

2.2 Spatial Passive earth pressure 

Some of the methods for the evaluation of 3D earth pressure that have been developed from 
previous researches are highlighted below. 
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2.2.1 Theoretical aspects of spatial passive earth pressure  

Blum (1934): 

Blum [10] used Coulomb’s limit equilibrium theory to develop a failure mechanism by 
considering a three-dimensional failure surface as illustrated in Figure 2-28.  

Figure 2-28: Blum’s failure surface for spatial passive earth pressure [10] 

Within his method Blum ignores the soil-structure friction angle and makes a simplifying 
assumption for the flat failure surface (δ = 0). The frictional behavior between the failure 
body and the surrounded soil was also neglected. He accordingly developed the following 3D 
passive earth force Equation: 

 

௣௛ܧ ൌ ଵ
ଶ

ܤଶܪߛ tanଶ ቀగ
ସ

൅ ఝ
ଶ

ቁ ൅ ଵ
଺

ଷܪߛ tanଶ ቀగ
ସ

൅ ఝ
ଶ

ቁ  [2.33] 

Where: 

B the width of the wall 
H the embedded depth of the wall 
γ the soil density 
φ the soil friction angle 

 

Duncan and Mokwa (2001): 

Duncan and Mokwa [28] developed a program for the numerical calculation of the passive 
earth pressure as a function of the displacement using the log spiral theory coupled with a 
hyperbolic load-deflection behavior up to peak resistance. The hyperbolic load behavior is 
developed similar to the stress-strain constitutive law behavior by Duncan and Chang [29]. It 
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was obtained using the experimental results for different types of soils as shown in Figure 
2-29.  

Figure 2-29: Comparisons of measured and computed load deflection curves by Duncan and 
Mokwa [28] 

The nonlinear variation of passive earth pressure resistance with deflection can be 
approximated by a hyperbolic curve that incorporates the initial elastic stiffness and the 
ultimate passive resistance in order to compute accurate values of the passive earth pressure 
value. The solution is solved iteratively by changing the location of the log-spiral center until 
a minimum passive resistance is found. The program of Duncan and Mokwa includes the 
Ovesen-Brinch Hansen 3D correction factor to consider the shear plane extending beyond the 
edge of the wall. Duncan and Mokwa used a model defined by an initial stiffness Kmax. Kmax 
is based on the elastic solution from Douglas and Davis [27]. The hyperbolic load is defined 
according to Equation [2.34]. A detailed explanation of the constitutive law equation is given 
in the form of stress-strain behavior in chapter 2.1.4. 

ܲ ൌ ௎
భ

಼೘ೌೣ
ାோ೑

ೆ
ುೠ೗೟

  [2.34] 

Where:  

P Passive earth pressure 
U horizontal displacement 
Pult Passive earth pressure at the peak 
Rf The failure ratio 
Kmax the initial stiffness of the soil deflection load curve  
Pult is calculated from the following Equation: 

௨ܲ௟௧ ൌ  [2.35]  ܤܯ௣ܧ

M is the Ovesen-Brinch Hansen 3D correction factor based on Ovesen’s test for compacted 
sand obtained by varying φ from 32° to 41°. M according to the measurements is limited to a 
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maximum value of 2 [28]. Ep is the passive resistance per unit length and B is the structure 
length perpendicular to the plane of analysis.  

The value of Rf in the hyperbolic model is defined as the failure ratio and is equal to the 
ultimate load divided by the hyperbolic asymptote value of passive resistance. Figure 2-30 
shows the form of the hyperbolic model solution. 

Figure 2-30: Hyperbolic horizontal load deflection relationship used by Duncan and Mokwa [28] 

Alternatively Shamsabadi [76] proposed a model that based on the secant stiffness K at P౫ౢ౪ 
ଶ

 
(serviceability limit) as shown in equation [2.36] below.  

ܲሺݕሻ ൌ ௉ೠ೗೟ሺଶ௄௎೘ೌೣି௉ೠ೗೟ሻ௎
௉ೠ೗೟௎೘ೌೣାଶሺ௄௎೘ೌೣି௉ೠ೗೟ሻ௎

  [2.36] 

Where:  

Umax Displacement at peak when P=Pult 
Kmax Secant stiffness modulus  
U  Mobilized displacement 

For practical usage hyperbolic model parameters for Equation [2.34] are provided in Table 
2-2. The values listed in Table 2-2 produce essentially identical curves using either Equation 
[2.34] or Equation [2.36]. These models may be limited at appropriate residual levels for 
displacements beyond the peak by capping the curve and continuing with a constant resistance 
thereafter. 
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Table 2-2: Example for hyperbolic model parameters [28] 

Backfill soil 
φ c Pult Kmax 

(degree) kPA kN/m kN/cm/m 

δ governed by vertical equilibrium requirements (vertical uplift conditions) 

Test  46 14 315 250 

Silty sand 34 15 205 220 

clayey sand 25 62 400 260 

δ = 0.35 φ 

Test  46 14 500 270 

Silty sand 34 15 250 250 

clayey sand 25 62 270 270 

Soubra and Regenass (2001): 

Soubra and Regenass [80] developed a method for the calculation of a 3D passive earth 
pressure coefficient based on the upper-bound method of limit analysis that consisted of three 
steps.  

In the first step an extension of the Coulomb 2D theory was used to consider a one-block 
simple failure mechanism M1 as shown in Figure 2-31.  
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Figure 2-31: Failure mechanism upper-bound method [80] 

This mechanism is defined by a single angular parameter B, the dihedral angle between the 

horizontal plan and the lower plan, where B א ቂ0 , ሺ π
ଶ

െ 2φሻቃ is with the consideration that the 
lateral planes are at maximum in the plane of the wall as shown in Figure 2-31. 

The second step consisted of a multi-block mechanism Mn, composed of n rigid blocks as 
shown in Figure 2-31. Any number of blocks n is applicable. The horizontal movement of the 
wall is accommodated by movement of n rigid blocks. 

The third and final step comprised of a truncated multi-block mechanism Mnt which is 
obtained by upper-bound solution with a volume reduction of the final block in the Mn 
mechanism, in which the block Mn is truncated by two portions of circular cones. According 
to the work theory the sum of the external work on an element is equal to the energy 
dissipation for the same element. This principle was used to obtain Equation [2.37] to 
calculate the passive earth pressure load EPtotal due to the soil weight ߛ, the cohesion c and a 
load q. 
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௉௧௢௧௔௟ܧ ൌ ߛ௣ఊܭ ு
ଶ

ଶ
ܤ ൅ ܤܪ௣௖ܿܭ ൅  [2.37]  ܤܪݍ௣௤ܭ

Where: 

Kpγ Passive earth pressure coefficient due to soil weight 
Kpc Passive earth pressure coefficient due to cohesion 
Kpq Passive earth pressure coefficient due to surcharge loading q 
B The wall width 
H The wall height 

 

All of these coefficients are functions of φ, δ and B/H ratio. This method is inaccurate for big 
values of φ and δ especially in the case of Mn and Mnt. Figure 2-32 shows a comparison 
between the results of 3D passive earth pressure coefficient for M1, Mn and Mnt. 

Figure 2-32: Comparison between 3D passive earth pressure coefficients for different blocks M1, Mn and 
Mnt for different spatial ratios B/H [80] 

It is to be noticed that the choice of the number of blocks affects the accuracy of the results. 
For a rough wall a maximal number of 5 blocks is available. However, for high soil friction 
angles only one block M1 is available. The results are also affected by varying the friction 
angle and so the inclination of the blocks. For a high accuracy and more complex boundary 
conditions it is always better to use the multi-block mechanism Mnt. 

2.2.2 Experimental investigations of spatial passive earth pressure 

Paul (1955) 

Paul [59] carried out extensive experiments to determine the maximum earth pressure on 
I-profile walls and masts embedded and fixed with different boundary conditions in a sandy 
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soil with relative density Dr between 30 % and 80 %. As a result of his experiments he 
proposed a failure mechanism that was composed of two conical failure bodies with elliptical 
bottom areas as shown in Figure 2-33. 

Figure 2-33: Possibility of the boundary conditions for planar failure mechanism by considering active 
and passive pressure [59] 

The surface line of the conical failure body is considered as being almost linear and only 
shows a slight curve in the bottom area. Paul obtained the following Equation [2.38] to 
calculate the passive earth pressure of an I-profile wall of width (d) and the embedded 
depth (t). 

௣௚௛ܧ ൌ ଵ
ଷ

ݐሺߛ ൅ ௕
ସ

݀ሻଷߣ௣௛݇ଵ  [2.38] 

The λph is the passive earth pressure coefficient which Paul indicated in diagrams. The factor 
k1 takes into account the position of the rotation axis as well as the point of action of the 
horizontal force H. He also found out that with a greater slenderness ratio of the I-profile wall 
a cutting effect occurred and no failure body is formed. Therefore, the use of Paul’s method is 
only permissible when the slenderness ratio (width (d) to thickness (t) of the I-profile) fulfills 
the following condition: 3 ≤ t/d ≤ 8. Additionally, Paul obtained a mobilization function for 
the passive earth pressure with displacement as follows:  
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௡ݕ ൌ 1 െ ሺ1 െ  ሻ௡  [2.39]ݔ

Where: 

  Function of the horizontal passive earth pressure load ݕ
x  Function of the rotation angle α at the top of the I-profile  
n Constant related to the slenderness ratio t/d 

The given calculation method has three limitations. Firstly, Paul neither studied nor took into 
consideration the effect of sandy soils with small capillary cohesion. Secondly, the distance of 
the point of action of the horizontal force from the ground level surface must be greater than 
the embedment depth (h > t). Thirdly, earth pressure inclination angle δp is set to φ/3. 

Brinch Hansen (1961) 

Brinch Hansen [17] introduced a method for the calculation of the spatial passive earth 
pressure for load bearing capacity of horizontally loaded piles and anchor plates as shown in 
Figure 2-34. The piles and the anchor plates are considered as rigid.  

Figure 2-34: (A) Earth pressure distribution (B) Passive earth pressure on anchor plate [17] 

A

B 
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The resultant passive earth pressure Er along the beam can then be determined according to 
the Equation [2.40] below as shown in Figure 2-34 A. 

௥ܧ ൌ ଵ
ଶ

௣௛ଷ஽ܭ ܤଶܪߛ ൌ ଵ
ଶ

௣௛ଶ஽ሺ1ܭܤଶܪߛ ൅ ଵ.ଵሺ௄೛೓మವሻ
మ
య

ଵାହಳ
ಹ

ሻ  [2.40] 

Where:  
H anchor depth  
B width of the anchor plate 
Kph3D Spatial Earth pressure coefficient  
Kph2D  Earth pressure coefficient in 2D case 

 

For the pile case Brinch Hansen considered a 2D earth pressure distribution at the upper third 
of the embedded depth. Also the frictional shear load on the side surface of the failure body 
was taken into consideration.  

Brinch Hansen [16] [18] also studied the earth pressure on vertical anchor plate in a 
cohesionless sandy soil, considering the soil in the ultimate state of failure, to produce a state 
of rupture in the earth around the anchor plate as shown in Figure 2-34. The 3D earth pressure 
coefficients by Brinch Hansen for piles and anchor plates are to be taken as a function of the 
friction angle φ and the ratio of depth. He determined these through the assumption that the 
earth pressure can be calculated by means of the 2D passive earth pressure coefficient Kph2D. 
On the contrary, for the middle part of the embedded depth, 2D passive earth pressure with a 
consideration of a friction component on both side surfaces of the failure body was taken into 
account. This friction component is the magnitude of the earth pressure at rest (E0) multiplied 
with a friction factor equal to tan φ.  

rinch Hansen obtained an approach, as shown in Equation [2.41], to calculate the ratio 
between the measured earth pressure (Eexp) by his experimental tests to the calculated earth 
pressure according to his theoretical Equation (Eth) [2.40] for I-profile walls as a function of 
the spatial ratio (B

H
).  

ா೐ೣ೛

ா೟೓
ൌ 1.23 ൅ 0.213 ஻

ு
  [2.41] 

Brinch Hansen used Ovesen’s [17] experimental results to obtain the following correction 
factor m: 

݉ ൌ 1 ൅ ሺܭ௣௛ ൅ ௔௛ሻ଴.଺଻ܭ ቈ1.14ܧ ൅ ଵ.଺஻
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ಹሻ

቉  [2.42] 

Where: 

Constants B and E are calculated as follows: ܤ ൌ 1 െ ሺ ஻
஻ା௦

ሻଶ ܧ , ൌ 1 െ ு
ுା௓
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B The anchor width 
s The distance between two adjacent anchors 
Z Depth of the anchor 
H The height of the anchor 
Kph Horizontal passive earth pressure coefficient 
Kah Horizontal active earth pressure coefficient 

The previous calculation method is not very accurate for small values of the friction angles. 

Weissenbach (1961): 

Weissenbach [91] formulated a method for the calculation of 3D earth pressure which has 
been widely used for the design of I-profile walls till the present day. The calculation method 
based on experiments which were carried out with I-profile widths varying from 5 cm up to 
30 cm and for narrow I-profile walls in which the widths varied between 0.2 cm and 5 cm. 
Weissenbach determined the spatial passive earth pressure on the I-profile by applying a 
correction factor to the 2D passive earth pressure coefficient. The 2D passive earth pressure 
coefficients were correspondingly determined by using Streck’s [93] failure line diagram. 
Streck’s results for passive earth pressure coefficient Kpgh are given in Table 2-3. His 
experiments were classified as follows: 

1. Without vertical wall movement δ > 0 (between sandy soil and steel δ = 27.5°). 
2. With vertical wall movement δ = 0 (measuring the vertical load).  

The earth pressure inclination angle δp
* must be set according to Equation [2.43] by 

Weissenbach.  

௣ߜ
כ ൌ  ቊ െሺ߮ െ 2,5ሻ ׷ ߮ ൑ 30°

27.5° ׷ ߮ ൒ 30°    [2.43] 

Table 2-3: 2D passive earth pressure coefficients by Streck [93] 

φ 45 42.5 40 37.5 35 32.5 30 27.5 25 22.5 20 17.5 15 

δp -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -27.5 -25 -22.5 -20 -17.5 -15 -12.5

Kpgh 13.6 11.4 9.64 8.27 7.12 6.15 5.46 4.51 3.81 3.23 2.77 2.38 2.11

 

Weissenbach obtained Equations [2.44], [2.45] and [2.46] to calculate the passive earth 
pressure in two components namely the internal frictional component and the cohesion 
component.  
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௣௛ܧ ൌ ௣௚௛ܧ ൅  ௣௖௛  [2.44]ܧ
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Weissenbach defined an imaginary calculative width bs,r for the consideration of internal 
friction (ϕ) as well as cohesion bs,k as shown in Equation [2.47] (internal friction) and 
Equation [2.48] (cohesion) in the case of b > 0.3 t 

ܾ௦,௥ ൌ 0,6 ݐ  [2.47]  ߮݊ܽݐ

ܾ௦,௞ ൌ 0,9 ݐ ሺ1 ൅  ሻ  [2.48]߮݊ܽݐ

Weissenbach used his results to define a critical width b୩୰ ൌ 0.3 t. It was concluded from the 
experiments that beyond a certain wall width bkr (normal to the displacement direction often 
described as critical width bkr in technical literature) a different characteristic failure 
mechanism was identified, in which no clear failure body occurs and the soil in front of the 
wall is mainly squeezed sideways. In this case bs,r is calculated as in Equation [2.47] but by 
multiplying with a decrease Factor F, which is defined as follows: 

ܨ  ൌ  ට ௕
଴.ଷ௧

ൌ ට ௕
௕ೖೝ

for ܾ ൏ 0.3  [2.49]  ݐ

When the width of the wall is bigger than the critical width bkr, a failure body forms against 
the moved wall and the factor F is equal to 1 as shown in Equation [2.50] and Equations 
[2.45] and [2.46] are in use.  

ܨ  ൌ 1 for ܾ ൒ 0.3  [2.50] ݐ

This altered failure characteristic is taken into consideration by using a different mobilization 
function for the imaginary calculated width, in which an additional decreasing factor F must 
be introduced. This is because the calculation of the passive earth pressure without the 
decreasing factor F would yield a resultant Eph > 0 for a beam width of b = 0. The factor F 
rounds off the calculative width of a root function to b (b = 0) = 0. The passive earth pressure 
is then calculated using Equations [2.51], [2.52] and [2.53] as follows: 

௣௛ܧ ൌ ௣௚௛ܧ ൅  ௣௖௛  [2.51]ܧ
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௣௖௛ܧ ൌ ௣௖௛൫ఋ೛ୀఋ೛ܭ2ܿ
כ ൯ݐ൫ܾ ൅ ܾ௦,௞൯ܭܨ௔௜  [2.53] 

Very high values for passive earth pressures are obtained for predominantly cohesive soils. 
For this reason in combination with Kaercher’s experimental results, Weissenbach 
recommended the reduction of Epch to half its value by means of a factor Kai. The Equation is 
valid for non-cohesive soils with capillary cohesion without the reduction of Epch, so Kai can 
be set to a value of 1.0 in the Equation. 

Based on his experimental research results Weissenbach calculated the displacement at limit 
state (at peak) for parallel movement of a wall in medium dense sand as follows: 

ܷ஻ௗ ൌ 27.5 ௧మ

√௕
 [mm] [2.54] 

Where t is the embedded depth in unit of meter and b is the width in m. For dense sand the 
value of UBd in the Equation [2.54] decreases by 20 %. On the other hand for loose sand the 
value of UBd increases by 20 %.  

Also for the displacement at half the failure load (serviceability), Weissenbach obtained the 
following Equation: 

ܷீ௕ ൌ 1.65ට௧య

௕
 [mm] [2.55] 

The following Equation for passive earth pressure was also developed by Weissenbach. 

௣௛ܧ
כ ൌ 1.25 ߛ ߱ோ ܼଶ [2.56] 

Where: 

Z Coordinate of the depth starting from the surface of the excavation 
γ the soil density  
ωR  is defined in Figure 2-35 below:  
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Figure 2-35: Factor ωR [91] 

Colling (1962) 

Colling based his researches on the experimental results of Biarez [25] in which the true soil 
particles-motion conditions for an I-profile were made visible. It was found out that the soil 
particles at the I-profile bottom move in a rotationally manner around the bottom forming a 
lock as shown in Figure 2-36 below. He developed a calculation model which additionally 
considered the mode of the movement and total deformation.  

Figure 2-36: Geometry and load in the failure body [25] 

The failure mechanism was idealized such that for the top third of the embedment depth in 
area . Passive earth pressure is mobilized in front of the I-profile by moving it horizontally 
against the soil while active earth pressure was mobilized behind the I-profile. The magnitude 
of the active and passive earth pressures increased linearly as a function of the depth 
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according to Coulomb’s theory. The distribution of the failure body is illustrated in Figure 
2-37 below. 

The soil in the other two thirds was replaced with a force pair arising from linear stress 
distribution over the entire height of the soil cylinder. This force pair acts around a pivoting 
point and is equal to the soil reaction against the moment of rotation M. The depth of the 
pivoting point tR by Colling is almost between 0.69l and 0.72l depending on the ratio t/h. 

Figure 2-37: Ideal failure body at the upper face surface by Colling [25] 

Colling defined the spatial earth pressure coefficient Kph according to Equation [2.57] below. 

௣௛ܭ ൌ ௣௛ଶ஽ܭ൫ߛ െ ௔௛ଶ஽൯ܾ଴ܭ ൌ ௣௛ଶ஽ܭ൫ߛ െ ௔௛ଶ஽൯ܾሺ1ܭ ൅  ሻ  [2.57]ߥ

Where:  

 ௣௛ଶ஽ 2D Horizontal passive earth pressure coefficientܭ
 ௔௛ଶ஽ 2D Horizontal active earth pressure coefficientܭ
b Width of the I-profile 
 Constant defining the spatial shape of the failure body ߥ
b0 The imaginary effective width( b0ൌ ܾሺ1 ൅  ( ሻߥ

The constant ߥ depends on the soil and  parameters , the ratio ௧
௛
 and on the  wall friction angle. 

In contrast to other methods, Colling did not neglect the 3D active earth pressure behind the 
embedded I-profile. The imaginary effective width b0 as a result of 3D failure process is 
determined by failure wedge dispersion with the factor ߥ which is related to the soil friction 
angle φ and the geometrical dimensions b and h of the I-profile. 
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Ovesen (1964) 

Ovesen [58] conducted an extensive series of tests on passive earth pressure against anchor 
slabs to investigate the 3D effects. His tests were performed on compacted sand with friction 
angles ranging from 32.7° to 41.7°. Ovesen developed a test model as shown in Figure 2-38. 
The model included anchor plates, on which a passive earth pressure is mobilized after a 
movement of the anchors towards soil. The maximum difference between the passive and the 
active earth pressure coefficients in the test was 5.7 and the correction factor for the 3D 
effects did not exceed a value of about 2.  

Figure 2-38: Experimental apparatus made by Ovesen [58] 

The results in Table 2-4 for dense sand with a void ratio e0 ≈ 0.55 show the value of the 
correction factor M. The correction factor M is defined as the ratio of the spatial anchor 
pressure (A3D) to the anchor pressure in the 2D case (A2D). The spatial anchor pressure is 
considered to occur when earth pressure acts against an anchor slab with a limited width and 
height. On other hand, the anchor pressure in the 2D case results from having earth pressure 
against an anchor slab with unlimited width and height as shown in Figure 2-39.  
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Table 2-4: Results of Ovesen for infinite anchor at ground surface 

h/H l/L e0 M=A3D/A2D

1.0 1 0.549 1 

1.0 0.5 0.549 0.948 

1.0 0.25 0.548 0.803 

0.5 1 0.548 1.007 

0.5 0.5 0.547 0.81 

0.5 0.25 0.552 0.688 

0.25 1 0.536 0.913 

0.25 0.5 0.542 0.736 

0.25 0.25 0.544 0.609 

0.1 1 0.545 0.642 

0.1 0.5 0.553 0.599 

0.1 0.25 0.548 0.431 

Where: H, h, l and L are explained in the following Figure 2-39. 

Figure 2-39: Geometrical parameters for anchor slab with limited height and limited length [58] 

Zweck (1953 - 1964) 

An experimental test was developed by Zweck [103] to investigate the passive earth pressure 
problem from a spatial perspective. The experiment consisted of two different tests using 
wooden smooth walls. The experimental set up parameters are summarized in Table 2-5 
below. 
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Table 2-5: Experimental set up parameters 

 
Experimental box Dimension Wall Dimension

Length L (m) Width B (m) Height H ( m) b (cm) h (cm) 

Experiment 1 1.5 0.7 1.0 38 30 

Experiment 2 3.2 3.2 1.4 50 50 

 

The dimensions of the wall were chosen such that a failure body will be formed during the 
movement without exceeding the boundary condition. Sandy soils with different relative 
densities were tested. Both of vertical and horizontal displacements were measured. Zweck 
illustrated the results of the spatial passive earth pressure load as a function of the embedded 
depth for different widths as shown in Figure 2-40. A mobilization function for passive earth 
pressure load and displacement U was obtained as shown in following Equation [2.58]:  

ܲ ൌ ݀ሺ1 െ ݁ି௕௎ሻ  [2.58] 

Where:  

P Measured Passive earth pressure load. 
d, b Constants are calculated according to the soil physical properties 
U  Displacement of the wall 

  A B 

Figure 2-40: (A) Vertical and horizontal movement related to the measured load  
(B) Passive earth pressure load as function of the wall dimensions [103] [104] 

An important conclusion by Zweck is that the volume of the failure body increases by 
increasing the wall dimensions or by increasing the soil friction angle. A big field test was 
also carried out by Zweck and Kölnmonheimer Bridges Company in 1953 within the 
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framework of his research on the spatial passive earth pressure problem. An I-profile wall 
with section dimensions of 3 m height and 5.6 m width was moved in a sandy silty soil with 
2.2 m embedded depth. The value of the measured load reached 392 t. The load calculated 
using Coulomb’s Equation equaled to 326 t. The difference in loads (measured and 
calculated) was related to the difference in the failure body volume between reality and 
Coulomb assumptions. 

Zweck carried out further experiments [104] investigating the passive pressure on narrow 
walls embedded in sandy soils. He found out that the width bs.r of the soil failure body, on 
both sides of the wall, is independent from the depth of the wall t0, therefore he did not define 
the relation between the depth of the wall t0 and the equivalent width of the failure body at 
both sides of the wall. The major limitation of Zweck’s method is, that no considerations of 
the soil-wall interface friction angle δ were made in the calculations. Furthermore, his 
assumptions of an inclined resultant earth pressure force on the wall and a planar failure 
surface do not correspond to actual field conditions. A curved slope surface would better 
correspond to actual field conditions for such angular load.  

Kaercher (1968 - 1980) 

Kaercher [43] made comprehensive model experiments as shown in Figure 2-41 in order to 
investigate the passive earth pressure problem in cohesive soils with parallel movement. 
Medium plastic clay was used for the experiments. The water content of the soil in the 
experiments lay between 24 % and 48 % corresponding to the ratio of the soft particles. The 
soil was placed in layers in the test box. The pile in the prototype was moved during the test 
in a small velocity, in order to ensure that no extra effect on the passive earth pressure will be 
developed. The width b and thickness t of the I-profile sections used in the tests were b = 0.7, 
1.0 and 2.9 cm and with thicknesses t = 1.5, 2.0, 4.0 cm, respectively. 

Figure 2-41: Experimental apparatus for passive earth pressure problem [43]. 

As a result of his experiments, Kaercher proposed the predominant use of the Brinch Hansen 
method for earth pressure problem calculations, with the inclusion of a modification factor f 
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to take into account the load resulting from the friction at the failure body sides. Kaercher 
defined the correction factor f as a function of the I-profile thickness t and width b as shown 
in Equation [2.59]. The Brinch Hansen theoretical earth pressure force Eth is corrected by 
multiplication with the factor f as shown in Equation [2.60].  

݂ ൌ 1 ൅ 0,213 ௧
௕
  [2.59] 

ܧ ൌ ௧௛ܧ ቀ1 ൅ 0,213 ௧
௕

ቁ  [2.60] 

In an extension of these experiments Kaercher [44] also examined the effect of inclined 
ground surfaces on the horizontal loading. Basing upon his proposal that the horizontal earth 
pressure Hb,h of the I-profile is uninfluenced by the ground inclination, Kaercher calculated 
the earth pressure coefficients by setting the earth pressure inclination angle δp to zero. For 
this reason, the calculation results always lie on the safe side in comparison to the 
experimental results. He validated his assumption making calculations with the earth pressure 
inclination not set to zero.  

Kaercher [44] also investigated the stability of horizontal loaded piles with horizontal and 
inclined ground surfaces. For this purpose an experimental apparatus was developed as shown 
in Figure 2-42 with a different section pile using Karlsruhe sand. For an inclined ground 
surface a correction factor is defined as a function of the inclination angle and the soil friction 
angle.  

Figure 2-42: Experimental apparatus for passive earth pressure problem [44] 

Figure 2-43 shows a comparison between the approach of Weissenbach and Brinch Hansen to 
the results of Kaercher’s tests for different I-profiles. For both, smooth walls wc and frictional 
walls w0 of different profile sections (I or U section) with different ratios t/b, it was observed 
that Kaercher’s results are in a better agreement with Brinch Hansen’s than with 
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Weissenbach’s approach. Kaercher found out that the values of Weissenbach are higher than 
his values.  

Figure 2-43: Comparisons between approaches of Weissenbach, Brinch Hansen and Kaercher [43] 

Horn (1970) 

Horn [39] carried out both, laboratory and field tests, in order to investigate the mobilized 
spatial passive earth pressure against embedded walls of different dimensions (B/H). In the 
experiments he used retaining walls that consist of I-profile sections with timber planks 
between them. He used a wall of width B and varied the penetration depth t between 0.5 m 
and 3.0 m without permitting the wall to move vertically. A wet sandy soil was used in the 
experiments. In each test, the wall was displaced using parallel movement mode till the peak 
at the soil limit state conditions was reached.  

The spatial passive earth pressure at peak is defined in Equation [2.61] below: 

E୮୦
כ ൌ ଵ

ଶ
ܣ௣௛ଶ஽ܭܤଶܪߛ ቀ1 ൅ ܥ ு

஻
ቁ  [2.61] 

The Constant A is defined as the ratio of the earth pressure coefficient calculated from Horn’s 

results to the 2D theoretical earth pressure coefficient A=
௄೛೓మವಹ೚ೝ೙

௄೛೓మವ
.  

The experimental constant C is a function of the soil friction angle φ. For a soil friction angle 
φ = 30° is C = 0.3. A simplification of Equation [2.61] with the assumption that ߱ఝ ൌ
  :௣௛ଶ஽ yields Equation [2.62] belowܭܣ0.5

E୮୦
כ ൌ ଵ

ଶ
௣௛ଶௗܭܤଶܪߛ ൅ ଵ

ଷ
 ଷ߱ఝ  [2.62]ܪߛ
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Where: 
Kph2D Earth pressure coefficient for 2D case 
߱ఝ Frictional spatial passive earth pressure coefficient as a function of soil friction angle φ 

The mobilized earth pressure Eph is related to the spatial earth pressures at peak Eph
כ  with the 

mobilized displacement function We as follows: 

Eph

Eph
כ ൌ ௘ܹ  [2.63] 

The spatial Earth pressure at peak 

E୮୦
כ ൌ ଵ

ଶ
ܣ௣௛ଶ஽ܭܤଶܪߛ ቀ1 ൅ ܥ ு

஻
ቁ ൌ ଵ

ଶ
௣௛ଶ஽ு௢௥௡ܭܤଶܪߛ ቀ1 ൅ ܿ ு

஻
ቁ  [2.64] 

With: 

௘ܹ ൌ
೩೗

೩೗ಳೝ

0.12ା0.88 ೩೗
೩೗ಳೝ

  [2.65] 

We Mobilization function of displacement 
  Mobilized displacement  ݈߂
 ஻௥  Displacement at peak݈߂

஻௥݈߂  ൌ 10.4H1.5ሺ1 െ 0.625Dሻ [2.66] 

Where: 

D The relative density  
H The embedded depth of the wall 

Horn also investigated the stress distribution along a rigid wall in both conditions of soil 
limiting state, firstly at the peak ultimate state conditions and secondly at soil serviceability 
conditions. The stress distribution was calculated along the width at different wall sections 
namely at the corners and the middle of the wall. He found that the stress value is higher at 
the corner of the wall than in the middle of the wall as illustrated in Figure 2-44.  
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Figure 2-44: Stress distribution for earth pressure at peak along the wall at corner and middle [39] 

Horn also investigated the problem of the neighboring I-profile overlapping pressure and its 
dependence on the distance between the I-profiles. His analyses showed a very high 
dispersion of the results, which is related to the difference in the material natures, the 
laboratory deficiency in the properties data and the scale effects according to the size of the 
experimental models. 

Al - Diban (1999) 

Al – Diban [2] carried out numerous experimental model tests with fixed embedded I-profiles 
between the years 1995 to 1999 at the TU Dresden institute for Geotechnics. The profile was 
moved in a 1.5·0.5·0.8 m glass box to make the visualization of the moving soil particles 
possible. He tested a sandy soil with relative soil densities of 26 %< Dr < 83%. In the process, 
he examined the influence of inclined ground surfaces and stepped ground surfaces on the 
failure force of horizontally loaded I-profiles as shown in Figure 2-45.  

Al-Diban calculated the effect of the spatial passive earth pressure on an I-profile wall by 
considering two areas. Firstly substituted width ܾ1ഥ  above the pivoting point and secondly ܾ2ഥ  
for the spatial effect below the pivoting point. The effective I-profile width ܾ1ഥ  and ܾ2ഥ  are 
obtained as follows: 

ܾଵഥ ሺ߮ሻ ൌ ቐ ܾ ൅ ට߮݊ܽݐ ௣௩ߟ ௕௧
଴,ଷ

׷ ܾ ൏ ݐ0,3

ܾ ൅ .߮݊ܽݐ0.6 ݐ ׷ ܾ ൒ ݐ0.3
[mm] [2.67] 

 

ܾଶതതതሺ߮ሻ ൌ ቐ ܾ ൅ ට௕ሺ௧బା଴,ହ௧మሻ߮݊ܽݐ௣௩ߟ
଴,ଷ

׷ ܾ ൏ ݐ0,3

 ܾ ൅ ଴ݐ௣௩ሺߟ ൅ ߮݊ܽݐଶሻݐ0,5 ׷ ܾ ൒ ݐ0.3
[mm] [2.68] 
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Figure 2-45: Description and Mechanism of experimental model by Al Diban [2] 

The factor ηpv is for the consideration of a better conformity between the previous theoretical 
Equation and the experimental results and it is calculated as follows:  

 

௣௩ߟ ൌ ݊௣1.6tan ሺ߮ሻ  [2.69] 

Constant np is calculated according to TGL Standard 11464/03 as a function of the relative 
density ID [2]. 

Neuberg (2002) 

Neuberg [56] studied the spatial passive earth pressure effect by establishing an experimental 
model of a retaining wall that consisted of I-profile sections with timber planks between them 
as shown in Figure 2-46. He also performed numerical simulations using a discrete element 
model. From the results of both the experimental and the numerical analysis, he proposed a 
mobilization function for the dependence of passive earth pressure on the corresponding wall 
displacement, which will be discussed later in section 2.2.4. 

 



Chapter 2 Literature review Page 55 

Figure 2-46: Neuberg experimental apparatus [56] 

Arnold and Herle (2005): 

Herle [53] carried out a research on a new type of a tunnel drilling machine that had been 
developed and patented by Hoch Tief construction AG which was designed to be supported 
by rigid plates that are laterally pressed into the soil. These plates are used as supports or 
abutments in tunneling and pipeline construction as seen in Figure 2-47. 

Figure 2-47: Plate laterally pressed into the tunnel side. Left: side view; Right: cross section [53] 

The load-displacement behavior of these structures is of particular importance for their 
design. The horizontal displacement of the supporting plates against the soil generated a 
special case of spatial earth pressure problem that was investigated experimentally for dry 
sand at different relative densities. Additionally a 3D Numerical simulation of this special 
earth pressure problem was made using the Finite Element Code TOCHNOG. Moreover a 
mobilization function between the earth pressure coefficient and the corresponding 
displacement was obtained taking into consideration the plate dimensions (width and height) 
and the overburden depth. In a first step experiments with dry sand of different densities were 
performed. These tests were subsequently used to validate the numerical simulations of this 
boundary value problem. In the second step, the numerical model included a parametric study. 
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This study was carried out using field values in order to investigate the influence of stress 
level, density and overburden for only the parallel wall movement mode. The test consisted of 
a box with dimensions of length 3 m, width 1 m and height 1.5 m, which included a wall with 
a varied height from 0.6 m to 1.2 m. The wall was displaced using the parallel movement 
mode without reaching the peak at the ultimate state. Two types of sand, Dresdner sand 
(DDS) and Ottendorf-Okrillaer sand (OOS), were used. The wall had a coarse aluminum 
surface with protrusions to develop a frictional wall-soil interface behavior at request. As a 
general result, it was observed by Arnold and Herle that the passive earth pressure on a 
supporting plate under an overburdened soil is mobilized similar to a wall in 2D case for 
small displacement. Figure 2-48 shows the FEM mesh of the model used in the numerical 
calculations to serve scope of the research. The soil was modeled using the hypoplasticity 
constitutive law to simulate the scale effect. The results were then compared with the previous 
test result as shown in Figure 2-49. 

Figure 2-48: Finite element mesh used in the simulations of the model [53] 

Figure 2-49: Experimental and FEM results a) for DD sand b) for OO sand [53] 

The FEM results are in fairly acceptable agreements with the experimental test, which means 
that FEM has the capability to simulate the behavior of soil induced contractancy and 
dilatancy with an overestimation of the deformation values in some complicated cases.  
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Bilina (1998): 

An experimental work was carried out by Bilina [65] [66] to investigate the problem of the 
spatial passive earth pressure. The experimental model, which was used, consisted of a box 
with dimensions of 21 cm depth, 28 cm width and 56 cm length filled with sandy soil as 
shown in Figure 2-50. A pile embedded in the soil was moved horizontally, using three load 
cells at different heights, in order to generate a 3D passive earth pressure. The weight of the 
pile was modeled by adding a mass on the pile head with the restriction of vertical I-profile 
pile movement. The applied forces and the pile horizontal displacement were measured. The 
experimental results were then used to derive an Equation for 3D passive earth pressure as a 
difference between active and passive pressure on both sides of the pile. 

௣௛ܧ
כ ൌ Δܧ ൅ ௔௛ܧ

 [2.70]  כ

Where: 
Eph

* The 3D horizontal passive earth pressure load  
Eah

* The 3D horizontal active earth pressure load 
ΔΕ The difference between  passive and active   
 

The earth pressure coefficient is calculated:  

Δܭఊ௛ ൌ ଶ୼ா
ஓ௛మ஻

  [2.71] 

Where: 
 The soil density  ߛ
h The embedded depth of the pile 
B The width of the I-profile pile perpendicular to the displacement direction. 
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Figure 2-50: Earth pressure experimental test [65]. 

The mobilization curves of the passive earth pressure dependent on relative displacement 
during the advance of the experiment in medium dense fine sand and medium dense coarse 
sand were also recorded by varying the spatial ratio B/H (between 8.30 to 7.88) and for 
different embedded depths (between 20.7 to 19.7). The results are illustrated in Figure 2-51. 

Figure 2-51: Experimental Mobilization approaches for the passive earth pressure (M) due to relative 
displacement (λ) [65] 
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While M and λ are defined in the following Equations: 

ܯ ൌ
כܧ߂

௛ െ כܧ߂
௛.௢

כܧ߂
௛,௙ െ כܧ߂

௛,௢
 [2.72] 

ߣ ൌ
ܷ
ܷ௣

 [2.73] 

Where: 
כܧ߂

௛  The mobilized result of passive earth pressure load obtained from the experimental 
results of the test. 

כܧ߂
௛଴  The earth pressure at rest load derived from the experimental results of the test.  

כܧ߂
௛,௙  Passive earth pressure load at peak due to DIN 4085 

U The mobilized displacement 
Up The displacement at peak 

2.2.3 The German Standard DIN 4085 / OE – Standard B 4434 

The calculations of the spatial passive earth pressure according to the German Standard DIN 
4085 [31] bases on the experimental results of many researchers. The spatial 3D earth 
pressure against a moved wall must be calculated using an imaginary calculative width for the 
friction and cohesion parts as shown respectively in Equations [2.74] and [2.75]. 

ܾ௦,௥ ൌ  ௣௚௛ܾ  [2.74]ߤ

ܾ௦,௞ ൌ  ௣௖௛ܾ  [2.75]ߤ

In the process, the shape coefficients μpgh and μpch are determined according to the following 
Equations [2.76] and [2.77]: 

௣௚௛ߤ ൌ ቐ
1 ൅ 0.6 tan ߮ ு

௕
׷ ு

௕
൏ 3.333

0.55ሺ1 ൅ 2 tan ߮ሻ√ܾܪ ׷ ு
௕

൒ 3.333
  [2.76] 

  

௣௖௛ߤ ൌ ቐ
ቀ1 ൅ 0.3 ு

௕
ቁ ሺ1 ൅ 1.5 tan ߮ሻ ׷ ு

௕
൏ 3.333

1.1ሺ1 ൅ 0.75 tan ߮ሻ√ܾܪ ׷ ு
௕

൒ 3.333
  [2.77] 

The total sum of the earth pressures due to self weight and cohesion are calculated as follows: 
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௣௛ୀܧ
ଵ
ଶ

௣௚௛ܭଶܾ௦,௥ܪߛ ൅ ௣௖௛ܭ௦,௞ܾܪܿ ൌ ଵ
ଶ

௣௚௛ܭ௣௚௛ߤଶܾܪߛ ൅  ௣௖௛  [2.78]ܭ௣௖௛ߤܾܪܿ

The passive earth pressure coefficients in the 2D case for self weight Kpgh and cohesion Kpch 
in the DIN 4085 are determined according to curved failure surfaces. According to the OE-
Standard B4434 [57] the coefficients can be determined with plane as well as curved failure 
surfaces, taking into consideration that Coulomb’s theory delivers too high values for friction 
angles φ > 35° or higher earth pressure inclination angles. 

The displacement at the ultimate limit state (failure condition) in German standard DIN 4085 
is calculated as follows: 

For  thin walls when ஻
ு

൏ 0.333 ฺ ܷ஻ௗ ൌ 40 ଵ
ଵା଴.ହ஽

ுమ

√஻
 [2.79] 

For broad walls when ஻
ு

൒ 0.333 ฺ ܷ஻ௗ ൌ 100ሺ1 െ ሻܦ0.6  ଷ [2.80]ܪ√

Where: 
D The relative density of the soil 
UBd The displacement at failure conditions in (mm) 
H The embedded depth in (m) 
B The wall width in (m) 

 

And the displacement at half limit load (Serviceability) is defined as follows in Equations 
[2.81] and [2.82]: 

ܷீௗ ൌ 2 ଵ
ଵା଴.ହ஽

 ටுయ

஻
 [mm] for thin walls ஻

ு
൏ 0.333 [2.81] 

ܷீௗ ൌ 10ሺ1 െ ଷ [mm] for wide walls ஻ܪ√ ሻܦ0.6
ு

൒ 0.333 [2.82] 

2.2.4 Numerical modeling of spatial passive earth pressure  

A number of numerical models developed by many researchers are presented in the following 
section. 

Neuberg (2002) 

Neuberg (2002) [56] modeled the spatial passive earth pressure problem by carrying out an 
experimental model of a retaining wall that consisted of I-profile sections and timber planks 
between them. He also used the Distinct Element Method (DEM) with the Particle Flow Code 
(PFC) software. The DEM model is illustrated in Figure 2-52. 
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Figure 2-52: DEM model [56] 

Neuberg made a model of a cylinder body surrounded by the soil particles taking into 
consideration the soil and the wall properties. Based on his numerical and experimental 
results, he obtained a mobilization approach for the spatial passive earth pressure by parallel 
movement as a function of the corresponding displacement. The approach is illustrated in 
Equation [2.83]. The Distinct Element Method was extended and improved to enable the 
numerical simulation of load tests. Based on this knowledge, conditions, which were not 
covered by experiments, were simulated by means of the DEM. The test matrix could be 
accordingly extended. With the results of these simulations a new calculation method for 
parallel movement was derived in the frame of the subgrade reaction method.  

݁ᇱ
௣ ൌ ௠ா೛

௧௕
ቀିସ௠మିହଽ

ସ௠మିଷଵ
ቁ ҧܼ൬

షఴ೘మషమఴ
ర೘మషయభ

൰  [2.83] 

The mobilization degree of the passive earth pressure (m) is defined as follows: 

݉ ൌ
Ԣ௣ܧ

௣ܧ
ൌ ሺ1 െ ሺ1 െ ഥܷሻଶ ሻଵ.ହହூವ [2.84] 

Where:  

ഥܷ ൌ ௎
௎ಳ

  [2.85] 

 
ID The relative density 
U The moblized of the displacement 
UB The displacement at the peak 
 ௣  The mobilized passive earth pressure force′ܧ
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  ௣ܧ The passive earth pressure force at peak 
ҧܼ   The geometrical depth according to the coordinate system of the model 

t  The total embedded depth of the I-profile wall 
b The width of the I-profile wall normally to the load direction 

 

Figure 2-53 shows the results of Neuberg’s mobilization function for different soil densities. 
It is to be noticed that according to his mathimatical function when ID=0, the earth pressure 
mobilization function is a straight line equal to one. 

Figure 2-53: Mobilization functions in relation to the compactness of the packing [56] 

The following Figure 2-54 shows horizontal stress distributions at different values of 
displacement for an I-profile wall with 2 m embedded depth.  

Figure 2-54: Stress distribution at different displacement [56] 
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The displacement at failure conditions in a parallel movement was determined by Neuberg 
according to his result as follows: 

ܷ஻ ൌ ଴.଴ଷ௧
ூವ

 [m] [2.86] 

Where:  
ܷ஻ The displacement at failure  
t The embedded depth of the I-profile wall  
ID The relative density 

 

The displacement at failure by Neuberg according to his experimental results, is in the range 
of 10 – 20 % of the embedded depth and is about 50 % away from Weissenbach’s 
experimental results. From other side the displacement at serviceability ultimate ܷ஻,ହ଴% by 
Neuberg is defined depending on his results as in the following Equation: 

ܷ஻,ହ଴% ൌ ቎1 െ ට1 െ 0.5ሺ 1
ܦܫ1.55

ሻ
቏ ݐ0.03

ܦܫ
 [m] [2.87] 

This is in the range of 2 – 4 % of the embedded depth t, which is also far from Weissenbach’s 
results and DIN 4085. 

Jung (2007): 

Jung [42] used a finite element simulation to investigate the behavior of I-profile walls with 
the application of an elasto-plastic material model for sand. His numerical results were 
calibrated with in-situ measurements of a large scale model carried out at the University of 
Texas [13]. 
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Figure 2-55: FEM and experimental measurement results for the wall horizontal movement along the 
total height of the excavation’s wall [42]. 

Figure 2-56: FEM and experimental results for the passive earth pressure distribution along the 
embedded depth [42] 

The curves in Figure 2-55 and 2-56 show a good agreement between the distributions for both 
of FEM and the experimental results. As a result of his study, a mobilization approach for the 
passive earth pressure as a function of the relative displacement was obtained as shown in 
Equation [2.88]  

݉ ൌ ாᇱ೛೓

ா೛೓
ൌ ൤1 െ ቂ1 െ ௎

௎ಳ
ቃ

ଶ
൨

௖ಶ
  [2.88] 

The value of the displacement at failure by parallel movement is defined using the previous 
Neuberg’s Equation [2.88]. The constant CE (CE = 2.44 ID) is also defined using previous 
Neuberg’s results as a function of relative density ID. 
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Figure 2-57 shows a comparison of the mobilization approach of the passive earth pressure 
between Besler in 2D case on one hand and Jung and Neuberg in 3D case on the other hand. 
The curves show a good agreement.  

Figure 2-57: Comparison of the passive earth pressure mobilization approach as a function of relative 
displacement between Besler, Neuberg and Jung [42] 

Jung [42] calculated the coefficient of subgrade reaction as a function of many parameters 

௦௛ܭ ൌ ௘ ′೛೓ሺ௓,஻,௧,௔,ு,ாூሻ
௎ሺ௓,஻,௧,௔,ு,ாூሻ

 namely embedded depth t [m], the bending stiffness EI of I-profile 

[KN/m2], width of the I-profile B [m], depth of the excavation H [m], the distance between 
two I-profiles a [m] and the coordinate in the depth direction Z [m].  

Figure 2-58 below shows results of the mobilization function for the earth pressure by Jung 
due to the subgrade reaction method at different depths Z. 

Figure 2-58: Mobilization function of Subgrade coefficient and earth pressure distribution [42] 
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In his thesis Jung studied the passive earth pressure on I-profile wall in a general mode of 
movement, but he did not take the soil density and mode of movement into account. 

Benmebarek (2008): 

Benmebarek [7] carried out a numerical study of 3D passive earth pressure for parallel 
movement of rigid walls by means of a finite element simulation as shown in Figure 2-59.  

Figure 2-59: FEM Model using FLAC software [7] 

He used a linear elastic-ideal-plastic constitutive model with Mohr-Coulomb failure criterion 
and an associated flow rule. His results were presented in design tables that show the 
relationship between different geometrical input parameters and spatial passive earth pressure 
coefficients. Figure 2-60 summarizes the numerical results showing the decay of the spatial 
passive earth pressure correction factor µ (µ = Kph3D/Kph2D) with increasing spatial ratio until 
it reaches the 2D passive earth pressure conditions. 

Figure 2-60: Spatial passive earth pressure for different friction angles [7] 

Benmebarek showed the effect of the friction angle on the distribution of the failure body and 
on the spatial passive earth pressure coefficient. The results show an increase of the failure 
body volume by increasing the soil friction angle. It also shows that for the same soil friction 
angle φ, the failure body volume is shaped differently for different soil wall interface friction 
angles φ. The results are illustrated in Figure 2-61.  
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Figure 2-61: Surface plane of the failure body at peak as a function of the friction angle ϕ [7] 

Benmebarek concentrated in his researches on the passive earth pressure at peak for a parallel 
movement without considering the development of the passive earth pressure with increase of 
the displacement till the peak or for other modes of wall movement. 

Rmanso and Antäo (2010): 

A three dimensional FEM model of the limit analysis upper-lower bound theorem using 3D 
SUBLIME software was done by Rmanso and Antäo [89] to determine the horizontal passive 
earth pressure coefficient. The software 3D SUBLIME was developed by a research group at 
university NOVA de Lisbon. It solves large scale problems using parallel computing 
techniques by scaling the mechanism and setting the external forces work rate to minimize the 
difference between the plasticity dissipated work rate and the work rate of the fixed external 
forces. The geometry of the model consists of a symmetrical vertical rigid wall with width B 
and height H. The analysis was done using the following wall dimensions ratio n=஻

ு
= 0.25, 

0.5, 1.0, 2.0, 5.0, 7.0 and ∞ during the analysis. The soil surface is horizontal. A Mohr- 
Coulomb yield criterion with cohesionless sand and different friction angles was used. The 
angle of the soil-wall interface friction angle δ was also varied to calculate the passive earth 
pressure for frictional wall.  

Figure 2-62 shows the results of Rmanso and Antäo for the passive earth pressure coefficient 
as a function of spatial ratio for a smooth wall and soil with three different friction angles 
(30°, 35° and 40° ). 

It is to be noticed that the correction factor μ decreases by increasing spatial ratio n till an 
almost constant value is reached at ݊ ൌ ∞ (2D case). Also the correction factor increases by 
increasing the friction angle φ.  
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Figure 2-62: Correction factor µ for passive earth pressure [89] 

As a result of the investigation the correction factor µ is also defined as a function of the 
spatial ratio multiplied with a constant mα which is a function of the Rankine passive earth 
pressure coefficient in 2D case. The function is defined as follows:  

௣௛ܭ

௞௣௛,ଶ஽ܭ
ൌ 1 ൅ m ஑

ܤ
 [2.89] ܪ

The following Equation gives the values of the constant mα as a function of Rankine passive 
earth pressure coefficient in 2D case. 

݉ఈ ൌ 0.36 ൅ 0,36൫ܭ௣
ோ௔௡௞௜௡௘൯௢.଻ହ

 [2.90] 

Where K୮
Rୟ୬୩୧୬ୣ is Rankine's passive earth-pressure coefficient which is given as follows: 

K୮
Rୟ୬୩୧୬ୣ ൌ ଵାୱ୧୬ ϕ

ଵିୱ୧୬ ϕ
.  [2.91] 

The effect of the wall-soil friction angle was also investigated and the following results were 
obtained as shown in Figure 2-63. 
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Figure 2-63: Correction factor of the spatial passive earth pressure coefficient Kp3D/Kp2D as a function of 
the spatiality ratio B/H [89]. 

Earth pressure coefficient increases by increasing soil-wall interface friction angle δ. This 
increase was related by Rmanso and Antäo to the increase of the failure body volume. They 
noticed that the failure body volume increases by increasing wall soil interface friction angle 
δ as shown in Figure 2-64. The passive earth pressure by Rmanso and Antäo was investigated 
only for parallel movement. 

Figure 2-64: Representation of the relative magnitude of the velocity fields obtained in determining soil 
weight passive earth pressure coefficients for B/H=1 for φ = 15°, 30°and 40° [89]. 
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3 Finite Element Modeling 

3.1 Introduction 

Recent advances in computers and calculation algorithms have made finite element analysis a 
viable tool for assessing the internal mechanics of soil structures and the interaction in 
between. Finite element models consist of many single elements connected to each other at 
nodes. The simulations are carried out by calculating the displacements or the stress in these 
nodes according to defined mathematical functions. The calculations are done for each 
element and thereafter assembled together globally according to certain equations. The 
displacement within a single element may lead to its deformation. The deformation in turn 
results to internal forces within the element. The magnitude of the internal forces essentially 
depends on the relation between the material properties and the element deformation. This 
relation implies on the constitutive material law and element type in use. The Finite element 
method (FEM) offers the most powerful analytical approach which enables the simulation of 
user defined parameters and boundary conditions. Examples of such user defined parameters 
and boundary conditions may include: non-linear soil behavior, soil homogeneity, different 
boundary conditions and the contact types between the soil and the structure. The accuracy of 
numerical modeling results significantly depends on the proper definition of the studied case 
and a careful control of some critical parameters such as rupture criteria, non-linearity, 
element types, friction coefficients and mesh fineness. Most of soil-structure interaction 
models are made using the non-linear finite element method. This is done in order to account 
the non-linear stress-strain analysis and the geometrical non-linear behavior of the model.  

Two types of FEM methodologies are relevant, namely the implicit and the explicit 
techniques. Implicit methodologies obtain solution by simultaneous solving systems of 
equations. Therefore a frequent updating of the stiffness matrix for nonlinear FEM analysis is 
needed which is used in the following thesis. The explicit method however needs smaller time 
steps to comply with stability requirement for solving the equation, but this technique will not 
be used in the thesis. 

In general, FEM models are conceptual descriptions or approximations that describe physical 
systems using mathematical equations. They are not exact descriptions of physical systems or 
processes. The usefulness of a model depends on how closely the mathematical equations 
approximate the physical system which is modeled. In order to evaluate the applicability of a 
model, it is necessary to understand the physical system and the assumptions embedded in the 
derivation of the mathematical equations. 

Other important parameters are the geometrical discretization, the size of the model and the 
time of the step used in the incremental calculation that each step in an Abaqus analysis is 
divided into multiple increments.  

The finite element method (FEM) enables the examination of the force - deformation behavior 
of complex geometrical structures with different material properties. An attempt to explain the 
continuum mechanism basic principle completely is outside the scope of this chapter. The 
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major principle of the FEM, depends on the theory that energy is neither created nor 
destroyed as shown in the following equation. 

Π ൌ Π௜ ൅ Π௔ ൌ ∑ Π௜
௘

௘ ൅ ∑ Π௔
௘

௘   [3.1] 

With: 
Π The total potential energy of the system 
Πi The potential internal energy of the system 
Πa The potential outer energy of the system 
∑e Πi

e  Sum of the potential internal energy over all elements e 
∑e Πa

e  Sum of the potential outer energy over all elements e 

The determination of the values of loads such as Gravitation using the energy theory is done 
by calculating the difference between outer and inner energy. 

The FEM calculation is executed according to the steps shown below:  

1. Discretization of the system into a suitable number of finite elements 
2. Determination of an element stiffness, element plasticity or mixed element matrix 
3. Transformation of each element relationship into the global coordinate system. 
4. Integration of all boundary conditions 
5. Determination of the unknown variables through the implementation of the equation 

systems 
6. Determination of the magnitude of stresses, deformation and other output parameters 

from the global variables 

Using the constitutive non-linear model laws, the solution is obtained iteratively through 
repetition of the steps above with the adjustment of the element stiffness in dependence of the 
stresses or expansions. 

In general the strain is defined as follows: ε୧୨ ൌ ଵ
ଶ

ሺu୧,୨ ൅ u୨,୧ሻ 

Obtaining the strains according to the displacement direction in a 3D space can be done in 
major axis or any other x, y and z coordinate. By this the following strain matrix results.  

௜௝ߝ ൌ ൥
ଵଵߝ ଵଶߝ ଵଷߝ
ଶଵߝ ଶଶߝ ଶଷߝ
ଷଵߝ ଷଶߝ ଷଷߝ

൩ ൌ ଵ
ଶ

቎
௫ߝ2 ௫௬ߛ ௫௭ߛ
௬௫ߛ ௬ߝ2 ௬௭ߛ
௭௫ߛ ௭௬ߛ ௭ߝ2

቏  [3.2] 

Where: 
εi,j  The element axial strain vector 
γi,j the element shear strain 

i and j are defined according to the strain coordinate direction. By taking both of the 
symmetrical behavior of the strain matrix ߝ௜௝ ൌ  ௝௜ and also the following definition of theߝ
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volumetric difference by strain ߝ௩ ൌ Δ௩
௩

ൌ ଵߝ ൅ ଶߝ ൅ ଷߝ ൌ ௠ߝ3  into consideration, the 
following matrix is obtained  

 

൥
ଵଵߝ ଵଶߝ ଵଷߝ
ଶଵߝ ଶଶߝ ଶଷߝ
ଷଵߝ ଷଶߝ ଷଷߝ

൩ ൌ ൥
௠ߝ 0 0
0 ௠ߝ 0
0 0 ௠ߝ

൩ ൅ ൥
௠ߝଵଵିߝ ଵଶߝ ଵଷߝ

ଶଵߝ ௠ߝଶଶିߝ ଶଷߝ
ଷଵߝ ଷଶߝ ௠ߝଷଷିߝ

൩  

= 

൥
௠ߝ 0 0
0 ௠ߝ 0
0 0 ௠ߝ

൩ ൅ ൥
݁ଵଵ ݁ଵଶ ݁ଵଷ
݁ଶଵ ݁ଶଶ ݁ଶଷ
݁ଷଵ ݁ଷଶ ݁ଷଷ

൩  

[3.3] 

 

This is simplified as follow in Equation [3.4] 

௜௝ߝ ൌ ௜௝ߜ௠ߝ ൅ ݁௜௝  [3.4] 

 

Where: 
 ୫ The volumetric strainߝ
δ୧୨ The unit tensor 
e୧୨  The deviator matrix which describes the strain by a constant volume (shear strain) 
 

The stress tensor is to be defined similar to the previous description of the strain tensor, 
considering the major axis in the 3D space where there are only major normal stresses. 
According to Cauchy tensor, the following Equation is defined ൫σ୧୨ െ σδ୧୨൯n୨ ൌ 0. The 
solution of the previous Equation in the major stresses is the normal stresses σଷ ൏ σଶ ൏ σଵ. 

Where the isotropic stress σ୫ ൌ ஢భା஢మା஢య
ଷ

. After some mathematical simplifying the 
following formulations in Equation [3.5] in general case are obtained 

൥
ଵଵߪ ଵଶߪ ଵଷߪ
ଶଵߪ ଶଶߪ ଶଷߪ
ଷଵߪ ଷଶߪ ଷଷߪ

൩ ൌ ൥
௠ߪ 0 0
0 ௠ߪ 0
0 0 ௠ߪ

൩ ൅ ൥
௠ߪଵଵିߪ ଵଶߪ ଵଷߪ

ଶଵߪ ௠ߪଶଶିߪ ଶଷߪ
ଷଵߪ ଷଶߪ ௠ߪଷଷିߪ

൩  

= 

൥
௠ߪ 0 0
0 ௠ߪ 0
0 0 ௠ߪ

൩ ൅ ൥
ଵଵݏ ଵଶݏ ଵଷݏ
ଶଵݏ ଶଶݏ ଶଷݏ
ଷଵݏ ଷଶ݁ݏ ଷଷݏ

൩  

[3.5] 
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The first part describes the hydrostatic behavior of the hydrostatic stresses σ୫. The second 
part describes the difference in stresses in the different directions which is called deviator 
stress tensor s୧୨ . 

The mechanical behavior of the soil is to be described by a constitutive law that defines the 
strain-stress relation using the previous mathematical equations. The constitutive law 
Equations are obtained according to an experimental work and then to be described 
mathematical and numerically in a FEM program, such as in this thesis the use of the 
hypoplasticity constitutive law in the FEM ABAQUS software. 

The use of the finite element method for the calculation of earth pressure in failure condition 
implies difficulties because of the big deformations that occur. Some of the difficulties are 
based in the right selection of the model parameters, the constitutive laws and boundary 
conditions, which adequately represent the physical behavior of the model. 

3.2 Finite Element Program ABAQUS 

The CAE ABAQUS FEM program is often applied to solve geotechnical problems. 
ABAQUS CAE enables a wide range of geotechnical simulations. For soil-structure-
interaction problems, the soil is often modeled as a single, two or three phase material 
depending on its constituent’s volume fractions. 3D models of geotechnical structures 
embedded in soil are commonly characterized by ratio of mesh element’s length to smallest 
structure dimensions. This makes the three-dimensional models rather complex. ABAQUS 
offers a wide range of soil mechanics simulation possibilities and can be extended using 
several user subroutines. Some of the possibilities offered by the FEM-program ABAQUS 
are: 

• Simulations of advanced models with the inclusion of several finite elements, 
deformations, pore-water pressure, temperature, degrees of freedom, the soil body for 
one-, two- and three-dimensional stress-deformation, seepage, heat transfer and 
diffusion problems.  

• Use of constitutive models for soils such as, Mohr Coulomb plasticity, Drucker Prager 
plasticity models or hypoplasticity in the form of a subroutine 

• Definition of the initial values for effective stresses, void ratio, pore pressure or the 
degree of saturation, which can be done within element and node groups  

3.2.1 Constitutive material law “Hypoplasticity” implemented in ABAQUS 

A constitutive law for the soil (Hypoplasticity) is executed in ABAQUS with the help of a 
user subroutine (umat.f). This ABAQUS subroutine capability displays results using the 
following parameters out of the ABAQUS input file: user defined boundary conditions, initial 
conditions and non-uniform boundary conditions for all degrees of freedom. They can depend 
on time, coordinates and element number. Non-linear distributed initial values of state 
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variables can be defined for effective stresses with void ratio and for pore water pressure, as 
required. Furthermore, the use of the subroutine in ABAQUS offers the following 
possibilities: 

• It can be used to define the mechanical constitutive behavior of a material; 
• It will be called at all material calculation points of elements for which the material 

definition includes a user-defined material behavior; 
• It can be used with any procedure that includes mechanical behavior; 
• It can use solution-dependent state variables; 
• It updates the stresses and solution-dependent state variables to their values at the end 

of the increment for which it is called; 
• It provides the material Jacobian matrix ᇞσ/ᇞε for the mechanical constitutive model; 
• It can be used in conjunction with other user subroutine to redefine any field variables. 

More details for the Hypoplasticity constitutive law will be later explained in chapter 4. 

3.2.2 Simulation of the contact surface in ABAQUS 

This option is used to create a definition of the surface interaction. It defines contact surface 
simulations between two different elements such as soil and wall by tie constraints. The 
surface interaction behavior is governed by its input properties. The contact surface is an 
important tool in the special earth pressure problem as it describes the relative behavior 
between the soil and the wall during the analysis. The soil–wall interaction is a major factor in 
almost all geotechnical structural problems. This is because all stresses and strains are 
dependent upon the nature of this interaction. The contact surface tool has the ability to 
simulate the stresses, shear stresses and relative displacements between the wall and the soil. 
It is also able to describe the transfer of the resulting stresses thereby generally describing the 
real soil behavior. 

A certain kind of contact element is used (interface element) to define the soil-wall interaction 
behavior. 

ABAQUS also offers the ability to simulate the contact between a rigid surface and a 
deformable body. The rigid structures can be either two- or three-dimensional or they can 
undergo either small or finite sliding. For the both methods, the contact pair or contact 
element, the program ABAQUS offers the use of two contact discretization options: “node-to-
surface” and “surface-to-surface: 

• Node-to-surface contact discretization: By node-to-surface the contact conditions are 
made such that every single node of the contact interface slave surface side effectively 
interacts with a point of projection on the contact interface master surface on the 
opposite side. This means, that by every contact condition a single slave node involves 
with a group of nearby master nodes from which values are interpolated to the 
projection. The nodes of the master surface can penetrate into the slave surface, but 
the slave nodes are constrained not to penetrate into the master surface. By node-to-
surface, the contact direction is based on the normal of the master surface.  



Page 76 Finite Element Program ABAQUS Section 3.2 

• Surface-to-surface contact discretization: By Surface-to-surface contact the slave and 
master surfaces are in the region of contact constraints. The contact direction is based 
on an average normal of the slave surface in the region surrounding a slave node. The 
contact regions by surface-to-surface contact are approximately centered on slave 
nodes, so each contact constraint will predominantly consider one slave node but will 
also consider adjacent slave nodes. Some penetration may be observed at individual 
nodes; however, large, undetected penetrations of master nodes into the slave surface 
do not occur by surface to surface contact.  

Program ABAQUS also offers the use of small or finite sliding to describe the behavior of the 
contact interaction between the two bodies. Both small and finite sliding can be either two- or 
three-dimensional or only small relative displacements between nodes are allowed. 

In the simulation, Coulomb’s friction model was used for the frictional behavior. The basic 
concept of the Coulomb friction model is to relate the maximum allowable frictional (shear) 
stress across an interface to the contact pressure between the contacting bodies. In its basic 
form, two contacting surfaces can carry shear stresses up to a certain magnitude across their 
interface before they start sliding relative to one another. The Coulomb friction model defines 
this critical shear stress Tcrit at which sliding of the surfaces starts as a fraction of the contact 
pressure p between the surfaces (Tcrit=μp). The friction factor µ is known as the coefficient of 
friction. Key factor to be determined when creating a contact formulation is the assignment of 
“master” and “slave” roles to the respective surfaces. 

The program ABAQUS uses the concept of slave master interaction surface to define the 
contact area between different bodies. The rigid area is defined as the master surface while the 
deformable surface is defined as slave surface. The ABAQUS master-slave algorithm permits 
the master surface nodes to penetrate the slave surface without resistance. If the refinement 
technique does not work or is not practical, a symmetric master-slave method can be used. 
However, the condition that both surfaces are element-based surfaces with deformable or 
deformable-made-rigid parent elements has to be fulfilled. The symmetric master-slave 
method defines two contact pairs using the same surfaces. The master and slave surfaces are 
defined for the initial contact surface. This results in additional computation because contact 
searches must be conducted twice for the same contact pair. The contact pair method is used 
in the thesis simulations because of the high accuracy it provides.  
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4 Numerical Modeling 

4.1 Introduction 

Different simplified assumptions are made for numerical modeling. It is very important to 
ensure that the constitutive law is a good approximation of the physical behavior in reality. 
Conditions for the application of suitable constitutive laws in the model have to be provided 
to allow a certain degree of accuracy. These considerations are taken into account using the 
continuum mechanics laws. For example the dimensions of the model are very big compared 
with dimensions of the element and the soil is a homogenous single phase system. The stress-
strain behavior is considered as a pure mechanical process. Only a static load was considered 
during the analysis by avoiding a quick load or displacement during short time. This implies 
that no dynamic effect is taken into consideration.  

4.2 The Constitutive Model 

The modeling of the soil material behavior using the suitable constitutive law according to the 
studied case is of crucial importance for the quality and accuracy of the computation results. 
The hypoplasticity constitutive model was used in this thesis to study the earth pressure in 
relation to the stress levels. The computations were executed for each movement mode 
(parallel, rotation around top or bottom) using the hypoplastic material law developed for 
sandy soil. It describes the stress-strain behavior including the nonlinearity and inelasticity 
without using the prevailing concepts in other constitutive laws. It describes the soil behavior 
by loading and unloading in a unique equation which expresses the stress increment as a 
function of a given strain increment, the actual stress and void ratio without a priori 
distinguishing between elastic and plastic deformations. A furthermore feature of 
Hypoplasticity is the description of the soil behavior with special emphasis on barotropy and 
pycnotropy. Barotropy means the influence of the stress level on the friction angle φ and on 
the stress-strain tangential stiffness while pycnotropy is defined as the effect of soil density 
including the behaviour of the dilatancy and contractancy. Hypoplasticity expresses the stress 
increment as a function of a given strain increment due to the current void ratio. The 
hypoplasticity equation includes many parameters through which the stress conditions into the 
soil are to be calculated considering the fact of the fading influence of the initial state with 
increasing length of the history. The constitutive Equation has eight constants, which are 
stress independent, at least in a particular pressure range, thus enabling the application of the 
hypoplastic Equation in boundary value problems with pressure and density variation. The 
parameters are measured in a simple way from standard tests in soil mechanics and are 
illustrated as follows:  

The angle φc is a fundamental soil parameter representing the friction angle in the critical 
state. It is not influenced by the level of normal effective stress or drainage conditions and can 
be obtained in a simple estimation from the angle of repose for a dry non-cohesive granular 
material. This angle of repose is defined for a sand as the maximum angle of sand at which 
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the sand can rest on an inclined plane under its self weight without sliding down. The 
granulate hardness hs is a constant used as a reference pressure and it is influenced with the 
size and form of grains as well as the grain size distribution. The exponent n allows a non-
proportional increase of the incremental stiffness with increasing mean granulate pressure ps. 
Both constants hs and n can be obtained from the oedometric compression test. The constants 
ed0 ,ec0 and ei0 are the minimum, the critical and the maximum void ratio at zero pressure, 
respectively. The minimum void ratio at zero pressure ed0 is approximately determined from 
the related index test. It can be taken equal to emin. The critical void ratio at zero pressure ec0 is 
approximated with the maximum void ratio emax obtained from the index test. The maximum 
void ratio at zero pressure ei0 can be estimated from emax. The maximum void ratio at zero 
pressure ei0 can be also estimated from emax. In theory ei0 can be reached during an isotropic 
consolidation of a grain suspension in a gravity free space. ed0 ≈ emin, ec0 ≈ emax and for sand it 
is supposed that ei0 ≈ 1.2emax. Those (the void ratios) emin and emax are pressure-dependent. 

The exponent α controls the influence of density on the peak shear strength (peak friction 
angle) and is obtained from triaxial tests. The exponent ß takes into consideration the 
influence of density on the compressibility. It considers the stiffness increases consecutive to 
a soil densification and can be determined by two different compression tests at different 
densities (loose to dense). 

 Hypoplasticity was first developed at university of Karlsruhe. The numerical modeling was 
done using Karlsruhe sandy soil, which consists mainly of sub round quartz grains. The 
hypoplasticity Equation for sands is rate independent and it is also allowed for the application 
of large strain problems. The sand index properties determined from the experiments are 
given in Table 4-1.  

Table 4-1: Index properties of Karlsruhe medium sand [37] [38] 

Unit weight of the grains, kN/m3 26.5 

D10, mm 0.240 

D60, mm 0.443 

Uniformity coefficient, Cu 1.85 

Min. void ratio, emin 0.53 

Max. void ratio, emax 0.84 

The behavior of Karlsruhe sand in triaxial tests and other laboratory experiment was also 
investigated by Kolymbas & Wu [46]. Figure 4-1 shows the result of triaxial tests for dense 
sand samples (e0 = 0.53) at different confining pressures (σ3). 
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Figure 4-1: Experimental triaxial test results for dense Karlsruhe sand [46] 

They also determined the eight material parameters required for the hypoplasticity 
constitutive law for this sand as shown in Table 4-2.  

Table 4-2: Input Parameters for Hypoplastic material law, Karlsruhe Sand [37] [38] 

φc grain stiffness (hs) ed0 ec0 n ei0 α β 

30.0° 5800.0 MN/m2 0.53 0.84 0.25 1.00 0.13 1.05 

 

In the frame of the hypoplasticity constitutive law, many versions for the hypoplastic 
Equation were developed by Kolymbas, Wu and Bauer [46] The constitutive parameters 
however do not have a recognizable relation to the granulometric properties. The 
determination of these parameters should as far as possible be performed on the basis of 
granulometric soil properties and can therefore hardly be interpreted physically. The 
hypoplasticity equation was also extended later with a scalar factor considering the 
pycnotropy (influence of density on the constitutive law). Moreover, considering the critical 
void ratio ecrit depends on the stress level and barotropy.  

The numerical modeling in this thesis is based on the version developed by von Wolffersdorf 
[98] [99] in the following tensorial Equation [4.1]  
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௝ܶ ൌ ௕݂ ௘݂
ଵ

௧ೝ ሺ ሶ் ሶ் ሻ
ܦଶܨൣ ൅ ܽଶ ሶܶ ௥൫ݐ ሶܶ ൯ܦ ൅ ௗ݂ܽܨ൫ ሶܶ ൅ ሶܶ  ԡ൧  [4.1]ܦ൯ԡכ

Where: 
T୨ Jaumman  tensor rate 
D The symmetrical stretching tensor 
T Cauchy stress tensor rate 
Tሶ  an abbreviation defined as follows Tሶ ൌ T

୲୰ T
 

Tሶ *  is the normalized Cauchy stress tensor rate using the trace of tensor T  
that Tሶ כ ൌ Tሶ െ ଵ

ଷ
I 

The dimensionless functions fe and fd describe the influence of pycnotropy (density 
dependency) and the transition to the critical state. The peak friction angle and the dilatant 
behavior is included in function fd. The function fd is defined as follows in Equation [4.2] 

ௗ݂ ൌ ൬
݁ െ ݁௖

݁௖ െ ݁ௗ
൰

஑
with 0.1 ൏ α ൏ 0.3 [4.2] 

Where: 
α constant parameter that describes the effect of the soil density on the frictional angle at 

peak as shown before.  
The function fe includes the effect of the void ratio on the incremental stiffness (the stiffness 
increases when void ratio decreases) as shown in Equation [4.3] 

௘݂ ൌ ቀ௘೎
௘

ቁ
ஒ

with 1 ൏ β ൏ 1.1  [4.3] 

fe in Equation [4.3] allows the stress rate tensor to be equal to zero, the critical state is 
reached when factor fd is equal to 1 

β  constant parameter that describes the effect of the stress level 
ec void ratio at the critical state 

 

The previous void ratios are related to the isotropic pressure ps which is defined as follows in 
Equation [4.4] 

௦݌ ൌ ିሺఙభାఙమାఙయሻ
ଷ

  [4.4] 

σ1,2,3: the three major stresses in the stress plane  

The relation between the void ratio and the isotropic pressure ps is defined in consideration of 
the fact that the ratios ei and ed bound the admissible states in the plane e vs. ps = -trT/3 as 
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shown in Equation [4.5] below. It describes the critical void ratio ୣౙ
ୣౙబ

 for high and low 

pressures, with the corresponding critical value for zero pressure ec0. 

௘೔
௘೔బ

ൌ ௘೎
௘೎బ

ൌ ௘೏
௘೏బ

ൌ ݌ݔ݁ ቂെ ቀଷ௣ೞ
௛ೞ

ቁ
௡

ቃ  [4.5] 

Where: 
hs stiffness of the granular soil particles 
n constant parameter related to the soil particles stiffness 
ed0  void ration at a maximum compaction at ps=0 
ei0 void ratio at isotropic compression at ps=0 
ec0 void ratio at critic state at ps=0 
ei  void ratio at isotropic compression 
ed void ratio at a maximum compaction using small shear cycles 
ec void ratio at the critical state 

 

The barotropy function fb (pressure dependency) depends only on the void ratio ei as shown in 
Equation [4.6]. It considers the increase of the stiffness consecutive to an increase of the mean 
stress. fb is related to the fact that a perfect isotropic compression must provide the same 
exponential relationship between the void ratio ei and the mean pressure p=-trT/3. 
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eୡ଴ െ eୢ଴
൰
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ିଵ
 [4.6] 

 

The normal void ratio e is limited as shown in the following Equation [4.7]: 

݁ௗ ൏ ݁ ൏ ݁௜ [4.7] 

The factor a is defined as follows: 

a ൌ √ଷሺଷିୱ୧୬஦ౙሻ
ଶ√ଶୱ୧୬஦ౙ

  [4.8] 

Factor a is determined by the critical friction angle φୡ.  

The limiting conditions proposed by Matsouka and Nakai were incorporated by Von 
Wolffersdorf as the stress conditions for the critical conditions in the hypoplastic law. 

The following stress function is contained therein. Factor F in Equation [4.9] is a function of 
the deviatoric stress ratio tensor Tሶ   and it is calculated as shown in the following Equations כ
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Where:  

ԕ, ψ Angles in the deviatoric plane which describe the stress state. 

4.3 Estimation of the internal soil friction angle 

In the hypoplastic formulation the shear strength is stress-dependent and is not described by 
an explicit parameter (such as the friction angle) that the soil friction angle φ is not an input 
parameter in the constitutive hypoplasticity law. Thus, the friction angles given were derived 
by numerical simulation of a direct shear test under vertical stresses in order to compare the 
corresponding earth pressure coefficients with its values from the results according to other 
researchers. A FEM model for direct shear test was simulated and the soil was simulated as a 
rectangular 2D body with a width of 10 cm and height of 3 cm surrounded with rigid surfaces 
as shown in Figure 4-2. 

Figure 4-2: Mesh element for the numerical model of the soil direct shear test 

The boundaries at AB and CD were simulated as being fixed in the horizontal direction 
allowing only movements in vertical direction. Boundaries at BC were simulated as being 
fixed in both the horizontal and vertical directions, while at the boundaries AFED, the 
movement were prescribed by the movement of the adjacent rigid surface. 

The shear test of the rectangular 2D body was simulated by introducing a rigid surface 
enclosing AFED outer surfaces using the surface to surface contact tool in the program 
ABAQUS neglecting the soil self weight. The contact surface to surface in ABAQUS offered 
the possibility of using an option called Equation which was used to define the behavior 
between the introduced outer rigid surface at the top and the corresponding soil surface 
(AFED) as a single unit that moves together without any relative displacement between them, 
thereby generating a shear failure surface at AD as shown in Figure 4-3. 
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Figure 4-3: Mesh element at the failure step after shearing 

The simulation was done by applying a predetermined horizontal displacement and a fixed 
vertical stress to the introduced upper rigid surface. The vertical load is applied on surface FE 
in the first step then the part AFED was moved horizontally in the second step. The resulting 
shear forces Rf during the displacement are shown in Figure 4-4 below. The shear stresses 
were calculated by the resulting peak shear forces Rf from the actual shearing surface. The 
relative displacements between the rigid surface and the adjacent soil are equal to zero so no 
shear strengths will be generated. The actual shear surface is considered automatically in 
ABAQUS software. Shear stress is calculated as follows in Equation [4.20]: 

߬ ൌ ௙ܴ

݁ݒ݅ݐܿܽ  [4.20] ݂݁ܿܽݎݑݏ

The test was done for three different vertical stresses 100, 200 and 400 kN/m2 with three 
different soil densities e0 = 0.55, e0 = 0.65 and e0 = 0.75. The vertical stress 400 kN/m2 was 
chosen to clearly show the behavior of the dense sand under large vertical stresses. The results 
of the peak shear force Rf as a function of the horizontal displacement U1 are shown in the 
following Figure 4-4, 4-5 and 4-6. The friction angles given were derived under vertical 
stresses of 100, 200 and 400 kN/m2. These values were used for the conventional calculation 
of earth pressures with regard to Equation [2.8] in the German Standard DIN 4085 [31]. 
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Figure 4-4: Reaction Force in the horizontal direction for dense sand (e0 = 0.55) by different vertical 
stresses (σv = 100, 200 and 400 kN/m2) 

Figure 4-4 for a dense sand (e0 = 0.55) above, shows an increase in the reaction force in the 
horizontal direction by increasing the horizontal displacement in the direct shear test until a 
maximum value which defines the shear resistance of the soil. After this maximum peak, the 
horizontal reaction force decreases suddenly and after a large displacement it is nearly 
constant, implying that the soil in the direct shear test has got its residual strength and the test 
is complete. It is also observed that an increase in the vertical stress leads to an increase in the 
maximum peak. 

Figure 4-5: Reaction Force in the horizontal direction for vertical stress σ2 = 100 kN/m2  

Figure 4-5 above shows the effect of the initial void ratio e0 (soil relative density) on the shear 
strength for a constant vertical stress of 100 kN/m². The peak value of horizontal reaction 
force increases with increasing soil density as was to be expected. The diagrams for other 
results are presented in the annex. 
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Mohr Coulomb graphs of shear stress against vertical stress were plotted for the three 
different soil densities as shown in Figure 4-6.  

Figure 4-6: Mohr Shear stress envelope for three different initial void ratios (e0 = 0.55, 0.65, 0.75) 

The values of the friction angle φ as a function of the initial void ratio e0 are illustrated in 
Table 4-3 below. These values of the friction angle φ presents its initial values for the stresses 
at 100, 200 and 400 kN/m2 but it is to be noticed that in the spatial case by using 
hypoplasticity φ is related to the stress level. 

Table 4-3: Soil friction angle φ as function of the soil densities 

Initial void ratio (e0) Relative Density (D) Peak friction angle (φ) 

0.55 92.0% 40.0° 

0.65 57.0% 36.0° 

0.75 26.0% 33.0° 

4.4 Verification of the initial stress condition 

In order to verify the initial stresses of the analyses, which affects the result of the calculation 
for the passive earth pressure problem, a compression test (Oedometer test) with the purpose 
of calculating the earth pressure coefficient at rest K0 was simulated. The K0-values given 
were derived by a numerical simulation of the stress state under the own weight of the soil 
using the hypoplastic material law. By considering, that the FEM simulation is a reflection of 
the reality in field, a higher accuracy of the result requires a good definition of the initial soil 
parameters such as initial void ratio and the corresponding initial earth pressure coefficient 
K0. K0 is defined as the ratio between the horizontal earth pressure σh to the vertical stress σv 
as shown in Figure 4-7 below. 
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The stress in the initial vertical and horizontal stress condition is related linearly to each other 
as follows σh = K0·σv. The oedometer test was simulated as one element with 0.1 m diameter 
and 0.02 m height.  

The first step includes the application of the soil weight, the setting of the initial void ratio 
and the corresponding soil parameters. In the next step the pressure is increased gradually to a 
value of 500 kN/m2. 

Figure 4-7: The result of the vertical and horizontal stresses due to the FEM oedometer 
compression test 

The values of K0 in Figure 4-7 are listed in Table 4-4. 

Table 4-4: Earth pressure at rest vs. initial void ratio 

e0 0.55 0.65 0.75 

K0 0.46 0.48 0.5 

Figure 4-8 shows the distribution of the vertical strain εz according to the vertical stresses σv 
by loading and unloading showing the non-linearity of the soil behavior with a good 
agreement with the general soil behavior in oedometer compression test. 
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Figure 4-8: Oedometer compression test results for the strain as a function of the vertical stresses σv  

Table 4-5 shows the initial conditions used in the numerical simulations (including input 
parameters such as e0 and the corresponding parameters such as K0), including average 
friction angles for peak states ϕ of the sand, the value of the initial earth pressure coefficient 
K0 according to oedometric compression test.  

Table 4-5: Input parameters for primary stress state 

eo no D ϕ (°) γ (kΝ/m3) Ko 

void ratio porosity relative 
density 

friction 
angle unit weight earth press. 

0.55 0.355 92.00% 40 17.1 0.46 
0.65 0.394 56.80% 36 16.1 0.48 
0.75 0.428 26.00% 33 15.1 0.50 

4.5 Modeling Procedure 

The main aspects of the FEM numerical investigations that were done using ABAQUS are 
listed below: 

• Due to symmetry, only the half of the model was discretized. 

• The dimensions of the three-dimensional model area were varied in order to fit 
different wall dimensions (breadth/height). As an example: a model with a wall of 
width B = 10.0 m and height H = 10.0 m was set to the following dimensions: length 
in X direction is Lx = 130.0 m. Length in y direction is Ly = 100.0 m. The total depth 
Htotal = 20.0 m. The geometrical model is shown in Figure 4-9. With these model 
dimensions the behavior of the wall is not influenced by the boundary conditions as 
shown below in section 4.6. 
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• The soil was modeled with 8-noded solid elements as shown in Figure 4-10. The 
interaction behavior in the boundary surface between wall and soil was modeled using 
interface elements. Relative displacements occur, if the relationship between shearing 
and normal stresses exceeds a defined limit value μ. 

• In the front surface of the model area many different smooth rigid walls (Wall  to 
Wall ) were specified as shown in Figure 4-9. According to the embedded depth 
that will be investigated, one or more of the walls are moved while the other walls 
remain unmoved during the modeling process. The earth pressure on the movable wall 
was calculated by integrating the horizontal soil stresses behind the wall. The wall 
movement modes, parallel movement, rotation around the toe of the wall and rotation 
around the top of the wall were examined. 

• Geometrical non-linearity was also implemented which considers the changes in 
geometry during the analysis and this is significant in a large deformation analysis as 
in passive earth pressure problem.  

• The simulation was made for three different initial void ratios (e0 = 0.55, 0.65, 0.75), 
which means three different relative densities. 

 

The modeling process is executed in two steps. In the first step, the primary stress state using 
self weight of the soil medium is generated for different initial void ratios and the 
corresponding parameters for this stage such as the friction angle and the earth pressure at rest 
K0. In the second step the rigid walls were moved according to the three previously defined 
wall movements.  

Figure 4-9: Geometrical model for spatial passive earth pressure 
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Figure 4-10: Finite element mesh for spatial passive earth pressure 

4.6 The effect of the mesh density and the size of the discretized regions 

In the following chapter a study of the mesh dimensions was carried out. First of all the effect 
of the boundary conditions was tested in the verification of the model by studying the effect 
of the model length Ly and the model depth HTotal as shown in Figure 4-11. Three values for 
the lengths namely Ly1 = 80 m, Ly2 = 100 m and Ly3 = 120 m and two values for the depth 
with Htotal = 20 m and Htotal = 25 m were used in order to check the effect of the boundary 
conditions on the results. 

Figure 4-11: The model with the different lengths the heights which are defined in displacement 
directions 

The results are illustrated in Figure 4-12 below. The earth pressure coefficient Kph versus 
relative displacement U/H shows that no effect of the boundary conditions is noticed. The 
length Ly1=100 m thus was considered in the model as sufficient.  

 

HTotal = 20 m, HTotal = 25 m 

Ly1 = 80 m, Ly2 = 100 m Ly3 = 120  
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Figure 4-12: Earth pressure coefficient Kph for three different models with mesh lengths by 80 m, 100 m 
and 120 m 

On the other hand the results show that both models with Htotal = 20 m and Htotal = 25 m have 
the same earth pressure coefficient curves. In both cases by changing the boundary condition, 
no effect is noticed as long as the displacement spectrums or the elements in motion are far 
away from the boundary. When a failure body cuts the boundary it will lose a part of its 
volume which causes a loss of accuracy in the results. 

An important step in the finite element analysis is to study the effect of the coarseness and the 
size of the discretized regions on the accuracy of the results. For this purpose, three different 
models with different meshes were developed for different values of the soil initial void ratio, 
namely e0 = 0.55 and 0.65. Figure 4-13 below illustrates the three models with different 
meshes. 
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Figure 4-13: Finite element model using the three different meshes. Respectively from the top; medium, 
fine and very fine mesh. 

The first mesh is a medium mesh with 19136 nodes and 57408 degrees of freedom while the 
second is a fine mesh with 37488 nodes and 112464 degrees of freedom and the third one is 
finest one with 46860 nodes and 140580 degrees of freedom. Two cases of a wall having a 
width (B) of 20 m and 10 m and depth (H) of 10 m embedded in dense sand (e0 = 0.55) and 
medium dense sand (e0 = 0.65) respectively were considered. Figure 4-14 and 4-15 show the 
passive earth pressure coefficient Kph which will be defined in section 5.1 plotted on the y 
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axis, as a result of moving the wall towards the soil. The results of the three models for the 
three different meshes are shown in Table 4-6. 

Figure 4-14: Passive earth pressure coefficient of a wall with B = 20 m and H = 10 m for dense sand 

It can be observed from the Figure 4-14 and Table 4-6 that for a wall with B = 10.0 m and 
H = 10.0 m in dense sand, there is almost no difference in the results obtained under the three 
different meshes used. The same conclusion is also observed for a wall having a width (B) of 
20 m and depth (H) of 10 m and the medium dense sand (e0=0.65) as shown in Figure 4-15 
and in Table 4-7 below.  

Table 4-6: Passive earth pressure for three different meshes with (B = 20 m, H = 10 m, eo = 0.55) 

Mesh Kph Up (m) Up/H 

Medium  6.624 0.63 0.063 

Fine 6.549 0.608 0.0608 

Very fine 6.412 0.607 0.0607 
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Figure 4-15: Passive earth pressure coefficient for a wall B = 20 m H = 10 m in medium dens sand 

Table 4-7: Passive earth pressure for three different meshes (B = 20 m, H = 10 m, eo = 0.65) 

Mesh Kph Up (m) Up/H 

Medium  4.95 0.75 0.075 

Fine 4.91 0.73 0.073 

Very fine 4.90  0.70 0.0702 

 

It can be concluded from the above mesh gradation study, that the mesh refinement made by 
increasing the number of elements, has a negligible influence on the results. Hence, the first 
mesh one gradation proposed in Figure 4-10 is adopted in the further analyses carried out in 
this thesis. Many previous analyses were also made to study the effect of the element type on 
the results. It was concluded, that the biquadratic element (element C3D8 in ABAQUS) is 
very suitable for the case of spatial passive earth pressure. This is because this element 
resulted in accurate results with reasonable computation time as compared to the other 
investigated element types and it also does not affect the distribution of the failure surface 
inside the soil block.  

4.7 Effect of contact algorithm 

Furthermore, two soil-wall interface contact conditions were examined under separate 
analyses, namely, the node to surface contact condition and the surface to surface contact 
condition. Such analyses were carried out for a wall having a width (B) of 50 m and depth (H) 
of 10 m and dense sand (e0 = 0.55). The results of the analyses are shown in Figure 4-16 and 
Table 4-8. It can be noticed from the Figure 4-16 that both contact conditions produce similar 
results. The node to surface contact interface is adopted in this thesis. 
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Figure 4-16: Passive earth pressure for two different interface approaches (node to surface and surface 
to surface, n=5, H = 10 m, eo = 0.55, parallel movement) 

Table 4-8: Passive earth pressure for two models (n = 5, H = 10 m, eo = 0.55, parallel movement) 

Contact Kph Up Up/H 

Node to surf 5.013 0.47 0.047 

Surf to surf 5.061 0.486 0.049 

4.8 Model Verification 

The reference wall examined with the finite element method (FEM) exhibits a height (H) of 
10 m and a breadth (B) of 10 m (B/H = 1) considering a smooth wall δ = 0. Figure 4-17 shows 
the relationship between the passive earth pressure coefficient (Kph) and the normalized 
displacement (U/H) under parallel movement. 
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Figure 4-17: Passive earth pressure coefficient as a function of the wall displacement for parallel 
movement (H = 10 m, n = 1). 

The earth pressure coefficient at peak (Kp3D
fem) ranges from 8.0 for dense sand (e0 = 0.55) to 

5.0 for loose sand (e0 = 0.75). The passive earth pressure for plane strain conditions (Kp2D
fem) 

was calculated from the model with B = 260 m (i.e. B/H = 26). The results were compared to 
the Equations given in the German Standard DIN 4085. According to this standard, the earth 
pressure coefficient calculated for plane strain conditions should be multiplied by a correction 
factor (μDIN) to calculate the spatial passive earth coefficient as shown in Equation [4.21]: 
 

஽ூேߤ ൌ 1 ൅ 0.6 tanሺ߮ሻ ሺு
஻

ሻ  [4.21] 

The obtained results are summarized in Table 4-9. Evidently, for the investigated case of 
parallel movement of a smooth rigid wall the agreement of the numerical results with the DIN 
4085 [31] approach is rather good. The coefficients for plane strain conditions obtained from 
the numerical simulation are slightly higher than the coefficients obtained from German 
Standard DIN 4085 in Equation [4.21], which of course is a result of the different 
assumptions regarding the material behavior. However, the μ factors of both methods 
coincide very well, with deviations of less than 4%.  

Table 4-9: Comparison of earth pressure coefficients from numerical simulation and from the 
German Standard DIN 4085. 

initial void 
ratio 

friction 
angle ϕ (°) 

(Kp2D
DIN) μDIN Kp2D

fem Kp3D
fem μ = Kp3D

fem/ Kp2D
fem 

0.75 33.0 3.39 1.39 3.55 5.01 1.41 
0.65 36.0 3.85 1.44 3.98 5.98 1.50 
0.55 40.0 4.60 1.50 5.01 8.085 1.61 
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5 Numerical modeling results 

5.1 Introduction 

The results of the numerical passive earth pressure modeling for the three main wall 
movement modes in the ultimate limit state as well as the serviceability state are presented in 
this chapter. In general the case of a smooth wall (δ=0) is considered. However, in order to 
show the effect of wall roughness, exemplary results for a wall with δ>0 are presented in 
section 5.5.  

According to the analysis, the stresses in the model experience two equilibrium conditions 
namely, the soil stress conditions under its self weight and the soil stress conditions under the 
effect of the wall movement. The existing stress conditions in the soil before any construction 
interventions are referred to the initial stress conditions. The equilibrium condition 
calculations were done using the nonlinear hypoplastic constitutive material law. The results 
are presented in tables and figures which give the magnitude of the passive earth pressure as a 
function of the following parameters, spatial ratio n=B/H, initial void ratio e0 and the wall 
movement mode. The maximum passive earth pressure Eph or the earth pressure coefficient 
Kph and the relative displacement at the limiting conditions can be extracted from the 
force - displacement diagrams derived with ABAQUS. 

The following terms, which are used in the presentation of the results, are defined below: 

• The resultant horizontal passive earth pressure Eph was calculated and normalized by 
using Equation [5.1]  

௣௛ܧ ൌ
௣௛ܭܤଶܪߛ

2  [5.1] 

Where: 
B is the wall width in (m) 
H the wall embedded height(m) 
γ the soil density (kN/m3) 
Kph the horizontal passive earth pressure coefficient which is calculated by rearranging 

Equation [5.1] as follows in Equation [5.2]: 

௣௛ܭ ൌ
௣௛ܧ2

[5.2] ܤଶܪߛ

The resultant earth pressure has been calculated by integrating the horizontal stresses at the 
centers of gravity of the interfacing soil elements on the moved wall. 

• The horizontal mobilized displacement U during the movement, which reaches a value 
Up at the peak state. The ratio of the wall displacement (during an analysis) to its 
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embedded height H is termed as the relative displacement U/H, so the relative 
displacement at peak is Up/H.  
In the cases of rotation of the wall around the top or the toe, the displacement U 
denotes the maximum displacement occurring at the toe or the top of the wall, 
respectively. 

• The spatial ratio n of the wall width B to wall height H (n = ஻
ு

 ሻ. When n ׈  ∞ 
(infinite width) the passive earth pressure coefficient is then equal to Kph2D. 

• The correction factor μ which is defined in the following equation [5.3] 

ߤ ൌ ௄೛೓యವ

௄೛೓మವ
  [5.3] 

Here μ is used to determine the 3D earth pressure coefficient from any given 2D earth 
pressure coefficient for the same wall embedded height H.  

The main findings and results will be illustrated in the following sections. Additional 
calculation results will be illustrated in the annex.  

5.2 Parallel movement 

In this mode of movement the whole wall displaced parallel with the same value towards the 
soil. As a result of pushing the wall towards the soil, a passive earth pressure is produced. 
Parallel wall movement was started from the initial stress conditions with an earth pressure 
coefficient at rest K0. The maximum Kph at the peak requires a displacement value Up that 
depends on the soil type and density. For example, the German Standard DIN 4085 gives a 
displacement value in the 2D case for dense sand of approximately 3 – 5 % of the wall 
embedded height.  

5.2.1 Passive earth pressure at peak 

Figure 5-1 shows the distribution of the passive earth pressure coefficient Kph as a function of 
the relative displacement (U/H) for three initial soil densities (e0 = 0.55, 0.65 and 0.75). The 
spatial ratio of the wall equals to n = 1 with an embedded height of H = 10 m.  
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Figure 5-1: Passive earth pressure coefficient as function of the relative displacement (n = 1, B = 10 m, 
H = 10 m) 

The following observations can be obtained from this figure: 

• The curve of the earth pressure coefficient with relative displacement shows a non-
linear increase till a maximum peak value before decreasing as a result of softening. 
The peak value of the earth pressure coefficient Kph increases with increasing soil 
density (e0 = 0.55, 0.65, 0.75). The peak value appears distinctively in dense sand and 
indistinctively for medium and loose sand. This enables an accurate relative 
displacement determination for dense sand. On the other hand, the relative 
displacements at peak state for medium dense and loose sand cannot be easily 
determined. The reason is the clear behavior of dilatancy and softening of dense sand.  

Figure 5-2 shows the passive earth pressure coefficient Kph as a function of the relative 
displacement (U/H) by varying the spatial ratio n. When the spatial ratio n  ∞, it means 
that the passive earth pressure coefficient is equal to ሺKph2D). 
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Figure 5-2: Passive earth pressure coefficient as function of the relative displacement U/H 
(H = 10 m, e0 = 0.55) 

This figure shows that the value of the passive earth pressure coefficient Kph decreases with 
increasing the spatial ratio n of the wall dimensions. It decreases from Kph ≈ 8 at n = 1 till 
Kph ≈ 5 in the 2D case.  

The progression of the correction factor μ for three soil densities (e0 = 0.55, 0.65 and 0.75), 
namely dense sand, medium dense and loose sand, respectively as a function of the spatial 
ratios n are shown in Figure 5-3.  

Figure 5-3: Correction factor µ as function of spatial ratio n=B/H (H = 10m) 

The following can be concluded: 

• The curves progressions show a non-linear decrease of the correction factor μ by 
increasing spatial ratio n.  

• The correction factor curve μ varies with the respective soil density as shown in 
Figure 5-3. The effect of the soil density on the correction factor μ decreases with 
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increasing spatial ratio n. For small spatial ratios within the 3D range, a distinctive 
difference between the curves was observed for the three soil densities. By increasing 
the spatial ratio n, the difference between the curves of the correction factor μ for the 
three soil densities decrease progressively until the curves converge at very large 
spatial ratio n = ∞.  

As conclusion for the case of parallel movement, the spatial ratio range for the steep curve 
gradient increases by decreasing the embedded height. Table 5-1, 5-2 and 5-3 present the 
numerical results including the correction factor μ and the passive earth pressure 
coefficient as functions of soil initial density and spatial ratio B/H for three different wall 
heights.  

Table 5-1: Numerical simulation results for parallel movement (H = 5.0 m) 

e0 H(m) B(m) n Kph μ Up(m) Up/H 

0.55 5 

5 1 8.62 1.61 0.43 0.09 

10 2 7.36 1.37 0.40 0.08 

20 4 6.4 1.19 0.34 0.07 

25 5 6.04 1.12 0.32 0.064 

50 10 5.83 1.09 0.30 0.06 

2D 52 5.37 1 0.27 0.05 

0.65 5 

5 1 6.4 1.53 0.48 0.10 

10 2 5.31 1.27 4.55 0.91 

20 4 4.74 1.13 0.42 0.08 

25 5 4.49 1.07 0.41 0.08 

50 10 4.42 1.05 0.39 0.08 

2D 52 4.19 1 0.36 0.07 

0.75 5 

5 1 5.35 1.45 0.60 0.12 

10 2 4.54 1.23 0.58 0.12 

20 4 4.11 1.11 0.05 0.01 

25 5 4.02 1.09 0.06 0.01 

50 10 3.86 1.05 0.49 0.10 

2D 52 3.69 1 0.46 0.09 
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Table 5-2: Numerical simulation results for parallel movement (H = 10.0 m) 

e0 H(m) B(m) n Kph μ Up(m) Up/H 

0.55 10.00 

10.00 1.00 8.085 1.61 0.8 0.08 

20.00 2.00 6.624 1.32 0.63 0.063 

40.00 4.00 5.566 1.11 0.53 0.053 

50.00 5.00 5.707 1.14 0.52 0.05 

2D 26.00 5.013 1.00 0.47 0.05 

0.65 10.00 

10.00 1.00 5.98 1.50 0.91 0.091 

20.00 2.00 4.957 1.24 0.75 0.075 

40.00 4.00 4.406 1.11 0.59 0.059 

50.00 5.00 4.357 1.09 0.57 0.057 

2D 26.00 3.983 1.00 0.56 0.056 

0.75 10.00 

10.00 1.00 5.018 1.41 0.97 0.097 

20.00 2.00 4.282 1.21 0.81 0.081 

40.00 4.00 3.855 1.09 0.63 0.063 

50.00 5.00 3.834 1.08 0.61 0.061 

2D 26.00 3.547 1.00 0.61 0.061 
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Table 5-3: Numerical simulation results for parallel movement (H = 15.0 m) 

e0 H(m) B(m) n Kph μ Up(m) Up/H 

0.55 15 

10 0.67 8.62 1.84 1.14 0.076 

15 1 7.47 1.6 1.08 0.072 

30 2 6.23 1.33 0.93 0.062 

45 3 5.77 1.23 0.855 0.057 

60 4 5.53 1.18 0.825 0.055 

75 5 5.37 1.15 0.81 0.054 

2D 17.33 4.68 1 0.795 0.053 

0.65 15 

10 0.67 6.24 1.65 1.26 0.084 

15 1 5.55 1.46 1.2 0.08 

30 2 4.75 1.25 1.02 0.068 

45 3 4.45 1.17 0.945 0.063 

60 4 4.3 1.13 0.93 0.062 

75 5 4.21 1.11 0.915 0.061 

2D 17.33 3.79 1 0.8985 0.0599 

0.75 15 

10 0.67 5.12 1.5 1.365 0.091 

15 1 4.64 1.36 1.32 0.088 

30 2 4.09 1.2 1.14 0.076 

45 3 3.79 1.11 1.05 0.07 

60 4 3.68 1.08 1.035 0.069 

75 5 3.63 1.06 1.02 0.068 

2D 17.33 3.41 1 0.975 0.065 

 

The following remarks can be drawn from the previous tables: 

• The correction factor μ is a function of the spatial ratio n as shown before. For a 
constant height H, the correction factor μ decreases with increasing wall width B, 
while for a constant width B, the correction factor μ increases with increasing wall 
height H. 

• For a constant spatial ratio, the correction factor μ remains constant with increasing 
wall dimensions. It is to be noticed that for a constant spatial ratio n, the spatial 
passive earth pressure coefficient Kph3D decreases with increasing wall dimensions as 
presented before. This is referred to the scale effect and will be discussed later.  
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5.2.2 Wall displacement at peak 

A failure body is formed by pushing the wall towards the soil as shown in Figure 5-4. The 
boundaries of this failure body depend on the type of soil, soil relative density, mode of 
movement and the wall dimensions. The soil reaches its maximum passive earth pressure 
value at a certain displacement Up named displacement at the peak or relative displacement at 
peak ௎೛

ு
. The boundary of the failure body in the thesis is defined using the maximum width 

(B + 2*B0) and height (H + 2*H0) of the failure body. Therefore the imaginary width B0 is 
defined as the maximum extension of the failure body width parallel to the wall width at the 
soil surface. Similarly, the imaginary depth H0 is defined as the maximum extension of the 
failure body depth parallel to the wall height H as shown in Figure 5-4.  

Figure 5-4: Definition of the imaginary width B0 and height H0 with respect to the dimensions of the 
failure body 
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Figure 5-5: Relative displacement of the maximum value at the peak Up/H as a function of the spatial 
ratio n = B/H (wall height H = 10 m) 

Figure 5-5 illustrates the variation of the relative displacement at peak as a function of the 
spatial ratio n for a wall with an embedded height of H = 10 m and for different initial 
densities of soil. The figure shows a non-linear decrease of the relative displacement with 
increasing the spatial ratio n until it reaches its minimum value by 2D. Specifically, a smaller 
spatial ratio (thin wall) generates a big relative failure body volume compared with the wall 
dimensions (Figure 5-4). So that, the wider the wall (higher B/H), the smaller the failure body 
volume relative to the wall dimensions. The decrease of the wall width B causes the ratio of 
the imaginary width B0 to the wall width B (ଶ஻బ

஻
) to increase and the failure volume relative to 

the wall dimensions to increase which leads to a big relative displacement necessary to 
develop the failure body. 

For parallel movement of a wall with a constant spatial ratio (n=constant), the relative 
displacements at peak for medium dense sand (e0 = 0.65) are smaller than for loose sand 
(e0 = 0.75) as was expected. The annex gives more results and curves of the relative 
displacement at peak as a function of the spatial ratio for different soil densities and wall 
heights.  

Table 5-1, 5-2 and 5-3 show the effect of varying the width (B) on the relative displacement at 
peak for a constant soil density. It is to be noticed that the displacement Up at the peak 
increases by decreasing the width (B), which means by decreasing the spatial ratio n.  

5.2.3 Passive earth pressure distribution  

As a result of the modeling of spatial passive earth pressure, the distribution of the stress with 
depth z was calculated as shown in the figures below for a wall with a height of H = 10 m. 
The stress was determined by defining a path of elements along the contact soil surface. The 
path is defined at the symmetric face of the element adjacent to the moving wall at x = 0.5 m 
as to be shown later in Figure 5-9. The horizontal stresses eph were defined by taking the sum 
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of the whole integral of the horizontal stresses in every single element at its center of gravity. 
The stress distributions are presented in Figure 5-6 and 5-7. 

Figure 5-6: Horizontal passive stress distributions at peak state in the symmetric plane (x = 0.5 m) for 
a wall with H = 10 m and B = 10 m (n = 1) 

The distribution of the horizontal stresses by parallel movement show a non-linear increase of 
the stress till a maximum value is reached approximately at z = 0.8H. After that the stress 
decreases till a small value is accomplished at the wall toe. These result is fully compliant to 
the general stress distribution mentioned in the German standard 4085[31]. 
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Figure 5-7: Stress distributions at peak state in the symmetric plane (x = 0.5 m) for different spatial 
ratios n (e0 = 0.55) 

By varying the spatial ratio n of the wall dimensions, it is observed, that the curves are similar 
for the approximate upper third of the wall as shown in Figure 5-7. This conforms to the 
Brinch Hansen [17] assumption which is also equal to the distribution of a 2D case. For the 
last two thirds the curves show that the smaller the spatial ratio n of the wall dimensions is, 
the greater is the stress value. 
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Figure 5-8: Stress distributions in the symmetric plane at different displacements for a wall of spatial 
ratio n=1 (x = 0.5 m, e0 = 0.55) 

For the case with n = 1 and e0 = 0.55, horizontal stress distributions at different displacement 
values were calculated. The curves in Figure 5-8 show that the horizontal stresses increase till 
a maximum value at the relative displacement at peak Up/H, subsequently the depth 
corresponding to the maximum horizontal stress value decreases with increasing relative 
displacement till the peak is reached.  

During the wall movement, the horizontal stresses against the wall and the shear stresses at 
certain areas in the soil body increase. When the peak is reached, the horizontal stresses are at 
their maximum value and the shear stresses at the failure surface approach the soil resistance 
which leads to the generation of the failure body.  

Studying the stress conditions at the peak, it was observed that the curves tend to small values 
of stresses at the wall toe. This is attributed to the arching of the soil particles which causes a 
redistribution of the internal stress and a stress relaxation at the wall toe. Further 
displacements beyond the peak displacement (U > Up) reduce the horizontal stresses. This is 
due to the softening behavior. 

In order to get an accurate description of the spatial stresses along the whole wall, many 
element paths were considered along the width at different positions starting from the 
symmetric plane at x = 0.5 m to other positions at x = 10, 15, 20 and 25 m on the wall width 
as shown in Figure 5-9 for a wall of B = 50 m and H = 20 m.  
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Figure 5-9: Path geometry along the wall with width B = 50 m and height H = 10 m (x denotes the 
horizontal distance of the path from the plane of symmetry) 

The stress distribution is calculated by considering the path of an element along the depth z. 
Figure 5-10 shows the results of stress distributions for all paths along the width B.  

Figure 5-10: Horizontal stress distributions by peak state eph at different distances x of symmetric plane 
at x = 0.5 (B = 50 m, H = 10 m,e0 = 0.55) 
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The distribution curves are similar to those at the symmetric plane as was expected. By going 
far away from the symmetric plane which is at x = 0.5 m, it is observed that the stress 
increases. As shown above in Figure 5-10 the stress distributions for the paths at x = 0.5, 10 
and 15 m are almost equal. The stress is however slightly higher at x = 20 m and has the 
maximum value at x = 25 m which is the outer edge of the wall. 

The results are attributed to the following reason that by rigid constructions such as plate or 
walls the stresses concentrate at the edges and decrease at the middle. Also the stress 
distribution at the wall edge is affected by the spatial shape of the failure body. As shown in 
section 5.2.2, the failure body will be generated with a total width (BTotal = B + 2B0) and this 
extra volume of the soil affects the stresses at the wall edge.  

5.2.4 Failure mechanisms 

As a result of the wall displacement against the soil, a failure body forms. It is to be noted that 
the dimension of this failure body is affected by many parameters such as the soil friction 
angle φ, the wall soil friction δ and the spatial ratio n. The problem of the failure mechanisms 
is studied in the following chapter for parallel movement mode by presenting the results in 
form of vector plots, displacement contours and void ratio distributions. 

Figure 5-11: Vector plot of displacements at peak state for parallel movement (H = 10.0 m, n = 1, 
eo = 0.55) 

Figure 5-11 shows the vector plot field at the peak state behind a wall with a spatial ratio 
n = 1 in dense sand (eo = 0.55) which illustrates the movement of the soil particles behind the 
wall. The soil particles within the failure volume move in different values and directions 
towards the top surface of the soil forming a failure body of a wedge form.  

The model shows a non-linear slip line of the failure body with a slip zone that begins from 
the wall toe and develops towards the upper soil surface. These results show that Blum’s 
assumption extending Coulomb’s theory to 3D conditions is in general valid for the spatial 
failure body shape. The differences are the non-linearity of the failure surface and the 
different stress conditions inside the failure body.  
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Figure 5-12: Distribution of horizontal displacements (U2) at peak state along a line at ground surface 
perpendicular to the moved wall for parallel movement (n = 1 and 5, e0 = 0.55) 

Figure 5-12 shows that the magnitude of the displacement along the symmetrical plane at the 
top surface of the soil perpendicular to the moved wall decreases with increasing distance 
from the wall till the zero value displacement is reached at a certain distance from the wall. 
The distribution is dependent on the value of the spatial ratio n, so that the wider the wall 
(greater n), the smaller the relative failure body volume to the wall dimensions. It is to be 
noticed that the boundary of the failure body for a wall of a spatial ratio n = 1 is reached at 
about five to six times the width while for a spatial ratio n = 5 it is reached at about one to two 
times the width. The absolute breadth of the failure body is thus affected by the spatial ratio n. 

Figure 5-13: Void ratio e of the soil at the peak state for parallel movement (n = 1, e0 = 0.55) 
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Figure 5-13 shows the void ratio distribution at peak state for a wall of n = 1 in dense sand 
(e0 = 0.55). By comparing the void ratio and the vector plot illustrations (Figure 5-11), it is to 
be noticed that they determine approximately the same boundary of the failure body volume 
at peak state.  

Figure 5-14: Void ratio e along lines perpendicular to the moved wall with different depths at the peak 
state for parallel movement (n = 1, e0 = 0.55) 

Excepting the values at the wall toe (z = 10 m), the void ratio at peak varies approximately 
between 0.54 and 0.57 as shown in Figure 5-14. A part of the failure body is under dilatancy 
effect while the contractancy condition affects the other part. At the beginning of the 
displacement, the soil particles interlock initially with each other leading to volume reduction 
(contractancy). By developing the wall displacement till the peak is reached, a part of the 
particles, which are located at a certain distance from the wall, related to depth z, are moved 
out of their interlocking position leading to volume increase (dilatancy). At the same time 
another part is still under contractancy conditions. It is not possible to estimate the soil areas 
which are in a plastic or in elasto-plastic states.  

The following Figures 5-15 and 5-16 show a comparison of the development of the failure 
body at peak in plane and side view between two walls of two different spatial ratios n = 1 
and 5. 
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Figure 5-15: Side view of failure body approximately at peak state for two different walls (n = 1 and 5, 
e0 = 0.55) 

Figure 5-16: Plan view of failure body approximately at peak state for two different walls (n = 1 and 5, 
e0 = 0.55) 

It is to be distinguished between two concepts, on one hand the total failure body volume and 
on the other hand the relative failure body volume in relationship to the wall dimensions. The 
wider the wall, the bigger the total failure body volume but the smaller the relative failure 
body volume with respect to the wall dimensions. This leads to a greater value of the spatial 
passive earth pressure by a wall of a smaller spatial ratio n.  

Figure 5-17 and Figure 5-18 show the effect of the soil density (e0 = 0.55, 0.65 and 0.75) for a 
smooth wall δ = 0 on the failure mechanism. It is to be noticed that the denser the soil, the 
bigger the failure body volume.  
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The failure body volume increases by increasing soil density. This is due to the differences in 
the shear strengths and shear dilatancy according to the soil density and the initial void ratio 
e0. As a result, the area, which is influenced by the wall displacement, increases. 

As it was expected the presented results regarding the failure mechanism by parallel 
movement show that the failure body has a spatial form of a shell. The dimensions of the 
failure body and the form of the failure surface depend on many factors some of which are 
wall dimensions (spatial ratio n) and the initial condition of the soil (void ratio e0). 

Figure 5-17: Side view of failure body at the peak state for a wall of n = 1 and different soil densities 
respectively from left to right: dense sand e0 = 0.55, medium sand e0 = 0.65 and loose sand 
e0 = 0.75 
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Figure 5-18: Plan view of failure body at peak state for a wall of n = 1 and different soil densities 
respectively from top to bottom: dense sand e0 = 0.55, medium dense sand e0 = 0.65 and 
loose sand e0 = 0.75 
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5.3 Rotation around the top 

The mode of wall movement has a main effect on the spatial earth pressure. The numerical 
modeling results for rotation around the top are presented in the following chapter. This mode 
of movement occurs frequently in the practice, where the top of the wall is fixed while the toe 
moves horizontally.  

5.3.1 Passive earth pressure at peak 

Figure 5-19 and Figure 5-20 show the relation between the spatial passive earth pressure 
coefficient Kph and the relative displacement (U/H) for different soil densities and various 
wall spatial ratios n.  

Figure 5-19: Passive earth pressure coefficient as function of relative displacement (n = 1, 
B = 10 m / H = 10 m) 
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Figure 5-20: Passive earth pressure coefficient as function of relative displacement U/H (H = 10 m, 
e0 = 0.55) 

The following observations can be noticed: 

• Increasing the relative displacement ሺ௎
ு

) results in a non-linear increase of the earth 
pressure coefficient until the peak state is reached, beyond which a decrease is 
observed due to the softening effect. 

• The distribution varies for the respective soil densities. The peak is more clearly to 
distinguish for dense sand than for medium dense and loose sand. 

• Considering other Figures in the annex, for a constant soil density, the required peak 
displacement (௎೛

ு
) is related majorly to the wall height. Also for a constant wall height, 

the value of the passive earth pressure coefficient decreases with increasing the wall 
width, which means with increasing the spatial ratio n. 

The distributions of the correction factor μ as a function of the spatial ratio n for different soil 
densities are illustrated in Figure 5-21. Figures for other wall heights and parameters are 
presented in the annex. 
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Figure 5-21: Correction factor µ as function of spatial ratio n=B/H (H = 10 m) 

The following observations can be stated: 

• The curves progressions show a non-linear decrease of the correction factor μ with 
increasing spatial ratio n.  

• The correction factor μ varies with the respective soil density. The correction factor μ 
decreases with increasing spatial ratios until the curves converge to μ = 1 at very large 
spatial ratio n = ∞ (2D case).  

• Each correction factor curve of a certain soil density shows a sharp gradient for a 
limited spatial ratio range, beyond which the curves vary gently to converge to μ = 1 
at a very large spatial ratio value.  

• Considering the Figures (Figure 5-21 for H = 10 m, n = 1 and other similar Figures for 
H = 5 m and 15 m, n = 1 in the annex) of the correction factor μ as a function of the 
spatial ratio n for different embedded heights, it is to be noticed that, in the same 
manner to the parallel movement mode, the spatial ratio range n, in which the curves 
have a steep gradient, is affected by the value of the embedded height H. 

As conclusion in the mode of rotation around the top, the spatial ratio range for the steep 
curve gradient increases by decreasing the embedded height which means by increasing 
the spatial ratio n. Also the range between 2D and 3D case for mode of rotation around the 
top is smaller than its value in the parallel movement mode. 

The following Tables 5-4, 5-5 and 5-6 include the correction factor μ and the passive earth 
pressure coefficient as functions of the initial void ratio e0 and spatial ratio n for three 
different wall heights.  



Chapter 5 Numerical modeling results Page 119 

Table 5-4: Numerical simulation results for rotation around the top (H = 5.0 m) 

e0 H B B/H Kph μ Up Up/H 

0.55 5 

5 1 7.33 1.6 0.41 0.082 

10 2 6.14 1.34 0.37 0.074 

20 4 5.37 1.17 0.36 0.072 

50 10 4.87 1.07 0.35 0.07 

260 52 4.57 1 0.35 0.07 

0.65 5 

5 1 5.3 1.43 0.43 0.086 

10 2 4.55 1.23 0.38 0.076 

20 4 4.13 1.12 0.38 0.076 

50 10 3.87 1.04 0.37 0.074 

260 52 3.71 1 0.38 0.076 

0.75 5 

5 1 4.49 1.37 0.42 0.084 

10 2 3.88 1.18 0.5 0.1 

20 4 3.6 1.09 0.42 0.084 

50 10 3.4 1.03 0.41 0.082 

260 52 3.29 1 0.39 0.078 

 

Table 5-5: Numerical simulation results for rotation around the top (H = 10.0 m) 

e0 H B n=B/H Kph μ Up Up/H 

0.55 10 

10 1 6.897 1.563 0.87 0.087 

20 2 5.777 1.309 0.8 0.08 

50 5 4.921 1.115 0.71 0.071 

260 26 4.413 1 0.65 0.065 

0.65 10 

10 1 5.167 1.416 0.97 0.097 

20 2 4.445 1.218 0.85 0.085 

50 5 3.974 1.089 0.77 0.077 

260 26 3.648 1 0.7 0.07 

0.75 10 

10 1 4.395 1.343 1 0.1 

20 2 3.856 1.179 0.87 0.087 

50 5 3.524 1.077 0.79 0.079 

260 26 3.272 1 0.75 0.075 
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Table 5-6: Numerical simulation results for rotation around the top (H = 15.0 m) 

e0 B H n=B/H Kph μ Up Up/H 

0.55 

10 15 0.67 6.98 1.69 1.21 0.08 

20 15 1.33 6.07 1.47 1.25 0.08 

50 15 3.33 5.06 1.23 1.19 0.08 

260 15 17.33 4.12 1.00 1 0.07 

0.65 

10 15 0.67 5.46 1.57 1.27 0.08 

20 15 1.33 4.61 1.33 1.21 0.08 

50 15 3.33 4.04 1.16 1.14 0.08 

260 15 17.33 3.47 1.00 0.97 0.06 

0.75 

10 15 0.67 4.55 1.44 1.29 0.09 

20 15 1.33 3.95 1.25 1.14 0.08 

50 15 3.33 3.33 1.06 1.08 0.07 

260 15 17.33 3.15 1.00 0.95 0.06 

 

The following remarks can be derived from the previous tables:  

• For a constant height H, the correction factor μ decreases with increasing width B, 
while for a constant width B, the correction factor μ increases with increasing wall 
height H. This means that the correction factor decreases with increasing the spatial 
ratio n. 

• For a constant spatial ratio n, the coefficient of passive earth pressure at peak 
decreases by increasing the wall dimensions, while the correction factor μ remains 
almost constant. An example is illustrated in the following Table 5-7 (it is to be 
noticed that μ and Kph3D for H = 15 m was interpolated between n = 1.33 and n = 3.33 
for a value of n = 2).  

Table 5-7: Dependence of the correction factor μ and the passive earth pressure coefficient Kph on the 
absolute height H of the wall (for a spatial ratio n = 2) 

e0 B/H H μ Kph3D 

0.55 2 
5 1.34 6.14 
10 1.31 5.77 
15 1.389 5.731 
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5.3.2 Wall Displacement at the peak 

The following section presents the numerical modeling results, showing the relative 
displacement at peak state ௎೛

ு
 and its relation to the spatial ratio n and initial soil density for a 

rotation around the top movement. 

Figure 5-22: Relative displacement of the maximum value at the peak Up/H as a function of the spatial 
ratio n (wall height H = 10 m) 

Figure 5-22 shows the relative displacement at peak ௎೛

ு
, as a function of the spatial ratio n for 

different soil densities. The following observations were made: 

• The curves of the relative displacement at peak state as function of the spatial ratio for 
defined embedded height H show non-linear distribution for small spatial ratio, 
beyond which the curves display gentle gradients. 

• The relative displacements at peak decrease with increasing the spatial ratio n. 
Specifically a smaller spatial ratio n generates a larger relative failure body volume 
compared with the wall dimensions, which in turn requires a larger relative 
displacement. 

• Considering the Figures for other embedded heights in the annex, the spatial ratio 
range n, in which the curves of the relative displacements at peak state have a steep 
gradient, is affected by the value of the embedded height H. 
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Figure 5-23: Distribution pf passive earth pressure coefficient Kph as a function of relative displacement 
(n = 1, e0 = 0.55) 

Figure 5-23 shows the effect of varying the width B (the spatial ratio n) on the value of the 
relative displacement at peak in dense sand (e0 = 0.55). It is to be noticed that the relative 
displacement at peak decreases with increasing the wall width B (increasing the spatial ratio 
n). The reason is that, the ratio of imaginary width to wall width (ଶ൉஻బ

஻
ሻ increases with 

decreasing the width B in a similar way to the parallel movement.  

5.3.3 Passive earth pressure distribution 

As a result of the passive earth pressure analysis, the stress distribution as a function of the 
depth z for rotation around the top was calculated as shown in Figure 5-24 and Figure 5-25. 
Similar to parallel movement, the path is defined at the symmetric face of the element 
adjacent to the middle of the moving wall at the symmetric plane at x = 0.5 m.  
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Figure 5-24: Horizontal passive stress distributions at peak state in the symmetric plane (x = 0.5 m, 
n = 1) 
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Figure 5-25: Stress distributions at peak state in the symmetric plane for different spatial ratios n 
(x = 0.5 m, e0 = 0.55) 

The curves show a non-linear increase of the horizontal stresses eph with increasing the depth 
z until a maximum value at the wall toe is reached. By varying the spatial ratio n with a 
constant wall height H, it was observed that the curves have a small value nearly to zero till 
half of the wall height. The top edge of the wall remains immobile in the horizontal and 
vertical direction. Therefore, the passive earth pressure in the top area of the wall is almost 
not mobilized. Furthermore, the distributions of the horizontal stresses vary linearly with 
increasing embedded depth z starting from the middle part of the wall. In the bottom part 
however, the variation is a non-linear curve with a maximum value at the toe for all walls 
with different spatial ratios. Only for a wall of small spatial ratio (n = 1), the stresses decrease 
after the maximum value to a smaller value at the wall toe as shown in Figure 5-25. The 
passive earth pressure indicated by the passive earth pressure coefficient Kph for rotation 
around the top mode is in general smaller than its value in parallel movement. This result is 
compliant to the general stress distribution given in the German standard 4085 [31]. 
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Figure 5-26: Stress distributions in the symmetric plane at different displacements for a wall of spatial 
ratios n = 1 (x = 0.5 m, e0 = 0.55) 

By calculating the horizontal stresses at different displacement values as shown in Figure 
5-26, the curves show that a peak stress value is generated after a certain displacement value 
Up is reached. Further displacements beyond the peak displacement do not generate higher 
stresses.  

5.3.4 Failure mechanism by rotation around the top 

To investigate the effect of the mode of movement on the form of the failure body a study of 
the failure mechanism is done in the following section. Figure 5-27 below shows a vector plot 
for the failure body at peak during a rotation around the top movement.  
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Figure 5-27: Vector plot at the failure state for rotation around the top (H = 10.0m, n = 1, e0 = 0.55) 

Figure 5-27 shows the vector plot field at the peak state behind a wall of a spatial ratio n = 1 
in dense sand (eo = 0.55). The soil particles within the failure volume move in different 
directions and values forming a failure body of a wedge form. The model shows a non-linear 
3D failure body with a slip zone that begins from the wall toe and develops until the upper 
soil surface.  

Figure 5-28: Horizontal displacement distribution at the failure state by peak state for rotation around 
the top movement ( H = 10.0m, n = 1,e0= 0.55) 
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The distributions of the horizontal displacement behind the wall are shown in Figure 5-28. 
The magnitude of the displacement decreases with increasing distance from the wall till the 
zero value displacement is reached at a certain distance from the wall which is related to the 
spatial ratio n, so that the wider the wall (higher B/H), the smaller the relative failure body 
volume to the wall dimensions.  

Figure 5-29: Void ratio e of the soil at the peak state for rotation around the top (n = 1, e0 = 0.55) 

Excepting the values at the wall toe, Figure 5-29 shows that the void ratio at peak varies 
approximately between 0.54 and 0.59. A part of the failure body is under dilatancy effect 
while the contractancy condition affects the other part. 

By comparing Figure 5-11 with Figure 5-29 it is to be noticed that, the mechanism of the 
rotation movement limits the volume of the failure body. The mode of rotation around the top 
generates a failure mechanism similar to the parallel movement mode with a smaller failure 
body. The reason is that during the movement around the top, the wall acts in a manner 
similar to lifting soil with a fully embedded shovel. This also causes a reduction in the value 
of the spatial passive earth pressure coefficient Kph3D comparing with its value in the parallel 
mode. 

5.4 Rotation around the toe 

5.4.1 Passive earth pressure at peak 

In this mode of movement, the bottom edge of the wall remains immobile in both horizontal 
and vertical direction, while the top of the wall moves horizontally. The numerical modeling 
results given in Figure 5-30 show that the earth pressure coefficient Kph increases 
continuously with increasing the relative displacement, showing a hardening behavior without 
forming a peak or showing a softening behavior. As a result, a clear peak state cannot be 
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formed, therefore, a displacement criterion was used. The peak state was defined at a relative 
displacement U = 0.2H, considering the real measurements in situ and the serviceability limit 
state. The earth pressure increases initially non-linear with increasing the rotation. 

Figure 5-30: Passive earth pressure coefficient as function of relative displacement U/H 
(H = 10 m,e0 = 0.55) 

Figure 5-31 shows the distributions of the spatial passive earth pressure correction factor μ 
with different spatial ratios n for various soil densities. As mentioned above, the Up value at 
U/H = 0.2 were used to define the values of the correction factor μ. 

Figure 5-31: Correction factor µ as function of spatial ratio n (H = 10 m) 

The following can be observed: 

• The curve shows a non-linear decrease of the correction factor μ with increasing the 
spatial ratio.  
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• The correction factor μ varies for the respective soil densities. The difference between 
the curves decreases with increasing the spatial ratio n until the curves converge to 
μ= 1 at a very large spatial ratio n = ∞. 

• Considering the Figures of the correction factors μ for different embedded heights 
(Figure 5-31 for H = 10 m and other Figures for H = 5 m and 15 m in the annex), the 
spatial ratio range n, in which the curves have a steep gradient, is affected by the value 
of the embedded height H.  

Table 5-8, 5-9 and 5-10 include the correction factor μ and the passive earth pressure 
coefficient as functions of soil initial density and spatial ratio B/H for three different wall 
heights. As mentioned before, the values of the passive earth pressure coefficient are taken at 
relative displacements approximately equal to U/H = 0.2.  

Table 5-8: Numerical simulation results for rotation around the toe (H = 5.0 m, U/H = 0.2) 

e0 H B n Kph μ 

0.55 

5.00 5.00 1.00 5.95 1.59 
5.00 10.00 2.00 4.78 1.28 
5.00 20.00 4.00 4.32 1.15 
5.00 50.00 10.00 3.96 1.05 
5.00 260.00 52.00 3.75 1.00 

0.65 

5.00 5.00 1.00 4.42 1.42 
5.00 10.00 2.00 3.61 1.17 
5.00 20.00 4.00 3.31 1.07 
5.00 50.00 10.00 3.19 1.03 
5.00 260.00 52.00 3.10 1.00 

0.75 

5.00 5.00 1.00 3.69 1.29 
5.00 10.00 2.00 3.20 1.11 
5.00 20.00 4.00 2.99 1.04 
5.00 50.00 10.00 2.89 1.01 
5.00 260.00 52.00 2.87 1.00 
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Table 5-9: Numerical simulation results for rotation around the toe (H = 10.0 m, U/H = 0.2) 

e0 H B n Kph μ 

0.55 

10.00 10.00 1.00 5.58 1.46 

10.00 20.00 2.00 4.75 1.24 

10.00 50.00 5.00 4.20 1.10 

10.00 260.00 26.00 3.82 1.00 

0.65 

10.00 10.00 1.00 4.16 1.37 

10.00 20.00 2.00 3.56 1.17 

10.00 50.00 5.00 3.22 1.06 

10.00 260.00 26.00 3.02 0.99 

0.75 

10.00 10.00 1.00 3.65 1.32 

10.00 20.00 2.00 3.13 1.13 

10.00 50.00 5.00 2.92 1.05 

10.00 260.00 26.00 2.77 1.00 

Table 5-10: Numerical simulation results for rotation around the toe (H = 15.0 m, U/H = 0.2) 

e0 H B n Kph μ 

0.55 

15.00 10.00 0.67 5.85 1.64 

15.00 20.00 1.33 4.80 1.35 

15.00 50.00 3.33 4.12 1.16 

15.00 260.00 17.33 3.56 1.00 

0.65 

15.00 10.00 0.67 4.30 1.50 

15.00 20.00 1.33 3.70 1.29 

15.00 50.00 3.33 3.28 1.14 

15.00 260.00 17.33 2.87 1.00 

0.75 

15.00 10.00 0.67 3.68 1.36 

15.00 20.00 1.33 3.16 1.17 

15.00 50.00 3.33 2.74 1.01 

15.00 260.00 17.33 2.70 1.00 

The tables show that for a constant spatial ratio n, the correction factor μ decreases with 
increasing the wall dimensions. This will be discussed later. Also the passive earth pressure 
coefficient at peak Kph decreases with increasing the wall width B when the wall height H is 
constant. 
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5.4.2 Passive earth pressure distribution  

As a result of the spatial passive earth pressure numerical simulation, the stress distribution as 
a function of the depth z was calculated as shown in Figure 5-32 below. The stress was 
determined similar to parallel movement, the path is defined near to the symmetric plane at 
x = 0.5 m.  

Figure 5-32: Stress distributions at peak state in the symmetric plane (x = 0.5 m) for different spatial 
ratios n (e0 = 0.65) 

The distribution of the horizontal stresses with increasing embedded depth z varies almost 
linearly in the upper part of the wall. In the lower part however, the distribution of the 
horizontal stresses at peak show a non-linear accretion of the stress till a maximum value at 
about two thirds of the wall height (starting from the ground surface) is reached. Beyond the 
peak value, the stress decreases to a small value, smaller than the horizontal initial stresses 
e0h = γ · H · K0, at the wall toe due to the arching of the soil which causes a stress decrease at 
the bottom.  
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Figure 5-33: Stress distributions in the symmetric plane at different displacements for a wall of spatial 
ratios n = 1 (x = 0.5 m, e0 = 0.55) 

By the advance of the displacement, the depth zpeak corresponding to the maximum horizontal 
stress value location increases. zpeak varies from half of the wall height at U/H = 5 % till 90 % 
of the wall height at U/H = 22 % as shown in Figure 5-33. The influence of the wall 
movement extends in the soil deeply (greater HTotal = H+H0). This causes a move of the peak 
value towards the bottom.  
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5.4.3 Failure mechanism by rotation around the toe mode  

The following Figure 5-34 shows the void ratio for the rotation around the toe mode. 

Figure 5-34: Void ratio e of the soil at the peak state for rotation around the toe (n=1, e0=0.55) 

During the wall displacement, the affected soil area starts from the top of the wall and extends 
in vertical and horizontal directions. As shown in Figure 5-34 the soil particles inside this area 
are with a void ratio e greater than the initial void ratio e0 (dilatancy condition). Increasing the 
displacement increases the volume of the affected area continuously without forming a 
limited failure volume as in parallel movement or rotation around the top.  

5.5 Frictional wall 

The calculations of the earth pressure coefficient on a frictional wall were done exemplarily in 
this chapter for parallel movement mode only. This mode of movement activates more 
friction, due to greater relative displacement between the wall and the soil, than the other 
movement modes. The value of the friction angle δ was added in the model by using the 
interface element, in which the maximum shear stress was limited to τmax = τh.tanδ. δ is 
expressed here as a ratio of the soil friction angle φ. It is to be noticed that the friction angle 
φ and its related wall-soil friction angle δ are determined according to the value of the initial 
void ratio as shown in section 4-3 before. Figure 5-35 illustrates the graph of the spatial 
passive earth pressure coefficient Kph as a function of the relative displacement U/H for 
various values of δ (0, ஦

ଷ
 , ଶ஦

ଷ
 and φ ሻ and different initial void ratios (e0=0.65 and 0.55) and 

wall dimensions (n = 1 and n = ∞).  
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Figure 5-35: Passive earth pressure coefficient as function of relative displacement for different soil- 
wall friction angles δ (e0 = 0.65 for n = 1 and e0 = 0.55 for n = ∞, H = 10 m) 

The results in Figure 5-35 show that the horizontal passive earth pressure coefficient increases 
with increasing the wall friction angle δ as was to be expected. By increasing the value of the 
wall friction angle δ to ଶ஦

ଷ
 and φ, it was noticed that the generated friction stresses were 

limited to the value of δ = ଶ஦
ଷ

. The reason for that is not totally clear. According to the 
classical theories and to German standard DIN 4085 [31] the earth pressure must increase 
with increasing wall friction angle. However, the numerical model gives no further 
mobilization of wall friction for δ > ଶ஦

ଷ
.  

In order to check whether this is induced by the used hypoplastic material law, additional 
earth pressure simulations have been carried out with an elasto-plastic material law 
(hardening soil) using the PLAXIS 2D software as shown in Figure 5-36. 
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Figure 5-36: FEM Mesh for2D passive earth pressure using PLAXIS 

The wall was modeled as a rigid plate and the soil was modeled with the hardening soil 
constitutive law with soil parameters included in Table 5-11. More details about the hardening 
soil constitutive law and about the soil parameters are in [74]. The constant Rinter was varied 
according to the value of angle δ. 

Table 5-11: The soil parameters in the PLAXIS 2D model by using hardening soil constitutive model 

γ (kN/m3) Eref50 (kN/m2) Erefoed (kN/m2)  Eref u (kN/m2) power (m)  (°) C (kN/m2) Ψ (°) Rinter (for δ=

17.1 80000 80000 329000 0.5 40 0.1 8 1 

 

The passive earth pressure coefficient Kph is calculated for different values of the soil-wall 
friction angle δ and the results were compared with the values of Kph in ABAQUS and in the 
German standard DIN 4085 [31]. It is to be noticed that this comparison was done just to 
identify the behavior of the earth pressure coefficient by varying the angle δ and not to 
compare the value of Kph or to identify the constitutive laws hypoplasticity and hardening soil 
parameters. The results are presented in Figure 5-37. 
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Figure 5-37 Passive earth pressure coefficient as a function of soil wall friction angle δ for PLAXIS and 
ABAQUS and German standard 4085 [31]. 

It is to be noticed that the value of Kph increases in PLAXIS with increasing the value of δ. 
On the contrary the value of Kph increases in ABAQUS with increasing δ till δ = ଶ஦

ଷ
 then the 

value of Kph is almost constant which is obviously related to the subroutine of the 
hypoplasticity. An additional frictional subroutine in hypoplasticity must be developed in the 
future so that the values of the shear stresses for high values of δ (δ > ଶ஦

ଷ
 ) increase with 

increasing the value of angle δ in the recent hypoplasticity form. This problem will not be 
discussed in this thesis.  

Figure 5-37 shows also the increase of Kph with increasing angle δ according to the German 
standard DIN 4085 [31] in comparison with FEM results in ABAQUS and PLAXIS. The 
curves show an obvious difference that the linear increase of Kph values in DIN 4085 is higher 
than in PLAXIS and ABAQUS.  

The results were also illustrated for the correction factor μ as a function of the spatial ratio by 
varying the soil wall friction angle δ as shown in Figure 5-38.  
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Figure 5-38 Correction factor µ as function of spatial ratio n (e0 = 0.55, H = 10 m) for different wall 
friction angles 

The correction factor μ = ௄೛೓యವ

௄೛೓మವ
 is not affected by the values of the earth pressure coefficient 

Kph as a function of δ. Τhis an important result, indicating that the effect of the wall friction 
angle δ on the magnitude of the passive earth pressure is fully covered by the differences in 
the respective Kph values for the 2D case.  

Figure 5-39 and Figure 5-40 show the effect of the wall soil friction angle δ on the 
distribution of the failure body volume. It is to be noticed that the higher the soil wall friction 
angle δ, the bigger the failure body volume. 
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Figure 5-39: Top view for the failure body volume at peak state for different soil wall friction angles for 
dense sand (e0 = 0.55) 

Figure 5-40: Side view for the failure body volume at peak state for different the soil wall friction angles 
for dense sand (e0 = 0.55) 

It is to be concluded that, the value of Eph for frictional wall is bigger than its value for smooth 
wall δ = 0. This is due to the expected fact that the earth pressure coefficient increases by 
increasing the value of δ. On the contrary the correction factor μ is not affected by the value 
of δ. Also a frictional wall develops a non-linear failure body.  

 

 

δ = ϕ  δ = ϕ/3  δ = 0 

 

δ=ϕ  δ=ϕ/3  δ=0 
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6 Evaluation of the numerical results 

6.1 Introduction 

The global understanding of all aspects associated with the spatial passive earth pressure 
problem requires a practical illustration of the results placing all the interacting factors and 
variables under the spot light. This enables good analysis, high evaluation degree and 
practical solutions to be achieved. The following chapter presents an analysis and discussion 
of the thesis results with particular emphasis on the factors affecting the 3D passive earth 
pressure in general. These also include aspects such as the comparison of the three modes of 
wall movement, the effect of the soil wall friction angles and the scale effect related to the 
absolute height of the wall. Descriptions of the spatial passive earth pressure problem by 
analytical mobilization functions were made. These functions consider various parameters 
such as relative displacement, the mobilized displacement ratio U

U౦
, the initial soil densities 

and the spatial ratios n = B
H

. 

6.2 Comparison of the three types of movement 

In the following section 6.2 the effect of the mode of wall movement and soil density will be 
discussed. The graphs in Figure 6-1 to 6-4 illustrate the passive earth pressure coefficient as a 
function of the initial void ratio and movement mode for varied spatial ratios n. The spatial 
ratio n was varied between n = 1, 2, 5 and ∞. The results for H = 5 m, 10 m and 15 m show 
evidently, that the earth pressure coefficient is smaller, the greater the wall height is. This 
scale effect is discussed in section 6.5. 
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Figure 6-1: Kph as a function of the initial void ratio e0 (n= 1) 
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Figure 6-2: Kph as a function of the initial void ratio e0 (n= 2) 
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Figure 6-3: Kph as a function of the initial void ratio e0 (n= 5) 
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Figure 6-4: Kph as a function of the initial void ratio e0 (n= ∞) 
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It is observed in the Figures above that the passive earth pressure coefficient Kph decreases 
non-linearly with increasing the void ratio e (which means decreasing the soil density) as it is 
to be expected. This is attributed to the fact that the denser the soil is, the greater is the soil 
shear strength. Another effect which is also shown in Figure 6-5 is the mode of movement 
effect. The value of the horizontal passive earth pressure coefficient Kph at the peak has the 
highest value for parallel movement and the lowest one for rotation around the toe. The Kph 
value for rotation around the top lies between the previously mentioned movement modes. 
This may be explained by the different failure mechanisms for the respective wall movement 
modes. The failure volume formed during parallel wall movement is greater than that formed 
during rotational movements. This is due to the upward movement of the wall bottom during 
rotation around the top which decreases the horizontal spread of the failure body and thus 
leads to limit its volume. During this mode of movement, the wall acts in a manner similar to 
jacking soil up with a fully embedded shovel. For rotation around the toe, the toe remains 
fixed. This means that full slip which is necessary to mobilize the ultimate shear strength is 
hindered in the soil near to the toe. The stresses are also smaller than the generated stresses 
for other modes of rotation.  

 

Figure 6-5: Passive earth pressure coefficient Kph as function of the relative displacement by different 
modes of movement (n = 1, B = 10 m / H = 10 m, e0 = 0.55) 

Another effect is shown in Figure 6-5 which illustrates the curves for horizontal passive earth 
pressure coefficient as a function of relative displacement for different modes of movement. It 
is to be noticed that the mode of movement also affects the initial stiffness of the load –
deflection curves. This in turn affects the value of the horizontal earth pressure coefficient at 
the peak state. 

A comparison of top rotation and parallel movement mode can be done by illustrating the 
ratio of the respective earth pressure coefficients Ftop as shown in Equation [6.1]: 

௧௢௣ܨ ൌ
௣௛,௧௢௣ܭ ௥௢௧

௣௛,௣௔௥ܭ
 [6.1] 
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Figure 6-6 shows this ratio for all parameters variations considered in this study, i.e. for 
different spatial ratios, embedded wall heights and relative soil densities. 

Figure 6-6: Factor Ftop as a function of the spatial ratio n 

All the numerically obtained values lie in a range between Ftop = 0.8 and Ftop = 0.92. 
Tendentially, the values are the smaller, the larger the relative density is, therefore, as a 
suitable approximation an average value of Ftop = 0.85 can be used for all considered 
parameter calculations. According to Weissenbach’s experimental results [91], the passive 
earth pressure coefficient Kph for rotation around the top shows a constant percentage of about 
85 % of the passive earth pressure coefficient Kph for parallel movement. The thesis FEM 
results agree reasonably well with Weissenbach’s experimental results [91]. On the contrary, 
according to German standard DIN 4085 [31], the passive earth pressure coefficient Kph for 
rotation around the top shall be taken as 67 % of the passive earth pressure coefficient Kph for 
parallel movement. According to the results presented here, the German standard DIN 4085 
approach lies on the safe side for walls in sand soils. 

No peak state occurs during rotation around the toe movement mode, so the value of the 
passive earth pressure coefficient was taken at UP = 20 % of the embedded height as stated 
before. Although the Kph-values given for this case are thus to a certain extent arbitrary, a 
comparison of toe rotation and parallel movement mode is done by illustrating the ratio of the 
respective earth pressure coefficients as shown in Equation [6.2].  

௧௢௘ܨ ൌ
௣௛,௧௢௘ܭ ௥௢௧

௣௛,௣௔௥ܭ
 [6.2] 

Figure 6-7 shows the ratio Ftoe for all parameters variations considered in this study. 
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Figure 6-7:  Factor Ftoe as a function of the spatial ratio 

All the values lie in a range between Ftoe = 0.64 and Ftoe = 0.77. According to German 
standard DIN 4085 [31], the passive earth pressure coefficient Kph for rotation around the toe 
shall be taken between 50 % and 67 % of the passive earth pressure coefficient Kph for 
parallel movement. The results presented here show that the German standard DIN 4085 
approach lays also on the safe side for walls in sand soils. For the considered failure state, i.e. 
Up/H = 0.2 and in most cases conservative value for Ftoe would be Ftoe = 0.67. 

6.3 Displacement at peak 

The magnitude of the required displacement to reach the peak is defined in the German 
Standard DIN4085 [31] for the 2D case as a function of the relative densities D and the mode 
of movement as shown in Equations [2.29] and [2.30] before. For the 3D case however, the 
relative displacement at the peak state is calculated as a function of the wall dimensions and 
the relative density as shown in Equations [2.79] and [2.80] before.  

In this section, the FEM results for the relative displacement at the peak state in relation to the 
spatial ratio and mode of movement are analyzed. This also includes a comparison between 
the FEM results and the German Standard DIN4085 [31] approach for both 2D and 3D cases.  

Figure 6-8 shows an increase of the relative displacement at peak state UP
H

 with decreasing the 
spatial ratio n. The greater the spatial ratio n is the smaller is the failure body volume relative 
to the wall dimensions. This in turn requires a greater magnitude for the relative displacement 
at peak UP

H
.  
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Figure 6-8: An illustration of relative peak displacement Up/H as a function of spatial ratio 
(H = 10 m, e0 = 0.55) 

Figure 6-9 shows a non-linear decrease for the relative displacement at peak by increasing the 
spatial ratio n for parallel movement. The curves exhibit a very sharp variation corresponding 
to smaller values of the spatial ratios (up to n = 5). Beyond this area the curves vary almost 
gradually. The denser the soil is, the smaller is the value of the relative peak displacement. 
Medium dense and loose sand require more movement to generate high shear strength. 
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Figure 6-9: Relative displacement at the peak Up/H as a function of the spatial ratio n (H = 10 m) 

The effect of the movement mode on the values of the relative peak displacement was studied 
by defining the ratio FU-top between the relative displacement at peak for both rotation around 
the top to its value by parallel movement as shown in Equation [6.3]: 

௎ି௧௢௣ܨ ൌ
ܷ௣,௧௢௣ ௥௢௧

ܷ௣,௣௔௥
 [6.3] 

Figure 6-10 shows the ratio FU-top for all parameter variations considered in this study, i.e. for 
different spatial ratios, embedded wall heights and relative soil densities. 

Figure 6-10: Factor FU-top as a function of the spatial ratio n 

As shown in Figure 6-10, the peak by rotation around the top mode requires in most cases 
higher value of peak relative displacement than by parallel movement. This was expected due 
to the mechanism of the movement mode, that during a rotation around the top the maximum 
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displacement at peak occurs only at the toe of the wall. On the other hand Figure 6-10 shows 
also unexpected results in which the displacements for both parallel and top rotation modes 
are almost equal. The relative displacement at peak for parallel movement is in average about 
0.8 െ 1.2 of its values for rotation around the top movement. As a suitable approximation an 
average range value of Ftop = 0.9 - 1.1 can be used for all considered parameter calculations as 
shown in Equation [6.4] 

 ሺ
ܷ௣

ܪ ሻ௣௔௥ ൌ ሺ0.9 െ 1.1ሻ ሺ
ܷ௣

ܪ ሻ௧௢௣ோ [6.4] 

A comparison between the numerical results and the previously mentioned approach in 
German Standard DIN4085[31] was also made for both cases 2D and 3D.  

The comparison for the 3D case is done using Equations [2.79] and [2.80] in German 
Standard DIN 4085-Blatt1 [31] for different soil densities and spatial ratios n. The relative 
displacement at peak state in German Standard DIN 4085 [31] Equations [2.79] for thin walls 
(n < 0.333) is a function of the relative density D and wall dimensions H and B. On the 
contrary in Equations [2.80] (n > 0.333), the relative displacement at peak state is a function 
of the relative density D and the wall embedded height H only. 

Figure 6-11: Comparison of relative displacement at peak Up/H (n = 1, H = 10 m) between FEM results 
and the German standard DIN4085 

Figure 6-11 shows that the curves of FEM results and German Standard DIN 4085 [31] are 
very different. The results of the German standard Equation [2.86] for wide wall (n > 0.333) 
are higher than the FEM results and constant for different spatial ratio values n. 

The German Standard Equation [2.79] for thin walls (n < 0.333) was used to compare the 
FEM results even for a spatial ratio n range > 0.333. The comparison shows a good agreement 
till a spatial value of almost n = 5 although that the approach is valid for n < 0.333 only. The 
denser the sand is, the better is the agreement. The results for other wall embedded heights 
H = 5 and 15 m are presented in the annex. 
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Figure 6-12 illustrates the relative displacement at peak in the 2D case as a function of the soil 
relative density for various embedded wall heights H = 5, 10 and 15 m for parallel and 
rotation around the top mode according to the FEM results and the German standard DIN 
4085 Equations [2.29] and [2.30]. 

The relative displacement values using German standard DIN 4085 for top rotation at peak 
are smaller than the value for parallel movement, while in FEM the values with top rotation at 
peak are higher than its value for parallel movement. The result of the German standard for 
parallel movement agree very good with the FEM results for a wall of embedded height 
H = 5 m, but do not agree with the results for H = 10 and 15 m. It is here to be noticed that the 
scale effect is not considered in the German standard DIN 4085 [31]. 

Figure 6-12: The relative displacement as a function of relative density according to the German 
standard DIN 4085 and FEM results (e0 = 0.55, 2D case) 

For a constant spatial ratio n, the relative displacement at peak UP
H

 decreases with increasing 
the wall dimensions as shown in Table 6-1. This is related to the failure body volume 
increase. This also confirms the effect of the scale effect on the magnitudes of the relative 
displacement at peak state for different spatial ratios n. 
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Table 6-1: Relative displacement as a function of the embedded depth H for (e0 = 0.55) and spatial 
ratio n = 1 and n = 2. 

n H (m) UP/H 

1 

5 0.086 

10 0.08 

15 0.072 

2 

5 0.08 

10 0.063 

15 0.0613

In order to study the relative displacement at peak state in the spatial case in relation to the 

relative displacement in 2D case a factor ξ is defined as follows: ξ = U౦యD

U౦మD
 . 

Figure 6-13 shows that the curve of ξ as a function of the spatial ratio n is independent of the 
soil density. The effect of the soil density on the relative peak displacement is included 
simultaneously in both 2D and 3D cases with the same magnitude, hence they cancel each 
other out. An analytical approach for factor ξ as a function of the spatial ratio n is obtained as 
shown in equation [6.5]: 

ξ ൌ ௎యವ
௎మವ

ൌ 0.7 כ ሺ஻
ு

ሻି௔ ൅ 1  [6.5] 

The approach shows a good agreement with the FEM results as shown in Figure 6-13. 
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Figure 6-13: FEM results and analytical function of Equation [6.5] as function of spatial ratio n 

 

H =10 m 

H =15 m 

H =5 m 
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The value of the exponent a is a  function of the embedded height H and has to be varied as 
follows: a = 1.1 for H = 5 m , a = 1.3 for H = 10 m and a = 1.9 for H = 15 m. 

6.4 Correction factor µ 

Figure 6-14 and Figure 6-15 show the correction factor μ as a function of the spatial ratio for 
parallel and top rotation movement for different embedded heights (H = 5 m, 10 m and 15 m). 
It was observed that the curves are not affected by the variation of the embedded height H, 
implying that the scale effect disappears in the correction factor results. This is due to the fact 
that the effect of the embedded height on the correction factor μ is included simultaneously in 
both 2D and 3D cases with the same magnitude; hence they cancel each other out.  

Figure 6-14: Correction factor µ as function of spatial ratio n (e0 = 0.55) – rotation around top 

Figure 6-15: Correction factor µ as function of spatial ratio n (e0 = 0.55) – parallel movement 
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The results in the previous section 5.5 showed that the 3D horizontal passive earth pressure 
coefficient Kph increases with increasing the soil-wall interface friction angle δ. The shear 
strength between the wall and the soil is generated by using a wall with a friction angle δ. 
This causes a change of the stress conditions into the soil adjacent to the wall, which in turn 
leads to a non-linear failure surface. 

Figure 6-16:  Correction factor µ as function of spatial ratio n (e0 = 0.55, H = 10 m) for different wall 
friction angles – parallel movement 

From Figure 6-16 it is evident that the soil-wall interface frictional angle increase has no 
effect on the correction factor μ. A possible explanation is that the effect of the wall friction 
angle δ is included in both 2D and 3D cases.  The increase of the passive earth pressure 
coefficient Kph is the same for both 2D and 3D cases and the effect thus disappears in the 
correction factor μ. 

Figure 6-17 shows a comparison for the correction factor μ between the FEM results, 
Ramanso and Antäo [89] and the results of Benmebarek [7]. The curves show a good 
agreement with a small deviation in the spatial range (small values for n). It is to be noticed 
that by Ramanso and Antäo [89] and also by Benmebarek [7] different constitutive laws were 
used by them as shown in section 2.2.4 before. The curves refer to a good validity for the 
values of the correction factor μ by using FEM. 
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Figure 6-17:  Correction factor µ by FEM-ABAQUS, Ramanso and Antäo [89] and by Benmebarek [7] 

An analytical function f is obtained to simplify the calculation of the correction factor μ as a 
function of the spatial ratio n. Equation [6.11] was derived using the regression method on the 
FEM results with all soil densities.  

µ ൌ D כ ሺ
B
HሻିF ൅ 1  [6.11] 

The constants D and F were varied as functions of the soil densities as shown in Figure 6-18  

Figure 6-18: Constants D and F as function of the void ratio 

The following equations were derived to calculate the value of both constants D and F  

F ൌ 2 כ e଴  [6.12] 



Page 156 Correction factor µ Section 6.4 

D ൌ 0.99 כ e଴ ൅ 1.152  [6.13] 

The equations [6.12] and [6.13] were used to generate standardized values for the constant D 
as shown in Table 6-2 below.  

Table 6-2: Values of the constants D and F for the correction factor function. 

e0 D F 

0.55 0.61 1.1 

0.65 0.50 1.3 

0.75 0.41 1.5 

 

Figure 6-19 illustrates the curves of FEM results for different soil densities and the 
corresponding analytical functions.  

The derived equation shows a very good agreement with the FEM analysis results for dense 
and medium dense sand with a small deviation in the values for loose sand as shown in Figure 
6-19. It can be used for different soil-wall friction angles δ and different wall dimensions. 
This simplifies the calculation of the spatial earth pressure coefficient using the 2D case as a 
reference. 
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Figure 6-19: Correction factor µ as function of spatial ratio n for FEM results and analytical function of 
Equation [6.11] (H=10m) 
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6.5 The scale effect 

Previous studies showed that for the 2D case, the earth pressure coefficient is a function of the 
wall embedded depth. The larger the embedded depth, the smaller is the earth pressure 
coefficient. Abdel-Rahman [1] found by using the hypoplasticity constitutive law that the 
earth pressure coefficient is affected by the stress level which is not included in Mohr- 
Coulomb’s theory. Hypoplasticity constitutive law is adopted in the most of modeling to 
study the scale effect problem. This is due to the fact that hypoplasticity includes the scale 
effect by the dependency of the friction angle on the stress level, which means shear strengths 
of the soil are functions of the stresses considering the non-linearity in the shear strength 
envelope which affects the mobilization friction angle value. The scale effect is also expected 
in the spatial case in relation to the spatial ratio n. It appears by varying the wall dimensions B 
and H with a constant spatial ratio (n = constant) as shown in Figure 6-20. 

Figure 6-20: Passive earth pressure coefficient Kph as function of the relative displacement for different 
wall dimensions (n = 1, e0 = 0.55) 

Figure 6-20 above shows the results of the passive earth pressure coefficient in rotation 
around the top for walls with a constant spatial ratio n = 1 and various embedded heights 
H = 5.0 m, 10.0 m and 15.0 m. It is to be noticed that the earth pressure coefficient Kph 
decreases with increasing the wall dimensions for a constant spatial ratio n. A clear distinction 
between the curves is observed after a certain relative displacement. The difference between 
the curves increases by increasing the relative displacement till it reaches its maximum value 
at the peak.  

For a further study of the scale effect problem the results of the passive earth pressure are 
illustrated as a function of the embedded height H. The results are shown in Figure 6-21and 
Figure 6-22 for different spatial ratios n and void ratios e0. 
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Figure 6-21: Passive earth pressure coefficient Kph as function of the embedded height H (e0=0.55) 

 

Figure 6-22: Passive earth pressure coefficient Kph as function of the embedded height H (e0=0.65) 

The curves show a decrease of the passive earth pressure coefficient Kph with increasing the 
embedded height H. The passive earth pressure coefficient decreases almost steadily 
according to the scale effect for different spatial ratios n. A factor FH is defined as in Equation 
[6.14] for a further study of this decrease:  

FH ൌ
K୮୦,Hభ

K୮୦,Hమ

 [6.14] 

Where:  

Kph,H(1-2)  is the earth pressure coefficient corresponding to embedded heights H1 and H2, 
respectively 
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According to this definition the following values of the factor FH were calculated for different 
embedded heights H=5m, 10m and 15m as follows F5=

௄೛೓,ಹసఱ೘

௄೛೓,ಹసభబ೘
, F15=

௄೛೓,ಹసభఱ೘

௄೛೓,ಹసభబ೘
. The results 

are presented in Figure 6-23 as a function of the spatial ratio n for different soil densities. 

Figure 6-23: Factor FH as function of the spatial ratio n (F5, F15) 

It is to be noticed that the results are almost centered about the value 1 and the passive earth 
pressure coefficient decreases steadily as a function of H which is also can be seen by Abed-
Rahman in Figure 6-23 also as a scale effect by for the 2D case. This leads to an analytical 
function for the passive earth pressure Kph in relation to the embedded height H as shown in 
Equation [6.15] below, which was obtained by using the regression method. 

K୮୦ ൌ J ൉ HሺିGሻ  [6.15] 

Where: 

G and J  constants related to the void ratio e0 and spatial ratio n 

Equation [6.15] is valid for a range of embedded height between 5 and 15 m, which is related 
to the range of the investigated wall dimensions in the analysis model. The values of constants 
G and J are illustrated in Table 6-3 as a function of e0 for spatial ratios of n=1, 2 and 5 . The 
denser the soil, the higher is the value of both constants G and J. For a spatial ratio of larger 
than 4 till 2D case, it is possible to use the same values of J and G for n=5 because Kph as a 
function of H is almost equal as shown in Figure 6-21 before. 

The following Table 6-3 shows an example for a wall of n = 1 with different soil densities.  
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Table 6-3: The constants G and J as functions of the initial void ratio e0. 

B/H e0 G J 

1 

0.55 10 0.1 

0.65 7.7 0.07 

0.75 6.3 0.06 

2 

0.55 8.1 0.09 

0.65 5.7 0.07 

0.75 5 0.065 

5 

0.55 6.5 0.07 

0.65 5 0.065 

0.75 5 0.065 

A very good agreement between the curves resulting from the function and the curves 
resulting from the FEM results is obtained as shown in Figure 6-24 below: 

Figure 6-24: Passive earth pressure coefficient as function of the embedded depth H (FEM results and 
mobilized function, n = 1) 

Further experiments and investigations are required to prove the validity of equation [6.15] 
for wall heights out of the previously mentioned range. 

6.6 Mobilization function for the passive earth pressure  

The earth pressure behind the wall increases during the development of the relative 
displacement i.e., the value of the generated earth pressure load Eph is a function of the 
magnitude of the mobilized displacement U. To estimate the stress conditions and so the 
value of passive earth pressure during a construction movement, a mobilization approach for 
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the passive earth pressure coefficient as a function of the displacement is required. The 
analytical approach is obtained using regression method on the results of many parameter 
variations such as soil density and spatial ratio and was compared with the different modes of 
movement. Many researchers obtained similar equations using semi empirical relationships 
such as Weißenbach [91] and Bartl [4], which have also been used in the German standard 
DIN 4085 [31] for the 2D case. In most of the equations, the forms of the mobilization 
functions are similar to the curves described by the function of parabolic or circle quadrants. 
The previous methods in 2D were used to develop an analytical approach for Kph as a function 
of the displacement ratio U

UP
.  A reference dimensionless factor λ is defined as follows in 

Equation [6.6]: 

λ ൌ
ሺK୫୭ୠ െ K଴ሻ
ሺK୮୦ െ K଴ሻ  [6.6] 

Where: 
K୫୭ୠ: The mobilized passive earth pressure coefficient corresponding to the relative 

displacement U
H

. 

K0: Passive earth pressure coefficient at rest  
Kph: The maximum spatial passive earth pressure at peak. 

During the movement the value of Kmob increases from K0 at the initial condition till a 
maximum value Kph at the peak. The corresponding values of factor λ are (0) at the initial 
condition (corresponding to K0) and (1) at the peak (corresponding to Kph) as shown in Figure 
6-25. 

 

Figure 6-25: Factor λ and the passive earth pressure coefficient Kph as a function of U/UP (n=1, e0=0.55) 

Figure 6-26 and 6-27 show the value of factor λ as a function of U/Up. It is to be noticed that 
the functions develop non-linearly during the displacement up to a maximum value equal to 
(1). Varying the spatial ratio or the soil density has the effect of distinguishing the curves 
from each other. The boundary curves are the curves which are corresponding to spatial ratios 
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n = 1 and n = ∞. All other curves for n = 2 and 5 are in between them. This means that the 
mobilization curve radius is a function of the soil density and the spatial ratio. By increase 
either of the spatial ratio n or the soil density, the mobilization curve radius decreases.  

Figure 6-26: Factor λ as a function of U/Up (n = 1, H = 10 m, e0 = 0.55) 

Figure 6-27: Factor λ as a function of U/Up (n = 1, H = 10 m) 

Figure 6-28 shows the courses of the functions λ for a constant spatial ratio (n = 1ሻ with 
different wall dimensions B and H as a function of U

U౦
 in dense sand. The curves are almost 

identical, which means that with regard to λ there is no scale effect. 
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Figure 6-28: Factor λ as a function of U/Up (n = 1, e0 = 0.55) parallel movement 

The function in Equation [6.7] for λ was obtained using regression methods for the FEM 
results. 

λ ൌ െeିAቀ U
UP

ቁ ൅ 1 
[6.7] 

The constant A in equation [6.5] was obtained for the parallel movement mode with respect to 
the soil density and the spatial ratio n as shown in Figure 6-29. 

Figure 6-29: Calculated constant A as function of the spatial ratio n 

The relation between the constant A and the spatial ratio n and initial void ratio e0 is 
illustrated in the following equation: 

A ൌ K ൬
B
H൰

ି୮

 [6.8] 
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The parameters K and p were derived from the numerical simulation results which are 
presented in tables 6-4 and 6-5 below. For constant K it was found that it depends on the 
spatial ratio n and the initial void ratio e0. The exponent p was found to depend only on e0. 

Table 6-4: Constant K for different spatial ratios (parallel movement) 

B/H Dense Sand 
(e0=0.55) 

Medium dense
(e0=0.65) 

Loose Sand 
(e0=0.75) 

1 3.21  4.47 4.75 

2 3.09  4.20 4.53 

5 2.93  3.87 4.24 

26 2.67  3.33 3.78 

Table 6-5: The value of the exponent p depends on the void ratio e0. 

e0 0.55 0.65 0.75 

Power p 0.057 0.09 0.07 

Figure 6-30 shows a comparison between the above derived mobilization function and the 
FEM results  

Figure 6-30: Factor λ as a function of U/Up from FEM results and from the analytical function of 
Equation [6.7] (e0 = 0.55) 

The curves show a good agreement between the FEM results and the function f in equation 
[6.7] till about 70 % of U/Up, after which a small neglected difference occurs. This means that 
the function is in a good agreement at least to the serviceability limit state.  

Interpolation should be done for other soil densities using Table 6-4 and 6-5 or Figure 6-29 to 
calculate the value of the constant A.  
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Neuberg [56] obtained a mobilization function for the spatial passive earth pressure as shown 
in section 2.2.4 before. For a further verifying of the analytical model a comparison between 
the FEM results, the function of approval in equation [6.7] and the mobilization function of 
Neuberg is done as shown in Figure 6-31.  

Figure 6-31: Factor λ as a function of U/Up from FEM results, after Neuberg and from the analytical 
function (e0 = 0.55) 

However function l did not agree well with Neuberg’s mobilization function. The curves 
distinct from each other obviously especially in the service limit range. It is observed that 
Neuberg’s mobilization function alters its direction from convex to concave while the other 
curves including the analytical function f remain concave. 

The same study is also made for the rotation around the top in order to proof the validity of 
the analytical function for other modes of movement. The distributions of the FEM result 
curves in the form of λ and U/Up for the rotation around the top are similar to the curves for 
the parallel movement as shown in Figure 6-32 and 6-33 below. 
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Figure 6-32: Factor λ as a function of U/Up (e0 = 0.55) 

Figure 6-33: Factor λ as a function of U/Up for FEM results and analytical function (n = 1, e0 = 0.55) 

The regression method was also used and the values of the constant K are illustrated in the 
following table  

Table 6-6: Constants K by different spatial void ratio (rotation around the top) 

B/H Dense Sand 
(e0=0.55) 

Medium dense
(e0=0.65) 

Loose Sand 
(e0=0.75) 

1 3.7 4 4.3 

2 3.5 3.9 4 

5 3.4 3.7 3.9 

26 3 3.4 3.57 
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The constant A can be calculated using Equation [6.8] with the same values of exponent p as 
shown in Table 6-5 before. 

The following Figure shows a comparison between the FEM results and the analytical 
function for rotation around the top in a range of n between n = 1 and n = 2D. 

Figure 6-34: Factor λ as a function of U/Up from FEM results and the analytical function (e0 = 0.55) 

The curves show a good agreement up to a value of almost U/Up = 0.5 which is in the 
serviceability limit state range. 

The results of factor λ for rotation around the toe are illustrated in the following Figure 6-35 
and in Figure 6-36 below: 

Figure 6-35: Factor λ as a function of U/Up (e0 = 0.55) 
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Figure 6-36: Factor λ as a function of U/Up (H = 10 m, n = 1) 

The Figures show new results in which the courses of the functions λ are independent from 
the spatial ratio or the soil density which is contrary to the results of the parallel movement or 
rotation around the top. This is due to the mechanism of the movement in which no failure 
body is formed. The analytical function can also be used for toe rotation mode with a constant 
value of A=3. The results of FEM toe rotation and the analytical function are illustrated in 
Figure 6-37. 

Figure 6-37: Factor λ as a function of U/Up for FEM results and analytical function (Factor A = 3, 
e0 = 0.55) 

The curves show a good agreement between the FEM results and the analytical function for 
different values of spatial ratio n. It must be always refer by rotation around the toe to that no 
peak is formed and the value for Kph or μ is taken by U/H = 0.22 which maybe the reason 
behind the absence (humility) of the spatial ratio effect by this type of movement. 
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7 Summary and Conclusion 

The consideration of passive earth pressure is a basic problem in geotechnical engineering 
tasks like design of retaining walls, bridge abutments, foundations or anchor walls. Although 
most practical problems can be treated by assuming plane strain (2D) conditions, the necessity 
of consideration of spatial passive earth pressure often occurs.  

Relatively few research works has been carried out yet to investigate the spatial or 3D case. 
The focus of the thesis in hand lies on the magnitude of ultimate spatial passive earth pressure 
and on the load-displacement relationships with respect to the 2D case. The passive earth 
pressure in sand acting on rigid walls under parallel translational movement, head rotation and 
toe rotation was determined by means of 3D finite element simulations. The hypoplastic 
material law, which is known to predict the complex stress-strain relations of soils rather well, 
was applied. Since this material law accounts for the stress-dependence of the soil’s shear 
strength, also the scale effect, i.e. the dependence of earth pressure coefficients on the 
absolute dimensions of a wall, could be investigated. 

The effect of spatiality was described by a correction factor μ defined as the ratio of the 
passive earth pressure coefficient for the spatial case and the coefficient for the 2D case: 

ߤ ൌ  
௣௛ଷ஽ܭ

௣௛ଶ஽ܭ
 

The numerical results showed that the correction factor μ is of course dependent on the 
spatiality ratio n and also - but to a much lower degree - on the relative density of the sand 
soil. Instead, it was found that the wall friction angle as well as the absolute wall dimensions 
does not significantly affect the correction factors. 

Neglecting the effect of the relative density or the initial void ratio e0, respectively, the 
following equation valid for medium dense sand might be used to obtain an approximate μ-
value for non-cohesive soils: 

ߤ ൌ 1 ൅ 0,5 ൬
ܤ
൰ܪ

ଵ,ଷ

 

μ-values for dense sand are slightly greater and μ-values for loose sand are slightly smaller 
than given above.  

Regarding the deformation mode of the rigid wall, the simulation results confirmed that the 
greatest ultimate earth pressure occurs with parallel translational wall movement and the 
smallest with toe rotation. In the latter, even no peak state could be reached. Here a 
deformation limit was used to define the ultimate state; the passive earth pressure coefficient 
Kph was calculated for a maximum displacement of 20 % of the wall height. 

In the relations of the earth pressure coefficients for different movement modes no clear 
dependency on spatiality ratio and relative density could be identified. For top rotation, the 
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maximum passive earth pressure amounts between 80 and 92 % of the value for parallel 
movement. The use of an average correction factor of 0.85 might be suitable for practical 
cases. For toe rotation, the resultant earth pressure forces were between 64 and 77 % of the 
values for the parallel movement case. Thus, the use of a correction factor of 0.67 or 0.70 
might be suitable.  

The displacement Up at which the maximum (ultimate) passive earth pressure is reached was 
found to be the greater, the smaller the spatiality ratio n is. For n = 1, peak displacements can 
be around 50 % larger than for the 2D case. However, for n-values larger than 5, the peak 
displacement is almost identical with the 2D value. 

The dimensionless peak displacement Up/H is of course strongly dependent on the relative 
density of the sand, like it is in the 2D case. A functional description of the ratio of the peak 
displacements in the 3D and the 2D case was derived from the numerical simulation results. 
The function parameters are dependent on the spatiality ratio n, but also on the absolute 
magnitude of the wall height (scale effect). It should be noted that the calculated peak 
displacements were considerably smaller than the peak displacement predicted by an equation 
given in DIN 4085. Thus, at least for the conditions considered in this study, the DIN 
approach lies on the safe side.  

This conclusion is valid for the values of Kph at peak while it is to be noticed that during the 
movement the value of Kph as a function of U/H has to be taken into consideration. 

To describe the mobilization of earth pressure resistance with increasing relative displacement 
U/Up of the wall, functional mobilization approaches of the following form were derived for 
the three considered wall deformation modes: 

ߣ ൌ 1 െ  ݁
ି஺ ሺ ௎

௎೛
ሻ
 

For parallel movement and top rotation, the function parameter A was found to depend on the 
spatiality ratio n and on the relative density or initial void ratio, respectively. For toe rotation, 
no significant effect of n and e0 was found, which means that a constant parameter A = 0.3 
might be used in the function given above. The reason for this result might be that for toe 
rotation in all cases Up = 0.2 H was used, since no peak state could be reached. 

Finally, the effect of the absolute wall dimensions or the scale of the problem, respectively, 
was investigated by comparing results obtained for wall heights H of 5, 10 and 15 m. With 
regard to the earth pressure coefficients, it was found that for H=5m the coefficient is in 
average about 10 % greater than for H = 10 m. On the contrary, for H = 15 m the coefficients 
are in average around 10 % smaller than for H = 10 m. Similar deviations were reported by 
Abdel-Rahman (1999) [1] from 2D case simulations. This makes clear that in practice the 
angle of internal friction should be devised carefully in cases with large wall dimensions, 
since the scale effect mentioned above is usually not taken into account in practical 
calculation methods.  
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As mentioned above, the scale does not affect the correction factor μ. However, it was found 
that the relative peak displacement Up/H decreases with increasing wall height. This shows 
that peak displacements measured in model tests should not be transferred linearly to the in 
situ scale. 

It must be pointed out that an experimental proof of the general validity of the presented 
results is missing. Such experimental investigations are highly desirable. Moreover, other soil 
types including cohesive soils should be investigated numerically and experimentally in 
future.  

Other aspects and research in the future are required. Some of these aspects can be: 

• The contact pressure between the wall and the soil due to the stiffness of the soil-wall 
system for example earth pressure by flexible walls adjacent to dense sand.  

• Developing of some calculating methods such as P-y method or the modulus of 
subgrade reaction method to be able to contain the calculation of the earth pressure 
against rigid walls (or walls with different rigidity). 

• Calculating the earth pressure using FEM in different cases such as due to a surcharge 
load on the ground surface beside the wall, earth pressure by a retaining wall against a 
sloped ground surface soil and the effect of the ground pore water pressure on the 
earth pressure calculations. 

• The spatial earth pressure coefficient under cycle or dynamic loads which requires 
experimental and numerical researches including a developing for some appropriate 
constitutive laws. 
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Annex: More results for the spatial passive earth pressure  

 

Parallel movement 

 

Figure A1: Correction factor µ as function of spatial ratio n (H = 5m) 

 

 

Figure A 2: Correction factor µ as function of spatial ratio n (H = 15m) 
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Figure A 3: Relative displacement of the maximum value at the peak Up/H as a function of the spatial 
ratio n (H = 5 m) 

 

 

Figure A4: Relative displacement of the maximum value at the peak Up/H as a function of the spatial 
ratio n (H = 15 m) 
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Rotation around the top 

 

Figure A5: Correction factor µ as function of spatial ratio n (H = 5m) 

 

 

Figure A 6: Correction factor µ as function of spatial ratio n (H = 15m) 
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Rotation about Toe 

 

Figure A 7: Correction factor µ as function of spatial ratio n (H = 5m) 

 

Figure A 8: Correction factor µ as function of spatial ratio n (H = 15m) 

0,9

1,1

1,3

0 5 10 15 20 25 30 35 40 45 50 55

μ

B/H

e0=0.55_H=5m

e0=.65

e0=0.75

e0=0.55

e0=0.65

e0=0.75

0,9

1,1

1,3

1,5

1,7

0 5 10 15 20

μ

B/H

e0=0.55_H=15m

e0=0.65

e0=0.75

e0=0.55

e0=0.65

e0=0.75



 Annex Page 187 

Stress distribution 

Parallel movement 

 

Figure A 9: Horizontal passive stress distributions at peak state in the symmetric plane (x = 0.5 m) for 
a wall with H = 15 m and B = 10 m (n = 1) 
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Figure A 10: Stress distributions at peak state in the symmetric plane (x = 0.5 m) for different spatial 
ratios n (e0 = 0.55, H = 15 m) 
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