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Abstract

The interaction between microscopically rough surfaces and hydrodynamic thin
film lubrication is investigated at finite deformations. Within a coupled micro-
macro analysis setting, the influence of roughness onto the macroscopic scale is
determined using FE2-type homogenization techniques to reduce the overall com-
putational cost. Exact to within a separation of scales assumption, a computa-
tionally efficient two-phase micromechanical test is proposed to identify the macro-
scopic interface fluid flux from a lubrication analysis performed on the deformed
configuration of a representative surface element. Parameter studies show a strong
influence of both roughness and surface deformation on the macroscopic response
for isotropic and anisotropic surfacial microstructures.

Keywords: Reynolds equation, surface roughness, homogenization, finite defor-
mation

Kurzbeschreibung

Die Wechselwirkung zwischen mikroskopisch rauen Oberflächen und einer Dünn-
film Flüssigkeitsschmierung werden unter der Annahme von großen Deformationen
untersucht. In einem gekoppelten mikro-makro Problem wird der mikroskopis-
che Rauigkeitseinfluss auf die Makroscale bestimmt. Um den Rechenaufwand zu
reduzieren findet eine FE2 artige Homogenisierungstechnik Verwendung. Ein ef-
fizienter mikromechanischer Zweiphasentest wird zur Bestimmung des makroskopis-
chen Fluidflusses herangezogen wobei im ersten Schritt ein Körper mit rauer repräsen-
tativer Oberfläche deformiert und im zweiten Schritt eine Flussanalyse auf der
verformten Oberfläche durchgeführt werden. Parameterstudien von isotropen und
anisotropen mikroskopischen Oberflächen zeigen einen starken Einfluss von Rauigkeit
und Verformung auf den makroskopischen Fluidfluss.

Schlagworte: Reynoldsgleichung, Oberflächenrauigkeit, Homogenisierung, Große
Deformationen
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Chapter 1

Introduction

1.1 Motivation

In many cases of engineering interest, two surfaces that appear to be macroscopi-
cally in contact are separated by a thin fluid film on the micro scale. The presence
of such a film may be desirable or undesirable. The synovial fluid is critical to
the healthy functioning of human joints [32] and lubricants are an integral design
parameter in order to maintain the operation standards in various machinery by
minimizing wear [58]. In ships the angular motion and momentum of an engine
are transferred to the propeller via an axis, which commonly is routed by a water
lubricated bearing [14, 46, 69]. On the other hand, wet road surfaces may lead to
poor tire traction performance and eventually to hydroplaning [30, 45] while oil,
a common lubricant, can also lead to reduced performance in wheel-rail contact
[50] or it carries the load experienced by crankshafts in Otto-engines amongst a
minimum of friction [16, 36]. An investigation of the tribological nature of such
surfaces is an interdisciplinary task that forms the basis of the lubrication theory.
See Hamrock et al. [33], Persson [56], Szeri [73] for extensive overviews of the field.

Experiments are expensive and computing power gets cheaper and enables
the treatment of three dimensional problems of engineering interest, therefore nu-
merical solution software has evolved and enjoys great popularity in science and
industry [47, 48, 53, 60, 70]. Hence the present problem is tackled by making
use of the Finite Element Method (FEM) which is a powerful tool in order to
gain consolidated knowledge about nonlinear mechanical problems (of arbitrary
geometry) prior to a products manufacturing [85, 88]. Although the finite element
method is applicable to many mechanical branches, with a view to the current
work just a few are mentioned. These are solid or fluid problems and furthermore
interface problems where both solid and fluid interact with each other, cf. Persson
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2 CHAPTER 1. INTRODUCTION

[56], Wriggers [84].

1.2 Background and state of the art

A central ingredient of the lubrication theory is the Reynolds equation [61]
that is derived from the three-dimensional Navier-Stokes equations in the thin
film limit. The Reynolds equation enables a predictive analysis of lubricated
interfaces over a broad range of macroscopic contact situations and therefore plays
a fundamentally practical role in circumventing a direct solution of the compu-
tationally more challenging Navier-Stokes equations. However, in its original
form, the Reynolds equation assumes microscopically flat surfaces and employ-
ing a mean film thickness together with the original equation is generally unable
to capture roughness effects accurately. Consequently, the construction of robust
techniques of incorporating the effects of tribologically realistic surfaces that dis-
play roughness at various scales into the Reynolds equation has been of prime
interest, in particular for surface texture design applications [74]. For the pur-
poses of this work, attempts towards this goal may be grouped into two major
categories: (i) stochastic approaches that augment the original Reynolds equa-
tion and (ii) homogenization techniques. The widely employed influential works of
Patir and Cheng [54] and Patir and Cheng [55] introducing the flow factor method
belong to the former category. This method regards the effect of three dimen-
sional isotropic and anisotropic rigid surface roughness onto thin film lubrication
problems. This is accomplished via shear and pressure flow factors – that are in-
corporated into the average Reynolds equation – based on empirical relations for
the amplitude characteristics and by making use of autocorrelation parameters for
the spectral characteristics of the surface roughness. Both surface generation and
the smoothened flow problem are subject to numerical solution techniques. Addi-
tional early works of historical interest include Tripp [80] where anisotropic texture
effects were accounted from an analytical view and Shukla [68] where an effective
viscosity concept was introduced. For recent references, the reader is referred to
Hamrock et al. [33] and Szeri [73].

Parallel to these efforts were perturbation techniques that operated directly on
the fine scale pressure oscillations – see Tripp [80] for an early approach and Pers-
son [57] for a recent development. Tripp directly computes the flowfactors from
the stochastic properties of the two rough surfaces. Elrod suggests a multi-scale
analysis performed via an equation that relates mass flux of uniform direction
to a Reynolds equation being smoothened by flow-coefficients formed by sur-
face texture characteristics. Among other works, the small-parameter expansion
approach of Elrod [28] can be considered as a precursor to modern homogeniza-
tion techniques in lubrication and shows similarities with the asymptotic expansion
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Figure 1.1: The lubrication homogenization idea is summarized. The original non-

smooth boundary topography of the deformable body is replaced with a

microscopically smooth one, leading to a homogenized problem with a

lower discretization cost.

treatments that were first initiated in the context of heterogeneous media [7, 13, 65]
– see Fabricius [31] for a review. For heterogeneous materials and interfaces, the
homogenization approach based on the asymptotic expansion technique is exact in
the sense that the macroscopic response of the medium can be extracted based on
a given microstructure and microscale constitutive models without further simplifi-
cation. Moreover, this inherently multiscale approach lends itself to computational
homogenization frameworks (often referred to as FE2) which can operate in pe-
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riodic and random multiphysics settings, with discrete media or under constraint
conditions like contact and in particular at finite deformations where analytical or
closed-form mathematical approaches pose difficulties. While these advantages are
at the expense of significant computational cost, their predictive potential com-
plements and in some cases supersedes the alternatives offered by approximate
homogenization techniques, such as estimates and bounds, based on simplified mi-
crostructures and constitutive relationships which are usually necessary to enable
an analytical treatment of the multiscale problem. See Stupkiewicz [71], Tem-
izer [76], Temizer and Wriggers [78], Torquato [79], Zohdi and Wriggers [89] for
overviews with extensive references on computational homogenization techniques
and their applications to finite deformation problems for materials and interfaces.

Asymptotic expansion based approaches have been analyzed for theReynolds
equation with and without cavitation, in the presence of compressibility effects as
well as a possibly non-Newtonian fluid in various works. Recent examples include
Almqvist and Dasht [1], Almqvist et al. [2, 3], Bayada et al. [10], Jai and Bou-Said
[42], Kane and Bou-Said [43, 44] – see also references therein for further remarks on
the historical development of the approach. These enable exact treatments of the
multiscale problem and are amenable to a computational implementation, thereby
circumventing the demanding task of resolving microscopic roughness directly in
the solution of the macroscopic problem, cf. (fig 1.1). Recently, analytical bounds
for the macroscopic lubrication behavior have also been derived [4, 51], which are
closely related to the bounds for heterogeneous materials [79]. Such bounds deliver
a solution space for the performance of hydrodynamic lubrication as influenced by
real measured surface roughness. Recent comparisons of homogenization and flow
factor approaches may be found in Sahlin et al. [62, 63, 64]. As for heterogenous
media, absolute length scale dependence is also of concern in lubrication [40].
However, such effects are outside the scope of the present study.

1.3 Structure of the thesis

A summary of the underlying continuum mechanical basic principals is introduced
in chapter 2 and inherits kinematical descriptions, balance equations and consti-
tutive solid equations.

Due to the particular importance of the lubrication constitutive description for
this work, Reynolds equation [61] is treated in chapter 3. In order to fullfill the
linear momentum balance it can be derived from either the Navier-Stokes equa-
tion or alternatively from an infinitismal volume element. Here a mixed approch
was choosen. While the discussion of body forces and inertia terms is based on a
dimensionless analysis of the full Navier-Stokes equation, the surface forces are
deduced directly from an infinitesimal volume element. Subsequently a disscussion
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on different constraint formulations enforcing the effect of cavitation follows. At
last all of this terms are subject to the mass balance (or continuity equation).

In order to extend the applicability of 2nd order differential equations (consti-
tutive equations with balance laws) which have been discussed in the previous
section, the finite element method will be introduced in terms of a solid descrip-
tion in chapter 4 and an elasto-hydrodynamic lubrication framework in chapter
5. Both chapters are subdivided into variational principles, linearization and dis-
cretization treatments. Furthermore a common employable numerical solution
strategy for nonlinear problems is introduced briefly in chapter 4. Within the
elasto-hydrodynamic lubrication description the “arbitrary Lagrangian-Eulerian”
(ALE) description is used in order to handle the coupled interface problem effi-
ciently. Furtheron a finite rotation formulation is introduced capable of handling
curvilinear coordinates and large rotations as in shell problems. In order to fa-
miliarize the reader with results for a typical lubrication problem chapter 6 is
introduced. The influence of cavitation is also demonstrated.

The major goal of this work is to introduce and investigate a computational
homogenization framework for soft, i.e. finite deformation, elasto-hydrodynamic
lubrication. The multiscale problem in the context of elasto-hydrodynamic lubri-
cation has been investigated in Bayada et al. [11], Bohan et al. [15], Dowson [27]
and explicit numerical solution strategies for the coupled problems of elasticity and
lubrication have been proposed [45]. Although finite deformation effects have also
been investigated in Shi and Salant [66], Shinkarenko et al. [67], Stupkiewicz and
Maciniszyn [72], a sufficiently general computational homogenization framework
that takes into surface texture evolution effects due to large macroscopic deforma-
tions of the lubricated interface appears not to have been proposed. Section 7.2
constructs the homogenization methodology. In addition to a discussion of scale
transition procedures, thermodynamical consistency of the proposed formulation
is discussed by monitoring dissipation on micro- and macroscales. Finally, major
aspects of the proposed approach are demonstrated in section 8 with an emphasis
on finite deformation effects and the associated macroscopically anisotropic inter-
face flow considerations. A critical discussion and an outlook completes the thesis
in chapter 9.
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Chapter 2

Continuum mechanics

In brief the fundamentals of Continuum Mechanics are introduced in this chapter.
For detailed information the interested reader is referenced to Altenbach and Al-
tenbach [5], Haupt [34], Holzapfel [39]. Here matter is considered at a macroscopic
level without knowing its internal microscopic structure, hence assuming a uniform
distribution of matter in space. Therefore the topics

• kinematics

• balance principles

• constitutive equations

as the basic tools to describe material behavior are introduced in the subsequent
sections. In the kinematics section a material independent description of deforma-
tion and motion of bodies is introduced, followed by the principles of mass balance
and linear momentum balance. These are general and hence material indepen-
dent mathematical descriptions. Finally, the individual material properties are
introduced via constitutive equations.

2.1 Kinematics

Basic mathematical considerations on the motion of a body and a description for
deformation and its differential quantities are stated. Furthermore stretch and
strain measures are constructed in order to depict the deformation - excluding
translational and rotational rigid body motion - of a body in time.

Configuration and motion

At first, a body B that is in a stress-free condition is introduced. This setting
is referred to as the initial configuration. The volume it occupies is denoted

7



8 CHAPTER 2. CONTINUUM MECHANICS

by Ω0 and the surface via Γ0. The position of each point inside the body can be
described by a vector X. As a consequence of internal and external loads the body
moves and deforms and fills out a volume Ωt. The surface is denoted by Γt. This
setting is called current configuration. In the current configuration each point
can be described via a vector x. This is depicted in figure 2.1, where ϕ denotes a
mapping between the configurations, such that x = ϕ (X).

Ω0

Ωt

Γ0

Γt

u

xX

e1

e2

e3

ϕ

Figure 2.1: Motion of body B.

The motion between the configurations is defined as

x (X, t) := X + u (X, t) , (2.1)

where u is the displacement.

2.1.1 Deformation gradient

The mapping of an infinitesimal line element dX in reference configuration and
the same line element dx in current configuration is described by the deformation
gradient

F :=
∂x

∂X
(2.2)

and can be rewritten as

F = 1 +
∂u

∂X︸︷︷︸
H

,

where H denotes the displacement gradient.
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Ω0

Ωt

e1

e2

e3

dx

da

dV

dX

dA

dV

F

JF−T

J

Figure 2.2: Differential quantities mapping between configurations.

2.1.2 Nanson’s formula

Mapping the infinitesimal volume between the configurations is done by

dV = J dV, (2.3)

where J is the Jacobian (also referred to as the volume ratio) that has to be greater
than zero

J = det[F ] > 0. (2.4)

Deriving a relation between surface elements demands a mapping of unit vectors
N ∈ Γ0 and n ∈ Γ, that are normal to the surface in their respective configura-
tions. This is achieved by Nanson’s formula:

da = n da = JF−TN dA = JF−TdA (2.5)

2.1.3 Cauchy-Green tensors

In order to prescribe the length of a line element on a body undergoing a defor-
mation it is referred to previously introduced configurations. For both initial Ω0

and current configuration Ωt the length of an infinitesimal line element dX are
denoted by dS and ds, respectively. These are defined by making use of the
Euclidean norm dS :=‖ dX‖ and ds :=‖ dx‖. Expanding the length as follows

dS2 = dX · dX =

(
dx

dX
dX

)
·
(

dx

dX
dX

)
= X · F TF︸ ︷︷ ︸

=:C

X

ds2 = dx · dx =

(
dX

dx
dx

)
·
(
dX

dx
dx

)
= x ·

(
FF T
︸ ︷︷ ︸
=:b

)−1
x (2.6)
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we obtain the rightCauchy-Green tensorC and leftCauchy-Green tensor
b, prescribing the line stretch with respect to the initial and reference configuration.
It can be shown that both Cauchy-Green tenors are free of rotation R. Besides
the deformation gradient can be rewritten

F = RU = vR (2.7)

in terms of a rotation R and stretch tensors U or v. Here the deformation is split
into either a stretch followed by a rotation R denoted as right polar decomposition
RU or it is split into a rotation R followed by a stretch known as the left polar
decomposition vR of the deformation gradient. Since the rotation and stretches
have the following properties

RTR = RRT = 1, U = UT , v = vT . (2.8)

both Cauchy-Green tensors read

C = F TF = U 2 and b = FF T = v2. (2.9)

Due to the positive definiteness of the right stretch tensor U and the left stretch
tensor v

U =
√
C and v =

√
b (2.10)

hold.

2.1.4 Strain

In order to depict the internal deviation between the point arrangements of both
configurations rigid body motion/rotation must be eliminated. To accomplish this,
the Green-Lagrange strain tensor E - associated with Ω0 - and Green-
Almansi strain tensor e - related to Ωt - are constructed

E =
1

2
(C − 1) =

1

2

(
H +HT +HTH

)
(2.11)

and

e =
1

2

(
1− b−1

)
=

1

2

(
h+ hT − hTh

)
, (2.12)

with the displacement gradients H = Grad[u] and h = grad[u] with respect to
initial and current configuration, respectively. For small deformations high order
terms can be neglected and strains E, e are written as

ǫ =
1

2

(
H +HT

)
. (2.13)

Making use of symmetry (•)sym = 1
2

(
•+ •T

)
the strain tensor ǫ for small defor-

mations comes out

ǫ = Hsym. (2.14)
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2.2 Balance equations

In order to describe a mechanical system in a physically consistent fashion, general
valid statements have to be fulfilled, namely balance equations.

2.2.1 Balance of mass

For all possible configurations conservation of mass (m) must be satisfied such
that

m :=

∫

Ω0

ρ0 (X, t) dV =

∫

Ωt

ρ (x, t) dV
!
= const > 0 (2.15)

holds. Subsequently, making use of equation (2.3) and localizing leads to the local
(point wise valid) mass balance relationship

C
C
C
C

∫

Ω0

ρ0 (X, t)���dV =
C
C
C
C

∫

Ω0

ρ (x (X, t) , t) J (X, t) ���dV . (2.16)

Considering a time dependent problem we need to derive the rate forms of equation
(2.16) in material and spatial description

material rate︷ ︸︸ ︷
ρ̇0 (X) =

D

Dt
ρ0 (X) = 0 =

D

Dt
(ρJ) = ˙ρJ

= ρ̇J + ρJ̇, with J̇ = Jdiv[u̇]

= SSJ (ρ̇+ ρdiv[u̇])︸ ︷︷ ︸
spatial rate

. (2.17)

Finally, ρ̇ can be derived in time and space, with ρ̇ and ρ′ evaluated at positions
X̂ and x̂

material︷ ︸︸ ︷
ρ̇ :=

Dρ

Dt

∣∣∣∣
X=X̂

=

spatial︷ ︸︸ ︷
∂ρ

∂t

∣∣∣∣
x=x̂︸ ︷︷ ︸

=:ρ′

+grad[ρ] · u̇, (2.18)

and from product rule we get

div[ρu̇] = grad[ρ] · u̇+ ρdiv[u̇] (2.19)
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such that in spatial (Eulerian) description equation (2.17) reads

∂ρ

∂t
+ grad[ρ] · u̇+ ρdiv[u̇] = 0 ⇔ ρ′ + div[ρu̇] = 0, (2.20)

which are commonly employed in fluid dynamics. Density must fulfill ρ
!
> 0 for any

material. For an incompressible fluid we observe a constant density throughout
space grad[ρ] · u̇ = 0 and time ρ̇ = 0 and hence equation (2.20) simplifies to

ρdiv[u̇] = div[ρu̇] = 0. (2.21)

2.2.2 Balance of momenta

For a body B with a translational motion we define the linear momentum L

L (t) =

∫

Ωt

ρu̇ dV (2.22)

and for a rotational motion relative to a fixed point x0 we define the angular
momentum J

J (t) =

∫

Ωt

r × ρu̇ dV, (2.23)

with r (x) = x − x0. The fundamental axioms are called balance of linear
momentum and balance of angular momentum. They evolve from the time
derivatives of equations (2.22) and (2.23) reading

L̇ (t) =

∫

Ω

ρü dV = F (t) (2.24)

and

J̇ (t) =

∫

Ω

r × ρü dV = M (t) . (2.25)

In terms of continuum mechanics these axioms are generalized equations of New-
ton’s 1st and 2nd principle of motion, respectively. They equilibrate inertia forces
of equations (2.24) and (2.25) to all forces F and moments M acting on the body.
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The forces and moments can be split additively into portions acting on the surface
Γ and the volume Ω of the current configuration:

F (t) =

∫

Γt

t da+

∫

Ωt

b dV (2.26)

M (t) =

∫

Γt

r × t da +

∫

Ωt

r × b dV (2.27)

Here, b = ρg is referred to as body force, representing for example gravity g.
According to Cauchy’s theorem the Cauchy traction vector t can be evolved
for both current and reference configuration to

t = σ · n and T = P ·N , (2.28)

respectively. Here σ is called Cauchy (true) stress tensor and P is known as
1st Piola-Kirchhoff (nominal) stress tensor. Both relate forces to an infinites-
imal surface element in either the current configuration (da) or the reference con-
figuration (dA):

t da = TdA. (2.29)

t
n

−t
−n

da

da

Figure 2.3: Cauchy stress inside a body.
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In spatial description, introducing equation (2.28) into equations (2.26) and (2.27)
the linear and angular momentum balance [eqs (2.24) and (2.25)] yields

∫

Ωt

ρü dV =

∫

Γt

σ · n da+

∫

Ωt

b dV (2.30)

and

∫

Ωt

r × ρü dV =

∫

Γt

r × σ · n da+

∫

Ωt

r × b dV (2.31)

and can be transformed to Cauchy’s 1st equation of motion in spatial descrip-
tion. This is done by using the integral form of Cauchy’s theorem [eqn (2.28)]
and applying the divergence theorem

∫

Ωt

div[•] dV =

∫

Γt

[•] · n da (2.32)

in such a way that we end up with the global and local form, of the Cauchy’s
1st equation of motion

∫

Ωt

(div[σ] + b− ρü) dV = 0

div[σ] + b− ρü = 0. (2.33)

In case of no acceleration (ü = 0) the above stated local form results in the equation
for elasto-statics

div[σ] + b = 0, (2.34)

well-known as Cauchy’s equation of equilibrium. Cauchy’s 2nd equation
of motion states that Cauchy stress tensor is symmetric. Applying the
divergence theorem from equation (2.32) to the angular momentum balance [eqn
(2.31)] reads

∫

Ωt

r × ρü dV =

∫

Ωt

(r × div[σ] + s) dV +

∫

Ωt

r × b dV

∫

Ωt

r × (ρü− b− div[σ])︸ ︷︷ ︸
!
=0 by [eqn(2.33)]

dV =

∫

Ωt

s dV. (2.35)
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Subsequently rewriting the last equation in index notation for an arbitrary volume
leads to the statement

0 = s = εabcea ⊗ eb ⊗ ec :
(
δdfed ⊗ ef · σT

gheg ⊗ eh

)

= εabcσghδdfδfgδbdδch (2.36)

= εabcσcbea

= �������:
!
= 0

(σ32 − σ23)e1 +�������:
!
= 0

(σ13 − σ31)e2 +�������:
!
= 0

(σ21 − σ12)e3

that demands Cauchy’s stress tensor being symmetric

σ = σT (2.37)

in order to fulfill Cauchy’s 2nd equation of motion. In equation (2.36) the
operator of permutation

ǫabc :=





1; a, b, c = (1, 2, 3) , (2, 3, 1) , (3, 1, 2)
−1; a, b, c = (1, 3, 2) , (3, 2, 1) , (2, 1, 3)
0; a = b or a = c or b = c

(2.38)

and Kronecker’s delta

δij :=

{
1; i = j
0; i 6= j

(2.39)

are used.

2.2.3 Balance of energy

Analogous to the transformation of linear momentum balance to Cauchy’s
1st equation of motion ([eqs (2.24) and (2.33)]) the balance of mechanical
power can be evolved. Multiplying the external forces F [eqn (2.26)] acting on a
body with a velocity u̇

Pext := F (t) · u̇ =

∫

Γt

t · u̇ da +

∫

Ωt

b · u̇ dV (2.40)

and making use of the divergence theorem leads to

Pext =

∫

Ωt

div
[
σT u̇

]
dV +

∫

Ωt

b · u̇ dV. (2.41)

From the product rule we get an additive split of the 1st term on the right hand
side and due to the symmetry of Cauchy stress tensor the velocity gradient l

l := grad[u̇] = d+��*
0

w (2.42)
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can be expressed by its symmetric part d:

Pext =

∫

Ωt

(
div[σ] · u̇+ σ : d

)
dV +

∫

Ωt

b · u̇ dV. (2.43)

Subsequently, expanding above equation via L̇ · u̇− L̇ · u̇ = 0 reads

Pext =

∫

Ωt

(
ρü · u̇+ σ : d

)
dV +

∫

Ωt

����������:0
(div[σ] + b− ρü) · u̇ dV, (2.44)

where the 2nd term vanishes by virtue of equation (2.33). Finally, applying product
to

ü · u̇ =
1

2

( ·

u̇ · u̇
)
, (2.45)

and introducing equation (2.40) into equation (2.44) the balance of mechanical
power is obtained reading

∫

Γt

t · u̇ da +

∫

Ωt

b · u̇ dV

︸ ︷︷ ︸
Pext

=
D

Dt

∫

Ωt

1

2
ρu̇ · u̇ dV

︸ ︷︷ ︸
K̇

+

∫

Ωt

σ : d dV

︸ ︷︷ ︸
Pint

, (2.46)

where the kinetic energy and internal mechanical energyrates are denoted
by K̇ and Pint, respectively. Here K represents the energy stored due to velocity u̇,
whereas the internal mechanical power (or stress power)Pint is a consequence
of deformation. It can be be reformulated as follows

Pint =
∫
Ωt

σ : d dV =
∫
Ω0

τ : d dV =

∫

Ω0

τ : l dV =

∫

Ω0

τF T : Ḟ dV

=
∫
Ω0

P : Ḟ dV =

∫

Ω0

FS : Ḟ dV =

∫

Ω0

S : F T Ḟ dV

=
∫
Ω0

S : Ė dV (2.47)

Here τ ,P and S denote the Kirchhoff, 1st and 2nd Piola-Kirchhoff stress ten-
sors, respectively. Inside equation (2.47) the work conjugate pairs (σ,d), (τ ,d),
(P , Ḟ ) and (S, Ė) are obtained, where the operations

τ = FSF T

S = F −1τF−T (2.48)
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are called push-forward and pull-back, respectively. Changing the configuration
via dV = J dV leads to

τ = Jσ (2.49)

and hence [eqs (2.48) and (2.49)] rewrite

S = JF−1σF−T = F−1τF−T = JF−1P = ST

σ = J−1τ = J−1FSF T (2.50)

referred to as the Piola transformation and its inverse, respectively.

2.2.4 Thermomechanical balance equations

The 1st law of thermodynamics states the thermal equilibrium by postulating that
all energy within a system must be preserved. The 2nd law of thermodynamics
claims that a distinct direction of heat (or energy) transfer exits such that heat
might only be transferred from high temperatures to low temperatures (but never
reverse). It also puts restrictions on the nature of mechanical dissipation.

1st law of thermodynamics

The balance of thermal energy reads

Pint +QT = Ė =
DE (t)
Dt

=
D

Dt

∫

Ωt

e (x, t) dV, (2.51)

where themechanical power, thermal power and internal energy are denoted
by Pint, QT and E , respectively. Here e (x, t) denotes a thermodynamic state
variable in current configuration. For the thermal power QT a split is conducted

QT =

∫

Ωt

r
T

dV −
∫

Γ0

qT · n dA =

∫

Ωt

(r
T
− div[qT ]) dV, (2.52)

into an internal heat source r
T

and a heat flux across the surface denoted by
qTn = −qT · n. Introducing equation (2.51) into the mechanical balance equation
(2.46) we obtain the identity

K̇ + Ė = Pext +QT .

D

Dt

∫

Ωt

(
1

2
ρu̇2 + e

)
dV =

∫

Γt

t · u̇ da+

∫

Ωt

b · u̇ dV +

∫

Ωt

(ρr − div[qT ]) dV, (2.53)
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which leads to the 1st law of thermodynamics

D

Dt

∫

Ωt

e dV =

∫

Ωt

(σ : d− div[qT ] + ρr) dV +

∫

Ωt

�����������:0(
div
[
σT
]
+ b− ρü

)
· u̇ dV, (2.54)

demonstrating balance of energy.

2nd law of thermodynamics

The total production of entropy G accumulates the rate of entropy Ṡ and
the rate of entropy input Q̃

G (t) =
D

Dt
S − Q̃ ≥ 0

or =
D

Dt

∫

Ωt

s (x, t) dV +

∫

Γt

h · n da−
∫

Ωt

r̃ dV ≥ 0 (2.55)

and states that entropy production can’t be negative. Here s (x, t) denotes an en-
tropy state variable with respect to the current configuration. In physics entropy
is known as a concept to measure microscopic randomness and disorder quantita-
tively. From observation entropy quantities, namely entropy flux h and entropy
source r̃ can be related to heat flux qT and heat source ρr by the inverse of the
absolute temperature Θ−1 (x, t), respectively.

h =
qT

Θ
, r̃ =

r

Θ
(2.56)

Combining equations (2.56) and (2.55) we obtain Clausius-Duhem inequality

∫

Ωt

ṡ (x, t) dV +

∫

Γt

qT

Θ
· n da−

∫

Ωt

r

Θ
dV ≥ 0. (2.57)

Transforming the surface term while using both divergence theorem and product
rule one may write

C
C
C
C

∫

Ω

(
ṡ+ (div[qT ]− r) Θ−1 −Θ−2qT · grad[Θ]

)
��dV ≥ 0, (2.58)
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where the integral cancels for an arbitrary body Ω bringing out the local form.
This inequality can be rewritten in terms of stress power and internal energy
introducing equation (2.54) and multiplying with Θ

Θṡ+ (σ : d− ė)︸ ︷︷ ︸
=div[qT ]−r

− 1

Θ
qT · grad[Θ] ≥ 0. (2.59)

Furthermore rearranging and applying product rule to the 1st term on the left hand
side gives

D

Dt
(Θs− e)︸ ︷︷ ︸
−Ψ:=

−Θ̇s+ σ : d− 1

Θ
qT · grad[Θ] ≥ 0. (2.60)

Here Helmholtz free energy function Ψ = Ψ (Θ, s) = e − Θs can be identi-
fied which is expressed in terms of Legendre transformation. For isothermal
conditions (Θ = const) the temperature remains constant throughout the body
(grad[Θ] = 0) and in time (Θ̇ = 0) leading to

Ψ̇ = σ : d︸ ︷︷ ︸
Pint

DΨ

Dt
=

︷ ︸︸ ︷
P : Ḟ , (2.61)

where the last column was obtained by virtue of the work conjugated pairs, cf.
[eqn (2.47)]. Assuming a purely elastic material behavior, expanding the time
derivatives on both sides

∂Ψ

∂F
: Ḟ

!
= P : Ḟ (2.62)

we identify that Ψ = Ψ (F ). In other words Ψ must be a function of deformation
F . In case of an isotropic elastic response F can be replaced by the invariants
IaC , Iab ; a ∈ 1, 2, 3 of the Cauchy-Green tensors C = F TF , b = FF T or its
principal stretches λi, i ∈ 1, 2, 3, respectively:

Ψ (F ) = Ψ (λ1, λ2, λ3) = Ψ
(
I1C , I

2
C , I

3
C

)
= Ψ

(
I1b , I

2
b , I

3
b

)
(2.63)

Per definition the invariants are given in terms of Cauchy-Green tensors or
principle stretches

I1
C
:=︷ ︸︸ ︷

tr[C] =

I1λ:=︷ ︸︸ ︷
λ1 + λ2 + λ3 =

I1
b
:=︷︸︸︷

tr[b]
I2
C
:=︷ ︸︸ ︷

1

2

(
tr[C]2 − tr

[
C2
])

=

I2λ:=︷ ︸︸ ︷
λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 =

I2
b
:=︷ ︸︸ ︷

1

2

(
tr[b]2 − tr

[
b2
])

I3
C
:=︷ ︸︸ ︷

det[C] =

I3λ:=︷ ︸︸ ︷
λ2
1λ

2
2λ

2
3 = J2 =

I3
b
:=︷ ︸︸ ︷

det[b]
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The eigenvalues λ2
i , i ∈ 1, 2, 3 and hence the principal stretches λi ∈ 1, 2, 3 of the

Cauchy-Green tensors C and b

C :=
3∑

i=1

λ2
iN i ⊗N i, b :=

3∑

i=1

λ2
ini ⊗ ni (2.64)

can be calculated by spectral decomposition. As previously defined we may inter-
change the work conjugated pairs in equation (2.62), with e.g. (S, Ė)

S =
DΨ

DE
= 2

DΨ

DC
= 2

3∑

a=1

∂Ψ

∂IaC

∂IaC
∂C

(2.65)

and hence obtain the 2nd Piola-Kirchhoff stress S from the 1st derivative of Ψ
and further can compute the Cauchy stress σ via inverse Piola transformation
[eqn (2.50)]:

σ = J−1FSF T = 2J−1
3∑

a=1

∂Ψ

∂IaC
F
∂IaC
∂C

F T = 2J−1
3∑

a=1

∂Ψ

∂Iab
b
∂Iab
∂b

, (2.66)

where the last term on the right side can be evolved via

F

[
∂I1C
∂C

]

︸ ︷︷ ︸
=1

F T

︸ ︷︷ ︸
=b

, F

[
∂I2C
∂C

]

︸ ︷︷ ︸
=I1

C
1−C

F T

︸ ︷︷ ︸
=I1

C
b−b2

, F

[
∂I3C
∂C

]

︸ ︷︷ ︸
=I3

C
C−1

F T

︸ ︷︷ ︸
=I3

C
1

F1F T = b, FCF T =
(
FF T

)2
= b2, FC−1F T = 1 . (2.67)

The elasticity tensor C is derived from the 2nd derivative of Ψ

C =
∂S

∂E
=

∂2Ψ

∂E∂E
= 4

∂2Ψ

∂C∂C
. (2.68)



2.3. CONSTITUTIVE SOLID EQUATIONS 21

2.3 Constitutive solid equations

Constitutive equations are mathematical models of materials to depict the
physical behavior. They can be classified according the physical phenomenon,
mechanical or thermal. Such a general distinction can be made according to the
size of displacement and strain. Hence theories for small (linear) and large (fi-
nite) displacements and strains exist, e.g. linear elastic material and hyper elastic
material. In case of elastic solids prominent examples are steel undergoing little
strains and rubber experiencing finite strains as a consequence of applied forces.
General principles to systematically develop material models are

• Determinism: A point’s current stress state belongs clearly to the history
of a body’s motion,

• Local action: A points stress state only depends on the history of motion
of its near neighborhood,

• Frame-Indifference also referred to as material objectivity demands a
constitutive equation to be mathematically formulated such that it is inde-
pendent to the reference frame’s position and its motion at a time t,

• Compatibility with the balance relations may not be violated by any
constitutive equation,

where further reference and a more detailed list are given by Haupt [34].

2.3.1 Linear elastic material

For an elastic homogeneous body B under isothermal conditions and assuming
small deformations equations (2.62) and (2.68) can be used to obtain the 2nd Piola-
Kirchhoff stress tensor S and the elasticity tensor C, respectively. With the
strain energy function Ψ

Ψ =
λ

2
tr2[ǫ] +Gtr

[
ǫTǫ
]

(2.69)

and making use of equation (2.66) Cauchy stress tensor reads

σ = 2Gǫ+ λtr[ǫ]1. (2.70)

The elasticity tensor C can be computed according to equation (2.68)

C = 2GIiklm + λδikδlm , (2.71)
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with

Iiklm =
1

2
(δilδkm + δimδkl) . (2.72)

The constitutive response prescribed by these equations is referred to as Hooke’s
law. Here the Lamé constants λ, µ and the bulk modulus K read

λ :=
νE

(1 + ν) (1− 2ν)
, G := E

2(1+ν)
and K :=

3λ+ 2µ

3
,

where E and ν denote Young ’s modulus and Poisson ’s ratio, respectively.

2.3.2 Hyperelastic material

A material is designated hyper elastic if its constitutive equation capturing the
deformation behavior can be expressed by a strain energy function Ψ. For a
rubber like material a possible strain energy function reads

Ψ
(
I1C , I

3
C

)
=

W(I1C)︷ ︸︸ ︷
G

2

(
I1C − 3

)
+

U(J)︷ ︸︸ ︷
K

4

(
J2 − 1

)
− K

2
ln[J ] (2.73)

which is known as Neo-Hooke material. Setting Poisson’s ratio to ν = 0.5 en-
forcesK →∞. Hence incompressible material behavior (J = 1) will be compelled,
as it can be observed for rubber or fluids.
To obtain the 2nd Piola-Kirchhoff stress tensor by means of the strain energy
function stated in [eqn (2.73)] we make use of equations (2.65) and (2.66)

S =

Sdev︷ ︸︸ ︷
GJ−

2
3

(
1− 1

3
I1CC

−1

)

︸ ︷︷ ︸
=:P[1]

+

Svol︷ ︸︸ ︷
K

2

(
J2 − 1

)
C−1

σ = J−1

=:τ︷ ︸︸ ︷

F




Sdev︷ ︸︸ ︷
GJ−

2
3

(
1− 1

3
I1CC

−1

)
+

Svol︷ ︸︸ ︷
K

2

(
J2 − 1

)
C−1


F T

= GJ−
5
3

(
b− 1

3
tr[b]1

)
+

K

2

(
J − J−1

)
1 (2.74)
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and deriving the elasticity tensor in material description we refer to [eqn (2.68)]

C =

Cdev︷ ︸︸ ︷
−2
3
G

[
C−1 ⊗ Svol + Svol ⊗C−1 + J−

2
3 tr[C]

(
1

3
C−1 ⊗C−1 − IC−1

)]

+

Cvol︷ ︸︸ ︷
K
[
J2C−1 ⊗C−1 −

(
J2 − 1

)
IC−1

]
, (2.75)

with

IC−1ABCD =
∂C−1AB

∂CCD

= −C−1ACC
−1
BD =

1

2

(
C−1ACC

−1
BD +C−1ADC

−1
BC

)
. (2.76)

The transformation to the spatial description is defined by cciklm = F iAF lCFmDF kBCABCD

and hence cc reads

cc =

ccdev︷ ︸︸ ︷
−2
3
G

[
1⊗ τ vol + τ vol ⊗ 1+ J−

2
3
1

3
tr[b] (1⊗ 1− I)

]

+

ccvol︷ ︸︸ ︷
K
[
J21⊗ 1−

(
J2 − 1

)
I
]
. (2.77)

The spatial quantity cc will prove useful in the Finite Element Method framework.
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Chapter 3

Reynolds equation

In order to solve lubricated interface problems a constitutive equation is developed
to capture the lubrication physics, which is subject to the continuity equation.
The starting point for interface flow considerations is the mass balance together
with the Navier-Stokes equations. The former is also known as the continuity
equation statement [33, 83]. The Navier-Stokes equations can be derived from
an infinitesimal volume element and capture fluid behavior in general. The fluid
flux of the steady state Reynolds equation can be derived from the Navier-
Stokes equations or directly from the infinitesimal volume element (as it will be
done in this work) under certain assumptions, as shown in table 3.1. Developing

(i) thin channel fluid flow, bounded by two surfaces in relative motion,

(ii) no fluid flow (velocity) across the fluid channel,

(iii) Newtonian fluid,

(iv) incompressible fluid,




3
D
→

2
D

fl
ow

(v) body forces and inertia effects are negligible,

(vi) negligible pressure change across the fluid channel,

(vii) perfect stick of fluid molecules on solids,

(viii) density is constant across the fluid channel.

Table 3.1: Reynolds assumptions.

Reynolds equation demands to satisfy Cauchy’s 1st equation of motion [eqn
(2.33)]

div[σ] + b− ρü = 0.

Hence all forces (surface forces, inertia forces and body forces) acting on an in-
finitesimal fluid element (fig 3.1) have to be discussed. Further on the effect of

25
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cavitation will be taken into account introducing a constraint condition acting on
the fluid pressure p.

Inertia and body forces

Reynolds assumption tab 3.1(v) demands the inertia and body forces to be neg-
ligible. This can be verified by comparing the viscous terms to both inertia and
body terms. Therefore a dimensionless analysis of full Navier-Stokes equation
[33, p.182] delivers estimates (e.g. R, Fn,

R

F
) to appraise inertia, viscous and

gravity terms against each other. Starting with the Reynolds number

R =
inertia

viscous
=

ρcu̇c
i l
c
i

µc
0

(3.1)

the requirement on the modified Reynolds number

Ri = R
(
hc

lci

)2

≪ 1 (3.2)

states that inertia is negligible if the inequality holds. Froude number appraises
inertia vs. gravity

Fn :=
inertia

gravity
=

u̇c
i√
glci

(3.3)

where g denotes gravity acceleration. Subsequently combining Froude andReynolds
number

Ri

F2
n

=
gravity

viscous
=

ρcg [hc]2

µc
0u̇

c
i

≪ 1 (3.4)

enables to estimate the influence of gravity and viscous terms onto the fluid flow.

Viscous force

The Cauchy stress can be transformed into a volumetric and shear part

σ =
1

3
tr[σ]I + τ . (3.5)

The first assumption in table 3.1 pictures a setting where two plates under
relative motion form a thin fluid flow channel as shown in figure 3.2. The stress
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e1

e2

e3

σxx

σyy

σzz

τxy

τxz

τyx

τyz

τzx

τzy
da

da

Figure 3.1: External positive quantities are shown, namely the normal stresses

σij , i = j and shear stresses τij, i 6= j, with i, j ∈ {1, 2, 3}. To achieve a

clear arrangement the negative quantities have been omited.

e1
e2

e3

∂L

B+

B−

Γ+, da,
u̇+ 6= 0

Γ−, da,
u̇− = 0

L v

F tang

Figure 3.2: Fluid velocity profile v (z) between two plates under relative translational

motion caused by a force F tang ∝ τ .

components σ33 couple the fluid to the boundaries of the adjacent solid bodies (B+
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and B−). The netforce the fluid applies equals

F norm = −
∫

Γ+

σ33n
+ da−

∫

Γ−

σ33n
− da , (3.6)

where (•)+ and (•)− denote that quantities belong to the positive or negative
surfaces, respectively. Assuming an incompressible fluid [tab 3.1(iv)] the normal
stress components equal the hydrostatic fluid pressure

σii = −p (no sum). (3.7)

The solid body boundaries, its normals and velocities are denoted by Γ, n and
u̇ , respectively, while the lubrication domain and its in/out flow boundaries are
denoted via L and ∂L. Since the lubrication domain L shares the same boundary
with either the upper solid B+ or lower solid B− the solid boundary notation is
adopted Γ+/− for the fluid. The fluid velocity is denoted by v. Shear stresses τ

acting in-plane direction cause deviatoric distortions of the fluid. From angular
momentum balance [eqn (2.37)] it follows that Cauchy stress tensor is symmetric
and hence

τ 12 = τ 21, τ 13 = τ 31, τ 23 = τ 32, (3.8)

holds. Newton’s postulate relates shear stresses τ to the fluid velocity profile
(or velocity gradient) grad[v] via the fluid absolute viscosity µ. For water the
absolute viscosity µ := τ

grad[v]
[Ns/m2] is a proportionality constant leading to a

linear velocity profile between adjacent surfaces. Such a fluid is referred to as a
Newtonian fluid, cf. tab 3.1(iii). However in general µ (p) is not a constant in
lubrication models, but a function of the pressure.

Since the Cauchy stress tensor is symmetric, grad[v] may be replaced by its
symmetric part d. Postulating that no fluid flows across the channel (v3 = 0) exists
(tab 3.1(ii)) we obtain

τ 31 = µ

(
∂v1
∂x3

+
�
�
��7

v3=0←tab 3.1(ii)

∂v3
∂x1

)
,

τ 32 = µ

(
∂v2
∂x3

+
�
�
��7

v3=0←tab 3.1(ii)

∂v3
∂x2

)
, (3.9)

where solely velocity derivatives ∂vi
∂x3

across the fluid flow remain. In order to show
that the remaining shear component is negligible

τ 21 = µ

(

�
�
��7
0

∂v1
∂x2

+
�
�
��7

0←[eqn (3.11)]←tab 3.1(i)

∂v2
∂x1

)

︸ ︷︷ ︸
d

≈ 0 , (3.10)
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a comparison of the velocity derivatives
(
grad[v] = ∂vi

∂xi

)
along and across the fluid

flow is mandatory

∂vi
∂xi

= O
(
vci
lci

)
,
∂vi
∂x3

= O
(
vci
h

)
hc≪lci=⇒ ∂vi

∂xi
≪ ∂vi

∂x3
, i ∈ {1, 2}

∂2vi
∂x2

i

= O
(

vci
[lci ]

2

)
,
∂2vi
∂x2

3

= O
(

vci
[hc]2

)
[hc]2≪[lci ]

2

=⇒ ∂2vi
∂x2

i

≪ ∂2vi
∂x2

3

(3.11)

and shows that components along the fluid flow are negligible in case of a thin
channeld flow hc ≪ lc. Here characteristic quantities1 are denoted by superscript c,
the index i ∈ 1, 2, 3 denotes directions x, y, z of a Cartesian bases system. Further
on lci denotes the characteristic length i ∈ {1, 2} of the flow problem, whereas

lc3 = hc denoted the gap height. Also the 2nd derivative in equation (3.11) ∂2vi
∂x2

3
can

not be omitted.

Momentum balance

If the above stated criteria are fulfilled we may use the linear momentum balance
equation (2.33) and neglect inertia ρu̇ and body forces b

div[σ] +��b−��ρv = 0 (3.12)

Simply the surface stresses ([eqs (3.7) and (3.9)]) must be introduced into equation
(3.12) for i ∈ 1, 2 directions to obtain the well-known reynolds equation

∂σii

∂xi
+

∂τ3i
∂x3

= − ∂p

∂xi
+

∂

∂x3

(
µ
∂vi
∂x3

)
= 0 (3.13)

Whereas ∂σ33

∂x3
= 0 by virtue of assumption tab 3.1(vi) (v3 ≈ 0). Subsequently

integrating the equation twice w.r.t. x3 gives

vi =
x2
3

2µ

∂p

∂xi
+ Ã

x3

µ
+ B̃ ←

{
no-slip bc (tab 3.1(vii)))︷ ︸︸ ︷
x−3 = 0, vi = u̇−i
x+
3 = h, vi = u̇+

i

(3.14)

where Ã, B̃ are integration constants which can be evaluated for the upper •+ and
lower •− surfaces:

u̇−i =
�
�
�
��

x−

3 =0

x2
3

2µ

∂p

∂xi
+
�
�
��

x−

3 =0

Ã
x3

µ
+ B̃ ⇔ B̃ = u̇−i

u̇+
i =

h2

2µ

∂p

∂xi

+ Ã
h

µ
+ u̇−i ⇔ Ã =

µ

h

[
u̇+
i − u̇−i −

h2

2µ

∂p

∂xi

]
. (3.15)

1An exeption to this notation is the Couette flux qc.
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Inserting Ã, B̃ into equation (3.13) gives

vi =

[
(x2

3 − x3h)

2µ

∂p

∂xi
+

x3

h
u̇+
i + u̇−i

(
h− x3

h

)]
(3.16)

stating the fluid velocity w.r.t. i ∈ 1, 2 directions. Equation 3.16 has to satisfy the
mass balance.

Mass balance

Integrating equation (2.20) w.r.t. the height reads

0 =

h∫

0

(ρ̇+ div[ρv]) dz , (3.17)

where ρ represents a mean density across the height (tab 3.1(viii)) and div[•] op-
erates in the plane of flow [eqn (3.16)]. Assuming incompressibility (tab 3.1(iv))
cancels ρ̇ in above equation. If we now apply

h∫

0

∂

∂x
[f (x, y, z)] dz = −f (x, y, h)

∂h

∂x
+

∂

∂x




h∫

0

[f (x, y, z)] dz


 (3.18)

on the divergence term in equation (3.17), we obtain

h∫

0

div[ρv] dz = − (ρvi)z=h

∂h

∂xi
+

∂

∂xi
ρ




h∫

0

vi dz


+

h∫

0

ρv3 dz , i ∈ 1, 2

= −ρu̇+
i

∂h

∂xi

+
∂

∂xi

ρ




h∫

0

vi dz


+�������:0

ρ
(
v+3 − v−3

)
, (3.19)

with

ρv+3 = ρ
dh

d t
= h

dρ

d t
and v−3 = 0 (3.20)

Here v+3 and hρ̇ in the next equation cancel by virtue of a static problem, yielding

0 = ���
0

hρ̇−
�
�
�
��>

0

ρu̇+
i

∂h

∂xi
+ div

[
ṁi=︷ ︸︸ ︷

ρ

h∫

0

vidz

︸ ︷︷ ︸
qi=

]
i ∈ 1, 2 . (3.21)
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Since the upper surface is flat and the lower surface rough and stationary, we
assume the change of gap height (along the x and y directions) is negligible, such
that the 2nd term in above equation drops. Now, ṁ and q denote the mass flow
rate and fluid flux, respectively. Consequently one obtains the a balance law for q

div[q] = 0 , (3.22)

where using equation (3.16)

qi =
ṁi

ρ
=

h∫

0

h3

(
1

3
− 1

2

)
1

2µ

∂p

∂xi

+
u̇+
i h

2
+

u̇−i h

2
dz

= − h3

12µ

∂p

∂xi︸︷︷︸
=:gi

+

(
u̇+
i +�

��
0←B−fixed to u̇−

i =0

u̇−i
2

)

︸ ︷︷ ︸
=:u̇r

i

h

= − h3

12µ
gi

︸ ︷︷ ︸
qpi

+ u̇r
ih︸︷︷︸
qci

=⇒ q = − h3

12µ
g + u̇rh . (3.23)

The mass balance [eqn (3.22)] and Reynolds equation 3.23 will be the starting
point of the Lubrication Finite Element Framework discussed in chapter 5.

Cavitation constraint

Experiments have shown, that fluids are not able to carry significant tensile forces
which is manifested by the effect of cavitation, meaning that air saturated in the
water dispenses and bubbles form, which leads to a loss of load carrying capacity.
It occurs when the pressure inside the fluid drops below the ambient (or saturated
gaseous) pressure of the fluid. Within a journal bearing this happens in stream
direction shortly behind the smallest gap for diverging surfaces. The above intro-
duced Reynolds equation assumes the so called Sommerfeld condition where
the diverging region is fully occupied by the lubricant which leads to sub ambient
pressure and therefore an unphysical situation. In order to encompass the real
physics of lubricants a couple of cavitation algorithms have been suggested in lit-
erature [73]. The Gümbel (or half Sommerfeld) condition simply neglects the
sub-ambient pressures but does not ensure mass conservation. In order to satisfy
mass conservation the Swift-Stieber condition was introduced reading

p
!
= pamb , g

!
= 0 (3.24)
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L

Lc

(a) cavitation boundary

Figure 3.3: Cavitation region Lc in a fluid domain L.

on the cavitation boundary, see figure 3.3. This is the most commonly used con-
straint due to its good agreement with experimental results and robustness in
numerical applications. Nonetheless the exact lubrication physics allowing sub
cavitation regions – which have been observed in experiments – are captured by
Floberg (or Coyen - Elrod) condition [Elrod [29]], but cause some numerical
hassle. Qualitative pressure distributions of the Swift-Stieber and Floberg
conditions are shown in figure 3.4. In order to circumvent numerical problems
and due to its wide acceptance the Swift-Stieber condition is chosen in order
to represent cavitation, cf. Szeri [73], Yang and Laursen [86]. Furthermore this
condition is easy to implement in terms of a constraint formulation where only the
pressure needs to be penalized and the pressure gradient is automatically zero (cf.
equation (3.23)).
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-sub cavitation region
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lubricant
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π
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(a) eccentric journal in housingts
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(b) pressure plot

Figure 3.4: Qualitative pressure plots for a journal bearing subject to Floberg and Swift-

Stieber cavitation constraint conditions.
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Chapter 4

Finite element method

In order to solve the Boundary Value Problem for a solid type mechanical
problem

st
at
ic





div[σ] + b = 0 , in Ω
subject to u = ū , on Γu

and t = σ · n = t̄ , on Γσ

}
(BC)

(4.1)

previously derived constitutive equation for a hyper-elastic material must be in-
troduced [eqn (2.74)]. Further on additional information are needed and hence
prescribed by boundary conditions (BC). In case of a static computation the
problem is time-independent. Further the surface Γ is subdivided into a displace-
ment boundary Γu (or Dirichlet boundary) and a traction boundary Γσ

(or Neumann boundary) satisfying Γu∪Γσ = Γ and Γu∩Γσ∅Γ, stating that the
Dirichlet or Neumann boundary conditions must be prescribed on every point Γ,
cf. figure 4.1. Above BVP is stated in its strong form meaning that a solution
consists of every point x ∈ Ω which allows an analytical solution for just a few
restricted problems. However reformulating these equations via variational prin-
ciples1 is discussed in section 4.1 and delivers the so called weak form, where the
solution is obtained as an integral average over the entire domain Ω. Furthermore,
applying the finite element method extends the applicability to a multitude of
problems and will be elucidated in the subsequent sections.

4.1 Variational formulation

Basis of virtual work principles are balance equations, like above stated set of
equations (4.1). Subsequently scalar multiplying equation (4.1)1 by a vector valued

1Reduces the order of shapefunctions.

35
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Γu

Γσ

Ω
n

Figure 4.1: Disjoint surface classification for the solid problem into either displace-

ment boundary Γu or a traction boundary Γσ, where n denotes the surface

normal on the current configuration.

test function (or weighting function) η̂ (with η̂ = 0 on Γu) and integrating
over the entire domain Ω leads to the weighted residual Form:

F (u, η̂) =
∫
Ωt

(div[σ] + b) · η̂ dV = 0 , in Ω

subject to u = ū, η̂ = 0 , on Γu

and t = σ · n = t̄ , on Γσ , (4.2)

stated in current configuration. Applying integration-by-parts and divergence the-
orem leads to

∫

Γ

(σ · n) · η̂ da−
∫

Ωt

σ : grad[η̂] dV +

∫

Ωt

b · η̂ dV = 0 , (4.3)

by making use of Cauchy theorem [eqn (2.28)]. Besides the symmetry of Cauchy
stress tensor we may use the symmetric part of grad[η̂] such that the former
equation reads

∫

Γσ

t ·η̂ da+

�
�
�
�
��>

0, via (4.2)2∫

Γu

t · η̂ da−
∫

Ωt

σ : gradsym [η̂] dV +

∫

Ωt

b · η̂ dV = 0

∫

Γσ

t ·η̂ da+

∫

Ωt

b · η̂ dV −
∫

Ωt

σ : gradsym [η̂] dV = 0 . (4.4)

This equation is referred to as the principle of virtual work, due to equivalence
with the mechanical power [eqn (2.46)]. In order to omit rigid body motions
displacement (or essential) boundary conditions on Γu are mandatory, however
traction (or natural) boundary conditions on Γσ are not obligatory.



4.2. LINEARIZATION 37

4.2 Linearization

In general most physical behavior is subject to nonlinear relations as it can be
observed for former derived constitutive equations. Both solid and lubrication
constitutive equations depend non-linearly on u. Further, the lubricant depends
on the pressure p. Those nonlinear problems can be solved by use of iterative
solution procedures like the Newton-Raphson algorithm (fig 4.6) resting upon a
Taylor expansion of a C1-continuous equation F (u) writing

LF = F (û+∆u) = F (û) + ∆F (û,∆u) +R = 0 , (4.5)

where ∆F (û,∆u) denotes the linear incremental growth at a position F (û) and
R denotes the residual, measuring the error from the exact solution, cf (fig 4.2).
In order to afford a solution ∆F (û,∆u), F (û) must be linearized according to

F (u)

F (û)

uû

∆u

û+∆u

R

∆F (û+∆u)

Figure 4.2: Diagram of the linearisation procedure at a fixed time t for a function

F (u) depending on a scalar variable u.

Gateaux’s derivative:

∆F (û,∆u) =
dF (û+ γ∆u)

dγ

∣∣∣∣
γ=0

. (4.6)

In equation (4.4) Cauchy stress σ depends on u such that we must linearize the
third term. Rearranging equation (4.4) and expressing it in terms of 2nd Piola-
Kirchhoff stress tensor via equations (2.3) and (2.50) leads to

∫

Ω0

δE : S dV −
∫

Ω0

η̂ ·B dV −
∫

Γσ
0

η̂ · T dA

︸ ︷︷ ︸
F(u)

+

∫

Ω0

(δE : ∆S +∆δE : S) dV

︸ ︷︷ ︸
∆F(u,∆u)

= 0, (4.7)
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with

grad[η̂] = Grad[η̂]F−1 = δFF−1, δE =
1

2

(
F TδF + δFF T

) S=ST

= F TδF ,

grad[∆u] = Grad[∆u]F−1 = ∆FF−1 and ∆δE = ∆F TδF . (4.8)

The variation of theGreen-Lagrange strain tensor can be simplified as δE = F TδF

in case of scalar product with the symmetric tensor S. Furthermore the 2ndPiola-
Kirchhoff stress needs to be linearized with respect to u

∆S (u+∆u) =
d∆S (u+ γ∆u)

dγ

∣∣∣∣
γ=0

=
∂S

∂E

∂E

∂u
∆u = C : ∆E , (4.9)

where ∂S
∂E

= C [eqn (2.68)] denotes the spacial linear elasticity tensor and E de-
notes the Green-Lagrange strain tensor referring to the material description.
However if C and ∂E

∂u
prescribe nonlinear behavior we identify these terms as rep-

resenting material and geometric nonlinearity, respectively.
Linearizing the symmetric Green-Lagrange tensor [eqn (2.11)] leads to

∆E =
1

2

(
F T∆F +∆FF T

) S=ST

= F T∆F . (4.10)

Since we want to express equation (4.7) with respect to the current configuration,
S, δE,∆δE and ∆S need to be transformed to the current configuration via
equations (2.3) and (2.50),

δe := F−T δ
(
F TeF

)
F−1 = F−T δEF−1, (4.11)

and

∆δe := F−T∆
(
F TδeF

)
F−1 = F−T∆δEF−1, (4.12)

respectively.
The push-forward of ∆S defines

∆τ := F (∆S)F T = F (C : ∆E)F T = Jcc : grad[∆u] , (4.13)

while making use of equations (4.9), (4.10) and

F (C : ∆E)F T = FaACABCDFcC
∂uc

∂xd
FdD

= Jccabcd
∂uc

∂xd

= Jcc : grad[∆u] . (4.14)
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Changing the configuration of ∆τ [eqn (4.13)] via equations (2.3) and (2.50) yields

∆σ = cc : grad[∆u] , (4.15)

such that the linearized virtual work [eqn (4.7)] transforms to

∫

Γσ

η̂ ·t da+
∫

Ωt

η̂ · b dV −
∫

Ωt

grad[η̂] : σ dV

+

∫

Ωt

(grad[η̂] : grad[∆u]σ + grad[η̂] : cc : grad[∆u] ) dV

︸ ︷︷ ︸
∆F(u,∆u)

= 0 . (4.16)

4.3 Discretization

Due to the fact that the linearized form of the variational formulation can’t be
solved analytically we discretize the domain Ω into ne finite elements Ωe (see
figure 4.3):

Ω ≈
ne⋃

e=1

Ωe

∫

Ωt

f (X) dV ≈
ne⋃

e=1

∫

Ωe

f (X) Ωe . (4.17)

The displacements u and the variation η̂ inherit the same discretization. Within
any finite element n Ansatz-functions are used to interpolate them from their nodal
valued uI and η̂I via

u ≈
n∑

I

NIuI , η ≈
n∑

I

NIηI

u,X ≈
n∑

I

NI,XuI , u,x ≈
n∑

I

NI,xuI . (4.18)

In order to reduce computational costs, the Ansatz-functions NI and its derivatives
in initial configuration NI,X and current configuration NI,x will be derived with
respect to a new reference domain, namely the master element. For a one
dimensional problem they write according figure 4.4, where N1

I denotes linear and
N2

I quadratic order shape functions evaluated at a node I. For higher dimensional
problems shape functions can be constructed via a product rule

2D: NI (ξ1, ξ2) = N1
I (ξ1)N

2
I (ξ2) , 3D: NI (ξ1, ξ2, ξ3) = N1

I (ξ1)N
2
I (ξ2)N

3
I (ξ3) .(4.19)
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Γe
Γ

Ω

Ωe

Figure 4.3: Discretization of domain Ω into finite elements Ωe, where the boundaries

are denoted by Γ and Γe for the real and discretized surfaces, respectively.

ξ

ξ

ξ

ξ

ξ

N1
1 (ξ) =

1
2
(1− ξ)

N1
2 (ξ) =

1
2
(1 + ξ)

N2
1 (ξ) =

1
2
ξ (ξ − 1)

N2
3 (ξ) = (1− ξ2)

N2
2 (ξ) =

1
2
ξ (1 + ξ)

Figure 4.4: Linear order N1
I and quadratic order N2

I one dimensional shape-functions

at nodes I.

However, they can be mapped to the initial and current configurations via the
iso-parametric concept and its crucial operations

X ≈
n∑

I

NIXI , x ≈
n∑

I

NIxI

J = X ,ξ =
dX

dξ
≈

n∑

I

XI ⊗
∂NI

∂ξ
, j = x,ξ =

dx

dξ
≈

n∑

I

xI ⊗
∂NI

∂ξ
, (4.20)

also shown in figure 4.5.
The mapping of the derivatives of the Ansatz-functions from the reference

configuration to the initial (NI,x) and the current configuration (NI,X) is achieved
by applying product rule. Hence we obtain the partial derivatives of ξ with respect



4.3. DISCRETIZATION 41

initial configuration Ω0
current configuration Ωt

reference configuration Ω�

F = dx
dX

det[F ]Ω0

j = dx
dξ

det[j]Ω�

J = dX
dξ

det[J ]Ω�

ξ1
ξ2

ξ3

Figure 4.5: Iso-paramteric concept showing the transformations between the initial

configuration, current configuration and reference configuration.

to the initial and current configurations being the transpose inverse of the above
defined Jacobians J and j, respectively:

NI,X =
dNI

dX
=

∂ξ

∂X

T ∂NI

∂ξ
= J−T

∂NI

∂ξ

NI,x =
dNI

dx
=

∂ξ

∂x

T ∂NI

∂ξ
= j−T

∂NI

∂ξ
(4.21)

Transforming the integration from initial or current configuration into the reference
configuration reads

∫

Ωe

f (X) Ωe =

∫

Ω�

f (ξ) det[j (ξ)]Ω�

=

1∫

−1

1∫

−1

1∫

−1

f (ξ1, ξ2, ξ3) det[j] dξ1 dξ2 dξ3

≈
ngp∑

gp=1

f (ξgp1 , ξgp2 , ξgp3 ) det[j (ξgp1 , ξgp2 , ξgp3 )]wgp , (4.22)
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where the third term represents Gauss integration scheme, approximating the
analytical solution at the Gauss points positions (•)gp and their corresponding
weightings wgp.
Subsequently we rewrite [eqn (4.16)] in index notation

0 =

∫

Γσ

η̂rtr da+

∫

Ωt

η̂rbr dV −
∫

Ωt

η̂r,sσrs dV

+

∫

Ωt

(η̂r,s : ∆ur,uσus + η̂r,s : ccrstu : ∆ut,u) dV (4.23)

and discretizing leads to

0 =
∑

J

η̂Jr

[∫

Γσ

NJtr da+

∫

Ωt

NJbr dV

︸ ︷︷ ︸
F ext

−
∫

Ωt

NJ,sσrs dV

︸ ︷︷ ︸
F int

]

+
∑

J

η̂Jr
∑

I



∫

Ωt

(NJ,sNI,uδrtσus +NJ,sccrstuNI,u) dV




︸ ︷︷ ︸
K

∆uIt

⇔
∑

J

KIJab∆uJ
b = F ext

Ia − F int
Ia . (4.24)

4.4 Solving nonlinear problems numerically

Subsequently one can solve above stated problem by applying an iterativeNewton-
Raphson solver which is constructed from equation (4.5)

F (ui+1) = F (ui) + ∆F (ui)︸ ︷︷ ︸
=:K(ui+1)

∆un
!
= 0

K (ui)∆ui+1 = −F (ui) subject to ‖F (ui+1)‖ !
= 0

= F ext − F int , (4.25)

where F ext is controlled by a loadfactor λ : 0 → 1. The work principle of a
Newton-Raphson solver is shown in figure 4.6 for a scalar valued function.
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(a) flowchart

λ1︷ ︸︸ ︷ λan︷ ︸︸ ︷
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∆u
2

F (u)
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F (u, λan)

compute F0, K0,

‖Fλ1

1 ‖ ≥ TOL⇒ compute Kλ1
1

‖Fλ1

2 ‖ < TOL

‖F
λan

1 ‖ < TOL︸ ︷︷ ︸
⇒Solution

(b) diagram

Figure 4.6: Iterative solution of Newton-Raphson algorithm with load scaling via load

parameter λ.
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Chapter 5

Finite element framework for
elasto-hydrodynamic lubrication

In tensor notation Reynolds Boundary Value Problem (BVP) [eqs (3.22)
and (3.23)] reads

−div[q] = 0 in L

q = − h3

12µ
g

︸ ︷︷ ︸
qp

+ hu̇r
︸︷︷︸
qc

subject to p = p̂ on ∂Lp

and −q · n := q̂n on ∂Lq , (5.1)

where (analogously to the solid problem, in chapter 4) the lubricant boundary ∂L
is split into a pressure boundary ∂Lp and a flux boundary ∂Lq, cf (fig 5.1). Here,
the constitutive dependence q = q (h, p, g, u̇r) holds where p is the fluid pressure
and g = grad[p] its surfacial gradient, evaluated in curvilinear coordinates, u̇r is
the relative velocity between the adjacent surfaces and h is the distance between
those surfaces (see also figure 7.5). For future reference, the flux has also been
additively decomposed as

q = qp + qc (5.2)

into the Poiseuille term qp which generally depends nonlinearly on the pressure
p and the linear Couette term qc. Within the Poiseuille term, a possible
nonlinearity arises from the relation µ (p) = µ0 · eαp, namely Barus equation
holds. The dynamic viscosity µ0 has to be chosen for an isothermal scenario at
zero pressure. For water and low working pressures the pressure-viscosity coeffi-
cient α remains zero [69] (p.21, table 2.3). It is remarked that the derivation of
the Reynolds equation was recently revisited in Rajagopal and Szeri [59] with a

45
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∂Lp

∂Lq

L
n

Figure 5.1: Disjoint surface classification for lubrication problem into: pressure

boundary ∂Lp and flux boundary ∂Lq, where n denotes the surface nor-

mal on the current configuration.

pressure dependent viscosity and an augmented formulation was obtained. Never-
theless, the commonly accepted convention of employing Barus viscosity for low
working pressures in the classical equation is followed in the present work.

Since the solids are prescribed in material (or Lagrange ) description and the
fluid is given with respect to the spacial (or Euler ) description1 a mesh may be
introduced with respect to the material (or Lagrange ) description. This means
that both bodies being in relative motion against another are kept fixed, whereas
their relative motion u̇r is introduced directly to the lubrication equations Cou-
ette term qc, see [eqn (5.1)]. This setting is referred to as Arbitrary Lagrangian
Eulerian description (ALE) and enables an efficient treatment of time consuming
problems (e.g. solutions for high velocity u̇r driven flow problems). In case of
transient finite deformation problems mesh distortion decreases the solution accu-
racy such that a mesh remapping becomes mandatory, where additional relative
(or “convective”) velocity terms arise from the different flow and mesh velocities.
A detailed overview of time dependent ALE-formulations covering different flow-
type problems can be found in [17, 26, 38]. However in the present static problem
those terms do not sprout due to a fixed lubrication domain (or mesh) in space.
However a special finite element according to Curnier and Taylor [24] is introduced
as shown in figure 5.2. This element consists of three adjoined surfaces, where the
upper Γ+ and lower surface Γ− transfer the lubricant hydrostatic pressure p to the
solid bodies via their normals n+/−. In contrast to the other surfaces the middle
surface is fixed in displacement u and stores the lubricant hydrostatic pressure in
an additional degree of freedom at its nodes.

1Fluid flows through a mesh fixed in space.
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x
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z

∆u−1 ∆u−2
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4

∆u+
5

∆u+
6

∆u+
7

∆u+
8 ∆u+

9

Γ+

n+

Figure 5.2: Finite element with additional middle nodes.

5.1 Variational formulation

The basis of a variational formulation is the above stated BVP, which is multi-
plied by vector valued test functions η̂g := grad[η̂p] , η̂u and a scalar test function
η̂p leading to

FL (u, p) = −
∫

Lm

h3

12µ
η̂
g · g da +

∫

Lm

hu̇r

2
· η̂g da+

∫

∂Lm

q̂n ���
0, on ∂Lp

η̂p d l

︸ ︷︷ ︸
=:FF (u,p)

(5.3)

−
∫

L−

pn− · η̂u da−
∫

L+

pn+ · η̂u da

︸ ︷︷ ︸
=:FC(u,p)

+

∫

Lm

η̂p ǫC
{
p− pamb

}
da

︸ ︷︷ ︸
=:FCav(p)

,

where µ (p) denotes the fluid viscosity and h (u) denotes the gap height. They
read

µ (p) = µ0e
αp , (5.4)

namely Barus equation, and

h (u) =
(
x+ + u+ − x− − u−

)
· nm ,

nm =
1

‖X,ǫ ×X,µ‖2
(X,ǫ ×X,µ) , (5.5)

respectively. Here the normal vector nm is constructed on the fixed mid plane L.
Hence nm does not depend on displacements u.
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To couple the fluid’s internal pressure p to the lower Γ− and upper Γ+ surfaces,
normal vectors n− and n+ on both surfaces are introduced. The normal vectors
are not normalized due to the fact that ‖n−‖ = ‖J‖ such that we may write

n− = −
x−
,ǫ :=︷ ︸︸ ︷(

X− + u−
)
,ǫ
×

x−
,µ:=︷ ︸︸ ︷(

X− + u−
)
,µ

n+ = −
x+
,ǫ :=︷ ︸︸ ︷(

X+ + u+
)
,ǫ
×

x+
,µ:=︷ ︸︸ ︷(

X+ + u+
)
,µ

(5.6)

5.2 Linearization

The lubrication formulation in weak form writes as FL (u, p) = FC (u, p)+FF (u, p)
where FF (u, p) and FC (u, p) denote the fluid and coupling terms, respectively.
Both terms are nonlinear functions of displacements u and pressure p, cf. [eqn
(5.3)]. In order to take into account the effect of cavitation, F cav (p) penalizes
the pressure to be larger than the ambient pressure pamb. To solve this prob-
lem FL (u, p) must be linearized and discretized according to displacement and
pressure:

LFL := FL (u, p) +
dFL

du
∆u +

dFL

dp
∆p (5.7)

=

[
dFF

du
+

dFC

du

]
∆u +

[
dFF

dp
+

dFC

dp

]
∆p

=

[
∂FF

∂h

∂h

∂u
+

∂FC

∂n

∂n

∂u

]
∆u+

[
∂FF

∂p
+

∂FF

∂µ

∂µ

∂p
+

∂FC

∂p

]
∆p

Linearization of FL with respect to u

The fluid part inherits the height which depends on u. Therefore ∂FF (u,p)
∂u

=
∂FF (u,p)

∂h
∂h
∂u

has to be solved. Here ∂h
∂u

has to be derived separately for the upper
and lower boundary. For simplicity the mid nodes are kept constant resulting in a
normal vector nm which is not depending on the displacement

∂FF

∂h

∂h

∂u±
=

∫

Lm

∂FF

∂h︷ ︸︸ ︷(
3h2

12µ
η̂
g · g − u̇r · η̂g

)
∂h

∂u±︷ ︸︸ ︷(
±∆u± · nm

)
. (5.8)

Evaluating the coupling part between solid and lubricant demands to consider that
the normal vectors n−/+ within the contact formulations for the lower and upper
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surfaces depend on displacements u−/+. And hence ∂FC

∂n
∂n
∂u− and ∂FC

∂n
∂n
∂u+ read

dFC

duj
= ∓

∫

L−/+

p v̂iδijejst

(
∆u−/+s,ǫ x

−/+
t,µ + x−/+s,ǫ ∆u

−/+
t,µ

)
da

= ∓
∫

L−/+

p v̂j

(
ejst∆u−/+s,ǫ x

−/+
t,µ + ejmnx

−/+
m,ǫ δsn∆u−/+s,µ

)
da (5.9)

Linearization of FL with respect to p

The fluid part assembles to

dFL

dp
=

∫

Lm

[
∂FF

∂p︷ ︸︸ ︷
h3

12µ
η̂
g · grad[∆p] −

∂FF

∂µ︷ ︸︸ ︷
h3

12µA2
η̂
g · grad[p]

∂µ
∂p︷ ︸︸ ︷

µ1Sµ∆p

]
da

=

∫

Lm

[
h3

12µ
η̂p,j ∆p,j︸︷︷︸

δij∆p,i

−µ1Sµ
h3

12µA2
η̂p,jp,j∆p,i

]
da , (5.10)

where the viscosity µ depends on the pressure. Furthermore the coupling part can
be computed directly

∂FC

∂p
=

[
−
∫

L−

n− · η̂u da−
∫

L+

n+ · η̂u da

]
∆p

=

[
−
∫

L−

n−i η̂
u
i da−

∫

L+

nu
i η̂

u
i ∆p da

]
(5.11)

At last the cavitation constraint needs to be linearized and writes

dFCav

dp
=

dFCav(p+γ∆p)
dγ

∣∣∣∣
γ=0︷ ︸︸ ︷

∂

∂γ

[∫

Lm

η̂p ǫC {(p+ γ∆p)− pa} da

]∣∣∣∣
γ=0

=

[
−
∫

Lm

η̂p ǫC∆p da

]
(5.12)

5.3 Discretization

Aiming at a numerical solution demands a discretization of the linearized elasto-
hydrodynamic lubrication equations making use of the iso-parametric concept (sec
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4.3), being subject to curvilinear coordinates. Similar to the solid problem [eqn
(4.17)] the lubrication domain L accumulates according to

L ≈
ne⋃

e=1

Le

∫

L

f (X) da ≈
ne⋃

e=1

∫

Le

f (X) dLe (5.13)

and also Gauss integration can be adopted. Further on quadratic shape functions
for a two dimensional problem read

NI (ξ1, ξ2) =
1

4

(
ξ21 + ξ1Iξ1

) (
ξ22 + ξ2Iξ2

)
← Edge-Nodes:(I=1,2,3,4)

NI (ξ1, ξ2) =
1

2
ξ21I
(
ξ21 + ξ1Iξ1

) (
1− ξ22

)

+
1

2
ξ22I
(
ξ22 + ξ2Iξ2

) (
1− ξ21

)
← Mid-Nodes:(I=5,6,7,8)

NI (ξ, η) =
(
1− ξ21

) (
1− ξ22

)
← Center-Node:(I=9) , (5.14)

according to figure 4.4 and equation (4.19). The node order is shown in figure 5.3.

ξ1

ξ2

1 2

34

5

6

7

8 9

Figure 5.3: Two dimensional quadratic master element.

Local Cartesian basis

In order to prescribe a two dimensional Reynolds flow within a three dimensional
space a special mapping of the shape functions needs to be introduced. Therefore
a formulation introduced by Wagner and Gruttmann [82] for finite rotation shell-
type problems is used.
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PSfrag

Θ1

Θ1
Θ2

Θ2

e1

e2

ξ1

ξ2

g1

g2

Figure 5.4: Finite rotation formulation for shell elements.

Figure 5.4 shows all quantities necessary to derive a sufficient mapping for the
shape functions derivatives (NI,α = J−1αβNI ,ξβ). In order to obtain the Jacobian of
mapping we start with the parametrized coordinates2 from which the local base
vectors are computed

g1 =
nel∑

I=1

NI,ξ1xI ,

g2 =

nel∑

I=1

NI,ξ2xI ,

g3 =
(g1 × g2)

‖g1 × g2‖2
. (5.15)

Note that (g1 · g2 6= 0, g2 · g3 = 0 and g1 · g3 = 0) holds demonstrating a non-
cartesian system. A cartesian local base is constituted as follows

a1 =
g1

‖g1‖
,

a3 = g3 ,

a2 = a3 × a1 . (5.16)

In order to use above stated basis vectors the shape-function derivatives and hence
the transformation matrix J needs to be obtained with respect to the local carte-

2These coordinates move with the surface, figuratively they are scratched into the element
surface.
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sian base coordinates3 θβ

gα = NI,ξαxI

x,ξα =
∂x

∂Θβ︸︷︷︸
aβ

∂Θβ

∂ξα︸︷︷︸
Jβα

⇔ ∂x

∂ξα
= Jαβx,β , α, β ∈ 1, 2 , (5.17)

which can be scalar multiplied by aγ to obtain the Jacobian matrix

gα = aβJβα

gα · aγ = aβ · aγ︸ ︷︷ ︸
=δβγ

Jβα

gα · aγδβγ = Jβα

gα · aβ = Jβα

J =

[
g1 · a1 g2 · a1

g1 · a2 g2 · a2

]
(5.18)

and its determinant

detJ = J11J22 − J12J21

= (g1 · a1) (g2 · a2)−�����:0
(g1 · a2) (g2 · a1) . (5.19)

With J it is now possible to compute the derivatives of NI making use of equation
(5.17)

NI,α = J−1αβNI,ξβ , α, β ∈ 1, 2 . (5.20)

Furthermore, quantities transferred from a global cartesian to the local curvilinear
base system call for a segregate treatment as it is compulsory for the relative ve-
locity u̇r

i → u̇r
α where subscript α denotes a description with respect to curvilinear

coordinates. Since the relative velocity u̇r is expressed with respect to a global
Cartesian basis’s system ei (i ∈ 1, 2, 3)

u̇r =
ndm∑

i=1

u̇r
iei , (5.21)

but is to be introduced into equation (5.3) assuming curvilinear coordinates on the
element level - one has to write the relative velocity in terms of

u̇r
α = u̇r

i (ei · aα) , (5.22)

3Introduced at the Gauss points.
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such that equations (5.8) and (5.23) modify. In order to evaluate the dot products
in equation (5.23), the local Cartesian basis (a1,a2,a3) is employed [eqn (5.16)]
such that we are able to eliminate the metric tensor components. Now proceeding
with the discretization of the right hand side leads to

GL =

=:GF (u,p)︷ ︸︸ ︷∑

J

[∫

Lm

h3

12µ
NJ,αη̂

p
Jp,α da−

∫

Lm

hu̇r
αNJ,αη̂

p
J da−

∫

∂Lm

qn NJ η̂
p
J d l

]

+

=:GCj (u,p)
︷ ︸︸ ︷∑

J

[
−
∫

L−

pn−j NJ η̂
u
Jj da−

∫

L+

pnu
jNJ η̂

u
Jj da

]

+

=:GCav(p)︷ ︸︸ ︷∑

J

[
−
∫

Lm

η̂pJ NJǫC {p− pa} da

]

=
∑

J

η̂pJ

[∫

Lm

h3

12µ
NJ,αp,α da−

∫

Lm

hu̇r
αNJ,α da−

∫

∂Lm

qn NJ d l

]

+
∑

J

η̂uJj

[
−
∫

L−

pn−j NJ da−
∫

L+

pnu
jNJ da

]
, (5.23)

with α ∈ 1, 2 and j ∈ 1, 2, 3. Here G denotes discretized terms.

Discretization of fluid parts

Inserting η̂p,α1
= NJ,α1 η̂

p
J and ∆p,α2 = NI,α2∆pI into (5.10) the discretized formula

equals

dGF
dp

=
∑

I

∑

J

[∫

Lm

[
h3

12µ
NJ,α1 η̂

p
Jδα2α1NI,α2∆pI − µ1

h3

12µ
NJ,α1 η̂

p
Jp,α1NI,α2∆pI

]
da

]

=
∑

I

∑

J

η̂pJ

[∫

Lm

h3

12µ
NI,α2 (NJ,α2 − µ1NJ,α1p,α1) da

]
∆pI (5.24)

Using shape-functions η̂p,α1
= NJ,α1 η̂

p
J and ∆u

+/−
i = NI∆u

+/−
Ii in (5.8) one obtains

∂GF
∂ui

= ±
∑

I

∑

J

[∫

Lm

(
3h2

12µ
NJ,α1 η̂

p
Jp,α1NI∆u

+/−
Ii nm

i − u̇r
α1
NJ,α1 η̂

p
JNI∆u

+/−
Ii nm

i

)
da

]

= ±
∑

I

∑

J

η̂pJ

[∫

Lm

NJ,α1NIn
m
i

(
h2

4µ
p,α1 − u̇r

α1

)
da

]
∆u

+/−
Ii (5.25)
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where u+ is valid at nodes I, J := 9, . . . , 12 and u− is valid at nodes I, J := 1, . . . , 4
The nodal normal vectors for height computation are built at the mid nodes T =
5, ..., 8:

nm
i =

1∥∥∑
T eijkNT,ǫXTjNT,µXTk

∥∥
2

(∑

T

eijkNT,ǫXTjNT,µXTk

)
(5.26)

Discretization of contact parts

Introducing η̂ui = NJ η̂
u
Ji and ∆p = NI∆pI

∂GC
∂p

=
∑

I

∑

J

[
−
∫

L−

n−i NJ η̂
u
JiNI da−

∫

L+

nu
i NJ η̂

u
JiNI da

]
∆pI

=
∑

I

∑

J

η̂uJi

[
−
∫

L−

n−i NJNI da−
∫

L+

nu
i NJNI da

]
∆pI (5.27)

Introducing shape functions η̂uj = NJ η̂
u
Jj , ∆u

−/+
s,ǫ = NI,ǫ∆u

−/+
Is and ∆u

−/+
s,µ =

NI,µ∆u
−/+
Is leads to

∂GC

∂u
−/+
j

= ∓
∫

L−/+

pNJ η̂
u
Jj

(
ejstNI,ǫ∆u

−/+
Is x

−/+
t,µ + ejgnx

−/+
g,ǫ δsnNI,µ∆u

−/+
Is

)
da

= ∓
∑

I

∑

J

η̂uJj

[
pNJ

(
ejstNI,ǫx

−/+
t,µ + ejgnx

−/+
g,ǫ δsnNI,µ

)
da
]
∆u
−/+
Is

(5.28)

Discretization of constraint part

dGCav

dp
= −

∑

I

∑

J

η̂pJ

[∫

Lm

NI NJ ǫC da

]
∆pI (5.29)

This leads to the following linear system of equations according the finite element
introduced in figure 5.2:




∂GC−

∂n−

∂n−

∂u− 0 ∂GC−

∂pm

0 ∂GC+

∂n+
∂n+

∂u+
∂GC+

∂pm

∂GF

∂h
∂h
∂u−

∂GF

∂h
∂h
∂u+

∂GF

∂pm
+ ∂GF

∂µ
∂µ
∂pm

+ ∂GCav

∂pm







∆u−

∆u+

∆pm




= −




GC−

GC+

GF + GCav




(5.30)



Chapter 6

Macroscale numerical examples

In order to demonstrate the finite element framework a three way comparison of
computational results for a journal bearing with input parameters shown in table
6.1 is discussed. Based on these parameters both inertia forces

Ri =
(103) (4.7) (1.41)

10−3

(
0.00005

1.41

)2

≈ 0.0083≪ 1 (6.1)

and body forces

Ri

F2
n

=
(103) (9.81) (0.00005)2

(10−3) (4.7)
≈ 0.005≪ 1 (6.2)

are negligible according to equations (3.3) and (3.4). Here the gap height for a
centered journal is uniformly hc = 0.5mm. A pressure distribution being able
to carry the journal occurs for a non-conformal flow-channel with a gap height
of approximately hc = 0.05mm, such that within this high pressure region - the
region of interest - both body forces and gravity forces are negligible.

Results in figure 6.1 and figure 6.2 are subject to quadratic shape functions,
whereas figure 6.3 shows computational results with linear shape functions be-
ing used. Further figure 6.1 and figure 6.3 regard the effect of cavitation via the
penalty method, however figure 6.2 does not, such that the pressure drops below
the ambient pressure pa = 0.1 MPa. Furthermore within the finite lubrication
regime a spike (2nd pressure maximum) occurs due to a rubber bulge behind the
pressure maximum for figure 6.1 (not shown due to oscillations) [[73],p.410] and
[[33],Chapter 18]. For quadratic shape-functions high pressure plots display strong
oscillations (not shown), which also have been observed by Yang and Laursen [86].
Furthermore, Heinrich and Zienkiewicz [35] state that oscillations in flow prob-
lems arise from dominant contributing 1st derivative terms and that a special “up
winding“ procedure on the choice of the weighting functions circumvents these os-
cillations. Presently, for high pressures p, the Poiseuille term of the Reynolds

55
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equation may be responsible for a similar effect and a ”upwinding“ procedure or
alternatively a mixed formulation employing 2nd order shapefunctions for the dis-
placement unknowns and 1st order shapefunctions for the pressure unknowns may
alleviate the undesirable oscillations.
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Table 6.1: Material parameters employed are summarized.

Order of shape functions 1a,2b,c
Sleeve Young’s Modulus [N/mm2] E 475.0
(Neo Hook) Poisons Ratio ν 0.499

Cylinder dimensions [mm] ∅o x ∅i x width 490x451x100
Number of quadratic Elements ∅o x ∅i x width 80x24x3

Journal Young’s Modulus [N/mm2] E 50000.0
Poisons Ratio ν 0.3
Cylinder dimensions [mm] ∅o x ∅i x width 450x240x100
Number of Elements ∅o x ∅i x width 160x48x6a,80x24x3b,c

LUBRICANT Rel. vel. (journal - sleeve) [mm/s] u̇
r

2356.0
(Water) Viscosity (at 20◦C) [MPa s] η 1.0 ·10−9

pressure-viscosity coefficient [Pa−1] α 0.0
ambient-pressure [MPa] pa 0.1
cavitation penalty parameter [MPa] ǫC 0.0c,1.0e

6
a,b

Number of Elements ∅o x ∅i x width 160x48x1a,80x24x1b,c
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y

(a) journal y-displacement causes lubricant pressure

y

p

(b) sleeve y-displacement caused by lubricant pressure

p

α

(c) pressure plot

Figure 6.1: Computation making use of quadratic shapefunctions and regarding cav-

itation. a) Side view on journal bearing b) Close up view on sleeve y-

displacement (foreground) scaled by a factor of five, for a better illustra-

tion the pressure distribution is shifted to the background the journal is

hidden.
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y

p

(a) sleeve y-displacement caused by lubricant pressure

p

α

(b) pressure plot

Figure 6.2: Computation making use of quadratic shapefunctions - neglecting cavi-

tation. a) Side view on journal bearing b) Close up view on sleeve y-

displacement (foreground) scaled by a factor of five, for a better illustra-

tion the pressure distribution is shifted to the background the journal is

hidden.
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y
p

(a) sleeve y-displacement caused by lubricant pressurep

α

(b) pressure plot

Figure 6.3: Computation making use of linear shapefunctions and regarding cavi-

tation. a) Side view on journal bearing b) Close up view on sleeve y-

displacement (foreground) scaled by a factor of five, for a better illustra-

tion the pressure distribution is shifted to the background the journal is

hidden.



Chapter 7

Microscale test procedure

7.1 Homogenization fundamentals

In order to prescribe material behavior from our macroscopic point of view, con-
stitutive equations e.g. for solid materials (sec 2.3) relate stress to strain. These
equations are used for several materials - like concrete, steel and others - based on
the assumption that a body’s volume is occupied by a homogenious material. But
analyzing the material’s microstructure reveals a complete heterogeneous compo-
sition, such that above assumption is violated. A tension test on a composite bar
(fig 7.1) illustrates the displacement response for a two phase material bar. If
the bar consists of half one phase and half the other, the displacement response
is piecewise smooth, assuming a linearly elastic response. Now refining previous
distribution we obtain a displacement field of many piecewise smooth lines which
can be well-approximated by a single line. At last the phase distribution is refined
such that we can not distinguish between the approximated and real displacement
field. See for example [7, 12, 22, 37, 75, 79, 89].
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Figure 7.1: One-dimensional Composite bar, from [75].
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(b) Double sinus coarse distribution.

x

x

y

y ∈ {0.5,±0.4,±0.3,±0.2,±0.1,±0.0}

h1
h2

a

p

(c) Fine sinus distribution.

Figure 7.2: Three-dimensional flow over rough surfaces. Height components are scaled

by a factor of five.
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Figure 7.3: Three-dimensional flow over skew rough surfaces. Height components are scaled by a factor of five.
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In case of lubrication problems inhomogeneity arises from surface roughness,
which can be elucidated on a simple flow test (fig 7.2) made up in the same fashion
as it was done for the composite bar (fig 7.1). Assume a flow between two flat
plates forming a slider bearing, whereas the upper one is fixed and inclined such
that the inlet is denoted by h1 and the outflow lies at h2. The lower surface moves
with a relative velocity in tangential positive x-direction carrying over the fluid.
Furthermore the bearing surrounding pressure is assumed to be constant and can
be identified at the base of the pressure axis p in the plots. Outcome of this test is
a smooth parabolic pressure response along the flow direction x for different cross
sections1, with a maximum at position x = 0.8. This result can be considered
homogeneous. Now a bunch of new tests is introduced where the upper inclined
surface is superimposed by a sinusoidal roughness having the same amplitude but
varying wavelength. Comparing the pressure distribution for a single sinus surface
roughness to the flat surface test shows a strong deviation in magnitude and shape
(fig 7.2a) stating a strong heterogeneous response. However in figure 7.2b a double
sinus roughness is chosen which also gives a heterogeneous pressure distribution
but being a bit closer to the flat surface result (in terms of homogeneity). At last
the number of sinusoid’s is increased to twenty ending up in a pressure distribution
that renders the homogenious parabolic chart qualitatively well (fig 7.2c), besides a
few oscillations. It is readily conceivable that for decreasing roughness wavelength
the homogeneous limit will be reached, which is not known and is not necessarily
equivalent to the mean surface being used for the homogeneous slider bearing
example. Subsequently another test with an oblique roughness superimposed on
the inclined surface was carried out showing that the result of a flat surface is not
necessarily the homogeneous limit of a heterogeneous surface, see figure 7.3.

The goal of homogenization is to use a homogeneous material description that
approximates the behavior of a heterogeneous problem. Hence it follows up the
question to determine the macroscopic properties of such a macroscale ho-
mogeneous material from the microscale heterogeneous problem. To obtain such
properties from the microscale an appropriate sample being subject to appropriate
boundary conditions is mandatory and hence must be identified.

All of the investigations to be performed in this study employ micro structures
that may be classified as being in the Reynolds roughness regime, together with
gap heights where roughness effects are significant. The roughness classification
goes back to the work of Elrod [28] and verifies the assumption regarding the va-
lidity of the Reynolds equation on the microscale within the micro mechanical
analysis. The investigations of Mitsuya and Fukui [52] indicate that, the roughness

1Pressure plots are taken along the x-direction at different width positions y ∈
{0.5,±0.4,±0.3,±0.2,±0.1,±0.0}. The arrow assigns high pressure plots to the center and low
ones to the side.
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wavelength to mean film thickness ratio should be approximately five or larger if
this assumption is to hold. Otherwise, the Stokes roughness regime becomes domi-
nant and a direct solution of the Stokes equation is suggested, although alternative
limit equations have also been obtained in the mathematical literature [9]. In the
case of dynamic effects, a reversion to the original Navier-Stokes equation may
be required within the homogenization framework, which may also be necessary
in the case of near-contact situations where the gap height to combined roughness
ratio is very small [25]. In the other extreme of this ratio, roughness effects are
negligible. They become dominant in the vicinity of a gap to combined roughness
ratio of the order of ten and below [54].

Appropriate sample

This identification procedure aims to find a sufficient representative volume ele-
ment (RVE) being the grounding of micro mechanical analysis. In case of micro-
scopically heterogeneous but macroscopically homogeneous problems the question
arises how to obtain the macroscopic homogeneous “material” parameters from a
microscopically heterogeneous problem. Due to limited computational power (or
time) the sample being investigated should deliver an appropriate result but needs
to be chosen as small as possible. For realistic surfaces the smallest sample size
has to be obtained by sample enlargement and hence monitoring the flow response
(e.g. flux q) whilst varying the sample size. An adequate sample size is obtained
if ∣∣∣∣

qj+1 − qj

qj

∣∣∣∣ < TOL , (7.1)

for a given tolerance TOL. Here increasing j denotes increasing the sample size.
Furthermore the flow scatter response for small sample sizes can be filtered to
extract the mean

〈〈q〉〉 = 1

M

M∑

I=1

qI . (7.2)

This is called ensamble averaging. Here M denotes the number of samples and qI

denotes the result from the I th sample. Equation 7.2 should be used in equation
(7.1) in order to smoothen convergence with increasing sample size. At convergence
the sample will approximate the representative surface element (RSE) which is
ideally infinitely large.

In the case of periodic surfaces however an exact RSE is identified as a unit cell.
Recalling the flow problem the unitcell will be prescribed by a sin wave (0→ 2π).
In the remaining part of the thesis we will work with such periodic surfaces.
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7.2 Lubricant homogenization methodology

7.2.1 Interface testing procedure

Solving theReynolds equation for a macroscale lubrication problem while taking
into effect surfacial microscopic roughness that is several orders of length scales
smaller demands a very fine mesh resolution and hence prohibitive computational
times. To reduce the work load, a homogenization scheme is introduced. The basic
idea is outlined in figure 7.4, where a mass balance

−div[q] = 0 (7.3)

has to be solved on the macroscale, but a constitutive equation q prescribing the
flux over a rough surface is not represented by the classical Reynolds flux. Hence
an explicit constitutive equation q is not known. Rather, the homogenized macro-
scopic flux q is extracted from a rough microscale problem that is associated with
the macroscale interface at each numerically relevant point, e.g. the integration
point. This interface sample problem will be solved as follows:

1. compute macroscale variables from a flat surface macroscale problem, using
the mass balance (regarding cavitation in [eqn (5.3)] but without substituting
the Reynolds flux form)

2. where cavitation does not occur, pass macroscale variables to the microscale
and incorporate them as boundary conditions on the test sample,

3. solve a rough surface microscale problem, using Reynolds equation [eqn
(5.3)] (neglecting cavitation), for the local flux q,

4. compute the macroscale flux q by surface averaging the local flux and pass
it to the macroscale,

5. solve the macroscale problem using the macroscale flux q, which now includes
the effects of surface roughness to the macroscale.

This procedure is referred to as the micromechanical test. To any position in the
lubricant at the macroscopic scale such a micro mechanical test is attached. Within
the finite element framework, this is done naturally at the Gauss points. Unlike
the classical homogenization’s setting for the Reynolds equation, however, it
is not sufficient to solve these attached problems only once in a pre-processing
step. Rather, they must be solved simultaneously throughout the macroscopic
deformations steps. This is the typical FE2 framework for the computational
homogenization of heterogeneous media – see earlier cited references.
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macroscale

microscale

journal

sleevef/u

ω+

ω−q = q
(
h, p, g, v,

F S, geometry
) q = 〈q〉

Figure 7.4: Micro-macro loop with parameter interface between macroscale to mi-

cromechanical test procedure.

The validity of the proposed multiscale analysis framework is assessed through
the following conditions:

σ = O
(
h
)
≪ c

σ = O (h)≪ c (7.4)

c≪ c

Equations (7.4)1,2 ensure that a lubrication formulation holds on the macroscale as
well as on themicroscale, respectively. Here σ and σ denote the standard deviations
of roughness whereas the representative length of the flowpath is given via c and
c for the macroscopic and microscopic problems, respectively. Finally, (7.4)3 is
required to justify the separation of scales that is essential for scale-independent
homogenization [Stupkiewicz [71] pp. 9-14]. The separation of scales also justifies
the split of the micro mechanical testing procedure, which is the subject of the
next section.
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7.2.2 Two-Phase micro mechanical test

The introduced micromechanical test can be split into a (i) mechanical phase fol-
lowed by a (ii) lubrication phase through which an efficient numerical treatment
of the homogenization problem can be achieved. This procedure is visualized in
figure 7.5. For a typical micromechanical test, computational times of 331 s for
the mechanical phase and 0.12s for the lubrication phase can be achieved. This is
more than 1.6 times faster compared to a coupled computation time of 554 s. This
split is exact to within a separation of scales assumption [Temizer and Wriggers
[78, section 3]]. If not employed, the solution of the coupled problem, which is now
numerically more expensive, would additionally require an explicit satisfaction of
(7.4)3 by choosing the sample small in terms of absolute length scale. When not
appropriately chosen, the sample size can influence the macroscopic flux for a given
set of boundary conditions. However, such a sample size dependence is not allowed
when a separation of scales is admitted. Consequently, the split of the testing pro-
cedure ensures an automatic satisfaction of this condition, which is demonstrated
in comparison charts (fig 7.6) and (fig 7.7). In both parameter studies, where
the gap height h or the pressure gradient g are varied, the decoupled computa-
tional results remain constant with increasing sample size (number of tiles or wave
length). However all coupled computations show a strong dependence on varying
sample size for either increasing the number of tiles or increasing the wave length.
The solid deformations in figure 7.8 reports the deformations to the analysis is
reported in figure 7.6. For a pressure gradient (g = −10N/mm) caused deformation
one would expect a negative inclined wedge-like deformation of the solid block.
But here the viewer observes a bulge at the right side of all solid blocks, which
are caused by the periodic boundary conditions, see section 7.2.3. Furthermore
the z-displacements at the leading and trailing edges (w.r.t. the x-axes) deviate
for different sample sizes (number of tiles t), which causes the varying flux with
increasing sample size. This variation is unphysical within a separation of scales
assumption and is avoided by the two-phase setup.
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uz

∂S l
0

(a-1) undeformed solid RVE, denoted by cap-

ital tensor quantities X+/−

uz

∂S l = Lu−

(a-2) deformed solid RVE, denoted by small
tensor quantities x+/−

uz
p

h

h
2

Lhelp ∂S l = Lu−

Lp

Lu+

(b-1) lubrication problem

Figure 7.5: Micromechanical split: (a) mechanical phase, subject to x+ − x− =

F S
(
X+ −X−

)
and (b) lubrication phase, subject to p+ − p− = ĝ ·

(x+ − x−)
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Figure 7.6: Varying the gap height h, here g = −10N/mm.
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Within the mechanical phase a purely mechanical problem undergoing finite
deformations will be solved. The deformation is induced by:

• the macroscopic fluid pressure (p̄ ≈ const) acting as a follower load (sub-
ject to being linearized) on the top surface S l

0 of the Representative Surface
Element (RSE),

• the macroscale deformation F
S
= 1+H

S
(applied to the side surfaces ∂S+/−

of the RSE; see sec 7.2.3 and figure 7.9 and Stupkiewicz [71], Temizer and
Wriggers [77] ), and

• the chosen geometry (roughness) of top surface ∂S l
0.

Outcome is a deformed surface Lu−

. Employing a constant pressure within the
mechanical phase agrees with the asymptotic expansion analysis of Bayada et al.
[11] and is consistent with the separation of scales.

Subsequently, the lubrication phase can be constructed using the deformed
surface Lu−

, see figure 7.5b. In order to form a thin channel, a flat surface Lu+
is

placed at a distance h above the mean plane of the rough surface Lu−

. For this
purpose, introducing

〈•〉 = 1

A0

∫

Lu−

• da −→ h = 〈h〉 , z = 〈z〉 , (7.5)

at position z a flat surface Lhelp is placed with respect to which the top surface
Lu+

is at an average distance h with respect to the rough surface Lu−

.
Due to computational reasons (fig 5.2) an intermediate surface Lp is introduced

to compute and store the lubricant local pressure p. The lubrication problem is
subject to the following restrictions:

• the top surface is forced to be under tangential motion u̇
r
but Lu−

is fixed
and

• the macroscopic pressure gradient g acts on Li, see sec 7.2.3 and (fig 7.9).

The former assumption is particularly convenient because it allows a static analysis
and is a common starting point in many works [1, 2, 4, 11, 15, 18, 28, 41, 42, 62]. In
contrast to this setting, two rough surfaces moving against another or accounting
for tangential contact demands a time dependent analysis [49, 52, 55, 72, 80].

Since the pressure distribution is not constant throughout the microscale for
a rough surface, g and q are of “fast varying” character and hence they must be
averaged [eqn (7.5)] before passing them to the macroscale:

g = 〈g〉 , q = 〈q〉 . (7.6)
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7.2.3 Boundary conditions

At each Gauss point the global variables
(
h, p, g, u̇

r
,F

S
, geometry

)
are passed

to the micromechanical test procedure, where they are incorporated as boundary
conditions. They satisfy the following aspects:

• deliver the exact homogenized response from a unit-cell if the microstructure
is periodic [(fig 8.2), Temizer [76]] and

• the macroscopic quantities that appear in the boundary conditions are re-
covered by surface averaging [sec 7.2.2 Temizer [76]], in particular g = 〈g〉.

In the mechanical phase, at the bottom layer ∂Sr
0 all nodal movements are

restricted in the z-direction. Additionally one of these nodes x ∈ ∂Sr
0 \ ∂Si

0 has
to be fixed in all directions to avoid rigid body motions. On the side surfaces ∂Si

0

periodic boundary conditions are imposed to transfer global deformations to the
microscale (see equation (7.7) and figure 7.9a). On the rough surface ∂Sl

0 traction
boundary conditions are applied as a non-conservative loading, cf. equation (7.8).

x+ − x− = F
S (

X+ −X−
)

and t+ = −t−, on ∂Si = ∂S−
⋃

∂S+ (7.7)

t = −pn , on ∂Sl (7.8)

Within the lubrication phase periodic boundary conditions are used to obtain the
pressure distribution on the middle plane nodes. Therefore the side nodes of the
middle plane are restricted as follows:

p+ − p− = g · (x+ − x−) and q+n = −q−n , on ∂Li = ∂Lp−
⋃

∂Lp+ (7.9)

All remaining degrees of freedom on the surface ∂L \ ∂Li are restricted to no
displacement and zero pressure, see figure 7.9b.

7.2.4 Identification of macroscopic quantities

From section 7.2.2 it is known that surface averaging microscopic local quantities
gives us macroscopic values and hence the macroscopic flux is identified as q = 〈q〉.
To study weather a macroscopic constitutive equation can be identified the flux q

is decompose additively for observation purposes as suggested in section 8

q = qp + qc ,

{
qp = 〈qp (h, p, g)〉
qc =

〈
qc
(
h, u̇

r)〉 (7.10)
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∂S l = Lu−

∂Sr

(a-1) xy − planes

∂S+

∂S−

(a-2) xz − planes
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∂S−

(a-3) yz − planes

∂Lp+

∂Lp+

∂Lp−

∂Lp−

(b-1) middle plane

Figure 7.9: Notation of boundaries on (a) the mechanical phase and (b) the lubrica-

tion phase
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We want to identify macroscopic quantities
(
h, p, µ, g

)
via surface averaging to

obtain a macroscopic constitutive equation being subject to microscopic rough
surfaces

〈q〉 =

〈
− h3

12µ
g + hu̇

r
〉

,

{
µ = µ (p)

g = grad (p)

= − 1

12µ

〈
h3g
〉
+ u̇

r 〈h〉︸︷︷︸
≡h

= − 1

12µ

〈
h3g
〉
+ hu̇

r

= qp + qc
(
h, u̇

r)
(7.11)

and hence we succeed for the Couette term but cannot express the Poiseuille
term as a function of macroscopic quantities explicitly. It is this term that makes
an explicit homogenization analysis necessary, even when the rough surface is rigid.

7.2.5 A micro-macro dissipation equality

In a full Navier-Stokes representation of the fluid, dissipation is induced by the
viscous flow which causes temperature rise in the fluid. A consideration of the dis-
sipation effects has been carried out by Cope [23] by simplifying the energy equa-
tion under the Reynolds equation assumptions that lead to the thin-film limit. The
results obtained have subsequently been verified by Charnes et al. [21] through an
alternative derivation where the energy-dissipation relationship was characterized
under the thin-film assumptions. Now, since no energy is stored by an incompress-
ible fluid under steady state conditions, the local dissipation D on the microscale
must match the power input P. Therefore, in order to preserve dissipation through
the scale transition of homogenization, the following equivalent conditions must
be satisfied:

D = 〈D〉 ←→ P = 〈P〉 . (7.12)

In this work, the effect of the shear stresses are omitted. Consequently, the power
input is expressed only in terms of the flow work Pf [21]:

P ≡ Pf = −q · g . (7.13)

The expression of the flow work is admitted to be of the same form on the
macroscale:

P ≡ Pf = −q · g . (7.14)
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Consequently, making use of the macroscopic identifications for the flux (sec 7.2.2)
and the pressure gradient (sec 7.2.3), preservation of dissipation across the scales
requires satisfying

D = 〈D〉 ←→ −〈q〉 · 〈g〉 = −〈q · g〉 , (7.15)

which will be referred to as the micro-macro dissipation equality. The satisfaction
of this equality is guaranteed by the periodic boundary conditions employed in this
work [78] and therefore the thermodynamical consistency of the computational ho-
mogenization approach is guaranteed. It is noted that a complete consideration of
the dissipation effects requires incorporating shear stress effects as well. However,
this requires imposing shear stresses on the rough surface within the mechanical
phase of the micro mechanical test.



Chapter 8

Microscale numerical examples

In this chapter, major aspects of the proposed computational homogenization
framework are highlighted. In section 8.1, primarily the influence of the Poisson’s
ratio ν and surface load p is studied at the mechanical phase. Further investiga-
tions refer to the lubricant response on changing macroscopic control parameters.
For subsequent computations g and u̇

r
have been applied with constant magnitude

but changing orientation. Two different surface geometries are reviewed in section
8.2 finding an isotropic- and anisotropic-flux behaviour, where the importance of
the gap height h̄ is additionaly exposed. The effect of the displacement gradient

H
S
will be highlighted in section 8.3. In all other investigations H

S
will be set to

zero.
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Table 8.1: Material parameters employed are summarized. Unless otherwise noted the values in brackets

[•] are used.

SOLID Young’s Modulus [N/mm2] E 475.0
(Neo Hook) Poisson’s Ratio ν (0.0-[0.499]) sec 8.1

Block Dimensions [mm] lx x ly x lz 0.2x0.2x0.4
Roughness Amplitude [mm] ẑ 0.01
Number of quadratic Elements x,y,z 8x8x16
Fluid Pressure [MPa] p (0.0-[5.0]) sec 8.1
Surface Geometry iso-/anisotropic sec 8.2

Displacement Gradient H
S

(-1.0,[0.0],1.0) sec 8.3

LUBRICANT Velocity [mm/s] u̇
r

β 2356.0 (g=0)

(Water) Pressure Gradient [MPa/mm] gβ 0.1 (u̇
r
=0)

Angle of orientation w.r.t. x-axis [MPa/mm] β [0.0]-360.0

Gapheight [mm] h ([0.05]-0.1) sec 8.2
Viscosity (at 20◦C) [MPa s] µ 1.0 ·10−9
pressure-viscosity coefficient [Pa−1] α 0.0
Number of quadratic Elements x,y,z 8x8x1
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8.1 Effects of solid incompressibility

To investigate the influence of an incompressible solid onto the surface deformation,
a computational test was carried out on six specimens with varying Poisson’s
ratio ν [figure 8.1]. The specimens have been loaded with increasing pressures p
acting normal on the top surface ∂S l

0 of each block, such that the viewer observes
decreasing displacement of the top surfaces as well decreasing stress variations
from low to high Poisson’s ratio ν = 0.0 → 0.499 (figure 8.1a,b). However for all
specimens stress varies heavily in the surfacial asperities. It is remarked again that

H
S
is zero for the present investigations.
Two important observations can be made regarding these results. First, for in-

compressible hyperelastic materials, the effect of the pressure on asperity deforma-
tion is negligible. Consequently, the lubrication phase, which is governed primarily
by the surface microstructure, will not be influenced significantly by the pressure
within the micromechanical testing procedure. However, on the macroscale the

pressure may induce surfacial deformationH
S
, in particular near free edges, which

will be observed to have a significant effect on the lubrication response (section
8.3). Similarly, for compressible materials, it has been verified that although large
sample compressions are observed, the statistical characteristics of the surface do
not vary significantly in the range of pressures investigated (not shown). On the
other hand, such large compressions are important because these change the gap
height on the macroscopic interface and consequently alter the flow characteristics
in a macroscopic elastohydrodynamic lubrication problem, cf. Szeri [73, p.410].
A fully coupled micro-macro simulation strategy, where the coupling between mi-
croscopic and macroscopic mechanisms can be clearly observed, is planned for a
future work.

8.2 Anisotropic/Isotropic surfaces

Computing the global flux q can deliver information on whether macroscopically
isotropic or anisotropic flow conditions are present and hence whether the surface
is deemed isotropic or anisotropic for the purposes of lubrication characterization.
Isotropy exists when the input parameter u̇

r

β or gβ, only one of them being active
for arbitrary angles β, cause a flux qβ such that

(
u̇

r

β or gβ

)
‖ q , and ‖q‖ = const ∀ β ⇒ S l

0 isotropic (8.1)

holds. Anisotropy is characterized by

∃ β
(
u̇

r

β or gβ

)
∦ q , or ‖q‖ 6= const ∀ β ⇒ S l

0 anisotropic (8.2)
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Figure 8.1: Influence of Poisson’s ratio ν on: (a) surfacial z-displacements to be sub-

ject of an increasing pressure load p (poissons ratio ν = 0.499 is plotted

w.r.t. both axis of different ranges to clarify that locking does not occour)

and (b) stress distribution to be subject of p = 5MPa
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Therefore parameter studies with changing orientation of u̇
r

β and gβ have been car-
ried out on two different surfaces (figure 8.2), where β ∈ 00−360◦ was incremented
in steps of 7.5◦.

(a) isotropic (b) anisotropic

Figure 8.2: Isotropic and anisotropic surface. Amplitudes are scaled by a factor of

five.

Figure 8.3 illustrates the macroscopic flux response q for these studies. Here
figures (a,b,d,e) in the first and second column are subject to macroscopic velocity
u̇

r

β and figures (c,f) in the third column are subject to the macroscopic pressure
gradient gβ. The isotropic surface ((fig 8.2)a) was applied to figures (a,b,c) in the
first row whereas figures (d,e,f) in the second row are subject to the anisotropic
surface ((fig 8.2)b). Each cross in the plots relates the flux q and its components
to an input parameter u̇

r
or g. For the start angle of β = 0◦ the computed fluxes

are in phase with u̇
r
((fig 8.3)a,b,d,e), but phase shifted by 180◦ for g ((fig 8.3)c,f).

Moving inside a plot in counterclockwise direction with increments of 7.5◦ the
viewer observes a circular flux response q and uniformly distributed crosses in figure
8.3a,b,c meaning that equation (8.1) is fulfilled, hence the surface is isotropic. Note
that for isotropy the flux components qp and qc display the same characteristics as
q. Reviewing figure 8.3d,e,f an anisotropic response is observed via equation (8.2).
Both the flux q and its component qp have an elliptic and line shape, whereas qc

remains isotropic (circular). For figure 8.3f the Couette term qc vanishes such
that q = qp causes anisotropy. Reducing the gap height h restricts the flow and
hence leads to a decrease in the flux magnitude for both isotropic and anisotropic
surfaces, compare figure 8.3a,b,d,e. Furthermore, an increase of ellipticity and hence
anisotropy for an anisotropic geometry can be observed comparing figure 8.3d,e.

A discussion of the macroscopic flux components qp and qc requires monitoring
their microscopic counterparts qp and qc. Figures 8.4a,c illustrate that the orien-
tation of the Couette flow on both scales (i.e. qc and qc) remain parallel to
the input velocity u̇

r
at all times. Hence the Couette term always causes an

isotropic flux, which is clear from its constitutive form. The local flux qc changes
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proportionally to the local gap height h (Eqn.(8.3)) which can be identified in
equation (5.1), whereas its macroscopic equivalent remains constant for all angles
β:

‖qc‖ ∝ h, if u̇
r
= const . (8.3)

Due to the fact that u̇
r
= 0mm/s for plots in figure 8.4b,d the Couette term

vanishes (qc = qc = 0) such that

q = qp and qc = 0, for g 6= 0 and u̇
r
= 0 and

q = qp and qc = 0, for g 6= 0 and u̇
r
= 0, (8.4)

hold. Flow deflection is caused by the Poiseuille terms qp and qp depending on
the pressure gradient g as well the gap height h3 and thus the surface microstruc-
ture. Arrows representing the Poiseuille fluxes qp and qp also help visualize pres-
sure gradients. They always point from high pressure areas towards low pressure
areas (figure 8.4).

8.3 Deformation gradient

The influence of the surfacial deformation gradient is investigated in this section.
In matrix notation,

F
S
= 1+H

S
, [H

S
] =

[
hS
11 hS

12

hS
21 hS

22

]
(8.5)

where the entries on the main diagonal hS
ii stretch a surface, and hence the remain-

ing entries hS
ij , i 6= j shear a surface, cf. (fig 8.5.)

For hS
11 = hS

22 = (−0.2→ 0.2) isotropy is preserved for velocity and pressure
gradient driven computations, refer to figure 8.6. As a consequence of surfacial
stretch roughness is flattened, and hence flux increases.

Solely varying the displacement component hS
11 = (−0.2→ 0.2) gives an anisotropic

response. It can be observed for hS
11 = −0.2 in figure 8.7b that qp has an elliptical

shape. Its principal direction points towards 0◦ and causes an elliptical flux q

with principal direction pointing towards 90◦. Applying a positive displacement
gradient hS

11 = 0.2 (figure 8.7a) orientation of both fluxes (qp, q) turns about 90◦.
Additionally, an increase of flux from negative to positive displacement gradients
can be seen due to an increasing surface.

For a pressure gradient g = 0.1MPa/mm driven computation (figure 8.7c) the
flux q keeps its principal directions towards 0◦ (hS

11 = 0.2) and hence it follows qp

according to our observations in section 8.2 .
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Finally, the effect of the shearing components are evaluated. This effect is
not as dominant compared to stretching. Therefore, the values have been chosen
larger, but remaining in a realistic deformation range, to show its influence on the
anisotropic behaviour. Varying hS

12 = 0.3 → 0.9 causes an increasing anisotropic
flux response (figure 8.8a,b,c). Futheron the Couette flux qc principal direction
moves from ≈ 30◦ towards ≈ −30◦ and hence the flux q is shifted by 90◦. Applying
hS
12 = hS

21 = 0.1 → 0.7 causes a stronger surface shrinking and also a strong
elliptical response (figure 8.8d,e,f). The principal direction of the flux q points
towards 45◦. Pressure gradient g induced fluxes are summarized in figure 8.9. Here,
another data representation was chosen to elucidate shearing influence. Again a
shrinking surface can be observed for solely varied parameters hS

i,j , i, j ∈ 1, 2 and
i 6= j as well a moderate anisotropy. A stronger response is observed for shearing
hS
12 = hS

21 at the same time.
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Figure 8.3: Influence of decreasing gap height h on global flux orientation and mag-

nitude on (a, b, c) isotropic surface and (d, e, f) anisotropic surface. For

subfigure (c,f) u̇
r
= 0mm/s and g = 0.1MPa/mm were applied. All other

results have been computed using u̇
r
= 2356mm/s and g = 0MPa/mm
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p

u̇
r

q qp qc

q qp qc

(a) u̇
r
= 2356mm/s, g = 0MPa/mm

p

g

q qp

q qp

(b) g = −0.1MPa/mm, u̇
r
= 0mm/s

p
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q qp qc

q qp qc

(c) u̇
r
= 2356mm/s, g = 0MPa/mm
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(d) g = −0.1MPa/mm, u̇
r
= 0mm/s

Figure 8.4: Computational results of local flux, pressure distribution (q, qp, qc, p) and

total flux (q, qp, qc) on (a,b) isotropic surface and (c,d) anisotropic surface,

q.v. figure 8.2. Both input parameters u̇
r
and g are applied to (a,b) at

an angle of β = 22.5◦ and to (c,d) at an angle of β = 45◦ with respect

to x-axis. The surface color shows the local pressure distribution p in

the lubricant flow. High pressures are coloured white and low pressures

are coloured black. Arrows represent the magnitude and orientation of

input parameters u̇
r
,g and output variables q, q and its components.

They are clearly allocated by the legend. The input and macroscopic

output quantities, and hence their corresponding arrows are centered.

Local fluxes are centered on their corresponding elements.
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(b-1) HS shear iso view
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(b-2) HS shear top view

Figure 8.5: Mechanical phase undergoing a) a stretch into hS11 direction and b) a shear

into hS12,21 direction and being subject to periodic boundary conditions.
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Figure 8.6: Isotropic response of an isotropic surface undergoing uniform stretch into

hS11 and hS22 direction: a,b) u̇
r
= 2356mm/s, g = 0MPa/mm and c) g =

0.1MPa/mm, u̇
r
= 0mm/s.
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Figure 8.7: Anisotropic response of an isotropic surface stretched along the 0◦ axis:

a,b) u̇
r
= 2356mm/s, g = 0MPa/mm and c) g = 0.1MPa/mm, u̇

r
= 0mm/s
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Figure 8.8: Anisotropic flow behavior for surfacial shearing with u̇
r
= 2356mm/s, g =

0MPa/mm.



92 CHAPTER 8. MICROSCALE NUMERICAL EXAMPLES

30

32

34

36

38

40

42

0 45 90 135 180 225 270 315 360
26

26.2

26.4

26.6

26.8

27

27.2

27.4

q a q b
α

qa
(
H

S
= 0

∼

)

qa
(
hS
12 = −1.0

)

qa
(
hS
12 = 1.0

)

qa
(
hS
21 = −1.0

)

qa
(
hS
21 = 1.0

)

qb
(
hS
12,21 = −0.5

)

qb
(
hS
12,21 = 0.5

)

Figure 8.9: Anisotropic flow behaviour for surfacial shearing with u̇
r
= 0mm/s, g =

0.1MPa/mm. Quantities denoted by qa refer to the left axis and qb refer to

the right axis, respectively.



Chapter 9

Conclusion

In order to predict the macroscopic response of microscopically rough lubricated
interfaces in the large deformation regime, a three-dimensional computational ho-
mogenization approach was presented, closely following homogenization techniques
for rigid and infinitesimally deforming surfaces. The approach is based on propos-
ing a lubrication formulation governed by the classical Reynolds equation on the
micro scale, in agreement with earlier approaches, but extracting the macroscopic
flux within a micromechanical testing procedure.

While the problem remains coupled on the macroscale, the macroscopic flow
control parameters are projected onto the micromechanical test sample as bound-
ary conditions such that a two-phase micromechanical test was induced. An effec-
tive numerical treatment of a mechanical phase followed by a lubrication phase is
achieved, which was demonstrated by comparing computational times of a lubrica-
tion problem solved in a decoupled and coupled way. This two-phase split is exact
to within a separation of scales assumption, as in multiphysics homogenization
strategies for heterogeneous media. A parameter study comparing sample size ef-
fects (sec 7) for both the two-phase split and a classical coupled computation shows
that the two-phase split complies with a fundamental postulate of homogenization
- that sample size may not influence the homogenized result.

The numerical results presented show that within the interface the fluid flow
is strongly influenced by the surface geometry which was found to be significantly
altered by the surfacial deformation. The surfacial deformation, in turn, is sig-
nificantly influenced on the macroscale by the gap height and the pressure. Flux
q changes stronger with varying the gradient g than by means of varying the
velocity u̇

r
as can be seen in section 8. Qualitative observations could be made

for these parameters and have been found to be coherent with practical experience.

A validation with experimental results should be conducted but would be pre-
mature due to several omitted effects which should be explored for the finite de-
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formation regime. Throughout the interface effects like temperature dependence,
asperity deformation induced by surface shearing and hence the lubricant tangen-
tial friction are present. In particular the lubricant tangential friction as shown by
Stupkiewicz and Maciniszyn [72], Yang and Laursen [86] yields to both asperity
and flat surface deformations leading to qualitative changes of the pressure profile,
such that this effect needs to be considered.

Another shortcoming of the present Reynolds equation, is that Barus equa-
tion only holds for moderate pressures. In order to extend the applicability
of Reynolds equation to the high pressure regime Barus equation needs to
be replaced by Roelands formula, see Hamrock et al. [33]. Furthermore, the
Reynolds equation will be violated for increasing amplitudes or little gap heights
such that Navier-Stokes equation needs to be solved [25].

Real roughness profiles also need to be investigated. Due to the random charac-
teristics of real surfaces, sample size effects would play a role. Randomness effects
can be alleviated by complementing surface averaging with ensemble averaging
combined with sample enlargement, albeit at the expense of high computational
cost. Applying periodic boundary conditions on real rough surfaces would be an
important step to achieve feasible computational times. Here a promising approach
was suggested by Uchidate et al. [81].

The contact of the adjacent surfaces would complete the present investiga-
tions - with one surface being rough and the adjacent surface chosen flat - on
rough surfaces, where the present ALE setting can be used for normal contact
formulations. However, taking tangential friction into account a time dependent
formulation regarding material time history becomes mandatory [87]. In order to
prescribe surface to surface contact the penalty formulation or, due to the special
Lagrangian type lubrication framework [eqn (5.30)], the Lagrange multiplier
method seems to be suited, see appendix A. Here the Lagrange multiplier λ
can be interpreted as a contact pressure ∆p. The identification of the boundary
between the lubrication and contact zones remains as a challenge. Since fluid is
absent within contact regions, flow across the boundary between lubrication do-
main and contact domain need to be constrained to zero. In order to apply the
method to real interface problems both surfaces needs to be rough, demanding a
transient computation on the micro scale throughout all lubrication regimes.

Finally, a key future investigation is the realization of the coupling to the
macroscale by means of numerical tangent computations enabling the use of im-
plicit solution schemes and hence a reduction of computational times within a
microscale setting. Moreover an efficient and simple way of distributing the mi-
croscale computations and hence save computational times towards this purpose
is suggested in appendix B.



Appendix A

Contact Algorithms

In order to compare the population of stiffness matrices for different frictionless
contact algorithms to the lubrication framework stiffness matrix [eqn (5.30)], two
algorithms are introduced briefly, namely the penalty method and the Lagrange
multiplier method. For both methods the normal contact parts are developed with

Lagrange Penalty

m

m

m

λ

u

ε

h > 0

h = 0

h < 0

Figure A.1: Mass spring system demonstrating the working principle of the La-

grange Multiplyer Method and the Penalty Method.

respect to the lubrication framework, such that a contact search is unnecessary
because the gap height h is used.
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Penalty Method

The constraint formulation reads

if

{
h < 0: ΠP

C = 1
2

∫
Γ

ǫ (h)2 da

h ≥ 0: ΠP
C = 0

ǫ > 0 , (A.1)

such that the variational formulation evolves to

CP
C =

∫

Γ

ǫhδh da , (A.2)

with
h =

(
x+ − x−

)
· nm (A.3)

and its variation reads
δh =

(
η̂
u+ − η̂

u−
)
· nm . (A.4)

Linearising equation (A.2) leads to

CP
C =

∫

ΓC

(
ǫ∆hδh +

=0︷ ︸︸ ︷
ǫh∆δh

)
da (A.5)

with
∆h =

(
∆u+ −∆u−

)
· nm . (A.6)

Finally, discretizing equation (A.5) leads to

CP±
C =

nc∑

I=1

(
±η̂±Ir

) nc∑

J=1

∫

ΓC

ǫNINJn
m
Irn

m
Js da

(
±∆u±Js

)
, (A.7)

where nodes I, J ∈ 1, 2, 3, 4 denote lower suface quantities
(
−η̂u−

I ,−∆u−J
)
and

nodes I, J ∈ 9, 10, 11, 12 denotes upper surface quantities
(
η̂
u+
I ,∆u+

J

)
in case of

making use of linear shape functions. Previous equation can be introduced into
the lubrication linear system of equations [eqn (5.30)] reading




∂GC−

∂n−

∂n−

∂u− + ∂CP
c

∂u−

∂CP
c

∂u+
∂GC−

∂pm

∂CP
c

∂u−

∂GC+

∂n+
∂n+

∂u+ + ∂CP
c

∂u+
∂GC+

∂pm

∂GF

∂h
∂h
∂u−

∂GF

∂h
∂h
∂u+

∂GF

∂pm
+ ∂GF

∂µ
∂µ
∂pm

+ ∂GCav

∂pm







∆u−

∆u+

∆pm




= −




GC− + CP−
c

GC+ + CP+
c

GF + GCav




(A.8)
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Lagrange Method

The potential reads

ΠL
C =

∫

ΓC

λδh da (A.9)

leading to the constraint formulation

CL
C = δΠL

C =

∫

ΓC

(λδh + δλh) da (A.10)

via variation of equation (A.9). Subsequently linearising above equation gives

CL
C =

∫

ΓC

(
∆λδh+ λ���:0

∆δh+���:0
∆δλh+ δλ∆h

)
da , (A.11)

with

δλ = η̂p , ∆λ = ∆p (A.12)

and ∆h and δh according equations (A.6) and (A.4). Discretizing leads to

CL
C =

∑

I

(
±η̂u±

Ir , η̂p
I

)∑

J

∫

ΓC

NINJ (n
m
Ir + nm

Js) da
(
±∆u±Js,∆pj

)
.(A.13)

This might be introduced into equation (5.30) populating the red colored entries
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Appendix B

Distributed computing

For multiscale problems with a large number of independent microscale problems,
distributed and hence parallel computing reduces the solution time tremendously.
Amdahl’s law [6] estimates the speedup S (np)

S (np) =
T (1)

T (np)
, (B.1)

being the time ratio of a serial T (1) and parallel/distributed T (np) computation,
with np denoting the number of processors in use. Hereby the computation time
of T (np) can be distinguished according to serial ts, parallel tc and communication
time TC leading to

T (np) = ts +

tp:=︷ ︸︸ ︷
(1− ts)

np
+ Tc (n

p) (np − 1) (B.2)

and substituting

f =
ts

ts + tp
and r =

Tc (n
p)

T (1)
, (B.3)

such that equation (B.1) reads

S (np) =
1

f + (1−f)
np + r (np − 1)

. (B.4)

Within a parallel/distributed computation the efficency ǫ (np)

ǫ (np) =
S (np)

np
, (B.5)
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states the averaged work-load of a processor.
In case of the micromechanical test procedure, the child problems are independent
of other processes, and hence distibuting and parallel solving can be realized in
a very efficient way. It is achived by making use of the resource managemant
system Torque1 which controls batch jobs and distributed computing resources in
an automated way. An extensive and more detailed overview on cluster computing
can be found in [8, 19, 20].
Torque runs on both distributed network computers or dedicated cluster systems.
Distributed computing as shown in figure B.1 gets very simple, if a cluster is setup
such that all nodes2 access the same file system (shared storage) and a resource
manager organizes the job execution according to the FIFO3 principle.

1http://www.clusterresources.com/products/torque-resource-manager.php
2Denotes a computer in a cluster.
3First in first out.



101

Start
assembly

1st loop over lubricant elements
at each Gauss point:

1. generate paramter files for micro
scale (child) process

2. move files and copy programs to
the clusters shared storage

2nd loop over lubricant elements
at each Gauss point:

1. wait for results
2. extract result and incorporate

into right hand side of the macro-
scopic problem

3. goto next Gauss point/element

Distributed/ parallel computing
solve micro scale problems

1. make programs executable
2. start child problem
3. store results on the clusters

shared storage

Loop over solid elements

FINISH
assembly

Figure B.1: Flowchart on the assembly of the right hand side vector of a macro scale

problem. Here the members of the right hand side vector are computed

from micro scale computations, which are distributed to different nodes

and CPU’s, being solved in a parallel way.
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