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A B S T R A C T

This thesis deals with the performance analysis of IEEE 802.11 wireless

networks. Based on an analysis of the distributed coordination function,

which aims at an efficient medium access, the thesis addresses fairness

issues that occur in the case of several wireless stations contending for a

channel. In light of the success of IEEE 802.11, it is remarkable that there

is little consensus on the actual degree of fairness achieved, particularly

bearing in mind its impact on quality of service. Moreover, we evaluate

service estimation methods for wireless networks. Based on our findings

and in combination with our fairness model, we show how a station can

estimate its fair bandwidth share from passive measurements of traffic

arrivals and departures.

In Chapters 4 to 5 of this thesis we provide an accurate model for the

fairness of the DCF. Given M greedy stations, we assume fairness if a tagged

station contributes a share of 1/M to the overall number of transmitted

packets. We derive the probability distribution of fairness deviations and

support our analytical results with an extensive set of measurements. We

find a closed-form expression for the improvement of long-term over short-

term fairness. Regarding the random countdown values, we quantify the

significance of their distribution whereas we discover that fairness is largely

insensitive to the distribution parameters. Based on our findings, we view

the DCF as emulating an ideal fair queuing system to quantify the deviations

from a fair rate allocation. We deduce a stochastic service curve model for

the DCF to predict packet delays in IEEE 802.11 that can have a tremendous

impact on quality of service and measurements.

These aspects are further explored in Chapter 6. Here we present results

from an extensive measurement study of wireless bandwidth estimation

in IEEE 802.11 WLANs using the DCF. We show that a number of known

iterative probing methods, which are based on the assumption of first-come
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first-serve scheduling, can be expected to report the fair bandwidth share of

a new flow rather than the available bandwidth. Our measurement results

confirm this view and we conclude that under the current probe gap and

probe rate models the fair share can only be loosely related to the available

bandwidth. Like several other studies we report that packet sizes have

a tremendous impact on bandwidth estimates. Unlike these studies we

can, however, show that minor modifications to known methods for wired

networks, such as Pathload, can solve previously indicated limitations of

these methods in wireless networks. Moreover, we develop and analyze

a new bandwidth estimation method for wireless networks. To this end,

we employ active probing and continuously inject packet probes into the

network in order to detect changes in the bandwidth process over time. We

present the key challenges and analyze the trade-offs between fast change

detection and estimate smoothness. We show the benefit of using Kalman

filtering to obtain optimal results under certain conditions and provide a

way to parameterize the filter with respect to specific use cases. Furthermore,

we evaluate the influence of probing-train length on the results. Finally, we

show how user space applications, such as video streaming, can benefit

from these measurements.

Keywords: IEEE 802.11, WLAN, Fairness, Quality of Service, Network

Calculus, Bandwidth Estimation
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Z U S A M M E N FA S S U N G

Die vorliegende Dissertation befasst sich mit der Leistungsanalyse draht-

loser Netzwerke auf Basis des IEEE 802.11 Standards. Basierend auf einer

Analyse der Distributed Coordination Function, die einen dezentralen Me-

dienzugriff erlaubt, werden Fairness-Aspekte untersucht die beim Zusam-

menspiel mehrerer drahtloser Stationen die Leistungsfähigkeit des Net-

zes maßgeblich beeinflussen. Angesichts der weiten Verbreitung ist es

bemerkenswert, dass bis zum heutigen Zeitpunkt keine Einigkeit über

den Grad der erreichten Fairness besteht. Im Verlauf dieser Arbeit werden

zunächst bestehende Methoden zum Messen von Dienstgüteparametern in

drahtlosen Netzen evaluiert. Auf der Grundlage dieser Erkenntnisse und

in Kombination mit einem zuvor entwickeltem Fairness-Modell wird an-

schließend eine neue Methode zum Abschätzen der verfügbaren Bandbreite

vorgestellt.

In den Kapiteln 4 und 5 wird ein Modell entwickelt, welches die Fair-

ness der DCF beschreibt. Dabei wird ein Netzwerk mit M kontinuierlich

sendenden Stationen als perfekt fair angenommen, wenn eine Station einen

Anteil von 1/M aller gesendeten Pakete übertragen kann. Ausgehend von

dieser Fairnessdefinition wird die Wahrscheinlichkeitsverteilung bezüglich

Abweichungen von dieser Fairness modelliert. Es werden Formeln in

geschlossener Form angegeben, die die Fairness-Verbesserung von langen

Beobachtungszeiträume gegenüber kurzen Zeiträumen beschreiben. Die

Ergebnisse werden durch Messungen untermauert und bestätigt. Bezüglich

der in der DCF verwendeten Backoff-Werte wird die Bedeutung der zuge-

hörigen Wahrscheinlichkeitsverteilung und deren Einfluss auf die erzielte

Fairness herausgearbeitet. Basierend auf den gewonnenen Erkenntnissen

wird die DCF als Nachbildung eines perfekt fairen Warteschlangensystems

aufgefasst und Abweichungen vom idealen System quantifiziert. Darauf

aufbauend wird ein stochastisches Service-Curve Modell hergeleitet. Dies
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ermöglicht beispielsweise die Berechnung von Paketverzögerungen durch

die DCF sowie die Anwendung des stochastischen Netzwerkkalküls.

Kapitel 6 präsentiert Ergebnisse einer Messstudie von Methoden zur Bes-

timmung der verfügbaren Bandbreite in drahtlosen Netzen unter Verwen-

dung der DCF. Es wird gezeigt, dass bekannte iterative Messmethoden, die

in der Regel eine first-come first-serve Verarbeitung der Pakete annehmen,

den fairen Bandbreitenanteil messen und nicht, wie eigentlich beabsichtigt,

die noch verfügbare Bandbreite. Direkte Messmethoden liefern weder den

fairen noch den verfügbaren Anteil an der Bandbreite. Wie bereits in voraus-

gegangen Studien, zeigte sich eine große Abhängigkeiten der geschätzten

Bandbreite bezüglich des Messverkehrs und insbesondere der Paketgröße.

Im Unterschied zu diesen Studien wird gezeigt, dass bereits kleine Än-

derungen bestehender Messtools, wie beispielsweise Pathload, ausreichen

um auch in drahtlosen Netzwerken zu guten Ergebnissen zu kommen. Des

Weiteren wird eine neue Methode zum Abschätzen des fairen Bandbreit-

enanteils in Funknetzen entwickelt und evaluiert, die eine kontinuierliche

Überwachung des Systems erlaubt. Die Arbeit identifiziert die wichtigsten

Herausforderungen und analysiert den Trade-Off zwischen einer schnellen

Detektion von Änderungen auf der einen, und stabilen Werten auf der

anderen Seite. Hierzu wird der Nutzen eines Kalman-Filters, der unter

bestimmten Bedingungen optimale Ergebnisse liefert, zum Filtern einzelner

Messwerte aufgezeigt und es werden Möglichkeiten diskutiert, das Kalman-

Filter optimal zu parametrisieren. Darüber hinaus wird der Einfluss von

Messverkehrcharakteristiken auf die Ergebnisse untersucht. Abschließend

wird gezeigt wie Anwendungen, wie beispielsweise Video-Streaming, von

exakten Messungen verfügbarer Bandbreite profitieren können.

Keywords: IEEE 802.11, WLAN, Fairness, Dienstgüte, Netzwerkkalkül,

Bandbreitenabschätzung
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Part I

D I S S E RTAT I O N





1
I N T R O D U C T I O N

Ever since Hertz discovered radio waves in 1888, and Popow as well as

Marconi transmitted radio waves over long distances in 1894, wireless

communication has evolved into a complex system with a wide range of

different subscribers and applications. In 1970 the first packet-based wireless

computer network, ALOHAnet, was developed in ground-breaking work

by Abramson [14] at the University of Hawaii to connect seven hosts on four

different islands. The basic technology, namely the ALOHA protocol, used

in that network has not only built the foundation of wireless but most kinds

of modern packet-switched communication networks. Today, it is still used,

e.g., in the cellular radio system GSM for its random access channel [139].

Almost three decades later, after several years of development and var-

ious generations of proprietary wireless local area network devices, like

WaveLAN by Bell Labs/Lucent, the Institute of Electrical and Electronics

Engineers (IEEE) ratified its first version of the IEEE 802.11 wireless LAN

standard in 1997. Subsequently, in 1999, the WiFi Alliance, a non-profit orga-

nization initiated by several major vendors to verify IEEE 802.11 devices in

order to ensure their interoperability, was founded. Hence, we use WiFi as

a synonym for IEEE 802.11 devices in the latter. With the rise of laptops and

other mobile devices in combination with significant reductions in costs,

IEEE 802.11 has become the leading standard for regularly used wireless

local area networks. Consequently, more than 350 million WiFi devices were

shipped in 2010 [68] and today almost every new laptop, tablet pc, and

mobile phone comprises a WiFi interface.

To date, the vast majority of WLAN systems have been based on IEEE

802.11 successors such as IEEE 802.11b, IEEE 802.11g, and IEEE 802.11a.

These systems basically provide physical-layer based throughput enhance-

ments over the original standard. In 2010, the upcoming IEEE 802.11n
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4 introduction

standard that increases the data rate up to 600 Mbps was approved. Among

physical-layer enhancements such as the multiple-input multiple-output

(MIMO) concept using several antennas and doubling the channel spacing

to 40 MHz, the improvements for reaching high data rates are achieved by

new MAC layer features such as Block Acknowledgements, Transmission

Opportunities (TXOP), and Direct Link Setup (DLS). Besides the well-

deployed standard enhancements, there exist other versions for Quality of

Service (QoS) support (IEEE 802.11e), transmit power control and dynamic

frequency selection (IEEE 802.11h), security and encryption support (IEEE

802.11i), and for vehicular mesh networks (IEEE 802.11p). These standards,

partly still under development, are meant to cover even more wireless

applications.

The great success of IEEE 802.11 as well as its widespread deployment,

however, yields challenges caused, e.g., by a high utilization of the shared

wireless medium due to the high number of participants. As a result, the

overall goodput of the whole system may decrease due to interferences of

the different wireless stations even if the physical data rate of every single

participant increases. We conclude that technical possibilities and hardware

production costs were crucial at the beginning of wireless networks. Today,

however, interoperability, the number of participants, and protocol efficiency

are the key factors that limit performance. These challenges will rise in the

near future, which motivates the need of networks engineers for a simple,

intuitive, and yet accurate framework to analyze, measure, and predict the

performance regarding throughput, delay, jitter, and backlog in order to

optimize existing and future wireless networks.

1.1 key issues in wireless lan performance analysis

In the following we consider a network model as depicted in Figure 1

comprising several wireless nodes within the same sensing and interference

range. Thus, every station can overhear the transmissions of all other nodes.
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LAN backbone distribution system

host

host

tagged host

host

host

access point access point

basic service set basic service set

Figure 1: A wireless network model comprising several wireless stations connected
to a single access point that acts as a service set coordinator. All stations
of interest are within the same interference and sensing range so that
they can overhear their transmissions. Thus, they span a single collision
domain. This setup is called a basic service set. In addition, we define a
tagged station used for various performance analysis.

In addition, all stations are associated with one access point with whom

they communicate with exclusively. The access point can be connected to

a wired backbone network. According to the IEEE 802.11 standard, this

setup is called a basic service set (BSS) or cell. Throughout this thesis we

also use the term wireless network as a synonym. In case a station wants to

transmit data to a receiver, the nodes cannot establish a direct connection,

but the access point has to forward the packets even if the two stations are

part of the same BSS. Obviously, this creates a very simple wireless multi-

hop network. Without loss of generality, we assume fixed stations even

though the node can be mobile in general. Unless otherwise noted, we use

the term wireless link meaning a wireless broadcast channel with medium

access control and radio link control protocols respectively. The network is

traversed by packets that can be characterized by different parameters such

as their source address, their destination address, their traffic or priority

class, and all possible combinations of that. All packets that belong to the

same characterization are said to be within the same traffic flow.

Compared to modern wired packet-switched systems, wireless networks

face some additional challenges which makes their analysis difficult. Re-



6 introduction

garding the physical layer, wireless networks use an unreliable and often

unpredictable medium that significantly introduces interference, fading,

and path loss which may lead to bit errors and therefore packet loss. Fur-

thermore, wireless networks cannot detect these errors directly, because

typically they cannot send and receive data at the same time1 and check for

successful transmissions. This is opposed to wired networks where packet

loss occurs mainly due to buffer overflows. The rate of bit errors, which in

addition can be detected by the sender, is low enough to be ignored in opti-

mizing the protocols and analyzing their performance. Also related to these

issues are the physical transmission paradigms used in wireless networks.

Today, most of the transceivers are based on a single-input single-output

(SISO) technique. The upcoming IEEE 802.11n standard, however, already

uses multiple-input multiple-output streams (MIMO). This increases the

physical layer data rate further and is therefore predicted to become the

leading technology for wireless networks in the near future. However, mak-

ing use of several radio streams that affect the performance of a wireless

system independently complicates the analysis of these systems. Likewise,

wireless links cannot be assumed to be time-independent. Potentially hid-

den wireless stations, which may even include systems that implement

different radio standards using the same frequency band, can join and leave

the network at any time, causing unpredictable interferences. Moreover, the

environment may change due to movement of obstacles or nodes. These

effects can cause rapid fluctuations of the signal-to-noise ratio and may lead

to high bit error rates. Different modulation and coding schemes combined

with rate adaptation may be used for compensation. As a consequence,

the capacity and the availability of the channel may vary drastically. These

issues should be considered when designing and analyzing wireless net-

works. For performance analysis related to the physical layer of wireless

channels we refer to, e.g., [57, 113, 142] and references therein.

1 In 2010, Choi et al. presented a mechanism that allows for full-duplex transmissions on a
single channel at least for low-power SISO systems. For a detailed discussion including the
limitations as well we refer to [44] and references therein.
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Regarding the data link layer, the medium access procedures of multi-

user wireless systems tend to be more complex compared to their wired

counterparts due to the aforementioned physical-layer issues and the wire-

less broadcast medium. In order to deal with the frequent packet loss of

wireless links many standards include an automatic repeat request (ARQ)

technique such as stop-and-wait ARQ, using explicit acknowledgements

and link layer retransmissions to ensure packet delivery. However, those

retransmissions consume channel capacity and may cause increasing and

varying one-way delays. Hence, they have to be taken into account when

analyzing the performance of wireless systems. Furthermore, in case of

multi-access systems, stations that share the same medium need to contend

for channel access. The contention phase is controlled by the MAC protocol,

often in a fully distributed manner. This is already true for wired MAC

protocols, like IEEE 802.3 Ethernet, that have originally been designed to

work in broadcast environments as well. However, today these systems are

typically connected by store-and-forward switches and routers in a point-

to-point manner. This renders the contention phase for a channel access

unnecessary but calls for a specific packet handling at the intermediate net-

work systems. Implementing similar point-to-point connections in wireless

systems, e.g., by frequency multiplexing, is not suitable since it would limit

the number of stations dramatically. At the end of the day, the analysis

of packet scheduling implemented in wired network devices comes to an

analysis of medium access procedures in wireless systems. In both cases,

the sharing of resources by packets of different nodes or flows is also called

statistical multiplexing. For wireless systems the behavior may differ largely

compared to the multiplexing of flows in a point-to-point infrastructure.

For instance, on top of a different scheduling behavior which is explored in

Chapter 2 and Chapter 4, the outgoing link in wireless multi-hop networks

may also affect incoming traffic since it also occupies the shared medium.

Moreover, these characteristics of wireless links are of vital importance
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for applications such as available bandwidth estimation, as discussed in

Chapter 6.

In addition to the wireless specific challenges, we have to deal with the

key issues that generally arise in packet-switched networks. For instance,

nodes require the availability of buffers to store packets temporarily in

case that the amount of packets to be served exceeds the channel capacity

only for a very short period of time. To this end, packets can experience

additional queuing delays, which also affect the end-to-end performance of

flows. Other challenges stem from the traffic characteristics that may exhibit

high variabilities or correlations and need to be modeled accurately.

All these challenges mentioned above make the performance evaluation

of wireless packet-switched networks difficult.

1.2 theories for wireless networks performance analysis

In this section we provide a brief overview of analytical and empirical

methods to analyze performance measures such as throughput, delay and

backlog in wireless networks.

The problem of network performance analysis in general has a long

history. For wired communication networks, it dates back to 1909 and 1917

when Erlang published his seminal work on classical queuing theory [55, 56]

that allows the calculation of various performance metrics such as average

waiting time, expected number of entities, and blocking probabilities of

limited queues and buffers. Among many other applications this theory

has been used for the analysis and the dimensioning of telephone systems.

In 1962, Kleinrock published his ground-breaking work that proves the

superiority of packet-switched networks over circuit-switched network in

terms of resource utilization and efficiency using classical queuing the-

ory [91, 95]. Subsequently, queuing theory delivered important insights

such as calculations for delay, throughput, and backlog of various systems

into the field of wired computer networks. In its very basic form, the output
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link of network components such as switches and routers can be modeled

by an M/M/1 queue that generally represents a single server with an

unlimited buffer capacity, Markovian arrival process, and exponentially

distributed service times. Traffic flows that traverse multiple nodes can be

modeled as a sequence of concatenated M/M/1 queuing systems that are

known to behave as independent M/M/1 queues [32, 46, 69]. Regarding

the state probabilities, the steady-state solution of such systems describes

the system’s behavior in an unambiguous way and can be calculated as a

product of the steady-state solutions of each of the queues. These systems

are also called product-form networks [32].

Likewise, the underlying theory of Markov chains that basically constitutes

the fundamental concept of queuing systems, has been used to model

medium access procedures in order to derive performance results including

throughput and access delays, for wireless networks. In general, Markov

chains are Markov processes, i.e. first-order dependent stochastic processes,

with a discrete state space. Thus, the probability of reaching a given state

only depends on its previous state, but is conditionally independent on

any other state in the past. Furthermore, if the Markov chain is time-

homogeneous, state transitions do not depend on the observation time

and any successive state does not depend on the time the process has

already spent in the current state. The process is memoryless, which implies

geometrically distributed state waiting times for time-discrete systems

and exponentially distributed waiting times for time-continuous systems

respectively. For further information and a detailed introduction to Markov

chains in general we refer to [32]. An application of Markov chains to model

the IEEE 802.11 DCF can be found, e.g., in [31].

Regarding its characteristics, however, the fundamental assumption of

memoryless packet inter-arrival and service times that yields a Poisson

process does not model Internet data traffic accurately since that kind of

traffic exhibits correlations and long-range dependencies that yield self-

similar properties, at least in wired networks. This is shown in the seminal
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work by Leland et al. [103] published in 1994. These findings have been

supported subsequently for various types of network traffic including

wide-area-network traffic [110, 121], world-wide-web traffic [50], and video

traffic [26] and obviously limit the application of queuing networks for

analyzing computer communication networks. The objective to overcome

this problem motivates research of sophisticated traffic models like frac-

tional Brownian motion that is meant to describe the behavior of Internet

traffic accurately [103, 117, 118]. Furthermore, new approaches such as effec-

tive bandwidths and deterministic network calculus have been developed

aiming at a general methodology for network performance analysis.

The theory of effective bandwidths, actually developed for ATM networks

and widely used for an efficient analysis of statistical multiplexing, describes

the minimum required bandwidth that must be provided to a flow so that it

can meet certain service guarantees. The effective bandwidth, described by a

space and a time parameter that contain information about the distribution

of the flow and the length of a time period respectively, is located between

the average bandwidth and the peak rate of a flow. Effective bandwidths

are known for a wide range of arrival processes. Moreover, the effective

bandwidth of aggregated flows can be determined by simply summarizing

the effective bandwidths of the individual flows. However, the theory of

effective bandwidth covers just a few scheduling models and its application

is limited to asymptotic approximations. For a detailed introduction to

effective bandwidths we also refer to [43, 88] and references therein. For

extensions covering the analysis of wireless networks see, e.g., [104].

The network calculus, developed in the pioneering work by Cruz [51],

evolved from the calculus for network delays and the concept of determin-

istic service curves for Generalized Processor Sharing (GPS) schedulers

proposed in [120]. Using min-plus algebra, a queuing system, as depicted

in Figure 2, is described by its traffic arrivals A(t) cumulated over time at

the input, the systems service, and the cumulative traffic departures D(t)

at the output. Typically, the input is described by an envelope function
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S(t)A(t) D(t)

Figure 2: A queuing system that links the arrivals A(t) of a system to its departures
D(t) by a service curve S(t).

covering the worst case of traffic arrivals, whereas the service of a system

is characterized by a service curve S(t) that represents a lower bound of

an amount of service that is offered to a flow. Similar to systems theory, a

service curve represents the impulse response of a linear system, however,

under min-plus algebra and all metrics are linked by

D(t) = inf
τ∈[0,t]

{A(τ) + S(t− τ)} =: A⊗ S(t)

where ⊗ is known as the min-plus convolution. To this end, the departures

can be calculated from the arrivals and a service curve representation, which

is known for various network elements such as switches, routers, and links

and their corresponding schedulers. Furthermore, the convolution function

is associative and a whole system of concatenated network elements can be

represented by the convolution of all single service curves along a network

path. The end-to-end service curve, that basically reduces the many-node

case to a single-node case that describes the end-to-end available service,

follows readily. Due to the worst-case representation the deterministic

network calculus can be used for strict service guarantees. It does, however,

not incorporate any statistical multiplexing gain and frequently yields overly

pessimistic performance bounds, even if the worst case is known to happen

very rarely. Additionally, most of the real-time applications such as voice,

video, and online games, tolerate moderate quality of service violations [39]

and still achieve acceptable results. Hence, a worst-case performance bound

could be relaxed in order to save resources without a significant reduction

of quality experienced by the user. Moreover, there are various systems,

like wireless radio channels, that are unable to provide any strict service
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guarantees and, thus, cannot be modeled by the deterministic network

calculus.

To overcome the limitations of deterministic network calculus and to

incorporate the statistical multiplexing gain, recently, significant progress

has been made towards the formulation of stochastic service curves, see,

e.g., [59, 80] and references therein. Service guarantees that can be calculated

using stochastic network calculus are generally described by percentiles

P [metric > x] ≤ ε

that state the probability a given metric, such as delay and backlog, exceeds

a certain value x is less or equal a certain violation probability ε, see,

e.g., [33]. Usually, the violation probability is quite small, e.g., in the order

of 10−6 to 10−9, to exclude only some rare events. These small values can

improve or, like for wireless networks, make it possible to provide network

performance bounds. Stochastic network calculus models are used, e.g.,

in [57, 113], to derive service curve representations of wireless links with a

focus on channel outages that are due to fading and interference. Modeling

random medium access and quantifying deviations of the DCF from the

fair share on different time scales, however, remains an open issue that is

addressed in this work.

Closely related to the min-plus algebra typically used by network cal-

culus is the max-plus algebra, where the service curve is inverted from

a function of time to a function of packets, see, e.g., [21]. Regarding the

deterministic network calculus, this relation establishes a close link between

the Guaranteed Rate Clock model [61] and so-called latency-rate service

curves. Furthermore, in max-plus algebra we can operate on packet time

stamps and cover packetized traffic directly which simplifies the analysis of

real systems. In Chapter 5 we use max-plus algebra to phrase our model.
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1.3 thesis statement and contribution

This thesis attempts to shed light on the interaction of various wireless

nodes. It demonstrates how a better understanding of the interaction, i.e.,

the fairness throughout wireless stations, can lead to better performance

evaluations and measurement methodologies. Hence, we phrase our overall

idea by the following statement.

A solid understanding of the interaction of various wireless stations,

that is brought down by new analytical insights, leads to better perfor-

mance evaluations and measurement methodologies.

This thesis contributes several theoretical, empirical, and practical results.

We develop a stochastic service curve model for IEEE 802.11 wireless net-

works, show its accuracy and applicability, and present application that can

benefit from such a model. We start by analyzing the fairness of the DCF

at a single radio channel without hidden or exposed terminals. We derive

closed-form solutions for the conditional distribution P[K= k|l] that M− 1

contending stations transmit k packets given a tagged station M transmits l

packets. This characterization of fairness turns out to be comprehensive and

versatile, e.g., the well-known fairness index by Jain [75] follows readily. We

substantiate our analytical findings using an extensive set of measurements

that were partly conducted in a shielded room to avoid uncontrollable

external influences as well as OMNet++ simulations. Moreover, we view the

DCF as emulating the Generalized Processor Sharing policy. We formulate

a recursive model for packet departure times coined the DCF clock, which

is subject to well-defined random error terms. Based on the distribution of

packet inter-transmissions we derive a stochastic service curve model for

the DCF and use this model to calculate probabilistic service bounds. To

verify the results we apply external measurement techniques, originally pro-

vided for wired-router performance evaluation, which make use of network

calculus models and parameters such as packet rate and latency. We show
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how the proposed methods can be applied to wireless networks and present

extensive measurement and simulation results quantifying the performance

of wireless networks. Using our framework, we show how user applications,

such as rate adaptive video streaming, can estimate their fair bandwidth

share under the DCF from passive measurements of their data arrivals

and departures. Closely related are active probing techniques that seek to

identify the unused capacity, also referred to as available bandwidth, along

a network path from specific probing packets.

1.4 thesis structure

The remaining part of this thesis is structured as follows.

In Chapter 2 we provide a brief introduction to the IEEE 802.11 standard

and related MAC mechanisms. We then summarize existing work on per-

formance analysis and related measurement methods. Finally, we review

related work on fairness issues with a focus on wireless networks.

Chapter 3 refers to the challenges that are addressed in this paper and lists

the main research questions. It justifies that these questions are previously

unanswered. Moreover, it motivates why it is worthwhile answering these

questions.

In Chapter 4 we investigate the long- and short-term fairness of the

IEEE 802.11 medium access procedure. Here we present some of the main

results of this thesis, i.e. a fairness model that describes the fairness of

the DCF achieved over various time scales and various number of hosts.

We substantiate our analytical findings by presenting an extensive set of

simulations and measurements.

In Chapter 5 we formulate a stochastic service curve model that is suitable

for analyzing the performance of wireless networks using the DCF. We use

this model to investigate performance bounds of the wireless network.

Moreover, we compare the results to simulations.
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In Chapter 6 we present applications, such as available bandwidth esti-

mation and adaptive video streaming, that can benefit from the previous

results. We investigate existing methods for active available bandwidth

estimation and present theoretical foundations to bandwidth estimation in

wireless systems. Moreover, we present our own measurement methodology

based on our findings in Chapter 4. To this end, we apply Kalman filtering

to accurately track varying available bandwidth over time. Moreover, we

show how the Kalman filter can be tuned optimally.

In Chapter 7 we present conclusions and future work.





2B A C K G R O U N D A N D R E L AT E D W O R K

In this chapter we introduce the IEEE 802.11 standard and the basic func-

tionalities of its medium access control mechanisms. We discuss related

work on its performance and present basic results derived from that. Fur-

thermore, we survey related work regarding fairness in infrastructured

wireless networks based on IEEE 802.11 and provide a brief outlook on

applications, such as active bandwidth measurement techniques, which are

affected by these fairness issues.

2.1 the ieee 802.11 standard

Due to the good performance and great success of the IEEE 802.3 Ethernet

standard [12] that defines the physical (PHY) and medium access control

(MAC) specifications for wired local area networks, IEEE 802.11 [11] is

based on the same distributed medium access mechanism named carrier

sense multiple access (CSMA). With CSMA in general, a station that intends

to transmit a packet listens to the shared medium for a given amount of

time. If the medium is idle during this period, the station transmits its

packet. Since several stations share a single medium to transmit packets,

collisions may occur if more than one station transmit data at the same

time. In order to deal with this problem, the original Ethernet standard

uses CSMA with collision detection (CSMA/CD) where a station receives

its own transmission and detects collisions by comparing the transmitted

to the received signals. In case of a collision, all colliding stations back

off for a uniformly distributed random period in a given interval [0, u],

that is also called collision window. This random backoff period reduces

the probability of a second collision. However, if another collision occurs

anyway, the colliding stations double their collision window at most up to a

17
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Figure 3: The IEEE 802.11 distributed coordination function using a carrier sense
multiple access procedure with collision avoidance in case of three com-
peting stations. Additionally, slot times and the various interframe spaces,
i.e. SIFS and DIFS are highlighted [11].

maximum value umax and return to umin in case of a successful transmission.

Furthermore, if the number of retransmissions reaches an upper limit the

corresponding packet is discarded. Since in the range from umin to umax, the

actual collision window size u meets the exponential distribution 2x − 1,

this procedure is called binary exponential backoff.

Using CSMA/CD in wireless networks is not suitable since interferences

become relevant only at the receiver. At the same time, it is not possible

for a sender to detect this interferences or collisions by listening to the

channel while transmitting. WiFi equipment typically supports half-duplex

transmissions, i.e. communication in both directions, but only in one di-

rection at a time, mainly for historical and cost reasons. Moreover, even

if the equipment would support full duplex transmission, i.e. communi-

cation in both directions simultaneously, it may miss collisions anyway if

they occur outside the senders sensing range. Therefore, the distributed

coordination function (DCF) of IEEE 802.11, that is the fundamental ac-

cess method used to support a data transfer on a best effort basis, uses

carrier sense multiple access with collision avoidance (CSMA/CA) in com-

bination with explicit acknowledgements (ACKs) for all packets to detect

collisions as well as transmission failures in general. As shown in Figure 3,

we consider a tagged station A that transmits a packet and receives the
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corresponding acknowledgement after the so-called short inter-frame space

(SIFS) which is a hardware constant given by the corresponding PHY imple-

mentation. Before sending the next packet the station generates a uniformly

distributed backoff variate b in an interval [0, w− 1]. This interval is also

called contention window of size w. Related to IEEE 802.3 a station that in-

tends to transmit a packet performs a carrier sensing to detect the presence

of other WiFi stations. Whenever the medium is continuously idle for the

duration of a distributed inter-frame space (DIFS) that is calculated by

Slot-Time + 2 SIFS, the station starts, respectively continues, its countdown

procedure. The backoff value is decremented by one after each PHY-specific

slot time. This countdown is paused if the medium is sensed to be busy

again and it is resumed after each successful DIFS waiting. As soon as the

backoff value reaches zero the station sends its packet. If several stations

perform the countdown procedure simultaneously the one with the smallest

backoff value starts its transmission first. If two or more stations finish the

countdown procedure at the same time their transmissions cause a collision.

In this case the respective stations perform an exponential backoff as in the

wired case, i.e. they double their current contention window w at most up

to wmax and return to wmin in case of a successful transmission. Doubling

the collision window, however, has historical reasons since this procedure

has been easy to implement using a binary shift operation. Yet, performing

a more complex adaptation procedure, like multiplicative increase linear

decrease (MILD) and additive increase multiple decrease (AIMD), may

result in a better network performance. In any way, the collision avoidance

algorithm adapts to the number of collisions which is related to the number

of contenting stations1. Additionally, to improve the performance in case of

moderate channel load, the DCF performs a post-backoff procedure imme-

diately after a packet is sent. Thus, after a long time not performing any

1 Actually, the collision avoidance mechanism adapts to transmission failures in general that
are assumed to be collisions. However, in a real-world scenario this might not be the case.
For a more detailed analysis of transmission errors we refer to, e.g., [60, 90] and references
therein. Solutions proposed to distinguish between transmission errors and collisions can
be found, e.g., in [90]
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transmission attempt, the backoff counter becomes zero and a station that

has already performed such a post backoff can send a new frame directly

after DIFS period. For a more detailed introduction to IEEE 802.11 MAC

mechanisms including the DCF we refer to [11, 122, 143].

To cope with the hidden station problem that is explored, e.g., in [140],

the IEEE 802.11 MAC may use a three-way handshake called request-to-

send/clear-to-send (RTS/CTS). It reserves the channel using small control

packets before sending its actual data packets in order to minimize the

costs in case of collisions to the expense of an additional overhead. Since

the RTS/CTS handshake is often disabled by default in today’s network

configurations, we neglect it in our following analysis. However, even if

RTS/CTS is enabled the basic DCF mechanism is still in charge to grant

channel access. Thus, our performance analysis can be easily transformed

to a case incorporating RTS/CTS.

In addition to the standard DCF, IEEE 802.11 provides an optional cen-

tralized channel access mechanism called point coordination function (PCF).

It resides in a point coordinator, which typically is the access point, and

coordinates the channel access of each station by additional control frames.

The point coordinator waits for a PCF inter-frame space (PIFS) which is

smaller than DIFS but larger than SIFS and provides some kind of priority

to grasp the channel and send its data. Obviously, this allows wireless

networks to support some QoS guarantees. However, the PCF seems to be

implemented only in some wireless devices maybe because it is not part of

the WiFi interoperability standard. Thus, we neglect PCF driven wireless

networks in this thesis.

Using the given procedures and standard values of the IEEE 802.11

MAC and PHY specifications [11], it is possible to derive several basic

performance results: the effective throughput, also known as goodput, of

a single station as a function of packet sizes, the collision probability as a

function of the number of stations and mean contention window size, and
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Characteristic DSSS HR-DSSS OFDM ERP-OFDM DSSS-OFDM

802.11 802.11b 802.11a 802.11g 802.11g

dataratemax 2 Mbps 11 Mbps 54 Mbps 54 Mbps 54 Mbps

slot-time 20 µs 20 µs 9 µs 9/20 µs 20 µs

SIFS 10 µs 10 µs 16 µs 10 µs 10 µs

DIFS 50 µs 50 µs 34 µs 28 µs 50 µs

ACK 14 Byte 14 Byte 14 Byte 14 Byte 14 Byte

CWmin 31 31 15 15/31 31

CWmax 1023 1023 1023 1023 1023

PreamblePLCP 144 µs 144/72 µs 16 µs 16 µs 144/72 µs

HeaderPLCP 48 µs 48/24 µs 4 µs 4 µs 48/24 µs

PreambleOFDM 8 µs

HeaderOFDM 4 µs

signal-extension 6 µs 6 µs

SymbolInterval 4 µs 4 µs

Table 1: Details regarding transmission times in 802.11a/b/g. [11]

the contention window size as a function of the number of stations and

collision probability.

IEEE 802.11 specifies various timing values for the different transmission

modes and coding schemes related to physical-layer features and capabili-

ties. A subset of theses values that reflect the most common and therefore

most relevant schemes are shown in Table 1. Starting from its basics, IEEE

802.11 transmits in the 2.4 GHz industrial, scientific, and medical (ISM)

band with 20 MHz bandwidth using a direct-sequence spread spectrum

(DSSS) modulation technique [143] that supports data rates of 1 and 2 Mbps

for the payload and 1 Mbps for the physical-layer convergence procedure

(PLCP) preamble and header respectively. Subsequently, IEEE 802.11b trans-

mits payload with data rates up to 11 Mbps using a so-called high-rate

(HR) DSSS. The PLCP preamble and header are, however, transmitted at

1 Mbps as in the basic IEEE 802.11 case. Furthermore, IEEE 802.11b op-

tionally supports short preamble and header to reduce the overhead and,

hence, increases the throughput. The IEEE 802.11a standard transmits in

the 5 GHz band typically with 20 MHz bandwidth using an orthogonal

frequency-division multiplexing (OFDM) modulation technique [143] that

supports data rates of 6 to 54 Mbps for the payload. Since 802.11a does not
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need to be backward compatible to previous standards, due to its operation

in a different frequency band, it provides new PLCP preamble and header

formats that are transmitted at higher speed and, thus, further reduce the

overhead. To support data rates up to 54 Mbps also in the 2.4 GHz band,

IEEE 802.11g introduces the extended-rate physical (ERP) layer that com-

bines the transmission procedures of the previous IEEE 802.11 standards

in 2.4 GHz with the OFDM coding scheme of IEEE 802.11a. In case only

ERP stations are associated with an access point, ERP-OFDM achieves the

very same performance results in terms of achievable throughput as in the

5 GHz band. If there are IEEE 802.11b devices connected as well, the timing

parameters are changed, e.g., using DSSS-OFDM, to assure backward com-

patibility and interoperability of all these devices. This, obviously, reduces

the performance.

Next, we evaluate the impact of IEEE 802.11 timing parameters and

DCF protocol overhead on the achievable throughput. Given a frame size

of L bytes, the long-term-achievable throughput, that is also referred to

as goodput, can be determined by G = L/g. Here, the gap g denotes the

mean time between the beginning of two subsequent frames transmitted at

maximum rate. This gap consists of a number of additive parameters such

as inter frame spacings (tdi f s, tsi f s), the expected backoff time (tbacko f f =

E[CWmin] slot-time), transmission times (txtime, tack) for data frames and

acknowledgements including preamble and header, and propagation delay

that, in addition, is neglected here, since it is specified by the standard to

be smaller than 1 µs. We compute the transmission time txtime(L) using

the formulas provided by the standard and derive the maximum achievable

throughput subsequently for specific transmission modes in an optimal

single node case as follows

G =
L

tdi f s + tbacko f f + txtime(L) + tsi f s + tack
. (2.1)
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Figure 4: Packet size dependent throughput in IEEE 802.11 for different trans-
missions schemes derived from an analytical model. We compare the
analytical findings to results from simulations and measurements respec-
tively and find the analytical model matches the shape of the empirical
data well.

We depict the analytical results for different packet sizes and different trans-

mission schemes in Figure 4. Regarding the measurement and simulation

results that are gathered from the testbed as described in Chapter 4, we

calculate the mean of 25 experiment runs per packet size lasting for 60 sec-

onds each. We present the outcome without showing the 0.95 confidence

intervals since they are negligible small. By comparing the analytical and

empirical results we find that they match quite well and the analytical

model provides an upper bound for the throughput in wireless LANs.

Moreover, we conclude that the size of packets and the traffic characteristics

have a large impact on the performance of wireless networks. This has to be

considered for various applications such as available bandwidth estimation

and its probing packets.
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2.2 related work on performance evaluation in ieee 802 .11

In the sequel, we elaborate and discuss related work on the collision proba-

bility, the distribution of backoff values as a function of contending stations,

and the corresponding throughput. As throughout this thesis, all models

considered here, focus on the MAC part of a wireless system and we assume

ideal channel conditions.

For pure random access wireless systems like ALOHA, where hosts send

their data independently, i.e. without taking other hosts into consideration,

Abramson provided a first and general performance analysis regarding the

averaged throughput as a function of offered channel load that is affected

by frame collisions [14, 15]. Assuming a large number of sending stations

M→ ∞, a fixed probability τ that a station transmits at an arbitrary point

in time, and constant sized frames with a transmission time Tt normalized

to 1, it can be shown that the number of frame arrivals at the channel is

Poisson distributed and the probability of simultaneous packet arrivals in

a given time period can be calculated. A frame is successfully transmitted

if and only if there is just one arrival in an interval of length 2Tt = 2 so

that no collision occurs. Thus, the average throughput becomes S = λe−2λ,

where λ is the average frame generation rate. The maximum throughput

follows readily as Smax = 1/(2e) ≈ 0.18. In [126] Roberts et al. present an

intuitive way to make pure ALOHA more efficient by using a slotted time

algorithm that allows nodes to transmit their packets only at slot boundaries.

Furthermore, the reception of a packet is completed within one slot. Thus,

the period where a collision might occur reduces from 2Tt to Tt and the

throughput becomes S = λe−λ. Likewise, the maximum throughput is

doubled and follows by Smax = 1/e ≈ 0.37. For a summery of the ALOHA

protocol, its application, and more detailed information we refer to [95] and

references therein. Further results, such as for retransmissions, stability, and

access delays can also be found, e.g., in [29, 87, 92].
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In 2000, a very similar approach using a p-persistent protocol model

for IEEE 802.11 that samples its random backoff interval from a geometric

distribution with parameter p was proposed by the seminal work of Cali

et al. [41]. Thus, the probability of transmission attempts per idle slot

remains constant over time and the sequence of collisions and successful

transmissions is independent and identically distributed. Knowing the

average channel access time and tuning the geometric backoff distribution

accordingly, it has been shown by the authors that this approach delivers

accurate average throughput and delay results.

At the same time, another pioneering performance analysis regarding

the saturation throughput of IEEE 802.11 and the DCF was provided by

Bianchi [31]. To tackle the challenging task of describing the behavior of the

binary exponential backoff algorithm that couples the service processes of

various contending stations throughout their shared collisions, the funda-

mental step here is the decoupling approximation. This states that every

node has a given and constant collision probability p which is independent

of the history of the node itself as well as of all other stations respectively.

Despite other differences, this is very similar to the ALOHA analysis and

the p-persistent model presented above where the transmission attempt

probability τ has the very same properties yielding a steady-state collision

probability p(τ) = 1− (1− τ)M−1 with M contending station. For Bianchi’s

DCF analysis, τ(p) = ∑m
i=0 bi,0 follows from a two-dimensional Markov

chain, where m is the maximum retransmission counter and bi,j are the state

probabilities of all backoff states that are closely related to the actual backoff

values a station can sample. The author proves that the resulting non-linear

system of equations that comprises τ(p) and p(τ) yields a unique solution

and can be solved numerically. By making use of the calculated results,

other network performance metrics such as average long-term throughput

can be calculated. Throughout a comparison to simulations, the results have

been shown to be quite accurate also for setups comprising a small number

of contenting stations. Figure 5 depicts the results for the average collision
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Figure 5: Applying the decoupling approximation introduced by Bianchi [31] and
Cali [41] respectively, we calculate the mean collision probabilities and the
related average backoff values over the number of stations. The theoretical
results match testbed and simulation data quite well.

probability and the mean backoff samples. We compare the model outcome

to simulation and testbed results and confirm a good matching also for a

limited number of contending stations.

Subsequently, Bianchi’s approach is approximated using a one-dimen-

sional Markov chain in [96] and further simplified using backoff values

sampled from an exponential distribution with a mean related to the colli-

sion probability in [95], respectively. By using Bianchi’s approach, channel

access delays are derived, e.g., in [42, 96, 129].

Owing to the related work discussed above, we conclude that modeling

the backoff procedure of IEEE 802.11’s DCF using exponentially distributed

backoff samples yields accurate performance results for average throughput

and delay calculations.

Complementary to analytical performance evaluations, many studies

attempt to analyze the performance of networks by measurements. For a

general overview we refer to, e.g., [71, 74, 89, 128] for wired and to [16,

22, 146] for wireless systems, and references therein. In the following, we

focus on a subset of performance metrics, namely the available bandwidth,

especially in wireless networks. The term available bandwidth denotes the

portion of the capacity at a link or a network path that remains unused

by present traffic. The idea to estimate the bandwidth of a network path
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from end-host measurements dates back to TCP congestion control [70]

and packet pair probing [89]. Since then, the field of available bandwidth

estimation has evolved significantly and to date a number of estimation

methods exists, e.g., [67, 71, 114, 125, 137], which are frequently used, e.g.,

for network management, error diagnostics [66], overlay routing [73, 149],

traffic engineering [94], and video adaptation [13, 116]. The theoretical

underpinnings of bandwidth estimation have been explored, e.g., in [107,

108, 109, 112] and empirical evaluations can be found, e.g., in [135, 137].

Common challenges and pitfalls regarding the design and evaluation of

bandwidth-estimation tools can be found in [72].

The task of bandwidth estimation in wireless networks, such as IEEE

802.11 Wireless LANs, however, has been understood to a much lesser extent.

Bandwidth-estimation methods, which perform well in case of wired links,

have been reported to yield highly unreliable available bandwidth estimates

for wireless links [34, 98, 105], hinting at a number of specific challenges and

open issues in wireless bandwidth estimation. Here, the performance and

the quality of service of a link depend largely on the characteristics of the

shared physical medium and the multi-access coordination function. These

aspects strongly influence quantities like delay, loss, and throughput and

may result in a high variability of available or actually accessible resources.

This makes measurement-based bandwidth estimation in wireless networks

a complex and difficult task.

A few approaches to bandwidth estimation specifically address the char-

acteristics of wireless networks. Passive methods, which measure existing

traffic, can take advantage of the wireless broadcast medium and record

idle periods to estimate the resources that would be available in the prox-

imity of a node [102, 130]. The approach is, however, unreliable in case of

hidden stations. Active probing, on the other hand, takes measurements of

specific probing traffic at the ingress and the egress of the network to infer

the available bandwidth of a network path. Contrary to wired networks a

strong impact of packet sizes on bandwidth estimates has been observed for
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wireless links [17, 82, 83, 98, 105]. Here, the fluid model, which is employed

by many estimation methods, is clearly violated. Moreover, as explored, e.g.,

by [98], the assumption of first-come first-serve (FCFS) scheduling, which

is the basis of most active probing methods, does not hold in IEEE 802.11

WLANs. To this end, the scheduling, i.e. fair scheduling in case of the DCF,

needs to be taken into account, see, e.g., [38, 124]. Hence, we provide an

overview of fairness aspects regarding IEEE 802.11 wireless systems in the

following.

2.3 related work on fairness in ieee 802.11

As mentioned before, an important aspect of communication protocols in

general is their attainable quality of service. Thus, achieving good through-

put while taking a – possibly weighted – fair medium access of an unknown

number of users into account is a major goal of MAC protocols. For instance,

fairness on long time scales ensures a certain average throughput, while the

issue of short-term fairness has tremendous impact on individual packet

delays [93, 96, 129]. This not only has a severe influence on elastic transport

protocols such as TCP [70, 147], but also on many measurement applica-

tions like available bandwidth estimation as explored, e.g., in [38, 124].

Furthermore, it is desirable to have some kind of service guarantees, such as

maximum delay or minimum jitter especially for time-critical applications

such as voice, video, or games [19, 39, 144]. These challenges gave rise

to significant research and for a survey we refer to, e.g., [132]. Using a

distributed scheduling approach, such as the DCF, addressing the problems

efficiently is, however, still challenging.

In the following discussion we focus on the MAC part of wireless net-

works and its impact on fairness. Hence, we assume all stations being part

of a wireless basic service set, i.e. all stations using the normal DCF mode of

operation in infrastructure mode communicating with an access point that

serves as a service set coordinator. Furthermore, all stations are within the
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same interference and sensing range, spanning a singular collision domain.

Since nowadays, wireless networks usually act as access networks to a wired

backbone network, like the Internet, this assumption seems reasonable. For

works on physical-layer-related issues regarding fairness, including pathloss

and asymmetric links, we refer to, e.g., [60] and references therein. Works on

infrastructure-less systems, such as wireless ad-hoc or wireless multi-hop

networks, can be found, e.g., in [24, 85].

As noted, e.g., in [27, 28], the DCF seeks to achieve per-packet fairness,

i.e. all stations transmit the same number of packets on average over suffi-

ciently long time scales. This is maintained by the channel contention phase

granting access to the channel with equal probabilities for all stations in a

distributed manner after a DIFS waiting. In [64] Heusse et al. discovered a

performance anomaly of wireless networks using the per-packet fair DCF

when supporting various bitrates among different stations. Hosts that oc-

cupy the channel for a long time because of using a low physical bitrate

penalize other hosts transmitting at higher rates. This results in an overall

low throughput approximately at the data rate of the weakest sender. Thus,

the notion of airtime fairness used, e.g., in [20, 77, 84], that aims to provide

a fair channel access not on a per-packet basis but on channel occupation

times, becomes relevant in IEEE 802.11. This depends, however, on further

parameters such as packet sizes and rate-adaptation and becomes notable

especially in wireless networks supporting high but also varying physical

data rates. Hence, some of these techniques developed in this field, like

TXOP, have also been applied to the IEEE 802.11e and the upcoming IEEE

802.11n standard not only because of fairness issues but to overcome the

disproportion of PHY- and MAC-layer overhead and actual transmitted data

that occurs mainly due to compatibility reasons. As a result, it is possible to

transmit more than one frame per granted channel time and the application

of per-packet fairness may become less important in the future. We note,

however, that not even the degree of per-packet fairness that is achieved by

the standard DCF is well understood and precisely modeled. Moreover, we
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believe that deeper insights in these aspects lead to a better understanding

as well as better solutions also in the case of airtime fairness.

Fairness is often quantified using Jain’s fairness index [75]. Given a

number of n samples, ki it is defined by the first and second moment of the

distribution K of k as

J =
E[K]2

E[K2]
=

E[K]2

Var[K] + E[K]2
=

(∑n
i=1 ki)

2

n ∑n
i=1(ki)2 (2.2)

where larger values of f ∈ [0, 1] indicate better fairness. For instance, in

a multiuser network system we may use the mean and the variation of a

given set of user throughputs k to calculate Jain’s fairness index regarding

the bandwidth share. If every user achieves the very same throughput the

index is equal to 1, whereas it is 1/M if only one user out of M occupies

the whole channel. Thus, the metric provides intuitive fairness values and

can be used to compare the fairness of different systems. However, since

Jain’s index only provides a singular value that is derived from the first and

second moment, it may lack some more complex aspects and insights of

fairness in a system.

Actually beyond the goal of providing a general definition of fairness,

Bharghavan et al. presented one of the first papers that point at its im-

portance in wireless networks [30]. The authors investigated bandwidth

allocation of the pre-802.11 multiple access with collision avoidance (MACA)

protocol proposed by Karn [86] and redefined by Biba [10] to be used with

Lucent WaveLAN-cards. In line with [133], they find that using the binary

exponential backoff procedure implemented by the MACA protocol, i.e.

with no maximum backoff, one station eventually occupies the channel per-

manently under high load by having a significantly lower backoff counter

than the others. To cover this, they proposed a MACA extension called

MACA for wireless (MACAW) that, among other things such as explicit

acknowledgements and a MILD backoff mechanism to improve the perfor-

mance, shares the backoff counter values using a packet header field. Thus,
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all stations within a basic service set have the same backoff counter and

use the same backoff distribution, which ensures a somehow fair medium

access on long time scales. Complementary to the work presented above, an

empirical study of fairness in WaveLANs is provided by Koksal et al. [93].

The throughput of individual stations is averaged over different window

sizes to compute Jain’s fairness index for short and long time scales. The

authors state that WaveLAN systems are long-term fair but unfair on short

time scales which basically supports the findings presented in [30].

Contrary to the MACA and WaveLAN protocol, IEEE 802.11 uses a

bounded binary exponential backoff mechanism, that alleviates unfairness

to some extent to the expense of collisions and packet losses. Similar results

are reported for WiFi systems by a number of subsequent papers, such

as [24, 97, 115, 141]. Some of them also compute Jain’s fairness index from

simulation or measurement data. Furthermore, based on a Markov model

the study [106] supports short-term unfairness.

In contrast, the authors of [27, 28] reported short-term fairness for IEEE

802.11 based on measurements and an analytical model that introduces a

new indicator of fairness. To this end, the packets that are transmitted by

contending stations before a tagged station transmits a single packet are

counted. In the sequel we refer to these packets as inter-transmissions. For

instance, we assume two independent, greedy wireless stations Mi with

index i = 1, 2 which intend to send their frames at maximum speed and

contend for a channel with a limited capacity. Due to the random medium

access, on the channel this yields a data stream with a random packet order,

like, for example: 1 2 2 1 1 2 1 2 2 2 1 1 2 1 2 1. If we tag station M1 and

count the packets of M2 that are inter-transmitted between two subsequent

frames of M1 we obtain the following number of inter-transmissions k:

2, 0, 1, 3, 0, 1, 1. The distribution K of the random inter-transmissions k

is directly related to the fairness of the system. Assuming that E[K] = 1,

the smaller the variance of K, the better the fairness. To model the distribu-

tion K, the authors consider independent and identically distributed (i.i.d.)
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random backoff values bi(j) of packet j at station i. Thus, the first station

sends exactly k packets before the second station completes its countdown if

∑k
j=1 b1(j) ≤ b2(1) and ∑k+1

j=1 b1(j) > b2(1). The backoff values are modeled

as continuous and uniformly distributed in [0, w− 1], where w is the mini-

mal contention window, which implicitly neglects collisions. Furthermore,

synchronized stations are assumed that start their countdown procedures at

the same time. The sums of uniform random variables are expressed using

the Irwin-Hall distribution yielding the conditional probability that station

one transmits k packets given station two transmits a single packet by

P[K = k|1] = k + 1
(k + 2)!

. (2.3)

In [27] Berger-Sabbatel et al. reported a good match of the model with empir-

ical data and conclude short-term fairness for two stations. The closed-form

result, however, is not extended to incorporate inter-transmissions between

more than two successive packets of a tagged station nor to more than

two contending stations. In [28], the same authors provided measurement

results that indicate a decreasing fairness for an increasing number of

contending stations. They lack, however, an analytical model.

In this thesis we derive an extended version of the Berger-Sabbatel-

metric to elaborate both short- and long-term fairness, which can hardly

be done using the original version due to the limitations of the Irwin-Hall

distribution, also in cases of more than two stations.
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Based on the literature review in Chapter 2, we extract several open research

questions that are addressed throughout this thesis.

Regarding analytical performance analysis, we find some seminal results

addressing QoS metrics, such as average throughput, medium access as well

as one way delay, and fairness for two contending stations, achieved by the

DCF [31, 41, 42, 96, 129]. In face of its success, however, it is remarkable that

there is little consensus of the actual degree of fairness achieved, particularly

bearing in mind its impact on quality of service [24, 27, 28, 64, 76, 97, 115,

141]. Until now, there is a lack of understanding on the parameters that

influence fairness on long and short time scales. Moreover, to the best of our

knowledge, there is no consistent model for larger networks, comprising

more than two stations [27, 28]. To this end, we phrase the following

questions.

How can the fairness of the DCF be described on any time scales as well

as for a various number of contending nodes? What are the parameters

that influence fairness? Is it possible to derive a fairness model that

facilitates an application within the stochastic network calculus?

The answers to those questions lead to a better understanding of the inter-

action of various wireless nodes. Since fairness has a tremendous impact

on related QoS parameters, such as channel access times and one-way

delays, this offers the possibility to improve network protocols that are

prone to those effects, like TCP for example. We can also identify and

tweak parameters, potentially online, to trade fairness to other metrics

like throughput. Moreover, a stochastic network calculus model allows the

analysis within the whole network calculus framework. To the end, we can

derive end-to-end performance bounds and, therefore, pave the way to a

holistic framework for network performance analysis.

33
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Regarding service measurements in general and available bandwidth

estimation in particular, we find some of the main research questions still

unanswered. It has been shown before that infinite probing trains yield

optimal results for stationary cross-traffic conditions [108, 109]. However,

for networks with changing, potentially non-stationary, channel conditions,

such as wireless networks, this might not be the case. To this end, we

need shorter probing trains in oder to detect changes in the time-varying

bandwidth process. The optimal train length, however, is still under discus-

sion [72, 107]. Related to the question of packet train length is the question

of convergence speed and the possibility of continuous probing. This also

raises questions regarding the type of probing traffic and its intensity [72].

While Liebeherr et al. address the type of probing traffic in [107], the aspect

of probing traffic intensity remains still open. However, this has a tremen-

dous impact on the applicability of these methods, since we do not want

to waste bandwidth unnecessarily. Bearing wireless networks in mind, we

phrase the following questions.

What is the optimal probing method for service and available band-

width estimation in wireless LANs that also allows for continuous

measurements and online monitoring? What are the tuning knobs

and influences of parameters on probing accuracy? How do we have

to parameterize a probing technique, including its filters, to obtain

optimal results?

The answers to the above questions are relevant to several practical appli-

cations. A solid measurement methodology based on accurate theoretic

fundamentals allows for an efficient QoS monitoring. To this end, applica-

tions such as measurement-based admission control and the verification

of service-level agreements can benefit. Moreover, elastic traffic, like TCP,

and elastic applications, like voice and video, can adapt their sending rate

according to measurement results and, therefore, increase the user’s quality

of experience.
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In the following chapter, we evaluate the DCF that aims to achieve a fair

and efficient medium access in IEEE 802.11. We provide an accurate model

of the fairness of the DCF. Given M greedy stations we assume fairness if a

tagged station contributes a share of 1/M to the overall number of packets

transmitted. We identify and explain relevant characteristics and parameters

of wireless links and the DCF, respectively, which have a severe influence on

the fairness. We derive the probability distribution of fairness deviations. To

this account, we extend the fairness model introduced by Berger-Sabbatel

et al. [27] to accurately cover the system behavior of an IEEE 802.11 basic

service set on long and short time scales. We use probability theory, see,

e.g., [127], to derive closed-form expressions for the fairness that is achieved

among M contending stations.

We tag one station M̂, denote Ki the inter-transmissions of station i =

1 . . . M− 1, and let K = ∑M−1
i=1 Ki. The conditional probability P[K= k|l] that

all other contending stations transmit k packets while the tagged station

successfully transmits l packets, can be defined for M ≥ 2 as

P[K= k|l] = P

[
M−1

∑
i=1

Ki = k
∣∣∣l] (4.1)

where the random variables Ki are the integers that satisfy

Ki

∑
j=1

bi(j) ≤
l

∑
j=1

bM̂(j) and
Ki+1

∑
j=1

bi(j) >
l

∑
j=1

bM̂(j).

where bi(j) specifies the random backoff values of packet j on station i.

Applying our model, we first analyze long-term fairness with arbitrary

backoff among two and more stations, i.e. M ≥ 2 and l, k� 1. We compare

backoff models with different backoff distributions and analyze their influ-

35
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ence on fairness. Next, assuming exponentially distributed backoff values,

we derive exact results for the distribution of inter-transmissions to cover

short- and long-term fairness. Last, we calculate some valuable bounds

and approximations that will be used by applications in Chapter 5 and

Chapter 6. In addition, we support our analytical results by an extensive set

of measurements.

4.1 relevant wireless link characteristics

In the following, we briefly discuss relevant characteristics of wireless

links in general that are of vital importance for fairness as well as related

applications such as available bandwidth estimation.

Fading and interference: Opposed to wired links, the characteristics of

wireless channels are highly variable due to fading. Other, potentially hid-

den stations, which may include stations that implement different radio

standards using the same frequency band, create interference on the wire-

less broadcast medium. These effects can cause rapid fluctuations of the

signal-to-noise ratio and may lead to high bit error rates. Different modula-

tion and coding schemes combined with rate adaptation may be used for

compensation. As a consequence, the capacity and the availability of the

channel may vary drastically. Furthermore, physical-layer capturing, that

is implemented in real wireless devices, enables the correct reception of

frames with a higher signal strength at the receiver, also in case of colli-

sions. Evidently, this can have a tremendous effect on the performance of a

wireless system, see, e.g., [65, 65] and references therein.

Contention: In case of wireless multi-access channels, stations share the

same medium and contend for access to the channel controlled by the MAC

protocol. Before accessing the medium stations listen to the channel to

detect nearby transmissions with the objective of avoiding collisions. This

procedure may fail in case of hidden stations, thus requiring additional

protocol mechanisms such as RTS/CTS. The resulting behavior of medium
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access procedures may be largely different if compared to FCFS multiplexing

at a point-to-point link.

Retransmissions: Due to frequent packet loss on wireless links, e.g., be-

cause of fading, interference, or collisions, the IEEE 802.11 standard includes

an RLC protocol that implements an automatic repeat request technique,

i.e. stop-and-wait ARQ, to ensure packet delivery. Link layer retransmis-

sions consume channel capacity and lead to increased and varying one-way

delays.

Our highly controlled measurement environment for IEEE 802.11 net-

works, however, eliminates effects that are due to fading, interference from

external sources, and physical layer capturing to a large extent. Protocol-

related aspects, however, remain to be addressed.

4.2 empirical fairness evaluation

As mentioned before, the fair capacity allocation of IEEE 802.11 links using

the DCF is discussed controversially in the literature. While [93] showed

short-term unfairness of CSMA/CA-based WaveLANs a recent study [27]

attributes findings of unfairness to early WaveLAN cards and reports that

current IEEE 802.11 DCF implementations actually exhibit good short-term

fairness. On this account, we conduct an empirical evaluation of the fairness

achieved by the DCF that acts as a baseline for our model-based analysis.

We perform extensive experiments with two and more contending stations

using an IEEE 802.11 testbed, partly in a shielded unechoic measurement

chamber. For comparison, we present results for the same topology from

simulations with the OMNeT++ [7] network simulator1. Using a very simple

simulation model for the PHY layer, this allows the analysis of wireless

LANs with a perfect physical channel.

1 We used OMNeT++ version 4.1 and the IEEE 802.11 simulation models that are part of the
current INET-MANET [4] framework for wireless network simulations. These models are
based on the IEEE 802.11g extension from Cocorada [48].
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Figure 6: Wireless testbed for empirical fairness evaluation comprising one access
point and up to 10 wireless clients connected using the IEEE 802.11a
standard achieving an overall maximum goodput of approx. 28 Mbps.

Our testbed depicted in Figure 6 consists of up to 10 wireless stations

that ran the iperf traffic generator [5] to send data to a receiver and contend

for the medium. The stations2 are connected to the access point using IEEE

802.11a with a fixed rate of 54 Mbps. In addition, the channel is monitored

by a spectrum analyzer to detect interferences that may arise from outside

the testbed. The access point is connected to the receiver using fast Ethernet

with 1 Gbps. The distance between the wireless stations and the access

point is between 0.5 m and 1.5 m to ensure that all stations are in radio

range to each other and to avoid antenna near-field effects. Furthermore,

we adapted the sending power such that the signal strength of all stations is

equal on average at the receiver. We note that for an increasing number of

stations this correct calibration of the testbed becomes absolutely relevant

to reduce physical-layer influences. We switched off RTS/CTS, automatic

rate adaption, and made sure that packet fragmentation does not occur.

Additionally, all stations are connected to a separated wired control network

and we used SSH-Launcher [35] scripts to automate our experiments. In

addition, we applied similar simulations comprising up to 40 wireless

nodes.

2 We used Gateworks Laguna GW 2388-4 Boards [3] with a 600 MHz Dual Core ARM11

processor and 128 MB RAM running OpenWrt [8] Kamikaze bleeding edge at revision 27943

with Linux kernel version 2.6.39 [6]. We employed Ubiquiti SR-71A 802.11abgn wireless
LAN cards.
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(b) four contending flows

Figure 7: Measured throughput of contending flows over 60 s. Each flow obtains a
long-term fair bandwidth share. Regarding the simulations, we attain the
very same results.

Unless otherwise noted, we carried out all experiments lasting for 15

minutes per participating station. We repeated each experiment 25 times

to generate a sufficient amount of data for statistical analysis. Each station

sent a greedy UDP flow of 1500 Byte packets at a rate of 28 Mbps. Note

that this sending rate of a single station coincides with the service rate of

IEEE 802.11g due to per-packet protocol overhead.

Figure 7 shows the long-term average throughput of contending flows

with a constant bit rate. The throughput is averaged over 25 experiments

that last for 60 s each. We also calculated confidence intervals at a confidence

level of 0.95. Since these intervals are negligibly small, they are, however,

omitted in the plots. In Figure 7a two flows contend for the link. Flow 1 has

a rate of 28 Mbps and the rate of flow 2 increases from 0 to 28 Mbps in steps

of 1 Mbps for each experiment. Similarly, Figure 7b shows the throughput

of four flows, where the rate of flow 4 increases the same way.

The results in Figure 7 confirm that each flow achieves a fair share of

the capacity on long time scales. Flow 2 in Figure 7a achieves its target

throughput whereas the throughput of flow 1 is reduced accordingly until

flow 2 reaches 14 Mbps. From this point on both flows get a fair share

of 14 Mbps regardless of the rate of flow 2. Figure 7b confirms this result

for four heterogeneous flows. We note that throughout all experiments

and simulations, the stations transmitted their data with an average rate
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Figure 8: OMNeT++ simulation results agree closely with the measurement data.
The q-q plot matches well for 0.99 of the samples, but brings out devia-
tions at the tail, showing additional unfairness in the testbed compared to
the simulator. Moreover, the slope midway does not become one, which
indicates a better fairness in the testbed.

of approximately 28/M Mbps and a total deviation from that of less than

±2.5%. This indicates close to perfect long-term fairness in all cases.

To investigate fairness at different timescales, we tag one station and

count the random number of packet inter-transmissions K of all other

contending stations while the tagged station transmits l packets. To this

end, we consider the conditional probability P[K = k|l] where mean and

variance are related to the fairness. That is, the smaller the variance of the

inter-transmissions K and the more similar the mean of K becomes to l,

the better the fairness. Hence, E[K] = l and Var[K] = 0 on all time scales,

i.e. for all l, indicate perfect fairness. For M = 2 and l = 1 our definition

reduces to the special case in [27] where short-term fairness among two

stations is analyzed. Throughout this thesis, however, we consider short- as

well as long-term fairness and an arbitrary number of stations.

In the following, we compare our testbed measurements to OMNeT++

simulations. Figure 8a shows the probability mass function (pmf) of the

inter-transmissions K for different l. We observe that the simulation results

match the measurement data quite well but underestimate the fairness

slightly. We use quantile-quantile (q-q) plots to bring out differences at the

tail of the distributions to detail the goodness of fit. If the q-q plot equals

a straight line, the distributions are similar in general, however, they may
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Figure 9: Numerical results from an extension of the model proposed by Berger-
Sabbatel et al. in [27]. The uniform backoff model overestimates fairness.
The q-q plot not only differs at the tail but also its slope midway does
not become one. Moreover, the 0.99 intervall narrows by a factor of 1.7
and wrongly indicates good fairness

have different distribution parameters. The slope of the line is related to the

variance whereas its position reflects the mean. Thus, a straight line with

slop 1 and x = y represents equal distributions with identical parameters.

The exemplary q-q plot for l = 40 in Figure 8b shows the quantiles of

the measurement data vs. the simulation data. As indicated in Figure 8b

we find that 0.99 of the samples almost coincide. The slightly different

slope confirms the underestimation of fairness stated before. Deviations

at the tail, however, show additional unfairness in the testbed that is not

reproduced by the simulator, i.e. in the testbed large deviations of K occur

more frequently.

Furthermore, we compare our testbed results to the model that is estab-

lished for two stations and short-term fairness in [27] and discussed in

Chapter 2. To analyze long-term fairness as well we extend this method

from the special case l = 1 in [27] to cover all l ≥ 1. Denote bi(j) the i.i.d.

countdown values for packet j at station i = 1, 2. We model the distribution

of inter-transmissions K of station 1 while station 2 transmits l packets as

P[K= k|l]=P

[
k

∑
j=1

b1(j)≤
l

∑
j=1

b2(j) and
k+1

∑
j=1

b1(j)>
l

∑
j=1

b2(j)

]
. (4.2)
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Assuming bi(j) are uniform random variables as in [27], equation (4.2)

results in Irwin-Hall distributed terms which, however, do not yield a

simple solution for l ≥ 2. For now, we compute the distribution numerically

by convolution and compare the results denoted uniform backoff model to our

testbed data in Figure 9. The pmf of the model shows a deviation from the

testbed results that is also confirmed by the q-q plot. Compared to Figure 8b

the 0.99 interval becomes much narrower in Figure 9b indicating that the

assumption of uniform backoff values overestimates the actual fairness of

the DCF.

4.3 long-term fairness with arbitrary backoff

We use the central limit theorem, that states that any infinite sum of i.i.d.

random variables becomes normally distributed, to derive the long-term

fairness, that is related to the average throughput, with arbitrary backoff.

In the sequel, we denote normal random variables N(µ, σ2) where µ is the

mean and σ2 the variance.

Theorem 1 (Gaussian approximation) Let bi(j) be i.i.d. random variables with

mean µ and variance σ2 and let M = 2. For k, l � 1 the cumulative distribution

function of Eq. (4.1) is approximately Gaussian with

P[K≤ k|l] ≈ P

[
N(0, 1) ≤ µ (k− l)

σ
√

k + l

]
.

Proof For M = 2 we have from equation (4.1) that

P[K< k|l] = P

[
k

∑
j=1

b1(j) >
l

∑
j=1

b2(j)

]

and after expanding and normalizing this formula equals

= P

[
∑l

j=1 b2(j)− lµ

σ
√

l
−

∑k
j=1 b1(j)− kµ

σ
√

l
<

µ(k− l)
σ
√

l

]
.
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Applying the central limit theorem the sums can be approximated by normal

distributions with specific means and variances. Thus, it follows that

P[K< k|l] ≈ P

[
N(0, 1)− N

(
0,

k
l

)
<

µ(k− l)
σ
√

l

]
.

Since the normal distribution with zero mean is symmetric we can re-

place the subtraction of N(0, k/l) by an addition. Furthermore, the sum of

two normal random variables N(µ1, σ2
1 ) and N(µ2, σ2

2 ) is also normal with

N(µ1 + µ2, σ2
1 + σ2

2 ) such that

P[K< k|l] ≈ P

[
N
(

0,
k + l

l

)
<

µ(k− l)
σ
√

l

]
.

Finally, we use that if X is N(aµ, a2σ2) then Y = X/a is N(µ, σ2) with

a2 = (k + l)/l to standardize the result.

It is worth highlighting that Theorem 1 assumes i.i.d. random countdown

values. It does, however, not make any assumption about their distribution.

To compare the impact of different backoff models on fairness we phrase the

following corollary for uniformly, as used, e.g., in the short-term fairness

model in [27], and exponentially distributed countdown values, as assumed,

e.g., by the throughput models in [31, 95] respectively.

Corollary 1 (Uniform versus exponential countdown) Assume Theorem 1.

If the bi(j) are uniform in [0, w], i.e. µ = w/2 and σ2 = w2/12, then

P[K≤ k|l] ≈ P

[
N(0, 1) ≤

√
3(k− l)√

k + l

]
.

If the bi(j) are exponentially distributed with parameter λ, i.e. µ = λ−1 and

σ2 = λ−2, then

P[K≤ k|l] ≈ P

[
N(0, 1) ≤ k− l√

k + l

]
.
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Theorem 1 and Corollary 1 yield a number of important conclusions.

First, we compare the pmfs from Corollary 1 displayed in Figure 10a. In

case of two stations, the assumption of exponential backoff values, which

reflects the increasing contention window and retransmissions in case of

collisions, matches the simulation results perfectly. For the testbed, however,

it underestimates the fairness and yields a rather pessimistic result. In

contrast the assumption of uniform backoff overestimates the fairness. These

results are owing to the fact that in case of two contending stations only,

the number of collisions and retransmissions is quite low. Thus, the DCF’s

backoff values are sampled from a uniform distribution in the interval

[0, wmin − 1], i.e. without an increasing contention window, in most cases.

Hence, for just two stations the distribution of inter-transmissions lies in

between the uniform and exponential backoff approximation. For more

than two stations, however, the number of collisions and retransmissions

increases and the binary exponential backoff mechanism comes into account.

In this case, the exponential backoff model provides interesting results and

insights. This is further elaborated in Section 4.4. The uniform backoff

model, however, cannot be transformed into a closed form solution for

more than two hosts. Hence, it does not provide any further results.

Regarding the goodness of fit of the exponential backoff approximation

for two stations, Figure 10c and Figure 10d show q-q plots of the exponential

model vs. the testbed data and confirm the accuracy of the model for 0.99 of

the samples. The testbed exhibits larger unfairness at the distribution tail as

also observed for the uniform model compared to OMNeT++ simulations

in Figure 8.

Next, we consider Corollary 1 and find that the distribution parameter

in case of uniform as well as in case of exponential countdown values

has no influence on the fairness. In contrast, the distribution itself has

significant impact. Corollary 1 shows an explicit fairness degradation of
√

3 of exponential compared to uniform countdown values, i.e.
√

3 can be

viewed as the price of exponential backoff and retransmissions. Figure 10a
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Figure 10: Using exponential backoff values, the analytical results from Corollary 1

match the OMNeT++ results perfectly and the testbed data quite well.
Assuming uniformly distributed random backoff variables the model
overestimates the fairness and yields an overoptimistic result. Further-
more, the model accurately predicts the

√
l fairness improvement, as

illustrated by the slope in Figure 10b.

shows this effect clearly, i.e. the pmf for uniform is by
√

3 higher and

narrower.

Last, we evaluate the improvement of long-term over short-term fairness.

To this end, we define a multiplicative constant c and let k = cl. The param-

eter c may be viewed as a threshold value that specifies a relative deviation

that is still considered fair. By insertion the term (k− l)/
√

k + l from The-

orem 1 becomes
√

l (c− 1)/
√

c + 1 and it follows that long-term fairness

improves proportionally to
√

l. Thus, the initial fairness improvement for

small l is significant but becomes less pronounced with increasing l. This re-

sult is independent of the distribution of backoff values. Figure 10b depicts

a q-q plot of our measurement data for l = 40 vs. l = 160. The slope of the
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q-q plot closely follows
√

160/40 for 0.99 of the samples. Hence, Figure 10b

clearly shows the
√

l scaling in the testbed data.

4.4 short- and long-term fairness with exponential backoff

In the sequel we consider the exponential backoff model that is widely

used in the literature, e.g., in [31, 41] for throughput analysis. Moreover,

it has been proven fairly accurate for the Gaussian approximation to our

empirical results in Section 4.3. Opposed to the uniform backoff model, the

exponential backoff model allows an analytical solution of equation (4.1) for

M > 2 that can be further elaborated. To this end, we derive an exact result

and useful approximations for long- and short-term fairness respectively.

Theorem 2 (Exact result) Let bi(j) be i.i.d. exponential random variables and let

p = 1/M. Then Eq. (4.1) is negative binomial

P[K= k|l] = pl(1− p)k
(

k + l − 1
k

)
.

Proof First we provide a direct proof for two contenting stations, i.e. M = 2,

and relax this assumption by using an intuitive argumentation in the latter.

The direct proof follows readily by using equation (4.1)

P[K= k|l]=P

[
k

∑
j=1

b1(j)≤
l

∑
j=1

b2(j) and
k+1

∑
j=1

b1(j)>
l

∑
j=1

b2(j)

]

that can be rewritten as

P[K= k|l] = P[0 ≤ Z−Y < X].

Here, X, Y, Z are independent random variables where X = b1(k + 1) is

exponentially distributed with a probability density

fX(x) = λ e−λ x
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and Y = ∑k
j=1 b1(j) as well as Z = ∑l

j=1 b2(j) are sums of k and l exponen-

tially distributed random variables respectively. Hence, Y and Z are Gamma

(also known as m-Erlang) distributed with the well-known probability den-

sity functions given by

fY(y) =
λ e−λ y (λ y)k−1

(k− 1)!

fZ(z) =
λ e−λ z (λ z)l−1

(l − 1)!
.

We calculate the probability P[K= k] as follows

P[K= k|l] =
∫ ∫ ∫

0≤z−y<x
fZ(z) fY(y) fX(x)dxdydz

=
∫ ∞

z=0

∫ z

y=0

∫ ∞

x=z−y
fZ(z) fY(y) fX(x)dxdydz

Solving the first two integrals yields

P[K= k|l] = λk+l

(l − 1)! k!

∫ ∞

z=0
e−2λ z zk+l−1 dz.

We solve this equation using integration by parts, and after the first step

this yields

P[K= k|l] = λk+l

(l − 1)! k!
(k + l − 1)

2λ

∫ ∞

z=0
e−2λzzk+l−2 dz

which can be further simplified by continuously applying the integration

by parts k + l − 2 times. Finally this yields

P[K= k|l] = λk+l

(l − 1)! k!
(k + l − 1)!
(2λ)k+l−1

∫ ∞

z=0
e−2λz dz

where the last integral evolves to 1/2λ such that

P[K= k|l] = 1
(l − 1)! k!

(k + l − 1)!
2k+l
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and after some reordering

P[K= k|l] = 2−(k+l)
(

k + l − 1
k

)

becomes negative binomial.

Next, we relax the assumption of considering only two contenting stations

and provide an intuitive proof that Theorem 2 holds for M ≥ 2 in general.

Therefore, we determine the probability that station M̂ gets access to the

channel. Key to derive this probability is the memoryless property of

negative exponential random variables, i.e. given an exponential random

variable X with parameter λ it holds that P[X > x + y|X > x] = P[X >

y] = e−λy, see, e.g., [127].

Consider M stations that contend for an idle channel. Owing to the mem-

oryless property, each station has an exponentially distributed countdown

value with the same parameter λ irrespective of the time the station has

already spent on performing the countdown procedure. It follows that

each channel access can be viewed as an independent Bernoulli experi-

ment. Denote p the probability of success, i.e. the probability that station

M̂ finishes its countdown procedure first, such that it attains access to the

channel. Since the remaining countdown values are i.i.d. at all stations, each

station has the same channel access probability p where ∑M
i=1 p = 1 such

that p = 1/M. Hence, the probability that stations 1 . . . M− 1 access the

channel exactly k times until station M̂ performs the l-th channel access

is the probability of seeing the l-th success of station M̂ exactly in the

(k + l)-th Bernoulli trial. This event is negative binomially distributed.

Figure 11 compares the results from Theorem 2 with the testbed measure-

ment data. We find that Theorem 2 predicts short- and long-term fairness

for M = 2 stations fairly accurate, see Figure 11a. Figure 11c and Figure 11d

add q-q plots for short-term fairness which also show a close match for 0.99

of the samples. Figure 11b restates the
√

l-effect also for short time scales.



4.4 short- and long-term fairness with exponential backoff 49

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50

pr
ob

ab
ili

ty

inter-transmissions k

l=1

l=10

l=40

testbed
OMNeT++

exponential backoff model

(a) pmf of inter-transmissions, M = 2

0

10

20

30

40

50

60

0 5 10 15 20 25

te
st

be
d,

l=
10

testbed, l = 1

0.99

√
10/1

(b) corresponding q-q plot for l = 1 vs.
l = 10

0

5

10

15

20

25

30

0 3 6 9 12 15

te
st

be
d

exponential backoff model

0.99

(c) corresponding q-q plot for l = 1

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

te
st

be
d

exponential backoff model

0.99

(d) corresponding q-q plot for l = 10

Figure 11: Analytical results from the exponential model and Theorem 2 predict
short- and long-term fairness correctly for M= 2 stations. As already
stated before, fairness improves with

√
l.

Next, we derive a normal approximation. This allows viewing fairness

deviations as i.i.d. Gaussian noise.

Corollary 2 (Gaussian approximation) Assume Theorem 2. For l � 1 it fol-

lows that

P[K≤ k|l] ≈ P

[
N(0, 1) ≤ kp− l(1− p)√

l(1− p)

]
.

Proof We view the negative binomial random variable in Theorem 2 as a

sum of i.i.d. geometric random variables. Each of the geometric random

variables equals the number of trials required until the next success is

achieved, i.e. we write Theorem 2 as a sum of l i.i.d. geometric random

variables denoted Xi

P[K≤ k|l] = P

[
l

∑
i=1

Xi ≤ k + l

]
.
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Figure 12: The Kullback-Leibler distances quantify the goodness of fit of the ap-
proximations and analytical results to our testbed data. We find that the
Gaussian approximations assuming exponentially distributed backoff
values match the analytical results as well as the testbed very closely.
Moreover, the same holds for the exact results, which is in line with the
q-q plots shown before. We conclude that we can apply the Gaussian
approximations already for small packet train length, i.e. l > 4.

Normalization using the mean µ = 1/p and the variance σ2 = (1− p)/p2

of geometric random variables yields

P[K≤ k|l] = P

[
∑l

i=1 Xi − lµ
σ
√

l
≤ (k + l)p− l√

l(1− p)

]
.

Using the central limit theorem the normalized sum is approximately

standard normal N(0, 1) if l � 1.

We note that Corollary 1 and Corollary 2 for M = 2 converge under

the assumption of the central limit theorem, i.e. for k, l → ∞. For further

quantitative comparison we use the Kullback-Leibler distance [49] between

the measurement data and the analytical expressions. The Kullback-Leibler

distance D(X||Y) quantifies the deficiency if we assume the distribution of

X instead of the true distribution of Y. It is defined as

D(X||Y) = ∑
x
P(X= x) ln

P(X= x)
P(Y= x)

.

Here, P(X= x) is either the empirical mass function or the negative binomial

distribution, i.e. the exact results, and P(Y = y) is the probability mass

function from the analytical model.
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Figure 12 summarizes the results. Figure 12a compares the Gaussian

approximations of Corollary 1 and Corollary 2 to the exact results of Theo-

rem 2. We find that the Kullback-Leibler distance converges to zero very fast.

Hence, the Gaussian approximations that assume exponentially distributed

backoff values match the exact results already for medium-sized packet

trains. We conclude that we can apply the Gaussian approximations for

medium packet train length, i.e. l > 4. Similar to the q-q plots presented

above, Figure 12b illustrates the goodness of fit of the analytical results to

the testbed data. Again, the exact result matches the testbed data very well.

Finally, we derive a useful bound for the distribution of inter-transmiss-

ions. In the following chapter, this bound is used to compute a stochastic

service curve that describes the service offered by the DCF.

Corollary 3 (Chernoff bound) Assume Th. 2. It follows that

P
[
KSk

∣∣∣l] ≤ ((1− p)(k + l)
k

)k(p(k + l)
l

)l

∀k ≶ l(M− 1)

Proof The proof uses Chernoff bounds, see, e.g., [127]

P
[

XSx
]
≤ e−θxMX(θ) ∀θ ≶ 0

that provide exponentially decreasing bounds on tail distributions and

yields good results for small probabilities. Here, MX(θ) = E[eθX] denotes

the moment generating function of X. We insert the well-known moment

generating function of the negative binomial distribution and derive

P[K≤ k|l] ≤ e−θk
(

p
1− (1− p)eθ

)l

∀θ < 0.

In order to obtain the best-possible bound, we minimize the right-hand

side over all θ < 0 and insert θ = ln (k) − ln ((l + k)(1− p)) where k <

l(1− p)/p = l(M− 1) to ensure θ < 0. The upper bound follows in the

same way.
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Figure 13: Jain’s fairness index over packet train length for various number of
contending hosts. We find that fairness increases for an increasing
number of packets per train, i.e. for long time scales. We note that
this fairness improvement is achieved quite fast. Moreover, we find
that fairness initially decreases for an increasing number of hosts. At a
first glance, this seems to be contrary to the model outcome. However,
the fairness increases again, for a larger number of hosts as correctly
predicted by the model.

Theorem 2, Corollary 2, and Corollary 3 can be easily extended to het-

erogenous stations that use different parameters λ, e.g., for service differen-

tiation. In this case only the probability of successful channel access p has to

be adapted accordingly. Also, it is a straightforward extension of Theorem 2

to derive the probability that a single station with index M transmits l

packets given that the remaining M− 1 stations together transmit k packets.

To further elaborate these fairness issues, also in case of more than

two stations, we derive Jain’s fairness index, see equation (2.2), which

follows directly from the first and second moment of the inter-transmissions.

For the negative binomial distribution in Theorem 2 the first moment is

E[K] = l(1− p)/p and the second central moment is l(1− p)/p2 such that

the second moment becomes E[K2] = l(1− p)/p2 + (l(1− p)/p)2. With

p = 1/M we have

J =
l

l + M
M−1

. (4.3)

Regarding Figure 13, we find that equation (4.3) matches the testbed

measurement data almost perfectly for M = 2 stations, in which case
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J = l/(l + 2). In face of short-term unfairness we find that fairness is

practically achieved already for moderate train length l, see Figure 13a. For

more than two stations additional effects that cause unfairness result in a

deviation. However, as depicted in Figure 13b, this deviance diminishes

and the system becomes fairer again for an increasing number of stations

as correctly predicted by the model. We conclude that additional effects

beyond our model cause unfairness in cases of more than two stations.

Empirical results indicating poor fairness in case of more than two stations

have also been reported, e.g., in [28]. We assume, however, that theses effects

become negligible again for M� 2.

To elaborate the fairness deviation in case of 2 < M < ∞ stations, we

recall the assumptions of the exponential backoff model. As already stated

by the decoupling approximation introduced by Bianchi [31] and Cali [41]

respectively, the exponential backoff model assumes i.i.d backoff values

that are implicitly memoryless which also results in independent packet

arrivals. In real systems, however, the backoff processes of various stations

are coupled by collisions and are not memoryless. For example, consider a

network with two stations that sample their backoff values from a uniform

distribution in the range of [0, wmin − 1] and proceed with the standard

medium access procedure. In case one station successfully transmitted its

packet, it is more likely that the other stations transmits next, since the

system is not memoryless. Moreover, if we consider three stations, we

find that if the packets of two stations collide, these stations double their

contention window and the third station can take advantage from this.

Thus, the stations are clearly coupled by their collisions. We conclude that

packet arrivals in real wireless systems are not independent but correlated,

which violates the model assumptions to some extent.

To analyze and quantify these correlations we define a packet arrival

process κ(n) for n = 1, 2, ..., k where κ(n) = 1 if a tagged station sends a
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Figure 14: Autocorrelation of packet arrivals over lag and the sum of autocor-
relation over number of hosts from measurements and simulations
respectively. We find that the correlation of packet arrivals decreases if
the lag increases. Thus, the packet arrival process becomes uncorrelated
after a number packets are sent. The sum of autocorrelations remains
finite and decreases again for a larger number of hosts. Hence, the
model assumptions are met for M� 2 which explains the minor model
inaccuracies for a medium number of stations.

packet and κ(n) = −1 if any other station sends a packet. Given the process

is stationary, we calculate the sample autocorrelation R̂(ι) as [99]

R̂(ι) =
1

Var(κ) (k− ι)

k−ι

∑
n=1

[κ(n)− κ][(κ(n + ι)− κ]

where κ and Var(κ) are the sample mean and variance of κ(n) respectively.

The positive variable ι = 1, 2, ..., k − 1 denotes the lag that describes the

time shifting of the process to itself. If, on the one hand, the observations

of κ(n) are independent, R̂(ι) becomes zero. If, on the other hand, R̂(ι)

deviates from zero significantly, this is a strong indication that κ(n) is not

independent. Note, however, that the sample autocorrelation R̂(ι) must not

be exactly zero even if κ(n) is independent due to the limited number of

observations.

Figure 14a depicts the mean sample autocorrelation obtained by mea-

surements of M = 2, ..., 10 hosts. We find that for all cases, i.e. for all setups

with respect to M, κ(n) is an a-dependent process [119] since R̂(ι) becomes

approximately zero after a steps. Thus, the packet arrival process becomes

uncorrelated after a packets are sent. Furthermore, Figure 14b shows the
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Figure 15: Long-term fairness improves approximately with
√

l also in case of
more than two stations. This improvement is correctly predicted by
Corollary 2.

sum of autocorrelations over all ι, i.e. ∑∞
ι=1 R̂(ι) for the measurements and

the simulations respectively. In case this sum tends to infinity, it would have

a tremendous impact on the statistical inferences, see, e.g., [25]. However, we

see from Figure 14b that ∑∞
ι=1 R̂(ι) = constant < ∞ and, in addition, decays

to zero for an increasing number of nodes after it has exceeded a certain

maximum value. This indicates that for M � 2 the real system behavior

converges to the model assumptions. For M < ∞ stations, we conclude

that exponentially distributed backoff values model the real backoff process

quite, but not perfectly accurately. This explains the slight fairness devia-

tions of the testbed data compared to the model outcome for a medium

number of stations. It is, however, worth highlighting that the analytical

results keep hold of their validity and shed light on interesting insights

regarding the DCF, also for a moderate number of stations.

Considering Theorem 2 we recover the result that the parameter of the

i.i.d. exponentially distributed countdown values does not impact fairness
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regardless of the number of stations and the time-scale. To this end, we

again define a multiplicative constant c and let and k = (M− 1)cl using

that p = 1/M. Thus, Corollary 2 yields

P[K≤ k|l] ≈ P

[
N(0, 1) ≤

√
l (c− 1)

√
M− 1

M

]
.

predicting that fairness improves with
√

l. Figure 15 shows the improvement

for M = 3, M = 4, M = 5, and M = 10 stations respectively. The testbed

measurements confirm the dependence on
√

l.
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In this chapter we introduce the basic principles of deterministic and stochas-

tic network calculus. Equipped with the findings of the previous chapter,

we derive a service curve model for the DCF that facilitates applications of

the stochastic network calculus [47, 58, 79]. To this end, we view the DCF

as emulating the Generalized Processor Sharing discipline. Subsequently,

we underpin our analytical results with an extensive set of measurements.

5.1 background on network calculus

The pioneering GPS model [120] defines a weighted resource allocation that

is perfectly fair on any time scale. To this end, GPS assumes infinitesimal

small packets, also referred to as fluid traffic, which can be divided, stopped,

and interrupted at any time. Obviously, these characteristics cannot be found

in real systems since traffic consists of packets with a certain length that

occupy the complete channel for a period related to that length. To date, a

variety of packet-by-packet implementations exist that emulate GPS closely,

such as Weighted Fair Queuing (WFQ) [53, 120] and Deficit Round Robin

(DRR) [134]. Distributed emulations are proposed in [23, 97, 141].

GPS and the calculus for network delays [51] gave rise to the important

concept of service curves [120] that is the foundation of today’s network

calculus. Here, the notion of service curves characterizes the behavior of a

time-invariant min-plus linear systems. The particular strength of network

calculus is the convolution of tandem systems that yields the notion of

network service curve and permits analyzing entire networks as a single

system. Obviously, it is closely related to classical linear systems theory

where the departing signal can be calculated by convolving the input

signal with the impulse response of the system, see, e.g., [63, 123] for

57
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details. This analogy is also illustrated, e.g., in [46, 59, 107]. For a detailed

introduction to deterministic and stochastic network calculus we refer to

the textbooks [43, 80, 101] as well as to [46, 59] and references therein.

In the following we explore an intuitive example of a so-called latency-

rate service curve of a constant rate link. Therefore, the functions A(τ, t) =

A(t) − A(τ) and D(τ, t) = D(t) − D(τ) denote the cumulative arrivals

and the cumulative departures in bits of a system in the interval [τ, t).

For simplicity we write A(t) and D(t) meaning A(0, t) and D(0, t). We

assume that A(t) and D(t) are non-negative and monotonically increasing

functions and from causality it reveals that A(t) ≥ D(t) for all t. The

backlog, i.e. all bits that reside within the system at a given point in time,

can be easily calculated by B(t) = A(t)− D(t). The modeling time can be

either continuous or discrete, where a continuous time arrival or departure

function can be mapped to its discrete counterpart by sampling. This,

however, results in a loss of information. Given a discrete time function, a

continuous time signal can be reconstructed as well.

Considering a work-conserving unlimited-buffered constant rate link,

which forwards fluid arrivals with a specific service rate r immediately

whenever the system is backlogged, i.e. when there is data available, the

departures leave the system with a rate that equals the service rate. Hence,

for any two time instances t ≥ τ ≥ 0 in any backlog interval [τ, t) it holds

that

D(t) ≥ D(τ) + r(t− τ) (5.1)

stating that the cumulative departures of a system in the interval [0, t)

equals at least the amount data that has left the system in the interval [0, τ)

and the data has been served by the link in [τ, t). In case τ points at the

beginning of a backlog period, i.e. there is no data to be served at time τ, the
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cumulative departures equal the cumulative arrivals, i.e. D(τ) = A(τ) = 0.

Thus, it follows that

D(t) ≥ A(τ) + r(t− τ) (5.2)

for any t ≥ τ. Unfortunately, the beginning of the last backlog period before

t is unknown in general and might be difficult to obtain. However, for t ≥ 0,

equation (5.2) holds for at least one backlog period, i.e. for at least one

τ ∈ [0, t] and we can specify a lower bound for all departures by

D(t) ≥ inf
τ∈[0,t]

{A(τ) + r(t− τ)} . (5.3)

Generalizing the approach discussed above using a generic service func-

tion S(t) that specifies a lower bound on the service experienced by the

arrivals of a system reveals the notion of service curves in the network

calculus. In the following, we apply a similar notation for the service curve

S as for the arrivals A and and departures D stated before. According to

Cruz et al. [52] the definition of a deterministic service curve is given by

Definition 1 (Deterministic Min-Plus Service Curve) A non-negative, non-

decreasing function S(t) is a deterministic service curve for an arrival pro-

cess A(t) if the corresponding departure process D(t) satisfies for all t ≥ 0.

D(t) ≥ inf
τ∈[0,t]

{A(τ) + S(t− τ)} =: A⊗ S(t). (5.4)

Here, the operator ⊗ denotes the min-plus convolution.

Given the link also delays the departures at most by T, S(t) = R(t− T)+

with (x)+ = max{0, x} describes a latency-rate service curve. Latency-rate

service curves can be used to model packetized fair scheduling algorithms

and are well known for a number of scheduling disciplines such as weighted

fair queuing [53, 78, 120].
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Comparing min-plus systems theory to classical systems theory, where

the convolution of arriving signal and impulse response holds with equality,

equation (5.5) only yields a lower bound for the departure process. However,

it is also possible to derive an upper bound, referred to as upper service

curve. In case the lower service curve equals the upper service curve and

equation (5.5) holds with equality, the resulting function is referred to as

exact service curve.

Closely related is max-plus algebra, see, e.g., [21, 43], which translates to

min-plus network calculus if the service curve is inverted from a function

of packets into a function of time [43]. We denote the arrival and departure

timestamps of a packet with index n ∈ N by a(n) and d(n), respectively.

Hence, the time between the arrival of packet ν and packet n can be de-

scribed by a(ν, n) = a(n) − a(ν). Similar to equation (5.5), we relate the

departures of a max-plus linear and shift invariant system to the arrivals as

follows

Definition 2 (Deterministic Max-Plus Service Curve) A non-negative, non-

decreasing function s(n) is a deterministic service curve for an arrival pro-

cess a(n) if the corresponding departure process d(n) satisfies for all t ≥ 0.

d(n) ≥ max
ν∈[0,n]

{a(n) + s(n− ν)} =: a ∗ s(n) (5.5)

Here, ∗ denotes the max-plus convolution.

The deterministic network calculus, however, only allows for a worst-

case analysis which yields either overly pessimistic performance bounds,

especially if aggregated traffic comes into account, or even no performance

bounds for systems, like wireless networks, that do not provide any deter-

ministic service guarantees. To overcome these limitations, recent stochastic

network calculus is developed, see, e.g., [47, 58, 80] and references therein.

Here, the random service of a system can be modeled by so-called ε-effective
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service curves that describe service guarantees which are violated at most

with probability ε. Hence, a stochastic max-plus service is given by

Definition 3 (Stochastic max-plus service curve) Consider a system with

packet arrival and departure times a(n) and d(n) respectively. The system

has a stochastic max-plus service curve sε(n) with violation probability ε if

for all n ≥ 1

P

[
d(n) ≥ max

ν∈[0,n]
{a(n) + sε(n− ν)}

]
≥ 1− ε.

Given a stochastic max-plus service curve it is straightforward to com-

pute packet delays defined as d(n)− a(n) that are violated at most with

probability ε from a ∗ sε(n)− a(n), e.g., to determine the playout delay of a

video application. Furthermore, the stochastic network calculus facilitates

analyzing wireless networks. It is used, e.g., in [57, 80, 113, 145] to model

physical-layer effects that are due to fading and interference.

5.2 the dcf viewed as a gps emulation

As mentioned above, GPS is a fluid-flow model that defines a weighted fair

resource allocation. Each flow indexed i is assigned a weight ϕi. Considering

only backlogged flows, flow i is guaranteed a share of ϕi/ ∑j ϕj of the

capacity C. Due to the granularity of packets real implementations can only

emulate GPS with limited precision. Analytical models specify the deviation

from an ideal GPS system using worst-case error terms. A prominent model

is the Guaranteed Rate Clock (GRC) [61] that contributes the basis of

Integrated Services [37]. Here, the error terms can be calculated analytically

and are well known for a wide range of schedulers. For an overview we

refer to, e.g., [61, 78, 136] and for enhancements of the DCF [23, 76, 97,

141]. By showing that guaranteed rate schedulers with rate r and error

term e offer latency-rate service curves S(t) = R(t− lmax/R− e)+, [100]
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establishes a close link between the GRC model, which is phrased in max-

plus algebra, and latency-rate service curves in the deterministic min-plus

network calculus This is elaborated further in [78, 138].

In the sequel, we derive a related model for the DCF that we refer to as

the DCF Clock.

Lemma 1 (DCF Clock) Consider M stations with indexes i that contend for the

medium using the DCF. Let ai(n) be the arrival time of the n-th packet at station i

with length Li. If the medium is busy at ai(n) let δ be the residual service time of

the packet in service or else δ = 0. The departure times are

di(n) = max{ai(n) + δ, di(n− 1)}+ Li

ri
+ φi(n) + ψi(n)

where the average service rate

ri =
Li

(1 + E[Ri]) (C(µ + M∆) + ∑M
j=1 Lj)

C

is subject to zero mean error terms

φi(n) =
1+Ri

∑
m=1

bm(n)− (1 + E[Ri])µ

and

ψi(n) =
1+Ri

∑
m=1

M

∑
j=1

Kj(n)
(

Lj

C
+ ∆

)
− (1 + E[Ri])

M

∑
j=1

(
Lj

C
+ ∆

)
.

Here, C is the capacity, bj(n) are i.i.d. exponential countdown values with mean

µ that are independent of the number of retransmissions Ri, Kj(n) are the inter-

transmissions, and ∆ comprises all constant per-packet protocol latencies.

Proof For the first case, we assume that station i is not backlogged. If the

medium is idle, station i starts the medium access procedure immediately

at ai(n) or else, due to carrier sensing, after the residual service time of the

packet that is in service, i.e. at ai(n) + δ. Otherwise, if station i is backlogged
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it starts the access procedure for packet n after packet n− 1 finishes service,

that is at di(n− 1). Combining all cases station i initiates its access procedure

at max{ai(n) + δ, di(n− 1)}.

Before station i transmits packet n an amount of channel idle time of bi(n)

has to be accumulated to complete the countdown procedure. In parallel, all

other backlogged stations perform their countdown procedure to contend

for the medium.

The transmission of a packet under the DCF includes constant protocol

overhead for DIFS, preamble, SIFS, and acknowledgement that are summed

up in ∆. Hence, it takes L/C + ∆ units of time to transmit a packet of length

L on a channel with capacity C. The number of packets transmitted by

station j in the interval [max{ai(n) + δ, di(n− 1)}, di(n)] is denoted Kj(n).

Thus, the transfer of all packets takes ∑M
j=1 Kj(n)(Lj/C + ∆) units of time.

In case of a collision, a retransmission occurs and the transmission pro-

cedure has to be applied again. Hence, assuming a random number of

retransmissions Ri per transmission attempt, a station has to wait for an

additional amount of channel idle time ∑Ri
m=1 bm(n) due to the backoff

process as well as for an additional time ∑Ri
m=1 ∑M

j=1Kj(n)
(

Lj
C + ∆

)
due to

inter-transmissions.

Assembling all parts the overall departure time follows by

di(n) =max{ai(n) + δ, di(n− 1)} +
1+Ri

∑
m=1

(
bm(n) +

M

∑
j=1

Kj(n)
(

Lj

C
+ ∆

))
.

(5.6)

In the following, we show that the two error terms have zero mean. To

this end, based on the assumption that backoff values and the number of

retransmissions are independent, a moment of consideration reveals that

E[φi(n)] = E[∑1+Ri
j=1 bi(n) − (1 + E[Ri])µ] = 01. Moreover, we instantiate

Theorem 2 with M = 2 and l = 1 to find the number of inter-transmissions

of one station. We have E[Kj(n)] = 1 such that E[ψi(n)] = 0.

1 A formal proof can be found in the Appendix on page 107
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The residuum after substitution of the error terms in equation (5.6)

is the mean latency caused by the countdown procedure and by inter-

transmissions. We equate this latency with Li/ri where ri has the interpre-

tation of an average service rate. Hence, we obtain

(1 + E[Ri])

(
µ +

M

∑
j=1

(
Lj

C
+ ∆

))
=

Li

ri

and solve for ri to derive the average service rate.

Lemma 1 specifies the deviation φi + ψi of the DCF clock from an ideal

GPS system with rate allocation ri. Note that the error terms have zero

mean such that ri is the true average service rate. The service rate considers

the resource consumption that is due to protocol overhead. Apart from that,

the rate allocation is proportional to the packet lengths used by individual

stations, which formally derives from the target of packet-level fairness of

the DCF. Roughly speaking, the packet lengths Li take the place of the GPS

weights ϕi.

It is worthwhile comparing the error terms in Lemma 1 with the GRC

model [61] mentioned before. The GR Clock is defined as

GRCi(n) = max{ai(n), GRCi(n− 1)}+ Li

ri

where departures are subject to an error term χ such that

di(n) ≤ GRCi(n) + χ.

Compared to the GR Clock the recursion in Lemma 1 uses the actual

departure times di instead of the target GRCi. As a consequence, the per-

packet error terms of the DCF are accumulated during a busy period. This

is not the case in the GRC model. In other words, a GRC scheduler that

deviates from the GR Clock, nevertheless has to keep up with the GR Clock

at subsequent packet transmissions, i.e. unfairness cannot accumulate. In



5.3 a stochastic service curve model of the dcf 65

contrast the DCF does not seek to correct previous deviations, i.e. the DCF

is memoryless in the sense that it does not compensate past unfairness.

Moreover, the error terms of known GRC implementations are typically

small deterministic upper bounds, e.g., χ = Lmax/C for WFQ [61, 78] as

opposed to the DCF error terms that are random and possibly unbounded.

5.3 a stochastic service curve model of the dcf

In this section we derive a stochastic service curve model for the DCF that

we phrase in max-plus algebra. Given a stochastic max-plus service curve it

is straightforward to compute packet delays defined as d(n)− a(n) that are

violated at most with probability ε from a ∗ sε(n)− a(n), e.g., to determine

the playout delay of a video application.

Theorem 3 (DCF service curve) Assume Lemma 1, let all packets have the same

size denoted L, and consider a tagged flow. The DCF has a stochastic latency-rate

service curve

sε(n) = T +
n
r

with latency T and rate r defined as

T = τ + (1 + α + ς)

(
L
C
+ ∆

)
and

1
r
= ϑ + (1 + β + ρ)

(
L
C
+ ∆

)

and violation probability ε = ∑∞
m=1(ε1(m) + ε2(m) + ε3(m)). Parameters α, β,

τ, ϑ, ς, ρ ≥ 0 and ε1, ε2, ε3 are defined in equations (5.8), (5.9), and (5.10).

The service curve in Theorem 3 is an affine function that comprises a latency

offset T and a packet rate r, respectively per-packet latency r−1. The terms

correspond to the latency-rate service curve model in min-plus algebra. The

free parameters define the service guarantee and determine its violation

probability. The parameter choice is subject to numerical optimization.

We find that τ, ϑ that stem from the variable duration of the countdown



66 dcf clock and a service curve model

procedure have comparably small impact, whereas ς, ρ that consider the

random amount of time consumed by inter-transmissions as well as α, β

that are related to the number of retransmissions have a significant effect.

Proof We consider station M̂ and denote its arrivals a(n) and departures

d(n). We analyze a single busy period starting at a(m). Applying Theorem 2

to derive the number of inter-transmissions K and from equation (5.6) we

obtain by recursion that

d(n) = a(m) + δ +
n+R

∑
i=m

b(i) + (l + R + K)
(

L
C
+ ∆

)
(5.7)

where l = n − m + 1 is the number of packets sent by station M̂, K =

∑M−1
j=1 ∑n+R

i=m Kj(i) is the sum of all inter-transmissions since the start of the

busy period, and R is the number of retransmissions.

First, we derive probabilistic affine upper envelopes for the random terms.

∑n+R
i=m b(i) is the random sum of l + R i.i.d. exponential random variables

each with mean µ. Hence, the sum is Gamma distributed and has the

well-known moment generating function M∑b(θ, l′) = (1/(1− θµ))l′ for

θ < 1/µ with l′ = l + R. From Chernoff’s bound we obtain

P

[
n+R

∑
i=m

b(i) ≥ τ + ϑl′
]
≤ e−θ(τ+ϑl′)

(
1

1− θµ

)l′

∀θ ∈ (0, 1/µ).

Minimization yields θ = (τ+(ϑ−µ)l′)/((τ+ϑl′)µ) such that P
[
∑n

i=m b(i) ≥

τ + ϑl′
]
≤ ε1(l′) where

ε1(l′) =
(

ϑ + τ
l′

µ
e−

µ+ϑ+ τ
l′

µ

)l′

. (5.8)

For the random number of retransmissions R we assume the decoupling

approximation introduced by Bianci [31] and calculate a fixed collision

probability pc that remains constant for each transmission attempt and is

equal for all stations. Hence, the transmission opportunity can be modeled

by a Bernoulli experiment and the probability that a station successfully
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transmits a certain number of packets l equals the l-th success in the

(l + R)-th Bernoulli trial. As for the number of inter-transmissions proven

before, this event is negative binomially distributed. We use Corollary 3

to bound the number of inter-transmissions K as well as the number of

retransmissions R. We let r = α + βl to find P[R ≥ α + βl] ≤ ε2(l) where

ε2(l) =

(
pc (1− pc)

β+ α
l (1 + β + α

l )
1+β+ α

l

(β + α
l )

β+ α
l

)l

. (5.9)

Similarly, for the inter-transmissions, we let k = ς + ρl′ with l′ = l + R to

find P[K ≥ ς + ρ(l′)] ≤ ε3(l′) where

ε3(l′) =

(
p (1− p)ρ+ ς

l′ (1 + ρ + ς
l′ )

1+ρ+ ς
l′

(ρ + ς
l′ )

ρ+ ς
l′

)l′

. (5.10)

Next, we use Boole’s inequality [127] which states that for any finite set

of events, the occurrence probability of at least one single event does not

exceed the sum of all event risks. To this end, we sum ε i(l) over all l to derive

a corresponding sample path bound [47]. We estimate the tail probabilities

to verify that this sample path bound exists. From equation (5.8) we find

ε1(l′) ≤
(

ϑ

µ
e−

µ+ϑ
µ

)l′

= ql′
1

where q1 < 1 generally2. Thus, it is evident that ql′
1 ≤ ql

1 and therefore

ε1(l′) ≤ ε1(l). Thus, we can relax the affine upper envelope and use τ + ϑl

instead of τ + ϑl′ which simplifies the formulation of an affine upper service

curve in the following, however, to the expense of a slightly loser bound.

Similarly, we have from equation (5.9) that

ε2(l) ≤
(

pc (1− pc)β (1 + β)1+β

ββ

)l

= ql
2

2 A formal proof for q1 < 1 can be found in the Appendix on page 108.



68 dcf clock and a service curve model

where q2 < 1 can be shown3 for β > (1− pc)/pc. From equation (5.10) we

find that

ε3(l′) ≤
(

p (1− p)ρ (1 + ρ)1+ρ

ρρ

)l′

= ql′
3

where q3 < 1 for ρ > (1− p)/p = M − 1. For q3 < 1 it is evident that

ε3(l′) ≤ ε3(l). Thus, we can relax the affine upper bound using ς + ρl

instead of ς + ρl′ as well.

Last, using the geometric sum, we find that

∞

∑
l=n

ε i(l) ≤
qn

i
1− qi

proving the boundedness of the violation probability. Inserting the en-

velopes α + βl, τ + ϑl, and ς + ρl into equation (5.7) and bounding δ by

∆ + L/C yields that

d(n) ≤ a(m) + τ + ϑl + (1 + α + ς + (1 + β + ρ)l)
(

L
C
+ ∆

)
(5.11)

is violated at most with probability ε1(l) + ε2(l) + ε3(l).

In the final step we take the maximum over all m of the right-hand side

in equation (5.11) to resolve the assumption that the busy period starts at

a(m) [43, 101] and obtain the max-plus convolution form in Definition 3.

After some reordering equation (5.11) yields the service curve in Theorem 3.

We provide an example of the service curve for IEEE 802.11g. We set

∆ = 0.1 ms and C = 54 Mbps. We consider M = 2 stations and packets of

size L = 1500 Byte. The effects of the parameters τ, ϑ, α, β, and ς, ρ on the

cumulative error terms are shown in Figure 16. We find that the parameters

τ, ϑ have comparably small impact and τ = 1.5 ms and ϑ = 0.1 ms achieve

already ∑ ε1 < 10−6. Moreover, we consider α = 5 and β = 2 where we

3 A formal proof for q3 < 1, that also holds for q2 < 1, can be found in the Appendix on
page 109.
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Figure 16: The free service curve parameters τ, ϑ, and α, β, and ς, ρ define sample
path bounds for the backoff waiting time (16a, 16b), the number of
retransmissions (16c, 16d), and the number of inter-transmissions (16e,
16f) respectively. These bounds are violated at most with probability
∑ ε1, ∑ ε2, and ∑ ε3. The parameters have significant impact on the
shape of the resulting latency-rate service curve.
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Figure 17: Service curve examples for IEEE 802.11g WLAN illustrating the service
experienced by packet trains of length l. We compare ε-effective latency-
rate service curves derived from our model to service curves that use
numerical solutions of the random terms instead of approximations4.
In addition we present the mean as well as the 0.99999 service times
measured in our testbed. We find that the analytical results match the
testbed data quite well.

have ∑ ε2 ≈ 3 · 10−6 as well as ς = 50 and ρ = 1.5 where Figure 16 reveals

∑ ε3 ≈ 1 · 10−6. The corresponding stochastic latency-rate service curve is

sε(n) = 19.5 + 1.55n ms where ε = ∑ ε1 + ∑ ε2 + ∑ ε2 ≈ 5 · 10−6.

Figure 17 depicts the service, i.e. the cumulative delay, experienced by

packet trains of length l in an IEEE 802.11g wireless LAN with M = 2

stations. It compares various examples of ε-effective latency-rate service

curves derived from our model with ε = 5 · 10−6 to service curves that

apply numerical solutions of the random terms in equation (5.7) instead

of the approximations, i.e. Chernoff’s bound and Bool’s inequality, used

in Theorem 3. Additionally, we present the 0.99999 service times, which

state that 0.99999 of all packet trains have been transmitted in less than

Tε seconds, and the mean service rate, which is related to the mean data

rate. To this end, we analyzed 109 packets that were captured in our testbed

from contending greedy stations over a period of approx. 10 days. We find

4 In this figure, we call these service curves exact service curves since the computation method
is exact. However, please note that this is not the standard definition. As stated before, the
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Figure 18: Service curves with α = 5 and ς = 50 for various contendion window
sizes w. We can derive the optimal contention window size, with respect
to the minimal packet burst delay, by finding the lowest service curve.

that the analytical results provide upper bounds to the measured ones and

match the testbed data quite well.

Besides the applications within the stochastic network calculus, e.g. to

derive end-to-end backlog and delay bounds, we may use the stochastic

service curve calculated above to derive the optimal initial contention

window size with respect to a minimal packet delay. To this end, we calculate

latency-rate service curves for different minimal contention window sizes.

Figure 18a illustrates service curves for minimal contention window sizes

w = 8, 16, 32, 64 exemplarily. Moreover, Figure 18b depicts the service

times for packet bursts of l = 40 packets over contention window sizes

w = 1, ..., 64 that are derived from the corresponding service curves. We

find that the service curve with w = 16 yields the lowest service times for

all burst size and all contention windows sizes, respectively. We conclude,

that, according to Table 1 in Chapter 2, the IEEE 802.11a and IEEE 802.11g

standards already use the best possible inital contention window size.

In the following chapter we view the available bandwidth, more precisely

the achievable bandwidth, as a fraction of service experienced by a system.

That is, the available bandwidth is directly related to the slope of a latency-

rate service curve.

network calculus actually refers to exact service curves if the lower service curve equals the
upper service curve and equation (5.5) holds with equality.
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In Chapter 6, we focus on a subset of services, namely the available band-

width. To this end, we report results from an extensive measurement study

of active probing methods to shed light on issues such as the specific wire-

less network characteristics that influence wireless bandwidth estimation,

the optimal probing method, and optimal probing parameters. We per-

formed measurements of an IEEE 802.11g network in a highly controlled

local wireless testbed that was located in a shielded and anechoic measuring

room. Based on the fair queuing model, explored in Chapter 4, we show

that iterative methods, which are based on the FCFS assumption, can be

expected to estimate the fair share of a new flow instead of the available

bandwidth. Our measurements, using the methods in Table 2, support the

anticipated results. Furthermore, the gathered data reconfirms the known

dependency of bandwidth estimates on the probing packet size.

Equipped with the findings in Chapter 4, we present our own probing

method, referred to as WiProbe, and show how Kalman filtering can be

used to improve bandwidth estimates. We model the fair bandwidth share

in wireless networks as a random time-varying process that is at least

piecewise stationary. We sample this process continuously to adapt to

changes in the channel state, e.g., due to a changing number of contending

stations, rate adapting stations, or varying cross-traffic, using probing trains.

We show that the estimate variance is related to the train length and present

a procedure for tuning the Kalman filter based on analytical findings.

Moreover, we elaborate the relationship between smoothness and agility of

the Kalman estimates, on the on hand, and the train length and probing

interval, on the other. We substantiate our findings by an extensive set of

measurements.

73



74 wireless bandwidth estimation

Table 2: Bandwidth estimation tools that are considered in this thesis

Probing method Probing traffic Inference technique

Pathload [71] packet trains iterative
Pathchirp [125] packet chirps iterative

Spruce [137] packet pairs direct
IGI [67] packet trains direct
PTR [67] packet trains iterative

WBest [105] packet trains direct
DietTOPP [81] packet trains iterative

BART [54] packet trains iterative
SCest [111] packet trains iterative

WiProbe [36] packet trains direct

6.1 methods for available bandwidth estimation

In this section we review state-of-the-art measurement-based bandwidth

estimation methodologies in wired and wireless networks. We focus on

publicly available bandwidth estimation tools, see Table 2, which are also

used for measurements in Section 6.3. For related empirical evaluations in

wired networks we refer to, e.g., [135, 137].

The task of available bandwidth estimation is to infer the portion of the

capacity of a link or a network path that remains unused by cross-traffic.

The available bandwidth of a link with index i can be defined as [71]

AvBwi(τ, t) = Ci(1− ui(τ, t)) (6.1)

where Ci is the capacity and ui ∈ [0, 1] is the utilization by cross-traffic

in the interval [τ, t). The available bandwidth of a network path is de-

termined by the available bandwidth of the tight link as AwBw(τ, t) =

mini{AvBwi(τ, t)}, see, e.g., [71].

Active measurement methods inject specific probes into the network and

estimate the available bandwidth from measurements of the probing traffic

at the ingress and at the egress of the network. The majority of the methods
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uses packet pairs, i.e. two packets sent with a defined spacing in time

referred to as gap, or packet trains, i.e. a larger number of packets sent at

a defined constant rate. The rate of a packet train can be converted into a

certain spacing of the train’s packets, showing a direct relation to the gap

model of packet pairs. Packet chirps [125] are specific packet trains that

are sent at a geometrically increasing rate respectively with a geometrically

decreasing gap.

Many methods use a simplified network model, where cross-traffic is

viewed as constant rate fluid and the network is abstracted as a single tight

link. Under these assumptions the available bandwidth of a network path

simplifies to AvBw = C(1− u). In addition, FCFS multiplexing is usually

assumed, where flows share the capacity of a link proportionally to their

offered rates. For constant rate probes an expression referred to as rate

response curve [108, 114] can be derived as

rin

rout
= max

(
1,

rin + λ

C

)
=


1 , if rin ≤ C− λ

rin+λ
C , if rin > C− λ

(6.2)

where rin and rout are the input and output rates of probes respectively and

λ is the input rate of cross-traffic. If λ ≤ C the available bandwidth follows

as AvBw = C− λ and otherwise AvBw = 0. Based on this model the task

of available bandwidth estimation is to select the rate of probing traffic such

that equation (6.2) can be solved for C and λ or C− λ. While equation (6.2)

is usually used for packet train probes, an equivalent gap response curve

can be derived for packet pairs, where the gap g is linked to the rate r by

the packet size l resulting in gin = l/rin and gout = l/rout [108].

In [72] measurement methods are classified by their inference technique

as either direct or iterative probing schemes. Direct probing schemes often

assume that the capacity of the link C is known in advance. In this case

equation (6.2) can be solved for the rate of the cross-traffic if the probing

rate is larger than the available bandwidth. A straightforward choice is to
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probe with rin = C in which case the available bandwidth follows from

equation (6.2) in rate respectively gap notion as [105, 137]

AvBw = C
(

2− C
rout

)
= C

(
1− gout − gin

gin

)
. (6.3)

Spruce, WBest, and IGI are methods that use direct probing. Spruce

assumes that the capacity is known a priori and immediately applies the

gap version of equation (6.3). WBest provides a two-step algorithm using

packet pairs to estimate the link capacity and packet trains for available

bandwidth estimation based on the rate version of equation (6.3). IGI uses

probing trains with increasing gaps resulting in a more complex direct

probing formula than equation (6.3). For more details see [67].

Iterative probing methods do not require a-priori knowledge of the link

capacity. They employ an iterative procedure with multiple probing rates

aiming to locate the turning point of the rate response curve equation (6.2),

i.e. they seek to find the largest probing rate rin such that rin/rout = 1. At

this point the probing rate coincides with the available bandwidth.

TOPP, DietTOPP, BART1, PTR, SCest, Pathload, and Pathchirp are iterative

probing methods. TOPP [114] uses trains of packet pairs with increasing rate

and applies equation (6.2) for available bandwidth estimation. It recursively

extends the model to the multiple node case and in addition it estimates the

capacity from the second linear segment in equation (6.2). Closely related

is a simplified version called dietTOPP. The BART tool, a successor of

DietTOPP uses a Kalman filter to obtain both, the end-to-end available

bandwidth and the bottleneck capacity. It infers the turning point of the rate

response curve using a linear system that describes the packet dispersion by

two parameters of the sloping straight line in the overload region. To this

end, BART uses packet trains with a probing rate greater than the available

bandwidth, i.e., rin > AvBw and applies a two-dimensional Kalman filter

to estimate these unknown parameters. The resulting system of equations,

1 BART is not publicly available. Hence, it is omitted by our measurements in Section 6.3.
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however, is quite complex and the authors do not provide a way for tuning

the filter parameters optimally. PTR is a packet train method that uses a gap

version of equation (6.2). Pathload varies the rate of packet trains using a

binary search algorithm to find the largest probing rate that does not cause

overload and hence matches the available bandwidth. It uses increasing

one-way delays as an indication of overload. Increasing delays indicate that

the input rate exceeds the output rate, i.e. rin/rout > 1 which clearly shows

the relation to equation (6.2) [108]. Pathchirp increases the probing rate

within a single packet train, referred to as a chirp, instead of varying the

rate of successive packet trains. Like Pathload it detects the turning point

of the rate response curve from increasing one-way delays. SCest makes

use of novel measurement methodology based on network calculus as well

as findings in [107] and interprets bandwidth estimation as the inversion

problem of D = A ∗ S for S of max-plus linear systems. Hence, it tries to

infer not only the available bandwidth but the complete service, represented

by a service curve, which is offered by a system. Transferring the problem

to max-plus algebra, the probing tool operates on packet time stamps and

computes a stochastic ε-effective max-plus service curve from steady-state

delay percentiles obtained from probing packets.

Most of the discussed methods have been developed for wired networks,

while WBest and dietTOPP have been suggested by the authors for available

bandwidth estimation in wireless networks. SCest is stated to be used in

lossy systems with arbitrary scheduling disciplines and hence, should be

suitable for wireless systems as well. Further on, a method called Probe-

Gap has been proposed for bandwidth estimation in broadband access

networks [98]. The method does not exactly fit into the classification scheme

used here. ProbeGap sends out single packets and collects the one-way

delays of these probes. The fraction of the packets which have a delay

close to zero are assumed to have found an idle channel. This fraction is

used to estimate the available bandwidth. Besides, passive measurement

approaches can take advantage of the wireless broadcast medium [130]
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or protocol-related information [102]. Passive methods are, however, not

considered within the scope of this thesis.

6.2 available bandwidth estimation in wireless systems

In the following, we discuss the influence of relevant wireless link character-

istics, discussed in Chapter 4, and the distributed medium access procedure,

that is described in Chapter 2, to state-of-the-art bandwidth estimation

techniques. We show how these aspects affect current fluid rate and gap

models and reason which quantity we expect to be estimated by known

methods for bandwidth estimation in wireless systems.

Owing to our findings in Chapter 4, the long-term fair share f at a

congested wireless link can be computed as the solution of

f :
n

∑
k=1

min{rk, f } = C (6.4)

where C is the capacity2, rk is the rate of flow k, and n is the number of

flows. Once f is determined the output rate of flow k follows as min{rk, f }.

The rate response curve of a fair queuing system follows immediately as

rin

rout
= max

(
1,

rin

f

)
=


1 , if rin ≤ f

rin
f , if rin > f

(6.5)

where rin and rout are the input and output rates of the probes respectively.

As opposed to the FCFS rate response curve equation (6.2) the available

bandwidth cannot be derived from equation (6.5). Trivially the available

bandwidth AvBw is upper bounded by the fair share, i.e. 0 ≤ AvBw ≤ f .

2 In wireless systems, effects that are due to fading and interference result in a time-varying
channel capacity C(t). Thus, it is straightforward to adapt the definition of available band-
width, see equation (6.1), accordingly. Our controlled measurement environment, however,
eliminates these effects to a large extent. Hence, we can assume a constant capacity. This is
similar to the fluid rate and gap models for bandwidth estimation, see equation (6.2) and
equation (6.3), respectively.
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Without further assumptions the two extremal values can, however, be

easily attained if f ≤ C/2. As an example consider a single contending

flow with rate λ = C/2 respectively λ = C. The fair share of a new greedy

flow is f = C/2 in both cases, whereas the available bandwidth becomes

AvBw = f respectively AvBw = 0.

Referring to the classification of bandwidth estimation methods in Sec-

tion 6.1 we conclude that iterative methods, which use the turning point of

the rate response curve as bandwidth estimate, can be expected to report

the fair share of a new greedy flow in case of a fair wireless link. For

existing direct probing methods that inject probes with rate rin = C such

a clear result cannot be established. Inserting rout = f into equation (6.3)

does neither compute the available bandwidth nor the fair share. We note,

however, that direct probing with rin = C could easily report the fair share,

since rout = f in this case.

6.3 experimental evaluation of bandwidth estimation

Equipped with the results from Section 6.2 we investigated the performance

of the bandwidth estimation tools listed in Table 2. If not mentioned other-

wise, we used the default configuration of the bandwidth estimation tools

to perform the experiments. We evaluate the methods using a wireless

testbed3 in a shielded, anechoic room. Hence, we assume that the physical

medium is free of interference from external sources that do not belong to

the testbed. We focus on the accuracy of wireless bandwidth estimates and

show how these relate to the available bandwidth respectively to the fair

share under different types of contending traffic. We do not report probing

3 Basically we used the same testbed configuration with 2 senders and 1 receiver, as already
presented in Chapter 4. The hardware, however, was slightly different. We used Lenovo
Thinkpad R61 notebooks with 1.6 GHz and 2 GB RAM running Ubuntu Linux 7.10 with
kernel version 2.6.22. We employed the internal Intel Pro/Wireless 4965 AG IEEE 802.11

wireless lan adapters. The access point was a Buffalo Wireless-G 125 series running DD-
WRT [2] version 24.
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overhead, intrusiveness, as well as run or convergence times. These aspects

are elaborated, e.g., in [135].

Impact of the Intensity of Contending Traffic

In the first set of experiments we estimate the end-to-end available band-

width from a sender to a receiver in the presence of a single contending

flow. We increase the rate λ of the contending traffic that flows from 0 Mbps

up to 28 Mbps in steps of 1 Mbps. The contending traffic consists of packets

of 1500 Bytes and is generated using the D-ITG traffic generator [1]. All

probe packets are set to 1500 Bytes.

Figure 19 shows the average of 25 available bandwidth estimates for each

of the tools and all rates of the contending traffic as well as corresponding

confidence intervals at a confidence level of 0.95. As a reference the available

bandwidth AvBw = C − λ as well as a the fair share of a new flow f =

max{C− λ, C/2} are plotted, where we use C = 28 Mbps from Figure 4

for a packet size of 1500 Bytes.

From our arguments in Section 6.2 we expect that the iterative probing

methods Pathload, DietTOPP, Pathchirp, and PTR report an estimate of

the fair share. As indicated in Figure 19 the fair share and the available

bandwidth are identical for contending traffic with rate λ ∈ [0 . . . 14] Mbps,

whereas they differ for λ ∈ (14 . . . 28] Mbps. Figure 19a shows that the

estimates from Pathload (which reports an upper and a lower bound of

the available bandwidth) and DietTOPP clearly confirm the fair queuing

model in equation (6.5). Both methods closely track the fair share and the

reported estimates deviate noticeably from the available bandwidth as the

rate of the contending traffic increases beyond 14 Mbps. The results from

PTR in Figure 19c and to a lesser extent from Pathchirp in Figure 19b

confirm this view. In case of Pathchirp, we used the estimates provided

after Pathchirp’s self-adapting phase. In our experimental results plotted
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Figure 19: Bandwidth estimates for a wireless link with one contending flow.

in Figure 19b it, however, underestimates the fair share and the estimates

exhibit a comparably high variance.

Pathload has been reported to provide inaccurate bandwidth estimates

for wireless networks in [34, 98, 105]. This stands in contrast to experiences

made by using Pathload in wired networks. In [105] the probing packet size

is mentioned as a possible reason for bandwidth underestimation, and [98]

identifies the signature of one-way delays in wireless networks as a source

of the problem. Having confirmed the strong impact of the packet size on

the throughput in wireless networks, see Figure 4, we modified Pathload so

that we can specify the probing packet size. Using Pathload with a fixed

packet size of 1500 Bytes improves bandwidth estimates significantly. As

depicted in Figure 19a, this yields quite accurate and stable results. Similar

problems have been reported for IGI/PTR [105], which can also be mitigated

using a packet size of 1500 Bytes rather than the default size. The estimates

in Figure 19c are, however, less sensitive to the intensity of contending

traffic, as also reported for cross-traffic in wired networks in [137].
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Direct probing tools require a-priori knowledge of the link capacity. We

executed Spruce with a given capacity of C = 28 Mbps, which corresponds

to the throughput for packets of 1500 Bytes size as shown before in Figure 4.

From our results shown in Figure 19b we cannot detect a clear trend of

the estimates towards either the fair share or the available bandwidth

once λ exceeds 14 Mbps. WBest uses a two-step algorithm to estimate

first the capacity and then the available bandwidth. In our measurements

both estimates exhibit a comparably high variance as shown in Figure 19d.

Moreover, the capacity estimates are sensitive to contending traffic, possibly

a result of fair resource allocation, such that bandwidth estimates that are

based hereon may be unreliable.

Impact of the Number of Contending Flows

In the second set of experiments we investigate the impact of the num-

ber of contending flows on bandwidth estimates. We use contending traf-

fic with a total rate of 20 Mbps, which is divided evenly among 1 to 4

flows. Hence, the available bandwidth AvBw ≈ 8 Mbps remained con-

stant in all experiments, whereas the fair share of a new flow is approx.

(14, 9.3, 8, 8) Mbps for (1, . . . , 4) contending flows each offering a rate of

approx. (20, 10, 6.6, 5) Mbps respectively. Since we only related the estimates

of iterative probing methods to the fair share, we restrict the results shown

here to iterative methods. Again all contending and probing packets are

adjusted to have a fixed size of 1500 Bytes in order to achieve comparability.

As in the experiments presented above, we repeated each experiment

25 times. In Figure 20 we illustrate the average of the available bandwidth

estimates and corresponding confidence intervals at a confidence level of

0.95. The estimates of the iterative methods Pathload, DietTOPP, PTR, and

Pathchirp are closely related to the fair share and do not match the available

bandwidth.
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Figure 20: Fair share estimates for a wireless link with several contending flows.

The direct probing tools that were investigated as well tend to be more

inaccurate and do not report the available bandwidth nor the fair share in

these experiments.

6.4 online estimation of fair share using kalman filtering

In this section we present our own measurement-based rate estimation

technique for wireless LANs using the DCF that incorporates the findings

regarding the fairness that are presented in Chapter 4. We show how user

applications, such as rate-adaptive video streaming, can estimate their

fair bandwidth share under the DCF from measurements of their data

arrivals and departures. Obviously, this is closely related to the active

probing techniques presented above. In contrast to most of the existing

methods and tools, we do not assume constant channel and stationary cross-

traffic conditions. In oder to detect changes in the channel capacity, we

probe continuously over time which requires an accurate and fast probing

approach with low probing overhead.

For now we assume an ideal GPS system and a probing flow that trans-

mits a burst of l + 1 packets. These packets are marked with time stamps

a(n) and d(n) at the sender and the receiver, respectively. To avoid the

necessity of synchronized clocks at sender and receiver, we only use the

time differences between the packet departures that can be computed from
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the time stamps at the receiver only. The average gap of the departures

follows from

gd =
d(l + 1)− d(1)

l

and a sample of the fair share follows as f = L/gd.

In a constant fluid system every sample yields an unbiased bandwidth

estimate. In case of real scheduling implementations, such as the DCF,

these (fair) rate samples can, however, be largely perturbed by the random

channel access procedure. Thus, in oder to improve results, most bandwidth

estimation tools perform some kind of filtering. For instance, the use of

packet trains itself constitute a low-pass filter and most of the tools described

above perform some averaging over several samples to obtain more accurate

bandwidth estimates. A naive approach for online bandwidth estimation

is to employ a moving average over a specific number of past samples.

The open question, however, remains a suitable filter parameterization that

includes, e.g., train length, probing rate intensity, probing interval, and filter

length.

In the following, we view the variability of bandwidth samples as measure-

ment noise and denote the changes in the channel capacity as process noise.

According to our findings in Chapter 4, we model the perturbations within

packet train samples as a Gaussian noise process. To this end, we employ

a Kalman filter to remove noise from our measurements and perform an

online smoothing over the train departure gaps gd. In case of i.i.d Gaussian

process and measurement noises the Kalman filter generates optimal esti-

mates in the sense that it minimizes the mean squared error by recursively

weighting past measurements. Even if the Gaussian assumption is dropped,

the Kalman filter is still the best linear unbiased estimator. Furthermore,

stationarity of the system is not a necessary precondition. This makes the

Kalman filter an ideal candidate for estimating the true available bandwidth.
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Figure 21: A Kalman filter solves the inversion problem of a linear system. It
uses samples (z) of a process observed over time that are perturbed by
random measurement noise (v) and other deterministic inaccuracies (u)
and calculates new estimates for system states (x) that have a minimal
mean squared error.

Generally, we want to estimate the system state vector x(n) at a discrete

time n of any linear system, as illustrated in Figure 21, that can be described

by a state equation and an output equation respectively

x(n) = Ax(n− 1) + B(n)u(n) + ω(n)

z(n) = Hx(n) + ν(n).

Here, A is a state transition matrix that describes the dynamic transitions of

two time-consecutive states. Additionally, two external inputs are modeled

by the framework. The deterministic, i.e. completely known, external input

vector u(n) is associated by a control-input matrix B. All random compo-

nents are viewed as process noise, and represented by a stochastic variable

ω(n) that is assumed to be normally distributed with mean 0 and variance

Q, i.e. u(n) ∼ N(0, Q). Likewise, the measured output vector z(n), which is

linked to real system states through an observation matrix H, is perturbed

by a normally distributed measurement noise ν(n) ∼ N(0, R) as well.

The true system state x(n) cannot be measured directly but obtained

by the system observations z(n), which, however, cannot be taken at face

values due to the perturbation by noise. To this end, we need to solve the

inversion problem of the linear system given above and derive optimal
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state estimates by iteratively applying a set of equations, i.e. (6.6) – (6.8),

known as the time and measurements updates, as new samples z(n) become

available. That is, the Kalman filter and for a general introduction we refer

to [45] and references therein.

In our specific use-case, the state estimates, i.e. bandwidth estimates,

are scalar and we do not consider any deterministic external inputs. Thus,

the transition matrices become scalar as well and it follows that A = 1,

B = 0, and H = 1, which simplifies the Kalman equations. To generate

smoothed bandwidth estimates of the departure gap we index consecutive

measurement samples z(n) := gd(n) and denote the output of the Kalman

filter x(n) := ĝd(n). Using the Kalman equations [45] we calculate

ĝd(n) = (1− G(n)) ĝd(n− 1) + G(n) gd(n) (6.6)

where the factor G(n), that is referred to as Kalman gain, represents the

impact of the current measurement sample. It is given by

G(n) =
σ2

E(n− 1) + σ2
P

σ2
E(n− 1) + σ2

P + σ2
gd

(6.7)

where σ2
E(n) is the estimation error variance that acts as a measure for

the reliability of the current state estimate ĝd(n). The bigger σ2
E the less

reliable the estimate. Typically, the filter is initialized with a guess of the first

state estimate ĝd(0) and a large value σ2
E(0) representing the uncertainty

associated with this guess. Updates of σ2
E can then be calculated recursively

by

σ2
E(n) = (1− G(n)) (σ2

E(n− 1) + σ2
P). (6.8)

The two external parameters σ2
P and σ2

gd
denote the Gaussian process and

measurements noise variances, respectively. If these variances are known,

the resulting filter is known to be optimal, i.e. no other filter can achieve a

smaller mean squared error. For non-Gaussian noises, the filter is still the
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best linear estimator. In the following we outline procedures for determining

suitable process and measurement noise for bandwidth estimation in case

of IEEE 802.11 WLANs using the DCF.

6.5 measurement noise parameterization

To parameterize the measurement noise, we estimate the variability of the

average departure gap gd. From equation (5.7) we derive that

gd = d(l + 1)− d(1) = (l + R + K)
(

L
C
+ ∆

)
+

l+R+1

∑
j=2

b(j) (6.9)

where K are the inter-transmissions between packet 1 and l + 1 and R are

the corresponding retransmissions. Equation (6.9) contains three sources of

randomness: the number of inter-transmissions from contending stations K,

the retransmissions R, and the cumulated countdown values ∑l+R+1
j=2 b(j).

As discussed in Chapter 4 the effects due to inter-transmissions and retrans-

missions are dominant so that we approximate ∑l+R+1
j=2 b(j) ≈ (l + R)µ by

its mean value.

Regarding the inter-transmissions we assume l � 1 and use the Gaussian

approximation4 from Corollary 2. After normalization we find that K/l

is normal with standard deviation σK/l =
√
(1− p)/(p2l) where p =

1/M is determined by the number of contending stations. Similarly, the

retransmissions can be approximated by a Gaussian distribution as well and

R/l becomes normal with standard deviation σR/l =
√
(pc)/((1− pc)2l)

where pc is the collision probability discussed in Chapter 2. Using that

σ2
K+R = σ2

K + σ2
R generally and by dividing equation (6.9) by l we recover gd

and derive the standard deviation of the train gaps as

σgd =

√
p2 pc + (1− p)(1− pc)

(1− pc)2 p2l
(∆ + L/C). (6.10)

4 We recall that, according to Section 4.4, we can apply the Gaussian approximation already
for packet train length l > 4.
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For example consider a wireless network with two greedy stations, i.e.

M = 2. To this end, we find the collision probability pc ≈ 0.105 and the

channel access probability p = 1/M = 1/2. For the constant per packet

overhead we assume ∆ + L/C ≈ 32 ms. Hence, the standard deviation of

the measurement noise comes to σgd ≈ 0.492/
√

l ms.

6.6 process noise parameterization

In addition to the measurement noise, the Kalman filter must also be

supplied with the variance σ2
P of the measured process. This parameter

determines how quickly the filter considers new measurements to be reliable

and has implications for the bandwidth estimation process: for example, it

determines the convergence speed, influences the tracking capability, and

the variability of resulting estimates. However, the variance of the measured

process is typically not known in advance. Hence, we choose a value based

on the knowledge of the type of changes we are interested in capturing.

To this end, we view the adjustment of the process noise as a tuning knob

that trades smoothness for convergence speed. We again highlight, that

even if the measured process is not Gaussian distributed, the Kalman filter

provides the lowest mean squared error achievable by a linear filter.

In order to correctly parameterize our probing technique, it is vital to

consider its use-case. In case a user is only interested in the average available

bandwidth over several minutes, different settings are required than if

changes must be detected within seconds. To this end, we specify the

maximum bandwidth change B that can be identified within a given time

Ts, denoted as discontinuity period, see Figure 22a. Furthermore, we assume

a maximum probing rate that is constrained to a specific average value rp,

resulting in an average inter-train sending time t∆ = L(l + 1)/rp.

We identify the discontinuity in the bandwidth process by calculating the

variance σ2
P for a given period Ts after the fair share change. Since the filter

works on average train gaps rather than rates, we describe the bandwidth
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Figure 22: Averaged simulation results of smoothed Kalman estimates from sam-
ples that are corrupted by Gaussian noise. The results clearly show the
influence of process noise on change tracking and convergence speed
respectively. We find that the smaller the process noise, the smoother
the Kalman estimates, however, to the expense of tracking capability
and convergence time. For an optimal process noise the filter generates
estimates with a minimal mean squared error for a given scenario.

change B = 14 Mbps by gB = L/B. As Ts/t∆ = np samples are generated

during Ts, σ2
P is calculated as follows5

σ2
P =

g2
B

np
=

g2
BL

Tsrp
(l + 1). (6.11)

Evidently, σ2
P decreases linearly as the number of samples in the segment

is increased. Using equation (6.11) the Kalman filter yields the optimal

estimate with respect to a minimal mean squared error within the consid-

ered period. The optimality for detecting shorter discontinuities or bigger

bandwidth changes respectively can not be guaranteed. As a result, this

parametrization can be viewed as a lower bound for the filter tracking

ability.

For example, consider the simulation scenario depicted in Figure 22a.

After 4 s the fair share abruptly drops from 28 to 14 Mbps which can be

considered as a worst-case drop in a 802.11g wireless network when a

second greedy stations joins the network. The corresponding gap length

for B = 14 Mbps is given by gB ≈ 0.86 ms assuming a packet length

of L = 1500 byte. The fair share remains in this state for Ts = 4 s. Rate

5 The formal derivation of σ2
P can be found in the Appendix on page 111.
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samples, which are assumed to be collected every t∆ = 100 ms by probing

trains of length l = 8, are corrupted by a Gaussian noise process with

variance σ2
gd ≈ 0.03 ms2 according to equation (6.10). To ensure that the filter

follows cross-traffic variations, we must set σ2
P > 0. If σ2

P is too large, the

estimates become unnecessarily noisy. If, on the other hand, σ2
P is too small,

the discontinuity period is over-smoothed. Thus, we apply equation (6.11)

and derive the optimal process noise variance by σ2
P ≈ 7.4× 10−8. This

minimizes the mean squared error for the given scenario and the filter

follows the bandwidth change perfectly.

Convergence Speed

We calculate the time the filter needs to converge to a new value after an

abrupt bandwidth change. To this end, we examine the step response of the

so-called scalar steady-state Kalman filter. From the Kalman equations (6.6) –

(6.8) it is evident, that the error variance σ2
E(n) and the Kalman gain G(n) are

independent of the current state estimate and the corresponding measure-

ment respectively. Moreover, for stationary noises the parameters σ2
E(n) and

G(n) converge to constant values limn→∞ σ2
E(n) = σ2

E and limn→∞ G(n) = G.

These steady-state values can be calculated analytically offline

σ2
E =

σ2
P

2
+

σ2
P

2

√
1 + 4σ2

gd
/σ2

P

G =
σ2

E
σ2

E + σ2
gd

which, in general, reduces the computational complexity of the Kalman

filter, especially in case of matrix operations.

Next, we substitute the steady-state Kalman gain G in equation (6.6)

and find that the steady-state Kalman filter equations are equivalent to the
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recursive formulation of the exponentially weighted moving average filter,

see, e.g., [18, 45], with smoothing factor G

ĝd(n) = (1− G)ĝd(n− 1) + Ggd(n). (6.12)

Applying the closed form solution of the exponentially weighted moving

average filter, we calculate the step response, that describes an abrupt

bandwidth change, by

ĝd = (1− G)nu(n) = e−αnu(n).

where u(n) is the step function. By substituting (1 − G) = eα, we find

that the bandwidth converges to a new fair share value exponentially.

Using cosh(α) = (eα + e−α)/2, the relationship between the noise process

variances σ2
P and σ2

gd
to α, and consequently, G is given by

e−α = (1− G) = 1 +
σ2

P
2σ2

gd

− σ2
P

2σ2
gd

√
1 + 4σ2

gd
/σ2

P

eα =
1

(1− G)
= 1 +

σ2
P

2σ2
gd

+
σ2

P
2σ2

gd

√
1 + 4σ2

gd
/σ2

P

cosh(α) = 1 +
σ2

P
2σ2

gd

.

Finally, to calculate the convergence time, we make use of the fact that

e−αn generally decays to less than 0.01 of its initial value after n = 5/α steps.

Moreover, taking into account that packet train probes are sent every t∆

seconds on average, we calculate the filter convergence time T for a set of

values σ2
P, σ2

gd
by

T = 5t∆/ arcosh(1 +
σ2

P
2σ2

gd

). (6.13)
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Estimate Variance

In order to evaluate the influence of the process noise parameterization

on the variation of filtered bandwidth estimates, we derive the estimate

variance of the filtered estimates during the discontinuity period Ts. To this

end we perceive the exponentially weighted moving average filter as an

auto-regressive AR(1) process [119] that, has the form x(n) = c + a1x(n−

1) + εt(n) and a well known variance σ2
εt

/(1− a2
1) where σ2

εt
denotes the

variance of a zero-mean white noise process εt. By comparing this general

form of AR(1) processes to equation (6.12) we find that c = 0, a1 = 1− G,

and εt = G x(n). Moreover, the variance of the sample process is given by

the sum of the process and measurement variance, i.e. Var(x(n)) = σ2
P + σ2

gd,

which yields σ2
εt
= G2(σ2

P + σ2
gd) for the white-noise process variance. Thus,

the overall variance of the filtered estimate process is given by

Var (x̂(n)) =
G2(σ2

P + σ2
gd
)

1− (1− G)2 . (6.14)

Figure 23 illustrates the relationship between estimate variance and train

length for discontinuity periods of different lengths. In case the variance of

the cross-traffic is known in advance, we can readily employ equation (6.14)

to determine the probing train length, which yields a minimal mean squared

error. This is elaborated further in the next section.

Considerations on Probing Train Length

As shown by equation (6.10), increasing the packet train length l reduces

the variance of the bandwidth samples proportionally to 1/l. Additionally,

probing bandwidth is wasted when using short packet trains because we

use l + 1 packets per train. Moreover, the ratio of bandwidth used per train

and number of train gaps (l + 1)L/l becomes non-linear. On the other hand,

long packet trains, which result in a low sampling rate, have a negative
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Figure 23: Estimate variances over probing train length for a 14 Mbit bandwidth
change within Ts = 0.5, 1, 4, ..., 32 s. The constant average probing rate
is approx. 1 Mbps. We find that the estimate variance depends on the
measurement noise and therefore packet train length. Thus, we derive
the optimal packet train length from the minimal variance for a given
scenario.

impact on the bandwidth change tracking accuracy, which is shown by

equation (6.11). Hence, we are interested in the optimal train length for a

given probing rate rp, a minimal discontinuity period Ts, and a maximum

bandwidth change B.

To obtain the optimal train length, that provides the smallest estimate

variance under the given constraints, we need to minimize equation (6.14)

in order to minimize the estimate variance. Thus, we find the optimal train

length with respect to the parameters listed above as follows6

l =

√
L Ts rp (p2 p2

c + ppc − p− pc + 1)

L (1− pc) p gB
(∆ + L/C). (6.15)

The train length l is proportional to the square roots of the discontinuity

time, the probing rate intensity, and the reciprocate of the bandwidth

change, i.e. l ∼
√

Ts rp/g2
B. This yields some important conclusions: first,

equation (6.15) resembles findings, e.g., in [108], which state that infinite

long packet trains yield perfect bandwidth estimates in case of constant

channel and cross-traffic conditions. For changing conditions, however,

using long packet trains yields sub-optimal results.

Another important aspect is the improvement of high probing rates over

low probing that is proportional to √rp. Thus, the initial estimation im-

6 The formal derivation of the optimal train length can be found in the Appendix on page 112.
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provement for low probing rates is significant but becomes less pronounced

if the probing rate is increased while the other parameters remain con-

stant. Likewise, the improvement of long over short discontinuity periods

decreases.

Figure 23 depicts the variance of the filtered samples for a process noise

optimized to track changes of B = 14 Mbps within Ts = [0.5, 1, 2, 4, . . . , 32] s.

This variance is related to the mean squared error between the estimate

and the actual bandwidth during the discontinuity period of duration Ts.

It is comprised of the deviation during the convergence period T and the

measurement variance after convergence. It is evident that for the depicted

scenario, it is desirable to use short train lengths even if the resulting

sample variance is increased: the overall segment mean squared error is

minimized. Increasing the probing traffic intensity rp, however, would yield

longer trains that tend to a lower probe variance. This results in better, i.e.

smoother, estimates.

6.7 experimental evaluation of continuous bandwidth esti-

mation

To demonstrate our filtering approach, we implemented a modular, portable

measurement framework, called WiProbe. It is based on the findings in the

previous sections and implements direct probing for estimating the fair

share in wireless networks. Kalman filtering is used to continuously remove

measurement noise from the probes. In order to evaluate our method, we

performed experiments in a controlled testbed environment containing both

– wired and wireless links. We investigate the performance of the Kalman

filter and the effects of parametrization to provide an underpinning to our

theoretical findings in Section 6.5 and Section 6.6.
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Figure 24: Accuracy of WiProbe fair share probing with respect to different packet
train length. We find that small packet trains yield incorrect estimates
and a high variability whereas trains of medium length, i.e. l ≥ 8, yield
fairly good estimates and a small variation. Moreover, the estimates are
quite accurate, also in cases of more than two stations.

Active Continuous Probing

First, we focus on the accuracy of unfiltered packet train probes. We esti-

mate the fair share by sending probing traffic from a sender to a receiver.

Concurrently, a second flow with a rate λ from increasing from 0 Mbps to

28 Mbps in 1 Mbps steps, contents for the same channel. This cross-traffic

is generated using the iperf [5] traffic generator. Figure 24 shows the aver-

age of 25 fair share and bandwidth estimates with different probing train

lengths gathered in approximately 1 second per rate for all cross-traffic

rates. Furthermore, we show the corresponding confidence intervals at a

confidence level of 0.95. As a reference, the true fair share of a new flow

fs = max(C− λ, C/2) and the available bandwidth are plotted. As already

stated in Section 6.6, we find that for medium-sized probing trains, i.e.

l ≥ 8, the fair share estimates are quite accurate. Shorter train lengths,

however, result in samples with a higher variance, as indicated by the larger

confidence intervals.

Figure 25 depicts the effect of train length and process noise on the ability

to track a fair share discontinuity caused by Pareto cross-traffic. Based on

the results plotted in Figures 23 and 24 we use a probing train length of

l = 8 to detect the change of 14 Mbps for Ts = 30 s, i.e., a second station



96 wireless bandwidth estimation

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90

fa
ir

sh
ar

e
es

ti
m

at
e

[M
bp

s]

time [s]

mean for σP = σP,optimal
mean for σP < σP,optimal

fair share samples (example)
fair share estimate (example)

fair share, baseline

(a) Influence of process noise on change
tracking.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60

fa
ir

sh
ar

es
es

ti
m

at
e

[M
bp

s]

time [s]

mean for σP ∼ T = 10
mean for σP ∼ T = 20
mean for σP ∼ T = 30
fair share, baseline

mean for σP = σP,optimal )

(b) Influence of process noise on conver-
gence speed.

Figure 25: Measurement results of smoothed Kalman estimates from samples that
are corrupted by measurements noise. The results restate the influence
of process noise on change tracking and convergence speed, respectively,
also for real systems with Pareto cross-traffic.

transmits its data with r ≥ 14 Mbps for 30 seconds. Using the calculated,

optimal process noise σ2
P = 7.110−5 , the jump is accurately tracked at the

expense of a higher estimate noise. Nevertheless, the measurement noise

is significantly lower when compared to the unfiltered case. Using a sub-

optimal value for σ2
P, the filtered estimate variance is reduced; however, the

estimate of the discontinuity is highly distorted.

The measurement results depicted in Figure 25 confirm our theoretical

findings from Section 6.6. We were able to achieve a predetermined conver-

gence time by selecting the process noise σ2
P according to equation (6.13).

As expected, fast convergence times are associated with a larger estimate

variance as indicated by the larger confidence intervals in Figure 25b.

Furthermore, we compared WiProbe to Pathchirp that also allows for

continuous probing. Figure 26 depicts the mean bandwidth estimates over

25 experiments as well as corresponding confidence intervals for both

tools. Regarding Pathchirp we used the default configuration and find

that it underestimates the fair share significantly. This is in line with the

results of Section 6.3. Moreover, Pathchirp detected the bandwidth change

and followed the discontinuity with a convergence time of T ≈ 10 s, see

Figure 26a. We note, however, that, although it has several tuning knobs, it
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Figure 26: Continuous probing with WiProbe and Pathchirp. We find that both
tools follow the bandwidth change. However, with a similar variance in
the results, WiProbe provides estimates that are more accurate. Moreover,
contrary to Pathchirp, WiProbe can be systematically parameterized to
follow bandwidth changes over time with a predefined accuracy.

is not clear how to parameterize Pathchirp in order to detect bandwidth

changes optimally.

For WiProbe we used a parameterization that achieves similar probing

characteristics in terms of probing traffic intensity, probing frequency, and

convergence time, as the default Pathchirp configuration. To this end, Fig-

ure 26b illustrated results for an optimal configuration with respect to the

given discontinuity period of duration Ts = 30 s. We find that, according

to the confidence intervals, both tools achieve comparable estimation vari-

ances. However, compared to the theoretic fair share baseline, WiProbe

generally provides the more accurate results. Moreover, WiProbe can be

tuned to detect shorter discontinuities optimally, whereas there is no such

methodology to tune Pathchirp accordingly. Hence, it is not clear whether

and how Pathchirp can track bandwidth changes over time that are smaller

than B/T ≈ 1.4.

Video Probing

The Kalman filter approach to available bandwidth estimation not only

allows for active, but also for passive probing, e.g., by using a video data

stream. To this end, every video frame on the application layer results
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Figure 27: Samples of the fair share show a large variability referred to as mea-
surement noise. The noise reduces with

√
l. With this input the Kalman

filter provides good estimates of the fair share after short convergence
both for CBR as well as Pareto cross-traffic and for several contending
stations.

in a packet burst on the network layer. Thus, with a video frame rate of

25 pictures per second, we obtain 25 bursts per second. The burst length

corresponds to the video frame size. In the sequel, we perceive video bursts

as probing trains. Using the gathered bandwidth information, a client-server

video application can adapt its sending rate with respect to the available

bandwidth. This approach has also been presented in [116], however, for

wired networks with a focus on the video rate adaptation algorithm using

scalable video coding [131], rather than the available bandwidth estimation.

To demonstrate the passive bandwidth estimation approach for wire-

less networks we applied the Video Lan Client (VLC) video player [9] to

transmit a variable bit rate video tracefile7 using UDP. In addition, the

D-ITG traffic generator [1] is used at contending stations to generate CBR

and Pareto cross-traffic with a shape parameter of 1.4 and changing in-

tensity respectively. We used packet bursts caused by the video frames,

approximately every 40 ms, to obtain a sample of the fair share. Samples

obtained by bursts with a size l ≥ 8 packets are fed into a Kalman filter

that generates smoothed fair share estimates. In our experiments, we opti-

mized the filter configuration for M = 2 and, with respect to IEEE 802.11g,

7 Some detailed information regarding the video trace file can be found in the Appendix on
page 113.
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∆ + L/C ≈ 0.32 ms such that the measurement noise has σgd ≈ 0.49 ms/
√

l.

The Kalman filter weights each of the samples according to the correspond-

ing measurement noise. Furthermore, we adjusted the Kalman filter to

optimally track discontinuities of Ts = 30 ms, i.e. σ2
p = 7.110−5 ms2.

Figure 27 shows the individual samples derived from video frames of one

measurement run. Additionally, it depicts smoothed fair share estimates

from the Kalman filter averaged over 10 runs as well as the corresponding

0.95 confidence intervals. Despite the large variability of single fair share

samples, the Kalman estimates follow the theoretical long-term fair share

from equation (6.4) closely. Furthermore, the filter quickly detects changes

in the underlying process, i.e. changes of the cross-traffic. This demonstrates

the utility of our approach.
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7.1 conclusions

In this thesis we analyzed the short- and long-term fairness of the DCF

using conditional probabilities of the number of inter-transmissions. The

approach has been proven to be highly useful, facilitating significant closed-

form results. Regarding i.i.d. countdown values, we showed a major impact

of the type, but not the parameters of the distribution. We proved that

long-term fairness improves with
√

l. Our findings are substantiated by

an extensive measurement and simulation study. We modeled the DCF as

emulating a fluid GPS scheduler yielding a fair average service rate that is

subject to well-defined error terms. Based on the DCF clock, we derived a

service curve that opens up significant options for performance analysis

using the stochastic network calculus.

Moreover, we conducted an extensive measurement study of wireless

bandwidth estimation in IEEE 802.11g WLAN testbeds. In contrast to wired

links bandwidth estimates for wireless channels depend largely on the

choice of packet sizes. We adapted the examined tools accordingly. We found

that the FCFS assumption common in bandwidth estimation does not apply

in case of wireless channels with contending traffic, where the distributed

coordination function seeks to achieve a fair bandwidth allocation. We

showed that the estimates of known iterative measurement methods can be

related to the fair share of a new flow, which may deviate significantly from

the available bandwidth. Our measurement results confirm this relation. A

similar result was not established for direct probing.

Based on our findings, we developed our own fair share estimation

method. We showed the benefit of employing Kalman filtering to improve

estimates derived from continuous active probing of fair share using a

101
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constant probing rate. Specifically, we showed how filter parameters should

be chosen to fit a specific use case and calculated the effects of filtering on

the estimate variance. Additionally, we derived the relationship between the

filter convergence time and the process and measurement noise parameters.

Furthermore, we evaluated the influence of train lengths on the estimate’s

variance for wired and wireless setups. We conclude that depending on

the time scale and intensity of the cross-traffic variations of interest, it can

be beneficial to sample cross-traffic frequently using short packet trains.

Moreover, we proved that the estimation variance, that is inversely related

to the smoothness of the estimates, decreases with √rp.

We concluded our study showing a technique that estimates the fair

rate from passive traffic measurements of a video application, e.g., for rate

adaptation.

7.2 future work

Some open research questions remain from the findings presented in this

thesis. We outline these questions in conjunction with possible applications.

As stated before, the fairness model assumes independent backoff values

and, therefore, independent packet arrivals at the channel. This assumption

is violated to some extent for 2<M<∞. Thus, for a moderate number of

hosts the model outcome differs slightly from the empirical data. However,

it might be possible to find a correction term related to the auto-covariance

of the packet arrivals that compensates this deviation.

The fairness model considers a basic service set and neglects hidden

and exposed terminals as well as multi-hop scenarios. Hence, it would be

interesting to investigate fairness in those cases. To this end, a stochastic

network calculus approach, which allows the concatenation of systems, may

reveal new insights also for end-to-end scenarios.
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Regarding the upcoming IEEE 802.11n standard that incorporates new

techniques such as MIMO, frame aggregation and service differentiation, a

modified fairness model is needed.

Regarding the application of video-rate probing, a video application could

benefit from the accurate bandwidth estimates by dynamically adapting

the video rate according to the achievable bandwidth using, e.g., scalable

video coding. Moreover, it would be interesting to investigate the relation

of the process noise, that is needed for the Kalman filter parameterization,

and the buffer size of the video application. To this end, one would need to

concatenate traffic models of video sources with the Kalman filter approach.
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AA P P E N D I X : P R O O F S A N D D E R I VAT I O N S

proof 1: random sum of random variables

This proof corresponds to the derivation of packet departure time in

IEEE 802.11 WLANs including retransmissions on page 63.

In the following, we show that the expected value of a random sum of

i.i.d. random variables can be calculated by the expected values of each

random variable. That is,

E

[
X

∑
j=1

Yj

]
= E [X] E [Y]

where X and Y are independent random variables which are negative

binomial and exponentially distributed, respectively.

Proof The proof uses moment generating functions. Given that X is neg-

ative binomial distributed with parameters r and p, we find the moment

generating function by

MX(θ) =

(
1− p

1− p eθ

)r

Moreover, since Y is exponentially distributed with parameter λ, we find

MY(θ) =
λ

λ− θ

If X1, X2 . . . is a sequence of i.i.d. random variables, and Y ≥ 0 is a ran-

dom variable which is independent of X, then the sum S = X1 + X2 + · · ·+

XY has a moment generating function given by MS(θ) = MX (ln (MY(θ))),
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see, e.g., [62, 148]. Thus, we calculate the moment generation function of

the random sum by

MS(θ) =

(
1− p

1− p eln( λ
λ−θ )

)r

Next, we derive the first moment by differentiating the moment generat-

ing functions at θ = 0. That is

d
dθ

MX(0) =
rp

1− p
= E[X]

d
dθ

MY(0) =
1
λ

= E[Y]

d
dθ

MS(0) =
rp

λ (1− p)
= E

[
X

∑
j=1

Yi

]

Now, it is evident, that E[X] E[Y] = E
[
∑X

j=1 Yi

]
, i.e. 1

λ
rp

1−p = rp
λ (1−p) . To

this end, we find that E[φi(n)] = E[∑1+R
j=1 bi(n)− (1 + E[R])µ] = 0 as stated

in the text.

A general proof for the random sum of random variables, that holds for

any distribution with a known moment generating function, can be found,

e.g., in [62].

proof 2: q1 < 1

This proof corresponds to the calculation of violation probabilities and

sample path bounds on page 67

We use Boole’s inequality to sum the violation probabilities ε i over all

packets l to derive a corresponding sample path bound. To this end, we

need to prove that the sum of the probabilities of the individual events stays

finite. This can be done using the geometric sum. However, this requires

the probability of any single event to be less than one, i.e. q1 < 1.
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Proof From equation (5.8) we find

ε1(l′) ≤
(

ϑ

µ
e−

µ+ϑ
µ

)l′

= ql′
1

which yields

q1 =
ϑ

µ
e−

µ+ϑ
µ .

Substituting ϑ/µ by a yields

q1 = a e−(a+1)

Now, it is evident that q1 is negative, i.e q1 < 0 if a = ϑ/µ, is negative.

Moreover, we differentiate q1 two times to find its maximum value

d
da

q1 = e−(a+1) − a e−(a+1)

d2

d2a
q1 = −2 e−(a+1) − a e−(a+1)

Solving the first derivative d
dρ q1 = 0 for a we find that q1 has an ex-

treme value at (1, e−2). Moreover, this has to be a global maximum since

d2

d2ρ
q1
∣∣

a=1 < 0 and lima→∞q1 = 0. Hence, q1 < 1 holds generally.

proof 3: q3 < 1

This proof corresponds to the calculation of violation probabilities and

sample path bounds on page 68

For reasons similar to proof 1, we need to show that q2 and q3, respec-

tively, are less than 1. In the sequel we outline the proof for q3 < 1, since

the notation is slightly simpler. However, the proof for q2 < 1 follows

accordingly.
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Proof We have from equation (5.10) that

ε3(l) ≤
(

p(1− p)ρ(1 + ρ)1+ρ

ρρ

)l

= ql
3

which yields

q3 =
p(1− p)ρ(1 + ρ)1+ρ

ρρ
.

To show that q3 < 1 we, again, derive d
dρ q3

d
dρ

q3 =
p(1− p)ρ (1 + ρ)1+ρ

ρρ

[
ln (1− p) + ln (1 + ρ)− ln ρ)

]

and solve d
dρ q3 = 0 for ρ to find an extreme value at ρ = (1− p)/p. Since

the constant p = 1/M in (0, 1] reflects the channel access probability as a

function of number of contending stations M, we find that (1− p)/p =

M− 1. To this end, we can calculate the corresponding extreme value by

q3
∣∣
ρ= 1−p

p
=

p (1− p)
1−p

p (1 + 1−p
p )1+ 1−p

p

1−p
p

1−p
p

=
(M−1

M )M−1 MM−1

(M− 1)M−1

After some simple reordering we find

q3
∣∣
ρ= 1−p

p
= 1.

To prove that ( 1−p
p , 1) is a maximum we need to show d2

d2ρ
q3
∣∣
ρ= 1−p

p
< 0. For

this purpose, we calculate the derivative by

d2

d2ρ
q3 =

p (1− p)ρ (1 + ρ)1+ρ

ρρ

[
1

(1 + ρ)
− 1

ρ
+ ln (1− p)2

+ 2 ln (1− p) (ln (1 + ρ) + 1) + (ln (1 + ρ) + 1)2

− 2 ln (1− p) (ln (ρ) + 1) + (ln (ρ) + 1)2

− 2 (ln (1 + ρ) + 1) (ln (ρ) + 1)
]
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Solving the above equation for M = 2 stations, i.e. p = 1/2, yields

d2

d2ρ
q3
∣∣
ρ= 1−p

p
= −0.5. Hence, ( 1−p

p , 1) is a maximum value.

Moreover, to prove this a global maximum, we explore the tail ends of

q2. We find that limρ→−∞ q3 = −∞ and limρ→∞ = 0 respectively. Thus, for

every p ∈ (0, 1] and for every ρ ≶ 1−p
p , the function q3 is less than 1.

derivation 1: process noise

This derivation corresponds to the calculation the process noise of a random

bandwidth process on page 89

In the sequel, we show that for the process noise σ2
P = g2

B/np holds

generally. We use that gB = L/B, where L is the packet size and B =

Bmax − Bmin is the maximum bandwidth change. Furthermore, np is the

number of samples used to detect a discontinuity of a given length. From

the definition of the unbiased sample variance, it follows that

Var(x) =
1

N − 1

N

∑
i=1

(
xi −

1
N

N

∑
j=1

xj

)2

.

Since we are interested in the maximum difference of bandwidth changes

that has to be detected in N = np steps, we can assume that x1 = gB while

xi = 0 for i > 1. Thus, the above equation reduces to

Var(x) =
1

N − 1

(
(Nx1 − x1)

2

N2 +
(N − 1)x2

1
N2

)
.

After some reordering it follows that

Var(x) =
x2

1
N

=
g2

B
np

= σ2
P.
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derivation 2: optimal train length

This derivation corresponds to the calculation the optimal packet train

length for continuous bandwidth estimation on page 93

To derive the optimal train length, we have to minimize equation (6.14).

Thus, we have to differentiate equation (6.14) with respect to l, i.e.

d
dl

σ2
x̂(n) =

G
2− G

(
g2

BL
Tsrp

− p2 pc + (1− p)(1− pc)p2l2

(1− pc)2 (∆ + L/C)2
)

Solving d
dl σ

2
x̂(n) = 0 for l yields the packet train length that minimized

equation (6.14). Thus, the optimal train length follows by the positive result

of

l =

√
L Ts rp (p2 p2

c + ppc − p− pc + 1)

L (1− pc) p gB
(∆ + L/C).
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In the following, we present some information and statistics regarding

the video trace file used in our experiments. We used serveral episods of

the film Spiderman. The film was encoded as single layer MPEG-2 with

a group-of-picture size of 12 video frames. The film has an overal size of

approx. 1766 Mbyte and lasts for 5036 s, i.e. approx. 84 min. This results in

an average probing rate rp of approx. 2.8 Mbps.

video frames

time

network frames

(a) video frames to packets
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(b) video burst length distribution

Figure 28: The burst length distribution of the video trace file used in our experi-
ments. As illustrated, any video frame results in a packet burst on the
network layer. The average burst size of our video is 9 packets per burst.

As illustrated in Figure 28a, any video frame on the application layer,

results in a packet burst of a specific length on the network layer. The

average bust length l is given by 9 packets/burst with a packet size L

of 1442 byte. The distribution of bust length is depicted in Figure 28b.

Moreover, the minimum video frame size is 58 byte, i.e. one 64 byte packet

on the network layer. The maximum video frame size is 87 kbyte which

results in a bust length of 60 packets.
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G L O S S A RY O F A C R O N Y M S

ACK Acknowledgement
AIMD Additive increase, multiplicative decrease
AR Auto-regressive
ARQ Automatic repeat request
ATM Asynchronous transfer mode
AvBw Available bandwidth
BEB Binary exponential backoff
BSS Basic service set
Cor. Corollary
CSMA Carrier sense multiple access
CTS Clear to send
DCF Distributed coordination function
DIFS Distributed (coordination function) inter-frame

space
DLS Direct link setup
DRR Deficit round robin
DSSS Direct sequence spread spectrum
Eq. Equation
ERP Extended rate physical layer
EWMA Exponentially weighted moving average
FCFS First come first serve
FIFO First in first out
Fig. Figure
Gbps Gigabit per second
GoP Group of pictures
GPS Generalized processor sharing
GRC Guaranteed rate clock
GSM Global System for Mobile Communications
HR High rate
i.i.d independent and identically distributed
IEEE Institute of Electrical and Electronics Engineers
ISM Industrial, scientific, and medical
LAN Local Area Network
MAC Medium access control
MACA Multiple access with collision avoidance
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116 glossary of acronyms

MACAW Multiple access with collision avoidance for wire-
less

Mbps Mega bit per second
MILD Multiplicative increase, linear decrease
MIMO Multiple input, multiple output
MSE Mean squared error
OFDM Orthogonal frequency division multiplexing
PCF Point coordination function
PHY Physical (layer)
PIFS Point (coordination function) inter-frame space
PLCP Physical layer convergence procedure
QoS Quality of service
RLC Radio link control
RTS Request to send
SIFS Short inter-frame space
SISO Single input, single output
TCP Transport control protocol
Th. Theorem
TXOP Transmit opportunity
UDP User datagram protocol
WFQ Weighted fair queuing
WLAN Wireless Local Area Network



G L O S S A RY O F S Y M B O L S

(x)+ Positive part max(0, x) of a number x
A(t) Arrival process
AvBw Available bandwidth
C Channel capacity
D(t) Departure process
E[X] Expectation value of a random variable X
G Goodput, i.e. achievable throughput
J Jain’s fairness index
L Packet size
M Number of wireless stations
P[X] probability of random variable X
S(t) Service curve function
Var[X] Variance of a random variable X
a(n) Arrival timestamp of packet n
b i.i.d. random backoff variable
c A constant
d(n) Departure timestamp of packet n
f Fair bandwidth share
gd Average gap of departing packets
gi Input gap, related to the input rate
go Output gap, related to the output rate
i, j, n, m general indexes
k Inter-transmitted packets
l Packet burst length
p channel access probability
pa transmission attempt probability
pc collision probability
r Data rate
ri Input rate to a system
ro Output rate to a system
u Collision window of IEEE 802.3
w Contention window of the DCF
MX(θ Moment generating function of X
N(µ, σ) Normal random variable with expected value µ

and variance σ

Sε(n) Stochastic service curve function
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118 glossary of symbols

U(τ, t) Channel utilization in the interval [τ, t)
M̂ Tagged wireless station
ι The lag of an autocorrelated process
κ Packet arrival process
sε(n) Stochastic service timestamp of packet n
t, τ Time indexes
∗ Max-plus convolution operator
⊗ Min-plus convolution operator
ε Percentile that describes the violation probability
λ Cross traffic rate
φi Weight assigned to flow i in a weighted fair queu-

ing system
� Halmos symbol to end of a proof



B I B L I O G R A P H Y

[1] D-ITG: Internet Traffic Generator. http://www.grid.unina.it/

software/ITG.

[2] DD-WRT: Linux Wireless Router. http://www.dd-wrt.com.

[3] Gateworks Laguna Network Platform. http://www.gateworks.com.

[4] INETMANET Framework for OMNEST/OMNeT++ 4.x. http://

github.com/inetmanet.

[5] Iperf: TCP/UDP Bandwidth Measurement Tool. http://dast.nlanr.
net/Projects/Iperf.

[6] The Linux Kernel Archive. http://www.kernel.org.

[7] OMNeT++: Network Simulator. http://www.omnetpp.org.

[8] OpenWrt: Linux Wireless Router. http://www.openwrt.org.

[9] VLC Video Lan Client. http://www.videolan.org.

[10] A Hybrid Wireless MAC Protocol Supporting Asynchronous and
Synchronous MSDU Delivery Services, September 1992. IEEE 802.11

Working Group paper 802.11/91-92.

[11] IEEE Standard for Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Spedifications, June 2007. Std. 802.11-2007.

[12] IEEE Standard for Carrier Sense Multiple Access with Collision Detec-
tion (CMSA/CD) Access Method and Physical Layer Specifications,
December 2008. Std. 802.3-2008.

[13] O. Abboud, T. Zinner, K. Pussep, S. A.-S., and R. Steinmetz. On the
Impact of Quality Adaptation in SVC-based P2P Video-on-Demand
Systems. In ACM Multimedia Systems, pages 177–197, February 2011.

[14] N. Abramson. The ALOHA system - another alternative for computer
communications. In Proc. of Fall Joint Computing Conference, pages
281–285, May 1970.

[15] N. Abramson. The Throughput of Packet Broadcasting Channels.
IEEE Trans. Commun., 25(1):117–128, January 1977.

[16] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-Level
Measurements from an 802.11b Mesh Network. SIGCOMM Comput.
Commun. Rev., 34:121–132, August 2004.

[17] A. Amambra, K. M. Hou, and J.-P. Chanet. Evaluation of the Per-
formance of the SLoPS: Available Bandwidth Estimation Technique
in IEEE 802.11b Wireless Networks. In Proc. of IFIP NTMS, pages
123–132, May 2007.

119

http://www.grid.unina.it/software/ITG
http://www.grid.unina.it/software/ITG
http://www.dd-wrt.com
http://www.gateworks.com
http://github.com/inetmanet
http://github.com/inetmanet
http://dast.nlanr.net/Projects/Iperf
http://dast.nlanr.net/Projects/Iperf
http://www.kernel.org
http://www.omnetpp.org
http://www.openwrt.org
http://www.videolan.org


120 bibliography

[18] A. Antoniou. Digital Filters: Analysis, Design, and Applications. McGraw-
Hill, 1993.

[19] G. Armitage. An Experimental Estimation of Latency Sensitivity in
Multiplayer Quake 3. In Proc. of IEEE ICON, pages 137–141, September
2003.

[20] A. V. Babu and L. Jacob. Fairness analysis of IEEE 802.11 multirate
wireless LANs. IEEE Trans. Veh. Technol., pages 3073–3088, September
2007.

[21] F. Baccelli, G. Cohen, and G. Oslder. Synchronization and Linearity: An
Algebra for Discrete Event Systems. John Wiley & Sons Inc., 1992.

[22] A. Balachandran, G. M. Voelker, P. Bahl, and P. V. Rangan. Character-
izing User Behavior and Network Performance in a Public Wireless
LAN. SIGMETRICS Perform. Eval. Rev., 30:195–205, June 2002.

[23] A. Banchs and X. Perez. Distributed Weighted Fair Queuing in 802.11

Wireless LAN. In Proc. of IEEE ICC, pages 3121–3127, May 2002.

[24] C. L. Barrett, M. V. Marathe, D. C. Engelhart, and A. Sivasubramaniam.
Analyzing the Short-Term Fairness of IEEE 802.11 in Wireless Multi-
hop Radio Networks. In Proc. of IEEE MASCOTS, pages 137–144,
October 2002.

[25] J. Beran. Statistics for Long-Memory Processes. Chapman & Hall/CRC,
1994.

[26] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger. Long-Range
Dependence in Variable-Bit-Rate Video Traffic. IEEE Trans. Commun.,
43(234):1566–1579, February 1995.

[27] G. Berger-Sabbatel, A. Duda, O. Gaudoin, M. Heusse, and F. Rousseau.
Fairness and its impact on delay in 802.11 networks. In Proc. of IEEE
GLOBECOM, pages 2967–2973, November 2004.

[28] G. Berger-Sabbatel, A. Duda, O. Gaudoin, M. Heusse, and F. Rousseau.
Short-term Fairness of 802.11 Networks with Several Hosts. In Proc.
of IFIP MWCN, pages 263–274, October 2004.

[29] D. Bertsekas and R. Gallager. Data Networks. Pearson Prentice Hall,
1979.

[30] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. MACAW: A Me-
dia Access Protocol for Wireless LAN’s. In Proc. of ACM SIGCOMM,
pages 212–225, October 1994.

[31] G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed
Coordination Function. IEEE J. Select. Areas Commun., 18(3):535–547,
March 2000.

[32] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks
and Markov Chains. John Wiley & Sons Inc., 2006.



bibliography 121

[33] R. R. Boorstyn, A. Burchard, J. Liebeherr, and C. Oottamakorn. Statisti-
cal Service Assurances for Traffic Scheduling Algorithms. IEEE Journal
on Selected Areas in Communications, 18(12):2651–2664, December 2000.

[34] A. Botta, A. Pescape, and G. Ventre. On the Performance of Bandwidth
Estimation Tools. In Proc. of IEEE Systems Communications, pages 287–
292, August 2005.

[35] Z. Bozakov and M. Bredel. SSHLauncher - A Tool for Experiment
Automation in Distributed Environments. Technical report, TU Darm-
stadt, July 2008.

[36] Z. Bozakov and M. Bredel. Online Estimation of Available Bandwidth
and Fair Share Using Kalman Filtering. In Proc. of Networking, pages
548–561, May 2009.

[37] R. Braden, D. Clark, and S. Shenker. RFC1633 - Integrated Services in
the Internet Architecture: an Overview. http://www.ietf.org/rfc/
rfc1633.txt, June 1994.

[38] M. Bredel and M. Fidler. A Measurement Study of Bandwidth Esti-
mation in IEEE 802.11g Wireless LANs using the DCF. In Proc. of IFIP
Networking, pages 314–325, May 2008.

[39] M. Bredel and M. Fidler. A Measurement Study regarding Quality
of Service and its Impact on Multiplayer Online Games. In Proc. of
NetGames, pages 1–6, November 2010.

[40] R. Bringhurst. The Elements of Typographic Style. Version 2.5. Hartley
& Marks, Publishers, 2002.

[41] F. Calì, M. Conti, and E. Gregori. Dynamic Tuning of the IEEE 802.11

Protocol to Achieve a Theoretical Throughput Limit. IEEE/ACM Trans.
Networking, 8(6):785–799, December 2000.

[42] M. Carvalho and J. J. Garcia-Luna-Aceves. Delay Analysis of IEEE
802.11 in Single-Hop Networks. In Proc. of ICNP, pages 146–155,
November 2003.

[43] C. S. Chang. Performance Guarantees in Communication Networks. John
Wiley & Sons Inc., 2000.

[44] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti. Achieving
single channel, full duplex wireless communication. In Proc. of ACM
MobiCom, pages 1–12, September 2010.

[45] C. K. Chui and G. Chen. Kalman Filtering with Real-Time Applications.
Springer Press, 2009.

[46] F. Ciucu. Scaling Properties in the Stochastic Network Calculus. PhD
thesis, University of Virginia, August 2007.

[47] F. Ciucu, A. Burchard, and J. Liebeherr. Scaling Properties of Statisti-
cal End-to-End Bounds in the Network Calculus. IEEE/ACM Trans.
Networking, 14(6):2300–2312, June 2006.

http://www.ietf.org/rfc/rfc1633.txt
http://www.ietf.org/rfc/rfc1633.txt


122 bibliography

[48] S. Cocorada. An IEEE 802.11g Simulation Model with Extended
Debug Capabilities. In Proc. of SimuTools, pages 1–3, March 2008.

[49] T. M. Cover and J. A. Thomas. Elements of Information Theory. John
Wiley & Sons Inc., 1991.

[50] M. E. Crovella and A. Bestavros. Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes. In Proc. of ACM SIGMETRICS,
pages 160–169, May 1996.

[51] R. L. Cruz. A Calculus for Network Delay. IEEE Trans. Inform. Theory,
37(1):114–141, January 1991.

[52] R. L. Cruz and C. M. Okino. Service Guarantees for Window Flow
Control. In Proc. Allerton Conf. on Comm., Cont. & Comp, pages 1–12,
October 1996.

[53] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a
Fair Queueing Algorithm. In Proc. of ACM SIGCOMM, pages 1–12,
October 1989.

[54] A. Ekelin, M. Nilsson, E. Hartikainen, A. Johnsson, J.-E. Mangs, B. Me-
lander, and M. Björkman. Real-time Measurement of End-To-End
Available Bandwidth Using Kalman Filtering. In Proc. IEEE/IFIP
NOMS, pages 5–17, April 2006.

[55] A. K. Erlang. The Theory of Probabilities and Telephone Conversa-
tions. Nyt Tidsskrift for Matematik, 20(1):33–39, 1909.

[56] A. K. Erlang. Solution of some Problems in the Theory of Probabilities
of Significance in Automatic Telephone Exchanges. Elektrotkeknikeren,
13(1):5–22, 1917.

[57] M. Fidler. A Network Calculus Approach to Probabilistic Quality of
Service Analysis of Fading Channels. In Proc. of IEEE GLOBECOM,
pages 1–6, November 2006.

[58] M. Fidler. An End-to-End Probabilistic Network Calculus with Mo-
ment Generating Functions. In Proc. of IWQoS, pages 261–270, June
2006.

[59] M. Fidler. A Survey of deterministic and stochastic service curve
models in the network calculus. IEEE Communications Surveys Tutorials,
12(1):59–86, March 2010.

[60] M. Garetto, J. Shi, and E. W. Knightly. Modeling Media Access in
Embedded Two-Flow Topologies of Multi-hop Wireless Networks. In
Proc. of ACM MobiCom, pages 200–214, September 2005.

[61] P. Goyal, S. S. Lam, and H. M. Vin. Determining End-to-End Delay
Bounds in Heterogeneous Networks. Multimedia Systems, 5(3):157–163,
May 1997.

[62] G. Grimmett and D. Stirzaker. Probability and Random Processes. Oxford
University Press, 1991.



bibliography 123

[63] J. P. Hespana. Linear System Theory. Princeton University Press, 2009.

[64] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Perfor-
mance anomaly of 802.11b. In Proc. of IEEE INFOCOM, pages 836–843,
March 2003.

[65] C. Hoon, V. Misra, and D. Rubenstein. Fairness and Physical Layer
Capture in Random Access Networks. In Proc. of SECON, pages
381–390, June 2007.

[66] N. Hu. Network Monitoring and Diagnosis Based on Available Bandwidth
Measurement. PhD thesis, Carnegie Mellon University, May 2006.

[67] N. Hu and P. Steenkiste. Evaluation and Characterization of Available
Bandwidth Probing Techniques. In IEEE J. Select. Areas Commun.,
pages 879–894, August 2003.

[68] iSuppli Market Research. Wi-Fi Chipset Shipments to Double in 2011,
February 2011. http://www.isuppli.com
[Online; accessed 25-February-2011].

[69] J. R. Jackson. Networks of Waiting Lines. Operations Research, 5(5):
518–521, August 1957.

[70] V. Jacobson. Congestion Avoidance and Control. In Proc. of ACM
SIGCOMM, pages 273–288, August 1988.

[71] M. Jain and C. Dovrolis. End-to-End Available Bandwidth: Measure-
ment Methodology, Dynamics, and Relation with TCP Throughput.
In IEEE/ACM Trans. Networking, pages 537–583, August 2003.

[72] M. Jain and C. Dovrolis. Ten Fallacies and Pitfalls on End-To-End
Available Bandwidth Estimation. In Proc. of ACM IMC, pages 272–277,
October 2004.

[73] M. Jain and C. Dovrolis. Path selection using available bandwidth
estimation in overlay-based video streaming. Computer Networks, 52

(12):2411–2418, August 2008.

[74] R. Jain. The Art of Computer Performance Analysis. John Wiley & Sons
Inc., 1991.

[75] R. Jain, D.-M. Chiu, and W. R. Hawe. A Quantitative Measure of Fair-
ness and Discrimination for Resource Allocation in Shared Computer
System. Technical Report DEC-TR-301, Digital Equipment, September
1984.

[76] Y. Jian and S. Chen. Can CSMA/CA networks Made be Fair? In Proc.
ACM MobiCom, pages 137–144, September 2008.

[77] L. B. Jiang and S. C. Liew. Proportional fairness in wireless LANs
and ad hoc networks. IEEE WCNC, pages 1551–1556, March 2005.

[78] Y. Jiang. Relationship between Guaranteed Rate Server and Latency
Rate Server. Computer Networks, 43(3):307–315, October 2003.

http://www.isuppli.com


124 bibliography

[79] Y. Jiang. A Basic Stochastic Network Calculus. In Proc. ACM SIG-
COMM, pages 123–134, October 2006.

[80] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer Press, 2008.

[81] A. Johnsson, B. Melander, and M. Björkman. Diettopp: A First Imple-
mentation and Evaluation of a Simplified Bandwidth Measurement
Method. In Proc. of SNCNW, November 2004.

[82] A. Johnsson, B. Melander, and Ma. Björkman. Bandwidth Measure-
ment in Wireless Networks. In Proc. of Med-Hoc-Net, June 2005.

[83] A. Johnsson, B. Melander, and Ma. Björkman. An Analysis of Active
End-to-End Bandwidth Measurements in Wireless Networks. In Proc.
of IEEE/IFIP E3EMON, pages 74–81, April 2006.

[84] T. Joshi, A. Mukherjee, Y. Yoo, and D.-P. Agrawal. Airtime Fairness
for IEEE 802.11 Multirate Networks. IEEE Trans. Mobile Computing,
pages 513–527, April 2008.

[85] J. Jun and M. L. Sichitiu. Fairness and QoS in Multihop Wireless
Networks. In Proc. of IEEE VTC, pages 2936–2940, October 2003.

[86] P. Karn. MACA a New Channel Access Method for Packet Radio. In
Proc. of the Computer Networking Conference, pages 134–140, June 1990.

[87] F. P. Kelly. Stochastic Models for Computer Communication Systems.
Journal of the Royal Statistic Society: Series B, 47(3):379–395, 1985.

[88] F. P. Kelly. Notes on Effective Bandwidths. Royal Statistical Society
Lecture Notes, 4:141–168, September 1996.

[89] S. Keshav. A Control-Theoretic Approach to Flow Control. In Proc. of
ACM SIGCOMM, pages 3–15, September 1991.

[90] M. A. Y. Khan and D. Veitch. Isolating Physical PER for Smart Rate
Selection in 802.11. In Proc. of IEEE INFOCOM, pages 1080–1088,
April 2009.

[91] L. Kleinrock. Message Delay in Communication Nets with Storage. PhD
thesis, Massachusetts Institute of Technology, December 1962.

[92] L. Kleinrock. Queueing Systems, volume I. John Wiley & Sons Inc.,
1975.

[93] C. E. Koksal, H. Kassab, and H. Balakrishnan. An Analysis of Short-
Term Fairness in Wireless Media Access Protocols. In Proc. of ACM
SIGMETRICS, pages 118–119, June 2000.

[94] V. Konda and J. Kaur. RAPID: Shrinking the Congestion-Control
Timescale. In INFOCOM 2009, IEEE, pages 1–9, April 2009.

[95] A. Kumar, D. Manjunath, and J. Kuri. Communication Networking: An
Analytical Approach. Morgan Kaufmann, 2004.



bibliography 125

[96] B.-J. Kwak, N.-O. Song, and L. E. Miller. Performance analysis of
exponential backoff. IEEE/ACM Trans. Networking, 13(2):343–355, April
2005.

[97] Y. Kwon, Y. Fang, and H. Latchman. A novel MAC protocol with fast
collision resolution for wireless LANs. In Proc. of IEEE INFOCOM,
pages 853–862, April 2003.

[98] K. Lakshminarayanan, V. N. Padmanabhan, and J. Padhye. Bandwidth
Estimation in Broadband Access Networks. In Proc. of ACM IMC,
pages 314–321, October 2004.

[99] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis.
McGraw-Hill, 1991.

[100] J.-Y. Le Boudec. Application of Network Calculus to Guaranteed
Service Networks. IEEE Trans. Inform. Theory, 44(3):1087–1096, May
1998.

[101] J.-Y. Le Boudec and P. Thiran. Network Calculus A Theory of Determinis-
tic Queuing Systems for the Internet. Springer Press, 2001.

[102] H. K. Lee, V. Hall, K. H. Yum, K. I. Kim, and E. J. Kim. Bandwidth
Estimation in Wireless LANs for Multimedia Streaming Services. In
Proc. of IEEE ICME, pages 1181–1184, July 2006.

[103] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the
Self-Similar Nature of Ethernet Traffic. IEEE/ACM Trans. Networking,
2(1):1–15, February 1994.

[104] C. Li, H. Che, and S. Li. A Wireless Channel Capacity Model for
Quality of Service. IEEE Trans. Wireless Commun., 6(1):356–366, January
2007.

[105] M. Li, M. Claypool, and R. Kinicki. WBest: A Bandwidth Estimation
Tool for Multimedia Streaming Application over IEEE 802.11 Wireless
Networks. Technical Report WPI-CS-TR-06-14, Computer Science
Department, Worcester Polytechnic Institute, March 2006.

[106] Z. Li, S. Nandi, and A. K. Gupta. Modeling the short-term unfairness
of IEEE 802.11 in presence of hidden terminals. Performance Evaluation,
63(4):441–462, May 2006.

[107] J. Liebeherr, M. Fidler, and S. Valaee. A Min-Plus System Interpre-
tation of Bandwidth Estimation. In Proc. of IEEE INFOCOM, pages
1127–1135, May 2007.

[108] X. Liu, K. Ravindran, and D. Loguinov. A Queuing-Theoretic Foun-
dation of Available Bandwidth Estimation: Single-Hop Analysis.
IEEE/ACM Trans. Networking, 15(2):918–931, August 2007.

[109] X. Liu, K. Ravindran, and D. Loguinov. A Stochastic Foundation
of Available Bandwidth Estimation: Multi-hop Analysis. IEEE/ACM
Trans. Networking, 16(2):130–143, April 2008.



126 bibliography

[110] P. Loiseau, P. Goncandalves, G. Dewaele, P. Borgnat, P. Abry, and
P. V.-B. Primet. Investigating Self-Similarity and Heavy-Tailed Dis-
tributions on a Large-Scale Experimental Facility. IEEE/ACM Trans.
Networking, 18(4):1261–1274, August 2010.

[111] R. Lübben, M. Fidler, and J. Liebeherr. A Foundation for Stochastic
Bandwidth Estimation of Networks with Random Service. In Proc. of
IEEE INFOCOM, pages 1–9, March 2011.

[112] S. Machiraju, D. Veitch, F. Baccelli, and J. Bolot. Adding Definition to
Active Probing. ACM SIGCOMM Computer Communication Review, 37

(2):19–28, 2007.

[113] K. Mahmood, A. Rizk, and Y. Jiang. On the Flow-Level Delay of a
Spatial Multiplexing MIMO Wireless Channel. In Proc. of IEEE ICC,
pages 53–59, June 2011.

[114] B. Melander, M. Björkman, and P. Gunningberg. Regression-Based
Available Bandwidth Measurements. In Proc. of SPECTS, pages 38–63,
July 2002.

[115] T. Nandagopal, T.-E. Kim, X. Gao, and V. Bharghavan. Achieving
MAC Layer Fairness in Wireless Packet Networks. In Proc. of ACM
MobiCom, pages 87–98, September 2000.

[116] D. T. Nguyen and J. Ostermann. Congestion Control for Scalable
Video Streaming Using the Scalability Extension of H.264/AVC. IEEE
Journal of Selected Topics in Signal Processing, 1(2):246–253, August 2007.

[117] I. Norros. A Storage Model with Self-Similar Input. Queueing Systems,
16(3):387–396, September 1994.

[118] I. Norros. On the Use of Fractional Brownian Motion in the Theory of
Connectionless Networks. IEEE J. Sel. Areas Commun, 13(6):953–962,
August 1995.

[119] A. Papoulis and S. U. Pillai. Probability, Random Variables, and Stochastic
Processes. McGraw-Hill, 2002.

[120] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks. IEEE/ACM
Trans. Networking, 1(3):344–357, June 1993.

[121] V. Paxson and S. Floyd. Wide area traffic: the failure of Poisson
modeling. IEEE/ACM Trans. Networking, 3(3):226–244, June 1995.

[122] E. Perahia and R. Stacey. Next Generation Wireless LANs - Throughput,
Robustness, and Reliability in 802.11n. Cambridge University Press,
2008.

[123] C. L. Phillips, J. M. Parr, and E. A. Riskin. Signals, Systems and
Transforms. Pearson Prentice Hall, 2007.



bibliography 127

[124] M. Portoles-Comeras, A. Cabellos-Aparicio, J. Mangues-Bafalluy,
A. Banchs, and J. Domingo-Pascual. Impact of Transient CSMA/CA
Access Delays on Active Bandwidth Measurements. In Proc. of ACM
IMC, pages 397–409, November 2009.

[125] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and L. Cottrell.
Pathchirp: Efficient Available Bandwidth Estimation for Network
Paths. In Proc. of PAM, April 2003.

[126] L. G. Roberts. ALOHA Packet System With and Without Slots and
Capture. SIGCOMM Comput. Commun. Rev., 5:28–42, April 1975.

[127] S. Ross. A First Course in Probability. Pearson Prentice Hall, 2006.

[128] M. Roughan. Fundamental Bounds on the Accuracy of Network
Performance Measurements. SIGMETRICS Perform. Eval. Rev., 33:
253–264, June 2005.

[129] T. Sakurai and H. L. Vu. MAC Access Delay of IEEE 802.11 DCF.
IEEE Trans. Wireless Commun., 6(5):1702–1710, May 2007.

[130] C. Sarr, C. Chaudet, G. Chelius, and I. G. Lassous. Improving Accu-
racy in Available Bandwidth Estimation for IEEE 802.11-Based Ad
Hoc Networks. In Proc. of IEEE MASS, pages 517–520, October 2006.

[131] H. Schwarz, D. Marpe, and T. Wiegand. Overview of the Scalable
Video Coding Extension of the H.264/AVC Standard. In IEEE Trans.
Circuits Syst. Video Technol., pages 1103–1120, September 2007.

[132] S. Sharma. Analysis of 802.11b MAC: A QoS, Fairness, and Perfor-
mance Perspective. Technical Report arXiv:cs/0411017v1, Department
of Computer Science, Stony Brook University, November 2004.

[133] S. Shenker. Some conjectures on the behavior of acknowledgement-
based transmission control of random access communication channels.
In Proc. of ACM SIGMETRICS, pages 245–255, June 1987.

[134] M. Shreedhar and G. Varghese. Efficient Fair Queueing Using Deficit
Round Robin. In Proc. of ACM SIGCOMM, pages 231–242, October
1995.

[135] A. Shriram and J. Kaur. A Measurement Study of Available Bandwidth
Estimation Tools. In Proc. of AMC IMC, pages 39–41, October 2003.

[136] D. Stiliadis and A. Varma. Latency-Rate Servers: A General Model
for Analysis of Traffic Scheduling Algorithms. IEEE/ACM Trans.
Networking, 6(5):611–624, October 1998.

[137] J. Strauss, D. Katabi, and F. Kaashoek. Empirical Evaluation of Tech-
niques for Measuring Available Bandwidth. In Proc. of IEE INFOCOM,
pages 2162–2170, May 2007.

[138] W. Sun and K. G. Shin. End-to-End Delay Bounds for Traffic Aggre-
gates Under Guaranteed-Rate Scheduling Algorithms. Networking,
IEEE/ACM Transactions on, 13(5):1188–1201, October 2005.



128 bibliography

[139] A. Tanenbaum. Computer Networks. Pearson Prentice Hall, 2002.

[140] F. A. Tobagi and L. Kleinrock. Packet Switching in Radio Channels:
Part II–The Hidden Terminal Problem in Carrier Sense Multiple-
Access and the Busy-Tone Solution. IEEE Trans. Commun., 23(12):
1417–1433, December 1975.

[141] N. Vaidya, P. Bahl, and S. Gupta. Distributed Fair Scheduling in a
Wireless LAN. In Proc. of ACM MobiCom, pages 167–178, September
2000.

[142] G. Verticale and P. Giacomazzi. An Analytical Expression for Service
Curves of Fading Channels. In Proc. of IEEE GlobeCom, pages 1–6,
December 2009.

[143] B. Walke, S. Mangold, and L. Berlemann. IEEE 802.11 Wireless Sys-
tems - Protocols, Multi-hop Mesh, Relaying, Performance and Spectrum
Coexistence. John Wiley & Sons Inc., 2008.

[144] W. Wang, S. C. Liew, and V. O. K. Li. Solutions to Performance
Problems in VoIP over a 802.11 Wireless LAN. IEEE Transactions on
Vehicular Technology, 54(1):366–384, January 2005.

[145] D. Wu and R. Negi. Effective Capacity: A Wireless Link Model for
Support of Quality of Service. IEEE Trans. Wireless Communications, 2

(4):630–643, July 2003.

[146] G. Xylomenos and G. C. Polyzos. TCP and UDP performance over a
wireless LAN. In Proc. of IEE INFOCOM, pages 439–446, March 1999.

[147] G. Xylomenos, G. C. Polyzos, P. Mahonen, and M. Saaranen. TCP Per-
formance Issues over Wireless Links. IEEE Communications Magazine,
39(4):52–58, April 2001.

[148] R. D. Yates and D. Goodman. Probability and Stochastic Processes: A
Friendly Introduction for Electrical and Computer Engineers. John Wiley
& Sons Inc., 2004.

[149] Y. Zhu, C. Dovrolis, and M. Ammar. Dynamic overlay routing based
on available bandwidth estimation: A simulation study. Computer
Networks, 50(6):742–762, April 2006.



O W N P U B L I C AT I O N S

Zdravko Bozakov and Michael Bredel. SSHLauncher - A Tool for Ex-
periment Automation in Distributed Environments. Technical Report
KOM-TR-2008-11, KOM, TU-Darmstadt, July 2008.

Zdravko Bozakov and Michael Bredel. Online Estimation of Available
Bandwidth and Fair Share Using Kalman Filtering. In Proc. of Networking,
pages 548–561, May 2009.

Michael Bredel and Martin Bergner. On the Accuracy of IEEE 802.11g
Wireless LAN Simulations using OMNeT++. In Proc. of SimuTools, pages
81–86, March 2009.

Michael Bredel and Markus Fidler. A Measurement Study of Bandwidth
Estimation in IEEE 802.11g Wireless LANs using the DCF. In Proc. of IFIP
Networking, pages 314–325, May 2008.

Michael Bredel and Markus Fidler. Understanding Fairness and its Impact
on Quality of Service in IEEE 802.11. In Proc. of IEEE Infocom, pages
1098–1106, April 2009.

Michael Bredel and Markus Fidler. A Measurement Study regarding Quality
of Service and its Impact on Multiplayer Online Games. In Proc. of
NetGames, pages 1–6, November 2010.

Michael Bredel, Zdravko Bozakov, and Yuming Jiang. Analyzing Router
Performance using Network Calculus with External Measurements. In
Proc. of IWQoS, pages 1–9, June 2010.

Tronje Krop, Michael Bredel, Matthias Hollick, and Ralf Steinmetz. JiST/-
MobNet: Combined Simulation, Emulation, and Real-World Testbed for
Ad-Hoc Networks. In Proc. of ACM WinTECH, pages 27–34, September
2007.

129





S C I E N T I F I C C A R E E R

Curriculum Vitae

Name Bredel, Michael
Day of birth January 7th 1979

Education

03/2009 – 02/2012 Research assistant and PhD student at the Insti-
tute of Communications Technology at Leibniz
Universität Hannover.

Research in the field of probabilistic perfor-
mance bounds of communication networks.
The project has been funded by the German
research council (DFG).

05/2007 – 02/2009 Research assistant and PhD student at the In-
stitute of Multimedia Communications at Tech-
nische Universität Darmstadt.

Research in the field of probabilistic perfor-
mance bounds of communication networks.
The project has been funded by the German
research council (DFG).

10/1999 – 04/2007 Studies of eletrical engineering and infor-
mation technology at Technische Universität
Darmstadt.

131



132 scientific career

Diploma thesis at the Institute of Multime-
dia Communications at Technische Universität
Darmstadt, titled "Design and Implementation
of a Real-World Ad-Hoc Network Testbed based on
JiST/MobNet"

Student project at the Institute of Microelec-
tronic Systems at Technische Universität Darm-
stadt, titled "Design und Implementierung einer
automatischen VHDL-Codegenerierung aus opti-
mierten Datenflussgraphen"

07/1989 – 06/1998 Secondary school Alfred-Delp-Schule Harges-
heim

07/1985 – 06/1989 Primary school Rümmelsheim

Working Experience

05/2006 – 08/2006 Student assistant at the Institute of Elektronic
Systems, Technische Universität Darmstadt

01/2003 – 02/2006 Student assistant at the Institute of Microwave
Engineering, Technische Universität Darmstadt

03/2002 – 12/2002 Student trainee at IP-Value in the field of soft-
ware development and software tests

07/2000 – 02/2002 Student trainee at Siemens I&S IPS Frankfurt
in the field of industrial purchasing services

Teaching Experience

since 04/2009 Hands-on exercises on networks and protocols

since 06/2007 Co-advising several final student projects and
theses

04/2008 – 09/2008 Hands-on exercises on teletraffic theory



I N D E X

A

A-Dependent Process . . . . . . . . . 54

Acknowledgement . . . . . . . . . . . . 18

Additive Increase Multiple De-
crease . . . . . . . . . . . . . . . . . 19

ALOHA . . . . . . . . . . . . . . . . . . . . . . . . 3

Autocorrelation . . . . . . . . . . . . . . . 54

Automatic Repeat Request . . . . . .7
Available Bandwidth . . . . . . . . . . 74

B

Backoff . . . . . . . . . . . . . . . . . . . . . . . . 18

Basic Service Set . . . . . . . . . . . . . . . 5

Binary Exponential Backoff . . . .18

Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 8

C

Carrier Sense Multiple Access
Collision Avoidance . . . . . . . 18

Collision Detection . . . . . . . . 17

Chernoff’s Bound . . . . . . . . . . . . . 51

Clear-To-Send . . . . . . . . . . . . . . . . . 20

Collision Probability . . . . . . . . . . 25

Contention . . . . . . . . . . . . . . . . . . . . 36

Contention Window. . . . . . . . . . .19

Continuous Bandwidth Estima-
tion . . . . . . . . . . . . . . . . . . . 94

Continuous Probing . . . . . . . . . . . 94

Convergence Speed . . . . . . . . . . . 90

D

DCF Clock . . . . . . . . . . . . . . . . . . . . 62

DCF Service Curve . . . . . . . . . . . . 65

Decoupling Approximation . . . 25

Direct Probing . . . . . . . . . . . . . . . . 75

Direct-Sequence Spread Spec-
trum . . . . . . . . . . . . . . . . . . 21

Distributed Inter-Frame Space .19

Distribution Coordination
Function . . . . . . . . . . . . . . 18

E

Effective Bandwidth . . . . . . . . . . .10

Estimate Variance . . . . . . . . . . . . . 91

Extended-Rate Physical . . . . . . . 22

F

Fading . . . . . . . . . . . . . . . . . . . . . . . . 36

Fairness
Airtime Fairness . . . . . . . . . . 29

Berger-Sabbatel . . . . . . . . . . . 31

Fairness Model . . . . . . . . . . . 35

Jain’s Index . . . . . . . . . . . . . . . 29

Long-Term-Fairness . . . . . . . 42

Per-Packet Fairness . . . . . . . 28

Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

G

General Processor Sharing . 57, 61

Guaranteed Rate Clock . . . . . . . . 61

I

IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Industrial, Scientific, and Medi-
cal . . . . . . . . . . . . . . . . . . . . 21

Inter-Transmissions . . . . . . . . . . . 31

Interference . . . . . . . . . . . . . . . . . . . 36

Iterative Probing . . . . . . . . . . . . . . 75

J

Jain’s Fairness Index . . . . . . . 29, 52

K

Kalman Filter . . . . . . . . . . . . . . . . 85 f.
Kullback-Leibler Distance . . . . . 50

L

Long-Term Fairness . . . . . . . . . . . 42

M

M/M/1 . . . . . . . . . . . . . . . . . . . . . . . . 9

MACA . . . . . . . . . . . . . . . . . . . . . . . . 30

MACAW . . . . . . . . . . . . . . . . . . . . . . 30

Markov Chains . . . . . . . . . . . . . . . . . 9

133



134 bibliography

Measurement Noise . . . . . . . 84, 87

Medium Access Control . . . . . . . 17

Multiple-Input Multiple-Out-
put . . . . . . . . . . . . . . . . . . . . .6

Multiplicative Increase Linear
Decrease . . . . . . . . . . . . . . 19

N

Network Calculus . . . . . . . . . 10, 57

Network Model . . . . . . . . . . . . . . . . 4

Network Simulator . . . . . . . . . . . . 37

O

OMNeT+. . . . . . . . . . . . . . . . . . . . . .37

Online Probing . . . . . . . . . . . . . . . . 94

Orthogonal Frequency-Division
Multiplexing . . . . . . . . . . 21

P

Physical Layer . . . . . . . . . . . . . . . . .17

Physical Layer Convergence
Procedure . . . . . . . . . . . . . 21

Point Coordination Function . . 20

Probing Train Length. . . . . . . . . .93

Process Noise . . . . . . . . . . . . . . 84, 88

Product-Form Networks. . . . . . . .9

Q

Queuing Theory. . . . . . . . . . . . . . . .8

R

Rate Response Curve . . . . . . 75, 78

Request-To-Send . . . . . . . . . . . . . . 20

Retransmissions . . . . . . . . . . . . . . . 37

S

Service Curve . . . . . . . . . . . . . 11, 58

Short Inter-Frame Space . . . . . . . 19

Short-Term Fairness . . . . . . . . . . . 46

Single-Input Single-Output . . . . . 6

T

Testbed. . . . . . . . . . . . . . . . . . . . . . . .38

Throughput
ALOHA . . . . . . . . . . . . . . . . . . 24

DCF . . . . . . . . . . . . . . . . . . . . . . 22

Timing, 802.11 . . . . . . . . . . . . . . . . . 21

Traffic Flow . . . . . . . . . . . . . . . . . . . . 5

V

Video Probing . . . . . . . . . . . . . . . . . 97

W

WaveLAN . . . . . . . . . . . . . . . . . . . . . 30

WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Wireless Link . . . . . . . . . . . . . . . . . . . 5

Wireless Link Characteristics . . 36

Wireless Network . . . . . . . . . . . . . . 4

Wireless Testbed . . . . . . . . . . . . . . 38



colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino and
Euler type faces. The listings are typeset in Bera Mono, originally developed
by Bitstream, Inc. as “Bitstream Vera”.

The typographic style is provided by Andre Miede and has been modified
by Michael Bredel. It is inspired by Bringhurst’s genius as presented in The
Elements of Typographic Style [Bringhurst, 2002]. It is available for LATEX via
CTAN as “classicthesis”.

Final Version as of February 29, 2012.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

	Titelblatt
	Abstract
	Zusammenfassung
	Contents
	List of Figures

	Dissertation
	1 Introduction
	1.1 Key Issues in Wireless LAN Performance Analysis
	1.2 Theories for Wireless Networks Performance Analysis
	1.3 Thesis Statement and Contribution
	1.4 Thesis Structure

	2 Background and Related Work
	2.1 The IEEE 802.11 Standard
	2.2 Related Work on Performance Evaluation in IEEE 802.11
	2.3 Related Work on Fairness in IEEE 802.11

	3 Problem Statement
	4 Fairness Analysis of the IEEE 802.11 DCF
	4.1 Relevant Wireless Link Characteristics
	4.2 Empirical Fairness Evaluation
	4.3 Long-Term Fairness with Arbitrary Backoff
	4.4 Short- and Long-Term Fairness with Exponential Backoff

	5 DCF Clock and a Service Curve Model
	5.1 Background on Network Calculus
	5.2 The DCF viewed as a GPS Emulation
	5.3 A Stochastic Service Curve Model of the DCF

	6 Wireless Bandwidth Estimation
	6.1 Methods for Available Bandwidth Estimation
	6.2 Available Bandwidth Estimation in Wireless Systems
	6.3 Experimental Evaluation of Bandwidth Estimation
	6.4 Online Estimation of Fair Share Using Kalman Filtering
	6.5 Measurement Noise Parameterization
	6.6 Process Noise Parameterization
	6.7 Evaluation of Continuous Bandwidth Estimation

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work


	Appendix
	A Appendix: Proofs and Derivations
	B Appendix: Video
	Acronyms
	Symbols
	Bibliography
	Publications
	Scientific Career
	Index
	Colophon


