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Abstract

The present dissertation deals with the theoretical and numerical analysis of contact

and obstacle problems for different classes of differential operators and different dis-

cretization methods. In particular, two competing approaches are analyzed. The first

is based on a variational inequality (VI) approach. For non-symmetric bilinear forms

this approach is not equivalent to a constraint minimization problem. The second is

a mixed method in which the non-penetration condition is only weakly enforced by a

variational inequality.

The elliptic and parabolic obstacle problems are discretized by an hp-interior penalty

discontinuous Galerkin (IPDG) method in space and an hp-time discontinuous Galer-

kin (TDG) method in time, respectively. The employed discrete Lagrange multiplier

is a linear combination of locally constructed basis functions which are globally bior-

thogonal to the Gauss-Lobatto-Lagrange basis function of the primal variable. This

choice allows to reduce the VIs for the sign and non-penetration condition into a sim-

ple complementarity problem for each coefficient of the solution’s vectors. Using the

penalized Fischer-Burmeister non-linear complementarity function, the resulting non-

linear, strongly semi-smooth problem can be solved by a locally Q-quadratic converging

semi-smooth Newton method. If the discrete non-penetration condition is chosen ap-

propriately, the discrete mixed method is equivalent to the discrete VI method. For the

VI method, a p-hierarchical error estimator is constructed which allows an hp-adaptive

refinement strategy leading to improved, compared to uniform meshes, or even expo-

nential experimental convergence rates. Furthermore, a priori error estimates for the VI

method based on [27] are presented. For these, the continuous and discrete formulations

are rewritten in the same bilinear and linear forms using the operators from [35].

The above strategy is general enough to be carried over to an exterior, elliptic stochastic

contact problem using boundary integral operators. After a finite Karhunen-Loève ex-

pansion the stochastic problem becomes a deterministic but high-dimensional problem.

Due to the H̃
1
2 (ΓΣ)-conformity of the primal variable, a residual a posteriori error esti-

mator based on the ideas in [8, 10] is constructed for hp-adaptive refinements.

Furthermore, numerical experiments indicate that the above discretization strategy, but

in a H1(Ω)-conforming FE context, yields a higher order TDG method which is effi-

cient in terms of CPU-time and artificial energy loss for solving linear elasto-dynamic

frictional contact problems approximatively.

Key words: stochastic/time dependent Contact/Obstacle Problems, mixed and VI hp-

FEM/BEM, a priori and a posteriori error estimates and hp-adaptivity, semi-smooth

Newton, biorthogonal basis functions.
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Zusammenfassung

In der vorliegenden Dissertation werden Kontakt- und Hindernisprobleme für verschie-

dene Klassen von Differentialoperatoren und verschiedene Diskretisierungsmethoden

sowohl theoretisch wie auch numerisch analysiert. Insbesondere werden zwei konkurrie-

rende Ansätze verfolgt. Der eine basiert auf einem Variationsungleichungsansatz (VU).

Für nichtsymmetrische Bilinearformen ist dieser nicht äquivalent zu einem Minimie-

rungsproblem unter Nebenbedingungen. Der andere ist eine gemischte Methode, in

welcher die Nichteindringungsbedingung nur im schwachen Sinne durch eine Variati-

onsungleichung erfüllt wird.

Sowohl das elliptische wie auch das parabolische Hindernisproblem werden im Ort mit-

tels einer hp-interior penalty discontinuous Galerkin (IPDG) Methode und in der Zeit

mittels einer hp-time discontinuous Galerkin (TDG) Methode diskretisiert. Der dis-

krete Lagrangemultiplikator ist eine Linearkombination von lokal konstruierten Basis-

funktionen, die global biorthogonal zu den Gauß-Lobatto-Lagrange Basisfunktionen

der primalen Variable sind. Diese Wahl erlaubt es, die VUs für die Vorzeichen- und

Nichteindringungsbedingung in ein einfaches Komplementaritätsproblem für jeden Ko-

effizienten der Lösungsvektoren zu reduzieren. Durch Anwendung der penalized Fischer-

Burmeister nichtlinearen Komplementaritätsfunktion kann das resultierende nichtlinea-

re, stark halbglatte Problem durch ein lokal Q-quadratisch konvergierendes halbglat-

tes Newton-Verfahren gelöst werden. Bei geeigneter Wahl der diskreten Nichteindrin-

gungsbedingung sind die diskrete gemischte Methode und die diskrete VU Methode

äquivalent. Für die VU Methode wird ein p-hierarchischer Fehlerschätzer konstruiert,

welcher hp-adaptive Verfeinerungsstrategien zulässt. Im Vergleich zu uniformen Gittern

führen diese zu verbesserter oder sogar exponentieller Konvergenz. Desweiteren werden,

basierend auf [27], a priori Fehlerabschätzungen für die VU Methode hergeleitet. Für

diese werden durch Anwendung der Operatoren aus [35] die stetigen und diskreten

Formulierungen umgeschrieben, so dass sie die selben Bilinear- und Linearformen ver-

wenden.

Obiges Verfahren ist so allgemein, dass es ebenfalls für elliptisch-stochastische Aussen-

raumkontaktprobleme mit Randintegraloperatoren angewendet werden kann. Durch ei-

ne endliche Karhunen-Loève Entwicklung wird das stochastische Problem in ein hochdi-

mensionales deterministisches Problem umgewandelt. Aufgrund der H̃
1
2 (ΓΣ)-Konformi-

tät in der primalen Variable kann in Anlehnung an [8, 10] ein residualer a posteriori

Fehlerschätzer für hp-adaptive Verfeinerungen konstruiert werden.

Darüberhinaus zeigen numerische Experimente, dass die obige Diskretisierungsstrategie

in einem H1(Ω)-konformen FE Kontext zu einer TDG Methode höherer Ordnung führt,

die beim approximativen Lösen von reibungsbehafteten linearen elasto-dynamischen

Kontaktproblemen sowohl bezüglich der CPU-Zeit wie auch dem künstlichen Energie-

verlust effizient ist.

Schlagworte: stochastische/zeitabhängige Kontakt/Hindernis Probleme, gemischte

und VU hp-FEM/BEM, a priori und a posteriori Fehlerabschätzungen, halbglattes New-

ton, biorthogonale Basisfunktionen
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1 Introduction

Contact and obstacle problems have a variety of applications in the real world. Fric-

tional dynamic contact problems appear in many engineer’s applications, e.g. in gear

transmissions or in belt grinding processes. Whereas parabolic obstacle problems ap-

pear in the financial markets for pricing American put basket options within the Black-

Scholes model world [6]. An American put option gives the holder the right to sell

the underlying, e.g. a share, to a predetermined, fixed price at any time prior to its

expiration date. If the underlying is not a single entity but a portfolio, e.g. consisting

of two or more shares, the option is called a basket option. Mathematically, the space

dimension of the parabolic obstacle problem is increased. From an economic’s point

of view mathematical simulations of these problems are indispensable. However, the

underlying differential inequalities in conjunction with the non-penetration condition

can seldom be solved analytically. Hence, numerical methods such as the Galerkin ap-

proximation have to be applied.

The standard approach for these is a variational inequality method as analyzed in

[56, 45, 9] among others. However, the discretization of the convex cone of admissible

functions is by no means trivial and leads to non-optimal a priori error estimates [27, 59]

even if the approximation property of the discrete cone may be optimal [5]. More re-

cently, in [70, 71, 34, 37] and the references therein, mixed methods are employed in

which a Lagrange multiplier is used to weakly enforce the non-penetration condition

by a variational inequality constraint. For the lowest order h-version, optimal a priori

error estimates have been shown in [34, 37]. If the primal and dual space are discretized

independently, the discrete inf-sup-condition will require the discrete dual space to be

sufficiently coarser than the discrete primal space. Typically, this is achieved by coars-

ening the mesh or decreasing the polynomial degree for the Lagrange multiplier space

as in [70]. If, however, the duality of the spaces is also considered on the discrete level

by using biorthogonal basis functions [76], the same mesh and polynomial degree can

be used for both the primal and dual variable. The use of these basis functions for

a lowest order continuous Galerkin uniform h-version in elliptic contact problems has

first been studied in [37, 38] and shown to be quite successful. The construction and

use of higher order biorthogonal basis functions on irregular meshes for elliptic obstacle

problems is studied in [3].

In contact and obstacle problems the space/space-time/space-stochastic domain can be

separated into two disjoint sets, the contact and non-contact set. In the contact set, the

solution is completely determined by the rigid foundation/obstacle. In the non-contact

set, the solution satisfies a simpler differential equation but typically in a very complex

1



1 Introduction

domain. In general, the solution is only of reduced regularity and, thus, higher order

h-versions are not an appropriate tool to approximate the solution. Furthermore, hp-

methods with an a priori defined, geometrically graded mesh cannot be applied since

the free boundary, the location of the singularity, is a priori unknown. Consequently,

local a posteriori error indicators are required to automatically generate sequences of

hp-adapted meshes. For elliptic problems with a H1
0 (Ω)-conforming approach in the

primal variable, Braess [8] provides a general scheme for constructing such a posteriori

error estimators by reusing existing estimators for an auxiliary problem without con-

tact. However, it still remains open how the consistency error of the dual variable in the

H−1(Ω)-norm can be computed. For parabolic obstacle problems with a finite differ-

ence approximation in time, a residual error estimator based on the Galerkin functional

has been derived in [63]. However, it also requires H1
0 (Ω)-conformity. A completely

different approach is the hierarchical h-h2 error estimator which outsources all difficul-

ties into the saturation assumption [28, 26]. This estimator is very costly as the refined

solution must be explicitly calculated and is not approximated by a preconditioner as

in [59].

Additionally, the contact and obstacle problems are highly non-linear such that the

construction of efficient iterative solvers itself is challenging. If the differential operator

is symmetric and coercive, the problem is equivalent to a constraint quadratic pro-

gramming problem for which many efficient iterative solvers exist. In general, however,

the operator is not symmetric and consequently all these solvers are not guaranteed to

converge and often fail to do so in practice. For non-symmetric variational inequalities,

to the best of the author’s knowledge, only projection and contraction methods like [33]

are guaranteed to converge. But their convergence rate depends on many user-chosen,

mesh and problem dependent parameters and is in general very small.

The aim of this dissertation is to construct an approximation strategy which is general

enough to be applied to different classes of differential operators for contact and obstacle

problems and to different discretization methods. The focus is on the construction of

an efficient iterative solver and on an a posteriori error estimator. This in conjunction

with the analyticity estimator of [36] allows an hp-adaptive mesh refinement which leads

to improved, compared to uniform meshes, or even exponential experimental conver-

gence rates. For the obstacle problems, this is achieved by employing a mixed hp-FEM

interior penalty discontinuous Galerkin discretization in space, and a time discontinu-

ous Galerkin approach in time, which is equivalent to a discrete variational inequality

method. By using biorthogonal basis functions for the Lagrange multiplier, the sign and

non-penetration conditions are reduced to a set of complementarity problems. Employ-

ing a non-linear complementarity function, the resulting discrete problem can be solved

iteratively by a locally Q-quadratic converging semi-smooth Newton method. Since the

discrete variational inequality and mixed method are equivalent, a p-hierarchical error

estimator for the discrete variational inequality allows hp-adaptivity. In discontinuous

Galerkin, irregular meshes which naturally arises in hp-adaptivity imply no difficulties.

Furthermore, for an a priori error estimated analogously to [27] the extension operators

from [35] are used. For a symmetric, exterior, elliptic stochastic contact problem with

2



Introduction

a boundary integral formulation a finite Karhunen-Loève expansion is used to trans-

form the stochastic problem into a deterministic but high-dimension formulation. This

problem is discretized similarly to the obstacle problems, except with a conforming,

continuous Galerkin discretization. This allows to derive a residual based a posteriori

error estimator.

The remainder of this work is structured as follows. Chapter 2 contains some funda-

mentals which are used throughout the entire work. In particular, Section 2.2 revises

non-linear complementarity functions, subdifferentials and the semi-smooth Newton

method. Chapter 3 is devoted to a non-symmetric elliptic obstacle problem and a

parabolic obstacle problem is considered in Chapter 4. In Chapter 5 an exterior, el-

liptic stochastic contact problem with a boundary integral formulation is analyzed. An

application of the general hp-FEM strategy to an elasto-dynamical frictional contact

problem in Chapter 6 shows the flexibility and powerfulness of this method. Concluding

remarks are given in Chapter 7.

3





2 Fundamentals

In this chapter basic results about boundary integral operators are recalled and a

brief introduction to nonlinear complementarity functions and the semi-smooth Newton

method is given. These are fundamental for the analysis in Chapter 5 and for the devel-

opment of the iterative solvers for the discrete mixed formulations. Additionally, basic

definitions in probability theory and an short introduction into the Karhunen-Loève

expansion is presented.

2.1 Boundary Integral Operators

In boundary value problems, a differential operator acts on a function u in every point

x of a domain. Once the fundamental solution is known, this operator can be replaced

by a boundary integral operator. In Chapter 5 such boundary integral operators are

used for an exterior Laplacian problem.

Let Ω ⊂ R2 be a domain with piecewise Lipschitz boundary Γ = ∂Ω, a and b real

constants and let the solution u satisfy

−∆u(x) = 0 x ∈ R2 \ Ω (2.1a)

u(x) = a · log(x) + b+ o(1) as ‖x‖ → ∞. (2.1b)

Here, o(1) is the Landau symbol with lim‖x‖→∞ o(1) = 0. Further, let k(x, y) be the

fundamental solution of the Laplace operator in two dimensions, i.e.

k(x, y) = − 1

2π
log ‖x− y‖ .

Using the representation formula

u(x) = −
∫

Ω
k(x, y)∆u(y) dxy +

∫
Γ
k(x, y)∂nyu(y)− ∂nyk(x, y)u(y) dsy, x ∈ R2 \ Ω

(2.2)

the exterior Calderon projector C+ can be defined. Taking the limit x→ Γ and denoting

φ = ∂nu yields (
u

φ

)
=

(
1
2 +K −V
−W 1

2 −K ′

)(
u

φ

)
=: C+

(
u

φ

)

5



2 Fundamentals

with the single layer potential V , the double layer potential K, its adjoint K ′ and the

hypersingular integral operator W .

V φ(x) :=

∫
Γ
k(x, y)φ(y) dsy, Wu(x) := − ∂

∂nx

∫
Γ

∂

∂ny
k(x, y)u(y) dsy,

Ku(x) :=

∫
Γ

∂

∂ny
k(x, y)u(y) dsy, K ′φ(x) :=

∂

∂nx

∫
Γ
k(x, y)φ(y) dsy.

Lemma 2.1 (Costabel [20]). Let Γ be the boundary of a Lipschitz domain. Then the

integral operators

V : H−
1
2

+s(Γ)→H
1
2

+s(Γ), W : H
1
2

+s(Γ) →H−
1
2

+s(Γ)

K : H
1
2

+s(Γ) →H
1
2

+s(Γ), K ′ : H−
1
2

+s(Γ)→H−
1
2

+s(Γ)

are bounded for all s ∈ [−1
2 ,

1
2 ], i.e. there exists constants CV , CK , CK′, CW > 0 such

that

‖V φ‖
H

1
2 +s(Γ)

≤ CV ‖φ‖
H−

1
2 +s(Γ)

, ‖Wu‖
H−

1
2 +s(Γ)

≤ CW ‖u‖
H

1
2 +s(Γ)

,

‖Ku‖
H

1
2 +s(Γ)

≤ CK ‖u‖
H

1
2 +s(Γ)

,
∥∥K ′φ∥∥

H−
1
2 +s(Γ)

≤ CK′ ‖φ‖
H−

1
2 +s(Γ)

.

It is well known that for Ω ⊂ R2 with cap(Γ) < 1 the mapping V has a bounded

inverse. (More general 2D cases of Γ can be treated by scaling arguments.) Hence, the

symmetric, linear, positive definite Steklov-Poincaré operator S : H
1
2 (Γ)→ H−

1
2 (Γ)

S := W + (K ′ − 1

2
)V −1(K − 1

2
) (2.3)

is well defined [11].

Lemma 2.2. Let Γ ⊂ R2 be the boundary of a Lipschitz domain Ω, Γ0 ⊂ Γ and let

cap(Γ) < 1. Then V is H−
1
2 (Γ)-elliptic, i.e. ∃ cV > 0 s.t.

〈V φ, φ〉Γ ≥ cV ‖φ‖2H− 1
2 (Γ)

∀ φ ∈ H− 1
2 (Γ)

and S is continuous, H
1
2 (Γ)-elliptic and H̃

1
2 (Γ0)-elliptic , i.e. ∃ cS , CS > 0 s.t.

‖Su‖
H−

1
2 (Γ)
≤ CS ‖u‖

H
1
2 (Γ)

∀ u ∈ H 1
2 (Γ),

〈Su, u〉Γ ≥ cS ‖u‖2H 1
2 (Γ)

∀ u ∈ H 1
2 (Γ),

〈Su, u〉Γ0
≥ cS ‖u‖2

H̃
1
2 (Γ0)

∀ u ∈ H̃ 1
2 (Γ0),

with the Sobolev space (s ≥ 0)

H̃s(Γ0) :=
{
u : ∃ v ∈ Hs(Γ) s.t. u = v|Γ0 , supp v ⊂ Γ0

}
.

Often the different notation H̃
1
2 (Γ0) = H

1
2
00(Γ0) is used.
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2.2 Nonlinear Complementarity Functions and Semi-Smooth Newton Methods

2.2 Nonlinear Complementarity Functions and Semi-Smooth

Newton Methods

Nonlinear complementarity functions (NCF) find their applications in the theory of

complementarity which is used in mathematical programming but also in game theory

and fixed point theory [25]. Within this research area it is well known [60, 30] that the

complementarity problem

u ≥ 0, λ ≥ 0, u · λ = 0 (2.4)

can be transformed by a suitable φ : R2 → R into the equivalent nonlinear problem

φ(u, λ) = 0. (2.5)

The function φ is in general not linear and not even differentiable everywhere. Through-

out this work the penalized Fischer-Burmeister function

φµ(u, λ) := µ
(
u+ λ−

√
u2 + λ2

)
+ (1− µ) max {0, u}max {0, λ} , µ ∈ (0, 1) ,

(2.6)

introduced in [14], is used, which is a convex combination of the Fischer-Burmeister

function u+λ−
√
u2+λ2 introduced in [29] and max {0, u}max {0, λ}. The later term

penalizes violations of the complementarity condition (both u, λ ≥ 0 but u ·λ 6= 0) and

increases the slop of φ in the positive quadrant. Figure 2.1(a) shows the classical Fischer-

Burmeister function and Figure 2.1(b) the penalized Fischer-Burmeister function with

µ = 0.3. In the latter cases, the contour lines are evenly distributed which is desirable

when solving (2.5) iteratively with a semi-smooth Newton method.

The semi-smooth Newton method is introduced analogously to [22, 65]. Let φ : Rn →
Rm be locally Lipschitzian, then it is differentiable almost everywhere by Rademacher’s

theorem and the set where φ is differentiable is denoted by Dφ. The B-subdifferential

of φ at x is defined as

∂Bφ(x) :=

{
H : ∃ a sequence

{
xk
}
, xk ∈ Dφ with lim

xk→x
φ′(xk) = H

}
(2.7)

and the Clark subdifferential ∂φ(x) := co ∂Bφ(x) of φ at x as the convex hull of the

B-subdifferential. Qi introduced in [64] the C-subdifferential as

∂Cφ(x)T := ∂φ1(x)× . . .× ∂φm(x) (2.8)

where the right hand side is a set of matrices whose ith-column is an arbitrary element

of the Clark subdifferential of φi. By [30], there holds the following overestimation of

Clark subdifferential by the C-subdifferential.

Lemma 2.3 (Lemma 1(v) in [30]). Let φ : Rn → Rm be Lipschitzian near x, then

∂φ(x) ⊆ ∂φ1(x)× . . .× ∂φm(x) = ∂Cφ(x)T

7
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Figure 2.1: Function values and contour lines of the Fischer-Burmeister NCFs
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2.2 Nonlinear Complementarity Functions and Semi-Smooth Newton Methods

Definition 2.1 (Strongly semi-smooth). Let φ : Rn → Rm be locally Lipschitzian at x.

φ is called semi-smooth at x if

lim
H∈∂φ(x+tv′),v′→v,t→0+

Hv′ (2.9)

exists for all v ∈ Rn and is called strongly semi-smooth at x if additionally for any

H ∈ ∂φ(x+ d) and any d→ 0

Hd− φ′(x; d) = O
(
‖d‖2

)
(2.10)

holds with φ′(x; d) the directional derivative.

Lemma 2.4 (Chen et al. [14]). The penalized Fischer-Burmeister function φµ : R2 → R
defined in (2.6) satisfies the following properties:

1. φµ is a NCF.

2. φµ continuously differentiable on R2 \ {(u, λ) : u ≥ 0, λ ≥ 0, u · λ = 0}.

3. φµ is strongly semi-smooth on R2.

4. The generalized gradient ∂φµ(u, λ) is equal to the set

∂φµ
∂u

=

µ(1− ξ) , if u = λ = 0

µ(1− u√
u2+λ2

) + (1− µ) max {0, λ} ∂max {0, u} , otherwise

∂φµ
∂λ

=

µ(1− ζ) , if u = λ = 0

µ(1− λ√
u2+λ2

) + (1− µ) max {0, u} ∂max {0, λ} , otherwise

with
√
ξ2 + ζ2 ≤ 1 and

∂max {0, x} =


1 , if x > 0

[0, 1] , if x = 0

0 , otherwise.

Lemma 2.5. Let Φµ = vec {φµ} be a vector valued penalized Fischer-Burmeister NCF,

then there holds:

1. Φµ is strongly semi-smooth.

2. For any u, λ ∈ Rn there holds the overestimation

∂Φµ ⊆ ∂CΦµ ⊆ Du(u, λ)×Dλ(u, λ)

with Du(u, λ) = diag
{
∂φµ(u,λ)

∂u

}
and Dλ(u, λ) = diag

{
∂φµ(u,λ)

∂λ

}
diagonal matri-

ces.

3. The merit function Ψµ(u, λ) := 1
2Φµ(u, λ)TΦµ(u, λ) is continuously differentiable

with ∇Ψµ(u, λ) = HTΦµ(u, λ) for any H ∈ ∂CΨµ(u, λ).

9
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Proof. Result 1 is [13, Theorem 2.2]. Result 2 is analogous to [13, Proposition 2.3]

together with Lemma 2.3. Result 3 follows from [13, Theorem 3.2].

Definition 2.2 (BD/CD-regular). Let n = m, then φ is called BD-, CD-regular at x

if all H ∈ ∂Bφ(x), H ∈ ∂φ(x) respectively, are invertible.

Theorem 2.1 (Semi-smooth Newton, [65]). Suppose that x∗ is a solution of φ(x) = 0,

φ is locally Lipschitzian, semi-smooth and CD-regular at x∗. Then the iteration method

xk+1 = xk −H−1
k φ(xk), Hk ∈ ∂φ(xk) (2.11)

is well defined and the sequence
{
xk
}

converges to x∗ Q-superlinearly in a neighborhood

of x∗. If in addition, φ is strongly semi-smooth at x∗, then this convergence is Q-

quadratic.

If the merit function ψ is continuously differentiable, the iteration method (2.11) can

be globalized by a strategy proposed in [22]. The globalization is achieved by a line

search to minimize ψ in step 2.c) and in case of an unsuited search direction it switches

to one globally converging gradient descent step in step 2.b).

Algorithm 2.1. (Damped semi-smooth Newton algorithm [40])

1. Choose initial solution x0 ∈ Rn and control parameters ρ > 0, β ∈ (0, 1), σ ∈
(0, 1

2), p > 2, tol > 0

2. For k = 0, 1, 2, . . . do

a) If
∥∥∇ψ(xk)

∥∥ < tol or
∥∥ψ(xk)

∥∥ < tol then stop.

b) Compute subdifferential Hk ∈ ∂φ(xk) and find dk ∈ Rn s.t.

Hkd
k = −φ(xk). (2.12)

If (2.12) not solvable or if the descent condition

∇ψ(xk)Tdk ≤ −ρ||dk||p (2.13)

is not satisfied, set dk := −∇ψ(xk).

c) Compute search length tk := max
{
βl : l = 0, 1, 2, . . .

}
s.t.

ψ(xk + tkd
k) ≤ ψ(xk) + σtk∇ψ(xk)dk. (2.14)

d) Update the solution vector and goto step 2.

xk+1 = xk + tkd
k.

10



2.3 Basics of Probability Theory and the Karhunen-Loève Expansion

The computation of the search direction can be very expensive. Therefore inexact SSN

methods have been studied intensively over the last years, c.f. [40] and the references

therein. If (2.12) is solved inexactly in the sense that∥∥∥Hkd
k + φ(xk)

∥∥∥ ≤ ηk ∥∥∥φ(xk)
∥∥∥ (2.15)

with ηk = O
(∥∥φ(xk)

∥∥) the method still converges Q-quadratically. The monotone line

search (2.14) in Algorithm 2.1 can lead to very small step sizes. This in turn can lead

to reduced rate of or even no convergence [22]. For the implementation De Luca et

al. recommend to replace the line search by a non-monotone one, explained in detail in

[22, Section 7].

2.3 Basics of Probability Theory and the Karhunen-Loève

Expansion

Definition 2.3 (Probability space). The triple (Ω,F , P ) is called probability space with

Ω the set outcomes, F ⊂ 2Ω the σ-algebra of events and P : F → [0, 1] the probability

measure.

Definition 2.4 (Expected Value, c.f. [1]). Let Y ∈ L1
P (Ω) be an RN -valued random

variable in (Ω,F , P ). Then, the expected value is defined by

E [Y ] =

∫
Ω
Y (ω) dP (ω) =

∫
RN

y dµY (y)

where µY is the distribution measure for Y , defined for the Borel sets b̃ ∈ B(RN ) by

µY (b̃) ≡ P (Y −1(b̃)).

In the case of an (a.e.-)absolute continuous µY there exists a density function ρY :

RN → [0,∞) such that E [Y ] =
∫
RN yρY (y) dy.

Definition 2.5 (Covariance Matrix, c.f. [1]). Let Yi ∈ L2
P (Ω) 1 ≤ i ≤ d, then the

covariance matrix Cov [Y ] ∈ Rd×d is defined by

Cov [Y ] (i, j) = Cov(Yi, Yj) = E [(Yi − E [Yi]) (Yj − E [Yj ])] 1 ≤ i, j ≤ d.

The stochastic Sobolev space L2
P (Ω, Hs(D)) with the norm ‖v‖2L2

P (Ω,Hs(D)) = E
[
‖v‖2Hs(D)

]
is a Hilbert space. Moreover, it is isomorph to L2

P (Ω)⊗Hs(D) ' L2
P (Ω, Hs(D)).

Definition 2.6 (Karhunen-Loève expansion, [41]). The Karhunen-Loève expansion of

a random field κ : R× Ω→ R with bounded covariance is

κ(x, ω) = µ(x) +

∞∑
i=1

√
λiκi(x)ξi(ω) (2.16)

11
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where µ(x) = E [κ] and the random variables

ξi(ω) =
1√
λi

∫
R

(κ− µ)κi dx (2.17)

are mutually uncorrelated and centered with unit variance. Here (λi, κi) is an (eigen-

value, eigenfunction) pair of the compact and self-adjoint Fredholm operator

T : L2(R)→ L2(R)

u(x) 7→
∫
R

Covκ(x, y)u(y) dy

i.e. Tκi = λiκi for κi ∈ L2(R) and i ∈ N with λ1 ≥ λ2 ≥ · · · ≥ 0.

Often the Karhunen-Loève expansion (2.16) is truncated after a finite number of terms.

Then the finite Karhunen-Loève expansion is an L2(R×Ω)-optimal linear approximation

of κ [73].
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3 Elliptic Obstacle Problems

In this chapter an elliptic obstacle problem is analyzed which can be viewed as a sub-

problem of the parabolic obstacle problem in Chapter 4 if a finite difference approxima-

tion in time is used. Since the differential operator is not symmetric and the solution

exhibits reduced regularity across the a priori unknown free boundary, a discretiza-

tion optimized for an efficient iterative solver and an hp-adaptive mesh refinement are

constructed.

3.1 Weak Formulations for Elliptic Obstacle Problems

Let Ω ⊂ Rd be an open, bounded, polygonal domain with boundary Γ. For given

volume force f ∈ H−1(Ω), convection coefficient ~γ ∈ Rd, Dirichlet data g ∈ H 1
2 (Γ) and

obstacle χ ∈ H1(Ω) with χ|Γ = g, the elliptic obstacle problem is to find a function

u : Ω→ R such that

−∆u+ ~γ · ∇u+ u ≥ f in Ω (3.1a)

u = g on Γ (3.1b)

u ≥ χ in Ω. (3.1c)

Remark 3.1. In general only χ|Γ ≤ g is required to ensure that the set of admissible

functions is not empty. The assumption χ|Γ = g has been made for simplicity. Although,

this is a restrictive assumption, such obstacles frequently occur in financial mathematics,

e.g. in American put option pricing [63].

For a weak formulation of the obstacle problem let

K :=
{
v ∈ H1(Ω) : v|Γ = g and v ≥ χ a.e. in Ω

}
(3.2)

be the convex cone of admissible functions. Then, the variational inequality formulation

is to find u ∈ K such that

B(u, v − u) ≥ 〈f, v − u〉 ∀ v ∈ K (3.3)

with 〈·, ·〉 the duality pairing between H1
0 (Ω) and H−1(Ω) and with the bilinear form

B(u, v) :=

∫
Ω
∇u∇v + ~γ · ∇uv + uv dx. (3.4)

Using partial integration, the following lemma holds trivially.
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3 Elliptic Obstacle Problems

Lemma 3.1. Every solution of (3.1) is a solution of (3.3). The converse holds in a

distributional sense.

The proof for the existence and uniqueness of a solution u requires coercivity and

continuity of the bilinear form B(·, ·) in the same norm.

Lemma 3.2. The bilinear form B(·, ·) is H1(Ω)-continuous and H1
0 (Ω)-elliptic, i.e. there

exists constants α > 0 and CB > 0 such that

B(v, v) ≥ α ‖v‖2H1(Ω) ∀ v ∈ H1
0 (Ω) (3.5)

B(w, v) ≤ CB ‖w‖H1(Ω) ‖v‖H1(Ω) ∀ v, w ∈ H1(Ω). (3.6)

Proof. Green’s formula yields for the convection term [66, p.98]∫
Ω
~γ · ∇vv dx =

1

2

∫
Ω
~γ · ∇(v2) dx =

1

2

∫
Γ
~γ · ~nv2 ds = 0 ∀ v ∈ H1

0 (Ω)

which immediately implies theH1
0 (Ω)-ellipticity. The continuity follows with the Cauchy-

Schwarz inequality and the boundedness of ~γ.

Theorem 3.1. There exists a unique solution to the variational inequality formulation

(3.3).

Proof. Decompose u = u0 + ug into u0 ∈ H1
0 (Ω) and a Dirichlet lift ug ∈ H1(Ω),

i.e. ug|Γ = g. Moreover, let ug satisfy

B(ug, v) = 0 ∀ v ∈ H1
0 (Ω). (3.7)

The existence of ug is guaranteed by the extension operator mapping from H
1
2 (Γ)

onto H1(Ω) and the ellipticity and continuity of B (·, ·) by Lemma 3.2. Therefore,

u0 ∈ K0(ug) =
{
v ∈ H1

0 (Ω) : v ≥ χ− ug a.e. in Ω
}

satisfies

〈f, v0 − u0〉 = 〈f, v0 + ug − u0 − ug〉 ≤ B(u, v − u) = B(u0 + ug, v0 + ug − u0 − ug)
= B(u0 + ug, v0 − u0) = B(u0, v0 − u0) +B(ug, v0 − u0)︸ ︷︷ ︸

=0, (3.7)

= B(u0, v0 − u0) ∀v0 ∈ K0(ug).

with v = v0 + ug yielding v − u = v0 − u0. Since χ|Γ = g = ug|Γ, K0(ug) ⊂ H1
0 (Ω)

is closed, convex and not empty and since B(·, ·) is H1
0 (Ω)-elliptic and continuous, the

Stampacchia theorem [45, Theorem 2.1] provides the unique existence of u0.

It remains to show that u is unique as well. Assume u1, u2 ∈ K were two solutions to

(3.3). Then their difference δ := u1 − u2 ∈ H1
0 (Ω) satisfies

α ‖δ‖2H1(Ω) ≤ B (δ, δ) ≤ 0

by adding (3.3) with v1 = u2 and v2 = u1, and by the H1
0 (Ω)-ellipticity of B (·, ·).
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The variational formulation (3.3) has two severe drawbacks. Firstly, for ~γ 6= 0 the

bilinear form B (·, ·) is not symmetric. Consequently, a discretization of (3.3) yields an

algebraic variational inequality formulation with a non-symmetric but positive definite

system matrix. To the best of the author’s knowledge there exists no efficient iterative

solver for these and only projection-contraction methods like [33] are guaranteed to

converge. However, their convergence is in general slow and depends on many user-

chosen, problem and mesh dependent parameters. Secondly, the discretization of K

itself is by no means trivial. Therefore, a mixed method in which the counter force λ

of the obstacle is sought as an additional unknown seems to be favorable. Let

L+ :=
{
µ ∈ H−1(Ω) : 〈µ, v〉 ≤ 0 ∀ v ∈ H1

0 (Ω) with v ≤ 0
}

(3.8)

be the set of admissible Lagrange multipliers. Then, the mixed method is to find the

pair (u, λ) ∈ H1(Ω)× L+ such that u|Γ = g and

B(u, v)− 〈v, λ〉 = 〈f, v〉 ∀ v ∈ H1
0 (Ω) (3.9a)

〈u, µ− λ〉 ≥ 〈χ, µ− λ〉 ∀ µ ∈ L+. (3.9b)

Theorem 3.2. The variational inequality formulation (3.3) and the mixed method (3.9)

are equivalent.

Proof. ”(3.3)⇐ (3.9)”: Choosing µ = 0 and µ = 2λ in (3.9b) yields

〈u− χ, λ〉 = 0 and 〈u− χ, µ〉 ≥ 0 ∀ µ ∈ L+. (3.10)

Assume there were to exist a Lebesgue measurable set P ⊂ Ω in which u < χ. Then,

for µ = 1P ∈ L+ which is one in P and zero elsewhere, this yields

〈u− χ, 1P 〉 =

∫
P
u− χ dx < 0

which contradicts (3.10). Therefore, u ≥ χ almost everywhere in Ω, i.e. u ∈ K. Fur-

thermore, with w ∈ K, equation (3.10) yields

〈w − u, λ〉 = 〈w − χ, λ〉 ≥ 0

since λ ∈ L+. Hence, setting v = w − u in (3.9a) yields (3.3).

”(3.3)⇒ (3.9)”: Define the residual Res ∈ H−1(Ω) of (3.3) by

〈Res, v〉 := B(u, v)− 〈f, v〉 ∀ v ∈ H1
0 (Ω). (3.11)

Hence, with u solving (3.3) there holds additionally: Find u ∈ H1(Ω) s.t. u|∂Ω = gD
and

B(u,w)− 〈Res,w〉 = 〈f, w〉 ∀ w ∈ H1
0 (Ω)

and also by (3.3)

〈Res, v − u〉 ≥ 0 ∀ v ∈ K. (3.12)
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Choosing v = χ and v = 2u− χ yields

〈Res, u− χ〉 ≤ 0, 〈Res, u− χ〉 ≥ 0 ⇒ 〈u− χ,Res〉 = 0.

Recall that u ∈ K. Then for µ ∈ L+, 〈u− χ, µ〉 ≥ 0 and together with the above result

yields (3.9b) when setting λ = Res. Choosing v = w + u with w ≥ 0 in (3.12) yields

Res ∈ L+ which completes the proof.

Lemma 3.3. There exists a unique pair (u, λ) solving (3.9).

Proof. By Theorem 3.1 and Theorem 3.2 the unique existence of u and the existence

of λ is guaranteed. Assume both (u, λ1) and (u, λ2) solve (3.9). Then their difference

satisfies

〈v, λ1 − λ2〉 = 0 ∀ v ∈ H1
0 (Ω)

by subtracting the two (3.9a) from each other. With the definition of the dual norm

‖λ1 − λ2‖H−1(Ω) := sup
06=v∈H1

0 (Ω)

〈v, λ1 − λ2〉
‖v‖H1

0 (Ω)

= 0

follows the assertion.

Lemma 3.4. The inf-sup-condition (3.13) is satisfied with β = 1.

inf
0 6=µ∈L+

sup
0 6=v∈H1

0 (Ω)

−〈v, µ〉
‖v‖H1

0 (Ω) ‖µ‖H−1(Ω)

≥ β > 0 (3.13)

Proof. Recall the definition of the dual norm

‖µ‖H−1(Ω) := sup
06=v∈H1

0 (Ω)

〈v, µ〉
‖v‖H1

0 (Ω)

= sup
06=v∈H1

0 (Ω)

−〈v, µ〉
‖v‖H1

0 (Ω)

.

Hence,

inf
06=µ∈L+

sup
06=v∈H1

0 (Ω)

−〈v, µ〉
‖v‖H1

0 (Ω) ‖µ‖H−1(Ω)

= inf
µ∈L+

‖µ‖H−1(Ω)

‖µ‖H−1(Ω)

= 1

which completes the proof.

3.2 hp-IPDG Discretization for Elliptic Obstacle Problems

There are several ways to discretize (3.9). First, a H1(Ω)-conforming continuous

Galerkin approach with possible hanging nodes which is dealt with in the work [3].

Second, an interior penalty discontinuous Galerkin (IPDG) method in which the conti-

nuity constraint is only weakly enforced. For the IPDG scheme let Eh be a subdivision

of Ω into rectangulars, Γh the set of interior edges and ΓD the set of Dirichlet edges.

With each edge in Γh ∪ ΓD a unit normal ne is associated. The orientation of ne is
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outwards on ΓD and on Γh from Ee1 to Ee2 if e = ∂Ee1 ∩ ∂Ee2. However, the numbering

of the elements E themselves is arbitrary. Therewith, the jump and average across the

edge can be defined as in [66, p. 28] by

[v] := v|Ee1 − v|Ee2 , {v} :=
1

2
v|Ee1 +

1

2
v|Ee2 ∀ e = ∂Ee1 ∩ ∂Ee2

on the interior edges and on the Dirichlet edges by

[v] := v|Ee1 , {v} := v|Ee1 ∀ e = ∂Ee1 ∩ Γ.

3.2.1 FE-IPDG Discretization for Mixed Formulation

The subdivision Eh together with a polynomial degree vector p defines the FE-sets for

both the primal and dual variables.

Vhp :=
{
v ∈ L2(Ω) : v|Q ∈ PpQ(Q) ∀Q ∈ Eh

}
= span {φj}dimVhp

j=1 (3.14)

M+
hp :=

µ ∈ span {ψj}dimVhp
j=1 :

∫
Ω
µv dx ≤ 0 ∀ v =

dimVhp∑
i=1

viφi ∈ Vhp with vi ≤ 0

 (3.15)

Here, φj are affinely transformed Gauss-Lobatto-Lagrange (GLL) basis functions de-

fined on the reference square [−1, 1]2 using a tensor product of the 1D-GLL functions.

The dual basis functions ψj are globally biorthogonal to φi, i.e.∫
Ω
ψjφi dx = δij

∫
Ω
φi dx 1 ≤ i, j ≤ dimVhp.

These basis functions are studied thoroughly by Wohlmuth et al. in [77, 76, 38] for

the lowest order h-version. In [52] the construction of higher order biorthogonal basis

functions are studied. In contact problems their analysis is always restricted to H1-

conforming methods with regular meshes. In domain decomposition methods their

analysis is restricted to approaches which are conforming in the subdomains which are

independent of the mesh size. For obstacle problems with an H1-conforming approach,

the use of biorthogonal basis functions on irregular meshes with an arbitrary number

of hanging nodes is studied in [3]. Especially, it explains that the same connectivity

informations which are used for the assembly of the primal basis functions can also

be used for the biorthogonal ones. In the case of IPDG, affinely transformed local

biorthogonal basis functions are also globally biorthogonal. Moreover, there holds the

following lemma which implies that the discrete variational inequality constraint (3.16b)

is nothing more than an L2-projection problem.

Lemma 3.5. The primal and dual basis functions span the same set, i.e.

span {φj}dimVhp
j=1 = span {ψj}dimVhp

j=1 .

Proof. Same arguments as in Lemma 4.7.
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Therewith, the IPDG method is: Find uh ∈ Vhp and λh ∈M+
hp such that

aε(uh, v) + b~γ(uh, v)− 〈v, λh〉 = Fε(v) ∀ v ∈ Vhp (3.16a)

〈uh, µ− λh〉 ≥ 〈χ, µ− λh〉 ∀ µ ∈M+
hp (3.16b)

with the bilinear and linear forms

aε(u, v) :=
∑
E∈Eh

∫
E
∇u∇v+uv dx+

∑
e∈Γh∪ΓD

∫
e
−
{
∂u

∂ne

}
[v]+ε

{
∂v

∂ne

}
[u]+

σep
2
e

|e|β [u] [v] ds

(3.17)

b~γ(u, v) := −
∑
E∈Eh

∫
E
~γu · ∇v dx+

∑
e∈Γh

∫
e
~γ · neuup [v] ds (3.18)

Fε(v) :=

∫
Ω
fv dx+

∑
e∈ΓD

∫
e

(
ε
∂v

∂ne
+

(
σep

2
e

|e|β − ~γ · ne
)
v

)
g ds, (3.19)

respectively. Here, an upwind discretization for the convection term is used, i.e.

vup :=

{
v|Ee1 , if ~γ · ne ≥ 0

v|Ee2 , if ~γ · ne < 0.

The choice of the parameter ε ∈ {−1, 0, 1} determines which particular IPDG method

is used, e.g. for ε = 1 and σe = 1 it is called the non-symmetric interior penalty

Galerkin (NIPG) method and for ε = 0 incomplete interior penalty Galerkin (IIPG),

c.f. [67, 66] among others. The penalty parameter σe is always non-negative but may

vary for different edges [68]. The exponent β is a positive constant depending on the

dimension d of Ω such that β(d− 1) ≥ 1 and pe is the maximum of the two polynomial

degrees on the edge e. This penalty term guarantees the convergence towards a H1(Ω)-

function and the coercivity of the bilinear form aε(·, ·) what gives rise to the mesh

dependent norm

||v||21,hp :=
∑
E∈Eh

∫
E

(∇v)2 + v2 dx+
∑

e∈Γh∪ΓD

∫
e

σep
2
e

|e|β [v]2 ds. (3.20)

Lemma 3.6. If σe is sufficiently large, there exists a constant α > 0 such that for all

v ∈ Vhp

aε(v, v) + b~γ(v, v) ≥ α ‖v‖21,hp . (3.21)

Proof. By [66, p. 38 and p. 99] aε(v, v) ≥ α‖v‖21,hp and b~γ(v, v) ≥ 0.

In the forthcoming σe is always assumed to be sufficiently large such that Lemma 3.6

can be applied. For the proof of existence and uniqueness of (uh, λh) and for the

construction of the iterative solver, the following lemma is of central importance.

Lemma 3.7. There holds for the integral value of the primal and dual basis functions∫
Ω ψi dx =

∫
Ω φi dx =: Di > 0.
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3.2 hp-IPDG Discretization for Elliptic Obstacle Problems

Proof. Follows from the biorthogonality relationship, a partition of unity, and the same

arguments as in Lemma 5.11.

Lemma 3.8. If µh ∈Mhp satisfies∫
Ω
µhvh dx = 0 ∀ vh ∈ Vhp

then µh is zero.

Proof. Since µh ∈Mhp and vh ∈ Vhp, they can be written as a linear combination of ψj
and φj respectively, i.e.

µh(x) =

dimVhp∑
j=1

µjψj(x) and vh(x) =

dimVhp∑
j=1

vjφj(x).

Then, by the assumption of this lemma and by the biorthogonality of ψj to φi

0 =

∫
Ω
µhvh dx =

dimVhp∑
j=1

µjvjDj . (3.22)

Since vh ∈ Vhp is arbitrary, choosing vi 6= 0 and vj = 0 for j 6= i yields with Di > 0 by

Lemma 3.7 that µivi = 0 for 1 ≤ i ≤ dimVhp. Hence, µi = 0, i.e. µ ≡ 0.

The previous three lemmas are sufficient to proof unique existence of a discrete solution.

Theorem 3.3. There exists a unique solution pair (uh, λh) ∈ Vhp ×M+
hp to (3.16).

Proof. Uniqueness: Let both (u1, λ1) and (u2, λ2) solve (3.16). Then subtracting the

two (3.16a) from each other yields

aε(u1 − u2, v) + b~γ(u1 − u2, v)− 〈v, λ1 − λ2〉 = 0 ∀ v ∈ Vhp. (3.23)

Choosing v = u1 − u2 in (3.23) and using the ellipticity result of Lemma 3.6 yields

α ‖u1 − u2‖21,hp − 〈u1 − u2, λ1 − λ2〉 ≤ 0. (3.24)

Further, choosing µ = λ2 and µ = λ1, in (3.16b) and adding these inequalities yields

〈u1 − u2, λ1 − λ2〉 ≤ 0. (3.25)

Inserting (3.25) into (3.24) implies ‖u1 − u2‖21,hp = 0 and therewith (3.23) reduces to

〈v, λ1 − λ2〉 = 0 ∀ v ∈ Vhp. (3.26)

for which Lemma 3.8 yields λ1 − λ2 = 0.

Existence: Due to Lemma 3.5, it is well known that the problem (3.16b) can be written

as the projection equation [51]

λ = PM+
hp

(λ+ r(χ− u)) (3.27)
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where PM+
hp

is the L2-projection operator mapping onto M+
hp and r > 0 is an arbitrary

constant. For a given λh, the equation (3.16a) reduces to an elliptic, finite dimensional

linear problem. Hence, the uniqueness result of uh ensured by (3.24) also implies the

existence of a uh(λh). Let

T : M+
hp →M+

hp

λ 7→ PM+
hp

(λ+ r(χ− u)) .

be the operator to describe the fixed point iteration λ(k+1) = Tλ(k). If T is a contraction

then by the Banach fixed point theorem, there exists a λ which satisfies (3.27) and,

hence, also a corresponding u solving (3.16). For the ease of presentation denote δλ =

λ1 − λ2, δu = u1 − u2 and ‖·‖ = ‖·‖L2(Ω).

‖Tλ1 − Tλ2‖2 =
∥∥∥PM+

hp
(λ1 + r(χ− u1))− PM+

hp
(λ2 + r(χ− u2))

∥∥∥2

≤ ‖δλ− rδu‖2

= ‖δλ‖2 − 2r 〈δλ, δu〉+ r2 ‖δu‖2

= ‖δλ‖2 − 2r
[
aε(δu, δu) + b~γ(δu, δu)

]
+ r2 ‖δu‖2

≤ ‖δλ‖2 − 2αr ‖δu‖2 + r2 ‖δu‖2

= ‖δλ‖2 (1− 2αrγ2 + r2γ2)

with γ =
‖δu‖L2(Ω)

‖δλ‖L2(Ω)
. The second line is the standard projection result, the fourth line

results form (3.23) and the fifth line from Lemma 3.6. Hence, for 0 < r < 2α, T is a

strict contraction which completes the proof.

Theorem 3.4. The condition (3.16b) is equivalent to the system

ui ≥ gi :=
1

Di

∫
Ω
χψi(x) dx (3.28a)

λi ≥ 0 (3.28b)

λi (ui − gi) = 0 (3.28c)

for 1 ≤ i ≤ dimVhp. Here ui and λi are the expansion coefficients of uh and λh,

respectively.

Proof. Same arguments as in the proof of Theorem 4.4 except without the additional

time integration.

3.2.2 FE-IPDG Discretization for VI Formulation

As on the continuous level, there exists a discrete variational inequality formulation

equivalent to the discrete mixed formulation (3.16). If the discrete non-penetration
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3.2 hp-IPDG Discretization for Elliptic Obstacle Problems

condition is incorporated into the convex cone of admissible ansatz and test functions,

the Lagrange multiplier can be eliminated. More precisely,

Khp := {v ∈ Vhp : vi ≥ χi} (3.29)

is the convex cone of admissible functions where χi are one-sided box constraints on

the solution coefficients. Then, the discrete variation inequality problem is:

Find uh ∈ Khp such that

aε(uh, v − uh) + b~γ(uh, v − uh) ≥ Fε(v − uh) ∀ v ∈ Khp. (3.30)

Theorem 3.5. There exists exactly one solution to the discrete variational inequality

formulation (3.30).

Proof. Same arguments as in the proof of Theorem 4.5.

Theorem 3.6. The discrete problems (3.16) and (3.30) are equivalent if χi = gi of

Theorem 3.4.

Proof. Let (u, λ) solve (3.16). Then, Theorem 3.4 implies ui ≥ gi, i.e. u ∈ Khp. Fur-

thermore, the biorthogonality and (3.28c) of Theorem 3.4 yield for all w ∈ Khp

−
∫

Ω
(w − u)λ dx = −

dimVhp∑
i=1

(wi − ui)λiDi = −
dimVhp∑
i=1

(wi − gi)λiDi ≤ 0.

Hence, choosing v = w − u with w ∈ Khp in (3.16) yields (3.30).

For the opposite direction let u ∈ Khp solve (3.30), i.e. ui ≥ gi. Define the Lagrange

multiplier by λ =
∑

i λiψi(x) with

λi =
aε(u, φi) + b~γ(u, φi)− Fε(φi)

Di
for 1 ≤ i ≤ dimVhp, (3.31)

i.e. 〈λ, v〉 is the residual of the discrete variational inequality for all v ∈ Vhp. Choosing

v = u+ φi, i.e. v ∈ Khp, in (3.30) yields

0 ≤ aε(u, φi) + b~γ(u, φi)− Fε(φi) = λiDi ⇒ λi ≥ 0.

Finally, choose v ∈ Vhp such that vi = gi, vi = 2ui − gi respectively, in (3.30) to obtain

0 =

dimVhp∑
i=1

[
aε(u, φi) + b~γ(u, φi)− Fε(φi)

]
(ui − gi) =

dimVhp∑
i=1

λi(ui − gi)Di = 〈u− χ, λ〉 .

The assertion follows with Theorem 3.4.

Remark 3.2. For χi = gi the convex cone is the same as

Khp :=

{
v ∈ Vhp :

∫
Ω

(v − χ)µ dx ≥ 0 ∀ µ ∈M+
hp

}
. (3.32)
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3.2.3 An Efficient Iterative Solver for the Discrete Mixed Formulation

The convergence proof of all efficient iterative solvers for variational inequality for-

mulations are based on equivalent minimization problems. Therefore, these are not

guaranteed to converge if the bilinear form is not symmetric. In the following a fast

iterative solver is constructed for the discrete mixed formulation and by Theorem 3.6

also for the discrete variational inequality formulation.

Lemma 3.9. The discrete problem (3.16) is equivalent to solving

0
!

= F (~u,~λ) :=

(
A~u−D~λ− ~f

ϕη(~u,~λ)

)
(3.33)

where A~u−D~λ− ~f = 0 is the matrix representation of (3.16a) and ϕη : Rn×Rn → Rn

is the vector-valued penalized Fischer-Burmeister non-linear complementarity function

(NCF) defined by

ϕη(~u,~λ) = η

(
~λ+ (~u− ~g)−

√
~λ2 + (~u− ~g)2

)
+ (1− η) max

{
0, ~λ
}

max {0, ~u− ~g}

with η ∈ (0, 1] and a componentwise understood right hand side.

Proof. By Lemma 2.4 ϕη is a NCF, i.e.

ϕη(~u,~λ) = 0 ⇔ (u− g)i ≥ 0, λi ≥ 0, λi · (u− g)i = 0 (i = 1, . . . , n).

Hence, ϕη(~u,~λ) = 0 is equivalent to (3.28) which in turn is equivalent to (3.16b) by

Theorem 3.4.

Lemma 3.10. The matrix A is (in general) non-symmetric but sparse and all eigen-

values have positive real part if σe is sufficiently large. The matrix D is positive definite

and diagonal. The function ϕµ is strongly semi-smooth and Lipschitzian.

Proof. By Lemma 3.6 all eigenvalues of A have positive real part. The positive defi-

niteness and diagonal property of D follows directly from the biorthogonality and the

use of Gauss-Lobatto-Lagrange basis functions (c.f. Lemma 3.7). By Lemma 2.4 ϕη is

strongly semi-smooth everywhere and with the definition of strongly semi-smoothness

also Lipschitzian.

Theorem 3.7. The reduced semi-smooth Newton algorithm(
uk+1, λk+1

)T
=
(
uk, λk

)T
−H−1

k F (uk, λk) (3.34)

where Hk is a Clarke subdifferential of F at
(
uk, λk

)T
converges locally Q-quadratic.

Proof. The same as in Theorem 4.7
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The reduced semi-smooth Newton algorithm can be globalized using Algorithm 4.1, in

which only the definition of F (u, λ) needs to be changed. Further improvements are

also discussed in Section 4.2.3.

3.3 A Hierarchical a Posteriori Error Estimator and

hp-Adaptivity

As it is typical for hierarchical error estimators the proof heavily relies on the satu-

ration assumption. Dörfler and Nochetto [24] have proven the saturation assumption

for conforming FEM with piecewise linear to piecewise quadratic elements under the

assumption of small data oscillation.

Assumption 3.1 (Saturation Assumption). Let u ∈ K solve (3.3) and u
h̃p
∈ K

h̃p
,

uhp ∈ Khp respectively, solve (3.30) with Vhp ⊂ V
h̃p

. Then, the saturation assumption

assumes the existence of a constant qS ∈ (0, 1) uniformly in hp− h̃p such that

‖u− u
h̃p
‖

1,h̃p
≤ qS ‖u− uhp‖1,hp . (3.35)

The additional condition that the pure FE-spaces Vhp ⊂ Vh̃p are nested is necessary for

Lemma 3.11 as the estimate (3.35) must use different norms on the left and right hand

side since in general the expression ‖u − u
h̃p
‖1,hp makes no sense due to the jumps of

u
h̃p

within the coarse elements E ∈ Eh.

Lemma 3.11. For v ∈ H1(Ω) and vh ∈ Vhp ⊂ Vh̃p there holds

‖v − vh‖21,hp ≤ ‖v − vh‖21,h̃p (3.36)

‖v − vh‖21,h̃p ≤ C(h, p, h̃, p̃) ‖v − vh‖21,hp (3.37)

with C(h, p, h̃, p̃) defined in (3.38) if σe = σẽ for ẽ a child edge of σe and β ≥ 1.

Proof. Since Vhp ⊂ Vh̃p every coarse element E ∈ Eh is a finite sum of refined elements

Ẽ ∈ E
h̃
. Hence, the mass and discrete gradient part of the two norms are identical and

only the jump part differs. The h-refinement generates completely new edges which are

interior edges and lie within a coarse element E. In particular v ∈ H1(Ω) and vh is a

polynomial on E and, therefore, the jump of v − vh across these new edges is always

zero by [35, Lemma 4.3]. Further, every edge e ∈ Γh ∪ ΓD can be written as a union of

refined edges ẽ, i.e. e =
⋃Ne
i=1 ẽi,e. Then, pe ≤ pẽi,e and |e| ≥ |ẽi,e| what implies

∑
e∈Γh∪ΓD

∫
e

σep
2
e

|e|β [v − vh]2 ds =
∑

e∈Γh∪ΓD

Ne∑
i=1

∫
ẽi,e

σep
2
e

|e|β [v − vh]2 ds

≤
∑

e∈Γh∪ΓD

Ne∑
i=1

∫
ẽi,e

σẽp
2
ẽi,e

|ẽi,e|β
[v − vh]2 ds =

∑
ẽ∈Γ̃h∪Γ̃D

∫
ẽ

σẽp
2
ẽ

|ẽ|β [v − vh]2 ds.
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and hence (3.36). For the second estimate note that

∫
e

σep
2
e

|e|β [v − vh]2 ds =
Ne∑
i=1

∫
ẽi,e

σep
2
e

|e|β [v − vh]2 ds

=

Ne∑
i=1

∫
ẽi,e

σep
2
e

|e|β
σẽi,ep

2
ẽi,e

|ẽi,e|β
|ẽi,e|β
σẽi,ep

2
ẽi,e

[v−vh]2 ds =

Ne∑
i=1

p2
e

p2
ẽi,e

|ẽi,e|β
|e|β

∫
ẽi,e

σẽi,ep
2
ẽi,e

|ẽi,e|β
[v−vh]2 ds

≥ min
i=1,...,Ne

{
p2
e

p2
ẽi,e

|ẽi,e|β
|e|β

}∫
ẽi,e

σẽi,ep
2
ẽi,e

|ẽi,e|β
[v − vh]2 ds.

Defining the factor C(h, p, h̃, p̃) by

0 ≤ 1

C(h, p, h̃, p̃)
:= min

e∈Γh∪ΓD
min

i=1,...,Ne

{
p2
e

p2
ẽi,e

|ẽi,e|β
|e|β

}
≤ 1 (3.38)

and summing over all edges e ∈ Γh ∪ ΓD yields (3.37).

For the special case h = 2h̃ and p = p̃ the constant is C(h, p, h̃, p̃) = 2β and for h = h̃,

p+ 1 = p̃ the constant is bounded C(h, p, h̃, p̃) ≤ 4 and C(h, p, h̃, p̃)
p→∞→ 1.

Theorem 3.8. Under the saturation assumption 3.1 and the assumption of Lemma 3.11

there holds

1√
C(h, p, h̃, p̃) + qS

η̃ ≤ ‖u− uhp‖1,hp ≤
1

1− qS
η̃ (3.39)

with the error estimator η̃ := ‖u
h̃p
− uhp‖1,h̃p.

Proof. Triangle inequality and equation (3.36) of Lemma 3.11 yield the upper bound

‖u− uhp‖1,hp ≤ ‖u− uhp‖1,h̃p =
∥∥∥u− uh̃p + u

h̃p
− uhp

∥∥∥
1,h̃p
≤ ‖u− u

h̃p
‖

1,h̃p
+ η̃

≤ qS ‖u− uhp‖1,hp + η̃.

Also triangle inequality but equation (3.37) of Lemma 3.11 yield the lower bound

η̃ = ‖u
h̃p
− u+ u− uhp‖1,h̃p ≤ ‖u− uh̃p‖1,h̃p + ‖u− uhp‖1,h̃p

≤ qS ‖u− uhp‖1,hp + ‖u− uhp‖1,h̃p ≤
(
qS +

√
C(h, p, h̃, p̃)

)
‖u− uhp‖1,hp .

The difficulty in the above theorem is only induced from the potential h-refinement to

enrich the FE-space. For the specific p − (p + 1)-error estimator this estimate can be

sharpened since ‖uhp+1 − uhp‖1,hp now makes sense.
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Theorem 3.9. Under the saturation assumption 3.1 there holds for the p−(p+1)-error

estimator

1

1 + qS
η ≤ ‖u− uhp‖1,hp ≤

1

1− qS
η ≤ 1

1− qS
η̃ (3.40)

with η := ‖uhp+1 − uhp‖1,hp.

Proof. By triangle inequality and an increase in the penalty factor from p2 to (p+ 1)2

there holds

‖u− uhp‖1,hp ≤ ‖u− uhp+1‖1,hp + η ≤ ‖u− uhp+1‖1,hp+1 + η ≤ qS‖u− uhp‖1,hp + η

and

η ≤ ‖uhp+1 − u‖1,hp + ‖u− uhp‖1,hp ≤ ‖uhp+1 − u‖1,hp+1 + ‖u− uhp‖1,hp
≤ (qS + 1)‖u− uhp‖1,hp.

The last inequality also holds from the fact that the only difference of the mesh depen-

dent norms is that the penalty factor has increased, c.f. (3.20).

Remark 3.3. 1. The sharper estimate of Theorem 3.9 holds for all FE-space en-

richment based only on p-refinement, e.g. p− (p+ 2) or p−
⌈√

2p
⌉
.

2. Both η̃ and η can be written as a sum of local contributions, but the implementation

of η is easier and cheaper than of η̃ due to the gradient contribution in the norm

and exploitation of the sum factorization. For η̃, an additional mesh refinement

with parent-child relations for the elements and edges must be stored and searched

through.

3. The saturation assumptions implies that the FE-space V
h̃p

must be sufficiently

larger than Vhp. Using the p − (p + 1) error estimator the relative FE-space

enrichment 2p+3
(p+1)2 is constant for h-versions and tends towards zero for p-versions.

4. Using the p −
⌈√

2p
⌉

estimator, the relative FE-space enrichment ≈ p2+2(
√

2−1)p
p2+2p+1

tends towards one for the uniform p-version.

5. Due to the nestedness of the FE-spaces, there exists a simple basis transformation

matrix I from V
h̃p

to Vhp based on interpolation. Hence, all the matrices and

vectors defined on the coarse mesh which do not involve the penalty factor can

be computed by multiplying I with the corresponding part from the fine mesh.

Further the solution from the coarse mesh can be used as an initial solution for

the iterative solver for the refined solution.

Remark 3.4. The error estimator requires the computation of both uhp and u
h̃p

which

is very cost intensive compared to residual error estimators. These use an auxiliary

problem to split the error contribution from the contact and the discretization of the

differential operator as presented in [8]. A residual error estimator for IPDG exists
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and has been presented by Houston et al. in [35]. However, the splitting of the error

requires H1(Ω)-conformity of the primal basis function which in IPDG methods is not

given. Additionally, it is not clear how the arising consistency error of the discrete

Lagrange multiplier in the H−1(Ω)-norm can be realized.

Since the 1, hp-norm is local, the error estimators η̃ and η can be written as a sum of

local indicators.

Lemma 3.12. The error indicator η satisfies

η2 =
∑
E∈Eh

η2
loc(E) (3.41)

with the local error indicators

η2
loc(E) =

∫
E

(∇(up+1 − up))2 + (up+1 − up)2 dx (3.42)

+
∑

e∈∂E∩Γh

∫
e

σep
2
e

2|e|β [up+1 − up]2 ds+
∑

e∈∂E∩ΓD

∫
e

σep
2
e

|e|β (up+1 − up)2 ds.

Proof. Writing down the norm explicitly and spreading the jump contributions equally

over the adjacent elements.

The result for η̃ is analogical but also the parent-child relation must be used. The

local error indicators (3.42) allow an hp-adaptive mesh refinement. In this strategy

all elements E ∈ M :=
{
Ẽ ∈ Eh : η2

loc(Ẽ) ≥ θ ·max η2
loc

}
are isotropically refined for

θ ∈ (0, 1). For other marking strategies, refer to [23, 62, 74] among others. Elementary

for an hp-adaptive strategy is the decision criterion whether an element should be h-

refined and when p-refined. Houston and Süli explain in [36] such a strategy based

on an analyticity estimate which leads to exponential convergence in their 1D model

problem. In 2D, the discrete solution uhp|E in the marked element E is expanded into

Legendre polynomials, i.e.

uhp|E(FE(x, y)) =

p∑
i=0

p∑
j=0

ai,jLi(x)Lj(y)

with

ai,j =
2i+ 1

2

2j + 1

2

∫ 1

−1

∫ 1

−1
uhp|E(FE(x, y))Li(x)Lj(y) dx dy.

To estimate the analyticity of u|E , assume log |ai,j | ∼ (i+ j) log(1
ρ) for some radius 1

ρ .

To approximate the radius, a least squares approach is used to compute the slope m of

| log |ai,j || = (i+ j)m+ b. If e−m ≤ δ then the element is p-refined, else an h-refinement

is performed.
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3.4 First Results on an a Priori Error Estimate

In this section an a priori error estimate for the variational inequality (3.30) based

on [27, 35] is derived, yet without convergence rates. For simplicity the convection

coefficient is set to zero.

To work with minimal regularity requirements on u, first the extension operators in [35,

Section 4.1] are recalled. Let V (h) := Vhp∪H1(Ω) and let the operator L : V (h)→ [Vhp]
2

be defined by ∫
Ω
L(v) · ~q dx =

∑
e∈Γh∪ΓD

∫
e
[v] {~q · ne} ds ∀ ~q ∈ [Vhp]

2 . (3.43)

Furthermore, let Ug̃ ∈ [Vhp]
2 be a lifting of g̃ ∈ H 1

2 (Γ) defined by∫
Ω
Ug̃ · ~q dx =

∑
e∈ΓD

∫
e
g̃~q · ne ds ∀ ~q ∈ [Vhp]

2 . (3.44)

Therewith the new bilinear and linear forms

ãε(u, v) :=
∑
E∈Eh

∫
E
∇u∇v+uv − L(v)∇u+ εL(u)∇v dx+

∑
e∈Γh∪ΓD

∫
e

σep
2
e

|e|β [u] [v] ds

(3.45)

F̃ε(v) :=

∫
Ω
fv dx+ ε

∑
E∈Eh

∫
E
Ug∇v dx+

∑
e∈ΓD

∫
e

σep
2
e

|e|β vg ds. (3.46)

can be defined. Since

ãε(u, v) = aε(u, v) on Vhp × Vhp and F̃ε(v) = Fε(v) on Vhp,

the discrete variational inequality formulation (3.30) is equivalent to:

Find uh ∈ Khp : ãε(uh, vh − uh) ≥ F̃ε(vh − uh) ∀ vh ∈ Khp. (3.47)

Furthermore, since u − v ∈ H1
0 (Ω) for u, v ∈ K and L(u) = Ug, L(v − u) = ~0, simple

algebra yields that u ∈ K solving (3.3) also satisfies

ãε(u, v − u) ≥ F̃ε(v − u) ∀ v ∈ K. (3.48)

Therewith, the discrete and continuous variational inequality formulations are formu-

lated in the same bilinear and linear form. The following lemmas provide the continuity

and coercivity of the new bilinear form which is needed for Theorem 3.10.

Lemma 3.13 ([35], Lemma 4.1). For σe ≡ σ and β = 1, there exists a constant CL > 0

independent of h, p and σ such that

‖L(v)‖2L2(Ω) ≤ CLσ−1
∑

e∈Γh∪ΓD

∫
e

σp2

|e| | [v] |2 ds ∀ v ∈ V (h)

‖Ug1 − Ug1‖2L2(Ω) ≤ CLσ−1
∑
e∈ΓD

∫
e

σp2

|e| |g1 − g2| ds ∀ g1, g2 ∈ H
1
2 (Γ)
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3 Elliptic Obstacle Problems

Lemma 3.14 ([35], Lemma 4.2). For all u, v ∈ V (h) there holds

|ãε(u, v)| ≤ CC ‖u‖1,hp ‖v‖1,hp
with CC = max

{
2, 1 + CLσ

−1
}

and CL the constant in Lemma 3.13.

Lemma 3.15 ([35], Lemma 4.3). For all v ∈ H1
0 (Ω) there holds

ãε(v, v) = ‖v‖21,hp .

By Lemma 3.14, Lemma 3.15, and Lemma 3.6 the bilinear form ãε(·, ·) is continuous

and elliptic. Therefore, the abstract a priori error estimate by Falk [27] can be applied.

Theorem 3.10. Let u ∈ K solve (3.3) and uh ∈ Khp solve (3.30), then there holds for

arbitrary v ∈ K and vh ∈ Khp

α

2
‖u− uh‖21,hp ≤

(
CF + CC ‖u‖1,hp

) [
‖u− vh‖1,hp + ‖uh − v‖1,hp

]
+
C2
C

2α
‖u− vh‖21,hp

if f ∈ L2(Ω), ~γ = ~0, and β = 1 with CC defined in Lemma 3.14 and CF the continuity

constant of F̃ε(·).

Proof. Adding (3.48) and (3.47) and subtracting ãε(u, uh) + ãε(uh, u) yields with the

(bi)-linearity

ãε(u− uh, u− uh) ≤ F̃ε(u− vh) + F̃ε(uh − v)− ãε(u, u− vh)− ãε(u, uh − v)

+ ãε(u− uh, u− vh)
. (3.49)

By the coercivity and continuity there follows

α ‖u− uh‖21,hp ≤
(
CF + CC ‖u‖1,hp

) [
‖u− vh‖1,hp + ‖uh − v‖1,hp

]
+ CC ‖u− uh‖1,hp ‖u− vh‖1,hp .

Applying Young’s inequality yields the assertion.

This estimate is not optimal due to the additional square root in the estimate. By

Theorem 3.6 this also yields an a priori error estimate for the mixed method (3.16), yet

only for the primal variable. An error estimate for the dual variable requires the discrete

inf-sup-condition which for the p-version in the context of IPDG with biorthogonal basis

functions is still an open question.

Lemma 3.16. For χ ∈ Vhp, there holds gi = χ(xi) with xi ∈ Ghp the set of Gauss-

Lobatto points which defines φi, 1 ≤ i ≤ dimVhp and gi as defined in Theorem 3.4.

Proof. If χ ∈ Vhp, then χ(x) =
∑dimVhp

j=1 χjφj(x). Then, by the biorthogonality of φi to

ψj there holds

gi :=
1

Di

∫
Ω

dimVhp∑
j=1

χjφj(x)ψi(x) dx = χi

∫
Ω φi(x) dx

Di
= χi.
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On the other hand, since φj are nodal basis functions there holds χ(xi) = χiφi(xi) = χi,

which completes the proof.

As a consequence of Lemma 3.16 there holds

Khp := {v ∈ Vhp : vi ≥ χi} = {v ∈ Vhp : v(xi) ≥ χ(xi) ∀ xi ∈ Ghp} (3.50)

if χ ∈ Vhp. This means that for a piecewise polynomial obstacle the weak non-

penetration is equivalent to a pointwise non-penetration condition in the Gauss-Lobatto

interpolation points.

Lemma 3.17. If χ ∈ Vhp, g ∈ Vhp|Γ and E ∈ Eh are axis-parallel quadrilaterals, then

there holds

inf
vh∈Khp

‖u− vh‖1,hp ≤ Chµ−1p1−µ ‖u‖Hµ(Ω) , µ ≥ 1 (3.51)

for u ∈ K ∩Hµ(Ω) with C > 0 independent of h and p.

Proof. Let vh = Ihpu be the interpolation of u in the Gauss-Lobatto points Ghp. Since

u ∈ K, there holds vh(xi) = u(xi) ≥ χ(xi). With χ ∈ Vhp, Lemma 3.16 implies

vh ∈ Kh. Furthermore, since u ∈ Hµ(Ω) and vh is the piecewise polynomial interpolant

of a continuous function, this yields in conjunction with g ∈ Vhp|Γ, i.e. (u− vh)|Γ = 0,

that ‖u− vh‖1,hp = ‖u− vh‖H1(Ω). The approximation property follows from [5, The-

orem 5.7].

An estimate for the term ‖uh − v‖1,hp remains open. Due to the mesh-dependent norm

in conjunction with the weakly enforced Dirichlet condition, Glowinski [31, Theorem

I.5.2] cannot be applied to obtain simple convergence. Contrary to DG, it can be applied

for the continuous Galerkin case in which the convex cone Khp ⊂ H1(Ω) satisfies non-

penetration condition in the Gauss-Lobatto quadrature points [48, 47].

3.5 Numerical Experiments

As a numerical experiment, the example by Bartels and Carstensen [4] is consid-

ered, however with additional convection and mass term. The space domain is Ω =

[−1.5, 1.5]2 and the convection coefficient is ~γ = (1,−1)T . For the obstacle χ ≡ 0 and

volume force f = −2 + ~γ · ∇u+ u the exact solution is

u(x, t) =

{
r2

2 − ln(r)− 1
2 , if r := |x|2 ≥ 1

0, otherwise

and is plotted in Figure 3.1 with the green circle indicating the free boundary. Knowing

the exact solution, the approximation error of uhp solving (3.16) can be computed in

the energy norm for families of meshes. These results and the estimated error η are
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3 Elliptic Obstacle Problems

Figure 3.1: Solution with free boundary for the elliptic obstacle problem

plotted in a semilogarithmic scale versus the third root of the degree of freedom (dof).

In such scaling, a straight line indicates exponential convergence, i.e.

‖u− uhp‖1,hp ≤ Ce−b
3√

dof C, b > 0.

Since u ∈ H2(Ω), the lowest order uniform h-version has an experimental convergence

rate of 1
2 with respect to the dof, i.e. 1 with respect to h, and the estimated error is

almost the same. Consequently, an h-adaptive scheme cannot improve the convergence

rate, and only reduces the error constant, which Figure 3.2 clearly displays. For the

uniform p-version the error reduces algebraically with respect to the dof, i.e. u is not

analytic, whereas the estimated error has a reduced convergence rate. Figure 3.2 indi-

cates that the hp-adaptive method with δ = 0.5 and θ = 0.9 converges exponentially

fast and that the estimated error is very close to the true error. Only the kink at 15

to 17 is unsatisfactory, which depends on the shape regularity and may result from a

non-optimal marking. By Theorem 3.9, there exists a connection between the satura-

tion constant and the effectivity constant of the error estimator. Figure 3.3 shows such

a connection between the experimental effectivity index (EEI) η/ ‖u− uhp‖1,hp and the

experimental saturation constant (ESC) ‖u− uhp‖1,hp / ‖u− uhp+1‖1,hp+1, although it

is less severe than expected by Theorem 3.9. For the uniform and adaptive h-versions

the EEI tends towards one and the ESC towards some value much smaller than 0.1.

For the uniform p-version the EEI increases continuously but slowly although the ESC

tends towards one rapidly. The reason for the violation of the uniform boundedness

of the saturation constant qS is that the relative FE-space enrichment 2p+3
(p+1)2 tends to-

wards zero as p→∞. This can be avoided by choosing not a p− (p+ 1) indicator but

a p−
⌈√

2p
⌉

for which the ESC is around 0.55 and the EEI between 0.9 and 1.1. How-

ever, this is extremely CPU-time and memory consuming. For the hp-adaptive method
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Figure 3.2: Error in energy norm and error indicator for the elliptic obstacle problem

the ESC has an increasing tendency but the EEI is always between 0.8 and 1.2. One

advantage of discontinuous Galerkin methods is that irregular meshes impose no (sig-

nificant) challenges in the implementation of the algorithm, but the irregularity seems

to influence the approximation error. Although, shape regularity requirements results

in additional refinement within adaptive schemes, Figure 3.4a shows that for this spe-

cific experiment, allowing three hanging nodes in an h-adaptive method, yields a better

error constant than with only one or even infinity many hanging nodes. Similarly, Fig-

ure 3.4b implies that allowing the polynomial degree to differ at most by one between

two adjacent elements is superior to a difference of two or infinity in an hp-adaptive

method with at most three hanging nodes. Here, superiority is in terms of error con-

stant, convergence rate and the kink discussed above. Since the obstacle is constant,

the adaptive algorithm should identify the true contact set and refine the mesh in that

area as little as necessary. The tenth and 31st mesh generated by the h-adaptive scheme

are displayed in Figure 3.6a-b. These meshes are symmetric and the free boundary is

identified. In the non-contact set N they are almost uniform meshes and in the contact

set C only those refinements necessary for the shape regularity constraint are carried

out. Analogous observations can be made for the hp-adaptive meshes, Figure 3.6c-d,

with some significant differences. The free boundary is finer resolved and away from

it, where the solution is smooth, the polynomial degree is increased in N . The high

polynomial degrees within the contact set are a result of the shape regularity on the

polynomial degree distribution. If the free boundary is (almost) parallel to one of the

element axis and only slightly intersects this specific element (c.f. Figure 3.5), then the

solution is smooth in the parallel direction and singular in the perpendicular direction.

However, many points in that direction are relatively ”far” away from the singularity,
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Figure 3.3: Experimental efficiency index and saturation constant for the elliptic obsta-

cle problem
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Figure 3.4: Influence of the shape regularity on the error and indicator for the elliptic

obstacle problem
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free boundary

singular

smooth

Figure 3.5: Singular direction induced by free boundary

and, therefore, the isotropic refinement with the analyticity estimate described in Sec-

tion 3.3 yields an increase in p. An often noted, but still unproven observation is that

the contact set identified by the discrete solution is an ”optimal” approximation of the

true contact set on the given mesh. The red stars in Figure 3.7 are the Gauss-Lobatto

points (which were used to define the basis functions) in which the discrete solution is

in contact.

Hypothesis 3.1. For the uniform h- and p-version there seems to hold that the node

is correctly identified to be a contact node if it lies is in the contact set. Otherwise, if

twice the distant to the free boundary is less than the distant to the next Gauss-Lobatto

point, it is also identified to be a contact node.

Such a result would be very important as the correct identification of the free boundary

is required in the optimal stopping time for American put options [63]. Finally, the

choice of the method’s parameter ε ∈ {−1, 0,+1} has no significant influence on the

error within the hp-adaptive method as displayed in Figure 3.8a. On the other hand,

Figure 3.8b shows that the choice of the penalty parameter σe is crucial. If σe is

sufficiently large, the hp-adaptive method converges exponentially fast with the error

in the energy norm depending on σe since the norm itself depends on σe. If σe is

chosen too small than the bilinear form is no longer coercive and the method does not

converge. Interestingly, the estimated error is still (almost) identical to the error and

therefore identifies the non-convergence, although the non-convergence implies that the

saturation assumption required for the error estimator is not valid. Crucial for the

hp-adaptivity is the decision when to refine h and when to increase p. If δ is close to

zero, h refinements will be favored and for δ close to one, p refinements will be favored.

This means that the hp-adaptivity deteriorates to an h- or p-adaptive scheme, with

only algebraic convergence. The parameter study displayed in Figure 3.9 indicates that

the best convergence rate is obtained for δ = 0.5.
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(a) Mesh nr. 10, h-adaptive

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

(b) Mesh nr. 31, h-adaptive
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(c) Mesh nr. 10, hp-adaptive
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(d) Mesh nr. 41, hp-adaptive

Figure 3.6: Different meshes generated by the h- and hp-adaptive algorithm with a

maximum of three hanging nodes and polynomial difference of one for the

elliptic obstacle problem
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Figure 3.7: Identified contact set by discrete solution for different h- and p-uniform

meshes for the elliptic obstacle problem
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3.5 Numerical Experiments
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Figure 3.8: Influence of ε and σe on error and indicator for hp-adaptivity for the elliptic

obstacle problem
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3 Elliptic Obstacle Problems

0 5 10 15 20 25 30 35 40 45 50 55
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

(Degrees of Freedom)
(1/3)

E
rr

o
r

 

 

Energynorm, δ=0.1

Energynorm, δ=0.2

Energynorm, δ=0.3

Energynorm, δ=0.4

Energynorm, δ=0.5

Energynorm, δ=0.6

Energynorm, δ=0.7

Energynorm, δ=0.8

Energynorm, δ=0.9

Figure 3.9: Influence of δ on the hp-adaptivity for the elliptic obstacle problem
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4 Parabolic Obstacle Problems

Over the last decades, options became an important feature of the financial markets. In

2010 over 3.899 billion option contracts were traded with a total amount of 1.2 trillion

US dollars as reported by the Options Industry Council on January the 3rd 2011. This is

the eighth year in a row in which the trading volume has increased. Most of the traded

options are of American type [79, 46] which allows the holder to exercise his right at

any time prior to maturity. Within the Black-Scholes model [6] the ”fair” price of an

American put basket option is the solution of a parabolic obstacle problem similar to

(4.1). It is therefore indispensable to find solution procedures which are both efficient

and accurate.

4.1 Weak Formulations for Parabolic Obstacle Problems

Let I = (0, T ) be the time interval and Ω ⊂ Rd the open, bounded, polygonal space

domain with boundary ∂Ω. For given volume data f ∈ L2(I;H−1(Ω)), Dirichlet data

gD := GD|∂Ω ∈ L2(I;H
1
2 (∂Ω)) with ∂GD

∂t ∈ L2(I;H−1(Ω)), obstacle χ ∈ L2(I;H1(Ω)),

convection coefficient ~γ with χ|∂Ω = gD, ~γ ∈ Rd for simplicity, and initial data u0 ∈
L2(Ω). The parabolic obstacle problem is to find a function u such that

u̇−∆u+ ~γ · ∇u+ u ≥ f in Ω× I (4.1a)

u = gD on ∂Ω× I (4.1b)

u ≥ χ in Ω× I (4.1c)

u(0) = u0 in Ω. (4.1d)

The first time derivative is abbreviated by v̇ := ∂v
∂t and u(0) is an abbreviation for

u(·, 0). As in the elliptic case of Chapter 3 there exists a weak formulation based on

a variational inequality approach and one based on a mixed method. Contrary to the

contact problem in Chapter 5 this problem is not equivalent to a constraint minimization

problem since the differential operator is not symmetric. For the mixed method let

L+ :=

{
µ ∈ L2(I;H−1(Ω)) :

∫
I
〈v, µ〉 dt ≤ 0 for v ∈ L2(I;H1

0 (Ω)), v ≤ 0

}
(4.2)

be the convex Lagrange multiplier set with L2(I;H−1(Ω)) the dual space to L2(I;H1
0 (Ω))

[78, Chapter 23.2-23.3]. Then, the corresponding variational mixed formulation is to
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4 Parabolic Obstacle Problems

find (u, λ) ∈W 1
2 (I;H1(Ω), L2(Ω))× L+ such that u|∂Ω = gD and

B(u, v)−
∫
I
〈v, λ〉 dt =

∫
I
〈f, v〉 dt ∀ v ∈ L2(I;H1

0 (Ω)) (4.3a)∫
I
〈u, µ− λ〉 dt ≥

∫
I
〈χ, µ− λ〉 dt ∀ µ ∈ L+ (4.3b)

〈u(0), v〉 = 〈u0, v〉 ∀ v ∈ L2(Ω) (4.3c)

with the bilinear form

B(u, v) :=

∫
I
〈u̇+ ~γ · ∇u+ u, v〉+ 〈∇u,∇v〉 dt. (4.4)

Here W 1
2 (I;H1(Ω), L2(Ω)) :=

{
u ∈ L2(I;H1(Ω)) : u̇ ∈ L2(I;H−1(Ω))

}
is a Sobolev

space with the notation taken from [78, Chapter 23.6] and 〈·, ·〉 the duality pair-

ing or simply the L2-inner product for L2-functions. In particular, the embedding

W 1
2 (I;H1(Ω), L2(Ω)) ⊆ C(Ī , L2(Ω)) is continuous, i.e. u ∈ C(Ī , L2(Ω)).

Lemma 4.1. Any solution of (4.1) is a solution of (4.3). The converse holds in a

distributional sense.

Proof. Follows from Lemma 4.2 and Theorem 4.1.

For an alternative weak formulation without a Lagrange multiplier which is based on a

variational inequality let

K :=
{
v ∈ L2(I;H1(Ω)) : v ≥ χ a.e. in Ω× I, v|∂Ω = gD

}
(4.5)

be the convex cone of admissible functions. Then, the variational inequality formulation

is to find u ∈W 1
2 (I;H1(Ω), L2(Ω)) ∩K such that

B(u, v − u) ≥
∫
I
〈f, v − u〉 dt ∀ v ∈ K (4.6a)

〈u(0), v〉 = 〈u0, v〉 ∀ v ∈ L2(Ω). (4.6b)

Lemma 4.2. Any solution of (4.1) is a solution of (4.6). The converse holds in a

distributional sense.

Proof. (4.1) ⇒ (4.6) : From (4.1b)-(4.1c) follows u ∈ K and (4.1d) implies (4.6b).

Testing (4.1a) with v − u ∈ K and integrating by parts in space yields (4.6a).

(4.1) ⇐ (4.6) : From u ∈ K follows (4.1b)-(4.1c) and (4.6b) implies (4.1d). Partial

integration of (4.6a) in a distributional sense yields with v = w + u, w(t) ∈ C∞0 (Ω)

0 ≤
∫
I

∫
Ω

(u̇−∆u+ ~γ · ∇u+ u− f)w dx

and with w ≥ 0, i.e. v ≥ u ≥ χ⇒ v ∈ K, follows (4.1a).
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4.1 Weak Formulations for Parabolic Obstacle Problems

4.1.1 Existence and Uniqueness of a Weak Solution

To proof existence and uniqueness of a weak solution, the following coercivity result for

the bilinear form B(·, ·) is required.

Lemma 4.3. There exists a constant α > 0 such that for all v ∈W 1
2 (I;H1

0 (Ω), L2(Ω))

there holds

B(v, v) ≥ α ‖v‖2L2(I;H1
0 (Ω)) +

1

2
‖v(T )‖2L2(Ω) −

1

2
‖v(0)‖2L2(Ω) . (4.7)

Proof. Using Green’s formula, it is well known that for v ∈ H1
0 (Ω)∫

Ω
~γv · ∇v dx =

1

2

∫
Ω
~γ · ∇(v2) dx =

1

2

∫
∂Ω
n · ~γv2 ds = 0

and therewith

〈~γ · ∇v + v, v〉+ 〈∇v,∇v〉 ≥ α ‖v‖2H1
0 (Ω)

with α = 1. Now, partial integration in time of the first term in B(·, ·) yields the

assertion.

Lemma 4.4. The bilinear form −
∫
I 〈v, µ〉 dt is continuous and satisfies the inf-sup

condition with unity constant.

Proof. The norm of the dual space is given by

‖µ‖L2(I;H−1(Ω)) = sup
0 6=v∈L2(I;H1

0 (Ω))

∫
I 〈v, µ〉 dt

‖v‖L2(I;H1
0 (Ω))

.

Hence, the continuity condition∣∣∣∣−∫
I
〈v, µ〉 dt

∣∣∣∣ ≤ ‖v‖L2(I;H1
0 (Ω))‖µ‖L2(I;H−1(Ω))

and the inf-sup condition

inf
06=µ∈L+

sup
06=−v∈L2(I;H1

0 (Ω))

−
∫
I 〈−v, µ〉 dt

‖ − v‖L2(I;H1(Ω))‖µ‖L2(I;H−1(Ω))
= 1

are satisfied where the supremum is taken over −v due to the sign condition of L+.

Theorem 4.1. The problems (4.3) and (4.6) are equivalent.

Proof. Only the equivalence of (4.3a)-(4.3b) to (4.6a) must be shown.

”(4.3) ⇒ (4.6)”: Choosing µ = 0, µ = 2λ respectively, in (4.3b) yields∫
I
〈u− χ, λ〉 dt = 0 and

∫
I
〈u− χ, µ〉 dt ≥ 0 ∀µ ∈ L+. (4.8)
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4 Parabolic Obstacle Problems

Assume there were to exist a Lebesgue measurable set O− ⊆ Ω × I in which u < χ.

Choosing µ = 1O− ∈ L+ which is one in O− and zero elsewhere yields∫
I
〈u− χ, 1O−〉 dt =

∫
O−

u− χ dx dt < 0

which is a contradiction to (4.8). Hence, u ∈ W 1
2 (I;H1(Ω), L2(Ω)) ∩ K. Choosing

v = w − u in (4.3a) with w ∈ K and using that∫
I
〈w − u, λ〉 dt =

∫
I
〈w − χ, λ〉 dt ≥ 0 (4.9)

by (4.8), yields the variational inequality (4.6a) exploiting λ ∈ L+ and w ∈ K.

”(4.3) ⇐ (4.6)”: Firstly, define the residual Res ∈ L2(I;H−1(Ω)) of (4.6a) by∫
I
〈Res, v〉 dt := B(u, v)−

∫
I
〈f, v〉 dt ∀ v ∈ L2(I;H1

0 (Ω)). (4.10)

Hence, with u solving (4.6a) there holds additionally: Find u ∈ W 1
2 (I;H1(Ω), L2(Ω))

s.t. u|∂Ω = gD and

B(u,w)−
∫
I
〈Res,w〉 dt =

∫
I
〈f, w〉 dt ∀ w ∈ L2(I;H1

0 (Ω))

and also by (4.6a) ∫
I
〈Res, v − u〉 dt ≥ 0 ∀ v ∈ K. (4.11)

Choosing v = χ and v = 2u− χ yields∫
I
〈Res, u− χ〉 dt ≤ 0,

∫
I
〈Res, u− χ〉 dt ≥ 0 ⇒

∫
I
〈u− χ,Res〉 dt = 0.

Recall that u ∈ K then for µ ∈ L+,
∫
I 〈u− χ, µ〉 dt ≥ 0. In conjunction with the above

result this yields (4.3b). Choosing v = w + u with w ≥ 0 in (4.11) yields Res ∈ L+

which completes the proof.

Lemma 4.5. If u is the unique solution of (4.6) then there exists a λ ∈ L+ such that

(u, λ) is the unique solution of (4.3).

Proof. Let u be the unique solution of (4.6) then by Theorem 4.1 there exists a λ such

that (u, λ) is a solution of (4.3). Also, by this theorem u is the unique solution for the

mixed formulation. Now, assume there were to exists λ1 and λ2 such that both (u, λ1)

and (u, λ2) were solutions to (4.3). Then, equation (4.3a) yields∫
I
〈v, λ1 − λ2〉 dt = 0 ∀ v ∈ L2(I;H1

0 (Ω)),

which using the definition of the dual norm directly yields ‖λ1 − λ2‖L2(I;H−1(Ω)) = 0.
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4.1 Weak Formulations for Parabolic Obstacle Problems

With the equivalence and coercivity result, the following existence and uniqueness result

can be proven.

Theorem 4.2. There exists exactly one solution to the problems (4.3) and (4.6).

Proof. By Theorem 4.1 and Lemma 4.5 only the uniqueness and existence of a solution

u to (4.6) must be proven.

Assume u1 ∈ K and u2 ∈ K were two solutions to (4.6). Then their difference δ :=

u1 − u2 ∈W 1
2 (I;H1

0 (Ω), L2(Ω)) satisfies

α ‖δ‖2L2(I;H1
0 (Ω)) +

1

2
‖δ(T )‖2L2(Ω) −

1

2
‖δ(0)‖2L2(Ω) ≤ B(δ, δ) ≤ 0

by adding (4.6a) with v1 = u2, v2 = u1, and by employing Lemma 4.3. Since u1 and u2

satisfy the same initial condition (4.6b), i.e. ‖δ(0)‖2L2(Ω) = 0, this provides uniqueness.

The proof of existence is based on a finite difference approximation in time similar to

[39] yet without a Yosida-Moreau approximation of the complementarity condition for

the Lagrange multiplier. First, decompose u = ũ+ uD with ũ ∈ W 1
2 (I;H1

0 (Ω), L2(Ω)),

ũ(0) = 0 and a Dirichlet lift uD ∈W 1
2 (I;H1(Ω), L2(Ω)), s.t. uD|∂Ω = gD and∫

I
〈u̇D + uD, v〉+ 〈∇uD,∇v〉 dt = 0 ∀v ∈ L2(I;H1

0 (Ω)) (4.12a)

〈uD(0), v〉 = 〈u0, v〉 ∀v ∈ L2(Ω). (4.12b)

The existence of such a uD is well known, and follows directly from the extension

operator mapping from H
1
2 (∂Ω) to H1(Ω) and the solvability of the heat equation. Let

for a fixed time t

K(t) =
{
v ∈ H1

0 (Ω) : v ≥ χ(t)− uD(t) a.e. in Ω
}

be the new time dependent, convex cone of admissible functions consisting of time

independent functions, and set for n ∈ N

∆t =
T

n
, tj = j∆t, ũ0 = 0,

〈
f j , v

〉
=

〈
1

∆t

∫ tj

tj−1

f(t)− ~γ · ∇uD(t) dt, v

〉
. (4.13)

Then, due to (4.6a) the finite difference problem is to find ũj ∈ K(tj) (1 ≤ j ≤ n) such

that 〈
ũj − ũj−1

∆t
, v − ũj

〉
+ a(ũj , v − ũj) ≥

〈
f j , v − ũj

〉
∀v ∈ K(tj) (4.14)

with the H1
0 (Ω)-coercive and H1(Ω)-continuous bilinear form

a(u, v) := 〈~γ · ∇u+ u, v〉+ 〈∇u,∇v〉 .

Stampacchia and Kinderlehrer [45, Theorem 2.1] provide the unique existence of ũj

since K(tj) is a nonempty, closed, convex subset of H1
0 (Ω) due to the assumption of

χ|∂Ω = gD = uD|∂Ω. Multiplying equation (4.14) with (−1) and adding a zero yields〈
ũj − ũj−1

∆t
, ũj − v

〉
+ a(ũj − v + v, ũj − v) ≤

〈
f j , ũj − v

〉
.
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4 Parabolic Obstacle Problems

Then, the same arguments as in [39, p. 421] immediately imply

1

2∆t

(∥∥ũj − v∥∥2

L2(Ω)
−
∥∥ũj−1 − v

∥∥2

L2(Ω)
+
∥∥ũj − ũj−1

∥∥2

L2(Ω)

)
+ α

∥∥ũj − v∥∥2

H1(Ω)

≤ Ca ‖v‖H1(Ω)

∥∥ũj − v∥∥
H1(Ω)

+
∥∥f j∥∥

H−1(Ω)

∥∥ũj − v∥∥
H1(Ω)

(4.15)

where α, Ca are the ellipticity and continuity constants of a(·, ·). Multiplying this

inequality with 2∆t, applying Young’s inequality ab ≤ α
2 a

2 + 1
2αb

2, and summing from

1 to k ≤ n yields

∥∥∥ũk − v∥∥∥2

L2(Ω)
+

k∑
j=1

(∥∥ũj − ũj−1
∥∥2

L2(Ω)
+ α∆t

∥∥ũj − v∥∥2

H1(Ω)

)
≤
∥∥ũ0 − v

∥∥2

L2(Ω)

+
k∑
j=1

∆t

α

(∥∥f j∥∥2

H−1(Ω)
+ C2

a ‖v‖2H1(Ω)

)
.

(4.16)

Due to v independent of time, Fubini and Cauchy-Schwarz inequality there holds

‖f j‖2H−1(Ω) :=

(
sup

v∈H1
0 (Ω)\{0}

〈
f j , v

〉
‖v‖H1(Ω)

)2

=

 sup
v∈H1

0 (Ω)\{0}

〈
(∆t)−1

∫ tj
tj−1 f̃ dt, v

〉
‖v‖H1(Ω)

2

=

(∆t)−1

∫ tj

tj−1

sup
v∈H1

0 (Ω)\{0}

〈
f̃ , v
〉

‖v‖H1(Ω)

dt

2

= (∆t)−2

(∫ tj

tj−1

1 ·
∥∥∥f̃∥∥∥

H−1(Ω)
dt

)2

≤ (∆t)−1

∫ tj

tj−1

∥∥∥f̃∥∥∥2

H−1(Ω)
dt

with f̃(t) := f(t)− ~γ · ∇uD(t). Since v ∈ H1(Ω) is arbitrary and
∑k

j=1
∆t
α = T

α
k
n ≤ T

α ,

the right hand side in (4.16) is bounded independently of ∆t by

‖f − ~γ · ∇uD‖2L2(I;H−1(Ω)) +
TC2

a

α
‖v‖2H1(Ω) <∞.

Moreover,

ũ
(1)
∆t = ũj +

t− tj
∆t

(
ũj+1 − ũj

)
on
(
tj , tj+1

]
is bounded in W 1

2 (I;H1
0 (Ω), L2(Ω)) independently of ∆t. Hence, the Aubin lemma

[21, 55] yields the existence of a subsequence which converges to some ũ weakly in

W 1
2 (I;H1

0 (Ω), L2(Ω)) and strongly in L2(I;L2(Ω)). Furthermore, the sequence

ũ
(2)
∆t = ũj+1 on

(
tj , tj+1

]
has a subsequences which converges to the same limit ũ weakly in L2(I;H1(Ω)) and

strongly in L2(I;L2(Ω)) since by (4.16)∫
I

∥∥∥ũ(1)
∆t − ũ

(2)
∆t

∥∥∥2

L2(Ω)
dt =

∆t

3

n−1∑
j=0

∥∥ũj − ũj+1
∥∥2

L2(Ω)
≤ C∆t

3
→ 0.
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Since the functional v 7→
∫
I a(v, v) dt is convex and continuous in L2(I;H1

0 (Ω)), it is

sequentially weakly lower semicontinuous. Then, with (4.14) it follows that the limit

ũ(t) ∈ K(t) satisfies∫
I

〈
˙̃u, v − ũ

〉
+ a(ũ, v − ũ) dt ≥

∫
I
〈f(t)− ~γ · ∇uD, v − ũ〉 dt ∀ v(t) ∈ K(t) (4.17a)

〈ũ(0), v〉 = 0 ∀ v ∈ L2(Ω). (4.17b)

Together with the Dirichlet lift uD, this yields the existence of u solving (4.6) since

adding (4.12b) with (4.17b) yields (4.6b), and adding (4.17a) with (4.12a) yields

B(ũ+ uD, v − ũ) ≥
∫
I
〈f, v − ũ〉 dt ∀ v(t) ∈ K(t).

Adding the zero uD − uD in the test function and using that ũ(t) ∈ K(t) for almost

every t ∈ I implies that u = ũ+ uD ∈ K, then this yields (4.6a).

4.2 hp-TDG/IPDG Discretization for Parabolic Obstacle

Problem

Seeking the discrete Lagrange multiplier Λ in a convex set spanned by basis functions

which are globally biorthogonal to the basis functions of the discrete primal variable U

allows again the componentwise decoupling of the inequality constraints in the mixed

method. Hence, the discretization method from the elliptic case of Chapter 3 is extended

to the current parabolic case. Let T shp be a subdivision of Ω into non-overlapping

rectangulars in 2D, and cubes in 3D, respectively, enhanced by a polynomial degree

distribution. Analogously, T thp is a 1D mesh with a polynomial degree distribution for

the time interval I. From T thp a decomposition of Ī = [0, T ] is obtained such that

Ī =
⋃N
n=1 Īn with In = (tn−1, tn). For the time discontinuous Galerkin (TDG) method,

a notation for the one-sided limits to and jump across the time interval interface is

required.

vn+ := lim
0<s→0

v(tn + s), vn− := lim
0>s→0

v(tn + s), [vn] := vn+ − vn−

For the spatial part the interior penalty discontinuous Galerkin (IPDG) method is

reused with the same notations. For the primal variable, let

Vhp :=
{
v ∈ L2(Ω) : v|K ∈ PpK (K) ∀K ∈ T shp

}
= span {φj}dimVhp

j=1 ,

Pqn(In) :=

{
v : In → Vhp : v(t) =

qn∑
i=0

viϑi(t), vi ∈ Vhp
}

where φj are affinely transformed Gauss-Lobatto-Lagrange basis functions defined on a

reference square/cube which are constructed by a tensor product of 1D functions. The

basis functions in time ϑj are also affinely transformed Gauss-Lobatto-Lagrange basis

functions, yet on the interval In. The space Vhp may change from one time strip to the

next and, therefore, it can take moving singularities into account.
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4 Parabolic Obstacle Problems

4.2.1 FE Discontinuous Galerkin Discretization for Mixed Formulation

The discrete Lagrange multiplier is sought in

Qqn(In) :=

{
µ : In →Mhp : µ(t) =

∑qn
i=0 µiζi(t), µi ∈Mhp,∫

In
〈µ, v〉 dt ≤ 0 for vi,j ≤ 0, v =

∑dimVhp
i=1

∑qn
j=0 vi,jφiϑj ∈ Pqn(In)

}
.

Furthermore, Mhp is the dual space of Vhp spanned by biorthogonal basis functions ψj ,

i.e. ∫
Ω
ψjφi dx = δij

∫
Ω
φi dx, 1 ≤ i, j ≤ dimVhp.

Analogously, ζj are time basis functions biorthogonal to ϑj . In particular, the Lagrange

multiplier Λ inherits the same mesh and polynomial degree distribution from its primal

variable U .

Lemma 4.6. There holds for the integral value of the primal and dual basis functions∫
Ω ψi dx =

∫
Ω φi dx =: Ds

i > 0 and
∫
In
ζj dx =

∫
In
ϑj dx =: Dt

j > 0.

Proof. Follows from the biorthogonality relationship, a partition of unity and the same

arguments as in Lemma 5.11.

Lemma 4.7. The primal and dual basis functions span the same set, i.e.

span {φj}dimVhp
j=1 = span {ψj}dimVhp

j=1 , span {ϑj}qnj=0 = span {ζj}qnj=0 .

Proof. From [52, Equation 2.6] the local basis functions of the one type can be written

as a linear combination of the local basis function of the other type. In particular,

functions in Pqn(In) and Qqn(In) are piecewise polynomials and discontinuous. Since

the affinely transformed local basis functions are extended discontinuously by zero to

obtain the global basis function, the assertion follows trivially.

Hence, the discrete mixed DG method is: For 1 ≤ n ≤ N , let Un−1
− be known, find

U = U |In ∈ Pqn(In) and Λ = Λ|In ∈ Qqn(In) such that

∫
In

〈U̇ , v〉+ aε(U, v) + b~γ(U, v)− 〈v,Λ〉 dt+
〈[
Un−1

]
, vn−1

+

〉
=

∫
In

Fε(v) dt ∀v ∈ Pqn(In)

(4.18a)∫
In

〈U, µ− Λ〉 dt ≥
∫
In

〈χ, µ− Λ〉 dt ∀µ ∈ Qqn(In) (4.18b)
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with the bilinear, linear forms,

aε(u, v) :=
∑
E∈Eh

∫
E
∇u∇v+uv dx+

∑
e∈Γh∪ΓD

∫
e
−
{
∂u

∂ne

}
[v]+ε

{
∂v

∂ne

}
[u]+

σep
2
e

|e|β [u] [v] ds

(4.19)

b~γ(u, v) := −
∑
E∈Eh

∫
E
~γu · ∇v dx+

∑
e∈Γh

∫
e
~γ · neuup [v] ds (4.20)

Fε(v) :=

∫
Ω
fv dx+

∑
e∈ΓD

∫
e

(
ε
∂v

∂ne
+

(
σep

2
e

|e|β − ~γ · ne
)
v

)
gD ds, (4.21)

respectively. Here, U0
− is an approximation of u0. The choice of the parameter ε ∈

{−1, 0, 1} determines which particular IPDG method is used, e.g. for ε = 1 and σe = 1

it is called the non-symmetric interior penalty Galerkin (NIPG) method and for ε = 0

incomplete interior penalty Galerkin (IIPG), c.f. [67, 66] among others. The penalty pa-

rameter σe is always non-negative but may vary for different edges [68]. The exponent β

is a positive constant depending on the dimension d of Ω such that β(d− 1) ≥ 1 and pe
is the maximum of the two polynomial degrees on the edge e. Recall from Chapter 3

the mesh dependent norm

||v||21,hp :=
∑
E∈Eh

∫
E
(∇v)2 + v2 dx+

∑
e∈Γh∪ΓD

∫
e

σep
2
e

|e|β [v]2 ds, ‖v‖2L2(In;1,hp) :=

∫
In

‖v‖21,hp dt.

Lemma 4.8. If σe is sufficiently large, then there exists a constant α > 0 such that for

all v ∈ Pqn(In)∫
In

〈v̇, v〉+aε(v, v)+b~γ(v, v) dt+
〈
vn−1

+ , vn−1
+

〉
≥α ‖v‖2L2(In;1,hp)+

1

2

∥∥vn−∥∥2

L2(Ω)
+

1

2

∥∥vn−1
+

∥∥2

L2 .

(4.22)

Proof. By [66, p. 38 and p. 99] aε(v, v) ≥ α‖v‖21,hp and b~γ(v, v) ≥ 0. Partial integration

in time yields the assertion.

In the following, σe is always assumed to be sufficiently large such that Lemma 4.8 can

be applied.

Theorem 4.3. There exists exactly one solution to the discrete problem (4.18).

Proof. Uniqueness: Assume there were to exist two different solutions (u1, λ1) 6=
(u2, λ2). Then their difference u1|In − u2|In =: w ∈ Pqn(In) and λ1|In − λ2|In =: δ

satisfy the equation∫
In

〈ẇ, v〉+ aε(w, v) + b~γ(w, v)− 〈v, δ〉 dt+
〈[
wn−1

]
, vn−1

+

〉
= 0 ∀v ∈ Pqn(In).

(4.23)
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Choosing v = w and using the coercivity of Lemma 4.8 yields

α ‖w‖2L2(In;1,hp) +
1

2

∥∥wn−∥∥2

L2(Ω)
+

1

2

∥∥wn−1
+

∥∥2

L2(Ω)
−
〈
wn−1
− , wn−1

+

〉
−
∫
In

〈w, δ〉 dt ≤ 0.

(4.24)

By choosing µ1 = λ2 and µ2 = λ1 in (4.18b) and adding these inequalities, the last

term in the above equation is bounded by∫
In

〈u1 − u2, λ1 − λ2〉 dt ≤ 0. (4.25)

Hence, if wn−1
− = 0, i.e. u1 and u2 have the same initial condition, then u1 = u2. This

trivially holds for n = 1 and by induction for all 1 ≤ n ≤ N . Consequently, (4.23)

implies with the biorthogonality of the basis functions

0 =

∫
In

〈v, δ〉 dt =
∑
i,j

δi,jvi,jD
s
iD

t
j (4.26)

with Ds
i :=

∫
Ω φi dx, Dt

j :=
∫
In
ϑj dt. From Ds

iD
t
j > 0 (c.f. Lemma 4.6) and v arbitrary,

i.e. vi,j arbitrary, follows immediately δi,j = 0, i.e. δ = 0 ⇒ λ1 = λ2. This contradicts

the assumption of (u1, λ1) 6= (u2, λ2) being two different solutions to (4.18).

Existence: Due to Lemma 4.7, it is well known that the problem (4.18b) can be written

as the projection equation [51]

λ = PQqn (In) (λ+ r(χ− u)) (4.27)

where PQqn (In) is the L2-projection operator mapping onto Qqn(In) and r > 0 is an

arbitrary constant. For any given λ, the remaining problem of determining u(λ) reduces

to solving a system of linear equations. By Lemma 4.8, the real part of the system

matrix’s eigenvalues are positive and thus provides a corresponding unique u(λ). Hence,

the solution sequence of an Uzawa iteration is fully described by the fixed point iteration

λ(k+1) = Tλ(k) using the mapping

T : Qqn(In)→ Qqn(In)

λ 7→ PQqn (In) (λ+ r(χ− u)) .

If T is a contraction, then by the Banach fixed point theorem there exist a λ which satis-

fies (4.27) and, hence, also a corresponding u solving (4.18). For the ease of presentation

denote δλ = λ1 − λ2, δu = u1 − u2 and ‖·‖ = ‖·‖L2(In;L2(Ω)).

‖Tλ1−Tλ2‖2 =
∥∥PQqn (In) (λ1 + r(χ− u1))− PQqn (In) (λ2 + r(χ− u2))

∥∥2

≤ ‖δλ− rδu‖2

= ‖δλ‖2 − 2r

∫
In

〈δλ, δu〉 dt+ r2 ‖δu‖2

= ‖δλ‖2−2r

[∫
In

〈
˙δu, δu

〉
+aε(δu, δu)+b~γ(δu, δu)dt+

〈
δun−1

+ , δun−1
+

〉]
+r2‖δu‖2

≤ ‖δλ‖2 − 2αr ‖δu‖2 + r2 ‖δu‖2

= ‖δλ‖2 (1− 2αrγ2 + r2γ2)

48
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with γ =
‖δu‖L2(In;L2(Ω))

‖δλ‖L2(In;L2(Ω))
. The second line is the standard projection result, the fourth

line results form (4.23) and the same initial condition, and the fifth line from Lemma 4.8.

Hence, for 0 < r < 2α, T is a strict contraction which completes the proof.

The use of biorthogonal basis functions allows the componentwise decoupling of the

above variational inequality constraint (4.18b) which is a key element of this approach

and allows the application of a semi-smooth Newton solver to an equivalent discrete

problem.

Theorem 4.4. The condition (4.18b) is equivalent to the system

ui,j ≥ gi,j :=
1

Ds
iD

t
j

∫
In

∫
Ω
χψi(x)ζj(t) dx dt (4.28a)

λi,j ≥ 0 (4.28b)

λi,j (ui,j − gi,j) = 0 (4.28c)

for 1 ≤ i ≤ dimVhp and 0 ≤ j ≤ qn. Here, ui,j and λi,j are the expansion coefficients

of U and Λ, respectively.

Proof. This proof follows the idea of the proof of [37, Lemma 2.6] generalized to a higher

order approach and to higher dimensional problems with tensor product structure.

Every function v ∈ Pqn(In) can be written in its linear combination

v =
∑
i,j

vi,jφi(x)ϑj(t).

Next, write µ and λ ∈ Qqn(In) as linear combinations of ψi(x)ζj(t), i.e.

µ =
∑
i,j

µi,jψi(x)ζj(t), λ =
∑
i,j

λi,jψi(x)ζj(t).

Due to the biorthogonality of the employed basis functions, there holds for all v ∈
Pqn(In) with vi,j ≤ 0 ∫

In

∫
Ω
µv dx dt =

∑
i,j

µi,jvi,jD
s
iD

t
j ≤ 0 (4.29)

since µ ∈ Qqn(In). With vi,j ≤ 0 arbitrary and Ds
i , D

t
j positive by Lemma 4.6, equation

(4.29) yields

µi,jvi,j ≤ 0, vi,j ≤ 0 ⇒ µi,j ≥ 0 ∀ i, j.

Hence, λ ∈ Qqn(In) implies (4.28b). Inserting the linear combinations of µ and λ into

(4.18b) yields by the biorthogonality and µ arbitrary after dividing by the positive

factor Ds
iD

t
j :

Find λi,j ≥ 0 : ui,j (µi,j − λi,j) ≥ gi,j (µi,j − λi,j) ∀µi,j ≥ 0 ∀i, j. (4.30)
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Choosing µi,j = λi,j + ηi,j > 0 with ηi,j > 0 in (4.30) yields (4.28a). Equation (4.28c)

is obtained by choosing µi,j = 0 and µi,j = 2λi,j .

For the opposite direction, multiplying (4.28a) with µi,j ≥ 0 and adding the zero (4.28c)

to the right hand side yields (4.30). Summing over all i, j and exploiting the biorthog-

onality yields (4.18b).

4.2.2 FE Discontinuous Galerkin Discretization of VI Formulation

As on the continuous level, there exists a discrete variational formulation which is

equivalent to the discrete mixed formulation. This equivalence is exploited to construct

an a posteriori error estimator for the mixed method via the variational inequality

approach. Instead of a discrete weak non-penetration condition the discrete solution

now satisfies a discrete strong non-penetration condition. More precisely,

Kqn(In) := {v ∈ Pqn(In) : vij ≥ χij} (4.31)

is the convex cone of admissible functions where χij are one sided box constraints on

the solution coefficients. Then, the discrete variational inequality problem is:

For 1 ≤ n ≤ N , let Un−1
− be known, find U = U |In ∈ Kqn(In) such that∫

In

〈U̇ , v − U〉+ aε(U, v − U) + b~γ(U, v − U) dt+

+
〈[
Un−1

]
, (v − U)n−1

+

〉
≥
∫
In

Fε(v − U) dt ∀ v ∈ Kqn(In)

(4.32)

where U0
− is an approximation of u0.

Theorem 4.5. There exists exactly one solution to the discrete variational inequality

formulation (4.32).

Proof. It is well known [25, 33] that solving (4.32) is equivalent to solving the system

of projection equations

x = PΘ (x− r(Ax+ q)) =: Tx, r > 0 (4.33)

with x the coefficient vector to U and PΘ the closest point projection onto Θ which is

the feasible set of coefficient vectors corresponding to Kqn(In). Here, A is the system

matrix and −q the known right hand side of (4.32) consisting of the volume term and the

known contribution of the time jump. Denote δx = x1−x2, 0 < γ̄ := λmax(ATA) <∞,

ᾱ := αλmin(M) > 0 with M the global, symmetric space-time mass matrix, then

‖Tx1 − Tx2‖22 = ‖PΘ (x1 − r(Ax1 + q))− PΘ (x2 − r(Ax2 + q))‖22
≤ ‖δx − rAδx‖22
= ‖δx‖22 − rδTxAδx − rδTxAT δx + r2δTxA

TAδx

= ‖δx‖22 − 2rδTxAδx + r2δTxA
TAδx

≤ ‖δx‖22 (1− 2rᾱ+ r2γ̄).
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A is positive definite and finite dimensional. Therefore, the Rayleigh quotient implies

δTxA
TAδx ≤ γ̄δTx δx. Unfortunately, the Rayleigh quotient cannot directly be applied to

the middle term since A is not symmetric. However, abbreviating the whole bilinear

form in Lemma 4.8 by a(·, ·) there holds

δTxAδx = a(u1 − u2, u1 − u2) ≥ α ‖u1 − u2‖2L2(In;L2(Ω)) = αδTxMδx ≥ αλmin(M)δTx δx.

Hence, for 0 < r < 2 ᾱ
γ̄2 the function T is a strict contraction and Banach’s fixed point

theorem yields the unique existence of a solution to (4.33) and therewith to (4.32).

Theorem 4.6. The discrete problems (4.18) and (4.32) are equivalent if χi,j = gi,j of

Theorem 4.4.

Proof. Let (u, λ) solve (4.18). Then Theorem 4.4 implies ui,j ≥ gi,j , i.e. u ∈ Kqn(In).

Furthermore, the biorthogonality and Theorem 4.4 yield for all w ∈ Kqn(In)

−
∫
In

〈w − u, λ〉 dt = −
∑
i,j

(wi,j − ui,j)λi,jDs
iD

t
j = −

∑
i,j

(wi,j − gi,j)λi,jDs
iD

t
j ≤ 0.

Hence, choosing v = w − u with w ∈ Kqn(In) in (4.18) yields (4.32).

For the opposite direction let u ∈ Kqn(In) solve (4.32), i.e. ui,j ≥ gi,j . Define the

Lagrange multiplier by λ =
∑

i,j λi,jψi(x)ζj(t) with

λi,j =

∫
In
〈u̇, φiϑj〉+ aε(u, φiϑj) + b~γ(u, φiϑj)− Fε(φiϑj) dt+

〈[
un−1

]
, (φiϑj)

n−1
+

〉
Ds
iD

t
j

,

(4.34)

i.e.
∫
In
〈λ, v〉 dt is the residual of the discrete variational inequality for all v ∈ Pqn(In).

Choosing v = u+ φiϑj , i.e. v ∈ Kqn(In), in (4.32) yields

0 ≤
∫
In

〈u̇, φiϑj〉+ aε(u, φiϑj) + b~γ(u, φiϑj)− Fε(φiϑj) dt+
〈[
un−1

]
, (φiϑj)

n−1
+

〉
= λi,jD

s
iD

t
j ⇒ λi,j ≥ 0.

Finally, choose v ∈ Pqn(In) such that vi,j = gi,j and vi,j = 2ui,j−gi,j in (4.32) to obtain

0=
∑
i,j

[∫
In

〈u̇, φiϑj〉+aε(u, φiϑj)+b~γ(u, φiϑj)−Fε(φiϑj)dt+
〈[
un−1

]
, (φiϑj)

n−1
+

〉]
(ui,j−gi,j)

=
∑
i,j

λi,j(ui,j − gi,j)Ds
iD

t
j =

∫
In

〈u− χ, λ〉 dt.

The assertion follows by Theorem 4.4.

Remark 4.1. The problem (4.32) can be solved with Han’s self-adaptive projection

method, in which the projection constant is variable and self-adapting [33].

Proof. Note that there exists a solution to (4.33) and its global system matrix is positive

definite. Then the convergence is given by [33, Theorem 2.4].
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Remark 4.2. Computations for the numerical experiments in Section 4.5 have shown

that the projected SOR method and the active set method of [50] fail to solve (4.32) once

the polynomial degree in time is at least one.

4.2.3 An Algorithm for Solving the Discrete Mixed Formulation

Remark 4.2 and the numerical experiments of Section 4.5 indicate that the variational

formulation approach is impracticable due to the lack of appropriate iterative solvers.

The mixed method however can be solved very efficiently.

Lemma 4.9. The discrete problem (4.18) is equivalent to solving

0
!

= F (~u,~λ) :=

(
A~u−D~λ− ~f

ϕη(~u,~λ)

)
(4.35)

where A~u−D~λ− ~f = 0 is the matrix representation of (4.18a) and ϕη : Rn×Rn → Rn

is the vector-valued penalized Fischer-Burmeister non-linear complementarity function

(NCF) defined by

ϕη(~u,~λ) = η

(
~λ+ (~u− ~g)−

√
~λ2 + (~u− ~g)2

)
+ (1− η) max

{
0, ~λ
}

max {0, ~u− ~g}

with η ∈ (0, 1] and a componentwise understood right hand side.

Proof. By Lemma 2.4, ϕη is a NCF, i.e.

ϕη(~u,~λ) = 0 ⇔ (u− g)i ≥ 0, λi ≥ 0, λi · (u− g)i = 0 (i = 1, . . . , n).

Hence, ϕη(~u,~λ) = 0 is equivalent to (6.10) which in turn is equivalent to (4.18b) by

Theorem 4.4.

Lemma 4.10. The matrix A is (in general) non-symmetric but sparse and all eigen-

values have positive real part if σe is sufficiently large. The matrix D is positive definite

and diagonal. The function ϕµ is strongly semi-smooth and Lipschitzian.

Proof. By Lemma 4.8 all eigenvalues of A have positive real part. The positive defi-

niteness and diagonal property of D follows directly from the biorthogonality and the

use of Gauss-Lobatto-Lagrange basis functions (c.f. Lemma 4.6). By Lemma 2.4, ϕη is

strongly semi-smooth everywhere and with the definition of strongly semi-smoothness

also Lipschitzian.

Remark 4.3. The choice of the NCF significantly influences the properties of the SSN

method to solve (4.35) iteratively [40]. In a 1D case with standard Galerkin in space, the

use of ϕ(u, λ) = λ−max {0, λ− c(u− g)} with c > 0 as studied in [49, 38] realized as a

primal-dual active set strategy was not free of cycling for higher order time polynomials.

Consequently the SSN method failed to solve the above problem.
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The non-linear problem (4.35) can be solved using the following globalized SSN algo-

rithm a realization of Algorithm 2.1. For the globalization, first note that the non-

negative merit function

Ψ(u, λ) :=
1

2
F (u, λ)2 (4.36)

is continuously differentiable and that solving (4.35) is equivalent to finding the min-

imizers of Ψ. Global convergence is ensured by a line search to minimize the smooth

merit function Ψ and, additionally, if the Newton search direction does not satisfy the

descent condition (4.38), the algorithm switches to one globally converging gradient

descent step. This globalization strategy has been introduced and used in [22, 40].

Algorithm 4.1. (Semi-smooth Newton algorithm for parabolic obstacle)

1. Choose initial solution u0, λ0 ∈ Rn, ρ > 0, β ∈ (0, 1), σ ∈ (0, 1
2), p > 2, tol > 0

2. For k = 0, 1, 2, . . . do

a) If
∥∥∇Ψ(uk, λk)

∥∥ < tol or
∥∥Ψ(uk, λk)

∥∥ < tol then stop.

b) Compute subdifferential Hk ∈ ∂F (uk, λk) and find dk =
(
dku, d

k
λ

)
∈ R2n s.t.

Hkd
k = −F (uk, λk). (4.37)

If (4.37) not solvable, or if the descent condition

∇Ψ(uk, λk)dk ≤ −ρ||dk||p (4.38)

is not satisfied, set dk := −∇Ψ(uk, λk).

c) Compute search length tk := max
{
βl : l = 0, 1, 2, . . .

}
s.t.

Ψ(uk + tkd
k
u, λ

k + tkd
k
λ) ≤ Ψ(uk, λk) + σtk∇Ψ(uk, λk)dk.

d) Update the solution vectors and goto step 2.

uk+1 = uk + tkd
k
u, λk+1 = λk + tkd

k
λ

For the implementation, the following subdifferential

Hk =

(
A −D

∂ϕη(uk,λk)
∂u

∂ϕη(uk,λk)
∂λ

)

53



4 Parabolic Obstacle Problems

with

∂ϕη(u, λ)

∂u
=


η , if λ = u− g = 0

η

(
1− u−g√

λ2+(u−g)2

)
+ (1− η)λ , if λ > 0 and u > g

η

(
1− u−g√

λ2+(u−g)2

)
, otherwise

∂ϕη(u, λ)

∂λ
=


η , if λ = u− g = 0

η

(
1− λ√

λ2+(u−g)2

)
+ (1− η) (u− g) , if λ > 0 and u > g

η

(
1− λ√

λ2+(u−g)2

)
, otherwise

has been chosen. Other subdifferentials can be chosen but they only differ in the points

where ϕη is not classically differentiable. Using this subdifferential, the computation of

∇Ψ(uk, λk) = HT
k F (uk, λk) is straightforward [22]. The most expensive part in the SSN

algorithm is the computation of the direction dk. Note that ∂ϕ
∂u and ∂ϕ

∂λ are semi-positive

definite diagonal matrices and that D is a positive definite diagonal matrix. Hence, the

computation of the even sparse Schur complement SD = ∂ϕ
∂u + ∂ϕ

∂λD
−1A of Hk is very

cheap and halves the dimension of the problem.

(4.37)⇔
(
du
dλ

)
=

(
A −D
∂ϕ
∂u

∂ϕ
∂λ

)−1(
−Fu
−Fλ

)
⇔ du = −(SD)−1(Fλ + ∂ϕ

∂λD
−1Fu)

dλ = D−1(Adu + Fu)

A further heuristic possibility to reduce the computational costs is to use a low order

extrapolation strategy of the solution of the previous time interval as an initial solu-

tion. Assuming the solution uhp behaves benign in time in the sense that its jump at

the time interval interface and its higher order time derivatives are small. Then, the

solution of the previous time interval is interpolated in time using a low order poly-

nomial interpolation, e.g. p = 1, and then extrapolated to the current time interval.

The initial solution u0 is the interpolation of the extrapolated function in Pqn(In) as

illustrated in Figure 4.1. Since the discrete λhp does not need to be continuous at the

time interval interface, its jumps can be arbitrarily large. Therefore λ0 = D−1(Au0−f)

is chosen, i.e. the first equation in (4.35) is satisfied. For numerical results see Figure

4.9 in Section 4.5.

Theorem 4.7. The reduced semi-smooth Newton algorithm(
uk+1, λk+1

)T
=
(
uk, λk

)T
−H−1

k F (uk, λk) (4.39)

where Hk is a Clarke subdifferential of F at
(
uk, λk

)T
converges locally Q-quadratic.

Proof. The assertion follows from Theorem 2.1 if F is Lipschitzian, strongly semi-

smooth, CD-regular and a solution for F (u, λ) = 0 exists. The existence of a solution

follows directly from Lemma 4.9 in conjunction with Theorem 4.3. The first part of
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tn−2 tn−1 tn

u∞In−1
∈ P2

u∞In ∈ P3

uexpolIn−1
= u0In

uinpolIn−1
∈ P1

Gauss-Lobatto points (p = 1)

Gauss-Lobatto points (p = 3)

Figure 4.1: An improved initial solution for the SSN method from extrapolation

F is smooth and the second part is strongly semi-smooth by Lemma 4.10. There-

with, simple algebra yields that F is strongly semi-smooth and Lipschitzian. Using the

overestimation

∂CF ⊆
(

A −D
Da Db

)
=: E (4.40)

of Lemma 2.3 where Da and Db are semi-positive definite diagonal matrices such that

Da + Db is positive definite, F is CD-regular if all realizations of E are invertible.

Recall that all eigenvalues of A have positive real part and that D is positive defi-

nite by Lemma 4.10. Let S = Da + DbD
−1A be the Schur complement of E and

assume there exists a vector 0 6= q ∈ Rn such that (Da +DbD
−1A)q = 0, i.e. S has

a zero eigenvalue. Hence, Daq = −DbD
−1Aq which can be written componentwise as

(Da)iiqi = − (Db)ii
(D)ii

(Aq)i and simplified to

qi = − (Db)ii
(Da)ii(D)ii

(Aq)i i ∈ I+ := {i ∈ {1, . . . , n} : (Da)ii > 0} (4.41)

0 = (Aq)i i ∈ IC+ := {1, . . . , n} \ I+ = {i ∈ {1, . . . , n} : (Da)ii = 0} .
(4.42)

Multiplying the first equation with qi yields 0 ≤ q2
i = − (Db)ii

(Da)ii(D)ii
qi(Aq)i ⇒ qi(Aq)i ≤ 0.

The second equation directly yields qi(Aq)i = 0. Summing over all i yields

n∑
i=1

qi(Aq)i = qTAq ≤ 0

which is a contradiction to A having only eigenvalues with positive real part. Hence,

S, and therewith E, are invertible which completes the proof.

Remark 4.4. Using the same arguments as in the proof of existence in Theorem 4.3,

it can be shown that the standard Uzawa algorithm with the componentwise projection

λi,j = max{0, λi,j + r(ui,j − gi,j)} for 1 ≤ i ≤ dimVhp, 0 ≤ j ≤ qn
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converges if the projection constant r > 0 is sufficiently small.

4.3 A Posteriori Error Estimate and hp-Adaptivity

In this section a hierarchical error estimator for the variational inequality formulation

and by Theorem 4.6 also for the mixed method is presented. It is based on the ideas

presented in [26] and in Section 3.3.

Theorem 4.8. Let u ∈W 1
2 (I;H1(Ω), L2(Ω))∩K solve (4.6) and up ∈

∑N
n=1Kqn(In) =:

Khp,kq, up+1 ∈ Khp+1,k,q+1 solve (4.32). If the saturation assumption holds, i.e.

‖u− up+1‖L2(I;1,hp+1) ≤ qS ‖u− up‖L2(I;1,hp) (4.43)

with qS uniformly in (0, 1), then

1

1 + qS
η ≤ ‖u− up‖L2(I;1,hp) ≤

1

1− qS
η (4.44)

with the global error indicator

η := ‖up+1 − up‖L2(I;1,hp) . (4.45)

Proof. As in the proof of Theorem 3.9, the triangle inequality and an estimation of the

mesh dependent norm yields the assertion.

Since the L2(I; 1, hp)-norm is local, the error estimator η can be written as a sum of

local error indicators.

Lemma 4.11. The error indicator η satisfies

η2 =
∑
E∈T shp

∑
In∈T tkq

η2(E, In) (4.46)

with the local error indicators

η2(E, In) =

∫
In

∫
E

(∇(up+1 − up))2 + (up+1 − up)2 dx dt

+
∑

e∈∂E∩Γh

∫
In

∫
e

σep
2
e

2|e|β [up+1 − up]2 ds dt (4.47)

+
∑

e∈∂E∩ΓD

∫
In

∫
e

σep
2
e

|e|β (up+1 − up)2 ds dt.

Proof. Explicitly writing down the norm and separating the jump contributions equally

over the adjacent elements.

Remark 4.5. The finite element space enrichment does not need to be a p-refinement,

but can also be a h-refinement or a combination of both, c.f. Section 3.3.
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Remark 4.6. 1. The additional computation of up+1 is very expensive but the CPU

time can be reduced by using interpolation matrices as in Remark 3.3 for the ellip-

tic case since the FE spaces without the constraints are nested and the constraints

are enforced by the iterative solver itself.

2. It should be analyzed if the computation of up can be replaced by a simple projection

of up+1 into Khp,kq as in [26] for linear BEM.

3. The indicator η estimates the total space-time error and, thus, allows no refine-

ment as the algorithm goes through time. This is not surprising as the TDG

method is a projection method and only the specific choice of time basis function

with support in exactly one time strip allows the total problem to be solved as if it

were a time stepping method like finite difference methods.

Remark 4.7. In case of continuous Galerkin with a finite difference approximation in

time, a residual based error indicated has been derived in [63]. The proof relies on the

Galerkin functional and the H1(Ω)-conformity of u and seems not to be extendable to

IPDG in a straightforward manner.

It remains to decide which space-time element E × In and how it should be refined.

For the numerical experiments in Section 4.5 the following solve-mark-refine algorithm

is used.

Algorithm 4.2. (Solve-mark-refine algorithm for parabolic obstacle)

1. Choose initial discretizations T shp, T tkq and θ ∈ (0, 1), tol ≥ 0

2. For k = 0, 1, 2, . . . do

a) Solve the variational inequality formulation (4.6) on the current mesh using

the mixed method (4.18) with SSN.

b) Compute local error indicators η2(E, In).

c) If
(∑

E,In
η2(E, In)

) 1
2 ≤ tol then stop.

d) Mark all elements in M :=
{
E × In : η2(E, In) ≥ θ ·maxẼ,Ĩn η

2(Ẽ, Ĩn)
}

for

refinement.

i. For all E×In∈M estimate the local analyticity of ūh(x)= 1
|In|
∫
In
uh(x, t)dt.

ii. For all E × In ∈ M let SIn :=
∑

E×In∈M E with In fixed and estimate

the local analyticity of ũh(t) = 1
|SIn |

∫
SIn

uh(x, t) dx.

e) Refine T shp, T tkq using M and the analyticity estimates as in [36].

The parameter θ steers the amount of marked elements. For θ close to zero, the se-

quence of refined meshes will be close to uniformed meshes with similar experimental
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convergence rates. For θ close to one, only very few elements are refined resulting in

a highly localized refinement, yet many refinement cycles are required to reduce the

total error. The tensor structure of the space-time discretization implies, that if an

element E × In is refined in time, then the whole time strip is refined, i.e. all elements

in that particular time strip are refined in time. Many of these elements are refined

unnecessarily with respect to the marking set M . Therefore, the decision weather a h-

or p-refinement should be carried out should only depend on the marked elements in

that time strip. Furthermore, the space refinement should be independent of the time

regularity. Hence, step 2.d) in Algorithm 4.2. The least square approximation within

the analyticity estimate explained in Section 3.3 requires at least a polynomial degree

of one to be solvable. Therefore, if the time polynomial is zero, a p-refinement will be

carried out such that in the case that this element is marked for refinement again, the

analyticity estimate can now be carried out.

4.4 First Results on an a Priori Error Estimate

In this section an a priori error estimate without convergence rate is derived for the

variational inequality formulation (4.32) and by Theorem 4.6 also for the primal variable

of the mixed method (4.18). For simplicity, it is assumed throughout this section that

~γ = ~0 and β = 1. Therewith, the same extension operators and (bi)-linear forms as in

Section 3.4 can be used. Let Khp,kq :=
∑N

n=1Kqn(In) be the total discrete convex cone

of admissible functions over the entire time interval and let

BDG(u, v) :=
N∑
n=1

∫
In

〈u̇, v〉+ ãε(u, v) dt, FDG(v) :=
N∑
n=1

∫
In

F̃ε(v) dt.

Then, the discrete problem (4.32) is equivalent to finding U ∈ Khp,kq such that

BDG(U, V −U)+
N∑
n=2

〈[
Un−1

]
, (V −U)n−1

+

〉
+
〈
U0

+, (V −U)0
+

〉
≥ FDG(V −U)+

+
〈
u0, (V −U)0

+

〉
∀ V ∈ Khp,kq.

(4.48)

If u ∈W 1
2 (I;H1(Ω), L2(Ω)) ∩K solves (4.6), than it also satisfies

BDG(u, v − u) ≥ FDG(v − u) ∀ v ∈ K. (4.49)

Lemma 4.12. There exists a constant α > 0 such that for all v ∈W 1
2 (I;H1(Ω), L2(Ω))∪∑N

n=1 Pqn(In) there holds

BDG(v, v) +
N∑
n=2

〈[
vn−1

]
, vn−1

+

〉
+
〈
v0

+, v
0
+

〉
≥ α ‖v‖2L2(I;1,hp) +

1

2

∥∥v0
+

∥∥2

L2(Ω)

+
1

2

N−1∑
n=1

‖[vn]‖2L2(Ω) +
1

2

∥∥vN− ∥∥2

L2(Ω)
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Proof. Follows directly from [69, Lemma 2.7], Lemma 4.8 and Lemma 3.15.

Theorem 4.9. Let u ∈ W 1
2 (I;H1(Ω), L2(Ω)) ∩ K solve (4.6) and U ∈ Khp,kq solve

(4.32), then there holds for arbitrary v ∈ K and V ∈ Khp,kq ∩ C(I, L2(Ω))

α ‖u − U‖2L2(I;1,hp) +
∥∥(u− U)0

+

∥∥2

L2(Ω)
+

N−1∑
n=1

‖[(u− U)n]‖2L2(Ω) +
1

2

∥∥(u− U)N−
∥∥2

L2(Ω)

≤ 2
∥∥(u− V )N−

∥∥2

L2(Ω)
+

1

α

(∥∥∥u̇− V̇ ∥∥∥
L2(I;L2(Ω))

+ CC ‖u− V ‖L2(I;1,hp)

)
+ 2

(
CFDG+ ‖u̇‖L2(I;L2(Ω)) + CC ‖u‖L2(I;1,hp)

)(
‖u−V ‖L2(I;1,hp) + ‖U−v‖L2(I;1,hp)

)
if ~γ = ~0, β = 1 and u̇, f ∈ L2(I;L2(Ω)) with CC defined in Lemma 3.14, α defined in

Lemma 4.12 and CFDG the continuity constant of FDG(·).

Proof. Adding (4.49) and (4.48) yields

BDG(u, u) +BDG(U,U) +

N∑
n=2

〈[
Un−1

]
, Un−1

+

〉
+
〈
U0

+, U
0
+

〉
≤ FDG(u−V ) + FDG(U−v)

+BDG(u, v) +BDG(U, V ) +
〈
u0, (U−V )0

+

〉
+

N∑
n=2

〈[
Un−1

]
, V n−1

+

〉
+
〈
U0

+, V
0

+

〉
.

Next, subtract BDG(u, U) +BDG(U, u) +
∑N

n=2

〈[
Un−1

]
, un−1

+

〉
+
〈
U0

+, u
0
+

〉
to obtain

BDG(u−U, u−U)+
N∑
n=2

〈[
−Un−1

]
, (u−U)n−1

+

〉
+
〈
−U0

+, (u−U)0
+

〉
≤ FDG(u−V )

+FDG(U−v)+
〈
u0, (U−V )0

+

〉
+

N∑
n=2

〈[
Un−1

]
, (V −u)n−1

+

〉
+
〈
U0

+, (V −u)0
+

〉
−BDG(u, U−v)−BDG(u, u−V )+BDG(u−U, u−V ).

Since [un] = 0 and u0 = u0
+ in L2(Ω) there holds

BDG(u− U, u− U)+

N∑
n=2

〈[
(u− U)n−1

]
, (u− U)n−1

+

〉
+
〈
(u− U)0

+, (u− U)0
+

〉
≤FDG(U − v)−BDG(u, U − v) + FDG(u− V )−BDG(u, u− V )

+BDG(u− U, u− V ) +

N∑
n=2

〈[
(u− U)n−1

]
, (u− V )n−1

+

〉
+
〈
(u− U)0

+, (u− V )0
+

〉
.

For u̇, f ∈ L2(I;L2(Ω)), [69, Lemma 2.7], Lemma 4.12 and the continuity result of
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Lemma 3.14 yield

α ‖u − U‖2L2(I;1,hp) +
1

2

∥∥(u− U)0
+

∥∥2

L2(Ω)
+

1

2

N−1∑
n=1

‖[(u− U)n]‖2L2(Ω) +
1

2

∥∥(u− U)N−
∥∥2

L2(Ω)

≤
(
CFDG + ‖u̇‖L2(I;L2(Ω)) + CC ‖u‖L2(I;1,hp)

)(
‖u− V ‖L2(I;1,hp) + ‖U − v‖L2(I;1,hp)

)
+

N∑
n=1

∫
In

〈
−u+ U, u̇− V̇

〉
+ ãε(u− U, u− V ) dt

−
N−1∑
n=1

〈
(u− U)n−, [(u− V )n]

〉
+
〈
(u− U)N− , (u− V )N−

〉
.

Choosing V ∈ C(I;L2(Ω)) and using the Cauchy-Schwarz inequality yields

α ‖u − U‖2L2(I;1,hp) +
1

2

∥∥(u− U)0
+

∥∥2

L2(Ω)
+

1

2

N−1∑
n=1

‖[(u− U)n]‖2L2(Ω) +
1

2

∥∥(u− U)N−
∥∥2

L2(Ω)

≤
(
CFDG + ‖u̇‖L2(I;L2(Ω)) + CC ‖u‖L2(I;1,hp)

)(
‖u− V ‖L2(I;1,hp) + ‖U − v‖L2(I;1,hp)

)
+ ‖u− U‖L2(I;1,hp)

(∥∥∥u̇− V̇ ∥∥∥
L2(I;L2(Ω))

+ CC ‖u− V ‖L2(I;1,hp)

)
+
∥∥(u− U)N−

∥∥
L2(Ω)

∥∥(u− V )N−
∥∥
L2(Ω)

.

Applying Young’s inequality twice yields

α ‖u − U‖2L2(I;1,hp) +
∥∥(u− U)0

+

∥∥2

L2(Ω)
+

N−1∑
n=1

‖[(u− U)n]‖2L2(Ω) +
1

2

∥∥(u− U)N−
∥∥2

L2(Ω)

≤ 2
∥∥(u− V )N−

∥∥2

L2(Ω)
+

1

α

(∥∥∥u̇− V̇ ∥∥∥
L2(I;L2(Ω))

+ CC ‖u− V ‖L2(I;1,hp)

)
+ 2

(
CFDG+ ‖u̇‖L2(I;L2(Ω)) + CC ‖u‖L2(I;1,hp)

)(
‖u−V ‖L2(I;1,hp) + ‖U−v‖L2(I;1,hp)

)
which completes the proof.

4.5 Numerical Experiments

As a numerical experiment the example by Moon et al. [63, Section 5.6] of a 2d oscillating

moving circle is reconsidered but with additional convection and mass term. The space

domain is Ω = [−1, 1]2, the time interval is I = (0, 0.8) and the (non)-contact sets are

N = {|x− c(t)|2 > r0(t)} and C = {|x− c(t)|2 ≤ r0(t)}

with

r0(t) =
1

3
+ 0.3 sin(16πt) and c(t) =

1

3
(cos(4πt), sin(4πt))T .
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(a) Solution with free boundary for t = 0.15 (b) Solution with free boundary for t = 0.5

Figure 4.2: Solution with free boundary for parabolic obstacle problem

For the obstacle χ ≡ 0, convection coefficient ~γ = (1, 1)T and volume force

f(x, t)=


−2
(
|x− c(t)|22 − r2

0(t)
)

[(x− c(t)) · ċ(t) + r0(t)ṙ0(t)] + 4
(
r2

0(t)− 2|x− c(t)|22
)

+2
(
|x− c(t)|22 − r2

0(t)
)
~γ · (x− c(t)) + 1

2

(
|x− c(t)|22 − r2

0(t)
)2
, in N

−4r0(t)
(
1− |x− c(t)|22 − r2

0(t)
)
, in C

the exact solution is

u(x, t) =

{
1
2

(
|x− c(t)|22 − r2

0(t)
)2
, in N

0, in C.

For the time points t = 0.15 and t = 0.5, the solution is plotted in Figure 4.2 where the

green circle indicates the free boundary. In fact, the contact set is a counter clockwise

moving spiral in the three dimensional space-time domain Ω× I with oscillating radius

r0(t) as visualized in Figure 4.3.

For sequences of differently refined meshes, the L2(I; 1, hp)-error and the error indi-

cator η are plotted in a semi-logarithmic scale versus the forth root of the degrees of

freedom in Figure 4.4. The lowest order uniform h-version shows its algebraic conver-

gence rate of 0.175 wrt. the dof and the estimated error is almost the same. Using an

h-adaptive refinement strategy the convergence rate is improved with a slight reduction

in the effectivity index of the error estimator compared to the uniform h-version. The

two hp-adaptive strategies only differ in their initial mesh, where the second, finer mesh

is a uniform refinement of the first, coarser mesh. Both show exponential convergence

at the beginning which turns into an algebraic one. The reason for this is the space-time

discretization based on a tensor product combined with the contact set C as displayed

in Figure 4.3a. For this set, in each time strip there exists a fixed space point x which

goes from non-contact to contact or vise versa. This implies that the solution at x is

singular in time and therefore the space-time cube containing x at that time should be

refined in time. By the tensor structure of the space-time discretizations all space-time-

cubes in that particular time strip are refined in time. Since for every time strip such

a point x exists, every time strip is refined leading to a uniform-like refinement in time
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(a) Free boundary for parabolic obstacle problem
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(b) Free boundary for parabolic obstacle problem, zoomed in on t ∈ (0, 0.2)

Figure 4.3: Free boundary for parabolic obstacle problem
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Figure 4.4: Error in energy norm and error indicator for parabolic obstacle problem

and therefore only to algebraic convergence. For the space discretization error similar

observations as in the elliptic case of Section 3.5 can be made. Hence, a discretization

based on tensor products seems to be inappropriate if the contact set itself is not based

on a tensor product and exponential convergence should be achieved.

The above observation also explains the behavior of the experimental effectivity index

(EEI) displayed in Figure 4.5a. For the uniform h and h-adaptive method the EEI

quickly tends towards a constant very close to one as has also been seen in Section 3.5.

At the point where the hp-adaptive methods turn into an algebraic converging approach

their EEI also tends towards a constant between 0.97 and 0.99. All in all, the EEI is

always very good and lies between 0.91 and 1.

Similarly, Figure 4.5b shows that the experimental saturation constants tends towards

some constant smaller than 0.2. Varying the penalty factor σe or the method’s param-

eter ε, similar observations as in the elliptic case can be made and are omitted here for

brevity. Changing the regularity estimate parameter δ, only influences at which point

the hp-method turns to algebraic convergence.

Remark 4.8. Most of the theoretical results of this chapter can be carried over to the

case of the H1-conforming continuous Galerkin approach.

In the following, a continuous Galerkin approach for pricing the 1d American put option
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Figure 4.5: Experimental efficiency index and saturation constant for parabolic obstacle

problem
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is considered, i.e. a ”fair” price P (S, τ) is sought such that

∂P

∂τ
+
σ2S2

2

∂2P

∂S2
+ rS

∂P

∂S
− rP ≤ 0 in [0,∞)× [0, T ] (4.50a)

P (0, τ) = E in [0, T ] (4.50b)

P (S, τ) = 0 as S →∞ in [0, T ] (4.50c)

P (S, τ) ≥ max {0, E − S} in [0,∞)× [0, T ] (4.50d)

P (S, T ) = max {0, E − S} in [0,∞) (4.50e)

where S is the price of the underlying, σ = 0.3604 is the volatility, r = 0.01845 the

risk free interest rate, T = 0.5 the expiry date, and E = 125 the strike price. Typically

a change of variables is performed to better deal with the unbounded domain and to

obtain an initial boundary value problem. Let t = T − τ be the time to maturity, x =

lnS, u(x, t) = P (ex, T − t) and truncate the arising domain (−∞,+∞) by ±R = ±20.

Hence, (4.50) becomes

∂u

∂t
− σ2

2

∂2u

∂x2
+ (

σ2

2
− r)∂u

∂x
+ ru ≥ 0 in Ω× I := (−R,R)× (0, T ] (4.51a)

u(±R, t) = χ(±R) in (0, T ] (4.51b)

u(x, t) ≥ χ(x) in (−R,R)× (0, T ] (4.51c)

u(x, 0) = χ(x) in (−R,R) (4.51d)

with χ(x) = max{0, E−ex} the profit from exercising the option and with the truncation

error decreasing exponentially fast with R [63]. Since no analytic solution is available,

convergence is measured in

e(uhp) :=
(
‖u‖2L2(I;H1(Ω)) − ‖uhp‖2L2(I;H1(Ω))

)1/2
. (4.52)

where the value ‖u‖L2(I;H1(Ω)) ≈ 430.7537067 has been obtained from extrapolation of

a family of lowest order h-version approximations of the mixed method. The expression

(4.52) is not a norm since the Galerkin orthogonality does not hold. However, if uhp → u

then certainly e(uhp) → 0. In Figure 4.6, the h-version shows for more than 30,000

degrees of freedom a promising stable algebraic convergence behavior of 0.246 wrt. dof.

Contrary, the two hp-versions show the aspired exponential error reduction with almost

identical course. The courses must not be identical since the obstacle condition is

enforced in different, not equivalent ways. For the mixed method it is weakly enforced

and for the variational inequality by a pointwise interpolation condition. If it was

weakly enforced than the approximation error would be identical up to rounding errors

and would depend on the different stopping criterions of the iterative solvers. Figure

4.7 plots the invested CPU time resources versus the pseudo-error to underline the

efficiency of the two hp-methods and of the hp-mixed method in particular. Due to the

exponential error reduction of the hp-versions, there exists a break-even point with the

uniform h-version of the mixed method. The slow convergence of the projection solver

for the variational inequality can be seen clearly and results in a less steep course of its

corresponding curve compared to the mixed hp-method. In particular, the calculation
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Figure 4.6: Error e(uhp) :=
(
‖u‖2L2(I;H1) − ‖uhp‖2L2(I;H1)

)1/2
for h- and hp-methods,

grading towards x = lnE and t = 0

of the finest resolved solution of the mixed method takes only six seconds whereas that

of the variational inequality methods takes about three hours.

Theorem 4.7 provides an optimal theoretical convergence behavior of the SSN method

and, together with the additionally proposed heuristic strategy, suggests efficiency for

practical applications. For the first of three experiments the tolerance is set to 10−14 to

investigate the Q-quadratic convergence of the reduced SSN method (4.39) of Theorem

4.7. Let the matrices A and D and the obstacle vector gi,j correspond to the twelfth time

step of a hp-discretization using twelve levels in both space and time. The right hand

side is modified such that u = (1, 0, . . . , 1, 0)T + g ∈ R1080 and λ = (0, 1, . . . , 0, 1)T ∈
R1080 is the exact solution. The Newton iteration starts with the initial solution u0 =

λ0 = ~1. The error ek :=
(∥∥u− uk∥∥2

2
+
∥∥λ− λk∥∥2

2

) 1
2

measured in the Euclidean norm

and the error ratio rk := ek+1

(ek)2 are displayed in Table 4.1. The ratio rk is clearly

bounded with only small oscillations for the later iterations which indicates Q-quadratic

convergence. By Remark 4.4 the Uzawa algorithm converges as well but with more than

100 iterations making it much slower than the SSN method. The number of iterations

can be reduced if the mesh and problem dependent projection parameter is adapted.

However, this is a hideous and above all impracticable task.

For the next two numerical experiments, the tolerance is reduced to 10−10 and the mesh

is graded towards the strike price lnE and towards the endpoints ±R. Figure 4.8 shows

the influence of the penalty parameter in the penalized Fischer-Burmeister NCF on the
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Figure 4.7: Pseudo-error vs. CPU time in seconds for the h-, hp-mixed version and the

hp-variational inequality version

Iter ek rk

0 2.888 · 103 6.237 · 10−6

1 5.204 · 101 6.446 · 10−3

2 1.746 · 101 3.028 · 10−2

3 9.235 · 100 1.634 · 10−1

4 1.393 · 101 3.888 · 10−2

5 7.552 · 100 9.938 · 10−2

6 5.669 · 100 1.488 · 10−1

7 4.782 · 100 3.537 · 10−2

8 8.090 · 10−1 2.070 · 10−3

9 1.355 · 10−3 1.119 · 10−3

10 2.056 · 10−9

Table 4.1: Locally Q-quadratic convergence of the reduced SSN method
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Figure 4.8: Average numbers of SSN iterations per time step vs. number of levels in

both space and in time for different penalization parameters µ exploiting

a quadratic polynomial extrapolation for the initial solution in the mixed

hp-version

average number of SSN iterations per time step for the mixed hp-version. Choosing

µ = 1, i.e. no penalization, leads to a steady increase of the SSN iterations with the

number of levels. However, even a small penalization, e.g. µ = 0.9, can eliminate this

effect completely such that there is almost no interdependence between the number of

levels and carried out iterations. Further changes in µ lead to only marginal changes in

the numbers of iterations and, thus, unburdens the user from fine tuning this parameter.

Figure 4.9 shows the effect of the choice of the initial solution on the number of semi-

smooth Newton iterations in the case of the hp-mixed version. The same number of

levels is used in space and time and is plotted versus the average numbers of iterations

per time step. Choosing u0 = λ0 = 0 is the standard naive initial solution and works as

a reference case to investigate the effect of different initial solutions which are obtained

as described in Section 4.2.3. Good results are achieved if the extrapolation polynomial

degree is chosen to be one or two which leads to an average reduction of two SSN

iterations per time step compared to the naive initial solution. Moreover, this method

requires only seven iterations on average per time step which is very few. Further, the

changes in SSN iterations with the number of levels is benign and not systematically.

Additional computational experiments have shown that using a large time polynomial

degree for the extrapolation, e.g. 8, leads to a poor initial solution due to the large

higher order time derivatives in the new, current time interval of the extrapolent and,

therewith, to a dramatic increase in the number of iterations for higher levels.
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4.5 Numerical Experiments
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Figure 4.9: Average numbers of SSN iterations per time step vs. number of levels in

both space and in time for different polynomial degrees for extrapolation

for the initial solution and the naive zero initial solution for penalization

parameter µ = 0.5 in the mixed hp-version

69





5 Elliptic Stochastic Contact Problems

In this chapter an exterior, elliptic, stochastic contact model problem is analyzed. The

problem may then serve as a benchmark problem for more realistic but more complex

formulations. After transforming the stochastic problem into a deterministic but high

dimensional formulation, the weak mixed formulation is similar to the one from the

parabolic obstacle problem in Chapter 4. The discretization is optimized for the con-

struction of a fast iterative solver for the resulting non-linear problem. Furthermore,

an hp-adaptive mesh refinement may lead to improved convergence rates compared to

uniform h- and p-versions.

5.1 Boundary Weak Formulations for Exterior Elliptic

Stochastic Contact Problems

Let R ⊂ R2 be a bounded polygonal domain with boundary Γ and cap(Γ) < 1, decom-

posable into the disjoint parts Γ = ΓD ∪ΓΣ with ΓΣ := ΓN ∪ΓC and exterior normal n.

Furthermore, let ΓD ∩ ΓC = ∅. Here, meas(ΓD) > 0 is assumed such that the results

and formulations can be carried over directly to the interior problem by replacing the

Steklov-Poincaré operator with the interior one. However, the absence of a Dirichlet

boundary part would cause no further difficulties in the exterior problem. Further,

let (Ω,F , P ) be a probability space as in Definition 2.3 with Ω the set of outcomes,

F ⊂ 2Ω the σ-algebra of events, and P : F → [0, 1] a probability measure. For given

Neumann force t and obstacle χ, both stochastic functions, a third stochastic function

u : R2 \R× Ω→ R is sought such that P -a.e. in Ω

−∆u(x, ω) = 0 in R2 \R (5.1a)

u(x, ω) = 0 on ΓD (5.1b)

∂u

∂n
(x, ω) = t(x, ω) on ΓN (5.1c)

u ≥ χ(x, ω),
∂u

∂n
≤ 0,

∂u

∂n
(u− χ) = 0 on ΓC (5.1d)

u(x) = a · log(x) + b+ o(1) as ‖x‖ → ∞ (5.1e)

holds with a, b real constants. Contrary to an interior problem ∂u
∂n |ΓC ≤ 0 and not

greater or equal to zero due to the orientation of the normal n. The uncertainty in

(5.1) lies within the magnitude of the Neumann force and the shape of the obstacle.

In the following, two different approaches are considered. One is based on a primal
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5 Elliptic Stochastic Contact Problems

variational inequality and the other is based on a mixed method in which the negative

of the unknown normal derivative on ΓC is represented by a Lagrange multiplier λ. Due

to the Signorini conditions (5.1d) λ satisfies

λ(x, ω) =

{
0 if (x, ω) ∈ N
≥ 0 if (x, ω) ∈ C

(5.2)

where C := {(x, ω) ∈ ΓC × Ω : u = χ} is the contact set and N its complement in

ΓC × Ω. The main difficulty in the numerical analysis is caused by the Signorini condi-

tion. Since it is only applied to one part of the space boundary, it seems natural to use a

boundary integral variational formulation in space and a standard weak formulation in

the stochastic component. For the spatial part of the solution it is sufficient to complete

its Cauchy data which is achieved by employing the Steklov-Poincaré operator S as a

Dirichlet-to-Neumann map. For the mixed method let

L+ :=
{
µ ∈ L2

P (Ω;H
1
2 (ΓC))′ : E

[
〈µ, v〉ΓC

]
≤ 0 ∀ 0 ≥ v ∈ L2

P (Ω;H
1
2 (ΓC))

}
(5.3)

be the convex Lagrange multiplier set with L2
P (Ω;H

1
2 (ΓC))′ = L2

P (Ω; H̃−
1
2 (ΓC)) the

dual space to L2
P (Ω;H

1
2 (ΓC)) and E

[
〈µ, v〉ΓC

]
the expected value of the duality pairing.

The corresponding variational mixed formulation within a Galerkin setting is:

Find (u, λ) ∈ L2
P (Ω; H̃

1
2 (ΓΣ))× L+ such that

A(u, v)− E
[
〈v, λ〉ΓC

]
= L(v) ∀ v ∈ L2

P (Ω; H̃
1
2 (ΓΣ)) (5.4a)

E
[
〈u, µ− λ〉ΓC

]
≥ E

[
〈χ, µ− λ〉ΓC

]
∀ µ ∈ L+ (5.4b)

with the bilinear, linear forms

A(u, v) := E
[
〈Su, v〉ΓΣ

]
, L(v) := −E

[
〈t, v〉ΓN

]
. (5.5)

Lemma 5.1. Any solution of (5.1) is a solution of (5.4). The converse holds in a

distributional sense.

Proof. From the Calderon projector it is well known that for u and v ∈ H̃ 1
2 (ΓΣ)

〈Su, v〉 = 〈Su, v〉ΓΣ
= −

〈
∂u

∂n
, v

〉
= 〈−t, v〉ΓN + 〈λ, v〉ΓC . (5.6)

Taking the expected value of (5.6) yields (5.4a). Equation (5.1d)2 directly yields λ ∈ L+

and testing (5.1d)1 with µ ∈ L+ yields∫
Ω

∫
ΓC

(u− χ)µ ds dP (ω) ≥ 0

which in turn yields (5.4b) after subtracting the zero (5.1d)3. The Dirichlet condition

is strongly satisfied in H̃
1
2 (ΓΣ).

For the opposite direction choose v ∈ C∞0 ∩ L2
P (Ω; H̃

1
2 (ΓΣ)) in (5.4a), then the repre-

sentation formula (2.2) yields with the Cauchy data (u, V −1(K − 1
2)u) equation (5.1a)
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and (5.1e). Now choosing v ∈ C∞ ∩ L2
P (Ω; H̃

1
2 (ΓΣ)) such that additionally v|ΓC = 0.

Then the Dirichlet-to-Neumann mapping (5.6) yields (5.1c). The constraint (5.1b) is

satisfied immediately. Next, choosing µ = 0, µ = 2λ in (5.4b) yields∫
Ω

∫
ΓC

(u− χ)λ ds dP (ω) = 0 and

∫
Ω

∫
ΓC

(u− χ)µ ds dP (ω) ≥ 0 ∀ µ ∈ L+.

(5.7)

For µ ∈ C∞0 (ΓC) ∩ L+ this yields (5.1d)1. Analogously, λ ∈ L+ yields (5.1d)2. These

together with (5.7) yield equation (5.1d)3.

A drawback of mixed methods is that an additional, later to be approximated, unknown

is introduced. This can be avoided by dealing with variational inequality formulations

in which the non-penetration condition is incorporated in the convex set of the ansatz

and test functions. Let

K :=
{
v ∈ L2

P (Ω; H̃
1
2 (ΓΣ)) : u ≥ χ (P )-a.e. on ΓC × Ω

}
(5.8)

be this convex set, then the variational inequality formulation is:

Find u ∈ K: A(u, v − u) ≥ L(v − u) ∀ v ∈ K. (5.9)

Since the bilinear form A(·, ·) is symmetric and coercive (c.f. Lemma 5.3) (5.9) is equiv-

alent to the minimization problem

Find u ∈ K: J(u) ≤ J(v) ∀ v ∈ K (5.10)

with energy functional

J(v) :=
1

2
A(v, v)− L(v). (5.11)

Lemma 5.2. Any solution of (5.1) is a solution of (5.9) and (5.10). The converse

holds in a distributional sense.

Proof. Follows immediately from the equivalence Theorem 5.2 and Lemma 5.1.

5.1.1 Existence and Uniqueness of a Weak Solution

The proof of existence and uniqueness is an application of the Lions-Stampacchia theo-

rem. Hence, only the continuity and coercivity of the bilinear form and the equivalence

of the different weak formulations must be shown.

Lemma 5.3. The bilinear form A(·, ·) is symmetric, continuous and L2
P (Ω; H̃

1
2 (ΓΣ))-

coercive, i.e. there exists constants CA > 0 and α > 0 such that there holds for all

u, v ∈ L2
P (Ω; H̃

1
2 (ΓΣ))

A(u, v) ≤ CA ‖u‖
L2
P (Ω;H̃

1
2 (ΓΣ))

‖v‖
L2
P (Ω;H̃

1
2 (ΓΣ))

, (5.12)

A(v, v) ≥ α ‖v‖2
L2
P (Ω;H̃

1
2 (ΓΣ))

. (5.13)

73
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Proof. Lemma 2.2 yields the continuity and H̃
1
2 (ΓΣ)-coercivity of S. The continuity

assertion follows with the Cauchy-Schwarz inequality and the coercivity by the definition

of the norm. The symmetry follows directly from the symmetry of S.

In order to proof the inf-sup-condition the abstract result from [15, Theorem 3.2.1] is

first generalized to the L2
P (Ω; H̃

1
2 (ΓΣ))-norm.

Lemma 5.4. Let Γ be a closed Lipschitz curve with two open and connected but disjoint

subsets γ0 ⊂ Γ, γ1 ⊂ Γ, γ0 ∩ γ1 = ∅ and γ∗0 := Γ \ γ0, γ∗01 := Γ \ (γ0 ∪ γ1). Further let

Xγ0,γ1 :=
{
χ ≥ 0 : ||χ||L∞(Ω;L∞(Γ)) = 1, χ′ ∈ L∞(Ω;L∞(Γ)), χ|γ0 ≡ 0

and χ|γ1 ≡ 1 for P -a.e. ω ∈ Ω} .

Then for arbitrary v ∈ L2
P (Ω;H

1
2 (Γ)) and for arbitrary χ ∈ Xγ0,γ1 there holds

χv ∈ L2
P (Ω;H

1
2 (Γ)), χv|γ∗0 ∈ L

2
P (Ω; H̃

1
2 (γ∗0))

and

||χv||
L2
P (Ω;H̃

1
2 (γ∗0 ))

:= ||χv||
L2
P (Ω;H

1
2 (Γ))

≤ Cχ′ ||v||
L2
P (Ω;H

1
2 (γ∗0 ))

≤ Cχ′ ||v||
L2
P (Ω;H

1
2 (Γ))

.

(5.14)

where Cχ′ = 2
1
4

∥∥∥∥(1 + ||χ′||2L∞(γ∗01)

) 1
2

∥∥∥∥
1
2

L∞(Ω)

.

Proof. Obviously there holds ||χv||L2(Γ) ≤ ||v||L2(γ∗0 ) for P -a.e. ω ∈ Ω. Further, for

v ∈ H1(Γ) holds

||χv||H1(Γ) :=

(∫
Γ
(χ′v + χv′)2 ds+ ||χv||2L2(Γ)

)1/2

≤
(

2

∫
Γ
(χ′v)2 + (χv′)2 ds+ ||χv||2L2(Γ)

)1/2

≤
√

2
(
||χ′||2L∞(γ∗01)||v||2L2(γ∗01) + ||v′||2L2(γ∗0 ) + ||v||2L2(γ∗0 )

)1/2

≤
√

2
(

1 + ||χ′||2L∞(γ∗01)

)1/2
||v||H1(γ∗0 ).

Then, the first inequality in the assertion follows from the real interpolation between

L2 and H1 as well as the definition of the L2
P (Ω; ·)-norm. The second inequality follows

trivially by definition of the Sobolev spaces on open curves.

Lemma 5.5. Let the assumptions of Lemma 5.4 hold. Then for all φ ∈ L2
P (Ω;H

1
2 (γ1))

there exists an extension fφ ∈ L2
P (Ω; H̃

1
2 (γ∗0)) of φ onto γ∗0 , such that fφ|γ1 = φ for

P -a.e. ω ∈ Ω and

∃ α > 0 : ||φ||
L2
P (Ω;H

1
2 (γ1))

≥ α||fφ||
L2
P (Ω;H̃

1
2 (γ∗0 ))

, (5.15)

where the constant α > 0 is independent of φ.
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Proof. Using the definition of the H
1
2 -norm on open curves and Lemma 5.4 yields for

arbitrary but fixed χ ∈ Xγ0,γ1 that there holds

||φ||
L2
P (Ω;H

1
2 (γ1))

≥ inf
v∈L2

P (Ω;H
1
2 (Γ))

{
||v||

L2
P (Ω;H

1
2 (Γ))

: v|γ1 = φ

}
≥C−1

χ′ inf
v∈L2

P (Ω;H
1
2 (Γ))

{
||χv||

L2
P (Ω;H̃

1
2 (γ∗0 ))

: χv|γ1 = φ

}
≥C−1

χ′ inf
f∈L2

P (Ω;H̃
1
2 (γ∗0 ))

{
||f ||

L2
P (Ω;H̃

1
2 (γ∗0 ))

: f |γ1 = φ

}
.

The last inequality holds due to inclusion{
χv|γ∗0 : v ∈ H 1

2 (Γ)
}
⊂ H̃ 1

2 (γ∗0) ∀χ ∈ Xγ0,γ1 and P -a.e. ω ∈ Ω.

Further, there exists fφ ∈
{
w ∈ L2

P (Ω; H̃
1
2 (γ∗0)) : w|γ1 = φ

}
such that

||fφ||
L2
P (Ω;H̃

1
2 (γ∗0 ))

≤ 2 inf
f∈L2

P (Ω;H̃
1
2 (γ∗0 ))

{
||f ||

L2
P (Ω;H̃

1
2 (γ∗0 ))

: f |γ1 = φ

}
.

and therefore

||φ||
L2
P (Ω;H

1
2 (γ1))

≥ (2Cχ′)
−1||fφ||

L2
P (Ω;H̃

1
2 (γ∗0 ))

,

The largest possible constant α in the above estimate is α :=

(
2 inf
χ∈Xγ0,γ1

Cχ′

)−1

> 0.

Theorem 5.1. Let the assumptions of Lemma 5.4 hold. Then there holds the following

inf-sup condition:

∃ α > 0 : sup

v∈L2
P (Ω;H̃

1
2 (γ∗0 ))\{0}

∫
Ω 〈µ, v〉γ1

dP (ω)

||v||
L2
P (Ω;H̃

1
2 (γ∗0 ))

≥ α||µ||
L2
P (Ω;H̃−

1
2 (γ1))

∀µ ∈ L2
P (Ω; H̃−

1
2 (γ1)).

(5.16)

Moreover, the constant α > 0 is independent of µ and v.

Proof. The proof is an application of the previous Lemma 5.5.

||µ||
L2
P (Ω;H̃−

1
2 (γ1))

= sup

φ∈L2
P (Ω;H

1
2 (γ1))\{0}

∫
Ω 〈µ, φ〉γ1

dP (ω)

||φ||
L2
P (Ω;H

1
2 (γ1))

≤ α−1 sup

φ∈L2
P (Ω;H

1
2 (γ1))\{0}

∫
Ω 〈µ, fφ〉γ1

dP (ω)

||fφ||
L2
P (Ω;H̃

1
2 (γ∗0 ))

≤ α−1 sup

v∈L2
P (Ω;H̃

1
2 (γ∗0 ))\{0}

∫
Ω 〈µ, v〉γ1

dP (ω)

||v||
L2
P (Ω;H̃

1
2 (γ∗0 ))
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where the constant α is

(
2 inf
χ∈Xγ0,γ1

Cχ′

)−1

. Since for an arbitrary φ ∈ L2
P (Ω;H

1
2 (γ1))

there holds fφ ∈ L2
P (Ω; H̃

1
2 (γ∗0)) by construction. Therefore, taking the supremum not

only over φ ∈ L2
P (Ω;H

1
2 (γ1)) and working with fφ ∈ L2

P (Ω; H̃
1
2 (γ∗0)) but taking the

supremum over the the entire space L2
P (Ω; H̃

1
2 (γ∗0)) \ {0} yields the last inequality.

Lemma 5.6. The bilinear form E
[
〈v, µ〉ΓC

]
is continuous and satisfies the inf-sup

condition, i.e. ∃ α > 0:

sup

v∈L2
P (Ω;H̃

1
2 (ΓΣ))\{0}

E
[
〈v, µ〉ΓC

]
||v||

L2
P (Ω;H̃

1
2 (ΓΣ))

≥ α||µ||
L2
P (Ω;H̃−

1
2 (ΓC))

∀µ ∈ L2
P (Ω; H̃−

1
2 (ΓC)).

(5.17)

Proof. The continuity condition∣∣∣E [〈v, µ〉ΓC]∣∣∣ ≤ ‖v‖L2
P (Ω;H̃

1
2 (ΓΣ))

‖µ‖
L2
P (Ω;H̃−

1
2 (ΓC))

holds trivially by the definition of the dual norm and the embeddingH
1
2 (ΓC) ⊂ H̃ 1

2 (ΓΣ),

since ΓD∩ΓC = ∅. The inf-sup condition is an application of Theorem 5.1 with γ0 = ΓD,

γ1 = ΓC , γ∗01 = ΓN and γ∗0 = ΓΣ.

Lemma 5.7. The energy functional J is coercive, i.e. J(v)→∞ as ‖v‖
L2
P (Ω;H̃

1
2 (ΓΣ))

→∞.

Proof. Follows immediately from the coercivity of the bilinear form A(·, ·), the Cauchy-

Schwarz inequality and the trace theorem.

With the coercivity and the continuous inf-sup property, the following equivalence the-

orem can be proven.

Theorem 5.2. The problems (5.4), (5.9) and (5.10) are equivalent.

Proof. (5.9)⇒ (5.10): The linearity and coercivity yield

0 ≤ A(u, v − u)− L(v − u) = J(v)− J(u)− 1

2
A(v − u, v − u) ≤ J(v)− J(u).

(5.9)⇐ (5.10): Since K is convex there holds with λ ∈ (0, 1) and the symmetry of A

0 ≤ J(u+ λ(v − u))− J(u) = λA(u, v − u) +
λ2

2
A(v − u, v − u)− λL(v − u).

Dividing by λ and taking the limit λ→ 0+ yields (5.9).

(5.4)⇒ (5.9): Assume there exists a measurable set O ⊆ ΓC × Ω, i.e.∫
Ω

∫
ΓC

1O ds dP (ω) > 0
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where 1O is one in O and zero elsewhere, in which u < χ. Hence, choosing µ = 1O ∈ L+

yields

E
[
〈u− χ, 1O〉ΓC

]
< 0

which contradicts (5.7). Consequently u ∈ K. Now, choosing v = w − u in (5.4a) with

w ∈ K and using

E
[
〈w − u, λ〉ΓC

]
= E

[
〈w − χ, λ〉ΓC

]
≥ 0

yields (5.9).

(5.4)⇐ (5.9): Let Res ∈ L2
P (Ω;H−

1
2 (ΓΣ)) be the residual of (5.9) which is defined by

E
[
〈Res, v〉ΓΣ

]
:= A(u, v)− L(v) ∀v ∈ L2

P (Ω; H̃
1
2 (ΓΣ)).

Obviously, there holds E
[
〈Res, v − u〉ΓΣ

]
≥ 0 for all v ∈ K. Choosing v ∈ K arbitrary

but with v|ΓC = u|ΓC yields

E
[
〈Res, v〉ΓN

]
= 0 ∀ v ∈ L2

P (Ω; H̃
1
2 (ΓN )).

Hence,

‖Res‖
L2
P (Ω;H−

1
2 (ΓN ))

= 0.

Consequently, it remains to show that Res|ΓC ∈ L+ and satisfies (5.4b). Choosing

v|ΓC = χ and v|ΓC = 2u|ΓC − χ yields

E
[
〈Res, u− χ〉ΓC

]
≤ 0, E

[
〈Res, u− χ〉ΓC

]
≥ 0 ⇒ E

[
〈u− χ,Res〉ΓC

]
= 0.

This result together with E
[
〈u− χ, µ〉ΓC

]
≥ 0 for all µ ∈ L+ yields (5.4b). Finally,

choosing v|ΓC = w + u|ΓC with w ≥ 0 yields Res|ΓC ∈ L+ and setting λ = Res|ΓC
completes the proof.

Lemma 5.8. Let u ∈ K be the unique solution of (5.9) then there exists a λ ∈ L+

such that (u, λ) is the unique solution of (5.4).

Proof. Theorem 5.2 guaranties the existence of λ and carries the uniqueness of u over

from (5.9) to (5.4). Assume (u, λ1) and (u, λ2) both solve (5.4). Then (5.4a) yields

E
[
〈v, λ1 − λ2〉ΓC

]
= 0 ∀ v ∈ L2

P (Ω; H̃
1
2 (ΓΣ))

and the continuous inf-sup condition of Lemma 5.6 implies ‖λ1−λ2‖
L2
P (Ω;H̃−

1
2 (ΓC))

=0.

This equivalence of the different weak formulations simplifies the proof of existence and

uniqueness.
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Theorem 5.3. There exists exactly one solution to the problems (5.4), (5.9) and (5.10).

Proof. By Theorem 5.2 and Lemma 5.8 it is sufficient to proof existence and unique-

ness for (5.9). Since K ⊂ L2
P (Ω; H̃

1
2 (ΓΣ)) is a non-empty, closed, convex subset of

a Hilbert space and A is a continuous, L2
P (Ω; H̃

1
2 (ΓΣ))-coercive bilinear form and

L ∈ L2
P (Ω;H−

1
2 (ΓΣ)), existence and uniqueness of u follows from the Stampacchia

theorem in [45, Theorem 2.1].

5.1.2 Equivalent Deterministic Formulation

The previous sections deal with the abstract probability space (Ω,F , P ). For the use

of finite elements it is crucial to express, or at least to approximate, the random fields

by a finite number of mutually independent random variables [1, 41]. The truncated

Karhunen-Loève expansion

t(x, ω) ≈ E [t] (x) +

N∑
n=1

√
λ̂nb̂n(x)Yn(ω) (5.18)

is a widely used tool to find such a set of random variables. In [41] Keese explains

this with reference to [73] by the fact that the Karhunen-Loève expansion is an optimal

linear approximation of t in the sense that the L2((R2 \ R̄)× Ω)-error would be larger

if
√
λ̂nYn(ω) were chosen differently.

Assumption 5.1 (Finite dimensional noise, Assumption 2.1 in [1]). The functions

t : ΓN × Ω→ R and χ : ΓC × Ω→ R are of finite Karhunen-Loève expansions, i.e.

t(x, ω) = E [t] (x) +
N∑
n=1

√
λ̂nb̂n(x)Yn(ω) and χ(x, ω) = E [χ] (x) +

N∑
n=1

√
λ̃nb̃n(x)Yn(ω),

where {Yn}Nn=1 are real random variables with zero mean and unit variance, are uncor-

related, and have images, Θn ≡ Yn(Ω), that are bounded intervals in R for 1 ≤ n ≤ N .

Moreover, it is assumed that each Yn has a density function ρn : Θn → R>0.

For the ease of presentation denote the tensor product of the images by Θ ≡∏N
n=1 Θn ⊂

RN and the joint density function by ρ(y) for all y ∈ Θ. Assumption 5.1 is most crucial

since it allows to describe u and therefore also λ by a finite number of random variables.

More precisely, the Doob-Dynkin lemma yields u(x, ω) = u(x, Y1(ω), . . . , YN (ω)) and

λ(x, ω) = λ(x, Y1(ω), . . . , YN (ω)), c.f. [1]. Using the transformation y = Y (ω) and

E [Y ] =
∫

Θ yρ(y) dy the formulations (5.4), (5.9), and (5.10) are equivalent to the

deterministic formulations: Let

L̃+ :=

{
µ ∈ L2

ρ(Θ; H̃−
1
2 (ΓC)) :

∫
Θ
〈µ, v〉ΓC ρ dy ≤ 0 ∀ 0 ≥ v ∈ L2

ρ(Θ;H
1
2 (ΓC))

}
(5.19)
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and

K̃ :=
{
v ∈ L2

ρ(Θ; H̃
1
2 (ΓΣ)) : u ≥ χ (ρ)-a.e. on ΓC × Ω

}
. (5.20)

Then, these may be formulated as a mixed method: Find (u, λ) ∈ L2
ρ(Θ; H̃

1
2 (ΓΣ))× L̃+

such that

Ã(u, v)−
∫

Θ
〈v, λ〉ΓC ρ dy = L̃(v) ∀ v ∈ L2

ρ(Θ; H̃
1
2 (ΓΣ)) (5.21a)∫

Θ
ρ(y) 〈u, µ− λ〉ΓC dy ≥

∫
Θ
ρ(y) 〈χ, µ− λ〉ΓC dy ∀ µ ∈ L̃+ (5.21b)

as a variational inequality formulation:

Find u ∈ K̃ : Ã(u, v − u) ≥ L̃(v − u) ∀ v ∈ K̃ (5.22)

or as a minimization problem:

Find u ∈ K̃: J̃(u) ≤ J̃(v) ∀ v ∈ K̃ (5.23)

with the bilinear form, linear form, and energy functional

Ã(u, v) :=

∫
Θ
〈Su, v〉ΓΣ

ρ dy, L̃(v) := −
∫

Θ
〈t, v〉ΓN ρ dy, J̃(v) :=

1

2
Ã(v, v)− L̃(v),

(5.24)

respectively.

5.2 hp-FEM/BEM Discretizations for Elliptic Stochastic

Contact Problem

The multi-dimensional deterministic problems of the previous section can be solved ap-

proximatively by an hp-FEM/BEM discretization technique. Therewith two problems

arise. The first one is the discretization of the bilinear form Ã(·, ·), more precisely of

the Steklov-Poincaré operator S, and the second one is the discretization of the dual

variable λ or non-penetration condition in K̃. The discretization strategies for both the

mixed and variational inequality problem are L2
ρ(Θ; H̃

1
2 (ΓΣ))-conforming in the primal

variable u but non-conforming in K̃ and L̃+.

Let Thp be a subdivision of ΓΣ with a corresponding polynomial degree distribution.

Analogously, let T stochkq be a mesh of Θ with elements constructed by tensor products

of 1d elements. With these meshes the following discrete function spaces

Vhp :=
{
v ∈ H̃ 1

2 (ΓΣ) : v|I ∈ PpI (I) ∀ I ∈ Thp
}

= span {φj}dimVhp
j=1 ,

V D
hp :=

{
v ∈ H− 1

2 (ΓΣ) : v|I ∈ PpI−1(I) ∀ I ∈ Thp
}

= span
{
φDj
}dimV Dhp
j=1

,

Wkq :=
{
v ∈ L2

ρ(Ω) : v|Q ∈ PpQ(Q) ∀Q ∈ T stochkq

}
= span {ϑj}dimWkq

j=1
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are well defined. The basis functions φDj are monomials which allows an easy and stable

analytic evaluation of the involved potentials [57, 58]. Whereas the basis functions φj
are 1-D affinely transformed Gauss-Lobatto-Lagrange basis functions which are also

continuous. Since Q is a N -dimensional cube, the basis functions ϑj are simply N-D

affinely transformed Gauss-Lobatto-Lagrange basis functions. Let Ghp be the global set

of affinely transformed Gauss-Lobatto points which are used to construct φj restricted to

ΓC and Gstochkq the analogous set in the stochastic domain. For the ease of presentation

and implementation it is assumed that the basis functions are sorted, such that the

φj , φ
D
j with support in ΓC are the first ones, starting with index one. At this point

the choice of basis function is still arbitrary but it will play a significant role for the

construction of the discrete sets Khp,kq and L+
hp,kq. In the discrete formulation the

bilinear form Ã(·, ·) is replaced by the discrete bilinear form

Ah(uh, vh) :=

∫
Θ
〈Shuh, vh〉ΓΣ

ρ dy =

∫
Θ

〈
Wuh + (K ′ − 1

2
)Ψh, vh

〉
ΓΣ

ρ dy (5.25)

where Ψh(y) ∈ V D
hp solves for ρ-a.e. y ∈ Θ the auxiliary problem

〈VΨh, vh〉ΓΣ
=

〈
(K − 1

2
)uh, vh

〉
ΓΣ

∀ v ∈ V D
hp . (5.26)

The equation (5.26) approximates the action of V −1 on (K − 1
2)uh.

Lemma 5.9 ([11] and [72], Lemma 12.4). The symmetric discrete Poincaré-Steklov

operator Sh : H
1
2 (Γ)→ H−

1
2 (Γ) is continuous, i.e.

∃ CSh > 0 ∀ v ∈ H 1
2 (Γ) : ‖Shv‖

H−
1
2 (Γ)
≤ CSh ‖v‖H 1

2 (Γ)

elliptic, i.e.

∃ αSh > 0 ∀ v ∈ H 1
2 (Γ) : 〈Shv, v〉Γ ≥ αSh ‖v‖2H 1

2 (Γ)

∃ αSh > 0 ∀ v ∈ H̃ 1
2 (ΓΣ) : 〈Shv, v〉Γ ≥ αSh ‖v‖2H 1

2 (Γ)

and satisfies the error estimate

‖(S − Sh)v‖
H−

1
2 (Γ)
≤ c inf

Ψ∈V Dhp

∥∥∥∥V −1(K − 1

2
)v −Ψ

∥∥∥∥
H−

1
2 (Γ)

.

Lemma 5.10. The discrete bilinear form Ah(uh, vh) is continuous and L2
ρ(Θ; H̃

1
2 (ΓΣ))-

coercive.

Proof. Analogously to the proof of Lemma 5.3 but now with Lemma 5.9.
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5.2.1 A Discrete Mixed Formulation

The discretization of the variational equation (5.21a) is straight forward. However, the

discretization of the variational inequality constraint (5.21b) is not. The key challenge in

mixed methods is the construction of the discrete Lagrange multiplier space. Wohlmuth

et al. studied the use of dual basis functions for low order methods for such purposes in

[77, 37] among others and the construction of higher order dual basis functions in [52].

Let

Mhp := span {ψj}
dimVhp|ΓC
j=1 ,

Tkq := span {ζj}dimWkq

j=1 ,

L+
hp,kq :=

{
µ ∈Mhp ⊗ Tkq :

∫
Θ 〈µ, v〉ΓC ρ dy ≤ 0 for all

v =
∑dimMhp

i=1

∑dimWkq

j=1 vi,jφiϑj ∈ Vhp|ΓC ⊗Wkq with vi,j ≤ 0

}
.

The discrete dual spaces Mhp, Tkq are spanned by biorthogonal basis functions, i.e.∫
ΓC

ψiφj ds = δij

∫
ΓC

φj ds,

∫
Θ
ζiϑjρ dy = δij

∫
Θ
ϑjρ dy, (5.27)

respectively. These biorthogonal basis function work particularly well with Gauss-

Lobatto-Lagrange basis functions. Especially, the same mesh and polynomial degree

distribution as for the discrete primal variable uhp is used. As in the construction of

the forthcoming discrete cone Khp,kq the weak non-negativity constraint of λ is relaxed

to a discrete one. In particular, this method is non-conforming L+
hp,kq 6⊆ L+ in the dual

variable.

The following lemma which establishes a relationship of the integral value for the primal

basis function with its dual is essential for reducing the discrete constraints to a simple

complementarity problem for the expansion coefficients.

Lemma 5.11. There holds for the integral value of the primal and dual basis functions∫
ΓC
ψi ds =

∫
ΓC
φi ds =: Dspace

i > 0 (1 ≤ i ≤ dimMhp) and
∫

Θ ζjρ dy =
∫

Θ ϑjρ dy =:

Dstoch
j > 0.

Proof. First note that
∑dimVhp

j=1 φj |ΓC ≡ 1|ΓC is a partition of unity. Then by biorthog-

onality ∫
ΓC

ψi ds =

∫
ΓC

ψi

dimVhp∑
j=1

φj ds =

∫
ΓC

ψiφi ds =

∫
ΓC

φi ds.

Since φi|I with Thp 3 I ⊆ suppφi is a polynomial of given degree, denoted by p, the

integral
∫
I φi ds can be evaluated exactly with a Gauss-Lobatto quadrature with p+ 1

nodes and positive weights. Since φi is a Gauss-Lobatto-Lagrange basis function, it is

zero in every quadrature node but one in which it takes the value one. Summing over

all elements I yields the assertion. The second assertion follows analogously but also

exploits the tensor product structure of the elements Q.
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The discrete mixed formulation is: Find uh ∈ Vhp ⊗Wkq and λh ∈ L+
hp,kq:

Ah(uh, vh)−
∫

Θ
〈vh, λh〉ΓC ρ dy = L̃(vh) ∀ vh ∈ Vhp ⊗Wkq (5.28a)∫

Θ
〈uh, µh − λh〉ΓC ρ dy ≥

∫
Θ
〈χ, µh − λh〉ΓC ρ dy ∀ µh ∈ L+

hp,kq (5.28b)

Due to the use of biorthogonal basis functions the system matrices of the discrete

variational inequalities in (5.28b) and in L+
hp,kq are diagonal matrices which implies a

compontentwise decoupling.

Theorem 5.4. The condition (5.28b) is equivalent to the system

Ui,j ≥ gi,j :=
1

Dspace
i Dstoch

j

∫
Θ
ρ

∫
ΓC

χ(x, ω)ψi(x)ζj(ω) ds dy (5.29a)

Λi,j ≥ 0 (5.29b)

Λi,j (Ui,j − gi,j) = 0 (5.29c)

for 1 ≤ i ≤ dimMhp and 1 ≤ j ≤ dimTkq. Here Ui,j, Λi,j are the expansion coefficients

of uh, λh respectively, and Dspace
i :=

∫
ΓC
φi ds, D

stoch
j :=

∫
Θ ρϑj dy.

Proof. For the ease of presentation if not otherwise mentioned i ranges from 1 to

dimMhp and j from 1 to dimTkq. For every function v ∈ Vhp ⊗ Wkq there exists a

unique {vi,j}j=1,...,dimWkq

i=1,...,dimVhp
such that

v =

dimVhp∑
i=1

dimWkq∑
j=1

vi,jφi(x)ϑj(y).

Also µ and λ ∈ L+
hp,kq can be written as a linear combination of the dual basis functions.

µ =
∑
i,j

µi,jψi(x)ζj(y), λ =
∑
i,j

λi,jψi(x)ζj(y)

Due to the biorthogonality of the employed basis functions, there holds for all v ∈
Vhp|ΓC ⊗Wkq with vi,j ≤ 0∫

Θ
ρ 〈µ, v〉ΓC dy =

dimMhp∑
i=1

dimThp∑
j=1

µi,jvi,jD
space
i Dstoch

j ≤ 0 (5.30)

if µ ∈ L+
hp,kq. With vi,j ≤ 0 arbitrary and Dspace

i , Dstoch
j positive by Lemma 5.11, the

equation (5.30) yields µi,jvi,j ≤ 0 and together with vi,j ≤ 0 this implies

µi,j ≥ 0 ∀ i, j.

Hence, λ ∈ L+
hp,kq implies (5.29b). On the other hand, equation (5.28b) yields with

µ ∈ L+
hp,kq arbitrary after exploiting the biorthogonality and dividing by the positive

factor Dspace
i Dstoch

j :

Find λi,j ≥ 0 : ui,j (µi,j − λi,j) ≥ gi,j (µi,j − λi,j) ∀µi,j ≥ 0 ∀i, j. (5.31)
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Choosing µi,j = λi,j + ηi,j > 0 with ηi,j > 0 in (5.31) yields (5.29a). Choosing µi,j = 0

and µi,j = 2λi,j the above equation yields (5.29c).

For the opposite direction, simply multiply (5.29a) with µi,j ≥ 0 and add the zero

(5.29c) to obtain (5.31). Summing over all i, j and exploiting the biorthogonality yields

(5.28b).

Theorem 5.5. There exists exactly one solution to the discrete mixed formulation

(5.28).

Proof. Uniqueness: Assume (u1, λ1) and (u2, λ2) solve (5.28), then their difference

satisfies

Ah(u1 − u2, v)−
∫

Θ
〈v, λ1 − λ2〉ΓC ρ dy = 0 ∀ v ∈ Vhp ⊗Wkq. (5.32)

From (5.28b) follows with µ1 = λ2 and µ2 = λ1∫
Θ
〈u1 − u2, λ1 − λ2〉ΓC ρ dy ≤ 0.

Hence, choosing v = u1 − u2 in (5.32) and using the coercivity of Lemma 5.10 yields

α ‖u1 − u2‖2
L2
P (Ω;H̃

1
2 (ΓΣ))

≤ Ah(u1 − u2, u1 − u2)−
∫

Θ
〈u1 − u2, λ1 − λ2〉ΓC ρ dy = 0.

Thus u1 = u2 and (5.32) reduces to

0 =

∫
Θ
ρ

∫
ΓC

v(λ1 − λ2) ds dy =

dimMhp∑
i=1

dimTkq∑
j=1

vi,j(λ1 − λ2)i,jD
space
i Dstoch

j ∀ v ∈ Vhp ⊗Wkq

by the ordering of the basis function, i.e. for suppφi ∩ ΓC = ∅ ⇒ i > dimMhp and

by exploiting the biorthogonality of the basis functions. Since v and therewith vi,j is

arbitrary, it follows with Dspace
i Dstoch

j > 0 that (λ1 − λ2)i,j = 0 and hence λ1 = λ2.

Existence: It is well known that (5.29) is equivalent to the projection equation

Λi,j = max {0,Λi,j + r(gi,j − Ui,j)} =: TΛi,j 1 ≤ i ≤ dimMhp, 1 ≤ j ≤ dimTkq
(5.33)

where r > 0 is an arbitrary constant. Since for any given λh ∈ L+
hp,kq problem (5.28)

reduces to a linear, finite dimensional problem, the above proven uniqueness also implies

the unique existence of a discrete uh(λh). Hence, it is sufficient to show that T is a strict

contraction to proof existence of (uh, λh) solving (5.28). For the ease of presentation

denote δΛ = Λ1 − Λ2 and δU = U1 − U2 where δU |ΓC is a restriction to the indices
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associated with the contact boundary, i.e. 1 ≤ i ≤ dimMhp, 1 ≤ j ≤ dimTkq.

‖TΛ1 − TΛ2‖22 ≤ ‖δΛ− rδU |ΓC‖22
= ‖δΛ‖22 − 2rδΛT δU |ΓC + r2 ‖δU |ΓC‖22

= ‖δΛ‖22 − 2r
∑
i

∑
j

Dspace
i Dstoch

j

Dspace
i Dstoch

j

δΛi,jδUi,j + r2 ‖δU |ΓC‖22

≤ ‖δΛ‖22 − 2rmin
i,j

{
Dspace
i Dstoch

j

}
δUTDδΛ + r2 ‖δU‖22

= ‖δΛ‖22 − 2rmin
i,j

{
Dspace
i Dstoch

j

}
δUTAhδU + r2 ‖δU‖22

≤ ‖δΛ‖22 − 2rβ ‖δU‖22 + r2 ‖δU‖22
= ‖δΛ‖22 (1− 2βrγ2 + r2γ2)

with γ = ‖δU‖2 / ‖δΛ‖2, β = mini,j

{
Dspace
i Dstoch

j

}
·minimal eigenvalue(Ah) > 0 and

Ah, D the matrix representation of the operators in (5.28a) . Hence, for 0 < r < 2β, T

is a strict contraction.

5.2.2 A Discrete Variational Inequality Approach

Within the continuous formulation of the variational inequality problem, the non-

penetration condition is almost everywhere strongly enforced. For higher order methods

or general obstacle, this condition can not easily be described by a finite number of con-

ditions. Therefore, the continuous non-penetration condition in the convex cone K̃ is

replaced by a discrete one. Let

Khp,kq := {v ∈ Vhp ⊗Wkq : vi,j ≥ gi,j} (5.34)

be the discrete convex cone, which in general is not a subset of K̃ 6⊇ Khp,kq. If

χ ∈ C(ΓC × Θ), which requires more regularity than for the well posedness of (5.22)

needed, then often vi,j = v(xij) ≥ gi,j := χ(xij) is chosen where xij are Gauss-Lobatto

quadrature points. In the forthcoming vi,j are the coefficients of the discrete function

v ∈ Vhp⊗Wkq and gi,j as defined in (5.29a). The biorthogonality of the basis functions

immediately yields that the discrete cone Khp,kq is equivalent to

Khp,kq =

{
v ∈ Vhp ⊗Wkq :

∫
Θ
ρ

∫
ΓC

(v − χ)µ ds dy ≥ 0 ∀ µ ∈ L+
hp,kq

}
. (5.35)

Therewith, the discrete variational inequality formulation is:

Find uh ∈ Khp,kq: Ah(uh, vh − uh) ≥ L̃(vh − uh) ∀ vh ∈ Khp,kq. (5.36)

Theorem 5.6. Let gi,j be as defined in (5.29a), then the discrete mixed formulation

(5.28) is equivalent to the discrete variational inequality (5.36).
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Proof. For the ease of presentation if not otherwise mentioned i ranges from 1 to

dimMhp < dimVhp and j from 1 to dimTkq = dimWkq.

(5.28) ⇒ (5.36) : Let (u, λ) be the solution of (5.28), then by Theorem 5.4 ui,j ≥ gi,j
for all 1 ≤ i ≤ dimMhp and 1 ≤ j ≤ dimTkq which implies u ∈ Khp,kq. By the

biorthogonality of the basis functions there holds for w ∈ Khp,kq

−
∫

Θ
〈w − u, λ〉ΓC ρ dy = −

∑
i,j

Dspace
i Dstoch

j (wi,j − ui,j)λi,j ≤ 0

where the last inequality follows from Theorem 5.4, (5.29c), w ∈ Khp,kq and Lemma 5.11.

Consequently, choosing v = w − u with w ∈ Khp,kq in (5.28) yields (5.36).

(5.28) ⇐ (5.36) : Let u ∈ Khp,kq be the solution of (5.36), then ui,j ≥ gi,j for all

1 ≤ i ≤ dimMhp and 1 ≤ j ≤ dimTkq. Next, define the Lagrange multiplier by

λ =
∑
i,j

λi,jψi(x)ζj(y) ∈Mhp ⊗ Tkq with λi,j =
Ah(u, φiϑj)− L̃(φiϑj)

Dspace
i Dstoch

j

.

Then, λ is the residual of (5.36), i.e.

Ah(u, v)−
∫

Θ
〈v, λ〉ΓC ρ dy − L̃(v) = 0 ∀v ∈ Vhp ⊗Wkq. (5.37)

First assume v =
∑dimMhp

i=1

∑dimTkq
j=1 vi,jφiϑj , i.e. the coefficients vi,j with i > dimMhp

to the basis functions with suppφiϑj∩ΓC×Θ = ∅ are zero. Then by the biorthogonality

and the definition of λ

−
∫

Θ
〈v, λ〉ΓC ρ dy = −

∑
i,j

λi,jvi,jD
space
i Dstoch

j = −
∑
i,j

[
Ah(u, φiϑj)− L̃(φiϑj)

]
vi,j

= −Ah(u, v) + L̃(v)

Now assume the opposite case, i.e. vi,j = 0 for all 1 ≤ i ≤ dimMhp and 1 ≤ j ≤ dimTkq,

then the residual of the discrete variational inequality is zero. Let

w =

dimMhp∑
i=1

dimTkq∑
j=1

ui,jφiϑj +

dimVhp∑
i=dimMhp+1

dimTkq∑
j=1

ui,j ± vi,jφiϑj .

If v := w−u = ±∑dimVhp
i=dimMhp+1

∑dimTkq
j=1 vi,jφiϑj is chosen in (5.36), this equation yields

Ah(u, v)− L̃(v) = 0.

Since all involved operators are linear these two cases yield (5.37). Choosing v = u+ φiϑj ,

i.e. v ∈ Khp,kq, in (5.36) yields

0 ≤ Ah(u, φiϑj)− L̃(φiϑj) = λi,jD
space
i Dstoch

j ⇒ λi,j ≥ 0.
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Finally, choose v =
∑dimMhp

i=1

∑dimTkq
j=1 gi,jφiϑj +

∑dimVhp
i=dimMhp+1

∑dimTkq
j=1 ui,jφiϑj and

v =
∑dimMhp

i=1

∑dimTkq
j=1 (2ui,j − gi,j)φiϑj +

∑dimVhp
i=dimMhp+1

∑dimTkq
j=1 ui,jφiϑj in (5.36) to ob-

tain

0 =

dimMhp∑
i=1

dimTkq∑
j=1

[
Ah(u, φiϑj)− L̃(φiϑj)

]
(ui,j − gi,j)

=

dimMhp∑
i=1

dimTkq∑
j=1

λi,j(ui,j − gi,j)Dspace
i Dstoch

j =

∫
Θ
〈u− χ, λ〉ΓC ρ dy.

The assertion follows by Theorem 5.4.

Theorem 5.7. There exists exactly one solution to (5.36).

Proof. For general gi,j , again by the Stampacchia theorem [45, Theorem 2.1]. Alterna-

tively, for gi,j as defined in (5.29a) by Theorem 5.6 and Theorem 5.5.

Since the discrete bilinear form Ah(·, ·) is symmetric and coercive and the discrete non-

penetration condition is a simple box constraint on the coefficients, the problem (5.36)

can be solved very efficiently by the primal-dual active set strategy of [50].

5.2.3 An Algorithm for Solving the Discrete Mixed Formulation

While for the variational formulation an efficient iterative solver exists, it still must be

constructed for the mixed method. For every (i, j) the problem (5.29) is of the same

type as (2.4) and can be dealt with by the ideas presented in Section 2.2.

Lemma 5.12. The discrete problem (5.28) is equivalent to finding the root of

0
!

= F (~uh, ~λh) :=

(
Ah~uh −D~λh − f

ϕη(~uh, ~λh)

)
(5.38)

where Ah~uh−D~λh−f = 0 is the matrix representation of (5.28a) and ϕη : Rm×Rn →
Rn (n = d · d̃, m = d̂ · d̃, d = dimMhp, d̂ = dimVhp and d̃ = dimTkq = dimWkq)

is the vector-valued penalized Fischer-Burmeister non-linear complementarity function

(NCF), c.f. (2.6). The entry at position (j − 1)d + i (1 ≤ j ≤ d̃, 1 ≤ i ≤ d) is defined

by

ϕη(v, µ) = η
(
µ+ v −

√
µ2 + v2

)
+ (1− η) max {0, µ}max {0, v}

with v = ~uh((j − 1)d̂+ i)− ~g((j − 1)d+ i), µ = ~λh((j − 1)d+ i) and η ∈ (0, 1].

Proof. Since ϕη is a NCF by Lemma 2.4, there holds

ϕη(v, µ) = 0 ⇔ vi ≥ 0, µi ≥ 0, µi · vi = 0 (i = 1, . . . , n).

Hence, ϕη(~uh, ~λh) = 0 is equivalent to (5.29) which in turn is equivalent to (5.28b) by

Theorem 5.4.
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Lemma 5.13. The matrix Ah is symmetric positive definite. The non-zero entries in

D = Diag(Dstoch) ⊗ Diag([Dspace; 0]) are positive. The function ϕη is strongly semi-

smooth and Lipschitzian.

Proof. By Lemma 5.10 all eigenvalues of Ah are positive. The non-zero entries in D are

of the kind Dspace
i Dstoch

j > 0 by Lemma 5.11. The structure of D follows directly from

the tensor structure of the space-stochastic domain and the numbering of the dofs. By

Lemma 2.4, ϕη is strongly semi-smooth and Lipschitzian.

The non-linear problem (5.38) with the continuously differentiable, non-negative merit

function

Ψ(u, λ) :=
1

2
F (u, λ)2 (5.39)

can be solved by the SSN Algorithm 5.1 being a realization of the Algorithm 2.1.

Algorithm 5.1. (Semi-smooth Newton algorithm for elliptic stochastic contact)

1. Choose initial solution u0 ∈ Rm, λ0 ∈ Rn, ρ̃ > 0, β ∈ (0, 1), σ ∈ (0, 1
2), p > 2

2. For k = 0, 1, 2, . . . do

a) If
∥∥∇Ψ(uk, λk)

∥∥ < tol or
∥∥Ψ(uk, λk)

∥∥ < tol then stop.

b) Compute subdifferential Hk ∈ ∂F (uk, λk) and find dk =
(
dku, d

k
λ

)
∈ Rm+n s.t.

Hkd
k = −F (uk, λk). (5.40)

If (5.40) not solvable or if the descent condition

∇Ψ(uk, λk)dk ≤ −ρ̃||dk||p (5.41)

is not satisfied, set dk := −∇Ψ(uk, λk).

c) Compute search length tk := max
{
βl : l = 0, 1, 2, . . .

}
s.t.

Ψ(uk + tkd
k
u, λ

k + tkd
k
λ) ≤ Ψ(uk, λk) + σtk∇Ψ(uk, λk)dk.

d) Update the solution vectors and goto step 2.

uk+1 = uk + tkd
k
u, λk+1 = λk + tkd

k
λ

For the implementation it is sufficient to choose one subdifferential, e.g.

Hk =

(
A −D

∂ϕη(uk,λk)
∂u

∂ϕη(uk,λk)
∂λ

)

87



5 Elliptic Stochastic Contact Problems

with

∂ϕη(u, λ)

∂u
=


η , if λ = u− g = 0

η

(
1− u−g√

λ2+(u−g)2

)
+ (1− η)λ , if λ > 0 and u > g

η

(
1− u−g√

λ2+(u−g)2

)
, otherwise

for the coefficients of u if they are associated with the contact boundary ΓC × Ω and

simply zero for all other coefficients and

∂ϕη(u, λ)

∂λ
=


η , if λ = u− g = 0

η

(
1− λ√

λ2+(u−g)2

)
+ (1− η) (u− g) , if λ > 0 and u > g

η

(
1− λ√

λ2+(u−g)2

)
, otherwise.

Other subdifferentials can be chosen but they only differ in the points where ϕη is not

classically differentiable. Using this subdifferential the computation of ∇Ψ(uk, λk) =

HT
k F (uk, λk) is straightforward [22].

Theorem 5.8. The reduced semi-smooth Newton algorithm (5.42) converges locally

Q-quadratic. (
uk+1, λk+1

)T
=
(
uk, λk

)T
−H−1

k F (uk, λk) (5.42)

with Hk a Clarke subdifferential of F at
(
uk, λk

)T
.

Proof. The assertion follows from Theorem 2.1 if F is Lipschitzian, strongly semi-

smooth, CD-regular and a solution for F (u, λ) = 0 exists. The existence of a solution

follows directly from Lemma 5.12 in conjunction with Theorem 5.5. The first part of

F is linear and the second part is strongly semi-smooth by Lemma 5.13. Therewith,

simple algebra yields that F is strongly semi-smooth and also Lipschitzian. To show

the CD-regularity, first rearrange the degrees of freedom such that the ones associated

with ΓC × Θ are the first and grouped together to the set C, the remaining dofs are

grouped to N , i.e.

A :=

(
AC ACN
ANC AN

)
, D :=

(
DC
0

)
.

Since F is Lipschitzian everywhere, the set of Clark subdifferentials can be overesti-

mated by Lemma 2.3. Together with the rearranging of the dofs there holds

∂CF ⊆

 AC ACN −DC
ANC AN 0

Da 0 Db

 =: E (5.43)
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where Da and Db are semi-positive definite diagonal matrices such that Da + Db is

positive definite. If all realizations of E are invertible, then F must be CD-regular.

Since A is invertible, the Schur complement

S = Db + (Da, 0)A−1D

of E can be computed. Assume that S has a zero eigenvalue, i.e. there exists a vector

0 6= q ∈ Rn such that Sq = 0. Hence, Dbq = −(Da, 0)A−1Dq which can be written

componentwise as (Db)iiqi = −(Da)ii(A
−1Dq)i and can be simplified to

qi = −(Da)ii
(Db)ii

(A−1Dq)i i ∈ I+ := {i ∈ {1, . . . , n} : (Db)ii > 0} (5.44)

0 = (A−1Dq)i i ∈ IC+ := {1, . . . , n} \ I+ = {i ∈ {1, . . . , n} : (Db)ii = 0} .
(5.45)

Multiplying (5.44) with qi yields 0 ≤ q2
i = − (Da)ii

(Db)ii
qi(A

−1Dq)i and with Dii > 0

from Lemma 5.13 it becomes Diiqi(A
−1Dq)i ≤ 0. Equation (5.45) directly yields

Diiqi(A
−1Dq)i = 0. Summing over all i yields

n∑
i=1

Diiqi(A
−1Dq)i =

m∑
i=1

((DC , 0)q)i (A−1Dq)i = (Dq)TA−1(Dq) ≤ 0.

Since DC is a positive definite diagonal matrix, this contradicts A, and therefore, A−1

only having positive eigenvalues. Hence, S and therewith E are invertible which com-

pletes the proof.

In practical applications the dimension N of the stochastic domain Θ may be very

large, e.g. 4 ≤ N ≤ 10. Hence, the size of the algebraic system (5.40) grows rapidly and

solving it exactly becomes impracticable. Therefore, the SSN has been replaced by an

inexact SSN method in which (5.40) is solved only inexactly and iteratively such that∥∥∥Hkd
k + F (uk, λk)

∥∥∥ ≤ min

{
10−3

k
,
∥∥∥F (uk, λk)

∥∥∥}∥∥∥F (uk, λk)
∥∥∥ . (5.46)

Its heuristic idea is to find only an approximation of the Newton’s search direction, with

the approximation error decreasing sufficiently fast as xk → x?. This is applicable since

in neither case the search direction is globally correct and must always be corrected in

the next Newton step. Such inexact SSN methods still converge Q-quadratic, c.f. [40]

and the references therein. Elementary to any modern iterative solvers, e.g. GMRES,

is a fast matrix-vector multiplication and an efficient preconditioner. Since the dis-

cretization is based on the tensor product structure of the stochastic domain in itself

and to the space domain, the global system matrix can be written as A = Mst ⊗ Sh
with Mst =

⊗N
n=1Mst,n. Here Sh is the matrix representation of the discrete Steklov-

Poincaré operator and Mst,n is the mass matrix to the 1d-domain Θn. This represen-

tation has two advantages. Firstly, the system matrix does not need to be assembled

which significantly reduces the memory storage requirement since Sh is a dense BEM
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matrix and Mst is a FEM mass matrix of a high dimensional domain. Secondly, the

matrix-vector multiplication can exploit the tensor structure, which is faster than to

assemble the system matrix and carry out a sparse matrix-vector multiplication. The

exact inverse of H is due to its 2× 2-Block structure

H−1 =

(
A −D
Da Db

)−1

=

(
A−1 −A−1DS−1

A DaA
−1 A−1DS−1

A

−S−1
A DaA

−1 S−1
A

)

with the Schur complement SA = Db+DaA
−1D and A−1 = (Mst ⊗ Sh)−1 = M−1

st ⊗S−1
h

with M−1
st =

⊗N
n=1M

−1
st,n. The matrices Da and Db change in every Newton step and

therefore H−1 changes as well. Furthermore Db is in general not invertible and the

influences of Da and D are not negligible. Consequently, the computation or at least

approximation of both SA and S−1
A is very cost intensive. The construction of effi-

cient preconditioners for differential equations with algebraic constraints resulted from

subdifferentials is still an open and important question. In the experiments SA is ”ap-

proximated” by the identity. For the lowest order uniform h-version with 2048 dof in the

primal variable and 528 dof in the dual variable the preconditioning has two important

effects. First, the condition number is reduced from 2000 to 50 in the eights step as

displayed in Figure 5.1 which leads to fewer GMRES iterations per SSN step. Second,

the preconditioned cases requires two SSN steps less than the non preconditioned case.

Table 5.1 shows that the GMRES iterations steadily increases with the number of SSN

iterations. This is a result from the reduction of the tolerance (5.46), to which the

system of linear equations is solved, in every inexact SSN step. For the preconditioned

case the number of GMRES iterations is very small due the small condition number.

For the non preconditioned case, they explode as the condition number tends to 2700.

In the tenth step, the GMRES is even restarted after 50 iterations. A further conse-

quence of the preconditioning is that the system of linear equations is solved much more

accurate than the tolerance requires without additional GMRES iterations. Therefore,

the inexact search direction is much closer to the exact search direction than in the

non preconditioned case. Consequently, the effect of additional SSN iterations in the

inexact variant with preconditioning is much smaller than without preconditioning.

5.3 A Posteriori Error Estimates

The SSN method allows to solve the discrete problem very efficiently for a given dis-

cretization. But at least as important is the construction of well adapted meshes to

reduce the discretization error at optimal rate. Since the solution typically exhibits

reduced regularity across the a priori unknown free boundary, local a posteriori error

estimators which steer an adaptive mesh refinement are inevitable to obtain the optimal

convergence rates.

In this section a residual type a posteriori error estimator for the mixed formulation

(5.28) is derived and by Theorem 5.6 also for the variational inequality (5.36). The

ideas are based on the work of Braess [8] to split discretization and consistency error
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Figure 5.1: Condition number of system matrix per SSN step, dof(u) = 2048, dof(λ) =

528

GMRES Iter

Preconditioned Not Preconditioned

2 1

5 5

7 10

5 10

8 14

7 29

7 10

10 44

46

50+38

Table 5.1: GMRES iterations per SSN step, dof(u) = 2048, dof(λ) = 528
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and on Carstensen [10] for the discretization error of a Neumann problem. However,

here a general obstacle χ is considered. First, an auxiliary problem with given Lagrange

multiplier λh is introduced. That is, find z ∈ L2
ρ(Θ; H̃

1
2 (ΓΣ)) such that

Ã(z, v) = L̃(v) +

∫
Θ
〈v, λh〉ΓC ρ dy ∀ v ∈ L2

ρ(Θ; H̃
1
2 (ΓΣ)). (5.47)

The following lemma separates the error introduced by the discretization of a variational

formulation and by the presence of contact. It works for methods which are continuous

and coercive in the same norm and conforming in the primal variable.

Lemma 5.14. Let (u, λ), (uh, λh) and z be the solution of (5.21), (5.28), (5.47) re-

spectively. Then there exists constants ε1, ε2, CA, α > 0 independent of h, p, k and q

such that

−ε2 ‖λh−λ‖2
L2
ρ(Θ;H̃−

1
2 (ΓC))

+ (α−ε1) ‖u−uh‖2
L2
ρ(Θ;H̃

1
2 (ΓΣ))

≤ 1

4ε2

∥∥(uh−χ)−
∥∥2

L2
ρ(Θ;H

1
2 (ΓC))

+
1

4ε1

(
CÃ ‖uh−z‖L2

ρ(Θ;H̃
1
2 (ΓΣ))

+
∥∥λh−λ+

h

∥∥
L2
ρ(Θ;H̃−

1
2 (ΓC))

)2

+

∫
Θ

〈
λ+
h , (uh−χ)+〉

ΓC
ρ dy

(5.48)

with v+ := max {v, 0} and v− := min {v, 0}, i.e. v = v+ + v−.

Proof. First note that for uh ∈ Vhp ⊗Wkq ⊂ L2
ρ(Θ; H̃

1
2 (ΓΣ))

Ã(z − u, uh − u) =

∫
Θ
〈λh − λ, uh − u〉ΓC ρ dy

=

∫
Θ

〈
λ+
h − λ, uh − u

〉
ΓC
ρ dy +

∫
Θ

〈
λ−h , uh − u

〉
ΓC
ρ dy.

The first of the two terms can be estimated by∫
Θ

〈
λ+
h − λ, uh − χ+ χ− u

〉
ΓC
ρ dy =

∫
Θ

〈
λ+
h − λ, uh − χ

〉
ΓC
ρ dy +

∫
Θ
〈λ, u− χ〉ΓC ρ dy︸ ︷︷ ︸

=0 (5.21b)

−
∫

Θ

〈
λ+
h , u− χ

〉
ΓC
ρ dy︸ ︷︷ ︸

≤0 by construction

≤
∫

Θ

〈
λ+
h − λ, uh − χ

〉
ΓC
ρ dy.

Using the linearity of the duality pairing and the definition of v+, v− and v = v+ + v−

yields∫
Θ

〈
λ+
h − λ, uh − χ

〉
ΓC
ρ dy =

∫
Θ

〈
λ+
h , uh − χ

〉
ΓC

+
〈
−λ, (uh − χ)+ + (uh − χ)−

〉
ΓC
ρ dy

≤
∫

Θ

〈
λ+
h , uh − χ

〉
ΓC
ρ dy +

∫
Θ

〈
λh − λ− λ+

h − λ−h , (uh − χ)−
〉

ΓC
ρ dy

=

∫
Θ

〈
λ+
h , (uh−χ)+〉

ΓC
ρ dy+

∫
Θ

〈
λh−λ, (uh−χ)−

〉
ΓC
ρ dy−

∫
Θ

〈
λ−h , (uh−χ)−

〉
ΓC
ρ dy

≤
∫

Θ

〈
λ+
h , (uh − χ)+〉

ΓC
ρ dy +

∫
Θ

〈
λh − λ, (uh − χ)−

〉
ΓC
ρ dy
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and, hence, with Cauchy-Schwarz

Ã(z−u, uh−u) ≤
∫

Θ

〈
λ+
h , (uh − χ)+〉

ΓC
ρ dy +

∫
Θ

〈
λh − λ, (uh − χ)−

〉
ΓC
ρ dy

+

∫
Θ

〈
λ−h , uh − u

〉
ΓC
ρ dy

≤
∫

Θ

〈
λ+
h , (uh−χ)+〉

ΓC
ρ dy +

∥∥λ−h ∥∥L2
ρ(Θ;H̃−

1
2 (ΓC))

‖uh − u‖
L2
ρ(Θ;H

1
2 (ΓΣ))

+ ‖λh−λ‖
L2
ρ(Θ;H̃−

1
2 (ΓC))

∥∥(uh−χ)−
∥∥
L2
ρ(Θ;H̃

1
2 (ΓC))

.

Consequently, using the ellipticity and continuity of the bilinear form Ã

α ‖uh−u‖2
L2
ρ(Θ;H

1
2 (ΓΣ))

≤Ã(uh − u, uh − u) = Ã(uh − z, uh − u) + Ã(z − u, uh − u)

≤CÃ ‖uh−z‖L2
ρ(Θ;H

1
2 (ΓΣ))

‖uh−u‖
L2
ρ(Θ;H

1
2 (ΓΣ))

+ Ã(z − u, uh − u)

≤
[
CÃ ‖uh−z‖L2

ρ(Θ;H
1
2 (ΓΣ))

+
∥∥λ−h ∥∥L2

ρ(Θ;H̃−
1
2 (ΓC))

]
‖uh−u‖

L2
ρ(Θ;H

1
2 (ΓΣ))

+

∫
Θ

〈
λ+
h , (uh − χ)+〉

ΓC
ρ dy

+ ‖λh − λ‖
L2
ρ(Θ;H̃−

1
2 (ΓC))

∥∥(uh − χ)−
∥∥
L2
ρ(Θ;H̃

1
2 (ΓC))

.

Finally, employing Young’s inequality twice yields the assertion.

Since the factor in front of the Lagrange multiplier error is negative, the left hand side

is not a norm. This is improved by the following lemma. To obtain an error estimate

in which the Lagrange multiplier error is also estimated let w ∈ L2
ρ(Θ; H̃

1
2 (ΓΣ)) be the

solution of

Ã(w, v) =

∫
Θ
〈µ, v〉ΓC ρ dy ∀ v ∈ L2

ρ(Θ; H̃
1
2 (ΓΣ)). (5.49)

From the continuous inf-sup condition (Lemma 5.6) and the continuity of Ã follows

β ‖µ‖
L2
ρ(Θ;H̃−

1
2 (ΓC))

≤ sup

06=v∈L2
ρ(Θ;H̃

1
2 (ΓΣ))

∫
Θ 〈µ, v〉ΓC ρ dy
‖v‖

L2
ρ(Θ;H̃

1
2 (ΓΣ))

= sup

06=v∈L2
ρ(Θ;H̃

1
2 (ΓΣ))

Ã(w, v)

‖v‖
L2
ρ(Θ;H̃

1
2 (ΓΣ))

≤ CA ‖w‖
L2
ρ(Θ;H̃

1
2 (ΓΣ))

.

(5.50)

Lemma 5.15. Under the same conditions and notations as in Lemma 5.14 there holds

for the total error

(C2−ε2) ‖λh−λ‖2
L2
ρ(Θ;H̃−

1
2 (ΓC))

+ C1 ‖u− uh‖2
L2
ρ(Θ;H̃

1
2 (ΓΣ))

≤ 2C2C
2
A

β2
‖z − uh‖2

L2
ρ(Θ;H̃

1
2 (ΓΣ))

+
1

4ε2

∥∥(uh − χ)−
∥∥2

L2
ρ(Θ;H

1
2 (ΓC))

+

∫
Θ

〈
λ+
h , (uh − χ)+〉

ΓC
ρ dy

+
1

4ε1

(
CÃ ‖uh − z‖L2

ρ(Θ;H̃
1
2 (ΓΣ))

+
∥∥λh − λ+

h

∥∥
L2
ρ(Θ;H̃−

1
2 (ΓC))

)2

(5.51)
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with C2 − ε2, C1, ε1, ε2 > 0 and C1 +
2C2C2

A
β2 = α− ε1.

Proof. From (5.50), triangle inequality and (a+ b)2 ≤ 2a2 + 2b2 follows immediately

‖λh − λ‖2
L2
ρ(Θ;H̃−

1
2 (ΓC))

≤ C2
A

β2
‖u− z‖2

L2
ρ(Θ;H̃

1
2 (ΓΣ))

≤ 2C2
A

β2
‖u− uh‖2

L2
ρ(Θ;H̃

1
2 (ΓΣ))

+
2C2

A

β2
‖z − uh‖2

L2
ρ(Θ;H̃

1
2 (ΓΣ))

.

Consequently there holds for C2 > 0

(C2−ε2) ‖λh−λ‖2
L2
ρ(Θ;H̃−

1
2 (ΓC))

+ C1 ‖u−uh‖2
L2
ρ(Θ;H̃

1
2 (ΓΣ))

≤ 2C2C
2
A

β2
‖z−uh‖2

L2
ρ(Θ;H̃

1
2 (ΓΣ))

−ε2 ‖λh−λ‖2
L2
ρ(Θ;H̃−

1
2 (ΓC))

+ (C1 +
2C2C

2
A

β2
) ‖u−uh‖2

L2
ρ(Θ;H̃

1
2 (ΓΣ))

If C2− ε2 > 0 and C1 > 0 then the left hand side is a norm of the total error. If further

ε1, ε2 > 0 and C1 +
2C2C2

A
β2 = α− ε1, then the last two terms on the right hand side are

bounded by Lemma 5.14. A feasible set of constants is C1 = α
2 , ε1 = α

4 , C2 = αβ2

8C2
A

and

ε2 = αβ2

16C2
A

.

It remains to derive an error estimation for the discretization error ‖uh − z‖. For that,

additional notations, taken from Carstensen [10], are introduced.

ψ = V −1(K − 1

2
)z

ψ∗h := V −1(K − 1

2
)uh

ψh := ihpV
−1
hp i

∗
hp(K −

1

2
)uh

Sh =W + (K ′ − 1

2
)ihpV

−1
hp i

∗
hp(K −

1

2
)

with the canonical embedding

ihp : V D
hp ↪→ H−

1
2 (ΓΣ) (5.52)

and its dual i∗hp.

Lemma 5.16 (Galerkin Orthogonality). For vh ∈ Vhp ⊗Wkq there holds∫
Θ
〈Sz − Shuh, vh〉ΓΣ

ρ dy = 0 ∀vh ∈ Vhp ⊗Wkq. (5.53)

Proof. Follows immediately from Vhp ⊗Wkq ⊂ L2
ρ(Θ, H̃

1
2 (ΓΣ)), (5.28) and (5.47).
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Lemma 5.17. Let (uh, λh) and z solve (5.28), (5.47) and t ∈ L2
ρ(Θ;L2(ΓN )). Then

there holds the a posteriori estimate

‖uh − z‖2
L2
ρ(Θ;H̃

1
2 (ΓΣ))

+ ‖ψh − ψ‖2
L2
ρ(Θ;H−

1
2 (ΓΣ))

≤ C
∑
I⊂Tkq

∑
E⊂Thp

η2
h(I, E) (5.54)

with the for every space element E and stochastic element I given local indicator

η2
h(I, E) := (1 +

hE
pE

) ‖t− Shuh‖2L2
ρ(I;L2(E∩ΓN )) + (1 +

hE
pE

) ‖λh − Shuh‖2L2
ρ(I;L2(E∩ΓC))

+ hE

∥∥∥∥ ∂∂s(V ψh − (K − 1

2
)uh)

∥∥∥∥2

L2
ρ(I;L2(E))

.

Proof. Following the same arguments as in [10, Proposition 5.1] yields

C

(
‖uh − z‖2

L2
ρ(Θ;H̃

1
2 (ΓΣ))

+ ‖ψh − ψ‖2
L2
ρ(Θ;H−

1
2 (ΓΣ))

)
≤
∫

Θ

(
〈W (z − uh), z − uh〉ΓΣ

+ 〈V (ψ − ψh), ψ − ψh〉ΓΣ

)
ρ dy

=

∫
Θ

(
〈Sz − Shuh, z − uh〉ΓΣ

+ 〈V (ψ∗h − ψh), ψ − ψh〉ΓΣ

)
ρ dy

=: A1 +A2.

The first term A1 can be estimated using the Galerkin orthogonality of Lemma 5.16

A1 :=

∫
Θ
〈Sz−Shuh, z−uh〉ΓΣ

ρ dy =

∫
Θ
〈Sz−Shuh, z−uh〉ΓΣ

+〈Sz−Shuh, uh−vh〉ΓΣ
ρ dy

=

∫
Θ
〈Sz − Shuh, z − vh〉ΓΣ

ρ dy.

With z − vh ∈ L2
ρ(Θ; H̃

1
2 (ΓΣ)) the equation (5.47) yields∫

Θ
〈Sz, z − vh〉ΓΣ

ρ dy =

∫
Θ
〈t, z − vh〉ΓN + 〈λh, z − vh〉ΓC ρ dy

and therewith

A1 =

∫
Θ
〈t− Shuh, z − vh〉ΓN ρ dy +

∫
Θ
〈λh − Shuh, z − vh〉ΓC ρ dy

≤
∑
I⊂Tkq

∑
E⊂Thq∩ΓN

‖t− Shuh‖L2
ρ(I;L2(E)) ‖z − vh‖L2

ρ(I;L2(E))

+
∑
I⊂Tkq

∑
E⊂Thq∩ΓC

‖λh − Shuh‖L2
ρ(I;L2(E)) ‖z − vh‖L2

ρ(I;L2(E)) .

Let Pk be the standard L2
ρ-projection onto Wkq, i.e. Pk : L2

ρ(Θ)→Wkq such that∫
Θ

(Pkw − w) vρ dy = 0 ∀v ∈Wkq.
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5 Elliptic Stochastic Contact Problems

In particular Pk is L2
ρ-stable. Further, let ih be the hp-Clément interpolation operator

mapping onto Vhp, c.f. [62]. Then there holds

‖w − Pkihw‖L2
ρ(Θ;L2(E)) ≤ ‖w − ihw‖L2

ρ(Θ;L2(E)) + ‖ihw − Pkihw‖L2
ρ(Θ;L2(E))

≤ ChE
pE
‖w‖L2

ρ(Θ;H1(ω(E))) + ‖ihw‖L2
ρ(Θ;L2(E))

≤ C
(

1 +
hE
pE

)
‖w‖L2

ρ(Θ;H1(ω(E)))

with ω(E) a net around E. By the L2-stability and complex interpolation between L2

and H1 there holds

‖w − Pkihw‖L2
ρ(Θ;L2(E)) ≤ C

(
1 +

hE
pE

) 1
2

‖w‖
L2
ρ(Θ;H

1
2 (ω(E)))

Choosing vh = uh + Pkih(z − uh) completes the estimate of A1.

Since uh(y) ∈ Vhp ⊂ H1
0 (ΓΣ) and ψh ∈ V D

hp ⊂ L2(ΓΣ) the mapping properties of V and

K (cf. Lemma 2.1) yield

V (ψh − ψ∗h) = V ψh − (K − 1

2
)uh ∈ H1(ΓΣ) ⊂ C0(ΓΣ).

Furthermore, V (ψh − ψ∗h) is orthogonal in L2(ΓΣ) to V D
hp , [15, Lemma 3.2.7]. Hence,

for the characteristic function χE ∈ V D
hp of an element E ∈ Thp there holds

0 = 〈V (ψh − ψ∗h), χE〉ΓΣ
=

∫
E
V (ψh − ψ∗h) ds

and, therefore, the continuous function V (ψh − ψ∗h) has a zero on each boundary seg-

ment E. Since V (ψh − ψ∗h) ∈ H1(ΓΣ), the application of [10, Theorem 5.1] yields

A2 :=

∫
Θ
〈V (ψh − ψ∗h), ψ − ψ〉ΓΣ

ρ dy ≤ ‖V (ψh − ψ∗h)‖
L2
ρ(Θ;H

1
2 (ΓΣ))

‖ψh − ψ‖
L2
ρ(Θ;H−

1
2 (ΓΣ))

≤ C̃

∫
Θ

∑
E⊂Thq

hE

∥∥∥∥ ∂∂s(V (ψh − ψ∗h)

∥∥∥∥2

L2(E)

ρ dy

 1
2

‖ψh − ψ‖
L2
ρ(Θ;H−

1
2 (ΓΣ))

.

A combination of the upper results with the coercivity of W and V yields

C

(
‖uh − z‖2

L2
ρ(Θ;H̃

1
2 (ΓΣ))

+ ‖ψh − ψ‖2
L2
ρ(Θ;H−

1
2 (ΓΣ))

)
≤
∑
I⊂Tkq

∑
E⊂Thq∩ΓN

(
1 +

hE
pE

) 1
2

‖t− Shuh‖L2
ρ(I;L2(E)) ‖z − uh‖L2

ρ(I;H̃
1
2 (ΓΣ))

+
∑
I⊂Tkq

∑
E⊂Thq∩ΓC

(
1 +

hE
pE

) 1
2

‖λh − Shuh‖L2
ρ(I;L2(E)) ‖z − uh‖L2

ρ(I;H̃
1
2 (ΓΣ))

+ C̃

∫
Θ

∑
E⊂Thq

hE

∥∥∥∥ ∂∂s(V (ψh − ψ∗h)

∥∥∥∥2

L2(E)

ρ dy

 1
2

‖ψh − ψ‖
L2
ρ(Θ;H−

1
2 (ΓΣ))

.

The assertion follows with Young’s inequality.
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5.4 Numerical Experiments

The assumption of t ∈ L2
ρ(Θ;L2(ΓN )) can be relaxed which leads to additional oscilla-

tion terms typically of higher order. Combining Lemma 5.15 and Lemma 5.17 yields

the residual type error estimator.

Theorem 5.9. Under the assumptions of Lemma 5.15 and Lemma 5.17 there exits a

constant C > 0 such that

C

(
‖λh − λ‖2

L2
ρ(Θ;H̃−

1
2 (ΓC))

+ ‖u− uh‖2
L2
ρ(Θ;H̃

1
2 (ΓΣ))

)
≤
∑
I⊂Tkq

∑
E⊂Thp

η2
h(I, E)

+
∥∥(uh − χ)−

∥∥2

L2
ρ(Θ;H

1
2 (ΓC))

+
∥∥λh − λ+

h

∥∥2

L2
ρ(Θ;H̃−

1
2 (ΓC))

(5.55)

+

∫
Θ

〈
λ+
h , (uh − χ)+〉

ΓC
ρ dy.

The above error estimator is not local since the H
1
2 and the H̃−

1
2 -norm are not local.

Remark 5.1. The error estimator of Lemma 5.17 for the auxiliary problem is not

suited for problems on open curves. On open curves, u lies in H̃
1
2 (ΓΣ) but in general

not in H̃1(ΓΣ), i.e. Su 6∈ L2(ΓΣ). Although uh ∈ H̃1(ΓΣ) and therefore the residual

t(y)−Shuh(y) lies in L2(ΓΣ), it does not lie in there uniformly. This problem does not

appear on closed curves if the right hand side is sufficiently smooth.

For the numerical experiments the H̃−
1
2 (ΓC) is approximated by the L2(ΓC)-norm and

v in the H
1
2 (ΓC)-norm by

√
‖v‖L2(ΓC) ‖v‖H1(ΓC) as in [70, Lemma IV.3]. For the local

error indicator only the L2-part of the H
1
2 (ΓC)-norm is used.

5.4 Numerical Experiments

For the numerical example, the space domain is Ω = [−0.5, 0.5]2 with ΓC = [−0.5, 0.5]×
{−0.5} and ΓN = ∂Ω\ΓC . Y ∼ U(−

√
3,
√

3) is uniformly distributed which corresponds

to the density ρ ≡ 1
2
√

3
and the stochastic domain Θ =

[
−
√

3,
√

3
]
. For the first

examples, the Neumann force is t(x, y) = 1 + cos(y) and the obstacle is χ(x, y) ≡ 1. In

particular, for the lowest order h-version (p = 1, q = 0) (5.36) is a conforming approach,

i.e. Khp,kq ⊂ K̃. Therefore, [59, Lemma 14] yields

‖u− uh‖2
L2
ρ(Θ;H

1
2 (Γ))

≤ C
(
J̃(uh)− J̃(u)

)
which allows to compute the approximation error numerically even in the absence of a

known weak solution. The value J̃(u) ≈ 0.9158884 has been obtained from Aitken ex-

trapolation of a family of lowest order h-version. Figure 5.2 shows algebraic convergence

with the estimated error being almost parallel to the error. This is surprising since the

factor (1 + h) in the residual error estimator of Lemma 5.17 is a non-optimal scaling
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Figure 5.2: Error and error indicators for stochastic contact problem, conforming

approach

factor. Furthermore, the h-scaling in front of the V −1-approximation error contribution

leads to a higher order convergence of this contribution in the error estimator compared

to the consistency error of λh and the residual contribution, which is the dominating

component of the error estimator. The consistency error decays at the same rate as

the residual error contribution but is over one order of magnitude smaller. This may

be further improved if the dual norm instead of the L2(ΓC)-norm would be used to

compute this contribution. The remaining contributions are very small and displayed

in Table 5.2.

For the second example, t(x, y) = 0, χ(x, y) = 1−3x1 and J̃(u) ≈ 0.3639245. Again, the

dof complementarity obstacle in H
1
2 (ΓC) obstacle in L2(ΓC)

4 0 0.0013·10−8 0.0013·10−8

16 0 0.0013·10−8 0.0010·10−8

64 0 0.0016·10−8 0.0008·10−8

256 0.1292 ·10−4 0.0174·10−8 0.0046·10−8

1024 0.4662 ·10−4 0.3327·10−8 0.0533·10−8

4096 0.6974 ·10−4 0.6427·10−8 0.1367·10−8

16384 0.0762 ·10−4 0.0088·10−8 0.0008·10−8

65536 0.1567 ·10−4 0.0272·10−8 0.0021·10−8

Table 5.2: Remaining error estimators for stochastic contact problem, conforming

approach
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5.4 Numerical Experiments

lowest order h-version is conforming and the error decays at algebraic rate as displayed

in Figure 5.3a. Now, the decay rate of the estimated error is less than of the error itself,

which is expected from the non-optimal scaling factor (1+h) in the residual estimator of

Lemma 5.17. For the uniform p-version the method is no longer conforming. Therefore,

the distance of the energy values is not an upper bound of the error in the energy

norm since the consistency error is missing. This explains why the distance of the

energy values decreases but not monotonically. The estimator is not able to capture

the convergence at all since the residual in the L2(Γ)-norm does not decrease. The

reason is the missing p-scaling factor when going from the correct dual-norm for the

residual to the L2(Γ)-norm. For the adaptive h-version, both the error and the estimated

error stagnate at a very high level. By Figure 5.3b the dominating contribution in

the error estimator is again the residual of the auxiliary problem. Figure 5.4, which

displays the adaptively generated meshes number six and 29, shows that the contact

set is identified and that the meshes are symmetric to the x2-axis as is expected from

the x2-symmetric obstacle. However, the meshes are extremely overrefined towards

{0,−0.5}. In fact, the computed residual at the contact boundary is larger than at the

Neumann boundary, with an error peak at tip of the obstacle at {0,−0.5} where its

kink is. In the two adjacent elements of this point the residual is given by λh − Shuh
and λh may not converge in the L2(ΓC)-norm but only in the dual norm due to the

kink in the obstacle. Therefore, the residual is not uniformly in L2(ΓC) and may not

decay to zero in this norm. The hp-adaptive algorithm never did a p-refinement and

is therefore identical to the h-adaptive method. Furthermore, the error contributions

from the contact conditions defined in Lemma 5.15 decay at a sufficient rate or are

several magnitudes smaller than the other contributions and, therefore, only the residual

estimator for the auxiliary problem seems to be not suited for this kind of problems.

Consequently, the separation of the error contributions should be kept but the error

estimator for the auxiliary problem should be replaced.
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Figure 5.4: Different meshes generated by the h-adaptive algorithm for the second

stochastic contact problem
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6 Hyperbolic Contact Problems with

Friction

Many physical and technical applications deal with the elasto-dynamic, frictional con-

tact of a body with a rigid foundation. From an economic’s point of view, mathematical

simulations of these problems are indispensable. However, the underlying hyperbolic

differential operator is not symmetric and indefinite. Together with the unilateral con-

tact and friction condition this significantly aggravates the mathematical analysis and

the development of efficient algorithms.

6.1 Mixed Formulation for Hyperbolic Contact Problems with

Tresca and Coulomb Friction

The hyperbolic contact problem (6.1) describes the elasto-dynamic frictional contact

of an elastic body Ω ⊂ Rd (d = 2, 3) over the time I := (0, T ] in the context of linear

elasticity theory. The boundary ∂Ω := Γ = ΓN∪ΓD∪ΓC is decomposed into the disjoint

Neumann, Dirichlet and contact parts. In particular, ΓC is the boundary part which

possibly comes into frictional contact with a smooth rigid foundation. For simplicity,

ΓD ∩ ΓC = ∅ is assumed whereas ΓD = ∅ can be allowed.

ü− div σ(u) = f in Ω× I (6.1a)

σ(u) = Aε(u) in Ω× I (6.1b)

u = 0 on ΓD × I (6.1c)

σ(u)n = t̂ on ΓN × I (6.1d)

un ≤ g, σn ≤ 0, σn(un − g) = 0 on ΓC × I (6.1e)

|σt| ≤ µf , |σt| < µf ⇒ u̇t = 0, |σt| = µf ⇒ ∃ α ∈ R : σt = α2u̇t on ΓC × I (6.1f)

u(0) = u0, u̇(0) = v0 in Ω. (6.1g)

Here, u, σ, ε, A, f , t̂, n, g and µf denote the displacement field, stress tensor, linearized

strain tensor, elasticity tensor, volume force, surface force, outwards unit normal, non-

negative gap function and the non-negative friction function, respectively. If µf = F ,

where F is the friction coefficient, the constraint (6.1f) models Tresca’s friction law.

This law allows non-zero tangential stress in the absence of contact which is undesirable

but mathematically much easier than Coulomb’s friction law, i.e. µf = F|σn|. To fully
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6 Hyperbolic Contact Problems with Friction

describe the contact conditions a notion of the normal and tangential components of

the displacement field and stress tensor is required. Let

un = u · n, ut = u− unn, σn = n · σ(u) · n and σt = σ(u)n− σnn.

Up till now there exists no proof of existence for the unilateral elasto-dynamic contact

problem. Cocou [18] and Cocou and Scarella [19] prove existence for dynamic contact

problems assuming Kelvin-Voigt viscoelastic bodies. However, the elasto-dynamic con-

tact problem cannot be viewed as a limit case of the viscoelastic problem, since in the

limit the much needed boundedness of the velocity in the H1(Ω)-norm is lost. Hence, no

weakly converging subsequence can be chosen. Other existence results hold if a normal

compliance law is used as in the work of Martins and Oden [61] or frictionless unilateral

boundary conditions for the wave equation [54, 44]. The two initial conditions in (6.1g)

allow to rewrite (6.1) as a system of PDEs by introducing the new unknown v := u̇

which represents the velocity field. Hence, (6.1a) and (6.1g) become

u̇− v = 0 in Ω× I (6.2a)

v̇ − div σ(u) = f in Ω× I (6.2b)

u(0) = u0, v(0) = v0 in Ω. (6.2c)

Even in the frictionless case, i.e. µf = 0, a hp-FEM time discontinuous Galerkin

(hp-TDG) variational inequality approach in which the normal pressure on ΓC is elim-

inated yields a variational inequality with a non-symmetric, indefinite system matrix.

To the best of the author’s knowledge these can not yet be solved reliable even with

projection-contraction methods. Therefore, a Lagrange multiplier λ := −σ(u)n|ΓC
representing the negative surface force on ΓC is introduced. Similar to [7], let X :=

H1(I;L2
ΓD

(Ω)) ∩ L2(I;H1
ΓD

(Ω)) with H1
ΓD

(Ω) and L2
ΓD

(Ω) the usual Sobolev spaces of

vector valued functions vanishing on ΓD. The space H1
ΓD

(Ω) is equipped with the norm

||χ||21 :=
∑d

i=1

∫
Ω χ

2
i + (∇χi)2 dx and

H1(I;L2
ΓD

(Ω)) :=
{
v ∈ L2(I;L2

ΓD
(Ω)) : v̇ ∈ L2(I;L2

ΓD
(Ω))

}
.

Then, the mixed formulation is to find a triple (u, v, λ) ∈ X ×X × L(λ) satisfying∫
I
(u̇, ϕ)− (v, ϕ) dt = 0 ∀ ϕ ∈ X (6.3a)∫

I
(v̇, χ) + a(u, χ) + 〈χ, λ〉ΓC dt =

∫
I
f(χ) dt ∀ χ ∈ X (6.3b)∫

I
〈un, µn − λn〉ΓC + 〈vt, µt − λt〉ΓC dt ≤

∫
I
〈g, µn − λn〉ΓC dt ∀ µ ∈ L(λ) (6.3c)

(u(x, 0), χ) = (u0, χ), (v(x, 0), χ) = (v0, χ) ∀ χ ∈ L2(Ω). (6.3d)

Here, (·, ·) and 〈·, ·〉ΓC denote the L2-inner product over Ω and the duality pairing be-

tween the space W := H1
ΓD

(Ω)|ΓC and its dual space M := W ′, respectively. Therewith,

the set of admissible Lagrange multipliers is

L(λ) :=

{
µ ∈ L2(I;M) :

∫
I
〈µ, η〉ΓC dt ≤

∫
I
〈µf , ‖ηt‖〉ΓC dt ∀ η ∈ L

2(I;W ) with ηn ≤ 0

}
.

(6.4)
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6.2 An hp-Time Discontinuous Galerkin Discretization

In the case of Tresca friction, i.e. µf = F , the Lagrange multiplier set is independent

of λ. Furthermore, the bilinear form a(·, ·) and the linear form f(·) are given by

a(u, χ) :=

∫
Ω
Aε(u) : ε(χ) dx and f(χ) :=

∫
Ω
fχ dx+

∫
ΓN

t̂χ ds.

The weak formulation (6.3) can now be discretized in time by a time discontinuous

Galerkin method. However, in the literature (see [12, 43, 53]) dynamic contact problems

are often discretized in time by a finite difference scheme leading to a sequence of elliptic

contact problems.

6.2 An hp-Time Discontinuous Galerkin Discretization

The common approach for simulations of dynamic contact problems is a finite difference

scheme in time like Newmark. However, these lead to numerical instabilities. Khenous

[43] explains this disadvantage by the fact that the nodes on the contact boundary

have their own inertia which, even for energy conserving schemes, leads to instabilities.

These instabilities result from the kinetic energy lost by a node being stopped on the

contact boundary. Thus, energy conserving schemes make these nodes oscillate in order

to keep their kinetic energy. Khenous proposes to redistribute the mass such that the

contact nodes have no inertia whereas the crucial mass properties are maintained, i.e.

conserving the total mass, the center of gravity and the inertia momentum. This method

has been first introduced in [42] and a modified quadrature for a direct computation

of this modified mass matrix is proposed in [32]. An analytic computation of the

modification is derived in [2].

In the following an hp-time discontinuous Galerkin discretization is considered. Similar

to the parabolic case let T shp and T tkq be meshes enhanced with a polynomial degree

distribution in space and in time, respectively. Recall that T tkq implies a decomposition

of I = (0, T ] such that Ī =
⋃N
n=1 Īn with In = (tn−1, tn) and the definitions for the

one-sided limits and time jump

vn+ := lim
0<s→0

v(tn + s), vn− := lim
0>s→0

v(tn + s) and [vn] := vn+ − vn−.

Let

Vhp :=
{
χ ∈ H1

ΓD
(Ω) : χ|e ∈ Ppe(e) ∀ e ∈ T shp

}
= span {φj}j ,

Pqn(In) :=

{
χ : In → Vhp : χ(t) =

qn∑
i=0

χiϑi(t), χi ∈ Vhp
}
,

Rqn(In) :=

{
χ : In →Whp : χ(t) =

qn∑
i=0

χiϑi(t), χi ∈Whp

}
= Pqn(In)|ΓC×In ,

Qqn(In) :=

 µ : In →Mhp : µ(t) =
∑qn

i=0 µiζi(t), µi ∈Mhp,∫
In
〈µ, η〉ΓC dt ≤

∫
In

〈
µhpf , ‖ηt‖h

〉
ΓC

dt for η ∈ Rqn(In), ηn,ps,pt ≤ 0


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where µhpf = Fλhpn in case of Coulomb friction and simply µhpf = F in case of Tresca

friction. Here, φj and ϑj are Gauss-Lobatto-Lagrange basis functions. Let Ge,hp be

the affinely transformed Gauss-Lobatto points on the spatial element e ∈ T shp of cor-

responding polynomial degree and Ghp =
⋃
eGe,hp the global set which defines φj .

Analogously, let GIn,kqn be the affinely transformed Gauss-Lobatto points on the time

element In ∈ T tkq which defines ϑj . For the ease of presentation the notation for acting

on the whole of Ω or only on ΓC does not differ in this chapter. Furthermore, Whp

is the trace space of Vhp restricted to ΓC and Mhp is the dual space of Whp spanned

by biorthogonal basis functions ψj , i.e.
∫

ΓC
ψjφi ds = δij

∫
ΓC
φi ds. Analogously,

ζj are the biorthogonal time basis functions to ϑj . Note that the discrete Lagrange

multiplier Λ inherits the same mesh and polynomial degree distribution from its dis-

crete primal variables U and V . In particular, U and V must have the same trace

space on ΓC for Lemma 6.2 to hold. For simplicity, U and V are sought in the same

finite subspace Pqn(In). Furthermore, the discrete absolute value function on ΓC is

‖ηt‖h :=
∑

(ps,pt)∈Ghp×GIn,kqn ‖~ηt,ps,pt‖φpsϑpt where ~ηt,ps,pt is the tangential component

of the coefficient belonging to the basis function pair (φps , ϑpt) in the linear combination

of η ∈ Rqn(In) and ‖·‖ is the Euclidean norm. Therewith, the hp-TDG method is: For

1 ≤ n ≤ N , let Un−1
− , V n−1

− be known and find U = U |In ∈ Pqn(In), V = V |In ∈ Pqn(In)

and Λ = Λ|In ∈ Qqn(In) such that∫
In

(U̇ , ϕ)−(V, ϕ)dt+ (
[
Un−1

]
, ϕn−1

+ ) = 0 ∀ ϕ ∈ Pqn(In) (6.5a)∫
In

(V̇ , χ)+a(U, χ)+〈χ,Λ〉ΓC dt+ (
[
V n−1

]
, χn−1

+ ) =

∫
In

f(χ)dt ∀ χ ∈ Pqn(In) (6.5b)∫
In

〈Un, µn−Λn〉ΓC +〈Vt, µt−Λt〉ΓC dt ≤
∫
In

〈g, µn−Λn〉ΓC dt ∀ µ ∈ Qqn(In). (6.5c)

Here, U0
− and V 0

− are approximations of u0 and v0, respectively. The use of biorthog-

onal basis functions allow the componentwise decoupling of the variational inequality

constraint (6.5c) which is more complicated than in the previous chapters due to the

friction component and the vector valued coefficients.

Lemma 6.1. The convex set Qqn(In) is equivalent to

Qqn(In) =

{
µ =

∑
ps,pt∈Ghp×GIn,kqn µpt,psψps(x)ζpt(t) : µn,ps,pt ≥ 0,

‖µt,ps,pt‖ ≤ FΛn,ps,pt ∀ (ps, pt) ∈ Ghp ×GIn,kqn

}
. (6.6)

Proof. This proof follows the ideas in the proof of [37, Lemma 2.3] generalized to a

higher order approach and to a time dependent problem. Recall thatDs
ps =

∫
ΓC
φpsdx>0

and Dt
pt =

∫
In
ϑpt dt > 0 by Lemma 4.6. Then, write χ ∈ Rqn(In) as its linear

combination

χ =
∑
pt,ps

χps,ptφps(x)ϑpt(t) =
∑
pt,ps

(χn,ps,ptnps + ~χt,ps,pt)φps(x)ϑpt(t)

with φps , ϑpt the scalar nodal basis functions and with the coefficients split into normal

and tangential components. Hence, the normal part of χ can be written as χn =
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∑
pt,ps

χn,ps,ptnpsφpsϑpt . Furthermore, there holds

Qqn(In) 3 µ =

qn∑
i=0

µiζi(t) =
∑

pt∈GIn,kqn

µptζpt(t) =
∑

pt∈GIn,kqn ,ps∈Ghp
µps,ptψps(x)ζpt(t)

=
∑
pt,ps

(µn,ps,ptnps + ~µt,ps,pt)ψps(x)ζpt(t).

where the coefficients are also split into normal and tangential components. Let χ ∈
Rqn(In) with χn,ps,pt ≤ 0. Hence, inserting the linear combinations of µ and χ in∫

In

〈µ, χ〉ΓC dt ≤
∫
In

〈Fλn, ‖~χt‖h〉ΓC dt, (6.7)

exploiting the biorthogonality of the basis functions and using that F is independent

of x and t yields∑
ps,pt

µps,ptχps,ptD
s
psD

t
pt ≤ F

∑
ps,pt

λn,ps,pt ‖~χt,ps,pt‖Ds
psD

t
pt . (6.8)

Since both χn,ps,pt and ~χt,ps,pt are arbitrary and Ds
psD

t
pt is positive the above inequality

(6.8) reduces to

µn,ps,ptχn,ps,pt + ~µt,ps,pt~χt,ps,pt ≤ Fλn,ps,pt ‖~χt,ps,pt‖ ∀ (ps, pt) ∈ Ghp ×GIn,kqn . (6.9)

Recall that χn,ps,pt ≤ 0. Choosing χt,ps,pt = 0 in (6.9) yields µn,ps,pt ≥ 0. Finally,

choosing χn,ps,pt = 0 and χt,ps,pt = µt,ps,pt yields ‖µt,ps,pt‖ ≤ Fλn,ps,pt = F |λn,ps,pt |.
For the opposite direction simply note that with µps,pt as in (6.6) and χn,ps,pt ≤ 0

µps,ptχps,pt = µn,ps,ptχn,ps,pt + ~µt,ps,pt~χt,ps,pt ≤ ‖~µt,ps,pt‖ ‖~χt,ps,pt‖ ≤ Fλn,ps,pt ‖~χt,ps,pt‖

yields (6.9). Summing over all points and exploiting the biorthogonality yields the

assertion.

Lemma 6.2. If U and V have the same trace mesh on ΓC then the constraint (6.5c)

is equivalent to the system

un,ps,ptD
s
psD

t
pt ≤ gps,pt :=

∫
In

∫
ΓC

gψps(x)ζpt(t) dx dt (6.10a)

λn,ps,pt ≥ 0 (6.10b)

λn,ps,pt(Un,ps,pt −
gps,pt
Ds
psD

t
pt

) = 0 (6.10c)
|λt,ps,pt | ≤ Fλn,ps,pt
|λt,ps,pt | < Fλn,ps,pt ⇒ vt,ps,pt = 0

|λt,ps,pt | = Fλn,ps,pt ⇒ ∃ α ∈ R : λt,ps,pt = α2vt,ps,pt

(6.10d)

for all points (ps, pt) ∈ Ghp × GIn,kqn where ups,pt, vps,pt and λps,pt are the expansion

coefficients of U , V and Λ, respectively. The additional index n and t denotes the

normal and tangential component, respectively.
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Proof. This proof follows the idea of the proof of [37, Lemma 2.6] generalized to a

higher order approach and to a time dependent problem. First, write u, v, λ and µ as

linear combinations

u =
∑

pt∈GIn,kqn

∑
ps∈Ghp

ups,ptφps(x)ϑpt(t), v =
∑
pt,ps

vps,ptφps(x)ϑpt(t) (6.11)

λ =
∑
pt,ps

λps,ptψps(x)ζpt(t), µ =
∑
pt,ps

µps,ptψps(x)ζpt(t). (6.12)

Inserting these linear combinations into (6.5c) yields, due to the biorthogonality of

the basis functions and µ being arbitrary after dividing by the positive factor Ds
psD

t
pt ,

the following: Find λ ∈ Qqn(In) such that for all ps ∈ Ghp, pt ∈ GIn,kqn and for all

µ ∈ Qqn(In) there holds

un,ps,pt (µn,ps,pt − λn,ps,pt) + ~vt,ps,pt

(
~µt,ps,pt − ~λt,ps,pt

)
≤ gps,pt
Ds
psD

t
pt

(µn,ps,pt − λn,ps,pt) .

(6.13)

The exploited biorthogonality only holds if u and v have the same trace space on ΓC .

Lemma 6.1 already supplies λn,ps,pt ≥ 0 for all points (ps, pt) ∈ Ghp × GIn,kqn . If

µn,ps,pt = λn,ps,pt + ηn,ps,pt with ηn,ps,pt > 0, µ, η ∈ Qqn(In) and ~µt,ps,pt = ~λt,ps,pt is cho-

sen then inequality (6.13) yields (6.10a). Whereas choosing µn,ps,pt = 0 and µn,ps,pt =

2λn,ps,pt with ~µt,ps,pt = ~λt,ps,pt yields (6.10c). In order to prove the frictional condition

(6.10d) note that Lemma 6.1 already implies that ~µt,ps,pt ,
~λt,ps,pt ∈ B(Fλn,ps,pt), i.e. they

lie in a (d−1)-dimensional ball of center zero and radius Fλn,ps,pt . For µn,ps,pt = λn,ps,pt
inequality (6.13) reduces to

~vt,ps,pt

(
~µt,ps,pt − ~λt,ps,pt

)
≤ 0 ~µt,ps,pt ,

~λt,ps,pt ∈ B(Fλn,ps,pt). (6.14)

Assume that the first case holds, i.e.
∥∥∥~λt,ps,pt∥∥∥ < Fλn,ps,pt . Hence, there exists a ball

B~λt,ps,pt (ε) with center ~λt,ps,pt and radius ε > 0 such that B~λt,ps,pt (ε) ⊂ B(Fλn,ps,pt).
Therewith, for any ~̃µt,ps,pt ∈ B~λt,ps,pt (ε) with

∥∥∥~̃µt,ps,pt∥∥∥ = ε there holds ~µ±t,ps,pt = ~λt,ps,pt±
~̃µt,ps,pt ∈ B(Fλn,ps,pt). Inserting these two µ into (6.14) yields

±~vt,ps,pt ~̃µt,ps,pt ≤ 0 ⇒ ~vt,ps,pt = 0.

For last case, i.e.
∥∥∥~λt,ps,pt∥∥∥ = Fλn,ps,pt , define the half-space, c.f. Figure 6.1,

H(~vt,ps,pt) =
{
~ηt,ps,pt ∈ Rd−1 : ~vt,ps,pt

(
~ηt,ps,pt − ~λt,ps,pt

)
> 0
}
.

Assume there exists no α ∈ R such that ~λt,ps,pt = α2~vt,ps,pt . Then, the intersection of

the half-space with the ball H(~vt,ps,pt) ∩ B(Fλn,ps,pt) 6= ∅ is not empty. Consequently,

there holds for all ~µt,ps,pt ∈ H(~vt,ps,pt)∩B(Fλn,ps,pt) that ~vt,ps,pt

(
~µt,ps,pt − ~λt,ps,pt

)
> 0

which is a contradiction to (6.14).

To prove the opposite direction, (6.10a) is multiplied by µn,ps,pt , followed by a subtrac-

tion of (6.10c) and addition of the tangential part ~vt,ps,pt

(
~µt,ps,pt − ~λt,ps,pt

)
≤ 0. The
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latter trivially holds by (6.10d). Summing over all points and exploiting the biorthog-

onality yields together with Lemma 6.1 the assertion.

B(Fλhpn,ps,pt)

~λhpt,ps,pt

~ηt,ps,pt

~ηt,ps,pt − ~λt,ps,pt

~vt,ps,pt

H(~vt,ps,pt)

B(Fλhpn,ps,pt)

B~λhp
t,ps,pt

(ε)

~λhpt,ps,pt

~̃µt,ps,pt

Figure 6.1: Illustration of B~λt,ps,pt (ε) ⊂ B(Fλn,ps,pt) and of H(~vt,ps,pt), based on [37,

Figure 2.1]

Lemma 6.3. If F = 0 and the volume and surface forces are time independent, then

the discrete mixed formulation (6.5) is energy dissipative for p = 1 and q = 0, i.e.

J(u(t), u̇(t)) ≥ J(u(t′), u̇(t′)) ∀ 0 ≤ t ≤ t′ ≤ T (6.15)

with the system’s energy defined by

J(u(t), u̇(t)) :=
1

2
(u̇(t), u̇(t)) +

1

2
a(u(t), u(t))− f(u(t)). (6.16)

Proof. Follows in [2, Lemma 7].

6.3 Iterative Solvers for the Mixed Method

The componentwise decoupling of the weak contact constraints allows the formulation

of a semi-smooth Newton (SSN) method and of an Uzawa algorithm to solve the dis-

crete problem (6.5) iteratively. For the first approach the point-wise condition (6.10) is

rewritten into finding the roots of two semi-smooth non-linear complementarity func-

tions (NCF). The Uzawa algorithm exploits a point-wise projection of the Lagrange

multiplier. The CPU-time of both solvers is reduced by an (almost) block diagonaliza-

tion of the global system matrix.

6.3.1 Semi-Smooth Newton

For the complementarity problem in the normal component un,ps,pt the penalized Fischer-

Burmeister NCF is used as in the elliptic stochastic case of Section 5.2.3. For the ease
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6 Hyperbolic Contact Problems with Friction

of presentation the restriction to the contact boundary is omitted. The NCF for the

frictional condition differs between Tresca friction, i.e. (6.10d) without Λn,ps,pt , and

Coulomb friction. The function CT is chosen for Tresca friction and CC for Coulomb

friction as studied in [37, 16, 17].

CT (v, λ) = max
{
F ,
∥∥∥~λt,ps,pt + ct~vt,ps,pt

∥∥∥}~λt,ps,pt −F(~λt,ps,pt + ct~vt,ps,pt) (6.17)

CC(v, λ) = max
{
Fλn,ps,pt ,

∥∥∥~λt,ps,pt + ct~vt,ps,pt

∥∥∥}~λt,ps,pt −Fλn,ps,pt(~λt,ps,pt + ct~vt,ps,pt)

(6.18)

Here ct > 0 is an arbitrary constant.

Remark 6.1. In [16, 17] the term F max {0, λn,ps,pt} and in [37] the term

F max {0, λn,ps,pt + ct(un,ps,pt − gps,pt)} are used instead of Fλn,ps,pt. All three formu-

lations are equivalent since λn,ps,pt ≥ 0 due to ϕµ = 0, but the function (6.18) should be

the easiest and most efficient of them as it contains the same types but fewer non-linear

terms.

Lemma 6.4. 1. For F > 0, the pair (v, λ) satisfies (6.10d) for Tresca friction if

and only if CT (v, λ) = 0 with an arbitrary constant ct > 0.

2. For F = 0, (v, λ) satisfies (6.10d) if and only if CT (v, λ) = 0 for two pairwise

different ct > 0.

3. A similar result holds for Coulomb friction with CC(v, λ) = 0.

Proof. For F > 0 and Tresca friction this is the result of [37, Theorem 5.1].

For F=0 equation (6.10d) yields λt,ps,pt = 0. These together immediately imply CT =0.

For the opposite direction, note that CT reduces to CT (v, λ)=
∥∥∥~λt,ps,pt+ct~vt,ps,pt∥∥∥~λt,ps,pt .

Assume
∥∥∥~λt,ps,pt + ct~vt,ps,pt

∥∥∥ > 0. Then CT = 0 immediately implies ~λt,ps,pt = 0 and

condition (6.10d) with α = 0. Now assume
∥∥∥~λt,ps,pt + ct~vt,ps,pt

∥∥∥ = 0. Then (6.10d)

can not be deduced from CT = 0 alone. However, if CT = 0 also for 0 < c̃t 6= ct
then either for c̃t the first case holds or the fact that

∥∥∥~λt,ps,pt + c̃t~vt,ps,pt

∥∥∥ = 0 yields

~λt,ps,pt = −c̃t~vt,ps,pt . Thus, ~λt,ps,pt = ~vt,ps,pt = 0 can be deduced, which yields the

assertion. The proof for CC is analogous.

Remark 6.2. CT and CC are not NCFs if F = 0 and Fλn,ps,pt = 0, respectively.

If the conditions of Remark 6.2 do not hold then with the NCFs ϕµ and C the problem

(6.5a), (6.5b) and (6.10) is equivalent to finding the root of

0
!

= F (u, v, λ) =


Mpu−Mv − fu

Mpv +Au+Dλ− fv
ϕµ(u, λ)

C(v, λ)

 (6.19)
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where the first two lines are the matrix representation of (6.5a) and (6.5b). In the nu-

merical experiments the non-linear problem (6.19) is solved using the following damped

SSN algorithm. To define a suitable stopping criterion and line search the non-negative

merit function

Ψ(u, v, λ) :=
1

2
F (u, v, λ)2 (6.20)

is defined. In particular, solving (6.19) is equivalent to finding a minimizer triple of Ψ.

Due to the use of the NCF CT and CC , Ψ is no longer continuously differentiable as in

the previous chapters.

Algorithm 6.1. (SSN algorithm for elasto-dynamic frictional contact)

1. Choose initial solution u0, v0 ∈ Rn, λ0 ∈ RnC , β ∈ (0, 1), σ ∈ (0, 1
2), tol > 0.

2. For k = 0, 1, 2, . . . do

a) If
∥∥∇Ψ(uk, vk, λk)

∥∥ < tol or
∥∥Ψ(uk, vk, λk)

∥∥ < tol then stop.

b) Compute subdifferential Hk ∈ ∂F (uk, vk, λk) and find direction dk ∈ R2n+nC

with dk =
(
dku, d

k
v , d

k
λ

)
such that

Hkd
k = −F (uk, vk, λk). (6.21)

c) Compute search length tk := max
{
βl : l = 0, 1, 2, . . .

}
such that

Ψ(uk + tkd
k
u, v

k + tkd
k
v , λ

k + tkd
k
λ) ≤ Ψ(uk, vk, λk) + σtk∇Ψ(uk, vk, λk)dk.

d) Update solution vectors and goto step 2.

uk+1 = uk + tkd
k
u, vk+1 = vk + tkd

k
v , λk+1 = λk + tkd

k
λ

In case of Tresca friction, the following subdifferential

Hk =


Mp −M 0

A Mp D
∂ϕ(uk,λk)

∂u 0 ∂ϕ(uk,λk)
∂λ

0 ∂C(vk,λk)
∂v

∂C(vk,λk)
∂λ


with ∂ϕ(u,λ)

∂u , ∂ϕ(u,λ)
∂λ as in Section 5.2.3 and

∂CT (v, λ)

∂v
=


−FctT , if |λt + ctvt| ≤ F
ct(λt −F)T , if λt + ctvt > F
−ct(λt + F)T , otherwise

∂CT (v, λ)

∂λ
=


0 , if |λt + ctvt| ≤ F
(λt + |λt + ctvt| − F)T , if λt + ctvt > F
(−λt + |λt + ctvt| − F)T , otherwise
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is chosen where N and T are the algebraic representations of the normal and tangential

vector in 2d, respectively.

Remark 6.3. The subdifferentials ∂CT
∂λ (0, 0) and ∂CT

∂v (0, 0) vanish if F = 0. Hence,

Hk is not invertible. However, for F = 0 the original friction condition is equivalent

to a linear complementarity function which is implemented as a special case if both

subdifferentials vanish.

The most expensive part in the SSN algorithm is the computation of the direction

dk. The system matrix Hk is sparse, indefinite, non-symmetric, ill-conditioned and

increases rapidly in size if the polynomial degree in time is raised due to the tensor

product structure of the space and time discretization. In [75] numerical experiments

have shown that the hp-TDG system matrix for a simple parabolic problem can be block

diagonalized in C if orthonormalized time basis functions are used. The size of such a

block is the number of spatial degrees of freedom (dof). Exploiting the invertibility of

the standard 1d-time mass matrix M2, this idea can be generalized to arbitrary basis

functions. Due to the use of a Lagrange multiplier space spanned by biorthogonal basis

functions, Hk can only be almost block diagonalized in the sense that the part associated

with the primal variables u and v has a block structure but at the cost of additional

entries in the part of the Lagrange multiplier tested with the primal variables. However,

the number of additional entries is benign since the Lagrange multiplier acts only on

the trace of u and v. For a mathematical description the following three abbreviations

are defined to reflect the time influence.

[M1]ij =

∫
In

ϑ′jϑi dt+ ϑ+
j (tn−1)ϑ+

i (tn−1), [M2]ij =

∫
In

ϑjϑi dt, [M3]ij = δij

∫
In

ϑj dt

First assume that the differential system is only discretized in time and that the La-

grange multiplier is known. Hence, after multiplying with M−1
2 from the left it becomes

M−1
2 M1

(
u

v

)
+ L

(
u

v

)
= M−1

2 f −M−1
2 M3λ (6.22)

where L is the linear spatial operator. Numerical experiments have shown that M−1
2 M1

is diagonalizable in C and that there exits a matrix Q ∈ C(q+1)×(q+1) such that

Q−1M−1
2 M1Q = T = diag (µ0, . . . , µq) . (6.23)

Multiplying (6.22) with Q−1 from the left, changing the order of L and Q−1 since L is

independent of time and inserting the identity QQ−1 yields

Q−1M−1
2 M1QQ

−1

(
u

v

)
+ LQ−1

(
u

v

)
= Q−1M−1

2 f −Q−1M−1
2 M3λ.

With the change of variables,

(
x

y

)
= Q−1

(
u

v

)
, the previous equation is equivalent

to the system

µj

(
xj
yj

)
+ L

(
xj
yj

)
+
[
Q−1M−1

2 M3λ
]
j

=
[
Q−1M−1

2 f
]
j

j = 0, . . . , q
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with µj defined in (6.23). If the Lagrange multiplier is not known the term
[
Q−1M−1

2 M3λ
]
j

couples the equations for different j′s. In the next step the standard spatial discretiza-

tion is introduced. Here ⊗ stands for a matrix-block-vector multiplication [Q⊗ f ]j =∑q
k=0 [Q]jk

~fk where ~fk is the kth vector block of size equal to the spatial dof. Hence,

the system of linear equations (j = 0, . . . , q)[
µj

(
M 0

0 M

)
+

(
0 −M
A 0

)](
xj
yj

)
+
[
Q−1M−1

2 M3 ⊗Bλ
]
j

=
[
Q−1M−1

2 ⊗ ~f
]
j

is obtained. If x and y are known, the change of variables can be reversed using u = Q⊗x
and v = Q⊗ y. Thus, the change of ∂ϕ

∂u and ∂C
∂v to

Q⊗ ∂ϕ

∂u
· x = fϕ, and Q⊗ ∂C

∂v
· y = fC

is straight forward. Only ∂ϕ
∂λ , ∂C

∂λ remain unchanged. With the abbreviations

X̂jj =

(
µjM −M
A µjM

)
, N̂ij =

 [Q]ij

[
∂ϕ
∂u

]
j

0

0 [Q]ij
[
∂C
∂v

]
j


B̂ij =

(
0[

Q−1M−1
2 M3

]
ij
B

)
, L̂jj =

 [
∂ϕ
∂λ

]
j[

∂C
∂λ

]
j


the algebraic representation of the almost block diagonalized system equals



X̂00 · · · 0 B̂00 · · · B̂0q

...
. . .

...
...

. . .
...

0 · · · X̂qq B̂q0 · · · B̂qq
N̂00 · · · N̂0q L00 · · · 0

...
. . .

...
...

. . .
...

N̂q0 · · · N̂qq 0 · · · Lqq





x0

y0

...

xq

yq

λ0

...

λq


=



[
Q−1M−1

2 ⊗ ~f
]

0
...[

Q−1M−1
2 ⊗ ~f

]
q

[fϕ]0
[fC ]0

...

[fϕ]q
[fC ]q


. (6.24)

In general, the time polynomial is smaller than 15 and thus the diagonalizing and

inverting of the time matrices is very fast and only needs to be carried out once per

time step. As pointed out earlier this is not a block diagonalization but the population

structure of the global system matrix has been significantly improved as can be seen in

Figure 6.2. This can be exploited by both direct and iterative solvers. The experimental

speed up is displayed in Figure 6.3. In case of q = 3, this strategy leads to a reduction

of the computational time for Matlab’s direct solver by a factor of two whereas for

q = 6 this factor is already eleven. In general the number of non-zero entries is almost

reduced by the factor q + 1.

113



6 Hyperbolic Contact Problems with Friction
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Figure 6.2: Sparsity pattern of direct (left) vs. almost block diagonalized (right) ap-

proach for q = 3, uniform spatial mesh p = 2, 968+968 primal dof, 88
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mesh with 25 elements and p = 2, 968+968 primal dof, 88 Lagrangian dof
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6.3.2 Uzawa

The problem (6.5a), (6.5b) and (6.10) can also be solved by the following highly parallel

Algorithm 6.2. (Uzawa algorithm for elasto-dynamic frictional contact)

1. Choose initial solution λ0 ∈ RnC , cn > 0, ct > 0, tol > 0

2. For k = 0, 1, 2, . . . do

a) Find displacement uk and velocity vk by solving (6.5a), (6.5b) with λk given.

b) Update Lagrange multiplier by pointwise projection.

λkn,ps,pt = max {0, λn,ps,pt + cn(un,ps,pt − gps,pt)} (6.25)

λkt,ps,pt = F λt,ps,pt + ctvt,ps,pt
max {F , |λt,ps,pt + ctvt,ps,pt |}

(6.26)

c) Stop if
∥∥λk−1 − λk

∥∥ < tol
∥∥λk−1

∥∥ or
∥∥λk−1 − λk

∥∥ < tol, else goto step 2.

The advantage of this algorithm is that λ appears as a known function in (6.5a) and

(6.5b). Thus, the corresponding system matrix can be block diagonalized and the

subproblems solved in parallel. The projection of λ can be carried out pointwise with

only marginal computational cost. However, the convergence rate heavily depends on

the damping parameters and is in general very slow.

6.4 Numerical Experiments

As a numerical example, a multiple impact of a square with a smooth rigid foundation

is simulated. More precisely, the reference configuration of the linear elastic body is

Ω = [−1, 1]2 with E = 2000 and ν = 0.3 and the time interval is I = (0, 0.9]. The gap

function is g(x) = 1− 1
2 cosx, the time independent volume force is f = (0,−20)T and

the surface force on ΓN is zero everywhere. The measure of ΓD is zero and the locations

of ΓN and ΓC are as displayed in Figure 6.4. The initial conditions are u = u̇ = 0 and

in case of Tresca friction the friction coefficient is µf = F = 0.5.

Since the volume and surface forces are time independent the system must not lose

energy in the frictionless case. The energy is defined as in (6.16). Figure 6.5 displays

the energy of the system which is the same as the loss of energy due to the initial

conditions. The lowest order h-version is energy dissipative as predicted by Lemma 6.3.

Most but not all of the energy is lost during the two impact faces, i.e. between 0.2 and 0.4

and between 0.6 and 0.75. For the coarsest mesh (blue line) too much energy is lost for

the square to rebounce. Moreover, for refined h-meshes the energy loss during the first

impact becomes much smaller and the square rebounces higher. Therefore, the second
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g = −1
2 cosx + 1

Ω = [−1, 1]2

ΓC

ΓN

rigid foundation

Figure 6.4: Reference configuration of the linear elastic body

impact occurs at a later time. For the hp-method, the mesh is geometrically graded

towards the boundary of Ω to resolve the contact set and the reflection of the shock

wave. The shock wave results from the sudden chance in velocity at the time of impact

and is responsible for the rebouncing of the object. The time mesh is geometrically

graded toward the beginning and ending of the impact from the right. These time

points are experimentally determined by the solution of the h-version. The hp-method

is not energy dissipative as it artificially generates energy peaks. However, much fewer

degrees of freedom, and therefore CPU time, are needed to obtain an equally good

approximation in terms of energy loss compared to the lowest order h-version. Since

no analytic solution is available, the error is measured by the distance of the norm

values, i.e.
(
‖u0,∞‖2L2I;H1(Ω) − ‖uhp‖

2
L2I;H1(Ω)

) 1
2
. Figure 6.6a shows the superiority of

the hp-method and also to the extremely slow convergence of the uniform h-version.

The same observations are made for Tresca frictional case, displayed in Figure 6.6b

The numerical experiment visualized in Figure 6.7 indicates that the semi-smooth New-

ton method converges locally Q-quadratic in the frictionless case and locally super linear

in the Tresca frictional case. In both cases, the SSN algorithm is by far superior to the

Uzawa algorithm, which, although not visible, converges extremely slowly. As in the

parabolic case, Figure 6.8a shows that the choice of the parameter µ in the penalized

Fischer-Burmeister NCF has only very little influence on the average number of SSN

iterations per time step for the hp-method. However, the number of iterations can

be reduced significantly if the initial solution for the iterative solver is obtained from

extrapolation. This can be done in a similar way to the parabolic case as displayed in

Figure 6.8b.
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7 Conclusion

In this dissertation an approximation strategy is presented and analyzed which is suit-

able for different classes of differential operators and discretization methods for both

contact and obstacle problems. In particular, a hp-FEM interior penalty discontinu-

ous Galerkin (IPDG) method is used for a non-symmetric, elliptic obstacle problem,

a hp-FEM IPDG/time discontinuous Galerkin (TDG) method for a parabolic obstacle

problem, a hp-BEM Galerkin method for an exterior, elliptic stochastic contact problem

and an hp-FEM Galerkin for a linear elasto-dynamic frictional contact problem.

Common to all discretization methods is a mixed formulation in which the non-penetra-

tion condition and the friction condition are weakly enforced by a single variational

inequality constraint. It is shown that on a continuous level, this mixed formulation

is equivalent to a variational inequality formulation in which the non-penetration con-

dition is strongly enforced. All but one of the considered differential operators are

not symmetric and, therefore, the variational inequality formulation is not equivalent

to a constraint minimization problem. Hence, only Uzawa and projection-contraction

solvers are guaranteed to converge. Therefore, an efficient iterative solver is constructed,

which reduces the computational time for the solvers from three hours to six seconds

in a 1D parabolic case. The key for that is to write the discrete Lagrange multiplier

for the mixed method as a linear combination of basis functions which are globally

biorthogonal to the basis functions of the primal variable. If the primal basis func-

tions are Gauss-Lobatto-Lagrange basis functions on an interval in 1D, rectangular in

2D, and cube in 3D, the system matrix of the variational inequality constraint be-

comes a positive definite diagonal matrix. This allows to rewrite the discrete sign

and non-penetration conditions into a complementarity problem for each coefficient of

the solution’s vectors. Employing a vector-valued penalized Fischer-Burmeister non-

linear complementarity function reformulates the discrete mixed problem into finding

the unique root of a strongly semi-smooth function. This in turn is solved by a semi-

smooth Newton (SSN) method for which local Q-quadratic convergence is proven. The

iterative solver has therewith optimal convergence properties for a Newton method and

only requires coercivity, but not symmetry of the differential operator. The challenging

part is the local construction of basis functions which are globally biorthogonal, even on

irregular meshes, which naturally arise in hp-adaptivity. In DG methods, they must be

biorthogonal to L2-basis functions and, therefore, a discontinuous extension of affinely

transformed local basis biorthogonal functions with zero is sufficient. For H
1
2 (ΓC)-

conforming primal basis functions, the same assembling algorithm can be used for the

dual as for the primal variable. Furthermore, it is proven that the discrete variational
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inequality formulation is equivalent to the discrete mixed method if the strong discrete

non-penetration condition is a one-sided box constraint on the expansion coefficients

with the constraining coefficients obtained from a mortar projection of the obstacle.

Therewith, the efficient SSN algorithm is a fast iterative solver for both the mixed and

variational inequality formulations.

Typically, the solution of contact and obstacle problems is of reduced regularity which

is induced by the a priori unknown free boundary. For the BEM approximation of the

stochastic problem, which is a conforming approach in the primal variable, a residual

a posteriori error estimator is derived. For this, the residual estimator from [10] is

extended to an auxiliary problem in a L2
ρ(Θ; H̃

1
2 (ΓΣ))-setting and a separating of the

approximation error into a discretization error of the auxiliary problem and into an error

arising from the contact conditions as in [8] is used, yet generalized to arbitrary obsta-

cles. For non-conforming methods like DG, this approach is not possible. Therefore, a

hierarchical a posteriori error estimator for the IPDG variational inequality formulation

is derived, since the discrete variational inequality and mixed methods are equivalent.

Due to the mesh dependent energy norm, a p−(p+1) estimator requires less CPU-time

than a h− h
2 estimator and less time to implement. Using the local analyticity estimate

from [36] to decide weather an element is h- or p-refined, the numerical experiments

to the elliptic obstacle case showed the aspired exponential convergence. Even in the

parabolic case the convergence rates have been improved significantly compared to uni-

form meshes. The further experiments to the stochastic and hyperbolic cases show the

variety of applicability of the general scheme presented and analyzed in this disserta-

tion.

The fundamental a priori error estimates for the obstacle problems with DG and the

numerical experiments encourage additional research on the approximation properties

of the discrete finite element spaces. Further research should be done on the discrete

inf-sup-condition for a p-version IPDG with biorthogonal basis functions. Therewith,

error estimates which include the error in the Lagrange multiplier may be proven. In-

vestigations on how the subdifferentials Hk can be preconditioned may lead to a further

reduction of computational time.
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[35] P. Houston, D. Schötzau, and P. Thomas, Energy norm a posteriori error

estimation of hp-adaptive discontinuous Galerkin methods for elliptic problems,

Math. Models Methods Appl. Sci., 17 (2007), pp. 33–62.

[36] P. Houston and E. Süli, A note on the design of hp-adaptive finite element

methods for elliptic partial differential equations, Comput. Methods Appl. Mech.

Engrg., 194 (2005), pp. 229–243.
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vol. 76, Dunod Paris, 1969.

[56] J. Lions and G. Stampacchia, Variational inequalities, Communications on

Pure and Applied Mathematics, 20 (1967), pp. 493–519.

[57] M. Maischak, The analytical computation of the Galerkin elements for the
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