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Summary 

The current investigation was focused on the identification and characterization of Rdr1 

resistance locus that was introgressed from the wild rose species Rosa multiflora. The 

functional characterization of Rdr1 resistance locus led to the identification of two 

resistance genes active against black spot of roses; RGA1 and RGA8 later named as 

Rdr1-1 and Rdr1-8. However Rdr1-8 displayed more consistent and profound protection 

(41%) against black spot infection as compared to Rdr1-1 (26%). Rdr1 is the first 

monogenic dominant resistance gene described in the genus Rosa that confers resistance 

to black spot of roses caused by Diplocarpon rosae, a facultative biotrophic parasitic 

ascomycete. According to the previous studies the Rdr1 resistance locus carries nine 

copies of resistance gene analouges (RGA) of the Toll-interleukin 1 receptor (TIR), 

nucleotide binding site (NBS), leucine rich repeat (LRR) type within an interval of 

220Kb of DNA. In the current study all nine RGAs are named as RGA1, RGA2 to 

RGA9. Available sequence analysis of the Rdr1 locus revealed RGA4 as a pseudogene, 

disrupted by a transposon insertion of about 7 kb in its first intron emphasizing its 

possible inactivation due to the large size of the insertion. On the basis of sequence 

analysis the number of Rdr1 candidates was reduced to 8 (RGA1- 3 and RGA5- 9). 

 

The putative 8 candidates for Rdr1 gene were isolated by enzymatic digestion of the 

corresponding BACs harbouring Rdr1 locus (155F3, 29O3, 94G8 and 20F5; Genebank 

of Rosa multiflora). The first step of the characterization of candidate genes (CGs) was 

the expression analysis. Initially the heterologous system of N. benthamiana was used 

to demonstrate their expression and activity against Dort E 4 (race 5 of D. rosae). 

Although all RGAs were found to be expressed suggesting the presence of required 

regulatory elements for the expression of CGs they did not responded to Dort E 4 

inoculations and further analysis revealed the fact that the fungus cannot be propagated 

in tobacco. Expression profiles of RGAs in different tissues (leaves, petals and roots) of 

homologous system (resistant rose genotypes: 91/ 100-5 and Rosa multiflora) reduced 

the number of candidates to five; RGA 1, 3, 7, 8 and 9. Two of the remaining five 
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candidates, RGA8 and RGA1 were able to restrict the growth of Dort E4 significantly 

when used to complement the susceptible rose genotype transiently. Agrobacterium 

mediated transient homologous disease assay proved RGA8 and RGA1 as the major 

resistance genes that confers resistance to black spot isolate Dort E 4 in roses. The race 

specificity of these genes was demonstrated by observing their activity against race 6 of 

D. rosae in the transient disease assay and these were found to be inactive against race 

6. The functionality of Rdr1 locus against race 5 was also shown by reverse genetics 

approach. Rdr1 locus of resistance rose genotype 91/ 100-5 was transiently knockout 

followed by fungal colonization that was not possible before. As a part of this study 

Agrobacterium mediated stable transformations were carried out to genetically 

complement a susceptible rose genotype and Arabidopsis that are ready for follow up 

studies, due to time limitations further results could not be included here. 

 

The 5‟ and 3‟ RACE were determined for RGA8 that revealed the presence of a full 

length cDNA of 3369 bp encoding a predicted polypeptide of 1122 amino acids (aa) 

with an average molecular weight of 123.4 kDa. The deduced aa sequence show 

homology to TIR, NBS and LRR domains. The full length cDNA sequence for RGA3 

was already available whereas for RGA7 it was determined during this investigation. 

The comparison of three proteins (RGA 8, 3 and 7) revealed high similarity ranging 

between 58-80% and presence of 119 unique amino acids in RGA8 protein. The overall 

trend of selection operating on the three paralogs of Rdr1 gene family is sequence 

conservation however; the N-terminal halves of the genes suggest more sequence 

conservation when compared to C-terminal region of genes. 

 

Key words: Rosa, Black spot, Rdr1, Agrobacterium mediated transient disease assay 
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Identifizierung und Molekulare Charakterisierung des Resistenzgens Rdr1 aus 

Rosen 

Aneela Yasmin 

 

Zusammenfassung 

Das Ziel der vorliegenden Arbeit war die Identifizierung des Resistenzgens Rdr1 

welches aus Rosa multiflora in Kulturrosen eingekreuzt worden war. Die funktionelle 

Charakterisierung von Kandidatengenen am Rdr1-Lokus führte zur Identifizierung von 

zwei Genen, RGA1 und RGA8, die jeweils Resistenz gegenüber Sternrußtau vermitteln 

können. Dabei zeigte RGA8 mit 41% eine konsistenteren und grundlegenderen Schutz 

gegen die pilzliche Infektion als RGA1 (26%). Der Rdr1-Lokus umfasst das erste 

genetisch charakterisierte Resistenzgen gegen Sternrußtau an Rosen, hervorgerufen 

durch Diplocarpon rosae, einen parasitischen, hemibiotrophen Askomyceten. 

Vorhergehende Untersuchungen hatten gezeigt, dass in einem physikalischen Intervall 

von 220 kb um den Rdr1-Lokus neun Kopien einer Genfamilie mit hoch signifikanter 

Ähnlichkeit zu Toll-interleukin1 receptor (TIR), nucleotide binding site (NBS), leucine 

rich repeat (LRR) Genen vorkommen und dass diese Gene (RGA1-RGA9) die 

wahrscheinlichsten Kandidatengene für Rdr1 darstellen. Nach Analyse der Sequenzen 

konnte RGA4 als Kandidatengen ausgeschlossen werden, da eine 7 kb lange Insertion 

zur Inaktivierung führte und es daher als Pseudogen anzusehen ist. Für die 

verbleibenden acht Kandidatengene wurden Subklone von den vier BAC Klonen, die 

das DNA-Intervall des Rdr1-Lokus überspannen, hergestellt. 

 

Als erster Schritt wurde die Funktionalität der potentiellen Promoterbereiche der 

Kandidatensequenzen durch transiente heterologe Expression in Nicotiana 

benthaminiana getestet. Alle acht Kandidatengene werden im heterologen System 

exprimiert, jedoch konnten so noch keine Komplementationsexperimente durchgeführt 

werden, da sich Nicotiana als Nichtwirt für Diplocarpon herausstellte und damit keine 

Reaktion auf die Isolate der Rasse 5 provoziert werden konnten. Die Analyse der 

Expressionsprofile der Genfamilie in Rosengeweben reduzierte die Anzahl echter 

Kandidaten auf fünf (RGA 1, 3, 7, 8 und 9). In einem transienten 

Komplementationssystem welches im Rahmen dieser Arbeit für Rosenblätter entwickelt 

wurde, konnten nur RGA1 und RGA8 das Wachstum des Isolats Dort E4 signifikant 

reduzieren und damit die Rdr1 Funktion auf diese beiden Kandidaten eingrenzen. Mit 
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diesem Assay konnte keine Reduktion des Wachstums der Rasse 6 erreicht werden, 

gegen die Rdr1 nicht wirksam ist. Die Bestätigung, dass die Rdr1 Funktion von dieser 

Genfamilien bedingt wird, konnte durch einen zweiten „reverse-genetics“ Ansatz 

erhalten werden. Hier wurde ein RNAi-Konstrukt, welches gegen einen konservierten 

Bereich aller Mitglieder der Genfamilie gerichtet ist im transienten Assay getestet und 

erhöhte im resistenten Genotyp 91/100-5 im Vergleich zu einem GUS-

Kontrollkonstrukt signifikant die Anfälligkeit des ansonsten hochresistenten Genotyps. 

Die im Rahmen dieser Arbeit begonnene stabile Transformation von Rosen sowie 

Arabidopsis mit einzelnen Kandidatengenen konnte leider aus Zeitgründen nicht 

abgeschlossen werden. 

 

Für RGA8 wurden die 3´und 5´ Bereiche des Transkriptes bestimmt und die 

Gesamtlänge der cDNA mit 3369 Basenpaaren bestimmt, die für ein daraus abgeleitetes 

Protein von 1122 Aminosäuren mit einem ungefähren Molekulargewicht von 123,4 kDa 

kodieren. Die abgeleitete Aminosäuresequenz weist signifikante Ähnlichkeiten zu TIR, 

NBS und LRR Domänen bekannter TNL Gene. Neben der bereits bekannten 

Volllängensequenz von RGA3 wurde in der vorliegenden Arbeit auch die cDNA-

Sequenz von RGA 7 bestimmt und alle drei Sequenzen miteinander verglichen. Die 

Ähnlichkeit auf der Ebene der abgeleiteten Aminosäuresequenz liegt zwischen 58 und 

80% über das gesamte Protein mit insgesamt 119 RGA8 typischen Polymorphismen. 

Insgesamt ergibt sich eine höhere Konservierung des N-Terminus im Vergleich zum C-

Terminus der drei Gene. 

 

Schlagwörter: Rosa, Sternrußtau, Rdr1, Agrobacterium transienten 

Komplementationssystem 
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1. General Introduction 

Among ornamental plants, rose is the most popular and adored flowering plant. The 

rationale for the popularity of rose flower is thought to be due to its color, size, 

fragrance and other physical attributes. The rose has been considered as a symbol of 

love, beauty, even war and politics from way back in time. The variety, color and even 

number of roses carry symbolic meanings. Therefore, they have been the most popular 

choice of flowers for the purpose of gifting across the world. Moreover, this woody 

perennial shrub is used as garden plants, cut flowers and pot flowers. They are native to 

the northern hemisphere i.e. Europe, North America, Asia and the Middle East (Joyaux, 

2003). The world‟s leading exporters of the cut flowers are the Netherlands, Denmark, 

the United States of America (USA), Columbia and Kenya (Döpper and Unterlercher, 

2007). In 2008, about 365.9 million pieces of rose cut flowers and 38.4 millions of rose 

pot plants were sold in Switzerland (Blumenboerse, Zurich), Germany (Landgard) and 

the Netherlands (Dutch Auctions) alone. According to the provisional data for 2008, 

Germany has spent 236.512 million Euro for rose cut flower imports only (AIPH/ 

Union Fleurs, 2009). The broad expansion and competition in the international trade of 

floricultural products demand blemish free ornamentals with eye catching visual 

quality. However, disease susceptibly, lack of proper soil management and bad 

sanitation pose major challenges to produce and maintain quality roses for such 

markets. In addition to that the use of roses in landscaping, demands low-maintenance 

roses that can survive without major protection measures and pruning.  

 

Rose diseases caused by different pathogens are one of the major causes of lower yields, 

weak and compromised growth, poor visual quality, and in extreme cases the death of 

stressed plants. The economically important pests of roses are mites, aphids, thrips, 

whiteflies, scale insects, weevils, caterpillar, nematodes and beetles. Whereas, the main 

diseases of roses include, powdery mildew (Podosphaera pannosa), black spot 

(Diplocarpon rosae Wolf), botrytis or grey mold (Botrytis cinerea), downy mildew 

(Peronospora sparsa Berk), rust (Phragmidium mucronatum, Phragmidium 

tuberculatum), and crown-gall (Agrobacterium tumefaciens) (Linde, 2003; Dreves-

Alvarez, 2003; Gleason, 2003; Xu, 2003; Shattock, 2003). Currently, these diseases are 

controlled by intensive spraying of agro-chemicals that has many reservations in terms 

of financial costs, unfavorable environmental consequences, health hazards and legal 

restrictions. The most devastating fungal diseases of roses are powdery mildew, black 
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spot and downy mildew. Powdery mildew usually infects roses grown in greenhouses. 

Whereas the black spot is a problem for field and garden roses grown in humid and 

moist conditions throughout the world (Horst, 1983) and is controlled by continuous 

spraying of fungicides during spring and summer. Although the safest option for the 

sustainable environment is the use of resistant varieties with durable genetic resistance, 

most of the cultivated roses lack natural resistance against black spot. Economic 

importance of rose as an ornamental plant, general disease susceptibility of cultivated 

roses combined with concerns over the use of pesticides portraits a scenario which 

favors breeding for resistant rose varieties as an important goal for many rose breeding 

programs. Numerous wild roses, resistant to black spot are reported. These include R. 

bella, R. californica v. plena, R. majalis, R. nanothamnus, R. multiflora, R. rugosa, R. 

wichuraiana, R. roxburghii, R. virginiana, R. carolina and R. laevigata (Schulz et al., 

2009; Drewes-Alvarez, 2003). The introgression of the natural genetic resistance to 

modern roses is very suitable strategy for creating resistant cultivars. 

 

So far the conventional and molecular methods of breeding possess some limitations to 

manipulate rose, owing to high heterozygosity, polyploidy and limited knowledge of the 

genetic make-up of roses. Meanwhile, the exploitation of natural genetic resistance also 

requires understanding of the resistance genes in terms of diversity, genomic 

organization and functionality. In this regard, our research group has previously 

characterized a single monogenic dominant resistance gene locus (Rdr1) against black 

spot (Diplocarpon rosae) through phytopathological methods in tetraploid roses 

(Debener et al., 1998; Von Malek and Debener, 1998). Additionally, Rdr1 was mapped 

to a telomeric position of linkage group 1 in the diploid population 94/1 (Debener and 

Mattiesch, 1999; Von Malek and Debener, 2000). The construction of two large insert 

BAC libraries (Kaufmann et al., 2003; Biber et al., 2009) and recent sequencing of 

BAC clones identified the location of Rdr1 gene within a 220kb region (Biber et al., 

2009). The 220 kb region contains 9 copies of “resistance-gene-analogues” sequences 

(RGA) of the T1R-NBS-LRR type of resistance genes (Terefe et al., 2010). As the only 

known function of this class of genes is resistance and no other resistance like sequence 

could be detected within the region there is a chance that one of the 9 genes is the 

functional gene.  
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The current research was aimed to functionally characterize the Rdr1 resistance gene 

family of roses and to identify the key single gene that confers resistance to black spot. 

Concomitantly, on one hand plant pathogen interaction studies with particular reference 

to functional genomics will provide the basis for conventional and molecular resistance 

breeding and on the other hand they will help to identify and isolate the functional rose 

resistance genes. 
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2. Review of Literature 

2.1. Rose 

2.1.1. Taxonomy and classification: 

The genus Rosa comprises of about 200 different species (Wissemann, 2003a) with a 

basic chromosome number of 7. The ploidy levels for wild species range between 

diploid to octoploid (Gudin, 2000), however, most of the modern cultivars are 

tetraploid. Cultivated roses comprise a huge genetic variability with more than 20000 

varieties as they are heterozygous outcrossers. Nevertheless, only eight to ten wild 

species had a major contribution in rose cultivation during the last 2000 years (Chandler 

and Lu, 2005; Gudin, 2000). 

 

The genome complexity in terms of various modes of reproduction and character 

inheritance make the infrageneric taxonomy of the genus Rosa very difficult 

(Wissemann and Ritz, 2005; and 2007). The most useful classification in use is the one 

defined by Alfred Rehder (1960) with some modifications. According to this 

classification, the genus Rosa is divided into four sub genera i.e. Hulthemia, 

Hesperrhodos, Platyrhodon and Rosa. The subgenus Rosa is further divided into 10 

sections (Wissemann, 2003) (Table 1.1). On the contrary, the most popular 

classification of cultivated roses is the one formatted by the American Rose Society and 

the World Federation of Roses (Cairns, 2003). Consistent with that classification, roses 

can be classified into three groups: the species; Old Garden Roses; and Modern Roses. 

Wild roses bloom once a year with a flower of four to five petals. In the varieties, all 

roses recognized before 1867 are classified as Old Garden Roses. They usually bloom 

fragrant flowers once per season as summer starts and some of their varieties include 

China, Tea, Moss, Damask, Bourbon, Hybrid Perpetual, and Noisette roses. All roses 

recognized after 1867 are grouped as Modern Roses. They produce flowers many times 

a year and some of their important varieties include hybrid Tea, Floribunda, and 

Grandiflora (Cairns, 2003). 
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Table 1.1: Subdivisions* of the subgenera Rosa. 

Section 
Species  

No. 
Origin Chromosome No. Subdivisions 

1.   Pimpinellifoliae (DC.) Ser. 

1825 
15 Asia, Europe 2n=2x, 4x=14, 28, balanced uncertain 

2.   Rosa (=sect. Gallicanae (DC.) 

Ser. 1825) 
1 Asia, Europe 2n=4x=28 

Many taxa given 

species rank 

3.   Caninae (DC.) Ser. 1825 50 Europe 
Unbalanced heterogamous fully sexual 

reproduction 2n=4x, 2n=5x, 2n=6x 
Six sub sections 

4.   Carolinae Crep. 1891  5(?) North America 
2n=4x=28 

2n=2x=14 
NA 

5.   Cinnamomeae (DC.) Ser. 1825 Uncertain (80) 
Asia, Europe, 

North America 
2x, 4x, 6x, 8x NA 

6.   Synstylae DC. 1813 

(diploid climbers) 
25 

Asia, Europe, 

North America 
2n=2x=14, 3x=14, 21 NA 

7.   Indicae Thory 1820 3 China 2n=2x, 3x, 4x= 14,21,28 NA 

8.   Banksianae Lindl. 1820 2(?) China 2n=2x=14 NA 

9.   Laevigatae Thory 1820 1 China 2n=2x=14 NA 

10. Bracteatae Thory 1820 1or 2 South East Asia 2n=2x=14 NA 

 

* This division is based on different physical features of wild roses as stipules, sepals, blooms, styles, leaves, thorns, etc. (Cairns 2003; Wissemann 2003). 
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2.1.2. Genetics of rose traits 

Plant geneticists and molecular biologists have paid very little attention to this thorny 

shrub may be due to the problems related to its polyploid nature, germination, 

reproduction and/or fertility. However, during the last two decades there are continuous 

attempts to generate valuable genomic resources for these inspiring ornamentals 

(reviewed by Byrne, 2009; Table 1.2). Dugo and colleagues (2005) mapped 13 QTLs in 

total controlling simple flowers with five petals to double flowers, powdery mildew 

resistance, leaf size, flowering time and size of the flowers. The gene t4 was identified 

as a QTL controlling the number of prickles on the stems (Crespel et al., 2002). In 

addition to that four marker maps are also constructed, 3 in diploid (Debener and 

Mattiesch, 1999; Crespel et al., 2002; Dugo et al., 2005; Yan et al., 2005) and one in 

tetraploid rose population (Rajapakse et al., 2001). 

 

   Table 1.2: Some gene loci mapped in roses (Debener and Linde, 2009) 

Gene Function References 

Blfo; d6 
Transition of stamens to petals, double 

flowers 

Debener and Mattiesch (1999) 

Crespel et al., (2002) 

Dugo et al., (2005) 

Blfa Pink flower color Debener and Mattiesch (1999) 

Rdr1* 

Rdr3 
Resistance to rose black spot 

Von Malek et al., (2000), 

Kaufmann et al., (2003) 

Whitaker et al., (2010) 

Rpp1 Resistance to rose powdery mildew Linde et al., (2004) 

prickles Prickles on the petioles Rajapakse et al., (2001) 

r4 Recurrent blooming Crespel et al., (2002) 

 

Rdr1* is the first single dominant resistance gene described in the genus Rosa. It confers resistance 

against black spot race 5 (Dort. E4). The resistance due to Rdr1 is assumed to follow the gene-for-

gene model (Von Malek and Debener, 1998). 

 

2.2. Black spot disease in roses 

Black spot of roses was first reported in 1815 by Fries in Sweden (Drewes-Alvarez, 

2003). The causative agent of this foliar disease of roses is Diplocarpon rosae, a plant 

pathogenic ascomycete that belongs to the family of Dermateaceae (Nauta & Spooner, 

2000). The conidial or imperfect stage of the fungus is known as Marssonina rosae 

(Lib.) Lind (Baker, 1948). Diplocarpon rosae flourishes in humid and wet conditions of 

spring. During infection it produces ascospores, and conidia that are dispersed by rain 
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and direct contact through arthropods to healthy plants. Usually, infection starts from 

lowest leaves and progresses upward causing early defoliation, loss of vigour and in 

extreme cases death of the plant (Bhashkaram et al., 1974). D. rosae has been 

differentiated into at least 15 physiological races (Whitaker et al., 2007; Yokoya et al., 

2000; Debener et al., 1998; Svedja and Bolton, 1980), though the use of uniform testing 

rose material may reduce the number of races. In the research group of Debener at the 

University of Hannover, Germany, AFLP and SSR analysis has been conducted to 

characterize the genetic diversity within a collection of D. rosae isolates. Preliminary 

results demonstrated a lower genetic complexity of populations indicating a low 

mobility compared to airborne pathogens (Blechert, 2005; Luhmann, 2009). 

 

2.2.1. Pathology  

The detailed infection cycle of D. rosae was originally described by Aronescu (1934) 

and Frick (1943), during the early 20th century. D. rosae is a hemibiotroph having a 

biotrophic phase characterized by haustoria and a necrotrophic phase characterized by 

necrotrophic intracellular hyphae (Gachomo et. al., 2006). The hemibiotrophic fungus 

produces asexually two celled conidia that under favourable conditions germinates and 

penetrates the cuticle of the leaf producing hyphae and appressoria followed by 

haustoria. The host damage can be visualized macroscopically within 10-12 days of 

infection (Blechert and Debener 2005). The disease symptoms include brown or dark 

black spots usually surrounded by chlorotic areas on leaves leading to an early 

defoliation of the host (Horst, 1983). Moreover, Blechert and Debener (2005) 

characterized the morphology of various interactions of D. rosae and roses in 8 different 

types; 5 types of them were found as susceptible with different developmental levels of 

prolonged hyphae and formed acervuli, whereas 3 types of them were found as resistant 

interactions lacking any visible fungal structures beneath the cuticle or having 

penetration hyphae and haustoria in epidermal cells and necrosis of single or larger cell 

clusters (HR). 

 

2.2.2. Disease control 

Conventionally, black spot is controlled by integration of different approaches e.g. 

planting under sun-shine to keep the foliage dry, in good sanitation, without overhead 

watering and along with intensive application of fungicides throughout the growing 

season. Effective fungicides viz. propiconazole, mancozeb, chlorothalonil, benomyl, or 
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a copper-sulphur dust are sprayed shortly after bud break and usually continue at regular 

intervals until the first hard frost (Bowen and Roark, 2001). These regular sprays are 

very significant for proper disease control as black spot may develop at any time during 

wet and humid conditions (Walker et al., 1996; Reddy et al., 1992). On the contrary, the 

continuous use of fungicides poses serious legal restrictions and environmental 

concerns. Therefore, growing black spot resistant rose varieties could be the most 

effective and safe option.  

 

2.3. Rose breeding for disease resistance (Black spot) 

Introduction of natural resistance of wild species to cultivated roses through 

conventional methods of breeding is a lengthy process and requires about 10 or more 

years. This approach will add undesired wild background in existing regular varieties 

which needs many generations of crosses for elimination (Drewes-Alvarez, 2003). 

However, recent developments in biotechnology and genetic engineering, with 

particular reference to the transfer of foreign genes into plants, gene isolation, 

identification and functional analysis have opened new insights and novel prospects for 

the alteration of single traits in already successful varieties (Chandler and Lu, 2005). 

There are reports describing the transfer of genes for pathogenesis-related proteins 

(Marchant et al., 1998), ribosome inactivating proteins (Dohm et al., 2001) and 

phytoalexins (Lorito et al., 2002) to increase the plant resistance against pathogens. 

Plants produce chitinases and glucanases in response to pathogen attack and their over-

expression could improve resistance to fungi. A rice gene for chitinase was transferred 

into rose callus reducing the severity of black spot disease up to 13-43% (Marchant et 

al., 1998). In addition to that, genes for ribosome inactivating proteins and barley genes 

for chitinases and glucanases were transferred into rose embryos by Agrobacterium. 

Their over expression reduced the black spot infection up to 60% (Dohm et al., 2002). 

But this level of disease resistance achieved by transgenic plants is not enough to 

develop a resistant variety. On the contrary, the transfer of a disease resistance gene 

active against black spot using molecular tools is thought to be a very promising option 

of producing black spot resistant rose varieties in short period of time. The first step 

towards this landmark is to find the sources of black spot resistance in wild and 

cultivated roses. Many rose genotypes have been reported as resistant against many 

major diseases. Field and laboratory evaluations have proved many rose species highly 

resistant to black spot. These include R. bella, R. californica v. plena, R. majalis, R. 



Review of Literature 

 

 

9 
 

nanothamnus, R. multiflora, R. rugosa, R. wichuraiana, R. roxburghii, R. virginiana, R. 

carolina, and R. laevigata (Schulz, 2009; Drewes-Alwarez, 2003). Disease resistance 

could be conferred by single or many genes and these genes may reveal race specific or 

non-race specific resistance. Additionally, the alleles may be dominant or recessive.  It 

is therefore, very important to know the genetic nature of disease resistance carried by 

these species to exploit the maximum potential of rose genotypes resistant against black 

spot. 

 

2.3.1. Plant pathogen interplay 

Plants have evolved multiple defense strategies to counteract biotic stresses. These 

include passive or pre-existing defenses as waxes, cuticle, apoplastic space, stable cell 

wall and inducible defenses (Goehre and Robatzek, 2008). Pathogens overcome some of 

the passive defenses by secreting hydrolytic enzymes or utilizing natural openings as 

stomata, hydathodes or wound sites to invade the apoplast space (Jones and Dangl, 

2006). Some pathogens exclusively stay in the apoplast (Ellis et al., 2009); other 

pathogens such as bacteria use a type III secretion system (T3SS) to inject effector 

proteins through the cell wall and plasma membrane, whereas fungi and oomycetes 

penetrate their hyphae through the cell wall and form haustoria (feeding structures) 

surrounded by the host plasma membrane (Ellis et al., 2009). The inducible or active 

line defenses can detect microbe associated molecular patterns (MAMPs or PAMPs) as 

a bacterial flagellin or fungal chitin by pattern recognition receptors (PRRs), which 

usually reside in plasma membrane and trigger MAMPs-triggered-immunity (MTI or 

PTI) (Bent and Mackey, 2007). MTI activates signaling cascades involving Ca++ fluxes 

and mitogen activated protein kinases (MAPKs) leading to defense reactions involving 

production of reactive oxygen species (ROS), deposition of callose in the cell wall, and 

expression of pathogenesis related proteins and defensins (Zipfel, 2009; Bolton, 2009; 

Pitzschke et al., 2009). However, some pathogens are able to suppress MTI by injecting 

effector proteins which can also reinforce plants defenses by encoding resistance 

proteins (RP). RPs recognize specific effectors directly (gene-for-gene hypothesis) or 

indirectly (guard hypothesis) resulting in effector-triggered-immunity (ETI); these R-

genes are the classical single locus, race specific R-genes. The typical symptoms of ETI 

are hypersensitive response (HR) or programmed cell death (PCD) and systemic 

acquired resistance (SAR) (Shah, 2009; Zipfel, 2009; Goehre and Robatzek, 2008; 

Heath, 2000). 
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Table 1.3: Different families of plant resistance proteins (Vidhyasekaran, 2008) 

RP-Families Localization 
Reference 

TIR-NBS-

LRR proteins 

Cytoplasm as peripheral 

membrane protein 

L6- flax                         Lawrence et al., 1995 

N- tobacco                    Whitham et al., 1994 

RPP1- Arabidopsis       Botella et al., 1998 

Non-TIR-

NBS-LRR 

proteins 

Cytoplasm as peripheral 

membrane protein 

Lr10- wheat                  Feuillet et al., 2003 

Mla1-barley                 Halterman et al., 2001 

RB- potato                    Song et al., 2003 

LRR proteins 

without NBS 

domain 

Extra-cytoplasmic LRRs 

anchored to a trans-

membrane domain 
 

Or 
 

LRR-kinase with eLRR 

fused to a cytoplasmic 

serine-threonine kinase 

domain (KIN) 

Cf2/5- tomato               Dixon et al., 1996 

Vfa1-4- apple               Xu and Korban, 2002 

 

 

 

 

Xa21-rice                     Song et al., 1995 

Proteins 

without LRR 

domain 

NBS-LRD proteins 

 

Intracellular protein 

kinases  

Serine/threonine protein 

kinase 

 

Trans-membrane 

proteins 

Small proteins with N-

terminal trans-

membrane and CC-

domains 

 

Lectin type proteins 

 

Heat shock protein like 

proteins 

 

NADPH-dependent 

reductase type proteins 

 

Photorespiratory 

peroxisomal enzyme 

proteins 

Pi-ta – rice                     Bryan et al., 2000 
 

 

 

 

Pto – tomato                  Martin et al., 1993b 

                                       Loh and Martin, 1995 

 

 

 

RPW8.1– Arabidopsis   Xiao et al., 2001;2003 

 
 

 

 

 

RTM1- Arabidopsis      Chisholm et al., 2000 
 

 

RTM2- Arabidopsis      Whitham et al., 2000 

 

 

HM1- maize                  Johal and Briggs, 1992 

 

 

At1, At2- melon            Taler et al., 2004 
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2.3.1.1. Plant resistance genes 

Resistance genes usually provide two types of resistance i.e. qualitative or quantitative. 

The qualitative resistance is governed by major dominant or recessive genes whereas 

quantitative resistance depends on many minor genes and is assumed as non-race 

specific resistance without any hypersensitive response (Ovesna et al., 2000). The major 

genes confer race specific resistance following the gene-for gene hypothesis of Flor 

(1956; 1971). As plants solely depend on innate immunity they may contain hundreds 

of disease resistance genes (Young, 2000; Eckardt and Innes, 2003) that are amplified in 

high number and are positioned in the genome in a way that favors their rapid evolution 

(Fluhr, 2001). These resistance genes are classified in different families or groups 

depending on the structural domains of proteins they code (Table 1.3). Many recessive 

genes providing very high level of resistance are also cloned. The mlo gene of barley, 

not a classical R-gene, is a calmodulin binding transmembrane protein that confers non 

race specific resistance to powdery mildew (Bueschges et al., 1997; Kim et al., 2002). 

A gene pmr6 of Arabidopsis encodes pectate lyase-like protein and provide resistance 

against powdery mildew (Vogel et al., 2002). In addition to that RRS1-R recessive gene 

of Arabidopsis encodes a protein having a molecular structure of TIR-NBS-LRR 

domains and a WRKY motif (Deslandes et al., 2002; 2003). According to Shirano and 

coworkers ssi4 is a recessive resistance gene of Arabidopsis of TIR-NBS-LRR type 

(Shirano et al., 2002). This gene promotes constitutive expression of pathogenesis 

related proteins and suppress the growth of bacteria Pseudomonas syringae pv. 

maculicola and oomycete pathogen Hyaloperonospora parasitica. 

 

2.3.1.2. NBS LRR gene family 

So far, more than 40 plant resistance genes have been cloned from different plant 

species, the majority of which belong to the NBS-LRR resistance gene family (Lukasik 

and Takken, 2009; Jiang et al., 2007). These genes are found as single genes and/or as 

tight gene clusters. The only known function of this gene family in plants is elicitor 

recognition and activation of downstream signal pathways leading to disease resistance 

(Lorang et al., 2007). This family is further subdivided into two groups based on the 

structural differences at the amino terminus. The first group contains a TIR motif with 

homology to toll/interleukin-1-receptor (TIR), whereas the second group has a coiled 

coil (CC) domain, also sometimes referred as leucine zipper (LZ) (Pan et al., 2000). In 

addition to that the TIR group has an aspartic acid (D) as the final amino acid of the 
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kinase 2 in the NBS domain, whereas non-TIR group has a tryptophan (W) on this place 

(Pei et al., 2007). 

 

The NBS is a part of a nucleotide binding (NB)-ARC domain that belongs to the 

STAND (signal transduction ATPases with numerous domains) family of NTPases. 

These proteins are proposed to regulate signal transduction as NB domain hydrolyzes 

NTP and changes its conformational states (reviewed in Takken et al., 2006). The 

structure of the NB-ARC domain of RPs was derived from the crystal structures of 

APAF-1 or CED-4 (Takken et al., 2006). The alignment of APAF-1 with RPs revealed 

three sub-domains conserved in NBS-LRR proteins: a P-loop NTPase fold forming a 

parallel β-sheet flanked by α-helices, an ARC1 consisting of a four-helix bundle, and an 

ARC2 adopting a winged-helix fold that is connected to the LRR domain by a short 

linker. LRR domains contain various numbers of tandemly repeated leucine-rich motifs 

with a conserved core consensus of L-X-X-L-X-L-X-X-N that form a series of β-strands 

(Jiang et al., 2007; Wroblewski et al., 2007; Fluhr, 2001). The arc-shaped structure of 

the LRR domain suggests its role in different intra and intermolecular interactions of 

direct recognition of pathogen effectors, regulating protein activation and signal 

transduction (Padmanabhan et al., 2009). However, the mechanisms that make these 

dynamic functions possible await exploration. The N-terminus of NBS-LRR proteins is 

structurally diverse having homology to TIR or CC domain, as described earlier. The 

proposed functions of the N-terminal domain are downstream/ upstream signaling and 

pathogen recognition (Lukasik and Takken, 2009; Takken et al., 2006; Fluhr, 2001).  

 

Typically, RPs activate a HR/PCD to halt the growth of a pathogen (Goehre and 

Robatzek, 2008). However, sudden activation of these proteins can damage plants 

themselves which suggests a tight regulation of their activation. This inactivation of RPs 

is achieved by intramolecular interactions between the various domains 

(Autoinhibition). According to the proposed model for the activation of NBS-LRR 

proteins (Lukasik and Takken, 2009; 2006; Bent and Mackey, 2007), these proteins are 

in resting (ADP) or off state in the absence of a pathogen. Detection of pathogen 

elicitors releases this tight negative control by conformational changes in the LRR and 

ARC2 sub-domain (Induced state) followed by the exchange of a nucleotide that 

triggers the active state of RPs ready to interact with downstream signaling components 

and activate defense responses. The perception of pathogen elicitors is accomplished by 
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either direct (gene-for-gene model) or indirect manner (guard or decoy model) (Hoorn 

and Kamoun, 2008). However, it is reported that the TIR or CC domain mediates 

indirect recognition in the majority of such cases, whereas the LRR domain mediates 

direct recognition of the pathogen elicitors (reviewed in Padmanabhan et al., 2009). 

 

2.3.2.   Positional cloning of resistance genes 

One of the most traditional and unbiased approaches for the identification of genes 

governing important heritable traits is the positional or map based cloning. This 

laborious method of discovering genes searches whole genome without any prior 

knowledge of the physiology, biology and/or the role of the genes. There are many 

examples of R-genes that were isolated by positional cloning and demonstrated to act 

against a range of pathogens (Staskawicz et al., 1995; Ballvora et al., 1995; Bent, 1996; 

Hammond-Kosack and Jones, 1996; and 1997; Gebhardt, 1997). However, this 

approach is limited by the genome size, number of the genes within the locus of interest, 

presence of transposons/ repetitive sequences in the species being investigated and time 

required for the complementation test. An alternative strategy could be the candidate 

gene (CG) approach, based on the assumption that the loci controlling the trait of 

interest are carrying the genes of biologically known function (Pflieger et al., 2001). 

Human, animal and plant geneticists have successfully utilized this approach to reduce 

the number of candidate genes since the 1990s (Rothschild and Soller, 1997; Byrne and 

Mc-Mullen, 1996). These candidate genes can be classified as functional CGs when 

based on molecular or physiological studies or as positional CGs when based on linkage 

data of the locus of interest. Several genes have been screened and mapped using this 

approach including the CO (constans) gene of Arabidopsis, involved in late flowering 

(Putterill et al., 1995), CGs for fruit quality in peach (Etienne et al., 1999) and in tomato 

(Causse et al., 1999), plant height QTLs in maize (Beavis et al., 1991), QTLs affecting 

flowering time in Arabidopsis (Koornneef et al., 1998), cloning and isolation of major 

disease resistance genes in several species as potato(Paal et al., 2004), tomato (Pan et 

al., 2000), pepper (Pflieger et al., 1999), lettuce (Woo et al., 1998; Shen et al., 1998), 

common bean (Geffroy et al., 1999a; Rivkin et al., 1999) soybean (Kanazin et al., 1996; 

Yu et al., 1996), Rosaceae family (Samuelian et al., 2008; Martinez Zamora et al., 

2004; Lee et al., 2003; Baldi et al., 2004; Lalli et al., 2005; Soriano et al., 2005; Xu et 

al., 2005). These are structural similarities between resistance genes isolated from 

different plants that made it possible to clone R-genes using the candidate gene 
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approach. The cloning of potato Gro1 gene, conferring resistance to nematodes, was 

reported without prior construction of a physical map (Paal et al., 2004). The Gro1 

resistance locus active against all pathotypes of G. rostochiensis initially localized on 

potato chromosome VII (Barone et al., 1990) followed by high resolution mapping that 

restricted Gro1 locus to 1.4 cM (Ballvora et al., 1995). Later on conserved sequences 

between resistance genes N (tobacco- Whitham et al., 1994) and RPS2 (Arabidopsis- 

Bent et al., 1994; Mindrinos et al., 1994) were used to isolate RGAs from potato 

genome; two of the isolated RGA fragments St322, and St334 found to co-localized 

with Gro1 and identified a cluster of genes at Gro1 locus (Leister et al., 1996). Paal and 

colleagues utilized this information and assumed that the resistance gene like marker 

St322, co-localized with Gro1 was identical to the nematode R gene. Using this marker 

they isolated 15 candidate genes from genomic libraries. Inheritance analysis, linkage 

mapping and sequencing reduced the number of candidates to three. Stable genetic 

complementation of potato validated that the gene Gro1-4 provided resistance against 

G. rostochiensis pathotype Ro1. In soyabean degenerate primers identified nine classes 

of RGAs those were located to eight different linkage groups by genetic mapping near 

known resistance genes (Kanazin et al., 1996). However, the most successful and 

updated strategy for the identification of R-genes is the combination of positional 

cloning and candidate gene approaches. The final validation of a CG is usually provided 

through physiological analysis, genetic transformation and/or sexual complementation 

(Byrne and McMullen, 1996; de Vienne, 1999). The genetic complementation of a 

deficient phenotype and/ or silencing the under test gene in a non-deficient phenotype 

are the most popular approaches to prove the functionality of a CG (Pflieger et al., 

2001). In addition genetic complementation could be achieved by generating 

transformants that are expressing the CGs stably or transiently depending on the number 

CGs and time frame needed for the complementation assays.  

 

2.3.3. Rdr1 background studies 

The genetic characterization of Rdr1 was started in our research group by investigating 

the interaction of single conidial isolates of black spot on wild and cultivated roses. This 

interaction resulted in the identification of five different physiological races of black 

spot, Diplocarpon rosae, for roses (Debener et al., 1998). In this study, a so called 

quadratic check implied as first evidence for the presence of a gene-for-gene 

relationship between black spot and roses. Meanwhile extensive phytopathological 
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analysis in tetraploid rose populations were performed and the segregation ratios of the 

resistance reaction against the black spot isolate DortE4 indicated the presence of a 

single dominant resistance locus in the duplex configuration (RRrr), which they called 

Rdr1.  

 

The first linkage map for diploid roses was constructed using RAPD and AFLP markers 

in a population of 60 F1 plants (Debener and Mattiesch, 1999). The hybrid population 

resulted from a cross between the diploid rose genotypes 93/1–117 and 93/1–119. In 

addition to molecular markers the map also showed the location of two genes 

controlling important morphological traits, petal number and flower colour. During the 

following year, seven AFLP markers linked to Rdr1 within  the distances of 1.1 and 7.6 

cM were developed using the tetraploid progeny 95/3, segregating for the presence of 

the black spot resistance gene Rdr1 (von Malek et al., 2000). The most closely linked 

AFLP marker M10 was converted into a SCAR marker and screened in a larger 

population. The SCAR marker was found to be linked to Rdr1 at a distance of 0.76 cM. 

The closely linked markers developed by von Malek should have enabled the 

localisation of Rdr1 on the rose linkage map developed by Debener and Mattiesch in 

1999. The direct mapping of Rdr1 in this population was not possible because no clear 

segregation of black spot resistance was observed. Moreover, the direct integration of 

the markers was also not possible since none of the AFLP markers could be detected in 

the parental lines (93/1–117 and 93/1–119), and the SCAR marker SCM10 did not show 

any polymorphism between both genotypes even when applied as a CAPS marker. The 

indirect localisation of Rdr1 to the distal ends of linkage groups A1 and B1 of 93/1-117 

and 93/1-119, respectively was facilitated by developing the RFLP markers BMA 1-4 

from the AFLP marker M10 (von Malek et al., 2000). 

 

The first crucial step to start map based cloning of Rdr1 was the construction of a BAC 

library from a R. rugosa genotype (Kaufmann et al., 2003). This BAC library comprised 

about 27,300 clones with an average insert size of 102 kb, containing 5.2 genome 

equivalents. The probability of recovering any given sequence of rose genomic DNA 

from this library was greater than 99%. Meanwhile, to facilitate positional cloning the 

mapping resolution in the Rdr1 region was improved by bulked segregant analysis using 

538 plants of three diploid sister backcross populations segregating for Rdr1 (Kaufmann 

et al., 2003). The SCAR marker SCM10 and the other Rdr1-linked AFLP markers that 
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were identified in the diploid populations could not be analyzed in the tetraploid 

population due to the lack of polymorphism between the parents (von Malek et al., 

2000). Further analysis located three new AFLP markers on one side of Rdr1, the 

closest of which was at a distance of 0.18 cM to Rdr1 and one AFLP marker co-

segregated with black spot resistance in the 538 plants. In addition to that one CAPS 

marker was located on the telomeric side of Rdr1 at a distance of 0.93 cM. In this way 

the gene was located between two closely linked markers (Kaufmann et al. 2003). 

 

However, the R. rugosa genotype used to construct the BAC library does not possess 

the black spot resistance allele Rdr1, the reason for selecting R. rugosa was the small 

genome size (2C< 1.10 pg) and future use of this contig for the establishment of a 

syntenic contig in some resistant genotype harbouring Rdr1. Therefore, a second library 

was established from the R. multiflora genotype 88/124-46. This genotype obtained the 

resistance by introgression from the wild rose species R. multiflora and is homozygous 

for the resistant allele (Biber et al., 2009). This BAC library was constructed in the 

transformation competent vector pcLD04145 with a smaller average insert size (46 kb) 

compared to the R. rugosa library. The multiflora library consists of 60,000 clones 

providing genome coverage of 4.8. Markers from the R. rugosa contig were taken to 

identify the respective R. multiflora clones via hybridization. The contig was 

constructed by both hybridization and PCR analysis of end sequences of the clones. 

Although the new 88/124-46 contig differed in physical distances between some of the 

molecular markers, it turned out to be co-linear and the ends of both contigs could be 

linked to each other. The new contig was represented by a minimum of six clones with a 

maximum size of about 400 kb. The contig borders were determined by one 

recombinant among 538 plants showing recombination to the BAC-end derived markers 

20T and 55T, respectively. During the process of map based cloning of Rdr1 authors 

realised that the progress was very slow because of a high degree of heterozygosity and 

presence of several repetitive elements on the BAC contig (Kaufmann et al., 2003). To 

speed up the process for the identification of Rdr1, candidate gene approach was applied 

to isolate RGAs from roses. For this purpose, the sequence information of already 

cloned resistance genes was utilized and different degenerate primers (Kanazin et al., 

1996) targeting the conserved motifs of NBS region of NBS-LRR genes were used to 

isolate NBS-like sequences in a PCR-based approach (Hattendorf and Debener, 2007). 

Several degenerate primer combinations that amplify diverse NBS-LRRs and serine 
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threonine kinase candidate sequences from rose DNA were employed to check the 

contig clones for the presence of other candidate genes. No amplification apart from the 

TIR-NBS-LRR gene family could be detected. Based on the consensus primers all the 

RGA elements from diverse BAC clones were reliably amplified and verified with 

hybridization and sequencing experiments. Further analysis gave a hint for the presence 

of a family of resistance gene analogues with high similarity to the TIR-NBS-LRR gene 

N from tobacco with 8-10 copies on this contig (Hattendorf and Debener, 2007). 

 

Based on the observation that the contig contains at least 8-10 resistance gene analogues 

of the TIR-NBS-LRR class, initially one of the clones in the centre of the contig 

(155F3) was completely sequenced to obtain full sequence information of the RGAs. 

Two complete and one partial TIR-NBS-LRR genes with highly significant similarity to 

the N-gene from tobacco and the potato Gro1 genes were identified along with some 

copia like retrotransposons and three microsatellites. Moreover, conserved primers were 

used to analyse the expression of RGAs in rose leaves. A total of five different copies of 

expressed RGAs were identified and one of which was located on the fully sequenced 

clone 155F3. Later on, sequencing analysis of the complete contig identified a total 

number of 9 RGAs on three BAC clones within a 220 kb interval on the R. multiflora 

contig (Biber et al., 2009; Figure 1; Table 4). Rdr1 paralogues on this locus share a 

sequence similarity that ranges between 85-99% and can be assumed to be a single gene 

family or simple cluster (Friedman and Baker, 2007). All nine candidates also share a 

common gene structure, having four exons and three introns. The first two exons code 

for the TIR and NBS domains, respectively, while the third and fourth exon, interrupted 

by an intron, represent the LRR domain. All RGAs encode open reading frames (ORF) 

of about 1100 amino acids except RGA4 and RGA9 (Kaufmann et al., 2010). RGA4 is 

a pseudogene as it is interrupted by a large transposon insertion (7kb) in the non coding 

region of its first intron. Although RGA9 has a stop codon within the third exon that 

reduces the ORF to 794 amino acids there is some part of LRR region present, making it 

possible to encode a functional protein. In the light of above facts there are about 8 

possible candidates of Rdr1 (RGAs 1, 2, 3, 5, 6, 7, 8, and 9) and it is highly probable 

that one of the RGA copies on the contig represents active and functional Rdr1 gene. 
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BAC clones spanning Rdr1 resistance locus of R. multiflora 
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Figure 1.1: Overlapping BIBAC clones spanning Rdr1 resistance locus of R. multiflora with 9-candidates genes. 
The above diagram is based on the previous molecular and sequence analysis of three BAC clones (A- 29O3, B- 94G8, C- 20F5) which are part of the genomic library 

constructed for R. multiflora genotype 88/124-46, homozygous for Rdr1 (Terefe, unpublished data). D- Green arrows represent RGAs that are found to be expressed in leaves of 

rose resistant genotypes whereas; E- red arrows are for non-expressed RGAs. F- The yellow triangles are representing copia elements within this interval of DNA. The arrows 

and triangles are pointing the orientation of RGAs and copia elements in the contig, respectively. Table 1.4 summarizes the exact positions of these elements on single BAC and 

on contig. It also provides some insights in previous functional data available for Rdr1 candidates. 
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 Table 1.4: Genomic and functional data available for Rdr1 candidates*. 

Candidates 

of Rdr1 

(CG) 

BACs Carrying 

RGAs 

Position on 

BAC 

Final size  

of 

RGAs*** 

Position on 

contig 

Copia Elements (CE)** 

(total-09) 
Previous Info 

RGA1 

29O3 

90333bp 

(1-

90333bp) 
O

v
er

la
p
 b

/w
 2

9
O

3
 &

 9
4
G

8
 

7
6
2
9
2

-9
0
3
3
3
=

1
4
0
4
1
b
p
 

8671-12500 3830bp 8671-12500 2 CE b/w RGA1 & 2 : 

1466327523-type ab 

2 CE b/w RGA2 & 3 

4161748142-a 

5020256680-b 

Expression confirmed 

cDNA- 

RGA2 32656-36620 3965bp 32656-36620 
Expression not confirmed 

RGA2&7 (sequence similar) 

RGA3 56946-60848 3903bp 56946-60848 
Expression confirmed 

5‟ & 3‟ Race products 

RGA4 68148-79018 10866bp 68148-79018 
1 CE (c type) is within 

RGA4: 7153178486-c 

Likely to be not expressed 

Insertion of 7kb of CE 

RGA5 94G8 

76432bp 

(76292-

152724bp) 

25140-29024 3883bp 101431-105313 
1 CE (d type) b/w RGA 4 

& 5 : 8061487779-d 
No information 

RGA6 

O
v

er
la

p
 b

/w
 9

4
G

8
 &

 

2
0

F
5
 

1
4

6
1

9
5
-1

5
2

7
2

4
=

6
5
3
0
b
p
 

65332-69288 3957bp 141621-145577 3 CE b/w RGA 6 & 7 

146068152947-e 

155448161924-ab 

162463169678-d2 

No information 

RGA7 
20F5 

75310bp 

(146195-

221504bp) 

27441-31370 3932bp 173635-177564 Partial cDNA sequence  

RGA8 38655-42513 3859bp 184849-188647 

No CE b/w RGA 8 & 9 

Partial cDNA sequence 

RGA9 49874-53787 3914bp 196068-199981 Partial cDNA sequences 

 

*This data is part of the previous studies carried out in the research group of Prof. Dr. Debener at the department of molecular plant breeding, University 

of Hannover, Germany. **The contig contains 9 copia like retrotransposons classified in different types according to their sequence similarities as type 

ab: 5 members, type c: 1 member, type d: 2 members and type e: 1 member). ***The final size of RGAs mentioned here is the ORF (as predicted by 

software FGENESH 2.6) with introns starting at ATG and ending at TGA. 
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3. Aims and objectives of the project 

The ultimate objective of the project was the genomic and functional characterisation of Rdr1 

candidates (8-CGs) for the identification of the functional gene for Rdr1 that confers resistance 

to black spot (Diplocarpon rosae). To attain the goal, following strategic plan was pursued to 

reduce the number of candidates step by step. 

 

 Isolation of 8 single CGs (Rdr1 paralogues) under the control of their endogenous 

regulatory elements 

 Expression and functionality check of the CGs in tobacco heterologous system 

 Expression analysis of CGs in different tissues of homologous system i.e. leaves, petals 

and roots of resistant rose varieties (88/124-46 and 91/100-5). 

 Transient genetic complementation of susceptible rose variety (Pariser Charme) using 

single CGs and analysis of their activity against two isolates of Diplocarpon rosae (race 

5 and 6).  

 Stable genetic complementation of susceptible rose variety (Pariser Charme) and 

Arabidopsis using the most likely CGs for Rdr1. 

 RNAi knock outs of the Rdr1 gene family to prove the functionality of the locus against 

black spot. 

 Isolation of 5‟ and 3‟-RACE products for the functional gene for Rdr1 to get full length 

cDNA. 
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4.   Materials and Methods 

4.1. Materials 

4.1.1. Plant material 

Five rose genotypes, Nicotiana benthamiana and Arabidopsis thaliana [Columbia-0 

(wild) and PEN-2 (mutant; Lipka et al., 2005)] were used in the present study. The 

PEN2-1 mutants were kindly provided by P. Schulze-Lefert (Max Planck Institute for 

Plant Breeding Research, Cologne, Germany). Among the five rose genotypes Pariser 

Charme (4x), Heckenzauber (4x), Marvel (4x), are susceptible to black spot infection 

whereas 88/124-46 (2x) and 91/100-5 (4x) are resistant. The plants used here are part of 

the genotype collection of the Institute of Plant Genetics, Leibniz University of 

Hannover, Germany and were maintained in greenhouses under semi-controlled 

conditions.  

 

4.1.2. Bacterial strains 

The Agrobacterium strains used in this study were GV3101::pMP90, C58C1, EHA105 

(Hellens et al., 2000) and WT 80.1 (University of Hannover, Germany). Escherichia 

coli DH10B (T1R: F- mcrA Δ (mrr-hsdRMS-mcrBC) Δ 80lacZ_M15 Δ lacX74 deoR 

recA1 endA1 ara Δ 139 Δ (ara, leu)7697 galU galK Δ - rpsL(StrR) nupG tonA; 

Invitogen GmbH, Germany) was used for standard cloning procedures. 

 

4.1.3. Fungal isolates 

The single conidial isolates Dort E4 and race 6 of D. rosae were used in transient 

heterologous disease assay. Dort E4 represents the physiological race 5 that was used to 

identify resistance gene Rdr1 (Debener et al., 1998). These two single conidial isolates 

were conserved and propagated by repeated inoculation on excised leaves of „Pariser 

Charme‟ (PC) as described by Debener et al., (1998). The PC plantlets used for fungal 

inoculations were propagated in vitro by shoot tip culture and maintained in a disease 

free chamber. 

 

4.1.4. BAC clones  

The BAC clones 155F3, 29O3, 94G8 and 20F5 in vector V41 (pCLD04541: a binary 

cosmid vector of ~ 29 kb) were utilized during this study. These overlapping BIBAC 

clones are spanning the Rdr1 resistance locus and are part of the genomic library 

constructed from the R. multiflora genotype 88/124-46 which is homozygous for Rdr1 
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(Kaufmann et al., 2010). The BAC 155F3 with an insert size of about 60 kb is carrying 

RGAs 2, 3 and 4. The BAC 29O3 (~ 90kb) is carrying RGAs 1, 2, 3 and 4. The BAC 

94G8 (~ 76kb) has RGAs 5 and 6. Remaining RGAs 7, 8 and 9 are on BAC 20F5 (~ 

75kb) (Kaufmann et al., 2010). 

 

4.1.5. Cloning vectors 

Binary expression vectors pBINPLUS [size: 12300bp; npt-Kanamycin resistance; MCS 

allow lacZ-Gen (-Galactosidase) selection (Van Engelen et al., 1995)], pBIN19 [size: 

11777bp; npt-Kanamycin resistance; MCS allow lacZ-Gen (-Galactosidase) selection 

(Bevan, 1984)] and p9U10-RNAi [size: 11853bp; Sm/Sp-Streptomycin resistance 

(DNA cloning services, Hamburg, Germany)] were used to transfect the bacterial strains 

mentioned in 4.1.2. pUC19 [size: 2686bp; bla-Ampicillin resistance (Invitrogen GmbH, 

Germany)] was used as transformation control vector. The pGEM-T easy vector [size: 

3000bp; bla-Ampicillin resistance; lacZ-Gen (-Galactosidase) selection (Promega 

Co.)] was used for the cloning of PCR products. 

 

4.1.6. Enzymes 

The enzymes used in this study and their sources are listed in Table 7.1 in the appendix. 

 

4.1.7. Primer sequences 

The Primer3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) was 

utilized for the development of different PCR primers. The oligonucleotides were 

synthesized by Invitrogen GmbH, Germany. Primer sequences, their annealing 

temperatures and product sizes are summarized in Table 7.7-7.10 (appendix). 

 

4.1.8. Miscellaneous materials 

During the course of this study different kits were utilized for the isolation of BAC 

DNA, plasmid DNA, RNA, 5‟ RACE etc. their description, purpose and sources are 

given in Table 7.2. In addition, fine chemicals (Table 7.3), Equipments (Table 7.4), 

media (Table 7.5), solutions and buffers (Table 7.6) used during this study are 

summarized in the corresponding tables of the appendix with their sources. 

 

 

 

http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
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4.2. Methods 

4.2.1. Isolation and manipulation of nucleic acids 

4.2.1.1. Isolation of BAC DNA 

Alkaline lysis (SDS) method was used to isolate DNA from 500 ml overnight grown 

culture of the BAC clones 155F3, 29O3, 94G8 and 20F5 (Sambrook and Russel, 2001). 

Table 7.6 summarizes the preparation of different solutions required to carry out 

alkaline lysis method. The BAC vector V41 (pCLD04541) was selected by adding 

tetracycline (15mg/l) to the culture medium. The cocentration of the isolated BAC DNA 

was determined by diluting 2µl of preparation in 7 µl of nuclease free water and 1µl of 

bromophenol blue buffer (Table 7.6) and running samples along with different 

concentrations (10, 30, 50, 80 and 100 ng) of standard lambda DNA on 1 % agarose 

gels (100V for 1 hour). The gel picture was taken with gel documentation system and 

analysed using Gel Pro Analyzer. 

 

4.2.1.2. Isolation of plasmid DNA 

All plasmid isolations (mini preps: 5 ml of overnight grown culture) were carried out 

using NucleoSpin
®
Plasmid kit according the instructions of the manufacturer. After 

isolation, the plasmid preparations were quantified as described in section 4.2.1.1. 

 

4.2.1.3. RNA extraction and cDNA synthesis 

RNA was extracted using the Invisorb® Spin Plant RNA Mini Kit. The collected leaf 

material (30-50 mg) was frozen immediately in liquid nitrogen and ground in a bead 

mill for 3 min at a frequency of 24 cycles/ second. Further processing of the material 

was carried out according to the manufacturer‟s instructions. The contaminating DNA 

was removed from the extracted RNA using the DNase free kit (Ambion) as 

recommended by the manufacturer. The quality of isolated RNA was initially checked 

on 1% agarose gels (100V for 30 min) using RNase free reagents and later in a 

photometer (Safas) taking the value of 260/280nm ratio of the samples. The 

quantification of RNA samples was performed using 2 μl of RNA preparation directly 

on Hellma TrayCell cuvette of Safas photometer. The purified and quantified RNA 

(300-500ng) was used as a substrate for the preparation of total cDNA using random 

primers of the high capacity cDNA reveres transcription kit (Applied Biosystems). The 

quality of RT-PCR products was finally checked on agarose gels using Actin primers in 

the PCR (section 4.2.3.4).  
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4.2.1.4. Enzymatic digestion of BACs  

The single candidate genes (CGs) were isolated by either partial or complete enzymatic 

digestion of BACs 155F3, 29O3, 94G8, and 20F5. Five µg of isolated BAC DNA was 

partially digested with 4 U of Sau 3A1 for 15 min at 37 ºC. The digested fragments of 

these BACs were separated on a 0.8% agarose gel (80V for 30 min) and bands with ~ 7-

12 kb size were excised from the gel and purified using the QIAquick gel extraction kit 

(Qiagen). The purified fragments were quantified by running an aliquot of the samples 

along with a dilution series of λ-DNA as described in section 4.2.1.1. Sequence based 

complete digestion of BACs 29O3 and 20F5 was carried out using a variety of 

endonucleases. Five to ten µg of BAC DNA was completely digested by 10U of enzyme 

overnight at 37 ºC. BAC 29O3 was at first digested by EcoR1 to isolate RGA 1 and 

secondly by Kpn1 to isolate RGA 2. BAC 20F5 was digested by Xba1 for the isolation 

of RGA 7, 8, and 9, simultaneously. The obtained fragments were separated on a 0.8% 

agarose gel (30-80V for 3-16 hours) and bands of expected sizes were extracted and 

quantified as describe earlier for the partial digest. 

 

4.2.1.5. Enzymatic digestion of pBINPLUS 

The binary expression vector pBINPLUS was digested by different endonucleases 

(BamH1 or EcoR1 or Kpn1 or Xba1) one at a time to accommodate the corresponding 

fragments generated from BAC enzymatic digestions. The enzyme digestion mix was 

prepared by mixing 5 to 10 µg of pBINPLUS DNA, 10U of endonuclease and 1/10 of 

the corresponding buffer in a total volume of 500µl and incubating the mix at 37 ºC for 

3 hours. The quality of the digest was verified by loading 100ng of the treated plasmid 

along with untreated plasmid on 0.8% agarose gel for 1 hour at 100V. Properly digested 

samples were purified and concentrated by performing a phenol:chloroform (1:1) 

extraction according to Sambrook and Russel (2002) with following modifications. The 

upper layer obtained from organic extraction was mixed with 1/10 volume of 3M 

sodium acetate and 1 volume of 100% isopropanol and DNA was pelleted 

(centrifugation 10,000 rpm 15 min), washed (70% ethanol) and dissolved in 100µl of 

TE after 1 hour incubation on ice. The 1 µl of the preparation was diluted as 1:30 and 

quantified as described in section 4.2.1.1. The digested pBINPLUS (4 µg) was treated 

with Shrimp Alkaline phosphatase (Fermentas) according to manufacturer‟s guidelines 

to get 1 p moles of de-phosphorylated 5‟ ends of a 12kb plasmid. At the end of reaction 

SAP was destroyed by heat inactivation. 
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4.2.1.6. Enzymatic digestion of clones carrying single CGs 

Five µg of plasmid DNA of each isolated sub-clone carrying single CGs was digested 

by 10 U of different endonucleases ,EcoR1, BamH1 and Hind III one at a time, at 37 ºC 

overnight to determine and/ or varify the insert size. The resultant products were 

separated on a 0.8 % agarose gel (80V for 3-6 hours) parallel with 1 kb ladder 

(Invitrogen). The fragments generated by each endonuclease were summed up in terms 

of size in kb to get an approximate estimate of the insert size. The used endonucleases 

have only one restriction site in the pBINPLUS vector that has a total size of about 12 

kb.  

 

4.2.1.7. Ligation mixes 

Ligation mixtures were usually prepared in a total volume of 10-15 µl by adding 15-

30ng of deposphorylated pBINPLUS vector, 30-90ng of insert (section 4.2.1.4), ATP to 

a final concentration of 1mM, 1/10 volume of buffer and 2.5 Weiss units of T4 DNA 

ligase. In addition to that a negative (without insert) and positive controls (pUC19) were 

prepared. Ligation mixes were incubated at 14 ºC overnight. 

 

4.2.2. Transfecting bacteria 

4.2.2.1. E. coli (DH10B) 

All bacterial transformations were carried through electroporation using BioRad 

Micropulser with EC2 program i.e. 2.5 kV for 0.2cm cuvettes, 25 uFD, 400 Ohm, Pulse 

time 8 – 12 ms. One-two µl of the ligation reaction mixture were mixed with 40 µl of 

electro-competent E. coli (DH10B) cells and the cells were pulsed followed by 

immediate addition of 1 ml SOC medium. The cells in suspension were allowed to 

recover by continuous shaking at 37 ºC for 1 hour. Afterwards, 10 and 100 µl of the 

bacterial suspension were plated onto LB agar plates with kanamycin (50 mg/l) or 

ampicillin (50mg/ l) depending on the vector properties and incubated at 37 ºC 

overnight. On the following day initial positive clones were picked in 96 well plates, 

using sterile tooth picks, through blue white screening.  

 

4.2.2.2. Agrobacterium species 

Agrobacterium transformation competent cells were prepared by inoculating 100ml LB 

with a single colony of Agrobacterium and incubating overnight at 30 ºC under 

vigorous shaking. By the next day, the bacterial cells were washed 3 times with 50 ml 
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autoclaved and ice cold 10% glycerol by spinning at 5000 rpm for 5 min at 4 ºC. 

Finally, the cells were resuspended in 1 ml of 10% glycerol and stored in 40 µl aliquots 

at -80 ºC. About 50-200 ng of plasmid DNA was mixed with 40 µl of electro-competent 

Agrobacterium cells and transferred to a pre-chilled 0.2 mm electroporation cuvette. 

The cells were pulsed using Biorad GenePulser (EC2 = 2.50 kV, 25 uFD, 400 Ohms, 

pulse length:  8 to 12 ms) followed by immediate addition of 1 ml liquid LB. The 

electro-shocked cells in suspension were recovered by continuous shaking at RT for 2 - 

4 hours. Ten and 100 µl of the bacterial suspension were plated onto LB agar plates 

with the appropriate antibiotic and incubated at 28 ºC for 2 days. Colonies were picked 

and checked by PCR (primer pairs as consensus cDNA, consensus P1, npt, and / or 

GUS) as described in section 4.2.3.1. Agro-clones carrying single CGs were grown 

overnight at 28 ºC to prepare stocks for future use; therefore 1.5 ml of overnight grown 

bacteria were mixed with of 0.5 ml 60% glycerin and those suspensions were stored at -

80 ºC. These agro-clones were also streaked out on solid LB medium (Rifampicin: 10-

50mg/l and kanamycin: 50mg/l). In case of GV3101::pMP90 Gentamycin: 25mg/l was 

also included in media. 

 

4.2.3. Polymerase chain reactions 

The PCR reaction mixture for most of the PCRs was prepared by mixing Williams 

buffer with Mg
2+

 (2mM), dNTPs (200 µM), forward primer (0.4 µM), reverse primer 

(0.4 µM), Bioline DNA polymerase (1U), template DNA (0.5-10ng) and ddH2O to a 

final volume of 25µl. After completion of the PCR the products were separated on 1-1.5 

% agarose gels (100V for 1-2 hours). 

 

4.2.3.1. Colony PCRs 

During this study, colony PCRs were usually carried out to confirm the presence of 

inserts in the vector by using inserts specific primers. For these PCRs 25µl of PCR 

reaction mix was inoculated by bacterial colony or bacterial suspension (template) using 

a sterile toothpick. The primer pairs used for colony PCR were consensus P1, consensus 

cDNA, Kuehr3, Aneela 1F-1R, GUS and Npt. The sequence, annealing temperature, 

product size and purpose of these primers is summarized in Table 7.8. The conditions 

used for colony PCR were: denaturation at 95 °C for 4 min; 30-35 repeats of 

denaturation (94 °C for 1 min), annealing (temperature adjusted according to primer Tm 
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for 30s-90s) and elongation at 72 °C (time depends on product size and activity of DNA 

polymerase) followed by final elongation at 72 °C for 10 min only once. 

 

4.2.3.2. Insert PCRs 

Insert PCR was performed using an M13 primer pair to check the insert size and to 

exclude false positives after transformations. PCR mix for insert PCR was the same as 

described in section 4.2.3 and template was the isolated plasmid of transformants. 

However, the conditions were initial denaturation at 95 °C for 4 min followed by 30 

repeats of denaturation (94 °C for 1 min), annealing (56 °C for 1 min) and elongation at 

72 °C (time depends on the expected product size and activity of DNA polymerase) and 

a final elongation at 72 °C for 10 min.  

 

4.2.3.3. SSR PCR 

The SSR primer pair Rd1LRR is specific for RGAs and able to differentiate all RGAs 

on the basis of fragment size (Terefe and Debener, 2010). The PCR mix and conditions 

used for Rd1LRR primer pair are summarized below. One of the primers was labelled 

with IRD700. The PCR products obtained through SSR primer were separated on 6% 

acrylamide gels using a Li-COR automated sequencer (section 4.2.5.2). 

SSR PCR reaction mix          SSR PCR program 

Reagents Target 

Concentration 

 PCR-Steps Time Temp. Cycles 

Bioline buffer 

without Mg
2+

 
1x  Initial 

denaturation 
5 min 95 °C 1 x 

MgCl2 1.5 mM  

dNTPs  0.2 mM  Denaturation 1 min 94 °C 

30 x 
Rd1LRR F 2.0 pmol  Annealing 1 min 62 °C 

Rd1LRR R 2.0 pmol  
Elongation 1 min 72 °C 

cDNA template  10 ng   

Bioline DNA 

polymerase 
1 U  Final 

Elongation 
10 min 72 °C 1 x 

dd H2O to total vol. 20µl  

 

4.2.3.4. Actin PCR 

The actin primer pair was used to evaluate the quality of the cDNA synthesized from 

extracted RNA. The PCR mix was prepared as described in section 4.2.3 and the PCR 

conditions were as follows:  
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Conditions to perform Actin PCR 

PCR-Steps Time Temperature Cycles 

Initial denaturation 4 min. 95 °C 1 x 

Denaturation 1 min. 94 °C 

30 x Annealing 1 min. 58-60 °C 

Elongation 1 min. 72 °C 

Final Elongation 10 min. 72 °C 1 x 

 

4.2.4. Isolation of 5’ and 3’-RACE products for RGAs 

 RACE (Rapid Amplification of cDNA Ends) technique was used to obtain the 5‟ and 3‟ 

ends of RNA transcripts of RGAs transiently expressed in tobacco. For this analysis 

tobacco plants were infiltrated using Agrobacterium suspensions carrying the single 

RGAs 1, 7, 8, 9 as described in section 4.2.7.1. Samples were collected 3 days after 

infiltration. The leaf discs of 30-50 mg were immediately frozen in liquid nitrogen. 

RNA was extracted from the frozen leaf samples using Invisorb® Spin Plant RNA Mini 

kit as summarized in section 4.2.1.3. The 10 µg of RNA were used to isolate 5‟ RACE 

products only for RGA8 using FirstChoice
®
 RLM-RACE Kit (Ambion). The specific 

primers used for this purpose are mentioned in Table 7.9. For the isolation of 3‟ RACE 

products the RNA preparations of RGA 1, 7, 8 and 9 were used to synthesize cDNA 

using the AP_Xma-primer 0.5 µM (Table 7.9) with the high capacity cDNA reveres 

transcription kit (Applied Biosystems). The reaction mix for cDNA synthesis was 

prepared by mixing 0.25-0.5µg of total RNA, AP_Xma primer (0.5µM), dNTPs (4mM) 

and ddH2O up to 16µl of final volume. This reaction mixture was incubated for 5 min at 

65 ºC followed by 5 min at 55 ºC and chilled on ice. Afterwards, 1x RT buffer, 50U of 

MultiScribe
TM

 reverse transcriptase and 40 U RNase inhibitor were added. The reaction 

mixture was incubated for 2 hours at 37 ºC and 5 s at 85 ºC to inactivate the RNase 

inhibitor. Actin primers were used to check the quality of RT-PCR products (sections 

4.2.3.4). Good quality cDNAs of RGA1, 7, 8, and 9 were used to isolate 3‟ RACE 

products of these specific RGAs. For this purpose, PCR reactions were set up using 

gene specific primers (GSP) for each RGA separately in combination with AUAP_Xma 

primer (Table 7.9) and Takara prime star HS DNA polymerase. The details of PCR 

reaction mix and conditions used to isolate 3‟ RACE products are described on page 29.  

 

The PCR products were visualized and separated on 1.5 % agarose gels (100V for 1 

hour). When no PCR products were obtained using 1
st
 GSP, a second PCR reaction was 

started using 0.2-1 µl the PCR products of the first PCR (1:10 or 1:20 diluted in 
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nuclease free water) as template and a 2
nd

 GSP primer in combination with AUAP_Xma 

primer. This process of PCRs was repeated using different GS primers until amplicates 

of expected size were obtained. These PCR products were extracted from the gel using 

the Mini Elute Gel Extraction Kit (Qiagen). The purified blunt-ended PCR fragments 

were A-tailed by mixing 30-100ng of the purified PCR fragments with 0.2mM dATPs, 

1x reaction buffer, 5U Bioline Taq DNA polymerase and dd H2O up to 10 µl. The 

reaction mix was incubated at 70 ºC for 15-30 min. An aliquot of 1-2 µl of the A-tailed 

fragments was ligated into the pGEM
®

 T- Easy Vector according to the protocol 

supplied by the manufacturer (Promega). Electro-competent cells of E. coli (DH10B) 

were transfected by 1-2 µl of ligated fragments employing electroporation (section 

4.2.2.1). The transfected bacteria were plated and incubated overnight at 37 ºC. On the 

following day, positive clones were picked through blue white screening and an insert 

PCR (M13 primer pair) was performed to confirm the size of the insert and to exclude 

false positives having an insert size less than the expected one (section 4.2.3.2). After 

size confirmation, plasmid mini preps were prepared (section 4.2.1.2) and end 

sequences of the inserts were determined as described in section 4.2.6. 

3’ RACE PCR reaction mix             3’ RACE PCR program 

Reagents Target 

concentration 

5× Takara buffer 

with Mg
2+

 

1 mM 

dNTPs (2.5 mM) 0.2 mM 

GSP primer 

(5µM) 

0.2 mM 

AUAP_Xma 

primer 

0.2 mM 

cDNA template < 200 ng 

Takara DNA 

polymerase 

0.025 U 

dd H2O to final 

volume 

25µl 

 

4.2.5. Gel electrophoresis 

4.2.5.1. Agarose gel 

0.8-4% agarose gels were prepared according to sample requirements (Sambrook and 

Russel, 2001). The agarose was mixed in 1 x TAE buffer and boiled to get a 

homogenized solution which was poured in assembly after adding 0.5 µg/ml ethidium 

bromide. The gel pictures were taken by gel documentation system (Intas, Göttingen). 

 

PCR-Steps Time Temperature Cycles 

Initial 

denaturation 
5 min 95 °C 1 x 

Denaturation 10 s 98 °C 

35 x Annealing 05 s >60 °C 

Elongation 3 min 68 °C 

Final 

Elongation 
10 min 68 °C 1 x 
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4.2.5.2. Polyacrylamide gels 

Denaturing polyacrylamide gels (6%) were prepared by mixing readymade solutions of 

Ultra Pure SequaGel® XR and Ultra Pure SequaGel Complete® Buffer Reagent 

(National Diagnostics) plus 10% APS according to the support protocol. The prepared 

solution was poured between two glass with 0.25 mm spacers. After polymerization (3 

hours to overnight) the gel was loaded in Li-COR-Sequencer and a pre-run was started 

to set required conditions for 45 cm long sequencing gels (2000 V, 40 mA, 40 W and 45 

ºC for 30 min) or for SSR 18cm long PA gels (1500 V, 35 mA, 31.5 W und 40 °C for 10 

min), after pre-run 0.3-1 µl of the samples were loaded. The samples were prepared by 

adding equal volume of stop solution in it and denaturing it at 70 ºC for 2 min. The SSR 

gels took about 3 hours for proper and complete separation of fragments whereas 

sequencing gel took about 13 hours. The Li-COR system works with a dye-primer 

chemistry and analyzer can detects IRD700 or IRD800 or both dyes at the same time. 

 

4.2.5.3. SSCP gels 

Single strand conformation polymorphism gels (Orita et al., 1989) were prepared by 

using 0.5x MDE (mutation detection enhancing) gel solution. The prepared solution for 

SSCP gels was poured between two clean glass plates with 0.4mm spacer. The front 

plate was treated with „GelSave‟ solution to ensure easy release from the gel after the 

run and the rear plate was treated with bind-silane to fix the gel. Forty µl of the samples 

were loaded after denaturation by adding an equal volume of SSCP dye (Table 7.6), 

then heating the samples for 3 min to 95 °C and chilling them immediately on ice. The 

gel was run for 16 hours in a vertical electrophoresis system maxi-gel (Biometra) at 4 

°C, 120V and 20mA. The DNA was visualized after silver staining of the gel. For silver 

staining the rear plate with the fixed gel was incubated in fixing solution (7.5 % acetic 

acid) for 30-45 min and washed for 5 min in ddH2O. Then the gel was incubated in 

staining solution for 45 min with continuous shaking and washed with ddH2O for few 

seconds to remove surplus silver nitrate and rinsed with pre cooled developing solution 

for 10 min. When the bands became clearly visible, the developing reaction was stopped 

by rinsing the gel in 7.5 % acetic acid for 2 - 3 min. The gel was washed with 

demineralised water for about 5 min and dried for 2 hours in oven at 80 °C. All 

solutions used for this purpose are describd in Table 7.6 in appendix. 
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4.2.6. Sequencing 

The end sequences of an insert were determined by performing sequencing reaction 

using the Thermo Sequenase Cycle Sequencing Kit from USB. According to the support 

protocol, 1µg of plasmid DNA and IRD labeled primers are prerequisite. Primer pair 

M13 uni [(-21) IRD-700 labeled] and M13 rev (-29) [IRD-800 labeled] were used to 

sequence the inserts from both ends. To detect the products of sequencing reaction 6% 

denaturing polyacrylamide gels were used in Li-COR DNA-Analyser as described in 

section 4.2.5.2. The fragment pattern was analyzed using the E-seq
TM 

Software (Li-

COR) and saved as text files. The obtained sequences were further analyzed using 

different bioinformation softwares as described in section 4.2.6.1. 

 

4.2.6.1. Bioinformatic of DNA and protein sequences 

The Bioedit Version 7.0.9 (Hall, 1999) was used for sequence editing, alignment and 

local BLAST searches to analyze the obtained DNA sequences. As the full sequences of 

BACs spanning the Rdr1 resistance locus were available, this source was utilized as 

local BLAST to confirm the presence, find the position and evaluate the insert size by 

using the end sequences obtained through sequencing reactions of positive clones. Later 

on Blastn and Blastx searches (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) were 

performed using NCBI database to find the similar genes as of isolated genes from Rdr1 

resistance locus. The gene prediction and protein analysis were performed on different 

free internet sources as http://www.expasy.ch/, http://swissmodel.expasy.org/SWISS-

MODEL.html, http://www.ebi.ac.uk/interpro/, http://linux1.softberry.com/berry.phtml. 

Neignbor-joining (NJ) analysis of protein sequences downloaded from NCBI database 

was carried out by MEGA4 (Tamura et al., 2007; Kimura, 1980) whereas the ratio of 

synonymous (Ks) and non-synonymous (Ka) substitutions rates per synonymous/ non-

synonymous site were calculated using software DnaSP v 5 (Rozas et al., 2003). 

 

4.2.7. Expression studies 

4.2.7.1. Transient heterlogous expression studies in tobacco 

Heterologous expression of the isolated single CGs was carried out in N. benthamiana, 

a model plant for transient expression studies. The fourth and older true leaves of N. 

benthamiana (Wroblewski et al., 2005), were infiltrated by Agrobacterium suspension 

of GV3101, harboring the helper plasmid pMP90 and single CGs in pBINPLUS, for the 

majority of these experiments. A single colony of Agrobacterium carrying a single CG 
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was used to inoculate an overnight culture of 50 ml YEP medium (Table 7.5) containing 

specific antibiotics (Rifampicin: 10-50mg/l, Gentamycin: 25mg/l, and Kanamycin: 

50mg/l) at 28 ºC. The following day, 50 ml of bacterial culture was processed according 

to Wroblewski and colleagues (2005) and infiltrations were done in tobacco using a 1 

ml syringe without a needle (Schöb et al., 1997; Wroblewski et al., 2005). The samples 

for RNA extraction and cDNA synthesis were collected from infiltrated leaves 3 days 

after infiltration (section 4.2.1.3). Good quality cDNA was evaluated through a series of 

primer pairs for the expression of single RGAs. These primer pairs were consensus P1, 

consensus cDNA, Kuehr3, Rd1LRR and Aneela 1F-1R. The sequence, annealing 

temperature, product size and purpose of these primers are summarized in Table 7.8. 

PCR mix and conditions are described in section 4.2.3. In addition to that after 24 hours 

the single RGA infiltrated plants were challenged by Dort E4 (5 x 10
5
 spores/ ml) to 

observe the activity of infiltrated CG against black spot. 

 

4.2.7.2. Homologous expression analysis of single RGAs 

Homologous expression analysis of single RGAs was carried out in different tissues 

(leaves, petals, and roots) of the resistant rose genotypes 91/100-5 and 88/124-46. For 

this purpose, RNA was extracted from the different tissues followed by cDNA synthesis 

and its quality check as described in section 4.2.1.3. This cDNA was utilized to evaluate 

and confirm the expression of different RGAs in different tissues of resistant rose 

genotypes using a range of specific primer pairs for different RGAs. The collection of 

primers were used, is listed in Table 7.10. The PCR products of these primers were 

evaluated on 3-4% agarose gel, 6% denaturing PA gels and SSCP gels as described in 

section 4.2.5.  

 

4.2.7.3. Transient expression studies in rose petals and leaves 

Primarily all important parameters for a successful transient expression assay were 

optimized using GUS (Intron) reporter gene. Petals of five rose genotypes, [Pariser 

Charme (4x), Heckenzauber (4x), 91/100-5 (4x), 88/124-46 (2x) and Marvel (4x)] and 

leaves of three genotypes, [Pariser Charme (4x), 91/100-5 (4x) and 88/124-46 (2x)] 

were used at the outset to optimize the transient expression assay. For resistant 

genotypes 91/100-5 and 88/124-46 leaves were collected from plants growing in 

greenhouse, under plastic tunnels (high humidity and temperature) and in vitro. The 

Agrobacterium strains GV3101::pMP90, C58C1, EHA105 (Hellens et al., 2000) and 
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WT 80.1 (University of Hannover) harbouring the construct 35S:GUS-intron in 

pBINPLUS (Van Engelen et al., 1995) were grown overnight in YEP liquid medium 

supplemented with Kanamycin (50mg/L) and Rifampicin (10mg/L) according to 

Wroblewski et al. (2005). In addition to these two antibiotics, Gentamycin (25mg/L) 

was added in GV3101 cultures for the selection of pMP90. The following day, bacteria 

were collected through centrifugation at RT, and 4500 rpm for 15 min. The pellets were 

washed once using sterile distilled water and resuspended in 1-2ml of sterile distilled 

water; the bacterial suspensions were adjusted to OD600 of 0.4-0.5 in case of petals 

(Wroblewski et al., 2005) and 1.5-2.0 in case of leaves. The bacterial suspensions were 

supplemented with 0, 100, and 200 μM of acetosyringone and the non-ionic surfactant 

Breakthru (Joh et al., 2005) at final concentrations of 0, 10, 100, and 1000 ppm (v/v). 

The bacterial suspension were infiltrated from a hole punctured at the base of the petal 

and as 2-10 spots in a detached leaf using a 1ml syringe without a needle (Schöb et al., 

1997; Wroblewski et al., 2005). The infiltrated leaves/petals were kept on a wet tissue 

paper in a rectangular transparent box fitted with a cover at 22 ºC in the dark until 

monitored for GUS expression; 3 days after infiltration. The histochemical GUS assay 

was performed according to Jefferson et al. (1987). On average 30 petals and 20 spots 

on leaves per condition for seven independent replicated experiments were evaluated. 

Vacuum (5 min at 200 mbar with 3 breaks) was used to facilitate infiltration of staining 

solution in petals and tobacco leaves. The samples merged in staining solution were 

incubated overnight at 37 ºC and washed in 70% ethanol many times until chlorophyll 

was removed completely. GUS expression levels were visually rated on a scale from 0 

to 3 indicating no expression (score 0) to very high expression (score 3). Infiltrated N. 

benthamiana leaves were used as a positive control in all experiments. Non-infiltrated 

leaves and petals of all genotypes were used as negative control. 

4.2.8. Transient disease assay 

4.2.8.1. Transient homologous disease assay in rose leaves and petals 

In order to evaluate the effect of the different single RGAs in restricting the infection 

caused by race 5 and 6 of D. rosae compared to non-RGA infiltrated and GUS 

infiltrated samples, a bioassay was established. The petals and leaves of Pariser Charme, 

susceptible rose genotype to black spot, were infiltrated as described earlier in section 

4.2.7.3 using bacterial suspensions harbouring single RGAs. These leaves and petals 

were challenged by black spot spores (Diplocarpon rosae conidia) at the same time as 
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RGAs were infiltrated or after 24 hours of agro-infiltrations. The D. rosae isolates used 

were single spore isolates Dort E4 and race 6. The spore concentrations were adjusted to 

5x10
2
– 10

5
 conidia/ml as described by Dohm and colleagues (2001). Infiltrated samples 

were incubated at 22 °C in dark and the samples were collected for fluorescence 

microscopy 4 days after bacterial infiltrations in both cases. Aniline blue staining was 

done by cutting out infiltrated and inoculated leaf/petal areas (approx. 1 cm
2
) using a 

scalpel and cleared in 1 M KOH solution for 15 min at 121 °C and 1.2 bar in an 

autoclave. After cooling, the samples were washed in distilled water and stained in the 

staining solution (0.067 M K2HPO4 with 0.05% aniline blue) as described by Hood & 

Shew (1996). The samples were examined under a fluorescent microscope [Zeiss 

epifluorescence microscope (excitation 450–490 nm, dichronic mirror 510 nm, barrier 

520 nm)] and fungal growth was scored as number of colonies/ spot. Colony can be 

described as the fungal growth with different developmental levels of prolonged hyphae 

and formed acervuli and spot is the area with a diameter of 0.3-0.5mm where bacterial 

suspension and spores are infiltrated or inoculated. The generated data was analyzed 

statistically as described in section 4.2.10. 

 

4.2.8.2. Transient RNAi knockouts of Rdr1 family 

The exon 2 of RGA8 (1104 bp) was selected to generate an RNAi construct as it has a 

homology of about 86-96 % to the exon 2 of the remaining RGAs. The RNAi vector 

was constructed in plasmid p9U10 (streptomycin resistant) by the company DNA 

cloning service, Hamburg, Germany. The construct was used to transfect GV3101 

through electroporation as described in section 4.2.2.2. Rose genotypes 91/100-5 and 

PC were used to carry out these experiments. The selected genotypes were infiltrated as 

described in section 4.2.7.4. and challenged by fungal isolates Dort E4 and race-6 after 

24 hours of bacterial infiltration (Section 4.2.8.1). The samples were collected for 

fluorescence microscopy 4 days after bacterial infiltrations and processed as described 

earlier (Section 4.2.8.1). The data were collected as number of colonies / spot and 

analyzed as described in section 4.2.10. 

 

4.2.9. Generation of Arabidopsis lines homozygous for single CGs  

Arabidopsis varieties Columbia (wild) and PEN-2 (mutant) were used to generate 

homozygous lines for single RGAs. Agrobacterium mediated transformation of 

Arabidopsis was carried out using the floral dip method (Zhang et al., 2006) in which 
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the female gametes of plants are transformed just by dipping their developing 

inflorescences in Agrobacterium suspension. Agrobacterium suspensions (carrying the 

genes to be transferred) for floral dip were prepared by pelleting an overnight culture 

(500ml) and re-suspending the pellet into a 5% sucrose solution containing 0.02% 

(vol/vol) Breakthru (a non-ionic detergent). The plants with healthy inflorescences 

consist of immature flower clusters with some maturing siliques were then dipped in the 

suspension for 10 s and transferred to greenhouse to allow seed set which were then 

plated in vitro on a selective medium to screen for transformants. Generation of 

Arabidopsis transgenic homozygous lines require minimum 6 months using this 

method. 

 

4.2.10. Data analysis 

Different effects as effect of different parameters (section 4.2.7.3) on GUS expression, 

effect of different RGAs on the fungal growth in a susceptible genotype (section 

4.2.8.1) and effect of silencing Rdr1 family on the fungal growth were evaluated using 

the Kruskal-Wallis and Wilcoxon exact tests as implemented in the R-software (R 

Development Core Team 2009). 
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5. Results 

5.1. Isolation of genomic DNA fragments carrying single Candidate Genes (CGs)  

To isolate single CGs, BAC clones 155F3, 29O3, 94G8 and 20F5 of R. multiflora BAC-

gene bank were selected; they span the Rdr1 resistance locus with 9 RGAs, potential 

candidates of Rdr1. The partial digestion of BACs 155F3, 29O3, 94G8 and 20F5 

generated 288, 864, 960 and 1632 sub-clones, respectively. The generated BAC sub-

libraries were screened with RGA general primers (Table 7.8 in appendix) followed by 

enzymatic digestion of positive clones to estimate the size of inserts. The clones 

carrying 7 kb or bigger inserts were subjected to insert end sequencing analysis. The 

end sequencing of inserts, limited the number of real positive clones to 4 (RGAs 3, 5, 6 

and 7). These clones were carrying enough upstream and downstream DNA regions to 

ORF of genes expecting to harbor necessary endogenous regulatory elements for 

expression (Figure 5.1). The complete digestions of BACs resulted in the isolation of 

RGAs 1, 2, 7, 8 and 9 (Table 5.1; Figure 5.1). RGA 4 was not isolated as available data 

revealed its interruption by a retro-transposon of about 7 kb due to which it is likely that 

it is non-functional (Kaufmann et al., 2010). All isolated single RGAs were cloned into 

binary transformation vector pBINPLUS and subjected to further analyses. 

 

CGs 
 

RGA 1 

(10728bp) 
 

RGA 2 

(18680bp) 
 

RGA 3 

(11911bp) 
 

RGA 5 

(13890bp) 
 

RGA 6 

(11829bp) 
 

RGA 7 

(7995bp) 
                                                                                                  

RGA 8 

(11065bp) 
 

RGA 9 

(13226bp) 
 

 

Figure 5.1: Structure of genomic fragments carrying Rdr1 candidates. (A) The isolated 

genomic sub-clones of single RGAs represent software predicted open reading frame with introns; (B) 

software predicted upstream and downstream sequences of isolated genes; (A+ B+C) the full length of 

the isolated single RGAs with endogenous regulatory elements. The yellow triangles are showing the 

presence of incomplete retrotransposons on the isolated genes.  

   A 

   B 

   C 
  Transposon 

         500 bp 

 

 
 

Key: 

         5’-upstream sequences (bp)        ORF+Introns       downstream sequences (bp )3’ 

 

           10638                                                3965                       4077 

                4967                             3903                     3041 

                             6787                                       3883                       3218 

    

         3146                      3859                        4120        

                   4844                         3830                 2054  

    

          3725                      3957                       4147  

     3165                      3932             900 

                      5037                                  3914                          4275  
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  Table 5.1: Rdr1 candidates generated by partial or complete enzymatic digestion of whole BACs. 

Candidates 

of Rdr1 

BACs Carrying 

RGAs 

ORF of 

RGAs* 

Isolated single 

RGAs in size/ 

clone 

Method of 

isolation CD or 

PD** 

Position on 

single BACs 
Position on contig 

RGA1 

29O3-90333bp 

(1-90333bp) 

3830bp 10728 bp/ 1C2 CD by EcoRI 6617-17344 6617-17344 

RGA2 3965bp 18680 bp/ 1C4 CD by KpnI 28579-47258 28579-47258 

RGA3 3903bp 11911 bp/ 3C11 PD by Sau3A1 53905-65815 53905-65815 

RGA4 10866bp Not isolated 

RGA5 94G8-76432bp 

(76292-152724bp) 

3883bp 13890 bp/ 2D7 PD by Sau3A1 21922-35811 98213-112100 

RGA6 3957bp 11829 bp/ 3H3 PD by Sau3A1 61185-73013 137474-149302 

RGA7 
20F5-75310bp 

(146195-221504bp) 

3932bp 7995 bp/ 1C7 CD by XbaI 26541-34535 172735-180729 

RGA8 3859bp 11065 bp/ 2B7 CD by XbaI 34535-45599 180729-191793 

RGA9 3914bp 13226 bp/ 3D10 CD by XbaI 45599-58824 191793-205018 

 

* ORF of RGAs corresponds to the software predicted open reading frame with introns starting at ATG (start codon) and ending at TGA (stop codon). 

** CD represents complete digestion and PD is for partial digestion by endonucleases. 
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5.2. Functional analysis of CGs 

5.2.1. Expression in heterologous system 

The expression and activity of isolated RGAs against Dort E 4 were assessed in seven 

independent transient heterologous (tobacco) complementation assays performed in 

triplicate. The leaves of Nicotiana benthamiana plants were infiltrated with GV3101 

suspensions carrying relevant RGA constructs and after 24 hours these were challenged 

by Dort E4 in intact plants. The expression of RGAs was detected using different RGA 

general and specific primers (Table 5.2). All RGAs were found to be expressed in the 

heterologous system showing the presence of regulatory elements on the flanking 5‟ and 

3‟ regions of isolated single RGAs necessary for their expression (Figure 5.2). 

However, the expressed RGAs did not respond to Dort E4 even at a very high spore 

concentration (5x10
5
 spores/ ml) in form of hypersensitive response (HR) or necrosis 

and microscopy revealed the presence of spores without germination. On the basis of 

this observation tobacco was found to be non-host species for Dort E4, representing the 

phenomenon of non-host type resistance and the number of Rdr1 candidates could not 

be reduced as all isolated RGAs were expressed in heterologous system. 
 

        Table 5.2: Heterologous expression analysis of single RGAs 

Expressed RGAs Expression detected by primer pair 

RGA 1, 3, 7, 8 and 9 consensus cDNA (Bw1 Fw1) 

RGA 5 consensus P1 

RGAs 1, 3, 7, 8 and 9 Kuehr3 

All RGAs (1-3 and 5-9) Aneela 1F-1R 

All RGAs (1-3 and 5-9) Rd1LRR 

 

5.2.2. Expression analysis of CGs in homologous system 

To reduce the number of potential Rdr1 candidates, the expression analysis of single 

CGs was carried out in different tissues (leaves, petals and roots) of resistant rose 

varieties (88/124-46 and 91/100-5). According to the available information, the leaves 

and petals of resistant rose genotypes used in this experiment displayed the same degree 

of resistance against Dort E 4 infections therefore by comparing the expression profile 

of RGAs in different tissues; the similarly expressed RGAs can be designated as 

potential Rdr1 candidates reducing the number of Rdr1 potential candidates. With this 

idea the cDNA of above mentioned genotypes was tested by a range of RGA specific 

primers (Table 7.10 in appendix). In the homologous system all RGAs were expected to 

be expressed and their very high DNA sequence similarities (85-99%; Kaufmann, 2010) 
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technically made it difficult to develop an specific primer pair for each single RGA 

separately that could give a clear cut proof of the expression of corresponding single 

RGA among the others, due to that many specific primer pairs were developed for each 

RGA and obtained PCR products were analyzed on agarose gels, polyacrylamide gels 

and SSCP gels. The analysis revealed the expression of RGAs 1, 2, 3, 7, 8, and 9 

whereas RGAs 4, 5 and 6 were never found to be expressed in any kind of checked 

tissues (Table 5.3). In addition to that RGA2 was found to be expressed only in the 

leaves and not in the petals of both genotypes whereas petals already displayed a 

resistant reaction against Dort E-4. This approach reduced the number of Rdr1 

candidate genes to five i.e. RGAs 1, 3, 7, 8 and 9. 

 

 

N
e
g
a

ti
v
e
 C

o
n

tr
o
l 
 

R
G

A
3
-c

D
N

A
  

R
G

A
3
-P

la
s
m

id
  

R
G

A
7
-c

D
N

A
  

R
G

A
7
-P

la
s
m

id
  

R
G

A
1
-c

D
N

A
  

R
G

A
1
-P

la
s
m

id
  

R
G

A
5
-c

D
N

A
  

R
G

A
5
-P

la
s
m

id
  

R
G

A
7
-c

D
N

A
  

R
G

A
7
-P

la
s
m

id
  

R
G

A
8
-c

D
N

A
  

R
G

A
8
-P

la
s
m

id
  

R
G

A
9
-c

D
N

A
  

R
G

A
9
-P

la
s
m

id
  

T
o

b
a
c
c
o
-c

D
N

A
  

R
G

A
3
-c

D
N

A
 *

 

R
G

A
5
-c

D
N

A
 *

 

R
G

A
8
-c

D
N

A
 *

 

R
G

A
9
-c

D
N

A
 *

 

R
o
s
e
 g

D
N

A
  

1
k
b
 l
a
d

d
e
r 

 

 

  L
a
d

d
e

r 

R
G

A
6
 c

D
N

A
  

9
4
G

8
 B

A
C

-

P
la

s
m

id
  

R
G

A
5
- 

P
la

s
m

id
  

R
G

A
5
- 

c
D

N
A

 

R
G

A
6
-P

la
s
m

id
  

R
G

A
6
- 

c
D

N
A

  

 

1
k
b
 L

a
d
d
e

r 

R
G

A
7
 P

la
s
m

id
 

R
G

A
7
 c

D
N

A
 

R
G

A
2
-P

la
s
m

id
 

R
G

A
2
- 

c
D

N
A

 

R
G

A
5
-P

la
s
m

id
  

R
G

A
5
- 

c
D

N
A

  

R
G

A
6
-P

la
s
m

id
  

R
G

A
6
- 

c
D

N
A

  

 

Figure 5.2: Detection of single CGs’ expression in heterologous system. (A) Primer 

pair Kuehr3 is able to differentiate cDNA (1180bp) and gDNA (1550bp) in 1% agarose gel and it proved 

the expression of RGA 1, 3, 7, 8 and 9. * indicates the repeated loading of the cDNAs of corresponding 

RGAs ; (B) Primer pair Rd1LRR is able to amplify and differentiate all RGAs on the basis of fragment 

size in 6% polyacrylamide gel, here is an example of BAC 94G8 carrying RGA 5 and 6; (C) Aneela 1F-

1R can amplify all RGAs and can differentiate cDNA (1600bp) and gDNA (1950bp) in 1% agarose gel. 

The freshly synthesized cDNAs before freezing were tested in these experiments. 
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 Table 5.3: Expression profile of single CGs in homologous system 

RGAs 

Rose genotype  

88/ 124-46 

Rose genotype 

91/ 100-5 

Rose genotype  

PC 

Leaves Petals Roots Leaves Petals Leaves Petals 

1 + + + + + + + 

2 + - + + - - - 

3 + + + + + + + 

4 - - - - - - - 

5 - - - - - - - 

6 - - - - - - - 

7 + + + + + + + 

8 + + + + + - - 

9 + + + + + + + 

 Key: + = expressed  - = not expressed 

 

5.3. Transient homologous disease assay 

To validate the functionality of CGs, genetic complementation of a deficient plant is an 

important tool. Pariser Charme, a susceptible rose genotype, was selected to generate 

stable transformants harbouring CGs; due to technical problems and fungal 

contaminations initial effort resulted no transformants followed by new repeats. The 

putative transformants are in process of screening. While, generation of stable 

transformants is a lengthy process with low efficiency (Dohm et al. 2001; Marchant et 

al. 1998a), Agrobacterium mediated transient transformations were used as an 

alternative to evaluate the functionality of CGs. 

 

5.3.1. Optimization of transient GUS expression assay in rose petals and leaves 

For a successful transient expression assay a number of variables including host 

genotypes and their culturing methods, Agrobacterium genotypes, flower age, petal 

position within a flower, leaf type, additives to the bacterial growth media, bacterial 

density, temperature during incubation of infiltrated samples and incubation time 

required for significant GUS expression were optimized using GUS-intron reporter 

gene. First of all two different infiltration methods were tested using Agrobacterium 

strain GV3101 harbouring pBINPLUS::GUS-Intron in petals and leaves of Pariser 

Charme, for their feasibility and effectiveness. Infiltrations with l ml syringes without 

needles found to be the best option to infiltrate the whole petal completely or to perform 

spot infiltrations in leaves, whereas vacuum infiltration (5 min at 200 mbar with 2-5 

breaks) made the delicate petals soaky and resulted in their early senescence; in case of 

leaves, vacuum infiltrations found comparable to syringe infiltrations followed by no or 

very little GUS expression when compared to samples infiltrated using a 1 ml syringe 
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without needle. These observations were consistent to all rose genotypes tested here. 

Therefore, in all subsequent experiments petals and leaves were infiltrated with 

syringes. 

 

5.3.1.1. Effect of host genotypes 

The petals of five and leaves of three host genotypes were evaluated to optimize GUS 

expression. GUS expression was monitored visually and rated as described in Figure 

5.3. Host genotypes found to have a highly significant effect on the level of GUS 

expression (Kruskal Wallis Test p = 2.2 e
-16

). 

 

In case of petals two rose varieties Pariser Charme (Figure 5.4) and Marvel displayed 

very high GUS expression whereas genotypes 91/100-5, 88/124-46 and Heckenzauber 

were resistant to agro-infection showing little or no GUS expression. Pariser Charme 

revealed the highest intensity of GUS expression and in some petals even better than in 

leaves of N. benthamiana that were used as positive control in all experiments (Figure 

5.5). Therefore, Pariser Charme was selected to optimize different physical and 

biological factors that could influence the expression of a foreign gene in this system.  
 

    
GUS-0 GUS-1 GUS-2 GUS-3 

 

Figure 5.3: Pattern of scoring for the histochemical GUS assay in rose petals. Scores 

are indicated below the pictures of four different staining intensities. 
 

In case of leaves GUS expression was optimized in three rose genotypes growing in 

different semi-controlled conditions (greenhouse, under plastic tunnels and in vitro as 

described in section 4.2.7.3). These culturing environments effected GUS expression 

significantly (Kruskal Wallis Test p = 6.37 e
-16

). Pariser Charme and 91/100-5 

genotypes grew under tunnels with high humidity and temperature (above 30ºC) 

displayed the highest GUS expression (Figure 5.6a and b). Genotype 88/ 124-46 again 

found to be resistant to agro-infection and showed no GUS expression at all. Pariser 

Charme and 91/100-5 rose genotypes were selected to perform homologous disease 

assay and RNAi knock outs of Rdr1 family. 
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Figure 5.4: Effect of rose genotypes and Agrobacterium strains on the expression of 

GUS in rose petals. Indicated on the vertical axis are the mean values for the GUS scores, from 0 to 

2.5, as shown in Figure 5.3. 

 
 

 

 

 

 

Figure 5.5: Samples infiltrated by Agrobacterum harbouring GUS-Intron construct 

at OD600 = 0.5. a- PC petal before GUS staining; b- PC petal after GUS histochemical assay; c- N. 

benthamiana leaf after GUS staining. 

 

5.3.1.2. Effect of Agrobacterium genotypes 

All tested Agrobacterium strains GV3101, EHAI05, C58C1 and 80.1, each harbouring 

35S::GUS-Intron showed almost the same degree of GUS expression on each of the 

rose genotypes and no significant differences were detected. Although significant 

differences occur after inoculation on genotypes Marvel (Kruskal Wallis p = 3.7 e
-7

) and 

88/124-46 (Kruskal Wallis p = 0.0023). On both Marvel and 88/124-46 strain WT-80.1 

produces significantly weaker GUS-signals as all the other strains (p values between 

0.00023 and 8.16e
-7

 for Marvel and between 0.0002 and 0.028 for 88/124-46)-Figure 

c b a 
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5.4. GV3101 was selected for further studies as it gave the highest average expression 

level and as it had been used in several published studies for agro-infiltration (Zottini et 

al. 2008; Kim et al., 2009; Bhaskar et al., 2009). 
 

  

 
 

 

 

 

Figure 5.6: Leaves of different rose genotypes after GUS histochemical assay. These 

were infiltrated by Agrobacterum harboring GUS-Intron construct at OD600 = 1.5. a- PC (susceptible to 

Dort E4 and race6); b- 91/ 100-5 (resistant to Dort E4; susceptible to race 6); c- 88/ 124-46 (resistant to 

Dort E4; susceptible to race 6).  

 

5.3.1.3. Effect of flower/ leaf age and petal position 

GUS-expression was compared among petals from buds of Pariser Charme before 

opening (stage 1), flowers just opened (stage 2) and fully opened flowers (stage 3). The 

highest level of expression was found in stage 2 flowers (mean value = 2.13) as 

compared to stage 1 (mean value of 0.69 p = 2.0e
-5

) and stage 3 (mean value = 1.47 p = 

0.016) flowers. Within the stage 2 flowers, petals from the middle of the flowers 

displayed the highest GUS-expression as compared to the outer and inner whirl petals (p 

values between 0.0003 and 0.0029). However, the variation between petals of the same 

flower stage and the same whirl was very high with standard deviations between 0.64 

and 0.95. GUS-expression was evaluated in different types of leaves of Pariser Charme; 

Leaves with a green upper side and red lower side (type A), light green leaves with dark 

a 

b 

c 
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green prominent veins and red edges (type B), complete light green young leaves (type 

C) and dark green old leaves (type D). Although, the infiltration was very easy in old 

leaves, type B leaves showed significantly higher GUS expression as compared to 

others (Kruskal Wallis Test p = 0.0008337). 

 

5.3.1.4. Effect of additives in growth media 

The effect of acetosyringone on GUS expression was found to be non-significant 

(Kruskal Wallis p = 0.326). In addition, a surfactant (Breakthru) was used to promote an 

even distribution of bacterial suspensions in petals and no significant differences in 

GUS-expression were noted. At higher concentrations (100 and 1000 ppm) it promoted 

early senescence in petals; the highest concentration even being lethal to petals leading 

to necrosis within 24 hours.  

 

5.3.1.5. Effect of bacterial density 

The bacterial suspensions were adjusted to OD600 of 0.1, 0.3, 0.5 0.8, 1.0, 1.5, 2.0, 3.0 

and 4. In case of petals, the GUS expression was observed only for bacterial densities 

between OD600 = 0.5-and OD600 = 4.0 (Figure 5.5a). Among these densities, no significant 

differences were detected. The optimal OD was found to be 0.5 for petals of Pariser 

Charme and Marvel. In contrast to this, even the highest densities did not lead to GUS 

signals in the petals of remaining rose genotypes. The optimal concentration of bacteria 

for GUS expression in leaves of Pariser Charme and 91/ 100-5 was found to be 1.5-2.0 

(Figure 5.6). The GUS expression in leaves was observed only for bacterial densities 

between OD600 = 1.5-and OD600 = 3.0. Tobacco leaves displayed highest GUS expression 

at OD600 = 0.5 (Figure 5.7). 

 

5.3.1.6. Effect of incubation temperature and time 

GUS expression in infiltrated rose petals was recorded at four different incubation 

temperatures, 19ºC, 22ºC, 25ºC, and 28ºC. The effect of the temperature during co-

cultivation was found to be significant (Kruskal Wallis p = 2.2e
-16

). Temperatures of 

19ºC and 25ºC revea1ed significantly lower GUS expression levels as compared to 22ºC 

(Figure 5.8). At 28ºC GUS expression levels were very low and almost no detectable. 

The time of co-cultivation had a significant effects on the level of GUS-expression 

(Figure 5.9c, Kruskal Wallis p = 7.3 e
-14

). GUS expression was detectable from the 

second day after infiltration. However, significant levels of GUS expression occurred 
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only after day three. The highest intensity of GUS expression was detectable between 

days three and seven after which expression decreased significantly. 
 

    

OD600=1.0 OD600=1.0 OD600=2.0 OD600=2.0 

 
 

 
 

OD600=0.5 OD600=1.0 OD600=2.0 OD600=3.0 
 

Figure 5.7: N. benthamiana leaves were infiltrated by Agrobacterum harbouring 

GUS-Intron construct at different OD600. a- Infiltrating higher bacterial densities showed 

withering in leaves before GUS histochemcal assay. ; b- Infiltrating higher bacterial densities displayed 

low GUS expression as shown after GUS histochemcal assay; Infiltrated bacterial OD600 are indicated 

below the pictures. 

 

    
19 ºC 22 ºC 25 ºC 28 ºC 

 

Figure 5.8: Effect of incubation temperature on GUS expression. Petals of Pariser 

Charme were infiltrated by Agrobacterium harbouring GUS-Intron construct at OD600 = 0.5 and incubated 

at different temperatures (as indicated below the pictures). Samples were collected on 4
th

 day post-

infiltration and GUS histochemcal assay was carried out. 

 

 

a 

b 
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Figure 5.9: Optimization of different parameters for a successful Agrobacterium 

mediated transient GUS expression assay in the petals of Pariser Charme. a- The 

effect of bacterial density; b- The effect of cocultivation temperature; c- The effect of co-cultivation time. 

The y-axis indicates the mean values of the GUS scores; the x-axes indicate the different treatments 

within each factor. Different letters above each column indicate significant differences of the mean values 

at P <0.05. 
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5.3.2. Verification of the expression of single CGs 

Although petals were proved to be very efficient system to carry out transient 

expression studies this system was not found suitable to study the interaction of rose 

and black spot because of their short lifespan and limited seasonal supply. Therefore 

rose leaves were selected to carry out disease assays after optimizing GUS expression 

(Table 5.4) and proving the expression of single CGs post-infiltrations. According to 

available unpublished data it was demonstrated that the PC variety, susceptible to black 

spot, does not contain RGA8 (Terefe D, personal communication). Utilizing this 

information and already optimized parameters for transient GUS expression in leaves, 

the leaves of PC were infiltrated with agro-suspension of GV3101 harbouring RGA8 

single CG and samples were collected for RNA extraction and cDNA synthesis 3 days 

after infiltrations (section 4.2.1.3). cDNA was evaluated using Rd1LRR primer pair in 

6% polyacrylamide gel for the expression-detection of infiltrated RGA8. In infiltrated 

samples RGA8 was expressed as compared to control leaves that lack expression band 

for RGA8, as shown in Figure 5.10.  
 

 

    B
A

C
 2

9
O

3
  

  B
A

C
 9

4
G

8
 

B
A

C
 2

0
F

5
  

P
C

 c
o
n

tr
o
l1

  

P
C

 c
o
n

tr
o
l2

  

R
G

A
8
 I

F
 i
n
 P

C
 1

 

R
G

A
8
 I

F
 i
n
 P

C
 2

  

R
G

A
 8

 p
la

s
m

id
 

R
G

A
8
-P

la
s
m

id
  

 

Figure 5.10: Detection of RGA8 expression in RGA8-infiltrated leaves of PC. Primer 

pair Rd1LRR was used to detect expression of different RGAs in PC control leaves and RGA8-infiltrated 

leaves in 6% PA gel. First three lanes show control BACs carrying all RGAs followed by two lanes with 

PC control leaves, two lanes with RGA-infiltrated leaves and last two lanes with isolated RGA8 plasmid, 

respectively. In PC-control leaves the expression of RGA1 and RGA9 is also indicated. 
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Table 5.4: Summary of optimized parameters for GUS transient expression in 

roses 

Parameters Rose Petals Rose Leaves 

Host genotypes PC and Marvel PC and 91/ 100-5 

Host culture method Greenhouse 
Under plastic tunnels in high 

temperature and humidity 

Properties of tissues 
Petals of inner whirl of just 

opened flowers 

light green leaves with dark green 

prominent veins and red edges 

Agrobacterium strain GV3101::pMP90 GV3101::pMP90 

pBINPLUS plasmid 35S: GUS-Intron 35S: GUS-Intron 

Growth of bacteria Overnight in YEP Overnight in YEP 

Bacterial density (OD600) 0.4-0.5 1.5-2.0 

Addition of acetosyringone No No 

Addition of surfactant No No 

Infiltration method Syringe without a needle Syringe without a needle 

Incubation temperature 22ºC 22ºC 

Incubation time 3-days 3-days 

 

5.3.3. Optimization of transient disease assay in rose petals and leaves 

To study the interaction of isolated single CGs and black spot, the petals and leaves of 

Pariser Charme were infiltrated with single RGAs and were challenged with different 

spore concentrations of Diplocarpon rosae. According to preliminary experiments in 

contrast to some biotrophs as powdery mildew, when D. rosae was infiltrated in petals 

or leaves, it was able to grow inter-cellularly showing its typical pattern of growth. 

Therefore in all subsequent experiments, leaves were infiltrated with spore suspensions 

to assess the activity of CGs. Whereas D. rosae was not able to grow in rose petals 

when co-infiltrated with Agrobacterium so D. rosae was inoculated by spotting spores 

suspension 24 hours post-agro-infiltrations. 

 

5.3.3.1. Rose petals 

Although the rose petals were found very feasible system to carry out transient 

expression analysis these were not suitable for disease assay as have short lifespan and 

limited seasonal supply. To shorten the phyto-patho interaction study period the petals 

were co-infiltrated using agro-suspension of CGs (OD600 = 0.5) and spores of D. rosae 

(5x10
5
 spores/ ml), co-infiltration of spores and bacterial suspension did not reveal any 
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fungal growth even after 5-7 days of infiltrations. Microscopic examination of such 

samples revealed the presence of non-germinated conidia within intercellular spaces. In 

addition to that microscopy of spore infiltrated petals also revealed the sieving effect of 

spores, accumulating at the place of infiltration (Figure 5.11). Therefore, all spore 

inoculations were done by dropping 3-5 spots of spore suspension per petal after 24 

hours of agro-infiltrations of CGs. When petals were infiltrated without Agrobacterium 

or after 24 hours of agro-infiltrations these displayed the type 1 interaction (Blechert 

and Debener, 2005) against Dort E 4 characterized by haustoria, long and short distance 

hyphae and conidia. Although higher concentrations of bacteria (OD600= 1.5-4) 

promoted the fungal growth, the optimal concentration of bacterial that displayed the 

optimal GUS expression without effecting fungal growth was OD600= 0.5. The bacterial 

concentration at OD600= 0.5 and spore concentration at 5x10
5
 spores/ ml did not reveal 

significant differences in fungal growth. Due to limited seasonal supply of flowers the 

concentration of spores could not be optimized to reveal significant effect of infiltrated 

CGs in terms of reduction in fungal growth. Although off season flowers were 

maintained in the greenhouse and were used to optimize the system, they showed the 

presence of contaminating fungi on microscopy and in some cases displayed senescence 

within 24 hours of agro-infiltrations. 

 

  

  

 

Figure 5.11: Agrobacterium and spore infiltrations in the petals of PC. a- Sieving 

effect and no spore germination when spores co-infiltrated with Agrobacterium; b- Fungal growth when 

spores inoculated by spotting 24 hours after agro-infiltrations. 

 

a 

b 
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5.3.3.2. Rose leaves 

To study the interaction of isolated single CGs against black spot, the type B leaves of 

Pariser Charme (light green leaves with dark green prominent veins and red edges) were 

co-infiltrated with single RGAs in GV3101 together with conidia of the isolate Dort E4. 

Spore concentrations starting from 5x10
2
 to 5x10

5
conidia/ml of Diplocarpon rosae was 

tested. Based on the observation that the transient expression in rose leaves is lower 

than in Nicotiana due to a lower number of transformed cells; a low concentration of 

conidia was chosen to obtain a higher ratio of transformed cells to conidia. The spore 

concentration of 5x10
2
 conidia/ml was found the optimum; revealing significant affects 

of RGAs activity on fungal growth and non-significantly affecting fungal growth in the 

presence Agrobacterium (OD600= 1.5), when compared to negative control samples 

infiltrated with spores only (Kruskal Wallis Test p= 0.1806). Therefore, PC leaves were 

co-infiltrated with single RGAs and 5x10
2
 spores/ml together in all subsequent 

experiments and the activity of RGAs against Dort E4 was evaluated by counting fungal 

colonies. As described in section 4.2.8.1 a fungal colony is the fungal growth showing 

different developmental levels of prolonged hyphae and/ or formed acervuli within a 

spot representing the circular area (diameter: 0.3-0.5mm) where bacterial suspension 

and spores were co-infiltrated. The microscopy of RGAs and Dort E 4 infiltrated spots 

displayed a range of developing (short, long, branched and unbranched) hyphae with or 

without acervuli that cannot be easily related to the presence of a particular RGA due to 

the fact that infiltrated areas in leaves did not contain all genetically complemented cells 

but represent a mixture of transformed (resistant; transiently complimented) and non-

transformed cells (susceptible; not complemented). Moreover spore suspensions also 

contained some dead spores that of course could not be germinated on inoculations 

representing type 8 interaction as described by Blechert and Debener (2005). Although 

it was not possible to relate a specific morphology of fungal colony to the presence of a 

particular RGA the reduction in colony number was very obvious and significant when 

RGA8 or RGA1 were infiltrated in PC leaves and challenged by Dort E 4. In six 

independent experiments (Figure 5.13) RGA1 and RGA8 significantly reduced the 

growth of fungus (Kruskal Wallis Test p = 1.175 e
-09

; Figure 5.12). Two out of six 

experiments were found to be non-significant on the basis Kruskal Wallis Test using 

original data of colony numbers (Figure 5.13 c and d). Although RGA8 (Wilcoxon Test 

p= 2.798 e
-08

) and RGA1 (Wilcoxon Test p= 5.274 e
-05

) were found significantly 

reducing fungal growth when compared to controls (spores in presence of GUS 
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Agrobacterium and/ or spores only), RGA8 restricted fungal growth in 4 out of 6, 

whereas RGA1 reduced fungal growth in 2 out of six independent experiments in total 

(Figure 13). When compared to RGA8, RGA1 only showed significant reduction in 1 

out of 6-independent experiments (Figure 5.13 b) and on average RGA8 reduced the 

fungal growth significantly to 41% in contrast RGA1 revealed 26% reduction in fungal 

growth (Figure 5.12). It is very clear from the Figure 5.13 that the RGA8 consistently 

reduced the fungal growth followed by RGA1. These observations make RGA8 the 

most favorable candidate for Rdr1. 

 

However, on the basis of RGA expression profiles in the homologous system, RGA2, 5 

and 6 were excluded from the list of Rdr1 candidates. Two independent experiments 

were performed to validate their effect on fungal growth in the transient disease assay 

(Figure 5.14) and results confirmed their non- functionality against race 5 (Wilcoxson 

Test p values = RGA2-0.003 and 0.07; RGA5-5.6 e
-6

 and 5.5 e
-4

; RGA6-1.2 e
-4

 and 

0.002 when compared to RGA8 and RGA1 respectively). In addition to that 

independent experiments were carried out to evaluate the interaction of CGs and race 6 

and all CGs were found to be non-active against race 6 as it was expected (Kruskal 

Wallis Test p = 0.5679; Figure 5.15; 5.16a). Interestingly, when GUS Agrobacterium 

were infiltrated in the leaves of PC and 91/ 100-5 together with race 6 conidia the fungal 

growth was more profound (~ 1.5 x more) relative to negative control samples (leaves 

infiltrated by spore suspension only; Figure 5.16 b). 

 

Figure 5.12: Transient complementation disease assay with individual CGs and 

DortE4. This graph represents average data of five independent experiments. The y-axis indicates the 

percent colony number; the x-axis indicates different constructs infiltrated in PC leaves in corresponding 

Agrobacterium suspensions together with Dort E 4. Red highlighted columns indicate different mean 
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populations based on original data i.e. number of colonies tested with Kruskal Wallis Test at P< 0.05. For 

this graph Kruskal Wallis Test p= 1.175 e
-9

. 
 

 

 

 
 

Figure 5.13: Transient complementation disease assay with individual CGs and 

DortE4. These graphs represent the data of six independent experiments. The y-axis indicates the 

percent colony number; the x-axis indicates different constructs infiltrated in PC leaves in corresponding 

Agrobacterium suspensions together with Dort E 4. Red highlighted columns indicate different mean 

populations based on original data i.e. number of colonies tested with Kruskal Wallis Test at P< 0.05. For 

these graphs Kruskal Wallis Test p- values are indicated below the corresponding graphs. Graph b and c 

show RGA1 as the most effective gene to reduce the fungal growth and graphs e and f also represent its 

effect whereas RGA8 is consistently showing its functionality against Dort E 4. 

 

100 98 124 144 35 106
0

20

40

60

80

100

120

140

160

GUS RGA1 RGA3 RGA7 RGA8 RGA9

a (Kruskal Wallis Test p= 4.274 e -7)

100 56 104 95 60 116
0

20

40

60

80

100

120

140

GUS RGA1 RGA3 RGA7 RGA8 RGA9

b (Kruskal Wallis Test p= 0.003448)

100 67 106 135 77 128
0

20

40

60

80

100

120

140

160

GUS RGA1 RGA3 RGA7 RGA8 RGA9

c (Kruskal Wallis Test p= 0.1358)

100 86 105 94 68 114
0

20

40

60

80

100

120

GUS RGA1 RGA3 RGA7 RGA8 RGA9

d (Kruskal Wallis Test p= 0.322)

100 63 105 124 53 119
0

20

40

60

80

100

120

140

GUS RGA1 RGA3 RGA7 RGA8 RGA9
e (Kruskal Wallis Test p= 0.01577)

100 76 99 106 59 108
0

20

40

60

80

100

120

GUS RGA1 RGA3 RGA7 RGA8 RGA9

f (Kruskal Wallis Test p= 0.02916)

b 



Results 

 

 

53 
 

 

Figure 5.14: Transient complementation disease assay with individual CGs and 

DortE4. The graph represents the data of two independent experiments. The y-axis indicates the percent 

colony number; the x-axis indicates different constructs infiltrated in PC leaves in corresponding 

Agrobacterium suspensions together with Dort E 4. Red highlighted columns indicate significantly 

different mean populations based on original data i.e. number of colonies tested with Kruskal Wallis Test 

at P< 0.05. For this graph Kruskal Wallis Test p- values are 0.006 and 0.008 respectively. RGA2, 5 and 6 

were found non-active genes against Dort E 4 as compared to RGA1 and 8. 

 

 

Figure 5.15: Transient complementation disease assay with individual CGs and 

Race6. The y-axis indicates the percent colony number; the x-axis indicates different constructs 

infiltrated in PC leaves in corresponding Agrobacterium suspensions together with race 6. Last column in 

graph represents percent of fungal colonies in 91/ 100-5 rose genotype infiltrated with race 6 conidia. For 

this graph Kruskal Wallis Test p= 0.5679. 
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Figure 5.16: Transient complementation disease assay with individual CGs and 

Race 5 and 6. The y-axis indicates the percent colony number; the x-axis indicates different constructs 

infiltrated in leaves of PC or 91/ 100-5 in corresponding Agrobacterium suspensions together with Race 5 

and Race6; a- comparison of transiently complementated PC leaves with single CGs as indicated and 

challenged by race 5 (first column) and race 6 (2nd column); b- Effect of transiently expressed GUS 

construct in leaves of PC or 91/ 100-5 on fungal growth (race 6) compared to negative control (infiltrated 

by spores only).  

 

5.4. Transient silencing of RGA8 gene 

RGA8 was knocked out in resistant rose genotype 91/100-5 using RNAi construct 

(RGA8-exon2) to verify the effect of RGA8 in restricting growth of Dort E4. The 

silencing construct used in this study was derived from exon 2 of RGA8 gene that 

encode NBS region of functional protein, it has a similarity of 87-99 % to exon 2 of 

other paralogs of Rdr1 family. Due to high similarity of construct to other homologos of 

Rdr1 family it was expected that the construct could silence other members of the 
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family along with RGA8. In addition to resistant 91/ 100-5, PC a susceptible rose 

genotype was also infiltrated with silencing construct and challenged by Dort E 4 as a 

part of this experiment. RNAi experiments resulted in a significantly high fungal growth 

in resistant (Krukskal Wallis Test p < 2.2e-
16

; Figure 5.17) and susceptible rose 

genotypes (Krukskal Wallis Test p value = 9.99 e-
7
; Figure 5.17) after infiltrating the 

RNAi construct with a helper plasmid VIP1 and fungal spores at a high concentration 

ranging between 2.5x10
5
 - 5x10

5
 spores/ ml. However, the Dort E 4 is not able to 

germinate in 91/ 100-5 as displayed in control samples it showed about 4x more growth 

after silencing Rdr1 family compared to control samples. In contrast to 91/ 100-5, PC is 

a susceptible genotype with a defective Rdr1 locus; even the use of same silencing 

construct in this genotype resulted double the number of fungal colonies (Figure 5.17) 

suggesting the silencing of Rdr1 family because this genotype does not contain RGA8 

and the effect of other homologos in restricting fungal growth. Figure 5.18 presents the 

growth of Dort E 4 in 91/ 100-5 resistant genotype in absence of RNAi construct and 

Agrobacterium (1
st
 control), in the presence of GUS and VIP1-Agrobacterium (2

nd
 

control) and in presence of RNAi construct and VIP1 (silenced samples). Observations 

related to morphology of fungal colony in control samples revealed the typical type 7 

interaction (Blechert and Debener 2005) of 91/ 100-5 with Dort E 4 characterized by 

penetration hyphae with very little further development of hyphae (Figure 5.18 a). In the 

presence of VIP and GUS constructs some samples displayed well developed hyphal 

growth without any indication of acervuli development however most of the samples 

showed penetration hyphae with short, long and poorly branched hyphae, moreover in 

some samples fungal growth was limited by host produced cell-wall appositions (Figure 

5.18 b and c). In addition samples infiltrated by RNAi and VIP construct displayed well 

developed hyphal growth with short or long hyphal branching at the site of inoculation 

but none of the colony showed mature or developing acervuli. According to Blechert 

and Debener (2005) such interaction can be designated as weakly susceptible 

(interaction types 3, 4 and 5). In contrast, PC displayed the typical type 1 interaction 

characterized by well developed hyphae and acervuli. 
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Figure 5.17: Effect of Rdr1 family knockout in PC and 91/ 100-5 rose genotypes on 

fungal growth (Dort E 4). The RNAi construct was infiltrated in resistant (91/ 100-5) and 

susceptible rose genotype PC, its activity was evaluated in terms of increase in fungal growth (race 5).  
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Figure 5.18: Growth pattern of Dort E4 in leaves of resistant rose genotype 91/ 

100-5. a-samples infiltrated with Dort E4 spores only; b-samples co-infiltrated with Dort E4 and 

GV3101 harbouring VIP1 helper plasmid; c- samples co-infiltration with Dort E4 and GV3101 

harbouring GUS Intron; d- samples co-infiltration using Dort E4 and GV3101 harbouring VIP1 & RNAi 

constructs in 1:1 ratio. s- short hyphal strands that did not develop in long distance hyphae; l- long very 

thin hyphae; ap- cell wall depositions visible around the area of fungal invasion; h- well developed hyphal 

network at the site of inoculation; nh-short distance hyphae poorly branched. 

 

  
 

Figure 5.19: The growth pattern of Dort E4 infiltrated in Arabidopsis varieties. a- 

Columbia; b- PEN2-1 Mutant; h- well developed hyphal network at the site of inoculation; nh-short 

distance poorly branched hyphae. 

 

5.5. Generation of Arabidopsis lines homozygous for single CGs  

As Dort E4 was able to grow in Arabidopsis (Figure 5.19), this heterologous system 

was used to generate homozygous lines for GUS, pGJ28 and all RGAs. This attempt 

a

s 

b

s 

h 
nh 

c 

ap 

nh 

d

s 

h 

h 



Results 

 

 

58 
 

resulted the generation of homozygous lines for GUS (Columbia and PEN-2 mutant), 

pGJ28 (Columbia only), RGA3 (Columbia only) and RGA8 (Columbia only) following 

the scheme presented in Table 5.5. The generated stable transformants have to be 

utilized for the confirmation and evaluation of the interaction data of RGA8 and Dort 

E4 obtained through transient complementation assays. Due to time limitations further 

experimental findings could not be added in this thesis. 

 

Table 5.5: The generation of Arabidopsis stable homozygous lines 

Practical steps carried out Generation No. Resultant genotype 

Floral parts of plants were dipped in agro-

suspension followed by seed collection and in 

vitro selection of transformants. 

T 0  All Rr 

Transformants were rescued and transferred to 

green house from in vitro culture. Seeds were 

collected after selfing, separately from each 

transformant and designated as single line.  

T 1 

Cross:   Rr x Rr 

Result:  1:3 

(RR: Rr: Rr: rr) 

From each line 30 plants were selfed and seed 

were collected. 
T2 

RR x RR = all RR 

Rr x Rr = 1:3 

rr x rr = all rr 

Seeds of all 30 plants of each transformant line 

were screened in vitro and homozygous lines 

were selected. 

T3 All RR 

 

5.6. Gene structure and corresponding proteins of some Rdr1 candidates 

5.6.1. RGA8- black spot resistance gene 

As mentioned before the RGA8 was isolated from BAC 20F5 by complete enzymatic 

digestion (Xba I) and cloned in binary vector pBINPLUS. Clone 2B7 harbour RGA8 

with an insert size of 11065bp. The isolated RGA8 fragment was located on the 

available contig for Rdr1 locus at positions 180729-191793 by comparing end 

sequences of genomic insert in subclone 2B7. According to the available cDNA 

sequence and genomic sequence of RGA8 it has a gene structure of four exons and three 

introns; all Rdr1 candidates share this basic gene structure. The first two exons encode 

TIR and NBS domains respectively, while third and fourth exons codes LRR domain 

(Kaufmann et al,. 2010). The isolated RGA8 clone was infiltrated in tobacco and total 

mRNA was isolated 3-days post-infiltration and processed to determine the 5‟ and 3‟ 

end sequences of RGA8-cDNA experimentally (Section 4.2.4). The determined 

sequences were aligned to the genomic sequence of RGA8 (Figure 5.20) indicating the 

presence of two alternative transcripts. It is important to report that no truncated 



Results 

 

 

59 
 

transcript was found during these experiments and alternative transcripts resulted in the 

same ORF as described below. 

 

5.6.1.1. 5’ RACE 

RACE identified two 5‟ cDNA fragments of 68 and 101 nucleotides as 5‟ UTR 

upstream to ATG (Figure 5.20 a, b and c). Four gene specific primer pairs, one outer 

and three inner (Table A10 in appendix), were designed from 1
st
 exon (498 bp) of 

RGA8 gene. However, outer primer PCR did not result in any product, it displayed 

single bands in 1% agarose gel when diluted as 1:20 and used as template for other 

three inner primers. The product of farthest inner primer RGA8_54 (234 bp downstream 

to ATG) was purified and cloned for further analysis as described in section 4.2.4. 

Sequencing of positive clones revealed the presence of two 5‟ RACE UTR of 68 and 

101 nucleotides upstream to ATG. 

 

5.6.1.2. 3’ RACE 

Sequence alignments of 3‟ RACE fragments to isolated RGA8 genomic sequence 

revealed the presence of two alternative transcripts for RGA8 gene representing 3‟ UTR 

of 30 and 3517 nucleotides downstream to TGA (Figure 5.20 d and e). Seven gene 

specific primer pairs were developed from exons 2, 3 and 4 of RGA8 (Table A10 in 

appendix). Primer pairs 2GSP-2 and 2GSP-nested developed from exon 4 resulted in 

specific single bands in 1% agarose gels. The bands were purified and cloned for further 

analysis as described in section 4.2.4. No truncated versions of RGA8 transcripts were 

observed, as it was predicted that sometimes the presence of full length and truncated 

proteins is necessary for the function of resistance genes (Mestre and Baulcombe, 2006; 

Jordan et al., 2002). 
 

 

a- 5‟ RACE (5‟ UTR start) 

 
 

b- 5„ RACE (ATG overlap) 
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c- 5„ RACE (overlap end) 

 
d- 3„ RACE (poly A-tail) clone F4-2 

 
e- 3„ RACE (poly A-tail) clone F1-2 

 
Figure 5.20: RGA8 5’ and 3’ RACE ends aligned to genomic clone 2B7 harbouring 

isolated RGA8. 

 

Although, these results predict the presence of atleast four different mRNAs for RGA8, 

only one ORF was found for different full length cDNAs comprising of 3369 bp (NCBI 

ORF-Finder). The predicted ORF encodes a predicted polypeptide of 1122 amino acids 

(aa) with an average molecular weight of 123.4 kDa. The deduced aa sequence show 

homology to TIR, NB and LRR domains (PROFILESCAN and NCBI-conserved 

domain search). The conserved motifs of these domains are presented in Table 5.6 

according to Lukasik and Takken (2009) and Meyers and colleagues (1999). The LRR 

domain contains 10-11 irregular LRR repeats, 5 of which show little variation whereas 

the remaining strictly follow the consensus sequence of xLxxLxLxx, where L= leucine 

and x= any amino acid (Table 5.6; Table 7.12 in appendix). Exon 2 showed similarity to 

Borrelia protein repeats within a region of 14-nucleotides at the end of NBS domain; 

Borrelia proteins are not characterized yet, but contain repeated regions. In addition to 

that at the end of exon four, it has two regions similar to Nebulin repeat (41-

nucleotides) and Apopolysialoglyco protein (PSGP 12-nucleotides) as predicted by 

PROFILESCAN. When the complete Rdr1 contig was assessed for the presence of 

different genes (Fgenesh, Softberry), software predicted the presence of a 

dehydroquinate dehydratase-AAS90325 (6.00E-31) gene in front of RGA8 at the 5‟end 

with predicted 690 bp cDNA and 229 amino acids. This gene is present on isolated 

RGA8 subclone 2B7 with some damage to upstream sequences as according to software 

prediction 3953bp are required in total to get full upstream and downstream sequences 

for this gene, whereas isolated RGA8 sub clone has 3146 bp upstream sequences only. 

This enzyme is a member of lyases enzyme family (hydro-lyases) and can cleave 
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carbon-oxygen bonds. The only known role of this enzyme is its participation in the 

biosynthesis of phenylalanine, tyrosine and tryptophan. 

 

5.6.2. RGA7- inactive gene against black spot 

The subclone 1C7 harbour an insert of 7995 bp representing RGA7. End sequences of 

this insert located it on Rdr1 contig positioning from 172735 to 180729 bp. The 3‟ 

terminal structure of RGA7 was determined experimentally. The comparison of 

available genomic sequences and RACE identified 3‟ cDNA fragments resulted 3‟ UTR 

regions of 733 and 737 nucleotides downstream to TGA (Figure 5.23). 3‟ UTR region 

has an intron of 168 nt long which is positioned 90 nt downstream of TGA codon of the 

gene. Although 5‟ RACE end for RGA7 gene was not isolated experimentally, when 

available genomic sequences of all Rdr1 candidates converted to cDNA and aligned 

they nicely aligned at ATG (Figure 5.21). In addition to that experimentally isolated 5‟ 

RACE ends available for RGA3 and 8 revealed the presence of 145/ 172 and 68/ 101 

nucleotides as 5‟ UTR before ATG, respectively. Keeping in view these observations, a 

5‟ UTR of 200 nucleotides was added in front of ATG (RGA7-cDNA) and ORF was 

determined by ORF-Finder (NCBI). The deduced ORF of RGA7 encodes a predicted 

polypeptide of 944 amino acids. The N-terminal of the RGA7 protein contains 

conserved motifs for TIR and NBS domains (Figure 5.24). The C-terminal consists of 

11 LRRs that follow the consensus sequence LxxLxLxx (Figure 5.24; Table 7.12 in 

appendix).  

 

Figure 5.21: Alignment of software predicted cDNA of Rdr1 candidates. All RGAs are 

perfectly aligned at ATG (start codon) and TGA (stop codon). 
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5.6.3. Bioinformatics of RGA 8 protein sequence 

To identify the homologues of RGA8 protein BLASTx searches were carried out 

(Altschul et al., 1997) against the GenBank non-redundant database 

(http://blast.ncbi.nlm.nih.gov). The RGA8 protein shares the highest identity (41%) to 

TIR-NBS-LRR-resistance protein of Populus trichocarpa (ACCESSION 

XP_002329162). It also shows identity to hypothetical proteins of Vitis vinifera (39-

44%), to TIR of Medicago truncatula (40%; ACCESSION ABD28703), to CMR1 of 

Phaseolus vulgaris (40%; ACCESSION ABH07384) and to N-like protein of N. 

tabacum (39%; ACCESSION BAF95888 for resistance to Tobacco Mosaic Virus; 

Whitham et al. 1994; Figure 6.1). The comparison of three proteins (RGA 8, 3 and 7) 

revealed high similarity ranging between 58-80% (Table 6.1) and presence of 119 

unique amino acids in RGA8 protein (Figure 5.24; 5.25); 2 aa in TIR, 40 aa in NBS and 

77 aa in LRR domains. According to the occurrence of specific amino acids LRR 

domain is the most divergent followed by NBS domain. Ka and Ks values (Table 6.1) 

show that the N-terminal halves of these proteins display higher degree of sequence 

homology than the C-terminal halves of proteins. The type of selection pressure exerted 

on different domains of three genes, ratio of synonymous (Ks) and non-synonymous 

(Ka) substitutions rates per synonymous / non-synonymous site was calculated (Table 

6.1). Ka / Ks ratio equal to 1 suggests random mutation or no selection pressure on gene; 

whereas Ka / Ks> 1 and Ka / Ks< 1 reflect sequence diversification and conservation, 

respectively (Hughes and Nei, 1988). The overall trend of selection operating on gene 

data presented here is sequence conservation however; the N-terminal halves of the 

genes suggest more sequence conservation when compared to C-terminal region of 

genes.  
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3
1
1
9
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2
1
 

 
a- Previously isolated cDNA  

 

 

 

 

 

 

 

 

 

b- Isolated RGA 8 (RC)                      //                                                                                     //  
 

 

c- Length in bp                                               101/ 68       498              297                      1104                   103             276          88                                 1493                                    30/ 3517 

                                                                               (5’ UTR)                                                                                                                                                                                                     (3’ UTR) 

 

 
d- 5’ RACE                     3’ RACE 
 

      5‟GSP start: 3321     3‟GSP start: 5581 and 6457 

 

 

 

Figure 5.22: Schematic illustration of full length cDNA of RGA 8.  
a- previously isolated cDNA of RGA8; b- Genomic subclone of RGA8-2B7 that was used  

to isolate 5‟and 3‟ RACE sequences and all positions mentioned here refer to the same clone; 

c- length of different exons, introns and UTRs in bp; d- isolated 3‟ and 5‟ RACE products  

with start positions of GSP primers as indicated below the illustration. 

This illustration does not represent the actual distances and sizes of the DNA sequences. 
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AP:   Adaptor Primer  GSP:   Gene Specific Primer 
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Domain Sequence Exons 

T
IR

 

(1
7

-1
5
7
) 

 

0001  MALSTQVRASSGSAFPWKYDVFLSFRGEDTRKGFTGFLYHELQRQGIRTFRDDPQLERGTVISPELLTAIEQSRFAIVVLSP  0082 

                                 TIR-1 

0083  NFASSTWCLLELSKILECMEERGRILPIFYEVDPSHVRHQRGSFAEAFQEHEEKFGVGNKKVEGWRDALTKVAGLAGWTSKD  0164 

           TIR-2                         TIR-3 

0165  YRY 

1 

(1-167) 

 

N
B

S
-A

R
C

 

(1
9
9

-4
6
9
) 

 

 

0168  ETELIREIVQALWSKLHPSLTVFGSSEKLFGMDSKLEEIDVLLDKEANEVRFIGIWGMGGIGKTTLARLVYQKISHQFEVCI  0249 

                                                          Pre-P-loop     Walker A/P loop(kinase1a) 

0250  FLDNVREVSKTTHGLVDLQKKILSQIFKEENVQVLDVYSGMTMIKRCVCNKAVLLVLDDMDQSEQLENLVGEKDCFGLRSRI  0331 

              RNBS-A                                        Walker B(kinase2)           RNBS-B/ 

0332  IITTRDRHVLVTHGVEKPYELNGLNKNEALQLFSWKAFRKCEPEEDFAELCKSFVTYAGGLPLALKILGSFLKGRTPDEWNS  0413 

     Sensor1(kinase3a)            RNBS-C                            GLPL(ARC1) 

0414  ALAKLQQTPDITVFKILKMSFDGLDEMEKKIFLDIACFRWLYRKEFMIELVDSSDPCNRITRSVLAEKSLLTISSDNQVHVH  0495 

                                       RNBS-D(ARC2)                     Borrelia repeat protein 

0496  HDLIHEMGCEIVRQENKEPGGRSRLCLRDDIFHVFTKNTGTE 

2 

(168-536) 

L
R

R
 

(5
9

7
-8

7
2

) 

 

 

0537  AIEGILLDLAELEEADWNLEAFSKMCKLKLLYIHNLRLSVGPRLLPNSLRFLSWSWYPSK                        0596 

0597  SLPPCFQPDELAEISLVHSN                                            1 

0617  IDHLWNGIKYLVNLKSIDLSYSINLT                                      2 

3 

(537-629) 

 

0643  RTPDFTGIPNLEKLVLEGCTN                                           3 

0664  LVKIHPSIALLKRLRIWN                                              4 

0682  LRNCKSIRS-LPSEVNMEFLETFDVSGCSKLKM                               5 

0713  ISEFVMQMKRLSKLYLGGTAVEKL                                        6 

0737  PSSIEHLSESLVVLDLSG                                              7 

0755  IVIREQPYSRLLKQNLIASSFGLFPRKSPHPLIP                              8 

0789  LLASLKHFSCLRTLKLNDCNLCEGE                                       9 

0814  IPNDIGSLSSLQRLELRGNNFVSLPASIHLLEDV                             10 

0848  DVENCKRLQQLPELPDLPNLCRLR                                       11 

0873  ANFWLNCINCLSMVGNQDASYFLYSVLKRWIEIEALSRCDMMIRQETHCSFEYFRFVIPGSEIPEWFNNQSVGDTVTEKLPW  0953 

0954  WDACNSKWIGFAVCALIVPHDNPSAVPEKSHLDPDTCCIWCFWNDYGIDVIGVGTNNVKQIVSDHLYLLVLPSPFRKPENYL  1035 

1036  EVNFVFKIARAVGSNRGMKVKKCGVRALYEHDTEELISKMNQSKTSSISLYEEAMDEQEGAMVKATQEAATSRSGGSDDEYY  1117 

1118  SAAEE                      Nebulin repeat profile           Apopolysialoglycoprotein (PSGP) 
 

4 

(630-1122) 

 

Table 5.6: Deduced RGA8 protein sequence and conserved motifs of different domains. The amino acid sequence obtained from cDNA sequence of 

RGA8 is divided into three domains i.e. TIR, NBS and LRR. Conserved structural motifs in R-proteins are underlined and unmatched aa are marked red. The LRR subunit 

LxxLxLxxxx is framed. L Residues matching the consensus LRR sequence are indicated in bold. 
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b- Isolated RGA 7 (RC)                       //                                                                                     //  

  
c- Length in bp                                                          500               281                          1098                     110          267         85                             1588                                       733/ 737 

                                                                     (5’  UTR)                                                                                                                                                                                                         (3’  UTR) 

 

 

 
d- 5’ RACE (not isolated)                                  3’ RACE 

 

 

                     3‟GSP start: 5508 and 6546 

 

Figure 5.23: Schematic illustration of full length cDNA of RGA 7.  
a- cDNA of RGA7 isolated by different GSPs used in this study and previously; 

b- Genomic subclone of RGA7-1C7 that was used to isolate 3‟ RACE sequences  

and all positions mentioned here refer to the same clone; c- length of different exons,  

introns and UTR in bp; d- isolated 3‟ RACE products with start positions of GSP primers 

as indicated below the illustration.This illustration does not represent the actual distances and sizes of the DNA sequences. 

AP:   Adaptor Primer  GSP:   Gene Specific Primer 

TS:   Transcription Start RC:     Reverse Complement 

I :     Intron  E:      End 

Ex:   Exon   S:     Start 
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Ex4  

        

 

   

 

5’       Ex1                I1                         Ex2                       I2            Ex3          I3                              Ex4                            3’  UTR (I4) 
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                                        TIR-1    

a  b   ..........................................*.....................................  c 

1  1   MALSTQVRASSGSAFP-------WKYDVFLSFRGEDTRKGFTGFLYHELQRQGIRTFRDDPQLERGTVISPELLTAIEQS  73 

2  1   ................-------...................DY.......R..W............A............  73 

3  1   ................------- ..................G................................V....  73 

4  1   ..ATSSRCNTTSPP.SPTQNNCK.T..............N...H..SG.S.FKLLV.K..EK..K.K..A....K.....  80 

5  1   ..SPSPSSSSSA----------R.S..............T..SH..EVLKDRGIK..Q.EKR..YGAT.PE..SK...E.  70 

 

                    TIR-2                       TIR-3 

       ................................................................................ 

1  74  RFAIVVLSPNFASSTWCLLELSKILECMEERG-RILPIFYEVDPSHVRHQRGSFAEAFQEHEEKFGVGNKKVEGWRDALT  152 

2  74  ..........Y.T.K.........I.......-T...V............................E..EEM....V...  152 

3  74  ................................-.........................R.....................  152 

4  81  M.SVI...K.Y...S...D..A.....GDQK.QK.F.V..D.E..D..K.T...QDD.AK....YRENID.VRK..A.M.  160 

5  71  Q.....F.K.Y.T.R...N..V..M..KTQFRQTVI....D.......N.KE...K..E...T.YKDDAEGIQR..I..N  150 

 

                                                                   Pre-P loop   Walker-A (K 1a)  

       ...*...........................................................*................ 

1  153 KVAGLAGWTSKDYRYETELIREIVQALWSKLHPSLTVFGSSEKLFGMDSKLEEIDVLLDKEANEVRFIGIWGMGGIGKTT  232 

2  153 .M.S..........................VY...A..D.....V...T..K...........D................  232 

3  153 ...S............K...........................V..H-..........I..SD................  231 

4  161 Q..N.S.....N-.N.S.I.E....KIDYE.--.Q.FSSV..D...I.SRVRVVSDM.FGGQ.D..I...C.........  237 

5  151 AA.N.K.SCDNRDKSDADC..Q..GQIS...--CKISLSYLQNIV.IDTH.KK.ES..EIGI.DVRVV..C....V....  228 

 

                                  RNBS-A                                       Walker-B (K 2) 

       ......*....................................*.....*.......*.....*......*......... 

1  233 LARLVYQKI------SHQFEVCIFLDNVREVSKTTHGLVDLQKKILSQIFKEENVQVLDVYSGMTMIKRCVCNKAVLLVL  306 

2  233 ......G..------....D......D..K..-.I.D.D....R.R...L...D...G.....LA....YF.........  305 

3  232 ......E..------.......V..T......-A.....Y...Q...H.L....A..WN....I......F.....I...  304 

4  238 ...V..D..------RCE..GSC..A....GF-EK..A.P...QL..E.LR.KSPKIW.PEK.IAE..NRLQ.RK..VI.  310 

5  229 ...AMFDTLLVRRDS.Y..DGAC..EDIK.NK---GRINS..NTL..KLLR.K-AEYNNKED.KHQMASRLRS.K..I..  304 

 

                         RNBS-B/ Sensor1 (K 3a)          RNBS-C 

       ..*............................*...............*...**...................*.*..... 

1  307 DDMDQSEQ-LENLVGEKDCFGLRSRIIITTRDRHVLVTHGVEKPYELNGLNKNEALQLFSWKAFRKCEPEEDFAELCKSF  385 

2  306 .NV....K-.........W............N.....R..I.E....K...QY.......LE..........Y.K...H.  384 

3  305 ..V.....-..H.A.............F...NQR.............K...NA...................Y.E.....  383 

4  311 ..V.NLK.-.HF.AVDWKW.LPGS.....S..KNL.S..AVDGI..AEE..DDD..V.L.RK..K.DQ.IEGYW.....V  389 

5  305 ..I.DKDHY..Y.A.DL.W..NG....V....K.LIEKF.IHL---VTA.TGH..I...NQY..G.EVSD.H.KK.SLEV  381 

 

        GLPL (ARC1)                                             RNBS-D (ARC2) 

       ..................**.*..*.*......*....*...*...*....................*..**.*...*.* 

1  386 VTYAGGLPLALKILGSFLKGRTPDEWNSALAKLQQTPDITVFKILKMSFDGLDEMEKKIFLDIACFRWLYRKEFMIELVD  465 

2  385 ....A.............YK.SL.S.S.TFQ..K...NP...E...L....................R..DN.S...Q.S  464 

3  384 .MHA........T.....YK.S..A.N......RN...K...DM..V.Y.................SSQCQAK.I...LY  463 

4  390 LGH.R.....ARV.A.S.C..SM.F.E.FIKR.NEI.NRD.MAV..L.....E.L...L.......FKGMN.DQVTRILN  469 

5  382 .K..K......RV...S.RN.GITV.K..IEQMKNN.NSKIVEN..I.Y...EPIQQEM.......FRGKE.GAIMQVLK  461 

 

              Borrelia protein repeat 

       ...*....***...**..........***..........................*..*..................*.* 

1  466 SSDPCNRITRSVLAEKSLLTISSDNQVHVHDLIHEMGCEIVRQEN-KEPGGRSRLCLRDDIFHVFTKNTGTEAIEGILLD  544 

2  465 ..EFSS..AMD...ER......H-..IYM...----------------.......W..NDI...........VT...F.H  527 

3  464 .Y.V.IG.AIE..VER.......N.EIGM....R.........QSPE....C...W..N..................F.H  543 

4  470 QCGFHANYGIQI.QD....CV.N-DTLSM...LQAMGREVVRQ.STA...R....WASK.V...LG......E..S.A..  548 

5  462 .C.CGAEYGLD..I.R..VF.TKYSKIEM....Q...RY..NLQK--NL.EC.....TK.FEEMMIN....M.M.A.WVS  539 

 

       ...........**...............*............*...........**...*....*................ 

1  545 ----------LAELEEADWNLEAFSKMCKLKLLYIHNLRLSVGP---------RLLPNSLRFLSWSWYPSKSLPPCFQPD  605 

2  528 ----------.DK...............E............L..---------KY...A.K..K................  588 

3  544 ----------.HK.......P.......N............L..---------KF..DA..I.K...........G....  604 

4  549 WANPEDVEGTMQKTKRSA..TGVF...SR.R..R.R.ACFDS..---------EY.S.E....E.RN....Y..SS...E  619 

5  540 TYSTLRI------------SN..MKN.KR.RI...D.WTW.SDGSYITHDGSIEY.S.N..WFVLPG..RE...ST.E.K  607 

 

          LRR-1               LRR-2                    LRR-3                LRR4 

       .....*................*.................................................*....... 

1  606 ELAEISLVHSNIDHLWNGIKYLVNLKSIDLSYSINLTRTPDFTGIPNLEKLVLEGCTNLVKIHPSIALLKRLRIWNLRNC  685 

2  589 ..T..T............K.S.G........D..............S....I....IS.........S....KF..F...  668 

3  605 ..---SF...............G.....V...........................................K.......  681 

4  620 N.V.VH.CY..LRQ.RL.N.I.DS..V......EY.IK..N........R.ILQ..RR.SEV.S..GHHNK.IYV..MD.  699 

5  608 M.VHLK.SGNSLRY..MET.H.PS.RR....R.KR.M.......M....Y.D.TW.S..EEV.H.LGCCRK.IRLD.Y..  687 

 

             LRR-5                             LRR-6 

       ...*..........................*...*.*......*.................................... 

1  686 KSIRSLPSEVN-MEFLETFDVSGCSKLKMISEFVMQMKRLSKLYLGGTAVEKLPSS-IE---------------------  742 

2  669 ...K...G..D-..................P...G.T....R.C............-..---------------------  725 

3  682 ...KT......-..................P...G.T......C............-..---------------------  738 

4  700 E.LT....RISGLNL..ELHL.......EF..IEGNK.C.RK.C.DQ.SI.E..P.-.QYLVGLISLSLKDCKKLSCLPS  778 

5  688 ..LMRF.C-..-V.S..YLGLEY.DS.EKFP.IHRR..PEIQIHM.DSGIRE....YFQYQTHITKLDLSGIRNLVALPS  765 

 

                                      LRR-7             LRR-8                     

       .................................*...............*.............................. 

1  743 -----------HLS---------------ESLVVLDLSGIVIREQPYSRLLKQNLIASSFG-------------------  777 

2  726 -----------...---------------....E...............F...........-------------------  760 

3  739 -----------...---------------....G..............LF....V....L.-------------------  773 

4  779 SINGLKSLKTL...GCSELENLPENFGQL.C.NE..V..TA...P.V.IFSLK..KIL..HGCAESSRSTTNIWQRLMFP  858 

5  766 SICRLKSLVRLNVWGCPKLESLPEEIGDLDN.EE..AKCTL.SRP.S.IVRLNK.KIL..SS------------------  827 
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                              LRR-9                    LRR-10 

a   b  .....................*..........................*...................****........   c 

1  778 LFPRKSPHPLIPLLASLKHFSCLRTLKLNDCNLCEGEIPNDIGSLSSLQRLELRGNNFVSLPASIHLLEDVD---VENCK  854 

2  761 .....................S..........................K...................SKLTYFG.....  840 

3  774 ......H.....V........S.KE.N.....................EC...G..............CRLGSIN.....  853 

4  859 .M.G.RANSTSLV.P..SGL.S.TR.G.SN...G..AV.....Y....RQ.N.SR.K.....T..DQ.SGLQFLRM.D..  938 

5  828 -.GYDGV.FEF.PV.--EGLHS.EH.D.SY...ID.GL.E........KE.C.D....EH..R..AQ.GALQILDLSD..  904 

 

             LRR-11 

       ..............................*.*.....**.*...*.......*.....................**.. 

1  855 RLQQLPELP-------------------D-LPNLCRLRANFWLNCINC---LSMVGNQDA-SYFLYSVLKRWIEIEALS-  909 

2  841 K.....A..VSDYLNVLTNNCTSLQVFP.-P.D.S..-SE.F.D.S..---..C---Q.S-..............QV..-  910 

3  854 .........VSGSLRVTTVNCTSLQVFPELP.D....-SA.S..SV..---..TI.....-.F.....INRLLEVIS..L  928 

4  939 M..S.....-SNLEEFRVNGCTSLEKM-QFSRK..Q.-NYLRYLF...---WRLSESDCW-NNMFPTL.RKCFQGPPNL-  1010 

5  905 ..T.....H---------PGLNVLHVD-------.HMALK.FRDLVTKRKK.QR..LD..HNDSI.NLFAHALFQNIS.L  968 

 

       .....**....***.*.***...................*......*...................*.....**.***.. 

1  910 RCDMMIR-QETHCS-FEYFRFVIPGSEIPEWFNNQSVGDTVTEKLPWDAC-NSKWIGFAVCALIVPHDNPSAVPEKSHLD  986 

2  911 .....VHM...NRRPL.FVD...................R......S...-...............Q.....LL.RPF..  989 

3  929 SLSLSLSLSLSLSRSL----------------------------------------------------------------  944 

4  1011---------------I.S.SVI.......T..SH..EGSSVSVQT.PHSHE.DE.L.Y....SLGYP.F.PN.FRSP---  1072 

5  969 .H.IFASDSLSESV----.SI.H.WKK..S..HH.GRDSS.SAN..KNWYIPD.FL.....YSGRLI.STAELIS-----  1039 

 

       ...**.*.*......***.****.....*......*....*........*.......*.*....*............... 

1  987 PDTCCIWCFWNDYGIDVIGVGTNNVK--QIVSDHLYLLVLPSPFRKPENYLEVNFVFKIARAVGSNRGMKVKKCGVRALY  1064 

2  990 ...YG.E.Y......GFV.LVVP-..--.F.....W....L........C.......E.T....N...............  1066 

3      --------------------------------------------------------------------------------   

4  1073-----MQCFFNGDGNESESIYVR-L.PCEIL....WF.YF..R.KRFDRHVRFR.EDNCSQT-------..I.....LV.  1139 

5  1040--V.DDVIS.MTQKLALSNHSEWDTES----NI.FF.VP.AVLWDTSKANGKTPNDYGLI.LFF.G---E...Y.L.L..  1110 

 

         ...*...........*........*..............**.....*...........* 

1  1065  EHDTEELISKMNQSKTSSISLYEEAMDEQEGAMVKA---TQEAATSRSGGSDDEYYSAAEE---  1122 

2  1067  ...V...........S........G...........---KH.....G...........E..---  1124 

3        ----------------------------------------------------------------   

4  1140  QQDV...NRMT.LYEN.TFEGVD.CFQ.SG..L..RLGH.NDVGEASGSV.S..QPPTKKLKQI  1203 

5  1111  KE.-P.VEALLQMR.NNN----.PIEHSTRIRRIRYNNSEHDFMINEASC.SGK----KQKSHF  1165 

 

Figure 5.24: Alignment of the proteins of RGA 8, 3, 7 of roses, TIR-NBS-LRR 

resistance protein of Populus trichocarpa and N like protein of N. tabacum. The 

RGA8 protein and its predicted TIR, NBS and LRR domains with conserved motifs are high-lighted. 

Blue stars on RGA8 protein sequence represent unique amino acids of this protein when compared to 

proteins of RGA 3 and 7. Within RGA8 protein sequence the end amino acid of each domain is marked in 

red. a- Numbers in first column corresponds to RGA8 (1), RGA3 (2), RGA7 (3), resistance protein of 

Populus trichocarpa (4) and N like protein of N. tabacum (5); b and c- sequence positions; Dashes 

indicate gaps inserted to maintain optimal alignment. 

 

a  b                                                                                     c 

1  1   MALSTQVRASSGSAFP-------WKYDVFLSFRGEDTRKGFTGFLYHELQRQGIRTFRDDPQLERGTVISPELLTAIEQS  73 

2  1   MALSTQVRASSGSAFP-------WKYDVFLSFRGEDTRKGFTDYLYHELQRRGIWTFRDDPQLERGTAISPELLTAIEQS  73 

3  1   MALSTQVRASSGSAFP-------WKYDVFLSFRGEDTRKGFTGFLYHELQRQGIRTFRDDPQLERGTVISPELLTVIEQS  73 

Con.   ****************-------*******************..**********.************.********.*** 

 

1  74  RFAIVVLSPNFASSTWCLLELSKILECMEERG-RILPIFYEVDPSHVRHQRGSFAEAFQEHEEKFGVGNKKVEGWRDALT  152 

2  74  RFAIVVLSPNYATSKWCLLELSKIIECMEERG-TILPVFYEVDPSHVRHQRGSFAEAFQEHEEKFGEGNEEMEGWRVALT  152 

3  74  RFAIVVLSPNFASSTWCLLELSKILECMEERG-RILPIFYEVDPSHVRHQRGSFAEAFREHEEKFGVGNKKVEGWRDALT  152 

Con.   **********.*.*.*****************-.***.********************.*******.**...****.*** 

 

1  153 KVAGLAGWTSKDYRYETELIREIVQALWSKLHPSLTVFGSSEKLFGMDSKLEEIDVLLDKEANEVRFIGIWGMGGIGKTT  232 

2  153 KMASLAGWTSKDYRYETELIREIVQALWSKVYPSLAVFDSSEKLVGMDTKLKEIDVLLDKEANDVRFIGIWGMGGIGKTT  232 

3  153 KVASLAGWTSKDYRYEKELIREIVQALWSKVHPSLTVFGSSEKLVGMH-KLEEIDVLLDIEASDVRFIGIWGMGGLGKTT  231 

Con.   *.*.************.*************..***.**.*****.**..**********.**..***********.**** 

 

1  233 LARLVYQKI------SHQFEVCIFLDNVREVSKTTHGLVDLQKKILSQIFKEENVQVLDVYSGMTMIKRCVCNKAVLLVL  306 

2  233 LARLVYGKI------SHQFDVCIFLDDVRKVS-TIHDLDDLQKRIRSQILKEEDVQVGDVYSGLAMIKRYFCNKAVLLVL  305 

3  232 LARLVYEKI------SHQFEVCVFLTNVREVS-ATHGLVYLQKQILSHILKEENAQVWNVYSGITMIKRCFCNKAVILVL  304 

Con.   ******.**------****.**.**..**.**...*.*..***.*.*.*.***..**..****..****..*****.*** 

 

1  307 DDMDQSEQ-LENLVGEKDCFGLRSRIIITTRDRHVLVTHGVEKPYELNGLNKNEALQLFSWKAFRKCEPEEDFAELCKSF  385 

2  306 DNVDQSEK-LENLVGEKDWFGLRSRIIITTRNRHVLVRHGIEEPYELKGLNQYEALQLFSLEAFRKCEPEEDYAKLCKHF  384 

3  305 DDVDQSEQ-LEHLAGEKDWFGLRSRIIFTTRNQRVLVTHGVEKPYELKGLNNAEALQLFSWKAFRKCEPEEDYAELCKSF  383 

Con.   *..****.-****.****.********.***...***.**.*.****.***..*******..**********.*****.* 

 

1  386 VTYAGGLPLALKILGSFLKGRTPDEWNSALAKLQQTPDITVFKILKMSFDGLDEMEKKIFLDIACFRWLYRKEFMIELVD  465 

2  385 VTYAAGLPLALKILGSFLYKRSLDSWSSTFQKLKQTPNPTVFEILKLSFDGLDEMEKKTFLDIACFRRLYDNESMIEQVS  464 

3  384 VMHAGGLPLALKTLGSFLYKRSPDAWNSALAKLRNTPDKTVFDMLKVSYDGLDEMEKKIFLDIACFSSQCQAKFIIELLY  463 

Con.   *..*.*******.*****..*..*.*.*...**..**..***..**.*.*****************.........**... 

 

1  466 SSDPCNRITRSVLAEKSLLTISSDNQVHVHDLIHEMGCEIVRQEN-KEPGGRSRLCLRDDIFHVFTKNTGTEAIEGILLD  544 

2  465 SSEFSSRIAMDVLAERSLLTISH-NQIYMHDL----------------PGGRSRLWLRNDIFHVFTKNTGTEVTEGIFLH  527 

3  464 SYDVCIGIAIEVLVERSLLTISSNNEIGMHDLIREMGCEIVRQQSPEEPGGCSRLWLRNDIFHVFTKNTGTEAIEGIFLH  543 

Con.   *......*...**.********..*....***................***.***.**.*************..***.*. 
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a  b                                                                                     c 

1  545 ----------LAELEEADWNLEAFSKMCKLKLLYIHNLRLSVGP---------RLLPNSLRFLSWSWYPSKSLPPCFQPD  605 

2  528 ----------LDKLEEADWNLEAFSKMCELKLLYIHNLRLSLGP---------KYLPNALKFLKWSWYPSKSLPPCFQPD  588 

3  544 ----------LHKLEEADWNPEAFSKMCNLKLLYIHNLRLSLGP---------KFLPDALRILKWSWYPSKSLPPGFQPD  604 

Con.   ----------*..*******.*******.************.**---------..**..*..*.***********.**** 

 

1  606 ELAEISLVHSNIDHLWNGIKYLVNLKSIDLSYSINLTRTPDFTGIPNLEKLVLEGCTNLVKIHPSIALLKRLRIWNLRNC  685 

2  589 ELTELTLVHSNIDHLWNGKKSLGNLKSIDLSDSINLTRTPDFTGIPSLEKLILEGCISLVKIHPSIASLKRLKFWNFRNC  668 

3  605 EL---SFVHSNIDHLWNGIKYLGNLKSIVLSYSINLIRTPDFTGIPNLEKLVLEGCTNLVKIHPSIALLKRLKIWNFRNC  681 

Con.   **.....***********.*.*.********.****.*********.****.****..*********.****..****** 

 

1  686 KSIRSLPSEVN-MEFLETFDVSGCSKLKMISEFVMQMKRLSKLYLGGTAVEKLPSS-IE---------------------  742 

2  669 KSIKSLPGEVD-MEFLETFDVSGCSKLKMIPEFVGQTKRLSRLCLGGTAVEKLPSS-IE---------------------  725 

3  682 KSIKTLPSEVN-MEFLETFDVSGCSKLKMIPEFVGQTKRLSKLCLGGTAVEKLPSS-IE---------------------  738 

Con.   ***..**.**.-******************.***.*.****.*.************-** 

 

1  743 -----------HLS---------------ESLVVLDLSGIVIREQPYSRLLKQNLIASSFG-------------------  777 

2  726 -----------HLS---------------ESLVELDLSGIVIREQPYSRFLKQNLIASSFG-------------------  760 

3  739 -----------HLS---------------ESLVGLDLSGIVIREQPYSLFLKQNVIASSLG-------------------  773 

Con.   -----------***---------------****.**************..****.****.*------------------- 

 

1  778 LFPRKSPHPLIPLLASLKHFSCLRTLKLNDCNLCEGEIPNDIGSLSSLQRLELRGNNFVSLPASIHLLEDVD---VENCK  854 

2  761 LFPRKSPHPLLPLLASLKHFSSLRTLKLNDCNLCEGEIPNDIGSLSSLKRLELRGNNFVSLPASIHLLSKLTYFGVENCT  840 

3  774 LFPRKSHHPLIPVLASLKHFSSLKELNLNDCNLCEGEIPNDIGSLSSLECLELGGNNFVSLPASIHLLCRLGSINVENCK  853 

Con.   ******.***.*.**********..*.*********************..***.**************.......*****  

 

1  855 RLQQLPELP-------------------D-LPNLCRLRANFWLNCINC---LSMVGNQDA-SYFLYSVLKRWIEIEALS-  909 

2  841 KLQQLPALPVSDYLNVLTNNCTSLQVFPD-PPDLSRL-SEFFLDCSNC---LSC---QDS-SYFLYSVLKRWIEIQVLS-  910 

3  854 RLQQLPELPVSGSLRVTTVNCTSLQVFPELPPDLCRL-SAFSLNSVNC---LSTIGNQDA-SFFLYSVINRLLEVISLSL  928 

Con.   *****.**.......................*.*.**.....*...**---**....**.-*.*****..*..*...**. 

 

1  910 RCDMMIR-QETHCS-FEYFRFVIPGSEIPEWFNNQSVGDTVTEKLPWDAC-NSKWIGFAVCALIVPHDNPSAVPEKSHLD  986 

2  911 RCDMMVHMQETNRRPLEFVDFVIPGSEIPEWFNNQSVGDRVTEKLPSDAC-NSKWIGFAVCALIVPQDNPSALLERPFLD  989 

3  929 SLSLSLSLSLSLSRSL----------------------------------------------------------------  944 

Con.   ................*...*******************.******.***-***************.*****..*...** 

 

1  987 PDTCCIWCFWNDYGIDVIGVGTNNVK--QIVSDHLYLLVLPSPFRKPENYLEVNFVFKIARAVGSNRGMKVKKCGVRALY  1064 

2  990 PDTYGIECYWNDYGIGFVGLVVP-VK--QFVSDHLWLLVLLSPFRKPENCLEVNFVFEITRAVGNNRGMKVKKCGVRALY  1066 

3      --------------------------------------------------------------------------------  

Con.   ***..*.*.******...*.....**--*.*****.****.********.*******.*.****.***************  

 

 

1  1065  EHDTEELISKMNQSKTSSISLYEEAMDEQEGAMVKA---TQEAATSRSGGSDDEYYSAAEE  1122 

2  1067  EHDVEELISKMNQSKSSSISLYEEGMDEQEGAMVKA---KHEAATSGSGGSDDEYYSAEEE  1124 

3        -------------------------------------------------------------   

Con.     ***.***********.********.***********---..****.************.** 

 

Figure 5.25: Comparison of protein sequences encoded by 3-members of Rdr1 

family. Protein sequences RGA8 (1), RGA3 (2) and RGA7 (3) were aligned to check amino acid 

similarities and divergence. Red stars represent consensus sequence and red dots show differences in 

amino acids. a- RGA 8, 3 and 7 proteins as described above; b and c- sequence positions. Dashes indicate 

gaps inserted to maintain optimal alignment. 
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6. Discussion 

The present study was focused on the identification and molecular characterization of 

major dominant resistance gene to black spot of roses introgressed from R. multiflora. 

Isolation of such genes from wild species followed by transformation of already well 

established cultivars is a quicker method of exploiting resistance. Many resistance 

genes, the Pto gene (Rommens et al., 1995) and the Cf-9 gene (Hammond-Kosack et 

al., 1998) of tomato, the N gene of tobacco (Whitham et al., 1994), the Bs2 gene of 

pepper (Tai et al., 1999), have been transferred to other related species as trans-genes. 

Although in the current study through functional characterization of Rdr1 candidates, 

RGA8 and RGA1 (TIR-NBS-LRR genes) were identified as active resistance genes 

against black spot race 5 (Dort E4), RGA8 showed more consistent and profound effect 

in restricting fungal growth as compared to RGA1.  

 

The Rdr1 resistance locus of R. multiflora confers vertical resistance to five races of D. 

rosae (Von Malek and Debener, 1998). In order to clone the Rdr1 gene a classical map 

based cloning strategy was applied. Several genes involved in disease resistance process 

have been cloned and isolated from different plant species by positional cloning (Lamb 

et al., 1989; Staskawicz et al., 1995; Bent, 1996; Hammond-Kosack and Jones, 1996; 

and 1997; Gebhardt, 1997; Ballvora et al., 1995). To fulfill the first prerequisite for this 

process the Rdr1 gene has been introgressed in diploid and tetraploid rose populations 

segregating for black spot resistance from R. multiflora (Drewes-Alvarez, 1992; Von 

Malek and Debener, 1998; Kaufmann et al., 2003) followed by the development of 

linked molecular marker for the gene (Von Malek et al., 2000) and the construction of 

two large insert BAC libraries for R. rugosa (Kaufmann et al., 2003) and R. multiflora 

resulting in the R. multiflora BAC contig of 220kb of black spot resistance Rdr1 locus 

(Biber et al., 2009). The map based cloning of Rdr1 took quite long time due to the high 

genomic heterozygosity in roses and presence of numerous repetitive elements on the 

BAC contig (Kaufmann et al., 2003). In parallel to map based cloning the candidate 

gene approach was exploited to isolate RGAs using degenerate primers to speed up the 

process of Rdr1 cloning and some of the isolated RGAs were located in the genomic 

region containing the Rdr1 locus at the telomeric end of linkage group 1 (Hattendorf 

and Debener, 2007). This isolation of RGAs was based on degenerate primers 

developed from conserved amino acid motifs of NBS, TIR and non-TIR domains. The 

same technique was also utilized successfully to isolate RGAs from different plant 
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species (Potato- Paal et al., 2004; tomato- Pan et al., 2000; pepper- Pflieger et al., 1999; 

lettuce- Woo et al., 1998 and Shen et al., 1998; common bean- Geffroy et al., 1999a 

and Rivkin et al., 1999; soybean- Kanazin et al., 1996 and Yu et al., 1996; Rosaceae 

family- Samuelian et al., 2008; Martinez Zamora et al., 2004; Lee et al., 2003; Baldi et 

al., 2004; Lalli et al., 2005; Soriano et al., 2005; Xu et al., 2005). Further sequence 

analysis of Rdr1 locus revealed the presence of nine RGAs of TIR-NBS-LRR type as 

putative candidates of the Rdr1 resistance gene (Terefe et al., 2010). It is usual that R-

genes are mostly organized in clusters (Michelmore and Meyers, 1998; Edwin et al., 

2000). The Gro1 resistance locus in potato has 15 members (Paal et al., 2004); the Hero 

resistance locus in tomato has 14 homologous genes (Ernst et al., 2002); the RGC2 

family in lettuce contains 14 to 40 paralogous sequences (Wroblewski et al., 2007); the 

Gpa2 locus in potato harbour 4 homologous genes (Edwin et al., 2000). It is suggested 

that the organization of R-genes as a tightly linked multigene families favors their rapid 

evolution as generation of novel genes by recombination, duplication and partial 

deletion (Leister, 2004; Collins et al., 1999; Meyers et al., 1998; Dixon et al., 1998). 

 

After estimating the number of CGs the next step was their validation through 

complementing assays. Performing genetic complementation assays in roses was not an 

easy task, primarily because roses are polyploidy with high heterozygosity that effect 

transformation efficiency and it need several months to get real transformants. In 

addition, isolation of functionally active 8 single CGs was also technically difficult and 

time consuming process. The potato (Solanum tuberosum) also show comparable degree 

of genomic complexicity as described for roses; It is a tetraploid, non-inbred, although 

annual plant species its polyploidy and inbreeding depression prevent the generation of 

homozygous lines (Ballvora et al., 2007). The Gro1 locus, active against all pathotypes 

of G. rostochiensis, a nematode, was located on potato chromosome VII (Barone et al., 

1990) and high resolution mapping restricted Gro1 locus to an interval of 1.4 cM 

(Ballvora et al., 1995). Several RGAs were then amplified from the potato genome 

using conserved sequences of tobacco N gene (Whitham et al., 1994) and Arabidopsis 

RPS2 gene (Bent et al., 1994). The RGAs St332 and St334 identified the Gro1 locus 

harboring a cluster of 15 similar genes (Leister et al., 1996). Further analysis of 

inheritance, linkage mapping and sequencing reduced the number of CGs to three, 

which were subcloned into binary vector pCLD04541 and used to complement a 

susceptible potato cv. Desiree by Agrobacterium mediated transformation (Paal et al., 



Discussion 

 

 

71 
 

2004). The subclones of above mentioned three CGs (2, 4 and 5) of Gro1 have 2.3, 4.0 

and 2.7 kb extra sequence upstream of the putative start codon and 3.4, 1.1 and 3.0 kb 

sequence downstream to putative stop codon respectively. The complementation 

analysis of stable transformants showed that the Gro1-4 gene conferred resistance to G. 

rostochiensis pathotype Ro1. In the current study the nine CGs of Rdr1 are about 4 kb in 

size with a common gene structure of four exons and three introns and share a sequence 

similarity ranging between 85-99% (Kaufmann et al., 2010). According to sequence 

analysis all RGAs found to encode an ORF of about 1100 amino acids except RGA 4 

and 9. RGA9 has a stop codon in third exon that reduces the ORF to 794 amino acids 

with some part of LRR region in putative protein, making it a candidate for Rdr1 

whereas; RGA4 is considered a pseudogene because of the presence of a 7kb 

retrotransposon in the non-coding region of its first intron (Kaufmann et al., 2010). In 

view this information the Rdr1 candidates were reduced to eight i.e. RGA1 to 3 and 5 to 

9. These eight CGs were isolated and sub-cloned as single genes under the control of 

their endogenous promoter into the plant transformation binary vector pBINPLUS. The 

isolated single CGs, on average, included a 5 kb sequence upstream of the putative start 

site and a 3 kb sequence downstream of the putative stop site (Figure 5.1). The isolated 

CGs were further analyzed for their expression and activity against Dort E4 in 

heterologous and homologous system to reduce the number of candidates. The RGA 

expression profiling in heterologous system did not lead any reduction to number of 

candidates as all CGs were expressed in contrast RGAs 1, 3, 7, 8 and 9 were found to be 

expressed in the homologous system. 

 

On the basis of sequence and expression analysis the number of CGs was reduced to 

five (RGAs 1, 3, 7, 8 and 9) that were used to carry out complementation assays. In case 

of potato, generation of stable transformants and their testing for resistance against 

nematodes needed 6-months (Paal et al., 2004). Even the transformation of model plants 

as Arabidopsis thaliana or Nicotiana species (Zhang et al., 2006: Clemente 2006) 

require several months to produce transgenics ready for analysis. In addition to the 

lengthy process, stable transformants also vary in their level of transgene expression due 

to the gene silencing and/ or gene position in genome (reviewed by Vaucheret et al., 

1998). In contrast to this minimum 9-12 months are required to obtain stable rose 

transformants ready for resistance testing (Dohm et al., 2001 2002; Marchant et al., 

1998a & b). The Agrobacterium mediated rose transformations were carried out using 
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five candidates to generate stable transformants; putative transformants are in process of 

screening and due to time limitations these results could not be included here. To solve 

the problem of the lengthy process and the low efficiency of the rose stable 

transformation system, Arabidopsis heterologous system was used to generate 

homozygous lines carrying single CGs, in addition transient complementation disease 

assays were also optimized in homologous system as an alternative. Transient 

expression assay have already been employed to study host and pathogen interactions 

for example: grapevine-downy mildew interaction (Santos-Rosa et al., 2008), wheat-

powdery mildew interaction (Schweizer et al., 1999) and barley- powdery mildew 

interaction (Nelson and Bushnell 1997; Shirasu et al., 1999). In the present investigation 

transient expression assay was optimized in rose petals and leaves followed by its use in 

the transient disease assay. On the basis of transient disease assay the number of CGs 

was reduced to 2; RGA8 as a major active gene and RGA1 as a partially active gene 

against race 5 of D. rosae. 

 

6.1. Expression Analysis of CGs 

N. benthamiana, the model plant for heterologous expression studies, was used to 

elucidate the function and activity of CGs. The use of different heterologous systems is 

common in transient assays due to over expression of the target gene and lack of related 

sequences making the expression validation of the target easier as compared to 

expression in the homologous system (Goodin et al., 2008; Sparkes et al., 2006; 

Wroblewski et al., 2005). The Agrobacterium suspensions containing single CGs in 

pBINPLUS were infiltrated into N. benthamiana leaves (Schob et al., 1997; 

Wroblewski et al., 2005) and samples were collected 4-days post-infiltration. The 

ectopic expression of all CGs was validated through RT-PCR with different general 

primers for RGAs. The results revealed the expression of all RGAs showing not only 

the presence of all regulatory elements on the isolated clone necessary for the gene 

expression, also the conserved nature of promoter activity in dicot plants. 24 hours post-

infiltration of CGs the intact plants were challenged by the black spot isolate Dort E4. 

None of the CGs responded to Dort E4 in a form of hypersensitive response (HR) or 

necrosis and microscopy revealed the presence of spores but without germination. Even 

in control experiments, without transgene infiltrations, Dort E4 was not found to infect 

tobacco representing it a non-host species and this kind of resistance is referred as non-

host resistance (Mysore and Ryu, 2004 Kamoun, 2001; Heath, 2000; Dangl et al., 
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1996). However, the mechanisms and the signaling components affecting this 

phenomenon have to be explored. It could be concluded that the propagation of Dort E4 

is not possible on the model plant tobacco as spores do not germinate and do not form 

mycelia; Avr gene products are not most probably expressed to interact with R-genes 

and therefore no HR or necrosis was observed. 

 

The expression profile of all CGs in homologous system was also analyzed. Two black 

spot resistant rose genotypes 91/ 100-5 and 88/ 124-46 (R. multiflora) were subjected to 

RT-PCR analysis using a set of specific primers. As the R genes are often expressed 

constitutively at low levels (Tan et al., 2007) the results revealed the expression of six 

CGs out of nine. RGA4, 5 and 6 were never found to be expressed in different tissues 

(leaves, petals and roots), whereas RGA2 was found to be expressed only in the leaves 

of above mentioned rose genotypes and the petals of these genotypes were already 

found resistant against Dort E4 in disease assay that excluded the RGA2 as a candidate 

for Rdr1. Technically it was a difficult task to develop one specific primer pair for each 

single RGA that demonstrate the expression of corresponding single RGA among the 

others as all RGAs were expressed in the homologous system sharing very high DNA 

sequence similarities (85-99%; Kaufmann, 2010) that‟s why for each RGA several 

specific primer pairs were developed to detect its expression with maximum surety 

(Table A 11 in appendix). 

 

All RGAs were found to be expressed in tobacco whereas only RGAs 1, 2, 3, 7, 8 and 9 

were found to be expressed in the resistant rose genotypes. The differences in 

heterologous and homologous expression could be due to the transcriptional and/ or 

post-transcriptional regulation in homologous system as described in Arabidopsis for 

RPP5 resistance locus (Hankuil and Richards, 2007). The RPP5 locus R genes were 

demonstrated to be targeted by small RNA species in the wild type plants restricting the 

fitness cost related to constitutive activation of defense genes. Authors also suggested 

that the pathogen attack disturbs this RNA silencing of R genes and activate defense 

pathways. Padmanabhan et al., (2009) have reviewed the endogenous small RNA-

mediated regulation as a general molecular mechanism against a wide range of 

pathogens and insects. As the heterologous system lack the regulatory elements specific 

for rose RGAs, all RGAs were found to be expressed. In summary, on the basis of 
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above mentioned observations the number of candidates was reduced to five i.e. RGAs 

1, 3, 7, 8 and 9. 

 

6.2. Validation of CGs 

The ultimate way to validate a CG is genetic complementation by transformation of a 

deficient phenotype or transforming a non-deficient plant using a silencing construct 

(Pflieger S. et al., 2001). The complexity of the technique depends on the mono or 

polygenic nature of the target trait. The genetic transformation could be stable or 

transient. In stable transformations the expression of CG depends on its insertion site 

and the number of inserted copies in genome. Whereas transient transformation can 

measure non biased expression of a gene within a very short time period after agro-

infections independent of the position of insertion because non-integrated copies of T-

DNA present in the nucleus of the host can also be expressed (Kapila et al., 1997). 

Therefore, transiently expressed genes express up to 1000 fold higher than they express 

in the stable transformants (Janssen and Gardner 1989). In the current study primarily 

the susceptible rose genotype Pariser Charme (a susceptible plant not expressing the 

Rdr1 function) was transiently and stably complemented using CGs to check the 

expression and activity of these genes. Secondly, 91/ 100-5 (a CGs non-deficient plant) 

was transiently silenced for all members of Rdr1 family and challenged by Dort E 4. In 

addition to these Arabidopsis (Columbia and PEN2 mutant) was stably complemented 

using CGs. 

 

6.2.1. Stable genetic complementation 

Stable genetic complementation of a susceptible rose variety using Rdr1 candidates can 

demonstrate conclusively if the complementing CG is the functional Rdr1 gene, 

determining the resistance trait. Stable rose transformants ready for functional analyses 

need minimum 9-12 months (Dohm et al., 2001; Marchant et al., 1998a). In addition to 

lengthy process the low efficiency of transformation system has also hampered the 

study of gene function in roses. 

 

6.2.1.1. Production of stable rose transformants 

To fulfill the criterion of CGs validation by stable transformation, Pariser Charme (PC)- 

a susceptible rose genotype, was initially subjected to the biolistic genetic 

complementations using complete BACs harboring Rdr1 locus (155F3, 29O3, 94G8 and 
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20F5); due to technical problems, use of old somatic embryos and fungal 

contaminations these experiments were not successful. Although all BAC inserts were 

cloned in the binary vector pCLD04541 (Jones et al., 1992), that was designed for 

Agrobacterium-mediated plant transformation and is capable of stable maintenance of 

large DNA inserts (Tao and Zhang 1998) available previous data showed its 

incompatibility to transform rose somatic embryos via Agrobacterium mediated 

transformations. This may be due to large size of DNA inserts in BACs as four BAC 

spanning Rdr1 has an average inset of 75kb (BACs 155F3, 29O3, 94G8 and 20F5; 

section 4.1.4). According to Ercolano and colleagues (2004) the success of stable plant 

transformations with DNA fragments of about 20 kb is easier as compared to DNA 

fragments larger than 50 kb. To validate the function of three CGs (22-, 14.5- and 10.5-

kb) of the Gro1 family, these were subcloned in the binary vector pCLD04541 and were 

used to complement a susceptible potato cv. Desiree by Agrobacterium mediated 

transformation successfully (Paal et al., 2004). Although Hamilton et al., (1996) has 

reported the genetic complementation of tobacco using 150 kb of human DNA by 

Agrobacterium-mediated transformation with a binary BAC vector, biolistic 

transformation with whole BAC DNA is an alternative method for transferring large 

DNA fragments into plant genomes. The potato transgenic plants have been obtained 

after biolistic transformation with up to 106 kb of potato DNA cloned in the binary 

vector pCLD04541 (Ercolano et al., 2004). As part of this study, Agrobacterium 

mediated transformations of PC using single CGs in binary vector pBINPLUS were 

carried out and the putative transformants are in process of screening. Due to time 

limitations the final disease resistance evaluation could not be included here. 

 

6.2.1.2. Production of stable Arabidopsis transformants 

In addition to rose genotype PC, two varieties of Arabidopsis, Columbia (an accession) 

and PEN2-1 (a mutant; Lipka et al., 2005) were used to generate stable transformants of 

CGs by Agrobacterium mediated floral dip method (Zhang et al., 2006). Preliminary 

spore (Dort E4 5x10
2
 spores/ ml) infiltrations in leaves of both Arabidopsis varieties 

resulted in germination of fungus. Therefore to study the interaction of black spot and 

stably expressed CGs, Arabidopsis was selected to generate stable transformants 

carrying single CGs.  
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The PEN2-1 mutant was selected to facilitate the penetration of black spot spores to leaf 

cells as in non host plant species the first defense barrier is the plant cell wall that 

cannot be penetrated by pathogenic fungi (Collin et al., 2003). According to the 

previous reports Arabidopsis plant is a non-host species for the barley powdery mildew 

fungus Blumeria graminis and several Arabidopsis PEN mutants have been isolated that 

permit this fungal entry into leaf cells; the corresponding wild type genes confer 

penetration resistance and known as PEN genes. These PEN genes encode secretion- 

associated and efflux-associated proteins. The PEN1 syntaxin is plasma membrane-

resident, the PEN2 glycosyl hydrolase is associated to peroxisome and the PEN3 ABC 

transporter is found in plasma membrane (Stein et al., 2006; Lipka et al., 2005; Collins 

et al., 2003). The PEN2 was isolated by map-based cloning and encodes glycosyl 

hydrolases. The PEN2 mutant alleles, pen2-1 and pen2-3 both were chemically induced 

and were characterized by point mutations showing the presence of stop codons that led 

to truncated peptide (Lipka et al., 2005). 

 

Although both varieties were subjected to generate stable transformants for all CGs, the 

homozygous lines ready for further analysis were generated only for RGA3, 8, GUS and 

pJG-28 in case of Columbia and only for GUS in case of the PEN2-1 mutant. The large 

DNA fragment size of isolated CGs and already stressed form of the PEN2-1 mutant 

could be the reasons for not getting transformants for all CGs. The pGJ-28 construct 

encodes a ribosome inhibiting protein that when secreted into the apoplast of 

transformed rose plants reduced their susceptibility against black spot to 60 % (Dohm et 

al., 2001a). The Columbia homozygous lines for pGJ-28 will be utilized as positive 

control in subsequent detailed studies using the remaining generated lines and their 

response to Dort E4. Due to time limitations these studies could not be included here. It 

is expected that when these homozygous lines expressing RGAs stably will be 

inoculated with Dort E 4 conidia will show some antifungal effects (HR) or some 

specific type of interaction with tested fungal isolates. If this could be demonstrated 

then these generated lines can be used as parents (stocks) to generate different progeny 

combinations through controlled breeding strategies in very short time as within 6-

months and generated lines then could be tested against different isolates of D. rosae, 

challenged by taxonomically different pathogens or even evaluated in different stress 

conditions. This will not only provide quick insights to the expression and functionality 

of single RGAs but also generate a wealth of data for the Rdr1 locus. 
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6.2.2. Transient genetic complementation assay via agroinfiltration 

In the current study the Agrobacterium mediated transient assay was utilized as an 

alternative to stable transformations because the generation of rose stable transformants 

is a lengthy process that requires several months to confirm the function of a CG. The 

transient assays are faster and simpler compared to this conventional approach 

especially when several paralogous CGs have to be screened. The successful utilization 

of the technique is demonstrated for genetic complementation (Zottini et al., 2008; Shao 

et al., 2003; Van der Hoorn et al., 2000), RNAi experiments (Schöb et al., 1997), 

assessment of resistance genes (Santos-Rosa et al., 2008; Nelson and Bushnell 1997; 

Shirasu et al., 1999; Schweizer et al., 1999), Protein trafficking (Batoko et al., 2000) 

and recombinant protein production (Vaqucro et al., 1999; Stoger et al., 2002; Galeffi et 

al., 2005; Sheludko et al., 2007). Thus, a rapid and cost effective functional gene assay 

was optimized in the leaves and petals of rose genotype Pariser Charme. 

 

6.2.2.1. Optimization of GUS expression assay 

The transient expression assay was optimized in the rose petals and leaves using the 

GUS (β-glucuronidase) reporter gene (Jefferson et al., 1987) aiming at its future use to 

characterize rose resistance genes and to assess their activity against different fungal 

pathogens. Among the most important factors identified so far are the genotype of the 

host plant, the Agrobacterium strain, the pre-culture of the host plant and of the 

agrobacteria, the temperature at which the cocultivation of Agrobacterium and host was 

conducted (Wroblewski et al., 2005, Joh et al., 2005, Zottini et al., 2008). The agro-

infiltration was optimized and data revealed its dependence on the host genotypes and 

their pre-culture, flower age, petal position, leaf type, infiltration method, bacterial 

density and temperature. It is reported that the genetic background of a plant influences 

the efficiency of transient expression significantly (Wroblewski et al., 2005; Santos-

Rosa et al., 2008; Zottini et al., 2008). In case of petals it was observed that two rose 

genotypes (Pariser Charme and Marvel) susceptible for fungal infections were 

significantly susceptible to Agrobacterium infections as compared to the other three 

genotypes (Heckenzauber, 91/ 100-5 and 88/ 124-46) whereas in case of leaves two 

genotypes (Pariser Charme and 91/ 100-5) out of three (88/ 124-46) were found 

susceptible to agro-infection. The different pre-cultures of host plants were found to 

affect the expression significantly in leaves. The fresh shoots of Pariser Charme and 91/ 

100-5 on their cuttings growing in plastic tunnels with high humidity and high 
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temperature displayed significantly higher levels of GUS expression as compared to 

greenhouse or in vitro grown plants which showed almost no GUS expression. There 

are many reports demonstrating the pre-culture of host plants with high humidity 

improve the transient expression positively (Kim et al., 2009; Zottini et al., 2008). 

However, conditions for growing cuttings in plastic tunnels were not the only important 

factor for successful assay. The genetic background was also determining factor as in all 

subsequent treatments 88/ 124-46 leaves always found resistance to agro-infection. It is 

likely that there are some genetic factors affecting agro-infections (Santos-Rosa et al., 

2008). The number and nature of genetic factors influencing the agro-infection has to be 

addressed and a strategy to answer this question could be analyzing segregating progeny 

from defined crosses between susceptible and resistant genotypes. The phenomenon of 

being recalcitrant to genetic transformation using Agrobacterium is not specific for 

plant transient expression assays but also common in stable plant transformations. 

Different plant species as rice, maize, legumes, cucurbits, Pinus species, tomato, 

Arabidopsis and grape differ in their susceptibility to agro-infection; in addition, even 

different tissues, organs and cell types within a plant show different tendency towards 

agro-infection (reviewed by Gelvin, 2000). The involvement of a specific LRR receptor 

kinase is reported in Arabidopsis that make some species recalcitrant to agro-infection 

(Zipfel et al., 2006). Tzfira and Citovsky (2006) have reviewed the key host proteins 

necessary for the initial Agrobacterium-host interaction and T-DNA import, chromatin 

targeting, uncoating and its integration to host genome in detail suggesting their over-

expression to increase the transformation efficiency. During these studies considerable 

variation was observed in the expression of GUS in different leaf types, flowers of 

different ages and within a flower from petals to petal. Similar levels of variations in 

expression are reported within a single plant or in plants of different ages or even in 

tissues of different developmental stages of a single plant of Arabidopsis, Nicotiana, 

pepper, cotton, tomato and lettuce (Wroblewski et al., 2005; Lawrence et al., 2005). 

Middle petals of a half bloomed rose flower and young light green leaves with dark 

green prominent veins and red edges were found optimal for the transient expression 

studies carried out here.  

 

It was demonstrated earlier that the use of different infiltration media (Mclntosh et al., 

2004), addition of acetosyringone (Kapila et al., 1997) or surfactants (Lawrence et al., 

2005) improve the end expression of foreign genes significantly. Acetosyringone is 
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known for its ability to artificially induce virulence genes of Agrobacterium necessary 

to transfer T-DNA (McCullen and Binns 2006). In the present study neither the addition 

of acetosyringone nor the addition of surfactant improved the transient expression in 

rose petals. This is in agreement to Wroblewski and colleagues (2005), who 

investigated the same factors in Arabidopsis and lettuce. Temperature is also considered 

a determinant for Agrobacterium mediated gene transfer in plants (Dillen et al., 1997; 

Riker, 1926). Rose petals after agro-infiltration were incubated at 19ºC, 22ºC, 25ºC, and 

28ºC for 4 days post-infiltration. The highest GUS expression was observed at 22 ˚C. It 

suggests that the regulation of T-DNA transfer through vir genes is temperature 

dependent as already demonstrated by Dillen and colleagues (1997) in detail. 

 

In case of petals the density of Agrobacterium suspensions had no significant effect 

over a broad range of OD values from 0.5 to 4.0. Densities < 0.5 in petals and < 1.5 in 

leaves did not lead to visible GUS-expression. This is in contrast to the results from 

several other studies as for example conducted by Santos Rosa et al., (2008) and Kim et 

al., (2009) who found at least weak expression down to densities of OD 0.1. One 

explanation for this could be due to physiological and genomic differences between 

plant species. Another difference to published reports lies in the time from which 

onwards GUS-expression is visible. According to the previous studies at least weak 

GUS-expression was visible after 24 hours of infiltration of agrobacteria (Kim et al., 

2009) during the current study the GUS-expression was detected at significant levels 

only from day three on and only weak signals at day two after infiltration. The reasons 

for this difference are as elusive as for the lack of expression at low densities. Because 

only a small number of the available genetic variants on both the host plant and the 

Agrobacterium side were screened, there is also a great potential to further optimize the 

system by including additional rose and Agrobacterium genotypes. 

 

6.2.2.2. Transient homologous disease assay 

The optimized transient expression assay was used to characterize and assess the 

activity of rose resistance genes against two fungal isolates race 5 (Dort E 4) and race 6 

in the leaves of Pariser Charme, susceptible to both isolates. Rose leaves were found to 

be very suitable systems to study the interaction of single CGs and black spot. In 

agreement to Blechert and Debener (2005) during control disease assays when fungal 

spores were infiltrated in leaves of PC displayed type 1 colonization pattern of Dort E 4 
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characterized by germination hyphae, haustoria with penetration necks, long and/ or 

short hyphae, round cellular hypae, psedudoplectenchymatic hypae, conidiogenic hypae 

and conidia whereas R. multiflora and 91/ 100-5 displayed type 7 interaction against 

infiltrated Dort E 4 where fungus germinated and penetrated cuticle followed by plant 

produced cell-wall appositions that restricted further fungal growth. The major 

prerequisite for a successful transient disease assay apart from the transformation is the 

fact that black spot conidia germinate, infect and produce new conidia when infiltrated 

to intercellular space in the presence of Agrobacterium. As it is not possible for 

powdery mildew, Colletotrichum species and leaf rust to germinate and form 

appressoria without solid surface contact (Feuillet et al.,, 2003; Kim et al.,, 1998; Podila 

et al.,, 1993; Liu and Kolattukudy, 1998). In case of powdery mildew since the fungus 

attack epidermal cell layer, it is necessary to target these tissues for transformation to 

study the plant-patho-interactions (Schweizer et al., 1999). The described transient 

disease assay was tested with different CGs (RGA1, 3, 7, 8 and 9) in six independent 

experiments (Figure 5.13) and produced reproducible data, revealing the significant 

differences between active and inactive CGs. CGs 3, 7 and 9 did not restrict the fungal 

growth of race 5 compared to controls whereas after infiltrating CG-RGA8 (belongs to 

R. multiflora) and Dort E-4 spores in PC resulted in reduced growth of the pathogen as 

found in interaction types 3, 4 and 5 (Blechert and Debener, 2005). On average, results 

revealed RGA8 as an active and functional gene that reduced fungal growth (race 5 of 

D. rosae) to 41%. Meanwhile RGA1 was also found to have some effect in restricting 

fungal growth (26%) with some in-constancies (Figure 5.13). To study the effect of 

genes in more meaningful manner the original data, collected as number of colonies, 

was converted to percent and in all six independent experiments RGA8 consistently 

reduced the fungal growth whereas RGA1 reduced fungal growth in 4 experiments out 

of six (Figure 5.13). It is possible that in combination, these both RGAs restrict fungal 

growth more profoundly. The degree of protection provided by RGA8 is 41% that is in 

agreement with the fact that transient expression in rose leaves is not as efficient as in 

Nicotiana due to inefficient agro-infiltration resulting in lower number of transformed 

cells. The lower transient transformation efficiency of the system did not indicate a clear 

cut answer of resistant or susceptible genotype, as usually stable transformants show, 

but presented significantly higher reduction in fungal growth (Figure 5.12). That was 

the reason why a low concentration of conidia was chosen to maintain an effective ratio 

between transformed cells and conidia; 5x10
2
 spores/ ml concentration of spores was 
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found optimal to maintain a higher ratio of transformed cells to conidia that revealed 

significant differences in antifungal activity of the tested CGs. In agreement to our data 

transient disease assays established to study the wheat- powdery mildew interaction 

(degree of protection: 73%; 61%; 48%) and potato- late blight interaction (degree of 

protection: 80%) always showed the protection efficiencies of transgenes less than 

100% and authors consider it enough to claim their significant antifungal effect (Pel et 

al., 2009; Yahiaoui et al., 2009; Schweizer et al., 1999). To study the wheat and 

powdery mildew interaction authors (Yahiaoui et al., 2009; Schweizer et al., 1999) co-

bombarded the corresponding R-genes along with GUS-reporter gene into leaf 

epidermis cells of susceptible genotypes and challenged with powdery mildew isolates 

followed by observing compatible reactions. On the basis of different morphology of 

fungal colonies within a single cell they were able to demonstrate the presence of 

weaker and stronger resistance alleles and genes; in contrast Dort E 4 growing on the 

RGA8 or RGA1 infiltrated leaf areas displayed almost all types of compatible and 

incompatible interactions pointing to the fact that the rose leaves have a low 

transformation efficiency and the infiltrated areas contained a mixture of transformed 

and non-transformed cells so on the basis of morphology of fungal colonies in 

transiently complemented rose leaf system, it was not easy to conclude the presence of a 

weakly or strongly effecting R-gene. However this could be further explored by 

infiltrating RGA8 and 1 together with Dort E 4 in combination and studying their effect 

on fungal growth and morphology. In a transient expression assay genes are over 

expressed and it is already demonstrated for different functional R-genes that the over-

expression of such genes using 35S promoter can lead to cell death even in the absence 

of pathogen displaying HR artifacts (reviewed by Pel et al., 2009). In the current study 

initially the expression of all RGAs was demonstrated in the heterologous system 

followed by their transient over-expression and disease bioassay in susceptible 

genotype; none of these RGAs revealed any HR like interaction and RGA8 and RGA1 

were found to restrict fungal growth significantly. To study the potato- late blight 

interaction in a transient disease assay Pel et al., (2009) initially used truncated R-genes 

(Rpi genes) in tobacco that displayed HR and infection efficiency of 40-60% when 

challenged by fungus, these same genes were then used to stably complement a 

susceptible potato genotype resulting in fully susceptible genotype revealing the fact 

that the used genes were truncated and needed additional 42-nt insertion in the 5‟ 

upstream region for their full function; later on with complete genes authors again 
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performed transient (infection efficiency 10-30%) and stable transformations resulting 

in expected spectrum of resistance and demonstrating the importance of stable 

transformants. As part of the current study stable transformations were already carried 

out in PC using Rdr1 candidates (RGA1, 3, 7, 8 and 9) and putative transformants are 

under screening process. It is highly recommended that the very next focus of this 

project should be the generation of stable transformants of RGA8 and 1 and their testing 

in a disease bioassay using different fungal isolates of D. rosae. 

 

Three CGs (RGAs 2, 5 and 6) were excluded from the list of Rdr1 candidates on the 

basis of homologous expression analysis in resistant rose genotypes their antifungal 

activity against race 5 was tested in two independent transient disease assays (Figure 

5.14). Three of the tested CGs were found non functional against race 5 isolate Dort E 

4; in general, showing no significant reduction in fungal growth compared to GUS 

control. Resistance provided by RGA8 and RGA1 was checked for race specificity 

using race 6 that is virulent to R. multiflora- the source of Rdr1 candidates. When 

checked in transient disease assay none of the RGAs showed resistance to this isolate 

including RGA8 and RGA1 (Figure 5.15; 5.16). This demonstrates the race specific 

functionality of RGA8.  

 

There is also an option to check the activity of remaining expressed RGAs (1, 2, 3, 7 

and 9) in the disease assay against different isolates of D. rosae while Rdr1 resistance 

locus confers resistance to five races of D. rosae (Von Malek and Debener, 1998). It is 

possible that the other members of this family are also functional; may be against other 

races of D. rosae or against some taxonomically different pathogen. In addition, their 

non- functionality is also possible. In most cases when many members of an R- gene 

family actively transcribed it suggests their functionality (Rp1, Collins et al., 1999; 

Dm3, Meyers et al., 1998; Mi, Milligan et al., 1998). It is also reported that when one or 

more members of an R-family are functionally active then they usually recognize 

different effectors of the same pathogen species (Takken et al., 1999). In Arabidopsis, 

three homologs of RPP1 and two of RPP4/ 5 resistance loci are able to recognize 

different avirulence factors of Hyaloperonospora parasitica (van der Biezen et al., 

2002; Botella et al., 1998). The Mla locus of barely with four members is active against 

different specificities of fungus Blumeria graminis (Halterman and Wise, 2004; Zhou et 

al., 2001). In contrast there are also some reports demonstrating the role of homologs 
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within a family conferring resistance against taxonomically different pathogens. Gpa2 

resistance locus of potato harbor four members, two of which confer resistance to 

unrelated pathogens; a virus and a nematode (Edwin et al., 2000). Mi locus in tomato 

confers dual resistance to root knot nematodes, potato aphids and whitefly (Nombela et 

al., 2003; Rossi et al., 1998; Vos et al., 1998) in addition; within the syntenic region of 

Mi locus in tomato, potato has a close homolog, Rpi-blb2 that is active against late 

blight (Van der Vossen et al., 2005). 

 

Although in the current study the rose petals proved to be very efficient system to carry 

out transient expression studies, even better than tobacco; this system was evaluated for 

its suitability to study the interaction of rose and black spot. Rose petals were not found 

optimal system for disease assay because of their short lifespan and limited seasonal 

supply. To overcome the lifespan problem of petals, these were co-infiltrated with 

Agrobacterium suspensions and Dort E 4 conidia together to save about 24 hours, this 

attempt did not display any fungal growth even after 5 days of post-infiltrations (Figure 

5.11). Presence of Agrobacterium together with conidia somehow stopped the conidial 

germination and growth, due to this reason in all subsequent experiments initially petals 

were infiltrated by CGs and 24 hours post infiltration these were inoculated with fungal 

conidia. However, this phenomenon was not observed in rose leaves when these were 

co-infiltrated with Agrobacterium together with fungal spores. In addition, it was not 

possible to infiltrate fungal spores in rose petals as they could not be able to evenly 

distribute in whole petals but stay at the place of infiltration revealing sieving effect 

(Figure 5.11). Moreover higher concentrations of bacteria (OD600= 1.5-4) promoted the 

fungal growth; the bacterial density that displayed the optimal GUS expression without 

effecting fungal growth was OD600= 0.5. The bacterial concentration at OD600= 0.5 and 

spore concentration of 5x10
5
 spores/ ml did not revealed antifungal effects of CGs. The 

spore concentration that show significant effect of infiltrated CGs could not be 

optimized due to limited seasonal supply of flowers. Although it is possible to bloom 

roses in controlled conditions of greenhouse but off season flowers showed early 

senescence and presence of the contaminating fungi on microscopy. During the 

senescent process of a cell there is degradation of macromolecules due to autophagic 

process in the vacuole, protein degradation in the mitochondria, nuclei and cytoplasm, 

fatty acid breakdown in peroxisomes and degradation of nucleic acids in the nuclei 

(reviewed by van Doorn and Woltering, 2008). Since Diplocarpon rosae is a 
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hemibiotrophic fungi, it may germinate upon inoculation / infiltration into rose petal and 

commence its growth in susceptible genotypes and sometimes in senesced resistant 

genotypes. Several putative genes encoding enzymes that are putatively involved in 

pathogen defense were up-regulated exceptionally during petal senescence (van Doorn 

et al., 2003; Hoeberichts et al., 2007; van Doorn and Woltering, 2008) in similar way as 

in leaf senescence (Bhalerao et al., 2003). For instance, Avr9/Cf-9 rapidly elicited 

protein 146 and Class III peroxidase in carnation (Hoeberichts et al., 2007), Chitinase 

IIa in Alstroemeria pelegrina (Breeze et al., 2004), Ribosome-inactivating proteins in 

Iris hollandica (van Doorn et al., 2003) show the same phenomenon. The rapid 

senescence in petal may lead to quick accumulation of up-regulated defense related 

genes which could interfere with fungal pathogens that have already initiated growth in 

petal. However, the data presented here demonstrate the utility of rose petals as a 

suitable system to carry out transient expression studies and allows characterizing both 

petal specific and constitutively expressed rose genes.  

 

Interestingly, race 6 showed almost 1.5x higher growth rate in the presence of GUS 

bacteria than in control samples not treated with Agrobacterium (Figure 5.16). It is 

difficult to speculate that how the presence of GUS bacteria is supporting fungal growth 

of race 6 especially in rose system where race 5 did not show such tendency. 

Agrobacterium is a plant pathogen that infects a plant by transferring its T-DNA to the 

host genome (Gelvin 2003; McCullen and Binns 2006). Although it lacks the hrp gene 

cluster present in most of the plant pathogenic bacteria (Goodner et al., 2001; Wood et 

al., 2001) it induces plant defenses in Arabidopsis (Ditt et al., 2006), N. tabacum (Pruss 

et al., 2008), grapevine (Santos-Rosa et al., 2008) and suppresses plant defenses in 

tobacco cell cultures (Veena et al., 2003), Arabidopsis (Gasper et al., 2004; reviewed by 

Dafny-Yelin et al., 2008). To normalize this phenomenon a control was added in the 

present study where leaves and petals were infiltrated with GUS bacteria and challenged 

by the fungus. In petals the plant defense is suppressed by infiltrating high bacterial 

densities (OD600: 1.5- 4), such samples showed very vigorous growth of fungus as 

compared to control (samples without or infiltrating low concentration of 

Agrobacterium OD600: 0.5-1). In contrast, leaves did not show such defense suppression 

in presence of Agrobacterium at the tested OD600 ranging between 0.5-2.0. The transient 

transformation efficiency of rose leaves was low as compared to rose petals due their 

incomplete infiltration and hard waxy structure. However, to overcome this problem the 
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spore concentration was significantly reduced to 5x10
2
 spores/ ml at 1.5 OD600 of 

agrobacteria for rose leaves that revealed the significant differences for the activity of 

CGs against Dort E 4. 

 

In summary a rapid method was optimized in rose leaves to assess the functionality of 

CGs encoding putatively active antifungal proteins that produced reproducible results. 

This transient disease assay can be used to pre-screen different resistance candidate 

genes of rose species against black spot (or may be some other fungi that can effectively 

germinate intercellularly) in a short time with functional insights. 

 

6.2.3. Transient silencing of RGA8 

Reverse genetics is an important tool to evaluate the functionality of a gene through 

silencing it (Baulcombe, 2004). Transient transformation of 91/ 100-5 (a CGs non-

deficient plant) and PC (deficient for some CGs), using RGA8-exon2 silencing 

construct in p9U10 was carried out to validate the expression and activity of Rdr1 

family. The silencing construct was derived from NBS encoding region (exon 2- 1104 

bp) of RGA8 having a similarity of 87-99 % to exon 2 of other paralogs within the Rdr1 

locus. Use of dsRNA sharing similarity to multiple genes of a family triggers post-

transcriptional gene silencing of many members simultaneously (Wroblewski etal., 

2007; Miki et al., 2005). In case of using small interfering RNAs the minimum 

sequence similarity of 19 bp is required to trigger the silencing of a gene (Vanitharani et 

al., 2003) and in our case the exon 2 of all RGAs has three stretches of consensus DNA 

sequence within 1104 bp ranging between 22-33 bp. When exon 2 of RGA8 is 

compared one by one to the exon 2 of other RGAs the number of DNA stretches 

showing similar DNA sequences is increased as for example the exon 2 of RGA8 and 

RGA1 revealed 7 different DNA stretches showing a sequence similarity ranging 

between 26-100 bp. On the basis of this observation we can speculate that if not all, 

majority of the Rdr1 family members should be silenced through this strategy. Although 

preliminary experiments revealed incomplete silencing of Rdr1 family when RNAi 

construct treated samples were evaluated by RT PCR and qRT-PCR it needs further 

experimental proofs. 

 

In both rose genotypes the RNAi-based silencing construct was agro-infiltrated and 

challenged by Dort E-4 to validate the effect of RGA8 and other members of Rdr1 
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family on fungal growth. Two preliminary independent experiments were performed 

using Agrobacterium harboring RNAi-construct (optical density 1.5) and challenged by 

Dort E 4 (spore concentration 5x10
2
 spore/ ml) resulting non-significant differences. 

Next repeat was performed by infiltrating RNAi-construct in presence of VIP1 in 1:1 

ratio (optical density 1.5) and challenged by Dort E 4 (spore concentration 2.5x10
5
 

spore/ ml) resulting in a significant effect on fungal growth in terms of increase. As it is 

described earlier that the efficiency of infiltration and transient transformation of the 

rose leaves is low as compared to model plants of tobacco or Arabidopsis resulting in 

low number of transformed cells; to target these transformed cells during disease assay 

in susceptible genotype (PC) a lower spore concentration was used to maintain a 

balanced ratio between low transformed cells and conidia whereas in transient silencing 

assay a higher concentration of spores was used to target the low number of transformed 

cells by conidia in a resistant genotype (91/ 100-5). The samples infiltrated by RNAi 

and VIP construct displayed weakly susceptible interaction (interaction types 3, 4 and 5; 

Blechert and Debener, 2005) characterized by well developed hyphal growth with short 

or long hyphal branching but interestingly none of the colony showed mature or 

developing acervuli after 5 days of infiltration. Further studies are required to proof this 

phenomenon by increasing the incubation time and observing the samples 

microscopically and macroscopically. VIP1- VirE2 interacting protein 1 was found to 

facilitate Agrobacterium mediated transformation as reported by Tzfira et al., (2006) for 

tobacco and Li et al., (2005) for Arabidopsis systems. It is predicted that the VIP1 

protein makes super-complex with T-DNA, interacts with host histones and targets T-

DNA to host chromatin (Li et al., 2005a; Lee et al., 2008). In addition to VIP1 Tenea 

and colleagues (2009) have demonstrated that the over-expression of many histone 

genes can also increase Agrobacterium mediated transformation and transgene 

expression in plants by protecting and expressing its DNA at a higher rate resulting in a 

higher chances of stable transformation.  

 

RT PCR and qRT-PCR evaluation of RNAi constructs treated samples revealed 

incomplete silencing of Rdr1 family in preliminary experiment. Although this is in 

agreement to silencing NBS-LRR family-RGC2 in lettuce (Wroblewski etal., 2007), this 

needs further experimental proof. According to Miki et al., (2005) highly expressed 

genes are easier to silence than low level expressed genes because of higher or lower 

concentration of the target, respectively. The Rdr1 family is constitutively low-
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expressed multigene family that showed eightfold higher expression after black spot 

inoculations as compared to wild type plants (Hattendorf and Debener, 2007a). 

However, incomplete silencing of Rdr1 family was sufficient to show an effect on 

phenotypic level suggesting their optimal expression level necessary to activate fungal 

resistance as reported by Wroblewski et al., (2007) for silencing the RGC2 family of 

lettuce.  

 

It is interesting to report that the incomplete silencing of Rdr1 locus in PC resulted 

almost double the intensity of fungal growth displaying the typical type 1 interaction 

characterized by well developed hyphae and acervuli when compared to different 

controls as described in section 5.4. This observation could be explained by the 

presence of some background resistance of RGAs present in PC, a black spot 

susceptible genotype that has to be subjected for further studies. The RGA expression 

profile for PC leaf was created using Rd1LRR primer pair in 6% PA gels that revealed 

the expression of RGAs 1, 3, 7 and 9 (Table 5.3; Figure 5.6; Figure 5.10). Although this 

resistance is not enough to restrict the growth of Dort E 4, it is able to reduce the fungal 

destruction by at least 50 %. This again points to the fact that other RGAs may have 

functionality to some other races of D. rosae and/ or some genes as for example RGA1 

in combination with RGA8 could have more drastic effects on fungal growth. In 

addition, further studies are required to repeat and refine the silencing assay for Rdr1 

candidates. Although the refinement in terms to target individual family members will 

increase the possibility to pin-point active genes ready for functional complementation 

assays technically this will be challenging and difficult task because of very high 

sequence similarity among these paralogs (85-99%; Kaufmann et al., 2010). The use of 

empty vector or GUS silencing vector as a control is also recommended to check for 

artifacts. 

 

6.3. Protein sequences analysis of three members of Rdr1 resistance locus 

Rdr1 resistance locus in R. multiflora consists of a cluster of nine paralogous disease 

resistance genes that play important roles in innate immunity against black spot. The 

protein sequences of three members; RGA8, RGA7 and RGA3 were deduced and 

subjected to sequence variability, nucleotide substitution rates and amino acid 

homology check. According to the current investigation, among the nine R genes in this 

locus RGA8 confers resistance to race 5 of the fungal pathogen Diplocarpon rosae. 
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Comparison of genomic sequence of isolated RGA8 clone and its 5‟ and 3‟ RACE 

products revealed the presence of two alternatively spliced transcripts for this gene 

when expressed transiently in the heterologous tobacco system. One transcript is shorter 

with expected length of 3995 bp representing four exons and second transcript is about 

3 kb longer than the first one representing the same four exons with extra 3‟ UTR 

(Figure 5.12). Such alternative splicing is also reported for N gene conferring resistance 

to Tobacco Mosaic Virus (Whitham et al., 1994). However, in case of RGA8 both 

transcripts resulted in the same ORF of 1122 amino acids (ORF finder-NCBI). It is 

reported that the alternative transcripts encode proteins without or truncated LRR 

domain and in case of N and RPS4 genes such transcripts are necessary for the complete 

resistance (Schornack et al., 2004; Dinesh-Kumar and Baker, 2000). Such variant 

proteins are predicted to interact and form TIR mediated oligomers that are active 

signaling complexes (reviewed by Padmanabhan et al., 2009). In addition to the RGA8 

race products, 3‟ RACE of RGA7 was also determined experimentally and 5‟ RACE 

was assumed to be 200 nucleotides upstream of ATG (Figure 5.13) and the deduced 

protein of RGA7 has 944 amino acids. The full length cDNA sequence of RGA3 was 

already available (Kaufmann et al., 2010) and the predicted protein contains 1139 aa. 

All three proteins show the presence of TIR, NBS and LRR domains with all conserved 

motifs as suggested by Lukasik and Takken (2009) and Meyers and colleagues (1999; 

Table 5.6; Figure 5.24). 

 

6.3.1. RGA 8 protein similarities 

According to BLASTx searches RGA8 protein shares the highest 41% identity to TIR-

NBS-LRR-resistance proteins of Populus trichocarpa (ACCESSION XP_002329162), 

both genes belong to the same class of TIR-NBS-LRR resistance genes, followed by 39-

44% to hypothetical proteins of Vitis vinifera, 40% to TIR of Medicago truncatula 

(ACCESSION ABD28703), 40% to CMR1 of Phaseolus vulgaris (ACCESSION 

ABH07384) and 39% identity to N-like protein of N. tabacum (ACCESSION 

BAF95888) for resistance to the tobacco Mosaic Virus (Whitham et al., 1994). Figure 

6.1 shows phylogenetic tree of different amino acid sequences showing considerable 

identity to RGA 8 protein, these full length aligned protein sequences were downloaded 

from NCBI and tree was constructed based on the bootstrap neignbor-joining (NJ) 

method with the Kimura2-parameter model by MEGA4 (Tamura et al., 2007; Kimura, 

1980). It is interesting to code here that the CMR1 is a viral resistance gene from 
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common bean that functions across plant families (Seo et al., 2006). This protein 

sequence shows 40% identity to the RGA8 protein that found to be active against black 

spot fungus, which suggests that the predicted NB-LRR structures and recognition of 

certain pathogen type lack correlation. 

 

Figure 6.1: NJ analysis of protein sequence showing considerable similarities to 

RGA8. The full length aligned protein sequences were downloaded from NCBI and analyzed in MEGA 

4.0. 

 

To date there are more than 50 well characterized R-genes conferring resistance to 

bacteria, fungi, oomycetes, viruses, nematodes or insects and classified on structural 

differences regardless of pathogen specificity, as in Arabidopsis members of both 

classes of NB-LRR family confer resistance to the Peronospora parasitica (oomycete) 

and Pseudomonas syringae (bacterium) in addition to that one member of the CC-NBS-

LRR class is active against virus invasion (Bittner-Eddy et al., 2000; Cooley et al., 

2000; Parker et al., 2000). This also suggests the involvement of TIR or CC domains in 

activation of defense pathways through downstream processing as the presence of TIR 

and CC domain cannot be correlated with specific pathogen type. However, the LRR 

RGA8 R. multiflora  
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and TIR domains of flax L alleles participate in pathogen recognition (Luck et al., 

2000). The finding that the highly homologous genes can confer resistance to unrelated 

species emphasize the use of such genes in breeding to engineer new resistance 

specificities against plant pathogens. 

 

6.3.2. Protein sequence homology 

Comparison of RGA8 protein sequence with other two (RGA3 and 7) members of the 

same Rdr1 family revealed 119 RGA8 specific amino acids residues (119/ 1122; 

10.6%), which are part of TIR (2 aa; 0.002%), NBS (40 aa; 3.6%), and LRR (77 aa; 

6.8%) domains. For RAG8, as the majority of unique amino acids are located in LRR 

region followed by NBS region suggesting some important role of these domains in 

functionality of RGA8. The deduced Gro1-4 protein (resistance gene) showed only 16 

non-conserved differences in amino acids sequence when compared to non-functional 

members of the Gro1 gene family (Paal J. et al., 2004). Mutagenesis analysis of the 

RGA8 protein or comparison of functional and non-functional orthologs could 

determine the essential residues necessary for pathogen recognition and/ or downstream 

signaling. The present data is generated by interaction of Rdr1 candidates against one 

patho-type, race 5, of D. rosae. In contrast Rdr1 resistance locus confers resistance to 

five races of D. rosae (Von Malek and Debener, 1998). It is possible that the other 

members of this family are also functionally active against other races of D. rosae. This 

is subject for further studies. Although the amino acid sequence identity of these three 

paralogues of Rdr1 resistance gene cluster ranges between 58% and 80% and RGA8 

shares the highest overall amino acid sequence homology to RGA3 (80%; Table 6.1) 

the functionality of RGA3 and 7 has to be explored against different isolates of D. rosae 

and/ or some other taxonomically different pathogens. Alignment of deduced amino 

acids of RGA 8, 3 and 7 show that the N-terminal halves of proteins that harbour 

putative effector domains show higher degree of sequence homology than the C-

terminal halves of proteins (Table 6.1) suggesting the LRR domain under selection as 

demonstrated for other closely related NBS-LRR proteins (Yahiaoui et al., 2006; Shen 

et al., 2003; Kuang et al., 2004; Van der Vossen et al., 2000). This kind of selection in 

LRR domain is exerted by single base changes, insertions, deletions and unequal 

exchange of meiotic recombination events for the evolution of new pathogen 

specificities within R-genes or between closely linked R-genes in a cluster (Ellis et al., 

2000).  
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6.3.3. Evolution of the RGA8 gene based on nucleotide substitution pattern in three 

paralogs 

To determine the type of selection pressure exerted on different parts of the genes, ratio 

of synonymous (Ks) and non-synonymous (Ka) substitutions rates per synonymous/ non-

synonymous site were calculated for the different regions of the ORF of three paralogs 

(RGA8, 7 and 3). When Ka / Ks ratio is 1 it represents random mutation or no selection 

pressure operating on sequences may be for diversification (Ka / Ks> 1) or sequence 

conservation (Ka / Ks< 1) (Hughes and Nei, 1988). Estimation of the number of 

synonyms and non-synonyms nucleotide per site showed that the three genes are under 

conservation selection and all domains (TIR, NBS and LRR domain) are not under 

positive selection compared to N- and C-flanking regions to conserved LRR motifs 

which showed Ka / Ks ratio > 1 (Table 6.1). The comparison of complete LRR domains 

of RGA8 and 3 resulted in higher Ka values than Ks suggesting diversification in this 

region, further insights to data revealed that this diversification is actually the result of 

lower Ks for the N- and C- flanking region of xxLxLxx motifs which always shows a Ka 

/ Ks >1 (Table 6.1). Although three genes show conserved type of selection, LRR 

domains show the highest frequency of non-synonymous substitutions followed by NBS 

domain. Calculations of Ka / Ks for C-terminal region of genes supported the hypothesis 

that diversifying selection is exerted on those parts of proteins which participate in 

pathogen recognition. This pattern is in agreement to previous studies that show 

diversifying selection acts on the LRR encoding domain of various plant disease 

resistance genes (Jiang et al., 2007).  

 

Here only three homologs of Rdr1 family are compared, where sequence similarity and 

conservation was already expected. Comparison of additional orthologs and/ or alleles 

isolated from wild relative of Rosa and RGA8 will help to understand real selection 

operating on the RGA8 gene and/ or Rdr1 locus. Complementation assays using these 

genes directly or after deleting or exchanging different domains between different genes 

and generation of mutants can provide information to define the role and significance of 

different domains in resistance specificities. It is demonstrated for different R-genes that 

the loss of resistance because of lacking some part of gene is possible. LRR region in 

wheat (Lr10) needs the last five LRRs for its function (Feuillet et al., 2003), the flax 

resistance gene M needs 426 bp of coding region of LRR domain for its function 
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(Anderson et al., 1997). In addition to that the importance of P-loop motif for the 

functionality of resistance genes of tobacco-N (Dinesh-Kumar et al., 2000) and of 

Arabidopsis-RPM1 (Tornero et al., 2002) genes is proved by mutational analysis.  

Table 6.1: Sequence variability and nucleotide diversity in different regions of 

three paralogs of Rdr1 family 

R-genes 

compared 
Analyzed regions

1
 

Nucleotide substitutions
2
 

aa
3
 (%) Ka Ks Ka/ Ks 

RGA8 vs. RGA3 Complete CDS 

TIR domain 

NBS domain 

Complete LRR domain 

    N-terminal flanking  

    xxLxLxx motif 

    C-terminal flanking 

80 

90 

76 

79 

- 

- 

- 

0.0977 

0.0484 

0.1168 

0.1034 

0.1146 

0.0722 

0.1679 

0.1041 

0.0836 

0.1196 

0.0983* 

0.1108* 

0.0935 

0.1156* 

0.92 

0.58 

0.98 

1.05 

1.03 

0.77 

1.45 

RGA8 vs. RGA7 Complete CDS 

TIR domain 

NBS domain 

Complete LRR domain 

    N-terminal flanking  

    xxLxLxx motif 

    C-terminal flanking 

75 

98 

78 

66 

- 

- 

- 

0.0991 

0.0079 

0.1184 

0.1209 

0.1148 

0.0717 

0.5067 

0.1354 

0.0356 

0.1853 

0.1429 

0.0530* 

0.1142 

0.5738 

0.73 

0.22 

0.64 

0.85 

2.17 

0.63 

0.88 

RGA7 vs. RGA3 Complete CDS 

TIR domain 

NBS domain 

Complete LRR domain 

    N-terminal flanking  

    xxLxLxx motif 

    C-terminal flanking 

64 

90 

71 

52 

- 

- 

- 

0.1180 

0.0512 

0.1439 

0.1267 

0.0740 

0.0793 

0.5657 

0.1497 

0.1134 

0.1737 

0.1508 

0.1132 

0.1249 

0.5029* 

0.79 

0.45 

0.83 

0.84 

0.65 

0.64 

1.13 

RGA8 vs. 

RGA3, 7 

Complete CDS 

TIR domain 

NBS domain 

Complete LRR domain 

    N-terminal flanking  

    xxLxLxx motif 

    C-terminal flanking 

58 

89 

67 

49 

- 

- 

- 

0.09228 

0.02736 

0.10896 

0.10421 

0.10613 

0.06861 

0.25922 

0.11032 

0.05688 

0.13689 

0.11089 

0.07759* 

0.09678 

0.25760* 

0.83 

0.47 

0.78 

0.94 

1.40 

0.69 

1.01 
 

1
 Different region of R-genes is analyzed for nucleotide variability as presented in Figure 5.12. 

2 
The ratio of synonymous (Ks) and non-synonymous (Ka) substitutions rates per synonymous/ non-

synonymous site were calculated using software DnaSP v 5. 
3
 Amino acid (aa) homology in percentage. 

*
 High-lighted numbers represent the exceeded value of synonymous (Ks) compared to non-synonymous 

(Ka) substitutions for specified region 

 

Typically, R-genes activate a HR/PCD to restrict the pathogenic growth (Goehre and 

Robatzek, 2008). Although the resistance mechanism of RGA8 is not yet investigated, 

preliminary disease assays suggest that it is not associated with localized necrosis 
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response or HR. Keeping in view the proposed resistance activation mechanism models 

of TIR-NBS-LRR genes (Lukasik and Takken, 2009; 2006; Bent and Mackey, 2007), it 

could be speculated that the direct binding of pathogen effectors to the C-terminal half 

of RGA8 protein may lead to conformational changes in the N-terminal half of the 

protein that trigger defense responses. The speculated model requires detailed 

experiments. According to one of the original models for gene-for-gene model the 

elicitors are recognized directly by LRR domain, whereas according to the guard or 

decoy model these elicitors are detected indirectly (Hoorn and Kamoun, 2009). 

However, TIR or CC domains are predicted to participate in indirect recognition of 

pathogen elicitors (reviewed in Padmanabhan et al., 2009). 

6.4. Outlook 

The main objective of this investigation was the identification of the major gene active 

against black spot of roses by molecular and functional characterization of the Rdr1 

locus harboring nine candidate genes. When RGA8 was infiltrated into the black spot 

susceptible rose genotype (PC) it was alone able to reduce the fungal growth 

significantly. Therefore RGA8 was found as a major gene active against black spot. 

Meanwhile a second gene RGA1 also showed some effect on fungal growth in transient 

assays. Further studies focusing on the generation of stable transformants carrying CGs 

in a deficient rose phenotype and their testing in a disease bioassay are highly 

recommended as the Agrobacterium mediated stable transformations in PC were 

completed and putative transgenics are already in process of screening. In addition, 

homozygous lines of Arabidopsis carrying RGA8 and RGA3, generated in the current 

study, are ready for the evaluation of the expression and activity of CGs against black 

spot. 

 

Breeding for disease resistant plants armed with effective, long-term and broad 

spectrum resistance against numerous pathogenic races of a particular pathogen needs 

complete information of genes responsible for a particular resistance. In the current 

study RGA8, (consistently as a major active gene) and RGA1 are found to participate in 

disease resistance against race 5 of D. rosae. The effect of different RGAs, in 

combinations, on fungal growth should be next focus as there is quite high probability 

that the RGA8 in combination with RGA1 can restrict the fungal growth more 

profoundly.  
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Previous studies have proved the functionality of the Rdr1 locus against five races of D. 

rosae, whereas in the current study only one race (race 5- Dort E 4) of those was used to 

evaluate the functionality of this locus resulting RGA8 and RGA1 out of 5 CGs active 

against race 5. Therefore, it is possible that the remaining CGs (RGA3, 7 and 9) could 

be functional against other races of black spot fungus; this has to be proofed by 

extensive phytopathological studies using different races of D. rosae. To facilitate this 

evaluation and screening of other fungal isolates, a homologous disease assay in leaves 

of PC and a transient gene silencing assay in leaves of resistant rose genotype (91/100-

5) were optimized (Section 5.3.3.2; 5.4). There is also great potential to refine these 

assays by screening new rose genotypes and Agrobacterium strains. Schulz and 

colleagues (2009) have identified some rose genotypes highly resistant to black spot as 

tetraploid R. bella 00-57-04, R. californica v. plena 00-33-01, R. majalis 93-09-03 and 

R. nanothamnus 00-56-01. According to Whitaker et al., (2010) there is no universally 

susceptible or resistant rose genotype against black spot. PC represents narrow acting 

alleles against black spot since race 1 (isolate- HSN) is the only race of D. rosae out of 

11 races that cannot infect it and R. majalis represents broadly acting alleles against 

black spot. The optimized transient disease assays can be utilized to screen a large 

number of R-genes against different fungal isolates. In addition, refinement and further 

optimization for RNAi experiments is highly recommended as in case of targeting 

single R- family members can help to clone various R-genes in a short time and using a 

construct for a common RGA motif could knockout many RGA families simultaneously 

and screening against different pathogens. This will not only provide insights to 

functionality of individual RGAs but also narrow down specific RGA families active 

against different pathogens and such RNAi constructs can be used as probes to screen 

genomic libraries of the relevant genotypes to dig corresponding candidates as 

suggested by Wroblewski et al., (2007). 

 

To exploit full potential of R genes against black spot needs information about the 

evolution of Rdr1 locus in rosa gene pool, its addition in natural habitats of rosa, 

selection pressure operating on this locus, resistance mechanism and function of 

effectors that activate this locus or if this locus could also be activated through multiple 

signaling components, as demonstrated for RPP4 and RPP5 of Arabidopsis (Van der 

Biezen et al., 2002). Application of mutation analysis to demonstrate functional 

domains and motifs of active genes could also be a subject for future studies. 
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According to Noel and colleagues (1999) the allelic variation at resistance locus is 

thought to generate spatial and genetic diversity to reduce the selection pressure for 

pathogens to be virulent (frequency dependent selection). To study the allelic variation 

for the Rdr1 locus is highly recommended to characterize different functional alleles of 

Rdr1 from different rose species. The flax L alleles against rust races, barley Mla alleles 

against powdery mildew races and tomato Cf alleles against leaf mould races show 

allelic variation, a common phenomenon, at loci that specify resistance to different races 

of the same fungal species. In 2000 Bittner-Eddy and colleagues cloned two single copy 

alleles of RPP13 gene of Arabidopsis that encode CC-NB-LRR proteins active against 

different races of P. parasitica.  

 

In the current study expression profiles for RGAs were created utilizing heterologous 

and homologous systems. In homologous system the expression of RGA 4, 5, and 6 was 

not detected whereas all RGAs were expressed in heterologous system of tobacco. 

According to recent findings this difference could be due to the regulatory machinery of 

homologous system (resistant rose genotypes) i.e. miRNAs (Padmanabhan et al., 2009). 

This may be evaluated through northern blotting of isolated miRNAs from resistant rose 

genotype using RGA general and specific probes. 

 

Although RGA4 is excluded from the list of candidate CGs for Rdr1 because of the 

insertion of a 7 kb retrotransposon in intron I and its expression in homologous system 

was never detected, there are reports demonstrating the expression and functionality of 

genes harboring retrotransposons in introns for example Gro1-4 of potato (Paal et al., 

2004) and SBEIIb of barley (Sun et al., 1998). RGA4 should be isolated for further 

detailed analysis. 

 

Isolation of additional rose resistance genes active against different fungal diseases from 

different wild genotypes and their functional characterization using same strategies 

optimized in this study are recommended. This characterization will provide better 

understanding of molecular basis of resistance genes and will allow the generation of 

transgenic rose varieties, ultimately improving resistance of roses against fungal 

diseases. 
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Appendix 

Table 7.1: Enzymes 
Enzymes Source 

Restriction endonucleases and their buffers 

BamHI (10U/µl) MBI Fermentas GmbH Leon-Rot, Germany 

Eco RI (10U/µl) MBI Fermentas GmbH Leon-Rot, Germany 

HindIII (10U/µl) MBI Fermentas GmbH Leon-Rot, Germany 

KpnI (10U/µl) MBI Fermentas GmbH Leon-Rot, Germany 

Sau 3A1 (4U/µl) New England Biolabs Inc. 

BfuC1 (4U/µl) New England Biolabs Inc. 

Xba I (10U/µl) MBI Fermentas GmbH Leon-Rot, Germany 

Restriction endonuclease (R
+
, B

+
, O

+
, G) buffers MBI Fermentas GmbH Leon-Rot, Germany 

Polymerases, ligases and other enzymes 

Taq DNA polymerase (5U/µl) and 10x Buffer Bioline USA Inc. 

TaKaRa DNA polymerase (2.5U/µl) and 10x Buffer TaKaRa, Shiga, Japan 

T4 DNA ligase (5U/µl) and Buffer MBI Fermentas GmbH Leon-Rot, Germany 

Shrimp Alkaline phosphatase (SAP-1U/µl) MBI Fermentas GmbH Leon-Rot, Germany 

T4 DNA polymerase (5U/µl) and Buffer MBI Fermentas GmbH Leon-Rot, Germany 

T4 polynucleotide kinase (10U/µl) and Buffer MBI Fermentas GmbH Leon-Rot, Germany 

 

Table 7.2: Kits and other consumables 

Product Purpose Source 

1 kb-DNA-Ladder (250 µg) DNA-size standard Invitrogen Karlsruhe, Germany 

λ-Phage DNA (500 µg) Quantification standard Invitrogen Karlsruhe, Germany 

Ambion® DNAfree™ Kit DNA digestion to get pure RNA Ambion Cambridgeshire, UK 

High-Capacity cDNA Reverse 
Transcription Kit 

cDNA Synthesis Applied Biosystems (see invitrogen) 

Invisorb® Spin Plant RNA Mini Kit RNA isolation Invitek Berlin, Germany 

Mini Elute Gel Extraction Kit DNA extraction (< 4kb) from agarose gel Qiagen GmbH Hilden, Germany 

NucleoSpin® Plasmid Plasmid-DNA isolation 
Macherey-Nagel GmbH & Co. KG 
Dueren, Germany 

2´-deoxynucleoside 5’-
triphosphates (dNTPs) 

PCR consumables Invitrogen Karlsruhe, Germany 

FirstChoice  RLM-RACE  Isolation of 5’ RACE products Ambion Cambridgeshire, UK 

QIAquick Gel Extraction KIT 
Isolation of DNA fragments  (> 4kb) from 
agarose gel 

Qiagen GmbH Hilden, Germany 

Quick Blunting KIT Polishing blunt ends of PCR fragments 
New England Biolabs GmbH Frankfurt, 
Germany 

pGEM
®
 T- Easy Vector Cloning of PCR products Promega Madison, Wisconsin, USA 

 

Table 7.3: Chemicals  
The chemicals were purchased from the companies listed below their corresponding numbers are 

indicated in front of chemicals. 

a. AplliChem GmbH Darmstadt Germany  b. Becton Dickinson GmbH Heidelberg, Germany  

c. BIO-RAD laboratories GmbH Munich, Germany d. Boehringer Mannheim GmbH Lenzkirch, Germany 

e. Carl Roth GmbH & Co. KG Karlsruhe, Germany f. Devender, J. T. Baker  

g. Duchefa, The Netherlands   h. Fluka Sigma-Aldrich St. Louis, Missouri, USA 

i. Merck KGaA Darmstadt Germany   j. PeqLab Biotechnologie GmbH Erlangen, Germ. 

k. Sigma-Aldrich St. Louis, Missouri, USA  l. GIBCO BRL Karlsruhe, Germany 
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Consumables Consumables 

5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid   g Kalium hydrogen phosphate   e 

3,5-Dimethoxy-4-hydoxyacetophenon   k Kalium hexacyanoferrrat(II)   i 

2-(N-Morpholino) ethansulfon acid   g Kanamycin sulfate   a 

4-Methylumbelliferyl-ß-Dglucuronid   g Lithium chloride   e 

Acetic Acid   e Lysozyme   d 

Agar-Agar   e Magnesium chloride   e 

Agarose   j Magnesium sulfate   k 

Ampicillin   e 2-Mercaptoethanol   h 

Ammonium sulfat   i Natrium chloride 99,8 %   e 

Ammonium persulphate   c Natrium citrate   e 

Bacto®-Tryptose   b Natrium dodecylsulfate   e 

Boric acid   e N,N-Dimethyl formamid   k 

Bromophenol blue   i Poly acrylamide solution 30%   e 

Calcium chloride   e Polyvinylpyrrolidon 40   k 

Chloroform/Trichlor methane 99 %   e Roti-Phenol   e 

Di-ethylen pyro-carbonate   a Sodium hydroxide   i 

DMSO (Di-methyl sulfoxide)   e Sodium hydrogen phosphate   i 

DTT (1,4-Dithiotreitol)   k Sodium dihydrogen phosphate   e 

Ethanol abs.   f Streptomycin   l 

Ethidiumbromide 1% (10 ng/µL)   e Sucrose   a 

Ethylen-diamin-tetra-acetate   e Tetracyclin   k 

EDTA- Di-natrium salt Dihydrate   e TEMED (N,N,N,N–tetramethyldiamine)   e 

Glycerin 99,5 %   e Tris(hydroxymethyl)-aminomethan   e 

Isopropanol (2-Propanol) 99,5 %   e Triton-X-100   e 

Isopropyl-β-G-thiogalctopyranoside   e Tween-20   e 

Kalium acetate   e Trypton   e 

Kalium di-hydrogen phosphate   i X-Glc-A-Cyclo-hexyl-ammonium salt   g 

Kalium hydrogen phosphate   e Yeast Extract   e 

 

Table 7.4: Equipments and instruments 

Equipments / Instruments Firm 

Autoclave: Sanoclav Tischautoklav Wolff 

Gel Jet Imager Version 2004 Intas Goettingen, Germany 

DNA Analyzer 4200 und 4300 LI-COR Biosciences Lincoln, USA 

Electroblotter and power assembly BioRad 

Electrophoresis stand and clips 

Eurofins MWG Operon Ebersberg, Germany 

G. Kisker GbR Steinfurt, Germany 

Peqlab Biotechnologie GmbH Erlangen, Germany 

Hybaid Ltd Ulm, Germany 

Electroporator: MicroPulser BIO-RAD laboratories GmbH Munich, Germany 

Fine scale: Delta Range®AE 260 Mettler-Toledo GmbH Giessen, Germany 

Heating block: Thermo Stat plus Eppendorf AG Hamburg, Germany 

Incubator Memmert GmbH + Co. KG Schwabach, Germany 

Incubation shaker Labortechnik Edmund Bühler GmbH Hechingen, Germany 

Plastic disposable material (96-well plate, 6-well 

plates, 12-well plates and etc.) 

Sarstedt Nürnbrecht, Germany 

Eppendorf AG Hamburg, Germany 

Magnet stirrer Ikamag Staufen, Germany 

Minispin C1301 Neolab Heidelberg, Germany 

Simple & Multipipette® plus Eppendorf AG Hamburg, Germany 

Petri dishes (Ø 8,5 cm) Fisher Scientific GmbH Schwerte, Germany 
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pH-Meter: pH 211 Hanna Instruments GmbH Kehl am Rhein, Germany 

Photometer: GENOVA Jenway Tirana, Albana 

Photometer  Safas LAT Monaco, France 

Pipettes Labmate Langenfeld, Germany 

Water purification system: Arium 611 Sartorius AG Goettingen, Germany 

qRT-PCR machine Applied Biosystems, USA 

Scanner Infrared Imaging System Odyssey® LI-COR Biosciences GmbH Hamburg, Germany 

Swing grinder Retsch GmbH Haan, Germany 

Thermocycler: Primus 96 advanced Peqlab Biotechnologie GmbH Erlangen, Germany 

Table centrifuge, cooling centrigfuge: Universal 

32R, Mikro200, Rotina420R 
Hettich GmbH & Co.KG Tuttlingen, Germany 

Vertical Electrophoresis system Maxi gel Biometra GmbH Goettingen, Germany 

Vortexer VWR International GmbH Darmstadt Germany 

Waterbath: Typ W16 LHG 

Rocking dish Biometra GmbH Goettingen, Germany 

 

Table 7.5: Media 

Product Recipes Purpose 

FB 
(freezing broth) 

1 % (w/v) Peptone 
0.5 (w/v) Yeast extract 
85.5 mM NaCl 
36.2 mM K2HPO4 
13.2 mM KH2PO4 
1.5 mM Natrium acetate 
6.8 mM Ammonium sulfate 
365 μM MgSO4 
4.4 (v/v) Glycerin 
autoclave and use after addition of specific antibiotic 

Long-term storage of 
bacteria at -80 °C 

LB 
(Luria Bertani) 
Liquid 

1 % (w/v) Peptone 
0.5 % (w/v) Yeast extract 
171 mM NaCl 
pH 7.0 with 5 M NaOH 

Growth medium for E. 
coli 

LB 
(Luria Bertani) 
Solid 

First prepare LB liquid 
+ 1.5 % (w/v) Bacto- Agar 
pH 7.0  
autoclave and use after addition of specific antibiotic 16 μM 
IPTG and 3 mM X-Gal 

Media for growing 
bacteria and for blue 
white screening of 
bacterial transformants 

YEP liquid medium 

10.00 g Peptone  
10.00 g Yeast extract  
5.00 g NaCl  
pH 7.5 autoclave and use after addition of specific antibiotics 

Growth medium for 
Agrobacterium 

YEP solid medium 

10.00 g Peptone  
10.00 g Yeast extract  
5.00 g NaCl  
10.00 g Bacto-Agar  
autoclave and use after addition of specific antibiotics 

Growth medium for 
Agrobacterium 

SOB 

20 g/l Peptone 
5 g/l Yeast extract 
10 ml 1 M NaCl- solution 
10 ml 250 mM KCl- solution 

Stock solution for the 
preparation of fresh SOC 

SOC 

10 ml SOB  
100 μl 2 M Glucose 
100 μl 1 M MgCl2 
100 μl 1M MgSO4 

After electroporation, 
bacteria  are to be 
transferred to this media 
for stabilization  
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Table 7.6: Solutions and buffers 

Solution Recipes Purpose 

Alkaline lysis solution 1 

50 mM Glucose 
25 mM Tris/HCl, pH 8.0 
10 mM EDTA, pH 8.0 
Autoclave and store at 4 °C. Before use add 
3 mg/ml Lysozyme 

BAC-Plasmid isolation 

Alkaline lysis solution 2 

0.2 N NaOH 
1 % SDS 
Do not autoclave and use within 5-days after 
preparation 

BAC-Plasmid isolation 

Alkaline lysis solution 3 
3 M Kalium acetat 
11.5 % Acetic acid 
Store at 4 °C 

BAC-Plasmid isolation 

Loading dye 
0.25 % (w/v) Bromphenol blue 
30 % (v/v) Glycerin 
1 mM EDTA (pH 8.0) 

Mixed in DNA samples to 
track their position in a 
running agarose gel 

TAE-buffer 
0.04 M Tris 
1 mM EDTA 
pH 8.0 store at RT 

Gel electrophoresis 

Tris-EDTA-buffer (TE) 
10 mM Tris- HCl (pH 8.0) 
1 mM EDTA (pH 8.0) 

DNA-stabilization 

10 x Williams buffer 

100 mM TrisHCl (pH 8.3) 
500 mM KCl 
20 mM MgCl2 
0.01 % Gelatin 

PCR-Buffer 

1x TBE 

89 mM Tris-Base  
89 mM Boric acid  
2 mM EDTA  
pH 8.0 

Running Buffer for PA gels  

5x Takara buffer 

50 mM Tris-HCl  
100 mM NaCl  
5 mM Mg2+ 
pH 8.2 

RACE PCRs 

AFLP-Loading buffer (stop 
buffer for PA-Gels) 

98 % (v/v) Formamid  
0.025 % (v/v) Bromphenol blue  
0.025 % (v/v) Xylencyanol  
10 mM EDTA  

Samples loading buffer for PA 
gels 

Fixing solution for SSCP gels 7.5 % (v/v) Acetic acid Silver staining of SSCP gels 

Developing solution for SSCP 
gels  

9.4 mM Na2CO3 
0.15 % (v/v) Formaldehyde 
6.4 μM Natrium thiosulfat 

Silver staining of SSCP gels 

Staining solution for SSCP gels 
 

5.9 mM AgNO3 
0.15 % (v/v) Formaldehyd 

Silver staining of SSCP gels 

Methacryloxypropyltrimethoxy 
silan solution 

0.3 % (v/v) Methacryloxypropyltrimethoxy 
silan 
0.3 % (v/v) Acetic acid in 100 % Ethanol 

To fix SSCP gel to rare plate 

SSCP‐Loading buffer  

 

95 % (v/v) Formamid 
0.01 M NaOH 
0.05 % (w/v) Xylen cyanol 
0.05 % (w/v) Bromphenol blue 

Denature samples before 
loading on SSCP gel 

 

Table 7.7: Real time PCR primer sequences 
Primer Sequences (5´-3') Tm ᵒC/ product size Purpose 

RGA8_1a-f 

RGA8_1b-r 

RGA8_2a-f 

RGA8_2b-r 

RGA8_3a-f 

RGA8_3b-r 

AGCGCTTTCTTTCTTCTCCAC 

ATGACGTCCTTTCAGCTACCA 

CAGAGGCATGAAGGTGAAGAA 

AGAGAAATGCTGCTGGTCTTG 

GATTGGGTTTGCTGTGTGTG 

CCAAATGCAACAGGTATCAGG 

For all primer pairs the Tm 

is 60 ᵒC / 80-120 bp 

qRT-PCR primer to evaluate the 

expression of RGA8 after 

infiltrating RGA8 gene silencing 

construct  
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Table 7.8: General PCR primer sequences 

Primer Sequences (5´-3') 
Tm ᵒC/ product 
size 

Purpose 

Actin-f CGA GGA AGA TCT GGC ATC A 
60/ 600 bp Internal control for RT-PCR 

Actin-r AGG AGC TGC TCT TGG CAG T 

consP1-F TGA GCA CCC AAG TTA GAG CC 
56-60/ 2500 bp 

Final PCR screening of 
transformed E. coli for single 
RGA positive clones  consP1-B TCC ACT CAA ATC AAG CTC CA 

M13-f GTA AAA CGA CGG CCA GT 
52-56 Insert-PCR 

M13-r CAG GAA ACA GCT ATG AC 

Kuehr3-f GCT GGW TGG ACT TCA AAG G 60/ gDNA-
1550bp, cDNA-
1180bp 

Specific for RGAs 1, 3, 7, 8, 
9-Can differentiate b/w gDNA 
and cDNA Kuehr3-r ATT WTA GAG AAG GCT TCA AGA TTC C 

Rd1LRR_R GGA ATT TCA CTT CCA GGA 

62/ NA 

Able to differentiate b/w all 
RGAs on the basis of 
different PCR product sizes in 
acrylamide sequencing gels 

Rd1LRR_F AGG CTT CAA CAA TTG CC 

Cons cDNA-B TCC ATT CCA GAG GTG ATC AAT 
56/ 1.7 kb 

Initial PCR screening of 
transformed E. coli for single 
RGA positive clones Cons cDNA-F1 GCT GGA TGG ACT TCA AAG G 

Aneela 1F GCC TCA AAT TAT GAA TGT AGA GCA G 
60/ gDNA-
1950, cDNA-
1600 

Specific for RGAs 1, 2, 3, 5, 
6, 7, 8, 9--Can differentiate 
b/w gDNA and cDNA Aneela 1R ATC AGG ACT TTC AGG GAC GA 

GUS_F GGT GGG AAA GCG CGT TAC AAG 
60/ 1200 bp 

To check the presence of 
GUS construct GUS_R GTT TAC GCG TTG CTT CCG CCA 

NTPII_1 GAG GCT ATT CGG CTA TGA CTG 
60/ 600 bp 

To check the presence of 
constructs with Kanamycin 
resistamce NPTII_2 ATC GGG AGC GGC GAT ACC GTA 

 

Table 7.9: 5’ and 3’ RACE primer sequences 

Primer Sequences (5´-3') 
Tm ᵒC/ product 

size 
Purpose 

1GSP-1 

1GSR-2 

1GSP-nested 

2GSP-1 

2GSP-2 

2GSP-3 

2GSP-nested 

TTC CGG CAA GGC AGA GTT TA 

GCG GTC GGT AAT CAA GAT GC 

AGC GGA AGT GGT GCT CTG AC 

CCA TCC ATT GCA TTG CTG AA 

TTC CGG CAA GGC AGA GTT TA 

GCG GTC GGT AAT CAA GAT GC 

TGG ATT GGG TTT GCT GTG TG 

63 ᵒC for all primer 

pairs 

Gene specific primers to 

isolate 3’-RACE products 

for RGA1 

1GSP-1 

1GSR-2 

1GSP-nested 

TGG CGG GAG AAA AAG ACT GG 

TGC ATG GAA TTC TGC ATT GG 

GAA TTT GTG GGG CAA ACG AA 

64 

63 

63 

Gene specific primers to 

isolate 3’-RACE products 

for RGA7 

1GSP-1 

1GSR-2 

1GSP-nested 

2GSP-1 

2GSP-2 

2GSP-3 

2GSP-nested 

GAG CCT GGT GGA CGT AGT CG 

TCT GTT GGC CCA AGA TTG CT 

CTC CCA CCG TGT TTT CAA CC 

CCA TCC ATT GCA TTG CTG AA 

AGG CTT CAA CAA TTG CCA GA 

ACC TCA CGA CAA TCC GTC TG 

TGG ATT GGG TTT GCT GTG TG 

63 

63 

63 

63 

61 

63 

61 

Gene specific primers to 

isolate 3’-RACE products 

for RGA8 

1GSR-1 

1GSP-nested  

2GSP-1 

2GSP-2 

2GSP-3 

2GSP-nested 

TTT GTG GGG CAA ATG GAA AG 

ATG GGA CTG CCG TTG AGA AA 

TTG GTG GAG CTT GAT TTG AGT G 

GGT TGG GAC TCA GAG GAA ACAA 

AAT CCG TCT GCC ATT CCT GA 

TCA CTG CCG TCA ATT GCT TG 

63 ᵒC for all primer 

pairs 

Gene specific primers to 

isolate 3’-RACE products 

for RGA9 

AP_XmaI 
CCG GAC GCG TCG ACT AGT ACT TTT 

TTT TTT TTT TTT TV 
NA 3’RACE 

AUAP XmaI CCG GAC GCG TCG ACT AGT AC 60 3’RACE 

RGA8_51 

RGA8_52 

RGA8_53 

RGA8_54 

GTCTTCACCTCGGAAGCTCAAA 

CGCTGCAACTCGTGGTATAAGA 

GTTGTGGATCGTCCCTGAAA 

CAACGATCGCAAACCTCGAT 

 5‘ RACE primers for RGA8 
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Table 7.10: Primers for homologous expression analysis of single RGAs in resistant 

rose genotypes 

Primer Sequences (5´-3') 
Tm ᵒC/ 
product size 

Expression 
revealed of 

Rd1LRR_R GGA ATT TCA CTT CCA GGA 
62/ NA 

RGAs 1, 2, 
3, 7, 8, 9 Rd1LRR_F AGG CTT CAA CAA TTG CC 

MSM13-RGA 5 F1 GTAAAACGACGGCCAGTCAGAACTTTCGGCAAAGGAC 
60/ 231bp RGA 5 

MS-RGA 5 REV 1 GGGTTTCCTGCATATGAACC 

MSM13-RGA 6 F1 GTAAAACGACGGCCAGTAATTTTGGCTGTCTGGCATC 
60/ 201bp RGA 6 

MS-RGA 6 REV 1 ACAAAGACCAAGGGGTTTCC 

MSM13-RGA 2 F1 GTAAAACGACGGCCAGTATTATCGGCTTTTTCGCTCA 
60/ 245bp RGA 2 

MS-RGA 2 REV 1 CACTTCCAGGAATTAGAAAATTGA 

MSM13-RGA 7 F1 GTAAAACGACGGCCAGTGGCTTTTTCGCTCAATTCTG 
60/ 184bp RGA 7 

MS-RGA 7 REV 1 AAACTCAAAAGAGAGATGGGTTTC 

RGA 1 FWD (04) TGAGCTCTTGCCTGAGAGTTTG 

65 ᵒC for all 
primer pairs / 
80-120bp 

RGA 1 
RGA 1 REV (04) GAGTGTGGCTGCTCTCTTATAACAGTT 

RGA 1 FWD (02) GAAGCTTGGGCAAGGTAATAAGG 
RGA 1 

RGA 1 REV (02) GAGACTGGCCGCTTTGGTT 

RGA 3 FWD (01a) ACATGTAGAAAGTTAGGCCATAGACACT 
RGA 3 

RGA 3 FWD (01b) TGCACATGTAGAAAGTTAGGCCATA 

RGA 3 FWD (01c) TTGCACATGTAGAAAGTTAGGCCATA 
RGA 3 

RGA 3 REV (01) AAAATGTGCACAGATCGAGAGAAA 

RGA 8 FWD (03) TCCTCCTTACAGCGGTTGGA 
RGA 8 

RGA 8 REV (03) GCAAATGAATGCTTGCAGGAA 

RGA 8 FWD (01a) AAGATTGCTTCCTAATTCCTTGAGAT 
RGA 8 

RGA 8 REV (01) ACACGGTGGGAGAGATTTTGA 

RGA 9 FWD (02) GAGCTTATCAGAGAGATTGTGCAAGT 
RGA 9 

RGA 9 REV (02) GAGGAACCGAATACTGTGAGACAAG 

RGA 8 FWD (03) TCCTCCTTACAGCGGTTGGA 
RGA 8 

RGA 8 REV (03) GCAAATGAATGCTTGCAGGAA 

 

Table 7.11: Gel recipes for DNA separation 

Gel Recipes Purpose 

Agarose gel 
1 % / 1.5 % / 2 % Agarose  
in 1 x TAE warm to get a homogenized solution, 
pour in assembly after adding 0.5 µg/mL EtBr  

Separation of DNA fragments on 
the basis of their size 

0.5 x MDE‐Gel for 

SSCP‐Analysis (0,4 

mm thick)  
 

0.5x MDR‐Gel Stammlösung 

0.6x TBE 
5 % Glycerin 
2.2 μM Ammonium persulfat (APS) 
0.06 % Tetramethylethylendiamin (TEMED) 

Polyacrylamide gel for SSCP 

6 % Polyacrylamid 
Sequence gel (0,25 
mm thick)  
 

40 % Acrylamid stock solution 
(Acrylamid/Bisacrylamid = 19:1) 
1x TBE long run buffer 
5.8 M Urea Ultrapure 
0.03 % (v/v) Dimethyl sulfoxid (DMSO) 
2.6 μM Ammonium persulfat (APS) 
0.09 % Tetramethlethylendiamin (TEMED) 

Polyacrylamide gel for 
Sequencing or SSRs 
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Table 7.12: LRR domain representing different options for LRR repeats of RGA 8, 

7 and 3. 

RGA8-10 LRR repeats following xxLxxLxL pattern. 

 

0537  AIEGILLDLAELEEADWNLEAFSKMCKLKLLYIHNLRLSVGPRLLPNSLRFLSWSWYPSK  0596 

0597  SLPPCFQPDELAEISLVHSN                                            1 

0617  IDHLWNGIKYLVNLKSIDLSYSINLT                                      2 

0643  RTPDFTGIPNLEKLVLEGCTN                                           3 

0664  LVKIHPSIALLKRLRIWN                                              4 

0682  LRNCKSIRS-LPSEVNMEFLETFDVSGCSKLKM                                

0713  ISEFVMQMKRLSKLYLGGTAVEKL                                        5 

0737  PSSIEHLSESLVVLDLSG                                              6 

0755  IVIREQPYSRLLKQNLIASSFGLFPRKSPHPLIP                              7 

0789  LLASLKHFSCLRTLKLNDCNLCEGE                                       8 

0814  IPNDIGSLSSLQRLELRGNNFVSLPASIHLLEDV                              9 

0848  DVENCKRLQQLPELPDLPNLCRLR                                       10 

0873  ANFWLNCINCLSMVGNQDASYFLYSVLKRWIEIEALSRCDMMIRQETHCSFEYFRFVIPGSEIPEWFNNQSVGD  0945 

0946  TVTEKLPWWDACNSKWIGFAVCALIVPHDNPSAVPEKSHLDPDTCCIWCFWNDYGIDVIGVGTNNVKQIVSDHL  1019 

1020  YLLVLPSPFRKPENYLEVNFVFKIARAVGSNRGMKVKKCGVRALYEHDTEELISKMNQSKTSSISLYEEAMDEQ  1093 

1094  EGAMVKATQEAATSRSGGSDDEYYSAAEE 

 

 

RGA8-10 LRR repeats following xxLxxLxL pattern. 

 

--AIEGILLDLAELEEADWNLEAF                                              1 

SKMCKLKLLYIHNLRLSVG                                                   2 

PRLLPNSLRFLSWSWYPSKSLPPC 

FQPDELAEISLVHSN 

IDHLWNGIKYLVNLKSIDLSYSINLT                                            3 

RTPDFTGIPNLEKLVLEGCTN                                                 4 

LVKIHPSIALLKRLRIWN                                                    5 

LRNCKSIRS-LPSEVNMEFLETFDVSGCSKLKM 

ISEFVMQMKRLSKLYLGGTAVEKL                                              6 

PSSIEHLSESLVVLDLSGIVIRE                                               7 

QPYSRLLKQNLIASSFGLFPRKSPHPLIP 

LLASLKHFSCLRTLKLNDCNLCEGE                                             8 

IPNDIGSLSSLQRLELRGNNFVSLPASIHLLEDV                                    9 

DVENCKRLQQLPELPDLPNLCRLR                                             10 

ANFWLNCINCLSMVGNQDASYFLYSVLKRWIEIEALSRCDMMIRQETHCSFEYFRFVIPGSEIPEWFNNQSVGD 

TVTEKLPWWDACNSKWIGFAVCALIVPHDNPSAVPEKSHLDPDTCCIWCFWNDYGIDVIGVGTNNVKQIVSDHL 

YLLVLPSPFRKPENYLEVNFVFKIARAVGSNRGMKVKKCGVRALYEHDTEELISKMNQSKTSSISLYEEAMDEQ 

EGAMVKATQEAATSRSGGSDDEYYSAAEE 

 

 

RGA8-11 LRR repeats following LxxLxxLxxLxLxxCxx—LxxxPxx pattern. In the 

pattern followed here C can be replaced by T or N and the numbers of amino 

acids following this aa can varies. 

 

------------------T 

------------------Nx(x) 

----LxxLxxLxxLxLxxCxx--LxxxPxx 

-----AIEGILLDLAELEEADWNLEAFS                                          1 

-KMCKLKLLYIHNLRLSVGPRL-LPNSLRFLSWSWYPSK  

SLPPCFQPDELAEISLVHSNIDHLWNGI                                          2 

-----KYLVNLKSIDLSYSIN—-LTRTPDFT                                       3 

------GIPNLEKLVLEGCTN--LVKIHPSIAL                                     4 

-------LKRLRIWNLRNCKS--IRSLPSEVNME                                    5 

---------FLETFDVSGCSK--LKMISEFVMQ 

-------MKRLSKLYLGGTAVEKLPSSIEH                                        6 

------LSESLVVLDLSGIVIREQPYSR-                                         7 

----------LLKQNLIASSFG-LFPRKSPHPLIP                                   8 

LLASLKHFSCLRTLKLNDCN---LCEGEIPNDIG                                    9 

------SLSSLQRLELRGNNFVSLPASIHLLEDVDVEN                               10 

----CKRLQQLPELPDLPNLCR-LRANFWL                                       11 

--NCINCLSMVGNQDASYFLYSVLKRWIEIEAL 

SRCDMMIRQETHCSFEYFRFVIPGSEIPEWFNNQSVGDTVTEKLPWDACNSKWIGFAVCALIVPHDNPSAVPEKSHL 

DPDTCCIWCFWNDYGIDVIGVGTNNVKQIVSDHLYLLVLPSPFRKPENYLEVNFVFKIARAVGSNRGMKVKKCGVRA 

LYEHDTEELISKMNQSKTSSISLYEEAMDEQEGAMVKATQEAATSRSGGSDDEYYSAAEE 
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RGA7-11 LRR repeats following LxxLxxLxxLxLxxCxx—LxxxPxx pattern. In the 

pattern followed here C can be replaced by T or N and the numbers of amino 

acids following this aa can varies. 

 

                  T 

                  Nx(x) 

----LxxLxxLxxLxLxxCxx—--LxxxPxx 

536-AIEGIFLHLHKLEEADWNPEAFSKM                                       1 

-----CNLKLLYIHNLRLSLGPKFLPDAL                                       2 

---RILKWSWYPSKSLPPGFQPDELSFVHSNIDH-LWNG 

----IKYLGNLKSIVLSYSIN---LIRTPDFTGI                                  3 

--------PNLEKLVLEGCtN---LVKIHPSIA                                   4 

------LLKRLKIWNFRNCKSIKTLPSEVNM                                     5 

--------EFLETFDVSgCSK---LKMIPEFV 

-----GQTKRLSKLCLGGTAVEK-LPSSI                                       6 

----EhLSESLVGLDLSGIVIREQPYSL                                        7 

---FLKQNVIASsLgLFPRKSHHP 

---LIPVLASLKHFSSLKELNDCNLCEGEIPND                                   8 

----IGSLSSLECLELGGNNFVS-LPAS                                        9 

-------IHLLCRLGSINVENCKRLQQLP                                      10 

---ELPVSGSLRVTTVNCTSLQVFPELP 

--------PDLCRLSAFSLNSVNCLSTIGNQDASFF                               11 

LYSVINRLLEVISLSLSLSLSLSLSLSLSRSL  944 (LRR region ranges between 536- 944 amino acids) 

 

 

RGA3-13 LRR repeats following LxxLxxLxxLxLxxCxx—LxxxPxx pattern. In the 

pattern followed here C can be replaced by T or N and the numbers of amino 

acids following this aa can varies. 

 

---------------------T 

---------------------Nx(x) 

-------LxxLxxLxxLxLxxCxx--------LxxxPxx 

520--VTEGIFLHLDKLEEADWN---------LEAFSKM                             1 

--------CELKLLYIHNLRLSLGPKY-----LPNALKFLKWSWYP                      2 

-SKSLPPCFQPDELTELTLVHSNIDH------LWNGKK                              3 

---------SLGNLKSIDLSDSIN--------LTRTPDF                             4 

--------tgIPSLEKLILEGCIS--------LVKIHPSI                            5 

-----------ASLKRLKFWNFRNCKSIKS--LPG                                 6 

------EVDM-EFLETFDVSGCSK--------LKMIPEFVGQ  

----------TKRLSRLCLGGTAVEK------LPSSI                               7 

-------EHLSESLVELDLSGIVIREQPYSRFLKQN                                8 

---------LIASSFGLFPRKSPHPL------LP- 

---LLasLkhfssLRTLKLNDCNLCegE----IPNDI                               9 

--------GSLSSLKRLELRGNNFVS------LPAS                               10 

----------IHLLSKLTYFGVENcTKLQQ--LP                                 11 

------aLPVSDYLNVLTNNCTSLQVFPD---PPD                                12 

----------LSRLSEFFLDCSNCLSCQDSS                                    13 

YFLYSVLKRWIEIQVLSRCDMMVHMQETNRRPLEFVDFVIPGSEIPEWFNNQSVGDRVTEKLPSDACNSKWIGFAVCALIVPQDN 

PSALLERPFLDPDTYGIECYWNDYGIGFVGLVVP-VK—QFVSDHLWLLVLLSPFRKPENCLEVNFVFEITRAVGNNRGMKVKKCG 

VRALYEHDVEELISKMNQSKSSSISLYEEGMDEQEGAMVKAKHEAATSGSGGSDDEYYSAEEE  1124 

(LRR region ranges between 520- 1124 amino acids) 

 

Note: The LRR repeats motifs for RGA 3, 7 and 8 proteins were 

identified by conseved domain database at NCBI and then manually 

aligned to get above patterns. 
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