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iZusammenfassungIn dieser Arbeit wird ein zwei-Skalen Modell für kohäsionslose reibungsbehaftete granu-lare Materialien entwi
kelt. Die Idee hierbei ist die granulare Struktur nur in Berei
hengroÿer Deformationen mit Hilfe der Diskreten Elemente Methode (DEM) zu model-lieren, während das Material sonst als Kontinuum mit der e�zienten Finite ElementeMethode (FEM) abgebildet wird.Die dreidimensionale DEM verwendet Superquadri
-Partikel um die Elongation undKantigkeit realer Körner anzunähern. Unter der Annahme elastis
her Verformungen imKontaktberei
h zweier Partikel wird die Kontaktkraft mit Hilfe des Hertz-Mindlin Mo-dells und des Coulombs
hen Reibgesetzes ermittelt. Die einzigen Materialparameterdes Modells sind die elastis
hen Konstanten der Partikel und der Reibkoe�zient, wel-
he klare physikalis
he Bedeutungen besitzen und aus Experimenten ermittelt werdenkönnen. Das Spektrum bere
henbarer Probleme wird dur
h die Entwi
klung e�zienterKontaktalgorithmen und eines Parallelisierungss
hemas für Shared-Memory Ar
hitek-turen erweitert.Um ein Kontinuumsmodell abzuleiten, wird das e�ektive Verhalten des Partikel-modells anhand einer Homogenisierungs-Methode bestimmt. Dafür werden zufällige,periodis
he, kubis
he Pa
kungen erzeugt und unter triaxialen Spannungs- und Deh-nungsrandbedingungen getestet. Die resultierenden Spannungs-Dehnungskurven wer-den zur Anpassung der Parameter eines elasto-plastis
hen ni
ht-assoziierten Mohr-Coulomb Kontinuumsmodells verwendet.Die DEM und FEM werden dur
h die Arlequin Methode gekoppelt. Hierfür wirdein Gebiet eingeführt, in wel
hem beide Modelle überlagert werden und die virtuel-le Arbeit zwis
hen beiden Modellen interpoliert wird. Die Kompatibilität wird überkinematis
he Zwangsbedingungen errei
ht, wel
he dur
h eine Penalty Methode einge-bra
ht werden. Für die Formulierung dieser Zwangsbedingungen werden die diskretenPartikelvers
hiebungen in Grob- und Feinanteile aufgeteilt, wobei si
h erstere aus derProjektion der Vers
hiebungen auf den FE Ansatzraum ergeben. Dies ermögli
ht na-türli
he Fluktuationen der Vers
hiebungen und verhindert einen störenden Ein�uÿ derKopplung auf die granulare Struktur. Die Modelierung des Einpressens eines Pfahls inSand zeigt, dass die zwei-Skalen Methode die Betra
htung von Problemen ermögli
ht,wel
he mit bisherigen Methoden ni
ht mögli
h waren.Als Nebenprodukt wird ein gekoppeltes DE-FE Modell zur Untersu
hung der We
h-selwirkung von granularen Materialien und Festkörpern entwi
kelt. Die We
hselwir-kung �ndet dur
h Kontakt der Partikel mit der FE Ober�ä
he statt, wel
he hierfürmit einem Dreie
ksnetz approximiert wird. Dabei wird ein spezielles Kontaktmodellfür Partikel-Kanten und Partikel-E
ken Kontakte eingeführt.S
hlagworte: Granulare Materialien, Diskrete Elemente Methode, Homogenisierung,Multiskalen, Arlequin Kopplung, Superquadri
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iiiAbstra
tWithin this dissertation a 
on
urrent two-s
ale model of non-
ohesive fri
tional gran-ular materials is developed. The idea is to model the granular stru
ture only withindomains of large deformation by a Dis
rete Element Method (DEM), while elsewherethe material is 
onsidered as 
ontinuummodeled by the e�
ient Finite Element Method(FEM).The three-dimensional DEM uses superquadri
 parti
les to approximate the elonga-tion and angularity of real grains. At inter-parti
le 
onta
ts the parti
les are assumedto deform elasti
ally, and the 
onta
t for
e is derived from the Hertz-Mindlin model
ombined with the Coulomb fri
tion model. Hen
e, the only material parameters en-tering the model are the parti
les' elasti
 
onstants and the 
oe�
ient of fri
tion, allof whi
h have a 
lear physi
al meaning and 
an be determined from experiments. Inorder to expand the range of feasible problems of the 
omputationally expensive DEMan e�
ient 
onta
t dete
tion s
heme and a parallelization s
heme for shared memoryar
hite
tures are developed.To derive a 
orresponding 
ontinuum model the e�e
tive behavior of the parti
lemodel is determined by a homogenization s
heme. For this purpose random, 
ubi
al,periodi
 parti
le pa
kages are generated and probed under triaxial stress and strainboundary 
onditions. Average stresses are derived from inter-parti
le 
onta
t for
es,and the resulting stress-strain 
urves are used to �t the parameters of an elasto-plasti
non-asso
iative Mohr-Coulomb 
ontinuum model.The DEM and FEM are 
oupled via the Arlequin method. For this purpose bothmodels are overlapped in a 
oupling domain. Here the virtual work is interpolatedbetween them yielding an average material model. The 
ompatibility is assured viakinemati
 
onstraints, whi
h are enfor
ed by the penalty method. The formulation ofthese 
onstraints is based on a 
oarse-�ne split of the dis
rete parti
le displa
ements.The 
oarse part results from the proje
tion of the dis
rete displa
ements onto theFE ansatz spa
e using a volume weighted least-square �t. The split enables natural�u
tuations of the parti
le displa
ements within the 
oupling domain. In this way themi
rostru
ture within the dis
rete domain is not disturbed by the 
oupling. The simula-tion of a pile installation problem reveals that the two-s
ale and two-method approa
henables the 
onsideration of problems not feasible for mono-method approa
hes.As a by-produ
t a 
oupled DE-FE s
heme is developed for the intera
tion of granu-lar materials and solid stru
tures. This is a

omplished via 
onta
ts between parti
lesand the FE surfa
e mesh, whi
h for this purpose is approximated by a triangular mesh.A 
onta
t model is developed whi
h takes parti
le-edge and parti
le-
orner 
onta
tsinto a

ount.Keywords: Granular Material, Dis
rete Element Method, Homogenization, Multi-s
ale, Arlequin Coupling, Superquadri
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Chapter 1Introdu
tionGranular materials are en
ountered in a variety of �elds and forms. Prominent examplesare ores in the mining industry, powders in the pharma
euti
al industry, raw materialsin the manufa
turing industry, soils, sand, and gravels in the 
onstru
tion industry, andfood produ
ts like natural grains. The most important treatments of these materialsin
lude the ex
avation from the ground, 
omminution and grinding, separation andmixing, and transport and storage. A

ording to Duran [55℄ the pro
essing of granularmaterials makes up roughly 10% of the overall energy 
onsumption on the planet. Thisindi
ates that it is worthwhile to advan
e the understanding of the material behaviorin order to design more e�
ient pro
esses.However, despite their widespread o

urren
e and appli
ation, the me
hani
al be-havior of granular materials is understood rather poorly 
ompared to everyday engi-neering materials. This is a result of their 
omplex rheology, whi
h is exempli�ed bytheir ability to show liquid- and solid-like behavior depending on the environmentalin�uen
es. Prominent examples are the �ow of sand in an hourglass on the one handand the remarkable sti�ness of va
uum pa
ked 
o�ee powder on the other hand.Within this work the me
hani
al behavior of granular materials is des
ribed byanalyti
al models, whi
h are evaluated numeri
ally. The analysis is restri
ted to thesub
lass of non-
ohesive fri
tional granular materials su
h as dry sand, where no at-tra
tive intera
tions exist between the individual grains. Furthermore, the fo
us lieson the solid-like behavior of these materials leaving aside the various e�e
ts 
aused bydynami
 agitation.1.1 Obje
tives and State of the ArtThe most 
ommon approa
h to model granular materials in engineering is the 
ontin-uum approa
h. The dis
rete parti
ulate stru
ture of the material is disregarded andrepla
ed by the assumption of a 
ontinuous distribution of matter. Ea
h material pointwithin the 
ontinuous body is supposed to 
orrespond to a representative volume ofthe granular material. Hen
e, the appli
ability of the 
ontinuum approa
h depends onthe separation of s
ales, i.e. the ratio between the dimensions of the ma
ros
opi
 bodyof interest and the mi
ros
opi
 heterogeneities. Within the standard 
ontinuum ap-1



2 CHAPTER 1. INTRODUCTIONproa
h ea
h material point is equipped with three translational degrees of freedom andthe state of the body is des
ribed by 
ontinuously varying �elds of, e.g., displa
ementand density. The spe
i�
 material des
ription enters the model in terms of a 
onstitu-tive equation, whi
h des
ribes the relation between the deformation of the body andthe resulting stress. These equations are usually developed in a phenomenologi
al wayfrom the results of laboratory experiments in whi
h the behavior of a material sam-ple is analyzed under spe
i�
 boundary 
onditions. For non-
ohesive fri
tional granularmaterials a 
onsiderable number of sophisti
ated elasto-plasti
 and hypo-plasti
 
onsti-tutive equations have been proposed, see e.g. [51, 94, 103, 104, 58, 186, 184, 132℄. Theseare able to represent the most prominent e�e
ts like the pressure dependent sti�nessand shear strength, the plasti
 deformation nearly from the onset of loading, and thedilatant behavior under shear loading. Using su
h 
ontinuum models engineering s
aleproblems are su

essfully solved via the Finite Element Method (FEM).A problem of the 
ontinuum approa
h is that non-
ohesive fri
tional granular mate-rials tend to develop lo
alizations of deformations in narrow zones like shear bands, seee.g. the experimental studies on sand in [167, 5, 52℄. Within su
h zones the ma
ros
opi
�elds show huge variations and parti
le s
ale deformation pro
esses di�er 
onsiderablyfrom zones of small, rather homogeneous deformation. As a result, the s
ale separa-tion 
ondition is no longer ful�lled to the original degree questioning the appli
abilityof the 
ontinuum approa
h in these domains [69℄. Furthermore, standard 
ontinuumapproa
hes yield ill-posed boundary value problems and the FE solution be
omes mesh-dependent, i.e. the size of the lo
alization zone depends on the dis
retization [130, 168℄.An additional problem of the FEM is the severe mesh distortion within the lo
alizationzones spoiling the method's a

ura
y.The above problems are partly resolved by enri
hed 
ontinua, whi
h are motivatedby the parti
le-s
ale deformation me
hanisms a
tivated in the lo
alization zone. Withinthe Cosserat or mi
ropolar 
ontinua ea
h material point is equipped with additionalrotational degrees of freedom, while in higher order 
ontinua the stress is proposed todepend on higher order deformation gradients. In both 
ases a 
hara
teristi
 lengths
ale is introdu
ed into the 
ontinuum model. In this way, the lo
alization problemsare regularized and the size of the lo
alization zones is determined through the internallength s
ale, see e.g. [187, 84, 59℄. Nevertheless, some problems remain: First, theenri
hed 
ontinua are based on the s
ale separation 
ondition as well. Se
ond, theproblem of severe mesh distortion remains. Third, the enri
hed 
ontinuum modelsrea
h a high level of 
omplexity and are usually based on a huge number of materialparameters, whi
h have to be determined from laboratory tests. This is an awkwardtask espe
ially for the parameters des
ribing the non-standard 
ontinuum part, sin
ethese have to be determined from tests yielding an inhomogeneous deformation of thesample [59℄.A di�erent approa
h of modeling granular materials is the 
lass of parti
le meth-ods like the Dis
rete Element Method (DEM) introdu
ed by Cundall and Stra
k [47℄.Within the DEM the material is modeled on the grain s
ale, i.e. ea
h grain is dis-
retized as a rigid body denoted as parti
le. The intera
tion of the individual parti
lesis des
ribed by a 
onta
t model. Hen
e, the degree to whi
h the real material behavior



1.1. OBJECTIVES AND STATE OF THE ART 3is 
aptured depends on the degree to whi
h the real grain shape and grain intera
tionare 
aptured. Within the DEM the parti
le shape is the 
ru
ial fa
tor governing the
omputational e�ort. Therefore, spheri
al parti
les are used within the majority of thepublished analyses, sin
e they yield a minimum e�ort. Other shapes that have beenapplied are, e.g., ellipsoids [112, 136, 128℄, superquadri
s [80, 169℄, polyhedra [43, 10℄,or 
lusters made of spheres [118, 147℄. The in�uen
e of the parti
le shape on the overallme
hani
al behavior of a parti
le pa
kage has been shown numeri
ally [9, 147℄ as well asexperimentally [30℄, whereat the overall behavior is dedu
ed from tests of representativesamples via homogenization s
hemes.Obviously, the lo
alization of deformations in narrow zones poses no problem forthe dis
rete modeling approa
h. Furthermore, it requires only a moderate number ofmaterial parameters, whi
h 
an be determined from grain s
ale tests. However, thedis
rete approa
h is burdened by a huge 
omputational e�ort, whi
h limits feasibleproblems in spa
e and time and ex
ludes the modeling of typi
al engineering s
aleproblems. An ad ho
 way to redu
e the e�ort is to in
rease the parti
le size and, in doingso, redu
e the number of parti
les so there is no longer a one-to-one 
orresponden
eof grains and parti
les. However, in this way the parti
le model no longer representsthe parti
ulate mi
rostru
ture. Hen
e, it be
omes a phenomenologi
al model, whoseparameters have to be �tted via ma
ros
opi
 tests.The advantages of the two kinds of modeling 
an be 
ombined in a 
on
urrent two-s
ale model, where domains of small, rather homogeneous deformation are modeled as
ontinuum, while the lo
alization zones are modeled by the parti
le method. In this way,the 
omputational e�
ien
y of the 
ontinuum approa
h is exploited where possible, butthe problem of s
ale separation in lo
alization zones is resolved by modeling the realmi
rostru
ture. Consequently, the problem of severe mesh distortion is eliminated aswell. Furthermore, the 
ontinuum model 
an be dedu
ed from the parti
le model by ahomogenization s
heme so that initially only parti
le-s
ale material parameters enterthe model. However, these bene�ts 
ome at the 
ost of a two-s
ale and two-methodmodel, whi
h requires a 
onvenient parti
le-
ontinuum 
oupling. The development ofthis 
oupling for non-
ohesive fri
tional granular materials is the main obje
tive ofthis work. Further obje
tives on the way to a 
omplete two-s
ale model are as follows.First, as the basi
 ingredient of the 
omplete s
heme, a 
onvenient parti
le model isrequired, whi
h should yield quantitative predi
tions. This requires the appli
ation ofan advan
ed parti
le shape and a me
hani
ally sound 
onta
t model. Furthermore,on the implementation side, algorithms are developed to redu
e the 
omputationalburden of the parti
le method. In a next step, a homogenization s
heme is appliedto determine the e�e
tive behavior of the parti
le model. Herein, the 
ru
ial problemis the appli
ation of boundary 
onditions for whi
h a simple solution is presented.The e�e
tive behavior is then used to �t the parameters of a standard elasto-plasti

ontinuum model, whi
h represents the main e�e
ts of the parti
le model. Finally,a 
onvenient 
oupling of the 
ontinuum and parti
le model is developed. It yields asmooth transition between the two material des
riptions.



4 CHAPTER 1. INTRODUCTION1.2 Organization of this WorkThe organization of this work follows 
losely the above listing of the two-s
ale model'singredients. The ne
essary fundamentals of 
ontinuum solid me
hani
s and the FEMare outlined in 
hapter 2. It in
ludes a des
ription of the non-asso
iative Mohr-Coulombmodel, whi
h is later used as 
ontinuum model in the two-s
ale approa
h.Chapter 3 details the DEM used to model the material on the grain-s
ale. Fromthe me
hani
al point of view the most important aspe
ts are the superquadri
 parti
leshape and the Hertz-Mindlin 
onta
t model. From the algorithmi
 point of view thelo
al 
onta
t dete
tion s
heme and the simple parallelization s
heme yield a 
onvenientperforman
e. In order to exemplify this performan
e and validate the DEM the 
hapter
loses with a numeri
al example.A useful byprodu
t of this resear
h work is presented in 
hapter 4. Here the in-tera
tion of solid stru
tures and granular materials is modeled by a 
oupled DE-FEapproa
h. The 
oupling is realized by a 
onta
t s
heme modeling 
onta
ts between dis-
rete parti
les and the FE mesh. For this purpose the FE surfa
e mesh is dis
retized bya triangular mesh and the handling of 
onta
ts between parti
les and edges of this meshis 
overed in detail. The performan
e and versatility of the approa
h are demonstratedby a number of numeri
al examples.The homogenization s
heme used to derive the e�e
tive behavior of the parti
lemodel is detailed in 
hapter 5. A 
onvenient s
heme to apply strain and stress bound-ary 
onditions to random, periodi
, re
tangular hexahedral samples is presented. Theparameters of the parti
le model are adapted to a referen
e sand, and the e�e
tivebehavior is determined via standard triaxial tests. The resulting stress-strain 
urvesreveal a too small shear strength of the parti
le model 
ompared to the referen
e sand.Finally, the parameters of the Mohr-Coulomb model are �tted to the e�e
tive behavior.The main obje
tive of this resear
h work is detailed in 
hapter 6. The 
ouplingof the parti
le and the 
ontinuum model is a

omplished by the Arlequin method.An overlapping domain is introdu
ed in whi
h the virtual work is interpolated betweenboth models. The 
ompatibility of the deformation is assured via kinemati
 
onstraints.For this purpose the dis
rete parti
le displa
ements are split into a 
oarse s
ale and a�ne s
ale part. The former is 
onstrained to the 
ontinuum displa
ement via a penaltyformulation. This enables natural �u
tuations of the parti
le displa
ements in the over-lapping domain and results in a smooth transition between the two material models,whi
h is demonstrated by triaxial tests. Afterwards, the two-s
ale s
heme is applied tothe problem of inserting a �at pile into a box �lled with dry sand.A summary of the results is provided in 
hapter 7. The main problems of the two-s
ale approa
h are dis
ussed and possible solutions are suggested yielding a perspe
tiveto future work.



Chapter 2FundamentalsWithin this 
hapter the fundamentals of 
ontinuum solid me
hani
s and the �niteelement method are outlined. The 
omposition is restri
ted to those aspe
ts of eithertopi
 that are most relevant for the resear
h presented in the following 
hapters.2.1 Continuum Solid Me
hani
sThe theory of 
ontinuum solid me
hani
s is a 
onvenient tool to model the behaviorof a ma
ros
opi
 solid body. For this purpose the body is 
onsidered as 
ontinuum,i.e. the dis
rete mi
rostru
ture 
onstituting the material is negle
ted and repla
edby a 
ontinuous distribution of matter. Hen
e, the method's appropriateness dependson the s
ale separation of the ma
ros
opi
 body and the parti
ular mi
rostru
ture,whi
h might be, e.g., mole
ular and in the nm range or granular and in the mm range.Nevertheless, the question if �the 
ontinuum approa
h is justi�ed, in any parti
ular 
ase,is a matter, not for the philosophy or methodology of s
ien
e, but for experimentaltests� [166℄. In the following only those aspe
ts are outlined whi
h are relevant fordevelopments in later 
hapters. Comprehensive works on this topi
 are provided byAltenba
h and Altenba
h [6℄, Holzapfel [82℄, Haupt [77℄, and Truesdell and Noll [166℄.2.1.1 Kinemati
sThe body B is supposed to be 
omposed of a 
ontinuous set of material points P. Ea
hmaterial point represents a portion of the original mi
rostru
ture so that its behavior
orresponds to the e�e
tive behavior of this portion.MotionThe body's motion is des
ribed via 
on�gurations Ω. These are smooth bije
tive map-pings of the material points onto the points of the three-dimensional Eu
lidean spa
e.By introdu
ing a referen
e frame ea
h material point P 
an be identi�ed with a positionve
tor x. The motion of B is given as 
ontinuous sequen
e of 
on�gurations parame-terized by the time t. To measure the deformation of B a referen
e 
on�guration Ω0 is5
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Figure 2.1: Motion χ measured with respe
t to the referen
e 
on�guration Ω0 in the inertialCartesian frame (O,ei).introdu
ed, whi
h is 
ommonly 
hosen as the initial, stress free 
on�guration at t = 0,see �gure 2.1. The position of the material points in the referen
e 
on�guration withrespe
t to the referen
e frame1 is denoted by X. The motion of the body is des
ribedby the smooth fun
tion
x = χ(X, t) , (2.1)whi
h represents a bije
tive mapping between the material point's referen
e position Xand its 
urrent position x at time t. Using the referen
e frame the position ve
tors aregiven as x = xi ei and X = Xi ei, and the motion (2.1) 
an be expressed in 
omponentform

xi = χi(X1, X2, X3, t) . (2.2)Ea
h �eld quantity φ 
hara
terizing B 
an be given either in the Lagrangian form
φ(X, t) or in the Eulerian form φ(x, t). In the former 
ase one 
onsiders the evolutionof φ over time for a parti
ular material point P positioned at X in Ω0. In the latter
ase one 
onsiders the evolution at a �xed point in spa
e x, whi
h will be o

upied bydi�erent material points over time. For 
onvenien
e the expli
it dependen
e on x or Xand t will be dropped if not required to prevent ambiguities. Using (2.1) the velo
ity
v and a

eleration a of a material point are given as material time derivatives of χ

v := ẋ :=
Dχ(X, t)Dt =

∂χ(X, t)

∂t
, a := v̇ = ẍ =

∂2χ(X, t)

∂t2
. (2.3)The displa
ement of a material point is de�ned as

u := x−X = χ(X, t)−X , (2.4)whi
h yields the identities u̇ = v and ü = a.1One inertial referen
e frame with origin O and orthonormal base ve
tors ei is used to measurequantities in the referen
e and in the 
urrent 
on�guration.



2.1. CONTINUUM SOLID MECHANICS 7Deformation GradientThe fundamental measure of deformation is the deformation gradient de�ned by
F := Gradx :=

∂x

∂X
=
∂χ(X, t)

∂X
=
∂χi(X1, X2, X3, t)

∂Xj
ei ⊗ ej . (2.5)

F maps material line elements dX in Ω0 onto spatial line elements dx in Ωdx = F · dX . (2.6)Introdu
ing the displa
ement gradient H := ∂u/∂X the deformation gradient 
anbe expressed as F = 1 + H . Resulting from a fundamental theorem of 
ontinuumme
hani
s there exists a unique polar de
omposition of the deformation gradient
F = R ·U = v ·R with RT ·R = 1, det R = 1, U = UT , v = vT , (2.7)where R is a rotation tensor, U is the material stret
h tensor, and v the spatial stret
htensor2, respe
tively. Hen
e, the transformation of the line element dX in (2.6) isde
omposed in either an initial stret
hing in Ω0 by U and a subsequent rotation into

Ω by R or an initial rotation and a subsequent stret
hing in Ω by v.StrainIt is a plausible statement that the strain within a material point is independent of itsrotation R. Hen
e, the right Cau
hy-Green tensor is introdu
ed as
C := F T · F = U ·RT ·R ·U = U 2 , (2.8)whi
h is independent of R. Consider a unit ve
tor A, ‖A‖ = 1 in Ω0 whi
h is rotatedand stret
hed to be
ome the ve
tor a = λA ā, ‖ā‖ = 1 in Ω. The stret
h is given as

λ2
A = a · a = (F ·A) · (F ·A) = A · F T · F ·A = A ·C ·A . (2.9)Hen
e, C yields the square of the stret
h λA in dire
tion of A in Ω0. Consequently,the eigenvalues and eigenve
tors of C are the square of the prin
ipal stret
hes λ2

I andthe 
orresponding dire
tions eI . Therefore, a rigid body deformation with all prin
ipalstret
hes equal unity yields a 
onstant Cau
hy-Green tensor of C = 1. Sin
e a mean-ingful strain tensor should vanish in this 
ase, the Green-Lagrangian strain tensor isintrodu
ed as
E :=

1

2
(C − 1) , (2.10)where the pre-fa
tor is introdu
ed for 
ompatibility with the small strain theory. Ap-proximating the stret
h as λA = 1 + ǫA + O(ǫ2A), where ǫA denotes the engineeringstrain, gives

A ·E ·A =
1

2

(
λ2

A − 1
)

=
1

2

(
1 + 2 ǫA +O(ǫ2A)− 1

)
= ǫA +O(ǫ2A) . (2.11)2The same symbol v is 
ommonly used for the velo
ity and the spatial stret
h tensor whi
h doesnot lead to ambiguities in the following.
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n

df

−df
−n

ds

ds

Ω

ΓFigure 2.2: Body in 
urrent 
on�guration 
ut by plane with normal n.Using the displa
ement gradient the Green-Lagrangian strain tensor is expressed as
E =

1

2

(
H + HT + HT ·H

)
. (2.12)For small deformations the quadrati
 term in (2.12) 
an be negle
ted yielding the linearstrain tensor of the small strain theory

ǫ :=
1

2

(
H + HT

)
=

1

2

(Gradu + GradT u
)
. (2.13)2.1.2 StressThe deformation of a body indu
es intera
tions inside the material resulting in stress,whi
h has the dimension for
e per area. Consider a body B deforming under some loadapplied at its boundary Γ in the 
urrent 
on�guration Ω. If the body is 
ut along aplane, an in�nitesimal surfa
e element ds = dsn in one part exerts a for
e df on the
orresponding surfa
e element in the other part so that ea
h part is in equilibrium, see�gure 2.2. The surfa
e tra
tion t is de�ned as surfa
e for
e per area, i.e. df = t ds.A

ording to Cau
hy's stress theorem the tra
tion is related to the unit normal of thesurfa
e element via

t = σ · n , (2.14)where σ is denoted as Cau
hy stress tensor. Hen
e, σ gives the tra
tion for an arbitrary
ut dire
tion n. In parti
ular, this yields Newton's third law of a
tion and rea
tion,i.e. t(n) = −t(−n). For a standard 
ontinuum like 
onsidered here the Cau
hy stresstensor is symmetri
, σ = σT , whi
h results from the balan
e of angular momentum.2.1.3 Balan
e Prin
iplesThe balan
e prin
iples govern the evolution of the extensive quantities of mass, linearmomentum, angular momentum, and energy due to in�uen
es from outside the body.



2.1. CONTINUUM SOLID MECHANICS 9For purely me
hani
al systems these in�uen
es are given as for
es a
ting on the body'sboundary Γ and on the volume Ω. Furthermore, for these systems the energy balan
eprin
iple is no additional statement but a 
onsequen
e of the balan
e of linear momen-tum and therefore will not be 
onsidered here. The balan
e prin
iples are fundamentallaws valid within ea
h 
ontinuum setting and for all materials. They 
an be formulatedeither in a global integral form valid for the 
omplete body or in a lo
al form valid atea
h material point inside the body.Conservation of MassEa
h material body B is equipped with a mass m, whi
h is the fundamental measureof the amount of material 
ontained in B. For a 
losed system, i.e. no mass transportover the boundary Γ, the prin
iple of mass 
onservation states that the mass m of Bis 
onserved during the motion of B
ṁ =

DmDt = 0 . (2.15)To formulate this prin
iple in the lo
al form the mass density �eld ρ(x, t) is introdu
edas
ρ(x, t) = lim

∆v→0

∆m(x, t)

∆v(x, t)
, (2.16)where ∆m(x, t) is the mass of the volume element ∆v(x, t) lo
ated at x at time t.Note that a 
ontinuous mass distribution is assumed here. Considering the dis
retemi
rostru
ture of a material the volume element ∆v in (2.16) should not approa
hzero, sin
e this would result in a dis
ontinuous density �eld. Hen
e, the volume elementshould be 
onsiderably larger than the mi
rostru
ture for ρ(x, t) to be 
ontinuous. Themass of a volume element dV in Ω0 is then given by dm = ρ0 dV , where ρ0 denotesthe mass density in the referen
e 
on�guration. Due to the body's motion the volumeelement is transformed into dv = J dV with J := det F . Sin
e the mass dm of thevolume element is 
onserved, the following 
ontinuity mass equation holds

ρ0 dV = ρ dv = ρ J dV ⇔ ρ(X , t) = J−1(X, t) ρ0(X) . (2.17)Momentum Balan
e Prin
iplesThe body B is loaded by the surfa
e tra
tion t(x, t) a
ting on its boundary Γ and thedistributed mass for
e b(x, t) a
ting within Ω. The linear momentum of the body isde�ned as
L(t) :=

∫

Ω

ρv dv . (2.18)The angular momentum with respe
t to a referen
e point x0 is de�ned as
H(t) :=

∫

Ω

r × ρv dv with r := x− x0 . (2.19)



10 CHAPTER 2. FUNDAMENTALSThe balan
e of linear momentum is the generalization of Newton's se
ond law for
ontinuous bodies. It states that the 
hange of linear momentum equals the resultantfor
e F

L̇(t) = F (t) :=

∫

Ω

ρ b dv +

∫

Γ

t ds . (2.20)Analogously, the balan
e of angular momentum states that the 
hange of angular mo-mentum equals the resultant torque M with respe
t to the referen
e point x0

Ḣ(t) = M(t) :=

∫

Ω

r × ρ b dv +

∫

Γ

r × t ds . (2.21)Consequently, the linear and angular momentum are 
onserved if no external for
esa
t on the body. Using Cau
hy's stress theorem (2.14) and the Gaussian divergen
etheorem the balan
e of linear momentum readsDDt ∫
Ω

ρv dv =
DDt ∫

m

v dm =

∫

m

a dm =

∫

Ω

ρa dv =

∫

Ω

ρ b dv +

∫

Γ

σ ·n ds
⇔
∫

Ω

ρ (a− b)− divσ dv = 0 . (2.22)Sin
e m, L, and H are extensive quantities, the body B 
an be split arbitrarily andthe balan
e equations hold for ea
h part separately. Hen
e, equation (2.22) holds forarbitrary small parts of Ω yielding the lo
al form of the linear momentum balan
e
ρ (a− b)− divσ = 0 . (2.23)The 
orresponding derivation for the angular momentum balan
e yields the symmetryof the Cau
hy stress tensor.2.1.4 Rigid Body Dynami
sWithin a rigid body the distan
e of all material points is 
onstant over time. This
orresponds to 
onstant measures U = v = 1, F = R, E = 0, J = 1, and ρ = ρ0within the whole body. The 
enter of mass of the body is de�ned as

c :=
1

m

∫

Ω

ρx dv . (2.24)The general motion of a rigid body 
an be expressed as a translation of the 
enterof mass 
ombined with a rotation about an axis passing through the 
enter of massyielding the velo
ity and a

eleration �elds
v(x) = ċ + ω × r with r := x− c , (2.25)
a(x) = c̈ + ω̇ × r + ω × (ω × r) , (2.26)



2.1. CONTINUUM SOLID MECHANICS 11where ω is the angular velo
ity and the time dependen
e is dropped for 
onvenien
e.Inserting the velo
ity �eld (2.25) into (2.18) yields the linear momentum of the rigidbody
L =

∫

Ω

ρ (ċ + ω × r) dv = m ċ + ω ×
∫

Ω

ρ r dv = m ċ + ω ×m (c− c) = m ċ . (2.27)The angular momentum with respe
t to the 
enter c is given as
H =

∫

Ω

r × ρ (ċ + ω × r) dv =

∫

Ω

ρ r × (ω × r) dv =

∫

Ω

ρ (r · r ω − r · ω r) dv
=

∫

Ω

ρ (r · r 1− r ⊗ r) dv · ω = I · ω , (2.28)where the symmetri
 inertia tensor I is introdu
ed. Using the 
onservation of mass(2.15), the balan
e of linear momentum (2.20) yields the translational equation ofmotion of the rigid body
L̇ = m c̈ = F . (2.29)A

ordingly, the balan
e of angular momentum (2.21) yields the rotational equation ofmotion of the rigid body

Ḣ =
DDt ∫

Ω

r × ρv dv =
DDt ∫

m

r × v dm =

∫

m

ṙ × v + r × a dm
=

∫

m

[(ω × r)× (ċ + ω × r)] + [r × (c̈ + ω̇ × r + ω × (ω × r))] dm
=



ω ×
∫

m

r dm× ċ +

∫

m

r × (ω̇ × r) + r × (ω × (ω × r)) dm
= I · ω̇ +

∫

m

r × (ω · r ω − ω · ω r) dm = I · ω̇ +

∫

m

ω · r r × ω dm
= I · ω̇ − ω ×





∫

m

r ⊗ r dm · ω = I · ω̇ + ω × I ·ω = M . (2.30)Note that in 
ontrast to the mass m in (2.29) the inertia tensor I in (2.30) is not a
onstant quantity. However, for a rigid body it has 
onstant 
omponents if referred toa body-�xed referen
e frame.2.1.5 Constitutive EquationsTo determine the motion of a 
ontinuous body from the balan
e of linear momentum(2.23) and given external loads, the relation between the deformation of the body and



12 CHAPTER 2. FUNDAMENTALSthe resulting stress has to be established. This relation will be di�erent for ea
h parti
-ular material and 
an only be approximated in general. The most simple model is thatof a rigid body used above, whi
h is reasonable for negligible strains. Other relationsare des
ribed on three levels: First, by the assumption of spe
i�
 material symme-tries, se
ond, by the imposition of kinemati
 
onstraints, and third, most importantly,by 
onstitutive equations whi
h state the relation between the strain history and thestress. In the formulation of 
onstitutive equations a number of prin
iples have to bea

ounted for in order to get a reasonable and physi
ally 
onsistent material behavior.Here only three of these prin
iples are mentioned:
• Determinism: The state of stress is determined uniquely by the past motion ofthe body.
• Lo
al A
tion: The state of stress at a material point is only in�uen
ed by themotion of its 
lose vi
inity and not of the 
omplete body.
• Frame Indi�eren
e: The fun
tional form of the 
onstitutive equation is invari-ant with respe
t to a 
hange of the referen
e frame (observer). Furthermore, itin
ludes no information about the absolute motion of the referen
e frame3.The range of possible fun
tional forms is limited 
onsiderably by these prin
iples. Inshort, the prin
iple of determinism states that the stress depends solely on the pastmotion. Additionally, for standard 
ontinua, the prin
iple of lo
al a
tion restri
ts thestress at a material point to depend only on the history of the deformation gradient atthis point. Finally, the prin
iple of frame indi�eren
e restri
ts the fun
tional form ofthis dependen
e and suggests the formulation of the 
onstitutive equation in terms of
ertain quantities. For example, the fun
tional form

S(X, t) = S
τ<t

[C(X, τ)] ,where S := J F−1 σ F−T is the se
ond Piola-Kir
hho� stress tensor, automati
ally ful-�lls the above prin
iples [77℄. A parti
ular 
lass of material models are the hyperelasti
materials, whose 
onstitutive behavior is des
ribed by a strain energy density fun
tion
Ψ, whi
h gives the energy stored inside the material due to the purely elasti
 deforma-tion. A well-known example is the 
ompressible Neo-Hooke model, whose strain energyfun
tion reads

Ψ(C) = (K − 2

3
G)

1

4
(J2 − 1− 2 ln J) +

1

2
G (trC − 3) .

K and G are the bulk and shear modulus, that have to be �tted to the parti
ularmaterial via experimental tests. The stress results as partial derivative of the strainenergy density fun
tion with respe
t to the strain
S(C) = 2

∂Ψ

∂C
.3Absolute motion means the relative motion with respe
t to an inertial referen
e frame.



2.1. CONTINUUM SOLID MECHANICS 13In the following the presentation is restri
ted to the small deformation setting. In this
ase the 
urrent 
on�guration equals the referen
e 
on�guration to a �rst approxima-tion so that they are not distinguished any more. For small strains all hyperelasti
models approximate the linear elasti
 Hooke's law
σ(ǫ) = K tr ǫ1 + 2G (ǫ− 1

3
tr ǫ 1) = K ǫV 1 + 2G ǫdev , (2.31)where the strain tensor is split into a volumetri
 part ǫV and a deviatori
 part ǫdev.Non-
ohesive fri
tional granular materials 
an be 
lassi�ed as elasto-plasti
 mate-rials. For a 
omprehensive presentation of plasti
ity models within the framework of
omputational modeling the reader is referred to the work by Neto et al. [131℄. Elasto-plasti
 materials behave elasti
ally up to a 
ertain load limit. If loaded beyond this limit,plasti
 deformations evolve whi
h remain after the body is unloaded. The des
riptionof this behavior requires the de�nition of the load limit where the behavior swit
hesfrom purely elasti
 to elasto-plasti
. Furthermore, the magnitude and dire
tion of theplasti
 deformation have to be established. Here the non-asso
iative Mohr-Coulombmodel is used to model the behavior of non-
ohesive fri
tional granular materials. Thismodel is based on the assumption that plasti
 deformations are initiated, if on anyplane inside the body the shear stress τ rea
hes a 
riti
al value de�ned by

τ = c− σn tanφ with t = σ · n , σn := t ·n , τ := ‖t− σn n‖ ,where −σn is the normal pressure a
ting on the plane, c is the 
ohesion parameter, and
φ is the fri
tion angle. Hen
e, the maximum shear stress in
reases linearly with thepressure, whi
h is a good approximation of the behavior of fri
tional granular materials.The above 
riterion is formulated via a yield fun
tion in terms of the prin
ipal stresses
σI

Φ(σ) = σ1 − σ3 + (σ1 + σ3) sinφ+ 2 c cos φ with σ1 ≥ σ2 ≥ σ3 . (2.32)The spa
e of admissible stress states is given by the 
ondition Φ(σ) ≤ 0, see �gure2.3. In the interior (Φ < 0) the material behaves elasti
ally a

ording to the linearelasti
 Hooke's law (2.31). On the boundary (Φ = 0) the material might either �owplasti
ally or unload elasti
ally. To des
ribe the plasti
 �ow the linear strain tensor issplit additively into an elasti
 part and a plasti
 part
ǫ = ǫe + ǫp , (2.33)where the stress only depends on the elasti
 part, i.e. σ = σ(ǫe). The plasti
 �ow isde�ned using the plasti
 multiplier γ and the �ow dire
tion N

ǫ̇p = γ̇N , (2.34)where by de�nition it is γ̇ ≥ 0. The loading/unloading 
onditions are summarized as
Φ ≤ 0, γ̇ ≥ 0, Φ γ̇ = 0 . (2.35)
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−σ1Figure 2.3: Mohr-Coulomb yield fun
tion in the prin
ipal stress spa
e.If plasti
 �ow o

urs, its magnitude is derived from the 
onsisten
y 
ondition
Φ̇ = 0 , (2.36)whi
h assures that the spa
e of admissible stress states is not left. The dire
tion ofplasti
 �ow is de�ned normal to a �ow potential Ψ(σ), i.e. N := ∂Ψ/∂σ. The �owpotential is 
hosen of the same form as the yield fun
tion but with the fri
tion anglerepla
ed by the dilation angle ψ

Ψ(σ) = σ1 − σ3 + (σ1 + σ3) sinψ + 2 c cosψ . (2.37)This allows to 
apture the dilatant behavior typi
ally shown by granular materialsduring shear deformation. Altogether, the elasto-plasti
 Mohr-Coulomb model is basedon �ve material parameters, the elasti
 moduli K and G, the fri
tion angle φ, thedilation angle ψ, and the 
ohesion parameter c, whi
h de�nes the strength of thematerial under zero pressure.2.2 Finite Element MethodThe motion of the body B o

upying the domain Ωt at time t is governed by the lo
almomentum balan
e (2.23) 
ombined with boundary and initial 
onditions
ρ (ẍ− b)− divσ = 0 ∀ x ∈ Ωt , (2.38)

σ · n = t̂ ∀ x ∈ Γtσ ⊂ Γt := ∂Ωt , (2.39)
u = û ∀ x ∈ Γtu := Γt \ Γtσ , (2.40)

u(t = 0) = u0 , u̇(t = 0) = v0 ∀ x ∈ Ω0 , (2.41)where the dependen
e on x and t is dropped for 
onvenien
e. Combined with the
onstitutive model des
ribing the material behavior (se
tion 2.1.5) and the kinemati
relations (se
tion 2.1.1) the above set of equations states the initial boundary value



2.2. FINITE ELEMENT METHOD 15
Ωt :
Γt := ∂Ωt

Γt = Γtu ∪ Γtσ

Γtu ∩ Γtσ = ∅

Ωe

Γtu

Γtσû

xI

e3 e2

e1

t̂

Figure 2.4: Finite element dis
retization of initial boundary value problem. The body o

u-pying the domain Ωt at time t is loaded by boundary displa
ements û(x, t) on
Γtu and tra
tions t̂(x, t) on Γtσ . The domain Ωt is approximated as union of the�nite element domains Ωe.problem (IBVP) de�ning the motion of the 
ontinuous body, 
f. �gure 2.4. In general,the analyti
al solution for the unknown displa
ement �eld u(x, t) 
annot be deter-mined. Therefore, an approximate solution is sought, whi
h might be gained from dif-ferent methods. The most su

essful and thus most 
ommon method to solve IBVPs inengineering is the Finite Element Method (FEM). Within this se
tion its fundamentalprin
iples for deriving an approximate solution are outlined. Comprehensive treatiseson the FEM are given by, e.g., Bathe [21℄, Hughes [85℄, Zienkiewi
z et al. [189℄, andWriggers [182℄.2.2.1 Weak Form of EquilibriumIn order to apply the FEM the prin
iple of virtual displa
ement is used to state theIBVP in the weak form. For this purpose an arbitrary, in�nitesimal, virtual, and kine-mati
ally admissible displa
ement �eld δu(x) is introdu
ed, whi
h is denoted as virtualdispla
ement. The virtual displa
ement is imagined to deform the body from the 
ur-rent 
on�guration, and the 
orresponding virtual work done by the di�erent for
es is
onsidered. It is given by the s
alar produ
t of the momentum balan
e equation (2.38)and the virtual displa
ement

[ρ (ẍ− b)− divσ] · δu = 0 ∀ x ∈ Ωt , (2.42)
δu = 0 ∀ x ∈ Γtu , (2.43)where (2.43) assures the kinemati
al admissibility of the virtual displa
ement �eld.Sin
e δu is arbitrary, the momentum balan
e (2.38) is equivalent to the integral formof (2.42) given by

∫

Ωt

[ρ (ẍ− b)− divσ] · δu dv = 0 . (2.44)



16 CHAPTER 2. FUNDAMENTALSIntegrating by parts and using the Gaussian divergen
e theorem, Cau
hy's stress the-orem (2.14), the tra
tion boundary 
ondition (2.39), and the kinemati
al admissibilityof the virtual displa
ement (2.43) results in the weak form of equilibrium
∫

Ωt

ρ ẍ · δu dv +

∫

Ωt

σ : grads δu dv =

∫

Ωt

ρ b · δu dv +

∫

Γtσ

t̂ · δu ds , (2.45)where grads denotes the symmetri
 part of the gradient. In this way, the spatial deriva-tives of the stress �eld are shifted to the virtual displa
ement �eld, whi
h poses aweakening of the di�erentiability requirements of the solution �eld. For the stati
 
ase(ẍ = 0) the prin
iple of virtual displa
ement states that the internal work on theleft-hand side of equation (2.45) equals the external work on the right-hand side ofequation (2.45).2.2.2 Finite Element Dis
retizationIn order to �nd an approximate solution, an ansatz for the unknown displa
ement�eld is de�ned. For this purpose the domain Ωt is dis
retized into �nite elements Ωe,see �gure 2.4. In general, this dis
retization is only an approximation of the originaldomain, i.e.
Ωt ≈ ∪ne

e=1Ωe , (2.46)where ne denotes the number of elements. Ea
h element is de�ned by a number ofnodes, whose position is denoted by xI . For ea
h node I an ansatz fun
tion NI isintrodu
ed, whose support is the domain o

upied by those elements that in
lude thenode I. Consequently, the only non-vanishing ansatz fun
tions in a parti
ular elementdomain Ωe are those that belong to the nodes de�ning the element. Furthermore, theansatz fun
tions ful�ll the following 
onditions
NI(xJ) = δIJ , (2.47)

nn∑

I=1

NI(x) = 1 , (2.48)where nn denotes the number of nodes. Using the NI the ansatz for the unknowndispla
ement and a

eleration and the virtual displa
ement are de�ned as
uh(x) =

nn∑

I=1

NI(x) uI , üh(x) =

nn∑

I=1

NI(x) üI , δuh(x) =

nn∑

I=1

NI(x) δuI , (2.49)where uI , üI , and δuI are asso
iated with the nodes. Due to the 
onditions (2.47) and(2.48) the ansatz (2.49) states an interpolation of the nodal values. By inserting theansatz into the weak form of equilibrium (2.45), the problem of �nding a 
ontinuoussolution �eld is transformed into the problem of �nding dis
rete nodal values ful�lling
nn∑

I=1

δuT
I





∫

Ωt

ρ ühNI dv +

∫

Ωt

BT
I σ dv − ∫

Ωt

ρ bNI dv − ∫
Γtσ

t̂ NI ds = 0 . (2.50)



2.2. FINITE ELEMENT METHOD 17Here the 
omponents with respe
t to the inertial Cartesian frame are written in matrixnotation, and the matrix BI in
ludes spatial derivatives of the ansatz fun
tion NI .Sin
e the virtual displa
ement �eld is arbitrary, equation (2.50) has to be ful�lled forarbitrary nodal values δuI . Therefore, ea
h parenthesis term in (2.50) has to vanishseparately yielding the system of nonlinear di�erential equations
M ü+ P (u) = F . (2.51)

M is the mass matrix, ü is the ve
tor of nodal a

elerations, P is the ve
tor of internalfor
es, u is the ve
tor of nodal displa
ements, and F is the ve
tor of external loads. The
omponents of M , P , and F are assembled from the 
omponents of ea
h element, i.e.the integrals in (2.50) are split into sums of integrals over individual elements, whi
hare evaluated by numeri
al integration s
hemes like Gaussian quadrature.2.2.3 Transient SolutionTo �nd an approximate solution to the system of nonlinear di�erential equations (2.51)a time dis
retization is introdu
ed, i.e. the solution is approximated at �xed times
un := u(n∆t) , (2.52)where ∆t is the time step. The idea to �nd a solution is to approximate the timederivatives by di�erential quotients so that the only remaining unknowns are the nodaldispla
ement ve
tors un. Depending on the way the time derivatives are approximateddi�erent solution s
hemes result, whi
h are 
lassi�ed into impli
it and expli
it s
hemes.Impli
it s
hemes are burdened with a higher 
omputational e�ort per integration step,whi
h in
ludes the solution of a linear system of equations. However, they enable largertime steps than expli
it s
hemes. Here, the well-known expli
it 
entral di�eren
e inte-gration s
heme is presented, whi
h is based on a 
entral di�eren
e approximation ofthe a

eleration

ün =
1

∆t

(
un+1 − un

∆t
− un − un−1

∆t

)

=
1

∆t2
(
un+1 − 2 un + un−1

)
. (2.53)Inserting this into (2.51) yields the update formulas

an = M−1 (F n − P (un)) , (2.54)
vn+1 = vn +∆t an , (2.55)
un+1 = un +∆t vn+1 . (2.56)This s
heme is 
ommonly applied in 
ombination with a lumped mass matrix of di-agonal shape. Then the inversion of M is trivial and the 
omputational e�ort perintegration step is governed by the evaluation of the internal for
e ve
tor P (un). As anexpli
it integration s
heme the 
entral di�eren
e method is only 
onditionally stable sothat the time step is limited by a 
riti
al value. For linear systems, where the internalfor
es are expressed as P (un) = K un, the 
riti
al time step is given as

∆t
rit =
2

ωmax
=

2√
λmax

, (2.57)



18 CHAPTER 2. FUNDAMENTALSwhere λmax is the maximum eigenvalue of K−1M . To avoid the eigenvalue 
omputationfor the global system, λmax 
an be bounded by the 
orresponding element values via
λmax ≤ max

e=1,ne

λe
max . (2.58)For nonlinear problems the 
riti
al time step 
an be estimated via

∆t
rit = γ
h

c
, (2.59)where h is a 
hara
teristi
 length of the smallest element of the dis
retization, c is thespeed of a 
ompression wave, and γ ≈ 0.2− 0.9 is a redu
tion fa
tor.



Chapter 3Dis
rete Element MethodThe dis
rete element method (DEM) was introdu
ed by Cundall [41℄ to model blo
kyro
k systems. It was based on the assumptions that the ro
k 
an be 
onsidered asrigid, that the normal sti�ness of ro
k joints plays a minor roll in the overall failurepro
ess, and that ea
h ro
k might undergo arbitrary large rigid body motions. Un-der these assumptions the individual ro
ks were modeled as dis
rete rigid bodies withtranslational and rotational degrees of freedom assigned to their 
enters of mass. Thesedis
rete bodies are denoted as parti
les. A small overlap of adja
ent parti
les was al-lowed and used to derive repulsive 
onta
t for
es using a fri
tional 
onta
t model. Theresultant for
e on ea
h parti
le was used to update its velo
ity and position by appli-
ation of an expli
it time integration s
heme to the parti
le's equations of motion. In alater paper Cundall and Hart [46℄ generalized the term DEM to �numeri
al pro
eduresfor simulating the 
omplete behaviour of systems of dis
rete, intera
ting bodies�. Morepre
isely, a pro
edure has to allow �nite displa
ements and rotations of the parti
lesand, 
onsequently, has to dete
t 
onta
ts between them automati
ally. Regardless ofthis general de�nition, the vast majority of the published work on DEMs falls into the
lass of the original works [41, 47℄, i.e.
• the parti
les are 
onsidered as rigid with soft 
onta
ts,
• 
onta
t for
es are derived from small overlaps of adja
ent parti
les,
• the parti
les' equations of motion are integrated using expli
it integration s
hemes.Another s
heme whi
h �ts into the general de�nition given by Cundall and Hart [46℄ isthe dis
ontinuous deformation analysis (DDA) introdu
ed by Shi and Goodman [154℄.The main di�eren
e between the DDA and the 
lassi
al DEM is that the DDA appliesimpli
it integration s
hemes and that the parti
les are deformable. Furthermore, theimpenetrability 
ondition is met through iterations, while in the 
lassi
al DEM the
onta
t for
e model requires an interpenetration, albeit small 
ompared to the parti
lesize. Another impli
it simulation s
heme is the non-smooth 
onta
t dynami
s method(NSCD) introdu
ed by Jean [89℄ and Moreau [122℄. In 
ontrast to the DEM the motionof the parti
les is governed by the impenetrability 
ondition, the Coulomb fri
tionmodel, and an impa
t model. This results in a system of equations whose unknowns19



20 CHAPTER 3. DISCRETE ELEMENT METHODare the relative 
onta
t velo
ities and the average 
onta
t for
es over the time step. Thissystem is solved by iterative s
hemes, whose 
onvergen
e rate depends on the fri
tion
oe�
ient and the time step. In NSCD the impenetrability 
ondition is ful�lled to ahigh a

ura
y and no 
onstitutive model for the 
onta
t for
e is required besides thefri
tion and impa
t model. On the other hand, the numeri
al e�ort in
reases due to theiterations required in ea
h time step. A more detailed overview of similar simulationte
hniques is given by Cundall and Hart [46℄.In the following, the fo
us lies on 
lassi
al DEM s
hemes. Depending on their �eldof appli
ation, published methods di�er in the three building blo
ks, i.e. the parti-
le geometry, the 
onta
t formulation, and the time integration s
heme. The �eld ofappli
ation varies
• from parti
le sizes in the µm range for e.g. 
hemi
al powders to ro
k blo
ks inthe m range,
• from non-
ohesive parti
les like dry sand grains to strongly bonded parti
les likein 
on
rete,
• from simulations of laboratory s
ale me
hani
al tests to industrial s
ale appli
a-tions.The appli
ations 
an be split into two 
ategories: In the �rst 
ategory the DEM aimsto be an exa
t model of the granular material, i.e. one parti
le represents one grainand the 
onta
t model approximates the real grain intera
tion. Hen
e, s
hemes ofthis kind are only based on parameters whi
h 
an be determined from grain s
aleexperiments and therefore need no �tting. In the se
ond 
ategory the aim of an exa
tmodel is abandoned be
ause of the numeri
al e�ort resulting from either 
omplexgrain shapes or simply huge numbers of grains. In this 
ase, a parti
le is typi
allymu
h larger than a grain and the DEM redu
es to a phenomenologi
al model, whoseparameters have to be �tted via appropriate bulk experiments. S
hemes of the �rst
ategory are mostly applied to model laboratory s
ale experiments to gain insight intothe grain-s
ale me
hanism yielding the bulk behavior observed experimentally, see e.g.[112, 160, 137, 9, 39, 155, 8, 147, 162℄. Furthermore, they are applied to industrialpro
esses involving a feasible number of parti
les, see e.g. [35, 119℄. On the other hand,s
hemes of the se
ond kind are applied to a wide range of appli
ations from industrialpro
esses like silos, mills, transportation, and segragation to geote
hni
al appli
ationslike tunnels, ex
avation, and pile foundation, see e.g. [83, 35, 158℄.The DEM applied in this work falls into the grain s
ale 
ategory. It is designedto model non-
ohesive fri
tional granular materials su
h as dry sand. For this pur-pose it uses superquadri
 parti
le shapes and a Hertzian 
onta
t model 
ombined withCoulomb fri
tion. The starting point for the development of the DEM 
ode was theresear
h 
ode de
ribed by Lillie [109℄ and initiated in the group of Prof. P. Wriggersat Leibniz Universität Hannover. It is enhan
ed with a new 
onta
t formulation andmore e�
ient 
onta
t dete
tion algorithms. The main ingredients of the resulting DEMs
heme are des
ribed in the following se
tions: The parti
le shape is dis
ussed in se
tion



3.1. PARTICLE SHAPE 213.1 followed by the modeling of inter-parti
le 
onta
ts in se
tion 3.2. The time inte-gration s
hemes applied to the parti
les' equations of motion are detailed in se
tion3.3. The e�
ient implementation of the DEM utilizing appropriate 
onta
t dete
tionalgorithms 
ombined with a parallelization s
heme is presented in se
tion 3.4. Finally,the performan
e of the DEM is exempli�ed in se
tion 3.5.3.1 Parti
le ShapeThere is a variety of parti
le shapes that have been applied in DEMs to model 
ohen-sionless fri
tional granular materials. First of all these 
an be 
ategorized a

ordingto their dimensionality. Two-dimensional (2D) shapes are often 
hosen be
ause of thesigni�
ant redu
tion of the 
omputational e�ort 
ompared to three-dimensional (3D)shapes. This redu
tion results from the redu
ed number of degrees of freedoms (DOFs),the simpli�ed parameterization of the parti
le's rotational position, and the redu
ed
omplexity of the 
onta
t dete
tion pro
ess. However, the signi�
an
e of 2D s
hemes tomodel the real 3D behavior is un
lear due to the following problems: The deformationof granular materials results mainly from grain rearrangements and the variety of rear-rangement me
hanisms in 3D is mu
h ri
her than in 2D. Hen
e, 2D s
hemes 
annot be
onsidered as sli
es of 3D samples. They 
annot provide realisti
 values for basi
 
har-a
terizations of granular skeletons, su
h as the 
oordination number, i.e. the averagenumber of 
onta
ts per grain, or the solid fra
tion, i.e. the fra
tion of the overall bulkvolume o

upied by grains. Therefore, it is a well agreed fa
t that while 2D s
hemesare useful tools to get a �rst insight into some phenomena of granular materials, they
annot provide any quantitative results, see e.g. [161, 15, 172, 160, 175, 39℄. A more de-tailed analysis of the importan
e of the parti
le dimensionality 
an be found in [67, 78℄.It is important to note that the short
omings of 2D s
hemes are independent of theboundary 
onditions. In 
ontrast to 
ontinuum me
hani
s, where 2D s
hemes 
an beapplied to solve, e.g., plane strain problems, 2D DEM s
hemes 
annot give quantitativeresults for any kind of boundary 
onditions. Sin
e the goal of this work is a quantitativedes
ription of granular materials, only 3D s
hemes are 
overed in the following.When modeling granular materials with non-trivial grain shapes the 
hoi
e of theparti
le shape is a tradeo� between the approximation of the real shape and the re-sulting 
omputational e�ort. Most of todays 3D DEM s
hemes use spheri
al parti
lesdue to the trivial 
onta
t dete
tion. Choosing a di�erent shape 
an easily result inan in
rease of 
omputation times by an order of magnitude. However, using even thesimplest deviation from spheres, i.e. ellipsoids, leads to a signi�
ant 
hange of the bulkbehavior of a parti
le pa
kage. Donev et al. [53℄ showed that the solid fra
tion of randompa
kages of spheres deviates signi�
antly from that of ellipsoids. Furthermore, the bulkshear resistan
e was shown to in
rease when deviating from the spheri
al shape [9, 147℄,what is often related to their la
k of rolling resistan
e. Out of these reasons, spheri
alparti
les seem inappropriate for a quantitative model. More advan
ed smooth parti
leshapes are ellipsoids [112, 136, 128℄, superquadri
s [80, 169℄, and parti
les assembledfrom parts of spheres [172, 100, 91℄. As non-smooth parti
les polyhedrals [43, 10℄ havebeen applied, whi
h require a distin
tion between di�erent 
onta
t 
ases. These parti
le



22 CHAPTER 3. DISCRETE ELEMENT METHODshapes share the feature that they are 
onvex resulting in a single 
onta
t between apair of parti
les. However, it has been shown that the non-
onvexity of grains seems tobe an important fa
tor for the shearing resistan
e of parti
le pa
kages, see e.g. [147℄.This analysis used 
lusters of spheri
al parti
les, i.e. spheres that are glued togetherand might also overlap. Using this te
hnique there have been �rst attempts to 
apturereal grain shapes measured by X-ray 
omputed tomography with high a

ura
y [173℄.However, due to the 
omputational e�ort only small samples 
ould be 
onsidered, whi
hdo not allow a 
on
lusion on the bulk behavior.Within this work superquadri
 parti
les are used, be
ause, on the one hand, theyare able to approximate at least rounded grains fairly well. On the other hand, the 
om-puational e�ort still enables sample sizes that allow to 
on
lude on the bulk behavior.The superquadri
 shape is de�ned via the inside-outside fun
tion [20℄
F (X1, X2, X3) =

(∣
∣
∣
∣

X1

r1

∣
∣
∣
∣

2

ǫ1

+

∣
∣
∣
∣

X2

r2

∣
∣
∣
∣

2

ǫ1

) ǫ1
ǫ2

+

∣
∣
∣
∣

X3

r3

∣
∣
∣
∣

2

ǫ2

. (3.1)A point inside the superquadri
 yields F < 1 and the surfa
e is de�ned impli
itly by
F = 1. The 
oordinates Xi belong to the superquadri
's prin
ipal referen
e frame Ei,whose origin is lo
ated at the superquadri
's 
enter. Note that the prin
ipal axes areaxes of symmetry sin
e F is an even fun
tion, i.e.

F (X1, X2, X3) = F (|X1|, |X2|, |X3|) . (3.2)The shape of the superquadri
 is de�ned by �ve geometry parameters. The radiusparameters ri spe
ify the elongation of the superquadri
 in its prin
ipal dire
tions.The exponents ǫ1 and ǫ2 
ontrol the angularity of the superquadri
 in the X1,X2 planeand X3 dire
tion, respe
tively. Here the exponents are restri
ted to ǫi ∈ (0, 2), whi
hleads to a smooth, 
onvex body. For ǫi → 0 the shape approa
hes that of a 
uboid,
ǫi = 1 yields an ellipsoid, and for ǫi → 2 the superquadri
 approa
hes an o
tahedron,
f. �gure 3.1(a). This �ve parameter de�nition di�ers slightly from the more generalsix parameter de�nition used by, e.g., Williams and Pentland [179℄ and Cleary et al.[36℄. However, it has numeri
al bene�ts regarding the 
omputation of surfa
e pointsfrom normal dire
tions, 
f. appendix A.2. The superquadri
's surfa
e is parameterizedusing 
urvilinear 
oordinates φi through




X1 (φ1, φ2)
X2 (φ1, φ2)
X3 (φ2)



 =





sgn (cosφ1) r1 | cosφ1|ǫ1 | cosφ2|ǫ2sgn (sinφ1) r2 | sinφ1|ǫ1 | cosφ2|ǫ2sgn (sinφ2) r3 | sinφ2|ǫ2



 ,
−π ≤ φ1 < π
−π

2
≤ φ2 ≤ π

2

. (3.3)In �gure 3.1(b) the parameterization is depi
ted by plotting the isolines of 
onstant φi.From this parameterization geometri
 quantities are dedu
ed su
h as the radii of theins
ribed and 
ir
ums
ribed spheres or tangent and normal ve
tors, whi
h are usefulfor the 
onta
t dete
tion pro
ess, 
f. appendix A.1. The integration of the parti
le'sequations of motion ne
essitates the mass m and the prin
ipal mass moments of iner-tia Ii. These values are determined from the surfa
e parameterization as well. Their
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Figure 3.1: a) Superquadri
s with r1 = r2 = r3/2.b) Superquadri
 surfa
e parameterized by 
urvilinear 
oordinates φ1 and φ2.derivation is given in [88℄. Assuming a 
onstant mass density ρ within the parti
le themass is given by
m = ρ r1 r2 r3 ǫ1 ǫ2 g

1
1 g

1
2, (3.4)where gi

j are fun
tions of the exponent parameters de�ned as
g1
1 :=

Γ2(ǫ1/2)

Γ(ǫ1)
, g2

1 :=
Γ(ǫ1/2) Γ(3 ǫ1/2)

Γ(2 ǫ1)
,

g1
2 :=

Γ(ǫ2/2) Γ(ǫ2 + 1)

Γ(3 ǫ2/2 + 1)
, g2

2 :=
Γ(ǫ2/2) Γ(2 ǫ2 + 1)

Γ(5 ǫ2/2 + 1)
, g3

2 :=
Γ(3 ǫ2/2) Γ(ǫ2 + 1)

Γ(5 ǫ2/2 + 1)
,in whi
h Γ denotes the Gamma fun
tion. Using this the prin
ipal mass moments ofinertia are expressed as

I1 =
1

2
ρ r1 r2 r3 ǫ1 ǫ2

(
r2
2 g

2
1 g

2
2 + 2 r2

3 g
1
1 g

3
2

)
, (3.5)

I2 =
1

2
ρ r1 r2 r3 ǫ1 ǫ2

(
r2
1 g

2
1 g

2
2 + 2 r2

3 g
1
1 g

3
2

)
, (3.6)

I3 =
1

2
ρ r1 r2 r3 ǫ1 ǫ2

(
r2
1 + r2

2

)
g2
1 g

2
2 . (3.7)This yields the inertia tensor expressed in the body-�xed prin
ipal referen
e frame

I = I1 E1 ⊗E1 + I2 E2 ⊗E2 + I3 E3 ⊗E3 . (3.8)
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Figure 3.2: Mass and inertia of a superquadri
 with r1 = 1, r2 = 1.5, r3 = 2, and ρ = 1.The dependen
y of the inertia values on the angularity parameters ǫi is exempli�ed in�gure 3.2 for a superquadri
 with r1 = 1, r2 = 1.5, r3 = 2, and ρ = 1. Note the hugeratio between the maximum values at ǫi = 0 and the minimum values at ǫi = 2. For themass there is a fa
tor of six, while for the moments of inertia the fa
tor is even as highas 20. This is an important feature regarding the numeri
al integration of the parti
le'sequations of motion, sin
e the 
riti
al time step depends on the inertia values.To formulate the equations of motion the global Cartesian inertial referen
e frame
ei is introdu
ed, 
f. �gure 3.3. A position ve
tor is given in the global frame by p = pi eiand in the lo
al, parti
le-�xed frame by P = Pi Ei. These are related via the parti
le
enter x through

p = x + P . (3.9)The s
alar produ
t of this relation and the base ve
tor ei yields the relation betweenglobal and lo
al position 
oordinates
pi = xi + ei ·Ej Pj . (3.10)
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Figure 3.3: Global inertial and lo
al parti
le-�xed referen
e frame.Introdu
ing the transformation matrix Tij := ei ·Ej this relation is re-written as
pi = xi + Tij Pj ⇔ p = x+ T P . (3.11)In the same manner the relation between lo
al and global 
oordinates of an arbitrarynon-position ve
tor v are

v = T V . (3.12)For the implementation of the DEM the parti
le's translational DOFs are representedby its global 
enter 
oordinates x. The rotational DOFs, on the other hand, are repre-sented by the rotation matrix T with T−1 = T T and detT = 1. Although this approa
hrequires the storage of nine 
omponents representing only three DOFs, it is bene�
ialfor the performan
e. The transformation between global and lo
al 
oordinates is afrequent operation most e�
iently handled by appli
ation of equation (3.12), see [57℄.3.2 Conta
t FormulationWithin 
lassi
al DEM s
hemes parti
les are 
onsidered as rigid. To model the inter-parti
le 
onta
t behavior a small interpenetration of adja
ent parti
les is admitted, andthe 
onta
t for
e is derived from the interpenetration geometry. For smooth parti
lesthis geometry is usually des
ribed by the interpenetration distan
e δ, i.e. the lengthof the ve
tor d := p2 − p1 
onne
ting the surfa
e points at whi
h the normals areantiparallel, 
f. �gure 3.4. The most simple 
onta
t model assumes a linear relationbetween δ and the normal repulsive 
onta
t for
e, i.e. fN = kN δ, whi
h is often re-garded as penalty 
onta
t formulation; the higher the penalty fa
tor kN the smaller theunphysi
al interpenetration. However, the penalty fa
tor is not a physi
al parameterand therefore 
hoosing its value is a tradeo� between the 
omputational e�ort (whi
hin
reases with kN) and the degree of interpenetration tolerated. A more sophisti
ated
onta
t model is a
hieved by taking into a

ount that the rigidity of the parti
les is justa simpli�
ation for determining the parti
le's motion: Indeed, the parti
les deform due
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Figure 3.4: Penetrating parti
les with 
onta
t points pi, normal ve
tors ni, and interpene-tration distan
e δ.to 
onta
t loads even if the deformation might be small and restri
ted to the vi
inityof the 
onta
t. Hen
e, the 
onta
t for
e 
an be derived from this deformation via theHertzian 
onta
t theory.3.2.1 Hertzian Normal Conta
tA detailed des
ription of the Hertzian 
onta
t theory is given by, e.g., Gladwell [68℄and Johnson [90℄. For 
onvenien
e a summary of its main assumptions and results isgiven here. The �rst important assumption made by Hertz is that the 
onta
ting bodiesare homogeneous, isotropi
, and elasti
 solids. Furthermore, it is assumed that theirsurfa
es are smooth and non-
onforming so that 
onta
t forms at a single point, whi
hevolves to an area of 
onta
t, when the 
onta
ting parti
les are pressed together. Hertzdis
overed that this 
onta
t area is of ellipti
al shape. Regarding ea
h of the 
onta
tpartners as an elasti
 half spa
e loaded over an ellipti
al region, Hertz was able toderive 
onta
t pressures from the theory of linear elasti
ity. For this approa
h to bereasonable the size of the 
onta
t area has to be small 
ompared to
• the size of the bodies, so that the 
on
entrated stresses in the 
onta
t area arenot a�e
ted from outside the 
onta
t area and
• to the radii of 
urvature of the surfa
es, so that the surfa
es approximate anelasti
 half spa
e and the strains in the 
onta
t region are small enough for thetheory of linear elasti
ity to be appli
able.Regarding the superquadri
 parti
les as homogeneous, isotropi
, and elasti
 the above
onditions are ful�lled sin
e superquadri
s have a smooth, 
onvex shape and the inter-penetration of adja
ent parti
les is mu
h smaller than the parti
le dimensions. Notethat the interpenetration distan
e will now be 
onsidered as the normal approa
h of twodistant points inside the 
onta
ting parti
les, and that the unphysi
al interpenetrationis repla
ed by elasti
 deformations of the parti
les at the 
onta
t.In order to apply the Hertzian 
onta
t theory a more detailed des
ription of the 
on-ta
t geometry is required. In addition to the 
onta
t points and the 
onta
t normal, the
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Figure 3.5: Paraboloids approximating the parti
le surfa
es at the 
onta
t points.prin
ipal radii of 
urvature of the 
onta
ting surfa
es are required. The 
onta
t pointsof two penetrating parti
les P1 and P2 are de�ned as those points on the parti
les' sur-fa
es that have minimum distan
e under the 
onstraint that the outward unit normalsare antiparallel, see �gure 3.4. If the interpenetration is small 
ompared to the parti
lesize and the minimum radius of 
urvature, this 
ondition yields a unique solution. Forsuperquadri
s an e�
ient s
heme to 
ompute the 
onta
t points is presented in se
tion3.4.2.The for
e a
ting on P1 is denoted as f1 =: f and the for
e a
ting on P2 as f 2 = −f .The overall 
onta
t for
e f is split into the normal and tangential part
f = fN + fT = −fNn1 + fT . (3.13)The normal part, in turn, 
onsists of an elasti
 term and a dissipative term

fN = fNel + fNdis . (3.14)In the following, the elasti
 part fNel will be derived using the Hertzian 
onta
t theory.Afterwards, the tangential part fT is 
onsidered using Mindlin's results and Coulomb'sfri
tion model. Finally, two possibilities for modeling the dissipative part fNdis will bepresented.Hertz approximates the parti
le surfa
es in the 
onta
t region by paraboloids de-�ned by the prin
ipal 
urvatures ρI
i and ρII

i of the surfa
es at the 
onta
t points andtheir 
orresponding perpendi
ular dire
tions, see �gure 3.5. A derivation of these quan-tities for superquadri
s is given in appendix A.1.2. From this des
ription the shape ofthe 
onta
t ellipse is derived, whi
h is de�ned by the ratio of its semi-axes κ = a/b(with b ≤ a). For this purpose the relative 
urvatures A and B (with A ≤ B) areintrodu
ed
(A+B) =

1

2
(ρI

1 + ρII
1 + ρI

2 + ρII
2 ) , (3.15)

|A− B| =
1

2

√

(ρI
1 − ρII

1 )2 + (ρI
2 − ρII

2 )2 + 2 (ρI
1 − ρII

1 ) (ρI
2 − ρII

2 ) cos 2α . (3.16)



28 CHAPTER 3. DISCRETE ELEMENT METHODThe �rst main result of Hertz is that κ depends solely on the ratio of the relative
urvatures B/A, where the relation is given impli
itly through
B

A
=

(1/κ)2 E(e)−K(e)

K(e)− E(e)
with e :=

√

1− 1

κ2
. (3.17)

e is 
alled the e

entri
ity of the 
onta
t ellipse, andK(e) and E(e) denote the 
ompleteellipti
 integrals of the �rst and se
ond kind. Sin
e no expli
it solution of equation (3.17)exists for κ, an approximate analyti
al s
heme presented by Antoine et al. [7℄ is used,whi
h yields a maximum relative error of 5.86× 10−6 for a range of 1 ≤ B/A ≤ 1010.Introdu
ing the e�e
tive modulus E∗ via
1

E∗
:=

1− ν2
1

E1

+
1− ν2

2

E2

, (3.18)where νi denotes Poisson's ratio and Ei denotes Young's modulus of Pi, the elasti
 partof the 
onta
t for
e is given by
fNel =

2

3
π κ

√

E(κ)

K(κ)3 (A+B)
︸ ︷︷ ︸

=:γ

E∗ δ3/2 . (3.19)
γ depends only on the prin
ipal 
urvatures and their dire
tions. Thus, it will be 
onstantif the 
onta
t points and the relative orientation of the parti
les are 
onstant. Theellipti
 integrals are approximated via expressions given in [1, 7℄.3.2.2 Tangential Conta
tMindlin [121℄ 
onsidered the same two-body system as Hertz but in
luded a shearloading due to a tangential for
e. In addition to the assumptions and simpli�
ationsmade by Hertz, Mindlin assumed that no slip o

urs between the bodies in 
onta
t. Hewas then able to show that the shape and size of the area of 
onta
t is not in�uen
edby the tangential load. Furthermore, he derived elasti
 
omplian
es for the relativemovement of the bodies in the dire
tions of the 
onta
t ellipse's semi-axes. For thispurpose two fun
tions of the e

entri
ity e are introdu
ed

B(e) :=
E(e)− (1− e2) K(e)

e2
, D(e) :=

K(e)− E(e)

e2
. (3.20)The �rst semi-axis of the 
onta
t ellipse is given as

a =

√

δ D(e)

AK(e)
. (3.21)Introdu
ing the material 
onstants

λ1 :=
1 + ν1

E1
+

1 + ν2

E2
, λ2 := ν1

1 + ν1

E1
+ ν2

1 + ν2

E2
, (3.22)
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omplian
es read
Cx =

1

π a
(K(e)λ1 − B(e)λ2) , Cy =

1

π a
(K(e)λ1 −D(e)λ2) . (3.23)The tangential 
onta
t for
e depends on the relative tangential movement of the 
on-ta
t points, whi
h 
annot be drawn from the 
urrent 
onta
t geometry but has to beintegrated over time. Furthermore, the tangential for
e is bounded by the normal for
ethrough Coulomb's fri
tion model. Consequently, the tangential for
e in the 
urrenttime step fT,n is derived from the tangential for
e in the last time step fT,n−1 in atwo step s
heme. First, a trial value is 
omputed based on the in
remental tangentialmovement. For this purpose the tangential sti�ness tensor KT is introdu
ed

KT :=
1

Cx

ex ⊗ ex +
1

Cy

ey ⊗ ey , (3.24)where ex and ey are the unit ve
tors in dire
tion of the 
onta
t ellipse's semi-axes, see�gure 3.5. The trial value is given as
fT,tr = fT,n−1 + KT ∆t ḋ , (3.25)where ḋ is the relative velo
ity of the 
onta
t points and ∆t is the time step. Thetangential for
e in the a
tual time step results from Coulomb's 
riterion using thefri
tion 
oe�
ient µ

fT,n =

{

fT,tr , if ‖fT,tr‖ ≤ µ |fN |
µ |fN | fT,tr

‖fT,tr‖ , else. (3.26)Note that depending on the ratio of the elasti
 
omplian
es the in
rement of the tan-gential 
onta
t for
e in general is not parallel to the in
rement of the relative tangentialdispla
ement. The ratio of the elasti
 
omplian
es, in turn, depends on the shape ofthe 
onta
t ellipse κ and Poisson's ratios ν1 and ν2. Generally, the elasti
 
omplian
e
Cx in dire
tion of the major semi-axis a is greater than the elasti
 
omplian
e Cy indire
tion of the minor semi-axis b, where in the limit of κ = 1 it is Cx = Cy, of 
ourse.The dependen
e on Poisson's ratio is su
h that the 
omplian
es de
rease as ν1 or ν2in
rease. As 
an be seen from equations (3.22) and (3.23) in the limit of ν1 = ν2 = 0it is λ2 = 0 and therefore the isotropi
 
ase Cx = Cy. Mindlin also 
ompared the ratioof the normal 
omplian
e Cz := (∂fNel /∂δ)−1 and the tangential 
omplian
e Cx for the
ase of identi
al elasti
 properties E1 = E2 = E and ν1 = ν2 = ν. Here, in the limiting
ase of ν = 0, it is Cz = Cx = Cy. For the pra
ti
al range of 0 ≤ ν ≤ 1/2 the tangential
omplian
e is always greater than the normal 
omplian
e but never more than twi
eas great.3.2.3 Dissipative PartThe dissipative part fNdis is modeled in two ways depending on the type of problem 
on-sidered. First, for quasi-stati
 simulations, a simple dashpot model is used, where fNdis
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ed to redu
e the amount of kineti
 energy. Within this model the dissipativefor
e is proportional to the normal relative velo
ity of the parti
les
fNdis = ζ d δ̇ , (3.27)where ζ is a user-de�ned s
alar value and d is 
hosen to yield a 
riti
ally dampedsystem for ζ = 1. To determine d the normal 
onta
t sti�ness is introdu
ed as

cN :=
∂fNel
∂δ

=
3

2
γ E∗

√
δ , (3.28)yielding the 
riti
al damping 
onstant

d := 2

√

cN
m1m2

m1 +m2
, (3.29)where mi are the parti
le masses. Considering dynami
 problems the above modelyields a normal 
oe�
ient of restitution for the impa
t of two parti
les that is quasivelo
ity independent. However, experiments with i
e parti
les [25℄ and other materials(for an overview see Goldsmith [71℄) show a signi�
ant dependen
e of the restitution
oe�
ient on the impa
t velo
ity. To model this e�e
t, Brilliantov et al. [26℄ derived a
onta
t model by 
onsidering vis
oelasti
 parti
les. This results in the dissipative for
e

fNdis = γ E∗ 3

2
A
√
δ δ̇ , (3.30)where A depends on the elasti
 and vis
ous material properties. It has been shown thatthis formulation in 
onne
tion with the Hertzian elasti
 for
e is in good agreement withexperimental results [142℄. Depending on the dissipative 
onstants the addition of theelasti
 and dissipative part (3.14) might result in an unphysi
al attra
tive 
onta
t for
ein the �nal 
onta
t phase [149℄. Therefore, equation (3.14) is repla
ed by

fN = max(fNel + fNdis, 0) . (3.31)Altogether, the bene�t of the presented 
onta
t model is that it depends solely onparameters with a 
lear physi
al meaning, whi
h 
an be determined from grain s
aleexperiments. These are the parti
les' elasti
 
onstants E and ν for the elasti
 part, thefri
tion 
oe�
ient µ for the tangential part, and either a user de�ned s
alar parameter
ζ or the vis
o-elasti
 parameter A for the dissipative part. The latter is determined bymeasuring the restitution 
oe�
ient of two spheri
al parti
les impa
ting at a spe
i�
relative velo
ity. From the dissipative for
e (3.30) an approximate relation between therestitution 
oe�
ient and the 
onstant A 
an be derived whi
h is then solved for A likedes
ribed in [149℄.3.3 Time IntegrationA parti
le's translational and rotational equation of motion are derived in se
tion 2.1.4and repeated here for 
onvenien
e

F = L̇ = ma ,

M = Ḣ = I · ω̇ + ω × I · ω .



3.3. TIME INTEGRATION 31
F and M are the resulting for
e and torque with respe
t to the parti
le 
enter, a isthe a

eleration, and ω is the rotational velo
ity. The for
e and torque are nonlinearfun
tions of the parti
le's own position and velo
ity as well as those of all its 
onta
tpartners. Hen
e, the deformation of a parti
le pa
kage is governed by a 
oupled systemof di�erential equations, that are highly nonlinear be
ause of
• the 
hange of the 
onta
t network due to the release of old and formation of new
onta
ts,
• the Hertzian 
onta
t model 
ombined with Coulomb fri
tion,
• the parameterization of the three-dimensional rotational motion.An approximate solution to the system is gained from numeri
al integration s
hemes.These 
an be split into two 
lasses: First, impli
it s
hemes whi
h require the evaluationof sti�ness terms to 
ompute the state at the new time step. Se
ond, expli
it s
hemeswhere the new state is based only on 
urrent a
tions. Impli
it s
hemes have the ad-vantage that they are un
onditionally stable and enable larger time steps 
ompared toexpli
it s
hemes, that are only stable if the time step is below a 
riti
al value. However,within DEMs expli
it s
hemes are usually applied be
ause of the following reasons:
• The sti� system behavior: The relative motion of two parti
les from the formationof 
onta
t until rea
hing a 
hara
teristi
 or maximum for
e is usually less than 1%of the parti
le size. On the other hand, the average overall parti
le translationthat needs to be resolved within a problem is usually of the order of severalparti
le diameters. Furthermore, if the 
onsidered problem in
ludes free impa
tsof parti
les, the maximum time step is bounded by the impa
t duration.
• The strong nonlinearity: Impli
it s
hemes require the evaluation of sti�ness terms,whi
h in the DEM 
ase 
orresponds to derivatives of 
onta
t for
es with respe
t tothe parti
les' rotational and translational positions. However, the 
onta
t for
esare highly nonlinear fun
tions of the parti
les' position due to the 
onta
t modeland geometry. The last is espe
ially true for 
omplex parti
le shapes like su-perquadri
s, where the 
onta
t geometry 
annot be 
omputed expli
itly but needsto be determined via an iterative s
heme.Within the 
lass of expli
it s
hemes a variety of s
hemes of di�erent approximationorder exists. Generally, low order s
hemes require less numeri
al e�ort per time step
ombined with a smaller 
riti
al time step. Hen
e, to rea
h the same a

ura
y onemight either apply a higher number of 
heaper, low order integration steps or a smallernumber of more expensive, high order steps. For superquadri
s, however, 
onsideringthat the 
onta
t for
e generation is by far more expensive than the time integration,any s
heme that requires more than one for
e evaluation per time step 
an be dismissed.Additionally, 
onsidering high order s
hemes the above problems of upper bounds forthe time step still apply. Therefore, the majority of published DEM s
hemes uses loworder s
hemes.



32 CHAPTER 3. DISCRETE ELEMENT METHODDue to the more involved des
ription of the rotational motion, s
hemes developedfor integrating the translational equations generally 
annot be applied to the rotationalequations right away. The di�eren
e in 
omplexity is exempli�ed by the behavior ofan unloaded parti
le. Its translational motion is 
hara
terized by a 
onstant linearmomentum L yielding a 
onstant translational velo
ity v. On the other hand, if theinitial axis of rotation does not 
oin
ide with one of the parti
le's prin
ipal dire
tions
Ei, the resulting rotational motion is 
alled torque free pre
ession and is 
hara
terizedby a varying rotational velo
ity ω and inertia tensor I.For the translational integration a huge number of s
hemes exists. Overviews 
anbe found in e.g. [143, 145℄. Here the simple and widely used Verlet-Leapfrog method isapplied, whi
h is 
hara
terized by the update formula

vn+1/2 = vn−1/2 +∆tan with an =
1

m
F n , (3.32)

xn+1 = xn +∆tvn+1/2 , (3.33)where the index denotes the time step, i.e. •n := •(n∆t). This s
heme yields 
oordi-nates that are a

urate to third order in ∆t. The fa
t that 
oordinates and velo
itiesare evaluated at di�erent times does not present a problem. If the velo
ities at step
n+ 1 are required, they are approximated via

vn+1 = vn+1/2 +
1

2
∆tan . (3.34)For the integration of the rotational motion a fourth order Runge-Kutta method isapplied, that is derived from the s
heme introdu
ed by Munjiza et al. [126℄. The s
hemeis modi�ed only in the way small in
remental rotations are applied. In the initial stepthe angular momentum is updated using the a
tual resultant torque

Hn+1 = Hn +∆tMn . (3.35)Now, based on the de�nition of the angular momentum H = I · ω and the assump-tion that the 
hange of angular momentum is instantaneous, so that H is 
onstantthroughout the time step, an average angular velo
ity is derived using the 
lassi
alRunge-Kutta formula. For this purpose the transformation between global 
oordinatesand lo
al 
oordinates (denoted by •̃ in the following) is required. While H and ω arestored in global 
oordinates, I is naturally stored in terms of the lo
al prin
ipal values
Ĩ :=





I1 0 0
0 I2 0
0 0 I3



 . (3.36)Hen
e, using the transformation matrix T the de�nition H = I · ω reads in global
oordinates
H = T Ĩ T T ω , (3.37)whi
h is inverted to

ω = T T −1
Ĩ
−1
T−1H = T Ĩ

−1
T T H . (3.38)
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le rotates with 
onstant ω for a duration ∆t, this results in a rotation ex-pressed by a matrix R(ω,∆t), whi
h is most e�e
tively 
omputed via the intermediate
onstru
tion of a quaternion [57℄. The new position is given by the updated transfor-mation matrix
T (ω,∆t) := R(ω,∆t)Tn . (3.39)Based on this and relation (3.38) four angular velo
ities are de�ned

ω1 := ωn , (3.40)
ω2 := T (ω1, ∆t/2) Ĩ

−1
T (ω1, ∆t/2)T Hn+1 , (3.41)

ω3 := T (ω2, ∆t/2) Ĩ
−1
T (ω2, ∆t/2)T Hn+1 , (3.42)

ω4 := T (ω3, ∆t) Ĩ
−1
T (ω3, ∆t)

T Hn+1 . (3.43)From these de�nitions an average angular velo
ity for the time step is derived usingthe 
lassi
al Runge-Kutta formula
ω̄ =

1

6
(ω1 + 2ω2 + 2ω3 + ω4) . (3.44)Using ω̄ the �nal update steps are

T n+1 = T (ω̄, ∆t) , (3.45)
ωn+1 = T n+1 Ĩ

−1
T n+1,T Hn+1 . (3.46)In a torque free situation the update s
heme is momentum 
onserving, while it doesnot provide exa
t energy 
onservation. However, it rea
hes adequate a

ura
y for areasonable time step and therefore is suitable for appli
ation within a DEM [126℄. Notethat the orthonormality of T is preserved to a very high degree by operations of kind(3.39). Numeri
al analyses using double pre
ision show that the error ‖T T T − 1‖ isof the order of 10−12 after 108 update operations, where either small in
remental orlarge arbitrary updates are applied. This is su�
ient for DEM simulations so that nore-orthonormalization operations are required.3.4 ImplementationThe basi
 ingredients of the DEM s
heme are des
ribed within se
tions 3.1, 3.2, and3.3. These ingredients determine the behavior of the DEM regarding the me
hani
s,i.e. what problems 
an be modeled and what the results will be. This se
tion 
oversthe implementation aspe
ts of the DEM that determine its performan
e, i.e. how manyparti
les 
an be tra
ed for how many time steps in what 
omputational time. Themost important aspe
t is the 
onta
t dete
tion pro
ess, sin
e it is the 
omputationallymost expensive part of a DEM simulation. In this point the DEM resembles othermeshless methods su
h as mole
ular dynami
s (MD) from whi
h many algorithms 
anbe dire
tly applied. Usually, the pro
ess of 
onta
t dete
tion is split into two phases:In the �rst phase the number of potential 
onta
t pairs is redu
ed with the help of



34 CHAPTER 3. DISCRETE ELEMENT METHODbounding boxes and spatial sorting algorithms. In the se
ond phase a detailed 
onta
t
he
k is performed for the resulting potential 
onta
t pairs. An overview of methods forboth parts of the pro
ess is given by, e.g., Lin and Gotts
halk [110℄ and Vemuri et al.[169℄. Furthermore, this se
tion des
ribes a parallelization s
heme for shared memoryar
hite
tures and the important point of parti
le sample generation. All algorithmsare implemented in a C++ in-house 
ode maintained at the Institute of ContinuumMe
hani
s at Leibniz Universität Hannover.3.4.1 Global Conta
t Dete
tionGiven a set of N parti
les of arbitrary shape, size, and position in spa
e the fun
tion ofglobal 
onta
t dete
tion algorithms is to determine a good approximation of the list of
onta
t pairs within minimum 
omputational time and requiring minimum 
omputermemory. A good approximation means that the resulting list must in
lude all a
tual
onta
t pairs and should in
lude as few as possible additional pairs. Hen
e, these al-gorithms are often denoted as neighbor sear
h algorithms. In order to be appli
able toarbitrary parti
le shapes, they repla
e the a
tual parti
les by bounding volumes of sim-ple shape. The most 
ommon bounding geometry is a sphere, be
ause the interse
tion
he
k is trivial and it is invariant with respe
t to the rotational position of the parti
le.Other geometries are axis-aligned bounding boxes (AABB) or oriented bounding boxes(OBB), whi
h might give a better approximation of the real geometry but need to bere-determined if the parti
le rotates.The most simple neighbor sear
h algorithm is an all-to-all 
he
k, where ea
h bound-ing volume is 
he
ked against all other volumes. This results in a 
omputation times
aling as O(N2), whi
h is prohibitive when dealing with a huge number of parti
les.Therefore, more sophisti
ated algorithms have been developed, whi
h 
an be dividedinto two main 
lasses: First, tree-based algorithms whi
h sort the parti
les a

ordingto their position into tree-like stru
tures and apply e�
ient sorting and sear
hing algo-rithms to determine overlapping bounding volumes, 
f. [178, 13, 140, 61, 108℄. Se
ond,binning algorithms whi
h sort the parti
les into a regular grid so that only parti
lesin adja
ent grid 
ells have to 
he
ked, 
f. [79, 124, 180, 127℄. Generally, tree-based al-gorithms s
ale with O(N logN), while binning algorithms s
ale with O(N). However,tree-based algorithms have advantages when dealing with
• sparse systems: If the parti
le pa
kage is loose, standard binning algorithms wastememory and 
omputational time due to a huge number of empty 
ells.
• wide size distributions: In standard binning algorithms the grid size 
orrespondsto the maximum parti
le size. If parti
le sizes vary 
onsiderably, this leads to ahigh number of interse
tion 
he
ks per grid 
ell and therefore to a redu
tion ofthe performan
e.The �rst problem has been solved by the NBS algorithm developed by Munjiza andAndrews [124℄ whi
h uses a sophisti
ated data stru
ture to over
ome the memory partand a parti
le based grid traversal to over
ome the 
omputation times part. Based onthis work, Williams et al. [180℄ developed the CGRID algorithm whi
h over
omes the
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ond problem of varying parti
le sizes by allowing parti
les to be 
ontained in severalgrid 
ells. Another binning algorithm for greatly di�ering parti
le sizes was developedby Peters et al. [141℄. Here, the number of neighbor 
he
ks is redu
ed e�
iently viaa hierar
hi
al grid stru
ture. Furthermore, the algorithm is parallelized via domainde
omposition and shows good s
aling properties.A 
ru
ial issue regarding neighbor sear
h algorithms in the DEM 
ontext is theability to exploit the temporal 
oheren
e: Between 
onse
utive time steps the parti
lepositions will only 
hange little and so will the list of potential 
onta
t pairs. Generally,tree-based algorithms are better suited to make use of this fa
t, sin
e they are basedon sorted data stru
tures whose update be
omes 
heaper, if the stru
ture kept fromthe last time step is almost sorted. Taking this into a

ount, tree-based algorithms areable to s
ale with O(N), see e.g. the algorithm introdu
ed by Li et al. [108℄. On theother hand, standard binning algorithms require a new appli
ation in ea
h time step.However, a s
heme not su�ering this limitation was presented by Munjiza et al. [127℄.In summary, state-of-the-art neighbor sear
h algorithms s
ale linearly with the numberof parti
les, are rather insensitive to the pa
kage density and variation in parti
le size,and exploit the temporal 
oheren
e present in a DEM simulation.To 
hoose a s
heme with optimal performan
e the 
hara
teristi
s of the DEM andthe prospe
tive appli
ations have to be analyzed. Here, a DEM based on superquadri
parti
les will be applied to mainly quasi-stati
 problems with uniform, dense parti-
le pa
kages of limited parti
le size variation. Hen
e, the aspe
ts of pa
kage densityand size variation are rather unimportant 
ompared to the aspe
t of temporal 
oher-en
e. Furthermore, the number of parti
les 
onsidered will be rather huge favoring analgorithm that s
ales with O(N) and, additionally, 
an be parallelized. The temporal
oheren
e is exploited by the Verlet neighbor list 
on
ept [170℄, whi
h is 
ombined witha simple binning algorithm to a

omplish the O(N) s
alability and parallelization. TheVerlet 
on
ept is based on the simple idea to enlarge the bounding volumes used in theneighbor sear
h algorithm by a 
ertain amount, so that more remote parti
le pairs aredete
ted as well. By noting that ea
h parti
le moves only a small distan
e in one step,it follows that the resulting neighbor lists need no update for several time steps withoutthe risk of missing a 
onta
t. This s
heme is naturally used in 
ombination with spher-i
al bounding volumes. These also have the advantage of being invariant with respe
tto parti
le rotations so that the bounding sphere radius rmax
i of a superquadri
 parti
le

Pi is 
omputed only on
e, see appendix A.1.1. A Verlet distan
e dV is introdu
ed andea
h parti
le pair, whose bounding sphere distan
e is smaller than dV, is stored in aneighbor list, 
f. �gure 3.6(a). The neighbor 
riterion reads
‖xi − xj‖ ≤ rmax

i + rmax
j + dV ⇒ {

i < j : add j to list i,
i > j : add i to list j. (3.47)Figure 3.6(b) exempli�es the Verlet neighbor lists for a small sample. Now, any pair notstored in a list 
annot 
onta
t as long as no parti
le moved by more then dV/2. Thisis depi
ted in �gure 3.6(a), where two parti
les are shown that will not be 
onsideredas neighbors. Obviously, they 
annot 
onta
t without any of the two bounding spheresleaving the dashed spheres representing the Verlet 
riterion. Hen
e, the positions xVi
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Figure 3.6: a) Two adja
ent parti
les en
losed by bounding spheres. If the dashed spheresinterse
t, the pair (Pi,Pj) is added to a Verlet list.b) Parti
le sample with 
orresponding Verlet neighbor lists.of the parti
les at the time the neighbor lists are updated have to be stored to 
he
kthe update 
riterion ea
h time step
‖xn

i − xVi ‖ ≥ dV
2

for any i ∈ P := {1, 2, . . . , N} ⇒ update lists. (3.48)The 
omputational e�ort of evaluating this 
riterion is smaller than the e�ort of aglobal 
onta
t 
he
k. The number of su

essive time steps without an update obviouslyin
reases with dV and de
reases with the maximum parti
le velo
ity. However, thenumber of neighbor pairs and therefore the numeri
al e�ort within ea
h time stepin
reases with dV as well. Hen
e, the optimal 
hoi
e of dV depends on the dynami
sof the system and the relation between the e�ort of global 
onta
t dete
tion for theupdate of the neighbor lists and the e�ort of lo
al 
onta
t dete
tion performed forea
h pair in those lists. For a rather stati
 system of superquadri
s an optimal value of
dV = 0.05 r̄ is found by numeri
al experiments, where r̄ is de�ned as mean boundingsphere radius̄

r :=
rmax + rmin

2
with rmax := max

i∈P

rmax
i , rmin := min

i∈P

rmax
i . (3.49)Note that for spheri
al parti
les and the same problem an optimal value of dV = 0.25 r̄is found due to the redu
ed e�ort for lo
al 
onta
t dete
tion.To update the neighbor lists a simple binning algorithm is applied. For this purposea regular grid with 
ubi
al 
ells of size ∆ = 2 rmax+dV is de�ned. In this way, 
enters ofneighbor parti
les a

ording to (3.47) have to reside in adja
ent grid 
ells. The parti
lesare sorted into the grid 
ells by determining their integer grid 
oordinates via

ix[i] =

⌊
xi − xmin i

∆

⌋

, (3.50)
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3Figure 3.7: a) 2D parti
le sample and 
orresponding grid for neighbor sear
h.b) 3D sten
il for grid traversal.where xmin is the lower 
orner of the grid, see �gure 3.7(a). After all parti
les are sortedinto the grid 
ells, these are traversed and the neighbor 
riterion (3.47) is 
he
ked for allparti
le 
ombinations within the a
tual 
ell as well as 
ombinations between the a
tualand its adja
ent 
ells. To prevent double-
he
king of pairs only half of the adja
ent 
ellshave to be 
onsidered like depi
ted for a 2D sample in �gure 3.7(a) and for a 3D samplein �gure 3.7(b). Using the C++ standard template library (STL) [92℄ the data stru
tureholding the Verlet neighbor lists is 
hosen in su
h a way that they 
an be updated,i.e. new pairs 
an be inserted into and old pairs removed from the sorted lists withoutthe need for a 
omplete rebuild. The parallelization of the algorithms presented in thisse
tion is 
overed in se
tion 3.4.3.3.4.2 Lo
al Conta
t Dete
tionThe generation of inter-parti
le 
onta
t for
es requires a detailed 
he
k of all neighborpairs resulting from the global dete
tion pro
ess. The pairs are 
he
ked for 
onta
t and,if ne
essary, the 
onta
t geometry is determined. While this 
he
k is trivial for spheri
alparti
les, it be
omes the 
omputationally most expensive part for more 
omplex shapes.Generally, the algorithms applied are spe
i�
ally designed for a type of parti
le shape.An algorithm designed for a dis
rete polyhedral shape, e.g., 
annot be applied to a
ontinuous ellipsoidal shape and vi
e versa. In the following, only the 
lass of smooth
onvex shapes like ellipsoids or superquadri
s is 
onsidered. First, the 
onta
t dete
tionproblem is formulated as an un
onstrained two-dimensional optimization problem. Thisformulation has the advantage that for non-penetrating parti
les a penetration 
an
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onvergen
e is rea
hed. Next, a modi�ed Newton's methodis applied to solve the minimization problem and the performan
e of the s
heme ismeasured via two extensive test series for penetrating and non-penetrating parti
lesof varying angularity. Finally, a s
heme is presented whi
h redu
es the 
omputationale�ort of a 
onta
t geometry update signi�
antly by exploiting the temporal 
oheren
ewithin a DEM simulation.Problem FormulationFor a pair of neighbor parti
les P1 and P2 the algorithm 
he
ks for 
onta
t and 
om-putes the set of geometri
 quantities required for the 
onta
t for
e generation. For mostof the 
onta
t models applied in 
ombination with smooth parti
les this set in
ludes
onta
t points p1 and p2, an interpenetration distan
e δ, and a 
onta
t dire
tion c,
f. �gure 3.4. Regarding the 
onta
t for
e generation a de�nition of the 
onta
t pointsbased on the 
ommon-normal 
on
ept is favorable, see e.g. [90℄. A

ordingly, the 
on-ta
t points are de�ned as those points that have minimum distan
e and ful�ll thefollowing set of 
onditions
c =

n1

‖n1‖
= − n2

‖n2‖
, (3.51)

d× c = 0 , (3.52)where n1 and n2 are outward surfa
e normals at p1 and p2. Condition (3.51) assuresthat the normal ve
tors are anti-parallel and (3.52) assures that the ve
tor 
onne
ting
p1 and p2 is parallel to the 
onta
t dire
tion c.For smooth, 
onvex parti
les the normal ve
tors and surfa
e points 
an be parame-terized by a set of 
urvilinear 
oordinates. Furthermore, there exists a smooth invertiblemapping between the set of surfa
e points and the set of normalized surfa
e normals.The 
orresponding formulas for superquadri
s are given in se
tion 3.1 and appendix A.By using the surfa
e parameterization and by elimination of c, the 
onditions (3.51)and (3.52) 
an be formulated as a set of nonlinear equations in the 
urvilinear 
oordi-nates. The solution of this set of equations yields the 
onta
t points p1 and p2. Withinthis approa
h attention has to be paid to multiple solutions, be
ause the minimumdistan
e 
ondition is negle
ted so that, e.g., for a pair of spheri
al parti
les the pointswith maximum distan
e will be a solution too. However, this approa
h was used su
-
essfully in 
ombination with ellipsoids [111℄ and superquadri
s [36℄. Other approa
hesfor the determination of 
onta
t points that only approximately ful�ll (3.51) and (3.52)are methods based on geometri
 potential fun
tions [165, 111, 163℄ and the dis
retefun
tion representation (DFR) approa
h [178, 80℄. For the �rst kind of methods the
onta
t point de�nition is based on the geometri
 potential fun
tion of the parti
les,whi
h for superquadri
s is the inside-outside fun
tion (3.1). Lin and Ng [111℄, e.g., de-�ne the 
onta
t points as those points whi
h minimize the geometri
 potential fun
tionof the other parti
le. For a small penetration these methods yield 
onta
t points 
loseto that de�ned by (3.51) and (3.52). In the se
ond approa
h ea
h parti
le surfa
e isdis
retized by a number of points. Conta
t dete
tion is then done by 
he
king thesepoints for in
lusion in the adja
ent parti
le. The DFR approa
h allows for a wider
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Figure 3.8: Cartesian referen
e frame êi for parameterization of the 
onta
t dire
tion c.range of parti
le shapes and over
omes the restri
tion of 
onvex shapes. Its a

ura
yand performan
e depend on the number of points used for the surfa
e dis
retization.A similar approa
h was presented in [75℄, where 2D superquadri
s are approximatedby 
onvex polygons, whose 
onta
t is handled by a 
orner-
orner 
onta
t model [62℄.The key point of the approa
h introdu
ed here is that the problem of 
onta
tdete
tion is formulated in terms of the 
onta
t dire
tion c. For this purpose the 
onta
tdire
tion is parameterized using spheri
al 
oordinates α1 and α2 through
c (α1, α2) = cosα1 cosα2 ê1 + sinα1 cosα2 ê2 + sinα2 ê3 with
α1 ∈ (−π, π], α2 ∈ [−π

2
,
π

2
], ê1 :=

x2 − x1

‖x2 − x1‖
, êi · êj = δij .

(3.53)
êi are the unit base ve
tors of a right-handed Cartesian 
oordinate system with ê1 =
c(0, 0) pointing in the dire
tion from the �rst parti
le 
enter to the se
ond parti
le
enter, see �gure 3.8. The advantage of using this referen
e frame is that the solutionlies 
lose to (α1, α2) = (0, 0) and thus numeri
al problems at the singular points ofthe parameterization at α2 = ±π/2 are avoided. Based on this parameterization andon the invertible mapping between surfa
e points and normals, the surfa
e points p1and p2 are determined in terms of α1 and α2 from the anti-parallel 
ondition (3.51)1.As a 
onsequen
e, the distan
e ve
tor 
an be expressed as a fun
tion of the 
onta
tdire
tion angles as well

d (α1, α2) = p2 (α1, α2)− p1 (α1, α2) . (3.54)Hen
e, the 
onta
t dete
tion problem is formulated as optimization problem in termsof α1 and α2

min
α1,α2

f (α1, α2) := ‖d (α1, α2) ‖2 . (3.55)Note that 
ondition (3.51) is ful�lled automati
ally via the 
onstru
tion of the surfa
epoints. Furthermore, it 
an be shown that 
ondition (3.52) is ful�lled at the globalminimum of (3.55), if the penetration distan
e is small 
ompared to the parti
le sizes1Be
ause the detailed derivations are rather intri
ate, they are postponed to appendix A.1.3.
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urvature of the parti
le surfa
es. Hen
e, the global min-imum of (3.55) yields the 
onta
t dire
tion from whi
h all other ne
essary geometri
quantities are derived.Optimization AlgorithmAny optimization algorithm might be applied to solve problem (3.55). Here a 
om-bination of Newton's method and a Levenberg-Marquardt method is 
hosen due tothe quadrati
 
onvergen
e properties in the vi
inity of the solution. Hen
e, the �rstand se
ond derivatives of f with respe
t to the 
onta
t dire
tion angles have to bedetermined
fi = 2 (d · di) , fij = 2 (di · dj + d · dij) with •i := ∂ • /∂αi . (3.56)A

ording to (3.54) the derivatives of the distan
e ve
tor are obtained from the surfa
epoints' derivatives

pβ,i =
∂pβ

∂φγ

∂φγ

∂ck

∂ck
∂αi

, (3.57)
pβ,ij =

∂2pβ

∂φγ ∂φδ

∂φγ

∂ck

∂φδ

∂cl

∂ck
∂αi

∂cl
∂αj

+ (3.58)
∂pβ

∂φγ

(
∂2φγ

∂ck ∂cl

∂ck
∂αi

∂cl
∂αj

+
∂φγ

∂ck

∂2ck
∂αi ∂αj

)

.Repeated Greek indi
es denote a summation from 1 to 2, and repeated Latin indi
esdenote a summation from 1 to 3. Again, the detailed derivations of the above deriva-tives are postponed to appendix A.1.3. For the iterative solution of the minimizationproblem (3.55) an initial guess is required. Within a DEM simulation an ex
ellentguess is the solution from the previous time step. If no su
h solution exists, be
ausethe neighbor pair has just been dete
ted, the ve
tor 
onne
ting the parti
le 
enters isused 
orresponding to (α1, α2) = (0, 0). Note that for spheri
al parti
les this guess isthe exa
t solution.An important advantage of this formulation is that in the 
ase of non-penetratingparti
les a penetration 
an be ruled out before the iterative pro
ess 
onverges to theexa
t 
onta
t dire
tion. This is illustrated in �gure 3.9, where two adja
ent parti
les aredepi
ted whose bounding volumes interse
t. Hen
e, in a DEM simulation this parti
lepair is 
he
ked for a penetration. In the right part the 
onta
t points, normals, andthe distan
e ve
tor after i iterations are plotted. At this point of the iterative pro
essa penetration 
an be ruled out, be
ause it is
(i)n1 · (i)d > 0 ⇔ (i)c · (i)d > 0 . (3.59)Be
ause of (3.51) and (3.59), (i)p2 is the 
losest point of P2 to the tangent plane

(i)E1 with a distan
e greater than zero. Therefore, (i)E1 separates P1 and P2 and apenetration 
an be ruled out. The 
riterion (3.59) is 
he
ked for every 
onta
t dire
tion
(i)c in the 
ourse of the iterative pro
ess. If it is ful�lled, the algorithm stops. Sin
e
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Figure 3.9: Two adja
ent parti
les P1 and P2 with interse
ting spheri
al and box-shapedbounding volumes. The 
onta
t points, normals, and the distan
e ve
tor after iiterations are shown. (i)E1 is the tangent plane to P1 at (i)p1.only one additional ve
tor produ
t is required, this leads to a signi�
ant speedup ofthe 
onta
t dete
tion pro
ess.In the 
ase of a penetration the algorithm 
onverges to a minimum of f . To ensurethat this minimum is the global minimum two 
onditions have to be 
he
ked. First,
(3.52) has to be ful�lled. Under the assumption of a small penetration distan
e, (3.52)
an only be ful�lled by a lo
al minimum, if the 
orresponding 
onta
t points p1 and
p2 lie outside P2 and P1, see �gure 3.10. Hen
e, the se
ond 
ondition that has to be
he
ked is that p1 ∈ P2 and p2 ∈ P1, whi
h is done via the parti
les' inside-outsidefun
tions. If 
onvergen
e to a lo
al minimum is dete
ted, a 
ombination of a random-sear
h method and the Nelder-Mead simplex algorithm [105℄ is applied to generate anew initial guess. This pro
ess is repeated until the global minimum of f is found.

d
P1

P2

n2

n1

p1

p2

Figure 3.10: Two adja
ent parti
les P1 and P2 with 
onta
t points, normals, and distan
eve
tor 
orresponding to a lo
al minimum of f . The dashed 
ir
le indi
ates that
d has lo
ally minimum length.
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Figure 3.11: a) Test 1: Probability of penetration ex
lusion vs. the number of iterations.b) Test 2: Probability to rea
h 
onvergen
e vs. the number of iterations.ValidationThe 
onta
t dete
tion algorithm is validated by means of two test series with randomlygenerated parti
le pairs. In the �rst series no pair is in 
onta
t, while in the se
ond seriesthere is always a small penetration. For all tests the superquadri
 radius parameters riare 
hosen randomly and equally distributed from the interval (0.5, 3.0). The angularityparameters are 
hosen equally distributed from one of the three intervals, 1 : ǫi = 1,
2 : ǫi ∈ [0.7, 1.3], 3 : ǫi ∈ [0.3, 1.7]. The positions and orientations of the parti
les aregenerated a

ording to the following s
heme: The �rst parti
le is pla
ed at the origin sothat the parti
le �xed frame and the global frame 
oin
ide. A random 
onta
t dire
tion
c is generated from whi
h p1 is determined. A random rotation matrix T 2 is generatedand the interpenetration distan
e δ of the parti
les is 
hosen. p2 is derived from p1, δ,and c. Finally, x2 is 
al
ulated from p2 and T 2.For both test series 106 parti
le pairs are generated for ea
h angularity interval.The dire
tion of the ve
tor 
onne
ting the parti
le 
enters is used as initial guess.The distan
e of the parti
les for the �rst test series is 
hosen randomly and equallydistributed from the interval (0, 0.25). The number of iterations needed to rule out apenetration is re
orded. The probability of a penetration ex
lusion after i iterations,whi
h is the number of trials where a penetration is ruled out after i iterations dividedby the overall number of trials, is plotted against i in �gure 3.11(a). The probability ofa penetration ex
lusion after 0 iterations is 78.2% for the angularity interval 3, 85.2%for interval 2, and 88.1% for interval 1. In these 
ases the initial guess is good enoughto rule out a penetration so that no gradient or Hessian of f has to be 
omputed. Theprobability that 5 or more iterations are needed is 3.7% for interval 3, 1.1% for interval2, and 1.1% for interval 1. The number of trials where a penetration 
ould not beex
luded within 50 iterations is 456 for interval 3, 24 for interval 2, and 28 for interval1. In these 
ases at most 3 new initial guesses have to be generated until a penetration
ould be ex
luded.



3.4. IMPLEMENTATION 43interval |δ̃ − δ|/δ, 10−6 ‖p̃i − pi‖, 10−8 cos−1 (c̃ · c) , 10−3 ◦1 2.34 4.34 4.212 2.40 4.40 5.053 32.1 37.2 18.2Table 3.1: Average errors for 
onvergen
e 
riterion ‖gradf‖ < 10−6.In the se
ond test series the interpenetration distan
e is 
hosen randomly andequally distributed from the interval (0, 1.75·10−3). The 
onvergen
e 
riterion is 
hosenas ‖gradf‖ < 10−6 and the number of iterations performed is re
orded. The resultsare plotted in �gure 3.11(b). For ea
h angularity interval 
onvergen
e is most likelyrea
hed after about 2 � 10 iterations. The probability that 20 or more iterations areneeded is 4.5% for interval 3, 0.4% for interval 2, and 0.4% for interval 1. The numberof trials where the algorithm 
onverges to a lo
al minimum or does not 
onverge within50 iterations is 9219 for interval 3, 198 for interval 2, and 193 for interval 1. Here atmost 15 new start points have to be generated for interval 3 and 2 for interval 2 and 1.Finally, the a

ura
y of the algorithm is analyzed in terms of the relative errorof the 
omputed penetration distan
e δ̃, the distan
e of the 
omputed and the exa
t
onta
t points p̃i and pi, and the angle between the 
omputed and the exa
t 
onta
tdire
tion c̃ and c. The average values for ea
h angularity interval are listed in table 3.1.All results are very a

urate. Even for the most angular parti
les the average de�e
tionfrom the analyti
al 
onta
t dire
tion is of the order of a hundredth of one degree.Temporal Coheren
eWithin a DEM simulation the parti
le positions vary smoothly over time. Generally,their in
remental 
hange within one time step is small. Hen
e, the in
remental 
hangeof the 
onta
t dire
tion is small as well. This fa
t 
an be exploited by using the di-re
tion from the last time step as initial guess for the minimization algorithm in the
urrent time step like des
ribed above. Numeri
al experiments show that in this waythe spe
i�ed a

ura
y is most likely rea
hed within one or zero iterations. However,ea
h iteration of the minimization algorithm requires the 
omputation of the se
ondderivatives of the 
onta
t points with respe
t to the 
onta
t dire
tion angles (3.58),whi
h is a 
omputationally expensive operation. A signi�
antly 
heaper update op-eration is a
hieved by dropping the minimum 
ondition and just using the parallel
ondition (3.52). Using the derivatives ci = ∂c/∂αi and the orthogonality relation
c · ci = 0 , (3.60)this 
ondition is re-formulated by the two s
alar equations

f(α1, α2) :=

[
d · c1

d · c2

]

!
=

[
0
0

]

. (3.61)This set of nonlinear equations is solved using Newton's method, where now onlythe �rst derivatives of the 
onta
t points with respe
t to the dire
tion angles αi are
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xi += ∆tvi...

Figure 3.12: Flow
hart of a single time step within a DEM 
ode using the Verlet list 
on
ept.required. An e�
ient s
heme to determine the points and their derivatives is postponedto appendix A.2. Note that the system 3.61 has multiple solutions, be
ause it does notin
lude the minimum 
ondition. Hen
e, for a pair of spheres, e.g., the points withmaximum distan
e are a solution too. However, due to the temporal 
oheren
e theinitial guess is mu
h 
loser to the 
orre
t solution than to any other solution. Therefore,
onvergen
e to the wrong solution is extremely rare and is handled by appli
ation ofthe original minimization algorithm, whi
h is also applied when a neighbor pair is
onsidered for the �rst time.3.4.3 ParallelizationDEM simulations of a reasonable number of parti
les undergoing large deformationsyield high 
omputational 
osts. Generally, memory requirements are less 
riti
al 
om-pared to 
omputation times, whi
h result from the huge number of integration stepsand the 
onta
t dete
tion within ea
h step. This is espe
ially true for non-spheri
alparti
les burdened with a 
omplex 
onta
t 
he
k. A way to extend the range of feasibleproblems in spa
e and time is to parallelize the DEM 
ode and thus exploit the possi-bilities of modern multi-
ore ma
hines. Here, this is a

omplished through a simple bute�
ient parallelization s
heme for shared memory ar
hite
tures, that is implementedusing the OpenMP standard [29℄. The s
heme is based on the Verlet neighbor list
on
ept des
ribed in se
tion 3.4.1.For parallelization it is useful to analyze how mu
h CPU time is spent on the di�er-ent tasks of the serial 
ode. The �ow
hart of a single time step within the DEM 
ode isdepi
ted in �gure 3.12. The CPU time distribution is measured via a pro�ling tool fora silo dis
harge problem with spheri
al and superquadri
 parti
les, see �gure 3.13. Forboth parti
le types the most time 
onsuming part is the lo
al 
onta
t 
he
k, whi
h isseparated into inter-parti
le and parti
le-boundary 
onta
ts. Hen
e, the parallelizationof this part yields the greatest redu
tion of the overall CPU time. For superquadri
sthe parti
le states update and the Verlet lists update require similar fra
tions of theCPU time, while for spheres the parti
le states update requires only about half the time
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Figure 3.13: Fra
tions of the overall CPU time spent on di�erent tasks within the serial DEM
ode for a silo dis
harge problem using spheri
al and superquadri
 parti
les.of the Verlet update. This is due to the fa
t that for spheri
al parti
les no rotationalposition is stored and updated. The fra
tion required by the Verlet update 
he
k isnegligible for both parti
le types.The parti
le states update and the Verlet update 
he
k are trivial to parallelize,sin
e the 
omputation for one parti
le is independent from the others. Furthermore,the 
omputational e�ort is identi
al for ea
h parti
le so that the set of parti
les 
anbe distributed in 
hunks of equal size to the available 
ores. Within the Verlet updatealgorithm the parti
les are sorted into a grid so that neighbors reside in adja
entgrid 
ells, 
f. se
tion 3.4.1. In a traversal over the grid 
ells the neighbor 
riterion(3.47) is 
he
ked for ea
h potential pair (Pi,Pj), and if it is ful�lled, Pj is addedto the neighbor list of Pi(i < j). Regarding the parallelization of this traversal 
arehas to be taken to prevent data ra
e 
onditions, i.e. situations where two 
ores tryto update the same neighbor list simultaneously. This is a

omplished by distributingthe 
ells along the largest grid dimension onto the available 
ores Ci, see �gure 3.14.The 
ore subsets are subdivided further along the same dire
tion into two 
hunks Ci
1and Ci

2. The 
ells in all 
hunks Ci
1 are traversed in parallel without the risk of datara
e 
onditions, sin
e parti
les from di�erent 
hunks Ci

1 and Cj
1 
annot be neighbors.When all 
ores �nished their �rst 
hunk, the 
ells from the se
ond 
hunk Ci

2 aretraversed in the same manner. This simple s
heme requires a minimum distributionand syn
hronization overhead. However, its workload balan
e depends 
ru
ially on theuniformity of the parti
le distribution. For non-uniform distributions some 
ores idlebe
ause of the di�eren
e in the number of pairs assigned to the 
ores. Anyway, sin
ethe fo
us of this work lies on the quasi-stati
 behavior of dense parti
le pa
kages, thes
heme is su�
ient.The most important part regarding parallelization is the lo
al 
onta
t 
he
k, where



46 CHAPTER 3. DISCRETE ELEMENT METHOD
C2

C2
1 C2

2

C1

C1
1 C1

2

Figure 3.14: Parallel Verlet update via distribution of grid 
ells to 
ores and 
hunks.ea
h potential pair (Pi,Pj) from the Verlet lists is 
he
ked and the resulting for
es of Piand Pj are updated. Again, the problem with parallelizing this part is the risk of datara
e 
onditions, if one 
ore pro
esses (Pi,Pj) and another one (Pi,Pk) and both try toupdate the resulting for
e of Pi simultaneously. For
ing the 
ores to update the for
esone by one by pla
ing the 
orresponding pea
e of 
ode in an OpenMP 
riti
al se
tionyields a severe performan
e redu
tion due to the high number of potential 
onta
tpairs.This problem is solved by sorting the parti
les a

ording to their spatial position.Figure 3.15(a) shows a sample of about 105 superquadri
s �owing through an hourglass.The 
orresponding Verlet lists 
an be visualized in a two-dimensional plot by pla
ing adot at (i, j) with i < j for ea
h neighbor pair (Pi,Pj). For a random parti
le order thisyields a plot where the upper left triangle is randomly �lled like shown in �gure 3.16(a).Now, the parti
les are sorted a

ording to their spatial position via a grid traversingalong the smallest dimension �rst, medium se
ond, and largest last, see �gure 3.15(b).The resulting Verlet lists show a band stru
ture, that is exploited to distribute theparti
le pairs to the 
ores like depi
ted in �gure 3.16(b): Let nC denote the numberof 
ores available. Then the set of pairs is divided into nC equisized (same number ofpairs) 
hunks Ci, and ea
h of this is subdivided into two equisized 
hunks Ci
j . If themaximum parti
le index of Ci−1

j is smaller than the minimum index of Ci
j , Ci−1

j andCi
j 
an be pro
essed in parallel without the risk of data ra
e 
onditions. Depending onthe bandwidth of the Verlet list stru
ture more than two sub-
hunks might be requiredto ful�ll this 
riterion. Even the number of 
hunks Ci might have to be redu
ed, if thebandwidth is too large 
ompared to the number of parti
les.As long as the Verlet lists remain un
hanged, the 
hunks and sub-
hunks remainvalid and require no update. The update's 
ost is negligible using standard sear
h andsort algorithms. As the parti
les rearrange over time, the bandwidth of the Verlet liststru
ture might grow ne
essitating a resort of the parti
les. As it is required unfre-quently, the 
ost of this resort is negligible, espe
ially if one takes into a

ount thatsorting improves the data lo
ality of the 
ode and therefore yields an additional perfor-
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Figure 3.15: a) Hourglass with 105 superquadri
s 
olored a

ording to their spatial position.b) Spatial sorting of parti
les using a grid whi
h is traversed along the smallestdimension �rst. The order of parti
les in the same 
ell is arbitrary.
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Figure 3.17: a) Parallel e�
ien
y for 2, 4, and 8 
ores and the example from �gure 3.15(a).b) Corresponding number of Verlet updates and parti
le resorts.man
e bene�t. Figure 3.17(a) shows the e�
ien
y of the parallel 
ode for the hourglassexample shown in �gure 3.15(a) when using two, four, and eight 
ores. The 
orre-sponding number of Verlet update and resort operations is plotted in �gure 3.17(b).The highest e�
ien
y is rea
hed in the initial phase of the simulation, where the sys-tem is rather stati
 and few Verlet updates and parti
le resorts are required. As someparti
les rea
h the bottom of the hourglass, the system be
omes more dynami
 andthe e�
ien
y drops to values of approximately 94% for two 
ores, 84% for four 
ores,and 65% for eight 
ores.3.4.4 Sample GenerationRegarding laboratory testing of non-
ohesive fri
tional granular materials it is a well-known fa
t that the method of sample preparation has a 
ru
ial impa
t on the measuredme
hani
al properties, see e.g. the pioneering work by Oda [134℄. A 
ommon prepara-tion method is dry pluviation, where grains rain from a spe
i�
 height into a 
ontainer.The resulting sample 
hara
teristi
s depend on the drop height and other boundary
onditions [115, 37℄. The basi
 des
ription parameter of a pa
kage is the solid fra
tion
Φ, i.e. the fra
tion of the overall volume whi
h is o

upied by the grains. This param-eter is dedu
ed from the 
ontainer volume, the overall weight, and the grain materialdensity. The minimum and maximum values Φmin and Φmax are determined via stan-dardized preparation methods. If they are known, it is 
onvenient to relate the sampledensity to these extreme values via the relative density

RD :=
1− Φmin/Φ

1− Φmin/Φmax

.For a more detailed des
ription of the granular stru
ture the term fabri
 is generallyused. This in
ludes, e.g., the 
oordination number, i.e. the number of 
onta
ts per par-ti
le, the distribution of 
onta
t for
e magnitudes and dire
tions, the distribution of
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onta
t normals, and the distribution of grain orientations. While these 
hara
teristi
sde�nitely depend on the preparation method and in�uen
e the me
hani
al behavior,their experimental determination is di�
ult. Oda [134℄ �xed sand samples by �llingthe voids with a resin and analyzed thin sli
es 
ut from the sample. Later on, sim-ilar te
hniques were 
ombined with the methods of stereology [93℄ to transform the2D measurements into a 3D des
ription. Nevertheless, as pointed out by Wang et al.[174℄, this transformation might not be a

urate enough for the purpose of relatingthe fabri
 to me
hani
al properties. Re
ently, 3D measurements were performed using
omputed tomography [175, 3℄, but due to the huge e�ort of data evaluation sampleswere restri
ted to grain numbers of the order of 102. Thus, despite the fa
t that fabri
measures are easily determined from DEM samples, no experimental measures exist for
omparison. In 
on
lusion, the generation of an initial sample is a 
ru
ial ingredientof a realisti
 DEM simulation: Given a parti
le size distribution, parti
le geometry,and bounding volume, the goal is to generate a realisti
 parti
le pa
kage. La
king ex-perimental fabri
 measures, the key parameter for evaluating the pa
kage is the solidfra
tion. If furthermore the real grain geometry is only approximated, the solid fra
tionitself is not an appropriate measure and should be repla
ed by the relative density RD.A straightforward approa
h for sample generation is to apply the DEM s
heme toreal preparation methods, i.e. to model the falling grains in dry pluviation for example.In this way, an optimum �t between the real and model fabri
 is expe
ted. However,the 
omputational demands of this approa
h are generally prohibitive. Therefore, otherpa
kage generation methods have been developed, whi
h 
an be split into two 
lasses:First, purely geometri
 generation s
hemes whi
h do not 
onsider the parti
le dynami
sand, se
ond, dynami
 s
hemes whi
h require the 
omputation of parti
le intera
tionsand traje
tories. Overviews over geometri
 s
hemes are given in, e.g., [63℄ and [12℄.Many s
hemes of this kind su
h as [38℄ have the short
oming that it is not possibleto spe
ify a parti
le size distribution. Another problem is that they are less likely toyield a realisti
 fabri
, sin
e me
hani
al prin
iples are not 
onsidered. This problem isaddressed by Han et al. [74℄, where loose pa
kages are 
ompressed in a spe
i�
 dire
tionto mimi
 the e�e
t of gravitation. Dynami
 s
hemes usually start from a random loosepa
kage. Then random velo
ities are assigned to the parti
les, while either the boundingvolume is shrank [112, 172℄ or the parti
les are expanded [54℄ to rea
h a 
lose pa
kage.Here a mixture of a geometri
 and a dynami
 s
heme is applied. First, a geometri
s
heme is used to generate a pa
kage with Φ ≈ 0.5. Then the DEM s
heme is appliedto 
ompress the pa
kage either under the in�uen
e of gravity to mimi
 the pluviationpro
ess, or by shrinking the bounding volume without gravity to get an isotropi
 sam-ple. Within this se
tion only the geometri
 part will be des
ribed, whi
h 
onsists ofthree stages.Parti
le GenerationGiven a polyhedral pa
kage spa
e of volume V , the parti
le geometry and size distribu-tion, and the intended solid fra
tion Φ̂, parti
les are only generated but not pla
ed inthis stage. The superquadri
 geometry 
an be spe
i�ed by, e.g., limiting the maximumelongation e := maxi,j ri/rj and maximum angularity a := maxi |1− ǫi|. For the de�ni-
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Figure 3.18: a) Pa
kage spa
e 
overed by regular grid. The grid 
ells are distributed alongthe longest grid dimension to 
ores Ci and subdivided into two sub-
hunks Ci
j.Random parallel addition of parti
les via algorithm 1.b) Performan
e of the random parallel addition algorithm for pla
ing 278 056superquadri
s with a solid fra
tion of 0.26 using six 
ores. The fra
tion ofremaining parti
les and the number of trials per parti
le pla
ement are plottedvs. the number of iterations. The 
omputation time is 943 se
onds.tion of the size distribution the sphere-equivalent radius req is introdu
ed as the radiusof a sphere of identi
al volume. Then 2 req 
an be 
hosen equally distributed betweena minimum and maximum size dmin and dmax. Parti
les are generated with randomparameters until the intended overall parti
le volume V̂P := Φ̂V is rea
hed. For theabove geometry and size distribution de�nitions the generation of a parti
le starts by
hoosing the radius parameters randomly and equally distributed from ri ∈ [1, e] andthe angularity parameters from ǫi ∈ [1− a, 1 + a]. In the se
ond step, req is 
omputedand a s
aling fa
tor s 
hosen randomly from s ∈ [dmin, dmax]/2 req is applied to theradius parameters. Note that there are various ways to de�ne the geometry and sizedistribution and ea
h requires an appropriate parti
le generation s
heme.Random Parallel AdditionWithin this stage the generated parti
les are pla
ed randomly within the given pa
kagespa
e so that no overlaps o

ur. Sin
e the 
omputational e�ort of the algorithm in-
reases drasti
ally for moderate solid fra
tions, an intermediate solid fra
tion Φ̃ ≈ 0.26is spe
i�ed. Hen
e, all parti
les are �rst s
aled by the 
ommon fa
tor s = (Φ̃/Φ̂)1/3 .Next, the maximum bounding sphere radius rmax of the s
aled parti
les is determinedand a uniform grid of 
ell size ∆ = 2 rmax is de�ned so that it 
overs the polyhedralpa
kage spa
e. In the same manner as for the parallel Verlet update s
heme des
ribedin se
tion 3.4.3 the grid 
ells are distributed along the longest grid dimension to theavailable 
ores Ci and into two sub-
hunks Ci

j, see �gure 3.18(a). Using this partitionof the pa
kage spa
e the parti
les are pla
ed in parallel by algorithm 1. Sin
e the 
ores



3.4. IMPLEMENTATION 51Algorithm 1 Random parallel addition of superquadri
 parti
les.
Nr = N // number of remaining (not pla
ed) parti
les
Ntr = 0 // overall number of trialsiter = 0while Nr > 0 dorandom shu�e list of Nr parti
lesdistribute Nr parti
les in equisized 
hunks to nC 
ores Ci

ntr = max(1000, ⌊Nr/20⌋)
Ntr ← Ntr + nC ntr
c = 1 + (iter mod 2) // test spa
e numberfor all Ci in parallel do
j = 1for i = 1 to ntr dorepeatgenerate random position x in test spa
e c of Ciuntil x lies in pa
kage spa
egenerate random rotational position Tpla
e parti
le j of Ci at x, Tif parti
le j of Ci not overlaps other parti
les/boundary thenadd parti
le j to list of pla
ed parti
les

Nr ← Nr − 1
j ← j + 1end ifend for // ntrend for // end paralleliter← iter + 1end while

pla
e parti
les in test spa
es, whi
h are separated by at least one grid 
ell plane, over-laps are ex
luded. Due to the �xed number of trials ntr performed by ea
h 
ore andthe �xed 
omputational e�ort per trial the load balan
e is good. The number of trialsis limited in order to get a homogeneous parti
le density a
ross both test spa
es. Inthis way, the number of iterations and thus the number of test spa
e alterations is highenough, see the example in �gure 3.18(b) where about 2200 iterations are performed topla
e 278 056 superquadri
s with a solid fra
tion of 0.26. It be
omes evident how theperforman
e of the algorithm de
reases with in
reasing solid fra
tion. While it takesabout 500 iterations to pla
e the initial 90% of the parti
les, it takes about 1700 iter-ations to pla
e the remaining 10%. The number of trials required per pla
ed parti
lein
reases nearly linearly to a �nal value of about 47. Altogether, the algorithm yieldsa reasonable performan
e for solid fra
tions of about 0.25− 0.3.
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Figure 3.19: Parti
le Pi en
losed by the tangent planes Ej to its nearest neighbors Pj.Tighten Parti
le Pa
kageWithin the last stage the sample is tightened by iteratively translating, rotating, andexpanding the parti
les. The idea is depi
ted in �gure 3.19. For a parti
le Pi thedistan
es δj to its nearest neighbors Pj are determined. The aim of translating androtating Pi is to maximize the minimum distan
e δk = min δj by translating Pi in thedire
tion −nk or rotating Pi around the axis rk×nk. The maximum displa
ement dmaxor rotation angle ϕmax is determined from the 
ondition that the tangent planes Ej arenot interse
ted. Furthermore, they are bounded by user-spe
i�ed fun
tions γtra(Φ) and
ϕ(Φ) through

dmax ← min (dmax , γtra(Φ) rmax) ,

ϕmax ← min (ϕmax , ϕ(Φ)) .The a
tual values d and ϕ are 
hosen randomly from the interval [0.25, 0.75] of themaximum values. If the parti
le is translated, the new distan
es to the planes Ej aredetermined from the old ones and the translation ve
tor. From these new distan
es amaximum s
aling fa
tor smax is determined, whi
h is again bounded by a user de�nedfun
tion s(Φ). In the same manner as above the a
tual s
aling fa
tor is 
hosen randomlyfrom the interval [0.25 smax, 0.75 smax].This operation is applied iteratively to all parti
les in a random order until thedesired volume fra
tion Φ̂ is rea
hed. The probability of the operations translation ands
aling or rotation are spe
i�ed by a user de�ned fun
tion ptra(Φ). Using a similar 
on-
ept as for the Verlet update operation in se
tion 3.4.3 the random parti
le traversalis performed in parallel, see algorithm 2. Sin
e the parti
les are traversed in randomorder and ea
h parti
le is pro
essed the same number of times, no anisotropy or inho-mogenity is introdu
ed by the algorithm. Like for the Verlet update s
heme the loadbalan
e depends on the spatial distribution of the parti
les.A 
ru
ial point of this purely geometri
 algorithm is to assure that the size distri-bution of the sample tends to that spe
i�ed in the �rst stage. This is a

omplished by
hoosing the global s
aling bound s(Φ) in a way that the resulting number of iterationsis of the order of several hundreds, sin
e the homogenity of the individual s
aling fa
-tors in
reases with the number of iterations. Figure 3.20 shows the performan
e of thealgorithm for the example from the se
ond stage. The global bounds γtra(Φ) and s(Φ)
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Algorithm 2 Iterative tightening of superquadri
 parti
le sample.iter = 0while Φ < Φ̂ do

dV = γtra(Φ) rmax + (s(Φ)− 1) rmax // verlet distan
e
∆ = 2 rmax + dV // grid 
ell dimensionupdate gridupdate Verlet neighbor listsfor j = 1 to 2 dofor all Ci

j in parallel dobuild random list Ri
j of parti
les in grid 
ells of Ci

jfor all Pi in Ri
j dodetermine distan
es of nearest neighbors of Piif rand() < ptra(Φ) thentranslate and s
ale Pielserotate Piend ifend for // Ri
jend for // end parallelend for // jiter← iter + 1end while
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Figure 3.21: Parti
le size distribution in terms of sphere equivalent radius after the initialgeneration of parti
les and after �nal generation of sample.were optimized by trial and error. The remaining fun
tions are 
hosen as ϕ(Φ) = π/4and ptra(Φ) = 0.5. With these parameters it takes about 250 iterations to in
rease thesolid fra
tion from 0.26 to 0.55. Using six 
ores the total 
omputation time is about 3 h.Finally, �gure 3.21 
ompares the initial and �nal parti
le size distribution whi
h nearly
oin
ide. Hen
e, the number of iterations resulting from the above set of parameters issu�
ient.Altogether, the geometri
 sample generation algorithm yields a solid fra
tion ofabout 0.5 in a reasonable amount of 
omputation time. The generated random samplesare homogeneous, isotropi
, and free of 
onta
ts. To generate a 
lose pa
kage the DEMs
heme is applied with the output of the geometri
 s
heme as initial state, be
ause itis assumed to produ
e more realisti
 fabri
 properties than a purely geometri
 s
heme.3.5 Silo Dis
harge ExampleThe DEM s
heme is validated by means of a laboratory silo dis
harge experiment.Sin
e no superquadri
 experiments are reported in the literature, spheri
al parti
lesare used. Choi et al. [32℄ analyze the velo
ity pro�le in a quasi 2D silo using an imagebased parti
le tra
king method. The box-shaped silo of size [20× 2.5× 90] 
m is �lledwith soda lime glass beads of slight polydispersity (d = 3±0.1 mm) using a distributed�lling pro
edure. The re
tangular ori�
e ([16×25]mm) at the bottom 
enter is openedand a steady state �ow is allowed to develop before the tra
king pro
edure starts. Thetra
king 
overs the re
tangular [20 × 50] 
m front view above the ori�
e at a rate of125 frames per se
ond for 16.4 s. For evaluation of the velo
ity pro�le the observationwindow is divided into [48×48]mm 
ells used as averaging domains. For a more detaileddes
ription of the data gathering and evaluation see [31, 32℄.The elasti
 parameters of soda lime glass are given in e.g. [102, 64, 87, 117℄. Thereported values show little varian
e and mean values of E = 71 GPa and ν = 0.22. Themass density is given uniquely as ρ = 2.5 g/cm3, and the fri
tion 
oe�
ient of dry sodalime glass beads has been measured by Ishibashi et al. [86℄ as µ = 0.162. The gravity
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les DOF time steps ∆t 
ores 
omputation time
190 782 1 144 692 3× 106 10µs 8 219 hTable 3.2: Simulation details of the silo dis
harge example.
onstant is set to as g = 9.81 m/s2. Sin
e the parti
les in the vi
inity of the ori�
e moveat reasonable velo
ities, the vis
oelasti
 
onta
t law des
ribed in se
tion 3.2 is applied.The material 
onstant A 
an be determined by measuring the normal 
oe�
ient ofrestitution [102, 64, 117℄ yielding A = 5.05× 10−8 s for the soda lime glass beads. This
orresponds to a restitution 
oe�
ient of 0.97 at a relative velo
ity of 1.18m/s and aparti
le size of d = 3.18 mm. The material properties of the glass silo are assumed to beidenti
al with the glass bead properties. For parti
le-boundary 
onta
ts basi
ally thesame 
onta
t formulation is used as for inter-parti
le 
onta
ts whereas the te
hni
aldetails are postponed to se
tion 4.1.The parti
les' sti�ness and size require a time step of the order of ∆t ≈ 1µs. Fora total simulation time of the order of 10 s this results in a number of time steps ofthe order of 107. Combined with a number of parti
les of N ≈ 2 × 105 this yields ahuge 
omputational e�ort. However, numeri
al tests show that the system's behavioris not altered signi�
antly by redu
ing the sti�ness of the parti
les to E = 0.9 GPa.This value assures that the overlap 
orresponding to the maximum 
onta
t for
e atthe silo bottom is less than 1% of the parti
le radius. In this derivation the averagebottom for
e is multiplied by a se
urity fa
tor of 10 to a

ount for the �u
tuations dueto the for
e 
hain mi
rostru
ture. In order to preserve the dynami
 parti
le behaviorthe vis
oelasti
 
onstant is adopted to A = 2.9×10−7 s. The sti�ness redu
tion enablesa time step of ∆t = 10µs resulting in 3× 106 steps for a simulation period of 30 s, seetable 3.2 for the simulation details.The initial sample is generated using the geometri
 s
heme from se
tion 3.4.4 withparti
le sizes uniformly distributed in [2.9, 3.1]mm and Φ̂ = 0.5. To a

ount for thesolid fra
tion of a 
lose pa
kage (Φ ≈ 0.6) the box used as pa
kage spa
e is enlargedin the z dire
tion to 1.08m. In order to get realisti
 fabri
 properties the sample issettled under the in�uen
e of gravity using the DEM s
heme and the above materialparameters. As the kineti
 energy is nearly dissipated, the ori�
e is opened and the silodis
harge is simulated for 30 s writing output at 0.3 s intervals, see �gure 3.22. Aftera short time a steady state �ow develops with a mass �ow rate of Q = 132.6 g/s. This
orresponds to a deviation of 6% from the experimental �ow rate of Q = 141.1 g/s.Considering the un
ertainties regarding the initial fabri
 and the 
ontainer-parti
lefri
tion this agreement is satisfa
tory.In order to dedu
e a 
ontinuous downward velo
ity distribution v(x) from thedis
rete DEM output a 
oarse graining s
heme is applied. For this purpose the box-shaped [20 × 2.5 × 50] 
m volume above the ori�
e is divided into a regular grid of

[40 × 1 × 80] linear hexahedrons. An ansatz vh is de�ned on the hexahedron meshand �tted to the dis
rete DEM results using a volume weighted least square �t. Thedetails of this approa
h are postponed to 
hapter 6. Finally, the velo
ity pro�le isevaluated in the silo mid-plane and averaged over the data points between t = 5 s and
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Figure 3.22: Silo example with 190 782 spheres 
olored a

ording to their initial height.
t = 20 s. The resulting pro�le is 
ompared with the experimental pro�le from [32℄ in�gure 3.23(a). There is a good agreement of the maximum velo
ity at the ori�
e, ofthe velo
ity gradient around the ori�
e, and of the run of the 
ontour lines. The DEMs
heme predi
ts a realisti
 shape of the stagnant zones at the lower silo 
orners. Forquantitative 
omparisons 1D velo
ity pro�les are evaluated at two heights sket
hedin the right part of �gure 3.23(a). The results are presented in �gure 3.23(b). Whilethere is a 
lose agreement of the pro�les in the vi
inity of the ori�
e at z = 9.1 d, thesimulation predi
ts higher downward velo
ities at the boundaries at z = 29.1 d. Notethat this deviation might result to some extent from the di�erent evaluation s
hemes.While the DEM data is averaged over the whole depth of the silo, the experimentalimage-based parti
le tra
king method is based solely on the parti
le traje
tories at thefront window.
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Figure 3.23: Comparison of 2D downward velo
ity pro�les from simulation and experiment[32℄. The dashed lines in the right pi
ture of (a) show the positions of evaluationof the 1D velo
ity pro�les presented in (b).
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Chapter 4Granular-Stru
ture Intera
tionThe intera
tion of granular materials and solid stru
tures plays an important rolein various �elds. Regarding industrial pro
esses prominent examples are milling andmixing devi
es, 
onveyer belts, and storage devi
es like silos, hoppers, and bins. Ingeome
hani
s the intera
tion o

urs at the interfa
e of 
onstru
tion parts with thesurrounding soil su
h as in pile driving. Another �eld is the mining industry where solid-granular intera
tions o

ur in ex
avation pro
esses like in dragline ex
avators. A propernumeri
al model of the intera
tion 
an yield a better understanding of the observedphenomena and might enable an optimization of the pro
esses and devi
es involved.Su
h a model results from the 
ombination of the Finite Element Method (FEM) andthe Dis
rete Element Method (DEM). While the FEM is the most appropriate methodfor modeling solid stru
tures, the DEM is a 
onvenient tool for modeling granularmaterials, espe
ially if large dis
ontinuous deformations are involved, whi
h applies tomost of the above examples.One way of 
oupling the DEM and the FEM is to 
onsider the dis
rete parti
lesas deformable and dis
retize them with �nite elements. Standard FE te
hniques are
ombined with the automati
 
onta
t dete
tion s
hemes and 
onta
t models used inDEM, see e.g. [107, 14, 125, 138, 123, 96℄. If the assumption of rigid dis
rete parti
lesis appropriate, it is more 
onvenient to dis
retize only the solid stru
ture via FE andsti
k to the 
lassi
al DEM s
heme for modeling the grains, see e.g. [133, 139, 129℄.In this 
ase the intera
tion is modeled through 
onta
ts between dis
rete parti
lesand the FE surfa
e mesh. Sin
e the fo
us of this work lies on non-
ohesive fri
tionalgranular materials the se
ond approa
h is followed. An appropriate 
onta
t model isdeveloped in se
tion 4.1. This model at hand, the FE and DE system 
an be integratedin time simultaneously using expli
it time integration s
hemes and updating the FE-DE 
onta
t for
es after ea
h integration step. The implementation details are given inse
tion 4.2 and the 
oupled s
heme will be exempli�ed in se
tion 4.3.4.1 Conta
t ModelWithin the FEM setting 
onta
t is 
ommonly handled by introdu
ing the impenetra-bility 
ondition via the penalty or Lagrange multiplier method. For the evaluation of59



60 CHAPTER 4. GRANULAR-STRUCTURE INTERACTIONthe resulting boundary integrals di�erent methods exist, whi
h are des
ribed by e.g.Laursen [106℄, Wriggers [181℄, and Wriggers and Laursen [183℄. Sin
e these methodsare designed for 
onta
ts of two FE meshes and are burdened by relatively high 
om-putational demands, they are not appropriate for the 
oupled DEM-FEM setting 
har-a
terized by a huge number of 
onta
ts between dis
rete parti
les and a FE mesh. Inthis 
ase it is more 
onvenient to use simple penalty type models, that are also appliedto resolve the inter-parti
le 
onta
ts in the DEM s
heme. Regarding the Hertz-Mindlin
onta
t model des
ribed in se
tion 3.2 the 
onta
ting surfa
es have to be smooth, pro-viding 
urvatures and a unique normal at ea
h point. Generally, FE surfa
es do notful�ll this requirement ne
essitating a workaround. The �rst opportunity is to de�nea smooth surfa
e based on the surfa
e nodes using e.g. a subdivision te
hnique [56℄.However, su
h methods are burdened with a prohibitive 
omputational e�ort and donot �t easily into the automati
 
onta
t dete
tion s
heme of the DEM. The se
ondopportunity is to use the original FE surfa
e 
ombined with a spe
ial treatment of sit-uations where parti
les are in 
onta
t with non-smooth parts of the surfa
e, i.e. elementedges or 
orners. Here the se
ond option is 
ombined with a simpli�
ation des
ribedin the following.In order to enable arbitrary element types in the FE model it is ne
essary to handle
onta
ts of parti
les and arbitrary element surfa
es. This, however, requires a hugeimplementation e�ort for the lo
al 
onta
t dete
tion sin
e ea
h element type has to be
onsidered separately. Furthermore, it poses a problem for the global 
onta
t dete
tionalgorithm, whi
h requires the element surfa
es' bounding volumes. For higher-ordersurfa
es su
h as a nine-node biquadrati
 surfa
e the bounding volume determinationis not straightforward, be
ause the surfa
e points are no longer restri
ted to lie withinthe 
onvex hull de�ned by the nodes. To over
ome these problems arbitrary elementsurfa
es are dis
retized by linear triangles like exempli�ed in �gure 4.1(a). Regarding
onta
t dete
tion this dis
retization yields 
ru
ial simpli�
ations 
overed in se
tion4.2. Regarding the 
onta
t model things simplify as well, sin
e only plane triangleshave to be 
onsidered. For this reason, boundaries in 3D DEM simulations are oftenrepresented by triangular meshes, see e.g. [83, 97, 35℄. In the following, parti
le relatedquantities will be denoted by Greek indi
es, nodal related quantities by upper-
aseLatin indi
es, and triangle related quantities by lower-
ase Latin indi
es. For a 
onta
tof a parti
le Pα and a plane triangle Ti like depi
ted in �gure 4.1(b) the Hertz-Mindlin
onta
t model des
ribed in se
tion 3.2 
an be applied right away 
onsidering the zeroprin
ipal 
urvatures of the plane. The 
onta
t point pα is 
omputed from the trianglenormal ni, 
f. appendix A.2. Introdu
ing the triangle plane Ei as
Ei := {x | x ·ni = si} with si := xI ·ni , xI ∈ Ti , ‖ni‖ = 1 , (4.1)the 
onta
t point pi is given as proje
tion of pα onto Ei

pi := pα + (si − pα ·ni) ni . (4.2)The 
onta
t for
e fαi is split in a stati
 equivalent way onto the FE nodes using thelinear shape fun
tions NI . These are equivalent to the natural 
oordinates of pi in Ti

NK(pi) :=
AK

A
=

1

2A
‖(pi − xI)× (xJ − xI)‖ with ǫIJK = 1 , (4.3)



4.1. CONTACT MODEL 61a b
x3

A3

A1

Ti

−A3

A
fαi

x2

x1

Pα

−A2

A
fαi

pi

−A1

A
fαi

ni

pα

A2
fαi

Figure 4.1: a) Dis
retization of a six node quadrati
 tetraeder surfa
e by four linear triangles.b) Stati
 equivalent split of parti
le-triangle 
onta
t for
e onto FE nodes.where A is the triangle area and ǫIJK is the Levi-Civita symbol. Thus, the nodal for
esresulting from the 
onta
t αi are given as
fK := −NK(pi) fαi . (4.4)4.1.1 Non-Smooth Conta
tIf a parti
le 
omes into 
onta
t with a non-smooth part of the dis
retized surfa
e,the assumptions of the Hertz-Mindlin 
onta
t model are no longer ful�lled. Hen
e, asimple, heuristi
, penalty-type s
heme is required, whi
h is not derived from 
ontin-uum me
hani
s but nevertheless yields reasonable results in the sense of the following
onditions:I. If Pα penetrates Ti without an edge of Ti interse
ting Pα (plane 
onta
t), thestandard Hertz-Mindlin model should be applied. On the other hand, if Pα doesn'tpenetrate Ti, the 
onta
t for
e should vanish.II. As a 
onta
t pair (Pα, Ti) evolves from a plane 
onta
t to a non-smooth 
onta
tand vi
e versa, the s
heme should yield no for
e dis
ontinuity, be
ause this would,�rst, be an unphysi
al behavior and, se
ond, lead to numeri
al problems.III. For an elasti
, fri
tionless impa
t of a parti
le on a rigid surfa
e the energy shouldbe 
onserved. For a spheri
al parti
le the 
onta
t for
e depends solely on its 
enterposition. Then the energy 
onservation 
ondition is equivalent to a 
url free for
e�eld ▽× fαi(x) = 0.Additionally, a desirable feature regarding the implementation of the 
onta
t model isthat ea
h triangle 
an be handled separately, whi
h simpli�es the 
onta
t dete
tion andparallel pro
essing. In the following, some approa
hes will be analyzed with respe
t to
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e Pat
h b: Common Plane
Ti

Tj

Pα

Tj

Pα

Pα

Ti

Tj

Ti

Figure 4.2: a) Smooth surfa
e pat
h de�ned by three nodes. At the transition from a planeto an edge 
onta
t the interpenetration distan
e is dis
ontinuous.b) Common plane de�nition for non-penetrating and penetrating obje
ts.the above 
onditions and to their 
omputational demands. Sin
e the main problem ofnon-smooth 
onta
ts is the de�nition of a 
onta
t normal, 
onta
t point, and normalfor
e magnitude, the tangential part is not 
overed in this se
tion. The above quantitiesat hand, the tangential model presented in se
tion 3.2.2 
an be applied right away.Lo
al Smooth Surfa
e Pat
hesIf a parti
le 
onta
ts an edge or a 
orner, a smooth surfa
e pat
h 
an be de�nedon the neighboring nodes like depi
ted in �gure 4.2(a). However, like exempli�ed inthe �gure, this approa
h yields a jump in the interpenetration distan
e at the tran-sition from a plane to an edge 
onta
t. A quadrati
 surfa
e pat
h is de�ned by threeneighboring nodes. In the moment of transition the interpenetration distan
e with thispat
h is 
onsiderably greater than the plane interpenetration resulting in a normalfor
e dis
ontinuity. The ratio of the plane and the pat
h interpenetration in
reases asthe plane interpenetration de
reases, i.e. as the materials be
ome sti�er. Therefore, forsti� materials this approa
h yields an unphysi
al behavior or even an unstable expli
ittime integration. Furthermore, triangles 
annot be pro
essed separately, sin
e surfa
epat
hes are de�ned on nodes of multiple triangles.Common PlaneThe 
ommon plane approa
h was introdu
ed by Cundall [43℄ to handle 
onta
ts be-tween polyhedrons. For two separated bodies the 
ommon plane is de�ned as the planethat bise
ts the spa
e between the bodies and maximizes their minimum distan
e to theplane. Similarly, for two penetrating bodies the plane is de�ned as the plane that mini-mizes the maximum interpenetration, see �gure 4.2(b). For a superquadri
 parti
le andthe triangulated surfa
e the 
ommon plane has to be determined by an iterative s
hemesimilar to that used for the inter-parti
le 
onta
ts. Sin
e the plane varies smoothly with
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t Potential b: Integration of Parti
le Potentials
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Figure 4.3: a) Non-smooth 
onta
t des
ribed via a 
onta
t potential W (A) de�ned in termsof the interpenetration area A(ϕ,x) (volume V in 3D).b) Ea
h 
onta
t partner is des
ribed via a potential fun
tion ϕ that vanishes onthe boundary and in
reases monotoni
ally in dire
tion of the �
enter�.the parti
le and nodal positions, 
onditions I and II are ful�lled, while the energy 
on-dition III will not be ful�lled in general. Furthermore, the surfa
e triangles 
annot bepro
essed separately, sin
e the de�nition of the 
ommon plane is based on adja
enttriangles.Conta
t PotentialFeng and Owen [62℄ use a 
onta
t energy potential W to handle 
onta
ts betweenpolygonal parti
les. Considering one 
onta
t partner as �xed, they de�ne W (A) as afun
tion of the interpenetration area A, whi
h in turn is a smooth fun
tion of the freeparti
le's position (x, ϕ), see �gure 4.3(a). The 
onta
t for
e and torque are de�ned aspartial derivatives of the 
onta
t potential with respe
t to the position
f := −∂W

∂x
= −∂W

∂A

∂A

∂x
, m := −∂W

∂ϕ
= −∂W

∂A

∂A

∂ϕ
.Due to the de�nition via a potential this s
heme ful�lls the energy 
ondition III. Addi-tionally, using the interpenetration area A (or volume V in 3D) to de�ne the potentialyields a 
ontinuous for
e. However, in order to ful�ll 
ondition I, W has to be 
hosen sothat its derivative yields the Hertzian for
e for plane 
onta
ts. Considering the ratherintri
ate geometri
al derivations this is an awkward task that 
annot be solved bya formulation W (V ) solely in terms of the interpenetration volume. Furthermore, the
omputation of V and its derivatives for 3D superquadri
s and the triangulated surfa
eare 
omputationally demanding and the triangles 
annot be pro
essed separately.
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le PotentialsAnother s
heme that yields 
onservative 
onta
t for
es has been proposed by Munjiza[123℄. It is based on the introdu
tion of potential fun
tions ϕ for ea
h 
onta
t partner.These are de�ned su
h that ϕ vanishes on the surfa
e and in
reases monotoni
ally to-wards the 
enter, see �gure 4.3(b). Using the inside-outside fun
tion (3.1) the potentialof a superquadri
 Pα reads
ϕα(x) := 1− Fα(x) .For triangular surfa
e elements Ti the distan
e to the plane Ei normalized by some
hara
teristi
 length l 
an be used
ϕi(x) :=

1

l
|si − x · ni| .For the 
onta
t pair (Pα, Ti) let ϕαi := ϕα−ϕi and Vαi the interse
tion volume spe
i�edbelow. The 
onta
t for
e is de�ned as

f :=

∫

Vαi

gradϕαi dV =

∫

Γ(Vαi)

ϕαi n dA ,where Γ(Vαi) is the boundary of Vαi and n is the outward unit normal to Γ(Vαi). Tode�ne the interse
tion volume Vαi some volume has to be assigned to the triangularsurfa
es Ti, see �gure 4.3(b). This might be a

omplished via the original FE mesh.Like the 
onta
t potential s
heme this s
heme yields a 
onservative smooth for
e ful-�lling 
onditions II and III. Triangles 
an be pro
essed separately, sin
e the potentialsare de�ned separately for ea
h triangle. However, there is no feasible way of de�ningthe potentials in a way that the Hertzian solution is re
overed for a plane 
onta
tso that 
ondition I would be ful�lled. Furthermore, the numeri
al evaluation of theboundary integral with a reasonable a

ura
y is 
omputationally demanding for 3Dsuperquadri
s.Weighted Conta
t For
esA straightforward heuristi
 approa
h to non-smooth 
onta
ts is to use weight fun
tionsin 
ombination with the standard 
onta
t model. Let Pα be in 
onta
t with the edge
onne
ting Ti and Tj . The normal 
onta
t for
e 
an be written as
f = wi f i + wj f j . (4.5)The performan
e of this s
heme obviously depends on the de�nition of the weightfun
tions wi. To ful�ll 
onditions I and II the wi must evolve 
ontinuously from wi = 0 ifnot in 
onta
t to wi = 1 for a plane 
onta
t. A possible 
hoi
e of tolerable 
omputational
ost proposed by Han et al. [73℄ is wi := Ãi/Ai, where Ãi is the interse
tion area of Pαand Ti, and Ai is the interse
tion area of Pα and Ei, see �gure 4.6(a). In general, it is

Ãi ≤ Ai, for a plane 
onta
t Ãi = Ai, and for no 
onta
t Ãi = 01. Both interse
tion1For Ai = 0 set wi = 0.
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Figure 4.4: a) Edge 
onta
t of a spheri
al parti
le and two perpendi
ular triangles.b) Coordinate transformation for the for
e �eld visualization.areas are smooth fun
tions of the parti
le and nodal positions. The algorithm appliedfor their determination is des
ribed in appendix A.4.The energy 
onservation properties are analyzed via the example of a spheri
alparti
le and a perpendi
ular edge shown in �gure 4.4(a). Due to the symmetry thenormal 
onta
t for
e �eld f(x) depends only on the x and y 
enter 
oordinate andhas no z 
omponent. For visualization a 
oordinate transformation depi
ted in �gure4.4(b) is used, where γ := δmax/r is the ratio of the maximum interpenetration distan
eand the radius. The transformation reads
x ≤ 0 ∧ y > 0 : ξ = x , η = 1− 1

2 γ

(
1− y

r

)
,

x > 0 ∧ y > 0 : ξ = 1− 1
2 γ

(
1− x

r

)
, η = 1− 1

2 γ

(
1− y

r

)
,

x > 0 ∧ y ≤ 0 : ξ = 1− 1
2 γ

(
1− x

r

)
, η = y .Using this transformation and δmax = 10−2 the resulting for
e �eld is shown in �gure4.5(a). The units are dropped for 
onvenien
e. The magnitudes of the divergen
e and
url of the for
e �eld are plotted in �gure 4.5(b). For a 
onservative for
e �eld the
url vanishes. This is 
learly not the 
ase, espe
ially in the regions where the parti
lesurfa
e 
on�guration is 
lose to a plane 
onta
t. In the regions of plane 
onta
t atboth ends of the strip the 
url vanishes. The divergen
e is plotted for 
omparison ofthe order of magnitude. Numeri
al experiments show that this approa
h 
an result inhuge spurious energy generation and thus should not be applied. In general, using anapproa
h of type (4.5) the 
url 
annot vanish due to the 
onditions I and II. It is

▽× f = ▽×
(
wi f i + wj f j

)
= 0 for arbitrary f i,f j

⇔ ▽× (wi f i) = wi ▽× f i + gradwi × f i = 0

⇔ gradwi × f i = 0⇔ gradwi × ni = 0 .Hen
e, the weight fun
tion has to be 
onstant in any dire
tion parallel to the triangleplane, whi
h is 
learly in
ompatible with the 
onditions I and II.Interpolated Conta
t For
eAn enhan
ement of the above s
heme is depi
ted in �gure 4.6(a). In addition to theinterse
tion areas Ã and A, the 
enter c̃ of Ã is determined. Using this, two inter-
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ηFigure 4.5: Normal 
onta
t for
e �eld for example shown in �gure 4.4(a) using weighted 
on-ta
t for
e s
heme (a) and interpolated 
onta
t for
e s
heme (
). Correspondingmagnitudes of the divergen
e and 
url (b) and (d).penetrations and 
orresponding normal dire
tions are de�ned. First, the plane normal

n and interpenetration δ and, se
ond, an interse
tion interpenetration δ̃ and normal
ñ asso
iated with Ã and c̃. For superquadri
s ñ is de�ned via the gradient of theinside-outside fun
tion

ñ := − gradF |c̃
‖gradF |c̃‖ .

δ̃ is de�ned as the distan
e of c̃ to the parti
le surfa
e in −ñ dire
tion, 
f. �gure4.6(a). The overall normal for
e is interpolated between an interse
tion based and aplane based part. For the interpolation the angle α between the normal dire
tions is
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λ
α, °Figure 4.6: a) Parti
le-triangle (•̃) and parti
le-plane (•) interse
tion areas, normals, andinterpenetration distan
es as well as 
enter c̃ of Ã.b) Weight fun
tion for αm = 10◦ and ǫ = 10−3.introdu
ed via 
osα := ñ · n. The for
e is 
hosen as

f := γ E∗

(

λ(α)
Ã

A
δ3/2 n + (1− λ(α)) δ̃3/2 ñ

)

, (4.6)where λ(α) is a weight fun
tion, whi
h yields a smooth transition from the plane 
onta
tto an edge 
onta
t, and γ and E∗ are de�ned in se
tion 3.2.1. The weight fun
tion isde�ned as
λ(α) :=

1

2
[tanh(q (
osα− 
osαm)) + 1] with q :=

tanh−1(1− 2 ǫ)

1− 
osαm

,where αm is the angle of equal weight (λ(αm) = 1/2) and ǫ is a small deviation fromunity, i.e. λ(0) = 1 − ǫ. Figure 4.6(b) shows the weight fun
tion for αm = 10◦ and
ǫ = 10−3. The transition from λ ≈ 1 to λ ≈ 0 takes pla
e in the relatively narrow rangebetween 5 and 15 degrees. The for
e �eld for the example depi
ted in �gure 4.4(a)is plotted in �gure 4.5(
) and its divergen
e and 
url in �gure 4.5(d). Compared tothe approa
h expressed in (4.5) the maximum 
url magnitude is redu
ed by a fa
torof 20. As a result, the spurious energy generation is also redu
ed to an admissiblevalue. Furthermore, for the frequent 
ase of a parti
le sliding over 
oplanar trianglesthe s
heme yields a 
onstant normal for
e for reasonable interpenetration distan
es.This is due to the fa
t that in this 
ase λ ≈ 1 and the individual Ã sum up to A.Additionally, the s
heme allows to pro
ess the triangles separately.4.2 ImplementationDue to the surfa
e dis
retization des
ribed in se
tion 4.1 the implementation of the
oupled DEM-FEM s
heme requires no major adaption of the DEM implementation
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tion 3.4. A general overview of the 
oupled solution strategy is given byOwen et al. [139℄. The DE and FE system are integrated in time using expli
it integra-tion s
hemes with identi
al time steps. If not stated otherwise, the 
entral di�eren
emethod des
ribed in se
tion 2.2.3 is applied for the integration of the FE equations. For
onta
t dete
tion the triangular surfa
e elements are treated like DE parti
les meaningthat ea
h triangle Ti holds a Verlet neighbor list. For the evaluation of the Verlet neigh-bor 
riterion between Ti and a parti
le Pα it is not useful to en
lose Ti by its boundingsphere. This would yield a severe over-reporting of neighbors, if the size of Ti is mu
hlarger than the typi
al parti
le size. Thus, the distan
e of xα and Ti is required. Theproje
tion of xα onto Ei is given by
xα,i := xα + (si − xα ·ni) ni . (4.7)If xα,i ∈ Ti, the distan
e is ‖xα,i−xα‖. The 
ondition xα,i ∈ Ti is 
he
ked by 
omputingthe natural 
oordinates of xα,i in Ti like stated in equation (4.3). Using these the
ondition is expressed as

NK(xα,i) ≥ 0 ∀K ∈ Ti ⇔ xα,i ∈ Ti . (4.8)If xα,i /∈ Ti, the minimum distan
e is given as minimum of the distan
es of xα and thetriangle edges, whi
h are easily derived as solutions of quadrati
 equations. Hen
e, theVerlet neighbor 
riterion is expressed asdistan
e(xα, Ti) ≤ rmaxα + dV ⇒ add α to list i , (4.9)where the above pro
edure is abbreviated as distan
e fun
tion. For an e�
ient updateof the neighbor lists the regular grid from the inter-parti
le update is used. For ea
htriangle Ti the set of grid 
ells interse
ted by Ti is determined. Then all parti
les withinthe interse
ted 
ells and their adja
ent 
ells are 
he
ked for the above 
riterion. TheVerlet update 
he
k must take into a

ount the motion of the triangulated surfa
e. Sin
efor a linear triangle all points lie in the 
onvex hull of the 
orner nodes, the maximumdispla
ement is bounded by the maximum 
orner node displa
ement. Hen
e, only thenodes have to be 
he
ked for the update 
riterion
‖xn

I − xV
I ‖ ≥

dV
2

for any I ∈ N
S ⇒ update lists, (4.10)where N

S is the set of surfa
e nodes. Using a spatial sorting of the triangular surfa
esthe traversal of the triangle-parti
le 
onta
ts is parallelized via the same s
heme appliedfor the inter-parti
le 
onta
ts.The implementation is realized by 
oupling the C++ DEM 
ode with the FortranFEM 
ode FEAP (Finite Element Analysis Pa
kage) developed by Taylor [159℄. Aslim Fortran interfa
e subroutine allows to 
all standard high-level FEAP subroutinesfrom the C++ 
ode and pass the required input data. The surfa
e related 
onta
t for
e
al
ulations and neighbor updates are performed within the in-house C++ 
ode. Forthis purpose the required FE surfa
e node data is a

essed dire
tly via C++ pointerspointing at the appropriate FEAP data arrays. In this way, frequent expensive dataex
hange operations are prevented. Furthermore, the 
oupled simulations 
an exploitall 
apabilities provided by FEAP, like e.g. various element types, material models,integration s
hemes, and nonlinear large deformation analyses.



4.3. NUMERICAL EXAMPLES 69a b
l

v0

e3

d

e3

e1

e2

a
a

d = 4 cm, l = 30.7 cm, a = 1 cm, v0 = 1 cm/s

E = 220 GPa, ν = 0.3, ρ = 7.96 g/cm3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.5  1  1.5  2  2.5
 0

 2

 4

 6

 8

 10

 12

di
sp

la
ce

m
en

t, 
µm

co
nt

ac
t f

or
ce

, N

t, ms

sphere

beam

force

analytical
DEM-FEM

Figure 4.7: a) Elasti
 beam hit lateral by a sphere of similar mass.b) Comparison of numeri
al and Timoshenko's analyti
al solution.4.3 Numeri
al ExamplesThe 
oupled s
heme is tested by four numeri
al examples. The 
orre
t implementa-tion is veri�ed via two small-s
ale problems with analyti
al solutions. Afterwards, thes
heme's 
apability to model real granular-solid intera
tions is exempli�ed via a rubber-blo
k on sand example and a 
ylindri
al triaxial test example.
4.3.1 Lateral Beam-Sphere Impa
tThe implementation of the 
oupled time integration is 
he
ked by 
onsidering an elasti
beam hit lateral by a sphere of similar mass like depi
ted in �gure 4.7(a). A solution ofthis problem was derived by Timoshenko [164℄. Based on an eigenmode analysis of thebeam and the Hertzian 
onta
t theory he 
omputed the displa
ement of the beam andthe sphere as well as the 
onta
t for
e during the impa
t. Both 
onta
t partners aremade of steel and the material parameters are listed in �gure 4.7(a). For the DEM-FEMsimulation the beam is dis
retized by 10 equi-sized quadrati
 hexahedral elements alongthe beam axis. Linear elasti
 material behavior and small deformations are assumedand a time step of ∆t = 0.6µs is 
hosen. No gravity is 
onsidered in this problem. Theresultant displa
ements and 
onta
t for
e are 
ompared to Timoshenko's solution in�gure 4.7(b). The numeri
al solution agrees with the analyti
al solution. The impa
tis 
hara
terized by two shorter impa
ts at the beginning and at t ≈ 1.5 ms. This isdue to the monotoni
 sphere motion and the os
illating beam motion. After the se
ondimpa
t the sphere departs with a velo
ity of v = 0.35 cm/s and is not hit by the beamagain.
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Figure 4.8: a) Dis
retization of plane (pl) and bra
histo
hrone (br) 
urve.b) Analyti
al and numeri
al solution for both 
urves.4.3.2 Bra
histo
hrone CurveTo test the non-smooth 
onta
t model des
ribed in se
tion 4.1.1 the well-known bra
his-to
hrone problem is 
onsidered. Given two points A and B the bra
histo
hrone 
urveis the 
urve of fastest des
ent, i.e. the 
urve 
onne
ting A and B that is 
overed in theleast time by a body that starts from rest at A and moves along the 
urve to B underthe a
tion of gravity and without fri
tion. The most famous mathemati
ians of the 17th
entury showed that this 
urve is a 
y
loid. Within this example the distan
e of the endpoints is ∆x = 20 cm in horizontal dire
tion and ∆z = 10 cm in the verti
al dire
tion.The points are 
onne
ted by a plane and the bra
histo
hrone 
urve, whose dis
retiza-tions are plotted in �gure 4.8(a). Both 
urves are 
onsidered rigid and fri
tionless. Thematerial parameters of the elasti
 spheres of size r = 1 cm are E = 0.1 GPa , ν = 0.3,
ρ = 1 g/cm3, and A = 10µs. The gravity 
onstant is 
hosen as g = 9.81 m/s2 and the timestep as ∆t = 1µs. The 
omputed motions are 
ompared to the analyti
al solutionsin �gure 4.8(b). For the plane 
urve the solutions agree with a maximum 
oordinatedeviation of less than 5µm. For the bra
histo
hrone 
urve the agreement is worse witha maximum deviation in the z 
oordinate of about 0.7 
m. This is due to the fa
t thatin 
ontrast to the plane 
urve the bra
histo
hrone 
urve 
annot be represented exa
tlyvia plane triangles. Nevertheless, the results for the plane 
urve show that the 
onta
tmodel yields smooth 
onta
t for
es as the parti
le slides a
ross edges between adja
enttriangles.4.3.3 Rubber Blo
k on SandThe 
oupled s
heme is used to model a rubber blo
k pulled over a dry sand sample. Thegeometry of the rubber blo
k is given in �gure 4.9(a). It 
onsists of a sti�er top-layerand a not
hed rubber body. The whole body is dis
retized by 1480 quadrati
 hexahedral
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Figure 4.9: Geometry (a) and surfa
e dis
retization (b) of rubber blo
k. The 
olored region
orresponds to one quadrati
 hexahedral element.
) Normal pressure distribution in 
onta
t surfa
e.elements and the 
orresponding surfa
e dis
retization is shown in �gure 4.9(b). The toplayer is modeled by a Neo-Hookean material model with the material parameters E =
94 MPa, ν = 0.3, and ρ = 3 g/cm3. For the rubber body a Mooney-Rivlin material modelis applied using the parameters E = 9.4 MPa, ν = 0.41, c = 0.05, and ρ = 0.8 g/cm3[188℄. The sand is represented by 31 763 superquadri
 parti
les whose bounding radiivary between 0.3mm and 0.8mm and whose angularity parameters are 
hosen equallydistributed from [0.6, 1.2], 
f. se
tion 5.2. The initial parti
le pa
kage was generatedusing the geometri
 sample generation s
heme until Φ = 0.5 and a subsequent parti
lesettlement under gravity. The material parameters along with simulation parameters
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E ν ρ A µDE-DE µDE-FE g ∆t50GPa 0.3 2.55 g/cm3 200µs 0.24 1 9.81 m/s2 0.08µsTable 4.1: DE material and simulation parameters for the rubber blo
k example.are listed in table 4.1. Note that the 
hosen damping 
onstant yields a restitution
oe�
ient of 0.96 for a relative velo
ity of v = 1 m/s.The rubber blo
k is pressed with a 
onstant pressure of 250 kPa onto the sandsample and dragged for 4.8ms with a 
onstant velo
ity of 30 km/h in the horizontal xdire
tion. The simulation details are listed in table 4.2. Figure 4.9(
) shows the rubberblo
k's surfa
e 
olored a

ording to the normal pressure, whi
h is 
omputed from thenodal 
onta
t for
es, triangle normals, and triangle areas. Initially, a smooth pressuredistribution evolves over the 
onta
t surfa
e. As the parti
les are dragged with therubber blo
k, pressure 
on
entrations are initiated at the front, where the pressurerea
hes about the tenfold of the top-pressure. As the blo
k is dragged further along,the 
on
entrations move ba
kwards. Meanwhile, parti
les �ll up the not
h and damup in front of the blo
k. Note that the parti
le spa
e is bounded by a rigid box notshown in the �gure, and that this is the reason that the parti
les do not over�ow theblo
k at the end of the simulation. Altogether, the results exemplify the 
apabilities ofthe 
oupled s
heme in the large deformation setting and with superquadri
 parti
les.Again, the non-smooth 
onta
t model yields smooth for
es for edge 
onta
ts, whi
harise frequently as the blo
k is dragged over the sand grains.4.3.4 Triaxial Test on Glass BeadsThe 
oupled s
heme is applied to laboratory triaxial tests on glass beads performed byAlshibli and Roussel [4℄. Within these tests a 
ylindri
al sample of dry, spheri
al sodalime glass beads is en
losed by a rubber membrane around the perimeter and by twometal plates at the top and bottom, 
f. �gure 4.10(a). A 
onstant lateral pressure isapplied to the membrane. The sample is 
ompressed slowly by the metal plates mea-suring the resultant for
e and the volume 
hange inside the membrane. By relating themeasured axial to the 
onstant lateral pressure the shearing resistan
e of the sample isdetermined. Alshibli and Roussel [4℄ used di�erent bead size distributions, two of whi
hare modeled here and given as (L : d ∈ [3.3, 3.6]mm) and (M : d ∈ [1.55, 1.85]mm). Thematerial parameters of the glass beads are provided in the literature as E = 63 GPa,

ν = 0.23, ρ = 2.55 g/cm3 and µ = 0.16. Sin
e the experiments are performed underquasi-stati
 
onditions, the 
riti
al damping model with ζ = 0.9 is applied. The fri
-tion 
oe�
ient between the rigid plates and the parti
les is 
hosen as µDE-RIG = 0.1 andbetween the rubber and the parti
les as µDE-FE = 0.2. The simulations are performedparti
les elements nodes DOF time steps 
ores 
omputation time
31 763 1480 17 974 244 500 60 000 8 5.9 hTable 4.2: Simulation details of rubber blo
k example.
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Figure 4.10: a) Triaxial sample (M) with end plates and triangulated membrane.b) Sample at 25% 
ompression shows bulging deformation.under gravity g = 9.81 m/s2.The rubber membrane is modeled using a 4-node membrane element introdu
ed byGruttmann and Taylor [72℄. The element is appli
able for large elasti
 deformationsand in
ompressible material. To model the rubber material a three-term Ogden model[135℄ is applied with parameters 
hosen a

ording to [135℄ and listed in table 4.3. Theseparameters yield a small strain elasti
 modulus of E = 3µ = 1.5 MPa. The membranethi
kness is 
hosen as 0.3mm. In order to enable larger time steps the density is s
aledby a fa
tor of about �ve to ρ = 5 g/cm3.As already noted in se
tion 3.4.4 an important aspe
t regarding the bulk me
hani
albehavior of a parti
le sample is the way of preparation. In the experiments the rubbermembrane is stret
hed around a mould and a va
uum is applied. The beads are �lledinto the mould by four layers and after ea
h layer the sample is tapped gently witha plasti
 rod. When the mould is �lled it is pla
ed between the end platens and themembrane is �xed to the platens. Finally, the mould is released, a lateral pressure of[25, 100, 250, 400℄ kPa is applied, and the sample is 
ompressed at a rate of 0.5mm/min.The above preparation pro
edure is repla
ed by the geometri
 generation s
hemewith a rigid 
ylinder and Φ = 0.5. Afterwards, the 
ylinder is shrunk until an aver-age hydrostati
 pressure of p = 1 kPa is rea
hed. For this purpose an adaptive stress
ontrolled algorithm is applied whi
h is des
ribed in detail in se
tion 5.1.3. Next, therigid 
ylinder is repla
ed by the FE membrane, the lateral pressure is applied, and the
µ1 α1 µ2 α2 µ3 α3

1.491µ 1.3 0.003µ 5 −0.0237µ -2Table 4.3: Parameters of three-term Ogden model with µ = 0.5MPa.
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les elements nodes DOF time steps ∆t, µs 
ores 
omp. timeL 15 014 192 221 90 747 7 594 734 0.158 8 16.62 hM 125 184 192 221 751 767 7 503 167 0.06 8 113.71 hTable 4.4: Simulation details for triaxial tests at σ1 = −100 kPa.sample is 
ompressed via the rigid end plates.Regarding the 
ompression rate a typi
al problem of quasi-stati
 DEM simulationsis the simulation time. Within the laboratory experiments the deformation rate is
hosen as ǫ̇ = −5.95× 10−5 1/s. For a 
riti
al time step of ∆t ≈ 0.1µs and a maximum
ompression of 25% this yields a number of time steps of about 109, whi
h is notfeasible. In order to determine the in�uen
e of the deformation rate on the resultingstress-strain behavior the triaxial test is repeated with di�erent values of ǫ̇. To quantifythe system's dynami
s da Cruz et al. [49℄ introdu
e the inertial parameter
I := |ǫ̇|

√
m

dp
,where m is the typi
al parti
le mass, d the typi
al parti
le size, and p the hydrostati
pressure. The stati
 limit is given by I → 0, and Agnolin and Roux [2℄ showed that thequasi-stati
 regime is given approximately by I < 10−5. The triaxial test is repeatedwith 
ompression rates 
orresponding to I = 10−6, I = 5× 10−7, and I = 10−7. Sin
ethe results show no signi�
ant di�eren
es, I = 10−6 is used in the following, whi
h
orresponds to about 107 time steps. Note that in the Hertzian 
onta
t model the
onta
t sti�ness is not 
onstant but depends on the 
onta
t for
e. Hen
e, a higherhydrostati
 pressure results in larger average 
onta
t for
es, higher average 
onta
tsti�nesses, and thus a smaller 
riti
al time step. On the other hand, for a spe
i�edinertial parameter and �nal 
ompression, a higher hydrostati
 pressure allows a higherdeformation rate and therefore a shorter simulation time. The simulation details of the

σ1 = −100 kPa tests are given in table 4.4.Figure 4.10(b) shows the bulging deformation mode of the 
ylindri
al sample at 25%axial 
ompression whi
h agrees with the experimental observations made by Alshibliand Roussel [4℄. No shear band formation is observed whi
h is a well-known sour
e ofsoftening in triaxial tests on granular materials that, however, is indu
ed by imperfe
tboundary 
onditions, 
f. [58℄. For the evaluation of the simulations the axial stress isderived from the resultant for
es on the end platens. Furthermore, the solid fra
tion isdetermined from the volume inside the membrane and the axial 
ompression strain fromthe 
ylinder height. The results are 
ompared with the experimental values in �gure4.11. The results for both size distributions are very similar. The prin
ipal stress ratio,i.e. the axial stress divided by the 
onstant lateral stress, in
reases until a maximumvalue of about 2.5 at about 3% 
ompression. From there on the ratio de
ays monoton-i
ally until the �nal 
ompression. The deformation is a

ompanied by dilation, i.e. anin
rease of the sample volume 
orresponding to a de
rease in the solid fra
tion. Thenumeri
al stress results deviate from the experimental results to a maximum of about10%. The de
rease in solid fra
tion, however, is underestimated by the DE-FE model.
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Figure 4.11: Prin
ipal stress ratio (a) and solid fra
tion (b) vs. axial strain.While in the experiments the �nal solid fra
tion is Φ ≈ 0.58, the model predi
ts an ini-tial de
rease to Φ = 0.6 from where Φ is 
onstant. Another noti
eable di�eren
e is themissing of kinks shown by some of the experimental 
urves. A

ording to Alshibli andRoussel [4℄ these are due to the sudden rearrangement of grains and the 
orrespondingreorganization of the for
e 
hains within the sample. The observed deviations mightbe due to some un
ertainties in the DE-FE model. First, the real sample preparationmight yield a di�erent pa
kage than the numeri
al approa
h. Although there is a goodagreement of the initial solid fra
tion, the fabri
 inside the sample might be di�erent.Se
ond, no details about the rubber membrane are provided in [4℄, so that reasonablevalues for the material parameters, thi
kness, and initial deformation have to be 
hosen.The same holds true for the parti
le-membrane and parti
le-platen fri
tion 
oe�
ients.



76 CHAPTER 4. GRANULAR-STRUCTURE INTERACTION



Chapter 5HomogenizationWithin this 
hapter the e�e
tive behavior of the parti
le model proposed in 
hapter 3is derived via a homogenization s
heme. This is ne
essary in order to
• 
ompare the dis
rete model's behavior to that of real granular materials deter-mined via laboratory tests and
• �t a 
ontinuum model, whi
h will be applied in the two-s
ale approa
h proposedin 
hapter 6.In the following parti
le-s
ale quantities are denoted as mi
ros
opi
 quantities. Onthe other hand, quantities related to a body 
onsisting of a huge number of parti
lesand un�lled voids are denoted as ma
ros
opi
 quantities. In general, two kinds ofhomogenization s
hemes have been proposed for granular materials. First, s
hemes thatare based on dis
rete parti
le-s
ale models of statisti
ally representative volumes underspe
i�
 boundary 
onditions. The e�e
tive behavior is determined by the numeri
alevaluation of volume averaging theorems, whi
h transform the dis
rete results in termsof parti
le traje
tories and 
onta
t for
es into a 
ontinuous des
ription in terms ofstresses and strains. The main problems of this approa
h are the proper appli
ation ofboundary 
onditions and the 
omputational 
ost of the required simulations. Anyway,there is a huge body of results obtained in this way, see e.g. [161, 136, 160, 9, 155, 147,10, 8, 162℄. The se
ond kind are analyti
al homogenization s
hemes whi
h are basedon additional rigorous simpli�
ations of the mi
rostru
tural behavior. These additionalsimpli�
ations of, e.g., the relation between the ma
ro- and parti
le-s
ale deformationor the distribution of 
onta
t normals, enable the analyti
al derivation of a ma
ros
opi

onstitutive equation, see e.g. [33, 27, 137℄.Sin
e no additional simpli�
ations besides those inherent to the DEM should enterthe homogenization pro
ess, a s
heme of the �rst kind is applied here. This s
hemeis 
hara
terized by a periodi
, re
tangular hexahedral unit 
ell, whi
h allows the ap-pli
ation of arbitrary triaxial boundary 
onditions. It is 
overed in se
tion 5.1. Forvalidation the parti
le-s
ale parameters are adapted to a real granular material in se
-tion 5.2. Using these parameters the homogenization s
heme is applied and the resultsare presented in se
tion 5.3. Finally, the parameters of an elasto-plasti
 
onstitutiveequation are �tted to the e�e
tive behavior in se
tion 5.4.77
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 Triaxial Test MethodologyThe starting point of the homogenization pro
ess is the introdu
tion of a statisti
allyrepresentative volume element (RVE). The RVE serves as averaging volume to transferthe dis
rete DEM results into a 
ontinuous des
ription in terms of stresses and strains.Regarding the size of the RVE the �rst pre
ondition for the homogenization approa
hto be meaningful is that the RVE R is mu
h smaller than the typi
al period over whi
hthe ma
ros
opi
 deformation �eld varies. In this way, the behavior of R represents thematerial behavior at a spe
i�
 material point inside the ma
ros
opi
 body. Furthermore,for R to be statisti
ally representative, it must be mu
h larger than the size of thematerial heterogeneities, whi
h for granular materials is the parti
le size. Denoting the
hara
teristi
 size of the ma
ros
opi
 body by D, that of the RVE by d, and the averageparti
le size by δ the above pre
onditions 
an be summarized as the s
ale separationargument
D ≫ d≫ δ . (5.1)Obviously, the 
omputational e�ort of the homogenization pro
edure in
reases with thesize ofR. Hen
e, in pra
ti
e an ensemble of randomly generated RVEs is typi
ally used,and the RVE size is 
onsidered as su�
ient if the variation between the di�erent RVErealizations is below a spe
i�
 toleran
e. A 
ru
ial point regarding the homogenizationof granular materials is the size of the material heterogeneities. Subje
t to the boundary
onditions granular materials tend to develop lo
alizations of deformations in shearbands running through the sample. In this 
ase the s
ale separation d≫ δ is no longerful�lled. Hen
e, the boundary 
onditions must be 
hosen in a way to minimize theprobability of lo
alizations.5.1.1 Periodi
 Re
tangular Hexahedral RVEA problem of homogenization s
hemes based on dis
rete parti
le models is the properde�nition of an RVE and its boundary, whi
h enables the appli
ation of arbitraryboundary 
onditions in a 
onvenient way. A simple approa
h is to en
lose a re
tangu-lar hexahedral parti
le sample by rigid walls, see e.g. [147, 10℄. By 
ontrolling the wallpositions strains 
an be applied. However, the appli
ation of stresses is not straight-forward and due to the rigidity the impa
t of spurious boundary e�e
ts is expe
ted tobe rather high. These problems are redu
ed by approa
hes that emulate the �exiblerubber membrane used in standard laboratory triaxial tests on granular materials, seee.g. [45, 16, 99℄. Here boundary parti
les are 
onne
ted by lines in 2D or triangles in3D and resultant boundary for
es are derived by applying a spe
i�ed pressure on theseboundary segments. While enabling the appli
ation of arbitrary stresses, this approa
hyields problems if, due to the deformation, interior parti
les be
ome boundary parti
lesand vi
e versa. An approa
h without spurious boundary e�e
ts de�nes the RVE as asubset of parti
les inside a larger sample, so that the RVE is 
ompletely surroundedby parti
les, see e.g. [60, 50℄ in 2D and [176℄ in 3D. However, within this approa
hit is not possible to exa
tly spe
ify boundary 
onditions on the RVE. Furthermore,the de�nition of the RVE boundary is di�
ult and might need to be updated during
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Figure 5.1: a) Periodi
 RVE with parti
le Pβ and 
orresponding ghost parti
le Gβ(n). Ea
hboundary 
onta
t exists twi
e on opposite sides of the unit 
ell.b) 3D RVE with ghost parti
les.the deformation. Another approa
h, whi
h works without any arti�
ial boundary, isto use periodi
 parti
le samples where parti
les at opposite boundaries are in 
onta
t.This s
heme is most often used in 
ombination with re
tangular hexahedral samples[44, 161, 136, 160, 137, 9, 155, 8, 162℄ but has also been used with e.g. parallelepipedsamples in 2D [120℄ and 
ylindri
al samples in 3D [40℄. Here the periodi
 approa
husing re
tangular hexahedral samples is applied. This s
heme yields simple expressionsfor the average strains and stresses and allows the pre
ise appli
ation of arbitrary tri-axial strain, stress, or mixed boundary 
onditions. In the remaining of this se
tion theperiodi
, re
tangular hexahedral RVEs and 
orresponding quantities will be introdu
ed.The RVE R is de�ned as the re
tangular hexahedral domain with the dimensions
Li, see �gure 5.1(a). All parti
le 
enters are restri
ted to lie in R, and R is 
onsideredto be a unit 
ell of a periodi
 sample. Consequently, a parti
le whose 
enter leaves Ron one side is re-entered on the opposite side. Furthermore, regarding the boundary
onta
ts, one 
an 
opy R as a unit 
ell to all 26 neighbor 
ells. Obviously, only theparti
les 
lose to the boundary are 
onta
t 
andidates. Furthermore, ea
h boundary
onta
t exists twi
e at opposite sides of R. In the implementation this is handled byghost parti
les Gα whi
h are 
opies of the parti
les Pα inside R displa
ed by unit 
elldispla
ement ve
tors d(n) with

d(n) :=

3∑

i=1

ni Li ei with ni ∈ {−1, 0, 1} . (5.2)Of 
ourse, only those ghost parti
les need to be 
onsidered whi
h are in 
onta
t witha parti
le inside R. Furthermore, to a

ount for the fa
t that ea
h boundary 
onta
t
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e, the neighbor displa
ement ve
tors n are restri
ted to the set N+ of 13ve
tors
n ∈ N+ := {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1),

(1,−1, 0), (1, 0,−1), (0, 1,−1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)} .Figure 5.1(b) shows an RVE with 
orresponding ghost parti
les. Within the Verlet list
on
ept the ghost parti
les are treated like real parti
les. The set of ghost parti
lesis updated when the Verlet lists are updated. At the same time parti
les whi
h leftthe RVE on one side are re-entered at the opposite side. Conta
t for
es from pairs
(Gβ,Pα) are applied to the real parti
les Pα and Pβ like depi
ted in �gure 5.1(a). Thereal parti
le states are updated by the time integration s
heme. Afterwards, the ghostparti
le states are updated using the displa
ement ve
tors d(n).5.1.2 Average Stresses and StrainsThe average stress within a granular medium 
an be derived from the virtual workprin
iple or from stati
s, see the work by Bardet and Vardoulakis [17℄ and the referen
es
ited therein. Depending on the parti
ular de�nition of the RVE boundary and onthe existen
e of 
onta
t torques, the resulting Cau
hy stress tensor might be eithersymmetri
 or non-symmetri
 and a

ompanied by a 
ouple stress. While the latteris frequently used to motivate enhan
ed 
ontinua for the ma
ros
opi
 des
ription ofgranular materials, the validity of either result is a 
ontroversial matter, see e.g. [98, 11,18, 101, 19, 60, 28, 66, 70℄. Nevertheless, it is a 
ommonly agreed fa
t that, independentof the 
onditions quoted above, any unsymmetri
 part of the Cau
hy stress tensorbe
omes negligible for a good s
ale separation, i.e. an RVE 
onsisting of a huge numberof parti
les. Here the derivation from stati
s without 
onta
t torques is applied, whi
hyields the average Cau
hy stress tensor [17℄

〈σ〉 =
1

V

∑

αβ∈B

xαβ ⊗ fαβ . (5.3)
V = L1 L2 L3 is the RVE volume, B is the set of boundary 
onta
ts, xαβ is the 
onta
tpoint, and fαβ is the 
onta
t for
e a
ting on the parti
le inside the averaging volume.The symmetry of expression (5.3) follows from the equilibrium of torques with respe
tto the origin. Due to the periodi
ity B 
onsists only of parti
le-ghost 
onta
ts (Gβ,Pα).Ea
h of these 
onta
ts appears twi
e on opposite sides of the RVE. Hen
e, the aboveexpression simpli�es to

〈σ〉 =
1

V

∑

αβ∈B+

[
xαβ ⊗ fαβ + (xαβ − d(n))⊗

(
−fαβ

)] (5.4)
=

1

V

∑

αβ∈B+

d(n)⊗ fαβ , (5.5)where B+ is the set of 
onta
ts between real parti
les and ghost parti
les. In 
ontrastto the stress de�nition the average strain de�nition requires the introdu
tion of a
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Figure 5.2: Appli
ation of stress boundary 
onditions. While the inner fa
es are �xed theouter fa
es are 
onsidered as walls loaded by the RVE averaged prin
ipal stress
〈σi〉 and the applied prin
ipal stress σi.referen
e 
on�guration. Hen
e, the RVE dimensions Li(t) are expressed as fun
tions ofthe simulation time t and the referen
e 
on�guration is de�ned as the 
on�guration at

t = t0. Then the volume averaged prin
ipal engineering strains are given as
〈ǫi(t)〉 =

Li(t)− Li(t0)

Li(t0)
. (5.6)5.1.3 Appli
ation of Boundary ConditionsBoundary 
onditions are applied by varying the RVE dimensions Li. In this way arbi-trary strain paths ǫi(t) 
an be spe
i�ed. However, to model standard tests on granularmaterials like the triaxial test, stress boundary 
onditions are required. For this pur-pose an adaptive dimension 
ontrol s
heme similar to that proposed by Cundall [42℄is used. The inner boundary fa
es of the RVE are �xed and the outer fa
es are 
on-sidered as walls of 
onstant thi
kness tw and density ρ, see �gure 5.2. Note that theprospe
t of walls is only used to motivate the following s
heme and no parti
le-wall
onta
ts whatsoever are introdu
ed. The inner side of the walls is loaded by the RVEaverage stress 〈σi〉(t), while on the outer side a user spe
i�ed stress σi(t) is applied.The equation of motion of a wall reads

ρ tw Ai L̈i = Ai (σi − 〈σi〉) ⇔ L̈i =
1

ρ tw
(σi − 〈σi〉) . (5.7)Using this, the RVE dimensions Li 
an be integrated in time via an expli
it integrations
heme. However, in order to simulate quasi-stati
 tests it is ne
essary to 
ontrol the



82 CHAPTER 5. HOMOGENIZATIONrate of deformation of the RVE. The dynami
s are quanti�ed through the inertialparameter I introdu
ed in se
tion 4.3.4 and repeated here for 
onvenien
e
I = ǫ̇

√
m̄

d̄ p
.

m̄ is the average parti
le mass, d̄ the average parti
le diameter, and p the pressureinside the sample. Hen
e, for quasi-stati
 tests the stress σi(t) will be 
ontrolled byspe
ifying a target stress σ̃i and a 
orresponding inertial parameter I. This yields thestrain rate
ǫ̇i = I

√

d̄ 〈p〉
m̄

,where 〈p〉 is the RVE average pressure. Spe
ifying an approximate elasti
 modulus Efor the sample the evolution equation and dis
rete update formula for the applied stressare given by
σ̇i = E ǫ̇i sign (σ̃i − σi) , (5.8)

σi(t+∆t) = σi(t) + σ̇i ∆t . (5.9)Together with equation (5.7) this states the stress 
ontrolled adaptive dimension 
ontrols
heme. To redu
e os
illations in the wall movement it is useful to in
lude a dampingterm in equation (5.7)̈
Li =

1

ρ tw
(σi − 〈σi〉)− 2 ζ

√

E

ρ tw Li
L̇i , (5.10)so that ζ = 1 yields a 
riti
ally damped system. As typi
al 
ontrol parameters thewall density ρ is 
hosen as the parti
le density and the thi
kness tw as a small fra
tionof the average parti
le radius tw ≈ 10−2 r̄. The damping is set to ζ = 0.1 and theelasti
ity is 
hosen as E = 0.1 GPa for the tests reported in this 
hapter. The RVEdimensions and dimension velo
ities are updated in ea
h time step until the averagedprin
ipal stress 〈σi〉 rea
hes the target stress σ̃i. Ea
h dimension is 
ontrolled separatelyso that it is possible to use strain 
ontrolled boundary 
onditions in one dire
tion andstress 
ontrolled in another. Furthermore, it is possible to swit
h the type of boundary
ondition during the simulation.5.2 Adaptation of DEM ParametersIn order to model a non-
ohesive fri
tional granular material the DEM parameters needto be adapted to the spe
i�
 material. For this purpose Leighton Buzzard sand sizefra
tion B is 
hosen for the following reasons:

• The grain shape is 
ategorized as rounded to sub-rounded. This grain shape 
anbe represented more a

urately by superquadri
s than angular grains.



5.2. ADAPTATION OF DEM PARAMETERS 83ref. ρ Φmin Φmax d10 d50 d60 d60/d10 shape
g/cm3 mm mm mm[95℄ 2.65 0.57 0.66 rounded - sub-rounded[113℄ 2.65 0.56 0.66 0.64 0.78 0.81 1.27 rounded[148℄ 2.65 0.56 0.68 0.8 1.3 sub-rounded - sub-angular[177℄ 2.65 0.56 0.66 0.84 roundedTable 5.1: Parameters of Leighton Buzzard sand fra
tion B from di�erent referen
es.

• Leighton Buzzard sand is a sili
a sand and the grains show a high resistan
eagainst 
rushing. This is favorable sin
e parti
le breakage is not 
onsidered inthe DEM applied here.
• Leighton Buzzard sand size fra
tion B is widely used in resear
h for laboratorytesting. Hen
e, su�
ient referen
e data exists for validation.
• The grain size distribution lies in the narrow range [0.6 mm, 1.18 mm]. The smallratio of maximum to minimum parti
le size is favorable for the performan
e ofthe DEM s
heme.Chara
teristi
 parameters of the referen
e sand measured by di�erent resear
h groupsare listed in table 5.1. The parameters d10, d50, d60 and d60/d10 
hara
terize the grainsize distribution. However, for their determination the grains are 
onsidered as spheresand therefore no information about the elongation of the grains 
an be dedu
ed. Adetailed analysis of the elongation has been performed by Clayton et al. [34℄ using anautomated imaging method. About 1500 grains were spread on a �at plate and pi
tureswere taken from above. Assuming that the smallest grain dimension is oriented normalto the plate the maximum ins
ribed and minimum 
ir
ums
ribed 
ir
le of a grain weredetermined by an image analysis software. The diameters of these 
ir
les are denotedas the large and intermediate grain dimensions L and I. The grain volume was dedu
edfrom its mass and the small dimension S was derived from the assumption that thegrain volume equals the volume of an ellipsoid of prin
ipal dimensions L, I, and S.The resulting average parti
le dimensions are given as L̄ = 1.14 mm, Ī = 0.79 mm, and

S̄ = 0.61 mm. The superquadri
 radius parameters ri for the random parti
le generationpro
ess are 
hosen from Gaussian distributions with the mean 
hosen a

ording to themeasured grain dimensions and the standard deviation 
hosen as 20% of the mean butwith the restri
tion 0.25 mm < ri < 0.75 mm.Regarding the grain angularity no exa
t, quantitative, standardized 
hara
teriza-tion method exists. Hen
e, the grain angularity is usually 
ategorized by visual in-spe
tion and 
omparison to referen
e 
harts like shown in �gure 5.3(a). However, thisdoes not enable a straightforward adaption of the superquadri
 angularity parameters
ǫi. Therefore, they are 
hosen uniformly distributed in the interval ǫi ∈ [0.6, 1.2] byvisual 
omparison of parti
le sli
es with an angularity 
hart taking into a

ount the
ategorization of Leighton Buzzard sand as rounded � sub-rounded, see �gure 5.3(b).Finally, the elasti
 parameters of sili
a are taken from the literature as E = 50 GPaand ν = 0.2. The fri
tion between dry and wet grains was analyzed by Rowe [146℄ and
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well-rounded sub-rounded angular

sub-angular very angularroundedFigure 5.3: a) Grain shape 
lassi�
ation 
hart after Shepard et al. [153℄.b) Sli
e of a random set of superquadri
s with ǫi ∈ [0.6, 1.2].Ishibashi et al. [86℄ yielding a value of µ = 0.24 as inter-parti
le fri
tion 
oe�
ient fordry sili
a grains. Sin
e the homogenization is performed via quasi-stati
 simulations,the dashpot damping model is used with ζ = 0.9 to redu
e the dynami
s.5.3 ResultsStandard triaxial tests are performed on random parti
le samples. In laboratory test-ing of granular materials the standard triaxial test is performed on 
ylindri
al samples,whi
h are en
losed by a rubber membrane. A 
onstant lateral pressure is applied on themembrane, while the sample is 
ompressed at a 
onstant strain rate in the axial dire
-tion. The shear strength of the material is dedu
ed from the measured axial pressure.The volumetri
 behavior is measured through the volume 
hange inside the membrane.Here, this test is modeled via the periodi
 DEM s
heme by loading random 
ubi
alparti
le samples with a 
onstant pressure in two dire
tions and a 
onstant 
ompressivestrain rate in the third dire
tion.5.3.1 Random Sample GenerationRandom 
lose parti
le pa
kages are generated in two steps. First, the geometri
 pa
kagegeneration algorithm des
ribed in se
tion 3.4.4 is applied to �ll a 
ubi
al periodi
spa
e with a solid fra
tion of Φ = 0.55 using the geometry parameters adapted to thereferen
e sand. In the se
ond step, the periodi
 DEM s
heme is applied to 
ompressthe pa
kage with σi = −1 kPa, where the material parameters adapted to the referen
esand are used ex
ept for the inter-parti
le fri
tion 
oe�
ient. This is 
hosen as variablegeneration parameter to produ
e pa
kages with di�erent initial densities. Note that
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Figure 5.4: Solid fra
tion vs. the fri
tion 
oe�
ient used in the �nal 
ompression phase ofthe random pa
kage generation s
heme.this generation s
heme yields isotropi
 samples, sin
e there is no preferred dire
tion inany of the generation steps.5.3.2 Initial Relative DensityThe initial density of the generated pa
kages depends on the fri
tion 
oe�
ient µ usedin the �nal 
ompression phase. To analyze this relation pa
kages are generated usingvarious µ. A 
ubi
al RVE with L = 10 mm is used resulting in about 1700 parti
les.The resulting solid fra
tions for 〈p〉 = 1 kPa are shown in �gure 5.4. The maximumsolid fra
tion Φmax = 0.722 is rea
hed for a fri
tionless 
ompression phase. From thereon the solid fra
tion de
ays monotoni
ally towards the minimum Φmin = 0.64 for highfri
tion values of µ > 1. These extremal values lie above those from the experimentalstudies reported in table 5.1, whi
h are given as Φmax ≈ 0.66 and Φmin ≈ 0.56. This isassumed to be mainly due to the following reasons: First, the superquadri
s are onlyan approximation of the real grain shape. Se
ond, the pa
kage generation algorithmdoes not model the standardized experimental methods for the determination of Φmaxand Φmin, sin
e this would result in an enormous 
omputational e�ort.Next, the me
hani
al behavior of the samples with di�erent initial relative densitiesis analyzed by means of triaxial tests. For these the inter-parti
le fri
tion is set to theadapted value of µ = 0.24 for all samples. Initially, a hydrostati
 pressure of p = 25 kPais applied. From this referen
e state the prin
ipal stresses σ1 = σ2 are kept 
onstant,while the sample is 
ompressed in the 3-dire
tion using a strain rate 
orresponding toan inertial parameter of I = 10−4. Figure 5.5(a,b) show the results in terms of theprin
ipal stress ratio σ3/σ1 and solid fra
tion Φ vs. the 
ompressive strain −ǫ3. Theinitial relative densities DR are derived from the extremal values Φmax = 0.722 and
Φmin = 0.64. The results are in good qualitative agreement with laboratory tests onnon-
ohesive fri
tional granular materials. Initially, loose pa
kages show the slowestin
rease of stress ratio, whi
h rea
hes a 
onstant value after about 10 � 15% axialstrain. The dense samples show a very steep initial in
rease and rea
h a maximum
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,d), and for di�erent RVE sizes (e,f).shear strength at about 3 � 5% axial strain. The maximum shear strength in
reaseswith the initial relative density. From there on the stress ratio de
reases monotoni
allyto a steady value, whi
h is independent of the initial density. The volumetri
 behaviorof the dense pa
kages is dilatant nearly from the onset of 
ompression, while the solidfra
tion of the loose samples initially in
reases. After about 5% axial strain all samples



5.3. RESULTS 87
L, mm 10 15 20 30number of samples 10 8 5 4number of parti
les 1700 6000 14 000 45 000Table 5.2: Data of RVE size test series.L parti
les DOF time steps ∆t −ǫ1 
ores 
omputation time30mm 46 492 278 952 2 046 720 0.25µs 20% 4 132 hTable 5.3: Simulation details of a triaxial test on a periodi
 
ubi
al RVE.show dilatant behavior and tend towards a unique solid fra
tion of Φ ≈ 0.65 at an axialstrain of about 25%.5.3.3 Pressure LevelTo analyze the in�uen
e of the pressure the triaxial test is repeated with lateral pres-sures of p = 25, 50, 100, 200 kPa. For this purpose the initial samples are generatedwith a fri
tion 
oe�
ient of µ = 0.15 in the 
ompression phase resulting in an ini-tial relative density of DR = 0.37. For ea
h pressure 10 random 
ubi
al RVEs with

L = 10 mm are generated and the mean and standard deviation of the prin
ipal stressratio and volumetri
 strain ǫV := (V − V0)/V0 are 
omputed. The resulting 
urves and
orresponding error bars are plotted in �gure 5.5(
) and (d). The lateral pressure hasno signi�
ant in�uen
e on the stress ratio or the volumetri
 strain, whi
h agrees withlaboratory experiments, see e.g. [148℄.5.3.4 RVE SizeTriaxial tests are performed with four RVE sizes listed in table 5.2. For ea
h size anumber of random samples is tested and the ensemble average and standard deviationare 
omputed. The samples are generated with an initial relative density of DR = 0.37and the lateral pressure for the triaxial test is 
hosen as 25 kPa. The 
omparison of theresults in �gure 5.5(e) and (f) shows that the �nal stress ratio in
reases from 2.15 for
L = 10 mm to 2.3 for L = 30 mm, whi
h is a

ompanied by a de
rease in the stan-dard deviation. Considering the volumetri
 behavior the larger samples behave moredilatant. Comparing the ratios ∆ǫV /∆ǫ3 in the interval −ǫ3 ∈ [10%, 15%] there is anin
rease from 0.175 for L = 10 mm to 0.205 for L = 30 mm whi
h is again a

ompaniedby a de
rease in the standard deviation. These results indi
ate that an even largerRVE size L > 30 mm will yield a higher shear strength and dilatan
y. However, theyalso indi
ate that the additional in
rease until saturation will be moderate. Therefore,
onsidering the 
omputational e�ort of the homogenization exempli�ed in table 5.3,the results for L = 30 mm are regarded as e�e
tive behavior of the parti
le model forthe validation in se
tion 5.3.5 and the �tting of the 
ontinuum model in se
tion 5.4.



88 CHAPTER 5. HOMOGENIZATION5.3.5 ValidationTo validate the parti
le model the homogenization results are 
ompared to the resultsof laboratory triaxial tests on Leighton Buzzard sand fra
tion B performed by S
hnaid[148℄, see �gure 5.6. While the volumetri
 strain shows a good quantitative agreement,the �nal stress ratio of the periodi
 DEM simulation of about 2.3 is 
onsiderably smallerthan the experimental values of about 3.7. This is assumed to be a result of the parti
leshape. While superquadri
s 
an represent elongated and angular grains quite well, theyare restri
ted to be 
onvex. In the DEM s
heme the 
onta
t of adja
ent parti
les ishandled by applying a resultant 
onta
t for
e at a spe
i�
 
onta
t point. Therefore,no torques 
an be transferred between adja
ent parti
les, whi
h would be possible inthe 
ase of multiple 
onta
t points between non-
onvex parti
les. Indeed, simulationsusing simple non-
onvex parti
les like glued spheres [147℄ reveal a 
onsiderable in
reasein shear strength. The same has been shown for a pa
kage of 
onvex polyhedra [10℄,whi
h 
an transfer torques over edge or fa
e 
onta
ts.5.4 Fitting of Elasto-Plasti
 Continuum ModelThe e�e
tive behavior of the dis
rete parti
le model is approximated by an elasto-plasti
 
ontinuum model. For this purpose the non-asso
iative Mohr-Coulomb modelintrodu
ed in se
tion 2.1.5 is used. It is based on �ve material parameters, whi
h are theshear modulus G, the bulk modulus K, the fri
tion angle φ, the dilation angle ψ, andthe 
ohesion parameter c. Taking into a

ount that the parti
le model is non-
ohesive,the 
ohesion parameter is set to a small value of c = 15Pa to avoid that the stressfree state lies at the apex of the failure surfa
e. While this has a negligible in�uen
e onthe behavior at elevated pressures, it redu
es the e�ort of the elasto-plasti
 algorithmin the initial loading phase. Thus, four parameters have to be �tted to the results ofthe periodi
 triaxial tests. Assuming that the material behaves elasti
 at the onseta b
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5.4. FITTING OF ELASTO-PLASTIC CONTINUUM MODEL 89of loading, Young's modulus and Poisson's ratio are �tted separately to the σ3 vs. ǫ3and ǫV vs. ǫ3 
urve, respe
tively. Figure 5.7(a,b) display the results of triaxial testsperformed at four di�erent lateral pressures together with the 
urves 
orrespondingto the �t elasti
 
onstants. The initial sti�ness of the parti
le sample depends on thepressure, and E = 60 MPa is 
hosen to �t the sti�ness in the medium pressure regime.On the other hand, the initial volumetri
 behavior 
oin
ides for the di�erent pressuresand is approximated by ν = 0.145. The shear and bulk modulus are given by
G =

E

2 (1 + ν)
, K =

E

3 (1− 2 ν)
.The fri
tion angle is dedu
ed from the tangent to the Mohr-
ir
les at the state of max-imum 
ompressive stress. The Mohr-Coulomb yield surfa
e with φ = 23.15◦ gives agood approximation of the maximum shear strength rea
hed by the parti
le model.Similarly, the 
onstant dilation rate shown by the parti
le model is represented bya dilation angle of ψ = 5.17◦. Altogether, the non-asso
iative Mohr-Coulomb modela b
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Figure 5.7: Fit of 
ontinuum parameters. The elasti
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ir
les at the state of maximum 
ompressive stress (
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 strain 
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90 CHAPTER 5. HOMOGENIZATIONreprodu
es the most prominent features of the e�e
tive behavior, i.e. the pressure de-pendent shear strength and the dilatan
y. Nevertheless, the 
ontinuum model yieldsonly an approximation of the e�e
tive behavior and su�ers from the following short-
omings:
• The parti
le model shows irreversible deformations nearly from the onset of load-ing, while the 
ontinuum model behaves elasti
ally until the yield surfa
e isrea
hed. This results in a disagreement espe
ially for 
y
li
 loading 
onditionswhi
h do not yield plasti
 deformations of the 
ontinuum model.
• The sti�ness of the parti
le model is pressure dependent, whi
h is not taken intoa

ount in the 
ontinuum model.
• The e�e
tive behavior of the parti
le model 
ru
ially depends on the proper-ties of the initial pa
kage, whi
h is 
hara
terized by the relative density amongothers, 
f. �gure 5.5. On the other hand, the 
ontinuum model is �tted to onespe
i�
 medium dense pa
kage and does not in
lude an expli
it dependen
y onthe density.These de�
ien
ies of the non-asso
iative Mohr-Coulomb model have to be taken intoa

ount when evaluating the two-s
ale s
heme developed in 
hapter 6.



Chapter 6Two-S
ale ModelWithin this 
hapter a 
on
urrent two-s
ale model of non-
ohesive granular materials isdeveloped. Domains of large, eventually dis
ontinuous deformation are modeled by thedis
rete parti
le s
heme presented in 
hapter 3. Domains of small, rather homogeneousdeformation are modeled by the non-asso
iative Mohr-Coulomb model presented inse
tion 2.1.5, whose material parameters are �tted to the e�e
tive behavior of theparti
le model in se
tion 5.4. At the interfa
e of the domains of di�erent modeling theparti
le method (DEM) and the 
ontinuum method (FEM) are 
oupled resulting in asmooth transition between the two material des
riptions.In the past two de
ades 
onsiderable resear
h has been devoted to similar 
ouplingson a smaller s
ale, i.e. of mole
ular dynami
s (MD) and FEM, see e.g. the reviewarti
le by Curtin and Miller [48℄ and referen
es 
ited therein. Despite the similarities ofDEM and MD regarding their algorithmi
 implementation there are major di�eren
esin terms of their parti
les' nature and intera
tion:
• The length and time s
ales 
onsidered in MD are orders of magnitude smallerthan those typi
ally 
onsidered in DEM.
• In MD the parti
les represent atoms (or mole
ules), whi
h intera
t in terms ofele
tromagneti
 for
es derived from potentials. The range of intera
tion usuallyextends over the �rst few neighbors. In DEM parti
les represent grains intera
t-ing through me
hani
al 
onta
t. Hen
e, only the nearest neighbors intera
t andenergy is dissipated due to fri
tion and damping.
• In 
ontrast to 
ommon MD parti
les, DEM parti
les are of �nite size and haveindividual geometries. They �ll the spa
e up to a spe
i�
 volume fra
tion. Fur-thermore, they are equipped with rotational degrees of freedom.
• The parti
le arrangement: While in MD parti
les often form a regular latti
e,DEM parti
les show no su
h regularity.Due to these di�eren
es MD-FEM 
oupling s
hemes 
annot be simply transferred tothe DEM-FEM 
ase.A general 
on
ept for the 
oupling of di�erent models and methods is the Arlequinmethod introdu
ed by Ben Dhia [23, 24℄. It is based on the introdu
tion of a 
oupling91



92 CHAPTER 6. TWO-SCALE MODELdomain in whi
h the models are superposed. Within this domain the virtual work isinterpolated between the models and 
ompatibility is ensured via kinemati
 
onstraints.The overall behavior of the 
oupled system 
ru
ially depends on the interpolations
heme applied and, additionally, on the way the kinemati
 
onstraints are formulatedand enfor
ed. The latter is parti
ularly relevant for the 
oupling of a dis
rete and a
ontinuum method.Xiao and Belyts
hko [185℄ applied a s
heme of this kind to the MD-FEM 
oupling.They 
hose the 
oupling domain as a band between the MD and FEM domain de-noted as bridging domain. A linear energy interpolation over the width of the bridgingdomain is used and the dis
rete MD displa
ements are dire
tly 
onstrained to theinterpolated FE solutions at the parti
le positions. It has been shown that spuriouswave re�e
tions at the interfa
e de
rease with in
reasing width of the bridging domain.Furthermore, the in�uen
e of the energy weighting strategy has been analyzed withthe result that a nonlinear evolution of the weight parameter yields superior re�e
tionredu
tion 
ompared to a linear evolution.This s
heme has been transferred to the DEM-FEM 
oupling by Frangin et al. [65℄and Rojek and Oñate [144℄. In both works the two-s
ale method is applied to 
ohesivefri
tional materials su
h as 
on
rete or ro
k. For this 
lass of materials major parti
lerearrangements are only possible if inter-parti
le bonds break leading to the evolu-tion of 
ra
ks. Consequently, the prevailing deformation me
hanisms are quiet distin
tfrom those of non-
ohesive fri
tional granular materials like dry sand. Hen
e, for su
hmaterials, the dire
t 
onstraint between the dis
rete parti
le displa
ements and the in-terpolated FE displa
ements, whi
h might be appropriate for 
ohesive materials, wouldresult in an unnatural restri
tion of parti
le rearrangements. Therefore, the kinemati

onstraints will be formulated in a di�erent way. For this purpose the dis
rete parti
ledispla
ements are split into a 
oarse s
ale and a �ne s
ale part, and only the the 
oarses
ale part is 
onstrained to the FE displa
ements. In this way, natural �u
tuations ofdispla
ements 
orresponding to parti
le rearrangements are not impeded.Se
tion 6.1 introdu
es the 
oupling domain serving as a transition zone between theDEM and FEM domain. The split of the dis
rete displa
ements is used to formulatethe kinemati
 
onstraints in se
tion 6.2. Implementation issues are outlined in se
tion6.3. Finally, the performan
e of the two-s
ale approa
h is exempli�ed in se
tion 6.4.
6.1 Coupling DomainThe Arlequin method [23, 24℄ is based on the introdu
tion of a 
oupling domain ΩC inwhi
h the DE domain ΩDE and FE domain ΩFE are superposed, see �gure 6.1(a). The
oupling domain serves as transition zone between the domains of di�erent modeling.For this purpose a kind of interpolated material model is introdu
ed in ΩC by statingthe virtual work as an interpolation of the individual virtual works. This interpolation
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omplished via the weight fun
tion w(x) whi
h satis�es
w(x) = 1 ∀ x ∈ ΩDE \ ΩFE ,
w(x) = 0 ∀ x ∈ ΩFE \ ΩDE , (6.1)
w(x) ∈ [0, 1] ∀ x ∈ ΩC := ΩDE ∩ ΩFE .The expli
it form of w(x) in ΩC 
an be 
hosen as, e.g., linear interpolation between

w = 1 in ΩDE and w = 0 in ΩFE and is postponed to se
tion 6.3. Using the weightfun
tion the interpolated virtual work reads
δW = δW FE + δWDE with (6.2)

δW FE =

∫

ΩFE (1− w) [σ : δǫ + ρ (ẍ− b) · δu] dv − ∫
ΓFEσ

(1− w) t̂ · δuds , (6.3)
δWDE =

np∑

α=1

δWα =

np∑

α=1





∫

Ωα

w ρ (ẍ− b) · δuα dv − nα∑

β=1

wαβ fαβ · δuα



 . (6.4)Here the expli
it dependen
e on x and t is dropped for 
onvenien
e. Virtual displa
e-ment �elds δu(x) and δuα(x) are introdu
ed for the 
ontinuous body B and the parti-
les Pα. Regarding the dis
rete part (6.4), np denotes the number of parti
les, nα is thenumber of 
onta
ts of Pα, wαβ = w(xαβ) is the weight fa
tor at the point of 
onta
t of
Pα and Pβ , and fαβ is the 
orresponding 
onta
t for
e a
ting on Pα, see �gure 6.1(b).The remaining symbols are explained in 
hapter 2. Note that small deformations areassumed in the 
ontinuum part (6.3) and δǫ denotes the variation of the linear straintensor.



94 CHAPTER 6. TWO-SCALE MODELFor a 
onstant weight fun
tion w(x) = 1 ∀x ∈ Ωα in the dis
rete part (6.4), the
ondition δWα = 0 yields the standard equations of motion of the rigid parti
le Pα likederived in se
tion 2.1.3. Now, taking into a

ount a variable weight fun
tion w(x), asimilar transformation of the 
ontribution δWα yields a similar set of equations denotedas the weighted equations of motion in the following. For this purpose the positionve
tor x is referred to the parti
le's 
enter cα via
x = cα + rα . (6.5)Considering the parti
le's rigidity, the velo
ity and a

eleration �eld read

ẋ = ċ + ω × r , (6.6)
ẍ = c̈ + ω̇ × r + ω × (ω × r) , (6.7)where ω denotes the parti
le's rotational velo
ity and the parti
le index α is droppedfor 
onvenien
e. An arbitrary, virtual rigid body motion is given by

δu(x) = δu0 + δω × r , (6.8)where δu0 is the translation of the parti
le 
enter and δω a rotation about an axispassing through the 
enter. To derive the weighted equations of motion it is now impliedthat the weight fun
tion w(x) is a 
ontinuous, smooth, and monotoni
 fun
tion within
ΩC. Under these assumptions w(x) is approximated in Ωα by its linearization aboutthe parti
le 
enter c

w(x) ≈ w(c) + gradw|c · r = wc + w′
c n · r with w′

c n := gradw|c, ‖n‖ = 1 . (6.9)Inserting (6.9) and (6.8) into (6.4) and introdu
ing the resultant for
e and torque
f := wcm b +

nα∑

β=1

wβ fβ , (6.10)
m :=

nα∑

β=1

wβ rβ × fβ , (6.11)yields the parti
le's 
ontribution
δWα = (wcm c̈− f) · δu0 + (wc I · ω̇ + ω × wc I · ω −m) · δω

+ w′
c n ·

∫

Ω

r ρ (c̈ + ω̇ × r + ω × (ω × r)− b) · (δu0 + δω × r) dv . (6.12)Under the assumption that ΩC is mu
h larger than the typi
al parti
le size the lastterm in (6.12) be
omes negligible, see the derivation in appendix B. Then the 
ondition
δWα = 0 yields the weighted equations of motion

wcm c̈ = f , (6.13)
wc I · ω̇ + ω × wc I · ω = m . (6.14)



6.2. KINEMATIC CONSTRAINTS 95Within the pure DE domain ΩDE \ ΩFE with w = 1 these equations 
orrespond to thestandard equations of motion. Note, however, that due to the de�nition of the resultantfor
e f and torque m the weighted equations of motion are not the standard equationsof motion multiplied by the weight fa
tor at the parti
le 
enter wc. Ea
h 
onta
t for
ein (6.10) and (6.11) is weighted using the weight fa
tor at the 
orresponding point of
onta
t. Be
ause of the �nite dimensions of the DEM parti
les a simple weighting ofall terms by wc would introdu
e spurious for
es into the parti
le system: For a 
onta
tpair αβ the 
onta
t for
e fαβ = −f βα would be weighted on
e by w(cα) and on
e by
w(cβ) yielding a resultant unbalan
ed for
e

w(cα) fαβ + w(cβ) fβα = [w(cα)− w(cβ)] fαβ . (6.15)On the other hand, no spurious for
es are generated through (6.13) and (6.14), sin
eall 
orresponding 
onta
t for
es fαβ and fβα are weighted by the same weight fa
tor.Furthermore, note that the weighted equations of motion derived from δWα = 0 are not
omplete in the sense that the e�e
t of the kinemati
 
onstraints has not been takeninto a

ount yet. These result in additional 
oupling for
es a
ting on the parti
les in
ΩC.6.2 Kinemati
 ConstraintsThe Arlequin 
oupling is 
ompleted through the imposition of kinemati
 
onstraints
onne
ting the degrees of freedom (DOFs) within ΩC. For the 
oupling of a dis
reteparti
le and a 
ontinuum method the formulation of appropriate 
onstraints is notstraightforward. The parti
les are equipped with translational and rotational DOFs. Onthe other hand, a standard 
ontinuum approa
h without rotational DOFs is appliedin ΩFE, be
ause it is su�
ient for the des
ription of the material behavior when nolo
alizations o

ur, see e.g. [59℄. Therefore, the 
onstraints will be formulated solely interms of the translational DOFs.Within the DE-FE 
oupling s
hemes for 
ohesive fri
tional materials developed byFrangin et al. [65℄ and Rojek and Oñate [144℄ the dis
rete parti
le displa
ements are di-re
tly 
onstrained to the 
ontinuum displa
ements at the parti
le 
enter. Consequently,these s
hemes enfor
e the parti
les in one element to move a

ording to the elementdispla
ement ansatz. While this might be appropriate for 
ohesive materials, it repre-sents an unnatural 
onstraint for non-
ohesive materials, where �u
tuations within thegrain displa
ements arise due to the non-uniform parti
le shape and irregular parti
learrangement.For the formulation of other 
onstraint types it is reasonable to a

ommodate thedis
rete parti
le displa
ements to the 
ontinuum displa
ements via an adequate opera-tor. This approa
h was used by Bauman et al. [22℄ to 
ouple a one-dimensional systemof springs to a linear elasti
 bar. The dis
rete spring displa
ement �eld is transformedinto a 
ontinuous �eld by a linear interpolation operator. The 
ontinuous �eld is thenused to formulate L2 or H1 
oupling 
onstraints within ΩC. However, the appli
ation ofan interpolation operator for non-
ohesive granular materials would still yield unnatu-ral 
onstraints due to the reasons dis
ussed above. An appropriate operator should in a
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oarsen the dis
rete displa
ements and thus enable natural �u
tuations. For thispurpose a de
omposition of the parti
le displa
ements into a 
oarse and a �ne s
alepart is applied like it is used in the Bridging S
ale Method of Wagner and Liu [171℄to 
ouple atomi
 and 
ontinuum simulations. The 
oarse s
ale part is de�ned as thepart that 
an be represented by a 
hosen set of ansatz fun
tions. On the other hand,the proje
tion of the �ne s
ale part onto this ansatz spa
e vanishes. Sin
e the 
oarses
ale part will be 
onstrained to the 
ontinuum solution, it is most 
onvenient to usethe FE ansatz spa
e in ΩC for this proje
tion. This represents the most 
oarse ansatzwhi
h still allows the 
onstraint to be ful�lled exa
tly. Using the notation introdu
edin se
tion 2.2 the 
oarse s
ale part is de�ned as
uDE(x) :=

∑

I∈NCNI(x) uDEI , (6.16)where NI are the FE ansatz fun
tions and N C is the set of 
oupling nodes, i.e. thenodes belonging to elements with parti
le 
enters inside, see �gure 6.2(a). The parti
ledispla
ements are proje
ted onto this ansatz by a least squares �t using the volumeweighted error fun
tion
min
uDE

I

∑

α∈PC Vα ‖uα − uDE(cα)‖2 , (6.17)where PC is the set of parti
les whose 
enter resides in an element and Vα is the parti
levolume. The minimization with respe
t to the unknown nodal values uDE
I yields thelinear system of equations

∑

α∈PC ∑J∈NCNIα VαNJα uDE
J =

∑

α∈PCNIα Vα uα with NIα := NI(cα) (6.18)
⇒ N V NT

︸ ︷︷ ︸

=:A

uc = N V ud (6.19)
⇒ uc = A−1N V

︸ ︷︷ ︸

=:Π

ud , (6.20)where uc ∈ R
nC
N
×3 holds the unknown nodal displa
ements1, ud ∈ R

nC
P
×3 holds thedis
rete parti
le displa
ements, nCN :=

∣
∣N C∣∣ is the number of 
oupling nodes, and

nCP :=
∣
∣PC∣∣ the number of 
oupling parti
les. Due to the inverse A−1 the proje
tionmatrix Π is a dense matrix yielding a non-lo
al proje
tion where every uDE

I dependson ea
h uα. A lo
al version is retrieved by repla
ing A by the diagonal lumped version
A∗ given by

A∗
II :=

∑

J∈NCAIJ =
∑

J∈NC ∑α∈PCNIα VαNJα =
∑

α∈PCNIα Vα . (6.21)This results in the lo
al proje
tion rule
uDE

I =

∑

α∈PC NIα Vα uα
∑

α∈PC NIα Vα

. (6.22)
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JFigure 6.2: a) De�nition of the set of 
oupling nodes and elements.b) Coarse-�ne split of parti
le displa
ements within one element.Both versions are implemented and will be 
ompared in se
tion 6.4. The proje
tions
heme is sket
hed in �gure 6.2(b). Using the 
ontinuous displa
ement �eld the penalty
onstraint term is introdu
ed as
C :=

ǫ

2

∫

ΩC ‖uDE − uFE‖2 dv , (6.23)where ǫ is the penalty parameter. The variational formulation
δW + δC = 0, (6.24)with δW given in (6.2), yields the dis
rete equations of motion, whi
h are integratedby expli
it time integration s
hemes. The variation of the 
onstraint term gives thenodal 
oupling for
es fCI and parti
le 
oupling for
es fCα

δC = ǫ

∫

ΩC (uDE − uFE)
︸ ︷︷ ︸

=:r

·
(
δuDE − δuFE) dv

=
∑

I∈NC δrI · (ǫ
∑

J∈NC ∫
ΩC NI NJ dv
︸ ︷︷ ︸

=:VIJ

rJ) =
∑

I∈NC δrI · fCI (6.25)
=

∑

I∈NC(∑α∈PC ΠIα δuα − δuFEI

)

· fCI
= −

∑

α∈PC δuα ·
(

−
∑

I∈NC ΠIα fCI )
︸ ︷︷ ︸

=:fCα −
∑

I∈NC δuFEI · fCI . (6.26)1The matri
es hold the 
omponents with respe
t to the inertial Cartesian referen
e frame.



98 CHAPTER 6. TWO-SCALE MODEL6.3 ImplementationFor the implementation of the two-s
ale s
heme the 
oupling terms introdu
ed in theprevious se
tions need to be evaluated numeri
ally. More pre
isely, the following isrequired:
• The weight fun
tion w(x) (6.1) needs to be de�ned and evaluated at integrationpoints, parti
le 
enters, and 
onta
t points.
• The proje
tion matrix Π (6.20) has to be set up.
• The volume terms VIJ (6.25) are required for the 
omputation of the 
ouplingfor
es.Under the assumption of small relative displa
ements of the parti
les and the 
ontinuumin ΩC the 
oupling terms are evaluated with respe
t to the referen
e 
on�guration.To redu
e the implementation e�ort as well as the numeri
al e�ort it is furthermoreassumed that the overlapping domain ΩC is des
ribed by a set of �nite elements thatare 
ompletely �lled with parti
les. In this 
ase it is 
onvenient to de�ne the weightfun
tion within ΩFE via the FE ansatz fun
tions

w(x) =

{∑

I NI(x)wI ∀x ∈ ΩFE
1 ∀x ∈ ΩDE \ ΩFE . (6.27)In this way the evaluation of the FE terms (6.3) 
an be performed by standard Gaussianquadrature. For the evaluation of w(x) at parti
le 
enters and of the proje
tion matrix

Π ea
h parti
le Pα in the 
oupling domain has to be assigned to the �nite element thatin
ludes its 
enter cα. Furthermore, the referen
e 
oordinates of the parti
le 
enterwithin the �nite element have to be determined. This is a

omplished by a two steppro
edure. First, bounding spheres are de�ned for the �nite elements, and the parti
le
enters are 
he
ked for in
lusion in these bounding spheres. Se
ond, for ea
h 
andidate�nite element the nonlinear system
cα =

ne
n∑

I=1

NI(ξ, η, ζ) xI (6.28)is solved for the referen
e 
oordinates (ξ, η, ζ), where ne
n is the number of nodes withinthe element. From the referen
e 
oordinates the parti
le 
enter is 
he
ked for in
lusionin the �nite element. To avoid this 
omputation for the 
onta
t points, the weightparameter at a 
onta
t is interpolated from the 
enter values by

wαβ = wα +
(cβ − cα) · rαβ

‖cβ − cα‖2
(wβ − wα) . (6.29)Finally, sin
e the 
oarse s
ale part of the parti
le displa
ements is de�ned on theFE ansatz, the evaluation of the volume terms VIJ (6.25) is trivial using Gaussianquadrature. The appli
ation �ow of a 
oupled simulation is summarized in �gure 6.3.
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determine particles and elements in ΩC together with NIα values

set nodal weight values wI

compute particle weight values wα =
∑

NIαwI

compute projection matrix Π

compute volumes VIJ

DE: Update particle states
FE: Update nodal states

DE: Compute contact forces
FE: Compute internal nodal forces

compute nodal DE displacements uDE
I from Π ud

compute nodal differences rI = uDE
I − uFE

I

compute nodal coupling forces fC
I = ǫ

∑

J∈NC VIJ rJ

compute particle coupling forces fC
α = −∑I∈NC ΠIα fC

I

DE: Compute resultant particle forces
FE: Compute resultant nodal forces

Figure 6.3: Flow
hart of a 
oupled two-s
ale DE-FE simulation.The implementation is realized in the same manner as des
ribed in se
tion 4.2. Thein-house C++ DEM 
ode is 
oupled with the Fortran FEM 
ode FEAP developed byTaylor [159℄. The DEM part and the FEM part 
ommuni
ate via a Fortran interfa
esubroutine that enables 
alls of high-level FEAP subroutines from the C++ 
ode. Thedata ex
hange in ea
h time step is a

omplished via C++ pointers pointing at theappropriate FEAP data arrays. In this way the FEM data 
an be a

essed dire
tly bythe C++ fun
tions preventing expensive data 
opy operations.6.4 Numeri
al ExamplesThe performan
e of the two-s
ale model is exempli�ed by two tests. First, the 
ouplings
heme is validated via triaxial tests of a 
oupled DE-FE model, a pure DE model, and apure FE model. The in�uen
e of the penalty parameter, loading dire
tion, and 
ouplinggeometry are analyzed as well as the e�e
t of the 
oupling on the mi
rostru
ture withinthe parti
le domain. Se
ond, the method is applied to a pile installation problem. Ahexahedral pile with �at tip is driven at a 
onstant speed into a box �lled with sand,where only the vi
inity of the pile is modeled by the parti
le method.The loading 
onditions in ea
h test are supposed to yield near quasi-stati
 deforma-tions and the material parameters are adopted from se
tion 5.2 and 5.4, respe
tively.Due to the quasi-stati
 deformation wave propagation phenomena like dis
ussed byFrangin et al. [65℄ and Rojek and Oñate [144℄ for 
ohesive materials do not play a ma-jor role here. This is also supported by the fa
t that the wave propagation propertiesof non-
ohesive fri
tional granular materials like dry sand di�er 
onsiderably from thatof 
ohesive materials like 
on
rete or ro
k. The material damping of granular materialsfor moderate strain amplitudes of ǫampl ≥ 0.01% ex
eeds that of 
ohesive materials byfar. Furthermore, 
y
li
 loading leads to an a

umulation of plasti
 strain whi
h growsfastest in the initial 
y
les. Altogether, granular materials show a stronger attenuationof waves.
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ubi
al system with one element layer as 
oupling domain ΩC.b) Prin
ipal and volumetri
 strains for three triaxial tests.6.4.1 Triaxial TestsThe 
oupling s
heme is validated via strain 
ontrolled triaxial tests of the 
ubi
alsystem with an edge length of 20mm shown in �gure 6.4(a). The 
ontinuum domainis dis
retized with tri-linear hexahedral elements and the 
oupling domain is 
hosenas one element layer. At the top and side fa
es the parti
les are bounded by rigid,fri
tionless walls, 
f. �gure 6.5(a). The strain 
ontrolled loading program of the threetriaxial tests is given in �gure 6.4(b). All tests 
onsist of two phases. First, the sampleis 
ompressed isotropi
ally to a unique volumetri
 strain of ǫV = −0.5 %. In the se
ondphase the sample is sheared a

ompanied either by volumetri
 unloading (1), a 
onstantvolumetri
 strain (2), or further volumetri
 
ompression (3). The loading dire
tions are
hosen as ǫ1 = ǫx, ǫ2 = ǫy, and ǫ3 = ǫz, so that σ3 a
ts normal to the 
oupling interfa
e.The tests are performed for a pure DE model 
onsisting of about 14 000 parti
les (DE),a pure FE model (FE), the 
oupled model with a non-lo
al 
onsistent proje
tion (DF
),and the 
oupled model using the lumped lo
al proje
tion (DFl). The penalty parameteris 
hosen as ǫ = 108 Pa/mm2.The average prin
ipal stresses within the pure DE model are dedu
ed from theresultant for
es on the rigid boundary. In a similar manner the average stresses withinthe 
oupled models are dedu
ed from the resultant for
es on the rigid boundary 
om-bined with the FE rea
tion for
es, see �gure 6.5(a). Note that within the 
ouplingdomain the 
onta
t for
es between the rigid mesh and the parti
les are weighted likethe inter-parti
le for
es. The resulting stresses for ea
h model and loading are plottedin �gure 6.5(1�3). Comparing the results of the pure DE and FE models the �t of the
ontinuum model is worse for the volumetri
 unloading test 1. This is due to the 
ontin-uum model's de�
ien
ies listed in se
tion 5.4. As expe
ted, the stresses of the 
oupledsystems lie between those of the mono-method systems. The di�eren
e between thetwo types of 
oupling is rather small, espe
ially for tests 2 and 3 where the 
ontinuum
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σ3, DFlFigure 6.5: a) Resultant for
es on rigid boundary mesh and negative FE rea
tion for
es.1�3) Prin
ipal stresses for three triaxial tests.model yields a rather good agreement with the parti
le model.To analyze the in�uen
e of the penalty parameter, test 3 is repeated with lumped
oupling and the penalty parameter in
reased and de
reased by a fa
tor of 10. Theresults in �gure 6.6(a) reveal that, while the stresses in
rease from ǫ = 107 Pa/mm2to ǫ = 108 Pa/mm2, there is a negligible 
hange when in
reasing ǫ further. Hen
e, thekinemati
 
onstraints are ful�lled with su�
ient a

ura
y for the 
hosen material to-gether with a penalty parameter of ǫ = 108 Pa/mm2, whi
h will be used in all followingexamples.Next, test 3 is repeated with the loading dire
tions swit
hed with respe
t to the
oupled system's 
oordinates (x, y, z), 
f. �gure 6.4(a). The prin
ipal stresses for thethree possible 
ombinations are presented in �gure 6.6(b). The small deviation betweenthe tests is mainly due to the behavior in the initial hydrostati
 
ompression phase.Here the prin
ipal stress normal to the 
oupling interfa
e, σz, shows a smaller in
reasethan σx and σy. This is again a result of the de�
ien
ies of the 
ontinuum model, whoseYoung's modulus is �tted to a parti
le sample at a spe
i�
 pressure between 25 kPaand 200 kPa, 
f. �gure 5.7. For the 
oupled triaxial test both models are initially stress
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zFigure 6.6: Prin
ipal stresses for ǫ = 107, 108, 109 Pa/mm2 (a) and swit
hed loading dire
-tions (b). Model explaining dire
tion dependent sti�ness (
) and 
oupled sti�ness

EC vs. γ (d).free resulting in a higher initial sti�ness E of the FE model 
ompared to the sti�nessof the DE model denoted by γ E in the following. In x and y dire
tion both models a
tin a parallel way and the overall sti�ness is given as E (1+γ)/2, see �gure 6.6(
,d). Onthe other hand, in z dire
tion the models a
t in row yielding a smaller overall sti�nessof E 2 γ/(1+γ). For γ → 1 the sample shows the same sti�ness in all dire
tions, whi
his the 
ase at the end of the 
ompression phase.Up to now all tests used a regular 
oupling geometry aligned with the prin
ipalloading dire
tions. To 
he
k the robustness of the 
oupling s
heme test 3 was repeatedusing the 
oupling geometries shown in �gure 6.7(a). Figure 6.7(b) reveals that thein�uen
e on the prin
ipal stresses is negligible.6.4.2 Mi
rostru
tureAn important question regarding the 
oupling of a parti
le and a 
ontinuum model iswhether the 
oupling disturbs the typi
al mi
rostru
ture inside the parti
le model. Forgranular materials this mi
rostru
ture is des
ribed by the distribution of inter-parti
le



6.4. NUMERICAL EXAMPLES 103a b

-600

-500

-400

-300

-200

-100

 0

 0  0.01  0.02  0.03  0.04  0.05  0.06

σ,
 k

Pa

time, s

σ1, 1
σ2, 1
σ3, 1
σ1, 2
σ2, 2
σ3, 2
σ1, 3
σ2, 3
σ3, 3
σ1, 4
σ2, 4
σ3, 4Figure 6.7: Four 
oupling geometries (a) and resulting prin
ipal stresses (b).a b

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.2  0.4  0.6  0.8  1

φ(
|| 

f 
||)

|| f ||, N

A B C

full DE
coupled, consistent

coupled, lumped

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

φ(
α)

α

A

B

C
full DE

coupled, consistent
coupled, lumped

Figure 6.8: Probability distributions of 
onta
t for
e magnitudes (a) and dire
tions (b).
onta
t for
es. A 
hara
teristi
 feature of granular materials is the formation of for
e
hains, whi
h are 
hains of parti
les that 
arry a higher-than-average part of the over-all sample load. This results in spe
i�
 distributions of 
onta
t for
e magnitudes andorientations. These distributions are analyzed for a pure DE and the 
oupled models inthe �nal state of test 3 with the maximum 
ompressive stress σ1 in z dire
tion, i.e. nor-mal to the 
oupling interfa
e. Only inter-parti
le 
onta
ts within the domain ΩDE\ΩFEare 
onsidered, be
ause the 
onta
t for
es in the 
oupling domain ΩC de
rease towardsthe w = 0 boundary due to the 
oupling for
es. The orientation of a 
onta
t for
e f isdes
ribed by the angle α between f and the dire
tion of maximum 
ompressive stress
e1 = ez

α := cos−1

( |f · e1|
‖f‖

)

∈ [0, π/2] . (6.30)The probability distributions are plotted in �gure 6.8. All systems show a similar
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zFigure 6.9: a) Dimensions of plane strain pile installation example.b) FE dis
retization. In y dire
tion 5 element layers are used.magnitude distribution with a huge fra
tion of relatively small for
es below 0.2N anda monotoni
 de
ay towards the maximum for
e of about 1N. The 
oupled systemsdeviate from the full DE model as they show a higher probability of smaller for
eswhere the deviation is greater for a 
onsistent 
oupling. For the evaluation of theorientation the set of for
es is split a

ording to their magnitude into three groupsA, B, and C , 
f. �gure 6.8(a). For all groups the orientation distributions agree wellbetween the 
onsidered systems. While the smaller for
es are rather orthogonal tothe maximum loading dire
tion, the larger for
es are more aligned with it. Here thelarger �u
tuations for group B and C result from the smaller number of for
es withinthese groups. Altogether, the mi
rostru
ture of the parti
le model is only marginallydisturbed by the 
oupling s
heme. The typi
al for
e 
hains are not hindered and runa
ross the boundary of the 
oupling domain ΩC and the pure DE domain ΩDE \ ΩFE.6.4.3 Pile InstallationThe two-s
ale model is applied to a plane strain pile installation test spe
i�ed in �g-ure 6.9(a). Su
h penetration problems are extremely di�
ult to model by a pure FEapproa
h, be
ause the large deformations around the pile tip yield severe mesh dis-tortions, whi
h spoil the a

ura
y and stability of the 
omputation. Furthermore, the
onvergen
e of standard solution algorithms is a�e
ted by material nonlinearities dueto the 
omplex 
onstitutive models for granular materials and 
onta
t nonlinearitiesdue to the fri
tional 
onta
t with the pile [150, 151℄. The problem of severe mesh dis-tortion has been resolved by appli
ation of adaptive re-meshing algorithms [157℄ orArbitrary Lagrangian-Eulerian methods [152, 114℄, however at the 
ost of the need forremapping of variables between meshes resulting in a new potential sour
e of 
onver-
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Figure 6.10: Closeup of parti
le and 
oupling domain of pile installation problem.parti
les nCP elements nodes nCN DOF time steps ∆t 
ores 
omp. time
539 485 120 302 5040 7560 1530 3 259 590 500 000 0.2µs 16 454 hTable 6.1: Simulation details of pile insertion example.gen
e problems. Altogether, the FE modeling of fri
tional pile penetration problemsis still 
umbersome and only possible for 
one shaped pile tips, whi
h yield less meshdistortion than �at tips.Within the two-s
ale approa
h this problem is solved by modeling the domain oflarge deformations, i.e. the vi
inity of the pile, by the parti
le method. Here, thisrequires 540 000 parti
les, while a pure DE model would require 25×106 parti
les. TheFE dis
retization shown in �gure 6.9(b) 
onsists of 5040 tri-linear hexahedral elementsyielding an overall number of 3.2 × 106 DOFs. The details of the 
oupled simulationare given in table 6.1. The fri
tion 
oe�
ient between the rigid pile surfa
e and theparti
les is 
hosen as µ = 0.1. The 
oupling domain shown in �gure 6.10 
onsists of twoelement layers and the lumped proje
tion is used. Figure 6.11 shows the deformationof the system in the vi
inity of the pile. Initially, a gap develops between the granularmaterial and the side fa
es of the pile. After a while a steady-state material �owaround the pile evolves, whi
h is 
hara
terized by a 
one of parti
les at the pile tip.This 
one splits the material below so that it 
an �ow around the edges of the tip. Theneighborhood of the pile might be split into three zones of deformation:
• In a distan
e up to about three parti
le diameters from the pile the material isdragged down for a relatively large distan
e.
• Up to a distan
e of about 15 parti
le diameters there is a steep gradient frommaterial being dragged down to material being pushed up.
• Further away there is a monotoni
 de
ay of the upward displa
ement.
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Figure 6.11: Deformation due to pile installation with 
olor a

ording to initial height.

Figure 6.12: Evolution of solid fra
tion around driven pile.
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Figure 6.13: Pressure during pile installation at the middle of the sample (y = 8.05mm).The 
oupling interfa
e lies in the last zone and it 
an be seen that the height 
ontourlines run smoothly a
ross the interfa
e indi
ating a smooth transition between thematerial des
riptions.Additionally, the evolution of the solid fra
tion in the vi
inity of the pile is analyzed.For this purpose a regular grid of spheri
al sampling volumes is introdu
ed with a1.5mm grid point distan
e and 2.8mm sphere radii. The average solid fra
tion withinea
h sampling sphere is approximated by repla
ing ea
h superquadri
 by a sphere withidenti
al 
enter and volume and 
al
ulating the exa
t interse
tion volumes of thesespheres and the sample spheres. Note that the 
hosen sampling volume size yields anaverage parti
le number of about 300 per sampling volume. Figure 6.12 shows theresulting solid fra
tion distribution at the middle of the sample (y = 8.05 mm). Thematerial right below the pile tip behaves dilatant due to the large deformations. Herethe solid fra
tion is redu
ed to about 0.6 � 0.64, while in the remaining domain thesolid fra
tion is about 0.64 � 0.68. The width and height of the dilatant zone are abouttwi
e the pile width. Note that due to the averaging method the solid fra
tions at theboundaries must be disregarded, sin
e here the sampling volumes are not 
ompletely�lled with parti
les.Finally, the pressure distribution within the two-s
ale model is analyzed. For this



108 CHAPTER 6. TWO-SCALE MODELpurpose another regular grid is introdu
ed whi
h 
overs the parti
le domain and hasa 3mm grid point distan
e. At ea
h grid point a 
ubi
al 
ell of dimension 4.8mmis 
entered, whi
h serves as averaging volume V
ell for the stress determination. Theaverage stress is determined from all inter-parti
le 
onta
ts αβ with 
onta
t point xαβinside V
ell via [17℄
〈σ〉
ell =

1

V
ell ∑

αβ|xαβ∈V
ell (cβ − cα)⊗ fαβ .The 
hosen 
ell size yields an average number of about 700 
onta
ts per samplingvolume. For the same reason as in the solid fra
tion 
omputation the stress values atthe boundaries must be disregarded. Furthermore, the stress in the 
oupling domain isnot determined due to post-pro
essing problems: A
tually, in the 
oupling domain theresulting stress is the sum of the FE stress and the averaged DE stress. However, theevaluation of this sum is an awkward post-pro
essing problem. First, the determinationof average DE stresses in ΩC is problemati
 due to the boundary problem. Se
ond, thesummation of the stress �elds is di�
ult, sin
e they are not evaluated on the samemesh. Hen
e, the resulting pressure distributions in �gure 6.13 in
lude a zone whereno stresses are determined. Nevertheless, the pressure 
ontour lines indi
ate a smoothtransition between the two material des
riptions. Below the pile tip a zone of highpressure evolves from t = 0 s to t = 0.075 s with a maximum pressure of about 50 kPa.From there on the pressure distribution with respe
t to the pile is rather 
onstant, i.e.there is no further in
rease in the maximum pressure. In the zone below the pile thepressure de
reases in radial dire
tion from the pile tip. Further away from the pile thepressure distribution is dominated by gravity.This example demonstrates that the two-s
ale model enables the simulation of prob-lems, that are very hard to handle by mono-method approa
hes:
• A pure DE solution using 25×106 parti
les would require enormous 
omputationtimes. Even the 
oupled simulation took more than two weeks running in parallelon 16 
ores, 
f. table 6.1.
• A pure FE solution using standard te
hniques is not possible due to the verylarge deformations in the pile vi
inity. Furthermore, an appropriate 
ontinuummodel of the material behavior around the pile tip is hard to develop.Within the presented approa
h these problems are redu
ed. It yields a smooth transi-tion between the models, whi
h does not disturb the mi
rostru
ture within the parti
lemodel.



Chapter 7Con
lusion and OutlookWithin this work non-
ohesive fri
tional granular materials are modeled by a three-dimensional Dis
rete Element Method (DEM). The DEM uses superquadri
 parti
leshapes to represent the elongation and angularity of real grains. Assuming elasti
 defor-mations at inter-parti
le 
onta
ts the 
onta
t for
e is derived from the Hertz-Mindlinmodel, where the tangential part is bounded by the Coulomb fri
tion model. Con-sequently, the only material parameters entering the DEM are the parti
les' elasti

onstants and the fri
tion 
oe�
ient, all of whi
h have a 
lear physi
al meaning and
an be determined by experiments. On the algorithmi
 side, e�
ient 
onta
t dete
-tion s
hemes are developed, whi
h exploit the temporal 
oheren
e between 
onse
utivetime steps within a DEM simulation. Furthermore, an e�
ient parallelization s
hemefor shared memory ar
hite
tures is introdu
ed, whi
h is based on the spatial sorting ofparti
les and the Verlet neighbor list 
on
ept for global 
onta
t dete
tion. Altogether,the a
hieved performan
e enables simulations with parti
le numbers of the order of 105undergoing large deformations within a number of time steps of the order of 105, 
f.se
tion 6.4.3.The DEM is then applied to the intera
tion of granular materials and solid stru
-tures, whi
h are modeled as 
ontinuum using the Finite Element Method (FEM). Theintera
tion is a

omplished via 
onta
ts between DE parti
les and the FE surfa
e mesh.For this purpose arbitrary FE surfa
e meshes are approximated by triangular meshes.Due to the non-smoothness of these meshes a parti
le-surfa
e 
onta
t model is de-veloped whi
h takes parti
le-edge and parti
le-
orner 
onta
t situations into a

ount.The robust for
e interpolation s
heme yields smooth 
onta
t for
es and is nearly energy
onserving for fri
tionless 
onta
ts. The 
oupled DE-FE model fa
ilitates granular-solidsimulations in
luding large deformations as well as sliding and rolling of parti
les overthe FE surfa
e, 
f. se
tion 4.3.3.For the development of a two-s
ale model for granular materials the e�e
tive be-havior of the dis
rete parti
le model is determined by a homogenization s
heme. Thiss
heme is based on the me
hani
al testing of representative volume elements. Theseare randomly generated periodi
 parti
le pa
kages of 
ubi
al shape. They enable theappli
ation of arbitrary triaxial stress and strain boundary 
onditions in a 
onvenientway, i.e. without spurious boundary e�e
ts. In order to validate the parti
le model itsmaterial and geometry parameters are adapted to a referen
e material, Leighton Buz-109
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tion B. Standard triaxial tests reveal a good qualitative agreementwith laboratory results on the referen
e material. However, the shear strength of theparti
le model is signi�
antly smaller than in reality. Finally, the parameters of anelasto-plasti
 non-asso
iative Mohr-Coulomb 
ontinuum model are �t to the e�e
tivebehavior. This model represents the most important features, i.e. the pressure depen-dent shear strength and the dilatan
y. Nevertheless, it 
annot 
apture features su
h asthe pressure dependent sti�ness.The dis
rete parti
le model and the 
ontinuum model are 
ombined in a 
on
urrenttwo-s
ale approa
h. Domains of large, eventually dis
ontinuous deformation are mod-eled by the parti
le method and the remaining domain is treated as 
ontinuum. In thisway, the 
omputationally expensive DEM is only applied where the material behavior
an hardly be represented by 
ontinuum approa
hes, while elsewhere the e�
ient FEMis used. At the interfa
e of the domains of di�erent modeling the methods are 
oupledvia the Arlequin method. For this purpose the methods are overlapped in a 
ouplingdomain where the virtual work is interpolated between both models yielding an interpo-lated material behavior. The 
ompatibility within the 
oupling domain is a

omplishedby kinemati
 
onstraints, whi
h are enfor
ed by the penalty method. The 
onstraintformulation is based on a 
oarse-�ne split of the dis
rete parti
le displa
ements. In thisway it enables natural displa
ement �u
tuations within the 
oupling domain. Numeri-
al examples reveal that the 
oupling does not disturb the typi
al mi
rostru
ture insidethe parti
le domain, whi
h is 
hara
terized by for
e 
hains. Finally, a pile installationexample shows that the two-s
ale approa
h enables the 
onsideration of problems thatare not feasible for mono-method approa
hes due to severe mesh distortion and 
on-vergen
e problems on the one hand or the enormous 
omputational e�ort on the otherhand.Despite the a
hievements summarized above, the two-s
ale approa
h needs furtherimprovements to be
ome a predi
tive simulation tool. There are four major issues,whi
h will be 
overed not in the order of their severity but in a 
hronologi
al orderappropriate for future resear
h.The �rst key problem of the two-s
ale approa
h is that the parti
le model yieldsno quantitative predi
tions of the behavior of real non-
ohesive fri
tional granularmaterials. This is assumed to be the result of the still insu�
ient approximation ofreal grain shapes. While superquadri
s represent the elongation and angularity to someextent, they are still restri
ted to be 
onvex and therefore yield a single point of 
onta
tbetween two parti
les. Consequently, no torques 
an be transferred between 
onta
tingparti
les, whi
h seems to yield a redu
ed stability of the parti
ulate stru
ture. This issupported by analyses using simple non-
onvex shapes su
h as sphere 
lusters [147℄,whi
h show a signi�
ant in
rease of the bulk shear strength. Hen
e, future resear
hwork must fo
us on the development of a better approximation of real grain shapes.This ne
essitates three-dimensional measurements of real grains, whi
h be
ame possiblere
ently through high resolution X-ray 
omputed tomography, see e.g. [175℄. Based onthese measurements one possibility is to approximate the real shape by sphere 
lusters[173℄. However, while this enables a trivial 
onta
t dete
tion, it requires a huge numberof spheres and results in an arti�
ially rough surfa
e. More realisti
 approximations with



111less parti
les might be gained from superquadri
 
lusters, whi
h 
an be determined viare
overy pro
edures that are already established for superquadri
s in 
omputer visionand roboti
s [88℄.The se
ond problem is the DEM's 
omputational burden limiting feasible problemsin spa
e and time. This problem will be
ome even more severe when an advan
edparti
le shape is applied. Sin
e the DE algorithms are already optimized in a way whi
hallows no further signi�
ant performan
e gain, the remaining option is to use massiveparallelism. An attra
tive possibility seems to be GPU 
omputing, whi
h exploits the
omputational power of nowadays graphi
s 
ards. Impressive performan
e gains 
an berea
hed but require highly sophisti
ated parallelization s
hemes [76, 81℄.The third issue 
on
erns the inability of the non-asso
iative Mohr-Coulomb modelto represent some of the features of the parti
le model's e�e
tive behavior. A moresophisti
ated 
onstitutive model 
an be applied like presented in e.g. [58, 186℄. Thesegive a better approximation of the pressure dependent sti�ness and the behavior under
y
li
 loading but require a more involved �tting pro
edure.The last problem is related to the two-s
ale model's 
oupling s
heme. Within thiswork two simplifying restri
tions are used. First, the �nite elements within the 
ouplingdomain are 
ompletely �lled with parti
les. Se
ond, the relative displa
ements of the
ontinuum and the parti
les are assumed to be small. Together, this enables a straight-forward evaluation of the 
oupling terms with respe
t to the initial 
on�guration. Fora more general appli
ability of the model these restri
tions should be abandoned. Thisne
essitates more advan
ed numeri
al integration pro
edures and eventually an e�-
ient re-evaluation of the 
oupling terms in the 
ourse of the simulation. Nevertheless,these are rather minor te
hni
al issues. A key problem, on the other hand, is the iden-ti�
ation of the domains of di�erent modeling. While in the pile installation exampleof se
tion 6.4.3 the domain of large deformations is known in advan
e, this is not truein general. Hen
e, 
riteria and methods must be developed to identify and generate thedomains of dis
rete modeling in an adaptive way. For the former, the 
riteria applied inadaptive mesh re�nement s
hemes might be a useful orientation. The latter, however,requires the generation of parti
le pa
kages whi
h must
• �ll a prede�ned spa
e,
• be in a prede�ned stress state,
• �t to already existing pa
kages,
• have a similar fabri
 like the already existing pa
kage,
• 
onform to the spe
i�
 granulometry, i.e. parti
le shape and size distribution.These problems might be solved by advan
ing front te
hniques [116℄, whi
h �ll a pre-de�ned spa
e in a 
onse
utive way starting at a spe
i�ed boundary.
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Appendix ASuperquadri
sWithin this 
hapter geometri
 quantities of superquadri
s are derived, whi
h are re-quired for various purposes within the DEM s
heme. In se
tion A.1 all quantities relatedto the surfa
e parameterization are derived. This in
ludes the determination of bound-ing radii and prin
ipal 
urvatures. An e�
ient way to 
ompute surfa
e points fromgiven normals is presented in se
tion A.2. Se
tion A.3 presents an algorithm to deter-mine the interse
tions of a straight line segment and the superquadri
 surfa
e. Basedon this, a s
heme to 
ompute the interse
tion area of a triangle and a superquadri
 isdetailed in se
tion A.4.A.1 Surfa
e ParameterizationBased on the surfa
e parameterization of the superquadri

X(φ1, φ2) = Xi(φ1, φ2) Eipresented in se
tion 3.1, equation (3.3), a number of useful geometri
 quantities 
an bederived. Taking into a

ount the three-fold symmetry of the superquadri
 it is su�
ientto restri
t the following derivations to the �rst o
tant of the body-�xed referen
e frame
hara
terized by Xi ≥ 0 or φ1 ∈ [0, π/2] and φ2 ∈ [0, π/2], respe
tively. In this domainequation (3.3) 
an be simpli�ed to

X (φ1, φ2) =





r1 cosǫ1 φ1 cosǫ2 φ2

r2 sinǫ1 φ1 cosǫ2 φ2

r3 sinǫ2 φ2



 ,
0 ≤ φ1 ≤ π

2

0 ≤ φ2 ≤ π
2

. (A.1)In the following, the expli
it dependen
e on the 
urvilinear 
oordinates will be droppedfor 
onvenien
e. Greek indi
es 
orrespond to the two 
urvilinear 
oordinates, whileLatin indi
es 
orrespond to the Cartesian body-�xed 
oordinates. Summation overrepeated indi
es is implied. The tangent ve
tors are de�ned by
gα :=

∂X

∂φα
, (A.2)113
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h reads in the body-�xed referen
e frame
g

1
=





−r1 ǫ1 sinφ1 cosǫ1−1 φ1 cosǫ2 φ2

r2 ǫ1 sinǫ1−1 φ1 cosφ1 cosǫ2 φ2

0



 , (A.3)
g

2
=





−r1 ǫ2 cosǫ1 φ1 sinφ2 cosǫ2−1 φ2

−r2 ǫ2 sinǫ1 φ1 sinφ2 cosǫ2−1 φ2

r3 ǫ2 sinǫ2−1 φ2 cosφ2



 . (A.4)The surfa
e normal is given as 
ross produ
t of the tangents
n̂ := g1 × g2 , (A.5)resulting in the lo
al 
oordinates

n̂ = λ





1
r1

cos2−ǫ1 φ1 cos2−ǫ2 φ2
1
r2

sin2−ǫ1 φ1 cos2−ǫ2 φ2
1
r3

sin2−ǫ2 φ2





︸ ︷︷ ︸

=:n

, (A.6)where λ = r1 r2 r3 ǫ1 ǫ2 sinǫ1−1 φ1 cosǫ1−1 φ1 sinǫ2−1 φ2 cos2ǫ2−1 φ2 is a s
aling fa
tor, thatis negle
ted if just the dire
tion of the normal is of interest. Note that the normal
omponents are given by the same kind of superquadri
 equation as the 
oordinatesin (A.1). If a quantity is required at a point outside the �rst o
tant, the point is �rstmapped into the �rst o
tant. Therefore, the o
tants are numbered like follows.o
tant 1 2 3 4 5 6 7 8sign(X1) = sign(sin φ1) 1 -1 -1 1 1 -1 -1 1sign(X2) = sign(cos φ1) 1 1 -1 -1 1 1 -1 -1sign(X3) = sign(sin φ2) 1 1 1 1 -1 -1 -1 -1The mapping is a

omplished by setting
sinφ∗

1 := | sinφ1| , cosφ∗
1 := | cosφ1| , sinφ∗

2 := | sinφ2| . (A.7)Using these positive values the lo
al 
oordinates of the desired ve
tor are 
al
ulatedusing the simpli�ed formulas above. Finally, these 
oordinates need to be re-mappedto the original point. This mapping depends on the o
tant of the original point andthe ve
tor that is to be mapped. For the ve
tors shown above the mappings are listedbelow. o
tant 2 3 4 5 6 7 8
g

1
= R2 g

∗
1

R12 g
∗
1

R1 g
∗
1

g∗
1

R2 g
∗
1

R12 g
∗
1

R1 g
∗
1

g
2

= R1 g
∗
2

R12 g
∗
2

R2 g
∗
2

R12 g
∗
2

R2 g
∗
2

g∗
2

R1 g
∗
2

n = R1 n
∗ R12 n

∗ R2 n
∗ R3 n

∗ R13 n
∗ R123 n

∗ R23 n
∗

•∗ denotes the 
oordinates in the �rst o
tant and the matri
es are de�ned by
R1 :=





−1 0 0
0 1 0
0 0 1



 , R2 :=





1 0 0
0 −1 0
0 0 1



 , R3 :=





1 0 0
0 1 0
0 0 −1



 ,

R12 := R1R2 , R23 := R2R3 , R13 := R1R3 , R123 := R12 R3 .



A.1. SURFACE PARAMETERIZATION 115A.1.1 Bounding RadiiThe de�nition of bounding volumes is useful for e�
ient approximate 
onta
t 
he
ks.The most widely used bounding volumes are spheres and axis aligned bounding boxes(AABB), both of whi
h o�er a 
heap interse
tion 
he
k. Regarding superquadri
s theparameters of the AABB, i.e. the dimensions of the box, are determined via three eval-uations of (A.48). These dimensions have to be re-
al
ulated when the superquadri
rotates. Hen
e, within the DEM s
heme it is more 
onvenient to use spheri
al bound-ing volumes, whi
h are invariant up to rotation and therefore need to be 
omputedonly on
e. Ea
h parti
le is des
ribed by an ins
ribed and a 
ir
ums
ribed sphere ofradius rmin and rmax, respe
tively. To determine these radii only the �rst o
tant ofthe superquadri
 has to be 
onsidered be
ause of the three-fold symmetry. For thederivation, a 2D superquadri
 is 
onsidered �rst given in the �rst quadrant by
[
X1

X2

]

=

[
r1 cosǫ φ
r2 sinǫ φ

]

. (A.8)The surfa
e normal reads
[
n1

n2

]

=

[ 1
r1

cos(2−ǫ) φ
1
r2

sin(2−ǫ) φ

]

. (A.9)Be
ause of the smooth, 
onvex shape of the superquadri
 the surfa
e normal at thepoint of extreme radius has to be parallel to the gradient of the radius fun
tion. Thegradient of the radius fun
tion, however, is parallel to the position ve
tor yielding thene
essary 
ondition for an extreme radius
[
X1

X2

]

= λ

[
n1

n2

]

⇔
[
r1 cosǫ φ
r2 sinǫ φ

]

= λ

[ 1
r1

cos(2−ǫ) φ
1
r2

sin(2−ǫ) φ

]

, (A.10)where λ is an unknown s
aling fa
tor. This system of nonlinear equations has the trivialsolutions φ = 0 and φ = π/2. Another solution is
tanφ =

(
r1
r2

) 1

ǫ−1

. (A.11)Whi
h solution 
orresponds to whi
h bounding radius be
omes 
lear by looking at�gure A.1. In the 
ase of an ellipse (ǫ = 1) only the trivial solutions exist resultingin rmin = min(r1, r2) and rmax = max(r1, r2). For ǫ < 1 the superquadri
 in
ludesthe ellipse in a way that they tou
h at φ = 0 and φ = π/2. Therefore, rmin of thesuperquadri
 equals rmin of the ellipse, while rmax is dedu
ed from (A.11). For ǫ > 1the ellipse in
ludes the superquadri
 and tou
hes it at φ = 0 and φ = π/2. Hen
e,they have identi
al rmax values, while rmin is dedu
ed from (A.11). In the 3D 
ase asuperquadri
 in the �rst o
tant is given by (A.1). To split this representation into twoplanes de�ned by φ2 = 0 and φ1 = φ∗
1 the radius r12(φ1) is introdu
ed as

r12(φ1) :=

√

(r1 cosǫ1 φ1)
2 + (r2 sinǫ1 φ1)

2 . (A.12)
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X2

r1 ǫ = 2

ǫ = 1

ǫ = 0

r2

X1Figure A.1: First quadrant of 2D superquadri
 for di�erent angularity parameters.In this way, two sets of superquadri
 equations result for the two planes. For the φ2 = 0plane the equations read
[
X1 (φ1)
X2 (φ1)

]

=

[
r1 cosǫ1 φ1

r2 sinǫ1 φ1

]

, (A.13)while for the φ1 = φ∗
1 plane the equations are given by

[
X12 (φ2)
X3 (φ2)

]

=

[
r∗12 cosǫ2 φ2

r3 sinǫ2 φ2

] with r∗12 := r12(φ
∗
1) . (A.14)

X12 is the 
oordinate 
orresponding do the dire
tion spe
i�ed by φ∗
1. The minimum andmaximum radius r12min and r12max in the φ2 = 0 plane are determined like in the 2D
ase. Regarding the 3D bounding radii note the following: For two 2D superquadri
swith one identi
al radius and an identi
al angularity parameter, the superquadri
 withthe larger se
ond radius in
ludes the other one. Therefore, to get the minimum 3Dradius the 2D s
heme is simply applied to the plane φ1 = φ1min 
orresponding to r12min.Likewise, the maximum 3D radius results from applying the 2D s
heme to the planespe
i�ed by φ1 = φ1max .A.1.2 Prin
ipal CurvaturesFor the determination of the prin
ipal 
urvatures the 
oe�
ients of the �rst and se
ondfundamental forms are required [156℄. The 
oe�
ients of the �rst fundamental formare de�ned by

gαβ := gα · gβ . (A.15)For the se
ond fundamental form the se
ond derivatives of the surfa
e 
oordinates withrespe
t to the 
urvilinear 
oordinates are required
bαβ := −n̄ ·X,αβ with n̄ :=

n

‖n‖ , X,αβ :=
∂2X

∂φα ∂φβ
. (A.16)



A.1. SURFACE PARAMETERIZATION 117These read in lo
al 
oordinates
X,

11
=





−1
2
r1 ǫ1 cosǫ2 φ2 cosǫ1−2 φ1 (2− ǫ1 + ǫ1 cos 2φ1)

1
2
r2 ǫ1 cosǫ2 φ2 sinǫ1−2 φ1 (−2 + ǫ1 + ǫ1 cos 2φ1)

0



 , (A.17)
X,

12
=





r1 ǫ2 ǫ1 cosǫ2−1 φ2 sin φ2 cosǫ1−1 φ1 sinφ1

−r2 ǫ2 ǫ1 cosǫ2−1 φ2 sinφ2 sinǫ1−1 φ1 cosφ1

0



 = X,
21
, (A.18)

X,
22

=





−1
2
r1 ǫ2 cosǫ2−2 φ2 cosǫ1 φ1 (2− ǫ2 + ǫ2 cos 2φ2)

−1
2
r2 ǫ2 cosǫ2−2 φ2 sinǫ1 φ1 (2− ǫ2 + ǫ2 cos 2φ2)
1
2
r3 ǫ2 sinǫ2−2 φ2 (−2 + ǫ2 + ǫ2 cos 2φ2)



 . (A.19)The prin
ipal 
urvatures ρI ≥ ρII are the eigenvalues of the eigenproblem
(bαβ − ρ gαβ) λβ = 0 . (A.20)De�ning the Gaussian 
urvature K and mean 
urvature H via

K :=
det b

det a
, H :=

a11 b22 + a22 b11
2 det a

, (A.21)the prin
ipal 
urvatures are given by
ρI = H +K , ρII = H −K . (A.22)Note that in the de�nition of H the fa
t that the o�-diagonal terms b12 = b21 vanishfor superquadri
s is already taken into a

ount. The prin
ipal dire
tions are orthogonaland lie within the tangent plane. They result from the solution of (A.20) setting ρ = ρIand ρ = ρII, respe
tively. The �rst dire
tion reads

ẽI = ρI a12 g1 +
(
b11 − ρI a11

)
g2 , (A.23)where ẽI is not normalized. The se
ond dire
tion 
an be dedu
ed using the orthogonality
ondition

ẽII = n× ẽI . (A.24)The prin
ipal 
urvatures at a point outside the �rst o
tant are identi
al to those atthe mapped point. The 
orresponding dire
tions are determined by using the originaltangent and normal ve
tors in (A.23) and (A.24).A.1.3 Curvilinear Coordinates from NormalsAt various points within the DEM s
heme surfa
e related quantities are required atpoints, whi
h are not given in terms of their 
urvilinear 
oordinates but in termsof their surfa
e normal. Hen
e, an inversion of relation (A.6) is required to expressthe 
urvilinear 
oordinates in terms of the normal 
omponents. The general form ofequation (A.6) valid on the 
omplete surfa
e reads
λ





n1

n2

n3



 =





sign (cos φ1) (1/r1) | cosφ1|2−ǫ1 | cosφ2|2−ǫ2sign (sin φ1) (1/r2) | sinφ1|2−ǫ1 | cosφ2|2−ǫ2sign (sin φ2) (1/r3) | sinφ2|2−ǫ2



 , (A.25)



118 APPENDIX A. SUPERQUADRICSwhere λ is an unknown positive s
alar fa
tor. The �rst 
oordinate φ1 is determinedfrom the ratio (A.25)2/(A.25)1 and is then inserted into (A.25)3 to eliminate the s
alingfa
tor with the result
φ1 = tan−1(s1 |r1 n1|δ1

︸ ︷︷ ︸

=:φx
1

, s2 |r2 n2|δ1
︸ ︷︷ ︸

=:φy
1

) , (A.26)
φ2 = tan−1(|r1 n1|δ2

︸ ︷︷ ︸

=:φx
2

, s3 | (r3 n3 | cosφ1|γ1) |δ2
︸ ︷︷ ︸

=:φy
2

) , (A.27)with γi := 2− ǫi , δi := 1/γi , si := sign (ni) .

tan−1 (x, y) is the inverse tangent fun
tion taking into a

ount whi
h quadrant thepoint (x, y) is in. Note that the normal ve
tor entering (A.26) and (A.27) needs notto be normalized. However, to avoid numeri
al problems at points with ni = 0 a lowerbound for the absolute values of the normal 
omponents is implementedif |ni| < TOL ⇒ set ni = si TOL , (A.28)where TOL = 10−20 is a small positive number. Sin
e the 
oordinate equation (3.3)has the same stru
ture as the normal equation (A.25), it 
an be inverted in the sameway giving the 
urvilinear 
oordinates in terms of the Cartesian 
oordinates.The minimization algorithm for lo
al 
onta
t dete
tion presented in se
tion 3.4.2requires the �rst and se
ond partial derivatives of the 
urvilinear 
oordinates withrespe
t to the normal 
omponents. In the following, these will be derived from equa-tions (A.26) and (A.27). In order to preserve the 
larity of the formulas the following
onventions are applied in the rest of this se
tion.
• To abbreviate the formulas auxiliary variables are introdu
ed for frequent terms.
• Partial derivatives with respe
t to normal 
omponents are denoted by •,i := ∂•

∂ni
.

• Only non-vanishing partial derivatives are listed.
• For se
ond partial derivatives the symmetry relation •,ij = •,ji is implied.First, the derivatives of φ1 are derived from (A.26). Using

∂ tan−1 (x, y)

∂x
=

−y
x2 + y2

,
∂ tan−1 (x, y)

∂y
=

x

x2 + y2
,and

φx
1,1 =

r1
γ1
|r1 n1|η1/γ1 , φy

1,2 =
r2
γ1
|r2 n2|η1/γ1 , ηi := ǫi − 1 , l1 := (φx

1)
2 + (φy

1)
2 ,the �rst derivatives read

φ1,1 = − 1

l1
φy

1 φ
x
1,1 , φ1,2 =

1

l1
φx

1 φ
y
1,2 . (A.29)
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ing the auxilary variable q1 := η1/γ
2
1 and the se
ond derivatives

φx
1,11 =

q1 s1

n2
1

|r1 n1|δ1 , φy
1,22 =

q1 s2

n2
2

|r2 n2|δ1 ,yields the result
φ1,11 =

1

l21
φy

1

[
2φx

1 (φx
1,1)

2 − l1 φx
1,11

]
, (A.30)

φ1,12 =
1

l21
φx

1,1 φ
y
1,2

[
(φy

1)
2 − (φx

1)
2
]
, (A.31)

φ1,22 =
1

l21
φx

1

[
l1 φ

y
1,22 − 2φy

1 (φy
1,2)

2
]
. (A.32)Now, the derivatives of φ2 are derived from (A.27). Sin
e φ2 depends on φ1 the aboveresults are re-used and the terms be
ome bulky. Introdu
ing the auxilary variables

l2 := (φx
2)

2 + (φy
2)

2 , q2 :=
1

γ2
| (r3 n3 | cosφ1|γ1) |δ2−1 ,

q3 := −r3 n3 γ1 | cosφ1|−η1 sinφ1 s1 q2 ,the derivatives of φx
2 and φy

2 read
φx

2,1 =
1

γ2
s1 r1 |r1 n1|δ2−1 ,

φy
2,1 = q3 φ1,1 , φy

2,2 = q3 φ1,2 , φy
2,3 = q2 r3 | cosφ1|γ1 .Using these results the �rst derivatives of φ2 are given as

φ2,i =
1

l2

(
φx

2 φ
y
2,i − φy

2 φ
x
2,i

)
. (A.33)For the se
ond derivatives another set of auxiliary variables is introdu
ed

q4 :=
1

γ2
2

| (r3 n3 | cosφ1|γ1) |δ2−2 , q5 := −s3 γ1 q4 (r3 n3)
2 | cosφ1|−2 ǫ1 ,

q6 := −γ2 sin φ1 cos3 φ1 , q7 := (ǫ1 − ǫ2) sin2 φ1 cos2 φ1 − γ2 cos4 φ1 ,

q8 := (cos2 φ1)
−η1 , q9 := −γ1 |r3 n3| r3 q4 q8 sin φ1 cosφ1 .In this way the se
ond derivatives of φx

2 and φy
2 are expressed as

φx
2,11 =

1

γ2
2

r2
1 η2 |r1 n1|δ2−2 , φy

2,11 = q5 (q7 φ1,1 φ1,1 − q6 φ1,11) ,

φy
2,12 = q5 (q7 φ1,1 φ1,2 − q6 φ1,12) , φy

2,22 = q5 (q7 φ1,2 φ1,2 − q6 φ1,22) ,

φy
2,13 = q9 φ1,1 , φy

2,23 = q9 φ1,2 , φy
2,33 = s3 r

2
3 η2 q4 q8 cos2 φ1 .Finally, the se
ond derivatives of φ2 are given by

φ2,ij =
1

l2

[
φx

2,j φ
y
2,i − φy

2,j φ
x
2,i + φx

2 φ
y
2,ij − φy

2 φ
x
2,ij − 2φ2,i

(
φx

2 φ
x
2,j + φy

2 φ
y
2,j

)]
. (A.34)



120 APPENDIX A. SUPERQUADRICSTo determine the derivatives ∂φγ/∂ck from se
tion 3.4.2 the rotation of the 
onta
treferen
e frame êi with respe
t to the parti
le-�xed referen
e frame Ei has to be
onsidered. For the �rst 
onta
t partner P1 the relation between the normal n1 andthe 
onta
t dire
tion c is given as
n1 = c ⇔ nj Ej = ck êk

⇒ nj el ·Ej = ck el · êk
︸ ︷︷ ︸

=:Rlk

⇔ Tlj nj = Rlk ck

⇒ Tli Tlj nj = TliRlk ck ⇔ ni = TliRlk ck ,

(A.35)where R is the rotation matrix des
ribing the transformation between the global andthe 
onta
t referen
e frame. Using this the partial derivatives for the �rst 
onta
tpartner are given as
∂φγ

∂ck
=
∂φγ

∂ni

∂ni

∂ck
=
∂φγ

∂ni

TliRlk . (A.36)In the same manner the relation for the se
ond 
onta
t partner P2 is derived from
n2 = −c resulting in

∂φγ

∂ck
= −∂φγ

∂ni

TliRlk . (A.37)The remaining derivatives ∂p/∂φγ are presented in the beginning of this 
hapter, whilethe derivatives ∂ck/∂αi are easily derived from (3.53).A.2 Surfa
e Points from NormalsThe operation of determining a surfa
e point from a given normal dire
tion is frequentlyused within the DEM s
heme, espe
ially within the 
onta
t geometry update s
hemepresented in se
tion 3.4.2. In fa
t, due to its frequent use, this operation is the mosttime 
onsuming part within the 
omplete DEM s
heme. Therefore, it is worthwhile tothink about the most e�
ient way it 
an be done. One possibility is to use equations(A.26) and (A.27) to �rst 
ompute the 
orresponding 
urvilinear 
oordinates φi andplug these into equation (3.3), i.e. to write
X = X(φ1(n), φ2(n)) . (A.38)The derivatives required by the geometry update s
heme are then derived like for theminimization 
onta
t dete
tion algorithm in se
tion 3.4.2, i.e. using the 
hain rule
∂Xi

∂nj
=
∂Xi

∂φα

∂φα

∂nj
.These derivatives are determined in se
tion A.1.3 and result in bulky terms in
ludinga huge number of trans
endental fun
tions and thus high 
omputational 
osts. A moree�
ient operation is based on the impli
it de�nition of the superquadri
 surfa
e as anisosurfa
e of the inside-outside fun
tion F (3.1)

F (X1, X2, X3) = 1 . (A.39)
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tor is parallel to the gradient of F given as
▽F =

2

ǫ2











(
1
r1

)2/ǫ1
X

2/ǫ1−1
1

[(
X1

r1

)2/ǫ1
+
(

X2

r2

)2/ǫ1
]ǫ1/ǫ2−1

(
1
r2

)2/ǫ1
X

2/ǫ1−1
2

[(
X1

r1

)2/ǫ1
+
(

X2

r2

)2/ǫ1
]ǫ1/ǫ2−1

(
1
r3

)2/ǫ2
X

2/ǫ2−1
3











, (A.40)
where due to the superquadri
's three-fold symmetry only the �rst o
tant is 
onsidered.Hen
e, the relation between a surfa
e point (X1, X2, X3) and the 
orresponding normaldire
tion n = (n1, n2, n3) is given by the nonlinear system

▽F (X1, X2, X3) = λn ,

F (X1, X2, X3) = 1 ,
(A.41)where λ is an unknown positive s
alar fa
tor. By solving (A.41) for the 
oordinatesXi arelation results whi
h does not involve the surfa
e parameterization and therefore savesthe 
orresponding expensive trigonometri
 fun
tion 
alls. The following derivation ofthe expli
it solution of (A.41) is restri
ted to the �rst o
tant. For the determination ofpoints outside this o
tant the simple relation

Xi (n1, n2, n3) = sign (ni) Xi (|n1|, |n2|, |n3|) (A.42)is used, whi
h results from the symmetries of the superquadri
. Furthermore, to avoidnumeri
al problems at points with ni = 0, a lower bound is introdu
ed viaif |ni| < TOL ⇒ set ni = TOL , (A.43)where TOL = 10−20 is a small positive number. To solve system (A.41) the se
ondgradient equation is divided by the �rst resulting in the 
oordinate ratio
X2

X1

=

(
r2
r1

)2/(2−ǫ1) (
n2

n1

)ǫ1/(2−ǫ1)

. (A.44)De�ning γ21 := X2/X1 the �rst term of the inside-outside fun
tion is re-written as
[(

X1

r1

)2/ǫ1

+

(
X2

r2

)2/ǫ1
]

= X
2/ǫ1
1

[(
1

r1

)2/ǫ1

+

(
γ21

r2

)2/ǫ1
]

︸ ︷︷ ︸

=:s12

. (A.45)Using this, the ratio γ31 := X3/X1 is derived by dividing the third gradient equationby the �rst
X3

X1

=

(

n3

n1

r
2/ǫ2
3

r
2/ǫ1
1

s
ǫ1/ǫ2−1
12

)ǫ2/(2−ǫ2)

. (A.46)



122 APPENDIX A. SUPERQUADRICSInserting this into the isosurfa
e equation (A.41)2 yields the �rst 
oordinate
X1 =

[

s
ǫ1/ǫ2
12 +

(
γ31

r3

)2/ǫ2
]−ǫ2/2

. (A.47)This, �nally, gives the surfa
e point
(X1, X2, X3) = X1 (1, γ21, γ31) . (A.48)In order to determine the partial derivatives ∂Xi/∂nj from the above relations, twogeneral 
hara
teristi
s are �rst derived from system (A.41). The partial derivative ofthe isosurfa
e equation (A.41)2 yields
∂F

∂ni
=

∂F

∂Xk

∂Xk

∂ni
= λnk

∂Xk

∂ni
= 0 . (A.49)Hen
e, the tangent ve
tors de�ned by

ti :=
∂Xk

∂ni
Ek (A.50)are orthogonal to the normal ve
tor n and therefore lie in the tangent plane to thesuperquadri
 surfa
e. The derivative of the gradient equation (A.41)1 reads

∂ ∂F
∂Xj

∂ni
=
∂ (λnj)

∂ni
⇒ ∂2F

∂Xj ∂Xk
︸ ︷︷ ︸

=:Hjk

∂Xk

∂ni
=

∂λ

∂ni
nj + λ δij , (A.51)where the Hessian H = Hij Ei ⊗ Ej of F has been introdu
ed. From the de�nitionof F it is easy to show that H is a symmetri
, positive de�nite tensor at every pointex
ept the origin. Equation (A.51) is written in tensor notation as

H · ti =
∂λ

∂ni
n + λEi . (A.52)The s
alar produ
t with tj and the symmetry of H yields the symmetry of the partialderivatives ∂Xi/∂nj

tj ·H · ti =
∂λ

∂ni

tj ·n + λ tj ·Ei = λ tj ·Ei = λ
∂Xi

∂nj

= ti ·H · tj = λ
∂Xj

∂ni

⇒ ∂Xi

∂nj
=

∂Xj

∂ni
. (A.53)The orthogonality (A.49) and symmetry (A.53) are used to redu
e the e�ort of 
om-puting the partial derivatives ∂Xi/∂nj . The surfa
e point 
oordinates are derived interms of the quantities γ21, s12, and γ31, whi
h are fun
tions of the normal 
omponents
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(n1, n2, n3). Hen
e, the partial derivatives ∂Xi/∂nj are derived from the derivatives of
γ21, s12, and γ31. It is

∂γ21

∂n1
=

(
r2
r1

)2/(2−ǫ1)
ǫ1

2− ǫ1

(
n2

n1

)ǫ1/(2−ǫ1)−1 (

−n2

n2
1

)

. (A.54)For an e�
ient implementation of the derivatives it is 
ru
ial to exploit their nature byre-using the terms already 
omputed. Therefore, the derivate is re-arranged resultingin
∂γ21

∂n1
= −

(
r2
r1

)2/(2−ǫ1) (
n2

n1

)ǫ1/(2−ǫ1)
ǫ1

2− ǫ1
1

n1
= −γ21

ǫ1
2− ǫ1

1

n1
. (A.55)In the same way the derivative with respe
t to n2 results to

∂γ21

∂n2
= γ21

ǫ1
2− ǫ1

1

n2
. (A.56)Based on this the derivatives of s12 are given by

∂s12

∂n1

=
2

ǫ1

(
γ21

r2

)2/ǫ1 1

γ21

∂γ21

∂n1

,

∂s12

∂n2

=
2

ǫ1

(
γ21

r2

)2/ǫ1 1

γ21

∂γ21

∂n2

.

(A.57)Using the above the derivatives of γ31 are
∂γ31

∂n1
=

ǫ2
2− ǫ2

γ31

[

− 1

n1
+ (ǫ1/ǫ2 − 1)

1

s12

∂s12

∂n1

]

,

∂γ31

∂n2

=
ǫ2

2− ǫ2
γ31 (ǫ1/ǫ2 − 1)

1

s12

∂s12

∂n2

,

∂γ31

∂n3

=
ǫ2

2− ǫ2
γ31

1

n3

.

(A.58)
Finally, the derivatives of X1 read

∂X1

∂n1

= q

[

ǫ1
ǫ2
s

ǫ1/ǫ2
12

1

s12

∂s12

∂n1

+
2

ǫ2

(
γ31

r3

)2/ǫ2 1

γ31

∂γ31

∂n1

]

,

∂X1

∂n2
= q
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ǫ1
ǫ2
s
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12

1

s12

∂s12

∂n2
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r3

)2/ǫ2 1

γ31

∂γ31

∂n2

]
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∂X1

∂n3
= q
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2

ǫ2

(
γ31

r3

)2/ǫ2 1

γ31

∂γ31

∂n3

]

,with q := −ǫ2
2
X1

[

s
ǫ1/ǫ2
12 +

(
γ31

r3

)2/ǫ2
]−1

.

(A.59)



124 APPENDIX A. SUPERQUADRICSUsing (A.48) the missing derivatives read
∂X2

∂ni

=
∂γ21

∂ni

X1 + γ21
∂X1

∂ni

, (A.60)
∂X3

∂ni

=
∂γ31

∂ni

X1 + γ31
∂X1

∂ni

. (A.61)The sign of the derivatives for points outside the �rst o
tant is derived by di�erentiationof (A.42)
∂Xi (n1, n2, n3)

∂nj

=
∂ (sign (ni) Xi (|n1|, |n2|, |n3|))

∂nj

= sign (ni)
∂Xi (|n1|, |n2|, |n3|)

∂|nk|
∂|nk|
∂nj

= sign (ni) sign (nj)
∂Xi (|n1|, |n2|, |n3|)

∂|nj |
.

(A.62)
A.3 Line Segment Interse
tionAn operation used frequently in the parti
le-surfa
e 
onta
t s
heme is the determina-tion of interse
tions of a straight line segment and the parti
le surfa
e. Let the linesegment be de�ned by its endpoints A = Ai Ei and B = Bi Ei via

Xi(λ) = (1− λ)Ai + λBi = Ai + λ (Bi − Ai) with λ ∈ [0, 1] . (A.63)The surfa
e of a superquadri
 parti
le is de�ned impli
itly as iso-surfa
e of the inside-outside fun
tion F (X) = 1. To determine the interse
tion points the fun
tion f(λ) isde�ned as
f(λ) := F (X(λ))− 1 , (A.64)so that the interse
tion points are given as roots of f(λ). Due to the 
onvexity of theinside-outside fun
tion, f(λ) is a 
onvex fun
tion as well. Hen
e, three s
enarios haveto be a

ounted for:

• f(0) ≤ 0 ∧ f(1) ≤ 0: A and B lie inside. There is no interse
tion.
• f(0) ≤ 0 ∧ f(1) > 0: A lies inside and B outside. There is one interse
tion.
• f(0) > 0∧f(1) > 0: A and B lie outside. There might be no or two interse
tions1.In the last 
ase the number of interse
tions depends on the minimum of f(λ)

min
λ∈[0,1]

f(λ)

{

< 0⇒ 2 interse
tions
≥ 0⇒ no interse
tion . (A.65)1The 
ase that the line segment exa
tly tou
hes the surfa
e is 
onsidered as no interse
tion.
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f ′(λ) :=

dfdλ =
∂F

∂Xi

dXidλ = ▽F |X(λ) · (B −A) , (A.66)the following relation holds due to the 
onvexity of f
f ′(0) f ′(1) > 0 ⇒ min

λ∈[0,1]
f(λ) = min(f(0), f(1)) . (A.67)Hen
e, the minimization of f is only performed if f ′(0) f ′(1) < 0 using the Newtons
heme 
ombined with the Armijo line sear
h. Due to the 
onvexity of f , the s
hemeis globally 
onvergent and usually yields the minimum λmin within few iterations. For

f(λmin) < 0 the minimum point C := X(λmin) is introdu
ed and the problem of�nding two interse
tions in [A,B] is repla
ed by the problem of �nding ea
h oneinterse
tion in [A,C] and [B,C]. Without loss of generality it is now assumed that
f(0) < 0 ∧ f(1) > 0. The unique root within λ ∈ [0, 1] is determined iteratively usingthe Newton method. The initial value is either 
hosen as λ0 = 1 or spe
i�ed by theuser, if a good guess is available. Note that due to the 
onvexity of f the followingrelation holds for the iterates λi

λ∗ < λi+1 < λi ∀i > 0 , (A.68)where λ∗ is the exa
t root, i.e. f(λ∗) = 0. Again, the solution is usually approximatedwith high a

ura
y within few iterations. However, depending on the shape of thesuperquadri
 and the position of the line segment, the fun
tion f(λ) might be highlynonlinear. Thus, if the number of iterations be
omes too large, a simple bise
tionalgorithm is applied, whi
h does not require the 
omputation of derivatives.A.4 Triangle Interse
tion AreaThe evaluation of the 
onta
t for
e between a parti
le P and a plane triangle T a
-
ording to the 
onta
t model introdu
ed in se
tion 4.1.1 ne
essitates the determinationof
• the interse
tion area A of P and the plane E de�ned by T ,
• and the interse
tion area Ã of P and T as well as its geometri
 
enter c̃, 
f. �gure4.6(a).For superquadri
 parti
les these quantities 
an only be 
omputed approximately. Forthis purpose the triangle T and the 
orresponding plane E are �rst expressed in termsof the parti
le-�xed referen
e frame Ei. Let E be de�ned by the normal n and 
onstant

c via x ·n = c. To 
he
k if E interse
ts P, the surfa
e points p(n) and p(−n) = −p(n)are 
omputed from the normal dire
tion, see �gure A.2(a). The distan
es of these pointsto E are given as
h1 = p(n) · n− c , h2 = c− p(−n) ·n = c+ p(n) ·n . (A.69)
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r1
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A
pi

ϕi ∆ϕ

∆Ai

Figure A.2: a) Triangle T and 
orresponding plane E interse
t parti
le P. Point pi belongsto the interse
tion of E and P.b) Numeri
al approximation of interse
tion area A of E and P.The plane interse
ts the parti
le i�
h1 > 0 ∧ h2 > 0 ⇔ |c| < p(n) ·n . (A.70)In 
ase of an interse
tion a point of this interse
tion is given as

pi =
h2 p(n) + h1 p(−n)

h1 + h2
=
h2 − h1

h1 + h2
p(n) , (A.71)whi
h for spheri
al parti
les is the 
enter of the interse
tion area A. To approximate

A two orthogonal ve
tors r1 and r2 are introdu
ed with ri · n = 0 and ‖ri‖ = 2 rmax,where rmax denotes the radius of the bounding sphere of P, see �gure A.2(b). Using pias 
enter, A is approximated as sum of the triangular areas ∆Ai de�ned by the radiusve
tors r(ϕi) and r(ϕi+1) with
ϕi := i∆ϕ = i

2 π

nA
and r(ϕ) := cosϕ r1 + sinϕ r2 . (A.72)The interse
tion points of the radius ve
tors and the parti
le surfa
e are determineda

ording to se
tion A.3. This requires nA solutions of a nonlinear equation whereat agood initial guess for ve
tor i is available from ve
tor i − 1. Finally, the interse
tionarea and its 
enter are approximated as

A ≈
nA∑

i=1

∆Ai , c ≈ 1

A

nA∑

i=1

∆Ai c(∆Ai) , (A.73)where c(∆Ai) denotes the 
enter of the triangular element ∆Ai.In order to 
ompute the interse
tion area Ã of the triangle T and parti
le P thetopology of this interse
tion has to be determined. For this purpose the 
orner points of
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(0, 0)

(0, 2)

(0, 0) (0, 1)

(0, 3) (1, 0)

(1, 1) (2, 0) (3, 0)Figure A.3: Topologi
ally di�erent 
ases of parti
le-triangle interse
tion. Interse
tion of par-ti
le and triangle plane in light gray, triangle in dark gray, and parti
le-triangleinterse
tion in medium gray. The numbers are (number of triangle 
orners insideparti
le, number of triangle edges that interse
t the parti
le surfa
e twi
e).
T inside P and the interse
tions of triangle edges and the parti
le surfa
e are dete
ted�rst. Figure A.3 exempli�es the possible topologies along with the number of 
ornerpoints inside the parti
le and the number of edges that interse
t the parti
le surfa
etwi
e. The two (0, 0) topologies are distinguished by 
he
king if pi ∈ T . Note that forthese two most frequent 
ases no interse
tion areas have to be 
omputed, sin
e in one
ase the 
onta
t for
e vanishes, while in the other 
ase the 
onta
t for
e depends solelyon the overlap distan
e.For the remaining 
ases similar s
hemes are applied as for the approximation of theplane-parti
le interse
tion area, see �gure A.4. Sin
e the operation prin
iples be
ome
lear from the �gure, they will not be explained in detail. In general, the interse
tionarea is approximated by a number of triangles, whose generation s
heme depends onthe topology of the interse
tion.Finally, the a

ura
y of the proposed s
heme is analyzed. Obviously, the a

u-ra
y depends on the degree of re�nement nA used to approximate round parts of theinterse
tion areas. Here the re�nement parameter is 
hosen as nA = 64. First, thetriangle-parti
le interse
tion algorithm is tested for 104 randomly generated test 
aseswith spheri
al parti
les for whi
h the interse
tion area 
an be 
omputed analyti
ally.The s
heme yields an average relative error in the interse
tion area Ã of about 0.03%and a maximum relative error of 7.3%.
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∆

∆
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∆

∆

∆

∆

Figure A.4: Interse
tion approximation s
hemes for di�erent topologies. In the top row ea
hsemi
ir
le is dis
retized into nA angles. In the bottom row the triangle edgesare split into nA segments.To 
he
k the performan
e for superquadri
 parti
les a simple approximation s
hemeis used as referen
e: The original triangle is split into n parts along ea
h edge likeexempli�ed in �gure A.5. This yields a number of n2 sub-triangles, ea
h of whi
h is
he
ked for lying 
ompletely inside or outside of the parti
le. In this way, a lowerand an upper bound for the interse
tion area are determined. Again, 104 test 
asesare randomly generated. The referen
e approximations are determined using n = 500,whi
h 
orresponds to a number of 2.5× 105 sub-triangles. The mean interse
tion areais about 1.25, while the mean distan
e between the results of the proposed s
heme andthe lower bound of the referen
e s
heme is 5.4 × 10−3 and the distan
e to the upperbound is 6.2 × 10−3. In only two 
ases the proposed s
heme yields results whi
h donot lie inside the narrow bounds. The mean di�eren
e between the proposed solutionand the average of lower and upper bound is 3.7× 10−4 and the maximum di�eren
eis 9.7× 10−4.Finally, the s
heme is again 
ompared with the analyti
al solution for spheri
alparti
les. Now, 104 random test 
ases are generated su
h that the parti
le-plane overlapdistan
e is only a small fra
tion of the parti
le radius. Under this 
ondition the s
hemeyields an average relative error in the interse
tion area Ã of 6.6× 10−4.
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+

n = 5

lower bound

upper bound

Figure A.5: Referen
e s
heme approximating the interse
tion area by splitting the triangleinto n2 
ongruent triangles.Altogether, these tests indi
ate that the proposed s
heme yields a

urate resultsunder all possible 
ir
umstan
es. Its robustness is a dire
t result of the robustnessof the line segment interse
tion s
heme presented in se
tion A.3, whi
h is used todetermine the dis
retization of the interse
tion areas.
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Appendix BWeighted Virtual Work of a RigidBodyWithin this se
tion the weighted virtual work of a rigid body is 
onsidered as introdu
edin se
tion 6.1. Using a linear approximation of the weight fun
tion w(x) within thedomain of the rigid body Ω the virtual work is given by equation (6.12) and repeatedhere for 
onvenien
e
δWα = (wcm c̈− f ) · δu0 + (wc I · ω̇ + ω × wc I ·ω −m) · δω

+ w′
c n ·

∫

Ω

r ρ (c̈ + ω̇ × r + ω × (ω × r)− b) · (δu0 + δω × r) dv
︸ ︷︷ ︸

δW ∗

.

Introdu
ing the inertia tensors
I1 :=

∫

Ω

ρ r ⊗ r dv , I2 :=

∫

Ω

ρ r ⊗ r ⊗ r dv , I3 :=

∫

Ω

ρ r ⊗ 1 r2 dv , (B.1)the gradient term δW ∗ is written as
w′

c n · { I1 ·
[
(c̈− b)× δω + (ω · δu0 ω − ω2 δu0) + (δu0 × ω̇)

]
− (B.2)

I2 : [ω ⊗ (δω × ω) + ω̇ ⊗ δω] + (B.3)
I3 : [ω̇ ⊗ δω] } . (B.4)For superquadri
 parti
les the inertia tensors I2 and I3 vanish due to the symmetry ofthe parti
les. The magnitude of the remaining term is estimated assuming a spheri
alrigid body of 
onstant density, mass m, and radius R yielding
I1 =

∫

Ω

ρ r ⊗ r dv =
1

5
mR2 1 =

1

2
I 1 =

1

2
I . (B.5)131
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ontribution (B.2) gives
w′

c

1

5
mR2 n ·

[
(c̈− b)× δω + (ω · δu0 ω − ω2 δu0) + (δu0 × ω̇)

]

= w′
c

1

5
mR2

[
(n ·ω ω − ω2 n + ω̇ × n) · δu0 + (n× (c̈− b)) · δω

] (B.6)
= w′

c

R

5

[
(mRω2 (n · eω eω − n) +mR ω̇ × n) · δu0 +

(Rn×m (c̈− b)) · δω] with ω = ω eω, ‖eω‖ = 1 . (B.7)Let now L denote the 
hara
teristi
 size of the domain ΩC and let it be expressed interms of parti
le diameters via L = n 2R, so that n is the number of parti
les overthe domain. Assuming a linear evolution of the weight fun
tion the magnitude of thegradient is given by
w′

c =
1

L
=

1

n 2R
. (B.8)This yields the remaining 
ontribution to the virtual work

1

10n

[
(mRω2 (n · eω eω − n) +mR ω̇ × n) · δu0 + (Rn×m (c̈− b)) · δω

]
. (B.9)Hen
e, for a domain of the width of, e.g., ten parti
les the prefa
tor is 1/100, while theterms inside the bra
kets are of the same order of magnitude as those of the weightedequations of motion (6.13) and (6.14).
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