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iZusammenfassungIn dieser Arbeit wird ein zwei-Skalen Modell für kohäsionslose reibungsbehaftete granu-lare Materialien entwikelt. Die Idee hierbei ist die granulare Struktur nur in Bereihengroÿer Deformationen mit Hilfe der Diskreten Elemente Methode (DEM) zu model-lieren, während das Material sonst als Kontinuum mit der e�zienten Finite ElementeMethode (FEM) abgebildet wird.Die dreidimensionale DEM verwendet Superquadri-Partikel um die Elongation undKantigkeit realer Körner anzunähern. Unter der Annahme elastisher Verformungen imKontaktbereih zweier Partikel wird die Kontaktkraft mit Hilfe des Hertz-Mindlin Mo-dells und des Coulombshen Reibgesetzes ermittelt. Die einzigen Materialparameterdes Modells sind die elastishen Konstanten der Partikel und der Reibkoe�zient, wel-he klare physikalishe Bedeutungen besitzen und aus Experimenten ermittelt werdenkönnen. Das Spektrum berehenbarer Probleme wird durh die Entwiklung e�zienterKontaktalgorithmen und eines Parallelisierungsshemas für Shared-Memory Arhitek-turen erweitert.Um ein Kontinuumsmodell abzuleiten, wird das e�ektive Verhalten des Partikel-modells anhand einer Homogenisierungs-Methode bestimmt. Dafür werden zufällige,periodishe, kubishe Pakungen erzeugt und unter triaxialen Spannungs- und Deh-nungsrandbedingungen getestet. Die resultierenden Spannungs-Dehnungskurven wer-den zur Anpassung der Parameter eines elasto-plastishen niht-assoziierten Mohr-Coulomb Kontinuumsmodells verwendet.Die DEM und FEM werden durh die Arlequin Methode gekoppelt. Hierfür wirdein Gebiet eingeführt, in welhem beide Modelle überlagert werden und die virtuel-le Arbeit zwishen beiden Modellen interpoliert wird. Die Kompatibilität wird überkinematishe Zwangsbedingungen erreiht, welhe durh eine Penalty Methode einge-braht werden. Für die Formulierung dieser Zwangsbedingungen werden die diskretenPartikelvershiebungen in Grob- und Feinanteile aufgeteilt, wobei sih erstere aus derProjektion der Vershiebungen auf den FE Ansatzraum ergeben. Dies ermögliht na-türlihe Fluktuationen der Vershiebungen und verhindert einen störenden Ein�uÿ derKopplung auf die granulare Struktur. Die Modelierung des Einpressens eines Pfahls inSand zeigt, dass die zwei-Skalen Methode die Betrahtung von Problemen ermögliht,welhe mit bisherigen Methoden niht möglih waren.Als Nebenprodukt wird ein gekoppeltes DE-FE Modell zur Untersuhung der Weh-selwirkung von granularen Materialien und Festkörpern entwikelt. Die Wehselwir-kung �ndet durh Kontakt der Partikel mit der FE Ober�ähe statt, welhe hierfürmit einem Dreieksnetz approximiert wird. Dabei wird ein spezielles Kontaktmodellfür Partikel-Kanten und Partikel-Eken Kontakte eingeführt.Shlagworte: Granulare Materialien, Diskrete Elemente Methode, Homogenisierung,Multiskalen, Arlequin Kopplung, Superquadri
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iiiAbstratWithin this dissertation a onurrent two-sale model of non-ohesive fritional gran-ular materials is developed. The idea is to model the granular struture only withindomains of large deformation by a Disrete Element Method (DEM), while elsewherethe material is onsidered as ontinuummodeled by the e�ient Finite Element Method(FEM).The three-dimensional DEM uses superquadri partiles to approximate the elonga-tion and angularity of real grains. At inter-partile ontats the partiles are assumedto deform elastially, and the ontat fore is derived from the Hertz-Mindlin modelombined with the Coulomb frition model. Hene, the only material parameters en-tering the model are the partiles' elasti onstants and the oe�ient of frition, allof whih have a lear physial meaning and an be determined from experiments. Inorder to expand the range of feasible problems of the omputationally expensive DEMan e�ient ontat detetion sheme and a parallelization sheme for shared memoryarhitetures are developed.To derive a orresponding ontinuum model the e�etive behavior of the partilemodel is determined by a homogenization sheme. For this purpose random, ubial,periodi partile pakages are generated and probed under triaxial stress and strainboundary onditions. Average stresses are derived from inter-partile ontat fores,and the resulting stress-strain urves are used to �t the parameters of an elasto-plastinon-assoiative Mohr-Coulomb ontinuum model.The DEM and FEM are oupled via the Arlequin method. For this purpose bothmodels are overlapped in a oupling domain. Here the virtual work is interpolatedbetween them yielding an average material model. The ompatibility is assured viakinemati onstraints, whih are enfored by the penalty method. The formulation ofthese onstraints is based on a oarse-�ne split of the disrete partile displaements.The oarse part results from the projetion of the disrete displaements onto theFE ansatz spae using a volume weighted least-square �t. The split enables natural�utuations of the partile displaements within the oupling domain. In this way themirostruture within the disrete domain is not disturbed by the oupling. The simula-tion of a pile installation problem reveals that the two-sale and two-method approahenables the onsideration of problems not feasible for mono-method approahes.As a by-produt a oupled DE-FE sheme is developed for the interation of granu-lar materials and solid strutures. This is aomplished via ontats between partilesand the FE surfae mesh, whih for this purpose is approximated by a triangular mesh.A ontat model is developed whih takes partile-edge and partile-orner ontatsinto aount.Keywords: Granular Material, Disrete Element Method, Homogenization, Multi-sale, Arlequin Coupling, Superquadri
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Chapter 1IntrodutionGranular materials are enountered in a variety of �elds and forms. Prominent examplesare ores in the mining industry, powders in the pharmaeutial industry, raw materialsin the manufaturing industry, soils, sand, and gravels in the onstrution industry, andfood produts like natural grains. The most important treatments of these materialsinlude the exavation from the ground, omminution and grinding, separation andmixing, and transport and storage. Aording to Duran [55℄ the proessing of granularmaterials makes up roughly 10% of the overall energy onsumption on the planet. Thisindiates that it is worthwhile to advane the understanding of the material behaviorin order to design more e�ient proesses.However, despite their widespread ourrene and appliation, the mehanial be-havior of granular materials is understood rather poorly ompared to everyday engi-neering materials. This is a result of their omplex rheology, whih is exempli�ed bytheir ability to show liquid- and solid-like behavior depending on the environmentalin�uenes. Prominent examples are the �ow of sand in an hourglass on the one handand the remarkable sti�ness of vauum paked o�ee powder on the other hand.Within this work the mehanial behavior of granular materials is desribed byanalytial models, whih are evaluated numerially. The analysis is restrited to thesublass of non-ohesive fritional granular materials suh as dry sand, where no at-trative interations exist between the individual grains. Furthermore, the fous lieson the solid-like behavior of these materials leaving aside the various e�ets aused bydynami agitation.1.1 Objetives and State of the ArtThe most ommon approah to model granular materials in engineering is the ontin-uum approah. The disrete partiulate struture of the material is disregarded andreplaed by the assumption of a ontinuous distribution of matter. Eah material pointwithin the ontinuous body is supposed to orrespond to a representative volume ofthe granular material. Hene, the appliability of the ontinuum approah depends onthe separation of sales, i.e. the ratio between the dimensions of the marosopi bodyof interest and the mirosopi heterogeneities. Within the standard ontinuum ap-1



2 CHAPTER 1. INTRODUCTIONproah eah material point is equipped with three translational degrees of freedom andthe state of the body is desribed by ontinuously varying �elds of, e.g., displaementand density. The spei� material desription enters the model in terms of a onstitu-tive equation, whih desribes the relation between the deformation of the body andthe resulting stress. These equations are usually developed in a phenomenologial wayfrom the results of laboratory experiments in whih the behavior of a material sam-ple is analyzed under spei� boundary onditions. For non-ohesive fritional granularmaterials a onsiderable number of sophistiated elasto-plasti and hypo-plasti onsti-tutive equations have been proposed, see e.g. [51, 94, 103, 104, 58, 186, 184, 132℄. Theseare able to represent the most prominent e�ets like the pressure dependent sti�nessand shear strength, the plasti deformation nearly from the onset of loading, and thedilatant behavior under shear loading. Using suh ontinuum models engineering saleproblems are suessfully solved via the Finite Element Method (FEM).A problem of the ontinuum approah is that non-ohesive fritional granular mate-rials tend to develop loalizations of deformations in narrow zones like shear bands, seee.g. the experimental studies on sand in [167, 5, 52℄. Within suh zones the marosopi�elds show huge variations and partile sale deformation proesses di�er onsiderablyfrom zones of small, rather homogeneous deformation. As a result, the sale separa-tion ondition is no longer ful�lled to the original degree questioning the appliabilityof the ontinuum approah in these domains [69℄. Furthermore, standard ontinuumapproahes yield ill-posed boundary value problems and the FE solution beomes mesh-dependent, i.e. the size of the loalization zone depends on the disretization [130, 168℄.An additional problem of the FEM is the severe mesh distortion within the loalizationzones spoiling the method's auray.The above problems are partly resolved by enrihed ontinua, whih are motivatedby the partile-sale deformation mehanisms ativated in the loalization zone. Withinthe Cosserat or miropolar ontinua eah material point is equipped with additionalrotational degrees of freedom, while in higher order ontinua the stress is proposed todepend on higher order deformation gradients. In both ases a harateristi lengthsale is introdued into the ontinuum model. In this way, the loalization problemsare regularized and the size of the loalization zones is determined through the internallength sale, see e.g. [187, 84, 59℄. Nevertheless, some problems remain: First, theenrihed ontinua are based on the sale separation ondition as well. Seond, theproblem of severe mesh distortion remains. Third, the enrihed ontinuum modelsreah a high level of omplexity and are usually based on a huge number of materialparameters, whih have to be determined from laboratory tests. This is an awkwardtask espeially for the parameters desribing the non-standard ontinuum part, sinethese have to be determined from tests yielding an inhomogeneous deformation of thesample [59℄.A di�erent approah of modeling granular materials is the lass of partile meth-ods like the Disrete Element Method (DEM) introdued by Cundall and Strak [47℄.Within the DEM the material is modeled on the grain sale, i.e. eah grain is dis-retized as a rigid body denoted as partile. The interation of the individual partilesis desribed by a ontat model. Hene, the degree to whih the real material behavior



1.1. OBJECTIVES AND STATE OF THE ART 3is aptured depends on the degree to whih the real grain shape and grain interationare aptured. Within the DEM the partile shape is the ruial fator governing theomputational e�ort. Therefore, spherial partiles are used within the majority of thepublished analyses, sine they yield a minimum e�ort. Other shapes that have beenapplied are, e.g., ellipsoids [112, 136, 128℄, superquadris [80, 169℄, polyhedra [43, 10℄,or lusters made of spheres [118, 147℄. The in�uene of the partile shape on the overallmehanial behavior of a partile pakage has been shown numerially [9, 147℄ as well asexperimentally [30℄, whereat the overall behavior is dedued from tests of representativesamples via homogenization shemes.Obviously, the loalization of deformations in narrow zones poses no problem forthe disrete modeling approah. Furthermore, it requires only a moderate number ofmaterial parameters, whih an be determined from grain sale tests. However, thedisrete approah is burdened by a huge omputational e�ort, whih limits feasibleproblems in spae and time and exludes the modeling of typial engineering saleproblems. An ad ho way to redue the e�ort is to inrease the partile size and, in doingso, redue the number of partiles so there is no longer a one-to-one orrespondeneof grains and partiles. However, in this way the partile model no longer representsthe partiulate mirostruture. Hene, it beomes a phenomenologial model, whoseparameters have to be �tted via marosopi tests.The advantages of the two kinds of modeling an be ombined in a onurrent two-sale model, where domains of small, rather homogeneous deformation are modeled asontinuum, while the loalization zones are modeled by the partile method. In this way,the omputational e�ieny of the ontinuum approah is exploited where possible, butthe problem of sale separation in loalization zones is resolved by modeling the realmirostruture. Consequently, the problem of severe mesh distortion is eliminated aswell. Furthermore, the ontinuum model an be dedued from the partile model by ahomogenization sheme so that initially only partile-sale material parameters enterthe model. However, these bene�ts ome at the ost of a two-sale and two-methodmodel, whih requires a onvenient partile-ontinuum oupling. The development ofthis oupling for non-ohesive fritional granular materials is the main objetive ofthis work. Further objetives on the way to a omplete two-sale model are as follows.First, as the basi ingredient of the omplete sheme, a onvenient partile model isrequired, whih should yield quantitative preditions. This requires the appliation ofan advaned partile shape and a mehanially sound ontat model. Furthermore,on the implementation side, algorithms are developed to redue the omputationalburden of the partile method. In a next step, a homogenization sheme is appliedto determine the e�etive behavior of the partile model. Herein, the ruial problemis the appliation of boundary onditions for whih a simple solution is presented.The e�etive behavior is then used to �t the parameters of a standard elasto-plastiontinuum model, whih represents the main e�ets of the partile model. Finally,a onvenient oupling of the ontinuum and partile model is developed. It yields asmooth transition between the two material desriptions.



4 CHAPTER 1. INTRODUCTION1.2 Organization of this WorkThe organization of this work follows losely the above listing of the two-sale model'singredients. The neessary fundamentals of ontinuum solid mehanis and the FEMare outlined in hapter 2. It inludes a desription of the non-assoiative Mohr-Coulombmodel, whih is later used as ontinuum model in the two-sale approah.Chapter 3 details the DEM used to model the material on the grain-sale. Fromthe mehanial point of view the most important aspets are the superquadri partileshape and the Hertz-Mindlin ontat model. From the algorithmi point of view theloal ontat detetion sheme and the simple parallelization sheme yield a onvenientperformane. In order to exemplify this performane and validate the DEM the hapterloses with a numerial example.A useful byprodut of this researh work is presented in hapter 4. Here the in-teration of solid strutures and granular materials is modeled by a oupled DE-FEapproah. The oupling is realized by a ontat sheme modeling ontats between dis-rete partiles and the FE mesh. For this purpose the FE surfae mesh is disretized bya triangular mesh and the handling of ontats between partiles and edges of this meshis overed in detail. The performane and versatility of the approah are demonstratedby a number of numerial examples.The homogenization sheme used to derive the e�etive behavior of the partilemodel is detailed in hapter 5. A onvenient sheme to apply strain and stress bound-ary onditions to random, periodi, retangular hexahedral samples is presented. Theparameters of the partile model are adapted to a referene sand, and the e�etivebehavior is determined via standard triaxial tests. The resulting stress-strain urvesreveal a too small shear strength of the partile model ompared to the referene sand.Finally, the parameters of the Mohr-Coulomb model are �tted to the e�etive behavior.The main objetive of this researh work is detailed in hapter 6. The ouplingof the partile and the ontinuum model is aomplished by the Arlequin method.An overlapping domain is introdued in whih the virtual work is interpolated betweenboth models. The ompatibility of the deformation is assured via kinemati onstraints.For this purpose the disrete partile displaements are split into a oarse sale and a�ne sale part. The former is onstrained to the ontinuum displaement via a penaltyformulation. This enables natural �utuations of the partile displaements in the over-lapping domain and results in a smooth transition between the two material models,whih is demonstrated by triaxial tests. Afterwards, the two-sale sheme is applied tothe problem of inserting a �at pile into a box �lled with dry sand.A summary of the results is provided in hapter 7. The main problems of the two-sale approah are disussed and possible solutions are suggested yielding a perspetiveto future work.



Chapter 2FundamentalsWithin this hapter the fundamentals of ontinuum solid mehanis and the �niteelement method are outlined. The omposition is restrited to those aspets of eithertopi that are most relevant for the researh presented in the following hapters.2.1 Continuum Solid MehanisThe theory of ontinuum solid mehanis is a onvenient tool to model the behaviorof a marosopi solid body. For this purpose the body is onsidered as ontinuum,i.e. the disrete mirostruture onstituting the material is negleted and replaedby a ontinuous distribution of matter. Hene, the method's appropriateness dependson the sale separation of the marosopi body and the partiular mirostruture,whih might be, e.g., moleular and in the nm range or granular and in the mm range.Nevertheless, the question if �the ontinuum approah is justi�ed, in any partiular ase,is a matter, not for the philosophy or methodology of siene, but for experimentaltests� [166℄. In the following only those aspets are outlined whih are relevant fordevelopments in later hapters. Comprehensive works on this topi are provided byAltenbah and Altenbah [6℄, Holzapfel [82℄, Haupt [77℄, and Truesdell and Noll [166℄.2.1.1 KinematisThe body B is supposed to be omposed of a ontinuous set of material points P. Eahmaterial point represents a portion of the original mirostruture so that its behaviororresponds to the e�etive behavior of this portion.MotionThe body's motion is desribed via on�gurations Ω. These are smooth bijetive map-pings of the material points onto the points of the three-dimensional Eulidean spae.By introduing a referene frame eah material point P an be identi�ed with a positionvetor x. The motion of B is given as ontinuous sequene of on�gurations parame-terized by the time t. To measure the deformation of B a referene on�guration Ω0 is5



6 CHAPTER 2. FUNDAMENTALS
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Figure 2.1: Motion χ measured with respet to the referene on�guration Ω0 in the inertialCartesian frame (O,ei).introdued, whih is ommonly hosen as the initial, stress free on�guration at t = 0,see �gure 2.1. The position of the material points in the referene on�guration withrespet to the referene frame1 is denoted by X. The motion of the body is desribedby the smooth funtion
x = χ(X, t) , (2.1)whih represents a bijetive mapping between the material point's referene position Xand its urrent position x at time t. Using the referene frame the position vetors aregiven as x = xi ei and X = Xi ei, and the motion (2.1) an be expressed in omponentform

xi = χi(X1, X2, X3, t) . (2.2)Eah �eld quantity φ haraterizing B an be given either in the Lagrangian form
φ(X, t) or in the Eulerian form φ(x, t). In the former ase one onsiders the evolutionof φ over time for a partiular material point P positioned at X in Ω0. In the latterase one onsiders the evolution at a �xed point in spae x, whih will be oupied bydi�erent material points over time. For onveniene the expliit dependene on x or Xand t will be dropped if not required to prevent ambiguities. Using (2.1) the veloity
v and aeleration a of a material point are given as material time derivatives of χ

v := ẋ :=
Dχ(X, t)Dt =

∂χ(X, t)

∂t
, a := v̇ = ẍ =

∂2χ(X, t)

∂t2
. (2.3)The displaement of a material point is de�ned as

u := x−X = χ(X, t)−X , (2.4)whih yields the identities u̇ = v and ü = a.1One inertial referene frame with origin O and orthonormal base vetors ei is used to measurequantities in the referene and in the urrent on�guration.



2.1. CONTINUUM SOLID MECHANICS 7Deformation GradientThe fundamental measure of deformation is the deformation gradient de�ned by
F := Gradx :=

∂x

∂X
=
∂χ(X, t)

∂X
=
∂χi(X1, X2, X3, t)

∂Xj
ei ⊗ ej . (2.5)

F maps material line elements dX in Ω0 onto spatial line elements dx in Ωdx = F · dX . (2.6)Introduing the displaement gradient H := ∂u/∂X the deformation gradient anbe expressed as F = 1 + H . Resulting from a fundamental theorem of ontinuummehanis there exists a unique polar deomposition of the deformation gradient
F = R ·U = v ·R with RT ·R = 1, det R = 1, U = UT , v = vT , (2.7)where R is a rotation tensor, U is the material streth tensor, and v the spatial strethtensor2, respetively. Hene, the transformation of the line element dX in (2.6) isdeomposed in either an initial strething in Ω0 by U and a subsequent rotation into

Ω by R or an initial rotation and a subsequent strething in Ω by v.StrainIt is a plausible statement that the strain within a material point is independent of itsrotation R. Hene, the right Cauhy-Green tensor is introdued as
C := F T · F = U ·RT ·R ·U = U 2 , (2.8)whih is independent of R. Consider a unit vetor A, ‖A‖ = 1 in Ω0 whih is rotatedand strethed to beome the vetor a = λA ā, ‖ā‖ = 1 in Ω. The streth is given as

λ2
A = a · a = (F ·A) · (F ·A) = A · F T · F ·A = A ·C ·A . (2.9)Hene, C yields the square of the streth λA in diretion of A in Ω0. Consequently,the eigenvalues and eigenvetors of C are the square of the prinipal strethes λ2

I andthe orresponding diretions eI . Therefore, a rigid body deformation with all prinipalstrethes equal unity yields a onstant Cauhy-Green tensor of C = 1. Sine a mean-ingful strain tensor should vanish in this ase, the Green-Lagrangian strain tensor isintrodued as
E :=

1

2
(C − 1) , (2.10)where the pre-fator is introdued for ompatibility with the small strain theory. Ap-proximating the streth as λA = 1 + ǫA + O(ǫ2A), where ǫA denotes the engineeringstrain, gives

A ·E ·A =
1

2

(
λ2

A − 1
)

=
1

2

(
1 + 2 ǫA +O(ǫ2A)− 1

)
= ǫA +O(ǫ2A) . (2.11)2The same symbol v is ommonly used for the veloity and the spatial streth tensor whih doesnot lead to ambiguities in the following.
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n

df

−df
−n

ds

ds

Ω

ΓFigure 2.2: Body in urrent on�guration ut by plane with normal n.Using the displaement gradient the Green-Lagrangian strain tensor is expressed as
E =

1

2

(
H + HT + HT ·H

)
. (2.12)For small deformations the quadrati term in (2.12) an be negleted yielding the linearstrain tensor of the small strain theory

ǫ :=
1

2

(
H + HT

)
=

1

2

(Gradu + GradT u
)
. (2.13)2.1.2 StressThe deformation of a body indues interations inside the material resulting in stress,whih has the dimension fore per area. Consider a body B deforming under some loadapplied at its boundary Γ in the urrent on�guration Ω. If the body is ut along aplane, an in�nitesimal surfae element ds = dsn in one part exerts a fore df on theorresponding surfae element in the other part so that eah part is in equilibrium, see�gure 2.2. The surfae tration t is de�ned as surfae fore per area, i.e. df = t ds.Aording to Cauhy's stress theorem the tration is related to the unit normal of thesurfae element via

t = σ · n , (2.14)where σ is denoted as Cauhy stress tensor. Hene, σ gives the tration for an arbitraryut diretion n. In partiular, this yields Newton's third law of ation and reation,i.e. t(n) = −t(−n). For a standard ontinuum like onsidered here the Cauhy stresstensor is symmetri, σ = σT , whih results from the balane of angular momentum.2.1.3 Balane PriniplesThe balane priniples govern the evolution of the extensive quantities of mass, linearmomentum, angular momentum, and energy due to in�uenes from outside the body.



2.1. CONTINUUM SOLID MECHANICS 9For purely mehanial systems these in�uenes are given as fores ating on the body'sboundary Γ and on the volume Ω. Furthermore, for these systems the energy balanepriniple is no additional statement but a onsequene of the balane of linear momen-tum and therefore will not be onsidered here. The balane priniples are fundamentallaws valid within eah ontinuum setting and for all materials. They an be formulatedeither in a global integral form valid for the omplete body or in a loal form valid ateah material point inside the body.Conservation of MassEah material body B is equipped with a mass m, whih is the fundamental measureof the amount of material ontained in B. For a losed system, i.e. no mass transportover the boundary Γ, the priniple of mass onservation states that the mass m of Bis onserved during the motion of B
ṁ =

DmDt = 0 . (2.15)To formulate this priniple in the loal form the mass density �eld ρ(x, t) is introduedas
ρ(x, t) = lim

∆v→0

∆m(x, t)

∆v(x, t)
, (2.16)where ∆m(x, t) is the mass of the volume element ∆v(x, t) loated at x at time t.Note that a ontinuous mass distribution is assumed here. Considering the disretemirostruture of a material the volume element ∆v in (2.16) should not approahzero, sine this would result in a disontinuous density �eld. Hene, the volume elementshould be onsiderably larger than the mirostruture for ρ(x, t) to be ontinuous. Themass of a volume element dV in Ω0 is then given by dm = ρ0 dV , where ρ0 denotesthe mass density in the referene on�guration. Due to the body's motion the volumeelement is transformed into dv = J dV with J := det F . Sine the mass dm of thevolume element is onserved, the following ontinuity mass equation holds

ρ0 dV = ρ dv = ρ J dV ⇔ ρ(X , t) = J−1(X, t) ρ0(X) . (2.17)Momentum Balane PriniplesThe body B is loaded by the surfae tration t(x, t) ating on its boundary Γ and thedistributed mass fore b(x, t) ating within Ω. The linear momentum of the body isde�ned as
L(t) :=

∫

Ω

ρv dv . (2.18)The angular momentum with respet to a referene point x0 is de�ned as
H(t) :=

∫

Ω

r × ρv dv with r := x− x0 . (2.19)



10 CHAPTER 2. FUNDAMENTALSThe balane of linear momentum is the generalization of Newton's seond law forontinuous bodies. It states that the hange of linear momentum equals the resultantfore F

L̇(t) = F (t) :=

∫

Ω

ρ b dv +

∫

Γ

t ds . (2.20)Analogously, the balane of angular momentum states that the hange of angular mo-mentum equals the resultant torque M with respet to the referene point x0

Ḣ(t) = M(t) :=

∫

Ω

r × ρ b dv +

∫

Γ

r × t ds . (2.21)Consequently, the linear and angular momentum are onserved if no external foresat on the body. Using Cauhy's stress theorem (2.14) and the Gaussian divergenetheorem the balane of linear momentum readsDDt ∫
Ω

ρv dv =
DDt ∫

m

v dm =

∫

m

a dm =

∫

Ω

ρa dv =

∫

Ω

ρ b dv +

∫

Γ

σ ·n ds
⇔
∫

Ω

ρ (a− b)− divσ dv = 0 . (2.22)Sine m, L, and H are extensive quantities, the body B an be split arbitrarily andthe balane equations hold for eah part separately. Hene, equation (2.22) holds forarbitrary small parts of Ω yielding the loal form of the linear momentum balane
ρ (a− b)− divσ = 0 . (2.23)The orresponding derivation for the angular momentum balane yields the symmetryof the Cauhy stress tensor.2.1.4 Rigid Body DynamisWithin a rigid body the distane of all material points is onstant over time. Thisorresponds to onstant measures U = v = 1, F = R, E = 0, J = 1, and ρ = ρ0within the whole body. The enter of mass of the body is de�ned as

c :=
1

m

∫

Ω

ρx dv . (2.24)The general motion of a rigid body an be expressed as a translation of the enterof mass ombined with a rotation about an axis passing through the enter of massyielding the veloity and aeleration �elds
v(x) = ċ + ω × r with r := x− c , (2.25)
a(x) = c̈ + ω̇ × r + ω × (ω × r) , (2.26)



2.1. CONTINUUM SOLID MECHANICS 11where ω is the angular veloity and the time dependene is dropped for onveniene.Inserting the veloity �eld (2.25) into (2.18) yields the linear momentum of the rigidbody
L =

∫

Ω

ρ (ċ + ω × r) dv = m ċ + ω ×
∫

Ω

ρ r dv = m ċ + ω ×m (c− c) = m ċ . (2.27)The angular momentum with respet to the enter c is given as
H =

∫

Ω

r × ρ (ċ + ω × r) dv =

∫

Ω

ρ r × (ω × r) dv =

∫

Ω

ρ (r · r ω − r · ω r) dv
=

∫

Ω

ρ (r · r 1− r ⊗ r) dv · ω = I · ω , (2.28)where the symmetri inertia tensor I is introdued. Using the onservation of mass(2.15), the balane of linear momentum (2.20) yields the translational equation ofmotion of the rigid body
L̇ = m c̈ = F . (2.29)Aordingly, the balane of angular momentum (2.21) yields the rotational equation ofmotion of the rigid body

Ḣ =
DDt ∫

Ω

r × ρv dv =
DDt ∫

m

r × v dm =

∫

m

ṙ × v + r × a dm
=

∫

m

[(ω × r)× (ċ + ω × r)] + [r × (c̈ + ω̇ × r + ω × (ω × r))] dm
=



ω ×
∫

m

r dm× ċ +

∫

m

r × (ω̇ × r) + r × (ω × (ω × r)) dm
= I · ω̇ +

∫

m

r × (ω · r ω − ω · ω r) dm = I · ω̇ +

∫

m

ω · r r × ω dm
= I · ω̇ − ω ×





∫

m

r ⊗ r dm · ω = I · ω̇ + ω × I ·ω = M . (2.30)Note that in ontrast to the mass m in (2.29) the inertia tensor I in (2.30) is not aonstant quantity. However, for a rigid body it has onstant omponents if referred toa body-�xed referene frame.2.1.5 Constitutive EquationsTo determine the motion of a ontinuous body from the balane of linear momentum(2.23) and given external loads, the relation between the deformation of the body and



12 CHAPTER 2. FUNDAMENTALSthe resulting stress has to be established. This relation will be di�erent for eah parti-ular material and an only be approximated in general. The most simple model is thatof a rigid body used above, whih is reasonable for negligible strains. Other relationsare desribed on three levels: First, by the assumption of spei� material symme-tries, seond, by the imposition of kinemati onstraints, and third, most importantly,by onstitutive equations whih state the relation between the strain history and thestress. In the formulation of onstitutive equations a number of priniples have to beaounted for in order to get a reasonable and physially onsistent material behavior.Here only three of these priniples are mentioned:
• Determinism: The state of stress is determined uniquely by the past motion ofthe body.
• Loal Ation: The state of stress at a material point is only in�uened by themotion of its lose viinity and not of the omplete body.
• Frame Indi�erene: The funtional form of the onstitutive equation is invari-ant with respet to a hange of the referene frame (observer). Furthermore, itinludes no information about the absolute motion of the referene frame3.The range of possible funtional forms is limited onsiderably by these priniples. Inshort, the priniple of determinism states that the stress depends solely on the pastmotion. Additionally, for standard ontinua, the priniple of loal ation restrits thestress at a material point to depend only on the history of the deformation gradient atthis point. Finally, the priniple of frame indi�erene restrits the funtional form ofthis dependene and suggests the formulation of the onstitutive equation in terms ofertain quantities. For example, the funtional form

S(X, t) = S
τ<t

[C(X, τ)] ,where S := J F−1 σ F−T is the seond Piola-Kirhho� stress tensor, automatially ful-�lls the above priniples [77℄. A partiular lass of material models are the hyperelastimaterials, whose onstitutive behavior is desribed by a strain energy density funtion
Ψ, whih gives the energy stored inside the material due to the purely elasti deforma-tion. A well-known example is the ompressible Neo-Hooke model, whose strain energyfuntion reads

Ψ(C) = (K − 2

3
G)

1

4
(J2 − 1− 2 ln J) +

1

2
G (trC − 3) .

K and G are the bulk and shear modulus, that have to be �tted to the partiularmaterial via experimental tests. The stress results as partial derivative of the strainenergy density funtion with respet to the strain
S(C) = 2

∂Ψ

∂C
.3Absolute motion means the relative motion with respet to an inertial referene frame.



2.1. CONTINUUM SOLID MECHANICS 13In the following the presentation is restrited to the small deformation setting. In thisase the urrent on�guration equals the referene on�guration to a �rst approxima-tion so that they are not distinguished any more. For small strains all hyperelastimodels approximate the linear elasti Hooke's law
σ(ǫ) = K tr ǫ1 + 2G (ǫ− 1

3
tr ǫ 1) = K ǫV 1 + 2G ǫdev , (2.31)where the strain tensor is split into a volumetri part ǫV and a deviatori part ǫdev.Non-ohesive fritional granular materials an be lassi�ed as elasto-plasti mate-rials. For a omprehensive presentation of plastiity models within the framework ofomputational modeling the reader is referred to the work by Neto et al. [131℄. Elasto-plasti materials behave elastially up to a ertain load limit. If loaded beyond this limit,plasti deformations evolve whih remain after the body is unloaded. The desriptionof this behavior requires the de�nition of the load limit where the behavior swithesfrom purely elasti to elasto-plasti. Furthermore, the magnitude and diretion of theplasti deformation have to be established. Here the non-assoiative Mohr-Coulombmodel is used to model the behavior of non-ohesive fritional granular materials. Thismodel is based on the assumption that plasti deformations are initiated, if on anyplane inside the body the shear stress τ reahes a ritial value de�ned by

τ = c− σn tanφ with t = σ · n , σn := t ·n , τ := ‖t− σn n‖ ,where −σn is the normal pressure ating on the plane, c is the ohesion parameter, and
φ is the frition angle. Hene, the maximum shear stress inreases linearly with thepressure, whih is a good approximation of the behavior of fritional granular materials.The above riterion is formulated via a yield funtion in terms of the prinipal stresses
σI

Φ(σ) = σ1 − σ3 + (σ1 + σ3) sinφ+ 2 c cos φ with σ1 ≥ σ2 ≥ σ3 . (2.32)The spae of admissible stress states is given by the ondition Φ(σ) ≤ 0, see �gure2.3. In the interior (Φ < 0) the material behaves elastially aording to the linearelasti Hooke's law (2.31). On the boundary (Φ = 0) the material might either �owplastially or unload elastially. To desribe the plasti �ow the linear strain tensor issplit additively into an elasti part and a plasti part
ǫ = ǫe + ǫp , (2.33)where the stress only depends on the elasti part, i.e. σ = σ(ǫe). The plasti �ow isde�ned using the plasti multiplier γ and the �ow diretion N

ǫ̇p = γ̇N , (2.34)where by de�nition it is γ̇ ≥ 0. The loading/unloading onditions are summarized as
Φ ≤ 0, γ̇ ≥ 0, Φ γ̇ = 0 . (2.35)
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Φ = 0

√ 3 c
cot
φ

σ = p1

−σ3

−σ2

−σ1Figure 2.3: Mohr-Coulomb yield funtion in the prinipal stress spae.If plasti �ow ours, its magnitude is derived from the onsisteny ondition
Φ̇ = 0 , (2.36)whih assures that the spae of admissible stress states is not left. The diretion ofplasti �ow is de�ned normal to a �ow potential Ψ(σ), i.e. N := ∂Ψ/∂σ. The �owpotential is hosen of the same form as the yield funtion but with the frition anglereplaed by the dilation angle ψ

Ψ(σ) = σ1 − σ3 + (σ1 + σ3) sinψ + 2 c cosψ . (2.37)This allows to apture the dilatant behavior typially shown by granular materialsduring shear deformation. Altogether, the elasto-plasti Mohr-Coulomb model is basedon �ve material parameters, the elasti moduli K and G, the frition angle φ, thedilation angle ψ, and the ohesion parameter c, whih de�nes the strength of thematerial under zero pressure.2.2 Finite Element MethodThe motion of the body B oupying the domain Ωt at time t is governed by the loalmomentum balane (2.23) ombined with boundary and initial onditions
ρ (ẍ− b)− divσ = 0 ∀ x ∈ Ωt , (2.38)

σ · n = t̂ ∀ x ∈ Γtσ ⊂ Γt := ∂Ωt , (2.39)
u = û ∀ x ∈ Γtu := Γt \ Γtσ , (2.40)

u(t = 0) = u0 , u̇(t = 0) = v0 ∀ x ∈ Ω0 , (2.41)where the dependene on x and t is dropped for onveniene. Combined with theonstitutive model desribing the material behavior (setion 2.1.5) and the kinematirelations (setion 2.1.1) the above set of equations states the initial boundary value
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Ωt :
Γt := ∂Ωt

Γt = Γtu ∪ Γtσ

Γtu ∩ Γtσ = ∅

Ωe

Γtu

Γtσû

xI

e3 e2

e1

t̂

Figure 2.4: Finite element disretization of initial boundary value problem. The body ou-pying the domain Ωt at time t is loaded by boundary displaements û(x, t) on
Γtu and trations t̂(x, t) on Γtσ . The domain Ωt is approximated as union of the�nite element domains Ωe.problem (IBVP) de�ning the motion of the ontinuous body, f. �gure 2.4. In general,the analytial solution for the unknown displaement �eld u(x, t) annot be deter-mined. Therefore, an approximate solution is sought, whih might be gained from dif-ferent methods. The most suessful and thus most ommon method to solve IBVPs inengineering is the Finite Element Method (FEM). Within this setion its fundamentalpriniples for deriving an approximate solution are outlined. Comprehensive treatiseson the FEM are given by, e.g., Bathe [21℄, Hughes [85℄, Zienkiewiz et al. [189℄, andWriggers [182℄.2.2.1 Weak Form of EquilibriumIn order to apply the FEM the priniple of virtual displaement is used to state theIBVP in the weak form. For this purpose an arbitrary, in�nitesimal, virtual, and kine-matially admissible displaement �eld δu(x) is introdued, whih is denoted as virtualdisplaement. The virtual displaement is imagined to deform the body from the ur-rent on�guration, and the orresponding virtual work done by the di�erent fores isonsidered. It is given by the salar produt of the momentum balane equation (2.38)and the virtual displaement

[ρ (ẍ− b)− divσ] · δu = 0 ∀ x ∈ Ωt , (2.42)
δu = 0 ∀ x ∈ Γtu , (2.43)where (2.43) assures the kinematial admissibility of the virtual displaement �eld.Sine δu is arbitrary, the momentum balane (2.38) is equivalent to the integral formof (2.42) given by

∫

Ωt

[ρ (ẍ− b)− divσ] · δu dv = 0 . (2.44)



16 CHAPTER 2. FUNDAMENTALSIntegrating by parts and using the Gaussian divergene theorem, Cauhy's stress the-orem (2.14), the tration boundary ondition (2.39), and the kinematial admissibilityof the virtual displaement (2.43) results in the weak form of equilibrium
∫

Ωt

ρ ẍ · δu dv +

∫

Ωt

σ : grads δu dv =

∫

Ωt

ρ b · δu dv +

∫

Γtσ

t̂ · δu ds , (2.45)where grads denotes the symmetri part of the gradient. In this way, the spatial deriva-tives of the stress �eld are shifted to the virtual displaement �eld, whih poses aweakening of the di�erentiability requirements of the solution �eld. For the stati ase(ẍ = 0) the priniple of virtual displaement states that the internal work on theleft-hand side of equation (2.45) equals the external work on the right-hand side ofequation (2.45).2.2.2 Finite Element DisretizationIn order to �nd an approximate solution, an ansatz for the unknown displaement�eld is de�ned. For this purpose the domain Ωt is disretized into �nite elements Ωe,see �gure 2.4. In general, this disretization is only an approximation of the originaldomain, i.e.
Ωt ≈ ∪ne

e=1Ωe , (2.46)where ne denotes the number of elements. Eah element is de�ned by a number ofnodes, whose position is denoted by xI . For eah node I an ansatz funtion NI isintrodued, whose support is the domain oupied by those elements that inlude thenode I. Consequently, the only non-vanishing ansatz funtions in a partiular elementdomain Ωe are those that belong to the nodes de�ning the element. Furthermore, theansatz funtions ful�ll the following onditions
NI(xJ) = δIJ , (2.47)

nn∑

I=1

NI(x) = 1 , (2.48)where nn denotes the number of nodes. Using the NI the ansatz for the unknowndisplaement and aeleration and the virtual displaement are de�ned as
uh(x) =

nn∑

I=1

NI(x) uI , üh(x) =

nn∑

I=1

NI(x) üI , δuh(x) =

nn∑

I=1

NI(x) δuI , (2.49)where uI , üI , and δuI are assoiated with the nodes. Due to the onditions (2.47) and(2.48) the ansatz (2.49) states an interpolation of the nodal values. By inserting theansatz into the weak form of equilibrium (2.45), the problem of �nding a ontinuoussolution �eld is transformed into the problem of �nding disrete nodal values ful�lling
nn∑

I=1

δuT
I





∫

Ωt

ρ ühNI dv +

∫

Ωt

BT
I σ dv − ∫

Ωt

ρ bNI dv − ∫
Γtσ

t̂ NI ds = 0 . (2.50)



2.2. FINITE ELEMENT METHOD 17Here the omponents with respet to the inertial Cartesian frame are written in matrixnotation, and the matrix BI inludes spatial derivatives of the ansatz funtion NI .Sine the virtual displaement �eld is arbitrary, equation (2.50) has to be ful�lled forarbitrary nodal values δuI . Therefore, eah parenthesis term in (2.50) has to vanishseparately yielding the system of nonlinear di�erential equations
M ü+ P (u) = F . (2.51)

M is the mass matrix, ü is the vetor of nodal aelerations, P is the vetor of internalfores, u is the vetor of nodal displaements, and F is the vetor of external loads. Theomponents of M , P , and F are assembled from the omponents of eah element, i.e.the integrals in (2.50) are split into sums of integrals over individual elements, whihare evaluated by numerial integration shemes like Gaussian quadrature.2.2.3 Transient SolutionTo �nd an approximate solution to the system of nonlinear di�erential equations (2.51)a time disretization is introdued, i.e. the solution is approximated at �xed times
un := u(n∆t) , (2.52)where ∆t is the time step. The idea to �nd a solution is to approximate the timederivatives by di�erential quotients so that the only remaining unknowns are the nodaldisplaement vetors un. Depending on the way the time derivatives are approximateddi�erent solution shemes result, whih are lassi�ed into impliit and expliit shemes.Impliit shemes are burdened with a higher omputational e�ort per integration step,whih inludes the solution of a linear system of equations. However, they enable largertime steps than expliit shemes. Here, the well-known expliit entral di�erene inte-gration sheme is presented, whih is based on a entral di�erene approximation ofthe aeleration

ün =
1

∆t

(
un+1 − un

∆t
− un − un−1

∆t

)

=
1

∆t2
(
un+1 − 2 un + un−1

)
. (2.53)Inserting this into (2.51) yields the update formulas

an = M−1 (F n − P (un)) , (2.54)
vn+1 = vn +∆t an , (2.55)
un+1 = un +∆t vn+1 . (2.56)This sheme is ommonly applied in ombination with a lumped mass matrix of di-agonal shape. Then the inversion of M is trivial and the omputational e�ort perintegration step is governed by the evaluation of the internal fore vetor P (un). As anexpliit integration sheme the entral di�erene method is only onditionally stable sothat the time step is limited by a ritial value. For linear systems, where the internalfores are expressed as P (un) = K un, the ritial time step is given as

∆trit =
2

ωmax
=

2√
λmax

, (2.57)



18 CHAPTER 2. FUNDAMENTALSwhere λmax is the maximum eigenvalue of K−1M . To avoid the eigenvalue omputationfor the global system, λmax an be bounded by the orresponding element values via
λmax ≤ max

e=1,ne

λe
max . (2.58)For nonlinear problems the ritial time step an be estimated via

∆trit = γ
h

c
, (2.59)where h is a harateristi length of the smallest element of the disretization, c is thespeed of a ompression wave, and γ ≈ 0.2− 0.9 is a redution fator.



Chapter 3Disrete Element MethodThe disrete element method (DEM) was introdued by Cundall [41℄ to model blokyrok systems. It was based on the assumptions that the rok an be onsidered asrigid, that the normal sti�ness of rok joints plays a minor roll in the overall failureproess, and that eah rok might undergo arbitrary large rigid body motions. Un-der these assumptions the individual roks were modeled as disrete rigid bodies withtranslational and rotational degrees of freedom assigned to their enters of mass. Thesedisrete bodies are denoted as partiles. A small overlap of adjaent partiles was al-lowed and used to derive repulsive ontat fores using a fritional ontat model. Theresultant fore on eah partile was used to update its veloity and position by appli-ation of an expliit time integration sheme to the partile's equations of motion. In alater paper Cundall and Hart [46℄ generalized the term DEM to �numerial proeduresfor simulating the omplete behaviour of systems of disrete, interating bodies�. Morepreisely, a proedure has to allow �nite displaements and rotations of the partilesand, onsequently, has to detet ontats between them automatially. Regardless ofthis general de�nition, the vast majority of the published work on DEMs falls into thelass of the original works [41, 47℄, i.e.
• the partiles are onsidered as rigid with soft ontats,
• ontat fores are derived from small overlaps of adjaent partiles,
• the partiles' equations of motion are integrated using expliit integration shemes.Another sheme whih �ts into the general de�nition given by Cundall and Hart [46℄ isthe disontinuous deformation analysis (DDA) introdued by Shi and Goodman [154℄.The main di�erene between the DDA and the lassial DEM is that the DDA appliesimpliit integration shemes and that the partiles are deformable. Furthermore, theimpenetrability ondition is met through iterations, while in the lassial DEM theontat fore model requires an interpenetration, albeit small ompared to the partilesize. Another impliit simulation sheme is the non-smooth ontat dynamis method(NSCD) introdued by Jean [89℄ and Moreau [122℄. In ontrast to the DEM the motionof the partiles is governed by the impenetrability ondition, the Coulomb fritionmodel, and an impat model. This results in a system of equations whose unknowns19



20 CHAPTER 3. DISCRETE ELEMENT METHODare the relative ontat veloities and the average ontat fores over the time step. Thissystem is solved by iterative shemes, whose onvergene rate depends on the fritionoe�ient and the time step. In NSCD the impenetrability ondition is ful�lled to ahigh auray and no onstitutive model for the ontat fore is required besides thefrition and impat model. On the other hand, the numerial e�ort inreases due to theiterations required in eah time step. A more detailed overview of similar simulationtehniques is given by Cundall and Hart [46℄.In the following, the fous lies on lassial DEM shemes. Depending on their �eldof appliation, published methods di�er in the three building bloks, i.e. the parti-le geometry, the ontat formulation, and the time integration sheme. The �eld ofappliation varies
• from partile sizes in the µm range for e.g. hemial powders to rok bloks inthe m range,
• from non-ohesive partiles like dry sand grains to strongly bonded partiles likein onrete,
• from simulations of laboratory sale mehanial tests to industrial sale applia-tions.The appliations an be split into two ategories: In the �rst ategory the DEM aimsto be an exat model of the granular material, i.e. one partile represents one grainand the ontat model approximates the real grain interation. Hene, shemes ofthis kind are only based on parameters whih an be determined from grain saleexperiments and therefore need no �tting. In the seond ategory the aim of an exatmodel is abandoned beause of the numerial e�ort resulting from either omplexgrain shapes or simply huge numbers of grains. In this ase, a partile is typiallymuh larger than a grain and the DEM redues to a phenomenologial model, whoseparameters have to be �tted via appropriate bulk experiments. Shemes of the �rstategory are mostly applied to model laboratory sale experiments to gain insight intothe grain-sale mehanism yielding the bulk behavior observed experimentally, see e.g.[112, 160, 137, 9, 39, 155, 8, 147, 162℄. Furthermore, they are applied to industrialproesses involving a feasible number of partiles, see e.g. [35, 119℄. On the other hand,shemes of the seond kind are applied to a wide range of appliations from industrialproesses like silos, mills, transportation, and segragation to geotehnial appliationslike tunnels, exavation, and pile foundation, see e.g. [83, 35, 158℄.The DEM applied in this work falls into the grain sale ategory. It is designedto model non-ohesive fritional granular materials suh as dry sand. For this pur-pose it uses superquadri partile shapes and a Hertzian ontat model ombined withCoulomb frition. The starting point for the development of the DEM ode was theresearh ode deribed by Lillie [109℄ and initiated in the group of Prof. P. Wriggersat Leibniz Universität Hannover. It is enhaned with a new ontat formulation andmore e�ient ontat detetion algorithms. The main ingredients of the resulting DEMsheme are desribed in the following setions: The partile shape is disussed in setion



3.1. PARTICLE SHAPE 213.1 followed by the modeling of inter-partile ontats in setion 3.2. The time inte-gration shemes applied to the partiles' equations of motion are detailed in setion3.3. The e�ient implementation of the DEM utilizing appropriate ontat detetionalgorithms ombined with a parallelization sheme is presented in setion 3.4. Finally,the performane of the DEM is exempli�ed in setion 3.5.3.1 Partile ShapeThere is a variety of partile shapes that have been applied in DEMs to model ohen-sionless fritional granular materials. First of all these an be ategorized aordingto their dimensionality. Two-dimensional (2D) shapes are often hosen beause of thesigni�ant redution of the omputational e�ort ompared to three-dimensional (3D)shapes. This redution results from the redued number of degrees of freedoms (DOFs),the simpli�ed parameterization of the partile's rotational position, and the reduedomplexity of the ontat detetion proess. However, the signi�ane of 2D shemes tomodel the real 3D behavior is unlear due to the following problems: The deformationof granular materials results mainly from grain rearrangements and the variety of rear-rangement mehanisms in 3D is muh riher than in 2D. Hene, 2D shemes annot beonsidered as slies of 3D samples. They annot provide realisti values for basi har-aterizations of granular skeletons, suh as the oordination number, i.e. the averagenumber of ontats per grain, or the solid fration, i.e. the fration of the overall bulkvolume oupied by grains. Therefore, it is a well agreed fat that while 2D shemesare useful tools to get a �rst insight into some phenomena of granular materials, theyannot provide any quantitative results, see e.g. [161, 15, 172, 160, 175, 39℄. A more de-tailed analysis of the importane of the partile dimensionality an be found in [67, 78℄.It is important to note that the shortomings of 2D shemes are independent of theboundary onditions. In ontrast to ontinuum mehanis, where 2D shemes an beapplied to solve, e.g., plane strain problems, 2D DEM shemes annot give quantitativeresults for any kind of boundary onditions. Sine the goal of this work is a quantitativedesription of granular materials, only 3D shemes are overed in the following.When modeling granular materials with non-trivial grain shapes the hoie of thepartile shape is a tradeo� between the approximation of the real shape and the re-sulting omputational e�ort. Most of todays 3D DEM shemes use spherial partilesdue to the trivial ontat detetion. Choosing a di�erent shape an easily result inan inrease of omputation times by an order of magnitude. However, using even thesimplest deviation from spheres, i.e. ellipsoids, leads to a signi�ant hange of the bulkbehavior of a partile pakage. Donev et al. [53℄ showed that the solid fration of randompakages of spheres deviates signi�antly from that of ellipsoids. Furthermore, the bulkshear resistane was shown to inrease when deviating from the spherial shape [9, 147℄,what is often related to their lak of rolling resistane. Out of these reasons, spherialpartiles seem inappropriate for a quantitative model. More advaned smooth partileshapes are ellipsoids [112, 136, 128℄, superquadris [80, 169℄, and partiles assembledfrom parts of spheres [172, 100, 91℄. As non-smooth partiles polyhedrals [43, 10℄ havebeen applied, whih require a distintion between di�erent ontat ases. These partile



22 CHAPTER 3. DISCRETE ELEMENT METHODshapes share the feature that they are onvex resulting in a single ontat between apair of partiles. However, it has been shown that the non-onvexity of grains seems tobe an important fator for the shearing resistane of partile pakages, see e.g. [147℄.This analysis used lusters of spherial partiles, i.e. spheres that are glued togetherand might also overlap. Using this tehnique there have been �rst attempts to apturereal grain shapes measured by X-ray omputed tomography with high auray [173℄.However, due to the omputational e�ort only small samples ould be onsidered, whihdo not allow a onlusion on the bulk behavior.Within this work superquadri partiles are used, beause, on the one hand, theyare able to approximate at least rounded grains fairly well. On the other hand, the om-puational e�ort still enables sample sizes that allow to onlude on the bulk behavior.The superquadri shape is de�ned via the inside-outside funtion [20℄
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. (3.1)A point inside the superquadri yields F < 1 and the surfae is de�ned impliitly by
F = 1. The oordinates Xi belong to the superquadri's prinipal referene frame Ei,whose origin is loated at the superquadri's enter. Note that the prinipal axes areaxes of symmetry sine F is an even funtion, i.e.

F (X1, X2, X3) = F (|X1|, |X2|, |X3|) . (3.2)The shape of the superquadri is de�ned by �ve geometry parameters. The radiusparameters ri speify the elongation of the superquadri in its prinipal diretions.The exponents ǫ1 and ǫ2 ontrol the angularity of the superquadri in the X1,X2 planeand X3 diretion, respetively. Here the exponents are restrited to ǫi ∈ (0, 2), whihleads to a smooth, onvex body. For ǫi → 0 the shape approahes that of a uboid,
ǫi = 1 yields an ellipsoid, and for ǫi → 2 the superquadri approahes an otahedron,f. �gure 3.1(a). This �ve parameter de�nition di�ers slightly from the more generalsix parameter de�nition used by, e.g., Williams and Pentland [179℄ and Cleary et al.[36℄. However, it has numerial bene�ts regarding the omputation of surfae pointsfrom normal diretions, f. appendix A.2. The superquadri's surfae is parameterizedusing urvilinear oordinates φi through
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. (3.3)In �gure 3.1(b) the parameterization is depited by plotting the isolines of onstant φi.From this parameterization geometri quantities are dedued suh as the radii of theinsribed and irumsribed spheres or tangent and normal vetors, whih are usefulfor the ontat detetion proess, f. appendix A.1. The integration of the partile'sequations of motion neessitates the mass m and the prinipal mass moments of iner-tia Ii. These values are determined from the surfae parameterization as well. Their
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Figure 3.1: a) Superquadris with r1 = r2 = r3/2.b) Superquadri surfae parameterized by urvilinear oordinates φ1 and φ2.derivation is given in [88℄. Assuming a onstant mass density ρ within the partile themass is given by
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j are funtions of the exponent parameters de�ned as
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,in whih Γ denotes the Gamma funtion. Using this the prinipal mass moments ofinertia are expressed as
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2 . (3.7)This yields the inertia tensor expressed in the body-�xed prinipal referene frame

I = I1 E1 ⊗E1 + I2 E2 ⊗E2 + I3 E3 ⊗E3 . (3.8)
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Figure 3.2: Mass and inertia of a superquadri with r1 = 1, r2 = 1.5, r3 = 2, and ρ = 1.The dependeny of the inertia values on the angularity parameters ǫi is exempli�ed in�gure 3.2 for a superquadri with r1 = 1, r2 = 1.5, r3 = 2, and ρ = 1. Note the hugeratio between the maximum values at ǫi = 0 and the minimum values at ǫi = 2. For themass there is a fator of six, while for the moments of inertia the fator is even as highas 20. This is an important feature regarding the numerial integration of the partile'sequations of motion, sine the ritial time step depends on the inertia values.To formulate the equations of motion the global Cartesian inertial referene frame
ei is introdued, f. �gure 3.3. A position vetor is given in the global frame by p = pi eiand in the loal, partile-�xed frame by P = Pi Ei. These are related via the partileenter x through

p = x + P . (3.9)The salar produt of this relation and the base vetor ei yields the relation betweenglobal and loal position oordinates
pi = xi + ei ·Ej Pj . (3.10)
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Figure 3.3: Global inertial and loal partile-�xed referene frame.Introduing the transformation matrix Tij := ei ·Ej this relation is re-written as
pi = xi + Tij Pj ⇔ p = x+ T P . (3.11)In the same manner the relation between loal and global oordinates of an arbitrarynon-position vetor v are

v = T V . (3.12)For the implementation of the DEM the partile's translational DOFs are representedby its global enter oordinates x. The rotational DOFs, on the other hand, are repre-sented by the rotation matrix T with T−1 = T T and detT = 1. Although this approahrequires the storage of nine omponents representing only three DOFs, it is bene�ialfor the performane. The transformation between global and loal oordinates is afrequent operation most e�iently handled by appliation of equation (3.12), see [57℄.3.2 Contat FormulationWithin lassial DEM shemes partiles are onsidered as rigid. To model the inter-partile ontat behavior a small interpenetration of adjaent partiles is admitted, andthe ontat fore is derived from the interpenetration geometry. For smooth partilesthis geometry is usually desribed by the interpenetration distane δ, i.e. the lengthof the vetor d := p2 − p1 onneting the surfae points at whih the normals areantiparallel, f. �gure 3.4. The most simple ontat model assumes a linear relationbetween δ and the normal repulsive ontat fore, i.e. fN = kN δ, whih is often re-garded as penalty ontat formulation; the higher the penalty fator kN the smaller theunphysial interpenetration. However, the penalty fator is not a physial parameterand therefore hoosing its value is a tradeo� between the omputational e�ort (whihinreases with kN) and the degree of interpenetration tolerated. A more sophistiatedontat model is ahieved by taking into aount that the rigidity of the partiles is justa simpli�ation for determining the partile's motion: Indeed, the partiles deform due
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Figure 3.4: Penetrating partiles with ontat points pi, normal vetors ni, and interpene-tration distane δ.to ontat loads even if the deformation might be small and restrited to the viinityof the ontat. Hene, the ontat fore an be derived from this deformation via theHertzian ontat theory.3.2.1 Hertzian Normal ContatA detailed desription of the Hertzian ontat theory is given by, e.g., Gladwell [68℄and Johnson [90℄. For onveniene a summary of its main assumptions and results isgiven here. The �rst important assumption made by Hertz is that the ontating bodiesare homogeneous, isotropi, and elasti solids. Furthermore, it is assumed that theirsurfaes are smooth and non-onforming so that ontat forms at a single point, whihevolves to an area of ontat, when the ontating partiles are pressed together. Hertzdisovered that this ontat area is of elliptial shape. Regarding eah of the ontatpartners as an elasti half spae loaded over an elliptial region, Hertz was able toderive ontat pressures from the theory of linear elastiity. For this approah to bereasonable the size of the ontat area has to be small ompared to
• the size of the bodies, so that the onentrated stresses in the ontat area arenot a�eted from outside the ontat area and
• to the radii of urvature of the surfaes, so that the surfaes approximate anelasti half spae and the strains in the ontat region are small enough for thetheory of linear elastiity to be appliable.Regarding the superquadri partiles as homogeneous, isotropi, and elasti the aboveonditions are ful�lled sine superquadris have a smooth, onvex shape and the inter-penetration of adjaent partiles is muh smaller than the partile dimensions. Notethat the interpenetration distane will now be onsidered as the normal approah of twodistant points inside the ontating partiles, and that the unphysial interpenetrationis replaed by elasti deformations of the partiles at the ontat.In order to apply the Hertzian ontat theory a more detailed desription of the on-tat geometry is required. In addition to the ontat points and the ontat normal, the
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Figure 3.5: Paraboloids approximating the partile surfaes at the ontat points.prinipal radii of urvature of the ontating surfaes are required. The ontat pointsof two penetrating partiles P1 and P2 are de�ned as those points on the partiles' sur-faes that have minimum distane under the onstraint that the outward unit normalsare antiparallel, see �gure 3.4. If the interpenetration is small ompared to the partilesize and the minimum radius of urvature, this ondition yields a unique solution. Forsuperquadris an e�ient sheme to ompute the ontat points is presented in setion3.4.2.The fore ating on P1 is denoted as f1 =: f and the fore ating on P2 as f 2 = −f .The overall ontat fore f is split into the normal and tangential part
f = fN + fT = −fNn1 + fT . (3.13)The normal part, in turn, onsists of an elasti term and a dissipative term

fN = fNel + fNdis . (3.14)In the following, the elasti part fNel will be derived using the Hertzian ontat theory.Afterwards, the tangential part fT is onsidered using Mindlin's results and Coulomb'sfrition model. Finally, two possibilities for modeling the dissipative part fNdis will bepresented.Hertz approximates the partile surfaes in the ontat region by paraboloids de-�ned by the prinipal urvatures ρI
i and ρII

i of the surfaes at the ontat points andtheir orresponding perpendiular diretions, see �gure 3.5. A derivation of these quan-tities for superquadris is given in appendix A.1.2. From this desription the shape ofthe ontat ellipse is derived, whih is de�ned by the ratio of its semi-axes κ = a/b(with b ≤ a). For this purpose the relative urvatures A and B (with A ≤ B) areintrodued
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28 CHAPTER 3. DISCRETE ELEMENT METHODThe �rst main result of Hertz is that κ depends solely on the ratio of the relativeurvatures B/A, where the relation is given impliitly through
B

A
=

(1/κ)2 E(e)−K(e)

K(e)− E(e)
with e :=

√

1− 1

κ2
. (3.17)

e is alled the eentriity of the ontat ellipse, andK(e) and E(e) denote the ompleteellipti integrals of the �rst and seond kind. Sine no expliit solution of equation (3.17)exists for κ, an approximate analytial sheme presented by Antoine et al. [7℄ is used,whih yields a maximum relative error of 5.86× 10−6 for a range of 1 ≤ B/A ≤ 1010.Introduing the e�etive modulus E∗ via
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, (3.18)where νi denotes Poisson's ratio and Ei denotes Young's modulus of Pi, the elasti partof the ontat fore is given by
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E∗ δ3/2 . (3.19)
γ depends only on the prinipal urvatures and their diretions. Thus, it will be onstantif the ontat points and the relative orientation of the partiles are onstant. Theellipti integrals are approximated via expressions given in [1, 7℄.3.2.2 Tangential ContatMindlin [121℄ onsidered the same two-body system as Hertz but inluded a shearloading due to a tangential fore. In addition to the assumptions and simpli�ationsmade by Hertz, Mindlin assumed that no slip ours between the bodies in ontat. Hewas then able to show that the shape and size of the area of ontat is not in�uenedby the tangential load. Furthermore, he derived elasti omplianes for the relativemovement of the bodies in the diretions of the ontat ellipse's semi-axes. For thispurpose two funtions of the eentriity e are introdued

B(e) :=
E(e)− (1− e2) K(e)

e2
, D(e) :=

K(e)− E(e)

e2
. (3.20)The �rst semi-axis of the ontat ellipse is given as
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. (3.21)Introduing the material onstants
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Cx =

1

π a
(K(e)λ1 − B(e)λ2) , Cy =

1

π a
(K(e)λ1 −D(e)λ2) . (3.23)The tangential ontat fore depends on the relative tangential movement of the on-tat points, whih annot be drawn from the urrent ontat geometry but has to beintegrated over time. Furthermore, the tangential fore is bounded by the normal forethrough Coulomb's frition model. Consequently, the tangential fore in the urrenttime step fT,n is derived from the tangential fore in the last time step fT,n−1 in atwo step sheme. First, a trial value is omputed based on the inremental tangentialmovement. For this purpose the tangential sti�ness tensor KT is introdued

KT :=
1

Cx

ex ⊗ ex +
1

Cy

ey ⊗ ey , (3.24)where ex and ey are the unit vetors in diretion of the ontat ellipse's semi-axes, see�gure 3.5. The trial value is given as
fT,tr = fT,n−1 + KT ∆t ḋ , (3.25)where ḋ is the relative veloity of the ontat points and ∆t is the time step. Thetangential fore in the atual time step results from Coulomb's riterion using thefrition oe�ient µ

fT,n =

{

fT,tr , if ‖fT,tr‖ ≤ µ |fN |
µ |fN | fT,tr

‖fT,tr‖ , else. (3.26)Note that depending on the ratio of the elasti omplianes the inrement of the tan-gential ontat fore in general is not parallel to the inrement of the relative tangentialdisplaement. The ratio of the elasti omplianes, in turn, depends on the shape ofthe ontat ellipse κ and Poisson's ratios ν1 and ν2. Generally, the elasti ompliane
Cx in diretion of the major semi-axis a is greater than the elasti ompliane Cy indiretion of the minor semi-axis b, where in the limit of κ = 1 it is Cx = Cy, of ourse.The dependene on Poisson's ratio is suh that the omplianes derease as ν1 or ν2inrease. As an be seen from equations (3.22) and (3.23) in the limit of ν1 = ν2 = 0it is λ2 = 0 and therefore the isotropi ase Cx = Cy. Mindlin also ompared the ratioof the normal ompliane Cz := (∂fNel /∂δ)−1 and the tangential ompliane Cx for thease of idential elasti properties E1 = E2 = E and ν1 = ν2 = ν. Here, in the limitingase of ν = 0, it is Cz = Cx = Cy. For the pratial range of 0 ≤ ν ≤ 1/2 the tangentialompliane is always greater than the normal ompliane but never more than twieas great.3.2.3 Dissipative PartThe dissipative part fNdis is modeled in two ways depending on the type of problem on-sidered. First, for quasi-stati simulations, a simple dashpot model is used, where fNdis



30 CHAPTER 3. DISCRETE ELEMENT METHODis introdued to redue the amount of kineti energy. Within this model the dissipativefore is proportional to the normal relative veloity of the partiles
fNdis = ζ d δ̇ , (3.27)where ζ is a user-de�ned salar value and d is hosen to yield a ritially dampedsystem for ζ = 1. To determine d the normal ontat sti�ness is introdued as

cN :=
∂fNel
∂δ

=
3

2
γ E∗

√
δ , (3.28)yielding the ritial damping onstant

d := 2

√

cN
m1m2

m1 +m2
, (3.29)where mi are the partile masses. Considering dynami problems the above modelyields a normal oe�ient of restitution for the impat of two partiles that is quasiveloity independent. However, experiments with ie partiles [25℄ and other materials(for an overview see Goldsmith [71℄) show a signi�ant dependene of the restitutionoe�ient on the impat veloity. To model this e�et, Brilliantov et al. [26℄ derived aontat model by onsidering visoelasti partiles. This results in the dissipative fore

fNdis = γ E∗ 3

2
A
√
δ δ̇ , (3.30)where A depends on the elasti and visous material properties. It has been shown thatthis formulation in onnetion with the Hertzian elasti fore is in good agreement withexperimental results [142℄. Depending on the dissipative onstants the addition of theelasti and dissipative part (3.14) might result in an unphysial attrative ontat forein the �nal ontat phase [149℄. Therefore, equation (3.14) is replaed by

fN = max(fNel + fNdis, 0) . (3.31)Altogether, the bene�t of the presented ontat model is that it depends solely onparameters with a lear physial meaning, whih an be determined from grain saleexperiments. These are the partiles' elasti onstants E and ν for the elasti part, thefrition oe�ient µ for the tangential part, and either a user de�ned salar parameter
ζ or the viso-elasti parameter A for the dissipative part. The latter is determined bymeasuring the restitution oe�ient of two spherial partiles impating at a spei�relative veloity. From the dissipative fore (3.30) an approximate relation between therestitution oe�ient and the onstant A an be derived whih is then solved for A likedesribed in [149℄.3.3 Time IntegrationA partile's translational and rotational equation of motion are derived in setion 2.1.4and repeated here for onveniene

F = L̇ = ma ,

M = Ḣ = I · ω̇ + ω × I · ω .



3.3. TIME INTEGRATION 31
F and M are the resulting fore and torque with respet to the partile enter, a isthe aeleration, and ω is the rotational veloity. The fore and torque are nonlinearfuntions of the partile's own position and veloity as well as those of all its ontatpartners. Hene, the deformation of a partile pakage is governed by a oupled systemof di�erential equations, that are highly nonlinear beause of
• the hange of the ontat network due to the release of old and formation of newontats,
• the Hertzian ontat model ombined with Coulomb frition,
• the parameterization of the three-dimensional rotational motion.An approximate solution to the system is gained from numerial integration shemes.These an be split into two lasses: First, impliit shemes whih require the evaluationof sti�ness terms to ompute the state at the new time step. Seond, expliit shemeswhere the new state is based only on urrent ations. Impliit shemes have the ad-vantage that they are unonditionally stable and enable larger time steps ompared toexpliit shemes, that are only stable if the time step is below a ritial value. However,within DEMs expliit shemes are usually applied beause of the following reasons:
• The sti� system behavior: The relative motion of two partiles from the formationof ontat until reahing a harateristi or maximum fore is usually less than 1%of the partile size. On the other hand, the average overall partile translationthat needs to be resolved within a problem is usually of the order of severalpartile diameters. Furthermore, if the onsidered problem inludes free impatsof partiles, the maximum time step is bounded by the impat duration.
• The strong nonlinearity: Impliit shemes require the evaluation of sti�ness terms,whih in the DEM ase orresponds to derivatives of ontat fores with respet tothe partiles' rotational and translational positions. However, the ontat foresare highly nonlinear funtions of the partiles' position due to the ontat modeland geometry. The last is espeially true for omplex partile shapes like su-perquadris, where the ontat geometry annot be omputed expliitly but needsto be determined via an iterative sheme.Within the lass of expliit shemes a variety of shemes of di�erent approximationorder exists. Generally, low order shemes require less numerial e�ort per time stepombined with a smaller ritial time step. Hene, to reah the same auray onemight either apply a higher number of heaper, low order integration steps or a smallernumber of more expensive, high order steps. For superquadris, however, onsideringthat the ontat fore generation is by far more expensive than the time integration,any sheme that requires more than one fore evaluation per time step an be dismissed.Additionally, onsidering high order shemes the above problems of upper bounds forthe time step still apply. Therefore, the majority of published DEM shemes uses loworder shemes.



32 CHAPTER 3. DISCRETE ELEMENT METHODDue to the more involved desription of the rotational motion, shemes developedfor integrating the translational equations generally annot be applied to the rotationalequations right away. The di�erene in omplexity is exempli�ed by the behavior ofan unloaded partile. Its translational motion is haraterized by a onstant linearmomentum L yielding a onstant translational veloity v. On the other hand, if theinitial axis of rotation does not oinide with one of the partile's prinipal diretions
Ei, the resulting rotational motion is alled torque free preession and is haraterizedby a varying rotational veloity ω and inertia tensor I.For the translational integration a huge number of shemes exists. Overviews anbe found in e.g. [143, 145℄. Here the simple and widely used Verlet-Leapfrog method isapplied, whih is haraterized by the update formula

vn+1/2 = vn−1/2 +∆tan with an =
1

m
F n , (3.32)

xn+1 = xn +∆tvn+1/2 , (3.33)where the index denotes the time step, i.e. •n := •(n∆t). This sheme yields oordi-nates that are aurate to third order in ∆t. The fat that oordinates and veloitiesare evaluated at di�erent times does not present a problem. If the veloities at step
n+ 1 are required, they are approximated via

vn+1 = vn+1/2 +
1

2
∆tan . (3.34)For the integration of the rotational motion a fourth order Runge-Kutta method isapplied, that is derived from the sheme introdued by Munjiza et al. [126℄. The shemeis modi�ed only in the way small inremental rotations are applied. In the initial stepthe angular momentum is updated using the atual resultant torque

Hn+1 = Hn +∆tMn . (3.35)Now, based on the de�nition of the angular momentum H = I · ω and the assump-tion that the hange of angular momentum is instantaneous, so that H is onstantthroughout the time step, an average angular veloity is derived using the lassialRunge-Kutta formula. For this purpose the transformation between global oordinatesand loal oordinates (denoted by •̃ in the following) is required. While H and ω arestored in global oordinates, I is naturally stored in terms of the loal prinipal values
Ĩ :=





I1 0 0
0 I2 0
0 0 I3



 . (3.36)Hene, using the transformation matrix T the de�nition H = I · ω reads in globaloordinates
H = T Ĩ T T ω , (3.37)whih is inverted to

ω = T T −1
Ĩ
−1
T−1H = T Ĩ

−1
T T H . (3.38)



3.4. IMPLEMENTATION 33If the partile rotates with onstant ω for a duration ∆t, this results in a rotation ex-pressed by a matrix R(ω,∆t), whih is most e�etively omputed via the intermediateonstrution of a quaternion [57℄. The new position is given by the updated transfor-mation matrix
T (ω,∆t) := R(ω,∆t)Tn . (3.39)Based on this and relation (3.38) four angular veloities are de�ned

ω1 := ωn , (3.40)
ω2 := T (ω1, ∆t/2) Ĩ

−1
T (ω1, ∆t/2)T Hn+1 , (3.41)

ω3 := T (ω2, ∆t/2) Ĩ
−1
T (ω2, ∆t/2)T Hn+1 , (3.42)

ω4 := T (ω3, ∆t) Ĩ
−1
T (ω3, ∆t)

T Hn+1 . (3.43)From these de�nitions an average angular veloity for the time step is derived usingthe lassial Runge-Kutta formula
ω̄ =

1

6
(ω1 + 2ω2 + 2ω3 + ω4) . (3.44)Using ω̄ the �nal update steps are

T n+1 = T (ω̄, ∆t) , (3.45)
ωn+1 = T n+1 Ĩ

−1
T n+1,T Hn+1 . (3.46)In a torque free situation the update sheme is momentum onserving, while it doesnot provide exat energy onservation. However, it reahes adequate auray for areasonable time step and therefore is suitable for appliation within a DEM [126℄. Notethat the orthonormality of T is preserved to a very high degree by operations of kind(3.39). Numerial analyses using double preision show that the error ‖T T T − 1‖ isof the order of 10−12 after 108 update operations, where either small inremental orlarge arbitrary updates are applied. This is su�ient for DEM simulations so that nore-orthonormalization operations are required.3.4 ImplementationThe basi ingredients of the DEM sheme are desribed within setions 3.1, 3.2, and3.3. These ingredients determine the behavior of the DEM regarding the mehanis,i.e. what problems an be modeled and what the results will be. This setion oversthe implementation aspets of the DEM that determine its performane, i.e. how manypartiles an be traed for how many time steps in what omputational time. Themost important aspet is the ontat detetion proess, sine it is the omputationallymost expensive part of a DEM simulation. In this point the DEM resembles othermeshless methods suh as moleular dynamis (MD) from whih many algorithms anbe diretly applied. Usually, the proess of ontat detetion is split into two phases:In the �rst phase the number of potential ontat pairs is redued with the help of



34 CHAPTER 3. DISCRETE ELEMENT METHODbounding boxes and spatial sorting algorithms. In the seond phase a detailed ontathek is performed for the resulting potential ontat pairs. An overview of methods forboth parts of the proess is given by, e.g., Lin and Gottshalk [110℄ and Vemuri et al.[169℄. Furthermore, this setion desribes a parallelization sheme for shared memoryarhitetures and the important point of partile sample generation. All algorithmsare implemented in a C++ in-house ode maintained at the Institute of ContinuumMehanis at Leibniz Universität Hannover.3.4.1 Global Contat DetetionGiven a set of N partiles of arbitrary shape, size, and position in spae the funtion ofglobal ontat detetion algorithms is to determine a good approximation of the list ofontat pairs within minimum omputational time and requiring minimum omputermemory. A good approximation means that the resulting list must inlude all atualontat pairs and should inlude as few as possible additional pairs. Hene, these al-gorithms are often denoted as neighbor searh algorithms. In order to be appliable toarbitrary partile shapes, they replae the atual partiles by bounding volumes of sim-ple shape. The most ommon bounding geometry is a sphere, beause the intersetionhek is trivial and it is invariant with respet to the rotational position of the partile.Other geometries are axis-aligned bounding boxes (AABB) or oriented bounding boxes(OBB), whih might give a better approximation of the real geometry but need to bere-determined if the partile rotates.The most simple neighbor searh algorithm is an all-to-all hek, where eah bound-ing volume is heked against all other volumes. This results in a omputation timesaling as O(N2), whih is prohibitive when dealing with a huge number of partiles.Therefore, more sophistiated algorithms have been developed, whih an be dividedinto two main lasses: First, tree-based algorithms whih sort the partiles aordingto their position into tree-like strutures and apply e�ient sorting and searhing algo-rithms to determine overlapping bounding volumes, f. [178, 13, 140, 61, 108℄. Seond,binning algorithms whih sort the partiles into a regular grid so that only partilesin adjaent grid ells have to heked, f. [79, 124, 180, 127℄. Generally, tree-based al-gorithms sale with O(N logN), while binning algorithms sale with O(N). However,tree-based algorithms have advantages when dealing with
• sparse systems: If the partile pakage is loose, standard binning algorithms wastememory and omputational time due to a huge number of empty ells.
• wide size distributions: In standard binning algorithms the grid size orrespondsto the maximum partile size. If partile sizes vary onsiderably, this leads to ahigh number of intersetion heks per grid ell and therefore to a redution ofthe performane.The �rst problem has been solved by the NBS algorithm developed by Munjiza andAndrews [124℄ whih uses a sophistiated data struture to overome the memory partand a partile based grid traversal to overome the omputation times part. Based onthis work, Williams et al. [180℄ developed the CGRID algorithm whih overomes the



3.4. IMPLEMENTATION 35seond problem of varying partile sizes by allowing partiles to be ontained in severalgrid ells. Another binning algorithm for greatly di�ering partile sizes was developedby Peters et al. [141℄. Here, the number of neighbor heks is redued e�iently viaa hierarhial grid struture. Furthermore, the algorithm is parallelized via domaindeomposition and shows good saling properties.A ruial issue regarding neighbor searh algorithms in the DEM ontext is theability to exploit the temporal oherene: Between onseutive time steps the partilepositions will only hange little and so will the list of potential ontat pairs. Generally,tree-based algorithms are better suited to make use of this fat, sine they are basedon sorted data strutures whose update beomes heaper, if the struture kept fromthe last time step is almost sorted. Taking this into aount, tree-based algorithms areable to sale with O(N), see e.g. the algorithm introdued by Li et al. [108℄. On theother hand, standard binning algorithms require a new appliation in eah time step.However, a sheme not su�ering this limitation was presented by Munjiza et al. [127℄.In summary, state-of-the-art neighbor searh algorithms sale linearly with the numberof partiles, are rather insensitive to the pakage density and variation in partile size,and exploit the temporal oherene present in a DEM simulation.To hoose a sheme with optimal performane the harateristis of the DEM andthe prospetive appliations have to be analyzed. Here, a DEM based on superquadripartiles will be applied to mainly quasi-stati problems with uniform, dense parti-le pakages of limited partile size variation. Hene, the aspets of pakage densityand size variation are rather unimportant ompared to the aspet of temporal oher-ene. Furthermore, the number of partiles onsidered will be rather huge favoring analgorithm that sales with O(N) and, additionally, an be parallelized. The temporaloherene is exploited by the Verlet neighbor list onept [170℄, whih is ombined witha simple binning algorithm to aomplish the O(N) salability and parallelization. TheVerlet onept is based on the simple idea to enlarge the bounding volumes used in theneighbor searh algorithm by a ertain amount, so that more remote partile pairs aredeteted as well. By noting that eah partile moves only a small distane in one step,it follows that the resulting neighbor lists need no update for several time steps withoutthe risk of missing a ontat. This sheme is naturally used in ombination with spher-ial bounding volumes. These also have the advantage of being invariant with respetto partile rotations so that the bounding sphere radius rmax
i of a superquadri partile

Pi is omputed only one, see appendix A.1.1. A Verlet distane dV is introdued andeah partile pair, whose bounding sphere distane is smaller than dV, is stored in aneighbor list, f. �gure 3.6(a). The neighbor riterion reads
‖xi − xj‖ ≤ rmax

i + rmax
j + dV ⇒ {

i < j : add j to list i,
i > j : add i to list j. (3.47)Figure 3.6(b) exempli�es the Verlet neighbor lists for a small sample. Now, any pair notstored in a list annot ontat as long as no partile moved by more then dV/2. Thisis depited in �gure 3.6(a), where two partiles are shown that will not be onsideredas neighbors. Obviously, they annot ontat without any of the two bounding spheresleaving the dashed spheres representing the Verlet riterion. Hene, the positions xVi
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Figure 3.6: a) Two adjaent partiles enlosed by bounding spheres. If the dashed spheresinterset, the pair (Pi,Pj) is added to a Verlet list.b) Partile sample with orresponding Verlet neighbor lists.of the partiles at the time the neighbor lists are updated have to be stored to hekthe update riterion eah time step
‖xn

i − xVi ‖ ≥ dV
2

for any i ∈ P := {1, 2, . . . , N} ⇒ update lists. (3.48)The omputational e�ort of evaluating this riterion is smaller than the e�ort of aglobal ontat hek. The number of suessive time steps without an update obviouslyinreases with dV and dereases with the maximum partile veloity. However, thenumber of neighbor pairs and therefore the numerial e�ort within eah time stepinreases with dV as well. Hene, the optimal hoie of dV depends on the dynamisof the system and the relation between the e�ort of global ontat detetion for theupdate of the neighbor lists and the e�ort of loal ontat detetion performed foreah pair in those lists. For a rather stati system of superquadris an optimal value of
dV = 0.05 r̄ is found by numerial experiments, where r̄ is de�ned as mean boundingsphere radius̄

r :=
rmax + rmin

2
with rmax := max

i∈P

rmax
i , rmin := min

i∈P

rmax
i . (3.49)Note that for spherial partiles and the same problem an optimal value of dV = 0.25 r̄is found due to the redued e�ort for loal ontat detetion.To update the neighbor lists a simple binning algorithm is applied. For this purposea regular grid with ubial ells of size ∆ = 2 rmax+dV is de�ned. In this way, enters ofneighbor partiles aording to (3.47) have to reside in adjaent grid ells. The partilesare sorted into the grid ells by determining their integer grid oordinates via

ix[i] =

⌊
xi − xmin i

∆

⌋

, (3.50)
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3Figure 3.7: a) 2D partile sample and orresponding grid for neighbor searh.b) 3D stenil for grid traversal.where xmin is the lower orner of the grid, see �gure 3.7(a). After all partiles are sortedinto the grid ells, these are traversed and the neighbor riterion (3.47) is heked for allpartile ombinations within the atual ell as well as ombinations between the atualand its adjaent ells. To prevent double-heking of pairs only half of the adjaent ellshave to be onsidered like depited for a 2D sample in �gure 3.7(a) and for a 3D samplein �gure 3.7(b). Using the C++ standard template library (STL) [92℄ the data strutureholding the Verlet neighbor lists is hosen in suh a way that they an be updated,i.e. new pairs an be inserted into and old pairs removed from the sorted lists withoutthe need for a omplete rebuild. The parallelization of the algorithms presented in thissetion is overed in setion 3.4.3.3.4.2 Loal Contat DetetionThe generation of inter-partile ontat fores requires a detailed hek of all neighborpairs resulting from the global detetion proess. The pairs are heked for ontat and,if neessary, the ontat geometry is determined. While this hek is trivial for spherialpartiles, it beomes the omputationally most expensive part for more omplex shapes.Generally, the algorithms applied are spei�ally designed for a type of partile shape.An algorithm designed for a disrete polyhedral shape, e.g., annot be applied to aontinuous ellipsoidal shape and vie versa. In the following, only the lass of smoothonvex shapes like ellipsoids or superquadris is onsidered. First, the ontat detetionproblem is formulated as an unonstrained two-dimensional optimization problem. Thisformulation has the advantage that for non-penetrating partiles a penetration an



38 CHAPTER 3. DISCRETE ELEMENT METHODbe ruled out before �nal onvergene is reahed. Next, a modi�ed Newton's methodis applied to solve the minimization problem and the performane of the sheme ismeasured via two extensive test series for penetrating and non-penetrating partilesof varying angularity. Finally, a sheme is presented whih redues the omputationale�ort of a ontat geometry update signi�antly by exploiting the temporal oherenewithin a DEM simulation.Problem FormulationFor a pair of neighbor partiles P1 and P2 the algorithm heks for ontat and om-putes the set of geometri quantities required for the ontat fore generation. For mostof the ontat models applied in ombination with smooth partiles this set inludesontat points p1 and p2, an interpenetration distane δ, and a ontat diretion c,f. �gure 3.4. Regarding the ontat fore generation a de�nition of the ontat pointsbased on the ommon-normal onept is favorable, see e.g. [90℄. Aordingly, the on-tat points are de�ned as those points that have minimum distane and ful�ll thefollowing set of onditions
c =

n1

‖n1‖
= − n2

‖n2‖
, (3.51)

d× c = 0 , (3.52)where n1 and n2 are outward surfae normals at p1 and p2. Condition (3.51) assuresthat the normal vetors are anti-parallel and (3.52) assures that the vetor onneting
p1 and p2 is parallel to the ontat diretion c.For smooth, onvex partiles the normal vetors and surfae points an be parame-terized by a set of urvilinear oordinates. Furthermore, there exists a smooth invertiblemapping between the set of surfae points and the set of normalized surfae normals.The orresponding formulas for superquadris are given in setion 3.1 and appendix A.By using the surfae parameterization and by elimination of c, the onditions (3.51)and (3.52) an be formulated as a set of nonlinear equations in the urvilinear oordi-nates. The solution of this set of equations yields the ontat points p1 and p2. Withinthis approah attention has to be paid to multiple solutions, beause the minimumdistane ondition is negleted so that, e.g., for a pair of spherial partiles the pointswith maximum distane will be a solution too. However, this approah was used su-essfully in ombination with ellipsoids [111℄ and superquadris [36℄. Other approahesfor the determination of ontat points that only approximately ful�ll (3.51) and (3.52)are methods based on geometri potential funtions [165, 111, 163℄ and the disretefuntion representation (DFR) approah [178, 80℄. For the �rst kind of methods theontat point de�nition is based on the geometri potential funtion of the partiles,whih for superquadris is the inside-outside funtion (3.1). Lin and Ng [111℄, e.g., de-�ne the ontat points as those points whih minimize the geometri potential funtionof the other partile. For a small penetration these methods yield ontat points loseto that de�ned by (3.51) and (3.52). In the seond approah eah partile surfae isdisretized by a number of points. Contat detetion is then done by heking thesepoints for inlusion in the adjaent partile. The DFR approah allows for a wider
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Figure 3.8: Cartesian referene frame êi for parameterization of the ontat diretion c.range of partile shapes and overomes the restrition of onvex shapes. Its aurayand performane depend on the number of points used for the surfae disretization.A similar approah was presented in [75℄, where 2D superquadris are approximatedby onvex polygons, whose ontat is handled by a orner-orner ontat model [62℄.The key point of the approah introdued here is that the problem of ontatdetetion is formulated in terms of the ontat diretion c. For this purpose the ontatdiretion is parameterized using spherial oordinates α1 and α2 through
c (α1, α2) = cosα1 cosα2 ê1 + sinα1 cosα2 ê2 + sinα2 ê3 with
α1 ∈ (−π, π], α2 ∈ [−π

2
,
π

2
], ê1 :=

x2 − x1

‖x2 − x1‖
, êi · êj = δij .

(3.53)
êi are the unit base vetors of a right-handed Cartesian oordinate system with ê1 =
c(0, 0) pointing in the diretion from the �rst partile enter to the seond partileenter, see �gure 3.8. The advantage of using this referene frame is that the solutionlies lose to (α1, α2) = (0, 0) and thus numerial problems at the singular points ofthe parameterization at α2 = ±π/2 are avoided. Based on this parameterization andon the invertible mapping between surfae points and normals, the surfae points p1and p2 are determined in terms of α1 and α2 from the anti-parallel ondition (3.51)1.As a onsequene, the distane vetor an be expressed as a funtion of the ontatdiretion angles as well

d (α1, α2) = p2 (α1, α2)− p1 (α1, α2) . (3.54)Hene, the ontat detetion problem is formulated as optimization problem in termsof α1 and α2

min
α1,α2

f (α1, α2) := ‖d (α1, α2) ‖2 . (3.55)Note that ondition (3.51) is ful�lled automatially via the onstrution of the surfaepoints. Furthermore, it an be shown that ondition (3.52) is ful�lled at the globalminimum of (3.55), if the penetration distane is small ompared to the partile sizes1Beause the detailed derivations are rather intriate, they are postponed to appendix A.1.3.



40 CHAPTER 3. DISCRETE ELEMENT METHODand the minimum radius of urvature of the partile surfaes. Hene, the global min-imum of (3.55) yields the ontat diretion from whih all other neessary geometriquantities are derived.Optimization AlgorithmAny optimization algorithm might be applied to solve problem (3.55). Here a om-bination of Newton's method and a Levenberg-Marquardt method is hosen due tothe quadrati onvergene properties in the viinity of the solution. Hene, the �rstand seond derivatives of f with respet to the ontat diretion angles have to bedetermined
fi = 2 (d · di) , fij = 2 (di · dj + d · dij) with •i := ∂ • /∂αi . (3.56)Aording to (3.54) the derivatives of the distane vetor are obtained from the surfaepoints' derivatives

pβ,i =
∂pβ

∂φγ

∂φγ

∂ck

∂ck
∂αi

, (3.57)
pβ,ij =

∂2pβ

∂φγ ∂φδ

∂φγ

∂ck

∂φδ

∂cl

∂ck
∂αi

∂cl
∂αj

+ (3.58)
∂pβ

∂φγ

(
∂2φγ

∂ck ∂cl

∂ck
∂αi

∂cl
∂αj

+
∂φγ

∂ck

∂2ck
∂αi ∂αj

)

.Repeated Greek indies denote a summation from 1 to 2, and repeated Latin indiesdenote a summation from 1 to 3. Again, the detailed derivations of the above deriva-tives are postponed to appendix A.1.3. For the iterative solution of the minimizationproblem (3.55) an initial guess is required. Within a DEM simulation an exellentguess is the solution from the previous time step. If no suh solution exists, beausethe neighbor pair has just been deteted, the vetor onneting the partile enters isused orresponding to (α1, α2) = (0, 0). Note that for spherial partiles this guess isthe exat solution.An important advantage of this formulation is that in the ase of non-penetratingpartiles a penetration an be ruled out before the iterative proess onverges to theexat ontat diretion. This is illustrated in �gure 3.9, where two adjaent partiles aredepited whose bounding volumes interset. Hene, in a DEM simulation this partilepair is heked for a penetration. In the right part the ontat points, normals, andthe distane vetor after i iterations are plotted. At this point of the iterative proessa penetration an be ruled out, beause it is
(i)n1 · (i)d > 0 ⇔ (i)c · (i)d > 0 . (3.59)Beause of (3.51) and (3.59), (i)p2 is the losest point of P2 to the tangent plane

(i)E1 with a distane greater than zero. Therefore, (i)E1 separates P1 and P2 and apenetration an be ruled out. The riterion (3.59) is heked for every ontat diretion
(i)c in the ourse of the iterative proess. If it is ful�lled, the algorithm stops. Sine
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Figure 3.9: Two adjaent partiles P1 and P2 with interseting spherial and box-shapedbounding volumes. The ontat points, normals, and the distane vetor after iiterations are shown. (i)E1 is the tangent plane to P1 at (i)p1.only one additional vetor produt is required, this leads to a signi�ant speedup ofthe ontat detetion proess.In the ase of a penetration the algorithm onverges to a minimum of f . To ensurethat this minimum is the global minimum two onditions have to be heked. First,
(3.52) has to be ful�lled. Under the assumption of a small penetration distane, (3.52)an only be ful�lled by a loal minimum, if the orresponding ontat points p1 and
p2 lie outside P2 and P1, see �gure 3.10. Hene, the seond ondition that has to beheked is that p1 ∈ P2 and p2 ∈ P1, whih is done via the partiles' inside-outsidefuntions. If onvergene to a loal minimum is deteted, a ombination of a random-searh method and the Nelder-Mead simplex algorithm [105℄ is applied to generate anew initial guess. This proess is repeated until the global minimum of f is found.
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Figure 3.10: Two adjaent partiles P1 and P2 with ontat points, normals, and distanevetor orresponding to a loal minimum of f . The dashed irle indiates that
d has loally minimum length.
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Figure 3.11: a) Test 1: Probability of penetration exlusion vs. the number of iterations.b) Test 2: Probability to reah onvergene vs. the number of iterations.ValidationThe ontat detetion algorithm is validated by means of two test series with randomlygenerated partile pairs. In the �rst series no pair is in ontat, while in the seond seriesthere is always a small penetration. For all tests the superquadri radius parameters riare hosen randomly and equally distributed from the interval (0.5, 3.0). The angularityparameters are hosen equally distributed from one of the three intervals, 1 : ǫi = 1,
2 : ǫi ∈ [0.7, 1.3], 3 : ǫi ∈ [0.3, 1.7]. The positions and orientations of the partiles aregenerated aording to the following sheme: The �rst partile is plaed at the origin sothat the partile �xed frame and the global frame oinide. A random ontat diretion
c is generated from whih p1 is determined. A random rotation matrix T 2 is generatedand the interpenetration distane δ of the partiles is hosen. p2 is derived from p1, δ,and c. Finally, x2 is alulated from p2 and T 2.For both test series 106 partile pairs are generated for eah angularity interval.The diretion of the vetor onneting the partile enters is used as initial guess.The distane of the partiles for the �rst test series is hosen randomly and equallydistributed from the interval (0, 0.25). The number of iterations needed to rule out apenetration is reorded. The probability of a penetration exlusion after i iterations,whih is the number of trials where a penetration is ruled out after i iterations dividedby the overall number of trials, is plotted against i in �gure 3.11(a). The probability ofa penetration exlusion after 0 iterations is 78.2% for the angularity interval 3, 85.2%for interval 2, and 88.1% for interval 1. In these ases the initial guess is good enoughto rule out a penetration so that no gradient or Hessian of f has to be omputed. Theprobability that 5 or more iterations are needed is 3.7% for interval 3, 1.1% for interval2, and 1.1% for interval 1. The number of trials where a penetration ould not beexluded within 50 iterations is 456 for interval 3, 24 for interval 2, and 28 for interval1. In these ases at most 3 new initial guesses have to be generated until a penetrationould be exluded.



3.4. IMPLEMENTATION 43interval |δ̃ − δ|/δ, 10−6 ‖p̃i − pi‖, 10−8 cos−1 (c̃ · c) , 10−3 ◦1 2.34 4.34 4.212 2.40 4.40 5.053 32.1 37.2 18.2Table 3.1: Average errors for onvergene riterion ‖gradf‖ < 10−6.In the seond test series the interpenetration distane is hosen randomly andequally distributed from the interval (0, 1.75·10−3). The onvergene riterion is hosenas ‖gradf‖ < 10−6 and the number of iterations performed is reorded. The resultsare plotted in �gure 3.11(b). For eah angularity interval onvergene is most likelyreahed after about 2 � 10 iterations. The probability that 20 or more iterations areneeded is 4.5% for interval 3, 0.4% for interval 2, and 0.4% for interval 1. The numberof trials where the algorithm onverges to a loal minimum or does not onverge within50 iterations is 9219 for interval 3, 198 for interval 2, and 193 for interval 1. Here atmost 15 new start points have to be generated for interval 3 and 2 for interval 2 and 1.Finally, the auray of the algorithm is analyzed in terms of the relative errorof the omputed penetration distane δ̃, the distane of the omputed and the exatontat points p̃i and pi, and the angle between the omputed and the exat ontatdiretion c̃ and c. The average values for eah angularity interval are listed in table 3.1.All results are very aurate. Even for the most angular partiles the average de�etionfrom the analytial ontat diretion is of the order of a hundredth of one degree.Temporal CohereneWithin a DEM simulation the partile positions vary smoothly over time. Generally,their inremental hange within one time step is small. Hene, the inremental hangeof the ontat diretion is small as well. This fat an be exploited by using the di-retion from the last time step as initial guess for the minimization algorithm in theurrent time step like desribed above. Numerial experiments show that in this waythe spei�ed auray is most likely reahed within one or zero iterations. However,eah iteration of the minimization algorithm requires the omputation of the seondderivatives of the ontat points with respet to the ontat diretion angles (3.58),whih is a omputationally expensive operation. A signi�antly heaper update op-eration is ahieved by dropping the minimum ondition and just using the parallelondition (3.52). Using the derivatives ci = ∂c/∂αi and the orthogonality relation
c · ci = 0 , (3.60)this ondition is re-formulated by the two salar equations

f(α1, α2) :=

[
d · c1

d · c2

]

!
=

[
0
0

]

. (3.61)This set of nonlinear equations is solved using Newton's method, where now onlythe �rst derivatives of the ontat points with respet to the diretion angles αi are
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Figure 3.12: Flowhart of a single time step within a DEM ode using the Verlet list onept.required. An e�ient sheme to determine the points and their derivatives is postponedto appendix A.2. Note that the system 3.61 has multiple solutions, beause it does notinlude the minimum ondition. Hene, for a pair of spheres, e.g., the points withmaximum distane are a solution too. However, due to the temporal oherene theinitial guess is muh loser to the orret solution than to any other solution. Therefore,onvergene to the wrong solution is extremely rare and is handled by appliation ofthe original minimization algorithm, whih is also applied when a neighbor pair isonsidered for the �rst time.3.4.3 ParallelizationDEM simulations of a reasonable number of partiles undergoing large deformationsyield high omputational osts. Generally, memory requirements are less ritial om-pared to omputation times, whih result from the huge number of integration stepsand the ontat detetion within eah step. This is espeially true for non-spherialpartiles burdened with a omplex ontat hek. A way to extend the range of feasibleproblems in spae and time is to parallelize the DEM ode and thus exploit the possi-bilities of modern multi-ore mahines. Here, this is aomplished through a simple bute�ient parallelization sheme for shared memory arhitetures, that is implementedusing the OpenMP standard [29℄. The sheme is based on the Verlet neighbor listonept desribed in setion 3.4.1.For parallelization it is useful to analyze how muh CPU time is spent on the di�er-ent tasks of the serial ode. The �owhart of a single time step within the DEM ode isdepited in �gure 3.12. The CPU time distribution is measured via a pro�ling tool fora silo disharge problem with spherial and superquadri partiles, see �gure 3.13. Forboth partile types the most time onsuming part is the loal ontat hek, whih isseparated into inter-partile and partile-boundary ontats. Hene, the parallelizationof this part yields the greatest redution of the overall CPU time. For superquadristhe partile states update and the Verlet lists update require similar frations of theCPU time, while for spheres the partile states update requires only about half the time



3.4. IMPLEMENTATION 45

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 6

fr
ac

tio
n 

of
 C

PU
 ti

m
e,

 %
1: update states
2: check for Verlet update
3: update Verlet lists
4: contact check, particle
5: contact check, boundary
6: others (e.g. output)

spheres
superquadrics

Figure 3.13: Frations of the overall CPU time spent on di�erent tasks within the serial DEMode for a silo disharge problem using spherial and superquadri partiles.of the Verlet update. This is due to the fat that for spherial partiles no rotationalposition is stored and updated. The fration required by the Verlet update hek isnegligible for both partile types.The partile states update and the Verlet update hek are trivial to parallelize,sine the omputation for one partile is independent from the others. Furthermore,the omputational e�ort is idential for eah partile so that the set of partiles anbe distributed in hunks of equal size to the available ores. Within the Verlet updatealgorithm the partiles are sorted into a grid so that neighbors reside in adjaentgrid ells, f. setion 3.4.1. In a traversal over the grid ells the neighbor riterion(3.47) is heked for eah potential pair (Pi,Pj), and if it is ful�lled, Pj is addedto the neighbor list of Pi(i < j). Regarding the parallelization of this traversal arehas to be taken to prevent data rae onditions, i.e. situations where two ores tryto update the same neighbor list simultaneously. This is aomplished by distributingthe ells along the largest grid dimension onto the available ores Ci, see �gure 3.14.The ore subsets are subdivided further along the same diretion into two hunks Ci
1and Ci

2. The ells in all hunks Ci
1 are traversed in parallel without the risk of datarae onditions, sine partiles from di�erent hunks Ci

1 and Cj
1 annot be neighbors.When all ores �nished their �rst hunk, the ells from the seond hunk Ci

2 aretraversed in the same manner. This simple sheme requires a minimum distributionand synhronization overhead. However, its workload balane depends ruially on theuniformity of the partile distribution. For non-uniform distributions some ores idlebeause of the di�erene in the number of pairs assigned to the ores. Anyway, sinethe fous of this work lies on the quasi-stati behavior of dense partile pakages, thesheme is su�ient.The most important part regarding parallelization is the loal ontat hek, where
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Figure 3.14: Parallel Verlet update via distribution of grid ells to ores and hunks.eah potential pair (Pi,Pj) from the Verlet lists is heked and the resulting fores of Piand Pj are updated. Again, the problem with parallelizing this part is the risk of datarae onditions, if one ore proesses (Pi,Pj) and another one (Pi,Pk) and both try toupdate the resulting fore of Pi simultaneously. Foring the ores to update the foresone by one by plaing the orresponding peae of ode in an OpenMP ritial setionyields a severe performane redution due to the high number of potential ontatpairs.This problem is solved by sorting the partiles aording to their spatial position.Figure 3.15(a) shows a sample of about 105 superquadris �owing through an hourglass.The orresponding Verlet lists an be visualized in a two-dimensional plot by plaing adot at (i, j) with i < j for eah neighbor pair (Pi,Pj). For a random partile order thisyields a plot where the upper left triangle is randomly �lled like shown in �gure 3.16(a).Now, the partiles are sorted aording to their spatial position via a grid traversingalong the smallest dimension �rst, medium seond, and largest last, see �gure 3.15(b).The resulting Verlet lists show a band struture, that is exploited to distribute thepartile pairs to the ores like depited in �gure 3.16(b): Let nC denote the numberof ores available. Then the set of pairs is divided into nC equisized (same number ofpairs) hunks Ci, and eah of this is subdivided into two equisized hunks Ci
j . If themaximum partile index of Ci−1

j is smaller than the minimum index of Ci
j , Ci−1

j andCi
j an be proessed in parallel without the risk of data rae onditions. Depending onthe bandwidth of the Verlet list struture more than two sub-hunks might be requiredto ful�ll this riterion. Even the number of hunks Ci might have to be redued, if thebandwidth is too large ompared to the number of partiles.As long as the Verlet lists remain unhanged, the hunks and sub-hunks remainvalid and require no update. The update's ost is negligible using standard searh andsort algorithms. As the partiles rearrange over time, the bandwidth of the Verlet liststruture might grow neessitating a resort of the partiles. As it is required unfre-quently, the ost of this resort is negligible, espeially if one takes into aount thatsorting improves the data loality of the ode and therefore yields an additional perfor-
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Figure 3.15: a) Hourglass with 105 superquadris olored aording to their spatial position.b) Spatial sorting of partiles using a grid whih is traversed along the smallestdimension �rst. The order of partiles in the same ell is arbitrary.
a b

 0

 20000

 40000

 60000

 80000

 100000

 0  20000  40000  60000  80000  100000

pa
rt

ic
le

 in
de

x

particle index

 0

 20000

 40000

 60000

 80000

 100000

 0  20000  40000  60000  80000  100000

pa
rt

ic
le

 in
de

x

particle index

C1

C2

C1
1

C1
2

C2
1

C2
2

Figure 3.16: Verlet lists for random partile order (a) and after spatial sort (b).



48 CHAPTER 3. DISCRETE ELEMENT METHODa b
 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100  120  140  160  180  200

ef
fi

ci
en

cy

# time steps, 103

2
4
8

 0

 5

 10

 15

 20

 25

 0  50  100  150  200
 0

 50

 100

 150

 200

 250

# 
ve

rl
et

 u
pd

at
es

, 1
03

# 
re

so
rt

s

# time steps, 103

verlet updates
resorts

Figure 3.17: a) Parallel e�ieny for 2, 4, and 8 ores and the example from �gure 3.15(a).b) Corresponding number of Verlet updates and partile resorts.mane bene�t. Figure 3.17(a) shows the e�ieny of the parallel ode for the hourglassexample shown in �gure 3.15(a) when using two, four, and eight ores. The orre-sponding number of Verlet update and resort operations is plotted in �gure 3.17(b).The highest e�ieny is reahed in the initial phase of the simulation, where the sys-tem is rather stati and few Verlet updates and partile resorts are required. As somepartiles reah the bottom of the hourglass, the system beomes more dynami andthe e�ieny drops to values of approximately 94% for two ores, 84% for four ores,and 65% for eight ores.3.4.4 Sample GenerationRegarding laboratory testing of non-ohesive fritional granular materials it is a well-known fat that the method of sample preparation has a ruial impat on the measuredmehanial properties, see e.g. the pioneering work by Oda [134℄. A ommon prepara-tion method is dry pluviation, where grains rain from a spei� height into a ontainer.The resulting sample harateristis depend on the drop height and other boundaryonditions [115, 37℄. The basi desription parameter of a pakage is the solid fration
Φ, i.e. the fration of the overall volume whih is oupied by the grains. This param-eter is dedued from the ontainer volume, the overall weight, and the grain materialdensity. The minimum and maximum values Φmin and Φmax are determined via stan-dardized preparation methods. If they are known, it is onvenient to relate the sampledensity to these extreme values via the relative density

RD :=
1− Φmin/Φ

1− Φmin/Φmax

.For a more detailed desription of the granular struture the term fabri is generallyused. This inludes, e.g., the oordination number, i.e. the number of ontats per par-tile, the distribution of ontat fore magnitudes and diretions, the distribution of



3.4. IMPLEMENTATION 49ontat normals, and the distribution of grain orientations. While these harateristisde�nitely depend on the preparation method and in�uene the mehanial behavior,their experimental determination is di�ult. Oda [134℄ �xed sand samples by �llingthe voids with a resin and analyzed thin slies ut from the sample. Later on, sim-ilar tehniques were ombined with the methods of stereology [93℄ to transform the2D measurements into a 3D desription. Nevertheless, as pointed out by Wang et al.[174℄, this transformation might not be aurate enough for the purpose of relatingthe fabri to mehanial properties. Reently, 3D measurements were performed usingomputed tomography [175, 3℄, but due to the huge e�ort of data evaluation sampleswere restrited to grain numbers of the order of 102. Thus, despite the fat that fabrimeasures are easily determined from DEM samples, no experimental measures exist foromparison. In onlusion, the generation of an initial sample is a ruial ingredientof a realisti DEM simulation: Given a partile size distribution, partile geometry,and bounding volume, the goal is to generate a realisti partile pakage. Laking ex-perimental fabri measures, the key parameter for evaluating the pakage is the solidfration. If furthermore the real grain geometry is only approximated, the solid frationitself is not an appropriate measure and should be replaed by the relative density RD.A straightforward approah for sample generation is to apply the DEM sheme toreal preparation methods, i.e. to model the falling grains in dry pluviation for example.In this way, an optimum �t between the real and model fabri is expeted. However,the omputational demands of this approah are generally prohibitive. Therefore, otherpakage generation methods have been developed, whih an be split into two lasses:First, purely geometri generation shemes whih do not onsider the partile dynamisand, seond, dynami shemes whih require the omputation of partile interationsand trajetories. Overviews over geometri shemes are given in, e.g., [63℄ and [12℄.Many shemes of this kind suh as [38℄ have the shortoming that it is not possibleto speify a partile size distribution. Another problem is that they are less likely toyield a realisti fabri, sine mehanial priniples are not onsidered. This problem isaddressed by Han et al. [74℄, where loose pakages are ompressed in a spei� diretionto mimi the e�et of gravitation. Dynami shemes usually start from a random loosepakage. Then random veloities are assigned to the partiles, while either the boundingvolume is shrank [112, 172℄ or the partiles are expanded [54℄ to reah a lose pakage.Here a mixture of a geometri and a dynami sheme is applied. First, a geometrisheme is used to generate a pakage with Φ ≈ 0.5. Then the DEM sheme is appliedto ompress the pakage either under the in�uene of gravity to mimi the pluviationproess, or by shrinking the bounding volume without gravity to get an isotropi sam-ple. Within this setion only the geometri part will be desribed, whih onsists ofthree stages.Partile GenerationGiven a polyhedral pakage spae of volume V , the partile geometry and size distribu-tion, and the intended solid fration Φ̂, partiles are only generated but not plaed inthis stage. The superquadri geometry an be spei�ed by, e.g., limiting the maximumelongation e := maxi,j ri/rj and maximum angularity a := maxi |1− ǫi|. For the de�ni-
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Figure 3.18: a) Pakage spae overed by regular grid. The grid ells are distributed alongthe longest grid dimension to ores Ci and subdivided into two sub-hunks Ci
j.Random parallel addition of partiles via algorithm 1.b) Performane of the random parallel addition algorithm for plaing 278 056superquadris with a solid fration of 0.26 using six ores. The fration ofremaining partiles and the number of trials per partile plaement are plottedvs. the number of iterations. The omputation time is 943 seonds.tion of the size distribution the sphere-equivalent radius req is introdued as the radiusof a sphere of idential volume. Then 2 req an be hosen equally distributed betweena minimum and maximum size dmin and dmax. Partiles are generated with randomparameters until the intended overall partile volume V̂P := Φ̂V is reahed. For theabove geometry and size distribution de�nitions the generation of a partile starts byhoosing the radius parameters randomly and equally distributed from ri ∈ [1, e] andthe angularity parameters from ǫi ∈ [1− a, 1 + a]. In the seond step, req is omputedand a saling fator s hosen randomly from s ∈ [dmin, dmax]/2 req is applied to theradius parameters. Note that there are various ways to de�ne the geometry and sizedistribution and eah requires an appropriate partile generation sheme.Random Parallel AdditionWithin this stage the generated partiles are plaed randomly within the given pakagespae so that no overlaps our. Sine the omputational e�ort of the algorithm in-reases drastially for moderate solid frations, an intermediate solid fration Φ̃ ≈ 0.26is spei�ed. Hene, all partiles are �rst saled by the ommon fator s = (Φ̃/Φ̂)1/3 .Next, the maximum bounding sphere radius rmax of the saled partiles is determinedand a uniform grid of ell size ∆ = 2 rmax is de�ned so that it overs the polyhedralpakage spae. In the same manner as for the parallel Verlet update sheme desribedin setion 3.4.3 the grid ells are distributed along the longest grid dimension to theavailable ores Ci and into two sub-hunks Ci

j, see �gure 3.18(a). Using this partitionof the pakage spae the partiles are plaed in parallel by algorithm 1. Sine the ores



3.4. IMPLEMENTATION 51Algorithm 1 Random parallel addition of superquadri partiles.
Nr = N // number of remaining (not plaed) partiles
Ntr = 0 // overall number of trialsiter = 0while Nr > 0 dorandom shu�e list of Nr partilesdistribute Nr partiles in equisized hunks to nC ores Ci

ntr = max(1000, ⌊Nr/20⌋)
Ntr ← Ntr + nC ntr
c = 1 + (iter mod 2) // test spae numberfor all Ci in parallel do
j = 1for i = 1 to ntr dorepeatgenerate random position x in test spae c of Ciuntil x lies in pakage spaegenerate random rotational position Tplae partile j of Ci at x, Tif partile j of Ci not overlaps other partiles/boundary thenadd partile j to list of plaed partiles

Nr ← Nr − 1
j ← j + 1end ifend for // ntrend for // end paralleliter← iter + 1end while

plae partiles in test spaes, whih are separated by at least one grid ell plane, over-laps are exluded. Due to the �xed number of trials ntr performed by eah ore andthe �xed omputational e�ort per trial the load balane is good. The number of trialsis limited in order to get a homogeneous partile density aross both test spaes. Inthis way, the number of iterations and thus the number of test spae alterations is highenough, see the example in �gure 3.18(b) where about 2200 iterations are performed toplae 278 056 superquadris with a solid fration of 0.26. It beomes evident how theperformane of the algorithm dereases with inreasing solid fration. While it takesabout 500 iterations to plae the initial 90% of the partiles, it takes about 1700 iter-ations to plae the remaining 10%. The number of trials required per plaed partileinreases nearly linearly to a �nal value of about 47. Altogether, the algorithm yieldsa reasonable performane for solid frations of about 0.25− 0.3.
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Figure 3.19: Partile Pi enlosed by the tangent planes Ej to its nearest neighbors Pj.Tighten Partile PakageWithin the last stage the sample is tightened by iteratively translating, rotating, andexpanding the partiles. The idea is depited in �gure 3.19. For a partile Pi thedistanes δj to its nearest neighbors Pj are determined. The aim of translating androtating Pi is to maximize the minimum distane δk = min δj by translating Pi in thediretion −nk or rotating Pi around the axis rk×nk. The maximum displaement dmaxor rotation angle ϕmax is determined from the ondition that the tangent planes Ej arenot interseted. Furthermore, they are bounded by user-spei�ed funtions γtra(Φ) and
ϕ(Φ) through

dmax ← min (dmax , γtra(Φ) rmax) ,

ϕmax ← min (ϕmax , ϕ(Φ)) .The atual values d and ϕ are hosen randomly from the interval [0.25, 0.75] of themaximum values. If the partile is translated, the new distanes to the planes Ej aredetermined from the old ones and the translation vetor. From these new distanes amaximum saling fator smax is determined, whih is again bounded by a user de�nedfuntion s(Φ). In the same manner as above the atual saling fator is hosen randomlyfrom the interval [0.25 smax, 0.75 smax].This operation is applied iteratively to all partiles in a random order until thedesired volume fration Φ̂ is reahed. The probability of the operations translation andsaling or rotation are spei�ed by a user de�ned funtion ptra(Φ). Using a similar on-ept as for the Verlet update operation in setion 3.4.3 the random partile traversalis performed in parallel, see algorithm 2. Sine the partiles are traversed in randomorder and eah partile is proessed the same number of times, no anisotropy or inho-mogenity is introdued by the algorithm. Like for the Verlet update sheme the loadbalane depends on the spatial distribution of the partiles.A ruial point of this purely geometri algorithm is to assure that the size distri-bution of the sample tends to that spei�ed in the �rst stage. This is aomplished byhoosing the global saling bound s(Φ) in a way that the resulting number of iterationsis of the order of several hundreds, sine the homogenity of the individual saling fa-tors inreases with the number of iterations. Figure 3.20 shows the performane of thealgorithm for the example from the seond stage. The global bounds γtra(Φ) and s(Φ)
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Algorithm 2 Iterative tightening of superquadri partile sample.iter = 0while Φ < Φ̂ do

dV = γtra(Φ) rmax + (s(Φ)− 1) rmax // verlet distane
∆ = 2 rmax + dV // grid ell dimensionupdate gridupdate Verlet neighbor listsfor j = 1 to 2 dofor all Ci

j in parallel dobuild random list Ri
j of partiles in grid ells of Ci

jfor all Pi in Ri
j dodetermine distanes of nearest neighbors of Piif rand() < ptra(Φ) thentranslate and sale Pielserotate Piend ifend for // Ri
jend for // end parallelend for // jiter← iter + 1end while
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Figure 3.21: Partile size distribution in terms of sphere equivalent radius after the initialgeneration of partiles and after �nal generation of sample.were optimized by trial and error. The remaining funtions are hosen as ϕ(Φ) = π/4and ptra(Φ) = 0.5. With these parameters it takes about 250 iterations to inrease thesolid fration from 0.26 to 0.55. Using six ores the total omputation time is about 3 h.Finally, �gure 3.21 ompares the initial and �nal partile size distribution whih nearlyoinide. Hene, the number of iterations resulting from the above set of parameters issu�ient.Altogether, the geometri sample generation algorithm yields a solid fration ofabout 0.5 in a reasonable amount of omputation time. The generated random samplesare homogeneous, isotropi, and free of ontats. To generate a lose pakage the DEMsheme is applied with the output of the geometri sheme as initial state, beause itis assumed to produe more realisti fabri properties than a purely geometri sheme.3.5 Silo Disharge ExampleThe DEM sheme is validated by means of a laboratory silo disharge experiment.Sine no superquadri experiments are reported in the literature, spherial partilesare used. Choi et al. [32℄ analyze the veloity pro�le in a quasi 2D silo using an imagebased partile traking method. The box-shaped silo of size [20× 2.5× 90] m is �lledwith soda lime glass beads of slight polydispersity (d = 3±0.1 mm) using a distributed�lling proedure. The retangular ori�e ([16×25]mm) at the bottom enter is openedand a steady state �ow is allowed to develop before the traking proedure starts. Thetraking overs the retangular [20 × 50] m front view above the ori�e at a rate of125 frames per seond for 16.4 s. For evaluation of the veloity pro�le the observationwindow is divided into [48×48]mm ells used as averaging domains. For a more detaileddesription of the data gathering and evaluation see [31, 32℄.The elasti parameters of soda lime glass are given in e.g. [102, 64, 87, 117℄. Thereported values show little variane and mean values of E = 71 GPa and ν = 0.22. Themass density is given uniquely as ρ = 2.5 g/cm3, and the frition oe�ient of dry sodalime glass beads has been measured by Ishibashi et al. [86℄ as µ = 0.162. The gravity



3.5. SILO DISCHARGE EXAMPLE 55partiles DOF time steps ∆t ores omputation time
190 782 1 144 692 3× 106 10µs 8 219 hTable 3.2: Simulation details of the silo disharge example.onstant is set to as g = 9.81 m/s2. Sine the partiles in the viinity of the ori�e moveat reasonable veloities, the visoelasti ontat law desribed in setion 3.2 is applied.The material onstant A an be determined by measuring the normal oe�ient ofrestitution [102, 64, 117℄ yielding A = 5.05× 10−8 s for the soda lime glass beads. Thisorresponds to a restitution oe�ient of 0.97 at a relative veloity of 1.18m/s and apartile size of d = 3.18 mm. The material properties of the glass silo are assumed to beidential with the glass bead properties. For partile-boundary ontats basially thesame ontat formulation is used as for inter-partile ontats whereas the tehnialdetails are postponed to setion 4.1.The partiles' sti�ness and size require a time step of the order of ∆t ≈ 1µs. Fora total simulation time of the order of 10 s this results in a number of time steps ofthe order of 107. Combined with a number of partiles of N ≈ 2 × 105 this yields ahuge omputational e�ort. However, numerial tests show that the system's behavioris not altered signi�antly by reduing the sti�ness of the partiles to E = 0.9 GPa.This value assures that the overlap orresponding to the maximum ontat fore atthe silo bottom is less than 1% of the partile radius. In this derivation the averagebottom fore is multiplied by a seurity fator of 10 to aount for the �utuations dueto the fore hain mirostruture. In order to preserve the dynami partile behaviorthe visoelasti onstant is adopted to A = 2.9×10−7 s. The sti�ness redution enablesa time step of ∆t = 10µs resulting in 3× 106 steps for a simulation period of 30 s, seetable 3.2 for the simulation details.The initial sample is generated using the geometri sheme from setion 3.4.4 withpartile sizes uniformly distributed in [2.9, 3.1]mm and Φ̂ = 0.5. To aount for thesolid fration of a lose pakage (Φ ≈ 0.6) the box used as pakage spae is enlargedin the z diretion to 1.08m. In order to get realisti fabri properties the sample issettled under the in�uene of gravity using the DEM sheme and the above materialparameters. As the kineti energy is nearly dissipated, the ori�e is opened and the silodisharge is simulated for 30 s writing output at 0.3 s intervals, see �gure 3.22. Aftera short time a steady state �ow develops with a mass �ow rate of Q = 132.6 g/s. Thisorresponds to a deviation of 6% from the experimental �ow rate of Q = 141.1 g/s.Considering the unertainties regarding the initial fabri and the ontainer-partilefrition this agreement is satisfatory.In order to dedue a ontinuous downward veloity distribution v(x) from thedisrete DEM output a oarse graining sheme is applied. For this purpose the box-shaped [20 × 2.5 × 50] m volume above the ori�e is divided into a regular grid of

[40 × 1 × 80] linear hexahedrons. An ansatz vh is de�ned on the hexahedron meshand �tted to the disrete DEM results using a volume weighted least square �t. Thedetails of this approah are postponed to hapter 6. Finally, the veloity pro�le isevaluated in the silo mid-plane and averaged over the data points between t = 5 s and
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Figure 3.22: Silo example with 190 782 spheres olored aording to their initial height.
t = 20 s. The resulting pro�le is ompared with the experimental pro�le from [32℄ in�gure 3.23(a). There is a good agreement of the maximum veloity at the ori�e, ofthe veloity gradient around the ori�e, and of the run of the ontour lines. The DEMsheme predits a realisti shape of the stagnant zones at the lower silo orners. Forquantitative omparisons 1D veloity pro�les are evaluated at two heights skethedin the right part of �gure 3.23(a). The results are presented in �gure 3.23(b). Whilethere is a lose agreement of the pro�les in the viinity of the ori�e at z = 9.1 d, thesimulation predits higher downward veloities at the boundaries at z = 29.1 d. Notethat this deviation might result to some extent from the di�erent evaluation shemes.While the DEM data is averaged over the whole depth of the silo, the experimentalimage-based partile traking method is based solely on the partile trajetories at thefront window.
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Chapter 4Granular-Struture InterationThe interation of granular materials and solid strutures plays an important rolein various �elds. Regarding industrial proesses prominent examples are milling andmixing devies, onveyer belts, and storage devies like silos, hoppers, and bins. Ingeomehanis the interation ours at the interfae of onstrution parts with thesurrounding soil suh as in pile driving. Another �eld is the mining industry where solid-granular interations our in exavation proesses like in dragline exavators. A propernumerial model of the interation an yield a better understanding of the observedphenomena and might enable an optimization of the proesses and devies involved.Suh a model results from the ombination of the Finite Element Method (FEM) andthe Disrete Element Method (DEM). While the FEM is the most appropriate methodfor modeling solid strutures, the DEM is a onvenient tool for modeling granularmaterials, espeially if large disontinuous deformations are involved, whih applies tomost of the above examples.One way of oupling the DEM and the FEM is to onsider the disrete partilesas deformable and disretize them with �nite elements. Standard FE tehniques areombined with the automati ontat detetion shemes and ontat models used inDEM, see e.g. [107, 14, 125, 138, 123, 96℄. If the assumption of rigid disrete partilesis appropriate, it is more onvenient to disretize only the solid struture via FE andstik to the lassial DEM sheme for modeling the grains, see e.g. [133, 139, 129℄.In this ase the interation is modeled through ontats between disrete partilesand the FE surfae mesh. Sine the fous of this work lies on non-ohesive fritionalgranular materials the seond approah is followed. An appropriate ontat model isdeveloped in setion 4.1. This model at hand, the FE and DE system an be integratedin time simultaneously using expliit time integration shemes and updating the FE-DE ontat fores after eah integration step. The implementation details are given insetion 4.2 and the oupled sheme will be exempli�ed in setion 4.3.4.1 Contat ModelWithin the FEM setting ontat is ommonly handled by introduing the impenetra-bility ondition via the penalty or Lagrange multiplier method. For the evaluation of59



60 CHAPTER 4. GRANULAR-STRUCTURE INTERACTIONthe resulting boundary integrals di�erent methods exist, whih are desribed by e.g.Laursen [106℄, Wriggers [181℄, and Wriggers and Laursen [183℄. Sine these methodsare designed for ontats of two FE meshes and are burdened by relatively high om-putational demands, they are not appropriate for the oupled DEM-FEM setting har-aterized by a huge number of ontats between disrete partiles and a FE mesh. Inthis ase it is more onvenient to use simple penalty type models, that are also appliedto resolve the inter-partile ontats in the DEM sheme. Regarding the Hertz-Mindlinontat model desribed in setion 3.2 the ontating surfaes have to be smooth, pro-viding urvatures and a unique normal at eah point. Generally, FE surfaes do notful�ll this requirement neessitating a workaround. The �rst opportunity is to de�nea smooth surfae based on the surfae nodes using e.g. a subdivision tehnique [56℄.However, suh methods are burdened with a prohibitive omputational e�ort and donot �t easily into the automati ontat detetion sheme of the DEM. The seondopportunity is to use the original FE surfae ombined with a speial treatment of sit-uations where partiles are in ontat with non-smooth parts of the surfae, i.e. elementedges or orners. Here the seond option is ombined with a simpli�ation desribedin the following.In order to enable arbitrary element types in the FE model it is neessary to handleontats of partiles and arbitrary element surfaes. This, however, requires a hugeimplementation e�ort for the loal ontat detetion sine eah element type has to beonsidered separately. Furthermore, it poses a problem for the global ontat detetionalgorithm, whih requires the element surfaes' bounding volumes. For higher-ordersurfaes suh as a nine-node biquadrati surfae the bounding volume determinationis not straightforward, beause the surfae points are no longer restrited to lie withinthe onvex hull de�ned by the nodes. To overome these problems arbitrary elementsurfaes are disretized by linear triangles like exempli�ed in �gure 4.1(a). Regardingontat detetion this disretization yields ruial simpli�ations overed in setion4.2. Regarding the ontat model things simplify as well, sine only plane triangleshave to be onsidered. For this reason, boundaries in 3D DEM simulations are oftenrepresented by triangular meshes, see e.g. [83, 97, 35℄. In the following, partile relatedquantities will be denoted by Greek indies, nodal related quantities by upper-aseLatin indies, and triangle related quantities by lower-ase Latin indies. For a ontatof a partile Pα and a plane triangle Ti like depited in �gure 4.1(b) the Hertz-Mindlinontat model desribed in setion 3.2 an be applied right away onsidering the zeroprinipal urvatures of the plane. The ontat point pα is omputed from the trianglenormal ni, f. appendix A.2. Introduing the triangle plane Ei as
Ei := {x | x ·ni = si} with si := xI ·ni , xI ∈ Ti , ‖ni‖ = 1 , (4.1)the ontat point pi is given as projetion of pα onto Ei

pi := pα + (si − pα ·ni) ni . (4.2)The ontat fore fαi is split in a stati equivalent way onto the FE nodes using thelinear shape funtions NI . These are equivalent to the natural oordinates of pi in Ti

NK(pi) :=
AK

A
=

1

2A
‖(pi − xI)× (xJ − xI)‖ with ǫIJK = 1 , (4.3)
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Figure 4.1: a) Disretization of a six node quadrati tetraeder surfae by four linear triangles.b) Stati equivalent split of partile-triangle ontat fore onto FE nodes.where A is the triangle area and ǫIJK is the Levi-Civita symbol. Thus, the nodal foresresulting from the ontat αi are given as
fK := −NK(pi) fαi . (4.4)4.1.1 Non-Smooth ContatIf a partile omes into ontat with a non-smooth part of the disretized surfae,the assumptions of the Hertz-Mindlin ontat model are no longer ful�lled. Hene, asimple, heuristi, penalty-type sheme is required, whih is not derived from ontin-uum mehanis but nevertheless yields reasonable results in the sense of the followingonditions:I. If Pα penetrates Ti without an edge of Ti interseting Pα (plane ontat), thestandard Hertz-Mindlin model should be applied. On the other hand, if Pα doesn'tpenetrate Ti, the ontat fore should vanish.II. As a ontat pair (Pα, Ti) evolves from a plane ontat to a non-smooth ontatand vie versa, the sheme should yield no fore disontinuity, beause this would,�rst, be an unphysial behavior and, seond, lead to numerial problems.III. For an elasti, fritionless impat of a partile on a rigid surfae the energy shouldbe onserved. For a spherial partile the ontat fore depends solely on its enterposition. Then the energy onservation ondition is equivalent to a url free fore�eld ▽× fαi(x) = 0.Additionally, a desirable feature regarding the implementation of the ontat model isthat eah triangle an be handled separately, whih simpli�es the ontat detetion andparallel proessing. In the following, some approahes will be analyzed with respet to
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Figure 4.2: a) Smooth surfae path de�ned by three nodes. At the transition from a planeto an edge ontat the interpenetration distane is disontinuous.b) Common plane de�nition for non-penetrating and penetrating objets.the above onditions and to their omputational demands. Sine the main problem ofnon-smooth ontats is the de�nition of a ontat normal, ontat point, and normalfore magnitude, the tangential part is not overed in this setion. The above quantitiesat hand, the tangential model presented in setion 3.2.2 an be applied right away.Loal Smooth Surfae PathesIf a partile ontats an edge or a orner, a smooth surfae path an be de�nedon the neighboring nodes like depited in �gure 4.2(a). However, like exempli�ed inthe �gure, this approah yields a jump in the interpenetration distane at the tran-sition from a plane to an edge ontat. A quadrati surfae path is de�ned by threeneighboring nodes. In the moment of transition the interpenetration distane with thispath is onsiderably greater than the plane interpenetration resulting in a normalfore disontinuity. The ratio of the plane and the path interpenetration inreases asthe plane interpenetration dereases, i.e. as the materials beome sti�er. Therefore, forsti� materials this approah yields an unphysial behavior or even an unstable expliittime integration. Furthermore, triangles annot be proessed separately, sine surfaepathes are de�ned on nodes of multiple triangles.Common PlaneThe ommon plane approah was introdued by Cundall [43℄ to handle ontats be-tween polyhedrons. For two separated bodies the ommon plane is de�ned as the planethat bisets the spae between the bodies and maximizes their minimum distane to theplane. Similarly, for two penetrating bodies the plane is de�ned as the plane that mini-mizes the maximum interpenetration, see �gure 4.2(b). For a superquadri partile andthe triangulated surfae the ommon plane has to be determined by an iterative shemesimilar to that used for the inter-partile ontats. Sine the plane varies smoothly with
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Figure 4.3: a) Non-smooth ontat desribed via a ontat potential W (A) de�ned in termsof the interpenetration area A(ϕ,x) (volume V in 3D).b) Eah ontat partner is desribed via a potential funtion ϕ that vanishes onthe boundary and inreases monotonially in diretion of the �enter�.the partile and nodal positions, onditions I and II are ful�lled, while the energy on-dition III will not be ful�lled in general. Furthermore, the surfae triangles annot beproessed separately, sine the de�nition of the ommon plane is based on adjaenttriangles.Contat PotentialFeng and Owen [62℄ use a ontat energy potential W to handle ontats betweenpolygonal partiles. Considering one ontat partner as �xed, they de�ne W (A) as afuntion of the interpenetration area A, whih in turn is a smooth funtion of the freepartile's position (x, ϕ), see �gure 4.3(a). The ontat fore and torque are de�ned aspartial derivatives of the ontat potential with respet to the position
f := −∂W

∂x
= −∂W

∂A

∂A

∂x
, m := −∂W

∂ϕ
= −∂W

∂A

∂A

∂ϕ
.Due to the de�nition via a potential this sheme ful�lls the energy ondition III. Addi-tionally, using the interpenetration area A (or volume V in 3D) to de�ne the potentialyields a ontinuous fore. However, in order to ful�ll ondition I, W has to be hosen sothat its derivative yields the Hertzian fore for plane ontats. Considering the ratherintriate geometrial derivations this is an awkward task that annot be solved bya formulation W (V ) solely in terms of the interpenetration volume. Furthermore, theomputation of V and its derivatives for 3D superquadris and the triangulated surfaeare omputationally demanding and the triangles annot be proessed separately.



64 CHAPTER 4. GRANULAR-STRUCTURE INTERACTIONIntegration of Partile PotentialsAnother sheme that yields onservative ontat fores has been proposed by Munjiza[123℄. It is based on the introdution of potential funtions ϕ for eah ontat partner.These are de�ned suh that ϕ vanishes on the surfae and inreases monotonially to-wards the enter, see �gure 4.3(b). Using the inside-outside funtion (3.1) the potentialof a superquadri Pα reads
ϕα(x) := 1− Fα(x) .For triangular surfae elements Ti the distane to the plane Ei normalized by someharateristi length l an be used
ϕi(x) :=

1

l
|si − x · ni| .For the ontat pair (Pα, Ti) let ϕαi := ϕα−ϕi and Vαi the intersetion volume spei�edbelow. The ontat fore is de�ned as

f :=

∫

Vαi

gradϕαi dV =

∫

Γ(Vαi)

ϕαi n dA ,where Γ(Vαi) is the boundary of Vαi and n is the outward unit normal to Γ(Vαi). Tode�ne the intersetion volume Vαi some volume has to be assigned to the triangularsurfaes Ti, see �gure 4.3(b). This might be aomplished via the original FE mesh.Like the ontat potential sheme this sheme yields a onservative smooth fore ful-�lling onditions II and III. Triangles an be proessed separately, sine the potentialsare de�ned separately for eah triangle. However, there is no feasible way of de�ningthe potentials in a way that the Hertzian solution is reovered for a plane ontatso that ondition I would be ful�lled. Furthermore, the numerial evaluation of theboundary integral with a reasonable auray is omputationally demanding for 3Dsuperquadris.Weighted Contat ForesA straightforward heuristi approah to non-smooth ontats is to use weight funtionsin ombination with the standard ontat model. Let Pα be in ontat with the edgeonneting Ti and Tj . The normal ontat fore an be written as
f = wi f i + wj f j . (4.5)The performane of this sheme obviously depends on the de�nition of the weightfuntions wi. To ful�ll onditions I and II the wi must evolve ontinuously from wi = 0 ifnot in ontat to wi = 1 for a plane ontat. A possible hoie of tolerable omputationalost proposed by Han et al. [73℄ is wi := Ãi/Ai, where Ãi is the intersetion area of Pαand Ti, and Ai is the intersetion area of Pα and Ei, see �gure 4.6(a). In general, it is

Ãi ≤ Ai, for a plane ontat Ãi = Ai, and for no ontat Ãi = 01. Both intersetion1For Ai = 0 set wi = 0.
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Figure 4.4: a) Edge ontat of a spherial partile and two perpendiular triangles.b) Coordinate transformation for the fore �eld visualization.areas are smooth funtions of the partile and nodal positions. The algorithm appliedfor their determination is desribed in appendix A.4.The energy onservation properties are analyzed via the example of a spherialpartile and a perpendiular edge shown in �gure 4.4(a). Due to the symmetry thenormal ontat fore �eld f(x) depends only on the x and y enter oordinate andhas no z omponent. For visualization a oordinate transformation depited in �gure4.4(b) is used, where γ := δmax/r is the ratio of the maximum interpenetration distaneand the radius. The transformation reads
x ≤ 0 ∧ y > 0 : ξ = x , η = 1− 1

2 γ

(
1− y

r

)
,

x > 0 ∧ y > 0 : ξ = 1− 1
2 γ

(
1− x

r

)
, η = 1− 1

2 γ

(
1− y

r

)
,

x > 0 ∧ y ≤ 0 : ξ = 1− 1
2 γ

(
1− x

r

)
, η = y .Using this transformation and δmax = 10−2 the resulting fore �eld is shown in �gure4.5(a). The units are dropped for onveniene. The magnitudes of the divergene andurl of the fore �eld are plotted in �gure 4.5(b). For a onservative fore �eld theurl vanishes. This is learly not the ase, espeially in the regions where the partilesurfae on�guration is lose to a plane ontat. In the regions of plane ontat atboth ends of the strip the url vanishes. The divergene is plotted for omparison ofthe order of magnitude. Numerial experiments show that this approah an result inhuge spurious energy generation and thus should not be applied. In general, using anapproah of type (4.5) the url annot vanish due to the onditions I and II. It is

▽× f = ▽×
(
wi f i + wj f j

)
= 0 for arbitrary f i,f j

⇔ ▽× (wi f i) = wi ▽× f i + gradwi × f i = 0

⇔ gradwi × f i = 0⇔ gradwi × ni = 0 .Hene, the weight funtion has to be onstant in any diretion parallel to the triangleplane, whih is learly inompatible with the onditions I and II.Interpolated Contat ForeAn enhanement of the above sheme is depited in �gure 4.6(a). In addition to theintersetion areas Ã and A, the enter c̃ of Ã is determined. Using this, two inter-
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n and interpenetration δ and, seond, an intersetion interpenetration δ̃ and normal
ñ assoiated with Ã and c̃. For superquadris ñ is de�ned via the gradient of theinside-outside funtion

ñ := − gradF |c̃
‖gradF |c̃‖ .

δ̃ is de�ned as the distane of c̃ to the partile surfae in −ñ diretion, f. �gure4.6(a). The overall normal fore is interpolated between an intersetion based and aplane based part. For the interpolation the angle α between the normal diretions is
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ñ

c̃
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f := γ E∗

(

λ(α)
Ã

A
δ3/2 n + (1− λ(α)) δ̃3/2 ñ

)

, (4.6)where λ(α) is a weight funtion, whih yields a smooth transition from the plane ontatto an edge ontat, and γ and E∗ are de�ned in setion 3.2.1. The weight funtion isde�ned as
λ(α) :=

1

2
[tanh(q (osα− osαm)) + 1] with q :=

tanh−1(1− 2 ǫ)

1− osαm

,where αm is the angle of equal weight (λ(αm) = 1/2) and ǫ is a small deviation fromunity, i.e. λ(0) = 1 − ǫ. Figure 4.6(b) shows the weight funtion for αm = 10◦ and
ǫ = 10−3. The transition from λ ≈ 1 to λ ≈ 0 takes plae in the relatively narrow rangebetween 5 and 15 degrees. The fore �eld for the example depited in �gure 4.4(a)is plotted in �gure 4.5() and its divergene and url in �gure 4.5(d). Compared tothe approah expressed in (4.5) the maximum url magnitude is redued by a fatorof 20. As a result, the spurious energy generation is also redued to an admissiblevalue. Furthermore, for the frequent ase of a partile sliding over oplanar trianglesthe sheme yields a onstant normal fore for reasonable interpenetration distanes.This is due to the fat that in this ase λ ≈ 1 and the individual Ã sum up to A.Additionally, the sheme allows to proess the triangles separately.4.2 ImplementationDue to the surfae disretization desribed in setion 4.1 the implementation of theoupled DEM-FEM sheme requires no major adaption of the DEM implementation



68 CHAPTER 4. GRANULAR-STRUCTURE INTERACTIONoutlined in setion 3.4. A general overview of the oupled solution strategy is given byOwen et al. [139℄. The DE and FE system are integrated in time using expliit integra-tion shemes with idential time steps. If not stated otherwise, the entral di�erenemethod desribed in setion 2.2.3 is applied for the integration of the FE equations. Forontat detetion the triangular surfae elements are treated like DE partiles meaningthat eah triangle Ti holds a Verlet neighbor list. For the evaluation of the Verlet neigh-bor riterion between Ti and a partile Pα it is not useful to enlose Ti by its boundingsphere. This would yield a severe over-reporting of neighbors, if the size of Ti is muhlarger than the typial partile size. Thus, the distane of xα and Ti is required. Theprojetion of xα onto Ei is given by
xα,i := xα + (si − xα ·ni) ni . (4.7)If xα,i ∈ Ti, the distane is ‖xα,i−xα‖. The ondition xα,i ∈ Ti is heked by omputingthe natural oordinates of xα,i in Ti like stated in equation (4.3). Using these theondition is expressed as

NK(xα,i) ≥ 0 ∀K ∈ Ti ⇔ xα,i ∈ Ti . (4.8)If xα,i /∈ Ti, the minimum distane is given as minimum of the distanes of xα and thetriangle edges, whih are easily derived as solutions of quadrati equations. Hene, theVerlet neighbor riterion is expressed asdistane(xα, Ti) ≤ rmaxα + dV ⇒ add α to list i , (4.9)where the above proedure is abbreviated as distane funtion. For an e�ient updateof the neighbor lists the regular grid from the inter-partile update is used. For eahtriangle Ti the set of grid ells interseted by Ti is determined. Then all partiles withinthe interseted ells and their adjaent ells are heked for the above riterion. TheVerlet update hek must take into aount the motion of the triangulated surfae. Sinefor a linear triangle all points lie in the onvex hull of the orner nodes, the maximumdisplaement is bounded by the maximum orner node displaement. Hene, only thenodes have to be heked for the update riterion
‖xn

I − xV
I ‖ ≥

dV
2

for any I ∈ N
S ⇒ update lists, (4.10)where N

S is the set of surfae nodes. Using a spatial sorting of the triangular surfaesthe traversal of the triangle-partile ontats is parallelized via the same sheme appliedfor the inter-partile ontats.The implementation is realized by oupling the C++ DEM ode with the FortranFEM ode FEAP (Finite Element Analysis Pakage) developed by Taylor [159℄. Aslim Fortran interfae subroutine allows to all standard high-level FEAP subroutinesfrom the C++ ode and pass the required input data. The surfae related ontat forealulations and neighbor updates are performed within the in-house C++ ode. Forthis purpose the required FE surfae node data is aessed diretly via C++ pointerspointing at the appropriate FEAP data arrays. In this way, frequent expensive dataexhange operations are prevented. Furthermore, the oupled simulations an exploitall apabilities provided by FEAP, like e.g. various element types, material models,integration shemes, and nonlinear large deformation analyses.
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Figure 4.7: a) Elasti beam hit lateral by a sphere of similar mass.b) Comparison of numerial and Timoshenko's analytial solution.4.3 Numerial ExamplesThe oupled sheme is tested by four numerial examples. The orret implementa-tion is veri�ed via two small-sale problems with analytial solutions. Afterwards, thesheme's apability to model real granular-solid interations is exempli�ed via a rubber-blok on sand example and a ylindrial triaxial test example.
4.3.1 Lateral Beam-Sphere ImpatThe implementation of the oupled time integration is heked by onsidering an elastibeam hit lateral by a sphere of similar mass like depited in �gure 4.7(a). A solution ofthis problem was derived by Timoshenko [164℄. Based on an eigenmode analysis of thebeam and the Hertzian ontat theory he omputed the displaement of the beam andthe sphere as well as the ontat fore during the impat. Both ontat partners aremade of steel and the material parameters are listed in �gure 4.7(a). For the DEM-FEMsimulation the beam is disretized by 10 equi-sized quadrati hexahedral elements alongthe beam axis. Linear elasti material behavior and small deformations are assumedand a time step of ∆t = 0.6µs is hosen. No gravity is onsidered in this problem. Theresultant displaements and ontat fore are ompared to Timoshenko's solution in�gure 4.7(b). The numerial solution agrees with the analytial solution. The impatis haraterized by two shorter impats at the beginning and at t ≈ 1.5 ms. This isdue to the monotoni sphere motion and the osillating beam motion. After the seondimpat the sphere departs with a veloity of v = 0.35 cm/s and is not hit by the beamagain.
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Figure 4.8: a) Disretization of plane (pl) and brahistohrone (br) urve.b) Analytial and numerial solution for both urves.4.3.2 Brahistohrone CurveTo test the non-smooth ontat model desribed in setion 4.1.1 the well-known brahis-tohrone problem is onsidered. Given two points A and B the brahistohrone urveis the urve of fastest desent, i.e. the urve onneting A and B that is overed in theleast time by a body that starts from rest at A and moves along the urve to B underthe ation of gravity and without frition. The most famous mathematiians of the 17thentury showed that this urve is a yloid. Within this example the distane of the endpoints is ∆x = 20 cm in horizontal diretion and ∆z = 10 cm in the vertial diretion.The points are onneted by a plane and the brahistohrone urve, whose disretiza-tions are plotted in �gure 4.8(a). Both urves are onsidered rigid and fritionless. Thematerial parameters of the elasti spheres of size r = 1 cm are E = 0.1 GPa , ν = 0.3,
ρ = 1 g/cm3, and A = 10µs. The gravity onstant is hosen as g = 9.81 m/s2 and the timestep as ∆t = 1µs. The omputed motions are ompared to the analytial solutionsin �gure 4.8(b). For the plane urve the solutions agree with a maximum oordinatedeviation of less than 5µm. For the brahistohrone urve the agreement is worse witha maximum deviation in the z oordinate of about 0.7 m. This is due to the fat thatin ontrast to the plane urve the brahistohrone urve annot be represented exatlyvia plane triangles. Nevertheless, the results for the plane urve show that the ontatmodel yields smooth ontat fores as the partile slides aross edges between adjaenttriangles.4.3.3 Rubber Blok on SandThe oupled sheme is used to model a rubber blok pulled over a dry sand sample. Thegeometry of the rubber blok is given in �gure 4.9(a). It onsists of a sti�er top-layerand a nothed rubber body. The whole body is disretized by 1480 quadrati hexahedral
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Figure 4.9: Geometry (a) and surfae disretization (b) of rubber blok. The olored regionorresponds to one quadrati hexahedral element.) Normal pressure distribution in ontat surfae.elements and the orresponding surfae disretization is shown in �gure 4.9(b). The toplayer is modeled by a Neo-Hookean material model with the material parameters E =
94 MPa, ν = 0.3, and ρ = 3 g/cm3. For the rubber body a Mooney-Rivlin material modelis applied using the parameters E = 9.4 MPa, ν = 0.41, c = 0.05, and ρ = 0.8 g/cm3[188℄. The sand is represented by 31 763 superquadri partiles whose bounding radiivary between 0.3mm and 0.8mm and whose angularity parameters are hosen equallydistributed from [0.6, 1.2], f. setion 5.2. The initial partile pakage was generatedusing the geometri sample generation sheme until Φ = 0.5 and a subsequent partilesettlement under gravity. The material parameters along with simulation parameters
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E ν ρ A µDE-DE µDE-FE g ∆t50GPa 0.3 2.55 g/cm3 200µs 0.24 1 9.81 m/s2 0.08µsTable 4.1: DE material and simulation parameters for the rubber blok example.are listed in table 4.1. Note that the hosen damping onstant yields a restitutionoe�ient of 0.96 for a relative veloity of v = 1 m/s.The rubber blok is pressed with a onstant pressure of 250 kPa onto the sandsample and dragged for 4.8ms with a onstant veloity of 30 km/h in the horizontal xdiretion. The simulation details are listed in table 4.2. Figure 4.9() shows the rubberblok's surfae olored aording to the normal pressure, whih is omputed from thenodal ontat fores, triangle normals, and triangle areas. Initially, a smooth pressuredistribution evolves over the ontat surfae. As the partiles are dragged with therubber blok, pressure onentrations are initiated at the front, where the pressurereahes about the tenfold of the top-pressure. As the blok is dragged further along,the onentrations move bakwards. Meanwhile, partiles �ll up the noth and damup in front of the blok. Note that the partile spae is bounded by a rigid box notshown in the �gure, and that this is the reason that the partiles do not over�ow theblok at the end of the simulation. Altogether, the results exemplify the apabilities ofthe oupled sheme in the large deformation setting and with superquadri partiles.Again, the non-smooth ontat model yields smooth fores for edge ontats, whiharise frequently as the blok is dragged over the sand grains.4.3.4 Triaxial Test on Glass BeadsThe oupled sheme is applied to laboratory triaxial tests on glass beads performed byAlshibli and Roussel [4℄. Within these tests a ylindrial sample of dry, spherial sodalime glass beads is enlosed by a rubber membrane around the perimeter and by twometal plates at the top and bottom, f. �gure 4.10(a). A onstant lateral pressure isapplied to the membrane. The sample is ompressed slowly by the metal plates mea-suring the resultant fore and the volume hange inside the membrane. By relating themeasured axial to the onstant lateral pressure the shearing resistane of the sample isdetermined. Alshibli and Roussel [4℄ used di�erent bead size distributions, two of whihare modeled here and given as (L : d ∈ [3.3, 3.6]mm) and (M : d ∈ [1.55, 1.85]mm). Thematerial parameters of the glass beads are provided in the literature as E = 63 GPa,

ν = 0.23, ρ = 2.55 g/cm3 and µ = 0.16. Sine the experiments are performed underquasi-stati onditions, the ritial damping model with ζ = 0.9 is applied. The fri-tion oe�ient between the rigid plates and the partiles is hosen as µDE-RIG = 0.1 andbetween the rubber and the partiles as µDE-FE = 0.2. The simulations are performedpartiles elements nodes DOF time steps ores omputation time
31 763 1480 17 974 244 500 60 000 8 5.9 hTable 4.2: Simulation details of rubber blok example.
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Figure 4.10: a) Triaxial sample (M) with end plates and triangulated membrane.b) Sample at 25% ompression shows bulging deformation.under gravity g = 9.81 m/s2.The rubber membrane is modeled using a 4-node membrane element introdued byGruttmann and Taylor [72℄. The element is appliable for large elasti deformationsand inompressible material. To model the rubber material a three-term Ogden model[135℄ is applied with parameters hosen aording to [135℄ and listed in table 4.3. Theseparameters yield a small strain elasti modulus of E = 3µ = 1.5 MPa. The membranethikness is hosen as 0.3mm. In order to enable larger time steps the density is saledby a fator of about �ve to ρ = 5 g/cm3.As already noted in setion 3.4.4 an important aspet regarding the bulk mehanialbehavior of a partile sample is the way of preparation. In the experiments the rubbermembrane is strethed around a mould and a vauum is applied. The beads are �lledinto the mould by four layers and after eah layer the sample is tapped gently witha plasti rod. When the mould is �lled it is plaed between the end platens and themembrane is �xed to the platens. Finally, the mould is released, a lateral pressure of[25, 100, 250, 400℄ kPa is applied, and the sample is ompressed at a rate of 0.5mm/min.The above preparation proedure is replaed by the geometri generation shemewith a rigid ylinder and Φ = 0.5. Afterwards, the ylinder is shrunk until an aver-age hydrostati pressure of p = 1 kPa is reahed. For this purpose an adaptive stressontrolled algorithm is applied whih is desribed in detail in setion 5.1.3. Next, therigid ylinder is replaed by the FE membrane, the lateral pressure is applied, and the
µ1 α1 µ2 α2 µ3 α3

1.491µ 1.3 0.003µ 5 −0.0237µ -2Table 4.3: Parameters of three-term Ogden model with µ = 0.5MPa.



74 CHAPTER 4. GRANULAR-STRUCTURE INTERACTIONpartiles elements nodes DOF time steps ∆t, µs ores omp. timeL 15 014 192 221 90 747 7 594 734 0.158 8 16.62 hM 125 184 192 221 751 767 7 503 167 0.06 8 113.71 hTable 4.4: Simulation details for triaxial tests at σ1 = −100 kPa.sample is ompressed via the rigid end plates.Regarding the ompression rate a typial problem of quasi-stati DEM simulationsis the simulation time. Within the laboratory experiments the deformation rate ishosen as ǫ̇ = −5.95× 10−5 1/s. For a ritial time step of ∆t ≈ 0.1µs and a maximumompression of 25% this yields a number of time steps of about 109, whih is notfeasible. In order to determine the in�uene of the deformation rate on the resultingstress-strain behavior the triaxial test is repeated with di�erent values of ǫ̇. To quantifythe system's dynamis da Cruz et al. [49℄ introdue the inertial parameter
I := |ǫ̇|

√
m

dp
,where m is the typial partile mass, d the typial partile size, and p the hydrostatipressure. The stati limit is given by I → 0, and Agnolin and Roux [2℄ showed that thequasi-stati regime is given approximately by I < 10−5. The triaxial test is repeatedwith ompression rates orresponding to I = 10−6, I = 5× 10−7, and I = 10−7. Sinethe results show no signi�ant di�erenes, I = 10−6 is used in the following, whihorresponds to about 107 time steps. Note that in the Hertzian ontat model theontat sti�ness is not onstant but depends on the ontat fore. Hene, a higherhydrostati pressure results in larger average ontat fores, higher average ontatsti�nesses, and thus a smaller ritial time step. On the other hand, for a spei�edinertial parameter and �nal ompression, a higher hydrostati pressure allows a higherdeformation rate and therefore a shorter simulation time. The simulation details of the

σ1 = −100 kPa tests are given in table 4.4.Figure 4.10(b) shows the bulging deformation mode of the ylindrial sample at 25%axial ompression whih agrees with the experimental observations made by Alshibliand Roussel [4℄. No shear band formation is observed whih is a well-known soure ofsoftening in triaxial tests on granular materials that, however, is indued by imperfetboundary onditions, f. [58℄. For the evaluation of the simulations the axial stress isderived from the resultant fores on the end platens. Furthermore, the solid fration isdetermined from the volume inside the membrane and the axial ompression strain fromthe ylinder height. The results are ompared with the experimental values in �gure4.11. The results for both size distributions are very similar. The prinipal stress ratio,i.e. the axial stress divided by the onstant lateral stress, inreases until a maximumvalue of about 2.5 at about 3% ompression. From there on the ratio deays monoton-ially until the �nal ompression. The deformation is aompanied by dilation, i.e. aninrease of the sample volume orresponding to a derease in the solid fration. Thenumerial stress results deviate from the experimental results to a maximum of about10%. The derease in solid fration, however, is underestimated by the DE-FE model.
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Figure 4.11: Prinipal stress ratio (a) and solid fration (b) vs. axial strain.While in the experiments the �nal solid fration is Φ ≈ 0.58, the model predits an ini-tial derease to Φ = 0.6 from where Φ is onstant. Another notieable di�erene is themissing of kinks shown by some of the experimental urves. Aording to Alshibli andRoussel [4℄ these are due to the sudden rearrangement of grains and the orrespondingreorganization of the fore hains within the sample. The observed deviations mightbe due to some unertainties in the DE-FE model. First, the real sample preparationmight yield a di�erent pakage than the numerial approah. Although there is a goodagreement of the initial solid fration, the fabri inside the sample might be di�erent.Seond, no details about the rubber membrane are provided in [4℄, so that reasonablevalues for the material parameters, thikness, and initial deformation have to be hosen.The same holds true for the partile-membrane and partile-platen frition oe�ients.
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Chapter 5HomogenizationWithin this hapter the e�etive behavior of the partile model proposed in hapter 3is derived via a homogenization sheme. This is neessary in order to
• ompare the disrete model's behavior to that of real granular materials deter-mined via laboratory tests and
• �t a ontinuum model, whih will be applied in the two-sale approah proposedin hapter 6.In the following partile-sale quantities are denoted as mirosopi quantities. Onthe other hand, quantities related to a body onsisting of a huge number of partilesand un�lled voids are denoted as marosopi quantities. In general, two kinds ofhomogenization shemes have been proposed for granular materials. First, shemes thatare based on disrete partile-sale models of statistially representative volumes underspei� boundary onditions. The e�etive behavior is determined by the numerialevaluation of volume averaging theorems, whih transform the disrete results in termsof partile trajetories and ontat fores into a ontinuous desription in terms ofstresses and strains. The main problems of this approah are the proper appliation ofboundary onditions and the omputational ost of the required simulations. Anyway,there is a huge body of results obtained in this way, see e.g. [161, 136, 160, 9, 155, 147,10, 8, 162℄. The seond kind are analytial homogenization shemes whih are basedon additional rigorous simpli�ations of the mirostrutural behavior. These additionalsimpli�ations of, e.g., the relation between the maro- and partile-sale deformationor the distribution of ontat normals, enable the analytial derivation of a marosopionstitutive equation, see e.g. [33, 27, 137℄.Sine no additional simpli�ations besides those inherent to the DEM should enterthe homogenization proess, a sheme of the �rst kind is applied here. This shemeis haraterized by a periodi, retangular hexahedral unit ell, whih allows the ap-pliation of arbitrary triaxial boundary onditions. It is overed in setion 5.1. Forvalidation the partile-sale parameters are adapted to a real granular material in se-tion 5.2. Using these parameters the homogenization sheme is applied and the resultsare presented in setion 5.3. Finally, the parameters of an elasto-plasti onstitutiveequation are �tted to the e�etive behavior in setion 5.4.77



78 CHAPTER 5. HOMOGENIZATION5.1 Periodi Triaxial Test MethodologyThe starting point of the homogenization proess is the introdution of a statistiallyrepresentative volume element (RVE). The RVE serves as averaging volume to transferthe disrete DEM results into a ontinuous desription in terms of stresses and strains.Regarding the size of the RVE the �rst preondition for the homogenization approahto be meaningful is that the RVE R is muh smaller than the typial period over whihthe marosopi deformation �eld varies. In this way, the behavior of R represents thematerial behavior at a spei� material point inside the marosopi body. Furthermore,for R to be statistially representative, it must be muh larger than the size of thematerial heterogeneities, whih for granular materials is the partile size. Denoting theharateristi size of the marosopi body by D, that of the RVE by d, and the averagepartile size by δ the above preonditions an be summarized as the sale separationargument
D ≫ d≫ δ . (5.1)Obviously, the omputational e�ort of the homogenization proedure inreases with thesize ofR. Hene, in pratie an ensemble of randomly generated RVEs is typially used,and the RVE size is onsidered as su�ient if the variation between the di�erent RVErealizations is below a spei� tolerane. A ruial point regarding the homogenizationof granular materials is the size of the material heterogeneities. Subjet to the boundaryonditions granular materials tend to develop loalizations of deformations in shearbands running through the sample. In this ase the sale separation d≫ δ is no longerful�lled. Hene, the boundary onditions must be hosen in a way to minimize theprobability of loalizations.5.1.1 Periodi Retangular Hexahedral RVEA problem of homogenization shemes based on disrete partile models is the properde�nition of an RVE and its boundary, whih enables the appliation of arbitraryboundary onditions in a onvenient way. A simple approah is to enlose a retangu-lar hexahedral partile sample by rigid walls, see e.g. [147, 10℄. By ontrolling the wallpositions strains an be applied. However, the appliation of stresses is not straight-forward and due to the rigidity the impat of spurious boundary e�ets is expeted tobe rather high. These problems are redued by approahes that emulate the �exiblerubber membrane used in standard laboratory triaxial tests on granular materials, seee.g. [45, 16, 99℄. Here boundary partiles are onneted by lines in 2D or triangles in3D and resultant boundary fores are derived by applying a spei�ed pressure on theseboundary segments. While enabling the appliation of arbitrary stresses, this approahyields problems if, due to the deformation, interior partiles beome boundary partilesand vie versa. An approah without spurious boundary e�ets de�nes the RVE as asubset of partiles inside a larger sample, so that the RVE is ompletely surroundedby partiles, see e.g. [60, 50℄ in 2D and [176℄ in 3D. However, within this approahit is not possible to exatly speify boundary onditions on the RVE. Furthermore,the de�nition of the RVE boundary is di�ult and might need to be updated during
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Figure 5.1: a) Periodi RVE with partile Pβ and orresponding ghost partile Gβ(n). Eahboundary ontat exists twie on opposite sides of the unit ell.b) 3D RVE with ghost partiles.the deformation. Another approah, whih works without any arti�ial boundary, isto use periodi partile samples where partiles at opposite boundaries are in ontat.This sheme is most often used in ombination with retangular hexahedral samples[44, 161, 136, 160, 137, 9, 155, 8, 162℄ but has also been used with e.g. parallelepipedsamples in 2D [120℄ and ylindrial samples in 3D [40℄. Here the periodi approahusing retangular hexahedral samples is applied. This sheme yields simple expressionsfor the average strains and stresses and allows the preise appliation of arbitrary tri-axial strain, stress, or mixed boundary onditions. In the remaining of this setion theperiodi, retangular hexahedral RVEs and orresponding quantities will be introdued.The RVE R is de�ned as the retangular hexahedral domain with the dimensions
Li, see �gure 5.1(a). All partile enters are restrited to lie in R, and R is onsideredto be a unit ell of a periodi sample. Consequently, a partile whose enter leaves Ron one side is re-entered on the opposite side. Furthermore, regarding the boundaryontats, one an opy R as a unit ell to all 26 neighbor ells. Obviously, only thepartiles lose to the boundary are ontat andidates. Furthermore, eah boundaryontat exists twie at opposite sides of R. In the implementation this is handled byghost partiles Gα whih are opies of the partiles Pα inside R displaed by unit elldisplaement vetors d(n) with

d(n) :=

3∑

i=1

ni Li ei with ni ∈ {−1, 0, 1} . (5.2)Of ourse, only those ghost partiles need to be onsidered whih are in ontat witha partile inside R. Furthermore, to aount for the fat that eah boundary ontat



80 CHAPTER 5. HOMOGENIZATIONexists twie, the neighbor displaement vetors n are restrited to the set N+ of 13vetors
n ∈ N+ := {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1),

(1,−1, 0), (1, 0,−1), (0, 1,−1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)} .Figure 5.1(b) shows an RVE with orresponding ghost partiles. Within the Verlet listonept the ghost partiles are treated like real partiles. The set of ghost partilesis updated when the Verlet lists are updated. At the same time partiles whih leftthe RVE on one side are re-entered at the opposite side. Contat fores from pairs
(Gβ,Pα) are applied to the real partiles Pα and Pβ like depited in �gure 5.1(a). Thereal partile states are updated by the time integration sheme. Afterwards, the ghostpartile states are updated using the displaement vetors d(n).5.1.2 Average Stresses and StrainsThe average stress within a granular medium an be derived from the virtual workpriniple or from statis, see the work by Bardet and Vardoulakis [17℄ and the referenesited therein. Depending on the partiular de�nition of the RVE boundary and onthe existene of ontat torques, the resulting Cauhy stress tensor might be eithersymmetri or non-symmetri and aompanied by a ouple stress. While the latteris frequently used to motivate enhaned ontinua for the marosopi desription ofgranular materials, the validity of either result is a ontroversial matter, see e.g. [98, 11,18, 101, 19, 60, 28, 66, 70℄. Nevertheless, it is a ommonly agreed fat that, independentof the onditions quoted above, any unsymmetri part of the Cauhy stress tensorbeomes negligible for a good sale separation, i.e. an RVE onsisting of a huge numberof partiles. Here the derivation from statis without ontat torques is applied, whihyields the average Cauhy stress tensor [17℄

〈σ〉 =
1

V

∑

αβ∈B

xαβ ⊗ fαβ . (5.3)
V = L1 L2 L3 is the RVE volume, B is the set of boundary ontats, xαβ is the ontatpoint, and fαβ is the ontat fore ating on the partile inside the averaging volume.The symmetry of expression (5.3) follows from the equilibrium of torques with respetto the origin. Due to the periodiity B onsists only of partile-ghost ontats (Gβ,Pα).Eah of these ontats appears twie on opposite sides of the RVE. Hene, the aboveexpression simpli�es to

〈σ〉 =
1

V

∑

αβ∈B+

[
xαβ ⊗ fαβ + (xαβ − d(n))⊗

(
−fαβ

)] (5.4)
=

1

V

∑

αβ∈B+

d(n)⊗ fαβ , (5.5)where B+ is the set of ontats between real partiles and ghost partiles. In ontrastto the stress de�nition the average strain de�nition requires the introdution of a
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Figure 5.2: Appliation of stress boundary onditions. While the inner faes are �xed theouter faes are onsidered as walls loaded by the RVE averaged prinipal stress
〈σi〉 and the applied prinipal stress σi.referene on�guration. Hene, the RVE dimensions Li(t) are expressed as funtions ofthe simulation time t and the referene on�guration is de�ned as the on�guration at

t = t0. Then the volume averaged prinipal engineering strains are given as
〈ǫi(t)〉 =

Li(t)− Li(t0)

Li(t0)
. (5.6)5.1.3 Appliation of Boundary ConditionsBoundary onditions are applied by varying the RVE dimensions Li. In this way arbi-trary strain paths ǫi(t) an be spei�ed. However, to model standard tests on granularmaterials like the triaxial test, stress boundary onditions are required. For this pur-pose an adaptive dimension ontrol sheme similar to that proposed by Cundall [42℄is used. The inner boundary faes of the RVE are �xed and the outer faes are on-sidered as walls of onstant thikness tw and density ρ, see �gure 5.2. Note that theprospet of walls is only used to motivate the following sheme and no partile-wallontats whatsoever are introdued. The inner side of the walls is loaded by the RVEaverage stress 〈σi〉(t), while on the outer side a user spei�ed stress σi(t) is applied.The equation of motion of a wall reads

ρ tw Ai L̈i = Ai (σi − 〈σi〉) ⇔ L̈i =
1

ρ tw
(σi − 〈σi〉) . (5.7)Using this, the RVE dimensions Li an be integrated in time via an expliit integrationsheme. However, in order to simulate quasi-stati tests it is neessary to ontrol the



82 CHAPTER 5. HOMOGENIZATIONrate of deformation of the RVE. The dynamis are quanti�ed through the inertialparameter I introdued in setion 4.3.4 and repeated here for onveniene
I = ǫ̇

√
m̄

d̄ p
.

m̄ is the average partile mass, d̄ the average partile diameter, and p the pressureinside the sample. Hene, for quasi-stati tests the stress σi(t) will be ontrolled byspeifying a target stress σ̃i and a orresponding inertial parameter I. This yields thestrain rate
ǫ̇i = I

√

d̄ 〈p〉
m̄

,where 〈p〉 is the RVE average pressure. Speifying an approximate elasti modulus Efor the sample the evolution equation and disrete update formula for the applied stressare given by
σ̇i = E ǫ̇i sign (σ̃i − σi) , (5.8)

σi(t+∆t) = σi(t) + σ̇i ∆t . (5.9)Together with equation (5.7) this states the stress ontrolled adaptive dimension ontrolsheme. To redue osillations in the wall movement it is useful to inlude a dampingterm in equation (5.7)̈
Li =

1

ρ tw
(σi − 〈σi〉)− 2 ζ

√

E

ρ tw Li
L̇i , (5.10)so that ζ = 1 yields a ritially damped system. As typial ontrol parameters thewall density ρ is hosen as the partile density and the thikness tw as a small frationof the average partile radius tw ≈ 10−2 r̄. The damping is set to ζ = 0.1 and theelastiity is hosen as E = 0.1 GPa for the tests reported in this hapter. The RVEdimensions and dimension veloities are updated in eah time step until the averagedprinipal stress 〈σi〉 reahes the target stress σ̃i. Eah dimension is ontrolled separatelyso that it is possible to use strain ontrolled boundary onditions in one diretion andstress ontrolled in another. Furthermore, it is possible to swith the type of boundaryondition during the simulation.5.2 Adaptation of DEM ParametersIn order to model a non-ohesive fritional granular material the DEM parameters needto be adapted to the spei� material. For this purpose Leighton Buzzard sand sizefration B is hosen for the following reasons:

• The grain shape is ategorized as rounded to sub-rounded. This grain shape anbe represented more aurately by superquadris than angular grains.



5.2. ADAPTATION OF DEM PARAMETERS 83ref. ρ Φmin Φmax d10 d50 d60 d60/d10 shape
g/cm3 mm mm mm[95℄ 2.65 0.57 0.66 rounded - sub-rounded[113℄ 2.65 0.56 0.66 0.64 0.78 0.81 1.27 rounded[148℄ 2.65 0.56 0.68 0.8 1.3 sub-rounded - sub-angular[177℄ 2.65 0.56 0.66 0.84 roundedTable 5.1: Parameters of Leighton Buzzard sand fration B from di�erent referenes.

• Leighton Buzzard sand is a silia sand and the grains show a high resistaneagainst rushing. This is favorable sine partile breakage is not onsidered inthe DEM applied here.
• Leighton Buzzard sand size fration B is widely used in researh for laboratorytesting. Hene, su�ient referene data exists for validation.
• The grain size distribution lies in the narrow range [0.6 mm, 1.18 mm]. The smallratio of maximum to minimum partile size is favorable for the performane ofthe DEM sheme.Charateristi parameters of the referene sand measured by di�erent researh groupsare listed in table 5.1. The parameters d10, d50, d60 and d60/d10 haraterize the grainsize distribution. However, for their determination the grains are onsidered as spheresand therefore no information about the elongation of the grains an be dedued. Adetailed analysis of the elongation has been performed by Clayton et al. [34℄ using anautomated imaging method. About 1500 grains were spread on a �at plate and pitureswere taken from above. Assuming that the smallest grain dimension is oriented normalto the plate the maximum insribed and minimum irumsribed irle of a grain weredetermined by an image analysis software. The diameters of these irles are denotedas the large and intermediate grain dimensions L and I. The grain volume was deduedfrom its mass and the small dimension S was derived from the assumption that thegrain volume equals the volume of an ellipsoid of prinipal dimensions L, I, and S.The resulting average partile dimensions are given as L̄ = 1.14 mm, Ī = 0.79 mm, and

S̄ = 0.61 mm. The superquadri radius parameters ri for the random partile generationproess are hosen from Gaussian distributions with the mean hosen aording to themeasured grain dimensions and the standard deviation hosen as 20% of the mean butwith the restrition 0.25 mm < ri < 0.75 mm.Regarding the grain angularity no exat, quantitative, standardized harateriza-tion method exists. Hene, the grain angularity is usually ategorized by visual in-spetion and omparison to referene harts like shown in �gure 5.3(a). However, thisdoes not enable a straightforward adaption of the superquadri angularity parameters
ǫi. Therefore, they are hosen uniformly distributed in the interval ǫi ∈ [0.6, 1.2] byvisual omparison of partile slies with an angularity hart taking into aount theategorization of Leighton Buzzard sand as rounded � sub-rounded, see �gure 5.3(b).Finally, the elasti parameters of silia are taken from the literature as E = 50 GPaand ν = 0.2. The frition between dry and wet grains was analyzed by Rowe [146℄ and
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well-rounded sub-rounded angular

sub-angular very angularroundedFigure 5.3: a) Grain shape lassi�ation hart after Shepard et al. [153℄.b) Slie of a random set of superquadris with ǫi ∈ [0.6, 1.2].Ishibashi et al. [86℄ yielding a value of µ = 0.24 as inter-partile frition oe�ient fordry silia grains. Sine the homogenization is performed via quasi-stati simulations,the dashpot damping model is used with ζ = 0.9 to redue the dynamis.5.3 ResultsStandard triaxial tests are performed on random partile samples. In laboratory test-ing of granular materials the standard triaxial test is performed on ylindrial samples,whih are enlosed by a rubber membrane. A onstant lateral pressure is applied on themembrane, while the sample is ompressed at a onstant strain rate in the axial dire-tion. The shear strength of the material is dedued from the measured axial pressure.The volumetri behavior is measured through the volume hange inside the membrane.Here, this test is modeled via the periodi DEM sheme by loading random ubialpartile samples with a onstant pressure in two diretions and a onstant ompressivestrain rate in the third diretion.5.3.1 Random Sample GenerationRandom lose partile pakages are generated in two steps. First, the geometri pakagegeneration algorithm desribed in setion 3.4.4 is applied to �ll a ubial periodispae with a solid fration of Φ = 0.55 using the geometry parameters adapted to thereferene sand. In the seond step, the periodi DEM sheme is applied to ompressthe pakage with σi = −1 kPa, where the material parameters adapted to the referenesand are used exept for the inter-partile frition oe�ient. This is hosen as variablegeneration parameter to produe pakages with di�erent initial densities. Note that
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Figure 5.4: Solid fration vs. the frition oe�ient used in the �nal ompression phase ofthe random pakage generation sheme.this generation sheme yields isotropi samples, sine there is no preferred diretion inany of the generation steps.5.3.2 Initial Relative DensityThe initial density of the generated pakages depends on the frition oe�ient µ usedin the �nal ompression phase. To analyze this relation pakages are generated usingvarious µ. A ubial RVE with L = 10 mm is used resulting in about 1700 partiles.The resulting solid frations for 〈p〉 = 1 kPa are shown in �gure 5.4. The maximumsolid fration Φmax = 0.722 is reahed for a fritionless ompression phase. From thereon the solid fration deays monotonially towards the minimum Φmin = 0.64 for highfrition values of µ > 1. These extremal values lie above those from the experimentalstudies reported in table 5.1, whih are given as Φmax ≈ 0.66 and Φmin ≈ 0.56. This isassumed to be mainly due to the following reasons: First, the superquadris are onlyan approximation of the real grain shape. Seond, the pakage generation algorithmdoes not model the standardized experimental methods for the determination of Φmaxand Φmin, sine this would result in an enormous omputational e�ort.Next, the mehanial behavior of the samples with di�erent initial relative densitiesis analyzed by means of triaxial tests. For these the inter-partile frition is set to theadapted value of µ = 0.24 for all samples. Initially, a hydrostati pressure of p = 25 kPais applied. From this referene state the prinipal stresses σ1 = σ2 are kept onstant,while the sample is ompressed in the 3-diretion using a strain rate orresponding toan inertial parameter of I = 10−4. Figure 5.5(a,b) show the results in terms of theprinipal stress ratio σ3/σ1 and solid fration Φ vs. the ompressive strain −ǫ3. Theinitial relative densities DR are derived from the extremal values Φmax = 0.722 and
Φmin = 0.64. The results are in good qualitative agreement with laboratory tests onnon-ohesive fritional granular materials. Initially, loose pakages show the slowestinrease of stress ratio, whih reahes a onstant value after about 10 � 15% axialstrain. The dense samples show a very steep initial inrease and reah a maximum
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L, mm 10 15 20 30number of samples 10 8 5 4number of partiles 1700 6000 14 000 45 000Table 5.2: Data of RVE size test series.L partiles DOF time steps ∆t −ǫ1 ores omputation time30mm 46 492 278 952 2 046 720 0.25µs 20% 4 132 hTable 5.3: Simulation details of a triaxial test on a periodi ubial RVE.show dilatant behavior and tend towards a unique solid fration of Φ ≈ 0.65 at an axialstrain of about 25%.5.3.3 Pressure LevelTo analyze the in�uene of the pressure the triaxial test is repeated with lateral pres-sures of p = 25, 50, 100, 200 kPa. For this purpose the initial samples are generatedwith a frition oe�ient of µ = 0.15 in the ompression phase resulting in an ini-tial relative density of DR = 0.37. For eah pressure 10 random ubial RVEs with

L = 10 mm are generated and the mean and standard deviation of the prinipal stressratio and volumetri strain ǫV := (V − V0)/V0 are omputed. The resulting urves andorresponding error bars are plotted in �gure 5.5() and (d). The lateral pressure hasno signi�ant in�uene on the stress ratio or the volumetri strain, whih agrees withlaboratory experiments, see e.g. [148℄.5.3.4 RVE SizeTriaxial tests are performed with four RVE sizes listed in table 5.2. For eah size anumber of random samples is tested and the ensemble average and standard deviationare omputed. The samples are generated with an initial relative density of DR = 0.37and the lateral pressure for the triaxial test is hosen as 25 kPa. The omparison of theresults in �gure 5.5(e) and (f) shows that the �nal stress ratio inreases from 2.15 for
L = 10 mm to 2.3 for L = 30 mm, whih is aompanied by a derease in the stan-dard deviation. Considering the volumetri behavior the larger samples behave moredilatant. Comparing the ratios ∆ǫV /∆ǫ3 in the interval −ǫ3 ∈ [10%, 15%] there is aninrease from 0.175 for L = 10 mm to 0.205 for L = 30 mm whih is again aompaniedby a derease in the standard deviation. These results indiate that an even largerRVE size L > 30 mm will yield a higher shear strength and dilatany. However, theyalso indiate that the additional inrease until saturation will be moderate. Therefore,onsidering the omputational e�ort of the homogenization exempli�ed in table 5.3,the results for L = 30 mm are regarded as e�etive behavior of the partile model forthe validation in setion 5.3.5 and the �tting of the ontinuum model in setion 5.4.



88 CHAPTER 5. HOMOGENIZATION5.3.5 ValidationTo validate the partile model the homogenization results are ompared to the resultsof laboratory triaxial tests on Leighton Buzzard sand fration B performed by Shnaid[148℄, see �gure 5.6. While the volumetri strain shows a good quantitative agreement,the �nal stress ratio of the periodi DEM simulation of about 2.3 is onsiderably smallerthan the experimental values of about 3.7. This is assumed to be a result of the partileshape. While superquadris an represent elongated and angular grains quite well, theyare restrited to be onvex. In the DEM sheme the ontat of adjaent partiles ishandled by applying a resultant ontat fore at a spei� ontat point. Therefore,no torques an be transferred between adjaent partiles, whih would be possible inthe ase of multiple ontat points between non-onvex partiles. Indeed, simulationsusing simple non-onvex partiles like glued spheres [147℄ reveal a onsiderable inreasein shear strength. The same has been shown for a pakage of onvex polyhedra [10℄,whih an transfer torques over edge or fae ontats.5.4 Fitting of Elasto-Plasti Continuum ModelThe e�etive behavior of the disrete partile model is approximated by an elasto-plasti ontinuum model. For this purpose the non-assoiative Mohr-Coulomb modelintrodued in setion 2.1.5 is used. It is based on �ve material parameters, whih are theshear modulus G, the bulk modulus K, the frition angle φ, the dilation angle ψ, andthe ohesion parameter c. Taking into aount that the partile model is non-ohesive,the ohesion parameter is set to a small value of c = 15Pa to avoid that the stressfree state lies at the apex of the failure surfae. While this has a negligible in�uene onthe behavior at elevated pressures, it redues the e�ort of the elasto-plasti algorithmin the initial loading phase. Thus, four parameters have to be �tted to the results ofthe periodi triaxial tests. Assuming that the material behaves elasti at the onseta b
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5.4. FITTING OF ELASTO-PLASTIC CONTINUUM MODEL 89of loading, Young's modulus and Poisson's ratio are �tted separately to the σ3 vs. ǫ3and ǫV vs. ǫ3 urve, respetively. Figure 5.7(a,b) display the results of triaxial testsperformed at four di�erent lateral pressures together with the urves orrespondingto the �t elasti onstants. The initial sti�ness of the partile sample depends on thepressure, and E = 60 MPa is hosen to �t the sti�ness in the medium pressure regime.On the other hand, the initial volumetri behavior oinides for the di�erent pressuresand is approximated by ν = 0.145. The shear and bulk modulus are given by
G =

E

2 (1 + ν)
, K =

E

3 (1− 2 ν)
.The frition angle is dedued from the tangent to the Mohr-irles at the state of max-imum ompressive stress. The Mohr-Coulomb yield surfae with φ = 23.15◦ gives agood approximation of the maximum shear strength reahed by the partile model.Similarly, the onstant dilation rate shown by the partile model is represented bya dilation angle of ψ = 5.17◦. Altogether, the non-assoiative Mohr-Coulomb modela b
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90 CHAPTER 5. HOMOGENIZATIONreprodues the most prominent features of the e�etive behavior, i.e. the pressure de-pendent shear strength and the dilatany. Nevertheless, the ontinuum model yieldsonly an approximation of the e�etive behavior and su�ers from the following short-omings:
• The partile model shows irreversible deformations nearly from the onset of load-ing, while the ontinuum model behaves elastially until the yield surfae isreahed. This results in a disagreement espeially for yli loading onditionswhih do not yield plasti deformations of the ontinuum model.
• The sti�ness of the partile model is pressure dependent, whih is not taken intoaount in the ontinuum model.
• The e�etive behavior of the partile model ruially depends on the proper-ties of the initial pakage, whih is haraterized by the relative density amongothers, f. �gure 5.5. On the other hand, the ontinuum model is �tted to onespei� medium dense pakage and does not inlude an expliit dependeny onthe density.These de�ienies of the non-assoiative Mohr-Coulomb model have to be taken intoaount when evaluating the two-sale sheme developed in hapter 6.



Chapter 6Two-Sale ModelWithin this hapter a onurrent two-sale model of non-ohesive granular materials isdeveloped. Domains of large, eventually disontinuous deformation are modeled by thedisrete partile sheme presented in hapter 3. Domains of small, rather homogeneousdeformation are modeled by the non-assoiative Mohr-Coulomb model presented insetion 2.1.5, whose material parameters are �tted to the e�etive behavior of thepartile model in setion 5.4. At the interfae of the domains of di�erent modeling thepartile method (DEM) and the ontinuum method (FEM) are oupled resulting in asmooth transition between the two material desriptions.In the past two deades onsiderable researh has been devoted to similar ouplingson a smaller sale, i.e. of moleular dynamis (MD) and FEM, see e.g. the reviewartile by Curtin and Miller [48℄ and referenes ited therein. Despite the similarities ofDEM and MD regarding their algorithmi implementation there are major di�erenesin terms of their partiles' nature and interation:
• The length and time sales onsidered in MD are orders of magnitude smallerthan those typially onsidered in DEM.
• In MD the partiles represent atoms (or moleules), whih interat in terms ofeletromagneti fores derived from potentials. The range of interation usuallyextends over the �rst few neighbors. In DEM partiles represent grains interat-ing through mehanial ontat. Hene, only the nearest neighbors interat andenergy is dissipated due to frition and damping.
• In ontrast to ommon MD partiles, DEM partiles are of �nite size and haveindividual geometries. They �ll the spae up to a spei� volume fration. Fur-thermore, they are equipped with rotational degrees of freedom.
• The partile arrangement: While in MD partiles often form a regular lattie,DEM partiles show no suh regularity.Due to these di�erenes MD-FEM oupling shemes annot be simply transferred tothe DEM-FEM ase.A general onept for the oupling of di�erent models and methods is the Arlequinmethod introdued by Ben Dhia [23, 24℄. It is based on the introdution of a oupling91



92 CHAPTER 6. TWO-SCALE MODELdomain in whih the models are superposed. Within this domain the virtual work isinterpolated between the models and ompatibility is ensured via kinemati onstraints.The overall behavior of the oupled system ruially depends on the interpolationsheme applied and, additionally, on the way the kinemati onstraints are formulatedand enfored. The latter is partiularly relevant for the oupling of a disrete and aontinuum method.Xiao and Belytshko [185℄ applied a sheme of this kind to the MD-FEM oupling.They hose the oupling domain as a band between the MD and FEM domain de-noted as bridging domain. A linear energy interpolation over the width of the bridgingdomain is used and the disrete MD displaements are diretly onstrained to theinterpolated FE solutions at the partile positions. It has been shown that spuriouswave re�etions at the interfae derease with inreasing width of the bridging domain.Furthermore, the in�uene of the energy weighting strategy has been analyzed withthe result that a nonlinear evolution of the weight parameter yields superior re�etionredution ompared to a linear evolution.This sheme has been transferred to the DEM-FEM oupling by Frangin et al. [65℄and Rojek and Oñate [144℄. In both works the two-sale method is applied to ohesivefritional materials suh as onrete or rok. For this lass of materials major partilerearrangements are only possible if inter-partile bonds break leading to the evolu-tion of raks. Consequently, the prevailing deformation mehanisms are quiet distintfrom those of non-ohesive fritional granular materials like dry sand. Hene, for suhmaterials, the diret onstraint between the disrete partile displaements and the in-terpolated FE displaements, whih might be appropriate for ohesive materials, wouldresult in an unnatural restrition of partile rearrangements. Therefore, the kinemationstraints will be formulated in a di�erent way. For this purpose the disrete partiledisplaements are split into a oarse sale and a �ne sale part, and only the the oarsesale part is onstrained to the FE displaements. In this way, natural �utuations ofdisplaements orresponding to partile rearrangements are not impeded.Setion 6.1 introdues the oupling domain serving as a transition zone between theDEM and FEM domain. The split of the disrete displaements is used to formulatethe kinemati onstraints in setion 6.2. Implementation issues are outlined in setion6.3. Finally, the performane of the two-sale approah is exempli�ed in setion 6.4.
6.1 Coupling DomainThe Arlequin method [23, 24℄ is based on the introdution of a oupling domain ΩC inwhih the DE domain ΩDE and FE domain ΩFE are superposed, see �gure 6.1(a). Theoupling domain serves as transition zone between the domains of di�erent modeling.For this purpose a kind of interpolated material model is introdued in ΩC by statingthe virtual work as an interpolation of the individual virtual works. This interpolation
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fα3Figure 6.1: a) The DE and FE model are superposed within ΩC, where the virtual work isinterpolated using the weight funtion w(x).b) Partile α with enter cα and ontat fores fαβ.is aomplished via the weight funtion w(x) whih satis�es
w(x) = 1 ∀ x ∈ ΩDE \ ΩFE ,
w(x) = 0 ∀ x ∈ ΩFE \ ΩDE , (6.1)
w(x) ∈ [0, 1] ∀ x ∈ ΩC := ΩDE ∩ ΩFE .The expliit form of w(x) in ΩC an be hosen as, e.g., linear interpolation between

w = 1 in ΩDE and w = 0 in ΩFE and is postponed to setion 6.3. Using the weightfuntion the interpolated virtual work reads
δW = δW FE + δWDE with (6.2)

δW FE =

∫

ΩFE (1− w) [σ : δǫ + ρ (ẍ− b) · δu] dv − ∫
ΓFEσ

(1− w) t̂ · δuds , (6.3)
δWDE =

np∑

α=1

δWα =

np∑

α=1





∫

Ωα

w ρ (ẍ− b) · δuα dv − nα∑

β=1

wαβ fαβ · δuα



 . (6.4)Here the expliit dependene on x and t is dropped for onveniene. Virtual displae-ment �elds δu(x) and δuα(x) are introdued for the ontinuous body B and the parti-les Pα. Regarding the disrete part (6.4), np denotes the number of partiles, nα is thenumber of ontats of Pα, wαβ = w(xαβ) is the weight fator at the point of ontat of
Pα and Pβ , and fαβ is the orresponding ontat fore ating on Pα, see �gure 6.1(b).The remaining symbols are explained in hapter 2. Note that small deformations areassumed in the ontinuum part (6.3) and δǫ denotes the variation of the linear straintensor.



94 CHAPTER 6. TWO-SCALE MODELFor a onstant weight funtion w(x) = 1 ∀x ∈ Ωα in the disrete part (6.4), theondition δWα = 0 yields the standard equations of motion of the rigid partile Pα likederived in setion 2.1.3. Now, taking into aount a variable weight funtion w(x), asimilar transformation of the ontribution δWα yields a similar set of equations denotedas the weighted equations of motion in the following. For this purpose the positionvetor x is referred to the partile's enter cα via
x = cα + rα . (6.5)Considering the partile's rigidity, the veloity and aeleration �eld read

ẋ = ċ + ω × r , (6.6)
ẍ = c̈ + ω̇ × r + ω × (ω × r) , (6.7)where ω denotes the partile's rotational veloity and the partile index α is droppedfor onveniene. An arbitrary, virtual rigid body motion is given by

δu(x) = δu0 + δω × r , (6.8)where δu0 is the translation of the partile enter and δω a rotation about an axispassing through the enter. To derive the weighted equations of motion it is now impliedthat the weight funtion w(x) is a ontinuous, smooth, and monotoni funtion within
ΩC. Under these assumptions w(x) is approximated in Ωα by its linearization aboutthe partile enter c

w(x) ≈ w(c) + gradw|c · r = wc + w′
c n · r with w′

c n := gradw|c, ‖n‖ = 1 . (6.9)Inserting (6.9) and (6.8) into (6.4) and introduing the resultant fore and torque
f := wcm b +

nα∑

β=1

wβ fβ , (6.10)
m :=

nα∑

β=1

wβ rβ × fβ , (6.11)yields the partile's ontribution
δWα = (wcm c̈− f) · δu0 + (wc I · ω̇ + ω × wc I · ω −m) · δω

+ w′
c n ·

∫

Ω

r ρ (c̈ + ω̇ × r + ω × (ω × r)− b) · (δu0 + δω × r) dv . (6.12)Under the assumption that ΩC is muh larger than the typial partile size the lastterm in (6.12) beomes negligible, see the derivation in appendix B. Then the ondition
δWα = 0 yields the weighted equations of motion

wcm c̈ = f , (6.13)
wc I · ω̇ + ω × wc I · ω = m . (6.14)



6.2. KINEMATIC CONSTRAINTS 95Within the pure DE domain ΩDE \ ΩFE with w = 1 these equations orrespond to thestandard equations of motion. Note, however, that due to the de�nition of the resultantfore f and torque m the weighted equations of motion are not the standard equationsof motion multiplied by the weight fator at the partile enter wc. Eah ontat forein (6.10) and (6.11) is weighted using the weight fator at the orresponding point ofontat. Beause of the �nite dimensions of the DEM partiles a simple weighting ofall terms by wc would introdue spurious fores into the partile system: For a ontatpair αβ the ontat fore fαβ = −f βα would be weighted one by w(cα) and one by
w(cβ) yielding a resultant unbalaned fore

w(cα) fαβ + w(cβ) fβα = [w(cα)− w(cβ)] fαβ . (6.15)On the other hand, no spurious fores are generated through (6.13) and (6.14), sineall orresponding ontat fores fαβ and fβα are weighted by the same weight fator.Furthermore, note that the weighted equations of motion derived from δWα = 0 are notomplete in the sense that the e�et of the kinemati onstraints has not been takeninto aount yet. These result in additional oupling fores ating on the partiles in
ΩC.6.2 Kinemati ConstraintsThe Arlequin oupling is ompleted through the imposition of kinemati onstraintsonneting the degrees of freedom (DOFs) within ΩC. For the oupling of a disretepartile and a ontinuum method the formulation of appropriate onstraints is notstraightforward. The partiles are equipped with translational and rotational DOFs. Onthe other hand, a standard ontinuum approah without rotational DOFs is appliedin ΩFE, beause it is su�ient for the desription of the material behavior when noloalizations our, see e.g. [59℄. Therefore, the onstraints will be formulated solely interms of the translational DOFs.Within the DE-FE oupling shemes for ohesive fritional materials developed byFrangin et al. [65℄ and Rojek and Oñate [144℄ the disrete partile displaements are di-retly onstrained to the ontinuum displaements at the partile enter. Consequently,these shemes enfore the partiles in one element to move aording to the elementdisplaement ansatz. While this might be appropriate for ohesive materials, it repre-sents an unnatural onstraint for non-ohesive materials, where �utuations within thegrain displaements arise due to the non-uniform partile shape and irregular partilearrangement.For the formulation of other onstraint types it is reasonable to aommodate thedisrete partile displaements to the ontinuum displaements via an adequate opera-tor. This approah was used by Bauman et al. [22℄ to ouple a one-dimensional systemof springs to a linear elasti bar. The disrete spring displaement �eld is transformedinto a ontinuous �eld by a linear interpolation operator. The ontinuous �eld is thenused to formulate L2 or H1 oupling onstraints within ΩC. However, the appliation ofan interpolation operator for non-ohesive granular materials would still yield unnatu-ral onstraints due to the reasons disussed above. An appropriate operator should in a



96 CHAPTER 6. TWO-SCALE MODELsense oarsen the disrete displaements and thus enable natural �utuations. For thispurpose a deomposition of the partile displaements into a oarse and a �ne salepart is applied like it is used in the Bridging Sale Method of Wagner and Liu [171℄to ouple atomi and ontinuum simulations. The oarse sale part is de�ned as thepart that an be represented by a hosen set of ansatz funtions. On the other hand,the projetion of the �ne sale part onto this ansatz spae vanishes. Sine the oarsesale part will be onstrained to the ontinuum solution, it is most onvenient to usethe FE ansatz spae in ΩC for this projetion. This represents the most oarse ansatzwhih still allows the onstraint to be ful�lled exatly. Using the notation introduedin setion 2.2 the oarse sale part is de�ned as
uDE(x) :=

∑

I∈NCNI(x) uDEI , (6.16)where NI are the FE ansatz funtions and N C is the set of oupling nodes, i.e. thenodes belonging to elements with partile enters inside, see �gure 6.2(a). The partiledisplaements are projeted onto this ansatz by a least squares �t using the volumeweighted error funtion
min
uDE

I

∑

α∈PC Vα ‖uα − uDE(cα)‖2 , (6.17)where PC is the set of partiles whose enter resides in an element and Vα is the partilevolume. The minimization with respet to the unknown nodal values uDE
I yields thelinear system of equations

∑

α∈PC ∑J∈NCNIα VαNJα uDE
J =

∑

α∈PCNIα Vα uα with NIα := NI(cα) (6.18)
⇒ N V NT

︸ ︷︷ ︸

=:A

uc = N V ud (6.19)
⇒ uc = A−1N V

︸ ︷︷ ︸

=:Π

ud , (6.20)where uc ∈ R
nC
N
×3 holds the unknown nodal displaements1, ud ∈ R

nC
P
×3 holds thedisrete partile displaements, nCN :=

∣
∣N C∣∣ is the number of oupling nodes, and

nCP :=
∣
∣PC∣∣ the number of oupling partiles. Due to the inverse A−1 the projetionmatrix Π is a dense matrix yielding a non-loal projetion where every uDE

I dependson eah uα. A loal version is retrieved by replaing A by the diagonal lumped version
A∗ given by

A∗
II :=

∑

J∈NCAIJ =
∑

J∈NC ∑α∈PCNIα VαNJα =
∑

α∈PCNIα Vα . (6.21)This results in the loal projetion rule
uDE

I =

∑

α∈PC NIα Vα uα
∑

α∈PC NIα Vα

. (6.22)
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JFigure 6.2: a) De�nition of the set of oupling nodes and elements.b) Coarse-�ne split of partile displaements within one element.Both versions are implemented and will be ompared in setion 6.4. The projetionsheme is skethed in �gure 6.2(b). Using the ontinuous displaement �eld the penaltyonstraint term is introdued as
C :=

ǫ

2

∫

ΩC ‖uDE − uFE‖2 dv , (6.23)where ǫ is the penalty parameter. The variational formulation
δW + δC = 0, (6.24)with δW given in (6.2), yields the disrete equations of motion, whih are integratedby expliit time integration shemes. The variation of the onstraint term gives thenodal oupling fores fCI and partile oupling fores fCα

δC = ǫ

∫

ΩC (uDE − uFE)
︸ ︷︷ ︸

=:r

·
(
δuDE − δuFE) dv

=
∑

I∈NC δrI · (ǫ
∑

J∈NC ∫
ΩC NI NJ dv
︸ ︷︷ ︸

=:VIJ

rJ) =
∑

I∈NC δrI · fCI (6.25)
=

∑

I∈NC(∑α∈PC ΠIα δuα − δuFEI

)

· fCI
= −

∑

α∈PC δuα ·
(

−
∑

I∈NC ΠIα fCI )
︸ ︷︷ ︸

=:fCα −
∑

I∈NC δuFEI · fCI . (6.26)1The matries hold the omponents with respet to the inertial Cartesian referene frame.



98 CHAPTER 6. TWO-SCALE MODEL6.3 ImplementationFor the implementation of the two-sale sheme the oupling terms introdued in theprevious setions need to be evaluated numerially. More preisely, the following isrequired:
• The weight funtion w(x) (6.1) needs to be de�ned and evaluated at integrationpoints, partile enters, and ontat points.
• The projetion matrix Π (6.20) has to be set up.
• The volume terms VIJ (6.25) are required for the omputation of the ouplingfores.Under the assumption of small relative displaements of the partiles and the ontinuumin ΩC the oupling terms are evaluated with respet to the referene on�guration.To redue the implementation e�ort as well as the numerial e�ort it is furthermoreassumed that the overlapping domain ΩC is desribed by a set of �nite elements thatare ompletely �lled with partiles. In this ase it is onvenient to de�ne the weightfuntion within ΩFE via the FE ansatz funtions

w(x) =

{∑

I NI(x)wI ∀x ∈ ΩFE
1 ∀x ∈ ΩDE \ ΩFE . (6.27)In this way the evaluation of the FE terms (6.3) an be performed by standard Gaussianquadrature. For the evaluation of w(x) at partile enters and of the projetion matrix

Π eah partile Pα in the oupling domain has to be assigned to the �nite element thatinludes its enter cα. Furthermore, the referene oordinates of the partile enterwithin the �nite element have to be determined. This is aomplished by a two stepproedure. First, bounding spheres are de�ned for the �nite elements, and the partileenters are heked for inlusion in these bounding spheres. Seond, for eah andidate�nite element the nonlinear system
cα =

ne
n∑

I=1

NI(ξ, η, ζ) xI (6.28)is solved for the referene oordinates (ξ, η, ζ), where ne
n is the number of nodes withinthe element. From the referene oordinates the partile enter is heked for inlusionin the �nite element. To avoid this omputation for the ontat points, the weightparameter at a ontat is interpolated from the enter values by

wαβ = wα +
(cβ − cα) · rαβ

‖cβ − cα‖2
(wβ − wα) . (6.29)Finally, sine the oarse sale part of the partile displaements is de�ned on theFE ansatz, the evaluation of the volume terms VIJ (6.25) is trivial using Gaussianquadrature. The appliation �ow of a oupled simulation is summarized in �gure 6.3.
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determine particles and elements in ΩC together with NIα values

set nodal weight values wI

compute particle weight values wα =
∑

NIαwI

compute projection matrix Π

compute volumes VIJ

DE: Update particle states
FE: Update nodal states

DE: Compute contact forces
FE: Compute internal nodal forces

compute nodal DE displacements uDE
I from Π ud

compute nodal differences rI = uDE
I − uFE

I

compute nodal coupling forces fC
I = ǫ

∑

J∈NC VIJ rJ

compute particle coupling forces fC
α = −∑I∈NC ΠIα fC

I

DE: Compute resultant particle forces
FE: Compute resultant nodal forces

Figure 6.3: Flowhart of a oupled two-sale DE-FE simulation.The implementation is realized in the same manner as desribed in setion 4.2. Thein-house C++ DEM ode is oupled with the Fortran FEM ode FEAP developed byTaylor [159℄. The DEM part and the FEM part ommuniate via a Fortran interfaesubroutine that enables alls of high-level FEAP subroutines from the C++ ode. Thedata exhange in eah time step is aomplished via C++ pointers pointing at theappropriate FEAP data arrays. In this way the FEM data an be aessed diretly bythe C++ funtions preventing expensive data opy operations.6.4 Numerial ExamplesThe performane of the two-sale model is exempli�ed by two tests. First, the ouplingsheme is validated via triaxial tests of a oupled DE-FE model, a pure DE model, and apure FE model. The in�uene of the penalty parameter, loading diretion, and ouplinggeometry are analyzed as well as the e�et of the oupling on the mirostruture withinthe partile domain. Seond, the method is applied to a pile installation problem. Ahexahedral pile with �at tip is driven at a onstant speed into a box �lled with sand,where only the viinity of the pile is modeled by the partile method.The loading onditions in eah test are supposed to yield near quasi-stati deforma-tions and the material parameters are adopted from setion 5.2 and 5.4, respetively.Due to the quasi-stati deformation wave propagation phenomena like disussed byFrangin et al. [65℄ and Rojek and Oñate [144℄ for ohesive materials do not play a ma-jor role here. This is also supported by the fat that the wave propagation propertiesof non-ohesive fritional granular materials like dry sand di�er onsiderably from thatof ohesive materials like onrete or rok. The material damping of granular materialsfor moderate strain amplitudes of ǫampl ≥ 0.01% exeeds that of ohesive materials byfar. Furthermore, yli loading leads to an aumulation of plasti strain whih growsfastest in the initial yles. Altogether, granular materials show a stronger attenuationof waves.
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EC vs. γ (d).free resulting in a higher initial sti�ness E of the FE model ompared to the sti�nessof the DE model denoted by γ E in the following. In x and y diretion both models atin a parallel way and the overall sti�ness is given as E (1+γ)/2, see �gure 6.6(,d). Onthe other hand, in z diretion the models at in row yielding a smaller overall sti�nessof E 2 γ/(1+γ). For γ → 1 the sample shows the same sti�ness in all diretions, whihis the ase at the end of the ompression phase.Up to now all tests used a regular oupling geometry aligned with the prinipalloading diretions. To hek the robustness of the oupling sheme test 3 was repeatedusing the oupling geometries shown in �gure 6.7(a). Figure 6.7(b) reveals that thein�uene on the prinipal stresses is negligible.6.4.2 MirostrutureAn important question regarding the oupling of a partile and a ontinuum model iswhether the oupling disturbs the typial mirostruture inside the partile model. Forgranular materials this mirostruture is desribed by the distribution of inter-partile
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Figure 6.8: Probability distributions of ontat fore magnitudes (a) and diretions (b).ontat fores. A harateristi feature of granular materials is the formation of forehains, whih are hains of partiles that arry a higher-than-average part of the over-all sample load. This results in spei� distributions of ontat fore magnitudes andorientations. These distributions are analyzed for a pure DE and the oupled models inthe �nal state of test 3 with the maximum ompressive stress σ1 in z diretion, i.e. nor-mal to the oupling interfae. Only inter-partile ontats within the domain ΩDE\ΩFEare onsidered, beause the ontat fores in the oupling domain ΩC derease towardsthe w = 0 boundary due to the oupling fores. The orientation of a ontat fore f isdesribed by the angle α between f and the diretion of maximum ompressive stress
e1 = ez

α := cos−1

( |f · e1|
‖f‖

)

∈ [0, π/2] . (6.30)The probability distributions are plotted in �gure 6.8. All systems show a similar
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zFigure 6.9: a) Dimensions of plane strain pile installation example.b) FE disretization. In y diretion 5 element layers are used.magnitude distribution with a huge fration of relatively small fores below 0.2N anda monotoni deay towards the maximum fore of about 1N. The oupled systemsdeviate from the full DE model as they show a higher probability of smaller foreswhere the deviation is greater for a onsistent oupling. For the evaluation of theorientation the set of fores is split aording to their magnitude into three groupsA, B, and C , f. �gure 6.8(a). For all groups the orientation distributions agree wellbetween the onsidered systems. While the smaller fores are rather orthogonal tothe maximum loading diretion, the larger fores are more aligned with it. Here thelarger �utuations for group B and C result from the smaller number of fores withinthese groups. Altogether, the mirostruture of the partile model is only marginallydisturbed by the oupling sheme. The typial fore hains are not hindered and runaross the boundary of the oupling domain ΩC and the pure DE domain ΩDE \ ΩFE.6.4.3 Pile InstallationThe two-sale model is applied to a plane strain pile installation test spei�ed in �g-ure 6.9(a). Suh penetration problems are extremely di�ult to model by a pure FEapproah, beause the large deformations around the pile tip yield severe mesh dis-tortions, whih spoil the auray and stability of the omputation. Furthermore, theonvergene of standard solution algorithms is a�eted by material nonlinearities dueto the omplex onstitutive models for granular materials and ontat nonlinearitiesdue to the fritional ontat with the pile [150, 151℄. The problem of severe mesh dis-tortion has been resolved by appliation of adaptive re-meshing algorithms [157℄ orArbitrary Lagrangian-Eulerian methods [152, 114℄, however at the ost of the need forremapping of variables between meshes resulting in a new potential soure of onver-
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Figure 6.10: Closeup of partile and oupling domain of pile installation problem.partiles nCP elements nodes nCN DOF time steps ∆t ores omp. time
539 485 120 302 5040 7560 1530 3 259 590 500 000 0.2µs 16 454 hTable 6.1: Simulation details of pile insertion example.gene problems. Altogether, the FE modeling of fritional pile penetration problemsis still umbersome and only possible for one shaped pile tips, whih yield less meshdistortion than �at tips.Within the two-sale approah this problem is solved by modeling the domain oflarge deformations, i.e. the viinity of the pile, by the partile method. Here, thisrequires 540 000 partiles, while a pure DE model would require 25×106 partiles. TheFE disretization shown in �gure 6.9(b) onsists of 5040 tri-linear hexahedral elementsyielding an overall number of 3.2 × 106 DOFs. The details of the oupled simulationare given in table 6.1. The frition oe�ient between the rigid pile surfae and thepartiles is hosen as µ = 0.1. The oupling domain shown in �gure 6.10 onsists of twoelement layers and the lumped projetion is used. Figure 6.11 shows the deformationof the system in the viinity of the pile. Initially, a gap develops between the granularmaterial and the side faes of the pile. After a while a steady-state material �owaround the pile evolves, whih is haraterized by a one of partiles at the pile tip.This one splits the material below so that it an �ow around the edges of the tip. Theneighborhood of the pile might be split into three zones of deformation:
• In a distane up to about three partile diameters from the pile the material isdragged down for a relatively large distane.
• Up to a distane of about 15 partile diameters there is a steep gradient frommaterial being dragged down to material being pushed up.
• Further away there is a monotoni deay of the upward displaement.
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Figure 6.11: Deformation due to pile installation with olor aording to initial height.

Figure 6.12: Evolution of solid fration around driven pile.
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Figure 6.13: Pressure during pile installation at the middle of the sample (y = 8.05mm).The oupling interfae lies in the last zone and it an be seen that the height ontourlines run smoothly aross the interfae indiating a smooth transition between thematerial desriptions.Additionally, the evolution of the solid fration in the viinity of the pile is analyzed.For this purpose a regular grid of spherial sampling volumes is introdued with a1.5mm grid point distane and 2.8mm sphere radii. The average solid fration withineah sampling sphere is approximated by replaing eah superquadri by a sphere withidential enter and volume and alulating the exat intersetion volumes of thesespheres and the sample spheres. Note that the hosen sampling volume size yields anaverage partile number of about 300 per sampling volume. Figure 6.12 shows theresulting solid fration distribution at the middle of the sample (y = 8.05 mm). Thematerial right below the pile tip behaves dilatant due to the large deformations. Herethe solid fration is redued to about 0.6 � 0.64, while in the remaining domain thesolid fration is about 0.64 � 0.68. The width and height of the dilatant zone are abouttwie the pile width. Note that due to the averaging method the solid frations at theboundaries must be disregarded, sine here the sampling volumes are not ompletely�lled with partiles.Finally, the pressure distribution within the two-sale model is analyzed. For this



108 CHAPTER 6. TWO-SCALE MODELpurpose another regular grid is introdued whih overs the partile domain and hasa 3mm grid point distane. At eah grid point a ubial ell of dimension 4.8mmis entered, whih serves as averaging volume Vell for the stress determination. Theaverage stress is determined from all inter-partile ontats αβ with ontat point xαβinside Vell via [17℄
〈σ〉ell =

1

Vell ∑

αβ|xαβ∈Vell (cβ − cα)⊗ fαβ .The hosen ell size yields an average number of about 700 ontats per samplingvolume. For the same reason as in the solid fration omputation the stress values atthe boundaries must be disregarded. Furthermore, the stress in the oupling domain isnot determined due to post-proessing problems: Atually, in the oupling domain theresulting stress is the sum of the FE stress and the averaged DE stress. However, theevaluation of this sum is an awkward post-proessing problem. First, the determinationof average DE stresses in ΩC is problemati due to the boundary problem. Seond, thesummation of the stress �elds is di�ult, sine they are not evaluated on the samemesh. Hene, the resulting pressure distributions in �gure 6.13 inlude a zone whereno stresses are determined. Nevertheless, the pressure ontour lines indiate a smoothtransition between the two material desriptions. Below the pile tip a zone of highpressure evolves from t = 0 s to t = 0.075 s with a maximum pressure of about 50 kPa.From there on the pressure distribution with respet to the pile is rather onstant, i.e.there is no further inrease in the maximum pressure. In the zone below the pile thepressure dereases in radial diretion from the pile tip. Further away from the pile thepressure distribution is dominated by gravity.This example demonstrates that the two-sale model enables the simulation of prob-lems, that are very hard to handle by mono-method approahes:
• A pure DE solution using 25×106 partiles would require enormous omputationtimes. Even the oupled simulation took more than two weeks running in parallelon 16 ores, f. table 6.1.
• A pure FE solution using standard tehniques is not possible due to the verylarge deformations in the pile viinity. Furthermore, an appropriate ontinuummodel of the material behavior around the pile tip is hard to develop.Within the presented approah these problems are redued. It yields a smooth transi-tion between the models, whih does not disturb the mirostruture within the partilemodel.



Chapter 7Conlusion and OutlookWithin this work non-ohesive fritional granular materials are modeled by a three-dimensional Disrete Element Method (DEM). The DEM uses superquadri partileshapes to represent the elongation and angularity of real grains. Assuming elasti defor-mations at inter-partile ontats the ontat fore is derived from the Hertz-Mindlinmodel, where the tangential part is bounded by the Coulomb frition model. Con-sequently, the only material parameters entering the DEM are the partiles' elastionstants and the frition oe�ient, all of whih have a lear physial meaning andan be determined by experiments. On the algorithmi side, e�ient ontat dete-tion shemes are developed, whih exploit the temporal oherene between onseutivetime steps within a DEM simulation. Furthermore, an e�ient parallelization shemefor shared memory arhitetures is introdued, whih is based on the spatial sorting ofpartiles and the Verlet neighbor list onept for global ontat detetion. Altogether,the ahieved performane enables simulations with partile numbers of the order of 105undergoing large deformations within a number of time steps of the order of 105, f.setion 6.4.3.The DEM is then applied to the interation of granular materials and solid stru-tures, whih are modeled as ontinuum using the Finite Element Method (FEM). Theinteration is aomplished via ontats between DE partiles and the FE surfae mesh.For this purpose arbitrary FE surfae meshes are approximated by triangular meshes.Due to the non-smoothness of these meshes a partile-surfae ontat model is de-veloped whih takes partile-edge and partile-orner ontat situations into aount.The robust fore interpolation sheme yields smooth ontat fores and is nearly energyonserving for fritionless ontats. The oupled DE-FE model failitates granular-solidsimulations inluding large deformations as well as sliding and rolling of partiles overthe FE surfae, f. setion 4.3.3.For the development of a two-sale model for granular materials the e�etive be-havior of the disrete partile model is determined by a homogenization sheme. Thissheme is based on the mehanial testing of representative volume elements. Theseare randomly generated periodi partile pakages of ubial shape. They enable theappliation of arbitrary triaxial stress and strain boundary onditions in a onvenientway, i.e. without spurious boundary e�ets. In order to validate the partile model itsmaterial and geometry parameters are adapted to a referene material, Leighton Buz-109



110 CHAPTER 7. CONCLUSION AND OUTLOOKzard sand size fration B. Standard triaxial tests reveal a good qualitative agreementwith laboratory results on the referene material. However, the shear strength of thepartile model is signi�antly smaller than in reality. Finally, the parameters of anelasto-plasti non-assoiative Mohr-Coulomb ontinuum model are �t to the e�etivebehavior. This model represents the most important features, i.e. the pressure depen-dent shear strength and the dilatany. Nevertheless, it annot apture features suh asthe pressure dependent sti�ness.The disrete partile model and the ontinuum model are ombined in a onurrenttwo-sale approah. Domains of large, eventually disontinuous deformation are mod-eled by the partile method and the remaining domain is treated as ontinuum. In thisway, the omputationally expensive DEM is only applied where the material behavioran hardly be represented by ontinuum approahes, while elsewhere the e�ient FEMis used. At the interfae of the domains of di�erent modeling the methods are oupledvia the Arlequin method. For this purpose the methods are overlapped in a ouplingdomain where the virtual work is interpolated between both models yielding an interpo-lated material behavior. The ompatibility within the oupling domain is aomplishedby kinemati onstraints, whih are enfored by the penalty method. The onstraintformulation is based on a oarse-�ne split of the disrete partile displaements. In thisway it enables natural displaement �utuations within the oupling domain. Numeri-al examples reveal that the oupling does not disturb the typial mirostruture insidethe partile domain, whih is haraterized by fore hains. Finally, a pile installationexample shows that the two-sale approah enables the onsideration of problems thatare not feasible for mono-method approahes due to severe mesh distortion and on-vergene problems on the one hand or the enormous omputational e�ort on the otherhand.Despite the ahievements summarized above, the two-sale approah needs furtherimprovements to beome a preditive simulation tool. There are four major issues,whih will be overed not in the order of their severity but in a hronologial orderappropriate for future researh.The �rst key problem of the two-sale approah is that the partile model yieldsno quantitative preditions of the behavior of real non-ohesive fritional granularmaterials. This is assumed to be the result of the still insu�ient approximation ofreal grain shapes. While superquadris represent the elongation and angularity to someextent, they are still restrited to be onvex and therefore yield a single point of ontatbetween two partiles. Consequently, no torques an be transferred between ontatingpartiles, whih seems to yield a redued stability of the partiulate struture. This issupported by analyses using simple non-onvex shapes suh as sphere lusters [147℄,whih show a signi�ant inrease of the bulk shear strength. Hene, future researhwork must fous on the development of a better approximation of real grain shapes.This neessitates three-dimensional measurements of real grains, whih beame possiblereently through high resolution X-ray omputed tomography, see e.g. [175℄. Based onthese measurements one possibility is to approximate the real shape by sphere lusters[173℄. However, while this enables a trivial ontat detetion, it requires a huge numberof spheres and results in an arti�ially rough surfae. More realisti approximations with



111less partiles might be gained from superquadri lusters, whih an be determined viareovery proedures that are already established for superquadris in omputer visionand robotis [88℄.The seond problem is the DEM's omputational burden limiting feasible problemsin spae and time. This problem will beome even more severe when an advanedpartile shape is applied. Sine the DE algorithms are already optimized in a way whihallows no further signi�ant performane gain, the remaining option is to use massiveparallelism. An attrative possibility seems to be GPU omputing, whih exploits theomputational power of nowadays graphis ards. Impressive performane gains an bereahed but require highly sophistiated parallelization shemes [76, 81℄.The third issue onerns the inability of the non-assoiative Mohr-Coulomb modelto represent some of the features of the partile model's e�etive behavior. A moresophistiated onstitutive model an be applied like presented in e.g. [58, 186℄. Thesegive a better approximation of the pressure dependent sti�ness and the behavior underyli loading but require a more involved �tting proedure.The last problem is related to the two-sale model's oupling sheme. Within thiswork two simplifying restritions are used. First, the �nite elements within the ouplingdomain are ompletely �lled with partiles. Seond, the relative displaements of theontinuum and the partiles are assumed to be small. Together, this enables a straight-forward evaluation of the oupling terms with respet to the initial on�guration. Fora more general appliability of the model these restritions should be abandoned. Thisneessitates more advaned numerial integration proedures and eventually an e�-ient re-evaluation of the oupling terms in the ourse of the simulation. Nevertheless,these are rather minor tehnial issues. A key problem, on the other hand, is the iden-ti�ation of the domains of di�erent modeling. While in the pile installation exampleof setion 6.4.3 the domain of large deformations is known in advane, this is not truein general. Hene, riteria and methods must be developed to identify and generate thedomains of disrete modeling in an adaptive way. For the former, the riteria applied inadaptive mesh re�nement shemes might be a useful orientation. The latter, however,requires the generation of partile pakages whih must
• �ll a prede�ned spae,
• be in a prede�ned stress state,
• �t to already existing pakages,
• have a similar fabri like the already existing pakage,
• onform to the spei� granulometry, i.e. partile shape and size distribution.These problems might be solved by advaning front tehniques [116℄, whih �ll a pre-de�ned spae in a onseutive way starting at a spei�ed boundary.
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Appendix ASuperquadrisWithin this hapter geometri quantities of superquadris are derived, whih are re-quired for various purposes within the DEM sheme. In setion A.1 all quantities relatedto the surfae parameterization are derived. This inludes the determination of bound-ing radii and prinipal urvatures. An e�ient way to ompute surfae points fromgiven normals is presented in setion A.2. Setion A.3 presents an algorithm to deter-mine the intersetions of a straight line segment and the superquadri surfae. Basedon this, a sheme to ompute the intersetion area of a triangle and a superquadri isdetailed in setion A.4.A.1 Surfae ParameterizationBased on the surfae parameterization of the superquadri
X(φ1, φ2) = Xi(φ1, φ2) Eipresented in setion 3.1, equation (3.3), a number of useful geometri quantities an bederived. Taking into aount the three-fold symmetry of the superquadri it is su�ientto restrit the following derivations to the �rst otant of the body-�xed referene frameharaterized by Xi ≥ 0 or φ1 ∈ [0, π/2] and φ2 ∈ [0, π/2], respetively. In this domainequation (3.3) an be simpli�ed to

X (φ1, φ2) =





r1 cosǫ1 φ1 cosǫ2 φ2

r2 sinǫ1 φ1 cosǫ2 φ2

r3 sinǫ2 φ2



 ,
0 ≤ φ1 ≤ π

2

0 ≤ φ2 ≤ π
2

. (A.1)In the following, the expliit dependene on the urvilinear oordinates will be droppedfor onveniene. Greek indies orrespond to the two urvilinear oordinates, whileLatin indies orrespond to the Cartesian body-�xed oordinates. Summation overrepeated indies is implied. The tangent vetors are de�ned by
gα :=

∂X

∂φα
, (A.2)113



114 APPENDIX A. SUPERQUADRICSwhih reads in the body-�xed referene frame
g

1
=





−r1 ǫ1 sinφ1 cosǫ1−1 φ1 cosǫ2 φ2

r2 ǫ1 sinǫ1−1 φ1 cosφ1 cosǫ2 φ2

0



 , (A.3)
g

2
=





−r1 ǫ2 cosǫ1 φ1 sinφ2 cosǫ2−1 φ2

−r2 ǫ2 sinǫ1 φ1 sinφ2 cosǫ2−1 φ2

r3 ǫ2 sinǫ2−1 φ2 cosφ2



 . (A.4)The surfae normal is given as ross produt of the tangents
n̂ := g1 × g2 , (A.5)resulting in the loal oordinates

n̂ = λ





1
r1

cos2−ǫ1 φ1 cos2−ǫ2 φ2
1
r2

sin2−ǫ1 φ1 cos2−ǫ2 φ2
1
r3

sin2−ǫ2 φ2





︸ ︷︷ ︸

=:n

, (A.6)where λ = r1 r2 r3 ǫ1 ǫ2 sinǫ1−1 φ1 cosǫ1−1 φ1 sinǫ2−1 φ2 cos2ǫ2−1 φ2 is a saling fator, thatis negleted if just the diretion of the normal is of interest. Note that the normalomponents are given by the same kind of superquadri equation as the oordinatesin (A.1). If a quantity is required at a point outside the �rst otant, the point is �rstmapped into the �rst otant. Therefore, the otants are numbered like follows.otant 1 2 3 4 5 6 7 8sign(X1) = sign(sin φ1) 1 -1 -1 1 1 -1 -1 1sign(X2) = sign(cos φ1) 1 1 -1 -1 1 1 -1 -1sign(X3) = sign(sin φ2) 1 1 1 1 -1 -1 -1 -1The mapping is aomplished by setting
sinφ∗

1 := | sinφ1| , cosφ∗
1 := | cosφ1| , sinφ∗

2 := | sinφ2| . (A.7)Using these positive values the loal oordinates of the desired vetor are alulatedusing the simpli�ed formulas above. Finally, these oordinates need to be re-mappedto the original point. This mapping depends on the otant of the original point andthe vetor that is to be mapped. For the vetors shown above the mappings are listedbelow. otant 2 3 4 5 6 7 8
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•∗ denotes the oordinates in the �rst otant and the matries are de�ned by
R1 :=





−1 0 0
0 1 0
0 0 1



 , R2 :=





1 0 0
0 −1 0
0 0 1



 , R3 :=





1 0 0
0 1 0
0 0 −1



 ,

R12 := R1R2 , R23 := R2R3 , R13 := R1R3 , R123 := R12 R3 .



A.1. SURFACE PARAMETERIZATION 115A.1.1 Bounding RadiiThe de�nition of bounding volumes is useful for e�ient approximate ontat heks.The most widely used bounding volumes are spheres and axis aligned bounding boxes(AABB), both of whih o�er a heap intersetion hek. Regarding superquadris theparameters of the AABB, i.e. the dimensions of the box, are determined via three eval-uations of (A.48). These dimensions have to be re-alulated when the superquadrirotates. Hene, within the DEM sheme it is more onvenient to use spherial bound-ing volumes, whih are invariant up to rotation and therefore need to be omputedonly one. Eah partile is desribed by an insribed and a irumsribed sphere ofradius rmin and rmax, respetively. To determine these radii only the �rst otant ofthe superquadri has to be onsidered beause of the three-fold symmetry. For thederivation, a 2D superquadri is onsidered �rst given in the �rst quadrant by
[
X1

X2

]

=

[
r1 cosǫ φ
r2 sinǫ φ

]

. (A.8)The surfae normal reads
[
n1

n2

]

=

[ 1
r1

cos(2−ǫ) φ
1
r2

sin(2−ǫ) φ

]

. (A.9)Beause of the smooth, onvex shape of the superquadri the surfae normal at thepoint of extreme radius has to be parallel to the gradient of the radius funtion. Thegradient of the radius funtion, however, is parallel to the position vetor yielding theneessary ondition for an extreme radius
[
X1

X2

]

= λ

[
n1

n2

]

⇔
[
r1 cosǫ φ
r2 sinǫ φ

]

= λ

[ 1
r1

cos(2−ǫ) φ
1
r2

sin(2−ǫ) φ

]

, (A.10)where λ is an unknown saling fator. This system of nonlinear equations has the trivialsolutions φ = 0 and φ = π/2. Another solution is
tanφ =

(
r1
r2

) 1

ǫ−1

. (A.11)Whih solution orresponds to whih bounding radius beomes lear by looking at�gure A.1. In the ase of an ellipse (ǫ = 1) only the trivial solutions exist resultingin rmin = min(r1, r2) and rmax = max(r1, r2). For ǫ < 1 the superquadri inludesthe ellipse in a way that they touh at φ = 0 and φ = π/2. Therefore, rmin of thesuperquadri equals rmin of the ellipse, while rmax is dedued from (A.11). For ǫ > 1the ellipse inludes the superquadri and touhes it at φ = 0 and φ = π/2. Hene,they have idential rmax values, while rmin is dedued from (A.11). In the 3D ase asuperquadri in the �rst otant is given by (A.1). To split this representation into twoplanes de�ned by φ2 = 0 and φ1 = φ∗
1 the radius r12(φ1) is introdued as

r12(φ1) :=

√

(r1 cosǫ1 φ1)
2 + (r2 sinǫ1 φ1)

2 . (A.12)
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X2

r1 ǫ = 2

ǫ = 1

ǫ = 0

r2

X1Figure A.1: First quadrant of 2D superquadri for di�erent angularity parameters.In this way, two sets of superquadri equations result for the two planes. For the φ2 = 0plane the equations read
[
X1 (φ1)
X2 (φ1)

]

=

[
r1 cosǫ1 φ1

r2 sinǫ1 φ1

]

, (A.13)while for the φ1 = φ∗
1 plane the equations are given by

[
X12 (φ2)
X3 (φ2)

]

=

[
r∗12 cosǫ2 φ2

r3 sinǫ2 φ2

] with r∗12 := r12(φ
∗
1) . (A.14)

X12 is the oordinate orresponding do the diretion spei�ed by φ∗
1. The minimum andmaximum radius r12min and r12max in the φ2 = 0 plane are determined like in the 2Dase. Regarding the 3D bounding radii note the following: For two 2D superquadriswith one idential radius and an idential angularity parameter, the superquadri withthe larger seond radius inludes the other one. Therefore, to get the minimum 3Dradius the 2D sheme is simply applied to the plane φ1 = φ1min orresponding to r12min.Likewise, the maximum 3D radius results from applying the 2D sheme to the planespei�ed by φ1 = φ1max .A.1.2 Prinipal CurvaturesFor the determination of the prinipal urvatures the oe�ients of the �rst and seondfundamental forms are required [156℄. The oe�ients of the �rst fundamental formare de�ned by

gαβ := gα · gβ . (A.15)For the seond fundamental form the seond derivatives of the surfae oordinates withrespet to the urvilinear oordinates are required
bαβ := −n̄ ·X,αβ with n̄ :=

n

‖n‖ , X,αβ :=
∂2X

∂φα ∂φβ
. (A.16)
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X,

11
=





−1
2
r1 ǫ1 cosǫ2 φ2 cosǫ1−2 φ1 (2− ǫ1 + ǫ1 cos 2φ1)

1
2
r2 ǫ1 cosǫ2 φ2 sinǫ1−2 φ1 (−2 + ǫ1 + ǫ1 cos 2φ1)

0



 , (A.17)
X,

12
=





r1 ǫ2 ǫ1 cosǫ2−1 φ2 sin φ2 cosǫ1−1 φ1 sinφ1

−r2 ǫ2 ǫ1 cosǫ2−1 φ2 sinφ2 sinǫ1−1 φ1 cosφ1

0



 = X,
21
, (A.18)

X,
22

=





−1
2
r1 ǫ2 cosǫ2−2 φ2 cosǫ1 φ1 (2− ǫ2 + ǫ2 cos 2φ2)

−1
2
r2 ǫ2 cosǫ2−2 φ2 sinǫ1 φ1 (2− ǫ2 + ǫ2 cos 2φ2)
1
2
r3 ǫ2 sinǫ2−2 φ2 (−2 + ǫ2 + ǫ2 cos 2φ2)



 . (A.19)The prinipal urvatures ρI ≥ ρII are the eigenvalues of the eigenproblem
(bαβ − ρ gαβ) λβ = 0 . (A.20)De�ning the Gaussian urvature K and mean urvature H via

K :=
det b

det a
, H :=

a11 b22 + a22 b11
2 det a

, (A.21)the prinipal urvatures are given by
ρI = H +K , ρII = H −K . (A.22)Note that in the de�nition of H the fat that the o�-diagonal terms b12 = b21 vanishfor superquadris is already taken into aount. The prinipal diretions are orthogonaland lie within the tangent plane. They result from the solution of (A.20) setting ρ = ρIand ρ = ρII, respetively. The �rst diretion reads

ẽI = ρI a12 g1 +
(
b11 − ρI a11

)
g2 , (A.23)where ẽI is not normalized. The seond diretion an be dedued using the orthogonalityondition

ẽII = n× ẽI . (A.24)The prinipal urvatures at a point outside the �rst otant are idential to those atthe mapped point. The orresponding diretions are determined by using the originaltangent and normal vetors in (A.23) and (A.24).A.1.3 Curvilinear Coordinates from NormalsAt various points within the DEM sheme surfae related quantities are required atpoints, whih are not given in terms of their urvilinear oordinates but in termsof their surfae normal. Hene, an inversion of relation (A.6) is required to expressthe urvilinear oordinates in terms of the normal omponents. The general form ofequation (A.6) valid on the omplete surfae reads
λ





n1

n2

n3



 =





sign (cos φ1) (1/r1) | cosφ1|2−ǫ1 | cosφ2|2−ǫ2sign (sin φ1) (1/r2) | sinφ1|2−ǫ1 | cosφ2|2−ǫ2sign (sin φ2) (1/r3) | sinφ2|2−ǫ2



 , (A.25)



118 APPENDIX A. SUPERQUADRICSwhere λ is an unknown positive salar fator. The �rst oordinate φ1 is determinedfrom the ratio (A.25)2/(A.25)1 and is then inserted into (A.25)3 to eliminate the salingfator with the result
φ1 = tan−1(s1 |r1 n1|δ1

︸ ︷︷ ︸

=:φx
1

, s2 |r2 n2|δ1
︸ ︷︷ ︸

=:φy
1

) , (A.26)
φ2 = tan−1(|r1 n1|δ2

︸ ︷︷ ︸

=:φx
2

, s3 | (r3 n3 | cosφ1|γ1) |δ2
︸ ︷︷ ︸

=:φy
2

) , (A.27)with γi := 2− ǫi , δi := 1/γi , si := sign (ni) .

tan−1 (x, y) is the inverse tangent funtion taking into aount whih quadrant thepoint (x, y) is in. Note that the normal vetor entering (A.26) and (A.27) needs notto be normalized. However, to avoid numerial problems at points with ni = 0 a lowerbound for the absolute values of the normal omponents is implementedif |ni| < TOL ⇒ set ni = si TOL , (A.28)where TOL = 10−20 is a small positive number. Sine the oordinate equation (3.3)has the same struture as the normal equation (A.25), it an be inverted in the sameway giving the urvilinear oordinates in terms of the Cartesian oordinates.The minimization algorithm for loal ontat detetion presented in setion 3.4.2requires the �rst and seond partial derivatives of the urvilinear oordinates withrespet to the normal omponents. In the following, these will be derived from equa-tions (A.26) and (A.27). In order to preserve the larity of the formulas the followingonventions are applied in the rest of this setion.
• To abbreviate the formulas auxiliary variables are introdued for frequent terms.
• Partial derivatives with respet to normal omponents are denoted by •,i := ∂•

∂ni
.

• Only non-vanishing partial derivatives are listed.
• For seond partial derivatives the symmetry relation •,ij = •,ji is implied.First, the derivatives of φ1 are derived from (A.26). Using

∂ tan−1 (x, y)

∂x
=

−y
x2 + y2

,
∂ tan−1 (x, y)

∂y
=

x

x2 + y2
,and

φx
1,1 =

r1
γ1
|r1 n1|η1/γ1 , φy

1,2 =
r2
γ1
|r2 n2|η1/γ1 , ηi := ǫi − 1 , l1 := (φx

1)
2 + (φy

1)
2 ,the �rst derivatives read

φ1,1 = − 1

l1
φy

1 φ
x
1,1 , φ1,2 =

1

l1
φx

1 φ
y
1,2 . (A.29)



A.1. SURFACE PARAMETERIZATION 119Introduing the auxilary variable q1 := η1/γ
2
1 and the seond derivatives

φx
1,11 =

q1 s1

n2
1

|r1 n1|δ1 , φy
1,22 =

q1 s2

n2
2

|r2 n2|δ1 ,yields the result
φ1,11 =

1

l21
φy

1

[
2φx

1 (φx
1,1)

2 − l1 φx
1,11

]
, (A.30)

φ1,12 =
1

l21
φx

1,1 φ
y
1,2

[
(φy

1)
2 − (φx

1)
2
]
, (A.31)

φ1,22 =
1

l21
φx

1

[
l1 φ

y
1,22 − 2φy

1 (φy
1,2)

2
]
. (A.32)Now, the derivatives of φ2 are derived from (A.27). Sine φ2 depends on φ1 the aboveresults are re-used and the terms beome bulky. Introduing the auxilary variables

l2 := (φx
2)

2 + (φy
2)

2 , q2 :=
1

γ2
| (r3 n3 | cosφ1|γ1) |δ2−1 ,

q3 := −r3 n3 γ1 | cosφ1|−η1 sinφ1 s1 q2 ,the derivatives of φx
2 and φy

2 read
φx

2,1 =
1

γ2
s1 r1 |r1 n1|δ2−1 ,

φy
2,1 = q3 φ1,1 , φy

2,2 = q3 φ1,2 , φy
2,3 = q2 r3 | cosφ1|γ1 .Using these results the �rst derivatives of φ2 are given as

φ2,i =
1

l2

(
φx

2 φ
y
2,i − φy

2 φ
x
2,i

)
. (A.33)For the seond derivatives another set of auxiliary variables is introdued

q4 :=
1

γ2
2

| (r3 n3 | cosφ1|γ1) |δ2−2 , q5 := −s3 γ1 q4 (r3 n3)
2 | cosφ1|−2 ǫ1 ,

q6 := −γ2 sin φ1 cos3 φ1 , q7 := (ǫ1 − ǫ2) sin2 φ1 cos2 φ1 − γ2 cos4 φ1 ,

q8 := (cos2 φ1)
−η1 , q9 := −γ1 |r3 n3| r3 q4 q8 sin φ1 cosφ1 .In this way the seond derivatives of φx

2 and φy
2 are expressed as

φx
2,11 =

1

γ2
2

r2
1 η2 |r1 n1|δ2−2 , φy

2,11 = q5 (q7 φ1,1 φ1,1 − q6 φ1,11) ,

φy
2,12 = q5 (q7 φ1,1 φ1,2 − q6 φ1,12) , φy

2,22 = q5 (q7 φ1,2 φ1,2 − q6 φ1,22) ,

φy
2,13 = q9 φ1,1 , φy

2,23 = q9 φ1,2 , φy
2,33 = s3 r

2
3 η2 q4 q8 cos2 φ1 .Finally, the seond derivatives of φ2 are given by

φ2,ij =
1

l2

[
φx

2,j φ
y
2,i − φy

2,j φ
x
2,i + φx

2 φ
y
2,ij − φy

2 φ
x
2,ij − 2φ2,i

(
φx

2 φ
x
2,j + φy

2 φ
y
2,j

)]
. (A.34)



120 APPENDIX A. SUPERQUADRICSTo determine the derivatives ∂φγ/∂ck from setion 3.4.2 the rotation of the ontatreferene frame êi with respet to the partile-�xed referene frame Ei has to beonsidered. For the �rst ontat partner P1 the relation between the normal n1 andthe ontat diretion c is given as
n1 = c ⇔ nj Ej = ck êk

⇒ nj el ·Ej = ck el · êk
︸ ︷︷ ︸

=:Rlk

⇔ Tlj nj = Rlk ck

⇒ Tli Tlj nj = TliRlk ck ⇔ ni = TliRlk ck ,

(A.35)where R is the rotation matrix desribing the transformation between the global andthe ontat referene frame. Using this the partial derivatives for the �rst ontatpartner are given as
∂φγ

∂ck
=
∂φγ

∂ni

∂ni

∂ck
=
∂φγ

∂ni

TliRlk . (A.36)In the same manner the relation for the seond ontat partner P2 is derived from
n2 = −c resulting in

∂φγ

∂ck
= −∂φγ

∂ni

TliRlk . (A.37)The remaining derivatives ∂p/∂φγ are presented in the beginning of this hapter, whilethe derivatives ∂ck/∂αi are easily derived from (3.53).A.2 Surfae Points from NormalsThe operation of determining a surfae point from a given normal diretion is frequentlyused within the DEM sheme, espeially within the ontat geometry update shemepresented in setion 3.4.2. In fat, due to its frequent use, this operation is the mosttime onsuming part within the omplete DEM sheme. Therefore, it is worthwhile tothink about the most e�ient way it an be done. One possibility is to use equations(A.26) and (A.27) to �rst ompute the orresponding urvilinear oordinates φi andplug these into equation (3.3), i.e. to write
X = X(φ1(n), φ2(n)) . (A.38)The derivatives required by the geometry update sheme are then derived like for theminimization ontat detetion algorithm in setion 3.4.2, i.e. using the hain rule
∂Xi

∂nj
=
∂Xi

∂φα

∂φα

∂nj
.These derivatives are determined in setion A.1.3 and result in bulky terms inludinga huge number of transendental funtions and thus high omputational osts. A moree�ient operation is based on the impliit de�nition of the superquadri surfae as anisosurfae of the inside-outside funtion F (3.1)

F (X1, X2, X3) = 1 . (A.39)



A.2. SURFACE POINTS FROM NORMALS 121A normal vetor is parallel to the gradient of F given as
▽F =

2

ǫ2











(
1
r1

)2/ǫ1
X

2/ǫ1−1
1

[(
X1

r1

)2/ǫ1
+
(

X2

r2

)2/ǫ1
]ǫ1/ǫ2−1

(
1
r2

)2/ǫ1
X

2/ǫ1−1
2

[(
X1

r1

)2/ǫ1
+
(

X2

r2

)2/ǫ1
]ǫ1/ǫ2−1

(
1
r3

)2/ǫ2
X

2/ǫ2−1
3











, (A.40)
where due to the superquadri's three-fold symmetry only the �rst otant is onsidered.Hene, the relation between a surfae point (X1, X2, X3) and the orresponding normaldiretion n = (n1, n2, n3) is given by the nonlinear system

▽F (X1, X2, X3) = λn ,

F (X1, X2, X3) = 1 ,
(A.41)where λ is an unknown positive salar fator. By solving (A.41) for the oordinatesXi arelation results whih does not involve the surfae parameterization and therefore savesthe orresponding expensive trigonometri funtion alls. The following derivation ofthe expliit solution of (A.41) is restrited to the �rst otant. For the determination ofpoints outside this otant the simple relation

Xi (n1, n2, n3) = sign (ni) Xi (|n1|, |n2|, |n3|) (A.42)is used, whih results from the symmetries of the superquadri. Furthermore, to avoidnumerial problems at points with ni = 0, a lower bound is introdued viaif |ni| < TOL ⇒ set ni = TOL , (A.43)where TOL = 10−20 is a small positive number. To solve system (A.41) the seondgradient equation is divided by the �rst resulting in the oordinate ratio
X2

X1

=

(
r2
r1

)2/(2−ǫ1) (
n2

n1

)ǫ1/(2−ǫ1)

. (A.44)De�ning γ21 := X2/X1 the �rst term of the inside-outside funtion is re-written as
[(

X1

r1

)2/ǫ1

+

(
X2

r2

)2/ǫ1
]

= X
2/ǫ1
1

[(
1

r1

)2/ǫ1

+

(
γ21

r2

)2/ǫ1
]

︸ ︷︷ ︸

=:s12

. (A.45)Using this, the ratio γ31 := X3/X1 is derived by dividing the third gradient equationby the �rst
X3

X1

=

(

n3

n1

r
2/ǫ2
3

r
2/ǫ1
1

s
ǫ1/ǫ2−1
12

)ǫ2/(2−ǫ2)

. (A.46)



122 APPENDIX A. SUPERQUADRICSInserting this into the isosurfae equation (A.41)2 yields the �rst oordinate
X1 =

[

s
ǫ1/ǫ2
12 +

(
γ31

r3

)2/ǫ2
]−ǫ2/2

. (A.47)This, �nally, gives the surfae point
(X1, X2, X3) = X1 (1, γ21, γ31) . (A.48)In order to determine the partial derivatives ∂Xi/∂nj from the above relations, twogeneral harateristis are �rst derived from system (A.41). The partial derivative ofthe isosurfae equation (A.41)2 yields
∂F

∂ni
=

∂F

∂Xk

∂Xk

∂ni
= λnk

∂Xk

∂ni
= 0 . (A.49)Hene, the tangent vetors de�ned by

ti :=
∂Xk

∂ni
Ek (A.50)are orthogonal to the normal vetor n and therefore lie in the tangent plane to thesuperquadri surfae. The derivative of the gradient equation (A.41)1 reads

∂ ∂F
∂Xj

∂ni
=
∂ (λnj)

∂ni
⇒ ∂2F

∂Xj ∂Xk
︸ ︷︷ ︸

=:Hjk

∂Xk

∂ni
=

∂λ

∂ni
nj + λ δij , (A.51)where the Hessian H = Hij Ei ⊗ Ej of F has been introdued. From the de�nitionof F it is easy to show that H is a symmetri, positive de�nite tensor at every pointexept the origin. Equation (A.51) is written in tensor notation as

H · ti =
∂λ

∂ni
n + λEi . (A.52)The salar produt with tj and the symmetry of H yields the symmetry of the partialderivatives ∂Xi/∂nj

tj ·H · ti =
∂λ

∂ni

tj ·n + λ tj ·Ei = λ tj ·Ei = λ
∂Xi

∂nj

= ti ·H · tj = λ
∂Xj

∂ni

⇒ ∂Xi

∂nj
=

∂Xj

∂ni
. (A.53)The orthogonality (A.49) and symmetry (A.53) are used to redue the e�ort of om-puting the partial derivatives ∂Xi/∂nj . The surfae point oordinates are derived interms of the quantities γ21, s12, and γ31, whih are funtions of the normal omponents
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(n1, n2, n3). Hene, the partial derivatives ∂Xi/∂nj are derived from the derivatives of
γ21, s12, and γ31. It is

∂γ21

∂n1
=

(
r2
r1

)2/(2−ǫ1)
ǫ1

2− ǫ1

(
n2

n1

)ǫ1/(2−ǫ1)−1 (

−n2

n2
1

)

. (A.54)For an e�ient implementation of the derivatives it is ruial to exploit their nature byre-using the terms already omputed. Therefore, the derivate is re-arranged resultingin
∂γ21

∂n1
= −

(
r2
r1

)2/(2−ǫ1) (
n2

n1

)ǫ1/(2−ǫ1)
ǫ1

2− ǫ1
1

n1
= −γ21

ǫ1
2− ǫ1

1

n1
. (A.55)In the same way the derivative with respet to n2 results to

∂γ21

∂n2
= γ21

ǫ1
2− ǫ1

1

n2
. (A.56)Based on this the derivatives of s12 are given by

∂s12

∂n1

=
2

ǫ1

(
γ21

r2

)2/ǫ1 1

γ21

∂γ21

∂n1

,

∂s12

∂n2

=
2

ǫ1

(
γ21

r2

)2/ǫ1 1

γ21

∂γ21

∂n2

.

(A.57)Using the above the derivatives of γ31 are
∂γ31

∂n1
=

ǫ2
2− ǫ2

γ31

[

− 1

n1
+ (ǫ1/ǫ2 − 1)

1

s12

∂s12

∂n1

]

,

∂γ31

∂n2

=
ǫ2

2− ǫ2
γ31 (ǫ1/ǫ2 − 1)

1

s12

∂s12

∂n2

,

∂γ31

∂n3

=
ǫ2

2− ǫ2
γ31

1

n3

.

(A.58)
Finally, the derivatives of X1 read

∂X1

∂n1

= q

[

ǫ1
ǫ2
s

ǫ1/ǫ2
12

1

s12

∂s12

∂n1

+
2

ǫ2

(
γ31

r3

)2/ǫ2 1

γ31

∂γ31

∂n1

]

,

∂X1

∂n2
= q

[

ǫ1
ǫ2
s

ǫ1/ǫ2
12

1

s12

∂s12

∂n2
+

2

ǫ2

(
γ31

r3

)2/ǫ2 1

γ31

∂γ31

∂n2

]

,

∂X1

∂n3
= q

[

2

ǫ2

(
γ31

r3

)2/ǫ2 1

γ31

∂γ31

∂n3

]

,with q := −ǫ2
2
X1

[

s
ǫ1/ǫ2
12 +

(
γ31

r3

)2/ǫ2
]−1

.

(A.59)



124 APPENDIX A. SUPERQUADRICSUsing (A.48) the missing derivatives read
∂X2

∂ni

=
∂γ21

∂ni

X1 + γ21
∂X1

∂ni

, (A.60)
∂X3

∂ni

=
∂γ31

∂ni

X1 + γ31
∂X1

∂ni

. (A.61)The sign of the derivatives for points outside the �rst otant is derived by di�erentiationof (A.42)
∂Xi (n1, n2, n3)

∂nj

=
∂ (sign (ni) Xi (|n1|, |n2|, |n3|))

∂nj

= sign (ni)
∂Xi (|n1|, |n2|, |n3|)

∂|nk|
∂|nk|
∂nj

= sign (ni) sign (nj)
∂Xi (|n1|, |n2|, |n3|)

∂|nj |
.

(A.62)
A.3 Line Segment IntersetionAn operation used frequently in the partile-surfae ontat sheme is the determina-tion of intersetions of a straight line segment and the partile surfae. Let the linesegment be de�ned by its endpoints A = Ai Ei and B = Bi Ei via

Xi(λ) = (1− λ)Ai + λBi = Ai + λ (Bi − Ai) with λ ∈ [0, 1] . (A.63)The surfae of a superquadri partile is de�ned impliitly as iso-surfae of the inside-outside funtion F (X) = 1. To determine the intersetion points the funtion f(λ) isde�ned as
f(λ) := F (X(λ))− 1 , (A.64)so that the intersetion points are given as roots of f(λ). Due to the onvexity of theinside-outside funtion, f(λ) is a onvex funtion as well. Hene, three senarios haveto be aounted for:

• f(0) ≤ 0 ∧ f(1) ≤ 0: A and B lie inside. There is no intersetion.
• f(0) ≤ 0 ∧ f(1) > 0: A lies inside and B outside. There is one intersetion.
• f(0) > 0∧f(1) > 0: A and B lie outside. There might be no or two intersetions1.In the last ase the number of intersetions depends on the minimum of f(λ)

min
λ∈[0,1]

f(λ)

{

< 0⇒ 2 intersetions
≥ 0⇒ no intersetion . (A.65)1The ase that the line segment exatly touhes the surfae is onsidered as no intersetion.
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f ′(λ) :=

dfdλ =
∂F

∂Xi

dXidλ = ▽F |X(λ) · (B −A) , (A.66)the following relation holds due to the onvexity of f
f ′(0) f ′(1) > 0 ⇒ min

λ∈[0,1]
f(λ) = min(f(0), f(1)) . (A.67)Hene, the minimization of f is only performed if f ′(0) f ′(1) < 0 using the Newtonsheme ombined with the Armijo line searh. Due to the onvexity of f , the shemeis globally onvergent and usually yields the minimum λmin within few iterations. For

f(λmin) < 0 the minimum point C := X(λmin) is introdued and the problem of�nding two intersetions in [A,B] is replaed by the problem of �nding eah oneintersetion in [A,C] and [B,C]. Without loss of generality it is now assumed that
f(0) < 0 ∧ f(1) > 0. The unique root within λ ∈ [0, 1] is determined iteratively usingthe Newton method. The initial value is either hosen as λ0 = 1 or spei�ed by theuser, if a good guess is available. Note that due to the onvexity of f the followingrelation holds for the iterates λi

λ∗ < λi+1 < λi ∀i > 0 , (A.68)where λ∗ is the exat root, i.e. f(λ∗) = 0. Again, the solution is usually approximatedwith high auray within few iterations. However, depending on the shape of thesuperquadri and the position of the line segment, the funtion f(λ) might be highlynonlinear. Thus, if the number of iterations beomes too large, a simple bisetionalgorithm is applied, whih does not require the omputation of derivatives.A.4 Triangle Intersetion AreaThe evaluation of the ontat fore between a partile P and a plane triangle T a-ording to the ontat model introdued in setion 4.1.1 neessitates the determinationof
• the intersetion area A of P and the plane E de�ned by T ,
• and the intersetion area Ã of P and T as well as its geometri enter c̃, f. �gure4.6(a).For superquadri partiles these quantities an only be omputed approximately. Forthis purpose the triangle T and the orresponding plane E are �rst expressed in termsof the partile-�xed referene frame Ei. Let E be de�ned by the normal n and onstant

c via x ·n = c. To hek if E intersets P, the surfae points p(n) and p(−n) = −p(n)are omputed from the normal diretion, see �gure A.2(a). The distanes of these pointsto E are given as
h1 = p(n) · n− c , h2 = c− p(−n) ·n = c+ p(n) ·n . (A.69)
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Figure A.2: a) Triangle T and orresponding plane E interset partile P. Point pi belongsto the intersetion of E and P.b) Numerial approximation of intersetion area A of E and P.The plane intersets the partile i�
h1 > 0 ∧ h2 > 0 ⇔ |c| < p(n) ·n . (A.70)In ase of an intersetion a point of this intersetion is given as

pi =
h2 p(n) + h1 p(−n)

h1 + h2
=
h2 − h1

h1 + h2
p(n) , (A.71)whih for spherial partiles is the enter of the intersetion area A. To approximate

A two orthogonal vetors r1 and r2 are introdued with ri · n = 0 and ‖ri‖ = 2 rmax,where rmax denotes the radius of the bounding sphere of P, see �gure A.2(b). Using pias enter, A is approximated as sum of the triangular areas ∆Ai de�ned by the radiusvetors r(ϕi) and r(ϕi+1) with
ϕi := i∆ϕ = i

2 π

nA
and r(ϕ) := cosϕ r1 + sinϕ r2 . (A.72)The intersetion points of the radius vetors and the partile surfae are determinedaording to setion A.3. This requires nA solutions of a nonlinear equation whereat agood initial guess for vetor i is available from vetor i − 1. Finally, the intersetionarea and its enter are approximated as

A ≈
nA∑

i=1

∆Ai , c ≈ 1

A

nA∑

i=1

∆Ai c(∆Ai) , (A.73)where c(∆Ai) denotes the enter of the triangular element ∆Ai.In order to ompute the intersetion area Ã of the triangle T and partile P thetopology of this intersetion has to be determined. For this purpose the orner points of
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(0, 0) (0, 1)

(0, 3) (1, 0)

(1, 1) (2, 0) (3, 0)Figure A.3: Topologially di�erent ases of partile-triangle intersetion. Intersetion of par-tile and triangle plane in light gray, triangle in dark gray, and partile-triangleintersetion in medium gray. The numbers are (number of triangle orners insidepartile, number of triangle edges that interset the partile surfae twie).
T inside P and the intersetions of triangle edges and the partile surfae are deteted�rst. Figure A.3 exempli�es the possible topologies along with the number of ornerpoints inside the partile and the number of edges that interset the partile surfaetwie. The two (0, 0) topologies are distinguished by heking if pi ∈ T . Note that forthese two most frequent ases no intersetion areas have to be omputed, sine in onease the ontat fore vanishes, while in the other ase the ontat fore depends solelyon the overlap distane.For the remaining ases similar shemes are applied as for the approximation of theplane-partile intersetion area, see �gure A.4. Sine the operation priniples beomelear from the �gure, they will not be explained in detail. In general, the intersetionarea is approximated by a number of triangles, whose generation sheme depends onthe topology of the intersetion.Finally, the auray of the proposed sheme is analyzed. Obviously, the au-ray depends on the degree of re�nement nA used to approximate round parts of theintersetion areas. Here the re�nement parameter is hosen as nA = 64. First, thetriangle-partile intersetion algorithm is tested for 104 randomly generated test aseswith spherial partiles for whih the intersetion area an be omputed analytially.The sheme yields an average relative error in the intersetion area Ã of about 0.03%and a maximum relative error of 7.3%.
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Figure A.4: Intersetion approximation shemes for di�erent topologies. In the top row eahsemiirle is disretized into nA angles. In the bottom row the triangle edgesare split into nA segments.To hek the performane for superquadri partiles a simple approximation shemeis used as referene: The original triangle is split into n parts along eah edge likeexempli�ed in �gure A.5. This yields a number of n2 sub-triangles, eah of whih isheked for lying ompletely inside or outside of the partile. In this way, a lowerand an upper bound for the intersetion area are determined. Again, 104 test asesare randomly generated. The referene approximations are determined using n = 500,whih orresponds to a number of 2.5× 105 sub-triangles. The mean intersetion areais about 1.25, while the mean distane between the results of the proposed sheme andthe lower bound of the referene sheme is 5.4 × 10−3 and the distane to the upperbound is 6.2 × 10−3. In only two ases the proposed sheme yields results whih donot lie inside the narrow bounds. The mean di�erene between the proposed solutionand the average of lower and upper bound is 3.7× 10−4 and the maximum di�ereneis 9.7× 10−4.Finally, the sheme is again ompared with the analytial solution for spherialpartiles. Now, 104 random test ases are generated suh that the partile-plane overlapdistane is only a small fration of the partile radius. Under this ondition the shemeyields an average relative error in the intersetion area Ã of 6.6× 10−4.
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Figure A.5: Referene sheme approximating the intersetion area by splitting the triangleinto n2 ongruent triangles.Altogether, these tests indiate that the proposed sheme yields aurate resultsunder all possible irumstanes. Its robustness is a diret result of the robustnessof the line segment intersetion sheme presented in setion A.3, whih is used todetermine the disretization of the intersetion areas.
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Appendix BWeighted Virtual Work of a RigidBodyWithin this setion the weighted virtual work of a rigid body is onsidered as introduedin setion 6.1. Using a linear approximation of the weight funtion w(x) within thedomain of the rigid body Ω the virtual work is given by equation (6.12) and repeatedhere for onveniene
δWα = (wcm c̈− f ) · δu0 + (wc I · ω̇ + ω × wc I ·ω −m) · δω

+ w′
c n ·

∫

Ω

r ρ (c̈ + ω̇ × r + ω × (ω × r)− b) · (δu0 + δω × r) dv
︸ ︷︷ ︸

δW ∗

.

Introduing the inertia tensors
I1 :=

∫

Ω

ρ r ⊗ r dv , I2 :=

∫

Ω

ρ r ⊗ r ⊗ r dv , I3 :=

∫

Ω

ρ r ⊗ 1 r2 dv , (B.1)the gradient term δW ∗ is written as
w′

c n · { I1 ·
[
(c̈− b)× δω + (ω · δu0 ω − ω2 δu0) + (δu0 × ω̇)

]
− (B.2)

I2 : [ω ⊗ (δω × ω) + ω̇ ⊗ δω] + (B.3)
I3 : [ω̇ ⊗ δω] } . (B.4)For superquadri partiles the inertia tensors I2 and I3 vanish due to the symmetry ofthe partiles. The magnitude of the remaining term is estimated assuming a spherialrigid body of onstant density, mass m, and radius R yielding
I1 =

∫

Ω

ρ r ⊗ r dv =
1

5
mR2 1 =

1

2
I 1 =

1

2
I . (B.5)131
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w′

c

1

5
mR2 n ·

[
(c̈− b)× δω + (ω · δu0 ω − ω2 δu0) + (δu0 × ω̇)

]

= w′
c

1

5
mR2

[
(n ·ω ω − ω2 n + ω̇ × n) · δu0 + (n× (c̈− b)) · δω

] (B.6)
= w′

c

R

5

[
(mRω2 (n · eω eω − n) +mR ω̇ × n) · δu0 +

(Rn×m (c̈− b)) · δω] with ω = ω eω, ‖eω‖ = 1 . (B.7)Let now L denote the harateristi size of the domain ΩC and let it be expressed interms of partile diameters via L = n 2R, so that n is the number of partiles overthe domain. Assuming a linear evolution of the weight funtion the magnitude of thegradient is given by
w′

c =
1

L
=

1

n 2R
. (B.8)This yields the remaining ontribution to the virtual work

1

10n

[
(mRω2 (n · eω eω − n) +mR ω̇ × n) · δu0 + (Rn×m (c̈− b)) · δω

]
. (B.9)Hene, for a domain of the width of, e.g., ten partiles the prefator is 1/100, while theterms inside the brakets are of the same order of magnitude as those of the weightedequations of motion (6.13) and (6.14).
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