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Zusammenfassung

In dieser Arbeit wird ein zwei-Skalen Modell fiir koh&sionslose reibungsbehaftete granu-
lare Materialien entwickelt. Die Idee hierbei ist die granulare Struktur nur in Bereichen
grofer Deformationen mit Hilfe der Diskreten Elemente Methode (DEM) zu model-
lieren, wihrend das Material sonst als Kontinuum mit der effizienten Finite Elemente
Methode (FEM) abgebildet wird.

Die dreidimensionale DEM verwendet Superquadric-Partikel um die Elongation und
Kantigkeit realer Korner anzundhern. Unter der Annahme elastischer Verformungen im
Kontaktbereich zweier Partikel wird die Kontaktkraft mit Hilfe des Hertz-Mindlin Mo-
dells und des Coulombschen Reibgesetzes ermittelt. Die einzigen Materialparameter
des Modells sind die elastischen Konstanten der Partikel und der Reibkoeffizient, wel-
che klare physikalische Bedeutungen besitzen und aus Experimenten ermittelt werden
konnen. Das Spektrum berechenbarer Probleme wird durch die Entwicklung effizienter
Kontaktalgorithmen und eines Parallelisierungsschemas fiir Shared-Memory Architek-
turen erweitert.

Um ein Kontinuumsmodell abzuleiten, wird das effektive Verhalten des Partikel-
modells anhand einer Homogenisierungs-Methode bestimmt. Dafiir werden zufillige,
periodische, kubische Packungen erzeugt und unter triaxialen Spannungs- und Deh-
nungsrandbedingungen getestet. Die resultierenden Spannungs-Dehnungskurven wer-
den zur Anpassung der Parameter eines elasto-plastischen nicht-assoziierten Mohr-
Coulomb Kontinuumsmodells verwendet.

Die DEM und FEM werden durch die Arlequin Methode gekoppelt. Hierfiir wird
ein Gebiet eingefiihrt, in welchem beide Modelle iiberlagert werden und die virtuel-
le Arbeit zwischen beiden Modellen interpoliert wird. Die Kompatibilitit wird iiber
kinematische Zwangsbedingungen erreicht, welche durch eine Penalty Methode einge-
bracht werden. Fiir die Formulierung dieser Zwangsbedingungen werden die diskreten
Partikelverschiebungen in Grob- und Feinanteile aufgeteilt, wobei sich erstere aus der
Projektion der Verschiebungen auf den FE Ansatzraum ergeben. Dies ermdglicht na-
tiirliche Fluktuationen der Verschiebungen und verhindert einen stérenden Einflufl der
Kopplung auf die granulare Struktur. Die Modelierung des Einpressens eines Pfahls in
Sand zeigt, dass die zwei-Skalen Methode die Betrachtung von Problemen ermdoglicht,
welche mit bisherigen Methoden nicht mdoglich waren.

Als Nebenprodukt wird ein gekoppeltes DE-FE Modell zur Untersuchung der Wech-
selwirkung von granularen Materialien und Festkorpern entwickelt. Die Wechselwir-
kung findet durch Kontakt der Partikel mit der FE Oberfliche statt, welche hierfiir
mit einem Dreiecksnetz approximiert wird. Dabei wird ein spezielles Kontaktmodell
fiir Partikel-Kanten und Partikel-Ecken Kontakte eingefiihrt.

Schlagworte: Granulare Materialien, Diskrete Elemente Methode, Homogenisierung,
Multiskalen, Arlequin Kopplung, Superquadric
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Abstract

Within this dissertation a concurrent two-scale model of non-cohesive frictional gran-
ular materials is developed. The idea is to model the granular structure only within
domains of large deformation by a Discrete Element Method (DEM), while elsewhere
the material is considered as continuum modeled by the efficient Finite Element Method

The three-dimensional DEM uses superquadric particles to approximate the elonga-
tion and angularity of real grains. At inter-particle contacts the particles are assumed
to deform elastically, and the contact force is derived from the Hertz-Mindlin model
combined with the Coulomb friction model. Hence, the only material parameters en-
tering the model are the particles’ elastic constants and the coefficient of friction, all
of which have a clear physical meaning and can be determined from experiments. In
order to expand the range of feasible problems of the computationally expensive DEM
an efficient contact detection scheme and a parallelization scheme for shared memory
architectures are developed.

To derive a corresponding continuum model the effective behavior of the particle
model is determined by a homogenization scheme. For this purpose random, cubical,
periodic particle packages are generated and probed under triaxial stress and strain
boundary conditions. Average stresses are derived from inter-particle contact forces,
and the resulting stress-strain curves are used to fit the parameters of an elasto-plastic
non-associative Mohr-Coulomb continuum model.

The DEM and FEM are coupled via the Arlequin method. For this purpose both
models are overlapped in a coupling domain. Here the virtual work is interpolated
between them yielding an average material model. The compatibility is assured via
kinematic constraints, which are enforced by the penalty method. The formulation of
these constraints is based on a coarse-fine split of the discrete particle displacements.
The coarse part results from the projection of the discrete displacements onto the
FE ansatz space using a volume weighted least-square fit. The split enables natural
fluctuations of the particle displacements within the coupling domain. In this way the
microstructure within the discrete domain is not disturbed by the coupling. The simula-
tion of a pile installation problem reveals that the two-scale and two-method approach
enables the consideration of problems not feasible for mono-method approaches.

As a by-product a coupled DE-FE scheme is developed for the interaction of granu-
lar materials and solid structures. This is accomplished via contacts between particles
and the FE surface mesh, which for this purpose is approximated by a triangular mesh.
A contact model is developed which takes particle-edge and particle-corner contacts
into account.

Keywords: Granular Material, Discrete Element Method, Homogenization, Multi-
scale, Arlequin Coupling, Superquadric
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Chapter 1

Introduction

Granular materials are encountered in a variety of fields and forms. Prominent examples
are ores in the mining industry, powders in the pharmaceutical industry, raw materials
in the manufacturing industry, soils, sand, and gravels in the construction industry, and
food products like natural grains. The most important treatments of these materials
include the excavation from the ground, comminution and grinding, separation and
mixing, and transport and storage. According to Duran [55] the processing of granular
materials makes up roughly 10% of the overall energy consumption on the planet. This
indicates that it is worthwhile to advance the understanding of the material behavior
in order to design more efficient processes.

However, despite their widespread occurrence and application, the mechanical be-
havior of granular materials is understood rather poorly compared to everyday engi-
neering materials. This is a result of their complex rheology, which is exemplified by
their ability to show liquid- and solid-like behavior depending on the environmental
influences. Prominent examples are the flow of sand in an hourglass on the one hand
and the remarkable stiffness of vacuum packed coffee powder on the other hand.

Within this work the mechanical behavior of granular materials is described by
analytical models, which are evaluated numerically. The analysis is restricted to the
subclass of non-cohesive frictional granular materials such as dry sand, where no at-
tractive interactions exist between the individual grains. Furthermore, the focus lies
on the solid-like behavior of these materials leaving aside the various effects caused by
dynamic agitation.

1.1 Objectives and State of the Art

The most common approach to model granular materials in engineering is the contin-
uum approach. The discrete particulate structure of the material is disregarded and
replaced by the assumption of a continuous distribution of matter. Each material point
within the continuous body is supposed to correspond to a representative volume of
the granular material. Hence, the applicability of the continuum approach depends on
the separation of scales, i.e. the ratio between the dimensions of the macroscopic body
of interest and the microscopic heterogeneities. Within the standard continuum ap-
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proach each material point is equipped with three translational degrees of freedom and
the state of the body is described by continuously varying fields of, e.g., displacement
and density. The specific material description enters the model in terms of a constitu-
tive equation, which describes the relation between the deformation of the body and
the resulting stress. These equations are usually developed in a phenomenological way
from the results of laboratory experiments in which the behavior of a material sam-
ple is analyzed under specific boundary conditions. For non-cohesive frictional granular
materials a considerable number of sophisticated elasto-plastic and hypo-plastic consti-
tutive equations have been proposed, see e.g. [51, 94, 103, 104, 58, 186, 184, 132]. These
are able to represent the most prominent effects like the pressure dependent stiffness
and shear strength, the plastic deformation nearly from the onset of loading, and the
dilatant behavior under shear loading. Using such continuum models engineering scale
problems are successfully solved via the Finite Element Method (FEM).

A problem of the continuum approach is that non-cohesive frictional granular mate-
rials tend to develop localizations of deformations in narrow zones like shear bands, see
e.g. the experimental studies on sand in [167, 5, 52|. Within such zones the macroscopic
fields show huge variations and particle scale deformation processes differ considerably
from zones of small, rather homogeneous deformation. As a result, the scale separa-
tion condition is no longer fulfilled to the original degree questioning the applicability
of the continuum approach in these domains [69]. Furthermore, standard continuum
approaches yield ill-posed boundary value problems and the FE solution becomes mesh-
dependent, i.e. the size of the localization zone depends on the discretization [130, 168|.
An additional problem of the FEM is the severe mesh distortion within the localization
zones spoiling the method’s accuracy.

The above problems are partly resolved by enriched continua, which are motivated
by the particle-scale deformation mechanisms activated in the localization zone. Within
the Cosserat or micropolar continua each material point is equipped with additional
rotational degrees of freedom, while in higher order continua the stress is proposed to
depend on higher order deformation gradients. In both cases a characteristic length
scale is introduced into the continuum model. In this way, the localization problems
are regularized and the size of the localization zones is determined through the internal
length scale, see e.g. [187, 84, 59]. Nevertheless, some problems remain: First, the
enriched continua are based on the scale separation condition as well. Second, the
problem of severe mesh distortion remains. Third, the enriched continuum models
reach a high level of complexity and are usually based on a huge number of material
parameters, which have to be determined from laboratory tests. This is an awkward
task especially for the parameters describing the non-standard continuum part, since
these have to be determined from tests yielding an inhomogeneous deformation of the
sample [59].

A different approach of modeling granular materials is the class of particle meth-
ods like the Discrete Element Method (DEM) introduced by Cundall and Strack [47].
Within the DEM the material is modeled on the grain scale, i.e. each grain is dis-
cretized as a rigid body denoted as particle. The interaction of the individual particles
is described by a contact model. Hence, the degree to which the real material behavior
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is captured depends on the degree to which the real grain shape and grain interaction
are captured. Within the DEM the particle shape is the crucial factor governing the
computational effort. Therefore, spherical particles are used within the majority of the
published analyses, since they yield a minimum effort. Other shapes that have been
applied are, e.g., ellipsoids [112, 136, 128|, superquadrics [80, 169]|, polyhedra [43, 10],
or clusters made of spheres [118, 147|. The influence of the particle shape on the overall
mechanical behavior of a particle package has been shown numerically |9, 147| as well as
experimentally [30], whereat the overall behavior is deduced from tests of representative
samples via homogenization schemes.

Obviously, the localization of deformations in narrow zones poses no problem for
the discrete modeling approach. Furthermore, it requires only a moderate number of
material parameters, which can be determined from grain scale tests. However, the
discrete approach is burdened by a huge computational effort, which limits feasible
problems in space and time and excludes the modeling of typical engineering scale
problems. An ad hoc way to reduce the effort is to increase the particle size and, in doing
so, reduce the number of particles so there is no longer a one-to-one correspondence
of grains and particles. However, in this way the particle model no longer represents
the particulate microstructure. Hence, it becomes a phenomenological model, whose
parameters have to be fitted via macroscopic tests.

The advantages of the two kinds of modeling can be combined in a concurrent two-
scale model, where domains of small, rather homogeneous deformation are modeled as
continuum, while the localization zones are modeled by the particle method. In this way,
the computational efficiency of the continuum approach is exploited where possible, but
the problem of scale separation in localization zones is resolved by modeling the real
microstructure. Consequently, the problem of severe mesh distortion is eliminated as
well. Furthermore, the continuum model can be deduced from the particle model by a
homogenization scheme so that initially only particle-scale material parameters enter
the model. However, these benefits come at the cost of a two-scale and two-method
model, which requires a convenient particle-continuum coupling. The development of
this coupling for non-cohesive frictional granular materials is the main objective of
this work. Further objectives on the way to a complete two-scale model are as follows.
First, as the basic ingredient of the complete scheme, a convenient particle model is
required, which should yield quantitative predictions. This requires the application of
an advanced particle shape and a mechanically sound contact model. Furthermore,
on the implementation side, algorithms are developed to reduce the computational
burden of the particle method. In a next step, a homogenization scheme is applied
to determine the effective behavior of the particle model. Herein, the crucial problem
is the application of boundary conditions for which a simple solution is presented.
The effective behavior is then used to fit the parameters of a standard elasto-plastic
continuum model, which represents the main effects of the particle model. Finally,
a convenient coupling of the continuum and particle model is developed. It yields a
smooth transition between the two material descriptions.
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1.2 Organization of this Work

The organization of this work follows closely the above listing of the two-scale model’s
ingredients. The necessary fundamentals of continuum solid mechanics and the FEM
are outlined in chapter 2. It includes a description of the non-associative Mohr-Coulomb
model, which is later used as continuum model in the two-scale approach.

Chapter 3 details the DEM used to model the material on the grain-scale. From
the mechanical point of view the most important aspects are the superquadric particle
shape and the Hertz-Mindlin contact model. From the algorithmic point of view the
local contact detection scheme and the simple parallelization scheme yield a convenient
performance. In order to exemplify this performance and validate the DEM the chapter
closes with a numerical example.

A useful byproduct of this research work is presented in chapter 4. Here the in-
teraction of solid structures and granular materials is modeled by a coupled DE-FE
approach. The coupling is realized by a contact scheme modeling contacts between dis-
crete particles and the FE mesh. For this purpose the FE surface mesh is discretized by
a triangular mesh and the handling of contacts between particles and edges of this mesh
is covered in detail. The performance and versatility of the approach are demonstrated
by a number of numerical examples.

The homogenization scheme used to derive the effective behavior of the particle
model is detailed in chapter 5. A convenient scheme to apply strain and stress bound-
ary conditions to random, periodic, rectangular hexahedral samples is presented. The
parameters of the particle model are adapted to a reference sand, and the effective
behavior is determined via standard triaxial tests. The resulting stress-strain curves
reveal a too small shear strength of the particle model compared to the reference sand.
Finally, the parameters of the Mohr-Coulomb model are fitted to the effective behavior.

The main objective of this research work is detailed in chapter 6. The coupling
of the particle and the continuum model is accomplished by the Arlequin method.
An overlapping domain is introduced in which the virtual work is interpolated between
both models. The compatibility of the deformation is assured via kinematic constraints.
For this purpose the discrete particle displacements are split into a coarse scale and a
fine scale part. The former is constrained to the continuum displacement via a penalty
formulation. This enables natural fluctuations of the particle displacements in the over-
lapping domain and results in a smooth transition between the two material models,
which is demonstrated by triaxial tests. Afterwards, the two-scale scheme is applied to
the problem of inserting a flat pile into a box filled with dry sand.

A summary of the results is provided in chapter 7. The main problems of the two-
scale approach are discussed and possible solutions are suggested yielding a perspective
to future work.



Chapter 2

Fundamentals

Within this chapter the fundamentals of continuum solid mechanics and the finite
element method are outlined. The composition is restricted to those aspects of either
topic that are most relevant for the research presented in the following chapters.

2.1 Continuum Solid Mechanics

The theory of continuum solid mechanics is a convenient tool to model the behavior
of a macroscopic solid body. For this purpose the body is considered as continuum,
i.e. the discrete microstructure constituting the material is neglected and replaced
by a continuous distribution of matter. Hence, the method’s appropriateness depends
on the scale separation of the macroscopic body and the particular microstructure,
which might be, e.g., molecular and in the nm range or granular and in the mm range.
Nevertheless, the question if “the continuum approach is justified, in any particular case,
is a matter, not for the philosophy or methodology of science, but for experimental
tests” [166]. In the following only those aspects are outlined which are relevant for

developments in later chapters. Comprehensive works on this topic are provided by
Altenbach and Altenbach [6], Holzapfel [82], Haupt [77], and Truesdell and Noll [166].

2.1.1 Kinematics

The body B is supposed to be composed of a continuous set of material points P. Each
material point represents a portion of the original microstructure so that its behavior
corresponds to the effective behavior of this portion.

Motion

The body’s motion is described via configurations €. These are smooth bijective map-
pings of the material points onto the points of the three-dimensional Euclidean space.
By introducing a reference frame each material point P can be identified with a position
vector . The motion of B is given as continuous sequence of configurations parame-
terized by the time t. To measure the deformation of B a reference configuration € is
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Figure 2.1: Motion x measured with respect to the reference configuration {2¢ in the inertial
Cartesian frame (O, e;).

introduced, which is commonly chosen as the initial, stress free configuration at ¢ = 0,
see figure 2.1. The position of the material points in the reference configuration with
respect to the reference frame' is denoted by X. The motion of the body is described
by the smooth function

r=x(X,1), (2.1)

which represents a bijective mapping between the material point’s reference position X
and its current position @ at time ¢. Using the reference frame the position vectors are
given as ¢ = x; e; and X = Xj e;, and the motion (2.1) can be expressed in component
form

zi = Xi( X1, X2, X5, 1) . (2.2)

Each field quantity ¢ characterizing B can be given either in the Lagrangian form
¢(X,t) or in the Eulerian form ¢(a,t). In the former case one considers the evolution
of ¢ over time for a particular material point P positioned at X in €. In the latter
case one considers the evolution at a fixed point in space x, which will be occupied by
different material points over time. For convenience the explicit dependence on x or X
and ¢ will be dropped if not required to prevent ambiguities. Using (2.1) the velocity
v and acceleration a of a material point are given as material time derivatives of x

_ Dx(X.1) _ 9x(X.1) x(X. 1)

D 5 0 G=Uv=E=—"o5 (2.3)

vi=a:
The displacement of a material point is defined as
v=x—-X=x(X,t)—- X, (2.4)

which yields the identities 4 = v and © = a.

!One inertial reference frame with origin O and orthonormal base vectors e; is used to measure
quantities in the reference and in the current configuration.
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Deformation Gradient

The fundamental measure of deformation is the deformation gradient defined by

Oz _ Ix(X,t) _ Oxi(X1, Xy, X3,1)

F = Gradx = X~ X = X,

€; X Bj . (25)

F maps material line elements dX in 2 onto spatial line elements da in 2
de=F -dX . (2.6)

Introducing the displacement gradient H := Ju/0X the deformation gradient can
be expressed as F' = 1 + H. Resulting from a fundamental theorem of continuum
mechanics there exists a unique polar decomposition of the deformation gradient

F=R- U=v-R with RT-R=1,detR=1,U=U", v=17, (2.7)

where R is a rotation tensor, U is the material stretch tensor, and v the spatial stretch
tensor?, respectively. Hence, the transformation of the line element dX in (2.6) is
decomposed in either an initial stretching in Qy by U and a subsequent rotation into
2 by R or an initial rotation and a subsequent stretching in €2 by w.

Strain

It is a plausible statement that the strain within a material point is independent of its
rotation R. Hence, the right Cauchy-Green tensor is introduced as

C=F' " F=U-R"-R-U=U?, (2.8)
which is independent of R. Consider a unit vector A, ||A| = 1 in Qy which is rotated
and stretched to become the vector a = A4 @, ||al| = 1 in Q. The stretch is given as

M=a-a=(F-A)-(F-AA\=A-F' . F-A=A-C-A. (2.9)

Hence, C yields the square of the stretch A4 in direction of A in €. Consequently,
the eigenvalues and eigenvectors of C' are the square of the principal stretches A\? and
the corresponding directions e;. Therefore, a rigid body deformation with all principal
stretches equal unity yields a constant Cauchy-Green tensor of C' = 1. Since a mean-
ingful strain tensor should vanish in this case, the Green-Lagrangian strain tensor is
introduced as 1

E = 3 (C-1), (2.10)
where the pre-factor is introduced for compatibility with the small strain theory. Ap-
proximating the stretch as Ay = 1+ €4 + O(¢%), where €4 denotes the engineering
strain, gives

1 1
AE A= (Ai—l):5(1+26A+0(e?4)—1):eA+O(ei). (2.11)

2The same symbol v is commonly used for the velocity and the spatial stretch tensor which does
not lead to ambiguities in the following.
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Figure 2.2: Body in current configuration cut by plane with normal n.

Using the displacement gradient the Green-Lagrangian strain tensor is expressed as
1
E:§(H-|—HT+HT-H). (2.12)

For small deformations the quadratic term in (2.12) can be neglected yielding the linear
strain tensor of the small strain theory
€:=

(H+ H") = - (Gradu + Grad" u) . (2.13)

DN | —
DN | —

2.1.2 Stress

The deformation of a body induces interactions inside the material resulting in stress,
which has the dimension force per area. Consider a body B deforming under some load
applied at its boundary I' in the current configuration €. If the body is cut along a
plane, an infinitesimal surface element ds = dsm in one part exerts a force df on the
corresponding surface element in the other part so that each part is in equilibrium, see
figure 2.2. The surface traction t is defined as surface force per area, i.e. df = tds.
According to Cauchy’s stress theorem the traction is related to the unit normal of the
surface element via

t=0-n, (2.14)

where o is denoted as Cauchy stress tensor. Hence, o gives the traction for an arbitrary
cut direction m. In particular, this yields Newton’s third law of action and reaction,
i.e. t(n) = —t(—n). For a standard continuum like considered here the Cauchy stress
tensor is symmetric, o = ol , which results from the balance of angular momentum.

2.1.3 Balance Principles

The balance principles govern the evolution of the extensive quantities of mass, linear
momentum, angular momentum, and energy due to influences from outside the body.
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For purely mechanical systems these influences are given as forces acting on the body’s
boundary I' and on the volume (). Furthermore, for these systems the energy balance
principle is no additional statement but a consequence of the balance of linear momen-
tum and therefore will not be considered here. The balance principles are fundamental
laws valid within each continuum setting and for all materials. They can be formulated
either in a global integral form valid for the complete body or in a local form valid at
each material point inside the body.

Conservation of Mass

Each material body B is equipped with a mass m, which is the fundamental measure
of the amount of material contained in B. For a closed system, i.e. no mass transport
over the boundary I', the principle of mass conservation states that the mass m of B
is conserved during the motion of B

Dm

— =0. 2.15
Ds (2.15)

7 —

To formulate this principle in the local form the mass density field p(x,t) is introduced
as

A t

p(x,t) = lim m(@,?)

—_— 2.16
av—0 Av(zx,t) ’ (2.16)

where Am(x,t) is the mass of the volume element Av(x,t) located at « at time ¢.
Note that a continuous mass distribution is assumed here. Considering the discrete
microstructure of a material the volume element Av in (2.16) should not approach
zero, since this would result in a discontinuous density field. Hence, the volume element
should be considerably larger than the microstructure for p(x,t) to be continuous. The
mass of a volume element dV in € is then given by dm = pydV, where p, denotes
the mass density in the reference configuration. Due to the body’s motion the volume
element is transformed into dv = JdV with J := det F'. Since the mass dm of the
volume element is conserved, the following continuity mass equation holds

podV =pdv=pJdV & p(X,t)=JX,t)po(X). (2.17)

Momentum Balance Principles

The body B is loaded by the surface traction t(x,t) acting on its boundary I" and the
distributed mass force b(x,t) acting within €. The linear momentum of the body is
defined as

L(t) := /p’v dv . (2.18)
Q

The angular momentum with respect to a reference point @, is defined as

H(t) ::/'rxp'vdv with r:=x —x. (2.19)

Q
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The balance of linear momentum is the generalization of Newton’s second law for
continuous bodies. It states that the change of linear momentum equals the resultant
force F

L(t) = F(t) := /pb dv+/t ds . (2.20)

Analogously, the balance of angular momentum states that the change of angular mo-
mentum equals the resultant torque M with respect to the reference point x

H(t):M(t)::/rprdv+/rxtds. (2.21)

Q T

Consequently, the linear and angular momentum are conserved if no external forces
act on the body. Using Cauchy’s stress theorem (2.14) and the Gaussian divergence
theorem the balance of linear momentum reads

D D
Di p'vdv:ﬁ/vdm:/adm:/padv:/pbdv+/a~nds
Q m m

Q Q T
(:)/p(a—b)—divadv:O. (2.22)
Q

Since m, L, and H are extensive quantities, the body B can be split arbitrarily and
the balance equations hold for each part separately. Hence, equation (2.22) holds for
arbitrary small parts of 2 yielding the local form of the linear momentum balance

p(a—b)—dive=0. (2.23)

The corresponding derivation for the angular momentum balance yields the symmetry
of the Cauchy stress tensor.

2.1.4 Rigid Body Dynamics

Within a rigid body the distance of all material points is constant over time. This
corresponds to constant measures U = v =1, F = R, E =0, J =1, and p = pg
within the whole body. The center of mass of the body is defined as

1
c:=— /pm do . (2.24)
m
Q

The general motion of a rigid body can be expressed as a translation of the center
of mass combined with a rotation about an axis passing through the center of mass
yielding the velocity and acceleration fields

ve) = ¢+wxr with ri=xz—c, (2.25)

alr) = ¢+wxr+wx(wxr), (2.26)
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where w is the angular velocity and the time dependence is dropped for convenience.
Inserting the velocity field (2.25) into (2.18) yields the linear momentum of the rigid
body

L:/p(é+w><'r) dv:mé+wx/prdv:mé+wxm(c—c):mé. (2.27)
Q Q

The angular momentum with respect to the center c is given as

H = /rxp(é+wxr)dv:/prx(wxr)dv:/p(r-'rw—r-w'r)dv
Q Q

pr-rl—rer)dv-w=1 w, (2.28)

I
SR

where the symmetric inertia tensor I is introduced. Using the conservation of mass
(2.15), the balance of linear momentum (2.20) yields the translational equation of
motion of the rigid body

L=meé¢=F. (2.29)
Accordingly, the balance of angular momentum (2.21) yields the rotational equation of
motion of the rigid body

. D D
H = Di rxpvdv:ﬁ/rxvdm:/'l'“xv+r><adm
Q m m

= /[(wxr)><(é+w><r)]+[r><(é+w><r—|—w><(w><'r))] dm

m

= wx/rdm ><é+/'r><(w><r)+r><(wx(wxr))dm

= I-w+/7°><(w-rw—w-wr)dm:I-w+/w-rrxwdm
= I w—-—wx /r@rdm~w =l wtwxIl -w=M. (2.30)

Note that in contrast to the mass m in (2.29) the inertia tensor I in (2.30) is not a
constant quantity. However, for a rigid body it has constant components if referred to
a body-fixed reference frame.

2.1.5 Constitutive Equations

To determine the motion of a continuous body from the balance of linear momentum
(2.23) and given external loads, the relation between the deformation of the body and
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the resulting stress has to be established. This relation will be different for each partic-
ular material and can only be approximated in general. The most simple model is that
of a rigid body used above, which is reasonable for negligible strains. Other relations
are described on three levels: First, by the assumption of specific material symme-
tries, second, by the imposition of kinematic constraints, and third, most importantly,
by constitutive equations which state the relation between the strain history and the
stress. In the formulation of constitutive equations a number of principles have to be
accounted for in order to get a reasonable and physically consistent material behavior.
Here only three of these principles are mentioned:

e Determinism: The state of stress is determined uniquely by the past motion of
the body.

e Local Action: The state of stress at a material point is only influenced by the
motion of its close vicinity and not of the complete body.

e Frame Indifference: The functional form of the constitutive equation is invari-
ant with respect to a change of the reference frame (observer). Furthermore, it
includes no information about the absolute motion of the reference frame?.

The range of possible functional forms is limited considerably by these principles. In
short, the principle of determinism states that the stress depends solely on the past
motion. Additionally, for standard continua, the principle of local action restricts the
stress at a material point to depend only on the history of the deformation gradient at
this point. Finally, the principle of frame indifference restricts the functional form of
this dependence and suggests the formulation of the constitutive equation in terms of
certain quantities. For example, the functional form

S(X.t) = & [C(X,7)]
where S := J F ' o F~7 is the second Piola-Kirchhoff stress tensor, automatically ful-
fills the above principles [77|. A particular class of material models are the hyperelastic
materials, whose constitutive behavior is described by a strain energy density function
W, which gives the energy stored inside the material due to the purely elastic deforma-
tion. A well-known example is the compressible Neo-Hooke model, whose strain energy
function reads

\1/(0):(K—%G)i(ﬂ—uz1nJ)+%G(trc—3).

K and G are the bulk and shear modulus, that have to be fitted to the particular
material via experimental tests. The stress results as partial derivative of the strain
energy density function with respect to the strain
ov
SC)=2—.
(C)=2557

3 Absolute motion means the relative motion with respect to an inertial reference frame.
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In the following the presentation is restricted to the small deformation setting. In this
case the current configuration equals the reference configuration to a first approxima-
tion so that they are not distinguished any more. For small strains all hyperelastic
models approximate the linear elastic Hooke’s law

1
o'(e):Ktr€1—|—2G(€—§tI‘61):K€V1+2G6deV7 (231)

where the strain tensor is split into a volumetric part €, and a deviatoric part €qey-

Non-cohesive frictional granular materials can be classified as elasto-plastic mate-
rials. For a comprehensive presentation of plasticity models within the framework of
computational modeling the reader is referred to the work by Neto et al. [131]. Elasto-
plastic materials behave elastically up to a certain load limit. If loaded beyond this limit,
plastic deformations evolve which remain after the body is unloaded. The description
of this behavior requires the definition of the load limit where the behavior switches
from purely elastic to elasto-plastic. Furthermore, the magnitude and direction of the
plastic deformation have to be established. Here the non-associative Mohr-Coulomb
model is used to model the behavior of non-cohesive frictional granular materials. This
model is based on the assumption that plastic deformations are initiated, if on any
plane inside the body the shear stress 7 reaches a critical value defined by

T=c—o,tan¢ with t=0-n, o,:=t-n, 7:=|t—o,n|,

where —o, is the normal pressure acting on the plane, ¢ is the cohesion parameter, and
¢ is the friction angle. Hence, the maximum shear stress increases linearly with the
pressure, which is a good approximation of the behavior of frictional granular materials.
The above criterion is formulated via a yield function in terms of the principal stresses
or

O(o)=01—03+ (01 +03) singp+2ccos¢ with o1 > 09> 03 . (2.32)

The space of admissible stress states is given by the condition ®(o) < 0, see figure
2.3. In the interior (® < 0) the material behaves elastically according to the linear
elastic Hooke’s law (2.31). On the boundary (® = 0) the material might either flow
plastically or unload elastically. To describe the plastic flow the linear strain tensor is
split additively into an elastic part and a plastic part

e=¢€"+¢€, (2.33)

where the stress only depends on the elastic part, i.e. & = o(€®). The plastic flow is
defined using the plastic multiplier v and the flow direction N

e =9N (2.34)
where by definition it is 4 > 0. The loading/unloading conditions are summarized as

®<0, 420, dy=0. (2.35)
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Figure 2.3: Mohr-Coulomb yield function in the principal stress space.

If plastic flow occurs, its magnitude is derived from the consistency condition

d=0, (2.36)

which assures that the space of admissible stress states is not left. The direction of
plastic flow is defined normal to a flow potential ¥(o), i.e. N := 0¥ /0o. The flow
potential is chosen of the same form as the yield function but with the friction angle
replaced by the dilation angle 1

V(o) =01 — 03+ (014 03) siny) +2¢ cos e . (2.37)

This allows to capture the dilatant behavior typically shown by granular materials
during shear deformation. Altogether, the elasto-plastic Mohr-Coulomb model is based
on five material parameters, the elastic moduli K and G, the friction angle ¢, the
dilation angle v, and the cohesion parameter ¢, which defines the strength of the
material under zero pressure.

2.2 Finite Element Method

The motion of the body B occupying the domain €2, at time ¢ is governed by the local
momentum balance (2.23) combined with boundary and initial conditions

p(—b)—dive = 0 VaxeQ, (2.38)

on =1t Vxecl,cl, =0, (2.39)

u = u Vexely,=I\Ty, (2.40)

u(t=0)=uy, u(t=0) = vy YVaxecll, (2.41)

where the dependence on @ and t is dropped for convenience. Combined with the
constitutive model describing the material behavior (section 2.1.5) and the kinematic
relations (section 2.1.1) the above set of equations states the initial boundary value
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Figure 2.4: Finite element discretization of initial boundary value problem. The body occu-
pying the domain €; at time ¢ is loaded by boundary displacements @(x,t) on
I';, and tractions i(:c, t) on I'yy. The domain € is approximated as union of the
finite element domains €.

problem (IBVP) defining the motion of the continuous body, cf. figure 2.4. In general,
the analytical solution for the unknown displacement field w(x,t) cannot be deter-
mined. Therefore, an approximate solution is sought, which might be gained from dif-
ferent methods. The most successful and thus most common method to solve IBVPs in
engineering is the Finite Element Method (FEM). Within this section its fundamental
principles for deriving an approximate solution are outlined. Comprehensive treatises
on the FEM are given by, e.g., Bathe [21], Hughes [85], Zienkiewicz et al. [189], and
Wriggers [182].

2.2.1 Weak Form of Equilibrium

In order to apply the FEM the principle of virtual displacement is used to state the
IBVP in the weak form. For this purpose an arbitrary, infinitesimal, virtual, and kine-
matically admissible displacement field du(x) is introduced, which is denoted as virtual
displacement. The virtual displacement is imagined to deform the body from the cur-
rent configuration, and the corresponding virtual work done by the different forces is
considered. It is given by the scalar product of the momentum balance equation (2.38)
and the virtual displacement

p(&—0b)—dive]-du = 0 Vxely, (2.42)
ou = 0 Vxely, (2.43)

where (2.43) assures the kinematical admissibility of the virtual displacement field.
Since du is arbitrary, the momentum balance (2.38) is equivalent to the integral form
of (2.42) given by

/[p (£ —b) —dive|-dudv=0. (2.44)

Q
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Integrating by parts and using the Gaussian divergence theorem, Cauchy’s stress the-
orem (2.14), the traction boundary condition (2.39), and the kinematical admissibility
of the virtual displacement (2.43) results in the weak form of equilibrium

/p:'i:-éudv—i—/a:gradséudv:/pb~5udv+/i-5uds, (2.45)

Qt Qt Qt Fto

where grad® denotes the symmetric part of the gradient. In this way, the spatial deriva-
tives of the stress field are shifted to the virtual displacement field, which poses a
weakening of the differentiability requirements of the solution field. For the static case
(& = 0) the principle of virtual displacement states that the internal work on the
left-hand side of equation (2.45) equals the external work on the right-hand side of
equation (2.45).

2.2.2 Finite Element Discretization

In order to find an approximate solution, an ansatz for the unknown displacement
field is defined. For this purpose the domain €; is discretized into finite elements €).,
see figure 2.4. In general, this discretization is only an approximation of the original
domain, i.e.

Q ~ U2, Qe (2.46)

where n. denotes the number of elements. Each element is defined by a number of
nodes, whose position is denoted by @x;. For each node I an ansatz function Nj is
introduced, whose support is the domain occupied by those elements that include the
node /. Consequently, the only non-vanishing ansatz functions in a particular element
domain €2, are those that belong to the nodes defining the element. Furthermore, the
ansatz functions fulfill the following conditions

N](mj) = 5[], (247)

izv,(;n) -1, (2.48)

where n,, denotes the number of nodes. Using the N; the ansatz for the unknown
displacement and acceleration and the virtual displacement are defined as

u'(x) = zn:NI(:L') ur, w'(x)= zn:NI(a:) iy, oul(x) = zn:NI(a:) dur, (2.49)

where uy, 47, and du; are associated with the nodes. Due to the conditions (2.47) and
(2.48) the ansatz (2.49) states an interpolation of the nodal values. By inserting the
ansatz into the weak form of equilibrium (2.45), the problem of finding a continuous
solution field is transformed into the problem of finding discrete nodal values fulfilling

Zé_u? /pgthdv+/§?gdv—/p@N,dv—/iN,ds =0.  (2.50)
I=1

t Q Q Tt
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Here the components with respect to the inertial Cartesian frame are written in matrix
notation, and the matrix B; includes spatial derivatives of the ansatz function V.
Since the virtual displacement field is arbitrary, equation (2.50) has to be fulfilled for
arbitrary nodal values du;. Therefore, each parenthesis term in (2.50) has to vanish
separately yielding the system of nonlinear differential equations

Mii+ P(u)=F. (2.51)

M is the mass matrix, 4 is the vector of nodal accelerations, P is the vector of internal
forces, u is the vector of nodal displacements, and F' is the vector of external loads. The
components of M, P, and F are assembled from the components of each element, i.e.
the integrals in (2.50) are split into sums of integrals over individual elements, which
are evaluated by numerical integration schemes like Gaussian quadrature.

2.2.3 Transient Solution

To find an approximate solution to the system of nonlinear differential equations (2.51)
a time discretization is introduced, i.e. the solution is approximated at fixed times

u" = u(n At) , (2.52)

where At is the time step. The idea to find a solution is to approximate the time
derivatives by differential quotients so that the only remaining unknowns are the nodal
displacement vectors u". Depending on the way the time derivatives are approximated
different solution schemes result, which are classified into implicit and explicit schemes.
Implicit schemes are burdened with a higher computational effort per integration step,
which includes the solution of a linear system of equations. However, they enable larger
time steps than explicit schemes. Here, the well-known explicit central difference inte-
gration scheme is presented, which is based on a central difference approximation of
the acceleration

1 un+1 —un u® — unfl 1
T — - = = L2y ) 2.53
“ At( At At ) A U u"+ ") (2:53)
Inserting this into (2.51) yields the update formulas
a" = M (F"—P(u")), (2.54)
"t = " 4 Ata”, (2.55)
gn‘f’l — Qn —|—Atyn+1 ) (256)

This scheme is commonly applied in combination with a lumped mass matrix of di-
agonal shape. Then the inversion of M is trivial and the computational effort per
integration step is governed by the evaluation of the internal force vector P(u™). As an
explicit integration scheme the central difference method is only conditionally stable so
that the time step is limited by a critical value. For linear systems, where the internal
forces are expressed as P(u™) = K u", the critical time step is given as

2 2

At = — : 2.57
' wmax \/ )\max ( )
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where A .« is the maximum eigenvalue of K 1 M. To avoid the eigenvalue computation
for the global system, \., can be bounded by the corresponding element values via

Amax < max Ao, . (2.58)
e=1,n¢
For nonlinear problems the critical time step can be estimated via
h
Mo =7~ . (2.59)

where h is a characteristic length of the smallest element of the discretization, c is the
speed of a compression wave, and v ~ 0.2 — 0.9 is a reduction factor.



Chapter 3

Discrete Element Method

The discrete element method (DEM) was introduced by Cundall [41] to model blocky
rock systems. It was based on the assumptions that the rock can be considered as
rigid, that the normal stiffness of rock joints plays a minor roll in the overall failure
process, and that each rock might undergo arbitrary large rigid body motions. Un-
der these assumptions the individual rocks were modeled as discrete rigid bodies with
translational and rotational degrees of freedom assigned to their centers of mass. These
discrete bodies are denoted as particles. A small overlap of adjacent particles was al-
lowed and used to derive repulsive contact forces using a frictional contact model. The
resultant force on each particle was used to update its velocity and position by appli-
cation of an explicit time integration scheme to the particle’s equations of motion. In a
later paper Cundall and Hart [46] generalized the term DEM to “numerical procedures
for simulating the complete behaviour of systems of discrete, interacting bodies”. More
precisely, a procedure has to allow finite displacements and rotations of the particles
and, consequently, has to detect contacts between them automatically. Regardless of
this general definition, the vast majority of the published work on DEMs falls into the
class of the original works [41, 47], i.e.

e the particles are considered as rigid with soft contacts,
e contact forces are derived from small overlaps of adjacent particles,
e the particles’ equations of motion are integrated using explicit integration schemes.

Another scheme which fits into the general definition given by Cundall and Hart [46] is
the discontinuous deformation analysis (DDA) introduced by Shi and Goodman [154].
The main difference between the DDA and the classical DEM is that the DDA applies
implicit integration schemes and that the particles are deformable. Furthermore, the
impenetrability condition is met through iterations, while in the classical DEM the
contact force model requires an interpenetration, albeit small compared to the particle
size. Another implicit simulation scheme is the non-smooth contact dynamics method
(NSCD) introduced by Jean [89] and Moreau [122|. In contrast to the DEM the motion
of the particles is governed by the impenetrability condition, the Coulomb friction
model, and an impact model. This results in a system of equations whose unknowns

19
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are the relative contact velocities and the average contact forces over the time step. This
system is solved by iterative schemes, whose convergence rate depends on the friction
coefficient and the time step. In NSCD the impenetrability condition is fulfilled to a
high accuracy and no constitutive model for the contact force is required besides the
friction and impact model. On the other hand, the numerical effort increases due to the
iterations required in each time step. A more detailed overview of similar simulation
techniques is given by Cundall and Hart [46].

In the following, the focus lies on classical DEM schemes. Depending on their field
of application, published methods differ in the three building blocks, i.e. the parti-
cle geometry, the contact formulation, and the time integration scheme. The field of
application varies

e from particle sizes in the ym range for e.g. chemical powders to rock blocks in
the m range,

e from non-cohesive particles like dry sand grains to strongly bonded particles like
in concrete,

e from simulations of laboratory scale mechanical tests to industrial scale applica-
tions.

The applications can be split into two categories: In the first category the DEM aims
to be an exact model of the granular material, i.e. one particle represents one grain
and the contact model approximates the real grain interaction. Hence, schemes of
this kind are only based on parameters which can be determined from grain scale
experiments and therefore need no fitting. In the second category the aim of an exact
model is abandoned because of the numerical effort resulting from either complex
grain shapes or simply huge numbers of grains. In this case, a particle is typically
much larger than a grain and the DEM reduces to a phenomenological model, whose
parameters have to be fitted via appropriate bulk experiments. Schemes of the first
category are mostly applied to model laboratory scale experiments to gain insight into
the grain-scale mechanism yielding the bulk behavior observed experimentally, see e.g.
[112, 160, 137, 9, 39, 155, 8, 147, 162]. Furthermore, they are applied to industrial
processes involving a feasible number of particles, see e.g. [35, 119]. On the other hand,
schemes of the second kind are applied to a wide range of applications from industrial
processes like silos, mills, transportation, and segragation to geotechnical applications
like tunnels, excavation, and pile foundation, see e.g. [83, 35, 158].

The DEM applied in this work falls into the grain scale category. It is designed
to model non-cohesive frictional granular materials such as dry sand. For this pur-
pose it uses superquadric particle shapes and a Hertzian contact model combined with
Coulomb friction. The starting point for the development of the DEM code was the
research code decribed by Lillie [109] and initiated in the group of Prof. P. Wriggers
at Leibniz Universitit Hannover. It is enhanced with a new contact formulation and
more efficient contact detection algorithms. The main ingredients of the resulting DEM
scheme are described in the following sections: The particle shape is discussed in section
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3.1 followed by the modeling of inter-particle contacts in section 3.2. The time inte-
gration schemes applied to the particles’ equations of motion are detailed in section
3.3. The efficient implementation of the DEM utilizing appropriate contact detection
algorithms combined with a parallelization scheme is presented in section 3.4. Finally,
the performance of the DEM is exemplified in section 3.5.

3.1 Particle Shape

There is a variety of particle shapes that have been applied in DEMs to model cohen-
sionless frictional granular materials. First of all these can be categorized according
to their dimensionality. Two-dimensional (2D) shapes are often chosen because of the
significant reduction of the computational effort compared to three-dimensional (3D)
shapes. This reduction results from the reduced number of degrees of freedoms (DOFs),
the simplified parameterization of the particle’s rotational position, and the reduced
complexity of the contact detection process. However, the significance of 2D schemes to
model the real 3D behavior is unclear due to the following problems: The deformation
of granular materials results mainly from grain rearrangements and the variety of rear-
rangement mechanisms in 3D is much richer than in 2D. Hence, 2D schemes cannot be
considered as slices of 3D samples. They cannot provide realistic values for basic char-
acterizations of granular skeletons, such as the coordination number, i.e. the average
number of contacts per grain, or the solid fraction, i.e. the fraction of the overall bulk
volume occupied by grains. Therefore, it is a well agreed fact that while 2D schemes
are useful tools to get a first insight into some phenomena of granular materials, they
cannot provide any quantitative results, see e.g. [161, 15, 172, 160, 175, 39]. A more de-
tailed analysis of the importance of the particle dimensionality can be found in [67, 78|.
It is important to note that the shortcomings of 2D schemes are independent of the
boundary conditions. In contrast to continuum mechanics, where 2D schemes can be
applied to solve, e.g., plane strain problems, 2D DEM schemes cannot give quantitative
results for any kind of boundary conditions. Since the goal of this work is a quantitative
description of granular materials, only 3D schemes are covered in the following.
When modeling granular materials with non-trivial grain shapes the choice of the
particle shape is a tradeoff between the approximation of the real shape and the re-
sulting computational effort. Most of todays 3D DEM schemes use spherical particles
due to the trivial contact detection. Choosing a different shape can easily result in
an increase of computation times by an order of magnitude. However, using even the
simplest deviation from spheres, i.e. ellipsoids, leads to a significant change of the bulk
behavior of a particle package. Donev et al. [53] showed that the solid fraction of random
packages of spheres deviates significantly from that of ellipsoids. Furthermore, the bulk
shear resistance was shown to increase when deviating from the spherical shape [9, 147],
what is often related to their lack of rolling resistance. Out of these reasons, spherical
particles seem inappropriate for a quantitative model. More advanced smooth particle
shapes are ellipsoids [112, 136, 128|, superquadrics [80, 169], and particles assembled
from parts of spheres [172, 100, 91|. As non-smooth particles polyhedrals [43, 10| have
been applied, which require a distinction between different contact cases. These particle
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shapes share the feature that they are convex resulting in a single contact between a
pair of particles. However, it has been shown that the non-convexity of grains seems to
be an important factor for the shearing resistance of particle packages, see e.g. [147].
This analysis used clusters of spherical particles, i.e. spheres that are glued together
and might also overlap. Using this technique there have been first attempts to capture
real grain shapes measured by X-ray computed tomography with high accuracy [173].
However, due to the computational effort only small samples could be considered, which
do not allow a conclusion on the bulk behavior.

Within this work superquadric particles are used, because, on the one hand, they
are able to approximate at least rounded grains fairly well. On the other hand, the com-
puational effort still enables sample sizes that allow to conclude on the bulk behavior.
The superquadric shape is defined via the inside-outside function [20]

1
a) @
+

A point inside the superquadric yields F' < 1 and the surface is defined implicitly by
F' = 1. The coordinates X; belong to the superquadric’s principal reference frame E;,
whose origin is located at the superquadric’s center. Note that the principal axes are
axes of symmetry since F' is an even function, i.e.
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F (X1, Xy, X3) = ( (3.1)

F (X1, X, X3) = F(|Xq], | X2, X35]) - (3.2)

The shape of the superquadric is defined by five geometry parameters. The radius
parameters r; specify the elongation of the superquadric in its principal directions.
The exponents ¢; and €5 control the angularity of the superquadric in the X, X5 plane
and X3 direction, respectively. Here the exponents are restricted to ¢; € (0,2), which
leads to a smooth, convex body. For ¢, — 0 the shape approaches that of a cuboid,
€; = 1 yields an ellipsoid, and for ¢, — 2 the superquadric approaches an octahedron,
cf. figure 3.1(a). This five parameter definition differs slightly from the more general
six parameter definition used by, e.g., Williams and Pentland [179] and Cleary et al.
[36]. However, it has numerical benefits regarding the computation of surface points
from normal directions, cf. appendix A.2. The superquadric’s surface is parameterized
using curvilinear coordinates ¢; through

Xi (1, ¢2) sgn (cos @1) 71 | cos @1 | cos d| _
Xy (¢1,2) | = | sgn (sinpy) o |sin | | cos ¢o| ,_gg?;g. (3.3)
X3 (¢p2) sgn (sin ¢g) 73 | sin ¢y | 2 =72 =12

In figure 3.1(b) the parameterization is depicted by plotting the isolines of constant ¢;.
From this parameterization geometric quantities are deduced such as the radii of the
inscribed and circumscribed spheres or tangent and normal vectors, which are useful
for the contact detection process, cf. appendix A.1. The integration of the particle’s
equations of motion necessitates the mass m and the principal mass moments of iner-
tia I;. These values are determined from the surface parameterization as well. Their
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Figure 3.1: a) Superquadrics with r = ro = r3/2.
b) Superquadric surface parameterized by curvilinear coordinates ¢ and ¢s.

derivation is given in [88]. Assuming a constant mass density p within the particle the
mass is given by
m = prirersel € gy gs, (3.4)
where gji- are functions of the exponent parameters defined as
_ F2(61/2) g2 — F(61/2) F(g 61/2)
P(Gl) P F(2 61) ’
- [(e/2)T(ea + 1) [(e2/2)T(2e2+1) 4  T'(3e/2)T(e2+1)
27 T'(Be/2+1) I(5e/2+1) 72 I(5e/2+1) '
in which I'" denotes the Gamma function. Using this the principal mass moments of
inertia are expressed as

—i=

9

2.
2

1

L = g PTIT2T3ELE (r397 95 +2739193) (3.5)
1

L = gprrrsae (1o +2r5910), (3.6)
1

I; = §p7°17°27°36162 (rf—kr%) 9 g5 . (3.7)

This yields the inertia tensor expressed in the body-fixed principal reference frame

I:[1E1®E1+[2E2®E2+[3E3®E3. (38)
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Figure 3.2: Mass and inertia of a superquadric with r{y =1, 79 = 1.5, r3 =2, and p = 1.

The dependency of the inertia values on the angularity parameters ¢; is exemplified in
figure 3.2 for a superquadric with ry = 1, r = 1.5, r3 = 2, and p = 1. Note the huge
ratio between the maximum values at ¢, = 0 and the minimum values at ¢, = 2. For the
mass there is a factor of six, while for the moments of inertia the factor is even as high
as 20. This is an important feature regarding the numerical integration of the particle’s
equations of motion, since the critical time step depends on the inertia values.

To formulate the equations of motion the global Cartesian inertial reference frame
e; is introduced, cf. figure 3.3. A position vector is given in the global frame by p = p; e;
and in the local, particle-fixed frame by P = P; E;. These are related via the particle
center x through

p=x+P. (3.9)

The scalar product of this relation and the base vector e; yields the relation between
global and local position coordinates

pi=z;+e-E;Pj. (3.10)
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Figure 3.3: Global inertial and local particle-fixed reference frame.

Introducing the transformation matrix 7;; := e; - E; this relation is re-written as

In the same manner the relation between local and global coordinates of an arbitrary
non-position vector v are
v=TV. (3.12)

For the implementation of the DEM the particle’s translational DOFs are represented
by its global center coordinates x. The rotational DOFs, on the other hand, are repre-
sented by the rotation matrix 7 with 77! = T and det T = 1. Although this approach
requires the storage of nine components representing only three DOFs, it is beneficial
for the performance. The transformation between global and local coordinates is a
frequent operation most efficiently handled by application of equation (3.12), see [57].

3.2 Contact Formulation

Within classical DEM schemes particles are considered as rigid. To model the inter-
particle contact behavior a small interpenetration of adjacent particles is admitted, and
the contact force is derived from the interpenetration geometry. For smooth particles
this geometry is usually described by the interpenetration distance ¢, i.e. the length
of the vector d := p, — p,; connecting the surface points at which the normals are
antiparallel, cf. figure 3.4. The most simple contact model assumes a linear relation
between § and the normal repulsive contact force, i.e. fN = k¥ §, which is often re-
garded as penalty contact formulation; the higher the penalty factor £V the smaller the
unphysical interpenetration. However, the penalty factor is not a physical parameter
and therefore choosing its value is a tradeoff between the computational effort (which
increases with k%) and the degree of interpenetration tolerated. A more sophisticated
contact model is achieved by taking into account that the rigidity of the particles is just
a simplification for determining the particle’s motion: Indeed, the particles deform due
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T2

Figure 3.4: Penetrating particles with contact points p,, normal vectors n;, and interpene-
tration distance 6.

to contact loads even if the deformation might be small and restricted to the vicinity
of the contact. Hence, the contact force can be derived from this deformation via the
Hertzian contact theory.

3.2.1 Hertzian Normal Contact

A detailed description of the Hertzian contact theory is given by, e.g., Gladwell [68]
and Johnson [90]. For convenience a summary of its main assumptions and results is
given here. The first important assumption made by Hertz is that the contacting bodies
are homogeneous, isotropic, and elastic solids. Furthermore, it is assumed that their
surfaces are smooth and non-conforming so that contact forms at a single point, which
evolves to an area of contact, when the contacting particles are pressed together. Hertz
discovered that this contact area is of elliptical shape. Regarding each of the contact
partners as an elastic half space loaded over an elliptical region, Hertz was able to
derive contact pressures from the theory of linear elasticity. For this approach to be
reasonable the size of the contact area has to be small compared to

e the size of the bodies, so that the concentrated stresses in the contact area are
not affected from outside the contact area and

e to the radii of curvature of the surfaces, so that the surfaces approximate an
elastic half space and the strains in the contact region are small enough for the
theory of linear elasticity to be applicable.

Regarding the superquadric particles as homogeneous, isotropic, and elastic the above
conditions are fulfilled since superquadrics have a smooth, convex shape and the inter-
penetration of adjacent particles is much smaller than the particle dimensions. Note
that the interpenetration distance will now be considered as the normal approach of two
distant points inside the contacting particles, and that the unphysical interpenetration
is replaced by elastic deformations of the particles at the contact.

In order to apply the Hertzian contact theory a more detailed description of the con-
tact geometry is required. In addition to the contact points and the contact normal, the
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Figure 3.5: Paraboloids approximating the particle surfaces at the contact points.

principal radii of curvature of the contacting surfaces are required. The contact points
of two penetrating particles P; and P, are defined as those points on the particles’ sur-
faces that have minimum distance under the constraint that the outward unit normals
are antiparallel, see figure 3.4. If the interpenetration is small compared to the particle
size and the minimum radius of curvature, this condition yields a unique solution. For
superquadrics an efficient scheme to compute the contact points is presented in section
3.4.2.

The force acting on P, is denoted as f; =: f and the force acting on P, as f, = — f.
The overall contact force f is split into the normal and tangential part

F=fN+f=="ni+f". (3.13)
The normal part, in turn, consists of an elastic term and a dissipative term
N =+ fa (3.14)

In the following, the elastic part f}" will be derived using the Hertzian contact theory.
Afterwards, the tangential part f* is considered using Mindlin’s results and Coulomb’s
friction model. Finally, two possibilities for modeling the dissipative part fi. will be
presented.

Hertz approximates the particle surfaces in the contact region by paraboloids de-
fined by the principal curvatures p} and p!' of the surfaces at the contact points and
their corresponding perpendicular directions, see figure 3.5. A derivation of these quan-
tities for superquadrics is given in appendix A.1.2. From this description the shape of
the contact ellipse is derived, which is defined by the ratio of its semi-axes K = a/b
(with b < a). For this purpose the relative curvatures A and B (with A < B) are

introduced

(A+B) = (oL +p+ph+0py), (3.15)

\/(pll — )+ (05 = P5)? + 2 (o1 — i) (Ph — p3) cos2a. (3.16)

A= Bl =

DO =D —
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The first main result of Hertz is that x depends solely on the ratio of the relative
curvatures B/A, where the relation is given implicitly through

B (1//<;)2 E(e) — K(e) . ] _i
i K(e) - B(o) with e:=4/1 ek (3.17)

e is called the eccentricity of the contact ellipse, and K (e) and E(e) denote the complete
elliptic integrals of the first and second kind. Since no explicit solution of equation (3.17)
exists for x, an approximate analytical scheme presented by Antoine et al. [7] is used,
which yields a maximum relative error of 5.86 x 10~ for a range of 1 < B/A < 1010,
Introducing the effective modulus E* via

1 ._1—1/f+1—1/§

L 3.18
JoR o) By, (3.18)

where v; denotes Poisson’s ratio and FE; denotes Young’s modulus of P;, the elastic part
of the contact force is given by

fi = gM\/ Er) E* 8% (3.19)

~ depends only on the principal curvatures and their directions. Thus, it will be constant
if the contact points and the relative orientation of the particles are constant. The
elliptic integrals are approximated via expressions given in |1, 7].

3.2.2 Tangential Contact

Mindlin [121] considered the same two-body system as Hertz but included a shear
loading due to a tangential force. In addition to the assumptions and simplifications
made by Hertz, Mindlin assumed that no slip occurs between the bodies in contact. He
was then able to show that the shape and size of the area of contact is not influenced
by the tangential load. Furthermore, he derived elastic compliances for the relative
movement of the bodies in the directions of the contact ellipse’s semi-axes. For this
purpose two functions of the eccentricity e are introduced

Efe) — (1 —¢€®) K(e) K{(e) — E(e)
B(e) := 5 , D(e) := 5 (3.20)
e e
The first semi-axis of the contact ellipse is given as
d D(e)
= 3.21
TN AR (3.21)
Introducing the material constants
1+V1 1+V2 1+IJ1 1+V2
A= Ay = 3.22
1 i3 + B 2 =1 7, + 15 By ( )
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the elastic compliances read

Co= L (KM —Be)h) , Cp=—— (K(e) A — D(e) Aa) - (3.23)
Ta Ta

The tangential contact force depends on the relative tangential movement of the con-
tact points, which cannot be drawn from the current contact geometry but has to be
integrated over time. Furthermore, the tangential force is bounded by the normal force
through Coulomb’s friction model. Consequently, the tangential force in the current
time step f1" is derived from the tangential force in the last time step f©""! in a
two step scheme. First, a trial value is computed based on the incremental tangential
movement. For this purpose the tangential stiffness tensor K7 is introduced

1 1
KT ;:C—Iex®e$+gyey®ey, (3.24)

where e, and e, are the unit vectors in direction of the contact ellipse’s semi-axes, see
figure 3.5. The trial value is given as

fhir= gl L KT Atd, (3.25)

where d is the relative velocity of the contact points and At is the time step. The
tangential force in the actual time step results from Coulomb’s criterion using the
friction coefficient p

£ {fT’“, if [ < ]

N fT,tr
wlf I—IIfT’“II ., else.

(3.26)

Note that depending on the ratio of the elastic compliances the increment of the tan-
gential contact force in general is not parallel to the increment of the relative tangential
displacement. The ratio of the elastic compliances, in turn, depends on the shape of
the contact ellipse x and Poisson’s ratios v4 and 5. Generally, the elastic compliance
C, in direction of the major semi-axis a is greater than the elastic compliance Cy in
direction of the minor semi-axis b, where in the limit of x = 1 it is C, = C,, of course.
The dependence on Poisson’s ratio is such that the compliances decrease as v; or vy
increase. As can be seen from equations (3.22) and (3.23) in the limit of 1y = 15 = 0
it is Ay = 0 and therefore the isotropic case C, = C,. Mindlin also compared the ratio
of the normal compliance C, := (0f} /05)~* and the tangential compliance C, for the
case of identical elastic properties Fy = Fy = F and v; = vy = v. Here, in the limiting
case of v = 0, it is C, = C, = C,,. For the practical range of 0 < v < 1/2 the tangential
compliance is always greater than the normal compliance but never more than twice
as great.

3.2.3 Dissipative Part

The dissipative part fJ. is modeled in two ways depending on the type of problem con-
sidered. First, for quasi-static simulations, a simple dashpot model is used, where f1,
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is introduced to reduce the amount of kinetic energy. Within this model the dissipative
force is proportional to the normal relative velocity of the particles

N =c¢dd, (3.27)

where ( is a user-defined scalar value and d is chosen to yield a critically damped
system for ( = 1. To determine d the normal contact stiffness is introduced as

N
N = aggl = ng* Vi, (3.28)

yielding the critical damping constant

d:=2, /CN% , (3.29)

where m; are the particle masses. Considering dynamic problems the above model
yields a normal coefficient of restitution for the impact of two particles that is quasi
velocity independent. However, experiments with ice particles [25] and other materials
(for an overview see Goldsmith [71]) show a significant dependence of the restitution
coefficient on the impact velocity. To model this effect, Brilliantov et al. [26] derived a
contact model by considering viscoelastic particles. This results in the dissipative force

fgiVS:ny*gA\/Sé, (3.30)

where A depends on the elastic and viscous material properties. It has been shown that
this formulation in connection with the Hertzian elastic force is in good agreement with
experimental results [142|. Depending on the dissipative constants the addition of the
elastic and dissipative part (3.14) might result in an unphysical attractive contact force
in the final contact phase [149]. Therefore, equation (3.14) is replaced by

N =max(f) + f3.,0). (3.31)

Altogether, the benefit of the presented contact model is that it depends solely on
parameters with a clear physical meaning, which can be determined from grain scale
experiments. These are the particles’ elastic constants £ and v for the elastic part, the
friction coefficient p for the tangential part, and either a user defined scalar parameter
¢ or the visco-elastic parameter A for the dissipative part. The latter is determined by
measuring the restitution coefficient of two spherical particles impacting at a specific
relative velocity. From the dissipative force (3.30) an approximate relation between the

restitution coefficient and the constant A can be derived which is then solved for A like
described in [149].

3.3 Time Integration

A particle’s translational and rotational equation of motion are derived in section 2.1.4
and repeated here for convenience

F = L:ma,
M = H=T witwxI w.
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F and M are the resulting force and torque with respect to the particle center, a is
the acceleration, and w is the rotational velocity. The force and torque are nonlinear
functions of the particle’s own position and velocity as well as those of all its contact
partners. Hence, the deformation of a particle package is governed by a coupled system
of differential equations, that are highly nonlinear because of

e the change of the contact network due to the release of old and formation of new
contacts,

e the Hertzian contact model combined with Coulomb friction,
e the parameterization of the three-dimensional rotational motion.

An approximate solution to the system is gained from numerical integration schemes.
These can be split into two classes: First, implicit schemes which require the evaluation
of stiffness terms to compute the state at the new time step. Second, explicit schemes
where the new state is based only on current actions. Implicit schemes have the ad-
vantage that they are unconditionally stable and enable larger time steps compared to
explicit schemes, that are only stable if the time step is below a critical value. However,
within DEMs explicit schemes are usually applied because of the following reasons:

e The stiff system behavior: The relative motion of two particles from the formation
of contact until reaching a characteristic or maximum force is usually less than 1%
of the particle size. On the other hand, the average overall particle translation
that needs to be resolved within a problem is usually of the order of several
particle diameters. Furthermore, if the considered problem includes free impacts
of particles, the maximum time step is bounded by the impact duration.

e The strong nonlinearity: Implicit schemes require the evaluation of stiffness terms,
which in the DEM case corresponds to derivatives of contact forces with respect to
the particles’ rotational and translational positions. However, the contact forces
are highly nonlinear functions of the particles’ position due to the contact model
and geometry. The last is especially true for complex particle shapes like su-
perquadrics, where the contact geometry cannot be computed explicitly but needs
to be determined via an iterative scheme.

Within the class of explicit schemes a variety of schemes of different approximation
order exists. Generally, low order schemes require less numerical effort per time step
combined with a smaller critical time step. Hence, to reach the same accuracy one
might either apply a higher number of cheaper, low order integration steps or a smaller
number of more expensive, high order steps. For superquadrics, however, considering
that the contact force generation is by far more expensive than the time integration,
any scheme that requires more than one force evaluation per time step can be dismissed.
Additionally, considering high order schemes the above problems of upper bounds for
the time step still apply. Therefore, the majority of published DEM schemes uses low
order schemes.
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Due to the more involved description of the rotational motion, schemes developed
for integrating the translational equations generally cannot be applied to the rotational
equations right away. The difference in complexity is exemplified by the behavior of
an unloaded particle. Its translational motion is characterized by a constant linear
momentum L yielding a constant translational velocity v. On the other hand, if the
initial axis of rotation does not coincide with one of the particle’s principal directions
E;, the resulting rotational motion is called torque free precession and is characterized
by a varying rotational velocity w and inertia tensor I.

For the translational integration a huge number of schemes exists. Overviews can
be found in e.g. [143, 145]. Here the simple and widely used Verlet-Leapfrog method is
applied, which is characterized by the update formula

"2 = 2 4 Ata" with " = k= F" (3.32)
m Y
"t = " Atont? (3.33)

where the index denotes the time step, i.e. o" := o(n At). This scheme yields coordi-
nates that are accurate to third order in At. The fact that coordinates and velocities
are evaluated at different times does not present a problem. If the velocities at step
n + 1 are required, they are approximated via

1
"t = t2 3 Ata™ . (3.34)

For the integration of the rotational motion a fourth order Runge-Kutta method is
applied, that is derived from the scheme introduced by Munjiza et al. [126]. The scheme
is modified only in the way small incremental rotations are applied. In the initial step
the angular momentum is updated using the actual resultant torque

H" = H" + At M™ . (3.35)

Now, based on the definition of the angular momentum H = I - w and the assump-
tion that the change of angular momentum is instantaneous, so that H is constant
throughout the time step, an average angular velocity is derived using the classical
Runge-Kutta formula. For this purpose the transformation between global coordinates
and local coordinates (denoted by e in the following) is required. While H and w are
stored in global coordinates, I is naturally stored in terms of the local principal values

) I, 0 0
I=|0 5L o]. (3.36)
0 0 Iy

Hence, using the transformation matrix 7' the definition H = I - w reads in global
coordinates .
H=TIT"w, (3.37)

which is inverted to
TTH . (3.38)
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If the particle rotates with constant w for a duration At, this results in a rotation ex-
pressed by a matrix R(w, At), which is most effectively computed via the intermediate
construction of a quaternion [57|. The new position is given by the updated transfor-
mation matrix

T(w, At) = R(w, At)T" . (3.39)
Based on this and relation (3.38) four angular velocities are defined

n
Y

3.40
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3.43
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€

Wy = I(Hh At/Q) I(&p At/Q)T ﬂn—H )
Wy = 2(227 At/2) I(£2> At/Q)T ﬂn—H )
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From these definitions an average angular velocity for the time step is derived using
the classical Runge-Kutta formula

1
Q:6<£1+2g2+2ﬁ3+ﬂ4) : (3.44)

Using w the final update steps are

T = T(@, A, (3.45)
e InJrlz_lInJrl,TﬂnnLl' (3.46)

In a torque free situation the update scheme is momentum conserving, while it does
not provide exact energy conservation. However, it reaches adequate accuracy for a
reasonable time step and therefore is suitable for application within a DEM [126]. Note
that the orthonormality of T is preserved to a very high degree by operations of kind
(3.39). Numerical analyses using double precision show that the error |77 1T — 1| is
of the order of 107! after 10® update operations, where either small incremental or
large arbitrary updates are applied. This is sufficient for DEM simulations so that no
re-orthonormalization operations are required.

3.4 Implementation

The basic ingredients of the DEM scheme are described within sections 3.1, 3.2, and
3.3. These ingredients determine the behavior of the DEM regarding the mechanics,
i.e. what problems can be modeled and what the results will be. This section covers
the implementation aspects of the DEM that determine its performance, i.e. how many
particles can be traced for how many time steps in what computational time. The
most important aspect is the contact detection process, since it is the computationally
most expensive part of a DEM simulation. In this point the DEM resembles other
meshless methods such as molecular dynamics (MD) from which many algorithms can
be directly applied. Usually, the process of contact detection is split into two phases:
In the first phase the number of potential contact pairs is reduced with the help of
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bounding boxes and spatial sorting algorithms. In the second phase a detailed contact
check is performed for the resulting potential contact pairs. An overview of methods for
both parts of the process is given by, e.g., Lin and Gottschalk [110] and Vemuri et al.
[169]. Furthermore, this section describes a parallelization scheme for shared memory
architectures and the important point of particle sample generation. All algorithms
are implemented in a C++ in-house code maintained at the Institute of Continuum
Mechanics at Leibniz Universitdt Hannover.

3.4.1 Global Contact Detection

Given a set of NV particles of arbitrary shape, size, and position in space the function of
global contact detection algorithms is to determine a good approximation of the list of
contact pairs within minimum computational time and requiring minimum computer
memory. A good approximation means that the resulting list must include all actual
contact pairs and should include as few as possible additional pairs. Hence, these al-
gorithms are often denoted as neighbor search algorithms. In order to be applicable to
arbitrary particle shapes, they replace the actual particles by bounding volumes of sim-
ple shape. The most common bounding geometry is a sphere, because the intersection
check is trivial and it is invariant with respect to the rotational position of the particle.
Other geometries are axis-aligned bounding boxes (AABB) or oriented bounding boxes
(OBB), which might give a better approximation of the real geometry but need to be
re-determined if the particle rotates.

The most simple neighbor search algorithm is an all-to-all check, where each bound-
ing volume is checked against all other volumes. This results in a computation time
scaling as O(N?), which is prohibitive when dealing with a huge number of particles.
Therefore, more sophisticated algorithms have been developed, which can be divided
into two main classes: First, tree-based algorithms which sort the particles according
to their position into tree-like structures and apply efficient sorting and searching algo-
rithms to determine overlapping bounding volumes, cf. [178, 13, 140, 61, 108|. Second,
binning algorithms which sort the particles into a regular grid so that only particles
in adjacent grid cells have to checked, cf. [79, 124, 180, 127|. Generally, tree-based al-
gorithms scale with O(N log N), while binning algorithms scale with O(N). However,
tree-based algorithms have advantages when dealing with

e sparse systems: If the particle package is loose, standard binning algorithms waste
memory and computational time due to a huge number of empty cells.

e wide size distributions: In standard binning algorithms the grid size corresponds
to the maximum particle size. If particle sizes vary considerably, this leads to a
high number of intersection checks per grid cell and therefore to a reduction of
the performance.

The first problem has been solved by the NBS algorithm developed by Munjiza and
Andrews [124]| which uses a sophisticated data structure to overcome the memory part
and a particle based grid traversal to overcome the computation times part. Based on
this work, Williams et al. [180] developed the CGRID algorithm which overcomes the
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second problem of varying particle sizes by allowing particles to be contained in several
grid cells. Another binning algorithm for greatly differing particle sizes was developed
by Peters et al. [141]. Here, the number of neighbor checks is reduced efficiently via
a hierarchical grid structure. Furthermore, the algorithm is parallelized via domain
decomposition and shows good scaling properties.

A crucial issue regarding neighbor search algorithms in the DEM context is the
ability to exploit the temporal coherence: Between consecutive time steps the particle
positions will only change little and so will the list of potential contact pairs. Generally,
tree-based algorithms are better suited to make use of this fact, since they are based
on sorted data structures whose update becomes cheaper, if the structure kept from
the last time step is almost sorted. Taking this into account, tree-based algorithms are
able to scale with O(N), see e.g. the algorithm introduced by Li et al. [108]. On the
other hand, standard binning algorithms require a new application in each time step.
However, a scheme not suffering this limitation was presented by Munjiza et al. [127].
In summary, state-of-the-art neighbor search algorithms scale linearly with the number
of particles, are rather insensitive to the package density and variation in particle size,
and exploit the temporal coherence present in a DEM simulation.

To choose a scheme with optimal performance the characteristics of the DEM and
the prospective applications have to be analyzed. Here, a DEM based on superquadric
particles will be applied to mainly quasi-static problems with uniform, dense parti-
cle packages of limited particle size variation. Hence, the aspects of package density
and size variation are rather unimportant compared to the aspect of temporal coher-
ence. Furthermore, the number of particles considered will be rather huge favoring an
algorithm that scales with O(N) and, additionally, can be parallelized. The temporal
coherence is exploited by the Verlet neighbor list concept [170], which is combined with
a simple binning algorithm to accomplish the O(N) scalability and parallelization. The
Verlet concept is based on the simple idea to enlarge the bounding volumes used in the
neighbor search algorithm by a certain amount, so that more remote particle pairs are
detected as well. By noting that each particle moves only a small distance in one step,
it follows that the resulting neighbor lists need no update for several time steps without
the risk of missing a contact. This scheme is naturally used in combination with spher-
ical bounding volumes. These also have the advantage of being invariant with respect
to particle rotations so that the bounding sphere radius r[*** of a superquadric particle
P; is computed only once, see appendix A.1.1. A Verlet distance dy is introduced and
each particle pair, whose bounding sphere distance is smaller than dy, is stored in a
neighbor list, cf. figure 3.6(a). The neighbor criterion reads

1 <7 : add j to list 7,

Y SR (3.47)
1>7 : add i to list j.

||a:z—:c]|| S’I"?ax+’l"§pax+dv = {

Figure 3.6(b) exemplifies the Verlet neighbor lists for a small sample. Now, any pair not
stored in a list cannot contact as long as no particle moved by more then dy /2. This
is depicted in figure 3.6(a), where two particles are shown that will not be considered
as neighbors. Obviously, they cannot contact without any of the two bounding spheres
leaving the dashed spheres representing the Verlet criterion. Hence, the positions x)

i
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Figure 3.6: a) Two adjacent particles enclosed by bounding spheres. If the dashed spheres
intersect, the pair (P;,P;) is added to a Verlet list.
b) Particle sample with corresponding Verlet neighbor lists.

of the particles at the time the neighbor lists are updated have to be stored to check
the update criterion each time step

d
| — )| > 7\[ forany i € P:={1,2,..., N} = update lists. (3.48)

The computational effort of evaluating this criterion is smaller than the effort of a
global contact check. The number of successive time steps without an update obviously
increases with dy and decreases with the maximum particle velocity. However, the
number of neighbor pairs and therefore the numerical effort within each time step
increases with dy as well. Hence, the optimal choice of dy depends on the dynamics
of the system and the relation between the effort of global contact detection for the
update of the neighbor lists and the effort of local contact detection performed for
each pair in those lists. For a rather static system of superquadrics an optimal value of
dv = 0.057 is found by numerical experiments, where 7 is defined as mean bounding
sphere radius

7= Tmax + T'min with ey i= max 7", rp, = min 7" (3.49)
2 ieP icP
Note that for spherical particles and the same problem an optimal value of dy = 0.257
is found due to the reduced effort for local contact detection.
To update the neighbor lists a simple binning algorithm is applied. For this purpose
a regular grid with cubical cells of size A = 27, +dy is defined. In this way, centers of
neighbor particles according to (3.47) have to reside in adjacent grid cells. The particles

are sorted into the grid cells by determining their integer grid coordinates via

ix[i] = {%J , (3.50)
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Figure 3.7: a) 2D particle sample and corresponding grid for neighbor search.
b) 3D stencil for grid traversal.

where @, is the lower corner of the grid, see figure 3.7(a). After all particles are sorted
into the grid cells, these are traversed and the neighbor criterion (3.47) is checked for all
particle combinations within the actual cell as well as combinations between the actual
and its adjacent cells. To prevent double-checking of pairs only half of the adjacent cells
have to be considered like depicted for a 2D sample in figure 3.7(a) and for a 3D sample
in figure 3.7(b). Using the C++ standard template library (STL) [92] the data structure
holding the Verlet neighbor lists is chosen in such a way that they can be updated,
i.e. new pairs can be inserted into and old pairs removed from the sorted lists without
the need for a complete rebuild. The parallelization of the algorithms presented in this
section is covered in section 3.4.3.

3.4.2 Local Contact Detection

The generation of inter-particle contact forces requires a detailed check of all neighbor
pairs resulting from the global detection process. The pairs are checked for contact and,
if necessary, the contact geometry is determined. While this check is trivial for spherical
particles, it becomes the computationally most expensive part for more complex shapes.
Generally, the algorithms applied are specifically designed for a type of particle shape.
An algorithm designed for a discrete polyhedral shape, e.g., cannot be applied to a
continuous ellipsoidal shape and vice versa. In the following, only the class of smooth
convex shapes like ellipsoids or superquadrics is considered. First, the contact detection
problem is formulated as an unconstrained two-dimensional optimization problem. This
formulation has the advantage that for non-penetrating particles a penetration can
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be ruled out before final convergence is reached. Next, a modified Newton’s method
is applied to solve the minimization problem and the performance of the scheme is
measured via two extensive test series for penetrating and non-penetrating particles
of varying angularity. Finally, a scheme is presented which reduces the computational
effort of a contact geometry update significantly by exploiting the temporal coherence
within a DEM simulation.

Problem Formulation

For a pair of neighbor particles P; and P, the algorithm checks for contact and com-
putes the set of geometric quantities required for the contact force generation. For most
of the contact models applied in combination with smooth particles this set includes
contact points p; and p,, an interpenetration distance 9, and a contact direction ¢,
cf. figure 3.4. Regarding the contact force generation a definition of the contact points
based on the common-normal concept is favorable, see e.g. [90]. Accordingly, the con-
tact points are defined as those points that have minimum distance and fulfill the
following set of conditions

n, Ny

CcC =

- — , (3.51)
[l Ime]]

dxec = 0, (3.52)

where n; and ny are outward surface normals at p, and p,. Condition (3.51) assures
that the normal vectors are anti-parallel and (3.52) assures that the vector connecting
p, and p, is parallel to the contact direction c.

For smooth, convex particles the normal vectors and surface points can be parame-
terized by a set of curvilinear coordinates. Furthermore, there exists a smooth invertible
mapping between the set of surface points and the set of normalized surface normals.
The corresponding formulas for superquadrics are given in section 3.1 and appendix A.
By using the surface parameterization and by elimination of ¢, the conditions (3.51)
and (3.52) can be formulated as a set of nonlinear equations in the curvilinear coordi-
nates. The solution of this set of equations yields the contact points p; and p,. Within
this approach attention has to be paid to multiple solutions, because the minimum
distance condition is neglected so that, e.g., for a pair of spherical particles the points
with maximum distance will be a solution too. However, this approach was used suc-
cessfully in combination with ellipsoids [111]| and superquadrics [36]. Other approaches
for the determination of contact points that only approximately fulfill (3.51) and (3.52)
are methods based on geometric potential functions [165, 111, 163| and the discrete
function representation (DFR) approach [178, 80]. For the first kind of methods the
contact point definition is based on the geometric potential function of the particles,
which for superquadrics is the inside-outside function (3.1). Lin and Ng [111], e.g., de-
fine the contact points as those points which minimize the geometric potential function
of the other particle. For a small penetration these methods yield contact points close
to that defined by (3.51) and (3.52). In the second approach each particle surface is
discretized by a number of points. Contact detection is then done by checking these
points for inclusion in the adjacent particle. The DFR approach allows for a wider
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€
Figure 3.8: Cartesian reference frame é; for parameterization of the contact direction c.

range of particle shapes and overcomes the restriction of convex shapes. Its accuracy
and performance depend on the number of points used for the surface discretization.
A similar approach was presented in [75], where 2D superquadrics are approximated
by convex polygons, whose contact is handled by a corner-corner contact model [62].

The key point of the approach introduced here is that the problem of contact
detection is formulated in terms of the contact direction c. For this purpose the contact
direction is parameterized using spherical coordinates a; and as through

c(ag,as) = cosag cosag €] + sinay cosag € + sinag é3  with
(3.53)

™ T Lo — I

Oéle(—ﬂ',’ﬂ'], 0626[—575], éli éléJ:(sZ]

2 — 1"
é; are the unit base vectors of a right-handed Cartesian coordinate system with e; =
¢(0,0) pointing in the direction from the first particle center to the second particle
center, see figure 3.8. The advantage of using this reference frame is that the solution
lies close to (ay,az) = (0,0) and thus numerical problems at the singular points of
the parameterization at ap = +m/2 are avoided. Based on this parameterization and
on the invertible mapping between surface points and normals, the surface points p,
and p, are determined in terms of oy and ay from the anti-parallel condition (3.51).
As a consequence, the distance vector can be expressed as a function of the contact
direction angles as well

d (a1, az) = p, (1, a2) — py (a1, a2) - (3.54)

Hence, the contact detection problem is formulated as optimization problem in terms
of a; and «»

min f (a1, as) == ||d (a1, az) ||* . (3.55)

aq,02
Note that condition (3.51) is fulfilled automatically via the construction of the surface

points. Furthermore, it can be shown that condition (3.52) is fulfilled at the global
minimum of (3.55), if the penetration distance is small compared to the particle sizes

!Because the detailed derivations are rather intricate, they are postponed to appendix A.1.3.
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and the minimum radius of curvature of the particle surfaces. Hence, the global min-
imum of (3.55) yields the contact direction from which all other necessary geometric
quantities are derived.

Optimization Algorithm

Any optimization algorithm might be applied to solve problem (3.55). Here a com-
bination of Newton’s method and a Levenberg-Marquardt method is chosen due to
the quadratic convergence properties in the vicinity of the solution. Hence, the first
and second derivatives of f with respect to the contact direction angles have to be
determined

According to (3.54) the derivatives of the distance vector are obtained from the surface
points’ derivatives

6p 8¢ 8Ck
Psi = ﬁa—czaai’ (3.57)
B 62]95 8¢,y 6¢5 8ck 6cl
Psii = B¢, 05 e, 0ci 0oy Da,
8p5 (8%7 8ck 8cl +8¢7 aZCk )
0, \Oc dc; Doy Doy Dey, Doy Doy )

Repeated Greek indices denote a summation from 1 to 2, and repeated Latin indices
denote a summation from 1 to 3. Again, the detailed derivations of the above deriva-
tives are postponed to appendix A.1.3. For the iterative solution of the minimization
problem (3.55) an initial guess is required. Within a DEM simulation an excellent
guess is the solution from the previous time step. If no such solution exists, because
the neighbor pair has just been detected, the vector connecting the particle centers is
used corresponding to (ay,as) = (0,0). Note that for spherical particles this guess is
the exact solution.

An important advantage of this formulation is that in the case of non-penetrating
particles a penetration can be ruled out before the iterative process converges to the
exact contact direction. This is illustrated in figure 3.9, where two adjacent particles are
depicted whose bounding volumes intersect. Hence, in a DEM simulation this particle
pair is checked for a penetration. In the right part the contact points, normals, and
the distance vector after i iterations are plotted. At this point of the iterative process
a penetration can be ruled out, because it is

(3.58)

On, - Od>0 & Ve Od>0. (3.59)

Because of (3.51) and (3.59), @p, is the closest point of P, to the tangent plane
O F, with a distance greater than zero. Therefore, ) E| separates P; and P, and a
penetration can be ruled out. The criterion (3.59) is checked for every contact direction
G)c in the course of the iterative process. If it is fulfilled, the algorithm stops. Since
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Figure 3.9: Two adjacent particles P; and P with intersecting spherical and box-shaped
bounding volumes. The contact points, normals, and the distance vector after 4
iterations are shown. (D F; is the tangent plane to P; at (’)pl.

only one additional vector product is required, this leads to a significant speedup of
the contact detection process.

In the case of a penetration the algorithm converges to a minimum of f. To ensure
that this minimum is the global minimum two conditions have to be checked. First,
(3.52) has to be fulfilled. Under the assumption of a small penetration distance, (3.52)
can only be fulfilled by a local minimum, if the corresponding contact points p; and
p, lie outside P, and Py, see figure 3.10. Hence, the second condition that has to be
checked is that p; € Py and p, € Py, which is done via the particles’ inside-outside
functions. If convergence to a local minimum is detected, a combination of a random-
search method and the Nelder-Mead simplex algorithm [105] is applied to generate a
new initial guess. This process is repeated until the global minimum of f is found.

Figure 3.10: Two adjacent particles P; and P, with contact points, normals, and distance
vector corresponding to a local minimum of f. The dashed circle indicates that
d has locally minimum length.
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Figure 3.11: a) Test 1: Probability of penetration exclusion vs. the number of iterations.
b) Test 2: Probability to reach convergence vs. the number of iterations.

Validation

The contact detection algorithm is validated by means of two test series with randomly
generated particle pairs. In the first series no pair is in contact, while in the second series
there is always a small penetration. For all tests the superquadric radius parameters r;
are chosen randomly and equally distributed from the interval (0.5,3.0). The angularity
parameters are chosen equally distributed from one of the three intervals, 1 : ¢ = 1,
2:¢ €[0.7,1.3], 3: ¢ € [0.3,1.7]. The positions and orientations of the particles are
generated according to the following scheme: The first particle is placed at the origin so
that the particle fixed frame and the global frame coincide. A random contact direction
c is generated from which p; is determined. A random rotation matrix 7', is generated
and the interpenetration distance § of the particles is chosen. p, is derived from p, 6,
and c. Finally, x, is calculated from p, and T,.

For both test series 10° particle pairs are generated for each angularity interval.
The direction of the vector connecting the particle centers is used as initial guess.
The distance of the particles for the first test series is chosen randomly and equally
distributed from the interval (0,0.25). The number of iterations needed to rule out a
penetration is recorded. The probability of a penetration exclusion after ¢ iterations,
which is the number of trials where a penetration is ruled out after ¢ iterations divided
by the overall number of trials, is plotted against i in figure 3.11(a). The probability of
a penetration exclusion after 0 iterations is 78.2% for the angularity interval 3, 85.2%
for interval 2, and 88.1% for interval 1. In these cases the initial guess is good enough
to rule out a penetration so that no gradient or Hessian of f has to be computed. The
probability that 5 or more iterations are needed is 3.7% for interval 3, 1.1% for interval
2, and 1.1% for interval 1. The number of trials where a penetration could not be
excluded within 50 iterations is 456 for interval 3, 24 for interval 2, and 28 for interval
1. In these cases at most 3 new initial guesses have to be generated until a penetration
could be excluded.
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interval 10 —6]/8, 1075 ||p, — p,||, 1078 cos™'(é-¢), 1073°
1 2.34 4.34 4.21
2 2.40 4.40 5.05
3 32.1 37.2 18.2

Table 3.1: Average errors for convergence criterion ||gradf|| < 1075.

In the second test series the interpenetration distance is chosen randomly and
equally distributed from the interval (0,1.75-1072). The convergence criterion is chosen
as ||gradf|| < 107% and the number of iterations performed is recorded. The results
are plotted in figure 3.11(b). For each angularity interval convergence is most likely
reached after about 2 — 10 iterations. The probability that 20 or more iterations are
needed is 4.5% for interval 3, 0.4% for interval 2, and 0.4% for interval 1. The number
of trials where the algorithm converges to a local minimum or does not converge within
50 iterations is 9219 for interval 3, 198 for interval 2, and 193 for interval 1. Here at
most 15 new start points have to be generated for interval 3 and 2 for interval 2 and 1.

Finally, the accuracy of the algorithm is analyzed in terms of the relative error
of the computed penetration distance 8, the distance of the computed and the exact
contact points p, and p,, and the angle between the computed and the exact contact
direction ¢ and c. The average values for each angularity interval are listed in table 3.1.
All results are very accurate. Even for the most angular particles the average deflection
from the analytical contact direction is of the order of a hundredth of one degree.

Temporal Coherence

Within a DEM simulation the particle positions vary smoothly over time. Generally,
their incremental change within one time step is small. Hence, the incremental change
of the contact direction is small as well. This fact can be exploited by using the di-
rection from the last time step as initial guess for the minimization algorithm in the
current, time step like described above. Numerical experiments show that in this way
the specified accuracy is most likely reached within one or zero iterations. However,
each iteration of the minimization algorithm requires the computation of the second
derivatives of the contact points with respect to the contact direction angles (3.58),
which is a computationally expensive operation. A significantly cheaper update op-
eration is achieved by dropping the minimum condition and just using the parallel
condition (3.52). Using the derivatives ¢; = de¢/0q; and the orthogonality relation

c-c;=0, (3.60)

this condition is re-formulated by the two scalar equations

Flan, an) == {32 } L [8} . (3.61)

This set of nonlinear equations is solved using Newton’s method, where now only
the first derivatives of the contact points with respect to the direction angles «; are
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Figure 3.12: Flowchart of a single time step within a DEM code using the Verlet list concept.

required. An efficient scheme to determine the points and their derivatives is postponed
to appendix A.2. Note that the system 3.61 has multiple solutions, because it does not
include the minimum condition. Hence, for a pair of spheres, e.g., the points with
maximum distance are a solution too. However, due to the temporal coherence the
initial guess is much closer to the correct solution than to any other solution. Therefore,
convergence to the wrong solution is extremely rare and is handled by application of
the original minimization algorithm, which is also applied when a neighbor pair is
considered for the first time.

3.4.3 Parallelization

DEM simulations of a reasonable number of particles undergoing large deformations
yield high computational costs. Generally, memory requirements are less critical com-
pared to computation times, which result from the huge number of integration steps
and the contact detection within each step. This is especially true for non-spherical
particles burdened with a complex contact check. A way to extend the range of feasible
problems in space and time is to parallelize the DEM code and thus exploit the possi-
bilities of modern multi-core machines. Here, this is accomplished through a simple but
efficient parallelization scheme for shared memory architectures, that is implemented
using the OpenMP standard [29]. The scheme is based on the Verlet neighbor list
concept described in section 3.4.1.

For parallelization it is useful to analyze how much CPU time is spent on the differ-
ent tasks of the serial code. The flowchart of a single time step within the DEM code is
depicted in figure 3.12. The CPU time distribution is measured via a profiling tool for
a silo discharge problem with spherical and superquadric particles, see figure 3.13. For
both particle types the most time consuming part is the local contact check, which is
separated into inter-particle and particle-boundary contacts. Hence, the parallelization
of this part yields the greatest reduction of the overall CPU time. For superquadrics
the particle states update and the Verlet lists update require similar fractions of the
CPU time, while for spheres the particle states update requires only about half the time
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Figure 3.13: Fractions of the overall CPU time spent on different tasks within the serial DEM
code for a silo discharge problem using spherical and superquadric particles.

of the Verlet update. This is due to the fact that for spherical particles no rotational
position is stored and updated. The fraction required by the Verlet update check is
negligible for both particle types.

The particle states update and the Verlet update check are trivial to parallelize,
since the computation for one particle is independent from the others. Furthermore,
the computational effort is identical for each particle so that the set of particles can
be distributed in chunks of equal size to the available cores. Within the Verlet update
algorithm the particles are sorted into a grid so that neighbors reside in adjacent
grid cells, cf. section 3.4.1. In a traversal over the grid cells the neighbor criterion
(3.47) is checked for each potential pair (P;,P;), and if it is fulfilled, P; is added
to the neighbor list of P;(i < j). Regarding the parallelization of this traversal care
has to be taken to prevent data race conditions, i.e. situations where two cores try
to update the same neighbor list simultaneously. This is accomplished by distributing
the cells along the largest grid dimension onto the available cores C?, see figure 3.14.
The core subsets are subdivided further along the same direction into two chunks C%
and C’y. The cells in all chunks C?; are traversed in parallel without the risk of data
race conditions, since particles from different chunks C?; and C’; cannot be neighbors.
When all cores finished their first chunk, the cells from the second chunk Ci, are
traversed in the same manner. This simple scheme requires a minimum distribution
and synchronization overhead. However, its workload balance depends crucially on the
uniformity of the particle distribution. For non-uniform distributions some cores idle
because of the difference in the number of pairs assigned to the cores. Anyway, since
the focus of this work lies on the quasi-static behavior of dense particle packages, the
scheme is sufficient.

The most important part regarding parallelization is the local contact check, where
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Figure 3.14: Parallel Verlet update via distribution of grid cells to cores and chunks.

each potential pair (P;, P;) from the Verlet lists is checked and the resulting forces of P;
and P; are updated. Again, the problem with parallelizing this part is the risk of data
race conditions, if one core processes (P;, P;) and another one (P;, Px) and both try to
update the resulting force of P; simultaneously. Forcing the cores to update the forces
one by one by placing the corresponding peace of code in an OpenMP critical section
yields a severe performance reduction due to the high number of potential contact
pairs.

This problem is solved by sorting the particles according to their spatial position.
Figure 3.15(a) shows a sample of about 10° superquadrics flowing through an hourglass.
The corresponding Verlet lists can be visualized in a two-dimensional plot by placing a
dot at (¢, j) with i < j for each neighbor pair (P;, P;). For a random particle order this
yields a plot where the upper left triangle is randomly filled like shown in figure 3.16(a).
Now, the particles are sorted according to their spatial position via a grid traversing
along the smallest dimension first, medium second, and largest last, see figure 3.15(b).
The resulting Verlet lists show a band structure, that is exploited to distribute the
particle pairs to the cores like depicted in figure 3.16(b): Let nc denote the number
of cores available. Then the set of pairs is divided into nq equisized (same number of
pairs) chunks C, and each of this is subdivided into two equisized chunks C’;. If the
maximum particle index of C*~!; is smaller than the minimum index of C*;, C*~!; and
C?; can be processed in parallel without the risk of data race conditions. Depending on
the bandwidth of the Verlet list structure more than two sub-chunks might be required
to fulfill this criterion. Even the number of chunks C* might have to be reduced, if the
bandwidth is too large compared to the number of particles.

As long as the Verlet lists remain unchanged, the chunks and sub-chunks remain
valid and require no update. The update’s cost is negligible using standard search and
sort algorithms. As the particles rearrange over time, the bandwidth of the Verlet list
structure might grow necessitating a resort of the particles. As it is required unfre-
quently, the cost of this resort is negligible, especially if one takes into account that
sorting improves the data locality of the code and therefore yields an additional perfor-
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Figure 3.15: a) Hourglass with 10° superquadrics colored according to their spatial position.
b) Spatial sorting of particles using a grid which is traversed along the smallest
dimension first. The order of particles in the same cell is arbitrary.
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Figure 3.16: Verlet lists for random particle order (a) and after spatial sort (b).



48 CHAPTER 3. DISCRETE ELEMENT METHOD

a b
1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ — 25 ‘ ‘ 250
verlet updates ——
S resorts ---------
095 R g
20 A 200
09 -
™)
o
-
085t e g15 1 150,
R g 5
g g i
5 08| =
© Tt 1{ 100*
>
075 | *
5 {50
07
065 L L L L 1 1 L L M”\ 0 s i - L 0
0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 200
#time steps, 10° #time steps, 10°

Figure 3.17: a) Parallel efficiency for 2, 4, and 8 cores and the example from figure 3.15(a).
b) Corresponding number of Verlet updates and particle resorts.

mance benefit. Figure 3.17(a) shows the efficiency of the parallel code for the hourglass
example shown in figure 3.15(a) when using two, four, and eight cores. The corre-
sponding number of Verlet update and resort operations is plotted in figure 3.17(b).
The highest efficiency is reached in the initial phase of the simulation, where the sys-
tem is rather static and few Verlet updates and particle resorts are required. As some
particles reach the bottom of the hourglass, the system becomes more dynamic and
the efficiency drops to values of approximately 94% for two cores, 84% for four cores,
and 65% for eight cores.

3.4.4 Sample Generation

Regarding laboratory testing of non-cohesive frictional granular materials it is a well-
known fact that the method of sample preparation has a crucial impact on the measured
mechanical properties, see e.g. the pioneering work by Oda [134]. A common prepara-
tion method is dry pluviation, where grains rain from a specific height into a container.
The resulting sample characteristics depend on the drop height and other boundary
conditions [115, 37|. The basic description parameter of a package is the solid fraction
®, i.e. the fraction of the overall volume which is occupied by the grains. This param-
eter is deduced from the container volume, the overall weight, and the grain material
density. The minimum and maximum values ®,,;, and ®,,,, are determined via stan-
dardized preparation methods. If they are known, it is convenient to relate the sample
density to these extreme values via the relative density

1— ¢min/(I>
1 - ¢min/¢max .

RD =

For a more detailed description of the granular structure the term fabric is generally
used. This includes, e.g., the coordination number, i.e. the number of contacts per par-
ticle, the distribution of contact force magnitudes and directions, the distribution of
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contact normals, and the distribution of grain orientations. While these characteristics
definitely depend on the preparation method and influence the mechanical behavior,
their experimental determination is difficult. Oda [134] fixed sand samples by filling
the voids with a resin and analyzed thin slices cut from the sample. Later on, sim-
ilar techniques were combined with the methods of stereology [93] to transform the
2D measurements into a 3D description. Nevertheless, as pointed out by Wang et al.
[174], this transformation might not be accurate enough for the purpose of relating
the fabric to mechanical properties. Recently, 3D measurements were performed using
computed tomography [175, 3|, but due to the huge effort of data evaluation samples
were restricted to grain numbers of the order of 10%2. Thus, despite the fact that fabric
measures are easily determined from DEM samples, no experimental measures exist for
comparison. In conclusion, the generation of an initial sample is a crucial ingredient
of a realistic DEM simulation: Given a particle size distribution, particle geometry,
and bounding volume, the goal is to generate a realistic particle package. Lacking ex-
perimental fabric measures, the key parameter for evaluating the package is the solid
fraction. If furthermore the real grain geometry is only approximated, the solid fraction
itself is not an appropriate measure and should be replaced by the relative density Rp.

A straightforward approach for sample generation is to apply the DEM scheme to
real preparation methods, i.e. to model the falling grains in dry pluviation for example.
In this way, an optimum fit between the real and model fabric is expected. However,
the computational demands of this approach are generally prohibitive. Therefore, other
package generation methods have been developed, which can be split into two classes:
First, purely geometric generation schemes which do not consider the particle dynamics
and, second, dynamic schemes which require the computation of particle interactions
and trajectories. Overviews over geometric schemes are given in, e.g., [63] and [12].
Many schemes of this kind such as [38] have the shortcoming that it is not possible
to specify a particle size distribution. Another problem is that they are less likely to
yield a realistic fabric, since mechanical principles are not considered. This problem is
addressed by Han et al. [74], where loose packages are compressed in a specific direction
to mimic the effect of gravitation. Dynamic schemes usually start from a random loose
package. Then random velocities are assigned to the particles, while either the bounding
volume is shrank [112, 172] or the particles are expanded [54] to reach a close package.

Here a mixture of a geometric and a dynamic scheme is applied. First, a geometric
scheme is used to generate a package with ® =~ 0.5. Then the DEM scheme is applied
to compress the package either under the influence of gravity to mimic the pluviation
process, or by shrinking the bounding volume without gravity to get an isotropic sam-
ple. Within this section only the geometric part will be described, which consists of
three stages.

Particle Generation

Given a polyhedral package space of volume V', the particle geometry and size distribu-
tion, and the intended solid fraction (f, particles are only generated but not placed in
this stage. The superquadric geometry can be specified by, e.g., limiting the maximum
elongation e := max; ; 7;/r; and maximum angularity a := max; |1 —¢;|. For the defini-
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Figure 3.18: a) Package space covered by regular grid. The grid cells are distributed along
the longest grid dimension to cores C* and subdivided into two sub-chunks C? j-
Random parallel addition of particles via algorithm 1.
b) Performance of the random parallel addition algorithm for placing 278 056
superquadrics with a solid fraction of 0.26 using six cores. The fraction of
remaining particles and the number of trials per particle placement are plotted
vs. the number of iterations. The computation time is 943 seconds.

tion of the size distribution the sphere-equivalent radius req is introduced as the radius
of a sphere of identical volume. Then 27, can be chosen equally distributed between
a minimum and maximum size d.;, and d.... Particles are generated with random
parameters until the intended overall particle volume Vp := &V is reached. For the
above geometry and size distribution definitions the generation of a particle starts by
choosing the radius parameters randomly and equally distributed from r; € [1,e] and
the angularity parameters from ¢; € [1 — a, 1+ a]. In the second step, 7, is computed
and a scaling factor s chosen randomly from s € [dmin, @max)/2Teq 1S applied to the
radius parameters. Note that there are various ways to define the geometry and size
distribution and each requires an appropriate particle generation scheme.

Random Parallel Addition

Within this stage the generated particles are placed randomly within the given package
space so that no overlaps occur. Since the computational effort of the algorithm in-
creases drastically for moderate solid fractions, an intermediate solid fraction ® ~ 0.26
is specified. Hence, all particles are first scaled by the common factor s = (@/@)1/3 .
Next, the maximum bounding sphere radius 7.,., of the scaled particles is determined
and a uniform grid of cell size A = 27,,., is defined so that it covers the polyhedral
package space. In the same manner as for the parallel Verlet update scheme described
in section 3.4.3 the grid cells are distributed along the longest grid dimension to the
available cores C' and into two sub-chunks C’;, see figure 3.18(a). Using this partition
of the package space the particles are placed in parallel by algorithm 1. Since the cores
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Algorithm 1 Random parallel addition of superquadric particles.

N, =N // number of remaining (not placed) particles
Ny =0 // overall number of trials
iter =0
while N, > 0 do
random shuffle list of N, particles
distribute N, particles in equisized chunks to n¢ cores C!
ny = max(1000, |V, /20])
Ntr — Ntr + ng N
¢ =1+ (iter mod 2) // test space number
for all C? in parallel do

J=1
for : =1 to n, do
repeat

generate random position z in test space ¢ of C?
until z lies in package space
generate random rotational position T'
place particle j of C* at z, T
if particle j of C not overlaps other particles/boundary then
add particle j to list of placed particles
N, — N, —1
Je—=J+1
end if
end for // ny
end for // end parallel
iter «— iter + 1
end while

place particles in test spaces, which are separated by at least one grid cell plane, over-
laps are excluded. Due to the fixed number of trials ni performed by each core and
the fixed computational effort per trial the load balance is good. The number of trials
is limited in order to get a homogeneous particle density across both test spaces. In
this way, the number of iterations and thus the number of test space alterations is high
enough, see the example in figure 3.18(b) where about 2200 iterations are performed to
place 278 056 superquadrics with a solid fraction of 0.26. It becomes evident how the
performance of the algorithm decreases with increasing solid fraction. While it takes
about 500 iterations to place the initial 90% of the particles, it takes about 1700 iter-
ations to place the remaining 10%. The number of trials required per placed particle
increases nearly linearly to a final value of about 47. Altogether, the algorithm yields
a reasonable performance for solid fractions of about 0.25 — 0.3.
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Figure 3.19: Particle P; enclosed by the tangent planes E; to its nearest neighbors P;.

Tighten Particle Package

Within the last stage the sample is tightened by iteratively translating, rotating, and
expanding the particles. The idea is depicted in figure 3.19. For a particle P; the
distances 0, to its nearest neighbors P; are determined. The aim of translating and
rotating P; is to maximize the minimum distance ¢; = mind; by translating P; in the
direction —ny, or rotating P; around the axis r; X 1. The maximum displacement d,;,,y
or rotation angle Y,y is determined from the condition that the tangent planes E; are
not intersected. Furthermore, they are bounded by user-specified functions 7, (®) and
©(®) through

dmax A min (dmax7 ’Ytra((b) Tmax) )

Pmax min(@maxago(q)» :

The actual values d and ¢ are chosen randomly from the interval [0.25,0.75] of the
maximum values. If the particle is translated, the new distances to the planes £ are
determined from the old ones and the translation vector. From these new distances a
maximum scaling factor s,,.. is determined, which is again bounded by a user defined
function s(®). In the same manner as above the actual scaling factor is chosen randomly
from the interval [0.25 Spax, 0.75 Smax]-

This operation is applied iteratively to all particles in a random order until the
desired volume fraction @ is reached. The probability of the operations translation and
scaling or rotation are specified by a user defined function py,(®). Using a similar con-
cept as for the Verlet update operation in section 3.4.3 the random particle traversal
is performed in parallel, see algorithm 2. Since the particles are traversed in random
order and each particle is processed the same number of times, no anisotropy or inho-
mogenity is introduced by the algorithm. Like for the Verlet update scheme the load
balance depends on the spatial distribution of the particles.

A crucial point of this purely geometric algorithm is to assure that the size distri-
bution of the sample tends to that specified in the first stage. This is accomplished by
choosing the global scaling bound s(®) in a way that the resulting number of iterations
is of the order of several hundreds, since the homogenity of the individual scaling fac-
tors increases with the number of iterations. Figure 3.20 shows the performance of the
algorithm for the example from the second stage. The global bounds i, (®) and s(®)
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Algorithm 2 Iterative tightening of superquadric particle sample.
iter =0
while & < ® do
dyv = Yira(P) rmax + ($(®) — 1) rmax // verlet distance
A =27rpax + dv // grid cell dimension
update grid
update Verlet neighbor lists
for j =1to 2 do
for all C; in parallel do
build random list R’; of particles in grid cells of C?;
for all P; in R’; do
determine distances of nearest neighbors of P;
if rand() < pira(P) then
translate and scale P;
else
rotate P;
end if
end for // R
end for // end parallel
end for //j
iter «— iter + 1
end while
a b
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Figure 3.20: Performance of the tightening algorithm for 278 056 superquadrics on six cores.
a) Global translation and scaling bound (¢(®) = 7/4, pira(P) = 0.5).

b) ® and average number of nearest neighbors vs. iterations.
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Figure 3.21: Particle size distribution in terms of sphere equivalent radius after the initial
generation of particles and after final generation of sample.

were optimized by trial and error. The remaining functions are chosen as ¢(®) = 7 /4
and pya(P) = 0.5. With these parameters it takes about 250 iterations to increase the
solid fraction from 0.26 to 0.55. Using six cores the total computation time is about 3 h.
Finally, figure 3.21 compares the initial and final particle size distribution which nearly
coincide. Hence, the number of iterations resulting from the above set of parameters is
sufficient.

Altogether, the geometric sample generation algorithm yields a solid fraction of
about 0.5 in a reasonable amount of computation time. The generated random samples
are homogeneous, isotropic, and free of contacts. To generate a close package the DEM
scheme is applied with the output of the geometric scheme as initial state, because it
is assumed to produce more realistic fabric properties than a purely geometric scheme.

3.5 Silo Discharge Example

The DEM scheme is validated by means of a laboratory silo discharge experiment.
Since no superquadric experiments are reported in the literature, spherical particles
are used. Choi et al. [32] analyze the velocity profile in a quasi 2D silo using an image
based particle tracking method. The box-shaped silo of size [20 x 2.5 x 90] cm is filled
with soda lime glass beads of slight polydispersity (d = 3+0.1 mm) using a distributed
filling procedure. The rectangular orifice ([16 x 25] mm) at the bottom center is opened
and a steady state flow is allowed to develop before the tracking procedure starts. The
tracking covers the rectangular [20 x 50] cm front view above the orifice at a rate of
125 frames per second for 16.4s. For evaluation of the velocity profile the observation
window is divided into [48 x 48] mm cells used as averaging domains. For a more detailed
description of the data gathering and evaluation see [31, 32].

The elastic parameters of soda lime glass are given in e.g. [102, 64, 87, 117|. The
reported values show little variance and mean values of £ = 71 GPa and v = 0.22. The
mass density is given uniquely as p = 2.5¢/em3, and the friction coefficient of dry soda
lime glass beads has been measured by Ishibashi et al. [86] as u = 0.162. The gravity
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particles DOF time steps At cores computation time
190782 1144692 3 x10° 10us 8 219h

Table 3.2: Simulation details of the silo discharge example.

constant is set to as g = 9.81m/s2. Since the particles in the vicinity of the orifice move
at reasonable velocities, the viscoelastic contact law described in section 3.2 is applied.
The material constant A can be determined by measuring the normal coefficient of
restitution [102, 64, 117] yielding A = 5.05 x 10~®s for the soda lime glass beads. This
corresponds to a restitution coefficient of 0.97 at a relative velocity of 1.18 /s and a
particle size of d = 3.18 mm. The material properties of the glass silo are assumed to be
identical with the glass bead properties. For particle-boundary contacts basically the
same contact formulation is used as for inter-particle contacts whereas the technical
details are postponed to section 4.1.

The particles’ stiffness and size require a time step of the order of At ~ 1 us. For
a total simulation time of the order of 10s this results in a number of time steps of
the order of 10”. Combined with a number of particles of N ~ 2 x 10° this yields a
huge computational effort. However, numerical tests show that the system’s behavior
is not altered significantly by reducing the stiffness of the particles to £ = 0.9 GPa.
This value assures that the overlap corresponding to the maximum contact force at
the silo bottom is less than 1% of the particle radius. In this derivation the average
bottom force is multiplied by a security factor of 10 to account for the fluctuations due
to the force chain microstructure. In order to preserve the dynamic particle behavior
the viscoelastic constant is adopted to A = 2.9 x 1077 s. The stiffness reduction enables
a time step of At = 10 us resulting in 3 x 10° steps for a simulation period of 30s, see
table 3.2 for the simulation details.

The initial sample is generated using the geometric scheme from section 3.4.4 with
particle sizes uniformly distributed in [2.9,3.1] mm and d = 0.5. To account for the
solid fraction of a close package (® ~ 0.6) the box used as package space is enlarged
in the z direction to 1.08 m. In order to get realistic fabric properties the sample is
settled under the influence of gravity using the DEM scheme and the above material
parameters. As the kinetic energy is nearly dissipated, the orifice is opened and the silo
discharge is simulated for 30s writing output at 0.3s intervals, see figure 3.22. After
a short time a steady state flow develops with a mass flow rate of @) = 132.6¢/s. This
corresponds to a deviation of 6% from the experimental flow rate of @) = 141.18/s.
Considering the uncertainties regarding the initial fabric and the container-particle
friction this agreement is satisfactory.

In order to deduce a continuous downward velocity distribution v(x) from the
discrete DEM output a coarse graining scheme is applied. For this purpose the box-
shaped [20 x 2.5 x 50] cm volume above the orifice is divided into a regular grid of
[40 x 1 x 80] linear hexahedrons. An ansatz v" is defined on the hexahedron mesh
and fitted to the discrete DEM results using a volume weighted least square fit. The
details of this approach are postponed to chapter 6. Finally, the velocity profile is
evaluated in the silo mid-plane and averaged over the data points between ¢ = 5s and
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Figure 3.22: Silo example with 190 782 spheres colored according to their initial height.

t = 20s. The resulting profile is compared with the experimental profile from [32] in
figure 3.23(a). There is a good agreement of the maximum velocity at the orifice, of
the velocity gradient around the orifice, and of the run of the contour lines. The DEM
scheme predicts a realistic shape of the stagnant zones at the lower silo corners. For
quantitative comparisons 1D velocity profiles are evaluated at two heights sketched
in the right part of figure 3.23(a). The results are presented in figure 3.23(b). While
there is a close agreement of the profiles in the vicinity of the orifice at z = 9.1d, the
simulation predicts higher downward velocities at the boundaries at z = 29.1d. Note
that this deviation might result to some extent from the different evaluation schemes.
While the DEM data is averaged over the whole depth of the silo, the experimental
image-based particle tracking method is based solely on the particle trajectories at the
front window.
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Comparison of 2D downward velocity profiles from simulation and experiment
[32]. The dashed lines in the right picture of (a) show the positions of evaluation
of the 1D velocity profiles presented in (b).
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Chapter 4

Granular-Structure Interaction

The interaction of granular materials and solid structures plays an important role
in various fields. Regarding industrial processes prominent examples are milling and
mixing devices, conveyer belts, and storage devices like silos, hoppers, and bins. In
geomechanics the interaction occurs at the interface of construction parts with the
surrounding soil such as in pile driving. Another field is the mining industry where solid-
granular interactions occur in excavation processes like in dragline excavators. A proper
numerical model of the interaction can yield a better understanding of the observed
phenomena and might enable an optimization of the processes and devices involved.
Such a model results from the combination of the Finite Element Method (FEM) and
the Discrete Element Method (DEM). While the FEM is the most appropriate method
for modeling solid structures, the DEM is a convenient tool for modeling granular
materials, especially if large discontinuous deformations are involved, which applies to
most of the above examples.

One way of coupling the DEM and the FEM is to consider the discrete particles
as deformable and discretize them with finite elements. Standard FE techniques are
combined with the automatic contact detection schemes and contact models used in
DEM, see e.g. [107, 14, 125, 138, 123, 96|. If the assumption of rigid discrete particles
is appropriate, it is more convenient to discretize only the solid structure via FE and
stick to the classical DEM scheme for modeling the grains, see e.g. [133, 139, 129].
In this case the interaction is modeled through contacts between discrete particles
and the FE surface mesh. Since the focus of this work lies on non-cohesive frictional
granular materials the second approach is followed. An appropriate contact model is
developed in section 4.1. This model at hand, the FE and DE system can be integrated
in time simultaneously using explicit time integration schemes and updating the FE-
DE contact forces after each integration step. The implementation details are given in
section 4.2 and the coupled scheme will be exemplified in section 4.3.

4.1 Contact Model

Within the FEM setting contact is commonly handled by introducing the impenetra-
bility condition via the penalty or Lagrange multiplier method. For the evaluation of

29
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the resulting boundary integrals different methods exist, which are described by e.g.
Laursen [106], Wriggers [181], and Wriggers and Laursen [183]. Since these methods
are designed for contacts of two FE meshes and are burdened by relatively high com-
putational demands, they are not appropriate for the coupled DEM-FEM setting char-
acterized by a huge number of contacts between discrete particles and a FE mesh. In
this case it is more convenient to use simple penalty type models, that are also applied
to resolve the inter-particle contacts in the DEM scheme. Regarding the Hertz-Mindlin
contact model described in section 3.2 the contacting surfaces have to be smooth, pro-
viding curvatures and a unique normal at each point. Generally, FE surfaces do not
fulfill this requirement necessitating a workaround. The first opportunity is to define
a smooth surface based on the surface nodes using e.g. a subdivision technique [56].
However, such methods are burdened with a prohibitive computational effort and do
not fit easily into the automatic contact detection scheme of the DEM. The second
opportunity is to use the original FE surface combined with a special treatment of sit-
uations where particles are in contact with non-smooth parts of the surface, i.e. element
edges or corners. Here the second option is combined with a simplification described
in the following.

In order to enable arbitrary element types in the FE model it is necessary to handle
contacts of particles and arbitrary element surfaces. This, however, requires a huge
implementation effort for the local contact detection since each element type has to be
considered separately. Furthermore, it poses a problem for the global contact detection
algorithm, which requires the element surfaces’ bounding volumes. For higher-order
surfaces such as a nine-node biquadratic surface the bounding volume determination
is not straightforward, because the surface points are no longer restricted to lie within
the convex hull defined by the nodes. To overcome these problems arbitrary element
surfaces are discretized by linear triangles like exemplified in figure 4.1(a). Regarding
contact detection this discretization yields crucial simplifications covered in section
4.2. Regarding the contact model things simplify as well, since only plane triangles
have to be considered. For this reason, boundaries in 3D DEM simulations are often
represented by triangular meshes, see e.g. [83, 97, 35|. In the following, particle related
quantities will be denoted by Greek indices, nodal related quantities by upper-case
Latin indices, and triangle related quantities by lower-case Latin indices. For a contact
of a particle P, and a plane triangle 7; like depicted in figure 4.1(b) the Hertz-Mindlin
contact model described in section 3.2 can be applied right away considering the zero
principal curvatures of the plane. The contact point p, is computed from the triangle
normal n;, cf. appendix A.2. Introducing the triangle plane FE; as

Ei = {m|azn1:sl} with S; ‘= Xy - Ny, Q?[EZ, ||'I’I,Z||:1, (41)
the contact point p; is given as projection of p, onto F;
D, =D, + (i =Py 1) My . (4.2)

The contact force f_, is split in a static equivalent way onto the FE nodes using the
linear shape functions /N;. These are equivalent to the natural coordinates of p, in 7;
AK 1

Nk (p;) := T =34 |(p; — 1) X (5 — )| with ey =1, (4.3)
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Figure 4.1: a) Discretization of a six node quadratic tetraeder surface by four linear triangles.
b) Static equivalent split of particle-triangle contact force onto FE nodes.

where A is the triangle area and ek is the Levi-Civita symbol. Thus, the nodal forces
resulting from the contact ai are given as

fx=—Nk(®;) foi- (4.4)

4.1.1 Non-Smooth Contact

If a particle comes into contact with a non-smooth part of the discretized surface,
the assumptions of the Hertz-Mindlin contact model are no longer fulfilled. Hence, a
simple, heuristic, penalty-type scheme is required, which is not derived from contin-
uum mechanics but nevertheless yields reasonable results in the sense of the following
conditions:

I. If P, penetrates 7; without an edge of 7; intersecting P, (plane contact), the
standard Hertz-Mindlin model should be applied. On the other hand, if P, doesn’t
penetrate 7;, the contact force should vanish.

IT. As a contact pair (P,,7;) evolves from a plane contact to a non-smooth contact
and vice versa, the scheme should yield no force discontinuity, because this would,
first, be an unphysical behavior and, second, lead to numerical problems.

ITI. For an elastic, frictionless impact of a particle on a rigid surface the energy should
be conserved. For a spherical particle the contact force depends solely on its center

position. Then the energy conservation condition is equivalent to a curl free force
field v x f_.(x) = 0.

Additionally, a desirable feature regarding the implementation of the contact model is
that each triangle can be handled separately, which simplifies the contact detection and
parallel processing. In the following, some approaches will be analyzed with respect to
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a: Smooth Surface Patch b: Common Plane

Figure 4.2: a) Smooth surface patch defined by three nodes. At the transition from a plane
to an edge contact the interpenetration distance is discontinuous.
b) Common plane definition for non-penetrating and penetrating objects.

the above conditions and to their computational demands. Since the main problem of
non-smooth contacts is the definition of a contact normal, contact point, and normal
force magnitude, the tangential part is not covered in this section. The above quantities
at hand, the tangential model presented in section 3.2.2 can be applied right away.

Local Smooth Surface Patches

If a particle contacts an edge or a corner, a smooth surface patch can be defined
on the neighboring nodes like depicted in figure 4.2(a). However, like exemplified in
the figure, this approach yields a jump in the interpenetration distance at the tran-
sition from a plane to an edge contact. A quadratic surface patch is defined by three
neighboring nodes. In the moment of transition the interpenetration distance with this
patch is considerably greater than the plane interpenetration resulting in a normal
force discontinuity. The ratio of the plane and the patch interpenetration increases as
the plane interpenetration decreases, i.e. as the materials become stiffer. Therefore, for
stiff materials this approach yields an unphysical behavior or even an unstable explicit
time integration. Furthermore, triangles cannot be processed separately, since surface
patches are defined on nodes of multiple triangles.

Common Plane

The common plane approach was introduced by Cundall [43] to handle contacts be-
tween polyhedrons. For two separated bodies the common plane is defined as the plane
that bisects the space between the bodies and maximizes their minimum distance to the
plane. Similarly, for two penetrating bodies the plane is defined as the plane that mini-
mizes the maximum interpenetration, see figure 4.2(b). For a superquadric particle and
the triangulated surface the common plane has to be determined by an iterative scheme
similar to that used for the inter-particle contacts. Since the plane varies smoothly with
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a: Contact Potential b: Integration of Particle Potentials

Figure 4.3: a) Non-smooth contact described via a contact potential W (A) defined in terms
of the interpenetration area A(p,x) (volume V in 3D).
b) Each contact partner is described via a potential function ¢ that vanishes on
the boundary and increases monotonically in direction of the “center”.

the particle and nodal positions, conditions I and IT are fulfilled, while the energy con-
dition III will not be fulfilled in general. Furthermore, the surface triangles cannot be
processed separately, since the definition of the common plane is based on adjacent
triangles.

Contact Potential

Feng and Owen [62] use a contact energy potential W to handle contacts between
polygonal particles. Considering one contact partner as fixed, they define W (A) as a
function of the interpenetration area A, which in turn is a smooth function of the free
particle’s position (x, ), see figure 4.3(a). The contact force and torque are defined as
partial derivatives of the contact potential with respect to the position

oW O 9A oW O 9A

fi=

or oA ox’ T 8p  0A 9p

Due to the definition via a potential this scheme fulfills the energy condition III. Addi-
tionally, using the interpenetration area A (or volume V' in 3D) to define the potential
yields a continuous force. However, in order to fulfill condition I, W has to be chosen so
that its derivative yields the Hertzian force for plane contacts. Considering the rather
intricate geometrical derivations this is an awkward task that cannot be solved by
a formulation W (V') solely in terms of the interpenetration volume. Furthermore, the
computation of V' and its derivatives for 3D superquadrics and the triangulated surface
are computationally demanding and the triangles cannot be processed separately.
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Integration of Particle Potentials

Another scheme that yields conservative contact forces has been proposed by Munjiza
[123]. Tt is based on the introduction of potential functions ¢ for each contact partner.
These are defined such that ¢ vanishes on the surface and increases monotonically to-
wards the center, see figure 4.3(b). Using the inside-outside function (3.1) the potential
of a superquadric P, reads

Yolx) :=1—F,(x) .

For triangular surface elements 7; the distance to the plane E; normalized by some
characteristic length [ can be used

1

For the contact pair (P,, 7;) let pq; := vo—@; and V,,; the intersection volume specified
below. The contact force is defined as

£ = [amadenav= [ punda,
Vai

F(Vai)

where I'(V,;) is the boundary of V,,; and m is the outward unit normal to I'(V,;). To
define the intersection volume V,; some volume has to be assigned to the triangular
surfaces 7;, see figure 4.3(b). This might be accomplished via the original FE mesh.
Like the contact potential scheme this scheme yields a conservative smooth force ful-
filling conditions II and III. Triangles can be processed separately, since the potentials
are defined separately for each triangle. However, there is no feasible way of defining
the potentials in a way that the Hertzian solution is recovered for a plane contact
so that condition T would be fulfilled. Furthermore, the numerical evaluation of the
boundary integral with a reasonable accuracy is computationally demanding for 3D
superquadrics.

Weighted Contact Forces

A straightforward heuristic approach to non-smooth contacts is to use weight functions
in combination with the standard contact model. Let P, be in contact with the edge
connecting 7; and 7;. The normal contact force can be written as

f=wifi+wf;. (4.5)

The performance of this scheme obviously depends on the definition of the weight
functions w;. To fulfill conditions I and II the w; must evolve continuously from w; = 0 if
not in contact to w; = 1 for a plane contact. A possible choice of tolerable computational
cost proposed by Han et al. [73] is w; := A;/A;, where A; is the intersection area of P,
and 7;, and A; is the intersection area of P, and E;, see figure 4.6(a). In general, it is
A; < A;, for a plane contact A; = A;, and for no contact A; = 0'. Both intersection

1FOI“ Ai =0 set w; = 0.
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Figure 4.4: a) Edge contact of a spherical particle and two perpendicular triangles.
b) Coordinate transformation for the force field visualization.

areas are smooth functions of the particle and nodal positions. The algorithm applied
for their determination is described in appendix A.4.

The energy conservation properties are analyzed via the example of a spherical
particle and a perpendicular edge shown in figure 4.4(a). Due to the symmetry the
normal contact force field f(x) depends only on the x and y center coordinate and
has no z component. For visualization a coordinate transformation depicted in figure
4.4(b) is used, where v := 0pay /7 is the ratio of the maximum interpenetration distance
and the radius. The transformation reads

r<0ANy>0: {=ux, 7721—%(1—%),
r>0Ay>0: E=1—5-(1-2), n=1-5(1-1%),
r>0Ay<0: E=1—5-(1-2), n=y.

Using this transformation and 0., = 1072 the resulting force field is shown in figure
4.5(a). The units are dropped for convenience. The magnitudes of the divergence and
curl of the force field are plotted in figure 4.5(b). For a conservative force field the
curl vanishes. This is clearly not the case, especially in the regions where the particle
surface configuration is close to a plane contact. In the regions of plane contact at
both ends of the strip the curl vanishes. The divergence is plotted for comparison of
the order of magnitude. Numerical experiments show that this approach can result in
huge spurious energy generation and thus should not be applied. In general, using an
approach of type (4.5) the curl cannot vanish due to the conditions I and II. Tt is

VX f=Vx (wi fi+w; fj) =0 for arbitrary f;, f;

S VX (w f;)=w; Vx f,+gradw; x f, =0

S gradw; X f; =0 gradw; xmn; =0.
Hence, the weight function has to be constant in any direction parallel to the triangle
plane, which is clearly incompatible with the conditions I and II.
Interpolated Contact Force

An enhancement of the above scheme is depicted in figure 4.6(a). In addition to the
intersection areas A and A, the center ¢ of A is determined. Using this, two inter-



66 CHAPTER 4. GRANULAR-STRUCTURE INTERACTION

a b
1
08 [
_ fleurl(®)|| ——
I 12 ldiv()]
0.6 [ i b
i 08 F
0.4 )
< 0.6 ','5"'
iz
02 04T
LA
02 e
- } OIS =" -0.2
0 0 /"//‘%ﬁ,‘f&%ﬁ“
i =02
02 506"
02 [ n 0811
[
1
0 01 02 03 04 05 06 07
c d
1
08 [
06 [
04
fey
02
ol
02f

0 0005 0.01 0015 0.02 0025 0.03 0.035

Figure 4.5: Normal contact force field for example shown in figure 4.4(a) using weighted con-
tact force scheme (a) and interpolated contact force scheme (c). Corresponding
magnitudes of the divergence and curl (b) and (d).

penetrations and corresponding normal directions are defined. First, the plane normal
n and interpenetration 0 and, second, an intersection interpenetration $ and normal
n associated with A and é. For superquadrics 7 is defined via the gradient of the
inside-outside function

gradF'|z
lgrad F'la[|

6 is defined as the distance of & to the particle surface in —n direction, cf. figure
4.6(a). The overall normal force is interpolated between an intersection based and a
plane based part. For the interpolation the angle o between the normal directions is
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Figure 4.6: a) Particle-triangle () and particle-plane (o) intersection areas, normals, and
interpenetration distances as well as center ¢ of A.
b) Weight function for oy, = 10° and ¢ = 1073,

introduced via cos v := 12 - n. The force is chosen as
# A 3/2 33/2 =~
f=~F )\(a)zé n+(1—-XNa)d’*n| , (4.6)

where A(«a) is a weight function, which yields a smooth transition from the plane contact
to an edge contact, and v and E* are defined in section 3.2.1. The weight function is
defined as

1 ,  tanh (1 —2e¢)

AMa) = 5 [tanh(q (cosa — cosa,y,)) + 1] with ¢ := rp——

where «,, is the angle of equal weight (A(a,,) = 1/2) and € is a small deviation from
unity, i.e. A(0) = 1 — e. Figure 4.6(b) shows the weight function for «,, = 10° and
€ = 1073, The transition from \ ~ 1 to A ~ 0 takes place in the relatively narrow range
between 5 and 15 degrees. The force field for the example depicted in figure 4.4(a)
is plotted in figure 4.5(c) and its divergence and curl in figure 4.5(d). Compared to
the approach expressed in (4.5) the maximum curl magnitude is reduced by a factor
of 20. As a result, the spurious energy generation is also reduced to an admissible
value. Furthermore, for the frequent case of a particle sliding over coplanar triangles
the scheme yields a constant normal force for reasonable interpenetration distances.
This is due to the fact that in this case A &~ 1 and the individual A sum up to A.
Additionally, the scheme allows to process the triangles separately.

4.2 Implementation

Due to the surface discretization described in section 4.1 the implementation of the
coupled DEM-FEM scheme requires no major adaption of the DEM implementation
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outlined in section 3.4. A general overview of the coupled solution strategy is given by
Owen et al. [139]. The DE and FE system are integrated in time using explicit integra-
tion schemes with identical time steps. If not stated otherwise, the central difference
method described in section 2.2.3 is applied for the integration of the FE equations. For
contact detection the triangular surface elements are treated like DE particles meaning
that each triangle 7; holds a Verlet neighbor list. For the evaluation of the Verlet neigh-
bor criterion between 7; and a particle P, it is not useful to enclose 7; by its bounding
sphere. This would yield a severe over-reporting of neighbors, if the size of 7; is much
larger than the typical particle size. Thus, the distance of x, and 7Z; is required. The
projection of &, onto Fj; is given by

Loy = Lo + (Si —La nl) n;. (47)

If x,; € T;, the distance is ||x, ; —®,||. The condition x,; € 7; is checked by computing
the natural coordinates of x,; in 7; like stated in equation (4.3). Using these the
condition is expressed as

NK<wa,i) Z OVK e 7; <~ L, c 7; . (48)

If ¢, ; ¢ 7;, the minimum distance is given as minimum of the distances of «, and the
triangle edges, which are easily derived as solutions of quadratic equations. Hence, the
Verlet neighbor criterion is expressed as

distance(x,, 7;) < 3™ +dy = add « to list 7, (4.9)

where the above procedure is abbreviated as distance function. For an efficient update
of the neighbor lists the regular grid from the inter-particle update is used. For each
triangle 7; the set of grid cells intersected by 7; is determined. Then all particles within
the intersected cells and their adjacent cells are checked for the above criterion. The
Verlet update check must take into account the motion of the triangulated surface. Since
for a linear triangle all points lie in the convex hull of the corner nodes, the maximum
displacement is bounded by the maximum corner node displacement. Hence, only the
nodes have to be checked for the update criterion

d
|} — x| > ?V for any I € N° = update lists, (4.10)

where N is the set of surface nodes. Using a spatial sorting of the triangular surfaces
the traversal of the triangle-particle contacts is parallelized via the same scheme applied
for the inter-particle contacts.

The implementation is realized by coupling the C++ DEM code with the Fortran
FEM code FEAP (Finite Element Analysis Package) developed by Taylor [159]. A
slim Fortran interface subroutine allows to call standard high-level FEAP subroutines
from the C++ code and pass the required input data. The surface related contact force
calculations and neighbor updates are performed within the in-house C++ code. For
this purpose the required FE surface node data is accessed directly via C++ pointers
pointing at the appropriate FEAP data arrays. In this way, frequent expensive data
exchange operations are prevented. Furthermore, the coupled simulations can exploit
all capabilities provided by FEAP, like e.g. various element types, material models,
integration schemes, and nonlinear large deformation analyses.
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Figure 4.7: a) Elastic beam hit lateral by a sphere of similar mass.
b) Comparison of numerical and Timoshenko’s analytical solution.

4.3 Numerical Examples

The coupled scheme is tested by four numerical examples. The correct implementa-
tion is verified via two small-scale problems with analytical solutions. Afterwards, the
scheme’s capability to model real granular-solid interactions is exemplified via a rubber-
block on sand example and a cylindrical triaxial test example.

4.3.1 Lateral Beam-Sphere Impact

The implementation of the coupled time integration is checked by considering an elastic
beam hit lateral by a sphere of similar mass like depicted in figure 4.7(a). A solution of
this problem was derived by Timoshenko [164]. Based on an eigenmode analysis of the
beam and the Hertzian contact theory he computed the displacement of the beam and
the sphere as well as the contact force during the impact. Both contact partners are
made of steel and the material parameters are listed in figure 4.7(a). For the DEM-FEM
simulation the beam is discretized by 10 equi-sized quadratic hexahedral elements along
the beam axis. Linear elastic material behavior and small deformations are assumed
and a time step of At = 0.6 us is chosen. No gravity is considered in this problem. The
resultant displacements and contact force are compared to Timoshenko’s solution in
figure 4.7(b). The numerical solution agrees with the analytical solution. The impact
is characterized by two shorter impacts at the beginning and at ¢t ~ 1.5ms. This is
due to the monotonic sphere motion and the oscillating beam motion. After the second
impact the sphere departs with a velocity of v = 0.35<m/s and is not hit by the beam
again.
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Figure 4.8: a) Discretization of plane (pl) and brachistochrone (br) curve.
b) Analytical and numerical solution for both curves.

4.3.2 Brachistochrone Curve

To test the non-smooth contact model described in section 4.1.1 the well-known brachis-
tochrone problem is considered. Given two points A and B the brachistochrone curve
is the curve of fastest descent, i.e. the curve connecting A and B that is covered in the
least time by a body that starts from rest at A and moves along the curve to B under
the action of gravity and without friction. The most famous mathematicians of the 17th
century showed that this curve is a cycloid. Within this example the distance of the end
points is Az = 20 cm in horizontal direction and Az = 10 cm in the vertical direction.
The points are connected by a plane and the brachistochrone curve, whose discretiza-
tions are plotted in figure 4.8(a). Both curves are considered rigid and frictionless. The
material parameters of the elastic spheres of size r = 1cm are = 0.1 GPa , v = 0.3,
p = 18&/em3, and A = 10 us. The gravity constant is chosen as g = 9.81 m/s2 and the time
step as At = 1 pus. The computed motions are compared to the analytical solutions
in figure 4.8(b). For the plane curve the solutions agree with a maximum coordinate
deviation of less than 5 um. For the brachistochrone curve the agreement is worse with
a maximum deviation in the z coordinate of about 0.7 cm. This is due to the fact that
in contrast to the plane curve the brachistochrone curve cannot be represented exactly
via plane triangles. Nevertheless, the results for the plane curve show that the contact
model yields smooth contact forces as the particle slides across edges between adjacent
triangles.

4.3.3 Rubber Block on Sand

The coupled scheme is used to model a rubber block pulled over a dry sand sample. The
geometry of the rubber block is given in figure 4.9(a). It consists of a stiffer top-layer
and a notched rubber body. The whole body is discretized by 1480 quadratic hexahedral
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Figure 4.9: Geometry (a) and surface discretization (b) of rubber block. The colored region
corresponds to one quadratic hexahedral element.
¢) Normal pressure distribution in contact surface.

elements and the corresponding surface discretization is shown in figure 4.9(b). The top
layer is modeled by a Neo-Hookean material model with the material parameters £ =
94 MPa, v = 0.3, and p = 3&/em3. For the rubber body a Mooney-Rivlin material model
is applied using the parameters £ = 9.4 MPa, v = 0.41, ¢ = 0.05, and p = 0.88/cm?
[188]. The sand is represented by 31763 superquadric particles whose bounding radii
vary between 0.3 mm and 0.8 mm and whose angularity parameters are chosen equally
distributed from [0.6,1.2], cf. section 5.2. The initial particle package was generated
using the geometric sample generation scheme until ® = 0.5 and a subsequent particle
settlement under gravity. The material parameters along with simulation parameters
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E v p A UDEDE [!DE-FE g At
50GPa 0.3 2.558/em3 200us  0.24 1 9.81m/>  0.08 us

Table 4.1: DE material and simulation parameters for the rubber block example.

are listed in table 4.1. Note that the chosen damping constant yields a restitution
coefficient of 0.96 for a relative velocity of v = 1m/s.

The rubber block is pressed with a constant pressure of 250kPa onto the sand
sample and dragged for 4.8 ms with a constant velocity of 30k m/h in the horizontal x
direction. The simulation details are listed in table 4.2. Figure 4.9(c) shows the rubber
block’s surface colored according to the normal pressure, which is computed from the
nodal contact forces, triangle normals, and triangle areas. Initially, a smooth pressure
distribution evolves over the contact surface. As the particles are dragged with the
rubber block, pressure concentrations are initiated at the front, where the pressure
reaches about the tenfold of the top-pressure. As the block is dragged further along,
the concentrations move backwards. Meanwhile, particles fill up the notch and dam
up in front of the block. Note that the particle space is bounded by a rigid box not
shown in the figure, and that this is the reason that the particles do not overflow the
block at the end of the simulation. Altogether, the results exemplify the capabilities of
the coupled scheme in the large deformation setting and with superquadric particles.
Again, the non-smooth contact model yields smooth forces for edge contacts, which
arise frequently as the block is dragged over the sand grains.

4.3.4 Triaxial Test on Glass Beads

The coupled scheme is applied to laboratory triaxial tests on glass beads performed by
Alshibli and Roussel [4]. Within these tests a cylindrical sample of dry, spherical soda
lime glass beads is enclosed by a rubber membrane around the perimeter and by two
metal plates at the top and bottom, cf. figure 4.10(a). A constant lateral pressure is
applied to the membrane. The sample is compressed slowly by the metal plates mea-
suring the resultant force and the volume change inside the membrane. By relating the
measured axial to the constant lateral pressure the shearing resistance of the sample is
determined. Alshibli and Roussel [4] used different bead size distributions, two of which
are modeled here and given as (L : d € [3.3,3.6)mm) and (M : d € [1.55,1.85)mm). The
material parameters of the glass beads are provided in the literature as £ = 63 GPa,
v = 0.23, p = 2.55¢/em® and p = 0.16. Since the experiments are performed under
quasi-static conditions, the critical damping model with ( = 0.9 is applied. The fric-
tion coefficient between the rigid plates and the particles is chosen as ppg.rig = 0.1 and
between the rubber and the particles as pupg.rg = 0.2. The simulations are performed

particles elements nodes DOF  time steps cores computation time
31763 1480 17974 244500 60 000 8 5.9h

Table 4.2: Simulation details of rubber block example.
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14 cm

Figure 4.10: a) Triaxial sample (M) with end plates and triangulated membrane.
b) Sample at 25% compression shows bulging deformation.

under gravity g = 9.81m/s2,

The rubber membrane is modeled using a 4-node membrane element introduced by
Gruttmann and Taylor [72]. The element is applicable for large elastic deformations
and incompressible material. To model the rubber material a three-term Ogden model
[135] is applied with parameters chosen according to [135] and listed in table 4.3. These
parameters yield a small strain elastic modulus of £ = 3 u = 1.5 MPa. The membrane
thickness is chosen as 0.3 mm. In order to enable larger time steps the density is scaled
by a factor of about five to p = 58/cm?.

As already noted in section 3.4.4 an important aspect regarding the bulk mechanical
behavior of a particle sample is the way of preparation. In the experiments the rubber
membrane is stretched around a mould and a vacuum is applied. The beads are filled
into the mould by four layers and after each layer the sample is tapped gently with
a plastic rod. When the mould is filled it is placed between the end platens and the
membrane is fixed to the platens. Finally, the mould is released, a lateral pressure of
[25, 100, 250, 400] kPa is applied, and the sample is compressed at a rate of 0.5 mm/min.

The above preparation procedure is replaced by the geometric generation scheme
with a rigid cylinder and ® = 0.5. Afterwards, the cylinder is shrunk until an aver-
age hydrostatic pressure of p = 1kPa is reached. For this purpose an adaptive stress
controlled algorithm is applied which is described in detail in section 5.1.3. Next, the
rigid cylinder is replaced by the FE membrane, the lateral pressure is applied, and the

H1 (€3] M2 (&%) M3 a3
1491 p 1.3 0.003p 5 —0.0237Tp -2

Table 4.3: Parameters of three-term Ogden model with p = 0.5 MPa.
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particles elements nodes DOF  time steps At, us cores comp. time
L 15014 192 221 90747 7594734  0.158 8 16.62 h
M 125184 192 221 751767 7503167 0.06 8 113.71h

Table 4.4: Simulation details for triaxial tests at o1 = —100kPa.

sample is compressed via the rigid end plates.

Regarding the compression rate a typical problem of quasi-static DEM simulations
is the simulation time. Within the laboratory experiments the deformation rate is
chosen as ¢ = —5.95 x 1075 1/s. For a critical time step of At ~ 0.1 us and a maximum
compression of 25% this yields a number of time steps of about 10, which is not
feasible. In order to determine the influence of the deformation rate on the resulting
stress-strain behavior the triaxial test is repeated with different values of ¢. To quantify
the system’s dynamics da Cruz et al. [49] introduce the inertial parameter

Lo /m
‘[::|€| d_pa

where m is the typical particle mass, d the typical particle size, and p the hydrostatic
pressure. The static limit is given by I — 0, and Agnolin and Roux [2| showed that the
quasi-static regime is given approximately by I < 1075. The triaxial test is repeated
with compression rates corresponding to I = 1075, I =5 x 1077, and I = 10~". Since
the results show no significant differences, I = 107% is used in the following, which
corresponds to about 107 time steps. Note that in the Hertzian contact model the
contact stiffness is not constant but depends on the contact force. Hence, a higher
hydrostatic pressure results in larger average contact forces, higher average contact
stiffnesses, and thus a smaller critical time step. On the other hand, for a specified
inertial parameter and final compression, a higher hydrostatic pressure allows a higher
deformation rate and therefore a shorter simulation time. The simulation details of the
01 = —100 kPa tests are given in table 4.4.

Figure 4.10(b) shows the bulging deformation mode of the cylindrical sample at 25%
axial compression which agrees with the experimental observations made by Alshibli
and Roussel [4]. No shear band formation is observed which is a well-known source of
softening in triaxial tests on granular materials that, however, is induced by imperfect
boundary conditions, cf. [58]. For the evaluation of the simulations the axial stress is
derived from the resultant forces on the end platens. Furthermore, the solid fraction is
determined from the volume inside the membrane and the axial compression strain from
the cylinder height. The results are compared with the experimental values in figure
4.11. The results for both size distributions are very similar. The principal stress ratio,
i.e. the axial stress divided by the constant lateral stress, increases until a maximum
value of about 2.5 at about 3% compression. From there on the ratio decays monoton-
ically until the final compression. The deformation is accompanied by dilation, i.e. an
increase of the sample volume corresponding to a decrease in the solid fraction. The
numerical stress results deviate from the experimental results to a maximum of about
10%. The decrease in solid fraction, however, is underestimated by the DE-FE model.
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Figure 4.11: Principal stress ratio (a) and solid fraction (b) vs. axial strain.

While in the experiments the final solid fraction is ® ~ 0.58, the model predicts an ini-
tial decrease to ® = 0.6 from where ® is constant. Another noticeable difference is the
missing of kinks shown by some of the experimental curves. According to Alshibli and
Roussel [4] these are due to the sudden rearrangement of grains and the corresponding
reorganization of the force chains within the sample. The observed deviations might
be due to some uncertainties in the DE-FE model. First, the real sample preparation
might yield a different package than the numerical approach. Although there is a good
agreement of the initial solid fraction, the fabric inside the sample might be different.
Second, no details about the rubber membrane are provided in [4], so that reasonable
values for the material parameters, thickness, and initial deformation have to be chosen.
The same holds true for the particle-membrane and particle-platen friction coefficients.
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Chapter 5

Homogenization

Within this chapter the effective behavior of the particle model proposed in chapter 3
is derived via a homogenization scheme. This is necessary in order to

e compare the discrete model’s behavior to that of real granular materials deter-
mined via laboratory tests and

e fit a continuum model, which will be applied in the two-scale approach proposed
in chapter 6.

In the following particle-scale quantities are denoted as microscopic quantities. On
the other hand, quantities related to a body consisting of a huge number of particles
and unfilled voids are denoted as macroscopic quantities. In general, two kinds of
homogenization schemes have been proposed for granular materials. First, schemes that
are based on discrete particle-scale models of statistically representative volumes under
specific boundary conditions. The effective behavior is determined by the numerical
evaluation of volume averaging theorems, which transform the discrete results in terms
of particle trajectories and contact forces into a continuous description in terms of
stresses and strains. The main problems of this approach are the proper application of
boundary conditions and the computational cost of the required simulations. Anyway,
there is a huge body of results obtained in this way, see e.g. [161, 136, 160, 9, 155, 147,
10, 8, 162|. The second kind are analytical homogenization schemes which are based
on additional rigorous simplifications of the microstructural behavior. These additional
simplifications of, e.g., the relation between the macro- and particle-scale deformation
or the distribution of contact normals, enable the analytical derivation of a macroscopic
constitutive equation, see e.g. [33, 27, 137].

Since no additional simplifications besides those inherent to the DEM should enter
the homogenization process, a scheme of the first kind is applied here. This scheme
is characterized by a periodic, rectangular hexahedral unit cell, which allows the ap-
plication of arbitrary triaxial boundary conditions. It is covered in section 5.1. For
validation the particle-scale parameters are adapted to a real granular material in sec-
tion 5.2. Using these parameters the homogenization scheme is applied and the results
are presented in section 5.3. Finally, the parameters of an elasto-plastic constitutive
equation are fitted to the effective behavior in section 5.4.

77
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5.1 Periodic Triaxial Test Methodology

The starting point of the homogenization process is the introduction of a statistically
representative volume element (RVE). The RVE serves as averaging volume to transfer
the discrete DEM results into a continuous description in terms of stresses and strains.
Regarding the size of the RVE the first precondition for the homogenization approach
to be meaningful is that the RVE R is much smaller than the typical period over which
the macroscopic deformation field varies. In this way, the behavior of R represents the
material behavior at a specific material point inside the macroscopic body. Furthermore,
for R to be statistically representative, it must be much larger than the size of the
material heterogeneities, which for granular materials is the particle size. Denoting the
characteristic size of the macroscopic body by D, that of the RVE by d, and the average
particle size by 0 the above preconditions can be summarized as the scale separation
argument

D>d>§. (5.1)

Obviously, the computational effort of the homogenization procedure increases with the
size of R. Hence, in practice an ensemble of randomly generated RVEs is typically used,
and the RVE size is considered as sufficient if the variation between the different RVE
realizations is below a specific tolerance. A crucial point regarding the homogenization
of granular materials is the size of the material heterogeneities. Subject to the boundary
conditions granular materials tend to develop localizations of deformations in shear
bands running through the sample. In this case the scale separation d > ¢ is no longer
fulfilled. Hence, the boundary conditions must be chosen in a way to minimize the
probability of localizations.

5.1.1 Periodic Rectangular Hexahedral RVE

A problem of homogenization schemes based on discrete particle models is the proper
definition of an RVE and its boundary, which enables the application of arbitrary
boundary conditions in a convenient way. A simple approach is to enclose a rectangu-
lar hexahedral particle sample by rigid walls, see e.g. [147, 10|. By controlling the wall
positions strains can be applied. However, the application of stresses is not straight-
forward and due to the rigidity the impact of spurious boundary effects is expected to
be rather high. These problems are reduced by approaches that emulate the flexible
rubber membrane used in standard laboratory triaxial tests on granular materials, see
e.g. [45, 16, 99]. Here boundary particles are connected by lines in 2D or triangles in
3D and resultant boundary forces are derived by applying a specified pressure on these
boundary segments. While enabling the application of arbitrary stresses, this approach
yields problems if, due to the deformation, interior particles become boundary particles
and vice versa. An approach without spurious boundary effects defines the RVE as a
subset of particles inside a larger sample, so that the RVE is completely surrounded
by particles, see e.g. [60, 50] in 2D and [176] in 3D. However, within this approach
it is not possible to exactly specify boundary conditions on the RVE. Furthermore,
the definition of the RVE boundary is difficult and might need to be updated during
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Figure 5.1: a) Periodic RVE with particle Pz and corresponding ghost particle Gg(n). Each
boundary contact exists twice on opposite sides of the unit cell.
b) 3D RVE with ghost particles.

the deformation. Another approach, which works without any artificial boundary, is
to use periodic particle samples where particles at opposite boundaries are in contact.
This scheme is most often used in combination with rectangular hexahedral samples
[44, 161, 136, 160, 137, 9, 155, 8, 162] but has also been used with e.g. parallelepiped
samples in 2D [120] and cylindrical samples in 3D [40]. Here the periodic approach
using rectangular hexahedral samples is applied. This scheme yields simple expressions
for the average strains and stresses and allows the precise application of arbitrary tri-
axial strain, stress, or mixed boundary conditions. In the remaining of this section the
periodic, rectangular hexahedral RVEs and corresponding quantities will be introduced.

The RVE R is defined as the rectangular hexahedral domain with the dimensions
L;, see figure 5.1(a). All particle centers are restricted to lie in R, and R is considered
to be a unit cell of a periodic sample. Consequently, a particle whose center leaves R
on one side is re-entered on the opposite side. Furthermore, regarding the boundary
contacts, one can copy R as a unit cell to all 26 neighbor cells. Obviously, only the
particles close to the boundary are contact candidates. Furthermore, each boundary
contact exists twice at opposite sides of R. In the implementation this is handled by
ghost particles G, which are copies of the particles P, inside R displaced by unit cell
displacement vectors d(n) with

3
d(n) = > n;Lie; with n;€{-1,0,1}. (5.2)

i=1

Of course, only those ghost particles need to be considered which are in contact with
a particle inside R. Furthermore, to account for the fact that each boundary contact
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exists twice, the neighbor displacement vectors n are restricted to the set N'" of 13
vectors

neNt = {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1),
(1,—1,0), (1,0,—-1), (0,1,—1), (1,1,-1), (1,=1,1), (=1,1,1)}.

Figure 5.1(b) shows an RVE with corresponding ghost particles. Within the Verlet list
concept the ghost particles are treated like real particles. The set of ghost particles
is updated when the Verlet lists are updated. At the same time particles which left
the RVE on one side are re-entered at the opposite side. Contact forces from pairs
(Gs, Pa) are applied to the real particles P, and Py like depicted in figure 5.1(a). The
real particle states are updated by the time integration scheme. Afterwards, the ghost
particle states are updated using the displacement vectors d(n).

5.1.2 Average Stresses and Strains

The average stress within a granular medium can be derived from the virtual work
principle or from statics, see the work by Bardet and Vardoulakis [17] and the references
cited therein. Depending on the particular definition of the RVE boundary and on
the existence of contact torques, the resulting Cauchy stress tensor might be either
symmetric or non-symmetric and accompanied by a couple stress. While the latter
is frequently used to motivate enhanced continua for the macroscopic description of
granular materials, the validity of either result is a controversial matter, see e.g. [98, 11,
18,101, 19, 60, 28, 66, 70]. Nevertheless, it is a commonly agreed fact that, independent
of the conditions quoted above, any unsymmetric part of the Cauchy stress tensor
becomes negligible for a good scale separation, i.e. an RVE consisting of a huge number
of particles. Here the derivation from statics without contact torques is applied, which
yields the average Cauchy stress tensor [17]

(o) = % > @@ fop - (5.3)

aBeB

V' = L Ly L3 is the RVE volume, B is the set of boundary contacts, &,z is the contact
point, and f 5 is the contact force acting on the particle inside the averaging volume.
The symmetry of expression (5.3) follows from the equilibrium of torques with respect
to the origin. Due to the periodicity B consists only of particle-ghost contacts (Gg, P.,).
Each of these contacts appears twice on opposite sides of the RVE. Hence, the above
expression simplifies to

@) = 5 3 (%05 For t (@5 — d) © ()] (5.4
apeBt
1
= Va%d(m@fag, (5.5)

where BT is the set of contacts between real particles and ghost particles. In contrast
to the stress definition the average strain definition requires the introduction of a



5.1. PERIODIC TRIAXIAL TEST METHODOLOGY 81

€3

s Ly i

€1

Figure 5.2: Application of stress boundary conditions. While the inner faces are fixed the
outer faces are considered as walls loaded by the RVE averaged principal stress
(0;) and the applied principal stress o;.

reference configuration. Hence, the RVE dimensions L;(t) are expressed as functions of
the simulation time ¢ and the reference configuration is defined as the configuration at
t = ty. Then the volume averaged principal engineering strains are given as

Li(t) — Li(to)

(5.6)

5.1.3 Application of Boundary Conditions

Boundary conditions are applied by varying the RVE dimensions L;. In this way arbi-
trary strain paths ¢;(t) can be specified. However, to model standard tests on granular
materials like the triaxial test, stress boundary conditions are required. For this pur-
pose an adaptive dimension control scheme similar to that proposed by Cundall [42]
is used. The inner boundary faces of the RVE are fixed and the outer faces are con-
sidered as walls of constant thickness ¢, and density p, see figure 5.2. Note that the
prospect of walls is only used to motivate the following scheme and no particle-wall
contacts whatsoever are introduced. The inner side of the walls is loaded by the RVE
average stress (o;)(t), while on the outer side a user specified stress o;(t) is applied.
The equation of motion of a wall reads

plo Aibs = A (00— (07)) < gzi—@—@». (5.7)

w

Using this, the RVE dimensions L; can be integrated in time via an explicit integration
scheme. However, in order to simulate quasi-static tests it is necessary to control the
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rate of deformation of the RVE. The dynamics are quantified through the inertial
parameter [ introduced in section 4.3.4 and repeated here for convenience

m is the average particle mass, d the average particle diameter, and p the pressure
inside the sample. Hence, for quasi-static tests the stress o;(t) will be controlled by
specifying a target stress ¢; and a corresponding inertial parameter /. This yields the
strain rate

d
b= 142
m
where (p) is the RVE average pressure. Specifying an approximate elastic modulus
for the sample the evolution equation and discrete update formula for the applied stress

are given by

Together with equation (5.7) this states the stress controlled adaptive dimension control
scheme. To reduce oscillations in the wall movement it is useful to include a damping
term in equation (5.7)

L;, 5.10
ptw ptw Lz ( )

so that ¢ = 1 yields a critically damped system. As typical control parameters the
wall density p is chosen as the particle density and the thickness ¢,, as a small fraction
of the average particle radius t,, ~ 10727. The damping is set to ¢ = 0.1 and the
elasticity is chosen as EF = 0.1 GPa for the tests reported in this chapter. The RVE
dimensions and dimension velocities are updated in each time step until the averaged
principal stress (o;) reaches the target stress ;. Each dimension is controlled separately
so that it is possible to use strain controlled boundary conditions in one direction and
stress controlled in another. Furthermore, it is possible to switch the type of boundary
condition during the simulation.

5.2 Adaptation of DEM Parameters

In order to model a non-cohesive frictional granular material the DEM parameters need
to be adapted to the specific material. For this purpose Leighton Buzzard sand size
fraction B is chosen for the following reasons:

e The grain shape is categorized as rounded to sub-rounded. This grain shape can
be represented more accurately by superquadrics than angular grains.
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ref. P Ppin - Pmax  dio dso deo dGO/dlo shape

8/cm3 mm mm mm
[95] 2.65 0.57 0.66 rounded - sub-rounded
[113] 2.65 0.56 0.66 0.64 0.78 0.81 1.27 rounded
[148] 2.65 0.56 0.68 0.8 1.3 sub-rounded - sub-angular
[177] 2.65 0.56 0.66 0.84 rounded

Table 5.1: Parameters of Leighton Buzzard sand fraction B from different references.

e Leighton Buzzard sand is a silica sand and the grains show a high resistance
against crushing. This is favorable since particle breakage is not considered in
the DEM applied here.

e Leighton Buzzard sand size fraction B is widely used in research for laboratory
testing. Hence, sufficient reference data exists for validation.

e The grain size distribution lies in the narrow range [0.6 mm, 1.18 mm]|. The small
ratio of maximum to minimum particle size is favorable for the performance of
the DEM scheme.

Characteristic parameters of the reference sand measured by different research groups
are listed in table 5.1. The parameters dyg, dso, dgo and dgo/dyo characterize the grain
size distribution. However, for their determination the grains are considered as spheres
and therefore no information about the elongation of the grains can be deduced. A
detailed analysis of the elongation has been performed by Clayton et al. [34] using an
automated imaging method. About 1500 grains were spread on a flat plate and pictures
were taken from above. Assuming that the smallest grain dimension is oriented normal
to the plate the maximum inscribed and minimum circumscribed circle of a grain were
determined by an image analysis software. The diameters of these circles are denoted
as the large and intermediate grain dimensions L and /. The grain volume was deduced
from its mass and the small dimension S was derived from the assumption that the
grain volume equals the volume of an ellipsoid of principal dimensions L, I, and S.
The resulting average particle dimensions are given as L = 1.14mm, / = 0.79 mm, and
S = 0.61 mm. The superquadric radius parameters r; for the random particle generation
process are chosen from Gaussian distributions with the mean chosen according to the
measured grain dimensions and the standard deviation chosen as 20% of the mean but
with the restriction 0.25 mm < r; < 0.75 mm.

Regarding the grain angularity no exact, quantitative, standardized characteriza-
tion method exists. Hence, the grain angularity is usually categorized by visual in-
spection and comparison to reference charts like shown in figure 5.3(a). However, this
does not enable a straightforward adaption of the superquadric angularity parameters
¢;. Therefore, they are chosen uniformly distributed in the interval ¢; € [0.6, 1.2] by
visual comparison of particle slices with an angularity chart taking into account the
categorization of Leighton Buzzard sand as rounded — sub-rounded, see figure 5.3(b).

Finally, the elastic parameters of silica are taken from the literature as £ = 50 GPa
and v = 0.2. The friction between dry and wet grains was analyzed by Rowe [146] and
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Figure 5.3: a) Grain shape classification chart after Shepard et al. [153].
b) Slice of a random set of superquadrics with ¢; € [0.6, 1.2].

Ishibashi et al. [86] yielding a value of © = 0.24 as inter-particle friction coefficient for
dry silica grains. Since the homogenization is performed via quasi-static simulations,
the dashpot damping model is used with ( = 0.9 to reduce the dynamics.

5.3 Results

Standard triaxial tests are performed on random particle samples. In laboratory test-
ing of granular materials the standard triaxial test is performed on cylindrical samples,
which are enclosed by a rubber membrane. A constant lateral pressure is applied on the
membrane, while the sample is compressed at a constant strain rate in the axial direc-
tion. The shear strength of the material is deduced from the measured axial pressure.
The volumetric behavior is measured through the volume change inside the membrane.
Here, this test is modeled via the periodic DEM scheme by loading random cubical
particle samples with a constant pressure in two directions and a constant compressive
strain rate in the third direction.

5.3.1 Random Sample Generation

Random close particle packages are generated in two steps. First, the geometric package
generation algorithm described in section 3.4.4 is applied to fill a cubical periodic
space with a solid fraction of ® = 0.55 using the geometry parameters adapted to the
reference sand. In the second step, the periodic DEM scheme is applied to compress
the package with o; = —1 kPa, where the material parameters adapted to the reference
sand are used except for the inter-particle friction coefficient. This is chosen as variable
generation parameter to produce packages with different initial densities. Note that
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Figure 5.4: Solid fraction vs. the friction coefficient used in the final compression phase of
the random package generation scheme.

this generation scheme yields isotropic samples, since there is no preferred direction in
any of the generation steps.

5.3.2 Initial Relative Density

The initial density of the generated packages depends on the friction coefficient p used
in the final compression phase. To analyze this relation packages are generated using
various p. A cubical RVE with L = 10 mm is used resulting in about 1700 particles.
The resulting solid fractions for (p) = 1kPa are shown in figure 5.4. The maximum
solid fraction ®,,,, = 0.722 is reached for a frictionless compression phase. From there
on the solid fraction decays monotonically towards the minimum ®,,;,, = 0.64 for high
friction values of > 1. These extremal values lie above those from the experimental
studies reported in table 5.1, which are given as ®,,,, ~ 0.66 and ®,,;,, ~ 0.56. This is
assumed to be mainly due to the following reasons: First, the superquadrics are only
an approximation of the real grain shape. Second, the package generation algorithm
does not model the standardized experimental methods for the determination of @,
and ®,,;,, since this would result in an enormous computational effort.

Next, the mechanical behavior of the samples with different initial relative densities
is analyzed by means of triaxial tests. For these the inter-particle friction is set to the
adapted value of p = 0.24 for all samples. Initially, a hydrostatic pressure of p = 25 kPa
is applied. From this reference state the principal stresses o; = 05 are kept constant,
while the sample is compressed in the 3-direction using a strain rate corresponding to
an inertial parameter of I = 107*. Figure 5.5(a,b) show the results in terms of the
principal stress ratio o3/0; and solid fraction ® vs. the compressive strain —e3. The
initial relative densities D are derived from the extremal values ®,,,, = 0.722 and
®in = 0.64. The results are in good qualitative agreement with laboratory tests on
non-cohesive frictional granular materials. Initially, loose packages show the slowest
increase of stress ratio, which reaches a constant value after about 10 — 15% axial
strain. The dense samples show a very steep initial increase and reach a maximum
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Figure 5.5: Triaxial test results with different initial relative densities Dg (a,b), at different
lateral pressures (c,d), and for different RVE sizes (e,f).

shear strength at about 3 — 5% axial strain. The maximum shear strength increases
with the initial relative density. From there on the stress ratio decreases monotonically
to a steady value, which is independent of the initial density. The volumetric behavior
of the dense packages is dilatant nearly from the onset of compression, while the solid
fraction of the loose samples initially increases. After about 5% axial strain all samples
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L, mm 10 15 20 30
number of samples 10 8 5 4
number of particles | 1700 6000 14000 45000

Table 5.2: Data of RVE size test series.

L particles  DOF  time steps At —e;  cores computation time
30mm 46492 278952 2046720 0.25us 20% 4 132h

Table 5.3: Simulation details of a triaxial test on a periodic cubical RVE.

show dilatant behavior and tend towards a unique solid fraction of ® ~ 0.65 at an axial
strain of about 25%.

5.3.3 Pressure Level

To analyze the influence of the pressure the triaxial test is repeated with lateral pres-
sures of p = 25, 50, 100, 200 kPa. For this purpose the initial samples are generated
with a friction coefficient of g = 0.15 in the compression phase resulting in an ini-
tial relative density of Dr = 0.37. For each pressure 10 random cubical RVEs with
L = 10mm are generated and the mean and standard deviation of the principal stress
ratio and volumetric strain e, := (V' — V) /V, are computed. The resulting curves and
corresponding error bars are plotted in figure 5.5(c) and (d). The lateral pressure has
no significant influence on the stress ratio or the volumetric strain, which agrees with
laboratory experiments, see e.g. [148].

5.3.4 RVE Size

Triaxial tests are performed with four RVE sizes listed in table 5.2. For each size a
number of random samples is tested and the ensemble average and standard deviation
are computed. The samples are generated with an initial relative density of Dy = 0.37
and the lateral pressure for the triaxial test is chosen as 25 kPa. The comparison of the
results in figure 5.5(e) and (f) shows that the final stress ratio increases from 2.15 for
L = 10mm to 2.3 for L = 30mm, which is accompanied by a decrease in the stan-
dard deviation. Considering the volumetric behavior the larger samples behave more
dilatant. Comparing the ratios Aey/Aesz in the interval —ez € [10%, 15%] there is an
increase from 0.175 for L = 10 mm to 0.205 for L = 30 mm which is again accompanied
by a decrease in the standard deviation. These results indicate that an even larger
RVE size L > 30mm will yield a higher shear strength and dilatancy. However, they
also indicate that the additional increase until saturation will be moderate. Therefore,
considering the computational effort of the homogenization exemplified in table 5.3,
the results for L = 30 mm are regarded as effective behavior of the particle model for
the validation in section 5.3.5 and the fitting of the continuum model in section 5.4.



88 CHAPTER 5. HOMOGENIZATION

5.3.5 Validation

To validate the particle model the homogenization results are compared to the results
of laboratory triaxial tests on Leighton Buzzard sand fraction B performed by Schnaid
[148], see figure 5.6. While the volumetric strain shows a good quantitative agreement,
the final stress ratio of the periodic DEM simulation of about 2.3 is considerably smaller
than the experimental values of about 3.7. This is assumed to be a result of the particle
shape. While superquadrics can represent elongated and angular grains quite well, they
are restricted to be convex. In the DEM scheme the contact of adjacent particles is
handled by applying a resultant contact force at a specific contact point. Therefore,
no torques can be transferred between adjacent particles, which would be possible in
the case of multiple contact points between non-convex particles. Indeed, simulations
using simple non-convex particles like glued spheres [147| reveal a considerable increase
in shear strength. The same has been shown for a package of convex polyhedra [10],
which can transfer torques over edge or face contacts.

5.4 Fitting of Elasto-Plastic Continuum Model

The effective behavior of the discrete particle model is approximated by an elasto-
plastic continuum model. For this purpose the non-associative Mohr-Coulomb model
introduced in section 2.1.5 is used. It is based on five material parameters, which are the
shear modulus G, the bulk modulus K, the friction angle ¢, the dilation angle ¢, and
the cohesion parameter c. Taking into account that the particle model is non-cohesive,
the cohesion parameter is set to a small value of ¢ = 15Pa to avoid that the stress
free state lies at the apex of the failure surface. While this has a negligible influence on
the behavior at elevated pressures, it reduces the effort of the elasto-plastic algorithm
in the initial loading phase. Thus, four parameters have to be fitted to the results of
the periodic triaxial tests. Assuming that the material behaves elastic at the onset
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Figure 5.6: Comparison of simulation results and experimental results by Schnaid [148] in
terms of the principal stress ratio (a) and the volumetric strain (b).
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of loading, Young’s modulus and Poisson’s ratio are fitted separately to the o3 vs. €3
and €y vs. €3 curve, respectively. Figure 5.7(a,b) display the results of triaxial tests
performed at four different lateral pressures together with the curves corresponding
to the fit elastic constants. The initial stiffness of the particle sample depends on the
pressure, and F = 60 MPa is chosen to fit the stiffness in the medium pressure regime.
On the other hand, the initial volumetric behavior coincides for the different pressures
and is approximated by v = 0.145. The shear and bulk modulus are given by

E E
“=5ar0 KTaaoay

The friction angle is deduced from the tangent to the Mohr-circles at the state of max-
imum compressive stress. The Mohr-Coulomb yield surface with ¢ = 23.15° gives a
good approximation of the maximum shear strength reached by the particle model.
Similarly, the constant dilation rate shown by the particle model is represented by
a dilation angle of ¢ = 5.17°. Altogether, the non-associative Mohr-Coulomb model
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Figure 5.7: Fit of continuum parameters. The elastic constants E (a) and v (b) are fitted
to the initial part of the triaxial test curves. The friction angle ¢ is fitted to the
Mohr-circles at the state of maximum compressive stress (c¢) and the dilation
angle 1 to the volumetric strain curves (d).
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reproduces the most prominent features of the effective behavior, i.e. the pressure de-
pendent shear strength and the dilatancy. Nevertheless, the continuum model yields
only an approximation of the effective behavior and suffers from the following short-
comings:

e The particle model shows irreversible deformations nearly from the onset of load-
ing, while the continuum model behaves elastically until the yield surface is
reached. This results in a disagreement especially for cyclic loading conditions
which do not yield plastic deformations of the continuum model.

e The stiffness of the particle model is pressure dependent, which is not taken into
account in the continuum model.

e The effective behavior of the particle model crucially depends on the proper-
ties of the initial package, which is characterized by the relative density among
others, cf. figure 5.5. On the other hand, the continuum model is fitted to one
specific medium dense package and does not include an explicit dependency on
the density.

These deficiencies of the non-associative Mohr-Coulomb model have to be taken into
account when evaluating the two-scale scheme developed in chapter 6.



Chapter 6

Two-Scale Model

Within this chapter a concurrent two-scale model of non-cohesive granular materials is
developed. Domains of large, eventually discontinuous deformation are modeled by the
discrete particle scheme presented in chapter 3. Domains of small, rather homogeneous
deformation are modeled by the non-associative Mohr-Coulomb model presented in
section 2.1.5, whose material parameters are fitted to the effective behavior of the
particle model in section 5.4. At the interface of the domains of different modeling the
particle method (DEM) and the continuum method (FEM) are coupled resulting in a
smooth transition between the two material descriptions.

In the past two decades considerable research has been devoted to similar couplings
on a smaller scale, i.e. of molecular dynamics (MD) and FEM, see e.g. the review
article by Curtin and Miller [48] and references cited therein. Despite the similarities of
DEM and MD regarding their algorithmic implementation there are major differences
in terms of their particles’ nature and interaction:

e The length and time scales considered in MD are orders of magnitude smaller
than those typically considered in DEM.

e In MD the particles represent atoms (or molecules), which interact in terms of
electromagnetic forces derived from potentials. The range of interaction usually
extends over the first few neighbors. In DEM particles represent grains interact-
ing through mechanical contact. Hence, only the nearest neighbors interact and
energy is dissipated due to friction and damping.

e In contrast to common MD particles, DEM particles are of finite size and have
individual geometries. They fill the space up to a specific volume fraction. Fur-
thermore, they are equipped with rotational degrees of freedom.

e The particle arrangement: While in MD particles often form a regular lattice,
DEM particles show no such regularity.

Due to these differences MD-FEM coupling schemes cannot be simply transferred to
the DEM-FEM case.

A general concept for the coupling of different models and methods is the Arlequin
method introduced by Ben Dhia [23, 24]. It is based on the introduction of a coupling

91
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domain in which the models are superposed. Within this domain the virtual work is
interpolated between the models and compatibility is ensured via kinematic constraints.
The overall behavior of the coupled system crucially depends on the interpolation
scheme applied and, additionally, on the way the kinematic constraints are formulated
and enforced. The latter is particularly relevant for the coupling of a discrete and a
continuum method.

Xiao and Belytschko [185] applied a scheme of this kind to the MD-FEM coupling.
They chose the coupling domain as a band between the MD and FEM domain de-
noted as bridging domain. A linear energy interpolation over the width of the bridging
domain is used and the discrete MD displacements are directly constrained to the
interpolated FE solutions at the particle positions. It has been shown that spurious
wave reflections at the interface decrease with increasing width of the bridging domain.
Furthermore, the influence of the energy weighting strategy has been analyzed with
the result that a nonlinear evolution of the weight parameter yields superior reflection
reduction compared to a linear evolution.

This scheme has been transferred to the DEM-FEM coupling by Frangin et al. [65]
and Rojek and Onate [144]. In both works the two-scale method is applied to cohesive
frictional materials such as concrete or rock. For this class of materials major particle
rearrangements are only possible if inter-particle bonds break leading to the evolu-
tion of cracks. Consequently, the prevailing deformation mechanisms are quiet distinct
from those of non-cohesive frictional granular materials like dry sand. Hence, for such
materials, the direct constraint between the discrete particle displacements and the in-
terpolated FE displacements, which might be appropriate for cohesive materials, would
result in an unnatural restriction of particle rearrangements. Therefore, the kinematic
constraints will be formulated in a different way. For this purpose the discrete particle
displacements are split into a coarse scale and a fine scale part, and only the the coarse
scale part is constrained to the FE displacements. In this way, natural fluctuations of
displacements corresponding to particle rearrangements are not impeded.

Section 6.1 introduces the coupling domain serving as a transition zone between the
DEM and FEM domain. The split of the discrete displacements is used to formulate
the kinematic constraints in section 6.2. Implementation issues are outlined in section
6.3. Finally, the performance of the two-scale approach is exemplified in section 6.4.

6.1 Coupling Domain

The Arlequin method [23, 24] is based on the introduction of a coupling domain Q¢ in
which the DE domain QPF and FE domain QFF are superposed, see figure 6.1(a). The
coupling domain serves as transition zone between the domains of different modeling.
For this purpose a kind of interpolated material model is introduced in Q¢ by stating
the virtual work as an interpolation of the individual virtual works. This interpolation
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Figure 6.1: a) The DE and FE model are superposed within Q¢, where the virtual work is
interpolated using the weight function w(x).
b) Particle v with center ¢, and contact forces f 3.

is accomplished via the weight function w(x) which satisfies

w(x) = 1 Ve QPF\ QFF
w(x) = 0 Ve QF\QPF (6.1)
w(z) € [0,1] Vaec:=0"nq™.

The explicit form of w(x) in Q¢ can be chosen as, e.g., linear interpolation between

w = 11in OP¥ and w = 0 in QFF and is postponed to section 6.3. Using the weight
function the interpolated virtual work reads

SW = SWFE 4 sWPE  with (6.2)
SWEFE  — /(1—w) [0':56+p(:i:—b)~5u]dv—/(1—w)i~5uds, (6.3)
QFE [EE
SWPE = ZéWa:Z /wp(:i:—b)-5uadv—Zwaﬁfaﬁ-5ua . (6.4)
a=1 a=1 Qo B=1

Here the explicit dependence on @ and t is dropped for convenience. Virtual displace-
ment fields du(x) and du, (x) are introduced for the continuous body B and the parti-
cles P,. Regarding the discrete part (6.4), n, denotes the number of particles, n,, is the
number of contacts of P,, was = w(xap) is the weight factor at the point of contact of
P, and P, and f 5 is the corresponding contact force acting on Pq, see figure 6.1(b).
The remaining symbols are explained in chapter 2. Note that small deformations are
assumed in the continuum part (6.3) and de denotes the variation of the linear strain
tensor.
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For a constant weight function w(x) = 1 V& € €, in the discrete part (6.4), the
condition W, = 0 yields the standard equations of motion of the rigid particle P, like
derived in section 2.1.3. Now, taking into account a variable weight function w(x), a
similar transformation of the contribution 61, yields a similar set of equations denoted
as the weighted equations of motion in the following. For this purpose the position
vector a is referred to the particle’s center ¢, via

T=Co+Tg. (6.5)
Considering the particle’s rigidity, the velocity and acceleration field read

T = ctwxr, (6.6)
T = ctwxr+twx(wxr), (6.7)

where w denotes the particle’s rotational velocity and the particle index « is dropped
for convenience. An arbitrary, virtual rigid body motion is given by

du(x) = dug + dw X 1, (6.8)

where dug is the translation of the particle center and dw a rotation about an axis
passing through the center. To derive the weighted equations of motion it is now implied
that the weight function w(x) is a continuous, smooth, and monotonic function within
Q€. Under these assumptions w(x) is approximated in €, by its linearization about
the particle center ¢

w(z) ~ w(e) + gradw|e - r = w, + w.n-r with w.n :=gradwl., [|[n]|=1. (6.9)

Inserting (6.9) and (6.8) into (6.4) and introducing the resultant force and torque

f = wcmb—l—Zwﬁfﬁ, (6.10)
p=1
m = ngrﬁ X fg, (6.11)
B=1

yields the particle’s contribution

Wy =(wemeé —f)-dug+ (W I - w+wxXw. I -w—m)-dw

+wén-/rp(é+w><'r+w>< (wxr)—>b)- (duy+ dw x r) dv. (6.12)

Q
Under the assumption that Q€ is much larger than the typical particle size the last

term in (6.12) becomes negligible, see the derivation in appendix B. Then the condition
oW, = 0 yields the weighted equations of motion

<
[u—

W.me =

wl - wtwxwI - w = m. (6.14)
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Within the pure DE domain QP® \ QFF with w = 1 these equations correspond to the
standard equations of motion. Note, however, that due to the definition of the resultant
force f and torque m the weighted equations of motion are not the standard equations
of motion multiplied by the weight factor at the particle center w.. Each contact force
in (6.10) and (6.11) is weighted using the weight factor at the corresponding point of
contact. Because of the finite dimensions of the DEM particles a simple weighting of
all terms by w,. would introduce spurious forces into the particle system: For a contact
pair a3 the contact force f_; = —f 5, would be weighted once by w(c,) and once by
w(cp) yielding a resultant unbalanced force

w(ca) fap+w(es) fpo = [w(ca) —wlcs)] fap - (6.15)

On the other hand, no spurious forces are generated through (6.13) and (6.14), since
all corresponding contact forces f,5 and f 5, are weighted by the same weight factor.
Furthermore, note that the weighted equations of motion derived from 6W, = 0 are not
complete in the sense that the effect of the kinematic constraints has not been taken

into account yet. These result in additional coupling forces acting on the particles in
Oc.

6.2 Kinematic Constraints

The Arlequin coupling is completed through the imposition of kinematic constraints
connecting the degrees of freedom (DOFs) within Q€. For the coupling of a discrete
particle and a continuum method the formulation of appropriate constraints is not
straightforward. The particles are equipped with translational and rotational DOFs. On
the other hand, a standard continuum approach without rotational DOFs is applied
in OFF because it is sufficient for the description of the material behavior when no
localizations occur, see e.g. [59]. Therefore, the constraints will be formulated solely in
terms of the translational DOFs.

Within the DE-FE coupling schemes for cohesive frictional materials developed by
Frangin et al. [65] and Rojek and Onate [144] the discrete particle displacements are di-
rectly constrained to the continuum displacements at the particle center. Consequently,
these schemes enforce the particles in one element to move according to the element
displacement ansatz. While this might be appropriate for cohesive materials, it repre-
sents an unnatural constraint for non-cohesive materials, where fluctuations within the
grain displacements arise due to the non-uniform particle shape and irregular particle
arrangement.

For the formulation of other constraint types it is reasonable to accommodate the
discrete particle displacements to the continuum displacements via an adequate opera-
tor. This approach was used by Bauman et al. [22] to couple a one-dimensional system
of springs to a linear elastic bar. The discrete spring displacement field is transformed
into a continuous field by a linear interpolation operator. The continuous field is then
used to formulate L? or H' coupling constraints within Q¢. However, the application of
an interpolation operator for non-cohesive granular materials would still yield unnatu-
ral constraints due to the reasons discussed above. An appropriate operator should in a
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sense coarsen the discrete displacements and thus enable natural fluctuations. For this
purpose a decomposition of the particle displacements into a coarse and a fine scale
part is applied like it is used in the Bridging Scale Method of Wagner and Liu [171]
to couple atomic and continuum simulations. The coarse scale part is defined as the
part that can be represented by a chosen set of ansatz functions. On the other hand,
the projection of the fine scale part onto this ansatz space vanishes. Since the coarse
scale part will be constrained to the continuum solution, it is most convenient to use
the FE ansatz space in QC for this projection. This represents the most coarse ansatz
which still allows the constraint to be fulfilled exactly. Using the notation introduced
in section 2.2 the coarse scale part is defined as

uPP(x) = ) Ni(z)up® (6.16)

IeN©

where N; are the FE ansatz functions and NC is the set of coupling nodes, i.e. the
nodes belonging to elements with particle centers inside, see figure 6.2(a). The particle
displacements are projected onto this ansatz by a least squares fit using the volume
weighted error function

min Y Vo [t — uP(cl)|? (6.17)

where PC is the set of particles whose center resides in an element and V,, is the particle
volume. The minimization with respect to the unknown nodal values uP" yields the
linear system of equations

DY NiaVaNjuh® = > NpgVau, with Ny o= Ny(c,) (6.18)

aePC JeN© aepC
= NVN'u = NVu, (6.19)
i
su = A'NVu,, (6.20)
——

where u, € R"%*3 holds the unknown nodal displacements’, u; € R"»*3 holds the

discrete particle displacements, n/C\f = ’NC} is the number of coupling nodes, and
ng = }PC’ the number of coupling particles. Due to the inverse A~' the projection

matrix II is a dense matrix yielding a non-local projection where every u?P® depends
on each wu,. A local version is retrieved by replacing A by the diagonal lumped version
A" given by

A;IZ: ZA[J: Z ZNlaVaNJoz: ZNIaVa- (621)
JeN© JENC aePC aePC

This results in the local projection rule

N « VCV «
wPE _ 2zaepo Nia VaUa (6.22)
> acpe Nia Va
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Figure 6.2: a) Definition of the set of coupling nodes and elements.
b) Coarse-fine split of particle displacements within one element.

Both versions are implemented and will be compared in section 6.4. The projection
scheme is sketched in figure 6.2(b). Using the continuous displacement field the penalty
constraint term is introduced as

0=t /||uDE W24y (6.23)
Oc

where € is the penalty parameter. The variational formulation
oW 4+ 0C = 0, (6.24)

with W given in (6.2), yields the discrete equations of motion, which are integrated
by explicit time integration schemes. The variation of the constraint term gives the

nodal coupling forces f? and particle coupling forces fg

0C = ¢ / (’u,DE - 'u,FE) . (5uDE — &u,FE) dov
—_——
Q¢ =:r
= 2(57‘['(6 Z/N[NJdUT‘J): Zdr;f? (625)
IeN© JE/\/CQC IeN©
———
=V
- 5 (5 sl 5
IeNC \aePC€
Y (T mst) - S e
acPC . IeN© | IeN©
e

! The matrices hold the components with respect to the inertial Cartesian reference frame.
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6.3 Implementation

For the implementation of the two-scale scheme the coupling terms introduced in the
previous sections need to be evaluated numerically. More precisely, the following is
required:

e The weight function w(x) (6.1) needs to be defined and evaluated at integration
points, particle centers, and contact points.

e The projection matrix I (6.20) has to be set up.

e The volume terms V;; (6.25) are required for the computation of the coupling
forces.

Under the assumption of small relative displacements of the particles and the continuum
in QC the coupling terms are evaluated with respect to the reference configuration.
To reduce the implementation effort as well as the numerical effort it is furthermore
assumed that the overlapping domain Q¢ is described by a set of finite elements that
are completely filled with particles. In this case it is convenient to define the weight
function within Q" via the FE ansatz functions

w(a) = {ZI Ni(@)wy Ve €

1 Va € QPE\ QFF (6.27)

In this way the evaluation of the FE terms (6.3) can be performed by standard Gaussian
quadrature. For the evaluation of w(x) at particle centers and of the projection matrix
II each particle P, in the coupling domain has to be assigned to the finite element that
includes its center ¢,. Furthermore, the reference coordinates of the particle center
within the finite element have to be determined. This is accomplished by a two step
procedure. First, bounding spheres are defined for the finite elements, and the particle
centers are checked for inclusion in these bounding spheres. Second, for each candidate
finite element the nonlinear system

Co = ZnNI(f,n, ¢)x; (6.28)
=1

is solved for the reference coordinates (£, 7, (), where n is the number of nodes within
the element. From the reference coordinates the particle center is checked for inclusion
in the finite element. To avoid this computation for the contact points, the weight
parameter at a contact is interpolated from the center values by

(€5 — Ca) " Tap
lcs — call?

Wap = Wy + (wg — wy) - (6.29)
Finally, since the coarse scale part of the particle displacements is defined on the
FE ansatz, the evaluation of the volume terms V7, (6.25) is trivial using Gaussian
quadrature. The application flow of a coupled simulation is summarized in figure 6.3.
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determine particles and elements in Q€ together with N;, values

set nodal weight values w;
compute particle weight values w, = Y Ny wy {

DE: Compute resultant particle forces
FE: Compute resultant nodal forces

A

compute projection matrix IT
compute volumes V7

v

e N\
DE: Update particle states J‘

FE: Update nodal states compute nodal DE displacements uPE from ITu,

~ : DE FE
¢ compute nodal differences r; = u;™ — u;

( DE: Compute contact forces compute nodal coupling forces f? =€ Jenc Viury

: . © ©
FE: Compute internal nodal forces compute particle coupling forces f = — > v o f7

L

Figure 6.3: Flowchart of a coupled two-scale DE-FE simulation.

The implementation is realized in the same manner as described in section 4.2. The
in-house C++ DEM code is coupled with the Fortran FEM code FEAP developed by
Taylor [159]. The DEM part and the FEM part communicate via a Fortran interface
subroutine that enables calls of high-level FEAP subroutines from the C++ code. The
data exchange in each time step is accomplished via C++ pointers pointing at the
appropriate FEAP data arrays. In this way the FEM data can be accessed directly by
the C++ functions preventing expensive data copy operations.

6.4 Numerical Examples

The performance of the two-scale model is exemplified by two tests. First, the coupling
scheme is validated via triaxial tests of a coupled DE-FE model, a pure DE model, and a
pure FE model. The influence of the penalty parameter, loading direction, and coupling
geometry are analyzed as well as the effect of the coupling on the microstructure within
the particle domain. Second, the method is applied to a pile installation problem. A
hexahedral pile with flat tip is driven at a constant speed into a box filled with sand,
where only the vicinity of the pile is modeled by the particle method.

The loading conditions in each test are supposed to yield near quasi-static deforma-
tions and the material parameters are adopted from section 5.2 and 5.4, respectively.
Due to the quasi-static deformation wave propagation phenomena like discussed by
Frangin et al. [65] and Rojek and Onate [144] for cohesive materials do not play a ma-
jor role here. This is also supported by the fact that the wave propagation properties
of non-cohesive frictional granular materials like dry sand differ considerably from that
of cohesive materials like concrete or rock. The material damping of granular materials
for moderate strain amplitudes of €ymp > 0.01% exceeds that of cohesive materials by
far. Furthermore, cyclic loading leads to an accumulation of plastic strain which grows
fastest in the initial cycles. Altogether, granular materials show a stronger attenuation
of waves.
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Figure 6.4: a) Coupled cubical system with one element layer as coupling domain Q°.
b) Principal and volumetric strains for three triaxial tests.

6.4.1 Triaxial Tests

The coupling scheme is validated via strain controlled triaxial tests of the cubical
system with an edge length of 20 mm shown in figure 6.4(a). The continuum domain
is discretized with tri-linear hexahedral elements and the coupling domain is chosen
as one element layer. At the top and side faces the particles are bounded by rigid,
frictionless walls, cf. figure 6.5(a). The strain controlled loading program of the three
triaxial tests is given in figure 6.4(b). All tests consist of two phases. First, the sample
is compressed isotropically to a unique volumetric strain of e, = —0.5 %. In the second
phase the sample is sheared accompanied either by volumetric unloading (1), a constant
volumetric strain (2), or further volumetric compression (3). The loading directions are
chosen as €; = €,, €2 = ¢,, and €3 = ¢, so that o3 acts normal to the coupling interface.
The tests are performed for a pure DE model consisting of about 14 000 particles (DE),
a pure FE model (FE), the coupled model with a non-local consistent projection (DFc),
and the coupled model using the lumped local projection (DF1). The penalty parameter
is chosen as € = 108 Pa/mm®.

The average principal stresses within the pure DE model are deduced from the
resultant forces on the rigid boundary. In a similar manner the average stresses within
the coupled models are deduced from the resultant forces on the rigid boundary com-
bined with the FE reaction forces, see figure 6.5(a). Note that within the coupling
domain the contact forces between the rigid mesh and the particles are weighted like
the inter-particle forces. The resulting stresses for each model and loading are plotted
in figure 6.5(1-3). Comparing the results of the pure DE and FE models the fit of the
continuum model is worse for the volumetric unloading test 1. This is due to the contin-
uum model’s deficiencies listed in section 5.4. As expected, the stresses of the coupled
systems lie between those of the mono-method systems. The difference between the
two types of coupling is rather small, especially for tests 2 and 3 where the continuum
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Figure 6.5: a) Resultant forces on rigid boundary mesh and negative FE reaction forces.
1-3) Principal stresses for three triaxial tests.

model yields a rather good agreement with the particle model.

To analyze the influence of the penalty parameter, test 3 is repeated with lumped
coupling and the penalty parameter increased and decreased by a factor of 10. The
results in figure 6.6(a) reveal that, while the stresses increase from ¢ = 107 Pa/mm®
to e = 108 Pa/mm2, there is a negligible change when increasing e further. Hence, the
kinematic constraints are fulfilled with sufficient accuracy for the chosen material to-
gether with a penalty parameter of ¢ = 10° Pa/ mm?, which will be used in all following
examples.

Next, test 3 is repeated with the loading directions switched with respect to the
coupled system’s coordinates (z,y, z), cf. figure 6.4(a). The principal stresses for the
three possible combinations are presented in figure 6.6(b). The small deviation between
the tests is mainly due to the behavior in the initial hydrostatic compression phase.
Here the principal stress normal to the coupling interface, o, shows a smaller increase
than o, and o,. This is again a result of the deficiencies of the continuum model, whose
Young’s modulus is fitted to a particle sample at a specific pressure between 25kPa
and 200 kPa, cf. figure 5.7. For the coupled triaxial test both models are initially stress
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Figure 6.6: Principal stresses for e = 107, 10%, 10° Pa/mm? (a) and switched loading direc-
tions (b). Model explaining direction dependent stiffness (¢) and coupled stiffness
EC vs. v (d).

free resulting in a higher initial stiffness £ of the FE model compared to the stiffness
of the DE model denoted by v E in the following. In z and y direction both models act
in a parallel way and the overall stiffness is given as F (14 7)/2, see figure 6.6(c,d). On
the other hand, in z direction the models act in row yielding a smaller overall stiffness
of E2+/(1+7). For v — 1 the sample shows the same stiffness in all directions, which
is the case at the end of the compression phase.

Up to now all tests used a regular coupling geometry aligned with the principal
loading directions. To check the robustness of the coupling scheme test 3 was repeated
using the coupling geometries shown in figure 6.7(a). Figure 6.7(b) reveals that the
influence on the principal stresses is negligible.

6.4.2 Microstructure

An important question regarding the coupling of a particle and a continuum model is
whether the coupling disturbs the typical microstructure inside the particle model. For
granular materials this microstructure is described by the distribution of inter-particle
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Figure 6.7: Four coupling geometries (a) and resulting principal stresses (b).
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Figure 6.8: Probability distributions of contact force magnitudes (a) and directions (b).

contact forces. A characteristic feature of granular materials is the formation of force
chains, which are chains of particles that carry a higher-than-average part of the over-
all sample load. This results in specific distributions of contact force magnitudes and
orientations. These distributions are analyzed for a pure DE and the coupled models in
the final state of test 3 with the maximum compressive stress o7 in z direction, i.e. nor-
mal to the coupling interface. Only inter-particle contacts within the domain QP¥\ QFF
are considered, because the contact forces in the coupling domain Q° decrease towards
the w = 0 boundary due to the coupling forces. The orientation of a contact force f is
described by the angle o between f and the direction of maximum compressive stress
e = €,

= cos ! L.el‘ s
o= ( 7l )e[o, /2] . (6.30)

The probability distributions are plotted in figure 6.8. All systems show a similar
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Figure 6.9: a) Dimensions of plane strain pile installation example.
b) FE discretization. In y direction 5 element layers are used.

magnitude distribution with a huge fraction of relatively small forces below 0.2 N and
a monotonic decay towards the maximum force of about 1N. The coupled systems
deviate from the full DE model as they show a higher probability of smaller forces
where the deviation is greater for a consistent coupling. For the evaluation of the
orientation the set of forces is split according to their magnitude into three groups
A, B, and C | cf. figure 6.8(a). For all groups the orientation distributions agree well
between the considered systems. While the smaller forces are rather orthogonal to
the maximum loading direction, the larger forces are more aligned with it. Here the
larger fluctuations for group B and C result from the smaller number of forces within
these groups. Altogether, the microstructure of the particle model is only marginally
disturbed by the coupling scheme. The typical force chains are not hindered and run
across the boundary of the coupling domain Q¢ and the pure DE domain QP® \ QFF.

6.4.3 Pile Installation

The two-scale model is applied to a plane strain pile installation test specified in fig-
ure 6.9(a). Such penetration problems are extremely difficult to model by a pure FE
approach, because the large deformations around the pile tip yield severe mesh dis-
tortions, which spoil the accuracy and stability of the computation. Furthermore, the
convergence of standard solution algorithms is affected by material nonlinearities due
to the complex constitutive models for granular materials and contact nonlinearities
due to the frictional contact with the pile [150, 151]. The problem of severe mesh dis-
tortion has been resolved by application of adaptive re-meshing algorithms [157] or
Arbitrary Lagrangian-Eulerian methods [152, 114], however at the cost of the need for
remapping of variables between meshes resulting in a new potential source of conver-
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Figure 6.10: Closeup of particle and coupling domain of pile installation problem.

particles n% elements  nodes nﬁ\j/— DOF time steps At cores comp. time

539485 120302 5040 7560 1530 3259590 500000 0.2ps 16 454 h

Table 6.1: Simulation details of pile insertion example.

gence problems. Altogether, the FE modeling of frictional pile penetration problems
is still cambersome and only possible for cone shaped pile tips, which yield less mesh
distortion than flat tips.

Within the two-scale approach this problem is solved by modeling the domain of
large deformations, i.e. the vicinity of the pile, by the particle method. Here, this
requires 540 000 particles, while a pure DE model would require 25 x 10° particles. The
FE discretization shown in figure 6.9(b) consists of 5040 tri-linear hexahedral elements
yielding an overall number of 3.2 x 10° DOFs. The details of the coupled simulation
are given in table 6.1. The friction coefficient between the rigid pile surface and the
particles is chosen as @ = 0.1. The coupling domain shown in figure 6.10 consists of two
element layers and the lumped projection is used. Figure 6.11 shows the deformation
of the system in the vicinity of the pile. Initially, a gap develops between the granular
material and the side faces of the pile. After a while a steady-state material flow
around the pile evolves, which is characterized by a cone of particles at the pile tip.
This cone splits the material below so that it can flow around the edges of the tip. The
neighborhood of the pile might be split into three zones of deformation:

e In a distance up to about three particle diameters from the pile the material is
dragged down for a relatively large distance.

e Up to a distance of about 15 particle diameters there is a steep gradient from
material being dragged down to material being pushed up.

e Further away there is a monotonic decay of the upward displacement.
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Figure 6.11: Deformation due to pile installation with color according to initial height.
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Figure 6.12: Evolution of solid fraction around driven pile.
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Figure 6.13: Pressure during pile installation at the middle of the sample (y = 8.05mm).

The coupling interface lies in the last zone and it can be seen that the height contour
lines run smoothly across the interface indicating a smooth transition between the
material descriptions.

Additionally, the evolution of the solid fraction in the vicinity of the pile is analyzed.
For this purpose a regular grid of spherical sampling volumes is introduced with a
1.5mm grid point distance and 2.8 mm sphere radii. The average solid fraction within
each sampling sphere is approximated by replacing each superquadric by a sphere with
identical center and volume and calculating the exact intersection volumes of these
spheres and the sample spheres. Note that the chosen sampling volume size yields an
average particle number of about 300 per sampling volume. Figure 6.12 shows the
resulting solid fraction distribution at the middle of the sample (y = 8.05mm). The
material right below the pile tip behaves dilatant due to the large deformations. Here
the solid fraction is reduced to about 0.6 — 0.64, while in the remaining domain the
solid fraction is about 0.64 — 0.68. The width and height of the dilatant zone are about
twice the pile width. Note that due to the averaging method the solid fractions at the
boundaries must be disregarded, since here the sampling volumes are not completely
filled with particles.

Finally, the pressure distribution within the two-scale model is analyzed. For this
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purpose another regular grid is introduced which covers the particle domain and has
a 3mm grid point distance. At each grid point a cubical cell of dimension 4.8 mm
is centered, which serves as averaging volume V. for the stress determination. The
average stress is determined from all inter-particle contacts a3 with contact point @,z
inside Vi via [17]

@t = S (- ) @ Fup

‘/cell
af|@as€Veell

The chosen cell size yields an average number of about 700 contacts per sampling
volume. For the same reason as in the solid fraction computation the stress values at
the boundaries must be disregarded. Furthermore, the stress in the coupling domain is
not determined due to post-processing problems: Actually, in the coupling domain the
resulting stress is the sum of the FE stress and the averaged DE stress. However, the
evaluation of this sum is an awkward post-processing problem. First, the determination
of average DE stresses in Q2 is problematic due to the boundary problem. Second, the
summation of the stress fields is difficult, since they are not evaluated on the same
mesh. Hence, the resulting pressure distributions in figure 6.13 include a zone where
no stresses are determined. Nevertheless, the pressure contour lines indicate a smooth
transition between the two material descriptions. Below the pile tip a zone of high
pressure evolves from ¢t = 0s to ¢ = 0.075s with a maximum pressure of about 50 kPa.
From there on the pressure distribution with respect to the pile is rather constant, i.e.
there is no further increase in the maximum pressure. In the zone below the pile the
pressure decreases in radial direction from the pile tip. Further away from the pile the
pressure distribution is dominated by gravity.

This example demonstrates that the two-scale model enables the simulation of prob-
lems, that are very hard to handle by mono-method approaches:

e A pure DE solution using 25 x 10° particles would require enormous computation
times. Even the coupled simulation took more than two weeks running in parallel
on 16 cores, cf. table 6.1.

e A pure FE solution using standard techniques is not possible due to the very
large deformations in the pile vicinity. Furthermore, an appropriate continuum
model of the material behavior around the pile tip is hard to develop.

Within the presented approach these problems are reduced. It yields a smooth transi-
tion between the models, which does not disturb the microstructure within the particle
model.
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Conclusion and Outlook

Within this work non-cohesive frictional granular materials are modeled by a three-
dimensional Discrete Element Method (DEM). The DEM uses superquadric particle
shapes to represent the elongation and angularity of real grains. Assuming elastic defor-
mations at inter-particle contacts the contact force is derived from the Hertz-Mindlin
model, where the tangential part is bounded by the Coulomb friction model. Con-
sequently, the only material parameters entering the DEM are the particles’ elastic
constants and the friction coefficient, all of which have a clear physical meaning and
can be determined by experiments. On the algorithmic side, efficient contact detec-
tion schemes are developed, which exploit the temporal coherence between consecutive
time steps within a DEM simulation. Furthermore, an efficient parallelization scheme
for shared memory architectures is introduced, which is based on the spatial sorting of
particles and the Verlet neighbor list concept for global contact detection. Altogether,
the achieved performance enables simulations with particle numbers of the order of 10°
undergoing large deformations within a number of time steps of the order of 10°, cf.
section 6.4.3.

The DEM is then applied to the interaction of granular materials and solid struc-
tures, which are modeled as continuum using the Finite Element Method (FEM). The
interaction is accomplished via contacts between DE particles and the FE surface mesh.
For this purpose arbitrary FE surface meshes are approximated by triangular meshes.
Due to the non-smoothness of these meshes a particle-surface contact model is de-
veloped which takes particle-edge and particle-corner contact situations into account.
The robust force interpolation scheme yields smooth contact forces and is nearly energy
conserving for frictionless contacts. The coupled DE-FE model facilitates granular-solid
simulations including large deformations as well as sliding and rolling of particles over
the FE surface, cf. section 4.3.3.

For the development of a two-scale model for granular materials the effective be-
havior of the discrete particle model is determined by a homogenization scheme. This
scheme is based on the mechanical testing of representative volume elements. These
are randomly generated periodic particle packages of cubical shape. They enable the
application of arbitrary triaxial stress and strain boundary conditions in a convenient
way, i.e. without spurious boundary effects. In order to validate the particle model its
material and geometry parameters are adapted to a reference material, Leighton Buz-
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zard sand size fraction B. Standard triaxial tests reveal a good qualitative agreement
with laboratory results on the reference material. However, the shear strength of the
particle model is significantly smaller than in reality. Finally, the parameters of an
elasto-plastic non-associative Mohr-Coulomb continuum model are fit to the effective
behavior. This model represents the most important features, i.e. the pressure depen-
dent shear strength and the dilatancy. Nevertheless, it cannot capture features such as
the pressure dependent stiffness.

The discrete particle model and the continuum model are combined in a concurrent
two-scale approach. Domains of large, eventually discontinuous deformation are mod-
eled by the particle method and the remaining domain is treated as continuum. In this
way, the computationally expensive DEM is only applied where the material behavior
can hardly be represented by continuum approaches, while elsewhere the efficient FEM
is used. At the interface of the domains of different modeling the methods are coupled
via the Arlequin method. For this purpose the methods are overlapped in a coupling
domain where the virtual work is interpolated between both models yielding an interpo-
lated material behavior. The compatibility within the coupling domain is accomplished
by kinematic constraints, which are enforced by the penalty method. The constraint
formulation is based on a coarse-fine split of the discrete particle displacements. In this
way it enables natural displacement fluctuations within the coupling domain. Numeri-
cal examples reveal that the coupling does not disturb the typical microstructure inside
the particle domain, which is characterized by force chains. Finally, a pile installation
example shows that the two-scale approach enables the consideration of problems that
are not feasible for mono-method approaches due to severe mesh distortion and con-

vergence problems on the one hand or the enormous computational effort on the other
hand.

Despite the achievements summarized above, the two-scale approach needs further
improvements to become a predictive simulation tool. There are four major issues,
which will be covered not in the order of their severity but in a chronological order
appropriate for future research.

The first key problem of the two-scale approach is that the particle model yields
no quantitative predictions of the behavior of real non-cohesive frictional granular
materials. This is assumed to be the result of the still insufficient approximation of
real grain shapes. While superquadrics represent, the elongation and angularity to some
extent, they are still restricted to be convex and therefore yield a single point of contact
between two particles. Consequently, no torques can be transferred between contacting
particles, which seems to yield a reduced stability of the particulate structure. This is
supported by analyses using simple non-convex shapes such as sphere clusters [147],
which show a significant increase of the bulk shear strength. Hence, future research
work must focus on the development of a better approximation of real grain shapes.
This necessitates three-dimensional measurements of real grains, which became possible
recently through high resolution X-ray computed tomography, see e.g. [175]. Based on
these measurements one possibility is to approximate the real shape by sphere clusters
[173]. However, while this enables a trivial contact detection, it requires a huge number
of spheres and results in an artificially rough surface. More realistic approximations with
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less particles might be gained from superquadric clusters, which can be determined via
recovery procedures that are already established for superquadrics in computer vision
and robotics [88].

The second problem is the DEM’s computational burden limiting feasible problems
in space and time. This problem will become even more severe when an advanced
particle shape is applied. Since the DE algorithms are already optimized in a way which
allows no further significant performance gain, the remaining option is to use massive
parallelism. An attractive possibility seems to be GPU computing, which exploits the
computational power of nowadays graphics cards. Impressive performance gains can be
reached but require highly sophisticated parallelization schemes [76, 81].

The third issue concerns the inability of the non-associative Mohr-Coulomb model
to represent some of the features of the particle model’s effective behavior. A more
sophisticated constitutive model can be applied like presented in e.g. [58, 186]. These
give a better approximation of the pressure dependent stiffness and the behavior under
cyclic loading but require a more involved fitting procedure.

The last problem is related to the two-scale model’s coupling scheme. Within this
work two simplifying restrictions are used. First, the finite elements within the coupling
domain are completely filled with particles. Second, the relative displacements of the
continuum and the particles are assumed to be small. Together, this enables a straight-
forward evaluation of the coupling terms with respect to the initial configuration. For
a more general applicability of the model these restrictions should be abandoned. This
necessitates more advanced numerical integration procedures and eventually an effi-
cient re-evaluation of the coupling terms in the course of the simulation. Nevertheless,
these are rather minor technical issues. A key problem, on the other hand, is the iden-
tification of the domains of different modeling. While in the pile installation example
of section 6.4.3 the domain of large deformations is known in advance, this is not true
in general. Hence, criteria and methods must be developed to identify and generate the
domains of discrete modeling in an adaptive way. For the former, the criteria applied in
adaptive mesh refinement schemes might be a useful orientation. The latter, however,
requires the generation of particle packages which must

e fill a predefined space,

e be in a predefined stress state,

e fit to already existing packages,

e have a similar fabric like the already existing package,

e conform to the specific granulometry, i.e. particle shape and size distribution.

These problems might be solved by advancing front techniques [116], which fill a pre-
defined space in a consecutive way starting at a specified boundary.
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Appendix A

Superquadrics

Within this chapter geometric quantities of superquadrics are derived, which are re-
quired for various purposes within the DEM scheme. In section A.1 all quantities related
to the surface parameterization are derived. This includes the determination of bound-
ing radii and principal curvatures. An efficient way to compute surface points from
given normals is presented in section A.2. Section A.3 presents an algorithm to deter-
mine the intersections of a straight line segment and the superquadric surface. Based
on this, a scheme to compute the intersection area of a triangle and a superquadric is
detailed in section A.4.

A.1 Surface Parameterization

Based on the surface parameterization of the superquadric

X (¢1,02) = Xi(¢1, 02) E;

presented in section 3.1, equation (3.3), a number of useful geometric quantities can be
derived. Taking into account the three-fold symmetry of the superquadric it is sufficient
to restrict the following derivations to the first octant of the body-fixed reference frame
characterized by X; > 0 or ¢; € [0,7/2] and ¢, € [0, 7/2], respectively. In this domain
equation (3.3) can be simplified to

r1 cOs ¢y COS? ¢y
X (¢1,02) = | resin ¢y cos? oy |,

r3 sin® ¢q

0<¢
0= (A.1)

IAIN
IAIN
IMIETNIE

In the following, the explicit dependence on the curvilinear coordinates will be dropped
for convenience. Greek indices correspond to the two curvilinear coordinates, while
Latin indices correspond to the Cartesian body-fixed coordinates. Summation over
repeated indices is implied. The tangent vectors are defined by

09X

g, ‘= % ) (AZ)
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which reads in the body-fixed reference frame

[ —71 €1 singy cos ¢y cos® ¢y |
9, = ro € sin ! ¢1 COs 1 COS g ,
- 0 -
[ —71 €5 cos ¢y sin gy cos? ! gy |
9, = —79 €9 SN ¢ sin @y cos2 ! ¢y
s € SN ¢y COS Py

The surface normal is given as cross product of the tangents

n:=4g, xgsy,
resulting in the local coordinates
1 2—e€1 2—eo
y cos2 ¢1 cos 03
A=\ | = sin® ¢ cos>2 ¢y

g 2
L gipn2—e
- sin 0o

)

-~

I3

(A.3)

(A.4)

(A.6)

where A\ = 71 7o 75 €1 €5 sin L @y cos? T ¢y sin? ! ¢y cos®27! ¢, is a scaling factor, that
is neglected if just the direction of the normal is of interest. Note that the normal
components are given by the same kind of superquadric equation as the coordinates
in (A.1). If a quantity is required at a point outside the first octant, the point is first

mapped into the first octant. Therefore, the octants are numbered like follows.

octant 1] 2] 3] 4] 5] 6] 7] 8

sign(X;) =sign(singy) [ 1|-1|-1] 1| 1[-1]-1| 1
sign(Xy) =sign(cos¢y) [ 1| 1| -1 |-1| 1| 1|-1|-1
sign(X3) =sign(singy) [ 1| 1| 1| 1 |-1|-1|-1|-1

The mapping is accomplished by setting

sin @] := |singy|, cos¢] :=|cospy|, sing;:=|sings| .

(A7)

Using these positive values the local coordinates of the desired vector are calculated
using the simplified formulas above. Finally, these coordinates need to be re-mapped
to the original point. This mapping depends on the octant of the original point and
the vector that is to be mapped. For the vectors shown above the mappings are listed

below.
octant | 2 | 3 | 4 | 5 | 6 | 17 |
9= | Bagy | Bug | Big | g | Bagy | Bng | By
9,= | gy | Bog, | Bagy | Bingy | Bogy | g, | g,
n= Ryn® | Rion™ | Ryn™ | Byn® | Risn® | Bipzn” | Ryzn”

o* denotes the coordinates in the first octant and the matrices are defined by

~10 0 1 00 10
R, = 01 0|, R:=1|0-10|, Ry:=|01
00 1 0 01 0 0

0
0
—1

Ry, == R/Ry, Ry3:=RyRy, Ry3:=R Ry, Ryp3:=R;R5.
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A.1.1 Bounding Radii

The definition of bounding volumes is useful for efficient approximate contact checks.
The most widely used bounding volumes are spheres and axis aligned bounding boxes
(AABB), both of which offer a cheap intersection check. Regarding superquadrics the
parameters of the AABB, i.e. the dimensions of the box, are determined via three eval-
uations of (A.48). These dimensions have to be re-calculated when the superquadric
rotates. Hence, within the DEM scheme it is more convenient to use spherical bound-
ing volumes, which are invariant up to rotation and therefore need to be computed
only once. Each particle is described by an inscribed and a circumscribed sphere of
radius rmin and rmax, respectively. To determine these radii only the first octant of
the superquadric has to be considered because of the three-fold symmetry. For the
derivation, a 2D superquadric is considered first given in the first quadrant by

X1 | | ricoso
{XQ ] N {7’2 sin® ¢ ] ' (A.8)
The surface normal reads
1 oe(2-9)
ni | [ s cos o)
[m ] = l % sin(2’€)¢ ] . (A.9)

Because of the smooth, convex shape of the superquadric the surface normal at the
point of extreme radius has to be parallel to the gradient of the radius function. The
gradient of the radius function, however, is parallel to the position vector yielding the
necessary condition for an extreme radius

Xyl _ ny rycost o | il cos279 ¢
[X2:|_A [n2:| < [Tgsine¢:|_A [%Sin(2_5)¢ ) (AIO)

where A is an unknown scaling factor. This system of nonlinear equations has the trivial
solutions ¢ = 0 and ¢ = 7/2. Another solution is

<

1

tan ¢ = (T—l)e__l . (A.11)

)

Which solution corresponds to which bounding radius becomes clear by looking at
figure A.1. In the case of an ellipse (¢ = 1) only the trivial solutions exist resulting
in rpin = min(ry,79) and rpae = max(ry,re). For € < 1 the superquadric includes
the ellipse in a way that they touch at ¢ = 0 and ¢ = 7w/2. Therefore, i, of the
superquadric equals 7y, of the ellipse, while 7., is deduced from (A.11). For € > 1
the ellipse includes the superquadric and touches it at ¢ = 0 and ¢ = 7/2. Hence,
they have identical 7., values, while 7y, is deduced from (A.11). In the 3D case a
superquadric in the first octant is given by (A.1). To split this representation into two
planes defined by ¢o = 0 and ¢; = ¢7 the radius 712(¢1) is introduced as

r12(¢y1) == \/(7’1 cost ¢1)° + (1 sin ¢y)? . (A.12)
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A
X2 /\\
S \ =0
~ o \
~ e=1"\
N \
\ \
\ \
\
r1 \\ 622 \
\
\ |
/7.2'{
|

.

Figure A.1: First quadrant of 2D superquadric for different angularity parameters.

In this way, two sets of superquadric equations result for the two planes. For the ¢ = 0
plane the equations read

Xi(¢1) | | 71 cost oy
l Xo(pr) | | resinoy | (A.13)
while for the ¢; = ¢7 plane the equations are given by
X ]y COS? . i} .
{ X;’Z(E;S) } - [ 7“;,2sin€2 gbfz } with 7], :=ri2(¢7) - (A.14)

X9 1s the coordinate corresponding do the direction specified by ¢7. The minimum and
maximum radius ryo . and 75, in the ¢o = 0 plane are determined like in the 2D
case. Regarding the 3D bounding radii note the following: For two 2D superquadrics
with one identical radius and an identical angularity parameter, the superquadric with
the larger second radius includes the other one. Therefore, to get the minimum 3D
radius the 2D scheme is simply applied to the plane ¢; = ¢, corresponding to ro_,. .
Likewise, the maximum 3D radius results from applying the 2D scheme to the plane
specified by ¢; = ¢,

A.1.2 Principal Curvatures

For the determination of the principal curvatures the coefficients of the first and second
fundamental forms are required [156]. The coefficients of the first fundamental form
are defined by

9aB = Go 95 - (A.15)

For the second fundamental form the second derivatives of the surface coordinates with
respect to the curvilinear coordinates are required

X

n
e Xyp = A.16
| 7 066 0ds (A.16)

bog == —n - X,,5 with n:=
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These read in local coordinates

[ —3 71 €1 cos? dy cos? 2y (2 — €1 + € cos2¢)

X, = | 3ra€ cos® @y sin? P hy (=24 €+ cos2y) |, (A.17)
| 0
[ 71 €5 €1 cos? gy sin gy cos T ¢y sin ¢y

X, = —79 €3 €1 cos? gy singy sin? gy cosgy | = X (A.18)
| 0
[ —L 71 e cos? 2y oS Py (2 — €3+ €2 €OS2¢5)

Xy = | —3r262 8?2 ¢ sin ¢y (2— €2+ e cos20) | . (A19)
i % T3 €3 SN2 oy (—2 + €3 + €3OS 2¢h7)

The principal curvatures p' > p'I are the eigenvalues of the eigenproblem

(bag = P gas) s =0 (A.20)

Defining the Gaussian curvature K and mean curvature H via

det b ary bao + aga b1y
= - A.21
deta ’ 2 deta ' ( )
the principal curvatures are given by
pr=H+K, p'=H-K. (A.22)

Note that in the definition of H the fact that the off-diagonal terms b5 = by vanish
for superquadrics is already taken into account. The principal directions are orthogonal
and lie within the tangent plane. They result from the solution of (A.20) setting p = p'
and p = p'!, respectively. The first direction reads

er=plawng, + (bu—pan) g, (A.23)

where € is not normalized. The second direction can be deduced using the orthogonality
condition

éH =n X éI . (A24)
The principal curvatures at a point outside the first octant are identical to those at

the mapped point. The corresponding directions are determined by using the original
tangent and normal vectors in (A.23) and (A.24).

A.1.3 Curvilinear Coordinates from Normals

At various points within the DEM scheme surface related quantities are required at
points, which are not given in terms of their curvilinear coordinates but in terms
of their surface normal. Hence, an inversion of relation (A.6) is required to express
the curvilinear coordinates in terms of the normal components. The general form of
equation (A.6) valid on the complete surface reads

ny sign (cos ¢1) (1/71) | cos @[>~ | cos ¢o|? <2
A | ng | = | sign(sing) (1/r9) |sing|>~ |cos o>~ | | (A.25)
ns sign (sin ¢o) (1/r3) |sin ¢o|?~
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where A is an unknown positive scalar factor. The first coordinate ¢, is determined
from the ratio (A.25)2/(A.25), and is then inserted into (A.25)3 to eliminate the scaling
factor with the result

¢1 = tan (s |r n1|51 , So|ro n2|51) , (A.26)
=6 e
¢y = tan " (|rini|%2, s3] (r3ng|cos i) |%2), (A.27)
T . Vy v
=105 =05

with v, :=2—¢, 0; :=1/v;, s; :=sign(n;) .

tan~! (x,y) is the inverse tangent function taking into account which quadrant the
point (x,y) is in. Note that the normal vector entering (A.26) and (A.27) needs not
to be normalized. However, to avoid numerical problems at points with n; = 0 a lower
bound for the absolute values of the normal components is implemented

where TOL = 107 is a small positive number. Since the coordinate equation (3.3)
has the same structure as the normal equation (A.25), it can be inverted in the same
way giving the curvilinear coordinates in terms of the Cartesian coordinates.

The minimization algorithm for local contact detection presented in section 3.4.2
requires the first and second partial derivatives of the curvilinear coordinates with
respect to the normal components. In the following, these will be derived from equa-
tions (A.26) and (A.27). In order to preserve the clarity of the formulas the following
conventions are applied in the rest of this section.

e To abbreviate the formulas auxiliary variables are introduced for frequent terms.

e Partial derivatives with respect to normal components are denoted by e ; := %.

e Only non-vanishing partial derivatives are listed.
e For second partial derivatives the symmetry relation e ;; = e ;; is implied.

First, the derivatives of ¢; are derived from (A.26). Using

dtan™! (z,y) -y dtan™! (z,vy) x

ox o242 dy o242

and

T T
1= ’y_i ryng | Y, = ,y—j ramo| ™M = — 1, b= (67)7 + (69)?,

the first derivatives read

1 1
P11 = I P11, o= " o1 Y - (A.29)
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Introducing the auxilary variable ¢; := 1, /7% and the second derivatives

x 41 51 1 q1 52 L
1,11 — —n% |71 nl|(S ) Z{,zz = n—% |72 n2‘6 )
yields the result
1 €T €T €T
11 = 2 o1 [2 1 ( 1,1)2 —h ¢1,11} , (A.30)
1
1 xX
b112 = B o717, [(0)? = (o7)?] (A.31)
1
L, y Y (1Y \2
Pro2 = l_2¢1 [ll 1,22 —2¢7 ( 1,2) } . (A.32)
1

Now, the derivatives of ¢y are derived from (A.27). Since ¢ depends on ¢; the above
results are re-used and the terms become bulky. Introducing the auxilary variables

1 _
by = (¢5)°+ (), ¢ = . | (r3ng | cos g [7*) [,
2
g3 = —r3nzyi|cosgy| " singysiga,
the derivatives of ¢% and ¢4 read
1
= sy |rinat
2,1 ~, 5171 |71 11
b1 = G311, Doy =qsdra, Phz = qars|cosdi|™ .

Using these results the first derivatives of ¢, are given as

1
¢2,i = E (Cbg gz - ¢g 3261) : (A-33)
For the second derivatives another set of auxiliary variables is introduced
1 _ —2¢
g1 = —5|(ranglcosgi|™) |27, g5 = —s3y1qu (r3ms)? | cos |,
2
g6 = —72sing; cos” ¢1, qr:= (61— e€) sin” o cos’ b1 — 72 cos* o1,
gs = (cos® )™, qo:=—71|rsns|r3quqs sindy cos gy .
In this way the second derivatives of ¢ and ¢§ are expressed as
1 _
5,11 = ? 7“% 2 |1 nl|62 2, g,n =q5 (q7 011 P11 — @6 P1.11)
2
¢g,12 = g5 (C]7 ¢1,1 ¢1,2 — (g6 ¢1,12) ) ¢‘12/722 =5 (Q7 ¢1,2 ¢1,2 — (e ¢1,22) )
(;532/713 = Qo1 ¢g,23 =q9 P12, (;532/733 = 53 7“32, 1244 98 cos® ;.

Finally, the second derivatives of ¢, are given by

1 X X X X X X
Gai5 = E [¢2,j gz - g,j ¢2,z‘ + ¢ Cbgw — ¢ ¢2,z‘j — 299, (¢2 ¢2,j + ¢4 Cbgg)} - (A34)
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To determine the derivatives 0¢./Oc; from section 3.4.2 the rotation of the contact
reference frame é; with respect to the particle-fixed reference frame FE; has to be
considered. For the first contact partner P; the relation between the normal n; and
the contact direction ¢ is given as

n=c & njE;=ce
= n‘el-E‘:ckel-ék & Tin: = Ry e
J J ~—— J Y] (A35)

=Ry
= TyTyynj =Ty Rpc. < ni=T1yRucr,

where R is the rotation matrix describing the transformation between the global and
the contact reference frame. Using this the partial derivatives for the first contact

partner are given as
0p,  O0¢, On; O,
— = = Ty Ry, A.36
8ck 871, 6ck 871, : lk ( )
In the same manner the relation for the second contact partner P, is derived from
ny = —c resulting in
06, __00,

=— T : A.
Ocy, on; " B (A.37)

The remaining derivatives Op/0¢., are presented in the beginning of this chapter, while
the derivatives Ocy/0a; are easily derived from (3.53).

A.2 Surface Points from Normals

The operation of determining a surface point from a given normal direction is frequently
used within the DEM scheme, especially within the contact geometry update scheme
presented in section 3.4.2. In fact, due to its frequent use, this operation is the most
time consuming part within the complete DEM scheme. Therefore, it is worthwhile to
think about the most efficient way it can be done. One possibility is to use equations
(A.26) and (A.27) to first compute the corresponding curvilinear coordinates ¢; and
plug these into equation (3.3), i.e. to write

X = X(¢1(n), ¢2(n)) . (A.38)

The derivatives required by the geometry update scheme are then derived like for the
minimization contact detection algorithm in section 3.4.2, i.e. using the chain rule
0X;  0X; 0¢q
87’Lj N 8¢)a 8nj '

These derivatives are determined in section A.1.3 and result in bulky terms including
a huge number of transcendental functions and thus high computational costs. A more
efficient operation is based on the implicit definition of the superquadric surface as an
isosurface of the inside-outside function F (3.1)

F(X17X27X3) = 1 . (A39)
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A normal vector is parallel to the gradient of F' given as

B €1/ea—1 7
() e ) ()]
1 1 T2

€1/ea—1

VFZE (L>2/“ X2t {<&)2/61+ (X_>2/} : (A.40)
<L>2/62 X:?/Qfl

T3

where due to the superquadric’s three-fold symmetry only the first octant is considered.
Hence, the relation between a surface point (X7, X5, X3) and the corresponding normal
direction n = (n1,n9, n3) is given by the nonlinear system

VF (X17X27X3) - )\27

A.41
F(XlaXQaX3):1a ( )

where \ is an unknown positive scalar factor. By solving (A.41) for the coordinates X; a
relation results which does not involve the surface parameterization and therefore saves
the corresponding expensive trigonometric function calls. The following derivation of
the explicit solution of (A.41) is restricted to the first octant. For the determination of
points outside this octant the simple relation

X; (n1,n9,n3) = sign (n;) X; (|n1], |nal, |ns|) (A.42)

is used, which results from the symmetries of the superquadric. Furthermore, to avoid
numerical problems at points with n; = 0, a lower bound is introduced via

if |nj <TOL = set n; =TOL, (A.43)

where TOL = 107% is a small positive number. To solve system (A.41) the second
gradient equation is divided by the first resulting in the coordinate ratio

&: r 2/(2—€1) ny €1/(2—e€1) (A44)
X1 1 ni ' .

Defining 721 := X5/ X the first term of the inside-outside function is re-written as

2/e1 2/e 2/e1 2/e1
[(?) . (&) ] _ xer [(l) . (ﬂ) ] | (A.45)
. Ty 1 )

=512

Using this, the ratio v3; := X3/X; is derived by dividing the third gradient equation

by the first
€2/(2—€2)
X 22 e
23 _ <@ Is _ gafe 1) _ (A.46)

o 2
X1 ny 7“1/51
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Inserting this into the isosurface equation (A.41) yields the first coordinate

2/62 762/2
X, = [s;/f? + (E) ] . (A.47)

T3
This, finally, gives the surface point
(X1, X2, X3) = X3 (1,721, 731) - (A.48)

In order to determine the partial derivatives 0.X;/dn; from the above relations, two
general characteristics are first derived from system (A.41). The partial derivative of
the isosurface equation (A.41), yields

OF OF 0Xy 00Xy
= = =0. A4

Hence, the tangent vectors defined by

0Xy,
= E
871@ K

t;: (A.50)

are orthogonal to the normal vector n and therefore lie in the tangent plane to the
superquadric surface. The derivative of the gradient equation (A.41); reads

95% 9 (\ny) PF 90X, O\
- ===y . A51
on; on; = an 0X. On; on, n; + )‘52J ) ( 5 )

where the Hessian H = H;; E; ® E; of I' has been introduced. From the definition
of F' it is easy to show that H is a symmetric, positive definite tensor at every point
except the origin. Equation (A.51) is written in tensor notation as

O\

3ni

n+\E; . (A.52)

The scalar product with ¢; and the symmetry of H yields the symmetry of the partial
derivatives 0.X;/0n;

O\ 0X, 0X;
0X; 0X,
= —. A53

The orthogonality (A.49) and symmetry (A.53) are used to reduce the effort of com-
puting the partial derivatives 0.X;/0n;. The surface point coordinates are derived in
terms of the quantities y51, s12, and 737, which are functions of the normal components



A.2. SURFACE POINTS FROM NORMALS 123

(n1,n2,n3). Hence, the partial derivatives 0.X;/0n; are derived from the derivatives of
Vo1, S12, and ~ys1. It is

8721: 2 Hemal g n2 et _ (A.54)
87’1,1 1 2—61 nq n% . )

For an efficient implementation of the derivatives it is crucial to exploit their nature by
re-using the terms already computed. Therefore, the derivate is re-arranged resulting

1n
01 N T2 2 ) /) e 1 e 1 (A.55)
6n1— 1 st 2—61n1_ 7212—6177/1. )

In the same way the derivative with respect to no results to

021 e 1
—= = —. A.56
8712 T 2 — €1 No ( )
Based on this the derivatives of s15 are given by
2 (1) Lo
ony ony '
n1 €1 ) ) Y21 Ony (A.57)
0s12 _ 3 (E) “ i Oy
ony €1 ) Y21 Ong '
Using the above the derivatives of 73, are
031 €2 1 1 0Os12
ZB8t _ 1) — 2212
3n1 2 — €9 31 * (61/62 ) S12 87’1,1 ’
8’}/31 €9 1 a312
— 1) — 2= A58
Oy 2 6 V31 (61/62 ) 519 Ong | ( )
31 _ & 1
3n3 2 — €9 L ns .
Finally, the derivatives of X; read
%:q ﬂsﬁl/ﬁgi@_Fz (E)Q/62 i%
ony _62 12 S12 Ony €2 3 Y31 Ong | ’
0X4 —q €1 851/52 i 0512 3 (E)Z/Q i 031
Ony €2 2 512 Ong €2 T3 Y31 Ong ’
- 2/es il (A.59)
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with ¢ := —52 X1 [8?2/62 + (%) ]
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Using (A.48) the missing derivatives read

0X, . 021 0X,
o~ o, X1+ v an, (A.60)
8X3 . 8731 aXl

The sign of the derivatives for points outside the first octant is derived by differentiation
of (A.42)

0X; (n1,ng, ng) _ 0 (sign (n;) X; (|, [n2l, [ns|))

. 8Xz(|n1|,|n2|,|n3‘) a‘nk‘
= sign (n;) sign (n;) 0X; qné‘f?ylf" n3))
J

A.3 Line Segment Intersection

An operation used frequently in the particle-surface contact scheme is the determina-
tion of intersections of a straight line segment and the particle surface. Let the line
segment be defined by its endpoints A = A; E; and B = B; E; via

The surface of a superquadric particle is defined implicitly as iso-surface of the inside-
outside function F'(X) = 1. To determine the intersection points the function f(\) is
defined as

FO) = F(X(\) — 1, (A.64)

so that the intersection points are given as roots of f(\). Due to the convexity of the
inside-outside function, f(A) is a convex function as well. Hence, three scenarios have
to be accounted for:

e f(0) <OA f(1) <0: A and B lie inside. There is no intersection.

e f(0) <OA f(1) > 0: A lies inside and B outside. There is one intersection.

e f(0) > 0Af(1) > 0: A and B lie outside. There might be no or two intersections'.
In the last case the number of intersections depends on the minimum of f(\)

min f

()\) {< 0 = 2 intersections (A.65)
A€[0,1]

> (0 = no intersection

!The case that the line segment exactly touches the surface is considered as no intersection.
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Using the derivative

_df  OF dX,

F =g = X, d\

= VF|xp) - (B A). (A.66)

the following relation holds due to the convexity of f

FOFD>0 = min f(O) = min(f(0), /(1) (A7)
Hence, the minimization of f is only performed if f’(0) f’(1) < 0 using the Newton
scheme combined with the Armijo line search. Due to the convexity of f, the scheme
is globally convergent and usually yields the minimum A.,;, within few iterations. For
f(Amin) < 0 the minimum point C := X (\y,) is introduced and the problem of
finding two intersections in [A, B] is replaced by the problem of finding each one
intersection in [A, C] and [B, C|. Without loss of generality it is now assumed that
f(0) <O0A f(1) > 0. The unique root within A € [0, 1] is determined iteratively using
the Newton method. The initial value is either chosen as \° = 1 or specified by the
user, if a good guess is available. Note that due to the convexity of f the following
relation holds for the iterates \¢

N< AT <N V>0, (A.68)

where \* is the exact root, i.e. f(A\*) = 0. Again, the solution is usually approximated
with high accuracy within few iterations. However, depending on the shape of the
superquadric and the position of the line segment, the function f(\) might be highly
nonlinear. Thus, if the number of iterations becomes too large, a simple bisection
algorithm is applied, which does not require the computation of derivatives.

A.4 'Triangle Intersection Area

The evaluation of the contact force between a particle P and a plane triangle 7 ac-
cording to the contact model introduced in section 4.1.1 necessitates the determination
of

e the intersection area A of P and the plane E defined by 7,

e and the intersection area A of P and T as well as its geometric center ¢, cf. figure
4.6(a).

For superquadric particles these quantities can only be computed approximately. For
this purpose the triangle 7 and the corresponding plane F are first expressed in terms
of the particle-fixed reference frame F;. Let E be defined by the normal n and constant
c via ¢ -n = c. To check if E intersects P, the surface points p(n) and p(—n) = —p(n)
are computed from the normal direction, see figure A.2(a). The distances of these points
to E are given as

hi=pn) - n—c, hy=c—p(-n) - n=c+pn) n. (A.69)
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Figure A.2: a) Triangle 7 and corresponding plane E intersect particle P. Point p, belongs
to the intersection of £ and P.
b) Numerical approximation of intersection area A of E and P.

The plane intersects the particle iff
hi >0ANhy>0 < |cf<pn) n. (A.70)

In case of an intersection a point of this intersection is given as

_ hyp(n) + hip(—m)  hy— M~y
hl -+ h2 hl + h2

(A.71)

which for spherical particles is the center of the intersection area A. To approximate
A two orthogonal vectors r; and rs are introduced with r; - n = 0 and ||7;]| = 2 rpax,
where 7., denotes the radius of the bounding sphere of P, see figure A.2(b). Using p;,
as center, A is approximated as sum of the triangular areas AA; defined by the radius
vectors r(p;) and r(p;11) with

27
pi=1Ap=i— and r(p):=cosepr;+sinpr;. (A.72)
na
The intersection points of the radius vectors and the particle surface are determined
according to section A.3. This requires n4 solutions of a nonlinear equation whereat a
good initial guess for vector ¢ is available from vector ¢ — 1. Finally, the intersection
area and its center are approximated as

naA 1 na
AR AL, em vl > AAie(AA) (A.73)
=1 =1

where c(AA;) denotes the center of the triangular element AA;.
In order to compute the intersection area A of the triangle 7 and particle P the
topology of this intersection has to be determined. For this purpose the corner points of
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A

(0,0)

v
A

(1,1)

s )
P A
A

Figure A.3: Topologically different cases of partlcle—trlangle intersection. Intersection of par-
ticle and triangle plane in light gray, triangle in dark gray, and particle-triangle
intersection in medium gray. The numbers are (number of triangle corners inside
particle, number of triangle edges that intersect the particle surface twice).

7T inside P and the intersections of triangle edges and the particle surface are detected
first. Figure A.3 exemplifies the possible topologies along with the number of corner
points inside the particle and the number of edges that intersect the particle surface
twice. The two (0,0) topologies are distinguished by checking if p, € 7. Note that for
these two most frequent cases no intersection areas have to be computed, since in one
case the contact force vanishes, while in the other case the contact force depends solely
on the overlap distance.

For the remaining cases similar schemes are applied as for the approximation of the
plane-particle intersection area, see figure A.4. Since the operation principles become
clear from the figure, they will not be explained in detail. In general, the intersection
area is approximated by a number of triangles, whose generation scheme depends on
the topology of the intersection.

Finally, the accuracy of the proposed scheme is analyzed. Obviously, the accu-
racy depends on the degree of refinement n,4 used to approximate round parts of the
intersection areas. Here the refinement parameter is chosen as ny, = 64. First, the
triangle-particle intersection algorithm is tested for 10* randomly generated test cases
with spherical particles for which the intersection area can be computed analytically.
The scheme yields an average relative error in the intersection area A of about 0.03%
and a maximum relative error of 7.3%.
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(1,0) (1,1) (2,0)

Figure A.4: Intersection approximation schemes for different topologies. In the top row each
semicircle is discretized into n4 angles. In the bottom row the triangle edges
are split into n4 segments.

To check the performance for superquadric particles a simple approximation scheme
is used as reference: The original triangle is split into n parts along each edge like
exemplified in figure A.5. This yields a number of n? sub-triangles, each of which is
checked for lying completely inside or outside of the particle. In this way, a lower
and an upper bound for the intersection area are determined. Again, 10* test cases
are randomly generated. The reference approximations are determined using n = 500,
which corresponds to a number of 2.5 x 10° sub-triangles. The mean intersection area
is about 1.25, while the mean distance between the results of the proposed scheme and
the lower bound of the reference scheme is 5.4 x 1072 and the distance to the upper
bound is 6.2 x 1073, In only two cases the proposed scheme yields results which do
not lie inside the narrow bounds. The mean difference between the proposed solution
and the average of lower and upper bound is 3.7 x 107 and the maximum difference
is 9.7 x 1074,

Finally, the scheme is again compared with the analytical solution for spherical
particles. Now, 10 random test cases are generated such that the particle-plane overlap
distance is only a small fraction of the particle radius. Under this condition the scheme
yields an average relative error in the intersection area A of 6.6 x 1072,
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n=>5

] lower bound

E+m@ upper bound

Figure A.5: Reference scheme approximating the intersection area by splitting the triangle
into n? congruent triangles.

Altogether, these tests indicate that the proposed scheme yields accurate results
under all possible circumstances. Its robustness is a direct result of the robustness
of the line segment intersection scheme presented in section A.3, which is used to
determine the discretization of the intersection areas.
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Appendix B

Weighted Virtual Work of a Rigid
Body

Within this section the weighted virtual work of a rigid body is considered as introduced
in section 6.1. Using a linear approximation of the weight function w(x) within the
domain of the rigid body Q the virtual work is given by equation (6.12) and repeated
here for convenience

Wy =(wemeé — f)-oug+ (w I - w+wXxXw.I w—m)-dw

+wén~/rp(é—|—w><r+w><(wxr)—b)-(5u0+5w><'r) dv .

N~ Q >
W
Introducing the inertia tensors
II::/pr®rdv, HQ::/pr(X)r@rdv, I[gzz/pr®1r2dv, (B.1)
Q Q Q
the gradient term JW* is written as
win-{ I - [(€—b) X dw + (w- dugw — w?dug) + (dug x w)] —  (B.2)
I [w® (dwXw)+w ow]+ (B.3)
I3 [w®dw]} . (B.4)

For superquadric particles the inertia tensors I, and I3 vanish due to the symmetry of
the particles. The magnitude of the remaining term is estimated assuming a spherical
rigid body of constant density, mass m, and radius R yielding

1 1 1
I, = /pr@rdv:ngzlzillzil. (B.5)

Q
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Inserting this into the remaining contribution (B.2) gives

w’lmRQn- (&= b) x dw + (w - dugw — w? dug) + (dug X )]

‘5
wéémRz (n-ww-—w’n+wxn) dug+ (nx (&é—b) dw| (B.6)
= wé? [(mRw*(n-e,e,—n)+mRwxmn)-duy +

(Rmnxm(¢—0)) dw| with w=we,, |e,]|=1. (B.7)

Let now L denote the characteristic size of the domain Q° and let it be expressed in
terms of particle diameters via L. = n2R, so that n is the number of particles over
the domain. Assuming a linear evolution of the weight function the magnitude of the

gradient is given by
1 1
= =, B.8
Ye = T T 2R (B:8)

This yields the remaining contribution to the virtual work

on [(mRwW (n-e,e,—n)+mRwxmn) dug+ (Rn xm(é—b)) dw| . (B.9)

Hence, for a domain of the width of, e.g., ten particles the prefactor is 1/100, while the
terms inside the brackets are of the same order of magnitude as those of the weighted
equations of motion (6.13) and (6.14).
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