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Zusammenfassung 

Die Evolution der Tiere hat bis heute zu einer ungeheuren Diversität von Formen 

bereits ausgestorbener und rezenten Tierarten geführt. Das Hauptaugenmerk der 

Evolutionsbiologie liegt auf dem Verständnis der grundsätzlichen Prozesse, welche 

die  Spezialisierung  und Komplexität der Arten bedingen. Insbesondere die  

Evolution entwicklungsbiologischer Mechanismen innerhalb der Tierstämme 

scheinen direkt die evolutionäre Geschichte der Arten widerzuspiegeln. Deshalb 

könnten Einblicke in die regulatorischen Grundlagen zur Musterbildung der ältesten 

Tierstämme, den Diploblasten, zu einem besseren Verständnis grundlegender  

Bauplanveränderungen führen. 

Gene besonderer Klassen, die eine Homeobox beinhalten, stellen die  

Haupkontrollelemente für musterbildende Mechanismen dar. Da diese Gene 

hochkonserviert in allen Tierstämmen vorliegen, wird ihre Evolution direkt mit der 

Evolution des tierischen Bauplans in Verbindung gebracht. Während wir in 

abgeleiteten „modernen“ Bilateria komplexe, hochspezialisierte Funktionen der 

Homeobox Gene untersuchen, wissen wir noch sehr wenig über die ursprünglichen 

Funktionen von homologen Homeobox Genen in basalen  Diploblasten. 

In der vorliegenden Arbeit wurden drei hauptregulatorische Gene in der am 

einfachsten organisierten rezenten Art, Trichoplax adhaerens (Placozoa), 

charakterisiert, um ein besseres Verständnis ihrer Funktion in einem der ersten 

vielzelligen Tierstämme zu erlangen. Die Arbeit umfasst: (i) Analysen der 

entwicklungsbiologischen Funktionen des ProtoHox/ParaHox Gens Trox-2, (ii) 

Expressionsanalysen und phylogenetische Einordnung des Paired-Box Gens 

TriPaxB und (iii) Expressionsanalysen des Paired-Box Gens TriPaxC, sowie 

funktionelle Untersuchungen von Effekten bei RNAi Knockdown. Zusätzlich wurde 

das komplette mitochondriale Genom von Trichoplax adhaerens charakterisiert, um 

die ursprünglich erscheinenden Musterbildungsprozesse von Trichoplax in einen 

stammesgeschichtlichen Kontext einordnen zu können. Die erzielten Daten geben 

einen detaillierten Einblick in zahlreiche neue Besonderheiten von Zellaufbau und 

anatomischer Struktur von Trichoplax adhaerens. Zusammengefasst liefern die 

Ergebnisse aus dieser Arbeit die Erkenntnis, dass es sich bei Placozoa tatsächlich 

um einen Tierstamm handeln könnte, der den gemeinsamen Vorfahren aller Metazoa 

widerspiegelt.  

Schlüsselwörter: Evolution, ProtoHox/ParaHox, Pax, Mt genome, Placozoa
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Summary 

Animal evolution led to a t remendous diversity in form and number of extinct and 

extant animal species. Understanding the principle processes leading to 

specialization and complexity has been a key issue in evolutionary biology. The 

evolution of animal developmental mechanisms seems to directly mirror the 

evolutionary history of extant animal phyla. 

Therefore, insights into the principle developmental regulatory mechanisms of 

earliest branching diploblastic phyla might lead to an u nderstanding how key 

transition and new body plans have evolved. Homeobox containing genes of different 

distinct classes represent the master control elements for developmental processes. 

They are highly conserved among all animal species. Thus indicating that the 

evolution of animal bauplans is directly linked to the evolution of these master control 

genes. While most of their functions are characterized in derived bilaterian animals 

we know only little about their roles in basal diploblast animals.  

In this thesis, three key regulatory genes were characterized in the most simple 

organized extant species, Trichoplax ahaerens (Placozoa). 

To gain deeper knowledge on the developmental functions in Trichoplax, the studies 

comprised: (I) analyses on the developmental function and expression of the 

ProtoHox/ParaHox gene, Trox-2, (II) expression analyses and phylogenetic 

implications of the Paired box gene TriPaxB, (III) expression analyses and effects of 

a RNAi knock down of the Paired box gene TriPaxC. In addition, in an attempt to 

place the unique developmental mechanisms of Trichoplax adhaeraens into a 

phylogenetic background, the complete mitochondrial genome of Trichoplax was 

analyzed.  

The data collected in this study provide detailed insights into the patterning 

processes during vegetative development of Trichoplax adhaerens. Several new 

features of cell composition and anatomical organization of Trichoplax were 

identified.  

In summary, the collected data provide insights that Placozoans indeed represent a 

basal phylum, close to the hypothetical common ancestor of all metazoans.  

 

Key words: 

Evolution, Development, ProtoHox/ParaHox, Pax, Mt genome, Trichoplax adhaerens 
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1. Introduction  
1.1 Brief History of Placozoa 
A little over a c entury ago, in 1883, a new marine invertebrate species was 

discovered and i ntroduced to the scientific community as Trichoplax adhaerens  

(Greek: trich = hair, plax= plate, Latin: adhaerere = to stick). It was recognized on the 

glass wall of a seawater aquarium by the German biologist F.E. Schulze in Graz, 

Austria. Schulze described the histological organization of the enigmatic organism in 

great detail [1]. Because of its extreme morphological simplicity compared to all other 

metazoans, Schulze claimed the most basal phylogenetic position for Trichoplax 

adhaerens [1, 2]. In the following years scientist doubted Schulzes hypothesis and 

claimed Trichoplax adhaerens to represent an aberrant planula larvae of a derived 

cnidarian. Soon after Krumbach published his interpretation considering Trichoplax 

as an “ abnormal” cnidarian Trichoplax was pushed out of scientific research [3-6]. 

German zoologists rediscovered Trichoplax adhaerens in the 1960´s and continued 

research on histology and cytology of Trichoplax at the ultastructural level. In 1971 

K.G. Grell proposed a completely new phylum for Trichoplax adhaerens, called 

Placozoa (Greek: plakos = flat, + zōia = animals) [7, 8]. Today the phylum Placozoa 

is established in all recent biological textbooks and Trichoplax adhaerens is, so far 

the only described species [9-11].  

 

Placozoan Biology 
Placozoa are found in the littoral of tropical and subtropical seas all over the world 

[12-16]. Because of its microscopic size and its ability to accumulate fluorochromes 

of the substrate it is feeding on, it is nearly impossible to observe Placozoa in the 

field [15, 17]. Knowledge about placozoan biology is primary gained by observations 

of laboratory-cultured animals. Under laboratory culture conditions the individuals 

move over the substrate and feed on biofilms of algae and bacteria [2, 18, 19]. 
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Figure 1. Light and s canning electron microscopic (SEM) micrographs of Trichoplax 
adhaerens habitus. 
A) Light microscopic image  
B) SEM image of the habitus 
C) View lower epithelia with high cilia density 
D) Detail of the marginal edge of Trichoplax 
E) Detail of lower epithelia with attached partially digested algea 
 

If the animals are moving, their bodies are changing shape randomly. Placozoan 

movement was previously interpreted as random or undirected [18, 20-23], but can 

be influenced by chemotaxis, phototaxis and mechanical stress (see also 1.3, 3.3). 

Trichoplax has neither organs nor any body axis [1, 2, 24-27]. The adult organism is 

described to consist of four to five differentiated somatic cell types building up three 

tissue layers [1, 2, 28-30]. Each layer lacks an extra cellular matrix and the cells of 

the tissues are connected by septated desmosomes [31-33]. The epidermis is built 

up by an upper and a morphological different lower tissue. A single ciliated, flattened 

cell type forms the upper functional epithelium. Under optimized culture conditions 

the upper epithelium shows inclusions of unknown origin, called shiny spheres [9, 

28]. Under mechanical stress the animal is able to release the shiny spheres abruptly 

(Ana Signorovich, personal communication). Moreover, shiny spheres were recently 

associated with a possible defense mechanism of placozoans [34].  

The lower functional epithelium is composed by at least two different, club shaped 

cell types – cylinder cells and gland cells. Ciliated cylinder cells are responsible for 

placozoan locomotion by cilia walking as well as for pinocytosis. Gland cells lack cilia 

and produce enzymes for exosomatic digestion of the substrate [9, 35]. 

The interspace (cavern) between the both epithelia is interspersed by fiber cells and 

filled with a fluid of unknown consistence. The fiber cells form a three dimensional, 

syncitium like network, with cell extensions connecting to the upper and l ower 

epithelia [31, 35, 36]. Active contraction of the fiber cells changes the animals shape 

[36-38]. Ultrastructural studies revealed that fiber cells contain bacteria of unknown 
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origin, presumed to represent endosymbionts. In addition fiber cells show sub cellular 

regions were mitochondria are located, so called mitochondrial complexes [2, 32, 39].  

 

 
 
Figure 2. Simplified schematic cross section of the histological organization of Trichoplax 
adhaerens. Abbreviations: SS: Shiny spheres; FC: Fiber cells; V:  Lower epithelia. Modified 
after Guidi et al. 2011. 
 

 
Vegetative reproduction 
Placozoa can reproduce by a n umber of vegetative mechanisms resulting in an 

increasing number of individuals of a single clonal lineage [40-42]. The most common 

form of vegetative reproduction is binary fission of the organism. Another mechanism 

of vegetative reproduction is the generation of spherical swarmers. These swarmers 

can appear internal or external of an adult organism. If released, the swarmers are 

floating until they settle and change their shape into a plate [42, 43].  

 

 
Figure 3. Trichoplax adhaerens during the last phase of binary fission process 
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Sexual Reproduction 
At this point of knowledge, the mechanisms of placozoan sexual reproduction are 

uncertain [44, 45]. Putative egg like cells appear to grow in the interspaces of the 

animals epithelia. There is no evidence yet, if the putative egg cells derive directly of 

a meiotic cell or if they are a result of a conversion of already differentiated mitotic 

cells [43]. Putative egg cells, which undergo cleavage, show a k ind of fertilization 

membrane. However, engaged cell cleavage results in an enigmatic developmental 

arrest in the 128-cell stage followed by a sudden death of the embryo. Neither sperm 

cells nor further development of gametes could be obs erved under laboratory 

conditions so far[39, 45, 46]. Investigations of molecular patterns in genomic DNA 

sequences from Caribbean Placozoa populations indicate that different clades within 

the phyla Placozoa carry molecular signatures of sexual reproduction. Identification 

of nucleotide polymorphisms, intergenic as well as interchromosomal recombination 

and shared alleles between heterozygotes and homozygotes gave first insights that 

sexual reproduction of placozoans might occur in the field [47]. 

 

 
Figure 4. Egg Cells of Trichoplax adhaerens 
A) Dissected early egg cell of Trichoplax adhaerens. 
B) Egg with remains of a deceased “embryo”. 
 

 

The Trichoplax Genome  
The nuclear genome of Trichoplax was recently sequenced [48]. The genome size of 

Trichoplax adhaerens is about 90 Mbp, organized in 12 Chromosomes. Compared to 

bacteria, Trichoplax adhaerens has only about ten times the genome size of E.coli 

and represents the smallest animal genome known so far [11, 48-51]. 
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Systematic classification  
New metazoan systematic textbooks list Placozoa first, followed by the three other 

diploblast phyla, i.e. Porifera, Ctenophora and Cnidaria [9-11]. The most simple of all 

metazoan bauplan organizations is the common reason to claim Trichoplax to be a 

direct descendant of a pre-metazoan ancestor. The other diploblast phyla show (i) 

more complex, even symmetric organized bodyplans, (ii) a higher number of 

differentiated somatic cell types and/or (iii) an oral-aboral axis formation [6, 9, 27, 52, 

53].  

However, recent phylogenetic analysis of nuclear genome sequences brought up 

discussions about the phylogenetic relationships of diploblast phyla. The various 

studies led to all possible sister group relationships among the four diploblastic phyla 

and Bilateria ( see Fig.5) [54-65].  

 

 
 
Figure 5. Postulated relationships among the five main metazoan clades. (A) Hypothesis by 
Schierwater et al. [62], with Bilateria as sister group to a clade that contains placozoans as 
sister to sponges, cnidarians and ctenophores. (B) Hypothesis with monophyletic 
Coelenterata by Philippe et al. [66]. (C) Traditional hypothesis based on morphology, with 
sponges as sister group to other metazoans, e.g. Nielsen [67]. (D) Hypothesis with 
monophyletic Eumetazoa but with Ctenophora as sister to all other eumetazoans by Pick et 
al. [55]. (E) Hypothesis based on phylogenomic analyses, with ctenophores as sister group 
to all other metazoans by Dunn et al. and Hejnol et al. [68, 69]. Modified after Edgecombe et 
al. [65]. Pictures are modified after Schierwater et al. [62]. 
 
 
The major problem of the conflicting analyses is the limited numbers of characters 

and/or the limited taxon sampling used in the phylogenetic data sets [59, 65]. Thus, 
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the phylogenetic position of the enigmatic phylum Placozao remains a m atter of 

debate. 

 

 

1.2 ParaHox and Hox genes 
Highly conserved patterning processes control the development of metazoans. 

ParaHox genes and closely related Hox genes are crucial key regulators for 

establishment of axis and or gan formation [70-72]. The common characteristic 

feature of ParaHox and Hox genes is the presence of the highly conserved 180 bp 

homeobox motive. The homeobox encodes a D NA binding domain responsible for 

transcriptional regulation of target genes [73]. ParaHox and Hox genes belong to the 

Antennapedia homeobox superclasss and are highly conserved in structure and 

genomic organization among all metazoan animals [71]. Their expression patterns 

during embryonic development are strictly spatial and temporal separated, resulting 

in axis establishment and organ formation in the embryo[70]. Moreover, their spatial 

and temporal expression patterns both mirror the order of the genes within the cluster 

[74]. Fundamental questions about the evolutionary origin of the ParaHox and Hox 

genes are explained by the evolutionary “invention” of an ancestral “ProtoHox” gene 

already present in a Diploblast/Bilateria ancestor, the Urmetazoa [59, 72, 75-81]. 

Several proposed scenarios about the evolution of ProtoHox/ParaHox/Hox genes are 

based on genomic sequence analyses and the resulting phylogenetic relationships to 

each other. Today the consensus view is that after establishment of a single 

ProtoHox gene at least two evolutionary duplication events must have occurred 

during the evolution of ParaHox/Hox genes ( see Fig.6) [72, 74, 82, 83].  

The single ProtoHox gene in an Urmetazoa builds up a ProtoHox cluster by gene 

duplication in early metazoan evolution. The established ProtoHox clusters 

underwent a complete duplication itself and led to a second cluster, resulting in the 

ParaHox cluster and closely related Hox gene cluster present in extant bilaterian 

metazoans (Holland 2002). Several phylogenetic attempts have been made to 

reconstruct the possible ancient nature of the putative ProtoHox gene. In all 

published datasets the outcome of the phylogenetic reconstructions suggested a 

close relationship of the ProtoHox gene to the extant Gsx class ParaHox gene [78, 

81, 84-87]. 
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Figure 6. Simplified theoretical evolutionary model of cluster duplication during early 
metazoan evolution.  
Starting from a single ProtoHox gene (Diplox-2 equals  ProtoHox) the establishment of 
ProtoHox clusters and following ParaHox and Hox clusters can be explained by several cis- 
and/or segmental duplication events. Modified after Kamm [88]. 
  
 
However, the existing duplication models for ParaHox/Hox gene evolution can not be 

easily adapted to the ParaHox and H ox gene inventory of lower diploblastic 

metazoans phyla (i.e. Placozoa, Porifera, Ctenophores and Cnidarians). For 

example, one single ParaHox homologue, the Gsx like gene Trox-2, is present in 

Placozoa [6, 48, 83] and only two representatives ParaHox genes, i.e. Gsx and Cdx, 

are found in cnidarians [89-92]. 

Neither there is a genomic cluster organization of these genes in cnidarians (which 

would be expected by the common evolutionary models), nor details are known about 

their developmental function in early metazoans [79, 93, 94]. Moreover, 

representatives of Porifera and Ctenophora, seem to lack ParaHox genes at all [95, 

96]. This fact resulted in a recently introduced terminological split of basal metazoans 

into non-Parahoxozoa (Porifera and Ctenophora) and ParaHoxozoa (Placozoa, 

Cnidaria and B ilateria) [96]. Since Porifera and C tenophora lack the canonical 

ParaHox system, it has been suggested that non-ParaHoxozoa represent the earliest 

branching metazoan phyla, before the establishment of ProtoHox/ParaHox genes 

[97-99]. Nevertheless, others claim that the absence of ParaHox genes is the result 
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of a secondary loss in Porifera and Ctenophora. Since Porifera and Ctenophora 

show a high diversity of Antennapedia class Hox genes it is very likely that Porifera 

might have lost at least on ProtoHox/ParaHox/Hox gene during evolution [6, 75, 81, 

87, 100]. This scenario could explain why Porifera do n ot rely neither on distinct 

patterning processes nor any specific tissue type for their bauplan organisation in 

adult individuals. Thus there would be no evolutionary pressure for the maintenance 

of ParaHox genes [6, 101-103]. 

Even more intriguing is the picture in Ctenophora. Ctenophores, which evolved a 

highly complex bodyplan, rely on a c ompletely different developmental system 

compared to other metazoan Phyla [104-106]. While all other animal species can 

recover from a loss of embryonic stem cells during early embryonic development, by 

rescue compensation of neighboring stem cells (for review see [107]), ctenophores 

follow a di fferent developmental strategy. If one of the specific “module like” 

progenitor cells is missing, the adult individual is lacking organ structures or whole 

quadrants along the oral-aboral axis. Based on these results, early embryonic 

progenitors of ctenophores display a strict stereotypic cleavage pattern with minimal 

transformational plasticity. Thus, ctenophores rely on a unique developmental 

“building block”- like cleavage program [104, 106, 108, 109]. Therefore the 

conservation or maintenance of a P rotoHox/ParaHox like system would be 

unnecessary. Consequently, it seems plausible that Porifera and Ctenophores might 

have lost a P araHox inventory secondarily due to different developmental bauplan 

strategies [6, 75, 83, 87].  

 
1.3 Pax Genes 
Meatazoan PairedBox (Pax) genes represent key regulatory transcription factors, 

which are crucial during animal embryonic and sensory organ development [110-

112]. Pax genes are identified in all metazoan phyla but their evolution and ancestral 

functions remain widely unresolved. [113-116]. 

The three characteristic domain features of this gene family are (i) the highly 

conserved Paired box encoding a 128 amino acid Paired domain, which is crucial for 

target DNA interaction, (ii) the presence or absence of a homeobox domain as 

second target DNA binding motif and (iii) the presence or absence of the Pax specific 

octapeptide [111, 117, 118].  
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Nine different Pax genes have been already identified in metazoans. According to 

domain architecture and sequence homology the genes are split into four distinct 

groups (see Figure 7) [115, 119, 120]. 
 

 

 

 

 

 

 

 

 

 
Figure 7. Overview on the four bilaterian Pax gene gr oups and their domain architecture. 
Modified after Hobert et al. 1999 [120].  
 

The recently discussed evolutionary relationships of the family members implicate 

that a gene fusion between a Paired gene and a Homeobox gene occurred before 

Parazoa and Eumetazoa diverged [121]. The ancestral metazoan Pax gene is 

proposed to contain all three conserved domains found in “modern” Pax genes (the 

paired domain, the octapeptide, and the homeodomain). From here the different 

classes of Pax genes evolved by gene duplication [117, 122, 123]. Two alternative 

evolutionary scenarios were proposed for Pax gene evolution.  

Catmull et al. claim that the split into the four groups of Pax genes has occurred at 

the root of an ancestral Pax6 like gene [124]. In contrast, Sun et al. proposed that the 

divergence of the four Pax gene emerged from an ancestral PaxB-2/5/8/4/6 like gene 

[119]. However, developmental analyses indicate that Pax genes are involved in the 

development of the animal nervous system and sensory organs. The most 

investigated Pax gene, Pax6, is crucial for the development of animal eyes and/or 

photoreceptor cells [125-127]. Intriguingly, ectopic expression experiments of squid 

and mouse Pax6 genes in Drosophila, Pax6 (Ey) knock out mutants induce the 

formation of compound eyes in the flies [128, 129]. In a r eciprocal experiment 

Drosophila Ey is inducing ectopic expression of vertebrate eye structures in Xenopus. 

The overall ability of Pax6 homologues genes to regulate eye development in even 

distantly related taxa supports the monophyletic evolutionary origin of all animal eyes 
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[126, 130]. Among Diploblast phyla, Cnidaria represent the most basal organism 

possessing true eyes [131]. Within Cnidaria, Cubozao show highly sophisticated lens 

eyes with complex structures such as iris, glass body, retina layer, and a pigmented 

cell layer [132, 133]. The Pax genes identified in the four classes of cnidaria result in 

a conflicting picture compared to bilatarian Pax genes. Although Cubozoa develop 

the most complex bauplan of cnidarian eyes, until now only two Pax genes (Pax-B 

and Pax-C) could be identified [134, 135]. Other cnidarian classes like Anthozoa (no 

eyes) and Hydrozoa (lens eyes) harbor at least four different Pax genes (Pax-A, Pax-

B, Pax-C, Pax-D). Ectopic expression experiments revealed that at least three 

cnidarian Pax genes, i.e. Pax-A and Pax-C from Anthozoa and Pax-B from Cubozoa 

are sufficient to induce ectopic eyes in Drosophila [115, 117, 134, 135]. Since several 

cnidarian Pax genes seem to be capable to induce ectopic eye development, specific 

Pax gene functions cannot be assigned in cnidarians. In summary, no bona fide Pax6 

gene has been identified in cnidarians to date [131]. Nevertheless, the observation 

that cnidarians and bilaterians rely on genes on Pax family genes for eye 

development strongly support hypothesis of a monophyletic origin of all animal eyes 

[130, 131].  

The two other diploblast phyla, i.e. Placozoa and Porifera were recently reported to 

harbor single representatives of the Pax-2/5/8 class. Intriguingly, there is growing 

evidence that Placozoa and Porifera both exhibit sensory- and effector systems that 

respond to external stimuli such as light and mechanical stress. While both phyla lack 

any organs or true nervous cell systems the presence of Pax genes was interpreted 

to predate the origin of proto neuronal and sensory cell types within Porifera and 

Placozoa [121, 122, 136].  

 

1.4 Mitochondria 
All metazoans share a characteristic sub cellular organelle with a s emi autonomic 

genome, the mitochondria [137, 138]. Molecular phylogenetic studies on animal 

mitochondria support a common monophyletic ancestry of animal mitochondria [137, 

139]. The origin of animal mitochondria is explained by the generally accepted 

endosymbiont hypothesis and i s strongly supported by means of comparative 

mitochondrial genome analysis of eukaryotic mitochondria and extant α- 

Proteobacteria [138, 140]. 
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Plants contain the greatest mitochondrial genomes (approx. 550Kb) known of 

multicellular organisms, followed by single cellular metazoans (i.e. Choanozoa and 

Ichtyosporea (40Kb-80Kb)). Fungi (18Kb-78Kb) and animal mitochondria (13Kb-

43Kb) have followed a di fferent evolutionary strategy by reducing the mitochondrial 

genome size and the number of encoded genes (see Fig.8) [138, 141].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Schematic example of the differenzes in size and genome content of two 
metazoan species. Left: Homo sapiens (Vertebrata), 16.571 Kbp; right: Monosiga brevicolis 
(Choanozoa) 76.588Kbp. Modified after Lavrov [139] 

 

Intriguingly diploblast mitochondrial genomes display a great variety in size, gene 

content and gene organization compared to bilateria mitochondria [139]. Thus 

mitochondrial phylogenetic studies are a p owerful tool to mirror the evolutionary 

history of basal metazoan evolution. The possibility to trace the phylogenetic 

relationships of animal mitochondria back to single cellular metazoan organisms was 

recently fuelled by Lavrov and co-workers [142]. They were able to identify highly 

conserved Metazoa specific insertions and deletions in four different mitochondrial 

protein coding genes. These synapomorphies were found to be highly conserved 

among Metazoa, partially present in Amoebidia as a s ingle cellular protistian 

metazoan, but completely absent in Monosiga brevicollis (Choanozoa). These 

findings have broad implications for our understanding of major evolutionary 

transitions from single cellular organisms to animals. At the same time the recent 
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findings of Lavrov and coworkers indicate that mitochondrial genomes harbour even 

more phylogenetic informative characters that have have not been included in the 

existing studies [139, 142, 143]. 

2. Aims of the thesis 
The aim of this thesis is to provide crucial information about developmental 

mechanisms of the placozoan Trichoplax adhaerens. Therefore, analyses were 

performed regarding the functional role of the master control genes Trox-2, a 

member of the Proto/ParaHox gene family Gsx and two representative metazoan Pax 

genes, i.e. TriPaxB and TriPaxC. These genes were chosen, since earlier reports 

demonstrated that they evolved in the very beginning of animal evolution. 

Determining their functional role by means of expression analyses, characterization 

of morphological stuctures related to their expression, and implications for sensory 

based behavior in placozans could provide substantially knowledge on the 

developmental system in Placozoa. 

In addition, the results on pl acozoan development are placed into a p hylogenetic 

content. Genomic inventory, gene arrangement and phylogenetic analyses of the 

mitochondrial genome of Trichoplax adhaerens were utilized to gain a phylogenetic 

perspective of placozoan/metazoan relationships. All together, the obtained results 

generate a robust data set, which can be used for comparative analysis among basal 

metazoans and their evolutionary relationships. 

 

 

3. Summary of Results and Discussion 
3.1 The ProtoHox/ParaHox gene Trox-2 in Placozoa 
(Sagasser et al. 2011 and references therein) 

 

To address the possible evolutionary origin of metazoan ParaHox genes, i.e. Gsx, 

Xlox and Cdx, the role of the only Gsx like ProtoHox/ParaHox gene, Trox-2, present 

in Trichoplax adhaerens was investigated.  

In all other metazoans, Gsx-like genes are involved in axis specific differentiation of 

neuronal progenitors. Intriguingly, Placozoans as the most basal organized non-

symmetrical animal, harbor only a single Gsx like gene, Trox-2, but lack true neuronal 

cell types. This circumstance led consequently to the question if Placozoa might 

represent an extant ProtoHox dependent animal. To understand the developmental 
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function of Trox-2, the non-axial expression patterns, alternative transcript activation, 

and Trox-2 dependent outcome of morphological structures were investigated in 

Trichoplax adherens.  

By means of 3´ and 5´ rapid amplification of cDNA ends two independent alternative 

transcripts of Trox-2 were identified. Further investigation by Northernblot and 

Westernblot demonstrated that both Trox-2 mRNAs are expressed and translated on 

protein level. Histological in situ analyses demonstrated that alternative expression 

patterns of the Trox-2 isoforms were strictly spatially separated in the developing 

animal. It was further shown that Trox-2 expression was associated with the 

differentiation of enigmatic fiber cells during developmental processes. Consequently, 

a putative proto axis formation in Trichoplax was identified for the first time. Thus 

Trox-2 represents a candidate ProtoHox gene that prepares the ground towards 

animal axis evolution and neuronal differentiation. 

 

 

3.2 The Trichoplax PaxB Gene 
(Hadrys et al. 2005 and references therein) 

 

The placozoan PaxB like gene, TriPaxB, of Trichoplax adhaerens was isolated and 

characterized to gain a deep er knowledge in the evolution of Pax gene families 

among diploblast phyla. Phylogenetic analyses have shown that TriPaxB always 

comes out basal to PaxA, PaxB, and P axC genes independent of the applied 

algorithms and also independent of whether paired domain sequences from bilaterian 

animals were included or not. Thus the TriPaxB gene meets expectations for a Proto-

Pax gene or the early descendant of a Proto-Pax gene in metazoan animals. The 

data suggest that a PaxB similar gene was the ancestral gene involved in sensory 

organ development and evolution. We conclude therefore, that a functional split into 

bilaterian Pax2/5/8 and Pax6 genes most likely occurred in the last common ancestor 

of diploblasts and triploblasts. 

In addition, in situ analyses revealed expression of TriPaxB in cells of unknown 

function bordering a distinct area toward the center of the animal. Analyses of tissue 

sections revealed that TriPaxB expressing cells are not epithelial cells but lay upon 

the cells of the lower epithelia, inside the animal. The identified expression patterns 

of TriPaxB were found to correlate with the expression patterns of Trox-2 and demark 
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a particular zone of cell proliferation and differentiation. While the Placozoa TriPaxB 

gene most likely predates the origin of nerve and s ensory cells, its ancestral 

developmental function needs to be investigated in more detail. 

 

 

3.3 The TriPax-C gene in Trichoplax adhaerens  
(Sagasser et al. 2011 and references therein) 

 
The previously reported isolation and c haracterization of TriPaxB (see 3.2) and 

subsequent phylogenetic analyses implicated that TriPaxB most likely represents the 

ancestral animal prototype like Pax gene. Here a s econd Pax gene in Trichoplax 

adhearens, TriPaxC, was characterized. Sequence analyses have shown that 

TriPaxC can be directly linked to Cnidarian Pax-C class and bilaterian Pax6 class 

genes. Questions about its developmental role and its implications for placozoan 

sensory biology were addressed. 

By means of in situ hybridization experiments the developmental functions of TriPaxC 

were characterized. In situ hybridization revealed the expression of TriPaxC 

transcripts in distinct, previously unknown cell types. Their distribution in an irregular 

pattern over central body parts of Trichoplax adhaerens does not fit any expression 

pattern of previously described developmental genes in Trichoplax. This study 

provides first experimental evidence that the TriPaxC gene might be involved in the 

differentiation of a formerly unknown cell type of Trichoplax adhaerens.  

 

 

3.4 The mitochondrial genome of Trichoplax adhaerens 
(Dellaporta et al. 2006 and references therein) 

 

To gain a better understanding of the evolutionary relationship of the Placozoa 

Trichoplax adhaerens amongst other metazoan phyla, the molecular characterization 

of the complete Placozoa mitochondrial genome can provide an essential dataset to 

address the phylogenetic position of placozoans. The characterization and 

annotation of the complete mitochondrial genome of Trichoplax turned out to 

represent the largest animal mitochondrial genome known to date. Besides it unique 

size of more the 43Kb, it harbors unusual features like (i) intron interrupted genes, (ii) 
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numerous intergenic spacing regions, (iii) open reading frames coding for possible 

expressed proteins of unknown function and (iv) largely expanded gene sizes of 

common mitochondrial protein coding genes. Most intriguingly the placozoan 

mitochondrial genome displays common features known from other animal 

mitochondria but also shares characteristics with mitochondrial Genomes of single 

cell metazoans, i.e. Choanozoa and Ichtyosporea. The latter characteristics are 

similar open reading frames as well as numerous repetitive coding and non-coding 

sequences and large intergenic spacer regions. Based on the analyses of placozoan 

mitochondrial genome structure and gene content, it seems to be l ikely that 

mitochondrial genomes of early metazoan animals were of non-compact 

organization. Phylogenetic analyses place the mitochondrial genome of Trichoplax 

adhaerens at the root of animals and represents the least derived mitochondrial 

genome among diploblastic and bilaterian metazoans.  

 

 

4. Conclusions 
The origin of multicellular life has been explained by several different evolutionary 

hypotheses over the last 150 years. The consensus view of the different hypotheses 

proposes that multicellular life evolved almost certainly from single cellular marine 

protists. 

Today we trace evolutional mechanisms down to the molecular level. Using 

comparative genomics, scientists identify a hierarchical complexity of genome 

inventories linking even distantly related metazoan taxa like earliest branching 

diploblast phyla and Bilateria. In addition, phylogenetic analyses of organism specific 

mitochondrial genomes, strongly support a monophyletic origin for all animals.  

However, at present the phylogenetic relationships of the four earliest branching 

metazoan phyla (Placozoa, Porifera, Ctenophora and Cnidaria) remain ambiguous. In 

general, diploblast phyla show a tremendous structural complexity on cellular and 

molecular levels, sophisticated sensory properties and complex behavioral 

responses. It has been suggested that all these features of animal complexity were 

already established at a most basic level in a common ancestor of animals. 

Therefore, to identify the “missing link” from the common ancestor of animals and 

extant animal species has broad implications to further understand the evolution of 

animal complexity. 
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The thesis contributes substantial insight into developmental and evolutionary 

processes in the presumably most basal animal Trichoplax adhaerens (Placozoa). 

The expression analyses and the functional role of three key regulatory genes, 

crucial for animal development were investigated in Trichoplax adhaerens. The 

outcome of these studies provides a deeper knowledge for understanding principle 

bauplan transitions during placozoan evolution. The detailed cytological and 

functional investigations of developmental processes imply that Trichoplax adhaerens 

possess the most basal morphological and physiological state of specialization 

among animals. In addition complete mitochondrial genome analyses strongly 

support these findings. 

However, even if Trichoplax appears to represent the most basal extant organism, 

we should keep in mind that Placozoa underwent their own evolutionary course and 

represents no steady state of early evolution. To verify the conclusions based on this 

thesis, more extensive comparative studies are needed for poriferan, ctenophoran 

and cnidarian species in order to achieve a robust picture about the basic nature of 

Trichoplax adhaerens and the urmetazoon in general. 

Nevertheless, the combined analyses of developmental mechanisms and 

phylogenetic analyses suggest that Trichoplax represents a best fit model organism 

to explain the hypothetical “primitive” nature of the ancient multicellular metazoa, the 

so-called urmetazoon. 
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Abstract  

Background 

The only ProtoHox/ParaHox like gene Trox-2, present in the basal placozoon 

Trichoplax adhaerens, is known to play an indispensable role in developmental 

processes. While the bilaterian and cnidarian Gsx and Cnox-2 homologues are 

involved in neurogenesis and axial patterning, the function of Trox-2 in Placozoa is  

different.  

Results 

We show here that the developmental function of the ProtoHox/ParaHox gene Trox-2 

is much more limited compared to other Metazoa, while at the same time, its 

expression patterns are surprisingly complex during different developmental stages. 

We are the first to report the observation of differential transcript expression of a 

Gsx/ParaHox like gene during development in a basal, non-symmetrical metazoan 

animal. Two alternative transcripts of Trox-2, which differ in length at the 5´ coding 

region, are characterized. The full-length transcript is expressed in distinct regions 

towards the center of the animal. The shorter transcript lacks the Gsx typical 

octapeptide and is exclusively expressed in the outer margin of the animal.  

Conclusions  

The complex expression patterns of Trox-2 are discussed in the context of an 

ancestral proto axis pattern formation. Moreover, a new formerly unknown level of 

organismal organization of Trichoplax was identified.  

The results indicate that the Gsx-like Trox-2 gene might be regarded as a extant 

surrogate of a ProtoHox gene in Trichoplax adhaerens. 
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Background  

ParaHox genes resemble homeobox transcription factors of three gene families, Gsx, 

Xlox and Cdx, which are crucial for the development in metazoan animals [1]. 

ParaHox genes show a striking conservation of structural and functional properties 

implicating that these genes originated from ancestral ProtoHox genes by duplication 

events in early metazoan evolution [2]. The typical clustered organization of ParaHox 

genes in bilaterian taxa mirrors spatial and temporal separation of gene expression 

patterns [3, 4]. 

ParaHox like genes in diploblastic organisms, here known from Placozoa and 

Cnidaria, show differences to their bilaterian counterparts in terms of number of 

genes, organization and expression patterns [5-10]. Moreover, it seems that two 

diploblast phyla like Porifera and Ctenophora do not rely on ParaHox like genes at 

all. All animals having ParaHox like genes, i.e. Placozoans, Cnidarians and Bilataria 

were recently termed “ParaHoxozoa” [11]. Whether the lack of ParaHox like genes in 

Porifera and Ctenophora is a secondarily derived or an ancestral feature remains a 

subject of debate [12-15]. Ascertaining the function of ParaHox like genes in basal 

diploblast taxa may therefore hold a key for understanding the early evolution of 

Proto/ParaHox dependent bauplan setups [4, 16-21].  

Recent phylogenetic studies imply that all four diploblast phyla split off very early in 

the metazoan tree of life and dependent on the analysis of the data sets, almost all 

possible sister group relationships to bilaterians have been suggested [10, 22-33]. 

Nevertheless the presence of homologous ParaHox genes in Placozoa, Cnidaria and 

bilaterian taxa implicates the origin of a Proto/ParaHox gene in the common ancestor 

of Bilateria and diploblasts [1, 7, 12, 13, 18]. In the past decade data emerged to 

show a conserved role for ParaHox genes among all “ParaHoxozoa” in order to 

establish an oral- aboral axis in diploblasts or an A-P axis in Bilateria, respectively [2, 

6, 9, 17, 34, 35]. 

Within cnidarians the extensively investigated Gsx/ParaHox like gene Cnox-2 has 

been shown to be involved in neuron and nematocyst differentiation along the oral-

aboral axis [16, 36-43]. Gsx gene expression studies in bilaterian taxa show a striking 

conservation of a similar role for the developing central nervous system in both 

lineages, protostomes and deuterostomes [44-48]. 
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Apparently this function of Gsx is conserved since the radiation of Placozoans 

Cnidarians and Bilaterians and appears to precede its basic function [19-21, 42, 43, 

49-51]. 

 

Placozoans, until now only represented by Trichoplax adhaerens, display by far the 

most basic animal bauplan. Trichoplax neither possesses real organs or a nervous 

system, nor displays any body axis and is thought to have evolved along with the 

earliest Phyla during animal evolution. They are organized into two cell layers 

separating an inter epithelia cavity which is dispersed by a syncytial wickerwork of 

enigmatic fiber cells [52-54]. Evidence based analysis of mitochondrial and nuclear 

genome organization suggest that the evolutionary position of Placozoa might be 

basal to both - cnidarians and Bilateria [10, 24-26, 55]. Yet we know very little about 

the life cycle of placozoans. Vegetative reproduction appears to play the prominent 

role in  placozoan development under laboratory conditions [56]. Differentiation of 

putative gametes can be monitored frequently in placozoan cultures but engaged 

proliferation of the cells results in disintegration of the so far called “embryo” [57-59]. 

However, we focused on t he functional role Trox-2 in the generative processes of 

Trichoplax adhaerens. In this case Trox-2 expression specifies the temporal and 

regional identity of fiber progenitor cells in a nons ymmetrical organism. Thus 

knowledge of the basic functions of the Trox-2 gene is essential for understanding 

the transformation processes in early placozoan evolution. 

 

Results  

Different transcripts of Trox-2   
Figure 1 A&B 
To analyze possible Trox-2 transcripts we synthesized RNA-anchor ligated, full 

length cDNA as template for 5´RACE RT PCR. 

We identified two structurally independent cDNA populations referred to as Trox-2 a 

and Trox-2 b. The two transcripts differ in length of the 5´ coding region. The shorter 

cDNA species, Trox-2 b, has a truncated 5` coding region, lacking the Gsx specific 

octapeptide. Each of the two cDNA´s contain the common Gsx /Diplox-2 

characteristic homeobox. Expression of the different transcripts was verified by 

Northern Blot analysis, using a radioactive labelled probe, specific for a common  
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region 5` of the Trox-2 homeobox. Two hybridization signals were observed by 

Northern Blot analysis indicating that the two isolated cDNA transcripts result of 

single mRNA species of Trox-2. 

Figure1. Expression of Trox-2 isoforms in Trichoplax adhaerens 
A) 5´RACE analyses of the full length 5´region of Trox-2 revealed two different RT PCR 
products. M: 1 kb size standard (Invitrogen); lane1: 5´Race Trox-2 RT PCR products 
B) Autoradiogram of total RNA northern blot hybridization of T. adhaerens. Two alternative 
mRNA populations are detected using a universal antisense probe against Trox-2. M: RNA II 
size standard (Roche); lane1: total RNA of 40 animals; lane 2: total RNA of 100 animals; lane 
3: total RNA of 250 animals 
C) Western Blot analysis of T. adhaerens total protein extract revealing two independent 
Trox-2 isoforms by a narrow doublet of bands. 
D) Alignment of the Gsx specific octapeptide of the conserved N-terminal domain of Trox-2a 
with Metazoan specific Diplox-2/Gsx orthologs. Homologue amino acids of the octapeptide 
are indicated by dashes. Note: Domain is missing in the alternative transcript Trox2-b. 
 
 

Different Trox-2 transcripts encode different Proteins 

Figure 1C 
Using an a ffinity purified rabbit polyclonal antiserum we examined Trox-2 protein 

expression by Western Blot analysis. 

Trichoplax total protein extract samples were subjected to SDS PAGE and 

transferred to a nitrobond membran. The applied antibodies bind to a narrow doublet 

of bands of approximately 25 k D. This is consistent with the predicted translated 

Trox-2 protein isoforms with calculated molecular weights of 24.7kD and 22.1kD 

respectively. In accordance to the RNA transcript analysis, the Western Blot analysis 

confirms that the two different Trox-2 messages are translated into different proteins. 
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Whole mount in situ hybridization of Trox-2  
Figure 2 
In order to identify differential activation of the two identified transcripts we took 

advantage to detect Trox-2 a separately from the Trox-2 b message using a specific 

probe for the oktapeptide coding 5´m-RNA region. 

We find the Trox-2 a transcript to be temporarily co-expressed with Trox-2 b 

expression during a s pecific developmental stage only (Figure 2). Trox-2 b 

expression can be monitored in two different developmental stages. Stage one can 

be characterized by no Trox-2 a expression. In stage two, co expression of Trox-2 a 

and Trox-2 b is present.  

Concerning the spatial distribution of the Trox-2 a the hybridization signals 

exclusively characterize early fiber cells from the periphery towards central areas of 

the animal body. Spatial distribution of Trox-2 b is restricted to marginal cells. 

Expression of Trox-2 b results in a uniform ring of fiber cells at the very outer edge of 

the animal (Figure 2B). 

 

 

 



 34 

 

Figure 2. In situ hybridization analysis and spatial distribution of Trox-2 isoforms, Trox-2a & 
Trox-2b. Trox-2 universal probe hybridizes to both isoforms of the Trox-2 message (A & B), 
Trox-2a probe hybridizes specific to the unique 5´ region of the message (C &D). 
A) A universal Trox-2b probe indicates Trox-2 expression in the outer edge of an ani mal 
which underwent binary fission. 
B) An larger individual still growing. Enriched Trox-2 expression at the edge and c entral 
regions of the animal 
C) Individual hybridized to the unique 5´ region of the Trox-2a message. Expression is 
apparent in the periphery towards the centre of the animal. Note: Lack of a hy bridization 
signal in the edge of the animal. 
D) Expression of Trox-2a message patterns the central regions of the animal. No detectable 
hybridization signal of Trox-2a at the edge or periphery 
 
 
Whole mount immunolocalization and differential protein expression of Trox-2  
Figure 3b  
In early daughters of Trichoplax, Trox-2 protein expression starts synchronized 

around the outer edge of the organism and is restricted to a single ring. This 
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expression pattern is in accordance to Trox-2 b hybridization analysis. This 

expression pattern is found in animals, which grow slowly, independent of size 

stages (Figure 3B). The second expression pattern of Trox-2 marks peripheral and 

central cells in animals. A region with no Trox-2 expression strictly separates 

simultaneous marginal and central expression patterns. Central cell expression starts 

with a distinct ring, undergoing in a diffuse, almost disappearing pattern, indicating a 

later on dynamic distribution of the cells (Figure2b). 

Figure 3. Immunohistological expression analysis of Trox-2 in Trichoplax adhaerens 
A) Individual after binary fission showing exclusive expression of Trox-2 along the outer 
edge. 
A´) Detail of A showing prominent stained marginal cells 
B) T. adhaerens with expression of Trox-2 protein in marginal cells and central cells (cc). 
B´ Detail of B. Trox-2 exoression in central fibre cells. 
C & D) Close up of large individuals with different Trox-2 expression patterns independent of 
animals size 
E) Close up of an established oocyte. 
E´) Expression of Trox-2 in nursery cells bordering the egg cell 
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Discussion  

Our study revealed the first observation of the differential expression of a 

Gsx/ParaHox like gene. The complex expression patterns relate to different 

developmental stages in Placozoa. 

Different analyses of phylogenetic relationships and developmental functions 

implicate that the Trox-2 gene might have directly evolved from an ancestral 

‘ProtoHox’ gene [10, 13, 60-62]. While all other animal Gsx/ParaHox genes are 

involved in axis dependent development of neuronal structures, Trox-2 expression 

patterns in Placozoa show a completely new picture. Understanding the 

developmental role of Trox-2 in Trichoplax adhaerens is clearly crucial for the 

reconstruction of major key transitions that relate to the evolution of 

Gsx/ProtoHox/ParaHox genes. In other words resembles the best living surrogate of 

an ancestral ProtoHox gene [2, 10, 40, 50, 63].  

 

Trox-2 is expressed in A&B 
We have characterized two alternative transcripts of the Trox-2 gene, Trox-2 a and 

Trox-2 b. The transcripts show substantial differences in the N-terminal domain 

architecture and are differentially activated. Each transcript is active along separated 

boundaries, patterning the organism. Evidently we identified for the first time different 

developmental functions for each transcript and can define different fiber cells in 

separated body regions of Trichoplax adhaerens. 
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Table 1. Overview of spatial and temporal Trox-2 expression. 
A) Spatial distribution of identified Trox-2 transcript isoforms reveals a strict separation of 
isoform Trox-2a in the center, Trox-2b at the edge of the animal.    
B) Temporal activation of Trox-2 during different developmental stages. 
 
 
No axis - but the first step 
So far all Gsx/ParaHox related genes have been found to play essential roles in axis 

formation [60, 64, 65]. We suggest Trox-2 expression in Placozoa resembles an a 

priory´ step towards axis formation.  

The two expression patterns of Trox-2 are consistent with the view of a polarity setup 

as a possible precursor for axis formation. Expression of the Trox-2 b transcript 

exclusively in the outer margin resembles the separation from the lower to the upper 

epithelium. In addition the segregated expression of Trox-2 a and Trox-2 b displays a 

clear separation of the margin and the center. This separation creates a polarity, 

which can be seen as the sum of a cum grano salis infinite number of short axis. 

From here the “new placula hypothesis” provides a simple and straight forward 
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scenario for the evolution of an oral-aboral/anterior-posterior axis from a non 

symmetrical polarity bauplan [66].  

Moreover, the origin of Trox-2 expressing fiber cells support previous findings, where 

cleavage of progenitor cells was observed in a distinct region close to the edge of the 

organism. This region was previously termed as the area of regeneration [67-70]. In 

addition to this our results clearly demonstrate that the different Trox-2 transcripts 

border this regenerative boundary. The presence of two alternative transcripts not 

only enables us to distinguish between different fiber cell populations but also 

provides insights into the high plasticity of placozoan developmental processes. By 

altering the spatial-temporal activation pattern of Trox-2, Trichoplax adhaerens is 

capable to switch between different modes of fiber cell development. 

 

Regulation 
Since the alternative transcripts are strictly tempo -spatially separated it appears that 

the Trox-2 locus must be under strict genetic control. The inductive signals, 

responsible for differential transcript activation need to be elaborated. Recent studies 

on bilateria Gsx genes identified Nk2 genes, Pax6 and Dbx (developmental brain 

homeobox) genes to be i nvolved in the regulation of the Gsx during neuronal 

progenitor maturation [44-47, 71]. Intriguingly conserved homologues of these genes 

were recently identified in Trichoplax adhaerens [72, 73]. These findings provide the 

base for comparative studies to elucidate if the common transcriptional activation 

mechanisms of Gsx are conserved in Placozoa. 

 
Trox-2 and Neurons 
In all known cases Gsx are also expressed in neurogenesis. According to the 

traditional view there is no neuron in placozoans. Since we have only little 

information about the nature of Trox-2 expressing fiber cells it would be premature to 

compare them with Gsx expressing neurons of other animals. However, as 

Schierwater et al. [26] and others have shown, placozoans harbor up to 80% of 

molecules and related genes as key features for a possible pre-nervous integrative 

system in Trichoplax [74, 75]. Moreover early studies on fiber cells identified 

microtubules, bundles of actin filaments, terminal membrane vesicles and unique 

synaptic like structures. These features already encouraged biologist to speculate if 

fiber cells eventually might indeed define a possible “pre-neuronal” system [54, 58, 
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76-82]. Future attempts on characterization of “neuronal genes” already identified in 

the complete genome of Trichoplax adhaerens might unravel the enigmatic nature of 

the fiber cells [73]. However, data presented here give strong support for the 

existence of an evolutionary line indicating the ProtoHox/ParaHox gene Gsx to be 

involved in the establishment of integrative, network like structures in metazoans. 

Ranging from the non-axial establishment of fiber cells in placozoans to axial related 

neuronal progenitor differentiation in all other ParaHoxozoa. 

 
 
Conclusions 
In sum, expression characteristics of Trox-2 are congruent with the idea that 

Trichoplax might be basal to bilaterians and cnidarians.  

While the single ProtoHox/ParaHox gene Trox-2 in Trichoplax is not involved in 

creating any body axis, the organism achieves a high degree of pattern specification 

by recruiting alternative Trox-2 transcripts. This appears as a p arsimonious 

alternative to the establishment or maintenance of a basal Proto/ParaHox cluster. In 

view of this concept the origin of ProtoHox/ParaHox genes seem to enable 

Proto/ParaHoxozoa to achieve a higher transdetermination state of plasticity and/or 

complexity for development. Thus, if Trox-2 acts as a r eal ProtoHox gene in 

placozoans it would prepare the grounds toward the evolution of axial bauplans in 

metazoans.  

 

Methods 

Animal material 
Experiments were performed on the clonal Trichoplax lineage “Grell”. 

For culture conditions we refer to Schierwater et al. [6]. Prior to any experimental 

approach individually collected animals were rinsed three times with sterile filtered 

artificial seawater and subsequently used for the experiments. 

 

Northern Blot analysis 
Different amounts of Trichoplax total RNA (1 µg, 5 µg, 10 µg) were separated on a 

denaturing (Glyoxal/ DMSO/ Formaldehyde) 1,8 % agarose gel and blotted on to 
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Hybind Nylon membrane (Roche) following manufacturers protocol. The transferred 

membrane was baked at 80°C for 1 h. 

A [32P]dCTP-labeled Trox-2 single stranded antisense RNA probe was denatured at 

65°C for 5 m in and added directly into hybridization solution. Hybridization was 

performed at 65°C for 16 h.  After hybridization, the membrane was rinsed with a 

series of washing solutions that descend from 2× SSC, 0.5% SDS to 0.5× SSC, 0.1% 

SDS, each at 65°C for 20 m in. The autoradiogram hybridization signal of Trox-2 

mRNA species was visualized by exposure of a Kodak X-ray film at -80°C for 8 h. 

 

Amplification of 5' end cDNA with 'new RACE' 
Total RNA was extracted from Trichoplax adhaerens employing the RNeasy Mini Kit 

(Qiagen). An additional digestion of residual genomic DNA was performed using the 

RNase-free DNase I (Roche) according to the manufacturer's instructions. 5′ RACE 

was performed by RNA ligase-mediated rapid amplification method using the 

GeneRacer™ Kit (Invitrogen). First-strand cDNA syntheses and subsequent PCR 

were carried out using the Transcriptor kit (Roche) and FastStart Polymerase 

(Roche), according to the manufacturer's instructions. For the amplification of partial 

Trox-2 sequences, intron spanning oligonucleotide primers were designed according 

to 5'-ATGGACTTGCCATTATGGT-3´, to amplify an expected fragment of ∼ 650 bp. 

The full-length Trox-2 a sequence and its isoform were amplified by reverse 

transcriptase-polymerase chain reaction (RT-PCR) and c loned into the pGem-T 

Easy/DH5a system (Promega). Independent clones per PCR product species were 

sequenced on an ABI 310 c apillary sequencer according to the manufacturer's 

instructions.  

 

Production of Rabbit polyclonal Trox-2 antiserum 
A synthetic peptide according to Trox-2 C-terminal AA residues 201-215 (ACCS# 

AAS54997) was used to produce a polyclonal antiserum in rabbits (Bioscience, 

Göttingen). Rabbit immunization was performed by injection of 100μg purified fusion 

protein in complete Freund's adjuvant, followed by five booster injections in 

incomplete adjuvant at one-week intervals. Serum was collected from the rabbits one 

week after the last boost. 
Raw serum was purified using a Protein-A column (Amersham) and specifity of the 

IgG fraction was subsequently tested by western blot analysis. 
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Detection of Trox-2  protein isoforms by Western blotting 
Individuals of Trichoplax adhaerens were homogenized for 10 min in SDS lysis puffer 

(2% SDS, 100 mM NaCl, 150 mM Tris buffer, pH 8.0, 0.2% ß-Mercaptoethanol). 

Total protein extract was treated with Benzoinase (Roche) and subsequently 

denatured at 99°C for 5 min. After centrifugation at 13000×g for 10 min, supernatant 

was collected. The homogenate was subjected to 12% SDS-PAGE and Western 

blotting. Rabbit anti-Trox-2 antibody was used in a dilution of 1:250. Subsequently, 

AP-conjugated goat anti-rabbit IgG (Invitrogen) was used and detection was 

performed with a s ubstrate solution (NBT/BCIP, Roche) following manufacturers 

instructions. 

 
Detection of Trox-2 protein isoforms by immunohistochemistry (IHC) 
For immunohistology the animals were fixed in Lavdowsky's fixative for 10 min [60]. 

Animals were washed in TBS adjusted to pH 7.5 containing 0.5% Triton X-100, 0.5% 

Tween 20 (TBSTT) for permeabilization of cell membranes. Permeabelized animals 

were blocked in TBSTT containing 5% FCS for 1 h.  Primary polyclonal Trox-2  

antibody was applied in a dilution of 1:1000 in TBSTT/FCS and incubated for at least 

2 h. After three wash steps in TBSTT for 15 min the animals were incubated for one 

hour with Alexa 488-coupled goat anti-rabit secondary antibody (Invitrogen), 1: 5000 

in TBS containing 5% Tween (TBST), followed by three wash steps in TBST and one 

final wash in TBS containing 0.5% DAPI or propidium jodide respectively. 

Preparations were mounted in Vectashield medium (Vector Laboratories Inc.) and 

examined with a Zeiss Axiovert 700 Fluorescent microscope. 

IHC Controls were performed with rabbit pre immunization serum and epitope 

blocked anti Trox-2  serum. 

Whole-mount in situ hybridization 
Whole-mount in situ hybridization experiments were performed using a modified 

protocol developed for Placozoa [60]. Animals were fixed in Lavdowsky's fixative as 

described above. 

Trox2-, and Actin-RNA-Probes were synthesized from subcloned cDNA fragments 

(pGEM-T easy; Promega) using digoxigenin (DIG) and fluorescein isothiocyanate–
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uridine triphosphate (FITC-UTP) labeling (Roche, Mannheim, Germany) according to 

the manufacturer's manual. 
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Abstract 
Pax genes play key regulatory roles in embryonic and sensory organ development in 

metazoans but their evolution and ancestral functions remain widely unresolved. We 

have isolated a Pax gene from Placozoa, beside Porifera the only metazoan phylum 

that completely lacks nerve and s ensory cells or organs. These simplest known 

metazoans also lack any kind of symmetry, organs, extracellular matrix, basal lamina, 

muscle cells, and main body axis. The isolated Pax gene from Trichoplax adhaerens 

harbors a paired domain, an octapeptide, and a full-length homeodomain. It displays 

structural features not only of PaxB and Pax2/5/8-like genes but also of PaxC and 

Pax6 genes. Conserved splice sites between Placozoa, Cnidaria, and t riploblasts, 

mark the ancient origin of intron structures. Phylogenetic analyses demonstrate that 

the Trichoplax PaxB gene, TriPaxB, is basal not only to all other known PaxB genes 

but also to PaxA and PaxC genes and their relatives in triploblasts (namely Pax2/5/8, 

Pax4/6, and Poxneuro). TriPaxB is expressed in distinct cell patches near the outer 

edge of the animal body, where undifferentiated and possibly multipotent cells are 

found. This expression pattern indicates a dev elopmental role in cell-type 

specification and/or differentiation, probably in specifying-determining fiber cells, 

which are regarded as proto-neural/muscle cells in Trichoplax. While PaxB, Pax2/5/8, 

and Pax6 genes have been l inked to nerve cell and s ensory system/organ 

development in virtually all animals investigated so far, our study suggests that Pax 

genes predate the origin of nerve and sensory cells.  

 

Key words: PaxB, Pax gene evolution, Proto-Pax, Trichoplax, Placozoa.  

 

Introduction  
Transcription factors of the Pax gene family serve crucial functions in several 

developmental processes, particularly with respect to the development and 

differentiation of the central nervous system and sensory organs, both in vertebrates 

and invertebrates (Walther et al. 1991; Halder, Callaerts, and Gehring 1995; 

Rinkwitz-Brandt, Arnold, and Bober 1996; Torres, Gomez-Pardo, and Gruss 1996; 

Callaerts et al. 1999; Czerny et al. 1999; Holland et al. 1999; Kavaler et al. 1999; 

Kozmik et al. 1999; Groger et al. 2000; Kozmik et al. 2003). A structural characteristic 

of Pax genes is a pa ired-type DNA-binding domain, which was first identified in the 
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Drosophila pair-rule gene paired (Frigerio et al. 1986). In addition, most Pax genes 

contain a complete or partial homeodomain, and some Pax genes also possess an 

octapeptide close to the C-terminal of the paired domain. Regions between domains 

are less well conserved. Based on their structural properties Pax genes are grouped 

into five subfamilies in triploblasts: namely Pax1-9/Poxmeso, Pax2-5-8/sparkling, 

Pax3-7/paired/ gooseberry, Pax6-4/eyeless, and Poxneuro (Breitling and G erber 

2000; Miller et al. 2000). In diploblasts, Pax genes from Cnidaria and Porifera belong 

to four classes, PaxA–D (Balczarek, Lai, and Kumar 1997; Sun et al. 1997; Catmull 

et al. 1998; Hoshiyama et al. 1998; Groger et al. 2000; Miller et al. 2000; Kozmik et 

al. 2003). Orthological relationships between diploblast and tripoblast Pax genes are 

not finally resolved yet, but it has been proposed that cnidarian PaxB genes are 

related to triploblast Pax2/5/8 genes, PaxC genes to Pax4-6, and PaxD genes to 

Pax1-9 and Pax3-7 genes (Sun et al. 1997; Miller et al. 2000).  

Pax2/5/8-related genes seem to be primarily associated with the development 

of mechanosensory systems in both invertebrates and vertebrates. In higher 

vertebrates Pax2, Pax5, and Pax8 genes are present in multiple paralogs (likely as a 

result of chromosomal or whole-genome duplications) and are expressed in the 

developing inner ear and c entral nervous system in mammals (Rinkwitz-Brandt, 

Arnold, and Bober 1996; Torres, Gomez-Pardo, and Gruss 1996). In Drosophila only 

one Pax2/5/8 gene (D-Pax2; sparkling) is present, which has a crucial function for the 

development of mechanosensory bristles (Fu et al. 1998; Kavaler et al. 1999), 

ommatidial cone, and pigment cells (Fu and Noll 1997). A Pax2/5/8 gene identified in 

ascidians is expressed in the atrial primordium (Wada et al. 1998), a s tructure that 

comprises sensory cells similar to those of the vertebrate inner ear (Bone and Ryan 

1978), and in gastropods, a Pax2/5/8 gene is expressed in the statocyst (O'Brien and 

Degnan 2003). Interestingly the cnidarian Pax2/5/8 counterpart, PaxB,is implicated in 

nerve cell differentiation in a hydrozoan (Groger et al. 2000) and in sensory organ 

(statocyst and eye) development in the cubozoan Tripedalia cystophora (Kozmik et 

al. 2003). The latter mirrors the combined expression (and function) of Pax6 (eye) 

and Pax2/5/8 (statocyst) genes in triploblastic animals. The Tripedalia Pax gene, 

TcPaxB, not only unites functional but also structural features of Pax2/5/8 and Pax6-

like genes. The paired domain is similar to Pax2/5/8 genes, whereas the 

homeodomain displays features of Pax6-like genes. Kozmik et al. (2003) 

demonstrated that the PaxB protein is a functional hybrid of Pax2/5/8 and Pax6.  
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Different hypotheses on t he origin of metazoan Pax genes have been 

proposed. One hypothesis suggests that a PaxA-like paired domain was fused to a 

homeodomain and founded the Pax gene family (Galliot and Miller 2000; Miller et al. 

2000). Breitling and Gerber (2000) postulated that Pax-like genes evolved by fusion 

of a DNA-binding domain of an ancestral transposase (Proto-Pax transposase) to a 

homeodomain shortly after the emergence of metazoan animals about 1 billion years 

ago. The authors further propose a single homeodomain fusion event followed by an 

early duplication of Pax genes before the divergence of Porifera. In order to unravel 

the early evolution of Pax genes we need data from all putative basal metazoan 

groups. While Pax genes have been isolated from sponges and cnidarians, no data 

have been available from the last and possibly most crucial diploblast phylum, the 

Placozoa. 

Here we report the isolation and characterization of a single Pax gene from the 

morphologically most simple organized metazoan animal, the placozoan Trichoplax 

adhaerens, which lacks any kind of nervous system and/ or sensory organs. It is 

important to note that Placozoa are not secondarily reduced cnidarians (Ender and 

Schierwater 2003), and thus lack of nerve cells most likely is a plesiomorphy. The 

Trichoplax Pax gene, TriPaxB, is expressed in distinct cell patches in a ring-shaped 

pattern near the lower-upper epithelium boundary.  

Our structural and phylogenetic analyses show that the Trichoplax Pax gene is 

basal to PaxA-, B- and C-type genes and harbors structural features of both Pax2/5/8 

and Pax6 genes. These findings suggest that TriPaxB gave rise to at least four of the 

five Pax gene families in higher metazoan animals and provide support for Millers’ 

hypothesis on the origin of Pax genes (Miller et al. 2000). The TriPaxB gene meets 

expectations for a P roto-Pax gene or the early descendant of a Proto-Pax gene in 

metazoan animals.  

 

Materials and Methods  
Polymerase Chain Reaction Amplification of Paired-Box Sequences  
Trichoplax genomic DNA was isolated as described previously (Ender and 

Schierwater 2003). Messenger RNA (mRNA) from growing and r eproducing 

Trichoplax individuals was isolated using the Invitrogen (San Diego, Calif.) ‘‘Micro-

Fast Track’’ Kit according to the manufacturer’s protocol. Different sets of degenerate 

primers were used to amplify a 344-bp fragment of the paired domain. Two sets of 
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degenerate primers are described in Hoshiyama et al. (1998). A third set was 

designed based upon conserved paired domain sequences from other diploblastic 

Pax genes by using the CODEHOP program 

(http://blocks.fhcrc.org/blocks/codehop.html). Complementary DNA (cDNA) 

preparations from growing and reproducing Trichoplax individuals served as template 

DNA. Double-stranded cDNA was synthesized from mRNA using the ‘‘Creator 

Smart’’ System (Clontech, Palo Alto, Calif.) according to the manufacturer’s protocol. 

Polymerase chain reaction (PCR) fragments were obtained only with the primer pairs 

S1-AS3 and S2-AS3; the sequences are as follows (see also Hoshiyama et al. 1998): 

forward: S1 5’-CAGGATCCCARYTIGGNGGNGTNTT-3’ (corresponding to the 

‘‘QLGGVF’’ motif); reverse: AS3 5’-GTGAATTCATYTCCCANGCRAADAT-3’ 

(corresponding to IFAWEI). Other primers designed from highly conserved amino 

acid sequences within the paired domain did not result in the amplification of Pax-

specific PCR products. These primers were forward: S2 5’-

GAGGATCCTTYGTNAAYGGNMGNCC-3’ (corresponding to FVNGRP); reverse: 

AS1 5’-GTGAATTCYKRTCNKDATYTCCCA-3’ (corresponding to WEIRD[RK]); see 

Hoshiyama et al.(1998), and two primers designed using CODEHOP: forward: S3 5’-

CAAGATCCTGTGCCGGTACTAYGARACNGG-3’ (corresponding to KILSRYYETG) 

and reverse: 5’-CTCCAGCAGGCAGTCCCKDATYTCCCA-3’ (corresponding to 

WEIRDCLLQ). PCR conditions were 30s 95°C, 30s 50°C, and 60s 68°C, and 40 

cycles were performed. PCR fragments were subcloned in pGEM-T vector (Promega, 

Madison, Wisc.). Plasmid minipreparations were sequenced in both directions using 

ABI (Foster City, Calif.) BigDye terminator chemistry on an  ABI-310 capillar 

sequencer.  

 

Rapid Amplification of cDNA Ends and Genome Walk PCR  
Starting from the paired-box cDNA fragment, the coding sequence of Trichoplax 

PaxB was amplified using the ‘‘SMART RACE’’ system (Clontech). The following 

primers were designed from the sequence of the isolated paired-box cDNA fragment 

(forward: 3’ Walk 1: ATCAACTACCGTTGGTGTTGCCACCT; 3’ Walk 2: 

CGATATGACGACGTATTGCTTCACGC; reverse: 5’ Walk 1: 

CTTGCTTCCTCCAATAATACCTGGGC; 5’ Walk 2: 

CTTCCATTTTCAAACACACCACCCAG). The 3’ and 5’ rapid amplification of cDNA 

ends (RACE)PCR reactions were performed according to the manufacturer’s manual 
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(Clontech). PCR conditions were 95°C 15s, 68°C 3 m in, 35 cycles. The obtained 

RACE products were subcloned (pGEM-T) and sequenced. 

To characterize the corresponding Trichoplax PaxB gene structure a ‘‘Genome 

Walk’’ (Clontech) was carried out. PCR reactions were performed using long-

template Taq-polymerase as described in the manufacturer’s manual. PCR 

fragments were subcloned (pGEM-T) and characterized by sequencing.  

 

Expression Analyses  
Whole-mount in situ hybridization experiments were performed using a modified 

protocol developed for Cnidaria and Placozoa, respectively (Groger et al. 2000; 

Jakob et al. 2004). Animals were fixed in Lavdowsky’s fixative as described in Jakob 

et al. (2004). TriPaxB-, Trox2-, and Actin-RNA-Probes were synthesized from 

subcloned cDNA fragments (pGEM-T easy; Promega) using digoxigenin (DIG) and 

fluorescein isothiocyanate–uridine triphosphate (FITC-UTP) labeling (Roche, 

Mannheim, Germany) according to the manufacturer’s manual. Reverse transcriptase 

(RT)–PCR was done as described previously (Hadrys et al. 2004).  

 

Phylogenetic Analyses  
Distance and Maximum Parsimony analyses were carried out in order to infer 

phylogenetic relationships between Pax genes. All known paired domain sequences 

from diploblasts were included in the analysis. For rooted tree analyses a 

Pseudomonas transposase sequence served as an out-group (Breitling and Gerber 

2000).  

Bayes analysis was done with MrBayes (Huelsenbeck and Ronquist 2001). 

The parsmodel was applied and the following parameters were used: Markov chain 

Monte Carlo (MCMC) with 100,000 four chains and sampling frequency of 10. The 

trees generated from the MCMC simulation were imported into PAUP, and a 

Bayesian tree was visualized using the 50% majority rule option in PAUP (Swofford 

2002).  

 



 53 

 
 

FIG. 1.—Nucleotide and am ino acid sequence of TriPaxB. The isolated coding region 
comprises 955 nucleotides (318 amino acids). The TriPaxB protein includes a paired domain 
(underlayed in gray), an octapeptide (boxed) and a ‘‘full’’ homeodomain (underlayed in light 
gray). The positions of two introns are indicated by arrowheads (black). An intron located 
directly upstream the paired domain was found in all Pax genes investigated so far. An intron 
located between the octapeptide and t he homeodomain was also found in other Pax2/5/8 
genes, for example, in Drosophila D-Pax2 (sparkling; here the intron is much longer, 
however).  
 

 

For likelihood ratio tests the method of Shimodaira and Hasegawa (1999; 2001) as 

implemented in the PROML program in PHYLIP ((Felsenstein 2004), 

http://evolution.genetics.washington.edu/phylip.html) was used to calculate likelihood 

ratios of the best neighbor-joining (NJ) tree and the parsimony tree relative to trees 

that were generated by RETREE (PHYLIP package) that removed and regrafted the 

TriPaxB gene at all nodes in the parsimony tree.  

In this way the basal position of the TriPaxB gene could be tested in 

comparison to its position within the PaxA–C clade and within the PaxB clade (see 

fig. 3). The likelihoods of over 20 trees generated by RETREE were included in these 

tests using a l ikelihood that took into account site-specific rate differences using a 

gamma correction.  

Accession numbers for sequences included in the analyses are Acropora 

millepora PaxA (AmPaxA): AF053458; A. millepora PaxC (AmPaxC): AF053459; A. 

millepora PaxD (AmPaxD): AF241311; Chrysaora quinquecirrha PaxA1 (CqPaxA1): 
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U96195; Cladonema californicum PaxB (CcPaxB): AF260128; Chrysaora 

quinquecirrha PaxB (CqPaxB): U96197; Drosophila melanogaster eyeless (ey): 

X79493; Drosophila melanogaster paired (prd): M14548; Ephydatia fluviatilis 

Pax2/5/8 (EfPax258): AB007462; Halocynthia roretzi Pax-37 (HrPax-37): D84254; 

Hydra littoralis PaxA (HlPaxA): U96194; Hydra littoralis PaxB (HlPaxB): U96194; Mus 

Musculus Pax2: A60086; Mus musculus Pax3: NM_008781; Mus Musculus Pax5: 

M97013; Mus musculus Pax6: BC011272; Paracentrotus lividus Pax258 (suPax258): 

AF016884; Podocoryne carnea (PcPaxB): AJ249563; Pseudomonas syringae 

transposase: AF169828; T. cystophora PaxB (TcPaxB): AY280703.  

 

Results  
Isolation and Structural Features of the T. adhaerens PaxB Gene  
Using different sets of primers, we obtained PCR fragments of the expected size (344 

bp) with the primer combination S1/AS3 only. Because primers were designed 

according to the most conserved regions of the paired-box motif, they are expected 

to amplify paired-box sequences of all Pax gene subfamilies. From a total of 20 

clones sequenced all of which were 100% identical in sequence. By means of 5’ and 

3’ RACE 955 n ucleotides of the coding sequence, including the paired and 

homeodomain (318 amino acids) were isolated (fig. 1). The 3’RACE reactions also 

revealed the presence of two weaker, slightly larger PCR products, indicating the 

presence at least two alternative transcripts (data not shown).  

The Trichoplax Pax gene contains a paired domain, an oc tapeptide, and a 

‘‘full-length’’ homeodomain (figs. 1 and 2). The paired domain displays structural 

features of PaxB and Pax2/5/8 genes, and it harbors several amino acid positions 

that are regarded as diagnostic for this class of proteins (Kozmik et al. 2003) (fig. 1). 

The full-length homeodomain, however, is more similar to PaxC/Pax6-like genes (fig. 

2B).  

Two exon-intron junctions were mapped via genome walk PCR. The first intron 

is located directly upstream and adjacent to the paired box (fig. 2A). The location of 

this first intron is conserved in all Pax genes investigated so far. The second intron is 

located upstream of the homeodomain and comprises 350 bp. The accession 

number of the coding sequence is DQ22561.  
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FIG. 2.—Alignment of paired domain (A) and homeodomain (B) sequences of several PaxA, 
PaxB, PaxC, Pax2/5/8, and Pax6 genes. Amino acids underlayed in gray are Pax6 specific. 
Trichoplax PaxB and Tripedalia PaxB harbor paired domains that are Pax2/5/8 related and 
homeodomains that are PaxC/Pax6 related. Am: Acropora millepora; Dm: Drosophila 
melanogaster; Ef: Ephydatia fluviatilis; eye: eyeless; Hl: Hydra littoralis; Mm: Mus musculus; 
Pc: Podocoryne carnea; spar: sparkling; Tc: Tripedalia cystophora; Tri: Trichoplax 
adhaerens.  
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Phylogenetic Analyses  
In phylogenetic analyses the TriPaxB paired domain clusters basal to the 

PaxB/Pax2/5/8 subfamily (fig. 3). Furthermore, TriPaxB appears to be basal also 

relative to all but one Pax family. TriPaxB always comes out basal to PaxA, PaxB, 

and PaxC genes, independent of the algorithm and also independent of whether 

paired domain sequences from triploblastic animals were included or not. The 

topology shown in figure 3A does not change when randomly chosen paired domain 

sequences from triploblasts are added to the analysis (fig. 3C).  

To test the robustness of the basal position of the TriPaxB gene relative to 

PaxA, PaxB, and PaxC genes, we used the likelihood ratio test as developed by 

Shimodaira and Hasegawa (1999; 2001). The results of tests using the PROML 

program in PHYLIP (Felsenstein 2004) indicated that the tree with TriPaxB placed 

basal to all other Pax genes (except for PaxD) was the best tree according to 

likelihood scores (table 1). Furthermore, any tree tested where the TriPaxB gene was 

placed in the PaxA clade was highly statistically significantly indicated as worse than 

the TriPaxB basal tree. Placement of the TriPaxB gene into the clade in figure 3A that 

holds most of the other PaxB genes, however, indicates that while these trees have 

worse likelihood scores than the TriPaxB basal tree, the trees are not statistically 

significantly worse. In table 1, tree 1 is the ‘‘TriPaxB basal’’ tree. Trees 2–5 and 12 

and 13 are trees where TriPaxB was grafted onto a PaxA or PaxC branch in the tree 

in figure 3A. All other trees except for tree 15 are cases where TriPaxB was grafted 

into places in the PaxB clade in figure 3A. Tree 15 retained TriPaxB as basal but as 

sister to the single PaxD gene.  

A second approach we took was to examine the support for the NJ tree and 

the parsimony tree using Bayesian statistics. The Bayesian analysis suggests that 

the Tri-PaxB gene is not supported as a m ember of either the PaxA–C or PaxB 

clades and supports at 95% Bayesian proportion, the basal position of the TriPaxB 

gene. The Bayes proportions are shown on the branches of the tree in figure 3B. 
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FIG. 3.—(A) Rooted neighbor-joining tree of paired domain sequences of all known diploblast 
PaxA, PaxB, PaxC, and PaxD genes. Bootstrap values result from 1,000 stepwise addition 
replicates. The shown topology is identical to the parsimony tree. A pseudomonas 
transposase sequence serves as out-group. (B) Bayesian analysis for all known diploblast 
Pax genes. The Bayes proportions are shown on the branches. At 95% Bayesian proportion, 
a basal position of the TriPaxB gene compared to PaxA–C and PaxB clades is supported. In 
this figure the structural features of the corresponding Pax genes are also illustrated. Paired 
domains = light gray boxes, homeodomains = black boxes, octapetides = white circles. For 
CqPaxB so far only sequences of the paired domain are available. EfPax258 contains a 
partial homeodomain. (C) Neighbor-joining tree of all known diploblast together with several 
triploblast Pax gene paired domains. Note that the inclusion of triploblast sequences results 
in a loss of bootstrap support. Am, Acropora millepora; Cc, Cladonema californicum; Cq, 
Chrysaora quinquecirrha; Dm, Drosophila melanogaster; Ef, Ephydatia fluviatilis; Hl, Hydra 
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littoralis; Hr, Halocynthia roretzi; Mm, Mus musculus; Pc, Podocoryne carnea; Pl, 
Paracentrotus lividus; Tc, Tripedalia cystophora; Tri, Trichoplax adhaerens.  
Table 1 R esults of Likelihood Ratio Tests (as Developed by Shimodaira and H asegawa, 
1999, 2001) Using the PROML Program in PHYLIP (Felsenstein 2004). 
 

Differentiated Significantly
Tree Log L Log L P Value Worse
1 1,773.0)  Best
2 1,839.3 66.3 0.000 Yes
3 1,838.6 65.6 0.000 Yes
4 1,822.9 49.9 0.002 Yes
5 1,800.1 27.2 0.041 Yes
6 1,788.3 15.3 0.284 No
7 1,784.2 11.2 0.429 No
8 1,785.5 12.5 0.358 No
9 1,790.5 17.6 0.174 No
10 1,788.2 15.3 0.268 No
11 1,781.2 8.2 0.573 No
12 1,822.9 49.9 0.002 Yes
13 1,800.3 27.3 0.039 Yes
14 1,781.2 8.2 0.569 No
15 1,773.0 0.0 0.889 No
16 1,781.0 8.1 0.579 No
17 1,780.9 7.9 0.588 No
18 1,783.8 10.8 0.425 No
19 1,785.5 12.5 0.358 No
20 1,788.8 15.8 0.214 No  

 

 

Expression of TriPaxB  
Semiquantitative RT-PCR experiments revealed that TriPaxB is expressed in adult, 

i.e., growing, and v egetatively reproducing animals. Here, TriPaxB expression is 

significantly higher than that of the regulatory Antp superclass gene, EMX but lower 

than expression of the HSP70 gene (fig. 5). Whole-mount in situ hybridization studies 

revealed expression in distinct cell patches along a r ing region close to the outer 

edge of the animal body (fig. 6A, E, and F). Control hybridization with an actin 

antisense probe shows homogeneous expression throughout the entire body, as 

expected for a housekeeping gene (Fig. 6B). Control experiments with sense probes 

did not reveal any specific hybridization signals (data not shown, but see Jakob et al. 

2004).  

Interestingly, expression signals found in smaller animals were weaker than 

those found in larger animals (compare fig. 6A and E; data not shown). Analysis of 

tissue sections revealed that TriPaxB-expressing cells are not epithelial cells but cells 

inside the animal (fig. 6C and D). Possibly these cells are undifferentiated fiber cells. 
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Interestingly, the Hox/ParaHox gene, Trox2, shows a s imilar spatial expression 

pattern in this region of cell differentiation (on average the Trox2 signal, however, is 

stronger and more evenly spaced; fig. 6G and Jakob et al. 2004).  

 

 

 
 

FIG. 4.—Pax gene evolution model. A Proto-Pax gene (B or D like) derived from a gene 
fusion event between a Proto-Pax transposase and a homeodomain (HD) in protozoans, as 
first proposed by Breitling and Gerber (2000). The octapeptide (OP) capturing occurred 
either after or before the first gene duplication event. In the latter case the octapeptide got 
lost in the D lineage. Two more rounds of gene duplication (B > C and C > A) followed by 
partial losses of homeodomain and/or octapeptide sequences did lead to the current Pax 
gene assembly in cnidarians. In sponges a par tial loss of the homeodomain took place. 
Proposed relationships to triploblast Pax258, Pax6, and Pax37 genes are indicated by dotted 
lines. For abbreviations see figure 3. Paired domains = green boxes, homeodomains = black 
boxes, octapetides = blue circles.  
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FIG. 5.—Semiquantitative RT-PCR analysis of HSP70, TriPaxB, and EMX using a cDNA 
preparation from reproducing stages of Trichoplax adhaerens. TriPaxB expression is 
significantly higher than expression of the regulatory Antp superclass gene, EMX, but lower 
than expression of the HSP70 gene.  
 

 

Discussion  
The structure of the putative ancestral Pax gene has been controversially discussed 

(Sun et al. 1997; Catmull et al. 1998; Hoshiyama et al. 1998; Breitling and Gerber 

2000). The data obtained from T. adhaerens strongly suggest that a putative ‘‘Proto-

Pax’’ gene harbored at least two of the three Pax gene motifs, that is, a paired 

domain and a homeodomain, and possibly also the third motif, the octapeptide (fig. 

4). The transition from an ‘‘Ur-Pax’’ gene (a homeodomain fused to a paired domain; 

(Breitling and G erber 2000; Miller et al. 2000)) to the Trichoplax PaxABC gene, 

requires only a s ingle step, the incorporation of the octapeptide. From this ‘‘fully 

loaded’’ ancestral PaxABC gene other Pax genes may be der ived by subsequent 

deletion events, that is, loss of the (1) homeodomain, (2) partial homeodomain, 

and/or (3) octapeptide (fig. 4). The supported model is consistent with the paired 

domain gene trees in figure 3, current knowledge on t he phylogenetic position of 

Placozoa, and the comparison of Pax gene functions.  

The Pax evolution model in figure 4 incorporates the assumption that a Proto-

Pax gene derived from a gene fusion event between a paired domain (e.g., from a 

Proto-Pax transposase) (Breitling and Gerber 2000) and a h omeodomain in 

protozoans. In addition to the original arguments, this scenario seems plausible also 

because no Pax genes have been found in protists and t he best-supported Pax 

paired domain phylogeny is obtained with transposase as out-group. The diploblast 

Pax gene tree (fig. 3A and B) is in accordance with a proposed basal position of 

Placozoa (for overview and references see Syed and Schierwater 2002). If Porifera 
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were basal, however, the Pax evolution model would require a s light modification. 

Here, the last common ancestor of Placozoa and Porifera would be assumed to have 

harbored a Trichoplax-type PaxB gene, whose structure remained unchanged in 

Placozoa but experienced a partial loss of the homeodomain in the lineage leading to 

Porifera. Because it is known that Placozoa are not secondarily reduced Cnidaria 

(Ender and Schierwater 2003) and because their bauplan cannot easily be der ived 

from a sponge bauplan (Syed and Schierwater 2002), one has to argue that Pax 

genes of the A class, and—particularly interesting—also of the B and C  class, 

predated the invention of nerve and sensory cells.  

With respect to the evolution of PaxD-like genes additional research is needed 

to decide whether PaxD branched off even earlier (as shown in our evolution model) 

or if the PaxD paired domain originated in the next common ancestor of Cnidaria and 

triploblasts. In the first scenario a PaxD-type gene either got lost or escaped surveys 

in Placozoa and Porifera. In the second scenario insufficient taxon sampling or 

nonoptimal out-group choice may have hindered phylogenetic resolution in the 

analysis. Although it seems unlikely that a PaxD-type gene escaped our PCR screen, 

we cannot rule out, however, that Placozoans posses more than one Pax gene. To 

decide between the alternatives more data will be needed, which will likely come from 

ongoing whole-genome sequencing efforts in Placozoa, Porifera, and Cnidaria.  

Functional information from triploblast Pax genes may also add t o our 

understanding of early duplication events in diploblastic animals. It was previously 

assumed that PaxB is a precursor of Pax2/5/8, whereas PaxC could be a precursor 

of Pax6 genes in triploblasts. Plaza et al. (2003) recently demonstrated that DNA-

binding characteristics of cnidarian PaxB and P axC proteins display no s imple 

relationship to Pax2/5/8 and Pax6 genes. The authors showed that A. millepora PaxB 

and PaxC proteins can both bind to eyeless (ey) targets in vivo and in vitro, which 

casts doubt on the postulated direct relationship between cnidarian Pax genes and 

the bilaterian Pax6 and Pax2/5/8 classes. Given that our analysis suggests that 

Cnidarian PaxB and PaxC (and also PaxA) genes are derived from a gene with 

similar organization to the placozoan PaxB-like gene, one could speculate that the 

ancestral PaxABC gene unites functional features which were retained in cnidarian 

PaxB and PaxC as well as in triploblast Pax2/5/8 and Pax6 genes. This hypothesis is 

indeed supported by Kozmik et al. (2003) who showed that T. cystophora PaxB (the 

only Pax gene in cubomedusa found so far) contains a Pax2/5/8-type paired domain 
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and octapeptide but a Pax6-type homeodomain. The Tripedalia PaxB gene is 

expressed in larval stages, in the retina, lens, and statocyst. According to functional 

properties, that is, binding specificity, the ability to rescue spa (a Drosphila Pax2 

mutant) and to induce ectopic eyes in Drosophila, the authors suggest that the 

ancestor of the cubozoan PaxB-like protein was the primordial Pax protein in eye 

evolution and t hat Pax6-like genes evolved in triploblasts after separation from 

Cnidaria. Trichoplax PaxB meets these expectations for an ancestral Proto-PaxABC 

gene. Most interestingly, Trichoplax does not possess any kind of sensory organs or 

nerve cells. Expression of TriPaxB in small irregular cell patches along the outer 

edge of the animal possibly relates to undifferentiated cells and i s spatially 

overlapping with the Trox2 expression domain (the only Hox/ParaHox gene found in 

Placozoa; see fig. 6G and Jakob et al. 2004). Quite noteworthy, TriPaxB is not 

expressed in differentiated fiber cells, which represent putative proto-neural/muscular 

cells and are located between the upper and lower epithelium throughout the center 

region of the body (fig. 6C and D). Tri-PaxB could, however, function in cell 

determination of fiber cells from undifferentiated and multipotent precursor cells (cf. 

Jakob et al. 2004). We propose that TriPaxB and Trox2 both demark a par ticular 

zone of cell proliferation and differentiation.  
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FIG. 6.—Whole-mount in situ expression analyses of TriPaxB, Trox2, and actin. The TriPaxB 
gene is expressed in growing and vegetatively reproducing stages of Trichoplax adhaerens 
(cf. fig. 5) in cell patches at some distance to the outer edge of the animal body (A, C–F). 
Actin (B) and Trox2 (G) expression is shown for comparison. A–D represent DIG-labeled 
whole-mount in situ hybridizations, whereas E–G were labeled with FITC-UTP. Note that 
TriPaxB is not expressed in differentiated fiber cells that are located in between the upper 
and the lower epithelium in the center of the animal body (C and D). Trox2 (G) is also 
expressed in the proposed zone of cell proliferation and differentiation close the outer edge 
of the animal body, but on average stronger and more homogeneously (Jakob et al. 2004).  
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We further propose that PaxB was co-opted in the last common ancestor of 

cnidarians and triploblasts for sensory organ and nerve cell development and that 

two rounds of gene duplication (B → C and C → A) followed by partial losses of 

homeodomain and/or octapeptide sequences led to the current Pax gene assembly 

in cnidarians (fig. 4). In the triploblast lineage additional duplication-deletion events 

have taken place and among others resulted in the functional split of protein function 

of Pax2/5/8 and Pax6 genes (fig. 4). Because TriPaxB is basal to all other known 

PaxB genes (and also to PaxA and PaxC genes), it is basal also to Pax2/5/8 and 

Pax6 genes (Sun et al. 1997) (fig. 4). Our data suggest that a PaxB similar gene 

(harboring functional features of both Pax2/5/8 and Pax6 genes) was the original 

gene involved in sensory organ development and evolution. A functional split into 

Pax2/5/8 (mechanosensory) and Pax6 (eye/light sense) likely occurred in the last 

common ancestor of diploblasts and triploblasts. While the placozoan TriPaxB gene 

most likely predates the origin of nerve and sensory cells, its ancestral developmental 

function needs to be investigated in more detail.  
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Abstract 
 
Pax genes comprise a diverse family of homeodomain transcription factors, crucial 

for developmental processes of neuronal and sensory structures in animals. Distinct 

Pax gene classes have been isolated in diploblast phyla, i.e. Porifera, Placozoa and 

Cnidaria and all major bilaterian groups. We recently demonstrated the presence of a 

PaxB like gene in Trichoplax adhaerens and its implications for early Pax gene 

evolution among basal metazoans. Here we report on a second Pax gene in 

Trichoplax, TriPaxC. We analyzed its phylogenetic characteristics, expression 

patterns and i mplications for light dependent behavioral tasks utilizing RNAi 

knockdowns. Cum grano salis, TriPaxC fits in to the evolutionary scenario claimed by 

Hadrys et al 2005 and sheds light on early evolution of prototype sensory abilities in 

placozoans. 

  

Introduction 
 
The Phylum Placozoa with Trichoplax adhaerens as it’s only representative species, 

is traditionally viewed as the simplest living animal (Schulze 1883; Grell 1991; Grell 

1981; Schierwater et al. 2010). Although the distinct placozoan phylogenetic position 

is controversially discussed, several arguments strongly support Placozoa to 

integrate among the lowest level of metazoan evolution. The most basal animal 

bauplan of Trichoplax lack any kind of axis, organs, true neurons and is composed of 

only four to five different cell types, for review see (Schierwater et al. 2010). Despite 

their simple organization, little is known about cellular physiological properties of 

Trichoplax. However, the identification of a limited inventory of key regulator genes 

for metazoan development, i.e. the limited repertoire of Antennapedia class genes 

(Schierwater et al. 2008; Monteiro et al. 2006b), the single ProtoHox/ParaHox (Jakob 

et al. 2004a) and the presence of Pax genes (Srivastava et al. 2008; Hadrys et al. 

2005), indicate that Trichoplax already possess a higher physiological state of 

specialization then generally believed. As shown by Hadrys et al. (Hadrys et al. 

2005), Trichoplax expresses the TriPaxB gene in cells of unknown morphological 

characteristics. Thus led to the speculations about an additional cell type in 

Trichoplax (Hadrys et al. 2005). Expression of highly conserved Pax genes seems to 

be common among basal metazons since derived PaxB genes were isolated from 

Porifera (Hoshiyama et al. 1998; Hill et al. 2010) and at least four different Pax genes 
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were isolated from cnidarians (Miller et al. 2000; Catmull et al. 1998; Sun et al. 1997; 

Plaza et al. 2003; Matus et al. 2007). However, recent attempts to identify distinct 

functional homologues of cnidarian Pax genes and their Bilateria counterparts failed. 

Attempts have been made to identify a cnidarian counterpart to the bilaterian Pax6 

gene – a key regulator for eye development (Onuma et al. 2002; Stierwald et al. 

2004; Suga et al. 2010; Gehring and Ikeo 1999). By ectopic expression experiments 

three different cnidarian Pax genes were found capable to induce ectopic eye 

development in Drosophila (Kozmik et al. 2003; Plaza et al. 2003; Suga et al. 2010). 

These results indicate overlapping functional properties among the Pax genes 

(Kozmik et al. 2003; Kozmik 2008; Miller et al. 2000). As a consequence, there is no 

bona fide Pax-6 gene known from diploblasts yet (Kozmik 2008). Despite the crucial 

roles of Pax genes for sensory organ development among bilaterians, we know very 

little about their developmental function and physiological outcome during 

development in diploblast phyla (Breitling and Gerber 2000). To gain insight into the 

developmental role of early metazoan Pax genes in Trichoplax, we characterized the 

identified Pax gene TriPaxC. By means of in situ Hybridization expression analyses 

of TriPaxC, we were able to identify a distinct cell type of unusual morphology, not 

recognized in Trichoplax so far.  

 
 
Material and Methods 
 
Animal cultures 
All experiments were carried out on the clonal placozoan lineage “Grell”. For precise 

culture conditions see Schierwater and Kuhn (Schierwater and Kuhn 1998). Prior to 

any experimental approach individually collected animals were rinsed three times 

with sterile artificial seawater and subsequently used for the experiments. 

 
RNA isolation and cDNA synthesis 
Total RNA was extracted from Trichoplax adhaerens employing the RNeasy Mini Kit 

(Qiagen). An additional digestion step was performed using the RNase-free DNase I 

(Roche), in order to remove residual traces of genomic DNA according to the 

manufacturer's instructions. 

Total RNA was used to synthesize cDNA using the Transcriptor cDNA Kit (Roche) 

following manufacturers protocol. 
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Rapid amplification of cDNA ends (RACE), molecular cloning and sequencing 
Primer sets according to the Pax-like annotated gene were designed to genomic 

sequence information (accession number: XM 002115668.1) (5’-

GTGTATTCATAAACGGCCGTCC-3’, 3’-CCTCGCCGTAATAGAACTACATTC-5’).  

The 3’ rapid amplification of cDNA ends (RACE)PCR Race were performed using 

FastStart (2x) DNA polymerase (Roche) following standard protocol recommended 

by the manufacturer. PCR was performed as follows: (30´´@98°C (1x) 

((30´´@95°c,15´´@60°C, 1´@72°c (38x))). 

The obtained PCR product was cloned into E.coli “one shot” (Invitrogen), utilizing 

pGem-t-easy TA ligation kit (Promega). Bacteria were screened by single colony 

T7/Sp6 standard PCR and positive clones were subsequently sequenced using an 

ABI 310 automated sequencer. 

 
In situ hybridization 
Whole-mount in situ hybridization experiments were performed using a m odified 

protocol developed for placozoans (Jakob et al. 2004b). Hybridization was done for at 

least 10 hours. Hybridization and subsequent wash steps were performed at 65°C. 

Sense and antisense probes were synthesized via SP6 and T7 RNA polymerases 

respectively using FITC labeling kit (Roche). Digital microphotographs were obtained 

using a Zeiss Axoivert fluorescent Microscope 

 
Phylogenetic analyses 
Distance and Maximum Likelihood analyses were carried out in order to infer 

phylogenetic relationships between Pax genes. Paired domain sequences from 

diploblasts were included in the analysis (for GenBank accession numbers see 

Hadrys et al. (Hadrys et al. 2005)). Both analyses were conducted using Mega5 

(Tamura et al. 2011). For distance method the JTT+G model was applied. For 

maximum likelihood analyses the more complex WAG+G+I+F was applied (model 

not available for distance methods in Mega5). Support for both analyses was 

assessed with 1000 Bootstrap replicates. 

As previously analyses have shown that the PaxD gene from Acropora millepora is 

basal to all other diploblast Pax genes (Hadrys et al. 2005) it was used as outgroup in 

the phylogenetic analyses. 
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Results 
Sequence and phylogenetic analysis of TriPaxC cDNA transcripts  
The sequence analyses of cloned RT-PCR products are in accordance with the 

predictions of the Trichoplax genome database. We could not find any differences to 

the computational in silico intron/exon prediction of the genomic TriPaxC loci. The 

transcript is lacking an octapeptid, present in several Pax classes of diploblast 

metazoans. Moreover, the two identified domains, the Paired box and homeobox 

(Figure 1), show highest homology to the cnidarians Pax genes of Acropora millepora 

PaxCAm followed by slightly weaker affinity to Acropora millepora PaxAAm (Miller et 

al. 2000) (Figure 2).  

 

 
 
Figure 1. Obtained cDNA sequences of TriPaxC. 
Dark grey resembles the Paired box motif. Light grey indicates the Homeobox motif. Red 
marks the intron 1 postion so far only known for Placozoa. Blue marks a common conserved 
intron position amongst diploblasts 
 
 
. 



 72 

 
Figure 2. Rooted neighbor-joining tree of paired domain sequences of known diploblast 
PaxA, PaxB, PaxC, and PaxD genes. Bootstrap values result from 1,000 stepwise addition 
replicates (distance: above nodes/likelihood: below nodes). The shown topology is identical 
to the maximum likelihood tree. Acopora millepora PaxD sequence serves as outgroup. 
 
 
 
In situ Hybridization 
Expression of TriPaxC in Trichoplax adhaerens appears in a single distinct cell type 

(Figure 4). TriPaxC expressing cells show a characteristic morphology which cannot 

be accounted to any previously described cell type. Expression pattern appear in a 

non-structured, scattered pattern throughout the center of the animal. No expression 

of TriPaxC could be observed in the marginal regions of the animal.  
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Figure 4. In situ Hybridization of 
TriPaxC in Trichoplax adhaerens. 
A) Antisense Hybridization signal can 
be detected in distinct cell types, 
scattered all over the central region 
of the animal. Note: No expression is 
detected at the outer edge of 
Trichoplax. 
B) DAPI counter stain of the nuclei in 
the overlay. 
C) Sense control of Trichoplax 
TriPaxC: no di stinct hybridization 
signal is detected.  
  

 
 
 
 
 
 
 
 
Discussion 
 
Pax-like genes were isolated from every major animal group, ranging from early 

branching Diploblast to bilaterian phyla. Recent studies interpreted the course of Pax 

genes evolution using phylogenetic analysis and concluded a major functional split of 

Pax genes likely occurred in the last common ancestor of diploblasts and triploblasts 

(Miller et al. 2000; Kozmik et al. 2003; Catmull et al. 1998; Hadrys et al. 2005).  

In this study we characterized the TriPaxC in Trichoplax adhaerens in terms of gene 

structure, expression patterns and its implication for placozoan sensory and 

behavioral capabilities. 

The gene structure of TriPaxC harbors two of the three Pax gene motifs which are 
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the paired domain and a homeodomain while a octapeptid domain is missing. Both 

domains revealed highest sequence homology to the cnidarian Pax-C class and the 

bilaterian Pax6 class.  

Phylogenetic analyses of TriPaxC compared to representatives of diploblast Pax 

classes reveal that it descends from ancestral PaxB like genes and groups basal to 

cnidarian PaxC and PaxA genes. These results show that TriPaxC, cum granum 

salis, fulfills evolutionary considerations, previously hypothesized for the evolutionary 

course of animal Pax genes (Hadrys et al. 2005; Miller et al. 2000). Starting from an 

ancestral PaxB gene PaxC and PaxA diverged. While the Trichoplax TriPaxC gene 

most likely provides the ground for the evolution of PaxA and PaxC classes in the 

anthozoan, the most ancient cnidarian class (Bridge et al. 1992; Ender and 

Schierwater 2003). 

Since diploblast Pax genes are expected to be directly linked to the origin of nerve 

and sensory cells, their ancestral developmental functions are not elucidated yet 

(Sun et al. 1997; Catmull et al. 1998; Hoshiyama et al. 1998). 

We performed in situ hybridization experiments to identify the expression pattern of 

TriPaxC. Based on t he expression analysis we can identify a specific cell type in 

Trichoplax. Intriguingly its morphology shows no c lear homology to the previously 

described cell type. Its scattered distribution over the central regions of the Trichoplax 

body cannot be compared with any known developmental pattern process in 

Trichoplax so far. All other developmental genes investigated so far, like the 

Proto/ParaHox gene Trox-2 (Sagasser and Schierwater 2002; Jakob et al. 2004b), 

the ProtoPax like gene TriPaxB (Hadrys et al. 2005) or the homeobox genes Dll, Mnx 

(Monteiro et al. 2006a), show expression patterns with distinct regional identities. 

Thus we conclude that TriPaxC occupies a central role for the development of a 

formerly unknown cell type in Placozoa. Considering the phylogenetic position of 

TriPaxC (basal to cnidarian PaxC and P axA), it might be possible that TriPaxC 

prepared the grounds for an early key regulator of light sensory system in animals. 

No attempts will be m ade here to assign a distinct developmental function for 

TriPaxC. Whether TriPaxC is (i) directly involved into the development of 

photosensitive receptor cells, (ii) necessary for differentiation of stimulus conducting 

cells or (iii) responsible for the supply of effector cells mediating behavioral 

responses, has to be elucidated in ongoing experiments. 

 



 75 

 

References 

Breitling R, Gerber JK (2000) Origin of the paired domain. Dev Genes Evol 210 (12):644-
650 

Bridge D, Cunningham CW, Schierwater B, DeSalle R, Buss LW (1992) Class-level 
relationships in the phylum Cnidaria: evidence from mitochondrial genome 
structure. Proc Natl Acad Sci U S A 89 (18):8750-8753 

Catmull J, Hayward DC, McIntyre NE, Reece-Hoyes JS, Mastro R, Callaerts P, Ball EE, 
Miller DJ (1998) Pax-6 origins--implications from the structure of two coral pax 
genes. Dev Genes Evol 208 (6):352-356 

Ender A, Schierwater B (2003) Placozoa are not derived cnidarians: evidence from 
molecular morphology. Mol Biol Evol 20 (1):130-134 

Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. 
Trends Genet 15 (9):371-377. doi:S0168-9525(99)01776-X [pii] 

Grell KG (1981) Trichoplax adhaerens and the origin of Metazoa. In:  Origine dei Grandi 
Phyla dei Metazoi, Accademia Nazionale dei Lincei, Convegno Intern. pp 107-121 

Grell KGaAR (1991) Placozoa. In: F.W. H (ed) Microscopic Anatomy of Invertebrates, vol 
2 Placozoa, Porifera, Cnidaria, and Ctenophora. Willey-Liss., New York, pp 13-28 

Hadrys T, DeSalle R, Sagasser S, Fischer N, Schierwater B (2005) The Trichoplax PaxB 
gene: a putative Proto-PaxA/B/C gene predating the origin of nerve and sensory 
cells. Molecular Biology and Evolution 22:1569-1578 

Hill A, Boll W, Ries C, Warner L, Osswalt M, Hill M, Noll M (2010) Origin of Pax and Six 
gene families in sponges: Single PaxB and Six1/2 orthologs in Chalinula 
loosanoffi. Dev Biol 343 (1-2):106-123. doi:S0012-1606(10)00166-1 [pii] 

10.1016/j.ydbio.2010.03.010 
Hoshiyama D, Suga H, Iwabe N, Koyanagi M, Nikoh N, Kuma K, Matsuda F, Honjo T, 

Miyata T (1998) Sponge Pax cDNA related to Pax-2/5/8 and ancient gene 
duplications in the Pax family. J Mol Evol 47 (6):640-648 

Jakob W, Sagasser S, Dellaporta S, Holland P, Kuhn K, Schierwater B (2004a) The Trox-2 
Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. 
Development Genes & Evolution 214:170-175 

Jakob W, Sagasser S, Dellaporta S, Holland P, Kuhn K, Schierwater B (2004b) The Trox-2 
Hox/ParaHox gene of Trichoplax (Placozoa) marks an epithelial boundary. Dev 
Genes Evol 214 (4):170-175 

Kozmik Z (2008) The role of Pax genes in eye evolution. Brain Res Bull 75 (2-4):335-
339. doi:S0361-9230(07)00365-6 [pii] 

10.1016/j.brainresbull.2007.10.046 
Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw LJ, Noll M, Piatigorsky J (2003) Role 

of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 
functions. Dev Cell 5 (5):773-785. doi:S1534580703003253 [pii] 

Matus DQ, Pang K, Daly M, Martindale MQ (2007) Expression of Pax gene family 
members in the anthozoan cnidarian, Nematostella vectensis. Evol Dev 9 (1):25-
38. doi:EDE135 [pii] 

10.1111/j.1525-142X.2006.00135.x 
Miller DJ, Hayward DC, Reece-Hoyes JS, Scholten I, Catmull J, Gehring WJ, Callaerts P, 

Larsen JE, Ball EE (2000) Pax gene diversity in the basal cnidarian Acropora 
millepora (Cnidaria, Anthozoa): implications for the evolution of the Pax gene 
family. Proc Natl Acad Sci U S A 97 (9):4475-4480. doi:97/9/4475 [pii] 



 76 

Monteiro AS, Schierwater B, Dellaporta SL, Holland PW (2006a) A low diversity of ANTP 
class homeobox genes in Placozoa. Evol Dev 8 (2):174-182 

Monteiro AS, Schierwater B, Dellaporta SL, Holland PWH (2006b) A low diversity of 
ANTP class homeobox genes in Placozoa. Evolution & Development 8:174-182 

Onuma Y, Takahashi S, Asashima M, Kurata S, Gehring WJ (2002) Conservation of Pax 6 
function and upstream activation by Notch signaling in eye development of frogs 
and flies. Proc Natl Acad Sci U S A 99 (4):2020-2025. 
doi:10.1073/pnas.022626999 

022626999 [pii] 
Plaza S, De Jong DM, Gehring WJ, Miller DJ (2003) DNA-binding characteristics of 

cnidarian Pax-C and Pax-B proteins in vivo and in vitro: no simple relationship 
with the Pax-6 and Pax-2/5/8 classes. J Exp Zool B Mol Dev Evol 299 (1):26-35 

Sagasser S, Schierwater B (2002) Expression analysis of Antennapedia-superclass gene 
Trox-2 in the placozoon Trichoplax adhaerens. Zoology, Abstract  Proceedings, 
DZG-Tagung 2002 in Halle Suppl. V:14 (95.11) 

Schierwater B, Eitel M, Osigus HJ, von der Chevallerie K, Bergmann T, Hadrys H, Cramm 
M, Heck. L, M.R. L, DeSalle R (2010) Trichoplax and Placozoa: one of the crucial 
keys to understanding metazoan evolution. In: DeSalle R, Schierwater B (eds) Key 
transitions in animal evolution. CRC Press, pp 289-326 

Schierwater B, Kamm K, Srivastava M, Rokhsar D, Rosengarten RD, Dellaporta SL (2008) 
The early ANTP gene repertoire: insights from the placozoan genome. PLoS ONE 
3:e2457 

Schierwater B, Kuhn K (1998) Homology of Hox genes and the zootype concept in early 
metazoan evolution. Mol Phylogenet Evol 9 (3):375-381 

Schulze FE (1883) Trichoplax adhaerens, nov. gen., nov. spec. Zoologischer Anzeiger 
6:92-97 

Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros 
T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, 
Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, 
Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 
454 (7207):955-960 

Stierwald M, Yanze N, Bamert RP, Kammermeier L, Schmid V (2004) The Sine oculis/Six 
class family of homeobox genes in jellyfish with and without eyes: development 
and eye regeneration. Dev Biol 274 (1):70-81. doi:10.1016/j.ydbio.2004.06.018 

S0012-1606(04)00434-8 [pii] 
Suga H, Tschopp P, Graziussi DF, Stierwald M, Schmid V, Gehring WJ (2010) Flexibly 

deployed Pax genes in eye development at the early evolution of animals 
demonstrated by studies on a hydrozoan jellyfish. Proc Natl Acad Sci U S A 107 
(32):14263-14268. doi:1008389107 [pii] 

10.1073/pnas.1008389107 
Sun H, Rodin A, Zhou Y, Dickinson DP, Harper DE, Hewett-Emmett D, Li WH (1997) 

Evolution of paired domains: isolation and sequencing of jellyfish and hydra Pax 
genes related to Pax-5 and Pax-6. Proc Natl Acad Sci U S A 94 (10):5156-5161 

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular 
Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary 
Distance, and Maximum Parsimony Methods. Mol Biol Evol. doi:msr121 [pii] 

10.1093/molbev/msr121 
 
 



 77 

Mitochondrial genome of Trichoplax adhaerens  
supports Placozoa as the basal lower metazoan phylum 

 

 

Stephen L. Dellaporta*†, Anthony Xu*, Sven Sagasser‡, Wolfgang Jakob‡, 
Maria A. Moreno*, Leo W. Buss§, and Bernd Schierwater*‡ 

 

 

*Department of Molecular, Cellular, and Developmental Biology, Yale University, New 

Haven, CT 06520-8104;  

‡Division of Ecology and Evolution, Institut für Tierökologie und Zellbiologie, 

Tieraerztliche Hochschule Hannover, Bünteweg 17d, D-30559 Hannover, Germany;  

§Departments of Ecology and Evolutionary Biology and Geology and Geophysics, 

Yale University, New Haven, CT 06520-8106  

 

† Corresponding author 

 

 

This is the author’s version of a work originally published by National Academy of 

Sciences of the USA in: Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8751-6. Epub 

2006 May 26, available under doi: 10.1073/pnas.0602076103 

 

 

 

 

 

 

 

Molecular work:  Sven Sagasser, Wolfgang Jakob, Maria A. Moreno, Anthony Xu, 

Stephen L. Dellaporta 

Manuscript:  Stephen L. Dellaporta, Leo W. Buss, Bernd Schierwater 

 
 
 
 



 78 

Abstract 
Mitochondrial genomes of multicellular animals are typically 15-to 24-kb circular 

molecules that encode a nearly identical set of 12–14 proteins for oxidative 

phosphorylation and 24–25 structural RNAs (16S rRNA, 12S rRNA, and tRNAs). 

These genomes lack significant intragenic spacers and are generally without introns. 

Here, we report the complete mitochondrial genome sequence of the placozoan 

Trichoplax adhaerens, a metazoan with the simplest known body plan of any animal, 

possessing no organs, no basal membrane, and only four different somatic cell types. 

Our analysis shows that the Trichoplax mitochondrion contains the largest known 

metazoan mtDNA genome at 43,079 bp, more than twice the size of the typical 

metazoan mtDNA. The mitochondrion’s size is due to numerous intragenic spacers, 

several introns and ORFs of unknown function, and protein-coding regions that are 

generally larger than those found in other animals. Not only does the Trichoplax 

mtDNA have characteristics of the mitochondrial genomes of known metazoan 

outgroups, such as chytrid fungi and c hoanoflagellates, but, more importantly, it 

shares derived features unique to the Metazoa. Phylogenetic analyses of 

mitochondrial proteins provide strong support for the placement of the phylum 

Placozoa at the root of the Metazoa.  

 

Key words 
animal evolution . phylogenetics  

 

Introduction 
Trichoplax adhaerens [Shulze 1883] is a marine invertebrate distributed in tropical 

waters worldwide (1-3). It is the simplest known free-living animal, displaying no axis 

of symmetry, lacking a basal membrane, possessing only four somatic cell types (4-

6), and having one of the smallest known animal genomes (7-9). Until recently, T. 

adhaerens was the sole representative of the phylum Placozoa, but recent field 

studies and molecular analyses indicate genetic diversity underlying apparent 

morphological uniformity within the Placozoa (3, 10). In the laboratory, placozoans 

reproduce asexually by either binary fission or budding dispersive propagules called 

swarmers. Eggs have been observed, and recent DNA polymorphism analysis has 

provided evidence for sexual reproduction within the Placozoa (10).  
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The phylogenetic placement of Placozoa among the metazoans, i.e., the 

animals, remains unresolved. In particular, its placement among lower metazoans, 

that is, the phyla Cnidaria, Ctenophora, and Porifera, has been controversial. Most 

studies place Porifera at the base of the metazoan tree of life (11-15), but others 

support placozoans as one of the earliest branching lineages of Metazoa (16-20). 

Conflicting data, including 18S, 28S, and 16S analysis, have suggested that 

Placozoa form a sister clade to all bilaterians or a sister clade to both cnidarians and 

bilaterians (14, 21-27).  

Comparative mitochondrial genomics is becoming an effective tool to resolve 

phylogenetic placements because of several unique properties of mitochondrial 

genomes, including uniparental inheritance, orthologous genes, and l ack of 

substantial intermolecular recombination (reviewed in refs. 28, 29, 30). Although 

some have questioned the utility of comparative mitochondrial genomics based on 

problems of convergence (31), in many cases, mitochondrial data have provided 

robust phylogenetic trees capable of resolving evolutionary relationships among fungi 

(32), protists (33), diploblasts (34), and bilaterians (35-42).  

The closest living relatives of animals, the choanoflagellates and fungi, 

possess large mitochondrial genomes with extensive intragenic spacers, introns, and 

several ORFs of unknown function. The unicellular choanoflagellate, Monosiga 

brevicollis, has mtDNA that is nearly four times larger (76,568 bp) than the typical 

animal mtDNA genome and enc odes 55 di fferent genes, often separated by large 

intragenic spacer regions, including two genes interrupted by introns (43). 

Metazoans, on t he other hand, have compacted 15-to 20-kb circular mitochondrial 

genomes that encode a near ly identical set of 12–14 proteins for oxidative 

phosphorylation and 24–25 structural RNAs (16S rRNA, 12S rRNA, and t RNAs) 

without significant intragenic spacers and, generally, without introns. Mitochondrial 

DNA variants exist in metazoans, such as the presence of type I introns and linear 

mtDNA molecules found in cnidarians (34, 44, 45), the presence of the atp9 gene in 

sponges (15, 46), and the secondary expansion of mtDNA found in some mollusks 

(47, 48) and insects (49).  

Our analysis shows that the Trichoplax mitochondrion possesses the largest 

known metazoan mtDNA genome, at 43,079 bp, more than twice the size of the 

typical metazoan mtDNA. Its large size is due not to secondary expansion but to 

features shared with metazoan outgroups, such as intragenic spacers, several 
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introns, ORFs of unknown function, and pr otein-coding regions that are generally 

larger than that found in animals. The large Trichoplax mtDNA is the least derived 

mitochondrial genome of any animal. Moreover, the Trichoplax mitochondrion shares 

unique derived features with other lower metazoans, notably the loss of all ribosomal 

protein genes. These structural features of the Trichoplax mitochondrial genome, 

along with Bayesian and maximum-likelihood (ML) analyses of mitochondrial proteins 

from metazoans and outgroups, provide robust support for the phylogenetic 

placement of the phylum Placozoa at the root of the Metazoa.  

 

Results and Discussion  
We cloned the full-length mitochondrial genome from the placozoan T. adhaerens, 

determined its complete sequence and organization (Fig. 1), and compared it with the 

mtDNA genomes of other diploblasts (15, 44, 45) and the choanoflagellate Monosiga 

brevicollis (43). The 43,079-bp circular mtDNA genome of Trichoplax is more than 

twice the size of the mtDNA found in most metazoans (17–25 kb), including those of 

poriferans (15, 46) and cnidarians (44, 45) (Table 1), making it the largest known 

animal mtDNA genome. The size and composition of the Trichoplax mtDNA genome 

resembles that of the choanoflagellates and is in striking contrast to the streamlined 

genomes found in virtually all metazoans. In rare cases of relatively large mtDNAs 

(up to 42 kb) found in animals, these instances are known to be a result of secondary 

duplications, repeat expansions, or extensive A + T-rich regions (47-49).  
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Fig. 1. Scale drawing of the mitochondrial genome of T. adhaerens. The complete sequence 
of the 43,079-bp mitochondrial genome from a Red Sea isolate of T. adhaerens (50) was 
determined and annot ated by identifying ORFs with the National Center for Biotechnology 
Information’s ORF FINDER using genetic code 4. Known mitochondrial proteins (blue 
rectangles) were identified by BLAST and by alignment to corresponding proteins found in 
poriferans (NC_006894, NC_006990, and N C_006991), cnidarians (NC_000933 and 
NC_003522), and t he choanoflagellate Monosiga (NC_004309) to infer the start of 
translation. Genes transcribed in the clockwise direction are shown on t he outer 
circumference; genes transcribed in the counterclockwise direction are shown on the inner 
circumference. Large (rnLa and rnLb) and small (rnS) ribosomal genes are represented as 
gray rectangles. The tRNAs (black lines) were identified by using TRNASCAN-SE (51) and 
are annotated by their International Union of Pure and A pplied Chemistry (IUPAC) amino 
acid codes. ORFs encoding unknown proteins >100 aa in length are identified by their amino 
acid coding capacity (green rectangles). Introns in the cox1 and nad5 genes are shown as 
red lines connecting exons (blue rectangles). A 103-bp imperfect direct repeat is shown as 
black triangles. Note that the carboxy-terminal region of cox1 (exons 5–7) is inverted with 
respect to cox1 exons 1–4 because of the presence of a large 16-kb inversion encompassing 
the region from trnP to trnV. This inversion has been confirmed experimentally in the Red 
Sea isolate but does not exist in another placozoan taxon (A. Signorovitch, L. Buss, and 
S.L.D., unpublished data).  
 
 

The Trichoplax mtDNA genome encodes a typical complement of animal 

mtDNA genes, including ATP synthase subunits (atp6), cytochrome oxidase subunits 

(cox1, cox2, and cox3), apocytochrome b (cob), reduced nicotinamide adenine 
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dinucleotide ubiquinone oxireductase subunits (nad1, nad2, nad3, nad4, nad4L, 

nad5, and nad6), a full complement of tRNAs (24 in all), and small and large 

ribosomal RNAs (rrnS and rrnL) (Fig. 1 an d Table 1). Additional features of the 

Trichoplax mtDNA include extra introns in the cox1 gene and the physical separation 

of the rrnL and cox1 genes into two discrete domains (Fig. 1). Several unknown 

ORFs are also found in the Trichoplax mitochondrial genome, including one that 

encodes a 627-aa protein containing reverse transcriptase (pfam00078) and Type II 

intron maturase (pfam01348) domains, located just downstream of the second exon 

of cox1. We have not identified the atp8 gene in Trichoplax mtDNA.  

Notably, Trichoplax mtDNA shares characteristics found in the mitochondrial 

genomes of known metazoan outgroups. The large size of the Trichoplax genome is 

due to the presence of large intragenic spacers, several ORFs of unknown function, 

and additional cox1 introns, two of which share identical positions within the 

choanoflagellate Monosiga and t he fungus Monoblepharella cox1 genes (32, 43). 

Furthermore, most mtDNA genes in Trichoplax encode larger proteins than those 

found in other animals. On average, protein-coding regions are 10% larger in 

Trichoplax than in other diploblasts, which is comparable to the difference between 

choanoflagellates and diploblasts (43). Similar to Monosiga (43), only about half of 

the Trichoplax mtDNA contain coding regions, whereas other diploblast mtDNA 

genomes range from 76% to 98% coding capacity in the 25.6-and 18-kb mtDNAs of 

the poriferans Axinella and Geodia (15, 46), respectively (Table 1).  

 
Table 1. Comparison of representative mitochondrial genomes 
 

 
 
Data compiled from mitochondrial genomes taken from GenBank: Monosiga brevicollis 
(NC_004309), T. adhaerens (this study) the poriferans Axinella corrugata (NC_006894), 
Geodia neptuni (NC_006990), and Tethya actini (NC_006991), and the onidarians Metridium 
senile (NC_000933) and Acropora tenuis (NC_003522). Coding percentage calculated from 
the proportion of sequence having protein coding (known mitochondrial proteins or 
ORF>100aa) tRNA genes, and rRNA coding sequences; ORFs, number of reading frames 



 83 

encoding unknown proteins >100 aa; RPs, ribosomal protein genes; RC subunits, respiratory 
chain subunit genes.  

The Trichoplax mitochondrial genome shares metazoan features lacking in 

choanoflagellates and fungi. Notably, we find no evidence of the presence of 

ribosomal protein genes in Trichoplax, a property shared with other metazoan 

mtDNAs, suggesting that loss of ribosomal protein genes may be a s ynapomorphy 

for the animal kingdom. Mitochondrial DNA features that had heretofore been thought 

to be r estricted to either sponges or cnidarians are all found in Trichoplax. 

Specifically, the mitochondrial genomes of both cnidarians and Trichoplax mtDNA 

have conserved introns in the nad5 and cox1 genes as well as unknown ORFs.  

To further examine the phylogenetic position of Trichoplax among the lower 

metazoans, we performed Bayesian and ML analyses on 2,730 amino acid positions 

derived from 12 well conserved protein sequences (cox1–3, cob, atp6, nad1–4, 4L, 

and 5–6) common to the mitochondrial genomes of T. adhaerens; the cnidarians 

Metridium senile (NC_000933), Acropora tenuis (NC_003522), Anacropora matthai 

(NC_006898), and Montipora cactus (NC_006902); the poriferans Geodia neptuni 

(NC_006990), Axinella corrugata (NC_006894), and Tethya actinia (NC_006991); 

and the choanoflagellate Monosiga brevicollis (NC_004624). Monoblepharella sp. 

JEL15 (NC_004624) was included as an o utgroup taxon for this analysis because 

chytrids are regarded as the basal fungal taxon (32). The predicted amino acid 

sequences for each of the 12 genes were aligned by using CLUSTALW (52) and 

edited, manually and c omputationally, by using GBLOCKS (53), to remove 

ambiguous sites. These alignments were concatenated to produce a final data set of 

2,730 aa (see Data Set 1, which is published as supporting information on the PNAS 

web site).  

Partitioned Bayesian analysis, implemented in MRBAYES 3.1.1 (54), was 

performed by using the mtREV amino acid substitution model, with substitution-rate 

variation among sites modeled by a discrete approximation of the γ-distribution with a 

proportion of invariable sites (I + Г). This analysis produced the phylogeny depicted 

in Fig. 2A. The posterior probabilities exceeded 99% for each node, with 

overwhelming support for Trichoplax being basal to both poriferans and cnidarians. 

ML analysis, implemented in PAML 3.14 (55), using star decomposition tree search 

and the mtREV amino acid substitution model, produced an identical tree topology 

with the bootstrap values shown in Fig. 2. Using site-wise log-likelihoods generated 

by PAML, statistical tests, implemented in CONSEL 0.1i (56), were conducted to test 
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all possible placements of Trichoplax among lower metazoans (Table 2). The P 

values of the Approximately Unbiased (57), the weighted and unweighted Kishino–

Hasegawa (58), and the weighted and unweighted Shimodaira–Hasegawa (57) tests 

all exceeded 0.999 for the tree shown in Fig. 2A, with no other topology supported by 

P values >0.002.  

Inclusion of bilaterian mtDNA data from the deuterostomes Strongylocentrotus 

purpuratus (NC_001453) and Saccoglossus kowalevskii (NC_007438) and t he 

protostomes Artemia franciscana (NC_001620) and Katharina tunicata (NC_001636) 

in the phylogenetic analyses yielded a bifurcation at the base of metazoans between 

two clades (Fig. 2B), one c omprising all bilaterians and the other comprising all 

diploblasts. Inclusion of additional bilaterian taxa in the analysis did not change this 

topology (data not shown). This result is consistent with that reported by Lavrov et al. 

(15) and may be due to long branch attraction that is known to affect analyses of fast 

evolving metazoan sequences (59). A relative-rates test comparing bilaterians to 

diploblasts using Monosiga and Monoblepharella as outgroups was performed by 

using RRTREE (60). The P value for bilaterians evolving at the same rate as 

diploblasts was 10-7, indicating that the conditions for long branch attraction are 

present. Most importantly, regardless of whether bilaterian sequences are included or 

not, the basal phylogenetic position of Placozoa within the lower metazoans is robust, 

with P values between 0.924 and 1.000 for the various statistical tests (see Table 3, 

which is published as supporting information on t he PNAS web site). Finally, the 

‘‘placozoan-basal’’ topology was robust to the choice of outgroups, including the 

addition or substitution of chytrid fungi (Allomyces macrogynus NC_001715 and 

Rhizophydium sp. 136 NC_003053) as outgroups (see Fig. 3, which is published as 

supporting information on the PNAS web site).  

Our results demonstrate that the placozoan Trichoplax possesses an unusual 

and unique mitochondrial genome, with structural and compositional features 

characteristic of both choanoflagellate mtDNAs, the closest relatives to animals, and 

typical lower metazoan mtDNAs. Like choanoflagellates, the Trichoplax mtDNA is 

much larger than the typical metazoan mtDNA, with substantial noncoding regions, 

genes generally larger than those found in other metazoans, several unknown ORFs, 

and conserved introns in both nad5 and cox1 genes. The large mtDNA genome 

found in Trichoplax, although consistent with the idea that marked gene loss and 

mtDNA compaction occurred during the emergence of multicellular animals, 
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nonetheless indicates that pronounced compaction was not coincident with the origin 

of the Metazoa. 

 

 
 

Fig. 2. Phylogenetic analysis of concatenated mitochondrial proteins. The data set consisted 
of a t otal of 2,730 amino acid positions concatenated from 12 m itochondrial protein 
sequences (atp6, cob,cox1–3, nad1–4, and 4L, 5, and 6) .Partitioned Bayesian analysis was 
performed with MRBAYES for 500,000 generations by using four chains and t he mtREV 
amino acid substitution model. Substitution rate variation among sites was modeled by a 
discrete approximation of the γ-distribution with a proportion of invariable sites (I + Г). ML 
analysis performed with PAML using the mtREV amino acid substitution model and s tar 
decomposition tree search gave an identical tree topology. Posterior probability (Upper) and 
bootstrap (Lower) values are shown for each node. In these analyses, the output trees were 
rooted by using the chytrid fungus Monoblepharella.  
 
 
Texts of invertebrate zoology have long been unanimous in placing the Porifera as 

the basal metazoan phylum, based largely on the striking resemblance of the collared 

cells of choanoflagellates to the choanocytes of sponges. Choanocytes, however, are 

adaptations for filter-feeding in these two taxa, and t heir absence is expected in 
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placozoans, which have a di fferent mode of feeding. The data and analyses 

presented here provide strong support for the phylogenetic placement of Placozoa as 

the basal extant lower metazoan phylum.  

 
 
Table 2. CONSEL statistical tests of the tree topology obtained by Bayesian and ML analysis 

 
 
Summary of statistical tests on all possible phylogenetic positions of Trichoplax within lower 
metazoans by using the Approximately Unbiased (56), the weighted and unw eighted 
Kishino–Hasegawa (57); and t he weighted and un weighted Shimodaira–Hasegawa (56) 
tests, as implemented in CONSEL. In addition, posterior probabilities pp are also displayed. 
 
 
Materials and Methods  

Cloning and Sequencing of T. adhaerens Mitochondrial DNA. Total genomic 

DNA was isolated from a c ultured Red Sea isolate (50). Approximately 20 μg of 

genomic DNA was resuspended in 0.5 ml of Tris-EDTA buffer, sheared by two quick 

passages through a 20-gauge needle attached to a 1-ml syringe, end-repaired by 

using the DNA Terminator Kit (Lucigen, Middleton, WI) and size fractionated by 

pulse-field electrophoresis. The 30-to 40-kb DNA fraction was gel purified, ligated into 

the pCC1FOS vector, packaged in vitro, and plated on EPI300 Escherichia coli cells 

according to manufacturer’s instructions (EPICENTRE Biotechnologies, Madison, 

WI). Several independent, overlapping fosmid clones containing near-full-length (36-

to 40-kb) mitochondrial DNA inserts were identified by colony hybridization using a 

16S rRNA probe (27). Purified fosmid DNA was isolated and sheared by sonication 

and end-repaired and fractionated by gel electrophoresis. The 2-to 4-kb fraction was 

gel purified and ligated to pSMART LC-Kan vector and transformed into E. coli 10G-

competent cells according to manufacturer’s instructions (Lucigen). Approximately 

384 random subclones were chosen for sequencing. Template DNA was prepared by 

using TempliPhi amplification (GE Healthcare) and sequenced by BigDye Terminator 

version 3.1 cycle sequencing on A BI PRISM 3700 D NA analyzers (Applied 

Biosystems) with both forward and reverse vector primers (Lucigen). Selected 

regions of poor quality or low coverage were resequenced by using fosmid DNA 
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template and custom DNA primers designed by the Autofinish feature of CONSED 

(61).  

 

Sequence Assembly and Annotation. DNA sequence chromatograms generated 

from random subclones and custom primer sequencing were processed and 

assembled by using the PHRED– PHRAP–CONSED software suite release 13.0 

(www.phrap.org). The assembled mitochondrial genome sequence was analyzed 

with the National Center for Biotechnology Information’s ORF FINDER using genetic 

code 4. Predicted ORFs were subjected to a similarity search using BLASTP. A 

custom-made Perl script, available upon r equest, automated this process. Each 

identified mitochondrial protein sequence was aligned to the corresponding 

sequences from related taxa, including poriferans (NC_006894, NC_006990, and 

NC_006991), cnidarians (NC_000933, NC_003522, NC_006898, and NC_006902), 

and the choanoflagellate Monosiga (NC_004309) to infer translational startsites, 

intron–exon boundaries, and estimated boundaries of ribosomal RNA genes. The 

transfer RNAs were identified with TRNASCAN-SE 1.21 

(www.genetics.wustl.edu/eddy/tRNAscan-SE). Twelve conserved mitochondrial 

proteins (atp6, cox1–3, cob, nad1–4, and 4L, 5, and 6) from Trichoplax, and other 

species were individually aligned by using CLUSTALW (52), edited manually and 

computationally by using GBLOCKS (53) to remove ambiguous sites, and 

concatenated to give a final data set of 2,730 aa for phylogenetic analysis (Data Set 

1).  

 

Phylogenetic Analysis. Partitioned Bayesian analysis, as implemented in 

MRBAYES 3.1.1 (54), was performed for 500,000 generations by using four 

independent chains and the mtREV amino acid substitution model. Substitution-rate 

variation among sites was modeled by a discrete approximation of the γ-distribution 

with a proportion of invariable sites (I + Г). The first 1,250 samples (25%) were 

discarded as burn-in. ML analysis, implemented in PAML 3.14 (55), was performed 

by using the mtREV amino acid substitution model and star decomposition tree 

search. For bootstrap analysis, 100 resampling replicates were generated by using 

SEQBOOT (62) and analyzed by ML analysis using PAML. The topology given by 

MRBAYES and PAML was statistically tested for robustness against other possible 
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tree topologies with CONSEL 0.1i (56) using site-wise log-likelihood outputs from 

PAML.  
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Supplementary Material 

Table 3. Statistical test of all possible positions of Trichoplax within lower metazoans and bilaterians using the Approximately 
Unbiased (au), the weighted (wkh) and unw eighted (kh) Kishino–Hasegawa, and the weighted (wsh) and unweighted (sh) 
Shimodaira–Hasegawa tests 

Hypothesis 

Probabilities 

au kh wkh sh wsh pp 

Trichoplax 

basal to Porifera + Cnidaria; Bilateria 
as sister group (Figure 2B) 

0.945 0.924 0.924 1.000 1.000 1.000 

Trichoplax  

basal to Bilateria; Cnidaria + Porifera 
as sister group 

0.074 0.076 0.076 0.835 0.397 10–10 

Trichoplax  

basal to Bilateria + Porifera + 
Cnidaria 

0.008 0.009 0.009 0.719 0.048 10–15 

Trichoplax 

basal to Porifera; Cnidaria as sister 
group 

10–4 0.001 0.001 0.295 0.003 10–32 

Porifera basal to Trichoplax basal to 
Cnidaria 

10–4 10–4 10–4 0.234 10–4 10–37 
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Trichoplax  

within Porifera 

10–80–
0.001 

0 0 10–4–
0.006 

0 10–116–10–90 

Trichoplax  

within Cnidaria 

10–52–10–

4 
0 0 0-0.001 0 10–299–10–

110 

Trichoplax 

within Bilateria 

10–53–10–

4 
0 0 0 0 0–10–253 

Twelve conserved mitochondrial proteins (atp6, cox1-3, cob, nad1-4, and 4L, 5, and 6) from Trichoplax and comparative species were 
individually aligned by using CLUSTALW (1), edited manually and computationally by using GBLOCKS (2) to remove ambiguous sites, 
and concatenated to give a final data set of 2,730 aa (Data set 1). Partitioned Bayesian analysis, as implemented in MRBAYES 3.1.1 
(3), was performed for 500,000 generations using four independent chains, the mtREV amino acid substitution model, and the 
assumption of discrete -distributed sites with some invariable sites (I + ) using the JTT substition model . Maximum likelihood (ML) 
analysis, implemented in PAML 3.14 (4), was performed using the mtREV amino acid substitution model and star decomposition tree 
search. The topology given by MRBAYES and PAML was statistically tested for robustness against other possible tree topologies with 
CONSEL 0.1i (5) using site-wise log-likelihood outputs from PAML. 

1. Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) Nucleic Acids Res. 22, 4673–4680. 

2. Castresana, J. (2000) Mol. Biol. Evol. 17, 540–552. 

3. Huelsenbeck, J. P. & Ronquist, F. (2001) Bioinformatics 17, 754–755. 

4. Yang, Z. (1997) Comput. Appl. Biosci. 13, 555–556. 

5. Shimodaira, H. &. Hasegawa, M. (2001) Bioinformatics 17, 1246–1247. 
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Fig. 3. The data set (available upon r equest) consisted of a total of 3,001 aa pos itions 
concatenated from 12 mitochondrial protein sequences (atp6, cob, cox1-3, nad1-4, and 4L, 
5, and 6)  from Trichoplax adhaerens (this study); the chytrid fungi Allomyces macrogynus 
(NC_001715), Rhizophydium sp. 136 ( NC_003053), and Monoblepharella sp. JEL15 
(NC_004624); the cnidarians Metridium senile (NC_000933), Acropora tenuis (NC_003522), 
Anacropora matthai (NC_006898), and Montipora cactus (NC_006902); the poriferans 
Geodia neptuni (NC_006990), Axinella corrugata (NC_006894), and Tethya actinia 
(NC_006991); and the choanoflagellate Monosiga brevicollis (NC_004624). Partitioned 
Bayesian analysis was performed with MRBAYES for 250,000 generations using four chains 
and the mtREV amino acid substitution model. Substitution-rate variation among sites was 
modeled by a discrete approximation of the g-distribution with a proportion of invariable sites 
(I + G). All nodes show a posterior probability value >0.999. 
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