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Abstract 

Cyclamen persicum is an economically important and a popular ornamental crop. Somatic 

embryogenesis is well established for Cyclamen and thus could supplement the elaborate 

propagation via seeds. However, the use of somatic embryogenesis for commercial large scale 

propagation is still limited due to physiological disorders and asynchronous development 

within emerging embryos. To overcome these problems, a profound knowledge of the 

physiological processes in Cyclamen embryogenesis is essential.  

In this study a gel-based proteomic approach has been applied to characterize biochemical 

pathways in somatic and zygotic embryos. Protein isolation and separation via IEF-SDS 

PAGE have been optimised for the tissues of interest resulting in high quality gels resolving 

over 1000 spots. A novel software named GelMap was developed (www.gelmap.de) for the 

creation and presentation of digital proteome reference maps. A proteome reference map of 

somatic and zygotic Cyclamen persicum embryos was established with this software and is 

publically available at www.gelmap.de/cyclamen. This reference map includes 247 protein 

spots identified via mass spectrometry representing 90 distinct proteins. The proteomes of 

somatic and zygotic embryos were compared. The most striking results of this comparison 

are: i) glycolysis plays a key role in zygotic and somatic embryogenesis, ii) serine/glycine 

metabolism differs in zygotic and somatic embryos, iii) somatic embryos are more stressed 

than their zygotic counterparts, iv) in zygotic embryos, storage proteins are more abundant. 

Small enolase forms probably lacking the enzymes active sites were found to accumulate in 

zygotic embryos. They have been identified as candidates for a novel group of major storage 

compounds in seeds. Proteome structures following the pathway in somatic embryogenesis 

were analysed - from embryogenic callus to torpedo-shaped embryo. Especially, the 

ubiquitin-26S proteasome pathway was identified to be essential at the switches from callus to 

globular embryos as well as from globular to torpedo-shaped embryos. Development specific 

isoelectric point shifts of catalases have been reported for the first time for somatic 

embryogenesis in plants. In addition, abscisic acid treatment and high sucrose concentration 

in the culture medium improved maturation and consequently the quality of somatic embryos 

in Cyclamen persicum.  
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Zusammenfassung 

Cyclamen persicum ist eine ökonomisch bedeutende und beliebte Zierpflanze. Die somatische 

Embryogenese ist für Cyclamen etabliert und stellt eine Alternative zu der bisherigen, sehr 

aufwändigen Vermehrung über Samen dar. Die Nutzung der somatischen Embryogenese für 

die kommerzielle Massenvermehrung ist aufgrund von Entwicklungsstörungen und einer 

ungleichmäßigen Differzierung immer noch begrenzt. Um diese Probleme zu überwinden, 

sind grundlegende Kenntnisse der physiologischen Prozesse der Embryogenese in Cyclamen 

essentiell. 

In dieser Studie wurden die Proteome von zygotischen und somatischen Embryonen mittels 

eines gelbasierten Ansatzes untersucht, um die biochemischen Stoffwechselwege in beiden 

Geweben zu charakterisieren. Die Proteinaufreinigung wurde für die untersuchten Gewebe 

optimiert und die darauffolgende zweidimensionale Auftrennung mittels IEF-SDS PAGE 

resultierte in hochauflösenden Gelen mit über 1000 Proteinspots. Eine neue Software - 

GelMap - wurde zur Etablierung und Präsentation von digitalen Proteomreferenzkarten 

entwickelt (www.gelmap.de). Mittels GelMap wurde eine Proteomreferenzkarte für 

somatische und zygotische Embryonen von Cyclamen persicum erstellt 

(www.gelmap.de/cyclamen). In dieser Referenzkarte wurden 247 mittels 

Massenspektrometrie identifizierte Proteinspots annotiert, die 90 nicht-redundante Proteine 

repräsentieren. Ein Vergleich der Proteome von somatischen und zygotischen Embryonen 

zeigte folgende Ergebnisse: i) Der Glycolyse kommt eine Schlüsselfunktion in der 

Entwicklung der somatischen und zygotischen Embryonen zu, ii) der Serin/Glycin 

Stoffwechsel ist in beiden Embryotypen unterschiedlich stark ausgeprägt, iii) somatische 

Embryonen sind erhöhten Stressbedingungen ausgesetzt und iv) in zygotischen Embryonen 

sind Speicherproteine stärker abundant. Kleine Enolase Formen, denen möglicherweise das 

enzymatisch aktive Zentrum fehlt, wurden als Kandidaten für eine neue, wesentliche Gruppe 

von Speicherproteinen in Samen identifiziert. Die Entwicklung der Proteomprofile während 

der somatischen Embryogenese wurde ausgehend von embryogenem Kallus bis zu 

torpedoförmigen somatischen Embryonen untersucht. Hierbei wurde die essentielle Rolle des 

Ubiquitin/26S-Proteasom Stoffwechselregulationssystems für Entwicklung von Kallus zu 

globulären Embryonen und von globulären Embryonen zu torpedoförmigen Embryonen 

herausgearbeitet. Eine Verschiebung des isoelektrischen Punktes von Catalasen während 

spezifischer Entwicklungsstufen wurde zum ersten Mal für die pflanzliche Embryogenese 

aufgezeigt. Die Behandlung mit Abscisinsäure sowie die Kultivierung von somatischen 

Embryonen auf Nährmedium mit hohem Zuckergehalt resultierten in einer verbesserten 

Reifung und Qualität von somatischen Embryonen. 
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1 General introduction 

1.1 Project objectives 
This study aimed at generating in-depth details on the physiology of embryogenesis in 

Cyclamen persicum using a proteomic approach. Information presented here are of great 

importance for understanding embryogenesis in Cyclamen as well as optimising the 

production system of somatic embryos in vitro. Additionally, a novel tool for creation, 

publication and evaluation of protein reference maps was developed, helpful for future 

projects in gel-based proteomics.  

The investigation focussed on six major objectives: 

i) Improvement of protein isolation and two-dimensional protein separation of the Cyclamen 

persicum embryo proteome in order to obtain high quality two-dimensional gels  

 

ii) Establishment of proteome reference maps for somatic and zygotic embryos of Cyclamen 

persicum  

 

iii) Elucidation of proteins of differential and similar abundance within the proteomes of 

zygotic and somatic embryos of Cyclamen persicum 

 

iv) Characterisation of major storage proteins and enzymes involved in storage compound 

metabolism of Cyclamen persicum 

 

v) Analysis of major proteins of different developmental stages of somatic embryogenesis of 

Cyclamen persicum 

 

vi) Optimising the production system of somatic embryos in a way that their proteome 

resembles the one of the zygotic embryos 
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1.2 Biology and horticultural impact of Cyclamen persicum 

Taxonomy and geographical destribution 
The genus Cyclamen includes about 20 species (Anderberg et al., 2000; Grey-Wilson, 2003; 

Compton et al., 2004). These are mainly native to the Mediterranean basin, but also extend as 

far as Caucasus Mountains, tropical Africa as well as alpine regions of Central Europe (Grey-

Wilson, 2003; Yesson and Culham, 2006). Wild forms of Cyclamen persicum are endemic in 

Greece, Turkey, Cyprus, Lebanon, Israel, Algeria and Tunisia (Grey-Wilson, 2003). The 

genus Cyclamen was proposed to be part of the family of Primulaceae till the late 1990ies 

(Schwarz and Lepper, 1964; Grey-Wilson, 2003) but evidence from chloroplastic DNA 

sequence data suggests that it is closely related to members of family Myrsinaceae (Källersjö 

et al., 2000; Compton et al., 2004). 

However, the taxonomy of Cyclamen on the 

family level is still not finally resolved. 

Recent electron microscopic analysis of 

seeds within members of the families 

Primulaceae and Myrsinaceae published by 

Morozowska et al. (2011) proposed 

Cyclamen to exhibit significant 

characteristics of Primulaceae. Table 1 

illustrates the taxonomy of Cyclamen. 

Morphology  
The globose tuber of Cyclamen persicum 

develops from the hypocotyl and can reach 

a diameter of 15 cm in a mature plant 

(Grey-Wilson, 2003). The dark green heart-

shaped leaves are tuber born with a toothed 

margin and often an eye catching pattering 

at the upper leaf side in different shades of 

green, silver, cream or white (Grey-Wilson, 

2003). The pedicels, born in the axils of the 

basal leaves, are erect to ascending, 13-32 

cm long, green, brown or purple in colour 

(Grey-Wilson, 2003). The flowers exhibit 

Table 1 Taxonomy of Cyclamen persicum

Class Dicotyledonae 
Order Ericales
Family  Primulaceae 1 or Myrsinaceae 2

Genus Cyclamen 
Species persicum
1 Schwarz and Lepper, 1964; Grey-Wilson, 2003; 
Morozowska et al., 2011 
2 Källersjö et al., 2000; Compton et al., 2004 

Figure 1 Cyclamen persicum cultivar 
The Cyclamen persicum cultivar 'Maxora Light 
Purple' bred by the company Varinova.  
Photo: Traud Winkelmann 
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five petals mainly colored by anthocyans, with shades of pink, purple, red and white (Grey-

Wilson, 2003). The mature fruit is brown and globose with a diameter of 1-2 cm containing 

up to 40 seeds (Grey-Wilson, 2003). The seed have a diameter of 2-4 mm and contain a small 

torpedo-shaped embryo with a single cotyledon enclosed in a thick endosperm layer (Grey-

Wilson, 2003 and own observations). A photo of the Cyclamen persicum cultivar 'Maxora 

Light Purple' bred by the company Varinova B.V. (Berkel en Rodenrijs, Netherlands) is given 

in Figure 1. This cultivar was object of the present study. 

Economic importance  
Cyclamen persicum is an economically important and popular ornamental crop especially in 

the Netherlands, Germany, Italy and Japan (Grey-Wilson, 2003; Takamura, 2007). It 

represents 8 % of the market volume for potted plants in Germany, which is about 100 million 

€ (Zentrale Markt- und Preisberichtstelle, 2008). The worldwide production is estimated to be 

about 200 million plants per year, of which approximately 150 million plants are grown and 

sold in Europe (Schwenkel, 2001). Beside C. persicum there are also few cultivars of C. 

coum, C. hederifolium and some further Cyclamen species on the market mostly utilised as 

perennial plants for outdoor use.  

Breeding and propagation 
Cultivation of Cyclamen persicum started in 17th century in Western Europe. The arising 

economic boom of the late 19th century, associated with increasing wealth in broad levels of 

the human society promoted the flower business and thus selling of Cyclamen (Grey-Wilson, 

2003). Today, commercial nurseries produce Cyclamen plants within 7-8 months from time of 

sowing to flowering. In addition, interest is increasing for highly uniform diploid F1 hybrid 

cultivars and for small diploid cultivars, the so-called ‘mini Cyclamen’. Nowadays, breeders 

focus on new flower colours, resistance to pests and diseases as well as frost and heat 

tolerance (Grey-Wilson, 2003). Unfortunately, the propagation process of Cyclamen via seeds 

is labour and cost intensive due to manual work, inbreeding depression of parents and 

genetically heterogeneous offsprings. For example, one Cyclamen seed can cost up to 0.20 € 

(Schwenkel, 2001). Vegetative propagation of Cyclamen via tuber cutting etc. is limited and 

not applicable for high throughput production. Somatic embryogenesis referring to a 

vegetative micro propagation technique, is well described for Cyclamen. Protocols for the in 

vitro production of embryos are established (see chapter 1.4), by which healthy and 

genetically uniform plants can be produced. Therefore, large scale propagation of Cyclamen 

via somatic embryogenesis is obvious.  
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Figure 2 Overview of developmental stages 
in plant embryogenesis 
Upper part: Scheme of the four major 
developmental stages of zygotic embryogenesis 
in Arabidopsis (taken from Goldberg et. al., 
1994, modified). The mature embryo is 
embedded in endosperm, surrounded by a seed 
coat and will germinate after a maturation and 
dormancy period. 
Lower part: Corresponding somatic embryo 
developmental stages of Cyclamen persicum: 
Since the development of one cotyledon is 
suppressed in Cyclamen, the heart and torpedo 
stages differ morphologically from those 
observed in Arabidopsis. Somatic embryos of 
Cyclamen germinate directly after 
embryogenesis without a dormancy period. A 
germinating somatic embryo is shown on the 
right side of the figure. 

1.3 Plant embryogenesis 

General aspects of zygotic embryogenesis  
The generative reproduction pathway of higher plants starts with the fusion of two haploid 

gametes forming the first cell of the next generation referred to as a zygote. The zygotic 

embryo then evolves within the maternal ovule undergoing specific developmental stages. 

Embryogenesis of angiosperms differs in certain aspects from embryogenesis observed in 

gymnosperms (Von Arnold, 2008). Describing embryo development within angiosperms, 

Goldberg et al. (1994) divided embryogenesis into tree major categories based on studies 

performed with Arabidopsis and Capsella: 

i) The postfertilization-proembryo stage is characterised by asymmetric cell division and the 

formation of a suspensor and embryo proper. The first division of the zygote results in a 

smaller and a larger cell, where the smaller terminal cell develops into the embryo proper via 

further cell division. The embryo and the resulting plant are derived from this cell. The larger 

cell divides and forms the suspensor (Goldberg et al., 1994), which is an organ connecting the 

embryo to the vascular system of the mother plant, providing maternal nutrient compounds 
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and phytohormones especially in the early stages of embryogenesis (Yeung and Meinke, 

1993). In late stages the suspensor becomes degraded (Yeung and Meinke, 1993). 

ii) The globular-heart transition stage is characterised by the formation of organs and tissue 

types of the embryo. At the sixteen-cell stage two distinct types of tissues are present in the 

embryo proper: the protoderm (outer cell layer) and the hypophysis (at the top of the 

suspensor) (Goldberg et al., 1994). In the subsequent development stages, the globular 

embryo emerges, including specified cells forming the later procambium and ground 

meristem. In the following heart-shaped stage the cotyledons and the root meristem appear 

and the embryo becomes torpedo-shaped after further cell division and elongation processes 

(Goldberg et al., 1994). Globular, heart and torpedo shaped embryos of Arabidopsis are 

shown in Figure 2 and are compared to the corresponding developmental stages of Cyclamen 

persicum somatic embryos. 

iii) The organ expansion and maturation stage is characterised by enlargement and 

differentiation of the embryo as well as accumulation of storage compounds followed by 

controlled desiccation, prevention of premature germination and finally dormancy (Goldberg 

et al., 1994). The composition of the major storage organ and the quality of storage molecules 

differ species-specific. For example, within legumes and Brassicaceae the embryo cotyledons 

contain large amounts of storage proteins and lipids while in cereals the endosperm is the 

main storage organ accumulating mainly starch (Shewry, 1995; Murphy et al., 1993; James et 

al., 2003). 

The zygotic embryo of angiosperms is embedded in the endosperm. This triploid tissue 

evolves from fusion of the diploid central cell and a haploid sperm cell derived by the same 

ovule and pollen tube as the embryo within the process of double fertilisation (Dumas and 

Rogowsky, 2008). The endosperm is a nutrient tissue for the developing and germinating 

embryo. It provides phytohormones (Maheshwari and Rangaswamy, 1965) and recent studies 

indicated its active role in the coordination of the maternal tissue and embryo development 

(Garcia et al., 2003) as well as embryo abortion (Richard and Kang, 1998) and downstream of 

signalling pathways so far not well characterised (for review see Berger et al. 2006). In the 

mature seed the endosperm can form either the predominant part (e.g. cereals) or the minor 

part (e.g. Arabidopsis) (Berger 2003). 

It is estimated that 20,000 different genes expressed during the entire process of plant 

embryogenesis (Thomas, 1993). Those encoding on one hand, the house-keeping proteins 

present in all growing cells but also embryo and embryo developmental stage-specific 

proteins (Von Arnold, 2008). Here, some major players within the complex molecular 
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network of embryo morphogenesis are introduced. The majority of those genes were 

elucidated via Arabidopsis mutant experiments. Meyer et al. (1991) identified nine genes 

essential for early embryo morphogenesis. The genes GURKE, FACKEL, MONOPTEROS 

and GNOM are shown to encode proteins necessary for apical-basal pattering; KEULE and 

KNOLLE are required for radial pattering while FASS, KNOPF and MICKEY are essential for 

the shape change of the embryo (Mayer et al., 1991). BODENLOS (Hamann et al., 1999) is a 

further gene essential for the basal and vascular pattering. Interestingly, MONOPTEROS and 

BODENLOS encode proteins involved in the response to auxin (Meyer et al., 1991; Hamann 

et al., 1999). MONOPTEROS and BODENLOS deficient mutants are auxin insensitive and 

their defects in the root and vascular system formation can be traced back to the lack of auxin-

mediated pathways. PIN genes encode proteins which control the auxin distribution within the 

embryo and thus responsible for organ specific auxin levels: high auxin levels in the basal part 

promote root differentiation while low levels in the apical part promote shoot and cotyledon 

differentiation (Blilou et al., 2005). The expression of CUP-SHAPED COTYLEDON genes is 

promoted by relatively low auxin levels. Those genes encode transcription factors essential 

for division of the two cotyledons and establishment of the shoot apical meristem (Takada et 

al., 2001). WUSCHELs are a further group of transcription factor encoding genes, essential for 

the formation of the shoot apical meristem (Mayer et al., 1998).  

In the late stages of embryogenesis the tissue patterning program is replaced by maturation 

and beginning dormancy. On the genetic level four transcription factors termed the "master 

regulators" have been identified to regulate the transcription of seed storage proteins (Verdier 

and Thompson, 2008). Those are: LEAFY COTYLEDON (LEC) 1 and 2, ABSCISIC ACID 

INSENSITIVE3 (ABI3) and FUSCA3 (FUS3). FUS3 and ABI3 have been shown to regulate 

seed filling gene expression. Mutants deficient of these genes accumulate less storage 

compounds and thus show a decreased desiccation tolerance. The two LEC transcription 

factors are regulating gene expression maintaining the cotyledon identity and the 

complementation of the seed filling process. In LEC deficient embryos the cotyledons are 

transformed to leaves and the embryos exhibit a reduced desiccation tolerance and 

accumulation of storage compounds (Verdier and Thompson, 2008). The phytohormone 

abscisic acid (ABA) and its ratio to gibberellin as well as sucrose/hexose- mediated signalling 

are also involved in the regulation of the complex gene expression networks during embryo 

maturation (Gutierrez et al., 2007). In Arabidopsis seeds, high sucrose/hexose ratios promote 

the expression of the sucrose transporter AtSUC5 in the endosperm, which is essential for 

transition to the storage accumulation phase (Baud et al., 2005).  
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Altogether, many genes and especially those encoding transcription factors are essential for 

the embryo morphogenesis (for review, see De Smet et al., 2010; Gutierrez et al., 2007). In 

the early stages the phytohormone auxin is a major player controlling tissue patterning, while 

in the late stages abscisic acid and sucrose-mediated pathways facilitate seed maturation and 

dormancy (Gutierrez et al., 2007).  

Even though, the maternal signals as well as the suspensor and the endosperm are important 

for embryogenesis (see above), it has been shown that zygotic embryos can develop into 

fertile plants without these organs outside the fruit e.g. after an in vitro fertilisation of egg 

cells (Kranz and Lorz, 1993; Kranz and Dresselhaus, 1996) or after preparing a developing 

embryo out of the seed (Sharma et al., 1996) and cultivating those embryos in vitro. This 

leads to a conclusion that the embryo has the potential to develop autonomously. However, 

the in vitro culture media may partly mimic the impact of the mother plant and the 

endosperm. 

General aspects of somatic embryogenesis  
Interestingly, also somatic cells can be stimulated to develop into embryos completely outside 

the maternal context via the so-called somatic embryogenesis. The technique is established for 

many model and crop plants (Zimmerman, 1993; Hohe et al., 2010) with the first reports on 

plant somatic embryogenesis for carrots published in 1958 (Steward et al. 1958; Reinert 

1958). Currently, this plant is an established model for somatic embryogenesis research. 

Additionally, somatic embryogenesis has also been established for important horticultural 

crops aiming to facilitate their propagation. These include, food crops such as grapevine 

(Stamp and Meredith, 1988), peanut (Gill and Saxena, 1992), melon (Lou and Kako, 1995) as 

well as economically important ornamental plants such as cultivars of Rosa, Chrysanthemum, 

Tulipa, Phalaenopsis, Anthurium and Pelargonium (for review, see Hohe et al., 2010). Plant 

propagation via somatic embryogenesis is of great horticultural interest, since it has the 

potential to generate genetically identical plants in high numbers, can be used for propagation 

of inbred parental lines as well as a regeneration system after genetic modification of plant 

cells. Despite the establishment of somatic embryogenesis protocols for a large variety of 

ornamental crops, today this technique is still hardly applied for the commercial mass 

propagation of these plants (Hohe, 2010). In contrast, multiplication of high-value clones via 

somatic embryogenesis has been realised for the forestry conifers Picea and Pinus by 

specialised nurseries (e.g., CellFor, Vancouver, Canada; Carter Holt Harvey Limited, 

Auckland, Australia). 
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Von Arnord (2008) divided the in vitro regeneration of plants via somatic embryogenesis in 

five steps: i) Initiation of  embryogenic cultures, ii) proliferation of embryogenic cultures, iii) 

pre-maturation of somatic embryos, iv) maturation of somatic embryos and v) regeneration of 

plants.  

i and ii) Initiation and proliferation of embryogenic cultures: These first two steps require 

culture media with the plant growth regulator (PGR) auxin often in combination with 

cytokinin (Von Arnold, 2008). Auxin has been described above to be a major player within 

embryogenesis, due to its impact on pattern formation. However, its role in initiating 

embryogenic callus is different since no pattern formation takes plays. It has been shown, that 

phytohormones as well as application of different kinds of stresses can induce the 

reprogramming of gene expression (Lo Schiavo et al., 1989) with especially auxins 

influencing DNA methylation (Dutis et al., 1995). Consequently, embryogenic callus of 

Ginseng as well as Pinus expressed lower DNA methylation rates as compared to their non-

embryogenic counterparts (Chakrabarty et al., 2003; Noceda et al., 2009). The phenylurea 

compound thidiazuron mimics the effects of both auxin and cyctokinin at the same time, and 

is also used for the induction of embryogenic calluses (Murphy et al., 1993). However, even 

by applying the required PGRs, not all somatic cells develop into embryogenic callus. The 

type of the explant (e.g. leaves or parts of zygotic embryos) as well as the genotype the 

explant was isolated from, influence the embryogenic potential of the resulting callus (von 

Arnold, 2008). SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) encoding genes 

have been shown to represent markers for embryogenic callus cells. Those genes are highly 

expressed in callus but also in somatic embryos up to the heart stage (Schmidt et al., 1997; 

Hecht et al., 2001).  

iii-v) Embryo differentiation, maturation and plant regeneration take place on PGR-free 

medium in most systems (von Arnold, 2008). With the depletion of auxin, genes are 

transcribed necessary for the globular stage and further development (Zimmerman, 1993). 

The emerging embryos resemble the developmental stages expressed by their zygotic 

counterparts (see Figure 2) and also are supposed to share the above described genetic 

networks. Maturation of somatic embryos can be facilitated by application of abscisic acid 

and water stress e.g. via high sucrose concentrations in the culture medium (Dodeman et al., 

1998). Maturation promoting effects of these two factors have been demonstrated in some 

recent studies. Sucrose improved maturation in somatic embryos of pine, Cyclamen and date 

palm (Klimaszewska et al. 2004; Winkelmann et al. 2006; Sghaier-Hammami et al. 2010) and 

abscisic acid in larch, oak, walnut and date palm (Gutmann et al. 1996; Garcia-Martin et al. 
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2005; Vahdati et al. 2008; Sghaier-Hammami et al. 2010). After completion of embryogenesis 

somatic embryos start to germinate and form small plants similar to seedlings. These plants 

can be transferred to soil after obtaining a critical size and acclimatisation period at high 

humidity grown at conventional, species-specific cultivation conditions (von Arnold, 2008). 

Somatic embryogenesis-like morphogenesis also occurs in natural habitats e.g. on the leaf 

margins of the Kalanchoe, section Bryophyllum (Garcês et al., 2007). 

Somatic embryogenesis in Cyclamen persicum 

Somatic embryogenesis is well established for Cyclamen persicum (Wicart et al. 1984; 

Kiviharju et al. 1992; Schwenkel and Winkelmann 1998; Winkelmann and Serek 2005). 

Figure 3 shows flowering Cyclamen persicum plants in a greenhouse propagated via somatic 

embryogenesis. Embryogenic callus can be obtained from various plant organs but 

unpollinated ovules have been shown to represent the best explant type due to the high quality 

of emerging callus, low contamination rates as well as easy access without damaging the 

mother plant (Winkelmann et al., 1998; Schwenkel and Winkelmann, 1998; Winkelmann et 

al., 2000). Callus can either be cultivated on solid Murashige and Skoog medium (1962) 

Figure 3 Cyclamen persicum 
plants  propagated via 
somatic embryogenesis 
Cultivar: 'Libretto pink with 
eye' bred by the company 
Syngenta.  
Photo: Traud Winkelmann 



Chapter 1 – General introduction 

 10 

containing 2,4-dichlorophenoxy acetic acid and 6-(γ, γ-dimethylallylamino) purine or more 

efficiently in liquid systems (Hohe et al., 2001; Schwenkel, 2001). Transfer to PGR-free 

medium results in differentiation of somatic embryos within few weeks of cultivation in dark 

conditions (see Figure 2). Torpedo-shaped embryos are separated and transferred to fresh, 

PGR-free medium. The germinated plants are placed in the light after the cotyledon reaches a 

length of 1 cm. When in vitro Cyclamen plants develop a tuber, roots and two or three leaves, 

they are transferred to soil (Schwenkel and Winkelmann, 1998; Winkelmann, 2010). The high 

potential for mass propagation of Cyclamen persicum via somatic embryogenesis was 

demonstrated in two studies: Schwenkel (2001) calculated the production of 6,000 - 8,000 

young plants within 42 weeks starting from callus derived from unpollinated ovules of one 

bud and cultivated on solid medium. Hohe et al. (2001) estimated the production of 27,000 

young plants within 38 weeks starting from 1 l suspension of embryogenic callus in a liquid 

culture system. However, physiological disorders in a relevant portion of emerged embryos as 

well as asynchronous development (described e.g. by Schmidt et al., 2006) limit the 

commercial application so far. To overcome these problems, a profound knowledge of the 

physiological processes in Cyclamen embryogenesis is essential. The molecular background 

of embryogenesis in Cyclamen persicum with a focus on proteomics is presented in chapter 

1.4. 

1.4 Physiological analyses via proteomics 
The term "proteome" is quite new, it was suggested in the 1990s by Wilkins (Wilkins et al., 

1996). A proteome includes the total set of proteins expressed in a specific tissue under 

defined conditions. Proteins are essential for life. They are enzymes, structure and storage 

compounds. The protein composition of a cell is dynamic and changes in specific ways 

depending on external triggers (e.g. biotic or abiotic stresses, change of seasons), internal 

processes (e.g. development stages) and the function of the cell within the organism. Thus a 

global investigation of the proteome closely reflects the current biochemical processes in the 

analysed sample. Proteomic analysis can be performed for single cell types but also for 

tissues, organs or whole organisms (for reviews see, Rose et al., 2004; Takáč et al., 2011). 

Consequently, the analysed protein fractions are highly complex and efficient methods have 

to be applied for resolving them. 

Two-dimensional gel electrophoresis represents a basic tool in protein biochemistry. Since its 

invention by O’Farrel and Klose in 1975 (O’Farrel 1975, Klose 1975) has been extensively 

used for high resolution in protein separations. The workflow of a gel-based proteomic 

approach combined with mass spectrometry is illustrated in Figure 4. For the two dimensional 
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isoelectric focusing - sodium dodecyl sulfate polyacrylamide gel electrophoresis (IEF-SDS 

PAGE) proteins are focussed depending on their isoelectric point on a gel-strip with an 

immobilised or slightly mobile pH gradient in the first dimension. Subsequently those 

proteins are separated according to their molecular weight in the second dimension. After 

staining, each protein fraction is visible in form of a more or less intensively stained spot 

(Mihr and Braun, 2003). These spot patterns are specific for the analysed fraction and can be 

evaluated visually or more professionally by using specialised software. When comparing two 

or more samples different protein abundances can be observed this way. However, gel based 

techniques are limited to water soluble proteins. Nowadays 2D techniques are combined with 

protein identification using mass spectrometry (Rose et al., 2004). Complex protein samples 

of a specific tissue can also be analysed by so-called ‘shotgun proteomics’ without using gel 

electrophoresis system but separated via liquid chromatography (LC) followed by mass 

spectrometry (Wienkoop et al., 2006; Brechenmacher et al., 2009).  

Prior to mass spectrometric analyses single spots or complex protein fractions have to be 

digested with a site-specific protease (commonly trypsin) in order to obtain ionisable peptides. 

Subsequently the peptides are prefragmented via LC, ionized by an ion source (matrix-

assisted laser dissociation/ionization (MALDI) or electrospray ionization (ESI)) and analysed 

in a mass spectrometer of choice e.g. quadrupole, ion trap, time-of-flight (TOF), and 

collision-induced dissociation, which can be used separately or in combination (Domon and 

Aebersold, 2006). Using an electrospray ionization tandem mass spectrometry system (ESI 

MS/MS) results in amino acid sequences of peptides. For protein identification the set of 

peptides identified in one single spot is compared with known protein sequences including 

translated genomic and transcriptomic sequences in databases using algorithms like 

MASCOT, SEQUEST and OMSSA. The best fitting proteins are ordered in a table providing 

scores for the probability of identification. The identification of proteins for non-model 

organisms like Cyclamen is challenging (Rose et al., 2004). For Cyclamen only few sequence 

informations are available and there are no closely related plants within the pool of sequenced 

organisms. Arabidopsis, Vitis and Populus are the closest relatives with a sequenced genome. 

Unfortunately, the three of them only share the taxonomic level of class (Dicotyledonae) with 

Cyclamen. Even though, protein identification can be performed based on the sequence 

information available for other plants e.g. by searching against the "Greenplant" database 

provided by the National Center for Biotechnology Information  (NCBI). Nevertheless, the 

identification of species specific proteins or modified forms of house-keeping enzymes can 

fail. Fortunately, for Cyclamen embryos an EST-database was established by Rensing et al. 
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(2005) and further analysed by Hönemann et al. (2010) which benefits Cyclamen specific 

protein identification. 

Two-dimensional gels coupled with information on the identity of the separated proteins are 

referred to as “reference maps” because they allow protein identification of analogous protein 

fractions by simple “spot pattern” comparison. These maps can be published in papers or on-

line via a digital proteome reference map where spot specific MS-based information can be 

browsed by clicking on the spot of interest. Those maps are publicly accessible and the large 

numbers of identified proteins becomes more easily explorable than endless tables in 

manuscripts. Currently, about seventy 2D PAGE databases are listed on the WORLD-

2DPAGE portal at ExPASy (http://expasy.org/ch2d/2d-index.html) including reference maps 

for various animal and plant tissues as well as for microorganisms.  

Proteomic studies on somatic embryogenesis with a focus on Cyclamen persicum 
As described above proteomic approaches can nicely be utilised for determination of the 

physiological status quo within the development of plants. This is also true for somatic 

embryogenesis. A proteomic dissection of somatic embryogenesis has been performed for 

some major crops in the last years (Quercus ilex: Mauri and Manzanera 2003; Medicago: 

Imin et al. 2005; Picea: Lippert et al. 2005; soybean: Hajduch et al. 2005; Vitis: Marsoni et al. 

2008; date palm: Sghaier-Hammami et al. 2010). For Cyclamen, initial studies comparing the 

transcriptomes (Rensing et al., 2005; Hönemann et al., 2010) and proteomes of somatic and 

zygotic embryos (Winkelmann et al. 2006; Bian et al. 2010) as well as embryogenic and non-

embyogenic callus (Lyngved et al. 2008) have been performed previously. Rensing et al. 

(2005) established an EST (expressed sequence tag) database for embryogenic callus and 

somatic embryos of  Cyclamen including 2083 ESTs. Hönemann et al. (2010) found 417 

transcripts to be differentially expressed between somatic and zygotic embryos of Cyclamen 

persicum. Especially genes encoding proteins of the extracellular compartment (apoplast) 

were significantly overrepresented in somatic embryos. Lyngved et al. (2008) found about 

25% of the proteins resolved via two-dimensional differential gel electrophoresis (DIGE) to 

be differentially abundant between embryogenic and non-embryogenic callus of Cyclamen 

persicum. The majority of the proteins differentially abundant in the cell lines were involved 

in protein processing, cell proliferation, and stress response. Winkelmann et al. (2006) 

resoluted more than 200 spots on an IEF-SDS PAGE and reported that 74% of the proteins 

expressed in zygotic embryos were found in similar abundance in somatic embryos grown in 

60 g l-1 sucrose. In somatic embryos the storage protein 7S globulin was underrepresented and 

glycolytic enzymes were higher in abundance. This may correlate with inhomogenous 
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development and premature germination. In accordance, a lack of storage proteins and 

proteins involved in maturation have been described previously for somatic embryos (e.g. 

carrot: Dodeman et al. 1998; alfalfa: Krochko et al., 1994; oil palm: Morcillo et al., 1998; 

maize: Thijssen et al., 1996). However, a large scale proteomic comparison of somatic and 

zygotic embryos, a proteomic view on different stages of this developmental process from 

callus to embryo as well as evaluation of the effects of maturation treatments on the 

proteomes of somatic embryos of Cyclamen persicum until now are missing and they form the 

content of the present thesis. 
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Figure 4 Workflow of a gel-based proteomic approach combined with mass spectrometry  
The biological system represents one or more samples to be analysed via a gel based proteomic approach. In 
the example given in this diagram, proteomes of zygotic and somatic embryos of Cyclamen persicum are 
analysed and compared (a). Therefore, total proteins are extracted from each tissue (b) and separated via 
IEF-SDS PAGE (c). To perform statistical analyses with gels of different tissues, at least a set of three 
replicates for each tissue is required. Spots that differ significantly in abundance are labelled (green and red) 
in an overlay image of all gels analysed (d). Proteins of interest, e.g. differentially abundant proteins, are 
isolated from 2D gel and subsequently a tryptic protein digest is performed (e). The resulting peptides are 
separated via liquid chromatography (LC) before tandem mass spectrometry analyses (f). Protein 
identification is performed based on resulting peptide sequences (pink) via a database search matching to 
known sequences using a specific software (g). Finally, a digital proteome reference map can be designed 
indicating all identified proteins (h). Using a gel-free shotgun approach, the steps (c) and (d) are replaced by 
digestion of a complex protein sample which is then further analysed. 
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2 Publications and Manuscripts 
In the following four manuscripts are presented. In the first manuscript "Analyses of plant 

proteomes by DIGE" (Chapter 2.1) an optimised protocol for protein purification and two-

dimensional separation of plant tissues by Differential Gel Electrophoresis (DIGE) is 

presented based on the preparation of Cyclamen embryo tissue. For this manuscript I have 

tested and evaluated four protein purification protocols with different amounts of Cyclamen 

embryos and wrote the manuscript in cooperation with Dr. Frank Colditz and Prof. Dr. Hans-

Peter Braun. The DIGE gel displaing the proteomes of somatic and zygotic embryos of 

Cyclamen persicum shown in the figure of this manuscript was performed by myself. This 

manuscript is in press within the book "Differential Gel Electrophoresis". 

In the second manuscript "GelMap - A novel software tool for the creation and presentation of 

proteome reference maps" (Chapter 2.2) the new proteomic software GelMap is introduced 

and applications are demonstrated. GelMap was developed by Michael Senkler and myself. 

Michael Senkler performed the programming of GelMap while I submitted the proteomic 

input and the layout. I have written the manuscript, which was subsequently corrected by 

Prof. Dr. Hans-Peter Braun and the other co-authors. I have designed all figures and tables. 

This manuscript has been submitted to the scientific journal "Journal of Proteomics" and is 

now in the process of review. 

In the third manuscript "Enolases: storage compounds in seeds? Evidence from a proteomic 

comparison of zygotic and somatic embryos of Cyclamen persicum Mill." (Chapter 2.3*) the 

proteomes of the somatic and zygotic embryos are compared and major physiological 

pathways of Cyclamen persicum embryogenesis are discussed. Additionally, a Cyclamen 

persicum embryo proteome reference map was established using GelMap facilitating further 

investigations. I have performed all experimental work in the laboratory, except of the protein 

identification which was realised by Dimitri Heinz and co-workers at Strasbourg University, 

France. I have evaluated the gel-based and the proteomic data in, established the digital 

proteome reference map, written the manuscript and designed the figures. The resulting data 

sets were interoperated together with Prof. Dr. Traud Winkelmann and Prof. Dr, Hans-Peter 

Braun, who also corrected the manuscript. This work was published in the scientific journal 

"Plant Molecular Biology" (75, 305-319) in 2011 and the article was selected as "cover story" 

of this issue. 

In the fourth manuscript "From callus to embryo - a proteomic view on the development and 

maturation of somatic embryos in Cyclamen persicum" (Chapter 2.4) proteome structures 

following the pathway in somatic embryogenesis were analysed. In addition, the effects of 
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abscisic acid and high sucrose on the proteomes of somatic embryos were investigated. For 

this manuscript I have supervised the experimental work in the laboratory, evaluated the data, 

wrote the manuscript, which was corrected by Traud Winkelmann and other co-authors, and 

designed all figures and tables. The analyses concerning the effects of abscisic acid and 

sucrose on the proteomes of somatic embryos are part of the B.Sc. thesis performed by 

Kathrin Lindhorst, who is a co-author of this manuscript. Her thesis was supervised by Prof. 

Dr. Traud Winkelmann, Prof. Dr. Hans-Peter Braun and myself. Data interpretation for this 

manuscript was realised together with Prof. Dr. Traud Winkelmann. The manuscript has been 

submitted to the scientific journal "Planta" and is now in the process of review. 

 



Chapter 2 – Publications and Manuscripts 
Manuscript 2.1 

 17 

Analyses of plant proteomes by DIGE 
 

Christina Rode 1, Traud Winkelmann 2, Hans-Peter Braun 1 und Frank Colditz 1* 

 
1 Institute for Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419 
Hannover, Germany 

 
2 Institute for Floriculture and Woody Plant Science, Leibniz Universität Hannover, 
Herrenhäuser Str. 2, D-30419 Hannover, Germany 

 

* Author for correspondance, colditz@genetik.uni-hannover.de 

 

 

 

Summary 

Two-dimensional differential gel electrophoresis is an invaluable technique for the analysis of 

plant proteomes. However, preparation of protein fractions from plant tissues is challenging 

due to the special features of plant cells: a robust cell wall, large vacuoles which often contain 

high concentrations of organic acids and a broad range of secondary metabolites like phenolic 

compounds and pigments. Therefore, protein preparation for DIGE analyses has to be 

adapted. Here we describe both, a phenolic protein extraction method for plant tissues and an 

adapted protocol for DIGE labelling of the generated fractions. 

 

 

 

 

Key words: Plant cell disruption, plant protein extraction, DIGE labelling 

 

Abbreviations: 2-D: Two-dimensional, DIGE: Differential gel electrophoresis, DMF: 

dimethylformamide, IEF-SDS PAGE: Isoelectric focusing - Sodium dodecyl sulfate 

Polyacrylamide gel electrophoresis, PMSF: phenylmethylsulfonyl fluoride, SE: Somatic 

embryos, ZE: Zygotic embryos  
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1. Introduction 

The 2-D differential gel electrophoresis (2-D DIGE) technology allows separation of two 

differentially labelled protein samples on one gel, thus eliminating gel-to-gel variability. A 

major advantage of this technique is the possibility to identify even very small or marginal 

differences in protein migration patterns of two different fractions (occurring at the pI or Mr 

level) which are hardly detectable by 2-D gel electrophoresis on the basis of separate gels (1). 

Furthermore, the fluorophores used in differential protein labelling not only are very sensitive 

but also allow precise protein quantification. In addition, this labelling allows a very sensitive 

detection of proteins on gels. 

In plant research 2-D DIGE was applied successfully for analyses of protein samples from 

various species and different tissues. For instance, the technique was used to investigate 

different plant developmental processes and organogenesis (2-4), plant organelle proteomes 

(5, 6), plants under abiotic stress conditions (7, 8), analyses of plants in associations to 

symbiotic and/or pathogenic microbes (9-13) and posttranslational protein modifications in 

plants (14). 

Due to the presence of a cell wall and very special biochemical properties, disruption of plant 

cells and isolation of protein fractions are challenging but of major importance to obtain high 

resolution gels. To find a very efficient protein purification technique, four different protein 

extraction protocols were tested in our laboratory: (i) A rapid protocol without precipitation as 

described by Gallardo et al. (15), (ii) a protocol utilising TCA precipitation in combination 

with acetone (16), (iii) a protocol described by Corcke and Roberts (17) which relies on 

boiling of protein fractions in Laemmli buffer (18) and subsequent protein precipitated with 

acetone, and (iv) an extraction method using phenol which is combined with an ammonium 

acetate in methanol precipitation as described by Hurkman and Tanaka (19), modified by 

Colditz et al. (20). Optimal protein purification and resolution on IEF-SDS gels was achieved 

using the modified Hurkman and Tanaka (19) protocol even for low amounts of tissue. 
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2. Materials 

All buffers, solutions and reagents are given in the order of usage according to the methods 

protocols. Prepare all solutions freshly using analytical grade chemicals in combination with 

pure de-ionized water. 

 

2.1. Buffers, solutions and reagents for protein extraction with phenol 

1. Extraction Buffer: 700 mM Sucrose, 500 mM Tris, 50 mM EDTA, 100 mM KCl, pH 8.0 

(HCl). Directly before usage, 2 % ß-mercaptoethanol and 2 % PMSF are added. Extraction 

buffer is stored at 4 °C or frozen at -20 °C in aliquots.  

2. PMSF stock solution (200 mM), stored at 4 °C for not longer than 8 weeks.  

3. Water-saturated phenol (pH 6.6/7.9; Amresco, Solon, USA), stored at 4 °C. 

4. Precipitation Solution: 0.1 M Ammonium acetate in methanol, stored at 4 °C. 

 

2.2. Buffers, solution and reagents for DIGE sample preparation 

1. Lysis buffer: 8 M Urea, 4 % [w/v] CHAPS, 40 mM Tris base, 3.75 mg DTT (added directly 
before usage), 0.2 mM PMSF (added directly before usage). Lysis buffer is stored at – 20 °C 
(see Note 1). 

2. PMSF stock solution: 200 mM, stored at 4 °C for not longer than 8 weeks.  

3. CyDyeTM Fluor minimal labeling reagents. Cy2TM, Cy3TM and Cy5TM (GE Healthcare, 

Munich, Germany). The fluorophores (400µM per labelling reaction) are diluted in DMF 

according to the manufacturers instructions. Diluted CyDyes are stored at -20 °C and should 

be used within 3 months. 

4. Lysine stock solution: 10 mM, stored at 4 °C. 

5. Rehydration buffer: 8 M Urea, 2 % [w/v] CHAPS, a spatula-tip of bromophenol blue, DTT 

20-100 mM (added directly before usage), 0.5 % [v/v] IPG buffer (added directly before 

usage; corresponding to the IPG strip used for IEF (GE Healthcare, Munich, Germany)). 

Rehydration buffer is stored at -20 °C. 

 

3. Methods 

3.1. Protein extraction with phenol 

This protocol is based on the protein extraction method according to Hurkman and Tanaka 

(19) modified by Colditz et al. (20). Freshly ground samples are transferred to 2 ml Eppendorf 

vessels and directly frozen in liquid nitrogen. For subsequent 2-D DIGE analysis, proteins 

from two different plant samples are extracted in parallel. 
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1. Take 200 mg pulverized plant material (see Note 2) from the two protein fractions to be 

compared and add 750 µl extraction buffer. Incubate the samples for 10 minutes on ice.  

2. Add 750 µl of water-saturated phenol (4°C) to each sample and vortex. Incubate the 

samples for 30 min on a table mixer (Eppendorf Thermomixer Compact; Eppendorf, 

Hamburg, Germany) at 1000 rpm at room temperature (see Note 3-5). 

3. Centrifuge samples at 11.000 x g for 10 min, 4 °C. 

4. After centrifugation, transfer the phenol phase (generally the upper phase) of each sample 

into a new 2 ml Eppendorf vessel and dilute it in an equal volume of ice-cold extraction 

buffer. Vortex samples (see Note 6).  

5. Centrifuge the samples at 11.000 x g for 10 min, 4 °C. 

6. Collect again the phenol phase (the upper phase) of each sample and transfer it completely 

into a new pre-weighted 2 ml Eppendorf vessel (see Note 7). Add ice-cold precipitation 

solution up to a final volume of 2 ml to each sample. Invert the vessels several times back and 

forth and let the proteins precipitate for at least 4 h at - 20 °C.  

7. Centrifuge the samples at 17.000 x g for 3 min, 4 °C. Discard the supernatants and dilute 

the protein pellets in 1 ml of ice-cold precipitation solution.  

8. Repeat Step 7 two times, then dilute the protein pellet of each sample in 1 ml of ice-cold 80 

% [v/v] acetone. Centrifuge the samples at 17.000 x g for 3 min, 4 °C. (see Note 8). 

9. Discard the supernatants and dry the protein pellets under an extractor hood at room 

temperature (see Note 9). 

10. Finally, determine the weight of the vessels including the pellets and subtract the value of 

the empty vessels for calculation of the pellet weights (see Note 10). 

 

3.2. Sample preparation for DIGE  

The following protocol relies on the comparative analyses of two related protein fractions 

using the CyDyeTM Fluor labeling reagents (GE Healthcare, Munich, Germany). Both 

fractions should contain 100 µg protein and should be labeled with different fluorophors. 

Afterwards, the samples are combined and loaded onto a single protein gel. Aditionally, a 1:1 

mixture of the two protein samples is labeled with a third CyDye fluorophor and is used as an 

internal standard to allow a comparison of relative protein spot intensity between both 

individual protein samples analyzed. The following protocol uses 2 D IEF / SDS PAGE for 

protein separation.  
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1. Resuspend protein samples, 100 µg each, separately in a minimum volume of 30 µl of 

CyDye labeling-compatible lysis buffer (pH 8.5) in absence of DTT. Shake the samples for 30 

min at room temperature (see Note 11). 

2. Centrifuge the samples at 17.000 x g for 5 min, 4 °C. Collect the supernatant. 

3. Labeling reaction: For CyDyeTM labeling reaction, 100 µg protein of each sample is labeled 

with one CyDye. Therefore, transfer a volume corresponding to the appointed protein amount 

(usually in the range of 10 to 20 µl) of each sample separately to a new 1.5 ml Eppendorf 

vessels. A minimal volume of 10 µl for each protein sample is required for labeling reaction. 

For the internal reference sample (third sample), prepare a mixture of the two samples by 

combining half of the sample volume from each individual sample. Add 1 µl of diluted 

CyDye solution to each sample. Label the reference sample with the remaining third CyDye 

(e.g. Cy2TM). Centrifuge them briefly and incubate for 30 min on ice in the dark (see Note 

12). 

4. Stop reaction: Add 10 mM lysine stock solution (one tenth volume with respect to the 

individual samples) to each labeling reaction to obtain a final concentration of 1 mM lysine 

per sample (e.g. add 1.1 µl of 10 mM lysine solution to 10 µl sample labeled with 1 µl 

CyDye). Incubate the samples for 10 min on ice in the dark. 

5. Add to each sample the equal volume of lysis buffer containing the double amount of DTT 

(e.g. 12.1 µl lysis buffer to 12.1 µl CyDye-labeled sample). 

6. Combine all three CyDye-labeled protein samples in one reagent tube (e.g. 3 x 24.2 µl 

results in 72.6 µl sample volume). 

7. Add the remaining volume of rehydration buffer containing DTT and IPG buffer to the 

final volume required for IEF separation.  

8. Perform 2-D DIGE in the dark. For second dimension SDS PAGE, the Laemmli or the 

Schägger protocols can be applied (18, 21).  

9. After finishing the electrophoretic separation, the gel is immediately scanned using a 

Fluorescence Scanner (Typhoon Fluorescence Scanner, GE Healthcare, Munich, Germany). 

Keep the gel at 4 °C and in the dark before starting the scanning procedure. Using the CyeDye 

fluorophores, gels have to be scanned at 50-100 micron resolution at the appropriate 

excitation wavelengths (488 nm for Cy2TM, 532 nm for Cy3TM and 633 nm for Cy5TM). 

Digital gel images can be visualized using the Image Quant analysis software (GE Healthcare, 

Munich, Germany) (Fig.1.). Quantification of relative differences of individual protein 

abundances can be carried out using specific software (e.g. Delta 2-D (Decodon, Greifswald, 

Germany) or  DeCyder TM (GE Healthcare, Munich, Germany)).  
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Fig. 1. Two-dimensional DIGE analysis of total protein extracts from zygotic embryos 
(ZE) and somatic embryos (SE) from Cyclamen persicum. 
Proteins of each tissue were extracted as described in this chapter. The total protein fractions 
of ZE and SE were loaded onto one gel, 100 µg of each fraction.  The ZE protein fraction was 
labeled with Cy3TM (red), the SE protein fraction with Cy5TM (green). Spots with similar 
abundance in both tissues are colored yellow. Internal standard was not included (Rode, 
unpublished). 
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4. Notes 

1.  Referring to Step 1 of the protocol (3.2.), a lysis buffer without DTT addition is used. At 

Step 5, a lysis buffer containing the twofold amount of DTT is used. Since the concentration 

of DTT in the lysis buffer is variable (20-100 mM), addition of 7.5 mg DTT ml-1 is adequate 

at this step. 

2. Protein amount can extremely vary in different plant tissues. Thus, the amount of tissue 

used for sample preparation has to be adjusted: In our hands, proteins were extracted from 

500 mg Medicago root tissue (20), 200 mg Vigna leaf tissue (22) and 80 mg Cyclamen seeds 

(4). A thoroughly prepared sample obtained by grinding at low temperature (< 4 °C) improves 

the quality of protein extraction. The use of a bead mill (eg: Retsch MM 400, Retsch, Haan, 

Germany) for the pulvarisation of plant material is recommended. However, grinding time 

and volume of grinding tubes has to be optimized for specific plant material. Low amounts of 

soft plant material like leaves, roots, embryos require short grinding times (1-5 min) and can 

be performed directly in Eppendorf vessels using steal balls. Large amounts of hard tissue 

may be grinded for longer time-periods (up to 30 min). Long storage of frozen plant samples 

even at - 80°C conditions before protein preparation minimizes the yield of extracted total 

protein. 

3. The 2 ml Eppendorf vessels should be filled up to three-quarter with fine ground plant 

tissue powder. While adding the extraction buffer and subsequently the phenol, the volume of 

the sample decreases. 

4. All work with ß-mercaptoethanol should take place under the extractor hood! 

5. The quality of the phenol is of high importance. Phenol of insufficient quality can cause 

dramatic losses in protein yield. When using a two-phase phenol, it is important to take up the 

liquid phase only from the lower phenol phase. Do not shake the phenol in order to mix both 

phases. Work with phenols only should take place under the extractor hood! 

6. After centrifugation (Step 3), normally an aqueous phase is obtained at the bottom of the 

Eppendorf vessels, and a phenolic phase at the top. Plant cell walls and membrane compounds 

precipitate at the interface. In rare cases, aqueous and phenol phases are inverted after 

centrifugation. In this situation, the upper phase should be carefully removed with a pipette 

before collecting the phenol phase. Generally, transfer the phenol phase in several small 

volume steps (e.g. in 2 to 6 steps à 100 µl). 

7. The second uptake of the phenol phase (Step 6) should be achieved without contamination 

of the liquid phase. It is recommended also to perform it via several small volume steps (e.g. à 

75 µl). 
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8. To obtain a very pure pellet, the washing step can be repeated for several times (Step 7). 

9. Do not dry the protein pellet for too long under the extractor hood, because otherwise its re-

suspension in the lysis buffer might become difficult (1-5 min are usually sufficient). The 

final yield of pellet should be approximately between 5 and 20 mg protein; the protein yield 

can be determined using a common protein quantification method. 

10. The weight of the dried protein pellet gives an indication about the amount of protein 

extract.  

11. For an equal protein amount in the labeling reaction, the volume for re-suspension may 

vary according to different protein amounts of the samples.  

12. CyDye labeling most effectively takes place if the pH value of the lysis buffer is in the 

range of 8.5. The pH of the sample in lysis solution can be tested via pH test strips. In case the 

pH value is significantly below 8.5, a lysis buffer of higher pH values (e.g. pH 9.0) should be 

used for re-suspension of proteins. Always use CyDyes from one reaction kit diluted with 

dimethylformamide (DMF) of one batch to assure comparative labeling conditions. Consume 

the CyDyes efficiently after diluting them in DMF within three months.  
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3 Confirmation of the six objectives 
The six main objectives of this thesis were described in Chapter 1.1. For all objectives of the 

thesis considerable progress was achieved providing new insights into the physiology of 

Cyclamen persicum embryogenesis. Below the objectives are listed again and the level of 

their achievement is explained. 

i) Protein isolation and two-dimensional protein separation of the Cyclamen persicum embryo 
proteome were improved 

To find a protein extraction method which allows very efficient protein purification and at the 

same time is compatible with high-resolution protein separation, four protocols were tested 

with somatic embryo tissue of C. persicum: A protocol utilising TCA precipitation in 

combination with acetone (Damerval et al., 1986), a protocol described by Corke and Roberts 

(1996), a rapid protocol without precipitation as described by Gallardo et al. (2002) and an 

Figure 5 Comparison of four protein extraction methods 
Proteins were extracted out of 10, 20 and 40 mg fresh somatic embryos using four different protein extraction 
methods, each. 
Blue-framed gels: proteins were extracted following Damerval et al. (1986) 
Red-framed gels: proteins were extracted following Corke and Roberts (1996) 
Orange-framed gels: proteins were extracted following Gallardo et al. (2002) 
Green-framed gels: proteins were extracted following Hurkman and Tanaka (1986) 
 with modifications as described by Colditz et al. (2004) 
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extraction method using phenol combined with ammonium acetate in methanol precipitation 

(Hurkman and Tanaka, 1986, modified by Colditz et al., 2004). Representative IEF-SDS gels 

loaded with protein fractions extracted from 10, 20 and 40 mg embryo tissue using the four 

different protocols are given in Figure 5. Optimal protein purification and resolution were 

achieved using the protocol of Hurkman and Tanaka (1986) modified by Colditz et al. (2004) 

with 40 mg tissue. For further investigations this method was used and the amount of tissue 

was doubled to 80 mg (corresponding to 240 embryos) to obtain even more protein spots. 

Thus on IEF-SDS and DIGE gels more than 1000 protein spots could be resolved. Compared 

to the previous study (Winkelmann et al. 2006) resolution was five-fold increased. The DIGE 

technique allows separation of two protein samples in one gel system via different 

fluorescence labelling of the two protein samples before the gel electrophoresis. Using this 

tool, the protein samples of zygotic and somatic embryos were analyzed allowing 

identification of even small differences in the protein patterns of both tissues. The improved 

protein isolation and 2D separation not only improved the quality of the gels but also 

facilitated subsequent protein identification via mass spectrometry. See Chapter 2.1 and 2.3 

ii) Proteome reference maps for somatic and zygotic embryos of Cyclamen persicum were 
established 

For the establishment of a digital proteome reference map a novel software named GelMap 

was developed (www.gelmap.de). GelMap represents a user-friendly tool that offers a 

professional graphical user interface for high end creation, publication and evaluation of 

protein reference maps. Filters can be used to assign proteins on three levels of functional 

categories or other criteria like differential abundance during comparative proteome projects. 

As a result, GelMap provides new evaluation tools as compared to so far available 2D 

reference map software. The proteome reference map for zygotic embryos of Cyclamen 

persicum was created with GelMap and is publiclly available at www.gelmap.de/cyclamen. 

This reference map includes 247 protein spots identified via mass spectrometry isolated from 

the zygotic and the somatic embryos proteomes. See Chapter 2.2 and 2.3 

iii) Proteins of differential and similar abundance within the proteomes of zygotic and somatic 
embryos of Cyclamen persicum were identified 

More than 1,000 protein spots of zygotic and somatic embryos of Cyclamen persicum have 

been characterised and differences between both proteomes were visualised using Coomassie 

stained IEF-SDS PAGE and DIGE. Statistical analyses revealed 246 protein spots of at least 

1.5-fold higher or lower abundance within one of the analysed tissues representing 24% of all 

spots detected in both tissues. Mass spectrometry analysis of the 300 most abundant protein 
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spots in gels of both tissues resulted in the identification of 247 proteins, which represent 90 

distinct protein species. The most striking results of the comparison of somatic and zygotic 

embryos are: a) Glycolysis plays a key role in zygotic and somatic embryogenesis, b) 

serine/glycine metabolism differs in zygotic and somatic embryos, c) somatic embryos are 

more stressed than their zygotic counterparts, d) in zygotic embryos storage proteins are more 

abundant. Remarkably, the glycolytic enzyme enolase was the protein most frequently 

detected and thus is supposed to play an important role in Cyclamen embryogenesis. Enolase 

forms of significantly lower molecular mass than theoretically expected were present in both 

embryo types but highly abundant in zygotic embryos and endosperm. Peptide structure of 

those “small enolases” indicated a lack of the central amino acid sequence part including the 

active site. Thus the small enolases are supposed to be not enzymatically active and may be 

stored in large amounts in cells without adverse effects on the primary metabolism. The role 

of small enolase as storage proteins has not been reported until now. To elucidate the specific 

role of this protein in Cyclamen embryo cells, furthers investigations on subcellular 

localisation, functional arrangement and amino acid sequences are necessary. See Chapter 2.3. 

iv) Major storage proteins and enzymes involved in storage compound metabolism of 
Cyclamen persicum were characterised 

Small enolases are candidates for a novel class of major storage proteins in Cyclamen 

embryos. Additionally the storage protein 7S globulin, common in different plant species 

(Shewry, 1995), was highly abundant in zygotic but also present in lower amounts in mature 

somatic embryos. The Em-protein, an osmoprotective molecule of the late embryogenesis 

abundant (LEA) class (Swire-Clark and Marcotte 1999) was also high abundant in zygotic 

and mature somatic embryos. See Chapter 2.3 and 2.4. 

v) Major proteins of the different developmental stages of somatic embryogenesis of 
Cyclamen persicum were elucidated 

The proteome structures of six developmental stages from callus to torpedo-shaped embryo 

were analysed and proteins were identified using the digital reference map of Cyclamen 

persicum zygotic embryos. In callus, enzymes related to energy supply were especially highly 

abundant, most likely due to energy demands caused by fast growth and cell division. The 

switches from callus to globular embryo as well as from globular to torpedo-shaped embryo 

were associated with controlled proteolysis via the ubiquitin-26S proteasome pathway. 

Storage compound accumulation was first detected 21 days after transfer to plant growth 

regulator (PGR)-free medium in early torpedo shaped embryos. Increase in abundance of 

auxin-amidohydrolase during embryogenesis indicates an exceptional increase in auxin 
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release in the late embryo stages of Cyclamen. A development stage specific isoelectric point 

shift of catalases has been reported for the first time for somatic embryogenesis. See Chapter 

2.4 

vi) First factors improving the production system of somatic embryos in a way that their 

proteome structure resembles the one of the zygotic embryos were identified  

Somatic embryos cultivated on Murashige and Skoog (1962) medium with high sucrose levels 

and treated with ABA expressed a proteome structure with increased similarity to the one of 

zygotic embryos. Especially the accumulation of storage compounds was promoted by these 

two factors. See Chapter 2.4.  
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4 Discussion and Outlook 
Major physiological processes within somatic and zygotic embryos have been characterised in 

this study by comparing the proteomes of zygotic and somatic embryos (Chapter 2.3) and by 

analysing the proteome structures of different developmental stages -from callus to embryo- 

during somatic embryogenesis (Chapter 2.4). The most striking results of the proteomic 

comparisons of zygotic and somatic embryos were (i) the elucidation of glycolysis as a key 

pathway in zygotic and somatic embryogenesis, (ii) that somatic embryos are more stressed 

than their zygotic counterparts and (iii) that storage proteins are more abundant in zygotic 

embryos. In addition “small” 15 kDa forms of the glycolytic enzyme enolase have been 

identified as candidates for a novel group of storage proteins in plants. In a time-course 

proteomic analysis of the different developmental stages during somatic embryogenesis, an 

essential role of the ubiquitin-26S proteasome pathway for the switch from callus to globular 

embryo as well as from globular to torpedo-shaped embryo was identified. Moreover, a 

developmental stage -specific isoelectric point of catalase (Chapter 2.4) was observed. 

Abscisic acid supplementation and cultivation of embryos on medium with high sucrose 

content promoted the desirable maturation of somatic embryos (Chapter 2.4). The results of 

this work are discussed in detail in the corresponding publications and manuscripts in Chapter 

2.  

4.1 Discussion 
In this section, findings of the current study are discussed especially in comparison to those 

results obtained in the four recent works regarding somatic embryogenesis of Cyclamen at the 

proteomic and transcriptomic level (Rensing et al., 2005; Winkelmann et al., 2006; Lyngved 

et al., 2008; Hönemann et al., 2010).  

Rensing et al. (2005) analysed 2083 expressed sequence tags (ESTs) from seven different 

developmental stages within Cyclamen embryogenesis starting with callus. In total, 116 of 

those transcripts have been shown to be directly involved in embryogenesis. Of special 

interest were gibberellin oxidases and somatic embryogenesis receptor-like kinases (SERK), 

encoding proteins essential for somatic embryogenesis (Mitsuhashi et al., 2003; Schmidt et 

al., 1997; Nolan et al., 2003). Histone H3 and a histone deacetylase as well as a DNA 

methyltransferase all involved in the DNA methylation pathway were identified within the 

Cyclamen transcripts. Since low levels of DNA methylation are supposed to improve the 

embryogenic potential of cell lines (Chakrabarty et al., 2003; Noceda et al., 2009; see also 

chapter 1.3), those proteins are of special interest and should be further investigated to 
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improve protocols for the screening of highly embryogenic cultures. In addition, genes 

encoding proteins involved in reactive oxygen species detoxification were found to 

upregulated in the nearly stages of embryogenesis by Rensing et al. (2005). In the study 

presented in chapter 2.4 also stress-related proteins were detected in the early developmental 

stages as compared to callus, namely heat shock protein 20, heat shock protein 70 and 

catalase. Heat shock proteins are molecular chaperones, often highly expressed under stress 

conditions but also necessary for normal plant development in unstressed cells (Hendrick and 

Hartl 1993; Waters et al. 1996), while catalases are directly involved in reactive oxygen 

species detoxification (Chelikania et al., 2004). However, in the study presented in chapter 2.4 

other heat shock proteins as well as proteins involved in reactive oxygen species 

detoxification were also identified in later developmental stages (21-56 days after transfer to 

PGR-free medium). Thus, in contrast to Rensing et al. (2005) no exclusive stress situation 

could be detected for the early developmental stages (Chapter 2.4).  

Hönemann et al. (2010) compared somatic and zygotic embryos of Cyclamen persicum, 

analysed the development of somatic embryos and elucidated the differences between an 

embryogenic and non-embryogenic cell line using a transcriptomic approach based on the 

data published by Rensing et al. (2005) in combination with histological analysis. In total the 

expression of 1,216 transcripts was investigated by Hönemann et al. (2010). The comparison 

of zygotic and somatic embryos revealed that somatic embryos have been found to express 

more genes encoding the oxidative stress-related proteins catalase and superoxide dismutase. 

In accordance with the study presented in chapter 2.3, somatic embryos were also described to 

express more stress-related pathways as compared to the zygotic embryos especially 

catalases. Interestingly, the isoelectric point of these catalases changed during somatic 

embryogenesis and becomes more acidic with proceeding development. Torpedo shaped 

somatic embryos cultivated on MS medium containing high sucrose concentration (Chapter 

2.4) accumulated more catalases as compared to embryos of the same age cultivated on 

medium containing the standard sucrose concentration (Cahpter 2.4). Most likely, the 

increased osmotic pressure caused by the high sucrose level in the medium not only triggered 

the accumulation of storage proteins like “small enolases“ and globulin but also evoked stress 

response pathways. Superoxide dismutases were also identified in the study presented in 

chapter 2.3. By contrast to the study of Höhnemann et al. (2010) these proteins were not 

specific for one of the compared embryo type. In addition Hönemann et al. (2010) found the 

epidermis of somatic embryos to be more ruffled and assumably lignified. Lignification is a 

further hint for increased stress metabolism in somatic embryos (Dixon and Paiva, 1995). 
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Thus, Hönemann et al. (2010) suggested a reduction of stress sources occuring during somatic 

embryogenesis in vitro, e.g. by adding activated charcoal to the culture medium and further 

pointed out the importance of pathways involved in cell wall synthesis/degeneration for the 

early stages of embryogenesis.  

Genes encoding chitinase, important for a proper protoderm formation (De Jong et al., 1992), 

and peroxidase, which plays a role in cell size expansion and cell wall synthesis (Cordewener 

et al., 1991; Takeda et al., 2003), were upregulated in early pre-globular stages. In the study 

presented in Chapter 2.3 and 2.4 none of these enzymes were identified. However, three spots 

were identified as polygalacturonase, an enzyme depolymerising pectin bounds within the cell 

walls. Interestingly, these proteins were low abundant in callus (see Chapter 2.4) and 

increased in abundance with processing development of somatic embryos. Two of the three 

polygalacturonase protein spots were higher abundant in zygotic embryos (see Chapter 2.3).  

Winkelmann et al. (2006) published the first proteomic study on somatic embryogenesis in 

Cyclamen, where about 300 protein spots were resolved via IEF-SDS PAGE per gel. In total 

23 proteins were identified from 83 analysed spots extracted from gels of zygotic embryos, 

somatic embryos, germinating embryos and endosperm (representing 28% identification rate). 

Winkelmann et al. (2006) estimated that 26 % of the proteins present in the 2D gels of 

somatic and zygotic embryos were of different abundances. This ratio is comparable to the 

study presented in chapter 2.3, where 24 % of the proteins resolved via IEF-SDS PAGE were 

of different abundances between both embryo types, even though the protein resolution was 

five times increased compared to the previous work. Based on the present study, Winkelmann 

et al. (2006) observed that somatic embryos cultivated on medium containing 30 g l-1 sucrose 

accumulated less storage proteins than those cultivated on medium containing the double 

sucrose concentration. The "small enolases" protein spot group proposed as putative storage 

proteins in chapter 2.3 were also present in the gels published by Winkelmann et al. (2006) 

and postulated to represent storage proteins. However, Winkelmann et al. (2006) identified 

one spot among the protein spots group including more than ten spots. This spot was 

identified not as enolase but as the storage protein vicillin. A ClustalW multiple alignment 

(Thomson et al., 1994) of the complete amino acid sequences of enolase and vicillin revealed 

no sequence homologies of these two proteins (data not shown). 

Höhnemann et al. (2010) as well as Winkelmann et al. (2006) found xyloglucan 

endotransglycosylase to be highly expressed/abundant in torpedo shaped embryos and 

endosperm, an enzyme synthesising or hydrolysing xyloglucans (Rose et al., 2002). 

Xyloglucans are oligosaccharids which represent on one hand major compounds of cell walls 
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and on the other hand can be accumulated as storage carbohydrates in seeds (Fry, 1989; 

Braccini et al., 1995). In the studies presented in Chapter 2, no enzymes involved in the 

xyloglucan biosynthesis were identified. Probably, this was due to the limited number of 

analysed spots. 

Lyndgved et al. (2008) analysed the proteomes of embryogenic and non-embryogenic callus 

of Cyclamen persicum via DIGE and 1,000 protein spots were resolved per gel. About twenty 

percent of these spots were differentially abundant in the two distinct cell lines and 38 

proteins were unique to one of the analyzed tissues. The differentially abundant proteins as 

well as the unique proteins were analysed via mass spectrometry leading to identification of 

128 protein spots representing 52% identification rate. Nearly 90% of the identified proteins 

were assigned to three major groups: i) metabolism (68%), ii) protein processing (14%) and 

iii) stress response (4%). Interestingly, those three groups also included the majority of the 

proteins identified in the current study (see Chapter 2.3) in comparable portions: i) 

metabolism (54%), protein processing (23%) and stress response (9%). It is also interesting, 

that in the above mentioned proteomic studies as well as in the study presented in Chapter 2.3 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) represented one of the most often 

identified proteins: Winkelmann et al. (2006) found three GAPDH spots representing 13% of 

all identified proteins, Lyndgved et al. (2008) identified seven GAPDHs representing 6% of 

all identified proteins and in the current study 20 protein spots were identified as this enzyme, 

representing 8% of all identified proteins. There are two possible explanations for the high 

number of identified GAPDHs: Whether this protein is especially well detectable via a gel 

based approach coupled to mass spectrometry due to its biochemical properties and GAPDH 

sequences within the protein databases are well matching to amino acid chain present in 

Cyclamen specific version. Alternatively, this protein may play a special role during 

embryogenesis. Like enolase, GAPDH is a glycolytic enzyme, which also was found as a 

structure protein in the eye-lens of vertebrates (Piatigorsky, 2003). Thus also GAPDH might 

be utilised as storage protein in Cyclamen, like discussed for enolases in chapter 2.3. Some 

interesting preliminary results concerning the native structure of this protein are presented in 

chapter 4.2. 

In conclusion, similar tendencies concerning the physiology of embryogenesis in Cyclamen 

persicum were detected in the discussed studies: Somatic embryos seem to be more stressed 

and accumulate less storage compounds compared to their zygotic counterparts. It has been 

shown in chapter 2.4 that proteomes of both embryo types can be aligned to a certain level by 

abscisic acid treatment and high sucrose concentration within the culture medium. SERK and 



Chapter 4 – Discussion and Outlook 

 40 

histones analysed by Rensing et al. (2005) and Hönemann et al. (2010) are of special interest 

for embryogenesis research (see above and chapter 1.3), however those proteins are hardly 

detectable via a gel based proteomic aproach like performed in this study (Chapter 2.3 and 

2.4). These two proteins have a hydrophobic character not compatible with the water based 

gel systems applied. To analyse those hydrophobic proteins a gel free approach should be 

more appropriate. Indeed, in a preliminary gel free shot gun analysis of Cyclamen persicum 

embryos a histone H4 could be identified. Thus gel free shot gun protein analyses revealed to 

be a complementary technique to a gel based approach and should provide further interesting 

results to elucidate the physiology of embryogenesis in Cyclamen (see Chapter 4.2 in "Gel-

free proteome profiling via shotgun"). 

4.2 Outlook 
For a global validation and interpretation of data observed in the current work, there were still 

questions left unresolved. Therefore, our future studies address these questions in the second 

part of this chapter (4.2). In some cases preliminary experiments have already been performed 

and first results are presented here. 

Is the digital reference map of zygotic embryos applicable for other tissue types or 
somatic embryos of different developmental stages? 
The digital reference map established for torpedo shaped zygotic embryos was created in 

order to facilitate protein identification for subsequent projects. Via this map proteins can be 

identified not only for somatic embryos of the same developmental stage but also for 

embryogenic callus, early globular embryos, as well as matured somatic embryos (see 

Chapter 2.4). However, protein spots on the same gel position but of distinct tissues could 

represent different proteins. In other cases, a protein present in the reference map can be 

overlapped by a more abundant protein present in a different developmental stage. Thus, the 

distinction/difference between the proteins indicated on the reference map and the proteins 

present in the gels of the developmental stages of interest should be validated. Therefore, five 

representative spots have been isolated from IEF-SDS gels of all developmental stages 

analysed (see Chapter 2.4) and protein identification is ongoing. Depending on the results, 

either the recent reference map will be approved for the other tissues of interest or further 

reference maps have to be generated for far distinct tissues like callus. 

How to improve GelMap? 
GelMap is an excellent tool for the establishment and publication of proteome reference maps 

(Chapter 2.2). However, the version of this software as described in chapter 2.2 only allows 
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annotation of one protein per analysed spot and only the physiological function, abundance, 

etc. of this protein can be included into the physiological clustering and into to the filter 

systems. For example, in the reference map presented in chapter 2.3 (see also: 

http://www.gelmap.de/cyclamen/) only the best protein hits regarding probability score and 

sequence coverage are included in the reference map, while minor protein hits for all 247 

identified spots are listed in a separate table. Those "minor" hits are neither included in the 

physiological clustering nor in the filter systems of GelMap. This is somehow an unsatisfying 

solution, since on the one hand the minor hits may also play an important role within biology 

of the analysed samples and on the other hand it is not in each case clearly to ascertain what is 

the best hit, if for example the probability scores and sequence coverages of two or more hits 

are quite similar. Thus GelMap was further developed to display all protein hits for each spot 

of interest, which are all included into the filtering system. This modification is described in 

the manuscript by Klodmann et al., 2011, which is in the process of review since March 2011. 

In addition, an embedding of GelMap into large proteomic platforms like ExPASy and 

UniProt would be desirable in future. 

Are the recent data transferable to other Cyclamen genotypes? 
The proteomic studies were performed with callus and somatic embryos derived from one 

genotype, the commercial C. persicum cultivar 'Maxora Light Purple' bred by the company 

Varinova B.V. (Berkel en Rodenrijs, Netherlands), and with zygotic embryos derived from 

self pollinated flowers and thereof developed seeds of the same genotype. To transfer the new 

findings to Cyclamen in general, embryos of other genotypes and different Cyclamen species 

have to be analysed. Winkelmann et al. (2006) and Bian et al. (2010) published IEF-SDS gels 

of Cyclamen persicum embryos using different cultivars as well as different protein isolation 

protocols. Even though major protein patterns within those gels were common to the gels 

produced in this study. For Cyclamen species other than C. persicum proteomic studies are 

not available. However, protocols for the in vitro production of somatic embryos are 

published for C. coum, C. mirabile, C. alpinum and C. graecum (Prange et al. 2010a, b). 

Thus, material and techniques for a complementary study with a wild Cyclamen species e.g. 

Cyclamen coum are present at the campus and could be performed in near future. 

The somatic embryos investigated in this study (Chapter 2.3 and 2.4) were derived from an F1 

cultivar and thus also represented the F1 genotype. In contrast, the zygotic embryos were 

isolated from self pollinated F1 plants resulting in F2 offspring genotypes. Consequently the 

two embryo types compared in Chapter 2.3 were closely related but not absolutely genetically 

identical. The crossing between the two parental inbred lines of 'Maxora Light Purple' is in 
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progress, but so far not enough F1 seeds were developed to perform 2D gels. However, due to 

the high number of embryos necessary for a sufficient protein amount to load on one gel (240 

embryos/gel), the effects of the slightly different genotypes might be quite low in the current 

study. 

What is the role of the endosperm in embryo development? 
Zygotic embryos are enveloped by an endosperm providing not only protection, but also 

regulatory and nutrition compounds (see also chapter 1.3). Probably the asynchronous 

development and physiological disorders found in somatic embryos are caused by missing 

endosperm born triggers or substances. Reinhardt (2006) reported proteins, carbohydrates and 

lipids to be accumulated in Cyclamen seeds. The storage polysaccharide xyloglucan (Braccini 

et al., 1995; Winkelmann et al., 2006) and the storage proteins 11S globulin and 7S globulin 

were identified in the endosperm of Cyclamen (Winkelmann et al., 2006). However, still little 

is known about the physiology of endosperm and its role in embryogenesis for Cyclamen. 

First comparisons of IEF-SDS gels of 11 weeks old endosperm and embryos of the same age 

are presented here. The protein purification and IEF-SDS PAGE were performed like 

described in Chapter 2.3 for 50 mg of endosperm tissue. Figure 6 shows IEF-SDS gels of 

endosperm in comparison to IEF-SDS gels of zygotic and somatic embryos. Major groups of 

endosperm proteins were found to be also present in the zygotic embryos but exhibit low 

abundance in somatic embryos. This suggests either a similar protein expression in endosperm 

and zygotic embryos or a transport of these proteins most likely from endosperm to embryo. 

Further investigations on the physiology and development of the endosperm are ongoing.  

Figure 6 Alterations in protein abundance in the proteomes of endosperm, zygotic and somatic embryos 
IEF-SDS gels of total soluble protein fractions extracted from fresh endosperm or embryo tissue. Gels were 
stained with CBB-G 250. Molecular mass range: 100–5 kDa (top to bottom). Non-linear separation: pI 3-11 (left 
to right). Red labelled spot groups are characteristic for endosperm and zygotic embryos but significantly lower 
abundant in the somatic embryos proteome. ZE = zygotic embryo; SE = somatic embryo 
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Is there an alternative to gel based proteomics? 
The proteomic results of this study are based on two-dimensional gel electrophoresis. As 

described in Chapter 1.4 this technique represents a basic tool in protein biochemistry but is 

more or less limited to hydrophilic proteins. As a result the characterised protein population 

predominantly consists of cytosolic proteins (e.g. proteins of the glycolysis) but hydrophobic 

proteins as well as proteins of very low abundance (e.g. transcription factors) are 

underrepresented or even not detectable. For example SERK-proteins, which are supposed to 

play a significant role in the initiation of somatic embryogenesis, contain two strongly 

hydrophobic regions (Hecht et al., 2001; Schmidt et al., 1997) and thus their analysis via gel-

based proteomics is challenging. A shotgun approach allows fast protein identification 

without separation on a gel. In comparison to a gel-based experiment different protein species 

can be identified, especially hydrophobic proteins and proteins with an extreme isoelectric 

point (basic or acidic). Brechenmacher et al. (2009) analysed the proteome of soya root tips 

via gel-based and shotgun proteomics and thus identified 1,492 different proteins, whereof 

only 169 proteins were identified with both methods. Thus the combination of both, gel-based 

and gel-free techniques, allows the identification of large numbers and different kinds of 

proteins and thus enables a deep view into the physiology of the analysed tissue. Shot gun 

proteomics is carried out with highly sensitive mass spectrometers resulting in very accurate 

masses for the analysed peptides. This on the one hand facilitates protein identification when 

searching against databases and on the other hand allows database-independent evaluation of 

the complex samples which is especially helpful for the non-sequenced Cyclamen. 

Hoehenwarter et al. (2008) performed a shotgun analysis followed by database independent 

data interpretation for different potato cultivars and could identify genotype-specific marker 

peptids. A similar aproach was performed with Cyclamen embryos and endosperm and is 

decribed below. 

Gel-free proteome profiling via shotgun 

Shotgun analyses of somatic and zygotic embryos as well as endosperm were initiated in 

cooperation with Dr. Stefanie Wienkoop, Vienna University (Austria). Proteins were 

extracted following the protocol of Hurkman and Tanaka (1986) modified by Colditz et al. 

(2004) from 20 mg of somatic and zygotic embryos as well as from endosperm in three 

replicates, each. After tryptic digestion samples were separated via nanoLC in a monolithic 

capillary and mass spectrometric analyses were performed using the ESI-LTQ-Orbitrap 

system (Thermo Scientific, Bremen, Germany) as described by Hoehenwarter et al. (2008). 

Two sets of data were obtained from these analyses: i) MS data, including accurate masses 
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(mass/charge ratios) and ii) MS/MS data including peptide sequences derived from selected,  

fragmented masses. 

I. Database independent approach: The MS 

data were utilised for the database 

independent approach. An independent 

component analysis (ICA) of the 2.000 non-

redundant masses resulted in an ICA plot 

clearly discriminating all three investigated 

tissues (Figure 7). The 30 masses 

corresponding to the highest rate of separation 

within the ICA plot (highest loadings) were 

selected for de-novo sequencing using the 

Peaks software (Bioinformatics Solutions, 

Waterloo, Canada). Hereof eight peptide 

sequences could be generated representing 

markers for the three analysed tissues (Table 

2). Database alignments of these peptides resulted in the identification of three proteins, 

which are named in table 2. The five remaining peptides are supposed to represent Cyclamen 

specific proteins not yet known for other plants. They are of special interest, since their 

distinct appearance in the three compared tissues could be utilised e.g. as standard peptides 

for tissue specific protein quantification with mass spectrometers. 

II. Database dependent approach: Based on the peptide sequences derived from the MS/MS 

mode protein identification was carried out using the SEQUEST algorithm (Thermo, Bremen, 

Germany). A search against the "Green plant" database provided by NCBI resulted in the 

identification of 150 unique proteins and a subsequent search against the Cyclamen EST 

database (Rensing et al., 2005) resulted in 89 unique proteins. A first comparison of the 

proteins identified in the gel-based study (Chapter 2.3) and the proteins identified via the 

shotgun approach resulted in an overlap of 70%. This was unexpectedly high. Brechenmacher 

et al. (2009) reported only 11% overlap between proteins identified with these two methods 

for soybean root hair. Most likely, this is due to the limited sequence information fitting to the 

peptides identified for Cyclamen. However, about 50 proteins could be identified which so far 

have not been characterised for the analysed tissues, e.g. the hydrophobic histone H4, which 

has also been identified in the transcriptomic study of Rensing et al. (2005) and proposed to 

play an essential role in Cyclamen embryogenesis, and a "cup shaped cotyledon ortholog" 

Figure 7 ICA plot based on 2000 unique masses 
obtained from zygotic embryos, somatic embryos 
ad endosperm of Cyclamen persicum 
Red labelled spots represent complex samples from 
zygotic embryos, green labelled spots from somatic 
embryos and brown labelled spots from endosperm. 
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with a molecular weight over 200 kDa, which is involved in shoot apical meristem formation 

(Takada et al., 2001, see also chapter 1.3). A manuscript based on the results of the shotgun 

study is in preparation and will be published in near future. 

 

Mass1 ICA rank2 De-novo peptide3 Protein4 
723.89 1    (ICA1) LNLWYVDGTPLR no hit 
811.91 4    (ICA1) CDSPELLEAAFNTGR no hit 
842.90 7    (ICA1) EFSTLWSADDWATR no hit 
601.81 11  (ICA1) EDAGGVVSAELR hypothetical protein 
698.37 14  (ICA1) DVDDLLLSTYNK protein tyrosine phosphatase 
617.82 4    (ICA2) SPEAVGSQSGSTK no hit 
616.83 7    (ICA2) DNVLAMLLDTK pyrovate kinase 

 

 

 

How to investigate physiological pathways of special interest in more detail? 

Imuno-histology to investigate the subcellular localisation of "small enolases" 

To elucidate the specific role of ‘‘small enolases’’ in Cyclamen embryo cells, an 

immunohistological approach would give essential information pertaining to functional 

arrangement. Storage proteins often are secreted and stored in protein bodies (Shewry, 1995), 

the occurrence of which was described in Cyclamen endosperm especially in close proximity 

to the embryo and the testa (Reinhardt 2006). To investigate the subcellular localisation of 

enolases an immunohistological experiment like described by Eticha et al. (2005) would be 

helpful. Eticha et al. (2005) visualised pectins coupled to fluorescence labelled pectin-

antibodies in histological slides of maize roots using a confocal laser scanning microscope. 

Enolases in the eye-lances of vertebrates were analysed by a similar immunohistological 

approach by Wistow et al. (1988). Here, turtle embryos were embedded in paraffin, 

subsequently sectioned using a microtome and resulting slides were incubated with 

fluorescence labelled antibodies against enolase.  As a result enolases were identified as 

highly abundant structure proteins in the eye-lens of turtles. For Cyclamen, histological slides 

of embryos and endosperm could be incubated with small enolase specific antibodies coupled 

to a fluorescent dye, and examined under a confocal laser scanning microscope or a 

fluorescence microscope in case of paraffin embedded samples. 

Table 2 
Masses with the higest ranks within the ICA plot, their corresponding peptides and proteins 

1 unique mass/charge ratio in Thomson (only masses where de-novo sequencing was succesful 
are given)  
2 rank of the mass within the ICA analysis (1 = highest rank) 
3 corresponding peptide sequence derived from de-novo sequencing using the Peaks software 
4 corresponding protein identified via databa sesearch (Green plant). 
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Figure 8 Protein complexes in somatic 
embryos of Cyclamen persicum 
Coomassie-stained BN-SDS gel of the 
total native water-soluble proteome of 
somatic embryos of Cyclamen persicum. 
Indicated spots were identified via mass 
spectrometry. 
Abbreviations: HSP = Heat shock protein,  
Mn/Fe SOD = Manganese/Iron dependent 
superoxide dismutatse, GAPDH = 
Glyceraldehyde-3-phosphate 
dehydrogenase 
 
 

 

BN-SDS PAGE to investigate storage protein complexes  
Storage proteins are of special interest due to their impact on maturation and dormancy. These 

processes have been shown to be less developed in the somatic embryos of Cyclamen 

compared with zygotic embryos (Chapter 2.3; Winkelmann et al., 2006) but are essential for a 

more uniform development and desirable long term conservation. Various storage proteins are 

packed in specialised vacuoles and form therefore protein complexes (Shewry, 1995; 

Hermann and Larkin., 1999). BN-SDS PAGE (Wittig et al., 2006) coupled with mass 

spectrometry has been shown to be a powerful tool for the determination of protein complex 

composition (Dudkina et al., 2005; Klodmann et al., 2010). Klodmann et al. (2010) resolved 

the internal architecture of plant mitochondrial comlex I, which is part of the respiratory 

chian, via low SDS treatment of the native complex and analysis of the resulting 

subcomplexes by BN-SDS PAGE in combination with mass spectrometry. Those data were 

integrated into the electron microscopic images for this protein obtained by Dudkina et al. 

(2005). By performing BN-SDS PAGE proteins are separated in the first dimension in their 

native form due to their native molecular mass in presence of mild detergents. In the second 

dimension SDS is added resulting in the degradation of the native complexes into their 

subunits. First experiments resolving the water-soluble native protein fractions of Cyclamen 

embryos via BN-SDS PAGE have been started. 2D gel electrophoresis and protein 

identification via mass spectrometry were performed as described previously by Klodmann et 

al. (2010). Figure 8 shows a BN-SDS gel of the somatic embryos proteome. Protein spots 

indentified by mass spectrometry are indicated. Of special interest are the subunits identified 
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for GAPDH suggesting an aggregation of this glycolytic enzyme in large protein complexes. 

Eventually the glycolytic enzyme GAPDH is recycled as a storage protein similar to the 

glycolytic enzyme enolase (Chapter 2.3).  

Determination of posttranslational modification 
Which proteins are ubiquitinated and phosphorylated during developmental decision from 

callus to globular embryo and from globular to torpedo-shaped embryo? Are there stage 

specific isoforms of catalase? To resolve the new questions concerning post translational 

modifications a gel-base approach like performed by Trapphoff et al. (2009) could be helpful. 

In this study, phosphorylation site specific antibodies were used to blot IEF-SDS gels of 

pathogen-infected and non-infected Medicago truncatula root cells. As a result 

phosphorylated protein spots could be detected in both treatments and differences in 

phosphorylation could be observed between infected and non-infected roots. Since 

phophorylated proteins are supposed to be activated forms of enzymes, Trapphoff et al. 

(2009) could identify those proteins actively involved in pathogen response. A comparable 

experiment could be performed to determine the differentially phosphorylated proteins within 

the developmental stages of somatic embryos analysed in chapter 2.4. Using an ubiquitin 

specific antibody in a comparable approach also the proteins “labelled” for proteolytic 

degradation could be identified on the IEF-SDS gels of the different developmental stages of 

Cyclamen embryos. For a gel-free large scale screening of phosphorylated proteins a 

technique as presented by Grimsrud et al., (2010) could be applied. In this study more than 

1,600 phosphorylation sides whithin Medicago truncatula root proteins could be identified 

and have been made publicly available. However, this approach required a mass spectrometer 

including an ETD (Electron Transfer Dissociation)-function, which rarely is available in 

common mass spectormeters. 

Metabolomic analyses to investigate major metabolites and auxin levels during somatic 
embryogenesis 

The metabolome of an organism or a specific tissue includes "the complete complement of 

small molecules" like carbohydrates, lipids and secondary compounds below a molecular 

mass of 15 kDa (Hall, 2006). For plant tissues the presence of 100,000-200,000 of those small 

molecules has been estimated (Oksman-Caldentey & Inzé, 2004). The extracted metabolites 

can be separated via High Performance Liquid Chromatograpy (HPLC), analysed by mass 

spectrometry and subsequently identified by database search (Hall, 2006). Metabolomics is 

successfully applied to investigate different research objectives in plant science including not 

only the elucidation of physiological processes but also for biomarker discovery as well as 
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qualitative analysis of plants within breeding programmes (Hall, 2006). Robinson et al (2009) 

identified 47 metabolites within five embryognic lines of Pinus taeda which supposed to be 

markers for the prediction of their embryogenic productivity. They found metabolites 

correlated to stress response, mainly osmoprotectants like sorbitol, sugar alcohols arabitol, 

serine and proline to be more abundant in the cell line with decreased embryo productivity. 

For a better understanding of the physiology of somatic embryogenesis in Cyclamen a 

metabolic profiling would provide essential insights, especially within the carbohydrates and 

lipids metabolisms, which could not be investigated by the present transcriptomic or 

proteomic approaches. In addition, a metabolic profiling of auxin levels in the different stages 

of embryogenesis of Cyclamen could elucidate the dynamics of this plant hormone, its 

correlation to auxin amidohydrolase and auxin-storage conjugates. High levels of auxin-

amidohydrolase were typical for the older developmental stages of Cyclamen embryos and 

this enzyme also exhibited an increased abundance in embryos grown on high sucrose MS 

medium. High auxin levels are not characteristic for late embryos (e.g. Michalczuk et al., 

1992, see also chapter 1.3) and the (putative) increase of endogenous auxin evoked by auxin-

amidohydrolase in these developmental stages require further investigation in Cyclamen. 

4.3 Conclusions 
In this research work, major physiological aspects of embryogenesis in Cyclamen persicum 

were elucidated and factors promoting the quality of somatic embryos were identified. 

Additionally, the software GelMap was established and further developed to create, present 

and evaluate proteomic reference maps. Future studies should focus on further optimisation of 

the in vitro culture and unravel the newly arised fascinating questions regarding the 

physiology of embryogenesis. Furthermore, the extension of the plant proteomic portal by 

including high quality reference maps of various plant tissues and species designed with 

GelMap is desirable to support proteomic research. Therefore a more user defined upload file 

as well as the integration of GelMap generated maps into meta-databases would be helpful. 
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