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ABSTRACT           I   

ABSTRACT 

Metabolic engineering in apple: Overexpression of apple transcription factors involved 

in the regulation of the flavonoid pathway for increased disease resistance 

Khaled Al Rihani 

Apple (Malus domestica Borkh) is one of the most important fruit trees rich in flavonoids. the 

defensive role of flavonoids in apple has been studied before, but, there is a need to improve 

our knowledge of this role. 

The aim of the present study was to modify the flavonoid pathway in apple by overexpressing 

transcription factors involved in this pathway in order to analyse the hypothesis whether or 

not there will be an effect on plant disease resistance. The MdMyb9, MdMyb10 and MdMyb11 

transcription factor genes were used; these genes belong to a family of similar plant 

transcription factors and have been found to upregulate several genes of the  phenylpropanoid 

pathway. Therefore, the binary vector pJan harbouring those transcription factors individually 

was used for transformation experiments, with two apple cultivars ‗Holsteiner Cox‘ and 

‗Gala‘  respectively. The pJan vector contains the npt II gene as a selectable marker gene that, 

however, might cause some regulatory problems. 

Thus, in order to improve the selection system, the MdMyb10, MdMyb11 transcription factors 

were cloned into the binary vector pGIIMH35S, which contains the bar gene as a selectable 

marker gene, and the new constructs were used in new transformation experiments with only 

the ‗HC‘  cultivar. 

Leaf discs from 4-5 week old in vitro apple plants CVs.‗HC‘ and ‗Gala‘ were used as explants 

for Agrobacterium–mediated transformation. several shoots were regenerated after 

transformation experiments, which were healthily growing on media supplemented with 

50mg/l kanamycin when the pJan binary vector was used, and supplemented with PPT 

concentrations up to 10mg/l, when the pGIIMH35S binary vector was used. Shoots were 

rooted and transferred into pots, then transfeered to the greenhouse. the time course for each 

transformation experiment from explant to transfer the plants to the greenhouse was 3-4 

months. The transformation efficiencies ranged between 0.5 % and 1.2 %, with an average of 

0.4% for the whole ‗HC‘ transformation experiments. When eliminating the experiments, 

which did not render any transgenic shoots, the efficiency became 0.64%. The transformation 

efficiency obtained for the whole ‗Gala‘ transformation experiments ranged between 0.45% 

and 1.32%, with an average of 0.6%, but when eliminating the experiments, which did not 

render any transgenic shoots, the efficiency became 0.84 %. 



ABSTRACT           II   

Detection of transgenes was made by PCR using different primer combinations for MdMyb9, 

MdMyb10, MdMyb11, npt II and bar genes, respectively. The results clearly indicated and 

confirmed the successful integration of T-DNA into genomic DNA of ‗HC‘ and ‗Gala‘. Copy 

numbers and integration patterns were investigated using southern blot analysis with different 

probes (MdMyb9, MdMyb10 and MdMyb11). One copy was detected in all plants analysed 

(non-transgenic and transgenic) representing the homologous endogenus gene. In addition, the 

presence of an additional copy in most of transgenic plants testedwere observed, while two or 

four copies were also found in some transgenic plants. 

Leaf paint analysis showed positive results in the tested ‗HC‘ transgenic plants transformed 

using the constructs pGIIMH35S-MdMyb10, pGIIMH35S-MdMyb11, indicating a positive  

bar gene expression by BASTA
®
 herbicide detoxification. 

RT-PCR was performed to confirm transcription of the transgenes using different primer 

combinations for MdMyb9, MdMyb10, and MdMyb11. 

Real time PCR analysis was made to see mRNA expression levels in both non-transgenic and 

transgenic plants. The transcript was detected in both transgenic and non-transgenic plants, 

with dramatically increases up to 1261 and 847-fold, for MdMyb10 ‗HC‘ and ‗Gala‘ 

transgenic plants, respectively. Also dramatically increases up to 47 and 1451-fold were found 

in the case of MdMyb9 ‗HC‘ and ‗Gala‘ transgenic plants, respectively. Moderate increases up 

to 6 and 9.6- fold were observed in the case of MdMyb11 ‗HC‘ and ‗Gala‘ transgenic plants, 

respectively. 

HPLC analysis was carried out to detect the levels of different flavonoid compounds in both 

non-transgenic and transgenic plants. Some of the compounds analysed were induced and 

others were reduced, with an observed increase in the level of Cyanidin 3-O-galactoside  in 

the case of MdMyb10 ‗HC‘  transgenic plants, and an increase of  total contents of flavon-3-

ols and hydroxycinnamic acids in the case of MdMyb9, MdMyb11 transgenic plants from both 

cultivars used in this study. 

 

 

Keywords: Agrobacterium, Apple, flavonoids, transcription factors, Myb, overexpression
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ZUSAMMENFASSUNG 

Metabolic engineering im Apfel : Überexpression von Apfel  Transkriptionsfaktoren, 

die an der Regulation des Flavonoid Stoffwechselweges für verbesserte 

Krankheitsresistenz beteiligt sind. 

Apfel (Malus domestica Borkh.) gehört zu den fruchtragenden Bäumen, die reich an 

Flavonoiden sind und deren defensive Rolle am besten studiert worden ist, aber es gibt 

bezüglich der Regulation weiteren Erkenntnisbedarf.   

Das Ziel der vorliegenden Untersuchung war, herauszufinden ob durch Überexpression von 

Transcriptionsfaktoren der dadurch geänderte Flavonoid- Stoffwechsel im Apfel einen Einfluß 

auf die Krankheitsresistenz hat. Bei den Transkriptionsfaktoren handelt es sich um MdMyb9, 

MdMyb10 und MdMyb11. Diese Faktoren gehören zu einer Genfamilie zunächst die Gene im 

Phenylpropanoidstoffwechsel stark regulieren.  Als binärere Vektor wurde pJan benutzt, in 

den die Transkriptionsfaktoren einkloniert und mittels Agrobacterium tumefaciens-

vermittelten Gentransfer in die Apfelsorten ‗Holsteiner Cox‘ und ‗Gala‘ transformiert wurden. 

Der pJan Vektor enthält das npt-II Gen als Selektionsmarker, das jedoch regulatorische 

Probleme verursachen kann. Um das Selektionssystem zu verbessern, wurden MdMyb10 und 

MdMyb11 in den binären Vektor pGIIMH35S einkloniert, der das bar Gen als 

Selektionsmarker enthält und anschließend in die Apfelsorte Holsteiner Cox transformiert. 

Blattstücke vom 4-5 Wochen alten in-vitro Apfel  Pflanzen ‗HC‘ und ‗Gala‘ wurden als 

Explantate für Agrobacterium -vermittelten Gentransfer benutzt. Diese Explantate wurden auf 

Medium mit entweder 50mg/l Kanamycin für binäre Vektoren pJan und 10 mg/l PPT für 

pGIIMH35S selektioniert und neue Triebe regeneriert. Verschiedene Triebe wurden bewurzelt 

und anschließend im Gewächshaus eingetopft. Die Zeitspanne für die Transformation   betrug  

3-4 Monate.  Die Transformationseffizienz  lag zwischen 0.5%-1.2%, mit einem Durchschnitt 

von 0.4% für die gesamten `HC' Transformationen und zwischen 0,45%-1,32% mit einem 

Durchschnitt von 0,6% für die gesamten ‗Gala‘ Transformationen. Unter Nichtbeachtung der 

Transformationen ohne jede Bildung von transgenen Trieben ergaben sich Effizienzen von 

0,64% für ‗HC‘ und 0,84% für ‗Gala‘. 

Leaf paint analysis zeigte positive Ergebnisse in den getesteten  mit  pGIIMH35S-MdMyb10 

und pGIIMH35S-MdMyb11 transformierten ‗HC‘ Pflanzen. Dies deutet auf eine positive  

BASTA
®
 herbicide detoxification durch bar Genexpression hin. 

Der Nachweis positiver transgener Pflanzen erfolgte mittels PCR mit spescifischen 

Primerpaaren für  MdMyb9, MdMyb10, MdMyb11, npt II und bar. Die Resultate zeigen klar 
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die erfolgreiche Integration von T-DNA in das Genome von‗HC‘ und ‗Gala‘ 

Kopienanzahl und Integrationsmuster wurden mittels Southern blot Analyse und 

verschiedenen Proben (MdMyb9, MdMyb10 und MdMyb11) untersucht. Eine Kopie des 

homologen endogenen Gens wurde in allen Pflanzen (transgene und Nicht-transgene) und 

zusätzliche Kopien (2-4) für die meisten transgenen Pflanzen gefunden. 

Die Bestätigung von Transcripten für MdMyb9, MdMyb10, und MdMyb11 erfolgte mittels RT-

PCR und specifischen Primerpaaren.  

Veränderungen in der mRNA Expression konnte mit Real Time PCR in Nicht-transgenen und 

transgenen Pflanzen gezeigt werden. Für MdMyb10 mRNA in ‗HC‘ und ‗Gala‘ konnte ein 

sehr hoher Anstieg von 847-1261-fach gegenüber Nicht-transgenen Pflanzen beobachtet 

werden. Für MdMyb9 waren es 47-1451-fach und etwas moderater für MdMyb11 6-9,6- fach. 

Die durchgeführte HPLC Analyse für verschiedene flavonoide Stoffwechselprodukte in 

Nicht-transgenen und Transgenen Pflanzen ergab einen Anstieg der Cyanidin 3-O-galaktoside 

in transformierten MdMyb10 'HC' Pflanzen und eine Zunahme der totalen Menge von Flavon-

3-ols und Hydroxycinnamic acids in transformierten MdMyb9 'HC' als auch transformierten 

MdMyb11 ‗Gala‘ Pflanzen. Daneben konnten einige weitere Komponenten identifiziert 

werden, die entweder induziert oder reduziert worden sind. 

 

Stichworte: Agrobacterium,  Apfel , Flavonoide, Transkriptionsfaktoren, Myb, Überexpression
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1  INTRODUCTION 

Apple is one of the most important sources of flavonoids in human nutrition (approx: 1-5 

mg/100 g weight), after onion and tea (Hertog et al., 1993). The major flavonoid classes 

occurring in apple fruit are flavonols such as quercetin 3-glycosides, monomeric and 

oligomeric flavan-3-ols such as catechin, epicatechin and procyanidins, dihydrochalcones 

such as phloridzin, and in red-coloured cultivars, anthocyanins such as cyanidin 3- glycosides.  

Because of the high content of flavonoids in apple, research suggests that apples may reduce 

the risk of colon cancer, prostate cancer and lung cancer. Compared to many other fruits and 

vegetables, apples contain relatively low amounts of vitamin C as well as several of other 

antioxidant compounds. The fiber content, while less than in most other fruits helps to 

regulate bowel movements and may thus reduce the risk of colon cancer. They may also help 

with heart disease, weight loss and controlling cholesterol, as apples do not have any 

cholesterol, but fiber, which reduces cholesterol by preventing re-absorption. Apples are bulky 

for their caloric content like most fruits and vegetables 

(http://en.wikipedia.org/wiki/Apple_Tree).  

The defensive role of flavonoids in apple has been studied before, but there is a need to 

improve our knowledge of this role. 

Treutter (2006) reported that the presence of flavonoids in apple trees might account for 

efficient defence against insects and pathogens attack. 

With all of the beneficial effects of flavonoids in protecting plants from pests and pathogens, 

one may create the idea to stimulate their biosynthesis and accumulation in order to support 

the plant‘s defence mechanisms at the time and site of attack. Simmonds (2003) stated that at 

least ―in theory we could be creating a world of plants richer in flavonoids.‖ It is often 

described that pathogens induce the biosynthesis of resistance-related metabolites but also 

non-pathogenic strains are capable to elicit secondary metabolism (Yamamoto et al., 2000). 

Metabolic engineering is the tool that may improve our understanding the role of flavonoids 

in plant resistance and may be helpful for use of their beneficial effects. 

The flavonoids biosynthetic pathway was the first target for metabolic engineering since the 

early 1990s, as the pathway was well known and the results could easily be observed by 

changes in flower colour (Dixon and Steele, 1999; Forkmann and Martens, 2001). The first 

gene isolated from the flavonoid biosynthetic pathway was a CHS gene from parsley 

(Petroselinum hortense) (Kreuzaler et al., 1983). Transcriptional control of the representive 

structural genes has been most intensively studied in relation to the biosynthesis of 

http://en.wikipedia.org/wiki/Apple_Tree
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anthocyanins. 

Two classes of genes can be distinguished within the flavonoid pathway: (I) the structural 

genes encoding enzymes that directly participate in the formation of flavonoids, and (II) 

regulatory genes (transcription factors) that control the expression of the structural genes. The 

precursors of the synthesis of most flavonoids are malonyl-CoA and p-coumaroyl-CoA, which 

are derived from the carbohydrate metabolism and phenylpropanoid pathways, respectively. 

This present research proposes to use metabolic engineering as a tool to study the 

transcription factors involved in the flavonoid biosynthesis pathway in order to improve plant 

disease resistance by overexpressing three of transcription factors genes involved in this 

pathway (MdMyb9, MdMyb10, and MdMyb11). The effects of this engineered overexpression 

on phenotype, mRNA expression level, and on the content levels of some analysed flavonoids 

in this pathway, will be the parameters to better understand the role of flavonoids in plant 

defence.  
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2 LITERATURE REVIEW 

2.1 Importance of Apple Malus domestica, Origin and Taxonomy 

The apple tree, which originally came from southwestern of Asia, has spread to most 

temperate regions of the world. Over the centuries, many hybrids and cultivars have been 

developed, giving us the 7,500 varieties in the market today, were the major production come 

from the temperate zone of the Northern and Southern hemispheres (O´Rourke, 1994). 

According to the FAO (2009): http://faostat.fao.org  nearly 71.7 million tonnes of apples were 

produced in almost 5 million hectares in 2009; where China, USA, Turkey, Poland, and Italy 

were the major producers worldwide.  

Table.1. Main Apple producing countries in 2009 

Countries tonnes 

Argentina 1300000 

Austria 485609 

Belarus 431573 

Brazil 1220499 

Canada 413096 

China 31204163 

Egypt 550000 

France 2050000 

Germany 965100 

Hungary 575368 

Italy 2176200 

Morocco 400000 

Poland 2626273 

Romania 517491 

Russian Federation 1596000 

South Africa 702284 

Spain 552900 

Syrian Arab Republic 360978 

Turkey 2782365 

Ukraine 853400 

United States of 

America 4514880 

Uzbekistan 635000 

 

http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor 
 

 
 

 

 

http://faostat.fao.org/
http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor
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Table. 2. World apple yield and production in comparison to other fruits in 2009 

Item 
Area 

harvested 
Production (tonnes) Yield(Kg/Ha) 

Apples 4957192 71736938 144712 

Apricots 520455 3831823 73624 

Avocados 438325 3585156 81792 

Bananas 4843595 95595965 197365 

Berries Nes 123315 903676 73281 

Blueberries 72554 306383 42228 

Carobs 93253 180249 19329 

Cashewapple 681001 1851005 27180 

Cherries 369766 2150107 58147 

Citrus fruit, nes 1102360 7778197 70559 

Cranberries 22591 409523 181277 

Currants 114617 631108 55062 

Dates 1256953 7226947 57495 

Figs 448474 1184884 26420 

Fruit Fresh Nes 4095419 27627853 67460 

Fruit, tropical fresh nes 2431926 17673114 72671 

Gooseberries 26083 120996 46388 

Grapefruit (inc. pomelos) 250953 4496868 179191 

Grapes 7437141 66935199 90001 

Kiwi fruit 85983 1285553 149512 

Lemons and limes 1014635 13949600 137483 

Mangoes, mangosteens, 

guavas 4745782 35035641 73824 

Oranges 4192351 67601635 161249 

Papayas 413227 10213069 247153 

Peaches and nectarines 1655285 18579393 112242 

Pears 1739632 21907395 125931 

Persimmons 784252 3807843 48553 

Pineapples 852109 18448674 216506 

Plantains 5383032 34316133 63748 

Plums and sloes 2525048 10679206 42293 

Pome fruit, nes 12500 81400 65120 

Quinces 68420 497237 72674 

Raspberries 91103 483620 53084 

Sour cherries 259605 1358326 52322 

Stone fruit, nes 84557 479630 56722 

Strawberries 253900 4132352 162755 

Tangerines, mandarins, 

clem. 2159170 30587778 141664 

 
http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor 

 

http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor
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Fig.1. World map showing areas inclusive of apple production (colors referred to the top producers as 

a percentage, green: 100; yellow: 10; red: 1)   

http://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/2005apple.svg/1000px-

2005apple.svg.png 

Apple belongs to the Pomoideae family, subfamily Rosaceae, along with other important fruit 

crops such as pear (Pyrus communis L.), prune (Prunus domestica L.) and cherry (Prunus 

avium L.). Domesticated apple probably originated from the area around of the Himalaya 

Mountains on the border of Western China, in the former USSR and in Central Asia, and it is 

putatively a complex inter-specific hybrid, designated Malus domestica Borkh. (Korban and 

Skirvin, 1984; Phipps et al., 1990). 

Apples are propagated by two methods: grafting or budding. Apples are self-incompatible and 

must be cross-pollinated to develop fruit. Pollination management is an important component 

of apple culture. The basic number of chromosomes is X=17.  It has been possible to generate 

haploids by sexual crossing (Lespinasse et al. 1983), diploid and triploid forms are known.  

Most of the cultivated apple lines are diploids (2n = 2x = 34), self-incompatible, open-

pollinated, and display a juvenile period that ranges from 6 to 10 years or more (Korban and 

Chen, 1992).  

 

 

 

 

 

 

 

 

 

http://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/2005apple.svg/1000px-2005apple.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/2005apple.svg/1000px-2005apple.svg.png
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2.2 Flavonoids 

Flavonoids are a class of low-molecular-weight phenolic compounds that are widely 

distributed in the plant kingdom. More than 7,000 diverse flavonoids have been identified in 

different plant species (Ververidis et al., 2007). Flavonoids are found in most plant tissues. 

The most important sources for human nutrition are fruits, tea and soybean. Green and black 

tea contains about 25% percent flavonoids. Other important sources of flavonoids are apple, 

citrus fruits (Awad et al., 2000).  

These compounds frequently serve as pigments in plants, but are also involved in many 

biological interactions. Flavonoids are built upon a C6-C3-C6 flavone skeleton in which the 

three-carbon bridge between the phenyl groups is commonly cyclised with oxygen. Based on 

the degree of unsaturation and oxidation of the three-carbon segment, flavonoids are divided 

in several structural classes like flavanones, isoflavones, flavones, flavanols and 

anthocyanins. Most flavonoids reported in the literature are glycosides of a relatively small 

number of flavonoids aglycons, which are generally water-soluble and accumulate in the 

vacuoles of plant cells (Bohm, 1998; Seigler, 1998). 

2.2.1 Flavonoid biosynthetic pathway 

Flavonoids are synthesized via the phenylpropanoid pathway. Phenylalanine ammonia lyase 

(PAL) catalyzes the conversion of phenylalanine to cinnamate. PAL also shows activity with 

converting tyrosine to p-coumarate, albeit to a lower efficiency. The cinnamate 4-hydroxylase 

(C4H) catalyzes the synthesis of p-hydroxycinnamate from cinnamate and 4-coumarate: CoA 

ligase (4CL) converts p-coumarate to its coenzyme-A ester, activating it for reaction with 

malonyl CoA. The flavonoid biosynthetic pathway starts with the condensation of one 

molecule of 4-coumaroyl-CoA and three molecules of malonyl-CoA, yielding naringenin 

chalcone. This reaction is carried out by the enzyme chalcone synthase (CHS). Chalcone is 

isomerised to a flavanone by the enzyme chalcone flavanone isomerase (CHI). From these 

central intermediates, the pathway diverges into several side branches, each resulting in a 

different class of flavonoids. Flavanone 3- hydroxylase (F3H) catalyzes the stereospecific 3ß-

hydroxylation of (2S)-flavanones to dihydroflavonols. For the biosynthesis of anthocyanins, 

dihydroflavonol reductase (DFR)  catalyzes the reduction of dihydroflavonols to flavan-3,4-

diols (leucoanthocyanins), which are converted to anthocyanidins by anthocyanidin synthase 

(ANS). The formation of glucosides is catalyzed by UDP glucose-flavonoid 3-o-glucosyl 

transferase (UFGT) which stabilizes the anthocyanidins by 3-O-glucosylation (Harborne, 

1994; Bohm, 1998). 
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The  flavonoid pathway is presented in Fig.2, there is evidence that the enzymes involved in 

flavonoid metabolism might be acting as membrane-associated multienzyme complexes, 

which has implications on the overall efficiency, specificity, and regulation of the pathway 

(Stafford, 1991; Winkel-Shirley, 1999, 2001).  Studies of the flavonoid pathway range from 

classical genetic analysis of flower color inheritance patterns by Mendel, through the 

establishment of their chemical structures, to efforts to understand the factors involved in their 

biochemical synthesis (Bohm, 1998). 

 
 

Fig.2. Schematic representation of the flavonoid biosynthetic pathway. Enzymes involved in the 

pathway shown are CHS, chalcone synthase; CHI, chalcone isomerase; F3'H; F3'5'H; F3H, flavanone-
3β-hydroxylase; DFR; LDOX; FLS, flavonol synthase; LAR; ANR; and UFGT. Examples for the 

different hydroxylation patterns of the flavonoid B-ring are given for naringenin (4'-hydroxylated), 

eriodictyol (3', 4'-hydroxylated), and pentahydroxyflavone (3', 4', 5'-hydroxylated). (Bogs et al., 2006) 
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2.2.2 Flavonoids biosynthetic pathway in apple  

 

 

Fig.3. Flavonoids biosynthetic pathway in apple (Li et al., 2007) 
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2.2.3 Defensive role of flavonoids in plants 

The defensive role of flavonoids in plants was an important target since the twenties of the 

last century. The first demonstrated example of phenolics providing disease resistance was the 

case of onion scales accumulating sufficient quantities of catechol and protocatechuic acid to 

prevent onion smudge disease, Colletotrichum circinans. (Link et al., 1929). The coloured 

outer onion scales of resistant onion varieties contain enough of these two phenols to reduce 

spore germination of C. circinans to below 2%, while susceptible varieties lack these 

compounds and the spore germination rate is over 90% (Link et al., 1929). 

Treutter (2005) divided the defence-related flavonoids into two groups: ―preformed‖ and 

―induced‖ compounds. Plants in response to physical injury, infection, or stress synthesize the 

―induced‖ compounds. They may also be constitutively synthesized but, additionally, their 

biosynthesis is often enhanced under the influence of several types of stress. They may also 

occur only after infection or following several types of stress, as the so-called phytoalexins. 

The ―preformed‖ flavonoids are innate compounds, which are synthesised during the normal 

development of plants. Schlösser (1994) reviewed the involvement of preformed flavonoids in 

several host-pathogen interactions. These preformed compounds are often stored at 

strategically important sites where they may play a signalling and/or a direct role in defence. 

The relation between the localised accumulation of flavonoids and their activity is plausible 

with regard to the accumulation of UV-absorbing flavonoids in epidermal tissues. The site of 

accumulation seems to clearly indicate a beneficial function in other cases. Proof, however, is 

much more difficult to find. The occurrence of flavanols in the nuclei of several tree species is 

still highly debated (Feucht et al., 2004, 2005).  

2.2.3.1 Plant-microbe interactions 

Because of their in vitro antimicrobial activity, specific classes of flavonoid and isoflavonoid 

compounds have long been thought to play a role in plant–microbe interactions as part of the 

host plant‘s defensive arsenal (Dixon, 1999; Dixon and Harrison, 1990). Several flavonoids 

are exuded from plant roots and act as signals that induce the transcription of bacterial genes, 

where protein products are required for the infection process (Hungria and Stacey, 1997; 

Broughton  et al., 2003; Cooper, 2004); this is a significant action of flavonoids in improving 

plant growth and fitness. The expression of a symbiosis-related gene is also induced in a 

cyanobacterium by naringin (Cohen and Yamaseki, 2000). In root cells of Medicago 

trunculata colonised by Glomus versiforme elevated levels of PAL and CHS transcripts were 

detected (Harrison and Dixon, 1994). Ironically, flavonoids can also act as attractant 
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molecules for pathogenic micro-organisms such as Agrobacterium tumefaciens or 

Pseudomonas syringae and as inducers of their virulence genes (Mo et al., 1995). 

Several studies have also revealed new roles for isoflavonoids as signal molecules in plant-

microorganism interactions. For example, the isoflavonoid pterocarpans, maackiain and 

pisatin act as classical phytoalexins in the interaction between garden pea (Pisum sativum) 

and the fungal pathogen Nectria haematococca, and maackiain and pisatin detoxifying  

enzymes are fungal virulence factors  (Enkerli et al., 1998; Wasmann and Van Etten, 1996). 

The flavonol rutin is assumed to be one of the signalling molecules in Eucalyptus globulus 

ssp. Bicostata, promoting the hyphal growth of the ectomycorrhizal fungus Pisolithus sp. 

(Lagrange et al., 2001). 

Scervino et al. (2005) studied the effect of flavonoids on pre-symbiotic growth, such as spore 

germination, hyphal length, hyphal branching and the formation of auxiliary cells and 

secondary spores, of the arbuscular mycorrhizal fungi Gigaspora rosea, G. margarita, Glomus 

mosseae and G. intraradices was studied. According to the effect on each fungal growth 

parameter, the tested compounds could be classified to be genus and/or species specific or 

specific only for a certain developmental stage of pre-symbiotic growth.  

2.2.3.2 Plant-pathogen interactions 

The possibility that phenolic oxidation products could have an antifungal action by 

polymerizing and forming a protective seal on cell walls has been proposed by Beckman et al. 

(1974) who showed that artificial membranes of calcium oxalate-pectin, that had been infused 

with the oxidation products of 3-hydroxy-tryptamine, were resistant to degradation by 

Fusarium oxysporum f. sp. cubense. 

Grayer and Harborne (1994) in their survey of antifungal compounds from higher plants 

found that distinction is made between constitutive antifungal agents and phytoalexins, which 

are specifically formed in response to fungal inoculation.  

Skadhauge et al. (1997) in their study of barley mutants showed that proanthocyanidins and 

even small amounts of dihydroquercetin are involved in the defence against Fusarium species. 

They explained the mechanisms and the role of barley flavonoids in resistance against 

Fusarium might be related to the crosslinking of microbial enzymes, inhibition of microbial 

cellulases, xylanases, pectinases, and– chelation of metals necessary for enzyme activity. 

Formation of a hard, almost crystalline structure as a physical barrier is the result of response 

against pathogen attack.  

Padmavati et al. (1997) reported that the fungal blast pathogen Pyricularia oryzae shows a 



LITERATURE REVIEW   11 

 

 

differential sensitivity to growth inhibition by naringenin, kaempferol, quercetin and 

dihydroquercetin, in decreasing order. Naringenin also inhibited the spore germination of the 

bacterial blight pathogen Xanthomonas oryzae pv. Oryzae. 

Beckman (2000) reviewed the possible role of preformed phenolics in periderm formation in 

wilt disease resistance. He described some examples where phenolic compounds, among them 

flavonoids, are stored in specialised cells from where they can be infused into attacked tissue, 

such as xylem vessels. Such leaching is probably involved in the hypersensitive response and 

programmed cell death as common mechanisms of pathogen defence. 

On the other hand, if pre-existing antifungal phenolics are not sufficient to stop the 

development of the infectious process, plant cells usually respond by increasing the level of 

pre-existing antifungal phenols at the infection site, after an elicited increased activity of the 

key enzymes (PAL and chalcone synthase) of the biosynthetic pathway  (Yedidia et al.,2003). 

Quercetin and its derivatives inhibited the growth of not only Arabidopsis thaliana but also of 

the fungus Neurospora crassa (Tomita-Yokotani et al. 2003; Parvez et al., 2004). 

Reported research using an alfalfa split root system provides evidence for systemic 

suppression of nod gene-inducing flavonoid compounds after initial nodulation as a means of 

inhibiting new infections (Catford et al., 2006)  

2.2.3.3 Plant-insect interactions 

The role of flavonoids in plant-insect interactions is widely accepted. Moreover, a popular 

concept assumes that plant secondary metabolites, among them flavonoids, evolved for 

defence against herbivores (Feeny, 1976). 

The biochemical basis for nematode resistance of banana was found to depend on flavan-3, 4-

diols and condensed tannins (Collingborn et al., 2000). 

In order to analyze the effect of flavonoids on Tenebio molitor larvae growth, (Sosa et al., 

2000)  have investigated 20 flavonoids isolated from Argentina native plants and others, 

commercially purchased. During the study, each flavone was incorporated into the feed at a 

concentration of 6.0 μmol/g. Although all flavones slightly diminished the larval weight after 

60 days of treatment, results indicated that quercetin was the most effective growth inhibitor 

for T. molitor larvae. 

An inheritance study with groundnut provided good evidence that the flavonols quercetin and 

its glycoside rutin are related to larval mortality of the tobacco armyworm Spodoptera liture 

(Mallikarjuna et al., 2004). The species Arachis hypogaea is a non-resistant host, whereas the 

wild species A. kempff-mercadoi is resistant due to its flavonols. Feeding experiments with 

http://www.thieme-connect.com/ejournals/html/plantbiology/doi/10.1055/s-2005-873009#R625-25
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interspecific hybrids revealed a positive correlation between the flavonol content of the plants 

and larval mortality. 

In order to determine how flavonoids can confer resistance to crops against insect attack, 

Lattanzio et al. (2000) found a positive relationship between resistance/susceptibility 

characteristics against aphids and flavonoid glycoside content of cowpea lines. The resistant 

lines showed a flavonoid content higher than that of susceptible ones. In vitro bioassays 

proved that, among endogenous flavonoids, quercetin and iso-rhamnetin possess a good 

inhibitory aphid reproduction effect.  

However, it is not a simple equation as to which of the partners may gain most benefit 

(Simmonds, 2003). There are insects, which can sequester plant flavonoids in their body 

cuticle as a defence against predators, or into their wings to attract mates (Burghardt et al., 

2000).  

Flavonoids can also have negative effects on non-adopted insects or may reduce the nutritive 

value of the food. They may behave as feeding deterrents, as digestibility reducers and as 

toxins. Several insects are sensitive to flavonoids or are deterred by flavonoids in feeding tests 

(Brignolas et al., 1998; Thoison et al., 2004; Chen et al., 2004).  

However, flavonoids do not simply act as broad spectrum defensive mechanisms (Forkner et 

al., 2004; Nykänen and Koricheva, 2004). 

Sosa et al. (2004) described a physiological mechanism which flavonoid exudates could elicit 

an avoidance reaction in herbivores. The exudates of Cistus ladanifer L. contains apigenin 

and 3, 7-di-O-methylkaempferol, which inhibit the skeletal muscle sarcoplasmic reticulum 

(Ca
2+

-ATPase), thus impairing mouth skeletal relaxation.  

Thirty-seven flavonoid compounds (9 flavones, 18 flavonols, 8 flavanones, and 2 flavanonols) 

were investigated for their effect on feeding choice with Bertha Armyworm (Mamestra 

configurata Walker; BAW). Feeding choice was dependent upon subtle differences in 

biochemical structure. Unsubstituted flavone and flavanone were the strongest feeding 

deterrents in the choice bioassay, while 7, 40-dihydroxyflavone and dihydroquercetin 

stimulated BAW to feed. The constitutive flavonoids of Brassica napus, isorhamnetin-3-

sophoroside-7-glucoside and kaempferol-3,7-diglucoside, were effective deterrents when 

supplemented at concentrations higher than endogenous levels. In a no-choice bioassay, 

flavone reduced both larval weight as well as larval and pupal development time (Onyilagha 

et al., 2004). 

Misra et al. (2010) have expressed an Arabidopsis (Arabidopsis thaliana) transcription factor, 

AtMyb12, in tobacco (Nicotiana tabacum), which resulted in enhanced expression of genes 

http://www.thieme-connect.com/ejournals/html/plantbiology/doi/10.1055/s-2005-873009#R625-20
http://www.thieme-connect.com/ejournals/html/plantbiology/doi/10.1055/s-2005-873009#R625-44
http://www.thieme-connect.com/ejournals/html/plantbiology/doi/10.1055/s-2005-873009#R625-44
http://www.thieme-connect.com/ejournals/html/plantbiology/doi/10.1055/s-2005-873009#R625-93
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involved in the phenylpropanoid pathway, leading to severalfold higher accumulation of 

flavonols. Global gene expression and limited metabolite profiling of leaves in the transgenic 

lines of tobacco revealed that AtMyb12 regulated a number of pathways, leading to flux 

availability for the phenylpropanoid pathway in general and flavonol biosynthesis in 

particular. The tobacco transgenic lines developed resistance against the insect pests 

Spodoptera litura and Helicoverpa armigera due to enhanced accumulation of rutin.  

2.2.3.4 Plant-plant interactions  

Antimicrobial effects of flavonoids have been described to participate in allelopathic plant-

plant interactions (Chou, 1999; Inderjit and Gross, 2000). Their roles and mode of action are 

not yet fully understood.  

Bais et al. (2003) identified catechin as a phytotoxic allelochemical, they found that 

Centaurea maculosa exudes catechin from its roots and inhibits growth and seed germination 

of Centaurea diffusa and Arabidopsis thaliana. The flavanol triggers a wave of reactive 

oxygen species, which leads to a Ca
2+

 signalling cascade and to the death of the root system. 

Deng et al. (2004) found that the growth reduction found in some gramoineous plants (maize, 

rice, and Echinochloa oryzicola) caused by the flavanone naringenin is attributed to the 

inhibition of 4-coumarate CoA ligase and therefore of lignification. 

Subramanian et al. (2007) showed that flavonoids can play multiple roles at different stages of 

nodulation. Flavonoids are thought to serve as signal molecules in the rhizosphere to 

concentrate compatible rhizobia and induce Nod signal biosynthesis. 

Zhang et al. (2009) silenced different flavonoid-biosynthesis enzymes to generate transgenic 

Medicago truncatula roots with different flavonoid profiles. Silencing of chalcone synthase, 

the key entry-point enzyme for flavonoid biosynthesis led to flavonoid-deficient roots.  

Silencing of isoflavone synthase and flavone synthase led to roots deficient for a subset of 

flavonoids, isoflavonoids (formononetin and biochanin A) and flavones (7, 4′-

dihydroxyflavone), respectively. 

Supplementation of roots with the flavonol kaempferol (an inhibitor of auxin transport), in 

combination with the use of flavone pre-treated Sinorhizobium meliloti cells, completely 

restored nodulation in flavonoid-deficient roots. In addition, Sinorhizobium meliloti cells 

constitutively producing Nod factors were able to nodulate flavone-deficient roots, but not 

flavonoid-deficient roots. These observations indicated that flavones might act as internal 

inducers of rhizobial nod genes, and that flavonols might act as auxin transport regulators 

during nodulation. Both these roles of flavonoids appear critical for symbiosis in M. 
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truncatula (Zhang et al., 2009). 

2.2.4. Defensive role of flavonoids in apple (M. domestica) 

The presence of preformed flavanols in apple leaves may account for efficient defence against 

the fungus Venturia inaequalis (Picinelli et al., 1995; Treutter and Feucht, 1990). Resistant 

apple cultivars have a higher content of hydroxycinnamic acids and flavanols (Picinelli et al, 

1995). 

However, it is not yet clear if the constitutive level of flavanols is involved in defence since, 

after scab infection, a few cells surrounding the infection site accumulate flavanols (Mayr and 

Treutter, 1998). It was, furthermore, shown that the inhibition of the enzyme phenylalanine 

ammonia-lyase led to severe scab symptoms on leaves of a resistant cultivar (Mayr et al.,  

1997). A transient inhibition of the flavanone 3-hydroxylase (FHT) in apple leaves by 

treatment with the dioxygenase inhibitor Prohexadione-Ca
®
 induced several changes in their 

flavonoid composition. The most pronounced change is an accumulation of flavanones, which 

are further metabolized through an unusual pathway towards the 3-deoxycatechins (Römmelt 

et al., 1999, 2003; Halbwirth et al., 2003). 

Lattanzio et al (2001) have shown that in cold stored ‗Golden Delicious‘ apples, when rot 

caused by Phlyctaena vagabunda appears in infected tissues surrounding the rotten zone, a 

general increase in phenolic levels was observed, as compared to a healthy tissue of the same 

fruit. 

Environmental conditions (N-fertilisation) favouring the growth of apple trees inhibited their 

flavonoid biosynthesis and increased the susceptibility to the pathogen (Rühmann et al., 2002; 

Rühmann and Treutter, 2003; Leser and Treutter, 2005). Concomitant with this altered 

flavonoid pathway, the susceptibility of apple leaves to scab (Venturia inaequalis), as well as 

to the pathogenic bacterium Erwinia amylovora, decreased (Bazzi et al., 2003).  

Hamauzu (2006) reported that phloridzin also plays a role in host resistance to pathogens. He 

suggested that phloridzin can be hydrolysed in vivo by various fungi such as V. inaequalis to 

give phloretin, which in turn, is degraded to phloroglucinol, phloretic acid and p-

hydroxybenzoic acid, which inhibits the development of the fungus.    

Phenolic compounds were measured in leaf tissues of apple cvs ‗Jonagold‘ and ‗Golden 

Delicious‘. Healthy leaves and leaves infected by Venturia inaequalis were analyzed by high 

performance liquid chromatography. Infection by V. inequalis caused an accumulation of 

phenolic compounds in infected leaves with a 1.4 to 6.2- fold increase of flavonols, a 2 to 6-

fold increase of chlorogenic acid (Mikulic-Petkovšek et al., 2008). 
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The apple leaves and fruits infected with the Venturia inaequalis fungus enhanced the 

metabolism of phenolics at the infection sites, especially in the boundary tissue. The infected  

tissue  showed in comparison to the healthy tissue up to 7.6 times more hydroxycinnamic 

acids, up to 2.6 times more flavan-3-ols and up to 2.9 times higher values of flavanols. The 

content level of total phenolics in the infected tissue was 1.3–2.4 times higher than in the 

healthy leaves and fruit (Mikulic-Petkovšek et al., 2009). 

Flachowsky et al. (2010) reported that transgenic apple plants cv. ‗Holsteiner Cox‘ 

overexpressing the Leaf Colour (Lc) gene from maize (Zea mays) exhibit strongly increased 

production of anthocyanins and flavan-3-ols (catechins, proanthocyanidins). Those plants 

showed higher resistance against fire blight caused by the bacterium Erwinia amylovora, and 

against scab caused by the fungus Venturia inaequalis.  

2.3 Metabolic engineering  

Metabolic engineering in plants involves the modification of endogenous pathways to 

increase flux towards particularly desirable molecules. In some cases, the aim is to enhance 

the production of a natural product, whereas in others it is to synthesize a novel compound or 

macromolecule. There are three basic goals of metabolic engineering in plants: the production 

of more of a specific desired compound, the production of less of a specific unwanted 

compound, and the production of a novel compound (Verpoorte, 2000). Use of recombinant 

DNA distinguishes metabolic engineering from classical biochemical genetics   

2.3.1 Metabolic engineering and flavonoids pathway 

The metabolic engineering of flavonoid pathways began in 1987. In the first successful 

metabolic engineering experiments of the flavonoid pathway in plants, the maize A1 gene 

encoding dihydroflavonol 4-reductase (DFR) was introduced in a chemogenetically 

characterized mutant line of Petunia hybrida accumulating kaempferol(Km) and 

dihydrokaempferol (DHK) in flowers, giving rise to a new orange Petunia phenotype not 

found in this species (Forkmann and Rahnau, 1987;  Meyer et al., 1987). 

As the Flavonoid biosynthetic pathway was well known and the results could easily be 

observed by changes in flower colour (Dixon and Steele, 1999).  Numerous experiments have 

been performed involving the overexpression of various pathway genes, aiming, for example, 

to produce new flower colours by introducing new compounds in the plant.   

Because of their antioxidant activity, higher levels of anthocyanins and flavonoids in food are 

an interesting objective. Much work has focused on tomato. Chalcone isomerase (CHI), an 
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early enzyme of the flavonoid pathway, was found to be the key to increase flavonol 

production (Muir et al., 2001).  Overexpression of the Petunia CHI gene led to a 78-fold 

increase of flavonoid levels in the tomato peel. Upon processing such tomatoes, a 21-fold 

increase of flavonols in tomato paste was achieved, if compared with non-transgenic controls.  

In legumes Isoflavones act as phytoalexins, that is, the biosynthesis of these antimicrobially 

active compounds is induced by microbial infection. These compounds could be produced in 

Arabidopsis, tobacco plants and maize, which normally lack the ability to synthesize these 

compounds, by overexpression of isoflavone synthase, a cytochrome P450 enzyme (Yu et al., 

2000; Jung et al., 2000). The production of the isoflavones depends on the availability of 

precursors from the phenylpropanoid pathway.  

Naturally, occurring flavonoid mutants and variants or genetically transformed plants have 

been important tools in several investigations clarifying the functions of the flavonoid 

pathway genes (Shirley et al.,1995; Tanaka et al., 1998). The expression of flavonoid pathway 

genes in fruit tissues has been studied on grape (Vitis vinifera) (Boss et al., 1996; Kobayashi 

et al., 2001), citrus (Citrus unshiu Marc.) (Moriguchi et al., 2001), and strawberry plants 

(Fragaria spp.) (Manning, 1998; Aharoni et al., 2001).  

The scarcity of studies in this area may be due to a difficulty caused by the special features of 

the fruit tissues, e.g. the richness of different secondary metabolites and RNases, which may 

hinder the easy application of the molecular methods. 

The flavonoid biosynthetic pathway has been almost completely elucidated. Many of the 

structural and some of the regulatory genes have been cloned from several model plants, 

including maize, snapdragons, tobacco, Petunia and Arabidopsis (Holton and Cornisch, 1995). 

2.4 Transcription factors  

Transcription factors (TFs) are sequence-specific DNA binding proteins that are capable of 

activating and/or repressing transcription. In particular, they interact with the general 

transcription machinery, chromatin remodelling proteins and/or other transcription factors. 

They can act as activators or repressors of gene expression, mediating either an increase or a 

decrease in the accumulation of messenger RNA. Transcription factors have been isolated and 

characterized for two plant metabolic pathways, leading to biosynthesis of flavonoids and of 

terpenoid indole alkaloids (TIA), respectively. 
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Fig.4. Schematic diagram of the amino acid sequence (amino terminus to the left and carboxylic acid 
terminus to the right) of a prototypical transcription factor which contains (1) a DNA-binding domain 

(DBD), (2) signal sensing domain (SSD), and a transactivation domain (TAD). 

(http://en.wikipedia.org/wiki/Transcription factor )  

 

2.4.1 Transcription factors involved in flavonoids pathway 

Transcription factors (Regulatory proteins) of different families govern the synthesis of 

favonoids.  

Early work on pathway transcription factors in plants began with the discovery of the maize 

flavonoid pathway regulators Colorless1 (C1) gene belonging to Myb family and Red(R) gene 

belonging to bHLH family.  Within a few years of their discovery, C1 and R were shown to 

induce flavonoid gene expression and anthocyanin accumulation in transgenic plants (Goff et 

al., 1990). 

Muir et al., (2001) overexpressed CHI, which encodes chalcone isomerase, an early flavonoid 

pathway enzyme that is expressed at low levels in tomato fruit. In a second experiment, (Bovy 

et al., 2002) overexpressed the maize anthocyanin regulators Leaf colour (Lc) and C1 in a 

fruit-specific manner. As anticipated, each of these approaches resulted in increased flux 

through the flavonoid pathway in the fruit, although rather unexpectedly, fruit flavonols rather 

than anthocyanins increased. In a striking contrast, overexpression of CHI enhanced flavonol 

production only in the peel, whereas Lc and C1 caused an increase throughout the fruit.  

Yu et al. (2003) exploited the effect of R and C1 on early flavonoid pathway gene expression 

in soybean. They used CRC, a fusion of C1 and R, rather than separate gene constructs to 

boost substrate availability for isoflavone synthase (IFS), which catalyses the first committed 

step into isoflavonoid biosynthesis. 

2.4.1.1 The Myb domain factors 

Myb factors represent a family of proteins that include the conserved Myb DNA-binding 

domain. The first Myb gene identified was the ‗oncogene‘ v-Myb derived from the avian 

myeloblastosis virus (Klempnauer et al., 1982). Evidence obtained from sequence 

comparisons indicates that v-Myb may have originated from a vertebrate gene, which mutated 

once, as it became part of the virus. Many vertebrates contain genes related to v-Myb , c-Myb, 

a-Myb and b-Myb  (Westen, 1998) and other similar genes have been identified in insects, 

http://en.wikipedia.org/wiki/Transcription%20factor
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plants, fungi and slime moulds (Lipsick, 1996). 

Myb transcription factors have been isolated from various plant species. The best-

characterized plant Myb genes involved in anthocyanin biosynthesis are C1 and PL in maize. 

In maize, the accumulation of anthocyanin in competent tissues requires the presence of either 

C1 in the seed or PL in the plant tissue (Cone et al., 1986). Moreover, C1 and PL induce the 

expression of multiple anthocyanin biosynthetic genes such as CHS, DFR and UFGT (Cone et 

al., 1986). 

Myb transcription factors are potent candidates for regulatory factors in the upstream cascade 

because the expression of anthocyanin biosynthetic genes is thought to be under the control of 

Myb transcription factors (Stracke et al., 2001).  

Accordingly, Myb-like proteins with one repeat have been designated as ‗Myb1R‘, those with 

two repeats as ‗R2R3Myb‘ and those with three repeats as ‗Myb3R‘ (Stracke et al., 2001). 

Among these Myb transcription factors, R2R3Myb constitutes the largest Myb gene family in 

plants. In Arabidopsis thaliana, 125 distinct R2R3Myb genes have been detected within the 

complete genome sequence (http://www.ncbi.nlm.nih.gov/pubmed/11130711 Arabidopsis 

Genome Initiative 2000)  

Up to now, no or only few functional data are available for the overwhelming majority of 

plant Myb genes. The functional data available indicate that Myb transcription factors are 

involved in a wide array of cellular processes. These include development (Oppenheimer et 

al., 1991), signal transduction (Bendar and Fink, 1998), plant disease resistance (Daniel et al., 

1999), cell devision (Hirayama and Shinozaki, 1996) and secondary metabolism (Borevitz et 

al., 2000). 

2.4.1.2 The BHLH domain factors 

Basic helix-loop-helix (bHLH) transcription factors represent a family of proteins that contain 

a bHLH domain, a motif involved in binding DNA. Regulation of the structural genes 

involved in anthocyanin biosynthesis is directly controlled by a combination of two distinct 

transcription factor families with homology to the protein encoded by the vertebrate proto-

oncogene c-Myb, and the vertebrate basic-helix-loop-helix (bHLH) protein encoded by the 

proto-oncogene c-Myc, respectively (Mol et al., 1998). 

Stracke et al. (2001) mentioned that the common denominators in the regulation of 

anthocyanin biosynthetic genes are Myb transcription factors; basic helix–loop–helix (bHLH) 

called also (Myc) transcription factors and a WD40 protein. Yeast two-hybrid assays indicate 

that Myb, bHLH and WD40 can interact to form a protein with a complex three-dimensional 

http://www.ncbi.nlm.nih.gov/pubmed/11130711
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structure.  

Three bHLH genes especially important for flavonoid synthesis have been identified:  EGL3, 

GL3 and TT8, and the triple mutant egl3-1 gl3- 1 tt8-1 are essentially phenotypically 

indistinguishable from ttg1 mutants (Zhang et al., 2003) 

However, Myb transcription factors such as AtPAP1, AtPAP2, PhAN2, LeANT1 and GMyb10 

are sufficient for ectopic activation of anthocyanin biosynthetic genes in transgenic plants,  

possibly through the formation of complexes with endogenous bHLH and WD40 

(Quattrocchio et al. 1999;  Borevitz et al., 2000; Elomaa et al., 2003; Mathews et al., 2003). 

Moreover, a retrotransposon insertion in VvMybA1 is the molecular basis of the loss of 

pigmentation in a white grape cultivar of Vitis vinifera (Kobayashi et al., 2004). These results 

indicated that modulation of Myb gene was enough to cause dramatic changes in anthocyanin 

accumulation; in other words, Myb transcription factors appear to be a dominant factor in 

anthocyanin accumulation. 

The  discovery of the proanthocyanidin (condensed tannin) pathway gene regulators 

transparent testa 2 /TT2 which  encodes an R2R3Myb domain protein and TT8 which encodes 

a bHLH protein has opened the possibility of manipulating this branch of the flavonoid 

pathway (Nesi et al., 2000, 2001). Overexpression of TT2 was shown to be sufficient to 

induce the accumulation of condensed tannin in tissues in which TT8 is expressed (Nesi et al., 

2000). This result suggests that concurrent overexpression of TT2 and TT8 could be the key to 

controlling proanthocyanidin accumulation in other tissues. 

Gonzalez et al. (2008) studied the regulation of the anthocyanin biosynthetic pathway by the 

TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings, they demonstrate that 

overexpression of Myb113 or Myb114 transscription factors results in substantial increases in 

pigment production, and pigment production in these overexpressors remains bHLH-

dependent. 

2.4.2 Transcription factor gene used in genetic transformation of apple M. 

domestica to regulate of flavonoids pathway 

Takos et al. (2006b) isolated a gene encoding an R2R3Myb transcription factor from apple 

cultivar ‗Cripps Pink‘ and designated it. They conclude that MdMyb1 co-ordinately regulates 

genes in the anthocyanin pathway and the expression level of this regulator is the genetic 

basis for apple skin colour. 

Ban et al. (2007) isolated and characterized a Myb transcription factor gene (MdMybA) from 

apple skin. Characterization of MdMybA demonstrated that MdMybA expression was 

specifically regulated depending on the tissue and cultivar/ species. 
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The Lc gene was transferred into the M. domestica cultivar Holsteiner Cox via Agrobacterium 

tumefaciens-mediated transformation, which resulted in enhanced anthocyanin accumulation 

in regenerated shoots.  Lc overexpression in M. domestica resulted in enhanced biosynthesis 

of specific favonoid classes (Li et al., 2007). 

Lea et al. (2007) in their work show that three transcription factors, PAP1, PAP2 and GL3 

known to be involved in the regulation of flavonoid synthesis respond to nitrogen deficiency 

by enhanced expression levels. In 4-day-old WT seedlings also a fourth transcript Myb12 is 

significantly enhanced. GL3 and PAP2 transcripts showed the most profound responses to 

nitrogen depletion and their genes are therefore likely targets in the signal transduction chain 

responding to nitrogen deficiency and resulting in increased accumulation of flavonoids.  

2.5 MdMyb9 gene 

The MdMyb9 belongs to family of plant transcription factors that regulate the synthesis of 

anthocyanins or the anthocyanin biosynthetic pathway.  

Chagné et al. (2007) chose it as one of four genes homologous to the production of 

anthocyanin pigments 1 (PAP1) gene (MdMyb10, transparent testa 2/TT2 (MdMyb9), a colour 

inhibitor (MdMyb17) and a colour activator (MdMyb12). 

2.6 MdMyb10 gene 

The MdMyb10 a gene with sequence similarity to the Myb-class of transcription factors and 

known to regulate the biosynthetic steps in anthocyanin metabolism has been described and 

functionally characterized (Takos et al., 2006b; Espley et al., 2007).  

Expression of several genes with sequence similarity to anthocyanin biosynthetic genes has 

been associated with red skin colour in apple M. domestica (Honda et al., 2002; Takos et al., 

2006a). The MdMyb10 gene showed high levels of expression in red-fleshed fruit and induced 

red colour when transiently infiltrated into tobacco leaves. Red foliage was also observed 

when a cDNA of the MdMyb10 was over-expressed in transgenic 'Royal Gala' apple (Espley 

et al., 2007). Recently, a gene with over 99% sequence identity to MdMyb10 (MdMyb1) was 

shown to co-segregate with fruit skin colour in a population of 136 plants (Takos et al., 

2006b), demonstrating that allelic variation of MdMyb10-like genes are associated with alleles 

that influence anthocyanin distribution.   

Chagné et al.(2007) have performed candidate gene mapping in a fruit tree crop and have 

provided genetic evidence that red colouration in the fruit core as well as red  foliage are both 

controlled by a single locus named Rni. They have shown that the transcription factor 

MdMyb10 may be the gene underlying Rni as there were no recombinants between the marker 
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for this gene and the red phenotype in a population of 516 individuals. Associating markers 

derived from candidate genes with a desirable phenotypic trait has demonstrated the 

application of genomic tools in a breeding programme of a horticultural crop species.  

Lin-Wang et al. (2010) used gene specific primers to show that the three Myb activators of 

apple anthocyanin (Myb10/Myb1/MybA) are likely alleles of each other. Myb transcription 

factors, with high sequence identity to the apple gene were isolated from across the rosaceous 

family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, and strawberry). Key 

identifying amino acid residues were found in both the DNA-binding and C-terminal domains 

of these Mybs. The expression of these Myb10 genes correlates with fruit and flower 

anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these 

Mybs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while 

over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins.  

Gao et al. (2011) introduced the MdMyb10 transcription factor gene, into Arabidopsis and 

analyzed its function to osmotic stress in transgenic plants. Under high osmotic stress, the 

MdMyb10 over-expressing plants exhibited growth better than wild-type plants. The elevated 

tolerance of the transgenic plants to osmotic stress was confirmed by the changes of 

flavonoids, chlorophyll, malondialdehyde and proline contents. These results preliminarily 

showed that the MdMyb10 could possibly be used to enhance the high osmotic-tolerant ability 

of plants. 

2.7 MdMyb11 gene 

MdMYB11 belongs to a similar family of plant transcription factors and has been found to 

upregulate several genes of the phenylpropanoid pathway. It has been shown that it is a 

transcriptional regulator of chalcone synthase and flavonols synthase in plants. Myb11 

belongs to the subgroup 7 of the R2R3Myb family, and other members of this subgroup are 

Myb12 and Myb111 (Stracke et al., 2001). 

Stracke et al. (2007) determined the regulatory potential of these three transcription factors. 

They used a combination of genetic, functional genomics and metabolite analysis approaches 

for Myb11, Myb12 and Myb111genes, show a high degree of functional similarity and display 

very similar target gene specificity for several genes of flavonoid biosynthesis, including 

chalcone synthase, chalcone isomerase, flavonone 3-hydroxylase and flavonol synthase 1. The 

analysis of the closely related Myb genes, AtMyb11, AtMyb12, and AtMyb111 has been 

reported to show that in developing seedlings AtMyb12 and AtMyb111 are mainly responsible 

for the control of flavonol biosynthesis in roots and cotyledons, respectively, but no 
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significant differences in flavonol accumulation were detected in their AtMyb11 mutant 

compared with wild type (Stracke et al., 2010). 

Petroni et al. (2008) reported that knock-out AtMyb11-I mutants and RNAi plants germinate 

faster, show a faster hypocotyl and primary root elongation, develop more lateral and 

adventitious roots, exhibit a faster development of the inflorescence and initiate more lateral 

inflorescences and fruits than wild-type plants. Plants overexpressing AtMyb11 displayed the 

opposite phenotype. De novo formation of root meristemoids and, consequently, macroscopic 

roots from thin cell layers cultured in vitro was enhanced in explants from AtMyb11-I and 

reduced in those from lines overexpressing AtMyb11. These findings indicate that AtMyb11 

modulates overall growth in plants by reducing the proliferation activity of meristematic cells 

and delaying plant development.  

The expression pattern of three genes was evaluated during all stages of fruit development by 

qRT-PCR and the results compared to those obtained from microarray analysis. The analysed 

MdMyb11 show nearly the same expression pattern using the two approaches. MdMyb11 is 

characterised by a progressive decrease of expression from May to September the 

biosynthetic pathways of two classes of flavonoids, flavonols and anthocyanins, are well 

known (Mehrtens et al. 2005; Newcomb et al. 2006). 

Chalcone synthase I, chalcone-flavone isomerase and putative flavanone 3-beta-hydroxylase 

are three enzymes belonging to this pathway. The expression level of those enzymes decreases 

from May to September with the exception of the flavanone 3-beta-hydroxylase for which an 

increase in the transcript level is observed. cDNA microarray analysis showed a remarkable 

decrease of the MdMyb11 expression during fruit ripening. Since transcription factors are key 

elements in controlling biosynthetic pathways (Soglio et al., 2009).  

Feller et al. (2011) classified MdMyb11 as one of several genes that play a role in 

anthocyanins biosynthetic pathwy. 

2.8 Apple transformation 

Genetic transformation of plants is the process where a defined fragment of DNA (a gene or a 

set of genes) is introduced and integrated into the genome of the plant, avoiding sexual 

reproduction. Genetic engineering enlarges the readiness of genes considerably, limited in 

conventional breeding programs, since genes isolated from other plants, animals or 

microorganisms can be transferred to plants (Brasileiro and Dusi, 1999). Apple was an early 

target for the emerging recombinant DNA technology. Transformation of M.domestica is 
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nowadays a common practice in several laboratories and the protocols have been constantly 

improved to enhance the transformation efficiency.  

The most widely used method for introducing foreign genes into dicotyledoneous plants is the 

Agrobacterium tumefaciens mediated transformation. In this process, Agrobacterium 

tumefaciens, a disarmed Ti binary vector, and leaf fragments or callus cultures are the key 

component for an efficient transformation. Most studies started from wounded leaf sections, 

but apical intermodal explants from etiolated `Royal Gala′ apple shoots has produced a higher 

efficiency in producing transgenic shoots (Liu et al., 1998). 

James et al. (1989) described an agrobacterium-mediated method to produce transgenic apple 

(Malus pumilla Mill) plants with a normal phenotype except for a somewhat reduced capacity 

to root. 

James et al. (1993) studied a number of factors affecting the transcription of the vir genes of 

Agrobacterium tumefaciens in the leaf disc transformation procedure and believed to limit the 

efficiency of regeneration of apples. The presence of acetosyringone and the osmoprotectant 

betaine phosphate in the virulence induction medium has been shown to increase the 

efficiency of transformation as monitored by fluorometric determinations of GUS activity in 

apple leaf discs infected with a disarmed strain of Agrobacterium tumefaciens harbouring the 

vector used.  

De Bondt et al. (1994) studied the factors influencing transfer of an intron –containing ß-

glucuronidase gene to apple leaf explants during early steps of an Agrobacterium tumefaciens 

mediated transformation procedure. They studied three different strains of Agrobacterium 

tumefactions. 

Yao et al. (1999) developed a transformation system for the commercial apple (M. domestica 

Borkh.) cultivar 'Royal Gala'. Leaf pieces from in vitro-grown shoots were cocultivated for 2 

days with Agrobacterium tumefaciens strain LBA4404 containing the binary vectors 

pKIWI105 or pKIWI110. Shoots were produced on a shooting medium containing kanamycin 

(50 mg·L
–1

). A 2-day incubation period on kanamycin-free medium prior to antibiotic 

selection enhanced the regeneration of kanamycin-resistant shoots. 

De Bondt et al. (1996) worked on the optimization of postcultivation conditions for efficient 

and reproducible regeneration of transgenic shoots from the apple cultivar 'Jonagold '. Factors 

that were found to be essential for efficient shoot regeneration were the use of gelrite as a 

gelling agent and the use of the cytokinin-mimicking thidiazuron in the selective 

postcultivation medium. Improved transformation efficiencies were obtained by combining 

the hormones thidiazuron and zeatin and by using leaf explants from in vitro grown shoots not 



LITERATURE REVIEW   24 

 

 

older than 4 weeks after multiplication. Attempts to use phosphinotricin acetyl transferase as a 

selectable marker were not successful. Using selection on kanamycin under optimal 

postcultivation conditions, about 2% of file leaf explants developed transgenic shoots or shoot 

clusters. 

Norelli et al. (1996) used leaves of M. domestica Borkh. cv. 'Royal Gala' were either crush-

wounded with forceps, cut, or left whole, and then inoculated with A. tumefaciens strain 

EHA105 (p35SGUS-INT), with and without vacuum infiltration. Transformation was 

quantified 13 days after inoculation by determining the rate of β-glucuronidase (GUS) 

activity. Leaf wounding by crushing with nontraumatic forceps significantly increased 

transformation when compared to cutting the leaves. Vacuum infiltration of inoculum had no 

effect on transformation. 

Puite and Schaart (1996) described an Agrobacterium tumefaciens-mediated transformation 

method for the commercial apple cultivars 'Gala', ' Golden Delicious' and ' Elstar'. 

There are many of others researches and studies on apple genetic transformation 

(Hammerschlag et al., 1997; Liu et al., 1998; Sriskandarajah and Goodwin, 1998; Bolar et al., 

1999). 

2.8.1 Genes used in genetic transformation of apple  

Transformations are mostly based on traditional cultivars and they have been carried out using 

genes isolated from apple (Belfanti et al., 2004b; Espley et al., 2007; Malnoy et al., 2007; 

2008), or from other organisms (Wong et al., 1999; Norelli et al., 1994; 2000; Bolar et al., 

2000; 2001; Hanke et al., 2000; Liu et al., 2001; Szankowski et al., 2003; Markwick et al., 

2003; Faize et al., 2004; Li et al., 2007). Genes affecting some physiological or 

morphological characters like growth (Holefors et al., 2000), flowering (Yao et al., 1999), 

early flowering (Flachowsky et al., 2007; 2010) and self-fertility (Van Nerum et al., 2000) 

have also been incorporated into transgenic apple. Rootstock scions have also been used in 

transgenic assays to improve rooting rates and growth (Holefors et al., 1998; Welander et al., 

1998; Sedira et al., 2001; Pawlicki-Jullian et al., 2002; Igarashi et al., 2002). The function of 

some genes like sorbitol-6-phosphate (Kanamaru et al., 2004; Cheng et al., 2005), stilbene 

synthase (Rühmann et al., 2006), polygalacturonase (Atkinson et al., 2002) and from several 

promoters (Ko et al., 2000; Gittins et al., 2001; 2003; Szankowski et al., 2009a) has also been 

studied using transgenic apple . 
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Table.3. some of recently genes used in genetic transformation of apple (polanco et al., 2010) 
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3 OBJECTIVES OF THIS STUDY  

1- Establishment of an agrobacterium mediated transformation system for selected apple 

cultivars (Gala, Holsateiner cox ) by using the vector pJAN harbouring MdMyb9, 

MdMyb10, MdMyb11 transcription factor genes which are isolated from apple.  

2- Improvement the selection system by cloning the MdMyb10, MdMyb11genes into the 

binary vector pGIIMH35S, and establishment of new transformation experiments with the new 

constructs. 

3- Improve our knowledge of the role of flavonoid in plant resistance and may be helpful 

for use of their beneficial effects. 

 

Hypothesis 

 

Regulation of the flavonoid biosynthesis pathway through overexpresion of 

transcription factors in selected apple cultivars will increase resistance against disease.  
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4 MATERIALS AND METHODS 

4.1 Materials 

4.1.1 Chemicals   

4.1.1.1 Growth media   

Substance  

 

Molecular 

weight 

Company 

MS basal salts mixture   Duchefa (Haarlem, Netherlands) 

Plant agar  Duchefa (Haarlem, Netherlands) 

D(+) Saccharose  342.3 Duchefa (Haarlem, Netherlands) 

D-Sorbitol  182.18 Roth (Karlsruhe, Germany) 

Gelrite   Duchefa (Haarlem, Netherlands) 

 

4.1.1.2 Plant growth regulators and additives 

 Substance Molecular 

weight 

Company Solvent 

IBA  204.2  Duchefa (Haarlem, Netherlands) KOH 

NAA  186.2  Duchefa (Haarlem, Netherlands) KOH 

BAP 225.3  Duchefa (Haarlem, Netherlands) KOH 

TDZ   220.2  Duchefa (Haarlem, Netherlands) KOH 

GA3  346.4  Duchefa (Haarlem, Netherlands) KOH 

Glufosinate-

ammonium (PPT)  

238.8 Riedel de Häen (Seelze, Germany) ddH2O 

BASTA
®
 (200g/l)  Aventis GmbH (Frankfurt, Germany)    ddH2O 

    

4.1.1.3 Antibiotics 

Substance Molecular 

weight 

Company Solvent 

Combactam   Pfitzer ( Karlsruhe, Germany) ddH2O 

Kanamycin  582.6  Duchefa (Haarlem, Netherlands) ddH2O 

Ticarcillin  428.4  Duchefa (Haarlem, Netherlands) ddH2O 

Ampicilin 371.39  Roth ( Karlsruhe, Germany) ddH2O 

Cefatoxime  477.4 Duchefa (Haarlem, Netherlands) KOH  

Rifampicin 823 Duchefa (Haarlem, Netherlands) HCl 

4.1.1.4 Restriction enzymes and buffers 

Enzyme 

 

10x Buffer Company 

EcoRI 10x EcoR1 buffer MBI Fermentas (Leon-Rot, Germany) 

BamH1 10x BamH1buffer MBI Fermentas (Leon-Rot, Germany) 

Bsu15I (ClaI) 10X Buffer Tango™ MBI Fermentas (Leon-Rot, Germany) 

XbaI 10X Buffer Tango™ MBI Fermentas (Leon-Rot, Germany) 
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NcoI 10X Buffer Tango™ MBI Fermentas (Leon-Rot, Germany) 

NheI 10X Buffer Tango™ MBI Fermentas (Leon-Rot, Germany) 

RNaseA   PEQLAB Biotechnology (Germany) 

T4 ligase  10x ligation buffer  MBI Fermentas (Leon-Rot, Germany) 

SAP(Shrimp 

Alkaline 

Phosphates 

10X SAP buffer MBI Fermentas (Leon-Rot, Germany) 

4.1.1.5 Molecular biological kits  

DNeasy
®
 Plant Maxi Kit Qiagen (Hilden, Germany) 

GeneJET™ Gel Extraction Kit MBI Fermentas (Leon-Rot, Germany) 

GeneJET™ Plasmid Miniprep Kit MBI Fermentas (Leon-Rot, Germany) 

High Fidelity PCR Enzyme Mix MBI Fermentas (Leon-Rot, Germany) 

InviTrap
®
 Spin Plant RNA Mini Kit Invitek (Berlin, Germany) 

PCR DIG Probe Synthesis Kit Roche (Grenzach-Wyhlen, Germany) 

Rapid DNA Ligation Kit MBI Fermentas (Leon-Rot, Germany) 

RevertAid™ H Minus First Strand cDNA 

Synthesis Kit 

MBI Fermentas (Leon-Rot, Germany) 

IQ™ SYBR
®
 Green Super mix  Bio-Rad (California,USA) 

4.1.1.6 DNA markers 

DNA marker 

 

Concentration Company 

Gene Ruler 100bp DNA ladder  0.5 mg/ml  MBI Fermentas (Leon-Rot, Germany) 

Gene Ruler 1 kbp DNA ladder  0.5 mg/ml  MBI Fermentas (Leon-Rot, Germany) 

DIG labelled DNA II Marker *  5 µg/µl  Roche (Grenzach-Wyhlen, Germany) 

   

  * Dig II marker: 125, 564, 2027, 2322, 4361, 6557, 9416, 23130 bp 

 

4.1.1.7 Solvents and sterilizes and others 

Substance   Company 

Acetic acid      Roth (Karlsruhe, Germany) 

Agarose for electrophoresis Roth (Karlsruhe, Germany) 

Ammonium nitrate Duchefa (Haarlem, Netherlands) 

CDP-Star chemiluminescence substrate Roche (Grenzach-Wyhlen, Germany) 

CaCl2  Roth (Karlsruhe, Germany) 

Cetyltrimethylammoniumbromid (CTAB) Duchefa (Haarlem, Netherlands) 

Chloroform        Roth (Karlsruhe, Germany) 

D-Glucose    Duchefa (Haarlem, Netherlands) 

Dimethyl sulfoxide (DMSO)  Riedel de Häen (Seelze, Germany) 

2‘-Desoxyribonucleosid-5‘-triphosphate  

(dNTPs)  

MBI-Fermentas (Leon- Rot, Germany) 

EDTA        Roth (Karlsruhe, Germany) 

Ethanol      Roth (Karlsruhe, Germany)  

Ethidium bromide Roth (Karlsruhe, Germany)  

Glycerin Roth (Karlsruhe, Germany)  
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HCl         Roth (Karlsruhe, Germany)  

Isoamyl alcohol   Roth (Karlsruhe, Germany)  

Isopropanol Roth (Karlsruhe, Germany)  

KOH        Roth (Karlsruhe, Germany)  

Maleic acid Roth (Karlsruhe, Germany)  

MgCl2   Roth (Karlsruhe, Germany)  

MgSO4 X7H2O   Roth (Karlsruhe, Germany)  

Myo-inositol   Duchefa  (Haarlem, Netherlands) 

2-Mercaptoethanol  Riedel-de Häen (Seelze, Germany)  

NaOAc Riedel de Häen (Seelze, Germany) 

NaCl       Roth (Karlsruhe, Germany) 

NaOH           Roth (Karlsruhe, Germany) 

Peptone          Duchefa  (Haarlem, Netherlands) 

Primers Roth (Karlsruhe, Germany) 

Primers Eurofins MWG Operon (Ebersberg, 

Germany) 

PVP40            Roth (Karlsruhe, Germany) 

1-Sodium dodecyl sulphate (SDS) Roth (Karlsruhe, Germany) 

Tircarcillin    Duchefa  (Haarlem, Netherlands) 

Tris-hydroxymethyl-amimomethane Roth (Karlsruhe, Germany) 

Tris-sodiumcitrate-dihydrat     Roth (Karlsruhe, Germany) 

Tween     Roth (Karlsruhe, Germany) 

Tryptone Roth (Karlsruhe, Germany) 

Yeast extract    Duchefa  (Haarlem, Netherlands) 

 

4.1.1.8 Primers 

4.1.1.8.1 Primers used in gene cloning and vectors constructs 

Primer Sequence 5'→3' Tm (°C) 

Myb10-NcoI-for. AATCCATGGAGGGATATAACGAAAACCT 
68 

Myb10-Nhel-rev. AATTGCTAGCTTATTCTTCTTTTGAATGATTCC 

Myb11- NcoI-for. ATTTCCATGGGAAGGAGTCCTTGTTGTTCAA 66 

Myb11- XbaI-rev. ATTTCTAGATTAATTATCTACGAGCCAGCAGTCC 

 

4.1.1.8.2 Primers used in PCR and Reverse transcriptase PCR and Probes 

preparation  

Primer Sequence 5'→3' Tm (°C) 

167nptII-for. CCACAGTCGATGAATCCAGA 64 

367nptII-rev. AGCACGTACTCGGATGGAAG 

MdMyb10-for. ATGGAGGGATATAACGAAAAC 62 

MdMyb10-rev. ATGATTCCAAAGGTCCGTGCT 

35S promoter-for. GTGGATTGATGTGATATCTCC 56 Or 58 

Myb11-specific rev. TTCCAGCTATCAAAGACCATCTG 

35S promoter-for. GTGGATTGATGTGATATCTCC 58 

Myb9-specific rev. ATTAGTCCTCGGAAACTCTT 
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bar sense  GCAGGAACCGCAGGAGTGGA 64 

bar antisense AGC CCG ATG ACA GCG ACCAC 

MdMyb10-for. ATGGAGGGATATAACGAAAAC 62 

PJan-polyA rev.   AGCTAATTACTCATGATCAGGTAC 

Myb11-specific for. GTTGAACTACCTAAGACCTGAC 62 

PJan-polyA rev.   AGCTAATTACTCATGATCAGGTAC 

Myb9-specific for. CCTTCTTGGTAACAGATGG 62 

PJan-polyA rev.   AGCTAATTACTCATGATCAGGTAC 

MdMyb10-for ATGGAGGGATATAACGAAAAC 62 

PGII Poly A rev. AGA GAG ATA GAT TTG TAG AGA GA 

Myb11-specific for. GTTGAACTACCTAAGACCTGAC 62 

PGII Poly A rev. AGA GAG ATA GAT TTG TAG AGA GA 

Myb10-Probe-for. ATTAGACTTCACAGGCTTTTGGGA 60 

Myb10-Probe-rev. TTCTTCCTCTAACTCAATGCTGGG 

Myb9-probe-for. CCTTCTTGGTAACAGATGG 58 

Myb9-Probe-rev. ATTAGTCCTCGGAAACTCTT 

Myb11-probe-for. GTGGATTGATGTGATATCTCC 58 

Myb11-Probe-rev. TTCCAGCTATCAAAGACCATCTG 

 

4.1.1.8.3 Primers used in quantitative Real time PCR experiments  

Primer Sequence 5'→3' 

Tm (°C) Tm (°C) 

PCR efficiency % Correlation 

Coefficient 

Rubisco for. GCTTGTCCAAGAGCAAGAGAAT 58°C 60°C 62°C 58°C 60°C 62°C 

Rubisco rev. CTCCCTCCCCTCAATTATAACC 80.0 95.3 100.3 0.999 0.999 0.999 

Myb10-

specific for. 
GCGTTGAGATTCATGGAGAGG 

62°C 62°C 

Myb10-

specific rev. 

CTAGCAATCAATGACCACCTGTT 94.7 0.999 

Myb11-specific 

for. 
GTTGAACTACCTAAGACCTGAC 

60°C 60°C 

Myb11-specific 

rev. 
TTCCAGCTATCAAAGACCATCTG 

97.7 0.997 

Myb9-specific 

for. 

CCTTCTTGGTAACAGATGG 58°C 58°C 

Myb9-specific 

rev. 

GTTGTATTCCAGTAATTCTTGATT 93.8 0.998 

RNAPOL II for. ATATGCCACCCCGTTCTCTACT 58°C 60°C 62°C 58°C 60°C 62°C 

RNAPOLII rev. CACGTTCCATTTGTCCAAACTT 97.5 95.8 90.0 0.998 0.997 0.999 
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4.1.2 Equipment 

Equipment  Manufacturer  

Balances   Sartorius (Goettingen, Germany) 

Biophotometer  Eppendorf (Hamburg, Germany) 

Bio-Rad Gene Pulser Electroporation Porator 

System 

Bio-Rad (California,USA) 

CFX96™ Real-Time PCR Detection System Bio-Rad (California,USA) 

Centrifuge Z200 M/H Hermle (Wehingen,Germany) 

Centrifuge Z300 Hermle (Wehingen,Germany) 

Centrifuge Z383K Hermle (Wehingen,Germany) 

Christ Alpha 1-4 LSC Freeze dryer Martin Christ (Osterode, Germany) 

Electrophoresis –system Elite 300 plus  Polymer (Germany) 

Films   Kodak (Stuttgart, Germany) 

Filter paper   Roth (Karlsruhe, Germany) 

Gasprofis  WLD Tec (Germany) 

Gene pulser Cuvette  Bio-Rad (California,USA) 

Hybridization oven Biometra (Göttingen, Germany) 

Ice machine  ZIEGRA (Isernhagen,Germany) 

IKA MAG
®
  Surface heat plate  IKA labortechnik (Germany) 

Incubator M500 Memmert (Germany) 

Incubator III-178/13 Memmert (Germany) 

Labcycler Thermoblock 96 Sensoquest (Göttingen, Germany) 

Magnetic stirrer  Heidolph (Schwalbach, Germany) 

Microwave  Panasonic (Germany) 

Minispin centrifuge  Eppendorf (Hamburg, Germany) 

NESCOFILM Alfresa Pharma Coporation (Osaka, Japan 

Nylon membrane positively charge  Roche (Grenzach-Wyhlen, Germany) 

Refrigerator 4ºC  LIEBHERR (Germany)  

PH meter   HANNA (Germany) 

Pipette   Eppendorf (Hamburg, Germany) 

Rinsed water station  MILLIPORE (Schwalbach, Germany) 

RNA free tubes  Roth (Karlsruhe, Germany) 

Rotary vane vacuum pump VACUUBRAND GMBH + CO KG 

(Wertheim, Germany 

Sterile bench Kojar
®

 Kojart (Finland) 

Sterilization filter 0.22µM  Roth (Karlsruhe, Germany) 

Surgical blades  Roth (Karlsruhe, Germany) 

Thermo cycler PCR  Biometra (Göttingen, Germany) 

Thermostat  plus Eppendorf (Hamburg, Germany) 

UV-Transilluminator  Intas (Germany) 

UV gel Image system  Intas (Germany) 

Vacuum pump (~100 mbar)  ABM  

Vacuum resistance container   Duran 

Varioclave 
®
 Steam sterilizer   H+P Labortechnik (Germany) 

Variomag H+P Labortechnik (Germany) 

Vortex Reax Top Heidolph (Schwalbach, Germany) 

Water bath  GFL
®
 (Germany) 
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Disposable plastic wares:               

 - 2ml microtube-centrifuge  

 - 1.5 ml and 2 ml Eppendorf-caps  

 - Petri dishes  

 - pipette tips 

 

4.1.3 Bacterial strains and genotype 

Agrobacterium tumefaciens strain GV3101 (Holsters et al, 1980) harbouring the pMP90RK 

helper plasmid. 

Agrobacterium tumefaciens strain EHA105 (Hood et al. 1993) was co-transformed with the 

pSoup helper plasmid according to the pGreenII system (pGreen website; Hellens et al., 

2000).  

Agrobacterium tumefaciens EHA105pSoup competent cells used for electroporation was 

provided by Dr.Fathi Hassan, Plant Biotechnology section, Leibniz Universität Hannover. 

E coli strain TOP10 (Invitrogen) 

Genotype: F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 nupG recA1 araD139 

Δ(ara-leu)7697 galE15 galK16 rpsL(Str
R
) endA1 λ

- 

 

4.1.4 Plasmids used in this study 

Two binary vectors were used in this study:  

- PJan harboring MdMyb9 (GeneBank: DQ267900), MdMyb10 (GeneBank: 

DQ267896) and MdMyb11 (GeneBank: DQ074463) transcription factor genes, individually. 

(Fig.6). Those constructs ready to use for transformation experiments were provided by Julian 

Brüggemann, Ph.D., Chair of Genome Research, Faculty of Biology, Bielefeld University. 

- PGIIMHS35 harboring MdMyb10, MdMyb11 transcription factor genes, individually. 

(Fig.5). 
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pGIIMH35S

5484 bp

Npt I

bar

Translation Enhancer

LB

RB

bar-sense

bar-antisense

298 MH

primer 303

Primer 296

Primer 297

35S Promoter

35S Promoter

nos Promoter

TATA

35S-Terminator

nos Terminator

pGIIMH35S-MdMyb10

6208 bp

Npt I

bar

MdMyb10

Translation Enhancer

LB

RB

bar-sense

bar-antisense

298 MH

primer 303

Primer 296

Primer 297

nos Promoter

35S Promoter

35S Promoter

TATA

35S-Terminator

nos Terminator

Eco RI (2979)

Nco I (2293)

Pst I (3248)

Cla I (1171)

Cla I (2629)

 
 

pGIIMH35S-MdMyb11

6337 bp

Npt I

bar

MdMyb11

Translation Enhancer

LB

RB

bar-sense

bar-antisense

298 MH

primer 303

Primer 296

Primer 297

35S Promoter

35S Promoter

nos Promoter

TATA

35S-Terminator

nos Terminator

Cla I (1171)

Eco RI (2641)

Nco I (2293)

Pst I (3377)

 
Fig.5. Functional maps of pGIIMH35S, pGIIMH35S-MdMyb10 and pGIIMH35S-MdMyb11 used in 

gene cloning, as well as in the transformation experiments  
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pJan

6974 bp

amp

Npt II

RB

35S Promoter

nos Promoter

TATA

nos Terminator

Ocs3 Terminator

LB

Bam HI (2)

Eco RI (14)

Hin dIII (1089)

Nco I (460)

Sma I (1920)

Xma I (1918)

Cla I (9)

Cla I (1582)

Pst I (24)Pst I (6393)

 
 

pJan-MdMyb9

6391 bp

amp

Npt II

MdMyb9

RB

LB

nos Promoter

35S Promoter

TATA

Osc3 Terminator

nos Terminator

Cla I (9)

Eco RI (14)

Nco I (460)

Sma I (1337)

Xma I (1335)

Bam HI (2)

Bam HI (828)

Pst I (24)

Pst I (1092)

Pst I (5810)

 
 

pJan-MdMyb10

6250 bp

amp

Npt II

MdMyb10

RB

LB

35S Promoter

nos Promoter

TATA

Ocs3 Terminator

nos Terminator

Bam HI (2)

Nco I (460)

Sma I (1196)

Xma I (1194)

Cla I (9)

Cla I (796)

Eco RI (14)

Eco RI (1146)

Pst I (24)

Pst I (615)

Pst I (5669)



MATERIALS AND METHODS   35 

 

 

pJan-MdMyb11

6379 bp

amp

Npt II

MdMyb11

RB

LB

nos Promoter

35S Promoter

TATA

Osc3 Terminator

nos Terminator

Bam HI (2)

Cla I (9)

Nco I (460)

Sma I (1325)

Xma I (1323)

Eco RI (14)

Eco RI (808)

Pst I (24)Pst I (5798)

 
Fig.6. Functional maps of pJan, pJan-MdMyb9, pJan-MdMyb10 and pJan-MdMyb11 used in 
transformation experiments.  

 

4.1.5 Plant material 

As plant material, the following in vitro-cultivated shoots of the apple cultivars (Malus 

domestica Borkh.) ‗Holsteiner Cox‘ or ‗Gala‘ were used 

 

4.1.6 Growth media 

All  media were sterilised by autoclaving at 121ºC, 20 min.  If necessary, the media pH was 

adjusted as required using NaOH or HCl.  Appropriate antibiotics were added as required. 

Media were stored at 4°C in darkness.  

4.1.6.1 Bacteria media 

Luria-Bertani (LB) broth: 1% (w/v) peptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl. LB 

plates: solid LB broth medium, 1.5% (w/v) plant agar were added. pH was adjusted to 7.0 

SOC medium:  2 % (w/v) tryptone, 0.5% (w/v) yeast extract , 0.5% (w/v) NaCl, 2.5mM KCl,  

2.033g/l MgCl2 x6H2O, 10 mM MgSO4 x7H2O, 20 mM glucose (filter sterilized added before 

using). pH was adjusted to 7.0 

YEP medium: 1% (w/v) peptone, 1% (w/v) yeast extract, 0.5% (w/v) NaCl, 

for solid medium 1.5% (w/v) agar were added. pH was adjusted to 7.0 
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4.1.6.2 Basic media for plant tissue culture  

4.1.6.2.1 Basic tissue culture media for ‘Holsteiner Cox’  

Chemicals Regeneration 

medium 

Elongation 

medium 

Propagation       

medium  

Root induction 

medium  

MS 

(Murashige        

and Skoog, 

1962) salt 

mixture 

5.3 g/l   5.3 g/l   5.3 g/l   5.3 g/l   

Sucrose -   3% 2% 2% 

Sorbitol 3% - - - 

Myoinositol 0.1 g/l   - 0.1 g/l   0.1 g/l 

IBA 1 µM  -   7 µM 

BAP - 5.3 µM   4.1 µM    

GA3 - 0.28 µM 2.8 µM  

TDZ 3 µM - - - 

Plant Agar   - 0.8% 0.8%   0.7% 

Gelrite 0.3 % - - - 

pH value   5.8   5.7-5.8   5.7-  5.8 5.7 -5.8 

NAA -  1 µM - 

 

4.1.6.2.2 Basic tissue culture media for ‘Gala’ 

Chemicals Regeneration 

medium 

Elongation 

medium 

Propagation       

medium       

Root induction 

medium  

MS 

(Murashige        

and Skoog, 

1962) salt 

mixture  

5.3 g/l   5.3 g/l   5.3 g/l   5.3 g/l   

Sucrose -   3% 2% 2% 

Sorbitol 3% - - - 

Myoinositol 0.1 g/l   - 0.1 g/l   0.1 g/l 

NAA 2.6µM  1 µM 7 µM 

BAP - 5.3 µM   4.1 µM    

GA3 - 0.28 µM 2.8 µM  

TDZ 22.7µM - - - 

Plant Agar   - 0.8% 0.8%   0.7% 

Gelrite 0.3 % - - - 

pH value   5.8   5.7-5.8   5.7-5.8 5.7-5.8 

IBA -  -   7 µM 
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4.2 Methods  

4.2.1 Plant in vitro tissue culture  

Shoot cultures were maintained on propagation medium (see 4.1.6.2.1) and incubated at 24°C 

under a 16/8-h (day/night) photoperiod. The plants were subcultured every 4-5 weeks.  

For regeneration experiments, the four youngest unfolded leaves from 4-weeks-old 

micropropagated shoots were used as explants. Leaves were cut to strips, and only the middle 

part was used with the adaxial side down on the regeneration medium and cultivated in 

darkness for two weeks at 25°C. Afterwards they were placed under light to encourage shoot 

regeneration. The regenerated adventitious shoots were cut from the explants and transferred 

to elongation medium. After 2-4 weeks elongation, the shoots were transferred to propagation 

medium. After 6 weeks cultivation, following criteria were used to assess the regeneration 

effectiveness:   

 - Regeneration rate, i.e. the number of explants showing shoot regeneration. The details are 

given in %.   

- The number of shoots per explant. The average number was identified and only explants 

with shoot regeneration were taken into consideration.  

 4.2.2 Root induction  

Regenerated shoots (25-30 mm) were cultivated on rooting medium (see 4.1.6.2.1) to induce 

root formation and incubated  at 25°C under a 16/8-h (day/night) photoperiod.  

4.2.3 Transfer to soil (acclimatization) 

The plantlets obtained in vitro were carefully washed under running water and set in pots 

filled with a mixture of peat moss and perlite (2:1v/v), covered with plastic bags and 

acclimatized gradually to greenhouse conditions throughout 4 weeks.     

4.2.4 Plasmid construction and cloning  

In order to improve the selection system, another marker gene (bar) replaced the marker gene 

Npt II, new constructs were developed as the following:  

4.2.4.1 Preparation of MdMyb10 and MdMyb11 fragments (amplification) 

In the Binary vectors PGIIMHS35, The T-DNA contains the bar gene fused between the nos 

promoter and terminator sequences of Agrobacterium tumefaciens. The bar gene encodes a 

phosphinothricin acetyltransferase (PAT) enzyme which confers resistance to bialaphos and 
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the related compounds phosphinothricin (PPT), the active ingredient of the herbicide 

BASTA
®
 and glufosinate ammonium through acetylation. 

The MdMyb10 and MdMyb11 genes were cloned into the Ti-plasmid using PCR; the 

MdMyb10 gene was amplified using two cloning primers Myb10-NcoI for., Myb10-Nhel-rev. 

flanking NcoI and NheI restriction sites, respectively (underlined, see 4.1.1.8.1) to the PCR 

products. 

The MdMyb11 gene was amplified using two cloning primers MYB11 –NcoI-for., MYB11–

Xbal-rev. flanking NcoI and XbaI restriction sites, respectively (underlined, see 4.1.1.8.1) to 

the PCR products.  

The PCR was performed using High Fidelity PCR Enzyme Mix (Fermentas, Germany). The 

template for the PCR were pJAN-MdMyb10, pJAN-MdMyb11. 

The PCR mixture was prepared according to the manufacturer's protocol as follows:  

4.2.4.1.1PCR Mixture  

Reagent Quantity for 50μl Final concentration 

Water, nuclease-free variable  —  

10 x High Fidelity PCR 

Buffer with MgCl2 

5 μl 1X 

2 mM dNTP mix 5 μl 0.2 mM of each 

Primer I  variable 0.2-1 μM 

Primer II variable 0.2-1 μM 

Template DNA: 

Plasmids   
Genomic DNA 

variable  

0.01-1 ng / 50 μl  
0.1-1 μg / 50 μl 

High Fidelity PCR Enzyme 

Mix 

0.25-0.5 μl 1.25-2.5 u / 50 μl 

Total volume   to 50 μl  

The PCR products were purified directly using GeneJET™ Gel Extraction Kit (Fermentas, 

Germany). 

4.2.4.1.2 PCR Program  

Segment Temperature Duration Number of cycles 

Initial 

denaturation 

94°C 1-3 min 1 

Denaturation 94-95°C 20- 60 s 25- 35 

Annealing Primer Ta 30- 60 s 

Elongation 72°C 1 min/kb PCR 

target 

Final elongation 72°C 10 min 1 

 

4.2.4.2 Digestion of DNA by restriction endonucleases  

DNA (plasmids, PCR products) was digested using different restriction endonucleases with 
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respective buffers as recommended by the supplier. When two enzymes had to be used for 

digest, the buffer was selected to be suitable for both enzymes; digestion was done at 37 °C 

for 2 h or overnight, and then enzymes were heat-inactivated for 15-20 min at 65 °C.  

4.2.4.2.1 Compositions of DNA restriction digest reaction 

Compound  Amount per 

reaction  

Compound  Amount per 

reaction  

Plasmid DNA 

(PGIIMHS35)  

X µl (0.2-0.5µg)  PCR products MdMyb10 or 

MdMyb11 genes 

32 µl  

Enzyme1 (NcoI  ) 1 µl  Enzyme1(NcoI) 2 µl  

Enzyme2 ( XbaI )     1 µl   Enzyme2 (XbaI)     2 µl   

H2O           X µl   H2O           ---   

10x buffer Tango    2.5 µl  10x buffer Tango    4 µl  

Total volume              25 µl  Total volume              40 µl  

4.2.4.3 Dephosphorylation of 5'-ends of digested vector DNA 

Shrimp alkaline phosphate (SAP) was used for dephosphorylation of the 5'-ends of the 

digested vector to prevent re-ligation of the vector with the excised fragment as adapter. 

Dephosphorylation was done according to the manufacturer's protocol at 37°C for 1 h., and 

then the enzyme was heat-inactivated at 65°C for 15 min.  

4.2.4.4 Ligation 

DNA ligase catalyzes the phosphodiester binding between a free 5'-phosphate group and a 

free 3'-hydroxyl group of the same strands of a dsDNA. Intramolecular ligation results in a 

circularization of the DNA molecule. If an insertion is planned, self-circularization and 

oligomerization has to be prevented by dephosphorylation or eluting the fragment from the 

gel. Ligation of cohesive ends and the vector was done using Rapid DNA Ligation Kit 

(Fermentas, Germany), at a molar ratio of 3:1 in 5x ligation buffer, so 150 ng insert and 50 ng 

vector were mixed and 2U of T4 DNA ligase were added. The reaction was incubated at 22°C 

overnight, and then the ligase was heat-inactivated at 65°C for 15 min. Afterwards the ligation 

product was monitored by running on a gel to check the efficiency of ligation and then used 

for E.coli transformation. 

4.2.4.4.1 Composition of ligation reaction  

Compound  Amount per reaction  

Restricted digested  plasmid DNA ( 

pGIIMHS35) 

5 µl = 50ng 

Restricted digested PCR products  

(MdMyb10 or MdMyb11 genes) 

15 µl =150ng 

Enzyme (T4 ligase)     2.5 µl   
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5 x T4 ligase buffer     2.5 µl  

Total volume              25 µl  

 

The plasmid integrity was checked by sequencing of E.coli derived plasmids after re-

transformation. 

4.2.4.5 Preparation of competent E. coli cells for heat shock transformation 

(Nakata et al., 1997 and Tang et al., 1994)  

The required E. coli strains (Top10) were grown overnight in 1-5 ml of LB medium at 37 °C 

(without antibiotics) to stationary phase. The overnight culture was diluted in fresh LB 1:50 

and grown at 37 °C until OD600 reached ~ 0.4. The cells were harvested by centrifugation at 4 

°C, 4400 rpm, and re-suspended in 1/2 volume ice-cold 100 mM CaCl2 and centrifuged again. 

The supernatant was discarded and the pellet was resuspended in 1/2 volume ice-cold 100 

mM CaCl2. Pelleted cells were re-suspended in 1/10 volume cold 100 mM CaCl2 and 

incubated on ice for 1 hour and used immediately for heat shock transformation. Alternatively, 

86 % sterile glycerol was added to a final concentration of 15 % and then aliquots of 100 µl in 

1.5 ml tubes, which were put immediately in liquid nitrogen and stored at -80 °C for long-

term storage. 

4.2.4.6 Heat shock/calcium chloride method for E. coli transformation 

Competent E. coli were transformed by the freeze-thaw method.  A 10 μl aliquot of plasmid 

DNA or ligation reaction mixture was added to 50 μl thawed cells in a 1.5 ml tube and gently 

mixed.  The cells were incubated on ice for 10 min before heat-shock at 42ºC for 45-60 sec in 

a water bath, followed by a further 3 min on ice. 500 µl of LB medium without antibiotics 

were added to develop antibiotic resistance and to reduce damage of E.coli cells. Finally, the 

tubes were incubated on a shaker at 240 rpm for 60 min at 37 °C. 200 µl of the resulting 

culture was spread on LB plates with the appropriate antibiotic added (kanamycin) and grown 

overnight at 37°C. The colonies were picked about 12-16 hours later. 

4.2.4.7 Transformation of Agrobacterium through electroporation 

Binary vectors were transferred into Agrobacterium tumefaciens (EHA105-pSoup) by 

electroporation.  Competent cells (50 μl aliquots) were taken out from -80 °C freezer and 

were thawed on ice and  plasmid DNA 50-200 ng in (1-5 μl )water was added, gently mixed 

and pipetted into a pre-cooled electroporation cuvette (0.2 cm gap, Bio-Rad, USA). The 

cuvette was placed in a GenePulser (Bio-Rad, USA) and electroporation was carried out at a 

voltage of 2.5 kV (capacitance 25 μFd, resistance: 200 Ohms) the field strength was between 

6.25 – 12 kVwith a typical pulse time of 7-9 ms.  The cells were recovered by addition of 
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500-1000 µl of pre-cooled SOC medium (without antibiotics), then transferred to 2 ml tubes 

and incubated at room temperature, with shaking (240rpm) at 28°C for 3 h.  200  μl  of  the  

transformed  bacteria  were  spread  onto  separate  LB  plates  containing  the appropriate 

antibiotics.  Plates were grown at 28°C; the colonies were picked about 2-3 days later. 

4.2.4.8  Agrobacterium inoculation and harvesting 

25 ml YEP medium in 100 ml Erlenmeyer flask including appropriate antibiotics for the 

respective plasmid (50 mg/l kanamycin for pGIIMH35S–MdMyb10 and pGIIMH35S – 

MdMyb11) were inoculated with 250 µl glycerol stock of Agrobacterium tumefaciens. The 

medium was inoculated and placed on a shaker at 240 rpm, at 28°C in the dark for 15 h. 

Bacteria  were harvested by centrifugation at 4400 rpm, the supernatant was discarded and 

then the pellet was re-dissolved in liquid MS medium liquid, OD600 was measured using a 

photometer and adjusted to 1-1.3, and supplemented with the appropriate plant growth 

regulators, (depending on the used cultivar for transformation). 

4.2.5 Transformation using the vector pJAN harboring MdMyb9, MdMyb10, 

MdMyb11 transcription factor genes 

The four youngest unfolded leaves from 4-weeks-old micropropagated shoots were used as 

explants. Leaves were cut to strips, and only the middle part was used for transformation. 

For inoculation, 250 µl  Agrobacterium tumefaciens from a glycerol stock were grown 

overnight (28ºC, 240 rpm) in 25 ml YEP medium (See 4.1.6.1) supplemented with 50 mg/l 

ampicillin and 50 mg/l rifampicin, pelleted (12 min, 4400 rpm) and resuspended in liquid MS 

medium to an OD600 of 0.8. 

The explants were shaken gently in the bacterial solution for 15 min, blotted dry and 

cocultivated in the dark on shoot regeneration medium (See 4.1.6.2.1; 4.1.6.2.2). 

After 3 days of coculture, the leaves were washed twice in water and once in liquid MS-

medium supplemented with 150 mg/l ticarcillin and 50 mg/l kanamycin.  

Explants were transferred with their adaxial side in contact with the shoot regeneration 

medium (same as for co-culture) supplemented with 150 mg/l ticarcillin for killing the 

agrobacteria, and 50 mg/l kanamycin. Subcultivation of the leaves was done in the dark for 2 

weeks at 24ºC, then under a 16/8-h (day/night) photoperiod at the same temperature.  The 

explants were transferred to fresh medium every 2 weeks. After 6 weeks on shoot-

regeneration medium, regenerated shoots were transferred to elongation medium (see 

4.1.6.2.2) supplemented with 150 mg/l ticarcillin and 50 mg/l kanamycin. 

Putative transgenic shoots of ‗Gala‘ and ‗Holsteiner Cox‘ were micropropagated on 
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propagation medium (see 4.1.6.2.2) supplemented with 150 mg/l ticarcillin and 50 mg/l 

kanamycin as selection reagent for transgenic plants. 

4.2.6 Transformation using the vector pGIIMH35S harboring MdMyb10, 

MdMyb11 transcription factor genes  

The explants were prepared as the same as used before.  

For inoculation, 250 µl Agrobacterium tumefaciens from a glycerol stock were grown 

overnight (28ºC, 240 rpm) in 25 ml YEP medium supplemented with 50 mg/l kanamycin, 

pelleted (12 min, 4400 rpm) and resuspended in liquid MS medium to an OD600 of 0.8. The 

explants were shaken gently in the bacterial suspension for 15 min, blotted dry and 

cocultivated in the dark on shoot regeneration medium. The medium was the same as used 

before supplemented with 2.5 mg/l phosphinothricin (PPT). 

After 3 days of coculture, the leaves were washed twice in water and once in liquid MS-

medium supplemented with 150 mg/l ticarcillin and 2.5 mg/l phosphinothricin (PPT). 

Explants transferred with their adaxial side in contact with shoot regeneration medium (same 

as for co-culture) supplemented with 150 mg/l ticarcillin for killing the bacteria, 150 mg/l 

cefatoxime and 2.5 mg/l phosphinothricin (PPT). Subcultivation of the leaves was in the dark 

for 2 weeks at 24ºC, then under a 16/8-h (day/night) photoperiod at the same temperature.  

The explants were transferred to fresh medium every 2 weeks; the concentration of 

phosphinothricin (PPT) was increased from 2.5 mg/l till 10mg/l during the work. 

After 6 weeks on shoot regeneration medium, regenerated shoots were transferred to 

elongation medium (see 4.1.6.2.2), supplemented with 150 mg/l ticarcillin, 150 mg/l 

cefatoxime and 10 mg/l phosphinothricin (PPT). Shoots were transferred to the propagation 

medium (with 150 mg/l ticarcillin, 150 mg/l cefatoxime and 10 mg/l phosphinothricin (PPT) 

as selection reagent for transgenic plants). 

4.2.7 Molecular biology methods 

4.2.7.1 Agarose gel electrophoresis  

Electrophoresis is used to separate molecules (DNA and RNA) based on their size. DNA has a 

negative charge in solution, so it will migrate to the positive pole in an electric field. In 

agarose gel electrophoresis, the DNA is forced to move through a sieve of molecular pores 

made by agarose. Large fragments of DNA move slower than small fragments of DNA. So the 

concentration of the gel depends on the fragment lengths to be separated.  0.8-1 % (w/v) 

agarose gel was prepared in 1x TAE buffer, where it melts in a microwave oven until the 
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agarose was totally dissolved. Then the agarose solution was cooled down until it reached 

50°C and ethidium bromide (0.5 µg/ml) was added and the solution was casted into a gel 

mold to solidify. A suitable comb was used to make slots. The gel was transferred to the 

electrophoresis chamber containing running buffer (1x TAE buffer). Samples were mixed with 

6x loading buffer and loaded together with molecular weight marker onto the wells for 

electrophoresis at a voltage of 60-100 V for 30-40 min after which the DNA fragments were 

observed and photographed under UV-light.  

Buffers 

6x loading buffer ready to use ((Fermentas, Germany)     
                 
TAE buffer (40 mM Tris-acetate, 20 mM glacial acetic acid, 1 mM EDTA),  pH 7.5  

4.2.7.2 Isolation of plasmid DNA from E. coli or A. tumefaciens 

Plasmids of   E. coli or Agrobacterium tumefaciens were isolated either with the GENEJET™ 

Plasmid Miniprep Kit (Fermentas, Germany) according to the manufacturer‘s instructions or 

using the following method:  

The colonies of bacteria containing the plasmids of interest were incubated overnight under 

shaking at 37°C for E. coli or 28°C for Agrobacterium tumefaciens in 25 mL LB medium 

supplemented with appropriate antibiotics. Two ml were centrifuged at 12000 rpm for 10 min. 

The obtained pellets were dissolved in 200 µl of buffer A and the bacteria were lysed with 400 

µl buffer B, mixing and incubating at RT for 15 min. After addition of 300 µl buffer C, 

incubation took place on ice for 10 min. After a centrifugation step at RT for 10 min at 13000 

rpm, 800 µl supernatant containing the plasmids were transferred into new tubes and 600 µl 

isopropanol were added to elute the DNA.  

To pellet the precipitated DNA, the mixture was centrifuged for 10 min at 13000 rpm. The 

pellet was diluted in 200 µl buffer D and mixed with 400 µL ice cold 70% ethanol. After 2 min 

incubation, the mixture was centrifuged for 10 min at 13000 rpm. The pellet was dried for 1 

hour and was dissolved in 50µL TE buffer or distilled water with 1 µl RNaseA (1 mg/ml). The 

isolated plasmid was stored at -20°C.  

Plasmid isolation buffers:  

    Buffer A: 15 mM Tris-HCl pH 8.0, 10 mM EDTA, 50 mM glucose, 2 mg/ml fresh 

lysozyme. 

    Buffer B: 0.2 M NaOH, 1% SDS  

    Buffer C: 3M NaOAc PH 4.8  

    Buffer D: 0.1 M NaOAc pH 7.0, 0.05 M Tris-HCl pH 8.0  
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4.2.7.3 Isolation of total DNA from plants  

Genomic DNA was isolated from apple using either the DNeasy Plant Mini Kit (Qiagen, 

Germany) according to the manufacturer‘s instructions, or the following method(Doyle and 

and Doyle, 1990) 

1-1.5 g plant material was harvested and shock frozen in liquid nitrogen. The material was 

grinded as fine as possible in liquid nitrogen. 5 ml preheated CTAB solution and 2% 

mercaptoethanol were added in a 50 ml tube, which contained the grinded plant material. The 

tube was vortexed vigorously and incubated for 30 min in a preheated water bath at 65°C and 

mixed occasionally.  

Afterwards the same volume chloroform/isoamylalcohol (24:1) was added and the tube mixed 

gently and thereafter the tube was centrifuged at 4400 rpm for 10 min. The aqueous upper 

phase was carefully taken and pipetted to a new 50 ml tube. 2/3 volume of cold 100% 

isopropanol was added to precipitate the DNA. After a 5 min centrifugation step, the 

supernatant was discarded and the pellet was washed with 10 ml wash buffer for 20 min, and 

thereafter the tube was centrifuged at 4400 rpm for 5min, after 5-10 min drying, the pellet was 

dissolved in 3 ml TE buffer with 50 µg/ml RNAse. Incubation for 30 min at 37°C should 

remove remaining RNA. The precipitation was carried out by addition of 1/2 volume of 7.5 M- 

NH4 acetate (1.5ml) and 2.5 volume absolute ethanol (7.5ml) and centrifuged at 4400 rpm for 

10-20 min. The pellets were dried at 37°C for 1-1.5 hours and thereafter dissolved in 500 µl TE 

buffer or distillated water.  

Buffers and solvents used for the DNA-Isolation 

CTAB: 100 mM Tris-ultra, 1.4 M NaCl, 20 mM EDTA,  0.5% (w/v) PVP-40 

(polyvinylpyrrolidone).     

After autoclaving 3% (w/v) CTAB was added and the solution was agitated over night        

-  0.2% (w/v) mercaptoethanol was added before application       

CI- mix: 24 ml chloroform, 1 ml iso-amylalcohol  

 

DNA washing buffer: 76% (v/v) ethanol, 10 mM ammoniumacetate, dd sterilized H2O  

 
TE buffer: 10 mM Tris-ultra (1.21 g/l), 1mM EDTA (0.37 g/l), pH value was adjusted with 

HCl to 7.5 or 8.  

Tris-HCl (pH 7.5): 121.1 g/l Tris, 70 ml/l HCl 

4.2.7.4 Photometric measurement of nucleic acid concentration    

RNA- and DNA-concentrations as well as the cell density of bacteria were determined directly 

with a photometer. Cell densities were measured via the absorption at 600 nm (OD600). RNA- 
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and DNA-concentrations were measured at a wavelength of 260 nm. The absorbance of the 

DNA preparations was determined at 260 nm and 280 nm where: 

1O.D. at 260 nm for double-stranded DNA = 50 ng/µl of dsDNA  

1O.D. at 260 nm for single-stranded DNA = 20-33 ng/µl of ssDNA(cDNA)  

1O.D. at 260 nm for RNA molecules = 40 ng/µl of RNA 

The quotient OD260/OD280 gives the level of DNA purity. If there is contaminating protein the 

OD ratio between 260 and 280 nm decreases. Pure DNA has an OD260/OD280 between 1.8 and 

2.0. If this quotient is below 1.8, it indicates a protein contamination. The respective RNA-

concentration was calculated as follows:  

RNA concentration µg/ml = (OD260 x dilution factor x 40), the purity of the RNA was 

determined using the ratio of OD260/OD280, which should be between 1.9 and 2.0 for pure 

RNA. All measurements were accomplished in UVette
®
 (Eppendorf), which is light transparent 

in the range of 220 nm to 1600 nm. 

4.2.7.5 Polymerase chain reactions (PCR)  

All regenerated plants were analysed by PCR. The PCR reaction contains 1U (0.2 μl  of Taq 

polymerase (Promega, Germany), 1.5 mM MgCl2, 0.2 mM of each dNTP, and 0.4 μM of each 

primer in a total volume of 25 μl.  

4.2.7.5.1 PCR Mixture  

Compound and concentration Amount per 

reaction  

H2O  13.3 µl  

5*buffer (GoTaq-Promega)     5 µl  

dNTP (50 mM)         1 µl   

Primer For  (10 pMole)              1 µl   

Primer Reverse  (10 pMole)   1 µl  

Taq polymerase   (1 µ/ml)       0.2 µl 

Template (50-100 ng)    1 µl  

25mM MgCL2(1-4mM) 2.5 

Total volume              25 µl  

4.2.7.5.2 PCR program  

PCR step   Temperature (°C)   Time (s)   No. of cycles 

Initial denaturation   94   240 1 

Denaturation 94 60 30-35 

Annealing Specific for primer Specific for primer 30-35  

Extension 72 30    30-35 

Final extension   72 600 1 

Cooling down    10 or 4 - 1 
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4.2.7.6  Southern blot using non-radioactive probe 

4.2.7.6.1 Buffers and solutions 

Pre-hybridization solution: Dig Easy Hyb. (Roche Diagnostics,  Germany) 

Hybridization solution: 45 μl probe + 33 ml Dig Easy Hyb. 

Blocking Solution: 1 % blocking solution (Roche) in maleic acid buffer. 

Antibody solution: (Anti-Digoxigenin-alkaline phosphatase conjugate Fab Fragments) 

(Roche Diagnostics) 1:20000 in 1% blocking solution. 

Depurinizing solution: 0.25 M HCl 

Denaturation Solution: 0.5 M NaOH, 1.5 M NaCl 

Neutralization Solution pH 7.5: 0.5 M Tris-HCl, 3 M NaCl 

10 % SDS (Filter sterilized) (Sodium dodecyl sulfate (or sulphate) (SDS or NaDS) 

(C12H25NaO4S)  

Maleic acid buffer pH 7.5: 0.1 M maleic acid, 0.15 M NaCl 

Detection buffer pH 9.5: 100 mM Tris-HCl, 100 mM NaCl 

20x SSC buffer pH 7: 3 M NaCl, 0.3 M Sodium citrate 

Washing buffer: Maleic acid buffer, 0.3 % Tween 20 (do not autoclave) 

Stripping buffer: 0.2 M NaOH, 0.1 % SDS 

Developing solution: 1: 3.5 dilution of Tetenal Roentogen developer 

Fixation solution: 1:4 dilution of Tetenal Roentogen Superfix 

The blot was performed according to Southern (1975) to confirm integration patterns of T-

DNA and to determine the copy number of the integrated transgenes using the genomic DNA 

of transformed plants. Genomic DNA was isolated from transgenic and non-transgenic plants 

by large-scale DNA preparation. Non radioactive detection methods were used and DIG 

labelled PCR products for the different genes were prepared as probe (as described below).  

4.2.7.6.2 Production of DIG labelled probes  

DIG labelled probes were produced by PCR with the substances listed in (see 4.2.7.6.2.1), 

5µl PCR reaction mix was tested by gel electrophoresis to confirm the successful labelling. 

Compared to the control, the probe was larger and moved slower in the gel because of the DIG 

labelling. For labeling PCR products, DIG Probe Synthesis Kit (Roche, Germany) was used; 

the PCR mixtures for probe synthesis and the control were prepared according to the 

manufacturer's protocol as follows: 
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4.2.7.6.2.1 PCR Mixture for probe preparation  

Reagent  Volume required for Final concentration  

 control  probe   

Water, dd H2O add up to 50 µl add up to50 µl  

PCR buffer with MgCl2  

10× conc.  

5µl 5µl  

dNTP stock solution 5µl --- 200 µM each dNTP 

PCR DIG Probe 

Synthesis Mix 

--- 5µl 200 µM dATP, dCTP, 

dGTP, 130 µM dTTP, 70 

µM DIG-dUTP 

Forward PCR primer, 10 

µM 

5µl 5µl 0.1 - 1 µM 

Reverse  PCR primer, 10 

µM  

5µl 5µl 0.1 - 1 µM 

Enzyme mix 0.75µl 0.75µl  

Template DNA variable  variable  10 - 100 pg plasmid DNA 

Total volume   50 µl 50 µl  

4.2.7.6.3 Restriction digests of genomic DNA for Southern blot 

20-30 µg of gDNA were digested by EcoRI or BamH1 in the respective buffer at 37°C 

overnight. A second amount of the enzyme was added, tubes were  incubated for further 3-4 h  

to ensure complete digest, followed by heat inactivation for 10-15 min at 65°C.  

4.2.7.6.4 Precipitation of the digest  

In order to precipitate the digest, 1 volume of 7.5 M NH4-acetate (100 µl) and 2.5 volume of 

EtOH abs. were added and gently mixed, followed by centrifugation at full-speed (14400 

rpm) in a lab centrifuge for 10 min at room-temperature. Supernatants were discarded 

completely and the pellet was dried for 1 h at 37°C and finally re-dissolved in 40µl TE buffer 

at 4°C overnight.  

4.2.7.6.5 Electrophoresis  

8µl of 6x loading buffer were added to the restriction digest (40 µl), mixed and briefly 

centrifuged. Then samples, DIG-labelled-DNA Molecular Weight Marker II (Roche) and 10 

µl positive control (plasmid DNA) were loaded on a 1% agarose gel containing 0.5 µg/ml 

EtBr in 1x TAE buffer. The gel was run overnight at 0.6 V/cm (20-30 V). The next day, the 

gel was monitored under a UV-transilluminator, and then rinsed in ddH2O, followed by 

submerging in 250 ml of depurinizing sol. for 7 min to nick the DNA and thereby facilitating 

the transfer of large fragments. After that, the gel was rinsed in ddH2O twice to remove the 

acid followed by submerging in denaturation sol. for 2x15 min at RT on a shaker. The gel was 

rinsed in ddH2O and then neutralized in neutralization sol. for 2x15 min at RT, followed by 

submerging in 250ml of 20xSSC for 10min. 
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4.2.7.6.6 Capillary Southern-transfer (overnight)  

20x SSC solutions were placed in a tray where filter paper bridges were built on a glass plate, 

and 3 filter papers were soaked in 20 x SSC solutions and then placed on the top of the bridge 

(avoiding any air bubbles under the paper). A plastic wrap was placed in between to prevent 

by-pass between filter papers that were placed on top of the gel and the filter papers under the 

gel. A piece of positively charged nylon membrane (Roche) was first wetted in ddH2O, then in 

20xSSC and placed on top of the gel. Another 3 filter papers were soaked in 20 x SSC 

solutions, and then placed on the membrane to avoid air bubbles.  

Tissue papers stacks were loaded onto the filter papers and a glass plate centered on top of the 

paper towels. 500 ml bottle full of water was placed in the center of the glass plate to 

distribute the weight evenly across the gel, papers and membrane. Transfer by capillary form 

would take place over night. When the transfer was completed, the membrane was rinsed 3 

times in 2 x SSC and then air dried. The membrane was placed between two filter papers for 

30 min at 120°C in the oven, then covered with foil and stored at RT.  

4.2.7.6.7 Pre-hybridization and hybridization 

The dry blot was placed in an autoclaved hybridization tube and 30 ml of pre-hybridization 

solution was added and incubated for 3 h at 42°C, and then the pre- denaturized probe (95°C 

for 5 min and cooled at 4°C) was added (for the first use), or a preheated (68°C) probe was 

added and incubated overnight at 42°C.  

The membrane was washed as follow:  2 x 10 min in 2 x SSC + 0.1 % SDS at 42°C, then 1 x 

15 min in preheated (65°C) 0.5 x SSC + 0.1 % SDS at 65°C, followed by 1 x 15 min in 0.1 x 

SSC + 0.1 % SDS at 65°C, and then 1 min in maleic acid buffer at RT, then the membrane 

incubated in blocking solution for 30 min followed by incubation with antibody solution for 

30 min. Afterwards the blot was rinsed in washing buffer for 2 x 15 min at RT, and 

equilibrated for 3-5 min in detection buffer.  

4.2.7.6.8 Non-radioactive detection 

500 µl CDP star ready to use (Roche, Germany) were dropped by pipetting on a wrap foil. 

The membrane was removed from the detection buffer, transferred immediately onto the 

substrate, and incubated for 5 min at RT. The excess substrate was removed and Biomax-

Luminescence-film (Kodak) was laid on the membrane and incubated for 30-120 min and 

then developed.  

4.2.7.6.9 Stripping of the membrane 

After usage, the membrane can be stored in 2x SSC buffer for a second hybridization. The 

membrane was rinsed in sterile H2O and incubated twice for 15 min in stripping buffer at 
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65°C in the hybridization tube followed by rinsing in ddH2O. The membrane could be stored 

in 2x SSC buffer at 4°C.  

4.2.7.7 Reverse transcriptase – PCR: 

4.2.7.7.1 Isolation of RNA: 

Total RNA was isolated using Pure Link™ Plant RNA Reagent (Invitrogen, Paisley, 

Scotland) from 100 mg of young leaves harvested from transgenic lines and control 

‗Holsteiner Cox‘ and ‗Gala‘ plants, as the following:  

0.5 ml of cold (+4°C) Plant RNA Reagent were added to 100 mg of frozen, ground tissue. 

Mix by brief vortex or flicking the bottom of the tube until the sample is thoroughly re-

suspended. The tubes were incubated for 5 minutes at room temperature. Note: Lay the tube 

down horizontally to maximize surface area during RNA extraction. The solution was 

clarified by centrifuging for 2 minutes at 13000 rpm in a microcentrifuge at room 

temperature. The supernatant was transfered to an RNase-free tube (Roth, Germany).  0.1 ml 

of 5 M NaCl was added to the clarified extract and tap tube to mix, and then 0.3 ml of 

chloroform were added, tubes were mixed  thoroughly by inversion. The samples were 

centrifuged at +4°C for 10 minutes at 13000 rpm to separate the phases; the aqueous phase 

was transferd to an RNase-free tube. An equal volume of isopropyl alcohol was added to the 

aqueous phase, and then tubes were mixed and were left at room temperature for 10 minutes. 

The samples were centrifuged at +4°C for 10 minutes at 13000 rpm, the supernatants were 

decanted, and taking care not to lose the pellet and 1 ml of 75% ethanol were added to the 

pellet. Note: pellet may be difficult to see. The samples were centrifuged at room temperature 

for 1 minute at 13000 rpm. The liquid was decanted carefully again, taking care not to lose the 

pellet. Briefly centrifuge to collect the residual liquid and remove it with a pipette. To dissolve 

the RNA 10-30 μl RNase-free water were added, Pipetted up and down over the pellet to 

dissolve the RNA. RNA was stored at -70°C. 

4.2.7.7.2 cDNA synthesis: 

2 µg of total isolated RNA was treated with DNaseI (Fermentas, Germany) to eliminate 

genomic DNA contaminations, as the following: 

2 µg RNA 

2 µl DNAse buffer 

2 µl DNAse (2U) 

0.5 µl RNAse inhibitor  

Incubate for 30 min at 37°C then add 2 µl EDTA to prevent RNA degradation.  
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Incubate for 10 min at 65°C to stop the reaction. 

The treated RNA was reversed transcribed using of RevertAid™ H Minus First Strand 

cDNA Synthesis Kit (Fermentas, Germany), as the following:  

Total treated RNA  

1 µl oligo(dT)18 primers  

Complete the volume up to12 µl by using DEPC water. 

Incubated for 10 min at 70°C, followed by a reverse transcriptase reaction prepared on ice as 

follows:    

4 µl 5 x reaction buffer  

1 µl RNAse inhibitor (40 U/µl)  

2 µl dNTPs (5mM)  

The mixture was incubated for 5 min at 37°C in a thermo block, and then 1 µl reverse 

transcriptase polymerase (200 U/µl) was added and incubated for 1 hour at 42°C followed by 

10 min inactivation at 70°C, cDNA was used directly or stored at -20°C while RNA was stored 

at -80°C.  

To screen for DNA contaminations, specific primers for the apple gene M.domestica ribulose-

1, 5-bisphosphate carboxylase/oxygenase activase mRNA, (GenBank: Z21794) 

http://www.ncbi.nlm.nih.gov/nuccore/415851   were used.  

The success of reverse transcription was tested by PCR with 1 μl of cDNA and the primers 

Rubisco forw and Rubisco rev as described. 

4.2.7.7.3 Reverse transcriptase – PCR conditions: 

Total RNA was isolated from non-transgenic‗Holsteiner‘ Cox and ‗Gala‘ plants, as well as 

from all transgenic lines. The cDNA was synthesized, and tested by using the primers Rubisco 

forw. and Rubisco rev. as described.  

The PCR reaction contains 1U (0.2 μl) of Taq polymerase (Promega, Germany), 1.5 mM 

MgCl2, 0.2 mM of each dNTP, and 0.2 μM of each primer in a total volume of 25 μl. Two 

pairs of primers were used, one to test the success of reverse transcription (Rubisco for. and 

Rubisco rev.), the second to confirm transcription of the transgenes (depending on the used 

gene in the transformation).    
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4.2.7.7.3.1 PCR Mixture for RT-PCR 

Compound and concentration Amount per 

reaction  

H2O                         13.3 µl  

5X buffer (GoTaq-Promega)     5 µl  

dNTP (50 mM)         1 µl  

Primer For  (10 pMole)              0.5 µl   

Primer Reverse  (10 pMole)   0.5 µl  

Primer For 2 (10 pMole)              0.5 µl   

Primer Reverse2 (10 pMole)   0.5 µl  

Taq polymerase   (1µ/ml)       0.2 µl 

Template  cDNA (50-100 ng)    1 µl  

25mM MgCL2(1-4mM) 2.5 µl 

Total volume              25 µl  

4.2.7.8 Real time (qPCR) expression analysis 

Real time or quantitative PCR (qPCR) was performed on cDNA isolated from apple to detect 

relative transcript expression levels of both native genes and transgenes. The primer sets used 

for each gene are listed in (see 4.1.1.8.3). Gene specific primers, corresponding to these genes 

were designed using Vector NTI version11 (www.invitrogen.com) to a stringent set of criteria, 

including a Tm  of between 58ºC and 62ºC, an amplicon length between 100 and 200 bp, 

avoidance of GC clamp at 3′ end and limited predicted secondary structure or dimer 

formation. Adherence to these criteria enabled the application of universal reaction conditions. 

Real-time amplifications were run in triplicate on 96-well reaction plates ―low Profile‖ 

(kisker, Germany), reactions were prepared in a total volume of 15 μl containing:  1 μl cDNA, 

0.3 μl of each 10 pMole primer (200 mM each), 7.5μl of IQ™ SYBR
® 

Green Supermix (Bio-

Rad, USA), 5.9μl RNase/DNase-free sterile water (Qiagen, Germany). All the samples and 

blank controls were run in triplicate for each master mix. 

Amplification and analysis by qPCR were carried out using CFX96™ Real-Time PCR 

Detection System (Bio-Rad, USA).  All reactions were performed with a thermal profile as 

follows: initial template denaturation at 95°C for 3 min, followed by 40 cycles of denaturation 

at 95°C for 10 sec, and combined primer annealing/elongation at three difference 

temperature(58,60, 62°C) depending on the used  primers for 20 sec, extension at 72°C for 30 

sec, then one cycle at 95°C for 10 sec.   This cycle was followed by a melting curve analysis, 

ranging from 65°C to 95°C, with temperature increasing by steps of 0.5°C every 10 sec. A 

negative control with no cDNA template (NTC) was included in each run.  Fluorescence was 

measured at the end of each annealing step.    

The raw  data  were  analysed  with  the  CFX  software  version 1.5  and  expression  was 
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normalized to two  reference genes, the apple gene M.domestica ribulose-1, 5-bisphosphate 

carboxylase/oxygenase activase mRNA, (GenBank: Z21794) 

http://www.ncbi.nlm.nih.gov/nuccore/415851 and mRNA of the M. domestica cDNA clone 

Mdfw2033f21.y1 (similar to the RNA polymerase subunit II), (GeneBank : CN579456) 

http://www.ncbi.nlm.nih.gov/nucest/46991006.   

    

  

  

Fig.7. Serial dilutions of cDNA template used to generate a standard curve representing primer 

efficiency in CFX software version 1.5. (a) Serial of used dilutions (b) Representative example for 
MdMyb10 shows a 5-fold dilution series over 6 orders of magnitude.  Efficient amplification of the 

template is seen at all six dilutions over the 40 cycle PCR.  (c)  Raw qPCR data was used to 

construct a curve representing the efficiency of the primer pair to amplify the target DNA.   

 

For each gene, a standard curve was generated with a cDNA serial dilution (1:5) (Fig.7), and 

a  

b  

c  
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the resultant PCR efficiency calculations (80% - 100%) were imported into relative 

expression data analysis, the relative expression ratio of a target gene is calculated on the 

reaction efficiency (E) and  the  crossing  point  deviation  of  the  target  gene  and  reference  

gene,  normalised  to  the calibrator sample.   

PCR products were sequenced to confirm authenticity. 

4.2.7.9 HPLC analysis  

A Bruker Daltonics esquire 3000plus ion trap mass spectrometer (Bruker Daltonics, Bremen, 

Germany) connected to an Agilent 1100 HPLC system (Agilent Technologies, Waldbronn, 

Germany) and equipped with a quaternary pump and a variable wavelength detector was 

utilized for all experiments. Components were separated with a Phenomenex (Aschaffenburg, 

Germany) Luna C-18 column (150 mm long x 2.0 mm inner diameter, particle size 5 µm) that 

was held at 25°C. The electrospray ionization voltage of the capillary was set to -4000 V and 

the end plate to -500 V. Nitrogen was used as dry gas at a temperature of 300°C and a flow 

rate of 10 l/ min. The full scan mass spectra were measured in a scan range from 50 to 800 

m/z with a scan resolution of 13000 m/z/s until the ICC target reached 20000 or 200 ms, 

whichever was achieved first. Tandem mass spectrometry was carried out using helium as the 

collision gas (3.56 x 10-6 mbar) with the collision voltage set at 1 V. Spectra were acquired in 

the positive and negative ionization mode. The LC parameters went from 100% A (0.1% 

formic acid in water) to 50 % B (0.1% formic acid in methanol) in 30 min, then in 5 minutes 

to 100% B, held for 15 min at these conditions, then returned to 100% A in 5 min at a flow 

rate of 0.2 ml min-1. The detection wavelength was 280 nm.  

4.2.7.9.1 Metabolite analysis 

About 100 mg of apple leaves were exactly weighed and extracted with 200 µl methanol 

containing 0.2 mg/ml Biochanin A as an internal standard. Methanol was removed in a rotary 

vacuum concentrator (Christ RVC 2-18, Osterode, Germany) and the extract was re-dissolved 

in 45 µl water for analysis by LC-ESI-MSn. Metabolites were tentatively identified by their 

retention times, mass spectra and product ion spectra in comparison with the data determined 

for authentic reference material or published data. Relative metabolite quantification was 

performed using the Data Analysis 4.1 and Quant Analysis 1.5 software (Bruker Daltonics, 

Bremen, Germany) normalizing all results to the internal standard. 

Several different polyphenolic secondary metabolites were analysed; including many of sub-

groups belonging to the family of flavonoids (monomeric and polymeric flavon 3-ols, 

flavonols, dihydrochalcone, anthocyanidin, hydroxycinnamic acid).  
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Prof. Dr. Thomas Hofmann, Technical University Munich, kindly carried out the HPLC 

analysis. 

4.2.7.10 Leaf painting assay for detection of bar gene-based herbicide resistance 

In the constructs used for transformation, (Fig.5) the bar gene was used as selectable marker 

gene. The bar (bialaphos resistance) gene encodes a phosphinothricin acetyl transferase (PAT) 

enzyme, isolated from Streptomyces hygroscopicus. It is analogous to pat gene isolated from  

S. viridochromogenes  (Murakami et al., 1986; Thompson et al., 1987; Strauch et al., 1988), 

which confers resistance to bialaphos and the related compounds phosphinothricin (PPT), the 

active ingredient of herbicide BASTA
®
, Liberty

® 
 and glufosinate ammonium. 

Phosphinotricin inhibits Glutamine Synthetase (GS), the enzyme that incorporates NH3 into 

amino acids. When glutamine synthetase is blocked, the plants runs out of amino acids and 

pH of the cell rises causing the plant/tissue death due to accumulation of NH3.  

Transgenic plants expressing the bar gene are resistance to BASTA
®
 through PAT enzyme by 

covalently linking an acetyl group to PPT to inactivate and detoxify compound to acetyl-PPT 

(De Block et al., 1987; Murakami et al., 1986) (Fig.8). 

 

 

Fig.8. Detoxification and inactivation of PPT by acetylation. (Droege et al., 1992). 

 

BASTA
®
 is a non-selective herbicide with no residual activity and has been regarded as 

environmentally safe (Nap and Metz, 1996). The bar gene offers an efficient and cheap 

selection system since all plants not containing or expressing bar will die.   

BASTA
®
 (Aventis GmbH, Germany) at a dilution of 600 mg/l (stock 200 g/l) was painted on 

3 months old plants (plants have 9-11 leaves) to identify transformants. It was also applied to 

the upper surface of one marked apple leaf. Transgenic plants and control plants were treated 

in the same way, and BASTA
®
 effect was controlled after one week. 
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5 Results    

5.1 Phenotype 

The results of transformation experiments showed changes in the phenotype in the case of 

‗HC‘ transgenic plants transformed with the binary vectors pJan-MdMyb10 and pGIIMH35S-

MdMyb10. Starting from the red calli formed, red colour was observed on the veins of leaves 

of regenerated shoots, the in vitro plants, and on the plants grown in the green house (Table.4 , 

Fig.9; 10). With a notice that the red colour appeared on the leaves of HC‘ transgenic plants 

transformed with the binary vector pGIIMH35S-MdMyb10 appeared to be stronger. Roots of 

transgenic plants did not show any changes in the phenotype in comparison to roots of non-

transgenic plants. 

Calli and regenerated shoots formed from ‗Gala‘ transformation by using the MdMyb10 gene 

showed high red colour, while there was any difference between the in vitro plants and the 

grown plants in the green house in comparison to non- transgenic ‗Gala‘ plants (Table.4). 

There was no changes in the phenotype when the constructs contain MdMyb9, MdMyb11 

genes were used (in the case of two cultivars used) (Table.4).  

 

Table.4. Effect of genetic transformation of apple M.domestica using MdMyb9, MdMyb10 

MdMyb11 transcription factor genes on the phenotype (No: No effects, +: red colour) 
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pJan-MdMyb9 No No No No No No No No 

pJan-MdMyb10 + + No + + No No No 

pJan-MdMyb11 No No No No No No No No 

pGIIMH35S-MdMyb10 + ++ No ++     

pGIIMH35S-MdMyb11 No No No No     
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A   B      

C   D  

 

Fig.9. Change of phenotype in different stages of transformation of HC using pJan-MdMyb10 binary 

vector (A: explant on regeneration medium; B:  in vitro regenerated shoots; C: leaves of acclimatized 

plants; D: rooted plants) 
 

 

A   B  

C       D    

 

Fig.10. Change of phenotype in different stages of transformation of HC using pGIIMH35S-
MdMyb10 binary vector (A: explant on regeneration medium; B:  in vitro regenerated shoots; C: 

leaves of acclimatized plants; D: rooted plants). 
 

Transgenic       Control Control                  Transgenic 

Control                           Transgenic 
Transgenic        
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To confirm the transgenic nature, the transgenic plants using the vector pGIIMH35S 

harboring MdMyb10, MdMyb11 transcription factor genes, were tested with leaf paint assay 

for their tolerance to commercially available form of PPT, 600mg/l BASTA
®
 was applied 

using a siring to the leaves of transgenic and control plants. The results (Fig.11) clearly 

indicated that the transgenic plants could tolerate the applied herbicide treatment without any 

significant observable lesion contrary to the lesions and necrosis-taking place at the leaves of 

control plants.  

 A   B C  

Fig.11. Leaf paint assay on apple plants cv. HC after one week treatment using 600 mg/l BASTA
®
 (A: 

nom-transgenic plants (-); B: transgenic plant using pGIIMH35S-MdMyb10 binary vector (+); C: 

transgenic plant using pGIIMH35S-MdMyb11 binary vector (+)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS          58 

 

 

5.2 Transformation of M. domestica CVs ‘HC’ and ‘Gala’ using the 

binary vector pJAN harboring MdMyb9, MdMyb10, MdMyb11 

Transcription factor genes  

5.2.1 Molecular analysis 

5.2.1.1 PCR and southern blot analysis 

5.2.1.1.1 Transformed plants using the vector pJAN harboring MdMyb9 

transcription factor gene 
One transgenic line from ‗HC‘ and three transgenic lines from ‗Gala‘ were obtained. The 

integration of the MdMyb9 transcription factor gene into genomic DNA of transgenic plants 

was confirmed by using the primers 35S prom-for., and Myb9-specific rev. (see 4.1.1.8.2), 

which amplify a 726-bp specific fragment. The results clearly indicate and confirm the 

successful integration of T–DNA into genomic DNA of transgenic apple plants (Fig.12). 

 

 

             
 

Fig.12. PCR of different transgenic lines of HC and Gala (transformed with PJan-MdMyb9) using 35S 

prom-for. and Myb9-specific rev. primers (spanning a 726bp DNA fragment).  
 

In order to confirm the integration and to know the copy numbers of MdMyb9 in the 

transgenic lines, the isolated genomic DNA from both non-transgenic and transgenic plants 

were digested with EcoRI restriction enzyme. Southern blot hybridization was performed 

using a DIG labeled PCR amplified probe. The result showed that one copy of a MdMyb9 

analog was found in all plants analysed (non-transgenic and transgenic plants). The MdMyb9 

gene was successfully integrated into the genome of the ‗HC‘ transgenic plants as one copy of 

MdMyb9 gene was detected in the ‗HC‘ transgenic plants (line1), in addition to that found in 

the wild type. The MdMyb9 gene was successfully integrated in the genome of the ‗Gala‘ 

transgenic plants; one additional copy of MdMyb9 gene was detected in the ‗Gala‘ transgenic 

line1, while two gene copies with different places were detected in line2 and line 3, in 

addition to that found in the wild type (Fig.13). 

 

 

1000 

  500 

     100bp     HC    line1   Gala   line1   line2    line3   plasmid   W  
 control   control   MdMyb9  
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Fig.13. Southern blot analysis of g DNA for HC and Gala transgenic plants transformed with pJan-
MdMyb9 digested with Eco RI, using MdMyb9 probe (1: Marker; 2: HC non-transgenic;3:HC 

transgenic line1; 4:Gala non transgenic;5,6,7: Gala transgenic lines1, 2, 3; 9: positive 

control(plasmid)) 
 

5.2.1.1.2 Transformed plants using the vector pJAN harboring MdMyb10 

transcription factor gene 
One transgenic line from ‗HC‘ and four transgenic lines from ‗Gala‘ were obtained. The stable 

integration of the MdMyb10 transcription factor gene into genomic DNA of transgenic plants 

was confirmed by using the primers Myb10 for., and Myb10 reav. (see 4.1.1.8.2), which 

amplify a 717-bp Myb10 specific fragment (Fig.14).  

 

                                   

Fig.14. PCR of different transgenic lines of HC and Gala (transformed with PJan-MdMyb10) using 

MYB10 primers (spanning a 717 bp DNA fragment)  

The genomic DNA from both non-transgenic and transgenic Plants was digested with BamH1. 

Southern blot hybridization was performed using a DIG labeled PCR amplified probe. The 

result showed that one copy of a MdMyb10 analog was found in all analysed plants (non-

transgenic and transgenic plants). The MdMyb10 gene was successfully integrated into the 

genome of the ‗HC‘ transgenic plants; one copy was detected in line1, in addition to that 
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found in the wild type. The MdMyb10 gene was successfully integrated in the genome of the 

‗Gala‘ transgenic plants; one additional copy was detected in the ‗Gala‘ transgenic plants 

(line1, line 4), while two gene copies were detected in line2, line 3, in addition to that found 

in the wild type (Fig.15). 

 

                                 

Fig.15. Southern blot analysis of g DNA for Gala transgenic plants transformed with pJan-MdMyb10 

digested with Bam H1, using MdMyb10 probe (1: Marker; 2: Gala non-transgenic; 3, 4, 5, 6: Gala 
transgenic lines 1-4; 8: positive control (plasmid)) 

 
5.2.1.1.3 Transformed plants using the vector pJAN harboring MdMyb11 

transcription factor gene 
Two transgenic lines from ‗HC‘ and one transgenic line from ‗Gala‘ were obtained. The stable 

integration of the MdMyb11 transcription factor gene into genomic DNA of transgenic plants 

was confirmed by using the primers 35S prom-for., and Myb11-specific rev. (see 4.1.1.8.2), 

which amplify a 474-bp specific fragment (Fig.16). 

 

               

Fig.16. PCR of different transgenic lines of HC and Gala (transformed with PJan-MdMyb11) using 

35S promoter-for and MYB11-specific rev primers (spanning a 474 bp DNA fragment).   

The genomic DNA from both non-transgenic and transgenic Plants was digested with EcoRI. 

Southern blot hybridization was performed using a DIG labeled PCR amplified probe. The 
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result showed that one copy of an MdMyb11 analog was found in all analysed plants (non -

transgenic and transgenic plants from both cultivars used).  

The MdMyb11 gene was successfully integrated in the genome of the ‗HC‘ transgenic plants; 

one additional copy was detected in line1, while four copies were found in the case of line2, 

in addition to that found in the wild type. 

The MdMyb11 gene was successfully integrated in the genome of the ‗Gala‘ transgenic plants; 

one additional copy of MdMyb11 gene was detected in the ‗Gala‘ transgenic plants (line1), in 

addition to that found in the wild type (Fig.17). 

 

  

Fig.17. Southern blot analysis of g DNA for HC and Gala transgenic plants transformed with pJan-

MdMyb11 digested with EcoRI, using MdMyb11 probe (1: Marker; 2: HC non-transgenic; 3, 4, 5: HC 

transgenic lines 1-2; 6: Gala non transgenic; 7: Gala transgenic line1; 9: positive control (plasmid)) 
 

The presence of the npt II gene in all transgenic plants using the vector pJAN harboring 

MdMyb9, MdMyb10, MdMyb11 transcription factor genes was confirmed by using the primers 

167 nptII-for and 367nptII-rev (see 4.1.1.8.2 ), (Result not shown). 

5.2.1.2 Reverse transcriptase PCR 

5.2.1.2.1.Transformed plants using the vector pJAN harboring MdMyb9 

transcription factor gene 

RT-PCR was performed to confirm transcription of the transgene using myb9 specific primer 

for and Pjan-poly-A rev. primer (the reverse primer from the vector after the stop codon and 

before the polyadenylation region) (see 4.1.1.8.2); the expected fragment with the size of 

651bp was amplified from all regenerated transgenic lines( Fig.18). 
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Fig.18. RT-PCR of different transgenic lines of HC and Gala (transformed with PJan- MdMyb9) using 
Myb9 specific-for., pJan-polyA-rev. primers (spanning a 651bp cDNA fragment of the MdMyb9 gene). 

Rubisco-for. and Rubisco rev. primers (spanning a 200bp cDNA fragment of the Rubisco gene) were 

used as a control. 

5.2.1.2.2 Transformed plants using the vector pJAN harboring MdMyb10 

transcription factor gene 
RT-PCR was performed to confirm transcription of the transgene using myb10 specific primer 

for and pJan-poly-A rev. primer (the reverse primer from the vector after the stop codon and 

before the polyadenylation region) (see 4.1.1.8.2), the expected fragment with the size of 

729 bp was amplified from all the regenerated transgenic lines (Fig.19). 

 

                                      

Fig.19. RT-PCR of different transgenic lines of HC and Gala (transformed with PJan- MdMyb10) 

using Myb10 specific-for., pJan-polyA-rev. primers (spanning a 729bp cDNA fragment of the 

MdMyb10 gene). Rubisco-for. and Rubisco rev. primers (spanning a 200bp cDNA fragment of the 

Rubisco gene) were used as a control. 

5.2.1.2.3 Transformed plants using the vector pJAN harboring MdMyb11 

transcription factor gene 
RT-PCR was performed to confirm transcription of the transgene using myb11 specific primer 

for and pJan-poly-A rev. primer (the reverse primer from the vector after the stop codon and 

before Polyadenylation region) (see 4.1.1.8.2), the expected fragment with the size of 714bp 

was amplified from all the regenerated transgenic lines (Fig.20). 
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Fig.20. RT-PCR of different transgenic lines of HC and Gala (transformed with PJan- MdMyb11) 
using Myb11specific-for., pJan-polyA-rev. primers (spanning a 714bp cDNA fragment of the 

MdMyb11 gene). Rubisco-for. and Rubisco rev. primers (spanning a 200bp cDNA fragment of the 

Rubisco gene) were used as a control. 

5.2.2 Quantitative-RT-PCR analysis 

The Real Time PCR results of samples taken from transgenic ‗HC‘ and ‗Gala‘ lines showed 

that the transcript levels of the MdMyb9 ,MdMyb10, MdMyb11 transcription factor genes were 

increased in all transgenic plants in comparision to the  non-transgenic plants. 

5.2.2.1 Transformed plants using the vector pJAN harboring MdMyb9 

Real Time PCR was performed using MdMyb9 gene specific primers (see 4.1.1.8.3) to obtain 

transcription profiles for the transgene MdMyb9. Expression levels of MdMyb9 gene was 

determined and expressed  relative to the Rubisco and the RNA polymerase genes. These two 

genes were chosen as reference genes because SYBR-Green RT-PCR analysis showed that 

they have a high and stable mRNA expression level in apple leaves (Flachowsky, 

unpublished). The transcripts of the transgene MdMyb9 were detected in both transgenic and 

non-transgenic control plants. 

The MdMyb9 gene transcription level of the transgenic line was 47- fold in relation to non-

transgenic ‗HC‘ plants (Fig.21).  

The MdMyb9 gene transcription levels of the transgenic lines ranged between 3.7- fold (line1) 

and 1451-fold (line2) in relation to non- transgenic ‗Gala‘ plants (Fig.22).   
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Fig.21. Expression of MdMyb9 gene in HC transgenic line (transformed using pJan–MdMyb9 vector) 
and respective control. The values are expressed relative to the level of mRNA transcript levels of the 

reference genes. Values are mean and standard error (error bars ±1 SE) of three replicates. (HC: non 

transgenic plant, Line1: transgenic plant) 

 

 

Fig.22. Expression of MdMyb9 gene in Gala transgenic lines (transformed using pJan–MdMyb9 

vector) and respective control. The values are expressed relative to the level of mRNA transcript levels 

of the reference genes. Values are mean and standard error (error bars ±1 SE) of three replicates (Gala: 

non-transgenic plant, Line1, Line2, Line3: transgenic plants). 

 

5.2.2.2 Transformed plants using the vector pJAN harboring MdMyb10 

Real-time PCR was performed using MdMyb10 gene specific primers (see 4.1.1.8.3) to obtain 

transcription profiles for the transgenes MdMyb10. Expression levels of MdMyb10 gene were 

determined and expressed relative to the Rubisco and the RNA polymerase genes.  The 

transcripts of the transgenes MdMyb10 was detected in both transgenic and non-transgenic 
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control plants. The MdMyb10 gene transcription level of the transgenic line was 1261-fold,in 

relation to non-transgenic ‗HC‘ plants (Fig.23). 

The MdMyb10 gene transcription level of the Gala transgenic lines ranged between 86- fold 

(line2) and 847-fold (line1), in relation to non- transgenic ‗Gala‘ plants (Fig.24).  

 

Fig.23. Expression of MdMyb10 gene in HC transgenic line (transformed using pJan–MdMyb10 
vector) and respective control. The values are expressed relative to the level of mRNA transcript levels 

of the reference genes. Values are mean and standard error (error bars ±1 SE) of three replicates. (HC: 

non transgenic plant, Line1: transgenic plant) 

 

 

Fig.24 . Expression of MdMyb10 gene in Gala transgenic lines (transformed using pJan–MdMyb10 

vector) and respective control. The values are expressed relative to the level of mRNA transcript levels 
of the reference genes. Values are mean and standard error (error bars ±1 SE) of three replicates (Gala: 

non-transgenic plant, Line1, Line2, Line3, Line4: transgenic plants). 

 

5.2.2.3 Transformed plants using the vector pJAN harboring MdMyb11 

Real-time PCR was performed using MdMyb11 gene specific primers (see 4.1.1.8.3) to obtain 

transcription profiles for the transgenes MdMyb11. Expression levels of MdMyb11 gene were 

 Gene Expression  

 Gene Expression  
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determined and expressed relative to the Rubisco  and the  RNA polymerase  genes.  The transcripts of 

the transgenes MdMyb11 was detected in both transgenic and non-transgenic control plants. The 

MdMyb11 gene transcription level of the ‗HC‘ transgenic lines ranged between 1.15- fold (line1) and 

5.99-fold (line2), in relation to non- transgenic ‗HC‘ plants (Fig.25). 

The MdMyb11gene transcription level of the transgenic line was 9.6-fold, in relation to non-transgenic 

‗Gala‘ plants (Fig.26). 

 

 

Fig. 25. Expression of MdMyb11gene in HC transgenic lines (transformed using pJan–MdMyb11 

vector) and respective control. The values are expressed relative to the level of mRNA transcript levels 
of the reference genes. Values are mean and standard error (error bars ±1 SE) of three replicates (HC: 

non-transgenic plant, Line1, Line2: transgenic plants). 

 

 

Fig.26. Expression of MdMyb11 gene in Gala transgenic line (transformed using pJan–MdMyb11 
vector) and respective control. The values are expressed relative to the level of mRNA transcript levels 

of the reference genes. Values are mean and standard error (error bars ±1 SE) of three replicates (Gala: 

non-transgenic plant, Line1: transgenic plant). 
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5.2.3 Metabolic profiling 

5.2.3.1 Quantitative analysis of flavonoid  levels in MdMyb9 transgenic plants 

In MdMyb9 ‗HC‘ transgenic plants, some of the polyphenol classes analysed were enhanced 

and others were reduced (Fig.27, 30). The total content levels of flavan-3-ols were 1.21 times 

in comparison to non-transgenic plants, strongest rises were observed for catechin 3 times, 

epicatechin 2.34 times. The level of Cyanidin 3-O-galactoside  in MdMyb9 ‗HC‘ transgenic 

plants was reduced to 0.42 in comparison to non-transgenic plants. The total content levels of 

hydroxycinnamic acids were increased 2 times in comparison to their levels in the non-

transgenic plants, caffeic acid-glucose- ester showed the highest raises up to 4 times. The total 

content levels of dihydrochalcones (phloretin, phloridzin and phloretin 2‘-xyloglucoside) -as 

the dominant M. domestica polyphenol class- were decreased to 0.71 in MdMyb9 ‗HC‘ 

transgenic plants in comparison to non-transgenic plants. The total content levels of flavonols 

were reduced to 0.89 in comparison to their levels in non-transgenic plants. 

In MdMyb9 ‗Gala‘ transgenic plants, all the polyphenol classes analysed were reduced in the 

case of line 2. With a decrease to 0.49 for the total content levels of flavon 3-ols, 0.26 for the 

total content levels of hydroxycinnamic acids, 0.72 for the  total content levels of 

dihydrochalcones, and 0.57 for the total content levels of flavonols.  

In MdMyb9 ‗Gala‘ transgenic plants (line1, line3), some of the polyphenol classes analysed 

were induced and others were reduced (Fig.27, 31). The total content levels of flavon 3-ols 

were 1.02, 1.41 times for line1 and 3, respectively, in comparison to non-transgenic plants, 

with an increase 3.6, 7 times for epicatechin, 4.1, 2.4 times for catechin for line1 and 3, 

respectively. The level of Cyanidin 3-O-galactoside  in MdMyb9 ‗Gala‘ transgenic plants was 

nearly the same in the case of line1, and increased up to 2.2 times in comparison to non-

transgenic plants in the case of line3. For the hydroxycinnamic acids, the total content of their 

levels in MdMyb9 ‗Gala‘ transgenic plants were 1.56 and 1.92 times increases in comparison 

to  non-transgenic plants for line1 and line3, respectively,   strongest rises were observed in 

the case of chlorogenic acid (3.4, 4.36) times, and caffeic  acid-glucose-ester 2.896, 2.856  

times.  
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Fig.27. Relative levels of selected phenolic compounds (values are metabolite levels of each 

compound in the transgenic plants transformed with the binary vector pJan-MdMyb9 comparing to the 

levels in non-transgenic plants), (a: HC transgenic plants, b: Gala transgenic plants) 

The total content levels of dihydrochalcones were 1.1 times more in the case of line3 in 

comparison to non-transgenic plants, with an increase of 1.67 times for phloretin. In the case 

of line1, the total content levels of dihydrochalcones were reduced to 0.76 times in 
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comparison to non-transgenic plants. The total content levels of flavonols in MdMyb9 ‗Gala‘ 

transgenic plants were reduced to 0.49 and 0.77 times for line1 and line3, respectively, in 

comparison to their levels in the non-transgenic plants. 

5.2.3.2 Quantitative analysis of flavonoid  levels in MdMyb10 transgenic plants 

In MdMyb10 ‗HC‘ transgenic plants, some of the polyphenol classes analysed were enhanced 

and others were reduced (Fig.28, 32). The total content levels of flavan-3-ols were increased 

to 1.4 times, strongest rises were observed for (epi) catechin-hexoside 1.44 times in 

comparison to their levels in non-transgenic plants. The level of cyanidin–galactoside, was 

nearly the same in MdMyb10 ‗HC‘ transgenic plants as well as in non-transgenic plants. For 

the hydroxycinnamic acids, the total content of their levels were reduced to 0.76 times in 

comparison to non-transgenic plants. For the dihydrochalcones, the total content of their 

levels were nearly the same in MdMyb10 ‗HC‘ transgenic plants and ‗HC‘ non-transgenic 

plants, only the level of phloretin was 1.32 times higher in MdMyb10 ‗HC‘ transgenic plants. 

The total content levels of flavonols were higher 1.68 times in comparison to their levels in 

the non-transgenic plants, Q-xyloside showed rises 2.7 times in comparison to non-transgenic 

plants. 

In MdMyb10 ‗Gala‘ transgenic plants, most of the analysed polyphenol classes were enhanced 

(Fig.28, 33). The total content levels of flavon 3-ols were increased 2.3, 2.5 and 1.85 times for 

the lines 1,2 and 3, respectively, the levels  were nearly the same for the line 4 in MdMyb10 

‗Gala‘ transgenic as well as  in non-transgenic plants. Strongest rises were observed for (epi) 

catechin-hexoside 2.45, 2.74 and 1.83 times for the lines 1, 2 and 3, respectively. The total 

content levels of  hydroxycinnamic acids in MdMyb10 ‗Gala‘ transgenic plants were increased 

1.2 and 1.24 times for the lines1 and 3, respectively, the levels were decreased 0.81 and 0.69 

times for the lines 2 and 4, respectively, in comparison to non-transgenic plants .  The level of 

Cyanidin 3-O-galactoside  in MdMyb10 ‗Gala‘ transgenic plants was increased 5.3, 1.7 and 

1.95 times for the lines 1, 2 and 3, respectively, in comparison to non-transgenic plants. For 

the line 4 the level of Cyanidin 3-O-galactoside  was nearly the same in MdMyb10 ‗Gala‘ 

transgenic plants as well as in non-transgenic plants.  
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Fig.28. Relative levels of selected phenolic compounds (values are metabolite level of each compound 
in the transgenic plants transformed with the binary vector pJan-MdMyb10 comparing to the levels in 

non-transgenic plants), (a: HC transgenic plants, b: Gala transgenic plants) 

 

 

For the dihydrochalcones (phloretin, phloridzin and phloretin 2‘-xyloglucoside), as the 

dominant M. domestica polyphenol class, the total content levels in MdMyb10 ‗Gala‘ 

transgenic plants increased up to 1.7 times for the lines 1, 2 and 3 in comparison to non-
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transgenic plants. Strongest rises were observed for phloretin  2.73, 2.57 and 2.47  times for 

the lines 1, 2 and 3, respectively, for the line 4 the total content levels of dihydrochalcones 

was nearly the same in MdMyb10 ‗Gala‘ transgenic plants  as well as in  non-transgenic 

plants. 

The total content levels of flavonols were increased 1.42, 1.7 and 1.39 times for the lines 1, 2 

and 3, respectively,  in comparison to their levels in non-transgenic plants, for the line 4 the 

total content levels of flavonols was nearly the same in MdMyb10 ‗Gala‘ transgenic plants and 

non-transgenic plants. 

5.2.3.3 Quantitative analysis of flavonoid  levels in MdMyb11 transgenic plants 

In MdMyb11 ‗HC‘ transgenic plants, (Fig.29, 34)., the total content levels  of flavan-3-olswere 

increased 1.53 and 1.3 times for the lines 1 and 2, respectively,  in comparison to non-

transgenic plants, strongest rises were observed for catechin 4.87 times and (epi)catechin-

hexoside 2.89 times in the case of line 2. The level of Cyanidin 3-O-galactoside  in MdMyb11 

‗HC‘ transgenic plants were reduced to 0.83 and 0.56 times for line1 and line 2, respectively, 

in comparison to non-transgenic plants. The total content levels of  hydroxycinnamic acids in 

MdMyb11 ‗HC‘ transgenic plants were increased up to 2 times for the line 2 , the levels were 

nearly the same for line1 in comparison to the non-transgenic plants .  Strongest rises were 

observed for Caffeic acid-glucose-ester up to 4 times for line 1 and 2, chlorogenic acid 

showed rises 1.43 and 2.6 times for the line 1 and 2, respectively. For the dihydrochalcones, 

the total content levels in MdMyb11 ‗HC‘ transgenic plants reduced to 0.39 and 0.81 times for 

the lines 1 and 2, respectively, in comparison to non-transgenic plants. Also all the flavonols 

analysed were reduced, only observed increase was in Q-xyloside level up to 3 times in the 

case of line 1, Q-rhamnoside showed rises 1.7 and 2.1 times for line 1 and 2, respectively, the 

total content levels of flavonols in  MdMyb11 ‗HC‘ transgenic plants were nearly the same as 

it is in non-transgenic plants.  

In MdMyb11 ‗Gala‘ transgenic plants, most of the polyphenol classes analysed were reduced 

(Fig.29, 35). All the analysed flavon 3-ols were reduced, only epicatechein showed rises up to 

1.2 times, the total content levels of the flavon 3-ols were 0.60 times in comparison to non-

transgenic plants. The level of Cyanidin 3-O-galactoside  in MdMyb11 ‗Gala‘ transgenic 

plants reduced to 0.58 times in comparison to non-transgenic plants. For the hydroxycinnamic 

acids, all of the analysed compounds were reduced, only chlorogenic acid level showed rises 

1.5  times, the total content levels of the hydroxycinnamic acids reduced to 0.6 times in 

comparison to non-transgenic plants. For the dihydrochalcones, the total content levels in 
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MdMyb11 ‗Gala‘ transgenic plants reduced to 0.51 times in comparison to non-transgenic 

plants. Also all the flavonols analysed were reduced. The total content levels of flavonols in 

MdMyb11 ‗Gala‘ transgenic plants reduced to 0.53 times in comparison to non-transgenic 

plants. 
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Fig.29. Relative levels of selected phenolic compounds (values are metabolite levels of each 

compound in the transgenic plants transformed with the binary vector pJan-MdMyb11comparing to 
the levels in non-transgenic plants), (a: HC transgenic plants, b: Gala transgenic plants)  
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Fig.30. Metabolite levels of selected phenolic compounds in leaves taken from‗HC‘  plants  transformed with the binary vector pJan- MdMyb9, relative to the 

levels in leaves from‗HC‘  non- transgenic plants (values are expressed as mg equivalent Biochanin A per 100g  of dry wt., values are mean of 5 replicates ±SD) 
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Fig.31. Metabolite levels of selected phenolic compounds in leaves taken from‗Gala‘  plants  transformed with the binary vector pJan- MdMyb9, relative to the 

levels in leaves from‗Gala‘  non- transgenic plants (values are expressed as mg equivalent Biochanin A per 100g  of dry wt., values are mean of 5 replicates ±SD) 
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Fig.32. Metabolite levels of selected phenolic compounds in leaves taken from‗HC‘  plants  transformed with the binary vector pJan- MdMyb10, relative to the 
levels in leaves from‗HC‘  non- transgenic plants (values are expressed as mg equivalent Biochanin A per 100g  of dry wt., values are mean of 5 replicates ±SD) 
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Fig.33. Metabolite levels of selected phenolic compounds in leaves taken from‗Gala‘  plants  transformed with the binary vector pJan- MdMyb10, relative to the 

levels in leaves from‗Gala‘  non- transgenic plants (values are expressed as mg equivalent Biochanin A per 100g  of dry wt., values are mean of 5 replicates ±SD) 
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Fig.34. Metabolite levels of selected phenolic compounds in leaves taken from‗HC‘  plants  transformed with the binary vector pJan- MdMyb11, relative to the 

levels in leaves from‗HC‘  non- transgenic plants (values are expressed as mg equivalent Biochanin A per 100g  of dry wt., values are mean of 5 replicates ±SD) 
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Fig.35. Metabolite levels of selected phenolic compounds in leaves taken from‗Gala‘  plants  transformed with the binary vector pJan- MdMyb11, relative to the 

levels in leaves from‗Gala‘  non- transgenic plants (values are expressed as mg equivalent Biochanin A per 100g  of dry wt., values are mean of 5 replicates ±SD) 
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5.3 Transformation of M.domestica CV. ‘HC’ using the vector 

pGIIMH35S harboring MdMyb10, MdMyb11 transcription factor 

genes 

5.3.1 Cloning the MdMyb10, MdMyb11 genes into the vector pGIIMH35S  

The MdMyb10, MdMyb11 genes were amplified from the vectors PJan-MdMyb10, PJan-

MdMyb11, respectively, the amplified fragments were introduced into the new vector 

PGIIMH35S successfully, the integration of new fragments was confirmed by a restriction 

digest (Fig.36, 37,38) . 

                                           

Fig.36. Ligation results for the new fragments with the new vector PGIIMH35S (a: MdMyb10, b: 
MdMyb11) 
 

                              

Fig.37. Restriction digest of the PGIIMH35S-MdMyb11 vector by using different  restriction enzymes 

(lane1: 100bp marker, lane2: undigested plasmid, lane3: digested plasmid with XbaI and NcoI, lane4: 

digested plasmid with NcoI, lane5: digested plasmid with EcoRI, lane 6: 1Kb marker) 
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Fig.38. Restriction digest of the PGIIMH35S-MdMyb10 vector by using different restriction enzymes 
(lane1: 100bp marker, lane2: undigested plasmid, lane3: digested plasmid with XbaI and NcoI, lane4: 

digested plasmid with NcoI, lane 5: 1Kb marker) 

 

5.3.2 Molecular analysis 

5.3.2.1 PCR and southern blot analysis  

5.3.2.1.1 Transformed plants using the vector pGIIMH35S harboring MdMyb10 

The stable integration of the MdMyb10 transcription factor gene into genomic DNA of 

transgenic plants was confirmed by using the primers Myb10 for., poly A-PGII rev. (see 

4.1.1.8.2), which amplifies a 782-bp MdMyb10 specific fragment(Fig.39). 

 

                        
 

Fig.39. PCR of transgenic line of HC (transformed with PGIIMH35S-MdMyb10) using MYB10 for., 
and poly A -PGII rev. primers (spanning a 782 bp DNA fragment).   
 

The genomic DNA from both non-transgenic and transgenic Plants was digested with EcoRI. 

Southern blot hybridization was performed using a DIG labeled PCR amplified probe. The 

result showed that one copy of a MdMyb10 analog was found in all plants analysed (non –

transgenic and transgenic plants). The MdMyb10 gene was successfully integrated into the 

genome of the ‗HC‘ transgenic plants; one copy was detected in line1, in addition to that 

found in the wild type (Fig.40). 
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Fig.40. Southern blot analysis of g DNA for Hc transgenic plants transformed with pGIIMH35S-

MdMyb10 digested with Eco RI, using MdMyb10 probe (1: Marker; 2: HC non-transgenic; 3: HC 
transgenic line1; 5: positive control (plasmid))  

 

5.3.2.1.2 Transformed plants using the vector pGIIMH35S harboring MdMyb11 

The stable integration of the MdMyb11 transcription factor gene was confirmed by using the 

primers Myb11 for., poly A-PGII rev. (see 4.1.1.8.2), which amplify a 904-bp MdMyb11 

specific fragment (Fig.41). 

 

                        

Fig.41.PCR of transgenic line of HC (transformed with PGIIMH35S-MdMyb11) using MYB11 primer 

forward and poly A- PGII reverse (spanning a 904 bp DNA fragment).   

The genomic DNA from both non-transgenic and transgenic Plants was isolated and digested 

with EcoRI. Southern blot hybridization was performed using a DIG labeled PCR amplified 

probe. The result showed that one copy of MdMyb11 analog was found in all analysed plants 

(non –transgenic and transgenic plants).  

The MdMyb11 gene was successfully integrated into the genome of the ‗HC‘ transgenic 

plants; one gene copy was detected in line1, in addition to that found in the wild type 

(Fig.42). 
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Fig.42. Southern blot analysis of g DNA for Hc transgenic plants transformed with pGIIMH35S-

MdMyb11 digested with Eco RI, using MdMyb11 probe (1: Marker; 2: HC non-transgenic; 3: HC 

transgenic line1; 5: positive control (plasmid)) 

The presence of the bar gene was confirmed by using the primers bar-sense and bar-antisense 

(see 4.1.1.8.2), which amplify a 250-bp bar-specific fragment (Fig.43).  

 

                                                   

Fig.43. PCR of transgenic lines of HC (transformed with PGIIMH35S-MdMyb11, PGIIMH35S-

MdMyb10) using bar sense and bar antisense primers (spanning a 250 bp DNA fragment of the bar gene).   

5.3.2.2 Reverse transcriptase PCR analysis 

5.3.2.2.1 Transformed plants using the vector pGIIMH35S harboring MdMyb10 

RT-PCR was performed to confirm transcription of the transgenes using Myb10 specific for. 

and poly A-PGII rev. primers (the reverse primer from the vector after the stop codon and 

before Polyadenylation region) (see 4.1.1.8.2), the expected fragment with the size of 782 bp 

was amplified (Fig.44). 
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Fig.44. RT-PCR of transgenic lineof HC (transformed with pGIIMH35S - MdMyb10) using Myb10 
for. and Poly-A-PGII rev. primers (spanning a 782bp cDNA fragment). Rubisco-for. and Rubisco rev. 

primers (spanning a 200bp cDNA fragment of the Rubisco gene) were used as a control. 

5.3.2.2.2 Transformed plants using the vector pGIIMH35S harboring MdMyb11 

RT-PCR was performed to confirm transcription of the transgenes using myb11 specific for. 

and poly A-PGII rev. primers (the reverse primer from the vector after the stop codon and 

before Polyadenylation region) (see 4.1.1.8.2), the expected fragment with the size of 904 bp 

was amplified (Fig.45).  

 

                              

Fig.45. RT-PCR of transgenic line of HC (transformed with pGIIMH35S-MdMyb11) using Myb11 

specific for. and poly-A-PGII rev. primers (spanning a 904bp cDNA fragment). Rubisco-for. and 

Rubisco rev. primers (spanning a 200bp cDNA fragment of the Rubisco gene) were used as a control. 

5.3.3 Real Time -RT-PCR analysis  

The Real time PCR results of samples taken from transgenic ‗Holsteiner Cox‘ lines showed 

that the transcript levels of the MdMyb10, MdMyb11 genes were increased in comparison to 

non-transgenic plants 

5.3.3.1 Transformed plants using the vector pGIIMH35S harboring MdMyb10 

Real-time PCR was performed using MdMyb10 gene specific primers (see 4.1.1.8.3) to obtain 

transcription profiles for the transgene MdMyb10. Expression levels of MdMyb10 gene were 
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determined and expressed relative to the Rubisco and the RNA polymerase genes. The 

transcripts of the transgene MdMyb10 were detected in both transgenic and non-transgenic 

control plants. 

The MdMyb10 gene transcription level of the ‗HC‘ transgenic line was 881.8-fold, in relation 

to non-transgenic ‗HC‘ plants (Fig.46).  

 

Fig.46. Expression of MdMyb10 gene in HC transgenic line (transformed using pGTTMH35S –

MdMyb10 vector) and respective control. The values are expressed relative to the level of mRNA 

transcript levels of the reference genes. Values are mean and standard error (error bars ±1 SE) of  three 

replicates.  

5.3.3.2 Transformed plants using the vector pGIIMH35S harboring MdMyb11 

Real Time PCR was performed using MdMyb11 gene specific primers (see 4.1.1.8.3) to obtain 

transcription profiles for the transgene MdMyb11. Expression levels of MdMyb11 gene were 

determined and expressed relative to the Rubisco  and the RNA polymerase  genes. The 

transcripts of the transgene MdMyb11 were detected in both transgenic and non-transgenic 

control plants. 

The MdMyb11 gene transcription level of the ‗HC‘ transgenic line was 5.3-fold, in relation to 

non-transgenic ‗HC‘ plants (Fig.46). 
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Fig.47. Expression of MdMyb11 gene in HC transgenic line (transformed using pGTTMH35S –
MdMyb11 vector) and respective control. The values are expressed relative to the level of mRNA 

transcript levels of the reference genes. Values are mean and standard error (error bars ±1 SE) of  three 

replicates. 

5.3.4 Metabolic profiling 

5.3.4.1 Quantitative analysis of flavonoid  levels in MdMyb10 transgenic plants 

In MdMyb10 ‗HC‘ transgenic plants, some of the polyphenol classes analysed were induced 

and others were reduced (Fig.48, 50). The total content levels of flavan-3-ols were increased 

to 1.26 times in comparison to non-transgenic plants. Strongest rises were observed for 

Cyanidin 3-O-galactoside  11.56 times in MdMyb10 ‗HC‘ transgenic plants in comparison to 

non-transgenic plants. For the hydroxycinnamic acids, the levels in MdMyb10 ‗HC‘ transgenic 

plants were slightly increased, caffeic acid-glucose-ester showed rises 2.32 times, chlorogenic 

acid increased 2.47 times, the total content levels of the hydroxycinnamic acids were 1.6 

times in comparison to non-transgenic plants. All of dihydrochalcones analysed were reduced, 

the total content levels in MdMyb10 ‗HC‘ transgenic plants were 0.57 times in comparison to 

non-transgenic plants. For the flavonols, all the flavonols analysed were reduced, the total 

content levels of the flavonols in MdMyb10 ‗HC‘ transgenic plants were 0.76 times  in 

comparison to non-transgenic plants.  
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Fig.48. Relative levels of seleted phenolic compounds (values are metabolite levels of each compound 

in HC transgenic plants transformed with the binary vector pGIIMH35S-MdMyb10 comparing to the 

levels in non-transgenic plants).  

5.3.4.2 Quantitative analysis of flavonoid  levels in MdMyb11 transgenic plants 

In MdMyb11 ‗HC‘ transgenic plants, most of the polyphenol classes analysed were induced 

(Fig.49, 51). The total content levels of flavan-3-ols were increased 2.82 times, (epi)-

catechin–hexoside and catechin showed raises 3 and 1.2 times, respectively,  in comparison to 

non-transgenic plants. The level of Cyanidin 3-O-galactoside  in MdMyb11 ‗Gala‘ transgenic 

plants were increased 2.6 times in comparison to non-transgenic plants. For the 

hydroxycinnamic acids the levels in MdMyb11 ‗HC‘ transgenic plants were increased  in the 

case of chlorogenic acid 7 times , caffeic acid-glucose-ester showed rises 9.9 times , coumaric 

acid increased 1.53 times. The total content levels of the hydroxycinnamic acids were 3.46 

times in comparison to non-transgenic plants. For the dihydrochalcones,  the level of   

phloridzin was nearly the same as it is in non-transgenic plants, the total content levels of the 

dihydrochalcones were 0.76 times in comparison to non-transgenic plants.  All of the 

flavonols analysed were reduced, the total content levels of the flavonols in MdMyb11 ‗HC‘ 

transgenic plants were 0.46 times in comparison to non-transgenic plants. 
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Fig.49. Relative level of selected phenolic compounds (values are metabolite levels of each compound 

in HC transgenic plants transformed with the binary vector pGIIMH35S-MdMyb11 comparing to the 
levels in non-transgenic plants).  
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Fig.50. Metabolite levels  of selected phenolic compounds in leaves taken from‗HC‘  plants  transformed with the binary vector pGIIMH35S- MdMyb10, relative 

to the levels in leaves from‗HC‘  non- transgenic plants (values are expressed as mg equivalent Biochanin A per 100g  of dry wt., values are mean of 5 replicates 

±SD) 
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Fig.51. Metabolite levels  of selected phenolic compounds in leaves taken from‗HC‘  plants  transformed with the binary vector pGIIMH35S- MdMyb11, relative 

to the levels in leaves from‗HC‘  non- transgenic plants (values are expressed as mg equivalent Biochanin A per 100g  of dry wt., values are mean of 5 replicates 

±SD) 
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6 Discussion 

6.1 Apple transformation and regeneration  

In this study, direct shoot organogenesis was used from strips of the youngest leaves, after 

inoculation with an Agrobacterium tumefaciens harboring the binary vectors pJan-MdMyb9, 

pJan-MdMyb10, pJan-MdMyb11, PGIIMH35S-MdMyb10 and PGIIMH35S-MdMyb11. 

6.1.1 Transformation efficiency  

Two cultivars were used for transformation experiments. the transformation efficiency 

obtained in the present study ranged between 0.5 % and 1.2 %, with an average of 0.4 % for 

the whole ‗HC‘ transformation experiments. When eliminating the experiments, which did not 

render any transgenic shoots, the efficiency became 0.64 %. 

On the other hand, the transformation efficiency obtained for the whole ‗Gala‘ transformation 

experiments ranged between 0.45 and 1.32, with an average of 0.6%,  but when eliminating 

the experiments, which did not render any transgenic shoots, the efficiency became 0.84 %. 

Szankowski et al. (2003) established a transformation system for the apple cultivars 

‗Holsteiner Cox‘ and ‗Elstar‘, using the bar gene as selectable marker, and resulted in 

transformation efficiencies between (0.17 – 2.68%). 

Degenhardt et al. (2006) recovered transgenic apple plants with efficiencies up to 24%, when 

they used  a selection system based on the phosphomannose-isomerase gene (pmi) as a 

selectable marker and mannose as the selective agent was evaluated for the transformation of 

apple (M. domestica)  cv. ‗Holsteiner Cox‘ 

6.1.2 Composition of regeneration media  

In the present study, we used two different combinations of plant growth regulators for the 

respective cultivars. This is corresponding to the results of many previous studies on apple; 

Korban and chen (1992) demonstrated that, the optimum levels of plant growth regulator for 

shoot organogenesis could be influenced by cultivar. Yepes and Aldwinckle (1994) reported 

that the optimal media for regeneration of difference studied apple cultivars depend on the 

genotype. Puite and Schaart (1996) studied the effect of content of plant growth regulators in 

the media and the genotype on the regeneration of apple; they used in their study three apple 

cultivars ‗Gala‘, ‗Golden Delicious‘ and ‗Elstar‘, they found the same result. Arinaitwe et al. 

(2000) demonstrated that cultivars differed significantly in their shoot proliferation responses 

to different TDZ concentrations. 

MS medium was used as a basal medium in all the media as this medium was the most 
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commonly used for apple regeneration (Szankowski et al., 2003; Belfanti et al., 2004a; 

2004b; Li et al., 2007; Xu et al.,2009). 

The concentration and the type of plant growth regulator added to the basal medium were 

depending on the cultivar used. 

For ‗HC‘ regeneration, TDZ at concentration of 3μM in combination with 1μM of IBA was 

used. Szankowski (2002) studied the effect of eight different concentrations of TDZ on the 

regeneration rates and the number of shoots per explant for apple cultivar ‗HC‘. They found 

that the regeneration rates and the number of shoots per explant did not differ significantly 

within the TDZ-series, the highest number of shoots per explant with a TDZ concentrations 

was reached  with 3μM, this concentration was also used by (Li et al., 2007; Szankowski et 

al., 2009a) . 

For ‗Gala‘ regeneration, TDZ at concentration of 22.7 μM in combination with 2.6 μM of 

NAA was used. This combination was favorable and used by (Sansavini et al., 2003; 2004 

and Belfanti et al., 2004a; 2004b). Other authors used different combinations of plant growth 

regulators for ‗Gala‘ regeneration. For example (Yao et al., 1995) used a combination 

consisting of 22.2 μM BAP and 1.07 μM NAA, while (Puite and Schaart, 1996) found that, 

the best combination of plant growth regulators for ‗Gala‘ regeneration consisting of 13.6 μM 

TDZ, 13.32 μM BAP, and 0.53 μM NAA. 

Variability in differences in plant growth regulators necessary for regeneration of each 

genotype may be attributed to the difference in levels of endogenous hormones in these 

cultivars (Girish et al., 2011). 

6.1.3 Selectable markers 

The selection of transgenic cells or tissues is a critical step in plant transformation, since it is 

the most important factor affecting the transformation efficiency (Zhang et al, 2005). 

Antibiotic or herbicide resistance genes are often used for selection of transgenic plants. 

The most commonly used selectable marker gene for apple transformation was the neomycin 

phosphotransferase II (nptII) gene (De Bondt et al. 1996; Bolar et al. 2000; Liu et al., 2001; 

Sedira et al., 2001;   Espley et al., 2007; Li et al., 2007; Szankowski, 2002, 2009a) which is 

responsible for the resistance against kanamycin. 

Transformed plant cells of apple containing an nptII gene can theoretically survive under 

selection of 100 mg/l kanamycin (Szankowski, 2002). 

In the first set of experiments in the present study, we used the nptII gene as an antibiotic 

resistance gene, we started with a concentration of 25mg/l kanamycin, and the concentration 

was increased to 50mg/l during the regeneration phase, a 75mg/l were applied when the 
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regenerated shoots were  transferred to the micropropagation medium. 

The most concentration used in previous studies was 50mg/l kanamycin as a selection agent 

for transgenic plants (Li et al., 2007; Xu et al., 2009) 

In a second set of experiments, we used the bar gene from Streptomyces hygroscopicus, 

thereby effecting resistance against the herbicide phosphinothricin/glufosinate ammonium. 

We started with 2.5mg/l PPT, and the concentration was increased until 5, 7.5 mg/l during the 

regeneration phase, 10mg/l PPT were applied when the regenerated shoots had to be 

transferred to the micropropagation medium. 

De Bondt et al. (1996) also used the bar gene, to find out, whether or not the herbicide 

phosphinothricin is a better alternative to the antibiotic kanamycin for the selection of 

transgenic apple cv. ‗Jonagold‘ shoots, they started directly after coculture with 10 mg/l ppt. 

but no transgenic ppt-resistant plants could be regenerated.  

Szankowski et al. (2003) started with a concentration of 1 mg/l of the herbicide and they 

increased the concentration up to 10 mg/l during the regeneration phase. The immediate 

application of 10 mg/l at the beginning of regeneration may lead to massive cell death that 

probably also affects the viability of the transgenic cells. An initial low concentration of PPT 

might favour the transformed cells to reach a critical mass, which is supposed to be necessary 

for the organisation of de novo shoot meristems.  

Li et al. (2007) also used the bar gene as a selectable marker gene, they started also with 

1mg/l, then the concentration of applied PPT increased up to 5 mg/l in the micropropagation 

medium. 

Although considerable improvement has been gained in the process of transformation in 

apple, the use of antibiotics and herbicides as selectable markers still imposes a limitation 

according to the consumer acceptance (Penna et al., 2002; Degenhardt and Szankowski, 

2006). Thus, a major problem for genetically modified (GM) apple is the use of the nptII as a 

selection gene-marker for legal restrictions in Europe. 

6.2 Phenotype  

In the present study it was shown that the homologous overexpression of MdMyb10 

transcription factor gene enhances flavonoid biosynthesis in M. domestica. 

‗HC‘MdMyb10 transgenic plants resulted from transformation using both pJan-MdMyb10, 

pGIIMH35S- MdMyb10 constructs were highly phenotypically distinguishable from non- 

transgenic plants, red coloured calli, red shoots and red well growing plants were 

scored(Fig.9,10). Red and green shoots were both harvested from transgenic apple explants.  
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Espley et al, (2007) and Espley, (2009) reported that overexpression of MdMyb10 in apple 

generated a strong phenotype, with highly pigmented plants due to enhanced levels of 

anthocyanin.   

Li, 2007 show a similar result on phenotype change due the LC expression in ‗HC‘ transgenic 

apple plants.  

Recently, (Kortstee et al., 2011) suggested using of the MdMyb10 as a marker gene in 

transformation of apple and other crops. Therefore, anthocyanin production as result of the 

apple MdMYB10 gene can be used as a selectable marker for apple, strawberry and potato 

transformation, replacing kanamycin resistance. 

The results showed that the red colour formed in the case of ‗HC‘ transgenic plant using 

pGIIMH35S-MdMyb10 was deeper than‗HC‘ transgenic plant using pJan-MdMyb10. The 

reason might be that in the first case the MdMyb10 gene is under control of double 35S 

promoter.  

On the other hand, ‗Gala‘ transgenic plants resulted from transformation using pJan-

MdMyb10 construct were highly phenotypically distinguishable from non-transgenic plants, 

only during the first 2-3 weeks from regeneration steps. This is contrary to the results 

obtained by (Espley, 2009). This type of variation can be explained by variation in expression 

of the introduced MdMYB10 gene caused by copy number, position of integration or silencing 

of the transgene  (Butaye et al.,  2005). 

Changes of the phenotype were detected in MdMyb9 and MdMyb11 transgenic plants for both 

cultivars used, represented an increase of some polyphenolic compounds and a decrease of 

others.   

The results also showed that the homologous over expression of MdMyb9 and MdMyb11 

transcription genes enhances flavonoid biosynthesis in M.domestica. However, no visible 

developmental phenotypes were observed during the deferent steps of transformation 

experiments, only some red colour was seen in the calli and parts of the explants in the first 

two weeks on the regeneration media. 

In previous studies, the MdMyb9, MdMyb11 were classified as genes that play a role in 

regulation of flavonoid and anthocyanine pathway. To explain its role as transcription factors 

involved in this pathway; Coffman et al. (1997) reported that regulation of gene expression is 

not mediated solely by activators, but also by the action of repressors; in some cases a 

transcription factor may perform both activities. Aharoni et al. (2001) found that flowers of 

transgenic tobacco lines overexpressing FaMyb1 gene showed a severe reduction in 

pigmentation. A reduction in the level of cyanidin 3-rutinoside (an anthocyanin) and of 
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quercetin-glycosides (flavonols) was observed, suggesting that FaMyb1 may play a key role 

in regulating the biosynthesis of anthocyanins and flavonols in strawberry. It may act to 

repress transcription in order to balance the levels of anthocyanin pigments produced at the 

latter stages of strawberry fruit maturation, and/or to regulate metabolite levels in various 

branches of the flavonoid biosynthetic pathway. 

Recently, Brüggemann, 2011 studied the role of MdMyb9, MdMyb11 in the regulation of the 

flavonoid pathway in apple. He found that MdMyb9 and MyMyb11 show high similarity to 

known proanthocyanidin-regulators, analysis of amino acid sequences of the two genes 

showed a close relationship to known regulators in the flavonoid biosynthetic pathway 

(AtMyb123 from Arabidopsis and OsMyb3 from Rice), in the branch that control the 

accumulation of proanthocyanidins. 

In this study the results showed that the main branches of the flavonoid pathway were affected 

by overexpression of MdMyb9, MdMyb11 genes were flavon-3-ols (catechins) and 

hydroxycinnamice acids. It is well known that flavon-3-ols are building blocks for 

proanthocyanidins. This is in corresponding with the results obtained by Brüggemann (2011). 

 

Successful expression and functionality of the bar gene was confirmed by the leaf-painting 

assay. A high concentration of BASTA
® 

was used (600 mg/l); this high concentration was 

used by (Kiesecker, 2000) on chickpea, (Hassan, 2006) used it on pea, (Briviba et al., 2004; 

Rühmann et al., 2006) on apple. Herbicide tolerance gives another advantage for the 

transformed plants as they to survive when the same herbicide is used to control weeds.  

6.3 Molecular analysis  

In the present study, we used endogenous genes for transformation, in a cis-genic approach. 

The integration of T-DNA into the genomic DNA of all transgenic lines was confirmed by 

PCR, for MdMyb10 transgenic lines, we used specific primers For MdMyb10 gene. Although, 

it was expected to find the amplicon in both non -transgenic and transgenic plants, it was 

found only in the transgenic lines. To explain why, we checked the database; we found that 

the MdMyb10 endogenous gene has an intron with an approximately size 3Kb, this big size 

could not be amplified by the used primers, the only amplified fragments came from the 

MdMyb10 inserted, which was amplified from cDNA and cloned into the binary vectors used. 

On the other hand, when we used specific primers for the MdMyb9 as well as MdMyb11 gene, 

we got the same amplicon in non-transgenic and transgenic lines; with a size 200bp higher 

then the expected one. This guided us to use another strategy to confirm the integration of T-
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DNA for each gene: one primer forward from the 35S promoter and the reverse primer was 

specific for the respective gene. 

In Southern blot analysis, we used specific primers to generate the probes used for MdMyb9, 

MdMyb10 genes, and we used one forward primer from the 35S promoter and one specific 

reverse primer to generate the probe for MdMyb11 gene. 

As it was expected, in all analysed transgenic lines as well as in non-transgenic plants, we 

obtained one gene copy for the endogenous genes. We also obtained a single copy in most of 

the transgenic lines analysed but two or four copies were also obtained. 

Southern blot results showed it was difficult to distinguish between ‗Gala‘ non-transgenic 

plants and MdMyb9 ‗Gala‘ transgenic plants (line1) (Fig.12), the reason could be that the 

insert gene was very closed or inside the endogenous gene  

In reverse transcriptase PCR, when we use specific primers to confirm the transcript of 

transgenes, we obtained the expected amplicon in non- transgenic as well as in transgenic 

plants, because of transcription of endogenous genes. To be able to distinguish between non-

transgenic and transgenic plants, we used one specific primer forward and the second from 

the binary vectors from the region after the stop codon and before the polyadenylation site. 

 

6.4 Real Time analysis and phenotype  

6.4.1 MdMyb9  

In the present study, the expression of the MdMyb9 gene transcript showed significant 

increases in ‗HC‘ and ‗Gala‘ transgenic plants in comparison to non-transgenic controls. 

There was 47- fold increase in relative transcript levels for the ‗HC‘ transgenic plants, while 

‗Gala‘ transgenic plants showed increases ranging between 3.7- fold (line1) and 1451- fold 

(line2).  

Although, the MdMyb9 gene was considered as one of the transcription factor genes that, 

regulate the anthocyanin biosynthetic pathway (Chagné et al., 2007), there was no change of 

phenotype correlating with the increases in relative transcript levels. The reason could be that 

the branches of flavonoid biosynthesis, and the structural genes affected by overexpression of 

MdMyb9 gene do not lead to anthocyanicin accumulation, but to accumulation of other 

compounds (flavon-3-ols, hydroxycinnamic acids). 

6.4.2 MdMyb10 

The expression of MdMyb10 gene led to transcript increases in ‗HC‘ transgenic plants in 

comparison to the non-transgenic control (fig.22, 45). There was a 1261- fold increase in 
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relative transcript levels for the transformed plants with the binary vector pJan-Mdmyb10, 

and an 847-fold increase for the transformed plants with the binary vector pGIIMH35S-

Mdmyb10. The increases in transcript levels correlate with the red colour appearance (change 

of phenotype) (Fig.9, 10).  

Similar results were published from other species: there was always a correlation between the 

high transcript levels of Myb10 and accumulation of anthocyanin. Expression of sweet cherry 

PavMYB10 gene transcript was examined using qPCR analysis during fruit development in 

two cherry cultivars, ‗Rainier‘ and ‗Stella‘. Transcript of PavMYB10 accumulated in the fruit 

tissues is much higher in the fruit at the latter two stages of fruit development (Lin Wang et 

al., 2010). This confirmed the correlation between the change of phenotype (red colour at the 

latter two stages of cherry fruit development) and the high transcript levels of Myb10. 

On the other hand, the expression of MdMyb10 gene transcript showed also an increase in 

‗Gala‘ transgenic plants in comparison to the non-transgenic control (Fig.23). There was a 

150-800-fold increase in relative transcript levels for the transformed plants using the binary 

vector pJan-MdMyb10, but the change of colour was observed only in the first two weeks 

during the regeneration steps. This can be explained by the fact that different cultivars shows 

different transcript levels for the same gene which in correspond with (Lin-Wang et al., 2010) 

results, who reported expression of the strawberry genes, FvMYB10 and FaMYB10, was 

examined during a fruit development series of wild diploid strawberry Fragaria vesca  and 

cultivated octaploid strawberry Fragaria ananassa. There was a high increase in the relative 

transcript levels of the MYB10 transcription factor in the fruit tissues. In F. ananassa, 

transcript levels of FaMYB10 were detectable but low until fruit were at full size. Upon 

ripening and colour change, there was an almost 40,000-fold increase in relative transcript 

level. Expression levels of FvMYB10 in F. vesca also correlate with colour change . 

Espley et al.( 2007)also reported that qPCR analysis of the expression of the MdMYB10 gene 

in both red- and white-fleshed cultivars of apple during fruit development revealed massive 

increases in the relative transcript levels of MdMYB10 in the fruit tissues of ‗Red Field‘ 

compared with ‗Pacific Rose
TM

‘. In ‗Pacific Rose
TM

‘ cortex, transcript levels were barely 

detectable, whilst in ‗Pacific Rose
TM

‘ skin, transcript was detectable only by mid-season, and 

the level of transcript correlated with changes in the transcript levels of the biosynthetic 

genes, particularly at the 102 DAFB time point.  

Ban et al. (2007) reported that, MdMybA expression was analyzed by northern blotting. The 

transcript of MdMyb A was detected only in red-colored skin at 116 DAFB, although high 

levels of anthocyanin accumulation were observed at both 16 and 116 DAFB when 
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anthocyanin concentrations in the skin samples were measured. Moreover, the expression 

levels of MdMybA in ‗Jonathan‘ (a deep-red cultivar) was much higher than that in ‗Tsugaru‘ 

(a pale-red cultivar). 

Similar data were also reported by (Honda et al., 2002) and (Ubi et al., 2006), the final 

anthocyanin concentrations in ‗Jonathan‘ were much higher than those in ‗Tsugaru‘ (about 20 

times higher in absorbance at 530 nm). These results indicate that the level of MdMYBA 

expression is positively correlated with the accumulation of anthocyanins in apple skin after a 

certain age (i.e. not in young fruit skin). 

6.4.3 MdMyb11 

In the present study, when ‗HC‘ and ‗Gala‘ cultivars transformed with the binary vector pJan-

MdMyb11, the expression of the MdMyb11 gene transcripts showed moderate increases in 

‗HC‘ and ‗Gala‘ transgenic plants in comparison to non-transgenic ones. There was 6- fold 

increase in relative transcript levels for the ‗HC‘  transgenic plants, while ‗Gala‘  transgenic 

plants showed increases up to 10-fold.  

On the other hand, when the construct pGIIMH35S was used to transform ‗HC‘ cultivar, the 

expression of the MdMyb11 gene transcript showed 4-fold increase in relative transcript levels 

for the ‗HC‘ transgenic plants.  

The results of this study showed that there was no change of phenotype correlate with the 

increases in relative transcript levels. The reason could be that, the branches of flavonoid 

biosynthetic pathway, and the structural genes were affected by overexpression of MdMyb11 

gene.  

To explain this, the results of (Soglio et al., 2009) showed that, the expression level of two 

enzymes belonging to flavonoid biosynthetic pathway; chalcone synthase I, chalcone-flavone 

isomerase were decreased from May to September, when a remarkable decrease of the 

MdMyb11 was seen by cDNA microarray analysis, during the same period. This can be 

explained that there is a correlation between the expression of MdMyb11 and the genes 

encoding these two enzymes, which are placed at the beginning of flavonoid biosynthetic 

pathway, which mean accumulation of the phenolic compounds in this place. 

This is correspond with the results obtained by Stracke et al. (2007) who determined the 

regulatory potential of three transcription factors Myb11, Myb12 and Myb111. this group used 

a combination of genetic, functional genomics and metabolite analysis approaches to show a 

high degree of functional similarity and displayed very similar target gene specificities for 

several genes of flavonoid biosynthesis, including chalcone synthase, chalcone isomerase, 
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flavonone 3-Hydroxylase and flavonols synthase1. 

The results of real time PCR confirmed that the three transcription factors used in this study 

overexpressed, the effect of this expression led to change of phenotype in the case of the 

MdMyb10 gene, which mean accumulation of anthocyanins. While no changes of phenotype 

in the case of the MdMyb9, MdMyb11 genes, which mean accumulation of others compounds 

in the flavonoid pathway. 

6.5 Metabolites   

In the present study, transformation of ‗HC‘ and ‗Gala‘ apple cultivars with the binary vector 

pJan- MdMyb9, led to an increase of the total contents of flavon-3-ols for 1.21 and 1.41 times 

in comparison to non –transgenic ‗HC‘ and ‗Gala‘ plants respectively. 

Transformation of the ‗HC‘ apple cultivar with the binary vector pJan-MdMyb11, led to an 

increase of the total contents of flavon-3-ols 1.53 times. Moreover, transformation of ‗HC‘ 

with the vector pGIIMH35S-MdMyb11, led to an increase of the total contents of flavon-3-ols 

for 2.82 times. 

The relation between flavon-3-ols  levels and plant diseases resistance was the topic of many 

previous studies.  

Treutter and Feucht (1990b) reported higher levels of flavan-3-o1s in apple leaf tissues of V. 

inaequalis resistant cultivars in relation to the susceptible ones. They explained the reason for 

the presence of catechins (flavan-3-o1s) in defence mechanisms of plants which is probably 

that flavan-3-ols may interact with proteins and inhibit the enzymes secreted by diverse 

pathogenic fungi. 

Feucht et al. (1992) observed a dramatic increase of catechins and their polymers in the 

boundary zones around the infection of V. inaequalis in apple leaves. Resistant cultivars had 

higher concentrations of flavan-3-ols in leaf tissue and fruit skins than susceptible ones; levels 

were 6.5-fold higher in leaves and 3-fold higher in fruit skins. Approximately twice the 

number of different flavan-3-ols was found in leaves and fruit skin of the resistant group than 

in the susceptible one. They also indicated that epicatechin is the main flavanol synthesised 

during damage to fruit by the V. inaequalis fungus.   

In cherry leaves infected by Blumeriella jaapii, higher concentrations of catechin, epicatechin 

were discovered, compared with healthy tissues (Niederleitner et al., 1994). 

On the other hand , ‗HC‘  and ‗Gala‘ plants transformed with the  pJan- MdMyb9 binary 

vector showed a 2 and 1.92 times increases in the total content of hydroxycinnamic acids in 

comparison to ‗HC‘  and ‗Gala‘  controls, respectively. And also ‗HC‘ plants transformed with 
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the  pJan-MdMyb11 binary vector showed a 2 times increases in the total content of 

hydroxycinnamic acids in comparison to ‗HC‘ controls . Moreover, ‗HC‘ plants transformed 

with pGIIMH35S-MdMyb11 binary vector showed a 3.46 times increases in the total content 

of hydroxycinnamic acids in comparison to ‗HC‘ controls. The relation between 

hydroxycinnamic acids levels and plant disease resistance was analysed in previous studies. 

Picinelli et al. (1995) reported that the content of chlorogenic acid and coumaric acid 

derivatives were generally higher in the leaves of resistant apple cultivars than in the sensitive 

ones. They found higher levels of two derivatives of p-coumaric acid, called p-coumaric1 and 

p-coumaric 2, in leaves of polygenic resistant varieties. In resistant cultivars, phenolics, such 

as chlorogenic, caffeic and ferulic acids accumulate at a faster rate than in the susceptible 

ones (Picinelli et al., 1995; Usenik et al., 2004; Treutter, 2005) . 

Mikulic Petkovšek et al. (2003) studied the content of chlorogenic acid in three scab resistant 

apple cultivars (‗Topaz‘, ‗Gold Rush‘, ‗Goldstar‘) and two scab susceptible ones (‗Golden 

Delicious Weinsberg‘, ‗Golden Delicious Clone B‘). Leaves of the cultivar ‗Goldrush‘ 

contained statistically significantly larger quantities of chlorogenic acid than leaves of the 

remaining scab resistant and scab susceptible cultivars. They reported that the scab infection 

of the leaves of scab susceptible cultivars affected the accumulation of chlorogenic acid in the 

way that its content increased with the degree of infection. Greater amount of chlorogenic 

acid was found in the leaves of the cultivar ‗Golden Delicious Weinsberg‘ than in the leaves 

of the cultivar ‗Golden Delicious Clone B‘. 

Mikulic Petkovšek et al. (2007) found that the values of the scab resistant cultivars for 

chlorogenic acid were at a higher level, compared to susceptible cultivars.  

Mikulic Petkovšek et al. (2009) reported that tissue infected with Venturia inaequalis showed 

in comparison to the healthy tissue up to 7.6 times more hydroxycinnamic acids and up to 2.6 

times more flavan-3-ols. 

Schovánková and Opatová. (2011) studied the defensive reaction of the apple (M. domestica 

Borkh.) cultivar ‗Idared‘ after inoculation with three different pathogens (Penicillium 

expansum, Monilinia fructigena, and Gloeosporium spp.). Changes in phenolic content and 

activity of phenylalanine-ammonia lyase were determined after 7, 14, and 21 days after the 

inoculation. The increase in phenols concentration and in phenylalanine-ammonia lyase 

activity varied in the place of fungal attack, in the tissues around rotten zone and in the 

healthy part. Increases of the concentration of chlorogenic acid in the peel were obtained after 

the inoculation with Penicillium expansum.  

In the present study ‗HC‘ and ‗Gala‘ plants transformed using the binary vector pJan-
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MdMyb10 showed increases in the total contents of polyphenol compounds analysed up to 

1.1 and 1.96 times in comparison to non –transgenic ‗HC‘  and ‗Gala‘  plants, respectively. 

The relation between polyphenol compounds levels and plant disease resistance was 

mentioned in many previous studies.   

Mikulic Petkovšek et al. (2008, 2009) reported that the content level of total phenolics in the 

infected tissue was 1.3–2.4 times higher than in the healthy leaves and fruit. 

In details, we can see that ‗HC‘ and ‗Gala‘ apple plants transformed with the binary vector 

pJan-MdMyb10, showed increases in the total content of dihydrochalcons up to 1.1 and 1.7 

times in comparison to non–transgenic ‗HC‘ and ‗Gala‘ plants, respectively.  

It was suggested by Hamauzu (2006) that phloridzin (dihydrochalcon) is hydrolysed in vivo 

by various fungi (V. inaequalis included) to create phloretin, which, in turn, is degraded to 

phloroglucinol, phloretic acid and p-hydroxybenzoic acid, which inhibit the development of V.  

inaequalis . 

Mikulic Petkovšek et al. (2009) also found that the infected leaves contained statistically 

more phloridzin in comparison with the healthy ones – i.e. from 1.2 to 2.8 times more. It is 

evident that infection with the V. inaequalis fungus increased higher phloridzin synthesis. 

Leser and Treutter (2005) also confirmed this effect. 

On the other hand, ‗HC‘ and ‗Gala‘ apple plants transformed with  the binary vector pJan -

MdMyb10, showed increases in the total content of flavonols up to 1.6 and 1.7 times in 

comparison to ‗HC‘ and ‗Gala‘ non-transgenic plants, respectively. 

Mikulic Petkovšek et al. (2009) reported  that tissue infected with Venturia inaequalis showed 

in comparison to the healthy tissue up to 2.9 times higher values of flavanols. 

Feucht (1994) gave the same conclusion, that leaves infected with the V. inaequalis fungus 

accumulated flavonols. In contrast, Picinelli et al. (1995) found no relation between flavonol 

levels and scab resistance in apples. 

The role of flavonoids in plant disease resistance is well studied, and confirmed in numbers of 

previous researches, The present study provides a way to investigate and take advantage of 

this role through changes and the resulting increase in these compounds. 

6.6 Perspectives  

The results of the present study exhibit that overexpression of the transcription factor genes 

MdMyb9 and MdMyb11 led to increases of some polyphenolic compounds and the decrease of 

others. The reason could be that the branches of flavonoid biosynthetic pathways and the 

structural genes were affected by this overexpression. 
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In addition, the reason might be that regulation of the structural genes involved in 

anthocyanin biosynthesis is directly controlled by a combination of two distinct transcription 

factor families with homology to the protein encoded by the vertebrate proto-oncogene c-

Myb, and the vertebrate basic-helix-loop-helix (bHLH) protein encoded by the proto-

oncogene c-MYC, respectively (Mol et al., 1998). Based on this, it can be assumed that the 

MdMyb9, MdMyb11 genes influence the anthocyanins biosynthetic pathway with a 

combination of one of basic helix–loop–helix (bHLH) transcription factors, which is missing 

here. 
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8 OUTLOOK AND FURTHER EXPERIMENTS 

In the present study, different transgenic apple lines from two cultivars were obtained.  Those 

lines are still in vitro, more Real Time PCR analysis can be done to know the effect of 

overexpression of the different transcription factors used on the structural genes involved in 

the flavonoid pathway, and to detect which genes were affected. 

It is necessary to make more morphological evaluation of greenhouse transgenic plants and 

evaluation for plant disease resistance by infection with one bacterial disease, such as Erwinia 

amylovora which caused fire blight on apple, or infection with the Venturia inaequalis fungi 

which caused the apple scab.



REFERANCES   103 

 

 

9 REFERANCES 

Aharoni, A., De Vos, C.H.R., Wein, M., Zhongkui, S., Greco, R., Kroon, A., Mol, J.N.M. and 

O‘Connell, A.P. (2001) The strawberry FaMYB1 transcription factor suppresses 

anthocyanin and flavonol accumulation in transgenic tobacco. Plant Journal. 28: 319-

332. 
 
Awad, M.A., de Jager, A. and Van Westing, L.M. (2000) Flavonoid and chlorogenic acid 

levels in apple fruit: characterisation of variation. Sci. Hortic. 83:249-263. 
 
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana and The 

Arabidopsis Genome Initiative. (2000) Nature. 408:796-815. 
 
Arinaitwe, G., Rubaihayo, P.R. and Magambo, M.J.S. (2000) Proliferation rate effects of 

cytokinins on banana (Musa sp.) cultivars. Sci. Hortic. 86: 13-21. 
 
Atkinson, R.G., Schröder, R., Hallet, I.C., Cohen, D. and MacRae, E.A. (2002) 

Overexpression of polygalacturonase in transgenic apple trees leads to range of novel 

phenotypes involving changes in cell adhesion. Plant Physiol. 129:122-133. 
 
Bais, H.P., Vepachedu, R., Gilroy, S., Callaway, R.M. and  Vivanco, J.M. (2003)  Allelopathy 

and exotic plant invasion: from molecules and genes to species 

interaction. Science. 301: 1377-1380. 
 
Ban, Y., Honda, C., Hatsuyama, Y., Igarashi, M., Bessho, H. and Moriguchi, T. (2007) 

Isolation and functional analysis of a MYB transcription factor gene that is a key 

regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48(7): 

958-970.  
 
Bazzi, C., Messina, C., Tortoreto, L., Stefani, E., Bini, F., Brunelli, A., andreotti, C., 

Sabatini, E., Spinelli, F., Costa, G., Hauptmann, S., Stammler, G., Doerr,S., Marr, J. and  

Rademacher, W. (2003) Control of pathogen incidence in pome fruits and other 

horticultural crop plants with prohexadione-Ca. European Journal of Horticultural 

Science. 68: 108-114. 
 
Beckman, C.H. (2000) Phenolic-storing cells: keys to programmed cell death and periderm 

formation in wilt disease resistance and in general defence responses in plants? Physiol 

Molec Plant Pathol. 57:101–110. 
 
Beckman, C. H., Mueller, W. C. and Mace, M. E. (1974) The stabilization of artificial and 

natural cell wall membranes by phenolic infusion and its relation to wilt disease 

resistance. Phytopathology. 64:1214-1220.  
 
Belfanti, E., Barbieri, M., Tartarini, S., Vinatzer, B., Gennari, F., Paris, R., et al. (2004a) 

‗Gala‘ apple transformed with the Putative Scab Resistance Gene HcrVf2. Acta Hort. 

(ISHS) 663:453-456. 
 
Belfanti, E., Silfverberg-dilworth, E., Tartarini, S., Patocchi, A., Barbieri, M., Zhu, J., et al.  

(2004b). The HcrVf2 gene from a wild apple confers scab resistance to a transgenic 

cultivated variety. Proc Natl Acad Sci. USA 101:886-890. 
 
Bendar, J. and Fink, G. R. (1998) A Myb homologue, ATR1, activates tryptophan gene 

expression in Arabidopsis. Proc Natl Acad Sci. USA 95: 5655-5660. 
 
Bohm, B. (1998) Introduction of flavonoids. Harwood Academic Publishers, Singapore. 
 
Bogs, J., Ebadi, A., McDavid, D. and Robinson, S.P. (2006) Identification of the flavonoid 

hydroxylases from grapevine and their regulation during fruit development. Plant 



REFERANCES   104 

 

 

Physiol. 140:279-291. 
 
Bolar, J.P., Brown, S.K., Norelli, J.L. and Aldwinckle, H.S. (1999) Factors affecting the 

transformation of ‗Marshall McIntosh‘ apple by Agrobacterium tumefaciens. Plant Cell 

Tiss Org Cult. 55:31-38. 
 
Bolar, J.P., Norelli, J.L., Wong, K.W., Hayes, C.K., Harman, G.E. and Aldwinckle, H.S. 

(2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple 

increases resistance to apple scab and reduces vigor. Phytopathology. 90:72-77. 
 
Bolar, J.P., Norelli, J.L., Wong, KW., Hayes, C.K., Harman, G.E., Brown, S.K. and 

Aldwinckle, H.S. (2001) Synergistic activity of endochitinase and exochitinase from 

Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia 

inaequalis) in transgenic apple plants. Transgenic Res. 10:533-543. 
 
Borevitz, J.O., Xia, Y., Blount, J., Dixon, R.A. and Lamb, C. (2000) Activation tagging 

identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell. 12: 

2383-2393.  
 
Boss, P.K., Davies, C. and Robinson, S.P. (1996) Expression of anthocyanin biosynthesis 

pathway genes in red and white grape. Plant Mol Biol. 32: 565-569. 
 
Bovy, A., de Vos, R., Kemper, M., Schijlen, E., Almenar Pertejo, M.,  Muir, S., Collins, G., 

Robinson, S., Verhoeyen M., Hughes ,S. (2002) High-flavonol tomatoes resulting from 

the heterologous expression of the maize transcription factor genes LC and C1.Plant 

Cell. 14:2509-2526. 
 
Brasileiro, A.C.M. and Dusi, D.M.A. (1999)Transformação genética de plantas. In Torres, 

A.C., Caldas, I.S. and Buso, J.A. (eds.) Cultura de te çidose tranformação genética de 

plantas. EMBRAPA, SPI, Brasilia. Embrapa Hortaliças 2:679-735. 
 
Brignolas, F., Lieutier, F., Sauvard, D., Christiansen, E. and  Berryman, A.A. (1998) Phenolic 

predictors for Norway spruce resistance to the bark beetle Ips typographus (Coleoptera: 

Scolytidae) and an associated fungus, Ceratocystis polonica. Can J For Res .28:720-728 
 
Briviba, K., Lein, K. and Szankowski, I. (2004) Analysis of gene expression stability in 

transgenic apple plants and apple fruit. Acta Hort. (ISHS) 663:457-61. 
 
Broughton, W.J., Zhang, F., Perret, X. and Staehelin ,C. (2003) Signals exchanged between 

legumes and Rhizobium: agricultural uses and perspectives. Plant and Soil. 252: 129-

137. 
 

Brüggemann, J. (2011) Untersuchungen zur Regulation der Flavonoid biosynthese im 

KulturApfel  Malus x domestica Ph.D thesis, Bielefeld University.Germany. 
 
Burghardt, F., Knüttel, H., Becker, M. and Fiedler, K. (2000) Flavonoid wing pigments 

increase attractiveness of female common blue (Polyommatus icarus) butterflies to 

matesearching males. Naturwissenschaften 87(7): 304-307. 
 
Butaye, K. M. J., Cammue, B. P. A., Delauré, S. L. and De Bolle, M. F. C. (2005) Approaches 

to minimize variation of transgene expression in plants. Mol Breed. 16: 79-91. 
 
Chagné, D., Carlisle, C. M., Blond, C., Volz, R. K., Whitworth, C. J., Oraguzie, N. 

C., Crowhurst, R. N., Allan, A. C., Espley, R. V., Hellens, R. P. and Gardiner, S. E. 

(2007) Mapping a candidate gene (MdMyb10) for red flesh and foliage colour in apple. 

BMC Genomics. 8:212. 
 
Chaves, N. and Escudero, J.C. (1999) Variation of flavonoid synthesis induced by ecological 

factors. In: Inderjit, Dakshini, K.M.M., Foy, C.L. (eds)  Principles and practices in plant 



REFERANCES   105 

 

 

ecology. CRC Press, Boca Raton:267-285. 
 
Catford, J.G., Staehelin, C., Larose, G., Piché, Y. and Vierheilig, H. (2006) Systemically 

suppressed isoflavonoids and their stimulating effects on nodulation and mycorrhization 

in alfalfa split-root systems. Plant Soil. 285: 257-266.  
 
Chen,  K., Ohmura, W., Doi,  S. and Aoyama,  M. (2004) Termite feeding deterrent from 

Japanese larch wood. Bioresource Techno. l95:129-134. 
 
Cheng, L., R. Zhou, E.J. Reidel, T.D. Sharkey and Dandekar, A.M. (2005) Antisense 

inhibition of sorbitol synthesis leads to up- regulation of starch synthesis without 

altering CO2 assimilation in apple leaves. Planta. 220:767-776. 
 
Chou, C. H. (1999) Roles of allelopathy in plant biodiversity and sustainable 

agriculture. Critical Reviews in Plant Sciences.18: 609-636. 
 
Cohen, M.F., Yamaseki ,H. (2000) Flavonoid-induced expression of a symbiosis-related gene 

in the cyanobacterium Nostoc punctiforme. Journal of Bacteriology. 182: 4644-4646. 
 
Coffman, J.A., Kirchhamer, C.V., Harrington, M.G. and Davidson, E.H. (1997) SpMyb 

functions as an intramodular repressor to regulate spatial expression of Cylla in sea 

urchin embryos. Development. 124:4717-4727. 
 
Collingborn, F.M.B., Gowen ,S.R. and Mueller-Harvey, I. (2000)  Investigations into the 

biochemical basis of nematode resistance in roots of three Musa cultivars in response to 

Radopholus similis infection. Journal of Agricultural and Food Chemistry. 48: 5297-

5301. 
 
Cone, K.C., Burr, F.A. and Burr, B. (1986) Molecular analysis of the maize anthocyanin 

regulatory locus C1. Proc Natl Acad Sci USA. 83: 9631-9635. 
 
Cooper ,J.E. (2004) Multiple responses of Rhizobia to flavonoids during legume root 

infection. Advances in Botanical Research. 41: 1-62. 
 
Daniel, X., Lacomme, C., Morel, J.B., Roby, D. (1999) A novel myb oncogene homologue in 

Arabidopsis thaliana related to hypersesnsitive cell death. Plant Journal. 20:57-66. 
 
De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gossele, V., Movva, 

N.R., Thompson, C., Van Montagu, M. and Leemans, J. (1987) Engineering herbicide 

resistance in plants by expression of a detoxifying enzyme. EMBO J. 6:2513-2518. 
 
De Bondt, A., Eggermont, K., Druart, P., De Vil, M., Goderis, I., Vanderleyden, J. and 

Broekaert, W.F. ( 1994)  Agrobacterium mediated transformation of apple (Malus 

domestica Borkh.): An assessment of factors affecting gene transfer efficiency during 

early transformation step. Plant Cell Rep. 13:587-593. 
 
De Bondt, A., Eggermont, K., Penninckx, I., Goderis, I. and Broekaert, W.F. (1996) 

Agrobacterium mediated transformation of apple (Malus domestica Borkh.): An 

assessment of factors affecting regeneration of transgenic plants. Plant Cell Rep. 

15:549-554. 
 
Degenhardt, J., Poppe, A., Rösner, L. and Szankowski, I. (2006) Alternative selection systems 

in apple transformation. Acta Hort. (ISHS).738: 287-292. 
 
Degenhardt, J. and Szankowski, I. (2006)Transformation of apple (Malus domestica Borkh.) 

using the phosphomannose isomerase gene as a selectable marker. Acta Hort. (ISHS) 

725:811-816. 
 
Deng, F., Aoki, M. and Yogo, Y. (2004)  Effect of naringenin on the growth and lignin 



REFERANCES   106 

 

 

biosynthesis of gramoineous plants. Weed Biology and Management. 4: 49-55. 
 

Dixon, R.A. (1999) Isoflavonoids: biochemistry, molecular biology and biological functions. 

Comprehensive Natural Products Chemistry. (Vol. 1) (Sankawa, U., ed.) :773-823. 

Elsevier. 
 
Dixon, R.A. and Harrison, M.J. (1990) Activation, structure and organization of genes 

involved in microbial defence in plants. Adv Genet. 28: 165-234. 
 
Dixon, R.A. and Steele, C.L. (1999) Flavonoids and isoflavonoids  a gold mine for metabolic 

engineering. Trends Plant Sci. 4: 394-400. 
 
Doyle, J.J. and Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus. 12:13-15. 
 
Droege, W., Broer, I. and Puehler, A. (1992) Transgenic plants containing the 

phosphinothricin-N- acetyltransferase gene metabolize the herbicide L-phosphinothricin 

(glufosinate) differently from untransformed plants. Planta. 187:142-151. 
 
Elomaa, P., Honkanen, J., Puska, R., Seppänen, P., Helariutta, Y., Mehto, M., Kotilainen, M., 

Nevalainen, L. and Teeri, T.H. (1993) Agrobacterium mediated transfer of antisense 

chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. 

Bio/Technology.11:508-511.  
 
Enkerli, J., Bhatt, G. and Covert, S.F. (1998) Maackiain detoxification contributes to the 

virulence of Nectria haematococca MP VI on chickpea. Mol. Plant–Microbe Interact. 

11: 317-326 . 
 
Espley, R.V., Hellens, R.P., Putterill, J., Stevenson, D.E., Kutty-Amma, S. and Allan, A.C. 

(2007) Red colouration in apple fruit is due to the activity of the MYB transcription 

factor, MdMyb10. Plant Journal. 49: 414-427. 
 
Espley, R.V., Brendolise, C., Chagné, D., Kutty-Amma, S., Green, S., Volz, R., Putterill, J., 

Schouten, H.J., Gardiner, S.E., Hellens, R,P. and Allan, A.C. (2009). Multiple repeats of 

a promoter segment causes transcription factor autoregulation in red apples. Plant Cell. 

21:168-183. 
 
Faize, M., Sourice, S., Dupuis, F., Parisi, L., Gautier, M.F. and Chevreau, E. (2004) 

Expression of wheat Puroindoline-b reduces scab susceptibility in transgenic apple 

(Malus  domestica Borkh.). Plant Sci. 167:347-354. 
 
Feeny, P.P. (1976) Plant apparancy and chemical defence. Rec Adv Phytochem.10:1-40.  
 
Feller, A., Machemer, K., Braun, E.L. and Grotewold, E. (2011) Evolutionary and 

comparative analysis of MYB and bHLH plant transcription factors. Plant Journal. 

66:94-116. 
 
Feucht, W., Treutter, D. and Christ, E. (1992) The precise localization of catechins and 

proantocyanidins in protective layers around fungal-infections. Z Pflanzenkr 

Pflanzenpathol Pflanzenschutz. 99(4): 404-13. 
 
Feucht, W. (1994) The localization of phenols at the cellular and tissue level. Acta Hort. 

(ISHS) 381:803–15.  
 
Feucht ,W., Treutter, D. and Polster, J. (2004) Flavanol binding of nuclei from tree 

species. Plant Cell Reports. 22: 430-436.  
 
Feucht, W., Treutter, D., Dithmar, H. and Polster, J. (2005) Flavanols in somatic cell division 

and male meiosis of tea (Camellia sinensis) anthers. Plant Biology. 7: 168-175. 
 
Flachowsky, H., Birk , T. and Hanke, V. (2004) Preliminary results to establish an alternative 



REFERANCES   107 

 

 

selection system for apple transformation. Acta Hort. (ISHS) 663:425-430. 

 

Flachowsky, H., A. Peil, T. Sopanen, A. Elo, and V. Hanke(2007) Overexpression of 

BpMADS4 from silver birch (Betula pendula Roth.) induces early flowering in apple 

(Malus domestica Borkh.). Plant Breed. 126: 137-45. 
 
Flachowsky, H., Szankowski, I., Fischer, T.C., Richter, K., Peil, A., Höfer, M., Dörschel, C., 

Schmoock, S., Gau, A.E., Halbwirth, H. and Hanke, M.V. (2010) Transgenic apple 

plants overexpressing the Lc gene of maize show an altered growth habit and increased 

resistance to apple scab and fire blight. Planta. 231(3): 623-635. 
 
Forkmann, G. and Ruhnau, B. (1987) Distinct substrate specificity of dihydroflavonol 4- 

reductase from flowers of Petunia hybrida.Z. Naturforsch. 42: 1146-1148. 
 
Forkmann, G. and Martens, S. (2001) Metabolic engineering and applications of flavonoids. 

Curr Opin Biotechnol. 12: 155-160.  
 
Forkner,  R.E., Marquis, R.J. and Lill,  J.T. (2004) Feeny revisited: condensed tannins as anti-

herbivore defences in leaf-chewing herbivore communities of Quercus. Ecol Entomol. 

29:174-187. 
 
Gao, J.J., Zhang, Z., Peng, R.H., Xiong, A.S., Xu, J., Zhu, B. and Yao, Q.H. (2011) Forced 

expression of MdMyb10, a Myb transcription factor gene from apple, enhances 

tolerance to osmotic stress in transgenic Arabidopsis. Mol Biol Rep. 38(1):205-211.  
 
Girish, C., Neha, B. and Paritosh, K. (2011) Effect of explant type, genotype and plant growth 

regulators on morphogenetic potential of flax (Linum usitatissimum L.). J Cell  and 

Plant Sci. 2(1): 13-18. 
 
Gittins, J.R.,  Hiles, E.R., Pellny, T.K., Biricolti, S. and James, D.J. (2001)The Brassica napus 

extA promoter: a novel alternative promoter to CaMV 35S for directing transgene 

expression to young stem tissues and load bearing regions of transgenic apple trees 

(Malus pumila Mill.). Mol Breeding 7:51-62. 
 
Gittins, J.R., Pellny, T.K., Biricolti, S., Hiles, E.R., Passey, A.J. and James, D.J. (2003) 

Transgene expression in the vegetative tissues of apple driven by the vascular specific 

rolC and CoYMV promoters. Transgenic Res. 12:391-402. 
 
Goff, S.A., Klein, T.M., Roth, B.A., Fromm, M.E., Cone, K.C., Radicella, J.P. and Chandler, 

V.L. (1990) Transactivation of anthocyanin biosynthetic genes following transfer of B 

regulatory genes into maize tissues. EMBO J 9:2517-2522. 
 
Grayer, R.J. and Harborne, J.B. (1994)  A survey of antifungal compounds from higher plants 

1982 -1993. Phytochemistry. 37: 19-42. 
 
Halbwirth, H., Fischer, T. C., Roemmelt, S., Spinelli, F., Schlangen, K., Peterek, S., Sabatini, 

E., Messina, C., Speakman, J. B. andreotti, C., Rademacher, W., Bazzi, C., Costa, G., 

Treutter, D., Forkmann G., Stich, K. (2003) Induction of antimicrobial 3-

deoxyflavonoids in pome fruit trees controls fire blight. Zeitschr  Naturf. 58: 765-770. 
 
Hammerschlag, F.A., Zimmermann, R.H., Yadava, U.L., Hunsucker, S. and Gercheva, P. 

(1997) Effect of antibiotics and exposure to an acidified medium on the elimination of 

Agrobacterium tumefaciens from apple leaf explants and on shoot regeneration. J Amer 

Soc Hort Sci. 122:758-763. 
 
Hamauzu, Y.(2006)  Role and evolution of fruit phenolic compounds during ripening. Stewart 

Postharvest Review 2: 1-7. 
 



REFERANCES   108 

 

 

Hanke, V., I. Hiller, G. Klotzsche, K. Winkler, J. Egerer, K. Richter, et al. (2000) 

Transformation in apple for increased disease resistance. Acta Hort. (ISHS) 538:611-

616. 
 
Harrison, M.J. and Dixon, R.A. (1994) Spatial pattern of expression of flavonoid/isoflavonoid 

pathway genes during interactions between roots of Medicago trunculata and the 

mycorrhizal fungus Glomus versiforme.  Plant Journal. 6: 9-20.  
 
Hellens, R.B, Edwards, E.A., Leyland, N.R., Bean, S. and Mullineaux, Ph .M. (2000) pGreen: 

a versatile and flexible binary Ti vector for  Agrobacterium -mediated plant 

transformation. Plant Molecular Biology.42: 819-832.  
 

Harborne, J.B. (1994) The flavonoids, advances in research since 1986. Chapman & Hall, 

London. 
 

Hassan, F. (2006). Heterologous expression of a recombinant chitinase from Streptomyces 

olivaceoviridis ATCC 11238 in transgenic Pea (Pisum sativum L.). PhD. Thesis. 

University of Hanover. 
 

Hertog,  M.G.L.,  Hollman, P.C.H., Katan, M.B. and Kromhout, D. (1993) Intake of 

potentially anticarcinogenic favonoids and their determinants in adults in The 

Netherlands. Nutrition andCancer. 20: 21-29. 
 

Hirayama, T. and Shinozaki, K., (1996) A cdc5+ homolog of higher plant, Arabidopsis 

thaliana. Proc Natl Acad Sci. USA. 93: 13371-13376 
 

Hofmann, R., Swinny ,E., Bloor, S., Markham, K., Ryan, K., Cambell, B., Jordan, B. and 

Fountain, D. (2000) Responses of nine Trifolium repens L. populations to ultraviolet-B 

radiation: differential flavonol glycoside accumulation and biomass production. Ann 

Bot. 86: 527-537. 
 

Holefors, A., Xue, Z.T. and Welander,  M. (1998) Transformation of the apple rootstock 

‗M26‘ with the rolA gene and its influence on growth. Plant Sci. 136:69-78. 
 

Holefors, A., Xue, Z.T., Zhu, L.H. and Welander, M.(2000) The Arabidopsis phytochrome B 

gene influences growth of the apple rootstock ‗M26‘. Plant Cell Rep. 19:1049-1056. 
 

Holsters, M., Silva, B., Van Vliet, F., Genetello, C., de Block, M., Dhaese, P., Depicker, A., 

Inze, D., Engler, G. and  Villarroel, R. (1980) The functional organization of the 

nopaline A. tumefaciens plasmid pTiC58. Plasmid. 3:212-230. 
 

Holton, T.A. and Cornish, E.C. (1995) Genetics and biochemistry of anthocyanin 

biosynthesis. Plant Cell. 7:1071-1083. 
 

Honda, C., Kotoda, N., Wada, M., Kondo, S., Kobayashi, S., Soejima, J., Zhang, Z., Tsuda, T., 

Moriguchi, T. (2002) Anthocyanin biosynthetic genes are coordinately expressed during 

red coloration in apple skin. Plant Physiology and Biochemistry. (Paris). 40:955-962. 
 

Hood, E.E., Gelvin, S.B., Melchers, L.S. and Hoekema, A. (1993) New  Agrobacterium  

helper plasmids for gene transfer to plants. Transgen Res. 2:208-218.  
 

Hungria, M. and Stacey, G. (1997) Molecular signals exchanged between host plants and 

rhizobia: basic aspects and potential application in agriculture. Soil Biology and 

Biochemistry. 29: 819-830. 
 

Igarashi, M., Ogasawara, H., Hatsuyama, Y., Saito, A. and Suzuki, M. (2002) Introduction of 

rol/C into Marubakaidou (Malus prunifolia Borkh. var. Ringo Asami Mo 84-A) apple 

rootstock via Agrobacterium tumefaciens. Plant Sci. 163:463-473. 
 



REFERANCES   109 

 

 

Inderjit, S. and Gross, E.M. (2000) Plant phenolics: potential role in aquatic and terrestrial 

ecosystems. In Polyphenols (2000) Edited by Martens, S., Treutter, D. and Forkmann, 

G. Germany: 206-234. 
 
James, J.D., Passey, A.J., Barbara, D.J. and Bevan, M.  (1989) Genetic transformation of 

apple (Malus pumila Mill) using a disarmed Ti-binary vector. Plant Cell Rep. 7: 658-

661.   
 

James, D.J., Passey, A.J., Webster, A.D., Barbara, D.J., Dandekar, A.M. and Uratsu, S.L. 

(1993) Transgenic apples and strawberries: advances in transformation, introduction of 

genes for insect resistance and field studied of tissue cultured plants. Acta Hort. (ISHS) 

336:179-184. 
 

Jung, W., Yu, O., Lau, S., O'Keefe, D.P., Odell, J., Fader, G. and McGonigle, B. (2000) 

Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of 

isoflavones in legumes. Nat Biotechnol. 18 : 208-212 
 
Kanamaru, N., Ito, Y., Komori, S., Saito, M., Kato, H., Takahashi, S., et al. (2004) Transgenic 

apple transformed by sorbitol-6-phosphate dehydrogenase cDNA switch between 

sorbitol and sucrose supply due to its gene expression. Plant Sci. 167: 55-61. 
 
Kiesecker, H. (2000) Entwicklung eines Agrobacterium tumefaciens vermittelten 

Gentransfersystems für Kichererbsen (Cicer arietinum L.) [Development of  

Agrobacterium -mediated transformation of chickpea]. Ph.D thesis, Hannover 

University-Germany. 
 
Klempnauer, K.H., Gonda T.J. and Bishop, J.M. (1982) Nucleotide sequence of the retroviral 

leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced 

oncogene. Cell. 31: 453-463. 
 
Kobayashi, H., Naciri-Graven, Y., Broughton, W.J. and Perret, X. (2004) Flavonoids induce 

temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. 

NGR234. Mol Microbiol .51:335-347. 
 
Kobayashi, S., Ishimaru, M., Ding, C.K., Yakushiji, H., Goto, N. (2001) Comparison of UDP-

glucose sequences between white grapes (Vitis vinifera) and their sports with red skin. 

Plant Sci. 160: 543-550. 
 
Kolb, C.A., Käser, M.A., Kopecký, J., Zotz, G., Riederer, M. and  Pfündel, E.E. (2001) Effects 

of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet 

screening and photosynthesis in grape leaves. Plant Physiol. 127:863-875. 
 
Ko, K., Norelli, J.L., Reynoird, J.P., Boresjza-Wysocka, E., Brown, S. and Aldwinckle, H.S. 

(2000) Effect of untranslated leader sequence of AMV RNA4 and signal peptide of 

pathogenesis- related protein 1b on attacin gene expression and resistance to fire blight 

in transgenic apple. Biotechnol Lett. 22:373-381. 
 
Korban, S.S. and Chen, H.(1992) Biotechnology of apples. p. 203-227. In Hammerschlag, F. 

and Litz, R. (eds.) Biotechnology of fruit tree crops. CAB International, Oxford, U.K. 
 
Korban, S.S. and Skirvin, H. (1984) Nomenclature of the cultivate apple. Hort Science. 

19:177-180. 
 
Kortstee, A.J., Khan, S.A., Helderman, C., Trindade, L.M., Wu, Y., Visser, R.G., Brendolise, 

C., Allan, A., Schouten, H.J. and Jacobsen, E. (2011) Anthocyanin production as a 

potential visual selection marker during plant transformation. Transgenic Res. (Epub 

ahead of print). 
 



REFERANCES   110 

 

 

Krens, F.A., Pelgrom, K.T.B., Schaart, J.G., den Nijs, A.P.M. and Rouwendal, G.J.A. (2004) 

Clean vector technology for marker-free transgenic ornamentals.  Acta Hort. (ISHS) 

651:101-105. 
 
Kreuzaler, F., Ragg, H., Fautz, E., Kuhn, D.N. and Hahlbrock, K. (1983) UV-induction of 

chalcone synthase mRNA in cell suspension cultures of Petroselinum hortense. Proc 

Natl Acad Sci USA. 80: 2591–2593. 
 
Lagrange, H., Jay-Allemand ,C. and Lapeyrie, F. (2001) Rutin, the phenolglycoside from 

eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar 

concentrations. New Phytologist. 149: 349-355. 
 
Lattanzio, V., Arpaia, S., Cardinali, A., Di Venere, D. and Linsalata, V. (2000) Role of 

endogenous flavonoids in resistance mechanism of Vigna to aphids. J Agric Food Chem. 

48: 5316-5320. 
 
Lattanzio, V., Di Venere, D., Linsalata, V., Bertolini, P., Ippolito, A. and Salerno, M. (2001) 

Low temperature metabolism of apple phenolics and quiescence of Phlyctaena 

vagabunda. J Agric Food Chem. 49: 5817-5821. 
 
Lea, U. S., Slimestad, R., Smedvig,P. and Lillo, C. (2007) Nitrogen deficiency enhances 

expression of speciWc MYB and bHLH transcription factors and accumulation of end 

products in the Favonoid pathway. Planta. 225:1245–1253. 
 
Leser, C. and Treutter, D. (2005) Effects of nitrogen supply on growth, contents of phenolic 

compounds and pathogen (scab) resistance of apple trees. Physiologia Plantarum. 

123: 49-56. 
 
Lespinasse, Y., Godicheau, M. and  Duron, M. (1983) Potential value and method of 

producing haploids in the apple tree Malus pumila (Mill.). Acta Hort. (ISHS) 131: 223-

230. 
 
Li, H., Flachowsky, H., Fischer, T. C., Hanke, M. V., Forkmann, G., Treutter, D., Schwab W., 

Hoffmann, T. and Szankowski, I. (2007) Maize Lc transcription factor enhances 

biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple 

(Malus domestica Borkh.). Planta. 226(5): 1243-1254. 
 
Link, K. P., Dickson, A. D. and Walker, J. C. (1929) Further observations on the occurrence of 

protocatechuic acid in pigmented onion scales and its relation to disease resistance in 

the onion. Journal of Biological Chemistry.100: 379-383. 
 
Lin-Wang, K., Bolitho, K., Grafton, K., Kortstee, A., McGhie,T., Espley, R.V., Hellens, R.P. 

and Allan, A.C. (2010) A R2R3 MYB transcription factor associated with regulation of 

the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology. 10:50. 
 
Liu, Q., S. Salih. and Hammershlag, F., (1998) Etiolation of ‗Royal Gala‘ apple (Malus x 

domestica Borkh.) shoots promotes high-frequency shoot organogenesis and enhanced 

β-glucoronidase expression from stem internodes. Plant Cell Rep. 18:32-36. 
 
Liu, Q., Ingersoll, J., Owens, L., Salih, S. and Meng, R. (2001)  Response of transgenic 

‗Royal Gala‘ apple (Malus domestica Borkh.) shoots carrying a modified cecropin 

MB39 gene, to Erwinia amylovora.  Plant Cell Rep. 20:306-312. 
 
Lipsick, J.S. (1996) One billion years of Myb. Oncogene. 13 : 223-235. 
 
Lois, R. (1994) Accumulation of UV-absorbing flavonoids induced by UV-B radiation in 

Arabidopsis thaliana L. Planta. 194:498-503. 
 
Luby, J.J. (2003) Taxonomic classification and history. In Ferre, D.C. and Warrington, I.J.  



REFERANCES   111 

 

 

Apples. Cambridge, CABI. 12.  
 
Mallikarjuna, N., Kranthi, K.R., Jadhav, D.R., Kranthi, S. and Chandra, S. (2004) Influence of 

foliar chemical compounds on the development of Spodoptera litura (Fab.) in 

interspecific derivatives of groundnut. Journal of Applied Entomology. 128: 321-328.  
 
Malnoy, M., Jin, Q., Borejsza-Wysocka, E., He, S.Y. and Aldwinckle, H.S. (2007) 

Overexpression of the apple MpNPR1 gene confers increased disease resistance in 

Malus domestica. Mol Plant-Microbe Interact. 20:1568-1580. 
 
Malnoy, M., Xu, M., Borejsza-Wysocka, E., Korban, S.S. and Aldwinckle, H.S. (2008) Two 

receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia 

inaequalis inciting apple scab disease. Mol. Plant-Microbe Interact. 21:448-458. 
 
Manning, K (1998) Isolation of a set of ripening related genes from strawberry: their 

identification and possible relationship to fruit quality traits. Planta. 205: 622-631. 
 
Markwick, N.P., Docherty, L.C., Phung, M.M., Lester, M.T., Murray, C., Yao, J.L. et al. 

(2003) Transgenic tobacco and apple plants expressing biotin-binding proteins are 

resistant to two cosmopolitan insect pests, potato tuber moth and lightbrown apple 

moth, respectively.  Transgenic Res. 12:671-81. 
 
Mathews, H., Clendennen, S.K., Caldwell, C.G., et al. (2003) Activation tagging in tomato 

identifies a transcriptional regulator of anthocyanin biosynthesis, modification and 

transport. Plant Cell. 15:689-1703. 
 
Mayr ,U., Michalek, S., Treutter, D. and Feucht ,W. (1997) Phenolic compounds of apple and 

their relationship to scab resistance. Journal of Phytopathology. 145: 69-75. 
 
Mayr ,U. and Treutter, D. (1998)  Flavanols as defence barriers in apple leaves against the 

apple scab fungus (Venturia inaequalis). Acta Hort. (ISHS) 456: 79-82. 
 
Mehrtens, F., Kranz, H., Bednarek, P., Weisshaar, B. (2005) TheArabidopsis transcription 

factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant 

Physiol.138:1083-1096. 
 
Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H. (1987) A new Petunia flower colour 

generated by transformation of a mutant with a maize gene. Nature. 330:667-678. 
 
Mikulic Petkovšek, M., Usenik, V. and  Stampar, F., (2003) The role of chlorogenic acid in the 

resistance of apples to apple scab (Venturia inaequalis (Cooke) G. Wind. Aderh.). 

Research Reports Biotechnical Faculty University of Ljubljana. 81: 233-242. 
 
Mikulic-Petkovšek, M., Stampar, F. and Veberic, R. (2007) Parameters of inner quality of the 

apple scab resistant and susceptible apple cultivars (Malus domestica Borkh.). Sci. 

Hortic. (Amsterdam). 114: 37-44. 
 
Mikulic-Petkovšek, M., Stampar, F. and Veberic R. (2008) Increased phenolic content in 

apple leaves infected with the apple scab pathogen. J. Plant Pathol. 90: 49-55. 
 
Mikulic-Petkovšek, M., Stampar, F. and Veberic, R. (2009) Seasonal changes in phenolic 

compounds in the leaves of scab-resistant and susceptible apple cultivars. Can. J. Plant 

Sci. 89: 745-753. 
 
Misra, P., Pandey, A., Tiwari, M., Chandrashekar, K., Sidhu, O.P., Asif, M.H., Chakrabarty, 

D., Singh, P.K., Trivedi, P.K., Nath, P. and  Tuli, R. (2010) Modulation of transcriptome 

and metabolome of tobacco by Arabidopsis transcription factor, AtMYB12, leads to 

insect resistance. Plant Physiol. 152:2258-2268. 
 



REFERANCES   112 

 

 

Mo, Y.Y., Geibel ,M., Bonsall, R.F. and Gross , D.C. (1995) Analysis of sweet cherry (Prunus 

avium L.) leaves for plant signal molecules that activate the syrB gene required for 

synthesis of the phytotoxin, syringomycin, by Pseudomonas syringae pv. 

syringae. Plant Physiology. 107: 603-612.  
 
Mol, J., Grotewold, E. and Koes, R. (1998) How genes paint flowers and seeds. Trends Plant 

Sci. 3:12-217. 
 
Moriguchi, T., Kita, M., Tomono, Y., Endo-Inagaki, T. and Omura, M. (2001) Gene 

expression in flavonoid biosynthesis: Correlation with flavonoid accumulation in 

developing citrus fruit. Physiol Plant. 111: 66-74. 
 
Muir, S.R., Collins ,G.J., Robinson ,S., Hughes, S., Bovy, A.,  Ric De Vos, C.H., Van Tunen, 

A.J.and Verhoeyen, M.E.(2001). Overexpression of petunia chalcone isomerase in 

tomato results in fruit containing increased levels of flavonols. Nat Biotechno. l19:470-

474. 
 
Murakami, T., Anzai, H., Imai, S., Satoh, A., Nagaoka, K. and Thompson, C.J. (1986) The 

bialaphos biosynthetic genes of Stryptomyces hygroscopicus: molecular cloning and 

characterization of the gene cluster. Mol Gen Genet. 205: 42-50.   
 
Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with 

tobacco tissue cultures. Plant Physiol. 15:473-497. 
 
Nakata, Y., Tang, X. and Yokoyama, K. (1997) Preparation of competent cells for high 

efficiency plasmid transformation. Methods in Molecular Biology. 69: 129-137.  
 
Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M. and Lepiniec, L. (2000) The TT8 

gene encodes a basic helix-loop-helix domain protein required for expression of DFR 

and  BAN genes in Arabidopsis siliques. Plant Cell. 12.1863-1878. 
 
Nesi, N., Jond, C., Debeaujon, I., Caboche, M. and Lepiniec, L. (2001) The Arabidopsis TT2 

gene encodes an R2R3 MYB domain protein that acts as a key determinant for 

proanthocyanidin accumulation in developing seed. Plant Cell. 13:2099-2114. 
 
Newcomb, R.D., Crowhurst, R.N., Gleave, A.P., Rikkerink, E.H.A., Allan, A.C., Beuning, 

L.L., Bowen, J.H., Gera, E., Jamieson, K.R., Janssen, B.J., Laing, W.A., McArtney, S., 

Nain, B., Ross, G.S., Snowden, K.C., Souleyre, E.J.F., Walton, E.F. and Yauk, Y. (2006) 

Analyses of expressed sequence tags from apple. Plant Physiol. 141:147-166. 
 
Niederleitner, S., Zinkernagel, V., Treutter, D. and Feucht, W. (1994) Accumulation of 

flavanols in cherry leaves after infection by the fungus Blumeriella jaapii. Acta Hort. 

(ISHS) 381: 767-771. 
 
Norelli, J.L., Aldwinckle, H., Destefano-Beltrán, L. and Jaynes, J. (1994) Transgenic ‗M26‘ 

apple expressing the attacin E gene has increased resistance to Erwinia amylovora. 

Euphytica. 77:123-128. 
 
Norelli, J.L., Mills, J. and Aldwinckle, H.S. (1996) Leaf wounding increases efficiency of 

Agrobacterium mediated transformation of apple. Hort Science 31:1-2. 
 
Norelli, J.L., Borejsza-Wysocka, E., Reynoird, J.P. and Aldwinckle, H.S. (2000) Transgenic 

‗Royal Gala‘ apple expressing attacin E has increased field resistance to Erwinia 

amylovora (fire blight). Acta Hort. (ISHS) 538:631-633. 
 
Nykänen, H. and Koricheva, J. (2004) Damage-induced changes in woody plants and their 

effects on insect herbivore performance: a metaanalysis. Oikos.104:247-268. 
 
Olsson, L.C., Veit, M., Weissenböck, G. and Bornman, J.F. (1998) Differential flavonoid 



REFERANCES   113 

 

 

response to enhanced UV-B radiation in Brassica napus. Phytochemistry. 49: 1021-

1028. 
 
Onyilagha, J.C., Lazorko, J., Gruber, M.Y., Soroka, J.J., Erlandson, M.A. (2004) Effect of 

flavonoids on feeding preference and development of the crucifer pest Mamestra 

configurata Walker. J Chem Ecol. 30(1):109-124. 
 
Oppenheimer, D.G., Herman, P.L., Sivakumaran, S., Esch, J., Marks, M.D. (1991) A myb gene 

is required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell. 

67: 483-493.  
 
O'Rourke, D. A. (1994) The World Apple Market. Haworth Press. Washington State, USA. 
 
Padmavati, M., Sakthivel, N., Thara, K.V. and Reddy, A.R. (1997) Differential sensitivity of 

rice pathogens to growth inhibition by flavonoids. Phytochemistry. 46:499-502. 
 
Parvez, M.M., Tomita-Yokotani, K., Fujii, Y., Konishi, T. and Iwashina, T. (2004) Effects of 

quercetin and its seven derivatives on the growth of Arabidopsis thaliana and 

Neurospora crassa. Biochem Syst Ecol. 32:631–635. 
 
Pawlicki-Jullian, N., Sedira, M. and Welander, M. (2002) The use of Agrobacterium 

rhizogenes transformed roots to obtain transgenic shoots of the apple rootstock ‗Jork 9‘. 

Plant Cell Tiss Organ Cult. 70:163-171.  
 
Penna, S., Sági, L. and Swennen, R. (2002) Positive selectable marker genes for routine plant 

transformation. In vitro Cell Dev Biol Plant. 38:125-128. 
 
Petroni, K., Falasca, G., Calvenzani, V., Allegra, D., Stolfi, C., Fabrizi, L., Altamura, M.M. 

and Tonelli, C. (2008) The AtMYB11 gene from Arabidopsis is expressed in 

meristematic cells and modulates growth in planta and organogenesis in vitro. J Exp 

Bot. 59: 1201-1213. 
 
Polanco, V., Paredes, M., Becerra, Vi. and Pérez, E. (2010)Advances in apple transformation 

technology to confer resistance to fungal diseases in apple crops: a chilean perspective. 

Chilean Journal of Agricultural Research. 70 (2): 297-308. 
 
Picinelli,A., Dapena, E. and Mangas, J.J. (1995) Polyphenolic pattern in apple tree leaves in 

relation to scab resistance. A preliminary study. J Agric Food Chem. 43: 2273-2278. 
 
Puite, K.J. and Schaart, J.G. (1996) Genetic modification of the commercial apple cultivars 

‗Gala‘, ‗Golden Delicious‘ and ‗Elstar‘ via an Agrobacterium tumefaciens-mediated 

transformation method. Plant Sci. 119:125-133. 
 
Phipps, J.B., Robertson, K.R., Smith, P.G. and Rohrer, J.R. (1990) A checklist of  the 

subfamily Maloideae (Rosaceae). Canadian J Bot. 68:2209-2269.  
 
Quattrocchio, F., Wing, J.F., Leppen, H., Mol, J. and Koes R.E. (1993) Regulatory genes 

controlling anthocyanin pigmentation are functionally conserved among plant species 

and have distinct sets of target genes. Plant Cell. 5: 1497-1512.  
 
Römmelt, S., Treutter , D., Speakman, J.B. and Rademacher ,W. (1999)  Effects of 

prohexadione-Ca on the flavonoid metabolism of apple with respect to plant resistance 

against fire blight. Acta Hort. (ISHS)  489: 359-363. 
 
Römmelt, S., Zimmermann, N., Rademacher, W. and Treutter D. (2003) Formation of novel 

flavonoids in apple (Malus domestica) treated with the 2-oxoglutarate-dependent 

dioxygenase inhibitor prohexadione-Ca. Phytochemistry. 64: 709-716. 
 
Rühmann ,S., Leser, C., Bannert, M. and Treutter, D. (2002)  Relationship betwen growth, 



REFERANCES   114 

 

 

secondary metabolism and resistance of apple. Plant Biology. 4:137-193.  
 
Rühmann, S. and Treutter, D. (2003) Effect of N-nutrition in apple on the response of its 

secondary metabolism to prohexadione-Ca treatment. European Journal of Horticultural 

Science. 68: 152-159. 
 
Rühmann, S., Treutter, D., Fritsche, S., Briviba, K. and Szankowski, I. (2006) Piceid 

(resveratrol glucoside) Synthesis in stilbene synthase transgenic apple fruit. J Agric 

Food Chem. 54: 4633-4640. 
 
Sandermann, H., Ernst, D., Heller, W. and Langebartels, C. (1998) Ozone: an abiotic elicitor 

of plant defence reactions. Trends Plant Sci. 3:47-50. 
 
Sansavini, S., Barbieri, M., Belfanti, E., Tartarini, S., Vinatzer, B., Gessler, C. et al. (2003) 

‗Gala‘ apple transformed for scab resistance with cloned Vf gene region construct. 

Proceedings of the XXVI International Horticultural Congress: Genetics and Breeding 

of Tree Fruit and Nuts, Toronto. August 11- 17, 2002. Acta Hort. (ISHS) 622:113-118. 
 
Sansavini, S., Barbieri, M., Belfanti, E., Tartarini, S., Vinatzer, B.A., Gessler, C. et al. (2004) 

Trasformazione genetica del melo Gala con un gene di resistenza a ticchiolatura. Riv 

Frutticoltura. 1: 54-58. 
 
Schovánková, J. and Opatová H., (2011) Changes in phenols composition and activity of 

phenylalanine-ammonia lyase in apples after fungal infections. Hort. Sci. (Prague), 38: 1-10. 
 
Scervino, J.M., Ponce, M.A., Erra-Bassells, R., Vierheilig, H., Ocampo, J.A. and Godeas, A. 

(2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic 

growth of Gigaspora and Glomus. Mycological Research. 109(7):789-794. 
 
Schlösser, E. (1994) Preformed phenols as resistance factors. 
 
Sedira, M., Holefors, A. and Welander, M. (2001) Protocol for transformation of the apple 

rootstock ‗Jork 9‘ with the rolB gene and its influence on rooting. Plant Cell Rep. 

20:517-524. 
 
Seigler, D. (1998) Flavonoids. Plant Secondary metabolism. Kluwer Academic Publishers, 

Norwell, Massachusetts. 151-192.  
 
Shirley, B.W., Hanley, S. and Goodman, H.M. (1992) Effects of ionizing radiation on a plant 

genome: analysis of two Arabidopsis transparent testa mutations. Plant Cell. 4: 333-347. 
 
Simmonds, M.S.J. (2003) Flavonoid–insect interactions: recent advances in our knowledge. 

Phytochemistry. 64:21-30.  
 
Skadhauge, B., Thomsen, K. and von Wettstein, D. (1997) The role of barley testa layer and 

its flavonoid content in resistance to Fusarium infections. Hereditas. 126:147-160. 
 
Soglio, V., Costa, F., Molthoff, J. W., Weemen-Hendriks, W. M. J., Schouten, H. J. and 

ianfranceschi, L. (2009) Transcription analysis of apple fruit development using cDNA 

microarrays. Tree Genet and Gen . 5:685-698. 
 
Sosa, M.E., Tonn, C.E., Guerreiro, E. and Giordano, O.S. (2000) Bioactividad de flavonoides 

sobre larvas de Tenebrio monitor. Rev Soc Entomol Arg. 59:179-184. 
 
Sosa, T., Chaves, N., Alias, J.C., Escudero, J.C., Henao, F. and Gutiérrez-Merino, C. (2004) 

Inhibition of mouth skeletal muscle relaxation by flavonoids of Cistus ladanifer L.: a 

plant defence mechanism against herbivores. J Chem Ecol. 30:1087-1101. 
 
Sriskandarajah, S. and Goodwin, P. (1998) Conditioning promotes regeneration and 

transformation in apple leaf explants. Plant Cell Tiss Organ Cult. 53:1-11. 



REFERANCES   115 

 

 

 
Stafford, H. (1991) Flavonoid evolution: An enzymatic approach. Plant Physiol. 96: 680-685. 
 
Stracke, R., Werber, M. and Weisshaar, B. (2001) The R2R3-MYB gene family in Arabidopsis 

thaliana. Curr Opin Plant Biol. 4: 447-456. 
 
Stracke, R., Ishihara, H., Huep, G., Barsch, A., Mehrtens, F., Niehaus, K., Weisshaar, B. 

(2007) Differential regulation of closely related R2R3-MYB transcription factors 

controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. 

Plant Journal. 50: 660-677. 
 
Stracke, R., Jahns O., Keck M., Tohge T., Niehaus K., Fernie A.R. and Weisshaar B. (2010): 

Analysis of production of flavonol glycosides- dependent flavonol glycoside 

accumulation in Arabidopsis thaliana plants reveals Myb11, Myb12, Myb111 

independent flavonol glycoside accumulation. New Phytologist. 188: 985-1000. 
 
Strauch, E., Wohlleben, W. and Puehler, A. (1988) Cloning of a phosphinothricin-N-

acetyltransferase gene from  Streptomyces viridochromogenes  Tü494 and its expression 

in  Streptomyces lividans  and   E. coli . Gene. 63: 65-74.  
 
Subramanian, S., Stacey, G. and Yu, O. (2007) Distinct crucial roles of flavonoids during 

legume nodulation. Trends Plant Sci. 12: 282-285. 
 

Szankowski, I. (2002) Entwicklung and analyse transgener Apfel pflanzen mit dem vst 1-Gen 

aus Vitis vinifera  L. und dem PGIP-Gen aus  Actinidia deliciosa. Ph.D thesis, Leibniz 

University Hanover. Germany.   
 

Szankowski, I., Briviba, K., Fleschhut, J., Schönherr, J., Jacobsen, H.J. and Kiesecker, H. 

(2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase 

gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). 

Plant Cell Reports. 22: 141-149. 
 

Szankowski, I., Waidmann, S., Degenhardt, J., Patocchi, A., Paris, R., Silfverberg-Dilworth, 

E., Broggini, G. and Gessler, C. (2009a) Highly scab-resistant transgenic apple lines 

achieved by introgression of HcrVf2 controlled by different native promoter lengths. 

Tree Genetics & Genomes 5: 349-358. 
 

Szankowski, I., Li, H., Flachowsky, H., Höfer, M., Hanke, M.V., Fischer, T., Forkmann, G., 

Schwab, W., Hoffmann, T. and Treutter, D. (2009b) Metabolic engineering of flavonoid 

biosynthesis in apple (Malus domestica Borkh.). Acta Hort. (ISHS) 814:511-516 
 
Tanaka, Y., Tsuda, S. and Kusumi, T. ( 1998) Metabolic engineering to modify flower color. 

Plant Cell Physiol. 39:1119-1126. 
 
Tang, X., Nakata, Y., H.O., L., Zhang, M., Gao, H., Fujita, A., Sakatsume, O., Ohta, T. and 

Yokoyama, K. (1994) The optimization of preparations of competent cells for 

transformation of  E. coli. Nucl Acids Res. 22: 2857-2858.   
 
Takos, A .M., Jaffé , F. W., Jacob, S. R., Bogs, J., Robinson, S. P. and Walker, A. R. (2006a) 

Light-Induced Expression of a MYB Gene Regulates Anthocyanin Biosynthesis in Red 

Apples Plant Physiology. 142: 1216–1232. 
 
Takos, A.M., Ubi, B.E., Robinson, S.P. and Walker, A.R. (2006b) Condensed tannin 

biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in 

apple fruit skin. Plant Science. 170:487-499. 
 
Tattini, M., Gravano E., Pinelli P., Mulinacci N. and Romani, A. (2000) Flavonoids 

accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess 

solar radiation. New Phytologist. 148: 69-77. 



REFERANCES   116 

 

 

 
Thoison, O., Sévenet, T., Niemeyer, H.M. and Russell, G.B. (2004) Insect antifeedant 

compounds from Nothofagus dombeyi and N. pumilio. Phytochemistry. 65:2173-2176. 
 
Thompson, C.J., Movva, N.R., Tizard, R., Crameri, R., Davies, E.J., Lauwereys, M. and 

bottermann, J. (1987) Characterization of the herbicide-resistance gene  bar   from   

Streptomyces hygroscopicus . The EMBO J. 6 (9): 2519-2523.  
 
Tomita-Yokotani, K., Kato, T., Parvez, M.M., Mori, Y., Goto, N. and Hasegawa, K. (2003) 

Approach of allelopathy study with Arabidopsis thaliana (L.) Hevnh. and Neurospora 

crassa. Weed Biol Manag. 3:93-97. 
 
Treutter, D. and Feucht W. (1990) Accumulation of flavan-3-ols in fungus-infected leaves of 

Rosaceae. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz. 97: 634-641. 
 
Treutter, D. (2005) Significance of flavonoids in plant resistance and enhancement of their 

biosynthesis. Plant Biol. 7:581-591. 
 
Treutter, D. (2006) Significance of flavonoids in plant resistance: a review. Environmental 

Chemistry Letters. 4: 147-157. 
 
Usenik, V., Mikulic Petkovšek, M., Solar, A. and Stampar, F. (2004) Flavanols of leaves in 

relation to apple scab resistance. Zeitschrift für Pflanzenkrankheiten und 

Pflanzenschutz. 111:  137-144. 
 
Ubi, B.E., Honda, C., Bessho, H., Kondo, S., Wada, M., Kobayashi, S. and Moriguchi, T. 

(2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of 

UV-B and temperature. Plant Sci. 170: 571-578. 
 
Van Etten, H.D., Jorgensen, S., Enkerli, J. and  Covert, S.F. (1998) Inducing the loss of 

conditionally dispensable chromosomes in Nectria haematococca during vegetative 

growth. Curr Genet. 33:299-303. 
 
Van Nerum, I., Incerti, F., Keulemans, J. and Broothaerts, W. (2000) Analysis of self-fertility 

in transgenic apple lines, transformed with an S-allele in sense or antisense direction. 

Acta Hort. (ISHS). 538:625-630. 
 
Verpoorte, R., Van der Heijden, R. and Memelink, J. (2000) Engineering the plant cell factory 

for secondary metabolite production. Transgenic Res. 9: 323-343.  
 
Ververidis, F., Trantas, E., Douglas, C., Vollmer, G., Kretzschmar, G. and Panopoulos, N. 

(2007) Biotechnology of flavonoids and other phenylpropanoid-derived natural 

products. Part I: chemical diversity,  impacts on plant biology and human health. 

Biotechnology Journal. 2: 1214-1234. 
 
Wasmann, C.C. and Van Etten, H.D. (1996) Transformation-mediated chromosome loss and 

disruption of a gene for pisatin demethylase decrease the virulence of Nectria 

haematococca on pea. Mol Plant–Microbe Interact. 9:793-803. 
 
Welander, M., Pawlicki, N., Holefors, A. and Wilson, F. (1998) Genetic transformation of the 

apple rootstock ‗M26‘ with the rolB gene and its influence on rooting, J Plant Physiol. 

153:371-380. 
 
Weston, K. (1998) Myb proteins in life, death and differentiation. Curr Opin Genet Dev. 8: 

76-81. 
 
Winkel-Shirley, B. (1999) Evidence for enzyme complexes in the phenyl propanoid and 

flavonoid pathways. Plant Physiol. 107:142-149. 
 
Winkel-Shirley, B. (2001) Flavonoid biosynthesis: a colorful model for genetics, 



REFERANCES   117 

 

 

biochemistry, cell biology and biotechnology. Plant Physiol. 126:485-493. 
 
Wong, K.W., Harman, G.E., Norelli, J.L., Gustafson, H.L. and Aldwinckle, H.S. (1999) 

Chitinase-transgenic lines of ‗Royal Gala‘ apple showing enhanced resistance to apple 

scab. Acta Hort. (ISHS) 484:595-599. 
 
Xu, J., Wang, Y.Z. and Yin, H.X. (2009) Efficient Agrobacterium tumefaciens-mediated 

transformation of Malus zumi (Matsumura) Rehd using leaf explant regeneration 

system. Elect J Biotechnol. 12: 1-8. 
 
Yamamoto, M., Nakatsuka, S., Otani, H., Kohmoto, K. and Nishimura, S. (2000) (+) Catechin 

acts as an infection-inhibiting factor in strawberry leaf. Phytopathology. 90:595-600. 
 
Yao J.L., Cohen, D., Atkinson, R., Richardson, K. and Morris, B. (1995) Regeneration of 

transgenic plants from the commercial apple cultivar ‗Royal Gala‘. Plant Cell Rep. 14: 

407-412. 
 
Yao, J.L., Cohen, D., Van den Brink, R. and Morris, B. (1999) Assessment of expression and 

inheritance patterns of three transgenes with the aid of techniques for promoting rapid 

flowering of transgenic apple trees. Plant Cell Rep.18:727-732.  
 
Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. and Chet, I. (2003) 

Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans 

in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. 

Appl  Environ Microbiol. 69: 7343-7353. 
 
Yepes, L.M. and Aldwinckle, H.S., (1994) Micropropagation of thirteen Malus cultivars and 

rootstock and effect of antibiotics on proliferation, Plant Growth Regulation. Dordrecht. 

15: 55-67. 
 
Yu, O., Jung, W., Shi, J., Croes, R.A., Fader, G.M., McGonigle, B. and Odell, J.T. (2000) 

Production of the isoflavones genistein and daidzein in non-legume dicot and monocot 

tissues. Plant Physiol. 124: 781-793. 

Yu, O., Shi, J., Hession, A.O., Maxwell, C.A., McGonigle, B. and Odell, J.T. (2003) 

Metabolic engineering to increase isoflavone biosynthesis in soybean seed. 

Phytochemistry. 63:753-763. 
 
Zhang, F., Gonzalez, A., Zhao, M., Payne, C.T. and Lloyd, A. (2003) A network of redundant 

bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. 

Development. 130:4859-4869. 
 
Zhang, S., Zhu, L. H., Li, X. Y., Ahlman, A. and Welander, M. (2005) Infection 

byAgrobacterium tumefaciens increased the resistance of leaf explants to selective 

agents in 

Carnation (Dianthus caryophyllus L. and D. chenensis). Plant Science. 168(1):137-144. 

Zhang, J., Subramanian, S., Stacey, G. and Yu, O. (2009) Flavones and flavonols play distinct 

critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant 

Journal. 57: 171-183. 
 
 



APPENDIX   118 

 

 

Appendix I. Content of individual phenolic compounds (mean ± SD, mg /100 g dry. wt., n=5) total phenolic compounds (mg /100g dry .wt.) in leaves were taken 
from ‗HC‘ non-transgenic Plants and ‗HC‘ transgenic plants (For all constructs used in this study) 

  HC control 

HC-Pjan-Myb9-

line1 

HC-Pjan-

Myb10-line1 

HC-Pjan-

Myb11-line1 

HC-Pjan-

Myb11-line2 

HC-

PGIIMH35S-

Myb10-line1 

HC-

PGIIMH35S- 

Myb11-line1 

phenolic compounds        

Catechin 0.61±0.43 1.86±0.87 0.47±0.29 0.09±0.11 2.98±0.78 0.79±0.31 0.44±0.4 

Epicatechin 1.28±0.61 2.99±0.6 1.35±0.46 0.42±0.81 3.69±1.36 1.37±0.59 1.49±1.17 

(epi)catechin-hexoside 19.52±6.48 21.07±3.97 28.1±6.71 32.33±12.89 21.26±19.58 24.82±9.29 58.48±29.75 

Total  flavan-3-ols 21.41 25.92 29.92 32.84 27.93 26.98 60.41 

Caffeic acid-glucose-ester 0.36±0.33 1.41±0.6 0.16±0.05 1.42±1.46 1.46±1.18 0.83±0.45 3.56±1.9 

Chlorogenic acid 3.56±1.09 6.44±1.18 4.35±1.06 5.09±2.52 9.3±6.74 8.79±3.64 25.35±11.96 

Coumaric acid-glucose-

ester 4.3±2.96 7.94±4.28 2.04±1.02 2.65±1.98 7.86±4.86 4.53±1.63 6.6±1.4 

Ferulic acid-glucose-ester 1.45±0.78 2.16±0.71 0.78±0.23 1.16±0.88 1.63±076 1.6±0.41 1.24±0.43 

Coumaric acid-glucoside 1.04±0.78 2.5±1.53 0.76±0.61 0.45±0.38 1.47±0.92 1.32±1.34 0.25±0.09 

Total hydroxycinnamic 

acids 10.71 20.46 8.1 10.77 21.73 17.08 37.0 

Cyanidin-galactoside 1.5±0.94 0.63±0.27 1.46±0.82 1.24±0.68 0.84±0.58 17.3±21.16 3.9±2.62 

Phloridzin 127.8±57.99 92.21±17.05 126.7±43.07 63.34±34.64 100.7±47.7 82.32±16.82 140.1±56.14 

Phloretin-2'-O-

xyloglucoside 64.84±25.9 45.29±7.57 56.07±23.77 23.07±13.63 39.16±21.71 40.7±10.72 34.31±2.16 

Phloretin 55.43±34.86 39.74±12.55 74.14±37.41 10.66±1.68 63.53±61.42 19.37±7.11 14.91±7.2 

Total dihydrochalcones 248.1 177.2 255.9 97.07 234.0 142.4 189.4 

Q-arabinoside 11.29±5.37 9.62±1.77 15.51±5.22 9.16±1.53 11.12±5.26 8.5±1.99 5.32±0.25 

Q-rutinoside 1.17±0.67 1.66±0.24 1.63±1.14 1.02±0.4 07.±0.73 1.1±0.53 0.29±0.24 

Q-xyloside 0.44±0.7 0.04±0.09 0.23±0.27 1.31±1.21 0.11±0.13 0.09±0.06 0.05±0.08 

Q-galactoside 11.55±9.44 9.81±2.76 18.17±7.81 6.8±2.84 5.48±3.67 9.83±4.17 1.87±3.39 

Q-rhamnoside 5.46±2.38 5.57±3.46 14.65±6.39 9.24±5.16 11.58±10.65 3.06±0.75 6.27±3.7 

Total flavonols 29.91 26.7 50.2 27.53 29 22.58 13.8 

Total Phonolic content  311.63 250.91 345.58 169.45 282.9 226.34 345.1 
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Appendix 2.  Content of individual phenolic compounds (mean ± SD, mg /100 g dry. wt., n=5) total phenolic compounds (mg /100 g dry .wt.) in leaves were 
taken from ‗Gala‘ non-transgenic Plants and ‗Gala‘ transgenic plants (For all constructs used in this study) 

  Gala control 

Gala-Pjan-

Myb9-line1 

Gala-Pjan-

Myb9-line2 

Gala-Pjan-

Myb9-line3 

Gala-Pjan-

Myb10-line1 

Gala-Pjan-

Myb10-line2 

Gala-Pjan-

Myb10-line3 

Gala-Pjan-

Myb10-line4 

Gala-Pjan-

Myb11-line1 

phenolic compounds          

Catechin 1.14±0.5 3.52±1.3 0.35±0.1 2.75±0.6 1.26±0.58 0.85±0.38 2.03±0.7 0.46±0.1 0.31±0.16 

Epicatechin 1.58±0.5 5.64±4.2 1.48±0.6 10.95±3.7 3.01±1.76 2.69±1.09 3.65±0.5 1.78±0.5 1.95±0.33 

(epi)catechin-hexoside 24.82±14 18.95±15.4 11.74±6.7 25.34±15.7 60.93±47.17 67.91±29.22 45.28±4.8 2.523±1.22 14.37±7.04 

Total  flavan-3-ols 27.55 28.11 13.56 39.04 65.2 71.45 50.96 27.48 16.63 

Caffeic acid-glucose-ester 1.25±0.3 3.62±2.5 0.15±0 3.57±2.6 2.01±0.98 0.74±0.37 1.87±0.7 0.43±0.2 0.26±0.14 

Chlorogenic acid 4.1±4.2 13.83±5.3 2.1±0.3 17.91±78 2.62±1.5 5.47±3.04 3.38±1.2 3.75±1.9 6.12±3.05 

Coumaric acid-glucose-

ester 9.32±2.5 11.34±4.5 1.88±0.6 14.13±5.1 9.94±4.74 5.57±1.7 8.48±1 5.56±2 5.36±2.05 

Ferulic acid-glucose-ester 4.28±1.3 2.16±0.7 0.95±0.4 2.63±0.8 4.76±3.76 2.77±1.25 7.67±2.3 2.36±1 0.8±0.35 

Coumaric acid-glucoside 2.61±1.2 1.23±0.7 0.33±0 1.23±1 5.64±4.23 2.24±0.82 4.16±1.4 2±0.8 0.66±0.12 

Total hydroxycinnamic 

acids 20.56 32.18 5.41 39.47 24.97 16.8 25.56 14.1 12.31 

Cyanidin-galactoside 0.98±0.7 0.95±0.6 0.7±0.5 2.21±0.9 4.31±4.31 1.66±04 1.9±0.8 0.93±0.5 0.56±0.28 

Phloridzin 102.5±30.2 80.87±27.4 78.06±18 99.41±28.3 148.1±61.56 148.9±4215 157.3±13.9 107±33.5 64.33±21.55 

Phloretin-2'-O-

xyloglucoside 44.19±13.3 23.91±12.1 28.51±7.5 34.13±10.8 50.08±21.04 52.51±17.46 61.52±7.4 42.35±15 17.42±7 

Phloretin 48.83±30.6 43.83±40.7 33.41±24.9 81.64±39 133.0±698 125.6±5454 120.4±241 45.82±23.7 17.67±12.09 

Total dihydrochalcones 194.5 148.6 140 215.2 331.1 327 339.2 195.2 99.42 

Q-arabinoside 15.53±5.3 8.54±1.9 12.47±2.8 10.73±3.4 20.72±7.67 25.23±7.92 19.47±2.5 14.94±4.3 10.42±4.35 

Q-rutinoside 1.4±0.8 0.2±0.1 0.14±0.1 1.06±0.7 2.55±1.65 2.73±1 3.08±0.6 1.34±0.6 0.15±0.09 

Q-xyloside 0.91±0.7 0.39±0.5 0.12±0.1 0.21±0.1 1.7±1.56 1.96±1.08 1.1±0.7 0.31±0.4 0.21±0.29 

Q-galactoside 22.71±9.1 7.79±9.5 10.96±3.8 14.19±7.6 29.75±16.28 41.14±12.71 4.127±4.8 21.57±6.8 11.49±7.67 

Q-rhamnoside 13.02±5.7 9.32±5.7 7.02±.32 16.45±6.5 21.56±8.23 21.46±7.59 16.8±2.5 12.97±3.5 6.36±2.5 

Total flavonols 53.56 26.24 30.72 42.64 76.28 91.51 71.71 51.13 28.63 

Total Phonolic content 297.15 236.08 190.39 338.56 518.6 585.2 489.33 188.84 157.55 
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