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Zusammenfassung  
 
Im Skelettmuskel führt die kontrollierte intrazelluläre Freisetzung von Kalziumionen aus 

dem sarkoplasmatischen Retikulum (sR) zur Kontraktion. Die Einleitung dieses Prozess 

wird über das Membranpotential gesteuert (elektromechanische Kopplung, EMK). Ein 

spezialisierter Kalziumkanal der transversal-tubulären Membran des Skelettmuskels, 

Dihydropyridinrezeptor (DHPR), hat hierbei eine Schlüsselstellung als Spannungssensor. 

Er gibt die während der Membrandepolarisation erfahrene Konformationsänderung seiner 

α1S Untereinheit weiter an einen weiteren Kalziumkanal, den in der Membran des sR 

verankerten Ryanodin Rezeptor Typ 1 (RyR1). Daraufhin öffnet sich dieser und entlässt 

Kalziumionen in das Sarkoplasma. Voraussetzung für diese spezielle Art der DHPR-RyR1 

Kommunikation ist eine hoch geordnete Positionierung von DHP-Rezeptoren in Form von 

„Tetraden“ an den elektronenmikroskopisch nachweisbaren Annäherungen von t-tubulärer 

und sR Membran ("junctions"). Die am Zusammenspiel von DHPR und RyR1 während 

der EMK beteiligten Strukturen sind weitgehend unbekannt, doch aufgrund ihrer 

topographischen Lage involviert sein könnten die zytoplasmatischen Domänen der 

DHPR-Hauptuntereinheit α1S: Die intrazellulären Verbindungsschleifen (I-II, II-III, III-

IV), sowie der N- und C-terminus der Untereinheit. Zur Identifizierung molekularer α1S 

Bereiche, welche bei der Kommunikation mit dem RyR1 Änderungen ihrer räumlichen 

Anordnung erfahren, wurden Messungen von Fluoreszenz Resonanz Energietransfer 

(FRET) an fluoreszenzmarkierten und innerhalb lebender Muskelzellen in Kultur 

exprimierten α1S-Untereinheiten durchgeführt. Dabei wurden verschiedene 

Kombinationen von an jeweils zwei unterschiedlichen cytoplasmatischen Domänen 

markierter α1S vermessen. Hierbei diente CyPet als FRET-Donor und YPet als FRET-

Akzeptor. Die Untersuchungen wurden an zwei Zellmodellen durchgeführt, nach 

Expression in sog. „dyspedic“ Myotuben (RyR1-knock-out) und in sog. „dysgenic“ 

Myotuben (keine endogene α1S). Zunahme oder Abnahme von FRET Signalen zeigten, ob 

sich markierte α1S Schleifen bei Anwesenheit von  - und bei Interaktion mit - RyR1 

annähern oder entfernen. Für alle Markierungskombinationen wurde, unabhängig davon 

ob RyR1 anwesend war oder nicht, FRET nachgewiesen. Dieser Befund zeigt, dass die 

markierten Domänen unter beiden Bedingungen in Abständen < 10 nm angeordnet sind. 
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Bis auf eine Ausnahme - N-/C-terminal doppelt markierte α1S – führte die Anwesenheit 

des RyR1 zu einer signifikanten Änderung des FRET-Signals, was auf eine RyR1-

induzierte Neuordnung der gesamten intrazellulären α1S-Schnittstelle schließen lässt. 

Basierend auf diesen Daten wird ein Modell vorgeschlagen, das zum ersten Mal die durch 

die Anwesenheit des RyR1 generierte, mögliche molekulare Ausgangslage darlegt, an die 

die dynamischen Vorgänge bei der EMK anknüpfen. Zu den weiteren wichtigen Befunden 

dieser Arbeit gehört, dass die Markierung an der relativ kurzen III-IV Schleife mit der 

Zielsteuerung des Kanals interferiert, so dass diese Schleife eine wichtige Rolle bei 

diesem Prozess spielen könnte. Weiterhin wurde erstmals gezeigt, dass eine distale 

Verkürzung des α1S C-terminus um 237 Aminosäurereste keinen Einfluss auf die 

Zielsteuerungsfunktion oder die Funktionalität des DHPR als Kalziumkanal hat. 

 

Schlüsselwörter: Dihydropyridinrezeptor, elektromechanische Kopplung, Fluoreszenz 

Resonanz Energietransfer 
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Abstract  
 

In skeletal muscle, the dihydropyridine receptor (DHPR) in the t-tubular membrane serves 

as a Ca2+ channel and as the voltage sensor for excitation-contraction (EC) coupling, 

triggering Ca2+ release via a physical / conformational coupling to the type 1 ryanodine 

receptor (RyR1) in the sarcoplasmic reticulum (SR) membrane. The particulars of the 

structural and functional links between these two proteins are widely unknown. The 

putative intracellular portions of the DHPR α1S subunit, namely the N-terminus, the C-

terminus, and the loops connecting the four intra-membrane domains (I-IV), play 

important roles in the communication with the RyR1. Examples are the β-subunit 

recruiting function of the I-II loop, the bi-directional signalling function of the II-III loop 

with the RyR1 during EC-coupling, the influence of the III-IV loop on RyR1 mediated 

Ca2+ delivery, and the α1S carboxyl terminus. These channel parts are believed to either 

directly or indirectly interact with the RyR1, and the close spatial proximity between the 

two channels at t-tubule/SR ‘junctions’ constitutes the structural prerequisite for this 

linkage. The central goal of the present work was to provide for the first time a structural 

insight into the arrangement of the crucial molecular components of the DHPR-RyR1 

interaction, by using the extremely sensitive method of fluorescence resonance energy 

transfer (FRET) measurements, conducted within the intact cellular environment of 

myotubes. For this purpose, a plethora of mammalian expression vectors were engineered, 

encoding fluorescently double-labelled α1S constructs where a defined cytoplasmic α1S 

domain was tagged with the FRET donor CyPet and one other with the FRET acceptor 

YPet. Upon expression in myotubes, the degree of FRET was determined for every 

combination of labelled cytoplasmic α1S domains using the non-bleaching, sensitized 

emission variant of the FRET technique. Confocal fluorescence microscopy was applied 

to check for correct targeting and for function of the constructs upon expression in 

dyspedic (RyR1 null) and dysgenic (α1S null) myotubes. All doubly tagged α1S constructs, 

except for those which were tagged within the III-IV loop, were able to target to the 

junctions and to restore EC coupling in dysgenic myotubes. An astonishing observation 

was that a massive truncation of the α1S C-terminus at residue E1636, ablating regions 

previously implicated in targeting and function of the channel, does not interfere with 
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either process. Significant FRET occurred between the intracellular loops of the DHPR 

α1S in absence and in presence of the RyR1, indicating that these domains under both 

conditions are arranged in distances < 10 nm. The presence of RyR1 altered significantly 

the intramolecular energy transfer signal for every double tagged α1S construct with the 

exception of the N-/C-terminally double-tagged α1S. Thus, this study reveals that virtually 

the complete cytoplasmic α1S architecture is significantly rearranged by the presence of 

the RyR1. Thus, it is very likely that multiple contacts between these two channels 

constitute the link which underlies the unique mode of EC coupling in skeletal muscle. On 

the basis of the gathered data a model is defined for the first time, describing how the 

interaction with the RyR1 might change the molecular architecture of the cytoplasmic 

DHPR interface. This model might serve as basis for further refinements of the mode of 

skeletal muscle-type EC coupling, given the ongoing improvements in resolution of 

ultrastructural and imaging techniques.   

 

Keywords: Dihydropyridine receptor, excitation-contraction coupling, fluorescence 

resonance energy transfer 
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Introduction 
 
 
1.1 Skeletal muscle: basic structural features and principle 

of operation 
 
Skeletal muscle fibres are longitudinally extended cylindrical structures which at their 

outer surface are bound by a plasma membrane, the sarcolemma, as well as an overlying 

basal lamina. They group into bundles to form fascicles, which themselves group to form 

individual muscles. The sarcolemma forms a physical barrier against the external 

environment and also mediates signals between the extracellular space and the muscle cell 

interior. The sarcoplasm is the specialized cytoplasm of muscle cells, containing the 

regular subcellular elements along with abundant myofibrils, as well as a modified 

endoplasmic reticulum known as the sarcoplasmic reticulum (SR). The SR forms a 

network around the myofibrils, storing and providing the calcium (Ca2+) required for 

muscle contraction. Transverse (t)-tubules are plasma membrane invaginations emanating 

from the sarcolemma (Figure 1.1), allowing action potentials transmitted by motor 

neurons to propagate rapidly into deeper parts of the fibre. A sarcolemmal / t-tubular 

voltage ‘sensor’, the Dihydropyridine receptor (DHPR), is responsive to depolarization 

and - most probably by a direct mechanical / conformational link, details below - activates 

the skeletal muscle Ca2+ release channel, the type 1 Ryanodine receptor (RyR1), which 

spans the < 20 nm cytoplasmic gap between the t-tubule and the SR. This direct 

mechanism of RyR1 activation by the DHPR is - in contrast to cardiac muscle - 

independent of Ca2+ influx from the extracellular space and normally ensures rapid and 

effective SR Ca2+ release for the activation of the myofilaments. This process of plasma 

membrane depolarization resulting in muscle contraction is known as excitation–

contraction (EC) coupling (Schneider & Chandler 1973; Melzer et al. 1995). 
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Figure 1.1. The skeletal muscle fibre. Three-dimensional schematic representation of a 
skeletal muscle fibre, illustrating the organization of myofibrils, the sarcoplasmic reticulum 
and the transverse (t)-tubules. The t-tubules are continuous with the sarcolemma, allowing 
for the rapid progression of action potentials into central fibre regions and ensuring a 
virtually simultaneous activation of myofibrils.  

 

1.2 DHPRs and RyRs are calcium channels 
The two main players in EC coupling, DHPR and RyR1, both are Ca2+ ion channels. 

However, whereas the DHPR is gated by depolarising changes in voltage, like for instance 

during an action potential, RyRs are gated by ligand binding, which normally is Ca2+.  

 

1.2.1 Voltage-gated calcium channels 
DHPRs belong to the group of voltage-gated Ca2+ channels (VGCCs), which are widely 

expressed and found in many different cell types. Interestingly, their expression is not 

confined to excitable cells (VGCCs of lymphocytes, for instance). The different VGCCs 

are characterized mainly by their isoform-specific depolarisation threshold for opening, 

their ion conductance and their inactivation kinetics. Their different electrophysiological 
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properties are reflected by the diverse processes VGCCs are involved in, contraction, 

secretion, synaptic transmission, and gene expression. VGCCs consist of multiple 

subunits. Purification studies on skeletal muscle t-tubule membrane preparations 

identified α1, β, γ,  and α2δ as subunits (Figure 1.2) of the skeletal muscle VGCC isoform 

(DHPR) (Curtis & Catterall 1984; Hosey et al. 1987). Analysis of the biochemical 

properties, glycosylation and hydrophobicity of these five components led to a model 

comprising a principal, pore-forming α1 subunit of 190 kDa (Figure 1.2). The latter is 

associated with the α2δ dimer of 170 kDa, the intracellular β subunit of 55 kDa, and a 

transmembrane γ subunit of 33 kDa (Takahashi et al. 1987). Ten different genes have 

been identified so far, encoding α1 subunits with discrete types of Ca2+ currents (Table 

1.1). Four genes have been described for the α2δ subunit, four for the β subunit, and γ 

subunits are encoded by eight different genes (Catterall 2000; Arikkath & Campbell 

2003). Protein biochemistry in combination with cDNA cloning and sequencing allowed 

to predict the membrane topology of the five channel subunits. α1 subunits are proteins of 

about 2,000 amino acid  residues, organized in four repeated domains (I to IV), each of 

 
Figure 1.2. Topography of voltage-gated Ca2+ channels (VGCCs). Shown is the subunit 
composition (α1, α2, β, γ, and δ) and the putative transmembrane regions, the model is updated 
from the original description of the subunit structure of skeletal muscle Ca2+ channels 
(Takahashi et al. 1987). The α1 subunit is composed of four homologous repeats (I-IV), each 
consisting of six transmembrane segments (1-6). The fourth transmembrane segment in all 
four repeats contains positively charged residues (+) and serves as the voltage sensing 
structure, which is important for the initiation of EC coupling. The loop connecting the fifth and 
sixth transmembrane segments (blue) is important for the ion selectivity of VGCCs. VGCCs 
also contain large cytoplasmic regions, serving as interaction sites for a variety of regulatory 
molecules of the intracellular milieu.  
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which contains six transmembrane segments (S1 to S6), and a membrane-associated loop 

between transmembrane segments S5 and S6 (Figure 1.2). The domains I to IV are thought 

to be arranged around the central ion conducting pore (Huber et al. 2000). Important in the 

context of the present work, the α1 N- and C-terminus, as well as the sequence regions 

connecting domains I to II, II to III, and III to IV (‘loops’), are located at the cytoplasmic 

site of the subunit. As to the β subunit, biochemical analysis and expression in cellular 

systems suggests that this protein is membrane-associated but that it lacks transmembrane 

segments (Ruth et al. 1989), whereas the γ subunit is a glycoprotein with four 

transmembrane domains (Jay et al. 1990) (Figure 1.2). The α2 subunit has numerous 

glycosylation sites and several hydrophobic sequences (Ellis et al. 1988), but biochemical 

studies indicate that it is an extracellular protein attached to the membrane through the δ 

subunit (Gurnett et al. 1996). The δ subunit is encoded by the 3’ end of the coding 

sequence of the same gene as the α2 subunit, and the mature forms of these two subunits 

are produced by post-translational proteolytic processing and disulfide linkage (Figure 

1.2) (De Jongh et al. 1991; Jay et al. 1991). 

Intensive studies of the structure and function of the pore-forming α1 subunits of Ca2+ 
channels have led to identification of their principal functional domains (Catterall 1995; 

Hofmann et al. 1999; Catterall 2000). The S4 segments of the four homologous domains 

serve as the voltage sensors for activation, moving outward and rotating under the 

influence of the electric field, causing a conformational change that opens the pore (Figure 

1.2). The S5 and S6 segments, together with their connecting loop, form the pore lining for 

Ca2+ influx (Figure 1.2). All voltage-gated Ca2+ channels share these general structural 

features (Catterall 2000).  

Since the first recordings of Ca2+ currents in cardiac myocytes (Reuter 1967; Reuter et al. 

1979; Reuter 1979), it has become apparent that there are five types of Ca2+ currents as 

defined by electrophysiological and pharmacological criteria and they have been assigned 

to cloned Ca2+ channel α1 subunits (Table 1.1) (Tsien et al. 1988; Bean 1989; Hess 1990; 

Llinas et al. 1992). In cardiac, smooth, and skeletal muscle, the major Ca2+ currents are 

characterized by their high voltage of activation (i.e., relatively strong depolarisations are 

required for opening), large single-channel conductance, slow voltage-dependent 

inactivation, marked regulation by cAMP-dependent protein phosphorylation, and specific 

inhibition by Ca2+ antagonist drugs including dihydropyridines, phenylalkylamines, and 

benzothiazepines (Reuter 1983). These Ca2+ currents are typical of the CaV1 gene family 
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of voltage-gated Ca2+ channels and have been designated L-type, as they are long lasting 

when Ba2+ is the current carrier (Nowycky et al. 1985). The other current types, N-, P/Q- 

and R-type are mainly found in neuronal cells (e.g., presynaptic membranes), whereas      

T-type currents, which activate at relatively hyperpolarized potentials, comprise a Ca2+ 

current component in cardiac and skeletal muscle. Intriguingly however, whereas L-type 

Ca2+ currents through CaV1 channels are essential for excitation contraction coupling in 

cardiac muscle, they are not a prerequisite for this process in skeletal muscle. This 

principal independence of the activation of intracellular Ca2+ release from extracellular 

Ca2+ inflow is referred to when the term skeletal muscle-type EC coupling is used.  
 
Table 1.1. Subunit composition and function of VGCC sub-types (Catterall 2000). The ten 
genes encoding VGCCs are expressed in a variety of tissues and are classified into three groups 
(CaV1, CaV2, and CaV3). To carry out a variety of important processes Ca2+

 
channels are 

subjected to differential splicing and thus posses multiple biophysical traits (the different splice 
variants are not listed here). Channels of the CaV1 group are sensitive to dihydropyridines and 
have been termed dihydropyridine receptors.  

Ca2+  
channel 

Ca2+  
current type 

α1 main 
subunit 

Primary 
localizations 

 
Functions 

CaV1.1 L α1S Skeletal muscle EC coupling  
Calcium homeostasis  
Gene regulation 

CaV1.2 L α1C Cardiac muscle 
Endocrine cells 
Neurons 

EC coupling  
coupling Hormone 
secretion  
Gene regulation 

CaV1.3 L α1D Endocrine cells 
Neurons 

Hormone secretion  
Gene regulation  

CaV1.4 L α1F Retina Tonic neurotransmitter 
release 

CaV2.1 P/Q α1A Nerve terminals 
Dendrites 

Neurotransmitter release  
Dendritic Ca2+ transients 

CaV2.2 N α1B Nerve terminals 
Dendrites 

Neurotransmitter release  
Dendritic Ca2+ transients 

CaV2.3 R α1E Cell bodies      
Dendrites             
Nerve Terminals 

Ca2+-dependent action 
potentials  
Neurotransmitter release 

CaV3.1 T α1G Cardiac muscle 
Skeletal muscle 
Neurons 

Repetitive firing 

CaV3.2 T α1H Cardiac muscle 
Neurons 

Repetitive firing 

CaV3.3 T α1I Neurons Repetitive firing 
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1.2.2 Ryanodine receptors 
The conformational changes of the skeletal muscle DHPR control the intracellular release 

of Ca2+ via the type 1 ryanodine receptor (RyR1), a ligand-gated Ca2+ channel of the SR 

membrane. In general, RyRs are high-conductance, intracellular Ca2+ channels regulated 

by both exogenous and intracellular mediators, releasing Ca2+ stored in the SR. RyRs are 

the largest ion channels known. They consist of four identical subunits (homotetramers), 

each with a molecular mass of ~ 560 kDa, and with an average molecular weight of the 

complete channel of about 2.3 MDa (Meissner 2002). About nine-tenth of this mass are 

cytoplasmic, forming the ‘foot’ structures visible in thin section electron micrographs 

(Figure 1.3). Only one-tenth of the protein sequence, the carboxy-terminal part, 

contributes to the formation of the pore. Three isoforms, or types, of RyRs have been 

described in mammals, RyR1, RyR2, and RyR3 (Takeshima 1993). Whereas RyR1 is the 

essential isoform for EC coupling in skeletal muscle, RyR2 has this role in cardiac 

muscle, but also serves Ca2+ release in other tissues, like, for instance, smooth muscle or 

in neurons of the central nervous system. In contrast, RyR3 is not required for EC 

coupling and RyR3 knock-out mice are viable and breed. RyR3 has been suggested to 

play transient roles in skeletal muscle development (Takeshima et al. 1995).  

Despite being a ligand-gated Ca2+ channel, the skeletal muscle RyR1 is believed to be 

activated directly by mechanical coupling to the DHPR. This is an exclusive feature of 

RyR1, since skeletal muscle-type EC coupling can not be established when RyR1 is 

replaced by either of the two other RyR isoforms (Takeshima et al. 1994; Bertocchini et 

al. 1997). This fact has initiated a number of studies aiming to identify the RyR1 regions 

capable of direct interaction with the DHPR (Protasi et al. 2002; Sheridan et al. 2006). In 

the latter studies, chimeras of RyR1 and RyR2 have been constructed and their potential to 

restore skeletal muscle-type EC coupling has been investigated upon their expression in 

myotube cultures prepared from RyR1 knock-out mice. The conclusion from these studies 

is that multiple - more or less extended - regions of the RyR1-type sequence are required 

for the restoration of Ca2+-independent activation of Ca2+ release in skeletal muscle. 

However, whether or not these sequence regions actually participate in direct interactions 

with the DHPR remains to be seen.  
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1.3 The structural basis and the mode of EC-coupling in 
skeletal muscle 

 

The two major players in the process of skeletal muscle-type EC coupling described 

above, the sarcolemmal/t-tubular DHPR and the RyR1 of the SR membrane, obviously 

belong to separate membrane systems. However, in skeletal muscle, there appears to be an 

intricate linkage between the two channels, not only functionally, but also mechanically. 

According to the current view, the DHPR is the transducer of the electrical signal to RyR1 

via physical (also termed conformational) coupling between the two proteins (Tanabe et 

al. 1988). However, as stated above, the molecular identities of the interacting regions as 

well as the mode of operation of this critical step in EC coupling remain unknown.  

Obviously, it is a prerequisite for conformational coupling that the DHPR must be in close 

proximity to RyR1. Actually, ultrastructural studies show that there is only a narrow gap 

of < 20 nm between the sarcolemmal/t-tubular and the SR membrane of terminal 

cisternae, which has led to the introduction of the term junction for these structures. 

Electron microscopy (EM) approaches have furthermore established that DHPRs and 

RyRs reside in these junctions and that the huge electron-dense mass bridging the 

junctional gap is the cytoplasmic part of RyR1, a structure also called ‘foot’ (Figure 1.3) 

(Franzini-Armstrong 1970; Block et al. 1988; Protasi et al. 1998; Takekura & Franzini-

Armstrong 1999; Protasi et al. 2000; Felder et al. 2002; Protasi et al. 2002). Together with 

a number of associated proteins, DHPRs and RyR1s of the junctions form so called 

calcium release units (CRUs) (Flucher & Franzini-Armstrong 1996). CRUs can either 

persist at junctions located at the cell surface, formed between a SR cistern and the 

sarcolemma, a configuration which has been termed peripheral coupling. Or, as is the 

case in mature skeletal muscle with presence of a t-tubule system, two opposed cisternae 

develop a junction with a centrally located t-tubule, forming a triad (Figure 1.3). Despite 

this variety of shape, junctions of either type are functionally equivalent to each other with 

respect to molecular composition and functional mode of EC coupling (Flucher & 

Franzini-Armstrong 1996). The meticulous work of Franzini-Armstrong and colleagues, 

using freeze-fracture replicas and thin section EM analysis, has provided a detailed insight 

into the relative disposition of RyRs and DHPRs within junctions (Figure 1.3).  

DHPRs and RyRs in junctions of skeletal muscle display a highly ordered disposition. The 

DHPRs are organized in groups of four (‘tetrads’). Within an individual tetrad, every 

DHPR is opposed to one of the 4 subunits of the underlying RyR1 homotetramer     
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(Figure 1.4) (Block et al. 1988; Takekura et al. 1994; Protasi et al. 1998; Protasi et al. 

2000; Protasi et al. 2002) Interestingly, not every RyR1 is associated with a tetrad, only 

every second RyR1 is undergoing such association. The reason for this is not known but it 

has been speculated there might be a lack of sufficient space for the continuous deposition 

of tetrads (Block et al. 1988; Franzini-Armstrong & Kish 1995). In support of the direct 

link-hypothesis, the formation of DHPR tetrads absolutely requires the presence of the 

RyR1, since tetrads are not formed in skeletal muscle devoid of RyR1 (‘dyspedic’ muscle, 

see below; (Takekura et al. 1995; Protasi et al. 2000). It should be added that the regular 

arrangement of DHPRs and RyR1s in junctions of skeletal muscle is not a significant 

contributor to the formation of junctions, since the latter are still formed in the absence of    

 
Figure 1.3. Location of calcium release units in skeletal muscle. Red Frame: A skeletal 
muscle fibre (as seen in Figure 1.1) and an electron micrograph showing a triad structure in 
cross-section (bottom right). Two SR terminal cisternae dock on a t-tubule (tt). Calcium 
release units (CRUs) are macromolecular complexes of numerous proteins, with the DHPR 
and the RyR1 forming the essential, central components. CRUs localize to the junctional 
region of the two compartments (Franzini-Armstrong & Nunzi 1983). The cytoplasmic domains 
of RyR1, also termed ’feet’ are visible as electron dense mass in the cleft. Green frame: A 
triad with the major CRU components, the RyR1 (blue) and the DHPR (green). The schematic 
cross-sections show only two of the four subunits of each RyR1 homotetramer. RyR1s are 
closely associated with DHPRs, and this association exhibits a unique, characteristic 
architecture (details shown in subsequent figures). 
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DHPRs (Flucher et al. 1993; Powell et al. 1996), and also in the absence of the RyR1 

(Takekura et al. 1995; Takekura & Franzini-Armstrong 1999).  

It has been shown that the distance between DHPRs within tetrads is decreased by 

exposure of myotubes to the RyR ligand ryanodine, a finding which further supports the 

idea that skeletal DHPRs are linked (directly or indirectly) to RyR1s (Paolini et al. 2004). 

Thus, the tetradic structure might very likely represent the visible correlate of a direct link 

between α1S and the RyR1. In support of this view, tetrads are never seen in cardiac 

preparations (Sun et al. 1995; Protasi et al. 1996), indicating the absence of mechanical 

linkage and reflecting the different mode of EC coupling in heart, where Ca2+ influx 

through the cardiac DHPR is required to activate the RyR2, a process which has been 

termed Ca2+ induced Ca2+ release (Tanabe et al. 1990b).  

                            

 
Figure 1.4. Ordered arrangement of DHPR and RyR1 in junctions of skeletal muscle. The 
relationship between RyR1 homotetramer clusters (blue) and DHPRs (green) is shown 
schematically, as viewed from the t-tubular luminal site. A characteristic feature of skeletal 
muscle is the regular arrangement of DHPRs in groups of four, ‘tetrads’. Freeze-fracture 
studies revealed that tetrads are in register with every other RyR1, which could be explained 
by steric hindrance, not allowing DHPRs to interlock on subunits of adjacent RyRs. This 
specific arrangement supports the widely accepted view that in skeletal muscle there very 
likely is a mechanical link between the cytoplasmic RyR1 domain and yet to be identified 
domains of the DHPR. It has been shown that presence of the RyR1 is essential for tetrad 
formation (Franzini-Armstrong 2004). The geometry of the DHPR-RyR1 association in skeletal 
muscle has been extensively studied (Block et al. 1988; Franzini-Armstrong & Kish 1995; 
Protasi et al. 1997). The RyR1 structure used in this figure is from a 3D reconstruction by 
Samso et al. (2009, and is based on single particle analysis in combination with cryo electron 
microscopy. Bar represents 10 nm and refers to RyR1. 
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It has long been known that RyRs and DHPRs are essential components of EC coupling in 

both cardiac and skeletal muscle. Skeletal muscle is completely incapable of EC coupling 

after ablation of the RyR1 gene (dyspedic muscle, no visible ‘foot’ in EM preparations, 

Takeshima et al. 1994). As to the DHPR however, not all subunits are of equal importance 

with respect to EC coupling. EC coupling fails completely in muscle cells genetically null 

for the principal subunit, α1S (as represented by dysgenic muscle from the muscular 

dysgenesis mouse strain, mdg, Tanabe et al. 1988). Furthermore, EC coupling is also 

abolished by knocking out the gene encoding the β1 subunit of the DHPR (Gregg et al. 

1996). This is not surprising, since the β1 subunit, in addition to influencing the gating 

properties of α1S, is essential for effective targeting of the principal subunit to junctions 

and for its arrangement as tetrads (Strube et al. 1996; Neuhuber et al. 1998a; 

Schredelseker et al. 2005). In contrast, the γ subunit does not appear to play a major role 

during EC coupling since only minor functional alterations occur as a consequence of 

knocking out the gene encoding the γ subunit in mouse skeletal muscle (Freise et al. 

2000). Also, silencing the α2δ expression in skeletal muscle cells does not interfere with 

targeting of the α1S subunit or with skeletal muscle-type EC coupling (Obermair et al. 

2005; Garcia et al. 2008), although complete ablation of the α2δ gene resulted in mice 

which were reduced in size and which failed to survive beyond day 35.  

Despite the eminent importance of DHPR and RyR1 for EC coupling, a number of 

additional junctional proteins with important accessory roles have been identified, among 

them triadin, junctophilin-1, Homer, AKAP15, Ca2+-CaM, JP-45, and junctate/humbug. 

Of those, junctophilin has been found to be critical for the development of normal 

junctions (Ito et al. 2001; Komazaki et al. 2002). However, unlike the DHPR and the 

RyR1, none of these associated proteins appears to be absolutely required for EC coupling 

in skeletal muscle (Treves et al. 2009). 
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1.4 The DHPR:RyR1 communication in skeletal muscle -  
state of the art and open questions 

 

The usage of two mouse models for cellular studies has proven invaluable for the 

advancement of the EC coupling field. A model representing the complete cellular 

equipment of a skeletal muscle cell, except for the α1S subunit of the DHPR, is the so 

called muscular dysgenesis mouse (Tanabe et al. 1988). In this model, a single base 

deletion within the α1S gene in the coding sequence for the fourth repeat domain creates a 

premature stop codon. In the homozygous condition, in the so called dysgenic muscle, 

levels of the mutated α1S mRNA are significantly reduced and the prematurely truncated 

α1S polypeptide cannot be detected by Western blots (Knudson et al. 1989). Thus, the 

homozygous mice are incapable of endogenous α1S expression, resulting in perinatal death 

due to asphyxia (Chaudhari 1992). The second mouse model is the so called dyspedic 

mouse (see above) and is a conventional knock-out for the RyR1 gene via genetic 

engineering (Takeshima et al. 1994). Absence of RyR1 also is lethal at birth, due to 

complete paralysis of skeletal muscle. Since heterozygous animals from both models have 

no phenotype, conventional breeding is possible, whereby the mating of two mice 

heterozygous for either condition provides homozygous offspring with a 1:4 frequency, 

obeying Mendelian rules. Primary skeletal muscle cultures from such animals have been 

used in numerous studies for the expression of genetically modified α1S and/or RyR1 

cDNAs, to decipher the role of defined protein regions in EC coupling.  

In the pursuit of answers, one experimental approach undertaken was the expression and 

analysis of chimeric DHPR subunits and/or chimeric RyRs (chimeric refers to usage of 

fusion proteins generated from different isoforms of the same channel family, e.g., fusing 

the α1S sequence encoding the first two repeats with the α1C sequence encoding the two 

remaining repeats of the subunit). Another frequently used approach was the in vitro 

application of peptides representing defined, short α1S regions to isolated, lipid bilayer-

reconstituted RyR1s. However, despite the wealth of knowledge that such studies 

generated about possible structural and functional requirements for normal DHPR-RyR1 

interaction (detailed below), the precise mechanism and the molecular regions involved 

remain elusive. Thus, the same mechanistic questions facing investigators 15 years ago 

still persist today: What parts of the DHPR α1S subunit trigger EC coupling? How is the 

EC coupling signal transmitted from the voltage-sensing regions of the α1S to RyR1?  
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What is known so far? 

Referring to the direction of signal procession, the activation of the RyR1 by the activated 

voltage-sensor, the DHPR, has been termed orthograde signalling. This term has been 

introduced after discovery that DHPR-RyR1 signalling also occurs in the opposite 

direction, retrograde (Nakai et al. 1998b), The presence of such a retrograde signal was 

revealed by the observation that L-type currents of dyspedic myotubes were substantially 

smaller than L-type currents of wild-type myotubes, despite similar membrane expression 

of the DHPR. Just as orthograde DHPR-RyR1 coupling does not depend upon Ca2+ influx 

through the skeletal muscle DHPR, the retrograde, RyR1-dependent enhancement of 

skeletal L-type current does not depend upon Ca2+ movements via RyR1 (Nakai et al. 

1996; Nakai et al. 1998a; Avila & Dirksen 2000). Moreover, both orthograde and 

retrograde coupling depend on the integrity of some of the same structural elements of the 

DHPR α1S subunit and RyR1 (Grabner et al. 1999). Neither of these interactions depends 

on any obvious diffusible messenger (such as entry of external Ca2+), which has led to the 

idea that there is bidirectional conformational coupling between these two proteins 

(Tanabe et al. 1988; Garcia et al. 1994; Garcia & Beam 1994; Nakai et al. 1998b). 

Collectively, these observations suggest that retrograde coupling, like orthograde 

coupling, is supported by direct protein-protein contacts linking RyR1 and the DHPR 

channel complex (Beam and Horowicz, 2004).  

Introduction of Fluorescence resonance energy transfer (FRET) (Papadopoulos et al. 

2004; Leuranguer et al. 2006) and the usage of other optical approaches (Lorenzon et al. 

2004) has given new insights into the spatial orientation of the DHPR within intact tetrads 

as well as putative α1S domains involved in interactions with the RyR1. From these and 

from additional studies it has become clear that the cytoplasmic interface of the pore 

forming α1S subunit - in addition to its critical role in functional membrane expression - 

also represents an essential determinant for interactions with the RyR1. Multiple 

cytoplasmic α1S domains have been implicated in these interactions. However, as has been 

stated above, a conclusive picture, about the mechanistic details and the relative 

contribution of each domain does not exist. The structures referred to here as cytoplasmic 

α1S domains include the amino- and carboxyl-terminal peptide sequences as well as the 

three cytoplasmic loops connecting the four homologous α1S repeats, I–II, II–III, and III–

IV (Figure 1.5). In principle, their cytoplasmic location makes all of them candidates for 

interactions with the RyR1, either directly, or via bridging proteins.  
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Figure 1.5. Schematic representation of the DHPR α1S subunit with ascribed (patho-) 
physiological roles listed for every cytoplasmic domain, after Bannister (2007), 
modified. The α1S amino-terminal region (N) appears not to play a major role i n the function of 
the DHPR related to EC coupling. See text for specific references. C: carboxyl-terminus, AID: 
alpha interaction domain, MH: malignant hyperthermia.

C

N 

 

The amino-terminus of α1S (residues 1–51) appears not to play a significant role in EC 

coupling. The ability of the DHPR to support evoked contractions or myoplasmic Ca2+ 

transients was not hindered by substitution of α1C amino-terminus for that of α1S (Tanabe 

et al. 1990b; Carbonneau et al. 2005). In accordance with these findings, it has been 

demonstrated that deletion of the bulk of the α1S amino-terminus (residues 2–37) has 

essentially no effect on either L-type currents or myoplasmic Ca2+ transients (Bannister & 

Beam 2005).  

In skeletal muscle, the carboxyl-terminus of α1S is subject to proteolytic cleavage at 

residue A1664 or thereabouts (De Jongh et al. 1989; Hulme et al. 2005). However, as 

demonstrated by Beam et al. (1992) by the expression of an α1S variant with shortened 

carboxyl terminal sequence (terminating at residue N1662), this truncation does not appear 

to affect the ability of α1S to target to junctions and to couple functionally to RyR1. 

However, more proximal deletions of the α1S carboxyl-terminus beyond the site of 

cleavage progressively diminish DHPR surface expression (Proenza et al. 2000; Flucher 
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et al. 2000). Recent data obtained with optical techniques have shown that the proximal 

α1S carboxyl-terminus may interact with the RyR1. Papadopoulos et al. (2004) observed 

that a cyan/yellow fluorescent protein tandem (CFP-YFP) reporter fused to a truncated α1S 

carboxyl-terminus (α1S residues 1–1667) produced a substantially reduced FRET 

efficiency when expressed in dysgenic myotubes (i.e., in the presence of RyR1) relative to 

the same construct expressed in dyspedic myotubes (i.e., in the absence of RyR1), 

indicating that conformational influence is exerted on the α1S carboxyl-terminus by RyR1. 

Lorenzon and co-workers (2004) showed that the C-terminus of α1S appears to be 

accessible for streptavidin in dyspedic myotubes but not in dysgenic myotubes, indicating 

an interaction between the α1S C-terminus and the RyR1, either directly or via some other 

tightly associated molecule. 

The α1S I-II loop is essential for EC coupling because it is the site for interaction with the 

equally essential DHPR β1A subunit (Chen et al. 2004; Opatowsky et al. 2004; Van 

Petegem et al. 2004). The primary binding region for all β subunits on α1 subunits is the 

alpha interaction domain (AID), an 18 amino acid region in the I–II loop of α1 subunits, 

beginning ~ 23 amino acids from the end of the sixth transmembrane segment (S6) of 

domain I (Pragnell et al. 1994). The requirement for the β1A subunit underscores the 

importance of the α1S I–II loop for EC coupling and junctional targeting. The functional 

nature of the α1S-β1A interaction is an enigma that will require further experiments to 

unfold. 

The short α1S III-IV loop does not appear to play a direct role in EC coupling, but it 

participates indirectly in the process by influencing DHPR gating transitions important 

both for EC coupling and activation of L-type conductance (Bannister et al. 2008).  

For several years, there has been general agreement among investigators that the              

II-III loop of the α1S subunit plays a key role in transmitting the EC coupling signal to 

RyR1 (Tanabe et al. 1990a; Garcia et al. 1994; Nakai et al. 1998b). Numa and colleagues 

first identified the α1S II–III loop as a major contributor to skeletal muscle-type EC 

coupling by examining the functional properties of chimeric DHPRs consisting of the 

individual α1S cytoplasmic domains within the highly-conserved background of the 

cardiac α1C subunit (Tanabe et al. 1990b). The α1S II–III loop substituted into the 

corresponding region of the cardiac DHPR α1C subunit conferred skeletal muscle-type EC 

coupling (Tanabe et al. 1990b; Carbonneau et al. 2005) and, conversely, substitution into 
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an α1S backbone with the II–III loop of α1C (SkLC; (Grabner et al. 1999) or the α1 subunit 

of the housefly, α1M  (SkLM; (Wilkens et al. 2001a; Kugler et al. 2004b), abolished 

skeletal muscle-type EC coupling. However, proper DHPR-RyR1 communication could 

be restored when a defined region of the α1S II–III loop (residues 720–765, nowadays 

referred to as critical domain (Nakai et al. 1998b), was reintroduced within SkLC or 

SkLM (Grabner et al. 1999; Wilkens et al. 2001a; Kugler et al. 2004b).  

In contrast, a synthetic peptide corresponding to an α-helical domain (roughly α1S 

residues 671–690; or ‘peptide A’) in the amino-terminal portion of the α1S II-III loop 

activates RyR1 in reconstituted lipid bilayers, which has given rise to the idea that this 

portion of the α1S II-III loop may interact directly with RyR1. Indeed, recent studies 

showed binding between peptide A and a fragment of RyR1 in vitro  (Cui et al. 2009; Tae 

et al. 2009). However, the physiological implications of this interaction are unclear 

because several studies have shown that EC coupling can be restored in dysgenic 

myotubes expressing α1S constructs in which the peptide A domain has been disrupted or 

even deleted  (El Hayek & Ikemoto 1998; Ahern et al. 2001a; Ahern et al. 2001b; Flucher 

et al. 2002). Most recently, Bannister et al. (2009) have demonstrated that both orthograde 

and retrograde coupling are supported by four different α1S constructs in which a 56-kDa 

CFP-YFP tandem replaced the peptide A region. Thus, it seems unlikely that the peptide 

A region or immediately adjacent segments of the α1S II-III loop directly participate in 

protein-protein interactions necessary for bidirectional coupling. But these results do not 

exclude a modulatory role for this amino-terminal segment of the α1S II–III loop.  

Bannister and co-workers (2009) used YFP insertions as a means to probe the importance 

of the carboxyl-terminal region of the α1S II-III loop, which links the critical domain to 

repeat III. In this particular experiment, introduction of a single YFP between residues 785 

and 786 in the carboxyl-terminal portion of the loop ablated bidirectional coupling 

without affecting membrane expression of the channel or significantly distorting the 

conformation of the critical domain. The disruption of EC coupling by YFP insertion in 

the conserved carboxyl-terminal region of the α1S II-III loop suggests that it may be an 

important site of protein–protein interaction required for signaling. Thus, although the 

importance of the α1S II–III loop for skeletal-type EC coupling is almost universally 

accepted, muscle physiologists consider a more inclusive idea of DHPR-RyR1 coupling. 

This broader view of multiple contacts is consistent with corresponding work indicating 
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that multiple regions of RyR1 are probably involved in bi-directional coupling with the 

DHPR (Nakai et al. 1998b; Proenza et al. 2002; Protasi et al. 2002; Perez et al. 2003; 

Sheridan et al. 2006).

 

A better knowledge of the 3D architecture of DHPR complexes would be basic to 

understanding the channel function and how the EC coupling signal may be transmitted. 

Since the generation of DHPR protein crystals is not feasible yet, research groups with 

focus on structure are working on revealing and improving DHPR structures using cryo-

EM and single-particle analysis. The most recent studies present 3D structures of skeletal 

muscle DHPRs with a resolution maximum of ~ 20 Å (Wolf et al. 2003; Serysheva 2004; 

Murata et al. 2009), which is still ~ 10 fold lower than the resolving power of crystal 

structure studies and which does not allow the identification of discrete subregions. Yet, 

the molecular dimensions determined for single DHPRs (and for individual RyR1 

tetramers) using cryo EM suggest that the two channels very likely are in physical contact. 

The 3D structure presented by Serysheva (2004) comprises two domains, a so called heart 

region and a handle region, tilted with respect to each other and forming a cavity between 

them (Figure 1.6). The heart-shaped portion of the complex is proposed to span the 

membrane and house the α1, β and γ subunits, the handle-shaped domain and upper 

portion of the heart region is predicted to be formed by the α2δ subunit (Figure 1.6).  
 

  

 
Figure 1.6. 3D structure of DHPR obtained by cryo-EM and single particle reconstruction 
(Serysheva et al. 2004). The structure is shown in four different views: (A) top view, as would 
be seen from the lumen of a t-tubule, (B) front view obtained by 90° rotation along the 
horizontal axis of the top view in (A), (C) and (D) are views obtained by stepwise rotation of the 
view in (B) along the vertical axis by 90°. The handle-shaped structure and the upper lobes of 
the heart-shaped region were proposed to account for the extracellular channel region and to 
include the α2 subunit. The heart-shaped region includes the voltage-sensitive transmembrane 
region of the L-type Ca2+ channel and the cytoplasmically located β subunit. Bar, 100 Å 

Using the same technique, Wolf et al. (2003) presented a 3D structure of the DHPR from 

skeletal muscle, which allowed them to identify the approximate locations of four of the 
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five subunits of the channel (Figure 1.7). The proposed arrangement of the subunits is in 

agreement with functional and biochemical data available for this channel. 
 

 

 
Figure 1.7. Model of DHPR by Wolf et al. (2003), modified. (A) Three orthogonal views of 
the refined 3D structure of the DHPR. The volume in gray encloses approximately 550 kDa. 
When contoured at a higher density level (red volume), the globular density is separated by a 
gap into a larger and smaller density, indicating possible boundaries of channel subunits. 
Labels indicate the putative locations of individual subunits. Left: view facing the cytosolic side. 
Middle: view along the membrane plane (depicted by a yellow bar) with the extracellular a2 
subunit facing upwards. The green arcs indicate how the structure was divided to estimate the 
molecular masses of individual subunits. Right: view along the membrane plane after rotating 
the structure by 90° from its orientation shown in the middle panel. The scale bar represents 
100Å. (B) Cartoon of the L-type calcium channel, summarizing the results of Wolf et al. (2003) 
together with previously published data on subunit interactions. It assumes pseudo-4-fold 
symmetry of the a1-subunit. The view shows the extracellular side with the a2 subunit. The a1, 
g and d subunits are embedded into the lipid membrane (not shown). The proposed model 
allows for a tight interaction between a1 and d as well as α1 and γ.  

 

Recently, (Murata et al. 2009) proposed a single-particle electron microscopy 3D model 

of the α1–β complex alone or in conjunction with the α2δ subunit, within the DHPR 

(Figure 1.8). Their 3D reconstruction of the DHPR shows two portions; a globular portion 

and a leg-shaped protrusion.  

Figure 1.8. 3D reconstruction of the DHPR structure and of the α1-β complex of Murata 
et al. (2009), modified. (A) The DHPR shows two unique portions: a 12 x 16 nm globular 
portion 12 nm high and a leg-shaped protrusion 9 nm high. View along the membrane plane, 
labels indicate the proposed locations of the α1, α2, β and δ subunits. (B) The α1-β complex 
displayed a ~ 11.5 × 11.5 nm globular portion 10.5 nm high and an elongated region 8.5 nm 
long and 3.0 nm high attached to the off-centered bottom surface of the globular region, top 
view (left) & side view (right), yellow dashed line in the center panel indicates a potential 
boundary between the molecules. 
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While these three proposed structures display considerable deviations from each other, 

they nevertheless present the DHPR as a mass with two discrete components, a large and 

small region. As stated above, none of these 3D models shows sufficient detail to reveal 

the exact location or orientation of individual DHPR subunits. As a consequence the 

quaternary structure of the DHPR subunits (including the exact arrangement of the 

intracellular domains of pore forming α1S subunit) remains unknown. Furthermore, these 

techniques are generally limited to use in vitro, precluding dynamic measurements within 

living cells. Thus, these approaches are not capable of providing a more detailed picture of 

the arrangement of the intracellular α1S loops as the important structures for interactions 

with the RyR1. 

 

 

1.5 Aims of the present work and description of the 
experimental approach 

 
The key molecular event in the signal transmission of skeletal muscle EC coupling 

appears to take place at the interface between the cytoplasmic domains of the DHPR and 

regions of the RyR1 ‘foot’ yet to be identified. Techniques that are suited to gather 

information about the interactions and the molecular events of this process in living 

muscle cells are of crucial importance for the advancement of our understanding in this 

field. A first basic insight into the identity and the relative spatial arrangement of 

individual cytoplasmic α1S domains would already be an important step, in that it would 

enable to ask more specific questions concerning the dynamics of intermolecular 

interactions in the course of signal transmission from the DHPR to the RyR1. The 

introduction of the FRET technique has proved a valuable experimental tool to provide 

answers for this type of questions, not only in the field of EC coupling. In the latter, 

however, FRET measurements were already used to investigate the tetradic organization 

of DHPRs, in particular the arrangement of the β1a subunit within tetrads  in living muscle 

cells (Leuranguer et al. 2006). Also, studies were carried out to identify potential sites of 

DHPR-RyR1 proximity (Papadopoulos et al. 2004; Lorenzon et al. 2004). Basically the 

same approach is used in the present work to gain a more detailed insight into the spatial 

arrangement of cytoplasmic α1S domains and of their involvement in RyR1 interactions. 
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The great importance and suitability of the FRET technique for these investigations 

derives from the favourable circumstance that the highest sensitivity of FRET to spatial 

changes is restricted to a narrow, low nm range ( ~ 1-10 nm), which exactly matches the 

size of many important proteins and molecular distances. Thus, FRET in principle can 

answer questions specifically dealing with interactions or dynamic processes in the nm 

range, like degrees of molecular proximity or orientation, or of their process-dependent, 

dynamic changes.  

A few words to the physical background of the FRET process. FRET is a phenomenon of 

quantum mechanics (Förster 1948), whose application in bioscience became a powerful 

tool for the detection of changes in distance and orientation of fluorophore pairs (Tsien 

1998). In this process, the donor (CyPet in this study, see Table 1.2), when being in the 

excited state, transfers the relaxation energy to a neighbouring acceptor (here, YPet) by 

nonradioactive dipole-dipole interaction. For this transfer to happen, the emission 

spectrum of the donor must overlap with the excitation spectrum of the acceptor (i.e., 

there has to be a substantial overlap integral, see Figure 1.9). 

 
Table 1.2 FRET pair properties. Presented is a compilation of properties displayed by 
fluorescent protein variants CyPet and YPet (Cyan / Yellow protein for energy transfer, 
respectively). Along with the common name, the peak absorption and emission wavelengths 
(given in nanometers), molar extinction coefficient, quantum yield, relative brightness, and in vivo 
structural associations are listed. The computed brightness values were derived from the product 
of the molar extinction coefficient and quantum yield, divided by the value for enhanced green 
fluorescent protein (EGFP). 1 The naturally occurring weak dimerization of some FPs, however, 
can be used to increase the FRET signal in a biosensor (Piston & Kremers 2007). 

Protein 
 

Excitation 
Maximum 

(nm) 

Emission
Maximum

(nm) 

Molar 
Extinction 
Coefficient 

Quantum
Yield (φd) 

in vivo 
Structure 

Relative 
Brightness 

(% of EGFP)

CyPet 435 477 35,000 0.51 weak dimer1 53 
YPet 517 530 104,000 0.77 weak dimer1 238 

 

 

The overlap integral can be calculated according to the equation, 

 

 
(Eq. 1)

 

where (ε(λ)) denotes the extinction coefficient, λ the wavelength in nanometers, and FD 

the normalized fluorescence intensity of the donor as a function of wavelength. 
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Figure 1.9. Excitation and emission spectra of the FRET pair CyPet and YPet. Substantial 
spectral overlap between CyPet emission and YPet excitation (gray shaded region; referred to 
as overlap integral, J(λ), in the text) is a prerequisite for FRET (note that spectra are 
normalized to maximum excitation / emission values of 1).  

A characteristic value for defined FRET partners is the Förster distance (R0) value. R0 is 

the distance at which the donor transfers half of its energy to the acceptor. R0 depends on 

several parameters, which are the refractive index of the medium (n), the quantum yield 

of the donor in the absence of the acceptor (φd), the orientation factor between the two 

molecules (κ2), and the overlap integral mentioned above (J(λ)):  

 

R0 = 9.78 × 103(n-4*φd*κ2*J)1/6 Å                                             (Eq. 2) 
 

It is apparent from the above equations that for donors having a high quantum yield (φd) 

and for acceptors with large extinction coefficients, the spectral overlap integral (J) will 

be greater, leading to more efficient energy transfer and relatively high R0 value. In 

addition, the efficiency of the dipole-dipole interaction between the donor and acceptor 

depends on the alignment of the two dipoles. The orientation factor (κ), which describes 

this relative alignment, ranges from 0 (both dipoles perpendicular) to 4 (dipoles parallel). 

In general, the dipoles can be assumed to be rapidly moving on timescales similar to the 

donor excited-state lifetime such as the orientations can be described as random, with an 

average orientation factor of 0.67. However, Förster (1948) demonstrated that the 
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efficiency of FRET (E) depends on the inverse sixth-distance between donor and acceptor 

(r), 

 

E = R0
6/(R0

6 + r6),                                                                     (Eq. 3) 

 
making the distance the most critical parameter in this process. It is, thus, not surprising 

that there is virtually no detectable energy transfer when the fluorophore separation 

exceeds 10 nm (see Figure 2.10). In most experiments employing FRET, it is actually not 

known whether the distance (r) between fluorophores, which can be derived from 

applying Equation 3 to measurements of the FRET intensity, actually represents the real 

distance. This is due to the merely vague knowledge about the actual value for the 

orientation factor κ2. Also, because of the sixth power dependence of FRET efficiency on 

fluorophore separation distance, even small errors in the accuracy of FRET measurements 

can have large effects on both the absolute separation distances estimated from such 

experiments and on the relative changes. However, these factors which - due to their 

sensitiveness - make calculations of absolute distances or of their absolute changes 

problematic, at the same time are very powerful reporters of spatial molecular 

rearrangements in the low nanometer scale. This is utilized in the present study, in which 

the focus is more on the qualitative detection of relative spatial changes introduced by the 

presence of the RyR1, then on the measurement of absolute distances between 

cytoplasmic DHPR domains. Nevertheless, the data obtained are used in a model to 

describe for the first time possible RyR1 dependent rearrangements of cytoplasmic DHPR 

domains.  

 

Genetically encoded FRET biosensors consisting of a donor and an acceptor fluorescence 

protein can be conveniently introduced into cells and targeted to subcellular 

compartments. The main limitation of genetically encoded FRET biosensors based on 

fluorescent proteins is their poor sensitivity (Piston & Kremers 2007). Hence, these 

biosensors have been widely developed and applied for the detection of various molecular 

activities in live cells with high spatiotemporal resolution (Wang et al. 2008). Enhanced 

CFP (ECFP) and enhanced YFP (EYFP) have become a very popular FRET pair. 

Recently, the high-efficiency FRET pair, CyPet and YPet, has been developed and was 

found to have a greatly extended range of FRET-related fluorescence intensity changes, as 
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compared to the CFP-YFP pair (Nguyen & Daugherty 2005). CyPet and YPet were 

derived through a quantitative mutagenesis scanning for fluorescent protein variants with 

improved FRET properties. A total of seven mutations of EGFP (T10G, V12I, D20E, A88V, 

I168A, E173T, L195I) resulted in the production of the CyPet protein, which features 

absorption and emission maxima positioned at 435 and 477 nm, respectively (Table 1.2). 

When paired with its optimized partner, YPet (see below), this cyan variant exhibits a 

dynamic range that is more than six times higher than that of CFP-YFP, allowing for a far 

more sensitive detection of changes in FRET (Nguyen & Daugherty 2005). CyPet’s 

narrow fluorescence emission peak greatly increased its utility in multicolour imaging, 

and is the most photostable cyan fluorescent protein of the weakly dimeric and 

monomeric versions currently available. YPet is the brightest yellow fluorescent protein 

variant yet developed and exhibits very good photostability. However, although the 

FRET-optimized CyPet-YPet combination appears to be a well-suited tool to study 

molecular interactions and dynamic spatial reorientations, this fluorophore pair has not 

yet been tested in studies similar to the present work.  

In previous studies, by using CFP and YFP, Papadopoulos and co-workers (2004) could 

identify potential interaction sites between the DHPR and RyR1 within their natural 

environment. The authors devised a molecular FRET sensor by generating the CFP-YFP 

tandem and by incorporating it into defined DHPR domains. Also, recent accessibility 

studies emphasize the role of defined cytoplasmic domains for interaction and signalling 

between DHPR and RyR1 (Lorenzon & Beam 2007). These studies demonstrated that 

FRET is a powerful tool for analyzing the process of EC coupling within living muscle 

cells by monitoring conformational changes of the cytoplasmic DHPR interface by the 

presence of RyR1. The work and the results presented in this thesis constitute a 

continuation of these approaches. However, a novel FRET approach has been undertaken 

here to investigate the spatial relationship of all cytoplasmic domains of the principal 

DHPR subunit, α1S. The primary aim was to gain further insight into the possible 

involvement of individual cytoplasmic α1S domains in interactions with RyR1. The 

present study constitutes a systematic approach, in which α1S cDNAs were engineered 

with the CyPet and YPet sequence introduced into positions corresponding to cytoplasmic 

domains of the α1S subunit. Upon expression in intact muscle cells, the degree of FRET is 

determined for every combination of the CyPet-YPet double-tag using the technique of 

sensitized emission. The latter designation refers to the fact that a higher degree of YPet-
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related emission is to be expected when the excited donor resides in close proximity to the 

acceptor. The details of the calculation of the degree of FRET using sensitized emission 

can be found in the following section (Material & Methods). The rationale for this 

approach is that one could expect RyR1 dependent changes in the intensity of FRET 

between two spatially close and potentially movable domains, if the tagged regions 

represent cytoplasmic α1S domains interacting with RyR1. In first instance, this approach 

allows to determine whether FRET differs among the different combinations of doubly 

labelled constructs, providing information about the relative arrangement of the loops in 

the absence of RyR1. Comparison of FRET efficiencies after expression in dyspedic 

(RyR1 null) and dysgenic (α1S null) myotubes then allows to determine whether the 

presence of RyR1 alters the environment of the tagged α1S domains. Unlike the study by 

Papadopoulos et al. (2004), this work does not employ measurements of FRET using a 

CFP-YFP-tandem as a conformational FRET sensor; rather, the FRET signal depends on 

the relative position of two different loops.  

 
Upon expression of the α1S constructs in myotubes, sensitive confocal laser scanning 

microscopy is employed to:  

 
(1)  Assess whether the doubly tagged α1S constructs display correct targeting to 

the SR / t-tubular junctions.  

(2)  Check for the ability of the tagged α1S to restore EC coupling in dysgenic 

myotubes.  

(3) Determine the degree of FRET between tagged intracellular α1S domains for 

the different constructs and for the conditions α1S + RyR1 and α1S no RyR1.  

 
The above experiments are expected to provide answers to the following questions: 

 
(A) Are the loop regions used to insert the fluorescent protein tag critical for 

channel trafficking to the junctions?  

(B) If the answer to A is no, are the same regions critical for EC coupling, i.e., are 

the constructs capable of restoring EC coupling upon expression in dysgenic 

myotubes?  

(C) Which cytoplasmic α1S domains are influenced by the absence / presence of 

the RyR1 and thus might represent potential interaction sites?  
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2  Materials and Methods 
 

2.1 Materials and chemicals 
All chemicals and reagents used were ‘American Chemical Society’ grade or higher and 

were purchased from either of the following, Sigma-Aldrich (Muenchen, Germany), 

Merck (Darmstadt, Germany) GE Healthcare (Freiburg, Germany), Carl Roth (Karslruhe, 

Germany), Applichem (Darmstadt, Germany), unless otherwise indicated. Restriction 

enzymes were obtained from New England Biolabs (Frankfurt am Main, Germany). Cell 

culture material was ordered from PAA (Cölbe, Germany), MatTek (Ashland, USA), BD 

Biosciences (Heidelberg, Germany), Biochrom (Berlin, Germany) and Invitrogen 

(Karslruhe, Germany). All solutions and lab ware for bacterial cell culture and molecular 

biology were autoclaved or sterile filtered prior to use. In experiments where water was 

used, the term water refers to autoclaved tab water from the Institute’s deionized water 

supply. All cloning end products were subjected to sequencing to ensure no errors were 

introduced into the cDNA during amplification reactions. 

 
2.1.1 Consumables and kits 

Alkaline Phosphatase, Calf Intestinal (CIP)     New England Biolabs 
Centrifugal Filter Devices, Durapore PVDF 0,22 µ  Millipore  
Crimson Taq Polymerase      New England Biolabs 
DNA O’GeneRuler 1 kb DNA Ladder    MBI Fermentas 
dNTP Mix, 10 mM each      Fermentas 
GeneJuice Transfection Reagent     Merck 
NucleoSpin Extract II       Macherey-Nagel 
Oligonucleotides        MWG Operon  
peqGold Plasmid Miniprep Kit      Peqlab  
Pfu DNA polymerase       Stratgene 
PRECISOR High-Fidelity DNA Polymerase    Biocat 
QuikChange Mutagenesis Kit      Stratagene 
Quick Ligation  Kit       New England Biolabs 
Restriction endonucleases      New England Biolabs 
T4 DNA Ligase        New England Biolabs 
Taq DNA Polymerase      New England Biolabs  
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2.1.2 Restriction enzymes 
 
Table 2.1. Restriction endonucleases (RE) used in this work. Position of cleavage indicated   
by /, BSA = bovine serum albumin. 

Enzyme name DNA target Buffer NEB     Incubation temperature (°C) 
AclI AA/CGTT 4+BSA 37 
AflII C/TTAAG 4+BSA 37 
AgeI A/CCGGT 1 37 
AgeI-HF A/CCGGT 4+BSA 37 
AscI GG/CGCGCC 4 37 
BamHI G/GATCC 3+BSA 37 
BglII A/GATCT 3 37 
BlpI GC/TNAGC 4 37 
BssHII G/CGCGC 3 50 
BtsI GCAGTG(2/0) 4 + BSA 55  
DpnI GA/TC 4 37 
EarI CTCTTC(1/4) 4 37 
EcoRI G/AATTC EcoRI Buffer 37 
EcoRI-HF G/AATTC 4 37 
EcoRV GAT/ATC 3+BSA 37 
HindIII A/AGCTT 2 37 
KpnI GGTAC/C 1+BSA 37 
KpnI-HF GGTAC/C 4 37 
MfeI C/AATTG 4 37 
MfeI-HF C/AATTG 4 37 
NdeI CA/TATG 4 37 
NheI G/CTAGC 4 37 
NheI-HF G/CTAGC 4+BSA 37 
NotI GC/GGCCGC 3+BSA 37 
PflMI CCANNNN/NTGG 3+BSA 37 
PmeI GTTT/AAAC 4+BSA 37 
PmlI CAC/GTG 1+BSA 37 
RsrII CG/WCCG 4 37 
SacI GAGCT/C 4 + BSA 37 
SacI-HF GAGCT/C 4 + BSA 37 
SacII CCGC/GG 4 37 
SalI G/TCGAC 3+BSA 37 
SalI-HF G/TCGAC 4 37 
SgrAI CR/CCGGYG 4 37 
SpeI A/CTAGT 4 + BSA 37 
XcmI CCANNNNN/NNNNTGG 2 37 
XhoI C/TCGAG 4+BSA 37 

 
 
 
 
 
 
 
 

25 

http://www.neb.com/nebecomm/products/productR3131.asp


                                         MATERIAL AND METHODS 
 

2.1.3 Oligunicleotides 
Table 2.2 gives an overview of the sequences of oligonucleotides used in this work. All 

residue numbers refer to the amino sequence of rabbit α1S (GenBank/EMBL/DDBJ 

accession no. X05921). 
 
Table 2.2. Primer-oligonucleotides used in this work. Sequences are given in 5’ to 3’ direction. 

Primer name Sequence 
Fw. CyPet/YPet Age I  CTGCAGTCGACGGTACC 
Rev. CyPet Bgl II CGAGATCTTTTGTACAGTTCGTCCATGC 
Rev. YPet Bgl II CGAGATCTCTTATAGAGCTCGTTCATGC 
Rev. CyPet NotI GTGCGGCCGCTTATTTGTACAGTTCGTCCATGC 
Rev. YPet NotI GTGCGGCCGCTTACTTATAGAGCTCGTTCATGC 
FWQC AgeI pos.1636 α1S  GCTGAGATAGAAATGGAACCGGTTGAGTCGCCTG 
RVQC AgeI pos.1636 α1S  CAGGCGACTCAACCGGTTCCATTTCTATCTCAGC 
FWQC KpnI pos.1666 α1S  CCAATGCCAAGGTACCTATGGCAACAGCAACC 
RVQC KpnI pos.1666 α1S GGTTGCTGTTGCCATAGGTACCTTGGCATTGG 
FW Dom.II-III AgeI GCACCGGTTATGGTCTTCTACTGGCTGGTCATCCTG 
Rev Dom.II-III KpnI CCTGGGTACCCTAGATGACAAAGCCCACAAAGATGTTC 
Norm Tail dysp Fw. GGACTGGCAAGAGGACCGGAGC 
Norm Tail dysp Rev. GGAAGCCAGGGCTGCAGGTGAGC 
DyspTail Fw. GGACTGGCAAGAGGACCGGAGC 
DyspTail Rev. CCTGAAGAACGAGATCAGCAGCCTCTGTCCC 
Dysg. Skmouse Fw. GGCATGCAGATGTTCGGGAAGATC 
Dysg. mdg II Rev. GCAGCTTTCCACTCAGGAGGGATCCAGTGT 
QCFw-AclI-1/2 pos.350 CAAGTCCAGGGGAACGTTCCAGAAGCTGC 
QCRev-AclI-1/2 pos.350 GCAGCTTCTGGAACGTTCCCCTGGACTTG 
QCFw-AscI-3/4 pos.1096 GTATGCCCTGAAGGCGCGCCCACTTCGGTG 
QCRev-AscI-3/4 pos.1096 GCACCGAAGTGGGCGCGCCTTCAGGGCATAC 
QCFw-PmeI-1/2 pos.406 CGAAATCGAGGGTTTAAACAAAATCATCC 
QCRev-PmeI-1/2 pos.406 GGATGATTTTGTTTAAACCCTCGATTTCG 
FW N-term AgeI  GAACCGGTCATGGAGCCATCCTCACCCCAG 
Fw-sm-SpeI-pos.728 CGATGAGTTCGAAACTAGTGTCAACGAGG 
Rev-sm-SpeI-pos.728 CCTCGTTGACACTAGTTTCGAACTCATCG 
Fw-SpeI-Y CTGAACTAGTCCGATGGTGAGCAAAGGCGAAGAGC 
Rev-SpeI-Y GTCTACTAGTCGACTTATAGAGCTCGTTCATGCCCTCG 
Fw-SpeI-Cy CTGAACTAGTCCGATGGTGAGCAAGGGAGAGGAAC 
Rev-SpeI-Cy GTCTACTAGTCGATTTGTACAGTTCGTCCATGCCGTGG 
Fw-AclI-Cy CTGAAACGTTCATGGTGAGCAAGGGAGAGGAAC 
Rev-AclI-Cy GTCTAACGTTCGTTTGTACAGTTCGTCCATGCCGTGG 
Fw-AclI-Y CTGAAACGTTCATGGTGAGCAAAGGCGAAGAGC 
Rev-AclI-Y GTCTAACGTTCGCTTATAGAGCTCGTTCATGCCCTCG 
Fw-AscI-Cy CAGGCGCGCCTGATGGTGAGCAAGGGAGAGGAAC 
Rev-AscI-Cy GAGGCGCGCCGATTTGTACAGTTCGTCCATGCCGTGG 
Fw-AscI-Y CAGGCGCGCCTGATGGTGAGCAAAGGCGAAGAGC 
Rev-AscI-Y GAGGCGCGCCGACTTATAGAGCTCGTTCATGCCCTCG 
Fw-PmeI-Y CTGAGTTTAAACATGGTGAGCAAAGGCGAAGAGC 
Rev-PmeI-Y CTGGTGTTTAAACGCTTATAGAGCTCGTTCATGCCCTCG 
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2.1.4 Bacterial strain and plasmids  
 
Bacterial strain 

Throughout this work Escherichia coli (E. coli) strain DH5α (Genotype F-1-

supE44D(argF-lac) U169 j80dlacZΔM15 hsdR17 recA1 endA1 gyrA96 thi-1relA1) was 

used for standard plasmid growth and maintenance (Sambrook et al., 1989).  

 
Plasmids used for cloning and expression 

The mammalian expression vectors encoding the fluorescent proteins CyPet and YPet 

(pCyPet and pYPet, kindly provided by Dr. Patrick S. Daugherty, University of 

California, Santa Barbara) and the vectors pECFP-C1, and pECFP-N1 (Clontech, Palo 

Alto, CA) served as templates for cloning.  

 
 
 
 
2.2 Molecular biological techniques 
 

2.2.1 PCR 
PCR conditions were optimized with respect to annealing temperature for the primers 

while the magnesium concentration was kept constant for all PCRs. Examples of typical 

reaction mixes and of the PCR protocols applied are given below. PCR products obtained 

by  amplification using either Taq DNA polymerase or PRECISOR High-Fidelity DNA 

Polymerase were either ligated directly into vectors; However, prior purification of the 

PCR product from the PCR reaction mix by gel separation or by the use of direct DNA 

clean-up systems considerably increased the percentage of colonies containing the correct 

insert. The gel electrophoresis step also served as control to check for the correct size of 

the PCR product. Electrophoresis was performed using 1-2 % agarose gels stained with 

ethidium bromide. The appropriate DNA bands – as judged by their size – were cut out 

and the DNA was extracted from the gel using the NucleoSpin Extract II-kit (Macherey-

Nagel, see section 2.2.6) following the manufacturer’s protocol.  
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PCR mixture protocol  
40.3μl ddH2O      
5μl 10 × Thermo Pol buffer + 15 mM MgCl2     
1.2μl dNTP mix   
1μl template DNA  (50 µM) 
1μl Primer fw  (25 µM)   
1μl Primer rev (25 µM) 
1μl Taq DNA polymerase 
 
Standard PCR protocol 
Initial denaturation  94 ºC for 2:00 
Denaturation   94 ºC for 0:30  
Annealing   59 ºC for 0:45     27 × 
Elongation   72 ºC for 0:50  
Final elongation   72 ºC for 7:00 
Cooling  4 ºC for ∞ 
 

PRECISOR PCR mixture protocol 
34μl ddH2O  
10μl 5 × High Fidelity buffer 
2μl dNTP mix   
1μl template DNA  (50 µM) 
1μl Primer fw  (25 µM)   
1μl Primer rev (25 µM) 
1μl PRECISOR High-Fidelity DNA polymerase 
 
PRECISOR PCR protocol to multiply the full-length α1S sequence 
Initial denaturation  98 ºC for 2:00 
Denaturation   98 ºC for 0:30  
Annealing   60 ºC for 0:45     30 × 
Elongation   72 ºC for 3:00 
Final elongation   72 ºC for 7:00 
Cooling  4 ºC  for ∞ 
 

 

 

2.2.2 Site-directed mutagenesis 
To obtain unique restriction sites within sequence regions corresponding to intracellular 

domains of the skeletal muscle α1 subunit, site-directed mutagenesis was performed 

according to the manufacturer’s protocol (Stratagene QuikChange site-directed 

mutagenesis kit). An example of the reaction mix and the used QuikChange (QC) PCR 

protocol are listed below. 
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QuikChange PCR mixture protocol 
39μl ddH2O      
5μl 10 × Reaction buffer     
2μl dNTP mix  
1μl template DNA  (50 µM) 
1μl Primer fw  (25 µM)   
1μl Primer rev (25 µM) 
1μl PfuTurbo DNA polymerase (2.5 U) 
 
 
QuikChange PCR protocol  
Initial denaturation  95 ºC for 0:30 
Denaturation   95 ºC for 0:30    
Annealing   53 ºC for 1:00       18 × 
Elongation   68 ºC for 13:00  
Final elongation   68 ºC for 7:00 
Cooling   4 ºC  for ∞ 

 

2.2.3 Restriction digest 
Digestion of plasmid DNA or PCR-fragments with the appropriate restriction enzymes 

(Table 2.1) was performed in a final volume of 60 μl for 1-2 h at 37 °C, unless otherwise 

indicated. In most of the cases, two restriction enzymes were required to remove the 

sequence of an insert from the donor plasmid. Where possible, a reaction buffer was 

chosen which allowed for simultaneous usage of both enzymes at the same time (double 

digest). Shown below is such an example.  

 
1.  In a 0.5 ml microcentrifuge tube, add:  

3 μg cDNA  
6 μl 10 × buffer (NEB) 
2 µl Enzyme 1  
2 µl Enzyme 2 (if necessary) 
add sterile water to final total volume of 60 μl 
Mix well and centrifuge briefly. 

 
2.  Incubate at the recommended temperature (usually 37 °C) for 1-2 h.  
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In the rare cases where either the enzyme buffers or the incubation temperature for the 

two restriction enzymes were incompatible, sequential digests were run. Table 2.1 gives 

an overview of restriction enzymes used in the present work. 

Subsequent to restriction, agarose gel electrophoresis was used to separate the DNA-

fragments (details, see section 2.2.5). The DNA-fragment size standard used in all 

electrophoretic runs was the “O’GeneRuler 1 kb DNA Ladder from Fermentas (Figure 

2.1). After electrophoretic separation, the DNA bands of interest were extracted from the 

gel as described in section 2.2.6.  

 

 
Figure 2.1. O‘GeneRuler 1 kb DNA Ladder, ready to use (Fermentas). The ladder is 
composed of fourteen chromatography-purified individual DNA fragments (in base pairs): 
10000, 8000, 6000, 5000, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 750, 500, 250. It 
contains three high intensity reference bands of (6000, 3000 and 1000 bp) for a first 
orientation. 

 

2.2.4 Dephosphorylation of DNA 
In order to prevent recyclisation of linearized vector DNA, Calf Intestinal Alkaline 

Phosphatase (CIP) was applied, catalyzing the release of 5’- and 3’-phosphate groups of 

DNA. The protocol for dephosphorylation was as according to manufacturer's 

recommendation.  
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2.2.5 Agarose gel electrophoresis 
Agarose gel electrophoresis of DNA was performed to separate and to identify DNA 

fragments. Agarose gels were run in TAE buffer and were prepared by dissolving 1.0-2.0 

% agarose (w/v) and 0.005 % ethidium bromide (v/v) in 1 × TAE buffer (Roth). Samples 

containing an appropriate amount of DNA were mixed with 6 × DNA Loading Dye 

(Fermentas) prior to sample application. Gels were run at 60 V - 120 V for a time period 

sufficiently long to allow for complete separation of DNA fragments. DNA bands were 

visualized by their fluorescence under excitation of the bound Ethidium bromide with UV 

light (312 nm).  
 

2.2.6 Purification of DNA fragments 
For the purification of DNA fragments after PCR amplification or after digestion with 

restriction endonucleases, the NucleoSpin Extract II-kit (Macherey and Nagel) was used, 

according to the manufacturer's manual. 

 

2.2.7 Ligation of DNA fragments 
Linearized vector DNA and PCR-derived DNA fragments were prepared as described 

above and were ligated using the Quick Ligation Kit (NEB). In accordance with the 

manufacturer's protocol, 50 ng of vector DNA were used in each ligation reaction, 

whereby the molar ratio  of vector-to-insert was set to 1:3. The volume was adjusted to 10 

μl with ddH O.2  Afterwards, 10 μl of 2X Quick Ligation Buffer and 1μl of Quick T4 DNA 

Ligase were added. Subsequent to incubation of the reaction mixture for 10-15 min at 

room temperature, 10 μl of the ligation reaction were used to transform chemically 

competent E. coli DH5α cells (section 2.2.10). After transfection, the entire medium 

volume containing the bacteria was plated on agar plates containing the appropriate 

antibiotic. 
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2.2.8 Culture growth 
E. coli-cultures were cultivated over night in Luria Bertani (LB) medium at 37 °C and 

under vigorous shaking at 200 rpm. Here too, antibiotics provided appropriate selection 

conditions. The following final concentrations of antibiotics were used: Ampicillin, 100 

µg/ml; Kanamycin, 50 µg/ml.  

 
LB Medium 
Casein peptone (tryptic) 1.0 % (w/v)  
Yeast extract   0.5 % (w/v) and  
NaCl   1.0 % (w/v)  
Agar plates additionally contained 1.5 % (w/v) Agar-Agar (Roth). 

 
2.2.9 Preparation of chemically competent E. coli  
To prepare chemically competent E. coli, a small amount of the required E. coli strain was 

incubated over night in 2.5 ml SOB media at 37 °C under vigorous shaking. The 

overnight culture was then transferred to 250 ml SOB media, resulting in a 1:100 dilution, 

and the flask was incubated on a platform shaker at 200 rpm at 37 °C until the bacterial 

culture reached an OD600 between 0.4 and 0.6. Cells were then pelleted in sterile 

centrifuge tubes by centrifugation at 2,500 x g for 10 min at 4 °C, the supernatant was 

decanted and the cell pellet was gently resuspended in 20 ml of ice-cold standard 

transformation buffer (TFB). After subsequent incubation of the resuspended cells on ice 

for 10 min a second centrifugation step followed at 2,500 x g for 10 minutes at 4 °C. The 

resultant cell pellet again was gently resuspended in 20 ml of ice-cold TFB. After addition 

of 1.4 ml of DMSO cells were further incubated on ice for 10 min and 200 µl aliquots 

were prepared and stored at -80 °C. 

 
SOB medium  
Casein peptone (tryptic)  2 % (w/v) 
Yeast extract   0.5 % (w/v) 
KCl   2.5 mM 
NaCl   10 mM 
MgSO4   10 mM 
MgCl2   10 mM 
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TFB buffer   
Hepes  10 mM 
CaCl2  15 mM 
KCl   30 mM 
MnCl2 55 mM 
(pH 6.7 titrated with acetic acid) 
 
 

2.2.10 Transformation of chemically competent E. coli 
For the transfer of DNA plasmids into chemically competent E. coli, the bacteria were 

thawed by incubating them on ice for ~14 min. In all cases where DNA from plasmid 

preparations was to be transferred, 200 μl of thawed E. coli cells were mixed with 100 ng 

of plasmid DNA which was prepared as described in section 2.2.7. When DNA from 

ligation reactions was used for transfection, 12 μl of the ligation reaction mixture were 

combined with 200 μl of thawed, chemically competent E. coli. The bacteria were then 

incubated on ice for 30 min. In order to provide the heat shock required for transfection, 

the microcentrifuge tube containing the bacteria was submerged into 42 °C warm water 

for 45 sec. and was afterwards placed on ice for 2 min. After the addition of 500 μl SOC 

medium, the cells were incubated for 60 min at 37 °C and 200 rpm. Then, a volume of 

200 μl to 500 μl of the SOC medium containing the bacteria was plated per agar plate 

(containing the appropriate antibiotic) and the plates were incubated overnight at 37 °C. 

 

SOC medium  
Casein peptone (tryptic)  2 % (w/v) 
Yeast extract   0.5 % (w/v) 
KCl   2.5 mM 
NaCl   10 mM 
MgSO4   10 mM 
MgCl2   10 mM 
Glucose  20 mM 
 

SOC medium was prepared without addition of Glucose and autoclaved at 121 °C for 20 

min. Immediately before use, a volume of 20 ml/l of a 1 M glucose-solution was added to 

achieve a final glucose concentration of 20 mM. pH adjustment was not necessary, since 

in repeated measurements and the pH ranged between 6.8 to 7.0. 
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2.2.11 Preparation of plasmid DNA 
After transformation and overnight growth of the bacteria streaked on agar plates, single 

colonies were picked and were grown in LB medium containing the appropriate antibiotic 

for 8~12 hours at 37 °C. Plasmid DNA was isolated from these cultures using the 

peqGOLD Plasmid Miniprep Kit I (Peqlab), which is based on the commonly used 

alkaline lysis method (Sambrook and Russell, 2001). 

 

2.2.12 Restriction digests 
All newly created constructs were subjected to restriction analysis to verify presence and 

correct orientation of the cloned insert. The protocol shown below gives a representative 

example of a diagnostic restriction digest. 

 
1.  In a 0.5 ml microcentrifuge tube, add:  

3 μl DNA (eluate) 
2 μl 10 × buffer  
0.5 µl Enzyme 1  
0.5 µl Enzyme 2  
add sterile water to final total volume of 20 μl 
Mix well and centrifuge briefly. 

 
2. Incubate at the recommended temperature (depending on the enzyme used, usually      

37 °C) for 10-20 min.  

 

Upon digestion, the DNA fragments in the reaction mixture were fractionated 

electrophoretically using 1-2 % agarose gels. The DNA band pattern was recorded by 

taking digital images. The DNA was visualized via fluorescence excitation by 

illumination with UV light (312 nm). The “O’GeneRuler™ 1 kb DNA Ladder, ready to 

use” was applied as a size standard (Figure 2.1).  

 

In addition to restriction analysis, a further control for all new constructs containing a 

fluorescent protein sequence was to express them in tsA-201 cells and to check for 

presence of fluorescence (see section 2.4.1). In doubly labelled α1S constructs, co-

localization of CyPet and YPet fluorescence, as well as the exclusive association with an 

intracellular network (α1S expressed in tsA-201 is associated with the ER) confirmed the 

integrity of the protein. In these controls, tsA-201 cells were examined 24 h after 

transfection using the FV1000 confocal laser-scanning microscope (Olympus) 
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2.2.13 Determination of DNA concentration in aqueous solution 
DNA concentrations were determined spectrophotometrically  by measuring the 

absorption at 260 nm (A260 = 1.0 corresponds to 50 μg/ml ds DNA) and by correcting for 

the dilution factor (usually 1:50 in ddH2O) .The purity of the preparation was evaluated 

by the absorption ratio of A260/A280 (Sambrook et al. 1989). Only DNA preparations 

with absorption ratios >1.8 were used for the experiments. 

 

 
 
2.3 Generation of cDNA constructs for cellular expression 
Figure 2.2 shows cartoons of the doubly tagged α1S constructs used in this study. The 

constructs contain the FRET partners CyPet and YPet at defined sites within the protein 

sequence.  

 

2.3.1 Generation of fluorescent protein vectors 
pCyPet-C1, pYPet-C1, pCyPet-N1, pYPet-N1 Mammalian expression plasmids encoding 

the ‘Cyan / Yellow fluorescent Protein for energy transfer’ (CyPet & YPet, respectively) 

(Nguyen & Daugherty 2005) served as templates and were kindly provided by Dr. Patrick 

S. Daugherty, University of California, Santa Barbara.  

First, flanking recognition sites for AgeI (5’) and BglII (3’) were added to the coding 

sequences of CyPet and YPet by standard PCR using the following primers. For both, 

CyPet and YPet the same forward primer was used, (fw) 5’-CTG CAG TCG ACG GTA 

CC-3’. The reverse primer (rev) for CyPet was 5’-CGA GAT CTT TTG TAC AGT TCG 

TCC ATG C-3’ and rev for YPet was 5’-CGA GAT CTC TTA TAG AGC TCG TTC 

ATG C-3’. The AgeI-BglII fragment was ligated into BglII treated pECFP-C1 (Clontech, 

Palo Alto, CA; Figure 2.3) to create the vectors pCyPet-C1 and pYPet-C1. 

To receive pCyPet-N1 and pYPet-N1, both having a TAA stop codon right behind the 

triplet encoding the terminal residue K239, flanking recognition sites for AgeI (5’) and NotI 

(3’) were added to the coding sequences of CyPet and YPet using PCR with the following 

primers. The same forward primer was used for both CyPet and YPet, (fw) 5’-CTG CAG 

TCG ACG GTA CC-3’. For CyPet, (rev) was 5’-GTG CGG CCG CTT ATT TGT ACA 

GTT CGT CCA TGC-3’ and for YPet (rev) was 5’-GTG CGG CCG CTT ACT TAT 
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AGA GCT CGT TCA TGC -3’. Upon digest of the PCR products with AgeI and NotI to 

produce overhangs, the fragments were ligated into AgeI / NotI digested pECFP-N1 

(Clontech, Palo Alto, CA) to create the vectors pCyPet-N1 and pYPet-N1. 

 

 

 
Figure 2.2. Schematic illustration of the CyPet- and YPet-tagged α1S FRET constructs. 
The numbers refer to the insertion position within the rabbit α1S amino acid sequence 
(GenBankTM number M23919). Insertion sites for CyPet are represented by cyan ovals, those 
for YPet by yellow ovals. Tag combinations of the different α1S FRET constructs are (A) the N- 
and the C-terminus (YPet-α1S-CyPet), (B) the I-II loop and the C-terminus, (C) the II-III loop and 
the C-terminus , (D) the N-terminus and the I-II loop, (E) the N-terminus and the II-III loop, and 
(F) the I-II loop and the II-III loop; N: amino-terminus, C: carboxyl-terminus. 
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Figure 2.3. pECFP-C1 & pECFP-N1. Restriction maps and multiple cloning sites (MCS) of 
pECFP-C1 and pECFP-N1 (Clontech, Palo Alto, CA). 

 

2.3.2 Generation of fluorescently tagged rabbit skeletal muscle α1S  

2.3.2.1 N-terminal labelled α1S

CyPet- / YPet-α1S (XPet-α1S) 

The coding sequence for rabbit skeletal muscle α1S (GenBankTM number M23919) was 

excised from its original vector (Grabner et al. 1998) using a SalI site immediately before 

the ATG start codon and a SalI site at nucleotide 5581 (immediately after amino acid 

Q1860 of α1S, where 1,873 is full-length), and was inserted into the multiple cloning site of 

the SalI-digested pEYFP-C1 (or pEYFPN1) to create the N-terminally labelled fusion 

protein YFP-α1S (Papadopoulos et al. 2004). To transfer the α1S sequence into the CyPet 

and YPet expressions plasmids, the SalI-SalI fragment was excised from YFP-α1S and the 

α1S encoding sequence was inserted into the multiple cloning site of SalI-digested 

pCyPet-C1 (or pYPet-C1). The constructs manufactured this way were the N-terminally 

labelled fusion proteins CyPet-α1S and YPet-α1S.  
 

 

2.3.2.2 C-terminally labelled α1S 

Figure 2.4 gives a schematic overview of the three different, C-terminally labelled α1S 

constructs used in this study. Three cDNA sequences, encoding α1S subunits differing in 
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length with respect to the number of carboxyl-terminal residues (i.e. ending at residue 

Q1860 / A1666 / E1636, respectively) were ligated to the N-terminal site of the CyPet / YPet 

sequence as follows.  

 

α1S(longC)-CyPet and α1S(longC)-YPet 

To yield α1S(longC)-CyPet /-YPet, the SalI-SalI fragment of YPet-α1S containing the α1S 

coding sequence was inserted into the multiple cloning site of the SalI-digested pCyPet-

N1 (or pYPet-N1), resulting in the creation of the C-terminally labelled fusion proteins 

α1S(longC)-CyPet and α1S(longC)-YPet. The introduced C-terminal SalI site erased the 

TGA stop codon of α1S wild-type sequence while allowing in-frame ligation into the 

pCyPet-N1 or pYPet-N1 expression plasmid. At the protein level, a 12 residue linker 

(STVPRARDPPVAT), resulting from translation of the mcs region, separated the two 

proteins.  

 

 
Figure 2.4. Different α1S C-terminus variants. Schematic representation of the full-length 
(1,873 amino acids) DHPR α1S subunit (top) and overview of the C-terminal amino-acid 
sequences (single letter code, numbers refer to the full-length protein, GenBankTM number 
M23919) of the three different C-term variants used in this study: α1S(longC), top, α1S(1666), 
middle, and α1S(1636), bottom. The α1S residues distal to position 1620 are listed here for 
every construct. For better orientation, every tenth residue is indicated by a plus sign, 
residues belonging to the channel are shown in bold, linker residues are shown in regular font. 
The elliptic figures mark the positions of the C-terminally attached fluorophore, in this case 
YPet. The black arrow indicates the last residue (N1662) of the endogenously truncated 
channel (Beam et al., 1992). According to Hulme et al. (2005), A1664 (red arrow and scissors) 
is the final amino acid residue of the in vivo truncated form of α1S. The conserved PEST motif 
(cyan rectangle) is located 27 AA upstream of A1664 and is believed to serve as recognition 
site for calpain-like proteases, which are thought to be responsible for in vivo proteolytic 
cleavage of CaV1 channels (Hulme et al. 2005). IQ indicates the IQ motif (K1522-Q1540). 
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α1S(1666)- CyPet and α1S(1666)-YPet  

To obtain a plasmid for expression of fluorescently labelled α1S with moderate C-terminal 

truncation, α1S(1666), a second KpnI site was introduced into sequence of α1S(long C)-

YFP by site directed mutagenesis, altering the wild-type α1S sequence from 
4999AATGTTGCC to 4999AAGGTACC. Digestion with KpnI then removed the cDNA 

encoding the α1S residues distal to residue 1666. Upon this excision, the plasmid was re-

ligated, yielding the expression plasmid (α1S(shortC)-YFP) (Papadopoulos et al. 2004). 

The YFP sequence was then replaced by the CyPet / YPet sequence by cutting the 

plasmids α1S(1666)-YFP and CyPet-N1 (or YPet-N1) with AgeI and MfeI, and ligating the 

fragment containing α1S(1-1666) to the one carrying the CyPet-N1 (YPet-N1) sequence, 

giving α1S(1666)-CyPet / -YPet. In the corresponding proteins, α1S was attached to the 

dyes via a 12-residue linker (amino acid sequence KVPRARDPPVAT). 

 

α1S(1636)-CyPet and α1S(1636)-YPet  

To label the C-terminus of α1S right behind glutamic acid 1636, an AgeI site was 

introduced at the corresponding region, changing the wild-type α1S sequence 
4905GGAAGAGCTT to 4905GGAACCGGTT. The primers used for this maneuver were 

AgeI (fw) 5’-GCT GAG ATA GAA ATG GAA CCG GTT GAG TCG CCT G-3’ and 

AgeI (rev) 5’-CAG GCG ACT CAA CCG GTT CCA TTT CTA TCT CAG C-3’. After 

digestion with AgeI and MfeI to remove the sequence encoding the α1S part distal to 1636, 

the plasmid was ligated to the 0.8 kb AgeI-MfeI fragment of pCyPet-N1 (or pYPet-N1), 

creating the α1S-(1636)-CyPet /-YPet expression vector. 

 

YPet-α1S(1636)-CyPet / CyPet-α1S(1636)-YPet 

To generate doubly labelled α1S, the constructs described above, α1S-(1636)-CyPet (or 

α1S-(1636)-YPet),were opened with NdeI and SacII immediately 5' to the α1S cDNA and 

were ligated with the 1.2 kb NdeI-SacII fragment excised from YPet-α1S (or CyPet-α1S; 

see section 2.3.2.1) . 
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2.3.2.3 Insertion of CyPet or YPet into cytoplasmic α1S loops  

Intercalative incorporation of the CyPet and YPet sequence at defined α1S positions was 

performed after generation of appropriate restriction sites using silent site directed 

mutagenesis. In addition, two expression plasmids were used here, which had been 

generated in a previous study (Papadopoulos et al. 2004). These were,α1S(domainI–II)-

CFP-YFP and α1S(domainIII-IV), which encode α1S repeats I & II, and III & IV, 

respectively. A third expression plasmid was generated, which encoded domains II and III 

(α1S(domainII-III)), by first introducing into the α1S sequence flanking recognition sites 

for AgeI (including an ATG codon, 5’) immediately before the sequence encoding 

Domain II, and for KpnI (including a TAG stop codon, 3’) at nucleotide 3195 

(immediately after I1065 of α1S). In this procedure, a PRECISOR PCR protocol was used, 

with the primers being (fw) 5’-GCA CCG GTT ATG GTC TTC TAC TGG CTG GTC 

ATC CTG-3’ and (rev) 5’-CCT GGG TAC CCT AGA TGA CAA AGC CCA CAA AGA 

TGT TC-3’. The AgeI-KpnI fragment, containing the coding sequence for domains II and 

III of α1S, was ligated to the CyPet-C1 vector that had been opened with the same 

restriction enzymes. In doing so, the CyPet sequence was replaced by the PCR fragment. 

Figure 2.5 illustrates the cloning procedure for the introduction of CyPet or YPet into 

defined cytoplasmic α1S loops. The three two-domain expression plasmids (i.e., 

α1S(domainI–II)-CFP-YFP, α1S(domainII-III), and α1S(domainIII-IV), Figure 2.5 A-C top 

left) served as a starting point for the additional insertion of CyPet and / or YPet into 

cytoplasmic loops. First, single recognition sites were introduced into the two domain α1S 

constructs mentioned above, at sequence regions corresponding to cytoplasmic α1S 

domains (PmeI or AclI for the I-II-loop, SpeI for the II-III-loop and AscI for the III-IV-

loop; Figure 2.5 A-C top right). Corresponding recognition sites were then also added to 

the ends of CyPet and / or YPet cDNA by standard PCR, and after digestion to generate 

sticky ends the fragments were placed into the introduced restriction sites within the α1S 

sequence (Figure 2.5 A-C middle left). The α1S sequence of the recipient vector 

encompassing the inserted dye sequence was then excised via cut at two flanking 

recognition sites (XcmI for the I-II-loop, BlpI for the II-III-loop, and PmlI for the III-IV-

loop, Figure 2.5 A-C middle right), and these fragments were ligated into the 

corresponding recipient α1S expression vectors which had been opened either                        
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Figure 2.5. Introducing YPet or CyPet into the α1S I-II loop (A), II-III loop (B) and III-IV 
loop (C). Schematic overview of the output vectors for the construction of α1S constructs with 
FRET partners located at defined cytoplasmic domains, see text for details. 

C 

A B
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with XcmI, BlpI, or PmlI. In cases in which these recipient vectors already contained the 

sequence of the FRET partner at a different position, this procedure resulted in generation 

of the complete construct for FRET measurements (Figure 2.5 A-C bottom). Using this 

modular way of cloning, fluorophores were introduced into following α1S positions: 

within I-II loop, at residue 350 or 406; within II-III loop, at residue 727; within III-IV 

loop, at residue 1096 (Figure 2.6).  

 

 

 
 

 
Figure 2.6 Location of the introduction sites for YPet and CyPet within cytoplasmic α1S 
domains. The amino-acid sequence (single letter code, primary structure) of the α1S (A) I-II 
loop, (B) III-IV loop, and (C) II-III loop, including their sub-domains, are shown. The sites of 
fluorophore insertion are shown for YPet, but were indentical for introduction of CyPet.  
MH: malignant hyperthermia. 

C 

A B
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2.3.2.4 Generation of ‘no-FRET’ control constructs  

Three different CyPet- & YPet-tagged tandem-α1S constructs (Figure 2.7) served as                   

‘no-FRET’ control constructs. In these, the fluorescent tags were far enough from each 

other to exclude the occurrence of significant energy transfer. 

 

Figure 2.7. Schemes of doubly tagged α1S tandem constructs serving as ‘no-FRET’ 
controls. Sites of attachment of CyPet (cyan oval) and YPet (yellow oval) are indicated by 
numbers which refer to the amino acid residues of single α1S subunits. (A) CyPet-α1S(1636)-
YPet-α1S, (B) CyPet-α1S(1636)-α1S(1636)-YPet, (C) YPet-α1S(1636)-α1S(1636)-CyPet.  
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CyPet-α1S(1636)-YPet-α1S-long-C-term 

Both, YPet-α1S and CyPet-α1S, contain a unique AgeI restriction site N-terminally to the 

dye sequence. After introduction of an additional AgeI site into CyPet-α1S at nucleotide 

4907 (immediately behind E1636 of α1S, see section 2.3.2.2), and after digest with the 

product with AgeI, the fragment containing the CyPet-α1S(1636) sequence was ligated 5' 

to the YPet sequence of the YPet-α1S-vector after the latter had been opened with AgeI. 

 

CyPet-α1S(1636)-α1S(1636)-YPet / YPet-α1S(1636)-α1S(1636)-CyPet 

First, two recognition sites for AgeI (5’ and 3’), one immediately in front of the ATG start 

codon, the second at nucleotide 4907 (immediately behind E1636 of α1S, see section 

2.3.2.2), were added to the coding sequences of α1S by PRECISOR PCR using the 

primers (fw) 5’-GAA CCG GTC ATG GAG CCA TCC TCA CCC CAG-3’ and (rev) 5’-

CAG GCG ACT CAA CCG GTT CCA TTT CTA TCT CAG C-3’. After restriction with 

AgeI, the C-terminally shortened α1S sequence was ligated into the α1S(1636)-YPet vector 

that had been opened with AgeI 5' to the α1S sequence to create the C-terminally labelled 

tandem α1S(1636)-α1S(1636)-YPet. After digesting this tandem with SacII (an inherent, 

unique recognition site for this enzyme is present within every α1S), the fragment - 

comprising two incomplete α1S sequences - was ligated to CyPetα1S(1636)-YPet (or 

YPet-α1S(1636)-CyPet, see section 2.3.2.2) which had been opened with the same 

enzyme. The resulting plasmids encoded the N- and C-terminally labelled tandems CyPet-

α1S(1636)-α1S(1636)-YPet and YPet-α1S(1636)-α1S(1636)-CyPet. 

 

 
 
2.4 Cell culture & plasmid-DNA injection  
2.4.1 tsA-201 cell culture and transfection procedure 
Modified HEK-293 cells (tsA-201; ECACC, Salisbury, UK) were maintained in high 

glucose    (4.5 g/l) Dulbecco’s modified Eagle’s medium (DMEM) with 10 % fetal bovine 

serum in a humidified incubator with 5 % CO2 at 37 °C. One day before transfection, cells 

were seeded at a density of 2 × 105 cells in 35-mm glass bottom dishes (MatTek) and 

transiently transfected by GeneJuice Transfection Reagent at ~ 80 % confluency 

according to the manufacturer’s protocol. Twenty-four hours following transfection, 
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positively transfected cells were identified by blue are / or yellow fluorescence and 

documented using an Olympus FV1000 confocal laser-scanning microscope. 

 
tsA-201 cell maintaining medium (560 ml) 
500 ml DMEM high glucose   
50 ml Fetal Bovine Serum (FBS)   
5 ml 100 × Pen/Strep    
5 ml 200 mM L-Glutamine   

 

2.4.2 Primary skeletal muscle cell culture  

2.4.2.1 Mouse models  

Muscular dysgenesis (mdg) mice and dyspedic (dys) mice lack functional DHPR α1S 

subunit or RyR1, respectively (Tanabe et al. 1988; Takeshima et al. 1994b). Cultured 

muscle cells from homozygote newborns (see section 2.4.2.3) were used as expression 

systems for different cDNAs to allow for analysis of the DHPR - RyR1 interaction. 

Dysgenic mice are homozygous for a single nucleotide deletion (1297del) in the gene 

encoding CaV1.1 (skeletal muscle DHPR), resulting in an unstable mRNA and, thus, in 

minute amounts of a truncated, non-functional channel fragment (Chaudhari 1992). 

Dyspedic mice were generated via a targeted disruption of the gene encoding RyR1 

(Takeshima et al. 1994b; Buck et al. 1997). In skeletal muscle fibers and in cultured 

myotubes from both models there is a loss of EC coupling resulting in complete paralysis, 

as well as a substantial (in the case of dyspedics) or complete (in dysgenics) loss of L-

type Ca2+ current, as compared to myotubes of normal or heterozygous animals 

(Takeshima et al. 1994a; Takeshima et al. 1995; Avila & Dirksen 2000). Every time when 

a myotube culture was set up, it was checked whether the animals used for preparation 

were homozygous for either mutation (described in the following section).  

 

2.4.2.2 Genotyping 
Genotyping was conducted as follows: Short tail biopsies (~ 2 mm) were incubated in 

100μl alkaline lysis buffer (25 mM NaOH, 0.2 mM disodium EDTA, pH 12.0) for 30 min 

at 95 °C in a thermal block. Subsequently, samples were cooled on ice and 100μl of 

neutralizing buffer (40 mM Tris-HCl, pH 5.0) were added. 5 µl of this solution, 

containing DNA extracted from the tissue, were used for the PCR reactions described 

below (Truett et al. 2000). 
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PCR to check for presence of the dysgenic genotype  
Genotyping by PCR (amplification product 271 bp) using (fw): 5’-GGC ATG CAG ATG 

TTC GGG AAG ATC-3’; and (rev): 5’-GCA GCT TTC CAC TCA GGA GGG ATC 

CAG TGT-3’ was followed by digestion with EarI and electrophoresis on an agarose gel 

(2 %). A PCR fragment amplified from wild-type genomic DNA has an EarI site (result 

171 and 100 bp) whereas the mutated allele does not have a EarI recognition sequence. 

 

PCR to check for presence of the dyspedic genotype  
Specific pairs of primers enabling the distinction between wild type, heterozygous, and 

homozygous mice were used in the same reaction set. Primer pair norm tail ((fw) 5’-GGA 

CTG GCA AGA GGA CCG GAG C-3’; (rev) 5’-GGA AGC CAG GGC TGC AGG TGA 

GC-3’) amplifying 400 bp, indicative of the wild type allele, and primer pair dyspedic tail 

((fw) 5’-GGA CTG GCA AGA GGA CCG GAG C-3’; (rev) 5’-CCT GAA GAA CGA 

GAT CAG CAG CCT CTG TCC C-3’), amplifying a 300 bp fragment of the mutant 

allele. Heterozygous DNA produces both sizes of fragments. 

 
Mice tailing PCR mixture protocol (dysgenics & dyspedics) 
31.75 μl ddH2O     
5 μl template DNA  
10 µl Crimson Taq Reaction Buffer (5 ×) 
1 μl dNTP mix   
1 μl Primer skmouse_fw  (25 µM)   
1 μl Primer mdgII_rev  (25 µM) 
0.25 μl Crimson Taq DNA polymerase 
 
PCR protocol dysgenics 
Initial denaturation  95 ºC for 2:00 
Denaturation  95 ºC for 0:30  
Annealing  60 ºC for 0:45     35 × 
Elongation  72 ºC for 0:50  
Final elongation  72 ºC for 7:00 
Cooling  4 ºC for ∞ 
 
PCR protocol dyspedics 
Initial denaturation  94 ºC for 5:00 
Denaturation  94 ºC for 0:40  
Annealing  60 ºC for 0:30     29 × 
Elongation  72 ºC for 0:30  
Final elongation  72 ºC for 5:00 
Cooling  4 ºC  for ∞ 
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2.4.2.3 Preparation of primary skeletal muscle cultures 

Primary cultures of dysgenic (no α1S; mice kindly provided by Dr. Flucher, University of 

Innsbruck, Austria), dyspedic (no RyR1; mice kindly provided by Dr. Sorrentino, 

University of Siena, Italy) or wildtype (wt) skeletal muscle were prepared either from of 

late-term foetal mice or from newborn mice (Beam & Franzini-Armstrong 1997). Muscle 

material was excised from the shoulders and the fore- and hindlimbs and was minced in 

Ca2+ / Mg2+-free (CMF) Ringer’s solution. After replacing the CMF Ringer by warmed 

(37 °C) CMF Ringer containing trypsin and DNase the muscles were incubated at 37 °C 

with gentle agitation (80 rpm, 30 minutes for dysgenics / wt and 20 minutes for 

dyspedics). To reduce the trypsin concentration, primary muscle plating medium was 

added to the cell trypsin mixture. The tissue was dispersed by trituration and was 

centrifuged (1,000 g) for 7 min. The supernatant was gently removed while the digested 

tissue remained at the bottom of the tube. The tissue was then redispersed by trituration 

and was filtered through nylon cell strainers (70 µm and 40 µm, consecutively). The 

singularized cells in the flow through were plated onto a 10 cm sterile plastic petri dish 

and incubated for 2 h at 37 °C. This preplating step led to considerable enrichment in the 

fraction of muscle cells because it allowed the fibroblasts to adhere to the dish while the 

muscle cells developed considerably less adherence during this time. After attachment of 

the fibroblasts, the dish was swirled gently, the solution was transferred to a new dish and 

the preplating step was repeated. The supernatant was then centrifuged (1,000 g for 7 

min) and the cell pellet was resuspended in plating medium. The cells were seeded at a 

density of 2 × 104 cells, initially by placing  a drop of 300 µl plating medium in the center 

of an entactin-collagen IV-laminin (ECL) cell attachment matrix coated, 35-mm glass 

bottom dish (MatTek) in a humidified incubator at 37 °C and 5 % CO2. After 4-5 h, an 

additional amount of 2 ml plating medium was added and the myoblasts were allowed to 

proliferate for a period of 5-7 days during which fresh medium was added daily. Then, the 

plating medium was replaced by differentiation medium, which resulted in the initiation 

of cell fusion and in formation of myotubes.  
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Primary Muscle Plating Medium (250 ml) 
186.25 ml DMEM high glucose   
6.25 ml 1M HEPES 
25 ml Fetal Bovine Serum (FBS)   
25 ml Horse Serum (HS)     
2.5 ml 100 × Pen/Strep    
5 ml 200 mM L-Glutamine    
 
Differentiation Medium (250 ml) 
231.25 ml DMEM high glucose 
6.25 ml 1M HEPES 
5 ml Horse Serum 
2.5 ml 100 × Pen/Strep 
5 ml 200 mM L-Glutamine  
 
CMF Ringer’s solution   
NaCl   156 mM 
KCl   5 mM 
HEPES  10 mM 
Glucose  11 mM 
pH was adjusted to 7.4 with NaOH 
  
Entactin-Collagen IV-laminin (ECL) Cell attachment Matrix 
55 ml DMEM high glucose 
5 ml ECL (Millipore) 

CMF Ringer’s solution (0.3 % Trypsin / 0.01 % DNase) 
100 ml 1X CMF Ringer’s solution 
300 mg Trypsin 
10 mg DNase 
 

2.4.3 Transfection of myotubes via intranuclear plasmid-DNA microinjection  
Upon formation of myotubes, the multinucleated cells were transfected by intranuclear 

pressure-microinjection of solutions containing the expression plasmid(s) for FRET 

measurements. The DNA concentration of the injection solution was 80 to 100 ng/µl 

water. Fluorescent myotubes were examined 24-48 h after cDNA microinjection using a 

Fluo View 1000 confocal laser-scanning microscope (Olympus).  
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2.5 Electrophysiology 
2.5.1 Electrically evoked contractions 
To test for the occurrence of contractions, the differentiation medium was replaced by a 

solution with defined Ca2+ concentration (HEPES buffered Rodent Ringer, composition 

listed below). Contractions were elicited by stimuli of 30 ms duration at 80 V, applied via 

an extracellular pipette filled with 150 mM NaCl and placed near the myotube of interest 

(Tanabe et al. 1988). A standard silver chloride (AgCl) agar bridge (3 M KCl) served as 

reference electrode. Contractions were assayed by the movement of an identifiable 

portion of a myotube across the visual field.  

 

Rodent Ringer’s solution 
NaCl   146 mM  
KCl   5 mM 
CaCl2   2 mM  
MgCl2   1 mM 
HEPES  10 mM 
Glucose  11 mM  
pH was adjusted to 7.4 with NaOH 
 

 

2.5.2 Measurement of L-type Ca2+ currents  
These experiments were carried out in cooperation with Prof. Dr. Kurt G. Beam & Dr. 

Joshua D. Ohrtman, University of Colorado Health Sciences Center. Whole-cell voltage 

clamp (Hamill et al. 1981) was used to record macroscopic Ca2+ currents. Borosilicate 

glass pipettes (WPI) were polished to a final resistance of approximately 2.0-3.0 MΩ and 

filled with internal solution (listed below). Replacement of the external solution happened 

by perfusing the recording chamber with 20 ml of the new solution at a rate of 6 ml min-1. 

Test currents were elicited by rectangular test potentials applied from a -80 mV holding 

potential. Whole-cell voltage clamp traces were recorded from dysgenic myotubes 

expressing different α1S constructs. 

 
Internal solution 
CsAsp   140 mM  
MgCl2   5 mM  
Cs2EGTA  10 mM  
HEPES   10 mM 
pH 7.4 with CsOH 
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External solution  
CaCl2  10 mM or 
BaCl2  10 mM  
TEACl 145 mM 
HEPES  10 mM 
pH 7.4 with TEAOH 
 
 
 
 
2.6 Confocal laser-scanning microscopy  
24-48 hrs after microinjection, culture dishes were mounted on the stage of an inverted 

microscope which is part of a confocal system (Olympus FluoView 1000). The myotubes 

were checked for expression of fluorescence, for proper targeting of the tagged channel 

protein, and for the presence and the intensity of FRET (as detailed in section 2.7) under 

oil immersion at 60 ×, NA = 1.35. The confocal system was operated via the Olympus 

‘FV10-ASW 1.7’ software package. The confocal approach, by making use of an axially 

located pinhole in the image plane in front of the detector, allowed for elimination of out-

of-focus light and for the exclusive observation of DHPR-associated fluorescent foci, at or 

very close to the surface of the myotubes. The latter localization documented proper 

targeting of the expressed construct(s) to the junctional SR / t-tubule connections (Figure 

2.1, Results), whereas diffuse or exclusively intracellular fluorescence indicated 

deficiency in this process. In a typical laser scan for image acquisition, the fluorescence 

emitted from a defined spot of the myotube surface was detected by the two 

photomultiplier tubes (i.e. donor and acceptor channel, respectively) and was recorded 

under the same excitation and emission settings (laser intensity, photomultiplier gain, 

pinhole, averaging) for every myotube. CyPet and YPet (Table 2.3) were excited using a 

440 nm diode laser (Figure 2.8) and 515 nm argon laser line, respectively, directed to the 

cell via a 458/515 nm dichroic mirror. The optical path diagram through the dichroic 

mirrors, excitation and emission filters for FRET are shown in Figure 2.9. The emitted 

fluorescence was split via a SDM510 nm long-pass emission beamsplitter and directed to 

separate photomultipliers (PMT). The bulk of CyPet related fluorescence reached the 

PMT after passing a 465-495 nm bandpass filter (PMT2 - donor channel, ICY) while most 

of the YPet fluorescence intensity reached the photomultiplier after passing a 535-565 nm 

bandpass filter (PMT3 - acceptor channel, IY). Since some CyPet emission also occurs in 
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the higher wavelength range, it contributed to the signal measured for YPet. Accordingly, 

the PMT3 signal was corrected for this contribution by CyPet (IY,CY). IY,CY was 

determined upon expression of constructs tagged solely with CyPet (e.g., CyPet-α1S) and 

was found to amount to 28 % of ICY (IY,CY / ICY = 0.28±0.02, n=25). The signal of PM3 

was corrected by applying IY-IY,CY. As a relative measure for the degree of energy transfer 

the ratio (IY-IY,CY) / ICY (or, briefly, IFRET) was used, being aware that every increase in 

“yellow” intensity (BA 535-565 nm signal) due to energy transfer leads to a decrease of 

 
Figure 2.8. Spectra of CyPet/YPet excitation and emission. Blue (440 nm) laser emission 
(blue arrow) almost exclusively excites the fluorescent protein variant CyPet (and to a small 
degree YPet, red arrow) and gives rise to emission of cyan fluorescence which is recorded 
after passing a BA465-495 nm band pass (PMT2, cyan shaded region, donor channel). Since 
some CyPet emission also occurs in the higher wavelength range, it will contribute (yellow 
shaded region top graph, acceptor channel) to the signal measured after passing a 535-565 
nm band bass (PMT3, yellow shaded regions). YPet does not emit in the 465-495 nm range. If 
the fluorescent protein variant YPet is in close proximity to CyPet, and if the spatial orientation 
of the fluorophores is favourable, part of the excitation energy will be transferred to and will 
excite YPet, which then becomes the fluorescence resonance energy transfer (FRET) 
acceptor. FRET related fluorescence results in changes of the intensity ratio acceptor channel 
/ donor channel (spectra are normalized to maximum excitation / emission values of 1).   
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ICY, resulting in a disproportionate increase of the calculated IFRET with increasing energy 

transfer (Figure 2.10).  

 

 

Figure 2.9. Optical path diagram. Light from the diode laser (440 nm, blue arrows) is 
directed to the objective via a 458/515 nm double dichroic mirror and focused on the 
specimen. Only the emitted fluorescence (neon green arrows) from the focus plane reaches 
the detector PMT, due to presence of a pinhole (PH) in front of the detector dichroics and 
band pass filters. Upon passing the pinhole, the emitted light is split via a SDM510 nm long-
pass emission beamsplitter: For CyPet related detection (greenish blue arrows) it is directed 
to a photomultiplier tube (donor channel, PMT 2) through a BA465-495 nm band pass filter 
(Chroma, Rockingham,VT) and for YPet-related detection (yellow arrows) it is directed to a 
photomultiplier tube (acceptor channel, PMT 3) through a BA535-565 nm band pass filter.  

 

Upon collection of the FRET data using excitation with the 440 nm line of the blue diode 

laser, an additional scan was run under exclusive excitation of YPet, to verify 

colocalization of CyPet and YPet fluorescence. This was of special importance when one 

of the tags involved the C terminus, where any occurrence of proteolytic cleavage would 

have led to fluorophore separation (discussed below). In the second scan, YPet was 

excited by the 515 nm argon laser, using the same, 458 / 515 nm, dichroic mirror. The 

emitted YPet fluorescence was directed to PMT3, after passing a 535-565 nm bandpass 

filter. This second scan at the same time served as an estimate for the degree of 

autofluorescence, which was sometimes observable under excitation with the 440 nm 

diode but which had to be removed from the overall signal in order to obtain the net 

CyPet emission. Autofluorescent myotube regions identified by this second scan were 

excluded from FRET calculations (see section 2.7.6). 
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Figure 2.10 FRET between CyPet and YPet. For monitoring protein conformational changes, 
the DHPR α1S subunit (not shown here) is labeled with two fluorescent molecules (CyPet and 
YPet) at two different cytoplasmic domains and excited at 440 nm. FRET critically depends on 
the distance (r, low nanometer range) between donor and acceptor. (A) When the distance 
between the two fluorophores is > 10 nm, only donor-related emission (cyan arrow) is detected 
upon exclusive donor excitation (yellow arrow). (B) When donor and acceptor are in close 
proximity (r < 10 nm), a certain portion of energy is transferred non-radiatively from CyPet to 
YPet (FRET). Consequently, the intensity of donor fluorescence will decrease, and the 
intensity of acceptor-related emission will increase. Accordingly, if a conformational change at 
the tagged part of a protein (e.g. α1S) occurs due to interaction with another protein (e.g. 
RyR1), which results in a change in the distance between donor and acceptor, a FRET change 
is observed.  
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2.7 Measurements of Fluorescence / Förster Resonance 
Energy Transfer (FRET) ratio 

 
As is the case with normal myotubes bathed in physiological saline, spontaneous 

contractions occurred in a large fraction of dysgenic myotubes expressing fluorescently 

labelled α1S constructs. Because the movements associated with such contractions would 

interfere with analysis of FRET, the contractile activity was eliminated by bathing the 

cells in CMF Ringer’s solution.  

 

2.7.1 Donor to acceptor stoichiometry 
FRET proofed a suitable tool for studying protein-protein interactions in living cells. 

However, an unknown stoichiometry between donor and acceptor molecules within a 

molecular complex will be an issue, regarding the calculation of FRET efficiency. This is 

because FRET efficiency is a function of how close acceptor and donor are, but also how 

many acceptors are near the donor (Lakowicz et al. 1999). Thus, the correct interpretation 

of FRET signals requires knowledge about the stoichiometry of the different fluorophores 

within the examined protein complexes. However, in the present study intramolecular 

(or, single-molecule) FRET analysis is conducted, with a molar CyPet:YPet ratio of 1, 

avoiding uncertainties due to unknown stoichiometry (assuming that FRET between the 

tagged DHPR's, intermolecular FRET, is negligible). Therefore, the FRET changes 

recorded here can be attributed to structural changes within one α1S subunit. This 

approach is therefore suitable to find out whether the tagged regions undergo 

conformational changes and are therefore putative parts of the DHPR-RyR1 interaction 

interface.  

 

2.7.2 Measurement of sensitized emission for the calculation of the degree of 
FRET  

 
A defined area of the myotube surface was selected from the field of view, which 

included the part of the myotube to be analyzed and also an adjacent, non-cellular region 

for measurement of background fluorescence. To measure FRET by sensitized emission, 

an almost exclusive excitation of the donor, CyPet, was conducted via the 440 nm diode 

laser line, operated at constantly 30 % laser intensity. Confocal fluorescence intensity data 

from the donor PMT channel (ICY) and the acceptor PMT channel (IY) were recorded as 
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tenfold average per pixel and digitized 12-bit. Further parameters as pinhole diameter, 

photomultiplier gain and offset were kept constant in the course of an experiment after 

they had been adjusted to keep maximum pixel intensities no more than 80 % saturated. 

The problem of donor bleaching was minimized by using very weak intensity at 440 nm 

excitation for adjusting the focus plane at or very close to the surface membrane. This 

way, even the repeated (up to 4 times) excitation of cells containing tagged proteins 

caused less than 1 % decline in fluorescence intensity. Figure 3.5 (see section Results) 

shows a typical example for recorded ICY and IY from a myotube expressing an α1S 

construct. 

 

2.7.3 Background correction 
For background correction, a region of interest (ROI) outside the myotube was chosen. 

The background correction toolbar of the Olympus software was then used to subtract a 

constant background intensity value from all pixel intensities in the image (Figure 2.11). 

The background correction was applied independently to both channels, because of 

different levels of autofluorescence in each channel. After correcting for the background, 

the Olympus software (Edit Experiment tool) was used to create intensity images of ICY 

and IY, as well as a third intensity distribution which was recorded by PMT3 while 

scanning with 515 nm excitation and 1-3 % laser intensity, to detect and to exclude from 

the ROI intracellular regions of co-localization between CyPet / YPet and cellular 

autofluorescence (as described in 2.7.4).  

 

 
Figure 2.11. Background correction and ROI definition. The background intensity is 
determined for every channel (PMT2, left and PMT3, right) by calculating of the average 
intensity within a region outside the myotube (e.g., within the green circle). The respective 
value is then subtracted from every pixel of the scan. For some pixels, this subtraction 
produces negative intensity values (blue pixels). The intensity for those pixels is set to zero. 
The red free hand form represents the region of interest for this example, containing the 
fluorescent foci used for calculating the degree of FRET. Bars represent 5 µm.  
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2.7.4 Detection of cellular autofluorescence  
Relatively short wavelengths like the 440 nm blue diode laser line used for CyPet 

excitation provoke significant amounts of cellular and extracellular autofluorescence. 

Longer wavelengths like the yellow 515 nm laser channel is far less prone to produce 

autofluorescence artefacts, and this fact was used to identify and exclude from the 

calculations signals emerging from unspecific excitation. To restrict the FRET calculation 

to fluorescent puncta representing junctionally targeted constructs, after conduction of the 

440 nm scan an additional scan at the same focus plane was conducted but this time under 

515 nm excitation. Fluorescent spots or regions which were present under 440 nm 

excitation but which were absent (or much weaker in intensity) under 515 nm excitation, 

most likely represented autofluorescence and were omitted from the regions used to 

calculate FRET. Figure 2.12 shows an example of application of the procedure to identify 

autofluorescence. In the figure, dots of cellular autofluorescence are marked by arrows, 

and are easily identified by observing the image captured using the 515 nm laser (in 

which they are not present). In essence, the fluorescence intensity ratio is calculated only 

for dots which are excited by both the 440 nm diode laser and the 515 nm argon laser. 

 
 
2.7.5 Calculation of the degree of FRET within fluorescent foci  

Correctly targeted constructs tagged with CyPet and YPet were visible as numerous, 

discrete foci localized at the cell surface. Therefore, the IFRET ratio had to be calculated 

only for pixels contained in these foci. For this purpose, the software package ‘F10-ASW 

1.7’ (Olympus) was used in combination with Excel 2003 (Microsoft). First, a ‘binary 

mask’ was defined for the two scans obtained under excitation with 440 nm. The masque 

assigned the pixels exceeding a defined intensity value - a threshold set by the user - the 

value of 1, whereas the other pixels were assigned zero (blue in Figure 2.13). In the next 

step, the pixels which had been assigned the value of 1 were transferred as two-

dimensional intensity matrix into an Excel spreadsheet (Figure 2.14). A self-made macro 

was then started, which calculated the ratio IY/ICY for every pixel assigned with the value 

of unity. More precisely, first, the macro summed up the intensities of the foci within the 

ROI, separately for the cyan and the yellow channel (ICY and IY, respectively). It then 

generated the average ratio IY/ICY for a given intensity cut-off, before increasing 
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Figure 2.12. Detection of cellular autofluorescence. Fluorescent dots (indicated by red 
arrows) which were present in both channels PMT2 (A) and PMT3 (B) recorded under 440 nm 
excitation but were absent when the same myotube was excited by the 515 nm argon laser 
(C). Bars represent 5 µm 

the cut-off value and proceeding to the next round of calculation. This procedure led to 

the successive omittance of more and more pixels with intensities below the new 

threshold for cut-off. For each calculation round, the ratio IY/ICY was generated by 

dividing the sum of pixel intensities in the acceptor channel by the sum of pixel intensities 

in the donor channel. It is important to note that the increments in the value for cut-off 

only led to a reduction in the number of pixels to be analysed, but did not change the 
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intensities of the pixels within the remaining foci (ROI pixels with values below the 

threshold for cut-off were assigned the value 0 in the mask and just dropped out of 

calculations, while the remaining pixels kept their initial values). In the process of 

increasing the cut-off, i.e., at a certain threshold, the mask did only contain pixels 

exclusively from fluorescent foci (Figure 2.13). This user-specified ‘threshold’ for the 

‘mask cut off’ value was determined separately for each myotube to be analysed (Figure 

2.15). Finally, the macro generated a graphical representation of IFRET plotted against  

increments of the applied intensity cut-off threshold (Figure 2.15). The reference channel 

chosen for creating the mask by increasing the cut-off threshold was the donor channel 

(ICY). This channel was chosen because the intensity distribution within fluorescent foci 

was more homogeneous than in the acceptor channel. Accordingly, the FRET ratio values 

produced using increasing ‘mask cut off’ values were more consistent with the donor 

channel as reference than with the acceptor channel.  

 

 
Figure 2.13. Defining a binary mask to measure FRET efficiencies exclusively within 
fluorescent foci. To measure the change in fluorescence intensity only within cell regions 
representing junctions, the LUT tool (Olympus software package F10-ASW 1.7) was used to 
determine a ‘mask cut off’ value for every ROI of the two PMT channels. At a certain value, at 
intensity 744 in this example (red circle in the LUT window) most of the low intensity regions 
are covered by the mask (left, blue), so that only the high-intensity pixels of fluorescent foci 
(left, gray spots within the ROI) contribute to the calculation of the FRET ratio. Bar represents 5 
µm.  

The IY/ICY ratios calculated in the macro procedure had to be corrected for the 

contribution of CyPet emission to the signal measured in the YPet channel (IY). This 

correction was straightforward because the degree of contamination of the YPet channel 

by CyPet emission was known from experiments where CyPet was expressed in the 

absence of YPet (see section 2.6).  
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Figure 2.14. Intensity profile & raw data. 3 dimensional representation of fluorescence 
intensity distribution within the ROI shown in Figure 2.13 (A). The peak intensities represent 
centres of fluorescent foci, which are visible correlates of junctions populated by the tagged 
DHPR. The intensity data of this matrix were saved as an excel file (B) which was used for 
calculations of the IY/ICY ratio for corresponding pixels from the two channels PMT2 and PMT3, 
as described in Figure 2.15. 

 

Figure 2.15. Generation of IFRET. A macro within the excel file generated graphs in which the 
ratio IFRET is plotted against a ‘mask cut off’ (for both channels). The macro summed up the 
pixel intensities within the ROI containing the fluorescent foci for both, the cyan and the yellow 
channel (ICY and IY, respectively) and generated their ratio IY/ICY. The effect of increasing the 
values for the mask cut off is that more and more low-intensity regions within the ROI are 
excluded from the calculation, thus biasing the influence of the high-intensity fluorescent 
puncta, which contain most of the tagged DHPR (and RyR1). When the values for the cut off 
become very high (> 1650 in this example), only a few, high intensity pixels remain for the 
calculation of the IY/ICY ratio and the results render unstable. In this example, the uncorrected 
ratio calculated for most cut off values lies between 0.95 and 1.0. 
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2.8 Statistical analysis 
 

To check for significant differences between the FRET ratios calculated for the condition 

± RyR1 for a particular construct, the unpaired t test function of the Sigma Plot software 

package, version 8.0, was used. As significant difference was regarded a p value < 0.001.  
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3. Results  

 

 

3.1 Tagged α  constructs restore EC coupling  1S

Because the central goal of the present work was to use sensitive FRET for probing the 

proximity of cytoplasmic α1S regions within the junctional membranes in the absence vs. 

in the presence of the RyR1 (which in the latter case means, within the functional EC 

coupling apparatus), it was important that the sites of tag incorporation met certain 

requirements. Specifically, it was important for at least some of these sites to be close to 

regions which might be involved in signaling interactions with RyR1, whereas others had 

to be placed into regions not expected to be involved in critical EC-coupling tasks and, 

thus, serve as controls. Furthermore, it was important that incorporation of the 

fluorophores did not interfere with the ability of α1S to target to the junctional membranes 

and to function as a voltage sensor for EC coupling. When N-terminally fluorescent 

protein-tagged DHPR α1S subunits (e.g., YPet-α1S) are expressed in cultured dysgenic 

myotubes, punctate foci are observed on the myotube surface (see Figure 3.1) (Grabner et 

al. 1998; Kasielke et al. 2003; Papadopoulos et al. 2004; Lorenzon et al. 2004; Kugler et 

al. 2004a; Kugler et al. 2004b; Bannister & Beam 2005). This distinct staining pattern in 

myotubes is believed to represent clusters of DHPRs within individual junctions because 

other known triadic proteins (e.g., RyR1, triadin) also are observed as punctuate foci that 

colocalize with the DHPR (Flucher et al. 1993; Protasi et al. 1998). Labelling of the        

N-terminus with a single fluorescent protein does not interfere with α1S targeting or EC-

coupling function (Grabner et al. 1998). Control experiments carried out in the present 

study upon expression of YPet-α1S in myotubes are in agreement with these previous 

findings, since the construct exhibited normal targeting efficiency (Figure 3.1) and 

electrophysiological function (Table 3.1). In addition to the N-terminus of α1S 

fluorophores were fused or inserted to other cytoplasmic positions, including the C-

terminus right behind A1666 or right behind E1636, within the I-II loop up- or downstream 

the AID, within the critical domain of the II-III loop, and within the short III-IV loop (see 

Figure 2.2 and Table 3.1). However, not all single tagged constructs were able to correctly 

target to junctions (Figure 3.2) and, thus, could not restore EC coupling (Table 3.1).  
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Figure 3.1. Location of DHPRs in junctions of myotubes. Two confocal scans, performed 
at different focus plane, depict the location of N-terminally YPet-labelled α  (YPet-α1S 1S) in a 
dysgenic myotube upon intranuclear transfection with respective expression plasmid. Discrete 
foci of fluorescence are present in these images, recorded with a FV1000 confocal laser-
scanning microscope (Olympus). The lines in the myotube cross section scheme (bottom) 
represent the focal planes of the scans, respectively. The red framed scan was run close to 
the surface (top) and the blue framed scan ran along central regions of the myotube, as is 
indicated by the two nuclei (n). In the optical sections close to the surface of the myotube, 
yellow fluorescence is present in discrete, irregularly shaped foci that were about 0.3 - 0.6 μm 
in size (indicated by arrows in central scan). Unlike differentiated fibers, myotubes lack a well 
developed t-tubular system and junctions are almost exclusively at the cell surface (arrows), 
as so called peripheral couplings. From a functional point of view, there is no difference 
between CRUs of differentiated muscle and those of multinucleated myotubes. Some 
fluorescent foci together with diffuse fluorescence were also present in the cell interior, 
probably representing channels on their way to their destination. Bars represent 5 µm.  

Table 3.1 and Figure 3.2 summarize the targeting and electrophysiological properties of 

constructs, carrying a single fluorophore tag at different relevant positions. Reference 

currents for the designated constructs expressed in dysgenic myotubes are shown from the 

recent literature. Most of the constructs displayed electrically evoked contractions.  
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Table 3.1. Schematic illustration of single tagged α1S constructs including their targeting 
and electrophysiological properties. Numbers refer to amino acid residues of α1S position of 
fluorophore insertion (see section 2.3, Materials and methods for construction details). The AID 
and critical domain of α1S are only indicated for constructs tagged within the corresponding loop. 
Contractions were evoked after cDNA expression in dysgenic myotubes by local, electrical 
stimulation (see section 2.5.1, Material and Methods). Reference currents for the designated 
constructs expressed in dysgenic myotubes from the current literature are shown. * in injected 
dysgenic myotubes, 1 construct should show L-type Ca2+ currents, not measured/quantified yet;       
2 injected dysgenic myotubes did not contract after stimulation; 3 no L-type currents expected due 
to targeting deficiency.  
 

Targeting in     

α  construct /  Evoked 
contractions / 

currents* 

Current trace /   

dyspedic 
myotubes 

 

dysgenic 
myotubes 

1S Spontaneous 
contractions* 

source /  
tagged domain construct name 
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In multiple attempts to generate a functional construct carrying a fluorescent tag within 

the α1S I-II loop two different fluorophore insertion positions were tested. These positions 

are located either upstream (between residues 350 and 351) or downstream (between 

residues 406 and 407) of the AID of α1S (Q357-E374, see Figure 2.6A). The AID is essential 

for β1A subunit interaction (Pragnell et al. 1994) and junctional targeting of α1 subunits 

(Neuhuber et al. 1998b; Papadopoulos et al. 2004; Leuranguer et al. 2006). Typical 

examples for targeting ability of these α1S constructs, tagged solely with YPet at different 

positions within the I-II loop, are shown in Figure 3.2 and Figure 3.3. Constructs with a 

single fluorophore inserted downstream the AID regularly produced a typical pattern of 

fluorescent foci on the myotube surface when expressed in dysgenic or dyspedic 

myotubes (Figure 3.3). The construct containing the fluorophore upstream the AID 

produced a similar pattern of fluorescence in dysgenic myotubes, but in dyspedic 

myotubes the fluorescence pattern was much more reticular (Figure 3.3). Insertion of the 

dye upstream the AID left a considerable part of α1S stuck within central regions of 

Figure 3.2. Targeting of single tagged α1S. Confocal images (scans, close to the surface) 
showing the distribution of single tagged α1S constructs upon their expression in dysgenic 
myotubes, respectively. Tag positions of the different α1S constructs are (A) the N-terminus, (B)  
the C-terminus at pos. 1636, (C) the I-II loop at pos. 350, (D) the I-II loop at pos. 406, (E) the II-
III loop at pos. 727, and (F) the III-IV loop at pos. 1096. Except for construct tagged within the 
III-IV loop (F) every singularly tagged α1S construct was concentrated at the cell surface, as is 
indicated by the localization of fluorescent puncta. Insertion of a fluorophore into the III-IV loop 
at pos. 1096 however, completely eliminated the targeting ability of α . Bars represent 5 μm. 1S
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dyspedic myotubes, probably at the sarcoplasmic reticulum. In contrast, insertion of XPet 

into the α1S I-II loop downstream the AID at pos. 406 did not significantly affect 

junctional targeting, β1A interaction with α1S in both myotube types, and EC coupling (no 

attempts were made to record currents for this single tagged construct in dysgenic 

myotubes, Table 3.1). Due to these observations the FRET experiments were performed 

with α1S constructs containing CyPet or YPet downstream the AID. In summary, insertion 

of CyPet or YPet into the α1S I-II loop may affect junctional targeting by interfering with 

α1S:β1A interaction at the AID. However, this can be overcome by labelling the I-II loop at 

the AID downstream position 406.  
 

 

Figure 3.3. Targeting deficiency of α1S with YPet inserted upstream the AID in dyspedic 
myotubes. Confocal images (scans, close to the surface) comparing the distribution of α1S 
tagged within the I-II loop either upstream (left) or downstream (right) the AID, expressed in 
dysgenic (top) or dyspedic (bottom) myotubes. Expressed in dysgenic myotubes, both 
constructs are localized in fluorescent puncta at the cell surface (A + B). Surface-associated 
puncta were barely observed after expression α1S containing YPet upstream the AID in 
dyspedic myotubes (C). In this cell type this construct rather displayed a cytoplasmic, mostly 
perinuclear, and reticular pattern. Insertion of fluorescent protein within the α1S I–II loop 
between residues 406 and 407 (downstream the AID) seems not to interfere with junctional 
targeting in dyspedic myotubes (D). Bars, 5 μm.  

 

There is general agreement that the II-III loop of the α1S subunit plays a key role in 

transmitting the EC coupling signal to RyR1. The importance of the DHPR α1S II–III loop 

in EC coupling has been demonstrated by a number of groups (Tanabe et al. 1990; Nakai 

et al. 1998; Grabner et al. 1999; Carbonneau et al. 2005). Bannister and co-workers 

(2009) gave a detailed report of the effects on EC coupling when one or two fluorescent 

proteins are inserted into various positions of the α1S II–III loop. On the basis of numerous 

previous studies, this loop appears to be a strong functional determinant for bidirectional 

coupling with RyR1. Thus, this loop is a desirable site for fluorescent labelling and FRET 

measurements. To create constructs labelled within the II-III loop, XPet was placed 
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between α1S residues 726 and 727 (Figure 2.6C), which is within the N-terminal portion 

of the "critical domain" (residues 720-765). This part of the II-III-loop was found to be 

indeed critical for bidirectional signaling with the RyR1 (Nakai et al. 1998; Grabner et al. 

1999). Constructs with a single inserted fluorophore at position 727, expressed in 

dysgenic or dyspedic myotubes, produced a typical pattern of fluorescent foci on the 

myotube surface (see Figure 3.2E). The functional consequences of fluorescent protein 

insertion between α1S residues 726 and 727 have been investigated extensively by 

Bannister et al. (2009, see trace in Table 3.1). Bidirectional coupling was partially ablated 

when a single YFP was inserted at this position. Here, spontaneous and evoked 

contractions were observed frequently in dysgenic myotubes expressing this construct 

(Table 3.1). In summary, insertion of a fluorescent protein within the α1S II–III loop 

between α1S residues 726 and 727 does not interfere with junctional targeting or channel 

function.  

The III-IV loop of α1S is relatively short, consisting of only 53 amino acids (Figure 2.6B). 

Consequently, XPet (239 amino acid long) was inserted into the center of this loop, to 

ensure the highest possible level of flexibility for the fluorophore. However, insertion of 

the fluorophore at a central position, right behind the 31st residue of the 53 amino acid 

long III-IV loop (see Figure 2.6B) completely abolished the targeting ability of α1S. A 

typical example of reticular fluorescence indicative of stuck α1S construct tagged with 

XPet within the III-IV loop is illustrated in Figure 3.2F. This observation applied to all 

constructs labelled in the III-IV loop in both dysgenic and dyspedic myotubes (Table 3.1 

and Table 3.2). The insertion of a dye within III-IV loop left α1S trapped in the 

biosynthetic pathway, most likely within the SR. Thus, inserting of XPet into α1S III-IV 

loop affects junctional targeting, probably by compromising its interaction with other α1S 

loops and/or other proteins of the cellular channel trafficking machinery.  

Functionality and targeting ability of α1S fluorescently labelled at the C-terminus was 

already demonstrated (Papadopoulos et al. 2004; Bannister & Beam 2005, see trace in 

Table 3.1). In the present study labelling of the C-terminus was carried out with some 

modifications. A fluorophore was attached to the C-terminus of α1S(1666) to generate the 

construct α hort1S(1666)-XPet (see Figure 2.4), in analogy to the construct α1Ss -CFP-YFP 

described in Papadopoulos et al. (2004). This variant terminates at α1S residue A1666 (the 

native coding sequence terminates at residue 1873) to avoid loss of the fluorescent tag due 

66 



                                         RESULTS 
 

to proteolytic cleavage within the α1S C-terminus. Papadopoulos et al. (2004) showed that 

truncation of the C-terminal to residue 1667 and adding two fluorophores did not alter the 

function of α1S as a Ca2+ channel or its targeting ability, thus, labelling at position 1666 

should not pose a problem regarding FRET studies. However, when expressed in dyspedic 

myotubes the α1S constructs carrying CyPet or YPet at position 1666 tended to lose the 

dye at the C-terminus (Figure 3.4). There, puncta of the C-terminal dye were largely 

absent from the periphery of the myotube and a diffuse to reticular cellular distribution of 

the fluorophore was present. This observation is in agreement with Hulme and co-workers 

(2005) who predicted that the carboxyl-terminus of α1S is subject to proteolytic cleavage 

at residue A1664 (see Figure 2.4). Considering this possibility an even shorter version of 

α1S was cloned which terminated at residue E1636. This variant did not contain A1664 or the 

PEST motif required for recognition of the cleavage site (Figure 2.4).  
 

  

Figure 3.4. Proteolytic cleavage of α1S(1666)-XPet in dyspedic myotubes. Confocal images 
(scans, close to the surface) comparing the distribution of an α1S construct carrying CyPet N-
terminally and YPet at the C-terminus at pos. 1666 expressed in (A) dysgenic and (B) dyspedic 
myotubes under specific excitation of each fluorophore (440 nm for CyPet, left; 515 nm for 
YPet, right). Expressed in dysgenic myotubes this construct localized in fluorescent puncta, 
which were concentrated at the cell surface. Fluorescent puncta of the C-terminally attached 
dye in dysgenic myotubes perfectly overlap with those of the second fluorophore, attached to 
the N-terminus (arrows in A). In dyspedic myotubes, the N-terminal fluorescent protein 
displayed the typical pattern of fluorescent foci on the myotube surface. In contrast, in these 
myotube type surface-associated puncta were barely observed under excitation of the 
fluorophore attached to the C-terminal (at pos. 1666; arrows in B), but the fluorescence showed 
a reticular intracellular pattern (red oval). Bars, 5 μm. 
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This way, proteolytic cleavage of the C-terminally attached dye at position 1636 

(construct α1S(1636)-XPet) could be averted in dysgenic and dyspedic myotubes (Figure 

3.2B & Figure 3.5). This further shortening, most importantly, did not alter the function of 

α1S as a Ca2+ channel or as voltage sensor for EC coupling since spontaneous and 

electrically evoked contractions could be observed regularly for dysgenic myotubes 

expressing this shortest C-terminal variant (see Table 3.1). Figure 3.5 illustrates a 

dysgenic and a dyspedic myotube that were injected with cDNA encoding the construct 

YPet-α1S(1636)-CyPet. In optical sections close to the surface of the myotubes, both the 

cyan and yellow fluorescence were present in discrete foci that were of typical size and 

distribution. Thus, the fluorescent foci observed for constructs labelled at position 1636 

very likely represent clusters of DHPRs at their normal location in both myotube types. 

The presence of such fluorescent foci in a dyspedic myotube is consistent with previous 

results which demonstrated that junctions are formed between the plasma membrane and 

the SR membrane in the absence of RyR1, and that DHPRs target to those junctions, 

proving that RyR1 is not absolutely required for α1S trafficking (Takekura & Franzini-

Armstrong 1999). To summarize this point, the present data show for the first time that 

truncation just upstream the PEST motif of the α1S C-terminus does not interfere with 

targeting and function of the DHPR. This raises questions concerning the physiological 

function of the α1S residues downstream E1636.  
 

 

Figure 3.5. Prevention of proteolytic cleavage of the fluorophore C-terminally attached at 
α1S position 1636. Discrete fluorescent foci are present in (A) dysgenic and (B) dyspedic 
myotubes expressing YPet-α1S(1636)-CyPet. Confocal images (scans, close to the surface) of 
cyan (Icy, left) and yellow (Iy, right) fluorescence (abundant fluorescent puncta, ~ 0.3-0.6 µm in 
diameter) are shown. Fluorescent puncta in dyspedic and dysgenic myotubes are very similar 
with respect to shape, size, and distribution. Bars, 5 μm.  
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Once the functionality of single-tag channels was established, the insertion of the 

respective FRET partner into α1S was carried out. These FRET constructs were also 

checked for targeting ability and influence on the functionality during the process of EC 

coupling. Only then, it could be tested whether the presence of RyR1 gave rise to 

conformational rearrangement of the cytoplasmic domains which could be detected as 

changes in FRET signals between CyPet and YPet. The targeting and electrophysiological 

properties of α1S constructs tagged with both, CyPet and YPet at different cytoplasmic 

domains, including the energy transfer ratios measured for the various constructs 

examined, are summarized in Table 3.2. Like for the single tagged constructs, α1S 

constructs tagged with CyPet- and YPet form functional Ca2+ channels, except for those 

which are tagged within the III-IV loop. Spontaneous as well as electrically evoked 

contractions were frequently observed in dysgenic myotubes expressing the α1S constructs 

generated for FRET measurements. This indicates that most of the tagged α1S subunits (1) 

were capable of successfully targeting to the junctions and (2) were functional in terms of 

EC-coupling. The α1S constructs used for FRET experiments in this study were tested for 

electrophysiological properties. Hereby, L-type Ca2+ currents were recorded with the 

whole-cell, voltage clamp mode of the patch-clamp technique after cDNA expression of 

the α1S constructs in dysgenic myotubes (Table 3.2). These traces show that the constructs 

used for FRET measurements in this study represent functional α1S subunits. The 

electrophysiological measurements do not include the shortest C-terminal constructs 

labelled at pos. 1636 since these constructs had not yet been cloned when this 

collaboration project was carried out. However, since the constructs tagged at pos. 1636 

show spontaneous contractions and contractions in response to electrical stimulation (see 

Table 3.2) it is highly likely that they were also fully functional in terms of skeletal type 

EC-coupling. The electrophysiological characterization was carried out in a cooperational 

exchange programme by Dr. Joshua D. Ohrtman (Department of Physiology & 

Biophysics, University of Colorado, Denver, CO). 

In summary, all the tagged α1S constructs with the ability to target to junctions were also 

able to restore EC coupling (Table 3.2). The presence of two fluorescent proteins within 

different cytoplasmic domains did not appear to grossly interfere with either the targeting 

or function of α1S in dysgenic cells, with the exception for constructs carrying a 

fluorophore within the III-IV loop.  
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Table 3.2. Schematic display of all CyPet- AND YPet-tagged α1S constructs used for FRET 
analysis in this study including their targeting and electrophysiological properties. 
Numbers refer to amino acid residues of α1S position of fluorophore insertion (see section 2.3, 
Materials and methods for a detailed overview and construction details). Contractions were 
evoked after cDNA expression in dysgenic myotubes by local, electrical stimulation (see section 
2.5.1, Material and Methods) and L-type Ca2+ currents were recorded under the whole-cell, 
voltage clamp mode after cDNA expression in dysgenic myotubes (see section 2.5.2 Material and 
Methods). * in injected dysgenic muscle, 1 showed L-type currents but the recorded traces were 
unusable. 

Targeting in     

α  construct /   Evoked 
contractions / 

currents* 

  

dyspedic 
myotubes

dysgenic 
myotubes 

1S Spontaneous 
contractions* tagged domains Current trace  
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3.2 Quantification of FRET in fluorescent spots  
Only for correctly targeted and functional constructs can it be assumed that a correct 

spatial arrangement of the DHPR subunits (including their intracellular domains) took 

place within the junctional environment. After inserting the fluorescent proteins into 

suitable positions of the cytoplasmic domains of α1S it was examined whether the 

presence of and the potential bidirectional interactions with the RyR1 affected their 

relative arrangement. Therefore the constructs containing all possible combinations of 

FRET partners at the different cytoplasmic positions were expressed in dyspedic and 

dysgenic myotubes, respectively. Comparison of the energy transfer ratios (IFRET) after 

expression of a particular construct in dyspedic and dysgenic myotubes allowed a 

determination of whether the spatial arrangement of tagged cytoplasmic sites was affected 

by the functional coupling to the RyR1. A special technique was used to selectively 

monitor the IFRET signal from the plasma membrane. Since the correctly targeted CyPet- 

and YPet-tagged constructs were localized in junctional membranes, FRET analysis 

required exclusive measurement of pixel intensities within fluorescent foci, rather than 

from entire myotubes. In the latter case proper analysis would be compromised by the 

fluorescence intensities in the large areas between the foci, unrelated to the junctional 

environment. This was an important point to consider, since there can be a substantial 

fraction of ‘free’ fluorescence within the cytoplasm or at the SR. The determination of 

energy transfer presented here relied on the 1:1 stoichiometry of FRET partners tagged to 

the α1S subunits. The sensitized acceptor emission variant was employed to determine the 

degree of energy transfer. Because the fluorescent foci have an irregular shape, the 

approach employed was to use the unfiltered donor channel intensity image (ICY) to create 

a binary mask. The latter had the value of unity for all cyan pixels above an adjustable 

threshold intensity (= cut-off intensity) and a value of zero below the threshold (see Figure 

2.13). The threshold was adjusted so that all low intensity pixels outside the fluorescent 

puncta vanished, leaving a binary mask that was congruent with the majority of the 

fluorescent foci of cyan fluorescence. The cyan and yellow fluorescence intensity values 

(ICY and IY, respectively) were used for calculations only for those pixels with assigned 

value of unity within the binary mask (additional details are provided in section 2.7). 

Assuming there is FRET, as a consequence of resonance energy transfer to YPet the 

CyPet fluorescence should be lower than would be expected from the quantum yield, and 

thus would appear quenched (see Figure 2.10). In order to quantify the changes in FRET 
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due to absence / presence of RyR1, the ratio IY/ICY, corrected for "bleed through" of CyPet 

emission into the PMT3 channel (IY,CY), was used (see section 2.6 for details).  

 
3.2.1 Significant FRET occurs between the intracellular loops of 

the DHPR α1S
 
Table 3.3, Figure 3.6 and Figure 3.7 summarize the energy transfer results of this study 

for CyPet and YPet attached to different cytoplasmic sites of α1S, as well as the effects of 

the presence of RyR1 on energy transfer ratios IFRET. As ‘no-FRET’ controls, three 

discrete tandem α1S constructs were used. In these constructs, the fluorescent tags were far 

enough apart to exclude the appearance of any significant FRET (Figure 2.7). Every one 

of these control constructs displayed the same relatively low FRET ratio after expression 

in dyspedic (IFRET = 0.24 ± 0.03) or in dysgenic (IFRET = 0.26 ± 0.03) myotubes. The 

similar IFRET values found for the different ‘no FRET’ control constructs in dyspedic and 

dysgenic myotubes suggest that the energy transfer ratios determined for the single α1S 

constructs reflect energy transfer process within one α1S subunit (= intramolecular FRET), 

rather than between fluorophores of adjacent α1S subunits (= intermolecular FRET).  

 

Only a few double tagged α1S constructs generated equally low IFRET values as the         

‘no-FRET’ controls, in the corresponding myotube type (Figure 3.6). In absence of the 

RyR1 the IFRET values of the ‘no-FRET’ control constructs and the construct tagged at its 

I-II loop / N-terminus and of the construct tagged at its I-II loop / C-terminus were 

similar. Moreover the latter construct produced in presence of the RyR1 an IFRET value 

that was also similar to the IFRET values generated by the ‘no-FRET’ control constructs in 

dysgenic myotubes (Figure 3.6). However, a significant (p < 0.001) increase of energy 

transfer was found for every other functionally expressed FRET construct compared to the 

‘no FRET’ controls expressed in the same myotube type (Figure 3.6). This suggests that 

the FRET moieties of most combinations within different cytoplasmic domains of one α1S 

are separated by less than 10 nm in the absence and in the presence of RyR1.  
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Table 3.3. Schematic display of all CyPet- AND YPet-tagged α1S constructs used for FRET 
analysis in this study including the IFRET ratios and RyR1 induced changes of the FRET 
partners attached to different cytoplasmic sites of the DHPR α . I1S FRET values were calculated 
as described in section 2.6 for the designated constructs expressed and junctional targeted in 
dyspedic or dysgenic myotubes, as indicated. Data are given as mean ± S.D., with the numbers of 
cells indicated in parentheses. Also the (significant) changes from the IFRET ratio of the ‘no FRET’ 
control (tandem α ) constructs (see section 2.3.2.4) to the I1S FRET ratios between CyPet and YPet 
after attachment to different cytoplasmic domains within one  α1S subunit for the respective 
myotube type and the IFRET changes induced by the presence of RyR1 for the designated 
constructs are shown. 

IFRET IFRET change (± %)  

α  construct /    
  

1S   
 

dyspedic 
myotubes (n)

 

dysgenic 
myotubes (n) 

control to 
dyspedics 

control to 
dysgenics 

dyspedics to 
dysgenics tagged domains 
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Figure 3.6. Comparison of the FRET ratio of ‘no-FRET’ control constructs with the FRET 
ratios between CyPet and YPet after attachment to different cytoplasmic domains within 
one α  1S subunit expressed in the same myotube type. Significant FRET occurs between 
the intracellular loops of one α  (A) in a more or less unarranged1S  condition of its cytoplasmic 
domains in dyspedic myotubes and (B) in the rearranged condition induced by the presence of 
the RyR1 in dysgenic myotubes. Error bars indicate ± S.D. asterisks represent a significant 
difference of p < 0.001 compared to the ‘no FRET’ control constructs expressed in the same 
myotube type.  

 

 

In the absence of RyR1 the relatively long α1S II-III-loop exhibits strong FRET to both the 

N-terminus and the C-terminus of α1S, indicating close proximity of these regions when 

mechanical coupling is lacking (Figure 3.6). In contrast, relatively low FRET intensities 

were found for constructs tagged within the I-II loop and one of the aforementioned three 

cytoplasmic domains as second tag site in dyspedic myotubes. The respective relatively 

high IFRET values for the α1S II-III-loop and the two termini range from 0.47 ± 0.07 (N-

terminus / II-III loop) over 0.50 ± 0.04 (C-terminus / II-III-loop) to 0.54 ± 0.04 (N-

terminus / C-term), whereas the (significantly lower) IFRET values for the energy transfer 

between the α1S I-II loop and these three cytoplasmic domains range from 0.27 ± 0.05 (N-

terminus / I-II loop) over 0.28 ± 0.07 (C-terminus / I-II loop) to 0.33 ± 0.07 (II-III loop / I-

II loop) (see Table 3.3). This changed significantly (p < 0.001) when the FRET constructs 

were expressed in dysgenic myotubes, in which the cytoplasmic loops of α1S are believed 

to undergo direct functional interaction with the RyR1 (Table 3.3 and Figure 3.7).  
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3.2.2 Quantifying differences in FRET ratio associated with 
absence or presence of RyR1  

 
The presence of RyR1 altered significantly the intramolecular energy transfer signal for 

every double tagged construct with the exception of the N- and C-terminally tagged α1S 

(Figure 3.7). Thus, for α1S subunits that are (1) functionally expressed in dysgenic 

myotubes and (2) able of targeting in dyspedic myotubes, RyR1 presence induces 

considerable spatial rearrangements within the cytoplasmic interface of α1S. For the N- 

and C-terminally tagged α1S, YPet-α1S(1636)-CyPet, the relatively strong IFRET values did 

not change significantly upon expression in dyspedic (0,54 ± 0.04) and dysgenic 

myotubes (0,52 ± 0.06) (Table 3.3 and Figure 3.7). All other α1S FRET constructs showed 

significant changes in their FRET signal when their expression in dysgenic myotubes is 

compared to that in dyspedic myotubes (Figure 3.7). The energy transfer between the C-

terminus and the I-II loop and between the C-terminus and the II-III loop decreased 

significantly from expression in dyspedic to dysgenic myotubes. Quantitatively, the IFRET 

signal between the C-terminus and the I-II loop decreased by 18 % in presence of RyR1 

(from 0.28 ± 0.07 to 0.23 ± 0.04), and the signal between the C-terminus and the II-III 

loop decreased by 22 % (from 0.50 ± 0.04 to 0.39 ± 0.06) (Table 3.3 and Figure 3.7). At 

the same time the presence of RyR1 caused a significant increase of energy transfer 

between the N-terminus and the two aforementioned α1S loops (i.e., the I-II and II-III 

loop) in dysgenic myotubes. The energy transfer signals for the N-terminus to the I-II loop 

and to the II-III loop in dysgenic myotubes were significantly higher, by 78 % (0.27 ± 

0.06 to 0.48 ± 0.05) and by 28 % (0.47 ± 0.07 to 0.60 ± 0.08), respectively, compared with 

the same constructs expressed in dyspedic myotubes (Table 3.3 and Figure 3.7). The 

fluorophores attached to α1S within these two specific loops showed a significantly 

increased energy transfer of about 45 % (from an IFRET of 0.33 ± 0.08 to 0.48 ± 0.06) in 

the presence of RyR1. Thus, the presence of RyR1 seems to bring these first three amino-

terminal cytoplasmic domains of α1S (i.e., the N-terminus, the I-II loop, and the II-III 

loop) into closer proximity while it seems to increase the distances between the C-

terminus and the two examined α1S loops (i.e., I-II loop and II-III loop). Thus, the 

fluorophores within the cytoplasmic loops of α1S in dysgenic myotubes (i.e., within the 

functional skeletal muscle-type EC coupling apparatus) are clearly positioned in a 

different environment, in terms of inter-fluorophore distance or orientation, as compared 
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to the arrangement in dyspedic myotubes. This likely occurs due to rearrangements caused 

by interactions with the RyR1. These observations strongly support the idea of direct 

protein-protein interactions between the DHPR and RyR1 as the characteristic feature of 

skeletal muscle-type EC coupling.   
 

 

   
Figure 3.7. Comparison of IFRET ratios between CyPet and YPet after attachment to the 
cytoplasmic α1S domains expressed under varying conditions. The presence of RyR1 did 
not influence the energy transfer either for the fluorophores in the ‘no-FRET’ control 
constructs or the FRET partners attached to the N- and to the C-terminus. The presence of 
RyR1 led to a decreased FRET signal between fluorophores attached to the C-terminus and 
the I-II loop or the II-III loop, respectively. However, for fluorophores attached to any of the 
first three amino-terminal intracellular domains of α1S (i.e., the N-terminus, the I-II loop, and 
the II-III loop), the IFRET ratios were significantly higher in junctions containing RyR1. Error bars 
indicate ± S.D. asterisks represent a significant difference of p < 0.001. 
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4. Discussion 

 

 
4.1 Significant FRET between cytoplasmic loops of the 

DHPR α1S subunit 
 

This study demonstrates that FRET measurements using the sensitized emission variant 

can provide convincing information about conformational rearrangements of biomolecules 

within living cells. Thus, it could be shown here that the α1S cytoplasmic interface 

undergoes significant spatial reorganization upon association with the RyR1. FRET 

signals (IFRET) could be obtained from dyspedic and dysgenic myotubes for all doubly-

tagged constructs capable of junctional targeting. In this context, the fluorophore pair 

CyPet / YPet has proven a very sensitive indicator for FRET and for changes of the latter, 

when used within the molecular dimensions of a single α1S subunit. But which are the 

molecular dimensions of α1S or of the entire DHPR? A 3D reconstruction of a α1-β 

complex of the DHPR presented by Murata et al. (2009) (see Figure 1.8B) displayed a 

globular structure with estimated dimensions of 11.5 × 11.5 nm (10.5 nm high), pretty 

much within the sensitive range of FRET. The significantly higher FRET signals in nearly 

every single-α1S construct, as compared to the IFRET values measured for the ‘no-FRET’ 

tandem-α1S constructs (see Figure 3.6) reflect the constriction to one α1S, imposed by the 

limited spatial range available for FRET measurements. However, excessive FRET 

changes were not expected for the cytoplasmic α1S loops upon co-expression with the 

RyR1: One could expect that in dyspedic myotubes, i.e., in the absence of RyR1, the 

cytoplasmic α  domains reach more or less freely from their transmembrane anchors into 

the 
1S

cytoplasmic gap of the junctions. However, it is important to note that the N- and C-

terminus of α1S have only a single site of attachment to the channel, whereas the α  loops 

are anchored to the transmembrane domains at both sites (see Figure 1.5). Thus, the 

unarranged sites of attachment show 

1S

differences in length, stabilization properties, and 

motional freedom. However, the IFRET values recorded from dyspedic myotubes varied 

within a smaller range (from 0.28 ± 0.07 to 0.54 ± 0.04) than those received from 

dysgenic myotubes (from 0.23 ± 0.04 to 0.60 ± 0.08). This by 42 % increased range of 

IFRET values within the dysgenic data set may reflect a powerful interaction with the 
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RyR1, which forces a rearrangement (approximation / bending apart) of the loops and 

termini.  

 

As to the potential presence of intermolecular α1S FRET, i.e., between adjacent DHPRs, a 

number of studies argues against this possibility. Paolini et al. (2004) convincingly 

demonstrated that the average distance between centers of adjacent DHPRs within a tetrad 

is ~ 17.5 to 19.5 nm. IFRET values generated from dyspedic and dysgenic myotubes 

expressing ‘no-FRET’ control constructs were not significantly different (0.24 ± 0.03 for 

dyspedic, 0.26 ± 0.03 for dysgenic myotubes, respectively). If, in contrast to the present 

observations, the ‘no-FRET’ control constructs exhibited proteolytic cleavage at the C-

terminus, it could be reasoned that they would spatially dissociate into individual α1S 

subunits. Wolf et al. (2003) presented a model for the functional interaction between 

DHPR and RyR1 in which the N- and the C-terminus of α1S subunits were directed 

towards the center of a tetrad (Figure 4.1). One might assume that this orientation would 

allow intermolecular FRET to occur between α1S subunits of the same tetrad when tagged 

at the N- or at the C-terminus. Relatively high, albeit not significantly different, IFRET 

values (0.54 ± 0.04 in dyspedic and 0.52 ± 0.06 in dysgenic myotubes, respectively) were 

measured for the construct YPet-α1S(1636)-CyPet (Figure 3.7). Yet, similar IFRET values 

for this construct in dyspedic and dysgenic myotubes suggest that the FRET signal does 

not result from intermolecular energy transfer. Specifically, intermolecular FRET might 

be expected to decrease in dyspedic myotubes where, unlike dysgenic myotubes, the 

tagged α1S subunits do not organize into tetrads (Takekura et al. 1995). As stated above, 

no such decrease was observed. Thus, the energy transfer ratios presented in this study are 

truly reflecting energy transfer between CyPet and YPet moieties of the same α1S. 

Moreover, the relatively high IFRET values between the N- and the C-terminus in dyspedic 

and dysgenic myotubes are indicative of their close proximity (although it is not possible 

to extract from this finding any information about the actual molecular orientation of 

DHPRs within one tetrad). This statement also applies to all other double-tagged α1S 

constructs, indicating that their significantly higher IFRET values, as compared to the IFRET 

of the ‘no-FRET’ constructs, exclusively reflect intramolecular FRET. 
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Figure 4.1. Model of the DHPR-RyR1 complex by Wolf et al. (2003), modified. DHPRs 
(grey and red) are arranged in tetrads opposing a homotetrameric RyR1 channel (green). 
View from the t-tubular side, the red square indicates the putative α1 domain structure. The N-
terminus and parts of the C-terminus are shown to point into the center of the tetrad. The 
molecular edges of neighboring RyR1s are shown in blue. The black numbers designate RyR 
regions as defined by Wagenknecht & Radermacher (1997). Bar represents 10 nm. 

4.2 Rearrangements of cytoplasmic α1S domains in the 
presence of RyR1 

 

In light of the presented FRET results it appears that most of the cytoplasmic domains of 

α1S are less than 10 nm apart in dyspedic as well as in dysgenic myotubes. Figure 4.2 

illustrate how the effects of RyR1 on the degree of FRET between cytoplasmic α1S sites 

could be interpreted in terms of spatial rearrangements. It should be noted that the model, 

although it accounts for the observed FRET changes caused by the presence of RyR 

(Figure 3.7), does not permit to draw conclusions about the actual location of RyR1 

interaction sites. Unlike the study by Papadopoulos et al. (2004), this work employed not 

a singular FRET sensor within α1S to search for potential interaction sites with the RyR1. 

The focus here lay more on the detection of spatial arrangements within α1S, introduced 

by the presence of the RyR1 (arrows in Figure 4.2C). However, as the finding of 

significant differences in energy for a given construct upon expression in the two myotube 

types shows (Figure 3.7), every cytoplasmic domain of α1S appears to be spatially 

influenced by the DHPR-RyR1 interaction. The energy transfer between the C-terminus 

and the I-II loop and between the C-terminus and the II-III loop decreased significantly by 

18 % and 22 %, respectively, when switching the expression environment from dyspedic 
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Figure 4.2. Schematic model of the relative orientations of cytoplasmic α1S domains and 
of their possible rearrangement in the presence of RyR1 (α1S is shown in oblique view 
from the cytoplasmic site). (A) Possible loop status in absence of RyR1; the cytoplasmic α  
domains reach freely from the transmembrane domains into the 

1S
cytoplasmic gap. (B) Possible 

spatial loop arrangement in presence of RyR1. Voltage-induced conformational 
rearrangements in the critical domain of the II-III loop engage the SR Ca2+ release channel via 
a transient protein–protein interaction between a portion of the critical domain  (asterisk) and 
another junctional protein (RyR1); additional potential sites of direct interaction of the α1S (i.e., 
the C-terminus, the III-IV loop, and the carboxyl-terminal portion of the II-III loop) and the 
RyR1 or other junctional interaction partner(s) are indicated by black double arrows. (C) 
Spatial interpretation of the differences in FRET signals between the cytoplasmic domains of 
α1S induced by the presence of the RyR1. The black dotted line indicates that the FRET ratio 
was independent of RyR1 presence, the red double arrows indicate that FRET efficiency was 
lower in the presence of RyR1 among the participating cytoplasmic domains and the green 
double arrows indicate that the energy transfer was higher in the presence of RyR1.  

C 
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to dysgenic myotubes (red arrows in Figure 4.2C). In contrast, presence of RyR1 caused a 

significant increase in energy transfer between the N-terminus and the I-II loop (by 78 %), 

and between the N-terminus and the II-III loop (by 28 %). Furthermore, energy transfer 

between the fluorophores introduced into these two loops increased by 46 % when RyR1 

was present (green arrows in Figure 4.2C). However, presence of RyR1 had no influence 

on the energy transfer between the N-terminus and the C-terminus (dotted line in Figure 

4.2C). 

 

4.3 On the molecular basis of RyR1-caused rearrangement 
of cytoplasmic α1S domains  

 
Using the CFP-YFP fusion protein tag as a FRET reporter, Papadopoulos et al. (2004) 

found no difference in FRET efficiency between dyspedic and dysgenic myotubes when 

CFP-YFP was attached to the α1S N-terminus (CFP-YFP-α1S). In their study, any 

observed difference in FRET between dysgenic and dyspedic myotubes, for a particular 

construct, was regarded as indication that the presence of RyR1 had an impact on the 

environment of the CFP-YFP attachment site. From the lack of FRET difference for the 

N-terminal attachment site, Papadopoulos et al. (2004) concluded that there may not be 

close proximity between RyR1 and the N-terminus of α1S. Lorenzon and co-workers 

(2004) supported this idea in an independent approach employing a streptavidin 

accessibility strategy, to gauge the distances between sites of the DHPR and the RyR1 or 

RyR1 associated junctional proteins. In accordance with the important functional role of 

this α1S region for excitation contraction coupling, both groups presented a model in 

which the RyR1 may be in close proximity to the α1S C-terminus (Figure 4.2B): RyR1-

dependent differences in FRET efficiency of the CFP-YFP tandem fused to the α1S C-

terminus (α1Sshort-CFP-YFP) indicated that this region might directly interact with the 

RyR1 or with structures brought to close proximity to the α1S C-terminus by the presence 

of the RyR1. Lorenzon et al. (2004) demonstrated that the C-terminus of α1S, when tagged 

with a biotin acceptor domain, is accessible for streptavidin labeling in dyspedic myotubes 

but not in dysgenic myotubes. Thus, in contrast to the freely moving α1S N-terminus, the 

C-terminus in dysgenic myotubes is expected to be in a more rigid state. However, of 

crucial importance for the measurements of the present study was to ensure the integrity 

of the 1:1 donor to acceptor ratio. This absolute requirement is illustrated by the following 
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example: Assuming that, for instance, 50 % of the double labeled α1S subunits would lose 

one of their tags, so that half of the α1S subunits in the junctions would be devoid of the 

acceptor or of the donor. In the first case, absence of 50 % of the acceptor, the FRET 

signal calculated would be too low, because (1) the orphaned CyPet molecules would 

fluoresce brighter and (2) the dissociated YPet molecules would be absent from the 

junctions and thus would not contribute to the YPet-related fluorescence intensity. In the 

second instance, absence of 50 % of the donor, the effect of cleavage on the measured 

FRET degree would depend on whether the donor remains at the junctions or not. If not, 

the resulting high acceptor-to-donor ratio would lead to overestimation of the FRET 

degree. If the donor would remain at the junctions, the increased donor-to-acceptor 

distance would decrease any FRET and would lead to underestimation of the degree of 

this process. In view of these deleterious effects of cleavage on the reliability of calculated 

FRET values, the likelihood of such an event had to be minimized. Therefore, the α1S C-

terminus was shortened, initially to end at residue 1666. Beam et al. (1992) and 

Papadopoulos et al. (2004) had already shown that despite the loss of > 200 residues such 

a construct was fully functional in terms of targeting and EC-coupling. Furthermore, 

Papadopoulos et al. (2004) did not observe proteolytic release of their C-terminally 

(position 1666) attached FRET reporter, the CFP-YFP tandem. However, when - in the 

present study - α1S(1666)-XPet was expressed in dyspedic myotubes, there were 

indications for proteolytic cleavage upstream the fluorophore sequence. Figure 3.4 

illustrates the diffuse to reticular distribution of the proteolytically released fluorophore 

allegedly attached to α1S position 1666. The reasons for this disagreement with the 

observations by Papadopoulos et al. (2004) are not clear but anyway, it was concluded 

here that α1S(1666) was not short enough to prevent cleavage and loss of the fluorescent 

protein. Indeed, by using mass spectrometric analysis, Hulme et al. (2005) identified the 

precise cleavage site on the α1S C-terminus to be at A1664. To ensure persistence of the C-

terminal label on α1S, the α1S C-terminus was further shortened, to position E1636. It was 

reasoned that, since this shortest construct did not contain A1664 nor the PEST motif 

(Figure 2.4) (Hulme et al. 2005), the proteolytic cleavage of the C-terminus should be 

prevented in both myotube types. Indeed, this was the case and the FRET measurements 

with this type of constructs proved reliable, yielding constant energy transfer signals. Yet, 

there is still no satisfactory explanation for the preferred proteolytic cleavage of the C-

terminus of α1S(1666)-XPet constructs in dyspedic myotubes. It has been assumed that a 
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calpain-like protease may be responsible for in vivo proteolytic cleavage of α1 subunits 

(Hulme et al. 2005). It could be speculated that in dyspedic myotubes (which possess 

endogenous α1S) this protease could be upregulated to meet the requirement for cleavage 

of the endogenous, full length α1S. The finding of the present study that deletion of an 

even larger part of the α1S C-terminus (as is the case with α1S(1636)-XPet) is compatible 

with targeting and EC-coupling (see Table 3.1 and 3.2), is surprising. Based on 

observations upon expression of different α1 subunit isoforms in dysgenic myotubes, 

Flucher et al. (2000) concluded that the α1S C-terminus region 1607–1661 is critical for 

specific targeting of α1S to the junctions. A transfer of this α1S ‘targeting domain’ to the 

corresponding region of the neuronal α1A subunit enabled junctional targeting of the latter 

(which wild-type α1A normally does not). However, the FRET constructs used in the 

present study terminate at α1S residue E1636 (see Figure 2.4) which would mean there is a 

massive deletion within Flucher's ‘targeting domain’, yet there is no interference with 

junctional targeting (Figure 3.2 and 3.5). Thus, at least the carboxyl-terminal half of the 

‘targeting domain’ (residues 1637-1661) can not be essential for junctional targeting of 

α1S. In addition to correct targeting, the frequently observed spontaneous and evoked 

contractions of dysgenic myotubes expressing these constructs (Table 3.2) shows that 

deletion of the last 237 α1S residues does not interfere with EC-coupling. Thus, the present 

study reveals that the RyR1 interaction sites of the α1S C-terminus which are relevant for 

EC-coupling have to be located upstream of α1S residue E1636.  

The relatively strong energy transfer for N/C-terminally labelled α1S suggests that the N-

terminus and the shortened C-terminus of α1S are in close proximity. The fact that this 

high IFRET was not significantly different when comparing expression in dyspedic and 

dysgenic myotubes, argues against appreciable changes in the relative positions of these 

domains (Figure 3.7 and 4.2). This could also imply that they are relocating as a set in the 

presence of the RyR1. Alternatively, the rather flexible N-terminus (for which there are no 

indications for interactions with the RyR1) could, upon association of the C-terminus with 

the RyR1, be passively dragged to a position which would not alter the energy transfer 

between the two fluorophores. Another possibility is that the position of both termini is 

refractory with respect to RyR1 presence. However, this appears to be very unlikely, since 

(1) the α1S C-terminus displays significant FRET changes between dysgenic and dyspedic 
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myotubes when the second tag is not the N-terminus and (2) numerous studies argue 

towards a direct interaction between C-terminus and the RyR1.  

Papadopoulos et al. (2004) showed that presence of RyR1 changed the FRET efficiency 

when the CFP-YFP tandem was inserted into the II-III loop, replacing the ‘peptide A’ 

region (see Figure 2.6C) upstream the critical domain (construct name: α1S(I–II)-CFP-YFP-

(III–IV)). EC coupling could be restored in dysgenic myotubes by expression of this 

construct. Thus, it seems unlikely that the proximal (amino-terminal) segments within the 

α1S II-III loop directly participate in protein-protein interactions with the RyR1. In support 

of this idea are the streptavidin-accessibility experiments by (Lorenzon et al. 2004; 

Lorenzon & Beam 2007). In contrast, the ‘critical domain’ region, a sequence located in 

the center of the II-III loop, was identified as essential for skeletal muscle-type EC 

coupling (Nakai et al. 1998b). Takekura et al. (2004) suggested that additional conserved 

elements within the II-III loop of α1S, in addition to the critical domain region, would 

contribute - though weakly - to tetrad formation. Thus, Bannister and co-workers (2009) 

investigated the relevance of the α1S II–III loop region downstream of the critical domain 

for EC coupling. This region of the II-III loop is highly conserved among α1 subunits of 

L-type Calcium channels (α1C and α1M, for instance (Wilkens et al. 2001)), although 

subunits other than α1S display no indications for mechanical linkage to the RyR1 (for 

instance, there is no tetrad formation). Yet, this conserved region within the α1S II–III loop 

may be an important accessory site of for RyR1 interaction (Bannister et al. 2009). A 

model illustrating the roles assigned to the critical domain and the carboxyl-terminal 

region of the α1S II-III loop in the communication with the RyR1 is presented in Figure 

4.3, (Beam & Bannister 2010). In this model, the α1S II-III loop (represented by the 

green/yellow arc) is juxtaposed to the RyR1, or to one or more other junctional interaction 

partners (represented collectively by the blue moiety, see also Figure 4.2B). There are 

portions of the model which are intentionally kept vague because of substantial gaps in the 

current knowledge about the structural components engaged by the process of EC 

coupling in skeletal muscle. So far, there is only very sparse information about the 

identities of junctional proteins other than the RyR1, which could undergo interactions 

with the DHPR. Several motifs that may facilitate interactions with various signaling and 

scaffolding proteins, additionally to RyR1, have been localized within the α1S C-terminus 

but not specifically within its carboxyl-terminal region of the II-III loop (see Figure 1.5). 
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Figure 4.3 Model of the involvement of α1S II-III loop subregions in interactions with 
junctional partners - most likely the RyR1 – in the process of EC coupling, after 
Bannister & Beam (2010), modified. The arc extending from repeat II to repeat III represents 
the α1S II-III loop; the yellow portion of the loop represents the critical domain. The blue entity 
represents junctional interaction partner(s) of the α1S II-III loop. Because the amino-terminal 
portion of the α1S II-III loop is accessible to large streptavidin probes (Lorenzon et al. 2004), it is 
depicted as being devoid of junctional interaction partners. Because ultrastructural analysis 
suggests that the carboxyl-terminal portion of the α1S II-III loop supports junctional contacts that 
are essential for tetrad formation (Takekura et al. 2004), the carboxyl-terminal portion of the 
loop is shown as a surface for interaction with other junctional proteins. In addition, the 
carboxyl-terminal portion of the loop may also serve as a line of communication (large arrow) 
between repeat III and the critical domain in the center of the α1S II-III loop; voltage-induced 
conformational rearrangements (small arrow) in the critical domain could induce SR Ca2+ 
release via a transient protein–protein interaction between a portion of the critical domain (red 
box) and another junctional protein (orange box).

From the RyR1 point of view, several regions of its tremendous cytoplasmic domain 

appear to contribute to bidirectional signalling with the DHPR (Protasi et al. 2002; 

Sheridan et al. 2006). In these latter studies, chimeric RyRs (e.g., half RyR1, half RyR2) 

were expressed in dyspedic myotubes and it was attempted to identify the RyR1 regions 

whose presence within the chimera was essential for tetrad formation and, thus, for 

skeletal muscle type EC-coupling (Nakai et al. 1998; Perez et al. 2003). However, given 

the poorly understood molecular topology of the RyR1, the RyR1 regions identified in the 

above studies might as well be involved in an indirect way, for instance, by 

conformational stabilization or interdomain interaction within the RyR1 (Uchinoumi et al. 

2010). Also, the participation of other proteins associated with the DHPR-RyR1 complex 

(e.g., Homer, Calmodulin), which could mediate the interaction by exerting a bridge-

function, can not be excluded (Hamilton et al. 2000; Treves et al. 2009). Thus, the blue 

moiety shown in Figure 4.3 could include components of RyR1, β1A or other yet-to-be 

identified proteins. Whatever the interaction partner, the significant IFRET changes found in 
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the present study for constructs tagged at the α1S II-III loop, reflect the critical role of this 

cytoplasmic domain in EC coupling.  

Can the II-III loop be further dissected in terms of subregions with discrete functions in 

the interaction with RyR1? The regions outside the critical domain could have a 

modulatory role or could function as molecular hinge for transmission of conformational 

changes accompanied by the association and/or activation of the two channels to other 

parts of the macromolecular complex. For instance, the central region of the II-III loop 

could be indirectly affected by the interaction of RyR1 with the carboxyl-terminal II-III 

loop region. In such a scenario, the moiety (RyR) shown in blue in Figure 4.3 could push 

the II-III loop regions upstream the interacting segment towards the amino-terminal site of 

the loop (see also Figure 4.4). This could explain the significant increase in energy 

transfer between the II-III loop and the two amino-terminally located intracellular 

domains of α1S (i.e., the N-terminus and the I-II loop) in presence of the RyR1 (Figure 

4.2C and Figure 3.7). Such a molecular shoving of the cytoplasmic α1S interface by the 

presence of RyR1 could also explain the observed increases in energy transfer between the 

I-II loop and the N-terminus (Table 3.3 and Figure 3.7). 

 

 

                  
 

Figure 4.4. Model of the potential transition cytoplasmic α1S domains experience in the 
presence of RyR1. View from the cytoplasmic side. (A) In the absence of RyR1, the 
cytoplasmic α  domains assume spatial locations which may or may not be close enough to 
allow for FRET (see Table 3.3 and Figure 3.6) 

1S
(B) Rearranged state in presence of RyR1; pink 

arrows indicate potential directions of movement of the cytoplasmic domains; potential sites of 
direct interaction of the α1S (i.e., the C-terminus and the carboxyl-terminal portion of the II-III 
loop) and the RyR1, or potential junctional interaction partner(s), are indicated by black double 
arrows. Considering the predicted α1S-RyR1 interaction sites and the measured FRET ratios, 
together with the targeting inability of constructs tagged within the III-IV loop, the model 
predicts an interaction by which RyR1 approaches the α1S subunit from the site where the III-IV 
loop is located (blue arrow).  

A B
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In dyspedic myotubes, the relatively extended II-III-loop (138 residues long) and the two 

allegedly more mobile termini of α1S appear to be in closer proximity than either of them 

with the considerably shorter I-II loop (97 residues long; see Figure 3.6 and 4.2A). A 

possible explanation for this observation could be that the β1A subunit, in the course of its 

interaction with I-II loop, intercalates into the α1S interface where the other loops and the 

termini reside and pushes that loop apart from these structures. Leuranguer et al. (2006), 

by combining measurements of FRET with fluorescence recovery after photobleaching 

(FRAP), demonstrated that the β1A subunit is stably associated with the α1S subunit in 

junctions of living myotubes, independent of the presence of the RyR1. This firm 

association between α1S and β1A reflects the essential role the β1A subunit plays in α1S 

targeting (Strube et al. 1996; Neuhuber et al. 1998; Schredelseker et al. 2005). The 

essential requirement for an α1S-β1A interaction is also documented by the finding that 

incorporation of a fluorophore into the I-II loop upstream the AID resulted in suppression 

of junctional targeting of the α1S, though most prominent in dyspedic myotubes (Figure 

3.3C). This attempt to insert a fluorophore into the short sequence segment (22 residues; 

see Figure 2.6A) connecting the end of α1S repeat I with the AID could lead to steric 

hindrance or even to disruption of the microdomain structure of this region, thus affecting 

the AID-β1A interaction. However, the effect of fluorophore insertion was not too severe, 

since the respective constructs exhibited an almost normal targeting behaviour in dysgenic 

myotubes (Figure 3.3A). One point to consider though arises from the fact that in 

dyspedic myotubes, considerable amounts of endogenous α1S are present (Takeshima et 

al. 1994; Takekura et al. 1995). Thus, the manoeuvre of inserting a fluorophore so close to 

the AID could lead to preferred interaction of β1A with endogenous α1S subunits instead of 

the expressed FRET constructs. This possible unequal competition for binding to β1A for 

being targeted does not exist in dysgenic myotubes, which are defined by the lack of 

endogenous α1S (Tanabe et al. 1988). However, the problem of differential targeting 

capability vanished when fluorophore insertion into the I-II loop was carried out 

downstream the AID. This type of constructs did not show any restrictions in junctional 

targeting in any cell type (see Figure 3.3), indicating that interaction with β1A (or with 

other proteins relevant for targeting and for EC coupling) remained unaffected. By virtue 

of its firm interaction with β1A, the orientation of the I-II loop may be stabilized already in 

dyspedic myotubes, and undergo only minor spatial reorganisation, while the final 
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functional position of the other cytoplasmic α1S structures will be dictated by the RyR1 

interaction, which, as stated above, could lead to spatial separation from or approximation 

to the I-II loop.  

The α1S III-IV loop appears to participate indirectly in EC coupling, by influencing 

DHPR gating transitions important both for EC coupling and activation of L-type 

conductance (Bannister et al. 2008). However, when the mode of α1S-RyR1 interaction is 

according to the model in Figure 4.4, an intimate proximity between RyR1 and III-IV loop 

is very probable (Figure 4.2B and Figure 4.4B). Unfortunately, junctional targeting of α1S 

was disrupted  by attempts to tag the III-IV loop (see Figure 3.2), a channel region 

previously thought to be of only minor importance for effective targeting (Weiss et al. 

2004; Bannister et al. 2008). Though not very likely in view of the robust AID-β1A 

interaction, it can not be ruled out that the failure of III-IV loop-tagged constructs to target 

could result from an impairment of the α1S association with the β1A subunit. In such a 

case, a possible mechanism could be that the α1S-β1A interaction is massively hindered by 

the presence of the fluorescent protein so close to the regions of membrane insertion of the 

loops, including that of the I-II loop. Thus, tagging the rather short III-IV loop could have 

a similar steric effect as the insertion of the fluorescent protein within the I-II upstream the 

AID.  

Interestingly, susceptibility to malignant hyperthermia is not only caused by RyR1 

mutations, but has also been mapped to the α1S III-IV loop  (R1086H, for instance; 

(Monnier et al. 1997) (Figure 2.6B). Obviously, these mutations are not localized within 

the membrane domains involved in channel gating, nor to the allegedly essential ‘critical 

domain’ or to potential phosphorylation sites. Thus, when even a single Arginine-

Histidine substitution within the III-IV loop affects the α1S-RyR1 interaction, it is 

conceivable that introduction of a 27 kDa fluorophore almost at the same position (right 

behind R1096, see Figure 2.6B) could prevent targeting to the junctions. In summary, the 

α1S III-IV loop of the α1S seems to be not only important for the communication with 

RyR1 but also for targeting (Figure 4.2B).  

 

It has been assumed that there is an interaction of β1A with the RyR1 and that this 

interaction of equal importance to EC coupling as is the α1S-RyR1 interaction (Gregg et 

al. 1996; Leuranguer et al. 2006). However, if there is such interaction, it has an affinity 
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not high enough to cause stable association of fluorescently labelled β1A at junctions 

equipped only with RyR1 (dysgenic myotubes) (Papadopoulos et al. 2004). Yet, in the 

presence of α1S, the interaction of β1A with the AID might cause a structural 

reorganization of the accessory subunit which then exposes interaction sites for the RyR1 

essential for EC coupling. Indeed, recent experiments by Polster & Papadopoulos 

(unpublished data) show that when, in dysgenic myotubes, β1A is coexpressed with the I-II 

loop peptide of α1S instead of the complete subunit, the β1A-loop complex translocates to 

the myotube surface, where it also co-localizes with fluorescently labelled RyR1. It should 

be noted that individual expression of either the I-II loop or the β1A (in the absence of α1S) 

leads to an exclusively diffuse distribution of the proteins within dysgenic myotubes. 

Because tetrad formation and, thus, skeletal muscle type EC coupling is only then present 

when both α1S and β1A are together in junctions, β1A's contribution can be regarded as 

essential. However, as to what degree the subunit contributes to the dynamic interactions 

between the DHPR and the RyR1 during EC coupling remains to be elucidated. From the 

current point of view, it can not even be excluded that β1A is an immediate component of 

the trigger mechanism for SR Ca2+ release. The observations of the present study allow 

the speculation that the interaction of RyR1 with the distal region of the α1S II-III loop and 

with the β1A subunit could push the II-III loop and drag the I-II loop towards the N-

terminus of α1S. These motions generate a ‘meeting point’ for the two loops and the N-

terminus (Figure 4.2C and 4.4B). This notion is based on the observation that energy 

transfer significantly increases when the two fluorophores are introduced into any of the 

first three amino-terminal intracellular domains of α1S (i.e., the N-terminus, the I-II loop, 

and the II-III loop) in presence of the RyR1 (Table 3.3 and Figure 3.7). Thus, these 

findings rather support the view of a direct protein-protein interaction between α1S and 

RyR1. As discussed above, the first three cytoplasmic α1S domains display closer 

proximity in the presence of the RyR1. However, at the same time the energy transfer 

between the C-terminus and both the I-II loop and the II-III loop is decreased, implying 

their distance increases in the presence of RyR1 (Figure 4.2C and Table 3.3). In view of 

these significant RyR1-induced movements of cytoplasmic α1S domains, it is surprising 

that the energy transfer between the α1S N-terminus and C-terminus remains almost 

constant. It can be assumed that the α1S C-terminus is more or less fixed by the interaction 

with the RyR1 in dysgenic myotubes (Lorenzon & Beam 2007). If then, the position of the 
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N-terminus, which most likely does not interact with the RyR1 is defined by the 

relocations of the RyR1-interacting domains, it is possible that the final position assumed 

by the N-terminus is at the same distance to the C-terminus as before (in the absence of 

RyR1). But how can the FRET changes between the N-terminus and the I-II loop / II-III 

loop be explained (Figure 4.2C and 4.4B)? As mentioned above, a movement of the two 

loops towards the N-terminus seems to be very likely because an orientation into the 

amino-terminal direction would possibly explain their increased distance to the C-

terminus (Figure 4.2C and 4.4B). Whatever the exact interpretation, the II–III loop and the 

I-II loop are in a different microenvironment when RyR1 is present. 

  

The model presented in Figure 4.2 and 4.4 is the first one to show potential 

conformational changes in the arrangement of cytoplasmic α1S domains in dependence of 

RyR1 presence. There are portions of this model which are intentionally kept vague, 

paying tribute to the substantial gaps in the current knowledge about the particulars of 

skeletal muscle-type EC coupling. The identities of the junctional proteins postulated to be 

directly contacted by the α1S loops have not yet been confirmed. Thus, the results of this 

study do not exclude other roles of α1S regions which originally have been implicated in 

direct interactions with the RyR1 (Yang et al. 2007; Bleunven et al. 2008). Although the 

importance of the α1S II–III loop for coupling to the RyR1 is almost universally accepted, 

the numerous significant changes of IFRET between the α1S cytoplasmic domains support 

the idea of multiple interacting domains during the process of EC-coupling.  

The RyR1 organizes DHPRs into tetrads and the present study reports that this is 

accompanied by a considerable reorganization of the cytoplasmic α1S interface. 

Amazingly, this complex possesses enough spatial reserve to accommodate the substantial 

additional mass of 2 × 27 kDa contributed by the fluorescent proteins (each of which 

occupies a cylindrical space 4.2 nm in height and 2.4 nm diameter (Brejc et al. 1997)). 

Moreover, if all the insertion points of the fluorophores within α1S, resulting in functional 

subunits, are considered, a much higher mass will result which theoretically could be 

incorporated into the DHPR-RyR1 interface without interfering with function. Of course, 

it can not be excluded that the normal molecular architecture of the macromolecular 

complex consisting of DHPR, RyR, and of other junctional proteins is violated to some 

degree to allow fluorophore accommodation. Yet, such alterations associated with the 
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nature of these experiments appear to be tolerated by the junctions, revealing that EC 

coupling in skeletal muscle is a structurally well-secured process.  

 

Unlike the cardiac RyR2, RyR1 responds only poorly to modest elevation of sarcoplasmic 

[Ca2+]. The rearrangements of α1S domains revealed in the present study most likely goes 

hand in hand with corresponding movements of RyR1 domains which activate the latter. 

Thus, this stringent, multilateral interaction might constitute a safety factor for the 

prevention of inappropriate release of the potentially detrimental calcium cation. This 

study provides a first basis for a further dissection of the process of skeletal muscle EC 

coupling. Since this study documents that it is possible to measure minimal changes in the 

orientation of microdomains, its applicability could be extended to allow for the 

observation of dynamic changes. Such could be reorientations associated with the 

activation of the DHPR and their transmission to the RyR1 in the process of EC coupling. 

Thus, one important goal of future experiments will be to confirm and to characterize the 

conformational changes associated with the initiation of calcium release in skeletal 

muscle. These experiments would mean a great advancement in the endeavor to 

completely understand the process of EC coupling. 

 

 

4.4 Concluding remarks  
It is very likely that during the EC coupling process, a combination of rotation, 

approximation and shifting occurs among the cytoplasmic α1S domains and vice versa 

within the gigantic molecular RyR1 ‘foot’ environment. The FRET technique was used to 

show for the first time conformational rearrangements of cytoplasmic α1S loops associated 

with the coupling to RyR1. This study provides evidence for substantial conformational 

rearrangement associated with protein-protein interactions between these main 

components of the EC coupling apparatus.  

All α1S constructs which targeted correctly to junctions also formed functional Ca2+ 

channels and restored EC coupling. Significant intramolecular FRET occurs between the 

cytoplasmic loops of the DHPR α1S subunit. Presence of RyR1 leads to significant 

changes in the energy transfer between defined intracellular domains. The III-IV loop of 

the α1S seems not only to be important for the communication with the RyR1 but is also 
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important for DHPR targeting. Impaired targeting in dyspedic myotubes of constructs 

tagged within the I-II loop unmasks a supportive role of RyR1 expression in targeting. 

According to the results of the present study, it now appears even more likely that skeletal 

muscle-type EC coupling is mediated by a direct interaction between the cytoplasmic α1S 

domains and RyR1, because this study demonstrates substantial rearrangements of the α1S 

loops in the presence of RyR1. 
 

 

4.5 Outlook 
High-resolution structures of the two main players in skeletal muscle-type EC coupling, 

DHPR and RyR1, would be of great importance for a deeper understanding of the 

involvement of ion channels in various diseases linked to mutations in those channels. A 

better knowledge of these ion channel structures brings with it the possibility for rational 

drug design. Hopefully the information contained in this work will assist in advancing the 

understanding of EC coupling and will contribute to the multi-disciplinary research on ion 

channels. 

Several different approaches were used to solve the 3D structure of the α1S subunit but 

none of them has yielded a picture of the exact arrangement of the α1S loops, not to 

mention their rearrangement in the presence of RyR1. The application of FRET to study 

protein interactions (e.g., during EC coupling) in combination with other imaging 

techniques will allow better resolution of molecular interactions at the single cell level.  

Although the model shown in Figure 4.2 provides a first impression of possible mechanics 

of functional interaction between the cytoplasmic interface of the DHPR and the RyR1, 

the precise nature of communication between these two proteins remains enigmatic. Thus, 

the results presented in this thesis are only the beginning in the elucidation of the 

arrangement of α1S loops and of their dynamic role in interactions with the RyR1. 

Additional experiments using this type of FRET measurements will help to extend our 

current picture of DHPR-RyR1 interactions. Conformational changes within the DHPR 

α1S seem to be responsible for the translation of the membrane depolarization signal to the 

RyR1. A very important goal for the future will be to adopt the FRET technique for 

tracking dynamic rearrangements of cytoplasmic α1S loops during the proper skeletal 

muscle-type EC coupling process.  
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Single-particle 3D reconstructions of cryo-EM images of RyR1 and the structurally 

similar cardiac isoform RyR2 have been already quite useful in piecing together a more 

detailed picture of the triad junction. A better knowledge of the α1S I-II loop-β1A 

interaction could reveal the correct orientation of DHPRs relative to the RyR1 tetramer 

within reconstructed tetrads. The functional nature of this interaction is an enigma that 

will require creative experimentation to unfold. Appropriate technologies will provide 

further insight into the way proteins act during EC coupling in vivo. The application of 

novel genetic systems and proteomic strategies will incrementally contribute information 

to our knowledge of skeletal muscle-type EC coupling. An additional important goal for 

future research will be to determine the detailed mechanism of the α1S III-IV loop effects 

on L-type channel gating. It seems possible that the III-IV loop represents a region of 

hitherto unrecognized importance for the regulation of all the high voltage-activated 

channels. 
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6. Abbreviations 
 
 

I  first (of the four repeated) transmembrane domain of α1S   
II  second (of the four repeated) transmembrane domain of α1S   
III  third (of the four repeated) transmembrane domain of α1S   
IV  fourth (of the four repeated) transmembrane domain of α1S   
2D  two-dimensional 
3D  three-dimensional 
α1C  alpha 1 subunit of the cardiac L-type calcium channel  
α1S  alpha 1 subunit of the skeletal L-type calcium channel  
β1A  beta 1A subunit of the skeletal L-type calcium channel 
γ    gamma subunit of the skeletal L-type calcium channel 
α2δ   alpha 2 delta subunit of the skeletal L-type calcium channel 
μl  microliter 
μg  microgram 
μM  micromol 
µm  micrometer 
∞  infinitive 
 
A 
Å  angstrom  
AID  alpha interaction domain  
 
B 
BA band pass 
Ba2+  barium 
BaCl2  barium chloride 
bp  basepairs 
BSA  bovine serum albumin 
 
C 
ºC  Celsius (degree temperature)  
C  carboxyl terminus 
Ca2+

  calcium 
CaCl2  calcium chloride 
CaM Ca2+-calmodulin  
CaV  voltage-dependent L type calcium channel 
cDNA  complementary deoxyribonucleic acid 
CFP  cyan fluorescent protein 
CIP  calf intestinal alkaline phosphatase 
cm  centimeter 
CMF  calcium-magnesium-free 
CO2  carbon dioxide 
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CRU  calcium release unit 
cryo cryogenic 
Cs2EGTA  carbon disulfide ethylene glycol tetraacetic acid  
CsAsp  Cesium aspartate
CsOH  Cesium hydroxide 
CyPet  cyan fluorescent protein for energy transfer 
 
D 
Da   Dalton 
dd H2O double-distilled water 
DHP  dihydropyridine 
DHPR  dihydropyridine rezeptor 
DM   dichroic mirror 
DMEM  Dulbecco´s modified eagle medium 
DNA  desoxyribonucleic acid 
dNTP  deoxyribonucleoside triphosphate 
dys  dyspedic
 
E 
E.coli  Escherichia coli 
EC   excitation-contraction 
ECACC  European Collection of Cell Cultures 
ECFP  enhanced cyan fluorescent protein 
ECL   entactin-collagen IV-laminin 
EDTA  ethylene diamine triacetic acid 
e.g.   exempli gratia (for example) 
EGFP  enhanced green fluorescent protein 
EM   electron microscopy  
Eq  equation 
et al.   et alii (and others) 
EYFP  enhanced yellow fluorescent protein 
 
F  
FBS   fetal bovine serum 
FP   fluorescent protein(s) 
FRET  fluorescence resonance energy transfer 
fw   forward 
 
G 
g  gravitational force
 
H 
h  hour(s) 
HEK  human embryonic kidney 
HF  high fidelity  
HS  horse serum 
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I 
I  intensity 
i.e.  id est (that is) 
 
J 
JP junctional protein 
 
K 
KCl  potassium chloride 
kDa  kilodalton 
 
L 
l  liter 
LB  Luria Bertani  
LUT  look up table  
 
M 
M  molar 
MCS  multiple cloning site
MDa  megadalton 
mdg  muscular dysgenesis   
Mg2+  magnesium 
MgCl2  magnesium chloride 
MgSO4  magnesium sulphate 
MH  malignant hyperthermia  
min  minute(s) 
ml  milliliter  
mm  millimeter 
mM  millimolar 
MΩ  megaohm 
ms  milliseconds 
mV  millivolt 
 
N 
N   Adenine or Cytosine or Guanine or Thymine 
N   amino terminus 
n   nucleus 
NA   numerical aperture 
Na+   sodium 
NaCl  sodium chloride 
NaOH  sodium hydroxide 
NEB  New England Biolabs 
ng   nanogram 
nm   nanometer 
 
O 
OD600  Optical Density at 600 nanometer 
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P 
pA   picoampere 
PCR   Polymerase chain reaction 
Pen/Strep  benzylpenicillin procaine / dihydrostreptomycine  
pF   picofarat 
Pfu  Pyrococcus furiosus 
pH   negative logarithm of H3O+ ion concentration (mol/l) 
PH   pinhole 
PMT  photomultiplier tube  
pos.  position 
 
Q 
QC   quikchange 
 
R 
R   Adenine or Guanine 
rev   reverse 
RNase  ribonuclease 
ROI   region of interest  
rpm   rounds per minute 
RyR1  type 1 ryanodine receptor (isoform of skeletal muscle) 
RyR2  type 2 ryanodine receptor (isoform of myocardium) 
RyR3  type 3 ryanodine receptor  
 
S 
S.D.   standard deviation 
sec   seconds 
sm   silent mutation 
SR   sarcoplasmic reticulum 
 
T 
Taq  Thermus aquaticus 
TEACl  tetraethylammonium chloride 
TEAOH tetraethylammonium hydroxide 
TFB  transformation buffer 
tt  transverse tubules 
 
U 
UV  ultraviolet 
 
V 
V  Volt 
VGCC  voltage-gated Ca2+ channel  
v/v  volume/volume 
 

108 



                                         ABBREVIATIONS 
 

W 
W  Adenine or Thymine 
wt  wildtype 
w/v  weight/volume 
 
X 
XPet  CyPet or YPet 
 
Y 
YFP  yellow fluorescent protein 
YPet  yellow fluorescent protein for energy transfer 
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