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ZUSAMMENFASSUNG 
 
Dsungarische Zwerghamster (Phodopus sungorus) weisen physiologische Anpassungen auf, 
um in dem extremen kontinentalen Klima ihres natürlichen Lebensraums überleben zu 
können. Besonders im Winter, wenn die Umgebungstemperatur weit unter -40 °C fallen kann 
und die Futterverfügbarkeit eingeschränkt ist, sind Mechanismen zur Energieeinsparung 
überlebenswichtig. Ausgelöst durch abnehmende Tageslängen färben Dsungarische 
Zwerghamster in ein gut isolierendes weißliches Winterfell um, sie zeigen täglichen Torpor 
(ein Zustand charakterisiert durch Hypometabolismus und Hypothermie), Hodenregression 
und eine Körpergewichtsabnahme. Vorausgehende Studien haben jedoch gezeigt, dass 
freiwillige Laufaktivität einige dieser Winter-Anpassungen beeinflusst. Hamster mit Zugang 
zu einem Laufrad sind nur selten torpid, sie zeigen eine verzögerte Hodenregression und eine 
Körpergewichtszunahme.  
Ergänzend zu den bereits bekannten Einflüssen konnten wir zeigen, dass Laufradaktivität eine 
erfolgreiche Reproduktion negativ beeinflusst. Wir fanden eine reduzierte Anzahl an 
Trächtigkeiten und vermehrten Infantizid, sowohl bei freiwillig laufenden Zuchtpaaren als 
auch bei einzeln gehaltenen Weibchen. Folglich hat die zusätzliche energetische 
Herausforderung der Laufradaktivität das Gleichgewicht zwischen mütterlicher Investition in 
die Jungtiere und eigener Versorgung eindeutig auf Kosten des Fortpflanzungserfolgs 
verschoben. Um weitere, durch Laufaktivität induzierte Veränderungen zu ermitteln, die dem 
Gewichtsanstieg von Winter-angepassten Hamstern unterliegen könnten, haben wir den 
Einfluss von Laufradaktivität auf die Genexpression im hypothalamischen Nukleus arcuatus 
(ARC) untersucht. Der ARC ist ein Gehirnzentrum, das an der Regulation des energetischen 
Gleichgewichts beteiligt ist. Wir konnten zeigen, dass weder die Expression von orexigenen 
noch anorexigenen Genen durch Laufaktivität im Kurztag verändert wurde. Der Melanocortin 
Signalweg und sekretorische Prozesse in einem Unterbereich des ARC (dmpARC) scheinen 
jedoch stimuliert zu werden. Zudem haben wir den Nachweis erbracht, dass durch 
Laufaktivität induziertes Wachstum zu dem Anstieg im Körpergewicht beiträgt. Die 
Quantifizierung der Genexpression im Schilddrüsensystem hingegen zeigte, dass die zentrale 
Wahrnehmung der Photoperiode nicht beeinflusst wurde. Daraufhin haben wir in einer 
nachfolgenden Studie untersucht, ob durch Laufaktivität induzierte Signale aus der Peripherie 
die Mechanismen beeinträchtigen könnten, die der saisonalen Körpergewichtsregulation 
unterliegen. Folglich haben wir die Phosphorylierung von Enzymen, die in den Stoffwechsel 
der Myozyten involviert sind, im Musculus gastrocnemius analysiert. Außerdem wurden die 
Konzentrationen von Insulin und dem Insulinähnlichen Wachstumsfaktor-1 im Serum 
bestimmt. In einer weiteren Studie wurde zum ersten Mal die zeitliche Abfolge 
hypothalamisch exprimierter Gene, von denen angenommen wird, dass sie an der 
Körpergewichtsregulation beteiligt sind, in Hamstern, die ein Jahr lang in natürlicher 
Photoperiode und Umgebungstemperatur gehalten wurden, untersucht. Da sich die 
Genexpressionen, wie z.B. von type 2 deiodinase (Dio2), monocarboxylate transporter 8 
(Mct8) und somatotropin release-inhibiting factor (Srif) vor oder parallel zu dem 
Körpergewicht änderten, konnte bestätigt werden, dass sie an der Regulation des saisonalen 
Körpergewichtszyklus beteiligt sind. 
Insgesamt nehmen wir an, dass mehrere Signalwege, die in die Regulation des energetischen 
Gleichgewichts involviert sind, durch freiwillige Laufradaktivität beeinflusst werden. Dabei 
könnten sich bereits kleine Veränderungen in einzelnen dieser Signalwege aufsummieren und 
somit einen Gewichtsanstieg in Winter-angepassten Dsungarischen Zwerghamstern 
ermöglichen. 
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SUMMARY 
 
To be able to survive the extreme continental climate in their natural habitat, Djungarian 
hamsters (Phodopus sungorus) exhibit physiological adaptations. Particularly in winter, when 
the ambient temperature may drop far below -40 °C and food availability is restricted, 
mechanisms to save energy are essential. Triggered by decreasing day lengths, Djungarian 
hamsters moult into a well-insulating whitish winter fur, they show daily torpor (a state of 
hypometabolism and hypothermia), testes regression and a reduction in body mass. However, 
in previous studies, voluntary exercise in short days has been shown to affect some of these 
winter-acclimatizations. Hamsters with access to a running wheel are rarely torpid, they show 
a delayed testes regression and a body weight gain. 
In addition to the already known influences we could show that wheel-running activity 
negatively affects successful reproduction. We found a decreased number of pregnancies and 
increased infanticide in voluntarily exercising breeding pairs and singly kept females. Thus, 
the additional energetic challenge due to wheel-running activity clearly shifted the balance 
between maternal investment into the offspring and self-maintenance at the expense of 
reproductive success. To further determine exercise-induced changes that might underlie the 
weight gain in winter-adapted hamsters, we investigated the influence of wheel running on 
gene expression in the hypothalamic arcuate nucleus (ARC). The ARC is a brain centre that is 
involved in energy balance regulation. We could show that the expression of neither 
orexigenic nor anorexigenic genes was changed due to exercise in short days. However, the 
melanocortin pathway and secretory processes in a sub-region of the ARC (dmpARC) seem 
to be stimulated. Moreover, we provide evidence that exercise-induced growth contributes to 
the increase in body mass. Quantification of gene expression in the thyroid system on the 
other hand indicated that the central perception of photoperiod was not affected. We 
thereupon investigated in a subsequent study, whether exercise-induced signals from the 
periphery might affect the mechanisms underlying seasonal body weight regulation. 
Therefore, the phosphorylation of enzymes involved in myocyte metabolism in the 
gastrocnemius muscle was analysed. In addition, serum concentrations of insulin and insulin-
like-growth factor 1 were determined. In another study, the temporal sequence of 
hypothalamic expression for genes, assumed to be involved in body weight regulation, was 
investigated for the first time in hamsters kept in natural photoperiod and ambient temperature 
for one year. Since gene expression, such as type 2 deiodinase (Dio2), monocarboxylate 
transporter 8 (Mct8) and somatotropin release-inhibiting factor (Srif) changed prior to or in 
parallel to the body mass, they could be confirmed to be involved in the regulation of the 
seasonal body weight cycle.  
Altogether, we assume that several pathways involved in energy balance regulation are 
affected by voluntary wheel-running activity. Thereby, already small changes in some of 
these pathways might sum up, thus allowing a weight gain in winter-acclimatized exercising 
Djungarian hamsters. 
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ABBREVIATIONS 

 

AA-NAT  arylalkylamine-N-acetyltransferase 

ACC  acetyl CoA carboxylase 

AGRP  agouti-related protein 

AICAR 5-amino 4-imidazolecarboxamide riboside 

Akt  serine/threonine kinase or protein kinase B 

AMP  adenosine monophosphate 

AMPK  adenosine monophosphate-activated protein kinase 

α-MSH α-melanocyte-stimulating hormone 

ANOVA analysis of variance 

ARC  arcuate nucleus 

ATP   adenosine triphosphate 

BAT  brown adipose tissue 

BSA  bovine serum albumin 

C  control 

CART  cocaine- and amphetamine-regulated transcript 

cDNA  complementary deoxyribonucleic acid 

CPT-1  carnitine palmitoyl transferase 1 

CRABP-2 cellular retinoic acid binding protein 2 

CRBP-1 cellular retinol binding protein 1 

CSF  cerebrospinal fluid 

DEXA  Dual-Energy X-ray Absorptiometry 

DIO2  type 2 deiodinase 

DIO3  type 3 deiodinase 

dmpARC dorsal medial posterior arcuate nucleus 

DTT  dithiothreitol 

EDTA  ethylene diamine tetraacetic acid 

EGTA  ethylene glycol tetraacetic acid 

ERK-1/2 extracellular signal-regulated kinase 1/2 or p44/42 MAPK 

FSH   follicle stimulating hormone 

GABA  γ-aminobuyric acid 

GH  growth hormone 

GHRH  growth hormone-releasing hormone 
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GLUT-4 glucose transporter 4 

GnRH  gonadotropin-releasing hormone 

GPR50  G-protein-coupled receptor 50 

h  hour(s) 

H3R  histamine 3 receptor 

HRP  horseradish peroxidase 

5-HT-2A/7 serotonin receptor 2A/7 

i.c.v.  intracerebroventricular 

IGF-1  insulin-like-growth factor 1 

IGFR-1 insulin-like-growth factor receptor 1 

IL-6  interleukin 6 

JAK  janus kinase 

LD  long day length (i.e. summer) 

LH  luteinising hormone 

MAPK  mitogen-activated protein kinase 

MC3/4  melanocortin-3/4 

MCT8  monocarboxylate transporter 8  

ME  median eminence 

min  minute(s) 

MRI  magnetic resonance imaging 

mRNA  messenger ribonucleic acid 

NPY  neuropeptide Y  

NTS   nucleus of the solitary tract 

PBN   parabrachial nucleus 

PBS  phosphate buffered saline 

PC  personal computer 

PC-2  prohormone convertase 2 

PFA  paraformaldehyde 

PGC-1  peroxisome-proliferator-activated receptor γ co-activator-1 

PI3K  phosphatidylinositol 3-kinase 

POMC  proopiomelanocortin 

PT  pars tuberalis 

PVDF  polyvinylidene difluoride 

PVN  paraventricular nuclei 
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RAR  retinoic acid receptor 

rev.  revolutions 

RNA  ribonucleic acid 

rT3  reverse thyroid hormone (inactive) 

RT-PCR reverse transcriptase polymerase chain reaction 

RW  running wheel 

RXRγ   retinoid X receptor γ 

SCN  suprachiasmatic nuclei 

SD  short day length (i.e. winter) 

SDS  sodium dodecyl sulphate 

SEM  standard error of the mean 

SgIII/VI secretogranin III/VI 

SOCS3 suppressor of cytokine signalling 3 

SRIF  somatotropin release-inhibiting factor 

SS  summer solstice 

SSC  standard saline citrate 

STAT  signal transducer and activator of transcription 

T2  diiodothyronine (inactive) 

T3  active thyroid hormone (triiodothyronine) 

T4  thyroid prohormone (thyroxine)  

Ta  ambient temperature 

TBS  Tris buffered saline 

TEA  triethanolamine 

TLQP-21 (nonacronymic) 

TRH  thyrotropin-releasing hormone 

tRNA  transfer ribonucleic acid 

TSH  thyroid stimulating hormone 

VGF  (nonacronymic) 

WS  winter solstice 
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One of the most serious public health problems worldwide is obesity, with increasing 

prevalence in the 21st century. Obesity is associated with various sequels (cardiovascular 

diseases, type 2 diabetes, cancer etc.), whereby life expectancy is reduced. The cause of this 

disease is excess energy consumption in combination with a lack of energy expenditure 

through metabolism or exercise. Developing therapies to help the increasing number of 

diseased people is the main focus of recent science in this field. Therefore, basic research in 

energy homeostasis regulation and body weight control ranks first. A suitable animal model 

for this kind of investigations is the Djungarian hamster (Phodopus sungorus; also known as 

Siberian hamster). This small mammal naturally shows a pronounced seasonal cycle in body 

mass, which is associated with seasonal adiposity (Wade and Bartness 1984). Alterations in 

body and fat mass can easily be examined by transferring the photoperiodic hamster species 

to different light regimes.  

The following sections further introduce the Djungarian hamster as an animal model and 

deliver insights into established pathways in the brain and the periphery that are known to be 

involved in the regulation of body mass. Besides photoperiod, another ‘tool’, namely wheel-

running activity in the Djungarian hamster, is demonstrated to be suitable to challenge and 

investigate the mechanisms underlying seasonal body weight regulation. 

 

 

The Djungarian hamster and seasonal adaptations 

 

Seasons derive from to the yearly rotation of the earth around the sun and the tilt of the earth’s 

axis. At latitudes above and below the equator, considerable changes in climate and day 

lengths occur in the course of one year, as both hemispheres are illuminated and heated by the 

sun with changing duration. During evolution, strategies to adapt to seasonal changing 

conditions were beneficial for survival in local animals that were not able to escape if 

environmental conditions (temperature, precipitation and food availability) became 

temporarily unfavourable. Thus, many species that do not exhibit the preconditions to migrate 

in winter are seasonal in their behaviour and physiology themselves. The most reliable factor, 

changing consistently in the course of one year, is photoperiod. In mammals, the perception of 

this environmental signal results in neuroendocrine changes leading to seasonal adaptations 

(for review, see Scherbarth and Steinlechner 2010).  

Djungarian hamsters are native to an area including the steppes of northern Kazakhstan and 

China, Mongolia and southern Siberia (Flint 1966), approximately between 47°N and 57°N. 
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According to the continental climate, environmental temperatures may range between 40° C 

in summer and -72 °C in winter. To survive this extreme annual amplitude in climate and 

ensuing food availability (seeds and insects), Djungarian hamsters adapt physiologically and 

show annual cycles in gonadal size and function, torpor occurrence, pelage colour and body 

weight, all of which are induced by photoperiod (Figala et al. 1973, Hoffmann 1973). The 

hamsters are long-day (LD) breeders, showing fully developed gonads and an associated 

period of reproduction during spring and summer. Regression of the gonads takes place 

during the transition from summer to winter, as day lengths decline, leading to reproductive 

quiescence (Figala et al. 1973, Hoffmann 1973). Additionally, individuals moult from a 

greyish-brown summer fur into a whitish winter fur, which shows improved properties in 

thermal insulation (Heldmaier and Steinlechner 1981a). In winter, the animals show an 

increased fur depth and a higher proportion of short wool hair (Kuhlmann et al. 2003). The 

change back to the summer fur takes place between late winter and early spring (Figala et al. 

1973, Hoffmann 1973). Together with a decreased heat loss because of the better insulating 

winter fur, short phases of spontaneous daily torpor lead to a reduction in total energy 

requirements (Heldmaier and Steinlechner 1981b, Heldmaier et al. 1982). Daily torpor is 

characterized as a state of reduced metabolic rate and decreased body temperature not below 

14 °C (Figala et al. 1973, Körtner and Geiser 2000). The hypometabolic and hypothermic 

state usually occurs the first time after 12-13 weeks under short-day (SD) conditions (Elliott 

et al. 1987, Ruf et al. 1993). Torpor bouts may last up to eight hours and occur during the 

light phase (i.e. the inactive phase of the hamsters). Furthermore, in response to decreasing 

photoperiod in autumn, Djungarian hamsters spontaneously reduce food intake and body mass 

(Knopper and Boily 2000). Dependent on sex, they reach a minimum weight of about 25-30 g 

in winter, compared to a maximum of 40-45 g in summer (Figala et al. 1973, Hoffmann 

1973). The advantages of this adaptation are further decreased energy requirements of a 

smaller hamster in winter (Steinlechner et al. 1983), facilitating survival during this 

unfavourable time of the year. 

After prolonged exposure to SD, the photoneuroendocrine system develops refractoriness. 

This lack of response to the inhibitory SD signal induces the hamsters’ reversion from the 

winter phenotype to the summer state in anticipation of the favourable time for reproduction 

in spring (Hoffmann 1978, 1979, Schlatt et al. 1993). Thus, spontaneous recrudescence, as 

well as the increase in body mass and the moult to the summer fur are induced despite the 

short photoperiod. Subsequently, hamsters require a period of about 10-15 weeks in LD to re-

sensitize the neuroendocrine system to the inhibitory SD signal again (Bittman 1978, 
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Kauffman et al. 2003, Reiter 1972, Stetson et al. 1977). However, the mechanisms involved in 

the development of photorefractoriness remain to be elucidated. Up to now, it is assumed that 

refractoriness occurs due to an inability to read the SD melatonin signal. 

In mammals, the perception of photoperiodic information is linked to the eyes. Photoreceptors 

of the retina are stimulated by light and transmit information via the retinohypothalamic tract 

to the hypothalamic suprachiasmatic nuclei (SCN) (Larsen et al. 1998) where the circadian 

clock resides. Its rhythmic output entrains metabolism, physiology and behaviour to the 24-

hour-period of a day (for review, see Welsh et al. 2010). Across the paraventricular nuclei 

(PVN), the clock’s output is conveyed to the pineal gland via a multisynaptic pathway and the 

sympathetic nervous system (Larsen et al. 1998). Within the pineal gland, neural information 

is transformed into an endocrine signal in the form of rhythmic secretion of melatonin into the 

blood stream and cerebrospinal fluid (CSF). The rate limiting enzyme for the synthesis of 

melatonin in the pinealocytes is arylalkylamine-N-acetyltransferase (AA-NAT) that catalyses 

the conversion of serotonin into a melatonin precursor. Since AA-NAT is active only during 

night (Klein and Weller 1970), the duration of the melatonin peak is positively correlated with 

the night length. Subsequently, the hormonal signal acts in the brain and in tissues where 

melatonin receptors are expressed. There is accumulating evidence that the pars tuberalis (PT) 

of the pituitary gland is one target site for the action of melatonin. The PT in turn transduces 

photoperiodic changes into seasonally changing patterns of prolactin secretion by the pituitary 

gland, which triggers a cascade of processes leading to seasonal changes in physiological 

traits (Duncan and Goldman 1984, Dupré et al. 2008, Hazlerigg et al. 1996, Wagner et al. 

2007). However, further research is necessary to identify other brain areas that are possibly 

involved in melatonin-mediated signalling. 

 

 

Seasonality and exercise 

 

Hamsters are known for their intense and voluntary wheel-running activity, which is feasible 

for continuous long-term recordings. Registration of wheel running is primarily used in 

biological rhythms research, where the hamsters’ endogenous rhythm is assumed to be 

reflected by the day-night activity patterns. However, the nature of voluntary wheel-running 

activity in captive rodents is discussed controversially (for review, see Sherwin 1998). It 

remains unclear, whether wheel running in small laboratory cages is a reflection of the 

locomotor activity that would also occur in the natural habitat, or whether it is an artefact of 
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captive environments or of the running wheel (RW) itself. One study revealed that even cage 

enrichment has only very small effects on the pattern and amount of running-wheel activity in 

Syrian hamsters (Mesocricetus auratus) (Reebs and Maillet 2003). This finding supports the 

hypothesis that voluntary wheel-running activity might be self-reinforcing (Sherwin 1998).  

In further studies, wheel-running activity has been shown to have various effects in rodents. 

For example, spatial learning in rats is improved through physical exercise (Fordyce and 

Farrar 1991). Furthermore, the proliferation of precursor cells, cell survival and neurogenesis 

is increased in the hippocampus of exercising mice (van Praag et al. 1999). In addition, 

physiological and morphological changes were found in voluntarily exercising Syrian and 

Djungarian hamsters. Like Djungarian hamsters, Syrian hamsters show seasonal changes in 

gonadal size and body weight but they increase body mass in response to shortening 

photoperiods (i.e. pre-hibernation fattening). Several studies showed both incomplete gonadal 

regression and inhibited hibernation in this hamster species caused by wheel-running activity 

in SD (Gibbs and Petterborg 1986, Menet et al. 2003). Furthermore, prolonged exercise in 

Syrian hamsters evoked an increase in body mass (Borer and Kaplan 1977, Borer and Kooi 

1975, Gattermann et al. 2004) due to exercise-induced growth (Borer and Kelch 1978, Borer 

and Kuhns 1977). However, the perception of photoperiodic information was not impaired in 

hamsters with access to a RW (Menet et al. 2005).  

Studies in the Djungarian hamster revealed similar results concerning the influence of wheel-

running activity on seasonal acclimatizations (Scherbarth et al. 2007, 2008). In an experiment 

under natural photoperiod and natural ambient temperature (Ta), Scherbarth and coworkers 

(2007) found the seasonal cycle in body weight and adiposity to be affected by wheel-running 

activity. Instead of the typical SD-induced decrease in body mass, the animals increased their 

body mass and remained heavy. Furthermore, the results indicated that mainly lean mass was 

responsible for the exercise-induced increase in body mass.  

In the present study, we thereupon investigated signalling pathways in skeletal muscle of 

exercising hamsters, as muscles are the main component of lean mass. We hypothesized that 

altered signalling from peripheral skeletal muscle to the brain might be involved in affecting 

the mechanisms that regulate the seasonal body weight cycle in Djungarian hamsters (see 

chapter 4).  

Like in Syrian hamsters, a growth-stimulating effect of wheel-running activity has also been 

demonstrated in Djungarian hamsters. Under SD conditions, Scherbarth and coworkers (2008) 

found elongated femora in exercising hamsters compared to controls. Besides body mass, 

voluntary exercise also affected torpor and the gonadal cycle. Torpor was inhibited and 
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testicular recrudescence was advanced in hamsters with access to a RW. Likewise, in a 

following study it was shown that testes regression in SD is delayed due to wheel-running 

activity (Scherbarth et al. 2008).  

In the present study, we investigated the influence of voluntary exercise on reproduction to 

further shed light on the challenge of high energetic costs for the females during reproduction 

and additionally increased energy expenditure due to wheel-running activity (see chapter 2).  

However, from all examined seasonal traits, only the moult to the whitish winter fur was not 

affected by wheel-running activity in Djungarian hamsters (Scherbarth et al. 2007, 2008). 

That provides evidence that the perception of photoperiod is not impaired by exercise, as it 

was shown for Syrian hamsters (Menet et al. 2005).  

 

 

Mechanisms for short-term and long-term energy balance regulation in the hypothalamus 

 

The arcuate nucleus (ARC) in the hypothalamus is an important brain centre that maintains 

energy homeostasis by integrating peripheral metabolic and nutritional signals (for review, 

see Kalra et al. 1999), such as leptin and insulin (see Peripheral nutritional hormones). The 

ARC resides at the base of the hypothalamus on either side of the CSF-filled 3rd ventricle and 

close to the hypothalamo-hypophyseal portal system that links the hypothalamus and the 

anterior pituitary with the brain. The anterior pituitary receives signal molecules through the 

blood of the portal capillaries and is involved in the control of other endocrine glands. 

Facilitating the linking role with the hypothalamus, the median eminence (ME) at the base of 

the 3rd ventricle does not form a blood brain barrier. However, a barrier (through tight 

junctions) (Mullier et al. 2010) as well as a link (through transcytosis) between CSF, brain 

and portal blood supply to the pituitary gland is formed by tanycytes (for review, see 

Rodriguez et al. 2005). Tanycytes are elongated bipolar glial cells, which are located in the 

basolateral walls of the ependymal layer of the 3rd ventricle. Their cell bodies are part of the 

ependymal layer and the processes proceed through the ME to the portal capillaries (Figure 

1). Through this design, the ME bathes in the 3rd ventricular and subarachnoidal CSF and is 

accessible by circulating factors. However, substances in the portal capillary spaces are not 

able to enter the 3rd ventricular CSF or the intercellular space of the ARC. But the other way 

around, neurohormones of the ARC can reach the portal capillaries by axonal transport 

through tanycytes.  

The homeostatic system in the ARC that regulates short-term energy balance by affecting  
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Figure 1: Detail of a coronal brain section 

(Phodopus sungorus) in the region of the 

arcuate nucleus (ARC), stained via 

immunohistochemistry for vimentin protein 

(magnification: x 50). EL: ependymal layer of 

the 3rd ventricle, 3V: ventral 3rd ventricle, T: 

tanycytes, ARC: area of the arcuate nucleus, 

ME: median eminence  

 

 

food intake and energy expenditure involves two antagonistically acting populations of 

neurons (for review, see Sainsbury and Zhang 2010) (Figure 2). Neurohormones that are 

expressed and secreted from these neurons can modulate the activity or response of target 

neurons in other brain nuclei. During food deprivation, the expression of orexigenic 

neuropeptides such as neuropeptide Y (NPY) and agouti-related protein (AGRP) increases, 

thus stimulating food intake and reducing energy expenditure to compensate for the energy 

deficit. Simultaneously, the expression and secretion of satiety-inducing anorexigenic 

neuropeptides [proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated 

transcript (CART)] is inhibited. POMC is the precursor of α-melanocyte stimulating hormone 

(α-MSH) that mediates its anorexigenic effects by binding to the melanocortin-4 (MC4) 

receptor in the PVN. The PVN is located on either side of the roof of the 3rd ventricle and 

several neurons originating in the ARC project to this area. In addition to MC4 receptors, 

receptors for NPY (Y receptors) are found to be accumulated in this brain region (for review, 

see Sainsbury and Zhang 2010).  

The main mechanism to regulate energy expenditure involves the hypothalamo-pituitary-

thyroid gland axis. An increase in NPY or AGRP, in response to an energy deficit, inhibits the 

expression of thyrotropin-releasing hormone (TRH) in the PVN and thus reduces the activity 

of this axis. Hence, the secretion of thyroid prohormone (T4; thyroxine) and active thyroid 

hormone (T3; triiodothyronine) from the thyroid gland into the blood is limited, leading to a 

reduced metabolic rate. Thus, the PVN as well as the ARC, seem to be involved in the 

hypothalamic control of appetite and energy expenditure.  

However, in Djungarian hamsters the expression of the homeostatic genes (Npy, Agrp, Pomc, 

Cart) does not show seasonal cycles (Mercer et al. 2000, Reddy et al. 1999). In addition, 

lesions of the ARC do not disrupt seasonal changes in pelage colour, reproduction, food  

ARC 
 
ME 

EL 
 
3V 
 
T 
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Figure 2: Insulin and leptin are secreted into the bloodstream and interact with target neurons in the ARC. In 

negative energy balance, insulin and leptin activate the orexigenic neuropeptide Y (NPY) and agouti-related 

protein (AgRP) expressing neurons, whereas the anorexigenic POMC and CART expressing neurons are 

inhibited. These neurons project to the paraventricular nucleus (PVN). Through agonistic (NPY) and 

antagonistic (AgRP) receptor binding of secreted orexigenic peptides, anabolic mechanisms for the maintenance 

of energy homeostasis are initiated, involving the brain stem, the pituitary gland and other brain nuclei (modified 

after Niswender and Schwartz 2003 and Sainsbury and Zhang 2010). 

 



CHAPTER 1 
 

12 

intake and body weight (Ebling et al. 1998). These findings indicate that two different 

mechanisms are involved to differentiate between short-term (food availability) and long-term 

(seasonal) effects on body mass. At present, only POMC is considered to participate in both 

mechanisms as MC4 receptors were found to be photoperiodically regulated in the brainstem, 

which is suggested to be involved in the long-term regulation of body mass (Helwig et al. 

2009).  

To identify the mechanisms underlying the seasonal regulation of body weight, several 

studies pursued the identification of photoperiodically regulated genes in the brain of 

Djungarian hamsters (Barrett et al. 2005, 2006, 2007, 2009, Herwig et al. 2009, Nilaweera et 

al. 2009, Ross et al. 2004, 2005). A recently re-identified subregion of the ARC is the dorsal 

medial posterior arcuate nucleus (dmpARC), which was initially described as the dorsal 

tuberomamillary nucleus (Barrett et al. 2005). Quantification of gene expression in the 

dmpARC showed a photoperiodic regulation of histamine 3 receptor (H3R), the retinoid-

binding proteins cellular retinol binding protein 1 (Crbp-1) and cellular retinoic acid binding 

protein 2 (Crabp-2), as well as the nuclear retinoic acid receptors retinoid X receptor γ (Rxrγ) 

and retinoic acid receptor (Rar) (Barrett et al. 2005, 2009, Ross et al. 2004, 2005). 

Histamine and H3R are suggested to be involved in the regulation of food intake and body 

weight since histaminergic neurons project to, and H3Rs are expressed in, the ARC (Inagaki 

et al. 1988, Pillot et al. 2002). Studies that dealt with the role of the histaminergic system in 

Djungarian hamsters showed a SD-induced downregulation of H3R gene expression in the 

dmpARC (Barrett et al. 2005). Presumably, this leads to a reduced secretion of inhibitory 

neurotransmitters such as γ-aminobutyric acid (GABA), thereby activating dmpARC neurons. 

These data are in agreement with a study of Nilaweera and coworkers (2009), who found an 

increase in secretory and intracellular signalling pathways in the dmpARC of Djungarian 

hamsters in SD compared to LD. They quantified the gene expression of secretogranin III 

(SgIII) and SgVI, which both are translated into proteins contributing to the formation of 

secretory granules, as well as melanocortin-3 receptors (Mc3-R) and serotonin receptors 2A 

(5-HT-2A) and 5-HT-7, which are involved in the signalling pathway of the dmpARC. 

Furthermore, neurons of the dmpARC are involved in the innervation and regulation of the 

sympathetic nervous system input to white adipose tissue (Bamshad et al. 1998). Thus, an 

activation within the dmpARC in SD might contribute to the seasonal loss in fat mass. 

Additional four genes that are components of the retinoic acid signalling pathway were found 

to be photoperiodically regulated in the dmpARC. They include genes encoding the retinoid 

binding and transport proteins CRBP-1 and CRABP-2 and the retinoic acid receptors RXRγ 
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and RAR (Ross et al. 2004, 2005). Crbp-1 was found to be photoperiodically expressed in the 

ependymal layer of the 3rd ventricle as well (Barrett et al. 2006). Although several functions of 

retinoic acid are known, its targets and the precise involvement in regulating seasonal 

adaptations in Djungarian hamsters remain to be clarified. 

Gene expressions of Vgf (nonacronymic) and G-protein-coupled receptor 50 (Gpr50), as well 

as gene expression in tanycytes and both the thyroid and growth axis are also regulated 

seasonally in the hypothalamus of Djungarian hamsters. The role of these genes in seasonality 

and the hypothalamic energy balance circuitry is explained in detail in the introduction of the 

according chapters (3 and 5). 

 

 

Peripheral nutritional hormones 

 

Peripheral hormones are assumed to have an impact on energy homeostasis by stimulating or 

inhibiting the activity of orexigenic and anorexigenic peptide-secreting neurones. To date, 

only leptin and insulin have been identified as afferent adiposity signals (for review, see 

Niswender and Schwartz 2003). These hormones circulate in the blood stream, enter the 

hypothalamus and act on the energy balance system via the regulation of food intake. Thus, 

they present a negative-feedback signal from body fuel stores in the periphery to the 

hypothalamic ARC (Figure 2). 

Leptin is a well described hormone that is expressed and secreted by adipocytes, whereby its 

concentration in the blood changes in relation to body fat stores. Leptin receptors were found 

in the ARC, signalling through the janus kinase (JAK)/signal transducer and activator of 

transcription (STAT) pathway. The expression of target genes is regulated by translocation of 

activated STAT3 to the cell nucleus. Through leptin signalling, mRNA expression levels of 

anorexigenic Pomc and Cart, that mediate reduced appetite and increased energy expenditure, 

are up-regulated. However, exogenous leptin turned out not to be an effective therapy against 

obesity, as neuronal leptin resistance is common among obese individuals. They do not show 

reduced food consumption and increased energy expenditure despite high levels of plasma 

leptin. Investigations in Djungarian hamsters revealed results that are in line with these 

findings. Authors of previous studies reported that leptin levels changed in parallel to the 

seasonal cycle of body weight (fat). A decreased leptin gene expression in white adipose 

tissue and low serum leptin concentrations were found in hamsters in winter or under artificial 

SD conditions, in contrast to high leptin levels in summer or LD (Klingenspor et al. 1996, 
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2000). Gene expression of the leptin receptor (Ob-Rb) in the ARC was also down-regulated in 

SD compared to LD (Mercer et al. 2000). Hence, the body mass of Djungarian hamsters 

increases in the course from SD to LD despite increasing plasma leptin concentrations and up-

regulated leptin receptor expression in the ARC. Furthermore, leptin injections in SD 

decreased body fat mass to a larger amount compared to exogenous leptin administration in 

LD (Klingenspor et al. 2000). Therefore, leptin resistance in ‘obese’ LD hamsters was 

strongly suggested. The cause of leptin resistance in LD is still unclear but might involve 

increased signalling of the suppressor of cytokine signalling 3 (SOCS3). Socs3 is a gene, 

whose expression is regulated through the JAK/STAT pathway distal from the leptin receptor 

and SOCS3 inhibits leptin receptor signalling. Quantification of photoperiodically regulated 

Socs3 mRNA expression in the ARC of Djungarian hamsters (in advance of changes in body 

mass) revealed an up-regulated gene expression in LD compared to SD (Tups et al. 2004, 

2006a). This indicated inhibited leptin signalling in LD, probably causing leptin resistance. 

Plasma leptin levels were also measured in reference to wheel-running activity in Djungarian 

hamsters (Scherbarth et al. 2007). The study revealed similar leptin levels in hamsters with 

and without access to a RW in December, despite the significant difference in body mass. 

Hence, similar amounts of fat mass in both groups were suggested. In December, when 

control hamsters reached their body mass nadir, leptin treatment via implanted minipumps 

caused a decrease in body mass only in the RW group. Whether this was due to an already 

increased SOCS3 level in the control hamsters, which might cause leptin resistance, or due to 

the fact that these animals already reached their body mass nadir, remains open. 

In the present study we focussed on the measurement of plasma insulin concentration in 

Djungarian hamsters (see chapter 4) as up to now, studies analysing the involvement of 

insulin signalling in seasonal body weight regulation of the Djungarian hamster are scarce. In 

one study that sought to investigate this very issue, the authors caused diabetes in Djungarian 

hamsters via injection of streptozotocin (a pancreatic β cell toxin) (Bartness et al. 1991). As 

this treatment revealed a highly adverse effect on the animals’ state of health, even up to death 

and, additionally, subsequent essential insulin replacement therapy was carried out, the results 

have to be regarded cautiously.  

Insulin is secreted into the blood from pancreatic β cells and through the blood brain barrier it 

enters the ARC where insulin receptors are present. However, little is known about insulin 

signalling pathways in the hypothalamus. Contrasting to the assumed catabolic properties of 

the insulin pathway, Tups and colleagues (2006b) found insulin receptor mRNA expression to 

be down-regulated in SD. Likewise, another study revealed that plasma insulin concentrations 
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were low in SD compared to LD in Campbelli hamsters (Phodopus campbelli) (Mercer et al. 

1995), which are closely related to the Djungarian hamster. Conceivably, increased 

anorexigenic leptin signalling due to an increased leptin sensitivity in SD may down-regulate 

insulin signalling to prevent catabolic overdrive. However, the implicated mechanisms of a 

cross-talk between insulin and leptin receptor signalling still need to be elucidated. 

 

 

Aims and scope of the present study 

 

In chapter 2 we challenged Djungarian hamster breeding pairs and singly kept females 

energetically with voluntary wheel-running activity and concurrent reproduction. Thus, we 

were able to further investigate potential impacts on the hamsters’ high motivation to run.  

In another study (chapter 3), we investigated exercise-induced changes in hypothalamic gene 

expression of hamsters kept in SD and LD. Thereby, we clarified whether mechanisms at the 

level of the hypothalamus might be involved in the weight gain of individuals with access to a 

RW. 

Furthermore, we analysed signalling pathways in skeletal muscle of exercising Djungarian 

hamsters as we hypothesized that muscle-derived peripheral signals might feed back to the 

hypothalamus and thus might have an impact on the regulation of energy homeostasis and 

body weight (chapter 4).  

In the last chapter (5) we verified the involvement of photoperiodically expressed genes in the 

seasonal body weight cycle of Djungarian hamsters. Therefore, we performed an experiment 

in the course of one year in Hannover (52°N), under natural Ta and natural photoperiod with 

its gradual transitions from summer to winter and vice versa. 
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Abstract 

 

Energy demands of gestation and lactation represent a severe challenge for small mammals. 

Therefore, additional energetic burdens may compromise successful breeding. In small 

rodents, food restriction, cold exposure (also in combination) and wheel running to obtain 

food have been shown to diminish reproductive outcome. Although exhibited responses such 

as lower incidence of pregnancy, extended lactation periods and maternal infanticide were 

species-dependent, their common function is to adjust energetic costs to the metabolic state 

reflecting the trade-off between maternal investment and self-maintenance. In the present 

study, we sought to examine whether voluntary exercise affects reproduction in Djungarian 

hamsters (Phodopus sungorus), which are known for their high motivation to run in a wheel. 

Voluntary exercise resulted in two different effects on reproduction; in addition to increased 

infanticide and cannibalism, which was evident across all experiments, the results of one 

experiment provided evidence that free access to a running wheel may prevent successful 

pregnancy. It seems likely that the impact of voluntary wheel running on reproduction was 

associated with a reduction of internal energy resources evoked by extensive exercise. Since 

the hamsters were neither food-restricted nor forced to run in the present study, an energetic 

deficit as reason for infanticide in exercising dams would emphasise the particularly high 

motivation to run in a wheel. 

 

Keywords: reproduction, pup mortality, cannibalism, wheel-running activity 

 

 

Introduction 

 

Mammalian reproduction is associated with high energetic costs, representing a severe 

challenge especially for small species. In fact, lactation is the most energy-demanding time 

for female small mammals (Bronson 1985; Speakman 2008). In animals that exhibit 

postpartum estrous such as mice (Mus musculus), rats (Rattus norvegicus) and Djungarian 

hamsters (Phodopus sungorus; also known as Siberian hamster), lactation is even likely to 

coincide with gestation. Different strategies of feeding and allocation of energy resources 

have evolved to cope with elevated energy demands during reproduction. On the one hand, 

physiological adaptations are important that counteract and, thereby, attenuate the rise in 

energy expenditure during reproduction. For example, a decrease in brown adipose tissue 
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(BAT) activity saves energy by reducing heat production, which is known for several rodent 

species (Frontera et al. 2005; Martin et al. 1989; Schneider and Wade 1987; Trayhurn 1983; 

Wade et al. 1986). On the other hand, increased calorie intake is essential to avoid severe 

energy deficits during reproduction.  

In Djungarian hamsters, food consumption rises considerably during lactation but only 

slightly increases during pregnancy (Bartness 1997; Schneider and Wade 1987; Weiner 

1987). As a consequence, females exhibit a striking loss of body fat (~50%) before lactation 

(Schneider and Wade 1987), which is comparable to findings in Syrian hamsters 

(Mesocricetus auratus; Bhatia and Wade 1993; Wade et al. 1986). Hence, instead of 

increasing food intake appropriately to prevent depletion of fat stores, pregnant hamsters 

tolerate the negative energy balance. This counterintuitive strategy has been related to the 

hamsters’ specific ingestive behaviour; the fact that food hoarding is increased in pregnant 

and lactating Djungarian hamsters suggests that external energy resources might be involved 

in energy balance regulation (Bartness 1997; Keen-Rhinehart et al. 2010). Thus, energy 

reserves might be considered as being composed not only of body fat but also of hoarded 

food, which is easily available.  

In several rodent species, it has been demonstrated that an additional energetic burden such as 

food restriction, cold exposure and increased locomotor activity during pregnancy and/or 

lactation may compromise successful reproduction (Bronson and Marsteller 1985; Johnson 

and Speakman 2001; Labov et al. 1986; Marsteller and Lynch 1983, 1987a,b; McClure 1981). 

Interestingly, responses of reproductive females to these additional energetic challenges vary 

between rodent species. For example, when house mice (Mus musculus) were forced to run 

more than a certain number of wheel turns to receive a food pellet during lactation, they 

routinely cannibalised young (Perrigo 1987). In contrast, in the same study, deer mice 

(Peromyscus maniculatus) did not eliminate pups to support their own energy balance, but 

instead increased wheel running and thus feeding effort. The percentage of pregnant females, 

however, considerably decreased with increasing numbers of revolutions required to obtain 

food, indicating an ‘all-or-nothing’ response in deer mice. In Djungarian hamsters, cold 

exposure impaired both weight gain and survival of pups (Paul et al. 2010) although dams 

increased food intake at low ambient temperature (Ta) compared to moderate conditions.  

With regard to increased locomotor activity, both food intake and oxygen uptake also 

increased in non-reproductive Djungarian hamsters (Bartness and Wade 1985, Scherbarth et 

al. 2008). Moreover, we could show that running exercise affected the hamsters’ body 

composition (Scherbarth et al. 2007). The findings indicated a growth-promoting effect 
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(increased lean mass) associated with a reduction in relative fat mass. This anabolic effect of 

voluntary wheel running together with the rise in energy expenditure is likely to be an 

energetic challenge for pregnant and lactating females. For that reason, the hamsters in our 

experiments were not forced to run for food. Instead, we sought to examine whether voluntary 

wheel running affects reproduction. Indeed, in an earlier study, no differences in reproductive 

outcome were found between singly kept female hamsters either with or without access to a 

running wheel (RW) (Scribner and Wynne-Edwards, 1994a). However, females obtained RW 

access only one week before parturition, and they gave birth to merely one litter, i.e. without 

the burden of lactation and concurrent gestation. In the present study, therefore, we allowed 

free RW access from the time of mating until hamsters had produced several litters.  

 

 

Methods 

 
Animals 

Hamsters (Phodopus sungorus) were reared either outdoors under a natural photoperiod (NP; 

Hannover, ~52°N latitude) with natural Ta (experiment 1) or in a temperature-controlled 

chamber (23 ± 1°C) with an artificial light-dark cycle of 16 h of light and 8 h of darkness (LD 

16:8; experiment 2 and 3). Until the beginning of the experiments, hamsters were kept singly 

in polycarbonate cages (20.7 x 14 x 26.5 cm) and supplied with breeding diet (Altromin 7014) 

and tap water ad libitum, supplemented by a slice of apple once a week. During experimental 

procedures, breeding pairs and solitary dams were housed in bigger cages (26.5 x 18 x 42 cm) 

and received oat flakes, sunflower seeds and curd cheese (20% fat in dry matter) twice a week 

in addition to the common food (pellets and apple). 

 

Experimental design 

Initially, reproduction was compared between two parallel groups (RW vs. sedentary) of 

breeding pairs kept under natural lighting and temperature conditions. In the second 

experiment, we sought to examine whether running exercise has a lasting effect on 

reproduction and therefore chose a crossover trial. Because of the long duration, we had to 

carry out the experiment indoors using artificial lighting. Finally, in the third experiment, 

females were kept without male after mating. This enabled us to determine the females’ 

amount of exercise.  
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Experiment 1 

From 17 March until 9 June (2006), twelve virgin females (10-12 months old) and twelve 

males (6-12 months old) were kept outdoors in pairs and were provided with a wooden nest 

box and tissue for nesting material. Ta (mean: 12.2°C; range: -2 to 28°C) was measured at 

intervals of one hour with a temperature logger (DS1921L, iButton, Maxim Integrated 

Products, Inc., Sunnyvale, CA). For the duration of the experiment (12 weeks) six breeding 

pairs had free access to a running wheel (RW; ~14.5 cm in diameter). Commercial metal 

wheels were improved by a continuous running tread to avoid leg injuries. Wheel revolutions 

were registered continuously with a reed contact on the wire lid and a magnet attached to the 

wheel. Data were stored at 6-min intervals on a personal computer. To determine the 

individual contribution of female and male hamsters to the registered number of wheel turns, 

two breeding pairs were monitored with an infrared video camera for one night. Recordings 

were analysed by visual inspection (PC software Noldus) for the hamsters’ stay in the RW. 

For each interval (3 min), it was determined whether the female or male hamster, or both, 

used the RW. All hamsters were weighed once a week. For determination of reproductive 

success all pups were considered that were born within the twelve weeks and successfully 

weaned. Breeding pairs with pups younger than 21 days of age at the end of the twelve weeks 

were kept under the experimental conditions until weaning.  

 

Experiment 2 

Animals were kept in an artificial light-dark cycle (LD) of 16 hours of light and 8 hours of 

darkness (LD 16:8) at 22 ± 2°C. Virgin females (3 months old) and males (3-6 months old) 

were paired and provided with tissue for building nests and a RW (~14.5 cm in diameter) that 

either was locked (2a) or released (2b) (N = 5, each) for the first twelve weeks. Subsequently, 

for the second twelve weeks, locked RWs were released and vice versa (Fig. 2). Since wheel 

revolutions were not registered, breeding pairs were repeatedly monitored with an infrared 

video camera during the dark phase to verify their use of the RW. Adult hamsters were 

weighed twice a week to achieve body weight courses with higher resolution compared to 

experiment 1. Overall litter weights (including all pups of each litter) were determined each 

day until weaning (21st day). In case of new offspring, older siblings were removed from the 

cage. Two of five breeding pairs in experiment 2b did not reproduce at all. Staining of the 

uteri (according to Kopf et al. 1964) revealed that implantation scars were lacking. A low 

percentage of motile sperm found in the epididymis of both males indicated infertility. 
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Therefore, these breeding pairs were excluded from the results (N = 3). In experiment 2a, all 

litters that were born during the first twelve weeks were considered for calculations of mean 

litter size and litter frequency. However, only pups that were also successfully weaned within 

this period were included into calculation of weaned litter size. This applies also to the second 

section (RW locked) of experiment 2b. 

 

Experiment 3 

Female hamsters were kept in LD 16:8 at 20 ± 1°C. Before the beginning of the experiment, 

13 females were housed each with a male for five days (covering an estrous cycle), and were 

separated subsequently into two experimental groups. Pregnant (P) hamsters of one group had 

free access to a RW (PRW; N = 6) unlike the sedentary pregnant controls (PSED; N = 7). 

Females were 14 months old and had already produced four to six litters. Female hamsters 

with proven fertility were used to make sure that they will give birth to another litter during 

the experiment. A third group of females (unmated; 4-5 months old; N = 6) served as control 

group for wheel-running behaviour (CRW). Wheel revolutions were measured continuously as 

described in experiment 1. Body mass of the females was determined each day. For later 

analysis, data were aligned to the day of parturition.  

 

Statistics 

Results are given as mean values and SEM. Differences were considered significant if P < 

0.05. For comparison of two or three unpaired samples, t-test or one-way ANOVA were used, 

respectively. Paired samples were compared by paired t-test or repeated measures ANOVA. 

Statistical procedures were carried out using Statistica 6 (StatSoft, Tulsa, OK).  

 

 

Results 

 
Experiment 1 

Within the twelve weeks of the experiment (outdoors), all control breeding pairs (C; N = 6), 

i.e. without RW, produced offspring 2-3 times (Table 1). In the RW group, two female 

hamsters had no offspring at all and were excluded from analyses. Remaining females (RW; 

N = 4) had 1-4 litters. However, three litters (sizes not known) were cannibalised within two 

days after birth in the RW group. Cannibalised litters were the first and first two litters of 

breeding pairs. Subsequently, both pairs bred successfully.  
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Table 1 

Different reproductive parameters for exercising and sedentary hamsters compared within the respective 

experiment.  

   born weaned 

Exp. 
RW 

access 
N litter size litters/female litter size pups/pair 

       
no 6 –§ 2.5 ± 0.2 5.9 ± 0.5 14.3 ± 1.0* 

1 
yes 4 –§ 2.3 ± 0.6 6.0 ± 0.0 9.0 ± 1.7 

       
no 5.4 ± 0.6 **3.2 ± 0.4** **3.6 ± 0.5** **7.4 ± 1.3** 

2a 
yes 

5 
4.0 ± 1.0 0.6 ± 0.2 0 0 

       
yes  3.0 0.3 ± 0.3 3.0 0.3 ± 0.3 

2b 
no 

3 
6.1 ± 0.6 2.3 ± 0.3 3.3 ± 1.2 4.7 ± 2.0 

       
no  7 5.0 ± 0.6 1# 4.3 ± 0.5 –+ 

3 
yes  6 4.8 ± 0.9 1# 2.2 ± 1.1 –+ 

       
 

Results are given as mean ± SE; * significantly different to RW breeding pairs (P < 0.05; t-test); ** significantly 

different to experimental phase with released RW (P < 0.01; paired t-test); § litter sizes were not always 

determined at the day of parturition; # experiment was limited to one litter; + number of weaned pups/pair is 

equivalent to weaned litter size 

 

 

The number of weaned pups per breeding pair was significantly reduced in the RW group 

compared to controls (Table 1). In contrast, weaned litter size (without cannibalised litters; 

see above) was similar in both groups. Litter sizes ranged from 2-9 (C) and 2-10 pups (RW).  

The small number of two pups occurred only once per group, and it was the first litter of each 

female. 

Male RW hamsters significantly increased their body mass (39.6 ± 1.3 g vs. 47.6 ± 1.0 g;  

  

 

Figure 1: Wheel-running activity (6-min 

intervals) of a breeding pair kept outdoors 

under natural lighting conditions. One night 

after about 10 weeks of free RW access is 

depicted. The upper part of the figure shows 

the intervals (3 min) when the female (f) 

and/or male (m) used the RW. Both the total 

number of revolutions (20,594) and the  

pattern of running exercise (restricted to the nighttime) is representative. Sunset and sunrise were at 20:30 and 

04:05 h, respectively. 
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paired t-test; P = 0.01) unlike male sedentary controls (36.6 ± 1.5 vs. 38.9 ± 2.1 g; P = 0.17). 

In contrast to female controls, body weight courses of RW females showed a tendency of 

increasing body weights over the time of the experiment, too. However, the females’ body 

weight at the end of the experiment was variably affected by the individual stage of 

reproduction, which prevented a meaningful calculation. 

Video analysis revealed that both male and female hamsters of the two monitored breeding 

pairs extensively used the RW (Fig. 1). As expected, wheel-running activity in general was 

almost completely restricted to the night, i.e. from sunset to sunrise (activity records not 

shown). On average each breeding pair (N = 4) produced 33,272 ± 4,092 revolutions per day.  

 

Experiment 2 

2a)  

During the first twelve weeks of the experiment (RW locked) females gave birth to offspring 

2-4 times (Table 1; Fig. 2). A total of 83 pups were born (range of litter size: 1-8), however,  

 

 

 

Fig. 2 Mean pup body mass until weaning (or 

death) and litter frequency of breeding pairs in 

experiment 2a (a; N = 5) and 2b (b; N = 3). 

Different symbols represent litters of different 

breeding pairs 
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only 52 pups were born early enough to be weaned before experimental conditions changed 

(RW locked → RW released). Thirty-seven (71.2%) of these 52 pups survived until weaning 

(21st day). Only one pup was cannibalised out of the 31 pups that were born within the first 12 

weeks but were weaned during the following experimental section (RW released). 

While RWs were released, only three out of five breeding pairs produced offspring (a total of 

12 pups; range of litter size: 3-6) but none of them survived. Conceptions for the first two 

litters occurred during the first twelve weeks when RWs were still locked. Mean litter sizes 

did not differ significantly between both experimental conditions. 

 

2b)  

Only one litter was born and weaned while RWs were released (Table 1, Fig. 2). During the 

second period (locked RWs), 43 pups were born (range of litter size: 4-8). Females gave birth 

to offspring 2-3 times. In accordance with experiment 2a, only pups that were born early 

enough to be weaned within the twelve weeks (24) were included into calculation of weaned 

litter size. Actually, fourteen of these 24 pups were weaned (58.3%). 

Males and females of all breeding pairs in experiment 2 showed an increase in body weight 

after RWs had been released (Fig. 3). 

 

 

 

Fig. 3 Body weight development of a 

breeding pair in experiment 2a (a) and 2b (b). 

Both females and males exhibited the 

expected exercising-induced weight gain. 

Asterisks indicate time of parturitions 
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Experiment 3 

Litter sizes of PSED and PRW females were similar (Table 1) with ranges of 2-7 (PSED) and 1-7 

pups (PRW). The difference in weaned litter size did not reach significance. However, the 

percentage of offspring that survived until weaning was significantly reduced in PRW 

compared to PSED (36.2 ± 17.3% vs. 87.8 ± 6.3%; P = 0.013; t-test). This was due to three 

females in the PRW group that killed all their pups. Accordingly, these litters were not 

considered for calculation of weaned litter size. Activity records of these females showed only 

a slight decrease in wheel running at the day of parturition (Fig. 4b). In comparison, dams that 

weaned at least some of their pups, exhibited a striking decline in wheel-running activity at 

the day of parturition (about –80%) and recovered to prepartum levels about two weeks later 

(Fig. 4c). Analysis of wheel running during the last 8 days of pregnancy (day of parturition 

excluded) revealed no difference in the mean number of revolutions/day between females that 

killed all pups and females that weaned at least some of their pups (30,448 ± 2,344 vs. 23,665 

± 3,938). Similarly, wheel-running activity of unmated controls (25,983 ± 566; mean for the 

whole experiment) did not significantly differ from both other groups during pregnancy. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Wheel-running activity of (a) a non-reproductive female, (b) a dam that cannibalised all young within 24 

hours, and (c) a dam that weaned 4 out of 7 pups. Consecutive days (24 h) are depicted one below the other. The 

black bar at the top represents the dark phase. Days of parturition are indicated by an arrow. Occurrence of 

cannibalism is shown by asterisks 
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Discussion 

 
The present findings show a remarkable effect of free RW access on reproduction in 

Djungarian hamsters. In both breeding pairs and singly kept dams with RW access, 

reproductive outcome was reduced irrespective of lighting conditions (natural or artificial 

long photoperiods) and Ta (natural or constant). Litter sizes at birth were not affected 

compared to sedentary controls, but exercising hamsters exhibited a clear tendency towards 

infanticide. Furthermore, the present results strongly indicate that free access to a RW may 

prevent reproduction. 

It is important to note that the incidence of infanticide was not entirely restricted to RW 

hamsters. Cannibalism of single pups occurred also in breeding pairs without access to a RW, 

even though much more scarcely compared to exercising animals. Moreover, only RW 

hamsters cannibalised entire litters (exp. 1, 2a and 3). A similar behaviour has been observed 

in house mice that were forced to run for food (Perrigo 1987); whether female mice 

cannibalised entire litters soon after parturition or only reduced the number of pups was 

dependent on energetic demands of increased ‘foraging’ (rev./pellet). In the third experiment 

of this study, females that killed the whole litter after parturition did not run significantly 

more during the last half of pregnancy compared to females that weaned at least some of their 

offspring. This might have been due to individually different susceptibility to wheel running-

induced effects as already indicated by previous studies (Scherbarth et al. 2007, 2008).  

These previous examinations revealed that running exercise induces weight gain (lean mass) 

and skeletal growth. In accordance with the augmentation of lean mass, elevated body weight 

of exercising hamsters was not associated with an increase in the plasma leptin concentration 

(Scherbarth et al. 2007), which is known to be positively correlated with the amount of fat 

stores (Klingenspor et al. 2000). Thus, in the present study, the exercise-induced anabolic 

effect together with a decrease in the proportion of body fat might have contributed to 

unfavourable energetic preconditions for successful breeding. Furthermore, the adipose-

derived hormone leptin represents an important metabolic signal to the reproductive system. 

Since leptin stimulates hypothalamic secretion of gonadotropin-releasing hormone (GnRH), a 

decrease in circulating leptin and thereby GnRH secretion might have inhibited reproductive 

function (for review, see Popovic and Casanueva 2002). Speculation about leptin being 

involved in observed effects of wheel running on reproduction is strongly supported by recent 

observations in Djungarian hamsters (French et al. 2009), these providing convincing 

evidence that maternal investment is closely connected with the concentration of circulating 
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leptin. Leptin treatment in pregnant hamsters resulted in larger litters and suppressed maternal 

infanticide compared to vehicle-treated pregnant controls. Thus, leptin appears to be a crucial 

factor for energy allocation in favour of reproduction. Future examinations, therefore, should 

include measurement of blood leptin concentrations. 

Surprisingly, RW pairs in experiment 1 (natural photoperiod) gave birth to and weaned more 

pups compared to breeding pairs with a released RW in experiment 2 (artificial long 

photoperiod). This might be explained by additional stress, since offspring and adult hamsters 

were weighed much more frequently in experiment 2. Furthermore, only hamsters kept 

outdoors had access to a wooden nest box, which is likely to be a stress-reducing factor for 

burrow-dwelling hamsters.  

Analysis of wheel-running activity in singly kept females (experiment 3) revealed that the 

number of rev./day was similar in unmated controls and mated animals during pregnancy. 

However, compared to a slight decrease in wheel running of females that cannibalised their 

pups, the dams that successfully weaned some offspring had shown a striking drop in the 

number of rev./day (by about 80%) at the day of parturition. Lactating dams gradually 

increased rev./day afterwards and returned to prepartum levels around day 14 (postpartum), 

when the young were not completely dependent on milk anymore. This described pattern of 

wheel-running activity is very well in accordance with observations in a previous study 

(Scribner and Wynne-Edwards 1994b), where female hamsters not only consistently exhibited 

the temporary reduction in wheel running, but also invariably weaned their offspring. That 

indicates that the reduction in voluntary exercise is of energetic relevance for successful 

breeding. However, the reason for the different maternal behaviour of three females in our 

study (cannibalism of the whole litter and high wheel-running activity) remains unclear. 

Collectively, wheel-running behaviour considerably impaired reproductive outcome in 

Djungarian hamsters. Exercising animals, i.e., breeding pairs as well as solely kept dams, 

showed a clear tendency towards a higher incidence of cannibalism compared to sedentary 

controls. The findings suggest infanticide to be an energetic adjustment of the females, which 

has been demonstrated before in other rodent species. According to this, maternal responses to 

an additional energetic burden during reproduction in seasonal Djungarian hamsters appear to 

be comparable to those of house mice. However, the hamsters were neither food-restricted nor 

forced to run in the present study. Thus, an energetic deficit as reason for maternal infanticide 

in exercising females would highlight the pronounced motivation to run in a wheel. A high 

motivation, in turn, is well in accordance with the hypothesis that wheel-running activity is 

self-reinforcing and perceived by animals as ‘important’ (Sherwin 1998). Nevertheless, it is 
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still not known whether wheel running is merely an artefact of captive environments or of the 

RW itself, or whether it represents a natural behaviour, even though considerably enhanced.  
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Abstract 

 

The Djungarian hamster is a seasonal mammal that, driven by changing photoperiod, adapts 

physiologically to changing environmental conditions. Previous studies revealed that 

voluntary exercise in this species seems to interfere with the mechanisms that regulate the 

seasonal body weight cycle and energy expenditure. In short days (SD), access to a running 

wheel (RW) reverses the seasonally programmed decrease in body mass and hamsters gain 

weight. In this study, we investigated the influence of wheel-running activity on the 

expression of photoperiodically regulated genes in the hypothalamic arcuate nucleus (ARC), 

which is known to be involved in energy balance regulation. We could show that the 

expression of neither orexigenic [neuropeptide Y (Npy) and agouti-related protein (Agrp)] nor 

anorexigenic [proopiomelanocortin (Pomc) and cocaine- and amphetamine- regulated 

transcript (Cart)] genes seems to be involved in the body weight gain of exercising hamsters. 

However, there are some hints indicating that exercise in SD might stimulate the melanocortin 

pathway via POMC-derived α-melanocyte-stimulating hormone (α-MSH). Additionally, we 

found increased secretory processes in the dorsal medial posterior ARC (dmpARC) of 

exercising hamsters, indicated by Vgf (nonacronymic) gene expression. Furthermore, via 

quantification of somatotropin release-inhibiting factor (Srif) gene expression we provide 

evidence that exercise-induced growth contributes to the increase in body mass. However, 

quantification of photoperiodically regulated gene expression of G-protein-coupled receptor 

50 (Gpr50) and genes of the thyroid system revealed that the central perception of 

photoperiod is likely to be unaffected by voluntary exercise. Thus, further mechanisms that 

are involved in the weight gain of SD-RW hamsters remain to be elucidated.  

 

 

Introduction 

 

In the course of a year, photoperiod changes gradually in latitudes above and below the 

equator; from long day lengths (LD) in summer to SD in winter. This robust environmental 

signal allows animals to anticipate the forthcoming season and to undergo seasonal 

acclimatizations to ensure survival.  

In mammals, photoperiodic information is perceived by the retina that sends information via 

the retinohypothalamic tract to the suprachiasmatic nuclei (SCN). The rhythmic output of this 

circadian oscillator is conveyed to the hypothalamic paraventricular nuclei (PVN), which 
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transfer the information via a multisynaptic pathway and the sympathetic nervous system to 

the pineal gland (for review, see Bartness and Wade 1985b). Within the pineal gland, neural 

information is transformed into a hormonal signal. During the night, the hormone melatonin is 

synthesized and secreted into the blood and cerebrospinal fluid (CSF) as light inhibits 

hormone synthesis in pinealocytes. Consequently, the melatonin peak is positively correlated 

with the night length. The endocrine signal acts in the brain and in tissues where melatonin 

receptors are expressed and induces a cascade of processes leading to seasonal physiological 

alterations (for review, see Bartness et al. 2002).  

A robust animal model to study seasonal physiology is the Djungarian hamster (Phodopus 

sungorus; also known as Siberian hamster) a native species to western Siberia and eastern 

Kazakhstan where large seasonal changes in food availability and temperature occur. This 

species undergoes a number of physiological adaptations to survive the harsh conditions of 

winter it experiences in its natural habitat. These include a moult to a whitish and well-

insulating winter pelage (Heldmaier and Steinlechner 1981a, Kuhlmann et al. 2003), shallow 

daily torpor (a state of hypometabolism and hypothermia) (Heldmaier and Steinlechner 

1981b), gonadal regression and a reduction of body mass over a 12 to 16 week period during 

the autumn-winter period (Hoffmann 1973, Steinlechner et al. 1983). These SD-induced 

responses result in decreased energy expenditure, reducing the requirement for food intake in 

winter when many food sources are restricted (Heldmaier et al. 1982, Heldmaier and 

Steinlechner 1981a, b, Knopper and Boily 2000).  

The mechanisms underpinning appetite, energy metabolism and body weight regulation in 

seasonal mammals is not yet understood. However, food intake and energy balance 

mechanism are regulated centrally by the brain. A well described brain area, known to be 

involved in appetite and energy balance regulation is the hypothalamic arcuate nucleus 

(ARC), whose major function is the integration of peripheral nutritional signals in the 

homeostatic regulation of body weight. The principal neuropeptides involved in appetite and 

energy balance homeostasis are expressed and secreted by orexigenic (hunger inducing; NPY 

and AGRP) and anorexigenic (satiety inducing; POMC and CART) neurons. Changes in gene 

expression and balance between these neuropeptides is a key element involved in maintaining 

an appropriate body weight at which these peptides are viewed as components of a 

compensatory system (for review, see Morgan and Mercer 2001). Therefore, as a result of 

starvation the orexigenic peptides NPY and AGRP increase, whilst anorexigenic POMC 

decreases (Mercer et al. 1995, 2000).  
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Furthermore, several scientists have pursued the identification of photoperiodically regulated 

genes in the hypothalamus of Djungarian hamsters. Recently, a sub-region of the ARC with a 

photoperiodically differential gene expression of Vgf (nonacronymic) has been identified 

(dmpARC) (Barrett et al. 2005). VGF is assumed to be involved in the regulation of energy 

expenditure and reproduction and is activated in the dmpARC in SD (Hahm et al. 1999, 2002, 

Salton et al. 2000). 

Another important regulatory circuit of body weight in the brain includes thyroid hormone 

(T3/T4) that is known to regulate seasonal energy expenditure in Djungarian hamsters (Barrett 

et al. 2007). The production of thyroid prohormone (T4; thyroxine) in the thyroid gland is 

controlled by thyrotropin-releasing hormone (TRH) produced in the PVN. TRH neurons 

project to the median eminence (ME) wherefrom TRH reaches the anterior pituitary gland. 

Here, TRH induces the secretion of thyroid stimulating hormone (TSH), which, released into 

the blood, stimulates T4 production in the thyroid gland. T4 enters the brain across the blood-

brain barrier and through the CSF and is transported in the ME and ARC via astrocytes and 

tanycytes lining the 3rd ventricle. In the latter glial cells, T4 is activated by type 2 deiodinase 

(DIO2) which converts T4 to active T3. T3 uptake into cells of the ependymal layer of the 3rd 

ventricle is facilitated by the monocarboxylate transporter 8 (MCT8) (Friesema et al. 2003, 

Heuer et al. 2005, Visser et al. 2008). Its gene expression is regulated photoperiodically and is 

increased in SD leading to an increased T3 transport into the brain (Herwig et al. 2009). The 

actual level of active T3 in the hypothalamus is regulated by the intracellularly localized 

enzyme type 3 deiodinase (DIO3) in the ependymal layer, which converts T4 to inactive 

reverse T3 (rT3), or T3 to T2. Gene expression of Dio3 is also regulated photoperiodically, 

showing an upregulation in SD and thus leading to an overall decrease in hypothalamic T3 

concentrations, which is important for initiation of the SD catabolic state (for review, see 

Herwig et al. 2008). 

Another gene, whose expression is regulated photoperiodically in the ependymal layer of the 

3rd ventricle in the Djungarian hamster is the orphan G-protein-coupled receptor (Gpr50). 

Gpr50 mRNA expression is down-regulated in SD hamsters compared to LD (Barrett et al. 

2006). It belongs to the melatonin receptor subfamily, although it does not bind melatonin 

(Reppert et al. 1996). This receptor is localised in tanycytes lining the 3rd ventricle of the 

hypothalamus, at the border between the ventricular CSF, portal blood system of the ME and 

the hypothalamic neuropil, suggesting a role in the regulation of the hypothalamo-pituitary 

axis (Drew et al. 2001, Sidibe et al. 2010). 
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Furthermore, growth is regulated by two important hormones that are both expressed in the 

ARC. The stimulatory growth hormone-releasing hormone (GHRH) and the inhibitory 

somatotropin release-inhibiting factor (SRIF) reciprocally regulate the release of growth 

hormone (GH) from the anterior pituitary (for review, see Müller et al. 1999). To date, only a 

few studies examined the influence of photoperiod on growth in juvenile Djungarian 

hamsters. Based on low body mass and fat mass, accompanied by reduced gonadal weight in 

SD compared to LD hamsters, the authors assumed that this species inhibits growth in winter 

(Adam et al. 2000, Ebling 1994). 

However, the above described photoperiodically regulated and balanced circuits seem to be 

disturbed once Djungarian hamsters have free access to a running wheel (RW). They increase 

body weight independent of photoperiod and the seasonal cycle of body weight regulation is 

apparently lost. Furthermore, regression of the testes was shown to be impeded and torpor did 

not occur in voluntarily exercising Djungarian hamsters (Scherbarth et al. 2007, 2008). 

The aim of the present study was to investigate at a molecular level, whether voluntary wheel-

running activity modulates the perception of the photoperiod or whether it overrides 

mechanisms for the initiation of the SD catabolic state in Djungarian hamsters. Therefore, we 

examined the expression of several genes involved in short-term regulation of energy balance 

and long-term seasonal body weight adaptation in the hypothalamus of hamsters kept in LD 

and SD with and without access to a RW. 

 

 

Materials and Methods 

 

Animals and tissue collection 

Djungarian hamsters were bred and raised under a natural photoperiod and natural ambient 

temperatures in Hannover, Germany (52°N latitude). Water and food (hamster breeding diet, 

Altromin 7014, Lage) were available ad libitum, supplemented weekly by a piece of apple 

before the start of the experiments. Three experiments were conducted consecutively on adult 

male hamsters that were divided into four weight-matched groups. The experiments lasted 

either eight or twelve weeks. Hamsters kept in LD photoperiod were exposed to a light-dark 

cycle of 16 h of light and 8 h of darkness and hamsters in SD photoperiod were exposed to a 

light-dark cycle of 8 h of light and 16 h of darkness. Dim red light (< 5 lx) was provided 

during the dark phase in both photoperiods. Irrespective of the photoperiod, animals were kept 

at 21 ± 1 °C. In each experiment, six hamsters received a RW (Ø 14.5 cm) and were kept in 
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LD (LD-RW group). Further six animals stayed in LD without a RW (LD-C). Twelve 

hamsters were transferred to SD. Six of them received a RW (SD-RW) and six represented 

the sedentary control group without a RW (SD-C). Voluntary wheel-running behaviour in 

both RW groups was monitored continuously and stored every 6 min on a PC. Body weight 

was registered twice a week in all experiments. Food intake was measured in the 12 weeks 

experiment by weighing the rack weekly for calculation of differences in the amount of food. 

Animals were culled with carbon dioxide at the end of the experiments, 3-4 h after lights went 

on. Brains were immediately dissected, frozen on dry ice and stored at -80 °C for later 

procedure of in situ hybridizations. Whole animal bodies (without brains) of the first 8 weeks 

experiment were stored at -80 °C and later, thawed hamster carcasses were individually 

scanned by magnetic resonance imaging (MRI) (Echo MRI ™, Whole Body Composition 

Analyser, Echo Medical Systems, Houston, Texas). Body composition data were obtained as 

grams fat or lean tissue. 

 

Riboprobes 

Riboprobes complementary to fragments of the required DNA sequences were generated from 

Djungarian hamster, mouse or rat brain cDNAs by RT-PCR as described previously [Adam et 

al. 2000 (Cart), Barrett et al. 2005 (Vgf), Barrett et al. 2007 (Dio2, Dio3), Drew et al. 2001 

(Gpr50), Ebling et al. 2008 (Trh), Herwig et al. 2009 (Mct8), Mercer et al. 1995 (Npy), 

Mercer et al. 2000 (Agrp, Pomc), Ross et al. 2009 (Srif)]. Templates for riboprobe synthesis 

were generated by PCR amplification of the insert from plasmid DNA. M13 forward and 

reverse primers which spans both insert and polymerase transcription binding and initiation 

sites in the host vectors were used. One hundred µg of PCR product were used in an in vitro 

transcription reaction with T7, T3 or SP6 polymerases as appropriate in the presence of 35S-

uridine 5-triphosphate (Perkin-Elmer, Buckinghamshire, UK) for radioactive in situ 

hybridization. 

 

In situ hybridization 

Coronal sections of the hypothalamus (14 µm thick) were collected onto two sets of 12 glass 

slides for the ARC and PVN region, respectively. Adjacent sections were mounted on 

consecutively numbered slides, permitting a number of mRNAs to be localised and quantified 

in each brain. 

In situ hybridization was carried out as described previously (Morgan et al. 1996). 
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Briefly, frozen slides were fixed in 4% PFA in 0.1 m PBS, acetylated in 0.25% acetic 

anhydride in 0.1 m TEA, pH 8. Radioactive probes (approximately 106 cpm) were applied to 

the slides in 70 µl hybridization buffer containing 0.3 M NaCl, 10 mM Tris-HCl (pH 8), 1 

mM EDTA, 0.05% tRNA, 10 mM DTT, 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% 

BSA and 10% dextran sulfate. Hybridization was performed overnight at 58 °C. Following 

hybridization, slides were washed in 4 x SSC (1 x SSC is 0.15 M NaCl, 15mM sodium 

citrate), then treated with ribonuclease A (20 µg/µl) at 37 °C and finally washed in 0.1 x SSC 

at 60 °C. Slides were dried and apposed to autoradiographic Biomax MR film (Kodak, 

Rochester, New York) for several hours to days. 

In this study, we focus on analysis of mRNA expressions in the 8 weeks experiments, since a 

previous study showed that Dio3 mRNA expression peaks at this time before a subsequent 

decline (Barrett et al. 2007). Only Dio2 gene expression was analysed from the second 8 

weeks experiment (for body mass, see Figure 1 C). However, results of the first 8 weeks 

experiment (for body mass, see Figure 1 B) were compared with those of the 12 weeks 

experiment, where we analysed the same gene expression in both experiments. 

 

Image analysis 

Films were scanned at 600 dpi on an Umax scanner and quantification was carried out using 

Image J 1.37v software (Wayne Rasband, National Institutes of Health, USA). For each 

probe, three sections spanning a selected region of the hypothalamus were chosen for image 

analysis. Integrated optical density for each selected region was obtained by reference to a 

standard curve generated from the autoradiographic 14C microscale (Amersham). An average 

(with SEM) for the integrated optical densities for all sections of one animal and for all 

animals in one group was calculated. The LD-C value was set to 100% expression and other 

treatment values were calculated accordingly. 

 

Statistical analysis 

Statistical tests applied in this study were two-way ANOVA with photoperiod and activity as 

factors. Differences revealed by two-way ANOVA were tested with Student-Newman-Keuls 

post-hoc test for multiple comparisons as appropriate. SigmaStat statistical software (Jandel) 

was used, values are expressed as mean + SEM and differences were considered significant if 

P < 0.05. 
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Results 

 

Body mass 

In the course of the 12 weeks experiment, body mass of the SD-C group decreased and 

showed a trajectory that significantly differed from that of the SD-RW group after 8.5 weeks 

(N = 6 in each group; 33.1 ± 2.9 g vs. 41.5 ± 2.3 g; two-way ANOVA with Student-Newman-

Keuls test; P < 0.05). Since then, two-way ANOVA showed an overall effect of activity on 

body mass in this experiment (two-way ANOVA; F = 4.47; P < 0.05). After 11 weeks, the 

body weight of the SD-C group was significantly different compared to all other three groups 

(two-way ANOVA with Student-Newman-Keuls test; P < 0.05). Comparison of week 0 and  

 

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mean body mass (g) of adult male Djungarian hamsters during a (A) 12 weeks or (B and C) 8 weeks 

exposure to short day (SD) photoperiod (8:16 h light-dark cycle) or long day (LD) photoperiod (16:8 h light-dark 

cycle) with or without access to a running wheel (RW) (N = 6 (A and B); N = 7 (C) in each group). *, SD-C 

significantly different vs. SD-RW (P < 0.05). 
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week 12 revealed that the SD-C group lost ~11% of body mass, in contrast to a weight gain of 

~23%, ~12% and ~20% in the SD-RW, LD-C and LD-RW group, respectively (Figure 1 A). 

Comparable results on body mass were found in both 8 weeks experiments. In the first 

experiment (Figure 1 B), the SD-C group was significantly different compared to all other 

three groups in week 6 (N = 6 in each group; two-way ANOVA with Student-Newman-Keuls 

test; P < 0.05) and there was an overall effect of activity in week 8 (two-way ANOVA; F = 

4.471; P < 0.05). Compared to the start of the experiment (week 0), the SD-C group lost 

~17% of body mass, whereas the other three groups gained weight (SD-RW ~8%, LD-C 

~11% and LD-RW ~9%) in week 8. In the second 8 weeks experiment (Figure 1 C), the SD-C 

group significantly lost weight compared to all other three groups from week 3 onwards (N = 

7 in each group; two-way ANOVA with Student-Newman-Keuls test; P < 0.05) and since 

then there was also an effect of activity on body mass (two-way ANOVA; F = 7.446; P < 

0.05). In week 8, the SD-C group lost ~17% of body mass compared to week 0, whereas the 

other three groups gained weight (SD-RW ~12%, LD-C ~6% and LD-RW ~14%). 

 

Food intake 

Added up over 12 weeks, hamsters in both RW groups show a significantly increased food 

intake compared to the SD-C group (LD-RW 66.0 ± 4.4 g, LD-C 55.8 ± 1.3, SD-RW 65.9 ± 

4.0 g, SD-C 50.6 ± 2.6 g, two-way ANOVA with Student-Newman-Keuls test; P < 0.05).  

 

 

 Figure 2: Mean cumulative 

food intake (g) ± SEM of 

adult male Djungarian 

hamsters during a 12 weeks 

exposure to short day (SD) 

photoperiod (8:16 h light-

dark cycle) or long day 

(LD) photoperiod (16:8 h 

light-dark cycle) with or 

without access to a running 

wheel (RW) (N = 6 in each 

group). *, P < 0.05 

compared to both RW 

groups. 
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There was also an effect of activity on cumulated food intake after 12 weeks (two-way 

ANOVA; F = 14.999; P < 0.001) (Figure 2). 

 

Body composition 

After 8 weeks in SD, hamsters in the SD-C group significantly lost fat mass (~53%) 

compared to the LD-C group (two-way ANOVA with Student-Newman-Keuls test; P < 0.01) 

and there was an effect of photoperiod on fat mass (two-way ANOVA; F = 6.356; P < 0.05). 

Both RW groups showed values in-between the LD-C and SD-C values and did not differ 

significantly from these two groups or from each other (Figure 3 A). Hamsters in both RW 

groups slightly increased lean mass (LD-RW ~0.9%, SD-RW ~1.2%) compared to LD-C 

(effect of activity; two-way ANOVA; F = 6.934; P < 0.05) (Figure 3 B). There was also an 

effect of photoperiod on lean mass (two-way ANOVA; F = 5.274; P < 0.05) with the SD-C 

group significantly decreasing lean mass (~17%) compared to the other three groups (two-

way ANOVA with Student-Newman-Keuls test; P < 0.01). 

 

 

 

 

 

 

 

 

 

 

Figure 3: MRI scan results for (A) fat and (B) lean mass (g) of adult male Djungarian hamsters after 8 weeks 

exposure to short day (SD) photoperiod (8:16 h light-dark cycle) or long day (LD) photoperiod (16:8 h light-dark 

cycle) with or without access to a running wheel (RW) (N = 6 in each group). Results show means + SEM. *, P 

< 0.05; #, P < 0.05 compared to other three groups. 

 

 

Orexigenic/anorexigenic gene expression 

Agrp, Npy, Cart and Pomc mRNA expressions were assessed by in situ hybridization. These 

genes were expressed in the ARC of the hypothalamus. There was an effect of photoperiod on 

Agrp gene expression (two-way ANOVA; F = 11.025; P < 0.01) after 8 weeks due to the 
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significantly increased gene expression in the LD-RW group (two-way ANOVA with 

Student-Newman-Keuls test; P < 0.05). On the other hand, comparison of the LD-C and SD-C 

group revealed no significant effect of photoperiod. An increase in the LD-RW group was not 

apparent after 12 weeks, with no significant differences between any groups (data not shown).  

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Quantification of (A) agouti-related protein (Agrp), (B) neuropeptide Y (Npy), (C) cocaine- and 

amphetamine- regulated transcript (Cart) and (D) proopiomelanocortin (Pomc) mRNA expression in the 

hypothalamic arcuate nucleus (ARC) of adult male Djungarian hamsters after 8 weeks exposure to short day 

(SD) photoperiod (8:16 h light-dark cycle) or long day (LD) photoperiod (16:8 h light-dark cycle) with or 

without access to a running wheel (RW) (N = 6 in each group). Results show means + SEM. The LD-C group 

was set to 100% expression value and other treatment values were calculated accordingly. *, P < 0.05; #, P < 

0.05 compared to other three groups. 

 

 

Neither photoperiod nor activity affected Npy gene expression in the 8 weeks experiment 

(Figure 4 B), which could be confirmed after 12 weeks (data not shown). Cart mRNA showed 

a small but significant increase in SD (effect of photoperiod; two-way ANOVA; F = 4.76; P < 
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0.05) and the same result was found after 12 weeks (data not shown). The LD-C group 

differed significantly from SD-C after 8 weeks (two-way ANOVA with Student-Newman-

Keuls test; P < 0.05) (Figure 4 C). Photoperiod affected Pomc gene expression after 8 weeks 

(two-way ANOVA; F = 7.364; P < 0.05), with the SD-C group being significantly different 

compared to LD-RW (two-way ANOVA with Student-Newman-Keuls test; P < 0.05) (Figure 

4 D). Pomc gene expression in the SD-C group was further decreased after 12 weeks leading 

to a significant difference compared to the other three groups (two-way ANOVA with 

Student-Newman-Keuls test; P < 0.05; data not shown).  

There was no effect of activity on any of the analysed gene expression for orexigenic and 

anorexigenic peptides. 

 

 

Photoperiodically regulated Srif, Vgf and Gpr50 gene expression 

           

 

 

 

 

 

 

 

 

 

 

Figure 5: Quantification of (A) somatotropin 

release-inhibiting factor (Srif), (B) Vgf 

(nonacronymic) and (C) G-protein-coupled receptor 

50 (Gpr50) mRNA expression in the hypothalamic 

arcuate nucleus (ARC), dorsal medial posterior 

ARC (dmpARC) and ependymal layer of the 3rd 

ventricle, respectively. Adult male Djungarian 

hamsters were exposed to short day (SD) 

photoperiod (8:16 h light-dark cycle) or long day 

(LD) photoperiod (16:8 h light-dark cycle) with or 

without access to a running wheel (RW) for 8 weeks (N = 6 in each group). Results show means + SEM. The 

LD-C group was set to 100% expression value and other treatment values were calculated accordingly. *, P < 

0.05; #, P < 0.05 compared to other three groups; §, P < 0.05 compared to both LD groups. 
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Srif gene expression was measured in the ARC of the hypothalamus. Two-way ANOVA 

revealed an effect of photoperiod (F = 50.7; P < 0.001) and activity (F = 6.1; P < 0.05) on Srif 

gene expression after 8 weeks. Both SD groups were significantly different from each other 

and the LD groups (two-way ANOVA with Student-Newman-Keuls test; P < 0.01). The LD-

RW and LD-C group did not differ from each other. The same result was found after 12 

weeks but there was only a trend for an effect of activity on gene expression (two-way 

ANOVA; F = 3.904; P = 0.062; data not shown). Vgf was quantified in the dmpARC. After 8 

weeks there was an effect of photoperiod (two-way ANOVA; F = 20.383; P < 0.001) with the 

gene expression being increased in both SD groups. There was also an effect of activity on 

Vgf gene expression (two-way ANOVA; F = 4.655; P < 0.05), which we did not find in the 12 

weeks experiment (data not shown). In the 8 weeks, as well as in the 12 weeks experiment, 

gene expression in the SD-C group was significantly up-regulated compared to LD-C (two-

way ANOVA with Student-Newman-Keuls test; P < 0.05, for both experiments). G-protein-

coupled receptor 50 (Gpr50) mRNA expression in the ependymal layer of the 3rd ventricle 

was down-regulated in both SD groups compared to the LD groups after 8 weeks (effect of 

photoperiod, two-way ANOVA; F = 423.88; P < 0.001). Furthermore, gene expression in the 

LD-RW group was significantly up-regulated compared to LD-C (two-way ANOVA with 

Student-Newman-Keuls test; P < 0.05). We did not find a difference in Gpr50 mRNA 

expression between the LD-C and LD-RW group after 12 weeks, but also an effect of 

photoperiod (data not shown). 

 

Gene expression in the thyroid system 

Trh mRNA was expressed in the PVN. Photoperiod affected gene expression after 8 weeks 

with an increased expression in both SD groups (two-way ANOVA; F = 11.578; P < 0.01). 

Trh gene expression in the SD-C group increased by ~32% compared to LD-C (Figure 6 A). 

After 12 weeks, there was no difference between the groups (data not shown). Gene 

expression of Mct8 was affected by photoperiod (two-way ANOVA; F = 105.548; P < 0.001) 

but not by activity. Mct8 gene expression in SD was increased by ~150% compared to LD. 

Dio2 and Dio3 mRNAs were expressed in tanycytes of the ependymal layer lining the 3rd 

ventricle. Dio2 gene expression was not different between any of the groups after 8 weeks and 

Dio3 mRNA expression was only present in both SD groups (effect of photoperiod; two-way 

ANOVA; F = 94.65; P < 0.001), which did not differ significantly from each other. Activity 

did not influence any of the four examined genes of the thyroid system. 
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Figure 6: Quantification of (A) thyroid releasing hormone (Trh) mRNA expression in the paraventricular 

nucleus (PVN) and (B) monocarboxylate transporter 8 (Mct8), (C) type 2 and (D) type 3 deiodinase (Dio2 and 

Dio3) mRNA expression in the 3rd ventricular tanycyte layer of adult Djungarian hamsters. Hamsters were kept 

8 weeks in short day (SD) photoperiod (8:16 h light-dark cycle) or long day (LD) photoperiod (16:8 h light-dark 

cycle) with or without access to a running wheel (RW) (N = 6 in each group). Results show means + SEM. The 

LD-C group was set to 100% expression value and other treatment values were calculated accordingly. §, P < 

0.05 compared to both LD groups; +, P < 0.001 compared to both SD groups. 

 

 

Discussion 

 

Seasonal mRNA expression of orexigenic and anorexigenic peptides in adult Djungarian 

hamsters was subject of several previous studies (Adam and Mercer 2001, 2004, Jethwa et al. 

2010, Mercer et al. 2000, 2001, Mercer and Tups 2003, Reddy et al. 1999). Our findings in 

LD-C and SD-C groups are in agreement with their results. Photoperiod did not affect Npy 

and Agrp mRNA expressions, whereas Pomc decreased and Cart mRNA expression increased 

in SD (Figure 4). Former investigations revealed that seasonal regulation of body weight in 

Djungarian hamsters is anticipatory and not associated with compensatory changes in mRNA 
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expression for orexigenic and anorexigenic peptides. Hence, hamsters remain in energy 

balance despite seasonal changes in food intake and body mass. In fact, orexigenic and 

anorexigenic peptides seem to be involved in the regulation of short-term energy homeostasis, 

like in defence of weight loss due to food deprivation. Thus, the hypothalamus seems to be 

able to differentiate between short-term and seasonally programmed body weight changes 

(Adam and Mercer 2004, Jethwa et al. 2010, Mercer et al. 2001, Reddy et al. 1999).  

Significant energy expenditure will be required to maintain continuous wheel-running activity 

during the dark phase of the light cycle. Furthermore, additional energy intake will be 

required to meet the long-term increase in body mass these hamsters undergo over the 

prolonged period of wheel-running activity. We therefore hypothesized that neuropeptides 

involved in the homeostatic regulation of appetite and energy balance would change to 

facilitate an increased food intake. However, we did not find an effect of wheel-running 

activity on orexigenic and anorexigenic gene expression in this study, which might indicate 

that activity does not cause a short-term effect. But this conclusion has to be considered 

cautiously as the time point for brain collection was 3-4 hours after the lights went on, while 

hamsters have been active and were feeding during the dark phase. Ellis and coworkers 

(2008) demonstrated a lack of a diurnal gene expression profile for orexigenic and 

anorexigenic genes in the ARC of Djungarian hamsters, corresponding with the recent finding 

that Djungarian hamsters do not display a significant nocturnal increase in total food intake 

(Warner et al. 2010), which was misleadingly assumed before. Thus, the time point of 

sampling might not have affected the level of mRNA expression in our LD-C and SD-C 

groups. However, due to the 3-4 hours time delay to the activity phase we might have missed 

any acute effect of wheel-running activity on mRNA expression levels.  

Pomc mRNA expression was slightly increased in the SD-RW group compared to SD-C after 

8 weeks (Figure 4 D) and this effect was significant in the 12 weeks experiment (data not 

shown). At first sight, downregulation of Pomc mRNA expression in the SD control group, 

which would imply a decreased anorexigenic action, is counterintuitive and therefore this 

phenomenon was further analysed. POMC is a neuropeptide precursor that undergoes 

enzymatic post-translational processing. Helwig and coworkers (2006) showed an increase of 

prohormone convertase 2 (PC-2) in SD, through which more precursor POMC is cleaved to 

the active peptide α-MSH, which then acts anorexigenic at the melanocortin-4 receptor. In 

animals of the SD-RW group in our study, an increased expression of precursor POMC might 

lead to a further increase of the mature cleaving product α-MSH, which subsequently may 

cause a higher activity of the melanocortin system with its catabolic actions. This molecular 
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action remains speculative as we did not measure levels of PC-2 in this study. Furthermore, 

this finding seems to be paradoxical, because SD-RW animals significantly increased body 

mass already after 8 weeks (~8-12%) and even more after 12 weeks (~23%) (Figure 1).  

However, another gene expression that changed counterintuitively by trend in response to 

activity in this study is Vgf (Figure 5 B). Gene expression of Vgf has been shown to be up-

regulated in the dmpARC of Djungarian hamsters in SD, in advance of seasonal changes in 

physiology (Barrett et al. 2005, Nilaweera et al. 2009, Ross et al. 2005). Furthermore, 

previous studies revealed that i.c.v. administration of a VGF-derived peptide (TLQP-21) 

decreased food intake by stimulating satiety (Jethwa et al. 2007). Herwig and coworkers 

(2009) showed that Vgf gene expression does not react to the short-term signal of starvation. 

Therefore, VGF was assumed to contribute to the catabolic state that induces the long-term 

weight loss in SD. We could show an effect of activity on Vgf mRNA expression after 8 

weeks with an upregulation in both RW groups, but it did not occur after 12 weeks. This fact 

might demonstrate a time-dependent regulation of Vgf mRNA in response to exercise. 

Together with Pomc, the upregulation (temporarily for Vgf) of these coexpressed genes 

(Hahm et al. 2002) might present a compensatory response of the energy balance system to 

antagonise the increased body mass that deviates from the seasonal set point in RW hamsters. 

However, the signal seems to be not strong enough to influence body mass but it might 

influence food intake. Interestingly, we found an effect of activity on cumulative food intake 

in both RW groups (Figure 2), although the absolute food intake in g per day in the SD-RW 

group increased by only ~2% and not at all in the LD-RW group (week 1 compared to week 

12) (data not shown). In addition, comparison of relative food intake [(g/d)/body mass] at the 

end of the 12 weeks experiment (data not shown) showed no difference between all four 

groups. Altogether, hamsters in the RW groups did not increase their food intake as much as 

one would expect in view of their body mass trajectory. A similar discrepancy has been 

reported by Scherbarth and coworkers (2008) comparing LD-RW hamsters with controls in 

relative daily O2 uptake (~27% increase) and relative daily food intake (~14% increase). They 

concluded that exercising animals might improve utilization of nutrients compared to controls 

and thus would be able to cope with less food. But comparison of the effectiveness of 

digestion between exercising hamsters and controls in LD and SD revealed no difference 

(data not shown). Thus, the phenomenon concerning food intake still has to be resolved. 

However, our study provides a hint that the low relative food intake in exercising animals 

compared to controls might be mediated by increased anorexigenic action of the melanocortin 

system, and increased VGF secretion of the dmpARC. The fact that Pomc gene expression in 
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the LD-RW group did not increase further might indicate a maximum gene expression in the 

ARC and/or the edge of measurable signal by in situ hybridization. 

We measured a significantly increased Agrp mRNA expression in the LD-RW group 

compared to LD-C after 8 weeks (Figure 4 A), but this effect was not existent after 12 weeks 

(data not shown). This might reflect different responses of body mass to wheel-running 

activity in both experiments. Body mass of the LD-RW group shows an increasing trajectory 

at the end of the 8 weeks experiment (Figure 1 B), whereas it reached a plateau after 12 weeks 

(Figure 1 A). On the other hand, we did not find an associated upregulation of Agrp mRNA in 

the SD-RW group compared to SD-C after 8 weeks. In accordance with a possible role of 

AGRP in affecting food intake and body mass, we would expect an upregulation of Agrp gene 

expression in both RW groups. The difference in Agrp mRNA expression between LD-RW 

and LD-C might also reflect an inaccuracy in the process of quantification. Mercer and 

coworkers (2000) found an increase in Agrp gene expression in SD only in the rostral ARC, 

whereas gene expression in other regions of the ARC was not influenced by photoperiod. 

Thus, the level of Agrp gene expression seems to be dependent on the respective ARC region. 

In the absence of an effect of wheel-running activity on homeostatic gene expression, our 

second hypothesis proposed that wheel-running activity may affect gene expressions involved 

in the photoperiodical regulation of body weight, particularly to facilitate a weight gain in SD-

RW hamsters.  

Ebling (1994) and Adam and coworkers (2000) suggested a cessation of growth in SD 

adapted Djungarian hamsters. We can confirm this result as we did not only find an effect of 

photoperiod on fat mass (Figure 3 A), but also on lean mass (Figure 3 B). Lean mass mainly 

consists of bone and muscles and thus, the increase in lean mass in LD-C hamsters compared 

to SD-C can be attributed to growth. In 2007, Scherbarth and colleagues investigated the 

influence of wheel-running activity on body composition in the Djungarian hamster. Dual-

Energy X-ray Absorptiometry (DEXA) measurement in hamsters kept outdoors under natural 

Ta and photoperiod revealed no difference in fat mass between RW and control hamsters in 

February (SD) despite the significant difference in body mass. After 8 weeks exposure to 

artificial SD, we also did not find a difference in fat mass between hamsters in the SD-RW 

and SD-C group in this study (Figure 3 A). However, lean mass in the study of Scherbarth 

and colleagues (2007) was increased in the RW group, which is also in accordance with our 

study (~17% increase in the SD-RW group compared to SD-C; Figure 3 B). Furthermore, on 

radiographs of RW hamsters in the study of Scherbarth and coworkers (2007), the vertebral 

columns between head and pelvis were significantly longer compared to controls. In a 
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following study (Scherbarth et al. 2008) elongated femora in exercising animals were found, 

giving another hint to exercise-induced growth. Growth is regulated in the hypothalamus by 

two contrarily acting hormones that stimulate (GHRH) or inhibit (SRIF) synthesis and 

pulsatile release of GH from the anterior pituitary gland. We found an increased mRNA 

expression of Srif in hamsters of the SD-C group compared to both LD groups (Figure 5 A). 

Thus, secretion of GH is inhibited in the SD-C group, whereas decreased inhibition in both 

LD groups might allow growth. If Srif gene expression in LD was at the lowest level, it would 

explain why exercise (LD-RW group) did not result in a further decrease. These results 

support the suggestion of growth being cessated in SD. In the SD-RW group, Srif gene 

expression was down-regulated compared to SD-C with values lying inbetween the SD-C and 

LD groups. Therefore, growth was significantly less inhibited in the SD-RW group compared 

to SD-C. Hence, on a molecular level, our results substantiate the hypothesis of a growth-

promoting effect through wheel running, which was assumed in previous studies for two 

hamster species (Borer 1980, Borer and Kaplan 1977, Borer and Kelch 1978 in the Syrian 

hamster; Scherbarth et al. 2007, 2008 in the Djungarian hamster). 

The present results confirm an earlier report on photoperiodic regulation of Gpr50 mRNA 

expression in the Djungarian hamster (Barrett et al. 2006). We also found decreased gene 

expression in SD compared to LD. After 8 weeks, Gpr50 expression was significantly up-

regulated in the LD-RW group compared to LD-C, which was not existent in the 12 weeks 

experiment. In addition, Gpr50 mRNA was not up-regulated in SD-RW compared to SD-C. 

Therefore, we assume that the significant difference between both LD groups might be an 

artefact of expression analysis. Consequently, we presume that Gpr50 mRNA expression 

seems not to be affected by wheel-running activity, similarly to the thyroid system.  

Transport and activation of thyroid hormone in the hypothalamus were not impaired by 

exercise. Accordingly, we concluded that photoperiod perception is not affected in wheel-

running hamsters. We did not find an effect of photoperiod on the hamsters’ Dio2 gene 

expression, which is in accordance with previous findings (Barrett et al. 2007). On the other 

hand, Herwig and coworkers (2009) found an increase of Dio2 mRNA expression in LD and a 

decrease in SD after 8 weeks. They suggested a time-dependent change of Dio2 mRNA to 

explain the difference to the previous study. However, our study also lasted for 8 weeks and 

we did not find a difference in Dio2 mRNA expression. In contrast, two studies showed 

differing results in Dio2 gene expression in Djungarian hamsters (Watanabe et al. 2004, 

2007). The authors found an induction of Dio2 gene expression in hamsters in LD compared 

to SD. However, in these studies hamsters were kept in SD after weaning and for the LD 
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group, hamsters were transferred to LD for two weeks. In a reversed experimental set-up (i.e. 

hamsters were kept in LD and were transferred to SD for the SD group), Dio2 expression was 

also not affected by photoperiod. In fact, concerning the light regime, we designed our 

experiments comparable to that of Herwig and colleagues (2009) (i.e. hamsters were kept in 

LD and were transferred to SD for several weeks in the SD group). Therefore, we assume that 

the discrepancy in our results might present a difference between the breeding colonies in 

Hannover and Aberdeen. This assumption is supported by our results for Trh mRNA 

expression. We found an effect of photoperiod on Trh gene expression, being up-regulated in 

SD compared to LD after 8 weeks (Figure 6 A). Studies of Ebling and coworkers (2008) and 

Herwig and colleagues (2009) revealed no photoperiodical regulation of Trh gene expression 

in Djungarian hamsters of their breeding colony but they could show a role of TRH in short-

term homeostatic control of appetite and energy expenditure. However, the increase in Trh 

gene expression in SD in our study might contribute to decreased food intake and increased 

catabolism of fat stores in SD. 

Summarised, we are able to confirm exercise-induced growth in Djungarian hamsters at a 

molecular level, probably contributing to the increase in lean mass and body mass in 

exercising hamsters. Furthermore, there are some hints indicating that exercise might 

stimulate the melanocortin pathway and secretory processes in the dmpARC to compensate 

for the increased body mass. However, via analysis of the gene expression of orexigenic 

peptides, Cart, the photoperiodically regulated genes Gpr50 and genes in the thyroid system, 

we could show that central perception of photoperiod seems not to be affected by voluntary 

exercise. This result would be in line with the finding that the change in fur colouration, 

which is based on the level of the pituitary hormone prolactin (Duncan and Goldman 1984, 

Lincoln and Clarke 1994, Niklowitz and Hoffmann 1988), was similar in animals with and 

without a RW (Scherbarth et al. 2007, 2008). Studies in sheep indicated that prolactin 

secretion from the pituitary might be independent of the hypothalamus but controlled by the 

pars tuberalis (Hazlerigg et al. 1996, Lincoln and Clarke 1994). That would imply different 

pathways for fur colour and energy balance regulation, but a recent study revealed that there 

might be a role for the hypothalamus in fur colouration in the Djungarian hamster (Dodge and 

Badura 2004). However, these processes need further research in our animal model. 

Collectively, further causes for the body weight increase in SD-RW hamsters remain to be 

discovered. Consequently, in future studies, we will focus on peripherally derived signals (for 

example from muscle or liver) that might feed back to the brain, potentially overriding 
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mechanisms for the initiation of SD traits and thus allowing the weight gain in winter-adapted 

Djungarian hamsters. 
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Abstract 

 

Djungarian hamsters (Phodopus sungorus) with access to a running wheel (RW) increase 

their body mass in winter-like short days (SD), instead of exhibiting the seasonally 

programmed weight loss. Analysis of body composition in a previous study revealed an effect 

of photoperiod and activity on lean mass. Lean mass decreased in SD control animals 

compared to long day (LD) controls, but increased in SD-RW hamsters. In the present study 

we examined whether exercise-induced signals from peripheral skeletal muscle might affect 

the mechanisms underlying seasonal body weight regulation in Djungarian hamsters. Male 

hamsters were kept with or without access to a RW under SD or LD conditions. After 12 

weeks, the gastrocnemius muscle of the calf was analysed for phosphorylation (i.e. 

activation/inactivation) of AMP-activated protein kinase, acetyl CoA carboxylase, 

serine/threonine kinase and p44/42 MAPK, which all are involved in myocyte metabolism. In 

addition, serum concentrations of insulin and insulin-like-growth factor 1 (IGF-1) were 

determined. Body mass increased in RW hamsters compared to the controls, whereas 

hamsters in the SD-C group reduced body mass compared to LD-C. However, the results of 

phosphorylated muscle enzymes and serum levels of insulin and IGF-1 revealed neither an 

impact of photoperiod nor activity. This might have been due to the fact that the time point of 

killing in this study (3-4 hours after the lights went on) was not close enough to the nocturnal 

exercise bout and thus, enzyme and hormonal concentrations probably recovered already to 

baseline levels. Furthermore, activity intensity and food intake were not standardized, leading 

to a large individual variability in measured parameters. Further investigations are necessary 

to clarify the hypothesis that wheel-running activity and photoperiod might influence muscle 

metabolism and thus provide signals that might interact with the mechanisms regulating the 

seasonal body weight cycle in Djungarian hamsters. 

 

 

Introduction 

 

To survive in winter, when many food sources are restricted, Djungarian hamsters (Phodopus 

sungorus) need to save energy. Amongst others, this is achieved by a reduction in food intake 

and body mass in response to the shortening photoperiod from summer to winter, resulting in 

decreased energy expenditure (Heldmaier and Steinlechner 1981a). However, in hamsters 

with access to a RW, the mechanisms underlying the body mass decline in SD seem to be 
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disturbed. In contrast to SD controls, voluntarily exercising hamsters in SD gain weight 

(Scherbarth et al. 2007, 2008). In accordance with a study of Klingenspor and coworkers 

(2000), MRI scan data in a previous study (unpublished data, see chapter 3) revealed not only 

a decrease in body fat mass in SD control animals compared to LD controls, but also a 

significant reduction of lean mass in SD. Moreover, lean mass increased in hamsters with 

access to a RW in SD, thus contributing to their weight gain. Lean mass mainly consists of 

skeletal muscle that shows high plasticity to adapt to changing functional demands. During 

exercise, activity of metabolic enzymes, transcription, translation and post-translational 

modification of proteins in myocytes can be modulated. Altogether, skeletal muscle seems to 

be an important organ to induce metabolic signals that might trigger physiological adaptations 

at the whole body level (for review, see Pedersen and Febbraio 2008). 

During exercise, a pivotal enzyme that elicits fundamental adaptations of metabolism is 

adenosine monophosphate (AMP)-activated protein kinase (AMPK) (for review, see Hardie et 

al. 1998). The AMPK complex contains 3 subunits, with the α subunit being catalytic and the 

β and γ subunits being essential for forming the functional complex. The enzyme is a highly 

conserved sensor of the cellular energy status and plays a role in systemic energy balance by 

inhibiting anabolic adenosine triphosphat (ATP) consuming processes (synthesis of fatty 

acids, glycogen and proteins) while activating catabolic pathways that are crucial for 

generation of ATP (fatty acid oxidation, glycolysis, glucose uptake).  

Activation of AMPK in skeletal muscle takes place in response to muscle contraction 

(Hayashi et al. 1998, Hutber et al. 1997, Vavvas et al. 1997, Winder and Hardie 1996) and an 

associated increased cellular metabolic stress, whereupon the AMP/ATP ratio increases 

(Corton et al. 1994, Hutber et al. 1997). In addition to direct binding of AMP, AMPK is 

activated via phosphorylation by an upstream kinase (AMPK kinase). Important for 

maintaining energy balance not only at the cellular, but also at the whole body level appears 

to be the involvement of several hormones in AMPK regulation (for review, see Towler and 

Hardie 2007 and Velloso 2008). The white adipose tissue-derived hormones leptin and 

adiponectin, that are known to play a critical role in regulating energy balance, can also 

phosphorylate and thus activate the AMPK system in skeletal muscle (Minokoshi et al. 2002, 

Tomas et al. 2002, Yamauchi et al. 2002). Furthermore, hormones like insulin and IGF-1 

activate a pathway that can interact with AMPK (described more in detail below).  

In the signal transduction pathway of activated AMPK, PGC-1 [peroxisome-proliferator-

activated receptor γ (PPAR γ) co-activator-1] is activated. PGC-1 regulates transcription 

factors that are involved in controlling the expression of metabolic and mitochondrial genes 
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and thus stimulates long-term effects on gene and protein expression in mitochondrial 

oxidative metabolism (for review, see Handschin and Spiegelman 2006).  

Furthermore, AMPK phosphorylates acetyl CoA carboxylase (ACC) and thus inhibits its 

activity (Vavvas et al. 1997, Winder and Hardie 1996). This results in decreased malonyl CoA 

levels, disinhibiting carnitine palmitoyl transferase 1 (CPT-1) that thereupon increases uptake 

and β–oxidation of fatty acids in muscle mitochondria (for review, see Ruderman et al. 1999). 

AMPK also enhances skeletal muscle glucose uptake (Ploug et al. 1984) by increasing 

expression and translocation of the glucose transporter GLUT-4 to the sarcolemma (Fryer et 

al. 2002, Kurth-Kraczek et al. 1999, Ojuka et al. 2000). 

A different pathway that responds to exercise and interacts with AMPK is the insulin/IGF-1 

pathway. The liver is the primary source of circulating IGF-1 that mediates the effects of 

pituitary growth hormone (GH). During and after exercise, GH release from the pituitary 

increases (Borer and Kelch 1978, Hartley et al. 1972) which, in turn, increases the release of 

hepatic IGF-1 and also induces the synthesis of IGF-1 in other tissues such as muscles (DeVol 

et al. 1990, Turner et al. 1988). IGF-1 binds to its receptor (IGFR-1) that signals through the 

phosphatidylinositol 3-kinase (PI3K)/Akt (serine/threonine kinase or protein kinase B) 

pathway. Insulin also binds to the IGFR-1 and, conversely, IGF-1 binds to the insulin receptor 

indicating shared activities. However, the plasma insulin level decreases during exercise while 

insulin sensitivity in muscle increases (Berger et al. 1979, Hartley et al. 1972). 

The insulin/IGF-1 pathway induces glucose uptake via increased expression of GLUT-4 

(Hayashi et al. 1998) and activates glycogen and protein syntheses (Cross et al. 1995, Gingras 

et al. 1998) leading to muscle hypertrophy.  

Through exercise and the receptor binding of insulin, the mitogen-activated protein kinase 

(MAPK) signalling cascades are activated, too. They include the extracellular signal-regulated 

kinase 1 and 2 (ERK-1/2 or p44/42 MAPK), that are assumed to regulate glucose transport, 

protein synthesis and gene expression by phosphorylation of transcription factors in response 

to exercise (Goodyear et al. 1996).  

As protein synthesis in muscle, which is stimulated via the insulin/IGF-1 pathway is an ATP-

consuming process, it is also negatively regulated by AMPK, probably by suppressing the 

activity of Akt (Bolster et al. 2002).  

On the one hand, AMPK and insulin/IGF-1 act via different pathways, but on the other hand, 

both increase glucose uptake in muscle cells (Ploug et al. 1984). However, both pathways 

have distinct long-term effects on skeletal muscle glucose: the release of insulin and IGF-1 

increases storage of glucose (glycogen synthesis; anabolic), whereas glucose is oxidated 
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through activation of AMPK (glycolysis; catabolic). Thus, the net outcome in protein and 

glucose synthesis or degradation depends on the balance of both pathways (Towler and 

Hardie 2007). 

The aim of this study was to examine the phosphorylation of enzymes and serum hormone 

levels involved in skeletal muscle metabolism in exercising and control hamsters to achieve 

further hints for signals being involved in the reversal of the body mass decrease of SD-RW 

hamsters. In addition, our experimental set-up allowed us to analyse the influence of 

photoperiod on these parameters, as MRI scan data showed that muscle mass was affected by 

photoperiod, too.  

 

 

Materials and Methods 

 

 Animals and tissue collection 

Twenty-four male Djungarian hamsters (Phodopus sungorus) were bred and raised under 

natural photoperiod and ambient temperature in Hannover, Germany (52°N latitude). Water 

and food (hamster breeding diet, Altromin 7014, Lage) were available ad libitum, 

supplemented weekly by a piece of apple before the start of the experiment. At the vernal 

equinox (23 March) all animals were transferred to artificial LD photoperiod with a light/dark 

cycle of 16 h light/8 h darkness. At the age of 5-14 months the animals were divided into four 

weight-matched groups of six animals each. Two groups stayed in LD and one group received 

a RW (Ø 14.5 cm) (LD-RW), the second group stayed without a RW (LD-C). Remaining two 

groups were transferred to SD photoperiod with a light/dark cycle of 8 h light/16 h darkness. 

Like in LD, one group received a RW (SD-RW) and the other one represented the sedentary 

control group without a RW (SD-C). Hamsters were weighed twice a week and voluntary 

wheel-running behaviour in both RW groups was monitored by recording wheel revolutions 

on a PC. 

Twelve weeks later, arranged over two days, the animals were killed 3-4 h after the lights 

went on. Blood samples were taken and the gastrocnemius muscle was dissected and frozen in 

liquid nitrogen for subsequent Western blotting.  

 

Muscle protein extraction 

An electrical homogenizer was used to break down the gastrocnemius muscle tissue 

mechanically in 0.3 ml homogenisation buffer (50 mM Tris-HCl, 1 mM EDTA, 1 mM EGTA, 
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1% Triton X-100) on ice. Protease and phosphatase inhibitors were added to the 

homogenisation buffer to prevent digestion of the sample by its own enzymes. The tissue 

homogenate was then shaken for 1 h at 4 °C and afterwards centrifuged at 13,000 g and 4 °C 

for 10 min. For determination of the total protein amount, the supernatant was used to carry 

out a Bradford assay. 

 

Western blotting 

Primary (AMPK α, Phospho-AMPK α, AMPK β, Phospho-AMPK β, ACC, Phospho-ACC, 

Akt, Phospho-Akt) and secondary [horseradish peroxidase (HRP)-conjugated] antibodies 

were purchased from Cell signalling technology. 

For gel electrophoresis, samples were diluted to 900 µg protein/30 µl homogenisation buffer 

including 10 µl 3x gel loading buffer (3.75 M Tris-HCl pH 6.8, 6% SDS, 0.003% 

bromophenol blue, 30% glycerol, 15% β-mercaptoethanol). Samples were boiled for 5 min 

and electrophoresed through a 4% stacking gel and a 10% separating gel (7.5% separating gel 

for ACC and Phospho-ACC). A protein molecular weight marker was electrophoresed at the 

same time in the outer lane. To check for loading differences, one test gel was stained with 

Brilliant blue (20% methanol, 0.5% acetic acid, 0,2% Brilliant Blue) and destained with 30% 

methanol. In order to make separated proteins accessible to antibody detection, they were 

electrophoretically transferred to a polyvinylidene difluoride membrane (PVDF, Millipore 

Corporation, Bedford, MA, USA) in transfer buffer (25 mM Tris base, 192 mM glycine, 

0.05% SDS in 20% methanol). After transfer, blocking of non-specific binding was achieved 

by incubating the membrane for 1 h at room temperature in blocking buffer [5% non-fat dry 

milk in TBS (20 mM Tris, 140 mM NaCl, 0.1% Tween 20)] and afterwards the primary 

antibody (1:1000) was incubated at 4 °C overnight with gentle agitation. After that, the 

membrane was incubated with the HRP-conjugated secondary antibody (1:2000 in blocking 

buffer) for 1 h and finally the membrane was incubated with chemiluminescent substrate 

(LumiGlo Reagent and Peroxide, Cell signalling technology). The light emission was 

captured by exposure of the membrane to autoradiographic Biomax MR film (Kodak, 

Rochester, New York). 

 

Image analysis 

Films were scanned at 600 dpi on an Umax scanner and quantification was carried out using 

Image J 1.37v software (Wayne Rasband, National Institutes of Health, USA). The integrated 

optical density for each blot was obtained by reference to a standard curve and all values were 
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corrected for protein loading differences. To correct for the amount of total protein on the 

PVDF membrane, the ratio of phosphorylated protein to total protein was calculated.  

 

IGF-1 and insulin assay 

Blood serum was obtained by centrifugation of clotted blood samples (10 min at 9000 g at 

room temperature) and collecting of the supernatant. The circulating hormones IGF-1 and 

insulin were measured using a mouse/rat specific radioimmunoassay kit (R&D Systems, 

Quantikine, mouse/rat IGF-1; Mercodia, Rat insulin ELISA). Serum was diluted 1:1000 for 

IGF-1 and was used undiluted for insulin. Both kits were validated for hamster serum by 

applying a hamster serum dilution series, whose values ran parallel to the standard curve. 

 

Statistical analysis 

Statistical tests applied in this study were two-way ANOVA with photoperiod and activity as 

factors. Differences revealed by two-way ANOVA were tested with Student-Newman-Keuls 

post-hoc test for multiple comparisons. SigmaStat statistical software (Jandel) was used, 

values are expressed as mean ± SEM and differences were considered significant if P < 0.05. 

 

 

Results 

 

Body mass 

After 8.5 weeks, there was an effect of activity on body mass, with RW hamsters significantly 

increasing their body mass compared to controls (LD-RW 41.9 ± 3.5 g; LD-C 39.2 ± 1.4 g; 

SD-RW 41.5 ± 2.3 g; SD-C 33.1 ± 2.9 g; two way ANOVA; F = 4.47; P < 0.05). Since week 

11, the SD-C group significantly lost weight compared to LD-C (SD-C 31.5 ± 2.9 g; LD-C 

39.6 ± 1.3 g; two way ANOVA with Student-Newman-Keuls test; P < 0.05). 

 

Phosphorylation of AMPK α, ACC and Akt 

Phosphorylation of AMPK α did not differ significantly between the four experimental groups 

and we could not detect any phosphorylation for AMPK β. There was a tendency for an effect 

of photoperiod on ACC phosphorylation (two way ANOVA; F = 4.08; P = 0.057), but groups 

did not differ significantly. No difference between the groups was found for Akt 

phosphorylation. 

 



CHAPTER 4 
 

56 

 

 

 

 

 

 

 

 

 Figure 1: (A) Ratio of phosphorylated AMPK α to 

total AMPK α protein, (B) phosphorylated ACC to 

total ACC protein and (C) phosphorylated Akt to total 

Akt protein in the gastrocnemius muscle of hamsters 

in all four experimental groups. Djungarian hamsters 

were kept 12 weeks in SD (short day; 8:16 h light-

dark cycle) or LD photoperiod (long day; 16:8 h light-

dark cycle) with or without access to a RW (N = 6 in 

each group). Results show means + SEM. 

 

 

 

p44/42 MAPK 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: (A) Ratio of phosphorylated p44 to total p44 protein and (B) phosphorylated p42 to total p42 protein 

in the gastrocnemius muscle of hamsters in all four experimental groups. Djungarian hamsters were kept 12 

weeks in SD (short day; 8:16 h light-dark cycle) or LD photoperiod (long day; 16:8 h light-dark cycle) with or 

without access to a RW (N = 6 in each group). Results show means + SEM. 
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Two way ANOVA revealed an effect of photoperiod on the p44 MAPK ratio (F = 4.38; P < 

0.05), but groups did not differ significantly. There was a tendency for an effect of activity on 

the p42 MAPK ratio (two way ANOVA; F = 4.15; P = 0.055), however, the four groups were 

not significantly different. 

 

Serum insulin and IGF-1 concentration 

 

 
Figure 3: (A) Serum insulin (µg/l) and (B) IGF-1 levels (µg/ml) in all four experimental groups. Djungarian 

hamsters were kept 12 weeks in SD (short day; 8:16 h light-dark cycle) or LD photoperiod (long day; 16:8 h 

light-dark cycle) with or without access to a RW (N = 6 in each group). Results show means + SEM. 

 

 

After 12 weeks, neither serum insulin levels nor IGF-1 levels differed significantly between 

the four groups. 

 

 

Discussion 

 

At the time of killing in our study, 3-4 hours after the light went on and thus during the resting 

phase of nocturnal hamsters, we were not able to detect any effect of wheel-running activity 

on the level of phosphorylated enzymes in the gastrocnemius muscle. This was probably due 

to the fact that enzyme phosphorylation was back to resting level already. 

To metabolically adapt to exercise, phosphorylation (activation/inactivation) of enzymes in 

skeletal muscle occurs very fast. For example, AMPK is activated in the contracting muscle 

within 5 minutes of the beginning of exercise (Winder and Hardie 1996), after 15 minutes 
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with incubation of adiponectin (Tomas et al. 2002) or within 10-20 minutes after electrical 

stimulation of the ischiatic nerve (Hutber et al 1997). For ACC, Tomas and coworkers (2002) 

showed that phosphorylation significantly increased after 30 minutes of adiponectin 

incubation and in the study of Hutber and colleagues (1997) ACC activity decreased after 2-5 

minutes of nerve stimulation. 

However, enzyme phosphorylation levels return to baseline level very rapidly after exercise, 

when contraction-induced signals decrease and dephosphorylation takes place. Tomas and 

coworkers (2002) revealed that the level of activated AMPK in muscle strips returned to 

baseline after 1 hour of incubation with adiponectin. However, temporal resolution in this 

study was rough, so an earlier decrease of AMPK activity, between 30-60 minutes of 

incubation, cannot be ruled out. Therefore, in other studies, the level of activated/ 

phosphorylated enzymes in muscle was measured rapidly after an exercise bout (Rasmussen 

and Winder 1997, Winder and Hardie 1996), or directly after in vitro stimulation of muscle 

cells via an AMPK activator [5-amino 4-imidazolecarboxamide riboside (AICAR)] or via 

electrodes (Bolster et al. 2002, Hayashi et al. 1998, Hutber et al. 1997, Ihlemann et al. 1999, 

Kurth-Kraczek et al. 1999, Tomas et al. 2002, Vavvas et al. 1997).  

For a general effect of photoperiod (LD vs. SD) on the level of phosphorylated muscle 

enzymes, the time point of killing might not have been as important as for the detection of an 

effect of activity. Nevertheless, enzyme levels are strongly dependent on the activity level 

right before killing as short activity bouts of several minutes might be sufficient to affect the 

results (Winder and Hardie 1996). Unfortunately, in this study we did not record the activity 

level of hamsters right before killing and thus individuals might have been very active or, on 

the contrary, asleep.  

Another important factor that is known to influence muscle enzyme phosphorylation is 

exercise intensity. The greater the running speed or the force production generated by 

contraction, the greater the activation of AMPK (Ihlemann et al. 1999, Rasmussen and 

Winder 1997). Hamsters in our study used their RW voluntarily and the analysis of recorded 

revolutions revealed a large variation in wheel running intensity between the individuals. 

All the above mentioned factors might explain the large individual variation in the results of 

our experimental groups. Thus, to improve experimental conditions in future studies, the time 

point of killing should be assessed directly after exercise. Furthermore, exercise intensity 

should be controlled, e.g. by placing hamsters into a closed RW that rotates with defined 

speed so that the hamsters are forced to run a defined amount of revolutions per time. In 
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addition, sedentary control hamsters without access to a RW should be observed by infrared 

motion detectors to be able to compare their individual activity quantitatively. 

For analysis of serum insulin concentrations the energetical state before and during exercise is 

important as insulin levels change according to blood glucose levels. In our experiment, the 

hamsters received food ad libitum until directly before killing. Therefore, a schedule for food 

intake should be used in future studies to standardize the time-lag between the last meal and 

the time point of sampling. Nevertheless, results might hint at slightly increased insulin levels 

in the SD-RW group compared to SD-C, although this finding was not significant. In obese 

mammals that developed insulin resistance, elevated plasma insulin levels can be found as 

well. In these individuals, insulin-stimulated glucose transport and uptake is diminished in 

glucose absorbing organs. As a consequence, the blood glucose level is elevated and the 

pancreas increases insulin secretion. But previous studies showed that exercising hamsters 

increase their body mass without increasing fat mass (Scherbarth et al. 2007). Furthermore, it 

was shown that exercise counteracts insulin resistance. An important role in this process plays 

AMPK. In animal models of insulin resistance, AMPK activity was found to be low (for 

review, see Winder and Hardie 1999). However, activation of AMPK via AICAR or through 

exercise training has been shown to effectively counteract insulin resistance via improved 

glucose transport and fatty acid oxidation (Brandt et al. 2010, Buhl et al. 2002, Iglesias et al. 

2002, Kraegen et al. 1989). Thus, the development of insulin resistance in exercising hamsters 

seems to be unlikely. 

A previous study found decreased serum IGF-1 levels in trained rats that voluntarily used a 

RW for 12 weeks, compared to untrained controls (Matsakas et al. 2004). However, 

exercising individuals decreased their body mass and thus the authors suggested that wheel 

running may diminish anabolic stimuli in rats. This is in contrast to our findings in the 

hamster where anabolic stimuli are induced through wheel-running activity, demonstrated by 

an increased body mass. Thus, we would expect an elevated IGF-1 plasma level in our study. 

However, the above mentioned unregulated experimental parameters might have contributed 

to the absence of an effect of wheel-running activity on serum IGF-1 levels. Like with insulin, 

there might at best be a faint hint to slightly elevated IGF-1 concentrations in the SD-RW 

group compared to SD-C. 

In conclusion, the results of this study do not allow a statement about how wheel-running 

activity and photoperiod might influence phosphorylation of enzymes involved in muscle 

metabolism and concentrations of plasma insulin and IGF-1. However, we could show that 
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Western blotting, using above-mentioned antibodies, seems to be an appropriate method to 

detect defined enzymes in the gastrocnemius muscle of Djungarian hamsters.  

In future studies, another factor that could be analysed is interleukin 6 (IL-6). IL-6 is a 

cytokine secreted by skeletal muscle (“myokine”) that initiates a signalling cascade similar to 

that of leptin (for review, see Pedersen and Febbraio 2008). With highest increases of plasma 

IL-6 in response to running, the peak occurs at the end or shortly after exercise, when muscle 

glycogen stores are depleted. IL-6 activates AMPK (Kelly et al. 2004), p44/42 MAPK and 

PI3K (Al-Khalili et al. 2006) to increase glucose uptake and fatty acid oxidation. Therefore, 

IL-6 might represent another systemic signal to trigger physiological adaptations at the whole 

body level and thus it might be involved in the body mass response to photoperiod and wheel-

running activity in Djungarian hamsters. 
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Abstract 

 

The Djungarian hamster (Phodopus sungorus; also known as Siberian hamster) is a seasonal 

mammal, exhibiting annual cycles of reproduction, fur colouration and body mass to adapt to 

changing environmental conditions during the course of a year. Central mechanisms, induced 

by changes in photoperiod-driven gene expression in the brain, are expected to underpin the 

seasonal physiological responses. Several previous studies have investigated the temporal 

expression of hypothalamic genes in hamsters after the transfer from long to short days (SD) 

and the transfer back to long days (LD). Genes were suggested to be involved in the seasonal 

cycle of body weight if their expression was consistent with physiological responses. 

However, the temporal sequence of gene expression changes has not been previously 

investigated in Djungarian hamsters held in natural photoperiod over the course of one year. 

In this study, the pattern of hypothalamic expression for known genes proposed to be 

involved in body weight regulation of the Djungarian hamster [nestin, vimentin, type 2 

deiodinase (Dio2), type 3 deiodinase (Dio3), monocarboxylate transporter 8 (Mct8), Vgf 

(nonacronymic), somatotropin release-inhibiting factor (Srif), G-protein-coupled receptor 50 

(Gpr50) and cellular retinoic acid-binding protein 1 (Crbp-1)] were investigated in hamsters 

held in natural photoperiod and ambient temperature (Ta) (Hannover, Germany; 52°N 

latitude) for 12 months, spanning both winter and summer seasons. Changes in gene 

expression were related to body mass determined by weight measurements, and body 

composition determined via magnetic resonance imaging (MRI) scanning. MRI scan data 

revealed that primarily a change in fat mass, but also in lean mass contributes to the seasonal 

cycle in body mass. Gene expression data support the view that nestin, vimentin, Dio2, Dio3, 

Mct8, Srif, Gpr50 and Crbp-1 genes are involved in the SD-mediated loss in body mass as 

their expression changes prior to or in parallel to the body mass. The data are also consistent 

with the view that Dio2, Mct8, Vgf and Srif genes might be involved in the mechanism of 

photorefractoriness that underlies the increase in body weight from late winter and early 

spring on. Furthermore, this result indicates that these gene expressions may be independent 

of photoperiodically regulated morphological changes of tanycytes, since expression of genes 

for filament proteins including nestin and vimentin were delayed compared to the increase in 

body mass.  
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Introduction 

 

Most species living at higher latitudes reproduce seasonally to adjust birth and rearing of 

offspring to optimal environmental conditions. Particularly a favourable climate and sufficient 

food supply are important for survival of the young. A well known seasonal animal is the 

Djungarian hamster (Phodopus sungorus) that not only reproduces seasonally [long day (LD) 

breeder; spring and summer], but also shows a seasonal cycle in body mass and pelage colour 

(Figala et al. 1973, Hoffmann 1973, Schlatt et al. 1993). The mediator of season is the 

humoral melatonin signal from the pineal gland. Melatonin is synthesized and secreted only 

during the night (Klein and Weller 1970). After the summer solstice, when days are getting 

shorter, the gradual prolongation of melatonin secretion induces the moult to a whitish winter 

fur, the decrease in body mass and gonadal regression in photosensitive Djungarian hamsters 

(Darrow and Goldman 1985, Hoffmann 1979, Hoffmann et al. 1986, Steinlechner et al. 1987). 

However, the seasonal cycle of physiological adaptations is not entirely in parallel to the 

annual cycle of photoperiod. The Djungarian hamster is able to anticipate the reproductive 

season in spring by developing photorefractoriness to short days (SD; winter) (for review, see 

Herbert 1989 and Prendergast 2005). Photorefractoriness in this species describes a 

spontaneous loss of responsiveness to the long melatonin signal in SD, the primary 

environmental factor inhibiting reproduction. When hamsters become photorefractory, they 

exhibit spontaneous recrudescence (Hoffmann 1978, 1979, Prendergast et al. 2006, Schlatt et 

al. 1993) whereupon gonadal maturation starts independently and in advance of the 

lengthening photoperiod. The increase in body mass and the moult to brown summer fur are 

closely connected with spontaneous recrudescence in Djungarian hamsters.  

In experiments under natural photoperiod (Scherbarth et al. 2007, 2008), an increase in the 

hamsters’ body mass is already observable three weeks after the winter solstice. At this time 

of the year, day length increased by about 32 minutes (~52°N). Furthermore, the weight gain 

appeared 19-22 weeks after the body mass peak in mid-August. Under artificial lighting 

conditions, photorefractoriness occurs after a similar time interval in SD (18-20 weeks) 

(Gorman and Zucker 1995, Hoffmann 1978, 1979, Kauffman et al. 2003, Prendergast et al. 

2000, Schlatt et al. 1993, Teubner et al. 2008, Tups et al. 2006a). These findings indicate that 

not only under constant artificial lighting conditions but also under natural photoperiodic 

conditions photorefractoriness is likely to underlie the increase in body mass. However, in 

experiments under natural photoperiod a modulation of the body weight gain due to the 

slightly increasing day length cannot be ruled out.  
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After spontaneous recrudescence, the reproductively active state remains indefinitely, if there 

is no subsequent change in photoperiod. Hamsters require a period of about 10-15 weeks in 

LD to re-sensitize the neuroendocrine system, to be able to adapt to SD again (Bittman 1978, 

Kauffman et al. 2003, Reiter 1972, Stetson et al. 1977). 

The mechanisms involved in the development of refractoriness are unknown yet. 

Nevertheless, it is assumed that the body weight gain, change to summer fur and 

recrudescence in spring occur as a result of the inability to read the SD melatonin signal, 

either through a de-sensitization of the melatonin receptor or a downstream signalling event 

(Bittman 1978, Reiter 1972).  

A major brain centre involved in the regulation of body weight is the hypothalamic arcuate 

nucleus (ARC) and a number of photoperiodically regulated genes in the ARC of Djungarian 

hamsters have been identified in previous studies (Barrett et al. 2005, 2006, 2007, Drew et al. 

2001, Herwig et al. 2009, Ross et al. 2004, 2005). In these experiments, hamsters experienced 

artificial photoperiod transitions from summer-like LD to winter-like SD photoperiod and 

subsequently back to LD. Gene expression in the ARC was investigated after 8-14 weeks in 

SD when body mass had decreased and at 2, 4 and 6 weeks after returning to LD by which 

time an increase in body mass and testicular recrudescence had occurred. If differential gene 

expression between both groups occurred ahead or in parallel with the weight change, the 

corresponding gene was suggested to be involved in the mechanism underlying the 

photoperiod-mediated change in body weight.  

In this study, two groups of male Djungarian hamsters experienced the transition from winter 

to summer and vice versa under natural photoperiod and ambient temperature (Ta). In the 

course of one year, we examined the hypothalamic expression of photoperiodically regulated 

genes that are assumed to be involved in the regulation of the seasonal body weight cycle. Via 

comparison of the seasonal body mass cycle with gene expression in the winter to summer 

transition (photorefractory hamsters) and summer to winter transition (photosensitive 

hamsters), we are able to provide further support for gene expression changes underlying the 

seasonal cycle in body weight.  
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Materials and Methods 

 

Animals and tissue collection 

Djungarian hamsters (Phodopus sungorus) were reared under natural photoperiod and natural 

Ta (Hannover, Germany; ~52°N latitude). They were kept singly in polycarbonate cages (20.7 

x 14 x 26.5 cm) and supplied with breeding diet (Altromin 7014) and tap water ad libitum, 

supplemented by a slice of apple once a week. Cages were provided with wood shavings and 

tissue for nest building. 

This study contains two experimental parts. In one part, hamsters were sacrificed in the course 

of one year from winter (January, SD) to summer (June, LD). A total of 62 male hamsters, 

born under natural photoperiod and Ta from March to July 2008, were killed every 2-4 weeks 

(N = 6-7) starting from January 2009. Correspondingly, these animals had experienced one 

winter and were at the age of 9-13 months at the respective time point of killing. In the second 

experimental part, 42 male hamsters were sacrificed during the transition from summer (June, 

LD) to winter (December, SD). All animals were born outside, from March to April 2009. 

Seven animals were killed every 4-6 weeks starting in June 2009 until December. They were 

3-9 months of age when they were culled 3-4 h relative to sunrise. All animals were weighed 

weekly throughout the experiment. 

For experimental controls, twelve male hamsters, born outside from March to July 2008, were 

transferred to an artificial light-dark cycle of 16 h of light and 8 h of darkness [LD; dim red 

light (5 lux) during the dark phase] at 20 ± 2 °C at the equinox in March 2009. Thus, these 

hamsters had experienced one winter outside. Eight weeks later, six hamsters were transferred 

to an artificial light-dark cycle of 8 h of light and 16 h of darkness (SD; SD-C). Remaining six 

individuals stayed in LD (LD-C). After twelve weeks, at the age of 11-17 months, all 

hamsters were killed 3-4 h after lights on.  

Hamsters were killed with carbon dioxide. Brains were immediately dissected, frozen on dry 

ice and then stored at -80 °C for later procedure of in situ hybridizations. Whole animal 

bodies (minus the head) were sealed in plastic bags and also stored at -80 °C. Later, sealed 

carcasses were thawed and heated to 37 °C before being individually scanned by magnetic 

resonance imaging (MRI) (Echo MRI ™, Whole Body Composition Analyser, Echo Medical 

Systems, Houston, Texas).  

 

 

 



CHAPTER 5 
 

66 

Riboprobes 

Riboprobes complementary to fragments of the required DNA sequences were generated from 

Djungarian hamster, mouse or rat brain cDNAs by RT-PCR as described previously [Drew et 

al. 2001 (Gpr50), Ross et al. 2004 (Crbp-1), Barrett et al. 2005 (Vgf), Barrett et al. 2006 

(nestin), Barrett et al. 2007 (Dio2, Dio3), Ross et al. 2009 (Srif), Herwig et al. 2009 (Mct8, 

vimentin)]. Templates for riboprobe synthesis were generated by PCR amplification of the 

insert from plasmid DNA. M13 forward and reverse primers which spans both insert and 

polymerase transcription binding and initiation sites in the host vectors were used. One 

hundred µg of PCR product were used in an in vitro transcription reaction with T7, T3 or SP6 

polymerases as appropriate in the presence of 35S-uridine 5-triphosphate (Perkin-Elmer, 

Buckinghamshire, UK) for radioactive in situ hybridization. 

 

In situ hybridization 

Coronal sections of the hypothalamic ARC region (14 µm thick) were collected onto a set of 

12 glass slides. Adjacent sections were mounted on consecutively numbered slides, permitting 

a number of mRNAs to be localised and quantified in each brain. 

In situ hybridization was carried out as described previously (Morgan et al. 1996). 

Briefly, frozen slides were fixed in 4% PFA in 0.1 m PBS, acetylated in 0.25% acetic 

anhydride in 0.1 m TEA, pH 8. Radioactive probes (approximately 106 cpm) were applied to 

the slides in 70 µl hybridization buffer containing 0.3 M NaCl, 10 mM Tris-HCl (pH 8), 1 

mM EDTA, 0.05% tRNA, 10 mM DTT, 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% 

BSA and 10% dextran sulfate. Hybridization was performed overnight at 58 °C. Following 

hybridization, slides were washed in 4 x SSC (1 x SSC is 0.15 M NaCl, 15mM sodium 

citrate), then treated with ribonuclease A (20 µg/µl) at 37 °C and finally washed in 0.1 x SSC 

at 60 °C. Slides were dried and apposed to autoradiographic Biomax MR film (Kodak, 

Rochester, New York) for several hours to days. 

 

Image analysis 

Films were scanned at 600 dpi on an Umax scanner and quantification was carried out using 

Image J 1.37v software (Wayne Rasband, National Institutes of Health, USA). For each 

probe, three sections spanning a selected region of the hypothalamus were chosen for image 

analysis. Integrated optical density for each selected region was obtained by reference to a 

standard curve generated from the autoradiographic 14C microscale (Amersham). An average 

(with SEM) for the integrated optical densities for all sections of one animal and for all 
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animals in one group was calculated. The highest value of one group in an assay was set to 

100% expression value, and other treatment values were calculated accordingly. 

 

Statistical analysis 

The body mass peak (P) in the transition from winter to summer was defined as the highest 

group average value and body mass nadir (N) in the transition from summer to winter as the 

lowest group average value. These values were used to compare body weights at other time 

points for the determination of body weight change. For lean mass, fat mass and gene 

expression, points in time corresponding to P or N were indicated as p and n, respectively. 

Similarly, all other values determined for body composition and gene expressions were 

compared with these defined reference points. Using this method we were able to determine 

whether lean and fat mass or gene expressions changed prior to or later than total body mass. 

Statistical tests applied in this study were one-way ANOVA with Student-Newman-Keuls 

post-hoc test for multiple comparisons where appropriate. Furthermore, for the comparison of 

gene expression between both control groups we applied t-test or, where normality test failed, 

Mann-Whitney-U-test. SigmaStat statistical software (Jandel) was applied, values are 

expressed as mean ± SEM and differences were considered significant if P < 0.05. 

 

 

Results 

 

Body composition 

Djungarian hamsters significantly increased body mass during the course of the transition 

from winter to summer, reaching statistical significance from April onwards [week 17 post 

winter solstice (WS)] relative to the body weight nadir (N; 32.4 ± 1.0 g) in February (week 8 

post WS) (one-way ANOVA, P < 0.05) (Figure 1A). Lean and fat mass significantly 

increased in March (week 12 post WS) relative to n (February) (one-way ANOVA, P < 0.05 

for lean and fat mass). That is 5 weeks prior to the increase in body mass. Regarding the 

transition from summer to winter, body mass was significantly lower from October onwards 

[week 17 post summer solstice (SS)] relative to the body weight peak (P; 38.0 ± 1.6 g) in July 

(week 5 post SS) (one-way ANOVA, P < 0.05) (Figure 1A). Lean and fat mass decreased in 

parallel to the body mass and were significantly different to p (July) from October as well 

(one-way ANOVA, P < 0.05 for lean and fat mass).  
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Figure 1: (A) Body mass 

of male Djungarian 

hamsters and correspon-

ding lean and fat mass 

determined by MRI scan. 

Two groups of animals 

were kept outside under 

natural photoperiod and 

natural Ta (Hannover, 

Germany, 52°N latitude) 

and were killed in the 

course of one year (January 

to June and June to 

December, N = 6-7). P; 

body mass peak, all other 

body weights were 

compared with this value, 

p; time point corresponding 

to P, all other lean and fat 

mass values were 

compared with this value. 

N; body mass nadir and n; 

time point corresponding to 

N, following the same 

procedure as for P and p, *; 

P < 0.05 compared to P, N,  

p or n, respectively. 

(B) Body mass and corresponding lean and fat mass determined by MRI scan in two groups of male Djungarian 

hamsters, kept in artificial LD (16 h of light and 8 h of darkness; LD-C) or SD (8 h of light and 16 h of darkness; 

SD-C) conditions at 20 ± 2 °C for 12 weeks. *; P < 0.05. 

 

 

Body mass between the two experimental groups was significantly different in June (~1 week 

before the SS) (winter to summer vs. summer to winter, 42.9 ± 0.9 g vs. 33.4 ± 1.7 g; t-test; P 

< 0.01) as well as absolute lean mass (winter to summer vs. summer to winter, 27.8 ± 0.6 g 

vs. 21.5 ± 0.6 g; t-test; P < 0.01). Only absolute fat mass was similar in both groups in June 

(winter to summer vs. summer to winter, 7.4 ± 0.8 g vs. 6.1 ± 1.0 g). Body composition in 

percentage of total body mass was not significantly different between both groups at this time 
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(winter to summer: lean mass ~65%, fat mass ~17%; summer to winter: lean mass ~65%, fat 

mass ~18%). 

Body mass and absolute fat mass in the LD-C and SD-C group did not differ significantly 

after 12 weeks (body mass 43.1 ± 3.0 g vs. 35.4 ± 2.7 g; fat mass 7.0 ± 1.4 vs. 4.8 ± 1.2 g) 

(Figure 1B), whereas absolute lean mass was significantly increased in LD-C compared to 

SD-C (28.7 ± 1.4 vs. 24.1. ± 1.3 g; t-test; P < 0.05). Body composition in% of total body mass 

did not differ between both groups (LD-C: lean mass ~67%, fat mass ~16%; SD-C: lean mass 

~69%, fat mass ~13%). 

 

Gene expression in tanycytes 

Nestin and vimentin mRNA expressions were measured in tanycytes lining the 3rd ventricle in 

the hypothalamus of male Djungarian hamsters. During the transition from winter to summer, 

both gene expressions increased and were significantly up-regulated in May (week 21 post 

WS) relative to n (February) (one-way ANOVA, P < 0.05) (Figure 2A and B). Thus, both 

gene expressions increased 4 weeks later than body mass. Regarding the transition from 

summer to winter, nestin mRNA expression significantly decreased in September (weeks 11 

post SS) relative to p (July) (one-way ANOVA, P < 0.05), which is 6 weeks prior to the 

significant decrease in body mass. Gene expression of vimentin decreased in parallel to the 

decrease in body mass and was significantly different to p (July) in October (one-way 

ANOVA, P < 0.05).  

 

 

   



CHAPTER 5 
 

70 

     

 

          

 

  

 

 

 

 

 

 

Figure 2: (A) Nestin and (B) vimentin mRNA expression in tanycytes lining the 3rd ventricle (columns) and 

corresponding body mass (dots) in male Djungarian hamsters. Two groups of animals were kept outside under 

natural photoperiod and Ta (Hannover, Germany, ~52°N latitude) and were killed in the course of one year 

(January to June and June to December, N = 6-7). P; body mass peak, all other body weights were compared 

with this value, p; time point corresponding to P, all other gene expression values were compared with this 

value. N; body mass nadir and n; time point corresponding to N, following the same procedure as for P and p, *; 

P < 0.05 compared to P, N, p or n, respectively. 

(C) Nestin and (D) vimentin mRNA expression in two groups of male Djungarian hamsters, kept in artificial LD 

(16 h of light and 8 h of darkness; LD-C) or SD (8 h of light and 16 h of darkness; SD-C) conditions at 20 ± 2 °C 

for 12 weeks. ***; P < 0.001. 

 

 

After 12 weeks under artificial lighting and Ta, nestin mRNA expression was significantly 

higher in hamsters of the LD-C group compared to SD-C (t-test, P < 0.001) (Figure 2C) but 

there was no difference in vimentin gene expression at this time point (Figure 2D). 
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Figure 3: (A) Type 2, (B) type 3 deiodinase (Dio2 and Dio3) and (C) monocarboxylate transporter 8 (Mct8) 

mRNA expressions in the 3rd ventricular tanycyte layer (columns) and corresponding body mass (dots) in male 

Djungarian hamsters. Two groups of animals were kept outside under natural photoperiod and natural Ta 

(Hannover, Germany, ~52°N latitude) and were killed in the course of one year (January to June and June to 

December, N = 6-7). P; body mass peak, all other body weights were compared with this value, p; time point 

corresponding to P, all other gene expression values were compared with this value. N; body mass nadir and n; 

time point corresponding to N, following the same procedure as for P and p, *; P < 0.05 compared to P, N, p or 

n, respectively. 

(D) Dio2, (E) Dio3 and (F) Mct8 mRNA expression in two groups of male Djungarian hamsters, kept in artificial 

LD (16 h of light and 8 h of darkness; LD-C) or SD (8 h of light and 16 h of darkness; SD-C) conditions at 20 ± 

2 °C for 12 weeks. *; P < 0.05. 

 

 

Type 2 (Dio2) and type 3 (Dio3) deiodinase and monocarboxylate transporter 8 (Mct8) 

mRNA expression was measured in the 3rd ventricular tanycyte layer of the hypothalamus. 

Dio2 gene expression was up-regulated in parallel to the increase in body mass during the 

transition from winter to summer, reaching significance from April onwards (week 17 post 

WS) relative to n (February) (one-way ANOVA, P < 0.05) (Figure 3A). During the transition 

from summer to winter, the Dio2 mRNA expression level was higher in June (1 week before 

the SS) relative to p (July) (one-way, P < 0.05). Afterwards, gene expression decreased and 

stayed low during the rest of the year. Thus, Dio2 gene expression decreased 12 weeks prior 

to the significant decrease in body mass (October).  

Dio3 mRNA expression was very low in hamsters that underwent the transition from the 

winter to the summer phenotype (Figure 3B). Gene expression was highest in January (week 

4 post WS) relative to n (February) (one-way ANOVA, P < 0.05) and was then almost 

undetectable until September. From September (week 11 post SS) to November (week 23 post 

SS), Dio3 gene expression was significantly up-regulated relative to p (July) (one-way 
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ANOVA, P < 0.05) but in December (at the WS) Dio3 gene expression decreased again and 

was not significantly different to p anymore. Relative to the increase in body mass, Dio3 

mRNA expression increased 6 weeks earlier.  

In the course from winter to summer, Mct8 mRNA expression decreased significantly relative 

to n (February) at the end of March (week 14 post WS) (one-way ANOVA, P < 0.05) (Figure 

3C). That is 3 weeks prior to the significant change in body mass in April. During the 

transition from summer to winter, Mct8 gene expression was significantly up-regulated in 

September (week 11 post SS) relative to p (July) (one-way ANOVA, P < 0.05). Thus, Mct8 

gene expression changed 6 weeks prior to the change in body mass.  

After 12 weeks, there was no difference in Dio2 and Dio3 mRNA expression in hamsters kept 

in artificial LD compared to SD (Figure 3D and E), whereas Mct8 gene expression was 

significantly up-regulated in SD (t-test, P < 0.05) (Figure 3F). 

 

Expression of seasonally regulated genes (Vgf, Srif, Gpr50, Crbp-1) 

Vgf mRNA expression was quantified in the hypothalamic dorsal medial posterior arcuate 

nucleus (dmpARC). In hamsters that underwent the transition from winter to summer, Vgf 

mRNA expression was significantly up-regulated in January (week 4 post WS) and 

significantly down-regulated from April onwards (week 17 post WS) relative to n (February) 

(one-way, P < 0.05) (Figure 4A). Thus, Vgf gene expression decreased prior to the increase in 

body mass. In the course from summer to winter, Vgf gene expression was significantly up-

regulated in November (week 23 post SS) relative to p (July) (one-way ANOVA, P < 0.05), 

which is 6 weeks later compared to the change in body mass.  

Srif mRNA expression, measured in the ARC, decreased from summer to winter (Figure 4B). 

It was significantly up-regulated in January (week 4 post WS) and significantly down-

regulated from March onwards (week 12 post WS) relative to n (February) (one-way 

ANOVA, P < 0.05) and, hence, decreased prior to the increase in body mass. During the 

second part of the experiment, Srif gene expression was up-regulated while the body mass 

decreased. From October onwards (week 17 post SS) there was a significant difference in Srif 

mRNA expression compared to p (July) (one-way ANOVA, P < 0.05).  

In the transition from winter to summer, Gpr50 mRNA expression in the ependymal layer of 

the 3rd ventricle significantly increased in June (1 week before the SS) relative to n (February) 

(one-way ANOVA, P < 0.05) (Figure 4C) and thus 8 weeks later than the first significant  
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Figure 4: (A) Vgf (nonacronymic), (B) somatotropin release- 

inhibiting factor (Srif), (C) G-protein-coupled receptor 50 (Gpr50) 

and (D) cellular retinoic acid-binding protein 1 (Crbp-1) mRNA 

expression in the hypothalamic dorsal medial posterior arcuate 

nucleus (dmpARC), ARC and ependymal layer of the 3rd ventricle, 

respectively (columns) and corresponding body mass (dots) in male 

Djungarian hamsters. Two groups of animals were kept outside 

under natural photoperiod and natural Ta (Hannover, Germany, 

~52°N latitude) and were killed in the course of one year (January 

 to June and June to December; N = 6-7). P; body mass peak, all other body weights were compared with this 

value, p; time point corresponding to P, all other gene expression values were compared with this value. N; body 

mass nadir and n; time point corresponding to N, following the same procedure as for P and p, *; P < 0.05 

compared to P, N, p or n, respectively. 

(E) Vgf, (F) Srif, (G) Gpr50 and (H) Crbp-1 mRNA expression in two groups of male Djungarian hamsters, kept 

in artificial LD (16 h of light and 8 h of darkness; LD-C) or SD (8 h of light and 16 h of darkness; SD-C) 

conditions at 20 ± 2 °C for 12 weeks. **; P < 0.01, ***; P < 0.001. 



CHAPTER 5 
 

76 

 

difference in body mass (April). During the transition from summer to winter, Gpr50 gene 

expression was at a peak in July (p; week 5 post SS) relative to June (1 week before the SS). 

The expression showed an increase between June and July, but then decreased once more 

from September (week 11 post SS) (one-way ANOVA, P < 0.05). Thus, Gpr50 mRNA 

expression decreased 6 weeks prior to the body mass (October).  

In hamsters that underwent the transition from winter to summer, Crbp-1 mRNA expression 

in the ependymal layer of the 3rd ventricle was significantly up-regulated in June (1 week 

before the SS) relative to n (February) (one-way ANOVA, P < 0.05) (Figure 4D). Thus, Crbp-

1 gene expression increased 8 weeks later than body mass. In the transition from summer to 

winter, Crbp-1 gene expression was significantly down-regulated in September (week 11 post 

SS) relative to p (July) (one-way ANOVA, P < 0.05), which is 6 weeks prior to the change in 

body mass.  

After 12 weeks under an artificial LD or SD light regimen, Vgf and Srif mRNA expression 

were significantly higher in the SD-C group compared to LD-C (t-test, P < 0.01 and P < 

0.001, respectively) (Figure 4E and F). On the contrary, Gpr50 and Crbp-1 mRNAs were 

significantly higher in the LD-C group compared to SD-C (t-test, P < 0.001 for both gene 

expressions) (Figure 4E and F). 

 

 

Discussion 

 

This is the first study to investigate and relate changes in body mass with gene expression 

changes in the hypothalamus of the Djungarian hamster over the course of one year covering 

transitions from summer to winter and winter to summer. At ~52°N latitude (Hannover), at 

the SS, day length is 16 hours and 48 minutes from sunrise to sunset and at the WS day length 

is only 7 hours and 41 minutes. Hannover is located at a latitude that is within the 

geographical range of the natural distribution area of Djungarian hamsters (Western Siberia 

and Eastern Kazakhstan). Therefore the data gathered in this study is likely to reflect similar 

changes that occur in wild populations of Djungarian hamsters. 

To date, several genes, such as nestin, vimentin, Dio2, Dio3, Mct8, Vgf, Srif, Gpr50 and Crbp-

1 are suggested to be involved in the Djungarian hamsters’ seasonal regulation of body mass, 

which is associated with a seasonal cycle of reproduction and fur colouration (Figala et al. 

1973, Hoffmann 1973, Schlatt et al. 1993). Consistent with the change in body mass, the 
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expression of these genes has been shown to be regulated by photoperiod in the hypothalamic 

ARC after defined periods (8-14 weeks) under artificial LD or SD conditions (Barrett et al. 

2005, 2006, 2007, Drew et al. 2001, Herwig et al. 2009, Ross et al. 2004, 2009). In our study, 

male Djungarian hamsters were kept outside under natural Ta and photoperiod to track gene 

expression changes in the course of one year with its inherent gradual change in photoperiod. 

In photosensitive hamsters that experienced the transition from summer (LD) to winter (SD), 

we could show a seasonal mRNA expression of nestin, vimentin, Dio2, Dio3, Mct8, Srif, 

Gpr50 and Crbp-1 (Figure 2, 3 and 4). As expressions changed in parallel to or prior to the 

decrease in body mass, the data confirm the assumption that these genes might be involved in 

the mechanisms underlying the annual decrease in body mass in autumn. The only gene, 

whose expression was significantly up-regulated one month later compared to the decrease in 

body mass was Vgf (Figure 4A). However, this result has to be considered cautiously as Vgf 

was the only gene that was quantified in the dmpARC. Since the dmpARC is a rather small 

hypothalamic area, only very few brain slices per animal could be analysed. Some animals 

even had to be excluded from analyses as the dmpARC region was not detectable on the 

slices. Thus, without reduced sample size, significance of Vgf from values at n or p 

(corresponding to the time point of the nadir or peak in body mass), may have occurred earlier 

than indicated where significance was achieved. 

Circulating thyroid hormone (triiodothyronine; T3) is known to regulate energy expenditure 

and body weight in mammals (for review, see Herwig et al. 2008). An important enzyme that 

regulates the availability of T3 to the brain is DIO3. It is located in the ependymal layer of the 

3rd ventricle and converts T3 to inactive diiodothyronine (T2). In the present study, Dio3 

expression was detectable for the first time in September, i.e. after eleven weeks in decreasing 

photoperiod. Dio3 mRNA expression reached a peak in October (17 weeks after the SS) and 

then declined again despite the ongoing decrease in photoperiod. Expression of Dio3 

remained low thereafter. This indicates that Dio3 gene expression might have become 

refractory to the SD signal. An early decline in Dio3 gene expression under SD conditions 

might contribute to an early increase of T3 availability in the brain, like under LD conditions. 

Thus, Dio3 refractoriness to SD might present a mechanism underlying the overall process of 

photorefractoriness, thereby triggering LD physiology. Studies of Barrett (2007) and 

Watanabe (2007), performed under artificial photoperiod, observed a peak in Dio3 mRNA 

expression after 6-8 weeks in SD. Subsequently, the expression decreased reaching only 40% 

of peak value by 14 weeks in SD and was undetectable after 27 weeks in SD, when animals 

were then photorefractory. This result concerning photorefractory hamsters is in accordance 
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with the findings in hamsters that experienced the transition from winter to summer in our 

study. Dio3 expression was very low in January and February and it was undetectable since 

then.  

Several studies that analysed Dio2 gene expression in Djungarian hamsters under artificial 

lighting conditions revealed inconsistent results (Barrett et al. 2007, Herwig et al. 2009, 

Watanabe et al. 2004, 2007). To explain this, the authors suggested a time-dependent effect 

and an influence of the photoperiodic history of the animals on Dio2 gene expression. Like 

DIO3, DIO2 is located in the ependymal layer of the 3rd ventricle but in contrast to DIO3, it 

activates the thyroid prohormone T4 by conversion to T3 (for review, see Herwig et al. 2008).  

Watanabe et al. (2004, 2007) found an induction of Dio2 expression in juvenile hamsters that 

were transferred to SD after weaning until 7 weeks of age, then maintained in SD or were 

transferred to LD for further 2 weeks. However, in hamsters kept in LD after weaning and 

then transferred to SD, the expression of Dio2 decreased in the LD and SD group at a similar 

rate. This decline in both groups might reflect an age related change and the hamsters mature. 

Further changes then seem not to occur in SD when Dio2 levels are established. 

Consequently, there was no difference in Dio2 mRNA expression between both groups after 6 

weeks, or after 27 weeks in SD when hamsters will have become photorefractory to SD. 

Consistently, in a study of Barrett and coworkers (2007) where hamsters were also transferred 

from LD to SD, they did not find a difference in Dio2 gene expression between the LD and 

SD group after 14 weeks. This is also in accordance with the result of both control groups in 

this study. In our study, after 12 weeks in artificial photoperiod there was no difference 

between LD-C and SD-C (Figure 3D). However, Herwig and coworkers (2009) found a 

difference in Dio2 expression between LD and SD animals after 8 weeks, although animals in 

the SD group were transferred from LD to SD and thus treated similar to those in the study of 

Barrett and coworkers (2007) and animals in the control groups of our study. The authors 

suggested a time-dependent change of Dio2 gene expression. However, in another study 

under similar conditions, we could not find a difference in Dio2 gene expression after 8 weeks 

(see chapter 3).  

Altogether, in our experiment under natural photoperiod and Ta Dio2 and Dio3 mRNA 

expression seemed to be inversely regulated. We found significantly elevated Dio2 mRNA 

expression levels in June in both experimental groups, independent of their photoperiodic 

history (transition from natural SD to LD or LD to SD). Watanabe and coworkers (2007) 

found a low mRNA expression of Dio2 in SD refractory hamsters that were kept in SD for 27 

weeks. However, in our study Dio2 expression increased in hamsters that became 



CHAPTER 5 

  79 

photorefractory (transition from winter to summer). We cannot rule out an effect of Ta on 

Dio2 expression in our experiment. Collectively, the new findings indicate that further 

research is necessary to characterize seasonal Dio2 gene expression and the underlying 

mechanisms. 

In photorefractory hamsters that experienced the natural transition from winter to summer, we 

found that Dio2, Mct8, Vgf and Srif mRNA levels changed either in parallel or prior to the 

change in body mass. Therefore, we suggest that these genes might be involved in the 

mechanism underlying the increase in body weight in photorefractory Djungarian hamsters. 

However, the change in these mRNA expressions might occur independently of the 

morphological state in the tanycytes. The up-regulation of both nestin and vimentin mRNA, 

which are markers for tanycytes in the ependymal layer, was delayed relative to the increase 

in body mass. Nestin and vimentin are intermediate filaments that constitute an element of the 

cytoskeletal architecture. They are involved in axonal growth and may have a role to play in 

tanycyte morphology. Vimentin has previously been shown to be down-regulated in SD in the 

Djungarian hamster, consistent with a retraction of tanycyte end feet from basal epithelium of 

the brain (Kameda et al. 2003). This potentially facilitates access of neuronal axons to the 

portal blood system of the ME. The findings that both, morphological changes of tanycytes 

and vimentin and nestin expression in tanycytes are photoperiodically regulated in the 

Djungarian hamster indicate that tanycytes and the ependymal layer might play a role in 

seasonal responsiveness (Barrett et al. 2006, Herwig et al 2009, Kameda et al. 2003, Xu et al. 

2005). Tanycytes may be involved in the mechanism associated with the seasonal body mass 

decline in photosensitive hamsters, as nestin and vimentin expression decrease prior to the 

decrease in body mass (Figure 2A and B). However, our results show that vimentin and nestin 

gene expression is delayed relative to the change in body mass in the transition from winter to 

spring. This finding indicates that morphological changes of tanycytes may not be involved in 

the physiological adaptations occurring during spring. 

Gpr50 and Crbp-1 mRNA expression significantly increased in June, which is eight weeks 

later compared to the significant increase in body mass in April in photorefractory hamsters 

(Figure 4C and D). CRBP-1 is a retinol transport protein that was reported to be 

photoperiodically regulated in the Djungarian hamster (Barrett et al. 2006, Ross et al. 2004). 

GPR50 is an orphan G-protein-coupled receptor, but its localisation in tanycytes and its 

regulation by photoperiod in the Djungarian hamster suggest a role in communication 

between the hypothalamus and the pituitary gland (Barrett et al. 2006, Drew et al. 2001, 

Sidibe et al. 2010). However, like vimentin and nestin, Gpr50 and Crbp-1 gene expression do 
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not seem to be essentially involved in the mechanism leading to the body mass increase in 

spring.  

Lean und fat mass significantly increased five weeks prior to the significant increase in total 

body mass during the natural transition from SD to LD (Figure 1A). This was probably due to 

the different methods of measurement we applied to determine total body mass and body 

composition. We excluded body water from analyses, as hamsters lost variable amounts of 

blood at killing, due to brain and organ dissection. Furthermore, carcasses have been frozen 

initially and were thawed later for carrying out the MRI scan. Both situations might have 

caused individual differences in body water content that cannot be distinguished when 

measuring total body mass.  

In our experiment we could show that in addition to the seasonal cycle in fat mass, a seasonal 

cycle in lean mass contributed to the cycle in total body mass. In animals exposed to the 

transition from winter to summer, fat mass increased 2.8-fold and lean mass increased 1.3-

fold from February (n) to April, where body mass was significantly increased compared to N 

(Figure 1A). During winter acclimatization, fat mass decreased 3.1-fold and lean mass 1.2-

fold between July (p) and October, where body mass was significantly lower compared to P. 

In a previous study the authors stated that the decrease in body mass in SD in Djungarian 

hamsters was almost entirely due to a reduction in fat mass (Wade and Bartness 1984). 

However, measurement of body composition in a study of Klingenspor and coworkers (2000) 

revealed that the SD-mediated decrease of body mass is equally due to a reduction of fat mass 

and fat-free mass. Our study indicates that the contribution of fat mass to the seasonal cycle in 

body mass might reside in between the suggestions of both studies.  

In the study of Klingenspor and colleagues (2000), they found a 50% decrease of fat mass in 

SD control hamsters compared to LD controls, which we did also find in another study (see 

chapter 3) but not in the control hamsters of this study (Figure 1B). In addition, there was no 

significant difference in total body mass after 12 weeks. This might indicate that the control 

hamsters of our study were unsuitable to get reliable data of gene expression and body 

composition comparable to other studies. An explanation might be the old-age (11-17 

months) of our control hamsters at the time points of sampling together with the fact that 

hamsters of both control groups had experienced one winter outside before they were 

transferred to artificial LD and finally to SD again. However, 12 weeks under increasing 

natural photoperiod and subsequently 8 weeks under artificial LD should have been sufficient 

to re-sensitize the neuroendocrine system, to be able to adapt to SD again (Bittman 1978, 

Kauffman et al. 2003, Reiter 1972, Stetson et al. 1977). Nevertheless, Figala and coworkers 



CHAPTER 5 

  81 

(1973) discovered that most of the hamsters experiencing autumn/winter conditions for the 

second time in their short life, either develop considerably reduced SD responses or do not 

respond at all.  

This might also explain the lacking difference in Dio3 mRNA expression between the LD and 

SD-C group after 12 weeks (Figure 3E). The results indicate that the amplitude of seasonal 

Dio3 gene expression might be strongly dampened in the control hamsters of our study, hence 

not reaching statistical significance. The same might be true for the vimentin mRNA 

expression. Generally, we noticed that the expression level of genes in both control groups 

under artificial lighting conditions was lower compared to animals under natural photoperiod 

and Ta. These hamsters have been 9-13 months of age at the time point of sampling. 

Furthermore, we cannot rule out an effect of constant vs. changing temperature and 

photoperiod on the processes of seasonal acclimatization. However, for Crbp-1, Gpr50, 

nestin, Mct8 and Vgf genes we found photoperiod-dependent mRNA expression levels in our 

control hamsters consistent with previous studies (Barrett et al. 2005, 2006, Herwig et al. 

2009). 

In summary, we demonstrate a possible involvement of nestin, vimentin, Dio2, Dio3, Mct8, 

Srif, Gpr50 and Crbp-1 genes in the seasonal body mass regulation in photosensitive 

Djungarian hamsters. In photorefractory hamsters, only Dio2, Mct8, Vgf and Srif mRNA 

expressions were found to change prior to the increase in body mass. Thus, only these genes 

might be involved in the mechanisms leading to the weight gain in late winter/spring. In 

contrast, nestin and vimentin gene expression in tanycytes was delayed relative to the body 

mass increase. However, future studies should further investigate the varying gene expression 

of Dio2. Furthermore, an increase in sampling points during the course of one year and the 

measurement of the gonadal cycle in addition to the body mass cycle would increase precision 

and significance of follow-up studies. 
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Djungarian hamsters are known for their high motivation to run in a wheel but the origin of 

this behaviour remains speculative. However, voluntary running is clearly associated with 

increased energy expenditure. Similarly, reproduction that is essential for the survival of the 

species is also associated with high energetic costs, especially for the females. Thus, in our 

first study (chapter 2) we investigated the challenge and influence of voluntary wheel-running 

activity on reproductive success. The outcome was an increased prevalence of infanticide and 

cannibalism in exercising breeding pairs and singly kept females, presumably to compensate 

for the energy deficit caused by wheel-running activity. Only a few females reduced the 

amount of wheel revolutions after parturition and weaned several pups. This difference 

between individuals might be explained by a differing propensity to wheel-running activity as 

it has been shown in previous studies (Scherbarth et al. 2007, 2008). Another result was that 

wheel-running activity seemed to prevent successful pregnancy. We hypothesized that this 

might have been due to unfavourable energetical preconditions for reproduction. In previous 

studies it was shown that exercising hamsters increased body mass without increasing plasma 

leptin levels (Scherbarth et al. 2007). This could be explained by the fact that the increase in 

body mass was due to an increase in lean but not fat mass and leptin is known to be 

adipocyte-derived (for review, see Ahima and Flier 2000). Leptin stimulates hypothalamic 

gonadotropin-releasing hormone (GnRH) release and via a subsequent signalling cascade 

including the release of follicle stimulating hormone (FSH) and luteinising hormone (LH) 

from the pituitary, GnRH regulates the oestrus cycle (for review, see Popovic and Casanueva 

2002). In exercising females, an impaired oestrus cycle due to low plasma leptin 

concentrations might have prevented pregnancy (similar to exercise-induced amenorrhea in 

women). Furthermore, leptin plays a role in maternal investment and was shown to reduce 

infanticide in Djungarian hamsters (French et al. 2009). From our data we do not know 

whether pups that were born by an exercising female were fed directly after birth or whether 

they died through starvation or hypothermia due to negligence of the parents prior to 

cannibalization. Thus, in future studies video recordings should track the behaviour of 

exercising breeding pairs directly after parturition. Thereby, further insight into behavioural 

changes, such as maternal care, in wheel-running hamsters could be gained. In addition, 

plasma leptin levels of the females should be determined as well as other hormonal 

concentrations, such as prolactin that is involved in male and female fertility, pup-induced 

maternal behaviour and the control of lactation (for review, see Bachelot and Binart 2007). 

In the experiment described in chapter 3, we observed a weight gain in hamsters with access 

to a RW, independent of the LD or SD photoperiod, as shown in previous studies (Scherbarth 
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et al. 2007, 2008 and chapter 2). Although energy expenditure and cumulative food intake 

increased in hamsters that voluntarily ran in a wheel for 12 weeks, orexigenic and 

anorexigenic gene expressions in the hypothalamic ARC that regulate energy homeostasis 

were not affected. One exception was Pomc whose expression significantly increased in the 

SD-RW group compared to SD-C after 12 weeks. Likewise, we found an up-regulated Vgf 

gene expression in the dmpARC of both RW groups. These increases in gene expression are 

counterintuitive since on the one hand, POMC- and VGF-derived peptides are known to act 

catabolic (for reviews, see Jethwa and Ebling 2008, Mountjoy 2010) but on the other hand, 

both RW groups increased body mass compared to the controls. However, we found absolute 

food intake of exercising hamsters to be almost unaltered after 12 weeks compared to the first 

week of the experiment. Thus, increased levels of POMC and VGF, probably triggered by the 

increased body mass that deviates from the seasonal set point, might counteract an increase in 

food intake. Nevertheless, the activated melanocortin pathway and increased secretory and 

signalling activity of the dmpARC seem not to be strong enough to affect body mass. A 

possible explanation could be that both catabolic systems might be overridden by anabolic 

mechanisms like growth, whose involvement in the increase in body mass of exercising 

hamsters could be confirmed in this study via determination of Srif gene expression. Future 

studies might additionally analyse the impact of voluntary exercise on gene expression of the 

melanocortin system in the brainstem [parabrachial nucleus (PBN) and nucleus of the solitary 

tract (NTS)]. Both brain nuclei are involved in appetite and feeding in rodents (for review, see 

Scott and Small 2009) and many neuropeptides and receptors involved in the regulation of 

energy balance in the hypothalamus are also present in this area (Joseph et al. 1983). A 

previous study in rats revealed that activation of the melanocortin system by Pomc gene 

transfer to the NTS counteracts diet-induced obesity. However, an identical treatment in the 

ARC failed to do so (Zhang et al. 2010). Furthermore, the expression of MC4 receptors in this 

brain area was shown to be regulated by photoperiod in the Djungarian hamster (Helwig et al. 

2009). 

To further investigate a potentially increased secretory activity of the dmpARC in exercising 

hamsters, gene expression of the secretogranins SgIII and VI that are involved in secretory 

processes (Nilaweera et al. 2009) should be quantified. In addition, gene expression of other 

seasonally expressed neuropeptides in the dmpARC, such as MC3 receptor and serotonin 

receptors 5-HT-2A and 5-HT-7 might be determined. If actually, under the influence of 

wheel-running activity the intracellular signalling pathways in the dmpARC are activated, 

these gene expressions might be up-regulated. 
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Our hypothesis that wheel-running activity may affect photoperiod-driven gene expressions 

involved in the regulation of body weight to facilitate a weight gain in RW hamsters 

(especially in SD) seems not to include the thyroid system. This system is known to be 

important for the regulation of energy expenditure (for review, see Herwig et al. 2008). 

However, there was no difference between the RW groups and their respective controls in any 

of the investigated gene expression. Based on this results, we could show that the perception 

of photoperiod at the level of the hypothalamus was not affected by voluntary wheel running. 

The same was shown in the golden hamster (Mesocricetus auratus) by demonstrating that the 

ability of the SCN to integrate the photoperiodic change from LD to SD was not modified in 

exercising individuals (Menet et al. 2005). As hypothesized in their study, we then suggested 

that downstream physiological and metabolic responses might be involved in the exercise-

induced weight gain.  

Therefore, in the next study (chapter 4) we analysed skeletal muscle metabolism based on 

enzyme phosphorylation levels in the gastrocnemius muscle. Since peripheral skeletal 

muscles show a high plasticity to adapt to exercise training, we hypothesized that they might 

secrete factors that feed back to the brain and thus are involved in the mechanisms overriding 

the seasonal processes of body weight regulation. However, our results revealed neither an 

impact of photoperiod nor activity on enzyme phosphorylation. This might have been due to 

the inappropriately chosen sampling point 3-4 hours after the lights went on and thus not 

close enough to the nocturnal exercise bout. Furthermore, activity intensity and food intake 

were not standardized in our experiment, leading to a large individual variability in the 

measured parameters.  

In previous studies it was shown that besides fat mass, lean mass (mainly muscle mass) 

contributes to the seasonal cycle in body weight as well (Klingenspor et al. 2000 and chapter 

3 and 5). However, to date only few studies addressed seasonal changes in muscle 

morphology and metabolism in the Djungarian hamster (Braulke et al. 2010). Thus, the 

endocrine control of the photoperiod-driven change in muscle mass remains to be elucidated 

and more studies in this field are required.  

We measured serum concentrations of insulin and IGF-1 in this study as well. The results are 

comparably affected by the above mentioned factors. Although not significant, results might 

hint at slightly increased insulin levels in the SD-RW group compared to SD-C. Elevated 

insulin levels are found in mammals that developed insulin resistance, predominantly caused 

by obesity. Initially, insulin is produced in sufficient quantities in these animals but insulin-

stimulated glucose transport and uptake is diminished in glucose absorbing organs such as 
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muscle. Thus, the blood glucose level increases and the pancreas in turn compensates with 

increased insulin secretion. However, an elevated insulin secretion cannot be sustained over a 

long period of time. As a consequence of insulin deficiency in a later stage, type 2 diabetes 

may develop. But exercising hamsters increase their body mass without increasing fat mass 

(Scherbarth et al. 2007) and thus, they cannot be described as ‘obese’. Furthermore, exercise 

does counteract insulin resistance. An important role in this process plays the enzyme AMPK 

in muscle. AMPK is involved in regulating energy balance at the whole body level via 

inhibition of anabolic pathways while activating catabolic processes (for review, see Hardie et 

al. 1998). In animal models of insulin resistance, AMPK activity was found to be low due to 

defect or disuse of the AMPK signalling system (for review, see Winder and Hardie 1999). 

Activity of AMPK can be pharmacologically stimulated by AICAR (Buhl et al. 2002, Iglesias 

et al. 2002) or directly through exercise training (Brandt et al. 2010, Kraegen et al. 1989). 

Both procedures have been shown to effectively counteract insulin resistance via improved 

glucose transport and fatty acid oxidation. Thus, the development of insulin resistance in 

exercising hamsters seems not to be very likely. 

One study on voluntarily exercising and thus trained rats revealed low levels of plasma IGF-1 

compared to controls (Matsakas et al. 2004). However, exercising rats had decreased their 

body mass after 12 weeks and thus it was suggested that wheel running may diminish 

anabolic stimuli in this species. This is in contrast to our findings in the hamster where 

anabolic stimuli are induced through wheel-running activity. Thus, we would expect a rather 

elevated IGF-1 plasma level in our study, but in contrast to our expectations, we did not find 

any significant differences between exercising hamsters and controls. However, like with 

insulin, there might at best be a faint hint to slightly elevated IGF-1 serum concentrations in 

the SD-RW group compared to SD-C. Altogether, the discussion points out that the 

experiment should be repeated under standardized conditions with an appropriate time point 

for muscle and blood sampling. Consequently, we then might be able to shed light on the 

involvement of insulin, IGF-1 and the muscle metabolism in seasonal body weight regulation 

as well as the impact of wheel-running activity on it. 

Considering the present results of all our studies, the question remains how the exercise-

induced increase in body mass can develop without an increase in food intake. Moreover, we 

found that the effectiveness of digestion seems not to be altered by wheel-running activity. 

Analysis of the energy content in faeces via a bomb calorimeter showed no difference 

between hamsters with or without access to a RW in either photoperiod (data not shown). 

Hence, we conclude that several factors such as growth, altered insulin and IGF-1 levels, a 
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conversion of body fat to body lean mass and probably a lot of other still unknown factors, 

might sum up and contribute to the exercise-induced weight gain. 

The last experiment (chapter 5) is the first study to investigate the temporal sequence of gene 

expression changes in the ARC of the Djungarian hamster over the course of one year under 

natural Ta and photoperiod. Thereby, the gradual transitions from summer to winter and 

winter to summer were covered (Hannover, Germany; 52°N latitude). These gene expressions 

have previously been investigated only under artificial lighting and temperature conditions. 

By relating changes in body mass with gene expression changes, we were able to confirm 

several genes to be involved in body mass regulation.  

During the course of the year, Srif gene expression was in antiphase with the body mass cycle, 

changing prior to or in parallel with the body mass. As SRIF inhibits the release of GH from 

the pituitary, the result indicates that growth seems to be inhibited in SD and allowed in LD. 

This result is in line with our finding under artificial conditions, as described in chapter 3. 

In previous studies under artificial lighting conditions, Dio3 gene expression in Djungarian 

hamsters was shown to be present only in SD, reaching a peak after 6-8 weeks (Barrett et al. 

2007, Herwig et al. 2009, Watanabe et al. 2007). DIO3 is located in the ependymal layer of 

the 3rd ventricle and converts T3 to inactive T2. Thus, in SD, T3 availability in the brain 

decreases, thereby decreasing energy expenditure which is an important adaptation to save 

energy in winter. On the other hand, the hypothalamic T3 availability seems to be high in LD 

due to the lack in Dio3 gene expression (Freeman et al. 2007). After the peak in Dio3 gene 

expression, previous studies showed a rapid decline, indicating that the Dio3 expression might 

have become refractory to the SD signal. An early decline in Dio3 gene expression under SD 

conditions might contribute to an early change in physiology, thereby anticipating LD 

conditions. Thus, Dio3 refractoriness to SD might present a mechanism underlying the overall 

process of photorefractoriness. The gene expression of Dio3 in our experiment under natural 

photoperiod and Ta shows a comparable pattern. Dio3 mRNA expression appeared for the 

first time in September (week 11 post SS) and reached a peak in October (week 17 post SS). 

Then it decreased again between October and November (week 23 post SS) and was almost 

undetectable during the rest of the year. After 27 weeks in SD, when hamsters have been 

photorefractory, Watanabe and coworkers (2007) found Dio3 gene expression to be 

undetectable. This is also in accordance with the findings in photorefractory hamsters that 

experienced the transition from winter to summer in our study. Dio3 expression was very low 

in January and February and it was undetectable since then.  
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Studies determining Dio2 gene expression in Djungarian hamsters revealed inconsistent 

results so far and the authors suggested a time-dependent effect and an influence of the 

photoperiodic history of the animals on Dio2 gene expression (Barrett et al. 2007, Herwig et 

al. 2009, Watanabe et al. 2004, 2007). The outcome of our experiment suggests another 

influence on Dio2 gene expression, namely Ta, as we found significantly elevated Dio2 

mRNA expression levels from April (week 17 post WS) to June (~1 week before the SS). 

Concerning photorefractory hamsters, Watanabe and coworkers (2007) found a low mRNA 

expression of Dio2 in hamsters after 27 weeks in SD. However, in our study Dio2 expression 

increased in hamsters that became photorefractory (transition from winter to summer). 

Interestingly, in our experiment under natural photoperiod and Ta Dio2 and Dio3 mRNA 

expression seemed to be inversely regulated. 

Nestin and vimentin are intermediate filaments that constitute the cytoskeleton and thus they 

might be involved in tanycyte morphology. In previous studies on the Djungarian hamster, 

Vimentin mRNA expression has been shown to be decreased in SD. Simultaneously, 

tanycytes retracted from the basal epithelium of the hypothalamus in SD (Kameda et al. 

2003). The findings that both, morphological changes of tanycytes and vimentin and nestin 

expression in tanycytes are photoperiodically regulated in the Djungarian hamster indicate 

that tanycytes and the ependymal layer might play a role in seasonal responsiveness (Barrett 

et al. 2006, Herwig et al 2009, Kameda et al. 2003, Xu et al. 2005). The results of our study 

suggest that tanycytes may be involved in the mechanism underlying the seasonal body mass 

decline, as nestin and vimentin expression decreased prior to the decrease in body mass. 

However, the up-regulation of both genes was delayed relative to the increase in body mass in 

photorefractory hamsters (in the transition from winter to spring). This finding indicates that 

morphological changes of tanycytes may not be involved in the physiological adaptations 

occurring during spring. 

A subsequent experiment under natural conditions should include an increase in sampling 

frequency and a determination of the testes cycle in addition to the body weight cycle. 

Besides the verification of the pattern of Dio2 gene expression, the increasing number of 

genes, whose expression is found to be regulated by photoperiod in the hypothalamus of 

Djungarian hamsters kept under artificial conditions, could be analysed and related to the 

seasonal testes cycle and cycle in body mass. 

 

Altogether, this study confirms wheel-running activity as a useful tool in the Djungarian 

hamster to manipulate and challenge the neuroendocrine energy balance system and the 
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mechanisms underlying seasonal acclimatization. However, further research in this field is 

necessary to understand the interaction of the complex mechanisms in the brain and periphery 

that mediate the divergence from the natural seasonal cycle of physiological adaptations due 

to voluntary exercise. From the data achieved in the context of this thesis we assume that 

there should be several factors that are affected by wheel-running activity. Thus, even small 

influences on these factors, all acting in the same direction, might sum up to induce the 

exercise-induced weight gain. 
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