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Abstract

This thesis deals with the coupling of finite elements and boundary elements for electro-

magnetic interface problems, especially the skin effect in R3.

The first part (Chapter 1) is dedicated to the study of transmission problems of elec-

tromagnetic waves in materials with strong contrast. We report the ideas which were

developed by MacCamy and Stephan [30, 31], who consider the scattering of time-

periodic electromagnetic fields by metallic obstacles, the eddy current problem. In this

interface problem different sets of Maxwell equations must be solved in the obstacle

and outside, while the tangential components of both electric and magnetic fields are

continuous across the obstacle surface. We present two solution procedures.One is an

asymptotic procedure which applies for large conductivity and reflects the skin effect

in metals. This asymptotic procedure gives for the computation of the solution of the

transmission problem a great reduction in complexity since it involves solving only the

exterior boundary value problem (perfect conductor problem). The latter is solved nu-

merically by the boundary element method. We give numerical experiments which show

the efficiency of this procedure. The other solution procedure is a new coupling method

with finite elements and boundary elements which allows the use of standard, conform-

ing test and trial functions which are easy to implement.

In the second part (Chapters 2, 3, 4) we consider two different problems in the whole

space R3, the scalar and the electromagnetic transmission problems. For both problems

we prove a priori estimates. We calculate the terms of an asymptotic expansion of the

electrical field and study its convergence. The ideas of this part are based on those of

Peron [42], who considered a bounded exterior domain, while we extend his results to

the case of an unbounded exterior domain. For this extension we use Beppo-Levi spaces

with weights at infinity.

The third part (Chapter 5) is concerned with a non-conforming fem/bem coupling to

solve the two-dimensional eddy current problem for the time harmonic Maxwell’s equa-

tions. We use Crouzeix-Raviart elements in the interior domain and piecewise linear and

piecewise constant boundary elements on the interface boundary.

Keywords. Skin effect, scalar and electromagnetic transmission problems, asymptotic

expansion, non-conforming FEM/BEM coupling.
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Zusammenfassung

Diese Arbeit behandelt die Kopplung von finiten Elementen und Randelementen für

elektromagnetische Transmissionsprobleme, insbesondere den Skin-Effekt im R3.

Der erste Teil (Kapitel 1) ist der Analyse von Transmissionsproblemen von elektromag-

netischen Wellen in Materialien mit starkem Kontrast gewidmet. Wir wiederholen die

Ideen, die von MacCamy und Stephan entwickelt wurden [30, 31]. Sie betrachten die

Streuung der zeitperiodischen elektromagnetischen Felder verursacht durch metallische

Hindernisse, das sogenannte Wirbelstromproblem. In diesem Interface-Problem müssen

verschiedene Maxwell-Gleichungen einmal im Hindernis und einmal außerhalb gelöst

werden, wobei die Tangentialkomponenten der beiden elektrischen und magnetischen

Felder stetig über die Oberfläche des Hindernisses sind. Wir betrachten ein asympto-

tisches Verfahren, das für große Leitfähigkeit gültig ist und den Skin-Effekt im Met-

all berücksichtigt. Das asymptotische Verfahren reduziert die Komplexität des Aus-

gangsproblems, da jetzt nur noch das äußere Randwertproblem gelöst werden muss.

Dieses lösen wir numerisch mit der Randelementmethode. Unsere numerischen Exper-

imente zeigen die Effizienz des Verfahrens. Des weiteren leiten wir eine neue Finite

Elemente/Randelement-Kopplungsmethode für das Transmissionsproblems her, die er-

laubt stückweise lineare sowie stückweise konstante Ansatzfunktion im Innengebiet und

auf dem Rand zu benutzen.

Im zweiten Teil (Kapitel 2, 3, 4) betrachten wir zwei verschiedene Probleme über dem

ganzen Raum R3, das skalare und das elektromagnetische Übertragungsproblem. Für

beide Probleme beweisen wir jeweils eine a priori Abschätzung. Wir berechnen die

Terme einer asymptotischen Entwicklung des elektrischen Feldes und untersuchen ihre

Konvergenz. Die Ideen aus diesem Teil basieren auf der Arbeit von Peron [42], der ein

beschränktes Außengebiet betrachtet, während wir seine Ergebnisse für den Fall eines

unbeschränkten Außengebiets erweitern. Für diese Erweiterung benutzen wir Beppo-

Levi-Räume mit Gewicht im Unendlichen.

Im dritten Teil (Kapitel 5) wird das zweidimensionale Wirbelstromproblem für die zeit-

harmonischen Maxwell-Gleichungen mit einer Kopplung von nicht-konformen Finiten El-

ementen und Randelementmethoden gelöst. Wir nehmen Crouzeix-Raviart-Elemente im

Innengebiet und stw. lineare sowie stw. konstante Randelemente auf dem Übergangsrand.

Unsere numerischen Experimente zeigen die Effizienz dieser FEM/BEM Kopplung.

Schlagwörter. Skin-Effekt, skalare und elektromagnetische Übertragungsprobleme,

asymptotische Entwicklung, nicht-konforme FEM/BEM Kopplung.
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Introduction

This thesis deals with finite element and boundary element procedures for electromag-

netic transmission problems in R3. Special emphasis is on investigation of the behaviour

of the electrical and magnetical fields for material with higher conductivity. We analyze

the phenomenon of the skin effect with the aid of a multi-scale analysis and numerical

simulation.

In Chapter 1 we present asymptotic expansions with respect to inverse powers of con-

ductivity for the electrical and magnetical fields and report the algorithm of MacCamy

and Stephan [31] which allows to compute the expansion terms of the electrical field

in the exterior domain by solving sucessively only exterior problems (so-called perfect

conductor problems) with different data on the interface between conductor (metal) and

insulator (air). We solve these exterior problems numerically by applying the Galerkin

boundary element method to first kind boundary integral equations which were origi-

nally introduced by MacCamy and Stephan in [30]. This system of integral equations

on the interface Σ results from a single layer potential ansatz for the electrical field

and has unknown densities namely a vector field and a scalar function on Σ which we

approximate with lower order Raviart Thomas elements and continous piecewise linear

functions on a regular, triangular mesh on Σ. As in the two dimensional case, investi-

gated by Hariharan [22, 23] and MacCamy and Stephan [32], the asymptotic procedure

gives for the computation of the solution of the transmission problem a great reduction

in complexity since it involves solving only the exterior problem and furthermore only

a few expansion terms must be computed. This is due to the fast convergence of the

expansion for large conductivity which we obtain in Chapters 3, 4 by extending Peron’s

results [42] - valid for a bounded domain - to our transmission problem with unbounded

exterior domain. We describe in detail how to implement the boundary element method

for the perfect conductor problem. As an alternative to the asymptotic expansions for

the solution of the transmission problem we introduce a new finite element/boundary el-

ement Galerkin coupling procedure which converges quasi-optimally in the energy norm

(Theorem 2).

In Chapter 2 as in Peron [42] we investigate a scalar transmission problem for the Lapla-

cian with parameter. But we use a setting in Beppo-Levi spaces (Sobolev spaces with

weight) to incorporate in a weak sense the decay condition at infinity; in this way we

extend Peron’s results [42, 7] to an unbounded exterior domain.

In Chapter 3 we analyze electromagnetic transmission problems (Maxwell’s equations)

1



in R3 for a large parameter in weighted spaces (vectorial Beppo-Levi spaces). Again

we follow Peron but consider unbounded exterior domains. Therefore we must consider

appropriate weighted spaces and use a Helmholtz decomposition for the electrical field

in weighted spaces obtained by Girault [18], and compactness results for the embedding

in weighted Sobolev spaces by Avantaggiati and Troisi [2]. These ingredients allow us to

derive an a priori estimate for the solution of the regularised Maxwell’s interface prob-

lem which holds uniformly with respect to the conductivity parameter. In deriving this

result we follow step by step Peron’s approach [42] and modify it appropriately for the

unbounded exterior domain. Our a priori estimate (Theorem 6) implies uniqueness and

existence of the solution of the electromagnetic transmission problem in weighted spaces

(Theorem 5).

In Chapter 4 we mainly report on Peron’s results for an asymptotic expansion of the

electrical field for large conductivity [42, 15]. We show that his results (for a bounded

exterior domain) remain valid for an unbounded exterior domain. Since as we have

shown in Theorem 5 the solution of Maxwell’s interface problem is unique, it can be

obtained on the other hand by the boundary integral equation procedure by MacCamy

and Stephan [31] considered in Chapter 1. This on the other hand shows that the formal

asymptotic expansion in Chapter 1 converges, too, and the effectiveness of the procedure

in Chapter 1 (computing only a couple terms in the expansion via solving only perfect

conductor problems) is guaranteed.

In Chapter 5 we present a non-conforming finite element/boundary element coupling

method to solve the two-dimensional eddy current problem for the time harmonic Maxwell’s

equations. Here we combine the approach by Brenner et al. [4, 5, 6] for the fem part

with the approach by Carstensen and Funken [8] for the fem/bem coupling. We present

numerical simulations which show the effectiveness of our non-conforming fem/bem cou-

pling method.

2



1 Asymptotic expansion for large

conductivity, skin effect and

boundary element computations

We consider the scattering of time periodic electro-magnetic fields by metallic obstacles,

the eddy current problem. In this interface problem different sets of Maxwell equations

must be solved in the obstacle and outside, while the tangential components of both

electric and magnetic fields are continuous across the interface. In Subsection 1.1 we

describe an asymptotic procedure from [31] which applies for large conductivity and

reflects the skin effect in metals. The key to our method is to introduce a special

integral equation procedure (derived in [31]) for the exterior boundary value problem

corresponding to perfect conductors (see Subsection 1.2). The asymptotic procedure

leads to a great reduction in complexity for the numerical solution since it involves solving

only the exterior boundary value problem. In this chapter we extend the procedure

from the two-dimensional case in [32] to three dimensions. Furthermore we introduce in

Subsection 1.3 a new fem/bem coupling procedure for the transmission problem. Finally,

in Subsection 1.4 we consider the implementation of the Galerkin elements for the perfect

conductor problem and present numerical experiments in Subsection 1.5.

1.1 Asymptotic expansion for large conductivity and

skin effect

Let Ω− be a bounded region in R3 representing a metallic conductor and Ω+ := R3\Ω−
representing air. Throughout Chapter 1 we assume that the boundary Σ of Ω− is a

regular analytic surface. The parameters ε, µ, σ denote permittivity, permeability and

conductivity. We assume zero conductivity in Ω+. Let the incident electric and magnetic

fields, E0 and H0, satisfy Maxwell’s equations in air. The total fields E and H satisfy

the same Maxwell’s equations as E0 and H0 in Ω+ but different equations in Ω−. Across

the interface Σ := ∂Ω− = ∂Ω+, the tangential components of E and H are continuous.

E − E0 and H − H0 represent the scattered fields. All fields are time-harmonic with

frequency ω. As in [31] we neglect conduction (displacement) currents in air (metal).

3



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Then, with appropriate scaling, the eddy current problem is (see [31], [44])

Problem (Pαβ): Given parameters α and β > 0, find E and H such that

curl E = H, curlH = α2E in Ω+ (air)

curl E = H, curlH = iβ2E in Ω− (metal)

E+
T = E−

T , H+
T = H−

T , on Σ.

(1.1)

∂

∂r
E(x)− iαE(x) = O

(
1

r2

)
with r = |x|, as |x| → ∞.

Here α2 = ω2µ0ε0 and β2 = ωµσ − iω2µε are dimensionless parameters, and

β2 = ωµσ > 0 if displacement currents are neglected in metal (ε = 0). Here e.g. E+
T

denotes the limit from Ω+ of the tangential component on Σ.

At higher frequencies the constant β is usually large leading to the perfect conductor

approximation. Then in (1.1) one only solves the equation in Ω+ and requires ET = 0

on Σ, that is

Problem (Pα∞):For given E0
T and α > 0, find the scattered fields E and H such that

curl E = H, curlH = α2E in Ω+

ET = −E0
T , on Σ.

(1.2)

Remark 1. There exists at most one solution of problem (Pαβ) for any α > 0 and

0 < β ≤ ∞ (see [39]).

We are interested in an asymptotic expansion of the solution of problem (Pαβ) with

respect to inverse powers of conductivity. With τ denoting the distance from Σ measured

into Ω− along the normal to Σ the expansions read (see [31]):

E ∼ E0 +
∞∑

n=0

Enβ
−n in Ω+ (1.3)

H ∼ H0 +

∞∑

n=0

Hnβ
−n in Ω+ (1.4)

E ∼ e−
√
−iβτ

∞∑

n=0

Enβ
−n in Ω− (1.5)

H ∼ e−
√
−iβτ

∞∑

n=0

Hnβ
−n in Ω− (1.6)

4



1.1 Asymptotic expansion for large conductivity and skin effect

Here En and Hn are independent of β which is proportional to
√
σ. The exponential-

factor in (1.5) and (1.6) represents the skin effect. Next we present from [31] these

expansions for the half-space case where the various coefficients can be computed recur-

sively. Note E0 and H0 in (1.3) and (1.4) is simply the perfect conductor approximation,

that is, the solution of (Pα∞). As observed in [31] En and Hn in (1.3) and (1.4) can

be calculated successively by solving a sequence of problems of the same form as (Pα∞)

but with boundary values determined from earlier coefficients. The En and Hn in (1.5)

and (1.6) are obtained by solving ordinary differential equations in the variable x3.

In the half-space case Ω+ = R3
+ i.e. x3 > 0 and Ω− = R3

− i.e. x3 < 0 a formal proce-

dure to compute En, Hn was given by MacCamy and Stephan [31]. They substitute in

(1.3)-(1.6) into (Pαβ) for Σ = R2 and equate coefficients of β−n. Here we give a short

description of their approach.

Let χ = e
√
−iβx3 and decompose fields F into tangential and normal components

F = F+ fe3, F = F1e1 + F2e2, (1.7)

with orthogonal component F⊥ = e3 × F, and unit vectors ei (i = 1, 2, 3).

Then one computes with the surface gradient gradT for the rotation

curl F = F⊥
x3 − (gradT f)

⊥ − (div F⊥)e3 (1.8)

and

curl(χF) = χ[
√
−iβF⊥ + F⊥

x3
− (gradT f)

⊥ − (div F⊥)e3]. (1.9)

Now setting En = En + ℓne3 one obtains for x3 < 0

curl E ∼ χ{
√
−iβE⊥

0 +
∞∑

n=0

[
√
−iE⊥

n+1 + E⊥
n,x3

− (gradT ℓn)
⊥ − (div E⊥

n )e3]β
−n}, (1.10)

and

curl curl E ∼ χ

{
iβ2E0 −

√
−iβE0,x3 +

√
−iβdiv E0e3 +

∞∑

n=0

[
iβEn+1 −

√
−iEn+1,x3

−
√
−idiv En+1e3 −

√
−iβEn,x3 − En,x3,x3 + div En,x3e3

+
√
−iβgrad ℓn + (gradT ℓn)x3 + div grad ℓne3

]
β−n + grad div β−ne3

}

= χ[iβ2E0 + iβ2ℓ0e3 + iβE1 + iβℓ1e3 +

∞∑

n=0

(iEn+2 + iℓn+2e3)β
−n] ∼ iβ2E.

(1.11)

Hence, equating coefficients of β2 and β, respectively yields ℓ0 ≡ 0, iℓ1 =
√
−idiv E0 and

E0,x3 = 0 implying E0(x1, x2, x3) = E0(x1, x2, 0).

5



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

As coefficients of β0 one obtains

−
√
−iE1,x3 +

√
−igrad ℓ1 = 0,

√
−idiv E1 + div E0,x3 − grad div E0 = iℓ2.

Now the gauge condition div E0 = 0 implies ℓ1 ≡ 0 and div E0,x3 = 0, hence E1,x3 = 0

and
√
−idiv E1 = iℓ2.

Thus E1(x1, x2, x3) = E1(x1, x2, 0).
Equating coefficients of β−1 in (1.11) gives

−
√
−iE2,x3 −

√
−iE2,x3 +

√
−igrad ℓ2 = 0,

√
−idiv E2 − grad div E1 = iℓ3.

Setting

H = χ

∞∑

n=0

(Hn + hne3)β
−n (1.12)

MacCamy and Stephan obtain in [31] with ℓ1 = 0, h0 = 0 E0 = 0:

√
−iE⊥

1 + E⊥
0,x3

= H0,
√
−iH⊥

0 = iE1, h0 = div E⊥
0 = 0. (1.13)

and √
−iE⊥

2 + E⊥
1,x3 = H1,

√
−iH⊥

1 +H⊥
0,x3 = iE2 (1.14)

h1 = −div E⊥
1 , −divH⊥

0 = iℓ2. (1.15)

and
H0,x3 ≡ E1,x3 ≡ 0

H0 ≡
√
−iE⊥

1 in x3 < 0

(1.16)

For x3 > 0, we have with curl E = H yields

curl E0 +
∞∑

n=0

curl Enβ
−n = H0 +

∞∑

n=0

Hnβ
−n

Equating coefficients of β−n one finds in x3 > 0

curl E0 = H0, curl En = Hn, n ≥ 0,

(and corresponding due to curlH = α2E)

curlH0 = α2E0, curl Hn = α2En, n ≥ 0.

With the above relations the recursion process goes as follows. First one use (6.10) for

n = 0 and (6.13), in [31], to conclude that

curl E0 = H0, curlH0 = α2E0 in x3 > 0

E+
0 = −(E0

T )
−, on x3 = 0.

6



1.1 Asymptotic expansion for large conductivity and skin effect

Now (E0,H0) is just the solution of (Pα∞) which we can solve by the boundary integral

equation procedure (1.29), (1.30) introduced by MacCamy and Stephan in [31] and

revisited below in Section 1.2. But from (1.1)3 we obtain

H−
0 = H+

0 = (H0)
+
T on x3 = 0. (1.17)

Now the right side of (1.17) is known and easily computed. Then (1.1)3 and (1.17) yield

(E1)
+
T = (E1)

−
T = E−

1 = −
√
i(H⊥

0 )
− = −

√
i((H0)

+
T )

⊥. (1.18)

Therefore by (6.10), in [31], we have a new, again solvable problem for (E1,H1) which

is just like (Pα∞), that is

curl E1 = H1, curlH1 = α2E1 in x3 > 0,

but with new boundary values for ET as given by (1.18).

For the complete algorithm see [31]. Note, with λ =
√
−i we have E−

1 (x1, x2, 0) =

−1

λ
(n× curl E0) yielding in x3 < 0

E1(x1, x2, x3) =

∫ −τ

0

eλβx̃3E−1
1 (x1, x2, 0)dx̃3 = − 1

λ2β
(n× curl E0)[e

−λβτ − 1]

A comparison with Peron’s results (see Chapter 5 in [42]) shows that Wcd
j (yα, hρ) =

e−
√
−iβτEj , j ≥ 0, in Ωcd, λY3 =

√
−iβτ and wj = ℓj. Furthermore we see that the first

terms in the asymptotic expansion of the electrical field for a smooth surface Σ derived

by Peron [42] coincide with those for the half-space x3 = 0 investigated by MacCamy

and Stephan [31], namely ℓ0 = w0 = 0, ℓ1 = w1 = 0, E0 = Wcd
0 = 0.

Remark 2. Since due to Theorem 5 in Chapter 3 there exists only one solution of

the electromagnetic transmission problem for a smooth interface this solution can be

computed by the boundary integral equation procedure below, when we assume that (1.22)

holds. Then for the electrical field E obtained via the boundary integral equation system

we have that in the tubular region Ω±(δ) = {x ∈ Ω±, dist(x,Σ) < δ} there holds for the

remainders Eis(cd)
m obtained by truncating (1.3) and (1.5) at n = m

‖Eis
m,ρ‖W(curl,Ωis) ≤ C1ρ

−m−1 and ‖Ecd
m,ρ‖L2(Ω±(δ)) ≤ C2e

C3τ

for constants C1, C2, C3 > 0, independent of ρ.

We set

Em :=





E0 +

m∑

k=0

Ekβ
−k in x3 > 0

χ

m∑

k=0

Ekβ
−k in x3 < 0

(1.19)
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Hm :=





H0 +

m∑

k=0

Hkβ
−k in x3 > 0

χ

m∑

k=0

Hkβ
−k in x3 < 0

(1.20)

where χ = e
√
−iβx3 , for x3 < 0 and m ≥ 0.

We call these the mth order asymptotic approximations.

Now we have the following result which follows readily from the definition of the Ek and

Hk.

Theorem 1. For each m ≥ 0,

curl curl Em − α2Em = 0, in x3 > 0,

curl curl Em − iβ2Em = Fm + curl Gm ≡ F̂m, in x3 < 0,

(E−
m)T − (E+

m)T = 0, on x3 = 0,

(H−
m)T − (H+

m)T = (curl E−
m)T − (curl E+

m)T − (Gm)T ≡ gm, on x3 = 0,

(1.21)

Where

χ = e
√
−iβx3

Gm = χ[E⊥
m,x3 − (gradT ℓm)

⊥ −Hm]β
−m

Fm = χ[(
√
−iH⊥

m +H⊥
m−1,x3

− (gradT hm−1)
⊥ − (divH⊥

m−1)e3)β
−m+1

+(H⊥
m,x3

− (gradT hm)
⊥ − (divH⊥

m)e3)β
−m].

Proof. In x3 > 0, from (1.19), (1.1) and (1.8)

curl Em = curl E0 +
∑m

k=0(curl Ek)β
−k

= H0 +
∑m

k=0Hkβ
−k,

then
curl curl Em = curlH0 +

∑m
k=0(curlHk)β

−k

= α2E0 +
∑m

k=0 α
2Ekβ

−k

= α2Em,

then

curl curl Em − α2Em = 0.

8



1.1 Asymptotic expansion for large conductivity and skin effect

In x3 < 0, from (1.19), (1.1) and (1.9)

curl Em =
∑m

k=0(curl(χEk))β
−k

=
∑m

k=0 χ
[√

−iβE⊥
k + E⊥

k,x3
− (gradT ℓk)

⊥ − (div E⊥
k )e3

]
β−k

= χ[
√
−iβE⊥

0 +
∑m−1

k=0

√
−iE⊥

k+1β
−k

+
∑m

k=0(E⊥
k,x3

− (gradT ℓk)
⊥ − (div E⊥

k )e3)β
−k]

= Hm = χ
∑m

k=0(Hk + hke3)β
−k,

but from (In) and (I ′n) in [31]
√
−iE⊥

k+1 + E⊥
k,x3

− (gradT ℓk)
⊥ = Hk, k = 0, 1, 2...

hk = −div E⊥
k , k = 0, 1, 2...

and from (6.13) in [31] E⊥
o = 0, then

curl Em −Hm = χ[E⊥
m,x3 − (gradT ℓm)

⊥ −Hm]β
−m =: Gm,

and

curlHm =
∑m

k=0(curl(χHk))β
−k

=
∑m

k=0 χ
[√

−iβH⊥
k +H⊥

k,x3
− (gradT hk)

⊥ − (divH⊥
k )e3

]
β−k

= χ[
√
−iβH⊥

0 +
∑m−1

k=0

√
−iH⊥

k+1β
−k

+
∑m

k=0(H⊥
k,x3

− (gradT hk)
⊥ − (divH⊥

k )e3)β
−k]

= iβ2Em = iβ2χ
∑m

k=0(Ek + ℓke3)β
−k

= χ[iβ2E0 + iβ2ℓ0e3 + iβE1 + iβℓ1e3 +
∑m−2

k=0 (iEk+2 + iℓk+2e3)β
−k].

But from (IIn) and (I ′n) in [31]
√
−iH⊥

k+1 +H⊥
k,x3

− (gradT hk)
⊥ = iEk+2, k = 0, 1, 2...

ℓk+2 = idivH⊥
k , k = 0, 1, 2...

and from (6.13) and (6.14) in [31] E0 = 0, ℓ0 = 0, ℓ1 = 0 and iE1 =
√
−iH⊥

0 ,

then

curl Hm − iβ2Em = χ[(
√
−iH⊥

m) +Hm−1,x3 − (gradT hm−1)
⊥ − (divH⊥

m−1)e3)β
−m+1

+(Hm,x3 − (gradT hm)
⊥ − (divH⊥

m)e3)β
−m]

= Fm

9



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

then

curl curl Em − curlHm = curl Gm,

then

curl curl Em − iβ2Em − Fm = curl Gm,

then

curl curl Em − iβ2Em = Fm + curl Gm ≡ F̂m.

In x3 = 0, χ ≡ 1, from (1.19) and (1.1)

(E+
m)T = E0

T +
(∑m

k=0Ekβ
−k)+

T

= E0
T +

∑m
k=0(E

+
k )Tβ

−k

= E0
T +

∑m
k=1(E

−
k )Tβ

−k + (E0)
+
T

= E0
T + (E−

m)T − E0
T

= (E−
m)T ,

then (E−
m)T − (E+

m)T = 0.

On the other hand

(H+
m)T = H0

T +
(∑m

k=0Hkβ
−k)+

T

= H0
T +

∑m
k=0(H

+
k )Tβ

−k

= H0
T +

∑m
k=0(H

−
k )Tβ

−k

= H0
T + (H−

m)T ,

and

(n× (curl Em × n))+ = (curl E0)+T +
∑m

k=0(curl Ek)
+
T β

−k

= H0
T +

∑m
k=0(Hk)

+
T β

−k

= (Hm)
+
T ,

10



1.2 Boundary integral equation method of the first kind

(n× (curl Em × n))− = χ[
∑m

k=0

√
−iβ(E⊥

k )Tβ
−k +

∑m
k=0((E⊥

k,x3
)T − (gradT ℓk)

⊥
T )β

−k]

= χ[
√
−iβ(E⊥

0 )T +
∑m−1

k=0

√
−i(E⊥

k )Tβ
−k

+
∑m

k=0((E⊥
k,x3

)T − (gradT ℓk)
⊥
T )β

−k]

= χ
∑m−1

k=0 (H
−
k )Tβ

−k + χ((E⊥
m,x3)T − (gradT ℓm)

⊥
T )β

−m

= (Hm)
−
T − χ(H−

m)Tβ
−m + χ((E⊥

m,x3)T − (gradT ℓm)
⊥
T )β

−m

= (Hm)
−
T + (Gm)T ,

then (H−
m)T − (H+

m)T = (curl E−
m)T − (curl E+

m)T − (Gm)T .

The convergence of the asymptotic expansion can be derived from the results of Peron

[42], modified in Chapter 4 where the case of an unbounded exterior domain is treated

whereas Peron considered the case of a bounded exterior domain. Since the solution of

problem (Pαβ) is unique, the results of Chapter 4 apply to the solution of (1.1).

1.2 Boundary integral equation method of the first kind

Next we describe the integral equation procedure for (Pα∞) from [31].

We note the following well-know result:

Remark 3. There exists a sequence {αk}∞k=1, such that if α 6= αk then curl E = H,

curlH = α2E in Ω+, ET ≡ 0 on Σ implies E ≡ H ≡ 0 in Ω+.

Now we require that

α 6= αk, k = 1, 2, . . . (1.22)

This integral equation procedure is based on the Stratton-Chu formula [44]. Let n denote

the exterior normal to Σ. Any vector field v on Σ can be written as

v = vT + vNn, vT = n× (v× n) (1.23)

with tangential component vT of v.

We define the single layer potential Vκ for density ψ (correspondingly for a vector field)

for the surface Σ by

Vκ(ψ)(x) =
∫

Σ

ψ(y)Gκ(|x− y|)dsy, Gκ(r) =
eiκr

4πr
. (1.24)

For a vector field v on Σ we define Vκ(v) by (1.24) with v replacing ψ.

Next, we collect some well-known results about the single layer potential Vκ.

11



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Remark 4. [31, Lemma 2.1,Lemma 2.2] For κ ∈ C, 0 ≤ argκ ≤ π

2
and any ψ ∈ C0(Σ)

there holds:

(i) Vκ(ψ) is continuous in R3,

(ii) ∆Vκ(ψ) = −κ2Vκ(ψ) in Ω− ∪ Ω+,

(iii) Vκ(ψ)(x) = O

(
eiκ|x|

|x|

)
as |x| → ∞,

(iv) (
∂Vκ(ψ)
∂n

(x)

)±
= ∓1

2
ψ(x) +

∫

Σ

Kκ(x, y)ψ(y)dsy, on Σ,

where Kκ(x, y) = O(|x− y|−1) as y → x.

(v)

(n× curl Vκ(v)(x))± = ±1

2
v(x) +

1

2

∫

Σ

Kκ(x, y)v(y)dsy,

where the matrix function Kκ satisfies Kκ(x, y) = O(|x− y|−1) as y → x.

For problem (1.1)1, in Ω+ the Stratton-Chu formula gives

E = Vα(n×H)− curl Vα(n× E) + grad Vα(n · E),

H = curl Vα(n×H)− curl curl Vα(n× E).

(1.25)

Now for given n×H, n×E and n·E on Σ, (1.25) yields a solution of (Pα∞). Unfortunately

we know only n×E. The standard treatment of (Pα∞) , sets n×H = 0 and n ·E = 0

in (1.25) and replaces −n×E by an unknown tangential field L yielding

E = curl Vα(L), H = curl curl Vα(L). (1.26)

Then the boundary condition in (1.2) yields an integral equation of the second kind for

L in the tangent space to Σ.

The method (1.26) corresponds to solving the Dirichlet problem for the scalar Helmholtz

equation with a double layer potential ansatz. But having found L it is difficult to

determine HT , on Σ, because one must compute a hypersingular integral operator which

is still a challenge for numerical simulations since for calculating n×H on Σ one has to

compute a second normal derivative of Vα(L).
The method in [31] for (Pα∞) is analogous to solving the scalar problems with a simple

layer potential (see [26]). MacCamy and Stephan use (1.25) in [31] but this time they

set n× E = 0 and replace n×H and n · E by unknowns J and M . Thus they take

E = Vα(J) + grad Vα(M), H = curl Vα(J). (1.27)

After having determined J then they can use Remark 4 to determine n×H, hence HT

on Σ.

12



1.3 FEM/BEM coupling for the interface problem

With the surface gradient gradTψ = (grad ψ)T on Σ, the boundary condition in (1.2)

and (1.27) imply, by continuity of Vα,

n×E = n× Vα(J) + n× grad Vα(M) = −n× E0

or equivalently

Vα(J)T + gradT Vα(M) = −E0
T . (1.28)

We note that for any field v defined in a neighborhood of Σ one can define the surface

divergence divT by

div v = divT v+
∂v

∂n
n.

As shown in [31, Lemma 2.3], there holds for any differentiable tangential field v,

div Vκ(v) = Vκ(divT v) on Σ.

As derived in [31] setting divE = 0 on Σ yields therefore with (1.27)

0 = div E = div Vα(J) + div grad Vα(M)

and div gradVα(M) = −α2Vα(M) gives immediately

Vα(divT J)− α2Vα(M) = 0. (1.29)

In subsection 1.4 we will investigate a boundary element method for (1.28) and (1.29).

1.3 FEM/BEM coupling for the interface problem

Next we introduce a new coupling method for the interface problem (Pαβ). Integration

by parts gives in Ω− for the second equation in (Pαβ) with γNE = (curl E)× n, γDE =

n× (E× n)
∫

Ω−

curl E · curl vdx−
∫

Ω−

iβ2E · vdx−
∫

Σ

γ−NE · γ−Dvds = 0. (1.30)

Therefore with γ−NE = γ+NE + γNE
0 and setting E = Vα(J) + grad Vα(M) in Ω+ we

obtain
∫

Ω−

curl E·curl vdx−
∫

Ω−

iβ2E·vdx−
∫

Σ

γ+N(Vα(J)+grad Vα(M))·γ+Dvds =
∫

Σ

γNE
0·γ+Dvds.

Note that γ+N(Vα(J) + grad Vα(M)) =
1

2
J+

1

2
Kα(J) where Kα is a smoothing operator.

As shown in [31, Lemma 4.5] there exists a continuous map Jα(J)T from Hr(Σ) into

Hr+1(Σ), for any real number r with

divT Vα(J)T = Vα(divT J) + Jα(J)T . (1.31)
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

As shown in [30] the following system of boundary operators on Σ (which is equivalent

to (1.28) and (1.29))

Vα(J)T + gradT Vα(M) = −E0
T

−Jα(J)T − (∆T + α2)Vα(M) = divT E0
T .

(1.32)

is strongly elliptic as a mapping from H− 1
2 (Σ) × H

1
2 (Σ) into H

1
2 (Σ) × H− 1

2 (Σ), where
gradT (divT ) denote the surface gradient (surface divergence) and ∆T the Laplace-Beltrami
operator on Σ.

Now, our fem/bem coupling method is based on the variational formulation: For given

incident field E0 on Σ find E ∈ H(curl,Ω−), J ∈ H− 1
2 (Σ) and M ∈ H

1
2 (Σ) with

∫

Ω−

curl E · curl vdx−
∫

Ω−

iβ2E · vdx− 1

2

∫

Σ
(J+Kα(J)) · γ+Dvds =

∫

Σ
γNE

0 · γ+Dvds,

∫

Σ
Vα(J)T · j dS +

∫

Σ
gradTVα(M) · j dS = −

∫

Σ
E0
T · j dS,

−
∫

Σ
Jα(J)Tm dS −

∫

Σ
(∆T + α2)Vα(M)m dS =

∫

Σ

(
divT E0

T

)
mdS,

(1.33)

∀v ∈ H(curl,Ω−), j ∈ H− 1
2 (Σ), m ∈ H 1

2 (Σ).

In order to formulate a conforming Galerkin scheme for (1.33) we take subspaces H1
h ⊂

H(curl,Ω−), H
− 1

2
h ⊂ H− 1

2 (Σ), H
1
2
h ⊂ H

1
2 (Σ) with mesh parameter h and look for Eh ∈ H1

h,

Jh ∈ H
− 1

2
h , Mh ∈ H

1
2
h such that for any vh ∈ H1

h, jh ∈ H
− 1

2
h , mh ∈ H

1
2
h

〈A(Eh,Jh,Mh), (vh, jh,mh)〉 = 〈F , (vh, jh,mh)〉 (1.34)

where A is the operator given by the left hand side in (1.33), F = (γNE
0,−E0

T ,divT E0
T ).

Theorem 2. 1. System (1.33) has a unique solution (E,J,M) in X = H(curl,Ω−) ×
H− 1

2 (Σ)×H
1
2 (Σ).

2. The Galerkin system (1.34) is uniquely solvable in Xh = H1
h × H

− 1
2

h × H
1
2
h and there

exists C > 0, independent of h,

‖E−Eh‖H(curl,Ω−) + ‖J− Jh‖
H− 1

2 (Σ)
+ ‖M −Mh‖

H
1
2 (Σ)

≤ C inf
(v,j,m)∈Xh

{
‖E− v‖

H(curl,Ω−) + ‖J − j‖
H

− 1
2 (Σ)

+ ‖M −m‖
H

1
2 (Σ)

} (1.35)

where (E,J,M) and (Eh,Jh,Mh) solve (1.33) and (1.34) respectively.

Proof. First we note that system (1.33) is strongly elliptic in X which follows by considering

A as a system of pseudodifferential operators (cf. [30]). The only difference to [30] is that here
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1.4 Galerkin procedure for the perfect conductor problem (Pα∞)

we have additionally the first equation in (1.33). If we note ∆E = curl curl E−grad div E and

take div E = 0 we have that the principal symbol of A has the form (with |ξ|2 = ξ21 + ξ22)

σ(A)(ξ)(E,J,M)t =




|ξ|2 + ξ23 0 0 1 0 0

0 |ξ|2 + ξ23 0 0 1 0

0 0 |ξ|2 + ξ23 0 0 0

0 0 0
1

|ξ| 0 iξ1
1

|ξ|

0 0 0 0
1

|ξ| iξ2
1

|ξ|

0 0 0 0 0 |ξ|







E1

E2

E3

J1

J2

M




(1.36)

where (E1, E2) = ET and E3 is perpendicular to x3 = 0. Here ξ = (ξ1, ξ2) is the dual variable

in the Fourier transform to (x1, x2) and ξ3 is the dual variable to x3.

Obviously the upper left and the lower right sub blocks are strongly elliptic (see [30] for the

lower sub block). Assuming that (α,
√
iβ) is not an eigenvalue of (Pαβ) we have existence

and uniqueness of the exact solution. Due to the strong ellipticity of A there exists a unique

Galerkin solution and the a priori error estimate holds due to the abstract results by Stephan

and Wendland [43].

1.4 Galerkin procedure for the perfect conductor

problem (Pα∞)

Next we consider the implementation of the Galerkin boundary element methods and present

corresponding numerical experiments for the integral equations (1.28) and (1.29). These ex-

periments are performed with the program package Maiprogs, cf. Maischak [34, 36], which is a

Fortran-based program package used for finite element and boundary element simulations [35].

Initially developed by M. Maischak, Maiprogs has been extended for electromagnetic problems

by Teltscher [45] and Leydecker [28].

We will investigate the exterior problem (Pα∞) by solving numerically the integral equations

(1.28) and (1.29) with Galerkin’s methods:

Testing with arbitrary functions j ∈ H− 1
2 (Σ) and m ∈ H

1
2 (Σ) in (1.28) and (1.29), we get

∫

Σ
Vα(J)T · j dS +

∫

Σ
gradTVα(M) · j dS = −

∫

Σ
E0
T · j dS,

−
∫

Σ
Vα(divTJ) ·m dS + α2

∫

Σ
Vα(M) ·m dS = 0.

(1.37)
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Partial integration in the second term of (1.37)1

∫

Σ
gradTVα(M) · j dS = −

∫

Σ
Vα(M) · divT j dS

shows that the formulation (1.37) is symmetric: By definition of symmetric bilinear forms a,

c, of the bilinear form b and linear form ℓ through

a(J, j) : =

∫

Σ
Vα(J)T · j dS, c(M,m) = α2

∫

Σ
Vα(M) ·m dS, ℓ(j) = −

∫

Σ
E0
T · j dS

b(J,m) : = −
∫

Σ
Vα(divTJ) ·m dS = −

∫

Σ
Vα(m) · divTJ dS.

the variational formulation has the form: Find (J,M) ∈ H− 1
2 (Σ)×H

1
2 (Σ) such that

a(J, j) + b(j,M) = ℓ(j)

b(J,m) + c(M,m) = 0

(1.38)

for all (j,m) ∈ H− 1
2 (Σ)×H

1
2 (Σ).

We now proceed to finite dimensional subspaces Rh ⊂ H− 1
2 (Σ) of dimension n and Mh ⊂

H
1
2 (Σ) of dimension m, and seek approximations Jh ∈ Rh and Mh ∈ Mh for J and M , such

that

a(Jh, j) + b(j,Mh) = ℓ(j),

b(Jh,m) + c(Mh,m) = 0

(1.39)

for all j ∈ Rh and m ∈ Mh.

Let {ψi}ni=1 be a basis of Rh and {ϕj}mj=1 be a basis of Mh. Jh and Mh are of the forms

Jh :=
n∑

i=1

λiψi and Mh :=
m∑

j=1

µjϕj . (1.40)

Inserting (1.40) in (1.39) provides

n∑

i=1

λia(ψi,ψk) +

m∑

j=1

µjb(ψk, ϕj) = ℓ(ψk)

n∑

i=1

λib(ψi, ϕl) +

m∑

j=1

µjc(ϕj , ϕl) = 0

(1.41)
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1.4 Galerkin procedure for the perfect conductor problem (Pα∞)

for all ψk and ϕl, 1 ≤ k ≤ n, 1 ≤ l ≤ m.

With matrices and vectors
A := (a(ψi,ψk))i,k ∈ Cn×n,

B := (b(ψi, ϕl))i,l ∈ Cn×m,

C := (c(ϕj , ϕl))j,l ∈ Cm×m,

λ := (λi)i ∈ Cn,

µ := (µj)j ∈ Cm,

ℓ := (ℓ(ψk))k ∈ Cn.

(1.42)

(1.41) has also the form (
A Bt

B C

)(
λ

µ

)
=

(
ℓ

0

)
. (1.43)

We have considered with {ψi}ni=1 a basis of Rh and {ϕj}mj=1 a basis of Mh. These functions,

are chosen as piecewise polynomials. To win these bases, we consider suitable basis functions

locally on the element of a grid, i.e. on each component grid.

If we start from a grid

{Σk}Nk=1 with
⋃

1≤k≤N
Σk = Σ

with N elements, and let {ψ̂i}n̂i=1 and {ϕ̂j}m̂j=1 respectively bases on a square reference element

Σ̂. The local basis functions on an element Σk are each {ψi}nki=1 or {ϕj}mkj=1.

First we calculate

A := (a(ψjs ,ψiz))iz ,js ∈ Cn×n,

where ψjs or ψiz are the basics function of Rh and

a(ψjs ,ψiz) =

∫

Σ
Vα(ψjs)T ·ψiz dS =

N∑

k=1

∫

Σk

Vα(ψjs)T · ψiz dS,

We test each local basis function against any other local basis function and sum the result to

the test value of the global basis functions, which include these local basis functions.

Let IN = {1, . . . , N} the index set for the grid elements, In̂ = {1, . . . , n̂} the index set for the

basic functions on the reference element and In = {1, . . . , n} the index set for the global basis

functions.

Let ζ : IN × In̂ → In the mapping from local to global basis functions such that ζ(k, i) = j, if

the local basis function ψk,i component of the global basis function is ψj.

Let ζ−1 the set of all pairs of (k, j) with ζ(k, j) = i, then

∫

Σ
Vα(ψjs)T · ψiz dS =

∑

(k,i)∈
ζ

−1
(iz)

∑

(l,j)∈
ζ

−1
(js)

∫

Σk

Vα(ψl,j)T ·ψk,i dS

17



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

=
∑

(k,i)∈
ζ

−1
(iz)

∑

(l,j)∈
ζ

−1
(js)

∫

Σk

∫

Σl

Gα(|x− y|)(ψl,j(y))t · ψk,i(x) dSy dSx.

We are dealing in this implementation with Raviart-Thomas basis functions. The transfor-

mation of these functions requires a Peano transformation ψk,i =
1

|det Ak|
Akψ̂i. Thus, if

Ak = (a1,a2), detAk is calculated by detAk = (a1×a2) ·
a1 × a2

‖a1 × a2‖
. The Peano-transformation

of the local basis functions to the basic functions on the reference element then gives

I =
∑

(k,i)∈
ζ

−1
(iz)

∑

(l,j)∈
ζ

−1
(js)

∫

Σk

∫

Σl

Gα(|x− y|)(ψl,j(y))t · ψk,i(x) dSy dSx

=
∑

(k,i)∈
ζ

−1
(iz)

∑

(l,j)∈
ζ

−1
(js)

∫

Σ̂

∫

Σ̂

Gα(|x− y|)
|det Ak · det Al|

(ψ̂i(x̂))
t(Ak)

t ·Alψ̂j(ŷ) dSŷ dSx̂

(1.44)

with x = ak +Akx̂ and y = al +Alŷ, and referent element Σ̂.

The calculation of the integrals with Helmholtz kernel Gα is not exact. We consider the

expansion of the Helmholtz kernel in a Taylor series. There holds

Gα(|x− y|) = 1

4π

eαi|x−y|

|x− y| =
1

4π

1

|x− y|

[
1 + αi|x − y|+ (αi)2

2
|x− y|2 + . . .

]
.

The first terms are singular for x = y and the corresponding integral is treated by analytic

evaluation in Maiprogs, cf. [33, 34, 36], but the integrals of all other summands can be calcu-

lated sufficiently well by Gaussian quadrature.

We compute

b(ψiz , ϕjs) = −
∫

Σ
Vα(∇T ·ψiz) · ϕjs dS

= −
∑

(k,i)∈
ζ

−1

ψ (iz)

∑

(l,j)∈
ζ

−1

ϕ (js)

∫

Σl

Vα(∇ ·ψk,i)T · ϕl,j dS

= −
∑

(k,i)∈
ζ

−1

ψ (iz)

∑

(l,j)∈
ζ

−1

ϕ (js)

∫

Σl

∫

Σk

Gα(|x− y|)∇T ·ψk,i(y) · ϕl,j(x) dSy dSx.

(1.45)

with ζ−1
ψ = ζ described above, and ζ−1

ϕ , the analogously defined map for the basic functions

of Mh.

While a transformation of the scalar basis functions is not required, the transformation of the

surface divergence of Raviart-Thomas elements is carried out by ∇T ·ψk,i = 1
|detAk|

∇̂ · ψ̂i and
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1.4 Galerkin procedure for the perfect conductor problem (Pα∞)

we have

b(ψiz , ϕjs) = −
∑

(k,i)∈
ζ

−1

ψ (iz)

∑

(l,j)∈
ζ

−1

ϕ (js)

∫

Σ̂

∫

Σ̂

Gα(|x− y|)
|detAk|

∇̂ · ψ̂k,i(ŷ) · ϕ̂l,j(x̂) dSŷ dSx̂
(1.46)

with y = ak +Akŷ and x = al +Alx̂.

The calculation of c(ϕi, ϕj) is similar to the above-mentioned case. Thus, for a possible p-

version bem one would proceed with

c(ϕiz , ϕjs) =
∑

(k,i)∈
ζ

−1

ϕ (iz)

∑

(l,j)∈
ζ

−1

ϕ (js)

p∑

κ=0

p∑

λ=0

p∑

µ=0

p∑

ν=0

cvV l,kα (κ, λ, µ, ν) (1.47)

with cv := α2kiκλkjµν to v = (i, j, κ, λ, µ, ν). For piecewise constant ϕ, it follows

c(ϕiz , ϕjs) = α2V iz ,jsα (0, 0, 0, 0), (1.48)

where

V l,kα (κ, λ, µ, ν) :=

∫

Σ̂

∫

Σ̂
Gα(|x− y|)ŷκ1 ŷλ2 x̂µ1 x̂ν2 dSŷ dSx̂. (1.49)

The calculation of the right-hand side in (1.38) looks simple, since there are no single layer

potential terms. However the right hand side must be computed with quadrature.

The quadrature of an integral over f on the reference element is determined by the quadrature

points x̂x,y, and the associated weights wx,y = wx · wy. We perform the two-dimensional

quadrature as a combination of one-dimensional quadratures in each x and y direction, and

use the weights from the one-dimensional quadrature formula. With ñx quadrature points in

x-direction, and ñy quadrature points in y-direction, then the quadrature formula reads:

QΣ̂(f) =

ñx∑

i=1

ñy∑

j=1

f(x̂i,j) · wiwj . (1.50)

The quadrature points on the square reference element and the corresponding weights for

Gaussian quadrature are already implemented in Maiprogs. For triangular elements, we use

Duffy transformation.

Now we comment on the calculation of the right hand side in the Galerkin formulation, i.e.

the linear form ℓ, applied to the bases functions ψi, i = 1, . . . , n. The quadrature takes place

on the reference element. We decompose the global into local basis functions and then use the
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Peano-transformation for the Raviart-Thomas functions. It is therefore

ℓ(ψir) = −
∫

Σ
(E0

T (x))
t ·ψir(x) dSx

= −
∑

(k,i)∈
ζ−1(ir)

∫

Σk

(E0
T (x))

t · ψk,i(x) dSx

= −
∑

(k,i)∈
ζ−1(ir)

∫

Σk

(E0
T (x))

t · Ak
|detAk|

ψk,i(x̂) dSx̂

= −
∑

(k,i)∈
ζ−1(ir)

∫

Σ̂
(E0

T (x))
t · Ak

|detAk|
ψ̂k,i(x̂)|detAk| dSx̂

then

ℓ(ψir) = −
∑

(k,i)∈
ζ−1(ir)

∫

Σ̂
(E0

T (x))
t · Ak · ψ̂k,i(x̂) dSx̂ (1.51)

with x = ak +Akx̂. Applying (1.50) leads with ñx = ñy := ñ to

Q(ℓ(ψi)) = −
∑

(k,i)∈
ζ−1(ir)

ñ∑

i1=1

ñ∑

i2=1

(E0
T (xi1,i2))

t ·Ak · ψ̂k,i(x̂i1,i2) · wi1wi2 (1.52)

with xi,j = ak +Akx̂i,j. As before, the task is carried out by looping through all grid compo-

nents, and the values are added to the entries for each of its base function.

The electrical field can be calculated by post-processing.

The subroutine

subroutine electricfield(x,nx,sp1,sp2,ckom1,ckom2,electric)

compute the electrical field

Eh = Vα(Jh) + grad Vα(Mh) (1.53)

with the help of subroutines

subroutine vpsi232(x,nx,sp1,ckom1,vp)

and

subroutine grdvpsi2(x,nx,sp2,ckom2,grvp)
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1.5 Numerical experiments

Where vpsi232 calculates the first term on the right side of equation (1.53) and grdvpsi2 the

second term respectively.

We proceed as follows:

We have for the first term in (1.53) with (1.40)1

Vα(Jh)(x) =
n∑

i=1

λi

∫

Σ
Gα(|x− y|)ψi(y)dSy. (1.54)

Then using Peano-transformation we have

Vα(ψis)(x) =
∫

Σ
Gα(|x− y|)ψis(y)dSy

=
∑

(l,i)∈
ζ

−1
(is)

∫

Σl

Gα(|x− y|)ψl,i(y) dSy

=
∑

(l,i)∈
ζ

−1
(is)

∫

Σ̂

Gα(|x− y|)
|det Al|

Alψ̂i(ŷ) dSŷ

(1.55)

with y = ak +Akŷ.

For the second term in (1.53) we have with

grad Vα(ϕjz)(x) =
∑

(l,j)∈
ζ

−1
(jz)

∫

Σ̂
gradxGα(|x− y|)ϕ̂j(ŷ) dSŷ

(1.56)

The calculation of H±
T is done as follows (compare Remark 4)

H±
T = [n× curl Vα(J)]± = ±1

2
J(x) +

1

2
n(x)×

∫

Σ
gradxGα(|x− y|)× J(y)dSy. (1.57)

1.5 Numerical experiments

Example 1. As domain we take the cube Ω− = [−2, 2]3, and we now want to test the Galerkin

method in (1.39). We choose the wave numbers α = 0.1, 0.5, 1.5 and the exact solution

J =
1

8
n×




(1− x1)(1− x2)

0

0


 =

1

8




0

(1− x1)(1− x2) · n3
−(1− x1)(1− x2) · n2


 (1.58)

and

M =
1

8α2
n ·




0

0

(x1 − 1)


 =

1

8α2
(x1 − 1) · n3 (1.59)
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

where n = (n1, n2, n3) denotes the outer normal vector at a point on the surface Σ = ∪6
k=1Σk.

We can write each term of equation (1.28) as:

Vα(J)T (x) =
6∑

k=1

∫

Σk

Gα(|x− y|)(Jk(y))t dSy, (1.60)

and

gradTVα(M)T (x) =

6∑

k=1

gradT

∫

Σk

Gα(|x− y|)Mk(y) dSy. (1.61)

Then, from (1.28), (1.60) and (1.61)there holds

ET =
6∑

k=1

(∫

Σk

Gα(|x− y|)(Jk(y))t dSy + gradT

∫

Σk

Gα(|x− y|)Mk(y) dSy

)
. (1.62)

This last expression is calculated with the following subroutines:

subroutine osilv2(x,nx,osilvx2)

and

subroutine osilgrdv2(x,nx,osilgrx2)

which compute (1.60) and (1.61) respectively. With the help of the subroutines

subroutine helmvpotll(x,nx,by,dy1,dy2,ny,ty,py,vkl)

and

subroutine helmgrdvpotll(x,nx,by,dy1,dy2,ny,ty,py,grvkl)

Now, we write the fields J and M in each component of Σ = ∪6
k=1Σk:

• Σ1 = {(x1, x2, 2) | − 2 ≤ x1, x2 ≤ 2}, n1 = (0, 0, 1)t,

J1 =
1

8
(0, (1 − x1)(1 − x2), 0)

t and M1 =
1

8α2
(x1 − 1).

• Σ2 = {(x1, x2,−2) | − 2 ≤ x1, x2 ≤ 2}, n2 = (0, 0,−1)t,

J2 =
1

8
(0,−(1 − x1)(1− x2), 0)

t and M2 = − 1

8α2
(x1 − 1).

• Σ3 = {(x1, 2, x3) | − 2 ≤ x1, x3 ≤ 2}, n3 = (0, 1, 0)t,

J3 =
1

8
(0, 0, 1 − x1)

t and M3 = 0.
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1.5 Numerical experiments

• Σ4 = {(x1,−2, x3) | − 2 ≤ x1, x3 ≤ 2}, n4 = (0,−1, 0)t,

J4 =
1

8
(0, 0, 3 · (1− x1))

t and M4 = 0.

• Σ5 = {(2, x2, x3) | − 2 ≤ x2, x3 ≤ 2}, n5 = (1, 0, 0)t,

J5 = (0, 0, 0)t and M5 = 0.

• Σ6 = {(−2, x2, x3) | − 2 ≤ x2, x3 ≤ 2}, n6 = (−1, 0, 0)t,

J6 = (0, 0, 0)t and M6 = 0.

We use different values of α for our investigation. In Table 1.1 we present the results of the

errors in energy norm for α = 0.1, 0.5, 1.5 for the uniform h-version with polynomial degree

p = 1. In Figure 1.2 we compare the h-version with different α. The exact norm is known by

extrapolation for α = 0.1 is |C| = 8.580798, for α = 0.5 is |C| = 1.6171534, and for α = 1.5 is

|C| = 1.8042380. Here C = Re〈E0
T ,J〉, Ch = Re〈E0

T ,Jh〉 (see Holm and al. [25]).

In Table 1.1 we present the results of the errors in L2-norm for α = 0.1, 0.5, 1.5 for the uniform

h-version with polynomial degree p = 1. In Figures 1.1 and 1.2 we compare the h-version

with α = 0.1, 0.5, 1.5 respectively. The exact L2-norm is known by extrapolation for α = 0.1

are ‖J‖L2 = 2.1066356 and ‖M‖L2 = 81.9249906, for α = 0.5 are ‖J‖L2 = 2.1977966 and

‖M‖L2 = 3.9588037 and for α = 1.5 are ‖J‖L2 = 2.3826646 and ‖M‖L2 = 0.7763804.

The convergence rate η for α = 0.1 are for the “energy norm” ηC = 1.325363, for L2-norm

ηJ = 1.617988 and ηM = 1.184964. For α = 0.5 are for the “energy norm” ηC = 1.165255,

for L2-norm ηJ = 0.976440 and ηM = 1.211619 and for α = 1.5 are for the “energy norm”

ηC = 1.552163, for L2-norm ηJ = 0.174124 and ηM = 0.295586.

Let as compare our numerical convergence rates above for the boundary element methods ob-

tained in the above example with the theoretical convergence rates predicted by Theorem 2.

Note that we have implemented the boundary integral equation system (1.28), (1.29) and

note the strongly elliptic system (1.32), where convergence is guaranteed due to Theorem 2.

Nevertheless our experiments show convergence for the boundary element solution, but with

suboptimal convergence rates. Theorem 2 predicts (when Raviart-Thomas elements are used

to approximate J and piecewise linear elements to approximateM) a convergence rate of order

η = 3
2 in the energy norm for smooth solutions J and M . Our computations depend on the

parameter α which is a well-known effect with boundary integral equations where it may come

to spurious eigenvalues diminishing the orders of the Galerkin approximations. Due to the

cube Ω− = [−2, 2]3 the numerical solution might become singular near the edges and corners

of Ω−; hence the Galerkin scheme converges suboptimally.

Now we present the implementation of the matrices in system (1.43), all matrices involve

computation of integrals over the boundary Σ. The programming is done within the program

package Maiprogs using Fortran 90/95, cf. Maischak [34, 36]. The executable program is called

maicoup3. Within the folder structure of Maiprogs, we mainly work in ../fo3c and use for BEM
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

the folder ../fo23. The executable program maicoup3 has to be called in connection with an

appropriate bcl-file. The so called batch control language bcl is a special script language, de-

veloped as a part of Maiprogs and calls the different subroutines in the right context and sets

the specific structure of the problem regarded.

Implementation of the matrix A: The subroutine rthelmgv2 computes the Galerkin element of

matrix A for the single layer potential with Raviart-Thomas functions. The important parts

of the source code for the calculation of the integral in (1.44) are given below.

The subroutine

subroutine rthelmgv2(vkl,bx,dx1,dx2,nx,tx,by,dy1,dy2,ny,ty,px,py,ptyp1,ptyp2),

! Table of the element matrix

real(kind=dp), intent(inout) :: vkl(0:,0:,0:)

! Polynomial degree

integer, intent(in) :: px(0:1),py(0:1)

! Element typ: 3=triangle, 4=rectangle

integer, intent(in) :: tx,ty

! Type of base function: 10=Raviart-Thomas, 0=Monomials

integer, intent(in) :: ptyp1,ptyp2

! Vector of the origin, boundaries, normal direction

real(kind=dp), dimension(0:2), intent(in) :: bx,dx1,dx2,nx ! Test element

real(kind=dp), dimension(0:2), intent(in) :: by,dy1,dy2,ny ! Trial element

computes the matrix for the single layer potential.

The calculation of the number of Raviart-Thomas basis functions in x and y are with the

subroutine

call basenum2(px,tx,ptyp1,dofx) and call basenum2(py,ty,ptyp2,dofy).

The computation of the Galerkin elements for the Helmholtz kernel is done with

call helminteg3(...,dy1,dy2,ny,ty,px,py,pdu,pdu,pdu,pdu,vklmn,iklmn,iklmn).

The two subroutine

call trafo_koeff_rt(bx,dx1,dx2,tx,a1x,a2x,detx)

and

call trafo_koeff_rt(by,dy1,dy2,ty,a1y,a2y,dety)
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1.5 Numerical experiments

calculate the transformation matrix Ak, Al and their determinant for element x and element y.

The subroutine

call trafo_iklmn(vklmn,a1x,a2x,tx,a1y,a2y,ty,px,py,ptyp1,ptyp2,trafo,vkl)

transformed vklmn into a field vkl that is composed with Raviart-Thomas coefficient. trafo is

the transformation routine trafo-rt-helm, which represents the terms in (1.44).

Implementation of the matrix B: The subroutine rthelmgv4 computes the Galerkin matrix

elements for the single layer potential with Raviart-Thomas functions and monomials. The

important parts of the source code for the calculation of the integral in (1.46) are given below.

The subroutine

subroutine rthelmgv4(vkl,bx,dx1,dx2,nx,tx,by,dy1,dy2,ny,ty,px,py,ptyp1,ptyp2),

computes the matrix for the single layer potential.

The calculation of the number of Raviart-Thomas basis functions in x and y are with

call basenum2(px,tx,ptyp1,dofx) and call basenum2(py,ty,ptyp2,dofy).

The computation of the Galerkin elements for the Helmholtz kernel is with

call helminteg3(...,dy1,dy2,ny,ty,px,py,pdu,pdu,pdu,pdu,vklmn,iklmn,iklmn).

The subroutine

call trafo_koeff_rt(by,dy1,dy2,ty,a1y,a2y,dety)

calculates the transformation matrix Ak and its determinant for element y.

The following subroutine calculates the div-term in (1.46)

call trafo_divrt_helm(hmn,py,ty,ptyp2,dety,c2)

Implementation of the matrix C: The subroutine helmgv computes the Galerkin matrix ele-

ments for Helmholtz single layer potential of the integral in (1.47).

subroutine helmgv(ikl,bx,dx1,dx2,nx,tx,by,dy1,dy2,ny,ty,px,py,ptyp1,ptyp2).
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Next, we apply the boundary element method above to compute the first terms in the asymp-

totic expansion of the electrical field considered in subsection 1.1 (Remark 1). In this way we

obtain good results for the electrical field at some point away from the transmission surface Σ

by only computing a few terms in the expansion.

Algorithm for the asymptotic of the eddy current problem:

1. First solve the exterior Problem (Pα∞) by integral equations (1.28) and (1.29) i.e. (1.37)

with given incident field −E0
T .

2. Compute H+
T from (1.57).

3. Go back to 1: Solve the exterior problem (Pα∞) with new right hand side from (1.18).

4. Go back to 2.

5. E = E0 + β−1E1 + β−2E2 +Rm.

We have Ẽ = E0 + β−1E1 + β−2E2 and calculate the error |Ẽ−Eexact(xi)|, i = 1, 2, 3, where

x1 = (3, 0, 0), x2 = (6, 0, 0) and x3 = (9, 0, 0), β = 103. We present the results in Table 1.2

and in Figure 1.3.

N DOF |C| |C − Ch| ‖J‖L2 ‖M‖L2 ‖J− Jh‖L2 ‖M −Mh‖L2

α = 0.1

1 144 8.502965 1.153119 2.085189 80.704374 0.299829 14.08929

2 576 8.568451 0.460150 2.104369 81.690279 0.097681 6.196968

3 2304 8.578833 0.033717 2.106395 81.879637 0.031823 2.725645

4 9216 8.654072 0.073274 2.117002 83.123825 0.010367 1.198835

α = 0.5

1 144 1.603519 0.209552 2.149511 3.8937090 0.458159 0.714952

2 576 1.614451 0.093436 2.185426 3.9467491 0.232851 0.308704

3 2304 1.616616 0.041661 2.194608 3.9565591 0.118342 0.133293

4 9216 1.617260 0.018576 2.198619 3.9592220 0.060145 0.057554

α = 1.5

1 144 1.774450 0.326497 2.350909 0.7243729 0.387707 0.279375

2 576 1.800799 0.111334 2.365011 0.7422644 0.343627 0.227618

3 2304 1.803838 0.037965 2.382843 0.7539064 0.304558 0.185450

4 9216 1.804284 0.012946 2.397906 0.7909461 0.269932 0.151093

Table 1.1: Errors in L2-norm and energy norm with respect to the degrees of freedom

for α = 0.1, 0.5, 1.5.
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1.5 Numerical experiments

DOF |Ẽ−Eexact(x1)| |Ẽ−Eexact(x2)| |Ẽ−Eexact(x3)|
144 0.4959 0.6499 0.8049

576 0.1043 0.0910 0.0347

2304 0.0998 0.0067 0.0378

Table 1.2: Errors for electrical field in x1, x2, and x3.
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Figure 1.1: Errors in L2-norm for α = 0.1, 0.5.
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations
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Figure 1.3: Errors for electrical field with respect to the degrees of freedom for x1, x2,

and x3.
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2 Transmission problem for the

Laplacian with a parameter in R3

In this chapter, we present a priori estimates for a scalar transmission problem of the Laplacian

with parameter in R3. The behavior of the solution at infinity is described by means of a family

of weighted Sobolev spaces, so-called Beppo-Levi spaces. The main result is Theorem 3. To

prove this we have to extend Peron’s work who considered a bounded exterior domain in [42, 7],

while we analyze the case of an unbounded exterior domain.

2.1 A scalar transmission problem in weighted spaces

In this section we analyze a scalar transmission problem (2.6)-(2.7) in an unbounded setting.

Let Ω− be a bounded region in R3 and Ω+ = R3 \ Ω−. Let Σ = ∂Ω− = ∂Ω+ the interface

be of class C∞, see figure 2.1. Throughout this chapter, D denotes the space consisting of

all C∞-functions with compact support and D′ is the topological dual space of D (space of

distributions).

Ω

Ω

Σ_

+

Figure 2.1: Region of the problem.

Consider the basic weight

ℓ(r) =
√

1 + r2, (2.1)

with r =
√
x21 + x22 + x23, for x = (x1, x2, x3), is the distance of the origin. For any scalar

function u = u(x1, x2, x3), we define the Laplace and grad operator of u by

∆u =

3∑

i=1

∂2u

∂x2i
,
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2 Transmission problem for the Laplacian with a parameter in R3

and

∇u =

(
∂u

∂x1
,
∂u

∂x2
,
∂u

∂x3

)
.

Due to the unboundedness of the exterior domain A = Ω+, the transmission problem is based

on the weighted Sobolev spaces, also known as the Beppo-Levi spaces (see [27]), these spaces

were introduced and studied by Hanouzet in [21] and a wide range of basic elliptic problems

were solved in these spaces by Giroire in [20], defined by

W1
0(A) =

{
u ∈ D′(A) | (ℓ(r))−1u ∈ L2(A),∇u ∈ L2(A)

}
(2.2)

and

W2
1(A) =

{
u ∈ D′(A)


u

ℓ(r)
∈ L2(A),∇u ∈ L2(A), ℓ(r)

∂2u

∂xi∂xj
∈ L2(A), 1 ≤ i, j ≤ 3

}
. (2.3)

They are reflexive Banach spaces equipped, respectively, with natural norms:

‖u‖W1
0(A)

=
(
‖(ℓ(r))−1u‖2L2(A) + ‖∇u‖2

L2(A)

) 1
2
, (2.4)

and

‖u‖W2
1(A)

=



∥∥∥∥
u

ℓ(r)

∥∥∥∥
2

L2(A)

+ ‖∇u‖2
L2(A)

+
∑

1≤i,j≤3

∥∥∥∥ℓ(r)
∂2u

∂xi∂xj

∥∥∥∥
2

L2(A)




1
2

(2.5)

We also define semi-norms

|u|W1
0(A)

= ‖∇u‖L2(A),

and

|u|W2
1(A)

=


 ∑

1≤i,j≤3

∥∥∥∥ℓ(r)
∂2u

∂xi∂xj

∥∥∥∥
2

L2(A)




1
2

.

Here L2(A) = (L2(A))3, and also we define for all m in N ∪ {0} and all k in Z

L2
m,k(R

3) :=
{
u ∈ R | ∀α ∈ N3, 0 ≤ |α| ≤ m, ℓ(r)|α|−m+ku ∈ L2(R3)

}
,

with the norm

‖u‖L2
m,k(R

3) = ‖ℓ(r)|α|−m+ku‖L2(R3).

We set the following spaces:

W̊1
0(A) = D(A)

‖·‖
W1

0
(A) and W̊2

1(A) = D(A)
‖·‖

W2
1
(A) .

We denote by W−1
0 (A) (respectively W0

1(A)) the dual space of W̊1
0(A)

(respectively of W̊2
1(A)). They are spaces of distributions.

With a(x) = a− ∈ Ω−, a(x) = a+ ∈ Ω+ for constants a±, its jump [a]Σ = a+ − a−, across Σ

and the restriction ϕ+(ϕ−) of a function ϕ to Ω+(Ω−) we consider the problem:

For given

f ∈ L2(Ω−) ∪W0
1(Ω+) and g ∈ H 1

2 (Σ), (2.6)
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2.1 A scalar transmission problem in weighted spaces

find ϕ ∈ V, such that

a+

∫

Ω+

∇ϕ+·∇ψ+dx+a−

∫

Ω−

∇ϕ−·∇ψ−dx = −
∫

Ω+∪Ω−

f ·ψdx+[a]Σ

∫

Σ
g·ψds, ∀ψ ∈ V (2.7)

with

ϕ ∈ V = H1
0 (Ω−) ∪W1

0(Ω+), H
1
0 (Ω−) =

{
ϕ ∈ H1(Ω−)


∫

Ω−

ϕdx = 0

}
. (2.8)

The transmission problem (2.6)-(2.7) is elliptic (see [20]) . By elliptic regularity, ϕ has more

regularity on sub-domains when the data are more regular.

We introduce

PH2(R3) = {ϕ = (ϕ+, ϕ−) | ϕ+ ∈ W2
1(Ω+) and ϕ− ∈ H2(Ω−)}, (2.9)

with norm

‖ϕ‖2PH2(R3) = ‖ϕ−‖2H2(Ω−) + ‖ϕ+‖2
W2

1(Ω+). (2.10)

The following result is an extension of Peron’s results [42] (for a bounded exterior domain) to

an unbounded exterior domain Ω+.

Proposition 1. For f and g satisfying (2.6) and (2.13) we have

ϕ ∈ PH2(R3), (2.11)

where ϕ ∈ V is the solution of (2.7). Furthermore ϕ solves(in the sense of distributions)

a+∆ϕ
+ = f+ in Ω+, a−∆ϕ− = f− in Ω−,

ϕ+ = ϕ−, a+∂nϕ+ − a−∂nϕ− = [a]Σ · g on Σ,

ϕ = O

(
1

|x|

)
, ∂nϕ = o

(
1

|x|2
)

as |x| −→ ∞,

(2.12)

where ∂n denotes the normal derivative where n is the normal pointing from Ω+ in Ω−.

Proof. The proof of Proposition 1 is given in several steps and follows Peron’s original proof.

We only modify it for the unbounded exterior domain Ω+ by looking for the solution in weighted

spaces. We show that ϕ satisfies an a priori estimate (Theorem 3) yielding (the assertion

(2.11)). First we prove (2.12).

We choose a ball BR with radius R > 0 and boundary ∂BR containing Ω−. Let ΩR = BR∩Ω+,

with ∂ΩR = ∂BR ∪ Σ, see figure 2.2.

Then, the first term in (2.7) is

a+

∫

Ω+

∇ϕ+ · ∇ψdx = lim
R→∞

a+

∫

ΩR

∇ϕ+ · ∇ψdx,
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2 Transmission problem for the Laplacian with a parameter in R3

Ω

Ω

Σ

R

BR

R

_

Figure 2.2: The domain ΩR = BR ∩ Ω+.

and by integration by parts in ΩR

a+

∫

ΩR

∇ϕ+ · ∇ψdx = −a+
∫

ΩR

∆ϕ+ · ψdx+ a+

∫

∂ΩR

∂nϕ
+ · ψds

= −a+
∫

ΩR

∆ϕ+ · ψdx+ a+

∫

Σ
∂nϕ

+ · ψds+ a+

∫

∂BR

∂nϕ
+ · ψds,

then, when R→ ∞, comes

a+

∫

Ω+

∇ϕ+ · ∇ψdx = −a+
∫

Ω+

∆ϕ+ · ψdx+ a+

∫

Σ
∂nϕ

+ · ψds + lim
R→∞

a+

∫

∂BR

∂nϕ
+ · ψds.

The second term in (2.7) by integration by parts, yields

a−

∫

Ω−

∇ϕ− · ∇ψdx = −a−
∫

Ω−

∆ϕ− · ψdx− a−

∫

Σ
∂nϕ

− · ψds.

Then

a+

∫

Ω+

∇ϕ+ · ∇ψdx+ a−

∫

Ω−

∇ϕ− · ∇ψdx =

= −a+
∫

Ω+

∆ϕ+ · ψdx− a−

∫

Ω−

∆ϕ− · ψdx+

+

∫

Σ
(a+∂nϕ

+ − a−∂nϕ
−) · ψds+ lim

R→∞
a+

∫

∂BR

∂nϕ
+ · ψds.

The right part in (2.7) is

−
∫

Ω+∪Ω−

f · ψdx+ [a]Σ

∫

Σ
g · ψds = −

∫

Ω+

f+ · ψdx−
∫

Ω−

f− · ψdx+ [a]Σ

∫

Σ
g · ψds,

then, we have

a+

∫

Ω+

∆ϕ+ · ψdx =

∫

Ω+

f+ · ψdx,
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2.2 A priori estimate in weighted spaces

a−

∫

Ω−

∆ϕ− · ψdx =

∫

Ω−

f− · ψdx,

∫

Σ
(a+∂nϕ

+ − a−∂nϕ
−) · ψds = [a]Σ

∫

Σ
g · ψds,

and

lim
R→∞

a+

∫

∂BR

∂nϕ
+ · ψds. = 0.

This implies (2.12).

Next we set a+ = 1, a− = ρ ∈ C, and consider:

Find ϕρ ∈ V, such that, for all ψ ∈ V,
∫

Ω+

∇ϕ+
ρ · ∇ψ+dx+ ρ

∫

Ω−

∇ϕ−
ρ · ∇ψ−dx = −

∫

Ω+∪Ω−

f · ψdx+ (1− ρ)

∫

Σ
g · ψds, (Pρ)

with f and g satisfying (2.6) independent of ρ.

Following Peron [42] we construct a mapping ρ 7−→ ϕρ where ϕρ solves (Pρ) and consider its

behavior when |ρ| → ∞.

We assume ∫

Ω+∪Ω−

fdx = 0 and

∫

Σ
gds = 0. (2.13)

and show an a priori estimate for ϕρ uniformly in ρ.

We observe now that ϕρ ∈ V. By construction, ϕρ is a solution of problem (2.12), with a− = ρ,

a+ = 1. Especially ϕρ ∈ H1(Ω−)∪W1
0(Ω+). Finally

∫
Ω−

ϕ−
ρ dx = 0 because every ϕ−

n in (2.15)

has integral mean zero. To complete the proof of Proposition 1 we prove now the following a

priori estimate. Its application gives the assertion of Proposition 1.

2.2 A priori estimate in weighted spaces

The main result for this chapter is to show an a priori estimate in PH2 uniformly in ρ for a

solution ϕρ ∈ V of (Pρ); that is the following theorem which in case of a bounded exterior

domain was originally derived by Peron in his thesis [42]

Theorem 3. Assuming (2.6) and (2.13), there exists a constant ρ0 > 0 such that for all

ρ ∈ {~z ∈ C||~z| ≥ ρ0}, problem (Pρ) has a solution ϕρ ∈ PH2(R3) with

‖ϕρ‖PH2(R3) ≤ Cρ0(‖f−‖L2(Ω−) + ‖f+‖W0
1(Ω+) + ‖g‖

H
1
2 (Σ)

), (2.14)

where Cρ0 > 0 is independent of ρ, f and g.

Proof. Our proof modifies Peron’s approach in [42] and is given via the following steps.

33



2 Transmission problem for the Laplacian with a parameter in R3

First we expand ϕρ in a power series in ρ−1.

ϕρ =





∞∑

n=0

ϕ+
n ρ

−n, in Ω+,

∞∑

n=0

ϕ−
n ρ

−n, in Ω−.

(2.15)

We show that these series converge in the norm in the space PH2 to a solution of problem (Pρ).

Inserting (2.15) in (2.12) and identifying terms of like powers of ρ−1 we obtain a family of

problems independent of ρ, coupled by their conditions on Σ.

(2.15)2 in (2.12)1
∞∑

n=0

∆ϕ−
n ρ

−n+1 = f−

or

ρ∆ϕ−
0 +∆ϕ−

1 + ρ−1∆ϕ−
2 + · · · = f−

then

∆ϕ−
0 = 0, ∆ϕ−

1 = f−, ∆ϕ−
k = 0, k ≥ 2,

or

∆ϕ−
0 = 0, ∆ϕ−

k = δk,1f
−, k ≥ 1, in Ω−.

(2.15)1 in (2.12)2
∞∑

n=0

∆ϕ+
n ρ

−n = f+

or

∆ϕ+
0 + ρ−1∆ϕ−

1 + · · · = f+

then

∆ϕ−
0 = f+, ∆ϕ+

k = 0, k ≥ 1, in Ω+.

(2.15) in (2.12)3
∞∑

n=0

∆ϕ−
n ρ

−n =
∞∑

n=0

∆ϕ+
n ρ

−n

then

ϕ−
k = ϕ+

k , k ≥ 0, on Σ.

(2.15) in (2.12)4
∞∑

k=0

∂nϕ
+
k ρ

−k −
∞∑

k=0

∂nϕ
−
k ρ

−k+1 = (1− ρ)g

or ∞∑

k=0

∂nϕ
+
k ρ

−k −
∞∑

k=−1

∂nϕ
−
k+1ρ

−k = (1− ρ)g

or

−ρ∂nϕ−
0 +

∞∑

k=0

(∂nϕ
+
k − ∂nϕ

−
k+1)ρ

−k = (1− ρ)g
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2.2 A priori estimate in weighted spaces

then

∂nϕ
−
0 = g, ∂nϕ

+
0 − ∂nϕ

−
1 = g, ∂nϕ

+
k − ∂nϕ

−
k+1 = 0, k ≥ 1

or

∂nϕ
−
0 = g, ∂nϕ

−
k = −δk,1g + ∂nϕ

+
k−1, k ≥ 1, on Σ.

This implies
∆ϕ−

0 = 0, in Ω−,

∂nϕ
−
0 = g, on Σ,

(2.16)

and
∆ϕ+

0 = f+, in Ω+,

ϕ+
0 = ϕ−

0 , on Σ,

(2.17)

and for k ∈ N with the Kronecker symbol δk,1

∆ϕ−
k = δ1kf

−, in Ω−,

∂nϕ
−
k = −δk,1g + ∂nϕ

+
k−1, on Σ,

(2.18)

and
∆ϕ+

k = 0, in Ω+,

ϕ+
k = ϕ−

k , on Σ,

(2.19)

and the condition at infinity

ϕρ = O

(
1

|x|

)
, ∂nϕρ = o

(
1

|x|2
)

as |x| −→ ∞, (2.20)

In addition we assume
∫
Ω−

ϕ−
0 = 0 and

∫
Ω−

ϕ−
k = 0 (*) We construct successively every term

ϕ−
n and ϕ+

n , by beginning in ϕ−
0 and ϕ+

0 .

Let us assume that {ϕ−
k }n−1

k=0 and {ϕ+
k }n−1

k=0 are known. Then, problem (2.18) defines a unique

ϕ−
n . Its trace on Σ is inserted in (2.19) as Dirichlet data to determine the external part ϕ+

n .

The Neumann problem (2.16) has a unique solution ϕ−
0 ∈ H1(Ω−) if

∫
Ω−

ϕ−
0 dx = 0. But this

holds since
∫
Σ gds = 0. Also, by elliptic regularity, ϕ−

0 ∈ H2(Ω−) and there is a constant

CN > 0, independent of ρ, such that (see [40, Theorem 2.5.2])

‖ϕ−
0 ‖H2(Ω−) ≤ CN‖g‖

H
1
2 (Σ)

. (2.21)

We are interested in ϕ+
0 in (2.17). Problem (2.17) has a unique solution (see [20, Chapter 2]),

ϕ+
0 ∈ W1

0(Ω+). Also, by elliptic regularity and since ϕ−
0 ∈ H2(Ω−), ϕ

+
0 ∈ W2

1(Ω+) and there

is a constant CDN > 0 independent of ρ, such that (see [3, Theorem 6])

‖ϕ+
0 ‖W2

1(Ω+) ≤ CDN (‖ϕ−
0 ‖H2(Ω−) + ‖f+‖W0

1(Ω+)). (2.22)

Now that (2.20) guarantees that ϕ+
0 ∈ W1

0(Ω+) and not only in W1
0(Ω+)�R. Similarly we

can deal with (2.18) and (2.19). Since ϕρ satisfies the decay condition at infinity, ϕρ can not
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2 Transmission problem for the Laplacian with a parameter in R3

behave like a constant. Therefore the constraints (*) are not necessary.

Next we study the Neumann problem (2.18).

For k = 1, we show that there holds
∫

Ω−

f−dx+

∫

Σ
(−g + ∂nϕ

+
0 )ds = 0. (2.23)

According to (2.17) and (2.20)

∆ϕ+
0 = f+, in Ω+,

ϕ+
0 = ϕ−

0 , on Σ,

∂nϕ
+
0 = o

(
1

|x|2
)
, as |x| −→ ∞.

(2.24)

We choose a ball BR with radius R > 0 and boundary ∂BR containing Ω− (see figure 2.2).

Then for the bounded domain Ω+ ∩BR, integrating by part in (2.24)1 gives

∫

Ω+∩BR
f+ψ+dx =

∫

Ω+∩BR
∆ϕ+

0 ψ
+dx

= −
∫

Ω+∩BR
∇ϕ+

0 · ∇ψ+dx+

∫

∂(Ω+∩BR)
ψ+ · ∂nϕ+

0 ds,

for ψ ≡ 1 yields ∫

Ω+∩BR
f+dx =

∫

∂(Ω+∩BR)
∂nϕ

+
0 ds

and ∂(Ω+ ∩BR) = ∂BR ∪ Σ, then

∫

Ω+∩BR
f+dx =

∫

∂BR

∂nϕ
+
0 ds+

∫

Σ
∂nϕ

+
0 ds

=

∫

∂BR

o

(
1

R2

)
ds+

∫

Σ
∂nϕ

+
0 ds

= o

(
1

R2

)
R2 +

∫

Σ
∂nϕ

+
0 ds,

then ∫

Ω+

f+dx = o(1) +

∫

Σ
∂nϕ

+
0 ds, as R −→ ∞,

then ∫

Ω+

f+dx =

∫

Σ
∂nϕ

+
0 ds.

Under the hypothesis (2.13)

∫

Σ
gds = 0, and

∫

R3

fdx = 0,
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2.2 A priori estimate in weighted spaces

then ∫

Ω+

f+dx = −
∫

Ω−

f−dx,

the compatibility condition (2.23) is deducted.

For k ≥ 2, we assume that the term ϕ+
k−1 is constructed.and we show that

∫

Σ
∂nϕ

+
k−1ds = 0. (2.25)

According to (2.19) and (2.20)

∆ϕ+
k−1 = 0, in Ω+,

ϕ+
k−1 = ϕ−

k−1, on Σ,

∂nϕ
+
k−1 = o

(
1

|x|2
)
, as |x| −→ ∞.

(2.26)

Again we choose a ball BR with radius R > 0 and boundary ∂BR containing Ω−. Then for

the bounded domain Ω+ ∩BR, integrating by part in (2.26)1 gives

0 =

∫

Ω+∩BR
∆ϕ+

k−1ψ
+dx = −

∫

Ω+∩BR
∇ϕ+

k−1 · ∇ψ+dx+

∫

∂(Ω+∩BR)
ψ+ · ∂nϕ+

k−1ds,

for ψ ≡ 1 yields

0 =

∫

∂(Ω+∩BR)
∂nϕ

+
k−1ds

and ∂(Ω+ ∩BR) = ∂BR ∪ Σ, then

0 =

∫

∂BR

∂nϕ
+
k−1ds+

∫

Σ
∂nϕ

+
k−1ds

=

∫

∂BR

o

(
1

R2

)
ds+

∫

Σ
∂nϕ

+
k−1ds

= o

(
1

R2

)
R2 +

∫

Σ
∂nϕ

+
k−1ds,

then

0 = o(1) +

∫

Σ
∂nϕ

+
k−1ds, as R −→ ∞,

and

0 =

∫

Σ
∂nϕ

+
k−1ds.

Consequently, the Neumann problem (2.18) admits a solution ϕ−
k ∈ H1(Ω−), which is unique

under condition
∫
Ω−

ϕ−
k dx = 0 (see [40, Theorem 2.5.10]). Also, ϕ−

k ∈ H2(Ω−) and

‖ϕ−
k ‖H2(Ω−) ≤ CN [δ

1
k(‖f−‖L2(Ω−) + ‖g‖

H
1
2 (Σ)

) + ‖∂nϕ+
k−1‖H 1

2 (Σ)
]. (2.27)
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2 Transmission problem for the Laplacian with a parameter in R3

Finally, problem (2.19) has a unique solution ϕ+
k ∈ W1

0(Ω+) (see [20, Chapter 2] and there

holds the estimate (see [40, Theorem 2.5.14]) which the constant CDN > 0

‖ϕ+
k ‖W2

1(Ω+) ≤ CDN‖ϕ−
k ‖H2(Ω−). (2.28)

Next, we demonstrate the convergence in PH2(R3) of the series (2.15) for large |ρ|.

For the Neumann trace

γ1,Σ : W2
1(Ω+) −→ H

1
2 (Σ),

ϕ 7−→ ∂nϕ
we have with a constant C1 > 0,

‖γ1,Σ(ϕ)‖
H

1
2 (Σ)

≤ C1‖ϕ‖W2
1(Ω+). (2.29)

We pose α = CNC1CDN , where CN and CDN are the respective constants of estimates (2.21)

and (2.22). With (2.27), (2.28) and (2.29) we show by induction

‖ϕ−
n ‖H2(Ω−) ≤ αn−1‖ϕ−

1 ‖H2(Ω−),

‖ϕ+
n ‖W2

1(Ω+) ≤ CDN · αn−1‖ϕ−
1 ‖H2(Ω−).

(2.30)

(2.30)1 can be see as follows: For n = 1,

‖ϕ−
1 ‖H2(Ω−) = α0‖ϕ−

1 ‖H2(Ω−).

With (2.27) we have for k = 2

‖ϕ−
2 ‖H2(Ω−) ≤ CN‖∂nϕ+

1 ‖H 1
2 (Σ)

,

and with (2.29)

‖ϕ−
2 ‖H2(Ω−) ≤ CNC1‖ϕ+

1 ‖W2
1(Ω+);

hence by (2.28) we have for k = 1

‖ϕ+
1 ‖W2

1(Ω+) ≤ CDN‖ϕ−
1 ‖H2(Ω−),

and therefore

‖ϕ−
2 ‖H2(Ω−) ≤ CNC1CDN‖ϕ−

1 ‖H2(Ω−) = α‖ϕ−
1 ‖H2(Ω−).

We assume that (2.30)1 is true for k = n− 1, this is

‖ϕ−
n−1‖H2(Ω−) ≤ αn−2‖ϕ−

1 ‖H2(Ω−),

then, according to (2.27), for k = n

‖ϕ−
n ‖H2(Ω−) ≤ CN‖∂nϕ+

n−1‖H 1
2 (Σ)

,

and for (2.29)

‖ϕ−
n ‖H2(Ω−) ≤ CNC1‖ϕ+

n−1‖W2
1(Ω+);
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2.2 A priori estimate in weighted spaces

according to (2.28) for k = n− 1

‖ϕ+
n−1‖W2

1(Ω+) ≤ CDN‖ϕ−
n−1‖H2(Ω−),

then
‖ϕ−

n ‖H2(Ω−) ≤ CNC1CDN‖ϕ−
n−1‖H2(Ω−)

≤ α · αn−2‖ϕ−
1 ‖H2(Ω−)

= αn−1‖ϕ−
1 ‖H2(Ω−),

then (2.30)1 is true for all n.

(2.30)2 can be see as follows:

According to (2.28) for k = 1

‖ϕ+
1 ‖W2

1(Ω+) ≤ CDN‖ϕ−
1 ‖H2(Ω−),

and for k = 2

‖ϕ+
2 ‖W2

1(Ω+) ≤ CDN‖ϕ−
2 ‖H2(Ω−).

According to (2.27) for k = 2

‖ϕ−
2 ‖H2(Ω−) ≤ CN‖∂nϕ+

1 ‖H 1
2 (Σ)

,

and for (2.29)

‖ϕ−
2 ‖H2(Ω−) ≤ CNC1‖ϕ+

1 ‖W2
1(Ω+),

then
‖ϕ+

2 ‖W2
1(Ω+) ≤ CDNCNC1‖ϕ+

1 ‖W2
1(Ω+)

≤ CDN · α‖ϕ−
1 ‖H2(Ω−).

We assume that (2.30)2 is true for k = n− 1, this is

‖ϕ+
n−1‖W2

1(Ω+) ≤ CDN · αn−2‖ϕ−
1 ‖H2(Ω−)

then, according to (2.28), for k = n

‖ϕ+
n ‖W2

1(Ω+) ≤ CDN‖ϕ−
n ‖H2(Ω−),

and according to (2.27) for k = n

‖ϕ−
n ‖H2(Ω−) ≤ CN‖∂nϕ+

n−1‖H 1
2 (Σ)

,

and for (2.29)

‖ϕ−
n ‖H2(Ω−) ≤ CNC1‖ϕ+

n−1‖W2
1(Ω+),

then
‖ϕ−

n ‖H2(Ω−) ≤ CNC1CDN · αn−2‖ϕ−
1 ‖H2(Ω−)

= αn−1‖ϕ−
1 ‖H2(Ω−),
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2 Transmission problem for the Laplacian with a parameter in R3

then

‖ϕ+
n ‖W2

1(Ω+) ≤ CDN · αn−1‖ϕ−
1 ‖H2(Ω−),

then (2.30)2 is true for all n.

Hence for all ρ ∈ C, with |ρ|−1α < 1, the series (2.15) converges in W2
1(Ω+) and H2(Ω−),

respectively. Now we are in the position to prove Theorem 3.

We show first the estimate (2.14) for ϕρ in (2.15). Let ρ0 > 0, such that ρ−1
0 α < 1, where

α = CNC1CDN .

Let ρ ∈ {z ∈ C||z| ≥ ρ0}. According to (2.30) ϕρ converges geometrically in PH2(R3) with

|ρ−1|α, bounded by ρ−1
0 α. Hence,

‖ϕ+
ρ ‖W2

1(Ω+) ≤ CDN
1

1− ρ−1
0 α

ρ−1
0 ‖ϕ−

1 ‖H2(Ω−) + ‖ϕ+
0 ‖W2

1(Ω+),

‖ϕ−
ρ ‖H2(Ω−) ≤ ρ−1

0

1

1− ρ−1
0 α

‖ϕ−
1 ‖H2(Ω−) + ‖ϕ−

0 ‖H2(Ω−)

(2.31)

This can be seen as follows.

From (2.15)1, (2.30)2 and the triangular inequality, we have

‖ϕ+
ρ ‖W2

1(Ω+) = ‖
∑∞

n=0 ϕ
+
n ρ

−n‖W2
1(Ω+)

≤ ‖ϕ+
0 ‖W2

1(Ω+) +
∑∞

n=1 ‖ϕ+
n ‖W2

1(Ω+)|ρ−n|

≤ ‖ϕ+
0 ‖W2

1(Ω+) + CDN · α−1‖ϕ−
1 ‖H2(Ω−)

∑∞
n=1 |ρ−n|αn,

and ∞∑

n=1

|ρ−n|αn =

∞∑

n=1

(ρ−1α)n =
1

1− ρ−1α
≤ 1

1− ρ−1
0 α

, (2.32)

then

‖ϕ+
ρ ‖W2

1(Ω+) ≤ CDN
1

1− ρ−1
0 α

ρ−1
0 ‖ϕ−

1 ‖H2(Ω−) + ‖ϕ+
0 ‖W2

1(Ω+).

Using the triangle inequality, (2.15)2 and (2.30)1, we have

‖ϕ−
ρ ‖H2(Ω−) = ‖∑∞

n=0 ϕ
−
n ρ

−n‖H2(Ω−)

≤ ‖ϕ−
0 ‖H2(Ω−) +

∑∞
n=1 ‖ϕ−

n ‖H2(Ω−)|ρ−n|

≤ ‖ϕ−
0 ‖H2(Ω−) + α−1‖ϕ−

1 ‖H2(Ω−)

∑∞
n=1 |ρ−n|αn,

this and (2.32) implies (2.31)2.

Now, from (2.27), for k = 1

‖ϕ−
1 ‖H2(Ω−) ≤ CN [‖f−‖L2(Ω−) + ‖g‖

H
1
2 (Σ)

+ ‖∂nϕ+
0 ‖H 1

2 (Σ)
], (2.33)

according to (2.33) and (2.29), get

‖ϕ−
1 ‖H2(Ω−) ≤ CN [‖f−‖L2(Ω−) + ‖g‖

H
1
2 (Σ)

+ C1‖ϕ+
0 ‖W2

1(Ω+)]. (2.34)
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2.2 A priori estimate in weighted spaces

From (2.34), (2.31), (2.21) and (2.22), we have

‖ϕ+
ρ ‖W2

1(Ω+) ≤ CDN
1

1− ρ−1
0 α

ρ−1
0 CN [‖f−‖L2(Ω−) + ‖g‖

H
1
2 (Σ)

+C1CDN (CN‖g‖
H

1
2 (Σ)

+ ‖f+‖W0
1(Ω+))] + CDN (CN‖g‖

H
1
2 (Σ)

+ ‖f+‖W0
1(Ω+)),

and

‖ϕ−
ρ ‖H2(Ω−) ≤ ρ−1

0

1

1− ρ−1
0 α

CN [‖f−‖L2(Ω−) + ‖g‖
H

1
2 (Σ)

+C1CDN (CN‖g‖
H

1
2 (Σ)

+ ‖f+‖W0
1(Ω+))] + CN‖g‖

H
1
2 (Σ)

.

This yields the desired estimate (2.14)and the proof of Theorem 3 is complete.

The a priori estimate of Theorem 3 is a crucial tool in the proof of Theorem 6 in Chapter 3

where it is taken for one part in the Helmholtz decomposition.
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3 Electromagnetic transmission

problem for large conductivity -

Analysis in weighted Sobolev spaces

In this chapter, we present an a priori estimate for an electromagnetic transmission problem

with unbounded exterior domain in R3. We consider Maxwell’s equations in two sub-domains,

the bounded interior one Ωcd = Ω− representing a conducting material (metal) and the un-

bounded exterior one Ωis = Ω+ an insulating material (air). The behavior of the solution

at infinity is described by means of families of weighted Sobolev spaces, so-called Beppo-Levi

spaces (see [27]). Existence and uniqueness of the solution are obtained. The results of this

chapter are modifications of Peron’s results [42], which he derived for a bounded exterior do-

main Ωis. We follow closely his thesis, present some of his results but make modifications for

the unbounded exterior domain Ωis. This leads us to use weighted spaces and to apply an

embedding result for weighted spaces. The compactness of such an embedding allows us to

perform a contradiction argument implying an a priori estimate for the electrical field (The-

orem 6). From this a priori estimate then follows existence and uniqueness of the solution of

the electromagnetic transmission problem (3.2).

3.1 The electromagnetic transmission problem in R3

We consider Maxwell’s equations in a bounded domain Ωcd and in an unbounded domain

Ωis = R3�Ω̄cd

curl E− iωµ0H = 0, in Ωcd ∪ Ωis ,

curl H+ (iωε0 − σ)E = J, in Ωcd ∪ Ωis
(3.1)

for electric and magnetic fields E and H with real-valued constants ω, ε0, µ0. Across the

smooth interface surface Σ, the boundary of Ωcd, the tangential components of both E and H

must be continuous, i.e. EisT = Ecd
T , H

is
T = Hcd

T .

Furthermore the Silver-Müller radiation condition must hold at infinity.

Setting ρ :=

√
σ

ωε0
> 0 , µ :=

√
µ0
ε0

, ε(ρ) :=
1

µ
(1Ωis + (1 + iρ2)1Ωcd), and F = iκJ, then (3.1)
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

writes with x̂ =
x

|x| and κ = ω(µε)
1
2 as

curl Eρ − iκµHρ = 0, in Ωcd ∪ Ωis ,

curl Hρ + iκε(ρ)Eρ =
1

iκ
F, in Ωcd ∪ Ωis ,

|Eρ|, |Hρ| = o

(
1

|x|

)
, |Hρ × x̂− iκEρ| = o

(
1

|x|

)
, as |x| → ∞,

(3.2)

Note (3.2) can be reduced to

1

µ
curl curl Eρ − κ2ε(ρ)Eρ = F, in Ωcd ∪ Ωis,

setting Hρ =
1

iκµ
curl Eρ; the Silver-Müller radiation condition at infinity becomes

|curl Eρ × x̂− iκEρ| = o

(
1

|x|

)
, as |x| −→ ∞.

We are interested in the behavior of the electric and magnetic fields as the conductivity σ

becomes large. i.e. σ → ∞, thus ρ→ ∞ .

Peron considers in [42] problem (3.2) in a bounded domain Ω = Ωcd ∪ Ωis with bounded

domains Ωcd and Ωis. Peron considers on the boundary ∂Ω of Ω either Dirichlet or Neumann

conditions. In our case Ω is unbounded (since in our case Ωis is unbounded) and the boundary

conditions on ∂Ω are replaced by the Silver-Müller decay condition at infinity. There are two

ways to analyze problem (3.2) - either one uses Hs
loc(R

3) or Beppo-Levi spaces (as done in

Costabel and Stephan [12] or in Giroire [20], respectively, for boundary value problems of the

Laplacian). For the use of Hs
loc spaces to electromagnetic problems see the book by Nedelec

[40]. Here we investigate problem (3.2) in Beppo-Levi spaces.

Before we introduce those weighted Sobolev spaces for an unbounded domain let us remember

the definition of the spaces associated with Maxwell’s system in a bounded domain Ωcd ⊂ R3

(see [38]), which are based on the space

L2(Ωcd) = (L2(Ωcd))3 :=

{
u ∈ R3

∣∣∣∣
∫

Ωcd
|u|2dx <∞

}
,

with norm

‖u‖L2(Ωcd) =

(∫

Ωcd
|u|2dx

) 1
2

,

namely
H(curl,Ωcd) = {u ∈ L2(Ωcd) | curl u ∈ L2(Ωcd)},

H(div,Ωcd) = {u ∈ L2(Ωcd) | div u ∈ L2(Ωcd)},

with norms

‖u‖2
H(curl,Ωcd) = ‖curl u‖2

L2(Ωcd)
+ ‖u‖2

L2(Ωcd)
,
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3.1 The electromagnetic transmission problem in R3

‖u‖2
H(div,Ωcd) = ‖div u‖2L2(Ωcd) + ‖u‖2

L2(Ωcd)
.

From Peron [42] we collect the following variational spaces

X(Ωcd) = H(curl,Ωcd) ∩H(div,Ωcd),

with norm

‖u‖2
X(Ωcd) = ‖curl u‖2

L2(Ωcd)
+ ‖div u‖2L2(Ωcd) + ‖u‖2

L2(Ωcd)
,

and

XT(Ω
cd) = {u ∈ X(Ωcd) | n · u = 0, on ∂Ωcd},

XN(Ω
cd) = {u ∈ X(Ωcd) | n× u = 0, on ∂Ωcd},

XT(Ω
cd, ρ) = {u ∈ H(curl,Ωcd) | ε(ρ)u ∈ H(div,Ωcd), n · u = 0, on ∂Ωcd},

XN(Ω
cd, ρ) = {u ∈ H(curl,Ωcd) | ε(ρ)u ∈ H(div,Ωcd), n× u = 0, on ∂Ωcd}.

with norm

‖u‖2
X(Ωcd,ρ) = ‖curl u‖2

L2(Ωcd)
+ ‖div(ε(ρ)u)‖2L2(Ωcd) + ‖u‖2

L2(Ωcd)
,

Note, XT(Ω
cd), XN(Ω

cd), XT(Ω
cd, ρ) and XN(Ω

cd, ρ) are Hilbert spaces.

Furthermore let D denote the space consisting of all C∞-functions with compact support and

D′ is the topological dual space of D (space of distributions).

Consider the basic weight ℓ(r) =
√
1 + r2, with distance r =

√
x21 + x22 + x23, for

x = (x1, x2, x3), from the origin. Due to the unboundedness of the domain Ωis, the problem is

based on the vectorial weighted Sobolev space (also known as the vectorial Beppo-Levi space),

a fairly complete treatment of these spaces is given in [3], [18], [27] and [40, Section 2.5.4]:

W(curl,R3) = {u ∈ D′(R3) | ℓ(r)−1u ∈ L2(R3), curl u ∈ L2(R3)},

W(div,R3) = {u ∈ D′(R3) | ℓ(r)−1u ∈ L2(R3), div u ∈ L2(R3)},

W(curl,R3) and W(div,R3) are Hilbert spaces equipped with the norms

‖u‖2
W(curl,R3)

= ‖curl u‖2
L2(R3)

+ ‖ℓ(r)−1u‖2
L2(R3)

,

and

‖u‖2
W(div,R3)

= ‖div u‖2L2(R3) + ‖ℓ(r)−1u‖2
L2(R3)

.

Furthermore we need the following spaces

X(R3) = W(curl,R3) ∩W(div,R3),
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

with norm

‖u‖2X(R3) = ‖curl u‖2
L2(R3)

+ ‖div u‖2L2(R3) + ‖ℓ(r)−1u‖2
L2(R3)

,

and with Σ = Ω̄cd ∩ Ω̄is and Ωis = R3�Ω̄cd

XT(R
3) = {u ∈ X(R3) | [n · u] = 0, on Σ},

XN(R
3) = {u ∈ X(R3) | [n× u] = 0, on Σ},

XT(R
3, ρ) = {u ∈ W(curl,R3) | ε(ρ)u ∈ W(div,R3), [n · u] = 0, on Σ},

XN(R
3, ρ) = {u ∈ W(curl,R3) | ε(ρ)u ∈ W(div,R3), [n× u] = 0, on Σ},

XTN(R
3, ρ) = {u ∈ L2(R3), curlu ∈ L2(R3), ℓ(r)divε(ρ)u ∈ L2(R3) , [n× u] = [n · u] = 0, on Σ},

with norm

‖u‖2XTN(R3,ρ) = ‖curl u‖2
L2(R3)

+ ‖ℓ(r)div(ε(ρ)u)‖2L2(R3) + ‖u‖2
L2(R3)

,

Note, XT(R
3), XN(R

3), XT(R
3, ρ) and XN(R

3, ρ) are Hilbert spaces.

And also we define for all m in N ∪ {0} and all k in Z

L2
m,k(R

3) :=
{
u ∈ R3 | ∀α ∈ N3, 0 ≤ |α| ≤ m, ℓ(r)|α|−m+ku ∈ L2(R3)

}
,

with the norm

‖u‖L2
m,k(R

3) = ‖ℓ(r)|α|−m+ku‖L2(R3),

where L2
m,k(R

3) =
(
L2
m,k(R

3)
)3

. Note L2
0,1(R

3) ⊂ L2(R3) ⊂ L2
0,−1(R

3) .

First, we address the setting of Maxwell’s transmission problem (3.1) in R3 in standard Sobolev

spaces in the bounded conductor and weighted spaces in the unbounded insulator. Modifying

[29, Lemma 1.3.1,Lemma 1.3.2], [42, Lemma 2.7] for the unbounded exterior domain we have

the followings results. Louér [29] derives her results in Hloc(curl,R
3) = {u ∈ L2

loc(R
3), curlu ∈

L2
loc(R

3)} where u ∈ L2
loc(R

3) means u ∈ L2(Ω) for any bounded domain Ω.

Lemma 1. Let F ∈ L2(R3). Let Eρ and Hρ in L2(R3) be a solution of (3.2). Then, Eρ,Hρ ∈
W(curl,R3) if and only if Ecd

ρ ,H
cd
ρ ∈ H(curl,Ωcd) and Eis

ρ ,H
is
ρ ∈ W(curl,Ωis) and there holds

[n×Eρ]Σ = 0, [n×Hρ]Σ = 0, where [u]Σ = uis − ucd. denotes the jump across Σ.

Proof. If Eρ,Hρ ∈ W(curl,R3), then by definition Ecd
ρ ,H

cd
ρ ∈ H(curl,Ωcd) and Eis

ρ ,H
is
ρ ∈

W(curl,Ωis). Thus for uρ = curlEρ or curlHρ, we have for all v ∈ C∞(R3) satisfying the

radiation condition in (3.2) and assuming ℓ(r)curlv , ℓ(r)curluρ ∈ L2(R3)

∫

Ωcd∪Ωis
v · curl uρdx =

∫

Ωcd
v · curl ucdρ dx+

∫

Ωis
v · curl uisρ dx,

and ∫

Ωcd∪Ωis
uρ · curl vdx =

∫

Ωcd
ucdρ · curl vdx+

∫

Ωis
uisρ · curl vdx,
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in Ωcd integration by parts (see [29, Lemma 1.3.1]) gives
∫

Ωcd
[v · curl ucdρ dx− ucdρ · curl v]dx =

∫

Σ
[n× (n× ucdρ )] · (n× v)ds.

where

n× (n× ucdρ ) = n(n · ucdρ )− ucdρ (n · n) = n(n · ucdρ )− ucdρ .

Then

[n× (n× ucdρ )] · (n× v) = [n(n · ucdρ )− ucdρ ] · (n× v) = −ucdρ · (n× v),

and

−ucdρ · (n× v) = v · (n× ucdρ ),

yield

∫

Ωcd
v · curl ucdρ dx =

∫

Ωcd
ucdρ · curl vdx+

∫

Σ
v · (n× ucdρ )ds.

We choose a ball BR with radius R > 0 and boundary ∂BR containing Ωcd.

Let Ωis = limR→∞ΩR where ΩR = BR ∩Ωis, with ∂ΩR = ∂BR ∪Σ.

In the domain ΩR, we have, by integration by parts, (see [29, Theorem 1.2.17]),

∫

ΩR

v · curl uisρ dx =

∫

ΩR

uisρ · curl vdx−
∫

Σ
v · (n× uisρ )ds +

∫

∂BR

v · (n× uisρ )ds.

The Silver-Müller radiation conditions yield

lim
R→∞

∫

∂BR

|curlEis
ρ × nR − iκEis

τ |2 = 0

Hence choosing v = Eis,uρ = curlEis gives with a generic constant C

lim
R→∞

|
∫

∂BR

v · (n× uisρ )ds| ≤ C lim
R→∞

∫

∂BR

|Eis|2ds = 0.

Hence ∫

Ωis
v · curl uisρ dx =

∫

Ωis
uisρ · curl vdx−

∫

Σ
v · (n× uisρ )ds.

Thus
∫

Ωcd∪Ωis
v · curl uρdx =

∫

Ωcd∪Ωis
uρ · curl vdx+

∫

Σ
v · (n× ucdρ − n× uisρ )ds,

yielding ∫

Σ
v · (n× ucdρ − n× uisρ )ds = 0,

and therefore [n×uρ]Σ = 0. By density for uρ ∈ W(curl,R3) this follows because integration by

parts holds in R3 in this Beppo-Levi space. The reverse statement follows again by integration

by parts.

Our next results is a modification of Lemma 2.8 in [42] according to our unbounded exterior

domain. Note that despite of a similar formulation, our lemma is for weighted Sobolev spaces.
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

Lemma 2. Let F ∈ W(div,R3). Let Eρ and Hρ in L2(R3) be solutions of (3.2). If Eρ,Hρ ∈
W(curl,R3), then ε(ρ)Eρ,Hρ ∈ W(div,R3) and [n·(ε(ρ)Eρ)]Σ = 0, [n·Hρ]Σ = 0. Furthermore,

div(ε(ρ)Eρ) = − 1

κ2
divF, and divHρ = 0 in L2(R3).

Proof. If F ∈ W(div,R3) and Eρ and Hρ in L2(R3) are solutions of (3.2), then applying

divergence operator in (3.2), we have

div(ε(ρ)Eρ) = − 1

κ2
div F, div Hρ = 0 in L2(R3),

and ε(ρ)Eρ ∈ W(div,R3), Hρ ∈ W(div,R3).

Now, for uρ = ε(ρ)Eρ or Hρ, we have for all φ ∈ V = H1
0 (Ω

cd) ∪W1
0(Ω

is),
∫

Ωcd∪Ωis
φ div uρdx =

∫

Ωcd
φ div ucdρ dx+

∫

Ωis
φ div uisρ dx,

and ∫

Ωcd∪Ωis
uρ · ∇φdx =

∫

Ωcd
ucdρ · ∇φdx+

∫

Ωis
uisρ · ∇φdx.

In Ωcd, by integration by parts (see [29, Theorem 1.2.16]) there holds

∫

Ωcd
φ div ucdρ dx =

∫

Ωcd
ucdρ · ∇φdx−

∫

Σ
(n · ucdρ )φds.

We choose a ball BR with radius R > 0 and boundary ∂BR containing Ωcd.

Let Ωis = limR→∞ΩR with ΩR = BR ∩ Ωis, ∂ΩR = ∂BR ∪ Σ.

In the domain ΩR, we have, by integration by parts, (see [29, Lemma 1.3.2]),

∫

ΩR

φ div uisρ dx =

∫

ΩR

uisρ · ∇φdx+

∫

Σ
(n · uisρ )φds −

∫

∂BR

(n · uisρ )φds

=

∫

ΩR

uisρ · ∇φdx+

∫

Σ
(n · uisρ )φds −

∫

∂BR

(n · (uisρ +Uis
ρ × n))φds,

where, if uisρ = ε(ρ)Eρ, U
is
ρ = − ε(ρ)

iκ Hρ or if uisρ = Hρ, U
is
ρ = −iκEρ and n · (Uis

ρ × n) = 0.

Then, applying Silver-Müller conditions, yields
∫

∂BR

n · (uisρ +Uis
ρ × n) · φds→ 0 as R→ ∞.

Hence ∫

Ωis
φ div uisρ dx =

∫

Ωis
uisρ · ∇φdx+

∫

Σ
(n · uisρ )φds.

Altogether we have
∫

Ωcd∪Ωis
φ div uρdx =

∫

Ωcd∪Ωis
uρ · ∇φdx+

∫

Σ
(n · uisρ − n · ucdρ ) · φds

then ∫

Σ
(n · uisρ − n · ucdρ ) · φds = 0,

for all φ implies [n · uρ]Σ = 0. This follows because integration by parts holds in R3 in this

Beppo-Levi space.
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Next we introduce the following notation:

For Eρ ∈ W(curl,R3), E′ ∈ W̃(curl,R3) = {ℓ(r)E′ ∈ L2(R3), curlE′ ∈ L2(R3)} , set

bρ(Eρ,E
′) :=

∫

Ωcd∪Ωis

(
1

µ
curl Eρ · curl E′ − κ2ε(ρ)Eρ ·E′

)
dx. (3.3)

Proposition 2. Let F ∈ L2(R3). Let Eρ and Hρ in L2(R3) solve (3.2). Then, Eρ ∈
W(curl,R3) and for all E′ ∈ W̃(curl,R3),

bρ(Eρ,E
′) =

∫

Ωcd∪Ωis
F ·E′dx. (3.4)

Proof. The proof of Proposition 2 is an extension of Proposition 3 in Peron [42] from a bounded

to unbounded exterior domain Ωis . First (3.2)1 gives curl Eρ ∈ L2(R3) for Hρ in L2(R3). Thus

Eρ ∈ W(curl,R3). Next we test (3.2)1 by curl E′ and then we test (3.2)2 by E′ ∈ W̃(curl,R3).

Adding these equations yields (3.4). Note (3.4) also holds for Eρ ∈ ˜̃W(curl,R3) := {ℓ(r)−1E ∈
L2(R3), curlE ∈ L2(R3), ℓ(r)curlcurlE ∈ L2(R3)} and E′ ∈ W̃(curl,R3). This follows directly

by integration by parts from (3.2) applying the arguments in [37, Section 3] where the Laplacian

in weighed spaces is considered and a weighted Poincare inequality is used.

The strong formulation of (3.4) is our next result, which corresponds to Peron’s Proposition

2.15 in [42]. Again our formulation follows Peron but replaces the boundary conditions on

∂Ω by the decay conditions at infinity. In our proof we modify Peron’s proof in the exterior

domain. For the bounded interior domain his arguments remain unchanged, and only those

parts are repeated here from [42] which are necessary for better reading.

Proposition 3. If Eρ ∈ W(curl,R3) solves (3.4), then Eρ solves (in the distributional sense):

curl curl Eρ − κ2Eρ = µFis, in Ωis,

curl curl Eρ − κ2(1 + iρ2)Eρ = µFcd, in Ωcd,

[n×Eρ]Σ = 0, [n× curl Eρ]Σ = 0 on Σ,

with Silver-Müller condition

|curl Eρ × x̂− iκEρ| = o

(
1

|x|

)
, as |x| −→ ∞,

(3.5)

On the other hand, if Eρ solves (3.5) then

1

µ
curl curl Eρ − κ2ε(ρ)Eρ = F, in Ωcd ∪ Ωis, (3.6)

and

div(ε(ρ)Eρ) = − 1

κ2
div F, in Ωcd ∪Ωis. (3.7)
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

Proof. For proving the first two equations in (3.5) we follow Peron [42].

Taking E′ ∈ D′(R3) with support in Ωis as test function in (3.4) and using

∫

Ωcd∪Ωis
curl Eρ · curl E′dx = 〈curl curl Eρ,E

′〉Ωis ,

we deduce the first equation of (3.5).

Next, we take E′ ∈ D′(R3) with support in Ωcd as test function in (3.4) and using

∫

Ωcd∪Ωis
curl Eρ · curl E′dx = 〈curl curl Eρ,E

′〉Ωcd ,

we deduce the second equation of (3.5).

The third relation (3.5) holds due to Lemma 1.

To continue with the proof, we choose a ball BR with radius R > 0 and boundary ∂BR
containing Ωcd. we apply Stokes formula for the bounded domain Ω = Ωcd ∪ (Ωis ∩BR), with
∂(Ωis ∩BR) = Σ ∪ ∂BR and ∂Ω = ∂BR, for all E,H ∈ H(curl,Ω),

∫

Ω
curl E ·H−E · curl H)dx = 〈n×E,Hτ 〉∂Ω, (3.8)

where Hτ = (n×H)× n.

According to (3.5)1 we have curl E
is ∈ H(curl,Ωis∩BR). So, applying formula (3.8) in Ωis∩BR

to E = curl Eisρ and H = E′ ∈ H(curl,Ω), we have

∫

Ωis∩BR
curl Eis

ρ · curl (E′)isdx =

∫

Ωis∩BR
curl curl Eis

ρ · (E′)isdx+ 〈curl Eis
ρ × n, (E′)isτ 〉∂(Ωis∩BR). (∗)

Applying formula (3.8) in Ωcd to E = curl Ecd
ρ and H = E′ ∈ H(curl,Ω), we have

∫

Ωcd
curl Ecdρ · curl (E′)cddx =

∫

Ωcd
curl curl Ecdρ · (E′)cddx+ 〈curl Ecd

ρ × n, (E′)cdτ 〉Σ. (∗∗)

In (∗)

〈curl Eisρ × n, (E′)isτ 〉∂(Ωis∩BR) = −〈curl Eis
ρ × n, (E′)isτ 〉Σ + 〈curl Eis

ρ × n, (E′)isτ 〉∂BR .

Applying Silver-Müller radiation conditions as in Lemma 1 yields

lim
R→∞

|〈curl Eis
ρ × n, (E′)isτ 〉∂BR | = 0

Then, letting R −→ ∞ in (∗) yields
∫

Ωis
curl Eisρ · curl (E′)isdx =

∫

Ωis
curl curl Eis

ρ · (E′)isdx− 〈curl Eis
ρ × n, (E′)isτ 〉Σ. (∗ ∗ ∗)
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3.1 The electromagnetic transmission problem in R3

Adding (∗∗) and (∗ ∗ ∗) gives for all E′ ∈ W(curl,R3)

∫

Ωcd∪Ωis
curl Eρ · curl E′dx =

∫

Ωcd∪Ωis
curl curl Eρ ·E′dx+ 〈[curl Eρ × n]Σ,E

′
τ 〉Σ.

Then (3.4), (3.5)1 and (3.5)2, yield

〈[curl Eρ × n]Σ,E
′
τ 〉Σ = 0,

which gives (3.5)3. This follows because integration by parts holds in R3 in this Beppo-Levi

space.

Our next results are similar to those of Peron [42] whose results are for a bounded exterior

domain, but here we investigate the case of an unbounded exterior domain.

The regularized form of problem (3.4) is: Find Eρ ∈ XTN(R
3, ρ), such that, for all E′

ρ ∈
XTN(R

3, ρ),

∫

Ωcd∪Ωis

(
1

µ
curl Eρ · curl E′

ρ + α div(ε(ρ)Eρ) · div(ε(ρ)E′
ρ)− κ2ε(ρ)Eρ · E′

ρ

)
dx = 〈f,E′

ρ〉,
(3.9)

where

〈f,E′
ρ〉 =

∫

Ωcd∪Ωis

(
F ·E′

ρ −
α

κ2
div F · div(ε(ρ)E′

ρ)
)
dx, (3.10)

and where α > 0 is a parameter that will be needed next. We will use the following Theorem,

(compare Peron [42, Theorem 2.21], see also Costabel et al. [11]), which corresponds to Peron’s

Theorem 2.21 in [42] and is its modification for an unbounded exterior domain and weighted

spaces. Again for the bounded interior domain we repeat Peron’s proofs almost verbatim.

Theorem 4. There exists a real α > 0, independent of ρ, such that if Eρ ∈ XTN(R
3, ρ) is a

solution of (3.9)-(3.10) for F ∈ W̃(div,R3) = {F ∈ L2(R3), ℓ(r)divF ∈ L2(R3)}, then

div(ε(ρ)Eρ) +
1

κ2
div F = 0, in Ωcd ∪ Ωis. (3.11)

Furthermore Eρ and Hρ =
1

iωε0
curl Eρ solve Maxwell’s equations (3.2).

Proof. Let us define the operator ∆ε(ρ) from W1
0(R

3) to W1
0(R

3)′ mapping ϕ to div(ε(ρ)∇ϕ),
where div(ε(ρ)∇ϕ) ∈ W1

0(R
3)′ is defined for any ψ ∈ W1

0(R
3) by

∫

Ωcd∪Ωis
ε(ρ)∇ϕ · ∇ψdx.

If we define the domain of this operator by

D(∆ε(ρ)) = {ϕ ∈ W1
0(R

3) | ℓ(r)div(ε(ρ)∇ϕ) ∈ L2(R3)}.
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

Then ∇ϕ ∈ XTN(R
3, ρ) for ϕ ∈ D(∆ε(ρ)).

Let Eρ solves (3.9). Choosing E′ = ∇ϕ which ϕ ∈ D(∆ε(ρ)). (3.9) gives

∫

Ωcd∪Ωis
(α div(ε(ρ)Eρ) · div(ε(ρ)∇ϕ)− κ2ε(ρ)Eρ · ∇ϕ)dx =

=

∫

Ωcd∪Ωis

(
F · ∇ϕ− α

κ2
div F · div(ε(ρ)∇ϕ)

)
dx.

(3.12)

Now, since ε(ρ)Eρ,F ∈ W(div,R3) and ϕ ∈ W1
0(R

3) we have
∫

R3

−κ2ε(ρ)Eρ · ∇ϕ)dx =

∫

Ωcd
−κ2ε(ρ)Eρ · ∇ϕ)dx+

∫

Ωis
−κ2ε(ρ)Eρ · ∇ϕ)dx.

Green’s formula in Ωcd, yields
∫

Ωcd
−κ2ε(ρ)Eρ · ∇ϕ)dx =

∫

Ωcd
κ2div(ε(ρ)Eρ) · ϕ)dx+

∫

Σ
κ2n · (ε(ρ)Eρ∇ϕ))dS.

Next we choose a ball BR with radius R > 0 and boundary ∂BR containing Ωcd.

Let Ωis = limR→∞ΩR and ΩR = BR ∩ Ωis, with ∂ΩR = ∂BR ∪ Σ.

In the domain ΩR, we have, by integration by parts,
∫

ΩR

−κ2ε(ρ)Eρ · ∇ϕ)dx =

∫

ΩR

κ2div(ε(ρ)Eρ) · ϕ)dx+

∫

∂ΩR

κ2n · (ε(ρ)Eρ)ϕ)ds,

and
∫

∂ΩR

κ2n · (ε(ρ)Eρ)ϕ)ds = −
∫

Σ
κ2n · (ε(ρ)Eρ)ϕ)ds+

∫

∂BR

κ2n · (ε(ρ)Eρ)ϕ)ds.

As in the proof of Lemma 2, applying Silver-Müller condition there holds
∫

∂BR

κ2n · (ε(ρ)Eρ)ϕds −→ 0, as R −→ ∞,

Hence
∫

Ωis
−κ2ε(ρ)Eρ·∇ϕ)dx =

∫

Ωis
κ2div(ε(ρ)Eρ)·ϕdx−

∫

Σ
κ2n·(ε(ρ)Eρ∇ϕ))ds−

∫

Σ
κ2n·(ε(ρ)Eρ)ϕds.

for all ϕ ∈ D(∆ε(ρ)) yielding [n · (ε(ρ)Eρ)] = 0 on Σ. Now

∫

R3

F · ∇ϕdx =

∫

Ωcd
F · ∇ϕdx+

∫

Ωis
F · ∇ϕdx,

Green’s formula in Ωcd, yields
∫

Ωcd
F · ∇ϕdx = −

∫

Ωcd
div F · ϕdx−

∫

Σ
(n · F)ϕds.

Again, we choose a ball BR with radius R > 0 and boundary ∂BR containing Ωcd. Setting

Ωis = limR→∞ΩR with ΩR = BR ∩ Ωis, and ∂ΩR = ∂BR ∪ Σ.

In the domain ΩR, we have, by integration by parts,
∫

ΩR

F · ∇ϕdx = −
∫

ΩR

div F · ϕdx+

∫

Σ
(n · F)ϕds +

∫

∂BR

(n · F)ϕds,
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3.1 The electromagnetic transmission problem in R3

from (3.2) note that there holds F = iκcurlH − κ2ε(ρ)E, therefore applying Silver-Müller

condition gives ∫

∂BR

(n · F)ϕds −→ 0, as R −→ ∞,

hence ∫

Ωis
F · ∇ϕdx = −

∫

Ωis
div F · ϕdx+

∫

Σ
(n · F)ϕds.

Then, we have altogether

∫

R3

−κ2ε(ρ)Eρ·∇ϕ)dx =

∫

R3

κ2div(ε(ρ)Eρ)·ϕdx+
∫

Σ
κ2n·[ε(ρ)Eρ]ϕds =

∫

R3

κ2div(ε(ρ)Eρ)·ϕdx

and ∫

R3

F · ∇ϕdx = −
∫

R3

div F · ϕdx.

Similarly, according to (3.12) there holds

∫

R3

(α div(ε(ρ)Eρ) · div(ε(ρ)∇ϕ) +
α

κ2
div F · div(ε(ρ)∇ϕ)

−κ2ε(ρ)Eρ · ∇ϕ− F · ∇ϕ
)
dx = 0.

Then ∫

R3

(α div(ε(ρ)Eρ) · div(ε(ρ)∇ϕ) +
α

κ2
div F · div(ε(ρ)∇ϕ)+

+κ2div(ε(ρ)Eρ) · ϕ+ div F · ϕ
)
dx = 0.

Therefore, for all ϕ ∈ D(∆ε(ρ))

∫

R3

(
div(ε(ρ)Eρ) +

1

κ2
div F

)
· (α div(ε(ρ)∇ϕ) + κ2ϕ)dx = 0. (3.13)

The sesquilinear form associated with the operator −∆ε(ρ) is uniformly coercive on W1
0(R

3),

(see Giroire [20]), i. e. ∃C > 0

Re

(∫

R3

ε(ρ)∇ϕ · ∇ϕdx
)

=
1

µ
|ϕ|2

W1
0(R

3) ≥ C‖ϕ‖2
W1

0(R
3). (3.14)

Next, we follow again Peron and examine the real non-zero eigenvalues λ of −∆ε(ρ),

i.e :

−∆ε(ρ)ϕ = λϕ in R3, (3.15)

which gives after integration by parts

∫

R3

ε(ρ) · ∇ϕdx = λ

∫

R3

ϕ · ϕdx.
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

Now (3.14) gives λ ≥ C and we take α > 0 large enough such that
κ2

α
< C. Then

κ2

α
is not

an eigenvalue of −∆ε(ρ). Consequently to (3.13) implies

div(ε(ρ)Eρ) +
1

κ2
div F = 0, in R3.

This way, according to (3.9) and (3.10) for all E′
ρ ∈ XTN(R

3, ρ),

∫

R3

(
1

µ
curl Eρ · curl E′

ρ − κ2ε(ρ)Eρ ·E′
ρ

)
dx =

∫

R3

F ·E′
ρdx.

We set Hρ =
1

iωε0
curl Eρ in R3. Then from Proposition 2 follows, for all E′

ρ ∈ XTN(R
3, ρ),

∫

R3

(
iωε0
µ

curl Hρ ·E′
ρ − κ2ε(ρ)Eρ ·E′

ρ

)
dx =

∫

R3

F ·E′
ρdx,

implying

curl Hρ + iκε(ρ)Eρ =
1

iκ
F, in R3.

In this section, we give a variational formulation for the term ϕρ ∈ V (see (2.8)), which appears

in the decomposition of the electrical field, compare Theorem 8. Again, we extend the ideas of

Peron [42] to prove Lemma 3 for the unbounded exterior domain. Our Lemma 3 corresponds

to Peron’s Lemma 2.33 in [42] and gives the appropriate setting for an unbounded exterior

domain

Lemma 3. Let Eρ ∈ XTN(R
3, ρ) solve of (3.9)-(3.10) for F ∈ W̃(div,R3), and let (wρ, ϕρ) ∈

W1
0(R

3) × V with divwρ = 0 given by Theorem 8. Then, ϕρ solves the variational problem:

Find ϕρ ∈ V, such that for all ψ ∈ V,
∫

R3

ε(ρ)∇ϕρ · ∇ψdx =
1

κ2

∫

R3

div F · ψdx+
1

µ
iρ2
∫

Σ
wρ · n|Σψds. (3.16)

Proof. Due to Theorem 8 there exists an unique couple (wρ, ϕρ) ∈ W1
0(R

3) × V such that

Eρ = wρ +∇ϕρ. Thus we have

∫

R3

ε(ρ)∇ϕρ · ∇ψdx =

∫

R3

ε(ρ)Eρ · ∇ψdx−
∫

R3

ε(ρ)wρ · ∇ψdx,∀ψ ∈ V.

Then since ℓ(r)div(ε(ρ)Eρ) ∈ L2(R3)and ε(ρ)Eρ ∈ L2(R3) there holds

∫

R3

ε(ρ)Eρ · ∇ψdx = −
∫

R3

div(ε(ρ)Eρ) · ψdx,

so, due to Theorem 4, ∫

R3

ε(ρ)Eρ · ∇ψdx =
1

κ2

∫

R3

div F · ψdx.
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Next, we have
∫

R3

ε(ρ)wρ · ∇ψdx =

∫

Ωis
ε(ρ)iswρ · ∇ψdx+

∫

Ωcd
ε(ρ)cdwρ · ∇ψdx,

and, by integration by parts,
∫

Ωcd
ε(ρ)cdwρ · ∇ψdx =

∫

Ωcd
div(ε(ρ)cdwρ)ψdx−

∫

Σ
(ε(ρ)cdwρ · n)ψds.

Next, we choose a ball BR with radius R > 0 and boundary ∂BR containing Ωcd. Setting

Ωis = limR→∞ΩR with ΩR = BR ∩ Ωis, with ∂ΩR = ∂BR ∪ Σ we have
∫

ΩR

ε(ρ)iswρ · ∇ψdx =

∫

ΩR

div(ε(ρ)iswρ)ψdx+

∫

Σ
(ε(ρ)iswρ · n)ψds+

∫

∂BR

(ε(ρ)iswρ · n)ψds.

Note Silver-Müller conditions yield
∫

∂BR

(ε(ρ)iswρ · n)ψds =
∫

∂BR

(ε(ρ)is[wρ −wρ × n] · n)ψds→ 0 as R→ ∞,

Hence ∫

Ωis
ε(ρ)iswρ · ∇ψdx =

∫

Ωis
div(ε(ρ)iswρ)ψdx+

∫

Σ
(ε(ρ)iswρ · n)ψds.

Thus
∫

R3

ε(ρ)wρ · ∇ψdx =

∫

R3

div(ε(ρ)wρ)ψdx+

∫

Σ
(ε(ρ)is − ε(ρ)cd)wρ · n|Σψds.

Since div wρ = 0 in R3, we get (3.16) because (see before (3.2)) ε(ρ)is − ε(ρ)cd = − 1

µ
iρ2.

3.2 Uniform a priori estimate of the electrical field in R3

Next we give an existence and uniqueness result for the solution of (3.9)-(3.10). The proof

uses an a priori estimate for the electrical field for large conductivity, hence for large ρ with

a constant C independent of ρ. The ideas of this section are based on those of Peron [42],

but using compactness results for the embedding of weighted spaces with unbounded domains.

This is a crucial difference of our proof compared to Peron’s proof.

In the following we assume there holds the

Spectral hypothesis (SH): κ2 is not an eigenvalue of the limit problem: FindE0 ∈ W(curl,Ωis)

with E0 × n = 0 on Σ such that, for all E′ ∈ W(curl,Ωis), with E′ × n = 0 on Σ
∫

Ωis
(curl E0 · curl E′ − κ2E0 ·E′)dx = 0 and n×E = 0 on Σ. (3.17)

Now, we can formulate our main theorem of this chapter which is the weighted version of

Peron’s Theorem 2.27.
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Theorem 5. Under the spectral hypothesis (SH), there exists a constant ρ0 > 0, such that for

all ρ > ρ0, problem (3.9)-(3.10) admits an unique solution Eρ ∈ XTN(R
3, ρ) for F ∈ W̃(div,R3),

satisfying

‖curl Eρ‖L2
0,−1(R

3) + ‖div(ε(ρ)Eρ)‖L2
0,−1(R

3) + ‖Eρ‖L2
0,−1(R

3) + ρ‖Eρ‖L2(Ωcd)

≤ C‖F‖
W(div,R3),

(3.18)

with a constant C > 0, independent of ρ.

The proof of Theorem 5 is given in various steps, below. The estimate (3.18) is based on the

a priori estimate (3.19).

Theorem 6. Let (SH) hold, then there exists a constant ρ0 > 0, such that, for all ρ > ρ0, if

Eρ ∈ XTN(R
3, ρ) solves (3.9)-(3.10) for F ∈ W̃(div,R3), then

‖Eρ‖L2
0,−1(R

3) ≤ C‖F‖
W(div,R3), (3.19)

where C > 0 is a constant independent of ρ.

Proof. The proof is similar to the one by Peron [42] but here we use a compact embedding of

PH1(R3) into L2
0,−1(R

3) where

PH1(R3) = {ϕ | ϕis ∈ (W1
0(Ω

is))3 and ϕcd ∈ (H1(Ωcd))3}.

Taking Eρ ∈ XTN(R
3, ρ), solution of (3.9)-(3.10), we have ∀Φ ∈ XTN(R

3, ρ),

∫

R3

(
1

µ
curl Eρ · curl Φ + α div(ε(ρ)Eρ) · div(ε(ρ)Φ)−

κ2

µ
EρΦ

)
dx−

− 1

µ
iρ2
∫

Ωcd
EρΦdx =

∫

R3

(
F · Φ− α

κ2
div F · div(ε(ρ)Φ)

)
dx.

(3.20)

Then, due to Theorem 4 there holds,

div(ε(ρ)Eρ) +
1

κ2
div F = 0, in R3.

ℓ(r)−2Φ ∈ (C∞
0 (R3)3) ⊂ XTN(R

3, ρ) implies with ℓ(r) ≡ 1 on Ωcd

∫

R3

(curl Eρ·curl (ℓ(r)−2Φ)−κ2EρΦ ℓ(r)
−2)dx−iρ2

∫

Ωcd
EρΦdx = µ

∫

R3

F·Φ ℓ(r)−2dx,∀Φ ∈ XTN(R
3, ρ).

(3.21)

Just like Peron we prove the theorem by contradiction argument, but we crucially apply a

compactness result for the embedding in weighted Sobolev spaces by Avantaggiati and Troisi.

Since Peron considers only bounded domains, he can, in contrary, apply standard embedding

arguments (Rellich’s theorem).

Suppose that exists a sequence {Fρn}n≥1 in W̃(div,R3) with ρn −→ ∞, and ‖Fρn‖L2
0,−1(R

3) = 1
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and Fρn · n = 0 in Σ, and such that for the corresponding solution Eρn ∈ XTN(R
3, ρn) there

holds

lim
n→∞

‖Eρn‖L2
0,−1(R

3) = ∞.

Writing ˜ for dividing by ‖Eρn‖L2
0,−1(R

3), i.e. Ẽρn = (‖Eρn‖L2
0,−1(R

3))
−1Eρn we have

‖Ẽρn‖L2
0,−1(R

3) = 1, and lim
n→∞

‖F̃ρn‖L2
0,−1(R

3) = 0. (3.22)

We will show that {Ẽρn}n≥1 is bounded in XTN(R
3).

With Φ = Ẽρn , (3.21) becomes with l.o.t=
∫
R3 curlẼρ.Ẽρcurl(ℓ(r)

−2)dx

‖curl Ẽρn‖2L2
0,−1(R

3)
+l.o.t−κ2‖Ẽρn‖2L2

0,−1(R
3)
− iρ2n‖Ẽρn‖2L2(Ωcd)

= µ(F̃ρn , Ẽρn)L2
0,−1(R

3). (3.23)

Taking imaginary parts we have

ρ2n‖Ẽρn‖2L2(Ωcd)
= −µIm(F̃ρn , Ẽρn)L2

0,−1(R
3), (3.24)

and with Cauchy-Schwarz inequality we obtain

|Im(F̃ρn , Ẽρn)L2
0,−1(R

3)| ≤ ‖F̃ρn‖L2
0,−1(R

3)‖Ẽρn‖L2
0,−1(R

3).

Hence (3.22) yields

lim
n→∞

‖Ẽρn‖L2(Ωcd) = 0. (3.25)

Also, taking real parts in (3.23), we get

‖curl Ẽρn‖2L2
0,−1(R

3)
+ l.o.t − κ2‖Ẽρn‖2L2

0,−1(R
3)

= µRe(F̃ρn , Ẽρn)L2
0,−1(R

3). (3.26)

Hence due to Cauchy-Schwarz inequality and (3.22), there are constants C1 and C2 independent

of n, such that

‖curl Ẽρn‖2L2
0,−1(R

3)
≤ C1 + C2‖F̃ρn‖L2

0,−1(R
3). (3.27)

Therefore, {curl Ẽρn}n≥1 is bounded in L2
0,−1(R

3).

Let (wρn , ϕρn) ∈ W1
0(R

3)× V, (for definition of V see (2.8)) be given by Theorems 7 and 8 by

Girault [18], such that

Ẽρn = w̃ρn +∇ϕ̃ρn , and div w̃ρn = 0, in R3,

and

‖w̃ρn‖W1
0(R

3) ≤ C‖curl Ẽρn‖L2
0,−1(R

3), (3.28)

where C > 0 is a constant independent of ρn. Therefore, {w̃ρn}n∈N is bounded in W1
0(R

3).

According to Lemma 3 and (3.11), ϕ̃ρn satisfies for all ψ ∈ V,
∫

R3

ε(ρ)∇ϕ̃ρn · ∇ψdx =
1

κ2

∫

R3

div F̃ρn · ψdx+
1

µ
iρ2
∫

Σ
w̃ρn · n|Σψds. (3.29)

Let ρ0 > 0 and the constant Cρ0 > 0 be given by Theorem 3. We set δn = 1+ iρ2n. Then there

exists n0 ∈ N, such that for all n ≥ n0 we have |δn| ≥ ρ0. Note div F̃ρn and w̃ρn · n verify the
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hypotheses of Theorem 3. Also, problem (3.29) is coercive on V. Hence the solution of (3.29)

belongs in PH2(R3) and there holds for any n ≥ n0,

‖ϕ̃cdρn‖H2(Ωcd) + ‖ϕ̃isρn‖W2
1(Ω

is) ≤ Cδ0

(
‖div F̃ρn‖L2

0,−1(R
3) + ‖w̃ρn · n‖H 1

2 (Σ)

)
.

Thus {∇ϕ̃ρn}n≥1 is bounded in PH1(R3), and {Ẽρn}n≥1 is bounded in H1(Ωcd)∪
(
W1

0(Ω
is)
)3
.

According to Lemma 5, the embedding of PH1(R3) in L2
0,−1(R

3) is compact. This implies that

there exists a subsequence {Ẽρn}n≥1 and Ẽ ∈ L2
0,−1(R

3), such that

Ẽρn ⇀ Ẽ in
(
PH1(R3)

)3
, Ẽρn → Ẽ in L2

0,−1(R
3), (3.30)

with (3.22) we have therefore

‖Ẽ‖L2
0,−1(R

3) = 1. (3.31)

To get a contradiction, we show that Ẽ = 0 in Ωis ∪ Ωcd.

Note ‖Ẽ‖L2(Ωcd) = 0 due to (3.25) yielding

Ẽ = 0, in Ωcd. (3.32)

Next, we take Φ ∈ XTN(R
3, ρ) with support in Ωis. Then n · Φ = 0, n × Φ = 0 on Σ and due

to (3.21), we have

(curl Ẽρn , curl Φ)L2
0,−1(Ω

is) + l.o.t − κ2(Ẽρn ,Φ)L2
0,−1(Ω

is) = µ(F̃ρn ,Φ)L2
0,−1(Ω

is). (3.33)

According to (3.30) letting n −→ ∞ we obtain

(curl Ẽ, curl Φ)L2
0,−1(Ω

is) + l.o.t. − κ2(Ẽ,Φ)L2
0,−1(Ω

is) = 0. (3.34)

Now (SH) gives Ẽ = 0, in Ωis, and therefore altogether Ẽ = 0, in R3, which is a contra-

diction to (3.31) and therefore (3.19) holds.

Now with the help of Theorem 6 we can prove Theorem 5. The proof follows directly Peron’s

proof of his Theorem 2.27 in [42]. But we must analyze in weighted spaces and therefore

present in our proof the necessary modifications.

Proof of Theorem 5: Let ρ0 > 0 be given by Theorem 6. Let us assume Eρ solves (3.9)-

(3.10). Then, Eρ solves (3.21) and taking Φ = Eρ we get

‖curl Eρ‖2L2(R3)
− κ2‖Eρ‖2L2

0,−1(R
3)
− iρ2‖Eρ‖2L2(Ωcd)

= µ(F,Eρ)L2
0,−1(R

3). (3.35)

Taking successively again imaginary and real parts as in the proof of Theorem 6 we obtain the

a priori estimate (3.21) from (3.11) and

ρ‖Eρ‖L2(Ωcd) ≤ C1‖F‖W(div,R3), (3.36)

and

‖curl Eρ‖L2(R3) ≤ C2‖F‖W(div,R3). (3.37)
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Next we derive existence and uniqueness of the solution of (3.9)-(3.10). The proof is almost

the same as Peron’s proof, only that we have to argue differently with the compact embedding

due to our unbounded exterior domain. Next, note that the a priori estimate (3.18) implies

the injectivity of the solution operator of the variational problem (3.9). Therefore to show

existence of the solution it suffices to demonstrate that this operator is surjective. We introduce

the sesquilinear form cρ defined for all Eρ,E
′
ρ ∈ XTN(R

3, ρ) as

cρ(Eρ,E
′
ρ) =

∫

R3

(
1

µ
curl Eρ · curl E′

ρ + α div(ε(ρ)Eρ) · div(ε(ρ)E′
ρ)

)
dx. (3.38)

We can demonstrate that cρ is coercive on XTN(R
3, ρ), by a suitable modification of Corollary

3.16 in [1]. As another possibility we can apply the arguments in Hiptmair’s proof of his

theorem 2.1 [24] which is listed as Theorem 10 in the next subsection for convenience. According

to the generalization of the Lax-Milgram Theorem (see [27, Lemma 13.6]), we deduce that the

operator Cρ from XTN(R
3, ρ) into XTN(R

3, ρ)′ is a isomorphism and thus Cρ is a Fredholm

operator. Now the embedding Iρ(Eρ) = ε(ρ)Eρ for Eρ ∈ XTN(R
3, ρ) from XTN(R

3, ρ) into

XTN(R
3, ρ)′ is compact. Hence Cρ − κ2Iρ is a Fredholm operator. In particular, it is surjective

if and only if his adjoint C∗
ρ − κ2I∗ρ is injective where I∗ρ = ε(ρ)Iρ. Let c∗ρ be the sesquilinear

form associated with the operator C∗
ρ , i.e.

c∗ρ(Eρ,E
′
ρ) =

∫

R3

(
1

µ
curl Eρ · curl E′

ρ + α div(ε(ρ)Eρ) · div(ε(ρ)E′
ρ)

)
dx,∀Eρ,E

′
ρ ∈ XTN(R

3, ρ).

(3.39)

Now similar to Theorem 5, we can prove an a priori estimate for C∗
ρ−κ2I∗ρ yielding its injectivity

and therefore the desired surjectivity of the operator Cρ − κ2Iρ.

3.3 Mathematical tools: Decomposition of vector fields

and compact embeddings in weighted spaces

In this subsection we collect the mathematical tools we have needed in the proof of our a priori

estimate (Theorem 5), namely a vector Helmholtz decomposition in R3 and a compactness

results (Lemma 6) for the embedding in weighted spaces.

First we consider the vector potential of divergence-free vector fields and present results for

a Helmholtz decomposition by Girault [18]. The weighted Sobolev spaces used here were

introduced and studied by Hanouzet in [21].

For any multi-index α in N3, we denote by ∂α the differential operator of order α:

∂α =
∂|α|

∂xα1
1 ∂xα2

2 ∂xα3
3

, with |α| = α1 + α2 + α3.

Then, for all m in N and all k in Z, we define the weighted Sobolev space:

Wm
k (Ω

is) :=
{
v ∈ D′(Ωis) | ∀α ∈ N3, 0 ≤ |α| ≤ m, ℓ(r)|α|−m+k∂αv ∈ L2(Ωis)

}
,
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

which is a Hilbert space for the norm:

‖v‖Wm
k (Ωis) =





m∑

|α|=0

‖ℓ(r)|α|−m+k∂αv‖2L2(Ωis)





1
2

.

Observe that, as a particular case,

W0
0(Ω

is) = L2(Ωis) and W0
−1(R

3) = L2
0,−1(R

3).

For all n ∈ Z, Pn denotes the space of all polynomials (of three variables) of degree at most

n, with the convention that the space is reduced to zero when n is negative.

Pn is the subspace of all harmonic polynomials of Pn, again with the convention that the space

is reduced to zero when n is negative.

For all integers k ≥ 0, we define the following subspace of (Pk)3,

Gk := {∇q | q ∈ Pk+1}.

Note that G0 = R3.

The following theorem by Girault [18] characterizes the vector potentials of some divergence-

free vector fields.

Theorem 7. (V. Girault [18, Theorem 3.2]) Let m belong to Z and k belong to N∪ {−1,−2}
and let u be a vector field in Wm

m−k(R
3)3 such that

div u = 0. (3.40)

Then u has a unique vector potential Ψ in Wm+1
m−k(R

3)3/Gk−1 such that

u = curl Ψ, div Ψ = 0, (3.41)

and

‖Ψ‖
W
m+1
m−k(R

3)3/Gk−1
≤ C‖u‖Wm

m−k(R
3)3 . (3.42)

When k = 0,−1,−2, the vector potential is unique in Wm+1
m−k(R

3)3 and (3.42) can be slightly

refined:

‖Ψ‖
W
m+1
m−k(R

3)3/Gk−1
≤ C‖curl u‖

W
m−1
m−k(R

3)3 . (3.43)

The following result is based on the paper by Girault [18]. In the case of a bounded domain,

there are two classical orthogonal decompositions of vector fields: a decomposition in L2 and

a decomposition in H1
0 (cf. for example [19]). The following theorem establishes the analogue

of the decomposition in L2 for vector fields in R3. Beforehand, we introduce space

Vm
k (R

3) :=
{
v ∈ Wm

k (R
3)3 | div v = 0

}
,

and the following subspace of (Pk)3, which is analogue of Gk:

Ck := {curl q | q ∈ (Pk+1)
3},

with the usual convention that Ck = {0}, when k < 0, observe that C0 = R3 = G0.

In addition, for all k ≥ 1, Gk ⊂ Ck, but the inverse inclusion is false.
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Theorem 8. (V. Girault [18, Theorem 5.1]) Let the integers m and k belong to Z and let u

be a vector field in Wm
m+k(R

3)3.

1. If k ≤ 1, u has the decomposition

u = ∇p+ curl Φ, (3.44)

where Φ is unique in Vm+1
m+k(R

3)/C−k−1 and p is uniquely determined by u and Φ in

Wm+1
m+k(R

3)/R, or Wm+1
m+k(R

3) if k = 0 or 1. They satisfy the bounds:

‖Φ‖
W
m+1
m+k(R

3)3/C−k−1
+ ‖p‖

W
m+1
m+k(R

3)/R ≤ C‖u‖Wm
m+k(R

3)3 , (3.45)

with the convention that the quotient norm of p is replaced by ‖p‖
W
m+1
m+k(R

3) when k = 0

or 1.

2. If k ≥ 2 has the decomposition (3.44) with a unique p in Wm+1
m+k(R

3) and a unique Φ in

Vm+1
m+k(R

3) if and only if u is orthogonal to Ck−2 (for the duality paring). The analogue

of (3.45) holds:

‖Φ‖
W
m+1
m+k(R

3)3 + ‖p‖
W
m+1
m+k(R

3) ≤ C‖u‖Wm
m+k(R

3)3 , (3.46)

3. When both m and k belong to N, the decomposition is orthogonal for the scalar product

of L2(R3).

Now, this part is concerned with compact embedding in weighted Sobolev spaces for unbounded

domains, and is based on the paper by Avantaggiati and Troisi [2].

Let Ω be an unbounded set of Rn, provided with the cone property, and δ ∈ C0(Ω), a positive

continuous function divergent for |x| → ∞, satisfying the following conditions:

1. There exist two open and separated subsets Ω1 and Ω2 of Rn, such that

Ω = Ω1 ∪ Ω2 and

δ(x) ≤ 1, ∀x ∈ Ω1, δ(x) ≥ 1, ∀x ∈ Ω2.

We will put also, Ω0 = Ω.

2. We put, for each x0 ∈ Ωi, i = 0, 1, 2,

Ai(x0) = Ωi ∩ {x | |x− x0| < δ(x0)} ,

it is able

c1δ(x0) ≤ δ(x) ≤ c2δ(x0), ∀x ∈ Ai(x0),

where c1 and c2 are two positive constants independent of x0 and x.

3. If ϕi(x,x0) is the characteristic function of the set Ai(x0), then the inequalities

c3δ
n(x) ≤

∫

Ωi

ϕi(x,x0)dx0 ≤ c4δ
n(x), ∀x ∈ Ai(x0),

hold, where c3 and c4 are two positive constants independent of x.
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

If s, λ ∈ R and 0 < p ≤ ∞, we will indicate with L̃ps,λ(Ω) the space of the functions u(x), such

that δs
(

δ

1 + δ2

)λ
u ∈ Lp(Ω), with the norm

‖u‖
L̃ps,λ(Ω)

:=

∥∥∥∥∥δ
s

(
δ

1 + δ2

)λ
u

∥∥∥∥∥
Lp(Ω)

. (3.47)

If s, λ ∈ R, r ∈ N0 and p ∈ (1,∞), we will indicate with W r,p
s,λ(Ω) the space of the distributions

u on Ω, such that ∂αu ∈ L̃ps+|α|−r,λ(Ω) for |α| ≤ r, with the norm

‖u‖W r,p
s,λ (Ω) :=

[
r∑

k=0

‖∂ku‖p
L̃p
s+|α|−r,λ

(Ω)

] 1
p

. (3.48)

We observe that the algebraic and topology inclusion

W r,p
s,λ(Ω) ⊆W k,p

s+k−r+t,λ+τ (Ω), for k ≤ r, τ ≥ 0, and t ∈ [−τ, τ ], (3.49)

exists. Observe that, as a particular case,

W 0,p
s,λ (Ω) = L̃ps,λ(Ω).

We have also, L2
0,−1(Ω) = L̃2

−1,1(Ω).

Definition 1. Let X,Y be two normed linear spaces. We say that the space X is embedded

into the space Y , and denote this fact by the symbol

X →֒ Y,

if

(i) X is a subspace of the space Y .

(ii) There is a constant C > 0 such that

‖u‖Y ≤ C‖u‖X ,

for all elements u ∈ X.

Lemma 4. [2] Let s, λ, p, r real numbers with p ≥ 1 and r > 0 entire. For each distribution

u on Ω such that u ∈ L̃p−r,λ(Ω) and ∂αu ∈ L̃ps,λ(Ω) for |α| = r, for each not negative entire

k < r and for each a ∈ [k/r, 1[∩[k/r, k/r + n/pr] there exists the limitation

‖∂αu‖
L̃
pn/(pk+n−apr)
s−(1−a)r,λ

(Ω)
≤ c(‖∂ru‖a

L̃ps,λ(Ω)
· ‖u‖1−a

L̃ps−r,λ(Ω)
+ ‖u‖

L̃ps−r,λ(Ω)
), (3.50)

where c is a constant independent of u.
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Theorem 9. (Avantaggiati and Troisi [2, Theorem 6.1]) There are s, λ, r, p real numbers,

where r ∈ Z+ and p > 1. For each not negative integer k < r, for each real number τ > 0 and

for each t ∈ (−τ, τ) the injection

W r,p
s,λ(Ω) →֒ W k,p

s+k−r+t,λ+τ(Ω) (3.51)

is compact.

As a consequence of the forgoing results we have the following lemma

Lemma 5. The embedding of PH1(R3) into L2
0,−1(R

3) is compact.

Proof. First, we observe that by definition L̃2
−1,1(Ω) = L2

0,−1(Ω) = W 0,2
−1,1(Ω). On the other

hand choosing t = s = λ = k = 0, τ = r = 1, p = 2 in (3.51) gives the compact embedding

W 1,2
0,0 (Ω) ⊂⊂W 0,2

−1,1(Ω). Altogether W
1,2
0,0 (Ω) ⊂⊂ L2

0,−1(Ω) where we can set Ω = R3.

Furthermore ϕ ∈ PH1(R3) :=
{
ϕ = (ϕis, ϕcd) : ϕis ∈ W1

0(Ω
is), ϕcd ∈ H1(Ωcd)

}
gives due to

the definition of W1
0 that ∇ϕ ∈ L2 and hence ∇ϕ ∈ L̃2

0,0 with s = λ = 0 in (3.47). Therefore

ϕ ∈W 1,2
0,0 (Ω) with r = 1, p = 2, s = λ = 0 in (3.48) because with s = λ = 0 = |α|, r = 1 there

holds

‖ϕ‖
L̃2
−1,0

(Ω) = ‖δ−1ϕ‖L2(Ω) ≤ c

∥∥∥∥
ϕ√

1 + x2

∥∥∥∥
L2(Ω)

<∞

by taking δ proportional to
√
1 + x2.

A variational formulation of the eddy current problem is given by Hiptmair [24] who shows

existence and uniqueness of the weak solution. He consider the problem

curl µ−1curl E+ iκωσE = −iωJ0, in R3,

div(ε0E) = 0, in Ωis,

∫

Σi

E · nds = 0, i = 1, · · ·Ncd,

E(x) = O

(
1

|x|

)
, as |x| → ∞,

curl E(x) = O

(
1

|x|

)
, as |x| → ∞.

(3.52)

Here {Σi}Ncdi=1 stands for the finitely many connected components of Σ = ∂Ωcd, ε0 > 0 is a

constant in Ωis, Supp(J0) ⊂ Ωcd, J0 is divergence-free source current.

With the constrained space

XC(R
3) =

{
u ∈ W(curl,R3)

 div u = 0, in Ωis,

∫

Σi

E|Ωis · nds = 0, i = 1, · · ·Ncd

}
,
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

the weak eddy current problem reads:

Seek E ∈ XC(R
3), such that for all v ∈ XC(R

3),

a(E,v) := (µ−1curl E, curl v)L2(R3) + iω(σE,v)L2(Ωcd) = −iω(J0,v)L2(Ωcd). (3.53)

Theorem 10. (R. Hiptmair [24, Theorem 2.1]) A solution of the variational problem (3.53)

exists and is unique.

The above theorem could be used alternatively in the proof of Theorem 5.

64



4 Asymptotic expansion for large

conductivity - Revisited

In this chapter we summarize the results from Peron’s thesis [42] on the terms in the asymptotic

expansion of the electric field w.r.t. large conductivity. We show that his results on the form of

the terms and the convergence of the expansion which he derived for bounded domains remain

valid for a unbounded exterior domain. A key issue in [42] is an appropriate scaling in normal

direction near the interface (see [17, 32, 31, 47, 42]). We follow Peron’s analysis but use a

weighted space setting for Ωis. For the bounded interior domain we just quote or repeat the

respective results from Peron [42, 15]. For better reading we use Peron’s notation

4.1 Asymptotic expansion - Revisited

In the following we assume that the interface Σ is compact orientable C∞ surface and denote by

n the normal to Σ pointing into Ωcd. We can locally define coordinates such that y = (yα, y3)

in a tubular neighborhood of Σ. We consider

curl E− iωµ0H = 0, in Ωcd ∪ Ωis,

curl H+ (iωε0 − σ)E = J, in Ωcd ∪ Ωis.

(4.1)

Let J ∈ H(div,Ω) with J = 0 in Ωcd. Under the assumption that ω is not an eigenvalue

there exists ρ0 > 0 such that for all ρ ≥ ρ0 the problem (4.1) admits a unique solution

(E,H) ∈ L2
0,−1. Furthermore, for Ωis bounded Peron derives an asymptotic expansion in

powers of the ρ−1 [42, 15]

Eis
ρ (x) ∼

∑

j≥0

Eis
j (x)ρ

−j , for x ∈ Ωis

Ecdρ (x) ∼
∑

j≥0

Ecd
j (x; ρ)ρ−j , for x ∈ Ωcd,

(4.2)

where

Ecdj (x; ρ) = Wcd
j (yα, hρ), α = 1, 2 , (4.3)

and

Wcd
j (yα, Y3) → 0 when Y3 = hρ→ ∞. (4.4)
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4 Asymptotic expansion for large conductivity - Revisited

Let us write Jα,k(yβ) := λ−1(curlE+
k × n)α(yβ, 0) for k = 0, 1 and λ = κe−iπ/4

(κ = ω
√
ε0µ0 is a wave number). There holds (see Dauge et al. [15] and Peron [42]) with

Wj = (Wα,j , wj) :

W0(yα, Y3) = 0

Wα,1(yα, Y3) = Jα,0(yβ)e
−λY3 and w1 = 0

Wα,2(yα, Y3) = [−Jα,1 + (λ−1 + Y3)(b
σ
α)Jσ,0 −HJα,0](yβ)e−λY3

and w2(yα, Y3) = −λ−1DαJ
α
0 (yβ)e

−λY3

where H = 1
2b
α
α is a mean curvature of the interface Σ and Dα is the covariant derivative on

Σ. In order to show that the above statements hold also for an unbounded exterior domain we

only have to modify Peron’s proofs as follows:

We adopt his arguments in the bounded interior domain and in the unbounded exterior do-

main we use Beppo-Levi spaces. In the unbounded domain Ωis we use these weighted spaces

to extend his argument as follows where elliptic regularity plays a key role.

In the insulating domain we investigate equation (3.4) where we insert our expansion ansatz

(4.2) so that we get further equations for the coefficients.

Let’s consider now the functional space

X(Ωis) = W(curl,Ωis) ∩W(div,Ωis) .

We introduce an operator ΦisΣ extending the tangential traces on Σ into the insulating domain

Ωis

ΦisΣ : Hs− 1
2 (Σ) −→

(
Ws

1(Ω
is)
)3

with

(
Ws

1(Ω
is)
)3

= {u ∈ D′(Ωis) | ℓ(r)−1u . . . , ℓ(r)s−1 ∂su

∂xsii ∂x
sj
j

∈ L2(Ωis), si + sj = s}

where s is a real number fixed large enough. So, for all j ∈ N, if Ecd
j × n ∈ Hs− 1

2 (Σ), then

uisj := ΦisΣ(E
cd
j ×n) ∈

(
Ws

1(Ω
is)
)3
, verifies uisj ×n = Ecd

j ×n on Σ. ΦisΣ is defined as the inverse

of the trace operator

γ0 :
(
Ws

1(Ω
is)
)3 −→ Hs− 1

2 (Σ).

We assume now that the data F of problem (3.4) is independent of ρ. By substituting ansatz

(4.2) in equation (3.4), we have
∫

Ωis

1

µ

(
curl Eis0 · curl E′ − κ2Eis

0 ·E′
)
dx+

+
∑

j≥1

ρ−j
∫

Ωis

1

µ

(
curl Eis

j · curl E′ − κ2Eisj · E′
)
dx =

∫

Ωis
Fis ·E′dx.

(4.5)
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4.1 Asymptotic expansion - Revisited

Identifying terms according to powers of ρ−1, we get the following equations
∫

Ωis

1

µ

(
curl Eis

0 · curl E′ − κ2Eis
0 · E′

)
dx =

∫

Ωis
Fis · E′dx

∫

Ωis

(
curl Eis

j · curl E′ − κ2Eis
j ·E′

)
dx = 0 for all j ≥ 1.

(4.6)

Next we solve like Peron [42, (5.16)] the following problems in the insulating domain: Find

Eis0 ∈ X(Ωis), with Eis0 −ΦisΣ(E
cd
0 ×n) ∈ XN(Ω

is), such that for all E′ ∈ XN(Ω
is) = {u ∈ X(Ωis) :

n× u = 0 on Σ}
∫

Ωis

1

µ

(
curl Eis

0 · curl E′ − κ2Eis0 · E′
)
dx =

∫

Ωis
Fis ·E′dx, (4.7)

and for all j ∈ N∗, find Eisj ∈ X(Ωis), with Eis
j − ΦisΣ(E

cd
j × n) ∈ XN(Ω

is), such that for all

E′ ∈ XN(Ω
is) ∫

Ωis

(
curl Eis

j · curl E′ − κ2Eisj · E′
)
dx = 0. (4.8)

Now, the terms of the asymptotic expansion of the electrical field can be successively con-

structed. The terms Wcd
j are exponentially decreasing in the variable Y3. We set I = (0,∞)

and Ω0 = Σ× I.

First we present from Peron [42] terms of order 0 in the conductor Ωcd and repeat his deriva-

tion. Following his argument we can also for unbounded Ωis compute the expansion terms in

(4.2):

According to (5.14) in [42], we have

−iκ2wcd0 = 0

then wcd0 = 0 in Ω0.

Due to (5.13) and (5.14) in [42], there holds the second order ODE

−∂23W cd
α,0 − iκ2W cd

α,0 = 0 in Ω0

∂3W
cd
α,0 = 0 on Σ, i.e.Y3 = 0

(4.9)

The boundary condition in system (4.9) and the hypothesis (4.4) assure the uniqueness of the

solution of the ordinary differential equation. Since wcd0 = 0 and W cd
α,0 = 0, then Wcd

0 = 0

in Ω0. But due to (4.3), we have Ecd0 (x, ρ) = Wcd
0 (yα, hρ) yielding Ecd

0 = 0 in Ωcd. This

derivation was originally applied by Peron [42].

Next we consider the terms of order 0 in insulating domain Ωis:

We know that Ecd0 = 0 in Ωcd, then the term Eis0 verifies the perfect conductor condition

Eis0 × n = 0 on Σ (4.10)
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4 Asymptotic expansion for large conductivity - Revisited

Due to (4.7) and (4.10), the problem to be solved for the term Eis
0 is then the following: Let

Eis
0 ∈ XN(Ω

is), such that for all E′ ∈ XN(Ω
is)

∫

Ωis

1

µ

(
curl Eis0 · curl E′ − κ2Eis

0 ·E′
)
dx =

∫

Ωis
Fis · E′dx. (4.11)

And, according to spectral hypothesis (SH) κ2 is not eigenvalue of problem: Let E0 ∈ XN(Ω
is),

such that for all E′ ∈ XN(Ω
is)

∫

Ωis

(
curl E0 · curl E′ − κ2E0 ·E′

)
dx = 0. (4.12)

Therefore due to Fredholm’s alternative (4.11) has an unique solution Eis0 ∈ XN(Ω
is). Due to

elliptic regularity, Eis0 ∈
(
Ws

1(Ω
is)
)3

for F ∈
(
Ws−2

1 (R3)
)3
.

Next we present from Peron [42] the terms of order 1 in conducting domain Ωcd:

According to (5.14) in [42], we have

−iκ2wcd1 + γαα(∂3(W
cd
0 )) + bαα∂3w

cd
0 = 0

and Wcd
0 = 0 in Ω0, implying wcd1 = 0 in Ω0.

According to (5.13) and (5.14) in [42], and since W cd
α,0 = 0 and wcd0 = 0, there holds

−∂23W cd
α,1 − iκ2W cd

α,1 = 0 in Ω0

∂3W
cd
α,1 = (curl Ẽ

is

0 × n)α on Σ.

(4.13)

The following results by Peron give an expression of the term W cd
α,1.

Proposition 4. [42, Propositions 5.3 and 5.4] Suppose (SH) holds. Then the ordinary dif-

ferential equations (4.13) admits a unique solution W cd
α,1. Furthermore, for all (yβ, Y3) ∈ Ω0,

we have with λ := κe−i
π
4 , Re(λ) > 0

W cd
α,1(yβ, Y3) = − 1

λ
(curl Ẽ

is

0 × n)α(yβ, 0)e
−λY3 (4.14)

and for all (yβ, Y3) ∈ Ω0, we have

Wcd
1 (yβ , Y3) = − 1

λ
(curl Ẽ

is

0 × n)(yβ , 0)e
−λY3 (4.15)

Next we present the terms of order 1 in insulating domain Ωis:

According to (4.3) we have in a tubular neighbourhood of Σ ∈ Ωcd.

Ecd
j (x; ρ) = Wcd

j (yα, hρ) if x ∈ O,
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4.2 Convergence of the asymptotic expansion of the electrical field

in particular for j = 1 there holds

Ecd
1 (x; ρ) = Wcd

1 (yα, hρ).

Now (4.15) implies

Ecd1 = − 1

λ
(curl Eis

0 × n) on Σ

since

Eis
0 (x) = Ẽ

is

0 (yα, 0) on Σ.

Consequently

Eis
1 × n = Ecd1 × n = − 1

λ
(curl Eis

0 × n)× n on Σ,

We know that Eis0 ∈
(
Ws

1(Ω
is)
)3
, hence curl Eis

0 × n ∈ Hs− 3
2 (Σ) for smooth Σ and therefore

Ecd
1 × n|Σ ∈ Hs− 3

2 (Σ).

Now due to (4.8), the problem for Eis1 reads: Find Eis
1 ∈ X(Ωis), with Eis

1 − ΦisΣ(E
cd
1 × n) ∈

XN(Ω
is) such that, for all E′ ∈ XN(Ω

is),
∫

Ωis

(
curl Eis

1 · curl E′ − κ2Eis1 · E′
)
dx = 0. (4.16)

Due to the spectral hypothesis (SH), the variational problem (4.16) admits a unique solution

Eis1 ∈ X(Ωis) and again elliptic regularity implies, Eis
1 ∈

(
Ws−1

1 (Ωis)
)3
.

Higher order terms can be written in a similar manner (see [42]). In the same way one can see

that Peron’s expansion procedure remains valid for unbounded Ωis.

4.2 Convergence of the asymptotic expansion of the

electrical field

Next, we study the convergence of the asymptotic expansion of the electrical field Eρ, (4.2).

Therefore we consider the remainder of order m, Rm,ρ which consists of the difference between

Eρ and the firstm terms in the asymptotic expansion of Eρ. Theorem 11 shows the convergence

of the remainder. Important tools are the uniform a priori estimates in ρ derived in Chapter

3. Again, we extend the results of Peron [42] to the case of the unbounded exterior domain

using Beppo-Levi spaces.

Now, we consider data F ∈ PHs(R3) = {F = (Fcd,Fis) | Fcd ∈ Hs(Ωcd),Fis ∈
(
Ws

1(Ω
is)
)3} ,

s ≥ 2, with support in Ωis such that divF = 0 in R3. Note Eρ ∈ XTN(R
3, ρ) is a solution of the

following equations in the sense of distributions

1

µ
curl curl Eρ − κ2ε(ρ)Eρ = F, in R3

|curl Eρ × x̂− iκEρ| = o

(
1

|x|

)
, as |x| → ∞,

(4.17)
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4 Asymptotic expansion for large conductivity - Revisited

(see Proposition 3). Since div F = 0 and κ 6= 0, we deduced that

div(ε(ρ)Eρ) = 0 and thus Eρ verifies

−∆Eρ − κ2µε(ρ)Eρ = µF, in Ωcd ∪ Ωis,

as well as the transmission conditions (see Lemmas 1 and 2)

[ε(ρ)Eρ · n]Σ = 0, [div(ε(ρ)Eρ)]Σ = 0, [Eρ × n]Σ = 0, [curl Eρ × n]Σ = 0. (4.18)

Under the spectral hypothesis (SH) on κ, for all j ∈ [|0, [s]− 2|], with s ≥ 2,for the terms Eis
j

and Wcd
j of the asymptotic expansion (4.2) there holds

Eisj ∈
(
W
s−j
1 (Ωis)

)3
and Wcd

j ∈ Hs−j− 1
2 (Σ, C∞(I)), (4.19)

where I = (0,∞). This can be seen as done for j = 0, 1 in Subsection 4.1.

From the asymptotic expansion (4.2), one defines the associated partial sums for all N ∈
[|0, [s] − 2|]

Eis
[N ],ρ(x) =

N∑

j=0

Eisj (x)ρ
−j , if x ∈ Ωis,

Ecd
[N ],ρ(x) =

N∑

j=0

Wcd
j (yα, Y3)ρ

−j , if x ∈ O

(4.20)

and sets with a cut-off-function χ ∈ C∞(Ωcd) such that χ = 1 in a tubular neighborhood O′

of Σ, where O′ ⊂ O, and χ = 0 in Ωcd \ O, see figure 4.1,

X = 0

Χ = 1

O’O

Σ

Figure 4.1: A tubular neighborhood of Σ.

Ẽ[N ],ρ =





Eis
[N ],ρ, in Ωis,

χEcd
[N ],ρ, in O,

0, in Ωcd \ O.

(4.21)
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4.2 Convergence of the asymptotic expansion of the electrical field

According to (4.19), we have

Ẽ
is

[N ],ρ ∈
(
Ws−N

1 (Ωis)
)3

and Ẽ
cd

[N ],ρ ∈ Hs−N− 1
2 (Ωcd). (4.22)

We remember that Eρ ∈ XTN(R
3, ρ)∩PHs(R3) is a strong solution of (4.17) for F ∈ PHs−2(R3)

where s ≥ 2. Almost verbatim there holds the following modification of Peron’s Proposition

7.4 in [42] for the remainder Rm,ρ = Eρ − Ẽ[m],ρ. But of course we consider an unbounded

exterior domain Ωis. For better reading we adopt Peron’s notation and repeat some essential

parts of his proof, but modified to our situation, i.e. weighted spaces in Ωis.

Proposition 5. Under the spectral hypothesis (SH), for all m ∈ [|0, [s] − 2|], we have

curl curl Ris
m,ρ − κ2Ris

m,ρ = 0, in Ωis,

Rcd
m,ρ × n = Ris

m,ρ × n, on Σ,

|curl Rm,ρ × x̂− iκRm,ρ| = o

(
1

|x|

)
, as |x| → ∞.

(4.23)

Moreover,

div[ρ]Rcd
m,ρ = −ρ−m−1

m∑

k=0

divm+1−kWcd
k +O(ρ−m−2), in O′, (4.24)

and on Σ, we have

ε(ρ)cdRcd
m,ρ · n = ε(ρ)isRis

m,ρ · n− ε(ρ)isρ−m+1
1∑

k=0

(wcdm−k − Ẽ
is

m−k · n)ρk−1. (4.25)

Proof. We have that Eis
0 ∈ XN(Ω

is) satisfies

∫

Ωis

1

µ
(curl Eis

0 · curl E′ − κ2Eis
0 ·E′)dx =

∫

Ωis
Fis ·E′dx,∀E′ ∈ XN(Ω

is) (4.26)

and for all j ≥ 1, Eis
j ∈ X(Ωis) satisfies Eisj −ΦisΣ(E

cd
j × n) ∈ XN(Ω

is), with extension operator

ΦisΣ (see Section 4.1). Furthermore for all E′ ∈ XN(Ω
is),

∫

Ωis
(curl Eis

j · curl E′ − κ2Eisj · E′)dx = 0. (4.27)

Thus, Ris
m,ρ ∈ XT(Ω

is) satisfies

Ris
m,ρ − ΦisΣ(R

cd
m,ρ × n) ∈ XN(Ω

is),

and for all E′ ∈ XN(Ω
is),

∫

Ωis
(curl Ris

m,ρ · curl E′ − κ2Ris
m,ρ ·E′)dx = 0. (4.28)
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4 Asymptotic expansion for large conductivity - Revisited

Next, integration by parts in (4.28), gives

curl curl Ris
m,ρ − κ2Ris

m,ρ = 0, in Ωis,

Rcd
m,ρ × n = Ris

m,ρ × n, on Σ.

(4.29)

The remainder of the proof goes verbatim as the proof of Proposition 7.4 in Peron [42].

Next we give for Rm,ρ an asymptotic expansion in powers of ρ−1, and we present estimates of

the remainder. The crucial point in the proof is the a priori estimate (3.18).

As observed by Peron we cannot apply directly the a priori estimate (3.18) to Rm,ρ, because

of the lack of continuity of the terms curl Rm,ρ × n and ε(ρ)Rm,ρ · n on the interface Σ, see

the relations (4.23)3 and (4.25). Following Peron we construct a correction term Cm,ρ with

support in the domain Ωis such that we can apply estimate (3.18) to um,ρ := Rm,ρ−Cm,ρ. The

following result corresponds to Proposition 7.7 in Peron’s thesis [42]. Again we give here the

modification for an unbounded exterior domain Ωis and weighted spaces. For better reading

and completeness we give the details of the proof which repeats to some extend Peron’s proof.

Proposition 6. Let s ≥ 2 and Fm,ρ ∈ PH2(R3) with support in Ωis, such that div F = 0 in

R3. Under the spectral hypothesis (SH), for all m ∈ [|0, [s]− 2|] there exists Cm,ρ ∈ PH2(R3)

with support in Ωis, such that um,ρ ∈ XTN(R
3, ρ) satisfies for all E′ ∈ XTN(R

3, ρ)∩W̃(curl,R3),
∫

R3

1

µ
(curl um,ρ · curl E

′ − κ2ε(ρ)um,ρ ·E
′
)dx =

∫

R3

Fm,ρ ·E
′
dx, (4.30)

and

div(ε(ρ)um,ρ) = − 1

κ2
div Fm,ρ, in L2

0,−1(R
3),

where Fm,ρ ∈ W(div,R3) is defined by

µFism,ρ = −curl curl Cis
m,ρ + κ2Cis

m,ρ in Ωis, (4.31)

µFcdm,ρ = curl curl Rcd
m,ρ − κ2(1 + iρ2)Rcd

m,ρ inΩcd. (4.32)

Moreover, there exists a constant Cm > 0 independent of ρ such that

‖Cm,ρ‖L2
0,−1(R

3) ≤ Cmρ
−m+1. (4.33)

Proof. Let Cm,ρ ∈ PH2(R3) with support in Ωis = Ω− and um,ρ := Rm,ρ −Cm,ρ. According

to Proposition 5, there holds

ucdm,ρ × n = uism,ρ × n+Cis
m,ρ × n, on Σ,

(1 + iρ2)uism,ρ · n = uism,ρ · n+

1∑

k=0

(wcdm−k − Ẽ
is

m−k · n)ρ−m+k −Cis
m,ρ · n, on Σ,

|curl um,ρ × x̂− iκum,ρ| = o

(
1

|x|

)
, as |x| → ∞.

(4.34)
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4.2 Convergence of the asymptotic expansion of the electrical field

According to (7.38) in [42], we have

∂3Wcd
m+1|Σ ∈ H

1
2 (Σ) (4.35)

and define on Σ

Hm,ρ := −ρ−m∂3Wcd
m+1 and gm,ρ :=

1∑

k=0

(wcdm−k − Ẽ
is

m−k · n)ρ−m+k.

According to (4.35) and (4.19), we have

Hm,ρ ∈ H
1
2 (Σ) and gm,ρ ∈ H

3
2 (Σ).

As in [42] we construct the correction terms Cm,ρ via the traces Hm,ρ and gm,ρ on Σ:

There exists Cm,ρ ∈ PH2(R3) with support in Ωis, such that

Cis
m,ρ × n = 0, Cis

m,ρ · n = gm,ρ, ∂3C
is
m,ρ = Hm,ρ, on Σ,

|curl Cm,ρ × x̂− iκCm,ρ| = o

(
1

|x|

)
, as |x| → ∞,

(4.36)

and there exists Cm > 0 independent of ρ such that

‖Cm,ρ‖L2
0,−1(R

3) ≤ Cm(‖Hm,ρ‖
H

1
2 (Σ)

+ ‖gm,ρ‖
H

3
2 (Σ)

). (4.37)

With definition of Hm,ρ and gm,ρ this proves the estimate (4.33). Now the regularity for Rm,ρ

yields

uism,ρ ∈
(
W2

1(Ω
is)
)3

and ucdm,ρ ∈ H3/2(Ωcd). (4.38)

Due to Proposition 5 and (4.34) there holds

curl curl uism,ρ − κ2uism,ρ = µFism,ρ, in Ωis,

curl curl ucdm,ρ − κ2(1 + iρ2)ucdm,ρ = µFcdm,ρ, in Ωcd,

ucdm,ρ × n = uism,ρ × n, (1 + iρ2)ucdm,ρ · n = uism,ρ · n, on Σ,

|curl um,ρ × x̂− iκum,ρ| = o

(
1

|x|

)
, as |x| → ∞,

(4.39)

with Fism,ρ, F
cd
m,ρ as in (4.31), (4.32). Proposition 3 implies that um,ρ solves

1

µ
curl curl um,ρ − κ2ε(ρ)um,ρ = Fm,ρ, in R3 (4.40)

in the sense of distributions. Now (4.40) yields for all E′ ∈ XTN(R
3, ρ) ∩ W̃(curl,R3) in Ωcd

∫

Ωcd

(
1

µ
curl curl ucdm,ρ − κ2ε(ρ)ucdm,ρ

)
·E′

dx =

∫

Ωcd
Fcdm,ρ ·E

′
dx,
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4 Asymptotic expansion for large conductivity - Revisited

and gives by integration by parts
∫

Ωcd

(
1

µ
curl ucdm,ρ · curl E

′ − κ2ε(ρ)ucdm,ρ · E
′
)
dx =

∫

Ωcd
Fcdm,ρ · E

′
dx+

∫

Σ
(n× ucdm,ρ) · E

′
ds,

(4.41)

Next as in Chapter 3 applying integration by parts in ΩR and letting R→ ∞ we end up at
∫

Ωis

(
1

µ
curl uism,ρ · curl E

′ − κ2ε(ρ)uism,ρ · E
′
)
dx =

∫

Ωis
Fism,ρ ·E

′
dx−

∫

Σ
(n× uism,ρ) ·E

′
ds,

(4.42)

By adding (4.41) and (4.42) and incorporating (4.39)4 gives

∫

Ωis∪Ωcd

(
1

µ
curl um,ρ · curl E

′ − κ2ε(ρ)um,ρ · E
′
)
dx =

∫

Ωis∪Ωcd
Fm,ρ ·E

′
dx. (4.43)

Moreover

div(ε(ρ)um,ρ) = − 1

κ2
div Fm,ρ, in L2

0,−1(R
3). (4.44)

The next result corresponds to Peron’s Theorem 7.9 in [42] but here our result covers now the

case of an unbounded exterior domain. Here we show in detail in the proof where the weighted

spaces do appear. Again we follow Peron’s proof of Theorem 7.9 in [42].

Theorem 11. Let s ≥ 2 and F ∈ PH2(R3) with support in Ωis, such that div F = 0 in R3.

Under the spectral hypothesis (SH), for all m ∈ [|0, [s]− 2|], the solution Eρ of problem (4.17)

admits the asymptotic expansion

Eρ =

m∑

j=0

Ejρ
−j +Rm,ρ, where Ej |Ωis = Eisj and Ej|O(x, ρ) = Wcd

j (yα, hρ),

and Rm,ρ satisfies for ρ > 0

‖curl Rm,ρ‖L2
0,−1(R

3) + ‖div(ε(ρ)Rm,ρ)‖L2
0,−1(R

3) + ‖Rm,ρ‖L2
0,−1(R

3) + ρ‖Rcd
m,ρ‖L2(Ωcd)

≤ Cmρ
−m+1,

(4.45)

where Cm > 0 is a constant independent of ρ.

Proof. We can apply the a priori estimation (3.18) of the Theorem 5 to the term um,ρ defined

in the Proposition 6. We have for all ρ > 0

‖curl um,ρ‖L2
0,−1(R

3) + ‖div(ε(ρ)um,ρ)‖L2
0,−1(R

3) + ‖um,ρ‖L2
0,−1(R

3) + ρ‖ucdm,ρ‖L2(Ωcd)

≤ Cm‖Fm,ρ‖W(div,R3),

(4.46)

where Cm > 0 is a constant independent of ρ and Fm,ρ is defined by (4.31) and (4.32) .

According to (4.22)

Ris
m,ρ ∈

(
W2

1(Ω
is)
)3

and Rcd
m,ρ ∈ H

3
2 (Ωcd), (4.47)
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4.2 Convergence of the asymptotic expansion of the electrical field

because s−m ≥ 2. Therefore we have

‖curl Rm,ρ‖L2
0,−1(R

3) ≤ ‖curl um,ρ‖L2
0,−1(R

3) + ‖curl Cm,ρ‖L2
0,−1(R

3),

‖div(ε(ρ)Rm,ρ)‖L2
0,−1(R

3) ≤ ‖div(ε(ρ)um,ρ)‖L2
0,−1(R

3) + ‖div(ε(ρ)Cm,ρ)‖L2
0,−1(R

3),

‖Rm,ρ‖L2
0,−1(R

3) ≤ ‖um,ρ‖L2
0,−1(R

3) + ‖Cm,ρ‖L2
0,−1(R

3),

‖Rcd
m,ρ‖L2(Ωcd) ≤ ‖ucdm,ρ‖L2(Ωcd).

(4.48)

According to (4.46) and (4.48)

‖curl Rm,ρ‖L2
0,−1(R

3) + ‖div(ε(ρ)Rm,ρ)‖L2
0,−1(R

3) + ‖Rm,ρ‖L2
0,−1(R

3) + ρ‖Rcd
m,ρ‖L2(Ωcd)

≤ Cm‖F‖W(div,R3) + ‖curl Cm,ρ‖L2
0,−1(R

3) + ‖div(ε(ρ)Cm,ρ)‖L2
0,−1(R

3) + ‖Cm,ρ‖L2
0,−1(R

3).

(4.49)

We have with div(F) = 0 ∈ R3 and due to (4.31), (4.32) and (4.33)

‖F‖L2
0,−1(R

3) . ρ−m+1. (4.50)

Finally, according to estimate (4.33) we have

‖curl Cm,ρ‖L2
0,−1(R

3) + ‖div(ε(ρ)Cis
m,ρ)‖L2

0,−1(Ω
is) + ‖Cm,ρ‖L2

0,−1(R
3) . ρ−m+1. (4.51)

Hence from (4.49), (4.50) and (4.51)the estimate (4.45) is derived.

Finally as in Peron’s Thesis [42, Lemma 7.11 and Corollary 7.12] (describing the case of a

bounded insulator domain) we can also (using suitable modifications) derive optimal estimates

for unbounded insulating domains.

Lemma 6. Let s ≥ 2 and F ∈ PHs−2(R3) with support in Ωis, such that divF = 0 in R3.

There exists a constant C > 0 independent of ρ such that for all m ∈ [|0, [s] − 2|], we have

‖Eis
m‖W(curl,Ωis) ≤ C, (4.52)

and

‖χEcd
m‖L2(Ωcd) ≤ Cρ−

1
2 , and ‖χEcd

m‖
H(curl,Ωcd) ≤ Cρ

1
2 . (4.53)

Proof. From (4.19), the function Wcd
j are profiles defined on Σ× I. Moreover, for any j ∈ N

Eis
j ∈ W(curl,Ωis), and Wd

j ∈ H(curl,Σ× I)

then, for any j ∈ N, we have

‖Eis
j ‖W(curl,Ωis) + ρ

1
2 ‖Ecd

j ‖L2(Ωcd) + ρ−
1
2 ‖curl Ecd

j ‖L2(Ωcd) ≤ C

where C > 0 is a constant independent of ρ. Therefore the assertion follows from

‖χEcd
m‖L2(Ωcd) ≤ Cρ−

1
2 , ‖χcurl Ecd

m‖L2(Ωcd) ≤ Cρ
1
2
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4 Asymptotic expansion for large conductivity - Revisited

and

‖Eis
m‖W(curl,Ωis) ≤ C.

Application of Lemma 6 and Thoerem 11 gives the following result which corresponds to

Corollary 7.12 in [42].

Corollary 1. Let s ≥ 4 and F ∈ PHs−2(R3) with support in Ωis, such that divF = 0 in R3.

Under the spectral hypothesis (SH), for all ρ > 0, for all m ∈ [|0, [s]− 2|], the remainder Rm,ρ

of the asymptotic development satisfies the followings estimates:

‖Rcd
m,ρ‖H(curl,Ωcd) ≤ Cm+2ρ

−m− 1
2 , and ‖curlRis

m,ρ‖L2
0,−1(Ω

is) ≤ Cm+2ρ
−m−1, (4.54)

where Cm+2 > 0 is a constant independent of ρ.

Proof. The fist estimate in (4.54) is shown in Corollary 7.12 in [42]. The second estimate in

(4.54) follows by writing

Ris
m,ρ = Ris

m+2,ρ + ρ−m−1Eism+1 + ρ−m−2Eis
m+2, in Ωis.

By Lemma 6 we have

‖Eis
m‖W(curl,Ωis) ≤ C

and due to Theorem 11 for ρ > 0 we have

‖curlRis
m+2,ρ‖L2

0,−1(Ω
is) ≤ C ′

m+2ρ
−m−1,

implying the second estimate in (4.54).

Let us comment that altogether we have shown that Peron’s results for the asymptotic ex-

pansion remain valid for an unbounded exterior domain. Thus we have convergence of the

asymptotic expansion with respect to inverse powers of conductivity for the electrical field and

also analogously for the magnetic field for the transmission problem (Pαβ) in R3 in Chapter 1.

Comparison of the asymptotic expansion found in Chapter 1 for the halfspace case and of the

asymptotic expansion in Chapter 4 for a smooth interface Σ shows that the first terms of the

expansions coincide. These terms can be efficiently computed numerically by the boundary

element procedure discussed in Chapter 1.
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5 Non-conforming FE/BE coupling for

a two-dimensional eddy current

problem

Let Ω− be a simply connected bounded region in R2 and Ω+ := R2�Ω− its complement. Here,

Ω+ represents the air and Ω− the inter-section of a metallic obstacle in the x1, x2 plane. The

obstacle is assumed to be parallel to the x3-axis (see figure 5.1).

The classical macroscopic electromagnetic field is described by four vector functions of position

x =

(
x1
x2

)
∈ R2 and time t ≥ 0, denoted by Ê, D̂, Ĥ and B̂ (see [10, 39, 40, 41, 44]). Then

we obtain the first order system

∇×E = iωµH in R2,

∇×H = (σ − iωε)E + J0 in R2,

∇ ·E =
ρ

ε
in R2,

∇ ·H = 0 in R2.

(5.1)

The coefficients ε, µ and σ are bounded real valued scalar functions satisfying almost every-

where in Ω

ε0 ≤ ε(x) ≤ ε1, µ0 ≤ µ(x) ≤ µ1 and 0 ≤ σ(x) ≤ σ1,

where ε0, ε1, µ0, µ1 and σ1 are positive constants and ε0 and µ0 are electric permittivity and

magnetic permeability, respectively, of the free space.

Moreover, since the medium is dielectric and homogeneous, outside the obstacle there holds

ε(x) = ε0, µ(x) = µ0, and σ(x) = 0 in Ω+.

Eliminating E from (5.1) yields in R2 the second order system with j0 = 0 in Ω+

∇× (∇×H)− (σ − iωε)iωµH = j0 in R2. (5.2)

This choice is arbitrary. We can also eliminate H. We suppose the incident electric and

magnetic fields E0, H0, and the fields E, H are transverse magnetic and time harmonic. This
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

Figure 5.1: Region of the problem.

means that, with a proper choice of x1, x2, x3 axes.

The amplitudes E and H, which are independent of x3, are given by

E(x) =
1√
ε0




0

0

u(x1, x2)




and

H(x) =
1√
µ0




h1(x1, x2)

h2(x1, x2)

0




where the complex-valued functions u and h = (h1, h2)
T are now the unknowns of the problem.

By calculations

∇×E =
1√
ε0




∂u

∂x2

− ∂u

∂x1
0


 ,

∇×H =
1√
µ0




0

0
∂h2
∂x1

− ∂h1
∂x2


 ,

(5.3)

hence ∇× u = (
∂u

∂x2
,− ∂u

∂x1
)T and ∇× h =

∂h2
∂x1

− ∂h1
∂x2

.

From (5.1) and (5.3) we have the first order system

∇× h+ ikau =
√
µ0J0 in R2,

∇× u− ikbh = 0 in R2,

(5.4)
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with j0 = 0 in Ω+ and ∀x ∈ R2

k = ω
√
ε0µ0, b(x) =

µ(x)

µ0
, a(x) =

ε(x)

ε0
+ i

σ(x)

ωε0
,

(wave number, relative permeability, relative permittivity or index of refraction, respectively).

Eliminating u from (5.4) yields with j0 = a−1√µ0∇× J0 the second order system

∇× (a−1∇× h)− k2bh = j0 in R2,

h = hi + hs in R2.

(5.5)

where hi and hs belong to the incident and scattered waves, respectively.

Furthermore the behavior of the scattered electromagnetic field at infinity (known as the

Sylver-Müller condition) implies the Sommerfeld radiation condition

√
r

(
∂us

∂r
− ikus

)
−→ 0, when r = |x| −→ ∞. (5.6)

We have

1 ≤ b(x) ≤ µ1
µ0
, for a.e. x ∈ R2, (5.7)

and a(x) := aR(x) + iaI(x)

1 ≤ aR(x) ≤
ε1
ε0
, and 0 ≤ aI(x) ≤

σ1
ωε0

for a.e. x ∈ R2, (5.8)

and

b(x) = 1 and a(x) = 1 and Ω+.

Then, testing (5.5) with the vector-valued function q ∈ H0(curl,Ω−) ∩ H(div, 0,Ω−) and

integrating by parts yields: Find h ∈ H0(curl,Ω−) ∩H(div, 0,Ω−) such that

(∇× h,∇× q) + α(h,q) = (f,q) ∀q ∈ H0(curl,Ω−) ∩H(div, 0,Ω−), (5.9)

where (·, ·) denotes the inner product of L2(Ω−) (or [L2(Ω−)]2), α ∈ R is a constant, f ∈
[L2(Ω−)]2, and besides the usual Hilbert space Hs(Ω−) we define the following spaces

H(curl,Ω−) :=

{
v =

(
v1
v2

)
∈ [L2(Ω−)]2 : ∇× v ∈ L2(Ω−)

}
,

H0(curl,Ω−) := {v ∈ H(curl,Ω−) : n× v = 0 on Γ = ∂Ω−} ,

H(div,Ω−) :=

{
v =

(
v1
v2

)
∈ [L2(Ω−)]2 : ∇ · v ∈ L2(Ω−)

}
,

H(div, 0,Ω−) := {v ∈ H(div,Ω−) : ∇ · v = 0 in Ω−} ,

H(curl,Ω−) and H(div,Ω−) also form Hilbert spaces (see [16]) with respect to the following

associated norms

‖v‖2
H(curl,Ω−)

:= ‖v‖2L2(Ω−) + ‖∇ × v‖2L2(Ω−),
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

‖v‖2H(div,Ω−) := ‖v‖2L2(Ω−) + ‖∇ · v‖2L2(Ω−).

The strong form associated with (5.9) is given by (see [5, 6]): Find u ∈ H0(curl,Ω−) ∩
H(div, 0,Ω−) such that

∇× (∇× u) + αu = Qf ∀v ∈ H0(curl,Ω−) ∩H(div, 0,Ω−).

where Q : [L2(Ω−)]2 −→ H(div, 0,Ω−) is the orthogonal projection onto the divergence-free

functions. It is necessary to consider the projection of f onto H(div, 0,Ω−) (see [4, 5, 6]).

We will also consider the more general formulation following Brenner et al. [4]: Find u ∈
H0(curl,Ω−) ∩H(div,Ω−) such that

(∇× u,∇× v) + β(∇ · u,∇ · v) + α(u,v) = (f,v) ∀v ∈ H0(curl,Ω−) ∩H(div,Ω−), (5.10)

where α ∈ R, β > 0 are constants, f ∈ [L2(Ω−)]2. The associated boundary value problem is:

∇× (∇× u)− β∇(∇ · u) + αu = f in Ω−,

n× u = 0 on Γ,

∇ · u = 0 on Γ.

For the latter formulation we consider a non-conforming finite element procedure in the next

subsection. Finally, in subsection 5.2 we consider a 2D transmission problem (5.18) where the

solution in the exterior domain is represented by boundary integral operators on the interface.

This leads to the non-conforming fe/be coupling method (5.25). Numerical experiments in

subsection 5.3 show the efficiency of this coupling method.

5.1 Non-conforming finite element method

In this section we present the implementation for a non-conforming finite element method for

Maxwell’s equations introduced by Brenner et al. [4, 5, 6]. We consider two Galerkin schemes

(one with divergence free elements and one without divergence free finite elements, but with

an additional term β(∇h · uh,∇h · v) in the formulation).

First, non-conforming divergence free finite element method is: Find uh ∈ Vdiv
h such that

(∇h × uh,∇h × v) + α(uh,v)

+
∑

e∈Eh

[Φµ(e)]
2

|e|

∫

e
[|n× uh|][|n × v|] ds

+
∑

e∈Eih

[Φµ(e)]
2

|e|

∫

e
[|n · uh|][|n · v|] ds = (f,v),

(5.11)
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5.1 Non-conforming finite element method

for all v ∈ Vdiv
h ⊂ H0(curl,Ω−) ∩H(div, 0,Ω−), where

Vdiv
h :=

{
v ∈ [L2(Ω−)]2 : vT = v|T ∈ [P1(T)]

2,∀T ∈ Th,

∇ · v|T = 0, for all T ∈ Th,

v is continuous at the midpoint of any e ∈ E ih,

n× v vanishes at the midpoint of any e ∈ Ebh
}
.

with the set of interior edges E ih and boundary edges Ebh and

(uh,v) =

∫

Ω
uh(x) · v(x)dx.

The edge weight Φµ(e) is defined by

Φµ(e) =

L∏

l=1

|cl −me|1−µl . (5.12)

where µl, 1 ≤ l ≤ L is the grading parameter at the corner cl, me and |e| denote the midpoint

and length of the edge e.

We will measure the discretization error in the L2 norm and the mesh-dependent energy norm

‖ · ‖h,div defined by

‖u‖2
h,div = ‖∇h × u‖2L2(Ω−) + ‖u‖2L2(Ω−)

+
∑

e∈Eh

[Φµ(e)]
2

|e| ‖[|n × u|]‖2L2(e)
+
∑

e∈Eih

[Φµ(e)]
2

|e| ‖[|n · u|]‖2L2(e)
.

(5.13)

Secondly, we consider the non-conforming (non-divergence free) finite element method: Find

uh ∈ Vh such that

(∇h × uh,∇h × v) + β(∇h · uh,∇h · v) + α(uh,v)

+
∑

e∈Eh

[Φµ(e)]
2

|e|

∫

e
[|n× uh|][|n× v|] ds+

∑

e∈Eih

[Φµ(e)]
2

|e|

∫

e
[|n · uh|][|n · v|] ds = (f,v),

(5.14)

for all v ∈ Vh ⊂ H0(curl,Ω−) ∩H(div,Ω−), where

Vh :=
{
v ∈ [L2(Ω−)]2 : vT = v|T ∈ [P1(T)]

2,∀T ∈ Th,

v is continuous at the midpoint of any e ∈ Eh,

n× v vanishes at the midpoint of any e ∈ Ebh
}
.

We note that this space is related to the classical Crouzeix-Raviart space (see [14]).

In both formulations [|n × u|] and [|n · u|] denote the jumps of the tangential and normal
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

components across the triangle sides respectively (see Brenner et al. [4, 5, 6]). Here we use

the following notation:

Let e ∈ E ih be shared by the two triangles Te,1, Te,2 ∈ Th and n1 (resp. n2) be the unit normal

of e pointing towards the outside of Te,1 (resp. Te,2). We define, on e,

[|n× v|] := n1 × (vTe,1 |e) + n2 × (vTe,2 |e), (5.15)

[|n · v|] := n1 · (vTe,1 |e) + n2 · (vTe,2 |e). (5.16)

For an edge e ∈ Ebh, we take ne to be the unit normal of e pointing towards the outside of Ω

and define

[|n× v|] := ne × (v|e). (5.17)

e

n

n

T

T

1

2

1

2

Figure 5.2: Triangles and normals in the definition of [|n× v|] and [|n · v|] [6].

Here the edge weight Φµ(e) is defined by (5.12) (see Brenner et al. [4, 5, 6]).

Based on the Jan Thiedau’s finite element program, (see [46]), which gives the numerical results

for divergence free case (5.11), we have extended his programm to the non-divergence free case

(5.14) which is used in Example 2.

The corresponding convergence analysis of both schemes (5.11) and (5.14) is given in the works

by Brenner et al. [4, 5, 6].

5.2 The coupling of non-conforming finite element and

boundary element methods

The coupling of non-conforming finite element and boundary element methods was established

by Carstensen and Funken [8], where quasi-optimal a priori error estimates are provided for

a (nonlinear) interface problem for the Laplacian and also a posteriori error estimates was

established in Carstensen and Funken [9]. Here we present a different derivation for a two-

dimensional electromagnetic transmission problem.

We consider the following transmission problem: In a bounded two-dimensional Lipschitz

domain Ω− ⊂ R2 with boundary Γ = ∂Ω− and an unbounded exterior domain Ω+ := R2�Ω−
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5.2 The coupling of non-conforming finite element and boundary element methods

we are given a right-hand side f ∈ L2(Ω−), constants α ∈ R, β > 0 and seek functions

h ∈ H(curl,Ω−) ∩H(div,Ω−), u ∈ H1
loc(Ω+) and a real constant b satisfying

∇×∇× h− β∇ (∇ · h) + αh = f in Ω−,

∇×∇× u = 0, ∇ · u = 0 in Ω+,

γτ (h) =
∂u

∂n
, γ (∇× h) = u, ∇ · h = 0 on Γ,

u(x)− blog|x| → 0 as |x| → ∞,

(5.18)

where u|Γ∈ H
1
2 (Γ) and

∂u

∂n
|Γ∈ H− 1

2 (Γ).

Then, testing (5.18)1 with the vector-valued function q ∈ H(curl,Ω−) ∩H(div,Ω−) and inte-

grating by parts yields: Find h ∈ H(curl,Ω−) ∩H(div,Ω−), such that

(∇× h,∇× q) + β(∇ · h,∇ · q) + α(h,q)− 〈γτ (q), γ (∇× h)〉 = (f,q), (5.19)

for all q ∈ H(curl,Ω−) ∩ H(div,Ω−), where (·, ·) denotes the inner product of L2(Ω−) (or

[L2(Ω−)]2), 〈·, ·〉 the duality pairing on Γ. Note that γτ (q) = q · t, where t is the unit

tangential vector.

We have from equation (5.18)2 with the constraints ∇ · u = 0 and ∇×∇× u = 0 in Ω+ that

∇×∇× u = ∇(∇ · u)−∆u implies ∆u = 0 in Ω+.

Next, we employ a boundary integral equation method (see Costabel and Stephan [13] and

Carstensen and Funken [8]) to complete (5.19) with the corresponding variational formulation

in the unbounded exterior domain Ω+. Here

ξ(x)|Γ = − 1

2π

∫

Γ

∂

∂ny
log(|x− y|)ξ(y)dsy +

1

2π

∫

Γ
log(|x− y|)φ(y)dsy

= Kξ(x)− V φ(x)

(5.20)

and

φ(x)|Γ = − 1

2π

∫

Γ

∂2

∂nx∂ny
log(|x− y|)ξ(y)dsy +

1

2π

∫

Γ

∂

∂nx
log(|x− y|)φ(y)dsy

= −Wξ(x)−K ′φ(x)

(5.21)

with (ξ, φ) =

(
u,
∂u

∂n

)
∈ H

1
2 (Γ)×H− 1

2 (Γ).

Now the non-conforming coupling method reads: Find (h, ξ, φ) ∈ X := H(curl,Ω−)∩H(div,Ω−)×
H

1
2 (Γ)×H− 1

2 (Γ) such that ∀(q, η, µ) ∈ X

(∇× h,∇× q) + β(∇ · h,∇ · q) + α(h,q)− 〈γτ (q), ξ〉 = (f,q)

−〈γτ (h), η〉 − 〈Wξ, η〉+ 〈(12 −K ′)φ, η〉 = 0

〈(12 −K)ξ, µ〉+ 〈V φ, µ〉 = 0

(5.22)
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

Let as abbreviate the above equations by

A((h, ξ, φ), (q, η, µ)) = (f,q). (5.23)

Combining the results of Brenner et al. [4] for the interior problem in Ω− and the mapping

properties of the boundary integral operators (see for example Costabel and Stephan [12] and

Carstensen and Funken [8]) we obtain there holds the G̊arding inequality, i.e. ∃γ1, γ2 > 0 such

that ∀(h, ξ, φ) ∈ X

Re{A((h, ξ, φ), (h, ξ, φ))} ≥ γ1(‖h‖2H(curl,Ω−)
+ ‖ξ‖2

H1/2(Γ)
+ ‖φ‖2

H−1/2(Γ)
)− γ2‖h‖2L2(Ω−)

.

(5.24)

In order to formulate a finite element/boundary element coupling methods we introduce the

following discrete spaces: As finite elements we use the Crouzeix-Raviart elements to span:

Sh :=
{
v ∈ [L2(Ω)]

2 : vT = v|T ∈ [P1(T)]
2,∀T ∈ Th,

v is continuous at the midpoint of any e ∈ E ih,
}
.

As boundary elements we use the space of piecewise linear, continuous functions S1
h, and the

space of piecewise constants S0
h.

Now our non-conforming fem/bem coupling method reads: Find (hh, ξh, φh) ∈ Xh := Sh ×
S1
h × S0

h such that ∀(q, η, µ) ∈ Xh

(∇× hh,∇× q) + β(∇ · hh,∇ · q) + α(hh,q) + bh(hh,q)− 〈γτ (q), ξh〉 = (f,q)

−〈γτ (hh), η〉 − 〈Wξh, η〉 + 〈(12 −K ′)φh, η〉 = 0

〈(12 −K)ξh, µ〉+ 〈V φh, µ〉 = 0

(5.25)

where

bh(hh,q) :=
∑

e∈Eh

[Φµ(e)]
2

|e|

∫

e
[|n× hh|][|n× q|]ds +

∑

e∈Eih

[Φµ(e)]
2

|e|

∫

e
[|n · hh|][|n · q|]ds, (5.26)

is the penalty term.

5.3 Numerical examples

In this part we report the results of a series of numerical experiments for the non-conforming

finite element method (5.14) and for the non-conforming FE/BE coupling method (5.25). All

computations where done with Matlab.Our finite element simulations are obtained with the

software developed by Thiedau in [46]. We have developed new Matlab codes for the boundary

element part and FE/BE coupling. Our computations show that the methods (5.14) and (5.25)

converge and give good results.
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5.3 Numerical examples

We take β = 1 and α = ±k2 in the experiment for the scheme (5.14). Besides the errors in the

L2-norm ‖·‖L2(Ω) and the mesh-dependent energy norm ‖·‖h,div defined by

‖u‖2h = ‖∇h × u‖2L2(Ω) + ‖∇h · u‖2L2(Ω) + ‖u‖2L2(Ω)

+
∑

e∈Eh

[Φµ(e)]
2

|e| ‖[|n× u|]‖2L2(e)
+
∑

e∈Eih

[Φµ(e)]
2

|e| ‖[|n · u|]‖2L2(e)

(5.27)

we also include the errors in the semi-norms |·|curl and |·|div defined by |u|curl = ‖∇h×u‖L2(Ω)

and |u|div = ‖∇h · u‖L2(Ω).

Example 2. We examine the convergence for the general scheme (5.14) on the square domain

[0, 0.5]2 for a family of uniform meshes, where the exact solution is given by (see Brenner et

al. [4])

u(x, y) = [(
x3

3
− x2

4
)(y2 − 0.5y) sin(ky), (

y3

3
− y2

4
)(x2 − 0.5x) cos(kx)]. (5.28)

Hence for the right-hand side we get f(x, y) = ∇×∇× u(x, y)− β∇(∇ · u(x, y)) + αu(x, y).

The results are tabulated in Table 5.1 for α = k2 and k = 0, 1, 5, 10 and in Table 5.2 for

α = −k2 and k = 1, 5, 10 and are plotted in Figure 5.3 for α = −1, 1. They show that the

scheme (5.14) is second order accurate in the L2-norm and first order accurate in the energy

norm and in the semi-norms, which agrees with the error estimates in [4, Theorem 13] and

[5, Theorem 14]. The results in Table 5.3 confirm that the scheme (5.14) does not converge

without the consistency terms. Our numerical simulations agree with those in [4, 5, 6] and

[46].

Next we present numerical experiments for the non-conforming fe/be coupling (5.25) where

we had to develop a matlab implementation for the boundary integral operators in 5.25 and a

coupling with finite element method in 5.14.

Example 3. We consider the interface problem (5.18) on the square domain [0, 0.5]2 with a

family of uniform meshes, where

h(x, y) = [(
x3

3
− x2

4
)(y2 − 0.5y) sin(ky), (

y3

3
− y2

4
)(x2 − 0.5x) cos(kx)], (5.29)

the right-hand side we take f(x, y) = ∇×∇× h(x, y)− β∇(∇ · h(x, y)) + αh(x, y).

The errors and convergence rates for the discrete solutions hh, ξh and φh of (5.25) are tabulated

in Tables 5.4, 5.5 and 5.6 for β = 1, α = ±k2 and k = 1, and are plotted in Figures 5.4,

5.5 and 5.6. The error in energy norm of h is calculate by (5.27). The energy norm ‖ξ‖V
is approximated by the energy norm ‖ξh= 1

200
‖V = 2.723 · 10−6 of the solution to the finest

mesh for α = 1 and ‖ξh= 1
200

‖V = 2.727 · 10−6 for α = −1. Analogously for ‖φ‖W , we have

‖φh= 1
200

‖W = 2.647·10−6 for α = 1 and ‖φh= 1
200

‖W = 2.6516·10−6 for α = −1. The asymptotic

convergence rate of h is 0.25 with respect to the degrees of freedom which is suboptimal to the

best possible rate of 0.5. The convergence of ‖φh‖W to ‖φ‖W and ‖ξh‖V to ‖ξ‖V at rate 1.2 to

1.3 is also suboptimal. Here ‖ξ‖V = ξTVξ where V is the matrix representation of V and ξ

are the coefficients of the solution vector.
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

Example 4. Let we consider the interface problem (5.18) on the square domain [0, 0.5]2 with

a family of uniform meshes, where

h(x, y) = [x2(y2 − 0.5y), y2(x2 − 0.5x)], (5.30)

the right-hand side we take f(x, y) = ∇×∇× h(x, y)− β∇(∇ · h(x, y)) + αh(x, y).

The results for h, ξ and φ solutions of (5.25) are tabulated in Tables 5.7, 5.8 and 5.9 for β = 1,

α = ±1, and are plotted in Figures 5.7, 5.8 and 5.9. The exact energy norm of h is known

by extrapolation for α = 1 is ‖h‖h = 0.0339734151 and for α = −1 is ‖h‖h = 0.0350692138.

The energy norm ‖ξ‖V is approximated by the energy norm ‖ξh= 1
200

‖V = 5.54937 · 10−5 of the

solution to the finest mesh for α = 1 and ‖ξh= 1
200

‖V = 5.774 · 10−5 for α = −1. Analogously

for ‖φ‖W , we have ‖φh= 1
200

‖W = 7.89382 · 10−6 for α = 1 and ‖φh= 1
200

‖W = 8.20526 · 10−5

for α = −1. The convergence of ‖hh‖h to ‖h‖h at rate 0.21 to 0.22 with respect to the degrees

of freedom which is suboptimal to the best possible rate of 0.24. The convergence of ‖φh‖W to

‖φ‖W and ‖ξh‖V to ‖ξ‖V at rate 1.1 to 1.2 is also suboptimal.

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DoF

error for alpha = 1

 

 
L

2

|.|
h

|.|
curl

−error

|.|
div

−error

10
2

10
3

10
4

10
5

10
6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DoF

error for alpha = −1

 

 
L

2

|.|
h

|.|
curl

−error

|.|
div

−error

Figure 5.3: Errors of the finite element scheme (5.14) for α = 1 and α = −1.
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Figure 5.4: Errors in energy norm of h for α = 1 and α = −1 in Example 3 (fe/be

coupling)
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Figure 5.5: Errors in energy norm of ξ for α = 1 and α = −1 in Example 3 (fe/be

coupling)
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Figure 5.6: Errors in energy norm of φ for α = 1 and α = −1 in Example 3(fe/be

coupling)
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Figure 5.7: Errors in energy norm of h for α = 1 and α = −1 in Example 4(fe/be

coupling)
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Figure 5.8: Errors in energy norm of ξ for α = 1 and α = −1 in Example 4(fe/be

coupling)
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Figure 5.9: Errors in energy norm of φ for α = 1 and α = −1 in Example 4(fe/be

coupling)
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

h
‖u−uh‖L2

‖u‖
L2

order ‖u−uh‖h
‖u‖h order

|u−uh|curl
|u|curl

order
|u−uh|div

|u|div
order

k = 0

1/5 0.0745 0.6271 0.1894 0.3342

1/10 0.0165 2.1785 0.2514 1.3187 0.0950 0.9953 0.1672 0.9993

1/20 0.0039 2.0824 0.1119 1.1678 0.0475 0.9991 0.0836 0.9995

1/40 0.0009 2.0391 0.0539 1.0536 0.0238 1.0000 0.0418 1.0000

1/80 0.0002 2.0190 0.0267 1.0163 0.0119 1.0001 0.0209 1.0001

1/160 0.0001 2.0093 0.0133 1.0052 0.0059 1.0001 0.0104 1.0001

k = 1

1/5 0.0642 0.5544 0.1728 0.2354

1/10 0.0145 2.1445 0.2458 1.1730 0.0870 0.9902 0.1177 0.9993

1/20 0.0034 2.0652 0.1120 1.1339 0.0435 0.9976 0.0589 0.9985

1/40 0.0008 2.0301 0.0542 1.0451 0.0217 0.9994 0.0294 0.9995

1/80 0.0002 2.0143 0.0268 1.0141 0.0109 0.9998 0.0147 0.9998

1/160 0.0001 2.0070 0.0133 1.0046 0.0054 0.9999 0.0073 0.9999

k = 5

1/5 0.1252 0.4128 0.3113 0.5464

1/10 0.0281 2.1548 0.2508 0.7188 0.1565 0.9915 0.2748 0.9917

1/20 0.0066 2.0837 0.1284 0.9662 0.0783 0.9988 0.1375 0.9988

1/40 0.0016 2.0415 0.0643 0.9973 0.0392 1.0001 0.0688 1.0001

1/80 0.0004 2.0205 0.0321 1.0012 0.0196 1.0002 0.0344 1.0002

1/160 0.0001 2.0102 0.0160 1.0013 0.0098 1.0002 0.0172 1.0002

k = 10

1/5 0.1995 0.4324 0.3903 1.6516

1/10 0.0494 2.0153 0.3194 0.4371 0.1979 0.9794 0.8373 0.9801

1/20 0.0118 2.0683 0.1754 0.8646 0.0992 0.9973 0.4194 0.9974

1/40 0.0029 2.0421 0.0893 0.9733 0.0496 0.9997 0.2097 0.9997

1/80 0.0007 2.0223 0.0448 0.9956 0.0248 1.0001 0.1049 1.0001

1/160 0.0002 2.0114 0.0224 0.9999 0.0124 1.0001 0.0524 1.0001

Table 5.1: Convergence of the finite element scheme (5.14) for α = k2.
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5.3 Numerical examples

h
‖u−uh‖L2

‖u‖
L2

order ‖u−uh‖h
‖u‖h order

|u−uh|curl
|u|curl

order
|u−uh|div

|u|div
order

k = 1

1/5 0.0649 0.5529 0.1729 0.2354

1/10 0.0146 2.1492 0.2458 1.1697 0.0870 0.9904 0.1178 0.9995

1/20 0.0035 2.0662 0.1120 1.1335 0.0436 0.9976 0.0589 0.9985

1/40 0.0009 2.0304 0.0543 1.0450 0.0218 0.9994 0.0295 0.9995

1/80 0.0002 2.0145 0.0269 1.0141 0.0109 0.9999 0.0147 0.9999

1/160 0.0001 2.0070 0.0134 1.0046 0.0055 1.0000 0.0074 1.0000

k = 5

1/5 0.1607 0.3867 0.3115 0.5469

1/10 0.0326 2.3019 0.2480 0.6409 0.1565 0.9929 0.2748 0.9931

1/20 0.0075 2.1165 0.1281 0.9536 0.0783 0.9987 0.1375 0.9987

1/40 0.0018 2.0502 0.0643 0.9946 0.0392 1.0001 0.0687 1.0001

1/80 0.0004 2.0231 0.0321 1.0006 0.0196 1.0002 0.0344 1.0002

1/160 0.0001 2.0110 0.0160 1.0011 0.0098 1.0002 0.0172 1.0002

k = 10

1/5 0.4483 0.3429 0.4099 1.7347

1/10 0.0672 2.7374 0.3137 0.1284 0.1987 1.0447 0.8405 1.0454

1/20 0.0148 2.1866 0.1749 0.8428 0.0992 1.0019 0.4197 1.0020

1/40 0.0035 2.0664 0.0893 0.9703 0.0496 1.0004 0.2098 1.0004

1/80 0.0009 2.0273 0.0448 0.9949 0.0248 1.0002 0.1049 1.0002

1/160 0.0002 2.0123 0.0224 0.9998 0.0124 1.0001 0.0524 1.0001

Table 5.2: Convergence of the finite element scheme (5.14) for α = −k2.

h
‖u−uh‖L2

‖u‖
L2

order ‖u−uh‖h
‖u‖h order

|u−uh|curl
|u|curl

order
|u−uh|div

|u|div
order

k = 1

1/5 41.183 0.0015 0.4540 0.6146

1/10 41.698 -0.017 0.0005 1.6966 0.4398 0.0459 0.5947 0.0476

1/20 41.828 -0.004 0.0002 1.5043 0.4361 0.0119 0.5898 0.0120

1/40 41.861 -0.001 0.0001 1.4234 0.4352 0.0030 0.5885 0.0030

1/80 41.869 -0.000 0.0000 1.3895 0.4350 0.0008 0.5882 0.0008

1/160 41.871 -0.000 0.0000 1.3747 0.4349 0.0002 0.5881 0.0002

Table 5.3: Non-convergence of the finite element scheme (5.14).
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

h dof-h ‖h− hh‖h ‖h−hh‖h
‖h‖h order w.r.t. dof-h

α = 1

1/5 170 0.0020170812 1.1624543206

1/10 640 0.0014596589 0.8412087631 0.2439891112

1/20 2480 0.0010439860 0.6016543757 0.2474310882

1/40 9760 0.0007415150 0.4273388386 0.2497061840

1/80 38720 0.0005250301 0.3025775152 0.2505252099

1/160 154240 0.0003713494 0.2140105165 0.2505599558

1/200 240800 0.0003321473 0.1914181694 0.2504501719

α = −1

1/5 170 0.0021333017 1.2294328114

1/10 640 0.0015034630 0.8664532872 0.2639420700

1/20 2480 0.0010599082 0.6108303967 0.2580856962

1/40 9760 0.0007472096 0.4306206281 0.2551702286

1/80 38720 0.0005270525 0.3037429856 0.2532869465

1/160 154240 0.0003720655 0.2144232458 0.2519474417

1/200 240800 0.0003326599 0.1917135701 0.2513136839

Table 5.4: Errors in energy norm and convergence rate for h with respect to the degrees

of freedom, h-version in Example 3(fe/be coupling 5.25).
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5.3 Numerical examples

h dof-ξ ‖ξ‖V (‖ξ‖2V − ‖ξh‖2V )
1
2 order w.r.t. dof-ξ

α = 1

1/5 20 0.0003489617 0.0003489511

1/10 40 0.0001646595 0.0001646370 1.0837361987

1/20 80 0.0000694849 0.0000694316 1.2456251635

1/40 160 0.0000269819 0.0000268441 1.3709842442

1/80 320 0.0000100613 0.0000096858 1.4706607015

1/160 640 0.0000037343 0.0000025555 1.9222788474

1/200 800 0.0000027230

α = −1

1/5 20 0.0003640640 0.0003640448

1/10 40 0.0001683813 0.0001683398 1.1127401096

1/20 80 0.0000703053 0.0000702057 1.2617158325

1/40 160 0.0000271498 0.0000268908 1.3844759487

1/80 320 0.0000100947 0.0000093759 1.5200865467

1/160 640 0.0000037410 0.0000025610 1.9241725093

1/200 800 0.0000027270

Table 5.5: Errors in energy norm and convergence rate for ξ with respect to the degrees

of freedom, h-version in Example 3(fe/be coupling 5.25).
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h dof-φ ‖φ‖W (‖φ‖2W − ‖φh‖2W )
1
2 order w.r.t. dof-φ

α = 1

1/5 20 0.0003007662 0.0003007546

1/10 40 0.0001392414 0.0001392162 1.1112591635

1/20 80 0.0000589137 0.0000588542 1.2421110217

1/40 160 0.0000233855 0.0000232353 1.3408289386

1/80 320 0.0000090799 0.0000086855 1.4196329953

1/160 640 0.0000035594 0.0000023797 1.8678494785

1/200 800 0.0000026470

α = −1

1/5 20 0.0003150112 0.0003149910

1/10 40 0.0001426874 0.0001426428 1.1429039400

1/20 80 0.0000596844 0.0000595778 1.2595613093

1/40 160 0.0000235504 0.0000232787 1.3557626398

1/80 320 0.0000091149 0.0000083880 1.4726168404

1/160 640 0.0000035669 0.0000023858 1.8699730295

1/200 800 0.0000026516

Table 5.6: Errors in energy norm and convergence rate for φ with respect to the degrees

of freedom, h-version in Example 3(fe/be coupling 5.25).
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5.3 Numerical examples

h dof-h ‖h‖h (‖h‖2h − ‖hh‖2h)
1
2 order w.r.t. dof-h

α = 1

1/5 170 0.0517514059 0.0390386357

1/10 640 0.0441725639 0.0282315863 0.2444880286

1/20 2480 0.0395776551 0.0203026562 0.2433950506

1/40 9760 0.0369811976 0.0146087659 0.2402349191

1/80 38720 0.0355876850 0.0105967158 0.2329918388

1/160 154240 0.0348638630 0.0078291765 0.2189964978

1/200 240800 0.0347168123 0.0071459161 0.2049947195

α = −1

1/5 170 0.0550492986 0.0424331888

1/10 640 0.0462864284 0.0302090003 0.2563164096

1/20 2480 0.0411522141 0.0215326490 0.2499506465

1/40 9760 0.0383032688 0.0154042410 0.2444665714

1/80 38720 0.0367886139 0.0111154109 0.2367889920

1/160 154240 0.0360056484 0.0081582448 0.2237837145

1/200 240800 0.0358468907 0.0074262922 0.2110245629

Table 5.7: Errors in energy norm and convergence rate for h with respect to the degrees

of freedom, h-version in Example 4(fe/be coupling 5.25).
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h dof-ξ ‖ξ‖V (‖ξ‖2V − ‖ξh‖2V )
1
2 order w.r.t. dof-ξ

α = 1

1/5 20 0.0034582495 0.0034578042

1/10 40 0.0016986709 0.0016977642 1.0262200580

1/20 80 0.0007846831 0.0007827183 1.1170709903

1/40 160 0.0003524066 0.0003480099 1.1693648943

1/80 320 0.0001578402 0.0001477633 1.2358407851

1/160 640 0.0000714102 0.0000449430 1.7171188027

1/200 800 0.0000554937

α = −1

1/5 20 0.0038444560 0.0038440223

1/10 40 0.0018304028 0.0018294919 1.0711737064

1/20 80 0.0008318333 0.0008298270 1.1405605609

1/40 160 0.0003702129 0.0003656825 1.1822189543

1/80 320 0.0001649231 0.0001544854 1.2431214191

1/160 640 0.0000743616 0.0000468587 1.7210820019

1/200 800 0.0000577400

Table 5.8: Errors in energy norm and convergence rate for ξ with respect to the degrees

of freedom, h-version in Example 4(fe/be coupling 5.25).
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h dof-φ ‖φ‖W (‖φ‖2W − ‖φh‖2W )
1
2 order w.r.t. dof-φ

α = 1

1/5 20 0.0004555453 0.0004554769

1/10 40 0.0002366844 0.0002365527 0.9452159835

1/20 80 0.0001134675 0.0001131926 1.0633824574

1/40 160 0.0000516756 0.0000510692 1.4825405220

1/80 320 0.0000230079 0.0000216114 1.2406604906

1/160 640 0.0000102277 0.0000065034 1.7325113097

1/200 800 0.0000078938

α = −1

1/5 20 0.0051133846 0.0051127262

1/10 40 0.0025600687 0.0025587534 0.9986516559

1/20 80 0.0012038727 0.0012010732 1.0911169870

1/40 160 0.0005426186 0.0005363789 1.1629996273

1/80 320 0.0002401819 0.0002257315 1.2486448657

1/160 640 0.0001063980 0.0000677340 1.7366548937

1/200 800 0.0000820526

Table 5.9: Errors in energy norm and convergence rate for φ with respect to the degrees

of freedom, h-version in Example 4(fe/be coupling 5.25).
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