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Abstract

This thesis deals with the coupling of finite elements and boundary elements for electro-
magnetic interface problems, especially the skin effect in R3.

The first part (Chapter 1) is dedicated to the study of transmission problems of elec-
tromagnetic waves in materials with strong contrast. We report the ideas which were
developed by MacCamy and Stephan [30, 31|, who consider the scattering of time-
periodic electromagnetic fields by metallic obstacles, the eddy current problem. In this
interface problem different sets of Maxwell equations must be solved in the obstacle
and outside, while the tangential components of both electric and magnetic fields are
continuous across the obstacle surface. We present two solution procedures.One is an
asymptotic procedure which applies for large conductivity and reflects the skin effect
in metals. This asymptotic procedure gives for the computation of the solution of the
transmission problem a great reduction in complexity since it involves solving only the
exterior boundary value problem (perfect conductor problem). The latter is solved nu-
merically by the boundary element method. We give numerical experiments which show
the efficiency of this procedure. The other solution procedure is a new coupling method
with finite elements and boundary elements which allows the use of standard, conform-
ing test and trial functions which are easy to implement.

In the second part (Chapters 2, 3, 4) we consider two different problems in the whole
space R3, the scalar and the electromagnetic transmission problems. For both problems
we prove a priori estimates. We calculate the terms of an asymptotic expansion of the
electrical field and study its convergence. The ideas of this part are based on those of
Peron [42], who considered a bounded exterior domain, while we extend his results to
the case of an unbounded exterior domain. For this extension we use Beppo-Levi spaces
with weights at infinity.

The third part (Chapter 5) is concerned with a non-conforming fem/bem coupling to
solve the two-dimensional eddy current problem for the time harmonic Maxwell’s equa-
tions. We use Crouzeix-Raviart elements in the interior domain and piecewise linear and
piecewise constant boundary elements on the interface boundary.

Keywords. Skin effect, scalar and electromagnetic transmission problems, asymptotic
expansion, non-conforming FEM/BEM coupling.



Zusammenfassung

Diese Arbeit behandelt die Kopplung von finiten Elementen und Randelementen fiir
elektromagnetische Transmissionsprobleme, insbesondere den Skin-Effekt im R3.

Der erste Teil (Kapitel 1) ist der Analyse von Transmissionsproblemen von elektromag-
netischen Wellen in Materialien mit starkem Kontrast gewidmet. Wir wiederholen die
Ideen, die von MacCamy und Stephan entwickelt wurden [30, 31]. Sie betrachten die
Streuung der zeitperiodischen elektromagnetischen Felder verursacht durch metallische
Hindernisse, das sogenannte Wirbelstromproblem. In diesem Interface-Problem miissen
verschiedene Maxwell-Gleichungen einmal im Hindernis und einmal auflerhalb gelost
werden, wobei die Tangentialkomponenten der beiden elektrischen und magnetischen
Felder stetig tiber die Oberflache des Hindernisses sind. Wir betrachten ein asympto-
tisches Verfahren, das fiir grofle Leitfahigkeit giiltig ist und den Skin-Effekt im Met-
all beriicksichtigt. Das asymptotische Verfahren reduziert die Komplexitat des Aus-
gangsproblems, da jetzt nur noch das auflere Randwertproblem gelost werden muss.
Dieses 16sen wir numerisch mit der Randelementmethode. Unsere numerischen Exper-
imente zeigen die Effizienz des Verfahrens. Des weiteren leiten wir eine neue Finite
Elemente/Randelement-Kopplungsmethode fiir das Transmissionsproblems her, die er-
laubt stiickweise lineare sowie stiickweise konstante Ansatzfunktion im Innengebiet und
auf dem Rand zu benutzen.

Im zweiten Teil (Kapitel 2, 3, 4) betrachten wir zwei verschiedene Probleme iiber dem
ganzen Raum R3, das skalare und das elektromagnetische Ubertragungsproblem. Fiir
beide Probleme beweisen wir jeweils eine a priori Abschéatzung. Wir berechnen die
Terme einer asymptotischen Entwicklung des elektrischen Feldes und untersuchen ihre
Konvergenz. Die Ideen aus diesem Teil basieren auf der Arbeit von Peron [42], der ein
beschrianktes Auflengebiet betrachtet, wahrend wir seine Ergebnisse fiir den Fall eines
unbeschrankten Auflengebiets erweitern. Fiir diese Erweiterung benutzen wir Beppo-
Levi-Raume mit Gewicht im Unendlichen.

Im dritten Teil (Kapitel 5) wird das zweidimensionale Wirbelstromproblem fiir die zeit-
harmonischen Maxwell-Gleichungen mit einer Kopplung von nicht-konformen Finiten El-
ementen und Randelementmethoden gelost. Wir nehmen Crouzeix-Raviart-Elemente im
Innengebiet und stw. lineare sowie stw. konstante Randelemente auf dem Ubergangsrand.
Unsere numerischen Experimente zeigen die Effizienz dieser FEM/BEM Kopplung.

Schlagworter. Skin-Effekt, skalare und elektromagnetische Ubertragungsprobleme,
asymptotische Entwicklung, nicht-konforme FEM/BEM Kopplung.
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Introduction

This thesis deals with finite element and boundary element procedures for electromag-
netic transmission problems in R3. Special emphasis is on investigation of the behaviour
of the electrical and magnetical fields for material with higher conductivity. We analyze
the phenomenon of the skin effect with the aid of a multi-scale analysis and numerical
simulation.

In Chapter 1 we present asymptotic expansions with respect to inverse powers of con-
ductivity for the electrical and magnetical fields and report the algorithm of MacCamy
and Stephan [31] which allows to compute the expansion terms of the electrical field
in the exterior domain by solving sucessively only exterior problems (so-called perfect
conductor problems) with different data on the interface between conductor (metal) and
insulator (air). We solve these exterior problems numerically by applying the Galerkin
boundary element method to first kind boundary integral equations which were origi-
nally introduced by MacCamy and Stephan in [30]. This system of integral equations
on the interface X results from a single layer potential ansatz for the electrical field
and has unknown densities namely a vector field and a scalar function on ¥ which we
approximate with lower order Raviart Thomas elements and continous piecewise linear
functions on a regular, triangular mesh on 3. As in the two dimensional case, investi-
gated by Hariharan [22, 23] and MacCamy and Stephan [32], the asymptotic procedure
gives for the computation of the solution of the transmission problem a great reduction
in complexity since it involves solving only the exterior problem and furthermore only
a few expansion terms must be computed. This is due to the fast convergence of the
expansion for large conductivity which we obtain in Chapters 3, 4 by extending Peron’s
results [42] - valid for a bounded domain - to our transmission problem with unbounded
exterior domain. We describe in detail how to implement the boundary element method
for the perfect conductor problem. As an alternative to the asymptotic expansions for
the solution of the transmission problem we introduce a new finite element/boundary el-
ement Galerkin coupling procedure which converges quasi-optimally in the energy norm
(Theorem 2).

In Chapter 2 as in Peron [42] we investigate a scalar transmission problem for the Lapla-
cian with parameter. But we use a setting in Beppo-Levi spaces (Sobolev spaces with
weight) to incorporate in a weak sense the decay condition at infinity; in this way we
extend Peron’s results [42, 7] to an unbounded exterior domain.

In Chapter 3 we analyze electromagnetic transmission problems (Maxwell’s equations)



in R3 for a large parameter in weighted spaces (vectorial Beppo-Levi spaces). Again
we follow Peron but consider unbounded exterior domains. Therefore we must consider
appropriate weighted spaces and use a Helmholtz decomposition for the electrical field
in weighted spaces obtained by Girault [18], and compactness results for the embedding
in weighted Sobolev spaces by Avantaggiati and Troisi [2]. These ingredients allow us to
derive an a priori estimate for the solution of the regularised Maxwell’s interface prob-
lem which holds uniformly with respect to the conductivity parameter. In deriving this
result we follow step by step Peron’s approach [42] and modify it appropriately for the
unbounded exterior domain. Our a priori estimate (Theorem 6) implies uniqueness and
existence of the solution of the electromagnetic transmission problem in weighted spaces
(Theorem 5).

In Chapter 4 we mainly report on Peron’s results for an asymptotic expansion of the
electrical field for large conductivity [42, 15]. We show that his results (for a bounded
exterior domain) remain valid for an unbounded exterior domain. Since as we have
shown in Theorem 5 the solution of Maxwell’s interface problem is unique, it can be
obtained on the other hand by the boundary integral equation procedure by MacCamy
and Stephan [31] considered in Chapter 1. This on the other hand shows that the formal
asymptotic expansion in Chapter 1 converges, too, and the effectiveness of the procedure
in Chapter 1 (computing only a couple terms in the expansion via solving only perfect
conductor problems) is guaranteed.

In Chapter 5 we present a non-conforming finite element/boundary element coupling
method to solve the two-dimensional eddy current problem for the time harmonic Maxwell’s
equations. Here we combine the approach by Brenner et al. [4, 5, 6] for the fem part
with the approach by Carstensen and Funken [8] for the fem/bem coupling. We present
numerical simulations which show the effectiveness of our non-conforming fem/bem cou-
pling method.



1 Asymptotic expansion for large
conductivity, skin effect and
boundary element computations

We consider the scattering of time periodic electro-magnetic fields by metallic obstacles,
the eddy current problem. In this interface problem different sets of Maxwell equations
must be solved in the obstacle and outside, while the tangential components of both
electric and magnetic fields are continuous across the interface. In Subsection 1.1 we
describe an asymptotic procedure from [31] which applies for large conductivity and
reflects the skin effect in metals. The key to our method is to introduce a special
integral equation procedure (derived in [31]) for the exterior boundary value problem
corresponding to perfect conductors (see Subsection 1.2). The asymptotic procedure
leads to a great reduction in complexity for the numerical solution since it involves solving
only the exterior boundary value problem. In this chapter we extend the procedure
from the two-dimensional case in [32] to three dimensions. Furthermore we introduce in
Subsection 1.3 a new fem/bem coupling procedure for the transmission problem. Finally,
in Subsection 1.4 we consider the implementation of the Galerkin elements for the perfect
conductor problem and present numerical experiments in Subsection 1.5.

1.1 Asymptotic expansion for large conductivity and
skin effect

Let Q_ be a bounded region in R? representing a metallic conductor and €, := R3\Q_
representing air. Throughout Chapter 1 we assume that the boundary ¥ of Q_ is a
regular analytic surface. The parameters €, u, o denote permittivity, permeability and
conductivity. We assume zero conductivity in €2,. Let the incident electric and magnetic
fields, E° and H?, satisfy Maxwell’s equations in air. The total fields E and H satisfy
the same Maxwell’s equations as E° and H® in Q but different equations in Q_. Across
the interface ¥ := 0Q)_ = 0€2,, the tangential components of E and H are continuous.
E — E° and H — H" represent the scattered fields. All fields are time-harmonic with
frequency w. As in [31] we neglect conduction (displacement) currents in air (metal).



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Then, with appropriate scaling, the eddy current problem is (see [31], [44])

Problem (P,p): Given parameters a and 5 > 0, find E and H such that

crlE=H, crl H=0o?E in Q, (air)
curlE=H, cwrlH=4i8’E in Q_ (metal) (1.1)
E;=E;, HI=H,, on .

1
%E(x) —iaE(x) =0 (—) with r =|x|, as [|x]| — oo.

r2

Here o? = w?ppeg and 5% = wuo — iw?ue are dimensionless parameters, and

3% = wpo > 0 if displacement currents are neglected in metal (¢ = 0). Here e.g. Ef.
denotes the limit from €2, of the tangential component on 3.

At higher frequencies the constant ( is usually large leading to the perfect conductor
approzimation. Then in (1.1) one only solves the equation in €, and requires E; = 0
on Y, that is

Problem (P,u):For given EJ and o > 0, find the scattered fields E and H such that

crlE=H, curlH=0o’E in Q,
(1.2)
E;r = -EJ, on X.

Remark 1. There exists at most one solution of problem (P,g) for any o > 0 and
0< B <o (see [39]).

We are interested in an asymptotic expansion of the solution of problem (P,3) with
respect to inverse powers of conductivity. With 7 denoting the distance from > measured
into Q_ along the normal to ¥ the expansions read (see [31]):

E~E’+ iEnﬁn in Q (1.3)
n=0
H~H+ i H,5™ in Q (1.4)
n=0
E ~ ¢ V0T iEnﬁn in Q_ (1.5)
n=0
H ~ e V0T iHnﬁn in Q_ (1.6)
n=0



1.1 Asymptotic expansion for large conductivity and skin effect

Here E, and H,, are independent of § which is proportional to y/o. The exponential-
factor in (1.5) and (1.6) represents the skin effect. Next we present from [31] these
expansions for the half-space case where the various coefficients can be computed recur-
sively. Note Ey and Hy in (1.3) and (1.4) is simply the perfect conductor approximation,
that is, the solution of (P, ). As observed in [31] E,, and H,, in (1.3) and (1.4) can
be calculated successively by solving a sequence of problems of the same form as (P,o0)
but with boundary values determined from earlier coefficients. The E,, and H,, in (1.5)
and (1.6) are obtained by solving ordinary differential equations in the variable z3.

In the half-space case Q; = R} ie. z3 > 0 and Q- = R? ie. x3 < 0 a formal proce-
dure to compute E,, H,, was given by MacCamy and Stephan [31]. They substitute in
(1.3)-(1.6) into (P,g) for ¥ = R? and equate coefficients of 37™. Here we give a short
description of their approach.

Let x = ¥V~ and decompose fields F into tangential and normal components

F =5+ fes, § = Fleg + Fley, (1.7)

with orthogonal component 4 = e; x §, and unit vectors e; (i = 1,2, 3).
Then one computes with the surface gradient gradr for the rotation

curl F = §2. — (grady f)* — (div)es (1.8)

and
curl(XF) = x[V—=ifF" + 2, — (gradp f)* — (div §H)es]. (1.9)

Now setting E,, = &, + £,,e3 one obtains for 3 < 0
CUI'l E ~ X{ \% 6gl + Z 1% g n+1 + n x3 (gradT En)l - (le 5¢)e3]6_n}7 (110)
and

curl curl E ~ y {iBZEO — V=iB&y z, + V—iBdiv Eyes + Z [iﬁ&wl — V=€ 41,24
n=0

—V —’Lle €n+1e3 — vV _iﬁgn,xg — €n7$37x3 —+ le €n7$383

+v—ipgrad ¢, + (grad; ¢,)., + div grad €n83:| B~ + grad div ﬁ’"eg}

= X[’LB2(€O + Z.ﬁ2£063 + 2651 + ’iﬁfleg + Z(l€n+2 + ’L[n_i_geg)ﬁin] ~ 262E
n=0
(1.11)

Hence, equating coefficients of 32 and 3, respectively yvields ¢y = 0, if; = /—idiv & and
&y = 0 implying Ey(z1, 22, x3) = E(21, 22, 0).



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

As coefficients of 3° one obtains

—V =& 4y + vV —igrad {4 = 0,
Vv —idiv & + div & 5, — grad div & = ils.

Now the gauge condition div & = 0 implies ¢; = 0 and div & ,, = 0, hence & ,, = 0
and /—idiv & = il,.

Thus & (z1, x2, x3) = E1(x1, 29, 0).

Equating coefficients of 371 in (1.11) gives

—\/—_ié'g,m — \/—_ié'g,m + v/—igrad l, = 0,
V—idiv & — grad div & = ils.
Setting N
H=x> (Hq+hnes)s" (1.12)

n=0

MacCamy and Stephan obtain in [31] with ¢, =0, hy =0 & = 0:

V=il + &y, = Ho, V—iHy =i€1, ho =div &y =0. (1.13)
and
V—ily + &y, =M1, V—-iHt + Moy, =& (1.14)
hy = —div &, —div Hy = ils. (1.15)
and
HO,:Bg = 51,:1:3 =0
(1.16)

Ho =V —i& in z3<0
For z3 > 0, we have with curl E = H yields

curl E° + ) " cwrl B, 37" =H+ > H,8™"

Equating coefficients of 57" one finds in x5 > 0
curl E° = H°, cwlE, =H,, n>0,
(and corresponding due to curl H = o?E)
curl H? = o’E°?, cwrl H, = o’E,,, n > 0.

With the above relations the recursion process goes as follows. First one use (6.10) for
n =0 and (6.13), in [31], to conclude that

curl Eg = Hy, curl Hy = o’E, in x3 >0

El = —(E})", on x3 = 0.



1.1 Asymptotic expansion for large conductivity and skin effect

Now (Eg, Hy) is just the solution of (P, ) which we can solve by the boundary integral
equation procedure (1.29), (1.30) introduced by MacCamy and Stephan in [31] and
revisited below in Section 1.2. But from (1.1)3 we obtain

Hy =H$ = (Hp)f on z3=0. (1.17)
Now the right side of (1.17) is known and easily computed. Then (1.1)3 and (1.17) yield
()7 = (E))y =& = —Vi(Hy)™ = —Vi((Ho)p)* (1.18)

Therefore by (6.10), in [31], we have a new, again solvable problem for (E;, H;) which
is just like (P,so), that is

curl By = H;, curlH; = ’E; in z3 >0,

but with new boundary values for E7 as given by (1.18).
For the complete algorithm see [31]. Note, with A = /—i we have & (z1,22,0) =

1
—X(n x curl Eg) yielding in z3 < 0

Ei (21, 9, 23) = / MTEN (1), 29,0)dT3 = —)\Tlﬁ(n x curl Eg)[e™7 — 1]
0
A comparison with Peron’s results (see Chapter 5 in [42]) shows that W;d(ya, h,) =
e_\mﬁTEj, J >0, in Q9 \Y; = /=i and w; = ¢;. Furthermore we see that the first
terms in the asymptotic expansion of the electrical field for a smooth surface ¥ derived
by Peron [42] coincide with those for the half-space x3 = 0 investigated by MacCamy
and Stephan [31], namely ¢y = wy = 0, {1 = wy = 0, & = W = 0.

Remark 2. Since due to Theorem 5 in Chapter 3 there exists only one solution of
the electromagnetic transmission problem for a smooth interface this solution can be
computed by the boundary integral equation procedure below, when we assume that (1.22)
holds. Then for the electrical field E obtained via the boundary integral equation system
we have that in the tubular region Q4 (6) = {z € Qq, dist(z,X) < d} there holds for the
remainders E=CY obtained by truncating (1.8) and (1.5) at n =m

|’E£70|’W(curl,ﬂi3) < Clpimil and ”mmHLQ(Qi@)) < Cpe™T

for constants C,Cy,Cs > 0, independent of p.

We set

( m
EO + ZEkﬁik in T3 > 0
k=0
- (1.19)

XZEkﬁ_k in z3<0
k=0



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

( m
HO -+ ZHkﬁik in XT3 > O
k=0
Em = (1.20)
XZHkﬁ in x3<0
\ k=0

where y = e\/fw“, for 3 < 0 and m > 0.
We call these the m'" order asymptotic approximations.

Now we have the following result which follows readily from the definition of the E; and
H,.

Theorem 1. For each m > 0,
curl curl E,, — o*E,, =0, in z3 > 0,
curl curl E,, — iB*E, = F,, + curl G,, = ?‘m, m x3 <0,
(1.21)
(E,)r— (E})r =0, on x5 =0,

(ﬂ;)T - (EL)T - (CUTZE;L)T - (CUTZE;;)T - (gm)T =0m, ON T3 = 07
Where
X = eﬁﬁm

Om = XI:STJ)’;{L'S - (gradT Em)L - Hm]ﬁ_m
Fo = X(V=iHy + Moy 4y — (gradp hmy) ™ — (divH;, ) es) 5~
(Mo, — (gradp hyn) ™ — (divH; ) e3) 3]

Proof. In x3 > 0, from (1.19), (1.1) and (1.8)

curl E,, =cwrl E®+ >0 (curl Ey)57*

=H’+ 3" JHy 57,

then
curl curl E,, = curl H + Y77 (curl Hy)3~*
— a2E0 + ZZL:O OzQEkﬁ_k
— a2Em7
then

curl curl E,, — o’E,,, = 0.



1.1 Asymptotic expansion for large conductivity and skin effect

In z3 < 0, from (1.19), (1.1) and (1.9)
curl B, = 350 o (curl(xE)) 5~

= Yo X [V=iBE + Eiy, — (grady G) " — (div & Jes] B
= X[V—IBES + 35y Vi 87
+ 30y — (grady L) — (div & )es) 7]

=H,, =x 3 (He + hes) 3",
but from (7,,) and (1}) in [31]
V=i + &, — (grady )t = Hy, k=0,1,2...
hy, = —div &S, k=0,1,2...
and from (6.13) in [31] £ = 0, then
cwl E,, — H,, = x[£;, ., — (grady £y)" = Ml 87" =: G,

and

curl Hy, =370 (curl(xHy))57"
= Yoo X [V=iBHE + Hir,, — (grady hy)t — (div Hi)es] 57
= x[V=iBHy + 310 V=M, 57
+ > o (M, — (grady hy) ™ — (div Hy)es) 5]
= if?E,, = iB°X Yi_o(Ek + Lres) 3"

= X[’LB2(€O + Z.ﬁ2£063 + 2651 + ’iﬁfleg + ZZL:BQ(ZE/']H_Q + i€k+2e3)6*k].
But from (I1,) and (I})) in [31]
V=it + My, — (grady i)t = iEppn, k=0,1,2...
lppo = idivHy, k=0,1,2...

and from (6.13) and (6.14) in [31] & =0, £y =0, ¢, = 0 and i&; = /—iHj,
then

curl H,, —if’E,, = x[(V—=1H;) + Hp-1,05 — (grady hy—1)* — (div H;,_y)es) 577
"‘(Hm,xs — (grad; hm)l — (div H#Je?o)ﬁ_m]

=F,,



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

then
curlcurl E,, — curl H,, = curl G,,,,
then
curl curl E,, — i8%E,, — F,, = curl G,,,
then

curlcurl E,, — iB2Em =F,, +culgG,, = f‘m

In 23 =0, x =1, from (1.19) and (1.1)

(B)r =ES+ (Cr BB ™),
= Ef + S (B8
=E7 + 2L (By)r87" + (Eo)7
=E} + (E,)r - E}

= (E,.)r,

then (E,,)r — (E},)r = 0.
On the other hand

and

(n x (cwrlE,, x n))* = (curl E°)f + Y7 (curl Ey) 57"
- Hg“ + E?:(J(Hk);ﬁ_k

= (H,)7,

10



1.2 Boundary integral equation method of the first kind
(0 x (curl E,, x n))™ = x[324L vV=iB(E)rB™" + 3200 (€, ) — (grady £x)7) 57"
= XV=iB(E)r + X050 V=il s
+ 2o (Eay)r — (grady G1)7) 57
= X 2o (H) 87 4+ X (& o7 — (grady £,)7) 7™
= (H,)7 — x(H)rB8™™ + X((Eq )7 — (grady bn)7) 7™

= (Em); + (gm)Tu

then (H, )y — (H')r = (cutl E))7 — (cutl EX) 7 — (G 7 O

The convergence of the asymptotic expansion can be derived from the results of Peron
[42], modified in Chapter 4 where the case of an unbounded exterior domain is treated
whereas Peron considered the case of a bounded exterior domain. Since the solution of
problem (P,z) is unique, the results of Chapter 4 apply to the solution of (1.1).

1.2 Boundary integral equation method of the first kind

Next we describe the integral equation procedure for (P, ) from [31].
We note the following well-know result:

Remark 3. There exists a sequence {ay}32,, such that if a # oy, then curl E = H,
curl H= o*E in Q,, Er =0 on X implies E= H=0 in Q.

Now we require that
ata, k=1,2,... (1.22)

This integral equation procedure is based on the Stratton-Chu formula [44]. Let n denote
the exterior normal to . Any vector field v on ¥ can be written as

Vv=vr+uyn, vpr=nx(vxn) (1.23)

with tangential component vy of v.
We define the single layer potential V,; for density v (correspondingly for a vector field)
for the surface ¥ by

IKT

e

Vo(h)(z) = / BY)Gallx — y))ds,, Golr) (1.24)

= Anr

For a vector field v on ¥ we define V,(v) by (1.24) with v replacing 1.
Next, we collect some well-known results about the single layer potential V.

11



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Remark 4. [31, Lemma 2.1,Lemma 2.2] For k € C, 0 < args < g and any ¢ € C°(X)
there holds:

(i) V.(1) is continuous in R3,

(i) AVe(®) = —k2Vo() in O U9,

ik| |

2]

e

(iii) Vu()(@) = O (
(iv)

) as |z — oo,

<a%viw)<‘”>)i:%¢<w>+ / K. (2, y)¢(y)ds,, on 3,

where K.(z,y) = O(|lz—y|™") as y — =

(v)
1

(nx curl V,(v)(x))* = ii'v(w) + % /2 K. (z,y)v(y)ds,,

where the matriz function K, satisfies K.(x,y) = O(|z— y|™') as y — =

For problem (1.1);, in Q. the Stratton-Chu formula gives

E=V,(n x H) — curl V,(n x E) + grad V,(n - E),
(1.25)
H = curl V,(n x H) — curl curl V,(n x E).

Now for given nxH, nxE and n-E on 3, (1.25) yields a solution of (P, ). Unfortunately
we know only n x E. The standard treatment of (P, ) ,setsn x H=0and n-E =0
in (1.25) and replaces —n x E by an unknown tangential field L yielding

E = curl V,(L), H = curl curl V,(L). (1.26)

Then the boundary condition in (1.2) yields an integral equation of the second kind for
L in the tangent space to .

The method (1.26) corresponds to solving the Dirichlet problem for the scalar Helmholtz
equation with a double layer potential ansatz. But having found L it is difficult to
determine Hy, on X, because one must compute a hypersingular integral operator which
is still a challenge for numerical simulations since for calculating n x H on ¥ one has to
compute a second normal derivative of V,(L).

The method in [31] for (P,s) is analogous to solving the scalar problems with a simple
layer potential (see [26]). MacCamy and Stephan use (1.25) in [31] but this time they
set n X E = 0 and replace n x H and n - E by unknowns J and M. Thus they take

E =V,(J) +grad V,(M), H = curl V,(J). (1.27)

After having determined J then they can use Remark 4 to determine n x H, hence Hrp
on .

12



1.3 FEM/BEM coupling for the interface problem

With the surface gradient grad,¢ = (grad ¢))r on ¥, the boundary condition in (1.2)
and (1.27) imply, by continuity of V,,

nxE=nxV,(J)+n xgrad V,(M) = —n x E
or equivalently
Vo) + grad, Vo (M) = —EJ. (1.28)

We note that for any field v defined in a neighborhood of ¥ one can define the surface
divergence divy by

. . v
divv = divp v+ —n.

on
As shown in [31, Lemma 2.3], there holds for any differentiable tangential field v,
div V,(v) = Vi (divyr v) on X.

As derived in [31] setting divE = 0 on X yields therefore with (1.27)
0 =div E = div V,(J) + div grad V,(M)
and div gradV, (M) = —a?V, (M) gives immediately
Vo(divy J) — oV, (M) = 0. (1.29)

In subsection 1.4 we will investigate a boundary element method for (1.28) and (1.29).

1.3 FEM/BEM coupling for the interface problem

Next we introduce a new coupling method for the interface problem (P,s). Integration
by parts gives in {2_ for the second equation in (P,z) with yvE = (curl E) x n, ypE =
n x (E x n)

/ curl E - curl vdx — / i°E - Vdx — / YWE - vpvds = 0. (1.30)
_ _ 2
Therefore with yyE = Y4E + yvE® and setting E = V,(J) + grad V, (M) in Q, we
obtain

/ curl E-curlvdx—/ zﬂzE-de—/ Vi (Vo (J)+grad VQ(M))wEVds:/fYNEolengs.
> >

1 1
Note that 7;(Va(J) + grad V(M) = EJ + §KQ(J) where K, is a smoothing operator.
As shown in [31, Lemma 4.5] there exists a continuous map J,(J)r from H"(X) into
H™ (X)), for any real number r with

diVT VQ(J)T = Va(diVT J) + Ja(J)T. (131)

13



1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

As shown in [30] the following system of boundary operators on ¥ (which is equivalent
o (1.28) and (1.29))

VaJ)r + grady Vo (M) =-E7
(1.32)
—Ja(J)T — (AT + QQ)VQ(M) = diVT ng

is strongly elliptic as a mapping from H_%(E) x Hz (3) into H%(Z) X H*%(E), where
grad,(divy) denote the surface gradient (surface divergence) and Ar the Laplace-Beltrami
operator on X.

Now, our fem/bem coupling method is based on the variational formulation: For given
incident field E” on ¥ find E € H(curl,Q_), J € H*%(Z) and M € H2 (%) with

1
/ curl E - curl vdx — / if?E - Vdx — 3 / (J+Ka(J)) - yHvds = / YNE" - yfvds,
b )

/Va(J)T-de—l—/gradTVa(M)-de:—/EOT-de,
% % %

—/ Jo(J)rm dS — /(AT + 0 )\Wo (M)m dS = / (divy ES) mds,
) b b
(1.33)
Vv € H(cur, Q_), j e H2(X), m € H2(%).
In order to formulate a conforming Galerkin scheme for (1.33) we take subspaces H} C

_1 1
H(curl,Q_), H, * C H_l(E) H? C H%(E) with mesh parameter h and look for E;, € H},
_1
JpeH, 2, ZMhGH2 such that for anythHh, heHh , Mp, €H2

<A(Eh7 Jh7 Mh)7 (Vh7jh7 mh)> = <]:7 (Vh,j]—” mh)> (134)
where A is the operator given by the left hand side in (1.33), F = (yyE°, —E%, divy EY).

Theorem 2. 1. System (1.33) has a unique solution (E,J,M) in X = H(curl,Q_) x
H2(X) x H2(X).

1 1
2. The Galerkin system (1.34) is uniquely solvable in X, = Hj, x H, ® x H? and there
exists C' > 0, independent of h,

| E— EhHH(curl,Q,) + | = Tl + [|M — My]| 1

1
H 2(%) o3 (%)

(1.35)

<c int 1B olleuta 9=y 1M =l )

where (E,J, M) and (Ep, Jy, My) solve (1.33) and (1.34) respectively.

Proof. First we note that system (1.33) is strongly elliptic in X which follows by considering
A as a system of pseudodifferential operators (cf. [30]). The only difference to [30] is that here

14



1.4 Galerkin procedure for the perfect conductor problem (Pey,)

we have additionally the first equation in (1.33). If we note AE = curl curl E — grad div E and
take div E = 0 we have that the principal symbol of A has the form (with |¢]|? = 2 4 £3)

24 ¢2 0 0 1 0 0
€% + &3 E,
0 242 0 0 1 0
€% + &3 5,
0 0 I€2+€ 0 0 0 -
3
o(A)(€)(E,J, M)t = . ; 1 it (1.36)
€] el J!
1 . 1 JZ
0 0 0 0 — ify—
aq e
M
0 0 0 0 0 €|

where (E1, Es) = Ep and Ej3 is perpendicular to x3 = 0. Here & = (£;,&2) is the dual variable
in the Fourier transform to (z1,22) and {3 is the dual variable to xs.

Obviously the upper left and the lower right sub blocks are strongly elliptic (see [30] for the
lower sub block). Assuming that (o,v/i3) is not an eigenvalue of (P,5) we have existence
and uniqueness of the exact solution. Due to the strong ellipticity of A there exists a unique
Galerkin solution and the a priori error estimate holds due to the abstract results by Stephan

and Wendland [43]. O

1.4 Galerkin procedure for the perfect conductor
problem (P,

Next we consider the implementation of the Galerkin boundary element methods and present
corresponding numerical experiments for the integral equations (1.28) and (1.29). These ex-
periments are performed with the program package Maiprogs, cf. Maischak [34, 36], which is a
Fortran-based program package used for finite element and boundary element simulations [35].
Initially developed by M. Maischak, Maiprogs has been extended for electromagnetic problems
by Teltscher [45] and Leydecker [28].

We will investigate the exterior problem (P,s) by solving numerically the integral equations
(1.28) and (1.29) with Galerkin’s methods:

Testing with arbitrary functions j € H_%(E) and m € H%(E) in (1.28) and (1.29), we get

/VQ(J)T-de+/gradTVa(M)-de:—/EOT-de,
b > b
(1.37)

—/Va(divTJ)-mdS—i—az/Va(M)-mdS:O.
b b
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Partial integration in the second term of (1.37);

/ grad;Va(M) - jdS = — / Vo(M) - divyj dS
by b))

shows that the formulation (1.37) is symmetric: By definition of symmetric bilinear forms a,
¢, of the bilinear form b and linear form ¢ through

a(J,j)::/EVa(J)T-de, c(M,m):a2/2Va(M)-mdS, é(j):—/EE%-de

b, m) = — / Vo(dived) - m dS = — / Vi(m) - divrd dS.
> >

the variational formulation has the form: Find (J, M) € H_%(E) x H? (X) such that

a(J,j) + b, M) = £(j)
(1.38)
b(J,m) +c(M,m) =0

for all (j,m) € H2(X) x H2(X).

We now proceed to finite dimensional subspaces R, C H_%(E) of dimension n and M} C
H %(E) of dimension m, and seek approximations J;, € R}, and M), € My, for J and M, such
that

a(Jn,J) + b0, Mp) = £(j),
(1.39)
b(Jpn, m) + c(Mp,m) =0

for all j € Ry, and m € My,
Let {t,}i; be a basis of Ry, and {¢;}72; be a basis of M. Jj, and M}, are of the forms

Jp = Z)le and M) = Zuj@j' (1'40)
i=1 Jj=1

Inserting (1.40) in (1.39) provides

Do Nia@hi ) + > b ¢5) = Lty
i=1

! (1.41)

D Aib(wh,00) + Y picles, o) =0

i=1 j=1
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1.4 Galerkin procedure for the perfect conductor problem (Pe)

for all ¥, and ¢, 1 <k <n,1 <] <m.
With matrices and vectors
= (a(’lpz"d}k))l,k € Cnxn,
= (b(/l:bza @l))i,l S CnXm7
C = (c(pj, p1))j € C™m™,
(1.42)
A= ()\z)z e Cn,
p = (py); € C™,

£:= (((Yp))r € C™.

(5 e)(2)-(0) s

We have considered with {t,};_; a basis of R, and {;}]L; a basis of M},. These functions,
are chosen as piecewise polynomials. To win these bases, we consider suitable basis functions

(1.41) has also the form

locally on the element of a grid, i.e. on each component grid.
If we start from a grid

(S, with U Y=Y
1<k<N

with N elements, and let {'l,Ab 3, and {@}A_l respectively bases on a square reference element
5. The local basis functions on an element X, are each {1, ity or {p i

First we calculate
= (a(®;,,¥i.))i..j. € C™",

where 1p; or 9, are the basics function of Ry and

N
a(th;. ;) = /E Valth, )r - th dS =3 /E Vit )7 - ;. dS,
k=1 k

We test each local basis function against any other local basis function and sum the result to
the test value of the global basis functions, which include these local basis functions.

Let Iy = {1,..., N} the index set for the grid elements, I; = {1,...,n} the index set for the
basic functions on the reference element and I,, = {1,...,n} the index set for the global basis
functions.

Let ¢ : Iy x I;; — I, the mapping from local to global basis functions such that {(k,i) = j, if
the local basis function 1), ; component of the global basis function is ;.

Let ¢! the set of all pairs of (k, ) with ¢(k,j) = i, then

/v (W) ds= 3 % / Va(thu)r - i dS

(kz 7j)E

¢ 2) C (js)
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

-3 > [ a0 ) i) sy dsic

(k i (lJ
C (ZZ) C (Js)
We are dealing in this implementation with Raviart-Thomas basis functions. The transfor-
1
mation of these functions requires a Peano transformation 4 ; = [det Ay |Ak1/12 Thus, if

a; X a

Ay = (a1, a2), det Ay, is calculated by det A = (a3 x ag)- . The Peano-transformation

lay X as||
of the local basis functions to the basic functions on the reference element then gives

= 33 [ [ Gl s o a5, a5

(k i (lJ

C (ZZ) C (9s)
(1.44)

) // IdetAt(;e?L”(’z (R)'(Ax)" - Aigp;(§) dSy dSx

(k i (17]

C (ZZ) C (Js)

with x = a; + A;X and y = a; + A;y, and referent element s
The calculation of the integrals with Helmholtz kernel G, is not exact. We consider the
expansion of the Helmholtz kernel in a Taylor series. There holds

Lyl 1 1 (cvi)?

1+ ailx —y|+ 2

-y +

Cal =¥ = =y =y
The first terms are singular for x = y and the corresponding integral is treated by analytic
evaluation in Maiprogs, cf. [33, 34, 36], but the integrals of all other summands can be calcu-
lated sufficiently well by Gaussian quadrature.

We compute

b(aps, 05.) = — /Z Va(Vr -1hi.) - 0, dS

-y VeV tbir oy dS

(k, Z) (lJ

¢l €6 (1.45)

Z Z // Ga(|x = y)V7T -y i(¥) - ¢1,(x) dSy dSx.

(k1)
Czp (Zz)gp (]s

with C;bl = ( described above, and C;l, the analogously defined map for the basic functions
of M h-

While a transformation of the scalar basis functions is not required, the transformation of the
surface divergence of Raviart-Thomas elements is carried out by Vr -, ; = |dT1Ak\§ . zzz and
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1.4 Galerkin procedure for the perfect conductor problem (Pe)

we have

= Golx=¥De 5 (o5 (=
b(th;.,, ¢j,) = k)e 2 // deid Y Yii(¥) - P1,5(X) dS5 dSk

Cw iz Cw gs)

(1.46)

with y = a, + A,y and x = a; + A/X.
The calculation of ¢(g;, ;) is similar to the above-mentioned case. Thus, for a possible p-
version bem one would proceed with

P

i i) = D D D 33D ek A ) (1.47)

(kl) (1,j)e £=0A=0p=0v=0
1

¢l €L G

with ¢, = a2km>\k:jw, to v = (i,7,K, A, 4, ). For piecewise constant ¢, it follows
C(SOZ‘Z ) SO_]S) = a2VéZ7jS (07 07 07 0)7 (148)

where

VR (A, v) = [ [ Go(|x — y|) 555747 dSy dSk. (1.49)
»JY

The calculation of the right-hand side in (1.38) looks simple, since there are no single layer
potential terms. However the right hand side must be computed with quadrature.

The quadrature of an integral over f on the reference element is determined by the quadrature
points X, ,, and the associated weights w,, = w, - w,. We perform the two-dimensional
quadrature as a combination of one-dimensional quadratures in each x and y direction, and
use the weights from the one-dimensional quadrature formula. With n, quadrature points in
z-direction, and n, quadrature points in y-direction, then the quadrature formula reads:

Ny

Z Z f(X;,5) - wiw;. (1.50)

i=1 j=1

The quadrature points on the square reference element and the corresponding weights for
Gaussian quadrature are already implemented in Maiprogs. For triangular elements, we use
Duffy transformation.

Now we comment on the calculation of the right hand side in the Galerkin formulation, i.e.
the linear form /¢, applied to the bases functions 4;, i = 1,...,n. The quadrature takes place
on the reference element. We decompose the global into local basis functions and then use the
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Peano-transformation for the Raviart-Thomas functions. It is therefore

() = — / (B9.(x)) - 4, (x) dS

—= % [ ®He0) v ds
(k,i)e k
Cil(ir)

—— 3 [ ) (R S

=— Y [ (B oty (R)|det Ay | dSg
|de tA |

then

(W) == Y [BHG0) - A hyi(R) dSs (151)
with x = a, + AxX. Applying (1.50) leads with n, = n, :=n to

Z Z Z ET Xy, 22 Ak ’ Q/Lk,i(iihiz) * Wiy Wiy (1'52)
(kjp)e i1=11i2=1
¢ Hir)

with x; ; = ay, + AgX; ;. As before, the task is carried out by looping through all grid compo-
nents, and the values are added to the entries for each of its base function.

The electrical field can be calculated by post-processing.

The subroutine

subroutine electricfield(x,nx,spl,sp2,ckoml,ckom2,electric)

compute the electrical field
Ej, = Vo(Jp) + grad Vo (Mp,) (1.53)

with the help of subroutines
subroutine vpsi232(x,nx,spl,ckoml,vp)
and

subroutine grdvpsi2(x,nx,sp2,ckom2,grvp)
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1.5 Numerical experiments

Where vpsi232 calculates the first term on the right side of equation (1.53) and grduvpsi2 the
second term respectively.

We proceed as follows:

We have for the first term in (1.53) with (1.40);

=Y "\ [ Gallx — y)eb(y)dSy. (1.54)
by
=1

Then using Peano-transformation we have

Valabi)(0) = [ Gallx = ¥ ()

Ga(lx —yDi(y) dS

e (1.55)
a(lx =)
A dSy
Z / det A4 1 (3)
(Zs
with y = a;, + A,y.
For the second term in (1.53) we have with
erad Vol ) () = - [ erad,Gallx— ¥)5(9) ds
e (1.56)
C (4=)

The calculation of H% is done as follows (compare Remark 4)

HE = [n x curl Vo(d))F = :I:1

300+ %n(x) Y /Zgradeaﬂx —y) x I(y)dSy.  (L57)

1.5 Numerical experiments

Example 1. As domain we take the cube Q_ = [~2,2]3, and we now want to test the Galerkin
method in (1.39). We choose the wave numbers o = 0.1,0.5,1.5 and the exact solution

(1 —561)(1 —562) 0
1 1
J:§n>< 0 =3 (I —21)(1 —x2)-n3 (1.58)
0 —(1—.%'1)(1—1‘2)-77,2
and
1 0 1
(z1 — 1)
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

where n = (n1,n2,n3) denotes the outer normal vector at a point on the surface ¥ = U%lek.
We can write each term of equation (1.28) as:

6
ValDr(e) =Y [ Gallo— )(Tal)" dS, (1.60)
k=1"2k
and
6
gradrVa(M)r(a) = 3 grady [ Gallo =~ y)Mi(w) dS, (1.61)
k=1 Z,

Then, from (1.28), (1.60) and (1.61)there holds

6
Br= 32 ([ Colle= sOR) a5+ gy [ Gutle sty d5,) - (12)

=1

This last expression is calculated with the following subroutines:

subroutine osilv2(x,nx,osilvx2)

and

subroutine osilgrdv2(x,nx,osilgrx2)

which compute (1.60) and (1.61) respectively. With the help of the subroutines

subroutine helmvpotll(x,nx,by,dyl,dy2,ny,ty,py,vkl)

and

subroutine helmgrdvpotll(x,nx,by,dyl,dy2,ny,ty,py,grvkl)

Now, we write the fields J and M in each component of ¥ = US_Xy:

E1 - {($1,5E2,2) | -2 S T1,T2 S 2}7 ny = (0,05 1)t;

1 1
Jy = §(0’ (1 —21)(1 = 22),0)" and M; = @(m -1

Yo = {(@1,292,-2) | —2 < m1,22 <2}, my = (0,0,-1)",

1
J2=2(0,—(1 = 21)(1 — 22),0)" and M, = —@(m -1

23 == {(1’1,2,1’3) ’ -2 S T1,x3 S 2}7 ng = (07170)t7

1

J38

(0,0,1 — z1)t and M3 = 0.
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1.5 Numerical experiments

o Yy ={(z1,-2,23) | —2< 2,23 <2}, ny = (0,-1,0)",
1 t
Jy = §(0,0,3 (1 —=x1))" and My = 0.
hd E5 = {(27'%'271.3) ’ —2 < x2,T3 < 2}7 n; = (17070)t;

J5 = (0,0,0)t and M5 =0.

L 26 = {(—2,$2,$3) | -2 S €r2,T3 S 2}7 ng = (_1?0’0)t7
J6 = (0,0,0)t and M(; =0.

We use different values of o for our investigation. In Table 1.1 we present the results of the
errors in energy norm for a = 0.1,0.5,1.5 for the uniform h-version with polynomial degree
p = 1. In Figure 1.2 we compare the h-version with different a. The exact norm is known by
extrapolation for a = 0.1 is |C| = 8.580798, for a = 0.5 is |C| = 1.6171534, and for o = 1.5 is
|C| = 1.8042380. Here C' = Re(EY,J), C}, = Re(EY.,J},) (see Holm and al. [25]).

In Table 1.1 we present the results of the errors in L2-norm for o« = 0.1, 0.5, 1.5 for the uniform
h-version with polynomial degree p = 1. In Figures 1.1 and 1.2 we compare the h-version
with o = 0.1,0.5, 1.5 respectively. The exact L2-norm is known by extrapolation for o = 0.1
are ||J||r2 = 2.1066356 and ||[M||;2 = 81.9249906, for v = 0.5 are ||J||;2 = 2.1977966 and
| M| 12 = 3.9588037 and for a = 1.5 are ||J|| ;2 = 2.3826646 and || M||;2 = 0.7763804.

The convergence rate n for o = 0.1 are for the “energy norm” 1o = 1.325363, for L?-norm
ny = 1.617988 and ny; = 1.184964. For o = 0.5 are for the “energy norm” nc = 1.165255,
for L?-norm 73 = 0.976440 and 7, = 1.211619 and for a = 1.5 are for the “energy norm”
nc = 1.552163, for L2-norm ny = 0.174124 and 1y, = 0.295586.

Let as compare our numerical convergence rates above for the boundary element methods ob-
tained in the above example with the theoretical convergence rates predicted by Theorem 2.
Note that we have implemented the boundary integral equation system (1.28), (1.29) and
note the strongly elliptic system (1.32), where convergence is guaranteed due to Theorem 2.
Nevertheless our experiments show convergence for the boundary element solution, but with
suboptimal convergence rates. Theorem 2 predicts (when Raviart-Thomas elements are used
to approximate J and piecewise linear elements to approximate M) a convergence rate of order
n = % in the energy norm for smooth solutions J and M. Our computations depend on the
parameter o which is a well-known effect with boundary integral equations where it may come
to spurious eigenvalues diminishing the orders of the Galerkin approximations. Due to the
cube Q_ = [~2,2]3 the numerical solution might become singular near the edges and corners
of 2_; hence the Galerkin scheme converges suboptimally.

Now we present the implementation of the matrices in system (1.43), all matrices involve
computation of integrals over the boundary 3. The programming is done within the program
package Maiprogs using Fortran 90/95, cf. Maischak [34, 36]. The executable program is called
maicoupd. Within the folder structure of Maiprogs, we mainly work in ../fo3c and use for BEM
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

the folder ../fo23. The executable program maicoup3 has to be called in connection with an
appropriate bcl-file. The so called batch control language bcl is a special script language, de-
veloped as a part of Maiprogs and calls the different subroutines in the right context and sets
the specific structure of the problem regarded.

Implementation of the matriz A: The subroutine rthelmgv2 computes the Galerkin element of
matrix A for the single layer potential with Raviart-Thomas functions. The important parts
of the source code for the calculation of the integral in (1.44) are given below.

The subroutine

subroutine rthelmgv2(vkl,bx,dx1,dx2,nx,tx,by,dyl,dy2,ny,ty,px,py,ptypl,ptyp2),
| Table of the element matrix

real (kind=dp), intent(inout) :: vk1(0:,0:,0:)

! Polynomial degree

integer, intent(in) :: px(0:1),py(0:1)

! Element typ: 3=triangle, 4=rectangle

integer, intent(in) :: tx,ty

I Type of base function: 10=Raviart-Thomas, O=Monomials

integer, intent(in) :: ptypl,ptyp2

I Vector of the origin, boundaries, normal direction

real(kind=dp), dimension(0:2), intent(in) :: bx,dx1,dx2,nx ! Test element
real (kind=dp), dimension(0:2), intent(in) :: by,dyl,dy2,ny ! Trial element

computes the matrix for the single layer potential.

The calculation of the number of Raviart-Thomas basis functions in = and y are with the
subroutine

call basenum2(px,tx,ptypl,dofx) and call basenum2(py,ty,ptyp2,dofy).

The computation of the Galerkin elements for the Helmholtz kernel is done with

call helminteg3(...,dyl,dy2,ny,ty,px,py,pdu,pdu,pdu,pdu,vklmn,iklmn,iklmn) .
The two subroutine

call trafo_koeff_rt(bx,dx1,dx2,tx,alx,a2x,detx)

and

call trafo_koeff_rt(by,dyl,dy2,ty,aly,a2y,dety)
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1.5 Numerical experiments

calculate the transformation matrix Ay, A; and their determinant for element x and element y.

The subroutine
call trafo_iklmn(vklmn,alx,a2x,tx,aly,a2y,ty,px,py,ptypl,ptyp2,trafo,vkl)

transformed vklmn into a field vkl that is composed with Raviart-Thomas coefficient. trafo is
the transformation routine trafo-rt-helm, which represents the terms in (1.44).

Implementation of the matrix B: The subroutine rthelmgvj computes the Galerkin matrix
elements for the single layer potential with Raviart-Thomas functions and monomials. The
important parts of the source code for the calculation of the integral in (1.46) are given below.

The subroutine
subroutine rthelmgv4(vkl,bx,dx1,dx2,nx,tx,by,dyl,dy2,ny,ty,px,py,ptypl,ptyp2),

computes the matrix for the single layer potential.

The calculation of the number of Raviart-Thomas basis functions in « and y are with
call basenum2(px,tx,ptypl,dofx) and call basenum2(py,ty,ptyp2,dofy).

The computation of the Galerkin elements for the Helmholtz kernel is with

call helminteg3(...,dyl,dy2,ny,ty,px,py,pdu,pdu,pdu,pdu,vklmn,iklmn,iklmn) .
The subroutine

call trafo_koeff_rt(by,dyl,dy2,ty,aly,a2y,dety)

calculates the transformation matrix Ay and its determinant for element y.

The following subroutine calculates the div-term in (1.46)
call trafo_divrt_helm(hmn,py,ty,ptyp2,dety,c2)

Implementation of the matriz C': The subroutine helmgv computes the Galerkin matrix ele-
ments for Helmholtz single layer potential of the integral in (1.47).

subroutine helmgv(ikl,bx,dx1,dx2,nx,tx,by,dyl,dy2,ny,ty,px,py,ptypl,ptyp2) .
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1 Asymptotic expansion for large conductivity, skin effect and boundary element computations

Next, we apply the boundary element method above to compute the first terms in the asymp-
totic expansion of the electrical field considered in subsection 1.1 (Remark 1). In this way we
obtain good results for the electrical field at some point away from the transmission surface X
by only computing a few terms in the expansion.

Algorithm for the asymptotic of the eddy current problem:

1. First solve the exterior Problem (P,o) by integral equations (1.28) and (1.29) i.e. (1.37)
with given incident field —E%.

2. Compute HF. from (1.57).

3. Go back to 1: Solve the exterior problem (P,o) with new right hand side from (1.18).
4. Go back to 2.

5. E=E’+ 87 'E; + 7 2Ey + Ry,.

We have E = E* + 37'E; + $72E; and calculate the error [E — Egyact (%), i = 1,2, 3, where
x1 = (3,0,0), x2 = (6,0,0) and x3 = (9,0,0), 3 = 103. We present the results in Table 1.2
and in Figure 1.3.

IN[DOF | O [IC—=Cul [ 13lez | [IMllz [T = Jnllee | 1M — Mgz |

a=0.1

1 || 144 8.502965 | 1.153119 | 2.085189 | 80.704374 | 0.299829 14.08929

2 || 576 8.568451 | 0.460150 | 2.104369 | 81.690279 | 0.097681 6.196968

3 || 2304 | 8.578833 | 0.033717 | 2.106395 | 81.879637 | 0.031823 2.725645

4 || 9216 | 8.654072 | 0.073274 | 2.117002 | 83.123825 | 0.010367 1.198835
a=0.>5

1| 144 1.603519 | 0.209552 | 2.149511 | 3.8937090 | 0.458159 0.714952

2 || 576 1.614451 | 0.093436 | 2.185426 | 3.9467491 | 0.232851 0.308704

3 || 2304 | 1.616616 | 0.041661 | 2.194608 | 3.9565591 | 0.118342 0.133293

4 | 9216 | 1.617260 | 0.018576 | 2.198619 | 3.9592220 | 0.060145 0.057554
a=15

1 || 144 1.774450 | 0.326497 | 2.350909 | 0.7243729 | 0.387707 0.279375

2 || 576 1.800799 | 0.111334 | 2.365011 | 0.7422644 | 0.343627 0.227618

3 || 2304 | 1.803838 | 0.037965 | 2.382843 | 0.7539064 | 0.304558 0.185450

4 1| 9216 | 1.804284 | 0.012946 | 2.397906 | 0.7909461 | 0.269932 0.151093

Table 1.1: Errors in L?-norm and energy norm with respect to the degrees of freedom
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error in L2 norm

error in L2 norm

1.5 Numerical experiments

| DOF || |E — Egxact 50| | IE — Boxact 2)| [| 1B — Bexact (x3)! |

144

0.4959

0.6499

0.8049

576

0.1043

0.0910

0.0347

2304

0.0998

0.0067

0.0378

Table 1.2: Errors for electrical field in x;, x5, and x3.
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Figure 1.3: Errors for electrical field with respect to the degrees of freedom for x;, X,
and xs.
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2 Transmission problem for the
Laplacian with a parameter in R’

In this chapter, we present a priori estimates for a scalar transmission problem of the Laplacian
with parameter in R3. The behavior of the solution at infinity is described by means of a family
of weighted Sobolev spaces, so-called Beppo-Levi spaces. The main result is Theorem 3. To
prove this we have to extend Peron’s work who considered a bounded exterior domain in [42, 7],
while we analyze the case of an unbounded exterior domain.

2.1 A scalar transmission problem in weighted spaces

In this section we analyze a scalar transmission problem (2.6)-(2.7) in an unbounded setting.
Let Q_ be a bounded region in R? and Q; = R3\ Q_. Let ¥ = 9Q_ = 9Q, the interface
be of class C*°, see figure 2.1. Throughout this chapter, ® denotes the space consisting of
all C*°-functions with compact support and D’ is the topological dual space of D (space of
distributions).

Q.

Figure 2.1: Region of the problem.

Consider the basic weight
U(r) =v1+r? (2.1)

with r = \/ZE% + CE% + x%, for x = (x1,x9,x3), is the distance of the origin. For any scalar
function u = u(z1, z2, z3), we define the Laplace and grad operator of u by

3
d%u

Au = 8—;,312’

i=1
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2 Transmission problem for the Laplacian with a parameter in R3

and

Oou Ou Ou
Vu=|(—,—,—|.
8561 83:2 8:63
Due to the unboundedness of the exterior domain A = 2, the transmission problem is based
on the weighted Sobolev spaces, also known as the Beppo-Levi spaces (see [27]), these spaces
were introduced and studied by Hanouzet in [21] and a wide range of basic elliptic problems

were solved in these spaces by Giroire in [20], defined by

Wh(A) = {ue D' (A) | (£(r) ‘ue L*(A),Vu e L}(A)} (2.2)
and
u 0%y
W3(A) = {u € D'(A) ‘ G) € L*(A),Vu € LQ(A)’E(T)amam e L*(A),1<i,j< 3} . (2.3)

They are reflexive Banach spaces equipped, respectively, with natural norms:

1
Ty = (1) ulZaa) + 1VulZacy ) (2.4)
and )
u ||? u ||? :
g = (|75, +Ivule+ X [ (25)
1(4) 6(7") 12(4) L4(A) IS;jSB axzax] £2(4)
We also define semi-norms
ulwicay = IVullLz(ay,
and
Z 82’11, 2 :
WW?(A) = (r)
' 1<i,j<3 0i0%j [| 12 4

Here LQ(A) = (L?(A))3, and also we define for all m in NU {0} and all k in Z
Lgn,k(Rs) = {u eER | Ya € NB, 0< |Oé| <m, f(r)'a‘*erk‘u c L2(R3)} ,

with the norm

|| —m+k

lull e, qesy = 1)~ u] 2 g,

We set the following spaces:

We denote by W, (A) (respectively W9(A)) the dual space of Wi(A)

(respectively of W2(A)). They are spaces of distributions.

With a(x) = a_ € Q_, a(x) = a; € Q4 for constants a=, its jump [a]s = a4 — a_, across X
and the restriction p*(¢~) of a function ¢ to Q4 () we consider the problem:

For given

FeLXQ)UWYQ,) and ge H2(D), (2.6)
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2.1 A scalar transmission problem in weighted spaces
find ¢ € V, such that

a4 Vgp+-v¢+d:v—i—a/ Vo= -Vy—dx = —/
Oy Q_ Q

FBdo+]dls /E g Bds, VeV (27)

LU
with
eV =H}Q)UWl(Q,), HY(Q )= {gp € HY(Q.) ‘ / pdr = 0} : (2.8)

The transmission problem (2.6)-(2.7) is elliptic (see [20]) . By elliptic regularity, ¢ has more
regularity on sub-domains when the data are more regular.
We introduce

PH*R*) ={p=(¢",¢7) | o7 € Wi(Q4) and ¢~ € H*(Q)}, (2.9)

with norm
lelbrz@ey = e @) + 16 * 20, )- (2.10)

The following result is an extension of Peron’s results [42] (for a bounded exterior domain) to
an unbounded exterior domain 2.

Proposition 1. For f and g satisfying (2.6) and (2.18) we have
¢ € PH*(R?), (2.11)
where ¢ € V is the solution of (2.7). Furthermore ¢ solves(in the sense of distributions)

ar At =fTin Qp, a_Ap~ =f" in Q_,

90+ =@, a-i-an(PJr - a_@n(pf = [a]Z g on X, (2‘12)

1 1
<p:0<m>, 3n<p:0<W> as |z — oo,

where 0, denotes the normal derivative where n is the normal pointing from QF in Q.

Proof. The proof of Proposition 1 is given in several steps and follows Peron’s original proof.
We only modify it for the unbounded exterior domain Q* by looking for the solution in weighted
spaces. We show that ¢ satisfies an a priori estimate (Theorem 3) yielding (the assertion
(2.11)). First we prove (2.12).

We choose a ball B with radius R > 0 and boundary 0 Bg containing )_. Let Qr = BRNQ,,
with 0Qr = 0Br U X, see figure 2.2.

Then, the first term in (2.7) is

a4 Vot Vide = lim ay Vot - Vidr,
Q4 R—o0 Qn

31



2 Transmission problem for the Laplacian with a parameter in R3

Br

Figure 2.2: The domain (2 = Br N €),.

and by integration by parts in Qg

a; Vot Vide = —ay Apt - pdr + ay On™ - ds
QR QR 8QR

= —ay Ap™ - pdx + a+/ Onp™ - pds + a+/ O™ - tpds,
QR ) 8BR

then, when R — oo, comes

a; Vot Vide = —ay AT - apdx + a+/ Onp™ - tpds + lim a+/ Onp™ - ds.
QL Q4 b R OBR

—00

The second term in (2.7) by integration by parts, yields

a_/ Vo~ -Vipdr = —a_
Q_

Ag™ - ipdr —a_ / Onp™ - ds.
Q_ b

Then
a4 Vot - Vidr + a_/ Vo~ - Vipde =
Q_

Q4

=—ay Apt - pdx —a_ Ag™ - pdz+
Oy Q_

—|—/(a+8ng0+ —a_0Ohp ) -Yds + lim a+/ Ono™ - ds.
0 R—o0 9Br
The right part in (2.7) is

—/ fﬂdmﬂa]z/g@ds:— o Tde - f‘-@dwﬂa]z/g@ds,
QL UQ_ > Q4 Q_ s

then, we have

ay [ Apt-dr = fTdd,
Q. N
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2.2 A priori estimate in weighted spaces

a_ Ag™ - pdr = f~ - de,
Q_ Q_

/(a+8n<p+ —a_0Onp”) - Yds = [a]s / g - ds,
» >
and

R—o0

lim a+/ On™ - 1ds. = 0.
OBRr

This implies (2.12).

Next we set ay =1, a_ = p € C, and consider:
Find ¢, € V, such that, for all ¥ € V,

Ve - VoFde +p V@Z-de:_/ fﬂdmﬂl_p)/gﬂds’ (Fe)
o o QU0 >

with f and g satisfying (2.6) independent of p.

Following Peron [42] we construct a mapping p — ¢, where ¢, solves (P,) and consider its
behavior when |p| — oc.

We assume

/ fdr =0 and / gds = 0. (2.13)
QLUQ_ >

and show an a priori estimate for ¢, uniformly in p.

We observe now that ¢, € V. By construction, ¢, is a solution of problem (2.12), with a_ = p,
at = 1. Especially ¢, € H'(Q_) UW{(Qy4). Finally [, ¢, dr = 0 because every ,, in (2.15)
has integral mean zero. To complete the proof of Proposition 1 we prove now the following a
priori estimate. Its application gives the assertion of Proposition 1. O

2.2 A priori estimate in weighted spaces

The main result for this chapter is to show an a priori estimate in PH? uniformly in p for a
solution ¢, € V of (P,); that is the following theorem which in case of a bounded exterior
domain was originally derived by Peron in his thesis [42]

Theorem 3. Assuming (2.6) and (2.13), there exists a constant pyg > 0 such that for all
p € {Z € C||Z| > po}, problem (P,) has a solution ¢, € PH*(R3) with

ol pr2@s) < Coo (1S 2y + 1 w1190 4 ) (2.14)

where Cp, > 0 is independent of p, f and g.

Proof. Our proof modifies Peron’s approach in [42] and is given via the following steps.
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2 Transmission problem for the Laplacian with a parameter in R3

First we expand ¢, in a power series in p~ L

o
d ke in Qy,
=0
p =1 % (2.15)
d e in Q.
n=0

We show that these series converge in the norm in the space PH? to a solution of problem (P 0)-

! we obtain a family of

Inserting (2.15) in (2.12) and identifying terms of like powers of p~
problems independent of p, coupled by their conditions on X.

(2.15)s in (2.12),
> Apyp = fo
n=0

or
pAGy + Apy +p  Apy o= T
then
Agpazo, A@I:f_a ASDI;ZOa k=2,
or

Apy =0, Ap, =01 f, k>1, in Q_.
(2.15); in (2.12)s
Y Aptp =t
n=0
or
Apg +p Apy 4= fF

then
Apy = fT, Acpli' =0, k>1, in Q.

(2.15) in (2.12)3
oo [e.e]
D App =D Aptp"
n=0 n=0
then
go,;:goﬁ, k>0, on X.
(2.15) in (2.12)
[e.e] oo
D 0ngfpF =D Onpp T = (1 p)g
k=0 k=0

or

o0 o0
Y oo™ = > Ot = (1= p)g

k=0 k=—1
or

—pOny + Y (Onpl — Onpiy)p = (1= p)g
k=0
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2.2 A priori estimate in weighted spaces

then
Onpy =9, Onpy — On] =9, Onf —Onpjy, =0, k>1
or
Onvy =9, Onpy, = —0p19 + 8n<p:_1, k>1, on X.

This implies
Apy, =0, in Q_,

(2.16)
Onpy =9, on X,
and
ASDSF = f+a in QJr’
(2.17)
¥o =¥y, on X,
and for k € N with the Kronecker symbol dj 1
Ap, = 5,%]"_, in Q_,
(2.18)
Onp), = —0k19+Onpy_ |, on I,
and
Aapli' =0, in Qy,
(2.19)
¢r =¢,, on I,
and the condition at infinity
1 1
p, =0 ) Onpp =0 e as |x| — oo, (2.20)

In addition we assume [, ¢, = 0and [, ¢, =0 (*) We construct successively every term
¢, and ¢;f, by beginning in ¢, and goér.

Let us assume that {@,;}Z;é and {gpg}z;é are known. Then, problem (2.18) defines a unique
©,, - Its trace on ¥ is inserted in (2.19) as Dirichlet data to determine the external part ¢;'.

The Neumann problem (2.16) has a unique solution ¢, € H'(Q_) if [, ¢y dz = 0. But this

holds since fz gds = 0. Also, by elliptic regularity, ¢, € H 2(Q_) and there is a constant
Cn > 0, independent of p, such that (see [40, Theorem 2.5.2])

i Ny < Onlglpg (221)

We are interested in (g in (2.17). Problem (2.17) has a unique solution (see [20, Chapter 2]),
o € W§(Q4). Also, by elliptic regularity and since ¢, € H?(Q_), ¢g € Wi(24) and there
is a constant Cpy > 0 independent of p, such that (see [3, Theorem 6])

led lwe ey ) < Conllleg 2@y + 11 lwoay))- (2.22)

Now that (2.20) guarantees that pf € W§(€4) and not only in W}(Q24),/R. Similarly we
can deal with (2.18) and (2.19). Since ¢, satisfies the decay condition at infinity, ¢, can not
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2 Transmission problem for the Laplacian with a parameter in R3

behave like a constant. Therefore the constraints (*) are not necessary.
Next we study the Neumann problem (2.18).
For k = 1, we show that there holds

/ f‘dm+/z(—g+an¢g)ds:o.

According to (2.17) and (2.20)

ASDSF = f+a in QJra

o =¢p, on X,

1
Ontpg =0 (W) , as |x| — oc.

(2.23)

(2.24)

We choose a ball B with radius R > 0 and boundary 0B containing Q_ (see figure 2.2).

Then for the bounded domain Q4 N Bg, integrating by part in (2.24); gives

/ frytde = / Agpar Jtdz
Q+ﬁBR Q+OBR

= —/ A w+dm+/ T - Onepd ds,
Q4+NBg 0(Q4NBR)

for ¢ =1 yields

/ frde = / 8napards
Q4+NBR 0(Q+NBR)

and 0(24 N Br) = 0Br U X, then

/ f+da::/ (9ngpards—|—/(9ngp€;d5
Q+OBR 8BR b
—/ 0<i>ds+/3 b ds
oBp \ 12 SR

1
=0\ = R2+/8n@+d87
() ¢ [

/ frdr =o(1) + / Onpgds, as R — oo,
Q. s

/ f+d:c:/6ng06rds.

Q. >

/ gds =0, and fdx =0,
by R3

then

then

Under the hypothesis (2.13)
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2.2 A priori estimate in weighted spaces

then

ftde = —/Q_ fdx,

Q4
the compatibility condition (2.23) is deducted.
For k£ > 2, we assume that the term cpl:l is constructed.and we show that

/ Onpy_ds = 0. (2.25)
%
According to (2.19) and (2.20)

Agog_l =0, in Qy,

Vi1 = Pr1 on ¥, (2.26)

1
Onp) =0 <W> , as |x| — oo.

Again we choose a ball Br with radius R > 0 and boundary 0Bp containing 2_. Then for
the bounded domain Q; N Bpg, integrating by part in (2.26); gives

0= / Agpgiliﬁjd:c = —/ Vgpgil -Vytde +/ 1/)—* . angozllds,
Q+ﬁBR Q+ﬁBR 8(Q+HBR)

for ¢ = 1 yields

0= / 8ncp;llds
9(Q4NBR)

and 0(Q4 N Br) = 0Br U %, then

O:/ 8ncp§_1ds+/8ncp,j_lds

OBg b

—/ o<i>ds+/8cp+ ds
OBg R2 . nyg—1

1
=0 == R2+/3ncp+_ ds,
<R2> . k—1

then
0=o0(1)+ / Onp)_,ds, as R —» oo,
by

and

0:/(9ng0:_1d5.
by

Consequently, the Neumann problem (2.18) admits a solution ¢, € H 1(Q_), which is unique
under condition [, ¢} dx =0 (see [40, Theorem 2.5.10]). Also, ¢, € H*(Q_) and

ey a2y < ONIGLUL T 2@y + 91l 3 o)) + 100y | (2.27)

1 N
H2 (%) H2 (%)
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2 Transmission problem for the Laplacian with a parameter in R3

Finally, problem (2.19) has a unique solution ¢, € W{(€2;) (see [20, Chapter 2] and there
holds the estimate (see [40, Theorem 2.5.14]) which the constant Cpy > 0

H%j”wg(m) < Cpnlleg a2y (2.28)

Next, we demonstrate the convergence in PH?(R3) of the series (2.15) for large |p)|.

1
ny: WHQ) — H2(D),
For the Neumann trace

@ +— Onp
we have with a constant C; > 0,

1.2 3 ) < Crllelimnia,- (229)

We pose o = CnyC1Cpy, where Cy and Cpy are the respective constants of estimates (2.21)
and (2.22). With (2.27), (2.28) and (2.29) we show by induction

len lzy < o Mot @),
(2.30)
ledlwey < Con-a™ Mor 2@

(2.30); can be see as follows: For n =1,

et 2y = @ller lr2@.)-

With (2.27) we have for k = 2

I3 ) < Onlongt

and with (2.29)

@5 2@y < CNCille] lwe oy
hence by (2.28) we have for k =1

H@ng(m) < Conlley a2y

and therefore
o3 lm22) < ONCiCon ey 2002y = eller [[r2@)-
We assume that (2.30); is true for k = n — 1, this is
lon_1llzz@ ) < " ?llor lr2@),

then, according to (2.27), for k =n

lew 20y < ONlOnen_ill 3 s

and for (2.29)
len a2y < ONCillen_1llwz o, );
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2.2 A priori estimate in weighted spaces

according to (2.28) for k=n —1

len—illw2 sy < Conllen_illa2@.),
then
len 22y < CNCiConllw, 1llH20)

<a-a" 2oy )

=" MeT llr2ea)s

then (2.30); is true for all n.
(2.30)2 can be see as follows:
According to (2.28) for k=1

o1 llwe sy < Conller 2@y,

and for k =2
o3 lwe ) < Conlles a2y

According to (2.27) for k =2

ez a2y < O 1991 g s,

and for (2.29)
o2 2y < CNclH@HWZ{(m)a

then
l¢F Iz < ConCnCillet Iz o)

< Cpn - aller lm2@)-

We assume that (2.30)9 is true for £ = n — 1, this is
HS%T—IHW%(QQ < Cpn - "2l 2.
then, according to (2.28), for k =n
e lwe ) < Conllen a2y,
and according to (2.27) for k =n
Il ) < Cxloneioall g

and for (2.29)
len 2y < CN01H<P7+L—1HW§(Q+)7

then
lenllmz@.)y < OnCiCon - " 2llor 2.

=" ey llm2),
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2 Transmission problem for the Laplacian with a parameter in R3

then

len lwe o,y < Cpn - " et a2,
then (2.30)9 is true for all n.
Hence for all p € C, with |p|~la < 1, the series (2.15) converges in W3(Q,) and H%(Q_),
respectively. Now we are in the position to prove Theorem 3.
We show first the estimate (2.14) for ¢, in (2.15). Let pg > 0, such that p,'a < 1, where
a=CnCi1Cpn.
Let p € {z € Cl|z| > po}. According to (2.30) ¢, converges geometrically in PH?(R3) with
|p~!|a, bounded by p,'a. Hence,

1 _ _
”‘P,fﬂwf(m) < CDNﬁPo 1”% ”H2 )+ ”<Po ”W2 Q1)
Po
(2.31)
o7l y < ' ——lle Iy + g lamca
r - 1—py -
This can be seen as follows.
From (2.15)1, (2.30)2 and the triangular inequality, we have
legllweasy =11 22nm0 om P " w2y
< lleg lwzay) + ne o lwe ™"
< lleg w2,y + Con - Hier 2@y Xty o7 "™
and
Z prlan = 3 (e = < L (232)
n=1 p L- Py @
then )
ey we s < CDNmp(;lH(PIHH%Q,) + H@Sruwg(m)-
Using the triangle inequality, (2.15) and (2.30);, we have
lep a2y =220 Pnp "2
<o 2y + 2onz len a2y 7"
< g a2y + o et lm2@_) Xomey lp7 " ™,
this and (2.32) implies (2.31)a.
Now, from (2.27), for k =1
lerllzz@y < OnIIF ez + llall g 5 + 1oneg I, = (2.33)
according to (2.33) and (2.29), get
ler ey < ONIIF 2oy + 19l 4 5, + Cilleg weay))- (2.34)
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2.2 A priori estimate in weighted spaces
From (2.34), (2.31), (2.21) and (2.22), we have

1 _ _
I ey < Cowp—zrori OV sz + gl

+C10pN(CON gl g ) + 1 * lwo )] + Con(Onllgl 3 ) + 1 * lwoas))s

and

_ 1 _
Iyl < 5" ===l sz + Nl 4,

1—p,

+C1CoN (O gl )+ 15 g, )+ Ol

This yields the desired estimate (2.14)and the proof of Theorem 3 is complete.
O

The a priori estimate of Theorem 3 is a crucial tool in the proof of Theorem 6 in Chapter 3
where it is taken for one part in the Helmholtz decomposition.
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3 Electromagnetic transmission
problem for large conductivity
Analysis in weighted Sobolev spaces

In this chapter, we present an a priori estimate for an electromagnetic transmission problem
with unbounded exterior domain in R3. We consider Maxwell’s equations in two sub-domains,
the bounded interior one Q¢ = Q_ representing a conducting material (metal) and the un-
bounded exterior one Q% = Q. an insulating material (air). The behavior of the solution
at infinity is described by means of families of weighted Sobolev spaces, so-called Beppo-Levi
spaces (see [27]). Existence and uniqueness of the solution are obtained. The results of this
chapter are modifications of Peron’s results [42], which he derived for a bounded exterior do-
main Q. We follow closely his thesis, present some of his results but make modifications for
the unbounded exterior domain Q%. This leads us to use weighted spaces and to apply an
embedding result for weighted spaces. The compactness of such an embedding allows us to
perform a contradiction argument implying an a priori estimate for the electrical field (The-
orem 6). From this a priori estimate then follows existence and uniqueness of the solution of

the electromagnetic transmission problem (3.2).

3.1 The electromagnetic transmission problem in R?

We consider Maxwell’s equations in a bounded domain 9°¢ and in an unbounded domain
Qz’s — RB\ch

curl E —iwpgH =0, in QU™ |
(3.1)
curl H + (iwgg —o)E =J, in Q9UQ®*

for electric and magnetic fields E and H with real-valued constants w, g, pg. Across the
smooth interface surface 3, the boundary of Q°¢, the tangential components of both E and H
must be continuous, i.e. Eif = B Hi = HY

Furthermore the Silver Miiller radiation condition must hold at infinity.

Setting p:= ,/— >0, ,uo IQZS + (1 4+1ip*)1gea), and F = ixJ, then (3.1)
\/ weo
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

writes with X = |X—| and Kk = w(,ue)% as
x
curl E, —ikpH, = 0, in QYUQs |
curl H, + ike(p)E, = iF in Qcdy Qs
P PIBp = 5™ ’ (3.2)
By =0 () [H, x %~ inBy = o ( 1 x| -
=o|— x—ikE)) =0 — as |x| = oo
A=\ ) He A=) |

Note (3.2) can be reduced to

1 .
—curl curl E, — k%¢(p)E, = F, in QUQ*,
I
setting H, = ———curl E,; the Silver-Miiller radiation condition at infinity becomes
KU

~ . 1
lcurl B, x X —ikE,| =0 — |, as [x| — oc.
]

We are interested in the behavior of the electric and magnetic fields as the conductivity o
becomes large. i.e. ¢ — oo, thus p — oo .

Peron considers in [42] problem (3.2) in a bounded domain Q = Q@ U Qis with bounded
domains Q°¢ and Q. Peron considers on the boundary 99 of Q either Dirichlet or Neumann
conditions. In our case € is unbounded (since in our case Q2% is unbounded) and the boundary
conditions on 02 are replaced by the Silver-Miiller decay condition at infinity. There are two
ways to analyze problem (3.2) - either one uses Hlsoc(R?’) or Beppo-Levi spaces (as done in
Costabel and Stephan [12] or in Giroire [20], respectively, for boundary value problems of the

Laplacian). For the use of H} & spaces to electromagnetic problems see the book by Nedelec

loc
[40]. Here we investigate problem (3.2) in Beppo-Levi spaces.

Before we introduce those weighted Sobolev spaces for an unbounded domain let us remember
the definition of the spaces associated with Maxwell’s system in a bounded domain Q°¢ ¢ R3

(see [38]), which are based on the space

L2(Qd) = (L2(Qd))3 .= {u cR3 ‘ /ch lul?dr < oo} :

with norm

2
gz e = ( / |u|2dx) |
ch

H(curl, Q%) = {u € L%(Q°) | curl u € L?(Q°)},

namely

H(div, Q) = {u € L*(Q%) | divu € L*(Q)},

with norms

Hu”?—I(CUTLQCd) = chrl uHiQ(ch) + HuHiQ(ch)7
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3.1 The electromagnetic transmission problem in R3

HuH%(diVﬁcd) - HdiV uH%Q(ch) + HuH%ﬂ(ch)-

From Peron [42] we collect the following variational spaces

X (94 = H(curl, Q) N H(div, Q¢),
with norm
i gy = lewrd )2 geay + [1div w2 geay + [[10]22 g

and

X7(Q) = {fue X(Q9) | n-u=0, on 90},

Xy(Q4) = {fue X(Q9 | nxu=0, on 9Q“},
X1(Q%, p) = {u € H(curl, Q) | e(p)u € H(div,Q?%), n-u=0, on 90},
Xy(Q p) = {u € H(curl, Q) | e(p)u € H(div,Q2%), nxu=0, on 90}

with norm

[l (qea ) = lleurl ulfz geay + Idiv(e(p)u)l|72 (qgea) + 1lf2 ey,

Note, X1(Q°4), Xy(Q?), X1(Q°, p) and Xy(Q°?, p) are Hilbert spaces.

Furthermore let ® denote the space consisting of all C'"*°-functions with compact support and
D’ is the topological dual space of © (space of distributions).

Consider the basic weight £(r) = V1 + r2, with distance r = \/z% + z3 + 23, for

X = (v1, 2, x3), from the origin. Due to the unboundedness of the domain %, the problem is
based on the vectorial weighted Sobolev space (also known as the vectorial Beppo-Levi space),
a fairly complete treatment of these spaces is given in [3], [18], [27] and [40, Section 2.5.4]:

W (curl,R?) = {u € ®'(R?) | £(r)~'u € L3([R3), curlu € L?(R3)},

W(div,R?) = {u € ®'(R?) | £(r)"tu € L2(R3), divu € L*(R?)},

W (curl, R?) and W(div, R3) are Hilbert spaces equipped with the norms

Hu”%v(cuﬂ,R?’) = ||curl uHiQ(RS) + W(T)iluH%?(RS),

and

Byt ) = 9 Wl )+ 166 0l
Furthermore we need the following spaces

X(R?) = W(curl, R) 0 W(div, ?),

45



3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces
with norm

gy = llewrl w2 o) + v ulB g + 160) ™ w2 o).
and with ¥ = Q¢ N Q% and Q% = R3\ Q¢

Xp(R?) = {u e X(R%) | [n-u]=0, on X},

Xp(R3) = {u € X(R?) | [mnxu] =0, on ¥},
Xr(R3, p) = {u € W(curl, R?) | e(p)u € W(div,R?), [n-u] =0, on X},
Xy(R3, p) = {u € W(curl, R3) | e(p)u € W(div,R3), [m xu] =0, on ¥},

Xm(R3, p) = {u € L2(R3), curlu € L2(R?), £(r)dive(p)u € L2 R3) , [nxu]=[n-u] =0, on X},

with norm

il zs,p) = leurl ulfz gy + [160r)div(e(p)u) 1 Za@s) + [lf2gs),

Note, Xt(R3), Xy(R3), X1(R3, p) and Xy(R3, p) are Hilbert spaces.
And also we define for all m in NU {0} and all k in Z

L2, (&) = {u e R? | Va e N, 0 <ol <m, £(r)17" Fu e L2®RY)},

with the norm

lallge, sy = 166! g2 gy,

where L2, ; (R%) = (Lfmk(ﬂ@)):s. Note Lg , (R?) C L*(R®) C L2, (R?) .

First, we address the setting of Maxwell’s transmission problem (3.1) in R? in standard Sobolev
spaces in the bounded conductor and weighted spaces in the unbounded insulator. Modifying
[29, Lemma 1.3.1,Lemma 1.3.2], [42, Lemma 2.7] for the unbounded exterior domain we have
the followings results. Louér [29] derives her results in Hj,.(curl, R?) = {u € L? (R3), curlu €
L} (R?)} where u € L} (R?) means u € L?(Q) for any bounded domain .

loc

Lemma 1. Let F € L*(R®). Let E, and H, in L*(R?®) be a solution of (3.2). Then, E,, H, €
W(curl,R®) if and only if E;d, H‘;d € H(curl, Q) and Eﬁf, H;s € W(curl, ) and there holds
[nx Eyly =0, [nx Hys, = 0, where [u]y, = u®® — ul. denotes the jump across .

Proof. If E,, H, € W(curl, R?), then by definition ES*, HS? € H(curl,Q°!) and EX HY €

W (curl, Q). Thus for u, = curlE, or curlH,, we have for all v € C>(R?) satisfying the
radiation condition in (3.2) and assuming £(r)curlv , {(r)curlu, € L*(R?)

v - curl u,de = v - curl uf)ddx + v - curl uydr,
Qed Qs Qcd Qis

and
u, - curl vdzr = ucpd - curl vdr + u,’ - curl vdz,
Qed Qs Qcd Qis
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3.1 The electromagnetic transmission problem in R3

in Q¢ integration by parts (see [29, Lemma 1.3.1]) gives

/ [v - curl u;ddx —u. curl v]dz = / n x (nx u)] - (n x v)ds.
Qed b

P P

where
n x (n x u;d) =n(n- ucpd) — u;d(n ‘n) =n(n- u;d) — u;d.
Then
n x (n x u;d)] ‘(nxv)=[nmn- uf)d) — uf)d] (nxv)= —uf)d -(nxv),

and

cd _ cd

—u) -(nxv)—v-(nxup ),

yield

v - curl u;dda: = u;d ~curl vde + [ v-(nx uzd)ds.
Qcd Qed by

We choose a ball Br with radius R > 0 and boundary dBp containing Q7.
Let Q% = limp_yo0 Qg where Qp = Br N Qis, with 0Qr = 0Br U X.
In the domain Qp, we have, by integration by parts, (see [29, Theorem 1.2.17]),

/ v - curl uzsdx = / uZS -curl vdx — / v (n X uzs)ds + / v-(nx uzs)ds.
Qg Qr ) dBr

The Silver-Miiller radiation conditions yield

lim |curlEif x ng — ikB*? =0
R—o0 aBR

Hence choosing v = E**, u, = curlE"® gives with a generic constant C

lim | v-(nx uzs)ds] < C lim |E*|?ds = 0.
R—oo JoaBg R—00 JoBp
Hence
/ v - curl uydr = / u,’ - curl vdr — / v (n xuy)ds.
Qis Qis »
Thus
v - curl u,dr = u,-curlvde + [ v-(nx ucpd —n X uif)ds,
Qecd Qs QedyQis »
yielding

/v-(nxuﬁd—nxu;s)dszo,
)

and therefore [nxu,]s, = 0. By density for u, € W(curl, R?) this follows because integration by
parts holds in R? in this Beppo-Levi space. The reverse statement follows again by integration
by parts. O

Our next results is a modification of Lemma 2.8 in [42] according to our unbounded exterior
domain. Note that despite of a similar formulation, our lemma is for weighted Sobolev spaces.
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

Lemma 2. Let F € W(div,R?). Let E, and H, in L*(R®) be solutions of (3.2). If E,, H, €
W(curl,R3), then e(p)E,, H, € W(div,R?) and [n-(¢(p)E,)]s = 0, [n- H,]s; = 0. Furthermore,

1
div(e(p)E,) = —Edz’vF, and divH, =0 in L*(R®).

Proof. If F € W(div,R%) and E, and H, in L2(R3) are solutions of (3.2), then applying
divergence operator in (3.2), we have

1
div(e(p)E,) = ——div F, divH, =0 in L*(R?),
K
and £(p)E, € W(div,R3), H, € W(div, R?).

Now, for u, = (p)E, or H,, we have for all ¢ € V = H}(Q) U W}(Q),

/ ¢ div u,dz = / ¢ div uSlde + / ¢ div ulda,
chuﬂis ch Q'Ls

/ up-V(bdx:/ u;d-v¢dx+/
chuﬂis

ul - Veda.
Qecd Qis
In Q°¢, by integration by parts (see [29, Theorem 1.2.16]) there holds

and

/ ¢ div uldr = / up! - Vods — / (- ug?)gds.
Qcd Qecd b

We choose a ball Br with radius R > 0 and boundary dBp containing Q7.
Let Q% = limp_ 00 Qg with Qr = Br N Qis, 0Qgr = 0BRrUX.

In the domain Qp, we have, by integration by parts, (see [29, Lemma 1.3.2]),

/ ¢ div uj'jdx:/ uj'j-wd:wr/(n-u?)qbds—/ (0~ u)pds
Qr Qr by O0BRr

= /QR uZS -Vodx + /E(n . uif)tbds — / (n-(u® + Uif X n))ods,

0Bg P
where, if uips = e(p)E,, Uif — )

—=~H, or if uzs =H,, U;S = —ixE, and n - (U;S xn) = 0.
Then, applying Silver-Miiller conditions, yields

/ n-(uZS+UZan)-¢d5—>0 as R — oo.
OBRr

¢ div ulyde = /
QOis

Qs

Hence

uZS -Vodr + / (n- uzs)qﬁds.

b
Altogether we have

/ quivupda::/ up-V¢dx+/(n-uis—n-qu
Qed Qs Qed Qs by}

P p ) - pds
then

/E(n-uif—n-u;d)-gbds:o,

for all ¢ implies [n - uy]y = 0. This follows because integration by parts holds in R3 in this
Beppo-Levi space.

O
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3.1 The electromagnetic transmission problem in R3

Next we introduce the following notation:
For E, € W(cwrl, R?), E' € W(cwrl, R?) = {£(r)E’ € L?(R®), curlE’ € L*(R?)} , set

1 I -

by(E,, E) := / (—curl E, curl E' — k%¢(p)E, - E’> dx. (3.3)
QedyQis \ H

Proposition 2. Let F € L*(R%). Let E, and H, in L*(R®) solve (3.2). Then, E, €

W(curl,R3?) and for all E' € W{(curl,R3),

b,(E, E) = / F- Edz. (3.4)

Qed Qs

Proof. The proof of Proposition 2 is an extension of Proposition 3 in Peron [42] from a bounded
to unbounded exterior domain % . First (3.2); gives curl E, € L*(R?) for H, in L?(R3). Thus
E, € W(curl, R?). Next we test (3.2); by curl E’ and then we test (3.2); by E' € W(curl, R?).

Adding these equations yields (3.4). Note (3.4) also holds for E, € W(curl, R3) := {{(r)"'E €
L2(R3), curlE € L2(R3), £(r)curlcurlE € L2(R3)} and E' € W (curl, R?). This follows directly
by integration by parts from (3.2) applying the arguments in [37, Section 3] where the Laplacian
in weighed spaces is considered and a weighted Poincare inequality is used. O

The strong formulation of (3.4) is our next result, which corresponds to Peron’s Proposition
2.15 in [42]. Again our formulation follows Peron but replaces the boundary conditions on
0f) by the decay conditions at infinity. In our proof we modify Peron’s proof in the exterior
domain. For the bounded interior domain his arguments remain unchanged, and only those
parts are repeated here from [42] which are necessary for better reading.

Proposition 3. If E, € W(curl,R?) solves (3.4), then E, solves (in the distributional sense):

curl curl E, — I{QEP = pF*, in QS
curl curl E, — 6*(1 + ip*)E, = pFd, in Q°,
[nx Eyls, =0, [nxcurl E)]y, =0 on X, (3.5)
with Silver-Miiller condition
~ . 1
|curl B, x © — ikE,)| :O<ﬁ>’ as |z — oo,
x
On the other hand, if E, solves (3.5) then
1 4
—curl curl E, — k*¢(p)E, = F, in Q“UQ", (3.6)
o
and )
div(e(p)E,) = —— div F, in QUQ". (3.7)
K
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

Proof. For proving the first two equations in (3.5) we follow Peron [42].
Taking E' € D'(R?) with support in Q% as test function in (3.4) and using

/ curl E, - curl E'dz = (curl curl E, E)qis,
Qed Qs

we deduce the first equation of (3.5).
Next, we take E' € ®'(R?) with support in Q¢ as test function in (3.4) and using

/ ~curl E, - curl Eds = (curl curl E, E') gea,
QedyQis

we deduce the second equation of (3.5).

The third relation (3.5) holds due to Lemma 1.

To continue with the proof, we choose a ball Bg with radius R > 0 and boundary 0Bpg
containing Q. we apply Stokes formula for the bounded domain Q = Q°? U (Q* N Bg), with
0(Q N Bg) = X UIBg and 0Q = dBg, for all E,H € H(curl,Q),

/ curl E-H - E - curl H)dr = (n x E,H, )50, (3.8)
Q
where H, = (n x H) x n.

According to (3.5); we have curl E* € H(curl, Q*NBg). So, applying formula (3.8) in QN Br
to E = curl E;S and H = E' € H(curl, ), we have

/ curl EY - curl (E')#sda =
QisNBRr

/ curl curl EY - (E')#*da + (curl EY x n, (E')2)p(qisnpy)- (%)
QisNBg
Applying formula (3.8) in Q2 to E = curl E;d and H = E' € H(curl, Q2), we have

/ curl Ecpd -curl (E')eddx =
Qcd

/ch curl curl E;d - (E')eddz + (curl E;d x n, (E')%)y. (%)
In (x)
(curl EZS X n, (E/)iTs>a(QismBR) = —(curl EZS x n, (E))y + (curl Eif x 1, (E')*) o5,
Applying Silver-Miiller radiation conditions as in Lemma 1 yields
Rli_r)réo |{curl EZS xn, (EN*)sp,| =0

Then, letting R — oo in (*) yields

/Qis curl EY - curl (E')#sdx =

/Qis curl curl EZS - (E")isdx — (curl EZS x n, (E')%)x. (% % %)
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3.1 The electromagnetic transmission problem in R3

Adding (x*) and (* * ) gives for all E' € W (curl, R?)

/ curl E, - curl Eldr =
chuﬂis

/ curl curl E, -E'dz + ([curl E, x n]y, E. ).
QedyQis
Then (3.4), (3.5); and (3.5)2, yield

([curl E, x s, EL)y; = 0,

which gives (3.5)3. This follows because integration by parts holds in R? in this Beppo-Levi
space. O

Our next results are similar to those of Peron [42] whose results are for a bounded exterior
domain, but here we investigate the case of an unbounded exterior domain.
The regularized form of problem (3.4) is: Find E, € Xm(R3,p), such that, for all E, €

XTN(R37 p)7

1 — —
/ (—curl E, - curl B, 4 a div(e(p)E,) - div(e(p)E},) — k%e(p)E, - E;) dr = (f,E),
QedyQis \ M
(3.9)
where

"o e T ey
<f’EP>_/chUQiS (F E, — divF dlv(a(p)Ep)) dz, (3.10)

and where o > 0 is a parameter that will be needed next. We will use the following Theorem,
(compare Peron [42, Theorem 2.21], see also Costabel et al. [11]), which corresponds to Peron’s
Theorem 2.21 in [42] and is its modification for an unbounded exterior domain and weighted
spaces. Again for the bounded interior domain we repeat Peron’s proofs almost verbatim.

Theorem 4. There exists a real o > 0, independent of p, such that if E, € Xm(R3, p) is a
solution of (3.9)-(3.10) for F € W(div,R3) = {F € L*(R3),{(r)divF € L*(R%)}, then

1 ‘
div(e(p)E,y) + — div F=0, in Q9UQ". (3.11)
K

1
Furthermore E, and H, = —— curl E, solve Mazwell’s equations (3.2).
iweg

Proof. Let us define the operator A, from W (R3) to Wi (R3) mapping ¢ to div(e(p)Vy),
where div(e(p)Vy) € WS(R3) is defined for any ¢ € W}(R3) by

/ e(p)Vp - Vipdz.
QedyQis
If we define the domain of this operator by

D(A. () = {v € Wo(R®) | £(r)div(e(p) V) € L*(R?)}.
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

Then Vo € Xmy(R?, p) for ¢ € D(A,(,)).
Let E, solves (3.9). Choosing E' = Vi which ¢ € D(A,(,). (3.9) gives

/chums(o‘ div(e(p)E)) - div(e(p) Vo) — k%(p)E,, - Vip)da =
(3.12)
:/ , (F Vo — —leF div(e(p )V@))d
QedyQis

Now, since e(p)E,,F € W(div,R?) and ¢ € W} (R?) we have

is

/ —k*e(p)E, Vgo)dx—/ —r*e(p)E, Vgp)d:rH—/ —k%e(p)E, - V)dz.
R3 Qcd
Green’s formula in Q¢ yields
/ —k%e(p)E, - V)dx —/ k2div(e(p)E,) - P)dx +/ x?n - (e(p)E,V))dS.
Qed Qecd »

Next we choose a ball Bg with radius R > 0 and boundary dBg containing ¢
Let Q% = limp_ 00 2 and Qg = Br N Qis, with 0Qr = 0Br U X.
In the domain Qg, we have, by integration by parts,

| Ry Todo = [ Wdv(e(p)B,) Pdot [ ke G0 )P)ds
Qr Qr [2195:3
and

[ B R = [ W GoBRs + [ wn (0B, P

BQR b)) 8BR
As in the proof of Lemma 2, applying Silver-Miiller condition there holds
/ k’n - (e(p)E,)@ds — 0, as R — o0,
OBR
Hence
/ —k%e(p)E, Vp)dz —/ /QQdiv(e(p)Ep)@dx—/ KZn-(e(p)EpV—gp))ds—/ k?n-(e(p)E,)@ds.
i5 i5 » »

for all ¢ € D(A(,)) yielding n - (¢(p)E,)] = 0 on I. Now

/F-V—godx:/ F.de+/ F . Vodr,
R3 ch is

Green’s formula in Q¢ yields

/ F-V—gpdx:—/ divF-@dm—/(n-F)ads.
ch ch »

Again, we choose a ball Bp with radius R > 0 and boundary 0Bg containing Q°?. Setting
O = limp_ o0 Qr with Qg = BN Qis, and 000 = 0BRr U X.
In the domain Qg, we have, by integration by parts,

/ F-V—gpda::—/ divF-@dm+/(n-F)¢d5+/ (n-F)ads,
QR QR 2 8BR
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3.1 The electromagnetic transmission problem in R3

from (3.2) note that there holds F = ixcurlH — x2?¢(p)E, therefore applying Silver-Miiller
condition gives

/ (n-F)pds — 0, as R — oo,
OBRr

hence

/ F-V—apdx:—/ divF-ader/(n-F)@ds.
Qis Q'Ls »

Then, we have altogether

/—KQs(p)Ep-V—gp)d:c:/ f@2div(e(p)Ep)-¢da:+ KQn-[e(p)Ep]Ed,s:/ KQdiv(e(p)Ep)@d:c
R3 R3 b)) R3

and

/ F - Vodr = — div F - pdz.
R3 R3

Similarly, according to (3.12) there holds

/Ra(a div(e(p)E,) - div(e(p)Vp) + %div F -div(e(p)Vp)

—k*e(p)E, Vo —F- Vo) dz = 0.

Then
/R (@ div(e(p)B,) - div(Ep)V ) + Spdiv B divE Vo) +

+r2div(e(p)E,) - B+ div F - §) dz = 0.
Therefore, for all ¢ € D(A,(,))

/R 3 <div(e(p)Ep) 4 %div F) (0 div(E(P)VP) + K2P)dx = 0, (3.13)

The sesquilinear form associated with the operator —A(, is uniformly coercive on W(l](]Rg),
(see Giroire [20]), i. e. 3C >0

= 1
Re </R3 e(p)Ve- V@dm) = ;|¢|§V5(R3) > C||¢||§V5(R3). (3.14)
Next, we follow again Peron and examine the real non-zero eigenvalues A of —Ae(p),
ie:
—A e =Ap in R’ (3.15)

which gives after integration by parts

/ a(p)-V—apdx:)\/ - pdx.
R3 R3
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

2 2

Now (3.14) gives A > C and we take o > 0 large enough such that B <. Then ™ is not
a a

an eigenvalue of —A,(,y. Consequently to (3.13) implies
. 1. . 3
div(e(p)E,) + —divF =0, in R”
K

This way, according to (3.9) and (3.10) for all E}, € X (R3, p),

1 . _ _
/RS (;curl E, - cwl E, — ’c(p)E, - E;) dr = /R3 F-E,dz.

1
We set H, = mcurl E, in R3. Then from Proposition 2 follows, for all E’p € Xm(R3, p),

weo / 2 / /
curlH-E —KZE[)E E)d%’—/FEdl’,
/3( 4 p () P P 3 P

implying

1
curl H, + irke(p)E, = —F, in R®
iK

O

In this section, we give a variational formulation for the term ¢, € V (see (2.8)), which appears
in the decomposition of the electrical field, compare Theorem 8. Again, we extend the ideas of
Peron [42] to prove Lemma 3 for the unbounded exterior domain. Our Lemma 3 corresponds
to Peron’s Lemma 2.33 in [42] and gives the appropriate setting for an unbounded exterior
domain

Lemma 3. Let E, € Xy(R?, p) solve of (3.9)-(3.10) for F € W(div, R3), and let (wp,pp) €
W(l](R?’) X V with divw, = 0 given by Theorem 8. Then, , solves the variational problem:
Find ¢, €V, such that for all ) €V,

= 1 — 1 —
/ e(p)Ve, - Vipdr = —2/ div F - dx + —ipZ/ w), - n|pds. (3.16)
R3 K* JR3 © by

Proof. Due to Theorem 8 there exists an unique couple (w,,¢,) € W{(R?) x V such that
E, =w, + Vy,. Thus we have

/ e(p)Ve, - Vipdr = / e(p)E, - Vipdz — / e(p)w, - Vipdz, Y € V.
R3 R3 R3
Then since £(r)div(e(p)E,) € L*(R%)and £(p)E, € L*(R?) there holds
[ 0By Tido =~ [ div(e(p)E,) - T,
R3 R3
so, due to Theorem 4,

— 1 —
/ e(p)E, - Vipdr = — [ div F - du.
R3 K R3
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3.2 Uniform a priori estimate of the electrical field in R3

Next, we have
/ e(p)w, - Vihdz :/ e(p)*w, -V—T/)dCU—F/ e(p)dw, - Vipda,
R3 Qs Qecd
and, by integration by parts,
[ =0, - Side = | div(el)tw,)ide — [ (clp)w, - m)is.

Next, we choose a ball Br with radius R > 0 and boundary dBpg containing Q°?. Setting
O = limp_,00o Qg with Qp = Br N Q% with 0Qr = 0B U Y we have

/Q i e(p)*w, - Vidz = /Q ) div(e(p)*w,)pda + /

%

(o) ow, s + [ (elp)w, - njids.

OBg

Note Silver-Miiller conditions yield

/ (e(p)*w, - n)hds = / (e(p)*[w, — W, x n] -n)ihds — 0 as R — o0,
OBRr 0BRr

Hence

/Qis e(p)sw, - Vipdr = /Qis div(e(p)*w,)bdz + /E(e(p)iswp -n)pds.
Thus
[ elow, - Fide = [ aiv(elopwide + [ (c()* = c(p)w, - nlsiids.

4 1
Since div w, = 0 in R?, we get (3.16) because (see before (3.2)) (p)™® — e(p)d = ——ip®. O
w

3.2 Uniform a priori estimate of the electrical field in R®

Next we give an existence and uniqueness result for the solution of (3.9)-(3.10). The proof
uses an a priori estimate for the electrical field for large conductivity, hence for large p with
a constant C' independent of p. The ideas of this section are based on those of Peron [42],
but using compactness results for the embedding of weighted spaces with unbounded domains.
This is a crucial difference of our proof compared to Peron’s proof.

In the following we assume there holds the

Spectral hypothesis (SH): x2 is not an eigenvalue of the limit problem: Find Eq € W (curl, Q%)
with Eg x n = 0 on X such that, for all E' € W (curl, Q*), with E' x n =0 on 2

/ (curl Eg - curl E' — k?Eq - E')dz = 0 andn x E = 0 on 2. (3.17)
Qs

Now, we can formulate our main theorem of this chapter which is the weighted version of
Peron’s Theorem 2.27.
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

Theorem 5. Under the spectral hypothesis (SH), there exists a constant py > 0, such that for
all p > po, problem (3.9)-(3.10) admits an unique solution E, € Xm(R3, p) for F € W(div,R?),
satisfying

leurl Bpligz | ms) + [ldiv(e(p) Ep)ll gz ey + 1 Eollzz 2y + PIE, | £2(2c0)
(3.18)

< CIFl i oy

with a constant C' > 0, independent of p.

The proof of Theorem 5 is given in various steps, below. The estimate (3.18) is based on the

a priori estimate (3.19).

Theorem 6. Let (SH) hold, then there exists a constant py > 0, such that, for all p > po, if
E, € Xpu(R3, p) solves (5.9)-(3.10) for F € W(div,R3), then

1Eollz ) < ClIFl iz (3.19)

where C' > 0 is a constant independent of p.

Proof. The proof is similar to the one by Peron [42] but here we use a compact embedding of
PH'(R?) into L§ _;(R?) where

PH'(R®) = {¢ | ¢ € (W5(Q™))* and ¢ € (H'(Q*))*}.

Taking E, € Xmy(R3, p), solution of (3.9)-(3.10), we have V& € Xy(R3, p),

1 = . L KE =
/RS <;curl E, - curl ® + adiv(e(p)E,) - div(e(p)®) — ;EPCI)> dx—

(3.20)

1.5 = - a AT
—;z,o /ch E, ®dx = /RS (F P — Edlv F- dlv(e(p)q))) dx.

Then, due to Theorem 4 there holds,
. 1. . 3
div(e(p)E,) + —divF =0, in R”
K
((r)72® € (C°(R3)?) C Xy(R?, p) implies with £(r) = 1 on Q4

/ (curl E,-curl (E(r)26)—/€2Ep$€(r)2)dx—ip2/
RS

E, ®dr = u/ F-® ((r) %dz,V® € Xmy(R3, p).
Qcd

RS
(3.21)
Just like Peron we prove the theorem by contradiction argument, but we crucially apply a
compactness result for the embedding in weighted Sobolev spaces by Avantaggiati and Troisi.
Since Peron considers only bounded domains, he can, in contrary, apply standard embedding
arguments (Rellich’s theorem).
Suppose that exists a sequence {F, },>1 in W (div, R?) with p,, — 0o, and ¥, HL(Q)yil(Rg) =1
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3.2 Uniform a priori estimate of the electrical field in R3

and F,, -n = 0 in X, and such that for the corresponding solution E,, € Xmy(R?, p,,) there
holds

Jm By [z | (gs) = 0.

Writing ~ for dividing by |]EanL(2)771(R3), ie. E,, = (HEanL%ﬁl(Rg))*lEpn we have
||EanLg’_1(R3) =1, and 7}1_{{310 HFPnHLg’_I(RF’) = 0. (3:22)

We will show that {f)pn }n>1 is bounded in Xy (R3).
With ® =E,, (3.21) becomes with Lo.t= [ps curlE,.E curl(¢(r)~?)dz

[curl E,, ||i(2)’_1(R3) +lo.t—#%|[E,, Hia_l(RS) _iPiHEan%?(ch) = p(Fp,, Epn)Lg’_l(RS)- (3.23)

Taking imaginary parts we have

Pn 1Ep, HiQ(ch) = —plm(F,,, EPn)L(Q)ﬁl(Rﬁ‘), (3.24)

and with Cauchy-Schwarz inequality we obtain

’Im(FPn7Epn)L%771(R3)’ < HFanL%ﬁl(Rii)HEPn”L%ﬁl(R?’)'

Hence (3.22) yields

n—o0

Also, taking real parts in (3.23), we get

|lcurl EPnHigﬁl(R?’) +lo.t — /<;2|]Eani%771(R3) = pRe(F,,, Epn)L(Q)’il(Rg). (3.26)

Hence due to Cauchy-Schwarz inequality and (3.22), there are constants C and Cs independent
of n, such that
Jeurl By, |2 gy < O+ CallFplug e (3.27)

Therefore, {curl Epn }n>1 is bounded in Lg,_l(R?’).
Let (W, ¢p,) € WH(R?) x V, (for definition of V see (2.8)) be given by Theorems 7 and 8 by
Girault [18], such that

E,, =W, +V@,,, and divw,, =0, in R

and

1Won sy < Cllewrl By, f[pz  (rs), (3.28)

where C > 0 is a constant independent of p,,. Therefore, {w,, }nen is bounded in W} (RR?).
According to Lemma 3 and (3.11), ¢, satisfies for all ¢ € V,

- = 1 ~ = 1 - —
/ e(p)V@p, - Vipdr = — div F,, - Ydz + —ip® / W, - n|xids. (3.29)
R3 K= JRs H p)

Let pg > 0 and the constant C,, > 0 be given by Theorem 3. We set 6, = 1+ ip2. Then there
exists ng € N, such that for all n > ng we have |6,| > pg. Note divF,, and w,, - n verify the
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

hypotheses of Theorem 3. Also, problem (3.29) is coercive on V. Hence the solution of (3.29)
belongs in PH?(R3) and there holds for any n > nq,

155 2oy + 15 ey < Ca (Iiv B g ey + 1905, -0l )

Thus {V@,, }n>1 is bounded in PH'(R?), and {E,, },>1 is bounded in H'(Q°4) U (W(52))°.
According to Lemma 5, the embedding of PH!(R?) in Lafl(R?’) is compact. This implies that
there exists a subsequence {Epn}nzl and E € Lafl(R?’), such that

E, ~E in (PH'(R*)’,E, »E in L7_ (R%), (3.30)

with (3.22) we have therefore
[Blls o) = 1. (3.31)

To get a contradiction, we show that E =0 in Qs U Q.
Note ||E|2(ges) = 0 due to (3.25) yielding

E=0, in Q< (3.32)

Next, we take ® € Xry(R3, p) with support in Q. Thenn-® =0, n x ® = 0 on ¥ and due
to (3.21), we have

(Curl Ep"7cur1 q))L(%,,l(QiS) + lot — K:2(EPTL7 Q)L%’,I(Qis) = /,[/(Fp"7 Q)Lgyfl(gis). (333)
According to (3.30) letting n — oo we obtain

(curl E, curl (I))Lg (isy + Lot — K2 (E, q))L?)’_l(QiS) =0. (3.34)

—1
Now (SH) gives E= 0, in %, and therefore altogether E= 0, in R3, which is a contra-
diction to (3.31) and therefore (3.19) holds. O

Now with the help of Theorem 6 we can prove Theorem 5. The proof follows directly Peron’s
proof of his Theorem 2.27 in [42]. But we must analyze in weighted spaces and therefore
present in our proof the necessary modifications.

Proof of Theorem 5: Let pg > 0 be given by Theorem 6. Let us assume E, solves (3.9)-
(3.10). Then, E, solves (3.21) and taking ® = E, we get

[curl EPHiQ(RS) - ’fQHEpHigﬁl(RS) - iP2HEpHi2(ch) = N(F7EP)L%’71(R3)' (3.35)

Taking successively again imaginary and real parts as in the proof of Theorem 6 we obtain the
a priori estimate (3.21) from (3.11) and

PIElIL2eay < CrllFllw(div,rs)» (3.36)
(d1v,R?)

and
Jewrl Byl gy < CollFllyy iy s (3.37)
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3.3 Mathematical tools: Decomposition of vector fields and compact embeddings in weighted spaces

Next we derive existence and uniqueness of the solution of (3.9)-(3.10). The proof is almost
the same as Peron’s proof, only that we have to argue differently with the compact embedding
due to our unbounded exterior domain. Next, note that the a priori estimate (3.18) implies
the injectivity of the solution operator of the variational problem (3.9). Therefore to show
existence of the solution it suffices to demonstrate that this operator is surjective. We introduce
the sesquilinear form ¢, defined for all E,, E’p € Xy (R3, p) as

1 = : T
. (—curl E, - curl E) + a div(e(p)E)) - dlv(s(p)E;)> dx. (3.38)

cp(Ep, E;) = / ’

R

We can demonstrate that c, is coercive on Xy(IR?, p), by a suitable modification of Corollary
3.16 in [1]. As another possibility we can apply the arguments in Hiptmair’s proof of his
theorem 2.1 [24] which is listed as Theorem 10 in the next subsection for convenience. According
to the generalization of the Lax-Milgram Theorem (see [27, Lemma 13.6]), we deduce that the
operator C, from Xy(R3,p) into Xy(R3,p)’ is a isomorphism and thus C, is a Fredholm
operator. Now the embedding I,(E,) = (p)E, for E, € Xm(R3,p) from Xm(R3, p) into
X (R3, p)’ is compact. Hence C,— k21 p is a Fredholm operator. In particular, it is surjective
if and only if his adjoint C — /<;2[; is injective where I = m[ p- Let ¢} be the sesquilinear
form associated with the operator C7, i.e.

1 = TR . =
<;curl E, - curl E) + a div(e(p)E)) - le(&(p)E;)) dz,VE,, E), € Xn(R3, p).

(3.39)
Now similar to Theorem 5, we can prove an a priori estimate for Cj —/12[; yielding its injectivity

¢ (B, ) = /

RS

and therefore the desired surjectivity of the operator C, — K21 o

3.3 Mathematical tools: Decomposition of vector fields
and compact embeddings in weighted spaces

In this subsection we collect the mathematical tools we have needed in the proof of our a priori
estimate (Theorem 5), namely a vector Helmholtz decomposition in R? and a compactness
results (Lemma 6) for the embedding in weighted spaces.

First we consider the vector potential of divergence-free vector fields and present results for
a Helmholtz decomposition by Girault [18]. The weighted Sobolev spaces used here were
introduced and studied by Hanouzet in [21].

For any multi-index a in N3, we denote by 9% the differential operator of order a:

olal

= aq a9 a3’
0z (" 0x5° 0

0° with |o| = a1 + a2 + as.

Then, for all m in N and all k£ in Z, we define the weighted Sobolev space:

WI(Q) = {v eD'(0°) | Va e N3, 0< |a| <m, £(r)lel=mthgay, ¢ LQ(QiS)} ,
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

which is a Hilbert space for the norm:

2

[0llwrp sy = Z W(T)la‘_m+kaav‘|i2(ms)
|ar|=0

Observe that, as a particular case,
WH(Q*) = L*() and W2 (R®) = L§ _,(R?).

For all n € Z, P,, denotes the space of all polynomials (of three variables) of degree at most
n, with the convention that the space is reduced to zero when n is negative.

P., is the subspace of all harmonic polynomials of P,,, again with the convention that the space
is reduced to zero when n is negative.

For all integers k& > 0, we define the following subspace of (Py)3,

Gr:=1{Vq | q € Pry1}.

Note that Gy = R3.
The following theorem by Girault [18] characterizes the vector potentials of some divergence-

free vector fields.

Theorem 7. (V. Girault [18, Theorem 3.2]) Let m belong to Z and k belong to NU{—1, -2}
and let u be a vector field in W™ _, (R®)3 such that

divu = 0. (3.40)
Then u has a unique vector potential U in sz}g(R?’)?)/gk_l such that
u=curl ¥, div¥ =0, (3.41)

and

H\I’ngji(RS)S/gk,l < C\\Uffwg_k(m3)3- (3.42)

When k = 0,—1,—2, the vector potential is unique in sz}c(R?’)?’ and (8.42) can be slightly
refined:
H\I]‘|W$f,1€(]R3)3/gk_l < Cllcurl u”wz:}c(R?,)?,- (3.43)

The following result is based on the paper by Girault [18]. In the case of a bounded domain,
there are two classical orthogonal decompositions of vector fields: a decomposition in L? and
a decomposition in H{ (cf. for example [19]). The following theorem establishes the analogue
of the decomposition in L? for vector fields in R3. Beforehand, we introduce space

VII(R?) = {ve WHR?? | divv=0},
and the following subspace of (P;)3, which is analogue of Gy:
Cr:= {curlq | q € (Pp1)’},

with the usual convention that C, = {0}, when k < 0, observe that Cy = R? = Gj.
In addition, for all £ > 1, G;, C Ci, but the inverse inclusion is false.

60
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Theorem 8. (V. Girault [18, Theorem 5.1]) Let the integers m and k belong to Z and let u
be a vector field in W (R?)3.

1. If k <1, u has the decomposition

u=Vp+ curl D, (3.44)

where ® is unique in mii(Rg)/C—k—l and p is uniquely determined by uw and ® in

W%i}ﬁ(R?’)/R, or Wzi}g(R?’) if k=0 or 1. They satisfy the bounds:

HCI)HWQLIC(RS)S/C%A * ”pHWﬂi(RS)/R < CHUHW%M(H@P’ (3.45)

with the convention that the quotient norm of p is replaced by ||pHWm+1(R3) when k =0
m-+k
or 1.

2. If k > 2 has the decomposition (3.44) with a unique p in WZi}C(R‘?) and a unique ® in

meillc(R?’) if and only if w is orthogonal to Cy_o (for the duality paring). The analogue

of (3.45) holds:
||(I)HW$LI€(R3)3 + HPHWleC(Ra) < Cllullwr,, ws)s, (3.46)

3. When both m and k belong to N, the decomposition is orthogonal for the scalar product
of L*(R?).

Now, this part is concerned with compact embedding in weighted Sobolev spaces for unbounded
domains, and is based on the paper by Avantaggiati and Troisi [2].

Let © be an unbounded set of R™, provided with the cone property, and § € C°(Q), a positive
continuous function divergent for |x| — oo, satisfying the following conditions:

1. There exist two open and separated subsets 21 and €2 of R”, such that
Q =0, UQ, and
i(x) <1, VxeQ, §(x)>1, Vxe Q.

We will put also, 2y = Q.
2. We put, for each xg € Q;, 1 =0,1,2,
Ai(Xo) :Qiﬂ{x | |X—X0| < (S(XQ)},

it is able

616(X0) < 5(X) < CQ&(XO), Vx € Ai(XQ),
where ¢; and ¢y are two positive constants independent of x¢ and x.

3. If p;(x,%¢) is the characteristic function of the set A;(xq), then the inequalities

c30"(x) < / ©i(x,%0)dxo < 40" (x), Vx € A;(x0),

3

hold, where c3 and ¢4 are two positive constants independent of x.
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

If s, A e R and 0 < p < oo, we will indicate with zg/\(Q) the space of the functions u(x), such

A
that 0* < ) u € LP(Q), with the norm

S 6 >\
1) <1+52> u

If s, € R, r € Ng and p € (1,00), we will indicate with W} (€2) the space of the distributions

1462

Hqui’y)\(Q) =

(3.47)

Lr(Q)

u on §2, such that 0%u € EZS’HQFM(Q) for |a| < r, with the norm
r P
k
lulbwrg = | SoI0kalz, oL (3.48)
k=0 s+|a|—r,A

We observe that the algebraic and topology inclusion
W) € Wf_’ﬁc_r+t’)\+T(Q), for k<r,7>0, and te€[-7,7], (3.49)
exists. Observe that, as a particular case,
0, ¥
W&/{’(Q) = LZ/\(Q).

We have also, Lg,—1(Q) = 22_11(9)

Definition 1. Let X,Y be two normed linear spaces. We say that the space X is embedded
into the space Y, and denote this fact by the symbol

X =Y,
if
(i) X is a subspace of the space Y .

(ii) There is a constant C' > 0 such that
[ully < Cllullx,
for all elements u € X.

Lemma 4. [2] Let s, A, p, r real numbers with p > 1 and r > 0 entire. For each distribution
uw on Q such that u € L () and 0°u € LY ,(Q) for |a| = r, for each not negative entire
k <r and for each a € [k/r,1[N[k/r,k/r + n/pr| there exists the limitation

le' o ||a 1—a .
Ha u”zgiéglik;g:’;am)(ﬂ) < C(Ha UHES,A(Q) ’ HUHZIs)—r,A(Q) + HUHL’;_T’A(Q))a (350)

where ¢ is a constant independent of u.
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Theorem 9. (Avantaggiati and Troisi [2, Theorem 6.1]) There are s,\,r,p real numbers,
where r € Z4 and p > 1. For each not negative integer k < r, for each real number 7 > 0 and
for each t € (—7,7) the injection

W;)\(Q) — Ws-;-pk r+t, >\+T(Q) (3'51)

18 compact.

As a consequence of the forgoing results we have the following lemma

Lemma 5. The embedding of PH'(R?) into La,I(R‘?) is compact.

Proof. First, we observe that by definition EQ_M(Q) = La_l(Q) = Wg’il(Q). On the other
hand choosingt =s =A=k=0,7=7r =1, p=2in (3.51) gives the compact embedding
W0102(Q) cC Wolzl(Q) Altogether W0102(Q) CC L§_1(€2) where we can set Q = R?.
Furthermore ¢ € PH'(R?) := {p = (¢",¢) : ¢ € W{(Q'%), 0 € H'(Q?)} gives due to
the definition of W} that Vgp € L? and hence Vp € Eg,o with s = A = 0 in (3.47). Therefore
Y E Wol”(?(Q) with r =1, p=2, s =X =0in (3.48) because with s = A =0 = |a|, r = 1 there
holds

_ ¥
= Q) =6t <cl|l—— < 00
el (0 = 10~ el < | 2|
by taking d proportional to v/1 + 2. O

A variational formulation of the eddy current problem is given by Hiptmair [24] who shows
existence and uniqueness of the weak solution. He consider the problem

1

curl p~teurl E + ikwoE = —iwJy, in R3,

div(eoE) =0, in Q%

/ E nds=0, i=1,-- Ny,
i (3.52)

B =0 () o x>,

|

|

curl E(x) = O <i> , as |x| — oo.

Here {%; } e stands for the finitely many connected components of ¥ = 9Q, gy > 0 is a
constant in le , Supp(Jg) C Qed, Jq is divergence-free source current.
With the constrained space

Xc(R3) = {ueW(curl R3) ‘ divu =0, in Q% / E|gis - nds = 0, 1:1,-.-ch},

i
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3 Electromagnetic transmission problem for large conductivity - Analysis in weighted Sobolev spaces

the weak eddy current problem reads:
Seek E € X¢(R?), such that for all v € X¢(R?),

a(E,v) = (u tcurl E, curl V)L2(rs) T W(OE, V)12 geay = —iw(Jo, V)2 (qea- (3.53)

Theorem 10. (R. Hiptmair [24, Theorem 2.1]) A solution of the variational problem (3.53)
exists and is unique.

The above theorem could be used alternatively in the proof of Theorem 5.
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4 Asymptotic expansion for large
conductivity - Revisited

In this chapter we summarize the results from Peron’s thesis [42] on the terms in the asymptotic
expansion of the electric field w.r.t. large conductivity. We show that his results on the form of
the terms and the convergence of the expansion which he derived for bounded domains remain
valid for a unbounded exterior domain. A key issue in [42] is an appropriate scaling in normal
direction near the interface (see [17, 32, 31, 47, 42]). We follow Peron’s analysis but use a
weighted space setting for Q%. For the bounded interior domain we just quote or repeat the
respective results from Peron [42, 15]. For better reading we use Peron’s notation

4.1 Asymptotic expansion - Revisited

In the following we assume that the interface X is compact orientable C*° surface and denote by
n the normal to ¥ pointing into Q°?. We can locally define coordinates such that y = (ya,y3)
in a tubular neighborhood of . We consider

curl E —iwpoH =0, in QU Q™
(4.1)
curl H + (iweg —o)E=J, in QU Q®.

Let J € H(div,Q) with J = 0 in Q. Under the assumption that w is not an eigenvalue
there exists pg > 0 such that for all p > py the problem (4.1) admits a unique solution
(E,H) € Lg,—l- Furthermore, for " bounded Peron derives an asymptotic expansion in
powers of the p~! [42, 15]

EZS(X) ~ Z Eé—s(x)p_j, for x € Q"

Jj=0
(4.2)
Ecpd(x) ~ Z E?d(x; p)p~?, for xe Q%
Jj=>0
where
E(x;p) = W (ya, hp), @ =1,2 | (4.3)
and
Wjd(ya,Y},) — 0 when Y3=hp— cc. (4.4)
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4 Asymptotic expansion for large conductivity - Revisited

Let us write J, 1 (yg) = Aﬂ(curlE/,;F X n)a(ys,0) for k =0,1 and X = ke /4
(k = wy/Eopo is a wave number). There holds (see Dauge et al. [15] and Peron [42]) with
W= (Waj,wj) :

WO(yOn }{i’)) =0
Wa,l(ymy?,) = Ja7o(y5)e*)‘y3 and w; =0
Woz(ta: Ys) = [~ Jan + (A 4+ Y3)(00) Jop — Hal (95)e

and wy(Yq, Y3) = —A_lDaJé)‘(yﬁ)e_)‘Y?’

where 7 = % is a mean curvature of the interface ¥ and D, is the covariant derivative on
3. In order to show that the above statements hold also for an unbounded exterior domain we
only have to modify Peron’s proofs as follows:

We adopt his arguments in the bounded interior domain and in the unbounded exterior do-
main we use Beppo-Levi spaces. In the unbounded domain 9 we use these weighted spaces
to extend his argument as follows where elliptic regularity plays a key role.

In the insulating domain we investigate equation (3.4) where we insert our expansion ansatz
(4.2) so that we get further equations for the coefficients.
Let’s consider now the functional space

X(Q%) = W (curl, Q%) N W(div, Q%) .

We introduce an operator q)izs extending the tangential traces on ¥ into the insulating domain
Qis
B H3(8) — (W3(Q))°

with
0%u

S is\\3 ! (O)is -1 s—1
W Q) = {u e D(Q*) | ¢ ol 7
(W(@%)’ = {w e D) | @) . 0 gons

€ L2(Q"),s; +s; = s}

where s is a real number fixed large enough. So, for all j € N, if E;d Xn e HS_%(E), then
ué»s = @%(E;d xn) € (W‘{(Qis))g, verifies ué-s Xn= E;d xnon X. O is defined as the inverse
of the trace operator

o o (W3(Q#)° — B3 (%),

We assume now that the data F of problem (3.4) is independent of p. By substituting ansatz
(4.2) in equation (3.4), we have

1 4 _ —
Z(curl E¥ - curl E' — k*E¥ - E') do+
0 0 0

, 1 A — g s T
+ Zp_j / = (curl E% - curl E' — IQZE;S . E’) dx = / F* . E'dz.
i>1 e .
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4.1 Asymptotic expansion - Revisited

—1

Identifying terms according to powers of p~*, we get the following equations

1 . — R R
/ = <curl E§ - curl B — k’E} - E') dr = / F” . Edx

Qis M Qis
(4.6)

/ (Curl Eé»s ccurl B — /@2E;-S E) dr =0 forall j>1.
Qs

Next we solve like Peron [42, (5.16)] the following problems in the insulating domain: Find
Ej € X(Q%), with Ef — ®%(E§ xn) € Xy(Q), such that for all E' € Xy(Q*) = {u € X(Q%) :
nxu=0onX}
1 ‘ _ o R
/ — <Cur1 Ejy - curl E' — k*E - E/) dx = / F” . E'dz, (4.7)
Qs M Qs
and for all j € N*, find Ei¥ € X(Q%), with Ei¥ — ®(ES? x n) € Xy(Q*), such that for all
E' € Xy(0)
/ (Curl E;-S ccurl B/ — /@2E§s E) dx = 0. (4.8)
Qs

Now, the terms of the asymptotic expansion of the electrical field can be successively con-
structed. The terms W?d are exponentially decreasing in the variable Y3. We set I = (0, 00)
and Qg =X x 1.

First we present from Peron [42] terms of order 0 in the conductor Q2°¢ and repeat his deriva-

tion. Following his argument we can also for unbounded % compute the expansion terms in

(4.2):

According to (5.14) in [42], we have

—ir2wid = 0

then wgd =0in Q.
Due to (5.13) and (5.14) in [42], there holds the second order ODE

(4.9)
WY =0 on X.ieY;=0

The boundary condition in system (4.9) and the hypothesis (4.4) assure the uniqueness of the
solution of the ordinary differential equation. Since w§? = 0 and Wacflo = 0, then W§? = 0
in Qg. But due to (4.3), we have ES4(x,p) = W5 (ya, hp) yielding ES? = 0 in Q4. This
derivation was originally applied by Peron [42].

Next we consider the terms of order 0 in insulating domain €2%:
We know that E§¢ = 0 in Q°¢, then the term E§ verifies the perfect conductor condition

Ef xn=0 on % (4.10)
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4 Asymptotic expansion for large conductivity - Revisited

Due to (4.7) and (4.10), the problem to be solved for the term E§ is then the following: Let
Ej € Xy(Q%), such that for all E' € Xy(Q%)

1 ‘ _ o o
/ — (Curl Ejy - curl E' — k*E¥ - E’) dx = / F*” . Edz. (4.11)
Qis W Qis

And, according to spectral hypothesis (SH) x2 is not eigenvalue of problem: Let Eq € Xy(Q%),
such that for all E' € Xy(Q)

/ (Curl Eo - curl E' — x2Eq E) dx = 0. (4.12)
Qs

Therefore due to Fredholm’s alternative (4.11) has an unique solution E§ € Xy(2%*). Due to
elliptic regularity, E € (V\V{(Q“”))3 for F € (Wffz(Rg))g.

Next we present from Peron [42] the terms of order 1 in conducting domain Q°?:

According to (5.14) in [42], we have
~intuf 4 420 (WEY) + 0w = 0

and Wﬁd =0 in Qg, implying w{? = 0 in Q.
According to (5.13) and (5.14) in [42], and since Wacflo = 0 and w§? = 0, there holds

—PRW —ik2Weh =0 in Q

(6%
| (4.13)
(93W§j11 = (curl f]los X1n), on X.

The following results by Peron give an expression of the term Wéjil

Proposition 4. [42, Propositions 5.3 and 5.4] Suppose (SH) holds. Then the ordinary dif-
ferential equations (4.13) admits a unique solution Wéjil Furthermore, for all (yg,Y3) € Qo,
we have with \ := ke™"%, Re(\) >0
1 ~i _
Wil (ys Ya) = — (curl By x m)a(ys, 0)e (4.14)

and for all (yg,Y3) € Qy, we have

1 ~d
Wi(ys, Ys) = = (curl By x n)(ys, 0)e (4.15)
Next we present the terms of order 1 in insulating domain Q°:
According to (4.3) we have in a tubular neighbourhood of ¥ € Q.

cdf, . _ cd .
E] (Xa p) - W] (yaahp) if xe O’
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4.2 Convergence of the asymptotic expansion of the electrical field

in particular for j = 1 there holds
E{'(x; p) = Wi%(ya, hp).

Now (4.15) implies
B¢ = —%(Curl Eif xn) on X
since _
Ejy(x) :Ef)s(ya,O) on X.
Consequently

4 1 4
Ef xn=E{xn= —X(curl Ef xn)xn on X,
We know that EY € (Wf(Qis))g, hence curl Ef x n € H > (X) for smooth ¥ and therefore
ES x n|y € H 5 (X).

Now due to (4.8), the problem for Ei reads: Find Ef* € X(Q%), with Ei¥ — ®%(E{? x n) €
Xn(©2%) such that, for all E' € Xy(Q),

/ (Curl EY . curl E' — k2E¥® E) dx = 0. (4.16)
Qs

Due to the spectral hypothesis (SH), the variational problem (4.16) admits a unique solution
E} € X(2%) and again elliptic regularity implies, Ef € (W5~1(Q* ))3

Higher order terms can be written in a similar manner (see [42]). In the same way one can see
that Peron’s expansion procedure remains valid for unbounded Q.

4.2 Convergence of the asymptotic expansion of the
electrical field

Next, we study the convergence of the asymptotic expansion of the electrical field E,, (4.2).
Therefore we consider the remainder of order m, R, , which consists of the difference between
E, and the first m terms in the asymptotic expansion of E,. Theorem 11 shows the convergence
of the remainder. Important tools are the uniform a priori estimates in p derived in Chapter
3. Again, we extend the results of Peron [42] to the case of the unbounded exterior domain
using Beppo-Levi spaces.

Now, we consider data F € PH*(R3) = {F = (F¢, F¥*) | F*¢ ¢ H*(Q), F¥* ¢ (Wf(QZs))s} ,
s > 2, with support in Q% such that divF = 0 in R?. Note E, € X (RR3, p) is a solution of the
following equations in the sense of distributions

1
—curl cwrl E, — x%¢(p)E, = F, in R3
o
(4.17)

~ . 1
lcurl E, x X —ikE,| = 0 <—> , as |x| — oo,

x|
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4 Asymptotic expansion for large conductivity - Revisited
(see Proposition 3). Since div F = 0 and x # 0, we deduced that
div(e(p)E,) = 0 and thus E, verifies
~AE, — k*ue(p)E, = uF, in Qdy Qs
as well as the transmission conditions (see Lemmas 1 and 2)
e(p)E,-n]y =0, [div(e(p)E,)ls =0, [E, xn]y =0, [curl E, x n]y, = 0. (4.18)

Under the spectral hypothesis (SH) on «, for all j € [|0, [s] — 2], with s > 2,for the terms Eé»s
and W?d of the asymptotic expansion (4.2) there holds

. . . 3 .
B e (Wi7(@") and Wil B33, C%(1), (4.19)
where I = (0,00). This can be seen as done for j = 0,1 in Subsection 4.1.
From the asymptotic expansion (4.2), one defines the associated partial sums for all N &€

[10, [s] - 2]]
N

(1, (%) =D EF(x)p Y, it x 0",
=0
(4.20)
N
E[cfc\lf},p(x) = ZW?d(ya, Y3)pl, if xeO
=0

and sets with a cut-off-function x € C°>°(Q°¢) such that x = 1 in a tubular neighborhood O’
of ¥, where O’ C O, and x = 0 in Q% \ O, see figure 4.1,

Figure 4.1: A tubular neighborhood of X.

ffsVLp’ i QF,
En, =14 xEX ., in O, (4.21)

[N],p’

0, in Q“\ 0.
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4.2 Convergence of the asymptotic expansion of the electrical field

According to (4.19), we have

~18 cd

— is 3 o s—N—2% /¢
By, € (Wi V(@) and Ejy), e BV (). (4.22)

We remember that E, € Xy(R3, p) "PH?(R3) is a strong solution of (4.17) for F € PH* %(R3)
where s > 2. Almost verbatim there holds the following modification of Peron’s Proposition
7.4 in [42] for the remainder R, , = E, — E[m},p.
exterior domain 2'*. For better reading we adopt Peron’s notation and repeat some essential

But of course we consider an unbounded

parts of his proof, but modified to our situation, i.e. weighted spaces in Q.
Proposition 5. Under the spectral hypothesis (SH), for all m € [|0, [s] — 2|], we have

5 2 pis ; s
curl curl R,y , — "R, =0, in Q7

cd _ pis
R, ,xn=R,  xn, on X,

(4.23)
1
|curl Ry p X T— ikRy, p| = 0 (ﬂ) , as |z — oo.
x
Moreover,
m
div[p| RS, = —p~ ™ 1> " di T F W 4+ O(p ), in O, (4.24)
k=0
and on X, we have
1 .
. . . ~118
()RS, - n=c(p)"Ris ;- n—e(p)"p ™Y (Wil — By m)p (4.25)
k=0
Proof. We have that Ef € Xy(Q%) satisfies
1 4 — — — 4
/Q. ;(Curl Ey - curl E' — k*EY - E)dz = /Q F* . E'dx, VE' € Xy(Q") (4.26)

and for all j > 1, E;S € X(Q%) satisfies E;S — @izs(Ejd x n) € Xy(Q¥), with extension operator
®% (see Section 4.1). Furthermore for all E' € Xy(Q%),

/Qis (curl E;S ccurl E — /<;2E§»8 E)dm =0. (4.27)
Thus, Rifhp € X1(0) satisfies
Rl — @Ry x n) € Xy(Q5),
and for all E’ € Xy(Q%),

/Qis (curl Rfip -curl B — EQRZ,',SW - E)dz = 0. (4.28)

71



4 Asymptotic expansion for large conductivity - Revisited

Next, integration by parts in (4.28), gives

curl cwrl R}? ) — "‘QZRiZ,p =0, in Q%,
(4.29)
ng’pxn:Rffbvpxn, on X.

The remainder of the proof goes verbatim as the proof of Proposition 7.4 in Peron [42].

O

1, and we present estimates of

Next we give for R,, , an asymptotic expansion in powers of p~
the remainder. The crucial point in the proof is the a priori estimate (3.18).

As observed by Peron we cannot apply directly the a priori estimate (3.18) to R,y ,, because
of the lack of continuity of the terms curl R,, , X n and £(p)R,,, , - n on the interface X, see
the relations (4.23)3 and (4.25). Following Peron we construct a correction term C,, , with
support in the domain % such that we can apply estimate (3.18) to U, = Ry, —Cpyp. The
following result corresponds to Proposition 7.7 in Peron’s thesis [42]. Again we give here the
modification for an unbounded exterior domain Q% and weighted spaces. For better reading

and completeness we give the details of the proof which repeats to some extend Peron’s proof.

Proposition 6. Let s > 2 and F,,, € PH*(R?) with support in Q, such that div F =0 in
R3. Under the spectral hypothesis (SH), for all m € [|0, [s] — 2] there ezists C, , € PH*(R?)
with support in Q% such that w, , € Xm(R3, p) satisfies for all E' € Xgy(R3, p) N W(curl, R3),

1 — — —
/ —(curl ) - curl B — K2 (p) U, p - E/)d:v = / F,,- Edx, (4.30)
R3S H ’ ’ RS
and 1
div(e(p) tm,p) = —?div F,, n La_l(R?’),
where Fy, , € W(div,R?) is defined by
uF‘,'Z,p = —curl curl C"Tip + K2 C‘wa in Q°F, (4.31)
,uFffip = curl curl Rffip — K21+ in)Rffip in Qe (4.32)

Moreover, there exists a constant Cp, > 0 independent of p such that

| Cm,pHLgﬁl(m) < Crp™ ™ (4.33)

Proof. Let Cp,, € PH*(R?) with support in Q% = Q_ and u,,, := Ryp — Cpp. According
to Proposition 5, there holds

cd _ .48 s
um7p><n—um,p><n+Cm,p><n, on X,

~ 1
lcurl up, ) X X — iKWy, 5| = 0 <m> , as |x| — oo.
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4.2 Convergence of the asymptotic expansion of the electrical field

According to (7.38) in [42], we have
D5 |5 € H2 (%) (4.35)

and define on ¥
_ ~is _
Hm,p =p ma?:Werl and Im,p ‘= Z(wfr?fk —E, - n)p mtk

According to (4.35) and (4.19), we have
1 3
Hm,p € H2(X) and gp, € H2(X).

As in [42] we construct the correction terms C,, , via the traces H,, , and g, , on 3
There exists C,, , € PH?*(R®) with support in Q% such that

s _ s _ s
Ch,xn=0, CJ -n=gnm,, 330m7p =Hm,p, on X,

) (4.36)
lcurl Cyp,p X X — ikChy p| =0 (W) , as |x| — oo,
X
and there exists C,, > 0 independent of p such that
ool (e < Con(Hompllgs g+ N9moll g3 ) (4:37)

With definition of H,, , and gy, , this proves the estimate (4.33). Now the regularity for Ry, ,
yields
us e (W3 0) and ul, e HY2(Q). (4.38)

Due to Proposition 5 and (4.34) there holds

2 . ‘
curl curl u® p K u’® = 7 v prin Q)
curl curl u®? mp K2 (1 + z',o2)u F%Cfp, in Q%
. ‘ b o ' (4.39)
uy , Xxn=u, ,xn, (I+ip”)uy -n=u; ,-n, on X,
~ 1
lcurl u, , X X — iKWy, ,| =0 =) as |x| — oo,
X
with F p, Ff,‘ip as in (4.31), (4.32). Proposition 3 implies that u,, , solves
1 2 . 3
—curl curl u, , — K%e(p)upm,)y, = Fpp, in R (4.40)

7

in the sense of distributions. Now (4.40) yields for all E' € Xqy(R3, p) N W (curl, R3) in Q¢

1 =/ =/
—curl curl — K2 cd ). Ed :/ F .Edz,
/ch <Iucur cur u mp — K E(p)ump) T ed P x
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4 Asymptotic expansion for large conductivity - Revisited

and gives by integration by parts
1 it Ehl — —
/QCd <pcur1 u%ip ’ CllI'l E, - ,‘<;2€(p)u$2l7p ’ El) dx B Acd Ffip ’ Eldw + /E(H X u(T:YCLl,p) : E,d87
(4.41)

Next as in Chapter 3 applying integration by parts in 2z and letting R — oo we end up at

1 : _ o o 4 _
/Q_ <—cur1 u,, - curl E — /<;2€(p)uﬁ;ip . E/> dx = /Q | D Edx — /(n X U ) E ds,

H by

(4.42)

By adding (4.41) and (4.42) and incorporating (4.39)4 gives

1 — — —
/ <—curl Uy, , - curl E — K2e(p) U, - E/> dx = / Fo,- E dz. (4.43)
QisyQed \ U QisyuQed
Moreover 1
div(e(p)um,p) = ——div Fpp, in L§_(R?). (4.44)
K k)

O

The next result corresponds to Peron’s Theorem 7.9 in [42] but here our result covers now the
case of an unbounded exterior domain. Here we show in detail in the proof where the weighted
spaces do appear. Again we follow Peron’s proof of Theorem 7.9 in [42].

Theorem 11. Let s > 2 and F € PH?*(R3) with support in Q°, such that div F = 0 in R3.
Under the spectral hypothesis (SH), for all m € [|0,[s] — 2|], the solution E, of problem (4.17)
admits the asymptotic expansion

m
E,=) Ejp”/ + Rn,, where Ejlgi: =ES and Ejlo(x,p) = W (ya, hp),
j=0

and R, , satisfies for p >0

(| curl RmmHLgﬁl(R?)) + HdiU(E(P)Rm,p)HLg,,I(RS) + HRmmHLgﬁl(RB) + pHng,pHLQ(QCd)
(4.45)
< Cpp~ ™,

where Cp, > 0 is a constant independent of p.

Proof. We can apply the a priori estimation (3.18) of the Theorem 5 to the term u,, , defined
in the Proposition 6. We have for all p > 0

leurl wn gz sy + divie(o)um )l ey + Ml ey + oI lzgoen

(4.46)
= CmHFm,pHW(div,RS)’
where Cy, > 0 is a constant independent of p and F, , is defined by (4.31) and (4.32) .
According to (4.22)
is 2/0is\)3 cd 3 royed
R} € (Wi(Q¥))" and Rjy, € Hz(Q), (4.47)
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4.2 Convergence of the asymptotic expansion of the electrical field

because s — m > 2. Therefore we have

[[curl Rm,pHLg’,l(RS) < [Jcurl um,P”L%ﬁl(R?’) + [|curl Cm,PHL%ﬁl(RC*y

HdiV(E(P)Rm,p)HL%A(E@) < HdiV(E(P)ump)HL(%’?I(RS) + HdiV(a(P)Cm,p)HL%A(W)’
(4.48)

||Rm,p||L2_ R3) < Hum,pHLQ_ R3 ‘|'||Cm,pHL2_ R3)»
5,—1(R3) 0,—1(R3) 0,—1(R3)

IR 2 ey < 05t [lp2 ey

According to (4.46) and (4.48)

lewrl Rop pllgz sy + [div(e(p)Rinp)llrz ey + [IRmpllz  re) + PHR%il,pHL%ch)

< CnllFllw(div,rs) + lewl Cmpllz sy + 1div(e(0)Cmp)lirz | @e) + HcmvaL%ﬁl(R?’)'

(4.49)
We have with div(F) = 0 € R? and due to (4.31), (4.32) and (4.33)
IFllLs sy S P (4.50)
Finally, according to estimate (4.33) we have
leurl Conplirz | (me) + |’diV(€(P)CZ}fL,p)”Lg’fl(ﬂis) +Cmpllrz @2 S p L (4.51)
Hence from (4.49), (4.50) and (4.51)the estimate (4.45) is derived. O

Finally as in Peron’s Thesis [42, Lemma 7.11 and Corollary 7.12] (describing the case of a
bounded insulator domain) we can also (using suitable modifications) derive optimal estimates
for unbounded insulating domains.

Lemma 6. Let s > 2 and F € PH2(R3) with support in O, such that divF = 0 in R3.
There ezists a constant C > 0 independent of p such that for all m € [|0,[s] — 2|], we have

and
_1 1
INE g2 gqeny < Cp%, and IXE pourires) < CoF- (4.53)

Proof. From (4.19), the function W?d are profiles defined on ¥ x I. Moreover, for any j € N
Ei* € W(cwl, ), and W} € H(curl, ¥ x I)
then, for any j € N, we have
B2 Lo + 22 B2 e + o7 % leurl B | ey < C

where C' > 0 is a constant independent of p. Therefore the assertion follows from

_1 1
IXEi g2 (eay < Cp~ 2, [Ixcurl Bgtllg2geay < Cp?
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4 Asymptotic expansion for large conductivity - Revisited

and

HE?LHW(curLQiS) <C.

O

Application of Lemma 6 and Thoerem 11 gives the following result which corresponds to
Corollary 7.12 in [42].

Corollary 1. Let s > 4 and F € PH°2(R3) with support in Q*, such that divF = 0 in R3.
Under the spectral hypothesis (SH), for all p > 0, for all m € [|0,[s] —2[], the remainder R, ,
of the asymptotic development satisfies the followings estimates:

d —m—41 ; —m—
IR ol o curieay < Cmp2p™ ™%, and |lcurl Ry ollz  (qisy < Cmyap™™ n (4.54)

where Cp,19 > 0 is a constant independent of p.

Proof. The fist estimate in (4.54) is shown in Corollary 7.12 in [42]. The second estimate in
(4.54) follows by writing
Rf”rsL,p _ Ris+27p + pfmflEis

m m

—m—211s : S
P TER L i O

By Lemma 6 we have

HE?Z?LHW(CUI‘LQ"L’S) < C

and due to Theorem 11 for p > 0 we have

[[curl R%+z,p“L3771(Qis) < Crln+2p_m_17

implying the second estimate in (4.54). O

Let us comment that altogether we have shown that Peron’s results for the asymptotic ex-
pansion remain valid for an unbounded exterior domain. Thus we have convergence of the
asymptotic expansion with respect to inverse powers of conductivity for the electrical field and
also analogously for the magnetic field for the transmission problem (P,z) in R? in Chapter 1.
Comparison of the asymptotic expansion found in Chapter 1 for the halfspace case and of the
asymptotic expansion in Chapter 4 for a smooth interface ¥ shows that the first terms of the
expansions coincide. These terms can be efficiently computed numerically by the boundary
element procedure discussed in Chapter 1.
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5 Non-conforming FE/BE coupling for
a two-dimensional eddy current
problem

Let Q_ be a simply connected bounded region in R? and 2, := R>\§2_ its complement. Here,

Q. represents the air and 2_ the inter-section of a metallic obstacle in the x1, xo plane. The

obstacle is assumed to be parallel to the xz-axis (see figure 5.1).

The classical macroscopic electromagnetic field is described by four vector functions of position

x= "] € R? and time ¢ > 0, denoted by E, ]/j, H and B (see [10, 39, 40, 41, 44]). Then
)

we obtain the first order system

VXE =iwuH in R2,

VxH =(0c—iwe)E+Jy in R%

(5.1)
v.E =7 in R2,
g
V-H =0 in R,

The coefficients €, u and o are bounded real valued scalar functions satisfying almost every-
where in 2

g0 <e(x) <er, po < p(x) <pp and 0 <o(x) <oy,

where g, €1, o, 1 and oy are positive constants and €9 and pg are electric permittivity and
magnetic permeability, respectively, of the free space.

Moreover, since the medium is dielectric and homogeneous, outside the obstacle there holds

e(x) =e0, p(x)=po, and o(x) =0 in Q.

Eliminating E from (5.1) yields in R? the second order system with j, = 0 in 0,
V x (V x H) — (0 — iwe)iwpH = j, in R (5.2)

This choice is arbitrary. We can also eliminate H. We suppose the incident electric and
magnetic fields E°, HY, and the fields E, H are transverse magnetic and time harmonic. This
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

Figure 5.1: Region of the problem.

means that, with a proper choice of x1, x5, T3 axes.
The amplitudes E and H, which are independent of x3, are given by

1 0
E(x) = — 0
NG
0 u(xy, x2)
and
1 hi(x1, 22)
H(X) = — hg(xl,xg)

where the complex-valued functions « and h = (hy, ho)” are now the unknowns of the problem.

By calculations

o
(31‘2
VxE= 1 _Ou |
€0 (31‘1
0
(5.3)
0
1 0
VxH=— ,
Vi | o o
(31‘1 (31‘2
ou ou 8}12 8}11
h = (o~ and Vxh= 22 - 21,
ence V X u (8x2’ 8x1) and V x 95 9y
From (5.1) and (5.3) we have the first order system
V x h+ikau = /igdo in R?
(5.4)

V X u—ikbh =0 in R2,
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with j, = 0 in 2, and Vx € R?

k=wymm, b= gy =) 470
o o wEeQ

(wave number, relative permeability, relative permittivity or index of refraction, respectively).
Eliminating u from (5.4) yields with j, = a=/gV x Jg the second order system

V x (a='V xh) —k*h =j, in RZ?
h = h’ + h* in R2

where h? and h® belong to the incident and scattered waves, respectively.
Furthermore the behavior of the scattered electromagnetic field at infinity (known as the
Sylver-Miiller condition) implies the Sommerfeld radiation condition

a S
Vr < 5:4 — ikus> — 0, when r = |x| — 0. (5.6)
We have
1<b(x) < ﬂ, for a.e. x € R?, (5.7)
Ho

and a(x) := ag(x) + ias(x)

1<agp(x) < i, and 0 <ar(x) < L for ae. x € R?, (5.8)
€0 weQ

and
b(x) =1 and a(x) =1 and Q.

Then, testing (5.5) with the vector-valued function q € Hg(curl,2_) N H(div,0,Q_) and
integrating by parts yields: Find h € Hy(curl, Q_) N H(div,0,Q_) such that

(VxhVxq)+ah,q)=(fq) Vqe Hpy(curl,2_)NH(div,0,Q_), (5.9)

where (-,-) denotes the inner product of Lo(Q2_) (or [L2(2_)]?), a € R is a constant, f €
[L2(£2_)]%, and besides the usual Hilbert space H*(2_) we define the following spaces

U2

H(cwrl, ) = {v = < vt ) €[L2(Q)]? : Vxve LQ(Q_)},

Hyo(cur, Q) ={veH(cwrL,Q_ ) : nxv=0on I'=00_},

H(diV,Q_) = {V = < u ) S [LQ(Q_)]2 : V-ve LQ(Q_)},

H(div,0,Q_) :={veH(div,Q_) : V-v=0in Q_},

H(curl,Q_) and H(div,2_) also form Hilbert spaces (see [16]) with respect to the following

associated norms

2

Vet = VI + IV % V12,0 ),

79



5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

IVl ivo ) = VI, ) IV - vIT, 0 )
The strong form associated with (5.9) is given by (see [5, 6]): Find u € Hp(curl,Q_) N
H(div,0,_) such that
V x(Vxu)+ou=Qf VveHy(curl,Q_)nH(div,0,Q_).

where Q : [Lo(2_)]? — H(div,0,9_) is the orthogonal projection onto the divergence-free
functions. It is necessary to consider the projection of f onto H(div,0,Q_) (see [4, 5, 6]).

We will also consider the more general formulation following Brenner et al. [4]: Find u €
Hy(curl, Q_) N H(div,Q_) such that

(Vxu,Vxv)+B(V-u,V-v)+auv)=(fv) VveHycurl,Q_)NH(div,Q_), (5.10)
where o € R, 8 > 0 are constants, f € [Ly(£2_)]2. The associated boundary value problem is:

Vx(Vxu)—-pV(V-u)+au =f in Q_,
nxu =0 on I,

V-u =0 on I.

For the latter formulation we consider a non-conforming finite element procedure in the next
subsection. Finally, in subsection 5.2 we consider a 2D transmission problem (5.18) where the
solution in the exterior domain is represented by boundary integral operators on the interface.
This leads to the non-conforming fe/be coupling method (5.25). Numerical experiments in
subsection 5.3 show the efficiency of this coupling method.

5.1 Non-conforming finite element method

In this section we present the implementation for a non-conforming finite element method for
Maxwell’s equations introduced by Brenner et al. [4, 5, 6]. We consider two Galerkin schemes
(one with divergence free elements and one without divergence free finite elements, but with
an additional term 3(V}, - up, Vj, - v) in the formulation). '

First, non-conforming divergence free finite element method is: Find uy, € Vglv such that

(Vh X uh,Vh X V) + a(uh,v)

e 2
+ Z [(I)u( )] /Hn X upl|][|n x v|] ds

el (5.11)

e 2
=3 L vy s = (),

eeffl | | ¢
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5.1 Non-conforming finite element method

for all v e V3V « Hy(curl, _) N H(div,0,Q_), where

VIV .~ (v e Ly Q)] ¢ vi=v]r € [Py(T)AVT € Ty,
V-v|r =0, forall Te Ty,
v is continuous at the midpoint of any e € &,

n X v vanishes at the midpoint of any e € 5};} .

with the set of interior edges 5,2 and boundary edges 5,2 and

(up,v) = /Quh(x) -v(z)dx.

The edge weight ®,,(e) is defined by

L
©,(e) = [ [ ler = mel' . (5.12)
=1

where p;, 1 <1 < L is the grading parameter at the corner ¢;, m. and |e| denote the midpoint
and length of the edge e.

We will measure the discretization error in the Ly norm and the mesh-dependent energy norm
|- Il qiy defined by

Il giv = Ve < ulli o) + uli, o)

@) @) o
S %Hﬂn xullllZ, + > %”Hn il

e€&y eES}'L

Secondly, we consider the non-conforming (non-divergence free) finite element method: Find
uy, € Vy, such that

(Vi xup, Vi xv)+ B(Vy-up, Vi - v) + aug, V)

2 2 (5.14)
+ 3 L i vl s+ 30 22 [ v ds = (6v)

2. 2
for all v e V;, C Ho(curl, ) N H(div, Q_), where

Vh = {V € [LQ(Q_)]2 LVt = V’T S [Pl(T)]2,VT € Th;
v is continuous at the midpoint of any e € &,

n X v vanishes at the midpoint of any e € 52} .

We note that this space is related to the classical Crouzeix-Raviart space (see [14]).
In both formulations [|n X u|] and [|n - u|] denote the jumps of the tangential and normal
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

components across the triangle sides respectively (see Brenner et al. [4, 5, 6]). Here we use
the following notation:

Let e € Eli be shared by the two triangles T, 1,Te2 € Ty and n; (resp. ny) be the unit normal
of e pointing towards the outside of T, ; (resp. T¢2). We define, on e,

[Inxv]]i=my x (vr, s fe) +m2 X (Ve [e), (5.15)

[In- vl :=mn - (vr,fe) +n2- (Vo le)- (5.16)

For an edge e € £, we take n, to be the unit normal of e pointing towards the outside of
and define

[[n X v[] :=mn. x (v]e). (5.17)

T2

N

N2

Figure 5.2: Triangles and normals in the definition of [|n x v|| and [|n - v|] [6].

Here the edge weight ®,,(e) is defined by (5.12) (see Brenner et al. [4, 5, 6]).

Based on the Jan Thiedau’s finite element program, (see [46]), which gives the numerical results
for divergence free case (5.11), we have extended his programm to the non-divergence free case
(5.14) which is used in Example 2.

The corresponding convergence analysis of both schemes (5.11) and (5.14) is given in the works
by Brenner et al. [4, 5, 6].

5.2 The coupling of non-conforming finite element and
boundary element methods

The coupling of non-conforming finite element and boundary element methods was established
by Carstensen and Funken [8], where quasi-optimal a priori error estimates are provided for
a (nonlinear) interface problem for the Laplacian and also a posteriori error estimates was
established in Carstensen and Funken [9]. Here we present a different derivation for a two-
dimensional electromagnetic transmission problem.

We consider the following transmission problem: In a bounded two-dimensional Lipschitz
domain Q_ C R? with boundary I' = 9Q_ and an unbounded exterior domain Q, := R*\ Q_
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5.2 The coupling of non-conforming finite element and boundary element methods

we are given a right-hand side f € L?(Q2_), constants a € R, 8 > 0 and seek functions
h € H(curl, Q_) NH(div,Q_), u € Hlloc(Q+) and a real constant b satisfying

VxVxh—-pgV(V-h)+ah=f in Q_,
VxVxu=0, V-u=0 in Qy,
(5.18)
ou
v (h)=—, y(Vxh)=u, V-h=0 on T,
on
u(x) — blog|x| — 0 as |x| — oo,

0
where u|pe H%(I‘) and 8—u]p€ H_%(F).
n
Then, testing (5.18); with the vector-valued function q € H(curl,Q2_) N H(div,Q_) and inte-
grating by parts yields: Find h € H(curl, 2_) N H(div,Q_), such that

(V X hav X q) + 5(v : hav ' q) + Oé(h,q) - <’7T(q)a7 (v X h)> = (fa CI), (519)

for all g € H(curl,2_) N H(div,Q_), where (-,-) denotes the inner product of Ly(Q2_) (or
[L2(22)]%), (-,) the duality pairing on I'. Note that v.(q) = q - t, where t is the unit
tangential vector.

We have from equation (5.18)2 with the constraints V-« =0 and V x V x u =0 in Q that
VXV xu=V(V-u)— Auimplies Au =0 in Q.

Next, we employ a boundary integral equation method (see Costabel and Stephan [13] and
Carstensen and Funken [8]) to complete (5.19) with the corresponding variational formulation

in the unbounded exterior domain . Here

00l = —5- [ toalbe—yel)dsy + - [ 1oa(x = yoty)dsy
(5.20)
= K¢{(x) — Vo(x)
and
2
609l = 5= [ Grolon(ix ~ ¥De sy + 5 [ Flon(x ~y)o(y)ds,
B (5.21)

= —WE(x) - K'é(x)

) 8u _1
with (§,¢) = U B 6H2(F)><H 2(T).
Now the non-conforming coupling method reads: Find (h, ¢, ¢) € X := H(curl, Q_)NH(div, Q_)x
H%(I‘) X H_%(F) such that V(q,n,u) € X

(v X h’v X q) +IB(V : h’v : q) —{-Oé(h,q) - <’7T(q)a£> = (fa q)
~(yr (b)) — (WEn) + (5 — K')o,m) =0 (5.22)

(3 = K)& )+ (Vo ) -0
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

Let as abbreviate the above equations by

A((h,&,9),(q,n,p) = (f,q). (5.23)

Combining the results of Brenner et al. [4] for the interior problem in _ and the mapping
properties of the boundary integral operators (see for example Costabel and Stephan [12] and
Carstensen and Funken [8]) we obtain there holds the Garding inequality, i.e. 3y1,v2 > 0 such
that V(h, &, ¢) € X

Re{A((h.&6), (0.€.6)} = 11 (1013 curr o) + 16520 + 1613-1/20) —22lhlZaq
(5.24)
In order to formulate a finite element/boundary element coupling methods we introduce the
following discrete spaces: As finite elements we use the Crouzeix-Raviart elements to span:

Sh = {V € [LQ(Q)]2 DoVr = V‘T c [Pl(T)P,VT S Th7
v is continuous at the midpoint of any e € &, } .

As boundary elements we use the space of piecewise linear, continuous functions S}l, and the
space of piecewise constants 52.

Now our non-conforming fem/bem coupling method reads: Find (hp, &, ¢p) € Xp, := Sy X
S} x 89 such that V(q,n, 1) € Xy,

(Vxhy,Vxq)+B(V-h,,V-q)+althy,q) +bp(hy,q) — (-(9),6) = (faq)

— (v (hp),n) — Wé&m) + (3 — K')on,m) =0 (5.25)
(3 — K)ép, ) + (Vo ) =0
where
e 2 e 2
bt s= 3 P [ < ages + 3 L [ an- aas, 620
ec&y |6| € ccEi |6| e

is the penalty term.

5.3 Numerical examples

In this part we report the results of a series of numerical experiments for the non-conforming
finite element method (5.14) and for the non-conforming FE/BE coupling method (5.25). All
computations where done with Matlab.Our finite element simulations are obtained with the
software developed by Thiedau in [46]. We have developed new Matlab codes for the boundary
element part and FE/BE coupling. Our computations show that the methods (5.14) and (5.25)
converge and give good results.

84



5.3 Numerical examples

We take 3 = 1 and o = +k? in the experiment for the scheme (5.14). Besides the errors in the
Lo-norm |||, () and the mesh-dependent energy norm |-, i, defined by

[ulli = Vi <l ) + 1 Vh - ullf, @ + uli,eq

(5.27)

2
o350 Bz, + ST 2RO e

ecly 6652

we also include the errors in the semi-norms |-|.;,;] and || 3y defined by [uf. ;11 = [Vaxull1, @)
and |ulgiy = [[Va - ullL,0)-

Example 2. We ezamine the convergence for the general scheme (5.14) on the square domain
[0,0.5]2 for a family of uniform meshes, where the evact solution is given by (see Brenner et

al- [4])

3 2 3 2

u(z,y) = [(% — %)(gf — 0.5y) sin(ky), (‘% - yz)(ﬂv2 — 0.52) cos(kx)]. (5.28)

Hence for the right-hand side we get f(z,y) =V x V x u(x,y) — V(V - u(z,y)) + au(z,y).

The results are tabulated in Table 5.1 for o = k? and k = 0,1,5,10 and in Table 5.2 for
a = —k% and k = 1,5,10 and are plotted in Figure 5.3 for « = —1,1. They show that the
scheme (5.14) is second order accurate in the Ly-norm and first order accurate in the energy
norm and in the semi-norms, which agrees with the error estimates in [4, Theorem 13] and
[5, Theorem 14]. The results in Table 5.3 confirm that the scheme (5.14) does not converge
without the consistency terms. Our numerical simulations agree with those in [4, 5, 6] and

[46].

Next we present numerical experiments for the non-conforming fe/be coupling (5.25) where
we had to develop a matlab implementation for the boundary integral operators in 5.25 and a
coupling with finite element method in 5.14.

Example 3. We consider the interface problem (5.18) on the square domain [0,0.5]> with a
family of uniform meshes, where

3 22

y oy
h(z,y) = [(3 - Z)(gﬁ — 0.5y) sin(ky), (3 — Z)(gﬁ — 0.52) cos(kz)], (5.29)

the right-hand side we take flz,y) =V x V x h(z,y) — BV(V - h(z,y)) + ah(z,y).

The errors and convergence rates for the discrete solutions hy, &, and ¢y, of (5.25) are tabulated
in Tables 5.4, 5.5 and 5.6 for f =1, a = £k and k = 1, and are plotted in Figures 5.4,
5.5 and 5.6. The error in energy norm of h is calculate by (5.27). The energy norm ||£||v
is approximated by the energy morm H§h:ﬁHv = 2.723 - 1075 of the solution to the finest
mesh for a« = 1 and Hfh:ﬁ“V = 2.727-107% for a = —1. Analogously for ||¢|lw, we have
H(ﬁh:ﬁ”W =2.647-107% fora =1 and H(ﬁh:ﬁ”W =2.6516-107% for a = —1. The asymptotic
convergence rate of h is 0.25 with respect to the degrees of freedom which is suboptimal to the
best possible rate of 0.5. The convergence of ||on||w to ||¢llw and ||Enllv to ||E|lv at rate 1.2 to
1.3 is also suboptimal. Here ||£|lv = €T VE where V is the matriz representation of V and &
are the coefficients of the solution vector.
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

Example 4. Let we consider the interface problem (5.18) on the square domain [0,0.5] with
a family of uniform meshes, where

h(z,y) = [2*(y* — 0.5y), 4% (z® — 0.5z)], (5.30)

the right-hand side we take flx,y) =V x V x h(z,y) — BV(V - h(z,y)) + ah(z,y).

The results for h, & and ¢ solutions of (5.25) are tabulated in Tables 5.7, 5.8 and 5.9 for f =1,
a = £1, and are plotted in Figures 5.7, 5.8 and 5.9. The exact energy norm of h is known
by extrapolation for o =1 is ||h||, = 0.0339734151 and for o = —1 is ||h||, = 0.0350692138.
The energy norm ||&||v is approximated by the energy norm Hfh:ﬁ“V = 5.54937 - 1075 of the
solution to the finest mesh for a = 1 and th:ﬁHv = 5.774-107° for « = —1. Analogously
for |[¢llw, we have [|¢),_ 1 |lw = 7.89382 - 1076 for a = 1 and 16— 2 llw = 8.20526 - 1075
for a = —1. The convergence of ||hy||n to |||l at rate 0.21 to 0.22 with respect to the degrees
of freedom which is suboptimal to the best possible rate of 0.24. The convergence of ||¢n|lw to
lollw and ||Exllv to ||E||v at rate 1.1 to 1.2 is also suboptimal.

error for alpha =1 error for alpha = -1
T

:
—x—L,
—o—

\.lmrerror |

:
—x—L,

—o—

—error —error

Haiy Hai

107°F

Figure 5.3: Errors of the finite element scheme (5.14) for « = 1 and a = —1.
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5.3 Numerical examples

error for alpha = 1 error for alpha = -1

10" i 100 L
10" 4 107
10%? 1 1002
10°%° 1 1003
107 J 107
10°°F E 10°%
10°° 1 10°¢
107 ) ) ) B 10°7

10° 10° 10* 10° 10° 10°

DoF DoF
Figure 5.4: Errors in energy norm of h for « = 1 and a = —1 in Example 3 (fe/be

coupling)

error for alpha = 1 error for alpha = -1
10 T 10 T

107 ] 107} ]
107} E 10°F E
1076 1 ‘2 3 1076 1 ‘2 3
10 10 10 10 10 10
DoF DoF
Figure 5.5: Errors in energy norm of { for « = 1 and @ = —1 in Example 3 (fe/be
coupling)
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error for alpha =1
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

h lozunlles | o gep | lvmunln | orger ey order gy order
Talle Tl - iy
L —
1/5 0.0745 0.6271 0.1894 0.3342
1/10 0.0165 | 2.1785 | 0.2514 | 1.3187 0.0950 0.9953 | 0.1672 | 0.9993
1/20 0.0039 | 2.0824 | 0.1119 | 1.1678 0.0475 0.9991 | 0.0836 | 0.9995
1/40 0.0009 | 2.0391 | 0.0539 | 1.0536 0.0238 1.0000 | 0.0418 | 1.0000
1/80 0.0002 | 2.0190 | 0.0267 | 1.0163 0.0119 1.0001 | 0.0209 | 1.0001
1/160 0.0001 | 2.0093 | 0.0133 | 1.0052 0.0059 1.0001 | 0.0104 | 1.0001
k=
1/5 0.0642 0.5544 0.1728 0.2354
1/10 0.0145 | 2.1445 | 0.2458 | 1.1730 0.0870 0.9902 | 0.1177 | 0.9993
1/20 0.0034 | 2.0652 | 0.1120 | 1.1339 0.0435 0.9976 | 0.0589 | 0.9985
1/40 0.0008 | 2.0301 | 0.0542 | 1.0451 0.0217 0.9994 | 0.0294 | 0.9995
1/80 0.0002 | 2.0143 | 0.0268 | 1.0141 0.0109 0.9998 | 0.0147 | 0.9998
1/160 0.0001 | 2.0070 | 0.0133 | 1.0046 0.0054 0.9999 | 0.0073 | 0.9999
k=5
1/5 0.1252 0.4128 0.3113 0.5464
1/10 0.0281 | 2.1548 | 0.2508 | 0.7188 0.1565 0.9915 | 0.2748 | 0.9917
1/20 0.0066 | 2.0837 | 0.1284 | 0.9662 0.0783 0.9988 | 0.1375 | 0.9988
1/40 0.0016 | 2.0415 | 0.0643 | 0.9973 0.0392 1.0001 | 0.0688 | 1.0001
1/80 0.0004 | 2.0205 | 0.0321 | 1.0012 0.0196 1.0002 | 0.0344 | 1.0002
1/160 0.0001 | 2.0102 | 0.0160 | 1.0013 0.0098 1.0002 | 0.0172 | 1.0002
k=10
1/5 0.1995 0.4324 0.3903 1.6516
1/10 0.0494 | 2.0153 | 0.3194 | 0.4371 0.1979 0.9794 | 0.8373 | 0.9801
1/20 0.0118 | 2.0683 | 0.1754 | 0.8646 0.0992 0.9973 | 0.4194 | 0.9974
1/40 0.0029 | 2.0421 | 0.0893 | 0.9733 0.0496 0.9997 | 0.2097 | 0.9997
1/80 0.0007 | 2.0223 | 0.0448 | 0.9956 0.0248 1.0001 | 0.1049 | 1.0001
1/160 0.0002 | 2.0114 | 0.0224 | 0.9999 0.0124 1.0001 0.0524 | 1.0001
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Table 5.1: Convergence of the finite element scheme (5.14) for o = k2.




5.3 Numerical examples

h lazunllyz | oL qer | Do=unln | onqer T unley] order unlgiv order
Tl el o] gy
k=1
1/5 0.0649 0.5529 0.1729 0.2354

1/10 0.0146 | 2.1492 | 0.2458 | 1.1697 | 0.0870 | 0.9904 | 0.1178 | 0.9995

1/20 0.0035 | 2.0662 | 0.1120 | 1.1335 | 0.0436 | 0.9976 | 0.0589 | 0.9985

1/40 0.0009 | 2.0304 | 0.0543 | 1.0450 | 0.0218 | 0.9994 | 0.0295 | 0.9995

1/80 0.0002 | 2.0145 | 0.0269 | 1.0141 | 0.0109 | 0.9999 | 0.0147 | 0.9999

1/160 || 0.0001 | 2.0070 | 0.0134 | 1.0046 | 0.0055 | 1.0000 | 0.0074 | 1.0000

k=5

1/5 0.1607 0.3867 0.3115 0.5469

1/10 0.0326 | 2.3019 | 0.2480 | 0.6409 | 0.1565 | 0.9929 | 0.2748 | 0.9931

1/20 0.0075 | 2.1165 | 0.1281 | 0.9536 | 0.0783 | 0.9987 | 0.1375 | 0.9987

1/40 0.0018 | 2.0502 | 0.0643 | 0.9946 | 0.0392 | 1.0001 | 0.0687 | 1.0001

1/80 0.0004 | 2.0231 | 0.0321 | 1.0006 | 0.0196 | 1.0002 | 0.0344 | 1.0002

1/160 || 0.0001 | 2.0110 | 0.0160 | 1.0011 | 0.0098 | 1.0002 | 0.0172 | 1.0002

k=10

1/5 0.4483 0.3429 0.4099 1.7347

1/10 0.0672 | 2.7374 | 0.3137 | 0.1284 | 0.1987 | 1.0447 | 0.8405 | 1.0454

1/20 0.0148 | 2.1866 | 0.1749 | 0.8428 | 0.0992 | 1.0019 | 0.4197 | 1.0020

1/40 0.0035 | 2.0664 | 0.0893 | 0.9703 | 0.0496 | 1.0004 | 0.2098 | 1.0004

1/80 0.0009 | 2.0273 | 0.0448 | 0.9949 | 0.0248 | 1.0002 | 0.1049 | 1.0002

1/160 || 0.0002 | 2.0123 | 0.0224 | 0.9998 | 0.0124 | 1.0001 | 0.0524 | 1.0001

Table 5.2: Convergence of the finite element scheme (5.14) for o = —k?.

[u—up]

h lazunlipz | ohqer | le=unlls | grger | 2 ewrd | order P-wilgiy order
Tl Tl - iy
k=1
1/5 41.183 0.0015 0.4540 0.6146

1/10 41.698 | -0.017 | 0.0005 | 1.6966 | 0.4398 | 0.0459 | 0.5947 | 0.0476

1/20 41.828 |-0.004 | 0.0002 | 1.5043 | 0.4361 | 0.0119 | 0.5898 | 0.0120

1/40 41.861 | -0.001 | 0.0001 | 1.4234 | 0.4352 | 0.0030 | 0.5885 | 0.0030

1/80 41.869 | -0.000 | 0.0000 | 1.3895| 0.4350 | 0.0008 | 0.5882 | 0.0008

1/160 || 41.871 | -0.000 | 0.0000 | 1.3747 | 0.4349 | 0.0002 | 0.5881 | 0.0002

Table 5.3: Non-convergence of the finite element scheme (5.14).
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

dof-h

[h — hy ||

[h—hy,[l,

order w.r.t. dof-h

[h]s
a=1
1/5 170 0.0020170812 | 1.1624543206
1/10 640 0.0014596589 | 0.8412087631 0.2439891112
1/20 2480 | 0.0010439860 | 0.6016543757 0.2474310882
1/40 9760 | 0.0007415150 | 0.4273388386 0.2497061840
1/80 38720 | 0.0005250301 | 0.3025775152 0.2505252099
1/160 | 154240 | 0.0003713494 | 0.2140105165 0.2505599558
1/200 || 240800 | 0.0003321473 | 0.1914181694 0.2504501719
a=-—1
1/5 170 0.0021333017 | 1.2294328114
1/10 640 0.0015034630 | 0.8664532872 0.2639420700
1/20 2480 | 0.0010599082 | 0.6108303967 0.2580856962
1/40 9760 | 0.0007472096 | 0.4306206281 0.2551702286
1/80 38720 | 0.0005270525 | 0.3037429856 0.2532869465
1/160 || 154240 | 0.0003720655 | 0.2144232458 0.2519474417
1/200 || 240800 | 0.0003326599 | 0.1917135701 0.2513136839

Table 5.4:
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Errors in energy norm and convergence rate for h with respect to the degrees

of freedom, h-version in Example 3(fe/be coupling 5.25).




5.3 Numerical examples

b [ldote [ ey [ QIR = 1ul2)? [order wart. dof-g
a=1
1/5 20 | 0.0003489617 0.0003489511
1/10 40 | 0.0001646595 0.0001646370 1.0837361987
1/20 80 | 0.0000694849 0.0000694316 1.2456251635
1/40 160 | 0.0000269819 0.0000268441 1.3709842442
1/80 320 | 0.0000100613 0.0000096858 1.4706607015
1/160 || 640 | 0.0000037343 0.0000025555 1.9222788474
1/200 || 800 | 0.0000027230
a=-—1
1/5 20 | 0.0003640640 0.0003640448
1/10 40 | 0.0001683813 0.0001683398 1.1127401096
1/20 80 | 0.0000703053 0.0000702057 1.2617158325
1/40 160 | 0.0000271498 0.0000268908 1.3844759487
1/80 320 | 0.0000100947 0.0000093759 1.5200865467
1/160 || 640 | 0.0000037410 0.0000025610 1.9241725093
1/200 || 800 | 0.0000027270

Table 5.5: Errors in energy norm and convergence rate for £ with respect to the degrees
of freedom, h-version in Example 3(fe/be coupling 5.25).
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

Table 5.6: Errors in energy norm and convergence rate for ¢ with respect to the degrees

94

b [dot-¢ [ llolw [ (6l — lgnlfa)? [order wors. dof-¢
a=1
1/5 20 | 0.0003007662 0.0003007546
1/10 40 ] 0.0001392414 0.0001392162 1.1112591635
1/20 80 | 0.0000589137 0.0000588542 1.2421110217
1/40 160 | 0.0000233855 0.0000232353 1.3408289386
1/80 320 | 0.0000090799 0.0000086855 1.4196329953
1/160 || 640 | 0.0000035594 0.0000023797 1.8678494785
1/200 || 800 | 0.0000026470
a=-—1
1/5 20 | 0.0003150112 0.0003149910
1/10 40 | 0.0001426874 0.0001426428 1.1429039400
1/20 80 | 0.0000596844 0.0000595778 1.2595613093
1/40 160 | 0.0000235504 0.0000232787 1.3557626398
1/80 320 | 0.0000091149 0.0000083880 1.4726168404
1/160 || 640 | 0.0000035669 0.0000023858 1.8699730295
1/200 || 800 | 0.0000026516

of freedom, h-version in Example 3(fe/be coupling 5.25).




5.3 Numerical examples

h dof-h ||hl|p, (||n[|z — ||hh||%)é order w.r.t. dof-h
a=1
1/5 170 0.0517514059 | 0.0390386357
1/10 640 0.0441725639 | 0.0282315863 0.2444880286
1/20 2480 | 0.0395776551 0.0203026562 0.2433950506
1/40 9760 | 0.0369811976 | 0.0146087659 0.2402349191
1/80 | 38720 | 0.0355876850 | 0.0105967158 0.2329918388
1/160 || 154240 | 0.0348638630 | 0.0078291765 0.2189964978
1/200 || 240800 | 0.0347168123 | 0.0071459161 0.2049947195
oa=—1
1/5 170 0.0550492986 | 0.0424331888
1/10 640 0.0462864284 |  0.0302090003 0.2563164096
1/20 2480 | 0.0411522141 0.0215326490 0.2499506465
1/40 9760 | 0.0383032688 | 0.0154042410 0.2444665714
1/80 | 38720 | 0.0367886139 | 0.0111154109 0.2367889920
1/160 || 154240 | 0.0360056484 | 0.0081582448 0.2237837145
1/200 || 240800 | 0.0358468907 | 0.0074262922 0.2110245629

Table 5.7: Errors in energy norm and convergence rate for h with respect to the degrees

of freedom, h-version in Example 4(fe/be coupling 5.25).
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5 Non-conforming FE/BE coupling for a two-dimensional eddy current problem

Table 5.8: Errors in energy norm and convergence rate for £ with respect to the degrees

96

b ot lelv [ (IR = lIul2)® order wort. dof-€
a=1
1/5 20 | 0.0034582495 0.0034578042
1/10 40 | 0.0016986709 0.0016977642 1.0262200580
1/20 80 | 0.0007846831 0.0007827183 1.1170709903
1/40 160 | 0.0003524066 0.0003480099 1.1693648943
1/80 320 | 0.0001578402 0.0001477633 1.2358407851
1/160 || 640 | 0.0000714102 0.0000449430 1.7171188027
1/200 || 800 | 0.0000554937
a=-—1
1/5 20 | 0.0038444560 0.0038440223
1/10 40 | 0.0018304028 0.0018294919 1.0711737064
1/20 80 | 0.0008318333 0.0008298270 1.1405605609
1/40 160 | 0.0003702129 0.0003656825 1.1822189543
1/80 320 | 0.0001649231 0.0001544854 1.2431214191
1/160 || 640 | 0.0000743616 0.0000468587 1.7210820019
1/200 || 800 | 0.0000577400

of freedom, h-version in Example 4(fe/be coupling 5.25).




5.3 Numerical examples

b [dot¢ [ liolw [ (Il — lIgnly)? | order wort. dof-¢
a=1
1/5 20 0.0004555453 0.0004554769
1/10 40 0.0002366844 0.0002365527 0.9452159835
1/20 80 0.0001134675 0.0001131926 1.0633824574
1/40 160 | 0.0000516756 0.0000510692 1.4825405220
1/80 320 | 0.0000230079 0.0000216114 1.2406604906
1/160 || 640 | 0.0000102277 0.0000065034 1.7325113097
1/200 || 800 | 0.0000078938
a=-—1
1/5 20 0.0051133846 0.0051127262
1/10 40 0.0025600687 0.0025587534 0.9986516559
1/20 80 0.0012038727 0.0012010732 1.0911169870
1/40 160 | 0.0005426186 0.0005363789 1.1629996273
1/80 320 | 0.0002401819 0.0002257315 1.2486448657
1/160 || 640 | 0.0001063980 0.0000677340 1.7366548937
1/200 || 800 | 0.0000820526

Table 5.9: Errors in energy norm and convergence rate for ¢ with respect to the degrees

of freedom, h-version in Example 4(fe/be coupling 5.25).
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