
Finite Element and Boundary Element methods
for contact with adhesion

Von der Fakultät für Mathematik und Physik
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des Grades
Doktor der Naturwissenschaften

Dr. rer. nat.
genehmigte Dissertation

von

Leo Nesemann, M. Sc.

geboren am 17. 12. 1981 in Halle (Westf.)

2011

Referent: Prof. Dr. Ernst P. Stephan,
Leibniz Universität Hannover

Korreferent: Prof. Dr. Joachim Gwinner,
Universität der Bundeswehr, München

Tag der Promotion: 16. 12. 2010

ii

Abstract

In this work, we consider mechanical problems with adhesive contact. Some contact
problems, like the Signorini problem, may be represented through complementarity
conditions. This does not hold true anymore for more involved surface laws, which
are induced for example by adhesion or friction. In particular, these laws are in
general not continuous. To circumvent this problem, we extend the boundary
conditions of the original partial differential equation by terms that may be set-
valued in certain points.
The PDE can now directly be converted into a variational formulation. We may
also transfer the PDE into a boundary integral equation first and then retrieve a
variational formulation on the boundary only. In both cases, we finally retrieve
hemivariational inequalities due to the presence of nonsmooth surface laws.

Two schemes for the numerical solution of hemivariational inequalities are pre-
sented. For the first scheme, we use a minimization problem that is equivalent to
the original inequality. We show that the objective function of this problem has a
unique minimum under certain conditions, and that it is even convex under stronger
assumptions.
By choosing finite-dimensional ansatz spaces in the domain or on the boundary, we
retrieve a finite minimization problem with a non-differentiable objective function.
This problem can be solved with the Bundle-Newton method.
For a second scheme, a primal-dual active set method on a membrane is consid-
ered. This method can be applied for certain surface laws. We describe a domain
decomposition method to couple the membrane to the full mechanical system.

Finally, we demonstrate the applicability of these schemes in numerical experi-
ments.

Keywords. Finite Element method, Boundary Element method, hemivariational
inequality, active set strategy

iii

Zusammenfassung

In dieser Arbeit betrachten wir mechanische Kontaktprobleme mit Adhäsion. Einige
Kontaktprobleme, wie das Signorini-Problem, lassen sich durch Komplementaritäts-
bedingungen darstellen. Dies gilt nicht mehr für komplexere Oberflächengesetze, die
zum Beispiel durch Adhäsion oder Reibung entstehen. Insbesondere sind diese Ge-
setze im Allgemeinen nicht mehr stetig. Um dieses Problem zu umgehen, erweitern
wir die zugrunde liegenden Randbedingungen der partiellen Differentialgleichung
durch Terme, die punktweise mengenwertig sein können.
Die Differentialgleichung kann nun entweder direkt in eine variationelle Formulie-
rung überführt werden, oder das Problem wird zunächst mit Hilfe von Randinte-
gralgleichungen dargestellt und dann in eine variationelle Formulierung auf dem
Rand gebracht. In beiden Fällen erhalten wir durch die Beteiligung nichtglatter
Materialgesetze schließlich hemivariationelle Ungleichungen.

Zur numerischen Lösung von hemivariationellen Ungleichungen zeigen wir zwei
Verfahren. Für das erste Verfahren verwenden wir ein Minimierungsproblem, das
zur ursprünglichen Ungleichung äquivalent ist. Wir zeigen, dass die Zielfunktion
dieses Problems unter bestimmten Bedingungen ein eindeutiges Minimum besitzt
und, unter strengeren Bedingungen, sogar konvex ist.
Indem wir endlich-dimensionale Ansatzräume im Gebiet oder auf dem Rand wäh-
len, erhalten wir ein endliches Minimierungsproblem mit einer nichtdifferenzier-
baren Zielfunktion, das mit dem Bundle-Newton-Verfahren gelöst werden kann.
In einem zweiten Verfahren wird eine primal-duale Active-Set-Methode auf einer
Membran betrachtet. Diese Methode kann für bestimmte Oberflächengesetze ver-
wendet werden. Wir geben ein Gebietszerlegungs-Verfahren an, das die Membran
an das volle mechanische Problem koppelt.

Schließlich zeigen wir in numerischen Experimenten die Anwendbarkeit der Ver-
fahren.

Schlagwörter. Finite-Elemente-Methode, Randelemente-Methode, Hemivariations-
ungleichung, Active-Set-Strategie

iv

Acknowledgements

It is a pleasure for me to thank my advisor, Prof. Dr. E. P. Stephan, for his continuous
support and various discussions about possible directions of my work. I am very
grateful that he took some time for me when necessary, and left me some freedom
where possible.

I would like to thank all members of the working group “Numerical Analysis”.
Especially, I thank Michael Andres for fruitful discussions and for being a fine
company while we shared an office. Catalina Domínguez, Elke Ostermann, Florian
Leydecker and Ricardo Prato helped me in various stages of my dissertation.
I would also like to thank my co-referee, Prof. Dr. J. Gwinner, for his readiness to
examine this thesis. He and his whole working group made my research stay in
Munich well-spent.

Furthermore, I am wholeheartedly grateful to my family for their support and their
patience with me during the last years.

My work at the IfAM was made possible by a three-year scholarship of the German
Research Foundation (DFG) in the Graduiertenkolleg 615, Interaction of Modeling,
Computation Methods and Software Concepts for Scientific-Technological Problems. This
research training group also enabled me to visit several conferences, and more
importantly, provided a platform for discussions with PhD students from other
areas of research.

v

Contents

1. Introduction 1

2. Fundamentals 7
2.1. Derivatives . 8
2.2. Mechanical foundations . 9
2.3. The Ritz-Galerkin method . 14
2.4. Boundary integral representation . 15

3. Hemivariational inequalities 19
3.1. Variational formulation . 19
3.2. Approximation with Finite Elements and Boundary Elements 21
3.3. The minimization formulation . 24
3.4. A 1d example . 27
3.5. Uniqueness results . 32
3.6. The Bundle-Newton method . 42

4. A primal-dual active set method 51
4.1. Domain decomposition . 53
4.2. Active set method for the membrane 54
4.3. Subproblems in Ω2 . 67
4.4. Solution algorithm . 73
4.5. Implementation issues . 74

5. Numerical experiments 83
5.1. Adaptive refinement . 83
5.2. 2D benchmark . 85
5.3. 3D benchmarks . 92

A. Implementation 101
A.1. Basis functions and reference elements 101
A.2. Quadrature rules . 102
A.3. Conforming adaptive refinement . 110

vii

1. Introduction

The mathematical modelling and numerical analysis of solid mechanics is a field of
particular importance. The range of industrial applications goes from small, linear-
elastic benchmark problems to fully transient simulations of whole cars in crash tests.
As computer simulations gain more weight in product design processes, there grows
a need for mathematical simulation tools that are reliable, efficient and applicable in
a large group of problems. Even with the speed of computers increasing from year
to year, and new computing concepts like parallelization available, we need these
algorithms and results to allow solutions of more and more complex problems.

While the modelling process usually describes solutions in terms of a partial differ-
ential equation, variational formulations are in general used for further treatment. If
a free contact boundary occurs, the framework of variational inequalities is typically
used [16]. Here the Finite Element method, which can be derived from the vari-
ational formulation, has established itself as one of the most important numerical
approximation methods. However, a detour via integral equations is possible and
results in the Boundary Element method, which has also successfully been applied
to a number of mechanical problems.

Some nonsmooth problem classes have already been studied extensively. One ex-
ample are contact problems with monotone friction. Here, a convex functional j(·)
is introduced into the variational formulation,

a(u, v − u) + j(v) − j(u) ≥ f (v − u) ∀v ∈ K , (1.1)

which is lower semicontinuous, but may be nonsmooth. Kikuchi and Oden [23,
chapters 10,11,13] give an overview of common cases and provide solution meth-
ods. Many further specializations to different types of friction are possible. As a
particular example, we refer to the work of Chernov and Stephan [9], where bound-
ary elements are used instead of finite elements.
In this thesis, we will demonstrate modelling and numerical solution methods for
some types of nonlinear, nonsmooth behavior. We will still get a variational formu-
lation of the type (1.1), but the functional j(·) is not convex anymore. The inequality
(1.1) can then alternatively be expressed in the form

a(u, v − u) + 〈ξ, v − u〉 ≥ f (v − u) ∀v ∈ K

ξ(x) ∈ b̂(u
(
x
)
) a.e. x ∈ ω ⊂ Ω ,

(1.2)

using an auxiliary function ξ. Systems of this type are called hemivariational in-
equalities. That term was coined by Panagiotopoulos in the 1990s, see e.g. [32] for

1

1. Introduction

an overview. As j(·) is not convex, we can not assume uniqueness of a solution any-
more. Example problems are contact problems with adhesion or generalized friction,
where the physical boundary laws may be discontinuous and nonmonotone. Two
benchmarks are given by Baniotopoulos et al. [4].

Hemivariational inequalities are needed if discontinuous, nonconvex laws need to
be included directly. The drawback of this approach is that it is tedious to find and
apply appropriate numerical methods. If the material laws are at least continuous,
semismooth Newton methods can be used, see e.g. Kunisch and Stadler [26] or
Hager and Wohlmuth [18].
This thesis demonstrates two numerical methods for the discontinuous case, a
Newton-like minimization method and an active set method that directly works
on the hemivariational inequality. It is worth to mention that these problems can
alternatively be treated with a regularization of the nonsmooth functional. The dis-
advantages of this procedure are that the involved linear equation systems in the
solution process may be ill-conditioned, and that an additional approximation error
needs to be controlled. The clear advantage is that a Newton method can directly
be applied on the regularized problem.

A model problem: Unilateral contact with adhesion

The model problem stated in this section is only one example for the very broad class
of hemivariational inequalities. We restrict the nonsmooth behavior to the boundary
here.

Our benchmark problem is a two- or three-dimensional linear-elastic block under
a given exterior load. The block is fixed on one side. On the bottom, the block is
initially glued to a fixed flat obstacle and in contact along the full boundary. We are
looking for a displacement field inside this body.

Γ
N

Γ
D

Γ
C

Figure 1.1.: Reference configuration for the 2D benchmark with load distribution;
boundary decomposition

The thin layer of adhesive along ΓC is not modelled geometrically. It may however
expose discontinuous adhesion forces, which pull the body back to the obstacle and
so make the surfaces stick to each other. These forces are dependent on the gap size,
and thus also on the displacement field itself.

Two example adhesion laws are given in Figure 1.3. These laws are to be read as
follows: Select an arbitrary material point x on the contact boundary. The abscissa

2

Γ

Γ

ΓC

D

N

Figure 1.2.: Reference configuration for the 3D benchmark with force distribution

b(u(x))
^

−u (x)
N

b(u(x))
^

−u (x)
N

Figure 1.3.: Nonsmooth adhesion laws

describes the negative normal displacement, this is the gap that opens between the
obstacle and the body. With a growing gap, a reaction force pulls the material back
to the obstacle. That force is given on the ordinate; it may be as simple as in the right
graph or more complicated, as in the left graph. At some point, the gap has grown
so large that the adhesive is damaged. The adhesion force is now zero.
Note that these laws are set-valued in some points, where a discontinuity gap had
to be filled out. A special case appears in the contact point, where the normal
displacement is zero: The reaction force here becomes the contact pressure in that
material point, which is allowed to grow as large as necessary in the negative
direction. The construction of set-valued laws by filling out discontinuity gaps
follows a classic procedure when encountering nonsmooth boundary conditions,
see e.g. the monograph by Filippov [15] or the earlier work by Rauch [37].

Figure 1.4.: Symmetric delamination problem: Reference configuration;
deformed configuration with symmetry axis

This configuration can also be used to describe a delamination benchmark: If two

3

1. Introduction

elastic, bonded blocks are subjected to a given force such that the problem is sym-
metric along ΓC, this symmetry can be exploited. We only need to compute a solution
for the upper block to retrieve the deformation of two layers of finite thickness, see
Figure 1.4.

Structure

This thesis is organized as follows:
In Chapter 2, we repeat some concepts, definitions and notations. We assume that
the reader is familiar with basic concepts of the Finite Element method. We introduce
generalizations of derivatives that are needed later. Further, the classical problem
of linear-elastic deformation is derived from a mechanical point of view. It is then
generalized to incorporate contact and adhesion conditions. We state the weak
formulation for the Signorini problem. Finally, spaces and operators are shortly
introduced that are needed for a boundary integral representation.

Minimization methods have been mainly used as numerical solvers for hemivaria-
tional inequalities. The nonsmooth behavior on the boundary however implicates
that the constructed objective function is not differentiable anymore. Chapter 3 re-
views the approximation of hemivariational inequalities with finite elements and
boundary elements.
In a first step, the hemivariational inequalities for contact with adhesion are deduced.
Further, an equivalent minimization problem is stated. A basic, one-dimensional ex-
ample underlines that the objective function is no more differentiable. This example
also exposes areas with multiple solutions due to a nonconvex objective function.
Subsequently, we give criteria for the uniqueness of a solution for differentiable and
non-differentiable potentials. Theorem 3.10 gives a first criterion for strict convexity
of the objective function. The second, more general proposition is Theorem 3.16. Its
criteria return uniqueness for non-differentiable potentials.
We state the Bundle-Newton method by Lukšan and Vlček [29], which is widely
used to solve hemivariational inequalities.

A different, new ansatz for numerical solvers is the direct treatment of the hemivari-
ational inequality with additional Lagrange multipliers. An active set method has
recently been conveyed by Hintermüller, Kovtunenko and Kunisch in [20] to solve a
2D membrane problem under certain conditions. Chapter 4 is dedicated to employ
this method for problems in linear elasticity.
The original active set method relies on Hopf’s maximum principle and can not be
directly applied to problems in elasticity. Instead, we split off the normal displace-
ments on the contact boundary, effectively retreating to an iterative method on three
subproblems: Two of these subproblems are linear elastic problems, and the third
one reduces to a 2D membrane problem, which can now be treated with the original
active set method.

4

We focus on the solution algorithm and several implementation details, including
computational difficulties that arise from the decoupled formulation.

Finally, we demonstrate some numerical experiments in Chapter 5. These experi-
ments introduce a heuristic, residual-based error indicator for Finite Element compu-
tations. We present some 2D FE computations and discuss the qualitative behavior
of the solutions. Further computations show that FE and BE methods are also ap-
plicable for the 3D case.
A last benchmark is performed with the active set iteration from Chapter 4. The
method converges monotonically for this benchmark.
We discuss parallelization issues and the implementation efficiency for both the
minimization and the active set strategy.

Additional implementation details are given in the appendix. The result on M-
matrices in Chapter 4 relies on a definition of the reference element, so the local
basis functions and transformations are reestablished.
We present a construction scheme for regular quadrature rules in triangles and
tetrahedra; these rules are useful for Finite Element implementations. As the arising
integrands for the Boundary Element method are singular, we also introduce adap-
tive quadrature rules for the 3D implementation on triangles.
The appendix closes with a section on adaptive refinement. We summarize the
refinement algorithms that were used for the numerical experiments; further, we
specify the necessary element decompositions.

5

2. Fundamentals

In this chapter, we will give a brief overview of some mathematical constructs that we
use. Further, we derive the differential operator for linear elasticity, which allows us
to state the model problem for adhesion from the introduction as a system of partial
differential equations. We state Korn’s inequality, which renders the bilinear form
for the FE formulation coercive. Finally, Somigliana’s identity is recalled, resulting
in the Steklov-Poincaré operator with the appropriate boundary integral operators.
This operator will replace the bilinear form a(·, ·) in the next chapter if a discretization
by boundary elements is chosen instead of a finite element discretization.

In Chapter 4, we will make use of indexed functions. The Einstein summation
convention becomes handy:

Remark 2.1: If an index appears double, a sum over this index is implied. As we deal with
two- and three-dimensional objects, the upper sum limit is 2 or 3, respectively.
Examples are the matrix-vector multiplication

(
A ·~b

)
i

=

3∑
j=1

ai jb j = ai jb j

or the trace of a tensor of rank 2

tr b =

3∑
i=1

bii = bii .

Further, we introduce a shorthand notation for partial derivatives by

a,i :=
∂a
∂xi

.

We can now write e.g. the gradient of a vector-valued function and the divergence of a
matrix-valued function by

(∇u)i j = ui, j ; (div b)i = bi j, j .

7

2. Fundamentals

2.1. Derivatives

One method to treat contact problems with nonsmooth laws is the minimization of
a non-differentiable function. For the original problem, this function is defined on a
convex subset of a Sobolev space; for a discretized problem, the function is defined
on a convex subset of a finite-dimensional subspace, or equivalently on a convex
subset of Rn. To deal with function spaces and non-differentiable behaviour, we
need to introduce generalized derivatives.

There exists a large variety of generalized derivatives, see e.g. [11] or [21]. The
derivatives we will effectively use are the Gâteaux, second order Dini and Clarke
differentials. In the following definitions, let f : X → R be a locally Lipschitz
continuous function, where X is a Banach space and x, v ∈ X.

Definition 2.2:
If the limit

f D(x; v) := lim
t↓0

f (x + tv) − f (x)
t

(2.1)

exists, it is called the (upper) Dini-directional derivative of f in x in the direction v.
If the limit exists for all v ∈ X, we can find an element DF(x) ∈ X′ such that

lim
t↓0

f (x + tv) − f (x)
t

=
〈
DF(x), v

〉
∀v ∈ X . (2.2)

DF(x) is then called the Gâteaux derivative of f in x.

Definition 2.3:
The limit

f 0(x; v) := lim sup
y→x; t↓0

f (y + tv) − f (y)
t

(2.3)

defines the generalized directional derivative of f in x in direction v.
The Clarke derivative of f in x is defined as

∂̄ f (x) :=
{
y ∈ X′ : f 0(x; v) ≥

〈
y, v

〉
∀v ∈ X

}
. (2.4)

The Clarke derivative is a subset of the dual space X′. For finite-dimensional X and
continuously differentiable f , the classical derivative f ′(x) will be the only element
in ∂̄ f (x). As an example, the Clarke derivative of the function f (x) = |x| is {−1} for
x < 0 and {+1} for x > 0. In the point x = 0, one can show that ∂̄ f (0) = [−1, 1], which
fills the gap between the limits ±1 (see [11, Example 2.1.3]).

8

2.2. Mechanical foundations

Definition 2.4:
Let f : X → R be continuously Gâteaux differentiable. Then the second order
(upper) Dini-directional derivative of f in x in the direction v is defined by

f DD(x; v) := lim sup
t↓0

〈DF(x − tv), v〉 − 〈DF(x), v〉
t

. (2.5)

Note that the same direction v is chosen here for the first and second derivative, and
that 〈DF(x − tv), v〉 instead of 〈DF(x + tv), v〉 is used. This is to keep the notation
consistent with Yang [48].

Definition 2.5:
LetK be a closed convex subset of X. Then the normal cone is defined as

NK (x) :=
{
y ∈ X′ :

〈
y, v − x

〉
≤ 0 ∀v ∈ K

}
. (2.6)

The subdifferential of the extended real indicator function

χK (x) :=

0 , x ∈ K
+∞ , x < K

(2.7)

is the normal cone ofK in x. It coincides with the Clarke subdifferential ∂̄χK (x) (see
[11, Proposition 2.4.12]).

2.2. Mechanical foundations

Static and quasi-static deformations of mechanical bodies are considered throughout
this thesis. This section aims to describe the underlying physical laws.

2.2.1. Linear-elastic material law

There exists a large variety of literature describing deformation processes of con-
tinua. As we will consider linear-elastic, isotropic small deformations in quasi-
stationary processes, the introduction by Landau / Lifschitz [27] may be used. Alter-
natively, textbooks like Altenbach / Altenbach [3] provide access to the modelling of
continua from an engineering point of view.

Denote the body of interest by B. This body may have several configurations, each
describing a point in the deformation process. In the case of quasi-static small
deformations, we need only use two configurations:

We start from B0, which describes the undeformed configuration without any external
loads or obstacle conditions.

9

2. Fundamentals

The deformed configuration is denoted by Bdef. We can add a preliminary index t to
denote the deformed configuration Bt

def at some specified point in time. Taking a
particle with position X ∈ B0, it will be displaced to a position x ∈ Bt

def by some
transformation functionϕ:

x = x(X, t) = ϕ(X, t)

We can equally write the deformation as the displacement u in each point of B,
x = X + u(X, t), which finally reduces to

x = X + u(X) or u(X) = x − X ∀X ∈ B0

for a quasi-stationary process.

Only continuous deformations with finite displacements are allowed. If the defor-
mation gradient is given by F := ∂x/∂X, the condition det F > 0 must hold.

The gradient of u is H := ∂u/∂X = F − 1. (Differentiability of u is needed here,
but will be weakened later.) The Green-Lagrange strain tensor is defined as E :=
1
2 (H + H> + H>H); for small deformations, we can linearize it and retrieve

ε(u) ≈ E ≈
1
2

(
H + H>

)
=

1
2

(
∇u + (∇u)>

)
.

From the laws of thermodynamics, we can describe a derivative of the free energy
W in an isothermal process:

σi j =

(
∂W
∂εi j

)
T

The variable σ is called the Cauchy stress tensor. For an isotropic, homogeneous
body, we can expand W into a series by a set of independent quadratic terms in ε.

W = W0 +
λ
2

(tr ε)2 + µ(ε : ε) + O(ε4
i j)

Up to higher order terms, we get an explicit representation for σ:

σi j = λ(tr ε)δi j + 2µεi j (2.8)

In the case of linear, anisotropic material behavior, the more general relation

σ = C : ε (2.9)

can be derived with a symmetric fourth order tensor C, the Hooke tensor.

The stress tensor σ corresponds to the stress vector t in the following way: On the
surface of an arbitrary test volume Vt

⊂ B
t
def, there holds

t = lim
∆a→0

∆f
∆a

= σ · n

in every point with the surface force f and area a.

10

2.2. Mechanical foundations

We can now derive the governing equations from the conservation laws of momen-
tum and mass. Let ρ0 denote the mass density in a point X ∈ B0. Taking test volumes
V0
⊂ B

0 and Vt
⊂ B

t
def of the reference and deformed body, we first deduce∫

V0
(ρ0 − ρdet(F)) dV0 = 0 .

Mass conservation now yields

0 =
dm
dt

=
d
dt

∫
Vt
ρdVt =

∫
Vt

(
ρ̇ + ρdiv(ϕ̇)

)
dVt . (2.10)

The time derivative of the momentum must now balance the sum of external forces.
If we assume a volume force fV and a boundary traction t acting on a test volume,
we get ∫

Vt
ρfV dVt +

∫
∂Vt

t dst =
d
dt

∫
Vt
ρϕ̇dVt =

d
dt

∫
V0
ρϕ̇det(F) dV0

=

∫
V0
ρϕ̈det(F) dV0 +

∫
V0

(
ρ̇ϕ̇det(F) + ρϕ̇div(ϕ̇) det(F)

)
dV0 ,

and the mass conservation law (2.10) cancels out the last integral.
We finally have on an arbitrary test volume∫

Vt
ρϕ̈dVt =

∫
Vt
ρfV dVt +

∫
∂Vt

t dst ,

or
∫

Vt
ρϕ̈dVt =

∫
Vt

(
ρfV + divσ

)
dVt (2.11)

applying the Gauss theorem.

Using ϕ̈ = ü, the local form of momentum conservation is then

−divσ(u) + ρü = ρfV . (2.12)

Additionally, the acceleration term ü may be neglected for a quasi-stationary process
(the body B will be in a motionless equilibrium). The governing equation reduces
to

−divσ(u) = ρfV . (2.13)

Remark 2.6: The complexity of many problems can be reduced to two dimensions. There
are two specific cases of plane elasticity, plane strain and plane stress. Nečas and Hlavaček
demonstrate in [33, Section 10.2] how these cases can be derived.

The stress vector on the surface can be decomposed further: We get the scalar-valued
normal stress σN and the vector-valued shear stress σT by

σN := n · σ · n

σT := σ · n − σN n .
(2.14)

11

2. Fundamentals

The classical problem of linear elasticity

We need to give additional boundary conditions to fully describe the classical prob-
lem of linear elasticity. Let the body B occupy a bounded, open domain Ω ⊂ R3 or
Ω ⊂ R2. Decompose the boundary Γ = ∂Ω into boundary parts that do not intersect
with positive measure. We can give Dirichlet boundary conditions on a boundary
part ΓD and Neumann boundary conditions on ΓN. A simple problem then reads:
Find u : Ω→ R3 such that

−divσ(u) = f in Ω

u = u0 on ΓD

σ(u) · n = t0 on ΓN .

(2.15)

More complex boundary conditions can be prescribed as well. If the deformed
body must not penetrate an obstacle, Γ contains a contact boundary ΓC. In fact, our
benchmark example will not only introduce an obstacle on ΓC, but also an adhesion
force on ΓC. This force function will be dependent on the displacement uN and is in
general not continuous.

2.2.2. Classical contact problem with adhesion

Let the body B now be close to a rigid obstacle. If B is deformed, this obstacle
can block further displacements. The boundary ∂Ω now also contains a part ΓC of
potential contact. The penetration of the obstacle can be described to occur from
normal displacements on the boundary,

uN(x) := u(x) · n , x ∈ Γ .

The gap between deformed body and obstacle can be given by a nonlinear relation,
see Kikuchi and Oden [23, Section 2.3]. However, they show that for the case of
small deformations, the contact condition can be linearized by dropping higher
order terms. We can now give a gap function ψ : ΓC → R, which simply describes
the normal distance from the (undeformed) contact boundary to the rigid obstacle.
We can now restrict the normal displacement by introducing the condition

uN ≤ ψ on ΓC

into our equation system, which coincides with the second contact condition in the
Signorini problem [23, system (2.31)].

The shear stress σT is assumed to be zero on ΓC, as no external forces are applied.
The normal stress σN needs more attention. First, we state the case without adhesion:
When a material point x ∈ ΓC is in contact, we can not have a positive normal stress.
When a material point is not in contact, the normal stress is zero. This is expressed
in the complementarity conditions

σN(x) ≤ 0 ; uN(x) ≤ ψ(x) ; σN(x)
(
uN(x) − ψ(x)

)
= 0 . (2.16)

12

2.2. Mechanical foundations

Now we can add an adhesion force b̂(·) to the formulation. Here, we assume that this
force acts in normal direction. The set-valued function b̄ is created as the “envelope”
of a piecewise continuous function b:

b̄(t) :=
[
lim inf
τ→0

b(t + τ) , lim sup
τ→0

b(t + τ)
]
,

where the limits are to be understood in the L∞-essential limit sense.

In the case of no contact, we demand that

σN(x) ∈ b̄(uN

(
x
)
) .

We can extend the function b̄(·) by introducing a dependence on the gap function.
We pass the negative normal displacement −uN(x) as a parameter. If this parameter
arrives at the gap function value (i.e., if the material point is in contact), the value
interval of b̂(·) is extended to −∞:

b̂(t, x) :=


(
−∞, lim sup

τ→0
b(t + τ)

]
, t = −ψ(x)

b̄(t) , t > −ψ(x)

We do not need to define this function for t < −ψ(x), as this would correspond
to the situation uN(x) > ψ(x), which would violate the non-penetration condition.
Physically, the function b̂(t, x) now takes the gap size in the point x ∈ ΓC as argument
t and returns a set of admissible reaction forces in the normal direction.

Chapters 1 and 2 in [23] describe the modelling of the adhesion-free case in more
detail. For more details on the modelling with adhesion, see Chapter 2 in [19].

We finally get the boundary value problem for a contact problem with adhesion:
Find u : Ω→ R3 such that

−divσ(u) = f in Ω

u = u0 on ΓD

σ(u) · n = t0 on ΓN

uN(x) ≤ ψ(x) ,

σT(u(x)) = 0 ,

σN(u(x)) ∈ b̂(−uN(x), x) a.e. x ∈ ΓC .

(2.17)

In the case of adhesion, the body B is in full contact along ΓC in the reference
configuration B0, and the deformation process may break up some of this contact.
The gap function ψ is then just the zero function. We can remove the dependence of
b̂(t, x) on x and use the function b̂ : [0,∞)→ 2R.

13

2. Fundamentals

2.3. The Ritz-Galerkin method

If we have a simple problem (2.15) with mixed Neumann and homogeneous Dirichlet
boundary conditions, we can readily give a variational formulation. For that, we
multiply by a test function and integrate by parts. The test space is chosen to be

V :=
[
H1

D(Ω)
]3

, where the trace of functions is fixed to 0 on the Dirichlet boundary.
The space V is equipped with the usual norm ‖ · ‖V (see [33, p.72]). We then look for
a function u ∈ V with∫

Ω

σ(u) : ε(v) dx =

∫
Ω

f · v dx +

∫
ΓN

t · v dsx ∀v ∈ V . (2.18)

It is a well-known result that if u is smooth, the classical and the variational formu-
lation are equivalent, see e.g. [17, Section 3.3].
If we have additional inequality constraints on the boundary displacements, we
need to reduce the test space to a convex set

K :=
{
v ∈ V : vN(x) ≤ ψ(x) a.e. x ∈ ΓC

}
⊂ V .

We get a variational inequality,∫
Ω

σ(u) : ε(v − u) dx ≥
∫

Ω

f · (v − u) dx +

∫
ΓN

t · (v − u) dsx ∀v ∈ K . (2.19)

One important theorem is Korn’s inequality. Later sections will also rely on two
corollaries we will state here. For the proofs, we refer to Duvaut and Lions [12];
these results can be found there as Theorem 3.1, Theorem 3.3 and Theorem 3.4 in
Part III (p. 110ff).
Define the inner product

a0(u,v) :=
∫

Ω

ε(u) : ε(v) dx .

Theorem 2.7: Korn’s inequality
Let Ω be a bounded open set with regular boundary.
Then there holds the following equivalence relation:

c‖v‖V ≤
(
a0(v,v) + ‖v‖2L2

) 1
2
≤ C‖v‖V ∀v ∈ V , (2.20)

where c and C are positive constants that only depend on Ω.

Corollary 2.8:
If the Dirichlet boundary ΓD has positive measure, a0(., .) is elliptic on V, i.e. there
exists a c > 0 such that

a0(v,v) ≥ c‖v‖2V ∀v ∈ V . (2.21)

14

2.4. Boundary integral representation

Corollary 2.9:
If the Dirichlet boundary ΓD has measure zero, a0(., .) induces a semi-norm on V.
a0(., .) is elliptic on the quotient space V/R.

Remark 2.10: In the general case, the integrand is not ε(u) : ε(v), but ε(u) : C : ε(v) with
an appropriate Hooke tensor Ci jkl.
We demand that

Ci jkl = Ckli j = C jikl

Ci jklεi jεkl ≥ mεi jεi j for some m > 0 .
(2.22)

Then
a(u,u) :=

∫
Ω

ε(u) : C : ε(u) ≥ m a0(u,u) ,

transferring ellipticity properties of a0(., .) to a(., .).
The isotropic, homogeneous material (λ, µ) is a special case of this:

Ci jkl(λ, µ) := λδi jδkl + µ(δikδ jl + δilδ jk) .

Condition (2.22) is easy to check, as

λεii(u)εkk(u) + 2µεi j(u)εi j(u) ≥ 2µεi j(u)εi j(u) .

In Chapter 3, we will use a minimization formulation for the mechanical system.
The bilinear form a(., .) is symmetric, so we get the minimization problems:
Find u ∈ V (or u ∈ K) such that

u = argmin
v∈V orK

1
2

a(v,v) − f (v) . (2.23)

These problems are equivalent to the problems (2.18) and (2.19), see [23, Theorem
3.9] for a proof.

2.4. Boundary integral representation

Sometimes it is desirable to reduce the given problem to a problem on the bound-
ary only. This is especially the case for vanishing volume forces f: If there is no
contribution from the interior of Ω, the problem can be reduced to a description
on the boundary only, eliminating the need for a volume mesh. The number of
degrees of freedom is drastically reduced in the equation system. Further, problems
with unbounded domains can be treated effectively without introducing artificial
boundaries.
The tradeoff of this method is that the involved integral operators produce dense
Galerkin matrices. The emerging double integrals need special treatment, as the
integrands may become singular. See Appendix A.2.2 for viable quadrature rules.

15

2. Fundamentals

We will not give any theoretical results here. For more rigid derivations and more
general situations, see e.g. the monographs by Sauter and Schwab [39] or Hsiao and
Wendland [22].

Assume that the domain Ω is a Lipschitz domain. We will use a different test space
here that is defined only on the boundary Γ = ∂Ω:

H1/2(Γ) :=
{
v ∈ L2(Γ) : ∃v′ ∈ H1(Ω) , tr v′ = v

}
. (2.24)

This is not the usual definition of the Sobolev space H1/2(Γ): Sauter and Schwab
define H1/2(Γ) in [39, Section 2.4] via the norm

∥∥∥φ∥∥∥2

1/2,Γ
:=

∥∥∥φ0

∥∥∥2

L2(Γ)
+

∫
Γ

∫
Γ

(
φ0(x) − φ0(y)

)2

‖x − y‖d
dsy dsx

with d = 2, 3 and

φ0(x) :=
∑
U∈U

φU(x) ,

whereU is a decomposition of Γ into a finite number of disjoint subsets such that a
local coordinate system can be given on every U ∈ U. Theorem 2.6.8 in [39] ensures
that these definitions are equivalent for Lipschitz domains.

Additionally, we introduce Sobolev spaces on boundary parts Γ0 ⊂ Γ:

H̃1/2(Γ0) :=
{
v ∈ H1/2(Γ) : supp v ⊂ Γ0

}
H1/2(Γ0) :=

{
ṽ : ∃v ∈ H1/2(Γ), ṽ = v|Γ0

} (2.25)

The difference between these spaces is that H̃1/2(Γ0) only contains functions that are
zero on the boundary of Γ0, while functions in H1/2(Γ0) may be nonzero on ∂Γ0.

We will also need the dual spaces with respect to the L2(Γ0) scalar product

H̃−1/2(Γ0) :=
(
H1/2(Γ0)

)′
; H−1/2(Γ0) :=

(
H̃1/2(Γ0)

)′
. (2.26)

Finally, we write a boldface H±1/2 for the product space
[
H±1/2

]3
.

The fundamental solution for the Lamé equation with isotropic, homogeneous ma-
terial (λ, µ) reads

E(x,y) :=
1

8πµ (λ + 2µ)

(
(λ + 3µ) δi j

‖x − y‖
+ (λ + µ)

(xi − yi)(x j − y j)
‖x − y‖3

)
.

We can now substitute the volume equation, −divσ(u) = f, by the equivalent repre-
sentation formula

u(x) =

∫
Γ

E(x,y)
(
Pyu(y)

)
dsy −

∫
Γ

PyE(x,y)u(y) dsy +

∫
Ω

E(x,y)f(y) dy , x ∈ Ωint

(2.27)

16

2.4. Boundary integral representation

with the traction operator Py : u 7→ σ(u) · ny. This is the Somigliana identity, see e.g.
[25, Chapter IV.3] for details. If the volume force f is zero, the last term vanishes,
and we are left with equations on the boundary only.

We now introduce the boundary integral operators(
Vψ

)
(x) :=

∫
Γ

E(x,y)ψ(y) dsy(
Kϕ

)
(x) :=

∫
Γ

PyE>(x,y)ϕ(y) dsy(
K′ψ

)
(x) := Px

∫
Γ

E(x,y)ψ(y) dsy(
Wϕ

)
(x) := − Px

∫
Γ

PyE>(x,y)ϕ(y) dsy ,

(2.28)

which have the mapping properties

V : H−1/2(Γ) → H1/2(Γ)

K : H1/2(Γ) → H1/2(Γ)

K′ : H−1/2(Γ) → H−1/2(Γ)

W : H1/2(Γ) → H−1/2(Γ) .

Passing to the limit x→ Γ in (2.27), we retrieve the Calderón operator(
u

Pxu

)
=

(
1
2 I − K V

W 1
2 I + K′

) (
u

Pxu

)
, (2.29)

which resolves to the Steklov-Poincaré operator(
Pxu

)
(x) =

(
Wu + (1

2 I + K′) V−1 (1
2 I + K)u

)
(x) =:

(
Su

)
(x) . (2.30)

S maps to H−1/2(Γ) and induces a symmetric bilinear form on H1/2(Γ). Retreating
to an open boundary Γ0, the bilinear form 〈Su, v〉Γ0 is continuous and elliptic on
H̃1/2(Γ0).

In our case, Γ is decomposed into a homogeneous Dirichlet boundary ΓD and a
Neumann boundary ΓN with given data t. The open boundary Γ0 is then the Neu-
mann boundary ΓN. We can apply the Galerkin method by multiplication with a test
function and integration over ΓN. Substituting Pxu by t on ΓN gives the variational
equation:
Find u ∈ H̃1/2(ΓN) such that∫

ΓN

(
Su

)
(x) · v(x) dsx =

∫
ΓN

t(x) · v(x) dsx ∀v ∈ H̃1/2(ΓN) . (2.31)

17

3. Hemivariational inequalities

In this chapter, we will state the contact problem with adhesion in terms of hemi-
variational inequalities. We demonstrate two different discretizations using finite
elements and boundary elements, then show how each problem can be rewritten as
a nonsmooth minimization problem.

A minimal example demonstrates that a hemivariational inequality may admit mul-
tiple solutions. For some cases, we can give general conditions for uniqueness of a
solution. These are reported in Section 3.5: Theorem 3.10 links the coercivity con-
stant of the bilinear form and the Lipschitz constant of a surface law to a condition
for strict convexity. Theorem 3.16 shows that even if the surface law has a jump, a
solution is still unique under certain conditions.

Finally, we recapitulate the Bundle-Newton method, which can be applied to solve
the emerging nonsmooth minimization problem.

Remark 3.1: We only cover nonsmooth boundary conditions here. As can be seen in the
work by Haslinger et al. [19], nonsmooth contributions inside the domain could be modeled
as well if the mapping Π in (3.2), the L2 inner product in (3.8), (3.9) and the space for the
auxiliary function ξ are changed appropriately.

3.1. Variational formulation

The problem of contact with adhesion was given in the PDE system (2.15). We are

looking for solutions in the function space V =
[
H1

D(Ω)
]3

or a convex subset K ⊂ V.
Discarding the contact condition, we arrive at the following variational equation:
Find u ∈ V such that∫

Ω

σ(u) : C : ε(v) −
∫

ΓC

σ(u) · n · v dsx =

∫
Ω

f · v +

∫
ΓN

t · v dsx ∀v ∈ V . (3.1)

The second integral still needs to be converted. First, recall from (2.14) that the
boundary traction can be linearly decomposed into a tangential and a normal part.
As we assume that no friction occurs on the contact boundary, the tangential stress
σT is zero. The integrand then contains only the normal part,

σ(u(x)) · n · v(x) =
(
σT(u(x)) + σN(u(x))n

)
· v(x) = σN(u(x)) n · v(x) on ΓC .

19

3. Hemivariational inequalities

For the normal stress σN(u), we introduce an auxiliary function ξ ∈ L2(ΓC). If
we demand that σN(u(x)) = ξ(x), we get from the classical problem that ξ(x) ∈
b̂(−uN(x)).

Additionally, we introduce a mapping Π. In our problem, we only need to select the
negative third coefficient:

Π :R3
→ R

(x1, x2, x3) 7→ −x3 .
(3.2)

Note that the conditions on Π in [19] would admit far general mappings, e.g. for
non-local surface laws.

Using the usual shorthand notation a(·, ·) for the bilinear form and L(·) for the right
hand side linear form, (3.1) is now given as the following hemivariational equation:
Find (u, ξ) ∈ V × L2(ΓC) such that

a(u,v) +

∫
ΓC

ξ(x) (Πv)(x) dsx = L(v) ∀v ∈ V

ξ(x) ∈ b̂
(
(Πu)(x)

)
a.e. x ∈ ΓC ,

(3.3)

using the fact that on ΓC holds (Πv)(x) = −v3(x) = v(x) · n.

If the contact condition is present, we can derive a variational inequality formulation
on K by multiplying with a test function and integrating by parts. Like in the
unconstrained case, we retrieve an integral over ΓC with σ · n in the integrand.
Again, we introduce the function ξ and get the hemivariational inequality:
Find (u, ξ) ∈ K × L2(ΓC) such that

a(u,v − u) +

∫
ΓC

ξ(x) (Πv −Πu)(x) dsx ≥ L(v − u) ∀v ∈ K

ξ(x) ∈ b̂
(
(Πu)(x)

)
a.e. x ∈ ΓC .

(3.4)

Alternatively, we can use the Steklov-Poincaré operator (2.30). The boundary is now
decomposed Γ = ΓD ∪ ΓN ∪ ΓC, and we write Γ0 for the free boundary ΓN ∪ ΓC. The
problem (2.31) is modified to:
Find (u, ξ) ∈ H̃1/2(Γ0) × L2(ΓC) such that∫

Γ0

(Su) · v dsx −

∫
ΓC

(Pxu) · v dsx =

∫
ΓN

t · v dsx ∀v ∈ H̃1/2(Γ0) . (3.5)

Again, we decompose the normal stress Pxu = σ · n into a tangential and a normal
part. Substituting ΠPxu by an auxiliary function ξ again, we get the hemivariational

20

3.2. Approximation with Finite Elements and Boundary Elements

equation:
Find (u, ξ) ∈ H̃1/2(Γ0) × L2(ΓC) such that∫

Γ0

(Su) · v dsx +

∫
ΓC

ξ(x) (Πv)(x) dsx =

∫
ΓN

t · v dsx ∀v ∈ H̃1/2(Γ0)

ξ(x) ∈ b̂
(
(Πu)(x)

)
a.e. x ∈ ΓC .

(3.6)

Finally, we can also state a hemivariational inequality in the case of contact if we
choose an appropriate convex setK incorporating the contact condition.
Find (u, ξ) ∈ K × L2(ΓC) such that∫

Γ0

(Su) · (v − u) dsx +

∫
ΓC

ξ(x) (Πv −Πu)(x) dsx ≥

∫
ΓN

t · (v − u) dsx ∀v ∈ K

ξ(x) ∈ b̂
(
(Πu)(x)

)
a.e. x ∈ ΓC .

(3.7)

The hemivariational equations (3.3), (3.6) and the hemivariational inequalities (3.4),
(3.7) are of the same structure: We have a symmetric, coercive bilinear form over a
Sobolev space and a continuous linear form on the right side. The L2 inner product
on the left side and the inclusion condition ξ ∈ b̂(Πu) are actually the same.

In general, we can select a Sobolev space V, a symmetric, coercive bilinear form
a : V × V → R and a linear form L : V → R. Then a generic hemivariational
equation reads:
Find (u, ξ) ∈ V × L2(ΓC) such that

a(u, v) + 〈ξ,Πv〉0,ΓC
= L(v) ∀v ∈ V

ξ(x) ∈ b̂
(
(Πu)(x)

)
a.e. x ∈ ΓC .

(3.8)

A generic hemivariational inequality is given by:
Find (u, ξ) ∈ K × L2(ΓC) such that

a(u, v − u) + 〈ξ,Π(v − u)〉0,ΓC
≥ L(v − u) ∀v ∈ K

ξ(x) ∈ b̂
(
(Πu)(x)

)
a.e. x ∈ ΓC .

(3.9)

If b(·) is bounded, Haslinger et al. [19] proved that (3.8) and (3.9) have at least one
solution. The proofs rely on finite-dimensional approximations, see Remark 3.2.

3.2. Approximation with Finite Elements and Boundary Elements

We need finite-dimensional subspaces of V and H̃1/2(Γ0) to compute numerical so-
lutions of (3.4) and (3.7). Further we assume that Ω is a polyhedral domain.

21

3. Hemivariational inequalities

The first step in the construction of finite-dimensional subspaces is the decomposi-
tion of the domain of interest with a triangulation. For the full domain Ω ⊂ R2;3,
the triangulation Th(Ω) will consist of triangles or tetrahedra. If only parts of the
boundary are discretized, Th(Γ) will consist of edges or faces.

The space L2(ΓC) is used in both formulations, so we will approximate it first. Note
that we do not need an explicit implementation later: The auxiliary function ξ will
be eliminated in the minimization formulation.
The simplest space to use here is the space of piecewise constant functions,

Ξh :=
{
ξ ∈ L2(ΓC) : ξ

∣∣∣
e
∈ P0 ∀e ∈ Th(ΓC)

}
.

3.2.1. Finite Element spaces

With a conforming triangulation Th into triangles or tetrahedra T given, we can
introduce the standard node-based, piecewise linear and continuous functions. We
impose the contact conditions in the nodes of ΓC only. The Finite Element space Vh

and the convex setKh of admissible displacements are defined as

Vh :=
{
v ∈ H1

D(Ω) : v|T ∈
[
P1

]3
∀T ∈ Th(Ω)

}
Kh :=

{
v ∈ Vh : vN(Pi) ≤ ψ(Pi) for all mesh nodes Pi ∈ ΓC

}
.

We have Vh ⊂ V, but not necessarily Kh ⊂ K : The obstacle ψ may penetrate a
deformed configuration in a part of a boundary edge or face. This problem does not
occur in our benchmark configuration, where ψ represents a flat obstacle and full
contact is assumed in the undeformed configuration.

The stiffness matrix A can be computed exactly from the basis functions ψi of Vh.
The load vector f can also be computed exactly, or at least approximated up to a
given precision with numerical quadrature.

3.2.2. Boundary Element spaces

As stressed before, we only need a mesh on the boundary Γ. The elements E ∈ Th

of this mesh are edges in the 2D case, or triangles in the 3D case. We will use the
space of node-based, piecewise linear and continuous functions on Γ0 = ΓC ∪ ΓN.
The contact conditions are only imposed in the nodes of ΓC.

Vh :=
{
v ∈ H̃1/2

D (Γ0) : v|E ∈
[
P1

]3
∀E ∈ Th

}
Kh :=

{
v ∈ Vh : vN(Pi) ≤ ψ(Pi) for all mesh nodes Pi ∈ ΓC

}
.

22

3.2. Approximation with Finite Elements and Boundary Elements

In contrast to the previous section, the bilinear form 〈S·, ·〉 can only be computed
approximately. This originates from the definition

S := W +
(

1
2 I + K′

)
V−1

(
1
2 I + K

)
,

which contains the inverse single layer operator V−1 : H1/2(Γ) → H−1/2(Γ). We can
not compute the exact inverse, but only an approximation:
First, set up a space of piecewise constant functions on the full boundary Γ,

Yh :=
{
y ∈

[
L2(Γ)

]3
: y

∣∣∣
E
∈

[
P0

]3
∀E ∈ Th

}
.

We can now compute the individual Galerkin matrices Wh, Ih, Kh, K′h and Vh for
the spaces Vh and Yh. The matrix Vh is symmetric and positive definite, so we can
perform a Cholesky decomposition to invert it:

Sh := Wh +
(

1
2 Ih + K′h

)
V−1

h

(
1
2 Ih + Kh

)
. (3.10)

The matrix Sh is an approximation of the Galerkin matrix originating from the
Steklov-Poincaré operator S. Maischak and Stephan show in [31, Lemma 15] that
the approximation error converges with optimal rate; see also Chernov [8, Section
1.4]. This implies that condition (3.52) in [19],

Vh 3 yh ⇀ y , Vh 3 zh → z in V
⇒ ah(yh, zh) → a(y, z) and ah(zh, yh) → a(z, y) ,

is fulfilled for a(u,v) = 〈Su,v〉 and ah(x,y) = x · Shy. Then we can apply Theorem 3.4
and Theorem 3.9 in [19], which claim that the approximated solutions converge to
solutions of (3.8) and (3.9).

3.2.3. Algebraic formulation

An important part in the formulation is the matrix Λ, which takes the role of the
projection Π in the discrete formulation. Λ maps from a basis of Vh to a basis of
Ξh. In our case, it descriptively selects the degrees of freedom in Vh on ΓC that
point in normal direction and evaluates them in the edge midpoints. If we have
a displacement field uh ∈ Vh given by the coefficient vector x, the vector Λx will
consist of the normal displacements of uh in the midpoints mi of Ei ⊂ ΓC: With

Ξh = span
{
ψi(x)

}
, ψi(E j) = δi j , and Vh = span

{
ϕ j(x)

}
,

we get
Λi j = ϕ j(mi) . (3.11)

23

3. Hemivariational inequalities

Let the volume of a face Ei on ΓC be given by |Ei|. For convenience, define the matrix
E by setting the diagonal elements to |Ei|. Then the integral over ΓC is plainly given
by ∫

ΓC

ξh(x) (Πuh)(x) dsx =
∑

Ei⊂ΓC

|Ei|(ξ)i

(
Λx

)
i

= ξ>EΛx .

We obtain a fully discrete version of (3.9) by associating Vh with Rn, the convex set
Kh with Kh ⊂ R

n, and Ξh withRm:
Find (x, ξ) ∈ Kh ×R

m such that

x>A(x − v) + ξ>EΛ(x − v) ≥ f>(x − v) ∀v ∈ Kh

ξi ∈ b̂(
(
Λx

)
i
) ∀i : Ei ⊂ ΓC .

(3.12)

The fully discrete version of (3.8) is:
Find (x, ξ) ∈ Rn

×Rm such that

Ax + (EΛ)>ξ = f

ξi ∈ b̂(
(
Λx

)
i
) ∀i : Ei ⊂ ΓC .

(3.13)

Remark 3.2: The hemivariational equation (3.8) and the hemivariational inequality (3.9)
have at least one solution.

For the equation case, we can employ [19, Theorem 3.4]. Conditions (3.24)-(3.26), (3.52) and
(3.53) on the bilinear form a(·, ·) and on the linear form L(·) (there denoted as f) are fulfilled:
For the finite element setting, a(·, ·) can be computed exactly; for the boundary element
setting, the approximated Poincaré-Steklov operator Sh and the induced bilinear form ah(·, ·)
satisfy (3.52). The linear form L(·) can be computed as exactly as necessary with appropriate
quadrature rules. Conditions (3.35), (3.48) and (3.49) on the approximation property of
Vh are satisfied e.g. if a triangulation of maximal size h is used for the construction of Vh,
choosing the parameters q = q′ = s = 2. As we assume in our case that b does not depend on
x, condition (3.47) is satisfied if b is bounded. This is especially true in the given delamination
laws.
For the inequality case, [19, Theorem 3.9] can be used. Again, we choose q = q′ = s = 2 and
see that the given conditions (i)–(vi) are fulfilled, if additionally the closed convex coneK is
approximated well enough by the convex sets {Kh}.

3.3. The minimization formulation

One possibility to find a numerical solution to the hemivariational inequality (3.9)
is to transform it to an equivalent minimization formulation.
Haslinger et al. introduced a so-called superpotentialL in [19]. This potential function
is given by

L(v) :=
1
2

a(v, v) − L(v) +

∫
ΓC

∫ (Πv)(x)

0
b(t) dt dsx . (3.14)

24

3.3. The minimization formulation

In the following, we will see that L is closely connected to the hemivariational
inequality.

Remark 3.3: The potential function L is not restricted to linear elasticity. Carstensen et
al. show in [2] that an elastoplastic problem can be written as a nonsmooth minimization
problem. The same technique may be used to set up an elastoplastic contact problem with
adhesion. Due to the adhesion term, the function L is nonsmooth anyway.

3.3.1. Discrete approximation

As the integral over the boundary ΓC can, in general, not be computed exactly, an
approximation needs to be made.
The discrete formulation imposes the inclusion condition ξ ∈ b̂(·) only in specified
points, namely the element midpoints. If we employ the midpoint quadrature rule
for the integral over ΓC, the approximation is∫

ΓC

∫ (Πv)(x)

0
b(t) dt ≈

∑
Ei⊂ΓC

∣∣∣Ei

∣∣∣ ∫ (Πv)(mi)

0
b(t) dt =: Ψh(v) , (3.15)

where |Ei| is the volume (length or area) of surface element Ei, and mi is its barycen-
ter.

Taking the Galerkin matrix A and the load vector f from the discrete system (3.4) or
(3.7), the approximated potential takes the form

L(x) :=
1
2

x>Ax − f>x +
∑

i

∣∣∣Ei

∣∣∣ B(
(
Λx

)
i
) (3.16)

with B(t) :=
∫ t

0
b(τ) dτ.

Recall from (3.11) that the matrix Λ maps x to the contact faces Ei ⊂ ΓC: The i-th
coefficient of Λx is the normal displacement in the midpoint of Ei. We can directly
compute the gradient of the first two parts as Ax − f, and as these contributions are
smooth, Corollary 1 of Proposition 2.3.3 in [11] yields the Clarke derivative

∂̄L(x) = ∂
(1

2
x>Ax

)
− ∂(f>x) + ∂̄

[∑
i

∣∣∣Ei

∣∣∣ B(
(
Λx

)
i
)
]
, (3.17)

or in coordinate form

∂̄
∂xi
L(x) =

(
Ax − f

)
i

+ Ψ0
h(x, ei) (3.18)

(recall that Ψ0
h is the generalized directional derivative from (2.3).)

The individual summands now have the partial Clarke derivative

∂̄
∂xi

∣∣∣E j

∣∣∣ B(
(
Λx

)
j
) =

∣∣∣E j

∣∣∣ ∂̄
∂xi

B(
(
Λx

)
j
) =

∣∣∣Ei

∣∣∣Λi j b̂(
(
Λx

)
j
) ,

25

3. Hemivariational inequalities

the last equality holds because Λ has full rank ([11, Theorem 2.3.10]).

If at most one summand is nonsmooth in a point x, we can write

∂̄
∂xi
L(x) =

(
Ax − f

)
i

+
∑

j

∣∣∣E j

∣∣∣Λi j b̂(
(
Λx

)
j
) ;

otherwise,
∂̄
∂xi
L(x) ⊂

(
Ax − f

)
i

+
∑

j

∣∣∣E j

∣∣∣Λi j b̂(
(
Λx

)
j
) .

3.3.2. Equivalence for discretized problems

If we assume that Λ is surjective and that one-sided limits b(τ±) exist for all τ ∈ R, it
can be shown that finding a solution (u, ξ) of (3.8) or (3.9) is equivalent to finding a
substationary point u inRN (or Kh).

Theorem 3.4: (Haslinger, 1999)
Let u ∈ Rn be a substationary point of L (i.e. 0 ∈ ∂̄L(u)). Then there exists a ξ ∈ Rm

such that Λ>ξ ∈ ∂̄Ψ(u), and (u, ξ) solves the discrete hemivariational equation (3.3)
or (3.6), respectively.
Conversely, let (u, ξ) be a solution of (3.3) or (3.6). Let further Λ be surjective, and
assume that one-sided limits b(τ±) exist for all τ ∈ R. Then u is a substationary point
of L, and Λ>ξ ∈ ∂̄Ψ(u).

Proof. See [19], Theorem 3.5 (p.135 ff) and Theorem 3.6 (p.137). As the proofs do not
depend on the actual construction of A, they can also be applied to the boundary
element formulation.
The original proof of Theorem 3.6 only demands that P is surjective, where Λ = PΠ;
however, this condition is only used to show that Λ is also onto. p q

x y

Theorem 3.5: (Haslinger, 1999)
Let u ∈ Rn be a substationary point of L on Kh (i.e. 0 ∈ ∂̄L(u) + NKh (u)). Then there
exists a ξ ∈ Rm such that Λ>ξ ∈ ∂̄Ψ(u), and (u, ξ) solves the discrete hemivariational
inequality (3.4) or (3.7), respectively.
Conversely, let (u, ξ) be a solution of (3.4) or (3.7). Let further Λ be surjective, and
assume that one-sided limits b(τ±) exist for all τ ∈ R. Then u is a substationary point
of L, and Λ>ξ ∈ ∂̄Ψ(u).

Proof. See [19], Theorem 3.10 (p.147). p q
x y

26

3.4. A 1d example

3.4. A 1d example

In this section, we will use the Heaviside function Θ and its envelope Θ̂:

Θ(t) :=

0 , t < 0
1 , t > 0

Θ̂(t) :=


{0} , t < 0
[0, 1] , t = 0
{1} , t > 0

Consider the following ordinary differential equation with a nonsmooth boundary
condition:
Find u ∈ C2(0, 1) such that

−u′′(x) = f (x) , x ∈ (0, 1)

u(0) = 0

u′(1) ∈ − cJ Θ̂(u(1))

(P1D)

with a constant cJ ∈ R setting the jump size in the nonsmooth boundary law. The
associated hemivariational equation reads:
Find u ∈ H1

(0)(0, 1) such that
∫ 1

0
u′(x)v′(x) dx + ξ · v(1) =

∫ 1

0
f (x)v(x) dx

ξ ∈ cJΘ̂(u(1))
∀v ∈ H1

(0)(0, 1)

with H1
(0)(0, 1) := {v ∈ H1(0, 1) : v(0) = 0}. Note that ΓC here only consists of the point

x = 1.
We can now compute the minimization potential:

L(v) :=
1
2

∫ 1

0

(
v′(x)

)2
dx −

∫ 1

0
f (x)v(x) dx +

∫ v(1)

0
cJ Θ(t) dt .

If we partition the interval (0, 1) uniformly with stepwidth h and create piecewise
linear basis functions on this partition, we get the finite element space Vh ⊂ H1

(0) with
basis functions φ1(x), . . . , φN(x). Then the stiffness matrix A, the load vector f and
the matrix Πh which selects the function value in x = 1 can be computed explicitly.
(The matrix entry aNN equals 1/h, not 2/h, because the boundary at x = 1 is not fixed,
as opposed to the homogeneous boundary x = 0.)

A :=
1
h



2 −1
−1 2 −1

. . .
. . .

. . .

. . .
. . .

. . .
−1 2 −1

−1 1


∈ RN×N , f :=



f1

f2
...

...
fN


∈ RN ,

Πh :=
(
0 . . . 0 1

)
∈ R1×N .

27

3. Hemivariational inequalities

The discrete minimization problem then reads:

Find u ∈ RN s.t. u = arg min
v∈RN
L(v)

with L(v) :=
1
2

v>Av − f>v + cJ

(
Πhv

)
+
.

As there is only one nonsmooth summand, the subdifferential ofL can be explicitly
given as

∂̄L(v) = Av − f + cJ Θ̂(vN) eN , (3.19)

where eN is the N-th unit vector.

Now, we can characterize the stationary points. First recall that the entry (A−1)N,N is
positive: The matrix A is positive definite, so its inverse A−1 is also positive definite.
But then

(A−1)N,N = e>NA−1eN > 0 ⇒
1

(A−1)N,N
> 0 .

We now impose the necessary condition that the first N−1 coefficients of the subgra-
dient ∂̄L(u) in (3.19) must be zero for a stationary point u. This leaves a condition
only on the last coefficient. With this, each stationary point can be parametrized
as

u = A−1
(
f + teN

)
, t ∈ R .

Most cases admit only one solution:

• If cJ = 0, we get the single solution u = A−1f.

• If cJ > 0, we can only reach one stationary point. The solution is

u =



A−1f for
(A−1f)N

(A−1)N,N
< 0 ;

A−1
(
f −

(A−1f)N

(A−1)N,N
eN

)
for

(A−1f)N

(A−1)N,N
∈ [0, cJ] ;

A−1
(
f − cJeN

)
for

(A−1f)N

(A−1)N,N
> cJ .

• If cJ < 0 and (A−1f)N
(A−1)N,N

< [cJ, 0], we have only one stationary point:

u =


A−1f for

(A−1f)N

(A−1)N,N
< cJ ;

A−1
(
f − cJeN

)
for

(A−1f)N

(A−1)N,N
> 0 .

28

3.4. A 1d example

−2 −1.5 −1 −0.5 0
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

first stable

second stable

unstable

Figure 3.1.: Objective function values for stable and unstable solutions of (P1D) for
varying load f ∈ (−2.5, 0.5)

Only in the case cJ < 0 and (A−1f)N
(A−1)N,N

∈ (cJ, 0), we have three distinct stationary points:

umin ,1 = A−1f is a local minimum;

umin ,2 = A−1
(
f − cJeN

)
is a local minimum;

umax = A−1
(
f −

(A−1f)N

(A−1)N,N
eN

)
is a local maximum.

Corollary 3.6:
For A positive definite and cJ < 0, a potential functionL of the form (3.16) may allow
multiple distinct solutions. Then L can not be convex.

In the stationary points, the potential function evaluates as

L(umin ,1) = −
1
2

f>A−1f ,

L(umin ,2) = −
1
2

f>A−1f −
1
2

c2
J (A−1)N,N + cJ(A−1f)N

L(umax) = −
1
2

f>A−1f +
1
2

(A−1f)N
2

(A−1)N,N
.

Now umax is a convex combination of umin ,1 and umin ,2, but L(umax) > L(umin ,1) and
L(umax) > L(umin ,2). This means that L is not even quasiconvex here.

We performed computations for the case with multiple solutions, i.e. cJ = −1, for
various constant loads f.

29

3. Hemivariational inequalities

Figure 3.1 shows the extremal values of L with varying f. We have a first stable
solution umin ,1 for f ∈ (−∞, 0] and a second stable solution umin ,2 for f ∈ [−2,∞). The
unstable solution umax is attained for f ∈ [−2, 0].
We show the solutions during the progress of increasing f in Figure 3.2. For f ≤
−2, there exists only one solution. This first stable solution fulfills the boundary
condition u′min ,1(1) = 0.
For f ∈ (−2, 0), we have three distinct stationary points of L: Additionally to the
first stable solution, we get a second stable solution that fulfills u′min ,2(1) = 1 = −cJ.
The unstable solution, which corresponds to a local maximum, attains a derivative
between 0 and−cJ in x = 1. This is allowed by the original problem, as umax (1) = 0 for
f ∈ (−2, 0): For that case, we only demanded that u′(1) ∈ [0, 1] through the Heaviside
envelope function Θ̂(t).
For f ≥ 0, only the second stable solution remains a stationary point of L.

30

3.4. A 1d example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

first stable

(a) f = −2.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

first stable
second stable
unstable

(b) f = −1.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

first stable
second stable
unstable

(c) f = −1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

first stable

second stable

unstable

(d) f = −0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

second stable

(e) f = +0.1

Figure 3.2.: Solutions of (P1D) for different right hand sides with cJ = −1

31

3. Hemivariational inequalities

3.5. Uniqueness results

This section is dedicated to conditions on the boundary law b such that the hemi-
variational inequality has a unique solution. Its main results are Theorem 3.10 and
Theorem 3.16, which give conditions for the uniqueness of a solution. If b includes
no jumps or only positive jumps, the conditions are global; for negative jumps,
uniqueness can only be validated a posteriori when the solution is known.

Unique solvability of a problem is of fundamental importance for the numerical
treatment: Only if a solution u can be uniquely determined, error measures of an
approximate solution uh can reasonably be given in terms of some norm. On the
other hand, the original problem was re-cast into minimizing a potential in Section
3.3. An algorithm will look for stationary points, and uniqueness will guarantee
that the algorithm will not converge to a local maximum or to a minimum that is
not global.
Note however that due to the non-monotone contribution from b, we must in general
expect multiple solutions of the original problem and its approximation.

3.5.1. Convexity

A first attempt will be to impose conditions on the problem such that the resulting
potential function is strictly convex.
A strictly convex function with an additional growth condition has a unique mini-
mizer:

Lemma 3.7:
Let X be a normed R-vector space. Let f : X → R ∪ {+∞} be strictly convex and
lower semicontinuous, with f (x)→∞ as ‖x‖ → ∞, x ∈ X.
Then f has a unique minimizer.

Proof. For a proof of existence, see Niculescu and Persson [34], Theorem C.1.1.

Assume that x ∈ X, y ∈ X, x , y, are two separate minimizers of f .
Define the midpoint of x and y, m := 1

2 (x + y). We have f (x) ≤ f (m) and f (y) ≤ f (m).
But then

1
2

f (x) +
1
2

f (y) ≤
1
2

f (m) +
1
2

f (m) = f (m) <
1
2

f (x) +
1
2

f (y) by strict convexity.

This is a contradiction, so any minimizer must be unique. �

Remark 3.8: The growth condition, f (x)→∞ as ‖x‖ → ∞, is necessary:
For example, the exponential function is strictly convex, as(

ex
)′′

= ex > 0 ∀x ∈ R ,

but it does not attain a minimum.

32

3.5. Uniqueness results

Lemma 3.9:
Let f : X→ R have a second-order upper Dini-directional derivative in every z ∈ X.
Let further f DD(z; d) < 0 for all 0 , d ∈ X.
Then f is strictly convex.

Proof. Theorem 2.1 of [48] states that

∀x, y ∈ X , x , y ∃z ∈ (x, y) : f (y) ≥ f (x) +
〈
D f (x), y − x

〉
−

1
2

f DD(z; y − x) ,

where z ∈ (x, y) means that z = x + t(y − x) for some t ∈ (0, 1).
As f DD(z; y − x) < 0 holds, we get

∀x, y ∈ X , x , y : f (y) − f (x) >
〈
D f (x), y − x

〉
.

This is just the first-order condition for strict convexity. �

We can now apply this generalized second-order condition to our potential func-
tion:

Theorem 3.10:
Assume that b ∈ Lip(R) with the Lipschitz constant cL.
If this constant satisfies

cL < inf
d ∈ V :

‖Πd‖0,ΓC = 1

a(d,d) , (3.20)

the hemivariational inequality (3.9) has a unique solution.

Proof. First, there exists a positive constant ε such that

cL + ε ≤ inf
d ∈ V :

‖Πd‖0,ΓC = 1

a(d,d) .

As Π is a linear operator, the right-hand side can now be rewritten as a generalized
Rayleigh quotient to have a condition on the full space V:

(cL + ε) ≤ inf
d ∈ V :

d < ker Π

a(d,d)
〈Πd,Πd〉ΓC

⇒ a(d,d) ≥ (cL + ε)〈Πd,Πd〉ΓC ∀d ∈ V .

The second inequality holds trivially for d ∈ ker Π, as the left side is non-negative
and the right side is zero.

33

3. Hemivariational inequalities

The following argument needs the Gâteaux derivative ofL. Writing B(t):=
∫ t

0
b(τ) dτ,

this is by definition(
DL(u),d

)
= lim

t↓0

1
t

(
1
2

a(u + td,u + td) − L(u + td) +

∫
ΓC

B(Πu + tΠd) dsx − L(u)
)

= a(u,d) − L(d) +

∫
ΓC

lim
t↓0

1
t

[
B(

(
Πu

)
(x) + t

(
Πd

)
(x)) − B(

(
Πu

)
(x))

]
dsx .

Because B(t) is continuously differentiable and its derivative is b(t), we can write the
integrand as

lim
t↓0

1
t

(
B(

(
Πu

)
(x) + t

(
Πd

)
(x)) − B(

(
Πu

)
(x))

)
=

(
Πd

)
(x) b(

(
Πu

)
(x)) ,

so the Gâteaux derivative of L in d-direction is(
DL(u),d

)
= a(u,d) − L(d) +

〈
b(Πu), Πd

〉
ΓC
.

By assumption, there holds

a(d, d) ≥ cL

〈
Πd,Πd

〉
ΓC

+ ε‖Πd‖20,ΓC
=

∫
ΓC

cL

(
(Πd)(x)

)2
dsx + ε‖Πd‖20,ΓC

.

We can estimate the integrand as follows: We introduce an arbitrary element u ∈ V
and t > 0. Write (Πd)(x) =: dx, δ := −tdx and (Πu)(x) =: ux. The Lipschitz continuity
of b states that

cLδ
2 = cL |δ| |δ| ≥ |δ| |b(ux + δ) − b(ux)| .

If the arguments of both factors on the right side have the same sign (for example
δ < 0 and b(ux + δ) − b(ux) < 0), we need not take the absolute values. On the other
hand, if the arguments have different signs, the right side evaluates to a non-positive
expression, and we retrieve

cLδ
2
≥ 0 ≥ δ

(
b(ux + δ) − b(ux)

)
.

In both cases, there holds

cLδ
2
≥ δ

(
b(ux + δ) − b(ux)

)
.

Re-substituting δ by −tdx and multiplying by t−2 on both sides, there holds for the
integrand

cLd2
x ≥

dx

t

(
b(ux − tdx) − b(ux)

)
,

34

3.5. Uniqueness results

and we get

a(d, d) ≥
〈
Πd,

1
t

(
b(Πu − tΠd) − b(Πu)

)〉
ΓC

+ ε‖Πd‖2ΓC
.

But now, we have

0 ≥
1
t

(
−t a(d,d) +

〈
b(Πu − tΠd) − b(Πu), Πd

〉
ΓC

)
+ ε‖Πd‖20,ΓC

=
1
t

(
a(u − td,d) +

〈
b(Π(u − td)),Πd

〉
ΓC
− L(d)

)
+

1
t

(
− a(u,d) −

〈
b(Πu), Πd

〉
ΓC

+ L(d)
)

+ ε‖Πd‖20,ΓC

=
1
t

(
(DL(u − td),d)V − (DL(u),d)V

)
+ ε‖Πd‖20,ΓC

.

Taking the limit t→ 0 on both sides, we arrive at

0 ≥ lim sup
t↓0

(DL(u − td),d)V − (DL(u),d)V

t
+ ε‖Πd‖20,ΓC

.

For strict convexity, we need to consider two cases:

• d ∈ ker Π: We have 〈v,Πd〉ΓC = 0 for an arbitrary v.
But then

lim sup
t↓0

(DL(u − td),d)V − (DL(u),d)V

t
= −a(d,d) < 0 for d , 0 .

• d < ker Π: But then, we have

lim sup
t↓0

(DL(u − td),d)V − (DL(u),d)V

t

< lim sup
t↓0

(DL(u − td),d)V − (DL(u),d)V

t
+ ε‖Πd‖20,ΓC

≤ 0 .

In both cases, the second-order Dini derivative is negative, so L is strictly convex.
Finally applying Lemma 3.7, we get the existence of a unique minimizer of L. �

Remark 3.11: If we assume that b is Lipschitz continuous, the discrete approximated po-
tential function L in (3.16) is globally differentiable and has locally Lipschitz continuous
derivatives: The quadratic part of L is smooth, so we only need to consider the last term in
(3.17). Because b is Lipschitz continuous, its anti-derivative B is globally differentiable.

The space C1,1(X,R) of differentiable functions with locally Lipschitz gradients has been
studied extensively, and the alternative second-order conditions in [49] may give additional
uniqueness results. Further assumptions on b would lead to semismooth functions, for which
specialized Newton methods exist [35].

35

3. Hemivariational inequalities

3.5.2. Uniqueness for a C0 potential

The second-order condition in Theorem 3.10 required that the function b is Lipschitz
continuous. This confines the potential function L to C1(X,R), but more general
surface laws would generate only L ∈ C0(X,R).
Our next step is to introduce a discontinuity into b. We shall see that a positive jump
will remain with the same condition for uniqueness as before, but a negative jump
might lead to multiple solutions.

Note that integrals of the Heaviside function Θ can be expressed by∫ b

a
Θ(t) dt = Θ(b) b − Θ(a) a = (b)+ − (a)+ . (3.21)

Aim of the following auxiliary results is to extend the Lipschitz function b(t) by
adding cJ Θ(t − t∗), introducing a jump of size cJ in the point t∗.

Lemma 3.12:
Let b(t) := bLip(t) + cJ Θ(t − t∗), where t∗ ∈ R is fixed, cJ ∈ R, and bLip ∈ Lip(R) with

Lipschitz constant cL. Let B(t) :=
∫ t

0
b(τ) dτ.

Then

B(t + δ) − B(t) − b(t) δ ≤
cL

2
δ2 + cJ (Θ(t − t∗ + δ) −Θ(t − t∗)) (t − t∗ + δ)

and

B(t + δ) − B(t) − b(t) δ ≥ −
cL

2
δ2 + cJ (Θ(t − t∗ + δ) −Θ(t − t∗)) (t − t∗ + δ)

for all δ ∈ R.

Proof. The first inequality follows from

B(t + δ) − B(t) − b(t)δ

=

∫ t+δ

t

(
bLip(τ) + cJ Θ(τ − t∗)

)
dτ − bLip(t)

∫ t+δ

t
dτ − cJ Θ(t − t∗)δ

=

∫ t+δ

t

(
bLip(τ) − bLip(t)

)
dτ + cJ

∫ t+δ

t
Θ(τ − t∗) dτ − cJΘ(t − t∗)δ

≤

∫ t+δ

t
cL|τ − t|dτ

+ cJ

(
Θ(t − t∗ + δ) (t − t∗ + δ) − Θ(t − t∗) (t − t∗)

)
− cJΘ(t − t∗)δ

= cL

∫ δ

0
|τ|dτ + cJ (Θ(t − t∗ + δ) −Θ(t − t∗)) (t − t∗ + δ)

≤
cL

2
δ2 + cJ (Θ(t − t∗ + δ) −Θ(t − t∗)) (t − t∗ + δ) .

36

3.5. Uniqueness results

Because the variable δ may be negative, equality will not hold for all δ in the last
step.
The second inequality can be proved analogously using

bLip(τ) − bLip(t) ≥ −cL|τ − t| . �

The results of Lemma 3.12 and Theorem 3.16 can be extended to include a finite
number of jumps:

Lemma 3.13:
Let b(t) := bLip(t)+

∑
i ciΘ(t− t∗i) be a piecewise Lipschitz function with a set of jumps,

each in t∗i with size ci.
Then

B(t + δ) − B(t) − b(t) δ ≤
cL

2
δ2 +

∑
i

ci

(
Θ(t − t∗i + δ) −Θ(t − t∗i)

)
(t − t∗i + δ) .

Proof. This follows directly from Lemma 3.12, replacing the single jump cJ with a
sum of jumps ci. �

Next, we show that the antiderivative B of a jumping function is locally Lipschitz
continuous, but not differentiable in t∗.

Lemma 3.14:
Let b be defined as in Lemma 3.12.
Then the antiderivative B(t) =

∫ t

0
b(τ) dτ is locally Lipschitz. If cJ , 0, B is not

differentiable in t∗.

Proof. For B being locally Lipschitz, we demand that

∀t ∈ R ∃ε0 > 0 , cL > 0 : ∀|ε| ≤ ε0 |B(t + ε) − B(t)| ≤ cL|ε| .

Choose an arbitrary, but fixed t ∈ R, and an arbitrary constant ε0(t) > 0. Selecting
cL := max

{
|b(t + ε)| : |ε| ≤ ε0(t)

}
, we get for ε ≥ 0

cL |ε| = ε cL = ε max
|ε|≤ε0
|b(t + ε)| =

∫ t+ε

t
max
|ε|≤ε0
|b(t + ε)|dτ

≥

∣∣∣∣∣∣
∫ t+ε

t
b(τ) dτ

∣∣∣∣∣∣ = |B(t + ε) − B(t)| ,

and for ε < 0

cL |ε| = (−ε) max
|ε|≤ε0
|b(t + ε)| =

∫ t

t+ε
max
|ε|≤ε0
|b(t + ε)|dτ

≥

∣∣∣∣∣∣
∫ t

t+ε
b(τ) dτ

∣∣∣∣∣∣ = |B(t + ε) − B(t)| .

37

3. Hemivariational inequalities

If cJ , 0, we have the left- and right-side derivatives

lim
t→t∗+

B′(t) = lim
t→t∗+

b(t) = bLip(t∗) + cJ

and lim
t→t∗
−

B′(t) = lim
t→t∗
−

b(t) = bLip(t∗) ,

thus B is not differentiable in t∗. �

In Theorem 3.16, we have to compare cut-off function terms and quadratic terms.
This can be done by the following lemma.

Lemma 3.15:
For 1

4 ≤ a ∈ R, there holds (t − a)+ ≤ t2.
For 1

4 > a ∈ R, there holds (t − a)+ ≤ t2 iff

t ∈ R \

1
2
−

√
1
4
− a ,

1
2

+

√
1
4
− a

 .
Proof. Let 1

4 ≤ a. Then clearly, (t − a)+ = 0 ≤ t2 if t ≤ a. But for t > a, we have

t2
− (t − a)+ = t2

− (t − a) ≥ t2
− t +

1
4

=
(
t −

1
2

)2

≥ 0 .

Let now 1
4 > a. Again, we only need to consider the case that (t − a)+ > 0. But then,

the functions t2 and t − a intersect in two points:

t2 = t − a ⇔ t1,2 =
1
2
±

√
1
4
− a .

It is clear that t2 > t − a is violated between these two points, but valid outside the
given interval. �

We can finally give conditions for a solution u to be the unique minimizer of L.

Theorem 3.16:
Let u be a stationary point ofL. Further, let the interface law b satisfy the conditions
in Lemma 3.12.
Then u is the unique minimizer of L if one of the following conditions holds:

• The jump cJ is non-negative, and cL satisfies

cL < inf
d∈V\ker Π

a(d,d)
‖Πd‖20,ΓC

. (3.22)

38

3.5. Uniqueness results

• The jump cJ is negative,(
Πu

)
(x) ≤ t∗ −

1
4
, and cL − 2cJ < inf

d∈V\ker Π

a(d,d)
‖Πd‖20,ΓC

. (3.23)

Proof. If u is a stationary point of L, we have that 0 ∈ ∂L(u). Especially, we have a
partial solution ξ ∈ L2(ΓC) of (3.9) such that

a(u,v − u) − L(v − u) +

∫
ΓC

ξ
(
Πv −Πu

)
dsx ≥ 0 .

Introduce the notations ux := (Πu)(x) and vx := (Πv)(x) where appropriate. Consider
the following expression for an arbitrary v:

L(v) − L(u) =
1
2

a(v,v) −
1
2

a(u,u) − L(v) + L(u)

+

∫
ΓC

B(
(
Πv

)
(x)) dsx −

∫
ΓC

B(
(
Πu

)
(x)) dsx

≥
1
2

a(v,v) −
1
2

a(u,u) − L(v − u) +

∫
ΓC

(B(vx) − B(ux)) dsx

− a(u,v − u) + L(v − u) −
∫

ΓC

ξ (vx − ux) dsx

=
1
2

a(v − u,v − u) +

∫
ΓC

(B(vx) − B(ux) − ξ (vx − ux)) dsx

≥
1
2

a(d,d) −
1
2

cL

∫
ΓC

(dx)2 dsx

+ cJ

∫
ΓC

(
Θ(ux − t∗ + dx) − Θ(ux − t∗)

) (
ux − t∗ + dx

)
dsx (3.24)

employing Lemma 3.12 and writing d := v − u. If this expression is positive for
d , 0, the stationary point u is a global minimizer.

The second integrand is always non-negative:

• If ux − t∗ + dx < 0, the first Heaviside function evaluates to zero; but the
second Heaviside function only evaluates to a non-negative number, leaving
a non-positive first factor.

• If ux − t∗ + dx > 0, the first factor in the second integral of (3.24) can not be
negative by the same argument.

For a nonnegative jump cJ ≥ 0, we can then discard the second integral. If we use
assumption (3.22),

a(d,d) > cL‖Πd‖20,ΓC
∀0 , d ∈ V ,

39

3. Hemivariational inequalities

we can see that condition (3.24) results in L(v) > L(u) if v , u.
Note that this would just be the convexity condition onL if b would not contain any
jumps.

For a negative jump cJ < 0, the assumption (3.23) states that

a(d,d) > (cL − 2cJ)‖Πd‖20,ΓC
∀d ∈ V . (3.25)

The term−2cJ‖Πd‖20,ΓC
can be bounded from below, using the assumption that t∗−ux ≥

1
4 holds on ΓC:∫

ΓC

d2
x dsx =

∫
ΓC

d2
x dsx −

∫
ΓC

(ux − t∗)+ dsx −

∫
ΓC

Θ(ux − t∗)dx dsx

=

∫
ΓC

d2
x dsx −

∫
ΓC

Θ(ux − t∗)
(
ux − t∗ + dx

)
dsx

with Lemma 3.15: ≥
∫

ΓC

(dx − t∗ + ux)+ dsx −

∫
ΓC

Θ(ux − t∗)
(
ux − t∗ + dx

)
dsx

=

∫
ΓC

(
Θ(ux − t∗ + dx) −Θ(ux − t∗)

) (
ux − t∗ + dx

)
dsx .

As−2cJ > 0, equations (3.25) and (3.24) return again thatL(v) > L(u) for all v , u. �

If the inequality in (3.20) is relaxed to a not-strict inequality, Theorem 3.10 asserts
only convexity, not strict convexity. Multiple solutions may occur. As the level sets
of a convex function are convex, the set of minimizers of the objective function is
simply connected and convex.

We can also relax the strict inequalities in (3.22) and (3.23) to “normal” inequalities.
Then, we only retrieve L(v) ≥ L(u) for all v ∈ V. The set of solutions is also
convex:

Corollary 3.17:
Under either of the two weakened assumptions

cJ ≥ 0 , cL ≤ inf
d∈V\ker Π

a(d,d)
‖Πd‖20,ΓC

, (3.26)

or cJ < 0 , cL − 2cJ ≤ inf
d∈V\ker Π

a(d,d)
‖Πd‖20,ΓC

, and
(
Πui

)
(x) ≤ t∗ −

1
4
∀i , (3.27)

all stationary points ui of L have the same (minimal) value L(ui) =: Lmin .
Moreover, the set {ui} ⊂ K of solutions is convex.

Proof. Under the weakened assumptions, the same steps as in the proof of Theorem
3.16 result in

L(v) ≥ L(ui) ∀v ∈ V

40

3.5. Uniqueness results

for each stationary point ui. Then it is immediately clear that all stationary points ui

have the same value Lmin in L.

Taking two stationary points u1 and u2, we get from [11, Theorem 2.3.7, p.41] that

L(u2) − L(u1) = 0 ∈
〈
∂L(u0), u2 − u1

〉
(3.28)

for some convex combination u0 = u1 + ϑ(u2 − u1) with ϑ ∈ (0, 1). Then u0 is also a
stationary point, and we get L(u0) = Lmin .

It remains to prove that every convex combination of two stationary points u1, u2 is
again a stationary point. Select an arbitrary convex combination w = u1 +ϑ(u2 −u1)
withϑ ∈ (0, 1). We can now use a bisection algorithm. Set the boundaries to u(0)

L := u1

(0)
u

R
u

L
u

R
* *

w

u
(0)

L

Figure 3.3.: Bisection algorithm towards w

and u(0)
R := u2. In every step n, we can find a new stationary point u(n)

0 ∈ (u(n)
L ,u

(n)
R),

which has positive distance from u(n)
L and u(n)

R . This u(n)
0 sets a new boundary for step

(n + 1) such that the new interval
[
u(n+1)

L ,u(n+1)
R

]
contains w. Moreover, u(n)

0 attains the

value L(u(n)
0) = Lmin .

If the interval size of
[
u(n+1)

L ,u(n+1)
R

]
decreases to zero for n→∞, there holds

lim
n→∞
L(u(n)

L) = lim
n→∞
L(u(n)

R) = Lmin = L(w)

due to the continuity of L.

If the interval boundaries converge such that they are bounded away from w,

u∗L := lim
n→∞

u(n)
L , u∗R := lim

n→∞
u(n)

R ,

the continuity of L yields that u∗L and u∗R are stationary points of L. But then, we
can restart the bisection with these elements as new boundaries. The bisection can
be repeated until u∗L and u∗R converge to w.

We now know that every convex combination w of two minimizers u1 and u2 is
again a minimizer, so the set of solutions is convex. �

41

3. Hemivariational inequalities

3.6. The Bundle-Newton method

According to Lemma 3.14, the potential L is locally Lipschitz, but not necessarily
differentiable. It is also not convex in general, as shown in Corollary 3.6. The mini-
mization method needs to regard this. Second order derivatives are not available in
all points, and first order derivatives might only be given as elements of the Clarke
subdifferential. Further, these differentials may vary rapidly, raising the need for an
adapted line search strategy.

In this section, we present the Bundle-Newton method [29] and demonstrate the
application to our model problem. We finally suggest a modification of the solver
for the search direction, which may exploit the sparse structure of the system matrix
better.

Before going into details, we state the central convergence statements:

Theorem 3.18:
Let the sequence {x(k)

} of iterates in the Bundle-Newton algorithm be bounded.
Further, let the sequence A(k) of iteration matrices be bounded.
Then every accumulation point of {x(k)

} is a stationary point of the objective function,
i.e. the algorithm converges.

Proof. See [29, Theorem 3.8]. The boundedness of the inverse Schur complement
Hk of A(k) is a consequence of the boundedness of A(k). Note that Lukšan and Vlček
claim that the sequence {Hk} can be forced into boundedness by a modification of
the matrix G(k)

p . p q
x y

Theorem 3.19:
Let the Bundle-Newton algorithm produce an infinite number of serious steps x(k)

that converge to x∗. Further let the objective function f be strongly convex with
continuous second-order derivatives in a neighborhood of x∗. Let A(k) be bounded.
Then, after a sufficient number of steps, the algorithm will generate Newton iterates,
resulting in superlinear convergence.

Proof. See [29, Theorem 4.4]; its assumptions have been collapsed into the given
form. p q

x y

Bundle methods for nonsmooth optimization regard that differentials may vary
rapidly and that a second order derivative may not be available in all points: Usually,
only a function evaluation and an arbitrary subdifferential element are needed in
each iteration point. This class of methods goes back to the concepts of cutting-plane
and ε-subgradient algorithms.
The key idea is to approximate the objective function f (x) by a bundle of functions

42

3.6. The Bundle-Newton method

f #
i (x) which are easier to treat, i.e. linear or quadratic functions. In every iteration

step k, f is then approximated by the maximum of all f #
i (x) in the bundle Ik:

f (x) ≈ f �k (x) := max
i∈Ik

{
f #
i (x)

}
.

Note that minimizing f �k (x) is equivalent to minimizing a simple linear function with
nonlinear constraints:

min
x∈Rn , t∈R

t

s.t. f #
i (x) ≤ t ∀i ∈ Ik

Bundle methods provide approximation strategies for the functions f #
i (x), as well as

updating algorithms for the bundle Ik.

The Bundle-Newton method was introduced by Lukšan and and Vlček [29]. The
approximating functions f #

i (x) are chosen to be quadratic: If

f #
i (x) = f (y(i)) + (g(i))>(x − y(i)) +

1
2
ρi(x − y(i))>G(i)(x − y(i))

for sample points y(i), subgradient elements g(i)
∈ ∂ f (y(i)) and second order deriva-

tives G(ỹ(i)) “close enough” (ỹ(i)
≈ y(i)), superlinear convergence of the method can

be proven for a large class of problems [29, Theorem 4.4].

Bundle updates are performed by categorizing the iteration steps as short steps,
null steps and serious steps, which imply improvement of the iteration point x(k), the
bundle Ik, or both.

3.6.1. Preprocessing of the problem

It is advisable to reduce the number of degrees of freedom as far as possible; this
is especially true in the 3D case, where millions of unknowns might appear in a
discretization.

We are looking for a substationary point of L. Assume that the degrees of freedom
are ordered such that the first n basis functions of V expose no normal displacement
on the boundary part ΓC. These functions will be filtered out by the matrix Λ and
thus will only produce a quadratic contribution. Then, the Galerkin matrix and
vector will have the block structure

A =

(
Ā B
B> C

)
, f =

(
f1

f2

)
.

A solution vector will have the structure (x1, x2). By a Schur complement, we can
now express x1 in terms of x2:

x1 = Ā−1
(
f1
− Bx2

)
, (3.29)

43

3. Hemivariational inequalities

which we can again insert into the definition of L from (3.16),

L(x) =
1
2

(
x1

x2

)> (
Ā B
B> C

) (
x1

x2

)
−

(
f1

f2

)> (
x1

x2

)
+ Ψh(x2)

=
1
2

x1Āx1 + x1Bx2 +
1
2

x2Cx2
− f1x1

− f2x2 + Ψh(x2)

=
1
2

x2
(
C − B>Ā−1B

)
x2
−

(
f2
− f1Ā−1B)x2

−
1
2

f1Ā−1f1 + Ψh(x2) .

(3.30)

As we only want to minimize L, we can drop the constant term f1Ā−1f1. Writing

C := C − B>Ā−1B , f := f2
− f1Ā−1B ,

the new objective function results again in a quadratic problem, augmented by a
nonsmooth part:

L(x2) :=
1
2

x2Cx2
− fx2 + Ψh(x2) . (3.31)

In a postprocessing step, we can retrieve x1 with (3.29).

3.6.2. Algorithm description

This description follows [29]. Some parameters were culled, as their values are only
needed for theoretical convergence (ir, im, CG sufficiently large) or need to be fixed
for higher order convergence (ω = 1).

Each iteration of the algorithm is composed of three steps: The determination of a
search direction d(k), a line search returning the step length t, and a bundle update
managing the set of functions f #

i (x). A stopping criterion can be applied already
after the direction-search step.

A list of parameters can be passed to the algorithm:

• Counters and indices:
M: maximal bundle size
im: matrix selection parameter

• control values:
ε ≥ 0: final tolerance
γ > 0: distance measure parameter
t0 ∈ (0, 1) to distinguish small and serious steps

Further, we have persistent auxiliary variables to transfer information in consecutive
iteration steps:

44

3.6. The Bundle-Newton method

s(k)
p ∈ R, correction term for the approximation error
f (k)
p ∈ R, approximated value of f

g(k)
p ∈ R

n, approximated gradient
G(k)

p ∈ R
n×n, approximated Hessian

in ∈ N, the number of consecutive null steps
is ∈ N, counting the number of serious steps since the last reset

Each element j of the bundle will consist of the following parts:

y(k)
j ∈ R

n: a trial point (needs not be stored explicitly)

f (k)
j ∈ R: the function evaluation in y(k)

j

s(k)
j ∈ R: the approximation error in x(k)

g(k)
j ∈ R

n: an element of the subgradient ∂̄ f (y(k)
j)

G(k)
j ∈ R

n×n: Hessian in y(k)
j or a nearby point

ρ j ∈ {0, 1} selects linear or quadratic approximation

Finally, let x(k) be the sequence converging to a minimal argument x, g(k) an element
of the subgradient of f in x(k), and G(k) an approximated Hessian in x(k).

k = 1, 2, . . . is the iteration variable.

Initialization

Select a first approximation x(1); set the counters k := 1, is := 0, in := 0.
The auxiliary variables can be initialized:

s(1)
p := 0

f (1)
p := f (x(1))

g(1)
p :∈ ∂̄ f (x(1))

G(1)
p := ∇2 f (x(1)) , or in a point close to x(1) where a Hessian of f is available

Set g(1) := g(1)
p and G(1) := G(1)

p . The first bundle element is

f (1)
1 = f (x(1)) , s(1)

1 = 0 , g(1)
1 = g(1) ,

G(1)
1 = G(1) , ρ1 = 1 .

Search direction

To find a search direction d(k), a quadratic minimization problem with linear in-
equality constraints needs to be solved. This introduces the vector of Lagrange
multipliers, λ(k).

Define an auxiliary matrix A = A(k):

45

3. Hemivariational inequalities

• If in > im, take the matrix from the last step, A(k−1).

• Otherwise:

– If the last two steps were classified as serious and λ(k−1)
k−1 = 1, take G(k);

– else, take the persistent Hessian G(k)
p .

In the second case, the matrix A may be adjusted to be positive definite; this can be
done by adding a multiple of the identity matrix.

The original problem is stated in Section 3.6.3. Its objective function is augmented
by the Lagrange multipliers λ(k) and λ(k)

p , finally its number of unknowns can be
reduced to the bundle size #B.
Setting α(k)

j := max
{∣∣∣ f (k)

j − f (x(k))
∣∣∣, γs(k)

j

}
and α(k)

p := max
{∣∣∣ f (k)

p − f (x(k))
∣∣∣, γs(k)

p

}
, the aug-

mented problem states:

min
λ∈R#B , λp∈R

1
2

(#B∑
j=1

λ jg
(k)
j + λpg(k)

p

)>
A−1

(#B∑
j=1

λ jg
(k)
j + λpg(k)

p

)
+

#B∑
j=1

λ jα
(k)
j + λpα

(k)
p

s.t. λ j ≥ 0 ∀ j ; λp ≥ 0 ;
#B∑
j=1

λ j + λp = 1 .

(3.32)

The new search direction can be determined as

d(k+1) := −
#B∑
j=1

λ(k)
j A−1g(k)

j − λ
(k)
p A−1g(k)

p . (3.33)

Some auxiliary variables can now be computed:

v̂(k) := −d(k+1)>Ad(k)
−

#B∑
j=1

λ(k)
j − λ(k)

p α
(k)
p ,

g̃(k)
p :=

#B∑
j=1

λ(k)
j g(k)

j + λ(k)
p g(k)

p , f̃ (k)
p :=

#B∑
j=1

λ(k)
j f (k)

j + λ(k)
p f (k)

p ,

s̃(k)
p :=

#B∑
j=1

λ(k)
j s(k)

j + λ(k)
p s(k)

p , α̃(k)
p := max

{∣∣∣ f̃ (k)
p − f (x(k))

∣∣∣, γs̃(k)
p

}
,

v(k) := −
1
2

g̃(k)
p A−1g̃(k)

p − α̃(k)
p , w(k) := −

1
2

v(k) +
1
2
α̃(k)

p ,

and the matrix G(k)
p is updated to

G(k+1)
p :=

#B∑
j=1

λ(k)
j ρ jG

(k)
j + λ(k)

p G(k)
p .

The stopping criterion is w(k)
≤ ε; it can be evaluated before the matrix update.

46

3.6. The Bundle-Newton method

Line search

The step lengths tL, tR are determined through a line search algorithm by Kiwiel [24].
This algorithm depends on some further parameters:

mL ∈ (0, 1
2) and mR ∈ (mL, 1): conditions for serious and short steps

0 < CS ∈ R: maximal distance ‖x(k)
− y(k)

‖

ζ ∈ (0, 1
2) and 1 ≤ θ ∈ R: interpolation parameters for t ∈ (tL, tU)

Contrary to the original description, the matrix A may not be recalculated in every
line search step to reduce the computational complexity.

First, the bounds are initialized by tL = 0, tU = 1, and t = 1.

The following steps are repeated until one of the exit conditions is met:

• Compute f (x(k) + td(k)). If this step is good, i.e. f (x(k) + td(k)) ≤ f (x(k)) + mLtv(k),
raise the lower bound (tL ← t), otherwise drop the upper bound (tU ← t).

• If tL ≥ t0 (serious step),
set tR := tL and exit.

• Compute new line search data:

g :∈ ∂̄ f (x(k) + td(k)) , ρ :=

1, in ≤ 3,
0, else

,

fv := f (x(k) + td(k)) + (tL − t)g>d(k) +
1
2
ρ(tL − t)2(d(k))>Ad(k) ,

β := max
{
| fv − f (x(k) + td(k))| , γ|tL − t|‖d(k)

‖

}
• If (t − tL)‖d(k)

‖ ≤ CS and

−β + (d(k))>
(
g + ρ(tL − t)Ad(k)

)
≥ mRv(k) ,

set tR := tL and exit.

• Select a new t ∈ [tL + ζ(tU − tL)θ, tU − ζ(tU − tL)θ] by interpolation.

Bundle and variables update

Update the iteration variables for the next step with values from the line search:

x(k+1) := x(k) + tLd(k) , y(k+1) := x(k) + td(k) ,

f (k+1) := f (y(k+1)) , g(k+1) :∈ ∂̄ f (y(k+1)) ,

G(k+1) := ∇2 f (ỹ) ,

47

3. Hemivariational inequalities

where ỹ ≈ y(k+1) is a point where f is smooth enough.
For the persistent variables, the new values are

s(k+1)
p := s̃(k)

p + tL‖d(k)
‖ , f (k+1)

p := f̃ (k)
p + tL(d(k))>g̃(k)

j +
1
2

t2
L (d(k))>G(k+1)

p d(k) ,

g(k+1)
p := g̃(k)

p + tLG(k+1)
p d(k) .

The counters are also updated: If tL < t0 (short step), increase in by 1; otherwise, set
in to 0 and increase is by 1.

Now the entries of each bundle element j need to be adjusted:

s(k+1)
j := s(k)

j + tL‖d(k)
‖ , f (k+1)

j := f (k)
j + tL(d(k))>g(k)

j +
1
2
ρ j t2

L (d(k))>G(j)d(k) ,

g(k+1)
j := g(k)

j + ρ j tLG(j)d(k) .

A new element is added to the bundle:

f (k+1)
(k+1) := f (k+1) + (tL − t)(d(k))>g(k+1) +

1
2
ρ(k+1) (tL − t)2 (d(k))>G(k+1)d(k) ,

s(k+1)
(k+1) := t‖d(k)

‖ , g(k+1)
(k+1) := g(k+1) + ρ(k+1) (tL − t)G(k+1)d(k+1) ,

G(k+1)
(k+1) := G(k+1) , ρ(k+1) :=

1, in ≤ 3,
0, else

.

Finally, the new bundle is set up by any bundle elements, provided that the oldest
element is eliminated, and the new element is included.

3.6.3. Alternative determination of d(k)

When computing the search direction d(k), a constrained quadratic minimization
problem needs to be solved. The algorithm later makes use of the Lagrange multi-
pliers λ(k) and λ(k)

p , so an augmented objective function is minimized under simple
bounds instead. This results in the minimization formulation (3.32).
The dimension of that problem equals the size of the bundle, which can be bounded
to a small number. However, linear equation systems with n unknowns need to be
solved first to compute the vectors A−1g(k)

j and A−1g(k)
p , which are necessary to set up

the actual (#B + 1) × (#B + 1) system matrix. The expensive computations are:

• solving #B+1 large linear equation systems with a symmetric, positive definite
matrix,

• solving a small-scale minimization problem with #B+1 unknowns and simple
inequality constraints.

48

3.6. The Bundle-Newton method

Instead, one can also regard the original minimization problem:

min
d∈Rn , v∈R

v +
1
2

d>A(k)d

s.t. − α(k)
j + d>g(k)

j ≤ v

− α(k)
p + d>g(k)

p ≤ v .

(3.34)

This problem has the full dimension of n + 1 variables; the number of inequality
constraints is #B + 1. Such problems can be solved efficiently using active-set or
interior point methods.

When a minimizer (d, v) is found, the multipliers λ(k) and λ(k)
p can be computed by

solving the over-determined equation system
...
...
...

...
g(k)

j g(k)
p

...
...
...

...


(
λ(k)

λ(k)
p

)
= −A(k)d(k) .

The expensive computations are:

• solving a sequence of large linear equation systems with a symmetric, indefi-
nite matrix,

• solving one more equation system to compute A−1g̃(k)
p for the auxiliary variable

v(k).

If the matrix A is dense, solving several linear equation systems in the original
computation can be done by first computing a Cholesky decomposition of A (recall
that A was, if necessary, modified to be positive definite). The number of systems to
be solved itself is then not critical. On the other hand, the number of solved systems
is critical for a sparse matrix A, as the inverse of A is not given explicitly. If the
constrained problem (3.34) can be solved in less than #B+1 steps, this ansatz is more
efficient.

49

4. A primal-dual active set method

The minimization of a nondifferentiable objective function is computationally ex-
pensive. Section 3.6.1 showed the block structure of the minimization problem and a
possible Schur complement strategy. In every iteration step for the Bundle-Newton
method, we had to compute a dense approximate Hessian matrix

∇
2
L(x(k)) ≈ C + M(b̂,Λx(k)) .

Without this preprocessing, each iteration step would have needed the Hessian
matrix

∇
2
L(x(k)) ≈ A +

(
0 0
0 M(b̂,Λx(k))

)
,

which has large sparse blocks, as A is sparse. Both options leave us with a dense
Hessian, effectively constraining the number of unknowns on the contact boundary
to several thousands in present-day computers.

However, if the function b(t) has the structure

b(t) = −cJΘ(δ − t) ,

and if we may impose certain further assumptions, we can provide another method
to solve the hemivariational inequality. This method will also include the contact
condition directly.
The use of a primal-dual active set strategy for a specific hemivariational inequality
was first proposed by Hintermüller et al. [20] for a membrane problem. In this
chapter, we use this algorithm as a subproblem solver in an iterative scheme for
elastic problems. The final algorithm is given in Section 4.4.

Remark 4.1: We can not directly apply the results from [20] to the linear elastic problem, as
the proof of convergence in Lemma 4.5 can only be transferred to other differential operators
than −∆ that provide a maximum principle. However, a general maximum principle has
not yet been found for the differential operator −divσ(·). Special configurations may
expose a maximum principle, e.g. by exploiting symmetry. There are counter-examples for a
maximum principle in terms of the principal stresses, for an overview see Wheeler [47]. A
scaled version based on the modulus of displacements was given by Agmon [1] and Fichera
[14], stating

sup
Ω

|u| ≤ H sup
∂Ω

|u| ;

but in our case, a maximum principle would be needed that depends on the displacement in
normal direction, u · n.

51

4. A primal-dual active set method

The general strategy of our solution method is to decompose the contact problem
with adhesion (2.17) in three subproblems:
First, we cut off a layer of thickness h from the contact boundary ΓC. In the remaining
domain Ω1, we simply have to solve a linear-elastic problem with mixed boundary
conditions.
Second, we decompose the solution in the h-layer into a part (u1,u2, 0) and a part
(0, 0,u3). For the (u1,u2, 0)-part, we again have to solve a linear-elastic problem.
Finally, the u3-part can be reformulated into a membrane problem, which can be
solved with the primal-dual active set method.
Coupling all three subproblems results in an iterative method to solve the full
problem.

Γ

Ω2

Ω
1

h
Γ=ω

Figure 4.1.: Decomposition into two subdomains: Ω1 and bottom layer Ω2

Remark 4.2: In our strategy, we need to decompose the problem in the bottom layer Ω2 into
two subproblems. It is also possible to reduce the deformed bottom layer to the plate equation
∆2u = f . The problems (u1,u2, 0) and (0, 0,u3) then completely decouple, see Ciarlet [10,
Section 1.4]. The use of conforming Finite Elements would then lead to quadratic test
functions, and the theory in [19] would need to be adapted.

The assumptions we impose are as follows:

• The contact surface ΓC has no curvature. Here, we choose a configuration such
that ΓC is inside the x3 = 0 plane.

• The x3 derivative of u3 can be neglected close to the contact surface.
In the same region, the derivatives u1,13 and u2,23 are continuous.

• Close to the contact surface, the third components of the given boundary
tractions t3 and the volume force f3 are smooth.

52

4.1. Domain decomposition

• Saint-Venant’s principle allows us to replace surface normal tractions by a
volume force close to the contact surface. (See e.g. [42] for an overview of this
principle.)

4.1. Domain decomposition

Our strategy is to split the original problem into three subproblems. We resort
again to the classical formulation, as we need to perform some further processing
in the second domain Ω2. The original equation (2.17) is split into one part for each
domain.
Additionally, we need transmission conditions on the interface Γ↑ between Ω1 and
Ω2. Let u(1) be the solution in Ω1 and u(2) the solution in Ω2. The first condition
demands continuity of the displacement field:

lim
Ω13x→x∗

u(1)(x) !
= lim

Ω23x→x∗
u(2)(x) , x∗ ∈ Γ↑ (4.1)

This condition is immediately clear: If it is violated, the body exposes a crack along
the interface.

The second condition demands continuity of the stress vector along Γ↑:

lim
Ω13x→x∗

σ(u(1))(x) · n1 !
= lim

Ω23x→x∗
σ(u(2))(x) · n2 , x∗ ∈ Γ↑ (4.2)

Descriptively, this condition enforces a balance of forces on Γ↑. If it is violated, the
body can not be in mechanical equilibrium. The mathematical justification of this
is given when deriving the variational formulation in both subdomains: If a test
function v is v(1) in Ω1 and v(2) in Ω2, we get an additional integral∫

Γ↑

(
σ(u(1)) · n1 + σ(u(2)) · n2

)
· v dsx ,

which only vanishes if the transmission condition is fulfilled. (Note that n1 = −n2.)

If no nonlinear contribution is present, the domain decomposition method iterates
the following steps, starting with some displacement function λk on Γ↑:

• Solve a problem with inhomogeneous Dirichlet boundary conditions in Ω1:

−divσ(u(1);k) = f in Ω1

u(1);k = 0 on ∂Ω1
∩ ΓD

σ(u(1);k) · n = t on ∂Ω1
∩ ΓN

u(1);k = λk on Γ↑ .

• Retrieve the stress vector field σ(u(1);k) · n on Γ↑.

53

4. A primal-dual active set method

• Solve a problem in Ω2:

−divσ(u(2);k) = f in Ω2

u(2);k = 0 on ∂Ω2
∩ ΓD

σ(u(2);k) · n = t on ∂Ω2
∩ ΓN

σ(u(2);k) · n2 = σ(u(1);k) · n1 on Γ↑ .

• Update λ:
λk+1 := ϑ u(2);k

∣∣∣
Γ↑

+ (1 − ϑ)λk

If we choose the damping parameter ϑ ∈ (0, ϑmax) small enough, this Richardson
iteration converges to a solution, see e.g. Quarteroni and Valli [36, Theorem 4.2.2,
p.118ff] for a general proof. The specialization to elastic problems can be found in
the same book in Section 5.2.

The problem in Ω1 now contains the most degrees of freedom. But these unknowns
now only appear in a linear-elastic problem with mixed boundary conditions. The
transmission of the interface data is not difficult, as we have matching meshes for
λk and u(1);k on Γ↑.

Denote by an index 1 the restriction of a, V and L to Ω1. Extending λk into Ω1

by a function Eλk
∈ V1, we get a linear variational equation with a homogeneous

Dirichlet boundary condition on Γ↑:
Find u(1)

∗ ∈ V1
(0) such that

a1(u(1)
∗ , v) = L(v) − a1(Eλk,v) ∀v ∈ V1

(0) .

The solution is then u(1);k = u(1)
∗ + Eλk.

The same can be applied to the finite-dimensional approximation. With piecewise
linear functions for u and λ, a valid extension is simply done by matching pointwise
displacements on Γ↑ and setting all other coefficients in Ω1 to zero.

4.2. Active set method for the membrane

We will split the subproblem in Ω2 even further into two problems in Section 4.3.
The nonlinear behavior is then reduced to a membrane problem with contact and
adhesion.

In this section, we consider a domain Ω ⊂ R2.

The primal-dual active set method that we use was proposed by Hintermüller,
Kovtunenko and Kunisch [20]. The problem under consideration is there:

54

4.2. Active set method for the membrane

Given Ω ⊂ R2 and a material parameter D, find a scalar function u : Ω → R such
that

−D∆u = f + ξ in Ω

u = 0 on ∂Ω

u ≥ ψ in Ω

(4.3)

with ξ(x) = 0 if u(x) > ψ(x) + δ ,

ξ(x) = −cJ if u(x) ∈
(
ψ(x), ψ(x) + δ

]
,

ξ(x) ≥ −cJ if u(x) = ψ(x) .

Here, a reaction force of size cJ will occur if the gap size falls below δ.

This problem is then transferred into a hemivariational inequality. Selecting a convex
cone

K :=
{
u ∈ H1

0(Ω) : u(x) ≥ ψ(x)∀x ∈ Ω
}
,

the problem now states:
Find u ∈ K such that

D
∫

Ω

∇u · ∇(v − u) dx + cJ

∫
Ω

Θ
(
δ − (ψ − u)

)
dx ≥

∫
Ω

f (v − u) dx ∀v ∈ K . (4.4)

Hintermüller et al. then introduce a first Lagrange multiplier λ ∈ M+ for the non-
penetration condition, where

M+ :=
{
λ ∈ L2(Ω) : λ ≥ 0 a.e. in Ω

}
.

This leads to the (nonlinear) variational equation

D
∫

Ω

∇u · ∇v dx + cJ

∫
Ω

Θ
(
δ − (ψ − u)

)
v dx −

∫
Ω

λv dx =

∫
Ω

f v dx . (4.5)

A second Lagrange multiplier p is introduced to model the reaction force from the
adhesion term, leading to the following result:

Lemma 4.3:
There exists a pair (u, λ) ∈

(
K ∩ H2(Ω)

)
× M+ such that equation (4.5) and the

complementarity system

λ ≥ 0 , u ≥ ψ ,
∫

Ω

λ(u − ψ) dx = 0

are satisfied. u satisfies the hemivariational inequality (4.4). Define the multiplier p
by

p := cJΘ(δ − (ψ − u)) ∈ M+ ,

and let ξ := λ − p, then (u, ξ) solves the original problem (4.3).

55

4. A primal-dual active set method

Proof. see [20]. p q
x y

Next, we introduce the active sets for the continuous problem. For this, we first
choose an arbitrary, but fixed constant c > 0. The active and inactive set for the
contact condition are then

Ac :=
{
x ∈ Ω : λ(x) − c

(
u(x) − ψ(x)

)
> 0

}
, (4.6)

Ic :=
{
x ∈ Ω : λ(x) − c

(
u(x) − ψ(x)

)
≤ 0

}
. (4.7)

The active and inactive set for the adhesion force are

Ap :=
{
x ∈ Ω : u(x) ≤ ψ(x) + δ

}
, (4.8)

Ip :=
{
x ∈ Ω : u(x) > ψ(x) + δ

}
. (4.9)

With these sets defined, we can now state the problem we will actually use in Section
4.2.1. If Algorithm 4.4 in Section 4.2.1 converges, the solution of this problem is a
stationary solution of that algorithm. Lemma 5 and Theorem 1 in [20] confirm that
this solution is a solution of the original hemivariational inequality.

The reformulated problem is now:
Find v ∈ H1

0(Ω) such that

D
∫

Ω

∇u · ∇v dx +

∫
Ω

pv dx −
∫

Ω

λv dx =

∫
Ω

f v dx ∀v ∈ H1
0(Ω)

u = ψ onAc λ = 0 on Ic

p = cJ onAp p = 0 on Ip

(4.10)

4.2.1. Active set algorithm for the continuous problem

We first state the algorithm for the continuous problem. While there still exists no
proof that this algorithm will converge to a solution of (4.4), its discrete version (4.8)
will stop after a finite number of steps.

Algorithm 4.4:
InitializeA(0)

p := Ω andA(0)
c arbitrarily. Then iterate the following steps:

1. Solve the linear subproblem

D
∫

Ω

∇u(n)
· ∇v dx −

∫
Ω

λ(n)v dx =

∫
Ω

f v dx −
∫

Ω

p(n)v dx ∀v ∈ H1
0(Ω)

with the equality conditions

u(n) = ψ onA(n−1)
c and λ(n) = 0 on I(n−1)

c = Ω \ A(n−1)
c

56

4.2. Active set method for the membrane

and the reaction force p(n) defined as

p(n)(x) :=

cJ , x ∈ A(n−1)
p

0 , x < A(n−1)
p

.

2. Update the active sets:

A
(n)
c :=

{
x ∈ Ω : λ(n)(x) − c

(
u(n)(x) − ψ(x)

)
> 0

}
,

I
(n)
c := Ω \ A(n)

c ,

A
(n)
p :=

{
x ∈ Ω : u(n)(x) ≤ ψ(x) + δ

}
,

I
(n)
p := Ω \ A(n)

p .

3. Check if the active sets were changed, i.e. A(n)
c $ A(n−1)

c or A(n)
p $ A(n−1)

p .
Otherwise, stop.

�

The iteration elements A(n)
c , A(n)

p , u(n) and p(n) are subject to an invariant of the
algorithm, as stated in the following lemma. Note that this lemma does not imply
convergence to a solution.

Lemma 4.5:
If the boundary of I(n)

c is C2-regular for all n, we have the following monotonicity
relations:

ψ ≤ u(2)
≤ · · · ≤ u(n)

≤ u(n+1)
≤ · · · (4.11)

Ω ⊇ A
(1)
c ⊇ · · · ⊇ A

(n)
c ⊇ A

(n+1)
c ⊇ · · · (4.12)

cJ = p(1)
≥ p(2)

≥ · · · ≥ p(n)
≥ p(n+1)

≥ · · · (4.13)

Ω = A(0)
p ⊇ A

(1)
p ⊇ · · · ⊇ A

(n)
p ⊇ A

(n+1)
p ⊇ · · · (4.14)

Proof. see [20].
The proof is analogous to the proof of Lemma 4.9 for the discrete version. It relies on
the maximum principle for the Laplacian, which is replaced in the discrete version
by the M-matrix property given in Section 4.2.2 for the stiffness matrix. p q

x y

4.2.2. M-matrices

An M-matrix A ∈ Rn×n is a matrix of the type

A = sI − B , s ≥ ρ(B) , B ≥ 0 ,

57

4. A primal-dual active set method

where I is the n × n identity matrix, and Rn×n
3 B ≥ 0 means that B has only

positive elements. One can immediately see here that all off-diagonal entries of A
are negative, raising need to define the set of Z-matrices by

Zn×n :=
{
A = (ai j) ∈ Rn×n : ai j ≤ 0, i , j

}
,

which is then a superset of M-matrices.

Let a decomposition Th of Ω into triangles be given. Then the following lemma
holds:

Lemma 4.6:
Let the interior angles of T be acute for all T ∈ Th. Let A be the stiffness matrix
resulting from the Laplace operator, using the standard piecewise linear, conforming
FE basis over Th.
Then A is an M-matrix. Moreover, if we have a homogeneous Dirichlet boundary
part, A is a nonsingular M-matrix.

Proof. Assembling the global stiffness matrix A, we compute a local stiffness matrix
AT on each element. This is then added to the global matrix in the according
coordinates. Note that diagonal entries of AT will be added only to diagonal entries
of A, and off-diagonal entries of AT will be added only to off-diagonal entries of A.

Recall the definition (A.3) of local basis functions and their gradients (in local coor-
dinates) on the reference element:

ϕ̄1(ξ, η) = 1 − ξ − η , ∇ξϕ̄1 =

(
−1
−1

)
;

ϕ̄2(ξ, η) = ξ ; ∇ξϕ̄2 =

(
1
0

)
;

ϕ̄3(ξ, η) = η ; ∇ξϕ̄3 =

(
0
1

)
.

From (A.2), we know that ∇x = H−>∇ξ. The local stiffness matrix entries are then(
AT

)
i j

=

∫
T
∇xϕi · ∇xϕ j dx = ∇ξϕ̄iH−1H−>∇ξϕ̄ j |T| .

First, we show that the diagonal entries of AT are positive. Taking i = j, the gradient
term reduces to

∇ξϕ̄iH−1H−>∇ξϕ̄i = ‖H−>∇ξϕ̄i‖
2 ,

and as H−> is invertible, this expression is positive. Further, |T| is positive, so
(AT)ii > 0 (no summation over i).

Second, we show that the off-diagonal entries of AT are negative. AT is symmetric,
so we only need to check three cases. Before that, we transfer the condition on the
angles to a more convenient form.

58

4.2. Active set method for the membrane

Let](P0P1,P0P2) ∈ (− π2 ,
π
2). This results in

(0, 1] 3 cos](P0P1,P0P2) =
(P1 − P0) · (P2 − P0)
‖P1 − P0‖ ‖P2 − P0‖

⇒ (P1 − P0) · (P2 − P0) =

(
h11

h21

)
·

(
h12

h22

)
= h11h12 + h21h22 > 0 .

Similarly, let](P1P2,P1P0) ∈ (− π2 ,
π
2). Then

(0, 1] 3 cos](P1P2,P1P0) =
(P2 − P0 + P0 − P1) · (P0 − P1)

‖P2 − P1‖ ‖P0 − P1‖

⇒ (P2 − P0) · (P0 − P1) + (P0 − P1) · (P0 − P1)

=

(
h12

h22

)
·

(
−h11

−h21

)
+ ‖P1 − P0‖

2 = −h11h12 − h21h22 + h2
11 + h2

21 > 0 .

Finally, let](P2P0,P2P1) ∈ (− π2 ,
π
2). Then

(0, 1] 3 cos](P2P0,P2P1) =
(P0 − P2) · (P1 − P0 + P0 − P2)

‖P0 − P2‖ ‖P1 − P2‖

⇒ (P0 − P2) · (P1 − P0) + (P0 − P2) · (P0 − P2)

=

(
−h12

−h22

)
·

(
h11

h21

)
+ ‖P2 − P0‖

2 = −h11h12 − h21h22 + h2
12 + h2

22 > 0 .

Further, recall from (A.4) that

H−> =
1

det H

(
h22 −h21

−h12 h11

)
.

We can now check the three combinations of gradients: All we need to show now is
that ∇ξφiH−1H−>∇ξφ j < 0 for i , j.(

1
0

)
H−1H−>

(
0
1

)
=

(1
det H

)2

︸ ︷︷ ︸
>0

(
h22

−h12

)
·

(
−h21

h11

)

= (det H)−2
(
−h11h12 − h21h22

)
< 0 ;(

−1
−1

)
H−1H−>

(
0
1

)
= (det H)−2

(
−h22 + h21

h12 − h11

)
·

(
−h21

h11

)
= (det H)−2

(
−h2

11 − h2
21 + h11h12 + h21h22

)
< 0 ;(

−1
−1

)
H−1H−>

(
1
0

)
= (det H)−2

(
−h22 + h21

h12 − h11

)
·

(
h22

−h12

)
= (det H)−2

(
−h2

12 − h2
22 + h11h12 + h21h22

)
< 0 .

Thus the off-diagonal entries of AT are negative.

59

4. A primal-dual active set method

If we assemble the global matrix A, there will only be positive contributions to the
diagonal entries, and only negative contributions to the off-diagonal entries. Thus
A is a Z-matrix. Theorem 6.4.6 from [5, p.149], statement (C8), claims that A is an
M-matrix if every real eigenvalue of A is nonnegative.
By construction, A is symmetric, and all eigenvalues are real. Moreover, as a(., .) is
positive semi-definite on the FE subspace over Th, all eigenvalues of A are nonneg-
ative.

Let further a Dirichlet boundary part be given. Then the bilinear form a(., .) is even
elliptic on the FE subspace over Th due to Poincaré’s inequality, so the eigenvalues
of A are real and positive. �

A further result will be needed later:

Lemma 4.7:
Let A be given as in Lemma 4.6.
Then every reordering PAP> with a permutation matrix P is again an M-matrix.
Further, every block-diagonal submatrix Abl of PAP> is an M-matrix. If it is invertible,
there holds (

Abl

)−1

i j
≥ 0 ∀i, j .

Proof. For the first proposition, note that P and P> will swap the same rows and
columns. Then the diagonal entries of A are mapped to the diagonal of PAP>;
off-diagonal entries will be mapped to off-diagonal entries again.

For the second proposition, note that a block-diagonal submatrix of PAP> is a re-
ordering of A with some rows and columns removed. Removing row and column
i from the stiffness matrix is equivalent to taking φi out of the basis of the FE space
Vh. Lemma 4.6 can be applied again with a smaller FE space.
From [5, p.134], condition (N38) in Theorem 6.2.3, we know that Abl is inverse-
positive, i.e. its inverse has only nonnegative entries. �

4.2.3. Active set algorithm for the discrete problem

We can now state a discretized problem. For our purposes, we need to substitute the
Dirichlet boundary condition by a Neumann boundary condition on a part of ∂Ω.
Decompose ∂Ω in two disjoint parts, ∂Ω = ΓD ∪ ΓN, where vol ΓD > 0. (It is cleared
in Remark 4.11 why we need a Dirichlet boundary.) The problem is then:

60

4.2. Active set method for the membrane

Given Ω ⊂ R2 and g ∈ L2(ΓN), find a scalar function u : Ω→ R such that

−D∆u = f + ξ in Ω

u = 0 on ΓD

∂u
∂n

= g on ΓN

u ≥ ψ in Ω

(4.15)

with ξ(x) = 0 , u(x) > ψ(x) + δ

ξ(x) = −cJ , u(x) ∈
(
ψ(x), ψ(x) + δ

]
ξ(x) ≥ −cJ , u(x) = ψ(x) .

Selecting a finite-dimensional subspace Vh ⊂ H1
D(Ω) is straightforward. We intro-

duce a partition Th of Ω into acute triangles and define Vh by piecewise linear
functions on Th. We can create a basis φi of Vh associated with the inner nodes of
Th:

Vh :=
{
v ∈ C0(Ω) : v|T ∈ P1(T) ∀T ∈ Th , v|∂Ω = 0

}
Vh = span

(
φ1(x), . . . , φn(x)

)
with φi(P j

inner) = δi j

We also need a subset M+
h ⊂ M+ for the Lagrange multiplier p; this can be done by

setting up a finite-dimensional subspace Mh ⊂ L2(Ω). Mh is piecewise constant on
Th, and a basis ψi of Mh can be associated with the elements of Th:

Mh :=
{
m ∈ L2(Ω) : m|T ∈ P0(T) ∀T ∈ Th

}
Mh = span

(
ψ1(x), . . . , ψk(x)

)
with ψi

∣∣∣
T j

= δi j

According to [20], we need to define a discretized active set Ap for the adhesion,
first by an approximationAp,h as union of elements, later by a discretization through
nodal points.

We use a slight digression here. The proof of convergence for the active-set algorithm
4.9 remains true if, for our discretization, condition (44) in [20] holds. That is,

~p(A) ≥ ~p(B) if and only ifA ⊃ B (4.16)

holds componentwise, where the “load vector” from adhesion is(
~p(A)

)
i

= cJ

∫
Ω

φi(x) χA(x) dx .

For this, the active setAp is approximated by a union of elementsAp,h ⊂ Ap: As we
have only piecewise linear functions in Vh, we may create an indicator vector ~cp (of
the same dimension as Mh) as follows,

61

4. A primal-dual active set method

• compute the values of uh in all three corners of T j

• if the adhesion condition is active in all points, set
(
~cp

)
j
to 1

• otherwise, set
(
~cp

)
j
to 0.

This fulfills the condition
T j ⊂ Ap,h ⇔ T j ⊂ Ap .

By refining the mesh, we have

Ap,h
h→0
→ Ap .

If we now compute a rectangular Galerkin matrix by testing piecewise constant
functions ψ against piecewise linear functions φ,(

Mmix

)
i j

=

∫
Ω

φi(x) ψ j(x) dx ,

we can express ~p(Ap) by
~p = cJ Mmix~cp .

The non-penetration condition u ≥ ψ in (4.3) is imposed in the mesh points only.
If we assume ψ to be constant (i.e. the contact surface is flat), this is equivalent to
the non-penetration condition uh(x) ≥ ψ, uh ∈ Vh, as we only use piecewise linear
functions. Create an “obstacle vector” from the values of ψ in the inner points of
Th,

(~ψ)i = ψ(Pi
inner) .

Let the coefficient vector of uh be ~uh, i.e.

uh(x) =
∑

i

(~uh)iφ
i(x) ,

then the discrete non-penetration condition states

~uh ≥ ~ψ

in each component.

The stiffness matrix A is defined by

Ai j := D
∫

Ω

∇φi
· ∇φ j dx ,

and the load vector f is

fi :=
∫

Ω

fφi dx +

∫
ΓN

gφi dsx .

62

4.2. Active set method for the membrane

Now we introduce a discrete Lagrange multiplier~λ for the pointwise non-penetration
condition. Then the discretization of (4.10) reads

A~uh −
~λ = ~f − ~p(Ap)

(~uh)i = (~ψ)i for Pi
inner ∈ Ac

(~λ)i = 0 for Pi
inner < Ac ,

(4.17)

or, rewritten as a linear subproblem with transient active setsA(n)
c andA(n)

p ,

A~u(n)
h − ~λ(n) = ~f − ~p(A(n−1)

p)(
~u(n)

h

)
i

= (~ψ)i for Pi
inner ∈ A

(n−1)
c(

~λ(n)
)

i
= 0 for Pi

inner < A
(n−1)
c .

(4.18)

The active set algorithm for the discrete problem is then:

Algorithm 4.8:
Initialize the setA(0)

p,h := Th andA(0)
c,h arbitrarily. Then iterate the following steps:

1. Solve the linear subproblem (4.18) withA(n−1)
p,h andA(n−1)

c,h .

2. UpdateA(n)
p,h andA(n)

c,h using the solution vectors ~λ(n) and ~u(n)
h .

3. If one of the active sets changed in this step, continue;
otherwise, stop.

�

Lemma 4.9:
Let the stiffness matrix A be an M-matrix.
Then the preceding algorithm converges to a solution (~u∗h,

~λ∗, ~p∗) of (4.17) in a finite
number of steps. Moreover, the algorithm has the following monotonicity invariants:

~ψ ≤ ~u(2)
h ≤ · · · ≤ ~u(n)

h ≤ · · · ≤ ~u∗h (4.19)

Th ⊇ A
(1)
c,h ⊇ · · · ⊇ A

(n)
c,h ⊇ · · · ⊇ A

∗

c,h (4.20)

cJ = ~p(1)
≥ ~p(2)

≥ · · · ≥ ~p(n)
≥ · · · ≥ ~p∗ (4.21)

Ω = A(0)
p,h ⊇ A

(1)
p,h ⊇ · · · ⊇ A

(n)
p,h ⊇ · · · ⊇ A

∗

p,h (4.22)

Proof. This proof follows the proof of Theorem 2 in [20]. For readability, we drop
the index h here.
Define the three vectors

~δ(n−1)
u := ~u(n)

− ~u(n−1) , ~δ(n−1)
λ := ~λ(n)

− ~λ(n−1) , ~δ(n−1)
p := Mmix(~c(n)

p − ~c
(n−1)
p)

63

4. A primal-dual active set method

For a fixed n, we can deduce the following:
IfA(n)

p ⊆ A
(n−1)
p , we know that ~δ(n)

p ≤ 0 due to (4.16).

As ~f stays constant during the iteration, we get from (4.18) that

Aδ(n)
u = δ(n)

λ − δ
(n)
p . (4.23)

Now let two selection matrices for the active contact setA(n)
c be given, P(n)

+ and P(n)
−

.
These are defined as follows:
The matrix P(n)

+ : Rn
→ RnA (where nA is the number of active nodes in contact)

selects only degrees of freedom where the constraint from Ac is active. Its entries are
only 0 or 1, each line contains exactly one 1, thus the selection matrix is surjective.
The matrix P(n)

−
: Rn

→ Rn−nA selects all degrees of freedom where the constraint is
inactive. This matrix also contains exactly one 1 per line, has otherwise 0 as entry,
and is surjective.
Attaching both matrices together results in a permutation matrix P(n) : Rn

→ Rn:(
P(n)

+

P(n)
−

)
= P(n) = (P>(n))

−1

P(n) can now sort rows and columns in A:

P(n)AP>(n) =

(
A++ A+−

A−+ A−−

)
As the variables are reordered, we now have decompositions of ~δ(n)

u , ~δ(n)
λ and ~δ(n)

p into
two subvectors each:

P(n)
~δ(n)

u =

(
δu

+

δu
−

)
P(n)

~δ(n)
λ =

(
δλ+
δλ
−

)
P(n)

~δ(n)
p =

(
δp

+

δp
−

)
,

omitting the vector arrow and the index ·(n) for readability.

As P is invertible, we can multiply the linear system (4.23) by P from the left to get

PAP>Pδ(n)
u = Pδ(n)

λ − Pδ(n)
p ,

or in expansion (
A++ A+−

A−+ A−−

) (
δu

+

δu
−

)
=

(
δλ+
δλ
−

)
−

(
δp

+

δp
−

)
. (4.24)

The second line can be re-ordered to state

A++δ
u
−

= − A−+δ
u
+ + δλ+ − δp

−

⇔ δu
−

= − A−1
++A−+δ

u
+ + A−1

++

(
δλ+ − δp

−

) (4.25)

64

4.2. Active set method for the membrane

We already know that δu
+ ≥ 0, because ~u(n) equals ~ψ where the contact is active.

Similarly, δλ
−
≥ 0 because ~λ(n) equals zero where the contact is inactive.

The matrix A−+ is an off-diagonal block submatrix of A, which is an M-matrix. This
means that all entries of A−+ are nonpositive. Using Lemma 4.7, we further notice
that A−1

++ has only nonnegative entries. We get

δ(n)
p ≤ 0

⇒ δu
−

= − A−1
++︸︷︷︸
≥0

A−+︸︷︷︸
≤0

δu
+︸︷︷︸
≥0

+ A−1
++︸︷︷︸
≥0

(
δλ+︸︷︷︸
≥0

− δp
−︸︷︷︸
≥0

)
≥ 0 . (4.26)

It remains to show that δ(n)
p ≤ 0.

We can start an induction at n = 1: We know thatA(0)
p = Th, soA(1)

p can not be larger.
But then (4.16) again gives ~p(1)

≥ ~p(2).
Assume that in induction step n, there holds A(n)

p ⊆ A
(n−1)
p . This results in ~δ(n)

p ≤ 0.

From (4.26) follows that ~δ(n)
u ≥ 0, which immediately implies A(n+1)

p ⊆ A
(n)
p , or

~δ(n+1)
p ≤ 0.

Finally, the algorithm converges in a finite number of steps: Both active setsAc and
Ap can only grow smaller in each step. As soon as both sets were not changed, the
algorithm is converged. As we can only remove #Th elements from Ap and #{Pfree}

nodes fromAc before both sets are empty, the algorithm will terminate after at most
#Th + #{Pfree} + 1 steps. �

Remark 4.10: Because the M-matrix property still holds if a Neumann boundary is present,
the proof of Lemma 4.9 does not need to be modified. This is different in Lemma 4.5, where
the maximum principle for δu

−
is applied in the original proof with δu

−
= 0 on ∂Ω ∩ ∂I(n−1)

c .
It would remain to be proven that δu

−
≥ 0 on ΓN ∩ ∂I

(n−1)
c .

The linear subproblem (4.18) in Algorithm 4.8 can be solved as follows:
Using the matrix decomposition of A with P+ and P− from the proof of Lemma 4.9,
we can multiply the linear equation system

A~uh −
~λ = ~f − ~p

with P from the left to get the equivalent system

⇔ PAP>P~uh − P~λ = P ~f − P~p .

Problem (4.18) fixes some coefficients of ~uh and ~λ. This can be expressed by intro-
ducing the following decompositions:

P~uh =

(
P+

P−

)
~uh =

(
P+
~ψ

~u−

)
; P~λ =

(
P+

P−

)
~λ =

(
~λ+

0

)
.

65

4. A primal-dual active set method

Using the representation of PAP> in the proof of Lemma 4.9, we get the equivalent
system

⇔

(
A++ A+−

A−+ A−−

) (
P+
~ψ

~u−

)
−

(
~λ+

0

)
=

(
P+

P−

)
~f −

(
P+

P−

)
~p , (4.27)

which can now be decomposed into

A−−~u− = P− ~f − P−~p − A−+P+
~ψ (4.28)

~λ+ = A+−~u− − P+
~f + P+~p + A++P+

~ψ . (4.29)

We can now solve first for ~u− and insert this solution into the second equation.
Finally, the solution vectors ~uh and ~λ can be restored by

~uh = P>
(
P+
~ψ

~u−

)
= P>+P+

~ψ + P>
−
~u− ; ~λh = P>

(
~λ+

0

)
= P>+~λ+ .

Remark 4.11: The linear subproblem has a unique solution: The matrix A−− is a diagonal
sub-block of PAP>, i.e. it is the Galerkin matrix on a subspace Ṽh ⊂ Vh with the basis
{φ(1), . . . , φ(n)

} ⊂ {φ1, . . . , φn
}. As a(., .) is positive definite on Vh, it is also positive definite

on Ṽh.

We may even relax the condition vol ΓD > 0. If we assume that A−− is a strict sub-block of
PAP>, it is positive definite:
The classical formulation for the pure Neumann problem reads

−∆u = f in Ω

∂u
∂n

= g on ∂Ω .

The bilinear form a(., .) is elliptic on H1(Ω)/R. But then, it is also elliptic on a finite-
dimensional subspace Vh/R ⊂ H1(Ω)/R, and we get the unique solution u∗ ∈ Vh/R,
respectively the affine solution set {u∗ + c, c ∈ R}.
The FE solution states that uh(Pi) = (~uh)i for all mesh points Pi and the solution vector ~uh

from the linear equation system. If we fix one degree of freedom, this means we remove one
function φk from the basis of Vh. We get

Vh = Ṽh ⊕ span {φk
} = Ṽh ⊕ R .

Then a(., .) is elliptic on Ṽh. Removing more degrees of freedom corresponds to taking
subspaces ⊂ Ṽh, where a(., .) remains elliptic.

The condition vol ΓD > 0 can then be relaxed to the condition

A
(n)
c , ∅ ∀n ,

the membrane must be in contact in at least one point in every iteration step n.

66

4.3. Subproblems in Ω2

4.3. Subproblems in Ω2

First, change some of the notation to improve readability: Let ω be the (x1, x2) shape
of Ω2 such that

Ω2 = ω × [0, h] .

Further, write ΓD instead of ΓD∩∂Ω2 and ΓN instead of ΓN∩∂Ω2. The 2D equivalents
of these boundaries are then

γD : γD × [0, h] = ΓD ; γN : γN × [0, h] = ΓN .

Denote the upper boundary byω×{h} := Γ↑ and the lower boundary byω×{0} := Γ↓.
The prescribed traction from the problem in Ω1 on the transmission boundary Γ↑ is(
σ(u) · n

)1
.

Ω2

h
ΓD

Γ
N

Γ

Γ

Figure 4.2.: Domain Ω2 of the lower subproblems; new boundary markers

γ
D

γ
N

ω

Figure 4.3.: Membrane ω with boundary markers

The original subproblem on Ω2 can then be written in the following form:
Find u = (u1,u2,u3) such that

−divσ(u) = f in Ω2

u = 0 on ΓD

σ(u) · n = t on ΓN

σ(u) · n =
(
σ(u) · n

)1
on Γ↑

σN(u) = b(uN) ,

σt(u) = 0 on Γ↓

(4.30)

67

4. A primal-dual active set method

When Ω2 is thin (h is small), one can argue through the Saint-Venant principle that
the normal component of exterior tension on Γ↑ and Γ↓ may be approximated by a
volume force. This is done by moving boundary stresses on test volumes into the
interior of Ω2; taking h→ 0 will improve the quality of this approximation.
We then can set the exterior tensions on Γ↑ and Γ↓ to zero in the x3 component. Note
that replacing the tension term σN(u) = b(uN) by a volume force, we get σN(u) = 0
on Γ↓. Combined with σt(u) = 0, this gives σ · n = 0 on Γ↓.

Decompose the traction from Ω1 into two vectors:

(
σ(u) · n

)1
=

s1

s2

0

 +

0
0
s3

 = s12 + s3e3

The new problem now reads as follows:
Find u = (u1,u2,u3) such that

−divσ(u) =

 f1

f2

f3

 +
1
h


0
0

s↑3 − b(uN)

 in Ω2

σ(u) · n = t on ΓN

u = 0 on ΓD

σ(u) · n = s12 on Γ↑

σ(u) · n = 0 on Γ↓ .

(4.31)

Here, s↑3(x1, x2, x3) := s3(x1, x2, h) is the continuation from Γ↑ into Ω2. The normal
vector on Γ↑;↓ is ±e3, which changes the sign of b(uN) in the volume force term.

As u3,3 = 0 in Ω2, the stress tensor becomes

σ(u) =

(λ + 2µ)u1,1 + λu2,2 µ(u1,2 + u2,1) µ(u1,3 + u3,1)
µ(u1,2 + u2,1) (λ + 2µ)u2,2 + λu1,1 µ(u2,3 + u3,2)
µ(u1,3 + u3,1) µ(u2,3 + u3,2) λ(u1,1 + u2,2)

 , (4.32)

and we get the PDE system

−

(
(λ + µ)(u1,11 + u2,12) + µ∆u1

)
= f1 (4.33)

−

(
(λ + µ)(u1,12 + u2,22) + µ∆u2

)
= f2 (4.34)

−

(
(λ + µ)(u1,13 + u2,23) + µ∆u3

)
= f3 +

1
h

(s↑3 − b(uN)) (4.35)

for the volume term in (4.31). Note that the Laplacian in the third equation, ∆u3, is
actually only the 2D Laplacian, as u3,33 = 0.

This system is now decoupled into a first part with the governing equations (4.33)
and (4.34) and a second part under equation (4.35). Both problems will be used in a

68

4.3. Subproblems in Ω2

staggered iteration, assuming the other function to be given respectively. For this, it
is useful to write down partial strain and stress tensors:
For the (u1,u2, 0) function, we get

∇

u1

u2

0

 =

u1,1 u1,2 u1,3

u2,1 u2,2 u2,3

0 0 0

 ⇒ ε

u1

u2

0

 =

 u1,1
1
2 (u2,1 + u1,2) 1

2 u1,3
1
2 (u2,1 + u1,2) u2,2

1
2 u2,3

1
2 u1,3

1
2 u2,3 0


(4.36)

σ

u1

u2

0

 =

λ(u1,1 + u2,2) + 2µu1,1 µ(u2,1 + u1,2) µu1,3

µ(u2,1 + u1,2) λ(u1,1 + u2,2) + 2µu2,2 µu2,3

µu1,3 µu2,3 λ(u1,1 + u2,2)

 (4.37)

− divσ

u1

u2

0

 =

−(λ + µ)(u1,11 + u2,12) − µ∆u1

−(λ + µ)(u1,12 + u2,22) − µ∆u2

−(λ + µ)(u1,13 + u2,23)

 . (4.38)

For the (0, 0,u3) function, we get

∇

 0
0
u3

 =

 0 0 0
0 0 0

u3,1 u3,2 0

 ⇒ ε

 0
0
u3

 =

 0 0 1
2 u3,1

0 0 1
2 u3,2

1
2 u3,1

1
2 u3,2 0

 (4.39)

σ

 0
0
u3

 =

 0 0 µu3,1

0 0 µu3,2

µu3,1 µu3,2 0

 (4.40)

− divσ

 0
0
u3

 =

 0
0

−µ∆u3

 , (4.41)

where again ∆ reduces to the 2D Laplacian.

The first two governing equations, (4.33) and (4.34), then provide

−divσ

u1

u2

0

 =

 f1

f2

−(λ + µ)(u1,13 + u2,23)

 , (4.42)

where the third component is only repeated on the right side. Likewise, the third
governing equation (4.35) then provides

−divσ

 0
0
u3

 =

 0
0

−µ∆u3

 =


0
0

f3 + 1
h (s↑3 − b(uN)) + (λ + µ)(u1,13 + u2,23)

 , (4.43)

where the first two components simply state 0 = 0 here.

Moving known functions to the right side, we get the PDE for the first subproblem,

−divσ

u1

u2

0

 =


f1

f2

f3 + 1
h (s↑3 − b(uN))

 +

 0
0

µ∆u3

 (4.44)

69

4. A primal-dual active set method

and the PDE for the second subproblem,

−µ∆u3 = f3 +
1
h

(s↑3 − b(uN)) + (λ + µ)(u1,13 + u2,23) . (4.45)

If we otherwise add (4.42) and (4.43), we arrive again at (4.31).

4.3.1. First subproblem: (u1,u2, 0)

Let us first assume that u3 is given. As we are now looking for a solution (u1,u2, 0)

satisfying (4.44), the appropriate solution space is V :=
[
H1

D(Ω2)
]2
× {0}. We get the

variational formulation:
Find (u1,u2, 0) ∈ V such that∫

Ω2
σ

u1

u2

0

 : ε(v) dx =

∫
Ω2

f · v dx +
1
h

∫
Ω2


0
0

(s↑3 − b(uN))

 · v dx (4.46)

+ µ

∫
Ω2

 0
0

∆u3

 · v dx +

∫
∂Ω2
σ

u1

u2

0

 · v · n dsx ∀v ∈ V .

The second rhs integral is zero by construction of V, and the volume force term f3

will also be ignored in the first integral. These terms are taken care of in the second
subproblem.

The term ∆u3 is ill-defined if we only demand u3 ∈ H1
D(Ω2). It will nevertheless

vanish if we apply the divergence theorem: Use (4.39) to write 0
0

∆u3

 = div

 0 0 0
0 0 0

u3,1 u3,2 0

 = div∇

 0
0
u3

 .
The product rule of differentiation can be extended to products of tensors, see e.g.
[3]: If A is a tensor of order 2 and b is a tensor of order 1, we get

div(A>b) = b · div A + A : (∇b) .

Together with the divergence theorem, we get∫
Ω2

(
div∇

 0
0
u3


)
· v dx =

∫
Ω2

div


(
∇

 0
0
u3


)>
· v

 dx −
∫

Ω2

(
∇

 0
0
u3


)

: ∇v dsx

=

∫
∂Ω2

n ·

0 0 u3,1

0 0 u3,2

0 0 0

 ·
v1

v2

0

 dsx +

∫
Ω2

 0 0 0
0 0 0

u3,1 u3,2 0

 :

v1,1 v1,2 v1,3

v2,1 v2,2 v2,3

0 0 0

 dx

= 0 .

70

4.3. Subproblems in Ω2

The last integral in the variational formulation (4.46) still has a σ(u1,u2, 0) · n part,
but we want σ(u1,u2,u3) ·n, which equals s12 on Γ↑, t on ΓN and 0 on Γ↓. We add and
subtract a correction part σ(0, 0,u3) · n and note that

σ

 0
0
u3

 · v · n = n ·

 0 0 µu3,1

0 0 µu3,2

µu3,1 µu3,2 0

 · v = n ·

 0
0

µu3,1v1 + µu3,2v2

 .
This contribution is only nonzero on Γ↑∪Γ↓, where the normal vector n has a nozero
third component.

We get the final variational formulation:
Find (u1,u2, 0) ∈ V such that

∫
Ω2
σ

u1

u2

0

 : ε(v) dx =

∫
Ω2

f · v dx +

∫
ΓN

t · v dsx +

∫
Γ↑

s12 · v dsx (4.47)

− µ

∫
Γ↑

(
u3,1v1 + u3,2v2

)
dsx + µ

∫
Γ↓

(
u3,1v1 + u3,2v2

)
dsx ∀v ∈ V .

4.3.2. Second subproblem: (0, 0,u3)

Now assume that u1 and u2 are given.

In equation (4.45), u3 only depends on x1 and x2. This also holds for s↑3 and b(uN),
which are just extensions from the surfaces Γ↑ and Γ↓. As we assumed that f3, u1,13

and u2,23 are continuous in Ω2, they may be approximated up to order h by taking
f3(x1, x2, h) or f3(x1, x2, 0) (evaluating them on Γ↑ or Γ↓). But then, (4.45) is effectively
reduced to a 2D problem in ω.

As we are looking for a solution u3 ∈ H1
D(ω), we may multiply by a test function

v ∈ H1
D(ω) and integrate by parts to get

µ

∫
ω

∇u3 · ∇v dx =
1
h

∫
ω

s3v dx +

∫
ω

f3v dx −
1
h

∫
ω

b(uN)v dx + µ

∫
γN

∂u3

∂n
v dsx

+ (λ + µ)
∫
ω

(u1,13 + u2,23)v dx ∀v ∈ H1
D(ω) . (4.48)

Now

u1,13 + u2,23 = div
(
u1,3

u2,3

)
.

71

4. A primal-dual active set method

We can apply the divergence theorem on the last integral:∫
ω

div
(
u1,3

u2,3

)
v dx =

∫
ω

div
((u1,3

u2,3

)
v
)

dx −
∫
ω

(
u1,3

u2,3

)
· ∇v dx

=

∫
γN

(
u1,3

u2,3

)
· n v dsx −

∫
ω

(
u1,3

u2,3

)
· ∇v dx . (4.49)

We still need to adapt the Neumann condition, i.e. ∂u3
∂n . The normal vector n will be

in the x3 = 0 plane, so we need

σ · n = n1

(
σi1

)
i
+ n2

(
σi2

)
i

!
= t (no summation)

on ΓN in (4.31).
Derivatives of u3 appear only in the last row of the stress tensor (4.32). Comparing
the last component in terms of ui, we get

t3
!
= µ

(
n1(u1,3 + u3,1) + n2(u2,3 + u3,2)

)
or equivalently

∇u3 · n =
1
µ

t3 −

(
u1,3

u2,3

)
· n .

As we assumed that t3 is smooth on ΓN, we can follow that t3(x1, x2, x3) = t3(x1, x2, 0)+
O(x3). Substituting

t̃3(x1, x2) := t3(x1, x2, h) ,

the boundary condition on ΓN is independent of x3, so we can restrict it to γN.

The final variational formulation is then:
Find u3 ∈ H1

D(ω) such that

µ

∫
ω

∇u3 · ∇v dx =
1
h

∫
ω

s3v dx +

∫
ω

f3v dx −
1
h

∫
ω

b(uN)v dx

+

∫
γN

t̃3v dsx + λ

∫
γN

(
u1,3

u2,3

)
n v dsx (4.50)

− (λ + µ)
∫
ω

(
u1,3

u2,3

)
· ∇v dx ∀v ∈ H1

D(ω) .

(Note that the Neumann boundary condition cancelled out the µ part of the diver-
gence contribution in (4.49).)

Remark 4.12: Problem (4.47) depends on the derivatives of u3. Likewise, problem (4.50)
depends on derivatives of u1 and u2. We can take these values from an iterate solution in Ω1,
or from the respectively other problem in Ω2.

If we would make the further assumption

u1,3 = u2,3 = 0 in Ω2 ,

72

4.4. Solution algorithm

Figure 4.4.: Mindlin-Reissner hypothesis: Rotation of the normal vector for a bend-
ing plate

the last two integrals in (4.50) would be zero. We then could solve (4.50) first. The other
subproblem would reduce to a problem in ω as well, and the last integral would also vanish.
This assumption would, however, violate the Mindlin-Reissner hypothesis [6, VI.6], where
u1 and u2 explicitly depend on x3. Figure 4.4 demonstrates this: The thickness h of a plate
under load remains constant, but u1 and u2 may vary along the thickness. The domain ω
under deformation is represented by the dashed middle line. The left cut exposes that the
transversal displacements depend on x3 when extended along the middle surface’s normal.

4.4. Solution algorithm

Using the decomposition into three subproblems, the solution algorithm now is as
follows:

Algorithm 4.13:
Select the damping parameters ϑ0 for the problem in Ω1, ϑ1 for the membrane
subproblem, and ϑ2 for the (u1,u2, 0) subproblem in Ω2.
Denote the vectors of unknowns in Ω1 by ~x(n)

Ω
, the unknowns for the membrane

problem by ~x(n)
m , and the unknowns for the (u1,u2, 0) subproblem by ~x(n)

12 , where n is
the iteration index.

Select starting vectors ~x(0)
Ω

, ~x(0)
m and ~x(0)

12 . Then iterate the following steps until conver-
gence is achieved:

• Solve the linear elastic problem in Ω1 with inhomogeneous Dirichlet boundary
conditions: The displacements on Γ↑ are given by ~x(n)

m and ~x(n)
12 . Denote the

solution by x̃Ω.

• Compute the normal traction σ · n for the old vector ~x(n)
Ω

and decompose them
into s(n)

12 and s(n)
3 .

• Solve the membrane problem (4.50) with the load s(n)
3 , using the primal-dual

active set algorithm 4.8. Also solve the other problem in Ω2 with the load s(n)
12 ,

73

4. A primal-dual active set method

which is a linear elastic problem.
Denote the solutions by x̃m and x̃12.

• Update the vectors with damping parameters:

~x(n+1)
Ω

:= (1 − ϑ0)~x(n)
Ω

+ x̃Ω

~x(n+1)
m := (1 − ϑ1)~x(n)

m + x̃m

~x(n+1)
12 := (1 − ϑ2)~x(n)

12 + x̃12 .

�

4.5. Implementation issues

All functions are represented by linear combinations of basis functions in the discrete
version. In particular, all used FE spaces are:

• V1 is the space of continuous, piecewise linear functions Ω1
→ R3

• V2
12 is the space of continuous, piecewise linear functions Ω2

→ R3; in the
construction of this space, no degrees of freedom are created for the third
component.

• W2 is the space of possibly discontinuous, piecewise constant functions Ω2
→

R3.

• Vω is the space of continuous, piecewise linear functions ω→ R.

• Wω is the space of possibly discontinuous, piecewise constant functions ω →
R.

• Wω is the space of possibly discontinuous, piecewise constant functions ω →
R3.

These spaces may have some appropriate boundary conditions on ΓD or γD. Each
discrete space is spanned by a collection of basis functions with likewise notation,
e.g.

Vω = span
{
ϕωi

}
, i = 1, . . . ,N .

Here, functions ϕ are continuous functions (with space symbol V) and ψ are piece-
wise constant functions (with space symbol W). A boldface symbol V orϕ indicates
a mapping toR3.

In this section, we will only deal with functions in these spaces; only the given data f
and t are an exception here and need to be approximated. For the sake of readability,
the index h is omitted here.

74

4.5. Implementation issues

4.5.1. Left side bilinear forms

On the left side, we have the bilinear forms∫
Ω2
σ(

(
ϕ2

12

)
i
) : ε(

(
ϕ2

12

)
j
) dx (4.51)

and
∫
ω

∇ϕωi · ∇ϕ
ω
j dx (4.52)

for the equations (4.47) and (4.50). Applying these forms to V2
12 ×V2

12 and Vω
× Vω,

respectively, we will get the standard stiffness matrices AΩ2 and Aω.

4.5.2. Given forces f and tractions t

The volume force f ∈
[
H−1(Ω)

]3
can be interpolated by piecewise constant functions,

so we choose an approximation fh ∈W2.
The interpolation vector ~f of f is defined by the coefficients fi,

f(x) ≈ fh(x) =
∑

i

fiψ
2
i (x) .

We also interpolate the given boundary traction t ∈
[
H−1/2(ΓN)

]3
: For implementation

reasons, it is easier to express this interpolation in the full space W2. As the associated
bilinear form (4.54) will only act on the boundary ΓN, the exact nature of the extension
does not matter: We only need to take care that the interpolation is performed on
the boundary.
The interpolation vector ~t of t is defined by the coefficients ti,

t(x) ≈ th(x) =
∑

i

tiψ
2
i (x)

∣∣∣∣
ΓN
.

If we define the mass bilinear form

a2
mass :

[
L2(Ω2)

]3
×

[
L2(Ω2)

]3
→ R

(ψi,ψ j) 7→
∫

Ω2
ψi(x) ·ψ j(x) dx ,

(4.53)

we can compute the Galerkin matrix

MΩ := M(V2
12; W2) :=

(
a2

mass(
(
ϕ2

12

)
i
,ψ2

j)
)

i j
.

75

4. A primal-dual active set method

Likewise, we can define the mass boundary bilinear form

a2
mass;ΓN

:
[
L2(Ω2)

]3
×

[
L2(Ω2)

]3
→ R

(ψi,ψ j) 7→
∫

ΓN

ψi(x) ·ψ j(x) dsx

(4.54)

and the Galerkin matrix

MΓN := MΓN (V2
12; W2) :=

(
a2

mass;ΓN
(
(
ϕ2

12

)
i
,ψ2

j)
)

i j
.

Now we can compute the volume and boundary load vectors as matrix-vector
products: ∫

Ω2
fh(x) ·

(
ϕ2

12

)
j
(x) dx =

(
M(V2

12; W2) · ~f
)

j
,∫

ΓN

th(x) ·
(
ϕ2

12

)
j
(x) dsx =

(
MΓN (V2

12; W2) ·~t
)

j
.

Further, the boundary stress in the u3 equation (4.50), given as t̃3, can be interpolated
to a Wω function, represented by~t3. Then we use the mass boundary bilinear form

aωmass;γN
: L2(ω) × L2(ω) → R

(ψi, ψ j) 7→
∫
γN

ψi(x) · ψ j(x) dsx
(4.55)

and the Galerkin matrix

MγN := MγN (Vω; Wω) :=
(
aωmass;γN

(ϕωi , ψ
ω
j)
)

i j

to get the boundary load vector on ω:∫
γN

t̃3ϕ
ω
j dsx ≈

(
MγN (Vω; Wω) ·~t3

)
j
.

If we have an interpolation ~f3 of the volume force’s third component, f3, we can use
the mass bilinear form

aωmass : L2(ω) × L2(ω) → R

(ψi, ψ j) 7→
∫
ω

ψi(x)ψ j(x) dsx
(4.56)

and the resulting Galerkin matrix

Mω := Mω(Vω; Wω) :=
(
aωmass(φ

ω
i , ψ

ω
j)
)

i j

to get the vector representation∫
ω

f3φ j dx ≈
(
Mω(Vω; Wω) · ~f3

)
j
.

76

4.5. Implementation issues

4.5.3. Stress transmission from Ω1

The stress tensor of a function u1
∈ V1 in Ω1 can be computed by a postprocessing:

The functions in V1 are piecewise linear on the given triangulation, so their deriva-
tives are piecewise constant. Then the stress tensor is constant on each element in
Ω1. We may restrict this tensor to the transmission boundary Γ↑ and multiply by
the normal vector from Ω1, which is −e3. Effectively, if we evaluate the stress tensor
from u1 on each element adjacent to Γ↑ and take the negative of the third column, we
get a representation of σ(u1) · n which could immediately be expressed in the space
Wω, asω and Γ↑ describe the same domain. But in our specific implementation, func-
tions on volumes and functions on boundaries differ conceptually and are stored
in separate program parts. As a consequence, we set up another representation of
σ(u1) · n in the space W2 by some arbitrary extension.

The first two components of the stress vector σ(u1) · n are now represented by ~s12,
i.e. s12 ∈W2. This leads to a bilinear form

a2
mass;Γ↑

:
[
L2(Ω2)

]3
×

[
L2(Ω2)

]3
→ R

(ψi,ψ j) 7→
∫

Γ↑

ψi(x) ·ψ j(x) dsx ,
(4.57)

and the Galerkin matrix

MΓ↑ := MΓ↑ (V
2
12; W2) :=

(
a2

mass;Γ↑
(
(
ϕ2

12

)
i
,ψ2

j)
)

i j

gives us the vector representation∫
Γ↑

s12 ·
(
ϕ2

12

)
j
dsx =

(
MΓ↑ (V

2
12; W2) · ~s12

)
j

for the third integral on the right side of (4.47).

For equation (4.50), we use a representation of the third component (σ(u1) · n)3 =
−σN(u1) in Wω by the vector ~s3. This allows us to re-use the bilinear form (4.56) and
the matrix Mω: ∫

ω

s3φ j dx =
(
Mω(Vω; Wω) · ~s3

)
j
.

4.5.4. Transmission from u3 to (u1,u2, 0)

The first transmission contribution stems from the term∫
Γ↑

(
∇

 0
0
u3


)>
·ϕ2

j · n dsx =

∫
Γ↑

(
u3,1(ϕ2

j)1 + u3,2(ϕ2
j)2

)
n3 dsx .

77

4. A primal-dual active set method

The normal vector on Γ↑ is e3, so n3 = +1.
Here, we can use the bilinear form amass;Γ↑ from (4.57), and the Galerkin matrix MΓ↑ is
already known. Let the 2D gradient of u3 be given in Wω, i.e. as piecewise constant
3D vectors (setting the third component to zero), with the coefficient vector ~u3,∇:

∇u3(x1, x2) =:
∑

i

(
~u3,∇

)
i
ψi(x1, x2) .

If we use an arbitrary extension of ∇u3 into W2, e.g. by mapping the representation
~u3,∇ in Wω to ~u3,∇,Ω in W2, we can state∫

Γ↑

(
u3,1(ϕ2

j)1 + u3,2(ϕ2
j)2

)
n3 dsx =

(
MΓ↑ (V

2
12; W2) · ~u3,∇,Ω

)
j
.

Γ

Γ

ΓD

Figure 4.5.: Nonmatching surface meshes on Γ↑ and Γ↓

The other mixed contribution (on Γ↓) needs more attention. We may take the trace
of (u1,u2, 0) on the bottom, but u3 is not defined there. As we assumed that u3,3 = 0
in Ω2, we can extend

u3(x1, x2, 0) = u3(x1, x2, h) .

Here, a problem occurs when the problem is discretized. The surface mesh T↑ on Γ↑
will generally not match the surface mesh T↓ on Γ↓.
First, note that n3 = −1 on Γ↓ , so we get∫

Γ↓

(
∇

 0
0
u3


)>
·ϕ2

j · n dsx = −

∫
Γ↓

(
(ϕ2

j)1(x123) u3,1(x12) + (ϕ2
j)2(x123) u3,2(x12)

)
dsx .

The support of a function ϕ2
j ∈ V2

12, restricted to Γ↓, is a set of triangles T↓n ∈ T↓. The

support of a function ψωi ∈ Wω is a set of triangles T↑m ∈ T↑. (If we use piecewise
constant functions ψωi , the support is just one triangle.)

78

4.5. Implementation issues

mT

Tn

Figure 4.6.: Intersection of two triangles Tm and Tn with corner points;
generic decomposition into triangles Tα

The support of the integrand is then the intersection of triangles Tm and Tn in the
x3 = 0 plane. It can be subdivided into subtriangles Tα (see Section 4.5.7).

We can now write down the associated bilinear form and its implementation:

a2
Γ↓

:
[
H1(Ω2)

]3
×

[
L2(ω)

]3
→ R

(ϕi,ψ j) 7→ −

∫
Γ↓

(
(ϕ2

j)1 u3,1(x1, x2) + (ϕ2
j)2 u3,2(x1, x2)

)
dx

(4.58)

Let the support elements be given as

supp
(
ϕi

∣∣∣
Γ↓

)
=

⋃
m

Tm , suppψ j =
⋃

n

Tn .

Decomposing all intersections Tm ∩ Tn into triangles Tα, we get

a2
Γ↓

(ϕi,ψ j) = −
∑

m

∑
n

∑
α

∫
Tα

(
(ϕ2

j)1 u3,1(x1, x2) + (ϕ2
j)2 u3,2(x1, x2)

)
dx .

We need the Galerkin matrix

MΓ↓ := MΓ↓ (V
2
12; Wω) :=

(
a2

Γ↓
(
(
ϕ2

12

)
i
,ψωj)

)
i j

to compute the vector entries∫
Γ↓

(
∇

 0
0
u3


)>
·ϕ2

j · n dsx =
(
MΓ↓ (V

2
12; Wω) · ~u3,∇

)
j
.

4.5.5. Transmission from (u1,u2, 0) to u3

This transmission does not need extensions like the transmission from u3 to (u1,u2, 0),
so no polygonal intersections need to be made. Let some function (u1,u2, 0) be
given, either from the problem in Ω1 or from a solution of the first subproblem in

79

4. A primal-dual active set method

Ω2. Then we can compute the gradient of (u1,u2, 0), which is piecewise constant on
the elements of Ω1 (or Ω2). The vector (u1,3,u2,3, 0) can now be stored as the third
row of this gradient, restricted to Γ↑. The appropriate space for this is Wω, and the
coefficient vector is denoted by ~u∂,3.

We introduce the bilinear form

aωmix,γ : L2(ω) ×
[
L2(ω)

]3
→ R

(ψi,ψ j) 7→
∫
γN

ψi

(
ψ j

1
ψ j

2

)
· n dsx

(4.59)

and the Galerkin matrix

Mmix,γ := Mmix,γ(Vω; Wω) :=
(
aωmix,γ(ϕωi ,ψ

ω
j)
)

i j

to rewrite the γN integral in equation (4.50) as follows:∫
γN

(
u1,3

u2,3

)
· n v dsx =

(
Mmix,γ(Vω; Wω) · ~u∂,3

)
j
.

For the last integral, we use the bilinear form

aωmix : H1(ω) ×
[
L2(ω)

]3
→ R

(ϕi,ψ j) 7→
∫
ω

∇ϕi
·

(
ψ j

1
ψ j

2

)
dx

(4.60)

which induces the Galerkin matrix

Mmix,ω := Mmix,ω(Vω; Wω) :=
(
aωmix(ϕωi ,ψ

ω
j)
)

i j
.

The last integral then is∫
ω

(
u1,3

u2,3

)
· ∇v dx =

(
Mmix,ω(Vω; Wω) · ~u∂,3

)
j
.

4.5.6. Implementation blocks

With the Galerkin matrices defined as in the previous section, we can set up the
linear systems to solve the equations for (u1,u2, 0) and u3.
For the (u1,u2, 0) equation, the data is given as follows:

• The volume force f is given in W2 by the coefficient vector ~f .

• The traction t on ΓN is given in W2 by ~t.

• The stress vector in Ω1 is transferred to W2 with the vector ~s12.

80

4.5. Implementation issues

• The 3D gradient of a given u3 has the coefficient vector ~u3,∇ in Wω.

• The 3D gradient ~u3,∇ is extended into W2 by ~u3,∇,Ω.

All matrices and the vectors ~f and~t can be computed before any iteration. Only the
vectors ~s12, ~u3,∇ and ~u3,∇,Ω vary in the iteration.

The first problem (4.47) is then, in matrix form,

AΩ2 ~x = MΩ
~f + MΓN

~t + MΓ↑
~s12 − µMΓ↑

~u3,∇,Ω − µMΓ↓
~u3,∇ . (4.61)

For the u3 equation, the data is given as follows:

• The normal stress in Ω1 is transferred to Wω by the vector ~s3.

• The third component of the volume force f is given in Wω by the vector ~f3.

• An extension of the boundary stress part t3 is given in Wω by ~t3.

• The x3 derivatives of given u1 and u2 are given as a 3D vector with zero third
component in Wω by the coefficient vector ~u∂,3.

Again, all matrices and the vectors ~f3 and ~t3 can be computed in advance. Only ~s3

and ~u∂,3 vary in the iteration.

The second problem (4.50) in matrix form is then

Aω ~x =
1
h

Mω ~s3 + Mω
~f −

1
h

(∫
ω

b(−u3)φ j dx
)

j

+ MγN
~t3 + λMmix,γ ~u∂,3

− (λ + µ) Mmix,ω ~u∂,3 .

(4.62)

4.5.7. Intersection of triangles

The intersection of two triangles Tm and Tn is a convex set, as both triangles are
convex. It may have up to six corner points. As several cases can occur in the
intersection of two triangles, we stick with a generic algorithm here.

Algorithm 4.14:
First, compute the extremal points of Tm ∩ Tn:

• Create an empty set PC of corner points.

• Check all corner nodes P1
1,2,3 of Tm: If P1

i ∈ Tn, add it to PC

• Check all corner nodes P2
1,2,3 of Tn: If P2

i ∈ Tm, add it to PC

81

4. A primal-dual active set method

• Compute the intersections of all triangle edges of Tm and all triangle edges of
Tn. If the intersection point Pe is inside edge em

i of Tm and inside edge en
j of Tn,

add it to PC.

Now the intersection polygon is Tm ∩ Tn = conv PC, and PC is a set of points xi ∈

∂(conv PC).

Next, re-arrange these points:

• Compute the midpoint of the convex hull,

Pm :=
1
N

N∑
i=1

xi .

• Compute the direction vectors di = xi − Pm.

• With the angle ϑi =](di), sort the di counter-clockwise.

Now the convex hull can be decomposed into triangles intersecting only on edges,

conv PC =

N⋃
i=1

4

(
Pm, Pm + di, Pm + d(i mod N)+1

)
.

�

mP

ϑ

Tm

Tn

P
C

Figure 4.7.: Tm∩Tn: Corner points, midpoint and decomposition into sorted triangles

82

5. Numerical experiments

In this chapter, we will demonstrate some numerical experiments on the benchmark
test from the introduction. All computations were performed using piecewise linear
functions on triangles or tetrahedra for the displacement. The programs were run on
two desktop workstations and on the computing cluster at the Institute for Applied
Mathematics.

The decomposition into triangles or tetrahedra was done by the external libraries
CGAL [7] for 2D meshes, and tetgen by Si [41, 45] for 3D volume and surface meshes.
The reference implementation PNEW by Lukšan and Vlček [28] was used for the min-
imization of the nonsmooth objective functions. All other software for computation
and postprocessing was written along with this thesis by the author.

Remark 5.1: As we had no exact solution for the benchmark problems, we computed solutions
on a very fine mesh and assumed that these were close enough to a solution of the continuous
problem.
The benchmark problems employ a non-monotone delamination law, and we cannot assure
that the problems admit only one solution. If a large error for a numerical solution is given,
it may still be close to another solution of the continuous problem.

5.1. Adaptive refinement

A wide-spread method to keep the number of unknowns as low as possible is the use
of error estimators and adaptive refinement. For our Finite Element computations,
we used a heuristic residual error estimator. A general step of the refinement
algorithm is as follows:

Algorithm 5.2:
After finding an approximate solution uh in Vh, based on the mesh Th, go through
the following steps:

• For every triangle or tetrahedron T ∈ Th, compute the error indicator ηT.

• Compute the maximal indicator ηmax .

• Mark all elements T with ηT > ϑηmax for refinement.

• Mark further elements such that no hanging nodes occur.

• Refine the mesh.

83

5. Numerical experiments

With the new, finer mesh, one can re-start the algorithm again. �

In this algorithm, ϑ ∈ (0, 1) is a control parameter. More elements are marked in one
refinement step if ϑ is small.

The local residual error indicator

η2
T := h2

T

∥∥∥divσ(uh) + π0f
∥∥∥2

0;T
+

∑
Eint(T)

hE

∥∥∥∥ [
σ(uh) · nE

] ∥∥∥∥2

0;E
+

∑
Eext,N (T)

hE

∥∥∥σ(uh) · nE − π0t
∥∥∥2

0;E

(5.1)

can be given for each T ∈ Th. If the problem only has Dirichlet and Neumann
boundaries, i.e. no contact or other nonlinear terms are present, one can prove that
ηT is efficient and reliable: See [46] for a derivation, especially Section 3.6 for linear
elasticity.

Some comments on each term are in order. First, note that hT denotes the diameter
of the element T, and hE denotes the length of edge E.

The first term is the L2 norm of the residual in the differential equation. We demand
that −divσ = f, so this term describes the approximation error of the volume term.
For implementation reasons, the function f can be approximated by a constant value
π0f on T. We used the value of f in the element midpoint here.
The second term is a summation over all interior edges or faces of T. As another
element T′ is attached to T along E, we can compute the stress vector on E in both
elements, and its jump [σ · n] across this face. In the classical formulation, σ is
continuous; the error to that is given by the second term.
The third term is a summation over all exterior edges or faces of T that are attached
to the Neumann boundary. Here, we have a prescribed traction t. The deviation of
the solution’s traction σ(uh) ·n from t is the approximation error here. Again, we use
an interpolation by a constant value π0t here for implementation reasons.

The hemivariational inequality has an additional boundary ΓC. Here, the exact
solution satisfies

ξ(x) ∈ b̂
(
(Πu)(x)

)
a.e. x ∈ ΓC ,

as we demand that
ξ(x) = σN(x) a.e. x ∈ ΓC .

In our case, Π extracts the negative normal displacement.

The function b(t) represents a force in normal direction, so if we treat it like a given
force t, we get an additional contribution∑

Eext,C(T)

hE

∥∥∥∥σN(uh) − b
(
(Πuh)(x)

)∥∥∥∥2

0;E
(5.2)

on the edges or faces on ΓC.
Note that the function b is used here instead of b̂, which would be set-valued. There

84

5.2. 2D benchmark

may appear the case that a normal displacement is attained such that b̂ would
return more than one element. This, however, did in practice not appear in our
computations.
Again, we interpolate the given traction b((Πu)(x)) ·n by a constant function, e.g. by
evaluation in the midpoint m of E. We can now state the residual error indicator for
the hemivariational inequality:

η2
T := h2

T

∥∥∥divσ(uh) + π0f
∥∥∥2

0;T
+

∑
Eint(T)

hE

∥∥∥∥ [
σ(uh) · nE

] ∥∥∥∥2

0;E

+
∑

Eext,N (T)

hE

∥∥∥σ(uh) · nE − π0t
∥∥∥2

0;E
+

∑
Eext,C(T)

hE

∥∥∥∥σN(uh) − b
(
(Πuh)(m)

)∥∥∥∥2

0;E
.

(5.3)

Note that this estimator is only heuristic, but it performed well in our benchmark
computations.

5.2. 2D benchmark

The following 2D benchmark was computed with Finite Elements.

Γ
N

Γ
D

Γ
C

Figure 5.1.: Geometry of the 2D benchmark

The problem domain is a rectangle of height 1 and width 10:

Ω =
{
x ∈ R2 : x1 ∈ [−5, 5] , x2 ∈ [0, 1]

}
.

On the lower boundary, contact with adhesion may occur. This boundary ΓC consists
of all x ∈ Ω with x2 = 0, leaving the normal vector n = (0,−1). The Dirichlet boundary
ΓD consists of all x ∈ Ω with x1 = −5. Finally, all other boundary parts constitute the
Neumann boundary ΓN. We prescribe a constant force on the upper right part only,
where x1 ∈ [4, 5] and x2 = 1. Here t = (0, fN) with a given fN; on the remaining parts
of ΓN, we set t = (0, 0).

The chosen material parameters are λ = 1.211 · 1011 and µ = 8.077 · 1010, which
corresponds to the material parameters E = 210 GPa and ν = 0.3 for steel. The
benchmarks in [19] and [4] use serrated reaction forces b with several jags. As the
qualitative behavior does not change, we use an exemplary function b with two jags

85

5. Numerical experiments

only. Its envelope b̂ with generic constants Ai and ti is given as follows:

b̂(t) :=



(−∞, 0] , t = 0{
A1
t1

t
}
, t ∈ (0, t1)

[A2,A1] , t = t1{
A3−A2
t2−t1

t +
t2A2−t1A3

t2−t1

}
, ∈ (t1, t2)

[0,A3] , t = t2

{0} , t > t2

. (5.4)

The anti-derivative we use is then

B(t) =

∫ t

0
b(τ) dτ =


A1
2t1

t2 , t ∈ [0, t1]
A3−A2
2(t2−t1) (t2

− t2
1) +

t2A2−t1A3
t2−t1

(t − t1) +
A1t1

2 , t ∈ (t1, t2]
A3−A2
2(t2−t1) (t2

2 − t2
1) + t2A2 − t1A3 +

A1t1
2 , t > t2

. (5.5)

We used t1 = −0.02 and t2 = −0.1 for the displacements before tear-off, with the
forces A1 = 20 · 106, A2 = 8 · 106 and A3 = 10 · 106.

8.0e+6

10.0e+6

20.0e+6

0.02 0.10 0.02 0.10

Figure 5.2.: Reaction force function b̂(t); anti-derivative
∫ t

0
b(τ) dτ

2.5 3 3.5 4 4.5 5
x 10

7

0

0.2

0.4

0.6

0.8

3 3.5 4
x 10

7

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 5.3.: Maximal displacement for increasing load; magnification of the lower
left area

When forces between 25 · 106 and 50 · 106 are incrementally applied, three parts can
be isolated. Figure 5.3 shows the norm of the maximal displacement for different

86

5.2. 2D benchmark

forces. Note that the maximal displacement always appeared at the upper-right
corner of Ω.

In the first part (up to ca. 36 · 106), no delamination takes place. The displaced mesh
and the reaction forces along the contact boundary are shown in Figure 5.4 for a
representative force of 30 · 106. The first “crack” has not yet appeared here.

In the second part (up to ca. 39 · 106), partial delamination occurs. Figure 5.5 shows
the displaced mesh and the reaction forces for a load of 37.5 · 106.

Finally, a section of the contact boundary delaminates completely in the third part.
No reaction force is given for this section, as can be seen in Figure 5.6, which was
computed for a load of 40 · 106. A stress singularity appears in the lower left corner.
In the next figures, the color scale denotes the von Mises stress in MPa. As we
computed a plane strain problem in 2D, the von Mises stress computes as

σY =

√(
σ2

11 + σ2
22

)
(ν2 − ν + 1) + σ11σ22(2ν2 − 2ν − 1) + 3σ2

12 ,

where the Poisson number ν is

ν =
λ

2(λ + µ)
.

The computations were performed with 128 degrees of freedom in normal direction
on ΓC, the full problem consisted of 4224 unknowns.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

5 10 15 20 25

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2
x 10

7

Figure 5.4.: Deformed configuration and reaction forces along ΓC for a load of 30 ·106

87

5. Numerical experiments

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

20 40 60

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2
x 10

7

Figure 5.5.: Deformed configuration and reaction forces along ΓC for a load of 37.5·106

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

100 200 300 400 500

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2
x 10

7

Figure 5.6.: Deformed configuration and reaction forces along ΓC for a load of 40 ·106

88

5.2. 2D benchmark

The error induced by the method depends on the load: If no delamination occurs, the
error is generally smaller than in the delamination case. Several reasons underline
this: For a nonsmooth reaction force, we may have multiple solutions. Our com-
putations only give the error to one specific solution for a very fine mesh. Further,
small variations in the load move the point of delamination on the contact boundary,
so the displacement is not a smooth function of the given load. Finally, there is no
displacement in the lower left corner if no delamination is present: In Figure 5.4,
this corner is in contact, and the boundary nodes close to it are not displaced. In
contrast, Figure 5.6 shows that there is a displacement in this corner, which results
in a stress peak.

N
∥∥∥uh
− u∗

∥∥∥
L2(Ω)

EOC(N)
32 1.89e-3 —
94 1.07e-3 0.53

316 3.18e-4 1.00
1140 1.51e-4 0.58
4290 6.71e-5 0.61

N
∥∥∥uh
− u∗

∥∥∥
L2(Ω)

EOC(N)
32 1.89e-3 —
76 1.08e-3 0.65

186 6.32e-4 0.60
604 1.29e-4 1.35

2112 6.80e-5 0.51
2270 4.46e-5 5.85
2800 2.47e-5 2.82
2932 1.76e-5 6.86 (!)
5088 2.22e-6 3.79

Table 5.1.: L2 error for load 10 · 106, uniform and adaptive refinement

Figure 5.7 shows the convergence of the L2 error if only a small force is applied, i.e.
the reaction forces on ΓC are smooth. Figure 5.8 shows the convergence of the L2

error if a large force is applied. We used finer solutions as reference solution for the
error computation, which were obtained by three further refinement steps from the
uniform scheme (N ≈ 250.000 for the first case, N ≈ 180.000 for the second case).

The obtained errors and estimated orders of convergence are given in Tables 5.1 and
5.1. Note that some orders of convergence for the adaptive schemes are off the scale,
which is probably due to a combination of bad previous steps and coincidence.

89

5. Numerical experiments

N
∥∥∥uh
− u∗

∥∥∥
L2(Ω)

EOC(N)
238 1.85e-1 —
824 4.92e-2 1.07

3040 2.56e-2 0.50
11648 1.50e-3 2.11

N
∥∥∥uh
− u∗

∥∥∥
L2(Ω)

EOC(N)
238 1.78e-1 —
252 1.32e-1 5.21
348 7.19e-2 1.88
472 4.70e-2 1.40
524 4.08e-2 1.34
814 1.64e-2 2.08

1090 4.06e-3 4.78
1324 2.51e-3 2.47

Table 5.2.: L2 error for load 40 · 106, uniform and adaptive refinement

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

uniform

adaptive

Figure 5.7.: L2 error vs. number of unknowns for 2D uniform and adaptive refine-
ment, load 10 · 106 (no delamination)

90

5.2. 2D benchmark

10
2

10
3

10
4

10
−2

10
−1

10
0

uniform

adaptive

Figure 5.8.: L2 error vs. number of unknowns for 2D uniform and adaptive refine-
ment, load 40 · 106 (with delamination)

91

5. Numerical experiments

Parallelization

The main computational effort for the used problem sizes was the Schur complement
matrix in Section 3.6.1. To get the system matrix

C = C − B>Ā−1B ,

one equation system Āx = b had to be solved for each degree of freedom on ΓC.
These systems can be solved in parallel. This was implemented using the shared-
memory model with the OpenMP programming interface. For 2, 8 and 16 virtual
cores with hyperthreading (1, 2 and 8 physical cores), nearly linear scaling could be
observed.

The Bundle-Newton solver took a larger fraction of computing time as the number
of unknowns grew. Note that the reference implementation is not parallelized and
uses a full LR decomposition of C, so there is still some potential here.

Further, the computation of stiffness matrices and load vectors has been done in
parallel. This part took only a small fraction of the total computation time, so the
improvement was not too significant here.

The same parallelization was used for the FE and BE computations in 3D with the
Bundle-Newton method.

5.3. 3D benchmarks

5.3.1. Finite Element computation

0.150.05

8.0e−3

6.0e−3

4.0e−3

Figure 5.9.: Reaction force function b̂(t)

The configuration is given in Figure 5.10. We could not identify matching parameters
for convergence of the Bundle-Newton method with realistic material parameters
and a large number of unknowns, so we used λ = µ = 1 instead. The delamination
law in Figure 5.9 is of the same type as in the 2D benchmark, Figure 5.2, but with
different numbers.

92

5.3. 3D benchmarks

Γ

Γ

ΓC

D

N

Figure 5.10.: Reference configuration for the 3D FE and BE benchmark

The geometry size is 7.5 × 4 × 0.4. ΓD is the block’s back side (x1 = 0). The load is
applied on a 1× 1 square on the upper left corner (x1 ≥ 6.5, x2 ≥ 3) in x3 direction.

The deformed mesh for a load of 0.2 is shown in Figure 5.11. The lower picture
shows the distribution of reaction forces, i.e. the function ξh on the contact boundary
elements. Note that the front of red-colored elements denotes the maximal reaction
force from the first tip of b̂(·). The elements towards the lower left corner already
undergo only the second, lower reaction force. This situation corresponds to the 2D
situation in Figure 5.5.

The mesh was adaptively refined using the error indicator (5.3).

Figure 5.11.: Deformed mesh and reaction force distribution, FE computation

93

5. Numerical experiments

5.3.2. Boundary Element computation

The same configuration was used for the BE computation, but only uniform refine-
ment was performed. The results are plotted in Figure 5.12.

Figure 5.12.: Deformed mesh and reaction force distribution, BE computation

5.3.3. Finite Elements with PDAS

In this example, the domain Ω is a 5 × 5 × 2 block, of which a bottom layer with
thickness h is chipped off. We used h = 0.15 for our computation. Again, x1 = 0
is the Dirichlet boundary ΓD, and the load is applied on a 1 × 1 square on the top.
This time, we push down in x3 direction. We can apply the primal-dual active set
algorithm as long as b̂(·) is constant and positive up to some point, then zero. The
plane x3 = −0.8 is used as an obstacle; in a distance of maximally 0.2 to the obstacle,
a reaction force of size 0.2 appears.

The convergence of Algorithm 4.13 depends strongly on the choice of the damping
parameters ϑi. Here, we chose ϑ0 = 1.0 and ϑ1 = ϑ2 = 0.01. The choice of ϑ0 = 1
corresponds to the direct stress transmission in the Dirichlet-Neumann iteration in
[36, Section 1.3]. The parametersϑ1, ϑ2 needed to be chosen very small. Note that this
also was the case for a purely linear reference benchmark that we implemented for
the domain decomposition method. Small parameters do not break the algorithm’s
convergence, they only influence the number of steps up to some desired accuracy.

94

5.3. 3D benchmarks

The convergence for the algorithm, applied to the adhesion benchmark, is docu-
mented in Figure 5.13: Two norms are displayed for two different mesh sizes. First,
we computed the energy norm for the membrane update steps; second, we com-
puted the energy norm for the update steps in the linear elastic block Ω1. As the
stiffness matrices are already known, we can simply compute∥∥∥u(n+1)

3 − u(n)
3

∥∥∥2

H1(ω)
=

(
x(n+1)

3 − x(n)
3

)>
ALap

(
x(n+1)

3 − x(n)
3

)
;∥∥∥u(n+1)

− u(n)
∥∥∥2

H1(Ω1)
=

(
x(n+1)

Ω
− x(n)

Ω

)>
ALamé

(
x(n+1)

Ω
− x(n)

Ω

)
.

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

10
0

10
1

iteration steps

membrane, coarse

membrane, fine

Ω1, coarse

Ω1, fine

Figure 5.13.: Energy norm of update steps, with inner PDAS iteration

The “coarse” mesh was created by tetgen with a volume constraint of 0.001. This
resulted in 42,354 degrees of freedom in Ω1 and 1273 degrees of freedom for the
membrane problem in Γ↑. The transmission boundary Γ↑ consisted of 2473 elements.
The “fine” mesh was created with a volume constraint of 0.0001. Here, we got 413,460
degrees of freedom in Ω1 and 6044 degrees of freedom for the membrane problem
in Γ↑. The transmission boundary Γ↑ consisted of 11,931 elements.

Note that the convergence rates for the displayed subproblems are very similar.
Moreover, the size of the update steps does not strongly depend on the meshwidth
for the problem in Ω1; for the membrane subproblem, there seems to be no depen-
dence on the meshwidth. The same behavior was retrieved for other meshes with
volume constraints of 0.003 and 0.0003, which have been left out of Figure 5.13 for
the sake of readability.

95

5. Numerical experiments

step 0.003 0.001 0.0003 0.0001
50 0.039 0.058 0.069 0.084

100 0.023 0.032 0.039 0.048
150 0.014 0.020 0.024 0.028
200 0.0085 0.012 0.015 0.017
250 0.0052 0.0071 0.0088 0.010
300 0.0035 0.0043 0.0055 0.0061
step 0.003 0.001 0.0003 0.0001

50 0.57 0.57 0.56 0.56
100 0.34 0.35 0.34 0.34
150 0.22 0.22 0.21 0.21
200 0.14 0.14 0.14 0.14
250 0.091 0.095 0.091 0.089
300 0.061 0.064 0.062 0.060

Table 5.3.: Energy norm of update steps in Ω1 (left) and ω (right) for meshes with
vmax = 0.003, 0.001, 0.0003, 0.0001

Figure 5.14 shows the deformed mesh. The vertical, red surface is the Dirichlet
boundary. The membrane is shown in dark blue, it is in contact in the lower right
corner.

The von Mises stress distribution inside the domain is given in Figure 5.15, which
shows the deformed mesh from another perspective.

Parallelization and efficient computation

Again, the computation of stiffness matrices and load vectors was done in parallel
with a shared-memory model, using OpenMP. This was important for the matrix
MΓ↓ , where each element on Γ↑ had to be compared with each element on Γ↓ due
to the naive ansatz we used. The matrix could be computed in seconds through
parallelization.

The main computational cost arose from solving the problem in Ω1. Our central
intent was to show the method itself. Thus, we solved that problem with a plain CG
method. The only option to parallelize the computation was the implementation of
a parallel matrix-vector multiplication. This scaled only sublinearly, as the memory
bus showed to be the bottleneck.
A large set of preconditioners exists that can be applied to large scale linear-elastic
problems. This includes domain decomposition methods and block precondition-
ing, see e.g. Saad [38, Chapter 12] for an overview.

Although the PDAS method for the membrane problem needed several iterations
in each step, the linear elastic problem in Ω1 took more time to solve. This can be

96

5.3. 3D benchmarks

Figure 5.14.: Deformed mesh, PDAS computation

seen in Table 5.4 for four different meshes with the volume constraint as given in the
first line. Recall that we had three subproblems: The linear elastic problem in Ω1,
the (u1,u2, 0) problem in Ω2, and the membrane problem in ω. We give the number
of unknowns in each problem, together with the solution time. For the first and
second problem, we give the average number of CG iterations; for the membrane
problem, we give the average number of PDAS iterations (recall that each PDAS
step contains one full CG run). Additionally, we state the condition number of each
stiffness matrix.

The second subproblem took a surprisingly large fraction of the total computation
time. This is due to the ill-conditioned system matrix, so more CG iterations are
needed.

97

5. Numerical experiments

Figure 5.15.: Deformed mesh, PDAS computation: stress distribution

98

5.3. 3D benchmarks

vmax 0.003 0.001 0.0003 0.0001

in Ω1: N 14364 42354 139077 413460

time 39s 262s 1236s 5688s
CG steps 316 454 653 947
κ(AΩ1) 1.7e+3 3.7e+3 8.8e+3 1.6e+4

(u1,u2, 0): N 2588 4770 14108 33872

time 17s 58s 333s 1055s
CG steps 425 522 871 1045
κ(AΩ2) 4.1e+4 5.4e+4 1.6e+5 2.5e+5

membrane: N 660 1273 3349 6044

time 11s 24s 73s 285s
PDAS steps 36 45 64 81
κ(Aω) 2.1e+3 4.2e+3 1.1e+4 1.9e+4

Table 5.4.: Computation times and average iteration steps for all subproblems

99

A. Implementation

A.1. Basis functions and reference elements

Although the following definitions are common, we state them again, as the proof
of Lemma 4.6 and the quadrature rules in section A.2 rely on them.

A.1.1. 2D elements

Define the reference element by the simplex

T̄ :=
{
(ξ, η) ∈ R2 : ξ ∈ [0, 1], η ∈ [0, 1], ξ + η ≤ 1

}
. (A.1)

The transformation from T̄ to an actual element Ti is done by the affine mapping

h : T̄ ⊂ R2
→ Ti

(ξ1, ξ2) 7→
(
d(1)

1 d(2)
1

d(1)
2 d(2)

2

) (
ξ1

ξ2

)
+ P(0) = Hξ + P(0) ,

(A.2)

where P(k) are the element nodes and d(k) := P(k)
− P(0). This mapping is bijective

because H is invertible: The direction vectors d(k) are linearly independent.

The standard linear local basis functions on T̄, which are used for 2D FEM and 3D
BEM on surface meshes, are given by

ϕ̄1(ξ, η) = 1 − ξ − η ; ϕ̄2(ξ, η) = ξ ; ϕ̄3(ξ, η) = η . (A.3)

The inverse of H can be computed explicitly:

H−1 =
1

det H

(
H22 −H12

−H21 H11

)
=:

(
h−11 h−12
h−21 h−22

)
(A.4)

Writing the inverse of (A.2) as

ξ1(x1, x2) = h−11(x1 − P(0)
1) + h−12(x2 − P(0)

2)

ξ2(x1, x2) = h−21(x1 − P(0)
1) + h−22(x2 − P(0)

2) ,

101

A. Implementation

the total differentials of a function ϕ(x) are

∂ϕ

∂x1
=
∂ϕ

∂ξ1

∂ξ1

∂x1
+

∂ϕ

∂ξ2

∂ξ2

∂x1
= h−11

∂ϕ

∂ξ1
+ h−21

∂ϕ

∂ξ2

∂ϕ

∂x2
=
∂ϕ

∂ξ1

∂ξ1

∂x2
+

∂ϕ

∂ξ2

∂ξ2

∂x2
= h−12

∂ϕ

∂ξ1
+ h−22

∂ϕ

∂ξ2
.

The gradient of a functionϕ in global coordinates (x1, y1) on Ti can then be expressed
in local coordinates (ξ, η) on T̄:

∇xϕ(x) = H−>∇ξϕ(h
(
ξ
)
) . (A.5)

A.1.2. 3D elements

The reference element is now

T̄ :=
{
(ξ, η, ζ) ∈ R3 : ξ ∈ [0, 1], η ∈ [0, 1], ζ ∈ [0, 1], ξ + η + ζ ≤ 1

}
. (A.6)

Then we get the transformation to an actual element Ti:

h : T̄ ⊂ R3
→ Ti

(ξ1, ξ2, ξ3) 7→


d(1)

1 d(2)
1 d(3)

1
d(1)

2 d(2)
2 d(3)

2
d(1)

3 d(2)
3 d(3)

3


ξ1

ξ2

ξ3

 + P(0) .
(A.7)

Again, h and H are invertible because d(k) are linearly independent.

The standard linear local basis functions on T̄, which are used for 2D FEM and 3D
BEM on surface meshes, are given by

ϕ̄1(ξ, η, ζ) = 1 − ξ − η − ζ ; ϕ̄2(ξ, η, ζ) = ξ ;

ϕ̄3(ξ, η, ζ) = η ; ϕ̄4(ξ, η, ζ) = ζ .
(A.8)

A.2. Quadrature rules

To evaluate the Galerkin matrix entries, integrals over single elements need to be
computed. These elements are, for our benchmarks, triangles (for FE computations
in 2d) or tetrahedra (for FE computations in 3d). For BE computations in 3d, nested
integrations over an inner and an outer element need to be performed.

The involved matrix H is constant, giving the integral transformation∫
Ti

f (x) dx =
∣∣∣det H

∣∣∣ ∫
T̄

f (h(ξ)) dξ

The following sections describe the actual computation of matrix entries, as actually
used in our benchmarks:

102

A.2. Quadrature rules

A.2.1. Regular quadrature

For the finite element method, the Galerkin matrix entries have the following form:

ai j :=
∑

T⊂(suppφi∩suppφ j)

∫
T

(
Dϕi(x)

)>
α(x)

(
Dϕ j(x)

)
dx , (A.9)

where ϕi/ j are basis functions of Vh, D is a differential operator (e.g. the gradient)
and α(x) is a given mapping preserving ellipticity of a. In the case of homogeneous
linear elasticity, D was taken as the strain tensor εi j, and α was assumed to be the
constant Hooke tensor Ci jkl.
These integrals can be evaluated analytically. However, the computation of Galerkin
matrices was not a time-critical step in our simulations, compared to the solution
algorithms. Numerical quadrature was used to provide flexibility in the choice of
local basis functions.

Here, we first use a tensor product rule to create quadrature nodes on the unit square
or the unit cube. Next, the so called Duffy transformation is used to map these onto
the reference triangle.
From a one-dimensional Gauss quadrature rule,∫ 1

−1
f (τ) dτ ≈

n∑
i=1

ω̃i f (τ̃i) ,

we can set up a quadrature on (0, 1) by

τi :=
τ̃i + 1

2
; ωi :=

1
2
ω̃i .

Nodes and weights for the reference square (0, 1)2 and cube (0, 1)3 are defined by the
tensor product rule

τ�i := (τk, τl) , ω�i := ωkωl , i = n(k − 1) + l ;

τ��i := (τk, τl, τm) , ω��i := ωkωlωm , i = n2(k − 1) + n(l − 1) + m

for k, l,m ∈ {1, . . . ,n}.

The Duffy transformation from the square to the reference triangle is given by

hD : (τ�1 , τ
�
2) 7→ (τ�1 , (1 − τ�1)τ�2) , (A.10)∫ 1

0
(1 − τ�1)

∫ 1

0
f
(
τ�1 , (1 − τ�1)τ�2

)
dτ�2 dτ�1 =

∫ 1

0

∫ 1−ξ

0
f (ξ, η) dηdξ , (A.11)

where (ξ, η) are local coordinates in the triangle. Thus, the quadrature nodes τ�i and
weights ω�i on the square are transformed to

ξi = (ξi, ηi) := (τ�i,1, (1 − τ�i,1)τ�i,2) =
(
τ̃k + 1

2
,
(
1 −

τ̃k + 1
2

) τ̃l + 1
2

)
(A.12)

ωi = (1 − τ�i,1)ω�i =
1 − τ̃k

8
ω̃kω̃l (A.13)

103

A. Implementation

for i = n(k − 1) + l, where k, l ∈ {1, . . . ,n}. The 2d quadrature rule on the reference
triangle then has n2 nodes and weights.

Similarly, the transformation from the cube to the reference tetrahedron is given
by

hD : (τ��1 , τ
��
2 , τ

��
3) 7→ (τ��1 , (1 − τ��1)τ��2 , (1 − τ��1)(1 − τ��2)τ��3) , (A.14)∫ 1

0
(1 − τ��1)

∫ 1

0
(1 − τ��1)(1 − τ��2)

∫ 1

0
f
(
τ��1 , (1 − τ��1)τ��2 , (1 − τ��1)(1 − τ��2)τ��3

)
dτ

=

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0
f (ξ, η, ζ) dζdηdξ , (A.15)

where the local coordinates are (ξ, η, ζ). The quadrature nodes τ��i and weights ω��i
are transformed to nodes and weights on the reference tetrahedron,

ξi = (ξi, ηi, ζi) := (τ��i,1, (1 − τ��i,1)τ��i,2, (1 − τ��i,1)(1 − τ��i,2)τ��i,3) (A.16)

=
(
τ̃k + 1

2
,
(
1 −

τ̃k + 1
2

) τ̃l + 1
2

,
(
1 −

τ̃k + 1
2

)(
1 −

τ̃l + 1
2

) τ̃m + 1
2

)

ωi = (1 − τ��i,1)2(1 − τ��i,2)ω��i =
(1 − τ̃k)2(1 − τ̃l)

8
ω̃kω̃lω̃m (A.17)

for i = n2(k − 1) + n(l − 1) + m, where k, l,m ∈ {1, . . . ,n}. The 3d rule for the reference
tetrahedron will have n3 nodes and weights.

Finally, we retrieve the quadrature rule∫
T̄

f (ξ) dξ ≈
(N)∑
i=1

ωi f (ξi) . (A.18)

Remark A.1: The transformed quadrature rules are still exact to some polynomial orders
pξ, pη(, pζ). Note however that the original order of exactness is diminished due to the
transformation factors, and due to the fact that nodes in the reference element are represented
by products of quadrature nodes.

Remark A.2: The Duffy transformation was originally used to reduce orders of singularities
fixed in one specified triangle (tetrahedron) corner by contracting an edge (face). This leads
to a concentration of nodes towards one node, leaving these quadrature rules not symmetric.
They are also not minimal in the sense that a rule for the same order of exactness may
be given with a smaller number of nodes. Derivation of a general formula for minimal,
symmetric quadrature nodes is still an open problem.

A survey of quadrature rules on various element shapes was given by Stroud [44];
some minimal rules are also given explicitly there.

104

A.2. Quadrature rules

A.2.2. Adaptive quadrature

For the boundary element method, the Galerkin matrix is in general fully populated.
Entries will have the following form:

ai j :=
〈
Pϕi, ψ j

〉
Σ

=
∑

Ti⊂suppϕi

∑
T j⊂suppψ j

∫
T j

∫
Ti

k(x,y)ϕi(y) dsyψ j(x) dsx (A.19)

Here, P is an integral operator with the kernel k(·, ·), and ϕi, ψ j are basis functions
of the test and ansatz spaces. Note that for the double layer matrix K, these spaces
are actually different. Also note that for the hypersingular operator, the surface
gradients ofϕi and ψ j are used instead.
Only the 3d case is considered here, where T is a decomposition of the boundary of
interest (Γ or Σ) into triangles Ti.

An analytical representation of these integrals is only given for special cases. A quite
general analysis, including analytical evaluation on rectangles for integral operators
associated with the Laplace, Lamé and Helmholtz problems, was done by Maischak
[30, p.151ff].
For the Lamé equation, no analytical evaluation on triangles is known yet, so a
quadrature scheme has to be used again.

The kernel k creates singularities in the integrand. For this reason, increasing the
number of quadrature points might not lead to an increase of accuracy: The approx-
imation error is given in terms of higher order derivatives of the integrand, which
are unbounded.

Example A.3: For a 1d Gaussian quadrature rule, the approximation error can be expressed
as ∫ 1

−1
f (x) dx −

n∑
i=1

ωi f (xi) =
f (2n)(ξ)
(2n)!

∫ 1

−1

[
n!

(2n)!
dn

dxn

(
x2
− 1

)n
]2

dx

for some ξ ∈ (−1, 1), see [43]. The function

f (x) =
1

√
x + 1

is integrable on (−1, 1) (the integral is 2
√

2), but singular in −1. Its n-th derivative is

f (n)(x) =
(−1)n (n)!!

2n (x + 1)
(2n+1)

2

,

which is unbounded for x→ −1, so the standard approximation may not ensure convergence
here.

105

A. Implementation

In our case, the kernel k(x,y) will have a singularity for x → y. For the integration
on an outer triangle Ti and an inner triangle T j, there are several different cases to be
considered. The transformations are performed according to [13] and [39, 5.2], but
other quadrature rules could be used here that take singularities into account (e.g.
the triangle quadrature rule in [40], which would need to be nested).
Note that an intermediate reference triangle T̃ is used here:

T̃ =
{
(ξ, η) : ξ ∈ [0, 1] , η ∈ [0, ξ]

}
The final quadrature rules (A.20), (A.22) are again given in local coordinates of our
reference triangle T̄.

Case 0: No intersection

Here, the triangles do not intersect at all, Ti ∩ T j = {}.
In this case, the points y ∈ Ti are bounded away from x ∈ T j, and no singularity will
occur. We can use regular quadrature rules on both triangles, as in (A.12), (A.13).

Case 1: One common vertex

In this case, Ti ∩T j = {p}, where p is a vertex of both Ti and T j. The double integral is
now expressed as a four-dimensional integral over T̃ × T̃ with the singularity at the
origin. This domain is then decomposed into two domains,

D1 =
{
λ1 ∈ [0, 1] ; λ2 ∈ [0, λ1] ; λ3 ∈ [0, λ1] ; λ4 ∈ [0, λ3]

}
D2 =

{
λ1 ∈ [0, λ3] ; λ2 ∈ [0, λ1] ; λ3 ∈ [0, 1] ; λ4 ∈ [0, λ3]

}
,

which are both transformed to the unit hypercube (0, 1)4 to cope with the singularity.
These transformations are

D1 : (λ1, λ2) 7→ (λ4, λ4λ1)

(λ3, λ4) 7→ (λ4λ2, λ4λ2λ3)

D2 : (λ1, λ2) 7→ (λ4λ2, λ4λ2λ3)

(λ3, λ4) 7→ (λ4, λ4λ1)

The integral over T̃ × T̃ is then given by∫
(0,1)4

λ3
4λ2

(
f (λ4, λ4λ1, λ4λ2, λ4λ2λ3) + f (λ4λ2, λ4λ2λ3, λ4, λ4λ1)

)
dλ1,2,3,4 ,

and finally we can apply the translations

(λ̃1, λ̃2) 7→ (λ̃1 − λ̃2, λ̃2)

(λ̃3, λ̃4) 7→ (λ̃3 − λ̃4, λ̃4)

106

A.2. Quadrature rules

from T̃ to the original reference triangle T̄:∫
T̄

∫
T̄

f (ξ1, ξ2, ξ3, ξ4) dξ1,2,3,4

=

∫
(0,1)4

λ3
4λ2 f

(
λ4, λ4(λ1 − λ2), λ4λ2, λ4λ2(λ3 − λ4)

)
dλ1,2,3,4

+

∫
(0,1)4

λ3
4λ2 f

(
λ4λ2, λ4λ2(λ3 − λ4), λ4, λ4(λ1 − λ2)

)
dλ1,2,3,4 .

As in the regular case, we take a 1d Gaussian quadrature (τ̃ν, ω̃ν)ν as a generating
rule for the integration over (0, 1)4 by applying the tensor product: The nodes and
weights are again normalized to the interval (0, 1) by

τν :=
τ̃ν + 1

2
, ων :=

ω̃ν
2
.

This results in the quadrature nodes and weights

ξ1
i =

(
τn − τnτl, τnτl

)
η1

i =
(
τkτn − τkτmτn, τkτmτn

)
ξ2

i =
(
τkτn − τkτmτn, τkτmτn

)
η2

i =
(
τn − τnτl, τnτl

)
ωi = τl

(
τn − τnτl

)3
ωkωlωmωn .

(A.20)

The quadrature on the actual elements is then∫
T j×Ti

k(x,y)ϕi(y)ψ j(x) ≈ |Ti| |T j|

(N)∑
ν=1

ων k
(
hi(ξ1

ν), h j(η1
ν)
)
ϕi

(
h j(η1

ν)
)
ψ j

(
hi(ξ1

ν)
)

+ |Ti| |T j|

(N)∑
ν=1

ων k
(
hi(ξ2

ν), h j(η2
ν)
)
ϕi

(
h j(η2

ν)
)
ψ j

(
hi(ξ2

ν)
)
.

(A.21)

Remark A.4: The nodes ξν 7→ hi(ξν) and ην 7→ h j(ην) are chosen to be concentrated towards
the corners P(0)

i and P(0)
j of Ti and T j. If the triangles are connected in other points, there are

two possibilities:

• Renumber the triangle nodes, such that hi and h j map the common node to P(0).

• Transform the quadrature nodes by

ξ̃i =

(
−1 −1
1 0

)
ξi +

(
1
0

)
and ξ̃i =

(
0 1
−1 −1

)
ξi +

(
0
1

)
and store the nodes for each pairing, leading to 9 stored transformed quadrature rules.

107

A. Implementation

Case 2: One common edge (two common vertices)

If Ti and T j share a full common edge e, the double integral over T̃× T̃ is transformed
to the integral

∫ 1

0

∫ 1−λ4

−λ4

∫ λ1+λ4

0

∫ λ4

0
f (λ4, λ3, λ1 + λ4, λ2) dλ1,2,3,4 ,

mapping the edge e to (0, 0, 0, t), t ∈ [0, 1].
The domain is now decomposed into five subdomains,

D1 =
{
λ1 ∈ [−1, 0] ; λ2 ∈ [0, 1 + λ1] ; λ3 ∈ [0, λ2 − λ1] ; λ4 ∈ [λ2 − λ1, 1]

}
D2 =

{
λ1 ∈ [−1, 0] ; λ2 ∈ [0, 1 + λ1] ; λ3 ∈ [λ2 − λ1, 1] ; λ4 ∈ [λ3, 1]

}
D3 =

{
λ1 ∈ [0, 1] ; λ2 ∈ [0, λ1] ; λ3 ∈ [0, 1 − λ1] ; λ4 ∈ [λ3, 1 − λ1]

}
D4 =

{
λ1 ∈ [0, 1] ; λ2 ∈ [λ1, 1] ; λ3 ∈ [0, λ2 − λ1] ; λ4 ∈ [λ2 − λ1, 1 − λ1]

}
D5 =

{
λ1 ∈ [0, 1] ; λ2 ∈ [λ1, 1] ; λ3 ∈ [λ2 − λ1, 1 − λ1] ; λ4 ∈ [λ3, 1 − λ1]

}
,

which are again mapped from (0, 1)4 by

D1 : (λ1, λ2) 7→ (λ4, −λ4λ1λ2)

(λ3, λ4) 7→ (λ4λ1(1 − λ2), λ4λ1λ3)

D2 : (λ1, λ2) 7→ (λ4, −λ1λ2λ3λ4)

(λ3, λ4) 7→ (λ4λ1λ2(1 − λ3), λ4λ1)

D3 : (λ1, λ2) 7→ (λ4(1 − λ1λ2), λ4λ1λ2)

(λ3, λ4) 7→ (λ1λ2λ3λ4, λ4λ1(1 − λ2))

D4 : (λ1, λ2) 7→ (λ4(1 − λ1λ2λ3), λ1λ2λ3λ4)

(λ3, λ4) 7→ (λ4λ1, λ4λ1λ2(1 − λ3))

D5 : (λ1, λ2) 7→ (λ4(1 − λ1λ2λ3), λ1λ2λ3λ4)

(λ3, λ4) 7→ (λ4λ1λ2, λ4λ1(1 − λ2λ3)) .

The Jacobian is λ3
4λ

2
1 for the D1 transformation and λ3

4λ
2
1λ2 for the other transforma-

tions.
We can use the (0, 1)-normalized rule (τν, ων) again and apply the final transforma-

108

A.2. Quadrature rules

tion to map to our reference element, returning the quadrature nodes and weights

ξ1
i =

(
τn − τnτkτm, τnτkτm

)
η1

i =
(
τn − τkτn, τkτn − τkτlτn

)
ω1

i = τ3
nτ

2
k ωkωlωmωn

ξ2
i =

(
τn − τnτk, τnτk

)
η2

i =
(
τn − τnτkτl, τnτkτl − τkτlτmτn

)
ξ3

i = η1
i η3

i =
(
τn − τkτlτmτn, τkτlτmτn

)
ξ4

i = η2
i η4

i = ξ2
i

ξ5
i =

(
τn − τnτk, τnτk − τkτlτmτn

)
η5

i =
(
τn − τnτkτl, τnτkτl

)
ωi = τ3

nτ
2
kτl ωkωlωmωn . (A.22)

(The coordinates were permutated and combined here in order to minimize compu-
tational costs.)

Again, terms can be collected like in (A.21), and permutations of the edges lead to 9
transformed quadrature rules like in Remark A.4.

Case 3: Common face (three common vertices)

If Ti = T j, the integration domain T̄×T̄ is decomposed into six subdomains D1, . . . ,D6.
All of these are then mapped to T̄3 × (0, 1), where T̄3 is the reference tetrahedron,
using the transformations

D1 : (λ1, λ2) 7→ (λ1 + λ2 + λ3, λ1 + λ2)

(λ3, λ4) 7→ (λ1(1 − λ4) + λ2 + λ3, λ2)

D2 : (λ1, λ2) 7→ (λ1(1 − λ4) + λ2 + λ3, λ1(1 − λ4) + λ2)

(λ3, λ4) 7→ (λ1 + λ2 + λ3, λ2)

D3 : (λ1, λ2) 7→ (λ1 + λ2 + λ3, λ1λ4 + λ2)

(λ3, λ4) 7→ (λ2 + λ3, λ2)

D4 : (λ1, λ2) 7→ (λ1(1 − λ4) + λ2 + λ3, λ2)

(λ3, λ4) 7→ (λ1 + λ2 + λ3, λ1 + λ2)

D5 : (λ1, λ2) 7→ (λ1 + λ2 + λ3, λ2)

(λ3, λ4) 7→ (λ1(1 − λ4) + λ2 + λ3, λ1(1 − λ4) + λ2)

D6 : (λ1, λ2) 7→ (λ2 + λ3, λ2)

(λ3, λ4) 7→ (λ1 + λ2 + λ3, λ1λ4 + λ2) ;

here, (λ1, λ2, λ3) ∈ T̄3 and λ4 ∈ (0, 1). The integrand is now analytic.
We use regular quadrature rules (τ4ν , ω4ν) on the tetrahedron and (τk, ωk) on the

109

A. Implementation

interval. Finally, mapping the quadrature nodes to our reference triangle T̄, we
arrive at the following nodes and weights:

ξ1
i =

(
τ4ν,3, τ

4

ν,1 + τ4ν,2
)

η1
i =

(
τ4ν,1(1 − τk) + τ4ν,3, τ

4

ν,2

)
ξ2

i =
(
τ4ν,3, τ

4

ν,1(1 − τk) + τ4ν,2
)

η2
i =

(
τ4ν,1 + τ4ν,3, τ

4

ν,2

)
ξ3

i =
(
τ4ν,1 − τ

4

ν,1τk + τ4ν,3, τ
4

ν,1τk + τ4ν,2
)

η3
i =

(
τ4ν,3, τ

4

ν,2

)
ξ4

i =
(
τ4ν,1(1 − τk) + τ4ν,3, τ

4

ν,2

)
η4

i =
(
τ4ν,3, τ

4

ν,1 + τ4ν,2
)

ξ5
i =

(
τ4ν,1 + τ4ν,3, τ

4

ν,2

)
η5

i =
(
τ4ν,3, τ

4

ν,1(1 − τk) + τ4ν,2
)

ξ6
i =

(
τ4ν,3, τ

4

ν,2

)
η6

i =
(
τ4ν,1 + τ4ν,3 − τ

4

ν,1τk, τ
4

ν,1τk + τ4ν,2
)

ωi = τ4ν,1ωkω
4

ν (A.23)

with i = n(k − 1) + ν, where n is the number of quadrature nodes in the tetrahedron,
ν ∈ {1, . . . ,n} and k ∈ {1, . . . ,N}.

A.3. Conforming adaptive refinement

Section 5.1 introduces an error indicator. It is desirable to refine the given mesh only
in places where the error is assumed to be large, as a coarser mesh will result in
smaller equation systems.

If the mesh is refined uniformly, no hanging nodes are introduced. This is different
for adaptive refinement techniques, where hanging nodes need to be taken care of.
A refinement algorithm needs to eliminate hanging nodes and edges. A further
requirement is that the quality of single elements must not decrease: For a 2D
mesh, the angles of an element need to be bounded from below; for a 3D mesh, the
tetrahedra must not degenerate to flat “slivers” (see [41, Section 5.1] for degenerate
elements). For linear problems, this mesh quality has a direct impact on the error
constants and the matrix condition. An example for this is given in Verfürth [46,
Section 1.2].

In our implementation, we follow the strategies suggested in [46, Section 4.1]. For a
2D mesh, we use the following directions:

Algorithm A.5:

• Retrieve the maximal error indicator ηmax and select some threshold constant
ϑ ∈ (0, 1).

• Mark all elements T ∈ Th with ηT > ϑηmax red.

110

A.3. Conforming adaptive refinement

• For hanging nodes, mark the adjacent elements with a compatible green or
blue marker. If the adjacent element has been refined before with green or
blue, mark it red to retain mesh quality.

• Repeat the last step until all hanging nodes are removed. �

Here, a red refinement means that the triangle is decomposed into four similar sub-
triangles; a green refinement means that one edge is bisected; and a blue refinement
means that two edges are marked for bisection. Here, we are free to choose a rota-
tional direction blue·+ or blue·− (see Figure A.1), and it is advisable to take the one
with the largest minimal angle for mesh quality.

P

P

P
0 1

2

(a) none

P

P

P
0 1

2

(b) red

P

P

P
0 1

2

(c) green0

P

P

P
0 1

2

(d) green1

P

P

P
0 1

2

(e) green2

P

P

P
0 1

2

(f) blue01+

P

P

P
0 1

2

(g) blue12+

P

P

P
0 1

2

(h) blue20+

P

P

P
0 1

2

(i) blue01−
P

P

P
0 1

2

(j) blue12−
P

P

P
0 1

2

(k) blue20−

Figure A.1.: Possible refinements of a triangular element by edge bisection

The refinement of a tetrahedron is more involved, as there are more cases. In general,
we proceed with the same refinement algorithm:

Algorithm A.6:

• Retrieve the maximal error indicator ηmax and select some threshold constant
ϑ ∈ (0, 1).

111

A. Implementation

• Mark all elements T ∈ Th with ηT > ϑηmax red.

• For hanging nodes or hanging edges, mark the adjacent elements with a com-
patible green or bluemarker. This marker is chosen such that the refinement
trace across the joint face matches: On a tetrahedron face, the refinement trace
will be one of the possible 2D refinements given in Figure A.1. Here, the + and
− versions of blue refinement are both needed, as the orientation of interface
triangles will flip when matching traces.
If the given refinements are not able to resolve all hanging nodes, there are
three or more edges marked for refinement, and they are not coplanar. Mark
this element red.
If the adjacent element has been refined before with green or blue, mark it red
to retain mesh quality.

• Repeat the last step until all hanging nodes and edges are removed.
�

We get six general types of refinement, from which all cases are deduced by rotations
and reflections:

1. none, the element is not refined.

2. green2, two faces are subdivided by a 2D green refinement. This effectively
cuts the element in half along one edge.

3. blue1green2, one face is subdivided by blue and two faces are subdivided
by green refinements. This cuts the element in three parts that all share one
vertex.

4. green4, all faces are subdivided by green refinements. This first cuts the
element into four parts along two planes.

5. red1green3, one face is subdivided by red and the other faces are subdivided
by green refinements. This cuts the element in four parts that all share one
vertex.

6. red4, all faces are subdivided by red refinements. This is similar to the 2D red
refinement case. Note that an element will not be decomposed into similar sub-
elements here: We can cut off the tips of a tetrahedron, giving four elements
at the corners that are in fact scaled versions of the original element. The
remaining part is an octahedron, where opposite faces are equal up to a half
rotation. It can be decomposed into four further sub-elements.

112

A.3. Conforming adaptive refinement

(a) none (b) green2 (c) blue1green2

(d) green4 (e) red1green3 (f) red4

Figure A.2.: Possible refinements of a tetrahedral element by edge bisection

113

Bibliography

[1] S. Agmon. Maximum theorems for solutions of higher order elliptic equations.
Bull. Amer. Math. Soc., 66:77–80, 1960.

[2] J. Alberty, C. Carstensen, and D. Zarrabi. Adaptive numerical analysis in
primal elastoplasticity with hardening. Comput. Methods Appl. Mech. Engrg.,
171(3-4):175–204, 1999.

[3] J. Altenbach and H. Altenbach. Einführung in die Kontinuums-Mechanik. Teubner
Verlag, 1994.

[4] C. C. Baniotopoulos, J. Haslinger, and Z. Morávková. Mathematical model-
ing of delamination and nonmonotone friction problems by hemivariational
inequalities. Appl. Math., 50(1):1–25, 2005.

[5] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical sci-
ences. Academic Press [Harcourt Brace Jovanovich Publishers], New York,
1979. Computer Science and Applied Mathematics.

[6] D. Braess. Finite Elemente. Springer-Verlag, 2007.

[7] CGAL. Computational Geometry Algorithms Library. http://www.cgal.org.

[8] A. Chernov. Nonconforming boundary elements and finite elements for interface and
contact problems with friction – hp-version for mortar, penalty and Nitsche’s methods.
PhD dissertation, Universität Hannover, 2006.

[9] A. Chernov and E. P. Stephan. Adaptive BEM for contact problems with friction.
In IUTAM Symposium on Computational Methods in Contact Mechanics, volume 3
of IUTAM Bookser., pages 113–122. Springer, Dordrecht, 2007.

[10] P. G. Ciarlet. Mathematical elasticity. Vol. II, volume 27 of Studies in Mathematics
and its Applications. North-Holland Publishing Co., Amsterdam, 1997. Theory
of plates.

[11] F. H. Clarke. Optimization and nonsmooth analysis, volume 5 of Classics in Ap-
plied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, second edition, 1990.

[12] G. Duvaut and J.-L. Lions. Inequalities in mechanics and physics. Springer-Verlag,
Berlin, 1976. Translated from the French by C. W. John, Grundlehren der
Mathematischen Wissenschaften, 219.

115

Bibliography

[13] S. Erichsen and S. Sauter. Efficient automatic quadrature in 3-d Galerkin BEM.
Comput. Methods Appl. Mech. Engrg., 157(3-4):215–224, 1998. Seventh Confer-
ence on Numerical Methods and Computational Mechanics in Science and
Engineering (NMCM 96) (Miskolc).

[14] G. Fichera. Il teorema del massimo modulo per l’equazione dell’elastostatica
tridimensionale. Arch. Rational Mech. Anal., 7:373–387, 1961.

[15] A. F. Filippov. Differential equations with discontinuous righthand sides, volume 18
of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers
Group, Dordrecht, 1988. Translated from the Russian.

[16] R. Glowinski, J.-L. Lions, and R. Trémolières. Numerical analysis of variational
inequalities, volume 8 of Studies in Mathematics and its Applications. North-
Holland Publishing Co., Amsterdam, 1981. Translated from the French.

[17] C. Großmann and H.-G. Roos. Numerical treatment of partial differential equations.
Universitext. Springer, Berlin, 2007. Translated and revised from the 3rd (2005)
German edition by Martin Stynes.

[18] C. Hager and B. I. Wohlmuth. Nonlinear complementarity functions for plas-
ticity problems with frictional contact. Comput. Methods Appl. Mech. Engrg.,
198(41-44):3411–3427, 2009.

[19] J. Haslinger, M. Miettinen, and P. D. Panagiotopoulos. Finite Element Method
for Hemivariational Inequalities. Nonconvex Optimization and its Applications.
Kluwer Academic Publishers, Dordrecht, 1999.

[20] M. Hintermüller, V. A. Kovtunenko, and K. Kunisch. Obstacle problems with
cohesion: A hemi-variational inequality approach and its efficient numeri-
cal solution. Technical Report 2010-002, SpezialForschungsBereich F 32, Karl-
Franzens Universität Graz, 2010.

[21] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algo-
rithms. I, volume 305 of Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1993. Fun-
damentals.

[22] G. C. Hsiao and W. L. Wendland. Boundary integral equations, volume 164 of
Applied Mathematical Sciences. Springer-Verlag, Berlin, 2008.

[23] N. Kikuchi and J. T. Oden. Contact problems in elasticity: a study of variational
inequalities and finite element methods, volume 8 of SIAM Studies in Applied Math-
ematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 1988.

[24] K. C. Kiwiel. Methods of descent for nondifferentiable optimization, volume 1133 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985.

[25] M. Kleiber. Handbook of computational solid mechanics: survey and comparison of
contemporary methods. Springer-Verlag, Berlin, 1998.

116

Bibliography

[26] K. Kunisch and G. Stadler. Generalized Newton methods for the 2D-Signorini
contact problem with friction in function space. M2AN Math. Model. Numer.
Anal., 39(4):827–854, 2005.

[27] L. D. Landau and E. M. Lifschitz. Lehrbuch der theoretischen Physik. Band VII.
Akademie-Verlag, Berlin, sixth edition, 1989. Elastizitätstheorie.

[28] L. Lukšan and J. Vlček. Algorithm 811: NDA: algorithms for nondifferentiable
optimization. ACM Transactions on Mathematical Software, 27(2):193–213, June
2001.

[29] L. Lukšan and J. Vlček. A bundle-newton method for nonsmooth unconstrained
minimization. Math. Progr., 83:373–391, 1998.

[30] M. Maischak. hp-Methoden für Randintegralgleichungen bei 3D-Problemen, Theorie
und Implementierung. PhD dissertation, Universität Hannover, 1995.

[31] M. Maischak and E. P. Stephan. Adaptive hp-versions of BEM for Signorini
problems. Appl. Numer. Math., 54(3-4):425–449, 2005.

[32] Z. Naniewicz and P. D. Panagiotopoulos. Mathematical theory of hemivariational
inequalities and applications, volume 188 of Monographs and Textbooks in Pure and
Applied Mathematics. Marcel Dekker Inc., New York, 1995.

[33] J. Nečas and I. Hlaváček. Mathematical theory of elastic and elasto-plastic bodies:
an introduction, volume 3 of Studies in Applied Mechanics. Elsevier Scientific
Publishing Co., Amsterdam, 1980.

[34] C. Niculescu and L.-E. Persson. Convex Functions and Their Applications. CMS
Books in Mathematics. Canadian Mathematical Society, Halifax, 2006.

[35] L. Q. Qi and J. Sun. A nonsmooth version of Newton’s method. Math. Program-
ming, 58(3, Ser. A):353–367, 1993.

[36] A. Quarteroni and A. Valli. Domain decomposition methods for partial differential
equations. Numerical Mathematics and Scientific Computation. The Clarendon
Press Oxford University Press, New York, 1999. Oxford Science Publications.

[37] J. Rauch. Discontinuous semilinear differential equations and multiple valued
maps. Proc. Amer. Math. Soc., 64(2):277–282, 1977.

[38] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, second edition, 2003.

[39] S. Sauter and C. Schwab. Randelementmethoden. Vieweg + Teubner, 2004.

[40] C. Schwab. Variable order composite quadrature of singular and nearly singular
integrals. Computing, 53(2):173–194, 1994.

[41] H. Si. Constrained Delaunay tetrahedral mesh generation and refinement.
Finite Elem. Anal. Des., 46(1-2):33–46, 2010.

117

Bibliography

[42] I. S. Sokolnikoff. Mathematical theory of elasticity. McGraw-Hill Book Company,
Inc., New York-Toronto-London, 1956. 2d ed.

[43] J. Stoer. Einführung in die numerische Mathematik. I, volume 105 of Heidelberger
Taschenbücher [Heidelberg Paperbacks]. Springer-Verlag, Berlin, third edition,
1979. Based on the lectures of F. L. Bauer.

[44] A. H. Stroud. Approximate calculation of multiple integrals. Prentice-Hall Inc.,
Englewood Cliffs, N.J., 1971. Prentice-Hall Series in Automatic Computation.

[45] tetgen. A quality tetrahedral mesh generator. http://tetgen.berlios.de.

[46] R. Verfürth. A Review of a posteriori Error Estimation and Adaptive Mesh-
Refinement Techniques. Wiley Teubner, 1996.

[47] L. T. Wheeler. Maximum principles in classical elasticity. In Mathematical
problems in elasticity, volume 38 of Ser. Adv. Math. Appl. Sci., pages 157–185.
World Sci. Publ., River Edge, NJ, 1996.

[48] X. Q. Yang. Generalized second-order characterizations of convex functions. J.
Optim. Theory Appl., 82(1):173–180, 1994.

[49] X. Q. Yang and V. Jeyakumar. Generalized second-order directional derivatives
and optimization with C1,1 functions. Optimization, 26(3-4):165–185, 1992.

118

Curriculum Vitae

17. 12. 1981 born in Halle (Westf.)

06. 2001 Abitur at CJD-Gymnasium, Versmold

09. 2001 – 06. 2002 Community service, Diakoniestation Borgholzhausen

10. 2002 – 09. 2005 Studies at Universität Hannover
Mathematik, Studienrichtung Rechnergestützte Wissenschaften

04. 2005 Vordiplom

09. 2005 – 09. 2006 Studies at Brunel University, Uxbridge, UK
Computational Mathematics with Modelling

09. 2006 Master of Science

10. 2006 – 09. 2007 Studies at Universität Hannover
Mathematik, Studienrichtung Rechnergestützte Wissenschaften

since 10. 2007 PhD student in the workgroup Numerical Analysis,
IfAM, Leibniz University Hannover

10. 2007 – 09. 2010 scholarship holder, DFG-Graduiertenkolleg 615

119

