

A study of pathogenesis-related (PR) proteins from pearl millet (*Pennisetum glaucum*) after infection with the downy mildew pathogen (*Sclerospora graminicola*).

Von der Naturwissenschaftlichen Fakultät

der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades

DOKTORIN DER NATURWISSENSCHAFTEN

Dr.rer nat

genehmigte Dissertation von

M.Sc. Manjula Mundakana

geboren am 15.03.1980, in Kumbla, Indien

2011

Referentin	: Prof. Dr. Jutta Papenbrock
Korreferent	: Prof. Dr. Edgar Maiss
Tag der Promotion	: 04.05.2011

Zusammenfassung

Pathogenesis-related Proteine (PR) bilden einen Hauptbestandteil der Pflanzenabwehr gegenüber Pathogenen. Bis heute sind siebzehn PR-Proteinfamilien beschrieben worden. In der Perlhirse (Pennisetum glaucum), die vom Flaschen Mehltau (Sclerospora graminicola) befallen werden kann, wurden bisher die Phenylalanin-Ammoniak-Lyase, Peroxidase, Superoxiddismutase und Glucanase näher charakterisiert. Jedoch liegen zu Chitinasen und Thaumatin-ähnliche Proteine (TLP), die eine wichtige Rolle in der Verteidigung gegenüber Oomyceten spielen, keine Erkenntnisse aus der Perlhirse vor. In dieser Arbeit wurde die Chitinase der Perlhirse durch chromatographische Methoden aufgereinigt. Das Protein besitzt ein apparentes Moleklargewicht von 24 kDa auf einer SDS PAGE und zeigte eine chitinolytische Aktivität im "In Gel" Assay. Außerdem konnte das Protein durch eine immunologische Kreuzreaktion mit dem Antichitinase Antikörper aus Tabak identifiziert werden. Darüberhinaus fand eine Identifizierung des Proteins durch de novo Sequenzierung von tryptischen Fragmenten mittels ESI Q-ToF Massenspektrometrie statt. Die Homologiesuche der abgeleiteten Aminosäurensequenz ergab, dass das Protein zur Gruppe I der Chitinasen (Lysozym-Superfamilie) gehört und somit zu den PR-3 Proteinen. Zusätzlich wurden Primer von einer Mais-Chitinase für die Amplifikation des Volllängengens abgeleitet. Mit ihnen konnte ein 482 bp Fragment der Perlhirse amplifiziert werden, welches Homologien zu einer Mais Chitinase (NCBI Zugriffsnummer gi: 195627425) der Familie 19 der Glycosyl-Hydrolasen (GH 19) aufweist. Die Nukleotidsequenz der Perlhirsen Chitinase wurde unter der NCBI Zugriffsnummer gi: 296011300 hinterlegt und beinhaltet zwischen den Positionen 241 und 348 ein Intron von 107 Basen. Das zweite wichtige Protein, das untersucht wurde, ist das Thaumatin-ähnliche PRotein (TLP) der Perlhirse, dass zur Familie der PR-5 Proteine gehört. Das TLP (23 kDa) der Perlhirse wurde partiell durch Chromatographie aufgereinigt und zeigte eine immunologische Kreuzreaktion mit einem Anti-Thaumatin Antikörper der Douglasie. Durch de novo Sequenzierung von tryptischen Fragmenten mittels ESI Q-ToF Massenspetrometrie des TLPs wurden partielle Aminosäuresequenzen erzeugt, die für die Ableitung von Primer genutzt wurden. Mit diesen konnte ein 422 bp Fragment des TLP Gens amplifiziert werden. Die Homologiesuche der abgeleiteten Aminosäuresequenz ergab eine große Übereinstimmung zu einem hypothetischen Protein mit 231 Aminosäure und Ähnlichkeiten zu einem Thaumatinähnlichen Proteinen aus Sorghum bicolor (NCBI Zugriffsnummer gi:242038635). Darüber hinaus zeigte das TLP in vitro eine Curdlan-bindende (Wasser-unlösliches Glucan) Aktivität, die essentiell für das Binden an die mykotische Membran ist. Durch diesen Kontakt wird die Pilzmembran permeabel und durch das anschließende Ausströmen von Ionen aus der Pilzzelle deren Zelltod eingeleitet. Der positive Nachweis von S. graminicola Sporangien mit Alcain Blau, einem Kompetitor für die TLP-Bindestelle an der Zellwand des Pilzes, zeigte die Existenz einer solchen Bindungsstelle beim Falschen Mehltau auf. Die Hemmung der Beweglichkeit von S. graminicola Zoosporen durch ein Glucan-bindendes Protein zeigte den toxischen Effekt des TLPs auf den Falschen Mehltau. Die Permeabilisierung der pilzlichen Membran durch das TLP kann mit Sytox Grün, einem Nukleinsäurefarbstoff, nachgewiesen werden. Dieser Nachweis konnte erstmalig durch Messung der Sytox Fluoreszenz für das TLP aus der Perlhirse bestätigt werden. Zusätzlich wurden verschiedene Primer basierte Techniken (Genome walking) für die Amplifizierung der Volllängenklone der Chitinase und des TLPs aus Perlhirse durchgeführt. Das Multiple Sequenzalignment der Chitinase und des TLPs aus der monocotylen Perlhirse ergab eine phylogentische Verwandschaft zu anderen Pflanzenspezies und zeigte eine Divergenz zu den bisher bekannten monocotylen Chitinasen und TLPs. Interessanterweise sind die Chitinase und das TLP der Perlhirse in einer eigenen Untergruppe einzuordnen.

Schlüsselworte: Chitinase, Falscher Mehltau (*Sclerospora graminicola*) Perlhirse (*Pennisetum glaucum*).

Summary

Pathogenesis-related (PR) proteins constitute a major defense mechanism of plants against pathogens. Seventeen PR protein families have been classified till date. Some of the defense related proteins studied in pearl millet (*Pennisetum glaucum*) downy mildew pathogen (*Sclerospora graminicola*) interaction include phenyl alanine ammonia lyase, peroxidase, super oxide dismutase, and glucanase are characterized; however, chitinase and thaumatin like proteins (TLPs) from pearl millet which play in general an important role in host defense against oomycete pathogen are not characterized. Therefore this doctoral study concentrated on the characterization of pearl millet chitinase and TLP.

In this study pearl millet chitinase was purified by chromatography. The purified protein had an apparent molecular weight of 24 kDa on SDS PAGE and showed a chitinolytic activity in an in gel assay. The protein also showed immunological cross reaction with an antichitinase antibody from tobacco. Moreover, the protein was identified by de novo sequencing of trypsin digested peptide fragments by ESI Q-TOF. Homology search of the deduced amino acid sequence revealed that the purified protein belongs to class I chitinase (lysozyme super family) belonging to the PR-3 family of pathogenesis related proteins. Additionally, primers were designed for the amplification of the full length gene considering the deduced amino acid sequence and a maize chitinase gene. The 482 bp (partial length) pearl millet chitinase gene shared homology with many plant chitinases belonging to family 19 of glycosyl hydrolases (GH 19) classification system. The sequence was submitted to NCBI (NCBI accession number: gi 296011300). It was also observed that the pearl millet *chitinase* gene is interrupted by a 107 bp intron at the position 241 bp to 348 bp. The obtained nucleotide sequence shared homology to the chitinase from Maize (NCBI Accession number: gi 195627425). The second important PR protein studied was the pearl millet thaumatin like protein belonging to PR-5 family. TLP from pearl millet was partially purified by chromatography. The 23 kDa pearl millet TLP showed immunological cross reaction with anti-TLP antibody from Douglas fir. The protein was characterized by de novo sequencing of trypsin digested peptide fragments by ESI Q-TOF. Based on the deduced partial amino acid sequence primers were designed and a 422 bp (partial length) pearl millet tlp gene was amplified. The obtained nucleotide sequence was translated and the partial amino acid sequence showed homology to the hypothetical protein (231 aa) from Sorghum bicolor (similar to thaumatin like protein NCBI Accession number: gi 242038635). Moreover, the protein also exhibited in vitro curdlan (water insoluble glucan) binding activity, which is essential before TLP acts on fungal membrane and hydrolyzes the fungal plasma membrane leading to ion leakage and death of invading fungal pathogen. Positive staining of S. graminicola sporangium with alcian blue - a competitor of TLP for binding sites on cell wall of the fungus showed the presence of TLP binding sites on cell wall of downy mildew. Inhibition of S. graminicola zoospore motility by the glucan bound protein showed toxic effect of TLP on downy mildew pathogen. Fungal membrane permeabilization by TLP was investigated with Sytox green, a nucleic acid dye that enters the cells with compromised plasma membrane. Fluorescence of Sytox green stained sporangia after treatment with curdlan bound protein proved membrane permeabilization by pearl millet TLP. Different primer based genome walking techniques were employed to amplify the full length gene of pearl millet chitinase and TLP. Multiple sequence analyses of both chitinase and TLP revealed their phylogenetic relationship of pearl millet chitinases and TLPs with that of other plant species. Interestingly both pearl millet chitinase and TLP showed divergence from other monocotyledonous chitinases and TLPs and it was placed in separate subgroup.

Key words: Chitinase, Downy mildew pathogen (*Sclerospora graminicola*), Pearl millet (*Pennisetum glaucum*).

Table of contents

Sl. No.	Content	Page No.
1.	Introduction	-
1.1	Cultivation	1
1.2	Economic importance	1
1.3	Important diseases of pearl millet	1
1.4	Downy mildew disease	2
1.4.1	Systematic position	2
1.4.2	Pathogen Characteristics	2
1.4.3	Host range	2
1.4.4	Disease symptoms	2
1.5	Spread of disease	4
1.6	Disease Management	4
1.7	Host-pathogen interaction-general overview	5
1.8	Related Proteins in plant defense	5
1.9	Chitinase	6
1.9.1	Classification of chitinases	6
1.9.2	Role of chitinase in defense response	8
1.10	Thaumatin like protein-TLP (PR-5)	9
1.10.1	Classification of thaumatin like (PR-5) proteins	9
1.10.2	Role of TLPs in defense response	9
1.10.3	Mode of action of TLPs	10
1.11	Aim of the Research	10
2.	Materials and methods	
Part A	Preliminary studies	
2.1	Infection of pearl millet seedlings with downy mildew pathogen	12
2.1.2	Maintenance of inoculum	12
2.1.3	Inoculum preparation	12
2.1.4	Harvest of zoospores and inoculation	12
2.1.5	Sample harvest	13
Part B	Analytical methods	
2.2	Immunological detection of TLP from pearl millet	13
2.2.1	Extraction of total soluble protein	13
2.2.2	Determination of protein concentration by Bradford method	13
2.3	Sodium dodecyl sulfate polyacrylamide gel electrophoresis	13
2.3.1	Gel preparation	13
2.3.2	Sample preparation for SDS-PAGE and electrophoresis	14
2.3.3	Staining of protein gel	15
i)	Staining of protein gel with Coomassie Brilliant Blue	15
ii)	Staining of protein gel with Silver nitrate	15
2.3.4	Electrophoretic transfer of protein - wet blot method	15
2.4	Immunological detection of proteins	16
2.4.1	Blocking	16
2.4.2	Incubation with antibodies	17
2.4.3	Development of immuno blot	17
2.4.4	Immunoblotting of the purified protein	17

Sl. No.	Content	Page No.
Part C	Biochemical methods	
2.5	Substrate binding assay	18
2.5.1	Substrate Preparation	18
2.5.2	-	
2.5.3	Elution of the curdlan bound protein	18
2.5.4	TLP antibody	18
2.6	Action of TLP on downy mildew pathogen of pearl millet	19
2.6.1	Inhibition of zoospores with curlan bound protein	19
2.6.2	Microscopic observation of membrane permeabilization	19
2.7	Purification of pearl millet chitinase	19
2.7.1	Propagation of pearl millet seedlings	19
2.7.2	Treatment of pearl millet seedlings with AgNO3 solution	19
2.7.3	Extraction of total soluble protein from pearl millet seedlings	20
2.7.4	Ammonium sulphate fractionation of proteins	20
2.7.5	Separation of proteins by ion exchange chromatography	20
2.7.6	Chromatography using DEAE cellulose column	21
2.7.7	Chromatography using hydroxyapatite column	21
2.7.8	Ion exchange chromatography using CM Sephadex	22
2.7.9	Substrate affinity chromatography using colloidal chitin	23
i)	Preparation of colloidal chitin	23
ii)	Substrate affinity chromatography	23
2.8	Identification of the purified protein-Sample preparation for de	
	novo sequencing by MS (In-gel trypsin digestion of the protein	23
	band)	
2.8.1	Washing and complete destaining of the excised band	23
2.8.2	Recovery of trypsin digested peptide fragments from the gel	24
2.8.3	De novo sequencing of peptide fragments by EOS Q-TOF	24
2.8.4	gel assay to detect pearl millet chitinase activity	24
2.9	FPLC (Fast Protein Liquid Chromatography)	25
Part D	Molecular biology methods	
2.10	RNA Isolation and quantification	26
2.10.1	Isolation of the total RNA from pearl millet seedlings	26
2.10.2	Determination of quantity and purity of RNA	27
2.10.3	Electrophoresis of RNA	27
i)	Preparation of agarose gel	27
ii)	RNA Sample preparation and electrophoresis	28
2.11	DNA Isolation and quantification	28
2.11.1	Isolation of genomic DNA from pearl millet seedlings	28
2.11.2	Determination of quantity and purity of DNA	29
2.11.3	Electrophoresis of DNA	29
i)	Preparation of agarose gel	29
ii)	Sample preparation and electrophoresis of DNA	30
2.12	Polymerase chain reaction (PCR)	30
2.12.1	Reverse Transcriptase Polymerase Chain Reaction (RT PCR)	30

Sl. No.	Content	Page No.
2.12.2	PCR using genomic DNA as template	31
2.12.3	PCR reaction conditions	31
2.13	Purification of PCR products	32
2.13.1	Purification of PCR products using E.Z.N.A. cycle pure kit	32
2.13.2	Purification DNA fragments by phenol chloroform method	32
2.13.3	Purification of PCR products with QIAEX II Gel Extraction kit	33
2.14	Preparation of competent E. coli cells and transformation	33
2.14.1	Preparation of electro competent <i>E. coli</i> cells	33
2.14.2	Electro transformation of <i>E. coli</i> cells	34
2.14.3	Preparation of heat shock ultra competent cells	34
2.14.4	Heat shock transformation of <i>E. coli</i> cells	35
2.14.5	Cloning of PCR products into cloning vector	36
i)	i) TA Cloning	36
ii)	ii) Blunt end cloning	37
2.15	Screening the transformed colonies	37
2.15.1	Blue white selection	37
2.15.2	Antibiotic selection	37
2.16	Isolation of plasmid DNA from <i>E coli</i> cells	37
2.16.1	Isolation of plasmid DNA by HB lysis	37
2.16.2	Plasmid preparation using GeneJET Plasmid Miniprep Kit	38
2.17	Sequencing	39
2.18	Northern blot analysis	39
2.18.1	Capillary blotting of RNA from the gel onto nylon membrane	39
2.18.2	Prehybridization	41
2.18.3	Radioactive labeling of probe	41
2.18.4	Purification of the labeled probe	41
2.18.5	Hybridization of RNA	41
2.18.6	Washing of blots	41
2.18.7	Visualization of radioactive hybridization	42
2.18.8	Stripping	42
2.19	Southern blot analysis	42
2.19.1	Restriction digestion of genomic DNA	42
2.19.2	Purification of restriction digested DNA	42
2.19.3	Electrophoresis of restriction digested DNA	42
2.19.4	Preparation of the gel for blotting	42
2.19.5	Capillary blotting of DNA from the gel onto the nylon membrane	43
2.19.6	Prehybridization	43
2.19.7	Hybridization	43
2.19.8	Washing	43
2.19.9	Visualization of radioactive hybridization	44
2.19.10	Stripping	44
2.20	Amplification of unknown flanking regions using different PCR	
	based genome walking techniques Inverse PCR to amplify unknown flanking regions	44

Part APreliminary studies3.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)3.2Detection thaumatin-like protein (TLP) in pearl millet593.3Immunological detection of proteins60	S1. No.	Content	Page No.
2.20.3 Dephosphorylation of the restriction digested genomic DNA 47 2.20.4 Self ligation of the restriction digested DNA fragments 47 2.20.5 Primer designing and PCR 47 2.21 Genome walking with universal genome walker kit from Clontech 48 2.21.2 DNA extraction by CTAB method 49 2.21.3 Restriction digestion of genomic DNA 49 2.21.4 Purification of restriction digested genomic DNA 50 2.21.5 Dephosphorylation of the restriction digested genomic DNA 50 2.21.6 Ligation of restriction digested genomic DNA 50 2.21.7 Primer designing 50 2.21.7 Primer designing 50 2.21.7 Primer designing 50 2.21.7 Primer designing 50 2.21.9 Cloning of PCR production and sequencing 53 2.22.1 Plasmid isolation from the transformant colonies 53 2.22.2 Straight walk: A ligation-mediated method of genomic DNA 56 2.22.1 Primer designing 54 2.22.2 DNA extraction and restriction digestion of genomic DNA 56 </td <td>2.20.1</td> <td>Restriction digestion of genomic DNA</td> <td>46</td>	2.20.1	Restriction digestion of genomic DNA	46
2.20.4 Self ligation of the restriction digested DNA fragments 47 2.20.5 Primer designing and PCR 47 2.21 Genome walking with universal genome walker kit from Clontech 48 2.21.2 DNA extraction by CTAB method 49 2.21.3 Restriction digestion of genomic DNA 49 2.21.4 Purification of restriction digested genomic DNA 50 2.21.5 Dephosphorylation of the restriction digested genomic DNA 50 2.21.6 Ligation of restriction digested genomic DNA 50 2.21.7 Primer designing 50 2.21.8 Primary PCR 51 ii) Secondary PCR 52 2.2.9 Cloning of PCR production and sequencing 53 2.2.1 Primer designing 54 2.2.2.1 Primer designing 54 2.2.2.2 Straight walk: A ligation-mediated method of genomic DNA 56 2.2.2.1 Primer designing 54 2.2.2.2 DNA extraction and restriction digestion of genomic DNA 56 2.2.2.1 Primer designing 57 2.2.2.2 DNA extraction and restriction dige	2.20.2	Purification of restriction digested genomic DNA	47
2.20.5 Primer designing and PCR 47 2.21 Genome walking with universal genome walker kit from Clontech 48 2.21.2 DNA extraction by CTAB method 49 2.21.3 Restriction digestion of genomic DNA 50 2.21.4 Purification of restriction digested genomic DNA 50 2.21.5 Dephosphorylation of the restriction digested genomic DNA 50 2.21.6 Ligation of restriction digested genomic DNA 50 2.21.7 Primer designing 50 2.21.8 i) Primary PCR 51 ii) Secondary PCR 52 2.21.9 Cloning of PCR production and sequencing 53 2.21.10 Plasmid isolation from the transformant colonies 53 2.22.2 Straight walk: A ligation-mediated method of genome walking 53 2.22.1 Primer designing 54 22.2.3 2.22.2 DNA extraction and restriction digestion of genomic DNA 56 56 i) Primary PCR 56 57 2.2.2.3 77 2.22.4 Cloning of PCR products and sequencing 57 3.2 77 2.2	2.20.3	Dephosphorylation of the restriction digested genomic DNA	47
2.21 Genome walking with universal genome walker kit from Clontech 48 2.21.2 DNA extraction by CTAB method 49 2.21.3 Restriction digestion of genomic DNA 49 2.21.4 Purification of restriction digested genomic DNA 50 2.21.5 Dephosphorylation of the restriction digested genomic DNA 50 2.21.6 Ligation of restriction digested genomic DNA to Genome Walker adaptor 50 2.21.7 Primer designing 50 2.21.8 Primer designing 51 ii) Secondary PCR 52 2.21.9 Cloning of PCR production and sequencing 53 2.21.10 Plasmid isolation from the transformant colonies 53 2.22.2 Straight walk: A ligation-mediated method of genome walking 53 2.22.1 Primer designing 54 22.2.2 2.22.3 PCR with constructed libraries 56 56 i) Primary PCR 57 2.2.2.3 77 2.22.4 Cloning of PCR products and sequencing 57 3.7 8eults Part A Preliminary studies 58 58 Pa	2.20.4	Self ligation of the restriction digested DNA fragments	47
2.21.2 DNA extraction by CTAB method 49 2.21.3 Restriction digestion of genomic DNA 49 2.21.4 Purification of restriction digested genomic DNA 50 2.21.5 Dephosphorylation of the restriction digested genomic DNA 50 2.21.6 Ligation of restriction digested genomic DNA to Genome Walker adaptor 50 2.21.7 Primer designing 50 2.21.8 i) Primary PCR 51 ii) Secondary PCR 52 2.2.9 Cloning of PCR production and sequencing 53 2.21.0 Plasmid isolation from the transformant colonies 53 2.22.1 Primer designing 54 2.22.2 DNA extraction and restriction digestion of genomic DNA 56 2.22.3 PCR with constructed libraries 56 i) Primary PCR 56 ii) Secondary PCR 57 2.22.4 Cloning of PCR products and sequencing 57 3.1 Infection of pearl millet seedlings 58 Part A Preliminary studies 58 3.1 Infection of pearl millet seedlings 58	2.20.5	Primer designing and PCR	47
2.21.3 Restriction digestion of genomic DNA 49 2.21.4 Purification of restriction digested genomic DNA 50 2.21.5 Dephosphorylation of the restriction digested genomic DNA 50 2.21.6 Ligation of restriction digested genomic DNA to Genome Walker adaptor 50 2.21.7 Primer designing 50 2.21.8 i) Primary PCR 51 ii) Secondary PCR 52 2.21.9 Cloning of PCR production and sequencing 53 2.21.10 Plasmid isolation from the transformant colonies 53 2.22.2 Straight walk: A ligation-mediated method of genome walking 54 2.22.2 DNA extraction and restriction digestion of genomic DNA 56 2.22.3 PCR with constructed libraries 56 i) Secondary PCR 57 2.22.4 Cloning of PCR products and sequencing 57 2.22.4 Cloning of PCR products and sequencing 57 2.22.4 Cloning of PCR products and sequencing 58 Part A Preliminary studies 58 3.1 Infection of pearl millet seedlings 58 Par	2.21	Genome walking with universal genome walker kit from Clontech	48
2.21.4 Purification of restriction digested genomic DNA 50 2.21.5 Dephosphorylation of the restriction digested genomic DNA 50 2.21.6 Ligation of restriction digested genomic DNA to Genome Walker adaptor 50 2.21.7 Primer designing 50 2.21.8 i) Primary PCR 51 ii) Secondary PCR 52 2.21.9 Cloning of PCR production and sequencing 53 2.21.10 Plasmid isolation from the transformant colonies 53 2.22.2 Straight walk: A ligation-mediated method of genome walking 53 2.22.3 PCR with constructed libraries 56 ii) Secondary PCR 56 iii) Secondary PCR 56 iii) Secondary PCR 56 iii) Secondary PCR 56 iii) Secondary PCR 57 2.22.4 Cloning of PCR products and sequencing 57 2.22.4 Cloning of PCR products and sequencing 57 3.1 Infection of pearl millet seedlings 58 Part A Preliminary studies 58 3.1 <t< td=""><td>2.21.2</td><td>DNA extraction by CTAB method</td><td>49</td></t<>	2.21.2	DNA extraction by CTAB method	49
2.21.5Dephosphorylation of the restriction digested genomic DNA502.21.6Ligation of restriction digested genomic DNA to Genome Walker adaptor502.21.7Primer designing502.21.8 i)Primary PCR51ii)Secondary PCR522.21.9Cloning of PCR production and sequencing532.21.0Plasmid isolation from the transformant colonies532.22Straight walk: A ligation-mediated method of genome walking532.22.1Primer designing542.22.2DNA extraction and restriction digestion of genomic DNA562.22.3PCR with constructed libraries56i)Secondary PCR56ii)Secondary PCR562.22.4Cloning of PCR products and sequencing572.22.4Cloning of PCR products and sequencing573.Results58Part APreliminary studies58Part BPreliminary studies (analytical)583.1Infection of pearl millet seedlings58Part CResults of biochemical assays60Part CResults of biochemical assays603.4.1Glucan binding activity of pearl millet TLP603.5.2Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.6Purification of pearl millet chitinase633.6.1Induction of Pearl millet chitinase63<	2.21.3	Restriction digestion of genomic DNA	49
2.21.6 Ligation of restriction digested genomic DNA to Genome Walker adaptor 50 2.21.7 Primer designing 50 2.21.8 i) Primary PCR 51 ii) Secondary PCR 52 2.21.9 Cloning of PCR production and sequencing 53 2.21.0 Plasmid isolation from the transformant colonies 53 2.21.10 Plasmid isolation from the transformant colonies 53 2.22.2 Straight walk: A ligation-mediated method of genome walking 53 2.22.1 Primer designing 54 2.22.2 DNA extraction and restriction digestion of genomic DNA 56 2.22.3 PCR with constructed libraries 56 i) Primary PCR 56 ii) Secondary PCR 57 2.22.4 Cloning of PCR products and sequencing 57 3.1 Infection of pearl millet seedlings 58 Part A Preliminary studies 58 Part B Preliminary studies (analytical) 59 3.2 Detection thaumatin-like protein (TLP) in pearl millet 59 3.3 Immunological detection of proteins	2.21.4	Purification of restriction digested genomic DNA	50
adaptor502.21.7Primer designing502.21.8 i)Primary PCR51ii)Secondary PCR522.21.9Cloning of PCR production and sequencing532.21.10Plasmid isolation from the transformant colonies532.22Straight walk: A ligation-mediated method of genome walking532.22.1Primer designing542.22.2DNA extraction and restriction digestion of genomic DNA562.22.3PCR with constructed libraries56ii)Secondary PCR56iii)Secondary PCR572.22.4Cloning of PCR products and sequencing572.22.4Cloning of PCR products and sequencing58Part APreliminary studies583.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.2Detection thaumatin-like protein (TLP) in pearl millet593.3Immunological detection of proteins60Part CResults of biochemical assays603.4.1Glucan binding activity of pearl millet TLP603.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of <i>S. graminicola</i> zoospore mobility with the curdlan bound protein613.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66 <td>2.21.5</td> <td>Dephosphorylation of the restriction digested genomic DNA</td> <td>50</td>	2.21.5	Dephosphorylation of the restriction digested genomic DNA	50
adaptor2.21.7Primer designing502.21.8 i)Primary PCR51ii)Secondary PCR522.21.9Cloning of PCR production and sequencing532.21.10Plasmid isolation from the transformant colonies532.22Straight walk: A ligation-mediated method of genome walking532.22.1Primer designing542.22.2DNA extraction and restriction digestion of genomic DNA562.22.3PCR with constructed libraries56i)Perk with constructed libraries56ii)Secondary PCR572.22.4Cloning of PCR products and sequencing572.22.4Cloning of PCR products and sequencing58Part APreliminary studies58Part BPreliminary studies (analytical)583.1Infection of pearl millet seedlings58Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.5.1Inhibition of <i>S. graminicola</i> zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	2.21.6	Ligation of restriction digested genomic DNA to Genome Walker	50
2.21.8 i) Primary PCR 51 ii) Secondary PCR 52 2.21.9 Cloning of PCR production and sequencing 53 2.21.0 Plasmid isolation from the transformant colonies 53 2.22 Straight walk: A ligation-mediated method of genome walking 53 2.22.1 Primer designing 54 2.22.2 DNA extraction and restriction digestion of genomic DNA 56 2.22.3 PCR with constructed libraries 56 i) Primary PCR 56 ii) Secondary PCR 57 2.22.4 Cloning of PCR products and sequencing 57 3.1 Infection of pearl millet seedlings 58 Part A Preliminary studies (analytical) 58 3.2 Detection thaumatin-like protein (TLP) in pearl millet 59 3.3 Immunological detection of proteins 60 3.4.1 Glucan binding activity of pearl millet TLP 60 3.4.2 Immuno blot analysis of the curdlan bound protein 61 3.5 Inhibition of S. graminicola by pearl millet TLP 61 3.5.1 Inhibition of S. graminicola pospore		adaptor	50
ii)Secondary PCR522.21.9Cloning of PCR production and sequencing532.21.10Plasmid isolation from the transformant colonies532.22Straight walk: A ligation-mediated method of genome walking532.22DNA extraction and restriction digestion of genomic DNA562.22.1Primer designing542.22.2DNA extraction and restriction digestion of genomic DNA562.22.3PCR with constructed libraries56i)Primary PCR572.22.4Cloning of PCR products and sequencing573.Results772.22.4Cloning of PCR products and sequencing58Part APreliminary studies583.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.2Detection thaumatin-like protein (TLP) in pearl millet593.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP613.5Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola pospore mobility with the curdlan bound protein613.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66 <td>2.21.7</td> <td>Primer designing</td> <td>50</td>	2.21.7	Primer designing	50
2.21.9Cloning of PCR production and sequencing532.21.10Plasmid isolation from the transformant colonies532.22Straight walk: A ligation-mediated method of genome walking532.22.1Primer designing542.22.2DNA extraction and restriction digestion of genomic DNA562.22.3PCR with constructed libraries56i)Primary PCR56ii)Secondary PCR572.22.4Cloning of PCR products and sequencing573.Results57Part APreliminary studies583.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.2Detection thaumatin-like protein (TLP) in pearl millet593.3Immunological detection of proteins60Part CResults of biochemical assays60Part CResults of biochemical assays613.4Characterization of pearl millet TLP603.5.1Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	2.21.8 i)	Primary PCR	51
2.21.10 Plasmid isolation from the transformant colonies 53 2.22 Straight walk: A ligation-mediated method of genome walking 53 2.22.1 Primer designing 54 2.22.2 DNA extraction and restriction digestion of genomic DNA 56 2.22.3 PCR with constructed libraries 56 i) Primary PCR 56 ii) Secondary PCR 57 2.22.4 Cloning of PCR products and sequencing 57 3. Results 77 2.22.4 Cloning of PCR products and sequencing 58 Part A Preliminary studies 58 3.1 Infection of pearl millet seedlings 58 Part B Preliminary studies (analytical) 59 3.2 Detection thaumatin-like protein (TLP) in pearl millet 59 3.3 Immunological detection of proteins 60 3.4.1 Glucan binding activity of pearl millet TLP 60 3.4.2 Inmuno blot analysis of the curdlan bound protein 61 3.5.1 Inhibition of <i>S. graminicola</i> by pearl millet TLP 61 3.5.1 Inhibition of <i>S. graminicola</i> zoosp	ii)	Secondary PCR	52
2.22Straight walk: A ligation-mediated method of genome walking532.22.1Primer designing542.22.2DNA extraction and restriction digestion of genomic DNA562.22.3PCR with constructed libraries56i)Primary PCR56ii)Secondary PCR572.22.4Cloning of PCR products and sequencing573.Results57Part APreliminary studies58Part BPreliminary studies (analytical)583.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.3Immunological detection of proteins603.4.1Glucan binding activity of pearl millet TLP603.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of S. graminicola by pearl millet TLP613.6.1Induction of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	2.21.9	Cloning of PCR production and sequencing	53
2.22.1Primer designing542.22.2DNA extraction and restriction digestion of genomic DNA562.22.3PCR with constructed libraries56i)Primary PCR56ii)Secondary PCR572.22.4Cloning of PCR products and sequencing573.Results58Part APreliminary studies583.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)583.2Detection thaumatin-like protein (TLP) in pearl millet593.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.5.1Inhibition of <i>S. graminicola</i> by pearl millet TLP613.5.2Microscopic study to detect membrane permeabilization613.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	2.21.10	Plasmid isolation from the transformant colonies	53
2.22.2DNA extraction and restriction digestion of genomic DNA562.22.3PCR with constructed libraries56i)Primary PCR56ii)Secondary PCR572.22.4Cloning of PCR products and sequencing573.Results57Part APreliminary studies58Part BPreliminary studies (analytical)583.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.5.1Inhibition of S. graminicola by pearl millet TLP613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	2.22	Straight walk: A ligation-mediated method of genome walking	53
2.22.3PCR with constructed libraries56i)Primary PCR56ii)Secondary PCR572.22.4Cloning of PCR products and sequencing573.Results573.Results58Part APreliminary studies (analytical)583.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.5.1Inhibition of <i>S. graminicola</i> by pearl millet TLP613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	2.22.1	Primer designing	54
i)Primary PCR56ii)Secondary PCR572.22.4Cloning of PCR products and sequencing573.Results57Part APreliminary studies58Part BPreliminary studies (analytical)583.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP613.5Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	2.22.2	DNA extraction and restriction digestion of genomic DNA	56
ii)Secondary PCR572.22.4Cloning of PCR products and sequencing573.Results57Part APreliminary studies583.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.2Detection thaumatin-like protein (TLP) in pearl millet593.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.5.1Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.6.1Induction of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	2.22.3	PCR with constructed libraries	56
2.22.4Cloning of PCR products and sequencing573.ResultsPart APreliminary studies3.1Infection of pearl millet seedlings3.2Detection thaumatin-like protein (TLP) in pearl millet3.3Immunological detection of proteins93.3Immunological detection of pearl millet TLP6093.4Characterization of pearl millet TLP603.4.1613.51nhibition of S. graminicola by pearl millet TLP613.5.11nhibition of S. graminicola zoospore mobility with the curdlan bound protein3.693.691.63.6.11.7<	i)	Primary PCR	56
3. Results Part A Preliminary studies 3.1 Infection of pearl millet seedlings 58 Part B Preliminary studies (analytical) 59 3.2 Detection thaumatin-like protein (TLP) in pearl millet 59 3.3 Immunological detection of proteins 60 Part C Results of biochemical assays 60 3.4 Characterization of pearl millet TLP 60 3.4.1 Glucan binding activity of pearl millet TLP 60 3.5.2 Inhibition of <i>S. graminicola</i> by pearl millet TLP 61 3.5.1 Inhibition of <i>S. graminicola</i> zoospore mobility with the curdlan bound protein 61 3.6.1 Induction of PR proteins in pearl millet by silver nitrate 63 3.6.2 Ammonium sulphate fractionation of total soluble proteins from 66	ii)	Secondary PCR	57
Part APreliminary studies3.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.2Detection thaumatin-like protein (TLP) in pearl millet593.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.5.2Inhibition of <i>S. graminicola</i> by pearl millet TLP613.5.1Inhibition of <i>S. graminicola</i> zoospore mobility with the curdlan bound protein613.6.2Microscopic study to detect membrane permeabilization623.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	2.22.4	Cloning of PCR products and sequencing	57
3.1Infection of pearl millet seedlings58Part BPreliminary studies (analytical)593.2Detection thaumatin-like protein (TLP) in pearl millet593.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.	Results	
Part BPreliminary studies (analytical)3.2Detection thaumatin-like protein (TLP) in pearl millet3.3Immunological detection of proteins60Part CResults of biochemical assays3.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein3.5.2Microscopic study to detect membrane permeabilization3.6Purification of pearl millet chitinase3.6.1Induction of PR proteins in pearl millet by silver nitrate3.6.2Ammonium sulphate fractionation of total soluble proteins from	Part A	Preliminary studies	
3.2Detection thaumatin-like protein (TLP) in pearl millet593.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.1	Infection of pearl millet seedlings	58
3.3Immunological detection of proteins60Part CResults of biochemical assays603.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of <i>S. graminicola</i> by pearl millet TLP613.5.1Inhibition of <i>S. graminicola</i> zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	Part B	Preliminary studies (analytical)	
Part CResults of biochemical assays3.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of <i>S. graminicola</i> by pearl millet TLP613.5.1Inhibition of <i>S. graminicola</i> zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.2	Detection thaumatin-like protein (TLP) in pearl millet	59
3.4Characterization of pearl millet TLP603.4.1Glucan binding activity of pearl millet TLP603.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.3	Immunological detection of proteins	60
3.4.1Glucan binding activity of pearl millet TLP603.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	Part C	Results of biochemical assays	
3.4.2Immuno blot analysis of the curdlan bound protein613.5Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.4	Characterization of pearl millet TLP	60
3.5Inhibition of S. graminicola by pearl millet TLP613.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.4.1	Glucan binding activity of pearl millet TLP	60
3.5.1Inhibition of S. graminicola zoospore mobility with the curdlan bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.4.2	Immuno blot analysis of the curdlan bound protein	61
bound protein613.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.5	Inhibition of <i>S. graminicola</i> by pearl millet TLP	
bound protein623.5.2Microscopic study to detect membrane permeabilization623.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.5.1	Inhibition of S. graminicola zoospore mobility with the curdlan	61
3.6Purification of pearl millet chitinase633.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66		bound protein	01
3.6.1Induction of PR proteins in pearl millet by silver nitrate633.6.2Ammonium sulphate fractionation of total soluble proteins from66	3.5.2	Microscopic study to detect membrane permeabilization	62
3.6.2 Ammonium sulphate fractionation of total soluble proteins from 66	3.6	Purification of pearl millet chitinase	63
h h	3.6.1	Induction of PR proteins in pearl millet by silver nitrate	63
	3.6.2	· · ·	66

Sl. No.	Content	Page No.
3.7	Purification by column chromatography	67
3.7.1	Chromatographic separation of proteins on DEAE cellulose column	67
3.7.2	Chromatography with hydroxyapatite column	68
3.7.3	Ion exchange chromatography involving CM sepharose	68
3.8	Identification of purified pearl millet protein (24 kDa)	70
3.8.1	Immuno blot analysis of the purified protein	70
3.8.2	<i>In-gel</i> trypsin digestion of the excised protein band and <i>de novo</i>	
	sequencing	71
3.8.3	Homology search for deduced amino acid sequences using MS	
	Blast software	73
3.9	Substrate affinity chromatography	73
3.9.1	Purification of chitinase by affinity chromatography	73
3.9.2	Immuno blot analysis of chitinase bound proteins	73
3.10	Partial purification of pearl millet proteins by size exclusion	
	chromatography using FPLC (Fast Protein Liquid	74
	Chromatography) system	
3.11	Identification of various PR proteins from pearl millet by de novo	76
	sequencing	70
Part D	Molecular biology	
3.12	Characterization of chitinase and tlp from pearl millet	83
3.12.1	Amplification of pearl millet chitinase gene (chi)	83
i)	Primer designing	83
3.12.2	Amplification of pearl millet tlp (thaumatin-like protein) gene	91
i)	i) Primer designing	92
ii)	ii) Cloning of PCR products	103
3.13	Inverse PCR and adaptor ligation-mediated genome walking in	
	pearl millet genome to amplify unknown flanking regions of pearl	104
	millet chitinase and tlp gene	
3.14	Amplification of actin (housekeeping) gene	105
3.15	Bioinformatics	108
3.15.1	Sequence evaluation of Chitinase	108
3.15.2	Sequence evaluation TLP	109
3.15.3	Multiple sequence alignment of amino acid sequence of chitinase	109
•	from different plant species and construction of phylogenetic tree	100
i)	Multiple sequence alignment of amino acid sequences of chitinase	109
ii)	Phylogenetic tree of amino acid sequence of chitinases from	114
2154	different plant species	
3.15.4	Multiple sequence alignment of amino acid sequence of TLPs from	116
;)	different plant species and construction of phylogenetic tree Multiple sequence alignment of amine acid sequence of TLPs	116
i) ii)	Multiple sequence alignment of amino acid sequence of TLPs Phylogenetic tree of amino acid sequences of TLP	116
ii) 3.15.5	Phylogenetic tree of amino acid sequences of TLP Phylogenetic tree of nucleotide sequences of chitinase from	120
5.15.5	different plant species	122
	unicient plant species	

Sl. No.	Content	Page No.
3.15.6	The phylogenetic tree of nucleotide sequences of TLP from	124
	different plant species.	
3.15.7	Northern Blot analysis	126
i)	Northern blot analysis with radioactive P32 labeled chitinase probe	126
ii)	Northern blot analysis with radioactive P32 labeled tlp probe	127
3.15.8	Southern blot analysis	128
i)	Southern blot analysis using radioactive chitinase probe	128
ii)	ii) Southern blot analysis using 32P labeled tlp probe	129
	Acknowledgement	130
	Declaration	130
4.	4. Discussion	
4.1	Pathogenesis related proteins in pearl millet downy mildew pathogen interaction	131
4.2	Co-expression and synergistic activity of chitinase and TLP in	
1.4	plant defense mechanism	131
4.3	Glucan binding activity of pearl millet TLP	131
4.4	Inhibitory effect of pearl millet TLP on downy mildew pathogen <i>S</i> .	
	graminicola	132
4.5	Purification of pearl millet chitinase	133
4.6	Partial purification of pearl millet TLP	134
4.7	De novo sequencing and partial amino acid sequences of pearl	
	millet PR proteins	134
4.8	Sequence analysis of pearl millet chitinase	134
4.9	Sequence analysis of TLP	135
4.10	Amplification of GC rich pearl millet <i>chitinase</i> and <i>tlp</i> genes	136
4.11	Adaptor ligation mediated genome walking in plants with large genome	137
4.12	Southern and northern blot analysis using radioactive P32 labeled	138
	chitinase and tlp probe	
5.	Conclusion	138
6.	Appendix	
A-1	Appendix 1	1-29
A-2	Appendix 2	30-47
7.	References	1-10
8.	Acknowledgement	
9.	Declaration	
10.	Curriculum Vitae	

List of abbreviations

ATPAdenosine triphosphateBy/bpBase pairBCIP5-Bromo-4-chloro-3-indolyl-phosphate (X-phosphate) 4-toluidine saltBSABovine serum albuminCBBCoomassie brilliant bluecDNAComplementary deoxyribonucleic acidCTABHexadecyltrimethylammonium bromidecv.CultivarDMSODimethyl sulfoxideDNADeoxyribonucleic aciddMTPDeoxyribonucleic aciddMTPDeoxyribonucleotriphosphateDPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateHPTGIsopropyl-&D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue - tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinylrjeneffuoridePVDFPolyvinylrjeneffuoridePVDFPolyvinylrjeneffuoridePVDFPolyvinylrjeneffuoridePVDFPolyvinylrjeneffuoridePKRRoom temperatureRTRoom temperatureRTRoom temperatureRT	APS	Ammonium persulphate
Bp/bpBase pairBCIP5-Bromo-4-chloro-3-indolyl-phosphate (X-phosphate) 4-toluidine saltBSABovine serum albuminCBBCoomassie brilliant blueCDNAComplementary deoxyribonucleic acidCTABHexadecyltrimethylammonium bromidecv.CultivarDMSODimethyl sulfoxideDNADeoxyribonucleic aciddNTPDeoxyribonucleic acidpPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateIPTGIsopropyl-6-D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloring siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitroellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPR protein<		
BCIP5-Bromo-4-chloro-3-indolyl-phosphate (X-phosphate) 4-toluidine saltBSABovine serum albuminCBBCoomassie brilliant bluecDNAComplementary deoxyribonucleic acidCTABHexadecyltrimethylammonium bromidecv.CultivarDMSODimethyl sulfoxideDNADeoxyribonucleic aciddNTPDeoxyribonucleic raciddNTPDeoxyribonucleotriphosphateDPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateIPTGIsopropyl-8-D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolyvinylegvolPMSFPhenylmethylsulfonylfluoridPKPPolyvinylpyrrolidoneRNARibourcleia acidRNAseRibourcleia acidRNAseRibourcleia acidPKIRobit gel electrophoresisPCIPolyvinylpyrrolidonePAGEPolyvinylpyrrolidonePKEPolyvinylpyrrolidonePKIRobit gel electrophoresisPCIPolyvinylpyrrolidonePKSPolyvinylpyrrolidoneRNARiboucl		
BSABovine serum albuminCBBCoomassie brilliant bluecDNAComplementary deoxyribonucleic acidCTABHexadecyltrimethylammonium bromidecv.CultivarDMSODimethyl sulfoxideDNADeoxyribonucleic aciddNTPDeoxyribonucleotriphosphateDPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateIPTGIsopropyl-&D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenylmethylsulfonylfluoridPRSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinylpyrrolidoneRNARibonucleic acidRNARibonucleic acidRNAR		
CBBCoomassie brilliant bluecDNAComplementary deoxyribonucleic acidcTABHexadecyltrimethylammonium bromidecv.CultivarDMSODimethyl sulfoxideDMADeoxyribonucleic aciddNTPDeoxyribonucleotriphosphateDPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateHTGIsopropyl-&D-thiogalacto pyranosidKDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitro blue -tetrazoliumNCPolyaerylamide gel electrophoresisPCIPolynerase chain reactionPKGPolynethylsulfonylfluoridPKPPolyvinyldenefluoridePVDFPolyvinyldenefluoridePVDFPolyvinyldenefluoridePVPPolyvinyldenefluoridePVPPolyvinylpyrrolidoneRNARibonucleaserpmRotations per minuteRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTAENon temperatureRT-PCRRobon temperatureRT-PCRRobon temperatureRT-PCRSolium dodecyl sulfateTAETris-acetate-EDTA bufferTAETris-acetate-EDTA buff		
cDNAComplementary deoxyribonucleic acidCTABHexadecyltrimethylammonium bromidecv.CultivarDMSODimethyl sulfoxideDNADeoxyribonucleic aciddMTPDeoxyribonucleotriphosphateDPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateHPTGIsopropyl-&-D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitro blue -tetrazoliumNCNitro blue setPAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPRPhenylmethylsulfonylfluoridPRPhenylmethylsulfonylfluoridPRPhenylmethylsulfonylfluoridPVPPolyvinylpyrrolidoneRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNASodium dodecyl sulfateTAESodium dodecyl sulfateTAESodium dodecyl sulfateTAENa polymerase from Thermus aquaticusTMADiolymerase from Thermus aquaticusSUMUjura violet <td></td> <td></td>		
CTABHexadecyltrimethylammonium bromidecv.CultivarDMSODimethyl sulfoxideDMADeoxyribonucleic aciddNTPDeoxyribonucleotriphosphateDFECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateHTGIsopropyl-&-D-thiogalacto pyranosidKDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolyethylenglycolPKFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVPPolyvinylpyrrolidoneRNARibonucleic acidRNARibonucleic acid <tr< td=""><td></td><td></td></tr<>		
cv.CultivarDMSODimethyl sulfoxideDNADeoxyribonucleic acidDNADeoxyribonucleotriphosphateDPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateIPTGIsopropyl-B-D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitro blue -tetrazoliumNCNitro clulaosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyvinylidenefluoridePVDFPolyvinylidenefluoridePVDFPolyvinylidenefluoridePVDFPolyvinylidenefluoridePVDFRobucleaserpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusTAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusTEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet		
DMSODimethyl sulfoxideDNADeoxyribonucleic acidDNFADeoxyribonucleotriphosphateDPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateJPTGIsopropyl-β-D-thiogalacto pyranosidKDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitro blue -tetrazoliumNCNitro cllulosePAGEPolyacrylamide gel electrophoresisPCIPolymerase chain reactionPCRPolymerase chain reactionPKFPolyuinylidenfluoridPRPhenylmethylsulfonylfluoridPRPolyvinylpyrrolidoneRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARoon temperatureRT-CRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTAETris-acetate-EDTA bufferTAENA polymerase from Thermus aquaticusTAENA polymerase from Thermus aquaticusTAENA polymerase from Thermus aquaticusTAENA polymerase from Thermus aquaticus		
DNADeoxyribonucleic aciddNTPDeoxyribonucleotriphosphateDPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateHPTGIsopropyl-&D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPNFPolyvinylgrorlidoneRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTAETris-acetate-EDTA bufferTAENA polymerase from Thermus aquaticusTEMEDN/N/N'- tetramethylethylenediamineUVUltra violet		
dNTPDeoxyribonucleotriphosphateDPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateHPTGIsopropyl-8-D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPKSFPolymerase chain reactionPKSFPolymethylsulfonylfluoridPKSFPhenylmethylsulfonylfluoridPVDFPolyvinylpyrrolidonePKNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTAETris-acetate-EDTA bufferTAENA polymerase from Thermus aquaticusTEMEDN,N,N'- tetramethylethylenediamineUVUltra violet		•
DPECDiphenyleneiodonium chlorideESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateHPTGIsopropyl-B-D-thiogalacto pyranosidKDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPKSPhenylmethylsulfonylfluoridPKPholycinyligenefluoridePVDFPolyvinyligenefluoridePVDFRibonucleaserpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodcyl sulfateTAETris-acetate-EDTA bufferTAETris-acetate-EDTA bufferTAENa polymerase from Thermus aquaticusTMEDN/N/N'- tetramethylethylenediamineUVUltra violet		
ESI-Q-TOFElectron spray ionisation quadrupole time of flightHEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateIPTGIsopropyl-B-D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPRPolyvinylgyrrolidoneRNARibonucleaseRNARibonucleaserpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusTEMEDN,N',N'- tetramethylethylenediamineUVUltra violet		
HEPES4-(2-hydroxyethyl)-1-piperazine ethansulfonateIPTGIsopropyl-&-D-thiogalacto pyranosidKDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPRGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPROFPolyetnylidenefluoridePVDFPolyvinyligyrolidoneRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRNARibonucleic acidRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTAETris-acetate-EDTA bufferTAENibonucleic for Thermus aquaticusTMEDN/N/N'- tetramethylethylenediamineUVUltra violet		
IPTGIsopropyl-B-D-thiogalacto pyranosidkDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinyldenefluoridePVPPolyvinylgyrolidoneRNARibonucleic acidRNARibonucleica ecidRNARibonucleica ecidRNASodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusTEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet		
kDaKiloDaltonLB mediumLauria Bertani mediumMCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinylgyrrolidoneRNARibonucleic acidRNAseRibonucleica acidRNARibonucleica acidRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusTEMEDN,N,N',N' - tetramethylethylenediamineUVUltra violet		
MCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidMRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPCGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPVDFPolyvinylgenefluoridePVDFPolyvinylgenefluorideRNARibonucleic acidRNARibonucleic acidRNARoom temperatureRTRoom temperatureSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusTEMEDN,N,N'- tetramethylethylenediamineUVUltra violet		
MCSMultiple cloning siteMOPS3-(N-morpholino) propane sulfonic acidMRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPCGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPVDFPolyvinylgenefluoridePVDFPolyvinylgenefluorideRNARibonucleic acidRNARibonucleic acidRNARoom temperatureRTRoom temperatureSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusTEMEDN,N,N'- tetramethylethylenediamineUVUltra violet	LB medium	Lauria Bertani medium
MOPS3-(N-morpholino) propane sulfonic acidmRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinylgyrrolidoneRNARibonucleic acidRNARibonucleic acidRNARibonucleica scidRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusUVUltra violet	MCS	Multiple cloning site
mRNAMessenger RNANBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinylgyrrolidoneRNARibonucleic acidRNARibonucleica acidRNARom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> UVUltra violet	MOPS	
NBTNitro blue -tetrazoliumNCNitrocellulosePAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPK proteinPathogenesis-related proteinPVDFPolyvinylgyrrolidoneRNARibonucleic acidRNAseRibonucleaserpmRotations per minuteRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> UVUltra violet	mRNA	
PAGEPolyacrylamide gel electrophoresisPCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinylidenefluoridePVPPolyvinylpyrrolidoneRNARibonucleic acidRNaseRibonucleicacidRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETis-acetate-EDTA bufferTAMEDNA,N',N'- tetramethylethylenediamineUVUltra violet	NBT	5
PCIPhenol chloroform isoamylalcoholPCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinylidenefluoridePVPPolyvinylpyrrolidoneRNARibonucleic acidRNARibonucleaserpmRotations per minuteRTRoom temperatureRT-PCRSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> UVUltra violet	NC	Nitrocellulose
PCRPolymerase chain reactionPEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPMSFPathogenesis-related proteinPVDFPolyvinylidenefluoridePVPPolyvinylpyrrolidoneRNARibonucleic acidRNaseRibonucleaserpmRotations per minuteRTRoom temperatureSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> UVUltra violet	PAGE	Polyacrylamide gel electrophoresis
PEGPolyethylenglycolPMSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinylidenefluoridePVPPolyvinylpyrrolidoneRNARibonucleic acidRNaseRibonucleaserpmRotations per minuteRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> UVUltra violet	PCI	Phenol chloroform isoamylalcohol
PMSFPhenylmethylsulfonylfluoridPR proteinPathogenesis-related proteinPVDFPolyvinylidenefluoridePVPPolyvinylpyrrolidoneRNARibonucleic acidRNaseRibonucleaserpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> UVUltra violet	PCR	Polymerase chain reaction
PR proteinPathogenesis-related proteinPVDFPolyvinylidenefluoridePVPPolyvinylpyrrolidoneRNARibonucleic acidRNaseRibonucleaserpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> UVUltra violet	PEG	Polyethylenglycol
PVDFPolyvinylidenefluoridePVPPolyvinylpyrrolidoneRNARibonucleic acidRNARibonucleicacidRNaseRibonucleaserpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> TEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet	PMSF	Phenylmethylsulfonylfluorid
PVPPolyvinylpyrrolidoneRNARibonucleic acidRNaseRibonucleaserpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> TEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet	PR protein	Pathogenesis-related protein
RNARibonucleic acidRNaseRibonucleaserpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> TEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet	PVDF	Polyvinylidenefluoride
RNaseRibonucleaserpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> TEMEDN,N,N' tetramethylethylenediamineUVUltra violet	PVP	Polyvinylpyrrolidone
rpmRotations per minuteRTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> TEMEDN,N,N'- tetramethylethylenediamineUVUltra violet	RNA	Ribonucleic acid
RTRoom temperatureRT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> TEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet	RNase	Ribonuclease
RT-PCRReverse transcriptase polymerase chain reactionSDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from <i>Thermus aquaticus</i> TEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet	rpm	Rotations per minute
SDSSodium dodecyl sulfateTAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusTEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet	RT	1
TAETris-acetate-EDTA bufferTaqDNA polymerase from Thermus aquaticusTEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet	RT-PCR	
TaqDNA polymerase from Thermus aquaticusTEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet		5
TEMEDN,N,N',N'- tetramethylethylenediamineUVUltra violet		
UV Ultra violet	-	
X-Gal 5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside		
	X-Gal	5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside

1. Introduction.

Pearl millet [(*Pennisetum glaucum* L.) R. Br.] belongs to *Poaceae* (alt. *Gramineae*). It is also known with alternative names like *Pennisetum typhoides* (Burm.f.) Stapf and Hubbard, *P. americanum* (L.) Leeke and *P. spicatum* Roem and Schult. Chromosome number of pearl millet is n=7, haploid genome size of pearl millet is 2450 Mbp (ICRISAT).

1.1 Cultivation.

P. glaucum is mostly grown as a grain crop, being the staple food in those parts of tropical Africa and India. The crop comes to harvest in approximately three months from the day of sowing depending on the cultivar. India is the largest producer of this crop, both in terms of area (9.1 million hectares) and production (7.3 million tons) (Khairwal *et al.*, 2004). The crop is well adapted to production systems characterized by drought, low soil fertility, and high temperature. It performs well in soils with high salinity or low pH. Because of its tolerance to difficult growing conditions, it is grown in areas where other cereal crops, such as maize or wheat, would not survive. *P. glaucum* is susceptible to water logging. Although this species tolerates poor, infertile soils better than most other crop species, it is more productive on fertile soils. The ideal pH range is 5.5-7.0, but the crop can be cultivated in extremely acidic and alkaline soils with pH ranging from 4.5-8.3 and in soils containing high exchangeable aluminium. By interfering Pi absorption, root elongation and metabolism Al³⁺ inhibits crop growth and yield (Tang *et al.*, 2002). Pearl millet requires an annual rainfall of 125-750 mm, though for forage production a minimum of 500 mm annual rainfall is essential.

1.2 Economic importance.

Millet ranks sixth in importance in terms of contribution to global cereal supply, after wheat, rice, maize, barley and sorghum. It is also used for grazing, green chop and silage, and, with appropriate management, for hay. Whole grains are fed to poultry and livestock, and the straw is used for bedding, thatching, fencing and fuel. Pearl millet was domesticated as a food crop in the tropical region of West Africa at least 4000 years ago. Its use as a food grain has grown over the centuries, with an estimated 64 million acres of pearl millet grown in Africa and India (this acreage is equivalent to the total U.S. corn crop). Ninety four percent of the world's millet production is in developing countries. Pearl millet is the staple food for 90 million people of the semiarid tropics, annually grown on more than 29 million hectares in the semi-arid tropical regions of Asia, Africa and Latin America. The crop is used for a variety of food products, and is even made into a type of beer (ICRISAT).

1.3 Important diseases of pearl millet.

Some of the more important diseases are downy mildew caused by *Sclerospora* graminicola, smut (*Moeszimyces* (*Tolyposporium*) penicillariae), ergot (*Claviceps fusiformis*), rust (*Puccinia substriata*) and pyricularia leaf spot (*Pyricularia grisea*). Downy mildew caused by *S. graminicola* [(Sacc). Schroet] leads upto 80% yield loss as the grains are replaced by leaf-like structures in the earhead (Howarth and Yadav, 2002). It is every pearl millet farmer's nightmare; more so in India where plant breeders have introduced genetically uniform single-

cross hybrids that make the crop especially vulnerable to epidemics of this potentially devastating disease. In India, the monetary loss due to a single epidemic of downy mildew was estimated to be \in 8.77 million (Hash *et al.*, 2003).

1.4 Downy mildew disease

Downy mildew disease caused by biotrophic oomycetous fungus *Sclerospora graminicola* [(Sacc). Schroet] is the major threat to pearl millet cultivation.

Synonym Scleropthora macrospora

1.4.1 Systematic position.

Kingdom:	Chromalveolata
Phylum:	Heterokontophyta
Class:	Oomycetes
Order:	Sclerosporales
Species:	Sclerospora graminicola

1.4.2 Pathogen Characteristics.

Asexual sporangia are produced during the night under moderate temperatures and high humidity. Optimum sporangium production occurs at 20 °C. Sporulation does not occur below 70 percent relative humidity. Sporangiophores have an average length of 268 μ m. Sporangia are borne on short sterigmata, elliptical in shape of varied size (12-21 x 14-31 μ m) with distinctive papillate operculum at apex. Oospores are pale brown and 22 to 35 μ m in diameter. Sporangia generally do not remain viable very long after daybreak. Sexual oospores are thick-walled, spherical, brownish yellow, and 22 to 35 μ m in diameter. Oospores are formed in colonized plant tissue and can survive from 8 months to 13 years (ICRISAT).

1.4.3 Host range.

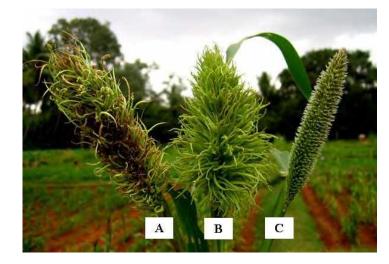
S. graminicola exhibits a wide host range infecting a variety of crops like maize, sorghum, *Echinochloa crus-galli, Panicum miliaceum, Pennisetum leonis, P. spicatum, Setaria italica, S. lutescens, S. verticillata, S. viridis, S. magna, Euchlaena maxicana,* and *Agrostis alba*. However, cross-inoculation studies to different hosts have usually been unsuccessful when attempted. The existence of variability in *S. graminicola* has been reported and different host specific pathotypes have been identified (Thakur and Rao 1997; Thakur 1999; Thakur *et al.,* 2003).

1.4.4 Disease symptoms.

Disease symptoms often vary depending on the growth stage and severity of systemic infection. Symptoms begin as stunted growth of the infected seedlings (Fig 1a) and chlorosis at the base; successively higher leaves show progressively greater chlorosis (Fig 1c). Healthy plant with normal growth is shown in the Fig 1b. All the photos were taken at downy mildew sick

plot maintained by AICPMIP (All India Coordinated Pearl Millet Improvement Programme) at University of Mysore campus.

Fig 1a) Infected plant of pearl millet showing stunted growth. 1b) Healthy plant showing normal growth 1c) Infected plant showing chlorosis (all the three plants are 40 day old). Photographed from downy mildew sick plot maintained by Downy mildew research laboratory, University of Mysore, Mysore.


Infected chlorotic leaf areas can support abundant white asexual sporulation on the lower leaf surface. Basal portion of lower surface of leaf showing sporulation is called half leaf symptom (Fig 2).

Sporulation on the lower surface of the infected leaf

Fig 2. Infected pearl millet leaf showing downy sporulation.

Photographed from downy mildew sick plot maintained by Downy mildew research laboratory, University of Mysore, Mysore.

Severely infected plants are generally stunted and do not produce panicles. Green ear symptoms result from transformation of floral parts into leafy structures (Fig 3).

Fig 3. Earhead of pearl millet.

A: Infected earhead showing malformed floral buds, B: Green ear with all the flower buds transformed into leafy structure, C: Healthy earhead. Photographed from downy mildew sick plot maintained by Downy mildew research laboratory, University of Mysore, Mysore.

1.5 Spread of disease.

Sclerospora graminicola reproduces both sexually by producing oospores and asexually by producing sporangia that liberate zoospores at maturity. Oospores are thick-walled structures that can survive for several years on leaf debris and in soil and also contaminate the seed lots becoming externally seed borne which acts as primary sources of inoculum in the field along with infested field soil and leaf debris. Once the seedlings are infected, sporulation occurs on the lower surface of the foliage, which serves as a source of secondary inoculum for the spread of disease within and between fields.

1.6 Disease Management.

Systemic fungicide Metalaxyl is used to manage downy mildew disease of pearl millet. Seed treatment with Metalaxyl at the rate of 2 g a.i/kg seed controls the disease excellently for about the first 35 days after sowing. Other fungicides used in seed treatment are Maxim (Fludioxonil and Mancozeb), Ridomil, Apron and Subdue (a.i. Mefenonxam which is the active isomer in Metalaxyl). Foliar application of these fungicides at the rate of 125 mg active ingredient per liter arrests further development of the disease in systemically infected plants. If sprayed before floral initiation, disease-free heads are produced. However, fungicide application as foliar spray is not recommended for pearl millet as the crop is also used as a forage crop (ICRISAT).

1.7 Host-pathogen interaction - general overview.

Plants possess both preformed and inducible mechanisms to resist pathogen invasion. Extant morphological barriers, secondary metabolites (phytoanticipins), and antimicrobial proteins must be avoided or overcome by the pathogens in order to invade a plant. Plants possess a basal resistance against their pathogens, which is overcome, manipulated, or suppressed by these pathogens to allow successful infection and tissue colonization (Cui et al., 2005, Nomura et al., 2005, Schulze-Lefert 2004, Zimmerli, 2004). Once the contact with host is established, elicitors produced and released by the pathogen induce further defenses, comprising the reinforcement of cell walls, the production of phytoalexins, and the synthesis of defense-related proteins (Slusarenko et al., 2000). Plant microarray data showed that in both compatible and incompatible plant-pathogen interactions, hundreds of genes are up and down regulated (Tao et al., 2003). Studies on Arabidopsis mutants with enhanced disease susceptibility (EDS) showed that susceptibility and resistance is determined by the speed and magnitude with which defense mechanisms are activated expressed and by their effectiveness against individual pathogens (Rogers and Ausubel, 1997). Most PRs and related proteins are induced through the action of the signaling compounds salicylic acid, jasmonic acid, or ethylene, and possess antimicrobial activities in vitro through hydrolytic activities on cell walls, contact toxicity, and perhaps an involvement in defense signaling. The evolutionary conservation of similar defenserelated proteins in monocots and dicots, but also their divergent occurrence in other conditions, suggest that these proteins serve essential functions in plant life, whether in defense or not (Van Loon *et al.*, 2006).

1.8 Role of Pathogenesis-Related Proteins in plant defense.

Protective plant proteins specifically induced in pathological or related situations are called pathogenesis-related proteins" (PR proteins). PR proteins are part of an immune surveillance mechanism that protects the plant primarily against invasion by microorganisms that are generally perceived as nonpathogenic. These inducible defense-related proteins have been detected in many plant species upon infection with oomycetes, fungi, bacteria, or viruses, or insect attack. The expression of some PR genes is constitutive, developmentally regulated, and tissue- and organ-specific. Although the nomenclature of PR proteins was described as early as 1994 (Van Loon, 1994), classification of PR proteins beyond tobacco and tomato has been hampered by the poise of data on properties of these proteins in various species to the mRNA and cDNA level. Originally PR-proteins were classified into 14 families based on their enzymatic properties. The numbering was done in the order of their invention. The list was extended by addition of new PR proteins as they were discovered and at present there are 17 families of PR proteins classified based on the sequence similarities, serologic or immunologic relationships, and enzymatic properties. Related proteins occurring in the absence of pathogen interaction were to be referred to as Pathogenesis related-like proteins (PRLs). Now the term is not encouraged because even the healthy plants possess these proteins and their quantity is observed to increase after pathogen infection or due to some physiological stress (Van Loon, 1994). Classification of PR proteins according to Van Loon and coworkers (2006) is summerised in table 1.

Family	Type member	Properties	Gene name	Reference
PR-1	Tobacco PR-1a	Unknown	Ypr1	Antoniw et al., 1980
PR-2	Tobacco PR-2	β-1,3-glucanase	Ypr2, [Gns2 ('Glb')]	Antoniw et al., 1980
PR-3	Tobacco	Chitinase I, II, IV, V, VI, VII	Ypr3, Chia	Van Loon, 1982
PR-4	Tobacco	Chitinase I, II	Ypr4, Chid	Van Loon, 1982
PR-5	Tobacco	Thaumatin-like protein	Ypr5	Van Loon, 1982
PR-6	Tomato	Inhibitor I Proteinase- inhibitor	Ypr6, Pis ('Pin')	Green and Ryan, 1972
PR-7	Tomato	Endoproteinase	Ypr7	Vera and Conejero, 1988
PR-8	Cucumber	Chitinase III	Ypr8, Chib	Métraux <i>et al.,</i> 1988
PR-9	Tobacco	Lignin-forming peroxidase	Ypr9, Prx	Lagrimini <i>et al.,</i> 1987
PR-10	Parsley	Ribonuclease-like protein	Ypr10	Somssich et al., 1986
PR-11	Tobacco	Chitinase type I	Ypr11, Chic	Melchers et al., 1994
PR-12	Radish	Defensin	Ypr12	Terras <i>et al.,</i> 1992
PR-13	Arabidopsis	Thionin	Ypr13, Thi	Epple <i>et al.,</i> 1995
PR-14	Barley	Lipid-transfer protein	Ypr14, Ltp	García-Olmeda <i>et al.,</i> 1995
PR-15	Barley	Oxalate oxidase	Ypr15	Zhang <i>et al.,</i> 1995
PR-16	Barley	Oxalate-oxidase-like protein	Ypr16	Wei <i>et al.,</i> 1998
PR-17	Tobacco	Unknown	Ypr17	Okushima et al., 2000

Table 1. Recognised families of pathogenesis-related proteins.


1.9 Chitinase.

Chitinases (EC 3.2.1.14) catalyse the hydrolytic cleavage of the β -1,4-glycoside bond present in biopolymers of *N*-acetylglucosamine, mainly in chitin. Many purified plant endochitinases also show some degree of lysozyme (EC 3.2.1.17) activity and can hydrolyse β -1,4-linkages between *N*-acetylmuramic acid and *N*-acetylglucosamine residues in peptidoglucan (Boller, 1988, Majeau *et al.*, 1990).

1.9.1 Classification of chitinases.

Based on their amino acid sequence similarity chitinases have been classified into four major families encoded by different classes of genes named chiA, chiB, chiC and chiD genes

(Neuhaus et al., 1996; Neuhaus, 1999). Three classes of plant chitinases have been proposed based on the primary structure (Shinshi et al., 1990). Classes I and IV are characterized by the presence of an N-terminal, cysteine rich, usually referred to as hevein-like domain or chitinbinding domain (CBD), which is important for binding chitin but not for catalytic activity (Iseli et al., 1996). When present, the CBD is separated from the catalytic domain by a hinge region, variable in length and amino-acid sequence. Class II chitinases lack the N terminal cysteine-rich domain but have a high amino acid sequence identity to the main structure of class I chitinases. Most class I chitinases have molecular masses of around 32 kDa and are defined into two subclasses class Ia and Ib. Class Ia involves basic chitinases possessing a leucine- or valine rich carboxy-terminal signal peptide that is essential for targeting into the plant cell vacuole (Neuhaus et al., 1991), whereas class Ib chitinases are acidic, lack the signal peptide and are therefore, extracellular (Flach et al., 1992). Class II chitinases, mainly found in dicolyledons, have molecular masses of 27 to 28 kDa. Their amino acid sequences are very similar to class I chitinases, but lack the CBD and the carboxy-terminal vacuolar targeting signal indicating that they are secreted to the apoplast (Shinshi et al., 1990). Class III and class V chitinases are bifunctional enzymes of about 28 to 30 kDa displaying chitinase/lysozyme activity. They are mainly plant and fungal in origin (Heitz et al., 1994, Hamel et al., 1997) and do not share amino acid sequence homology to any other class. Class IV and VII enzymes are similar to class I, but are smaller in size due to deletions; but, class IV and class I chitinases are serologically distinguishable (Mikkelsen *et a*/., 1992). Class V is principally comprised of bacterial chitinases; however, two class V chitinases, resembling bacterial chitinases, have been isolated from tobacco (Melchers et al., 1994); class V chitinases have a C-terminal extension for vacuolar targeting and may contain a chitin-binding domain as well (Heitz et al., 1994; Ponstein et al., 1994). Structure of different classes of chitinases is schematically represented in the Fig 4. Classification of chitinases encoded by different gene families is based on primary structure. Class I and IV structurally similar but serologically distinguishable. Class V chitinases are mainly bacterial chitinases (also found in tobacco plant). Class VI chitinases possess a carboxy terminal extension for vacuolar targeting as well as chitin binding domain.

Schematic representation classification of chitinases.

Fig 4. Schematic representation classification of chitinases (Classification is according to Collinge, 1993; Schematic representation: Agdour, 2007).

In glycosyl hydrolase classification system, which is based on amino acid sequence similarity of the catalytic domains, chitinases have been placed in families 18 and 19 (Henrissat, 1991). Family 18 chitinases are found in bacteria, fungi, yeast, viruses, plants and animals whereas family 19 members are almost exclusively present in plants. Family 18 members hydrolyze GlcNAc-GlcNAc or GlcNAc-GlcN linkages whereas family 19 chitinases do so with GlcNAc-GlcNAc or GlcN-GlcNAc linkages (Ohno *et al.*, 1996). Family 18 chitinases are likely to function according to a substrate-assisted catalysis model (Brameld *et al.*, 1998), whereas family 19 chitinases use a general acid-and-base mechanism (Garcia-Casado *et al.*, 1998; Hart *et al.*, 1995). In all plants analyzed to date, chitinases of both families are present (Graham and Sticklen, 1994). They are organized in five different classes numbered from I to V, according to their sequences and structure (Neuhaus *et al.*, 1996); Chitinases of class I, II, IV, VI and VII belong to the PR-3 family. Class III chitinase belongs to PR-8 family, while class V belongs to PR-11. Seed chitinases belong to classes I, II, IV and VII as well as to the more divergent class III (Kasprzewska, 2003).

1.9.2 Role of chitinase in defense response.

Chitinases can degrade microbial cell wall components and, thereby, might contribute to the expression of resistance (Broekaert *et al.*, 2000, Grover and Gowthaman 2003). Additionally chitinase and glucanase-like proteins have both enzymatic and antifreeze activities (Atici and Nalbantog, 2003 and Griffith and Yaish, 2004). At freezing temperatures, these antifreeze

proteins alter ice crystal shape inside plant tissues and reduce freezing injury by slowing the growth and recrystallization of ice (Griffith 2005). Both glucanases and chitinases could also act on endogenous plant substrates and, thereby, aid in the generation of signal molecules that may function as endogenous elicitors of further defensive mechanisms (Van Loon *et al.*, 2006).

1.10 Thaumatin like protein-TLP (PR-5).

PR proteins of the family PR-5, structurally related to the sweet tasting protein thaumatin from the West African shrub *Thaumatococcus danielli* (Cornelissen, 1986) are among the families of antimicrobial proteins associated with plant defense (Veronese *et al.*, 2003). The family includes low molecular weight proteins (15-30 kDa) acidic or basic in nature, resistant to heat and acidic treatments. They are relatively resistant to proteolytic degradation and can accumulate extra-cellularly, in cell vacuoles of various organs. These proteins are also called as Permatins because of their ability to cause transmembrane pores in the plasma membrane of the fungi. These transmembrane pores cause ion leakage and kill fungus (Roberts and Selitrennikoff, 1990).

1.10.1 Classification of thaumatin like (PR-5) proteins.

The system of nomenclature is somewhat arbitrary because Osmotin like proteins (OLP) and Thaumatin like proteins have similar levels of sequence similarity with the TLP from *T. danielli*. Similarly, there appears to be no obvious reason why isoelectric points of a family of proteins should be related to function. Thus, both TLPs and OLPs can be referred to as PR-5 proteins in general (Osmond *et al.*, 2001). PR-5 proteins with acidic isoelectric points are often referred to as thaumatin-like proteins (TLPs) because of their sequence similarity with the intensely sweet protein, thaumatin, from the West African shrub *Thaumatococcus danielli* (Cornelissen, 1986). Basic PR-5 proteins are referred to as osmotin-like proteins (OLPs) because of their similarity to osmotin, a salt stress induced protein from tobacco (Singh *et al.*, 1987). In this study, the term TLP will be used to indicate pearl millet PR-5 protein, in accordance with the previous studies from Radhajeyalakshmi and coworkers (2003) on existence of Thaumatin-like Proteins (TLPs) in seeds of cereals where the pearl millet PR-5 protein is addressed as TLP.

1.10.2 Role of TLPs in defense response

TLPs are inducible or constitutive and sometimes both (Dudler *et al.*, 1994). TLPs have also been used as marker of SAR in dicots (Yamakawa *et al.*, 1998) as well as in monocots (Morris, 1998). Various TLPs were shown to be antifungal *in vitro* as well as in transgenic plants (Hu and Reddy 1997, Liu *et al.*, 1994, Yun *et al.*, 1997). Constitutive cereal seed permatins was observed to be antifungal on several types of fungi (Yun *et al.*, 1997). Over expression of PR-5 genes from rice has been demonstrated to reduce infection of rice by *R. solani* (Grover and Gowthaman, 2003), of wheat by *Fusarium graminearum* (Chen *et al.*, 1999), of tobacco by *A. alternata* (Velazhahan and Muthukrishnan, 2003/4), and of carrot by *A. dauci, Alternaria petroselini, A. radicina, B. cinerea, R. solani*, and *S. sclerotiorum* (Punja, 2005). Osmotin from tomato protected transgenic orange plants against *Phytophthora citrophthora* (Fagoaga *et al.*, 2001).

1.10.3 Mode of action of TLPs

Zeamatin, as well as chemically induced extracellular PR- 5-type proteins from barley and pea leaves, showed binding to polymeric β -1,3-glucans, whereas tobacco osmotin did not (Trudel *et al.*, 1998). Osmotin, but not zeamatin, exhibited endo- β -1,3-glucanase activity on these substrates. Analysis of other thaumatin-like proteins confirmed a general lack of correlation between antifungal activity, β -1,3-glucan binding, and β -1,3-glucan hydrolysis (Grenier *et al.*, 1999, Menu-Bouaouiche et al., 2003). Thus, the main antifungal action of PR-5-type proteins must reside in a different property. Osmotin induces apoptosis in the yeast Saccharomyces cerevisiae, apparently by binding to phosphomannans in the cell wall (Ibeas et al., 2000), which facilitates access to a 7-transmembrane-domain receptor-like protein in the plasma membrane that regulates lipid and phosphate metabolism and is homologous to a mammalian receptor for the hormone adiponectin. Like adiponectin, osmotin activates AMP kinase in murine myocytes via adiponectin receptors, suggesting that osmotin action is receptor-mediated (Narasimhan et al., 2005). Over expression of the stress-related yeast PIR2 cell wall glycoprotein protected S. cerevisiae from the toxic action of osmotin (Yun et al., 1997), and similar result was obtained for Fusarium oxysporum f.sp. nicotianae, allowing increased disease severity and fungal growth in tobacco seedlings (Narasimhan et al., 2003). Thus, osmotin seems to contribute to basal resistance of tobacco against F. oxysporum f.sp. nicotianae. Other PR-5 proteins are much less active against yeast cells than osmotin but active against other fungal species (Yun et al., 1997). It seems that cell wall binding facilitates the action of osmotin and contributes to their fungal target specificity. Four PR-5 proteins from Arabidopsis and seven from Oryza sativa have extensions that end in a hydrophobic stretch that could serve as a membrane anchor (Van Loon et al., 2006) suggestive of a (temporary) attachment of these proteins to a membrane. Others contain a potential transmembrane segment followed by a kinase domain, suggestive of a function in extracellular sensing of perhaps β -1,3-glucan fragments and signal transduction. Three of these receptor-like kinases are present in Arabidopsis thaliana and two in rice. One of the PR-5-like receptor kinases from A. thaliana is expressed constitutively at low levels in leaves and siliques and at higher levels in flower stems and roots, and has been suggested to recognize the same targets as the related PR-5 proteins (Wang et al., 1996). Moreover, Salzman and coworkers (2004) demonstrated that inorganic cations mediate antifungal activity of plant PR-5 protein; understanding of the exact mechanism of action of PR-5 proteins however, needs further studies.

1.11 Aim of the Research

Study of pathogenesis related proteins is very important for complete understanding of the host defense mechanism. PR proteins from pearl millet are not well characterized and the host defense mechanism needs a deeper investigation in order to develop strategies to combat downy mildew disease of pearl millet. Occurrence of different pathotypes of *Sclerospora graminicola*, resistance breakdown of many cultivars over a very short period is a big challenge for pearl millet downy mildew researchers. Moreover obligate nature of downy mildew pathogen, light and temperature sensitivity of the zoospores, great variation among 13 different races of the pathogen originating from semi-arid regions of Africa and India makes the study more complicated than any other crop species. Considerable amount of research is carried out at Downy mildew laboratory, Mysore, India on induction of host defense mechanism using various biotic and abiotic elicitors. Defense related enzymes like peroxidase, glucanase, proton ATPase, super oxide dismutase, thionins, and phenylalanine ammonia lyase are well characterized in pearl millet. Great amount of research is being carried out at ICRISAT in Africa and India on marker assisted screening of resistance genes. However, a clear insight to defense mechanism needs further study.

In this doctoral study, the main aim was to purify pearl millet chitinase and thaumatin like protein (TLP), for further characterization and study of mechanism of action against *Sclerospora graminicola*. Chitinase and TLP are known to have synergistic action against oomycete pathogen attack. Though the mode of action of chitinase and TLP are well studied in other organisms, the mode of action of these proteins in pearl millet is not well understood. The purified proteins should further *de novo* sequenced to get the partial amino acid sequences for the amplification of the full length genes. Since neither amino acid nor nucleotide sequence of pearl millet chitinase and tlp are available in the database this partial amino acid sequence was very important to conduct molecular studies.

Next effort was isolation of pearl millet chi and tlp genes. Because of the lack of nucleotide sequence data of pearl millet chi and tlp genes, earlier studies have used barley, rice or wheat gene fragments as probes for northern and southern blot analysis. Therefore, it was important to isolate these genes from pearl millet and carry out sequence evaluation of pearl millet chitinase and TLP using different bioinformatics tools.

The next important task was to isolate the full-length genes coding pearl millet chitinase and TLP. For this different genome, walking techniques to amplify the unknown regions of the gene flanking the known sequence had to be followed. However, large genome size and non availability of the nucleotide sequences posed a great challenge in genome walking.

Since the knowledge of molecular data of pathogenesis-related proteins from pearl millet is currently limited, this doctoral thesis will build the basis for further characterization for ongoing studies in the plant pathogen defense system of pearl millet against the fungal pathogen *Sclerospora graminicola*.

2 Materials and Methods.

Part A-Preliminary studies.

2.1 Infection of pearl millet seedlings with downy mildew pathogen.

2.1.1 Plant material.

Pearl millet (*Pennisetum glaucum*) seeds used in the study were downy mildew resistant cultivar IP18292 (less than 5% disease incidence) and downy mildew susceptible cultivar 7042S (more than 85% disease incidence). They were obtained from the 'All India Coordinated Pearl Millet Improvement Project' (AICPMIP), Jodhpur, Rajasthan, India and the International Crop Research Institute in Semi Arid Tropics (ICRISAT), India. Pearl millet seedlings were grown under green house condition with a high relative humidity of > 95% (RH) at 22-30°C with 12 h alternating light and dark period.

2.1.2 Maintenance of inoculum.

Soil from the sick plot maintained at the University of Mysore campus, (India) serves as the source of primary infection (oospore). The sick plot soil contains oospores from the infected plant debris. When a susceptible cultivar is grown on this *S. graminicola* infested soil under high relative humidity of >95% (RH) at 22-30°C, the seedlings get downy mildew infected. In this manner phytopathogenic oomycete *S. graminicola*, was maintained on pearl millet cv. 7042S under field conditions. Zoospores from the infected plants were used to infect susceptible seedlings. Under greenhouse conditions, the susceptible seedlings are grown in the green house and sprayed with zoospore suspension (40,000/mL) from two leaf stage for three consecutive days (Safeeulla, 1976).

2.1.3 Inoculum preparation.

The phytopathogenic oomycete *S. graminicola* maintained on pearl millet cv. 7042S, under greenhouse conditions with 12 hrs of alternating light and dark period was used for all inoculation experiments. Leaves of pearl millet showing profuse sporulation of *S. graminicola* on the abaxial side were collected in the evening from plants maintained under greenhouse conditions (25–30°C, >95% RH). Collected leaves were thoroughly washed under running tap water to remove the previous crop of sporangia. The leaves were then blotted dry, cut into small pieces, and incubated overnight in a moist chamber for sporulation at 22°C (Safeeulla, 1976).

2.1.4 Harvest of zoospores and inoculation.

After 12 hrs fresh crop of sporangia was harvested into sterile deionised water by washing the lower surface of the leaf. For use as inoculum, the zoospore concentration was adjusted to 4×104 / mL with a haemocytometer. The seedlings were sprayed with this zoospore

suspension (approximately 50 µL/seedling) and incubated in dark to facilitate infection process (Jones *et. al*, 2001).

2.1.5 Sample harvest.

The seedlings are harvested for the study by removing them from the inoculum and blot drying. The seedlings were frozen by dipping in liquid nitrogen and maintained at -70°C until further use.

Part B-Analytical methods.

2.2 Immunological detection of TLP from pearl millet.

2.2.1 Extraction of total soluble protein.

Frozen pearl millet seedlings were homogenized by crushing with ice-cold 50 mM sodium acetate buffer, pH 5.0, containing 3 mM phenylmethanesulfonyl fluoride (PMSF) until homogeneity. The homogenate was centrifuged at 10,000 x g (Sorvall centrifuge GS3 rotor) for 30 min at 4°C to precipitate the cell debris. The supernatant obtained is the total soluble protein fraction.

2.2.2 Determination of protein concentration by Bradford method.

Calibration curve was prepared by using a standard protein sample BSA (Bovine Serum Albumin, Sigma). Afterwards 10 μ L from protein sample was added to 80 μ L deionised water, and 100 μ L deionised water was used as blank. Nine hundred μ l of Bradford reagent was added to each sample and as well as the blank, mixed well and after 5 min the absorbance was measured by spectrophotometer at 595 nm (Bradford, 1976). The corresponding concentrations were calculated with the aid of calibration curve.

Bradford reagent.

96 % Ethanol	50 mL
85 % Ortho-Phosphoric acid (H3PO4)	100 mL
Coomassie Brilliant Blue G-250 (CBB)	100 mg
Volume is made up to 1 liter with deionised water.	

After dissolving Coomassie Brilliant Blue (G250) the solution was filtrated and stored at 4°C.

2.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE)-Laemmli method.

2.3.1 Gel preparation.

Separating gel was prepared by mixing all the components mentioned below and poured into the gel cassette; mini gels of the size 9×11 cm and 0.75 mm thickness were casted. Polymerization was facilitated by covering separating gels with iso-butanol. After polymerization the iso-butanol was removed, and the gel was washed with deionised water to

remove traces of iso-butanol. Gel cassette was fixed into electrophoresis cell and 4 % stacking gel solution was and poured above separating gel, and comb (with 10 teeth) was inserted into the stacking gel. After polymerization of the stacking gel, 1X Laemmli running buffer was poured into the Electrophoresis apparatus and the comb was removed carefully. The wells were washed with running buffer before loading the samples (Laemmli, 1970). 600, Pharmacia, Sweden). Composition of separating gel (12%), stacking gel (4%) and Laemmli running buffer is given below.

Separating gel.	(12% Acrylamide)
Components	12% gel
H ₂ O	10.2 mL
1.5 M Tris-HCl, pH 8.8	7.5 mL
20% (w/v) SDS	0.15 mL
Acrylamide/Bis-acrylamide (30%/0.8% w/w	r) 12.0 mL
10% (w/v) ammonium persulfate (APS)*	0.15 mL
TEMED	0.02 mL
Stacking Gel Solution.	(4% Acrylamide)
Deionised H ₂ O	3.075 mL
0.5 M Tris-HCl, pH 6.8	1.25 mL
20% (w/v) SDS	0.025 mL
Acrylamide/Bis-acrylamide (30%/0.8% w/w	r) 0.67 mL
10% (w/v) ammonium persulfate (APS)*	0.025 mL
TEMED	0.005 mL
* freshly prepared	
1X Laemmli Running Buffer.	
Tris-HCl	25 mM
Glycine	200 mM
SDS	0.1% (w/v)
5 X SDS-Laemmli loading buffer.	
Tris-HCl (pH 6.8)	0.2 M
SDS	10 % (w/v)
Beta-mercapto-ethanol	10 mM
Glycerol	20 % (v/v)
Bromophenol blue	0.05% (w/v)

2.3.2 Sample preparation for SDS-PAGE and electrophoresis.

Protein sample was mixed with 5 X SDS-Sample buffer (Laemmli loading buffer containing SDS in a 1.5 mL micro centrifuge tube by vortexing. The sample is denatured by incubating in boiling water bath for 10 min and snap cooled by putting on ice. The sample was centrifuged for 10 sec at 5000 x g (Eppendorf centrifuge, rotor F45-24-11) and loaded onto the gel. The gel was run at 50V (15-20 mA current) when the samples are in the stacking gel and at

75V (20-25 mA current) once the samples move to the separating gel using electrophoresis power supply (EPS).

2.3.3 Staining of protein gel.

2.3.3 i) Staining of protein gel with Coomassie Brilliant Blue.

The gel was stained with Coomassie Brilliant Blue according to the method of Maldener, 2004. The staining solution contained isopropanol (25%), acetic acid (10%) and Coomassie Brilliant Blue-R250 (0.05%). The gel was destained with 10% acetic acid.

2.3.3 ii) Staining of protein gel with Silver nitrate.

For detection of low amounts of proteins $(1-5 \ \mu g)$ after gel electrophoresis, silver staining method is followed. To achieve the best results, that are high sensitivity and low background, it is very important to follow closely the incubation time of all steps as given in the protocol and all the reagents were freshly prepared.

- Fixing: The gel was removed from the cassette after electrophoresis and fixed by incubating in the fixing solution for 1 hour or overnight on a shaker. The fixing solution contained 50% ethanol, 12% acetic acid and 0.05%.
- Washing: After fixation the fixative is discarded and the gel was washed 3 times for 15 min each with 20% ethanol.
- Thiosulphate treatment: After the washing step, gel was incubated in 0.02% sodium thiosulphate for exactly 1 min with continuous shaking.
- Staining: After treating the gel with sodium thiosulphate it was washed thrice with deionised water (1 min each) and was stained by incubating in 0.2% silver nitrate solution containing 0.076% formalin for 45 min on a shaker.
- Developing: The gel was washed thrice with deionised water and developed by incubating in 6% sodium carbonate solution containing 0.0004% sodium thiosulphate and 0.05% formalin. The reaction was arrested after the brown bands appeared against pale background by adding 1% acetic acid.
- Drying: After staining the gel, it was scanned for documentation purpose and dehydrated by dipping in 20% ethanol and dried on a gel drier, sealed between two transparent plastic sheets.

2.3.4 Electrophoretic transfer of protein-wet blot method.

After electrophoresis was finished, gel was removed from the chamber, washed with transfer buffer and soaked in it for 15 min to remove the electrophoresis salts and detergents. PVDF membrane was activated by dipping in methanol and equilibrated with the transfer buffer for 15 min before assembly for electro transfer. The gel was assembled for electro transfer in the following order. Care is taken so that no air bubble was trapped between the layers. Composition of electro transfer buffer is given below.

Electro transfer Buffer.

Na bicarbonate (NaHCO3)	10 mM
Na carbonate (NaCO3)	3 mM
Methanol	20 % (v/v)

Sandwich for electro transfer of proteins.

The gel and membrane were arranged in the following order to transfer protein from gel onto the membrane.

Cathode, negative electrode

Sponge sheet
 layers of Whatman filter paper
 Electrophoresed Gel
 Nitrocellulose membrane
 layers of Whatman filter paper
 Sponge sheet

Anode, positive electrode

Direction of protein transfer is from cathode to anode. Transfer was carried for 90 min at 400V. The gel was run in duplicates; once Electro transfer was complete one of the gels was stained with Coomassie Brilliant Blue for comparison. Membrane was stained with 0.1% (w/v in deionised water) Ponceau red to confirm the transfer of protein onto the membrane. Protein appears as pale red band on membrane, which can be distained by washing repeatedly with distilled water.

2.4 Immunological detection of proteins.

Proteins were transferred onto the membrane and subsequently blotted.

2.4.1 Blocking.

The membrane was blocked using blocking buffer (1 x PBS containing 5% defatted skimmed milk powder) for 1h at 4°C. Membrane was then removed from the blocking buffer and washed with phosphate buffer saline (Composition of PBS and PBST (pH 7.4) are given below).

Components	mM	g/L
Sodium chloride (NaCl)	7.40	8.00
Potassium chloride (KCl)	2.70	0.20
Disodium phosphate (Na2HPO4)	10.00	1.44
Sodium dihydrogen phosphate (NaH2PO4)	1.76	0.24

1 x PBST for washing steps was prepared by adding 0.01% Tween 20 to 1 x PBS.

2.4.2 Incubation antibodies.

Incubation with the primary antibody: Membrane was incubated 1 x PBS containing the primary antibody overnight at 4°C with gentle shaking. Incubation with the secondary antibody: Membrane was removed from primary antibody and washed with 1 x PBST thrice (10 min each), incubated with secondary antibody conjugated with alkaline phosphatase for 90 min at 37° C.

2.4.3 Development of immuno blot.

An ideal system for staining of immunoblots with alkaline phosphatase conjugated secondary antibody is the use of combination of NBT (Nitro Blue Tetrazolium) and BCIP (5-bromo-4-chloro-3-indolyl phosphate, p-toluidine salt). Together, they yield an intense, black-purple precipitate that provides much greater sensitivity than either substrate alone. This reaction proceeds at a steady rate, allowing accurate control of its relative sensitivity. NBT/BCIP characteristically produces sharp band resolution with little background staining of the membrane. NBT is a tetrazolium salt; upon reduction, it yields NBT-formazan, a highly colored, water-insoluble product and hydrolysis of BCIP by alkaline phosphatase results in a blue-purple precipitate that can be deposited on nitrocellulose membrane. Membrane was washed with PBST and equilibrated in the developing (TMN) buffer for 10 min. For 10 mL of TMN buffer 33 μ l BCIP and 33 μ l of NBT were added and the blot was incubated in this developing solution until the colour developed on shaker at room temperature. The reaction was arrested when purple coloured bands appear on the membrane (2-10 min) by washing with water. Composition of TMN developing buffer, BCIP and NBT stock solutions is given below.

TMN Buffer

Tris/HCl	100 mM
MgCl ₂	5 mM
NaCl	100 mM
pH was adjusted to 9.5 using 1M HCl.	

BCIP: BCIP stock solution was prepared by dissolving 50 mg 5-bromo-4-chloro-3-indolyl phosphate p-toluidine salt in 1 mL in Dimethyl Formamide (DMF), and stored at -20°C.

NBT: NBT stock solution was prepared by dissolving 50 mg Nitro Blue Tetrazolium (NBT) in 1 mL deionised water and stored at -20°C.

2.4.4 Immunoblotting of the purified protein.

Proteins were separated on 12% Laemmli gel as explained in section 2.3 of materials and methods. The protein was electro blotted onto PVDF membrane as mentioned in section 2.3.4 of material and methods. Immunoblotting was carried out according to section 2.4 of materials and methods. The primary anti-chitinase antibody as well as anti-TLP antibody was raised in rabbit. Therefore secondary anti rabbit antibody raised in goat tagged with alkaline phosphatase (Sigma) was used for immuno blotting of proteins. The immuno blot was developed with BCIP-NBT as explained in 2.2.6 of materials and methods.

Part C - Biochemical methods.

2.5 Substrate binding assay.

2.5.1 Substrate Preparation.

One gram of commercially available curdlan (water insoluble ß-1-3, glucan, substrate for TLP) was suspended in 10 mL water and boiled for 30 min to induce gel formation (Saito et.al, 1968). The gel was homogenized by grinding and washed extensively with water.

2.5.2 Binding of TLP to curdlan.

For substrate binding assay involving PAGE analysis, total protein extract was incubated with 5% (w/v) of gelled curdlan equilibrated with 50 mM sodium acetate buffer (pH 5.0), in a micro centrifuge tube in 0.1 mL of 50 mM sodium acetate buffer, pH 5.0, with continuous vortexing at 22°C for 15 min (Trudel *et al.*, 1998).

2.5.3 Elution of the curdlan bound protein.

Bound proteins were recovered from the insoluble pellet by centrifugation at 13,000 x g (Eppendorf centrifuge rotor F45-24-11) for 5 min at 22°C after the pellet was washed twice with 10 mm sodium acetate buffer (pH 5.0), by boiling in the Laemmli sample loading buffer. Eluted bound protein was analyzed on 12% (w/v) denaturing SDS polyacrylamide gel (Laemmli, 1970). Protein bands were visualized by Coomassie staining as mentioned under section 2.3.3 of materials and methods. Bound Protein was released from curdlan by incubating the washed pellet for 15 min at 22°C in 0.1 mL of 0.1 M HCl (pH 2.2). Immediately after centrifugation at 15,000 x g (Eppendorf centrifuge, rotor F45-24-11) for 5 min at 22°C, the supernatant containing the released proteins was neutralized with equal amount of 0.1 M NaOH (Trudel *et al.*, 1998). the recovered protein was equilibrated with 50 mM sodium acetate buffer (pH 5.0) by washing the sample with the same buffer using a Vivaspin protein concentrator tubes with a molecular cut off of 5 kDa at 8000 x g (Sorvall centrifuge GS3 rotor). Though the method resulted in partial purification of the protein, only a weak protein band was seen when the bound protein fraction was separated on SDS-PAGE due to the loss of bound protein during washing steps.

2.5.4 Immunoblotting of the curdlan bound protein with anti-TLP antibody.

The curdlan bound protein was eluted from the substrate by boiling with SDS loading buffer. The sample was loaded onto 12% polyacrylamide gel containing SDS. Proteins were resolved by SDS-PAGE as detailed under section 2.3 of materials and methods. Proteins separated by electrophoresis were transferred onto PVDF membrane as explained in section 2.3.4 of materials and methods. Immunoblotting was carried out using anti-osmotin antibody from tobacco raised in rabbit as elaborated in section 2.4 of materials and methods and the gel was prepared in duplicates; one set of samples were stained by Coomassie Brilliant Blue and the other one was used for immuno blot analysis.

2.6 Action of TLP on downy mildew pathogen of pearl millet.

2.6.1 Inhibition of zoospores with curlan bound protein.

Curdlan bound proteins were eluted neutralized and desalted by dialysis. Living zoospores of *S. graminicola* suspended in ice cold sterile deionised water (4 X 104 zoospores/mL) was treated with curdlan bound protein (10 μ g/mL). The zoospores were observed under bright field microscope at 20 X magnification for their mobility before and after treatment with curdlan bound protein.

2.6.2 Microscopic observation of membrane permeabilization using Sytox green dye.

This experiment was carried out according to the method of Thevissen and coworkers (1999). The method was used to study membrane permeabilization induced by plant defensins in *Neurospora crassa*. To investigate membrane permeabilization, a high-affinity nucleic acid stain that fluoresces upon nucleic acid binding and for which no endogenous channels exist - Sytox Green (Molecular Probes Eugene, Oreg) was chosen. Sporangial suspension harvested in ice cold deionised water was resuspended in 100 mM HEPES-KOH (pH 6.5) with 5 mM MgCl2 and 0.2 mM Sytox Green, this served as control. Ninety micro liter of this zoospore suspension (4 X 104 zoospores/mL) was mixed with 10 μ l of curdlan bound protein, which contains partially purified TLP (10 μ g/mL) and incubated in a micro centrifuge tube in dark for 30 min on ice. Fluorescence was observed with Leitz Diaplan fluorescent microscope using Leitz I2/3 excitation filter: BP450-490, dichroic mirror: RKP510 emission filter: LP515. (Excitation wavelength, 450 to 490 nm; Emission wavelength 520 nm) under 200X (20x10) magnification.

2.7 Purification of pearl millet chitinase.

Purification of pearl millet chitinase by chromatographic method was optimized. The steps followed are mentioned below.

2.7.1 Propagation of pearl millet seedlings.

Seeds were surface sterilized by soaking in 0.1% (v/v) of sodium hypochlorite for 5 min. Seeds were then thoroughly washed with water to remove traces of hypochlorite. The seeds were spread on a sterile wet blotter sheet. The seedlings are grown at 25°C for 2 days.

2.7.2 Treatment of pearl millet seedlings with silver nitrate solution for PR protein over expression.

Pearl millet seedlings were induced to over express PR proteins by treating one week old seedlings with 1mM aqueous silver nitrate solution. Seedlings were sprayed once in a day with 1mL of 1 mM silver nitrate solution for five consecutive days (Conejero & Granell, 1986 and Rahimi *et al.*, 1993). Seedlings sprayed with deionised water served as control. The treated seedlings were harvested on the sixth day and snap frozen by dipping in liquid nitrogen and stored at - 70°C.

2.7.3 Extraction of total soluble protein from pearl millet seedlings.

Total soluble protein from silver nitrate treated pearl millet seedlings was extracted as explained in under section 2.2.1. Total protein extract was extracted from untreated seedlings. Both the samples were analysed on SDS-PAGE for comparison. As the silver nitrate treated seedlings showed over expression of proteins, they were used for purification purpose. Different concentrations of silver nitrate were tested for the induction of proteins in pearl millet seedlings. A concentration of 1 mM was found to be effective and the higher concentration of silver nitrate had toxic effect on seedlings leading to death of the seedlings.

2.7.4 Ammonium sulphate fractionation of proteins.

Ammonium sulphate fractionation of proteins works on the principle of existence of hydrophobic and hydrophilic amino acids in protein molecules. After protein folding in aqueous solution, hydrophobic amino acids usually form protected hydrophobic areas while hydrophilic amino acids interact with the molecules of solvation and allow proteins to form hydrogen bonds with the surrounding water molecules. If enough of the protein surface is hydrophilic, the protein can be dissolved in water. When the salt concentration is increased, some water molecules are attracted by the salt ions, which decreases the number of water molecules available to interact with the charged part of the protein. As a result of the increased demand for solvent molecules, the protein-protein interactions are stronger than the solvent-solute interactions; the protein molecules coagulate by forming hydrophobic interaction from silver nitrate treated pearl millet seedlings was fractionated at 0-30%, 30-60% and 60-100% ammonium sulphate saturation (Table 2).

Protein fraction	Percentage saturation	Volume of the fraction	Amount of (NH ₄) ₂ SO ₄ added	Final concentration of (NH ₄) ₂ SO ₄
1	0-30%	122 mL	20g	164g/L
2	30-60%	128 mL	23g	181g/L
3	60-100%	133 mL	37g	279g/L

Table 2. Ammonium sulphate fractionation of total soluble protein fraction from pearl millet.

2.7.5 Separation of proteins by ion exchange chromatography.

Separation by ion exchange chromatography depends upon the reversible adsorption of charged solute molecules to immobilized ion exchangers of opposite charge. The type of charged groups determines the nature and strength of ion exchanger; their total number and availability determines the capacity. An ideal pH range depends on the pI of the proteins. Hence, proteins would bind to positively charged molecules of the resin. Change in the buffer pH condition

changes the charges on the protein molecule dependent on its pI. Among the most commonly used charged molecules are CM (carboxymethyl) and DEAE (Diethylaminoethyl); these charged molecules are coupled to inactive materials like cellulose, sepharose, sephacel or sephadex; sepharose is preferred here because the column would not shrink at higher sodium chloride concentrations unlike sephadex.

2.7.6 Chromatography using DEAE cellulose column.

DEAE -Diethylaminoethyl (-O-CH₂-CH₂-NH(CH₂CH₃)₂ cellulose is a weak anion exchanger. DEAE-cellulose contains an ionizable tertiary amine group therefore positively charged at neutral pH and DEAE-cellulose is an anion exchanger. The counter ion for DEAE-cellulose is normally Cl⁻. Ligand begins to lose its charge above pH 9; therefore pH range while working with DEAE-cellulose is pH 5 - 9.

In this case DEAE cellulose column was equilibrated with 10 mM Tris-HCl buffer (pH 8.0) and packed into a 20 cm column of 1.25 cm radius with 10 cm bed; bed volume of the column was 49 cm3 and the void volume was 16 cm3. Ammonium sulphate precipitated protein at 30-60% saturated is also dialysed against the 10 mM Tris-HCl buffer (pH 8.0) before loading into the column. The sample is centrifuges at 4°C for 15 min at 15,000 x g (Sorvall centrifuge GS3 rotor) to settle down the impurities and particles that would otherwise block the column. Flow rate of 0.4 mL/ min was adjusted and unbound proteins were eluted with 2 bed volumes of 10 mM Tris-HCl buffer (pH 8.0). Bound proteins were eluted using a 0-1000 mM linear NaCl gradient using gradient mixer. The column material was regenerated and stored in 20% ethanol at 4 °C after use.

2.7.7 Chromatography using hydroxyapatite column.

Hydroxyapatite-HA (Bio-Gel, HTP DNA-grade; Bio-Rad) was used to fractionate the proteins as DEAE-cellulose did not result in good separation. Hydroxyapatite chromatography is a method of purifying proteins that utilizes an insoluble hydroxylated calcium phosphate [Ca10(PO4)6(OH)2], which forms both the matrix and ligand. Functional groups consist of pairs of positively charged calcium ions (C-sites) and clusters of negatively charged phosphate groups (P-sites). The interactions between hydroxyapatite and proteins are complex and multi-mode. An acidic protein usually binds to C-sites via a coordination bond to carboxyl group, while a basic protein binds to P-sites through charge interaction with the amine group as shown in Fig 5 (Shepard, 2000). The higher the phosphate concentration, the less strong is adsorption.

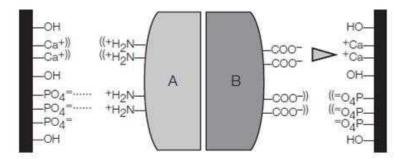


Fig 5. Schematic representation of protein binding to hydroxyapatite. A is a basic protein and B is an acidic protein. Double parentheses indicate repulsion. Dotted lines indicate ionic bonds. Triangular linkages indicate coordination bonds. Source: Shepard, 2000.

When hydrated, hydroxyapatite occupies approximately 2-3 mL per dry gram. All buffers were degassed prior to the addition of the dry hydroxyapatite. Buffer pH was 7.0

In this case gel was soaked in 10 mM sodium phosphate buffer (pH 7.0) overnight for swelling; the fine particles forming cloudy upper level on top of the settled bed were decanted and the swollen column material was degassed before packing into the column of 25 cm length and 1.25 cm radius. Height of the bed was 10 cm. (The void volume of hydroxyapatite is about 75% of the bed volume). The column was washed 3 bed volumes of elution buffer (10 mM Na phosphate buffer, pH 7.0) before loading the sample. Two mg of protein per mL of bed volume was loaded. Flow rate was adjusted to 0.4 mL/ min. Fraction size was 2 mL. Adsorbed proteins from the column were eluted by washing with 1 M sodium phosphate buffer (pH 7.0).

2.7.8. Ion exchange chromatography using CM Sephadex.

Carboxymethyl (CM) -O-CH₂-COO-) Cation exchange resin with bound positive counter ions, at neutral pH this group is ionized as $-CH_2OCH_2COO^-$ so that CM-cellulose is negatively charged, therefore it is a cation exchanger; for CM-cellulose the counter ion is usually Na⁺ CMcellulose begins to lose its charge below about pH 5, therefore starting pH range when using CM-cellulose is about pH 5 - 9.

In this case CM Sephadex was swollen in 10 mM sodium acetate (pH 5.5) overnight and washed three times with the same buffer and degassed before packing into the column of 25 cm length and 1.25 cm radius. Height of the bed was 15 cm. Flow rate was adjusted to 0.4 mL/min. After elution of unbound proteins the column was washed with three bed volume of elution buffer. Bound proteins were eluted with a linear NaCl gradient of 0-400 mM.

2.7.9 Substrate affinity chromatography using colloidal chitin.

2.7.9 i) Preparation of colloidal chitin.

Chitinase was purified by an affinity procedure employing chitin, which was prepared according to the method used for preparation chitin (for actenomycetes culture medium) of Hsu and Lockwood (1975) from powdered lobster shells. Forty gram crab shell was ground into paste in 400 mL of concentrated HCl for 50 min under fume hood. The chitin was precipitated as a colloidal suspension by adding it slowly to 2 liters of water on ice. The suspension was collected by filtration with suction on a coarse filter paper and then washed by suspending it in about 5 liters of tap water and refiltering. The washing was repeated at least three times or until the pH of the suspension was about 3.5. This colloidal chitin was dried in over at 100°C. The powder was resuspended in deionised water or required buffer autoclaved and stored at room temperature.

2.7.9 ii) Substrate affinity chromatography.

Twenty mL of total protein extract was mixed with 180 mL of 10 mM Na phosphate buffer (pH 7.0) and the mixture was passed through colloidal chitin (15.0 cm height and 1.25 cm radius) previously equilibrated with the same buffer; unbound proteins were discarded and the adsorbed proteins were eluted with 10 mM acetic acid. The eluted protein fraction was dialysed against10 mM sodium phosphate buffer (pH 7.0) and concentrated using Vivaspin sample concentrator tubes. The samples were analysed using SDS-PAGE as explained in section 2.3 of materials and methods.

2.8 Identification of the purified protein.

Sample preparation for *de novo* sequencing by MS (In-gel trypsin digestion of the protein band).

Separation of purified protein on 12% SDS-PAGE was carried out as explained under section 2.3 of materials and methods. The gel was stained with Coomassie Brilliant Blue solution as described under section 2.3.3.1 and destaining as explained under section 2.3.4 of materials and methods.

2.8.1 Washing and complete destaining of the excised band.

The target bands were excised from Coomassie-stained gel using a scalpel. Excised bands were put in micro centrifuge tubes and washed two times for 15 min with double volume of deionized water/acetonitrile 1:1 (v/v). Washing solution was discarded and bands were incubated for 5 min in one volume acetonitrile at RT. Acetonitrile solution was replaced by one volume of 100 mM NH₄ HCO₃ and incubated for 5 min at RT. After addition of one volume acetonitrile to the same tube, they were incubated again for 15 min at RT with shaking. The solution was decanted and the gel pieces were dried by SpeedVac. The gel pieces shrink and form a ball when completely dry.

The dried gel pieces were gradually quenched by adding 10 μ L (10 ng/ μ L in 50 mM ammonium bicarbonate) sequencing grade trypsin (Serva Electrophoresis GmbH) and incubated in ice for 10 min. Quenching step was repeated several times until saturation of gel pieces with trypsin solution. The excess of trypsin solution was discarded and gel pieces were soaked in excess of 25 mM ammonium bicarbonate solution. Samples were incubated overnight at 37°C.

2.8.2 Recovery of trypsin digested peptide fragments from the gel.

After overnight digestion, samples were shortly centrifuged and sonicated for 2 min; supernatant was collected in a new micro centrifuge tube. Gel pieces were incubated in one volume of 25 mM ammonium bicarbonate with shaking for 20 min. To this one volume acetonitrile was added and incubated for 15 min under shaking. The mixture was sonicated for 2 min; the supernatant was collected in the same reaction tube. Gel pieces were incubated two times for 15 min in 5% (v/v) formic acid/ acetonitrile (1:1) and supernatant was collected in the same tube, final sample volume was reduced to approximately 10 μ l by SpeedVac and stored at -20°C.

2.8.3 De novo sequencing of peptide fragments by ESI Q-TOF.

De novo sequencing was done in positive ion mode on a quadrapole time-of-flight hybrid mass spectrometer (Q-TOF) Micromass, Waters, Manchester, United Kingdom). Amino acid sequences were identified by homology search by using the program Peptide Search (EMBL, Heidelberg, Germany).

2.8.4 In-gel assay to detect pearl millet chitinase activity.

Chitinase activity was determined by in-gel assays. For this, separating gel was prepared with 1% glycol chitin which is the substrate for chitinase. 3 % Stacking gel was poured on top of it. Thirty μ g of total soluble protein fraction and 10 μ g of the 24 kDa purified protein was mixed well with loading buffer by vortexing and loaded onto the gel and electrophoretically separated on 12% polyacrylamide gel under denaturing conditions. Remaining steps for PAGE were followed as mentioned under section 2.3 of materials and methods. The proteins in the gel were renatured after electrophoresis by incubating in renaturation buffer at 37°C overnight (Potvin *et al.,* 1998, Audy *et al.,* 1989) with gentle shaking.

Renaturation buffer.

HEPES free acid	5.96 g
pH 7.0 adjusted with	3 M KOH
Triton X-100	5.00 mL
Final volume	500.00 mL

The gel was washed twice with 100 mM Tris HCl and stained with 100 mL of 500 mM Tris-HCl, pH 9.0 containing 3-4 grains of fluorescent brightener (Fluorescent brilliant 28, Sigma # F343) for 5 min. The gel was rinsed twice with deionised water and observed under UV

illuminator. Glycol chitin, (substrate for chitinase) in the gel hydrolyzed by chitinase band appeared as dark blue (slightly diffused) band against pale blue background of the gel.

2.9 FPLC (Fast Protein Liquid Chromatography).

This chromatographic method involves separation of proteins by the principle of size exclusion. Here gel matrix with specific pore size serves as stationary phase; the small protein molecules can enter the gel beads and are eluted slowly from the column. The larger protein molecules cannot enter the gel beads because of their bigger size and hence pass through the space between gel particles and therefore move quickly through the column. Retention time of the protein molecule therefore is determined by its size; from retention time of the protein molecule, size can be estimated. Gel filtration chromatography (GFC) involves the use of aqueous mobile phase, whereas gel permeation chromatography (GPC) involves a non aqueous mobile phase (example: organic solvents).

In the present study Superose-12 column (Pharmacia, particle size $10 \pm 2 \mu m$) was used. The standard protein solutions used were of 1 mg/mL concentration; volume of the standards loaded to the column was 500 μ L. Flow rate was adjusted to 0.5 mL/min. Different protein standards used to calibrate the FPLC column with their corresponding molecular weights and retention time are listed in the table 3.

Serial	Standard	Size in	Retention	Elution	Retention
No.		kDa	time	volume *	factor
1	Bluedextran	2000.0	17 min	8.5	1.00
2	Ferritin	400.0	21 min	10.5	0.81
3	Catalase	240.0	23 min	11.5	0.74
4	BSA	66.0	25 min	12.5	0.68
5	Ovalbumin	45.0	27 min	13.5	0.63
6	Carboanhydrase	30.0	31 min	15.5	0.55
7	Myoglobin	17.0	32 min	16.0	0.53
8	Cytochrome C	12.4	29 min	14.5	0.59

Table 3. Standards used to calibrate Superose-12 FPLC column; proteins were detected using a UV detector attached to FLC at 280 nm. *Elution volume represented in mL.

Bluedextran is used to determine the dead volume of the column. (Dead volume of the column is taken as the retention volume of a solute of very large molecular weight, having a molecular size much greater than the pore size of the packing so that it is completely excluded from the pores; and which is not retained by the stationary phase).

Part D - Molecular biology methods.

2.10 RNA Isolation and quantification.

2.10.1 Isolation of the total RNA from pearl millet seedlings.

For isolation of total RNA from pearl millet seedlings approximately 0.3 g of frozen leaves was crushed well in liquid nitrogen in a pre cooled mortar and pestle. The powder obtained was mixed with 750 µL of pre warmed (50°C) lysis buffer and 750 µL of PCI solution and shaken for 20 min. The mixture was centrifuged for 20 min at 13000 x g (Eppendorf centrifuge rotor F45-24-11). The supernatant was collected and mixed well with 750 µL of PCI solution and again centrifuged for 20 min at 13000 x g. Supernatant was collected and mixed with 0.75% volume of 8 M Lithium chloride solution and stored overnight at 4°C to allow precipitation. The mixture was centrifuged for 20 min at 13000 x g (Eppendorf centrifuge rotor F45-24-11); After removal of the supernatant, pellet was resuspended in 300 µL deionised DEPC water, 50 µL 3M sodium acetate (pH 5.2) and 500 µL of cold 96% ethanol (-20°C), and stored for 1 h at -20 °C. After centrifugation for 20 min at 13000 x g (Eppendorf centrifuge rotor F45-24-11), the pellet was washed with 500 µL of cold 70% ethanol (-20°C) and centrifuged again for 20 min. Supernatant was carefully removed and pellet was dried by SpeedVac. Eventually the pellet was dissolved in 1 mL deionised DEPC water, divided into 50 µL aliquots and stored at -80°C until further use. All the centrifugation steps are carried out at 4°C and care is taken to avoid RNase contamination and degradation of extracted RNA. All the tips and micro centrifuge tubes used were washed with DEPC water and autoclaved.

Composition of lysis buffer, PCI solution, 8 M Lithium chloride solution, 10 x MOPS and preparation of DEPC water are given below.

Lysis buffer.

NaCl	600 mM
EDTA	20 mM
SDS	4% (v/w)
Tris-HCl (pH 8.0)	100 mM

Lithium Chloride (8M).

Eight molar lithium chloride solution was prepared by dissolving 33.912 g lithium chloride in 100 mL deionised water. The solution was sterilized by autoclaving and stored at 4° C.

PCI (25:24).

Phenol	25 mL
Chloroform	24 mL
PCl solution was saturated with autoclaved 100 mM	l sodium acetate (pH 4.5) and stored at 4°C
in dark.	

MOPS (3-Morpholino-1-propansulphonic acid) 10 x.

MOPS200 mMNa acetate50 mMEDTA100 mMThe pH is adjusted to 7.0, and the solution is sterilized by autoclaving storage at 4°C.

Working solution.

10 x MOPS solution was diluted to 1 x with deionised water and used for running RNA gel electrophoresis.

DEPC water.

0.1% DEPC was added to deionised water and shaken overnight at 37°C and sterilized by autoclaving. DEPC decomposes into carbon dioxide and ethanol.

2.10.2 Determination of quantity and purity of RNA.

Isolated RNA was diluted 1:100 and the absorption was measured at 260 nm and 280 nm. RNA concentration was determined by the following formula.

<u>E260 x 40 x dilution factor</u> = μ g RNA / μ L

1000

The quotients E260/E280 and E260/E230 give information about contamination with proteins and polysaccharides respectively. A quotient between 1.8 and 2 shows sufficient purity.

2.10.3 Electrophoresis of RNA.

2.10.3 i) Preparation of agarose gel.

One gram molecular biology grade agarose was melted in 72 mL deionised water and then cooled to 60°C. To this melted agarose 10 mL of 10 x MOPS buffer and 18 mL 37% formaldehyde was added under the fume hood; gel was poured to the cassette under the fume hood and allowed to solidify (Bio-Rad Midi gel - 10×10 cm or maxi gel - 15×10 cm or 15×15 cm depending on the number of samples). Percentage of agarose was varied according to the requirement. Composition of 1% agarose gel for electrophoresis of RNA is given below.

Agarose gel for electrophoresis of RNA.

Molecular biology grade Agarose	1 g
Deionised water	72 mL
10X MOPS buffer	10 mL
37% formaldehyde (12.3 M)*	18 mL
Final quantity of the gel	100 mL
*added after cooling the gel to 60°C.	

2.10.3 ii) RNA Sample preparation and electrophoresis.

Two micro liters of RNA sample, was taken and mixed with 18 μ L Northern-Mix. The mixture was mixed by vortexing and incubated at 65°C for 15 min. Samples were chilled on ice, centrifuged and loaded to the gel.

Northern Mix.	
Solution 1.	
Formaldehyde	6.5%
Formamide	50% in 1x MOPS (pH 7.0)
Solution 2.	
Bromophenol blue	0.25%,
Xylene Cyanol	0.25%
EDTA (pH 8.0)	1 mM in 50% Glycerol

Northern Mix was prepared by mixing 5 mL Solution 1 + 1 mL Solution 2. To this mixture 40 μ L Ethidium bromide (5 mg/mL) was added and stored at -20°C.

Samples were electrophoretically separated at 75 V for midi gel and 125 V for maxi gel for 30 min, 1x MOPS with 0.01% Ethidium bromide served as running buffer. RNA was visualized under UV light.

2.11 DNA Isolation and quantification.

2.11.1 Isolation of genomic DNA from pearl millet seedlings.

Around 2 g of leaf materials from pearl millet were harvested and ground in a pre cooled mortar with liquid nitrogen. The fine powder was transferred equally into two 50 mL tubes. Preheated 1.5 mL CTAB (C16H33)N(CH3)3Br, cetyltrimethylammonium bromide) buffer were added to each tube mixed and incubated for 30 min at 65°C. To this 1.5 mL of PCI mix was added and gently mixed to avoid genomic DNA breaking. Samples were centrifuged for 10 min at 10000 x g (Sorvall centrifuge GS3 rotor). After centrifugation, the upper aqueous phase containing DNA was transferred into a new tube and the lower organic phase was discarded; this step was repeated twice obtain a clear separation of aqueous layer. To this aqueous fraction, 2/3 volume of a precooled (-20°C) isopropanol was added and gently mixed. The samples were incubated overnight at 4°C to precipitate DNA (or for 60-90 min at -80°C). Then the samples were centrifuged for 10 min at 13000 x g at 4°C. Supernatant was discarded and pellet was washed by 1 mL washing buffer. Afterwards the washing buffer was carefully decanted and the pellet was resuspended in 500 µL 10 mM Tris HCl buffer (pH 8.0) supplemented with DNase free RNase A (final concentration 10 µg/mL). After incubation for 30 min at 37°C, 500 µL of 7.5 M ammonium acetate and 1.5 mL 96% alcohol were added and gently mixed. The samples were centrifuged for 10 min at 13000 x g (Sorvall centrifuge GS3 rotor) and subsequently the supernatant was completely removed; pellet was resuspended in a suitable volume of sterile deionised water. DNA sample is divided into smaller aliquots of 100 μ L and stored at -20°C.

CTAB*	3.0% (w/v)
NaCl	1400 mM
ß-Mercaptoethanol*	0.2% (v/v)
EDTA	20 mM
Tris-HCl (pH 8.0)	100 mM
PVP- 40 (Poly vinyl pirrolidone)	1.0% (w/v)

* CTAB and ß-Mercapto-ethanol were added after autoclaving

Phenol chloroform iso amyl alcohol Mix (25:24:1).

Phenol Chloroform Isoamylalcohol	25 mL 24 mL 1 mL
Wash buffer (WB). Ethanol Ammonium acetate	76% 10 mM
Tris-HCl buffer for DNA storage. Tris-HCl, (pH 8.0) EDTA is omitted as it interferes in PCR reaction.	10 mM

2.11.2 Determination of quantity and purity of DNA.

Isolated genomic DNA was diluted 1:100 and the absorption was measured 260 nm and 280 nm. DNA concentration was determined by the following formula.

 $\frac{E260 \times 50 \times dilution \ factor}{1000} = \mu g \ DNA \ / \ \mu L$

The quotients E260/E280 and E260/E230 give information about contamination with proteins and polysaccharides respectively. A quotient between 1.8 and 2 shows sufficient purity.

2.11.3 Electrophoresis of DNA.

2.11.3 i) Preparation of agarose gel.

Agarose gel is prepared by melting molecular biology grade agarose in 1x TAE buffer and when the melted agarose was cooled, 0.01% EtBr was added to it and the gel is poured into the gel cassette and allowed to solidify.

TAE buffer (50 X) Stock solution.

Tris HCl	40 mM
Na acetate	10 mM
EDTA	1 mM
The pH was adjusted to 7.8 using acetic acid	

Working solution: TAE buffer was diluted to 1 x concentration. To this 0.01% EtBr was added.

2.11.3 ii) Sample preparation and electrophoresis of DNA.

DNA sample was mixed with appropriate amount of 6 x DNA loading buffer on a parafilm strip and loaded onto agarose gel. DNA samples were electrophoretically separated at 75 V for midi gel and 125 V for maxi gel for 45 min, 1x TAE with 0.01% ethidium bromide served as running buffer. DNA was visualized under UV light.

6 x DNA loading buffer.

Tris-HCl (pH 7.6)	10 mM
Bromophenol blue*	0.03%
Xylene cyanol	0.03%
Glycerol	60%
EDTA	60 mM

*Orange G was used instead on Bromophenol blue and xylene cyanol and this loading dye was used for Electrophoretic separation of lower molecular weight PCR products.

2.12 Polymerase chain reaction (PCR).

2.12.1 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR).

RT-PCR was performed by using peqGold M-MuLV Reverse Transcriptase RNase H-(Peqlab-Biotechnologie GmbH, Germany). cDNA synthesis was carried out in Thermocycler (PTC 200, Biozym, Oldendorf, Germany). Mix 1 and mix 2 were prepared as outlined below.

Mix 1	
RNA	0.5 – 1.0 μg
Oligo (dT) 23 primer	1.0 μL
dNTP Mix (10 mM each)	1.0 μL
Deionised sterile water to	10.0 µL
Final volume	10 µL

This mix was incubated initially at 70 °C for 10 min and snap chilled on ice.

Mix 2

N. T. 1

10x buffer for M-MuLV-RT	2 μL
--------------------------	------

RNase inhibitor (20u/µl)	1 μL
M-MuLV reverse transcriptase	1 μL
Deionised sterile water	6 µL

The first strand of cDNA was built by adding mix 1 to mix 2 and incubating the mixture at 50°C for 50 min in Thermocycler (PTC 200, Biozym, Oldendorf, Germany). After completion of cDNA synthesis, the reaction mixture was transferred onto ice.

2.12.2 PCR using genomic DNA as template.

PCR was carried out using pearl millet genomic DNA as template. Reaction mixture was prepared as per specifications for dream *Taq* polymerase (Fermentas #EP0701) which is mentioned below.

PCR with dream Taq polymerase.

10 x DreamTaq™ Buffer	5 μL
dNTP Mix (10 mM)	1 μL
Forward primer (100 pM)	1 μL
Reverse primer(100 pM)	1 μL
Template (genomic DNA)*	100 ng
DreamTaq TM DNA polymerase (5 $u/\mu L$)	0.2 μL
Deionised sterile water to	50 µL
Total volume	50 µL
*For RT PCR 500 ng of cDNA was used as templa	ate.

When PCR additives like DMSO/DMF, MgCl₂, and betaine were used, final volume was made up to 50 μ L using sterile deionised water accordingly. Composition of 10 x Dream Taq buffer is given below.

Composition of 10X Dream Taq buffer.

Tris-HCl (pH 8.8)	750 mM
Ammonium sulphate (NH4)2SO4	200 mM
Tween 20	0.1% (v/v)
MgCl ₂	20 mM

2.12.3 PCR reaction conditions.

Thermocycler was programmed as outlined below.

- 1. Initial denaturation @ 98°C (when genomic DNA was used as template).
 - Initial denaturation @ 95°C for 1 min (when cDNA was used as template) 1cycle.
- 2. Denaturation @ 95°C for 30 sec.
- 3. Annealing depending on the primers used.
- 4. Extension @72°C for 30 sec.
- 5. 30 cycles of step 2 4.
- 6. Final Extension @ 72°C for 3 min.

7. Maintained @ 4°C thereafter.

For temperature gradient PCR, annealing temperature gradient was set between 45-65°C. Stepdown PCR was carried out with initial 10 cycles at 65°C annealing temperature, followed by 20 step down cycles with every cycle lower from the previous cycle by one degree Celsius annealing temperature.

Positive control was ~ 350 bp (*nonspecific lipid transfer protein- nsltp*) product amplified by the primers Remo forward primer 5'-GGGCTGGTCCTCGAATTCAC-3' Remo reverse primer 5'-GTGTATGAGTAATGGATCG-3' using 100 ng of genomic DNA from *Malus domestic* cv. Remo as template.

2.13 Purification of PCR products.

2.13.1 Purification of PCR products using E.Z.N.A. cycle pure kit.

PCR products were purified before cloning to remove any contaminants that might otherwise affect the sequencing reaction. E.Z.N.A. Cycle-Pure Kit (Peqlab Biotechnology, GmbH) was used to purify the PCR products. To the total volume of PCR products 4-5 volumes of CP buffer were added. Subsequently, 750 μ L of the mixture was loaded to the DNA binding column fitted to a collecting tube and centrifuged at RT for 1 min at 16000 x g (Eppendorf centrifuge rotor F45-24-11). DNA-wash buffer (with 1.5 volumes of ethanol) 750 μ L was added to the column and was centrifuged for 1 min at 16000 x g (Eppendorf centrifuge rotor F45-24-11). Washing step was repeated to remove traces of impurities. In all the centrifugation steps the solution collected in the collecting tubes was discarded. The column was dried by centrifuging for 1 min. The dried column was placed on a sterile micro centrifuge tube and 50 μ L of sterilized deionized water was added directly on to the membrane of the column, incubated at RT for 2-3 min and centrifuged for 1 min at 16000 x g (Eppendorf centrifuge rotor F45-24-11) to elute DNA bound to the column.

2.13.2 Purification DNA fragments by phenol chloroform method.

The DNA fragments were purified by phenol chloroform method for southern blot analysis and genome walking experiments. For this 95 μ L phenol 80% equilibrated to pH 8.0 was added and mixed by vortexing at low speed for 5-6 sec. Tube was spun briefly to separate the aqueous and organic phases. The aqueous phase was transferred into a fresh tube and the organic phase was discarded. To the same tube 95 μ L of chloroform was added, tube was shortly vortexed and briefly spun. Again the upper layer was transferred into fresh tube. For DNA precipitation two volumes (190 μ L) of ice cold 95% ethanol and 1/10 volume (9.5 μ L) of 3 M sodium acetate buffer (pH 5.2) were added and vortexed at low speed for 5-6 sec. Centrifugation was done at 16000 x g (Eppendorf centrifuge rotor F45-24-11) for 10 min to precipitate DNA. Subsequently, supernatant was removed and pellet was washed with 100 μ L of ice cold 70% ethanol and centrifuged for 5 min at 16000 x g (Eppendorf centrifuge rotor F45-24-11). The supernatant was decanted and pellet was air dried and dissolved in 20 μ L deionised nuclease free water and stored at -20°C.

2.13.3 Purification of PCR products with QIAEX II Gel Extraction kit (Qiagen #20021).

The standard QIAEX II Gel Extraction protocol is used to extract DNA from 0.3–2% lowmelt agarose gels in TAE buffer. QX1 in the QIAEX II Gel Extraction Kit is used for solubilization of agarose gel slices and binding of DNA to the QIAEX II silica particles. Buffer QX1 contains a pH indicator, allowing easy determination of the optimal pH for DNA binding. DNA adsorption requires a pH 7.5, and the pH indicator appears yellow in this range. If the pH is >7.5, the binding mixture turns orange or violet. This means that the pH of the sample exceeds the buffering capacity of Buffer QX1 and DNA adsorption will be inefficient. In this case, the pH of the binding mixture can easily be corrected by addition of a small volume of 3 M sodium acetate, pH 5.0, before proceeding with the protocol.

A typical agarose gel slice was solubilized by adding 3 volumes of Buffer QX1 to 1 volume of gel (e.g., 300 µL of Buffer QX1 was added to 100 mg gel slice) and incubated at 50°C for 10 minutes. The high concentration of a chaotropic salt in Buffer QX1 disrupts hydrogen bonding between sugars in the agarose polymer, allowing solubilization of the gel slice. In addition, the high salt concentration dissociates DNA binding proteins from the DNA fragments. DNA molecules bind to the QIAEX II particles during the adsorption step, and all non nucleic acid impurities such as agarose, proteins, ethidium bromide, and salts remain in the supernatant. A high salt wash with Buffer QX1 removes residual agarose, QIAEX II pellet containing bound DNA was washed twice with 400 µL ethanol-containing Buffer PE efficiently remove salt contaminants. All traces of supernatant were carefully removed at each step to eliminate impurities and reduce buffer carryover. Washed QIAEX II particles carrying adsorbed DNA were pelleted and air-dried at room temperature for 10-15 minutes. Drying the pellet is necessary to remove all traces of residual ethanol which may interfere with subsequent enzymatic reactions. The pellet was then resuspended in 20 µL deionised water by vortexing to elute the bound DNA and centrifuged at 10000 x g for 10 min at room temperature. The supernatant containing the purified DNA was collected in a fresh micro centrifuge tube and stored at -20°C. Elution step was repeated again with 10 µL of deionised water to elute traces of bound DNA. The purified DNA can also be eluted in TE buffer (10 mM Tris HCl, 1 mM EDTA, pH 8.0), but the EDTA may inhibit subsequent enzymatic reactions.

2.14 Preparation of competent E. coli cells and transformation.

2.14.1 Preparation of electro competent *E. coli* cells.

For the preparation of ultra competent cells for heat shock transformation glycerin stock culture of required *Escherichia coli* strain (for example, XL-Blue1, NM522 or DH5 α) was cultured overnight in 5 mL LB medium at 37°C. Afterwards 250 mL of LB medium was inoculated with 500 µL of this overnight culture. The culture flask is incubated at 18 °C on shaker at 155 rpm. The OD of the culture was measured at every 1 hour interval, and when the OD₆₀₀ reaches 0.55-0.6, culture flask was transferred to an ice bath and incubated for 10 minutes. Here onwards all the steps were carried out at 4°C and the temperature was maintained by keeping the cell suspension of ice throughout the preparation process. Then the suspension was centrifuged for 10 min at 4000 x g (Sorvall GSA rotor) at 4°C in autoclaved centrifugation bottles of 500 mL

capacity. The supernatant was discarded and the remaining supernatant was drained by inverting the centrifuge tube on tissue paper. After centrifugation for 10 min at 4000 x g, the pellet was resuspended in 5 mL distilled water, and subsequently with 250 ml with distilled water. Centrifugation was done again for 20 min at 4000 x g, and the pellet was resuspended in 250 mL distilled water (this step was repeated once again). Pellet was resuspended in 25 mL 15% glycerol and centrifuged for 30 min at 4000 x g. Finally the pellet was resuspended in 1.5 volume of 15% glycerol, mixed gently and divided into 100 μ L aliquots; snap frozen by dipping in liquid nitrogen and stored at – 70°C.

2.14.2 Electro transformation of *E. coli* cells.

For transformation of *E. coli* cells by electroporation, 100 μ L of electro competent cells were thawed on ice and mixed with 3 μ L ligate in a precooled electroporation cuvette. Electroporation was done in BTX cell at 1.25 kV. After electroporation, 900 μ L LB medium without antibiotic was added to cell suspension and incubated for 90 min; eventually, bacterial cells were cultivated on LBA plates containing appropriate (100 μ g/mL Amp) antibiotic for selection. For blue-white selection LBA plates containing ampicillin, IPTG (0.100 μ M) and X-gal (20-40 μ g/mL) were used.

2.14.3 Preparation of heat shock ultra-competent cells.

For the preparation of ultra competent cells for heat shock transformation glycerin stock culture of required *Escherichia coli* strain (for example, XL-Blue1, NM522 or DH5 α) was cultured overnight in 5 mL LB medium at 37°C. Next morning 250 mL of LB medium was inoculated with 500µL of this overnight culture. The culture flask is incubated at 18 °C on shaker at 155 rpm. The OD of the culture was measured at every 1 hour interval, and when the OD₆₀₀ reaches 0.55-0.6, culture flask was transferred to an ice bath and incubated for 10 minutes. Here onwards all the steps were carried out at 4°C and the temperature was maintained by keeping the cell suspension of ice throughout the preparation process. Then the suspension was centrifuged for 10 min at 4000 x g (Sorvall GSA rotor) at 4°C in autoclaved centrifugation bottles of 500 mL capacity. The supernatant was discarded and the remaining supernatant was drained by inverting the centrifuge tube on tissue paper. The pellet was resuspended in 19.2 mL ice cold Inoue transformation buffer and incubated for 10 min on ice. The suspension was centrifuged for 10 min at 4000 x g at 4°C. The supernatant was discarded and pellet was resuspended in 2.4 mL filter sterilized, ice cold Inoue buffer. This suspension contains ultra competent cells which can be transformed by heat shock. To this cell suspension, 84 µL DMSO was carefully pipetted in the middle, mixed by gently tilting and swirling. As DMSO is cytotoxic aliquoting was done quickly. The ultra competent cells were divided into small aliquots of 100 µL each and pipetted out into ice cold micro centrifuge tubes with ice-cold tips. The aliquots were snap-frozen by dipping in liquid nitrogen and stored at – 70°C. Composition of PIPES and Inoe buffer are given below.

PIPES (piperazine-1,2-bis[2-ethanesulfonic acid])

PIPES	15.10 g
Deionised water	80.00 mL

pH was adjusted to 6.7 using	5 M KOH
pii was adjusted to 0.7 using	

Volume was made up to 100 mL using deionised water. PIPES solution was filter sterilized using disposable pre-rinsed 0.45-µm Nalgene filter and stored at -20°C in aliquots.

Inoue transformation buffer

Reagent	Amount per liter	Final concentration
MnCl2.4H2O	10.88 g	55 mM
CaCl ₂ .2H ₂ O	2.20 g	15 mM
Potassium chloride	18.65 g	250 mM
PIPES (0.5 M, pH 6.7)	10.00 mL	10 mM
Final volume	1 liter	

The solution was filter sterilized using pre rinsed 0.45-µm Nalgene filter and stored at -20°C.

2.14.4 Heat shock transformation of *E. coli* cells.

The ultra competent cells were thawed on ice bath till they are crunchy and not liquid. When they turn just crunchy 10 ng of plasmid or 2 μ L of ligation mixture was added, mixed and incubated on ice for 10 min. For heat shock transformation the competent cells with ligate were incubated on a water bath at exactly 42°C for 45-55°C (accurate temperature and time is important). The cells were removed from water bath after incubation and put back into ice bath and to the same micro centrifuge tube 950 μ L of SOC medium maintained at RT was added. The cells were allowed to multiply at 37°C for 60-90 min on a shaker. The lid of micro centrifugation tube was punctured with to facilitate aeration. Once the transformants had recovered from heat shock and multiplied on antibiotic free broth, they were (50 μ L, 100 μ L, and the rest of the cells) were plated out on separate plates with selective medium; incubated at 37°C overnight.

Composition of SOC medium

Bacto-tryptone	(2% w/v)	20 g
Bacto-yeast extract	(0.5% w/v)	5 g
NaCl (10 mM)		0.584 g
KCl (2.5 mM)		0.186 g
MgCl ₂ (10 mM)		0.952 g
Glucose (20 mM)		3.603 g
pH was adjusted to 7	7.0 with	10 M NaOH

Final volume was made up to 1000 mL using deionised water; Broth was sterilized by autoclaving, 20 mL of filter sterilized (pre-rinsed Nalgene filter, 0.45 μ m pore size) 1 M glucose was added to the broth before use.

Preparation of LB Agar-Amp¹⁰⁰ plates with X-gal, IPTG.

Thirty grams of Luria Broth Agar was suspended in 900 mL of deionised water and the pH was adjusted to 7.2, final volume was made up to 1L and the medium was sterilized by autoclaving. The medium was cooled to 50°C; 1 mL of Amp stock solution (100 mg/mL), 1 mL of X-gal stock solution (20 mg/mL) and 1 ml of IPTG stock solution (0.1 M) were added, mixed thoroughly; poured onto petriplates and allowed to solidify. The LB agar plates were stored at 4°C for not more than 7 days. These plates were used to screen the colonies by blue white selection. Only Amp¹⁰⁰ plates were used to screen the Amp resistant transformants.

X-gal stock solution (20 mg/mL)

X-gal stock solution was prepared by dissolving 200 mg 5-bromo-4-chloro-3-indolylbeta-D-galactopyranoside (Sigma # B4252) in 10 mL molecular biology grade dimethyl Formamide (DMF), the solution was filter sterilized using pre rinsed 0.45- μ m Nalgene filter and stored at -20°C.

IPTG Stock solution (0.1 M)

IPTG stock solution was prepared by dissolving 0.238 g Isopropyl beta-D-thiogalactopyranoside (Sigma # I5502) in 10 mL of deionised water (formula weight is 238.3g/mol), The solution was filter sterilized using pre rinsed 0.45- μ m Nalgene filter and stored at -20°C.

Ampicillin Stock solution

Ampicillin stock solution was prepared by dissolving 100 mg of Ampicillin (sodium salt) in 1mL of deionised water. The solution was filter sterilized using pre rinsed 0.45- μ m Nalgene filter and stored at -20°C.

2.14 Cloning of PCR products into cloning vector.

2.14.1 TA Cloning.

Inserts generated by PCR using *Taq* polymerase have poly A overhangs The PCR fragments were purified by gel extraction and immediately cloned into pGEM-T Easy vector from Promega (# A3600) that facilitates TA cloning. Three μ l of the purified PCR product was mixed with 1 μ L pGEMT Easy vector and 1 μ l of T4-DNA ligase in presence of 10 μ L of 2 X ligation buffer. The ligation assay was incubated for 30 min at room temperature. From this ligation 3 μ L were used for transformation. To calculate the appropriate amount of PCR product (insert) to include in the ligation reaction, the following equation was used.

(ng of vector X kb size of insert / kb size of vector) X (3:1)* = ng of insert to be added *3:1 being the Insert : Vector ratio

2.14.2 Blunt end cloning.

Amplicons generated by PCR using enzymes with proof reading activity like *Pfu*, KAPA HiFi polymerase (but not *Taq* polymerase) do not have overhangs and are thus blunt. To clone these blunt end PCR products generated by KAPA HiFi polymerase from Peqlab (KK 2101, CloneJet blunt end cloning vector from Fermentas (# K1231) was used. The vector was mixed with purified PCR product at 1:3 ratio. One μ L T4 ligase, Ligation buffer at a final concentration of 1 X, 0.5 mM ATP and 1 mM DTT, 3% PEG 4000 were added to the reaction tube. The reaction volume was adjusted to 20 μ l by sterile deionised water. Reaction tubes were incubated overnight at 16°C.

2.15 Screening the transformed colonies.

2.15.1 Blue white selection.

The blue-white screen is a molecular technique that allows for the detection of successful ligations in vector-based gene cloning. DNA of interest is ligated into a vector. The vector was then used to transform competent *E. coli* cell. The transformants cells were grown in the presence of X-gal and IPTG. If the ligation was successful, the bacterial colony was white; otherwise the colony was blue. This technique allows quick and easy detection of successful ligation. Several white and as well as blue colonies were picked and sub cultured overnight in LB broth in the presence of 100 μ g/mL ampicillin. Afterwards, plasmid was isolated from these cultures by HB-lysis or using GeneJET plasmid Miniprep kit.

2.15.2 Antibiotic selection.

Bacterial transformation is the process by which bacterial cells take up naked DNA molecules. If the foreign DNA has an origin of replication recognized by the host cell DNA polymerases, the bacteria will replicate the foreign DNA along with their own DNA. When transformation is coupled with antibiotic selection techniques, bacteria can be induced to uptake certain DNA molecules, and those bacteria can be selected for that incorporation. Plasmids used for the cloning and manipulation of DNA have been engineered to harbor the genes for antibiotic resistance. Here the bacterial transformation was plated onto media containing ampicillin, only bacteria which possess the plasmid DNA and thus have the ability to metabolize ampicillin and form colonies were grown on the ampicillin agar plates. In this way, bacterial cells containing plasmid DNA were selected.

2.16 Isolation of plasmid DNA from *E coli* cells

2.16.1 Isolation of plasmid DNA by HB-lysis

For isolation of the plasmid, 1.5 mL of overnight culture was centrifuged for 2 min at 16000 x g (Eppendorf centrifuge rotor F45-24-11). Pellet was resuspended in 300 μ L buffer 1, and another 300 μ L buffer 2 was added. The mixture was incubated for 5 min at room temperature. After mixing with an additional 300 μ L buffer 3, mixture was incubated for 10 min

in ice. Afterwards mixture was centrifuged for 10 min at 16000 x g (Eppendorf centrifuge rotor F45-24-11) at RT. The supernatant was transferred into a fresh micro centrifuge tube and recentrifuged for 10 min at 16000 x g (Eppendorf centrifuge rotor F45-24-11). Supernatant was pipetted out and mixed with 800 μ L were mixed with ice cold 700 μ L 2-propanol and centrifuged for 30 min at 16000 x g at 4°C. Pellet was incubated with 500 μ L cold 70% ethanol for 2 min subsequently centrifugation was done for 10 min at 16000 x g (Eppendorf centrifuge rotor F45-24-11) at RT. After air drying the pellet it was resuspended in 50 μ L deionised water. Plasmid DNA was dissolved at 50°C on a heating block and stored at – 20°C. Composition of buffer 1, 2 and 3 are given below.

Buffer 1:

Tris-HCl (pH 8.0) EDTA RNase A*	50 mM 10 mM 40 µg/ml
Buffer 2:	
Sodium hydroxide (NaOH)	200 mM
SDS	1%
Buffer 3:	
Potassium acetate	2.55 M
The pH was adjusted to 4.8 using acetic acid.	

* All the three buffers were autoclaved. RNase was added after autoclaving for buffer 1 and stored at 4°C. Buffer 2 and 3 were stored at RT.

RNase A Stock solution:

10 mg/ml of DNase free RNase A dissolved in deionised water and stored at -20°C.

2.16.2 Plasmid preparation using GeneJET Plasmid Miniprep Kit (Fermentas # K0502).

The GeneJET Plasmid Miniprep Kit (Fermentas # K0502) is a simple, rapid and costeffective system for the isolation of high quality plasmid DNA from recombinant *E. coli* cultures. The kit utilizes an exclusive silica-based membrane technology in the form of a convenient spin column.

Principle: A bacterial culture is harvested and lysed. The lysate is then cleared by centrifugation and applied on the silica column to selectively bind DNA molecules at a high salt concentration. The adsorbed DNA is washed to remove contaminants, and the pure plasmid DNA is eluted in a small volume of elution buffer or water.

Steps involved

Bacterial culture was centrifuged in a micro centrifuge tube at 4000 x g (Eppendorf centrifuge rotor F45-24-11) and then resuspend in 250 μ L of the resuspension solution. to this 250 μ L of the Lysis Solution was added and mix thoroughly by inverting the tube 4-6 times

until the solution becomes viscous and slightly clear (not by vortexing as it would shear chromosomal DNA and incubated for not more than 5 min (to avoid denaturation of super coiled plasmid DNA). To the same mixture 350 µL of the neutralization solution was added and mixed thoroughly by inverting the tube 4-6 times. The neutralized bacterial lysate is cloudy and viscous; it was centrifuged for 5 min to pellet cell debris and chromosomal DNA. The supernatant was transferred to the GeneJET spin column by decanting (care was taken to avoid transferring the white precipitate). The spin column was inserted into a collection tube and centrifuged for 1 min. The flow-through was discarded and column was placed back into the same collection tube. Spin column was washed with 500 µL of the wash solution (diluted with ethanol prior to first use as) and centrifuged for 30-60 sec. The flow-through was discarded and spin column was washed again with the same amount of wash solution. The flow-through was discarded and spin column was dried by centrifugation for an additional 1 min to remove residual wash solution. This step is essential to avoid residual ethanol in plasmid preps. GeneJET[™] spin column was transferred into a fresh 1.5 mL micro centrifuge tube. Twenty five µL of the elution buffer was added to the center of GeneJET[™] spin column membrane to elute the plasmid DNA (care was taken not to contact the membrane with the pipette tip). Spin column was incubated for 2 min at room temperature and centrifuged for 2 min. Elution was repeated with another 20 µl of elution buffer. The eluted plasmid DNA in the micro centrifuge tube was stored at -20°C. The purified DNA is ready for immediate use in all molecular biology procedures such as fast and conventional digestion with restriction enzymes, transformation and automated sequencing.

2.17 Sequencing.

Plasmids containing inserts were digested by using restriction enzymes from multiple cloning site (MCS) of the vector. After selection of the right plasmid, the plasmid preparation was sent to a company for sequencing (Sequence Lab, Göttingen, Germany).

2.18 Northern blot analysis.

The northern blot is a technique used in molecular biology research to study gene expression by detection of isolated mRNA in a sample. With northern blotting it is possible to observe cellular control over structure and function by determining the particular gene expression levels during differentiation, morphogenesis, as well as abnormal or diseased conditions. Northern blotting involves the use of electrophoresis to separate RNA samples by size and detection with a hybridization probe complementary to part of or the entire target sequence. The term 'northern blot' actually refers specifically to the capillary transfer of RNA from the electrophoresis gel to the blotting membrane; however the entire process is commonly referred to as northern blotting. The northern blot technique was developed in 1977 by James Alwine and coworkers at Stanford University.

2.18.1 Capillary blotting of RNA from the gel onto nylon membrane.

Capillary blotting technique was used to transfer RNA from agarose gels onto nylon membrane. For this, agarose gel was equilibrated with 2 x SSC for 5 min. Capillary blotting was carried out using a blotting apparatus containing 10 x SSC and a big Whatman sheet with both

ends of it dipping in 10 x SSC buffer. The gel was placed on three layers of Whatman sheets, exactly cut to the size of the gel and soaked in 2 X SSC, The membrane was laid on top of the agarose gel, followed by three thick Whatman sheets soaked with 2 x SSC and a stack of filter tissues. The Whatman sheets below the gel and on the membrane were exactly the same size of the gel. Weight was put on top of the blotting construction to ensure even capillary force on the gel which would allow uniform and complete transfer of RNA onto the membrane; transfer was carried out overnight. The following day transferred RNA was fixed onto the membrane by baking the blot in a hot air over at 80°C for 60 min. Blots were stored in dark at room temperature for later use in a clean sealed bag. Composition of all the buffers used is given below.

20 x SSC	
Na citrate (pH 7.0)	300 mM
NaCl	3000 mM
50 x Denhardt's solution	
PVP 10	1% (w/v)
BSA (filter sterilized)	1% (w/v)
Ficoll 400	1% (w/v)
20 x SSPE	
NaCl	3600 mM
Na dihydrogen phosphate (NaH2PO4)	200 mM
EDTA (pH 7.4)	20 mM
Prehybridization solution (100 mL)	
50 x Denhardt's solution	10 mL
20 x SSPE	25 mL
10% SDS	2 mL (w/v)
Salmon sperm DNA (10 mg/mL)	2 mL
TE Buffer	
Tris-HCl (pH 7.5)	10 mM
EDTA	1 mM
TNE buffer	
Tris-HCl (pH 7.5)	10 mM
NaCl	100 mM
EDTA	1 mM

Hybridization solution

One hundred μ L radioactive ³²P labeled DNA probe was mixed with 5 mL prehybridization solution, incubated in boiling water bath for 10 min and cooled on ice. This hybridization was used for overnight hybridization of the blots.

Wash solution (to wash the blot after hybridization)

2 x SSC containing 0.1% SDS preheated to 60 °C was used to wash the blots; finally the blots were rinsed with 2 x SSC.

2.18.2 Prehybridization.

The blots were incubated in prehybridization solution for 2 hrs in a rotating oven at 60 °C.

2.18.3 Radioactive labeling of probe.

The preparation of radioactively labeled probes for hybridization of Southern blots was performed using the Prime-It II Random Primer Labeling Kit (Stratagene). 10 μ l of random oligonucleotide primer was added to probe DNA solution containing 25-30 ng of probe DNA in 24 μ l. The reaction was heated for 5 min at 95°C and placed back on ice for 5 min. This allows annealing of random primer to the probe DNA. To this primer annealed probe 10 μ L of 5 x dCTP primer buffer, 5 μ L of α -32P labeled dCTP, and 1 μ L of 5 U/ μ L Exo(-)Klenow enzyme were added, mixed thoroughly, and incubated for 20 min at 37°C. The reaction is stopped by adding 2 μ L of stop solution. The reaction volume was made up to 100 μ L using TNE buffer. The micro centrifuge tube was given a short spin to bring its contents to the bottom of the tube.

2.18.4 Purification of the labeled probe.

Radiolabeled probe was purified to remove free ³²P before use with 1 mL Sephadex G-50 spin columns with a filter in the bottom (35 μ m for pore size) equilibrated with TE (Tris HCl 100 mM, 10 mM EDTA, pH 8.0) buffer. The column was centrifuged at 1500 x g for 5 min in 2 ml micro centrifuge tube and the flow through containing free ³²P was discarded. The column was washed with 100 μ L TNE buffer (composition given below) to elute the radiolabeled probe and centrifuged at 1500 x g for 5 min. Before hybridization, the probe was denatured by boiling in hot water bath for 5 min at 95°C; and it was used immediately for hybridization.

2.18.5 Hybridization of RNA.

The blotted membrane containing fixed RNA molecules were hybridized by incubating the membrane in hybridization solution containing the probe overnight in a rotating oven. During this process, the labeled probes complementary bind to any complementary nucleotide sequence on the gel.

2.18.6 Washing of blots.

Blots were washed after hybridization to remove excess of adhering radiolabeled probe. This step was carried out at 60°C in a rotating oven. The blots were incubated in preheated (to 60°C) 2 x SSC containing 0.1% SDS and finally rinsed with 2 x SSC.

2.18.7 Visualization of radioactive hybridization.

The blots were sealed between thin transparent plastic sheets and kept facing the autoradiography film overnight and scanned using phosphor image (Raytest autoradiography equipment) the next day.

2.18.8 Stripping.

To remove bound probes from the membrane, blots were washed three times in 0.4 M NaOH for 30 min at 45°C. The membrane was neutralized two times for 15 min at 45°C with 0.1x SSC containing 0.1% SDS and hybridized with another probe. Finally the membrane was rinsed with 1x SSC buffer. The blot is used for radioactive labeling with another probe of interest. The same blot can be stripped and reused 2-3 times.

2.19 Southern blot analysis

Southern blot is a method routinely used in molecular biology to determine the number of copies of a gene in the genome. Southern blotting combines transfer of electrophoretically separated DNA fragments to a filter membrane and subsequent fragment detection by hybridization with labeled probe. The method is named after its inventor, the British biologist Edwin Southern.

2.19.1 Restriction digestion of genomic DNA.

Approximately 10 µg pearl millet genomic DNA extracted by CTAB method was digested with restriction enzymes in Final volume 100 µL for 2 h at 37°C. Afterwards digestion assay was vortexed at low speed, centrifuge for few seconds and incubated overnight at 37°C. Restriction enzyme was inactivated by incubating at 65°C for 15 min.

2.19.2 Purification of restriction digested DNA.

Restriction digested DNA was purified by phenol chloroform precipitation as explained in section 2.13.2 of materials and methods.

2.19.3 Electrophoresis of restriction digested DNA.

Ten μ L restriction digested DNA was run on 0.8% agarose gel overnight at 40V, 15 mA current, 1 kb plus ladder was used as reference.

2.19.4 Preparation of the gel for blotting.

Electrophoretically separated DNA was depurinated by incubating in 0.25 M HCl; HCl provokes partial depurination of DNA which in turn leads to strand cleavage, this allows better transfer of large DNA restriction fragments. The DNA was then denatured by washing the agarose gel two times for 20 min with denaturation solution with gentle agitation. The gel was washed with distilled water thrice for 5 min and neutralized by washing two times for 20 min

with the neutralization solution and finally washed thrice for 5 min with distilled water. Composition of denaturation buffer and neutralization buffer are given below.

0.25 M HCl for depurination

HCl (12.1 M) Deionised water Final volume	10.30 mL 489.70 mL 500.00 mL
Denaturation buffer	
NaCl NaOH	1500 mM 500 mM
Neutralization buffer	
Tris-HCl (pH 8.0)	1000 mM
NaCl	2000 mM

2.19.5 Capillary blotting of DNA from the gel onto the nylon membrane.

Capillary blotting technique was used to transfer DNA from agarose gels to the nylon membrane. For this agarose gel was soaked for 20 min in denaturing buffer after finishing electrophoresis of restriction digested DNA fragments. The gel was then washed thrice with deionised water with gentle shaking and neutralized with neutralization buffer, by incubating in it for 20 min with gentle shaking. The gel was then washed thrice with deionised water to remove the traces of neutralization solution. Then the gel was equilibrated with 2 x SSC for 5 min. Capillary blotting was carried out as explained under section 2.18.1 of materials and methods. The following day transferred DNA was fixed onto the membrane by baking it in a hot air over at 80°C for 60 min. Blots were stored in dark at room temperature for later use in a clean sealed bag.

2.19.6 Prehybridization.

Prehybridization was carried out as mentioned in section 2.18.2 of materials and methods.

2.19.7 Hybridization

Hybridization was carried out as mentioned in section 2.18.5 of materials and methods hybridization was carried out overnight.

2.19.8 Washing

Washing was carried out as mentioned in section 2.18.6 of materials and methods.

2.19.9 Visualization of radioactive hybridization

The blots were sealed between thin transparent plastic sheets and kept facing the autoradiography film overnight and scanned using phosphor image (Raytest autoradiography equipment) the next day.

2.19.10 Stripping

To remove bound probes from the membrane, blots were stripped off as explained under section 2.18.8 of materials and methods. The blot is used for radioactive labeling with another probe of interest. The same blot can be stripped and reused 2-3 times.

2.20 Amplification of unknown flanking regions using different PCR based Genome walking techniques

2.20.1 Inverse PCR to amplify unknown flanking regions

Inverse PCR is a simple method for the rapid in vitro amplification of DNA sequences that flank a region of known sequence (Ochman et al.,. 1998 and http://www.51protocol.com/ PCR /base/20070307/5473.html). The method uses the polymerase chain reaction (PCR), but it has the primers oriented in the reverse direction of the usual orientation. The template for the reverse primers is a restriction fragment that has been self ligated to form a circle. This procedure of inverse PCR (IPCR) has many applications in molecular genetics, for example the amplification and identification of sequences flanking transposable elements. Typical PCR amplifications utilize oligonucleotide primers that hybridize to opposite strands. The primers are oriented such that extension proceeds inwards across the region between the two primers. Since the product of DNA synthesis of one primer serves as the template for the other primer, the PCR procedure of repeated cycles of DNA denaturation, annealing of primers, and extension by DNA polymerase results in an exponential increase in the number of copies of the region bounded by the primers (Saiki et al. 1985; Scharf, Horn and Erlich 1986; Faloona and Mullis 1987). However, using the conventional PCR procedure, DNA sequences that lie immediately outside the primers are apparently inaccessible because oligonucleotide that prime DNA synthesis in to flanking regions, rather than included regions, allow only a linear increase in the number of copies. The linear increase occurs because, for each primer, there is no priming of DNA synthesis in the reverse direction. Inverse PCR is schematically represented in Fig 6.

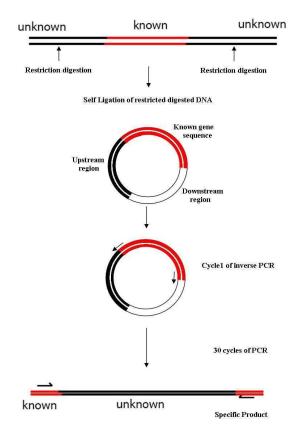


Fig 6. Schematic representation of inverse PCR.

The known sequence is depicted in orange. Upstream region is coloured black and downstream region is in while. Inverse PCR involves primers walking away from each other, direction of DNA synthesis is shown by the arrows. www.51protocol.com

Steps involved

Genomic DNA was partially cut into smaller fragments by blunt end cutter not cutting the known portion of the gene sequence. After restriction enzyme digestion, the DNA fragments produced by the restriction enzyme are diluted and ligated under conditions that favor the formation of monomeric circles. The resulting intramolecular ligation products are then used as substrates for enzymatic amplification by PCR using oligonucleotide primers homologous to the ends of the known sequence, but facing opposite orientations. The primary product of the resulting amplification is a linear double-stranded molecule including segments situated both 5' and 3' of the known sequence. The junction between the original upstream and downstream regions, otherwise ambiguous, can be identified as the restriction site of the restriction enzyme that was used to produce the linear fragments prior to ligation. By selecting a restriction enzyme that cleaves inside a known core sequence, the IPCR procedure will produce products containing only the upstream or only the downstream flanking regions.

2.20.1 Restriction digestion of genomic DNA.

To construct genomic DNA libraries which serve as template for PCRs, 2.5 μ g pearl millet genomic DNA was cut with 8 μ L of 6 bp blunt end non-cutters in presence of the suitable reaction at an end concentration of 1 x in a micro centrifuge tube. The total reaction volume was adjusted to 100 μ L using deionised water. The tubes were incubated at 37°C. After 2 h incubation, the contents of the micro centrifuge tube were mixed by vortexing at low speed for 5-6 sec. Again the samples were incubated at 37°C overnight (16-18 h). To check the complete digestion of genomic DNA 5 μ L of the digestion mixture run on a 0.5 % agarose gel and the pattern was visualised in the presence of ethidium bromide under UV light. Restriction enzymes were inactivated by incubating the reaction mixture in a hot water bath at 70°C for 10 min and subsequently cooled on ice.

Six base pair blunt end cutters which do not cut 483 bp pearl millet chi used to create genomic DNA libraries were *Sma*I (Buffer Tango, # BY5) at 30°C), *Stu*I (Blue buffer, # BB5 at 37°C), *Nru*I (*Bsp*68I) (Orange buffer, # BO5 at 37°C) and *Eco*32I (*Eco*RV) (Red Buffer, # BR5 at 37°C).

Six base pair blunt end cutters which do not cut 422 bp pearl millet *tlp* used to create genomic DNA libraries were *Sma*I (Buffer Tango, # BY5 at 30°C), *Stu*I (Blue buffer, # BB5 at 37°C), *Nru*I (*Bsp*68I) (Orange buffer # BO5 at 37°C) and *Nae*I (Buffer Tango at 37°C). Composition of various restriction enzyme buffers used is given below

1X Buffer Tango (yellow # BY5) composition

Tris-acetate (pH 7.9) Mg-acetate K-acetate BSA	33 mM 10 mM 66 mM 0.1 mg/mL
1X Buffer B (Blue # BB5) composition	
Tris-HCl (pH 7.5 at 37°C)	10 mM
MgCl ₂	10 mM
BSA	0.1 mg/mL
1X Buffer O (Orange# BO5) composition Tris-HCl (pH 7.5) MgCl ₂ NaCl BSA	50 mM 10 mM 100 mM 0.1 mg/mL
1X Buffer R (Red # BR5) composition	
Tris HCl (pH 8.5)	10 mM
MgCl ₂	10 mM
KCl	100 mM
BSA	0.1 mg/mL

2.20.2 Purification of restriction digested genomic DNA.

To each digestion assay was purified by phenol chloroform method explained under section 2.13.2 of materials and methods. DNA pellet was dissolved in 20 μ L 10 mM TE buffer pH 7.5. The sample was vortexed at low speed for 5-6 sec and 1 μ L from the digested DNA was run on 0.5 % agarose gel to determine the approximate quantity of purified DNA.

2.20.3 Dephosphorylation of the restriction digested genomic DNA.

A very common reason for failed ligation is carryover of the phosphatase in to the ligation reaction. Thus the minimal amount of enzyme should be used during dephosphorylation. A number of enzymes are available for dephosphorylating the cut ends - calf intestinal phosphatase (CIP), shrimp alkaline phosphatase (SAP), bovine alkaline phosphatase (BAP) are a few examples. At end of the reaction, the enzymes are deactivated by heating at 70°C for 10 minutes. In this case, SAP was used. Purified, digested DNA was incubated with 1 U SAP / μ g DNA in final 1x SAP buffer in 30 μ L volume at 37°C for 15 min. Phosphatase was heat inactivated by incubating at 65°C for 15 min. DNA was purified by phenol/chloroform extraction as explained under section 2.13.2 of materials and methods.

2.20.4 Self ligation of the restriction digested DNA fragments

In order to generate template for inverse PCR the restriction digested and purified genomic DNA was self ligated to for a circular DNA. For this ligation was carried out overnight at 15°C overnight in the presence of T4 DNA Ligase (Fermentas #EL0016). The ligated DNA was purified using E.Z.N.A. Cycle-Pure Kit (Peqlab # D6492-01) as explained under section 2.13.1 of materials and methods.

2.20.5 Primer designing and PCR

Inverse PCR requires oligonucleotide primers homologous to the ends of the known sequence, but facing opposite orientations. The primary product of the resulting amplification is a linear double-stranded molecule including segments situated both 5' and 3' of the known sequence. The primers used in inverse PCR to clone unknown upstream and downstream regions flanking the known gene fragments of pearl millet *chi* and *tlp* are given in table 4 and 5 below.

	Primer	Sequence
1	PR3_72_C	5'-gttgaagaacgcgtcggtga-3'
2	PR3_76_C	5'-tgccgttgaagaacgcgtcg-3'
3	PR3_375	5'-agaacaacgcctactgctcg -3'
4	PR3_ 447	5'-cgcgtcagatctcgtggaac-3'

Table 4. Primers	designed to am	nlify unknown	flanking ragions	of poorl m	illot <i>th</i> by in	TOPEO DCD
Table 4. Frimers	designed to and	phily ulikilowi	i nanking regions	or pears m	met <i>up</i> by m	verse r C.

	Primer	Sequence
1	PR5_59 Rev	5 ' -CGACTTCTTCGACATCTCGCT-3 '
2	PR5_267 Fwd	5 ' -CGACTACTCGAGGTACTTCAAGGG-3 '
3	PR5_256 Fwd	5 ' -GACTGCGGCGGCGTGCT-3 '
4	PR5_208 Fwd	5 ' - GTGTTCAAGACGGACCAGTA-3 '
5	PR5_271 Fwd	5'-CTGCAGTGCACTGGGTA-3'
-		

Table 5. Primers designed to amplify unknown flanking regions of pearl millet *tlp* by inverse PCR.

PCR reaction mixture

Ligated DNA $(0.1 \ \mu g/\mu L)$	1 µL
10 x PCR buffer	5 µL
25 mM MgCl ₂	4 μL
10 mM dNTP's	1 μL
Primer 1 (10 μM)	1 μL
Primer 2 (10 μM)	1 μL
<i>Taq</i> DNA Polymerase (5u/ μL)	0.2 μL

Final reaction volume made up with deionised water $50 \,\mu L$

PCR master mix was prepared as explained under section 2.12.2 of materials and methods. As the gene to be amplified is GC rich 3% DMSO was used and then the final volume of the reaction was made up to 50 μ L with deionised water. Contents of the tubes were mixed by vortexing without introducing bubbles and given a short before thermo cycling.

PCR conditions.

Denaturation at 96°C for 1.5 min, primer annealing at 48°Cfor 1 min, and extension by *Taq* polymerase at 70°C for 4.0 min 30 cycles of amplification was carried out using thermo cycler PTC 200 (Biozym, Oldendorf, Germany). Ten μ l of the PCR products were analyzed on 1.5% agarose gel.

2.21.1 Genome walking with universal genome walker kit from Clontech (# 638904).

Genome walking is a simple method for amplifying unknown sequences flanking known gene sequence. The method was developed by Siebert and coworkers in 1995; genome walker universal kit from Clontech (#638904) is designed using this principle by Gwyneth Ingram and Karine Coenen. The method involves construction of genomic DNA libraries, ligation of the restriction digested DNA fragments with Genome walker adaptors (GWAs), designing of gene specific primers and primary and nested PCRs using adaptor primers (APs) and gene specific primers (GSPs). These gene specific primers were designed using the known gene sequence. Two gene specific primers, GSP 1 and GSP 2 were used to perform primary and nested PCR along with adaptor primers 1 and 2 respectively. The method is schematically represented in Fig 7.

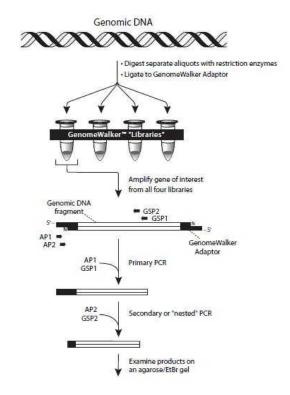


Fig 7. Schematic representation of genome walking using universal genome walker kit AP: Adaptor primers. GSP: Gene-specific primers. Source: Clontech user manual for the kit.

2.21.2 DNA extraction by CTAB method.

To amplify upstream region of pearl millet *chitinase* gene, genomic DNA from pearl millet seedlings was extracted by CAB method (Murray and Thompson., 1980) as explained under section 2.11.1 of materials and methods.

2.21.3 Restriction digestion of genomic DNA.

To construct genomic DNA libraries which serve as template for PCRs, 2.5 μ g pearl millet genomic DNA was cut with 8 μ L of blunt end cutters (*DraI*, *Eco*RV, *PvuII* and *StuI*) separately, in presence of the suitable reaction at an end concentration of 1X (*Eco*RV (R buffer - Red buffer), *DraI* (Tango buffer), *PvuII* (G buffer - Green buffer) and *StuI* (B buffer - Blue buffer) in a micro centrifuge tube. The total reaction volume was adjusted to 100 μ L using deionised water. The tubes were incubated at 37°C. After 2 h incubation, the contents of the micro centrifuge tube were mixed by vortexing at low speed for 5-6 sec. Again the samples were incubated at 37°C overnight (16-18 h). To check the complete digestion of genomic DNA 5 μ L of the digestion mixture run on a 0.5% agarose gel and the pattern was visualised in the presence of ethidium bromide under UV light.

2.21.4 Purification of restriction digested genomic DNA.

To each digestion assay was purified by phenol chloroform method explained under section 2.13.2 of materials and methods. DNA pellet was dissolved in 20 μ L of 10 mM TE buffer pH 7.5. The sample was vortexed at low speed for 5-6 sec and 1 μ L from the digested DNA was run on 0.5% agarose gel to determine the approximate quantity of purified DNA.

2.21.5 Dephosphorylation of the restriction digested genomic DNA.

Dephosphorylation of the restriction digested purified genomic DNA was carried out as explained under section 2.13.2 of materials and methods and dephosphorylated DNA was again purified by phenol chloroform extraction as explained under section 2.13.2 of materials and methods.

2.21.6 Ligation of restriction digested genomic DNA to Genome Walker adaptor.

To construct each library, 4 μ L of digested purified DNA were mixed with 1.9 μ L Genome Walker adaptor (25 μ M), 1.6 μ L 10 x ligation buffer and 0.5 μ L T4 DNA ligase (6 units/ μ L). Mixture was incubated at 16°C overnight. The reaction was stopped by incubation at 70 °C for 5 min.

2.21.7 Primer designing.

Genome walker adaptor primers.

PCR based DNA walking in genomic libraries requires set of walker adaptors and adaptor primers. The nucleotide sequence of these genome walker adaptors (GWA) and adaptor primers (AP) are depicted in the Fig 8. The 5' termini of long oligonucleotide fragment of GWA and 3'-OH group of small oligonucleotide fragment of GWA is blocked by a primary amino group to prevent an extension reaction by DNA polymerase.

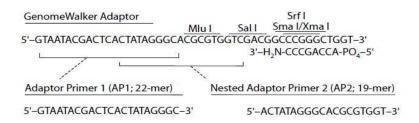


Fig 8. Structure of Adaptors primers from universal Genome Walker Kit (Clontech).

To amplify the upstream region as well as the downstream region, gene specific primers were designed using 'Primer' software. All the primers are compiled in table 6 and 7.

Primer	Primer Sequence	Purpose
Genome walker	5'-gtaatacgactcactatagggcacg	Walker adaptor
Adaptor	CGTGGTCGACGGCCCGGGCTGGT-3 '	
	-3'CCCGACCA-5	
Adaptor Primer 1	5'-GTAATACGACTCACTATAGGGC-3'	Adaptor primer 1
Adaptor Primer 2	5'-ACTATAGGGCACGCGTGGT-3'	Adaptor primer 2
1a)PR3_129 GSP1	5'-GCTCCGCGTGTAGAAGTTCC-3'	Upstream <i>chi</i>
1b)PR3_72 GSP2	5'-GTTGAAGAACGCGTCGGTGA-3'	Upstream <i>chi</i>
2a)PR3_129 GSP1	5'-GCTCCGCGTGTAGAAGTTCC-3'	Downstream chi
2b)PR3_76 GSP2	5'-TGCCGTTGAAGAACGCGTCG-3'	Upstream <i>chi</i>
3a)PR3_230 GSP1	5'-GTGCGAACGTGGCTAATGTG-3'	Downstream chi
3b)PR3_447 GSP2	5'-CGCTGCAGATCTCGTGGAAC-3'	Downstream chi
4a)PR3_230 GSP1	5'-GCTCCGCGTGTAGAAGTTCC-3'	Downstream chi
4b)PR3_375 GSP2	5'-AGAACAACGCCTACTGCTCG-3'	Downstream <i>chi</i>

Table 6. Adaptor primers and gene specific primers to amplify unknown flanking regions of pearl millet chitinase gene (*chi*).

Table 7. Adaptor primers and gene specific primers to amplify unknown flanking regions of pearl millet thaumatin like protein gene (tlp).

Primer	Primer Sequence	Purpose
1a)PR5_594 GSP1	5'-GCACTGCCCCTTGAAGTA-3'	Upstream <i>tlp</i>
1b)PR5_59 GSP2	5'-CGACTTCTTCGACATCTCGCT-3'	Upstream <i>tlp</i>
2a)PR5_271 GSP1	5'-CTGCAGTGCACTGGGTA-3'	Downstream tlp
2b)PR5_208 GSP2	5'-GTGTTCAAGACGGACCAGTA-3'	Downstream <i>tlp</i>
3a)PR5_271 GSP1	5'-CTGCAGTGCACTGGGTA-3'	Downstream <i>tlp</i>
3b)PR5_312 GSP2	5'-GGAGTACGCGCTGAAGCAGT-3'	Downstream <i>tlp</i>

2.21.8 Primary PCR.

2.21.8 i) Primary PCR.

Master mix for primary PCR was prepared as follows		
Deionized water to	50 µL	
10 x PCR Reaction Buffer	5 μL	
dNTP Mix (10 mM for each)	1 μL	
Mg(OAc)2 (25 mM)	2.2 μL	
DMSO	2.5 μL	
Adaptor primer 1 (AP1) (10 μM)	1 μL	

Gene specific primer 1 (GSP1-10 pM)	1 μL
Template DNA library (0.1 μg/ μL)	1 μL
Advantage Genomic Polymerase Mix (50X)	1 μL
Final reaction volume	50 µL

10X Taq Buffer (with KCl and 15 mM MgCl₂)

Tris-HCl (pH 8.8 at 25°C)	100 mM
KCl	500 mM
Nonidet P40	0.8% (v/v)
MgCl ₂	15 mM

As the template is GC rich DMSO was used at a final concentration of 5% DMSO in primary and secondary PCR. DMSO was added after adding rest of the components to the Master Mix. Contents of the reaction tubes were mixed carefully by vortexing without introducing bubbles and given a short spin. The two-step PCR reaction was carried out in thermo cycler PTC 200 (Biozym, Oldendorf, Germany) as follows according to manufacturer's specification:

7 cycles of 94°C 25 sec and 72°C 3 min 32 cycles of 94°C 25 sec and 67°C 3 min

The extremely short incubation time at 94°C may be necessary to preserve the integrity of the larger genomic DNA templates required for long distance PCR in the Genome walker protocol. To analyze the primary PCR products, 10 μ l were run on 1.5 % agarose gel.

2.21.8 ii) Secondary (nested) PCR.

The secondary PCR master mix was prepared as follow:	
Deionized water to	50 µL
10 x PCR Reaction buffer	5 µL
dNTP mix (10 mM for each)	1 μL
Mg (OAc) ₂ (25 mM)	2.2 μL
Adaptor primer 2 (AP2) (10 μM)	1 μL
Gene specific primer 2 (GSP2-10 pmol)	1 μL
DNA Template 1 µl of 1:100 diluted primary PCR product	1 μL
Advantage Genomic Polymerase Mix (50X)	1 μL
Final reaction volume	50 µL

Contents of the tubes were mixed by vortexing without introducing bubbles and given a short spin before thermo cycling. The thermo cycler was programmed as in the primary PCR. Ten μ l of the PCR products were analyzed on 1.5% agarose gel.

2.21.9 Cloning of PCR production and sequencing.

The obtained fragments by secondary PCR were purified cut from the gel and purified using gel extraction kit (QiaEx II # 20021) from Qiagen as explained under section 2.13.3 of materials and methods. KAPA Robust DNA polymerase (Peqlab) generates blunt end products as it has proof reading activity. Purified PCR products with poly A tail were cloned to PGEM-T easy cloning vector from Promega as explained under section 2.14.1of materials and methods; Blunt end products were cloned to CloneJet, blunt end cloning vector (Fermentas # K1231) as explained under section 2.14.2 of materials and methods. The ligation assay was incubated overnight at 15°C. Three μ l of this ligated CloneJet plasmid was used to transform XL-Blue1 strain of *E. coli*; subsequently transformants grown on ampicillin plates were based on ampicillin resistance.

2.21.10 Plasmid isolation from the transformant colonies.

The transformants were grown on ampicillin (100 μ g/mL) containing LB broth; plasmid was isolated using plasmid mini prep kit (GeneJet Plasmid mini prep kit Fermentas # K0502) as explained under section 2.16.2 of materials and methods. Isolated plasmid sample was analysed on 1% agarose gel.

2.22 Straight walk: A ligation-mediated method of genome walking (Tsuchiya et al., 2009).

An important step in plant genome research is the isolation of unknown genomic regions flanking known sequences. Several polymerase chain reaction (PCR) (Abd-Elsalam, 2003)-based techniques have been developed for this purpose. Although these methods have been successfully used for plants with relatively small genomes (e.g., *Arabidopsis thaliana* and *Oryza sativa*), they often fail for plants with large genomes because the genome size has a negative effect on PCR amplification (Garner, 2002). The problem of PCR-based genome walking in plants with large genomes is likely caused by the extremely low ratio of the number of target DNA molecules to other genomic sequences in the reaction mixes. For this reason, the amplification of the desired product can completely fail or be obscured due to the excessive accumulation of nonspecific products. Therefore, a genome walking method that allows both high sensitivity and high specificity is needed to obtain satisfactory results in plants with large genomes. This is an improved ligation-mediated PCR (LM–PCR) procedure that is especially effective for plants with large genomes. An outline of the LM–PCR strategy used in this study as illustrated in (Tsuchiya *et al.*, 2009) the Fig 9.

Schematic representation of Straight Walk.

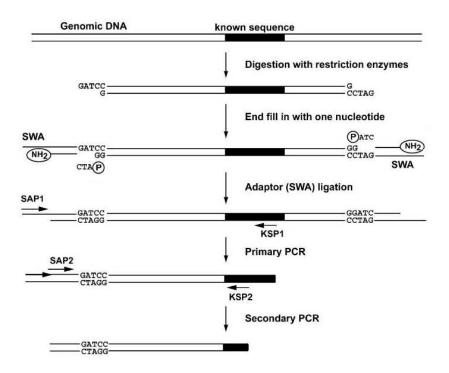


Fig 9. Schematic representation of Straight Walk: SWA adaptor composed of SWA-F and SWA-R1/R2; NH2, primary amino group to block the extension reaction of polymerase; P, phosphorylated 50 end; SAP1 and SAP2, adaptor primers specific for SWA; KSP1 and KSP2, primers annealing to the known sequence. The known sequence is shaded. Source: Tsuchiya *et al.*, 2009

2.22.1 Primer designing.

For straight walking to amplify unknown genomic regions flanking known sequences of *chi* and *tlp* gene from pearl millet, adaptor primers were designed as explained by Tsuchiya and coworkers (2009). These adaptor primers include straight walk adaptors (SWA - forward and reverse), Specific adaptor primers SAP - 1 and 2) which work regardless of the genome used (Tsuchiya *et al.*, 2009).

Primer	Primer Sequence	Purpose
SWA-F	5 ' -CGCAGGCTGGCAGTCTCTTTA GGGTTACACGATTGCTT-3 '	SW fwd primer
SWA-R1	5'-ATCAAGCAATCGTGT-3'	SW rev primer 1
SWA-R2	5 ' - TAGAAGCAATCGTGT-3 '	SW rev primer 2
SAP1	5 ' -CGCAGGCTGGCAGTCTCTTTAG-3 '	Sp adaptor primer 1
SAP2	5 ' -ATGCGGCCGCTCTCTTTAGGGTT ACACGATTGCTT-3 '	Sp adaptor primer 2
1a)PR3_129 KSP1	5 ' - GCTCCGCGTGTAGAAGTTCC - 3 '	Upstream <i>chi</i>
1b) pr3_72 ksp2	5 ' - GTTGAAGAACGCGTCGGTGA-3 '	Upstream <i>chi</i>
2a)PR3_129 KSP1	5 ' - GCTCCGCGTGTAGAAGTTCC - 3 '	Downstream <i>chi</i>
2b) PR3_76 KSP2	5 ' - TGCCGTTGAAGAACGCGTCG-3 '	Upstream <i>chi</i>
3a)PR3_230 KSP1	5 ' - GTGCGAACGTGGCTAATGTG-3 '	Downstream <i>chi</i>
3b) pr3_447 KSP2	5 ' - CGCTGCAGATCTCGTGGAAC - 3 '	Downstream <i>chi</i>
4a) PR3_230 KSP1	5 ' - GCTCCGCGTGTAGAAGTTCC-3 '	Downstream <i>chi</i>
4b) PR3_375 KSP2	5 ' - AGAACAACGCCTACTGCTCG-3 '	Downstream <i>chi</i>

 Table 8. Straight Walk adaptor (SWA) primers and specific primers for the amplification of unknown flanking regions of chitinase (*chi*) gene.

- The 5' termini of SWA-R1 and SWA-R2 are phosphorylated for ligation, and 3'-OH is blocked by a primary amino group to prevent an extension reaction by DNA polymerase.
- SWA is composed of a combination of SWA-F and either SWA-R1 or SWA-R2. The 5'-end sequences of SWA-R1 and SWA-R2 are compatible with the restriction enzyme sites of *Bam*HI, *Bg*III, *Bc*II, or *Sau*3AI and *SpeI*, *NheI*, or *XbaI*, respectively.
- SAP2 has a NotI restriction enzyme site to ease cloning.

Primer	Primer Sequence	Purpose
1a)PR5_594 KSP1	5'-GCACTGCCCCTTGAAGTA-3'	Upstream <i>tlp</i>
1b)PR5_59 KSP2	5'-CGACTTCTTCGACATCTCGCT-3'	Upstream <i>tlp</i>
2a)PR5_271 KSP1	5'-CTGCAGTGCACTGGGTA-3'	Downstream tlp
2b)PR5_208 KSP2	5'-GTGTTCAAGACGGACCAGTA-3'	Downstream tlp
3a)PR5_271 KSP1	5'-CTGCAGTGCACTGGGTA-3'	Downstream tlp
3b)PR5_312 KSP2	5'-GGAGTACGCGCTGAAGCAGT-3'	Downstream tlp

Table 9. Adaptor primers and gene specific primers to amplify unknown flanking regions of pearl millet thaumatin like protein gene (*tlp*).

Known sequence-specific primers (KSPs) were designed to amplify upstream unknown genomic DNA sequences of pearl millet *chitinase* and *tlp*. For each gene two KSPs were designed using the nucleotide sequence of the known gene fragment to perform nested PCR. The primers are compiled in the table 8 and 9 above.

2.22.2 DNA extraction and restriction digestion of genomic DNA.

Intact genomic DNA was extracted from pearl millet using cetyltrimethylammonium bromide (CTAB)-based method by Murray and Thompson (1980). Five hundred ng of genomic DNA was digested separately with 10 units of *BamHI*, *BglII*, *BcII*, *Sau*3AI, *SpeI*, *NheI*, and *XbaI*. All enzymatic reactions were carried out in a total volume of 10 µL at 37°C except for BcII which was incubated at 55°C. The four base 5' overhangs were partially filled by adding 1µL of 1 mM deoxyguanosine triphosphate (dGTP) for the *BamHI*, *BglII*, *BcII*, and *Sau*3AI digestions. For the *SpeI-*, *NheI-*, and *XbaI*-digested DNAs 1µL of 1 mM deoxycytidine triphosphate (dCTP) was added. The end fill reactions were performed with 1 unit of Klenow enzyme (3' \rightarrow 5' exonuclease activity, Klenow Fragment, Fermentas # EP0051) at 25°C for 15 min in a total volume of 12 µL. After the end fill in reaction, the Klenow enzyme was heat-inactivated by 75°C for 20 min. The partially end-filled DNA fragments generated by *BamHI*, *BglII*, *BcII*, or *Sau*3AI were ligated to the adaptor composed of 1 µL of 100 µM SWA-F and 1 µL of 100 µM SWA-R1 The DNA fragments generated by *SpeI*, *NheI*, and *XbaI* were ligated to the adaptor composed of 1 µL of 100 µM SWA-F and 1 0 µL of 100 µM SWA-F and 100 µM SWA-F and 100 µM SWA-F and 100 µC set for 15 h.

2.22.3 PCR with constructed libraries.

2.22.3 i) Primary PCR.

In primary PCR, each adaptor-ligated DNA was diluted with deionised water to a total of 100 μ L, and 1 μ L of this dilution was used as a PCR template.

Composition of primary PCR reaction mixture.

10 x PCR buffer	2.5 μL
dNTP Mix (10 mM each)	1 μL
MgSO ₄ (25 mM)	1 μL
KAPA2G Robust DNA polymerase (Peqlab)	1 unit
<i>Ksp</i> 1 (100 pM)	10 μL
SAP1 (100 pM)	10 µL
DNA template (0.1 μg/ μL)	1 μL
Total reaction volume	25 μL

Contents of the tubes were mixed by vortexing without introducing bubbles and given a short spin before thermo cycling. The thermo cycler was programmed as mentioned below.

PCR conditions.

Hot-start denaturation (initial) at 98°C for 20 sec, 35 cycles of denaturation at 94°C for 30 sec, primer annealing at 65°C for 30 sec, and extension at 68°C for 5 min. The PCR reaction was carried out in thermo cycler PTC 200 (Biozym, Oldendorf, Germany).

2.22.3 ii) Secondary PCR.

Product of primary PCR was diluted at 1:100 dilution and 1 μ L was used as template for secondary PCR. Master mix was prepared similar to that of primary PCR; the primer pair KSP2 and SAP2 was used. Contents of the tubes were mixed by vortexing without introducing bubbles and given a short spin before thermo cycling.

PCR conditions.

The PCR conditions were the same as for the first PCR except that only 30 thermal cycles were performed. After the secondary PCR amplification, 10 μ L of the PCR products were analyzed on 1.5% agarose gel.

2.22.4 Cloning of PCR products and sequencing.

The obtained fragments by secondary PCR were purified cut from the gel and purified using gel extraction kit (Qiaex II # 20021) from Qiagen as explained under section 2.13.3 of materials and methods. KAPA2G Robust DNA polymerase (Peqlab # KK5004) generates blunt end products as it has proof reading activity. The purified PCR product was cloned to blunt end cloning vector CloneJet (Fermentas # K1231). The ligation assay was incubated overnight at 15°C. Three μ L of this ligated CloneJet plasmid was used to transform XL-Blue 1 strain of *E. coli* as explained under section 2.14 of materials and methods; subsequently transformants screened as explained under section 2.15 of materials and methods.

3 Results.

This doctoral research work involves study of pearl millet-downy mildew pathogen interaction. The study concentrates on two important pathogenesis-related proteins, namely chitinase and thaumatin-like protein from pearl millet. These proteins are known to act synergistically in plant's defense mechanism against phytopathogenic oomycetes. Preliminary studies include detection of these two important PR proteins in pearl millet. Chromatographic techniques were developed to purify 24 kDa pearl millet chitinase to complete homogeneity was optimized. The purified protein was identified immunologically and by *de novo* sequencing as chitinase. Thaumatin-like protein was also purified partially by chromatographic techniques. Molecular biological studies involved isolation and sequencing of pearl millet chi and tlp genes. Partial length fragment of housekeeping gene actin was also isolated and sequenced. Different genome walking techniques were followed to isolate the full length chi and tlp gene. Results of all the experiments carried out during the doctoral study are summerised below.

Part A- Preliminary studies.

3.1 Infection of pearl millet seedlings.

Pearl millet seeds were germinated and infection with downy mildew spores was investigated. Therefore surface sterilized pearl millet seeds grown on moist blotter for 2 days were inoculated with *S. graminicola* zoospore suspension (4x10⁴ spores/mL) as explained under section 2.1.4 of materials and methods. The seedlings were incubated in dark at 22°C to facilitate infection process as the pathogen is light sensitive (Fig 10).

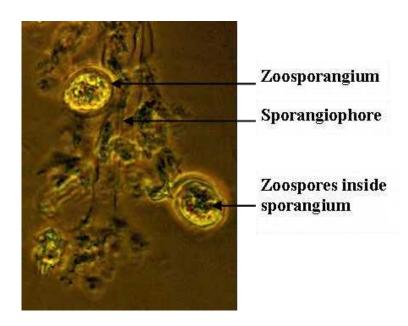


Fig. 10. Zoosporangia of *Sclerospora graminicola* as viewed under compound microscope. Bright field image captured at 200 x magnification.

Part B - Preliminary studies (analytical).

3.2 Detection thaumatin-like protein (TLP) in pearl millet.

Studies involved detection of thaumatin like protein in pearl millet. The total soluble protein was isolated from 2 day old pearl millet seedlings inoculated with *S. graminicola* (section 2.2.1 of materials and methods) and separated on SDS-PAGE (section 2.3 of materials and methods) and immuno blotted against anti TLP antibody from Douglas fir raised in rabbit (section 2.4 of materials and methods). Immuno blot analysis using anti TLP antibody revealed cross reaction of a 23 kDa protein indicating the presence of TLP in pearl millet with apparent molecular weight of 23 kDa; the results of the same are summerised below.

The pearl millet total protein was extracted with 50 mM sodium acetate buffer containing 3 mm phenylmethanesulfonyl fluoride (PMSF) (section 2.2.1 of materials and methods). Protein estimation was carried out according to Bradford method using BSA as standard (section 2.2.2 of materials and methods). The proteins were resolved on 12% SDS-PAGE can be seen in Fig 11 (Laemmli 1970) (2.2.3 materials and methods).

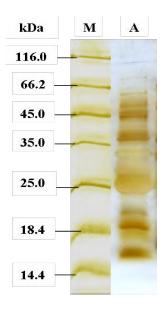


Fig 11. Total soluble protein fraction from pearl millet seedlings separated on 12% SDS-PAGE.

Lane M: Unstained protein marker Fermentas (# SM0431), Lane A: Total soluble protein fraction from pearl millet seedlings (20 µg of total protein extract was loaded onto the gel and the gel was silver stained).

Lane A was loaded with 20 μ g of protein and the gel was stained with silver nitrate (section 2.2.3 (ii) of materials and methods). Total soluble protein fraction extracted from pearl millet showed several protein bands with molecular weight ranging between 16-100 kDa, the protein profile showed prominent bands of 45, 40, 35, 26, 24, 23 and 18 and 16 kDa as shown in the Fig 11.

3.3 Immunological detection of proteins.

The proteins were then electro transferred onto PVDF membrane (section 2.3.4 of materials and methods) and subsequently performed immuno blot analysis with anti-thaumatin antibody from Douglas fir (raised in rabbit) was carried out (section 2.4 of materials and methods), which showed cross reaction of 23 kDa protein band indicating that it belongs to thaumatin-like protein family (Fig 12).

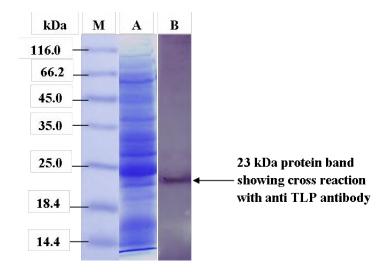


Fig 12. Immunological detection of TLP in pearl millet total soluble protein fraction.

Lane M: Unstained protein marker (Fermentas # SM0431), Lane A: Total soluble protein from pearl millet seedlings separated on 12% SDS-PAGE and stained with Coomassie brilliant blue, Lane B: 23 kDa protein showing cross reaction with anti-thaumatin antibody (dilution 1:5000) and antirabbit secondary antibody (raised in goat) tagged with alkaline phosphatase was used at a dilution of 1:20,000, 30 µg of total protein was loaded to both the lanes.

Part C- Results of biochemical assays.

3.4 Characterization of pearl millet TLP.

3.4.1 Glucan binding activity of pearl millet TLP.

It has been shown by the Trudel and coworkers (1998) that thaumatin-like proteins bind to β -1,3-glucans; glucans are important component of oomycete cell wall and binding of thaumatin-like proteins to glucans on the cell wall facilitates antifungal activity (Ibeas *et al.*, 2000). The gelled curdlan (section 2.3.1 of materials and methods) was equilibrated in 50 mM sodium acetate (pH 5.0) and total soluble protein extract from pearl millet seedlings was incubated with curdlan to allow binding at 22°C (section 2.3.2 of materials and methods); unbound proteins were washed off with the same buffer and bound protein was eluted by boiling the sample in Laemmli sample loading buffer (2.3.3 materials and methods). The bound sample was analysed on 12% SDS-PAGE and stained with Coomassie brilliant blue (section 2.3.3 (i) of materials and methods). Analysis of curdlan bound protein fraction on 12% SDS- PAGE showed a major band of 23 kDa with two other proteins falling in the same molecular weight range as seen in the Fig 13.

3.4.2 Immuno blot analysis of the curdlan bound protein.

Curdlan bound protein was eluted by boiling in Laemmli sample loading buffer (section 2.5.3 of materials and methods) analysed on 12% SDS-PAGE. The resolved proteins were electro transferred onto activated nitrocellulose membrane (section 2.3.4 of materials and methods) and subsequently immuno blotted against anti-thaumatin antibody from Douglas fir (section 2.4 of materials and methods).

Immunoblot analysis of the curdlan bound protein with anti TLP antibody revealed cross reaction of a protein band with apparent molecular weight of 23 kDa (Fig 13), confirming β -1,3-glucan binding activity of the pearl millet TLP. Primary antibody was used at a dilution of 1:5000 and antirabbit secondary antibody (raised in goat) tagged with alkaline phosphatase (Sigma) was used at a dilution of 1:20,000.

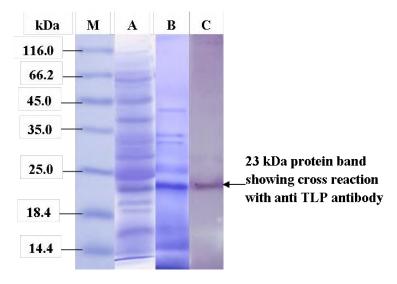


Fig 13. Detection of glucan binding activity of pearl millet TLP

Lane M: Unstained protein marker (Fermentas # SM0431), Lane A: Total soluble protein from pearl millet seedlings, Lane B: Curdlan bound protein, Lane C: 23 kDa curdlan bound protein showing cross reaction with anti-thaumatin antibody-dilution 1:5000. 20 µg of total protein was loaded onto each lane.

3.5 Inhibition of S. graminicola by pearl millet TLP3.5.1 Inhibition of *S. graminicola* zoospore mobility with the curdlan bound protein.

Inhibition of *S. graminicola* zoospore mobility with the curdlan bound protein was observed under Leitz compound microscope (section 2.6 of materials and methods). Curdlan bound proteins were eluted with 0.1 mL of 0.1 M HCl (pH 2.2) and subsequently neutralized with 0.1 M HCl (section 2.5.3 of materials and methods). Living zoospores of *S. graminicola* ($4x10^4$ spores/mL) were suspended in sterile deionised water and were treated with curdlan bound protein (10 µg/mL). Zoospores suspended in deionised water served as control. The

zoospore suspension was observed under Leitz compound microscope at 200 x magnification (under bright field).

It was observed that most of the zoospores (>90%) lost mobility after treatment with curdlan bound protein, whereas the control zoospores showed no change in their mobility. This reduction in the mobility of zoospores is attributed to inhibitory activity of TLP found in the curdlan bound protein fraction. TLPs are known to permeabilise fungal membrane leading to ion leakage and death of fungus.

3.5.2 Microscopic study to detect membrane permeabilization using the fluorescent dye, SYTOX green.

To investigate membrane permeabilization, the assay based on the uptake of SYTOX Green, an organic compound that penetrates cells with compromised plasma membranes and fluoresces upon interaction with nucleic acids developed by Thevissen and coworkers in 1999 (Section 2.6.2 of materials and methods) was chosen. Sporangial suspension (4 X 10⁴ zoospores/mL) harvested in ice cold deionised water was centrifuged and resuspended in 100 mM HEPES-KOH (pH 6.5) with 5 mM MgCl₂ and 0.2 mM Sytox Green; 90 µL of this sporangial suspension was treated with 10 µL of curdlan bound protein (10 µg/mL); Membrane permeabilization of *S. graminicola* by curdlan bound protein fraction from pearl millet can be seen in Fig 14.

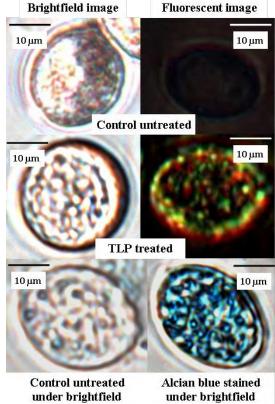


Fig 14. Membrane permeabilization of *S. graminicola* by curdlan bound protein fraction from pearl millet. Control untreated: Sporangia treated with buffer only. TLP treated: Sporangia treated with curdlan bound protein fraction containing TLP, stained with Sytox green showing fluorescence, Sporangium stained with Alcian blue. Magnification: Sporangium were viewed under compound microscope (200 x magnification).

It was observed that curdlan bound protein treated zoospores showed fluorescence. Fluorescence is observed only when the cells have a compromised cell membrane through which the dye can enter the cell and permeabilise the membrane. On treatment *of S. graminicola* zoosporangia with partially purified TLP from pearl millet indicated membrane permeabilization by the partially purified TLP which is one of its important biological features. The major component of curdlan bound protein was identified to be TLP from immuno blot analysis (section 3.4.2 of results). Untreated zoospores which served as control did not show any fluorescence; therefore they were photographed under bright field.

As supporting evidence, zoosporangia were stained with aqueous alcian blue solution. Alcian blue has the same binding site as that of TLP on fungal cell walls. Therefore positive staining with alcian blue indicates the presence of binding (receptor) sites for TLP on *S. graminicola* sporangial wall (Ibeas *et al.*, 2000) - Fig 14.

3.6 Purification of pearl millet chitinase.

Development of method of purification.

Purification of pearl millet chitinase by chromatographic method was optimized. The steps include induction of elevated levels of PR proteins in pearl millet seedlings by treatment with 1 mM AgNO₃ solution (section 2.1.5 of materials and methods), extraction of total soluble protein fraction (section 2.2.1of materials and methods), ammonium suphate fractionation of the total protein extract, ion exchange chromatography using DEAE cellulose column and CM sepharose column, chromatographic separation through hydroxyapatite column and FPLC using Mono Q sepharose column. The protein fractions eluted in each chromatographic step were analysed by SDS-PAGE, the fractions containing protein of interest were carried over to the next step and rest of the samples were discarded.

3.6.1 Induction of PR proteins in pearl millet by silver nitrate.

Pearl millet seedlings were induced to over express PR proteins by treating one week old seedlings with 1 mM solution of silver nitrate (Conejero & Granell, 1986 and Rahimi *et al.*, 1993) (section 2.1.5 of materials and methods). The seedlings were sprayed once in a day with 100 μ L of 1 mM silver nitrate solution/10 seedlings for five consecutive days. The treated seedlings were harvested on the sixth day and stored at -70°C. Seedlings sprayed with deionised water served as control. Total soluble protein was extracted from equal weights of treated and untreated seedlings separately (section 2.2.1 of materials and methods) and 20 μ g of total soluble protein fraction from both the samples were resolved on 12 % SDS-PAGE in adjacent lanes and the gels were silver stained (section 2.3.3b of materials and methods) as shown in the Fig 15.

Induction of Proteins in pearl millet after treatment with 1mM silver nitrate solution.

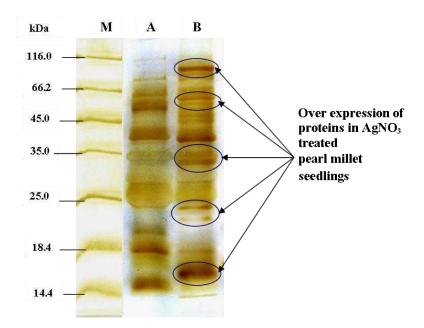


Fig 15. Induction of PR protein expression in pearl millet seedlings after treatment with 1 mM silver nitrate.

Lane M: Protein marker (Fermentas # SM0431), Lane A: Protein profile of untreated seedlings, Lane B: Protein profile of silver nitrate treated seedlings showing over expression of some of the proteins (indicated by arrows) 20 µg of protein was loaded into each lane.

As silver nitrate treated pearl millet seedlings showed expression of proteins at higher levels, silver nitrate seedlings were used for purification of chitinase. Purification of pearl millet chitinase was achieved through chromatographic a technique which is outlined schematically in Fig 16.

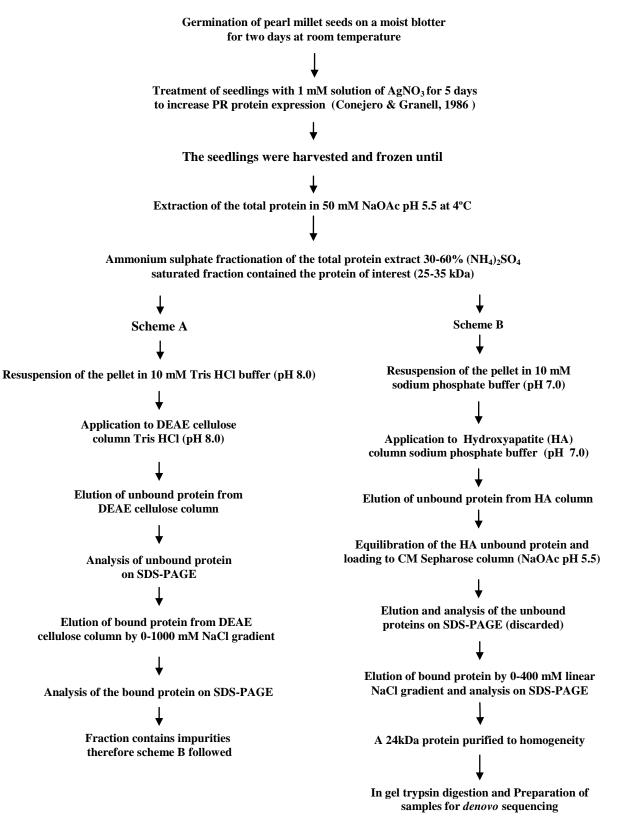


Fig 16. Schematic representation of purification of pearl millet chitinase by chromatography.

3.6.2 Ammonium sulphate fractionation of total soluble proteins from pearl millet after induction by silver nitrate.

Total soluble protein was extracted by crushing the frozen seedlings in 50 mM sodium acetate buffer (pH 5.5) and subjected to ammonium sulphate fractionation at 0-30%, 30-60% and 60-100% saturation (section 2.7.4 of materials and methods). The precipitated protein was divided into 2 parts and one part was desalted by dialyzing against 50 mM sodium acetate buffer (pH 5.5), the other part was dialyzes against 10 mM Tris-HCl buffer (pH 8.0) All the three fractions were analysed on 12% SDS-PAGE (Section 2.3 of materials and methods) to check the protein profile, seen in Fig 17.

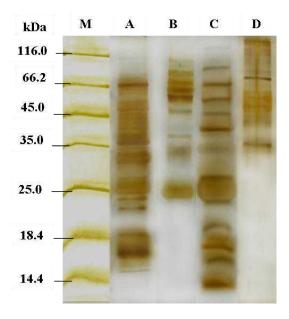


Fig 17. Ammonium sulphate fractionation of total soluble proteins from pearl millet.

Lane M: Protein marker (Fermentas # SM0431). Lane A: Total protein extract, Lane B: 0-30% Ammonium sulphate saturated protein fraction; Lane C: 30-60% saturated protein fraction; Lane D: 60-100% saturated protein fraction (15µg of protein was loaded into each lane).

Ammonium sulphate precipitated fraction at 0-30% saturation showed proteins with apparent molecular weight of 65-75 kDa, 50 kDa, 35 kDa and 25 kDa. 30-60% saturated fraction showed proteins with apparent molecular weight of 65-75 kDa, 55 kDa, 45 kDa, 35 kDa and 23-26 kDa 14-20 kDa. 60-100% saturated fraction showed proteins with apparent molecular weight of 65-75 kDa and 35-66 kDa as seen in the Fig 8. 0-30% ammonium sulphate saturated protein had the major proteins in the molecular weight range of 20-35 kDa (most of the known TLP and chitinases fall within this molecular weight range), and some higher as well as lower molecular weight proteins. Moreover, the 30- 60% ammonium sulphate saturated fraction showed enrichment of many of the proteins in the molecular weight range of 22-35 kDa. The ammonium sulphate fractions were subjected to immuno blot analysis with anti chitinase antibody and a strong cross reaction was observed with two protein bands of apparent molecular weight of 24 and 22 kDa in 30-60% ammonium sulphate saturated fraction.

3.7 Purification by column chromatography.

Scheme of purification: Two different methods were followed in parallel to purify the protein of interest. Ammonium sulphate precipitated protein fraction (30-60% saturated) divided into two parts. One part was dialyzed against the 10 mM Tris-HCl (pH 8.0) buffer before loading onto DEAE Column equilibrated with the same buffer and the other part was dialysed against 10 mM sodium phosphate buffer (pH 5.0) and loaded onto HA column. The columns were washed with three bed volumes of the respective elution buffers before loading the protein sample.

3.7.1 Chromatographic separation of proteins on DEAE cellulose column.

The dialysed protein fraction was loaded onto DEAE cellulose column and the unbound proteins were collected (detailed explanation under section 2.7.6 of materials and methods) and analysed on SDS-PAGE (section 2.3 of materials and methods). The results obtained showed that there was no enrichment of proteins falling in the molecular weight range of (20-35 kDa) from the mixture as seen clearly in the Fig 18. The unbound protein fractions from DEAE cellulose column were collected and analysed on SDS-PAGE. The fraction contained proteins with their apparent molecular weight ranging between 32-55 kDa, 22 kDa, 19 kDa and 15 kDa.

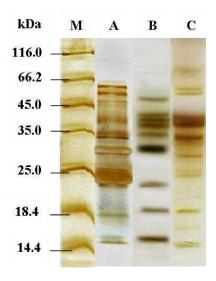


Fig 18. Chromatographic separation of pearl millet proteins with DEAE-Cellulose column.

Lane M: Protein marker (Fermentas # SM0431), Lane A: Ammonium sulphate precipitated proteins fraction (30-60%) that was loaded onto the column. Lane B: Unbound proteins eluted from DEAE cellulose column, Lane C: Bound proteins eluted from DEAE cellulose column (10µg of protein was loaded into each lane).

Elution of DEAE cellulose bound proteins.

The proteins bound to DEAE cellulose column were eluted linear 0-1000 mM NaCl gradient; however, there was no enrichment of proteins falling within the molecular weight range of 20-35 kDa as observed by SDS-PAGE analysis of the eluted proteins as seen in the Fig 18, Lane C. The DEAE cellulose bound fraction mainly contained proteins with an apparent

molecular weight of 30-45 kDa (and a few high as well as low molecular weight weak bands). Therefore ammonium sulphate fractionated protein fraction was chromatographed through hydroxyapatite column (BioRad) (section 2.7.7 of materials and methods).

3.7.2 Chromatography with hydroxyapatite column.

Since the separation of proteins by DEAE Column was not satisfactory, the proteins were chromatographed through hydroxyapatite column equilibrated with 10 mM sodium phosphate buffer (pH 7.0) (25 cm length, 1.25 cm radius, height of the bed was 10 cm). The unbound proteins from HA column with the same buffer, flow rate was adjusted to 0.4 mL/ min and the fraction volume was 2 mL. One hundred μ L of each fraction was concentrated by SpeedVac and subsequently analysed on SDS-PAGE (section 2.3 of materials and methods). These HA unbound fractions contained proteins in the molecular weight range of 22-26 kDa, 28 kDa, 35 kDa (Fig 19). Therefore these fractions were pooled and carried over to the next step involving ion exchange chromatography using CM Sepharose.

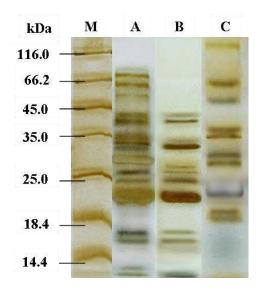
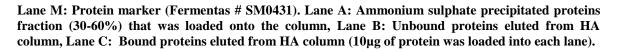



Fig 19. Chromatographic separation of pearl millet proteins with Hydroxyapatite (HA) column.

The bound protein fraction from HA column contained proteins with an apparent molecular weight of 35 and 20-22 kDa, 26 kDa, 28-30 kDa, 36 kDa, 55 kDa and 66 kDa. However there was no enrichment of proteins, therefore the HA bond protein fraction were discarded. Depending on the physicochemical behavior of TLP no enrichment was expected and the HA column was used as negative chromatography (unbound proteins were collected) to minimize the impurities

3.7.3 Ion exchange chromatography involving CM sepharose.

The HA unbound protein fractions were pooled and concentrated using Vivaspin concentrator tubes and carried over to the next step involving ion exchange chromatography

involving CM Sepharose (section 2.7.8 of materials and methods). This concentrated protein fractions were dialysed against 10 mM sodium acetate buffer (pH 5.5) and loaded onto CM sepharose column pre equilibrated with the same buffer (25 cm length and 1.25 cm radius, height of the bed was 15 cm). Flow rate was adjusted to 0.4 mL/min. The CM sepharose unbound proteins were analysed on SDS- PAGE as seen in Fig 20.

Elution of unbound proteins from CM sepharose column.

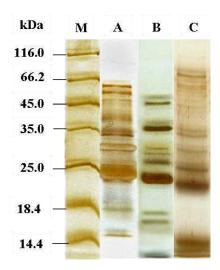
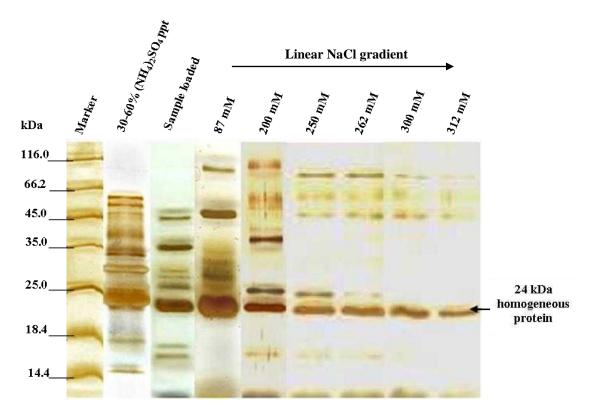



Fig 20. Chromatographic separation of pearl millet proteins with CM-sepharose column.

Lane M: Protein marker (Fermentas # SM0431), Lane A: Ammonium sulphate precipitated proteins fraction (30-60% saturation), Lane B: HA column unbound protein fractions pooled (which was loaded onto CM sepharose column), Lane C: CM sepharose unbound protein (10µg of protein was loaded into each lane).

The unbound protein fractions from CM sepharose column were eluted by washing the column with 10 mM sodium acetate buffer (pH 5.5); flow rate was adjusted to 0.4 mL/min, fraction size was 2 mL. One hundred µL of the collected protein fractions were concentrated on SpeedVac and separated on 12 % polyacrylamide gel (section 2.3 of materials and methods). The gels were silver stained as seen in the Figure 20. It was observed that none of the CM sepharose unbound protein fractions showed enrichment of proteins within the molecular weight range of 20-35 kDa. Moreover the samples showed many weak bands falling in the molecular weight range of 40-65 kDa and one major protein band of 24 kDa molecular weight, also a protein band with apparent molecular weight of 14 kDa was also observed. However there was no resolution of this 24 kDa protein from other higher molecular weight weak bands. Therefore these unbound protein fractions were discarded. The bound protein fractions from CM sepharose column were eluted by washing the column with 10 mM sodium acetate buffer (pH 5.5) under a linear salt gradient of 0-400 mM NaCl; flow rate was adjusted to 0.4 mL/min, fraction size was 2 mL. One hundred µL of the collected protein fractions were concentrated on SpeedVac and separated on 12 % polyacrylamide gel (section 2.3 of materials and methods). The gels were silver stained as seen in the Fig 21.

Elution of bound proteins from CM sepharose column under linear NaCl gradient.

Fig 21. Elution of CM-sepharose bound proteins under 0-400 mM linear NaCl gradient.

The bound protein fractions from CM sepharose column were eluted by washing the column with 10 mM sodium acetate buffer (pH 5.5) under a linear salt gradient of 0-400 mM NaCl. The 1st fraction was had no NaCl and last fraction was fraction number 32 eluted at 400 mM NaCl concentration. Homogenous protein with apparent molecular weight of 24 kDa was eluted as the 25th to 28th fraction between approximately 312.5–350 mM NaCl concentration. At higher NaCl gradient (beyond 29th fraction) some impurities were seen, therefore those fractions were discarded. SDS-PAGE analysis of these CM sepharose bound protein fractions showed a clear resolution of proteins along the salt gradient as seen in Fig 21 above. Proteins eluted at 200 mM NaCl concentration showed separation of 24 and 25 kDa proteins along with a 35 kDa protein. As the salt concentration was increased the 25 and 24 kDa proteins separated out giving a homogenous 24 kDa protein towards the end of salt gradient as seen in the lane with 312 mM NaCl concentration as seen in Fig 21.

3.8 Identification of purified pearl millet protein (24 kDa).

3.8.1 Immuno blot analysis of the purified protein.

Purification was achieved by chromatography of the ammonium sulphate precipitated protein (30-60% saturation) through hydroxyapatite column followed by cation exchange chromatography using CM sepharose column. The purified protein had an apparent molecular mass of 24 kDa (reference Fermentas unstained protein marker # SM0431) which was resolved

on 12% SDS-PAGE and stained with Coomassie Brilliant Blue. The purified protein resolved on 12% SDS-PAGE was subsequently immuno blotted (Figure 22) with anti chitinase antibody from tobacco raised in rabbit (1:5000 dilution, section 2.4 of materials and methods). Secondary antibody was antirabbit antibody (raised in goat) tagged with alkaline phosphatase used at a dilution of 1:20000.

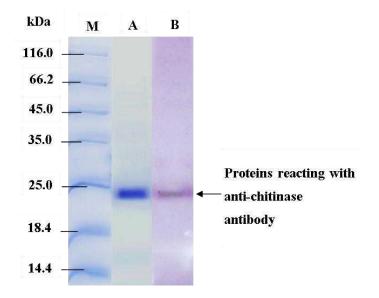


Fig 22. Immunoblot analysis of purified pearl millet chitinase 24 kDa with anti chitinase antibody.

Lane M: Unstained protein marker (Fermentas # SM0431), Lane A: Purified pearl millet chitinase, Lane B: Pure 24 kDa protein showing cross reaction with anti-chitinase antibody (10 µg of protein was loaded into each lane.

3.8.2 In-gel trypsin digestion of the excised protein band and *de novo* sequencing.

The pure 24 kDa protein band (Fig 22) was carefully excised from the Coomassie stained gel and subjected to in-gel trypsin digestion (Jensen *et al.,* 1998). The peptides resulting from trypsin digestion were recovered from the gel and sequenced by ESI Q-TOF. The deduced peptide sequences are compiled in the form of a table below. The deduced peptide sequences show homology to maize endochitinase (Swiss prot accession number sp1P29022). The mass spectra of the peptide fragments are included under the appendix 1. The table 10 shows the mass and charge of the peptide fragments their deduced amino acid sequence and sequence similarity position in comparison with the maize endochitinase having Swiss prot accession number sp1P29022.

 Table 10. Amino acid sequence of the peptide fragments generated by trypsin digestion of purified 24 kDa chitinase from pearl millet.

 (*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences

 generated automatically and the ones in lower case represent the amino acids that are predicted).

Band	Mass	Charge	Rel. Mass kDa	Derived amino acid sequence	Sequence similarity position	Organism		Accession number
24kDa	475.63	2+	951.26	SAFLEAANK	SAFLEA 109 S+FLEA 113	Zea mays	chitinase A	Swissnew P29022
24kDa	525.46	3+	1050.92	TALWFWMNNVHR	ALWFWMNNVH 219 ALWFWMNNVH 228	Tripsacum dactyloides	chitinase	Sptrembl Q6JBL6
24kDa	530.78	3+	1592.34	TALWFWM*NNVHR	ALWFWMNNVH 219 ALWFWMNNVH 228	Zea diploperennis	chitinase	Sptrembl Q6JBP3
24kDa	532.12	3+	1596.36	YSGFAHGgTEVEg kR	YSGFAHGGTEVEGKR 117 YPGFAHGGTEVEGKR 132	Oryza sativa	chitinase	Sptrembl Q7Y1Z0
24kDa	582.64	2+	1165.28	VMPQGFGATTR	VMPQGFGATTR 230 VMPQGFGATIRA 240	Oryza sativa	chitinase	Sptrembl Q7Y1Z0
24kDa	590.65	2+	1181.30	VM*PQGFGATTR	VMPQGFGATTR 230 VMPQGFGATIR 240	Oryza sativa	chitinase	Sptrembl Q7Y1Z0
24kDa	632.15	4+	2528.60	asFLEAANKYSGF AHGGTEVEGKR	FLEAANKYSGFAHGGTEVEGKR 109 FLSAVNAYPGFAHGGTE VEGKR 132	Tripsacum dactyloides	chitinase	Sptrembl Q6JBL6
24kDa	787.70	2+	1575.40	TALWFWMNNVHR	TALWFWMNNVH 218 TALWFWMNNVH 228	Zea mays	chitinase A	Swissnew P29022
24kDa	855.24	2+	1710.48	ganvASVVTDAFF N gLK	GANVASVVTDAFFNGK 77 GANVANVVTDAFFNGIK 93	Zea mays	chitinase A	Swissnew P29022
24kDa	896.72	2+	1793.44	GPLQLSWNYNYGP AGR	GPLQLSWNYNYGPAGR 180 gplqIswnynygpagr 194	Zea mays	chitinase A	Swissnew P29022

3.8.3 Homology search for deduced amino acid sequences using MS Blast software.

Homology search of the deduced amino acid sequence showed that the purified 24kDa protein belongs to the class of chitinases. The peptides shared homology to maize endochitinase with Swiss prot accession number sp1P29022.

3.9 Substrate affinity chromatography

3.9.1 Purification of chitinase by affinity chromatography.

Chitinase was purified by an affinity procedure according to the method of (Hsu and Lockwood 1975) (section 2.7.9 of materials and methods). 30-60% ammonium sulphate saturated fraction was dialysed against 10 mM sodium phosphate buffer (pH 7.0) and loaded onto colloidal chitin column (15.0 cm height and 1.25 cm radius, height of bed 10 cm) equilibrated with the same buffer. Chitin bound sample was eluted with 10 mM acetic acid, the eluted protein fraction was dialysed against 10 mM sodium phosphate buffer (pH 7.0) and concentrated using Vivaspin sample concentrator tubes.

3.9.2 Immuno blot analysis of chitinase bound proteins.

The samples were analysed using SDS-PAGE as explained in section 2.3 of materials and methods and subsequently immuno blotted against anti-chitinase antibody from tobacco raised in rabbit (section 2.4 of materials and methods) Fig 23.

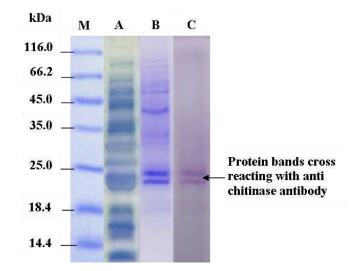


Fig 23. Purification of pearl millet chitinase by substrate affinity chromatography with colloidal chitin column.

Lane M: Unstained protein marker (Fermentas # SM0431); Lane A: 30-60% ammonium suphate saturated fraction (20 µg of protein/lane); Lane B: colloidal chitin bound protein fraction; Lane C: Colloidal chitin bound proteins showing cross reaction with anti-chitinase antibody (10µg of protein was loaded into each lane). The primary antibody was used at a dilution of 1:5000 and the anti rabbit secondary antibody (raised in goat) tagged with alkaline phosphatase was used at a dilution of 1:20,000.

For this, separating gel was prepared with 1% glycol chitin which is the substrate for chitinase. Thirty μ g of total soluble protein fraction and 10 μ g of the 24 kDa purified protein was electrophoretically separated on 12% polyacrylamide gel under denaturing conditions (2.3 of materials and methods). The proteins in the gel were renatured after electrophoresis by incubating in renaturation buffer at 37°C overnight (Potvin *et al.*, 1998, Audy *et al.*, 1989) with gentle shaking. The gel was washed twice with 100 mM Tris HCl and stained with 100 mL of 0.5 M Tris-HCl, pH 9.0 containing 3-4 grains of fluorescent brightener (Fluorescent brilliant 28, Sigma # F343) for 5 min. The gel was rinsed twice with deionised water and observed under UV illuminator Fig 24.

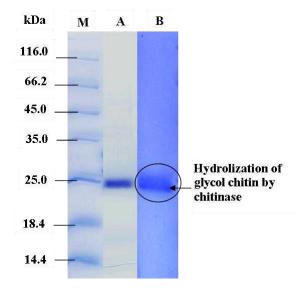
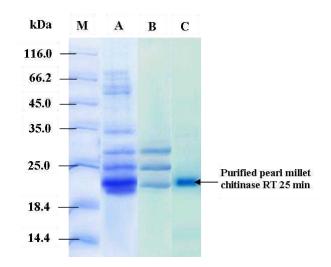


Fig 24. In gel assay to detect chitinolytic activity of the purified pearl millet chitinase.

Lane M: Protein marker (Fermentas # SM0431), Lane A: Purified pearl millet chitinase (24 kDa); Lane B: Hydrolization of glycol chitin by pearl millet chitinase (10µg of protein was loaded into each lane).

Glycol chitin (substrate for chitinase) in the gel hydrolyzed by purified chitinase band appeared as dark blue (slightly diffused) band against pale blue background of the gel under UV light as seen in Fig 24. This suggests chitinolytic activity of the purified pearl millet chitinase.

3.10 Partial purification of pearl millet proteins by size exclusion chromatography using FPLC (<u>Fast Protein Liquid Chromatography</u>) system.


This chromatographic method involves separation of proteins by the principle of size exclusion. Here a gel matrix with specific pore size serves as stationary phase; and the solvent (inorganic buffer solution or organic solvents) serves as the mobile phase. The small protein molecules can enter the gel beads and are eluted slowly from the column. The larger protein molecules cannot enter the gel beads because of their bigger size and hence flow through the space between gel particles and therefore move quickly through the column. Retention time of the protein molecule therefore is determined by its size; and by knowing the retention time of the protein molecule, size can be estimated.

In the present study Superose-12 column (Pharmacia, particle size $10 \pm 2 \mu m$) was used. The standard protein solutions used were of 1 mg/mL concentration in 20 mM sodium phosphate buffer (pH7.0); volume of the standards loaded to the column was 500 μ L. Flow rate was adjusted to 0.5 mL/min. Volume of each fraction was 1 mL. Different protein standards used to calibrate the FPLC column with their corresponding molecular weights and retention time are listed in the table 2 below. Proteins were detected at 280 nm using a UV detector attached to FPLC.

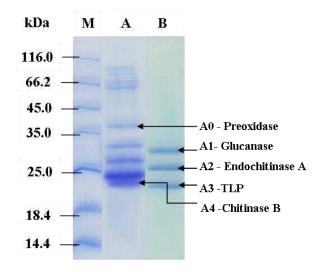
Serial No.	Standard protein	Size in kDa	Retention time	Elution volume	Retention factor
1	Bluedextran	2000.0	17 min	8.5 mL	1.00
2	Ferritin	400.0	21 min	10.5 mL	0.81
3	Catalase	240.0	23 min	11.5 mL	0.74
4	BSA	66.0	25 min	12.5 mL	0.68
5	Ovalbumin	45.0	27 min	13.5 mL	0.63
6	Carboanhydrase	30.0	31 min	15.5 mL	0.55
7	Myoglobin	17.0	35 min	16.0 mL	0.53
8	Cytochrome C	12.4	39 min	14.5 mL	0.59
9	Pearl millet chitinase	24.0	25 min	12.0 mL	0.48

Table 11. Standards used to calibrate Superose-12 FPLC column

To estimate the molecular weight of purified pearl millet chitinase, it was passed through Superose 12 column using a FPLC system after calibrating the column with different protein standards mentioned above. CM sepharose bound proteins were eluted by applying 0-400 mM NaCl gradient. The fractions eluted at lower salt concentration of the gradient (showed strong protein bands of apparent molecular mass 22-35 kDa. These fractions were pooled, desalted by dialyzing against 20 mM sodium phosphate (pH 7.0) buffer and concentrated with Vivaspin concentrator tubes until 1 mg/mL concentration was achieved. Concentration was measured by Bradford method (section 2.2.2 of materials and methods). Five hundred µL of the concentrated sample (in 20 mM sodium phosphate buffer pH 7.0) was loaded onto Superose -12 column equilibrated with the same buffer. The fraction size was 1 mL and only the fraction containing protein as detected by the UV detector attached to FPLC (section 2.8.5 of material and methods) were analysed on 12% SDS-PAGE. Rests of the fractions were discarded. Only one major peak was observed at 25th min (retention time) and was eluted as 12th sample (elution volume 12 mL). The reason could be that the protein is aggregated and therefore of a higher molecular weight in contrary to 24 kDa as observed under SDS-PAGE analysis. Moreover, it can be observed that the pore size of Superose 12 column is not able to efficiently separate the three major proteins in the molecular weight range of 23-33 kDa. Therefore all the three bands elute together as a single fraction from the column without any resolution Fig 25.

Purification of protein fractions by Superose-12 column (FPLC)

Fig 25. Purification of protein fractions by Superose-12 column (FPLC)


Lane M: Unstained protein marker (Fermentas # SM0431), Lane A: CM-Sepharose bound proteins pooled (which was loaded onto Superose 12), Lane B: Proteins eluted from Superose 12 column (retention time 25 min). Lane C: Purified pearl millet chitinase passed through FPLC as a separate fraction with 25 min retention time (RT).

CM sepharose bound fractions eluted at low salt gradient containing proteins in the molecular weight range of 20-35 kDa were pooled and desalted. This was loaded onto Superose 12 column (500 μ L containing 1 μ g/ μ L of protein). Separation of the CM sepharose bound protein fraction resulted in enrichment of three proteins in the molecular weight range on 23 kDa, 26 kDa and 28 kDa as shown in the Figure. All these three proteins were eluted as a single fraction since the three proteins do not differ much in their molecular mass and have the same retention time. However 35 kDa protein and the higher molecular weight impurities were not observed in this 25th fraction. Further separation of these three proteins (23 kDa, 24 kDa and 26 kDa) on Superose 12 column was not possible.

Purified pearl millet chitinase (500 μ L containing 1 μ g/ μ L of protein) was passed through the same column which eluted at 25 min.

3. 11. Identification of various PR proteins from pearl millet by *de novo* sequencing.

As it was not possible to achieve the goal of purifying pearl millet TLP by ion exchange chromatographic methods, the next strategy was to get the partial amino acid sequence of the protein and translate it to get the nucleotide sequence which would serve as reference for primer designing. Therefore different protein bands falling in the molecular weight range of 22-35 kDa were excised from the gel; the peptide fragments were generated by in-gel trypsin digestion and subjected to *de novo* sequencing by ESI Q-TOF. The protein bands considered for analysis are marked in the Fig 26.

Protein bands used for *de novo* sequencing by ESI-Q TOF.

Fig 26. Protein fractions purified by Superose-12 column (FPLC) subjected to de novo sequencing.

Lane M: Unstained protein marker (Fermentas # SM0431), Lane A: CM-Sepharose bound proteins pooled (which was loaded onto Superose 12), Lane B: Proteins eluted from Superose 12 column (12th fraction, retention time 25 min) the bands subjected to de novo sequencing are marked. (Retention time 25 min).

The deduced peptide sequences were subjected to homology search using MS Blast tool from EMBL which is compiled briefly in separate tables listed below. The mass spectra and the detailed compilation of the data can be seen in appendix 1.

	Band	Protein identified as	Deduced amino acid sequences compiled under
۶	Band A0	Peroxidase	Table 12
۶	Band A1	Glucanase	Table 13
	Band A2	Endochitinase A	Table 14
	Band A3	Thaumatin-like protein	Table 15
	Band A4	Chitinase B	Table 16

Table 12. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A0.

(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).

Band	Mass kDa	Charge	Rel. Mass kDa	Derived amino acid sequence	Sequence similarity position	Organism	Possible function	Accession number
AO	468.18	2+	936.36	SFVQEAVR	SFVQEAVR 57 RKFVRDAVR 65	Oryza sativa	Peroxidase	sp Q94DM0
AO	492.72	2+	985.44	DVGLAAGLLR	DVGLAAGLLR 67 DIGLAAGLLR 76	Hordeum vulgare	Peroxidase	sp Q42854
AO	520.70	2+	1041.40	YYVNLVNR	YYVNLVNR 267 YYVNLVNR 274	Triticum aestivum	Peroxidase precursor	sp Q8LK23
AO	529.72	2+	1059.44	VLTGSQGQLR	VLTGSQGQLR 320 VLTGSQGQVR 329	Hordeum vulgare	Peroxidase	sp Q40069
AO	546.21	2+	1092.42	SFVQEAVrr	SFVQEAVR 57 RKFVRDAVR 65	Zea mays	Anionic peroxidase	sp 004710
AO	566.70	2+	1144.40	GSLFDFYQR	FDFY 42 FDFY 45	Oryza sativa	Peroxidase	sp Q94DM0
A0	597.70	2+	1195.40	(sd)VVASGG	VVASGG 149 VVASGG 154	Oryza sativa	Peroxidase	sp Q94DM0
AO	682.22	2+	1364.44	AFFDQFGSSMVK	AFFDQFGSSMVK 303 AFFDQFAVSMVK 314	Triticum aestivum	Peroxidase precursor	sp Q8LK23
AO	690.23	2+	1380.46	AFFDQFGSSM*VK	AFFDQFGSSMVK 303 AFFDQFAVSMVK 314	Oryza sativa	Peroxidase	sp Q94DM0
AO	807.29	2+	1614.58	EGLFTSDQDLF	EGLFTSDQDLF 275 EGLFTSDQDLF 285	Nicotiana tabacum	Peroxidase	sp Q94IQ1

The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A0 showed homology to Peroxidase from Oryza sativa with the accession number sptrembl Q94DM0.

Table 13. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A1.

(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).

Band	Mass	Charge	Rel.	Derived amino	Sequence similarity	Organism	Possible	Accession
	kDa		mass kDa	acid sequence	position		function	number
A1	436.68	2+	873.36	QPVYPLR	PVYPLRFYDE 17 PVATLRYYDE 26	Oryza sativa	Endo- glucanase	spl Q8GT15
A1	478.65	2+	957.30	FYDEQVR	FYDEQVR 1 FYDAKVS 6	Oryza sativa	Endo- glucanase	sp Q8S9Q6
A1	497.19	2+	994.38	SEVVQLYR	-SEVVQLY 338 RSEVVQMY 345	Oryza sativa	Glucanase	sp Q8W4V0
A1	513.18	2+	1026.36	YYQPLWR	YYQ 534 VQLYHFYQ 541	Triticum aestivum	Glucosidase precursor	sp Q8GT15
A1	550.19	2+	1100.38	NFGLFYPNK	FGLFYPNK 615 FGLFYPNK 622	Hordeum vulgare	Glucanase	sp 064938
A1	588.51	2+	1177.02	fqpTGTVR	fqpTGTVR 511 FQPGTTVR 518	Oryza sativa	Glucanase	sp Q8GT15
A1	686.74	2+	1373.48	TYNQGLLDHVGR	YNQGLLDHVGR 573 RAYNQGLIDHVGR 584	Oryza sativa	Endo- glucanase	sp Q8S9Q6
A1	719.23	3+	2157.69	YLAV	ylav 116 ryiav 119	Oryza sativa	Endo- glucanase	sp Q8S9Q6
A1	757.81	2+	1515.62	NLVSALASAGLGGSGLK	ALASAGLGGS 118 ALVSAGLSSS 127	Oryza sativa	Glucanase	sp Q8W4V0
A1	775.29	2+	1550.58	LYFPDQQALDALR	LYFPDQQALDALR 36 IYYPDKEALDALR 48	Triticum aestivum	Glucosidase precursor	sp Q8GT15
A1	816.79	2+	1633.58	lgvC*YGVLGNNLPDK	gvCYGVLGNNLP 8 GVCYGVLGDNLP 15	Oryza sativa	Glucanase	sp Q8W4V0
A1	863.31	2+	1726.62	dlslgyatfqpgttvr	dlslgyatfQpgttvr 188 dislnyatfQpgttvr 203	Oryza sativa	Glucanase	spl Q8GT15

The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A1 showed homology to endo-1,3-beta- glucanase from *Oryza sativa* with the accession number sptrembl/Q8GT15.

Table 14. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A2.

(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).

Band	Mass kDa	Charge	Rel. mass kDa	Derived amino acid sequence	Sequence similarity position	Organism	Possible function	Accession number
A2	475.69	2+	951.38	SAFLEAANKYSGFA HGGTEVEGKR	SAFLEAANKYSGFAHGGTEVEGKR 109 SAFLSAVNAYPGFAHGGTEVEGKR 132	Zea mays	Chitinase A	sp P29022
A2	582.72	2+	1165.44	Y*GFAHGGTEVEGK R	Y*GFAHGGTEVEGKR 119 YPGFAHGGTEVEGKR 132	Tripsacum dactyloides	Chitinase A	sp Q6JBL6
A2	896.83	2+	1793.66	GPLQLSWNYNYGPA GR	GPLQLSWNYNYGPAGR 179 RGPLQISWNYNYGPAGR 195	Zea diploperennis	Chitinase B	sp Q6JBP3
A2	787.79	2+	1575.58	TALWFWMNNVH	TALWFWMNNVH 218 TALWFWMNNVH 228	Zea mays	Chitinase A	sp P29022
A2	590.71	2+	1181.42	VMPQGFGATTR	VMPQGFGATTR 230 VMPQGFGATIR 240	Zea mays	Chitinase A	sp P29022

The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A2 showed homology to chitinase A from *Zea mays* with swissprot accession number sp1P29022.

Table 15. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A3.

(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).

Band	Mass kDa	Charge	Rel. mass kDa	Derived amino acid sequence	Sequence similarity position	Organism	Possible function	Accession number
	кDа		IIIass KDa	sequence	1	7		number
A3	459.66	2+	919.32	C*AVDVNAR	C*AVDVNAR 145 CAVDVNAR 152	Zea mays	Thaumatin- like protein	sp P33679
7 0		2.1	1407 04		AVDVNAR	Oryza	Thaumatin-	
A3	475.68	3+	1427.04	n-AVDVNAR	146 AVDVNAR 152	sativa	like protein	sp Q75GX4
7 0		2.1	1 - 2 4 - 5 0		PAELR	Hordeum	Thaumatin-	
A3	511.50	3+	1534.50	PAELR	154 PAELR 158	vulgare	like protein	sp Q946Y8
n O		0.1	1044 44		LSVPAGTtaar	Oryza	Thaumatin-	
A3	522.22	2+	1044.44	LSVPAGT(taar	54 RITAPAGTTAAR 65	sativa	like protein	sp 004364
7 0	706 04	0.1	1 - 7 - 4 - 0		tgdCGGVLACTGYGR	Hordeum	Thaumatin-	
A3	786.24	2+	1572.48	tgdCGGVLAC*TGYGR	84 TGDCGGVLQCTGYGR 98	vulgare	like protein	sp Q946Y9
	0.01 75	0.1	1702 50		ATSTFTCPAGTNYK	Oryza	Thaumatin-	
A3	881.75	2+	1763.50	ATSTFTC*PAGTNYK	209 ATSTFTCPAGTNYK 222	sativa	like protein	sp Q75GX4
	650 10		1000 00		GQCPVSYSYPK	Zea	Thaumatin-	1000070
A3	650.19	2+	1300.38	GQC*PVSYSYPK	196 GQCPDAYSYPK 206	mays	like protein	sp P33679
7 2	714 01	2+	1400 40	mermeyer	TGDTGYGR	Zea	Thaumatin-	
A3	714.21	∠+	1428.42	TGDTGYGR	83 RTGDCGGVLQCTGYGR 98	mays	like protein	sp P33679

The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A3 showed homology to zeamatin from *Zea mays* with swissprot accession number sp1P33679.

Table 16. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A4.

(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).

Band	Mass	Charge	Rel. Mass	Derived amino acid sequence	Sequence similarity position	Possible function	Organism	Accession number
A4	425.29	2+	850.58	SAFLNAVK	SAFLNAVK 115 SAFLSAVK 122	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	432.67	2+	865.34	SLGFD(gl)R	SLGFDgl+++R 202 AIGFDGLGDPGR 213	Chitinase	Sorghum bicolor	XP002455593
A4	449.50	2+	899.00	SLGFD(glr)n(pd)r	SLGFDgl+np+r 202 AIGFDGLGDPGR 213	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	513.87	2+	1027.74	PQGFGATTR	PQGFGATTR 238 PQGFGATTR 247	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	534.70	2+	1069.40	AALWYWMK	AALWYWMK 224 AALWFWM 229	Chitinase B1	Sorghum bicolor	sp Q93WT1
A4	537.23	2+	1074.46	VAQDPVVAFK	VA+D+VVAFK 214 VARDAVVAFK 223	Class IV chitinase	Oryza sativa	sp 004138
A4	582.72	2+	1165.44	VMPQGF(ga)ttr	V+PQGFgattr 236 VVPQGFGATTR 246	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	673.76	2+	1347.52	SLGFDG(lr)NPDR	SLGFDGlrNP+R 202 AIGFDGLGDPGR 213	Chitinase	Sorghum bicolor	XP002455593
A4	770.30	2+	1540.60	NVHGVVPQGFGATTR	NVHGVVPQGFGATTR 233 +VHGVVPQGFGATTR 246	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	882.82	2+	1765.64	GPLQLSWNYNYGPAGK	GPLQLSWNYNYGPAGR 186 GPLQISWNYNYGPAG+ 199	chitinase-B1	Sorghum bicolor	sp Q93WT1
A4	896.82	2+	1793.64	GPLKLSWNYNYGPAGR	GPLKLSWNYNYGPAGR 186 GPLQISWNYNYGPAG+ 199	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3

The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A4 showed homology to Chitinase B from *Zea diploperennis* with Uniprot accession number Q6JBP3.

Part D-Molecular biology

3.12 Characterization of *chitinase* and *tlp* from pearl millet.

After obtaining partial amino acid sequence of pearl millet chitinase and thaumatin like protein, it was aimed to isolate the corresponding gene so that it could be cloned and over expressed in bacterial expression vector for further studies. Suitable primers were designed and PCR conditions were optimized to amplify the gene of interest.

3.12.1 Amplification of pearl millet chitinase gene (chi).

Neither nucleotide sequence nor protein sequences for pearl millet chitinase are available in the database. Therefore peptide sequences deduced from *de novo* sequencing of the purified 24 kDa protein was considered for primer designing.

3.12.1 i) Primer designing.

The deduced amino acid sequence of the peptide fragments generated from in-gel trypsin digestion of the purified 24 kDa protein band showed homology to chitinase from *Sorghum bicolor* (NCBI Accession number: gi|15529119|gb|AAK97763). Pair wise alignment of *S. bicolor* (NCBI Accession number: gi|15529119|gb|AAK97763) chitinase amino acid and the nucleotide sequence is given in Fig 27 below; Yellow boxes indicate the primer sequence and the grey boxes indicate the corresponding Amino acid sequence.



Fig 27. Primer design for amplification of chi gene from pearl millet based on homologous sequence of *Sorghum bicolor* chitinase (NCBI Accession number: gi|15529119|gb|AAK97763). Grey shaded boxes indicate amino acid sequences obtained by *de novo* sequencing of pearl millet chitinase and the primer sequence.

Primers were designed to amplify the gene of interest considering *S. bicolor* chitinase (NCBI Accession number: gi|15529119|gb|AAK97763) as reference are listed in table 17 below with their corresponding annealing temperatures.

Table 17. Primers designed to amplify chi gene from pearl millet based on homologous sequence of *Sorghum bicolor* chitinase (NCBI Accession number: gi|15529118|gb|AY047608.1).

Peptide	Daiman	Drimen company	Annealing
sequence	Primer	Primer sequence	temperature
NCGCQ	la)Sorg_Fwd	5'- cagaactgcggctgcca -3'	59°C
GPNLTC	1b) Sorg_Rev	5'- agcaaatgaggttgggcccg -3'	59°C

The primer pair 1a and 1b amplified approximately 800 bp fragment at 60°C annealing temperature using genomic DNA as template. Though the calculated annealing temperature was 59°C a strong band was amplified at 60°C. PCR product was separated on 1.5 % agarose gel with 100 bp ladder plus DNA marker as reference as illustrated in Fig 28.

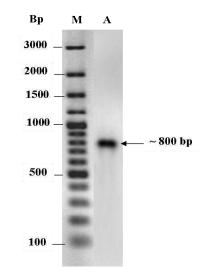


Fig 28. Amplification of ~800 bp product using primer pair 1a and 1b.

Lane M: 100 bp ladder plus (Fermentas # SM0321), Lane A: 790 bp product amplified by the primer pair 1a and 1b separated on 1.5% agarose gel.

The ~ 800 bp band was excised from the gel and purified using QIAEX II Gel Extraction Kit (Qiagen # 20021). Purified PCR product was cloned to pGEMT-Easy (Promega # A3600) TAcloning vector and subsequently sequenced. The plasmid containing insert was sequenced in both the directions and the consensus sequence was subjected to homology search.

Nucleotide sequence of non specific product amplified by primer pair 1a and 1b

- 841 CGCGTTG

Fig 29. Consensus nucleotide sequence of 847 bp non specific product amplified by primer pair 1a & 1b.

This 847 bp fragment showed similarity to polyprotein *Sorghum bicolor* (NCBI Accession number: gb|AAD27571 gi|4680208) and polyprotein from *Zea mays* (NCBI Accession number: gi|18568275|gb|AAL76007). Since the primers 1a and 1b designed using *S. bicolor* chitinase as reference sequence amplified a non specific product, maize *endochitinase* (NCBI Accession number: gi|195627426 gb|ACG35543) with which purified pearl millet chitinase shares homology was used as reference to design new set of primers.

Pair wise alignment of *Zea mays endochitinase* (NCBI Accession number: gi | 195627425 gb | EU963425.1) amino acid and nucleotide sequence; amino acid sequences deduced by *de novo* sequencing of purified pearl millet chitinase are indicated by grey shaded boxes and the yellow boxes indicate the primer sequence in Fig 30.

Peptide seq

- Primer seq

1 ATGGCAAACGCGCCGAGGATCCTGGCCCTCGGCCTGCTAGCGCTCCTGTGCGCTGCCGCC 1 M A N A P R I L A L G L L A L L C A A A 61 GGCCCGGCCGCCGCGCAGAACTGCGGCTGCCAGCCAAACTTCTGCTGCAGCAAGTTCGGC 21 G P A A A O N C G C O P N F C C S TACTGCGGCACGACCGACGCCTACTGCGGCGACGGGTGCCAGTCGGGCCCGTGCCGCTCG 121 41 Y C G T T D A Y C G D G C Q S G P C R S 181 61 D G X G G G G G G G X X G X S X G A N V 241 **TG**GTCACCGACGCGTTCTTCAACGGCATCAAGAACCAGGCCGGGAGCGGGTGC A N V V T D A F F N G I K N Q A G S G C 81 301 GAGGGCAAGAACTTCTACACCCGGAGCGCGTTCCTGAGCGCCGTCAACAAGTACCCGGGC 101 E G K N F Y T R S A F L S A V N K Y P G TTCGCCCATGGCGGGACGGAGGTGGAGGGCAAGCGCGAGATCGCCGCCTTCTTCGCGCAC 361 121 F A H G G T E V E G K R E I A A F F Α Н 421 GTCACGCACGAGACCGGACATTTCTGCTACATCAGCGAGATCAACAAGAGCAACGCCTAC 141 V T H E T G H F C Y SETNKSNA Т Y 481 161 C D A S N R Q W P C A A G Q K Y Y G R G CCGCTGCAGATCTCGT<mark>GGAACTACAACTACGGGCCC</mark>GCCGGGAGGGACATCGGCTTCAAC 541 PLQISWNYNYGPAGRDIGF 181 N 601 GGGCTCGCCGACCCCAACAGGGTGGCGCAGGACGCCGTGATCGCGTTCAAGACGGCGCTC G L A D P N R V A Q D A V I A F K T A L IGGT<mark>TCTGGATGAACAACGTGCA</mark>CCGTGTGATGCCGCAGGGCTTCGGCGCCACCATCAGG 201 661 TGGTTCTG W <mark>F W M N N V H</mark> R V M P Q G F G A T I R 221 721 241 A I N G A L E C N G N N P A O M N A R V 781 GGCTACTACAAGCAGTACTGCCAGCAGCTCCGCGTCGACCCAGGGCCCAACCTCACTTGC 2.61 G Y Y K Q Y C Q Q L R V D P G P N L T C 841 TAG

Fig 30. Primer design for amplification of *chi* gene from pearl millet based on homologous sequence of *Zea mays endochitinase* (NCBI Accession number: gi|195627425|gb|EU963425). Grey shaded boxes indicate amino acid sequences obtained by *de novo* sequencing of pearl millet chitinase and the primer sequence.

The primers designed considering *Zea mays* endochitinase (NCBI Accession number: gi|195627426|gb|ACG35543.1) as reference are listed in table 18 below along with their annealing temperatures.

Table 18. Primers designed to amplify *chi* gene from pearl millet based on homologous sequence of *Zea mays endochitinase* (NCBI Accession number: gi | 195627425).

Peptide	Primer sequence	Primer	Annealing
sequence			temperature
GANVAN	5′-ggtgcgaacgtggctaa-3′	2a)Chi_252 Fwd	57
WMNNVH	5′-gtgcacgttgttcatccaga-3′	2b)Chi_684 Rev	58
ANVANV	5′-gtgcgaacgtggctaatgtg-3′	3a)Chi_230 Fwd	58
NYNYGP	5'-gggcccgtagttgtagttcc-3'	3b)Chi_709 Rev	57

The primer pair 2a and 2b was used to amplify the pearl millet *chitinase* gene as the next effort. However, no product was amplified by this primer pair as seen in Fig 31 below. Both cDNA as well as genomic DNA were used as templates and separate PCRs were performed; temperature gradient PCR was carried out with annealing temperatures ranging between 45-55°C and 55-65°C. Different PCR additives like PCR additives like DMSO (0-2%), Formamide (0-1%), Betaine (0-0.6 M) and MgCl₂ (0-2 mM) were also used. Positive control was ~ 350 bp (*nonspecific lipid transfer protein- nsltp*) product amplified by the primers Remo forward primer

5'-GGGCTGGTCCTCGAATTC AC-3' Remo reverse primer 5'-GTGTATGAGTAATGGATC CG-3' using 100 ng of genomic DNA from *Malus domestic* cv. Remo as template.

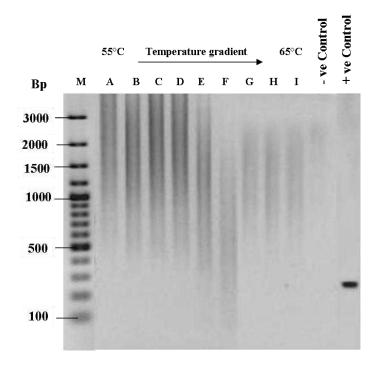


Fig 31. Amplification of pearl millet chi using primer pair 2a and 2b.

Lane M: 100 bp ladder plus (Fermentas #SM0321), Lane A-I: Amplification at different annealing temperatures (55-65°C) showing no product, negative control is PCR carried out without any template DNA.

No products were obtained with primer pair 2a and 2b, under varied PCR conditions tried. Therefore the next primer pair was used.

The primer pair 3a (Chi_Fwd primer_230) and 3b (Chi_Rev Primer_709) did not amplify any products with *Taq* DNA polymerase. Several efforts were made to optimize the PCR conditions. Temperature gradient PCR was carried out in the range of 45-65°C. Stepdown PCR was carried out with initial 10 cycles at 65°C annealing temperature, followed by 20 step down cycles with every cycle lower from the previous cycle by one degree annealing temperature. No PCR products were amplified under these conditions. Therefore PCR additives like DMSO and Betaine were added; and a weak band of approximately 500 bp was amplified at 59°C annealing temperature with DMSO (1%v/v) Betaine (0.6 M) and MgCl₂ (1.5 mM) along with a background smear. Genomic DNA was used as template (100 ng/ 25 µL reaction volume). Hot start PCR was carried out with initial denaturation at 96°C for 30 sec followed by 30 cycles of denaturation at 94°C for 30 sec, annealing at 59°C for 30 sec, elongation at 72°C for 30 sec and final elongation for 2 min at 72°C. Amplification with the primer pair 3a and 3b is illustrated in Fig 32.

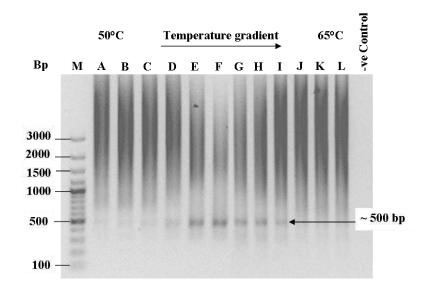


Fig 32. Temerature gradient PCR with primer pair 3a and 3b and genomic DNA as template. Lane M: 100 bp ladder plus (Fermentas #SM0321), Lane A-L: Amplification at different annealing temperatures (50-65°C) using Dream*Taq*, separated on 1.5% agarose gel. Negative control is PCR without any template DNA.

However, it was not possible to get a clean band, the background smear could not be minimized under the conditions used for amplification; even the Reamplification of the product did not yield any satisfactory results. The product was not homogenous and could not be sequenced directly. As the next option KAPA2GRobust DNA polymerase kit (Peqlab # 07-KK5004-01) was used as it is known to give better amplification because of the presence of PCR enhancers which are the component of the kit.

A clear strong band was obtained with the primer pair 3a and 3b when KAPA2GRobust DNA polymerase (Peqlab # 07-KK5004-01) was used in combination with GC buffer, Enhancer 1 and Enhancer 2 at 1X concentration (components of KAPA2GRobust DNA PCR kit). PCR was carried out as per manufacturer's specification. Amplification was observed at 60-63°C annealing temperature as illustrated in the Fig 33.

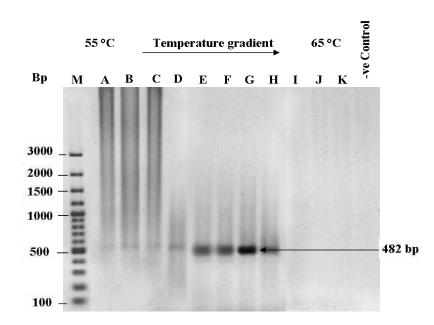


Fig 33. Pearl millet chi with the primer pair 3a and 3b using KAPA2GRobust DNA polymerase kit.

Lane M: 100 bp Ladder plus (Fermentas # SM0321) Lane A-K: Temperature gradient PCR, amplification of 482 bp product observed at 59-61°C using KAPA2GRobust DNA polymerase kit (Peqlab 07-KK2100-02). Last lane is the negative control with no template DNA.

The strong 482 bp band amplified at 63°C annealing temperature was excised from the agarose gel, purified using QIAEX II Gel Extraction Kit (Qiagen # 20021) and directly sequenced.

Nucleotide sequence of pearl millet *chitinase* (partial length) amplified by the primer pair 3a and 3b 482 bp.

1 CCGCACGGGGAGCACGCCGGCAGCGGTAAAGGCGCGAACGTGGCCAGCGTCGTCACCGAC

- 121 ACGCGGAGCGCGTTCCTGGAGGCCGCCAACAAGTACTCCGGCNTCGCCCACGGCGGAACG
- 241 CGTAAGTTGGATGAATAGCTAAGCTAGCNCTCCAATCCGCCTCTCTACTACTGCAAACTC
- 301 CAATATTTCTTCTGCTGAACTAAATGTTCACGGCTTCATACCGACAGATTTCTGCTACAT
- 361 CAGCGAGATCAACAAGAACAACGCCTACTGCTCGAGCAACGCGCAGTGGCCGTGCGCCGC
- 421 GGGGAAGAAGTACTACGGGCGCGGGCCGCTGCAGATCTCGTGGAACTACAACTACGGGCC
- 481 CA

Fig 34. Nucleotide sequence of pearl millet *chi* (482 bp) amplified by the primer pair 3a and 3b.

The 482 bp sequence was subjected to homology search and it was observed to share homology with Maize *chitinase* (NCBI Accession number: gi|195627425). It was also observed that the pearl millet *chitinase* gene is interrupted by a 107 bp intron at 241 bp position to 348 bp position. Amplification was also carried out using KAPA HiFi DNA polymerase (Peqlab 07-

KK2100-01) with the same primer combination. Two clear bands were obtained at annealing temperature 55-57°C, no amplification was observed at higher annealing temperatures. Products of PCR were separated on 1.5% agarose gel as seen in Fig 35.

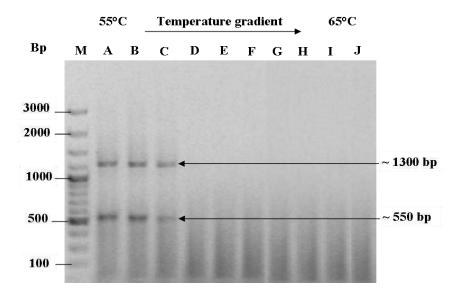


Fig 35. Amplification of pearl millet chi using Phusion HiFi DNA polymerase (NEB # F-530S) with primer pair 3a and 3b.

Lane M: 100 bp ladder plus (Fermentas #SM0321); Lane A-J: Amplification at different annealing temperatures (55-65°C).

The two bands were excised from the gel, purified using QIAEX II Gel Extraction Kit (Qiagen # 20021). Phusion HiFi DNA Polymerase (NEB # F-530S) produces blunt end PCR products. Several efforts were made to clone the two products to CloneJet PCR cloning kit (Fermentas # K1231). Strangely *E. coli* cells transformed with these fragments developed ampicillin resistance but were devoid of plasmids as illustrated in Fig 36.

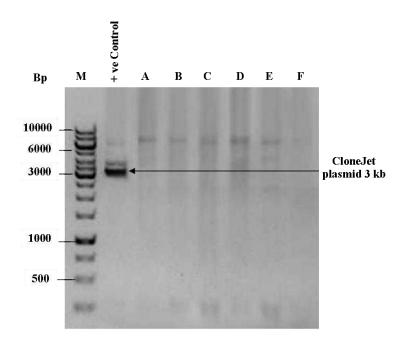


Fig 36. Plasmid isolation by HB lysis from ampicillin resistant transformants (cloning vector used CloneJet).

Lane M: 1kb DNA ladder (Fermentas # SM0311); Positive control: CloneJet plasmid - 3kb (Fermentas # K1231), Lane A-F Ampicillin resistant colonies devoid of plasmids indicating integration of plasmid into genomic DNA.

This lead to the conclusion that the ampicillin resistance gene from the plasmid along with the insert was getting cloned into genomic DNA of *E. coli* conferring antibiotic resistance to the transformants. Because of this reason the products were directly sequenced. Sequencing showed that these bands were not homogenous; therefore the bands were run on agarose gel for 2 hrs for better separation, then excised, purified and sent for sequencing. Though the band seemed visibly homogenous, sequencing revealed that the samples were not a homogenous band. Reamplification and purification of the product also did not yield any homogenous band. Increasing the annealing temperature above 58°C did not amplify any product. Therefore it was concluded that the Phusion HiFi DNA polymerase (NEB # F-530S) was not useful in this case, with genomic DNA as template. RT-PCR (Reverse transcriptase PCR) using total RNA as template did not yield any product. Therefore Phusion HiFi DNA polymerase was not used for PCRs with this primer pair.

3.12.2 Amplification of pearl millet *tlp* (thaumatin-like protein) gene.

Neither nucleotide sequence nor protein sequences for pearl millet genes encoding thaumatin-like protein were available in the database. Therefore peptide sequences obtained from *de novo* sequencing were considered for primer designing.

3.12.2 i) Primer designing

The deduced amino acid sequence of the peptides generated from in gel trypsin digestion of the protein band (Band A3 Fig 26) showed homology to maize zeamatin (NCBI Accession number: gi|459170). Pair wise alignment of maize TLP amino acid and nucleotide (NCBI Accession number: gb|AAA92882.1, gi|459170) sequence is seen in Fig 36 below. Yellow boxes indicate the primer sequence and the grey shaded box indicate corresponding amino acid sequence in Fig 37.

1	A <mark>TGGCA</mark>	GGT	TCC	GTGG	CAA	TCO	TGG	GCZ	ATC	TCC	STC	GCC	CTC	CTC	GCC	GTG	GCC	GGC	GAG					
1	мА	G	S	V	А	I	V	G	I	F	V	А	L	L	А	V	А	G	Е					
61	GCG <mark>GCT</mark>	GTG	TTC.	ACGG	TGG	<mark>st</mark> ga	AACC	CAG	rgco	CCGI	TTC.	ACCO	GTG	TGG	GCC	GCG	TCC	GTG	CCG					
21	A A	V	F	Т	V	V	Ν	Q	С	Ρ	F	Т	V	W	А	А	S	V	Ρ					
121	GTGGGC	GGC	GGG	CGGC	CAGC	TGA	AACC	CGCC	GGC	GAGA	AGC'	TGG	CGG.	ATC.	ACG	GCC	CCC	GCG	GGC					
41	V G	G	G	R	Q	L	Ν	R	G	Е	S	M	R	Ι	Т	А	Ρ	А	G					
181	<mark>ACGACG</mark>	GCC	GCG	<mark>CGC</mark> A	TCT	GGG	GCGC	CGCZ	ACG	GGGI	[GC]	AAG	TTC	GAC	GCG.	AGC	GGG	CGC	GGG					
61	т т	A	A	R	Ι	W	А	R	Т	G	С	K	F	D	А	S	G	R	G					
241	GGACTG	CGG	CGG	CAG <mark>C</mark>	TGC	CGC		GGG	GT GC	CTG	CAG	TGC2				GGG		GCG	CCC		-	- Pen	tide s	en
81	S C	R	Т	G	D	С	G	G	V	L	Q	С	Т	G	Y	G	R	А	Ρ					
301	AACACG	CTG	000	01101	ACG	SCGC	CTGZ		CAG	FTCF		AAC	CTC	GAC	TTC	TTC	GAC	ATC	100		-	- Prii	ner se	a
101	N T	L	A	Е	Y	A	L	K	Q	F	Ν	Ν	L	D	F	F	D	I	S					
361	CTCATC	GAC	GGC		ACG	STGC				TTCC	CTC		GAC	GGC	GGG		GGG	TGC						
121	LI	D	G	F	N	V	P	М	S	F	L	P	D	G	G	S	G	C	S					
121 421	L I CGCGGC	D CCG	G	F	N	V	P	М	S	F	L CGC	P	D	G	G	S	G	C	S GAC					
121 421 141	L I CGCGGC R G	D CCG P	G CGC R	F TGCG C	N GCCG A	V GTGG V	P GACO D	M GTGZ V	S AACO N	F GCGC A	L CGC' R	P TGC(C	D CCT P	G GCC A	G GAG E	S CTG L	G CGG R	C CAG Q	S GAC D					
121 421 141 481	L I CGCGGC R G GGCGTG	D CCG P	G CGC R	F TGCG C	N SCCG A SCGT	V GTGG V	P GACC D CCCC	M GTGZ V	S AACO N FTC2	F GCGC A AAGZ	L CGC' R AAG	P TGC(C	D CCT P GAG	G GCC A TAC	G GAG E	S CTG L	G CGG R	C CAG Q GGC	S GAC D TCG					
121 421 141 481 161	L I CGCGGC R G GGCGTG G V	D CCG P TGC C	G CGC R AAC N	F TGCG C AACG N	N SCCG A SCGT A	V STGG V C C	P GACO D CCCO P	M GTGZ V GTGI V	S AACO N FTC <i>F</i>	F GCGC A AAGZ K	L CGC' R AAG K	P IGC(C GAC(D	D CCT P GAG E	GCC A TAC Y	G GAG E TGC C	S CTG L TGC C	G CGG R GTC V	CAG Q GGC G	S GAC D TCG S					
121 421 141 481 161 541	L I CGCGGC R G GGCGTG G V GCGGCC	D CCG P TGC C	G CGC R AAC N	F TGCG C AACG N	N SCCG A SCGT A	V STGG V C C C C C C C C C C C C A	P GACO D CCCO P	M GTGZ V GTGI V	S AACO N FTC <i>F</i>	F GCGC A AGA K TCCA	L CGC' R AAG K AGG	P TGC(C GAC(D TAC	D CCT P GAG E ITC.	GCC A TAC Y AAG	GAG E TGC C GGG	S CTG L TGC C CAG	G CGG R GTC V	CAG Q GGC G CCC	S GAC D TCG S GAC					
121 421 141 481 161 541 181	L I CGCGGC R G GGCGTG G V GCGGCC A A	D CCCG P TGC C C XAAC N	G CGC R AAC N GAC D	F TGCG C AACG N TGCC C	N A GCGT A A CACC H	V TGC V C C C C C C C C C C C C C C P	P GACG D CCCG P ACC <i>P</i> T	M STG2 V STG1 V AAC1 N	S AACO N F F F TACT Y	F GCGC A AAGA K FCCA S	L GC' R AAG K AGG R	P TGCC C GACC D TAC Y	D CCT P GAG E ITC. F	G GCC A TAC Y AAG K	G GAG E TGC C GGG G	S CTG L TGC C CAG Q	G CGG R GTC V <mark>TG</mark> C C	CAG Q GGC G CCC P	S GAC D TCG S GAC D					
121 421 141 481 161 541 181 601	L I CGCGGC R G GGCGTG G V GCGGCC	D CCCG P TGC C C XAAC N	G CGC R AAC N GAC D	F TGCG C AACG N TGCC C	N A GCGT A A CACC H	V TGC V C C C C C C C C C C C C C C P	P GACG D CCCG P ACC <i>P</i> T	M STG2 V STG1 V AAC1 N	S AACO N F F F TACT Y	F GCGC A AAGA K FCCA S GCAC	L GC' R AAG K AGG R	P IGCO GACO D IACO Y ICAO	D CCT P GAG E ITC. F	G GCC A TAC Y AAG K	G GAG E TGC C GGG G CC <mark>G</mark>	CTG L TGC C CAG Q CCG	G CGG R GTC V TG C GAA	CAG Q GGC G CCC P	S GAC D TCG S GAC D ACT					
121 421 141 481 161 541 181 601 201	L I CGCGGC R G GGCGTG G V GCGGCC A A CGTACA A Y	D CCCG P TGC C C XAAC N	G R AAC. N GAC D ACC Y	F TGCG C AACG N TGCC C CCAA P	N GCCG A GCGT A CACC H AGGA K	V STGG V C C C C C C C C C C C A T G A T G A T G A	P GACC D CCCC P ACC T ACCC D	M STG2 V STG1 V AAC1 N	S AACO N F F F TACT Y	F GCGC A AAGA K FCCA S	L GC' R AAG K AGG R	P TGCC C GACC D TAC Y	D CCT P GAG E ITC. F	G GCC A TAC Y AAG K	G GAG E TGC C GGG G	S CTG L TGC C CAG Q	G CGG R GTC V T <mark>G</mark> C C	CAG Q GGC G CCC P	S GAC D TCG S GAC D					
121 421 141 481 161 541 181 601	L I CGCGGC R G GGCGTG G V GCGGCC A A	D CCCG P TGC C C XAAC N	G R AAC. N GAC D ACC Y	F TGCG C AACG N TGCC C	N GCCG A GCGT A CACC H AGGA K	V STGG V C C C C C C C C C C C A T G A T G A T G A	P GACC D CCCC P ACC T ACCC D	M STG2 V STG1 V AAC1 N	S AACO N F F F TACT Y	F GCGC A AAGA K FCCA S GCAC	L GC' R AAG K AGG R	P IGCO GACO D IACO Y ICAO	D CCT P GAG E ITC. F	G GCC A TAC Y AAG K	G GAG E TGC C GGG G CC <mark>G</mark>	CTG L TGC C CAG Q CCG	G CGG R GTC V TG C GAA	CAG Q GGC G CCC P	S GAC D TCG S GAC D ACT					

Fig 37. Primer design for amplification of *tlp* gene from pearl millet based on homologous sequence of zeamatin from maize (NCBI Accession number: gb|AAA92882.1, gi|459170). Grey shaded boxes indicate amino acid sequences obtained by *de novo* sequencing of pearl millet TLP and the primer sequence.

Primers designed to amplify pearl millet tlp gene with their corresponding annealing temperatures are compiled in the table 19.

Peptide sequence	Primer sequence	Primer	Annealing temp.
AVFTVV	5'-GCTGTGTTCACGGTGGT-3'	la)Zea Fwd primer	59
YKVVFCP	5'-GGCAGAAGACGACCTTGTAG-3'	1b)Zea Rev primer	59
LQCTGY	5'-CTGCAGTGCACTGGGTA-3'	2a)Fwd primer_271	58
AGTNYK	5'-TGTAGTTGGTTCCGGCG-3'	2b)Rev primer_667	58
LQCTGY	5'-CTGCAGTGCACTGGGTA-3'	3a)Fwd primer_271	57
YFKGQC	5'-GCACTGCCCCTTGAAGTA-3'	3b)Rev primer_594	57
DCGGVL	5'-GACTGCGGCGGCGTGCT-3'	4a)Fwd primer_256	58
AGTNYK	5'-TGTAGTTGGTTCCGGCG-3'	4b)Rev primer_667	58
MAGSVAI	5'-ATGGCAGGTTCCGTGGCAATC-3'	5a)FL Fwd primer_92	58
YFKGQC	5'-GCACTGCCCCTTGAAGTA-3'	5b)Rev primer_594	58
MAGSVAI	5'-ATGGCAGGTTCCGTGGCAATC-3'	6a)FL Fwd primer_92	58
AGTNYK	5'-TGTAGTTGGTTCCGGCG-3'	6b)Rev primer_667	58
TTAAR	5'-ACGACGGCCGCGCGC-3'	7a)Pep Fwd	59
YFKGQC	5'-GCA CTGCCCCTTGAAGTA-3'	7b)Rev primer_594	58
TTAAR	5'-ACGACGGCCGCGCGC-3'	8a)Pep Fwd	59
AGTNYK	5'-TGTAGTTGGTTCCGGCG-3'	8b)Rev primer_667	58

Table 19. Primers designed to amplify *tlp* gene from pearl millet, based on homologous sequence of *zeamatin* from maize (NCBI Accession number: gi|459169|gb|ZMU06831).

Amplification of *tlp* gene using various primer combinations and nucleotide sequence of the corresponding amplicons are also given below.

The primer pair 1a and 1b amplified a 483 bp non-specific product at 59°C annealing temperature using Dream *Taq* polymerase from Fermentas (# EP0701) as seen in Fig 38.

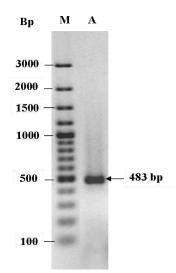


Fig 38. Amplification of 483 bp product by primer pair 1a and 1b Lane M: 100 bp ladder plus (Fermentas # SM0321), Lane A: Product amplified by the primer pair 1a and 1b separated on 1.5% agarose gel.

PCR product was purified by gel extraction and was cloned into pGEMT-Easy (Promega # A3600) TA cloning vector and subsequently sequenced. Homology search of the 483 bp nucleic acid sequence showed no homology to known *tlp* sequences in the database, indicating the primer pair amplified a nonspecific product. Therefore new primers were designed to amplify *tlp* gene. Therefore the next set of primers was used.

The primer pair 2a (Fwd primer_271, 5'-CTGCAGTGCACTGGGTA-3') and 2b (Rev primer_667, 5'- TGTAGTTGGTTCCGGCG-3') amplified ~ 300 bp product at 58°C annealing temperature using Dream*Taq* polymerase from Fermentas (# EP0701) as illustrated in Fig 39.

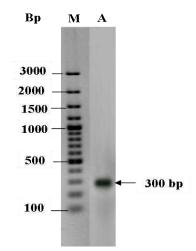


Fig 39. Amplification of pearl millet *tlp* gene using primer pair 2a and 2b.

Lane M: 100 bp ladder plus (Fermentas # SM0321), Lane A: 300 bp Product amplified by the primer pair 2a and 2b separated on 1.5% agarose gel.

Nucleotide sequence of 300 bp product amplified by the primer pair 2a and 2b.

- 1 GCACGCTGGCCGAGTACGGGCTGAACAAGTACCAGAACCTCGACTTCTTCGACATCTCGC
- 61 TGGTGGACGGGTTCAACGTGCCCATGGACTTCCTCCCGGCGGGCAGCGGCGCCGGGTGCC
- 121 CCAAGGGCGGGCCGCGGTGNNGCGNCNACGTCACGGGGCAGTGCCNCNNCNCGCTGCGCG
- 181 CCACCNGCGGCTGCAACAACCCGTGNACGGTGTTCAAGANGGACNANTACTGCTGCACGG
- 241 GGTCGGNGGCGAACAGCTGCGGCGCCACCGACTACTCGAGGTACTTCAAGGGGNAGTGCA

Fig 40. Nucleotide sequence of 300 bp PCR product amplified with primer pair 2a & 2b.

The nucleotide sequence shared homology with *Sorghum bicolor tlp* (gi|242038634:61-756) and maize *tlp* (NCBI Accession number: gi|226505631:49-741 *Zea mays* LOC100281135) along with many other known *tlps* from rice barley etc., when homology search was performed using Blastx.

The primer pair 3a and 3b amplified 226 bp product at 59°C annealing temperature.

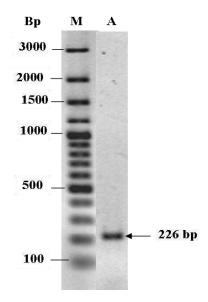


Fig 41. Amplification of pearl millet *tlp* gene with the primer pair 3a and 3b.

Lane M: 100 bp ladder plus (Fermentas #SM0321), Lane A: 226 bp Product amplified by the primer pair 3a and 3b separated on 1.5% agarose gel.

PCR product was separated on 1.5% agarose gel and the band was excised and purified using QIAEX II Gel Extraction Kit (Qiagen # 20021) subsequently sequenced.

Nucleotide sequence of 226 bp product amplified by the primer pair 3a and 3b.

- 1 AACNGCNNNNANNGCCNCNGGGCNGTATAGCAACGGCCGCCGAGACTCAGGGAANAAAGC
- 61 CCGCAGACTCGNCGNNCATNAAGTANNNNGNGNANCGATAGCCNNCCTNTGGCNNCTCTN
- 121 ATNGGGGGCCNACCNNNNNTACTGGTACTNATCCANTNCNGGTATGNTGTNCTNTAGANA
- 181 TCCNAANNAAGCNTNTTCCANTNTAGNTANACCTGNNTNCNNNNNN

Fig 42. Nucleotide sequence of 226 bp PCR product amplified with primer pair 3a & 3b.

Homology search of the 226 bp nucleotide sequence revealed that the sequence does not share homology with any known tlps. The reason could also be poor quality of the sequence. Also the expected size of the amplicon was higher than 300 bp and therefore this primer pair was not considered for any further work and the next set of primers was used.

The primer pair 4a and 4b did not amplify any product when Dream *Taq* polymerase (Fermentas # EP0701) was used. PCR additives DMSO (1% v/v), Betaine (0.6 M) and MgCl₂ (2 mM) were used along with reaction buffer. However, no products were obtained under annealing temperature ranging from 45-65°C as illustrated in the Fig 42 below. Positive control was ~ 350 bp (nonspecific lipid transfer protein- nsltp) product amplified by the primers Remo forward primer 5'-GGGCTGGTCCTCGAATTCAC-3' Remo reverse primer 5'-GTGTATGA GTAATGGATCCG-3' using 100 ng of genomic DNA from *Malus domestic* cv. Remo as template.

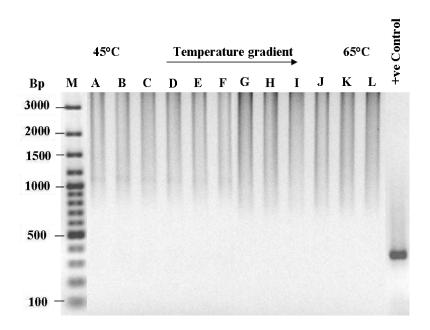


Fig 43. Amplification of pearl millet *tlp* gene with the primer pair 4a and 4b.

Lane M: 100 bp ladder plus (Fermentas #SM0321), Lane A-L: Amplification at different annealing temperatures (45-65°C) showing no product, the last lane is positive control.

Therefore KAPA2G Robust PCR Kit Peqlab Germany (# 07-KK5004-01) which contains second generation polymerase which amplifies GC rich gene fragments was used. The kit contained GC buffer, Enhancer 1 and 2; all these were used at 1X end concentration. PCR reaction conditions were as per manufacturers specifications. This resulted in amplification of ~ 422 bp product at 65°C. PCR products were separated on 1.5% agarose gel, stained with ethidium bromide and visualized under UV imager as seen in Fig 44.

Amplification of pearl millet *tlp* gene with the primer pair 4a and 4b using KAPA2G Robust PCR Kit.

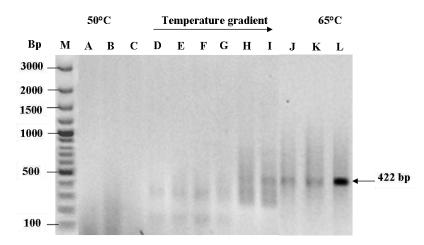
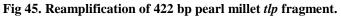



Fig 44. Amplification of pearl millet *tlp* gene with the primer pair 4a and 4b using KAPA2G Robust PCR Kit

Lane M: 100 bp ladder plus (Fermentas #SM0321), Lane A-L: Amplification at different annealing temperatures (45-65°C) showing 422 bp pearl millet tlp at 65°C.

The 422 bp band was reamplified under same conditions; separated on agarose gel, 422 bp band was excised from the gel; purified using QIAEX II Gel Extraction Kit (Qiagen # 20021) and directly sequenced. Reamplification of 422 bp product is seen in Fig 45.

Lane M: 100 bp ladder plus (Fermentas #SM0321); Lane A: 422 bp product amplified by the primer pair 4a and 4b.

Nucleotide sequence pearl millet *tlp* (partial length) 422 bp fragment.

1	GGGGACTGCGGCGGCGTGCTGCAGTGCACTGGGTACGGGCGCGCGC
61	CNAGTCGGGCTGACNAGTACCANAACCTCGACTTCTTCGACATCTCGCTGGTGGACGGGT
121	TCAACGTGCCCATGGACTTCCTCCCGGCGGGCAGCGGCGCCGGGTGCCCCAAGGGCGGGC
181	CGCGGTGCCGCGCCGACGTCACGGGGCAGTGCCCCGCCGCGCGCG
241	CAACAACCCGTGCACGGTGTTCAAGACGGACCAGTACTGCTGCACGGGGTCGGCGGCGAT
301	ACAGCTGCGGCGCCACCGACTACTCGAGGTACTCAAGGGGAANTGCCCGGACGCCTNCAG
361	CTACCCCAAGGACGACGCCACCNNCNCCTACACTTGNNNCGNCGGAANNNACTACAAGGT
421	TT

Fig 46. Nucleotide sequence of 422 bp PCR product amplified with primer pair 4a & 4b.

Homology search of the obtained nucleotide sequence (422bp) showed strong homology to maize (*Zea mays* subsp. *Parviglumis*) *zeamatin-like protein* (NCBI Accession number: EU.725365.1) and *Sorghum bicolor* hypothetical protein similar to pathogenesis-related *tlp* (NCBI Accession number: gi|242038634|ref|XM. 002466667) and *Zea mays* antifungal *tlp –zeamatin* (NCBI Accession number gi|459169|gb|U06831|ZMU06831).

Since none of the amplicons sharing homology with known *tlps* were complete genes, 2 more primers were designed, one corresponding to a peptide fragment close to the upstream region of the gene next to signal peptide, named Pep_Fwd (5'-ACGACGGCCGCGCGCGC-3') and another corresponding to the beginning of the gene, named FL_92 Fwd (5'-ATGGCAGGTTCCGTG GCAATC-3') with the aim of isolation of full length gene. These were used in combination with the reverse primers Rev_Primer 594 and Rev_Primer 667. However, these primers did not lead to the amplification of any product with Dream *Taq* along with PCR additives like DMSO (0-1%) and Betaine (0-600 mM) and under MgCl₂ concentration gradient (0-2 mM); genomic DNA was used as template. Surprisingly the primer combination FL_Fwd+Rev_594 and FL_Fwd+Rev_667 gave several products when the PCR was carried out with KAPA HiFi PCR kit from Peqlab (# 07-KK2100-01). The polymerase kit contained GC buffer containing PCR enhancers for the amplification of GC rich templates. Amplification with the above mentioned primer pairs are given below.

The primer pair 5a and 5b amplified two products namely 1110 bp and a 900 bp product at 56-60°C annealing temperatures as seen in Fig 47.

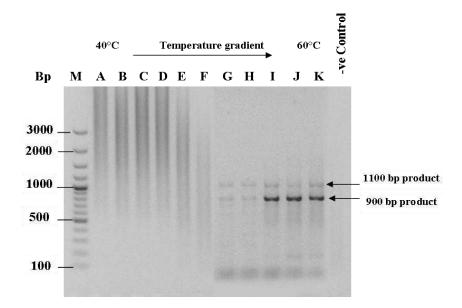


Fig 47. PCR using KAPA HiFi PCR kit using primer pair 5a and 5b Lane M: 100 bp ladder plus (Fermentas #SM0321); Lane A-K Temperature Gradient PCR (40-60°C annealing temperature) with primer pair 5a and 5b using KAPA HiFi PCR kit (Peqlab # 07-KK2100-01) and GC buffer. Negative control was PCR without any template DNA.

The PCR product of approximately 1 kbp size was excised from the gel, purified by gel extraction and directly sequenced.

Nucleotide sequence of 1014 bp product amplified with primer pair 5a and 5b.

1	NAGAGGTNCTCAGTCCACGTCGATCATCATGACCTCCTGCCCAGCTGGTGGATGNGCTGG
61	GACAGTGGTCGGTGGCGCCGGGCTCCGGGATGGATGGCGCGTGAAGCTCNTGGACGAAGAC
121	ACCCGCTGGTACTTGAGCGCGNGTNGATCCAAGCTTCGAGAGGACGTCCGCTGCAACGTT
181	GTTGTCGCGGACGATGTGATGGAACTCGAGACCATAGAANTTGTTCTCGAGCTTGCGGAC
241	TTCTAGGCAGTAGGCGTCCATGTTCTCCTTGTTGCGGTCCCAGGACTTGTTGACTTGGTT
301	GATGACCACTGCGGAGTCGCCGTAGACTAGTAGCCGCTTGATGCCCAGTGAAGCCGCGAG
361	GCGGAGCCCGTGTAGGAGAGCTTCGTACTCGGCTTCGTTGTTTGAGACCTTCCAGAAGAT
421	CTGCAGGACGTACTTGAGTTGTTCGCCCGTTGGAGAGATCAGGAGTACCCCTGCNCCTGC
481	GCCCTCGAGGTTGAGTGAGCCGTCAAAGTACATCACCCAATGCTCTGGTCGCACGGTGGG
541	AGTAGGTAGCTGNTTCTCCCGCCACTCTGCCATGAAGTCGACTAGTGCNTGCGACTTGAT
601	GGCTGTGCGTGGCTTGAAGTCNATGGTGAGGGCGCCGAGNTCGACNGCCCACTTGGAGAT
661	TCTTCCAGTNGCATCTTGGTTCCTCAGGATGTCGCCGAGCGGNTAGTCNGTGACAACGGA
721	AACCNANTACTCCTGGAAGTAGTGTCGTANCTTCCNCGAGGTGATGAGNACTGCNNTACA
781	GNANCTTCTGCACNGGNTGANANCNAGCCTTGNANTCTAANAGAACTCNNTTGANNAAAN
841	NAANTGGNNNTTGACNGNNANGNNTGNCNTNTTNTTCCTTCCAANACANTGGANTANNNN
901	CCNCTGATTATNCCNACNAGTAAANCANTATNCTTTTTTAANNNNNNNNNN
961	ΝΝΤΝΝΝΝΝΝΝΝΝΝΝΝΤΝΝΝΝΝΝΝΝΝΝΝΝΝΝΝΝΝΝΝΝΝΝΝ

Fig 48. Nucleotide sequence of 1014 bp product amplified with primer pair 5a and 5b using KAPA HiFi PCR kit (Peqlab # 07-KK2100-01) and GC buffer.

This 1014 bp fragment shared homology with hypothetical protein from seedlings of *Pennisetum glaucum* exposed to drought stress (NCBI accession number gi|32277246|gb|CD726399).

The primer pair 6a and 6b amplified two products namely 650 bp product at annealing temperature of 55-58°C annealing temperature and 7650 bp product at 60°C annealing temperature as seen in the Fig 49. No amplification was seen beyond 60°C.

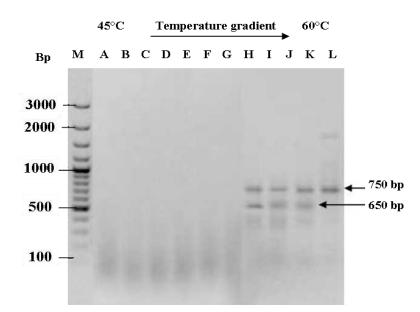


Fig 49. PCR using KAPA HiFi PCR kit using primer pair 6a and 6b Lane M: 100 bp ladder plus (Fermentas #SM0321); Lane A-L: Temperature Gradient PCR (40-60°C annealing temperature) with primer pair 6a and 6b using KAPA HiFi PCR kit (Peqlab # 07-KK2100-01) and GC buffer.

Both the fragments were sequenced directly without cloning into a vector as several efforts to clone these fragments into a plasmid and re isolation of plasmids containing inserts from the transformed cells were unsuccessful. Because of direct sequencing using the primers used for amplification, the primers used are not found in the sequence, moreover the length of the sequences are slightly shorter than the size of the amplified products.

Nucleotide sequence of approximately 650 bp product amplified by the primer pair 6a and 6b.

- 1 CGACANAAGNTTGCCTCCAGNTCACGATCAATCATCATGAACCTCCTGCCCAGCTGGNGG
- 61 ATGNGCTGGNTACAGTGGTCGGAGGCGCCGGCTCCGGGATGGATGGCGCGTGAAGCCTCG
- 121 TGGACGAAGACACCCGCTTGNTACTTGAGCGCGAGTGGATCCAATCCTTCNAGAGGACGT
- 181 CCGCTGCAACGATTGTTGTCGCGGACGATGTGATGGAACTCGAGACCNTAGAANTTGTTC
- 241 TCGAGCTTGCGGACTTCTAGGCAGTAGGCGTCCATGTNCTCCTTGTTGCGGTCCCANGAC
- 301 TTGTTGACTTGGTTGATGACCACTGCNGAGTCGCCGTANACTAGTAGCCGCTTGATGCCC
- 361 AGTGAAGCCGCGAGGCGGANCCCGTGTAGGAGAGCTTCNNTACTCGGCTTCNTTGTTTGA
- 421 GACCTTCCANAAGATCTGCANGACGTACTTGAGTTGTTCGCCCGTTGGAGAGAGCAGGAG
- 481 TACCCCTGCNCTTTGCNCCCTCGAGGTTTGAGTGAGCCGTCGAAGTACANCACCCANTGC
- 601 NNNNNNNNNNN

Fig 50. Nucleotide sequence of approximately 612 bp product amplified by the primer pair 6a and 6b.

The 650 bp product amplified with primer pair 6a and 6b showed homology to hypothetical protein from seedlings of *Pennisetum glaucum* exposed to drought stress (NCBI accession number gi|32277246|gb|CD726399).

Nucleotide sequence of approximately 750 bp product amplified by the primer pair 6a and 6b.

Fig 51. Nucleotide sequence of approximately 750 bp product amplified by the primer pair 6a and 6b.

This approximately 750 bp product does not share homology with any known plant proteins. As these (650 and 750 bp) PCR products were directly sequenced, few base pairs on both the ends are missing and the length of the fragments appears shorter for the same reason. The primer pair 7a and 7b amplified approximately 800 bp band and primer dimer at lower annealing temperatures, as seen in the Fig 52.

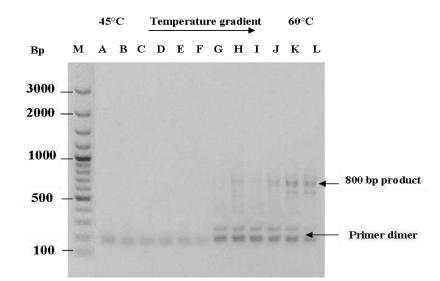


Fig 52. PCR using KAPA HiFi PCR kit using primer pair 7a and 7b Lane M: 100 bp ladder plus (Fermentas #SM0321); Lane A-L: Temperature Gradient PCR (45-60°C annealing temperature) with primer pair 7a and 7b using KAPA HiFi PCR kit.

The approximately 800 bp fragment could not be cloned to the cloning vector as transformants using this amplicon were ampicillin resistant but were devoid of plasmids. Sequencing of this amplicon directly revealed that the 861 bp product shares homology with retrotransposon protein from *Oryza sativa* (NCBI accession number: gi|77552546|gb|ABA95343. This explained the failure of cloning; since the fragment is a retrotransposon, the fragment was incorporated into the genome of *E. coli* cells along with the vector. Therefore the *E. coli* cells showed ampicillin resistant though they seemed devoid of plasmids. Plasmid along with the insert was integrated into the genome of *E. coli* making them ampicillin resistant.

Nucleotide sequence of approximately 861 bp product amplified by the primer pair 7a and 7b.

Fig 53. Nucleotide sequence of approximately 861 bp product amplified by the primer pair 7a and 7b.

3.12.2 ii) Cloning of PCR products

KAPA HiFi Polymerase generates blunt end products. The major bands from these PCR reactions were purified by gel extraction. The purified bands were cloned to CloneJet cloning vector. Electro competent *E. coli* cells were transformed by electroshock and the transformants were grown on SOC medium for 60 min at 37°C. The cells were then plated on LB agar plates containing ampicillin. The transformants were picked and grown on LB liquid medium overnight at 37°C. The cells were harvested and subjected to HB lysis to isolate the plasmids. Strangely ampicillin resistant colonies did not contain any plasmid; some colonies contained plasmid but colony PCR of these colonies did not give any product, moreover these plasmids were around 6 kbps in size (size of CloneJet cloning vector is ~3 kbps) as seen in the Fig 54.

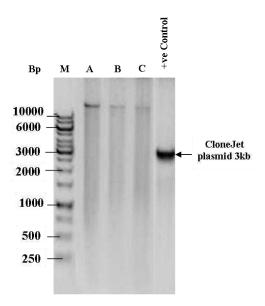


Fig 54. Plasmid isolation from transformed colonies-Ampicillin resistant colonies devoid of plasmid. Lane M: 1 Kbp DNA ruler Lane A, B and C: Transformants containing no plasmids, Positive Control: CloneJet plasmid (3 kbp).

Electro transformation was repeated with electro competent DH5 α , NM522 and XLBlue-1 strains of *E. coli* cells. Heat shock transformation was also performed with the above mentioned ultra competent cells of *E coli* strains. But was it not possible to isolate plasmid from the transformants.

This lead to the conclusion that the transformants contain the ampicillin resistant gene from CloneJet cloning vector integrated into *E. coli* genome. This is one explanation for the formation of ampicillin resistant colonies without plasmid. The colonies with plasmid but showing no amplification of the insert on colony PCR were grown and their plasmid was isolated. The plasmids were linearised to check for the presence of insert. But it was observed that these were just self ligated plasmids with no insert.

The primer pair 8a and 8b gave only a primer dimer of approximately 200 bp as seen in the Fig 54 below. No amplification was seen beyond 60°C. No amplification was seen beyond 60°C. This concluded that the primer combination FL_Fwd+Rev_594, and FL_fwd+Rev_667

generated several nonspecific products even at higher annealing temperature with KAPA HiFi polymerase. Therefore the primer FL-Fwd 92 was not used for further amplifications.

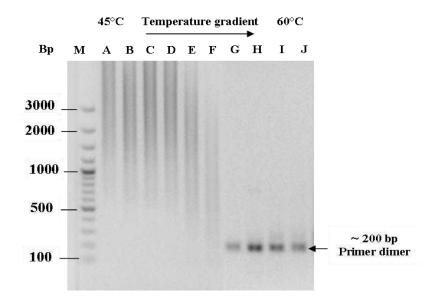


Fig 55. PCR using KAPA HiFi PCR kit using primer pair 8a and 8b showing primer dimer formation. Lane M: 100 bp ladder plus (Fermentas #SM0321) Lane A-J: Temperature Gradient PCR (45-60 °C annealing temperature) with primer pair 8a and 8b using KAPA HiFi PCR kit (Peqlab # 07-KK2100-01) and GC buffer.

3.13 Inverse PCR and adaptor ligation-mediated genome walking in pearl millet genome to amplify unknown flanking regions of pearl millet chitinase and tlp gene.

Large genome size and multiploidy in plants is a big challenge in case of PCR-based genome walking in plants. To gain high sensitivity in ligation-mediated -PCR applications, it is important that nearly 100% of all genomic DNA fragments resulting from the initial restriction digest have the adaptor attached to both ends. This enlarges the pool of the desired PCR template. Nevertheless, this cannot be ensured while amplifying unknown flanking regions of a gene because of the lack of nucleotide sequence data that does not allow spotting of restriction site of the enzyme (used to construct genomic DNA libraries) on the gene of interest. This could lead to failure of the technique due to two possible reasons. Firstly, the distance from the primer to the restriction site is greater than the capability of the genome walking system (~6 kb) or the target gene might have restriction site just outside the known sequence separating the unknown flanking region of the gene and thereby not leaving any good length of unknown sequence to be walked by the primer. Or in case of multiploid plants with large genomes, probability of adaptor ligation to the target DNA is highly reduced. Previous studies (Farrelly et al., 1995; Hoelzel and Green, 1992) have explained the failure of PCRs in large genomes with two most possible reasons, the first being a reduction in target DNA relative to the total content of template DNA in a single PCR serves to reduce amplification efficiency. As genome sizes increase, this serves to dilute the proportion of available target DNA in a given volume of template DNA (Farrelly et al., (1995); because typically, template concentration is considered in terms of total amount of genomic DNA (Hoelzel and Green, 1992). Secondly, as genome size

increases, the number of regions complementary to any 20-bp region (the average size of primers) also increases. A larger genome would then increase the amount of nonspecific binding of primers, a concurrent diminishing of the primer pool available for PCR (Garner, 2002). If genome size has a negative effect on amplification success at a single locus then, by extension, the success rate of primer sets tested on organisms with large genomes should be lower than the success rate of primer sets tested on organisms with small genomes. Nonetheless, in this study many pairs of primers were designed considering the partial length of the gene and no specific products were observed with any of the primers combinations used. Though increasing the length of primers would improve the specificity, longer primers could not be designed due to high GC content of the genes (482 bp pearl millet chitinase 61% - GC content and 422 bp pearl millet tlp 69% - GC content). Higher GC content of the primers is not recommended for long distance PCRs and high GC content lead to poor results with normal PCRs in amplification of pearl millet *chitinase* and *tlp* genes in this study as well. This explains that the available sequence data on pearl millet *chitinase* and *tlp* need to be enriched in order to employ techniques like adaptor ligation mediated genome walking successfully. The results of inverse PCR and adaptor ligation mediated genome walking in pearl millet genome to amplify unknown flanking regions of pearl millet is therefore included under appendix 2.

3.14 Amplification of *actin* (housekeeping) gene.

In order to study the gene expression levels, a house keeping gene which serves as control was required. Pearl millet *actin* was used in the present study as control. As the nucleotide sequence of pearl millet *actin* was not available in the database, *actin* gene (partial length) was isolated from pearl millet and sequenced. The primer sequence to amplify pearl millet *actin* was obtained from the work of van den Berg and coworkers (2004) and is summerised in the table 20.

Table 20. Primers to amplify pearl millet *actin* (van den Berg *et al.,* 2004).

Primer	Primer sequence	Annealing temperature
Pm_act_Fwd	5'-ACCGAAGCCCCTCTTAACCC-3'	60°C
Pm_act_Rev	5'-GTATGGCTGACACCATCACC-3'	60°C

The primer pair Pm_act_Fwd and Pm_act_Rev amplified a 267 bp product. The amplicon was blunt ended product as proof reading polymerase was used. Product of the PCR reaction was separated on 1.5% agarose gel (section 2.11.3 section) and stained with EtBr and visualized under UV imager as seen in fig 56.

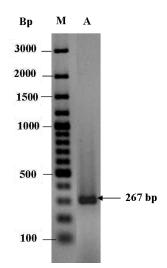


Fig 56. Amplification of pearl millet *actin* (partial length 267 bp). Lane M: 100 bp ladder plus (Fermentas # SM0321), Lane A: Pearl millet *actin* 267 bp.

The 267 bp band was excised from the gel and purified using QIAEX II Gel Extraction Kit (Qiagen # 20021) (section 2.13.3 of materials and methods) and cloned into CloneJet blunt end cloning vector (Fermentas # K1231) (section 2.14.2 of materials and methods). Ultra competent *E. coli* cells of (XL-Blue1 strain) were transformed by heat shock (section 2.13.4. of materials and methods).

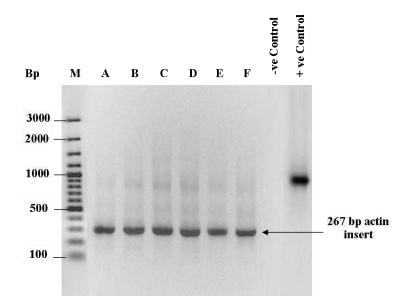


Fig 57. Colony PCR with CloneJet primers (Fermentas # K1231) to screen the transformants.

Lane M: 100 bp ladder plus (Fermentas # SM0321), Lane A-F: transformants containing pearl millet *act* (267 bp) insert amplified with cloneJet forward and reverse primer from Fermentas, Negative control without any template DNA; Positive control with 967 bp insert (component of the CloneJet blunt end cloning kit used).

The transformants were allowed to multiply on SOC medium without any antibiotics for 60 min at 37°C. The cells were then plated out on Amp¹⁰⁰ LB agar plates (section 2.15.2 of materials and methods). The colonies were grown overnight at 37°C and screened by colony PCR (section 2.12.3. of materials and methods). Result of colony PCR showing positive clones is illustrated in Fig 57.

The transformants containing the insert were cultured overnight in LB medium. Plasmid DNA was extracted from the transformants using GeneJET plasmid mini prep kit (section 2.16.2 of materials and methods) and plasmids containing inserts were selected and sent for sequencing (Sequence Lab, Göttingen, Germany). Nucleotide sequence of 267 bp Pearl millet *actin* fragment is given in Fig 58.

Nucleotide sequence of 267 bp Pearl millet *actin* amplified by the primer pair Pm_act_Fwd and Pm_act_Rev.

- 1 CTCGAGTTTTTCAGCAGATGTATGGCTGACACCATCACCAGAGTCGAGCACAATACCTGC
- 61 AGGAAAAATATTTCTCACTTGCACTGCAGGTTGAGTATTGACATGAAAAAGAGGCTCTCA
- 121 TCATAGTGATCATACCAGTTGTTCGACCACTAGCGTACAGGGAAAGAACAGCCTGGATGG
- 181 CAACATACATTGCTGGGCAGTTGAATGTCTCGAACATGATCTGGGTCATCTTCTCCCTGT
- 241 TTGCCTTTGGGTTAAGAGGGGCTTCGGT

Fig 58. Nucleotide sequence of pearl millet actin (267 bp partial length).

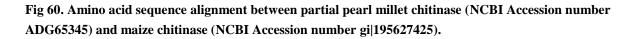
The product was subjected and homology search of the nucleotide sequence showed homology to maize *actin* (NCBI accession number: gi|1498383|gb|U60508.1|ZMU60508).

Nucleotide sequence alignment of pearl millet *actin* (267 bp-partial length) with maize actin (NCBI accession number: ZMU60508) with which it shares homology.

```
Z. mays
       380 ACCGAGGCTCCTCTGAACCCCAAGGCAAACAGGGAGAAGATGACCCAGATTATGTTCGAG
                                                        439
          P.glaucum 268 ACCGAAGCCCCTCTTAACCCAAAGGCAAACAGGGAGAAGATGACCCAGATCATGTTCGAG
                                                        209
Z. mays
       440 ACATTCAACTGCCCAGCAATGTATGTGGCCATCCAGGCTGTTCTTTCCCTGTACGCCAGT
                                                        499
          P.glaucum 208 ACATTCAACTGCCCAGCAATGTATGTTGCCATCCAGGCTGTTCTTTCCCTGTACGCTAGT
                                                        149
Z. mays
       500 GGTCGAACAACGGGTATG-TTACT-GCATTAAA---CCTGTTTCATATCAGCATTCGAAT
                                                        554
          P.glaucum 148 GGTCGAACAACTGGTATGATCACTATGATGAGAGCCTCTTTTTCATGTCAATACTCAACC
                                                        89
Z. mays
       555 AATAGTGTAGTGAGTGACAGGAATCTTT-CTGCAGGTATTGTGCTCGACTCTGGTGATGG
                                                        613
               P.glaucum 88 TGCAGTGCA---AGTGAGAAATATTTTTCCTGCAGGTATTGTGCTCGACTCTGGTGATGG
                                                        32
Z. mays
       614 TGTGAGCCACAC
                    625
          P.glaucum 31 TGTCAGCCATAC
                    20
```

Fig 59. Nucleotide sequence alignment of pearl millet (Pennisetum glaucum) *actin* (267 bp-partial length) with maize actin (NCBI accession number: ZMU60508) with which it shares homology.

3.15 Bioinformatics.


Different bioinformatics tools were used in this study for Primer designing and sequence analysis. The Bioinformatics tools used include DNASTAR, Clonemanger and Primer packages for primer designing. NCBI database (http://www.ncbi.nlm.nih.gov) was used for homology search and detection of vector contamination. Protein similarity among several plant species was analysed by multiple alignment with ClustalW (http://www.ebi.ac.uk/Tools/msa/clustalw2). To predict the signal peptide cleavage site PSORT program (http://psort.ims.u-tokyo.ac.jp/form.html) was used. To find out the restriction sites NEB cutter 2 from New England Biolabs (http://tools.neb.com/NEBcutter2) was used.

3.15.1 Sequence evaluation of Chitinase.

The 482 bp sequence was subjected to homology search and it was observed to share homology with Maize *chitinase* (NCBI Accession number: gi|195627425). It was also observed that the pearl millet *chitinase* gene is interrupted by a 107 bp intron at 241 bp position to 348 bp position. The obtained nucleotide sequence was translated into a partial amino acid sequence that shares homology to the chitinase from Maize (NCBI Accession number: gi|195627425). The sequence alignment revealed the homology between 73 to aa 189 of the maize chitinase (Fig 60).

Amino acid sequence alignment of pearl millet *chitinase* (114 aa, gi|195627425) with maize endochitinase (NCBI accession number: gi|195627425) with which it shares homology.

Z.mays MANAPRTLAVLALGLALLCAAAGPAAAQNCGCQPNFCCSKFGYCGTTDDYCGDGCQSGPC 60 P.glaucum -----Z.mays RSGGGGGGGGGGGGGGGANVANVVTDAFFNGIKNQAGSGCEGKNFYTRSAFLSAVNKYPGFAHG 120 P.glaucum ------ANVASVVTDAFFNGIKNQAGGGCEGRNFYTRSAFLEAANKYSGXAHG 47 Z.mays GTEVEGKREIAAFFAHVTHETGRFCYISEINKSNAYCDASNRQWPCAAGQKYYGRGPLQI 180 P.glaucum GTEVEGKREIAAFFAHVTHETGHFCYISEINKNNAYCS-SNAOWPCAAGKKYYGRGPLOI 106 SWNYNYGPAGRDIGFNGLADPNRVAQDAVIAFKTALWFWMNNVHRVMPQGFGATIRAING 240 Z.mays P.glaucum SWNYNYGP----- 114 ******* Z.mavs ALECNGNNPAOMNARVGYYKOYCOOLRVDPGPNLTC 276 P.glaucum -----

The pearl millet chitinase has 90% identity and 94% similarity to the chitinase from maize and belongs to the class I chitinase which is a member of the lysozyme like super family. Since the high homology between maize and pearl millet chitinase the further sequence characterization was performed with the chitinase from maize. The latter revealed the presence of a signal peptide sequence that is cleaved between aa 27 and 28. After cleavage of the signal sequence the mature protein consists of 209 aa and encodes for a protein with a calculated molecular mass of 26.48 kDa and calculated isoelectric of point of 8.60.

3.15.2 Sequence evaluation TLP.

The 422 bp sequence was subjected to homology search and it was observed to share homology with *Sorghum bicolor* similar to thaumatin like protein (NCBI Accession number: gi|242038635). The obtained nucleotide sequence was translated into a partial amino acid sequence that shares homology to the hypothetical protein (231 aa) from *Sorghum bicolor* (similar to thaumatin like protein NCBI Accession number: gi|242038635). The sequence alignment revealed the homology between 111-210 aa of the *Sorghum bicolor* TLP (see Fig 61).

Amino acid sequence alignment of pearl millet TLP (149 aa) with *Sorghum bicolor* TLP (NCBI accession number: gi 242038635) with which it shares homology.

Fig 61. Amino acid sequence alignment between partial pearl millet TLP (NCBI Accession number: XP_002466712) and maize chitinase (NCBI Accession number gi|242038635).

The pearl millet TLP belongs to family of Thaumatin like protein which is a member of the lysozyme like super family.

Since the high homology between maize and pearl millet chitinase the further sequence characterization was performed with the TLP from *Sorghum bicolor* (NCBI Accession number: gi|242038635). The latter revealed the presence of a signal peptide sequence that is cleaved between amino acid 22 and 23. After cleavage of the signal sequence the mature protein consists of 231 amino acid and encodes for a protein with a calculated molecular mass of 24.54 kDa and calculated isoelectric of point 4.36.

3.15.3 Multiple sequence alignment of amino acid sequence of class I chitinase from different plant species and construction of phylogenetic tree.

3.15.3 i) Multiple sequence alignment of amino acid sequences of Class I chitinases

Multiple sequence alignment of chitinase from different plant species revealed that pearl millet chitinase shares homology with other plant chitinases belonging to 25 different (monocotyledonous as well as dicotyledonous) plant species considered for comparison (see Fig 62). Class I chitinases are composed of three domains: a Cys rich chitin-binding domain, a Prorich hinge region, and a highly conserved catalytic domain. Of interest are the residues

important in catalysis or implicated in maintaining the active site geometry which include active site residues Y of the NYNYG motif, the second N of the NYNY motif, the first T of the SHETTGG motif, the second G and the Q of the GRGPIQL motif (Verburg *et al.*, 1992). Grey shaded boxes indicate conserved amino acid residue and red boxes indicate the position of conserved catalytic domains and dashes denote spaces required for optimal alignment (see Fig 61). Class I chitinases have an N-terminal cysteine-rich, chitin-binding domain which is separated from the catalytic domain by a proline and glycine-rich hinge region. Structural analysis reveals that Class I chitinases (belonging to Glycoside hydrolase family 19) are similar to several lysozymes including the one from T4-phage.

NCBI Accession number of sequences considered for multiple sequence alignment are: *Arabidopsis thaliana* gil2597826, *Brassica rapa* (Chinese cabbage) gil116267545, *Capsicum annuum* (Chilly) gil222159963, *Cicer arieti*num (Chickpea) gil3892724, *Citrus sinensis* (Orange) gil1220144, *Daucus carota* (Carrot) gil1549331, *Glycine max* (Soya bean) gil255631536, *Gossypium hirsutum* (Cotton) gil1729760, *Hevea brasiliensis* (Rubber tree) gil14575525, *Hordeum vulgare* gil18972, *Linum usitatissimum* (Linseed/Fax) gil76056895, *Malus domestica* (apple) gil20149280, *Mangifera indica* (mango) gil189014948, *Musa accuminata* (Banana) gil17932712, *Nicotiana tabacam* (Tobacco) gil121663827, *Phaseolus vulgaris* (Common beans) gil52548196, *Prunus dulcis* (Almond) gil148807189, *Pseudotsuga menziesii* (Douglas-fir) gil227937465 *Pennisetum glaucum* (Pearl millet) gil296011301, *Sacccharum Saccharum officinarum* (Sugar cane) gil15213848, *Sorghum bicolor* gil242076344, *Tripsacum dactyloides* (Gama grass) gil48093316, *Triticum aestivum* (Wheat) gil4741842, *Vitis vinifera* (Grape wine) gil2306813.

Decul millet		
Pearl millet		E /
Gama grass Maize	MANAPRILAVLALGLALLCAAGPPAAAQNCGCQPNFCCSKYGYCGTSDEYCGDG	54
	LVALGLALVCAAG-PAAAQNCGCQPNYCCSKFGYCGTTDDYCGDG	
Sugar Sorghum	MASSPTILTVLALGLLALLCAVGPAAAQNCGCQPDFCCSQYGYCGQTSEYCGTG	
Rice		
	MANSPTPTMLAFLALGLALLLSATGQASAQNCGCQSNMCCSKWGYCGTGKDYCGDG MAKSPMAILALGLAAVVLSGAGLASGDP	
Wheat	MAKSPMAILALGLAAVVLSGAGLASGDP	28
Linseed		E 1
2	MALTKLSLVLFLCFLGLYSETVKSQNCGCAPNLCCSQFGYCGSTDAYCGTG	
Mango		
Grape wine	MAAKLLTVLLVGALFGAAVAQNCGCASGLCCSKYGYRGTGSDYCGDG	
Soya	MSKLLLIRVAGFVATFVTMVMMMVPKNVSAQNIG	34
Almond		
Arabidopsis	MLTPTISKSISLVTILLVLQAFSNTTKAQNCGCSSELCCSQFGFCGNTSDYCGVG	
Tobacco	MNFSSRKQFIFLIA-LTIVLVVVPRTILAQNCGCAESLCCSKWGFCGTGNDFCGQG	
Carrot	MKTSFATKFIFLIFIAAPLVSAQNCNCAAGLCCSKYGYCGTTSDYCGEG	
Douglas-fir	MGKTGGEKWVMGLVVVLLLVGVSVNAQNCGCASGLCCSKYGYCGTTSAYCGTG	53
Barley		
Cotton	MKFLALMVVLILASALRASADIS	
Banana	MPRAAGIRHEVIFTLASSLGAFAEQCGRQAGGALCPGGLCCSQFGWCGNTDPYCGKD	
Rubber	EQCGRQAGGALCPGGLCCSQYGWCANTPEYCGSG	
Beans	MKKNRMMIMICSVGVVWMLLVGGSYGEQCGRQAGGALCPGGNCCSQFGWCGSTTDYCGKD	
Chilly	MRLSEFSFFSLLFAVLLLAVSAEQCGSQAGGALCAAGLCCSKFGWCGNTNDYCGAG	56
Apple		
Chickpea	MKMKLAIQFPILIVIVLVGWCWAEQCGKQAGGALCPGGLCCSKFGWCGSTSDYCGDG	
Orange	MRLIGSLLIFSLVLSFVLGGSAQNCGSGVVYGGRDTGHGTHG	42
		~ ~
Pearl millet	NVASVVTDAFFNGIKNQAGGG-CEGRN-FYT	
Gama grass	CRSGPCHSGGGGGGGGGGGGGGGGGGGANVANVVTDAFFNGIKNQAGSG-CEGKN-FYT	
Maize	SGGANVANVVTDAFFNGIKNQAGSG-CEGKN-FYT	
Sugar	CQSGPCRSGGGASSGGGNVASVVTDAFFNGIKNQAGNG-CEGKN-FYT	
Sorghum	CRSGPCTGTGSGGSSGSGSGANVGNVVTDAFFNGIKNQAGSG-CEGSN-FYS	
Rice	CRSGPCYGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
Wheat	VESVVTDAFFDGIKSQAADGGCPGKS-F <mark>Y</mark> T	57
Linseed		
-	······································	99
Mango	CKGGPCTSTPSTPSPTPTGGGSVASIVTADFFDGIKNQAAAS-CAGKS-FYT	
Grape wine	CQSGPCDSGSGSGSSVSDIVTQAFFDGIINQAASS-CAGKN-FYT	
Soya	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	61
Almond		
Arabidopsis	CQQGPCF-APPPANGVSVAEIVTQEFFNGIISQAASS-CAGNR-FYS	
Tobacco	CQGGPCFSASLSSNGGSVADVVSNAFFNGITDQAAST-CEGKG-FYT	
Carrot	CQAGPCTNSAPSGGGNAVSVADIVTDDFFNGIISQATGD-CDGKN-FYT	
Douglas-fir	CQSGPCSSSSGGSPSGGGGSVGTIISESIFNGLAGGAASS-CEGKG-F <mark>Y</mark> T	101
Barley		
Cotton	SLISQDMFNEMLKHRNDGNCPGKG-F <mark>Y</mark> T	
Banana	-CQSQCGGSGGSGGGSGGSVGSIISSSLFEQMLKHRNDAACPGKG-F <mark>Y</mark> T	
Rubber	-CQSQCDGGGGGGEDGGIDLGSIISRSTFEEMLKHRNDAACPAKG-F <mark>Y</mark> T	
Beans	-CQSQCGGPSPAPTDLSALISRSTFDQVLKHRNDGVCPAKG-F <mark>Y</mark> T	
Chilly	NCQSQCPGDSGPTGDLGSIISNSMFDEMLKHRNDNACQGKNNF <mark>Y</mark> S	101
Apple		
Chickpea	-CQSQCGSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	
Orange	GELGKIISREMFDDLLEYRNDERCPARG-F <mark>Y</mark> T	73
orunge	····································	

Fig 62. Multiple sequence alignment of amino acid sequences of chitinase from different plant species using ClustalW2.

Pearl millet	RSAFLEAANKYSGXAHGGTEVEGKREIAAFFAHVTHETGHFCYIS 7	
Gama grass	RSAFLNAVNAYPGFAHGGTEVEGKREIAAFFAHVTHETGHFCYIS 1	
Maize	RSAFLSAVNKYPGFAHGGTEVEGKREIAAFFAHVTHETGRFCYIS 7	
Sugar	RSAFLAADSYKGFGGGSVEGKREIAAFFAHVTHETGHFCYIS 1	
Sorghum	RDAFLSAASASAYSGFAQGGSEDDGKREIAAFFAHATHETGHFCYIS 1	
Rice	RQSFLNAAHSYSGFARDRTNDDSKREIAAFFAHVTHETGHMCYIN 1	
Wheat	RQFFLDGAQANPDFGKGGTSDDGKREIAAFFAHFTHETGYMCYIE 1	
Linseed	HVTHETGSMCYIE 1	
Chinese	RDSFINAANTFPNFANSVTRREIATVFAHFTHETGHFCYIE 1	
Mango	RDGFLNAANSFPQFGSG-SADESKREIAAFFAHVTHETGHLCYTE 1 RAAFLSALNSYSGFGNDGSTDANKREIAAFFAHVTHETGHFCYIE 1	
Grape wine	RDAFLISALINSISGFGNDGSTDANKREIAAFFAHVTHETGHFCIIE I RDAFLNAHNSYNEFGRLGNQDDSKREVTAAFAHFTHETGHFCIIE 1	
Soya Almond		00
Arabidopsis	RGAFLEALDSYSRFGRVGSTDDSRREIAAFFAHVTHETGRNFCYIE 1	15
Tobacco	RANFLEALQSYPNFGTMGSTDDSKKEIAAFFAHVTHEIGKHMCFIN 1	
Carrot	RSAFLEALQSYSSFGTSGSADDSKREIAAFFAHATHETGYFCHKE 1	
Douglas-fir	YNAFIAAAGAYSGFGTTGSSDVQKRELAAFFANVMHETGGLCYIN 1	
Barley		
Cotton	YDAFIAAANSFGAFGTTGDDTTRKREIAAFLAQTSHETTGGWPTAPDGPYAWGYCYVQ 1	08
Banana	YNAFIAAANSFSGFGTTGDDATKKREIAAFLAQTSHETTGGWATAPDGPYAWGYCFVQ 1	
Rubber	YDAFISAAKAFPAFGTTGDVDTCKREIAAFFGQTSHATTGGWPTAPDGPYAWGYCYKE 1	
Beans	YDAFIAAAKAYPSFGNTGDTATRKREIAAFLGQTSHETTGGWATAPDGPYAWGYCFVR 1	
Chilly	YNAFITAAKSFPGFGTTGDTAVRKREIAAFFAQTSHETTGGWPTAPDGPYAWGYCFLR 1	
Apple		55
Chickpea	YEAFIAAAKYFPDLGNNGDTATKKREIAAFLGQTSHETTGGWSSAPDGPYAWGYCFLR 1	55
Orange	YDAFIEAAQAFPGFGNSGNETMRKREIAAFFAQTGHETTGGWPDAPGGEYAWGYCFIS 1	
•=•y•		
Pearl millet	EIN-KNNAYCS-SNAOWPCAAGKKYYGRGPLOISWNYNYGP1	14
Pearl millet Gama grass Maize	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLQISWNYNYGPAGKDIGFNGLGDPNSVA 2	
Gama grass	EIN-KNNAYCDASNKQWPCAPGQK <mark>YYG</mark> RGPL <mark>Q</mark> ISW <mark>NYNY</mark> GPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQK <mark>YYG</mark> RGPL <mark>Q</mark> ISW <mark>NYNY</mark> GPAGRDIGFNGLADPNRVA 1	06
Gama grass Maize	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1	06 35
Gama grass Maize Sugar	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2	06 35 90
Gama grass Maize Sugar Sorghum	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA 2	06 35 90 08
Gama grass Maize Sugar Sorghum Rice	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA 2	06 35 90 08 17 60
Gama grass Maize Sugar Sorghum Rice Wheat	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOITWNYNYGPAGQKLGFNGLDNPEKVA 1 EIN-KAEYCDRSRYPCAQGKRYYGRGPLOITWNYNYGPAGQANGFDGVANPDIVA 6	06 35 90 08 17 60
Gama grass Maize Sugar Sorghum Rice Wheat Linseed	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOITWNYNYGPAGQKLGFNGLDNPEKVA EINGASRDYCDRSRYPCAQGKRYYGRGPLOITWNYNYGPAGQKLGFNGLDNPEKVA EINGASRDYCDRNRQYPCAPGKGYFGRGPLOITWNYNYGPAGQSINFDGLRDPDRVA EINGASRDYCDRSR-YPCAQGKRYYGRGPLOITWNYNYGPAGQKLGFNGLDNPEKVA EINGASRDYCDRSR-YPCAQGKRYYGRGPLOITWNYNYGPAGQ-SINFDIVA EIN-KAEYCDRSR-YPCAPGKGYFGRGPIOLSWNYNYGPAGQ-SINLNLLGQPELVS	06 35 90 08 17 60 7
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOITWNYNYGPAGQKLGFNGLDNPEKVA EINGASRDYCDRSRYPCAQGKRYYGRGPLOITWNYNYGAAGQKLGFNGLDNPEKVA EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGAAGQSLNLNLLGQPELVS EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGACGQSLNLNLLGQPELVS EINGASRDYCDSNTQYPCVPGKKYYGRGPLOLTWNYNYGACGTAVGFDGLNAPETVS EINGASHNYCDSSNTQYPCVSGQNYYGRGPLOLTWNYNYGAAGNSIGFNGLSNPGIVA	06 35 90 08 17 60 7 98
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOITWNYNYGPAGQKLGFNGLDNPEKVA EINGASRDYCDRSRYPCAQGKRYYGRGPLOITWNYNYGAAGQKLGFNGLDNPEKVA EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGAAGQSLNLNLLGQPELVS EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGACGQSLNLNLLGQPELVS EINGASRDYCDSNTQYPCVPGKKYYGRGPLOLTWNYNYGACGTAVGFDGLNAPETVS EINGASHNYCDSSNTQYPCVSGQNYYGRGPLOLTWNYNYGAAGNSIGFNGLSNPGIVA	06 35 90 08 17 60 7 98 80
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOITWNYNYGPAGQNIGFDGLRDPDRVA 1 EIN-KAEYCDRSRYPCAQGKRYYGRGPLOLTWNYNYGAAGQKLGFNGLDNPEKVA 1 EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGACGQSLNLNLLGQPELVS 1 EID-KSNAYCDQSNTQYPCVPGKKYYGRGPMOLTWNYNYGACGT-AVGFDGLNAPETVS 1 EINGASHNYCDSSNTQYPCVSGQNYYGRGPLOLTWNYNYGAAGNSIGFNGLSNPGIVA 1	06 35 90 08 17 60 7 98 80 93 64
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA 1 EIN-KAEYCDRSRYPCAQGKRYYGRGPLOLTWNYNYGAAGQKLGFNGLDNPEKVA 1 EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGACGQSLNLNLLGQPELVS 1 EINGASRDYCDSSNTQYPCVPGKKYYGRGPLOLTWNYNYGACGTAVGFDGLNAPETVS 1 EINGASHNYCDSSNTQYPCVSGQNYYGRGPLOLTWNYNYGAAGNSIGFNGLSNPGIVA 1	06 35 90 08 17 60 7 98 80 93 64 3
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQSIGFDGLRDPDRVA EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA EINGASRDYCDRSRYPCAQGKRYYGRGPLOLTWNYNYGAAGQKLGFNGLDNPEKVA EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGACGQSLNLNLLGQPELVS EINGASRDYCDENNRQYPCVPGKKYYGRGPLOLTWNYNYGACGTAVGFDGLNAPETVS EINGASHNYCDSSNTQYPCVPGKKYYGRGPLOLTWNYNYGAAGNSIGFNGLSNPGIVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQSIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQSIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA EINGASGDYCDESNTEYPCAPNKAYYGRAFU	06 35 90 08 17 60 7 98 80 93 64 3 03
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOITWNYNYGPAGQNIGFDGLRDPDRVA 1 EIN-KAEYCDRSR-YPCAQGKRYYGRGPLOITWNYNYGAAGQKLGFNGLDNPEKVA 1 EIN-KAEYCDRSR-YPCAQGKRYYGRGPLOITWNYNYGAAGQ-SIGFDGVANPDIVA 6 EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGACGQ-SLNLNLLGQPELVS 1 EID-KSNAYCDQSNTQYPCVPGKKYYGRGPLOITWNYNYGAAGN-SIGFNGLSNPGIVA 1 EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA 1 	06 35 90 08 17 60 7 98 80 93 64 3 03
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA 1 EINKAEYCDRSRYPCAQGKRYYGRGPLOITWNYNYGAAGQKLGFNGLDNPEKVA 1 EIN-KAEYCDRSRYPCAQGKRYYGRGPLOITWNYNYGAAGQSIGFDGVANPDIVA 6 EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGACGQ-SLNLNLLGQPELVS 1 EID-KSNAYCDQSNTQYPCVPGKKYYGRGPIOLSWNFNYGAAGN-SIGFNGLSNPGIVA 1 EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVS 3 EIDGASKDYCDENATQYPCNPNKGYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA 2 EINGPSLDYCDENNTEYPCNPNKGYYGRGPIOLSWNFNYGPAGK-SIGFDGLNAPETVA 2 EINGPSLDYCDENNTEYPCNPNKGYYGRGPIOLSWNFNYGPAGK-SIGFDGLNAPETVA 2	06 35 90 08 17 60 7 98 93 64 3 03
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco Carrot	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA 1 EINKAEYCDRSRYPCAQGKRYYGRGPLOLTWNYNYGAAGQKLGFNGLDNPEKVA 1 EIN-KAEYCDRSRYPCAQGKRYYGRGPLOLTWNYNYGAAGQSLNLNLLGQPELVS 1 EINGASRDYCDENNRQYPCAPGKGYFGRGPIOLSWNYNYGACGQ-SLNLNLLGQPELVS 1 EINGASHNYCDSSNTQYPCVPGKKYYGRGPLOLTWNYNYGAAGN-SIGFNGLSNPGIVA 1 EINGASGDYCDESNTEYPCAPNKAYYGRGPLOLTWNYNYGAAGN-SIGFNGLSNPGIVA 1 EINGASGDYCDESNTEYPCAPNKAYYGRGPIOLSWNFNYGPAGQ-SIGFDGLNAPETVA 3 EIDGASKDYCDENATQYPCNPNKGYYGRGPIOLSWNFNYGPAGR-AIGFDGLNAPETVA 2 EINGPSLDYCDENNTEYPCNPNKGYYGRGPIOLSWNFNYGPAGR-SIGFDGLNAPETVA 2 EINGPSLDYCDENNTEYPCNPNKGYYGRGPIOLSWNFNYGPAGK-SIGFDGLNAPETVA 2	06 35 90 08 17 60 7 98 80 93 64 3 03 03 98 02
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco Carrot Douglas-fir	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOITWNYNYGAAGQKLGFNGLDNPEKVA EINGASRDYCDENNRQYPCAPGKGYFGRGPLOLTWNYNYGAAGQSLNLNLLGQPELVS EINGASRDYCDENNRQYPCAPGKGYFGRGPLOLSWNYNYGACGQSLNLNLLGQPELVS EINGASRDYCDENNRQYPCVPGKKYYGRGPMOLTWNYNYGAAGNSIGFNGLSNPGIVA EINGASHNYCDSSNTQYPCVSGQNYYGRGPLOLTWNYNYGAAGNSIGFDGLNAPETVS EINGASGDYCDESNTEYPCAPNKAYYGRGPLOLSWNFNYGPAGQSIGFDGLNAPETVA EINGASKDYCDENATQYPCNPNKGYYGRGPLOLSWNFNYGPAGTAIGFDGLNAPETVA EINGASKDYCDENATQYPCNPNKGYYGRGPLOLSWNFNYGPAGTAIGFDGLNAPETVA EINGPSLDYCDENNTEYPCNPNKGYYGRGPLOLSWNFNYGPAGKSIGFDGLNAPETVA EINGRDHNYCQ-STAEYPCNPNVNYFGRGPLOLSWNFNYGPAGKSNQFDGLNNPDIVA ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPDIVA ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG COMMAND	06 35 90 08 17 60 7 98 80 93 64 3 03 03 98 02
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco Carrot Douglas-fir Barley	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOLTWNYNYGAAGQKLGFNGLDNPEKVA EINGASRDYCDENNRQYPCAPGKGYFGRGPLOLTWNYNYGAAGQSLNLNLLGQPELVS EINGASRDYCDENNRQYPCAPGKGYFGRGPLOLTWNYNYGACGQSLNLNLLGQPELVS EINGASRDYCDENNRQYPCVPGKKYYGRGPMOLTWNYNYGAAGNSIGFNGLSNPGIVA EINGASHNYCDSSNTQYPCVSGQNYYGRGPLOLTWNYNYGAAGNSIGFDGLNAPETVS EINGASGDYCDESNTEYPCAPNKAYYGRGPLOLTWNYNYGAAGNSIGFDGLNAPETVA EINGASGDYCDENATQYPCNPNKGYYGRGPLOLSWNFNYGPAGQSIGFDGLNAPETVA EINGASKDYCDENATQYPCNPNKGYYGRGPLOLSWNFNYGPAGTAIGFDGLNAPETVA EINGPSLDYCDENNTEYPCNPNKGYYGRGPLOLSWNFNYGPAGKSNQFDGLNAPETVA EINGRDHNYCQ-STAEYPCNPNVNYFGRGPLOLSWNFNYGPAGKSNQFDGLNNPDIVA ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPDIVA ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG EINGRDHNYCQ-STAEYPCNPNVNYFGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG ERN-PPIIYCQ-SSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG ERN-PPIIYCQ-SSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG ERN-PPIIYCQ-SSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG ERN-PPIIYCQ-SSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG ERN-PPIIYCQ-SSTWPCASGKSYHGRGPLOLSWNYNYGAAGQSIGFDGLNNPEKVG ENN	06 35 90 08 17 60 7 98 80 93 64 3 03 98 02 64
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco Carrot Douglas-fir Barley Cotton	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KNNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNYGPAGQSIGFDGLGNPDAVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNYGPAGQNIGFDGLRDPDRVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOITWNYNYGAAGQKLGFNGLDNPEKVA 1 EIN-KAEYCDRSR-YPCAQGKRYYGRGPLOITWNYNYGAAGQSINLNLLGQPELVS 1 EINGASRDYCDENNRQYPCAPGKGYFGRGPLOITWNYNYGACGQ-SINLNLLGQPELVS 1 EINGASRNYCDSSNTQYPCVPGKKYYGRGPLOITWNYNYGAAGN-SIGFNGLSNPGIVA 1 EINGASHNYCDSSNTQYPCVPGKKYYGRGPLOITWNYNYGAAGN-SIGFNGLSNPGIVA 1 EINGASHNYCDSSNTQYPCVSGQNYYGRGPLOITWNYNYGAAGN-SIGFNGLSNPGIVA 1 EINGASCHYCDENNTEYPCAPNKAYYGRGPLOITWNYNGAAGN-SIGFDGLNAPETVS 3 EIDGASKDYCDENATQYPCNPNKGYYGRGPLOISWNFNYGPAGQ-SIGFDGLNAPETVA 2 EINGASKDYCDENATQYPCNPNKGYYGRGPLOISWNFNYGPAGC-SIGFDGLNAPETVA 2 EINGPSLDYCDENATQYPCNPNKGYYGRGPLOISWNFNYGPAGR-SIGFDGLNAPETVA 2 EINGRDHNYCQ-STAEYPCNPNNKYYGRGPLOISWNFNYGPAGK-SIGFDGLNNPETVA 1 ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOISWNFNYGPAGR-SIGFDGLNNPDIVA 1 ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOISWNYNYGAAGQ-SIGFDGLNNPDIVA 1 ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOISWNYNYGAAGQ-SIGFDGLNNPDIVA 1 ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOISWNYNYGAAGQ-SIGFDGLNNPDIVA 1 ERN-PPIIYCQ-SSSTWPCASGKYYGRGPLOISWNYNYGAAGQ-SIGFDGLNNPEKVG 2 	06 35 90 08 17 60 7 98 80 93 64 3 03 98 02 64
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco Carrot Douglas-fir Barley Cotton Banana	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLOISWNYNGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLOISWNYNGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLOISWNYNGPAGRDIGFNGLGDPNRVA 1 EIN-KNNAYCDSSYTQWPCAAGQKYYGRGPLOISWNYNGPAGRDIGFNGLGDPNRVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLOISWNYNGPAGQNIGFDGLRDPDRVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLOITWNYNGPAGQKLGFNGLDNPEKVA 1 EIN-KAEYCDRSRYPCAQGKRYYGRGPLOITWNYNYGAAGQKLGFNGLDNPEKVA 1 EIN-KAEYCDRSR-YPCAQGKRYYGRGPLOITWNYNYGAAGQSLNLNLLGQPELVS 1 EID-KSNAYCDQSNTQYPCVPGKKYYGRGPLOISWNYNYGACGT-AVGFDGLNAPETVS 1 EINGASHNYCDSSNTQYPCVSGQNYYGRGPLOISWNYNYGAAGN-SIGFNGLSNPGIVA 1 EINGASGYCDESNTEYPCAPNKAYYGRGPLOISWNFNYGAAGN-SIGFDGLNAPETVA 1 YGRGPLOITWNYNYGAAGN-SIGFDGLNAPETVA 2 EINGASKDYCDENATQYPCNPNKGYYGRGPIOLSWNFNYGPAGCAIGFDGLNAPETVA 2 EINGPSLDYCDENATQYPCNPNKGYYGRGPIOLSWNFNYGPAGC-SIGFDGLNAPETVA 2 EINGPSLDYCDENATQYPCNPNKGYYGRGPIOLSWNFNYGPAGC-SIGFDGLNAPETVA 2 EINGPSLDYCDENATQYPCNPNKGYYGRGPIOLSWNFNYGPAGC-SIGFDGLNAPETVA 2 EINGPSLDYCDENATQYPCNPNKGYYGRGPIOLSWNFNYGPAGC-SIGFDGLNAPETVA 1 ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOLSWNFNYGPAGC-SIGFDGLNNPDIVA 1 ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLOISWNYNYGPAGC-SIGFDGLNNPDIVA 1 EQNP-PSDYCVASS-QWPCAAGKKYYGRGPIOISFNYNYGPAGR-AIGSDLLNNPDLVA 2 ELNQ-ASSYCSPSP-AYPCAPGKKYYGRGPIOLSWNYNYGPAGR-AIGSDLLNNPDLVA 2	06 35 90 08 17 60 7 98 80 93 64 3 03 98 03 98 02 64 18
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco Carrot Douglas-fir Barley Cotton Banana Rubber	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLQISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLQISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLQISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLQISWNYNYGPAGRDIGFNGLGDPNRVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLQISWNYNYGPAGQSIGFDGLGNPDAVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLQISWNYNYGPAGQNIGFDGLRDPDRVA 1 EIN-KAEYCDRSRYPCAQGKRYYGRGPLQITWNYNYGAAGQKLGFNGLDNPEKVA 1 EIN-KAEYCDRSRYPCAQGKRYYGRGPLQITWNYNYGAAGQSIGFDGLNAPETVS 1 EINGASRDYCDENNRQYPCAPGKGYFGRGPLQITWNYNYGACGQSINLNLLGQPELVS 1 EID-KSNAYCDQSNTQYPCVPGKKYYGRGPLQITWNYNYGAAGNSIGFNGLSNPGIVA 1 EINGASHNYCDSSNTQYPCVSGQNYYGRGPLQITWNYNYGAAGN-SIGFNGLSNPGIVA 1 EINGASGDYCDESNTEYPCAPNKAYYGRGPLQITWNYNYGAAGN-SIGFDGLNAPETVA 1 	06 35 90 08 17 60 7 98 80 93 64 3 03 98 02 64 18 94
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco Carrot Douglas-fir Barley Cotton Banana Rubber Beans	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLQISWNYNYGPAGKDIGFNGLGDPNSVA EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLQISWNYNYGPAGRDIGFNGLADPNRVA EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLQISWNYNYGPAGRDIGFNGLGDPNRVA EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLQISWNYNYGPAGRDIGFNGLGDPNRVA EINGASMDYCDKNNKQWPCQPGKKYYGRGPLQISWNYNYGPAGQSIGFDGLGNPDAVA EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLQISWNYNYGPAGQNIGFDGLRDPDRVA EING-KAEYCDRSRYPCAQGKRYYGRGPLQITWNYNYGAAGQKLGFNGLDNPEKVA EINGASRDYCDENNRQYPCAPGKGYFGRGPLQITWNYNYGAAGQSIGFNGLSNPGIVA EINGASRDYCDENNRQYPCAPGKGYFGRGPLQITWNYNYGAAGQSIGFNGLSNPGIVA EINGASHNYCDSSNTQYPCVPGKKYYGRGPLQITWNYNYGAAGNSIGFNGLSNPGIVA EINGASHNYCDSSNTQYPCVSGQNYYGRGPLQITWNYNYGAAGNSIGFNGLSNPGIVA EINGASGDYCDESNTEYPCAPNKAYYGRGPLQITWNYNYGAAGNSIGFDGLNAPETVA EINGASKDYCDENATQYPCNPNKGYYGRGPLQITWNYNYGAAGNSIGFDGLNAPETVA EINGASKDYCDENATQYPCNPNKGYYGRGPLQITWNYNYGAAGN-SIGFDGLNAPETVA EINGPSLDYCDENATQYPCNPNKGYYGRGPLQISWNFNYGPAGCAIGFDGLNAPETVA EINGPSLDYCDENNTEYPCASGKNYYGRGPLQISWNFNYGPAGC-SIGFDGLNAPETVA EINGPSLDYCDENATQYPCNPNKGYYGRGPLQISWNFNYGPAGC-SIGFDGLNPDIVA EENNGPDHNYCQ-STAEYPCNPNNYFGRGPLQISWNFNYGPAGC-SIGFDGLNPDIVA EENNGPDIYCQ-SSSTWPCASGKSYHGRGPLQISWNYNYGAAGQ-SIGFDGLNPDIVA EQGN-PGDYCVPNQ-QWPCAPGKKYFGRGPLQISWNYNYGPAGE-AIKANILNDPDLVA EQNP-PSDYCVASS-QWPCAAGKKYYGRGPLQISWNYNYGPAGR-AIGSDLLNNPDLVA ELNQ-ASSYCSPSP-AYPCAPGKKYYGRGPLQISWNYYGQCGQ-ALGLDLLNNPDLVA EENN-PPSAYCSATP-QFPCAPGQQYYGRGPLQISWNYYGQCGR-AIGVDLLNKPDLVA ERN-PSAYC	06 35 90 08 17 60 7 98 80 93 64 3 03 98 02 64 18 94 16 15
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco Carrot Douglas-fir Barley Cotton Banana Rubber Beans Chilly	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLCISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLCISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLCISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLCISWNYNYGPAGQSIGFDGLGNPDAVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLCISWNYNYGPAGQNIGFDGLRDPDRVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLCITWNYNYGAAGQKLGFNGLDNPEKVA 1 EINKAEYCDRSRYPCAQGKRYYGRGPLCITWNYNYGAAGQKLGFNGLDNPEKVA 1 EIN-KAEYCDRSRYPCAQGKRYYGRGPLCITWNYNYGAAGQSIGFDGLNAPETVS 1 EID-KSNAYCDQSNTQYPCVPGKKYYGRGPLCITWNYNYGACGQSLNLNLLGQPELVS 1 EID-KSNAYCDQSNTQYPCVPGKKYYGRGPLCITWNYNYGAAGNSIGFNGLSNPGIVA 1 EINGASHNYCDSSNTQYPCVSGQNYYGRGPLCITWNYNYGAAGNSIGFNGLSNPGIVA 1 EINGASGDYCDESNTEYPCAPNKAYYGRGPLCITWNYNYGAAGNSIGFDGLNAPETVS 3 EIDGASKDYCDENATQYPCNPNKGYYGRGPLCITWNYNYGAAGNSIGFDGLNAPETVA 2 EINGPSLDYCDENNTEYPCAPNKAYYGRGPLCITWNYNYGAAGNSIGFDGLNAPETVA 2 EINGPSLDYCDENNTEYPCNPNKGYYGRGPLCITWNYNYGAAGN-SIGFDGLNAPETVA 2 EINGPSLDYCDENNTEYPCNPNKGYYGRGPLCITWNYNYGAAGN-SIGFDGLNAPETVA 2 EINGPSLDYCDENNTEYPCNSGKNYYGRGPLCITWNYNYDAGA-SNQFDGLNNPDIVA 1 ERN-PPIIYCQ-SSSTWPCASGKSYHGRGPLCITWNYNYGAAGQSIGFDGLNNPEKVG 2 	06 35 90 08 17 60 7 98 93 64 303 98 92 64 18 94 15
Gama grass Maize Sugar Sorghum Rice Wheat Linseed Chinese Mango Grape wine Soya Almond Arabidopsis Tobacco Carrot Douglas-fir Barley Cotton Banana Rubber Beans Chilly Apple	EIN-KNNAYCDASNKQWPCAPGQKYYGRGPLCISWNYNYGPAGKDIGFNGLGDPNSVA 2 EIN-KSNAYCDASNRQWPCAAGQKYYGRGPLCISWNYNYGPAGRDIGFNGLADPNRVA 1 EIN-KNNAYCDSSNRQWPCAAGQKYYGRGPLCISWNYNYGPAGRDIGFNGLGDPNRVA 1 EIN-KDNAYCDSSYTQWPCAAGQKYYGRGPLCISWNYNYGPAGRDIGFNGLGDPNRVA 2 EINGASMDYCDKNNKQWPCQPGKKYYGRGPLCISWNYNYGPAGQSIGFDGLGNPDAVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLCITWNYNYGPAGQNIGFDGLRDPDRVA 2 EKDGASQNYCDTNYPLWPCTSGKAYYGRGPLCITWNYNYGAAGQKLGFNGLDNPEKVA 1 EINKAEYCDRSRYPCAQGKRYYGRGPLCITWNYNYGAAGQKLGFNGLDNPEKVA 1 EINGASRDYCDENNRQYPCAPGKGYFGRGPICISWNYNYGAAGQSIGFDGLNAPETVS 1 EID-KSNAYCDQSNTQYPCVPGKKYYGRGPLCITWNYNYGAAGNSIGFNGLSNPGIVA 1 EINGASRDYCDESNTQYPCVSGQNYYGRGPLCITWNYNYGAAGNSIGFNGLSNPGIVA 1 EINGASHNYCDSSNTQYPCVSGQNYYGRGPICISWNFNYGPAGQSIGFDGLNAPETVA 1 	06 35 90 08 17 60 7 98 93 64 303 98 92 64 18 94 15 10

Fig 62. Multiple sequence alignment of amino acid sequences of chitinase from different plant species using ClustalW2.

Pearl millet			
Gama grass	QDVVIAFKTALWFWMKSVHQVMP	OGFGATIRAINGALEC	245
Maize	QDAVIAFKTALWFWMNNVHRVMP		
Sugar	QDAVIAFKTALWFWTNNVHRVMS	~	
Sorghum	QDAVIAFKAALWFWMNNVHGVMP	~	
Rice	QDPTISFKTALWFWMNNVHQVML		
Wheat	QDPALTFQAAFWFWMTNVHQVVP	~	
Linseed	RDPVLAWRTALWFWMTNVRAVLP		
Chinese	SNPTVAFRTGLWFWMNSVRPVLN	~	
Mango	NDPAVSFKAALWFWMTNVHSVMN		
Grape wine	TDVVTSFKTALWFWMNNVHSVLS		
Soya	NDPVVSFKTALWYWMEHARPVIN		
Almond	SDPVLAFKTALWFWITNVRPVIS		72
Arabidopsis	TDPVISFKTALWYWTNRVQPVIS	~	
Tobacco	RDAVISFKTALWYWMNNCHSLITS		
Carrot	SDAVVSFKTALWYWKVKVQSVTS		
Douglas-fir	QDATISFKTAVWFWMKNSNCHSAITG		
Barley	TDPTVSFKTAMWFWMTAQAPKPSSHAVITGQWSPSGTDRAAGI		
Cotton	KDPTISFKTGLWFWMTPQSPKPSSHDVITGQWKPSAEDTAAG		
Banana	TDATISFKTALWFWMTPOSPKPSCHDVITGRWTPSNADRAAG		
Rubber	TDRVISFKAAIWFWMTPQFPKPSCHDVITGQWSPTGHDISAG		
Beans	TDSVISFKSAL		
Chilly	TDSVISFKSAIWFWMTPQSPKPSCHDVITGRWQPSSADRAAN	RLPGFGVITNI <mark>ING</mark> GL <mark>EC</mark>	275
Apple	TDPVVSFRTAIWFWMTP		28
Chickpea	TDPVISFKTAIWFWMTPQSPKPSCHDVITGRWNPSTSDRAAG		270
Orange	TDPVLSFKSAI <mark>WFWM</mark> TAQPPKPSCHEVIIDEWKPSANDVNAG		
-			•
Pearl millet			
Gama grass	NGKNTAEMNARVGYYKQYCQQLRVDPGPNLTC		77
Maize	NGNNPAQMNARVGYYKQYCQQLRVGPGPNLTC		06
Sugar	NGNNPAQMNARVGYYKQYCQQLGVDPGPNLTC	2	61
Sorghum	NGNNPAQMNARVGYYKQYCQQFGVDPGSNLTC	2	79
Rice	NGKNPGAVNARVNYYKDYCRQFGVDPGGNLYC	2	88
Wheat	NGGNAPAMNARANYYVEYCKQFGVDPGNNLTC	2	30
Linseed			
Chinese	NGGNSGA <mark>VNARI</mark> RYYRDYCGQLGVDPGPNLSC		68
Mango	GGKQPDK <mark>VNARI</mark> GYYTDYCQK		40
Grape wine	NGGNTAA <mark>VNARV</mark> QYYKDYCSQLGVSPGDNLTC	2	64
Soya	DGANPST <mark>VQARV</mark> NYYTQYCSQLGVSPGDNLTC	2	35
Almond	DGKQPAL <mark>VQARI</mark> NYYTDYCTQLSVDPGTNLSC		04
Arabidopsis	DGANTAT <mark>VQARV</mark> RYYTDYCRQLGVDPGNNLTC	2	74
Tobacco	DGGNPQT <mark>VARRV</mark> EYYTEYCQQLGVETGDNLTC	2	76
Carrot	NSGSPDA <mark>VNSRV</mark> SLYNSYCSKFGVAPGDNQGC		
Douglas-fir	NGGNSGE <mark>VSSRV</mark> NYYNKICSQLGVDPGANASC		
Barley	GHGQDSR <mark>VADRI</mark> GFYKRYCDILGVGYGNNLDCYSQRPFA	1	08
Cotton	GKGSNPQ <mark>VEDRI</mark> GFYKRYCDILKVSYGDNLDCYNQRPFA	2	63
Banana	GKGSDAR <mark>VADRI</mark> GFYKRYCDLLGVSYGDNLDCYNQSPFT		
Rubber	GRGWDAR <mark>VEDRI</mark> GFYKRYCDMFAVGYGSNLDCYNQTPFG	-LG 2	95
Beans	GRGQDSR <mark>VQDRI</mark> GFFKRYCDLLGVGYGNNLDCYSQTPFGNSL	FLSDLVTSQ 3	27
Chilly			
1	GHGNDNR <mark>VQDRI</mark> GFYRRYCGILGVSPGDNLDCGNQRSFGNGLI	LVDIM 3	22
Apple	GHGNDNRVQDRIGFYRRYCGILGVSPGDNLDCGNQRSFGNGL	LVDIM 3	22
-	GHGNDNR <mark>VQDRI</mark> GFYRRYCGILGVSPGDNLDCGNQRSFGNGL GRGHDSR <mark>VQDRI</mark> GFYKRYCDIFGIVYGDNIDCASQTPFASSL		
Apple		SFSSLLLQSKPSTPSQ 3	28

Fig 62. Multiple sequence alignment of amino acid sequences of chitinase from different plant species using ClustalW2.

3.15.3 ii) Phylogenetic tree of amino acid sequence of chitinases from different plant species.

The phylogenetic analysis of the aligned amino acid sequence of chitinase within 25 different plant species was created using ClustalW2 tool from EMBL. The phylogenetic tree represented in Fig 63 shows three major groups based on the degree of homology of amino acid sequence. The first major group includes pearl millet, gama grass, maize, sugar cane, sorghum, rice and wheat (Monocotyledonous) along with linseed, Chinese cabbage, mango and grape wine. Interestingly pearl millet is separated from barley chitinase which falls into the second major group along with banana, cotton, rubber tree, common bean, chilly, apple chick pea and orange. The third major group consists of dicotyledonous plants like carrot, Arabidopsis thaliana, soya bean and almond along with a gymnosperm douglas-fir.

Phylogenetic tree of amino acid sequence of chitinases from different plant species.

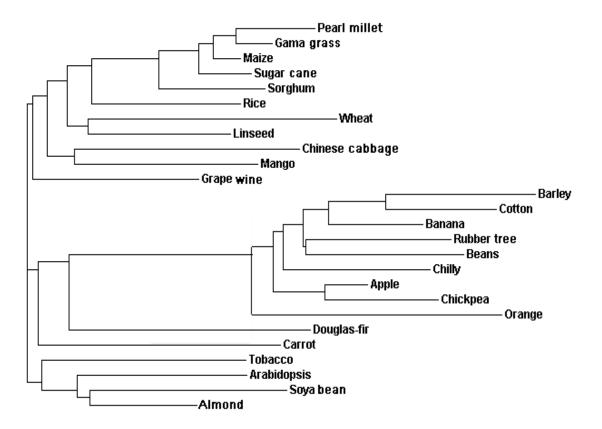


Fig 63. Phylogenetic analysis of the aligned amino acid sequence of pearl millet (*Pennisetum glaucum*) chitinase and chitinases from 25 different plant species. The horizontal lengths of branches are proportional to the relative homology between sequences. Constructed using ClustalW2.

NCBI Accession number of sequences considered for the construction of phylogenetic tree are: *Arabidopsis thaliana* (gil2597826), *Brassica rapa* (Chinese cabbage, gil116267545), *Capsicum annuum* (Chilly, gil222159963), *Cicer arieti*num (Chickpea, gil3892724), *Citrus sinensis* (Orange, gil1220144), *Daucus carota* (Carrot, gil1549331), *Glycine max* (Soya bean, gil255631536), *Gossypium hirsutum* (Cotton, gil1729760), *Hevea brasiliensis* (Rubber tree, gil14575525), *Hordeum vulgare* (Barley, gil18972), *Linum usitatissimum* (Linseed/Flax, gil76056895), *Malus domestica* (Apple, gil20149280), *Mangifera indica* (Mango, gil189014948), *Musa accuminata* (Banana, gil17932712), *Nicotiana tabacam* (Tobacco, gil121663827), *Phaseolus vulgaris* (Common beans, gil52548196), *Prunus dulcis* (Almond, gil148807189), *Pseudotsuga menziesii* (Douglas-fir, gil227937465), *Pennisetum glaucum* (Pearl millet,gil296011301), *Sacccharum officinarum* (Sugar cane, gil15213848), *Sorghum bicolor* (Sorghum, gil242076344), *Tripsacum dactyloides* (Gama grass, gil48093316), *Triticum aestivum* (Wheat, gil4741842), *Vitis vinifera* (Grape wine, gil2306813).

3.15.4 Multiple sequence alignment of amino acid sequence of TLPs from different plant species and construction of phylogenetic tree.

3.15.4 i) Multiple sequence alignment of amino acid sequence of TLPs.

Multiple sequence alignment of TLPs from different plant species revealed that pearl millet TLP shares homology with TLPs and related antifungal proteins like osmotin and zeamatin (TLP from maize) belonging to 24 different (monocotyledonous as well as dicotyledonous) plant species considered for comparison. Grey shaded boxes indicate well conserved amino acid residues and red boxes marked with asterisks indicate the position of 16 highly conserved cysteine residues which form disulphide bridges in all TLPs and dashes denote spaces required for optimal alignment (Fig 64). Of interest are the 16 conserved cysteine residues involved in the assemblage of eight disulfide linkages. These linkages not only help stabilize the molecule and allow for correct folding but also make TLPs resistant to protease degradation and may be essential for antifungal activity (Krebitz et al., 2003; Roberts and Selitrennikoff, 1990). Disruption of these disulfide bonds will result in loss of the tertiary structure of the thaumatin molecule, and loss of sweetness (Van der Wel and Loeve, 1972). The 3-D crystal structure of PR-5 proteins such as zeamatin from maize and osmotin from tobacco have been used as model templates to determine the occurrence of a negatively charged surface cleft structure on related proteins (Batalia et al., 1996; Hoffmann-Sommergruber, 2002). In TLPs this acidic cleft is comprised of five amino acids (arginine, glutamic acid, and three aspartic acid residues R, E and three Ds) and is believed to be involved in a PR-5-fungal cell interaction that permeabilizes the fungal cell membrane, disrupting the osmotic balance inside hyphal cells leading to cell rupture (Batalia et al., 1996). These sequences are indicated by yellow shaded boxes. Blue shaded boxed indicate the conserved tryptophan among solanaceous members important in carbohydrate binding activity of TLPs.

NCBI Accession number of TLPs considered for multiple sequence alignment are: *Avena sativa* (Oats, gi|1373392), *Camellia sinensis* (Tea, gi|90995395), *Capsicum annuum* (Chilly, gi|11321161), *Citrus sinensis* (Orange, gi|2854101), *Coffea Arabica* (Coffee, gi|158668024), *Gossypium hirsutum* (Cotton, gi|34538351), *Helianthus annuus* (Sunflower, gi|20385169), Hordeum vulgare (barley, gi|14164983), *Mirabilis jalapa* (gi|46949200), *Musa acuminata* (Banana, gi|2586149), *Nepenthes alata* (gi|165292440), *Nicotiana tabacum* (Tobacco, gi|1167854), *Oryza sativa* (Rice, gi|41469595), *Piper colubrinum* (gi|161375756), *Pseudotsuga menziesii* (Douglas-fir, gi|35396766), *Solanum lycopersicum* (Tomato) gi|20750097, *Solanum tuberosum* (Potato, gi|53830847), Sorghum bicolor gi|242038635, *Thaumatococcus daniellii* (gi| 121945718), *Theobroma cacao* (Cacao tree, gi|88193285), *Vitis vinifera* (Grapewine, gi|225426803), *Zea mays* (Maize, gi|226505632), *Zingiber zerumbet* (Shampoo ginger, gi|220683825).

Coffee	NNCPYTVWAAAVP 13
Piper colubrinum	MSLYNIVNMALPLLYLLPLLSLISTSAHAANFLIRNNCPYTVWAAAVP 48
Sunflower	MTTSTLPTFLLLAILFHYTNAAVFTIRNNCPYTVWAGAVP 40
Cacao tree	ANGATINIRNNCPYTVWAAAVP 22
Nepenthes alata	MNHFTKFIIFSSLLLALFAVSIDAATFVITNNCPYTVWAAASP 43
Mirabilis japlapa	TTNAITFEVKNNCPYTVWGAAVP 23
Banana	GTRSSXLSLSFFFFFFFSLLVTLSHAATFXIVNRCSYTVWAAAVP 45
Grape	MGLFKSLSISSLLLITLFFTSAHAAIFNIQNRCSYTVWAAAVP 43
Orange	
Tobacco	MEYLRSSFVFFLLAFVTCTYAATIEVRNNCPYTVWAASTPI- 41
Chilly	NNCPYTVWAASTPI- 14
Tomato	MGYLTSSFIFFFLALVTYTYAATIEVRNNCPYTVWAASTPI- 41
Arabidopsis	MANLLVSTFIFSALLLISTATAATFEILNQ <mark>C</mark> SYTV <mark>W</mark> AAASP 41
Cotton	MSYLTISQISSLLFFSVLFIS-AHAARFEIRNE <mark>C</mark> SYTV <mark>W</mark> AAASP 43
Potato	MHFLK-FSPLFVFLYFLSVTHAATFDITNRCTYPVWAAASP 40
Теа	MSFPKSLTILFPLLFTLLIPFTNAATFAVLNKCTYTVWAAASP 43
Shampoo ginger	IMATSTTAVLCFFLFLLPLSINAATFEIVNSCSDTVWAAWATTG 44
T. danielli	
Sorghum	MASV-LHLLPLVVVVFLAAAAADAATFTVTNKCQYTVWAAAVP 43
Maize	MASV-LHHL-FPLVVVLLLAAAADAATFTVTNNCPYTVWAAAVP 42
Barley	MASLPTSSVLLPILLLVLVAATADAATFTVINKCQYTVWAAAVPA- 45
Rice	MAAPAILRLLPLLLLAAAANAATFTITNK <mark>C</mark> QITV <mark>W</mark> AAAVPS- 41
Douglas-fir	MGERTIAVSFPVAATMALVLMVYLQGVGGATFTIQNQ <mark>C</mark> SFTVWAAGIPV- 49
Oats	MASSSVLQLLPLLMLAITIATTDAATITVVNKCSYTVWPGALP 43
Pearl millet	
	*
Coffee	GGGRRLDRGQTWT-INVAAGTAGARIWARTNCNFDGNGRGSCQTGDC 59
Piper colubrinum	GGGRRLDRGATWS-LNVPAGTTGARIWPRTNCNFDGSGRGRCQTGDC 94
Sunflower	GGGRQLNSGQTWS-LTVAAGTAGARIWPRTNCNFDGSGRGRCQTGDC 86
Cacao tree	GGGRRLDRGGV <mark>W</mark> N-LNVNPGTTGARV <mark>W</mark> ARTK <mark>C</mark> QFDGAGRGR <mark>C</mark> ETGD <mark>C</mark> 68
Nepenthes alata	GGGQQLNHGQTWT-INVNAGQTGGRIWARTGCSLSGSNGARCQTGDC 89
Mirabilis jalapa	GGGRQMNSGDTWT-VTANPGQTGARIWARTGCRVTGSNGLQCNTGDC 69
Banana	GGGRQLNQGQS <mark>W</mark> T-INVNAGTTGGRIWGRTG <mark>C</mark> SFDGSGRGR <mark>C</mark> QTGDC 91
Grape	GGGRRLDPRQSWS-STVNPGTTGARIWARTGCSFDGAGRGRCQTGDC 89
Orange	FDGAGRGRCQTGDC 14
Tobacco	GGGRRLDRGQTWV-INAPRGTKMARIWGRTNCNFNAAGRGTCQTGDC 87
Chilly	GGGRRLNRGQTWV-INAPRGTKMARIWGRTGCNFNAAGRGSCQTGDC 60
Tomato	GGGRRLDRGQTWV-INAPRGTKMARIWGRTNCNFNGAGRGSCQTGDC 87
A. thaliana	GGGRRLDAGQS <mark>W</mark> R-LDVAAGTKMARIWGRTNCNFDSSGRGRCQTGDC 87
Cotton	GGGRRLDPRQSWT-IDVPAGTAMARIWGRTNCNFDASGRGHCQTGDC 89
Potato	GGGRRLDLGQTWN-INVNPGTTMGRIWGRTNCNFDGSGRGKCQTGDC 86
Теа	GGGMRLDPGQSWT-VNVNPGTTQARIWGRTNCNFDANGNGQCQTGDC 89
Shampoo ginger	PQTGGGSQLKPGTVLDRQHQTPAPLGGRIWARTGCPSDGTGCQTGDC 91
T. danielli	KIWARTDCYFDDSGSGICKTGDC 23
Sorghum	GGGQQLDNGQTWS-INVPAGTTGGRVWARTGCSFDGSGNGQCQTGDC 89
Maize	GGGQQLDNGQTWS-IDVPAGTTGGRVWARTGCSFDGSGNGQCQTGDC 88
Barley	GGGQKLDAGQTWS-INVPAGTTSGRVWARTGCSFDGAGNGRCQTGDC 91
Rice	GGGQQLDPGQQWV-IDVPAGTTGGRVWARTGCSFDGSGNGRCQTGDC 87
Douglas-fir	GGGQALAQGQTWS-VEVPAGTSAGRFWGRTGCSFDASGQGSCTTGNC 95
Oats	GGGVRLDPGKSWA-LNMPAGTRGARVWPRTGCTFDASGRGHCVTGDC 89
Pearl millet	XGDC 4
	* *:*

Fig 64. Multiple sequence alignment of amino acid sequences of TLP from different plant species using ClustalW2.

Coffee Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger T.danielli Sorghum Maize Barley Rice Douglas-fir Oats Pearl millet Coffee Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A.thaliana Cotton Potato Tea Shampoo ginger

T.daniellii

Douglas-fir

Pearl millet

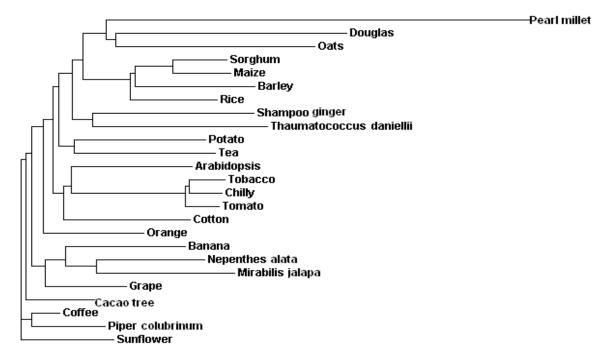
Sorghum

Maize

Oats

Barley Rice

GGVLQ<mark>C</mark>TAYGRPPNTLAEYALNQFNNLDFF<mark>D</mark>ISLV<mark>D</mark>GFNVPMDFSPTSNG 109 GGVLQ<mark>C</mark>TAYGAPPNTLAEYALNQFSNLDFF<mark>D</mark>ISLV<mark>D</mark>GFNV<mark>P</mark>MDFSPVSSG 144 NGLLQ<mark>C</mark>QNYGTPPNTLAEYALNQFNNLDFF<mark>D</mark>ISLV<mark>D</mark>GFNV<mark>P</mark>MVFRPNSNG 136 GGLLQ<mark>C</mark>QAYGAPPNTLA<mark>E</mark>YALNQFNNKDFF<mark>D</mark>ISLV<mark>D</mark>GFNV<mark>P</mark>MDFSPTSGG 118 GGLLH<mark>C</mark>QGYGSPPNTLAEYALNQYMNLDFF<mark>D</mark>MSLV<mark>D</mark>GFNV<mark>P</mark>MSFLPTSNG 139 GGVLQCTGYGQPPNTLAEYALKQFNNLDFFDISLVDGFNVPMTFLPISNG 119 GGVLSCTAYGNPPNTLAEFALNQFNNLDFFDISLVDGFNVPMDFSPTSGG 141 GGVLE<mark>C</mark>TAYGAPPNTLAEFALNQFNNLDFF<mark>D</mark>ISLVDGFNVPMAFSPTSNG 139 GGLLQCQAYGSPPNTLAEFALNQFQNLDFIDISNIDGFNVPMEFSSVSGG 64 GGVLQCTGWGKPPNTLAEYALDQFSGLDFWDISLVDGFNIPMTFAPTNPS 137 GGVLQWTGWGKPPNTLAEYALDQFSNLDFWDISLVDGFNIPMTFAPTKPS 110 GGVLH<mark>C</mark>TGWGKPPNTLAEYALDQFSNLDFWDISLVDGFNIPMTFAPTNPS 137 SGGLQCTGWGHPPNTLAEYALNQFNNLDFYDISLVDGFNIPMEFSPTSSN 137 GGLLQ<mark>C</mark>KGWGVPPNTLAEYALNQFGNMDFY<mark>D</mark>ISLV<mark>DGFNIP</mark>MVFGPTNGG 139 NGRLE<mark>C</mark>QGFGTVPNTLAEFALNQPNNLDFVDISLVDGFNIPMEFSPINGG 136 NGLLQ<mark>C</mark>QGYGKAPNTLAEFALNQPNNLDFVDISNVDGFNIPMDFSPTTAV 139 G-MLQCQGYGRAPNTLAEFSLNQNNNLDFFDISNVAGYNVGIDFSPTTGG 140 GGLLR<mark>C</mark>KRFGRPPTTLAEFSLNQYG-KDYI<mark>DISNIK</mark>GFNV<mark>P</mark>MDFSPTTRG 72 GGVLRCTQYGQPPNTLAEFGLNQYQGLDFIDISLVDGFNVPMDFLPAGDG 139 GGVLQCAQYGQAPNTLAEFGLNKFDGLDFFDISLVDGFNVPMDFLPAGDG 138 GGKLRCTQYGQAPNTLAEFGLNKYMGQDFFDISLIDGYNVPMSFVPAPGS 141 GGVLRCAAYGQPPNTLAEFALNQFSNLDFFDISLIDGFNVPMDFLPAGDG 137 GGVLN<mark>C</mark>TGAGQPPATLAEYTLNGSNNLDTY<mark>D</mark>ISLV<mark>D</mark>GFNL<mark>P</mark>LSITPSN-S 144 GGALACRVSGQQPATLAEYTLGKGGAKDFFDLSVIDGFNVPMSFQPVGGA 139 GGVLQ<mark>C</mark>TGYGRAPNTLAXVGLTSTXTSTSS<mark>T</mark>SRWW<mark>T</mark>GSTC<mark>P</mark>WTSSRRAAA 54 CT---RGIRCTADINGQCPNQLRAPGG-CNNPCTVFKTDQYCCN---SGS 152 CR---GPRACTADINGQCPNVLRAPGG-CNNPCTVFKTDQYCCN---SGS 187 CT---RGISCTADINGQCPGELRAPGG-CNNPCTVYKTDQYCCN---SGN 179 CT---RGIRCTADIIGQCPNQLKAPGG-CNNPCTVFRTDQYCCN---SGN 161 CT---KGPTCTADVNGKCPSVLKAPGG-CNNPCTVFKTNEYCCN---SGS 182 CT---RGPVCKADVNAQCPAQLRTNGG-CNNPCTVYKTDNYCCN---SGS 162 C----RGIRCAADINGQCPGALXAPGG-CXNPCTVFXTDXYCCN---SGS 183 CS---RGIRCTANIVGOCPSQLRAQGG-CNNPCTVFKTDQYCCN---SGS 182 CN---RVIRCTADIVROCPNELRVPGG-CNGPCPVFKTEEHCCN---SGK 107 GCK-CHAIHCTANINGECPRELRVPGG-CNNPCTTFGGQQYCCT---QGP 182 GGK-CHAIHCTANINGECPRALKVPGG-CNDPCTTFGGQQYCCT---QGP 155 GGK-CHAIHCTANINGECPSPLRVPGG-CNNPCTTFGGQQYCCT---QGP 182 ---CHRILCTADINGQCPNVLRAPGG-CNNPCTVFQTNQYCCTN-GQGS 181 ---CHNIRCTADINGQCPNELRAPGG-CNNPCTVFKTNEYCCTQ-GYGT 183 CR----KIRCSADINGQCPSELRAPGG-CNNPCTVFKMKEFCCTN-GPGS 180 CK----SLRCAANIVGECPAELQTPGG-CNNPCTVYKINQYCCTD-GPGT 183 CR----GIRCSANIVGECPSQLRAPGG-CNDPCTVFGTEQYCCN---NGP 182 CR----GVRCAADIVGQCPAKLKAPGGGCNDACTVFQTSEYCCT---TGK 115 SGCPKGGPRCDADVTSQCPAALKATGG-CNNPCTVFKTDEYCCTGSAANT 188 SGCPKGGPRCDADVTSOCPAALOAPGG-CDNPCTVFKTDOYCCTGSATDN 187 TGCPKGGPRCPKVITPACPNELRAAGG-CNNACTVFKEDRYCCTGSAANS 190 AGCAKGGPRCEADVAGQCPSELRAPGG-CNNACTVFKQDQYCCTGSAANN 186 SCP---TVDCSSNVTANCPTQLQVAEG-CNSACTALNTPQYCCTGDYLNN 190 ACR---GATCAADITKQCPQELKVAGG-CASACGKFGGDTYCCRGQFTDK 185 PGAPRAGRGAAPTSRGSAPPRCAPPAAATTRARCSRRTSTAARGR--RRT 102 * * * **


Fig 64. Multiple sequence alignment of amino acid sequences of TLP from different plant species using ClustalW2.

Coffee	CGPTDYSRFFKTRCPDAYSYPQDDPIT 179
Piper colubrinum	CSPTDYSRFFKTRCPDAYSYPKDDPTSTFTCPGG-TNYRVVFCP 230
Sunflower	CGPTDLSRFFKTRCPDAYSYPKDDPTSTFTCPGG-TNYDVIFCP 222
Cacao tree	CRPTDFSRFFKTRCPDAYSYPKDDQTSTFTCPGG-TNYRVVFCP 204
Nepenthes alata	CGPTDYSRYFRGLCPNAYSYPKDDATSTYTCSGG-TNYKVVFCP 225
Mirabilis jalapa	CSA 165 CSPTDYSRFF 193
Banana	
Grape	CGPTDYSRYFKTRCPDAYSYPKDDQTSTFTCPGG-TNYDVIFCP 225
Orange	CGPTKFSRFFKERCPDAYSY <mark>-</mark>
Tobacco	CGPTFFSKFFKQRCPDAYSYPQDDPTSTFTCPGGSTNYKVIFCPNGQA 230
Chilly	CGPTELSKFFRKRCPNTYSYPQDDP
Tomato	CGPTKFSRFFKQRCPNAYSYPQDDPTSLFTCPSGSTNYRVVFCP 226
A.thaliana	CSDTDYSRFFKQRCPDAYSYPQDDPTSTFTCTNTNYRVVFCPRSRL 227
Cotton	CGPTRYSRFFKDRCRDSYSYPQDDPSSTFTCPAG-SNYRVVFCPRGSP 230
Potato	CGPTDYSKFFKQRCPDAYSYPLDDPTSMFTCHAG-TNYKVVFCPGNTF 227
Теа	CGPTPLSKFFKDRCPDAYSYPQDDPTSLFTCPAG-TNYAITFCP 226
Shampoo ginger	CDPTDFSRFFKARCPDAYSYPQDDRTSTVVFTCPGG-TNYSVTFCP 227
T.daniellii	CGPTEYSRFFKRLCPDAFSYVLD <mark>K</mark> PTTVTCPGS-SNYRVTFCPTALE 161
Sorghum	CGPTDYSKFFKGLCPDAYSYPKDDATSTYTCPGG-TNYNVVFCP 231
Maize	xgptdyskffkgl <mark>c</mark> pdaysypkd <mark>d</mark> atstyt <mark>c</mark> pgg-tnynvvf <mark>c</mark> p 230
Barley	CGPTDYSRFFKGQCPDAYSYPKDDATSIFTCPGG-TNYQVIFCP 233
Rice	CGPTNYSQFFKGLCPDAYSYPKDDQTSTFTCPAG-TNYQVVFCP 229
Douglas-fir	CPATSYSEYFKGQCPQAYSYAKDDNTSTFTCPSG-ANYNIAFCT 233
Oats	CPPTNYSKFFKGKCPDAYSYAKDDQTSTFTCPVG-TNYQIVLCP 228
Pearl millet	AAAPPTTRGTQGEXPGRLQLPQGRRHXXLHLXRRXXLQG 141
	* * *
Coffee	
Piper colubrinum	
Piper colubrinum Sunflower	
Piper colubrinum Sunflower Cacao tree	
Piper colubrinum Sunflower Cacao tree Nepenthes alata	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa	
Piper colubrinum Sunflower Cacao tree Nepenthes alata	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger T.daniellii	HPNFPLEMPGSDEVAK 246 GATGSHQLPIKMVTEEN 244 HIEMVGSKSQEK 242 TPFNFFYLSRLDLTNLLRK 246
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger T.daniellii Sorghum	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger T. daniellii Sorghum Maize	
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger T.daniellii Sorghum	HPNFPLEMPGSDEVAK 246
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger T. daniellii Sorghum Maize	HPNFPLEMPGSDEVAK 246
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger T.daniellii Sorghum Maize Barley	HPNFPLEMPGSDEVAK 246
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger T. daniellii Sorghum Maize Barley Rice Douglas-fir Oats	HPNFPLEMPGSDEVAK 246
Piper colubrinum Sunflower Cacao tree Nepenthes alata Mirabilis jalapa Banana Grape Orange Tobacco Chilly Tomato A. thaliana Cotton Potato Tea Shampoo ginger T. daniellii Sorghum Maize Barley Rice Douglas-fir	HPNFPLEMPGSDEVAK 246

Fig 64. Multiple sequence alignment of amino acid sequences of TLP from different plant species using ClustalW2.

3.15.4 ii) Phylogenetic tree of amino acid sequences of TLP from different plant species.

The phylogenetic analysis of the aligned amino acid sequence of TLP within 24 different plant species was created using ClustalW2 tool from EMBL. The phylogenetic tree represented in Fig 65 shows three major groups and based on the degree of homology of amino acid sequence. The first sub group includes pearl millet, douglas-fir and oats. Interestingly pearl millet is separated from other monocotyledonous plants like sorghum, maize, barley and rice belonging to the second subgroup. The next subgroup consists of shampoo ginger and Thaumatococcus danielli. Next subgroup includes potato and tea, this is followed by the next subgroup consists of solanaceous members tobacco chilly and tomato. Orange is separately placed in the next subgroup. The next subgroup consists of banana, *Nepenthes alata* and *Mirabilis jalapa* and grapewine falling into the next minor sub group. Cacao tree is separately placed on the next subgroup. The next major sub group consists of coffee and *Piper colubrinum*. The last major group consists only of sunflower.

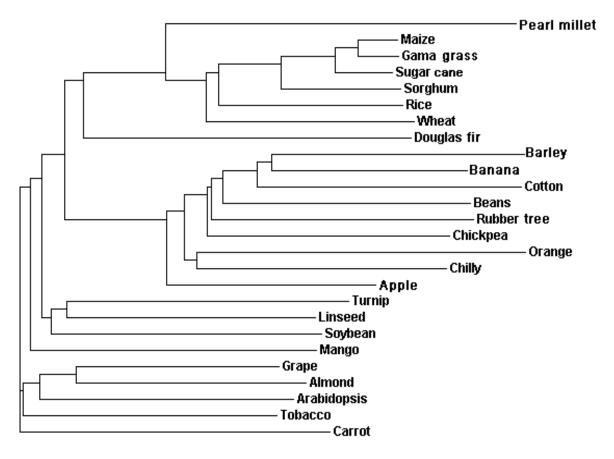

Phylogenetic tree of amino acid sequences of TLP from different plant species

Fig 65. Phylogenetic analysis of the aligned amino acid sequence of pearl millet (*Pennisetum glaucum*) TLP and TLPs from 24 different plant species. The horizontal lengths of branches are proportional to the relative homologies between sequences. Constructed using ClustalW2.

NCBI Accession number of TLPs considered for multiple sequence alignment and construction of phylogenetic tree are: *Avena sativa* (Oat, gi|1373392), *Camellia sinensis* (Tea, gi|90995395), *Capsicum annuum* (Chilly, gi|11321161), *Citrus sinensis* (Orange, gi|2854101),*Coffea Arabica* (Coffee, gi|158668024), *Gossypium hirsutum* (Cotton, gi|34538351), *Helianthus annuus* (Sunflower, gi|20385169), *Hordeum vulgare* (barley, gi|14164983), *Mirabilis jalapa* (gi|46949200), *Musa acuminata* (Banana, gi|2586149), *Nepenthes alata* (gi|165292440), *Nicotiana tabacum* (Tobacco, gi|1167854), *Oryza sativa* (Rice, gi|41469595), *Piper colubrinum* (gi|161375756), *Pseudotsuga menziesii* (Douglas-fir) gi|35396766, *Solanum lycopersicum* (Tomato, gi|20750097), *Solanum tuberosum* (Potato, gi|53830847), *Sorghum bicolor* (Sorghum, gi|242038635), *Thaumatococcus daniellii* (gi|121945718), *Theobroma cacao* (Cacao tree, gi|88193285), *Vitis vinifera* (grapewine, gi|225426803), *Zea mays* (maize, gi|226505632), *Zingiber zerumbet* (shampoo ginger, gi|220683825).

3.15.5 Phylogenetic tree of nucleotide sequences of chitinase from different plant species.

The phylogenetic analysis of the aligned amino acid sequence of chitinase within 25 different plant species was created using ClustalW2 tool from EMBL. The phylogenetic tree represented in Fig 66 shows three major groups and based on the degree of homology of nucleotide sequence. The first sub group includes pearl millet which is separated from the other monocotyledonous plants like maize, gama grass, sugar cane sorghum, rice and wheat which fall under the second subgroup along with the gymnosperm douglas fir. This indicates that though pearl millet chitinase belongs to the same major subgroup of other monocotyledonous plants it is separated from them forming a separate subgroup and it is also separated from barley which belongs to second major subgroup. The next subgroup consists barley, banana, cotton, common beans, rubber tree, chickpea, orange, chilly and apple. The next subgroup consists of turnip, linseed, soya bean and mango. The next subgroup consists of grape wine, almond, Arabidopsis and tobacco. The last major group consists only of carrot.

Phylogenetic tree of nucleotide sequences of chitinase from different plant species

Fig 66. Phylogenetic analysis of the aligned nucleotide sequence of pearl millet (*Pennisetum glaucum*) chitinase and chitinases from 25 different plant species. Constructed using ClustalW2.

NCBI Accession number of sequences considered for multiple sequence alignment are: *Arabidopsis thaliana* gi|2597826, *Brassica rapa* (Chinese cabbage) gi|116267545, *Capsicum annuum* (Chilly) gi|222159963, *Cicer arieti*num (Chickpea) gi|3892724, *Citrus sinensis* (Orange) gi|1220144, *Daucus carota* (Carrot) gi|1549331, *Glycine max* (Soya bean) gi|255631536, *Gossypium hirsutum* (Cotton) gi|1729760, *Hevea brasiliensis* (Rubber tree) gi|14575525, *Hordeum vulgare* gi|18972 (Barley), *Linum usitatissimum* (Linseed/Flax) gi|76056895, *Malus domestica* (Apple) gi|20149280, *Mangifera indica* (Mango) gi|189014948, *Musa accuminata* (Banana) gi|17932712, *Nicotiana tabacam* (Tobacco) gi|121663827, *Phaseolus vulgaris* (Common beans) gi|52548196, *Prunus dulcis* (Almond) gi|148807189, *Pseudotsuga menziesii* (Douglas-fir) gi|227937465 *Pennisetum glaucum* (Pearl millet) gi|296011301, *Sacccharum Saccharum officinarum* (Sugar cane) gi|15213848, *Sorghum bicolor* gi|242076344, *Tripsacum dactyloides* (Gama grass) gi|48093316, *Triticum aestivum* (Wheat) gi|4741842, *Vitis vinifera* (Grape wine) gi|2306813.

3.15.6 The phylogenetic tree of nucleotide sequences of TLP from different plant species.

The phylogenetic analysis of the aligned nucleotide sequences of tlps within 24 different plant species was created using ClustalW2 tool from EMBL. The phylogenetic tree represented in Fig 67 shows three major groups and based on the degree of homology of nucleotide sequence. The first sub group includes only pearl millet which is separated from the other monocotyledonous plants like sorghum, maize, rice and barley and oats belonging to the second subgroup. This indicates phylogenetic divergence of pearl millet form maize rice and sorghum. The second major subgroup includes banana, shampoo ginger *Thaumatococcus danielli*, *Piper colubrinum* and grape wine. The next subgroup consists of cacao tree and sunflower. The next subgroup consists of coffee potato and orange followed by a subgroup consisting mainly of solanaceous members tobacco, tomato and chilly along with *Arabidopsis thaliana* and cotton. The last subgroup consists of *Nepenthes alata* and *Mirabilis jalapa* and douglas fir. The last major group consists only of tea.

The phylogenetic tree of nucleotide sequences of TLP from different plant species.

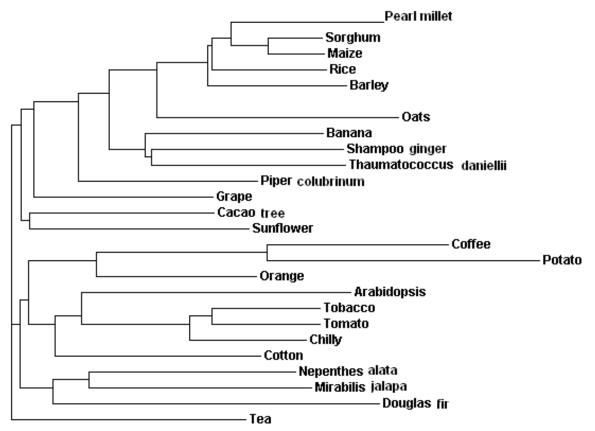


Fig 67. Multiple sequence alignment of nucleotide sequences of tlp from different plant species using ClustalW2. Constructed using ClustalW2.

NCBI Accession number of TLPs considered for multiple sequence alignment are: Avena sativa (Oats, gi|1373392), Camellia sinensis (Tea, gi|90995395), Capsicum annuum (Chilly, gi|11321161) Citrus sinensis (Orange, gi|2854101), Coffea Arabica (Coffee, gi|158668024), Gossypium hirsutum (Cotton, gi|34538351), Helianthus annuus (Sunflower, gi|20385169), Hordeum vulgare (Barley, gi|14164983), Mirabilis jalapa (gi|46949200), Musa acuminata (Banana, gi|2586149), Nepenthes alata (gi|165292440,) Nicotiana tabacum (Tobacco, gi|1167854), Oryza sativa (Rice, gi|41469595), Piper colubrinum (gi|161375756), Pseudotsuga menziesii (Douglas-fir, gi|35396766), Solanum lycopersicum (Tomato, gi|20750097), Solanum tuberosum (Potato, gi|53830847), Sorghum bicolor (Sorghum, gi|242038635), Thaumatococcus daniellii (gi| 121945718), Theobroma cacao (Cacao tree, gi|88193285), Vitis vinifera (grapewine, gi|220683825).

3.15.7 Northern Blot analysis.

In case of northern blot analysis using radioactive ³²P, total RNA extracted from downy mildew susceptible and resistant pearl millet plants at different time intervals after infection with the downy mildew pathogen *Sclerospora graminicola* was separated on agarose gel on agarose gel in different lanes. The resolved total RNA was transferred onto nylon membrane overnight hybridization with radioactive p32 labeled DNA probes was carried out (Alwine *et al.,* 1977 with modifications) as explained under section 2.18 of materials and methods. Concentration of total RNA was measured with spectrophotometer and equal amount of total RNA (10 µg/lane) was loaded onto all the lanes as seen in Fig 68.

Fig 68. Electrophoresis of total RNA from down mildew susceptible and resistant seedlings.

First and the last lane is positive control which is pearl millet chitinase 482 bp used for radioactive ^{32}P labeling. First 6 lanes show total RNA from downy mildew susceptible seedlings and the next six lanes are total RNA from downy mildew resistant seedlings harvested 0-48 hrs after inoculation with the downy mildew pathogen (10 µg of total RNA was loaded to each lane).

3.15.7 i) Northern blot analysis with radioactive ³²P labeled pearl millet chitinase probe.

Hybridization of the blots was carried out as explained under section 2.18 of materials and methods. After hybridization the blots were washed with wash buffer and sealed between thin transparent plastic sheets and kept facing the autoradiography film overnight and scanned using phosphor image (Raytest autoradiography equipment) the next day. Autoradiogram of northern blot analysis using ³²P labeled chitinase probe is seen in the Fig 69.

Northern blot analysis using radioactive ³²P labeled pearl millet *chitinase* probe.

Downy mildew susceptible						Downy mildew resistant					nt	
0h	6h	12h	18h	24h	48h	0h	6h	12h	18h	24h	48h	
								学家				

Fig 69. Northern blot analysis using radioactive ³²P labeled pearl millet chitinase (483 bp) probe. First and the last lane is positive control which is pearl millet chitinase 482 bp used for radioactive P32 labeling. First 6 lanes show total RNA from downy mildew susceptible seedlings and the next six lanes are total RNA from downy mildew resistant seedlings harvested 0-48 hrs after inoculation with the downy mildew pathogen.

As observed in the Fig 69 above the positive control showed strong signal whereas the signals from test samples were not conclusive. A very weak hybridization was observed at 55°C hybridization temperature. Hybridization carried out at 60°C did not show any signals. The experiment was repeated thrice; however, with no concrete and conclusions could be drawn from the results obtained.

3.15.7 ii) Northern blot analysis with radioactive P32 labeled pearl millet *tlp* probe.

The radioactivity from pearl millet chitinase labeled blot was stripped by incubation with the stripping solution as explained under section 2.18.8 of materials and methods and the same blot was hybridized with radioactive ³²P labeled pearl millet tlp probe. Autoradiogram of Northern blot analysis with radioactive ³²P labeled pearl millet tl*p* probe is shown in Fig 70.

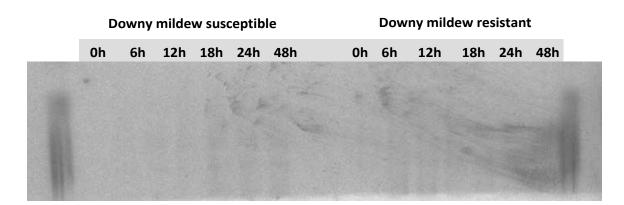
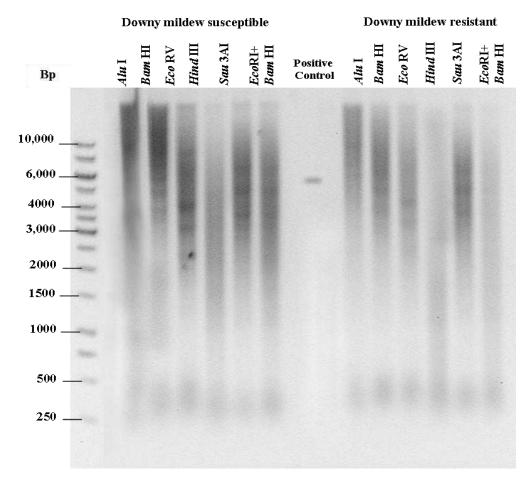


Fig 70. First and the last lane is positive control which is pearl millet *tlp* 422 bp used for radioactive ³²P labeling. First 6 lanes show total RNA from downy mildew susceptible seedlings and the next six lanes are total RNA from downy mildew resistant seedlings harvested 0-48 hrs after inoculation with the downy mildew pathogen.


Hybridization carried out at 55, 58 and 60°C did not show any strong signals as seen in Fig 69. The experiment was repeated thrice; however, with no concrete and conclusions could be drawn from the results obtained.

3.15.8 Southern blot analysis.

To study the copy number of thaumatin like protein and chitinase gene in down mildew susceptible and resistant pearl millet seedlings, southern blot analysis was carried out. Partial length gene fragments of tlp and chitinase were labeled with radioactive ³²P.

3.15.8 i) Southern blot analysis using radioactive *chitinase* probe.

Genomic DNA from downy mildew susceptible and resistant cultivars was isolated by CTAB method (Murray and Thompson, 1980 with modifications) and subjected to restriction digestion with different enzymes separately (*AluI*, *Eco*RV, *Bam*HI, *Hind*III, *Sau*3AI and *Bam*HI+*Eco*RI).

Southern blot analysis with radioactive ³²P labeled pearl millet chitinase probe

Fig 71. Southern blot analysis with radioactive P32 labeled pearl millet chitinase (482 bp). First lane is the 1 Kb Gene ruler (Fermentas # SM0311). Radioactive ³²P was used for labeling of tlp (fragment) only positive control shows hybridization with the radioactive probe The first 6 lanes are restriction digested genomic DNA samples from downy mildew susceptible pearl millet cultivar and the next six lanes are from downy mildew resistant cultivar (hybridization at 55°C overnight). The restriction digested genomic DNA was purified by phenol chloroform method and separated on agarose gel in separate lanes. Partial length fragment of pearl millet *chi* (482 bp) used as probe served as the positive control. Radioactive labeling of the *chi* probe and hybridization was carried out as explained under section 2.19 of materials and methods. As seen in the autoradiogram (Fig 71), southern blot analysis could not lead to any conclusive results as there was no specific hybridization of the radio-labeled chitinase probe. Hybridization was carried out at 3 different temperatures namely 55, 58 and 60°C. Only the positive control showed hybridization with the radio labeled probe at 55°C, at higher hybridization temperature for the *chitinase* probe is 55°C; however, nonspecific hybridization. The Experiment was repeated three times without any success.

3.15.8 ii) Southern blot analysis using ³²P labeled tlp probe.

This was done similar to southern blot analysis with chitinase but partial length pearl millet tlp (422 bp) was used as the probe. Radioactive labeling of tlp probe and hybridization was carried out at 55°C overnight as explained under section 2.19 of materials and methods.

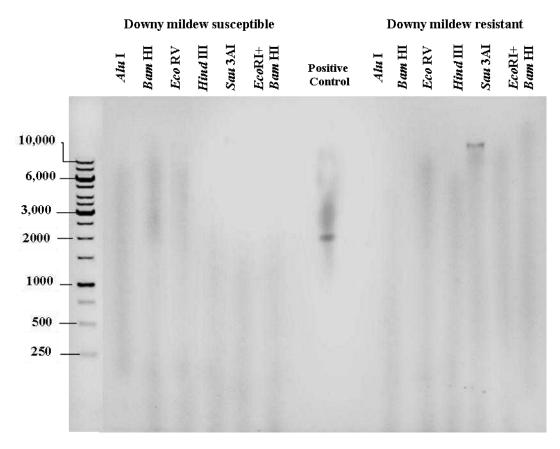


Fig 72. Southern blot analysis of the restriction digested genomic DNA from pearl millet. First lane is the 1 Kb Gene ruler (Fermentas # SM0311). Radioactive ³²P was used for labeling of tlp (fragment) only positive control shows hybridization with the radioactive probe. The first 6 lanes are restriction digested genomic DNA samples from downy mildew susceptible pearl millet cultivar and the next six lanes are from downy mildew resistant cultivar (hybridization at 60°C overnight). Partial length fragment of pearl millet tlp (422 bp) used as probe served as the positive control. After hybridization the blots were washed with wash buffer and sealed between thin transparent plastic sheets and kept facing the autoradiography film overnight and scanned using phosphor image (Raytest autoradiography equipment) the next day. Autoradiogram of southern blot analysis using ³²P labeled chitinase DNA probe is shown in the Fig 72.

However, it was not possible to draw conclusion on copy number or tlp gene based on the autoradiogram. Lower hybridization temperature up to 55°C lead to non specific labeling of the bands where all the nucleic acid material showed binding of radioactive ³²P. At 58°C hybridization temperature hybridization of only the positive control was observed. The experiment was repeated three times without any success. This could be due to large genome size leading to low copy number of target sequence (gene of interest) in comparison to non target sequence. Therefore there was no hybridization observed at 58°C and above. Lower hybridization decreases the stringency thereby allowing non specific hybridization of the radioactive probe.

Acknowledgment.

Anti-TLP antibody from Douglas fir was kindly provided by Dr. Ekramoddoullah, Canadian Forest Service, Canada). Anti-chitinase antibody from tobacco was kindly provided by M Legrand, IBMP Strasbourg, France). *De novo* sequencing was performed by Dr. Markus Piotrowski Institute of Plant Physiology, Ruhr University, Bochum. Financial assistance was provided by University Grants Commission (UGC) India, Deutscher Akademischer Austausch Dienst (DAAD), Eiselen Foundation Ulm, Germany and Institute for Botany, Leibniz University Hannover. Laboratory Facilities were provided by Institute for Botany Leibniz University Hannover, DOS in Applied Botany and Biotechnology University of Mysore India. Pearl millet seeds were provided from All India Coordinated Pearl Millet Improvement Program (AICPMIP). Sincere thanks to all the above mentioned individuals for providing the antibodies, for scientific support and funding agencies for the scholarship granted.

Declaration.

Individual protein lanes in the figures were arranged using Adobe Photoshop and Microsoft Publisher.

4. Discussion.

4.1 Pathogenesis related proteins in pearl millet downy mildew pathogen interaction.

Role of PR proteins in host defense is an interesting area of study in plant pathology; a number of defense related proteins involved in downy mildew resistance by pearl millet like glucanase, thionin, phenyl alanine ammonia lyase, peroxidase, super oxide dismutase are well studied. However, chitinase and thaumatin like proteins from pearl millet are not characterized. Regalado and Ricardo (1996) reported the constitutive expression of chitinase and TLPs in the intercellular fluid of healthy, unstressed leaves of *Lupinus albus* plants and suggest that perhaps they are part of a preformed defense response. These two PR proteins are constitutively expressed in pearl millet. This study concentrates on characterization of these two defense related proteins.

4.2 Co-expression and synergistic activity of chitinase and TLP in plant defense mechanism.

Plants accumulate a large class of proteins called pathogenesis related proteins (PR) when challenged by plant pathogens (Linhorst, 1991, Bol et al., 1990; Van Loon, 1985). These plant defence proteins are ubiquitous in monocots and dicots and are currently grouped into 17 families based on their structural and functional properties (Van Loon and van Strien, 1999; Christensen et al., 2002). PR-5 proteins exhibit antifungal activity in vitro (Liu et al., 1994; Melchers et al., 1993; Woloshuk et al., 1991) and show enhanced lytic activity when tested in combination with chitinases and/or β -1,3-glucanases (Lorito *et al.*, 1996). Synergistic activity of chitinase, glucanase (enzymes capable of degrading fungal cell wall carbohydrates) and TLP was known to be more effective in fungal disease resistance in different host-pathogen systems. Synergistic activity of chitinase and TLP in transgenic rice showed enhanced fungal disease resistance against sheath blight pathogen Rhizoctonia solani and sheath rot pathogen, Sarocladium oryzae compared to those expressing the individual genes (Krishnan et al., 2006). Similar observations were made in grapevine infected with powdery mildew (Jacobs et al., 1999) and during infection of wheat spikes by Fusarium graminearum (Pritsch et al., 2000) Oilseed rape (Brassica napus) transformed with barley TLP showed enhanced resistance to clubroot pathogen (Plasmodiophora brassicae). Moreover in banana and grapes the cell wall degrading enzymes and TLP are co expressed during ripening of fruits leading to softening of fruit pulp (Peumans et al., 2002). Because of the substantial evidence on co expression of chitinase and TLP and their synergistic mechanism in host defense both PR proteins were considered for the study.

4.3 Glucan binding activity of pearl millet TLP.

Pearl millet TLP was tested for its ability to bind to curdlan (water insoluble ß-1,3 glucan) and it showed glucan binding at under acidic conditions as observed in case of barley thaumatin-like protein (Grenier *et al.*, 1999). SDS-PAGE analysis of the bound protein fraction showed the presence of minor impurities of apparent molecular weight 24-26 kDa along with a

major protein band having apparent molecular weight of 23 kDa protein. Immuno blot analysis of the bound protein fraction showed a 23 kDa protein cross reacting with anti TLP antibody from Douglas-fir. Considerable amount of research work has been carried out to establish the mode of action PR-5 proteins. However, most of the work has been carried out with osmotin from tobacco and zeamatin from maize which are well characterized; it is established that osmotin and other homologous plant PR-5 proteins are able to permeabilise the plasma membrane (Roberts and Selitrennikoff, 1990). To reach the plasma membrane, the protein must first traverse the cell wall. Presumably, cell-wall recognition and binding by osmotin is needed prior to translocation to the plasma membrane (Ibeas et al., 2000; Yun et al., 1997). The outer layer consists predominantly of mannoproteins which determine most of the surface properties of the cell. Work with phosphomannan deficient yeast strains showed that osmotin binds to phosphomannans in fungal cell walls and absence of phosphomannans on cell wall made the yeast cells resistant to osmotin attack (Ibeas et al., 2000). A simple staining technique using alcian blue, a stain which competes with TLP for its binding site on cell wall confirms the presence of TLP binding site on fungal cell wall. S. graminicola sporangia were stained with alcian blue and the sporangia showed positive staining with the dye. This indicated the presence of TLP binding site on S graminicola cell walls which makes the downy mildew pathogen susceptible to TLP attack. The same point was proven by another experiment which involved glucan binding by pearl millet TLP where curdlan (water insoluble β -1,3-glucan) was used as the substrate which is a cell wall component of fungi; This is in line with the behavior of TLPs from diverse plant species. However, it has been established that the structural differences between various isoforms of the PR-5 family that are essential for the binding of different targets (Yun et al., 1997). Work on cherry fruit TLP by Fils-Lycaon et al., 1996 showed that there is specificity between structures of the PR-5 proteins and those of target microbe organisms; therefore, their efficacy would depend on a combination of isoforms and pathogenic species. Similar observations made by other researchers showed that each antifungal TLP seems to display specificity (Abad et al. 1996; Koiwa et al. 1997; Yun et al. 1998, Grenier et al., 1999).

4.4 Inhibitory effect of pearl millet TLP on downy mildew pathogen S. graminicola.

PR-5 proteins exhibit antifungal activity in vitro (Liu *et al.*, 1994; Melchers *et al.*, 1993; Woloshuk *et al.*, 1991). Microscopic observation of *S. graminicola* zoospores released by the lemon shaped sporangia revealed that the zoospores swim freely when they are suspended in water. After treatment of sporangial suspension with TLP, motility of the zoospores was inhibited with more than 90% of zoospores losing their mobility. This shows the toxic effect of TLP on *S. graminicola*, which is in line with the previous findings showed that osmotin and other homologous plant PR-5 proteins are able to permeabilise the plasma membrane leading to leakage of cytoplasmic contents from *Neurospora crassa* and *Candida albicans* after treatment with zeamatin (Abad *et al.*, 1996; Roberts and Selitrennikoff, 1990); inhibition growth and lysis of *Phytophthora infestans* sporangia by tobacco osmotin (Woloshuk *et al.*, 1991) was also studied in detail. *In vitro* analysis of *S. graminicola* membrane permeabilization by pearl millet TLP was carried out according Sytox green staining method (Thevissen *et al.*, 1999). Sytox green is a

nucleic acid dye, which enters the cells only through plasma membrane pores and fluoresces upon binding to nucleic acid. Microscopic observation of S. graminicola sporangia treated with pearl millet TLP showed fluorescence of the sporangia; positive staining with Sytox green proved permeabilization of S. graminicola plasma membrane by pearl millet TLP which eventually leads to cell lysis. Interestingly S. graminicola is an oomycete pathogen and these results provide supporting evidence to inhibitory effect of TLP against oomycete pathogens. The observation is supported by good amount of work on TLPs from different plant species and their inhibitory effect on broad range of pathogens (Vigers et al., 1992), for instance, the presence of the 23-kDa TLP in transgenic rice plants enhanced resistance to Rhizoctonia solani causing sheath blight disease (Datta et al., 1999). TLP from grapevine displays antifungal effect and inhibited mycelial growth, spore germination, and germ tube growth of Uncinula necator, Phomopsis viticola, and Botrytis cinerea (Monteiro et al., 2003). Abscisic acid- and cold-induced thaumatin-like protein in winter wheat has an antifungal activity against snow mould, Microdochium nivale (Kuwabara et al., 2002). TLPs from Taxus x Media Rehder are a conserved component of conifer ovular secretions and are involved in broad spectrum pathogen defence of ovules (Stephen et al., 2007). Studies on of PR-5d from tobacco showed the presence of pathogen-specific insoluble-carbohydrate binding surface motif (consisting of three tryptophan residues conserved at specific positions -W34/W36/W192) and is highly conserved in all the members of Solanaceae which are commonly attacked by oomycete pathogen Phytophtora (Doxey et al., 2010).

4.5 Purification of pearl millet chitinase.

Chitinase from pearl millet shared similarity with other class I chitinases in its chromatographic behavior. The procedure to purify pearl millet chitinase was optimized and involved the use of DEAE-cellulose, hydroxyapatite (HA) and CM-sepharose column chromatography. Most of the contaminant proteins were removed by ion exchange chromatography on DEAE-cellulose and negative chromatography on HA column. The enzyme fraction recovered from DEAE cellulose column was passed through HA column and further purified by chromatography on a CM-Sepharose column. Chitinase like protein from black turtle bean (Chu and Ng, 2005) was not adsorbed to DEAE cellulose column but was adsorbed onto CM sepharose column. Similar to several plant chitinases (Chu and Ng, 2003, 2005) pearl millet chitinase was also not adsorbed by DEAE-cellulose but was adsorbed on CM-cellulose and also showed affinity to colloidal chitin similar to mung bean chitinase and chitinase from black turtle bean (Chu and Ng, 2003, 2005). Similar observations were made with purification of tobacco chitinase (Legrand et al., 1987). A linear NaCl gradient was applied to elute the bound proteins from CM sepharose column and homogenous chitinase (with apparent molecular weight of 24 kDa) was eluted at 300 mm NaCl concentration. Similar chromatographic behaviour was observed in the case of other plant chitinases for instance, spruce (Picea abies) chitinase showed binding to CM sepharose column (Salzer et al., 1997). The purified protein showed immunological cross reaction with anti chitinase antibody from tobacco. The homogenous protein band was subjected to in gel trypsin digestion and the obtained peptide

fragments were subjected to de novo sequencing by ESI Q-TOF. Homology search of deduced amino acid sequence revealed that the purified pearl millet chitinase is a class I chitinases belonging to lysozyme super family.

4.6 Partial purification of pearl millet TLP.

Pearl millet TLP (apparent molecular weight - 23 kDa) was partially purified by chromatography which eluted from CM sepharose column (10 mM sodium acetate buffer at pH 5.5) along with two other proteins with apparent molecular weight of 24 and 26 kDa at approximately 200 mM NaCl concentration. Barley thaumatin like proteins also showed similar behavior by not binding to DEAE column and binding to CM sepharose column (Osmond et al., 2001). The procedure to purify pearl millet chitinase was optimized and involved the use of DEAE-cellulose, hydroxyapatite (HA) and CM-sepharose column chromatography. Most of the contaminant proteins were removed by ion exchange chromatography on DEAE-cellulose and negative chromatography on HA column. The enzyme fraction recovered from DEAE cellulose column was passed through HA column and further purified by chromatography on a CM-Sepharose column. TLP purified from pearl millet showed certain resemblances in chromatographic behavior to other plant TLPs; for example, mollisin from chestnuts (Chu and Ng, 2003) and chrysancorin from garland chrysanthemum seeds (Wang et al., 2001), which remained unadsorbed on DEAE-cellulose column. The 23 kDa protein was eluted along with another protein of apparent molecular weight 26 kDa which was later identified to be glucanse. The pearl millet TLP showed cross reaction with anti TLP antibody from douglas-fir (Zamani et al., 2004). The Douglas fir anti TLP antibody was developed using a 29 amino acid long synthetic peptide generated with the amino acid sequence of douglas-fir TLP.

4.7 De novo sequencing and partial amino acid sequences of pearl millet PR proteins.

Partial amino acid sequences of pearl millet chitinase, glucanase, peroxidase and TLP are of great importance. Partial sequences of pearl millet chitinase and TLP paved the base for this doctoral work by serving as a reference sequence for primer designing; The partial amino acid sequence of glucanase and peroxidase can be considered for primer designing an amplification of gene of interest. Also it can be of used to develop a synthetic peptide for which antibody can be synthesized. Further work on this aspect makes an interesting area of study. Thus the preliminary data generated in this study is of great value because the sequence data on pearl millet PR proteins in the database is very scarce.

4.8 Sequence analysis of pearl millet chitinase.

Sequence analysis showed significant homology between pearl millet chitinase and class I chitinases from a diverse group of plants including monocotyledonous barley, maize, wheat, sorghum and dicoteyledonous plants like tobacco, common beans and many other species. Despite several efforts it was not possible to amplify the complete gene of pearl millet chitinase; therefore the complete structure could not be elucidated. However, the partial nucleotide was translated and the deduced amino acid sequence was analysed for the presence of conserved domains which showed that the protein belongs class I chitinases (Lysozyme super family) which belong to Glycoside hydrolase family 19 (GH 19) of glycosyl hydrolase classification system and members of this family are found primarily in plants. Glycosyl hydrolase genes have been previously sequenced for Oryza sativa (rice), the model dicotyledonous plant Arabidopsis thaliana (Henrissat et al., 2001, Yokoyama and Nishitani, 2004) and the fast-growing tree Populus trichocarpa (poplar) (Coutinho et al., 2003 Geisler-Lee et al., 2006). Plant glycosyl hydrolases are known to be involved in cell wall polysaccharide degradation (Minic and Jouanin, 2006; Minic, 2008). Class I chitinases are composed of three domains: a Cys rich chitinbinding domain, a Pro-rich hinge region, and a highly conserved catalytic domain (Collinge, 1993). Of interest are the residues important in catalysis or implicated in maintaining the active site geometry which include active site residues Y of the NYNYG motif, the second N of the NYNY motif, the first T of the SHETTGG motif, the second G and the Q of the GRGPIQL motif. These conserved motifs are present in pearl millet chitinase and this is in line with earlier works on different plant chitinases (Verburg et al., 1992). Therefore the molecular data generated in this study serves as foundation for further work in this area.

4.9 Sequence analysis of TLP.

Sequence analysis showed significant homology between pearl millet TLP and antifungal TLPs isolated from a diverse group of plants including monocotyledonous barley, maize, rice sorghum and dicoteyledonous plants like tobacco, orange, grape wine and many other species. In this group are TLPs shown to have antifungal activity like zeamatin from maize as well as fruit allergens from banana (Leone et al., 2006). The conservation in the 16 cysteine residues responsible for disulfide bridges was evident. These linkages not only help stabilize the molecule and allow for correct folding but also make TLPs resistant to protease degradation and may be essential for antifungal activity (Krebitz et al., 2003; Roberts and Selitrennikoff, 1990). The 3-D crystal structure of PR-5 proteins such as zeamatin from maize and osmotin from tobacco have been used as model templates to determine the occurrence of a negatively charged surface cleft structure on related proteins (Batalia et al., 1996; Hoffmann-Sommergruber, 2002). In TLPs this acidic cleft is comprised of five amino acids (arginine, glutamic acid, and three aspartic acid residues R, E and three Ds) and is believed to be involved in a PR-5-fungal cell interaction that permeabilises the fungal cell membrane, disrupting the osmotic balance inside hyphal cells leading to cell rupture. Though the molecular modeling is not carried out for pearl millet TLP, experimental evidence generated in this study supports the presence of these characteristic features in pearl millet TLP. Despite several efforts it was not possible to amplify the complete gene of pearl millet thaumatin-like protein; therefore the complete structure could not be elucidated. However, the partial nucleotide was translated and the deduced amino acid sequence and analysed for the presence of conserved domains which showed that the protein belongs to thaumatin-like protein super family. This data is of great importance as this is the first report on pearl millet TLP nucleotide and partial amino acid sequence. The nucleotide sequence data generated in this work can be used for further studies; also the partial amino acid sequence deduced by translating the nucleotide sequence and *de novo* sequencing of trypsin digested peptide fragments will be of great help for further studies.

4.10 Amplification of GC rich pearl millet *chitinase* and *tlp* genes.

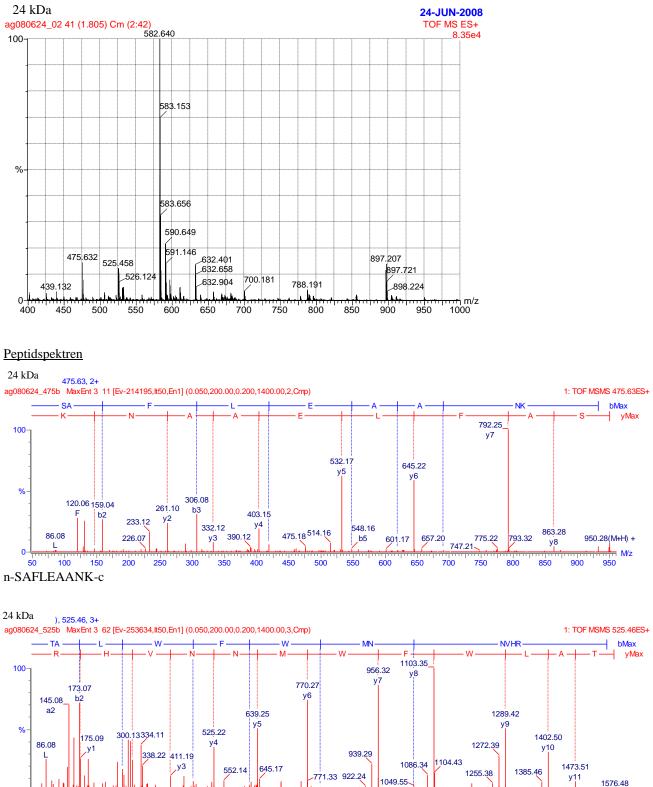
PCR-amplification of GC-rich templates is often hampered by the formation of secondary structures like hairpins and higher melting temperatures; also GC-rich regions of template cause formation of stem-loop secondary structures that have been known to promote polymerase jumping during PCR amplification. This jumping of polymerase produces smaller PCR products missing the stem-loop region of the template (Viswanathan et al., 1997). Combination of two additives such as betaine (1-carboxy-N,N,N-trimethyl methanammonium inner salt) and DMSO has been found to enhance amplification of long PCR products (Hengen, 1997 Kang et al., 2005). DMSO disrupts base pairing; betaine, which is an iso-stabilizing agent, equalizes the contribution of GC and AT base pairing to the stability of the DNA duplex (Rees et al., 1993). Pearl millet chitinase gene amplified in this study (482 bp-partial length) is GC rich with 61% GC content and the tlp gene (422 bp partial length) had a high GC content of 69% and this explains the failure of PCR reactions for full length gene amplification. Because GC-rich sequences possess a strong secondary structure that resists denaturation and hampers primer annealing, though different polymerases like KAPA2GRobust polymerase, HiFi Phusion polymerase (from NEB), KAPAHiFi polymerase (from Peqlab) were used in this study, none of them were able to amplify specific products. However, KAPA2GRrobust polymerase was successful in amplification of 482 bp pearl millet chitinase in the presence of enhancer 1 and 2 along with GC buffer (component of KAPA2G Robust PCR kit from Peqlab) at 1X concentration. But the same did not yield any specific products in amplification of full length genes of pearl millet chitinase and TLP. Moreover individual PCR additives in enhancer 1 and 2 and GC buffer and their concentrations are not revealed by the manufacturers and any optimization of concentration of individual components becomes impossible when a commercial kit is used. Different concentrations of PCR additives like DMSO and betaine were used in PCR reactions to amplify the full length gene. But no specific amplification was observed. All these results indicate the difficulty in amplification pearl millet chitinase and tlp genes; unavailability of nucleotide sequence data of these genes poses another challenge in primer designing. If genome size has a negative effect on amplification success at a single locus then, by extension, the success rate of primer sets tested on organisms with large genomes should be lower than the success rate of primer sets tested on organisms with small genomes (Garner, 2002). The primers had to be designed considering the nucleotide sequence of chitinase and tlp from other plant species with which pearl millet genes (partial length nucleotide sequences) shared homology which might lead to poor priming, and success of priming cannot be predicted. Though several difficulties were encountered in amplification of pearl millet chitinase and tlp genes, partial length of both these genes were successfully amplified. This data was useful in classification of these two important PR proteins under respective families. Sequence data on pearl miller PR proteins is very limited and this work contributes to the database. The sequence data available on pearl millet pathogenesis related proteins include

glucanase (NCBI accession number: AF488414) protease (NCBI accession number: ABI95884), peroxidase (NCBI accession number ABX38890), Proton ATPase (NCBI accession number AAV36518) and couple of other partial nucleotide sequences of the PR protein genes.

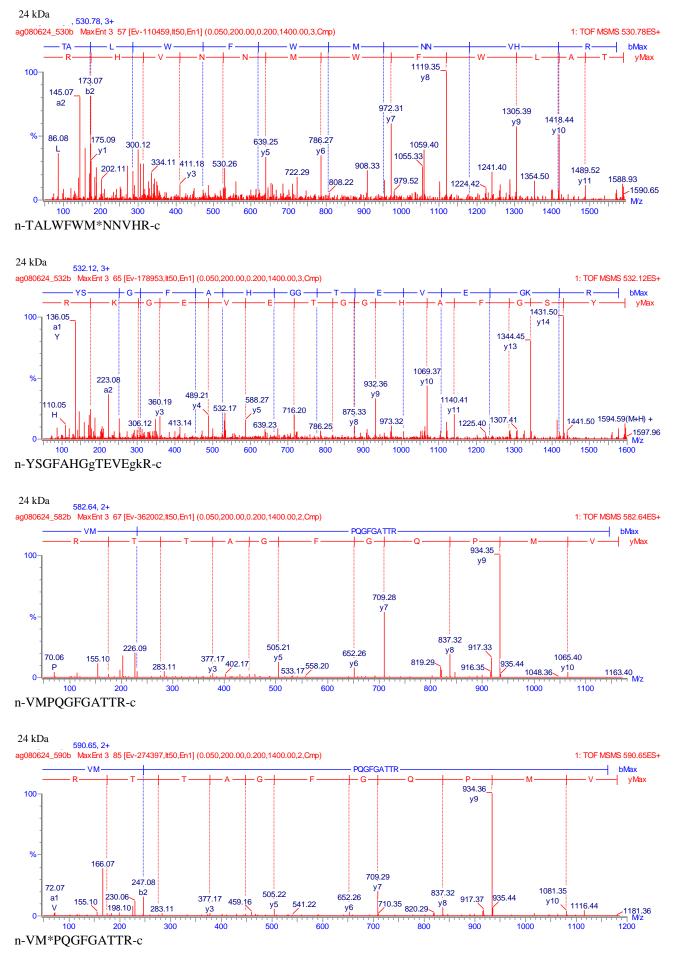
4.11 Adaptor ligation-mediated genome walking in plants with large genome.

Large genome size and multiploidy in plants is a big challenge in case of PCR-based genome walking in plants. To gain high sensitivity in ligation-mediated -PCR applications, it is important that nearly 100% of all genomic DNA fragments resulting from the initial restriction digest have the adaptor attached to both ends. This enlarges the pool of the desired PCR template. Nevertheless, this cannot be ensured while amplifying unknown flanking regions of a gene because of the lack of nucleotide sequence data that does not allow spotting of restriction site of the enzyme (used to construct genomic DNA libraries) on the gene of interest. This could lead to failure of the technique due to two possible reasons. Firstly, the distance from the primer to the restriction site is greater than the capability of the genome walking system (~6 kb) or the target gene might have restriction site just outside the known sequence separating the unknown flanking region of the gene and thereby not leaving any good length of unknown sequence to be walked by the primer. Or in case of multiploid plants with large genomes, probability of adaptor ligation to the target DNA is highly reduced. Previous studies (Farrelly et al., 1995; Hoelzel and Green, 1992) have explained the failure of PCRs in large genomes with two most possible reasons, the first being a reduction in target DNA relative to the total content of template DNA in a single PCR serves to reduce amplification efficiency. As genome sizes increase, this serves to dilute the proportion of available target DNA in a given volume of template DNA (Farrelly et al. (1995); because typically, template concentration is considered in terms of total amount of genomic DNA (Hoelzel and Green, 1992). Secondly, as genome size increases, the number of regions complementary to any 20-bp region (the average size of primers) also increases. A larger genome would then increase the amount of nonspecific binding of primers, a concurrent diminishing of the primer pool available for PCR (Garner, 2002). If genome size has a negative effect on amplification success at a single locus then, by extension, the success rate of primer sets tested on organisms with large genomes should be lower than the success rate of primer sets tested on organisms with small genomes (Garner, 2002). Nonetheless, in this study many pairs of primers were designed considering the partial length of the gene and no specific products were observed with any of the primers combinations used. Though increasing the length of primers would improve the specificity, longer primers could not be designed due to high GC content of the genes (482 bp pearl millet chitinase 61% - GC content and 422 bp pearl millet tlp 69% - GC content). Higher GC content of the primers is not recommended for long distance PCRs and high GC content lead to poor results with normal PCRs in amplification of pearl millet chitinase and tlp genes in this study as well. This explains that the available sequence data on pearl millet chitinase and tlp need to be enriched in order to employ techniques like adaptor ligation mediated genome walking successfully.

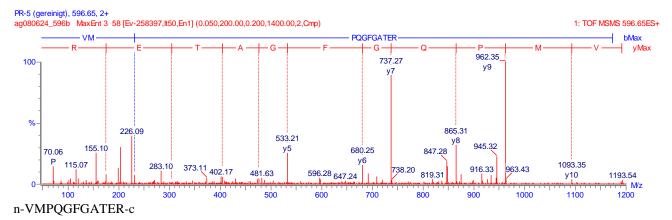
4.12 Southern and northern blot analysis using radioactive P32 labeled pearl millet *chitinase* and *tlp* probe.

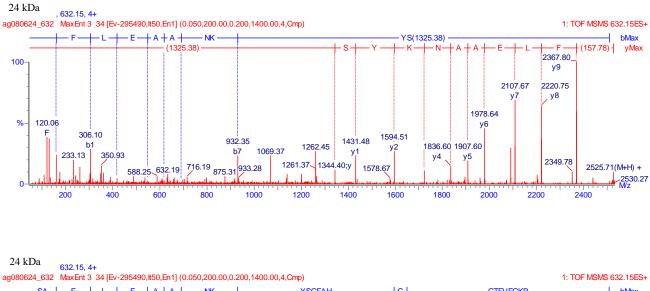

Southern blot analysis of restriction digested genomic DNA to find out the copy number of gene of interest relies on restriction digestion of genomic DNA into small fragments and hybridization of gene of interest with the radioactive labeled probe DNA. Nevertheless, in case of large genomes the fragments generated by restriction enzyme could be too large that would reduce the stringency of the reaction as observed in case of southern blot analysis of pearl millet genomic DNA with radioactive labeled *chitinase* and *tlp*. Similarly total RNA is hybridized with the radioactive labeled probe in case of northern blot analysis and interference of non specific RNA is the major reason for poor results. The amount of target mRNA to rest of the non target RNA could be very low in case of large genomes (because of low ratio of target DNA to non target DNA, Farrelly *et al.*, 1995; Hoelzel and Green, 1992). This could be major reason for nonspecific hybridization of the radioactive labeled probes at lowed hybridization temperatures and absence of hybridization at higher hybridization temperature. High GC content of the probe used for labeling might be another reason. Therefore the experiments did not give convincing results.

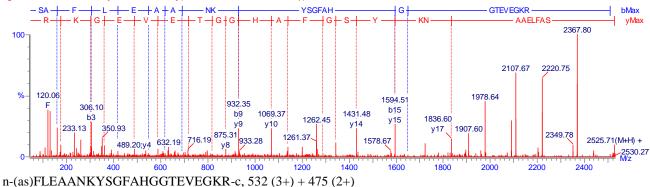
4.13 Conclusion.

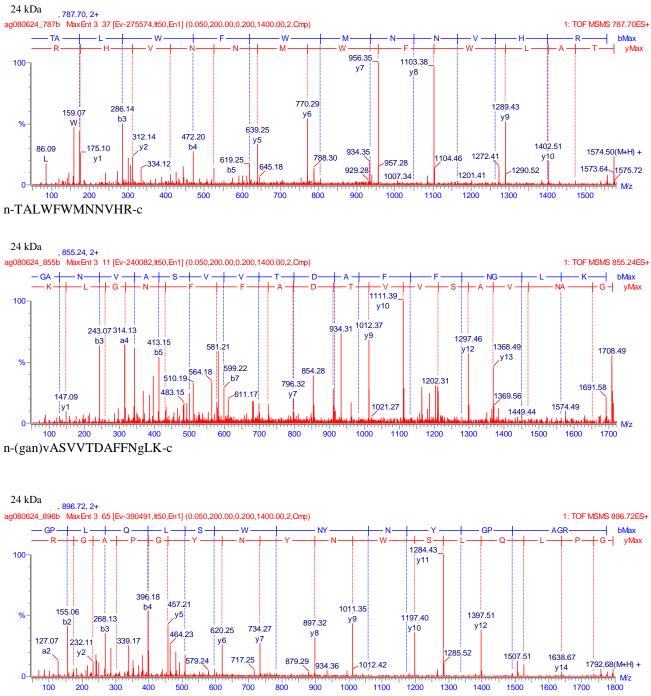

Chitinase is considered to protect plants against fungal pathogens by degrading chitin, a major component of the cell walls of many fungi. For this the enzyme should bind to chitin. Many studies support that the basic class I chitinase had the highest antifungal activity among plant chitinases due to its strong binding ability to fungal cell wall and chitin degrading activity. Unlike fungi a distinguishing feature of oomycetes is that they possess a cell wall containing insoluble cellulose and chitin (Zevenhuizen and Bartnicki-Garcia, 1969, Liu et al., 1994, Latijnhouwers et al., 2003). Therefore pearl millet chitinase purified in this doctoral study would be of great importance in host defense mechanism and it shows a calculated pI of 8.60. The protein also showed chitin binding and chitin degrading ability in vitro. Sequence analysis also showed that the purified peal millet chitinase belongs to class I chitinases. Study of Class I and Class II chitinases from rye (Taira et al., 2002) revealed that the class I chitinases bound to hyphal tips, lateral walls and the septa consisting of mature cells walls predominantly by ionic interaction through catalytic domain along with hydrophobic interaction through chitinbinding domain and showed degradation of mature chitin of septa and lateral walls as well as nascent chitin. Conserved tryptophan residues (W) in pearl millet chitinase also provide evidence to this property of class I chitinases. Whereas the basic class II chitinases bound only to the hyphal tip through ionic interaction only was able to degrade only the nascent chitin present in the hyphal tip. Therefore basic class I chitinases are definitely more effective in defense mechanism against invading pathogens than class II chitinases. Moreover GH-19 chitinase is found to be more effective in fungal inhibition than GH-18 chitinases (Taira, 2010), and purified pearl millet chitinase belongs to GH-19 and therefore a major component of plants defense system. In order to understand the mode of action of chitinase the cell wall structure of the pathogen is equally important. Now that this work shows the presence of class I chitinase in pearl millet and characterization of the same has been carried out, this data would be of great importance in further studies involving *S. graminicola* cell wall and class I chitinase from pearl millet.

There are several reports on thaumatin like proteins conferring resistance against oomycete pathogen in different plants. For instance the latest work by Reiss and coworkers (2009) showed barley TLP enhancing resistance of oilseed rape plants to Plasmodiophora brassicae. The present study confirmed that pearl millet TLP inhibited downy mildew pathogen in vitro. However, the mechanism of action of TLP is unclear till date. Glucan binding activity of pearl millet TLP has also been established in this study. Membrane pore-formation has been suggested as one possible anti-fungal mechanism (Koiwa et al., 1997). Carbohydrate-binding and hydrolytic functions have also been observed for a number of PR-5 proteins (e.g., ß-1, 3glucan interactions in thaumatin-like proteins (Grenier et al., 1991, Osmond et al., 2001, Yun et al., 2000 and Ibeas et al., 2000). Structural modeling studies of PR-5 proteins have demonstrated that PR-5 proteins contain highly acidic clefts suitable for carbohydrate hydrolytic function (Osmond et al., 2001, Koiwa et al., 1999). This suggests that the mechanism may involve interactions between PR-5 proteins and pathogen cell wall carbohydrates. Studies on of PR-5d from tobacco showed the presence of pathogen-specific insoluble-carbohydrate binding surface motif (consisting of three tryptophan residues conserved at specific positions -W34/W36/W192) and is highly conserved in all the members of Solanaceae which are commonly attacked by oomycete pathogen Phytophtora (Doxey et al., 2010). Study of complete primary structure of pearl millet TLP would confirm the presence of similar conserved motifs in pearl millet TLP can through light upon interaction of pearl millet with oomycete pathogen S. graminicola. Experimental evidence in this doctoral study has already shown glucan binding activity of pearl millet TLP and inhibitory effect of pearl millet TLP on S. graminicola. Further studies in the same line will be of great interest.


Collectively, this doctoral study has generated vital data that can be of great use for further studies. Experimental evidences on pearl millet chitinase and TLP are in line with the behavior of chitinases and TLPs from other plant species. The partial amino acid sequence and nucleotide sequence of pearl millet chitinase and TLP gens are of immense importance as this thesis is the first report of chitinase and TLP genes from pearl millet.



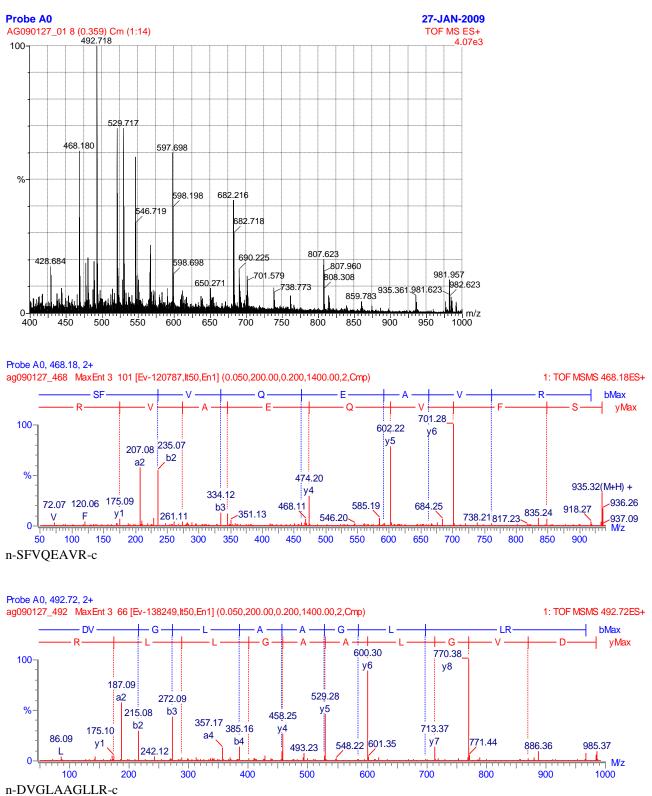

₩z n-TALWFWMNNVHR-c



24 kDa

n-GPLQLSWNYNYGPAGR-c

 Table 1. Amino acid sequence of the peptide fragments generated by trypsin digestion of purified 24 kDa chitinase from pearl millet.


 (*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences

generated automatically and the ones in lower case represent the amino acids that are predicted).

Band	Mass	Charge	Rel. Mass	Derived amino acid sequence	Sequence similarity position	Organism	Possible function	Accession number
24kDa	475.63	2+	951.26	SAFLEAANK	SAFLEA 109 S+FLEA 113 Zea mays		chitinase A	swissnew P29022
24kDa	525.46	3+	1050.92	TALWFWMNNVHR	ALWFWMNNVH 219 ALWFWMNNVH 228	Tripsacum dactyloides	chitinase	sptrembl Q6JBL6
24kDa	530.78	3+	1592.34	TALWFWM*NNVHR	ALWFWMNNVH 219 ALWFWMNNVH 228	Zea diploperennis	chitinase	sptrembl Q6JBP3
24kDa	532.12	3+	1596.36	YSGFAHGgTEVEgkR	YSGFAHGGTEVEGKR 117 YPGFAHGGTEVEGKR 132	Oryza sativa	chitinase	sptrembl Q7Y1Z0
24kDa	582.64	2+	1165.28	VMPQGFGATTR	VMPQGFGATTR 230 VMPQGFGATIRA 240	Oryza sativa	chitinase	sptrembl Q7Y1Z0
24kDa	590.65	2+	1181.3	VM*PQGFGATTR	VMPQGFGATTR 230 VMPQGFGATIR 240	Oryza sativa	chitinase	sptrembl Q7Y1Z0
24kDa	632.15	4+	2528.6	asFLEAANKYSGFAH GGTEVEGKR	FLEAANKYSGFAHGGTEVEGKR 109 FLSAVNAYPGFAHGGTE VEGKR 132	Tripsacum dactyloides	chitinase	sptrembl Q6JBL6
24kDa	787.70	2+	1575.40	TALWFWMNNVHR	TALWFWMNNVH 218 TALWFWMNNVH 228	Zea mays	chitinase A	swissnew P29022
24kDa	855.24	2+	1710.48	ganvASVVTDAFFN gLK	GANVASVVTDAFFNGK 77 GANVANVVTDAFFNGIK 93	Zea mays	chitinase A	swissnew P29022
24kDa	896.72	2+	1793.44	GPLQLSWNYNYGPAG R	GPLQLSWNYNYGPAGR 180 GPLQISWNYNYGPAGR 194	Zea mays	chitinase A	swissnew P29022

The peptides shared homology to maize endochitinase with Swiss prot accession number sp|P29023.

Probe A₀

bMax

yMax

1: TOF MSMS 520.70ES+

1040.47(M+H) +

1039.58 1041.29

🖌 M/z

NR

877.44

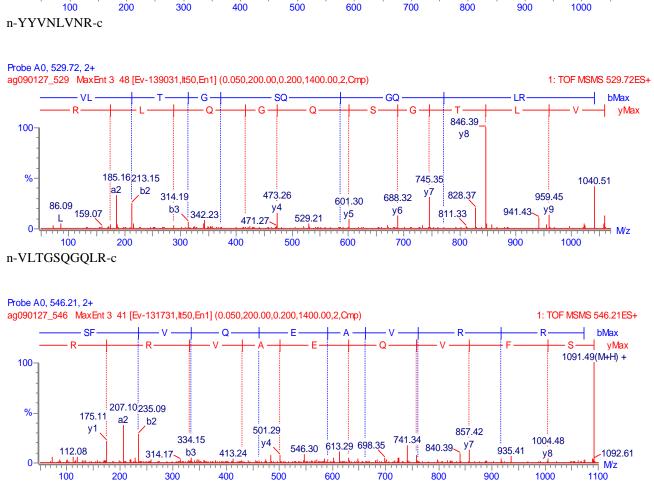
y7

878.51

827.40

v

615.33


у5

714.39

y6

697.37

715.46

n-SFVQEAVrr-c

Probe A0, 520.70, 2+

136.07

a1

γ

133.08

100

%

0

ag090127_520 MaxEnt 3 87 [Ev-141608,lt50,En1] (0.050,200.00,0.200,1400.00,2,Cmp)

299.12 a2

289.15

y2

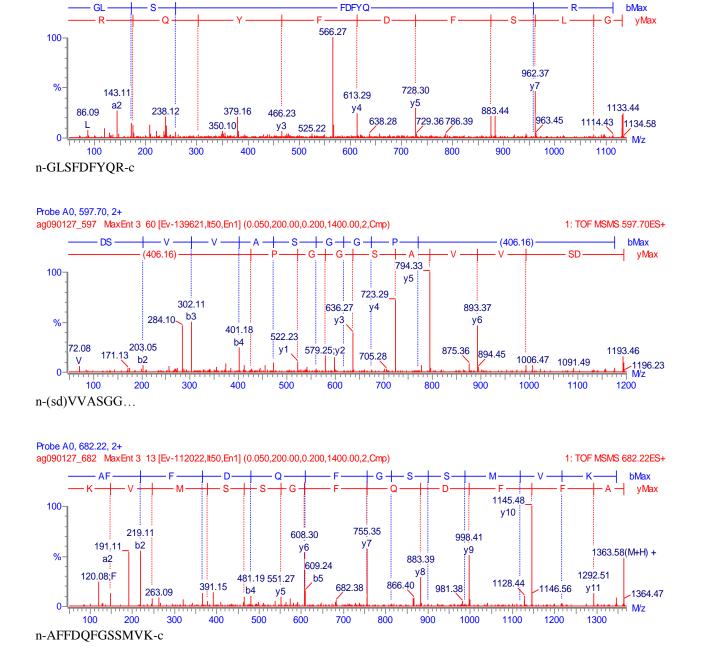
196.08

327.12

b2

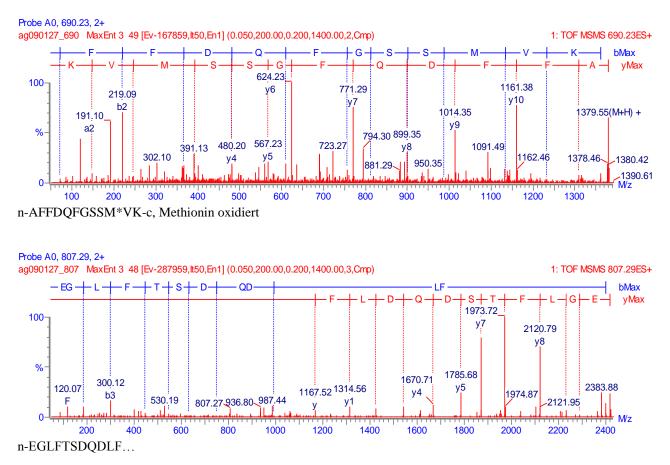
388.21

y3


426.18501.29

b3

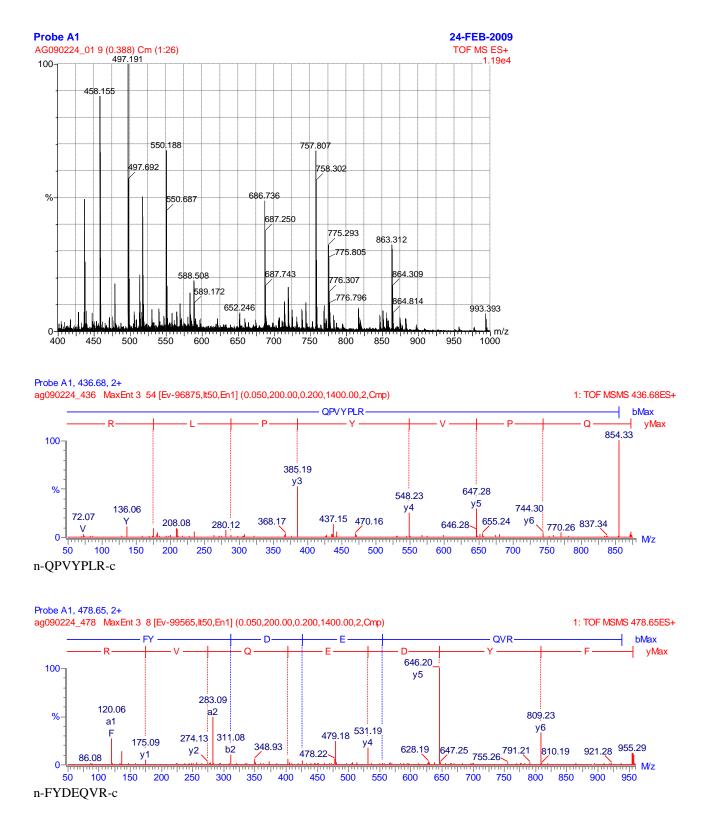
y4


521.28

1: TOF MSMS 566.70ES+

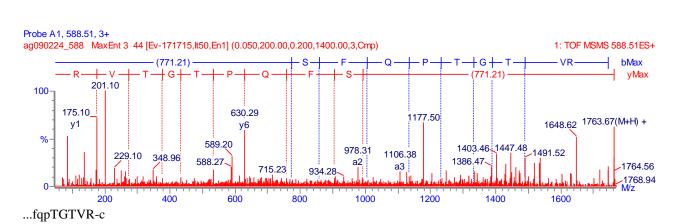
Probe A0,566.70, 2+

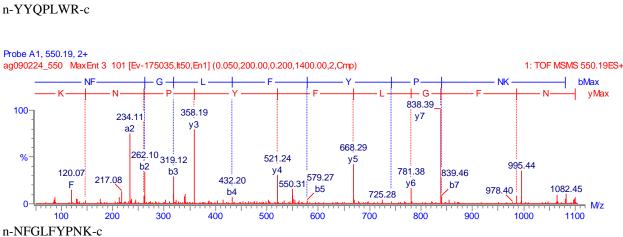
ag090127_566 MaxEnt 3 50 [Ev-147395,lt50,En1] (0.050,200.00,0.200,1400.00,2,Cmp)

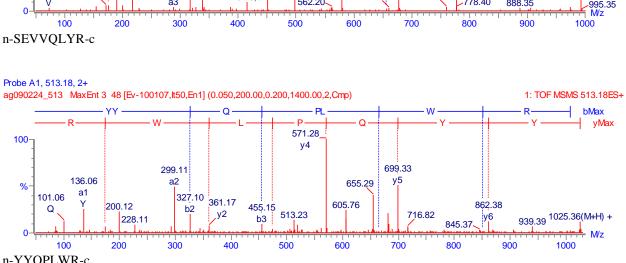

Table 3. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A0.

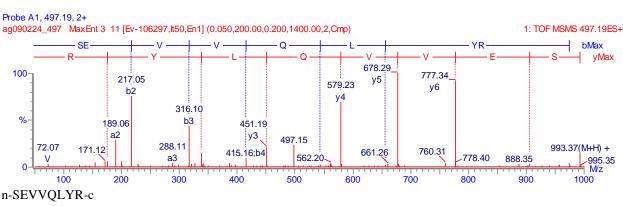
(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).

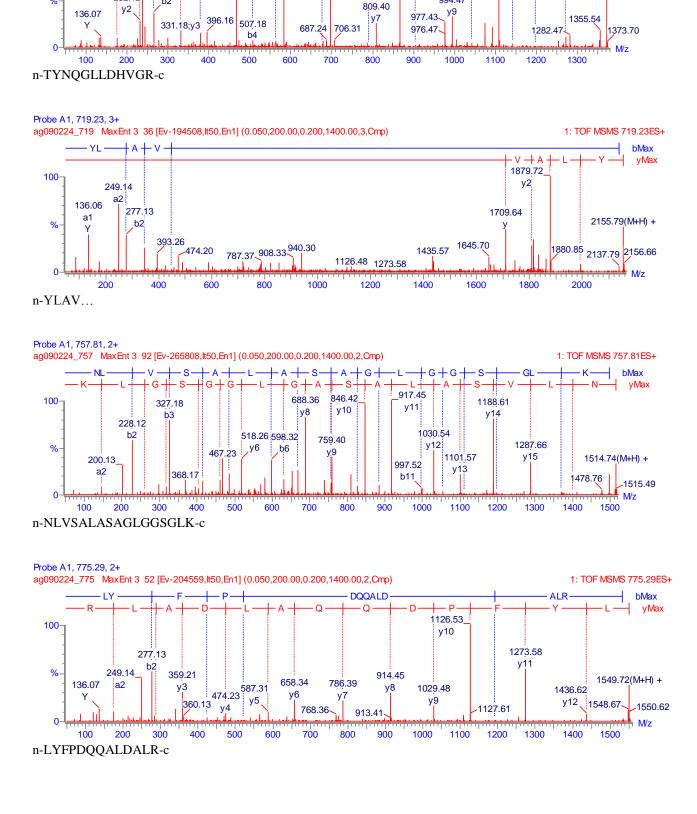
Band	Mass	Charge	Rel.	Derived	Sequence	Organism	Possible	Accession
			Mass	amino acid	similarity		function	number
				sequence	position			
AO	468.18	2+	936.36	SFVQEAVR	SFVQEAVR 57 RKFVRDAVR 65	Oryza sativa	Peroxidase	sp Q94DM0
AO	492.72	2+	985.44	DVGLAAGLLR	DVGLAAGLLR 67 DIGLAAGLLR 76	Hordeum vulgare	Peroxidase	sp Q42854
AO	520.70	2+	1041.40	YYVNLVNR	YYVNLVNR 267 YYVNLVNR 274	Triticum aestivum	Peroxidase precursor	sp Q8LK23
AO	529.72	2+	1059.44	VLTGSQGQLR	VLTGSQGQLR 320 VLTGSQGQVR 329	Hordeum vulgare	Peroxidase	sp Q40069
AO	546.21	2+	1092.42	SFVQEAVrr	SFVQEAVR 57 RKFVRDAVR 65	Zea mays	Anionic peroxidase	sp 004710
AO	566.70	2+	1144.40	GSLFDFYQR	FDFY 42 FDFY 45	Oryza sativa	Peroxidase	sp Q94DM0
AO	597.70	2+	1195.40	(sd)VVASGG	VVASGG 149 VVASGG 154	Oryza sativa	Peroxidase	sp Q94DM0
AO	682.22	2+	1364.44	AFFDQFGSSMVK	AFFDQFGSSMVK 303 AFFDQFAVSMVK 314	Triticum aestivum	Peroxidase precursor	sp Q8LK23
A0	690.23	2+	1380.46	AFFDQFGSSM*V K	AFFDQFGSSMVK 303 AFFDQFAVSMVK 314	Oryza sativa	Peroxidase	sp Q94DM0
A0	807.29	2+	1614.58	EGLFTSDQDLF	EGLFTSDQDLF 275 EGLFTSDQDLF 285	Nicotiana tabacum	Peroxidase	sp Q94IQ1


The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A0


showed homology to Peroxidase from Oryza sativa with the accession number sptrembl|Q94DM0.




11



Probe A1, 686.74, 2+

100

%

TY

+ G +

265.10

b2

237.11

a2

232.12

aq090224 686 MaxEnt 3 94 [Ev-206888,lt50,En1] (0.050,200.00,0.200,1400.00,2,Cmp)

O

468.23

v4

- G -

583.25

γ5

D

C

994.47

⊢G

866.43

y8

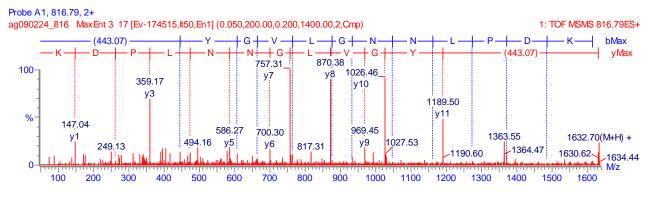
696.32

v6

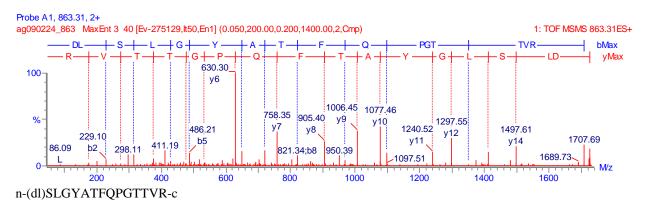
bMax

yMax

1: TOF MSMS 686.74ES+


1372.58(M+H) +

R-

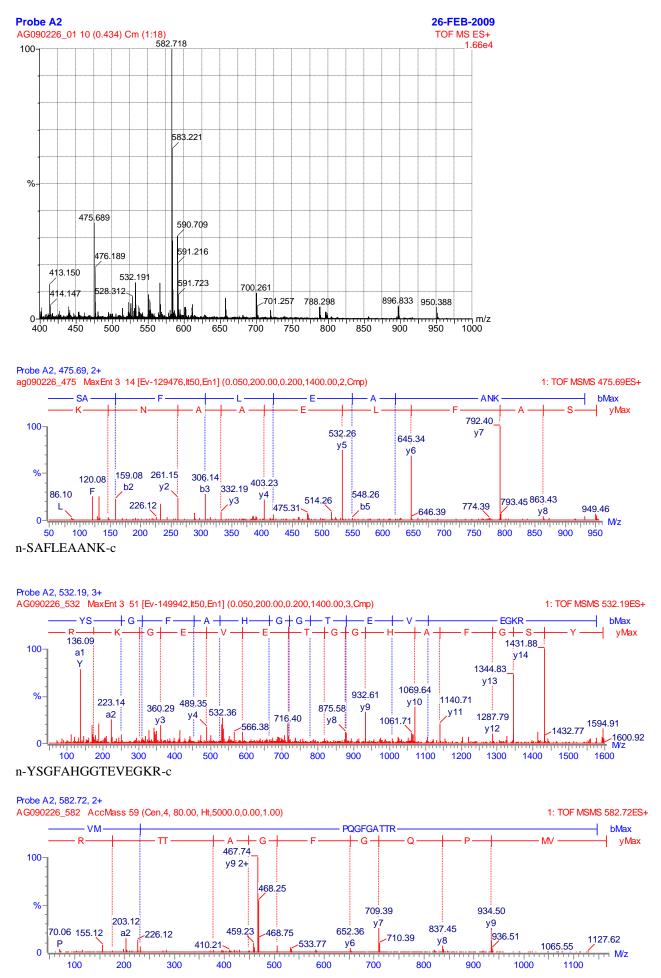

- G -

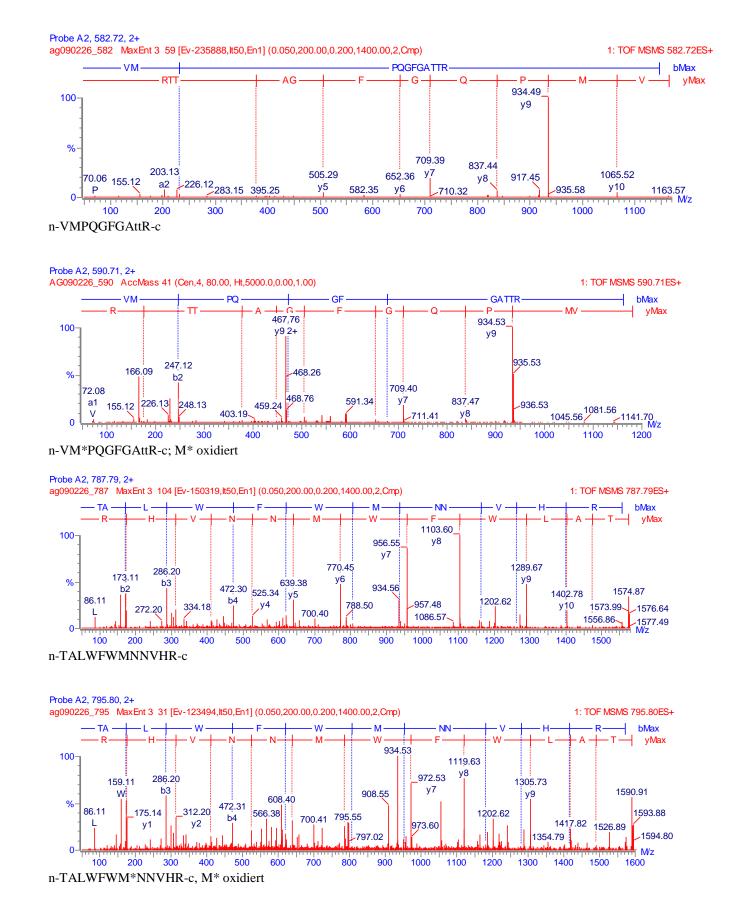
1108.50

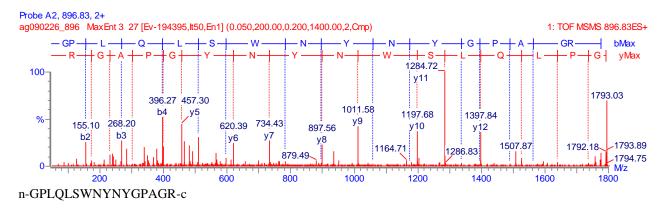
y10

n-(lgv)C*YGVLGNNLPDK-c, C*: Cystein-Arcylamid

MS blast data is compiled in the table (similar to rice endo-1,3-beta-D-glucosidase)

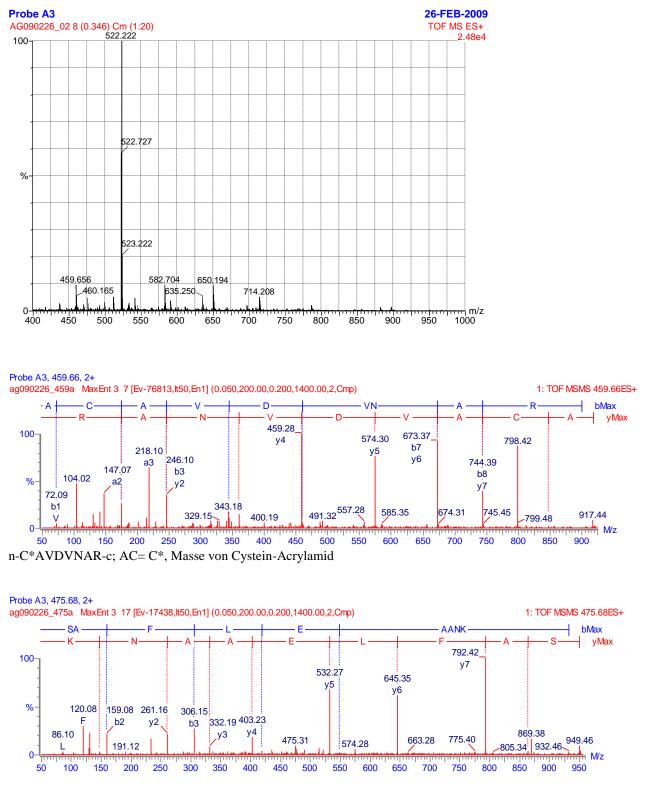

Table 4. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A1.


(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).

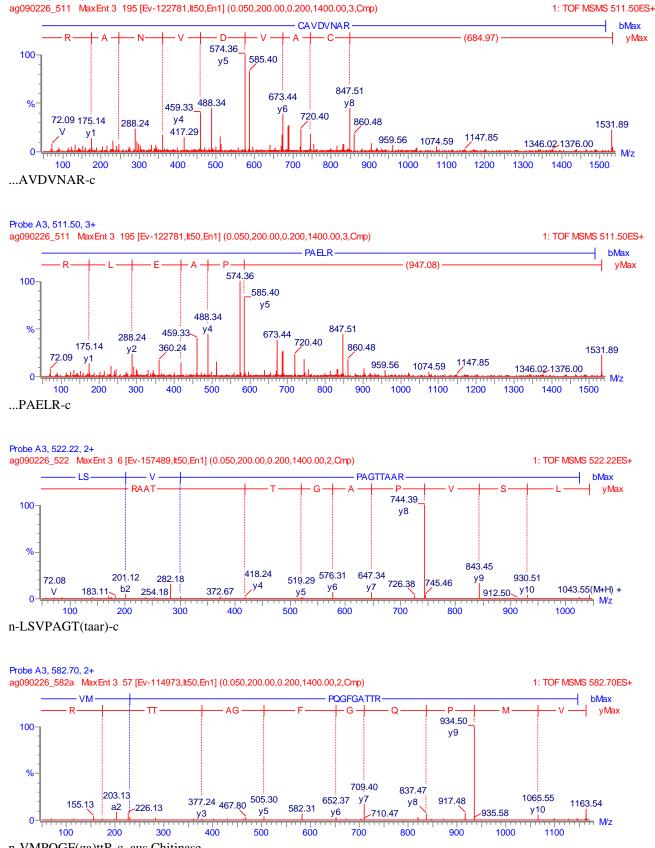

Band	Mass kDa	Charge	Rel. mass kDa	Derived amino acid sequence	Sequence similarity position	Organism	Possible function	Accession number
A1	436.68	2+	873.36	QPVYPLR	PVYPLRFYDE 17 PVATLRYYDE 26	Oryza sativa	Endo- glucanase	spl Q8GT15
A1	478.65	2+	957.30	FYDEQVR	FYDEQVR 1 FYDAKVS 6	Oryza sativa	Endo- glucanase	sp Q8S9Q6
A1	497.19	2+	994.38	SEVVQLYR	-SEVVQLY 338 RSEVVQMY 345	Oryza sativa	Glucanase	sp Q8W4V0
A1	513.18	2+	1026.36	YYQPLWR	YYQ 534 VQLYHFYQ 541	Triticum aestivum	Glucosidase precursor	sp Q8GT15
A1	550.19	2+	1100.38	NFGLFYPNK	FGLFYPNK 615 FGLFYPNK 622	Hordeum vulgare	Glucanase 2	sp 064938
A1	588.51	2+	1177.02	fqpTGTVR	fqpTGTVR 511 FQPGTTVR 518	Oryza sativa	Glucanase	sp Q8GT15
A1	686.74	2+	1373.48	TYNQGLLDHVGR	YNQGLLDHVGR 573 RAYNQGLIDHVGR 584	Oryza sativa	Endo- glucanase	sp Q8S9Q6
A1	719.23	3+	2157.69	YLAV	ylav 116 ryiav 119	Oryza sativa	Endo- glucanase	sp Q8S9Q6
A1	757.81	2+	1515.62	NLVSALASAGLGGSGLK	ALASAGLGGS 118 ALVSAGLSSS 127	Oryza sativa	Glucanase	sp Q8W4V0
A1	775.29	2+	1550.58	LYFPDQQALDALR	LYFPDQQALDALR 36 IYYPDKEALDALR 48	Triticum aestivum	Glucosidase precursor	sp Q8GT15
A1	816.79	2+	1633.58	lgvC*YGVLGNNLPDK	gvCYGVLGNNLP 8 GVCYGVLGDNLP 15	Oryza sativa	Glucanase	sp Q8W4V0
A1	863.31	2+	1726.62	dl)SLGYATFQPGTTVR	dlslgyatfqpgttvr 188 dislnyatfqpgttvr 203	Oryza sativa	Glucanase	spl Q8GT15

The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A1

showed homology to endo-1,3-beta-glucanase from Oryza sativa with the accession number sptrembl|Q8GT15.


Table 5. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A2.

(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).


Band	Mass kDa	Charge	Rel. mass kDa	Derived amino acid sequence	Sequence similarity position	Organism	Possible function	Accession number
A2	475.69	2+	951.38	SAFLEAANKYSGFAHG GTEVEGKR	SAFLEAANKYSGFAHGGTEVEGKR 109 SAFLSAVNAYPGFAHGGTEVEGKR 132	Zea mays	Chitinase A	sp P29022.1
A2	582.72	2+	1165.44	Y*GFAHGGTEVEGKR	Y*GFAHGGTEVEGKR 119 YPGFAHGGTEVEGKR 132	Tripsacum dactyloides	Chitinase A	sp Q6JBL6
A2	896.83	2+	1793.66	GPLQLSWNYNYGPAGR	GPLQLSWNYNYGPAGR 179 RGPLQISWNYNYGPAGR 195	Zea diploperennis	Chitinase B	sp Q6JBP3
A2	787.79	2+	1575.58	TALWFWMNNVH	TALWFWMNNVH 218 TALWFWMNNVH 228	Zea mays	Chitinase A	sp P29022.1
A2	590.71	2+	1181.42	VMPQGFGATTR	VMPQGFGATTR 230 VMPQGFGATIR 240	Zea mays	Chitinase A	sp P29022.1

The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A2

showed homology to chitinase from Zea mays with swissprot accession number sp|P29022.

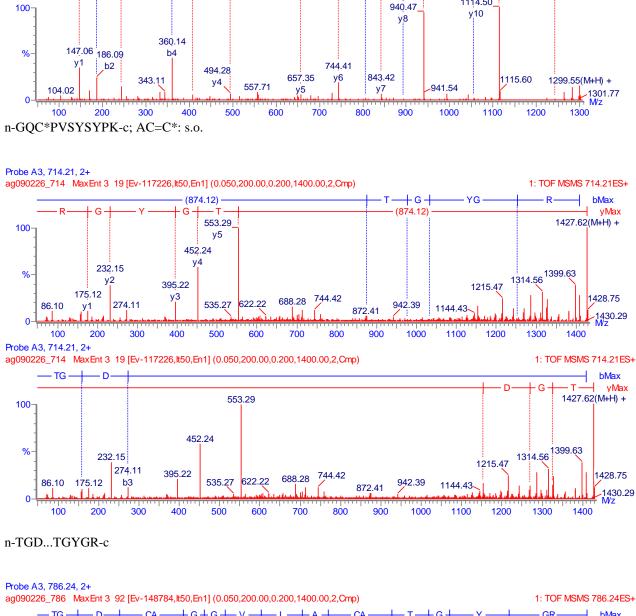
n-SAFLEAANK-c, aus Chitinase

Probe A3, 511.50, 3+

1: TOF MSMS 650.19ES+

G

bMax -

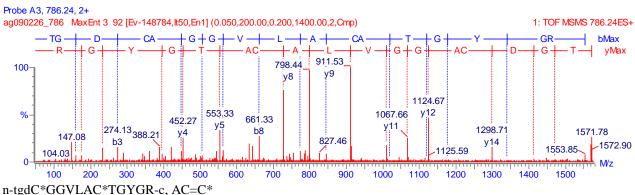

yMax

PK

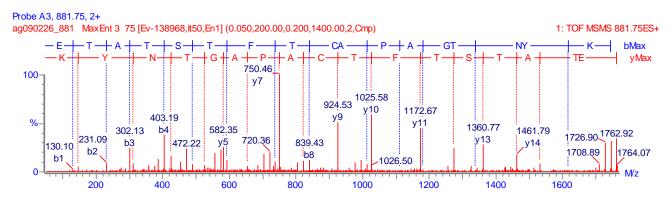
0

AC

1114.50


Probe A3, 650.19, 2+

- GQ -

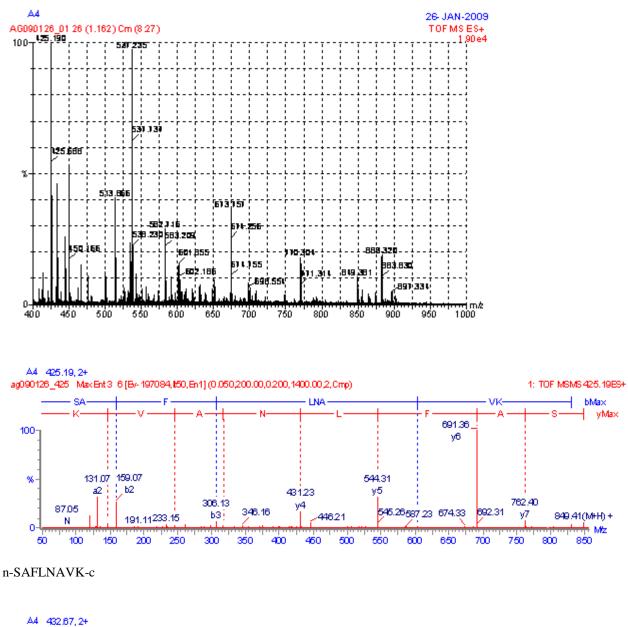

ag090226_650 MaxEnt 3 88 [Ev-152667,lt50,En1] (0.050,200.00,0.200,1400.00,2,Cmp)

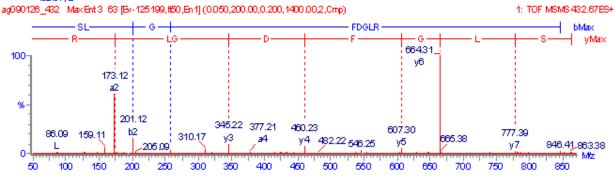
CA

PVSY

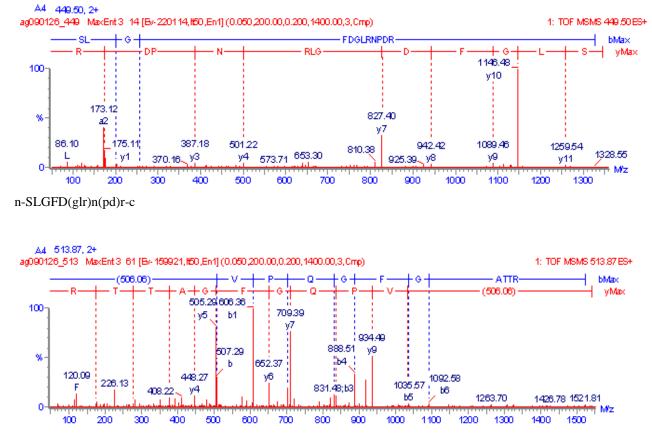
22

...ATSTFTC*PAGTNYK-c; AC=C*

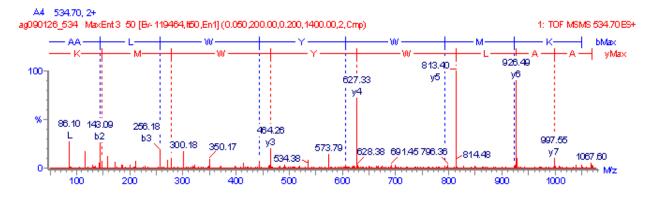

Table 6. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A3.


(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).

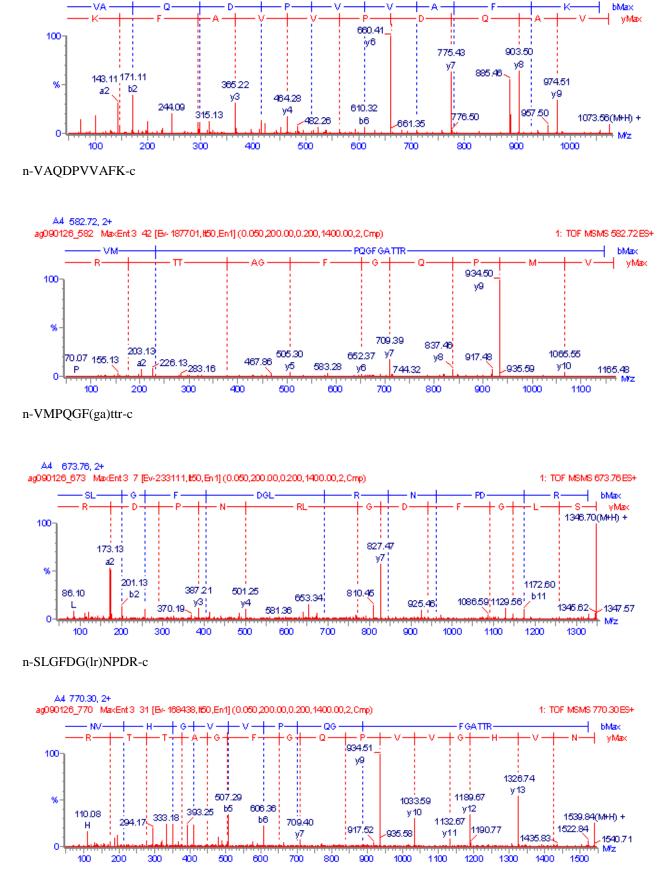
Band	Mass kDa	Charge	Rel. mass kDa	Derived amino acid sequence	Sequence similarity position	Organism	Possible function	Accession number
A3	459.66	2+	919.32	C*AVDVNAR	C*AVDVNAR 145 CAVDVNAR 152	Zea mays	Thaumatin-like protein	sp P33679
A3	475.68	3+	1427.04	n-AVDVNAR	AVDVNAR 146 AVDVNAR 152	Oryza sativa	Thaumatin-like protein	sp Q75GX4
A3	511.50	3+	1534.50	PAELR	PAELR 154 PAELR 158	Hordeum vulgare	Thaumatin-like protein	sp Q946Y8
A3	522.22	2+	1044.44	LSVPAGT(taar	LSVPAGTtaar 54 RITAPAGTTAAR 65	Oryza sativa	Thaumatin-like protein	sp 004364
A3	786.24	2+	1572.48	tgdCGGVLAC*TGYGR	tgdCGGVLACTGYGR 84 TGDCGGVLQCTGYGR 98	Hordeum vulgare	Thaumatin-like protein	sp Q946Y9
A3	881.75	2+	1763.50	ATSTFTC*PAGTNYK	ATSTFTCPAGTNYK 209 ATSTFTCPAGTNYK 222	Oryza sativa	Thaumatin-like protein	sp Q75GX4
A3	650.19	2+	1300.38	GQC*PVSYSYPK	GQCPVSYSYPK 196 GQCPDAYSYPK 206	Zea mays	Thaumatin-like protein	sp P33679
A3	714.21	2+	1428.42	TGDTGYGR	TGDTGYGR 83 RTGDCGGVLQCTGYGR 98	Zea mays	Thaumatin-like protein	sp P33679


The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A3 showed homology to zeamatin from *Zea mays* with swissprot accession number sp|P33679.

Probe A4

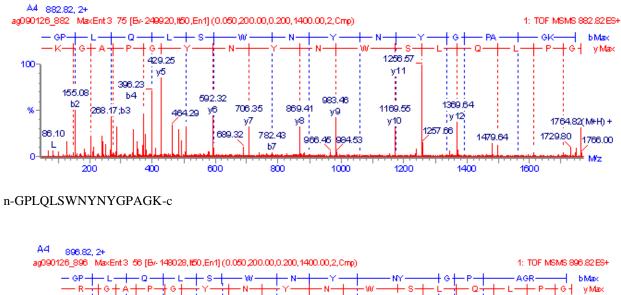


n-SLGFD(gl)R-c



...PQGFGATTR-c

n-AALWYWMK-c


1: TOF MSMS 537 23 ES+

n-NVHGVVPQGFGATTR-c

A4 537.23, 2+

ag090126_537 MaxEnt 3 84 (Br-211782, #50, En1) (0.050, 200.00, 0.200, 1400.00, 2, Cmp)

1284.63

y11

1197.59

y 10

1200

1180.56

1011.50

ъ**9**

1000

897.45

γ8

879.49

800

1397.72

y12

1400

1507.78

1638.78 1792.93(MH) +

Mz

1800

y14

1600

N

y7

464.32 620.35 734.39

у6

673.84

ł

600

396.24 467.28 64 5

400

y5

÷ 1 155.09

268.18

63

100

%

0

n-GPLQLSWNYNYGPAGR-c

b2!

200

86.10

L

Table 7. Amino acid sequence of the peptide fragments generated by trypsin digestion of protein band A4.

(*indicates oxidised methionine residues, the amino acids in upper case indicate highly accurate sequences generated automatically and the ones in lower case represent the amino acids that are predicted).

Band	Mass	Charge	Rel.	Derived amino	Sequence similarity	Possible	Organism	Accession
Dana	mabb	onarge	Mass	acid sequence	position	function	organrom	number
A4	425.29	2+	850.58	SAFLNAVK	SAFLNAVK 115 SAFLSAVK 122	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	432.67	2+	865.34	SLGFD(gl)R	SLGFDgl++++R 202 AIGFDGLGDPGR 213	Chitinase	Sorghum bicolor	<u>XP002455593</u>
A4	449.50	2+	899.00	SLGFD(glr)n(pd)r	SLGFDgl+np+r 202 AIGFDGLGDPGR 213	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	513.87	2+	1027.74	PQGFGATTR	PQGFGATTR 238 PQGFGATTR 247	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	534.70	2+	1069.40	AALWYWMK	AALWYWMK 224 AALWFWM 229	chitinase- B1	Sorghum bicolor	sp Q93WT1
A4	537.23	2+	1074.46	VAQDPVVAFK	VA+D+VVAFK 214 VARDAVVAFK 223	class IV chitinase	Oryza sativa	sp 004138
A4	582.72	2+	1165.44	VMPQGF(ga)ttr	V+PQGFgattr 236 VVPQGFGATTR 246	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	673.76	2+	1347.52	SLGFDG(lr)NPDR	SLGFDGlrNP+R 202 AIGFDGLGDPGR 213	Chitinase	Sorghum bicolor	<u>XP002455593</u>
A4	770.30	2+	1540.60	NVHGVVPQGFGATTR	NVHGVVPQGFGATTR 233 +VHGVVPQGFGATTR 246	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3
A4	882.82	2+	1765.64	GPLQLSWNYNYGPAGK	GPLQLSWNYNYGPAGR 186 GPLQISWNYNYGPAG+ 199	chitinase- B1	Sorghum bicolor	sp Q93WT1
A4	896.82	2+	1793.64	GPLKLSWNYNYGPAGR	GPLKLSWNYNYGPAGR 186 GPLQISWNYNYGPAG+ 199	Chitinase	Zea diploperennis	UNIPROT. Q6JBP3

The derived amino acid sequence of peptides recovered from in gel trypsin digestion of protein band A4 showed homology to chitinase B from *Zea diploperennis* with Uniprot accession number Uniprot.Q6JBP3.

2.1 Inverse PCR to amplify of unknown regions flanking the known sequence of pearl millet chitinase.

After isolating partial length gene of pearl millet chitinase and tlp unknown regions of the gene flanking the known sequence can be isolated by primer based genome walking techniques. The simplest and single step method is inverse PCR. To carry out inverse PCR, genomic DNA library was created by restriction digestion of the genomic DNA with non-cutters of the known gene sequence followed by self ligation of restriction digested fragments to form circular double stranded fragments. This library serves as template for PCR. Primers are designed in such way that one primer complimentary to the inner strand of DNA and the other primer complimentary to the outer strand of DNA. The primer pair would not give any product if the gene fragments are not circular as the primers walk in directions away from each other. Only the circular molecules from the library will be amplified. The primers are designed in such a way that the forward primer is complimentary to 3' end of the noncoding strand of the known sequence; reverse primer-complimentary to 5'end of coding strand. The forward primer walks downstream region of the known sequence and the reverse primer-upstream region. Distance amplified depends on the size of circular DNA molecule serving as template. Genomic DNA library was constructed by restriction digestion of genomic DNA with AluI, Sau3AI separately. The restriction digested fragments were self ligated overnight by incubating with T4DNA ligase. These self ligated circular DNA molecules were used as template for inverse PCR. Nucleotide sequence of tlp (partial length) and maize zeamatin (ZMU06831) with which it shows close homology were considered as reference sequences for primer designing (Fig 1). The primers designed and their sequence is mentioned in the table 1.

Nucleotide sequence of pearl millet *chitinase* (partial length) considered for primer designing

>	←
PR3_230Fwd, PR3_252Fwd	PR3_72Rev
1 CCGCACGGGGAGCACGCCGGCAGCGGTAAAGGCGCGGAACGTGGCCAG	CGTCGTCACCGAC
PR3_76Rev	PR3_129Rev
61 GCGTTCTTCAACGGCATCAAGAACCAGGCCGGGGGCGGGGGGGG	CCGGAACTTCTAC
121 ACCCCGCAGCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CACGGCGGAACG
181 GAGGTCGAGGGCAAGCGCGAGATCGCCGCCTTCTTCGCGCACGTCACG	GCACGAGACCGGA
241 CGTAAGTTGGATGAATAGCTAAGCTAGCNCTCCAATCCGCCTCTCTA	CTACTGCAAACTC
301 CAATATTTCTTCTGCTGAACTAAATGTTCACGGCTTCATACCG ACA	GATTTCTGCTACA
PR3_375Fwd	
361 TCAGCGAGATCAACAAGAACAACGCCTACTGCTCGAGCAACGCGCAG	IGCCCGTCCCCCG
PR3_447Fwd	PR3_709Rev
421 CGGGGAAGAAGTACTACGGGCGCGGGGCCGCTGCAGATCTCGTGGAAC	FACAACT ACGGGC
481 CCA	

Fig 1. Nucleotide sequence of pearl millet chi showing primers designed. Grey shaded boxes indicate the primers.

	Primer	Sequence
1	PR3_72_C	5'-gttgaagaacgcgtcggtga-3'
2	PR3_76_C	5'-tgccgttgaagaacgcgtcg-3'
3	PR3_375	5'-agaacaacgcctactgctcg -3'
4	PR3_ 447	5'-cgcgtcagatctcgtggaac-3'

Table 1. Primers designed to amplify unknown flanking regions of pearl millet *tlp* by inverse PCR

The products of inverse PCR to amplify flanking regions of pearl millet chitinase gene using different primer combinations with genomic DNA library constructed with *Alu*I digested fragments is seen in Fig 2.

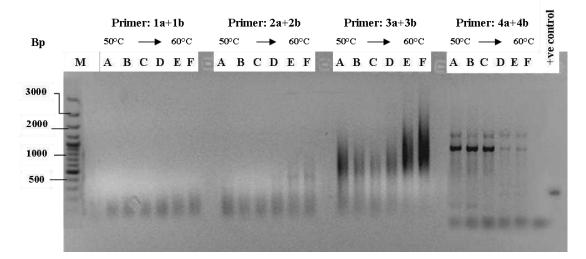
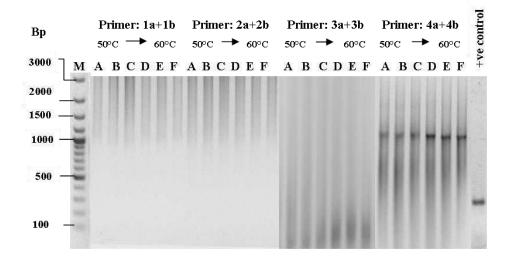


Fig 2. Inverse PCR to amplify unknown flanking regions of pearl millet *chi* with genomic DNA library constructed using restriction enzyme *Alu*I. Lane M: 100 bp DNA ladder plus (Fermentas # SM0321); Lane A-F shows temperature gradient from 50-60°C. The primer pair used in mentioned above the lanes for each set of reaction, last lane is positive control. Primer combinations used are: 1a+1b: (PR3_72 rev + PR3_375 fwd), 2a+2b: (PR3_72 rev + PR3_447 fwd), 3a+3b: (PR3_76 rev + PR3_375 fwd) and 4a+4b: (PR3_76 rev + PR3_447 fwd).

The primer pair 4a 4b amplified approximately 1 kbp amplicon was purified by gel extraction and cloned into CloneJet cloning vector and *E. coli* competent cells were transformed by heat shock transformation. Transformants were screened by colony PCR using primers provided with CloneJet cloning kit, plasmid was isolated from the positive clone and sequenced. Nucleotide sequence of the approximately 1 kbp product is given in Fig 3.


The primer PR3_76_C TGCCGTTGAAGAACGCGTCGCTG) is repeated in both the strands leading to amplification of this nonspecific product. The amplicon does not show any homology to known chitinase genes. But the fragment shows homology to proteins of unknown function from *Triticum aestivum* (Accession number: CK168143 gi: 39002991).

Nucleotide sequence of the ~1kbp amplified by PR3_76 rev and PR3_447 fwd.

1	CTATAGAATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCATATGGTCGACCTG
61	CAGGCGGCCGCACTAGTGATTTGCCGTTGAAGAACGCGTCGCTGTGCAGCCATCCCCGAC
121	GCTGTGCAGGGGTTGTGCGGGATGGCTGGTGTCATTCCTTGGCACTATGTTGCCTGCTCC
181	CGTCCTTCCTCCACACCACCCCCCGAAAGAGGATAACGACACCCTCTAAGAGCGTACG
241	CCCACGAACTCGGCGCCCATCCAGGACGGTGCCGTGACGCAGGGTGAGCGAAGCACGTCT
301	CCCCCATCACCTCCGACCCTGTGCGAGCGTGCGGCCATCCCCGGCGCTGTGCTGCCATCC
361	CGGGTACTGCAGAGCCATCCCCAACACTGTGGGGACCTTTGCTAACGGGACGCTGCCACG
381	CCAGTCGTTGTGCCGTGTGTGGCCCAGGCTCCCTCGTCAGCTAGACCCTCGAATCGGTGT
421	ATGGATGACGACCAGACGCGAGCACCGACAAGACCACCCCTCGAAGCCGCCTCTAAACGG
481	GCACAGGGGCCACCACGACGCGTTCTTCAACGGCAAATCCCGCGGCCATGGCGGCCGGGA
541	GCATGCGACGTCGGGCCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTC
601	GTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCA
661	CATCCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCC
721	AACAGTTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGNAGCGGCGCATTAAGCGCGGC
781	GGGNGTGGGTGGTNCGNGCANCGTGACCGNTCACTTTGCNGCGCCTNGCNCCNTNCNTTC
841	NNTTNTTCCCTTNCCTTCTCGCNCGTTCGCNGNTTTNCCGNNAGCTCTWAATCGGGGGGCT
901	CCCTTTAGGGTNCCATTAANNTTTACGGCNCTNNNCCCNAAAACTTGATAGGGGGGNNGGT
961	TCACTANGGGCNTCNC

Fig 3. Nucleotide sequence of the ~1kbp product amplified by inverse PCR using the primer pair Fwd and PR3_76 Rev+ PR3_447 Fwd. Grey shaded box indicates the primer PR3_76Rev repeated twice leading to non specific amplification.

The products of inverse PCR to amplify flanking regions of pearl millet chitinase gene using different primer combinations with genomic DNA library constructed with *Sau*3AI digested fragments is seen in Fig 4.

Fig 4. Inverse PCR to amplify unknown flanking regions of pearl millet chi with genomic DNA library constructed using restriction enzyme *Sau*3AI. Lane M: 100 bp DNA ladder plus (Fermentas # SM0321); Lane A-F shows temperature gradient from 50-60°C. The primer pair used in mentioned above the lanes for each set of reaction, last lane is positive control. Primer combinations used are: 1a+1b: (PR3_72 rev + PR3_375 fwd), 2a+2b: (PR3_72 rev + PR3_447 fwd), 3a+3b: (PR3_76 rev + PR3_375 fwd) and 4a+4b: (PR3_76 rev + PR3_447 fwd).

The primer pair 4a and 4b amplified approximately 1.1 kbp product, which was directly sequenced. Nucleotide sequence of this 1.1 kbp product (a few bases at both the ends are missing as the PCR product was directly sequenced therefore the sequence appears shorter) is given in Fig 5.

Nucleotide sequence of the 954 bp amplified by PR3_76 rev and PR3_447 fwd.

1	CAACANAGGTGCCTCAGTCCACGTCGATCATCATGACCTCCTGNCCAGCTGGTGGATGCG
61	CTGGGACAGTGGTCGGTGGCGCCGGCTCCGGGATGGATGG
121	AGACACCCGCTGGTACTTGAGCGCGNGTNGATCCAAGCTTCGANAGGACGTCCGCTGCAA
181	CGTTGTTGTCGCGGACGATGTGATGGAACTCGAGACCATAGAANTTGTTCTCGAGCTTGC
241	GGACTTCTAGGCAGTAGGCGTCCATGTTCTCCTTGTTGCGGTCCCAGGACTTGTTGACTT
301	GGTTGATGACCACTGCGGAGTCGCCGTAGACTAGTAGCCGCTTGATGCCCAGTGAAGCCG
361	CGAGGCGGAGCCCGTGTAGGAGAGCTTCGTACTCGGCTTCGTTGTTTGAGACCTTCCAGA
421	AGATCTGCAGGACGTACTTGAGTTGTTCGCCCGTTGGAGAGATCAGGAGTACCCCTGCAC
481	CTGCGCCCTCGAGGTTGAGTGAGCCGTCAAAGTACATCACCCAATGCTCTGGTCGCNCGG
541	TNGGAGTAGGTAGCTGATTCTCCCGCCACTCTGCCATGAAGTCGACTAGTGCNTGCNACT
601	TGATGGCTGTGCGTGGCTTGAAGTCNATGGTGAGGGCGCCGAGNTCGACNGCCCACTTGG
661	AGATTCTTCCAGTAGCATCTTGGTTCCNCAAGATGTCNCCNAGCGGGTAGTCNGTGACNA
721	CNGAAATCNAGTACTCCTGGAAGTAGTGTCNTANCTTCCNCGANGGTGATGAGTACTGCN
781	TACANNANCTTCTGCNCNGGCTGATAACNAGCCTTTGNATTCTAAAAGAAACCTCNCTNA
841	CAAAATAAAATTGNNCNCTNGACNGNNTAAGNNTGNNCNTNTTNCTGCCNNTCNANAANN
901	ATGGNNNNACTGACCACTTNANTANTCNCANNNAGNTAAACATANNNTTTTNNA

Fig 5. Nucleotide sequence of the 954 bp amplified by PR3_76 rev and PR3_447 fwd with genomic DNA library constructed with Sau3AI digested fragments.

This 954 fragments shares homology with protein of unknown function from *Zea mays* (NCBI accession number: gi|148990621|gb|EE032011) expressed in seedlings under various stress conditions.

2.2 Inverse PCR to amplify of unknown regions flanking the known sequence of pearl millet chitinase.

To carry out inverse PCR to amplify unknown flanking region, nucleotide sequence of pearl millet tlp (422 bp, partial length) was considered as reference sequences for primer designing.

The primers designed and their sequence is mentioned in the table 2.

Table 2. Primers designed to amplify unknown flanking regions of pearl millet *tlp* by inverse PCR

Primer	Sequence
PR5_59 Rev	5'-CGACTTCTTCGACATCTCGCT-3'
PR5_267 Fwd	5'-CGACTACTCGAGGTACTTCAAGGG-3'
PR5_256 Fwd	5'-GACTGCGGCGGCGTGCT-3'
PR5_208 Fwd	5'-GTGTTCAAGACGGACCAGTA-3'
PR5_271 Fwd	5'-CTGCAGTGCACTGGGTA-3'

Nucleotide sequence of pearl millet tlp (422 bp) with primers designed is shown in Fig 6; grey shaded boxes indicate the primers.

Nucleotide sequence pearl millet tlp (partial length) considered		
for primer designing		
PR5_256Fwd PR5_271 Fwd		
1 GGGACTGCGGCGGCGTGCTGCAGTGCACTGGGTACGGGCGCGCGC		
PR5_312Fwd PR5_59c Rev		
61 CNAGTCGGGCTGACNAGTACCANAACCTCGACTTCTTCGACATCTCGCTGGTGGACGGGT		
121 TCAACGTGCCCATGGACTTCCTCCCGGCGGGCGCGCGCGGGGGGGCGCCCCAAGGGCGGGC		
181 CECEGTECCECCEACETCACEGEECAETECCCCECCECECECCACCEECECT		
PR5_208Fwd		
241 GCAACAACCCGTGCACGGTGTTCAAGACGGACCAGTACTGCTGCACGGGGTCGGCGGGG		
PR5_267Fwd PR5_594Rev		
301 ACAGCTGCGGCGCCACCGACTACTCGAGGTACTCAAGGGGAANTGCCCGGACGCCTNCAG		
PR5_667 Rev		
361 CTACCCCAAGGACGACGCCACCNNCNCCTACACTTGNNNCGNCGGAANNNACTACAAGGT		
421 TT		

Fig 6. Nucleotide sequence of pearl millet tlp showing primers designed. Grey shaded boxes indicate the primers.

The primer sequence though present in the partial length sequence of known region of pearl millet tlp gene, these primers were unable to amplify the upstream as well as downstream region of the gene. Temperature gradient PCR with annealing temperatures 50-60°C with different primer combinations is illustrated in the Fig 7.

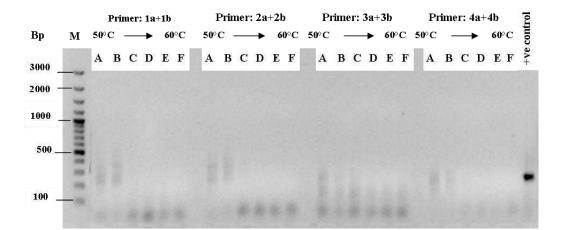


Fig 7. Inverse PCR to amplify unknown flanking regions of pearl millet *tlp* with genomic DNA library constructed using restriction enzyme *AluI*. Lane M: 100 bp DNA ladder plus (Fermentas # SM0321); Lane A-F shows temperature gradient from 50-60°C. The primer pair used in mentioned above the lanes for each set of reaction, last lane is positive control. Primer combinations used are: 1a+1b: (PR5_59 rev + PR5_267 fwd), 2a+2b: (PR5_59 rev + PR5_208 fwd), 3a+3b: (PR5_59 rev + PR5_271 fwd) and 4a+4b: (PR5_59 rev + PR5_256 fwd).

As seen in Fig 7 above all the primer combinations were unsuccessful in amplifying the unknown flanking regions of pearl millet tlp gene by inverse PCR using genomic DNA library constructed with *Alu*I digested fragments as template. The reason could be that *Alu*I might have a restriction site just outside the known sequence of pearl millet tlp gene and thereby not cutting the flanking region outside

the known fragment. Therefore one more genomic DNA library was constructed using *Sau*3AI restriction digested genomic DNA fragments. And PCR was carried out with same set of primers. No new primers were designed in this case as the primer sequences were taken from the known region of pearl millet tlp.

Temperature gradient PCR with annealing temperatures 50-60°C with different primer combinations is illustrated in the Fig 8.

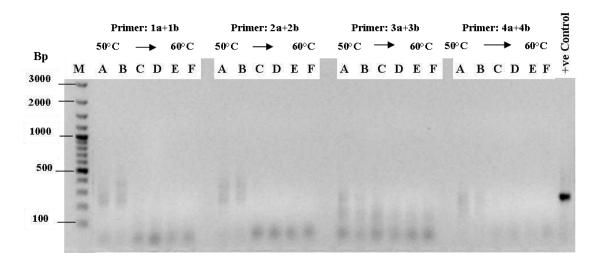


Fig 8. Inverse PCR to amplify unknown flanking regions of pearl millet *tlp* with genomic DNA library constructed using restriction enzyme *Sau*3AI. Lane M: 100 bp DNA ladder plus (Fermentas # SM0321); Lane A-F shows temperature gradient from 50-60°C. The primer pair used in mentioned above the lanes for each set of reaction, last lane is positive control. Primer combinations used are: 1a+1b: (PR5_59 rev + PR5_267 fwd), 2a+2b: (PR5_59 rev + PR5_208 fwd), 3a+3b: (PR5_59 rev + PR5_271 fwd) and 4a+4b: (PR5_59 rev + PR5_256 fwd).

As seen in Fig 8 above all the primer combinations were unsuccessful in amplifying the unknown flanking regions of pearl millet tlp gene by inverse PCR using genomic DNA library constructed with *Sau*3AI digested fragments as template. No new primers were designed in this case as the primer sequences were taken from the known region of pearl millet tlp.

Despite several efforts no amplification was observed with rest of the primer combinations using different genomic libraries as template. This is accounted to the large genome size of pearl millet. This could be the possible reason for failure of this technique despite using different primer combinations and genomic DNA libraries constructed with various enzymes. To gain high sensitivity in inverse PCR, it is important that genomic DNA is digested into fragments some of which would contain gene of interest with its unknown flanking regions. Nevertheless, this cannot be ensured while amplifying unknown flanking regions of a gene because of the lack of nucleotide sequence data that does not allow spotting of restriction site of the enzyme (used to construct genomic DNA libraries) on the gene of interest. The target gene might have restriction site just outside the known sequence separating the unknown flanking region of the gene and thereby not leaving any good length of unknown sequence to be walked by the primer. Or in case of multiploid plants with large genomes, probability of adaptor ligation to the target DNA is highly reduced. Previous studies (Farrelly *et al.*, 1995; Hoelzel and Green, 1992) have explained the failure of PCRs in large genomes with two most possible reasons, the first being a reduction in target DNA relative to the total content of template DNA in a single PCR serves to reduce amplification efficiency.

2.3 Genome walking with universal genome walker kit from Clontech (# 638904).

Genome walking is a simple method for amplifying unknown sequences flanking known gene sequence. The method was developed by Siebert and coworkers in 1995; genome walker universal kit from Clontech (#638904) is designed using this principle by Gwyneth Ingram and Karine Coenen. The method involves construction of genomic DNA libraries, ligation of the restriction digested DNA fragments with Genome walker adaptors (GWAs), designing of gene specific primers and primary and nested PCRs using adaptor primers (APs) and gene specific primers (GSPs). These gene specific primers were designed using the known gene sequence. Two gene specific primers, GSP 1 and GSP 2 were used to perform primary and nested PCR along with adaptor primers 1 and 2 respectively.

Genomic DNA from pearl millet seedlings was extracted by CAB method (Murray and Thompson., 1980) as explained under section 2.11.1 of materials and methods. Genomic DNA libraries were constructed as per manufacturer's instruction using (DraI, EcoRV, PvuII and StuI) separately. To check the complete digestion of genomic DNA 5 µL of the digestion mixture run on a 0.8% agarose gel and the pattern was visualised in the presence of ethidium bromide under UV light. Dephosphorylation of the restriction digested purified genomic DNA was carried out as explained under section 2.13.2 of materials and methods and dephosphorylated DNA was again purified by phenol chloroform extraction as explained under section 2.13.2 of materials and methods and resuspended in 10 mM Tris HCl buffer (pH 8.0) to get end concentration of 0.1 μ g DNA/ μ L. To construct each library, 4 μ L of digested purified DNA (0.1 μ g DNA/ μ L) was mixed with 1.9 μ L Genome Walker adaptor (25 μ M), 1.6 μ L 10 x ligation buffer and 0.5 µL T4 DNA ligase (6 units/µL). Mixture was incubated at 16°C overnight. The reaction was stopped by incubation at 70 °C for 5 min. 1 µL of this library was used as template for primary PCR with adaptor primer 1 (AP1) and gene specific primer 1 (GSP1). Secondary PCR was carried out using 1:100 diluted primary PCR as the template with adaptor primer 2 (AP2) and gene specific primer 2 (GSP2). The 5' termini of long oligonucleotide fragment of GWA and 3'-OH group of small oligonucleotide fragment of GWA is blocked by a primary amino group to prevent an extension reaction by DNA polymerase.

2.3.1 Amplification of unknown flanking regions of pearl millet chitinase gene.

Genome walker primers, adaptor primers and gene specific primers designed to amplify the upstream and downstream region of pearl millet *chitinase* are listed in the table 3 below. The reference sequence considered for primer designing is the 482 bp pearl millet *chi*tinase (partial length) illustrated in Fig 6.

Primer	Primer Sequence	Purpose
Genome walker	5 '-gtaatacgactcactatagggcacg	Walker adaptor
Adaptor	CGTGGTCGACGGCCCGGGCTGGT-3'	
	-3'CCCGACCA-5	
Adaptor Primer 1	5'-GTAATACGACTCACTATAGGGC-3'	Adaptor primer 1
Adaptor Primer 2	5'-ACTATAGGGCACGCGTGGT-3'	Adaptor primer 2
1a)PR3_129 GSP1	5'-GCTCCGCGTGTAGAAGTTCC-3'	Upstream <i>chi</i>
1b)PR3_72 GSP2	5'-GTTGAAGAACGCGTCGGTGA-3'	Upstream <i>chi</i>
2a)PR3_129 GSP1	5'-GCTCCGCGTGTAGAAGTTCC-3'	Downstream <i>chi</i>
2b)PR3_76 GSP2	5'-TGCCGTTGAAGAACGCGTCG-3'	Upstream <i>chi</i>
3a)PR3_230 GSP1	5'-GTGCGAACGTGGCTAATGTG-3'	Downstream <i>chi</i>
3b)PR3_447 GSP2	5'-CGCTGCAGATCTCGTGGAAC-3'	Downstream <i>chi</i>
4a)PR3_230 GSP1	5'-GCTCCGCGTGTAGAAGTTCC-3'	Downstream <i>chi</i>
4b)PR3_375 GSP2	5'-AGAACAACGCCTACTGCTCG-3'	Downstream <i>chi</i>

Table 3. Adaptor primers and gene specific primers to amplify unknown flanking regions of pearl millet chitinase gene (chi).

As the template was GC rich, 2% DMSO (higher concentration of DMSO resulted in smearing of DNA) and 0.6 M Betaine (final concentration) was added to the Master Mix after adding rest of the components. The two-step PCR reaction was carried out in thermo cycler PTC 200 (Biozym, Oldendorf, Germany) according to manufacturer's specification. 1 μ L of constructed genomic DNA library (0.1 μ g DNA/ μ L) was used as the template for primary (Template DNA used for primary PCR was constructed with the restriction enzymes *DraI*, *Eco*RV, *PvuII* and *StuI* separately as per manufacturer's instruction); 1 μ L of 1:100 diluted PCR product of primary PCR was used as the template for secondary PCR. Reaction condition was the same for both primary and secondary PCR, which consisted of 7 cycles of 94°C 25 sec and 72°C 3 min, 32 cycles of 94°C 25 sec and 67°C 3 min. The extremely short incubation time at 94°C was necessary to preserve the integrity of the larger genomic DNA templates required for long distance PCR in the Genome walker protocol. To analyze the primary PCR products, 10 μ l were run on 1.5 % agarose gel.

Primer combinations used were AP1 + 1a, 2a, 3a or 4a for primary PCR AP2 + 1b, 2b, 3b or 4b for secondary PCR.

The primer combination AP1+1a (PR3_129) for primary PCR followed by AP2+1b (PR3_72) for secondary PCR amplified approximately 600 bp product using genomic DNA library constructed with *StuI* digested fragments as seen in the Fig 9 below.

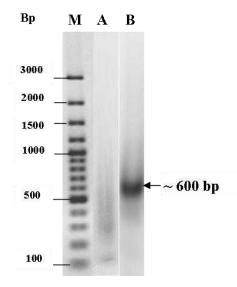


Fig 9. Amplification of approximately 600 bp product. by the primer combination AP1+1a (PR3_129) for primary PCR, followed by AP2+1b (PR3_72) for secondary PCR using genomic DNA library constructed with StuI digested fragments. Lane M is 100 bp ladder plus (Fermentas # SM0321).

Nucleotide sequence of PCR product amplified by the primer combination AP1+1a (PR3_129) for primary PCR followed by AP2+1b (PR3_72) for secondary PCR using genomic DNA library constructed with *StuI* digested fragments.

- 1 ATGATTGTGCACGTTGTTCATCCAGAAAGTCGAGTACTCTGTGAGCCTTGGGGGCATGTGA
- 61 CCGGCTTGACCTCGATCCACTTGGTGAACTTGTCGATGGCCACCAATACTCTGTTGAATC
- 121 CACCTGGCACAGTTGGCAGTGGCCCAATCATGTCGAGCCCACAGCAAGGAAAGGGCCAGG
- 181 TCGGCGGTATGGTGACTAGCTTGTAGGCTGGGACGTGTTGCTGCTTGGCAAAGTATTAAC
- 241 ATCCTTGGCACCGTCTGACGAGTTCTTCAGCGTTGCCCAGGGCTGTGGGCCAGTAGAAGG
- 301 CTCGCTGGAAGGCCTTGCTGACCAGCGTGCGAGAGGACGCGTGGTTGCCGCAGACGCCCT
- ${\tt 361} \quad {\tt TGTGGATCTCTTCCAAGATGTCCTTGCCTTGCCTAGGAACGCACTTCATGAGTACTC}$
- 421 CAGAAGATGTGCCCCGCTTGTAAAGCTTGTCTCCGACGAGGACGTAGGACTCGGCGCGGC
- 481 GGATGAGCTGCTCCGCCAAGTTTTTGTCCGCGGGGACCTTCTGCTCGCTGAGGTAGTCAA
- 541 TGAAGGGTTGCCTCCAGTCCGCGTTNATCATCATGACCTCCT

Fig 10. Nucleotide sequence of 582 bp PCR product amplified by the primer combination AP1+1a for primary PCR followed by AP2+1b for secondary PCR using genomic DNA library constructed with *Stu*I digested fragments.

This 582 bp nucleotide sequence shares homology with *Pennisetum glaucum* hypothetical protein (NCBI accession number: gi|32277246 gb|CD726399).

The primer combination AP1+3a (PR3_230) for primary PCR followed by AP2+3b (PR3_447) for secondary PCR amplified approximately 800 bp product using genomic DNA library constructed with *Pvu*II digested fragments as seen in Fig 11.

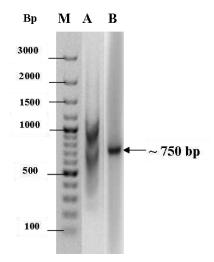


Fig 11. Amplification of approximately 750 bp PCR product by the primer combination AP1+for primary PCR 3a followed by AP2+3b for secondary PCR, using genomic DNA library constructed with *Pvu*II digested fragments. Lane M is 100 bp ladder plus (Fermentas # SM0321).

Nucleotide sequence of PCR product amplified by the primer combination AP1+3a (PR3_230) for primary PCR followed by AP2+3b (PR3_447) for secondary PCR using genomic DNA library constructed with *Pvu*II digested fragments.

1 CCCTCAGCTCCACGGTCGAATCATCATGCACCTCCTGGNCCAGACTGGNTGGGATGACGC
61 CTGGGTACAGTNGCNNTCGGNTGGCGCTCNGNTCCGGGATGGATNGCGCATGAAGCTTCG
121 TGGACTNAAGACNNCCGCGTGAGTACTATGAGCNCNTTCTAGATCCAAGNTCTGACAGNG
181 ANGNCAGCTNCANCTNTNTTGTCGGGACGATGTGTCGTAACTCGAGCACCNTANAACTTG
241 TTCTCGAGTTTGCGNACTTCTNGGNAGNANNCNTNCATGAACTCCTTGANTGCGGACCCA
301 NGACTTGATAACTTGGTTGATGACCNCTGNCNAGTCGNCGNAAACTANNAGCCNNTTGAT
361 NNNNNGTGAAGNCNNCANGCNNAGNCCGTGTAGCAGAGNTTCNAACTCATGCTTCGATTG
421 TTTNAGACCTTCCAGAAGATCTGNAGGACNTACTTGAGATTGNTCNNCCGTTGTCAGANA
481 TCAGGAGNACCCACTGCACNTNCGNCCTNGAGNTTNAGNGANNCGTCTAAAANCATCANC
541 CAATGTTCTNNNCTCTCNNACGGAGAANCCAGCTGATTCTCNCNCTANTCTTCAATGAAG
601 TTCNACTANTNCNTGNAANTCCAAGGGNNNNTCNTGNNTTGAAANNAATNNTGANNNCNN
661 CNNAATTTNCAAANNTCACTTCCNAATTNNTNNNANAANCCATATTNTNTNANNAAAATC
721 CTNNTCNANNNATNNNNNNNNANCAT

Fig 12. Nucleotide sequence of 748 bp PCR product amplified by the primer combination AP1+3a for primary PCR followed by AP2+3b for secondary PCR using genomic DNA library constructed with *Pvu*II digested fragments.

The 748 bp nucleotide sequence shares homology with *Pennisetum glaucum* hypothetical protein (NCBI accession number: gi|32277246 gb|CD726399). Despite several efforts to optimize the PCR conditions, no amplification was observed with rest of the primer combinations with different genomic DNA library as template.

2.3.2 Amplification of unknown flanking regions of pearl millet thaumatin like protein gene.

PCRs were carried out similar to amplification of flanking regions of chitinase gene explained above, using gene specific primers for amplification of tlp. Gene specific primers designed to amplify the

upstream and downstream region of pearl millet thaumatin-like protein gene are listed in the table 4. The reference sequence considered for primer designing is the 482 bp pearl millet tlp (partial length) illustrated in Fig 6.

Table 4. Adaptor primers and gene specific primers to amplify unknown flanking regions of pearl millet thaumatin like protein gene.

Primer	Primer Sequence	Purpose
1a)PR5_594 GSP1	5'-gcactgccccttgaagta-3'	Upstream <i>tlp</i>
1b)PR5_59 GSP2	5'-CGACTTCTTCGACATCTCGCT-3'	Upstream <i>tlp</i>
2a)PR5_271 GSP1	5'-CTGCAGTGCACTGGGTA-3'	Downstream tlp
2b)PR5_208 GSP2	5'-GTGTTCAAGACGGACCAGTA-3'	Downstream tlp
3a)PR5_271 GSP1	5'-CTGCAGTGCACTGGGTA-3'	Downstream tlp
3b)PR5_312 GSP2	5'-GGAGTACGCGCTGAAGCAGT-3'	Downstream tlp

Primer combinations used were AP1 + 1a, 2a or3a for primary PCR AP2 + 1b, 2b or 3b for secondary PCR.

The primer combination AP1+2a (PR5_271) for primary PCR followed by AP2+2b (PR5_312) for secondary PCR amplified approximately 500 bp product using genomic DNA library constructed with *Eco*RV digested fragments as seen in Fig 13.

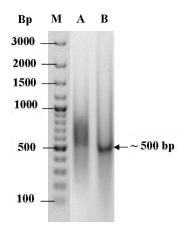


Fig 13. Amplification of 500 bp PCR product amplified by the primer combination AP1+ 2a for primary PCR followed by AP2+2b for secondary PCR using genomic DNA library constructed with *Eco*RV digested fragments. Lane M is 100 bp ladder plus (Fermentas # SM0321).

Nucleotide sequence of PCR product amplified by the primer combination AP1+2a for primary PCR followed by AP2+2b for secondary PCR using genomic DNA library constructed with *Eco*RV digested fragments.

1 CTAATNCAGGACGGTCCTCATNNTAATGTCTNATGAGNTTATCTTGGNATTTGGAATCGC

- 61 ATNAAAAANTCTGTATTATGCTCACTCGAGGAAAGTAGATGTGGATAGGGGGCTTATACCC
- 181 TCGGGAAATAATTTTCCAGAAGAACCAATGTCCGTTAGGCACCTAATCCTTATGTCATAA
- 241 TAGATCCGAACACTTGCCTCGGATTGACTTCAATATAATTGCTCCAGTAAATAACTAA
- 301 AAAAAAAAAAAAAAAGGACGGNAGATAGTAAAGAAAAGGACTAATCNTAATNTCTNTC
- 361 TTTCAAAGATTCAATAAAAAGACAGTTGGCGGGTCNCTTTGTATGTCTTGNCCGGAAAGA
- 421 GGAGGACTTAATGATTNTTCGTTCNCCGGAACCAACTACAAGGN

Fig 14. Nucleotide sequence of 464 bp PCR product amplified by the primer combination AP1+2a for primary PCR followed by AP2+2b for secondary PCR using genomic DNA library constructed with *Eco*RV digested fragments.

This 464 bp nucleotide sequence shares homology with *Pennisetum ciliare* (Syn. *Cenchrus ciliaris*) (NCBI accession number: gi | 27532828 gb | BM084919).

The primer pair AP1+3a for primary PCR followed by AP2+3b for secondary PCR amplified a 654 bp PCR product using genomic DNA library constructed with *Stu*I digested fragments as seen in Fig 15.

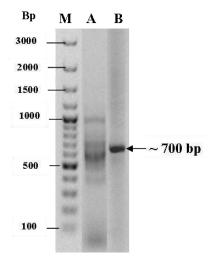


Fig 15. Amplification of 700 bp PCR product amplified by the primer combination AP1+ 3a for primary PCR followed by AP2+3b for secondary PCR using genomic DNA library constructed with *StuI* digested fragments. Lane M is 100 bp ladder plus (Fermentas # SM0321).

Nucleotide sequence of PCR product amplified by the primer combination AP1+3a for primary PCR followed by AP2+3b for secondary PCR using genomic DNA library constructed with *Stu*I digested fragments.

-	1 CGACANAAGNTTGCCTCCAGNTCACGATCAATCATCATGAACCTCCTGCCCAGCTGGNGG
61	ATGNGCTGGNTACAGTGGTCGGAGGCGCCGGCTCCGGGATGGATGGCGCGTGAAGCCTCG
121	TGGACGAAGACACCCGCTTGNTACTTGAGCGCGAGTGGATCCAATCCTTCNAGAGGACGT
181	CCGCTGCAACGATTGTTGTCGCGGACGATGTGATGGAACTCGAGACCNTAGAANTTGTTC
241	TCGAGCTTGCGGACTTCTAGGCAGTAGGCGTCCATGTNCTCCTTGTTGCGGTCCCANGAC
301	TTGTTGACTTGGTTGATGACCACTGCNGAGTCGCCGTANACTAGTAGCCGCTTGATGCCC
361	AGTGAAGCCGCGAGGCGGANCCCGTGTAGGAGAGCTTCNNTACTCGGCTTCNTTGTTTGA
421	GACCTTCCANAAGATCTGCANGACGTACTTGAGTTGTTCGCCCGTTGGAGAGATCAGGAG
481	TACCCCTGCNCTTTGCNCCCTCGAGGTTTGAGTGAGCCGTCGAAGTACANCACCCANTGC
541	TCTNGCNGCTCGNTTNGGAGNNNGTNNCTGAATTCTCCCGCCACTCTNNCATGAANTCNA
601	CTANAGNTTGCAAANNTTGNTGCNCNNTGCCTGCNTTNGAAATNNATGTCTTAC

Fig 16. Nucleotide sequence of 654 bp PCR product amplified by the primer combination AP1+3a for primary PCR followed by AP2+3b for secondary PCR using genomic DNA library constructed with *Stu*I digested fragments.

This 654 bp nucleotide sequence shares homology with *Pennisetum glaucum* hypothetical protein (NCBI accession number: gi|32277246 gb|CD726399). Despite several efforts no amplification was observed with rest of the primer combinations using different genomic libraries as template. This is accounted to the large genome size of pearl millet which on restriction digestion generates numerous smaller DNA fragments which will be ligated to the walker adaptor. The chances of target DNA – adaptor ligation is crucial for successful amplification of unknown flanking regions of gene of interest. However in this case because of large genome size, ratio of adaptor ligated target DNA to non target DNA is very low. This could be the possible reason for failure of this technique despite using different primer combinations and genomic DNA libraries constructed with various enzymes.

2.4 Straight walk: A ligation-mediated method of genome walking (Tsuchiya et al., 2009).

An important step in plant genome research is the isolation of unknown genomic regions flanking known sequences. Several polymerase chain reaction (PCR) (Abd-Elsalam, 2003) based techniques have been developed for this purpose. Although these methods have been successfully used for plants with relatively small genomes (e.g., *Arabidopsis thaliana* and *Oryza sativa*), they often fail for plants with large genomes because the genome size has a negative effect on PCR amplification (Garner, 2002). The problem of PCR-based genome walking in plants with large genomes is likely caused by the extremely low ratio of the number of target DNA molecules to other genomic sequences in the reaction mixes. For this reason, the amplification of the desired product can completely fail or be obscured due to the excessive accumulation of nonspecific products. Therefore, a genome walking method that allows both high sensitivity and high specificity is needed to obtain satisfactory results in plants with large genomes. This is an improved ligation-mediated PCR (LM–PCR) procedure that is especially effective for plants with large genomes.

For straight walking to amplify unknown genomic regions flanking known sequences of *chi* and *tlp* gene from pearl millet, adaptor primers were designed as explained by Tsuchiya and coworkers (2009). These adaptor primers include straight walk adaptors (SWA - forward and reverse), Specific adaptor primers SAP - 1 and 2) which work regardless of the genome used (Tsuchiya *et al.*, 2009). The 5' termini of SWA-R1 and SWA-R2 are phosphorylated for ligation, and 3'-OH is blocked by a primary amino group to prevent an extension reaction by DNA polymerase. SWA is composed of a combination of SWA-F and either SWA-R1 or SWA-R2. The 5'-end sequences of SWA-R1 and SWA-R2 are compatible with the restriction enzyme sites of *Bam*HI, *Bgl*II, *Bcl*I, or *Sau*3AI and *Spe*I, *Nhe*I, or *Xba*I, respectively. SAP2 has a *Not*I restriction enzyme site to ease cloning.

In order to construct the genomic library, Genomic DNA from pearl millet seedlings was extracted by CAB method (Murray and Thompson., 1980) as explained under section 2.11.1 of materials and methods. Genomic DNA libraries were constructed by restriction digestion of 500 ng of genomic DNA was digested separately with 10 units of BamHI, BglII, BclI, Sau3AI, SpeI, NheI, and XbaI. All enzymatic reactions were carried out in a total volume of 10 µL at 37°C except for BclI which was incubated at 55°C. The four base 5' overhangs were partially filled by adding 1 µL of 1 mM deoxyguanosine triphosphate (dGTP) for the BamHI, BgIII, BcII, and Sau3AI digestions. For the SpeI, NheI, and XbaI digested DNAs 1µL of 1 mM deoxycytidine triphosphate (dCTP) was added. The end fill reactions were performed with 1 unit of Klenow enzyme (3' \rightarrow 5' exonuclease activity, Klenow Fragment, Fermentas # EP0051) as explained under section XX of materials and methods. After the end fill in reaction, the Klenow enzyme was heat-inactivated by 75°C for 20 min. The partially end-filled DNA fragments generated by BgIII, BcII, or Sau3AI were ligated to the adaptor composed of 1 µL of 100 µM SWA-F and 1 µL of 100 µM SWA-R1. The DNA fragments generated by SpeI, NheI, and XbaI were ligated to the adaptor composed of 1 µL of 100 µM SWA-F and 1 µL of 100 µM SWA-R2. Ligation was carried out at 16°C overnight. To check the complete digestion of genomic DNA 5 μ L of the digestion mixture run on a 0.8% agarose gel and the pattern was visualised in the presence of ethidium bromide under UV light. Dephosphorylation of the restriction digested purified genomic DNA was carried out as explained under section 2.13.2 of materials and methods and dephosphorylated DNA was again purified by phenol chloroform extraction as explained under section 2.13.2 of materials and methods and resuspended in 10 mM Tris HCl buffer (pH 8.0) to get end concentration of 0.1 µg DNA/µL.

PCR conditions

PCR conditions for primary PCR were as follows: hot-start denaturation at 94° C for 2 min, followed by 35 cycles of 94° C for 30 s, 65° C for 30 s, and 68° C for 5 min. The PCR conditions for secondary PCR were the same as for the first PCR except that only 30 thermal cycles were performed and 1µl of 100-fold diluted primary PCR products was used as template of secondary PCR.

2.4.1 Amplification of the unknown flanking regions of pearl millet chitinase gene.

Known sequence-specific primers (KSPs) designed to amplify the unknown flanking regions of pearl millet chitinase gene (chi) are compiled in the table 5.

Primer	Primer Sequence	Purpose
SWA-F		Straight walking
	GGGTTACACGATTGCTT-3'	forward primer Straight walking
SWA-R1	5 ' -ATCAAGCAATCGTGT-3 '	reverse primer 1
SWA-R2	5 ' - TAGAAGCAATCGTGT-3 '	Straight walking
		reverse primer 2 Specific adaptor
SAP1	5 ' -CGCAGGCTGGCAGTCTCTTTAG-3 '	primer 1
SAP2	5 ' -ATGCGGCCGCTCTCTTTAGGGTT	Specific adaptor
SAPZ	ACACGATTGCTT-3 '	primer 2
1a)PR3_129 KSP1	5 ' -GCTCCGCGTGTAGAAGTTCC-3 '	Upstream <i>chi</i>
1b) PR3_72 KSP2	5 ' - GTTGAAGAACGCGTCGGTGA-3 '	Upstream <i>chi</i>
2a)PR3_129 KSP1	5 ' -GCTCCGCGTGTAGAAGTTCC-3 '	Downstream <i>chi</i>
2b) PR3_76 KSP2	5 ' - TGCCGTTGAAGAACGCGTCG-3 '	Upstream <i>chi</i>
3a)PR3_230 KSP1	5 ' - GTGCGAACGTGGCTAATGTG-3 '	Downstream <i>chi</i>
3b) PR3_447 KSP2	5 ' - CGCTGCAGATCTCGTGGAAC-3 '	Downstream <i>chi</i>
4a)PR3_230 KSP1	5 ' -GCTCCGCGTGTAGAAGTTCC-3 '	Downstream <i>chi</i>
4b) PR3_375 KSP2	5 ' -AGAACAACGCCTACTGCTCG-3 '	Downstream <i>chi</i>

Table 5. Straight Walk adaptor (SWA) primers and specific primers for the amplification of unknown flanking regions of chitinase gene.

Primer combinations used were SAP1 + 1a, 2a,3a or 4a for primary PCR SAP2 + 1b, 2b, 3b or 4b for secondary PCR. Despite several efforts no amplification was observed with any of these primer combinations mentioned above with all the different genomic libraries as template. This is accounted to the large genome size of pearl millet which on restriction digestion generates numerous smaller DNA fragments which will be ligated to the walker adaptor. The chances of target DNA – adaptor ligation is crucial for successful amplification of unknown flanking regions of gene of interest. However in this case because of large genome size, ratio of adaptor ligated target DNA to non target DNA is very low. This could be the possible reason for failure of this technique despite using different primer combinations and genomic DNA libraries constructed with various enzymes.

2.4.2 Amplification of the unknown flanking regions of pearl millet tlp gene.

Known sequence-specific primers (KSPs) designed to amplify the unknown flanking regions of pearl millet thaumatin like protein gene (tlp) are compiled in the table 6.

Table 6. Adaptor primers and gene specific primers to amplify unknown flanking regions of pearl millet thaumatin like protei	n
gene (tlp).	

Primer	Primer Sequence	Purpose
1a)PR5_594 KSP1	5'-gcactgccccttgaagta-3'	Upstream <i>tlp</i>
1b)PR5_59 KSP2	5'-CGACTTCTTCGACATCTCGCT-3'	Upstream <i>tlp</i>
2a)PR5_271 KSP1	5'-CTGCAGTGCACTGGGTA-3'	Downstream <i>tlp</i>
2b)PR5_208 KSP2	5'-GTGTTCAAGACGGACCAGTA-3'	Downstream <i>tlp</i>
3a)PR5_271 KSP1	5'-CTGCAGTGCACTGGGTA-3'	Downstream <i>tlp</i>
3b)PR5_312 KSP2	5'-GGAGTACGCGCTGAAGCAGT-3'	Downstream tlp

PCR conditions for primary PCR were as follows: hot-start denaturation at 94°C for 2 min, followed by 35 cycles of 94°C for 30 s, 65°C for 30 s, and 68°C for 5 min. The PCR conditions for secondary PCR were the same as for the first PCR except that only 30 thermal cycles were performed and 1µl of 100-fold diluted primary PCR products was used as template of secondary PCR. Primer combinations used were SAP1 + 1a, 2a or 3a for primary PCR SAP2 + 1b, 2b or 3b for secondary PCR. The primer pair AP1+1a for primary PCR followed by AP2+1b for secondary PCR amplified approximately 1 kbp PCR product using genomic DNA library constructed with BglII digested fragments as seen in Fig 17.

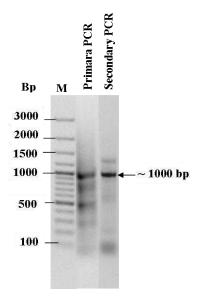


Fig 17. Amplification of approximately 1 kbp PCR product amplified by the primer combination AP1+ 1a for primary PCR followed by AP2+1b for secondary PCR using genomic DNA library constructed with BgIII digested fragments. Lane M is 100 bp ladder plus (Fermentas # SM0321).

Nucleotide sequence of 957 bp PCR product amplified by the primer combination AP1+1a for primary PCR followed by AP2+1b for secondary PCR using genomic DNA library constructed with *Bgl*II digested fragments.

1	AGAGGTNCTCAGTCCACGTCGATCATCATGACCTCCTGCCCAGCTGGTGGATGNGCTGGG
61	ACAGTGGTCGGTGGCGCCGGCTCCGGGATGGATGGCGCGTGAAGCTCNTGGACGAAGACA
121	CCCGCTGGTACTTGAGCGCGNGTNGATCCAAGCTTCGAGAGGACGTCCGCTGCAACGTTG
181	TTGTCGCGGACGATGTGATGGAACTCGAGACCATAGAANTTGTTCTCGAGCTTGCGGACT
241	TCTAGGCAGTAGGCGTCCATGTTCTCCTTGTTGCGGTCCCAGGACTTGTTGACTTGGTTG
301	ATGACCACTGCGGAGTCGCCGTAGACTAGTAGCCGCTTGATGCCCAGTGAAGCCGCGAGG
361	CGGAGCCCGTGTAGGAGAGCTTCGTACTCGGCTTCGTTGTTTGAGACCTTCCAGAAGATC
421	TGCAGGACGTACTTGAGTTGTTCGCCCGTTGGAGAGATCAGGAGTACCCCTGCNCCTGCG
481	CCCTCGAGGTTGAGTGAGCCGTCAAAGTACATCACCCAATGCTCTGGTCGCACGGTGGGA
541	GTAGGTAGCTGNTTCTCCCGCCACTCTGCCATGAAGTCGACTAGTGCNTGCGACTTGATG
601	GCTGTGCGTGGCTTGAAGTCNATGGTGAGGGCGCCGAGNTCGACNGCCCACTTGGAGATT
661	CTTCCAGTNGCATCTTGGTTCCTCAGGATGTCGCCGAGCGGNTAGTCNGTGACAACGGAA
721	ACCNANTACTCCTGGAAGTAGTGTCGTANCTTCCNCGAGGTGATGAGNACTGCNNTACAG
781	NANCTTCTGCACNGGNTGANANCNAGCCTTGNANTCTAANAGAACTCNNTTGANNAAANN
841	AANTGGNNNTTGACNGNNANGNNTGNCNTNTTNTTCCTTCCAANACANTGGANTANNNNC
901	CNCTGATTATNCCNACNAGTAAANCANTATNCTTTTTTAANNNNNNNNNN

F8ig R. Nucleotide sequence of 957 bp PCR product amplified by the primer combination AP1+1a for primary PCR followed by AP2+1b for secondary PCR using genomic DNA library constructed with *Bg*/II digested fragments.

This 757 bp nucleotide sequence shares homology with *Pennisetum glaucum* hypothetical protein (NCBI accession number: gi|32277246 gb|CD726399).

The primer pair AP1+2a for primary PCR followed by AP2+2b for secondary PCR amplified approximately 1 kbp PCR product using genomic DNA library constructed with Sau3AI digested fragments as seen in Fig 19.

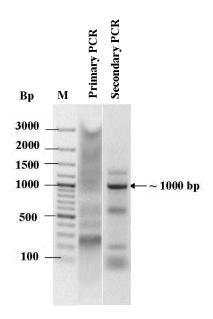


Fig 19. Amplification of 968 bp PCR product amplified by the primer combination AP1+ 2a for primary PCR followed by AP2+2b for secondary PCR using genomic DNA library constructed with *Sau3AI* digested fragments. Lane M is 100 bp ladder plus (Fermentas # SM0321).

Nucleotide sequence of 968 bp PCR product amplified by the primer combination AP1+2a for primary PCR followed by AP2+2b for secondary PCR using genomic DNA library constructed with *Sau*3AI digested fragments.

1 CAACANAGGTGCCTCAGTCCACGTCGATCATCATGACCTCCTGNCCAGCTGGTGGATGCG 121 AGACACCCGCTGGTACTTGAGCGCGNGTNGATCCAAGCTTCGANAGGACGTCCGCTGCAA 181 CGTTGTTGTCGCGGACGATGTGATGGAACTCGAGACCATAGAANTTGTTCTCGAGCTTGC 241 GGACTTCTAGGCAGTAGGCGTCCATGTTCTCCTTGTTGCGGTCCCAGGACTTGTTGACTT 301 GGTTGATGACCACTGCGGAGTCGCCGTAGACTAGTAGCCGCTTGATGCCCAGTGAAGCCG 361 CGAGGCGGAGCCCGTGTAGGAGAGCTTCGTACTCGGCTTCGTTGTTTGAGACCTTCCAGA 421 AGATCTGCAGGACGTACTTGAGTTGTTCGCCCGTTGGAGAGATCAGGAGTACCCCTGCAC 481 CTGCGCCCTCGAGGTTGAGTGAGCCGTCAAAGTACATCACCCAATGCTCTGGTCGCNCGG 541 TNGGAGTAGGTAGCTGATTCTCCCGCCACTCTGCCATGAAGTCGACTAGTGCNTGCNACT 601 TGATGGCTGTGCGTGGCTTGAAGTCNATGGTGAGGGCGCCGAGNTCGACNGCCCACTTGG 661 AGATTCTTCCAGTAGCATCTTGGTTCCNCAAGATGTCNCCNAGCGGGTAGTCNGTGACNA 721 CNGAAATCNAGTACTCCTGGAAGTAGTGTCNTANCTTCCNCGANGGTGATGAGTACTGCN 781 TACANNANCTTCTGCNCNGGCTGATAACNAGCCTTTGNATTCTAAAAGAAACCTCNCTNA 841 CAAAATAAAATTGNNCNCTNGACNGNNTAAGNNTGNNCNTNTTNCTGCCNNTCNANAANN 901 ATGGNNNNACTGACCACTTNANTANTCNCANNNAGNTAAACATANNNTTTTNNNNNNTA 961 NNNNNAAN

Fig 20. Nucleotide sequence of 968 bp PCR product amplified by the primer combination AP1+2a for primary PCR followed by AP2+2b for secondary PCR using genomic DNA library constructed with *Sau*3AI digested fragments.

This 968 bp nucleotide sequence shares homology with *Pennisetum glaucum* hypothetical protein (NCBI accession number: gi|32277246 gb|CD726399).

Conclusion

Despite several efforts no amplification was observed with rest of the primer combinations using different genomic libraries as template. This is accounted to the large genome size of pearl millet which on restriction digestion generates numerous smaller DNA fragments which will be ligated to the walker adaptor. The chances of target DNA - adaptor ligation is crucial for successful amplification of unknown flanking regions of gene of interest. However in this case because of large genome size, ratio of adaptor ligated target DNA to non target DNA is very low. This could be the possible reason for failure of this technique despite using different primer combinations and genomic DNA libraries constructed with various enzymes.

Pennisetum glaucum hypothetical protein (NCBI accession number: gi|32277246 gb|CD726399) with which the amplicons share homology shares strong homology with retrotransposon from *Sorghum bicolor* (NCBI Reference Sequence: XP_002447610). Retrotransposons are known to integrate to genome and therefore it was difficult to clone the several PCR products mentioned in this doctoral study. It is estimated that retrotransposons contribute to approximately 50% of whole genome in case of plats with large genome. Because of this the ratio of target DNA to non target DNA gets highly reduced leading to failure of PCRs. The success of primer based genome walking techniques also depends on the presence of restriction site for the restriction enzyme used. The farther the restriction site longer is the distance walked by the primer. However the presence of restriction site cannot be predicted for the unknown flanking sequence of gene of interest the success rate is limited.

- Abad L.R., Drzo M.P., Liu D., Narasimhan, M.L., Reuveni, M., Zhu, J.K., Niu X., Singh N.K., Hasegawa P.M., Bressan R.A. (1996). Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. *Plant Science*. 118; 11-23.
- Abd-Elsalam K.A. (2003). Bioinformatic tools and guideline for PCR primer design. *African Journal of Biotechnology*. 91–95.
- Agdour S. (2007). Production and characterization of the recombinant wheat chitinase Wch1 and generation of chitin-specific antibodies. Rheinisch- Westfälischen Technischen Hochschule Aachen. PhD thesis submitted to the faculty of Mathematics and Natural sciences.
- Alwine J.C., Kemp D.J., Stark G.R. (1977). Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. *Proceedings of Natural Academy of Sciences*. 74; 5350–5354.
- Antoniw J.F., Ritter C.E., Pierpoint W.S., Van Loon L.C. (1980). Comparison of three pathogenesis-related proteins from plants of two cultivars of tobacco infected with TMV. *Journal of General Virology*. 79-87.
- Atici O". and Nalbantog" lu B. (2003). Antifreeze proteins in higher plants. Phytochemistry. 64; 1187–1196.
- Audy P., Grenier J., Asselin A. (1989). Lysozyme activity in animal extracts after sodium dodecyl sulfatepolyacrylamide gel electrophoresis. *Comparative Biochemistry and Physiology*. 92; 523–527.
- Batalia M. A., Monzingo A. F., Ernst S., Roberts W., Robertus J.D. (1996). The crystal structure of the antifungal protein zeamatin, a member of the thaumatin-like, PR-5 protein family. *Natural Structural Biology*. 3; 19-23.
- Bol J.F., Linthorst H.J.M., Cornelissen B.J.C. (1990). Plant pathogenesis-related proteins induced by virus infection. *Annual Review of Phytopathology*. 28; 113–138.
- Boller T. (1988). Ethylene and the regulation of antifungal hydrolases in plants. *Surveys of Plant Molecular and Cell Biology*. (Edt by Miflin, B.J.). Oxford University Press. 5; 145-174.
- Bradford M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*. 72; 248–254.
- Brameld K.A., Shrader D.W.D., Imperiali B., Goddard W.A. (1998). Substrate assistance in the mechanism of family 18 chitinases; theoretical studies of potential intermediates and inhibitor. *Journal of Molecular Biology*. 280; 913-923.
- Broekaert W.F., Cammue B.P.A., De Bolle M.F.C., Thevissen K., De Samblanx G.W. (2000). Antimicrobial peptides from plants. *Critical Review of Plant Sciences*. 16; 297–323.
- Chen W.P., Chen P.D., Liu D.J., Kynast R.,B. Velazhahan Friebe R., Muthukrishnan S., Gill B. S. (1999). Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. *Theoretical and Applied Genetics*. 95, 5-8.
- Christensen A.B., Cho B.H., Naesby M., Gregersen, P.L., Brandt J., Madriz-Ordenana K., Collinge D.B., Thordal-Christensen H. (2002). The molecular characterisation of the two barley proteins establishes the novel PR-17 family of pathogenesis-related protein. *Molecular Plant Pathology*. 3; 134-144.
- Chu K.T. and Ng T.B. (2003). Mollisin, an antifungal protein from the chestnut *Castanea mollissima*. *Planta Medica*. 69; 809-813.

- Chu K.T. and Ng T.B. (2005). Purification and characterization of a chitinase like antifungal protein from black turtle bean with stimulatory effect on nitric oxide production by macrophages. *Biological Chemistry*. 386; 19–24.
- Collinge D.B., Kragh K.M., Mikkelsen J.D., Nielsen K.K., Rasmussen U., Vad K. (1993). Plant chitinases. *Plant Journal*. 3; 31–40.
- Conejero V. and Granell A. (1986). Stimulation of a viroid-like syndrome and the impairment of viroid infection in *Gynura aurantiaca* plants by treatment with silver ions. *Physiological and Molecular Plant Pathology*. 29; 317-323.
- Cornelissen B.J.C., Horowitz J., Van Kan J.A.L., Goldberg R.B., Bol, J.F. (1986). A tobacco mosaic virus induced tobacco protein is homologous to the sweet-tasting protein thaumatin. *Nature*. 321; 531-532.
- Coutinho P.M., Deleury E., Davies G.J., Henrissat B. (2003). An evolving hierarchical family classification for glycosyltransferases. *Journal of Molecular Biology*. 328; 307–317.
- Cui J., Bahrami A.K., Pringle E.G., Hernandez-Guzman G., Bender C.L. (2005). *Pseudomonas syringae* manipulates systemic plant defenses against pathogens and herbivores. *Proceedings of Natural Academy of Sciences*. 102; 1791–1796.
- Datta K., Velazhahan R., Oliva N., Ona I., Mew T., Khush G. S., Muthukrishnan S., Datta S. K.(1999). Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to *Rhizoctonia solani* causing sheath blight disease. *Theoretical and Applied Genetics*. 98; 6-7.
- Doxey C. A., Cheng Z., Moffatt B.A., McConkey B.J. (2010). Structural motif screening reveals a novel, conserved carbohydrate-binding surface in the pathogenesis-related protein PR-5d. *BMC Structural Biology*. 10-23.
- Dudler R., Mauch F., Reimmann C. (1994). Thaumatin-like proteins. *Thaumatin* (Edt. by Witty, M. & Higginbotham, J.D.) CRC Press. 193-199.
- Epple P., Apel K., Bohlmann H. (1995). An *Arabidopsis thaliana* thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. *Plant Physiology*. 109; 813-820.
- Fagoaga C., Rodrigo I., Conejero V., Hinarejos C., Tuset J.J. (2001). Increased tolerance to *Phytophthora citrophthora* in transgenic orange plants constitutively expressing a tomato pathogenesis-related protein PR-5. *Molecular Breeding*. 7; 175–185.
- Faloona F., and Mullis K.B. (1987). Specific synthesis of DNA in *vitro* via a polymerase chain reaction. *Methods in Enzymology*. 155; 335-350.
- Farrelly V., Rainey F.A., Stackebrandt E. (1995). Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. *Applied Environmental Microbiology*. 61; 2798–2801.
- Flach J., Pilet P.E., Jolles P. (1992). What's new in chitinase research? Experientia. 48; 701-716.
- Garcia-Casado G., Sanchez Monge R., Chrispells Hrispells M.J., Armentia A., Salcedo G., Gomez L. (1998). Role of complex asparagine-linked glycans in allergenicity of plant glycoproteins. *Glycobiology*. 6; 471-477.

- García-Olmedo F., Molina A., Segura A., Moreno M. (1995). The defensive role of nonspecific lipid transfer proteins in plants. *Trends Microbiology*. 3; 72-74.
- Garner T.W. (2002). Genome size and microsatellites; the effect of nuclear size on amplification potential. *Genome*. 45; 212–215.
- Geisler-Lee J., Geisler M., Coutinho P.M., Segerman B., Nishikubo N., Takahashi J., Aspeborg H., Djerbi S., Master E., Andersson-Gunnerås S. (2006). Poplar carbohydrate-active enzymes; gene identification and expression analyses. *Plant Physiology*. 140; 946–962.
- Green T.R., Ryan C.A. (1972). Wound-induced proteinase inhibitor in plant leaves; a possible defense mechanism against insects. *Science*. 175; 776–777.
- Grenier J., Potvin C., Trudel J., Asselin A. (1999). Some thaumatin-like proteins hydrolyse polymeric beta-1,3-glucans. *Plant Journal*. 19; 473-480.
- Griffith M., Lumb C., Wiseman S.B, Wisniewski M., Johnson R.W. (2005). Antifreeze proteins modify the freezing process *in planta*. *Plant Physiology*. 138; 330–340.
- Griffith M., Yaish M.W.F. (2004). Antifreeze proteins in overwintering plants; a tale of two activities. *Trends Plant Science*. 9; 399–405.
- Grover A. and Gowthaman R. (2003). Strategies for development of fungus-resistant transgenic plants. *Current Science*. 84; 330-340.
- Hamel F., Boivin R., Tremblay C., Bellemare G., (1997). Structural and evolutionary relationships among chitinases of flowering plants. *Journal of Molecular Evolution*. 44; 614-624.
- Hammond-Kosack K.E., Jones J.D. (1996). Resistance gene-dependent plant defense responses. *Plant Cell.* 8; 1773-1791.
- Hart C.M., Nagy F., Meins F.J.R. (1993). A 61 bp enhancer element of the tobacco &-1,3-glucanase B gene interacts with one or more regulated nuclear proteins. *Plant Molecular Biology*. 21; 121–131.
- Hash C.T., Sharma A., Kolesnikova-Allen M.A., Serraj R., Thakur R.P., Bidinger F.R., Bhasker Raj A.G., Rizvi S.M.H., Beniwal C.R., Yadav H.P., Yadav Y.P., Srikant, Bhatnagar S.K., Yadav R.S., Howarth C.J., Breese W.A., Witcombe J.R. (2003). Marker-assisted breeding to improve pearl millet hybrid HHB 67; Lab to field. *In* Abstracts and Final Program, In the Wake of the Double Helix; From the Green Revolution to the Gene Revolution, Bologna, Italy.
- Heitz T., Segond S., Kauffmann S., Geoffroy P., Prasad V., Brunner F., Fritig B., Legrand M. (1994). Molecular characterization of a novel tobacco pathogenesis-related (PR) protein; a new plant chitinase/lysozyme. *Molecular Genetics*. 245; 246–254.
- Hengen P.N. (1997). Optimizing multiplex and LA-PCR with betaine. *Trends Biochemical Sciences*. 22; 225-226.
- Henrissat B., Coutinho P.M., Davies G.J. (2001). A census of carbohydrate-active enzymes in the genome of *Arabidopsis thaliana*. *Plant Molecular Biology* 47; 55–72.
- Henrissat B., (1991). A classification of glycosyl hydrolases based on amino acid Sequence similarities. *Biochemistry Journal*. 280; 309-316.

- Hoelzel A.R., and Green A. (1992). Analysis of population-level variation by sequencing PCR-amplified DNA. *In Molecular genetic analysis of populations*. Edited by A.R. Hoelzel. Oxford University Press. 159–187.
- Hoffmann-Sommergruber K. (2002). Pathogenesis-related (PR)-proteins identified as allergens. *Biochemical Society Transactions*. 30; 930-935.
- Howarth C. J. and Yadav, R. S. (2002). Successful marker assisted selection for drought tolerance and disease resistance in pearl millet. *IGER Innovations*. Gordon, A. J., eds. 6; 18-21.
- Hu X. and Reddy A.S. (1997). Cloning and expression of a PR5-like protein from Arabidopsis; inhibition of fungal growth by bacterially expressed protein. *Plant Molecular Biology*. 34; 949–959.
- Ibeas J.I., Lee H., Damsz B., Prasad D.T., Pardo J.M., Hasegawa P.M., Bressan R.A., Narasimhan M.L. (2000). Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. *Plant Journal*. 23; 375-383.
- ICRISAT URL: http://www.icrisat.org/crop-pearlmillet.htm
- Iseli B., Armand S., Boller T., Neuhaus J.M., Henrissat B. (1996). Plant chitinases use two different hydrolytic mechanisms. Federation of European Biochemical Societies *Letters*. 382; 186-188.
- Jacobs A.K., Dry I.B., Robinson S.P. (1999). Induction of different pathogenesis-related cDNAs in grapevine infected with powdery mildew and treated with ethephon. *Plant Pathology*. 48; 325–336.
- Jones E.S., Breese W.A., Shaw D.S. (2001). Inoculation of pearl millet with the downy mildew pathogen, *Sclerospora graminicola*; chilling inoculum to delay zoospore release and avoid damage to zoospores. *Plant Pathology*. 50; 310–316.
- Kang J., Lee M.S., Gorenstein D.G. (2005). The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine; application to *in vitro* combinatorial selection of aptamers. *Journal of Biochemical and Biophysical Methods*. 64; 147–151.
- Kasprzewska A. (2003). Plant chitinases regulation and function. *Cellular and Molecular Biology Letters*.8; 809–824.
- Khairwal I.S., Rai K.N., Yadav O.P., Bhatnagar S.K. (2004). Pearl millet cultivars. Mandor, Jodhpur, India; All India Coordinated Pearl Millet Improvement Project, Indian Council of Agricultural Research.
- Koiwa H., Kato H., Nakatsu T., Oda J., Yamada Y., Sato F. (1997). Purification and characterization of tobacco pathogenesis-related protein PR-5d, an antifungal thaumatin-like protein. *Plant Cell Physiology*. 38; 783-91.
- Krebitz M., Wagner B., Ferreira F., Peterbauer C., Campillo N., Witty M., Kolarich D., Steinkellner H., Scheiner O., Breiteneder H. (2003). Plant-based heterologous expression of Mal D 2, a thaumatin-like protein and allergen of apple (*Malus domestica*), and its characterization as an antifungal protein. *Journal of Molecular Biology*. 325; 329.
- Krishnan K., Subbiyan M., Thangaswamy R., Kandasami P., Krish K.K., Easwaran K., Joseph A.J.R, Durailagaraja S., Velazhahan R., Samiyappan R., Ponnuswami B. (2006). Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. *Plant Science*. 170; 203– 215.

- Kuwabara C., Takezawa D., Shimada T., Hamada T., Fujikawa S., Arakawa K. (2002) Abscisic acid- and cold-induced thaumatin-like protein in winter wheat has antifungal activity against snowmould, Microdochium nivale. *Physiologia Plantarum*. 115; 101–110.
- Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature*. 227; 680-685.
- Lagrimini L.M., Burkhart W., Moyer M., Rothstein S. (1987). Molecular cloning of complementary DNA encoding the lignin-forming peroxidase from tobacco; molecular analysis and tissue-specific expression. *Proceedings of Natural Academy of Sciences*. 84; 7542-7546.
- Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G.A.A., Van West, P., Govers, F. (2003). A Gα subunit controls zoospore motility and virulence in the potato late blight pathogen *Phytophthora infestans*. *Molecular Microbiology*. 11; 462-469.
- Legrand M., Kauffmann S., Geoffroy P. and Fritig B. (1987). Biological function of pathogenesis-related proteins; four tobacco pathogenesis- related proteins are chitinases. *Proceedings of Natural Academy of Sciences*. 84; 6750-6754.
- Leone P., Menu-Bouaouiche L., Peumans W.J., Payan F., Barre A.K., Roussel A, Els J.M., Van Damme., Rougé P. (2006). Resolution of the structure of the allergenic and antifungal banana fruit thaumatinlike protein at 1.7-Å. *Biochimie*. 88; 45-52.
- Linthorst H.J.M. (1991). Pathogenesis-related proteins of plants. *Critical Review of Plant Sciences*. 10; 123-150.
- Liu D., Raghothama K.G., Hasegawa P.M., Bressan R.A. (1994). Osmotin over expression in potato delays development of disease symptoms. *Proceedings of Natural Academy of Sciences*. 91; 1888-1892.
- Lorito M., Farkas V., Rebuffat S., Bodo B., Kubicek C.P., (1996). Cell-wall synthesis is a major target of mycoparasitic antagonism by *Trichoderma harzianum*. *Journal of Bacteriology*. 178; 6382-6385.

Maldener I. (2004). Coomassie-Färbung ohne Methanol. Institut für Zellbiologie und Pflanzenphysiologie der Uni Regensburg *Laborjournal*.

- Majeau N., Trudel J., Asselin A. (1990). Diversity of cucumber chitinase isoforms and characterization of one seed basic chitinase with lysozyme activity. *Plant Science*. 68; 9-16.
- Melchers L.S., Sela-Buurlage M.B., Vloemans S.A., Woloshuk C.P., Van Roekel J.S.C., Pen J., Van den Elzen P.J.M., Cornelissen B.J.C. (1993). Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and β-1,3-glucanase in transgenic plants. *Plant Molecular Biology*. 21; 583-593.
- Melchers L.S., Apotheker-de Groot M., Van der Knaap J.A., Ponstein A.S., Sela-Buurlage M.B., Bol J.F., Cornelissen, B.J.C., Van den Elzen PJ.M., Linthorst H.J.M. (1994). A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. *Plant Journal*. 5; 469-480.
- Menu-Bouaouiche L., Vriet C., Peumans, W.J., Barre A., Van Damme E.J., Rouge P.A., (2003). Molecular basis for the endo-beta 1,3-glucanase activity of the thaumatin-like proteins from edible fruits. *Biochimie*. 85; 123–131.
- Métraux J.P., Streit L., Staub T. H. (1988). A pathogenesis-related protein in cucumber is a chitinase. *Physiological and Molecular Plant Pathology*. 33; 1-9.

- Mikkelsen J.D., Eerglund L., Nielsen K.K., Christiansen H., Bojsen K. (1992). Structure of endochitinase genes from sugar beets. In *Advances in Chitin and Chitosan* (Edt. by Brine C.J., Sandford P.A. and Zikakis J.P.). *Applied Science*. 344-353.
- Minic Z., Jouanin L. (2006). Plant glycoside hydrolases involved in cell wall polysaccharide degradation. *Plant Physiology and Biochemistry*. 44; 435–449.
- Minic Z. (2008). Physiological roles of plant glycoside hydrolases. Planta. 227; 723-740.
- Monteiro, S., Barakat, M., Piçarra-Pereira, M.A., Teixeira, A.R., Ferreira, R.B. (2003). Osmotin and thaumatin from grape: a putative general defense mechanism against pathogenic fungi. *Phytopathology*. 93, 1505–1512.
- Murray M.G. and Thompson W.F. (1980). Rapid isolation of high molecular weight plant DNA. *Nucleic Acids Research*. 8; 4321–4325.
- Narasimhan K., Basheer C., Bajic V.B., Swarup S. (2003). Enhancement of plant–microbe interactions using a rhizosphere metabolomics driven approach and its application in the removal of polychlorinated biphenyls. *Plant Physiology*. 132; 146–153.
- Narasimhan M.L., Coca M.A., Jin J., Yamauchi T., Ito Y. (2005). Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. *Molecular Cell*. 17; 171–180.
- Neuhaus J.M, Sticher L., Meins F.J.R., Boller T. (1991). A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. *Proceedings of Natural Academy of Sciences*. 88; 10362-10366.
- Neuhaus J.M., Fritig B., Linhorst H.J.M., Meins F.J., Mikkelsen J.D., Ryals J. (1996). A revised nomenclature for chitinase genes. *Plant Molecular Biology Reporter*. 14; 102-104.
- Neuhaus J.M. (1999). Plant chitinases (PR-3, PR-4, PR-8, PR-11). *Pathogenesis-related proteins in plants*. (Edt by Datta S.K. & Muthukrishnan S.). CRC Press. 77-105.
- Nomura K., Melotto M., He S.Y., (2005). Suppression of host defense in compatible plant- *Pseudomonas* syringae interactions. *Current Opinion in Plant Biology*. 8; 361–368.
- Ochman H., Anne S. G., Daniel L. H. (1988) Genetic Applications of an Inverse Polymerase Chain Reaction. *Genetics*. 120; 621-623 and http://www.51protocol.com/PCR/base/20070307/5473.html
- Ohno T., Armand S., Hata T., Nikaidou N., Henrissat B., Mitsutomi M. & Watanabe T. (1996). A modular family 19 chitinase found in the prokaryotic organism *Streptomyces griseus* HUT 6037. *Journal of Bacteriology*. 178; 5065-5070.
- Okushima Y., Koizumi N., Kusano T., Sano H. (2000). Secreted proteins of tobacco cultured BY2 cells; identification of a new member of pathogenesis-related proteins. *Plant Molecular Biology*. 42; 479-488.
- Osmond R.I.W., Hrmova M., Fontaine F., Imberty A., Fincher G.B. (2001). Binding interactions between barley thaumatin-like proteins and (1,3)-beta-D-glucans; Kinetics, specificity, structural analysis and biological implications. Federation of European Biochemical Societies Journal. 268; 4190-4199.
- Peumans W.J., P. Proost, R.L. Swennen, E.J.M. Van Damme. (2002). The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and

most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins. *Plant Physiology*. 130; 1063–1072.

- Ponstein A.S., Bres–Vloemans S.A., Sela-Buurlage M.B., Van den Elzen P.J., Melchers L.S., Cornelissen B.J. (1994). A novel pathogen- and wound-inducible tobacco (*Nicotiana tabacum*) protein with antifungal activity. *Plant Physiology*. 104; 109–118.
- Potvin C., Trudel, J., Grenier, J., Asselin, A. (1998). Several thaumatin-like proteins bind to β-1,3-glucans. *Plant Physiology*. 118, 1431-1438.
- Pritsch C., Muehlbauer G.J., Bushnell W.R., Somers D.A., Vance C.P. (2000). Fungal development and induction of defense response genes during early infection of wheat spikes by *Fusarium graminearum*. *Molecular Plant Microbe Interactions*. 13; 159–169.
- Punja Z.K. (2005). Transgenic carrots expressing a thaumatin-like protein display enhanced resistance to several fungal pathogens. *Canadian Journal of Plant Pathology*. 27; 291–296.
- Radhajeyalakshmi R., Yamunarani K., Seetharaman K., Velazhahan R. (2003). Existence of thaumatinlike proteins (TLPs) in seeds of cereals. *Acta Phytopathologica et Entomologica Hungarica*. 38; 251-257.
- Rahimi S., Perry R.N., Wright D.J. (1993). Induction and detection of pathogenesis-related proteins in leaves and roots of potato plants infected with pathotypes of *Globodera pallid*. *Fundamental and applied Nematology*. 16; 549-556.
- Rees W.A., Yager T.D., Korte J., von Hippel P.H. (1993). Betaine can eliminate the base pair composition dependence of DNA melting. *Biochemistry*. 12; 137–144.
- Regalado A. P. and Ricardo C. P. P. (1996). Study of intercellular fluid in healthy *Lupinus albus* organs. *Plant Physiology*. 110; 227-232.
- Reiss E., Schubert J., Scholze P., Krämer R., Sonntag K. (2009). The barley thaumatin-like protein Hv-TLP8 enhances resistance of oilseed rape plants to *Plasmodiophora brassicae*. *Plant Breeding*. 128; 210– 212.
- Roberts W.K. and Selitrennikoff C.P. (1990). Zeamatin, an antifungal protein from maize with membranepermeabilizing activity. *Journal of General Microbiology*. 136; 1771-1778.
- Rogers E.E. and Ausubel F.M. (1997). Arabidopsis enhanced disease susceptibility mutants exhibit enhanced susceptibility to several bacterial pathogens and alterations in *PR-1* gene expression. *Plant Cell*. *9*; 305–316.
- Safeeulla K.M. (1976). Biology and control of the downy mildews of pearl millet, sorghum and finger millet. Mysore, Karnataka, India; Downy Mildew Research Laboratory Information booklet, Mysore University.
- Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Ehrlich H.A., Arnheim N. (1985). Enzymatic amplification of β3-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. *Science*. 230; 1350-1354.
- Saito, H., Misaki, A., Harada, T. (1968). Agricultual and Biological Chemistry. 32; 1261–1269.
- Salzer P., Hubner B., Sirrenberg A., Hager A. (1997). Differential effect of purified spruce chitinases and β-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi. *Plant Physiology*. 114; 957-968.

- Salzman R.A., Koiwa H., Ibeas J.I., Pardo M.J., Hasegawa P.M., Bressan R.A. (2004). Inorganic Cations Mediate Plant PR5 Protein Antifungal Activity through Fungal *Mnn1-* and *Mnn4-*Regulated Cell Surface Glycans. *Molecular Plant Microbe Interactions*. 17; 780–788.
- SanMiguel P., Tikhonov A., Jin Y.K., Motchoulskaia N., Zakharov D., Melake-Berhan A., Springer P.S., Edwards K.J., Lee M., Avramova Z. (1996). Nested retrotransposons in the intergenic regions of the maize genome. *Science*. 274; 765-768.
- Scharf S.J., Horn G.T., Erlich H.A. (1986). Direct cloning and sequence analysis of enzymatically amplified genomic sequences. *Science*. 233; 1076-1078.
- Shepard S.R., Brickman-Stone C., Schrimsher J.L., Koch G., Shepard S.R. (2000). Discoloration of ceramic hydroxyapatite used for protein chromatography. *Journal of Chromatography*. 891; 93-98.
- Schulze-Lefert P. (2004). Knocking on heaven's wall; pathogenesis of and resistance to biotrophic fungi at the cell wall. *Current Opinion in Plant Biology*. 7; 377–383.
- Shinshi H., Neuhaus J.M., Meins F.J.R. (1990). Structure of a tobacco endochitinase gene; Evidence that different chitinase genes can arise by transposition of sequences enclosing cysteine rich domain. *Plant Molecular Biology*. 14; 357-368.
- Singh N. K., Bracker C. A., Hasegawa P. M., Handa A. K., Buckel S., Hermodson M. A., Pfankoch E., Regnier F., Bressan R. A. (1987). Characterization of Osmotin-a thaumatin-like protein associated with osmotic adaptation in plant-cells. *Plant Physiology*. 85; 529-536.
- Slusarenko A.J., Fraser R.S.S., Van Loon L.C. (2009). *Mechanisms of Resistance to Plant Diseases*. Dordrecht; Kluwer. 539-540.
- Somssich I.E., Schmelzer E., Bollmann J., Hahlbrock K. (1986). Rapid activation by fungal elicitor of genes encoding "pathogenesis-related" proteins in cultured parsley cells. *Proceedings of Natural Academy of Sciences*. 83; 2427-2430.
- Stephen J.B.O, Brett A.D.P., von Aderkas P. (2007). Identification of two thaumatin-like proteins (TLPs) in the pollination drop of hybrid yew that may play a role in pathogen defence during pollen collection. *Tree physiology*. 27; 1649-1659.
- Sticklen M.B. and Graham L.S. (1994) Plant chitinases. Canadian Journal of Botany. 72; 1057-1083.
- Taira T., Ohnuma T., Yamagami Y., Aso M.I., Ishihara M. (2002). Antifungal activity of rye secale cereal seed chitinases; the different binding manner of class I and class II chitinases to the fungal cell walls. *Bioscience, Biotechnology and Biochemistry*. 66; 970-977.
- Taira T. (2010). Structure and antifungal activity of plant chitinases (review). *Journal of Applied Glycoscience*. 57; 167-176.
- Tang Y., Garvin D.F., Kochin L.V., Sorrells M.E., Carver B.F. (2002). Physiological genetics of aluminium tolerance in wheat cultivar Allas66. *Crop Science*. 42; 1541-1546.
- Tao Y., Xie Z., Chen W., Glazebrook J., Chang H.S. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen *Pseudomonas syringae*. *Plant Cell*. 15; 317–330.

- Terras F.R.G., Schoofs H., De Bolle M.F.C, Van Leuven F., Rees S.B., Vanderleyden J, Cammue B.P.A., Broekaert W.F. (1992). Analysis of two novel classes of plant antifungal proteins from radish (*Raphanus sativus* L.) seeds. *Journal of Biological Chemistry*. 267; 15301-15309.
- Thakur R.P. (1999). Pathogen diversity and plant disease management. Indian Phytopathology. 52; 1-9.
- Thakur R.P. and Rao V.P. (1997). Variation in virulence and aggressiveness among pathotypes of *Sclerospora graminicola* on pearl millet. *Indian Phytopathology*. 50; 41–47.
- Thakur R.P., Rao V.P., Amruthesh K.N., Shetty H.S., Datar V.V. (2003). Field surveys of pearl millet downy mildew effects of hybrids, fungicide, and cropping sequence. *Journal of Mycology and Plant Pathology*. 33; 387–394.
- Thevissen K., Terras F.R., Broekaert W.F. (1999). Permeabilization of fungal membranes by plant defensin inhibits fungal growth. *Applied Environmental Microbiology*. 65; 5451–5458.
- Trudel J., Potvin C., Asselin A. (1998). Several Thaumatin-Like Proteins Bind to b-1,3-Glucans. *Plant Physiology*. 118; 1431–1438.
- Tsuchiya T., Kameya N., Nakamura N. (2009). Straight Walk; A modified method of ligation-mediated genome walking for plant species with large genomes. *Analytical Biochemistry*. 388; 158-160.
- Van den Berg B., Clemons W.M., Collinson I., Modis Y., Hartmann E., Harrison S.C., Rapoport T.A. (2004). X-ray structure of a protein-conducting channel. *Nature*. 427; 36 44.
- Van Loon L.C. and Van Strien E.A. (1999). The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. *Physiological and Molecular Plant Pathology*. 55; 85-97.
- Van Loon, L.C., Rep, M., Pieterse, C.M.J. (2006). Significance of inducible defense-related proteins in infected plants. *Annual Review of Phytopathology*. 44; 135-162.
- Van Loon L.C. (1982). Regulation of changes in proteins and enzymes associated with active defense against virus infection. *Active Defense Mechanisms in Plants* (Edt by R.K.S. Wood), Plenum Press, New York. 247-273.
- Van Loon, L.C., 1985. Pathogenesis-related proteins. Plant Molecular Biology. 4; 111-116.
- Van Loon L.C., Pierpoint W.S., Boller T., Conejero V. (1994). Recommendations for naming plant pathogenesis related proteins. *Plant Molecular Biology Report*. 12; 245-264.
- Velazhahan R., Muthukrishnan S. (2003/4). Transgenic tobacco plants constitutively overexpressing a rice thaumatin-like protein (PR-5) show enhanced resistance to *Alternaria alternata*. *Biologia Plantarum*. 47; 47–54.
- Vera P. and Conejero V. (1988). Pathogenesis-related proteins of tomato. P-69 as an alkaline endoproteinase. *Plant Physiology*. 87; 58-63.
- Verburg J.G., Smith C.E., Lisek C.A., Huynh Q.K. (1992). Identification of an essential tyrosine residue in the catalytic site of a chitinase isolated from Zea mays that is selectively modified during inactivation with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. *Journal of Biological Chemistry*. 267; 3886-3893.
- Veronese P., Ruiz M.T., Coca M.A., Hernandez-Lopez A., Lee H. (2003). Defense against pathogens; Both plant sentinels and foot soldiers need to know the enemy. *Plant Physiology*. 131; 80–90.

- Vigers A.J., Wiedema S., Roberts W.K., Legrand M., Selitrennikoff C.P., Fritig B. (1992). Thaumatin-like pathogenesis-related proteins are antifungal. *Plant Science*. 83; 155-161.
- Wang, Hexiang Y., Xiu Y., Ng T. B. (2001). Purification of chrysancorin, a novel antifungal protein with mitogenic activity from garland chrysanthemum Seed. *Biological Chemistry*. 382.
- Wei Y., Zhang Z., Andersen C.H., Schmelzer E., Gregersen P.L., Collinge D.B., Smedegaard-Petersen V., Thordal-Christensen H. (1998). An epidermis/papilla-specific oxalate oxidase-like protein in the defence response of barley attacked by the powdery mildew fungus. *Plant Molecular Biology*. 36; 101-112.
- Woloshuk C.P., Meulenhoff J.S., Sela-Buurlage M, Van den Elzen P.J., Cornelissen B.J. (1991). Pathogeninduced proteins with inhibitory activity toward *Phytophthora infestans*. *Plant Cell*. 3; 619-28.
- Yamakawa H, Kamada H., Satoh M., Ohashi Y. (1998). Spermine is a salicylate-independent endogenous inducer for both tobacco acidic pathogenesis-related proteins and resistance against tobacco mosaic virus infection. *Plant Physiology*. 118; 1213-1222.
- Yokoyama R. and Nishitami K. (2004). G enomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. *Plant and Cell Physiology* 45; 1111–1121.
- Yun D.J., Zhao Y., Pardo J.M., Narasimhan M.L., Damsz B., Lee H., Abad L.R., D'Urzo M.P., Hasegawa P.M., Bressan R.A. (1997). Stress proteins on the yeast cell surface determine resistance to osmotin, a plant antifungal protein. *Proceedings of Natural Academy of Sciences*. 94; 7082-7087.
- Yun D.J., Ibeas J.I., Lee H., Coca M.A., Narasimhan M.L., Uesono Y., Hasegawa P.M., Pardo J.M., Bressan R.A. (1998). Osmotin, a plant antifungal protein, subverts signal transduction to enhance fungal cell susceptibility. *Mol. Cell*. 1; 807-817.
- Yun, D. J., Durzo, M. P., Abad, L., Takeda, S., Salzman, R., Chen, Z. T., Lee, H., Hasegawa, P. M., Bressan, R. A. (2000). Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. *Plant Physiology*. 111; 1219-1225.
- Zamani A., Sturrock R.N., Ekramoddoullah A, Liu J.J., Yu X. (2004). Gene cloning and tissue expression analysis of a PR-5 thaumatin-like protein in *Phellinus weirii*-infected douglas-fir. *Biochemistry and Cell Biology*. 9; 1235-1243.
- Zevenhuizen L.P. and Bartnicki-Garcia S. (1969). Structure of the insoluble hyphal wall glucan of *Phytophthora cinnamomi. Biochemistry.* 8; 1496-1502.
- Zhang Z., Collinge D.B., Thordal-Christensen H. (1995). Germin-like oxalate oxidase, a H₂O₂-producing enzyme, accumulates in barley attacked by the powdery mildew fungus. *Plant Journal.* 8; 139-145.

Acknowledgement.

First and foremost I would like express my gratitude towards PD. Dr. Achim Gau, my research supervisor, for the guidance and encouragement throughout the study. His faith in my ability and hard work helped me immensely in completing the study and I owe a lot him for the rest of my life. I thank him for giving me an opportunity to work under his guidance which gave me good exposure to research work.

I thank Dr. H.S. Prakash, Professor at DOS in applied Botany and Biotechnology, University of Mysore, for guiding me during initial stage of my doctoral study. Dr. Shekhar Shetty, Emeritus scientist at the same department for his suggestions and for allowing me to use the downy mildew sick plot and various other facilities at Downy mildew research laboratory, University of Mysore. I am grateful to Dr. K. M. Kaveriappa, retired Vice chancellor of Mangalore University and my teacher for having encouraged me to join research.

My heartfelt thanks to Prof. Dr. Bernhard Huchzermeyer for his support; sincere thanks to Prof. Dr. Christoph Peterhänsel and Prof. Dr. Jutta Papenbrock for their encouragement and guidance. No words too high when it comes to appreciating the excellent technical assistance offered by Ms. Julia Lensing; she was always there to lend a helping hand for in trouble shooting of many of my experiments. Special thanks to Prof. Dr. Markus Piotrowski from Ruhr University Bochum for mass spectrometric analysis of the samples.

Ms. Dr. Annabel Höpfner and Ms. Dr. Anna-Sophia Gutschalk are warmly remembered with thanks for their guidance, suggestions and all the encouragement. It was a nice experience working in the company of Ms. Dr. Silvia Schmoock, Mr. Henrik Schumacher and Ms. Jennifer Baxter who have helped me a lot during lab work. I am thankful to all the lab mates namely Mr. Ramadan Mohamed, Mr. Mohamed Ahmed, Ms. Mona, Dr. Ina Horst, Dr. Markus Niessen, Ms. Louisa Heimann, Ms. Katrin Krause, Mr. Christian Blume, Dr. Rashad Kebeish and all my colleagues at Institute for Botany who made my stay at the Institute memorable. Special thanks to Ms. Julia Volker and Ms. Birgit Lippmann and Ms. Margret Möller-Reinbold for their great cooperation. I thank Ms. Yvonne Leye and Mr. Lutz Krüger for maintaining the plants in greenhouse and climate chamber for my work. Thanks to Mr. Nandavel for recovering the data from my computer when it crashed; thanks to Mr. Moritz Jahns for the technical assistance.

Heartfelt thanks to Prof. Dr. Bruno Mörschbacher, Professor at Institute for Biology and Biotechnology of plants, University of Münster and Prof. Dr. Ursula Windmüller for their hospitality, guidance and encouragement. Sincere thanks to my German language tutorsnamely, Ms. Anna Kloska and Mr. Peter Kuhnen for being great teachers. I loved learning the language and thanks to the hospitality of Mr. Kopachi at Carl Duisberg Centren (CDC) Dortmund; spoken German has made my stay in Germany very comfortable and helped me a lot in day today life. Dr. Sureshan, Ms. Sheena Sureshan and Dr. Usha Kohlmann were very generous to me; they made me feel at home in Dortmund and are fondly remembered with thanks for all the love and friendship. Special thanks to Dr. Balasubramanian Ramani and Ms. Priyanka Parvathi for the friendship and support which I value the most.

Joyous moments spent in the company of Julia Lensing, Julia Volker, Annabel, Bala, Priyanka, Swathi, Mona, Garima and Malathi and Nandavel will always be cherished and I hold those memories close to my heart. Words fall short to thank all my family members for being with me through thick and thin and for their enormous patience and support.

I thank all my teachers for being the source of inspiration. I have had the best of teachers and the list would be too long to mention all the names. So I thank all my teachers collectively. My friends were always there for me be it to share my happiness or to cheer me up when I was feeling stressed out. All of them are remembered with heartfelt thanks for being there for me. Special thanks to all the faculty members from DOS in applied Botany and Biotechnology namely Dr. Salimath, Dr. S.R. Niranjan, Dr. Ravishankar Rai, Dr. Kini, Dr. Geetha Prashanth, Dr. Amruthesh, Dr. Umesh, and Dr. Shailashree Shekhar for their guidance and support; Ms Ravishankar and Ms Ushakiran for their assistance in office work, Ms Pushpalatha and all the lab mates for their suggestion and help. Sincere thanks for the financial assistance by University Grants Commission (UGC) India, Deutscher Akademischer Austausch Dienst (DAAD), Eiselen Foundation Ulm Germany and Institute for Botany, Leibniz University of Hannover. The scholarship received from the agencies mentioned above is acknowledged.

Finally I acknowledge all those who helped me directly or indirectly for my doctoral study; the names not mentioned in this acknowledgement are not deliberately left out. I thank one and all again for the cooperation.

Erklärung zur Dissertation

Hierdurch erkläre ich, dass ich meine Dissertation mit dem Titel A study of pathogenesis-related (PR) proteins from pearl millet (*Pennisetum glaucum*) after infection with the downy mildew pathogen (*Sclerospora graminicola*). selbständig verfasst und die benutzten Hilfsmittel und Quellen sowie gegebenenfalls die zu Hilfeleistungen herangezogenen Institutionen vollständig angegeben habe. Die Dissertation wurde nicht schon als Masterarbeit, Diplomarbeit oder andere Prüfungsarbeit verwendet.

Hannover, den 30.09.2011

Manjula Mundakana

Curriculum Vitae

Personal details	
Name	: Manjula Mundakana
Date of birth	: 15 th March 1980
Current Occupation	: Guest faculty at Department of Studies in Biotechnology, University of Mysore, Mysore, India.
Nationality	: Indian
Correspondence Details:	Manjula M, 968/2, 1 st Cross, Lakshmipuram, Mysore - 570 004, Karnataka, India. E-mail: manjoohere@yahoo.co.in

Doctoral work:

р

1 1 . 1

Completed doctoral study titled 'Study of pathogenesis related proteins in Pearl millet (*Pennisetum glaucum*) after infection with the downy mildew pathogen (*Sclerospora graminicola*)' to the faculty of natural sciences, Leibniz University of Hannover, Germany. Doctoral work involved purification of pearl millet chitinase and thaumatin -like protein. Characterization of the purified proteins was carried out along with amplification, cloning and sequencing of genes encoding these PR proteins.

Work experience in detail

08/2011 till date	Working as Guest faculty at DOS in Biotechnology University of Mysore.
02/2011 to 04/2011	Worked as a guest faculty and taught Post graduate students at Pondicherry Central University, Pondicherry, India.
10/2009 to 03/2010	Continuation of PhD work with scholarship from Eiselen Foundation, Ulm, Germany.
06/2007 to 09/2009	Worked as PhD student /DAAD scholarship holder at Institute for Botany, Leibniz University of Hannover.
02/2004 to 02/2007	Worked as a Junior Research Fellow at 'DOS in Biotechnology' University of Mysore, India, with UGC fellowship (NET, JRF) .

Education

Sl.No	Name of Examination	Name of Institute	Name of University	Year	Marks Scored
2.	Master of Science	Dept of Applied Botany	Mangalore University	2002	73%
3.	Bachelor of Science	SDM College Ujire, D.K.	Mangalore University	2000	84%

Research Interest

- Purification and characterization of enzymes.
- Interested in life science research with special interest on molecular plant pathology, namely physiological changes and related gene expression in diseased condition.
- Gene cloning, overexpression of recombinant proteins and characterization.
- Working with knock out mutants to study the gene function.

Techniques known

- Protein purification and characterization; experienced in performing electrophoresis, Chromatographic separation of proteins, FPLC, and immunological studies.
- Purification of nucleic acids and genomic DNA library construction PCR, Gene isolation and cloning, Southern and Northern Blotting with radioactive probes.
- Sequence analysis using different molecular biology tools and able to work with different molecular biology databases.
- Biochemical (spectroscopic) assys, standardization of protocols.
- Skilled in Microscopy, identification, isolation and pure culture of Fungi.
- Carrying out plant histological and anatomical studies, plant tissue culture.

Languages known

German	Fluent (Completed 'Mittelstufe -1')
English	Excellent
Hindi and Kannada	Excellent (Kannada - Mother tongue).

Computer knowledge

MS- Word und Internet	Excellent
MS- Excel	Excellent
MS-PowerPoint	Excellent
Molecular biology databases	Very good

Nucleotide sequence submitted to NCBI:

Pearl millet chitinase sequence generated in the doctoral study has been submitted to **NCBI** and the accession number (gi|296011301 gb|ADG65345) was obtained.