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Abstract 

The genus Helleborus comprises 22 species, which are allocated to six Helleborus sections. 

Helleborus species are distributed in different parts of Europe and East Asia. They show 

differences with regard to leaf and flower morphology, especially flower colour, and in 

susceptibility to hellebore leaf spot disease (Coniothyrium hellebori). Breeding programs 

aiming at these traits require the inclusion of a broader spectrum of Helleborus species in 

addition to the most popular species H. niger (Christmas Rose) and H. x hybridus (Lenten 

Rose). 

As a prerequisite for interspecific hybridisations, the Helleborus plant material was 

characterised cytologically, via flow cytometry and DNA fingerprinting. Cytological analyses 

revealed the same chromosome number of 2n=32 for all analysed Helleborus species. Nuclear 

DNA contents of Helleborus species were estimated via flow cytometry and varied from 

18.3 pg DNA/2C to 33.2 pg DNA/2C. Based on 1109 genome-wide distributed AFLP 

markers, genetic distances between species were calculated and a dendrogram was 

constructed to visualise genetic relationships. The phenogram reflected the taxonomic sub-

division of the Helleborus genus into sections. 

As a next step, crossing barriers between Helleborus species were localised as predominantly 

postzygotic. Therefore, embryo rescue techniques via ovule culture were established to 

overcome these barriers. Ovules were isolated from the maternal plants five to seven weeks 

after pollination and then cultured in vitro. Overall, 217 hybrid offspring were successfully 

obtained, whereof 14 were derived from parental species belonging to different Helleborus 

sections. Thereby, larger genetic distances in hybrids between parental species belonging to 

different sections than in hybrids between species within the same section were overcome. 

In addition, the causal agent of the hellebore leaf spot disease was studied. A collection of 25 

C. hellebori isolates was established from infected leaf material of different host species from 

various geographical locations. Their morphological characterisation by mycelial growth at 

different temperatures, conidial size and the induction of pycnidia revealed only marginal 

differences. All isolates were confirmed as causal agent of the disease by inoculation of 

H. niger plants. Using a molecular genetic approach based on RAPD markers, the genetic 

relationships were displayed in a phenogram, in which two C. hellebori groups were 

identified. A possible correlation of the isolates in these groups with the original Helleborus 

host species and morphological characteristics was found. This result indicates that more than 

one species may be associated with the disease. 

Keywords: Coniothyrium hellebori, embryo rescue, genetic diversity, Helleborus 
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Zusammenfassung 

Die Gattung Helleborus umfasst 22 Arten, die sechs Sektionen zugeordnet sind. Helleborus 

Arten sind natürlicherweise sowohl in verschiedenen Teilen Europas als auch in Ostasien 

verbreitet und unterscheiden sich hinsichtlich Blatt- und Blütenmorphologie, insbesondere 

Blütenfarbe, und weisen ein unterschiedliches Resistenzverhalten in Bezug auf den Erreger 

der Schwarzfleckenkrankheit (Coniothyrium hellebori) auf. Im Hinblick auf diese Merkmale 

ist die züchterische Weiterentwicklung der bekannten Helleborus Arten wie Helleborus niger 

(Christrose) und H. x hybridus (Lenzrose) nur durch Einbezug weiterer Arten möglich. 

Als Grundlage für die Durchführung von Artkreuzungen wurden verschiedene Helleborus 

Arten cytologisch, durchflusscytometrisch und molekulargenetisch mittels einer PCR-

basierten DNA Fingerprinting-Methode charakterisiert. Für alle untersuchten Arten konnte 

eine gemeinsame Chromosomenzahl von 2n=32 ermittelt werden. Die DNA-Gehalte des 

Kerngenoms variierten zwischen den Arten von 18.3 pg DNA/2C bis 33.2 pg DNA/2C. 

Basierend auf 1109 genomweit verteilten AFLP Markern wurden genetische Distanzen 

ermittelt, und es wurde ein Dendrogramm erstellt, worin die Cluster der Helleborus Arten die 

Einteilung der Gattung in sechs Sektionen widerspiegeln. 

Für die Durchführung von Artkreuzungen wurden mittels blütenbiologischer Untersuchungen 

Kreuzungsbarrieren zwischen den Helleborus Arten als vorwiegend postzygotisch 

identifiziert. Aus diesem Grund wurde ein Embryo Rescue Verfahren entwickelt, bei dem 

Samenanlagen fünf bis sieben Wochen nach einer Bestäubung von der Mutterpflanze isoliert 

und in vitro kultiviert wurden. Damit wurden insgesamt 217 interspezifische Hybriden 

gewonnen, von denen 14 aus Kreuzungen zwischen Arten stammen, die unterschiedlichen 

Helleborus Sektionen zugeordnet sind. Dabei wurden größere genetische Distanzen zwischen 

den elterlichen Arten überwunden als bei Hybriden zwischen Arten der gleichen Sektion. 

Neben der Pflanze Helleborus wurde der Fokus auf den Erreger der Schwarzfleckenkrankheit 

gelegt. Anhand einer Sammlung von 25 C. hellebori Isolaten deckten morphologische 

Vergleiche der Sporengröße, der Induktion von Pyknidien und des radialen Mycelwachstums 

nur marginale Unterschiede zwischen den Isolaten auf. Im Rahmen eines Pathogenitätstests 

an H. niger Pflanzen wurden die Isolate als Erreger der Krankheit identifiziert. Weiterhin 

wurden die C. hellebori Isolate molekulargenetisch mittels RAPD Markern untersucht, wobei 

die Isolate in zwei Cluster aufspalteten. Dabei war ein Zusammenhang mit der Helleborus Art 

der Wirtspflanze und morphologischen Parametern zu erkennen. Möglicherweise handelt es 

sich bei den zwei Gruppen um zwei Arten oder Unterarten des Erregers. 

Schlagwörter: Coniothyrium hellebori, Embryo Rescue, genetische Diversität, Helleborus 
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Chapter 1  General foreword 
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1 General foreword 

1.1 The genus Helleborus 

Since very early in antiquity, the name Helleborus has been associated with plants of medical 

interest. These plants were already known to Theophrastus (372-287 BC) (Mathew, 1989). 

Helleborus species contain alkaloids, which are known to have cardiac effects (Mathew, 

1989). The ancient Greeks described Black and White Hellebores, Elleboros melas and 

Elleboros leucas, but the species identity of these plants is not known (Mathew, 1989). The 

etymology of the name Helleborus is not clear. Different explanations have been proposed, 

and the most plausible originates from the Greek terms »hellein = killing« or »ellos = deer« 

and »bora = food« (Schiffner, 1890). The Greek term »(h)elleborosus = crazy« points to the 

fact that in antiquity, Helleborus was used to treat the mentally ill. All the parts of hellebores 

are poisonous because of the alkaloid and glycoside content. The roots are especially toxic 

and contain various poisonous substances. 

1.1.1 Taxonomy 

Hellebores are rhizomatous, herbaceous perennials that flower from early winter until late 

spring. Plants of the Helleborus species are distributed across parts of Europe and West Asia, 

with the exception of H. thibetanus, which is native to East Asia. 

As a member of the Ranunculaceae family, hellebores bear a characteristic fruit, which 

consists of a cluster of follicles and multiovular carpels (McLewin & Mathew, 1995). The 

Ranunculaceae family has been divided into subfamilies and tribes, according to 

morphological or anatomical characteristics (Prantl, 1888; Hutchinson, 1923; Hoot, 1991; 

Wang & Ren, 2008) and cytological studies (Langlet, 1932; Gregory, 1941). Members of the 

Ranunculaceae are classified into two groups based on chromosome size and type. Genera 

with large, long and bent chromosomes belong to the Ranunculus group, while those with 

small and kidney-shaped chromosomes belong to the Thalictrum group (Gregory, 1941). In 

addition, serological studies (Jensen, 1968) and molecular data have been obtained for the 

Ranunculaceae family (Hoot, 1995; Ro et al., 1997; Wang et al., 2005). According to results 

from these studies, Helleborus has been classified in the subfamily Ranunculoideae, which 

comprises all genera with Ranunculus-type chromosomes (Ro et al., 1997), but the 

relationship of Helleborus to other genera in that subfamily is still debated. 
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Since the descriptions of Braun and Bouché (1861), two morphological groups have been 

distinguished in the genus according to caulogenesis: the Caulescentes and Acaules. 

Caulescent Helleborus, including H. argutifolius, H. foetidus and H. lividus, have tough stems 

that produce leaves and flowers and a less developed rhizome (Figure 1.1 A). They grow a 

large terminal inflorescence with many flowers. Species belonging to the acaulescent group 

are characterised by underground rhizomes that produce shoots with basal leaves, leafless 

flower stems with leaf-like bracts and relatively few flowers per stem (Figure 1.1 B; McLewin 

& Mathew, 1995). The true leaves in the acaulescent species often develop as the flowers 

mature and fade. Therefore, bracts are often mistaken for leaves because of their size and 

divisions (Figure 1.1 B). 

 

Figure 1.1: Helleborus species with different growth types. 
A: caulescent H. foetidus (http://www.hellebores.org/foetidus.html), B: acaulescent H. x hybridus 
(http://www.hellebores.org/gallery.html), C: intermediate H. vesicarius (http://www.hellebores.org/vesicarius 
.html). 

Three exceptional species do not fit into either of these two groups and represent 

intermediates between the caulescent and acaulescent Helleborus: H. niger, H. thibetanus and 

H. vesicarius. 

H. niger’s acaulescent traits include basal leaves and leafless flower stems, but it possesses 

small undivided bracts and often produces only one flower per stalk. It also hybridises easily 

with the caulescent species H. argutifolius and H. lividus, but not with the acaulescents 

(McLewin & Mathew, 1995). H. thibetanus can be considered as acaulescent by its basic 

appearance, but the rhizome and roots are atypical for this group. The inflorescence appears 

before the true leaves start to expand (McLewin & Mathew, 1995). It is also the only 

Helleborus species with hypogeal germination (McLewin & Mathew, 1999). In the early 

summer months, both H. thibetanus and H. vesicarius plants go dormant and disappear during 

the summer (McLewin & Mathew, 1999). The species H. vesicarius does also not fit into any 

BA C
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of these two groups (Figure 1.1 C). Although its leaf and stem structures are typical for the 

acaulescent Helleborus (McLewin & Mathew, 1999), its thick inflorescence stalks and pollen 

morphology are very similar to the caulescent group (Nowicke & Skvarla, 1983). 

The classification of the Helleborus species into these two groups (acaulescent/caulescent) 

seemed useful for horticultural purposes (McLewin & Mathew, 1995). Based on this growth 

phenotype, hellebores can be easily divided into ‘stemmed’ and ‘stemless’ species by their 

outward appearance. This classification is easy if vegetative propagation is considered 

(Chapter 1.2). Nevertheless, this division is phylogenetically insufficient for the above-

mentioned reasons. Mathew (1989) suggested a classification that divides the genus into six 

sections according to plant structure, the ability to hybridise, pollen morphology and seed 

characteristics (Table 1.1). 

Table 1.1: Classification of the Helleborus genus into sections according to Mathew (1989). 

Section Species 
Syncarpus H. vesicarius 
Griphopus H. foetidus 

Chenopus H. argutifolius 
H. lividus 

Helleborus H. niger 

Helleborastrum 

H. atrorubens 
H. cyclophyllus 
H. dumetorum 
H. multifidus 
H. odorus 
H. orientalis 
H. purpurascens 
H. torquatus 
H. viridis 

Dicarpon H. thibetanus 
 

The names of the Helleborus sections are not in italicized in the following thesis in order to 

prevent confusion with the genus name, subgenus name or with the species. 

Werner and Ebel (1994) suggested the additional division of Helleborus into the two 

subgenera, Helleborus and Helleborastrum, according to the species’ hypsophylls. The 

sections Griphopus, Chenopus and Helleborus belong to the subgenus Helleborus, and the 

subgenus Helleborastrum includes the sections Syncarpus, Dicarpon and Helleborastrum. 

Additionally, two new Italian Helleborus species, H. abruzzicus and H. liguricus, have been 

recently described (Thomsen, 2008), and some groups that were regarded as subspecies, 



Chapter 1  General foreword 

4 
 

namely H. multifidus subsp. bocconei, H. multifidus subsp. hercegovinus, H. multifidus subsp. 

istriacus and H. viridus subsp. occidentalis are now considered to be distinct species and bear 

the name of the subspecies. In conclusion, 22 species and four hybrids between 

H. argutifolius x H. lividus, H. niger x H. argutifolius, H. niger x H. lividus and H. niger x 

H. x sternii, can be listed to date (Table 1.2). 

Table 1.2: List of Helleborus species and hybrids according to their natural distribution, their growth type 
and their flower colour. 

Helleborus species Natural distribution Growth type  Ranges of flower colour 
    
Subgenus Helleborus    
Section Griphopus    
H. foetidus Western, Central and Southern Europe caulescent green and pendent 
Section Chenopus    
H. argutifolius Corsica, Sardinia caulescent green 

H. lividus Majorca, Cabrera caulescent cream, green often with 
pinkish markings 

Section Helleborus    
H. niger South-, East Alps to Northwestillyria intermediate white to pinkish 
   
Subgenus Helleborastrum   
Section Syncarpus    

H. vesicarius South Turkey, Syria intermediate green with a red/brown thick 
collar 

Section Helleborastrum    
H. abruzzicus Abruzzo (Italy) acaulescent yellow-green to light yellow 
H. atrorubens Slovenia, North Croatia acaulescent green to dark violet 
H. bocconei Sicily, Calabria acaulescent green to white-green 
H. croaticus Northeast Croatia acaulescent green to violet 
H. cyclophyllus Albania, Greece, Bulgaria acaulescent green to yellow-green 
H. dumetorum Austria, Hungary, Romania, Croatia acaulescent green 
H. hercegovinus Montenegro, Hercegovina acaulescent green to yellow-green 

H. orientalis Turkey, Caucasus, Ukraine acaulescent 
white-cream-pink, spotted or 
unspotted 

H. istriacus Northwest Croatia, Northeast Italy acaulescent green 
H. liguricus Liguria, Tuscany, Emilia Romagna (Italy) acaulescent whitish 
H. multifidus Croatia, Herzegovina, Albania acaulescent green 

H. occidentalis 
Belgium, Britain, France, Germany, 
Spain 

acaulescent green 

H. odorus Albania, Hungary, Italy, Romania, Bosnia acaulescent green to yellow-green 

H. purpurascens 
Romania, Hungary, Czech republic, 
Slovakia Poland, Ukraine acaulescent purple-brown-green 

H. torquatus Croatia, Serbia, Bosnia, Montenegro acaulescent green to violet 

H. viridis 
Austria, North Italy, Southern Germany, 
Switzerland, France acaulescent green 

Section Dicarpon    
H. thibetanus Western China intermediate white-pink, often veined 
    
Hybrids Parents   
H. x ballardiae H. niger x H. lividus intermediate pinkish green to creamy green 

H. x ericsmithii H. niger x H. x sternii intermediate 
pale pink or white inside and 
darker and more often green- 
or pink-tinted on the reverse 

H. x nigercors H. niger x H. argutifolius intermediate 
white, white with green tints, 
or rather creamy 

H. x sternii H. argutifolius x H. lividus caulescent pink to red and green inside 
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The Lenten Rose H. orientalis was intensely used for hybridisation with other acaulescent 

species (Chapter 1.3) resulting in forms that are currently called ‘garden hybrids’ or 

‘orientalis hybrids’. Therefore, the garden hybrids are also called Lenten Rose, but the 

botanical name is H. x hybridus. H. orientalis is reserved for the original H. orientalis in its 

natural habitat. 

1.1.2 Economical importance 

Of the 22 species (Table 1.2), H. niger and H. x hybridus have attained the highest 

commercial interest, as indicated by increasing sales figures. According to the Dutch Flower 

Auctions Association (VBN) Helleborus is traded as a cut flower, an indoor plant and a 

bedding plant. In year 2004 1.4 million plants were sold for an average price of 1.95 €/plant, 

and in 2009, 2.7 million plants were sold for an average price of 2.1 €/plant at the Dutch 

Flower Auctions (Vakblad voor de Bloemisterij, 2010). Within five years the sales figures 

had nearly doubled with prices remaining constant. This underlines the rising importance of 

Helleborus as an ornamental crop. Hellebores are generally sold in November and December. 

H. niger, the Christmas Rose, is predominantly sold around Christmas. After Christmas, 

H. niger is replaced by the colourful Lenten Roses, H. x hybridus. In spring, hellebores 

compete against cheaper bedding plants (Vakblad voor de Bloemisterij, 2010). In addition to 

its ornamental use, H. niger is used in homeopathy, e.g. in cases of meningitis, and as an 

adjuvant in tumour therapy in anthroposophical medicine (Buessing & Schweizer, 1998). 

1.2 Propagation and cultivation of Helleborus 

Hellebores are propagated by rhizome division, by seed and with in vitro techniques. 

Division is one method of vegetative propagation, and it has the advantage that all offspring 

are identical to the parent plant. Rhizomes are cut into pieces with shoots and roots attached. 

Acaulescent species can be readily propagated by division, whereas division of the caulescent 

species is very uncertain due to their less developed rhizomes. Thus, the number of offspring 

is limited. Overall, division is a very slow process due to previous stock production from the 

original plant. 

Compared to division, seed propagation has the advantage that a large number of offspring 

can be produced by one flower from its multiovular carpels. Therefore, seed propagation is 

important for the production of Helleborus cultivars and in Helleborus breeding. For 

controlled seed propagation, cross-pollination by unrequested pollinators often has to be 

avoided, e.g., during the production of intraspecific F1-hybrid cultivars. Then the flowers have 
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to be emasculated and isolated, if necessary. If the stigma is pollinated and fertilisation 

occurs, the carpels begin to swell. Depending on the environmental conditions, seed 

maturation in the plant takes 10 to 12 weeks. If the seeds are sown immediately after 

maturation, germination naturally occurs in the following autumn or winter. During 

commercial production, the time between sowing and germination takes at least 34 weeks due 

to strong seed dormancy. To release the seed from dormancy, warm and cold temperatures are 

applied. 

When the seeds are released from the plant, the embryo is still underdeveloped, mostly in a 

heart-shaped stage, which is referred to as morphological dormancy (MD) (Baskin & Baskin, 

2004; Finch-Savage & Leubner-Metzger, 2006). In addition to MD, morphophysiological 

dormancy (MPD) is expressed in Helleborus seeds, meaning that the seeds require a treatment 

to break the dormancy, e.g., the combination of warm and/or cold stratification (Baskin & 

Baskin, 2004). Eight classes of MPD, which are distinguished based on the level of 

physiological dormancy, have been described (Table 1.3). The levels of physiological 

dormancy are non-deep, intermediate and deep. If temperature changes are needed to break 

dormancy, as is the case for Helleborus seeds, the first phase of warm temperatures promotes 

embryo growth (Baskin & Baskin, 2004). Depending on the type of morphophysiological 

dormancy, a treatment with gibberellic acid might release dormancy (Table 1.3), but the 

period of time during which a gibberellic acid treatment could be effective for Helleborus 

seeds, is not known. 

Table 1.3: Levels of morphophysiological dormancy (Table was adopted from Baskin & Baskin, 2004). 

 

Following germination in autumn or early winter, Helleborus seedlings are transplanted 

around January. From May, the plants can be cultivated outdoors. From November to April 

liners can be used for further cultivation, or the plants can be sold to other producers for 
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continued cultivation. After germination, at least two complete growing seasons are required 

for most species and hybrids; some require even longer to produce the first flowers. 

Helleborus breeding (Chapter 1.3) is also strongly affected by these long periods between 

sowing and first flowering. 

In vitro propagation of Helleborus combines the advantages of division and seed propagation, 

namely clonal and mass propagation. Helleborus in vitro cultures can either be established by 

in vitro sowing (Seyring, 2002), axillary buds (Dhooghe & van Labeke, 2007), rhizome buds 

or meristem tips (Poupet et al., 2006). The problem with rhizome buds is that they are often 

strongly contaminated because of their subterranean origin. Shoots from in vitro cultures 

initiated by seeds are often not contaminated, but in vitro sown seeds need a dormancy 

breaking treatment. Additionally, endophytes often cause problems during in vitro culture 

(Tisch, 2009). Nevertheless, the number of Helleborus plants produced in vitro in Germany 

has increased during the last few years from 0.5 million in 2006 to 2.5 million in 2009 

(ADIVK, 2010). In vitro culture techniques often enable additional different breeding 

strategies, e.g., in vitro polyploidisation (Dhooghe et al., 2009), or support the conventional 

breeding progress, e.g., the application of embryo rescue techniques. 

During cultivation of hellebores, black spots may arise at the cotyledons and primary leaves 

of H. niger seedlings. The reason is not totally clear, but phosphate excess is known to be 

involved in the generation of black spots (Richter, 2009). Stagnant moisture should be 

avoided during cultivation and at the final growth site; otherwise, the roots suffer from 

secondary pathogen infections. Hellebores grow naturally in semi-shade, but are not 

considered as shade-loving plants. Most Helleborus species are frost-hardy during European 

winters. In colder regions, the plants tend to stay dormant for a longer period of time. 

Problems with frost hardiness may arise for H. lividus, H. multifidus, H. thibetanus, 

H. vesicarius and H. cyclophyllus (Mathew, 1989). 

1.3 Breeding of Helleborus 

Breeding with Helleborus is mainly based on hybridisation and selection. Breeding of 

Helleborus started with the introduction of hellebores into cultivation in the mid 19th century 

in different countries of Europe (Mathew, 1989).  From pollination to flowering it can take up 

to five years depending on the species. Therefore, Helleborus breeding is a long process. 

Early cultivars in the mid 19th century were mainly selections of H. orientalis called 

‘orientalis hybrids’. In Germany, the first of these hybrids was produced in the 1840s 
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(Mathew, 1989). After different H. orientalis genotypes were combined, the dark flower 

colours were introduced into the ‘orientalis group’ from H. torquatus or H. atrorubens (Table 

1.4). There appears to be no breeding barrier between species of section Helleborastrum, and 

fertile offspring are produced (Mathew, 1989). Except for crossing experiments, hybridisation 

barriers have never been investigated systematically. 

The two caulescent species of section Chenopus H. argutifolius and H. lividus hybridise 

easily when brought together in gardens. Fertile intermediates were first recorded in the 1940s 

and were named H. x sternii (Table 1.4). Interestingly, H. niger hybridises with the two 

species from section Chenopus to produce sterile intermediate offspring. The first hybrid 

H. x nigercors, an offspring from H. niger x H. argutifolius, was reported in the 1930s 

(Mathew, 1989). H. x nigercors has caulescent and acaulescent characteristics. It has short 

tough stems carrying the leaves and terminal clusters of flowers and additional basal leaves, 

which are truly intermediate. The flowers are more similar to H. niger than to H. argutifolius. 

They are produced on short stalks around the base of the plant. The hybrid between H. niger x 

H. lividus is called H. x ballardiae (Table 1.4). 

For the species H. vesicarius and H. thibetanus, there is no information available regarding 

their hybridisation ability, and their genetic relationships to other species are still unclear. The 

situation with caulescent H. foetidus is similar, but unconfirmed hybrids with H. viridis or 

H. argutifolius have been reported (Table 1.4, Mathew, 1989). A hybrid between H. niger and 

H. x hybridus with rose flowers, called `Walberton’s Rosemary`, was described recently 

(Rice, 2009), although H. niger does not hybridise readily with species from section 

Helleborastrum. 

An overview of the existing Helleborus hybrids and those that have been reported but never 

confirmed is given in Table 1.4. 
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Table 1.4: Helleborus hybrids and reports of putative hybrids (Mathew, 1989). 

 Name Crossing combination Combination of characteristics 

C
on

fir
m

ed
 h

yb
rid

s 
Orientalis hybrids intraspecific H. orientalis crosses variation of sepal shape and colours 

Orientalis hybrids, garden 
hybrids 

interspecific crosses between 
species within section 
Helleborastrum, in which H. orientalis 
is involved 

variation of sepal shape and colours, 
especially dark colours, double 
flowers 

H. x sternii 
H. argutifolius x H. lividus, also 
possible reciprocal: H. lividus x 
H. argutifolius 

fertile intermediates referring to 
growth type and flowers between the 
parental species 

H. x ballardiae H. niger x H. lividus sterile intermediates referring to 
growth type and flowers between the 
parental species 

H. x nigercors H. niger x H. argutifolius 
H. x ericsmithii H. niger x H. x sternii 

U
nc

on
fir

m
ed

 p
ut

at
iv

e 
hy

br
id

s H. x jourdanii H. foetidus x H. viridis 
differences in growth type and flower 
morphology 

-- H. foetidus x H. argutifolius 
sterile offspring, differences in 
growth type and flower morphology 

-- 
‘Walberton’s Rosemary’ 

H. niger x H. orientalis 
H. niger x H. x hybridus 

differences in growth type and leaf 
and flower morphology; especially 
sepal colour and shape 

-- H. niger x H. viridis 
differences in growth type and leaf 
and flower morphology 

-- H. niger x H. purpurascens 
differences in growth type and leaf 
and flower morphology 

 

Karyotypic analyses have confirmed that Helleborus species are diploid 2n=2x=32 (D’Amato 

& Bianchi, 1989; Yuan & Yang, 2006; Castro & Rosselló, 2007). It is assumed that the 

chromosome number might have originated by polyploidy based on the most common basic 

chromosome number in the Ranunculaceae x=8. 

The Helleborus species H. x hybridus and H. niger are economically important ornamentals. 

Several other species with minor impacts exhibit various interesting features, which should be 

combined with those of H. x hybridus or H. niger, e.g., scent is a characteristic of H. odorus 

and H. liguricus. In general, traits like sepal colour and sepal shape, flower size and number, 

nectaries, bracts, foliage and plant health are valuable for the horticultural improvement of 

Helleborus cultivars and could be combined by interspecific hybridisation. The most distinct 

morphological differences, which also have an ornamental value, are found for foliage and 

flower. These are described in the subsequent paragraphs. 

Leaf and flower morphology 

The morphology of flowers and leaves varies among species. Most of the descriptions of the 

following were taken from Mathew (1989) and from own observations. In general, Helleborus 

leaves are mostly pedately divided with different numbers of segments. In some species the 

leaves are weakly pedate, inclining to palmate or digitate. The texture is often leathery, and 
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the venation is prominent on the abaxial side. Most leaf characteristics are similar for species 

of the same section. 

Leaflets of H. vesicarius are cut into several jagged teeth, which are wedge shaped at the base 

and coarsely toothed at the apex, the teeth and terminal lobe acute (Figure 1.2 A). Leaves of 

H. foetidus are long-petiolate and born at the stem. Leaf segments are narrowly lanceolate or 

elliptical with serrated and sometimes almost entire margins (Figure 1.2 C). The colour of 

petioles varies between green and purple-red. The unpleasant smell of H. foetidus is released 

by the foliage. Both H. foetidus and H. vesicarius leaves have leaf blades that are pedate with 

three primary divisions; two lateral leaflets are sometimes divided into two.  

H. argutifolius and H. lividus have three-lobed leaves, all born on the stem. The central leaf is 

regularly elliptical, while the lateral ones are irregular with unequal sides (Figure 1.2 B). 

Leaflets are coarsely and sometimes spiny-toothed and rarely have entire margins (Figure 1.2 

B). Petioles of H. lividus are suffused purple (Figure 1.2 B), whereas those of H. argutifolius 

are green. H. niger leaves are pedate with oblong or oblanceolate segments that are toothed 

towards the apex. Petioles are green or purple spotted (Figure 1.2 D). 

 

Figure 1.2: Leaf morphologies of adult plants from different Helleborus species. 
A: H. vesicarius, B: H. lividus, C: H. foetidus, D: H. niger, E: H. x hybridus, F: H. cyclophyllus, 
G: H. dumetorum, H: H. torquatus, I: H. thibetanus. Bars represent 3 cm. 

A

G

D

CB

FE

IH



Chapter 1  General foreword 

11 
 

For all species of section Helleborastrum, it is difficult to determine species-specific leaf 

characteristics. The morphological variation is quite high even within a species, e.g., multiple 

divided leaves have been described for H. abruzzicus (up to 200 times), and H. hercegovinus 

leaves may be heavily dissected (45-100 times). Examples of leaves from the Helleborastrum 

species are shown in Figure 1.2 E-H. The leaves of H. cyclophyllus, H. dumetorum and 

H. torquatus in Figure 1.2 F-H represent the genotypes used in this study. 

Leaves of H. thibetanus are pedate (Figure 1.2 I). The lobes are elliptical to oblanceolate and 

cuneate at the base with coarsely and sharply serrated margins. 

In general, the flowering season of Helleborus species ranges from December until late 

spring. Some species start flowering earlier, while other species start flowering in April or 

May. Most of the flowering times of different species overlap. Flowering time depends on the 

conditions, especially the temperature, under which the plants are cultivated. 

Helleborus flowers are quite variable in shape and flower colour. The largest variation in 

flower colour is found in section Helleborastrum (Table 1.2, Figure 1.3 D-I), especially in the 

H. x hybridus genotypes (Figure 1.3 G-I). Colours range from white over pink to dark purple 

and spotted. Double-flowering forms are also found. 

While most of the Helleborus flowers are similar in shape, H. foetidus and H. vesicarius 

flowers differ from all the other species. The flowers of both species are globular or bell-

shaped, pendent and smaller in size than other species (Figure 1.1 C, Figure 1.3 B). 

H. foetidus flowers are green, sometimes rimmed with brown or purple, while H. vesicarius 

flowers are green but are often stained purple or brownish at the apex. 

The flower composition is similar for all species. Helleborus flowers are bisexual and 

protogynous, meaning that the stigma is receptive before the pollen is shed from the anthers. 

Flowers are usually cross-pollinated, although they are self-compatible. In nature, pollination 

is mediated by bees of the genera Apis (honey bees), Bombus (bumble bees) and Anthophora 

(flower bees), which are attracted by the flower scent and ultraviolet reflection of the sepals. 
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Figure 1.3: Variability in flower morphology of different Helleborus species and cultivars. 
A: H. argutifolius, B: H. foetidus, C: H. niger, D: H. atrorubens, E: H. dumetorum, F: H. purpurascens, 
G: H. x hybridus `Mrs. Betty Ranicar´, H: H. x hybridus `Spring Promise Sue´, I: H. x hybridus `Spring Promise 
Rachel´. Bars represent 3 cm. 

Flower assembly is now described from the outside to the centre. Flowers mostly consist of 

five large, usually overlapping perianth segments, the sepals, which vary in colour (Figure 

1.3). The sepals turn green after anthesis and contribute to photosynthesis. The petals become 

funnel-shaped, shortly stalked nectaries that provide food for pollinators. Numerous stamens 

(the number is variable) are found next to the nectaries. The stamens are erect at first and then 

elongate and arch outwards as they mature (Figure 1.4 A). Anthers are elliptical or oblong and 

are yellow to cream in colour (Figure 1.4 A and E). Carpels are sessile, variable in number 

and disconnected or slightly fused at the base (Figure 1.4 B). The number of ovules in the 

ovary differs across species (Figure 1.4). In H. vesicarius, three to six ovules are found 

(Mathew, 1989), while 10 to 20 are present in ovaries of other species (Schiffner, 1890). 

Styles are straight or curved and differ in length, depending on the species. The stigmas are 

punctiform and adhere pollen, if they are receptive (Figure 1.4 C and F). 

A

D

G

B

E

H

C

F

I



Chapter 1  General foreword 

13 
 

 
Figure 1.4: Close-up views of H. niger flower organs. 
A: overview of carpels, stamens, green nectaries below the stamens and the white sepals, B: apocarpe carpels, 
C: stigma with papillae, D: inner view of an ovary with single ovules, E: stamens with freshly dehisced anthers, 
F: pollinated stigma. 

1.4 Diseases and pests of Helleborus 

Many diseases and pests affect Helleborus during cultivation or at the final growth site. 

The larvae of fungus gnats cause severe damage to Helleborus roots during propagation or 

greenhouse cultivation if they are not recognised. Leaves and flowers can suffer from aphids, 

e.g., the hellebore aphid, Macrosiphum hellebori, (Mathew, 1989). Additionally, whiteflies, 

the hellebore leaf miner, Phytomyza hellebori (Mathew, 1989), and snails affect hellebore 

leaves. Thrips damage flowers and dramatically reduce the ornamental value of the plant. 

Lastly, nematodes can affect the roots and leaves. 

There are also viral diseases associated with Helleborus plants, e.g., Helleborus mosaic virus 

belonging to the Carlaviruses, Cucumber mosaic virus and Broad bean wilt virus (Eastwell et 

al., 2009). Since the 1990s, a Helleborus virus disease referred to as ‘black death’ has gained 

importance. Helleborus net necrosis virus (Eastwell et al., 2009), also a Carlavirus, has been 

identified as the causal agent. The symptoms are black streaks that appear on the leaves, often 

following the veins, as well as on the flowers and stems. Carlaviruses are transmitted 

nonpersistently by aphids. 

Fungal diseases, like Ramularia and downy mildew, often occur on the leaves as a primary 

infection. Additionally, the roots may be affected by Pythium, Phytophthora or Rhizoctonia, 
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causing rhizome and stalk decay as a secondary infection. Infection from these three 

pathogens can occur if growth conditions are not suitable, e.g., during container cultivation. 

Helleborus leaves are affected by some leaf spot diseases. The most important of these is 

Coniothyrium hellebori, which causes hellebore leaf or black spot. The pathogen is less of a 

problem during propagation than at the final growth site in botanical and private gardens 

(Figure 1.5). The symptoms of C. hellebori are blackish-brown spots that often appear as 

concentric rings either on the leaf blade or at the margin. As the disease progresses, the spots 

grow and become irregular, dark brown or black, round or elliptical areas, until they infect 

leaf parts and whole leaves. Petioles and flowers are also affected but to a lesser extent than 

the leaves. Mild wet winters may encourage leaf spot disease. The symptoms become visible 

in early spring and increase in severity for the rest of the year, which dramatically reduces the 

ornamental value of the plants. 

 
Figure 1.5: Symptoms of C. hellebori on hellebores. 
A and B: Botanical garden in Munich, July 2008, C: H. x hybridus in the Hofgarten in Freising December 2007. 

  

A B C
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1.5 Collaboration project: “Developing resistant, homogenous and high-

yielding cultivars of Helleborus species” 

The studies in this thesis were performed as part of a collaboration entitled “Developing 

resistant, homogenous and high-yielding cultivars of Helleborus species”, which was 

financially supported by the German Federal Ministry of Food, Agriculture and Consumer 

Protection administrated by the Federal Agency for Agriculture and Food [grant number 28-1-

41.035-06]. 

The project was aimed at obtaining fundamental prerequisites for interspecific hybridisations 

within the genus Helleborus and to create new interspecific hybrids. Resistance against 

C. hellebori was the trait with top priority in addition to morphological plant characteristics. 

The collaboration between the company Heuger, Glandorf, Germany, a producer and breeder 

of hellebores, the Research Station for Horticulture at the Weihenstephan-Triesdorf 

University of Applied Sciences, Freising, Germany and the Leibniz Universitaet Hannover, 

Germany was divided into two sub-projects. Sub-project 1 was attended to the company 

Heuger, coordinator: Peter Oenings. 

Sub-project 1: Development of a resistance test against Coniothyrium hellebori and 

development of hybrids and methods for their propagation. 

 Provision of Helleborus species 

 Development of an evaluation of resistance in Helleborus species 

 Diallelic crosses of all available Helleborus species 

 Development of methods for hybrid propagation 

 Evaluation of hybrid resistance against C. hellebori and hybrid performance 

Sub-project 2 was conducted at the Research Station for Horticulture Weihenstephan 

(01.11.2007-31.05.2009) and at the Leibniz Universitaet Hannover, Institute for Floriculture 

and Woody Plant Sciences (01.06.2009-31.10.2010), coordinator: Prof. Dr. Traud 

Winkelmann, project agent: Julia Meiners. 
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Sub-project 2: Genetic diversity, crossability and hybridisations in the genus Helleborus. 

 Cytological and flow cytometric analysis of Helleborus species 

 Molecular genetic analysis of the genus Helleborus 

 Molecular genetic description of different C. hellebori origins 

 Viability and storage of pollen 

 Analysis of pollen germination in situ and determination of crossing barriers 

 Development of methods to overcome crossing barriers (embryo rescue) 

 Identification of hybrids 

1.6 Thesis objectives 

Within both breeder and consumer groups, the demand for new Helleborus phenotypes of 

various flower colours and morphologies, scents, foliage, variation in growth type and disease 

tolerance and resistance has increased. The combination of these traits cannot be achieved 

with crosses of one Helleborus species. Large variations in flower colour are available in 

species of the section Helleborastrum. Scent is a characteristic of H. odorus and H. liguricus. 

Growth types with large terminal inflorescences are found in the sections Chenopus and 

Griphopus. Furthermore, some hybrids that already exist are less susceptible to hellebore leaf 

spot disease, the most important fungal pathogen at the final growth site. Therefore, 

interspecific hybridisation of Helleborus species is the method of choice for combining these 

traits. 

The three main objectives of this thesis and sub-project 2 were as follows: 

1. To obtain interspecific hybrids, fundamental knowledge of the relatedness of Helleborus 

species should be acquired with: 

 Cytological analyses that aimed at determining the chromosome number of species, 

which is an important indicator for the success of certain crossing combinations. 

 Determination of the nuclear DNA content of the available Helleborus species via 

flow cytometry in order to analyse taxonomic differences and to identify parental 

species, whose offspring could be identified by flow cytometry. 

 Molecular genetic analyses of the Helleborus plant material on the basis of 

multilocus AFLP markers in order to calculate genetic distances and to analyse the 

sectional taxonomic sub-division of the Helleborus genus. 
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2. Interspecific hybridisations often suffer from pre- or postzygotic crossing barriers. 

Therefore, crossing barriers needed to be identified and methods to overcome these 

barriers should be established by: 

 Tests of pollen viability of the Helleborus species and of stored Helleborus pollen. 

 Evaluation of pre- and postzygotic hybridisation barriers by tracking the pollen tube 

growth in situ. 

 Developing an embryo rescue technique to overcome postzygotic hybridisation 

barriers. 

 Developing a procedure to identify obtained putative hybrids. 

3. Because disease tolerance against C. hellebori is a major concern, biological insights into 

this pathogen are essential and should be obtained by: 

 Comparing morphological characteristics of a collection of C. hellebori isolates 

from different geographical locations. 

 Developing a method to produce large amounts of spore material for inoculations. 

 Testing the pathogenicity to analyse whether the isolates are causing the disease. 

 Performing molecular genetic analyses of the relationships between C. hellebori 

isolates using RAPD markers. 

The thesis is comprised of three chapters, which are attended to the three main objectives and 

are planned for subsequent publication, and conclusions and outlook. 
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2 Analysis of the taxonomic subdivision and genetic relationships 

within the genus Helleborus by nuclear DNA content and 

genome-wide DNA markers 

2.1 Introduction 

Information about chromosome numbers of plant species provides important knowledge 

referring to taxonomy and breeding. In hybrids between chromosomal divergent species 

meiotic chromosome pairing may be disturbed. Equal chromosome numbers of species 

facilitate hybridisation because these dysfunctions in meiosis seem to be improbable. 

Cytological studies of the Ranunculaceae including some representatives within the genus 

Helleborus were carried out to estimate chromosome numbers and in some cases karyotypes 

(Gregory, 1941; D’Amato & Bianchi, 1989; Yuan & Yang, 2006). These investigations 

revealed that all studied Helleborus species have the same chromosome number of 2n=32 

(Gregory, 1941; D’Amato & Bianchi, 1989; Yuan & Yang, 2006; Bennett & Smith, 1976; 

Dobes et al., 1997; Castro & Rosselló, 2007). 

Chromosome sizes of plants are closely correlated with their nuclear DNA contents, which 

can be determined by flow cytometry; a method that determines the nuclear DNA content of 

the sample by simultaneous measurement with an internal reference standard of known DNA 

content. The genome size (C-value) is known to correlate with the geographical distribution 

of plants, in terms of karyotypic and cytogenetic characters including polyploidy and 

chromosome size, (Bennett, 1976) and can be useful for the examination of phylogenetic 

dimensions (Bennett et al., 2000) as well as the taxonomic classification of species in narrow 

taxonomic groups (Ohri, 1998). The 2C DNA amount of herbaceous higher plants shows at 

least a 500-fold range, from less than half a picogram (pg) to more than 250 pg (Bennett & 

Smith, 1976). Nuclear DNA contents of the Helleborus species have already been determined 

to evaluate the Helleborus taxonomy (Zonneveld, 2001). Zonneveld’s results were consistent 

with the genus division recommended by Mathew (1989) and Werner & Ebel (1994) (Chapter 

1.1.1). 

The first phylogenetic evaluation of Helleborus based on the chloroplast (trnL-F and matK) 

and ribosomal ITS DNA sequence data was done by Sun et al. (2001). This analysis also 

supported the genus’ division into sections, but did not resolve the problematic nature of the 

section Helleborastrum (Figure 2.1). Additionally, bootstrap support in their analysis was low 

for the relevant branching differing between sections (Figure 2.1). Close relationships 
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between species and intraspecific morphological variation (Servettaz et al., 1988) make it 

difficult to detect the relationship between them. 

 

Figure 2.1: Cladistic tree of the genus Helleborus generated by combining molecular data (trnL-F, matK, 
ITS). 
Figure was entirely adopted from Sun et al. (2001). 
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An initial taxonomic differentiation of four Helleborus species and eight populations from 

Italy belonging to section Helleborastrum was performed by Fico et al. (2005). A clear 

discrimination between the species and populations of H. bocconei, H. niger, H. odorus and 

H. viridis was revealed on the basis of RAPD markers (Random Amplified Polymorphic 

DNA). Two new Italian Helleborus species, H. abruzzicus and H. liguricus, have been 

described recently (Thomsen, 2008), and no molecular genetic data describing their 

relationship to other species has been reported up to now. 

Due to the contradictory results regarding the taxonomic classification of the genus 

Helleborus and the discovery of new species, the objectives in this study aimed at gathering 

novel information on the genetic relationships within the genus by combining different 

analyses with molecular marker data. The objectives of this study were (i) to confirm the 

chromosome numbers of representative species of all sections, (ii) to determine the nuclear 

DNA content of 21 species and four hybrids and elaborate the potential of flow cytometry for 

the identification of interspecific hybrids, (iii) to evaluate genetic relationships within the 

genus Helleborus by the use of the multilocus AFLP technique (Vos et al., 1995). The 

integrative approach of this study is the basis for the establishment of future breeding 

strategies, especially with regard to interspecific hybridisations. 
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2.2 Materials and Methods 

2.2.1 Plant material 

In total, 21 out of 22 described Helleborus species, 11 genotypes of H. niger, 10 genotypes of 

H. x hybridus, one true H. orientalis and four Helleborus hybrids were used in this study 

(Table 2.1). At the beginning of the study, no plant material of H. occidentalis, formerly 

regarded as subspecies of H. viridis, was available; therefore, it was not integrated. Plants of 

most of these species were provided by the company Heuger, Glandorf, Germany. In addition, 

leaf material of six species for AFLP analysis was kindly provided by Will McLewin, Phedar 

Nursery, Bunkers Hill, Romiley, Stockport, UK. As a member of the Ranunculaceae family, 

Pulsatilla vulgaris ‘Violet’ was used as the outgroup within the calculated phenogram. 

Chromosome counts were performed for representative species of five Helleborus sections. 

2.2.2 Cytological analysis 

Two to three hours past sunrise, young root tips measuring 0.5-1 cm in length were harvested 

from the different Helleborus species and pretreated with 2 mM 8-hydroxyquinoline solution 

at room temperature for 4 hours. Next, the solution was replaced by fixative solution (three 

parts ethanol: one part glacial acetic acid) and stored overnight at 4 °C. Root maceration was 

carried out in 1 N HCl at 60 °C for 10 minutes. The maceration solution was replaced by 1 % 

Aceto-Orcein in 45 % acetic acid and chromosomes were stained for 40 minutes. Then, the 

staining solution was decanted and the remnants of the dye were washed off with deionised 

water. For microscopic analysis, approximately 1 mm of the root tip was transferred to a 

microscope slide. The root tip was covered with a cover slip and squeezed into a drop of 45 % 

acetic acid with a preparation needle. The preparations were observed under a bright field 

microscope (Axio Scope.A1, Zeiss, Oberkochen, Germany) at 1000 x magnification. 
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Table 2.1: Helleborus species, genotypes and hybrids analysed in the present study. 

Helleborus species Provided by Available information 
Section Syncarpus   
H. vesicarius Heuger  
Section Griphopus   
H. foetidus Heuger  
Section Chenopus   
H. argutifolius Heuger  
H. lividus Heuger  
Section Helleborus   
H. niger 1210a Heuger Open pollinatedb 
H. niger 1010 Heuger Clonec 
H. niger 1020 Heuger Clone 
H. niger 1220 Heuger Open pollinated 
H. niger 1030 Heuger Clone 
H. niger 1040 Heuger Clone 
H. niger 1050 Heuger Clone 
H. niger 1110 Heuger F1 hybrid cultivar 
H. niger 1060 Heuger Clone 
H. niger 1120 Heuger F1 hybrid cultivar 
H. niger 1070 Heuger Clone 
Section Helleborastrum   
H. abruzzicus Heuger, McLewin  
H. atrorubens Heuger  
H. bocconei Heuger  
H. croaticus Heuger  
H. cyclophyllus Heuger  
H. dumetorum Heuger  
H. hercegovinus McLewin  
H. orientalis McLewin  
H. x hybridus 1060 Heuger Clone 
H. x hybridus 1230 Heuger Open pollinated 
H. x hybridus 1070 Heuger Clone 
H. x hybridus 1080 Heuger Clone 
H. x hybridus 1090 Heuger Clone 
H. x hybridus 1240 Heuger Open pollinated 
H. x hybridus 10100 Heuger Clone 
H. x hybridus A Heuger  
H. x hybridus B Heuger  
H. x hybridus C Heuger  
H. istriacus Heuger  
H. liguricus Heuger, McLewin  
H. multifidus Heuger  
H. odorus Heuger  
H. odorus 0613 McLewin Unknown sampled, from Serbia 
H. purpurascens Heuger  
H. purpurascens 0814 McLewin Unknown sample, from Romania 
H. torquatus Heuger  
H. viridis Heuger  
Section Dicarpon   
H. thibetanus Heuger  
Hybrids   
H. x ballardiae Heuger  
H. x ericsmithii Heuger  
H. x nigercors Heuger  
H. x sternii Heuger  

anumbers represent different genotypes; from H. niger 1120 four sibling plants were used for AFLP 
analysis 
bmaternal parent was pollinated with a pollen mixture of different pollen donors 
cclonally propagated 
dat the beginning of the study, the species was only known by Will McLewin 
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2.2.3 Flow cytometric analysis of nuclear DNA content 

For isolation of nuclei, 0.6 cm² of fresh young leaf tissue from adult plants was chopped 

together with leaf tissue of either Secale cereale subsp. cereale (16.01 pg/2C) (Gatersleben 

gene bank accession no. R 737) or Vicia faba ‘Tinova’ (26.21 pg/2C) (Gatersleben gene bank 

accession no. FAB 602) as internal reference standards. These internal standards were kindly 

provided by Dr. Joerg Fuchs, IPK Gatersleben, Germany. Sample tissues were chopped with a 

razor blade in a plastic petri dish in 0.5 ml extraction buffer (CyStain PI Absolute P; Partec, 

Muenster, Germany) and incubated for at least 30 sec. The nuclei suspension was filtered 

through a 30 µm CellTrics filter (Partec) into a sample tube. Two ml staining solution 

(CyStain PI Absolute P; Partec) containing propidium iodide (PI) and RNase were added to 

the nuclei extract. Samples were incubated for at least 60 minutes on ice in the dark. The 

fluorescence of the nuclei was then measured using the CyFlow Ploidy analyser (Partec). 

Fluorescence was excited at 532 nm using a Nd-YAG laser. The 2C DNA content of the 

sample was calculated as the mean sample peak divided by the mean standard peak and 

multiplied by the known amount of DNA of the standard. At least three replicates and at least 

5000 nuclei were measured for each genotype. All peaks analysed revealed a coefficient of 

variation of less than 5 %. For all species, the DNA content was measured using S. cereale as 

the internal standard; additionally, V. faba was used as an internal reference for 

H. argutifolius, H. lividus, H. dumetorum and H. thibetanus. 

2.2.4 DNA extraction and AFLP analysis 

For DNA extraction, young leaves were collected, freeze-dried and ground to powder using a 

bead mill. Total plant DNA was isolated in two replicates from each genotype based on the 

CTAB procedure described by Saghai-Maroof et al. (1984). The DNA concentration was 

estimated in comparison to known DNA concentrations of λ-DNA and standard plant DNA in 

a 0.8 % agarose gel. The procedure for the AFLP markers (amplified fragment length 

polymorphism) was performed as described by Vos et al. (1995) with minor modifications 

(Hartl et al., 1999; Schmolke et al., 2005). Genomic DNA (250 ng) was digested with the 

restriction enzymes PstI (2.5 U) and MseI (1 U). The PstI adapter (2.5 pmol) and the MseI 

adapter (25 pmol) were ligated to the restriction fragments with 1 U of T4-DNA ligase. 

Restriction digestion and adapter ligation were performed in one step for 3 h at 37 °C 

followed by an overnight incubation at 16 °C. For preamplification, primers homologues to 

the adapters and the restriction sites, containing two selective nucleotides were used. Selective 

amplification was carried out using 10 PstI / MseI primer combinations (Table 2.3) with three 
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selective nucleotides on the 3’-end of either primer. The 5’-end of the PstI primers was 

labelled with fluorescein, and the standard list for AFLP primer nomenclature 

(http://wheat.pw.usda.gov/ggpages/keygeneAFLPs.html) was used. All reactions were 

performed with two independent DNA extractions to ensure pattern reproducibility. Only 

reproducible bands were included in subsequent analyses. The PCR fragments were separated 

using 5 % denaturing polyacrylamide gels under standard sequencing conditions. The gels 

were scanned with a Typhoon 9200 fluorescence scanner (GE Healthcare Europe, Freiburg) 

for fragment detection. 

2.2.5 Data analysis 

The banding patterns were evaluated by visual inspection and transformed into a 0/1 matrix 

for each DNA fragment. Genetic distances and phenograms were calculated using the 

PHYLIP 3.69 software package (http://evolution.genetics.washington.edu/phylip.html). The 

pairwise distances between the analysed genotypes were calculated using the similarity index 

of Nei and Li (1979). For the construction of the phenograms, three different distance 

methods available in the PHYLIP software were used: Fitch and Margoliash, UPGMA 

(Unweighted Pair Group Method with Arithmetic Mean) and Neighbour-joining. Relative 

branch support was assessed by bootstrap analysis (Felsenstein, 1985) with 1000 replicates. 

Majority rule consensus trees were constructed with a reduced number of H. niger and 

H. x hybridus genotypes to focus on sectional divisions. Consensus trees were based on 1000 

trees for all three distance methods. The phenograms were visualised with the TreeView 

software (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). 
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2.3 Results 

2.3.1 Cytological analysis 

Chromosomes were counted and their lengths were measured for the representative species of 

all six Helleborus sections, except for the section Syncarpus, because no mitotically active 

root tips were available for H. vesicarius. All other species of the monospecific sections, 

namely H. foetidus, H. niger and H. thibetanus, and H. argutifolius and H. lividus in the 

section Chenopus, were analysed (Figure 2.2). 

 

Figure 2.2: Chromosome counts from root tips of five Helleborus species stained with Aceto-Orcein. 
A: H. argutifolius, B: H. foetidus, C: H. niger, D: H. odorus, E: H. thibetanus. Numbers in the sub-figures 
represent chromosome counts. 

For the Helleborastrum section, chromosomes were counted for H. atrorubens, 

H. cyclophyllus, H. dumetorum, H. x hybridus, H. multifidus and H. odorus. For all species, a 

chromosome number of 2n=32 was determined (Table 2.2). Within the section 
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Helleborastrum, the chromosomes differed in length from 2 µm to 13 µm. In the sections 

Chenopus (2-9 µm) and Griphopus (3-9 µm), chromosomes were slightly shorter. 

Chromosome sizes of H. niger varied from 2 µm to 13 µm, while those of H. thibetanus were 

3 µm to 17 µm long. 

2.3.2 Estimation of the nuclear DNA content 

The nuclear DNA content was estimated for 21 Helleborus species and four hybrids, with 

S. cereale as internal reference standard (Table 2.2). One histogram of a measurement of 

H. niger nuclei together with S. cereale is demonstrated in Figure 2.3 A. In addition, the 

nuclear DNA content was measured with V. faba as a reference standard for H. argutifolius, 

H. lividus, H. dumetorum and H. thibetanus (Table 2.2). To determine intraspecific 

differences, three measurements of DNA amount, corresponding to three biological replicates 

of three genotypes each, were performed for H. niger and H. x hybridus. 

Over all species, the nuclear DNA content varied between 18.3 pg/2C and 33.2 pg/2C, with 

standard deviations of 0.05 to 0.53. H. argutifolius (18.3 pg/2C) and its sister species 

H. lividus (19.4 pg/2C) in the section Chenopus had the lowest DNA amounts in the genus 

(Table 2.2). The differences in nuclear DNA content between the measurements using the two 

different reference standards were 0.1 pg for H. argutifolius and 0.2 pg for H. lividus. 

H. foetidus, representing the section Griphopus, had the second lowest DNA content with 

22.0 pg/2C. Hence, these three species were clearly separated from the other species. The 

nuclear DNA content of H. niger varied from 26.6 pg/2C to 27.0 pg/2C for three genotypes, 

with an average of 26.8 pg/2C. All species from the section Helleborastrum and H. vesicarius 

had similar DNA amounts that ranged from 27.0 pg/2C to 31.3 pg/2C (Table 2.2), whereas 

H. x hybridus contained 28.5 pg/2C to 29.0 pg/2C (28.7 pg/2C in average) of nuclear DNA. 

The highest nuclear DNA content was observed in H. thibetanus, with 33.2 pg/2C on average, 

although a difference of 1 pg between the calculations based on the two internal reference 

standards, S. cereale and V. faba, was recorded. For the first time the nuclear DNA contents 

of H. abruzzicus with 27 pg/2C, H. liguricus with 29.9 pg/2C and H. croaticus with 

30.2 pg/2C were determined. 

As expected, the nuclear DNA contents of the four hybrids, H. x ballardiae, H. x ericsmithii, 

H. x nigercors and H. x sternii, represented the average DNA amounts of their parental 

species (Chapter 1.1.1, Table 1.2; shown for H. x nigercors in Figure 2.3 B). 
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Table 2.2: Nuclear DNA contents and chromosome numbers determined in this study in comparison to 
previously published data. 
Determinations for the first time are coloured grey. 

Helleborus 
species 

Internal 
reference 
standard 

Nuclear DNA 
content [pg/2C] 

Nuclear DNA 
content [pg/2C] 

(Zonneveld, 2001)a 

Chromosome numbers 
Determined/ 

verified in this 
study 

Previously 
published byb 

mean std mean std 
Section Syncarpus       
H. vesicarius S. cereale 27.2 0.05 28.3 1.10   
Section Griphopus       

H. foetidus S. cereale 22.0 0.14 
23.3 
23.4 

0.31 
0.47 

32 1, 3 

Section Chenopus       

H. argutifolius 
S. cereale 18.3 0.50 

18.9 0.54 32  V. faba 18.2 0.32 

H. lividus 
S. cereale 19.5 0.3 

19.0 0.52 32 3, 6 
V. faba 19.3 0.17 

Section Helleborus       
H. niger 1070 S. cereale 27.0 0.34 28.0 

28.3 
29.4 

1 
0.7 
0.61 

  
H. niger 1070 S. cereale 26.6 0.30 32 1, 2, 3 
H. niger 1070 S. cereale 26.9 0.15   
 Average 26.8 0.21     
Section Helleborastrum       
H. abruzzicus S. cereale 27.0 0.44     

H. atrorubens S. cereale 29.1 0.22 
29.6 
30.8 

1.19 
0.97 32 

 

H. bocconei S. cereale 30.5 0.27 30.8 1.01  3 
H. croaticus S. cereale 30.2 0.43     
H. cyclophyllus S. cereale 28.6 0.22 29.9 0.74 32  

H. dumetorum 
S. cereale 29.6 0.27 

32.4 0.61 32 1, 4 
V. faba 29.7 0.25 

H. hercegovinus S. cereale 27.4 0.12 29.6 0.92   
H. x hybridus A S. cereale 28.5 0.32 c29.7-

30.6 
0.37-
0.79 

  
H. x hybridus B S. cereale 28.7 0.1 32 1 
H. x hybridus C S. cereale 29.0 0.41   
 Average 28.7 0.29     
H. istriacus S. cereale 29.2 0.35 30.1 1.10   
H. liguricus S. cereale 29.9 0.22     
H. multifidus S. cereale 29.1 0.26 30.2 0.02 32 1, 3 

H. odorus S. cereale 28.6 0.04 
30.2 
30.7 

0.85 
0.95 32 1, 3 

H. purpurascens S. cereale 31.3 0.04 30.5 1.21   

H. torquatus S. cereale 28.2 0.22 29.8 
30.1 

1.16 
1.06 

  

H. viridis S. cereale 28.7 0.37 30.4 1.26   
Section Dicarpon        

H. thibetanus 
S. cereale 32.7 0.13 

35.7 1.23 32 5 V. faba 33.7 0.53 
Hybrids        
H. x ballardiae S. cereale 23.5 0.34 23.8    
H. x ericsmithii S. cereale 22.8 0.18     

H. x nigercors S. cereale 23.2 0.22 
22.5-
23.1 0.76 32  

H. x sternii S. cereale 18.2 0.20 19.1 0.12   
athree different samples were measured twice for each clone; other genotypes were used compared to this study 
and if more than one genotype was measured for one species, the results are shown for all of them 
b1: Gregory (1941), 2: Bennett & Smith (1976), 3: D’Amato & Bianchi (1989), 4: Dobes et al., (1997), 5: Yuan 
& Yang (2006), 6: Castro & Rosselló (2007) 
crange of seven different H. orientalis genotypes 
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Figure 2.3: Relative DNA contents of nuclei from leaf tissue of S. cereale and Helleborus. 
A: 1. S. cereale, 2. H. niger, B: 1: S. cereale, 2: H. argutifolius, 3. H. x nigercors, 4. H. niger. All nuclei were 
isolated from leaf tissue and stained simultaneously. 

2.3.3 Genetic relationships based on AFLPs 

To evaluate the genetic relationships within the genus, 19 out of 22 Helleborus species were 

analysed using 10 AFLP primer combinations. The numbers of scored marker fragments per 

primer pair are shown in Table 2.3. In total, 1109 marker fragments were produced across all 

Helleborus genotypes and the outgroup. Of these 0.3 % were monomorphic for the genus 

Helleborus. Analysis of the section Helleborastrum revealed 38.1 % shared fragments, 

whereas only 5.8 % were shared by the 13 genotypes of the monospecific section Helleborus 

(Table 2.3). 

Table 2.3: Scored AFLP marker fragments, levels of polymorphism and the number of section-specific 
fragments. 

No. 
AFLP 
primer 
pairs 

No. of 
scored 

markers 

Polymorphic fragments 
within the genus 
Helleborus [%] 

No. of specific 
fragments for section 

Helleborus 

No. of specific 
fragments for section 

Helleborastrum 
1 S12 M50 144 99.3 5 69 
2 S13 M54 143 100 2 58 
3 S15 M60 122 100 0 53 
4 S16 M62 99 100 7 30 
5 S18 M52 140 100 10 53 
6 S19 M51 70 100 6 18 
7 S20 M53 55 100 8 16 
8 S22 M56 85 100 6 36 
9 S26 M57 96 100 8 51 
10 S26 M62 155 98.7 12 38 
  ∑ 1109 Ø 99.8 ∑ 64 (5.8%) ∑ 422 (38.1%) 

2

1

3

4

C
o

u
n

ts

Peak no. Counts Mean CV
1 5607 51.47 2.9
2 5072 59.46 3.0
3 5009 72.24 2.5
4 7854 86.00 2.0

Fluorescence intensity

C
o

u
n

ts

Fluorescence intensity

Peak no. Counts Mean CV
1 4419 53.6 1.8
2 6271 91.3 1.8

1 2
A B
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The maximal genetic distance between two species was 0.330, observed between H. lividus 

and H. liguricus, and the minimum value, 0.034, was observed between H. cyclophyllus and 

H. torquatus (Table 2.4). 

Table 2.4: Pairwise genetic distances between 19 Helleborus species and Pulsatilla vulgaris 'Violet' based 
on Nei and Li coefficients. 

 

In the section Helleborus, 4 of the 13 genotypes tested, namely H. niger 1120 a-d, represented 

sister plants of a F1 hybrid cultivar (Figure 2.4) and showed relatively low genetic distances of 

0.004 to 0.008. Over all other H. niger genotypes, the genetic distance varied from 0.009 to 

0.064. In the section Chenopus, the genetic distance was slightly higher, showing a value of 

0.069 between the two species H. argutifolius and H. lividus (Table 2.4). Within the section 

Helleborastrum, the genetic distances ranged from only 0.034 between H. cyclophyllus and 

H. torquatus to 0.195 between H. liguricus and H. purpurascens (Table 2.4). The genetic 

distance between the true species H. orientalis and H. x hybridus varied from 0.069 to 0.078, 

whereas for the H. x hybridus genotypes it ranged from 0.020 to 0.070. The low genetic 

distances observed between species within Helleborastrum demonstrate the close genetic 

relationships within this section. The monospecific section Griphopus is represented by 

H. foetidus, with genetic distances of 0.241 with respect to H. argutifolius and up to 0.303 

with respect to H. liguricus, both of which belong to the section Helleborastrum (Table 2.4) 

Based on the Nei and Li coefficients, three phenograms were calculated using the following 

cluster methods: Fitch and Margoliash, UPGMA and Neighbour-joining. In each case, the 

dendrograms differentiated two major clades with minor clusters representing the six sections. 

In the case of the Fitch and Margoliash model, the first clade comprised the sections 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 P. vulgaris 0
2 H. vesicarius 0.409 0
3 H. foetidus 0.374 0.296 0
4 H. argutifolius 0.407 0.303 0.241 0
5 H. lividus 0.367 0.319 0.259 0.069 0
6 H. niger  1030 0.389 0.295 0.27 0.187 0.206 0
7 H. abruzzicus 0.356 0.25 0.249 0.263 0.261 0.231 0
8 H. atrorubens 0.339 0.225 0.264 0.251 0.25 0.237 0.105 0
9 H. croaticus 0.392 0.25 0.261 0.286 0.272 0.236 0.092 0.097 0
10 H. cyclophyllus 0.33 0.243 0.265 0.257 0.276 0.228 0.108 0.088 0.112 0
11 H. dumetorum 0.326 0.267 0.293 0.255 0.263 0.23 0.114 0.113 0.115 0.12 0
12 H. hercegovinus 0.373 0.259 0.296 0.308 0.327 0.249 0.113 0.124 0.12 0.122 0.153 0
13 H. liguricus 0.32 0.268 0.303 0.319 0.33 0.25 0.131 0.142 0.142 0.157 0.16 0.126 0
14 H. multifidus 0.364 0.26 0.267 0.301 0.302 0.243 0.078 0.091 0.097 0.105 0.121 0.125 0.107 0
15 H. odorus 0.347 0.239 0.267 0.288 0.302 0.248 0.105 0.1 0.115 0.091 0.123 0.113 0.16 0.112 0
16 H. orientalis 0.406 0.227 0.27 0.267 0.291 0.243 0.131 0.105 0.118 0.1 0.123 0.14 0.173 0.124 0.112 0
17 H. purpurascens 0.372 0.243 0.264 0.272 0.286 0.262 0.13 0.124 0.141 0.137 0.093 0.169 0.195 0.132 0.138 0.153 0
18 H. torquatus 0.352 0.236 0.256 0.244 0.269 0.231 0.108 0.095 0.106 0.034 0.116 0.122 0.153 0.099 0.095 0.106 0.116 0
19 H. viridis 0.374 0.227 0.268 0.296 0.296 0.235 0.108 0.092 0.112 0.112 0.107 0.13 0.137 0.095 0.099 0.113 0.146 0.114 0
20 H. thibetanus 0.394 0.251 0.268 0.259 0.31 0.235 0.16 0.161 0.161 0.163 0.177 0.182 0.182 0.17 0.17 0.174 0.196 0.173 0.171 0
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Chenopus and Helleborus, and the second contained Griphopus, Syncarpus, Dicarpon and 

Helleborastrum. Phenograms calculated using the UPGMA and Neighbour-joining models 

demonstrated that the clades had three sections each (Chenopus, Helleborus and Griphopus in 

one clade and Dicarpon, Helleborastrum and Syncarpus in the second) (Figure 2.4). The two 

newly described species H. abruzzicus and H. liguricus were grouped into a small subcluster 

together with H. croaticus within the section Helleborastrum (Figure 2.5). H. abruzzicus was 

placed next to H. multifidus, while H. liguricus was placed next to H. hercegovinus. 

 

Figure 2.4: Neighbour-joining phenogram based on Nei and Li similarity indices computed from 1109 
AFLP markers for 40 Helleborus species and genotypes and Pulsatilla vulgaris 'Violet' as the outgroup. 
The bootstrap percentages >50 % are shown above the branches. From H. niger 1120 four sibling plants (a-d) 
were used for AFLP analysis. The six Helleborus sections are noted at the right margin. 

Additionally, majority rule consensus trees based on 1000 trees were computed for all three 

distance algorithms: Fitch and Margoliash, UPGMA and Neighbour-joining. All consensus 

trees displayed two clades and H. foetidus in a separate position. The Neighbour-joining 

majority rule consensus tree is shown in Figure 2.5. The consensus tree displayed the 

sectional divisions in basic overview. Furthermore the consensus tree also supports the 

position of sections Dicarpon, Syncarpus and Chenopus and reflects the close relationships 

between the species in section Helleborastrum (Figure 2.5). 
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Figure 2.5: Majority rule consensus tree of 1000 Neighbour-joining trees based on Nei and Li similarity 
indices computed from 1109 AFLP markers for 19 Helleborus species and Pulsatilla vulgaris 'Violet' as the 
outgroup. 
The bootstrap percentages >50 % are shown above the branches. The six Helleborus sections are noted at the 
right margin and separated by broken lines. 
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2.4 Discussion 

2.4.1 One common chromosome number for all Helleborus species 

Chromosome numbers are a dynamic characteristic in eukaryotic evolution. Therefore, the 

analysis of chromosomes by counting and karyotyping offer the opportunity to investigate 

plant families, genera and species for phylogenetic and breeding purposes. All species 

examined in this study had a chromosome number of 2n=32, which was consistent with data 

previously described in the literature (Gregory, 1941; D’Amato & Bianchi, 1989; Yuan & 

Yang, 2006; Bennett & Smith, 1976; Dobes et al., 1997; Castro & Rosselló, 2007). Overall, 

the longest chromosomes, ranging from 3 µm to 17 µm, were determined for H. thibetanus. 

The 2n=32 chromosome number that is observed in Helleborus species indicates that it could 

have originated by polyploidy, based on the most common chromosome number observed 

(x=8) in the Ranunculaceae (Yuan & Yang, 2006). Karyotype analyses for some Helleborus 

species like H. lividus (D’Amato & Bianchi, 1989; Castro & Rosselló, 2007), H. foetidus, 

H. niger, H. bocconei, H. multifidus, H. odorus (D’Amato & Bianchi, 1989) and 

H. thibetanus (Yuan & Yang, 2006) showed that the karyotypes of the European species were 

different from that of the East Asian species H. thibetanus. This may indicate evolutionary 

specialization and supports the division into a separate section, Dicarpon, as suggested by 

Mathew (1989). The question whether Helleborus is tetraploid or diploid could be resolved by 

meiotic analyses. However, because of their good fertility and commercial seed propagation, 

they are more likely to exist in an amphidiploid rather than an autotetraploid state. 

2.4.2 DNA contents in Helleborus support the classification 

The term C-value, which refers to the DNA content of an unreplicated haploid chromosome 

complement (n) of an individual (Swift, 1950), has been established for the description of 

genome size. Although nuclear DNA amounts and phylogeny do not correlate overall, a 

comparison of C-values offers an opportunity to explain the phylogenetic relationships and 

systematics of narrow taxonomic groups, such as species within a genus (Ohri, 1998). 

Examples include taxa of the genera Petunia (Mishiba et al., 2000), Lupinus (Naganowska et 

al., 2003) and Alstroemeria (Buitendijk et al., 1997). 

In the genus Helleborus, the nuclear DNA contents ranged from 18.3 pg/2C in H. argutifolius 

to 33.2 pg/2C in H. thibetanus, which is similar to the data obtained by Zonneveld (2001), 

who reported genome sizes of 19 pg/2C and 35.7 pg/2C, respectively. Presently, nuclear DNA 

contents in terms of mass in pg are reported, which correspond to 17920 to 32470 Mb. 
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Nuclear DNA contents correlated with chromosome lengths in this study: the section 

Chenopus with H. argutifolius possessed the shortest chromosomes and the lowest nuclear 

DNA amount, whereas H. thibetanus had the longest chromosomes and the largest genome 

size. Interestingly, the largest genome size was observed for the species H. thibetanus, section 

Dicarpon, the only species native to East Asia. However, no accurate conclusions regarding 

the chromosome lengths can be drawn with respect to genome size because the phase of 

maximal chromosome condensation was not observed in all preparations. Lower but 

distinguishable nuclear DNA contents were estimated for species of the sections Chenopus 

(18/19 pg/2C) and Griphopus (22 pg/2C), which were considered to be caulescent species, in 

agreement with Zonneveld (2001). There is no clear differentiation possible between the 

genome sizes of the other three sections. H. vesicarius lies between the two sections 

Helleborus and Helleborastrum in terms of genome size, perhaps indicating an intermediate 

position. 

In general, Zonneveld (2001) revealed higher nuclear DNA contents in comparison to those 

that were determined in this study (Chapter 2.3.2, Table 2.2). Additionally, standard 

deviations of his measurements, (three different samples were measured twice for each clone) 

were higher in almost all cases (0.02-1.3), than in this study (0.05-0.53), although more 

repetitions were conducted in his experiments. The highest difference between the results 

obtained in this study and those of Zonneveld (2001) was found for H. dumetorum, with an 

8.6 % deviation (29.6 pg/2C vs. 32.4 pg/2C), which seems low in comparison to the variation 

observed in other plant species (Ohri, 1998). 

Divergent measurements may be the result of instrumental-technical, inter-laboratory, 

material-dependent, or intraspecific variation (Greilhuber, 2005). Differences in the age of the 

leaf material and the genotypes used may cause material-dependent variation. Additionally, 

the internal reference standard influences the determination of nuclear DNA contents. In this 

study, S. cereale and V. faba were used as internal reference standards and were compared for 

measurements of the nuclear DNA content in H. argutifolius, H. lividus, H. dumetorum and 

H. thibetanus (Table 2.2); in three cases, the differences were below 0.2 pg, while for 

H. thibetanus it was 1 pg. Zonneveld (2001) used Agave americana (15.9 pg) as internal 

standard. Therefore, the differences in the nuclear DNA contents between this study and 

Zonneveld (2001) may be the result of instrumental-technical and inter-laboratory variation in 

combination with intraspecific variation. Genome size differences between genotypes of the 

same species may be a result of repetitive DNA elements (Kubis et al., 1998) or 
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retrotransposons (Sanmiguel & Bennetzen, 1998), but this has not been confirmed in the 

genus Helleborus up to date. Furthermore, variation is correlated with environmental factors, 

as shown in Helianthus (Price et al., 1998) and maize (Poggio et al., 1998). 

In this study, flow cytometry offered a good method to detect interspecific hybrids like 

H. x ericsmithii or H. x nigercors. Furthermore, hybrids between the sections Chenopus or 

Griphopus and all other sections and hybrids with H. thibetanus as one parent could be 

identified by flow cytometry in future experiments due to large differences in their nuclear 

DNA contents. 

2.4.3 First implementation of genome wide DNA markers in Helleborus 

classification 

Within the genus Helleborus, a phylogenetic analysis was carried out by Sun et al. (2001), 

based on the chloroplast markers trnL-F and matK and the ribosomal ITS DNA sequence. Sun 

et al. (2001) used a parsimony algorithm that does not include distance estimation between 

taxa and calculated a consensus tree that combined all of the sequence information under the 

Fitch criterion (Figure 2.1). There are two major disadvantages of using chloroplast markers 

and ITS sequences: the first is that for most species, chloroplast genes are maternally inherited 

and ITS sequences represent only one or two loci in the genome. The second is that both 

sequence types provide only limited information in terms of sequence length and conservation 

between taxa. Therefore, the aim in this study was to apply the AFLP technology in an 

attempt to determine genetic relationships within the genus Helleborus. AFLP markers are 

considered to be randomly distributed DNA fragments from the whole nuclear genome with 

high information contents. The AFLP technique has been successfully used to evaluate 

genetic relationships or diversity in several plant taxa like Prunus (Depypere et al., 2009), 

Alstroemeria (Han et al., 2000), Dahlia (Wegner & Debener, 2008) and Ranunculaceae 

(Després et al., 2003).  

The phenogram obtained in this study using AFLP markers (Figure 2.4) revealed very similar 

classifications, as compared to the report of Sun et al. (2001), but the bootstrap support in 

their analysis was low for the relevant branching differences between sections, which may be 

due to the above-mentioned disadvantages. In addition, this study grouped two samples with 

initially unknown origin (H. odorus 0613 and H. purpurascens 0814) next to the species they 

were assumed to belong to (McLewin, personal communication). Sun et al. (2001) were able 

to distinguish between the six Helleborus sections, although H. foetidus was considered to be 

a sister group to H. niger without any bootstrap support. This is in contrast to this study, 
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which showed similarities between the average genetic distances between H. foetidus and the 

genotypes of section Helleborus (0.271) and all genotypes of section Helleborastrum (0.268). 

The Dicarpon section with H. thibetanus was placed next to the Helleborastrum section in 

both phenograms, but was supported by a high bootstrap value of 83 % in this study, in 

contrast to Sun et al. (2001), where its position was in doubt. Similarly, the position of 

H. vesicarius between the Chenopus and Griphopus sections was weakly supported (Sun et 

al., 2001), whereas its position in this study was confirmed by a bootstrap value of 66 %. 

However, the average genetic distance obtained for H. vesicarius in this study with respect to 

the section Helleborus (0.288) was higher than the genetic distance obtained with respect to 

Dicarpon (0.251) and species of the section Helleborastrum (0.248). Therefore, the placement 

next to Dicarpon and Helleborastrum seems more probable. The genetic distance between 

Syncarpus and Griphopus (0.296) or Chenopus (0.303) was even higher. The problematic 

classification within the section Helleborastrum is obvious in both analyses. 

The genetic distances as estimated in this study were lower between certain species than 

within other species. This was shown for the genetic distance between H. torquatus and 

H. cyclophyllus (0.034) and between the two genotypes of H. odorus (0.085) and 

H. purpurascens (0.086), respectively. Here, it has to be considered that the genotypes of 

these two species probably come from different origins. The only possible way to clarify the 

ambiguous results observed in the section Helleborastrum is to increase the number of 

individuals per species and to collect them from different origins as Sun et al. (2001) already 

suggested. 

Since then, some groups within section Helleborastrum that were regarded as subspecies, 

namely H. multifidus subsp. bocconei, H. multifidus subsp. hercegovinus, H. multifidus subsp. 

istriacus and H. viridus subsp. occidentalis were regarded to be distinct species and bear the 

name of the subspecies. Additionally, H. croaticus and H. torquatus had been treated as 

synonyms but were subsequently considered to be distinct. A successful investigation of the 

distinction between Helleborus species of section Helleborastrum and H. niger based on 

RAPD markers has been carried out by Fico et al. (2005) (Chapter 2.1). 

Similar to RAPD markers, AFLP markers are distributed over the whole genome but have a 

much higher reproducibility. However, in contrast to markers based on plastid DNA or 

ribosomal sequences that sometimes fail to provide phylogenetic information (Després et al., 

2003), AFLP analysis would be a reliable technology for species discrimination and the 
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evaluation of genetic relationships within genera. For the analyses performed in this study, 

AFLP has proven to be sufficiently powerful. The phenogram obtained here supports the 

genus classification suggested by Mathew (1989) and the division of the genus into two 

subgenera as proposed by Werner and Ebel (1994). The two newly described species, 

H. abruzzicus and H. liguricus, have been characterised according to their nuclear DNA 

content and phylogenetic position for the first time in this study. This is important for future 

breeding purposes because their characteristics, including the multiple divided leaves (up to 

200 times) and large yellowish flowers seen in H. abruzzicus and the large pale whitish 

flowers and strong pleasant fragrances of H. liguricus, make them valuable candidates for 

hybridisation programs. 

The phenogram resulting from the molecular marker analysis in combination with the 

cytological and genome size information are the basis for the development of future breeding 

strategies and may be useful for the prediction of hybridisation success within the genus. In 

most cases, only one plant per species was available in this study, which would not be enough 

to display phylogenetic relationships. Therefore, several plants per species from different 

origins would be necessary for future investigations. However, with regard to interspecific 

hybridisation in this study, one plant per species was significant enough because exactly the 

same plants, which were used for AFLP analyses, were taken for the interspecific 

hybridisation experiments. Whether the differences in genetic distances are helpful for 

predicting the success of interspecific hybridisations in Helleborus will be debated later 

(Chapter 3.4.4). 



Chapter 3  Introduction 

37 
 

3 Interspecific hybridisations within the genus Helleborus 

3.1 Introduction 

Interspecific hybridisations have been carried out in many crop plants to increase genetic 

variation and to confer traits such as phenotypic characters or disease resistance from other 

species into well-established cultivars. In particular, interspecific hybridisation has been 

successfully used as a breeding tool in ornamental plants, including Alstroemeria (Buitendijk 

et al., 1995), Lilium (Van Tuyl et al., 2000), Delphinium (Honda et al., 2003) and 

Rhododendron (Eeckhaut et al., 2007). Interspecific hybrids are the offspring of crosses 

between two different species belonging to the same genus. Natural interspecific hybrids may 

arise between species that are native to the same place and that overlap in flowering time. 

However, pre- and postzygotic barriers often hinder the development of interspecific hybrids. 

Prezygotic barriers include all mechanisms that act to prevent fertilisation after a flower is 

pollinated. Such mechanisms can occur at different stages, such as lack of stigma receptivity 

or pollen viability, failure of pollen to adhere the stigma surface, abnormal pollen tube growth 

and inhibition of pollen tube growth before reaching the ovule. Techniques to overcome 

prezygotic barriers include the cut-style and grafted-style methods (Van Tuyl et al., 2000) and 

in vitro fertilisation. Furthermore, environmental conditions, including high temperatures and 

hormones (Sood et al., 1982), as well as compounds that influence stigma receptivity, such as 

specific proteins and exudates (Martin, 1970) and lipids (Wolters-Arts et al., 1998) can be 

applied. 

Postzygotic barriers act after successful fertilisation and reduce the viability or fertility of the 

hybrid zygote (Rieseberg & Carney, 1998). According to the Dobzhansky-Muller model, 

postzygotic reproductive barriers result from deleterious interactions between functionally 

divergent genes from the hybridising species (Dobzhansky, 1937). The terms hybrid 

inviability, hybrid sterility and hybrid breakdown describe postzygotic barriers at different 

developmental stages (Rieseberg & Carney, 1998). Hybrid inviability acts after successful 

fertilisation during embryo development, resulting in embryo abortion. Postzygotic barriers 

during embryo development can be circumvented by embryo rescue techniques, in which 

either embryos, ovaries or ovules are rescued before embryo abortion and cultured in vitro 

until seedlings develop (Winkelmann et al., 2010). To overcome hybrid sterility, 

polyploidisation techniques can be applied (Van Tuyl & Lim, 2003). To develop an 

appropriate method to overcome crossing barriers, the barriers must be identified as either 
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pre- or postzygotic (or both). Plants chosen for use in interspecific hybridisation must be 

evaluated for these two types of crossing barriers. 

The viability of the pollen donor plants can be determined to ensure that the pollen is capable 

of functioning in the sense of effecting fertilisation. A variety of pollen viability assays are 

available, including in vivo germination, in vitro germination and several staining techniques 

(Dafni & Firmage, 2000). Using aniline blue staining, the initial interaction between the 

pollen and the stigma can be monitored and the pollen tube growth can be visualised in situ 

until the pollen tube grows into the micropyle of the ovule immediately before fertilisation 

(Kho & Baer, 1968). Aniline blue staining reveals callose structures, which appear during 

pollen tube formation, in the walls of pollen tubes. 

Within the genus Helleborus, crossing barriers have not been identified and localised to date. 

However, observations based on existing Helleborus hybrids have been made (Chapter 1.3, 

Table 1.4). According to Mathew (1989), various fertile hybrids exist within section 

Helleborastrum. The intersectional hybrids H. x ballardiae and H. x nigercors (hybrids 

between H. niger and the stemmed species H. lividus and H. argutifolius, respectively) 

produce intermediate but sterile phenotypes (Mathew, 1989). Traits such as flower colour, 

growth type, scent and disease tolerance are valuable characteristics of Helleborus species. 

These traits could be introduced into H. niger or H. x hybridus cultivars by interspecific 

hybridisation, resulting in new phenotypes. Combinations of H. foetidus, H. thibetanus or 

H. vesicarius with other species would also be interesting due to their growth types and their 

relationships to species from other sections (Chapter 2.3.3). 

To conduct extensive hybridisation studies between Helleborus species, detailed information 

about crossing barriers must be gathered, and techniques to overcome these barriers must be 

developed. Therefore, the objectives of the following analyses were (i) to evaluate the pollen 

viability of different Helleborus species and develop a method for pollen storage over several 

months to synchronise the flowering times of different species, (ii) to identify the pre- and 

postzygotic crossing barriers for different interspecific combinations, (iii) to develop an 

embryo rescue method to overcome postzygotic barriers and (iv) to identify putative hybrids 

by flow cytometry and molecular markers. 
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3.2 Materials and Methods 

3.2.1 Plant material 

Plants of H. argutifolius, H. atrorubens, H. croaticus, H. cyclophyllus, H. dumetorum, 

H. foetidus, H. x hybridus, H. lividus, H. multifidus, H. niger, H. odorus, H. purpurascens, 

H. torquatus, H. x ballardiae, H. x ericsmithii and H. x sternii were cultivated in the 

greenhouse from December 2007 until April 2010. For most of these species, only one plant 

was available. For H. x hybridus and H. niger, many different genotypes were used in the 

experiments. All plants were provided by the company Heuger, Glandorf, Germany. From 

May to late October, plants were grown outside in a shaded area. During the winter months, 

the plants were kept at 12 °C (in 2007/2008 and 2009/2010) or at 5 °C (in 2008/2009) in the 

greenhouse. Plants were fertilised biweekly and plant protection measures were carried out 

when necessary according to standard horticultural practices. During the flowering season 

from November to April in the years 2007/2008, 2008/2009 and 2009/2010, experiments were 

carried out to determine pollen viability, pollen tube growth and the efficacy of embryo rescue 

techniques. 

3.2.2 Viability analysis of fresh and stored pollen 

For pollen viability analyses, freshly dehisced anthers were removed from open flowers of 

Helleborus plants. Anthers were dried in open Petri dishes at room temperature for 24 hours. 

Pollen viability was determined directly after removal of the anthers and after 24 hours of 

desiccation via in vitro germination and staining with MTT. 

In vitro pollen germination was evaluated on a pollen germination medium following the 

method of Fast Plants (1979) during the flowering season in the winter of 2007/2008. For 

comparison, pollen from the same samples was also used for viability staining (see below). 

For the in vitro germination medium, two solutions were prepared: (i) 41 g sucrose was 

dissolved in 100 ml distilled water and (ii) 125 mg Ca(NO3)2, 60 mg H3BO3, 30 mg KNO3 

and 65 mg MgSO4 x 7 H2O were dissolved in 300 ml distilled water. The two stock solutions 

were combined, 1.1 g Gelrite (Duchefa, the Netherlands) was added and the medium was 

sterilised by autoclaving at 121 °C for 20 minutes (autoclave: Tuttnauer 3870 ELV, Biomedis, 

Gießen, Germany) and poured into 6 cm diameter Petri dishes. Pollen grains were washed out 

from freshly harvested anthers or anthers dried at room temperature with distilled water and 

transferred to the medium. After 12 hours of incubation at room temperature, at least 200 
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pollen grains were evaluated for germination under a bright field microscope, and the 

germination percentage was determined. 

In addition to in vitro germination, the pollen viability of different Helleborus species and 

hybrids was determined by staining with thiazolyl blue (MTT) during all three flowering 

seasons. Pollen was stained in 20 µl thiazolyl blue solution (1 % MTT in a 5 % sucrose 

solution) for 10 minutes at room temperature. MTT is reduced into a coloured substance in 

the presence of dehydrogenase. Viable pollen appeared in various shades from rose to dark 

pink, whereas dead pollen was yellow, grey, black or unstained and deformed. Stained pollen 

was evaluated under a bright field microscope at 200 x magnification. To ensure that only 

viable pollen grains were stained, anthers of H. niger were incubated at 100 °C for 24 hours to 

kill the pollen and evaluated as a negative control. 

To make it possible to hybridise Helleborus species with slightly different flowering times, 

suitable conditions for pollen storage were identified during the 2008/2009 flowering season. 

At least five dried anthers of each tested species were stored in reaction tubes, which were 

placed in closed glass containers with dried CaCl2 and sealed with parafilm. The glass 

containers were stored at 20 °C for one or two months and at 4 °C or -20 °C for one, two or 

six months. In addition, pollen that had been stored at -20 °C for one year was used for 

staining and in vivo pollination experiments. 

During the 2009/2010 flowering season, larger numbers of anthers than in 2008/2009 were 

collected from several H. argutifolius, H. x hybridus and H. niger plants. These anthers were 

stored in Petri dishes at -20 °C for nine months until their pollen viability was tested by MTT 

staining. 

3.2.3 Crossing procedure for Helleborus 

Plants of all Helleborus species listed above (Chapter 3.2.1) were used for crossing 

experiments. While flower buds were still closed, anthers were carefully removed using 

forceps (Figure 3.1). Emasculated buds were covered with paper bags to avoid cross-

pollination. Two to three days after emasculation, when the buds began to open, the flowers 

were pollinated with fresh pollen. Each pollinated flower was again covered with a paper bag, 

which was closed with a paper clip, for approximately 10 days. Pollinated flowers were used 

either for the observation of pollen tube growth at 12, 24, 48, 72, 96 or 144 hours after 

pollination (Chapter 3.2.4) or for embryo rescue experiments (Chapter 3.2.5). In the latter 

case, carpels were isolated from three weeks after pollination onward. Table 3.1 summarises 
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the crosses that were carried out during the three years and the corresponding experiments 

that performed. 

 
Figure 3.1: Crossing procedure for Helleborus flowers. 
Pictures show flowers of H. x hybridus. A: closed flower bud, B: interior view of the flower bud before 
emasculation, C: emasculated bud, afterwards covered with a paper bag for 2-3 days (no picture shown) 
D: pollinated flower 2-3 days after emasculation, E: pollinated flower covered with a paper bag for 
approximately 10 days. Bars represent 1 cm. 

Table 3.1: Crosses during three flowering seasons (2007/2008, 2008/2009, 2009/2010) that were used for 
analysis of pollen tube growth and embryo rescue experiments. 
The first four crossing combinations are intraspecific and the following interspecific crosses are arranged in 
alphabetical order of first the maternal and second the paternal species. The tested experimental variants are 
shown for each flowering season and crossing combination. 

♀ ♂ 
Pollen tube growth 

[hours after pollination] 
Embryo rescue 

[weeks after pollination] 
2007/2008 2008/2009 2009/2010 2007/2008 2008/2009 2009/2010 

H. argutifolius H. argutifolius -- -- -- 3-9 -- -- 
H. foetidus H. foetidus 12/24/48/72 -- -- 3-9 -- -- 
H. x hybridus H. x hybridus 12/24/48/72 -- 72/96/144 3-10 -- -- 
H. niger H. niger 12/24/48/72 -- 72/96/144 3-10 -- -- 
H. argutifolius H. atrorubens -- -- -- -- 5-7 -- 
H. argutifolius H. foetidus -- -- -- 3-8 5-7 -- 
H. argutifolius H. x hybridus -- 48/96 -- -- 5-7 -- 
H. argutifolius H. lividus -- 48/96 -- -- 5-7 -- 
H. argutifolius H. multifidus -- 48/96 -- -- 5-7 -- 
H. argutifolius H. niger 12/24/48/72 48/96 -- 3-9 5-7 -- 
H. argutifolius H. purpurascens -- -- -- -- 5 -- 
H. argutifolius H. torquatus -- 48/96 -- -- 5-7 -- 
H. atrorubens H. croaticus -- -- -- -- 5-6 -- 
H. atrorubens H. x hybridus -- 48/96 -- -- 5-7 -- 
H. atrorubens H. niger -- 48/96 -- -- 5-7 -- 
H. atrorubens H. odorus -- -- -- -- 5-7 -- 
H. atrorubens H. purpurascens -- -- -- -- 5-6 -- 
H. croaticus H. multifidus -- -- -- -- 5-7 -- 
H. croaticus H. niger -- -- -- -- 5-7 -- 
H. croaticus H. odorus -- -- -- -- 5-7 -- 
H. cyclophyllus H. multifidus -- -- -- -- 5-7 -- 
H. cyclophyllus H. niger -- -- -- 6 -- -- 
H. foetidus H. argutifolius 12/24/48/72 -- -- 3-10 -- -- 
H. foetidus H. x hybridus 12/24/48/72 48/96 72/96/144 3-10 -- 6 
H. foetidus H. niger 12/24/48/72 48/96 72/96/144 3-9 -- 6 
H. foetidus H. odorus -- -- 72/96/144 -- -- 6 
H. x hybridus H. argutifolius 12/24/48/72 48/96 -- 3-8 5-7 -- 
H. x hybridus H. atrorubens -- 48/96 -- -- 5-7 -- 
H. x hybridus H. croaticus -- 48/96 -- -- 5-7 -- 
H. x hybridus H. cyclophyllus -- 48/96 -- -- 5-7 -- 
H. x hybridus H. dumetorum -- 48/96 -- -- 5-7 -- 

A EB C D
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Table 3.1 (continued) 

♀ ♂ 
Pollen tube growth 

[hours after pollination] 
Embryo rescue 

[weeks after pollination] 
2007/2008 2008/2009 2009/2010 2007/2008 2008/2009 2009/2010 

H. x hybridus H. foetidus 12/24/48/72 -- 72/96/144 3-9 5-7 -- 
H. x hybridus H. lividus -- 48/96 -- -- -- -- 
H. x hybridus H. multifidus -- 48/96 -- -- 5-7 -- 
H. x hybridus H. niger 12/24/48/72 48/96 72/96/144 3-11 5-7 -- 
H. x hybridus H. odorus -- 48/96 -- -- 5-7 -- 
H. x hybridus H. purpurascens -- 48/96 -- -- 5-7 -- 
H. x hybridus H. torquatus -- 48/96 -- -- 5-7 -- 
H. lividus H. argutifolius -- 48/96 -- -- 5-7 -- 
H. lividus H. x hybridus -- 48/96 -- -- -- -- 
H. lividus H. niger -- 48/96 -- -- -- -- 
H. lividus H. purpurascens -- -- -- -- 5-7 -- 
H. multifidus H. argutifolius -- -- -- -- 5-7 -- 
H. multifidus H. x hybridus -- 48/96 -- -- 5-7 -- 
H. multifidus H. niger -- 48/96 -- 3-5 5-7 -- 
H. multifidus H. odorus -- -- -- -- 5-6 -- 
H. multifidus H. purpurascens -- -- -- -- 5-6 -- 
H. niger H. argutifolius 12/24/48/72 -- -- 3-11 5-7 -- 
H. niger H. atrorubens -- 48/96 -- 3-5 5-7 -- 
H. niger H. croaticus -- 48/96 -- -- 5-7 -- 
H. niger H. cyclophyllus -- 48/96 -- 3-9 5-7 -- 
H. niger H. dumetorum -- 48/96 -- -- 5-7 -- 
H. niger H. foetidus 12/24/48/72 48/96 72/96/144 3-11 5-7 6 
H. niger H. x hybridus 12/24/48/72 24/48/72/96 72/96/144 3-10 5-7 -- 
H. niger H. lividus -- 48/96 -- 3-10 5-7 -- 
H. niger H. multifidus -- 48/96 -- 3-9 5-7 -- 
H. niger H. odorus -- 24/48/72/96 72/96/144 5-9 5-7 6 
H. niger H. purpurascens -- 48/96 -- -- 5-7 -- 
H. niger H. torquatus -- 48/96 -- 3-10 5-7 -- 
H. odorus H. croaticus -- -- -- -- 5-7 -- 
H. odorus H. multifidus -- -- -- -- 5-7 -- 
H. odorus H. niger -- 48/96 -- -- 5-7 -- 
H. odorus H. torquatus -- -- -- -- 5-7 -- 
H. purpurascens H. croaticus -- -- -- -- 5-7 -- 
H. purpurascens H. x hybridus -- 48/96 -- -- -- -- 
H. purpurascens H. niger -- 48/96 -- 3-4 5-7 -- 
H. torquatus H. croaticus -- -- -- -- 5-7 -- 
H. torquatus H. niger -- 48/96 -- 3-4 -- -- 

 

3.2.4 Analysis of pollen tube growth in situ 

Pollen tube growth was observed during the flowering season in each of the three years. 

During the winter of 2007/2008, carpels from selected intraspecific and interspecific crosses 

were removed 12, 24, 48 and 72 hours after pollination (Table 3.1). In the following flowering 

season (2008/2009), carpels were collected 48 and 96 hours after pollination; in 2009/2010, 

they were harvested 72, 96 and 144 hours after pollination. Carpels were fixed in two parts 

96 % ethanol : one part lactic acid (approximately 90 %) for at least 24 hours. Fixed carpels 

were rinsed three times in deionised water and stained in aniline blue staining solution 

(100 mg aniline blue (Serva) dissolved together with 767.6 mg K3PO4 x H2O (Riedel de 
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Häen) in 100 ml deionised H2O) for at least 30 min. Stained carpels were transferred to a 

microscope slide and bisected with a scalpel. Divided carpels were covered with a cover slip, 

squeezed and observed under a fluorescence microscope (Axio Scope.A1 (Zeiss, Oberkochen, 

Germany), absorption at 470 nm and emission at 525 nm). Photographs were taken with an 

AxioCam MR3 and edited with the Axiovision software. Style length differed between 

species; therefore, pollen tube growth was not evaluated on the basis of absolute length, but 

relative to the style length. Pollen tubes appeared glaucous to turquoise, and its growth was 

classified according to the following criteria (Figure 3.2): (1) pollen visibly germinated but 

not growing into the stigmatic tissue, (2) pollen tube growing into the first half of the style, 

(3) pollen tube growing into the second half of the style and (4) pollen tube reaching the 

ovules. 

 
Figure 3.2: Different classes of pollen tube growth in one carpel of H. niger 48 hours after pollination with 
pollen of H. foetidus. 
Black and white figure: (1) pollen visibly germinated but not growing into the stigmatic tissue, (2) pollen tube 
growing into the first half of the style, (3) pollen tube growing into the second half of the style and (4) pollen 
tube reaching the ovules. The pollen tube is indicated with arrows. 

3.2.5 Embryo rescue experiments 

Five embryo rescue experiments were carried out during the three flowering seasons, and 

crossing combinations were performed as shown in Table 3.1. Due to the availability and 

economic relevance of the various species, most of the crosses used H. niger or H. x hybridus 

as a maternal or paternal parent. The embryo rescue experiments focused mainly on the 

sucrose concentration in the in vitro culture medium and on the conditions during subsequent 

ovule culture. 

Carpels were removed from the flower, surface disinfected in 70 % ethanol for 30 sec and in 

2 % sodium hypochlorite with one drop Tween for 10 min and rinsed in sterilised water three 

times for one, two and five minutes (Figure 3.3). Single ovules were dissected from carpels 
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and cultured in vitro on a medium based on 1 x MS (Murashige and Skoog, 1962) prepared 

from macro- and micronutrient and vitamin stock solutions (Table 3.2). The medium was 

solidified with 0.4 % Gelrite (Duchefa, The Netherlands) at a pH of 5.8 (adjusted prior to 

autoclaving) and sterilised by autoclaving at 121 °C for 20 minutes (autoclave: Tuttnauer 

3870 ELV, Biomedis, Gießen, Germany). Ovules from a single carpel were placed in each 

Petri dish. When the radicle emerged and hypocotyl elongation occurred, germinating ovules 

were transferred to light with a 16 h photoperiod. An ovule was scored as germinated, when 

the radicle emerged through the coat. Shoots were transferred onto MS medium supplemented 

with 0.2 mg/l BAP, 0.1 mg/l IAA and 0.1 mg/l GA3. The number of crosses and carpels used 

for ovule culture differed each year. 

 
Figure 3.3: Schematic simplified overview from sterilisation of Helleborus carpels to ovule culture and 
evaluation of germination. 
Helleborus carpels were separated from the flower, sterilised and washed. After washing, ovules were excised 
with the help of a stereomicroscope and transferred to medium. Evaluation of germination was carried out after 
different culture periods depending on the embryo rescue experiment. Bars represent 1 cm. 

Table 3.2: Composition of macro-, micronutrients and vitamins in the in vitro culture media based on 
Murashige & Skoog (1962). 

Components Concentration  Molarity 
Macroelements [mg/l] [mM] 
NH4NO3 1650 20.61 
KNO3 1900 18.79 
CaCl2 x 2 H2O 440 2.99 
MgSO4 x 7 H2O 370 1.5 
KH2PO4 170 1.25 
Microelements  [µM] 
H3BO3 6.20 100.27 
MnSO4 x H2O 16.9 100 
ZnSO4 x 7 H2O 8.6 29.91 
KI 0.83 5 
Na2MoO4 x 2 H2O 0.25 1.03 
CuSO4 x 5 H2O 0.025 0.10 
CoCl2 x 6 H2O 0.025 0.11 
FeNaEDTA 36.70 100 
Vitamins  [µM] 
Glycine 2.0 26.64 
Myo-inositol 100 554.94 
Nicotinic acid 0.5 4.06 
Pyridoxine HCl 0.5 2.43 
Thiamine HCl 0.1 0.30 

 

Helleborus 
carpels

Sterilisation & 
washing

Carpel dissection & transfer
of ovules to the medium

Evaluation of
germination
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Due to the low numbers of germinating ovules in relation to the numbers of cultured ovules, 

statistical analysis was not possible for all experiments; therefore, the data are presented as 

absolute numbers. 

The five embryo rescue experiments are summarised in Table 3.3 according to the year of 

initiation, the variation in medium supplements and the culture conditions. Intraspecific 

crosses were performed only in experiment 1 and to a minor extent in experiment 2, which 

focused on interspecific crosses. The differences between these experiments are explained in 

detail in Chapters 3.2.5.1 and 3.2.5.2. 

Table 3.3: Embryo rescue experiments that were carried out and their parameters during three years. 
Crossing combinations are marked in grew. 

Year Experiment no. Crosses Medium supplements Temperature conditions 

2007/
2008 

1 

Intraspecific: 
H. argutifolius 

H. foetidus 
H. x hybridus 

H. niger  

2.5 and 5 % sucrose 
24 °C or 16 °C for 12 weeks  

6 °C for 11 weeks  back in 
24 °C or 16 °C for 17 weeks 

2 
Intra- and interspecific 

(Table 3.1) 2.5 and 5 % sucrose 24 °C 

2008/
2009 

3 
H. x hybridus x H. niger 

 
H. niger x H. x hybridus 

2.5 % sucrose 20 °C 

2.5 % sucrose 
20 °C for 12 weeks  4 °C for 

12 weeks  back in 20 °C 
2.5 % sucrose,1 mg/l GA3 

20 °C 2.5 % sucrose, 0.2 mg/l BAP 
2.5 % sucrose, 1 g/l 
activated charcoal 

4 
Other interspecific 
crosses (Table 3.1) 2.5 % sucrose 

20 °C for 12 weeks  4 °C for 
12 weeks  back in 20 °C 

2009/
2010 

5 Interspecific crosses 
(Table 3.1) 

2.5 % sucrose 20 °C for 12 weeks  4 °C for 
12 weeks  back in 20 °C 

 

3.2.5.1 Embryo rescue with ovules from intraspecific crosses 

To establish the embryo rescue procedure and the appropriate culture conditions for isolated 

ovules, carpels from intraspecific crosses within H. argutifolius, H. foetidus, H. x hybridus 

and H. niger were extracted weekly from three to six weeks after pollination in experiment 1 

during the first year (2007/2008) (Table 3.1). 

In this experiment, two culture media supplemented with 2.5 % or 5 % sucrose were 

compared and different temperature treatments were tested (Table 3.3, Figure 3.4). Ovules 

were cultured in darkness at 24 ± 1 °C or 16 ± 1 °C for 12 weeks, at which time the number of 

ovules in each temperature treatment was divided; one half was incubated at 6 ± 1 °C for 11 

weeks, while the other half was incubated at the initial temperature (Figure 3.4). After this 
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incubation period the ovules were returned to their initial temperature and evaluated for 

germination after another 17 weeks. 

 

Figure 3.4: Schematic overview of medium and alternating temperature conditions during ovule culture in 
embryo rescue experiment 1 (2007/2008). 

3.2.5.2 Embryo rescue with ovules from interspecific crosses 

Embryo rescue experiment 2 was carried out in 2007/2008 (Table 3.3). In this experiment, 

ovules from intraspecific crosses were used as controls for comparison to ovules from 

interspecific crosses and all ovules remained at 24 ± 1 °C. Two culture media supplemented 

with 2.5 % or 5 % sucrose were compared. 

Embryo rescue experiments 3 and 4 were carried out in 2008/2009 (Table 3.3). For 

experiment 3 crosses between H. niger and H. x hybridus were performed. Ovules were 

cultured under the conditions listed in Table 3.3. Either a constant temperature of 20 °C was 

combined with the application of different plant growth regulators, or a basal medium with 

2.5 % sucrose was combined with a constant temperature of 20 °C or sequential temperature 
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phases from 20 °C to 4 °C to 20 °C (Table 3.3). In experiment 4, ovules from other crossing 

combinations (Table 3.1) were cultured on MS medium with 2.5 % sucrose at 20 ± 1 °C for 

12 weeks, followed by 4 ± 1 °C and 20 ± 1 °C thereafter. 

Ovules from interspecific crosses in embryo rescue experiments 3 and 4 (2008/2009) that did 

not germinate but that appeared to be viable were dissected under a stereomicroscope at 5 x 

magnification (Stemi 2000 C, Zeiss, Germany) after 60 to 67 weeks of culture and analysed 

for the presence and consistency of the endosperm and embryo. If embryos were found, then 

they were isolated, transferred to fresh medium and evaluated for further development. 

For experiment 5, which was started in 2009/2010, only crossing combinations with 

genetically distant parental species were chosen. Again, ovules were cultured at 20 ± 1 °C for 

12 weeks, followed by 4 ± 1 °C for 12 weeks and 20 ± 1 °C thereafter. 

3.2.6 Hybrid identification 

3.2.6.1 Hybrid identification by flow cytometry 

Hybrids were identified by flow cytometry using propidium iodide staining and measurement 

of the nuclear DNA content in relation to their parental species. If the nuclear DNA contents 

of the parental species were sufficiently different (Chapter 2.3.2), then the hybrid would be 

expected to express an intermediate nuclear DNA content. To isolate nuclei, 0.6 cm2 sections 

of leaf tissue from the putative hybrid and its parental plants were chopped together in a 

plastic Petri dish using a razor blade. No internal reference standards were used; the nuclear 

DNA contents were evaluated relative to each other. Further analysis was performed as 

described in Chapter 2.2.3. 

3.2.6.2 Hybrid identification by RAPD analysis 

Fresh young leaf tissue from in vitro shoots or roots of germinated potential hybrid seedlings 

was frozen in liquid nitrogen and ground to powder using a bead mill. Total plant DNA was 

extracted using the NucleoSpin® Plant II kit (Macherey-Nagel, Düren, Germany) according 

to the manufacturer’s instructions. The DNA concentration was determined using a NanoDrop 

2000c spectrophotometer (Thermo Fisher Scientific, USA). 

DNA was amplified by the RAPD technique (Williams et al., 1990). In addition to DNA from 

the putative hybrid, DNA samples from the parental plants were used to compare the 

amplification products of the hybrid with those of its parents. Amplification reactions were 

carried out in a volume of 20 µl containing 10 mM Tris (pH 8.3), 50 mM KCl, 2 mM MgCl2, 
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0.001 % gelatine, 100 µM of each deoxyribonucleoside triphosphate, 0.5 µM of each primer, 

1 U Taq DNA Polymerase (FIREPol ® Solis Biodyne, Estonia) and 10 ng plant genomic 

DNA. Numerous random decamer primers were tested and 10 primers (Table 3.4; primer kits 

A, B and C, Carl Roth, Karlsruhe, Germany) were selected depending on the combination of 

hybrid and parental plants. Thermal cycling was conducted with a 5 min initial denaturation at 

94 °C, followed by 35 cycles of 30 sec at 94 °C, 30 sec at 36 °C and 2 min at 72 °C and a 

final extension step for 10 min at 72 °C. Amplification products were separated by 

electrophoresis in 1.5 % agarose gels in 1 x TAE buffer (2 M Tris, 50 mM EDTA pH 8.0, 1 M 

glacial acetic acid; pH 8.44), detected by staining with ethidium bromide (10 µg/100 ml 

agarose gel) and visualised on a UV transilluminator. The banding patterns were evaluated by 

visual inspection. All amplification reactions were repeated at least twice. 

Table 3.4: Informative RAPD primers used for identification of interspecific Helleborus hybrids. 

Primer name 
(primer kits, Roth) 

Sequence 5’3’ 

A02 TGCCGAGCTG 
A12 TCGGCGATAG 
A14 TCTGTGCTGG 
B3 CATCCCCCTG 
B7 GGTGACGCAG 

B10 CTGCTGGGAC 
B13 TTCCCCCGCT 
B16 TTTGCCCGGA 
B19 ACCCCCGAAG 
C14 TGCGTGCTTG 
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3.3 Results 

3.3.1 Viability analysis of fresh and stored pollen 

Pollen viability was determined by in vitro germination and/or staining with MTT. In the 

staining assay, the pollen colour varied from rose to dark pink for viable pollen. Yellow, grey, 

black or deformed pollen was regarded as dead (Figure 3.5 A-C). 

 
Figure 3.5: Viability staining of pollen of different Helleborus species with MTT. 
Pollen of A: H. argutifolius, B: H. x hybridus and C: H. niger after nine months of storage at -20 °C. Bars 
represent 100 µm. 

The viability of fresh and dried pollen was determined by in vitro germination and MTT 

staining for nine Helleborus species in 2007/2008 (Table 3.5). The stainability of fresh pollen 

was 67 % to 99 %, depending on the species. For eight species, however, pollen germination 

was low, between 0 % and 9.2 %. For H. argutifolius alone, a large percentage (54 %) of the 

pollen grains germinated in vitro. After drying, pollen stainability remained high (74 % to 

99 %) and comparable to that of fresh pollen, whereas germinability decreased further, to 0 % 

to 5 %. Pollen drying was necessary for storage because fresh pollen moulded when stored for 

several weeks. No correlation between pollen stainability and in vitro germination was found. 

  

A B C
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Table 3.5: Comparison of stainability and in vitro germination of pollen of different Helleborus species 
directly after anther removal and after 24 hours of drying at room temperature. 

 After anther removal After 24 h drying 
 Pollen stainability 

[%] 
Pollen germination 

[%] 
Pollen stainability 

[%] 
Pollen germination 

[%] 
H. argutifolius 95 54 99 2.5 
H. atrorubens 93 0 95 0 
H. cyclophyllus 88 1.4 98 0.95 
H. foetidus 98 0.8 98 0 
H. x hybridus 81 6.8 96 0 
H. lividus 96 6.4 99 5 
H. niger 99 9.2 98 0 
H. odorus 67 4.1 91 0 
H. torquatus 81 0.3 74 0 

 

As described in Chapter 3.2.2 pollen of six Helleborus species was stored at -20 °C for one 

year and subsequently used for intraspecific pollination. Pollen viability, which was 

determined by staining with MTT, varied from 17 % to 98 %, depending on the species 

(Table 3.6). Eight carpels per species were analysed 96 hours after pollination. For 

H. argutifolius and H. foetidus only, no pollen tubes were observed near the ovules, although 

pollen was found to be viable in the staining assay. In the case of H. foetidus, pollen was not 

found on the stigma. For H. argutifolius, pollen adhered to only four of the eight carpels. 

However, pollen stored for one year at -20 °C was found to be viable in the staining assay and 

was able to germinate on the stigmas of all carpels, to which it adhered (Table 3.6). Therefore, 

the staining assay was used for all subsequent pollen viability tests. 

Table 3.6: Viability of pollen stored at -20 °C for one year and the respective pollen tube growth 96 hours 
after in vivo pollination of Helleborus flowers. 

 
Number of… Pollen tube growtha 

Species 
Pollen 

viability [%] 
carpels 

analysed 
stigmas with 

pollen 
stigmas with 

germinated pollen  1 2 3 4 

H. argutifolius 48 8 4 4 0 4 0 0 
H. foetidus 86 8 0 0 0 0 0 0 
H. x hybridus 76 8 8 8 0 2 0 6 
H. niger 17 8 8 8 0 0 0 8 
H. purpurascens 98 8 8 8 0 0 0 8 
H. torquatus 89 8 8 8 0 0 0 8 

a(1) pollen visibly germinated but not growing into the stigmatic tissue, (2) pollen tube growing into the first 
half of the style, (3) pollen tube growing into the second half of the style and (4) pollen tube reaching the 
ovules. 

Next, pollen viability was assessed via staining for eleven Helleborus species immediately 

after anther removal, after drying for 24 hours and after several durations of storage under 

different temperature conditions in 2008/2009 (Table 3.7). 
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Over all eleven species, the viability of fresh pollen varied from 22 % to 95 % (Table 3.7). 

After drying, pollen viability decreased in some cases and increased in others. During storage 

at 20 °C, pollen viability decreased rapidly. After two months of storage, viable pollen (2 %-

50 %) was detected for only three of eleven species. Pollen viability did not decrease as 

rapidly at 4 °C as at 20 °C; viable pollen was detected for six species after two months at 4 °C 

(2 %-73 %). Thus, storage at either 20 °C or 4 °C would be adequate if pollen were to be 

stored for only a few days. When pollen must be stored for several weeks or months neither 

storage temperature was suitable. For long-term storage, a temperature of -20 °C was more 

suitable because after six months of storage at -20 °C, viable pollen was detected for nine of 

eleven species (7 %-86 %). Generally, the pollen viability of species belonging to section 

Chenopus and of their hybrid, H. x sternii, decreased faster than that of other species during 

storage at all temperatures. 

Table 3.7: Pollen viability of different Hellebours species depending on temperature and duration of 
storage determined via staining with MTT. 
Data are presented as mean ± standard deviation of n measurements. 

    Pollen viability depending on temperature and duration of storage 

    20 °C 4 °C -20 °C 

Species n 
After 

removal 
After 

drying 
4 

weeks 
2 

months 
4 

weeks 
2 

months 
6 

months 
4 

weeks 
2 

months 
6 

months 

H. argutifolius 3 95±8 88±13 0 0 0 0 0 76±13 24±28 0 

H. atrorubens 3 82±13 57±42 17±11 0 52±38 47±37 0 83±3 86±9 86±13 

H. croaticus 1 96 43 70 0 61 29 0 51 96 88 

H. dumetorum 1 22 13 0 0 2 0 0 5 22 7 

H. x hybridus 3 86±20 91±6 42±46 22±38 58±51 2±3 54±47 91±11 83±13 91±14 

H. lividus 3 87±19 93±8 0 0 0 0 0 91±6 32±38 0 

H. multifidus 2 58±59 91±5 8±11 2±3 9±1 26±37 7±10 73±36 71±28 97±1 

H. niger 3 74±23 84±16 29±49 0 42±39 31±49 14±24 59±48 85±16 70±15 

H. odorus 1 55 44 0 0 60 0 0 7 70 70 
H. 
purpurascens 

3 79±21 58±17 38±32 50±43 72±29 73±0 52±47 82±16 86±6 80±13 

H. torquatus 1 68 52 0 0 12 0 0 77 71 80 

H. x ballardiae 2 0 0 n.a.a n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

H. x ericsmithii 2 0 0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 

H. x sternii 3 85±16 83±8 0 0 0 0 0 56±21 0 0 
a n.a. means not applicable 

The pollen viability of three Helleborus hybrids was also tested. For H. x ballardiae and 

H. x ericsmithii, no stained pollen was observed, indicating that these hybrids are pollen 

sterile. Therefore, pollen of these hybrids was not stored. In contrast to H. x ballardiae and 

H. x ericsmithii, the hybrid H. x sternii exhibited a mean pollen viability of 85 % for fresh 

pollen. However, the pollen could not be stored for more than four weeks at any temperature 
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tested. Overall, the standard deviations between repeated measurements were high, especially 

for H. x hybridus and H. multifidus. 

In a subsequent experiment, large numbers of anthers from H. argutifolius, H. x hybridus and 

H. niger were collected in 2009/2010 and stored in Petri dishes at -20 °C for nine months. 

Pollen viability based on MTT staining of fresh and dried pollen was between 80 % and 90 % 

on average over all three species (Figure 3.6). This range is comparable to the pollen viability 

determined for the same species in 2007/2008 (Table 3.5) and 2008/2009 (Table 3.7). After 

nine months of storage at -20 °C, pollen viability decreased to 71 % for H. x hybridus but 

remained between 90 and 100 % for H. argutifolius and H. niger. 

 

Figure 3.6: Viability of fresh, dried and stored pollen at -20 °C for nine months of three different 
Helleborus species determined with MTT staining. 
Data are presented as mean ± standard deviation of four independent measurements. 

In conclusion, all tested species produced viable pollen that in most cases could remain viable 

after up to six or nine months of storage at -20 °C. This storability is an important prerequisite 

for crosses between species with different flowering times. 

3.3.2 Analysis of pollen tube growth in situ 

To identify pre- and postzygotic crossing barriers between Helleborus species, the pollen tube 

growth was observed for the crossing combinations listed in Table 3.1. 

Initially, pollen tube growth was compared for selected crosses 12, 24, 48 and 72 hours after 

pollination (Figure 3.7 A and B) to identify the time of fertilisation. After 12 hours, pollen 

tubes had grown into the first half of the style. After 48 hours, they reached the second half of 
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the style. After 72 hours, they reached the ovules in most of the observed carpels of H. niger 

in crosses using H. niger, H. foetidus or H. x hybridus as the pollen donor (Figure 3.7 A). The 

results were similar for crosses using H. x hybridus as the maternal parent and H. x hybridus 

or H. niger as pollen donors but were different for the crossing of H. foetidus with 

H. x hybridus, in which the pollen tubes grew more slowly and were not detected near the 

ovules (Figure 3.7 B). 

 
Figure 3.7: Mean pollen tube growth 12 to 72 hours after pollination of selected intra- and interspecific 
crossing combinations. 
H. niger (A) or H. x hybridus (B) as maternal plant and H. foetidus, H. x hybridus and H. niger as pollen donors. 
Six carpels were observed for all crossings except H. x hybridus x H. foetidus were only three were examined. 
a(1) pollen visibly germinated but not growing into the stigmatic tissue, (2) pollen tube growing into the first half 
of the style, (3) pollen tube growing into the second half of the style and (4) pollen tube reaching the ovules. 

From these and other observations of pollen tube growth during the first 72 hours after 

pollination (data not shown), the theoretical time of fertilisation was determined to be from 48 

to 72 hours after pollination. Therefore, all further analyses presented in this chapter were 

carried out between 72 and 144 hours after pollination to determine whether the pollen tubes 

had reached the ovules. Examples of images showing pollen germination on the stigma, 

pollen tube growth up to the ovules and fertilisation are shown in Figure 3.8 A-C for 

intraspecific crosses of H. niger between 72 and 144 hours after pollination. 
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Figure 3.8: Pollen germination on the stigma and pollen tube growth observed in carpels of H. niger after 
intraspecific pollination. 
A: stigma and style 72 hours, B: ovule 96 hours and C: ovary 144 hours after pollination, the pollen tube is 
indicated with arrows. 

For most of the carpels observed, the pollen grains on the stigma and the pollen tubes in the 

style interfered with each other, making it impossible to count them (Figure 3.8 A). In some 

cases pollen germination was observed outside the stigma (Figure 3.9 (black and white 

figure)). Either the pollen germinated but did not grow into the style (Figure 3.9 A), or it 

germinated and grew into the style (Figure 3.9 B). 

 
Figure 3.9: Pollen germination outside the stigma observed in carpels of two different crosses. 
A: H. x hybridus x H. lividus 72 hours and B: H. x hybridus x H. niger 96 hours after pollination. Bars represent 
200 µm. 

Four Helleborus species, H. foetidus, H. x hybridus, H. niger and H. odorus, were selected 

based on their genetic distances to each other. The growth of pollen tubes in crosses between 

these species was analysed in greater detail. The genetic distances shown in the following 

tables represent averages of the genetic distances between several H. x hybridus or H. niger 

genotypes and the other species used, most of which were represented by only one plant. 

The results for pollen tube growth from 72 to 144 hours after pollination from all three years 

of crosses between H. foetidus, H. x hybridus, H. niger and H. odorus were summarised for 
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each combination in Table 3.8. Pollen tube growth for each of the interspecific crosses was 

compared to that of intraspecific crosses of H. x hybridus and H. niger, for which pollen tubes 

reached the ovules after 72 hours in 67 % and 96 % of the analysed carpels, respectively. For 

crosses between H. niger and H. x hybridus (Table 3.8, Figure 3.10) pollen tubes were 

observed near the ovules in 87 % and 94 % of the analysed carpels, respectively, whereas 

pollen tubes were observed near the ovules in only 1 % and 4 % of the carpels for crosses 

between H. foetidus and H. x hybridus. Pollen tubes reaching the ovules were observed in 

20 % to 42 % of the carpels for the crosses between H. foetidus and H. odorus (Table 3.8, 

Figure 3.11), between H. niger and H. odorus and between H. foetidus and H. niger. For 

H. odorus x H. niger, only five carpels were analysed; pollen tube growth was observed near 

the ovules in each one. 

Table 3.8: Pollen tube growth for different intra- and interspecific crossing combinations summarised 
from 72 to 144 hours after pollination. 
The table starts with intraspecific crosses followed by interspecific crosses, which are ordered by the genetic 
distance between the parental plants from the lowest to the highest. 

 

G
en

et
ic

 
di

st
an

ce
 

♀ ♂ 
Number of… Pollen tube growtha 

 carpels 
analysed 

stigmas with 
pollen 

stigmas with 
germinated pollen 

1 2 3 4 

In
tr

as
pe

ci
fic

 

 

H. niger H. niger 28 28 28 0 0 1 
27 

(96 %) 

 

H. x hybridus H. x hybridus 15 15 15 0 0 5 
10 

(67 %) 

In
te

rs
pe

ci
fic

 

0.
25

7 H. niger H. odorus 53 53 53 0 30 1 
22 

(42 %) 

H. odorus H. niger 5 5 5 0 0 0 5 
(100 %) 

0.
26

2 H. x hybridus H. foetidus 91 80 71 0 56 14 1 
(1 %) 

H. foetidus H. x hybridus 49 37 24 0 21 1 
2 

(4 %) 

0.
26

4 H. niger H. x hybridus 194 193 193 0 0 10 
183 

(94 %) 

H. x hybridus H. niger 208 208 208 1 1 26 
180 

(87 %) 

0.
26

7 

H. foetidus H. odorus 49 49 49 0 38 1 
10 

(20 %) 

0.
27

1 H. niger H. foetidus 102 102 99 1 54 16 28 
(28 %) 

H. foetidus H. niger 45 36 34 5 8 3 18 
(40 %) 

a(1) pollen visibly germinated but not growing into the stigmatic tissue, (2) pollen tube growing into the first half 
of the style, (3) pollen tube growing into the second half of the style and (4) pollen tube reaching the ovules. 
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Figure 3.10: Pollen tube growth near the ovules and pollen on the stigma in hybridisations of H. niger x 
H. x hybridus. 
A: pollen tubes near the ovules 72 hours, B: on the stigma and C: pollen tubes near the ovules 96 hours after 
pollination. The pollen tube is indicated with arrows. Bars represent 200 µm. 

 

 
Figure 3.11: Pollen tube growth observed for hybridisation of H. foetidus x H. odorus 96 hours after 
pollination. 
The pollen tube is indicated with arrows. 

Combinations for which pollen tube growth was analysed in less depth are shown in Table 

3.9. For 30 of the 35 observed crossing combinations, pollen tube growth was observed near 

the ovules in at least one of the analysed carpels, suggesting that fertilisation is possible. For 

the following crosses pollen tubes stopped growing before they reached the ovules: 

H. argutifolius x H. niger, H. niger x H. torquatus, H. x hybridus x H. argutifolius, H. lividus 

x H. x hybridus and H. argutifolius x H. torquatus. 
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Table 3.9: Pollen tube growth for different hybridisation combinations summarised from 72 to 96 hours 
after pollination. 
The table starts with crosses, in which H. niger was involved, followed by crosses with H. x hybridus and 
H. argutifolius. Within these three groups crosses are ordered by the genetic distance between the parental plants 
from the lowest to the highest. 

Genetic 
distance ♀ ♂ 

Number of… Pollen tube growtha 

carpels 
analysed 

stigmas with 
pollen 

stigmas with 
germinated pollen  1 2 3 4 

0.202 
H. niger H. argutifolius 6 6 4 0 2 0 2 

H. argutifolius H. niger 9 7 6 2 2 2 0 

0.218 
H. niger H. lividus 7 7 7 0 0 0 7 

H. lividus H. niger 5 5 5 0 0 2 3 

0.243 H. niger H. cyclophyllus 6 6 6 0 0 0 6 

0.247 
H. niger H. torquatus 8 8 8 0 8 0 0 

H. torquatus H. niger 3 3 3 0 0 2 1 

0.249 H. niger H. croaticus 8 8 8 0 1 4 3 

0.249 H. niger H. dumetorum 5 5 5 0 0 0 5 

0.253 
H. niger H. atrorubens 6 6 6 0 0 0 6 

H. atrorubens H. niger 13 13 13 0 0 0 13 

0.254 
H. niger H. multifidus 9 9 9 0 4 1 4 

H. multifidus H. niger 5 5 5 0 0 1 4 

0.277 
H. niger H. purpurascens 7 7 7 0 0 0 7 

H. purpurascens H. niger 3 3 3 0 0 0 3 

0.081 H. x hybridus H. torquatus 8 8 8 0 0 4 4 

0.082 H. x hybridus H. cyclophyllus 5 5 5 0 0 0 5 

0.093 
H. x hybridus H. atrorubens 6 6 6 0 0 0 6 

H. atrorubens H. x hybridus 6 6 6 0 0 0 6 

0.105 H. x hybridus H. odorus 3 3 3 0 0 0 3 

0.112 H. x hybridus H. croaticus 5 5 5 0 0 4 1 

0.114 
H. x hybridus H. multifidus 3 3 3 0 0 2 1 

H. multifidus H. x hybridus 5 5 5 0 0 0 5 

0.117 H. x hybridus H. dumetorum 5 5 5 0 0 0 5 

0.130 
H. x hybridus H. purpurascens 6 6 6 0 2 1 3 

H. purpurascens H. x hybridus 3 3 3 0 0 0 3 

0.255 
H. x hybridus H. argutifolius 8 7 7 0 4 3 0 

H. argutifolius H. x hybridus 5 5 5 0 0 1 4 

0.277 
H. x hybridus H. lividus 9 9 9 0 4 4 1 

H. lividus H. x hybridus 5 5 5 0 5 0 0 

0.069 
H. argutifolius H. lividus 5 5 5 0 0 1 4 

H. lividus H. argutifolius 4 4 4 0 3 0 1 

0.241 H. foetidus H. argutifolius 3 3 3 0 1 1 1 

0.244 H. argutifolius H. torquatus 3 3 3 0 1 2 0 

0.301 H. argutifolius H. multifidus 3 3 3 0 0 1 2 
a(1) pollen visibly germinated but not growing into the stigmatic tissue, (2) pollen tube growing into the first half 
of the style, (3) pollen tube growing into the second half of the style and (4) pollen tube reaching the ovules. 
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In summary, 44 different crossing combinations (Table 3.8, Table 3.9) were evaluated for 

pollen tube growth near the ovules after 72 hours. For 39 analysed crosses, pollen tubes 

reached the ovules in at least one observed carpel, suggesting that fertilisation is possible. 

3.3.3 Embryo rescue with ovules from intraspecific crosses 

Ovules from intraspecific crosses of H. argutifolius, H. foetidus, H. x hybridus and H. niger, 

in which embryo development was assumed to occur, were isolated and cultured under 

different media and temperature conditions in embryo rescue experiment 1 (Table 3.3). 

No differences in germination were observed between the two media, which differed in their 

sucrose concentrations. The results for both media are summarised below. 

Over all species examined, 21 % of the ovules isolated from carpels sterilised three weeks 

after pollination remained in good condition. After four weeks, the corresponding percentage 

was 54 %; after five weeks, it was 58 %. For carpels isolated six weeks after pollination, 59 % 

of the ovules were not aborted. The numbers of germinated ovules for different temperature 

conditions during ovule culture are shown in Table 3.10. Overall, 37 germinated ovules were 

observed for H. argutifolius, one for H. foetidus, 16 for H. x hybridus and eight for H. niger. 

In total, 62 shoots were obtained, of which 86 % were derived from ovules isolated five and 

six weeks after pollination. Shoot cultures were obtained from all species (Figure 3.12). The 

temperature sequence of 16 °C, 6 °C and 16 °C was best for ovule culture. Therefore, 

alternating warm and cold temperatures were used for all subsequent embryo rescue 

experiments. 

Table 3.10: Number of germinated ovules depending on the Helleborus species and the temperatures after 
40 weeks of culture in vitro. 

 Number of… Number of germinated ovules 

Species 
flowers 

pollinated 
ovules 

cultured 
Temperature [°C]a  

16 24 16616 24624 Sum 
H. argutifolius 25 1015 3 1 28 5 37 
H. foetidus 22 504 0 0 1 0 1 
H. x hybridus 21 807 5 0 6 5 16 
H. niger 16 1124 1 1 4 2 8 

aAlternating temperatures: 1st temperature for 12 weeks, followed by 11 weeks at 6 °C and again 
17 weeks at the 1st temperature 

The results of this experiment have been published previously in greater detail by Meiners 

and Winkelmann (2010). 
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Figure 3.12: In vitro shoots obtained from intraspecific embryo rescue experiment 1. 
A: H. argutifolius, B: H. foetidus, C: H. x hybridus, D: H. niger. Bars represent 1 cm. 

3.3.4 Embryo rescue with ovules from interspecific crosses 

During embryo rescue experiment 2 in 2007/2008 (Table 3.3), all ovules were cultured under 

the same temperature (24 °C). The results are shown in Table 3.11, in which they are ordered 

by crossing combinations and within each maternal species by the genetic distance between 

the maternal and the paternal species. Overall, 321 flowers were pollinated. Different numbers 

of flowers were pollinated for each combination, resulting in different numbers of cultured 

ovules (Table 3.11). The two tested sucrose concentrations (2.5 % and 5 %) showed no 

differences relating to ovule development, germination or embryo culture and were summed 

as in the experiment 1 with ovules from intraspecific crosses. The medium with 2.5 % sucrose 

was chosen for embryo rescue experiments 3-5 in 2008/2009 and 2009/2010. 

Twelve weeks after ovule culture was initiated, all ovules turned brown to black and were 

divided into two groups. Dry and shrivelled ovules were either unfertilised or aborted and 

were classified as aborted, while turgescent and swollen ovules showing the shape of a seed 

were classified as not aborted (Figure 3.13 A-C). This classification of ovules was used in all 

subsequent embryo rescue experiments. 

A B C D
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Figure 3.13: Classification of ovules and embryos during the embryo rescue experiment 2 (2007/2008). 
Ovules from the cross A: H. niger x H. niger, all not aborted, B: H. niger x H. multifidus, C: H. niger x 
H. lividus and embryos from the crosses D: H. niger x H. argutifolius, torpedo stage and E: H. foetidus x 
H. argutifolius, cotyledon stage. In B and C ovules classified as not aborted are encircled. 

After 12 weeks of culture, 80 % of ovules obtained from carpels extracted three weeks after 

pollination from interspecific crosses were aborted. This proportion increased to 87 % for 

four, 83 % for five and 88 % for six weeks after pollination. Aborted ovules were discarded. 

Ovules that were not aborted were dissected after 14 to 18 weeks of culture to rescue embryos 

if they were present. Some of these embryos developed into shoots, while others stopped 

growing and turned brown. More embryos could be rescued from ovules that were isolated 

five or six weeks after pollination compared to ovules that were isolated three to four weeks 

after pollination. 

Three interspecific hybrids developed from embryos obtained in experiment 2: one between 

H. x hybridus and H. argutifolius (Figure 3.14, Table 3.11) with a genetic distance of 0.255 

between the parental species, and two between H. foetidus and H. argutifolius (Figure 3.15, 

Table 3.11) with a genetic distance of 0.241. Additionally, shoot cultures were obtained from 

ovules from intraspecific crosses of H. niger and H. x hybridus (Table 3.11). 
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Table 3.11: Overview of embryo rescue experiment 2 (2007/2008) pooled over all ovule isolation dates and 
media tested. 
Within the table crossing combinations are ordered by their maternal parent and within three groups crosses are 
ordered by the genetic distance between the parental plants from the lowest to the highest. 
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Figure 3.14: Morphology of in vitro shoots and leaves of the interspecific hybrid H. x hybridus x 
H. argutifolius in comparison to its parental species. 
A: H. x hybridus, B: interspecific hybrid: H. x hybridus x H. argutifolius, C: H. argutifolius. Bars represent 1 cm. 

Both interspecific hybrids showed intermediate leaf phenotypes during in vitro culture (Figure 

3.14, Figure 3.15). The hybrid H. x hybridus x H. argutifolius had three-lobed leaves, whereas 

the leaves of the maternal plant were pedate with many segments (Figure 3.14). The hybrid 

H. foetidus x H. argutifolius had pedate leaves with approximately three to five segments, 

whereas the maternal plant had pedate leaves with more segments (Figure 3.15). Leaves from 

the paternal species of both hybrids, H. argutifolius, were rather obtuse to cordate. 

 
Figure 3.15: Morphology of in vitro shoots and leaves of the interspecific hybrid H. foetidus x 
H. argutifolius in comparison to its parental species. 
A: H. foetidus, B: interspecific hybrid: H. foetidus x H. argutifolius, C: H. argutifolius. Bars represent 1 cm. 

Embryo rescue experiments 3 and 4 (Table 3.3) were initiated in parallel in the winter of 

2008/2009. In both experiments, ovules were isolated five to seven weeks after pollination. 

CBA

BA C
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In experiment 3 ovules from crosses between H. niger and H. x hybridus and between 

H. x hybridus and H. niger were cultured on different media (Table 3.3) and under different 

temperature conditions. No differences related to germination were observed; therefore, the 

data were pooled from across the different media and culture conditions. 

All ovules from other crossing combinations in experiment 4 (Table 3.3) were cultured at 

20 °C for 12 weeks, followed by 4 °C for 12 weeks and a return to 20 °C. Some ovules 

germinated during cold storage, but many ovules still showed no development. Therefore, 

after 34 to 41 weeks of culture, all ovules from both experiments (3 and 4) that were not 

aborted were again transferred to 4 °C for 12 weeks, some for the first and others for the 

second time. The results of both experiments are shown in Table 3.12 and Table 3.13. 

Overall, 405 flowers were pollinated, 2299 carpels were isolated and 29251 ovules were 

cultured, among which an average of 7.4 % were not aborted (summary of Table 3.12 and 

Table 3.13). 

At the final evaluation (after 60 to 67 weeks of culture), the total number of germinations was 

recorded, all remaining ovules were dissected and the following observations were made: 

ovules were either empty, filled with liquid endosperm or filled with white or brown coloured 

solid endosperm (Figure 3.16 A-D). Embryos were found in and rescued from only ovules 

with solid endosperm, but not all ovules with solid endosperm contained embryos (Figure 

3.16 C-D). The predominant developmental stage of these embryos was heart-shaped (Figure 

3.17, A-C), but torpedo (Figure 3.17, D) and cotyledon stages were also observed (Figure 

3.17, E-F, Table 3.12, Table 3.13). 

 
Figure 3.16: Ovules without embryos after 64 weeks of in vitro culture. 
A: cut and empty, B: with liquid endosperm, C: with white solid endosperm and D: with brown solid endosperm. 
Bars represent 1 mm. 

A B C D
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Figure 3.17: Ovules with embryos in different stages after 64 weeks of in vitro culture. 
A-C: heart-shaped stages, indicated with arrows, D: torpedo stage, E-F: cotyledon stages. Bars represent 1 mm. 

The results of experiments 3 and 4 are presented in two tables: Table 3.12, which lists the 

crosses that produced offspring, and Table 3.13, which lists the crosses that did not yield 

plantlets. 

Most of the shoots that were obtained came from ovules that were isolated six or seven weeks 

after pollination. Only nine shoots developed from ovules isolated after five weeks of 

pollination: six shoots of H. argutifolius x H. lividus and one shoot each of H. croaticus x 

H. multifidus, H. odorus x H. croaticus and H. purpurascens x H. croaticus. All other shoots 

developed from ovules that were isolated six or seven weeks after pollination. 

For crosses between the closely related sister species H. argutifolius and H. lividus, 26 % of 

the cultured ovules germinated and yielded in offspring (97 individuals) (Table 3.12). The 

shoots grown in vitro were morphologically similar to their parents, and no hybrid phenotype 

was identified at this stage. 

  

A B C
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Table 3.12: Overview of the crossing combinations used for embryo rescue experiments 3 and 4 
(2008/2009), which led to embryo or plant development. 
The results are pooled over all dissection dates and media used. 
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Table 3.13: Overview of the crossing combinations used for embryo rescue experiments 3 and 4 
(2008/2009), which did not lead to embryo or plant development. 
The results are pooled over all dissection dates and media used. 

G
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et
ic

 
di
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♀ x ♂ 

Number of… 

flowers 
pollinated 

carpels 
isolated 

ovules 
cultured 

ovules 
not 

aborted 

ovules 
dissected 

ovules 
with 

liquid ESa 

ovules 
with 

solid ES 

embryos 
rescuedb 

0.202 H. niger x H. argutifolius 7 87 1298 0     
0.218 H. niger x H. lividus 5 64 1059 12 12 10 0 0 
0.243 H. niger x H. cyclophyllus 6 74 1028 81 76 10 0 0 
0.247 H. niger x H. torquatus 6 67 1104 10 10 10 0 0 
0.249 H. niger x H. dumetorum 4 31 563 0     
0.249 H. niger x H. croaticus 13 79 1038 26 19 1 0 0 
0.253 H. niger x H. atrorubens 7 89 1220 136 135 21 0 0 
0.254 H. niger x H. multifidus 16 163 2116 33 32 7 0 0 
0.257 H. niger x H. odorus 9 55 910 8 8 0 0 0 
0.264 H. niger x H. x hybridus 37 315 4657 98 96 20 0 0 
0.271 H. niger x H. foetidusc 13 165 2396 66 76 26 0 0 

0.277 H. niger x 
H. purpurascens 

15 106 1558 3 3 0 0 0 

0.255 H. x hybridus x 
H. argutifolius 5 20 212 0 0 0 0 0 

0.262 H. x hybridus x 
H. foetidus 3 9 96 0 0 0 0 0 

0.277 H. x hybridus x H. lividus 4 18 185 18 12 6 2 0 

0.241 H. argutifolius x 
H. foetidus 4 20 267 0     

0.244 H. argutifolius x 
H. torquatus 2 6 81 0     

0.251 H. argutifolius x 
H. atrorubens 1 3 43 0     

0.255 H. argutifolius x 
H. x hybridus 

2 8 112 25 25 21 2 2 
(1G,1H) 

0.272 H. argutifolius x 
H. purpurascens 

3 4 31 0     

0.301 H. argutifolius x 
H. multifidus 

3 11 145 0     

0.093 H. atrorubens x 
H. x hybridus 2 10 105 0     

0.097 H. atrorubens x 
H. croaticus 2 8 82 0     

0.100 H. atrorubens x odorus 1 4 36 0     

0.124 
H. atrorubens x 
H. purpurascens 3 9 85 0     

0.253 H. atrorubens x H. niger 2 5 43 0     
0.112 H. multifidus x H. odorus 2 8 94 20 20 15 1 1T 

0.114 H. multifidus x 
H. x hybridus 

2 5 46 12 19 3 0 0 

0.132 H. multifidus x 
H. purpurascens 

2 5 57 10 28 11 0 0 

0.254 H. multifidus x H. niger 4 10 82 0     

0.301 H. multifidus x 
H. argutifolius 4 14 147 0     

0.095 H. odorus xH. torquatus 1 5 46 17 17 13 1 1H 
0.112 H. odorus x H. multifidus 1 5 51 10 10 5 1 0 
0.257 H. odorus x H. niger 2 10 91 1 1 0 0 0 

0.105 
H. cyclophyllus x 
H. multifidus 1 3 34 0     

0.249 H. croaticus x H. niger 3 16 176 1 1 0 0 0 

0.277 H. purpurascens x 
H. niger 1 2 17 0     

0.286 H. lividus x 
H. purpurascens 

2 7 90 0     

 Sum 200 1520 21401 587 600 179 7 4 
aES: endosperm 

bdevelopmental stages of embryos: G=globular, H=heart-shaped 
cone offspring was identified as self-pollination 
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Crosses between species belonging to section Helleborastrum, especially those with 

H. x hybridus as the maternal parent (98 offspring), resulted in many interspecific hybrids 

(Table 3.12). Again, no hybrid phenotype was apparent at the in vitro shoots due to the 

morphological similarity of the parental species. For the crosses H. multifidus x H. odorus and 

H. odorus x H. torquatus, which did not produce offspring, embryos were found in the ovules 

(Table 3.13). 

Intersectional crosses between H. argutifolius and H. x hybridus resulted in ovules containing 

embryos, but the embryos did not develop (Table 3.13). All ovules that were not aborted from 

interspecific crosses with H. niger as the maternal parent either were empty or contained 

liquid endosperm. No embryos were found (Table 3.13). 

Hybrids between species belonging to different sections of Helleborus were obtained from the 

combination H. x hybridus x H. niger. Their regular development from germination to shoot 

is shown in Figure 3.18. Usually, the radicle emerges and elongates, and after the testa is 

pulled off, two cotyledons appear. The period from germination to the appearance of the 

primary leaves differed among most of the ovules. In summary, nine offspring that developed 

into shoots before the end of this project were obtained. 

 

Figure 3.18: Development of one ovule of one H. x hybridus x H. niger combination. 
A: radicle emergence at one ovule from genotype 2539.5 in November 2009, B: the same ovule from genotype 
2539.5 in December 2009, C: shoot from genotype 2539.5 in October 2010. Bars represent 1 cm. 

Similar to the intersectional hybrids H. x hybridus x H. argutifolius and H. foetidus x 

H. argutifolius, which were obtained from experiment 2 during the 2007/2008 flowering 

season, the in vitro shoots of H. x hybridus x H. niger showed leaves of an intermediate 

phenotype (Figure 3.19). The leaves of both parental species and of the hybrids were pedate 

(Figure 3.19 A and B). The leaves of H. niger were scarcely toothed at the margins and 

coarsely toothed at the apices of the leaflets (Figure 3.19 B). The segments were oblong or 

oblanceolate. Leaf segments from H. x hybridus were narrowly to broadly elliptic or 

CA B
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oblanceolate and coarsely serrate at the margins (Figure 3.19 A). The leaf margins of the 

hybrids were less serrate than those of H. x hybridus, and the shape of the leaf segments was 

intermediate between the parents (Figure 3.19 C-E). 

 

Figure 3.19: Comparison of in vitro shoots and leaves of H. x hybridus x H. niger hybrids with their 
parental species. 
A: H. x hybridus, B: H. niger, C: H. x hybridus x H. niger 2321.6, D: H. x hybridus x H. niger 2520.5 and 
E: H. x hybridus x H. niger 2539.5. Bars represent 1 cm. 

Due to the long time needed for ovule culture and the slow development of the seedlings, 

acclimatised greenhouse plants of all hybrids were not available for comparisons at the plant 

level at this time. It will be exciting to evaluate plant characteristics, especially flower 

morphology, at a later date. 

In parallel to the regular development of H. x hybridus x H. niger offspring, some distinctive 

features were observed. Two germinated ovules and two embryos were stunted (Figure 3.20 

A-D). Two seedlings of the same cross had only one cotyledon (Figure 3.20 E-F). 

Additionally, two of the 13 H. x hybridus x H. niger offspring died during development. 

A B

C ED
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Figure 3.20: Developmental stages and characteristics of H. x hybridus x H. niger offspring. 
A: germinated ovules from H. x hybridus x H. niger 2391.5 in December 2009 and B: in November 2010, 
developing embryos of C: H. x hybridus x H. niger 2391.5 and D: H. x hybridus x H. niger 2527.5, E and F: 
seedlings of H. x hybridus x H. niger 2321.6, which developed only one cotyledon. Bars represent 0.5 cm. 

The final embryo rescue experiment (experiment 5) was carried out in 2009/2010. In this 

experiment, crosses were performed between H. foetidus, H. niger, H. odorus and 

H. x hybridus (Table 3.1, Table 3.3). In these crosses, the genetic distances between the 

parental plants were greater than 0.257. After 12 weeks at 20 °C followed by 12 weeks at 

4 °C, all ovules were aborted and discarded. 

Finally, 18 different interspecific hybrid offspring, representing 217 different genotypes 

(Table 3.14) were obtained during the three years of embryo rescue experiments 1-4 (Table 

3.11, Table 3.12). From 16 of these hybrids, in vitro shoot cultures for propagation were 

successfully initiated, represented by 192 different genotypes (Table 3.14). 
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Table 3.14: Interspecifc hybrid offspring obtained from all five embryo rescue experiments. 
The table is arranged according to genetic distances between the parental species from the lowest to the highest. 

Genetic 
distance Crossing combination 

Number of… 
hybrid offspring offspring died shoot cultures established 

0.069 H. argutifolius x H. lividus 37 2 35 
0.069 H. lividus x H. argutifolius 60 4 56 
0.081 H. x hybridus x H. torquatus 6 2 4 
0.082 H. x hybridus x H. cyclophyllus 35 1 34 
0.093 H. x hybridus x H. atrorubens 20 2 18 
0.097 H. croaticus x H. multifidus 1 1 0 
0.105 H. x hybridus x H. odorus 6 0 6 
0.106 H. torquatus x H. croaticus 2 1 1 
0.112 H. x hybridus x H. croaticus 14 6 8 
0.114 H. x hybridus x H. multifidus 8 2 6 
0.115 H. croaticus x H. odorus 2 0 2 
0.115 H. odorus x H. croaticus 2 1 1 
0.117 H. x hybridus x H. dumetorum 1 1 0 
0.130 H. x hybridus x H. purpurascens 8 0 8 
0.141 H. purpurascens x H. croaticus 1 0 1 
0.241 H. foetidus x H. argutifolius 2 0 2 
0.255 H. x hybridus x H. argutifolius 1 0 1 
0.264 H. x hybridus x H. nigera 11 0 9 

 Sum 217 23 192 
atwo embryos were still developing at the end of the project 

3.3.5 Hybrid identification 

3.3.5.1 Hybrid identification by flow cytometry 

As described in Chapter 2.4.2 flow cytometry is suitable for hybrid identification, only if the 

nuclear DNA contents of the parental species are sufficiently different. Two putative hybrids 

obtained by embryo rescue were analysed by flow cytometry. 

The hybrid between H. x hybridus (28.7 pg/2C) and H. argutifolius (18.3 pg/2C) was 

definitively verified by having a genome size equal to the average of both parents (Figure 

3.21 A). An interspecific hybrid between H. foetidus (22.0 pg/2C) and H. argutifolius was 

also analysed by flow cytometry (Figure 3.21 B). The difference in nuclear DNA content 

between the parental species was 3.7 pg, which is much smaller than that between 

H. x hybridus and H. argutifolius (Figure 3.21 A). Therefore, the peaks in the histogram were 

much closer together. However, the peaks were separate from each other, enabling the hybrid 

to be definitively identified. All hybrids whose parents differed in nuclear DNA contents by 

less than 3.7 pg were not verified by flow cytometry and, instead, were analysed using 

molecular markers. 
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Figure 3.21: Hybrid identification by flow cytometry. 
Histograms show the nuclear DNA contents of the parental species and the hybrid represented by the peak 
position 2 in A: H. x hybridus x H. argutifolius and B: H. foetidus x H. argutifolius. All nuclei were isolated 
from leaf tissue and stained simultaneously. 

3.3.5.2 Hybrid identification by RAPD analysis 

For all putative hybrids, especially those whose parental species had similar nuclear DNA 

contents, RAPD markers were used for hybrid verification. All parental species were screened 

with 25 different RAPD primers. For some crosses between species belonging to section 

Helleborastrum, 12 additional primers were tested. Banding patterns were evaluated, and 

primers were selected for hybrid identification if at least one specific DNA fragment for each 

parental species could be identified. 

One example of hybrid verification based on banding patterns is shown in Figure 3.22 for 

H. x hybridus x H. argutifolius and H. foetidus x H. argutifolius. Three characteristic paternal 

bands were found in the hybrid H. x hybridus x H. argutifolius. The two independent 

H. foetidus x H. argutifolius hybrids had different banding patterns; one had four and the 

other had three fragments from the paternal plant. 

Another example of RAPD analysis for hybrids between H. x hybridus and H. niger is shown 

in Figure 3.23. Although different maternal and paternal genotypes were used, one 

characteristic paternal H. niger DNA fragment was amplified in all hybrid offspring for both 

primers used (Figure 3.23 A-B). 

2
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1 H. argutifolius (father) 3706 61.84 2.6
2 Hybrid 5254 79.01 2.2
3 H. x hybridus (mother) 4810 96.29 2.3

Fluorescence intensity

Peak no. Plants Counts Mean CV
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2 Hybrid 4424 69.00 2.7
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Figure 3.22: RAPD analysis banding pattern of one H. x hybridus x H. argutifolius and two H. foetidus x 
H. argutifolius hybrids and their parental species with primer B16. 
M1: O’Range RulerTM 200 bp DNA ladder (Fermentas), negative control = water, M2: λ/PstI DNA ladder. 
Characteristic pollen donor fragments are indicated with black arrows. 

 
Figure 3.23: RAPD analysis banding pattern of eight H. x hybridus x H. niger hybrids and their parental 
genotypes. 
A: primer A01, B: primer B10; M1: O’Range RulerTM 200 bp DNA ladder (Fermentas); 2321.6, 2520.5 and 
2539.5 are H. x hybridus x H. niger hybrids with different parental genotypes; negative control = water, M2: 
λ/PstI DNA ladder. Characteristic pollen donor fragments are indicated with black arrows. 
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Due to the higher genetic similarity of species belonging to section Helleborastrum compared 

to species from other sections, it was more difficult to identify primers that would amplify 

characteristic pollen donor fragments in putative hybrids between species in this section. The 

RAPD banding pattern of H. x hybridus x H. odorus offspring is shown in Figure 3.24. Two 

characteristic paternal bands that did not occur in the maternal DNA were amplified. Some 

offspring had both paternal bands, while others had only one. Thus, the hybrid banding 

patterns may look different even among hybrids between the same parental genotypes (Figure 

3.24). 

 
Figure 3.24: RAPD analysis banding pattern of six H. x hybridus x H. odorus hybrids and their parental 
genotypes with primer B 19. 
M2: λ/PstI DNA ladder, negative control = water, H. x hybridus B, C and E represent different maternal 
genotypes. Characteristic pollen donor fragments are indicated with black arrows. 

The DNA of the original maternal genotype was used for RAPD analysis, especially for 

offspring with H. x hybridus or H. niger as parental species, because the amplified banding 

patterns of different genotypes of these species differed slightly. The numbers of offspring 

tested, primers used, characteristics of the banding patterns and verified hybrids for each 

crossing combination are listed in Table 3.15. 

Interspecific hybrids were successfully verified by RAPD analysis for 16 of the 18 different 

interspecific crossing combinations. Overall, 217 offspring were obtained, of which 157 were 

analysed using RAPD markers. All putative hybrids from crossing combinations for which 

shoot cultures were established were analysed using RAPD markers, except for the crossing 
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combinations H. argutifolius x H. lividus, H. lividus x H. argutifolius, H. x hybridus x 

H. cyclophyllus and H. x hybridus x H. atrorubens, of which fewer offspring than shoot 

cultures were tested for each combination due to the larger numbers of offspring. The 

offspring of H. croaticus x H. multifidus and H. x hybridus x H. dumetorum died before DNA 

could be isolated, so no hybrids were identified from these crosses. Additionally, some 

offspring of other combinations stopped growing and were discarded. DNA had already been 

isolated from some of these, but no DNA was available for others (Table 3.15). 

Table 3.15: Hybrid verification of interspecific Helleborus hybrids by RAPD analysis. 
The table is arranged according to genetic distances between the parental species from the lowest to the highest. 

Genetic 
distance 

Crossing combination 
primers 

used 

Number of… 

total 
offspringb 

offspring 
tested 

possible 
paternal 
bands 

Min/Max 
paternal 
bands in 

offspringa 

Hybrids 
verified 

0.069 H. argutifolius x H. lividus B03 37 (2) 27 2 1/2 26 
0.069 H. lividus x H. argutifolius B03 60 (4) 38 2 1/2 37 
0.081 H. x hybridus x H. torquatus B13 6 (2) 4 1 1 4 

0.082 
H. x hybridus x 
H. cyclophyllus 

B16 35 (1) 28 1-3c 1/3 28 

0.093 H. x hybridus x H. atrorubens B13 20 (2) 13 3 1/3 13 
0.097 H. croaticus x H. multifidus -- 1 (1) 0    
0.105 H. x hybridus x H. odorus B19 6 (0) 6 2 1/2 6 
0.106 H. torquatus x H. croaticus B13 2 (1) 1 1 1 1 

0.112 H. x hybridus x H. croaticus 
A12 
B13 

14 (6) 8 
2 
5 

1/2 
1/4 

1 
7 

0.114 H. x hybridus x H. multifidus B16 8 (2) 7 3 3 7 
0.115 H. croaticus x H. odorus C14 2 2 1 1 2 
0.115 H. odorus x H. croaticus B7 2 (1) 2 1 1 2 
0.117 H. x hybridus x H. dumetorum -- 1 (1) 0    

0.130 
H. x hybridus x 
H. purpurascens A14 8 8 3 1/2 8 

0.141 H. purpurascens x 
H. croaticus 

B13 1 1 4 2 1 

0.241 H. foetidus x H. argutifolius B16 2 2 4 3/4 2 
0.255 H. x hybridus x H. argutifolius B16 1 1 3 3 1 

0.264 H. x hybridus x H. niger A02 
B10 

11 9 1 
1 

1 
1 

9 
aminimum number of bands/maximum number of bands found in the offspring depending on each individual 
offspring genotype 
bnumber of offspring, which died during development, is given in brackets 
cdepending on the maternal genotype 

In summary, 155 offspring were successfully identified as hybrids. Identification failed for 

only one offspring each of the combinations H. argutifolius x H. lividus and H. lividus x 

H. argutifolius. 
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3.4 Discussion 

3.4.1 Viability of fresh and stored pollen of different Helleborus species 

The terms viability, stainability, vigour, fertility, germinability and fertilisation ability are all 

used to describe aspects of pollen functional ability, generally termed pollen viability (Dafni 

& Firmage, 2000). Therefore, it is important to know the context, in which the term pollen 

viability is used. Different methods can be used to assess pollen viability, but five essential 

approaches have been reviewed by Dafni & Firmage (2000): (1) measurement of respiration 

or chemical conductivity of pollen leachates; (2) staining techniques, either vital stains for the 

presence of cytoplasm or dyes that indicate enzyme activity; (3) in vitro or in vivo 

germination; (4) proline content; and (5) capacity to effect seed set. Germination tests and 

pollen staining techniques are often used in combination and have been assessed for their 

ability to measure pollen viability in different plant species (Rodriguez-Riano & Dafni, 2000; 

Trognitz, 1991). 

Analysis of pollen viability by different methods 

Two different viability tests were used to assess the viability of Helleborus pollen (Chapter 

3.3.1). In vitro pollen germination was conducted for eight Helleborus species, but 

germination was extremely low when the tested pollen was dried. In parallel, MTT staining 

indicated pollen viability of 67 % to 99 % regardless of whether fresh or dried pollen was 

tested (Table 3.5). Due to the failure of in vitro germination to accurately assess pollen 

viability, MTT staining was used in subsequent analyses of the pollen viability of eleven 

Helleborus species and three hybrids (Table 3.7). All species examined had average pollen 

viabilities between 22 % and 95 % directly after anther removal and between 13 % and 93 % 

after 24 hours of drying at room temperature, depending on the species. Two hybrids, 

H. x ballardiae and H. x ericsmithii, were identified as pollen sterile, consistent with the 

observations of Mathew (1989), who has reported sterility in these hybrids. 

Heslop-Harrison et al. (1984) have tested in vitro germinability and three different staining 

procedures with pollen from H. niger and other plant species: the fluorochromatic procedure 

(FCR) with fluorescein diacetate (FDA), lactophenol-acid fuchsin and tetrazolium chloride 

(TTC). FDA tests the integrity of the plasmalemma and esterase activity. All methods yielded 

viabilities between 90 % and 100 % for freshly released H. niger pollen. Pollen pre-treatment 

with DMSO reduced viabilities to between 30 % and 40 %, while pre-treatment with heat at 
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60 °C for 30 min resulted in 0 % viable pollen when estimated using FCR or in vitro 

germination, but 90 % to 100 % viable pollen when stained with lactophenol-acid fuchsin or 

TTC. Heslop-Harrison et al. (1984) concluded that FCR is excellent to predict potential 

germinability but is not useful to test pollen viability itself. Pollen may still be capable of 

functioning but may not be stained by FDA and may not be able to germinate without proper 

rehydration before testing (Heslop-Harrison et al., 1984). Furthermore, many environmental 

factors can affect pollen germination and pollen tube growth in vitro, including temperature, 

medium composition and especially the concentration of pollen grains on the medium, which 

is described as a population effect (Brewbaker & Kwak, 1963). Additionally, the pollen of 

some species is not amenable to in vitro germination at all (Stone et al., 1995). Heslop-

Harrison et al. (1984) have demonstrated the proper in vitro germination of H. niger pollen. 

The failure of in vitro germination of Helleborus pollen in this study may be due to an 

inappropriate medium, incorrect pre-treatment procedures or an insufficient concentration of 

pollen grains. Anthers and pollen were limited in some species for which only one plant was 

available. 

Several studies have reported conflicting results when using stainability and germinability in 

combination to determine the pollen viability of other plant species. On the one hand, pollen 

may exhibit reduced vigour (e.g., as estimated using stains) before it loses its ability to 

germinate, as has been demonstrated in Nicotiana (Shivanna et al., 1991). On the other hand, 

pollen viability assays based on enzyme activity may estimate high pollen viability because 

pollen may still contain active enzymes after having lost the ability to germinate (Dafni & 

Firmage, 2000). Pollen that has been classified dead may still be able to sire seed under 

natural conditions and vice versa (Dafni & Firmage, 2000). In conclusion, at least two 

different methods should be combined to evaluate pollen viability; if these methods produce 

conflicting results, then a third method is beneficial. 

To explain the contrasting results of pollen viability assayed via in vitro germination and 

MTT staining in this study, a third method (via in vivo pollination) was tested. Pollen of the 

species H. x hybridus, H. niger, H. purpurascens and H. torquatus that had been stored for 

one year at -20 °C was used for intraspecific in vivo pollination (Chapter 3.3.1, Table 3.6). 

Pollen tubes reached the ovules, although the pollen viability determined by MTT was only 

17 % for H. niger. In spite of their high viability, pollen tubes failed to reach the ovules in 

H. foetidus and H. argutifolius, possibly due to a lack of stigma receptivity or to a limited 

number of anthers resulting in insufficient pollen concentration on the stigma. MTT proved to 
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be applicable to determine pollen viability in Helleborus, as in other species (Rodriguez-

Riano & Dafni, 2000; Trognitz, 1991), in contrast to in vitro germination, which failed to 

accurately assess pollen viability in this study. Following the in vivo germination experiment, 

MTT was chosen for all subsequent analyses of Helleborus pollen viability in this study. 

Monitoring of pollen viability during storage 

Pollen storage is a common and useful method for bridging temporal gaps between the 

flowering times of different species. Pollen viability during storage is mainly influenced by 

temperature and relative humidity. To identify suitable pollen storage conditions for the 

eleven Helleborus species, dried anthers were stored at 20 °C, 4 °C or -20 °C for four weeks, 

two months or six months (Chapter 3.3.1, Table 3.7). Pollen viability decreased rapidly when 

pollen was stored at 20 °C. After two months at 20 °C, viable pollen was found for only three 

of eleven species. The pollen of six species was viable after storage at 4 °C. When pollen was 

stored at -20 °C, pollen viability varied between 22 % and 86 % for all eleven species. 

Standard deviations between repeated measurements were quite large because only small 

numbers of anthers were stored. Smaller standard deviations were found in the second storage 

experiment, in which larger numbers of anthers from H. argutifolius, H. x hybridus and 

H. niger were dried and stored for nine months. The average viability observed in this second 

experiment was between 71 % and 98 % (Chapter 3.3.1, Figure 3.6). 

In strawberries, genotypic differences in pollen viability have been determined during pollen 

storage at -18 °C over 12 months (Zebrowska, 1995). Depending on the viability assay and 

the genotype, pollen viability varied from 8 % to 81 %. For papaya, a pollen viability of about 

30 % has been determined via in vitro germination after nine months of storage at -18 °C 

(Cohen et al., 1989). 

To reduce humidity, pollen is often dried in a desiccator prior to storage. The negative effect 

of high relative humidity on pollen viability during storage has been demonstrated for papaya 

pollen (Cohen et al., 1989) and for Papaver, Narcissus and Typha, for which pollen viability 

and membrane integrity degraded more rapidly at 75 % than at 40 % relative humidity (Van 

Bilsen et al., 1994). 

The results mentioned above are consistent with those obtained for Helleborus in this study, 

in which -20 °C was found to be best for long-term pollen storage. Desiccation of anthers was 

performed at room temperature and was necessary to prevent moulding during storage. 
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Using FCR, Vesprini et al. (2002) have found stable pollen viabilities between 80 % and 90 % 

for H. bocconei and H. foetidus pollen stored for 72 hours under temperatures fluctuating 

between 0 °C and 18 °C. Even at temperatures around -4 °C, pollen viability remained high 

for both species due to the conversion of cytoplasmic polysaccharides to mono- and 

disaccharides, a mechanism to sustain viability during pollen presentation at low temperatures 

(Vesprini et al., 2002). The results for H. foetidus and H. bocconei (Vesprini et al., 2002) are 

comparable to those obtained in this study, in which Helleborus pollen viabilities remained 

high during long-term storage. Additionally, the stable viability of H. bocconei and 

H. foetidus pollen during temperature fluctuations between 0 °C and 18 °C (Vesprini et al., 

2002) indicates that anther drying at room temperature may not affect pollen viability 

negatively. 

In summary, pollen grains obtained from eleven Helleborus species remained viable after 

long-term storage for six months (after 12 months in some species) when stored at -20 °C in a 

desiccated state. Pollen staining via MTT was an effective method to determine pollen 

viability for Helleborus species. 

3.4.2 Pollen tube growth in situ 

Even when pollen is viable and capable of functioning in the sense of effecting fertilisation, 

several additional factors influence successful pollination. Pollen lands on the stigmatic 

surface, adheres, hydrates, germinates and grows through the pistil to the ovules in the ovary. 

In the ovules, one sperm cell fuses with the egg cell to produce the zygote. Reproductive 

barriers may act at different stages from pollination to fertilisation. To obtain deeper insight 

into this process, important aspects of pollen adhesion, hydration and germination as well as 

pollen tube growth and guidance are summarised below. 

Pollen adhesion and hydration 

Initiation of pollination depends on the ability of the pollen grain to adhere to the stigmatic 

surface, which varies morphologically and in the presence or absence of exudates, which are 

important for adhesion in many species (Wheeler et al., 2001). Stigmas are classified as wet 

(e.g., Solanaceae) or dry (e.g., Brassicaceae) (Lord & Russell, 2002). The control of pollen 

acceptance by adhesion is more important for dry stigmatic surfaces than for wet stigmatic 

surfaces. Generally, the stigmas of the Ranunculaceae family are dry. In H. foetidus and 

H. niger, in particular, the stigmas are dry with unicellular papillae (Schill et al, 1985). 
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Therefore, only the mechanisms known from Brassicaceae and other plants with dry stigmas 

are considered further here. 

In addition to the stigma, the pollen coat is essential for adhesion to the stigmatic surface. It 

contains many molecules that are involved in initial interactions with the stigma, preparing 

the way for adhesion, hydration and germination (Lord, 2003). Even isolated pollen coatings 

induce physiological changes on the stigmatic surface (Elleman & Dickinson, 1996). In 

Arabidopsis thaliana, stigmas bind conspecific pollen with much higher affinity than pollen 

from related species; this interaction occurs within seconds after pollination (Zinkl et al., 

1999). Proteins involved in the recognition process on the stigmatic surface have been 

identified from self-incompatibility reactions, in which self pollen is actively rejected (Lord & 

Russell, 2002). In Brassicaceae, stigmatic molecules, e.g., SLR (S-locus related protein) and 

SLG (S-locus glycoprotein), as well as pollen coat molecules, e.g., the male determinant of 

self-incompatibility (a small cysteine-rich protein (SCR)) are involved in the adhesion of the 

pollen grain to the stigma (Lord, 2003). Studies in Arabidopsis suggest that adhesion is under 

polygenic control (Preuss et al., 1993). 

Following adhesion, successful pollen tube growth depends upon the hydration of the pollen 

grain. Pollen hydration is regulated by controlling water flow from the stigma to the grain. 

Stigma exudates containing long-chain lipids act as signals to stimulate pollen hydration. In 

Brassica, a plasma membrane-localised aquaporin-like protein in the stigma may act as a 

water channel (Dixit et al., 2001). The diversity of stigmatic surfaces within plant families 

suggests that hydration mechanisms are likely to be divergent, although the results of 

hydration seem to be similar (Heslop-Harrison & Heslop-Harrison, 1992). In the pollen coat, 

glycine-rich proteins (GRPs), e.g., oleosin, may play a role in hydration (Lord & Russell, 

2002; Lord, 2003). The complex interaction between the pollen and the stigmatic surface 

concerning adhesion or hydration may act as a prezygotic barrier, if it is not successful. 

Pollen germination 

After hydration, the pollen germinates. In this process, flavonols may function as signal 

molecules in some species (Taylor & Hepler, 1997). The pollen tube always enters a 

specialised extracellular matrix that is usually a combination of pollen coat secretions and 

stigma exudates (Lord & Russell, 2002). Pollen germination is known to be density 

dependent, and peptides responsible for promoting germination have been identified (Lord & 

Russell, 2002). 
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The initial penetration of the stigmatic surface varies considerably among species, stigmas 

and styles. The adhesion of the pollen grain to the stigmatic papillae determines the point of 

entry; enzymes probably facilitate the entrance of the pollen tube into the transmitting tract of 

the style (Lord, 2003). In solid styles with dry stigmas, pollen tubes must penetrate the 

cuticle, the outer lipidic cover of the stigmatic papillae. The initial penetration appears to vary 

among several species with dry stigmas. In the Asteraceae, for example, the pollen tubes 

appear to grow extracellularly until they reach the base of the papillae; in Papaver rhoeas, the 

pollen tube grows underneath the cuticle to the base of the papillar cell (Wheeler et al., 2001). 

When pollen tubes penetrate the stigmatic papillae, an increase in calcium secretion occurs at 

the site of pollen adhesion on the papillar surface in Brassica (Elleman & Dickinson, 1999). 

Calcium is assumed to play a key role in mediating pollen tube growth in the pistil (Reger et 

al., 1992); the calcium ion is necessary during pollen-stigma interactions, for pollen tube tip 

growth and for pollen tube directionality (Reger et al., 1992; Hepler et al., 2006). 

Additionally, calcium is involved in multiple roles during plant fertilisation (Hepler et al., 

2006). For example, high concentrations of calcium released from the synergid vacuole 

during degeneration might induce gamete fusion (Punwani & Drews, 2008). 

After penetration of the stigma, the pollen tube grows through the style towards the ovule. 

The pollen tube carries the sperm cells, which are endocytosed into the larger tube cell. The 

pollen tube grows by tip growth through the extracellular matrix of the transmitting tract of 

the pistil. The total volume of the pollen tube increases, but the cytoplasmic volume stays 

almost constant by periodic deposition of callose plugs (Taylor & Hepler, 1997). A variety of 

ions and proteins are involved in pollen tube growth (Hepler et al., 2006; Malhó et al., 2006). 

For example, ROP (Rho-related GTPase from plants) proteins are involved in pollen tube 

growth in Arabidopsis (Kumar & McClure, 2010). The stigma and style are organs 

specialised for mate selection and have complementary roles in secreting material to support 

the growth of compatible pollen tubes and discourage the growth of undesired pollen. After 

pollen germination, in particular, interactions between pollen tubes and the style tissue may 

act as reproductive barriers even for interspecific crosses. 

Pollen tube guidance 

The mechanism whereby the pistil supports the growth of the pollen tube from the stigma to 

the target embryo sac is called pollen tube guidance. Sporophytic pollen tube guidance 

describes growth from the stigma to the base of the style supported by the sporophytic cells of 

the pistil. Some candidate substances for sporophytic pollen tube guidance have been 



Chapter 3  Discussion 

81 
 

identified. In the styles of Nicotiana tabacum, TTS (transmitting-tissue specific) proteins, 

which are arabinogalactan proteins, have been suggested to be involved in pollen tube 

guidance (Higashiyama & Hamamura, 2008). A stigma-stylar cysteine-rich adhesin (SCA) is 

expressed in the styles and pistils of lilies and is assumed to be involved in pollen tube 

adhesion in the style (Lord & Russell, 2002). In Arabidopsis, plantacyanin, which is 

expressed in the style, and an appropriate water gradient on the stigma are assumed to guide 

the pollen tubes, perhaps in combination with other chemoattractants (Higashiyama & 

Hamamura, 2008). GABA (γ-aminobutyric acid), which forms a concentration gradient in the 

pistil and is most concentrated at the inner integument of the ovule, may also be a sporophytic 

guidance candidate (Palanivelu et al., 2003). 

During gametophytic guidance, the pollen tube is conveyed by the gametophyte. The pollen 

tube is the male gametophyte, and pollen specific glycoproteins in the pollen tube wall and 

receptor kinases in the pollen tube plasma membrane have been described as candidates for 

pollen/pistil interactions during pollen tube growth in the style (Lord & Russell, 2002). In 

summary, the growth of pollen tubes in the pistil is guided by both the female sporophyte and 

the male gametophyte. 

Other than the male gametophyte, the female gametophyte plays the most important role in 

pollen tube guidance because it conveys the pollen tube to the ovule. A specific signal from 

the synergid cells navigates pollen tubes in close proximity to the embryo sac. The 

participation of the synergid cell in pollen tube attraction has been confirmed in Torenia 

fournieri (Higashiyama et al., 2001) and Arabidopsis (Kasahara et al., 2005). In Arabidopsis 

in vitro systems, pollen tubes that had grown within 100 µm of an unfertilised ovule turned 

sharply towards the ovule (Palanivelu & Preuss, 2006). Before pollen tubes gain the 

competence to respond to the synergid chemical signal, they require contact with the pistil 

during pollen tube growth in the style (Lord & Russell, 2002). Additionally, the attractant 

from the synergid cells is species-preferential, meaning that each species uses a different 

molecule or combination of substances and/or different concentrations (Higashiyama et al., 

2006). In Torenia, most embryo sacs had received pollen tubes from interspecific crosses at a 

considerable time after pollination (e.g., a few days). In intergenic crosses, some embryo sacs 

of Lindernia had received pollen tubes from T. fournieri, suggesting that fertilisation was 

delayed in these crosses (Higashiyama et al., 2006). Generally, the species preferentiality of 

the attraction signal from the synergid cell acts as a reproductive barrier in interspecific 

hybridisation. 
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Recently, two cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins 

called LUREs, which are derived from the synergid cell, have been identified as competent to 

attract pollen tubes in Torenia (Okuda et al., 2009). Guided by the synergid cell attractant, the 

pollen tube enters the embryo sac through the micropyle. In the ovule, the pollen tube growth 

must be arrested, a process in which the FER protein (FERONIA receptor-like kinase), which 

is expressed by the synergids, is involved (Escobar-Restrepo et al., 2007). This process may 

also act as reproductive barrier. The pollen tube ruptures and releases the sperm cells, one of 

which fuses with the egg cell to produce the zygote while the other fuses with the central cell 

to generate the endosperm, which supplies nutrition to the embryo. Seed development is 

initiated by this double fertilisation and requires the development of the seed coat, embryo 

and endosperm. All reproductive barriers that may occur up to the point of fertilisation are 

referred to as prezygotic. 

Pollen tube growth in Helleborus species 

Interspecific incompatibility is not as well understood as self-incompatibility, but it is thought 

that related mechanisms are involved. The results of both are similar: pollen adhesion, 

hydration, germination and/or pollen tube growth is inhibited. 

Helleborus flowers are protogynous and therefore prevent self-pollination, but they are self-

compatible. In intra- and interspecific crosses, pollen tube growth was observed from 12 to 

72 hours after pollination, and pollen tubes reached the ovules after 72 hours for pollinations 

with con- and heterospecific pollen in this study (Chapter 3.3.2). It was not possible to 

quantify pollen tubes, but relatively speaking, higher frequencies of pollen tubes were 

observed in crosses with conspecific pollen compared to crosses with heterospecific pollen, as 

has been demonstrated in Trifolium (Chen & Gibson, 1972). However, no abnormal pollen 

tube growth occurred in Helleborus. 

Pollen adhesion, germination and penetration into the style as well as pollen tube growth were 

evaluated by staining with aniline blue, focusing on nine different crossing combinations 

between the species H. foetidus, H. x hybridus, H. niger and H. odorus, with parental genetic 

distances ranging from 0.257 to 0.264 (Chapter 3.3.2, Table 3.8). In all crosses, pollen tubes 

were observed near the ovules in at least one carpel. In crosses between H. niger and 

H. x hybridus pollen tubes reached the ovules in 87 % and 94 % of the analysed carpels, 

suggesting that fertilisation can occur. In crosses with H. niger as the maternal or paternal 

parent, pollen tubes reached the ovules in 28 % to 100 % of the analysed carpels. 
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Interestingly, pollen adhered to only on 36 of 45 stigmas in H. foetidus. Germination was 

observed on 34 of these stigmas, and pollen tubes reached the ovules in 18 of them. Some 

kind of barrier may be assumed to exist in this crossing combination. In general, crosses with 

H. foetidus as the maternal parent or pollen donor seemed to be problematic. In crosses 

between H. x hybridus and H. foetidus, pollen tubes were observed near the ovules in only 

1 % and 4 % of the analysed carpels. For H. x hybridus x H. foetidus, pollen adhered to 80 of 

91 stigmas, and pollen germinated and grew inside the style in 56 of these. For the reciprocal 

cross, pollen adhered to only 37 of 49 stigmas, and pollen germinated and grew inside the 

style in 21. 

In summary, some problems with pollen adhesion occur in combinations of H. foetidus and 

H. x hybridus and in the majority of carpels of with germinated pollen, pollen tubes stopped 

growing in the style suggesting that an interaction between the pollen tube and the style tissue 

inhibits further growth. The failure of pollen to adhere to the stigma in crosses involving 

H. foetidus may also be a result of differences in pollen size because a possible correlation 

between pollen size or shape and stigma morphology has been suggested for Helleborus 

species (Nowicke & Svarla, 1983). The pollen of H. foetidus is smaller than that of 

H. x hybridus and H. niger. Thus, H. x hybridus and H. niger pollen may have difficulty 

adhering to the stigmatic surface of H. foetidus if it does not fit between the papillae and vice 

versa. In conclusion, prezygotic barriers are likely to exist between H. foetidus and 

H. x hybridus and some type of mate selection takes place. 

Nevertheless, pollen tubes reaching the ovules were observed, albeit to a lesser extent in 

certain combinations. In some cases, ovule fertilisation was observed within Helleborus 

ovaries, but such observations were strongly dependent on the preparation of the carpel for 

microscopic analysis. Therefore, fertilisation could not be evaluated by this method. 

It is possible that pollen tube guidance by the female gametophyte may have failed due to 

species preferentiality of the signal, as reported for Torenia (Higashiyama et al., 2006). In that 

case, the pollen tubes might reach the ovules, but fertilisation would fail due to the lack of 

guiding signals from the synergid cells. However, an argument against this possibility is the 

fact that several Helleborus hybrids already exist or were obtained in this study. 

In conclusion, the results described above and observations of 35 additional crosses (Chapter 

3.3.2, Table 3.9) show that in the majority of analysed carpels, pollen tubes reached the 

ovules and were usually observed in close proximity to the ovule, suggesting that fertilisation 
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can occur. It may be concluded that the crossing barriers between these Helleborus species are 

mainly postzygotic. Further details concerning gametophytic pollen tube guidance and 

fertilisation are discussed together with the embryo rescue results in the next chapter. 

3.4.3 Embryo rescue to overcome postzygotic hybridisation barriers 

Based on the evaluation of in situ pollen tube growth, fertilisation and embryo development 

were assumed to occur. On the basis of the information concerning the failure of hybridisation 

attempts between certain species combinations (Mathew, 1989; Oenings, personal 

communication), postfertilisation barriers were inferred to prevent zygote development, 

leading to embryo abortion. Therefore, the embryo rescue technique was chosen as a 

technique to overcome postzygotic crossing barriers. Embryo rescue means the isolation of 

complete ovaries, ovules or embryos before embryo abortion and their subsequent culturing in 

vitro on a medium (Winkelmann et al., 2010). An embryo rescue technique involving ovule 

culture was used for interspecific crosses within the genus Helleborus. 

3.4.3.1 Selection of date after pollination for ovule isolation 

Overall, five embryo rescue experiments were performed within three years (Chapters 3.3.3, 

3.3.4, Table 3.3). Two experiments were carried out during the first flowering season in 

2007/2008. In these experiments, the dates after pollination that were most suitable for ovule 

isolation and the optimal culture conditions were identified. 

In experiment 1, ovules from intraspecific crosses of four species were used to compare 

different culture conditions and to identify suitable dates for ovule isolation after pollination 

(Chapters 3.3.3). The advantage of the use of intraspecific crosses was that normal embryo 

development could be assumed. Even in intraspecific crosses, 79 % of ovules on average 

across all species were aborted when ovules were isolated three weeks after pollination. After 

four weeks, the percentage of aborted ovules was only 46 %. This percentage was 42 % after 

five weeks and 41 % after six weeks. Isolation of the ovules after three or four weeks was too 

early, assuming that most of them were fertilised and able to develop. 

Although experiment 2 showed that ovule abortion was 87 % on average (80 % to 91 % 

depending on the ovule isolation date) across all crossing combinations for ovules from 

interspecific crosses (Chapter 3.3.4), ovule isolation dates of five to seven weeks after 

pollination were chosen for the experiments 3 and 4 in 2008/2009. After five to seven weeks, 

embryo development was assumed to be sufficient for survival and embryos were not yet 

aborted. 
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Ovule isolation dates of four, six or eight weeks after pollination have been tested in 

intraspecific crosses of Tulipa gesneriana (Van Creij et al., 2000). The germination 

percentages increased with increasing ovule ages. Tulipa usually requires 13 weeks for seed 

maturation, which is similar to the seed maturation time in the plant in Helleborus. Immature 

seeds from selfed lentils have been isolated 15 to 25 days after pollination (Fratini & Ruiz, 

2006), and the percentages of shoot formation increased with ovule age, a result similar to that 

observed in Tulipa. For T. gesneriana x T. kaufmanniana crosses, ovules were isolated from 

three to 13 weeks after pollination. Seedlings were produced only from five weeks onward, 

and seven to nine weeks after pollination was best (Custers et al., 1995). The results obtained 

in the experiments with Tulipa are similar to those obtained with Helleborus, in which most 

of the shoots obtained developed from ovules that were isolated five or more weeks after 

pollination. Comparable results have also been obtained for crosses between Lilium spp. 

(Ikeda et al., 2003). In these crosses, more plants developed when ovules were isolated five or 

ten days after pollination than when they were isolated three days after pollination. 

In conclusion, the ovule isolation date is various for each plant species due to different 

durations that are needed for seed maturation in the plant. Therefore, it has to be determined 

for the regarded plant species, in particular. 

3.4.3.2 Influence of sucrose concentration in the medium 

In addition to the influence of ovule age, the effect of sucrose concentration in the culture 

medium was tested in both experiments in 2007/2008 (Chapters 3.3.3, 3.3.4, Table 3.3). 

Media supplemented with 2.5 % or 5 % sucrose were compared, and no differences in ovule 

development or germination percentage were observed. 

In Lilium spp., differences in basal media and sucrose concentrations affected the 

development of ovules isolated three or five days after pollination but did not affect the 

development of ovules isolated ten days after pollination (Ikeda et al., 2003). The effects of 

sucrose concentration also depended on ovule age in Alstroemeria (Buitendijk et al., 1995), 

for which 6 % to 12 % sucrose were suitable for seven and 14-day-old ovules, while 4 % to 

8 % sucrose was best for 21-day-old ovules. For interspecific Tulipa crosses, three different 

sucrose concentrations (3 %, 6 % or 9 %) have been tested; 6 % resulted in slightly higher 

germination percentages than 3 % or 9 %, but this effect is independent of ovule age (Van 

Creij et al., 2000). For immature selfed lentil seeds, lower concentrations were optimal; 1 % 

sucrose was more suitable than 2 % or 3 % sucrose (Fratini & Ruiz, 2006). 
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According to Sharma et al. (1996), sucrose is the most commonly used carbon source for 

embryo culture. Immature embryos require higher osmotic strength of the medium compared 

to mature ones. In addition, a high osmotic concentration of the medium is assumed to 

prevent precocious germination of young embryos and to support normal embryonic growth. 

Therefore, sucrose concentrations show a wide range from 0.5 % to 18 % in embryo rescue 

culture media, depending on the species. For Helleborus, however, no differences were found 

between media containing 2.5 % and 5 %, even for ovules of different ages, suggesting that 

either the sucrose concentration has no effect or that other concentrations should be tested. 

3.4.3.3 Influence of temperature during ovule culture 

In addition to ovule age and sucrose concentration, different temperatures during embryo 

culture were tested for intraspecific Helleborus crosses (Chapter 3.3.3). The temperatures 

used for Helleborus ovules in this study were chosen according to Niimi et al. (2006), who 

have determined the stages of embryo development in H. niger seeds under different 

dormancy breaking temperature treatments. At constant temperatures of 15 °C or 25 °C for 24 

weeks, embryos developed into the torpedo or cotyledon stage but failed to germinate. 

Alternating temperatures of 15 °C or 25 °C for eight weeks followed by 4 °C for 16 weeks, or 

15 °C for 16 weeks and 4 °C for eight weeks, resulted in the highest germination percentage 

for H. niger seeds (Niimi et al., 2006). Warm temperatures are assumed to encourage embryo 

development, while cold temperatures are needed to break morphophysiological dormancy 

(Chapter 1.2). Alternating temperatures were also more successful than constant temperatures 

promoting the germination of Helleborus ovules from intraspecific crosses. The temperature 

sequence from 20 °C to 4 °C and back to 20 °C was chosen for subsequent embryo rescue 

experiments in combination with ovule isolation dates of five to seven weeks after pollination 

and ovule culture on a medium supplemented with 2.5 % sucrose. 

Embryo rescue experiments 3 and 4 (2008/2009) used ovules from several interspecific 

crosses (Chapter 3.2.3, Table 3.1). The majority of ovules went through two cold treatments 

at 4 °C for twelve weeks with temperatures of around 20 °C in between. Over all interspecific 

crossing combinations, 214 ovules that had received at least one out of two cold treatments 

germinated after around 60 weeks of culture. 
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3.4.3.4 Stages of embryo abortion 

After 12 weeks of ovule culture, ovules were classified in aborted and not aborted (Chapter 

3.3.4). Aborted ovules were discarded. Even after 60 weeks, many ovules were not aborted 

and remained in good condition. Therefore, all remaining ovules were dissected and evaluated 

for the presence or absence and consistency of the endosperm and for the presence or absence 

and developmental stage of embryos. Of all Helleborus ovules dissected, no embryos were 

found in 93 % of all dissected ovules. Only 11 % of the dissected ovules had solid endosperm 

and 7 % had embryos (Chapter 3.3.4). Embryo abortion must have occurred at a later stage in 

these ovules. 

Embryo abortion in Ipomoea has been classified into two types (Mont et al., 1993): (i) early 

abortion, which occurred at the pre-globular stage or earlier, where the embryo was not 

visible; and (ii) late abortion, which occurred after the pre-globular stage, where the aborted 

embryo was visible and the detachment of the suspensor from the nucellus and/or 

degeneration of the embryo can be seen. If the embryo was aborted early, then the 

integuments did not develop further. If the embryo reached the globular stage, then fruit 

maturation began in parallel with seed coat development. When the embryo was aborted late, 

the integuments were almost completely developed, like a normal seed coat. Nutritional 

barriers due to deficient endosperm tissue development by unbalanced chromosomal sets and 

deficient suspensor development have been discussed as the main causes for embryo abortion 

in interspecific hybrids of Ipomoea (Mont et al., 1993). 

Two possible abortion levels may also occur in Helleborus. Ovules that were shrivelled and 

dry 12 weeks after culture initiation were aborted early, whereas those that remained in good 

condition after 60 to 67 weeks of culture were aborted late. This explanation would be 

feasible for the presence of seeds or ovules that were classified as in good condition but that 

did not germinate and turned out to be empty or to contain liquid endosperm. The 

development of the integument and later the seed coat also indicated that egg fertilisation 

must have occurred; otherwise, the ovule would not need to grow during ovule culture, as it 

did in Helleborus. The pollen tube guidance signal produced by the female gametophyte may 

not be suitable due to species preferentiality when different species are crossed, but this 

barrier does not completely inhibit fertilisation in Helleborus. It remains difficult to determine 

the causes of embryo abortion in Helleborus. 

Empty seeds, seeds containing liquid, viscous or solid endosperm and seeds containing 

endosperm and embryo have also been found in interspecific crosses of Actinidia species 
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(Hirsch et al., 2001). The percentages of empty seeds and seeds without embryos were higher 

in crosses between species from different sections than in crosses within sections at the same 

ploidy level (Hirsch et al., 2001). The seed classification for Actinidia was consistent with 

that of Helleborus ovules, which were classified as empty or containing liquid or solid 

endosperm. For both Helleborus and Actinidia, no embryos were found in ovules containing 

liquid endosperm. The endosperm must be solid in Helleborus and either viscous or solid in 

Actinidia to produce embryos. For Actinidia, the seed dissection date was selected to 

correspond to seeds in which the embryos had reached the torpedo developmental stage, 

because it was not possible to recover plantlets from earlier stages. In Helleborus, the 

predominant embryo developmental stage after 60 to 67 weeks of culture was heart-shaped, 

suggesting that dormancy was involved or that the embryos were somehow inhibited. 

In persimmon, the predominant embryo developmental stage was globular regardless of the 

embryo isolation time (from 40 to 150 days after pollination), but embryo viability was best, 

if embryos were isolated from 60 to 80 days after pollination (Leng & Yamamura, 2006). 

Although persimmon embryos did not differ in developmental stage, the isolation date 

affected subsequent development. This observation is comparable to the results for 

Helleborus ovule dissection, but no conclusions can be drawn relating to the embryological 

stage at ovule isolation. 

In Phaseolus, embryo abortion occurred at different developmental stages, from globular to 

early cotyledon, depending on the maternal parent (Ndoutoumou et al., 2007). The use of 

P. coccineus as the maternal species resulted in higher rates of embryo abortion than those 

observed in the reciprocal crosses. In Phaseolus, embryo development was slower in 

interspecific crosses than in self-pollinations. Deficient endosperm development and in some 

cases hypertrophy of the suspensor have been discussed as the causes of embryo abortion in 

Phaseolus. 

3.4.3.5 Embryo abortion due to disturbance of endosperm development 

Seed abortion in interspecific crossings has been studied in Arabidopsis (Bushell et al., 2003). 

Three possible explanations have been given for seed abortion: (i) allelic incongruity 

(negative interactions among the products of divergent gene sequences); (ii) genome shock 

(widespread preprogrammed changes to genomic structure or gene expression); and (iii) 

parental imprinting (due to ploidy imbalance or divergent expression patterns of imprinted 

genes or both). According to Bushell et al. (2003), allelic incongruity and genome shock can 

explain the failure of hybridisation at any stage of development from zygote formation 
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onward, while parental imprinting can account only for failure at the stage at which 

imprinting occurs, which is mainly endosperm development in flowering plants. Parental 

imprinting can be briefly defined as the process by which a gene comes to be expressed 

differently in an individual depending on whether the gene is derived from the individual's 

mother or father (Haig & Westoby, 1991). 

How is imprinting involved in endosperm development? During the fertilisation process, one 

sperm cell fuses with the egg cell to form a zygote, while the other sperm cell unites with the 

two polar nuclei to form the triploid endosperm. The nuclear genomes of the embryo and 

endosperm are identical except that the endosperm has two doses of maternal genes for every 

dose of paternal genes (Haig & Westoby, 1991). As a consequence, the female parent may 

have a more important role in determining the characteristics of this nutrient source (Roach & 

Wulff, 1987). Maternal and paternal genomes have different gene expression patterns in the 

endosperm, and both are required for normal development. The parental genomic ratio that is 

usually required for normal endosperm development is 2m:1p (a nuclear ratio of two maternal 

(m) genomes to one paternal (p) genome). The endosperm functions as an intermediary in the 

transfer of nutrients from maternal tissues to the embryo. The success or failure of crosses 

between species at the same ploidy level results in a regular parental genomic ratio of 2m:1p, 

but the balance between maternal and paternal genomes may be disturbed in crosses between 

species. During endosperm development, paternally derived genes might act to increase the 

final number of endosperm cells, and maternally derived genes might counteract this tendency 

(Haig & Westoby, 1991). The terms 'maternal excess' or 'paternal excess' are usually used 

when parental genome ratios are 4m:2p or 2m:2p, for example. When these terms are applied 

to crosses between species at the same ploidy level, the endosperm may show 'maternal 

excess' in the relations between the expression of genes at some loci and 'paternal excess' in 

the interactions between other loci (Haig & Westoby, 1991). The complementary pattern 

would be predicted in the reciprocal cross. 

Endosperm breakdown is the major cause of seed failure in interspecific crosses after 

successful fertilisation has occurred, while embryo death is only a secondary effect (Haig & 

Westoby, 1991). The failure of endosperm development in ovules from interspecific crosses 

has been observed in several genera (Buitendijk et al., 1995; Ikeda et al., 2003; Liu et al., 

2006). In ovules from crosses between Lilium spp., ovule enlargement has been observed 14 

weeks after culture initiation (Ikeda et al., 2003). Enlarged ovules contained milky-white 

endosperm and embryos, but not all expanded ovules contained visible endosperm and 
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embryos. Ovules containing liquid endosperm have also been observed in Leucadendron (Liu 

et al., 2006). Furthermore, mechanisms leading to endosperm breakdown and disturbed 

embryo development have been described in Alstroemeria (Buitendijk et al., 1995). In ovules 

from interspecific Alstroemeria crosses, embryo and endosperm development that was 

comparable to ovule development in self-pollinated flowers took place from four to 14 days 

after pollination (Buitendijk et al., 1995). Alstroemeria seeds usually require 56 days to 

mature (Buitendijk et al., 1995). Between 14 and 18 days after pollination, endosperm 

development began to stagnate due to failure of cellularisation. From 18 days after pollination 

onward, ovule development was retarded (based on ovule size), and embryo degeneration 

occurred due to the failure of endosperm development (Buitendijk et al., 1995). 

Compared to Lilium, Leucadendron and Alstroemeria, the majority of Helleborus ovules 

dissected in this study after 60 to 67 weeks of culture were either empty (31 %) or contained 

liquid endosperm (58 %) (Chapter 3.3.4). For ovules that appeared to be in good condition but 

that were empty or contained liquid endosperm, endosperm breakdown may be an explanation 

for embryo abortion. The Helleborus crosses involved species at the same ploidy level. 

Therefore, the parental genome ratio was assumed to be 2m:1p and normal endosperm 

development was expected. Nevertheless, parental imprinting, which might result in divergent 

expression patterns of imprinted genes, is the most plausible explanation for the failure of 

endosperm development in Helleborus. Whether or to what extent maternal effects are 

involved in parental imprinting in ovules from interspecific Helleborus crosses is not known. 

As a consequence of endosperm degeneration, embryos were aborted due to lack of nutrients. 

In addition to parental imprinting, allelic incongruity or genome shock are possible 

explanations for ovule abortion in Helleborus crosses, especially at later developmental 

stages. 

3.4.3.6 Culture of rescued embryos 

The isolated Helleborus embryos were transferred to in vitro culture medium. Six of 136 

embryos developed into plantlets within the next three months (Chapter 3.3.4, Table 3.12). 

The remaining embryos, most of which were at the heart-shaped stage, did not develop at all. 

In Actinidia crosses, normal embryo development has been described for embryos that had 

reached at least the torpedo stage at the time of embryo isolation (Hirsch et al., 2001). 

Similarly, the isolated Helleborus embryos also may have been too young or the culture 

medium may not have been suitable. Sharma et al. (1996) have stated that embryo 

requirements related to medium composition depend on the developmental stage. In addition, 
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the failure to develop further may have been due to dormancy. Interestingly, the three 

intersectional hybrids between H. x hybridus and H. argutifolius and between H. foetidus and 

H. argutifolius from embryo rescue experiment 2 developed from isolated embryos. The main 

difference between the experiments performed in different years was that in experiment 2 

(2007/2008), embryos were isolated after 14 to 18 weeks of culture at warm temperatures, 

while in experiments 3 and 4 (2008/2009), embryos were excised after two cold storage 

periods and an overall culture period of 60 to 67 weeks. Inhibition of embryo development 

may be less intense if the embryo is separated from the ovule at an earlier stage. To draw 

further conclusions, it would be helpful to know the timing of ovule development in 

interspecific crosses after isolation from the carpels to determine the time, at which the 

embryo and endosperm become visible. Detailed observations of embryo and endosperm 

development under different temperature treatments are needed. 

3.4.3.7 Selective postfertilisation ovule abortion 

In addition to ovule abortion at a later stage during ovule culture, ovule abortion may be 

initiated by the maternal plant. The plant itself influences fertilisation and postfertilisation 

behaviour and may affect embryo rescue. 

Without doubt, the parental plants must be healthy and well nourished. After fertilisation, 

Helleborus sepals turn green and become photosynthetically active, a process in which 

gibberellins (Ayele at al., 2010) and cytokinins (Salopek-Sondi et al., 2002), which may also 

affect seed development, are involved. Hellebore flowers differ in carpel number and ovule 

number within carpels and also in flower number at a given point in time or over the whole 

flowering season. Recently, within-carpel and among-carpel competition during seed 

development has been investigated in H. foetidus (Parra & Sánchez-Lafuente, 2010). After 

fertilisation, ovules within carpels, among carpels and among flowers on the same plant 

compete for maternal resources. According to Parra & Sánchez-Lafuente (2010), ovules in the 

upper part of the carpel are less likely to mature than basal ones, and if they do mature, they 

are lighter in mass. The abortion of upper ovules increases with carpel number. Selective 

postfertilisation ovule abortion may be due to sibling rivalry or maternal control of resource 

investment in the offspring with the highest potential fitness (Parra & Sánchez-Lafuente, 

2010). 

In summary, in the context of Helleborus embryo rescue, postfertilisation ovule selection 

might result in a reduced number of viable ovules due to competition for resources or might 

be a mechanism that aims to promote the production of more successful offspring. It would be 
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interesting to determine whether the number of pollinated flowers per plant is positively 

correlated with seed abortion. In any case, the importance of the conditions during plant 

culture and ovule maturation should not be underestimated. 

3.4.4 Interspecific Helleborus hybrids from embryo rescue 

The embryo rescue technique was successfully used to overcome postzygotic crossing barriers 

between Helleborus species in this study. A total of 217 hybrids were obtained, of which 203 

were from interspecific crosses within sections (Chapter 3.2.5.2). Crosses between the two 

species from section Chenopus, H. argutifolius and H. lividus, resulted in the largest number 

of offspring (97). Within section Helleborastrum (the largest Helleborus section, comprising 

16 species), 106 hybrids were generated, 98 of which had H. x hybridus as the maternal 

parent. In addition to the intrasectional hybrids, 14 hybrids of parental species belonging to 

different Helleborus sections were obtained. These offspring include one H. x hybridus x 

H. argutifolius hybrid, two H. foetidus x H. argutifolius hybrids and 11 H. x hybridus and 

H. niger hybrids (Chapter 3.2.5.2). The new hybrids obtained and confirmed during this study 

are listed in combination with the known and the unconfirmed hybrids in Table 3.16. 

Various fertile hybrids are already known to exist within section Helleborastrum (Mathew, 

1989). Species such as H. atrorubens, H. torquatus, H. cyclophyllus and H. odorus may 

already have been used to introduce characteristics into H. orientalis, resulting in 

contemporary ‘garden hybrids’ that are known as H. x hybridus. It has been assumed that no 

crossing barriers exist within this section (Mathew, 1989), but no information is available 

regarding the crossing efficiency (e.g., the number of offspring from one flower compared to 

the number of ovules). The advantage of the Helleborastrum hybrids obtained during this 

study is that the parental genotypes are known and their characteristics can be directly 

compared to those of their hybrid offspring. For the so-called ‘garden hybrids’, only 

suggestions referring to trait origins have been made by Mathew (1989). 

Hybridisation between H. argutifolius and H. lividus seems to be as easy hybridisation as 

within Helleborastrum, but does not occur naturally due to habitat isolation. 

According to Mathew (1989), H. foetidus hybridises with members of section Chenopus, as 

observed in this study (Table 3.16), producing sterile offspring. For the intersectional hybrids 

between H. niger and the stemmed species, H. x ballardiae and H. x nigercors, hybrid sterility 

has been observed in this study and in earlier studies (Mathew, 1989). Additionally, hybrid 

weakness has been reported for other intersectional combinations (Mathew, 1989). Hybrid 
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sterility and weakness indicate that postzygotic barriers act between Helleborus species, at 

least between those belonging to different sections, justifying the use of embryo rescue 

techniques. 

Table 3.16: Helleborus hybrids, reports of putative hybrids (Mathew, 1989) and confirmed interspecific 
hybrids obtained via embryo rescue within this thesis. 
Confirmed hybrids obtained via embryo rescue within this thesis are coloured grey. 

 Name Crossing combination Combination of characteristics 

C
on

fir
m

ed
 h

yb
rid

s 

Orientalis hybrids intraspecific H. orientalis crosses variation of sepal shape and colours 

Orientalis hybrids, garden 
hybrids 

interspecific crosses between 
species within section 
Helleborastrum, in which H. orientalis 
is involved 

variation of sepal shape and colours, 
especially dark colours, double 
flowers 

H. x sternii 
H. argutifolius x H. lividus, also 
possible reciprocal: H. lividus x 
H. argutifolius 

fertile intermediates referring to 
growth type and flowers between the 
parental species 

H. x ballardiae H. niger x H. lividus sterile intermediates referring to 
growth type and flowers between the 
parental species 

H. x nigercors H. niger x H. argutifolius 
H. x ericsmithii H. niger x H. x sternii 

U
nc

on
fir

m
ed

 p
ut

at
iv

e 
hy

br
id

s H. x jourdanii H. foetidus x H. viridis 
differences in growth type and flower 
morphology 

-- H. foetidus x H. argutifolius sterile offspring, differences in 
growth type and flower morphology 

-- 
‘Walberton’s Rosemary’ 

H. niger x H. orientalis 
H. niger x H. x hybridus 

differences in growth type and leaf 
and flower morphology; especially 
sepal colour and shape 

-- H. niger x H. viridis differences in growth type and leaf 
and flower morphology 

-- H. niger x H. purpurascens 
differences in growth type and leaf 
and flower morphology 

C
on

fir
m

ed
 h

yb
rid

s 
ob

ta
in

ed
 v

ia
 e

m
br

yo
 re

sc
ue

 in
 th

is
 s

tu
dy

 H. x sternii 
H. argutifolius x H. lividus 
H. lividus x H. argutifolius 

fertile intermediates referring to 
growth type and flowers between the 
parental species 

Intrasectional hybrids 
within Helleborastrum, 
in which H. x hybridus 

is involved 

H. x hybridus x H. atrorubens 

increase in variation of flower 
morphology: flower size and 
number, sepal colour (H. atrorubens, 
H. torquatus) and shape, nectaries; 
scent of H. odorus 

H. x hybridus x H. croaticus 
H. x hybridus x H. cyclophyllus 
H. x hybridus x H. dumetorum 
H. x hybridus x H. multifidus 
H. x hybridus x H. odorus 
H. x hybridus x H. purpurascens 
H. x hybridus x H. torquatus 

Intrasectional hybrids 
within Helleborastrum 

H. croaticus x H. multifidus 
sepal colour (H. purpurascens, 
H. torquatus) and shape, nectaries, 
foliage, scent of H. odorus 

H. croaticus x H. odorus 
H. odorus x H. croaticus 
H. purpurascens x H. croaticus 
H. torquatus x H. croaticus 

Intersectional hybrids 

H. foetidus x H. argutifolius differences in growth type and  leaf 
and flower morphology 

H. x hybridus x H. argutifolius 
differences in growth type and leaf 
and flower morphology; especially 
sepal colour and shape 

H. x hybridus x H. niger 
differences in growth type and leaf 
and flower morphology; especially 
sepal colour and shape 
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For the hybrids between H. x hybridus and H. niger obtained in this study, some malformation 

during development was observed (Figure 3.20). Two germinated ovules developed little after 

germination and two isolated embryos developed very slowly. Additionally, two seedlings 

from the same cross had only one cotyledon. These weaknesses could be interpreted as a 

postzygotic barrier. Hybrid fertility has not yet been evaluated. 

More reciprocal crosses were performed between H. x hybridus and H. niger than between 

other combinations of species due to the higher economic importance and availability of plant 

material of these species. Interestingly, 11 hybrids were obtained for H. x hybridus x H. niger, 

while ovules from H. niger x H. x hybridus crosses were aborted early or contained liquid 

endosperm due to endosperm breakdown. Fertilisation was assumed to occur because pollen 

tubes were observed near the ovules in all crossing combinations using H. niger as the 

maternal parent, and the ovules were observed to enlarge. For all crosses with H. niger as 

maternal the parent, even the crosses between H. niger and H. argutifolius or H. lividus 

exhibited aborted ovules and endosperm degeneration due to unknown reasons. Similarly, for 

intergeneric hybridisations between Anemone coronaria and Ranunculus asiaticus, hybrids 

have been obtained only from crosses with Anemone as the maternal parent via rescue of 

immature achenes (Dhooghe et al., 2010). 

One possible explanation for these observations may be unilateral cross compatibility, 

meaning that a given cross is successful while the reciprocal cross fails, probably due to 

maternal effects. Unilateral compatibility has been described for certain crosses in Hibiscus 

(van Laere et al., 2007), Curcurbita (Sisko et al., 2003) and Dianthus (Nimura et al., 2003). 

For Dianthus, stunted endosperm development occurred when D. japonicus was used as the 

maternal parent. The cause of unilateral cross compatibility may be parental imprinting that 

results in endosperm breakdown, as discussed above. Additional maternal effects will be 

regarded in Chapter 5.1. 

It is not definitively known whether unilateral cross compatibility exists between H. niger and 

H. x hybridus. From other sources, one may infer that H. niger x H. x hybridus is more 

successful than the reciprocal cross (Peter Oenings, personal communication). Additionally, 

in December 2009, the cultivar `Walberton’s Rosemary´ was reported to be the first H. niger 

x H. x hybridus hybrid sharing morphological characteristics of both parents (Rice, 2009). 

Therefore, it seems more likely that the conditions used during plant growth or ovule culture 

were not suitable. Medium composition and temperature requirements may be species specific 

due to differences in geographical distribution. Lower temperatures (5 °C) during plant 
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growth in the 2008/2009 flowering season seemed to be beneficial for embryo rescue 

compared to the temperatures used during other years (12 °C in 2007/2008 and 2009/2010). 

Genetic distance between parental species 

The genetic distances between Helleborus species and their impact on hybridisation are 

discussed below. 

The genus Helleborus is divided into six sections based on morphological characters. Four 

sections are monospecific, section Chenopus comprises two species, and section 

Helleborastrum comprises 16 species (Chapter 1.1.1). The molecular genetic analysis of the 

genus using AFLP markers supports the division of Helleborus into six sections (Chapter 

2.3.3). The genetic distances between the species were estimated and the nuclear DNA 

content of each species was determined. Both factors are thought to be useful to predict 

hybridisation success. 

Helleborus hybrids were obtained via embryo rescue, mostly within sections but also between 

sections (three combinations) (Chapter 3.3.4). The genetic distances between the parents of 

these three hybrids were quite large (0.241–0.264) compared to those between other 

combinations of species within sections (0.069-0.141). Therefore, the genetic distance 

between genotypes is not a clear predictor of hybridisation success in Helleborus; it only 

represents a trend. Genome size is also not a valuable predictor; hybrids between species with 

large differences in genome size already exist (e.g., between sections Helleborus and 

Chenopus) and were obtained in this project (e.g., H. x hybridus x H. argutifolius). Zonneveld 

(2001) has stated that if species of section Helleborastrum were regarded as one highly 

variable species due to their near lack of differences in nuclear DNA content, the division into 

sections would become meaningless because almost all sections would be monospecific. 

However, although the genetic distances and genome sizes failed to directly predict 

hybridisation success, both factors indicated crossing combinations that were problematic in 

some way. Therefore, these factors are valuable indicators of the possibility of recovering 

hybrid offspring from a particular combination; crosses between parental plants with large 

differences in genome size or large genetic distances must be carried out more carefully and 

large numbers of crosses must be performed. Furthermore, the genetic distances make it 

possible for the first time to directly compare the relationships of different combinations of 

parental species. For example, H. x hybridus is equally genetically distant from H. foetidus 

and H. niger. 
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Intergeneric hybridisations between other members of the family Ranunculaceae (Anemone 

coronaria x Ranunculus asiaticus), as members of the Ranunculaceae, have already been 

successful (Dhooghe et al., 2010), indicating that large genetic distances can be overcome 

within this plant family. 

3.4.5 Hybrid verification 

In addition to morphological characters, chemical and molecular characters and differences in 

genome size can be used for hybrid identification. Flow cytometry was tested for the 

identification of Helleborus hybrids. The method was effective only if the genome sizes of the 

parental species were sufficiently different. Among the hybrids obtained in this study, only 

those between sections Chenopus and/or Griphopus and Helleborus or Helleborastrum met 

this criterion. Hybrids between H. x hybridus and H. argutifolius as well as between 

H. foetidus x H. argutifolius were successfully identified by flow cytometry (Chapter 3.3.5.1). 

For hybrids within section Chenopus and within or between sections Helleborus and 

Helleborastrum, flow cytometry was not suitable. Therefore, these hybrids were analysed 

using RAPD markers. 

Hybrids were obtained from 18 different interspecific crossing combinations. For 16 of these, 

157 genotypes, of which 155 were verified as hybrids, were tested by RAPD analysis 

(Chapter 3.3.5.2). Hybrid identification failed only for H. argutifolius x H. lividus and one 

reciprocal cross. RAPD primers have already been proven to be effective for the identification 

of interspecific hybrids from embryo rescue experiments in Lens (Fratini & Ruiz, 2006) and 

Dianthus (Nimura et al., 2003). The larger the genetic distance between the parental plants, 

the easier it was to identify primers that amplified polymorphic bands. For closely related 

species, several RAPD primers had to be tested to amplify characteristic pollen donor 

fragments that were not present in the maternal genotypes. In Dianthus, one out of 40 primers 

tested amplified two characteristic pollen parent fragments and was therefore chosen for 

hybrid verification. Similarly to Dianthus, 25 primers were initially used for parental 

screening in Helleborus. For some closely related species (H. x hybridus, H. purpurascens 

and H. atrorubens), 12 additional primers were tested to obtain suitable primers for certain 

combinations. Interspecific Helleborus hybrids were successfully identified using RAPD 

markers. 

RAPD markers are a suitable molecular marker system for hybrid identification due to their 

biparental inheritance and the almost unlimited number of independent markers (depending 

on the number of primers). In contrast to cytoplasmic or RNA markers, RAPDs are 
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distributed throughout the genome, which is beneficial in the analysis of hybrids. 

Additionally, molecular character expression appears to be much more predictable than 

morphological character expression, which is influenced by the environment, because 

molecular characters follow the rules of inheritance (Rieseberg & Ellstrand, 1993). First 

generation hybrids have been shown to be mosaics of both parental and intermediate 

morphological characters rather than solely intermediate ones (Rieseberg & Carney, 1998). 

The expression of parental or intermediate characters in hybrids depends on how these 

characters are genetically controlled and on interactions with the environment (Rieseberg & 

Carney, 1998). The expression of morphological characters is less predictable in later 

generation hybrids than in first generation hybrids due to the accumulation of extreme 

characters. Transgressive morphological characters have been found in first generation 

hybrids and to a greater degree, in later generation hybrids (Rieseberg & Ellstrand, 1993). 

In Helleborus hybrids, morphological character expression was observed only by the 

appearance of in vitro leaves that resembled both parent plants to some extent. It will be 

interesting to examine and analyse the adult plants with regard to their horticultural value if 

they display transgressive characteristics related to flower colour, sepal shape, fertility or 

sterility, foliage and resistance against C. hellebori. 
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4 Morphological and molecular genetic analysis of hellebore leaf 

spot disease (Coniothyrium hellebori) isolates from different 

geographic origins 

4.1 Introduction 

Helleborus species are widely distributed in botanical, public and private ornamental gardens. 

They are quite variable with respect to growth type, scent, leaf morphology and especially 

flower colour and structure. The plants’ appearance can be strongly affected by symptoms of 

the hellebore leaf spot disease, caused by the fungus Coniothyrium hellebori. The first 

description of C. hellebori was made by Cooke & Massee (1887), who observed symptoms on 

leaves of H. niger. 

Coniothyrium-like fungi are widespread and are classified depending on the host, 

conidiomatal structure, mode of conidiogenesis and conidium morphology. Coniothyrium 

species have drawn attention as ‘biocontrol agents’ (Gerlagh et al., 1999), but they are also 

known to be common colonisers of different hosts. Examples include C. fuckelii, which 

colonises stems of Rubus spp., C. wernsdorffiae, the causal agent of rose brand canker (Ellis 

& Ellis, 1997) and C. leucospermi, which causes leaf spots of Proteaceae (Taylor & Crous, 

2001). 

In hellebores, small, black fruiting bodies, the pycnidia, which bear the spore masses, are 

formed in the necrotic leaf spots either on the upper or lower leaf surface (Figure 4.1). The 

spores are spread mainly by water, wind and wind-blown rain. Whereas some diseases are 

mainly important during propagation, hellebore leaf spot is more problematic at the 

cultivation and final growth site, where the fungus has optimal conditions to develop and 

remains for many years. The most effective method to prevent infection is to remove and 

destroy infected leaves immediately. Otherwise, the spores remain in the leaf material over 

the winter, and the plants are infected again in the following spring. 
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Figure 4.1: Necroses at the leaf margins of H. x hybridus caused by C. hellebori (A and B). 
Bars represent 5 mm. 

Although C. hellebori is the most common disease of hellebores, reports on its biology and 

genetics are rare. According to Pape (1928), hellebore leaf spot is distributed in many 

European countries and in North America. The disease was observed on different Helleborus 

species like H. niger, H. argutifolius, H. foetidus, and H. viridis, and Pape (1928) described 

plants growing under inappropriate soil conditions to be preferentially infected. In addition to 

the species mentioned above, other species are probably affected as well. A short description 

of the fungus’s in vitro characteristics can be found in Van der Aa & Vanev (2002) and in 

Young & Alcorn (1981), who compared C. hellebori to other Coniothyrium species mainly 

from jojoba. 

Currently, no information concerning the morphological, pathogenic or molecular genetic 

characteristics of the pathogen is available. Knowledge regarding pathogenicity and fungal 

genetic diversity is very important for Helleborus breeding to evaluate the susceptibility of 

Helleborus species and to develop reliable inoculation methods for disease resistance tests. 

The objectives of this study were (i) to determine variability in morphology and cultural 

characteristics of different isolates of this pathogen, (ii) to identify a suitable method for spore 

production, (iii) to perform pathogenicity tests and (iv) to determine molecular genetic 

relationships based on RAPD (Random Amplified Polymorphic DNA) markers of 

geographically diverse C. hellebori isolates in comparison to the mycoparasite 

Coniothyrium minitans. 

A B
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4.2 Materials and Methods 

4.2.1 Isolates and cultures 

Symptomatic leaf samples from Helleborus hosts were collected during this study; these 

samples came primarily from Germany, but also from Austria, Canada, Great Britain, 

Switzerland and the United States (Table 4.1). The fungus was isolated from leaf sections 

bearing pycnidia on a mixture of potato dextrose (PDA) and carrot juice agar (1.95 % PDA 

(Oxoid), 2.5 % carrot juice, 0.9 % agar). Two isolates, no. 1 and no. 2 (Table 4.1), were 

obtained from the German Collection of Microorganisms and Cell Cultures, Braunschweig. 

Additionally, for comparisons, the C. minitans strain CON-m-91-08 was used, which was 

kindly provided by Prophyta GmbH, Malchow, Germany. C. hellebori mycelium cultures 

were transferred to tomato mash agar (20 % tomato mash, 0.3 % CaCO3, 1.5 % agar, pH 7.2). 

Table 4.1: Collection of C. hellebori isolates and C. minitans according to their geographic locations and 
plant hosts. 
Conidial sizes of four single-spore isolates of the isolates no. 20 and 24 were compared. 

Isolate No. Geographic location/name Countrya Plant host 

1 DSMZ 1205 Unknown Unknown 
2 DSMZ 62472 Germany Unknown 
3 Kiel Germany H. niger 
4 Ellerhoop Germany H. niger 
5 Bad Zwischenahn Germany H. x hybridus 
6 Berlin Germany H. niger 
7 Osnabrueck Germany H. x hybridus 
8 Muenster Germany H. niger 
9 Muenster Germany H. niger 
10 Muenster Germany H. niger 
11 Thale Germany H. niger 
12 Huenxe-Drevenack Germany H. niger 
13 Radevormwald Germany H. x hybridus 
14 Cologne Germany H. niger 
15 Rottenburg a. d. Laaber Germany H. x hybridus 
16 Weihenstephan Germany H. x hybridus 
17 Weihenstephan Germany H. x hybridus 
18 Weihenstephan Germany H. x hybridus 
19 Munich Germany H. x hybridus 

20.1 Pendling/Thiersee Austria H. niger 
20.2 Pendling/Thiersee Austria H. niger 
20.3 Pendling/Thiersee Austria H. niger 
20.4 Pendling/Thiersee Austria H. niger 
21 Kesswil Switzerland H. x hybridus 
22 Oberrieden Switzerland H. x sternii 
23 Wisley Great Britain H. x hybridus 

24.1 Philadelphia USA H. niger 
24.2 Philadelphia USA H. niger 
24.3 Philadelphia USA H. niger 
24.4 Philadelphia USA H. niger 
25 Toronto Canada H. niger 

26 Coniothyrium minitans 
CON-m-91-08 

Unknown  
aGerman samples are arranged from North to South  



Chapter 4  Materials and Methods 

101 
 

For the establishment of single-spore isolations, spore suspensions from pycnidia induced on 

oat flake agar (3 % oat flakes, 1.5 % agar) were plated on water agar. After three days, single 

germinating conidia were isolated under a microscope and transferred to tomato mash agar. 

Single conidial isolates were established from each origin and were at least duplicate in 

number, except for the isolate from Wisley, Great Britain (No. 23, Table 4.1) from which 15 

single conidial isolates were initiated. The cultures were stored at approximately 20 °C in the 

dark and subcultured by transferring young mycelium of actively growing colonies onto fresh 

agar plates every two months. Permanent cultures were applied from the single spore isolates 

to preserve the cultures in a young stage. Therefore, sterile filter paper stripes were put onto 

solid medium. The plate was inoculated by mycelia discs, and when the mycel had grown 

over the filter paper, the paper was removed, dried in an exsiccator and stored in small tubes 

at -20 °C. 

4.2.2 Morphological comparisons of C. hellebori isolates 

4.2.2.1 Mycelial growth rate and colony morphology 

Growth rates and temperature requirements for the 25 C. hellebori isolates and C. minitans 

were determined on tomato mash agar. The tomato mash agar plates were inoculated with 

discs (5 mm in diameter) from young mycelia of actively growing isolates and placed upside 

down at the centre of the plates. The plates were maintained at temperatures ranging from 

5 °C to 30 °C, at 5 °C intervals, for 10 days in the dark. Four plates were incubated for each 

isolate at each temperature. Diameter measurements were obtained every other day twice 

from each colony, at right angles to each other. Final evaluation of radial mycelial growth, 

colony colour and morphology was carried out after ten days when the first isolates reached 

the margin of the plate. 

4.2.2.2 Pycnidial production and spore germination 

Pycnidial production was examined for isolates no. 2, 3, 16, 20 and 24 on tomato mash and 

oat flake agar at 20 °C in the dark or with 12 and 24 h illumination at approximately 

20 µmol/m²s. There were four replicates for each isolate. The plates were observed every 

three days, and the final examination was carried out after 24 days. Pycnidial production was 

classified into qualitative groups according to the abundance of pycnidia: (0) no pycnidia, (1) 

rare pycnidia, (2) sparse pycnidia, (3) many pycnidia, (4) the dish was covered with pycnidia. 

To identify adequate temperature conditions for spore germination, conidia from isolates no. 

18, 20 and 24 were suspended in sterile water and plated on water agar. The plates were 
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incubated at 10 °C, 15 °C, 20 °C, 25 °C and 30 °C in the dark and at 20 °C under light for 

24 h. The dishes were monitored for conidial germination after 4 h, 8 h and 24 h. 

4.2.2.3 Conidial size 

Conidia from each isolate were harvested from two to three week old colonies grown on oat 

flake agar at 20 °C in the dark. The length and width of 100 individual conidia of each of the 

25 C. hellebori isolates and C. minitans were measured (Axio Scope.A1, Zeiss, Oberkochen, 

Germany) at 400 x magnification. To evaluate the variability of conidial size within the same 

origin of an isolate, four independent single spore isolates were used for the isolates from 

Pendling/Thiersee (no. 20) and Philadelphia (no. 24) (Table 4.1). 

4.2.3 Pathogenicity trials 

All 25 C. hellebori isolates were used in inoculation experiments of Helleborus plants and 

small leaf discs. For each isolate, pycnidia were induced on oat flake agar. Three 18 months 

old H. niger plants derived from seeds of the cultivar ‘COSEH 2040’ were inoculated with 

each isolate. Additionally, three leaf discs (13 mm in diameter from young plant parts and 

14 mm in diameter from old leaf parts) of the same plants used for inoculation were put with 

the adaxial side down on sterile filter paper in a Petri dish in three replicates, and the whole 

leaf disc experiment was repeated once. The plants and the leaf discs were inoculated by 

spraying with spore suspensions with a concentration of 106 conidia ml-1 until they were 

dripping wet, except for isolate no. 1, which was not able to sporulate. Thus, for this isolate, 

mycelial plugs were transferred onto the leaves and the leaf discs. All plants were covered 

with plastic bags, and the dishes with the leaf discs were closed to prevent desiccation of the 

inoculum and promote infection. Control inoculations were carried out with sterile water and 

also with C. minitans. The inoculated plants and leaf discs were cultured in a climate chamber 

at 20 °C in 95 % humidity for 36 h in the dark. Subsequently, a photoperiod of 12/12 h with 

an illumination of 1000 lux was used. After one week, the plastic covers were removed. The 

leaf discs were evaluated for symptoms after seven and fourteen days and classified according 

to their degree of browning. The plants were observed for five weeks on a weekly basis and a 

final evaluation was carried out after five weeks. 

4.2.4 DNA extraction and RAPD PCR analysis 

Freshly grown mycelium (0.01 to 0.1 g fresh mass) was harvested from one plate, transferred 

to a reaction tube and thoroughly homogenised in buffer at room temperature with a 

micropestle. The extraction procedure followed a protocol developed for plant leaf material 
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by Dorokhov and Klocke (1997). The protocol was modified in the following ways: (i) 

0.2 mg RNase A was added before incubation at 65 °C and (ii) in the second DNA pellet 

washing step, isopropanol was replaced by 70 % ethanol. After drying the pellets, they were 

dissolved in 25 µl of sterile bi-distilled water. DNA was extracted in two independent 

biological replicates. 

DNA was amplified by the RAPD technique (Williams et al., 1990). In addition to all 25 

C. hellebori isolates and C. minitans as the outgroup, nine other single spore cultures of 

isolate no. 23 were used to evaluate the genetic variability within one origin. Amplification 

reactions were carried out in a volume of 20 µl containing 10 mM Tris (pH 8.3), 50 mM KCl, 

2 mM MgCl2, 0.001 % gelatine, 100 µM of each deoxyribonucleoside triphosphate, 0.5 µM of 

each primer, 1 U Taq DNA Polymerase (FIREPol ® Solis Biodyne, Estonia) and 5 ng fungal 

genomic DNA. In total, 40 different random decamer primers (primer kits B and C, Carl 

Roth, Karlsruhe, Germany) were used. Thermal cycling was conducted with 5 min initial 

denaturation at 94 °C, followed by 35 cycles of 1 min at 94 °C, 1 min at 36 °C, 2 min at 72 °C 

and a final extension step for 10 min at 72 °C. Amplification products were separated by 

electrophoresis in 1.5 % agarose gels in 1 x TAE buffer (2 M Tris, 50 mM EDTA pH 8.0, 1 M 

glacial acetic acid; pH 8.44), detected by staining with ethidium bromide (10 µg/100 ml 

agarose gel) and visualised on a UV transilluminator. Reproducibility of the results was 

ensured by repeating the PCR amplification reactions of all isolates twice based on the two 

different DNA extractions. 

4.2.5 RAPD data analysis 

The banding patterns of each primer were evaluated by visual inspection. Reproducible bands 

were included and transformed into a 0/1 matrix. Genetic distances and phenograms were 

computed using the PHYLIP 3.69 software package (http://evolution.genetics.washington. 

edu/phylip.html). The pairwise distances between the analysed isolates were calculated using 

the similarity index of Nei and Li (1979). On the basis of the distance matrix of the genetic 

distances, a cluster analysis was carried out using the unweighted pair group method with 

arithmetic mean (UPGMA). Relative branch support was assessed by bootstrap analysis 

(Felsenstein, 1985) with 1000 replicates. The phenograms were displayed with the TreeView 

software (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html). 
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4.2.6 Statistical analyses 

Radial mycelial growth was presented separately for each isolate and as the average of all 

isolates depending on the temperature in one graph. The influence of temperature on the 

average mycelial growth of all C. hellebori isolates was analysed using the Wilcoxon rank 

sum test modified for heterogeneous variances. Additionally, statistical analyses by ANOVA 

and Tukey’s test were carried out to detect significant differences in mycelial growth between 

the C. hellebori isolates cultured at the same temperature. The conidial length and width of all 

single conidial isolates were examined separately for statistical differences with analysis of 

variance (ANOVA) and Tukey’s test. The pycnidial production on different media and the 

disease severity were presented as boxplots. To detect significant differences, the Kruskal-

Wallis rank sum test and Wilcoxon rank sum test modified for heterogeneous variances were 

used. P values were adjusted according to Holm (1979). For all statistical analyses, the R 

software package version 2.11.0 was used. 
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4.3 Results 

4.3.1 Morphological comparisons of C. hellebori isolates 

4.3.1.1 Mycelial growth characteristics 

C. hellebori hyphae grew at temperatures from 5 °C to 25 °C in the dark (Table 4.2, Figure 

4.2). Optimum mycelial growth occurred at 20 °C; the maximal radial mycelial growth rate 

occurred for isolate no. 16 and was 3.4 mm/day, and the minimal rate was 2.4 mm/day for 

isolate no. 12. C. minitans grew slightly slower (Table 4.2). The largest difference in radial 

mycelial growth among the isolates was observed at 25 °C (Figure 4.2): some isolates grew 

slower at this temperature than at 5 °C, such as no. 12, 14, 17, 21 and 25, whereas five 

isolates grew faster at 25 °C than at 15 °C (Table 4.2). Almost no growth occurred at a 

temperature of 30 °C. The highest radial mycelial growth of all isolates was recorded at 

20 °C, for which the average mycelial growth differed significantly from growth at all other 

temperatures. Significant differences between the mycelial growth of the C. hellebori isolates 

were detected at all temperature levels (Table 4.2). 

 

Figure 4.2: Average radial mycelial growth of 25 C. hellebori isolates after incubation at different 
temperatures for 10 days. 
Vertical bars represent standard deviations. Different letters above the mean indicate statistical differences 
(P≤0.05) between the temperatures by Wilcoxon rank sum tests modified for heterogeneous variances. 

The colony colour differed only slightly, appearing as different shades of grey in the colony 

centre with almost pure white margins at all temperatures (Figure 4.3). The mycelium was 

floccose, and the abundance of aerial mycelium varied depending on the temperature and the 

isolate. Pycnidia production was observed at a temperature of 15 °C for four isolates and 
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occurred up to 25 °C. At 25 °C, pycnidia were found either in concentric rings, scattered 

within the mycelium or both for 25 isolates. Only isolate no. 1 was not able to sporulate. 

Table 4.2: Average radial mycelial growth of each C. hellebori isolate and C. minitans on tomato mash 
agar at different temperatures. 
The number of plate repetitions was n=4. 

Isolate No. 
Radial mycelial growth [mm/day] 

Mean 

5 °C 10 °C 15 °C 20 °C 25 °C 30 °C 
1 1.1  ba 1.7  bc 2.4  c 3.1  cd 2.4  c 0.08  ab 
2 0.9  d 1.6  cd 2.5  bc 3.3  b 1.5  g 0.1  a 
3 0.8  de 1.7  bc 2.6  ab 3.2  bc 1.5  g 0.08  ab 
4 0.8  de 1.7  bc 2.5  bc 3.0  ef 1.0  i 0.08  ab 
5 1.0  c 1.6  cd 2.4  ce 2.9  ef 2.7  a 0.05  b 
6 0.8  de 1.4  e 2.3  e 3.0  de 1.8  f 0.05  b 
7 0.8  de 1.5  de 2.4  c 3.2  cd 2.1  de 0.05  b 
8 0.8  de 1.7  bc 2.6  ab 3.2  bc 2.0  e 0.08  ab 
9 0.8  de 1.4  e 2.4  ce 3.1  de 1.0  i 0.05  b 
10 0.9  de 1.6  cd 2.5  bc 3.2  cd 1.2  h 0.05  b 
11 1.0  bc 1.6  cd 2.4  c 3.1  cd 2.7  a 0.05  b 
12 0.8  de 1.4  e 2.1  f 2.4  h 0.7  j 0.05  b 
13 1.0  bc 1.6  d 2.4  cd 2.8  g 1.6  g 0.05  b 
14 1.1  ab 1.8 a 2.4  ce 3.2  bc 0.7  j 0.05  b 
15 0.8  de 1.4  e 2.2  f 2.9  ef 2.6  ab 0.05  b 
16 1.2  a 1.8  ab 2.7  a 3.4  a 2.5  b 0.05  b 
17 0.9  de 1.5  de 2.4  cde 2.9  ef 0.7  j 0.08  ab 
18 0.8  e 1.5  de 2.3  de 3.0  e 1.2  h 0.05  b 
19 1.1  ab 1.8  abc 2.5  bc 2.9  f 2.4  c 0.1  a 
20 1.0  c 1.7  bc 2.6  b 3.3  b 2.2  d 0.07  b 
21 1.0  bc 1.4  e 2.3  e 3.2  cd 0.8  j 0.05  b 
22 0.8  de 1.6  d 2.5  c 3.1  d 1.9  e 0.1  a 
23 0.9  de 1.5  de 2.4  c 3.1  cd 2.5  bc 0.05  b 
24 1.0  c 1.7  c 2.6  ab 3.2  bc 2.2  d 0.05  b 
25 0.8  de 1.4  e 2.1  f 2.7  g 0.6  k 0.1  a 
26 0.4  0.8  1.4  2.2  0.9  0.05  

awithin columns, values followed by the same letter are not significantly different (P≤0.05) within the 
temperature treatment by Tukey’s test. 

 

 

Figure 4.3: Colony morphology of two C. hellebori isolates cultured at different temperatures. 
A: isolate no. 17 (Weihenstephan) and B: isolate no. 24 (Philadelphia) after 10 days of growth on tomato mash 
agar at different temperatures in the dark. Plate diameter was 9 cm. 

A B5 °C 10 °C 15 °C 5 °C 10 °C 15 °C

20 °C 25 °C 30 °C20 °C 25 °C 30 °C
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4.3.1.2 Pycnidial production and spore germination 

To determine the conditions suitable for pycnidia production, five isolates were selected and 

cultured either on tomato mash or oat flake agar under different illumination conditions. The 

radial mycelial growth rate during the first ten days was between 2.2 mm/day and 2.9 mm/day 

on average over all isolates and did not differ between the two media or among different 

illumination conditions (data not shown). The abundance of aerial mycelium was similar on 

tomato mash and oat flake agar with 24 h illumination, but it was reduced on oat flake agar 

with 12 h illumination (Figure 4.4); there was almost no aerial mycelium on oat flake agar 

when plates were incubated in the dark (Figure 4.4). 

 

Figure 4.4: Comparison of pycnidial production of isolate no. 16 (Weihenstephan) on different media and 
under different illumination conditions. 
The magnified pictures were obtained from other plates and represent examples. Plate diameter was 9 cm. 

Pycnidia were produced in all treatments, but their amounts differed strongly (Figure 4.5). 

Overall, more pycnidia were recorded on oat flake agar in comparison to tomato mash agar 

and plates cultured in the dark (Figure 4.5). The highest number of pycnidia was produced on 

oat flake agar in the dark. The differences in pycnidial production between the two media and 

between the culture in the dark and the culture at 24 h illumination were significant. Pycnidia 

were either immersed in the agar or embedded in the mycel. Their shapes ranged from 

globose to ellipsoidal (Figure 4.6 A). On plates covered with pycnidia, an exudation of 

blackish-brown conidial slime was observed (Figure 4.4). 
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Figure 4.5: Pycnidial production on different media and unter different illumination conditions at 20 °C 
after 24 days. 
The lines within the boxes show the median, and the upper and lower hinges represent the first and the third 
quartiles, respectively. Whiskers below and above the box mark the locations of the minimum and maximum, 
respectively. The number of plate repetitions was n=4. 
apycnidial production: (0) no pycnidia, (1) rare pycnidia, (2) sparse pycnidia, (3) many pycnidia, (4) the Petri 
dish is covered with pycnidia 

Spore germination was analysed under different temperature conditions. After 8 h, the first 

germinating conidia were observed for all three isolates on water agar plates incubated at 

15 °C to 25 °C. Germination percentage increased up to 80-100 % during the first 24 h. No 

differences regarding spore germination were observed for incubation at 20 °C under light 

compared to darkness. Below 15 °C and above 25 °C, germination was reduced (data not 

shown). 

4.3.1.3 Conidial size 

The average conidial size was determined for 24 C. hellebori isolates and C. minitans using 

100 spores derived from several different pycnidia (Table 4.3). Conidia were unicellular, 

smooth-walled, ellipsoidal and pale brown to dark brown with partially obtuse apices and 

rounded bases (Figure 4.6 B). Conidial length varied from 3.6 µm to 4.2 µm between the four 

single-spore isolations of isolate no. 20 and single-spore isolate no. 24.3. For all the other 

isolates, length ranged from 4.5 µm to 5.1 µm and width ranged from 2.6 µm to 2.9 µm. Only 
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two single-spore isolations of isolate no. 20 differed significantly in length and width from the 

other isolates examined. The other two single-spore isolations of isolate no. 20 were in fact 

shorter compared to other isolates, but the width was similar corresponding to a lower 

length/width ratio. In comparison to C. hellebori, spores of C. minitans differed significantly 

with spore sizes of 5.6 µm and 3.7 µm in length and width, respectively. 

Table 4.3: Length and width of conidia of C. hellebori isolates and C. minitans. 

Isolate No. Geographic location/name 
Conidial size [µm] 

Lengtha Widtha 
1 DSMZ 1205 NDb ND 
2 DSMZ 62472 4.7 de 2.6 cde 
3 Kiel 4.5 e 2.7 cde 
4 Ellerhoop 4.8 cd 2.8 bc 
5 Bad Zwischenahn 5.1 bc 2.8 bc 
6 Berlin 4.6 e 2.7 cd 
7 Osnabrueck 5.0 bcd 2.8 cd 
8 Muenster 4.8 cd 2.6 cd 
9 Muenster 4.8 cd 2.8 bc 
10 Muenster 4.7 de 2.6 de 
11 Thale 4.7 de 2.7 cde 
12 Huenxe-Drevenack 4.7 de 2.6 de 
13 Radevormwald 5.0 bc 2.8 bc 
14 Cologne 4.8 cd 2.6 e 
15 Rottenburg a. d. Laaber 5.0 bc 2.8 c 
16 Weihenstephan 5.1 b 2.6 cde 
17 Weihenstephan 5.0 bc 2.7 cd 
18 Weihenstephan 5.1 b 2.6 cde 
19 Munich 5.1 b 2.9 b 

20.1 Pendling/Thiersee 4.2 f 2.6 de 
20.2 Pendling/Thiersee 3.8 g 2.3 g 
20.3 Pendling/Thiersee 3.6 g 2.2 g 
20.4 Pendling/Thiersee 4.1 f 2.6 de 
21 Kesswil 4.9 bcd 2.7 cde 
22 Oberrieden 4.9 cd 2.6 cde 
23 Wisley 5.0 bc 2.6 de 

24.1 Philadelphia 4.9 cd 2.7 cd 
24.2 Philadelphia 4.9 bcd 3.0 b 
24.3 Philadelphia 4.2 f 2.4 f 
24.4 Philadelphia 4.6 de 2.7 cde 
25 Toronto 4.7 cd 2.7 cd 

26 
Coniothyrium minitans 
CON-m-91-08 5.6 a 3.7 a 

aWithin columns, values followed by the same letter are not significantly different 
(P≤0.05) by Tukey’s test 
bND means not detected, as the isolate was not able to sporulate 
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Figure 4.6: Pycnidium and spores of one C. hellebori isolate. 
A: pycnidium and B: spores of C. hellebori isolate no. 24 (Philadelphia). 

4.3.2 Pathogenicity of C. hellebori isolates 

Infections were induced by all C. hellebori isolates on 18 month old plants of H. niger as well 

as on leaf discs from young and old leaves. Different symptoms were observed at the whole 

plant level. Seven days after inoculation, small black spots, lesions and the die-back of the 

youngest freshly developed leaf were recorded as symptoms (Figure 4.7). Later on, the die-

back of the inoculated leaves was also observed until the 35th day of the experiment as 

symptoms accumulated. The disease severity differed slightly depending on the isolate, but 

these differences were not significant due to large variances (Figure 4.8). At each plant, one 

leaf lobe of one young and one old leaf was cut off and used for the leaf disc assay. Therefore, 

these leaves were wounded at their petioles. The cutting site at the petiole browned, and these 

leaves faded already 14 days after inoculation. 

 

Figure 4.7: Symptoms occurring on infected hellebores during the pathogenicity trial. 
A: small black spots, B: lesion, C: symptoms on the youngest leaf that developed after inoculation and D: small 
black spots and lesions. 

100 µm 10 µm

A B

BA DC



Chapter 4  Results 

111 
 

 

Figure 4.8: Disease severity classes depending on the C. hellebori isolate 35 days after inoculation of 
H. niger plants. 
The lines within the boxes show the median, and the upper and lower hinges represent the first and the third 
quartiles, respectively. Whiskers below and above the box mark the locations of the minimum and maximum, 
respectively. The number of plant repetitions was n=3. Isolate C indicates control with sterile water. 
aNine different classes of disease severity were distinguished: (0) no symptoms, (1) small black spots, (2) small 
black spots and die-back of the youngest leaf, (3) small black spots and lesions (>0.5 cm²), (4) small black spots, 
die-back of the youngest leaf and lesions (>0.5 cm²), (5) small black spots and die-back of the inoculated leaves, 
(6) small black spots and die-back of the youngest and the inoculated leaves, (7) small black spots, lesions 
(>0.5 cm²) and die-back of the inoculated leaves, (8) small black spots, lesions (>0.5 cm²), die-back of the 
youngest and the inoculated leaves. 

On the leaf discs, different stages of browning were noted seven days after inoculation (Figure 

4.9 A) in both repetitions. The symptoms progressed much faster than they did on the plants. 

The leaf discs obtained from young leaves were browning faster than those from old leaves. 

After 14 days, the leaf discs were totally brown, and all inoculated leaf discs bore pycnidia 

(Figure 4.9 B) except for isolate no.1. Therefore, no statistical analysis was carried out for the 

leaf disc assay. Control inoculations did not develop symptoms. 
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Figure 4.9: Pathogenicity trial by leaf disc assay. 
A: different stages of browning after seven days, numbers next to the discs represent classes of browning; B: 
brown leaf disc covered with pycnidia 14 days after inoculation. 

 

4.3.3 Genetic relationships based on RAPD analysis 

Of the 40 RAPD primers employed, 37 were able to amplify distinct fragments in C. hellebori 

and C. minitans DNA (Table 4.4). In total, 394 DNA fragments were produced, of which 159 

(40 %) were polymorphic between the C. hellebori isolates. Depending on the primer, 

between two and 19 DNA fragments of various intensities were amplified (Table 4.4), ranging 

in size from approximately 0.2 kb to 2 kb. Bands were reproducible in repeated 

amplifications. 

The banding patterns of the 10 different single spore cultures of isolate no. 23 did not differ. 

Therefore, only one single-spore isolate of no. 23 was integrated in genetic distance 

determination. 

Pairwise genetic distances between 25 C. hellebori isolates and C. minitans were calculated 

based on Nei and Li’s coefficients using all 394 fragments. The average genetic distance 

among all C. hellebori isolates was 0.022. The genetic distance between the C. hellebori 

isolates and C. minitans ranged from 0.238 to 0.261. Within the C. hellebori isolates, the 

distance varied from 0.002 between isolates no. 21 and 9 or 14 to 0.034 between no. 1 and 9. 

Based on the Nei and Li coefficients matrix, a phenogram was calculated by the UPGMA 

cluster method (Figure 4.10). 
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Table 4.4: Number of amplified and polymorphic bands obtained from RAPD analysis of different 
C. hellebori isolates dependent on the primer. 
These data were used for genetic distance estimation and cluster analysis. 

Primer name 
(primer kits, Roth) 

Sequence 5‘3‘ No. of amplified bands No. of polymorphic bands between 
C. hellebori isolates 

C1 TTCGAGCCAG 13 2 
C2 GTGAGGCGTC 10 1 
C3 GGGGGTCTTT 9 4 
C4 CCGCATCTAC 11 7 
C5 GATGACCGCC 14 5 
C6 GAACGGACTC 12 5 
C7 GTCCCGACGA 12 6 
C8 TGGACCGGTG 13 2 
C9 CTCACCGTCC 15 7 
C10 TGTCTGGGTG 9 1 
C11 AAAGCTGCGG 13 5 
C12 TGTCATCCCC 19 15 
C13 AAGCCTCGTA 15 4 
C14 TGCGTGCTTG 16 7 
C15 GACGGATCAG 13 4 
C16 CACACTCCAG 8 2 
C17 TTCCCCCCAG 4 3 
C18 TGAGTGGGTG 6 2 
C19 GTTGCCAGCC 11 4 
C20 ACTTCGCCAC 16 2 
B1 GTTTCGCTCC 13 5 
B2 TGATCCCTGG 7 4 
B3 CATCCCCCTG 5 4 
B4 GGACTGGAGT 6 3 
B5 TGCGCCCTTC 11 6 
B6 TGCTCTGCCC 12 9 
B7 GGTGACGCAG 12 6 
B8 GTCCACACGG 10 3 
B10 CTGCTGGGAC 8 2 
B11 GTAGACCCGT 11 5 
B12 CCTTGACGCA 9 3 
B13 TTCCCCCGCT 2 0 
B15 GGAGGGTGTT 10 3 
B17 AGGGAACGAG 12 4 
B18 CCACAGCAGT 13 6 
B19 ACCCCCGAAG 6 3 
B20 GGACCCTTAC 8 5 

  ∑= 394 ∑= 159 (40%) 
 

In the dendrogram, two major clades emerged. One clade represented the outgroup 

C. minitans, which was clearly distant from all C. hellebori isolates. The second clade 

comprised the C. hellebori isolates and could be divided into two subgroups (100 % 

bootstrap), (I) one comprising 12 isolates (85 % bootstrap) and (II) the other one 13 isolates 

(86 % bootstrap). The isolates no. 15-19 from Southern Germany were all grouped in the first 

subgroup of the C. hellebori clade, and those from Muenster, together with most isolates from 

Northern Germany, were in the second subgroup. The second subgroup was again subdivided 

into two groups: (i) isolate no. 20 (Pendling/Thiersee) and isolate no. 11 (Thale) (genetic 
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distance 0.017), in addition to (ii) other isolates from Germany and other countries. The two 

isolates obtained from the German Collection of Microorganisms and Cell Cultures were also 

found in the different subgroups I and II with a genetic distance of 0.023. Isolates from the 

American continent were grouped in the different subgroups; the same was true for the 

isolates from Switzerland. 

 

Figure 4.10: UPGMA phenogram based on Nei and Li similarity indices from 394 RAPD markers for 25 
C. hellebori isolates and C. minitans as the outgroup. 
The bootstrap percentages >50 % calculated from 1000 bootstraps are shown below the branches. 
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4.4 Discussion 

For the first time, morphological comparisons, pathogenicity tests and molecular genetic 

studies on the intraspecific diversity of C. hellebori were carried out in this study. The 

evaluation of morphological characteristics of this pathogen revealed only very few 

differences between the different C. hellebori isolates. All isolates were similar in their 

cultural characteristics, with the best mycelial growth occurring at a temperature of 20 °C and 

growth stopping at 30 °C. Considerable growth differences between the isolates were only 

found at 25 °C. 

Conidial measurements carried out in this study were consistent with those from Cooke and 

Massee (1887), but conidia were reported to be larger in other examinations (Pape, 1928; 

Young & Alcorn, 1981). Variability in conidial morphology has already been reported in the 

case of C. leucospermi, in which conidia varied in size, colour and wall ornamentation 

depending on whether the culture was in vitro or in vivo and on age (Taylor & Crous, 2001). 

C. minitans was clearly distinguishable in conidial and cultural characters. 

Spore germination and pycnidial production of all isolates were observed in a broad 

temperature spectrum (15 °C to 25 °C), which is in agreement with observations in nature, 

where the first disease symptoms can be observed from May and increase during the summer. 

This result indicates that temperatures that range from 15 °C to 25 °C promote infection, 

whereas higher temperatures reduce infection. Culturing on oat flake agar at 20 °C in the dark 

was optimal for the mass production of conidia in vitro, an observation that will be important 

for the establishment of resistance tests on Helleborus. In these tests, temperatures between 

15 °C and 20 °C should be guaranteed for conidia mass production and the infection of plants. 

During this study, only the anamorphic stage of the fungus was observable, and no sexual 

state was found, suggesting that C. hellebori predominantly exists in its asexual form, as was 

also reported for C. zuluense (van Zyl et al., 2002a). 

Young and Alcorn (1981) found that pre-wounding greatly enhanced plants’ susceptibility. To 

gain further insight into the infection of Helleborus plants with leaf spot disease, the 

inoculation of plants with injured leaves and leaf discs representing strongly wounded tissue 

was performed in this study. In agreement with Young and Alcorn (1981), leaf discs and 

wounded leaf parts browned and faded 14 days after inoculation, while intact leaves were not 

that much affected in this study. One symptom observed on plants in this study, but not in 

naturally occurring infections, were the small black spots, probably representing small 
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necroses where the fungus was not able to overcome a barrier. All 25 C. hellebori isolates 

were verified as pathogens of Helleborus by means of Koch’s postulates, but no 

differentiation among different levels of virulence was possible. 

Phylogenetic analyses of RAPD marker data, which turned out to reveal highly reproducible 

band patterns, confirmed the similarity of the collected C. hellebori isolates (Figure 4.10). 

Genetic relationships using RAPD markers were successfully determined for several other 

fungal species, such as Aspergillus species and their teleomorphs (Abu Seadah & El Shikh, 

2008), Coniothyrium minitans (Grendene et al., 2002) as well as plant pathogens like 

Fusarium culmorum (Gargouri et al., 2003), Ophiostoma ulmii (Solla et al., 2008) and 

different Colletotrichum species (Martín & García-Figueres, 1999; Denoyes-Rothan et al., 

2003). In comparison to genetic similarities of 62-86 % estimated between C. zuluense 

isolates (van Zyl et al., 2002b), a plant pathogen causing stem canker of Eucalyptus, the 

genetic distances calculated for C. hellebori were lower, corresponding to higher similarity, 

and were more comparable to distances determined within and between Colletotrichum 

species (Martín & García-Figueres, 1999). 

The RAPD data analysis in this study showed that all C. hellebori isolates formed a single 

clade that was separate from C. minitans. In this clade, two subgroups were identified, but no 

correlation with geographic location could be identified. The genetic distances of isolates 

outside Europe were similar to those collected in Europe. Originally, those isolates must have 

been imported from Europe, because hellebores are not native to America. 

Interestingly, 10 of 12 isolates in the first subgroup of the C. hellebori clade were derived 

from H. x hybridus or H. x sternii plants, whereas 11 of 13 isolates in the second subgroup 

were obtained from H. niger. Therefore, a correlation between the isolates’ position in the 

phenogram and its Helleborus host species cannot be excluded. In addition, the two groups 

correlate more or less with conidial length. Conidia of the first subgroup were longer with 

4.9 µm minimal length, 5.0 µm on average and 5.1 µm maximum compared to a minimal 

4.2 µm, average 4.7 µm and maximal length of 4.9 µm in the second subgroup. The isolates 

from the first subgroup grew on average more rapidly at 25 °C [(0.72-)2.07(-2.71) mm/day] 

than those from the second subgroup [(0.58-)1.36(-2.68) mm/day]. The range of radial 

mycelial growth at 25 °C overlapped almost entirely for both groups, but was differing on 

average between these groups. However, the isolates of the two clades did not differ in 

pathogenicity on H. niger as shown and discussed before. 
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In summary, two C. hellebori groups were clearly identified in the phenogram: isolates in the 

first subgroup were predominantly obtained from H. x hybridus and H. x sternii, had longer 

conidia and their mycelia tended to grow on average more rapidly at 25 °C compared to 

isolates in the second subgroup. These observations may lead to the assumption that hellebore 

leaf spot disease may be caused by two subspecies. The reports on co-occurrence of more 

than one species or at least varieties associated with the same disease have increased since 

phylogenetic approaches have been used to study species isolates (Douhan et al., 2008). 

Especially in species, in which sexual reproduction was not known to occur, cryptic species 

were identified by phylogenetic studies (Cortinas et al., 2006; Le Gac et al., 2007). 

Two species associated with stem canker of Eucalyptus, which was formerly described as 

Coniothyrium zuluense (Wingfield et al., 1996), were revealed on the basis of phylogenetic 

analyses. The two species identified (Cortinas et al., 2006), of which one was described as 

cryptic, differed slightly in certain morphological characters as it was found also for 

C. hellebori in this study. However, to resolve whether two species or at least species varieties 

causing hellebore leaf spot disease were identified, supplementary analyses would be 

necessary (Chapter 5.3). 

For now, the small genetic distances, the knowledge about the two distinct groups and the 

lack of differences in virulence, represent important information, especially for the 

establishment of resistance tests. Future tests on the response of Helleborus species and 

hybrids to C. hellebori will be facilitated by inoculations with a mixture of only a few isolates 

from the two different subgroups. Thus, the results of this study regarding the establishment 

of appropriate conditions for C. hellebori culture, sporulation and plant inoculation on the one 

hand and the determination of molecular genetic relationships of diverse isolates on the other 

hand are fundamental for future breeding endeavours to achieve resistant or more tolerant 

Helleborus species (Chapter 5.4). 
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5 Conclusions and Outlook 

Three different studies with various main focuses were conducted within this thesis (Chapters 

2, 3 and 4). The results of these studies have already been discussed directly in the 

corresponding chapter. Here, some conclusions are drawn relating to different issues in this 

thesis. In addition, an outlook for future research topics based on the results from this thesis 

and the conclusions is given. 

5.1 Postzygotic isolation mechanisms and maternal effects within the 

Helleborus genus 

Postzygotic barriers during embryo development leading to embryo abortion have 

successfully been overcome by embryo rescue, but additional postzygotic isolation 

mechanisms like hybrid sterility or hybrid breakdown may occur. It is known that hybrid 

sterility is the most common form of postzygotic reproductive isolation in plants (Ouyang et 

al., 2010). Additionally, extensive variability in viability and fertility has been observed 

within and between hybrid generations from the same interspecific cross (Rieseberg & 

Carney, 1998). 

Hybrids between species belonging to the same Helleborus section were described as fertile 

(Mathew, 1989); therefore, fertility is assumed for the intrasectional hybrids within the 

sections Chenopus and Helleborastrum that were obtained during the experiments described 

in this thesis. In comparison, for the intersectional hybrids H. x ballardiae, H. x nigercors and 

H. x ericsmithii, hybrid sterility has been observed (Mathew, 1989), suggesting that the 

intersectional hybrids H. x hybridus x H. argutifolius, H. foetidus x H. argutifolius and 

H. x hybridus x H. niger may also be sterile. However, evaluation of the Helleborus hybrids 

obtained during this thesis for additional postzygotic isolation mechanisms cannot be carried 

out until the plants are flowering. Nevertheless, various causes of hybrid sterility are 

described below. 

Hybrid sterility may be caused by genetic factors and/or chromosomal rearrangements during 

meiotic pairing, which might occur in crosses between chromosomally divergent species 

(Rieseberg & Carney, 1998). In addition, chromosomal instabilities have been observed in 

crosses between genetically distant species, even though the parental species had the same 

chromosome numbers (Dhooghe et al., 2010). Intergeneric hybrids between Anemone and 

Ranunculus turned out to be mixoploid, suggesting that genome instability led to the 

elimination of parental chromosomes (Dhooghe et al., 2010). With regard to Helleborus 
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hybrids, the same chromosome numbers were determined for Helleborus species. Further 

analyses of the hybrids will be required to assess genome stability. 

According to the Dobzhansky-Muller model, postzygotic reproductive barriers result from a 

deleterious interaction between functionally divergent genes from the hybridising species 

(Dobzhansky, 1937). Studies of the genetic basis of hybrid sterility and hybrid breakdown in 

rice have revealed that several mechanisms are involved. In rice, sterility involves a 

cytoplasmic gene that causes both male and female sterility (Li et al., 1997). Interactions 

between a pair of complementary genes that lead to greatly reduced fertility also have been 

described (Li et al., 1997). Approximately 50 loci have been identified as controlling hybrid 

fertility in rice, including loci that cause female gamete abortion, those that induce pollen 

sterility or those that cause both (Ouyang et al., 2010). 

In Helleborus, the basis of sterility, male or female or both, has not been described. In this 

study, pollen viability was assessed for H. x ballardiae and H. x ericsmithii. The pollen was 

deformed and not stainable, thus at least male sterility was supposed, perhaps due to the 

above-mentioned mechanisms or cytoplasmic male sterility, which also presents some type of 

gene interaction. Cytoplasmic male sterility (CMS) is a maternally inherited condition in 

which a plant is unable to produce functional pollen (Schnable & Wise, 1998). The restoration 

of fertility relies on nuclear genes that suppress cytoplasmic dysfunction. In conclusion, the 

combination of the maternally-inherited cytoplasm and the nuclear restoring genes results in 

fertility or sterility. If sterility of Helleborus hybrids is caused by CMS, compatible nuclear 

restorer genes would be either missing or in a homozygous recessive condition. 

In addition to CMS, the genome-plastome combination may also influence other traits. In the 

case of interspecific hybrids between Senecio jacobaea x S. aquaticus, the hybrids display 

higher fitness than the parental species and the reciprocal cross (Kirk et al., 2005). The higher 

fitness was attributed to maternal benefits, which could be conferred by the non-nuclear 

inheritance of genetic material and organelles from the maternal plants (Kirk et al., 2005). 

In addition to cytoplasmic maternal effects, there may also be phenotypic maternal effects as a 

result from the environment or the genotype of the maternal parent (Roach & Wulff, 1987). 

These influences can either be structural or physiological and could come from the tissues 

surrounding the embryo and endosperm, which are all maternal in origin (Roach & Wulff, 

1987). These tissues, the integuments of the ovule and the wall of the ovary eventually form 

the seed coat, fruit, and other seed structures. These are known to be important determinants 
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of seed dormancy, dispersal and germination traits. Variation in these structures could 

determine the mature phenotype of an individual (Roach & Wulff, 1987). 

Maternal effects could affect endosperm development (Chapter 3.4.3), could be the result of 

the non-nuclear inheritance of genes or structures in the cytoplasm (Chapter 5.1) or could be 

phenotypic (Chapter 5.1) and greatly impact the success of certain crossing combinations. 

These effects are relevant, if the reciprocal cross fails to produce hybrid offspring or if the 

offspring exhibit lower fitness. Maternal effects may have occurred in the work described in 

this thesis in the cross between the two Helleborus species H. x hybridus and H. niger. 

Crosses using H. x hybridus as a maternal parent were successful in hybrid offspring 

production, though the reciprocal cross failed. In addition, all interspecific crosses with 

H. niger as the seed parent failed. Therefore, it is not known whether there is a broad maternal 

effect or whether environmental conditions played a role. Hybrids with H. niger as the 

maternal parent already exist (Table 3.16). Further experiments will be necessary to examine 

this issue. 

5.2 Influence of seed dormancy on embryo rescue 

Seed maturation in hellebores has to be regarded in combination with seed dormancy. In 

Helleborus, as a member of the Ranunculaceae, morphological dormancy (MD) and 

morphophysiological dormancy (MPD) are apparent (Chapter 1.2). For Helleborus it has been 

observed that warm temperatures are needed during embryo growth (Nimii et al., 2006); this 

treatment is supposed to break MD. In seeds with MPD the underdeveloped embryos have 

physiological dormancy that prevents germination (Baskin & Baskin, 2004). Eight types of 

MPD exist, which are distinguished based on the level of physiological dormancy: non-deep, 

intermediate and deep (Table 1.3). These classes are divided into two categories, simple and 

complex. In seeds with simple MPD, warm temperatures are necessary for embryo growth, 

while cold temperatures are needed for seeds with complex MPD. 

Studies on seed dormancy-breaking treatments have already been carried out to identify 

suitable conditions for the germination of Helleborus seeds (Lockhart & Albrecht, 1987; 

Nimii et al., 2006; McElhannon et al., 2008). It is known that the embryo is still 

underdeveloped in a mature seed released by the plant and that the embryo needs an 

appropriate amount of time and warm temperatures to develop further (Nimii et al., 2006). 

Gibberellin treatments have not been more successful to break the dormancy of Helleborus 

seeds than warm-cold stratifications (Oenings, personal communication). Therefore, MPD is 
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supposed to be simple, and if cold stratification is needed to break the physiological 

component, it is probably deep (Table 1.3). In conclusion, for Helleborus a deep simple MPD 

can be assumed. The process of seed maturation in the plant is still totally unknown.  

In the embryo rescue experiments of this thesis, most of the embryos that were rescued from 

ovules failed to develop further in vitro. This result can be explained by the fact that the 

physiological dormancy was not broken, although the ovules received a warm-cold 

stratification treatment before embryo excision. Helleborus seed dormancy and embryo 

development depend on different temperatures. It will be interesting to know whether 

physiological dormancy is only located in the embryo or if it is also imposed by the tissues 

surrounding the embryo. A better understanding of this issue would be helpful for the 

development of dormancy breaking strategies, which is of major interest in Helleborus 

propagation and breeding.  

Observations of immature seeds from intraspecific crosses at different stages during this study 

revealed that an embryo is only visible if the endosperm was solidified, as it was also found in 

the embryo rescue experiments; but solid endosperm with embryos was not found until 

approximately the 10th week after pollination (data not shown). Therefore, it will be 

interesting to gain a deeper understanding of seed maturation in the plant; e.g., which 

embryological stages and what endosperm texture are found at what time. With this 

knowledge, it will be easier to optimise the periods of different temperature treatments during 

in vitro culture and maybe shorten the process of embryo rescue. 

5.3 The cause of hellebore leaf spot disease 

The hellebore leaf spotting pathogen C. hellebori was analysed in detail within this project for 

the first time. Isolates from different geographical origins revealed to have low variability 

with repect to morphological characteristics and genetic distances. Only asexual stages were 

observed during the morphological examinations of the C. hellebori isolates. The 25 analysed 

isolates were distinguished into two groups by RAPD analysis (Chapter 4.3.3). These two 

groups correlated with the Helleborus host species and morphological features such as 

conidial length and mycelial growth at 25 °C. Therefore, it is proposed that two species, one 

possibly cryptic, or at least subspecies are associated with hellebore leaf spot. 

Two species were identified by phylogenetic analyses to be associated with Coniotyhrium 

canker of Eucalyptus, formerly Coniothyrium zuluense. These species are Teratosphaeria 

gauchensis and T. zuluensis (Crous et al., 2009). These two species correlated geographically: 
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T. gauchensis was found to be in South America, Hawaii and two isolates were found in 

Uganda, whereas T. zuluensis was found in African countries and South-East Asia (Cortinas 

et al., 2006). Both species share similar morphological characteristics, but small differences in 

spore size and growth at different temperatures according to their geographic origin were 

found. 

Similarly, two groups were identified by RAPD analysis within isolates obtained from 

hellebore leaf spot disease. Therefore, it is assumed that two subspecies or varieties are 

associated with the disease. DNA sequence comparisons of different genes will be necessary 

for confirmation. The most common genes used for phylogenetic analyses of fungal species 

reside in the ribosomal RNA (rRNA) gene cluster including the internal transcribed spacer 

(ITS) regions ITS1 and ITS2, the inter-genic spacer IGS, 5.8S rRNA, 18S rRNA, and 26S 

rRNA genes (Xu, 2006). These multi-copy genes are supposed to be highly conserved within 

a species, though they can be quite variable between species (Xu, 2006). Other commonly 

used genes are the mitochondrial ATPase subunits, beta-tubulin (BT) and elongation factor 

(EF-1) (Cortinas et al., 2006). To determine whether cryptic species are involved in hellebore 

leaf spot disease, in which sexual reproduction is supposed to be absent, experiments to 

induce sexual stages could be carried out. Sequences of the mating type-loci (MTL) could also 

be analysed because mating type loci have already been analysed from many fungi that were 

supposed to exist predominantly in its asexual form (Kueck & Poeggeler, 2009). 

Fundamental knowledge of hellebore leaf spot disease has been obtained in this study. A 

collection of 25 isolates from different geographic origins was established and characterised 

with molecular genetics. To gain a deeper insight of this pathogen, supplementary analyses 

could be performed as mentioned above. 

5.4 Resistance of interspecific Helleborus hybrids to hellebore leaf spot 

disease 

The relationship between Helleborus hybrids and hellebore leaf spot disease will now be 

addressed. There remains a lack of knowledge of symptom development in the host and in the 

differences in susceptibility and resistance between Helleborus species. The mechanisms 

influencing hellebore susceptibility remain unknown. The general aspects of hybrid vigour, 

especially with regard to diseases and pests, are explained in the following. 

The fitness of hybrids is often compared to that of the parental plants. Hybrid genotypes are 

highly heterogeneous with regard to fitness, within as well as between generations (Rieseberg 
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& Carney, 1998). In addition, ecological factors can influence fitness making it even more 

difficult to obtain reliable data on hybrid fitness. In particular for species with strong post-

fertilisation reproductive barriers, the average viability and fertility of early hybrid 

generations is predicted to be lower than that of the parental species due to the break-up of 

adaptive gene combinations (Dobzhansky, 1937 in Rieseberg & Carney, 1998). In contrast, 

the fitness of certain hybrid genotypes appears to be equivalent to or exceed that of the 

parents for some fitness parameters due to heterosis effects. Lifetime fitness (long term 

evaluation) was not determined in most studies (Rieseberg & Carney, 1998). Enhanced hybrid 

fitness should be reasonable, if post-fertilisation barriers are weak, a fact being not conflictive 

with Dobzhansky’s (1937) model. 

The responses to diseases and pests are also expected to vary. The response of hybrids to 

herbivores and pathogens can vary considerably, depending partially on the hybrid generation 

or the hybrid genotype, as was described for fitness in general. Increased susceptibility, as 

well as enhanced resistance compared to the parent plants, was observed. Fritz et al. (1994) 

advanced different hypotheses based on the inheritance of resistance in F1 hybrids: (i) the 

additive hypothesis: hybrid resistance does not differ from the midparent value, (ii) 

dominance hypothesis: hybrid resistance is similar to that of one parent, (iii) the hybrid-

susceptibility hypothesis: hybrids are less resistant than either parent and (iv) the hybrid-

resistance hypothesis: increased resistance compared to both parents due to heterosis. 

Hybrids may have a transgressive or unique morphology and chemical traits. They may 

exhibit novel resistance traits that are not found in either parental species. Some chemical 

defences indicate heterosis in hybrids (Fritz et al., 1999). Secondary compounds are often 

inherited additively or complementarily (Rieseberg & Carney, 1998) and could be one 

possible general source of resistance in hellebores. Hellebores are famous for their secondary 

metabolites, e.g., glycosides, saponin and steroids (Colombo et al., 1990). All plant parts of 

hellebores are poisonous, and allergic reaction may be triggered in people that touch the 

plants. Some of these aspects should in future analyses be connected to the plant-pathogen 

system Helleborus–C. hellebori. 

In the raspberry, it has been demonstrated that cultivars with hairy canes are less infected by 

Coniothyrium fuckelii, which causes stem canker in Rubus spp., and other diseases affecting 

Rubus spp. (Jennings, 1982). Gene H, whose recessive alleles produce non-hairy canes, was 

identified as being responsible for cane hairiness. The gene may be closely linked with several 

gene complexes that individually confer resistance, or it may itself confer resistance through 
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pleiotropic effects (Jennings, 1982). To improve resistance characteristics, interspecific Rubus 

hybrids were obtained by crossing species of R. pileatus, R. mesogaeus, R. coreanus and 

R. lasiocarpus. These showed resistance during inoculation experiments, but the F1 hybrids 

were largely susceptible (Jennings, 1979), exemplifying the hybrid-susceptibility hypothesis. 

In Helleborus, differences between species and interspecific hybrids in symptom occurrence 

and development have been described (Peter Oenings, personal communication). Wounded 

leaves were found to be more affected than intact ones, and less susceptible genotypes were 

identified within interspecific hybrids of H. x ericsmithii (H. niger x H. sternii) (Peter 

Oenings, personal communication). The variability in H. x ericsmithii susceptibility to 

C. hellebori was also found to depend on the genotype (Peter Oenings, personal 

communication) as reviewed in general by Rieseberg & Carney (1998).  

There have not yet been any Helleborus species or genotypes identified that act either 

susceptible or resistant on C. hellebori. A substancial analysis of the Helleborus species 

would be valuable and necessary to identify sources of resistance against C. hellebori. The 

collection of 25 C. hellebori isolates and the system of in vitro mass spore production that are 

described in this thesis (Chapter 4) fulfil fundamental prerequisites for Helleborus resistance 

screenings. Further, the identification of phenotypic classes of resistant and susceptible plants, 

which could be used for controlled crossing experiments resulting in a segregating population 

for the resistance trait, could clarify the inheritance of hellebore leaf spot resistance. 
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5.5 Conformance of the three thesis objectives 

The three main objectives of this thesis and the methods that were used to achieve them were 

described in Chapter 1.6. Here, the objectives are listed again and their achievement is briefly 

explained. 

1. To obtain interspecific hybrids, fundamental knowledge of the relatedness of Helleborus 

species was acquired. 

Cytological analyses determined the same chromosome number of 2n=32 for all analysed 

Helleborus species (Chapter 2.3.1). Nuclear DNA contents were estimated for 21 

Helleborus species (Chapter 2.3.2). Species of the two sections Chenopus and Griphopus 

differed strongly in nuclear DNA content from the other species; therefore, interspecific 

hybrids with one parent belonging to one of these sections can be easily identified with 

flow cytormetry. Genetic relationships within the genus were determined for 19 

Helleborus species (Chapter 2.3.3). The genus’ division into subgenera and sections was 

reflected in the phenogram based on 1109 AFLP marker fragments. Genetic distances 

between species provide novel information to compare relationships between two species 

directly. 

2. Interspecific hybridisations often suffer from pre- or postzygotic crossing barriers. 

Therefore, crossing barriers needed to be localised and methods to overcome these 

barriers were established. 

The viability of fresh pollen and pollen stored for at least nine months was determined via 

staining. High viability was observed, sufficient for pollination of flowers, even if the 

pollen was stored for one year at -20 °C (Chapter 3.3.1). Hybridisation barriers were 

identified as mainly postzygotic; for a few crossing combinations prezygotic barriers may 

be present as well but do not prevent pollen tube growth to the ovules (Chapter 3.3.2). 

Postzygotic barriers in crosses between different Helleborus species were successfully 

overcome with in vitro culturing of isolated ovules stored at different temperatures 

(Chapter 3.3.4). Intra- and intersectional hybrids were obtained and confirmed by flow 

cytometry and RAPD analysis (Chapter 3.3.5). 
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3. Because disease tolerance against C. hellebori is a major concern, biological insights into 

this pathogen are essential and were obtained. 

A collection of 25 C. hellebori isolates from different geographical locations was 

established in vitro and morphological characteristics were compared (Chapter 4.3.1). 

Spore production could be induced by culturing the isolates on oat flake agar (Chapter 

4.3.1). Spores were used for a first pathogenicity test on H. niger (Chapter 4.3.2). 

Molecular genetic analyses of the C. hellebori isolates were performed using RAPD 

analysis (Chapter 4.3.3). This analysis revealed low genetic variability and identified two 

different groups of C. hellebori isolates. 

In conclusion, the thesis’ objectives were achieved and novel information was obtained that 

can serve as the basis for future projects. 
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