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Summary 
 

T-Box genes encode a family of evolutionary conserved transcription factors named by their key 

feature – the T-box DNA binding domain. Tbx2 and Tbx3, two closely related members of the 

Tbx2 subfamily encode for transcriptional repressors that take over key functions in the organo-

genesis of the heart and limbs. A functional relevance in the formation of endodermal organs had 

not been shown so far. Expression analyses of T-box factors and phenotypical characterization 

of loss-of-function mutants in the mouse suggested the necessity of Tbx3 in the development of 

the liver and a function of Tbx2 in the lung mesenchyme. Tbx3 mutant mice showed hepatic 

hypoplasia, Tbx2 mutant mice formed smaller lungs. Expression analyses showed a strong but 

transient expression of Tbx3 in the early liver diverticulum peaking around the 25 somite stage. 

Early changes of differentiation markers as seen by the loss of the hepatocyte marker genes alpha 

fetoprotein (Afp) and albumin (Alb) and premature expression of the cholangiocyte (biliary cell) 

marker cytokeratin 18 (Ck18)  revealed a crucial necessity of Tbx3 in hepatic lineage decision. 

Misexpression experiments in cell culture and in vivo strengthend these findings as Tbx3 overex-

pression in primary hepatoblasts elevates the expression of Hnf4a, a key transcription factor for 

heaptocyte differentiation. Mice overexpressing Tbx2 lack the formation of bile ducts. Notch 

signaling had been shown to induce biliary development recently and ectopic bile ducts form in 

N1ICD (Notch1 intracellular domain) overexpressing mutants. Intriguingly, simultanous expres-

sion of N1ICD and Tbx2 led to reduced bile duct formation. This strongly suggested that down-

regulation of Tbx3 is a prerequisite of bile duct formation and cholangiocyte differentiation. 

However, Tbx3 not only regulates hepatic differentiation but also drives proliferation of hepatob-

lasts and allows the generation of a cell emergent liver bud via maintenance of Prox1, a known 

transcription factor relevant for delamination and migration of hepatocytes. In the lung mesen-

chyme Tbx3 is expressed from E10.5 until E14.5. In contrast to the transient expression of Tbx3 

in liver and lung, Tbx2 is expressed in the mesenchyme of the lung throughout whole embryonal 

lung development. However, co-expression of Tbx3 until E14.5 and morphological changes in 

the Tbx2 mutant at E16.5 argue for an early functional redundance of Tbx3 and a late unique 

function of Tbx2. Analysis of the Tbx2 loss-of-function mutant showed a loss of proliferation 

accompanied by upregulation of the cell cycle inhibitors cyclin dependent kinase inhibitor (Cdkn) 

1a (p21) and Cdkn1b (p27). Chromatin imunnoprecipitation (ChIP) experiments confirmed a di-

rect repression by Tbx2. However, rescue experiments with p21 and p27 mutant mice could not 

restore lung growth. An additionally reduced branching morphogenesis of the bronchial tree, 

which is known to be regulated by canonical Wnt signaling rose the intruiging possibility of a 

direct interference of Tbx2 with this pathway. Indeed Axin2 was downregulated in the Tbx2 mu-
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tant lung mesenchyme and further chemical and genetical rescue experiments in an organ culture 

system approved a functional connection. Taken together, this work elucidates the functional 

requirement of T-Box factors in the formation of endodermal organs and adds new insights in 

molecular mechanisms of Tbx2 and Tbx3 to our store of knowledge. 
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Zusammenfassung 
 

T-Box Gene kodieren für eine Familie evolutionär konservierter Transkriptionsfaktoren, die be-

nannt wurden nach ihrem Schlüsselmerkmal – der T-Box DNA Bindedomäne. Tbx2 und Tbx3, 

zwei engverwandte Mitglieder der Tbx2 Unterfamilie kodieren für transkriptionelle Repressoren, 

die Schlüsselfunktionen in der Organogenese mesodermaler Organe wie des Herzens  und der 

Gliedmaßen einnehmen. Eine funktionelle Relevanz in der Bildung endodermal abgeleiteter Or-

gane wurde bisher nicht gezeigt. Expressionsanalysen von T-Box Faktoren und phänotypische 

Charakterisierung von Verlustmutanten der Maus deuten auf eine Notwendigkeit von Tbx3 in der 

Leberentwicklung und eine Funktion von Tbx2 im Lungenmesenchym hin. Tbx3 mutante Mäuse 

zeigten eine Hypoplasie der Leber, Tbx2 Mutanten wiederum bildeten kleine Lungen. Genaue 

Expressionsanalysen zeigten eine starke aber transiente Expression von Tbx3, die in der frühen 

Leberknospe um das 25 Somiten Stadium gipfelte. Frühe Veränderungen von Differenzierungs-

markern wie dem Verlust der Hepatozyten Markergene alpha Fetoprotein (Afp) und Albumin 

(Alb) sowie vorzeitige Expression des Cholangiozyten- (Gallen-) Markergens Ck18 enthüllten 

eine kritische Notwendigkeit von Tbx3 in der Festlegung hepatischer Zellschicksalsentscheidun-

gen. Missexpressionsexperimente  in Zellkultur und in vivo bestärkten diesen Befund. Überexpres-

sion von Tbx3 in primären Hepatoblasten (Lebervorläuferzellen) erhöht die Expression des he-

patischen nukleären Faktors 4 alpha (Hnf4a), einem Schlüssel-Transkriptionsfaktor für die 

Hepatozytenfdifferenzierung. Mäuse, die das mit Tbx3 verwandte und redundante Tbx2 

überexprimieren, bilden keine Gallengänge. Der Notch Signalweg wurde als Auslöser der Gallen-

entwicklung beschrieben. Zusätzliche, ektopische Gallengänge formieren sich, wenn die Notch1 

intrazelluläre Domäne (NICD), die die Ablesung von Notch-Zielgenen im Nukleus auslöst, in 

der Leber überexprimiert wird. Interessanterweise führte die zeitgleiche Überexpression von 

NICD und TBX2 zu verringerter Gallengangausbildung. Diese Ergebnisse sprechen stark dafür, 

dass die Herunterregulierung von Tbx3 während der normalen Gallengangentwicklung Voraus-

setzung ist für die Cholangiozytendifferenzierung. Allerdings reguliert Tbx3 nicht nur die Diffe-

renzierung sondern fördert auch die Vermehrung der Lebervorläuferzellen und erlaubt die Aus-

wanderung dieser aus dem Vorderdarm- Endoderm.  

Im Mesenchym der Lunge wiederum ist Tbx3 von Embryonalstadium (E) 10,5 bis E14,5 

exprimiert. Im gegensatz zu der transienten Expression von Tbx3 in der Leber ist Tbx2 in der 

Embryonalentwicklung durchgehend in der Lunge exprimiert. Koexpression von Tbx3 bis E14,5 

und das Auftreten morphologischer Veränderungen in der Tbx2 Verlustmutante erst nach die-

sem Zeitpunkt legten eine frühe funktionelle Redundanz beider Gene sowie eine alleinige späte 

Funktion von Tbx2 im Lungenmesenchym nahe. Die Analyse der Tbx2 Mutante ergab einen 
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Verlust der Zellvermehrung begleitet von einer Hochregulation zweier Zellzyklusinhibitoren, der 

zyklinabhängigen Kinasehemmer (Cdkn) 1a und Cdkn1b. Chromatin- Immunpräzipitationsexpe-

rimente (ChIP) bestätigten eine direkte Repression durch Tbx2. Rettungsexperimente mit geneti-

schen Cdkn1a und 1b verlustmutanten Mäusen konnten jedoch das Lungenwachstum nicht wie-

derherstellen. Eine zusätzlich verringerte Verzweigung des respiratorischen Baumes, die bekann-

termaßen unter anderem durch kanonische Wnt- Signale reguliert wird, eröffnete die äußerst 

interessante Möglichkeit einer direkten Interaktion von Tbx2 mit diesem Signalweg. In der Tat 

war ein Zielgen dieses Signalpfades, Axin2, im Lungenmesenchym der Tbx2 Mutante verringert 

und weitere genetische und chemische Rettungsexperimente befürworteten eine funktionelle 

Verknüpfung.  

Die vorliegende Arbeit beleuchtet die funktionelle Notwendigkeit von T-Box Transkriptionsfak-

toren in der Bildung und Entwicklung endodermal abgeleiteter Organe und leistet einen wichti-

gen Beitrag zu der Erweiterung unserer Erkenntnisse über die molekularen Wirkungsmechanis-

men von Tbx2 und Tbx3.  
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Introduction 
 

One of the most mesmerizing processes during embryonal development is organogenesis, the 

development of complex organs from a simple precursor. One of these progenitor structures is 

the endodermal gut tube - apparently primitive but provided with an immense plasticity and abili-

ty to give rise to several diverse organs. During gastrulation the gut tube is formed from the en-

doderm by morphogenic processes(1). Signaling molecules secreted by the surrounding meso-

derm further pattern the gut endoderm along the anterior-posterior (A-P) axis. High levels of 

Nodal, a member of the TGFβ superfamily, commit the formerly naïve endoderm to an anterior 

fate, whereas posterior endodermal fate requires lower nodal signaling levels(2, 3).  

Induced by several signaling cascades a couple of organs arise from the gut endoderm. The dorsal 

endoderm gives rise to the intestines, while thyroid glands, lung and liver develop from the ven-

tral endoderm(4) (5). The pancreas initially forms at two different positions that later fuse, one in 

the ventral foregut and the other in the dorsal endoderm(6). Furthermore the endoderm is a mul-

tipotent source of not only the gastrointestinal and respiratory epithelium but also glandular and 

ductal cells of the pancreas and the hepatoblasts, precursor cells for hepatocytes and intrahepatic 

bile duct cells (cholangiocytes) in the liver(5)(7, 8). 

To constrict regional identity of the endoderm and to ensure the local initiation or repression of 

the different endoderm derived organs, gradients of Fgfs, Wnts, Bmps and retinoic acid are se-

creted from the adjacent cardiac mesoderm, septum transversum mesenchyme and the mesoderm 

surrounding the gut tube(5, 9, 10). Overlapping signals define the evolving foregut, midgut and 

hindgut domains which are characterized by the expression of the transcription factors Hhex in 

the foregut, Pdx1 in the midgut and Cdx in the posterior endoderm, respectively in a dose de-

pendent manner(9, 11). This model is supported by tissue recombination experiments that 

showed that the foregut endoderm still can give rise to the intestines when recombined with 

posterior mesoderm(12-16). 

Recent studies in chick and Xenopus support the assumption that foregut fate is actively re-

pressed by Fgf4 and Wnts secreted from the posterior mesoderm, while Wnt signaling must be 

inhibited in the anterior endoderm to establish foregut identity, most likely by the expression of 

small soluble Wnt inhibitors(16-18) . Consistently, experiments in Xenopus showed activated 

Hhex expression and ectopic liver primordia when β-catenin mediated transcription of the acti-

vated canonical Wnt signaling pathway was blocked in the posterior endoderm(18).  

In contrast, mouse explant studies suggest that a concentration gradient of FGF is crucial for the 

establishment of the distinct ventral foregut derived organs. Without addition of FGF to the 

cultures pancreatic development was observed, the default fate of the ventral foregut endoderm. 
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High levels of Fgf signaling promoted lung growth and medium levels initiated hepatic develop-

ment(12, 19-23). Regional restriction of organ emergence requires mediators that assure the acti-

vation or repression of gene expression programs to allow the local initiation and specification of 

the diverse organs. Intriguingly, expression of T-box transcription factors has been reported in 

the context of endodermal organ development but their functional relevance in endodermal or-

ganogenesis has not yet been analyzed.  

T-box (Tbx) genes encode a family of transcription factors that share a highly conserved epo-

nymous DNA binding motif, the T-box. The T-box is a region of 180 amino acid residues that 

specifically binds to the T-box binding element (TBE), a conserved DNA-motif with the consen-

sus sequence 5’-AGGTGTGA-3’. This motif was originally identified for Brachyury (T), the 

founding member of this gene family(24). To date 17 family members divided in five major sub-

families based on sequence conservation of the T-box were described in mammals.  

T-box genes hold key functions in multiple developmental processes for example in patterning 

the mesoderm and in organogenesis. Remarkably, mutations in a number of T-box factors could 

be allocated to human congenital disorders demonstrating their impact in development and dis-

ease. 

This study focused on the functional analysis of Tbx2 and Tbx3, members of the Tbx2 subfamily 

in vertebrates during endodermal organ development. While Tbx2 and Tbx3 were described as 

transcriptional repressors(25-27), the two other family members Tbx4 and Tbx5 are known acti-

vators(28). Interestingly Tbx2 and Tbx3 are closely related showing ~90% identity of the amino 

acid sequence in the T-box. Additionally Tbx2 and Tbx3 are often co-expressed and functional 

redundant(29-32).  However, while Tbx4 is likewise related to Tbx5, Tbx2 is linked to Tbx4 on 

the chromosome as well as Tbx3 is linked to Tbx5(29, 33). Apparently the Tbx2 subfamily 

emerged by an initial tandem duplication of a predecessor. Subsequently the duplications of the 

evolved gene pairs dispersed onto two different chromosomes(29, 34, 35). While function of 

Tbx2 and Tbx3 in the development of organs of mesodermal origin as the appendages, eyes, and 

the heart have been extensively analyzed in the last decade, functional relevance of T-box tran-

scription factors in the development of endodermal derived organs is only insufficiently unders-

tood.  

A prominent organ of endodermal origin is the liver(36). Being the largest endodermal organ it 

exhibits central metabolic functions for the body. The liver provides essential exocrine functions 

including production of bile, which is secreted via intrahepatic bile ductules. Important endocrine 

functions include the release of albumin, clotting factors and glycogen into the blood. The liver is 

the main storage organ for glycogen and performs the metabolism of nutrients and not least ac-
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complishes detoxification. Its ability to regenerate from loss of two thirds of its cell mass fasci-

nated physicians and scientists for many years and still captivates laboratories all over the world. 

The principal and metabolic cell type accounting for ~70-80% of the mass of the adult organ and 

responsible for the functional diversity of the liver are the hepatocytes(37, 38). Hepatocytes, 

along with biliary epithelial cells (BECs; also known as cholangiocytes) that form the bile ducts 

originate from a bipotential endodermal derived precursor cell population, the hepatoblasts(39). 

Additionally, stromal cells, stellate cells, kuppfer cells and blood vessels all of mesodermal origin 

contribute to the complex composition of the liver(40). 

Detailed studies using mouse embryo foregut explants attended to liver initiation. While unspeci-

fied cultured foregut explants express Alb in the presence of cardiac mesoderm, in the absence of 

cardiac mesoderm or after blocking of FGF or BMP, induction of the liver does not take 

place(12, 23, 41). Moreover, addition of exogenous FGF1 or FGF2 restore Alb expression in 

foregut endoderm explants(22)  thus showing that hepatic initiation is indeed dependent on Fgf-

signaling.  

After hepatic specification the forming mammamlian liver undergoes a series of morphological 

processes from the appearance of an epithelial protuberance to a cell-emergent liver bud(42-44). 

In the mouse, cellular differentiation of hepatoblasts into hepatocytes or BECs starts approx-

imately at E13.5. Key transcription factors for the differentiation of hepatocytes are Hnf4α, 

Hnf1a, while differentiation into BECs is regulated by Onecut1 and Hnf1b(45-47). Hepatoblasts in 

contact with the portal vein form layer of cuboidal biliary precursors (the ductal plate) that in-

creases expression of Onecut1 and the biliary differentiation marker cytokeratin-19 (CK-19) but 

down-regulate hepatic genes suggesting an endothelial signaling source inducing biliary differen-

tiation(48, 49). 

In the ectoderm and mesoderm derived mammary glands, Tbx3 owns an FGF dependent central 

function in the initiation of the organ(50, 51). However, although the transcriptional repressor 

Tbx3 had been reported to facilitate growth of the liver by repression of the cell cycle inhibitor 

p19arf in a late stage of liver expansion(52), relevance for Tbx3 in early hepatic initiation, specifi-

cation or differentiation of the respective cell types of the liver is yet unclear.  

 

Expression of T-box transcription factors Tbx1-5 had been reported in another endodermal or-

gan namely the lung previously(30). 

Lung development was a necessary consequence of oxygen penury for fish in continental waters. 

Unlike the oceans, where variations in temperature are only modest, high temperatures in small 

lakes caused a lower solubility and availability of oxygen so that oxygen intake by the gills was at 
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least occasionally insufficient. Since the skin of fresh water fish had to be an efficient barrier for 

the osmotic pressure arising in these habitats, only the mucous membrane of the mouth and the 

gut could alternatively serve for the uptake of oxygen. While the first inland water fish swallowed 

air to satisfy their need for oxygen, land-living vertebrates developed lungs as inversions from the 

gut tube(53, 54). By establishment of a fine branched epithelial respiratory tree together with 

formation of highly specialized cell types lining small epithelial cavities called alveoli the respira-

tory surface area exceeds the body surface by a multiple. In mice the average alveolar surface area 

(ASA) is 0,068m2 with a lung volume of 0,7ml (man: ASA 82m2 with 7000ml lung volume)(55). 

Exhaustive capillarization of the lung provides the base for efficient gas exchange which makes it 

the key respiratory organ in mammals. 

The lung emerges as a diverticulum of the ventral foregut endoderm. Like in the liver the lung is 

specified by dose dependent Fgf-signaling and other signaling cascades(56). Once specified, a 

localized expression domain of the homeobox transcription factor Nkx2-1(33), which activates 

expression of lung-specific surfactant protein genes, is established in the ventral wall of the ante-

rior foregut. The two primary lung buds appear within this domain at E9.5 in the mouse(33). 

Induced by epithelial-mesenchymal interactions the lung bud undergoes a process of stereotyped 

branching morphogenesis(57, 58).  

Once the primary lung buds have formed, they extend into the surrounding mesenchyme and 

begin the process of branching morphogenesis. Expression of Fgf10 in the mesoderm and Fgfr2 

in the endoderm guides the strictly regulated branching morphogenesis of the respiratory 

tree(59). Tbx4 and Tbx5 had recently been shown to locally induce Fgf10 expression(60). No bud 

extension occurs in mutants lacking Fgf10 and branching of the epithelium is reduced in Tbx4/5 

antisense oligonucleotide treated cultures which is accompanied by a reduction of mesenchymal 

Fgf10(60-62). Since Tbx2 and Tbx3 are repressors, these transcription factors might antagonize 

Tbx4 and Tbx5 function, thereby fine tuning the Fgf-signal intensity or regionally restrict the Fgf 

source to allow dichotomous branching events. Moreover, mesenchymal Wnt/Ctnnb1 signaling 

in embryonic lung development controls mesenchymal cell proliferation(63). Furthermore, when 

Ctnnb1 is conditionally depleted from the lung mesenchyme, branching morphogenesis is severely 

impeded(63). 

While branching morphogenesis does not continue postnatal, the lungs increase in size for a sig-

nificant time after birth(64). Intriguingly, Tbx2/3 are known to positively regulate proliferation 

by repression of cell cycle inhibitors in different cancers, facilitating a presumptive function in 

organ growth(65-67). 
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Aim of this thesis 

 

Loss-of-function analyses of Tbx2 and Tbx3 in mice has revealed the importance of this closely 

related pair of transcriptional repressors in a number of organs that originated from the meso-

derm like the heart, limbs and mammary glands(68-70)). In contrast, our knowledge of functional 

relevance of T-box transcription factors in the development of the endoderm and its derivates is 

insufficient. However, loss-of-function analyses for Tbx3 and Tbx2 in mice revealed hypoplastic 

livers and dramatically reduced lungs, respectively, suggesting a primary function of these T-box 

factors in the development of the corresponding organ.  

It was unclear at what stage and in which compartment Tbx3 might regulate liver organogenesis. 

For that reason in a first subproject, I performed a detailed temporal and spatial expression anal-

ysis of Tbx3 in wildtype mice during all phases of hepatic development. The aim was to find out 

in combination with morphological and histological examination of the Tbx3 loss-of-function 

mutant whether Tbx3 might have  a primary function in hepatogenesis. Early markers for hepatic 

initiation, specification and differentiation were analyzed to answer the question, which molecular 

processes were regulated by Tbx3 during liver formation. Furthermore, ectopic misexpression 

experiments in vitro and in vivo complemented the results in order to clarify interactions of Tbx3 

with essential signaling pathways for hepatic development. For that purpose, bipotential mouse 

embryonic liver cell lines reflecting hepatoblasts and murine hepatoma cells which are similar to 

differentiated hepatocytes were used. Transfection of biliary epithelial cell (BEC) specific tran-

scription factors in these cells as well as overexpression plasmids of Tbx3 and a dominant nega-

tive form of Tbx3 or combinations of each, together with RT-PCR analysis were performed to 

get insight in Tbx3 function in the cellular differentiation and identity. Additionally, to elucidate 

how Tbx3 itself is regulated during liver formation, conditional deactivation and ectopic or pro-

longed activation of signaling pathways particularly the Notch- and Wnt/Ctnnb1 pathway were 

performed. 

In a second independent project I analyzed a possible function of Tbx2 in the mesenchyme of 

the lung. To determine possible redundancies or antagonistic functions to other T-box factors, 

again a temporal and spatial expression analysis was performed in addition with extensive mor-

phological and histological examinations of the Tbx2 loss-of-function mutant. In cell culture 

experiments, TBX2 binds to the human promoter of Cyclin dependent kinase 1 A (CDKN1A), a 

negative cell cycle regulator. One aim of this thesis was to verify an akin function of Tbx2 in cell 

cycle regulation in vivo in the mouse. Therefore with an in silico analysis I scanned the genomic 

sequences of Cdkn1a and Cdkn1b for possible transcription factor binding elements (TBE, also  
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T-site). To ratify candidate sequences, ChIP experiments were used to display binding of Tbx2. 

Analyses of the different signaling pathways orchestrating the strict morphogenic processes that 

govern the formation of the bronchial tree furthermore provide important insights on functional 

significance of Tbx2. Hence the examination of regulation of the responsible pathways was com-

pleted by additional gain-of-function experiments.  

This study was aimed to get insights into the genetic control of early and late organogenic 

processes of the endoderm, the interaction of Tbx2 and Tbx3 with signaling pathways and to add 

further information to the function of the T-box factors. 
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Abstract 

Bile duct formation in the mouse starts around embryonic day 13.5 with the formation of the 

ductal plate, a single layer of epithelial cells around the hepatic portal veins. Induced by Jag1 ex-

pression in the endothelium of the veins, the surrounding hepatoblasts activate Notch-signaling 

and start to differentiate into cholangiocytes (biliary epithelial cells). Tbx3 at this time point is 

already downregulated. Recently we have shown that Tbx3 favors hepatocyte fate in the early 

liver bud. However, whether downregulation of Tbx3 is a prerequisite to bile duct formation and 

how expression of Tbx3 is regulated, in particular if it is repressed by Notch signals in this con-

text, was unclear.  

Here we show by loss- and gain-of-function experiments that ectopic expression of the with 

Tbx3 biochemically identical and functional redundant TBX2 potently inhibits cholangiocyte 

differentiation in the late phase of liver development and that Notch signaling from the portal 

veins does not repress Tbx3 expression. Rather we identified canonical Wnt signaling as the in-

itiator of Tbx3. 

Conclusion: Canonical Wnt signaling via the expression of Tbx3, and Notch signaling opposingly 

regulate cholangiocyte differentiation and bile duct development in parallel pathways.        
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Introduction 

Bile or gall produced in hepatocytes is necessary to emulsify fats and thereby is an essential adju-

vant in the process of digestion of lipids in the small intestine. Liquid gall is carried from the liver 

to the intestine by the intrahepatic bile ducts (IHBD) and congenital malformations of the biliary 

system is a major cause of morbidity and mortality. In humans, mutations in the Notch ligand 

JAG1 or in the NOTCH2 receptor cause an autosomal-dominant disorder, the Alagille syndrome 

(AGS) that manifests in IHBD paucity and is associated with craniofacial defects and hypoplasia 

of the pulmonary artery (1-3). 

Bile duct development in the mouse starts around E13.5 by the formation of a single biliary epi-

thelial cell layer called the portal plate. Its formation is induced by Notch signaling activated by 

the ligand Jag1 in the endothelium of the portal veins, that commits adjacent hepatoblasts ex-

pressing several Notch receptors to  the biliary fate(2, 7-9). Several studies have implicated Notch 

in the regulation of hepatoblast differentiation(4-6), indicating that Notch signaling might have an 

opposing function during liver development by favoring a biliary epithelial cell (BEC) fate deci-

sion. Intriguingly, timed differentiation of cholangiocytes around embryonic day (E) 13.5 and 

formation of the IHBD is attended by downregulation of Tbx3 in the mouse(9). 

Interestingly, after hepatic specification, Tbx3 controls migration of hepatoblasts from the fore-

gut endoderm into the underlying mesenchyme and extensive growth by suppressing cholangi-

ocyte fate(9). Canonical Wnt/Ctnnb1 signaling is an important regulator of hepatic specification 

of the foregut, and hepatic morphogenesis(11) and has been described to be sufficient to induce 

Tbx3 in liver cancer(12). Nevertheless, if Ctnnb1 dependent downregulation of Tbx3 is prerequi-

site for IHBD development and how Tbx3 is interconnected with the Notch pathway has not 

been addressed yet.  

Here, we expand the analysis of IHBD development by a temporal and spatial requirement of 

Tbx3 and demonstrate a requirement of hepatic downregulation of Tbx3 for the onset of Notch 

induced cholangiocyte differentiation. We suggest functions of Ctnnb1 dependent expression of 

Tbx3 inhibiting IHBD development and Notch induced initiation of BEC differentiation in two 

parallel pathways. 
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Materials and Methods 

Mice and Genotyping 

Mice carrying a null allele of Tbx3 (Tbx3tm1.1(cre)Vmc, synonym: Tbx3cre), mice with two loxP sites lo-

cated in introns 1 and 6 of Ctnnb1 (Ctnnb1tm2Kem/J, synonym: Ctnnbfl)(13), mice carrying a loxP-

flanked DNA segment that prevents expression of a lacZ gene (Gt(ROSA)26Sortm1Sor)(14), mice 

containing a sequence encoding an intracellular portion of the mouse Notch1 gene blocked by a 

loxP-flanked STOP fragment Gt(ROSA)26Sortm1(Notch1)Dam(15), conditional TBX2 overexpressing 

mice (HprtTBX2) and mice carrying a null allele of Foxg1 (Foxg1tm1(cre)Skm )(16) were maintained on an 

outbred NMRI (National Marine Research Institute) background. For timed pregnancies, vaginal 

plugs were checked in the morning after mating; noon was taken as embryonic day (E) 0.5. Em-

bryos were harvested in phosphate-buffered saline, fixed in 4% paraformaldehyde overnight, and 

stored in 100% methanol at −20°C before further use. Genomic DNA prepared from yolk sacs 

or tail biopsy specimens was used for genotyping by polymerase chain reaction (PCR). All mice 

received humane care, and their use was approved by the Institutional Animal Care Committee of 

Hannover Medical School. 

 

Histological Analysis and Immunofluorescence 

Embryos were embedded in paraffin wax and sectioned to 5 µm. For histological analyses, sec-

tions were stained with hematoxylin-eosin. For the detection of antigens, the following primary 

antibodies were used: mouse monoclonal antibody against GFP (1:200, Roche), Onecut1 (1:200, 

Abcam) and Cytokeratin18 (1:200, Acris Antibodies). 

 

In Situ Hybridization Analysis 

In situ hybridization analysis on 10 µm transverse sections of embryos was performed following a 

standard procedure with digoxigenin-labeled antisense riboprobes. 

 

Semiquantitative Reverse Transcription PCR 

Total RNA was extracted from dissected livers of given stages with RNAPure reagent (Peqlab). 

RNA (500 ng) was reverse transcribed with RevertAid M-MuLV Reverse Transcriptase (Fermen-

tas). For semiquantitative PCR, the number of cycles was adjusted to the mid-logarithmic phase. 

Quantification was performed with Quantity One software (Bio-Rad). Assays were performed at 

least twice in duplicate, and statistical analysis was done as described previously. Primers and 

PCR conditions are available on request. 
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Documentation 

Sections were photographed using a Leica DM5000 microscope with a Leica DFC300FX digital 

camera. Whole mount specimens were photographed on a Leica M420 microscope with a Fujix 

digital camera HC-300Z. Images were processed in Adobe Photoshop CS3.  
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Results 

Ctnnb1 activates Tbx3 in vivo 

Analyses from cancer cells suggested canonical Wnt signaling to induce Tbx3 via Ctnnb1(12). A 

possible similar developmental function in vivo however, had not been shown so far. Here, by a 

conditional Ctnnb1 loss-of-function experiment, we investigated a potential dependence of Tbx3 

on canonical Wnt-signaling during liver development. Therefore we used a floxed Ctnnb1 knock-

out allele recombined by Foxg1cre that was reported to drive recombination in the foregut endo-

derm(17). To confirm efficient recombination by Foxg1cre also in the liver bud expression of LacZ 

in a R26RLacZ reporter mouse was analyzed in sections of 23s and 26s liver buds (Fig. 1). Expres-

sion of LacZ in the liver bud (23s) and emigrating hepatoblasts (26s) approved the suitability of 

this allele for further experiments (Fig. 1). 

Expression of Tbx3 in E10.5 wildtype and Foxg1cre/+; Ctnnb1fl/fl mice was tested by in situ hybridi-

zation. Indeed, Tbx3 epression is severly downregulated in the liver bud and the forming liver 

lobe. Surprisingly Tbx3 expression is also lost in the mesenchyme surrounding the foregut epithe-

lium (Fig. 1) arguing for an inductive Ctnnb1 dependent signal for this expression domain of Tbx3 

coming from the foregut endoderm. However, Onecut1 expression stays off, suggesting that some 

Tbx3 protein is still remanent (Fig. 1). Accordingly the hepatoblast marker alpha fetoprotein (Afp) is 

only slightly reduced (Fig. 1) indicating a normal hepatic specification prior to this time point. 

The Notch target genes Hairy and enhancer of split 1 (Hes1) and Hes5 are not ectopically activated in 

Ctnnb1 depleted liver buds (Fig. 1), arguing against a repression of Notch signaling by canonical 

Wnt signaling. 

Fig. 1. Ctnnb1 activates Tbx3 in vivo. In situ hybridization analysis of E10.5 liver sections in Ctnnb1 

depleted E10.5 mice. Tested genes and genotypes as indicated in the figure. Expression of Tbx3 is lost 

in Foxg1
cre/+

; Ctnnb1
fl/fl

 mice, nevertheless Onecut1 is not activated in the conditional Ctnnb1 mutant. 

Afp expression is slightly reduced. Notch target genes Hes1 and Hes5 are not ectopically activated. 
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Notch signaling is not active in the early liver bud stage. 

Other groups recently reported Notch signaling to be essential for the differentiation of cholan-

giocytes (bile duct cells)(2, 18), but they had neglected a possible function of Tbx3 in regulating 

timed differentiation of biliary cells. Intriguingly, downregulation of Tbx3 at E13.5 prior to bile 

duct formation is consistent with a direct repressive function of Tbx3 for the Notch pathway. To 

test the assumption that Tbx3 represses Notch signaling in the early liver bud to allow efficient 

propagation of hepatoblasts we analyzed Notch signaling in the Tbx3 mutant case. Therefore we 

performed in situ hybridization experiments on E9.5 liver buds. We found neither an ectopic 

activation in Notch ligands and receptors nor in Notch target gene expression (Hes1 and 

Hes5)(19) (Fig. 2). These findings do not exclude a repressive function of Tbx3 on Notch signal-

ing but show that Notch signaling is not activated in the early liver bud stage. 

Fig. 2 Notch signaling is not active in the early liver bud stage. In situ hybridizations for Notch signal-

ing components in E9.5 wildtype and Tbx3 deficient mice. Tested genes are as indicated in the figure. 

Neither Notch ligands, receptors or target genes are ectopically activated in the loss-of-function mu-

tant. 

 

Ectopic activation of Notch signaling initiates biliary programs 

To further investigate if activation of Notch signaling at E13.5 of development is the key regula-

tory event for deactivation of Tbx3 instead, we prematurely activated Notch signaling in the early 

liver bud by Foxg1cre in combination with a RosaNICD allele that allows the overexpression of the 

Notch1 intracellular domain. Activation of Notch signaling was evaluated by the expression of 

Notch target genes Hes1 and Hes5 in E9.5 Foxg1cre/+; RosaNICD/+ mice (Fig. 3A). Expression analy-

sis by in situ hybridization experiments at E10.5 showed unchanged expression of Tbx3 (Fig. 3B). 

Presence of the fetal hepatoblast marker Afp demonstrates that the hepatic program is started, 
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suggesting that Notch signaling is not impedimental for hepatic initiation (Fig. 3B). Ongoing 

expression of Hes1 in the foregut endoderm, the remaining liver bud and the liver lobes shows 

that Notch signaling remains activated at E10.5 in the misexpression mutant (Fig. 3B). Lineage 

specific transcription factor expression shows a change of cellular fate decision (Fig. 3C). Hepa-

tocyte specific transcription factors are lost (Cebpa) or downregulated (Hnf1a), while the biliary 

associated transcription factor Onecut1 is ectopically activated in conditionally Notch activated 

mice (Fig. 3C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Ectopic activation of Notch signaling in-

itiates biliary programs. In situ hybridization expe-

riments in E9.5 (A) and E10.5 mice (B, C). Genes and 

genomes are as indicated in the figure.   Activation 

of the Notch target genes Hes1 and Hes5 displays 

the activation of Notch signaling in E9.5 Foxg1
cre/+

; 

Rosa
NICD /+

 mice (A). Expression of Tbx3 and the fetal 

hepatoblast marker Afp demonstrates the initiation 

of the hepatic program in conditionally Notch acti-

vated mice (B). Expression of Hes1 in the foregut 

endoderm, the remaining liver bud and the liver 

lobes can be detected in the misexpression mutant 

(B). Hepatocyte specific transcription factors are 

lost (Cebpa) or downregulated (Hnf1a), while One-

cut1 is ectopically activated in conditionally Notch 

activated mice (C). 
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Moderate liver and gall bladder paucity in Albcre/+;HprtTBX2/+ mice. 

Our former studies showed that Tbx3 is downregulated in the liver at E12.5. To address the 

question, if Tbx3 function after that stage impedes normal hepatobiliary development or if it is 

just dispensible in late liver organogenesis, we set up a gain-of-function approach. Unfortunately 

we were missing the tools to overexpress Tbx3. However, since Tbx2 is a closely related tran-

scriptional repressor that was described to be functional redundant(20-22), we decided to use an 

overexpression construct for TBX2 in the developing liver. For this gain-of-function experiment, 

we used a conditional Albcre/loxP-based HprtTbx2 misexpression that allaws recombination around 

E13.5(23). Integration of a bicistronic transgene-cassette containing the TBX2 ORF followed by 

IRES-GFP in the ubiquitously expressed X-chromosomal Hypoxanthine guanine phosphoribosyl trans-

ferase (Hprt) locus allows to trace transgene-expressing cells in vivo by GFP-fluorescence. This 

system represents a useful tool to study cellular phenotypes both under mosaic conditions in 

mosaic females (due to random X-chromosome inactivation) but also under uniform expression 

in hemizygous males. Prolonged expression of TBX2 manifested in a slight size reduction of post 

natal day (P) 28 Albcre/+;HprtTBX2/+ mice (Fig. 4A). Morphological analysis of the inner organs 

showed  a modest size reduction of the liver and gall bladder. Albumin is not expressed in spleen 

and kidneys, coherently, these control organs are of normal size (Fig. 4B). Consistent with our 

previous finding that Tbx3 favors hepatocyte fate at the expense of cholangiocyte differentia-

tion(10), antibody staining for the bile duct marker Ck18 shows the loss of cholangiocytes around 

the hepatic veins (Fig. 4C). Presence of GFP around the endothelium is compatible with a direct 

repression of differentiation by TBX2 (Fig. 4C). Intriguingly, most of the adult liver tissue does 

not express GFP, arguing for a replacement of mutant cells by their wildtype counterparts in the 

heterozygous case. Male adult littermates could not be obtained. Seemingly constant overexpres-

sion of TBX2 also in other expression domains of Foxg1 is not compatible with liver after birth.  
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Fig. 3 Moderate liver and gall bladder paucity in Alb
cre/+

;Hprt
TBX2/+

 mice.  Morphology of 4 weeks old 

mice (A) and of inner organs (B). Liver specific conditional overexpression of TBX2 results in reduced 

adult body size (A). Liver and gall bladder show modest size reduction, while spleen and kidneys are 

comparable with wildtype organs. Ck18 specific immunostainings reveal a loss of the bile duct cell 

marker in the overexpression mutant (C). Antibody staining for GFP marks expression of TBX2 around 

the hepatic veins (C). 

Loss of bile duct formation and cholangiocyte differentiation but unchanged Notch 

component expression in the TBX2 overexpressing liver. 

To determine if downregulation of Tbx3 after E12.5 in the developing liver is a prerequisite to 

bile duct formation the previous analysis was supplemented with temporal misexpression expe-

riments in vivo.  Indeed immunostainings for the biliary differentiation marker Ck18(24) and the 

key regulatory transcription factor Onecut1(25) were lost from the intrahepatic veins at E16.5 in 

Albcre/+; HprtTBX2/y mice (Fig. 5A), thus showing disturbed formation of the ductal plate, a layer of 

cuboidal biliary precursors(26). To further check if cellular differentiation is altered in the whole 

liver, qRT-PCR experiments of E16.5 livers were performed. Not surprisingly Ck7, another cho-

langiocyte differentiation marker (24), is downregulated in heterozygous TBX2 misexpressing 
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mice and even stronger decreased in the homozygous male case (Fig. 5B). Unexpectedly, the 

hepatocyte marker Alb is increased in a similar dose dependent manner suggesting a stimulating 

effect on hepatocyte differentiation for TBX2 (Fig. 5B). To check for the presence of Notch 

signaling around the vascular endothelium in situ hybridization experiments were performed. As 

expected the Notch ligand in the endothelium Jag1 and the receptor Notch1 in the surrounding 

tissue were expressed in the wildtype (Fig. 5C). However, expression of both genes was un-

changed in the misexpression mutant (Fig. 5C). 

 

 

 

 

 

 

 

 

 

Fig 5. Loss of bile duct formation and cho-

langiocyte differentiation but unchanged 

Notch component expression in the TBX2 

overexpressing liver. Antibody stainings for 

biliary differentiation (A), qRT-PCR for hepa-

tocyte (Alb) and cholangiocyte (Ck7) diffe-

rentiation markers (B) and in situ hybridiza-

tions for Notch components (C) in E16.5 

Albcre/+; Hprt
TBX2/y

 mice. Immuno-stainings 

for the cholangiocytes marker Ck18 and the 

biliary transcription factor Onecut1 show 

complete loss of ductal plate formation in 

male TBX2 misexpression mutants (A). RT-

PCR analysis revealed reduced expression of 

the cholangiocyte differentiation marker 

Ck7 and an increase of the hepatocyte 

marker Alb dependent on the number of 

mutant alleles (B). Endothelial expression of 

Jag1 in the portal veins and expression of 

Notch1 in the surrounding cell layer is not 

disturbed (C). 
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TBX2 rescues bile duct hypertrophy in NICD misexpressing mice 

The onset of bile duct formation and cholangiocyte differentiation is temporally strict regu-

lated(26, 27). Yet the hierarchy of Tbx3 and Notch signaling remains unclear. In order to address 

this question a combined overexpression experiment with simultaneous expression of Tbx3 and 

NICD was set up. For that purpose we analyzed organ morphology of E18.5 

Albcre/+; RosaNICD/+; HprtTBX2/+ mice and compared them with wildtype and NICD overxpressing 

littermates (Fig. 6). As was reported before the NICD overexpression mutant exhibits ectopic bile 

ducts that manifest in visible cavities distributed all over the liver parenchyma(18, 28) (Fig. 6). 

However, temporal and spatial over activation of Notch signaling together with concurrent ex-

pression of TBX2 leads to a minor size reduction compared with the wildtype without other visi-

ble morphological changes. The albumin negative spleen as an internal negative control organ is 

unchanged in all three genotypes. 

 

 

 

Fig. 6 TBX2 rescues bile duct 

hypertrophy in NICD misex-

pressing mice. Morphology of 

liver and spleen of E18.5 wild-

type and mutant mice. Geno-

types are as indicated in the 

figure. Mice with conditional 

Notch over activity in the liver 

exhibit hypertrophic bile ducts 

that manifest in a multitude of 

small cavities in the liver paren-

chyma. Combined NICD and 

TBX2 expression results in an 

externally normal phenotype 

with a minor size reduction. The 

morphology of the negative 

control organ spleen is un-

changed in all three genotypes. 
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Discussion 

 

Recently a number of works has been published that extensively analyzed the development of 

bile ducts(2, 9, 29). Their unanimous finding was that cholangiocyte differentiation is dependent 

on Notch signaling that emanates from the portal veins in the liver. The portal endothelium ex-

presses the Notch ligand Jag1 which signals to the surrounding Notch receptor expressing hepa-

toblasts. In a very elegant work Antoniou et al.(29) found that Notch activates the expression of 

the transcription factor Onecut1. Onecut1 in turn activates Sox9 expression which furthermore 

represses the hepatocyte transcription factor Cebpa. However, none of these works concentrated 

on the regulatory function or regulation of Tbx3 in this context.  

 

Tbx3 and Notch signaling regulate biliary development in two independent pathways. 

An important question was, how temporal development of bile ducts was achieved. Intriguingly 

Tbx3 is downregulated just at the onset of cholangiocyte differentiation(10). Here we wanted to 

find out if activation of biliary differentiation and downregulation of Tbx3 is mere coincidence or 

functionally linked. Our results indicate that downregulation of Tbx3 is indeed necessary as Tbx3 

efficiently blocks cholangiocyte fate. However, although in NICD misexpressing mice Hes1, a 

target gene of Notch is ectopically activated, Tbx3 expression is present. Thus activated Notch 

signaling neither downregulates expression of Tbx3 nor can Tbx3 inhibit signaling by NICD 

(Fig. 3B). Still it cannot be ruled out that Tbx3 shares at least some target genes with Notch sig-

naling that may then be directly repressed. Nevertheless activated Notch signaling is sufficient to 

induce Onecut1 expression (Fig. 3C). NICD misexpression at E10.5 also results in the downregula-

tion of Cebpa and Hnf1a (Fig. 3C). Seemingly the reported cascade from activation of the Onecut1 

transcription factor to the point of downregulation of Cebpa(29) is established. That Onecut1 target 

genes are likewise targeted by Tbx3 appears therefore unlikely. 

 

Tbx3 is a downstream target of Wnt/Ctnnb1 during embryonic development. 

In liver cancer Tbx3 was described as a target of canonical Wnt signaling some time ago(12). Al-

though misexpression of Ctnnb1 was sufficient to induce expression of Tbx3 in vitro and in vivo 

and ChIP experiments demonstrated direct binding of Ctnnb1 to the Tbx3 promoter, a function-

al relevance for developmental processes in the embryo had not been shown so far. However, 

our results clearly show that Tbx3 expression in the early developing liver is lost after depletion of 

Ctnnb1 (Fig. 1). Interestingly Tbx3 expression is not only lost in the Foxg1 domain but also in the 

mesenchyme surrounding the foregut endoderm. Possibly there is an additional inductive signal-
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for Tbx3 coming from the foregut endoderm. However, despite the finding that the fetal hepa-

toblast marker Afp is slightly reduced, loss of Tbx3 expression does not result in upregulation of 

cholangiocyte specific markers as one could suggest from the analysis of the Tbx3 loss-of-

function mutant(10). Most likely Tbx3 protein is stable for some time and remains present even 

though gene expression is not detectable anymore. 

Taken from the results above a necessity of both Tbx3 and Notch signaling for the regulation of 

timed bile duct formation is without doubt. However whether repression of cholangiocyte diffe-

rentiation by Tbx3 or activation of the biliary program by Notch signaling is more important 

remains unclear. Since Hes1 is activated in E10.5 NICD overexpressing mice although Tbx3 still 

is expressed (Fig. 3B), both an inhibition of Notch signaling in general by Tbx3 and repression of 

Tbx3 by activated Notch signaling are unlikely. However, Notch induced bile duct hypertrophy 

can be at least partially rescued by concurrent TBX2 expression (Fig.6). If this rescue is only par-

tial or reflects maybe even the TBX2 overexpression phenotype, needs to be elucidated in further 

experiments. Analyses on the histological and molecular level will reveal additional information 

of possible interactions between Notch signaling and Tbx3.  

So far our results all argue for independent parallel modes of action on the regulation of cholan-

giocyte differentiation and bile duct formation for Tbx3 and Notch signaling. We therefore pro-

pose a model where Tbx3 is clearly downstream of canonical Wnt signaling and is induced by 

Ctnnb1 (Fig.7). Tbx3 then subsequently prohibits cholangiocyte differentiation directly or even if 

it is unlikely by inhibition of Onecut1 activity. In a parallel path Notch signaling activates Onecut1 

which in turn induces biliary differentiation. Reciprocal inhibition of Notch signaling and Tbx3 is 

unlikely while it is still in question for Tbx3 and Onecut1.  

In summary canonical Wnt/Ctnnb1 signaling via the expression of Tbx3 and Notch signaling by 

activation of Onecut1 expression jointly regulate cholangiocyte differentiation and bile duct devel-

opment in parallel pathways.        

 

Fig. 7. A network of signaling pathways regu-

lates differentiation of bile duct cells. Scheme 

for hepatocellular differentiation. Ctnnb1 acti-

vates Tbx3 which subsequently represses bi-

liary differentiation. In parallel Notch signaling 

activates the transcription factor Onecut1 

promoting cholangiocyte differentiation. While 

reciprocal repression of Onecut1 and Tbx3 

remains unclear, this mode of interaction can 

be excluded for Tbx3 and Notch signaling. 
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This function may even be important in liver regeneration. Köhler et al.(30) found strong upregu-

lation of Notch ligands and receptors in rat livers after 2/3 hepatectomy. Reactivation of Tbx3 

might inhibit differentiation of cholangiocytes despite active Notch signaling and stimulate of 

both cholangiocyte and hepatocyte proliferation thereby achieving fast recovery of the liver mass. 

Downregulation of Tbx3 then subsequently would allow cholangiocyte differentiation and resto-

ration of bile ducts. Based on these findings further work on supposable functions for Tbx3 in 

the reestablishment of liver mass and functional bile ducts during liver regeneration and repair 

might be worthwhile.  
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Abstract 

 

Development of the mammalian lung is a tightly orchestrated process that depends on well con-

certed reciprocal epithelial-mesenchymal tissue interactions. 

Here we report that the T-box transcription factor Tbx2 is expressed in the mesenchyme of the 

forming lungs throughout whole embryonic development in the mouse. Mice homozygous mu-

tant for Tbx2 exhibit a hypoplastic lung phenotype with reduced branching morphology arguing 

that Tbx2 is an important contributor in the orchestra of regulators that administer the formation 

of the respiratory tree. We suggest Tbx2 as a proliferative factor for the maintenance of a mesen-

chymal signaling center by direct repression of Cdkn1a and Cdkn1b and furthermore promoter of 

canonical Wnt signaling in the mesenchyme which provokes epithelial growth and branching. 
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Introduction 

The lung is the key respiratory organ of  mammals in supplying oxygen to the body and releasing 

carbon dioxide from the blood stream. These functions are supported by a complex architecture 

that is characterized by the appearance of  highly specialized cell types and a vast surface expan-

sion that together assure effective gas exchange. Epithelial cell types of  the lung respiratory tree 

have been well characterized. Columnar epithelial Clara cells in the distal airways as well as goblet 

cells in the bronchi and small bronchioles together with neighbored ciliated cells achieve the 

clearing of  the lung. Clara and goblet cells produce mucus for pathogen defense and trap dust 

and other particles while ciliated cells sweep out the mucus(1, 2). Basal cells hold important func-

tions for lung regeneration by their ability to differentiate into other respiratory epithelial cell 

types(3). Tight association of  respiratory pneumocytes with the surrounding endothelium ensures 

efficient oxygen supply. Surfactant produced by the cuboidal type II pneumocytes (also called 

alveolar epithelial cells II (AEC2)) in the alveoli facilitates diffusion of  air and prevents collapsing 

of  the alveoli at the end of  exhalation(4). Flat and thin walled respiratory type I pneumocytes 

(AEC1) in close proximity to and in cooperation with the capillary endothelium finally accom-

plish the exchange of  oxygen and carbon dioxide(5). In addition less characterized mesenchymal 

fibroblasts and smooth muscle cells contribute to the cellular complexity of  the lung. Airway 

smooth muscle cells (ASM) assure the contractility of  the bronchi and regulate dispersal of  air 

into the alveoli while fibroblasts facilitate ventilation by deposition of  matrix proteins(6, 7). 

Timed differentiation of  these cell types and the complex architecture of  the respiratory tree are 

the result of  a complex developmental program. In the mouse, lung development starts at em-

bryonic day (E) 9.5, when a diverticulum from the ventral foregut endoderm invades the sur-

rounding visceral mesoderm(8, 9). This initial phase of  lung development, the pseudoglandular 

stage (E9.5-E16.5)(10), is characterized by ongoing dichotonomous branching of  the forming 

bronchial tree(11). In the canalicular stage (E16.5-E17.5), the terminal buds become smaller and 

differentiation of  respiratory type I pneumocytes begins(10). In the saccular phase (E17.5 - post-

natal day (P)5), all generations of  respiratory branches have been formed and small sacs, the pre-

cursor of  the alveoli, are formed(10). In the final alveolar stage, which lasts roughly until P30, 

lung development is completed by elaboration of  the alveoli(10). Although branching morpho-

genesis does not continue postnatally, the lung increases in size for a significant time after birth 

by intercalating growth(5, 12). 

Branching morphogenesis and timed cell differentiation are controlled by reciprocal mesenchym-

al-epithelial cell and tissue interactions that are mediated by a large number of  signaling pathways 

in between the two tissue compartments. Localized expression of  Fibroblast growth factor 



Part 3: 
Tbx2 in lung development  

3 

 

Functional Analysis of the T-Box Genes Tbx2 und Tbx3 in Murine Liver and Lung Development 51 

 

(Fgf10) in the distal mesoderm acting through Fgf  receptor 2 (Fgfr2) in the endoderm stimulates 

epithelial proliferation and outgrowth of  the endodermal buds(13-15). Sonic hedgehog (Shh) 

expression in the distal epithelial tips(16, 17) locally represses Fgf10(18-20) and promotes wing-

less-related MMTV integration site (Wnt)2 and Bone morphogenetic protein (Bmp)4 expression in 

the mesenchyme(20). Additional Bmp4 expression in the endodermal buds similarly antagonizes 

Fgf mediated outgrowth of lung epithelium by confined repression of proliferation(21). Together 

with Shh this mechanism efficiently inhibits growth of the distal tips and permits epithelial growth 

just at the flanks leading to epithelial branching. In addition, canonical (beta-catenin (Ctnnb1)-

dependent) Wnt signaling in lung mesenchyme via Wnt2 and Wnt5a regulates mesenchymal 

Fgfr2(22, 23). Epithelial Wnt7b promotes the expression of Bmp4 and Fgfr2 in the epithelium(24, 

25) and is essential for smooth muscle differentiation in the underlying mesenchyme(25, 26). 

Although we have learned a lot about the function of these signaling moieties in inducing 

changes both of tissue morphology and cellular fate, it has remained less clear how the epithelial 

and mesenchymal signaling centers are maintained and finally extinguished. 

T-box (Tbx) genes encode a family of  transcription factors that have been implicated in the con-

trol of  patterning and differentiation during the development of  numerous vertebrate organs. 

Expression studies identified several members of  this family in the developing lung: Tbx1 in the 

pulmonary epithelium and Tbx2, Tbx3, Tbx4 and Tbx5 in the surrounding tracheal and lung me-

senchyme(27). Inhibition experiments with antisense oligonucleotides in cultures implicated the 

closely related pair of  transcriptional activators, Tbx4 and Tbx5, in the initiation of  new epithelial 

branches by the locally restricted activation of  Fgf10 signaling in the mesenchyme(28). The same 

experimental approach did not reveal a role of  the two closely related transcriptional repressors 

Tbx2 and Tbx3 in branching morphogenesis. However, Tbx2 and Tbx3 are still attractive candi-

dates to regulate mesenchymal proliferation and differentiation. This is rooted in the finding that 

Tbx2 can directly repress the genes encoding cyclin-dependent kinase inhibitor (Cdkn) 2a 

(p19ARF) and 1a (p21) in vitro(29-31), and on the report of  a function of  Tbx3 in the control of  

cell differentiation by Cdkn2a repression in cell culture(32).  

Here, we show by loss- and gain-of-function experiments in the mouse supported by ex vivo or-

gan culture that Tbx2 plays a crucial role in maintaining the proliferative state of  the mesenchym-

al signaling center that regulates branching of  the bronchial tree. We provide evidence that Tbx2 

regulates lung growth and branching morphogenesis by maintenance of  canonical Wnt signaling 

and prevents mesenchymal differentiation by promoting cell cycle progression by an additive 

direct repression of  Cdkn1a and Cdkn1b (p27). 
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Material and Methods 

 

Generation of the HprtTBX2 allele 

A ‘knock-in’ strategy into the X-chromosomal hypoxanthine guanine phosphoribosyl transferase (Hprt) 

gene locus was designed to replace mayor parts of the Hprt exon 1 (including the ATG) by a cas-

sette suited for cre-mediated (mis-) expression described previously by Luche et al.(33) Homo-

logous recombination results in a functional Hprt null allele, allowing direct selection of success-

fully targeted ES cells by 6-Thioguanine. The targeting vectors contained a 2.2 kbp 5’-homology 

region, followed by the ubiquitously expressed CMV early enhancer/chicken b-actin (CAG) 

promoter, the conditional expression cassette (33), and a 5.1 kbp 3’-homology region. The open 

reading frame (ORF) of human TBX2 (cDNA NM_005994.3)(34) was first subcloned in the 

vector pSL1180 (GE-healthcare), 5’ of an IRES-EGFP sequence, and then shuttled as 5’-NheI-

ORF-IRES-EGFP-MluI-3’ fragment into the MluI and NheI-sites of the targeting vector. This 

results in a reverse orientation of the ORF, relative to the CAG promoter, avoiding ‘leaky’ ex-

pression. After cre-mediated ‘flipping’- and excision events between pairs of loxP and loxM se-

quences, the ORF locates in sense direction, directly downstream of the CAG promoter. The 

targeting vector was verified by sequencing before linearization and electroporation in Hprt-

positive SV129 ES cells (maintained beforehand in HAT medium). A two-step selection protocol 

was employed, starting 24 h after electroporation with the addition of 100 mg/ml G418, followed 

by the addition of 1.67 mg/ml 6-Thioguanine (Sigma) after additional 5 days. Surviving colonies 

were expanded and genotyped by PCR (conditions are available upon request). To test the func-

tionality of the expression cassette in candidate ES clones, the GFP-epifluorescence was analyzed 

6 days after electroporation with a cre-expression plasmid (pCAG::turbo-cre, kind gift from Achim 

Gossler). Verified ES clones were microinjected into CD1 mouse blastocysts. Chimeric males 

were obtained and mated to NMRI females, to produce heterozygous F1 females.  

 

Mice and Genotyping 

Mice carrying a null allele of Cdkn1a (Cdkn1atm1Tyj, synonym Cdkn1ako)(35) , a null allele of Cdkn1b 

(Cdkn1btm1Mlf, synonym: Cdkn1bko)(36), a null allele of Tbx2 (Tbx2tm1.1(cre)Vmc, synonym: Tbx2cre)(37) or 

a conditional Tbx2 allele (Tbx2tm2.1Vmc, synonym: Tbx2flox)(38), mice with two loxP sites flanking 

exon 3 of the Ctnnb1 locus (Ctnnb1tm1Mmt, synonym: Ctnnb1(Ex3)fl)(39), were maintained on an out-

bred NMRI (National Marine Research Institute) background. For timed pregnancies, vaginal 

plugs were checked in the morning after mating; noon was taken as embryonic day (E) 0.5. Em-

bryos were harvested in phosphate-buffered saline, fixed in 4% paraformaldehyde overnight, and 
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stored in 100% methanol at −20°C before further use. Genomic DNA prepared from yolk sacs 

or tail biopsy specimens was used for genotyping by polymerase chain reaction (PCR). All mice 

received humane care. Their use was approved by the Institutional Animal Care Committee of 

Hannover Medical School. 

 

Histological Analysis and Immunofluorescence 

Embryos were embedded in paraffin wax and sectioned to 5 µm. For histological analyses, sec-

tions were stained with hematoxylin and eosin. For the detection of antigens, antigen retrieval 

was performed using citrate-based antigen unmasking solution (H-3300, Vector Laboratories 

Inc). Sections were pressure cooked for 5 min and signal amplification was performed with the 

Tyramide Signal Amplification (TSA) system (NEL702001KT, Perkin Elmer LAS). The follow-

ing primary antibodies were used: rabbit anti-mouse E-cadherin (gift from Rolf Kemler)(40), 

rabbit polyclonal antibody against GFP (1:200, sc-8334, Santa Cruz), mouse monoclonal antibody 

against GFP (1:200, 11814460001, Roche), monoclonal antibody against alpha-Smooth muscle 

actin (Acta2), Cy3 Conjugate (1:200, C 6198, Sigma), monoclonal antibody against alpha-Smooth 

muscle actin (Acta2), FITC Conjugate (1:200, F3777, Sigma), rabbit polyclonal against SM22alpha 

(TagIn) (1:200, ab14106, Abcam), rat monoclonal antibody against endomucin (Emcn) (1:2, a 

kind gift of D. Vestweber, MPI Münster; Germany)(41), Rabbit polyclonal against Tbx2 (1:100, 

ab33298, Abcam), Cdkn1a (1:200, sc-397, SantaCruz), Cdkn1b (1:200, 554069, BD Biosciences), 

uteroglobin (Scgb1a1) (1:200, ab40873, Abcam), Cytokeratin 14 (Ck14) (1:200, ab7800, Abcam), 

Tubb4 (1:100, ab11315, Abcam), prosurfactant protein C antibody (Sftpc) (1:200, ab40879, Ab-

cam), aquaporin 5 antibody (1:100, ab92320, Abcam), Hamster monoclonal to podoplanin 

(Pdpln)(1:50, ab11936, Abcam). 

 

In Situ Hybridization Analysis 

In situ hybridization analysis on 10 µm transverse sections of embryos was performed following a 

standard procedure with digoxigenin-labeled antisense riboprobes(42). 

 

Proliferation and Apoptosis Assays 

Cell proliferation in tissues of E9.0 and E9.5 embryos was investigated by detection of incorpo-

rated bromodeoxyuridine (BrdU) similar to published protocols. A total of nine sections from 

three individual embryos per genotype and time point were used for quantification. Statistical 

analysis was performed using the two-tailed Student’s t-test. Data were expressed as mean ± 

standard deviation. Differences were considered significant when the P-value was below 0.05. 



Part 3: 
Tbx2 in lung development  

3 

 

Functional Analysis of the T-Box Genes Tbx2 und Tbx3 in Murine Liver and Lung Development 54 

 

For detection of apoptotic cells in 5 µm paraffin sections of E9.5 embryos, the terminal deox-

ynucleotidyl transferase-mediated nick-end labeling (TUNEL) assay was performed as recom-

mended by the manufacturer (Serologicals Corp.) of the ApopTag kit used. 

 

Semi-quantitative reverse transcription PCR 

Total RNA was extracted from dissected lungs with RNAPure reagent (Peqlab). RNA (500 ng) 

was reverse transcribed with RevertAid M-MuLV reverse transcriptase (Fermentas). For semi-

quantitative PCR, the number of cycles was adjusted to the mid-logarithmic phase. Quantification 

was performed with Quantity One software (Bio-Rad). Assays were performed at least twice in 

duplicate, and statistical analysis was done as described previously(43). Primers and PCR condi-

tions are available on request. 

 

Chromatin Immunoprecipitation Assays 

Chromatin immunoprecipitations were performed essentially as described previously(44). Dis-

sected E15.5 lung were treated with 4% paraformaldehyde overnight. The DNA-containing su-

pernatants were incubated overnight with Tbx2 antibodies and collected on protein G beads. 

Cross-linked products were reversed by cooking for 15 min, treated with ProteinaseK and RNase 

H at 56 °C for 30 min and the immunoprecipitated DNA was purified. Primers for PCR amplifi-

cation were 5’-CCGAGAGGTGTGAGCCGC-3’ (Cdkn1a-f1) and 5’-

GTCATCCACCTGCCGCGG-3’ (Cdkn1a-r1); 5’-GGCTTAGATTCCCAGAGGG-3’ (Cdkn1a-

f2) and 5’-TTCTGGGGACACCCACTGG-3’ (Cdkn1a-r2) for the p21 promoter and 5’-

CAAGTTCAGTAAACTAAGTAGG-3’ (Cdkn1b-f1) and 5’-

GCACATATGTGGACAAACTCG-3’ (Cdkn1b-r1) for the 5’-T-site in the p27 promoter. For 

the intron located T-site 5’-ATATACCTTCTACAGACATAGC-3’ (Cdkn1b-f2) and 5’-

GCTTTTGACTAGAGTCTTATGG-3’ (Cdkn1b-r2) oligos were used. Oligos for the negative 

control region were 5’-CTCTGAAACTCGAACAGGCC-3’ (ncr-f1) and 5’-

ACTCTGAATTGGATTCCTAGC-3’ (ncr-r1). 

 

Organ culture 

For analysis of branching morphogenesis E11.5 lung rudiments were dissected and kept on 

Transwell® permeable 0.4-mm PET 12-well plates (Corning) supplied with DMEM supple-

mented with 10% fetal calf serum, 2mM Glutamax, 100 units/ml Penicillin, 100 µg/ml Strepto-

mycin (Gibco). Lungs were cultivated at 37°C and 5% CO2 for 4 to 6 days and number of 

branching endpoints was counted.  
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Documentation 

Sections were photographed using a Leica DM5000 microscope with a Leica DFC300FX digital 

camera. Whole mount specimens were photographed on a Leica M420 microscope with a Fujix 

digital camera HC-300Z. Images were processed in Adobe Photoshop CS3. Confocal images 

were obtained with a Zeiss LSM 510 Meta and processed with ImageJ(45). 

 

Results 
 
T-box genes are expressed during embryonic lung development  

Earlier studies reported expression of  Tbx2, Tbx3, Tbx4 and Tbx5 in the pulmonary mesenchyme 

at selected stages(27). However, a detailed and comparative analysis of  expression of  these T-box 

family members during embryonic development of  the lung has not yet been performed. In situ 

hybridization analysis revealed that Tbx2 and Tbx3 are coexpressed at high levels throughout the 

lung mesenchyme from E10.5 to E14.5 (Fig. 1).  Expression of  Tbx3 declined sharply after this 

stage whereas Tbx2 was maintained at E18.5 (Fig. 1). Tbx2 expression was maintained postnatally 

at P5 in ~30% of  mesenchymal cells but was lost at P10 (Fig. S1A). Coexpression of  Tbx4 and 

Tbx5 was found between E10.5 to E16.5 in the lung mesenchyme (Fig. 1). Together, these find-

ings argue for redundant and possibly antagonistic roles of  the transcriptional activators Tbx4 

and Tbx5, and the transcriptional repressors Tbx2 and Tbx3, respectively, in early lung develop-

ment but leave the possibility for a unique function of  Tbx2 in the late phase of  the pseudoglan-

dular stage, and subsequent stages of  pulmonary development.  

 

 

 

 

 

 

 

Fig. 1. The four T-box genes Tbx2, 

Tbx3, Tbx4 and Tbx5 are expressed in 

the mesenchyme of the developing 

murine lung. Analysis of Tbx gene ex-

pression during lung development by 

RNA in situ hybridization on serial 

transverse sections of  wildtype em-

bryos. Developmental stages and 

probes are as indicated in the figure. 

fg, foregut endoderm; ep, epithelium; 

me, mesenchyme, al, alveoli. 
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Tbx2-deficient mice exhibit hypoplastic lungs 

Since Tbx2 and Tbx3 have not yet been functionally implicated in lung development, we wanted 

to study the phenotypic consequences of loss of either gene for the formation of this organ. Mice 

homozygous for a null allele of Tbx3 died at E14.5 with lungs that were morphologically and 

histologically indistinguishable from the wildtype (data not shown). Conditional Tbx3-mutant 

mice were not available to us preventing the analysis at later stages. Since mice with more than 

two mutant alleles of Tbx2 and Tbx3 die around E9.5 due to cardiac defects, analysis of the func-

tional redundancy of the two genes in early lung development was not possible either. In con-

trast, mice homozygous for a null allele of Tbx2 (Tbx2cre) that was maintained on an NMRI out-

bred background survived embryogenesis and died shortly after birth due to a cleft palate(43). 

Morphological examination at E18.5 revealed hypoplastic lungs (Fig. 2A). Relative lung weight 

was reduced to approx. 50% of wildtype level arguing against a general growth retardation prob-

lem (Fig. 2B). Lobulation of the lung was normal but all four right lobes (cranial, medial, caudal, 

accessory) and most prominently the left lobe appeared smaller (Fig. 2C). Histological analysis of 

E18.5 frontal sections confirmed a decreased lung size and revealed reduced segmentation and 

thickened mesenchyme in proximal and distal lung compartments in the mutant (Fig 2D). Collec-

tively, these data suggest a unique requirement for Tbx2 in late lung development. 

 
 

 

Fig. 2. Tbx2-deficient lungs are hypoplastic and 

show a thickened mesenchyme at E18.5. (A) 

Morphology of whole wildtype and Tbx2-mutant 

lungs in ventral and dorsal views. (B) Statistical 

analysis of relative lung per body weight; liver and 

spleen were analyzed as control organs. Reduc-

tion of the lung weight to 54.4%±1.7% of the wild-

type value (100%) was statistically highly signifi-

cant (**) whereas liver (110%±2.4%) and spleen 

weight (98%±8.8%) were without significant 

change in Tbx2-deficient embryos. (C) Morphology 

of all four right lobes and the left lung lobe. (D) 

Histological analysis by eosin and hematoxylin 

staining of frontal sections of the lung. Black rec-

tangles indicate anterior and posterior regions 

that are presented in higher magnification. li, 

liver; tr, trachea; ll, left lung lobe; cl, caudal lobe; 

ml, medial lobe; cr, cranial lobe; ac, accessory 

lobe; br, bronchi. 
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Onset of pulmonary defects in the late pseudoglandular stage in Tbx2-deficient lungs 

To determine the onset of pulmonary defects in Tbx2-deficient embryos, we carried out a de-

tailed histological analysis of earlier developmental stages (Fig. 3). At E14.5 no obvious difference 

in morphology and histology of the lungs was observed between wildtype and Tbx2-deficient 

embryos. In contrast, lung size was decreased and branching morphogenesis appeared reduced at 

E16.5 (Fig. 3A). Morphological changes at these stages were not accompanied by altered apopto-

sis (Fig. 3B). At E14.5, the epithelial and mesenchymal tissue compartments of the lung were 

highly proliferative irrespective of the genotype (Fig. 3C, D). However, at E16.5 proliferation in 

the lung mesenchyme showed a highly significant reduction from 29.2% in the wildtype to 18.7% 

in the mutant tissue while the lung epithelium or the diaphragm were unaffected (Fig. 3C, D). To 

more carefully address alterations in branching morphogenesis in Tbx2-deficient lungs, we ex-

planted E11.5 lung rudiments and analyzed their (2-dimensional) outgrowth after six days of 

culture (Fig. 3E). Whole mount in situ hybridizations for the epithelial tip marker Id2 showed an 

almost 3-fold reduction of branching endpoints in the Tbx2-mutant lung culture suggesting that 

epithelial branching morphogenesis is indeed severely hampered by loss of mesenchymal Tbx2 

(Fig. 3E). Immunofluorescent analysis of the fibroblast marker S100a4 and the extracellular ma-

trix protein fibronectin on frontal sections of the left lung lobe revealed a massive reduction of 

expression of the first, and increased expression of the latter at E14.5 and E16.5 in the Tbx2-

mutant lung mesenchyme indicating premature differentiation of fibrocytes before onset of histo-

logical changes (Fig. 3F). Together, these data suggest that Tbx2 controls proliferation and diffe-

rentiation in the mesenchyme of the developing lung at the pseudoglandular stage. Branching 

defects may indicate an independent function of Tbx2 in controlling mesenchymal signals pro-

moting this program but may alternatively be secondary to changes in the proliferation and diffe-

rentiation status of the pulmonary mesenchyme.  

 

Loss of Tbx2 preferentially affects the mesenchymal tissue compartment 

We next investigated whether reduced lung size is associated with defects of cytodifferentiation in 

the two tissue compartments of this organ at E18.5. Immunohistochemistry of markers for Clara 

cells (Scgb1a1)(46), ciliated cells (Tubb4)(47), AECII cells (Sftpc)(48), endothelial cells 

(Emcn)(41), AEC-1cells (Aqp5)(48, 49) and basal cells (Ck14)(50) did not detect changes in the 

Tbx2-deficient lung, whereas a second marker for AEC-1 cells (Pdpn)(51) was downregulated in 

the mutant. Absence of Tbx2 was irrelevant for mesenchymal smooth muscle differentiation at 

this stage, as shown by immunofluorescent detection of Acta2(52) in the mutant tissue (Fig. S1B). 

In contrast, the differentiation status of the mesenchymal fibrous tissue was dramatically affected. 
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Expression of the fibroblast marker S100a4(53) was completely lost at E18.5 whereas the fibro-

cyte marker Fibronectin(54) was massively increased in Tbx2-deficient lungs (Fig. 3F). Hence, 

removal of Tbx2 from the pulmonary mesenchyme marginally affects cytodifferentiation of the 

epithelial compartments and of SMCs, but prevents the terminal differentiation of fibroblasts.   

 

 

 

 

 

 

 

Fig. 3. Onset of proliferation and 

differentiation defects of Tbx2-

deficient lung mesenchyme. (A) Histo-

logical analysis by eosin and hematox-

ylin staining of frontal sections of the 

lung in overviews and in higher magni-

fications of regions marked by black 

rectangles at E14.5 and E16.5. (B) 

Detection of apoptotic cells by TUNEL 

staining and (C) analysis of cell prolife-

ration by immunohistochemistry for 

BrdU at E14.5 and E16.5. (D) Statistical 

analysis of BrdU incorporation of wild-

type and mutant lung mesenchyme 

and epithelium and the diaphragm as 

a control at E14.5 and E16.5. Geno-

types are as indicated. (E) Whole 

mount in situ hybridization analysis for 

expression of the distal epithelial tip 

marker Id2 in 6-day old lung cultures. 

Statistical analysis of the Id2 analysis 

shows a significant reduction 

(p<0.005, n=4) of the branch end-

points from 108±9 in the wildtype to 

38±10 in mutant cultures. (F) Immu-

nofluorescent stainings for the fibrob-

last marker S100a4 and the extracellu-

lar matrix protein fibronectin (Fn) of 

E14.5 and E16.5 wildtype and mutant 

mice. S100a4 was downregulated in 

both stages in Tbx2cre/cre mice while Fn 

is complementary upregulated. 
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Maintenance of Tbx2 expression retains the highly proliferative state of the lung mesen-

chyme 

To get further insights into the cellular function of Tbx2 in the developing lung, we determined 

the effect of prolonged Tbx2 expression on proliferation and differentiation in this organ. For 

this gain-of-function experiment, we used a conditional Tbx2cre/loxP-based TBX2 misexpression 

approach. Integration of a bicistronic transgene-cassette containing the human TBX2 ORF fol-

lowed by IRES-GFP in the ubiquitously expressed X-chromosomal hypoxanthine guanine phosphori-

bosyl transferase (Hprt) locus allows to trace transgene-expressing cells in vivo by GFP-fluorescence. 

This system represents a useful tool to study cellular phenotypes both under mosaic conditions in 

heterozygous females (due to random X-chromosome inactivation) but also under uniform ex-

pression in hemizygous males.  

Male Tbx2cre/+;HprtTBX2/y mice were not recovered after birth suggesting that uniform overexpres-

sion of TBX2 in its own expression domains is deleterious for postnatal life. In contrast, female 

TBX2-overexpressing mice survived at least for 2 months. At P40, Tbx2cre/+;HprtTBX2/+ mice ap-

peared smaller while the size of the lung was not obviously changed (Fig. 4A). The relative lung 

mass, however, was significantly increased at this stage (1.27±0.03, p=0.009), and even more at 

P56 (1.45±0.08 times, p<0.005) (Data not shown). Histological analysis showed a single cell layer 

surrounding the wildtype alveoli. In TBX2-overexpressing lungs, alveoli were surrounded by a 

thick mesenchyme of several cell layers and clusters of cells were frequently observed (Fig. 4B). 

TUNEL staining showed that apoptosis was not affected by overexpression of TBX2 (Fig. 4C). 

In contrast, BrdU incorporation assay revealed a hyperproliferative state of TBX2 overexpressing 

adult lung (Fig. 4C). Statistical analysis revealed highly proliferative mesenchym in the Tbx2 over-

expression mouse (33.8%±5.2), while in wildtype adult mice proliferation is at a low level 

(3.9%±2.4) (Fig. 4D).  Immunofluorscent stainings showed that S100a4 is detectable in a few 

cells in the wildtype lung and S100a4 positive cells are strongly increased in the overexpression 

mutant. Fn is strongly present in the wildtype and severely downregulated in HprtTBX2/+ mice. 

Sm22a is not changed while Tbx2 detection in approximately half of the cells in the overexpres-

sion mutant shows functionality of the conditional allele. Together, these data show that main-

tenance of Tbx2 expression in the lung mesenchyme leads to overproliferation of pulmonary 

fibroblasts and reduced mesenchymal cell differentiation. 
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Fig. 4. Maintenance of Tbx2 ex-

pression retains the proliferative 

state of the lung mesenchyme. (A) 

Morphology of P40 mice and 

lungs. (B) Histological analysis by 

eosin and hematoxylin staining of 

frontal sections of the lung and in 

higher magnifications of regions 

marked by black rectangles. (C) 

TUNEL staining and BrdU incorpo-

ration assay of frontal sections of 

the lung. (D) Statistical analysis of 

wildtype and Tbx2
cre/+

; Hprt
TBX2/+ 

mice shows highly increased BrdU 

incorporation in the TBX2-

overexpressing lung. Labeling in-

dex of wt is 3.9%±2.4; labeling 

index of Tbx2-gain-of-function 

lungs is 33.8%±5.1. (E) Immuno-

fluorescent stainings for S100a4, 

fibronectin (Fn), Sm22a and Tbx2 

on P40 wildtype and consti-tutively 

TBX2 expressing mice.  

 

Derepression of cell cycle inhibitors and reduction of canonical Wnt signaling accompa-

ny proliferation defects in the Tbx2-mutant lung 

To determine the underlying molecular changes that cause premature differentiation and reduced 

proliferation of the lung mesenchyme, and reduced epithelial branching morphogenesis in the 

Tbx2 loss-of-function we analyzed the expression of a panel of genes/signaling pathways that 

have been implicated in epithelial-mesenchymal tissue interactions during lung development as 

well as those directly controlling the cell cycle. For the latter we focused on expression of cell 

cycle regulators that have previously been implicated as targets of Tbx2/Tbx3 function in vitro. 

To accurately identify expression changes we used quantitative RT-PCR of whole lung extracts at 

different developmental stages. We started our analysis with lungs from E16.5 when differentia-

tion, proliferation and branching defects were fully apparent (Fig. 5). At this stage, we observed a 

significant downregulation of components of the Bmp-pathway such as Bmp4 and Bmpr2, which 

are expressed in the epithelium of the bronchi as well as the Bmp target gene Msx1 (Fig. 5A). 

Expression of Bmp2 and Bmpr1a, in contrast, were not significantly altered. The sonic hedgehog 

pathway was also affected indicated by a significant reduction of the signaling molecule Shh. The 

Sonic hedgehog target gene and receptor Ptch1 was found slightly but not significantly reduced.  
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However, mesenchymal Wnt-signaling was strongly reduced as indicated by reduced expression 

of the Wnt ligands Wnt2 and Wnt5a, and the canonical Wnt target gene Axin2 (Fig. 5A). Unex-

pectedly, no changes in Fgf pathway components were found. Mesenchymal Fgf10 expression 

was at wildtype levels as well as the epithelially expressed receptor Fgfr2 and the known Fgf target 

gene Pea3. Expression of Tbx3 was not altered in the mutant, arguing against a compensatory 

mechanism for the loss of Tbx2 (Fig. 5A). Among the tested cell cycle activators, Cdk1 and intri-

guingly another canonical Wnt target gene Ccnd1 showed significant reduction while Ccnd2 and 

Ccnd3 were unchanged. The cell cycle inhibitors Cdkn1a (p21), Cdkn1c (p57), Cdkn2a (p19ARF) 

and Cdkn2d (p19ink4d) were not altered. Most notably, Cdkn1b (p27) was upregulated more than 

7-fold in the mutant (Fig. 5A). At E14.5, when no obvious histological phenotype was detectable, 

most of the tested genes were unaltered (Fig. 5A). However, Wnt5a and Axin2 were strongly 

down-regulated whereas Cdkn1a and Cdkn1b were 4-fold upregulated, indicating a direct interac-

tion of Tbx2 with Wnt/Ctnnb1 signaling and a direct repression of cell cycle repressors. At 

E13.5, Cdkn1a was already upregulated while Ccnd1, Axin2 and the tested Wnt ligands were un-

changed. No changes in gene expression were found at E12.5 (Fig. S1C). 

However, at E18.5 most genes tested by qRT-PCR were of wildtype expression levels (Fig. 5B), 

indicating the deactivation of most signaling pathways, which correleates with completed mor-

phogenetic processes like branching of the respiratory epithelium at this stage. Slight reduction of 

Bmpr2 in the Tbx2 mutant and a minor upregulation in the gain-of-function mutant could be 

detected. Conversely Cdkn1a and especially Cdkn1b are extremely upregulated (2.6±0.8 fold, 

p=0.01 and 24.3±2.3 fold p<0,005 respectively) in the Tbx2cre/cre situation and downregulated in 

the constitutively TBX2 expressing mouse. Relative expression levels were 0.2±0.8, p=0.01 for 

Cdkn1a and 0.3±0.1, p<0.005 for Cdkn1b. 
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Fig. 5. Derepression of cell cycle 

inhibitors and reduction of ca-

nonical Wnt signaling accompa-

ny proliferation defects in the 

Tbx2-deficient lung. (A) qRT-PCR 

analysis of marker gene expres-

sion on mRNA from E14.5 and 

E16.5 wildtype and Tbx2
cre/cre

 

lungs showing relative expression 

levels. Wildtype expression is set 

to 1. (B) qRT-PCR on E18.5 wild-

type, Tbx2-mutant and TBX2-

overexpressing lungs. Wildtype 

expression is set to 1. Genes and 

affiliations to signaling pathways 

or functional equivalence are as 

indicated in the figure.                                                         

                                                                                 

 

 
Tbx2 directly represses Cdkn1a and Cdkn1b  

A direct binding of TBX2 to the CDKN1A promoter in cell culture experiments had been de-

scribed recently(30) whereas Cdkn1b has not been described as a direct target of Tbx2 repressive 

activity before. To validate regulation of the cell cycle inhibitors Cdkn1a and Cdkn1b by Tbx2 in 

the mouse in vivo, we performed in situ hybridization experiments. Indeed, upregulation of both cell 

cycle inhibitors could be shown in the lung mesenchyme in E14.5 mice (Fig. 6A). Consistent with 

the results of the RT-PCR at E16.5 Cdkn1a was not upregulated while Cdkn1b expression was 

highly increased (Fig. 6A). Expression levels in E18.5 and adult mice were below sensitivity of in 

situ hybridization, therefore immunofluorescent stainings were performed on P40 wildtype and 

TBX2-overexpressing mice (Fig. 6A). TBX2-overexpression mutants showed a strong reduction 

of Cdkn1a and Cdkn1b protein, strengthening the assumption of a direct repression of both cell 

cycle inhibitors by TBX2.  
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In silico analysis of the mouse Cdkn1a and Cdkn1b genes revealed one consensus binding site for 

T-box proteins (TBE, also T-site) (AGGTGTGA) in the Cdkn1a promoter and two possible 

TBEs in the Cdkn1b locus. A first site was detected 2.5 kbp upstream of the 5’ UTR 

(AGGTGTGTG). A second putative site with the complementary sequence CACACCT was 

present in an intron sequence (Fig. 6B). ChIP experiments with E15.5 lung tissue revealed bind-

ing of Tbx2 to the known TBE in the Cdkn1a locus in vivo and binding to the 5’ located TBE but 

not to the intron located TBE in the Cdkn1b gene (Fig. 6C). Together these experiments suggest 

that Tbx2 maintains proliferation of the lung mesenchyme by direct repression of the cell cycle 

inhibitors Cdkn1a and Cdkn1b.  

 

Fig. 6. Tbx2 directly represses 

Cdkn1a and Cdkn1b promo-

ters. (A) In situ hybridization 

analysis of E14.5 and E16.5 

wildtype and Tbx2
cre/cre

 lungs 

and immunofluorescent stain-

ings for Cdkn1a and Cdkn1b of 

P40 wildtype and constitutively 

TBX2 expressing mice. Genes 

and stages are as indicated in 

the figure. (B) Schematic dia-

gram of Cdkn1a and Cdkn1b 

gene loci showing positions of 

T binding elements and oligos. 

(C) Chromatin immunoprecipi-

tation assay on E15.5 wildtype 

and Tbx2
cre/cre

 lungs. Tail DNA 

was used as positive control for 

the PCR reaction. Input control 

DNA was collected before ap-

plication of the Tbx2 antibody.    

 

Genetic ablation of Cdkn1a and Cdkn1b does not rescue lung growth in the Tbx2 mutant 

To further unravel the contribution of increased expression of Cdkn1a and Cdkn1b for the 

growth deficit of the Tbx2-deficient lung, we wished to ablate the two genes in the mutant back-

ground. Double mutants of Tbx2 with Cdkn1a and Cdkn1b, respectively, exhibited lungs that 

were morphologically indistinguishable from the Tbx2-single mutant organ (Fig. 7A). Further-

more, the relative weight of the lungs of Tbx2cre/cre;Cdkn1a-/- and Tbx2cre/cre;Cdkn1b-/- embryos, re-

spectively, did not significantly alter compared to the Tbx2cre/cre organ (Fig. 7B).  
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Fig. 7 Genetic ablation of Cdkn1a 

and Cdkn1b does not rescue lung 

growth in the Tbx2-deficient em-

bryos. (A) Morphology of E18.5 

lungs. Genotypes are indicated in 

the figure. The size of the lungs on a 

Tbx2-deficient background is se-

verely reduced independent from 

genetic ablation of one or both 

alleles of Cdkn1a or Cdkn1b. (B) 

Statistical analysis of body weight 

and relative lung weight of E18.5 

mice of the indicated genotypes. 

Mice homozygous for Tbx2
cre

 and 

heterozygous for Cdkn1a or Cdkn1b 

show dramatically decreased rela-

tive weights comparable to 

Tbx2
cre/cre 

mice. Double homozygous 

mice show no increase in relative 

lung weight in comparison to Tbx2-

deficient mice. 

 

Chemical and genetic restoration of canonical Wnt signaling restores growth and lung 

branching in Tbx2-mutant mice 

Since Wnt2, Wnt5a as well as the Wnt target gene Axin2 were significantly decreased already at 

E14.5 (Fig. 5A), we hypothesized a primary requirement for Tbx2 to support canonical Wnt sig-

naling in the lung mesenchyme. In situ hybridization experiments confirmed the expression 

changes detected in RT-PCR (Fig. 7A). Wnt2 and Axin2 were strongly downregulated in Tbx2-
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mutant mice at E14.5 and E16.5. However, in TBX2-overexpressing adult mice, Wnt signaling 

was not ectopically activated (Fig. 8).  

To further elucidate if a change of canonical Wnt signaling pathway is pivotal to the observed 

phenotype of Tbx2-deficient lungs, we performed pharmaceutical rescue experiments in organ 

culture. LiCl, a known inhibitor of GSK3b and for this reason a stabilizer for Ctnnb1(55) was 

added to the cultures in order to restore canonical Wnt signaling in the mutant lungs. A concen-

tration of 20 mM LiCl was recently described to repress branching in lung and lacrimal gland 

organ cultures(56). Since Wnt7b is strongly expressed in the lung epithelium, high LiCl concentra-

tions most likely also strongly affect the epithelium. To overcome these negative effects and to 

determine the best working concentration of LiCl in this rescue experiment, a dilution series of 2 

mM, 10 mM, 20 mM and 40 mM LiCl was tested on wildtype lungs. Axin2 and CyclinD1 expres-

sion levels were checked by qRT-PCR to verify the upregulation of canonical Ctnnb1 signaling 

and branching endpoints were counted after 24h, 48h and 72h of culture (Fig. S2A). Concentra-

tions of up to 10 mM of LiCl had no obvious effect on epithelial branching, while less branching 

endpoints were detected at both time points with 20 mM and 40 mM LiCl (Fig. S2A). Expression 

of Axin2 was only slightly affected at a low concentration of LiCl, but its expression increased 

with higher LiCl levels. In contrast, Ccnd1 was notably (3.6-fold) upregulated already by addition 

of 2 mM LiCl, but expression decreased with increasing LiCl concentrations (Fig. S2B). Since we 

were interested in the restoration of lung growth and branching, we decided to use 2 mM LiCl in 

the following organ culture experiments because of the strongest upregulation of the cell cycle 

activating Ccnd1. After 6 days of culture the Tbx2-mutant lung showed significantly decreased 

branching with less than half of branching endpoints compared to wildtype cultures (Fig. 3E). 2 

mM LiCl did not enhance branching in wildtype cultures but restored branching in the Tbx2-

mutant to almost wildtype level (Fig. 8B). Quantitative RT-PCR verified restoration of 

Wnt/Ctnnb1 signaling (Fig. 8D). LiCl had only minor effects on wildtype cultures leading to a 1.8 

fold increase of Ccnd1. Discrepancy to the previous 3.6 fold upregulation might be explained by 

variations in the experimental settings. Relatively low doses of LiCl probably led to a high pipet-

ting error. However, all cultures in one experiment were treated with the same batch of medium 

and therefore received the same concentrations of the Gsk3b inhibitor. Ccnd1 and Axin2 were 

reduced to 60% and 40% in Tbx2-mutant cultures while addition of LiCl led to a strong upregula-

tion of both genes similar to the levels observed in wildtype cultures supplemented with LiCl 

(Fig. 8C). The Wnt ligands Wnt2 and Wnt5a, however, were not altered by addition of LiCl. Simi-

lar to findings in E16.5 mutant lungs Cdnk1a was also unchanged in Tbx2-mutant cultures. In 
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contrast, Cdnk1b was highly upregulated in Tbx2-mutant cultures and stayed at high levels even 

with addition of LiCl (Fig. 8C). 

Genetic restoration of canonical Wnt signaling was achieved by Tbx2cre/+-mediated expression of 

a stabilized form of Ctnnb1, that lacks the phosphorylation site and cannot be degraded by the 

proteasome, from a floxed allele (Ctnnb1fl3). Tbx2cre/+;Ctnnb1fl3/+ lungs show enhanced growth and 

branching compared with wildtype litermates. In Tbx2cre/fl;Ctnnb1fl3/+ lung cultures, growth and 

branching were restored. The numbers of branches after dissection were 9.3±0.6 for the wildtype, 

10.0±1.0 for Tbx2cre/+; Ctnnb1(Ex3)fl/+ mice, 9.5±0.7 for Tbx2cre/fl; Ctnnb1(Ex3)fl/+ and 9.3±0.6 for 

Tbx2cre/fl mice and were without any significant difference. The total increase of branches was 

14.3±1.5 for the wildtype, 21.7±1.5 for Tbx2cre/+;Ctnnb1(Ex3)fl/+ mice, 11.0±1.4 for 

Tbx2cre/fl;Ctnnb1(Ex3)fl/+ and 6.0±1.0 for Tbx2cre/fl mice. Increase of branches in Tbx2cre/+;Ctnnb1(Ex3)fl/+ 

mice compared with the wildtype was highly significant (p<0.005). Comparison of wildtype and 

Tbx2cre/fl;Ctnnb1(Ex3)fl/+ mice showed a slight but not significant reduction of branching events 

(p=0.09). The increase of branches in Tbx2cre/fl;Ctnnb1(Ex3)fl/+ compared to Tbx2cre/fl mice was highly 

significant (p>0.005).Taken together, these result show that canonical Wnt signaling acts 

downstream of Tbx2 in the lung mesenchyme to enhance mesenchymal proliferation and 

epithelial branching.  

However, in situ hybridization experiments of P40 wildtype and TBX2-overexpressing mice for 

Wnt2, Axin2 showed no activation of the canonical Wnt patway by TBX2 (Fig. S2C). 
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Fig. 8 Epithelial branching in Tbx2-deficient mice can be restored by stabilization of mesenchymal 

Ctnnb1. (A) In situ hybridization analysis for expression of for Axin2 and Wnt2 in E14.5 and E16.5 

wildtype and Tbx2-mutant lungs. (B) Organ culture of E11.5 genetically modified lungs at day 0 (left) 

and day 4 (right) of culture. Genotypes are as indicated in the figure. (C) Organ culture of E12.5 wt 

and Tbx2-deficient lungs with and without treatment of 2 mM LiCl at day 0 (left) and day 4 (right) of 

culture. (D) qRT-PCR on mRNA of wildtype and LiCl treated lungs cultured for 4 days. (E) Statistical 

quantification of branching endpoint of genetically modified lungs cultured for 4 days. (F) Schematic 

diagram of a model proposing the function of Tbx2 in the lung mesenchyme. 
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Discussion 

 

Lung development is regulated by reciprocal signaling between the mesenchymal and epithelial 

tissue compartments. Here, we have identified Tbx2 as a crucial mesenchymal factor that main-

tains the mesenchymal signaling center for epithelial branching morphogenesis. We suggest that 

Tbx2 promotes mesenchymal proliferation directly via repression of cell cycle inhibitors and indi-

rectly by promoting canonical Wnt signaling, the latter of which also accounts for maintenance of 

epithelial growth and branching.  

 

Tbx2 directly represses cell cycle regulators in the lung mesenchyme  

In a former report Cebra-Thomas et al.(28) demonstrated in an antisense oligonucleotide ap-

proach with cultured lung rudiments a requirement for mesenchymal Tbx4 and Tbx5 in the regu-

lation of branching morphogenesis. Tbx4/Tbx5 function is mediated by direct transcriptional 

activation of Fgf10 (28, 57, 58), that encodes a potent growth factor in the lung but also in other 

developmental contexts(13, 15, 21, 59-61).  

Given the molecular nature of Tbx2 and Tbx3 as transcriptional repressors it was hypothesized 

that Tbx2 and Tbx3 compete with Tbx4/Tbx5 for binding to conserved TBEs in the promotor 

of Fgf10, similar to the antagonistic control of Nppa expression in the heart by Tbx5 and 

Tbx2/Tbx3(62). 

Our analysis of Tbx2-deficient lungs did not detect changes, i.e. up-regulation of Fgf10 expression 

in the mutant pulmonary mesenchyme strongly arguing against a direct competitive regulation of 

Fgf10 by Tbx4 and Tbx5 on one hand, and Tbx2 and Tbx3 on the other hand. However, our 

analysis indicated that Tbx2 directly represses the expression of the genes encoding the cyclin-

dependent kinase inhibitors Cdkn1a and Cdkn1b by binding to conserved TBEs in the genomic 

region.  

Cdkn1a and Cdkn1b belong to the Cip/Kip family of cyclin dependent kinase inhibitors and nega-

tively regulate cell cycle by their interaction with the Cyclin E/Cdk2 kinase complex(35, 63-65). 

This complex hyperphosphorylates the retinoblastoma protein, which is a prerequisite for G1/S 

phase transition as it releases E2F transcription factors to induce transcription of S-phase genes 

necessary for replication start(66, 67). Intriguingly Cdkn1a mediated cell cycle arrest was asso-

ciated in cell culture and in vitro experiments with neural differentiation(68). Hence, deregulation 

of Cdkn1a and 1b in our loss- and gain-of-Tbx2 genetic models may well account for the ob-

served opposing changes of mesenchymal proliferation and differentiation.  
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However, individual deletion of Cdkn1a and Cdkn1b function in the Tbx2-deficient lung mesen-

chyme did not restore proliferation and overall lung growth. At this point, we cannot exclude that 

Cdkn1a and Cdkn1b can compensate for each other in this rescue experiments, and that the si-

multaneous removal of both activities is required to restore proliferation and inhibit premature 

differentiation. Alternatively, repression of Cdkn1a and Cdkn1b may represent only one of several 

pathways regulated in parallel by Tbx2 to ensure cell cycle progression.   

 

 

Tbx2 is required to maintain Wnt signaling in the lung mesenchyme  

Our RT-PCR analysis indicated a noteworthy reduction of the Bmp signaling pathway and ca-

nonical Wnt signaling at E16.5. Both pathways have been described to regulate differentiation 

and cell cycle progression in numerous contexts. Bmp4 inhibits proliferation and facilitates diffe-

rentiation by downregulation of cyclin D and Cdk2(69), while Wnt signaling promotes cell cycle 

progression by the activation of Ccnd1(70). Notably, we detected decreased expression of Wnt 

components as early as E14.5, whereas Bmp4 was unchanged at that stage. Furthermore, Bmp4 

and Bmpr2 are epithelially expressed and can therefore not be a direct target of mesenchymal 

Tbx2. Together, this argues for a secondary nature of Bmp4 reduction in the mutant lung. 

In contrast, a couple of evidences have accumulated that canonical Wnt signaling is directly regu-

lated by Tbx2. Zebrafish experiments suggested that tbx2b mediates canonical WNT signal-

ing(71). A dominant negative version of the receptor fz7 phenocopied cell migration defects ob-

served by depletion of tbx2 and overexpression of fz7 led to downregulation of tbx2. Important-

ly, a requirement of canonical Wnt signaling for branching morphogenesis of the pulmonary tree 

has been reported(23). In mice with conditional deletion of mesenchymal Ctnnb1 less epithelial 

branches formed and the lung was severely hypoplastic.  

Our rescue experiments both by genetic and chemical stabilization of Ctnnb1 clearly showed that 

Tbx2 is necessary to maintain mesenchymal Wnt signaling and that Wnt signaling acts down-

stream of Tbx2 to provide the signals from the mesenchyme to regulate epithelial branching. 

Furthermore, direct activation of Ccnd1 by canonical Wnt signaling provides an independent 

pathway to promote cell cycle progression. 

However, constitutive expression of Tbx2 in the lungs of adult mice was not sufficient to reacti-

vate WNT/CTNNB1 signaling, arguing that Tbx2 represses an inhibitor of canonical Wnt signal-

ing in the lung mesenchyme.  

Preliminary experiments with known inhibitors in Tbx2-deficient lungs did not identify a candi-

date for such an activity. 
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Tbx2 acts late in lung development 

Our expression analysis revealed that Tbx2 is expressed in the pulmonary mesenchyme starting 

from E9.5 to postnatal stages. Hence, Tbx2 expression occurs in the pseudoglandular stage where 

growth occurs by massive branching morphogenesis(11), but also in the canalicular and saccular 

phase in which terminal buds are established and differentiation of  pneumocytes occur(10). Giv-

en the finding that signaling systems that are required to mediate branching morphogenesis are 

shut down after E16.5, Tbx2 is likely to directly repress Cdkn1 and Cdkn1b throughout the pseu-

doglandular into the saccular stage, whereas Tbx2 promotes canonical Wnt signaling only until 

the end of  the pseudoglandular stage. However, our gain-of-function experiments strongly imply 

that Tbx2 does not induce Wnt signaling in the lung mesenchyme but represses an inhibitor of  

this pathway. With the down-regulation of  the activator around E16.5, Tbx2 regulation of  this 

pathway becomes irrelevant. Molecular and cellular changes in the lung mesenchyme of Tbx2-

deficient lungs only occur after E14.5, in the late phase of the pseudoglandular stage. This coin-

cides with the down-regulation of Tbx3 expression in the lung mesenchyme around this time. 

Biochemical equivalence as transcriptional repressors suggest that Tbx2 and Tbx3 act redundant-

ly until E14.5 to promote growth and branching of the lungs.  

 

Maintenance of the mesenchymal signaling center by Tbx2 

Our data suggest that Tbx2 probably in combination with Tbx3 in the early phase of the pseu-

doglandular stage maintains the mesenchymal signaling by two pathways. First, Tbx2 represses 

Cdkn1a and Cdkn1b thereby facilitating mesenchymal proliferation and inhibiting differentiation. 

Second, Tbx2 promotes Wnt/Ctnnb1 signaling that independently keeps mesenchymal cells in a 

proliferating state by activating expression of Ccnd1. Canonical Wnt signaling also ensures con-

tinuation of epithelial branching morphogenesis (Fig. 7) 
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Figure S1 (A) Immunofluorescent staining for TBX2 on P5 and P10 wildtype lung sections. (B) Antibo-

dy staining on E18.5 wildtype and Tbx2
cre/cre

 mice. Antigens as indicated in the figure. (C) qRT-PCR of 

E12.5 and E13.5 dissected wildtype and Tbx2 mutant lungs. Wildtype is set to 1. Notably at E13.5 

Cdkn1a is considerably upregulated 2fold and Cdkn1a is slightly but not significantly reduced. At 

E12.5 no changes in the expression of the tested genes could be detected. Genes are as indicated in 

the figure. 
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Figure S2 (A) Organ culture of at E12.5 dissected wildtype lungs treated with increasing concentra-

tions of LiCl. Branching endpoints were counted for three days once a day. No changes were detect-

able up to 10 mM LiCl. Branching was reduced with 20 mM LiCl and almost stopped when cultures 

were supplemented with 40 mM LiCl. (B) qRT-PCR of 72h LiCl treated lung cultures. Ccnd1 was upre-

gulated with 2 mM LiCl about 3.5 fold. Expression levels of Ccnd1 declined with higher concentra-

tions of LiCl. Axin2 expression was only moderately affected and increased with higher LiCl levels. (C) 

In situ hybridization experiments for Wnt2 and Axin2 on P40 wildtype and Tbx2
cre/+

; Hprt
TBX2/+ 

mice. 

Both genes are not expressed at this stage in neither genotype.
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Concluding remarks 
 
Analysis of T-box genes in the last decade revealed this group of transcription factors as extreme-

ly important for embryonic development in establishing tissue boundaries(71), regulating cellular 

proliferation and differentiation(52), facilitating cell adhesion or cell migration(72), timing EMT 

processes(73) and many others. 

In the present study we identified Tbx2 and Tbx3 as crucial transcription factors in the tightly 

orchestrated network regulating endoderm organogenesis. In part 1 and 2, our analysis focused 

on the function of Tbx3 in the early and late developmental mechanisms underlying the growth 

and differentiation processes of liver formation. Tbx3 was identified to be a potent suppressor of 

cholangiocyte fate decision that could even override biliary induction by Notch signaling from its 

natural source, the portal veins, or from constitutively activated Notch pathway (part 2 of this 

study). Although a lot of effort has been dedicated to the understanding of biliary development 

and we have learned a lot about bile duct formation recently (48, 74, 75) we still lack insights on 

the principals of cholangiocyte differentiation. From the presented study one can speculate that 

Tbx3 represses especially up to now unknown Notch target genes, which mediate cholangiocyte 

differentiation while it leaves other Notch target genes unhindered. Further work will have to 

cope with that question maybe by performing ChIP-Seq experiments that represent potent tools 

to identify transcriptional targets. 

Nevertheless, Tbx3 promotes highly proliferative hepatic precursor cells, the hepatoblasts, by the 

inhibition of differentiation(52, 76). This function may be of special medical interest since the 

liver is known to possess tremendous regeneration capacities. Even after loss of two thirds of the 

cell mass by disease or injury the liver restores function and size within weeks. However, the 

mechanisms underlying this ability are not well understood. Given the here presented develop-

mental functions of Tbx3 a further examination of genes normally expressed in embryonic liver 

formation during regeneration processes might be worthwhile. I suppose that Tbx3 dedifferen-

tiates hepatocytes and cholangiocytes in equal manner to facilitate rapid growth and vanishes just 

in time to allow restoration of the bile ducts. How Tbx3 is regulated during this process is of 

remarkable significance since knowledge about it will be of some relevance for treatment of di-

verse cancers. Glaser and Alpini in 2010(77) stated that “many questions about the regulatory 

mechanisms of Tbx3 during liver development and regeneration, as well as their potential in-

volvement in liver cancer remain to be addressed in future studies”. I agree in this respect that, as 

Lu et al.(65) concluded in their review 2010, that it might be smart targeting the repressor domain 

of Tbx3 (and similarly Tbx2) by anticancer drugs. I would even add that knowing how to regulate 
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Tbx3, how to enable and shut down its expression, would be of great benefit not only for treating 

cancer but also to accelerate recreation after surgery.  

Having this in mind part 3 of this work might also be considered important for cancer treatment. 

Though started by the simple observation that lung size is decreased in Tbx2 loss-of-function 

mice, we gained insight in the molecular mechanisms processed by Tbx2. Repression of Cdkn1a 

in cancer by Tbx2 was long known. However, the newly demonstrated likewise repression of 

Cdkn1b, the confirmation of a direct repression of Cdkn1a in vivo and the ability of Tbx2 to facili-

tate, albeit not to induce canonical Wnt-signaling is likely to boost cancer progression and there-

fore to lead to a bad outcome. Moreover this mechanism offers the possibility of Ctnnb1 depen-

dent activation of Tbx3, which might even increase aggressiveness and invasiveness of the cancer 

tissue (since we described Tbx3 to be relevant for cell migration from the liver diverticulum (part 

1 of this study). 

Based on the results shown above we will certainly go on with the examination of the fundamen-

tal processes underlying all these diverse functions of T-box transcription factors. We will en-

force the detection of target genes to better understand basic principles of development to ex-

pand existing models and to design new ones of course. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
References  

VII 

 

Functional Analysis of the T-Box Genes Tbx2 und Tbx3 in Murine Liver and Lung Development 80 

 

References 

1. Lewis SL, Tam PP. Definitive endoderm of the mouse embryo: Formation, cell fates, and morphoge-

netic function. Dev Dyn 2006; 235(9): 2315-2329.  

2. Dufort D, Schwartz L, Harpal K, Rossant J. The transcription factor HNF3beta is required in visceral 

endoderm for normal primitive streak morphogenesis. Development 1998; 125(16): 3015-3025.  

3. Zorn AM, Wells JM. Molecular basis of vertebrate endoderm development. Int Rev Cytol 2007; 259: 

49-111.  

4. Zaret KS. Regulatory phases of early liver development: Paradigms of organogenesis. Nature Reviews 

Genetics 2002; 3(7): 499-512.  

5. Zorn AM. Liver development. In: StemBook. Cambridge (MA): Aaron M. Zorn; 2008.  

6. Burke Z, Oliver G. Prox1 is an early specific marker for the developing liver and pancreas in the mam-

malian foregut endoderm. Mechanisms of Development 2002; 118(1-2): 147-155.  

7. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS. Liver organogenesis promoted by endothelial cells 

prior to vascular function. Science 2001; 294(5542): 559-563.  

8. Zaret KS. Hepatocyte differentiation: From the endoderm and beyond. Current Opinion in Genetics 

and Development 2001; 11(5): 568-574.  

9. Grapin-Botton A, Melton DA. Endoderm development: From patterning to organogenesis. Trends 

Genet 2000; 16(3): 124-130.  

10. Zaret KS. Liver specification and early morphogenesis. Mechanisms of Development 2000; 92(1): 83-

88.  

11. Moore-Scott BA, Opoka R, Lin SC, Kordich JJ, Wells JM. Identification of molecular markers that are 

expressed in discrete anterior-posterior domains of the endoderm from the gastrula stage to mid-

gestation. Dev Dyn 2007; 236(7): 1997-2003.  

12. Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. Hepatic specification of the gut 

endoderm in vitro: Cell signaling and transcriptional control. Genes and Development 1996; 10(13): 1670-

1682.  

13. Horb ME, Slack JM. Endoderm specification and differentiation in xenopus embryos. Dev Biol 2001; 

236(2): 330-343.  

14. Wells JM, Melton DA. Vertebrate endoderm development. Annu Rev Cell Dev Biol 1999; 15: 393-410.  

15. Horb ME. Patterning the endoderm: The importance of neighbours. Bioessays 2000; 22(7): 599-602.  

16. Wells JM, Melton DA. Early mouse endoderm is patterned by soluble factors from adjacent germ 

layers. Development 2000; 127(8): 1563-1572.  



 
References  

VII 

 

Functional Analysis of the T-Box Genes Tbx2 und Tbx3 in Murine Liver and Lung Development 81 

 

17. Dessimoz J, Opoka R, Kordich JJ, Grapin-Botton A, Wells JM. FGF signaling is necessary for estab-

lishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 2006; 123(1): 42-55.  

18. McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm 

is essential for liver and pancreas development. Development 2007; 134(12): 2207-2217.  
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