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Kurzfassung

Die Menge an verfügbaren Daten im Web wächst rapide, so dass die Per-
sonalisierung des Informationsangebots auf den Nutzer und Anwendungsfall
wichtiger denn je ist. Techniken zur Personalisierungung, wie Recommender
Systeme, werden dafür in einer breiten Masse von Anwendungsfällen, wie
Online Shops, Applikationen für Mobiltelefone oder E-Learning Systemen
[Rossi et al., 2001] eingesetzt. Dennoch ist die Gesamtanzahl personalisierter
Applikationen gering.

Um Probleme und Ansätze zur Aufwandsreduktion beim Einsatz von Per-
sonalisierung zu identifizieren wurde eine Literaturrecherche im Bereich der
generischen und wiederverwendbaren Personalisierung durchgeführt. Die Er-
gebnisse der Literaturrecherche wurden durch eine Umfrage unter Experten
überprüft. Das Ergebnis der Umfrage belegt, dass generische Personalisierungs-
komponenten, standardisierte Schnittstellen und Wiederverwendbarkeit als
Schlüsseltechnologien angesehen werden. Basierend auf den Ergebnissen wird
ein Framework vorgestellt, das den Lebenszyklus einer personalisierten App-
likation ganzheitlich unterstützt.

Das Personal Reader Framework kapselt Personalisierungsfunktionalität in
wiederverwendbaren generische Web Servicen, sogennante PServicen, und stellt
damit den Stand der Technik dar. Für verschiedene Anwendungsfälle bie-
tet das Framework fertige PService, die in bestehende Anwendungen integri-
ert werden können. Der Meta-Personalisierungs-Matchmaker selektiert PSer-
vice basierend auf Benutzerpräferenzen, verfügbaren Eingabedaten und ange-
botener Funktionalität. Die erzielten Ergebnisse übertreffen die aktueller nicht-
personalisierter Matchmaker.

Diese Arbeit geht im Bereich Benutzermodellierung über den Stand der
Technik hinaus, da eine Zugriffskontrollkomponente vorgestellt wird, die auf
zentralisierten Benutzermodellierungsservicen Zugriffsregeln implementiert, in-
dem Anfragen an ein RDF Repository umgeschrieben werden. Die Benutzer-
profile werden in einem gemeinsam genutzten RDF-Format gespeichert, sodass
Interoperabilität und Wiederverwendbarkeit von Benutzerprofildaten zwischen
Personal Reader Applikationen ermöglicht wird. Benutzerfreundliche Bedien-
oberflächen ermöglichen dem Endbenutzer das Benutzerprofil zu erforschen
und fein-granulare Zugriffsregeln zu bestimmen. Eine Benutzerstudie zeigt,
dass Anwender hiermit komplexe Zugriffsregeln erstellen können.

Der Thread Recommender ist eine von mehr als zehn Applikationen, die
auf dem Personal Reader Framework beruhen. Dieser zeigt erstmals dass
regelbasierte Personalisierung mit Collaborative Filtering in einem E-Learning
Diskussionforum kombiniert werden. Die Sichtbarkeit des Frameworks inner-
halb der Forschungsgemeinschaft ist durch erfolgreiche Zusammenarbeit mit
internationalen Forschungspartnern und Publikationen auf hochrangigen Kon-
ferenzen (ISWC und AH) und in Fachblättern (TLT Journal, etc.) sichergestellt.

Schlagwörter: Personalisierung, Benutzermodellierung, Semantik Web





Abstract

The amount of data on the Web grows enormously. It is more important than
ever to filter Web data by selecting the most appropriate information based on
user and context. Personalization techniques, like recommender systems, have
been successfully implemented in various scenarios, like online shops, mobile
phone applications, or E-Learning systems [Rossi et al., 2001]. However, the
amount of personalized applications is still limited.

In order to detect the main problems of creating personalized applications
and analyze approaches for lowering the effort of using personalization, we
inspected available approaches for generic and reusable personalization func-
tionality. To verify our outcomes, we conducted a survey among experts in
the fields of personalization and user modeling. The survey reveals that ex-
perts consider generic personalization components, standardized interfaces and
reusability as key techniques to simplify the use of personalization. Based on
the findings from related work and the survey, we modeled a framework that
supports the entire life-cycle of a personalized application.

The Personal Reader Framework goes beyond state-of-the-art in the area
of personalization by offering encapsulated personalization via reusable and
generic Web Services, so called PService. For most personalization tasks,
ready-to-run PServices are available to be integrated into existing applications.
We present a meta-personalization matchmaker, which incorporates user pref-
erences, available input data, and offered functionality to find best-matching
PServices. Our evaluations prove that the proposed matchmaking algorithm
outperforms non-personalized state-of-the-art algorithms.

In the area of user modeling this thesis contributes to the state-of-the-art by
providing an access control component for a centralized user modeling service
that enforces access policies by rewriting RDF queries. User models are stored
in a shared RDF-based user profile storage format ensuring the interoperability
and reuse of user profile data beyond single Personal Reader applications. The
user modeling service is complemented by a user-friendly interface allowing the
end user to explore profile data and define fine-grained access control policies.

The Thread Recommender is one example of more than ten different Per-
sonal Reader applications: It showcases the integration of rule-based person-
alization and collaborative filtering in an E-Learning discussion board. The
visibility of the Personal Reader Framework within the research community
is ensured by the successful collaborations with several international research
partners, publications in highly ranked conferences (ISWC and AH) and jour-
nal articles (TLT journal, etc.).

Keywords: Personalization, User Modeling, Semantic Web
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Chapter 1

Introduction

Personalization, the task to adapt the functionality, interface, information
content, or distinctiveness of a (software) system [Blom, 2000], is an impor-
tant research area in computer science with a long history going back to the
1960s [Licklider et al., 1968]. Personalization techniques, like adaptive hyper-
media or recommender systems have received attention inside and beyond the
research community: Personalized recommendations, for example, generated
millions of additional revenues and justified the success story of Amazon.

However, personalization strongly depends on high-quality input data. To-
day, this input data either consists of a huge automatically generated data col-
lection, like sales-logs and weblogs or comparatively small hand-crafted data
collections, like E-Learning courses with attached metadata or product cata-
logues containing specific features of an item-collection. The drawback of au-
tomatically generated data is the existence of noise and wrong information in
the set: The gay community for example, exploited the Amazon recommender
system to show recommendations to books from their community on the page
of an gay adversarial book [Mehta and Hofmann, 2008]. The disadvantage of
hand-crafted data are scalability issues and maintenance costs.

A data collection, that combines both properties, large scale data and hu-
man maintained information, is the Web – by far the largest and most-recent
information space of human mankind. Thus, personalization has focused in
the last decades on utilizing Web data. While 15 years ago the main task
in the Web was information discovery, namely the discovery of related Web
pages to a given keyword, nowadays, major search engines deliver millions of
relevant pages for popular keywords. The success of personalized search is still
limited as Web data is created mainly for humans and can be processed by
machines only hardly and error-prone nor can information be combined in a
generic fashion.

The combination of data from different sources in a large scale is a key
aspect of the so-called Web 2.0, proposed by Tim O’Reilly. So-called Mashups
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combine existing data from different Web applications and therewith create
added value for the users. Moreover, Mashups do not only combine data but
also functionality from various sources. A drawback of Web 2.0 Mashups is
that they are statically created by humans: All the description of the offered
data and functionality, encapsulated by so-called Web Services, which can by
considered as interfaces, is hidden in plain-text API documentations.

The Semantic Web, proposed by Tim Berners-Lee, aims at making Web
data machine processable by adding additional descriptions, so-called meta-
data. Today, the Semantic Web already contains billions of machine-readable
information snippets, called RDF triples, which are linked to each other by the
Linked Data paradigm1. The Semantic Web provides techniques to create au-
tomatic Mashups: Semantic Web Services offer a machine-readable description
of their functionality. Programmers can specify required functionalities in an
application without knowing if a service is available that offers such a functio-
nality or where such a service can be located. So-called Semantic Matchmakers
retrieve appropriate services that are invoked by the application at runtime.

In such a scenario, traditional monolithic applications, which combine all
personalization related tasks, like user modeling, adaptation of the user inter-
face and information filtering tightly coupled, become a distributed network
of services, possibly run by different parties.

Successful frameworks and toolkits, like the Spring Framework2, Ruby on
Rails3, etc. facilitate simple and still standard-compliant development of mod-
ular Web applications. The concept of frameworks served as key idea for
proposing the Personal Reader Framework, a Semantic-Web based architec-
ture that copes with the newly arisen research questions for supporting per-
sonalization:

1. Can the strongly-coupled personalization process of monolithic applica-
tions be divided into logically independent services?

2. Can such personalization services be reused in various applications?

3. How shall user profiles be stored, maintained, and accessed in a Semantic
Web Service-based environment?

4. Can personalization be used to orchestrate personalized applications from
single Web Services?

5. Which requirements need to be fulfilled by a personalization framework to
ease the process of creating a personalized application and which support
needs to be offered to assist the programmers in this process?

The thesis is structured as follows:
1http://www.w3.org/DesignIssues/LinkedData.html
2http://www.springframework.org
3http://www.rubyonrails.org
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In Chapter 2, we identify integration opportunities and success factors of
different state-of-the-art approaches as requirements for a framework that sup-
ports personalization and user modeling. We present the current state-of-the-
art of generic personalization and a short introduction into the problems of
privacy and Web Service discovery. Finally we discuss advantages and chal-
lenges of the presented techniques. To verify the results from literature, we
designed a questionnaire to receive additional ideas for a personalization and
user modeling framework from domain experts. The evaluation of the question-
naire reveals today’s obstacles of using personalization in applications as well
as promising techniques and trends for the future of personalization. Based on
the results, we revisit and complete the requirements for our framework from
the first part.

The requirements from the previous section serve as design principles for
our Web Service-based Framework and its core components as described in
Chapter 3. The core components are implemented as Web Services, namely
Personalization Services, which encapsulate personalization algorithms, Syn-
dication Services, which contain the business logics, as well as the Connector
Service, which handles the communication between the services and provides
centralized functionality. To enable the dynamic orchestration of personalized
applications, we present a personalized matchmaker. In this chapter, the above
defined research questions will be revisited.

For storing and exchanging user profile data among applications, we intro-
duce a generic user modeling service, which is described in Chapter 4. The
user model service provides two user interfaces to allow end-users to: a) in-
spect and modify their user profile and b) to ensure privacy by enabling them
to specify fine-grained access rules. An RDF-based access control mechanism,
called AC4RDF, enforces these rules and applies them to the user profile.

In Chapter 5, we evaluate the real-world usability of the proposed frame-
work by three proof-of-concept applications: The Comtella-D Thread Recom-
mender, the Personal Reader Agent and MyEar outline the benefits of applying
the framework. User access statistics as well as an overview about the contin-
uous development and cooperation with the research community outline the
success of the Personal Reader Project.

The conclusion and an outlook to future research directions is given in
chapter 6.

The research that I jointly conducted over the last years during my employ-
ment at L3S Research Center resulted in several publications at workshops,
conferences and in journals. A list of my scientific publications is provided in
Appendix A. Here, I point to those publications which prominently contribute
to this thesis:

• Nicola Henze and Daniel Krause: Scalable Matchmaking for a Semantic
Web Service based Architecture - Workshop on Semantics for Web Ser-
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vices, December 4, 2006, Zurich, Switzerland, collocated with ECOWS
2006 (used in Chapter 3)

• Nicola Henze and Daniel Krause: User Profiling and Privacy Protection
for a Web Service Oriented Semantic Web. 14th Workshop on Adaptivity
and User Modeling in Interactive Systems, Hildesheim, October 9-11 2006
(used in Chapter 3)

• Nicola Henze and Daniel Krause: Personalized Access to Web Services
in the Semantic Web. 3rd International Semantic Web User Interaction
Workshop, November 6, 2006, Athens, Georgia, USA, collocated with
ISWC 2006 (used in Chapter 3)

• Anna Averbakh, Daniel Krause, Dimitrios Skoutas: Exploiting User Feed-
back to Improve Semantic Web Service Discovery. 8th International Se-
mantic Web Conference, 25-29 October 2009, Washington DC, USA (used
in Section 3.3.1)

• Anna Averbakh, Daniel Krause, Dimitrios Skoutas: Recommend me a
Service: Personalized Semantic Web Service Matchmaking. 17th Work-
shop on Adaptivity and User Modeling in Interactive Systems. LWA 2009
- Workshop-Woche: Lernen-Wissen-Adaption, September 21-23, 2009,
Darmstadt, Germany (used in Section 3.3.1)

• Fabian Abel, Nicola Henze, Daniel Krause, Daniel Plappert: User Mod-
eling and User Profile Exchange for Semantic Web Applications, 16th
Workshop on Adaptivity and User Modeling in Interactive Systems. LWA
2008 - Workshop-Woche: Lernen-Wissen-Adaption, October 6-8, 2008,
Würzburg, Germany (used in Section 4.2)

• Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne Wolf Koesling, Daniel
Krause, Daniel Olmedilla: Enabling Advanced and Context-Dependent
Access Control in RDF Stores. 6th International Semantic Web Confer-
ence, November 11-15, 2007, Busan, Korea (used in Section 4.2.5)

• Fabian Abel, Juri Luca De Coi, Nicola Henze, Arne Wolf Koesling, Daniel
Krause, Daniel Olmedilla: A User Interface to Define and Adjust Policies
for Dynamic User Models, 5th International Conference on Web Infor-
mation Systems and Technologies, March 23-26, 2009, Lisboa, Portugal
(used in Section 4.2.6)

• Fabian Abel, Ig Ibert Bittencourt, Nicola Henze, Daniel Krause, Julita
Vassileva: A Rule-Based Recommender System for Online Discussion Fo-
rums. 5th International Conference on Adaptive Hypermedia and Adap-
tive Web-Based Systems, July 28-August 1, 2008, Hannover, Germany
(used in Section 5.1)
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• Fabian Abel, Ig Ibert Bittencourt, Evandro Costa, Nicola Henze, Daniel
Krause, Julita Vassileva: Recommendations in Online Discussion Forums
for E-Learning Systems. IEEE Transactions on Learning Technologies,
IEEE Computer Society, 2010 (used in Section 5.1)

• Fabian Abel, Ingo Brunkhorst, Nicola Henze, Daniel Krause, Kashif Mush-
taq, Peyman Nasirifard and Kai Tomaschewski: Personal Reader Agent:
Personalized Access to Configurable Web Services. 14th Workshop on
Adaptivity and User Modeling in Interactive Systems, Hildesheim, Octo-
ber 9-11 2006 (used in Section 5.2)
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Chapter 2

Requirements for a Generic
Personalization Architecture

“If I have 3 million customers on the Web, I should have 3 million stores on
the Web”

The statement of Jeff Bezos, founder of Amazon.com, outlines that per-
sonalization has emerged from the ivory tower of research to industry and
real world applications. Studies have been conducted that show the bene-
fits of personalization for the sales rate of online stores [Schafer et al., 1999],
users satisfaction of applications [Liang et al., 2007], and usage time of ser-
vices [B. Smyth, 2002].

However, personalization is sparsely used in current real-world applications.
Our hypothesis is that today’s personalization is strongly focused on a specific
application or domain, and hence using personalization in a new application
is an expensive task. We inspect current state-of-the art solutions for generic
personalization techniques like recommender systems, adaptive hypermedia,
and rule-based personalization.

In the second part of this chapter, we substantiate our findings from lit-
erature by conducting a questionnaire among personalization experts. We
asked these experts what they consider as main reasons why personalization
is not used more often and identified technical obstacles of creating a person-
alized application. As outcome of the literature review and the analysis of
the questionnaire, we summarize requirements for implementing personaliza-
tion infrastructures to simplify the creation of personalized applications and
propose guidelines how to support the use of personalization.

7



8 2.1. RELATED WORK ON GENERIC PERSONALIZATION

2.1 Related Work on Generic Personalization

Generic personalization, namely personalization which can be applied inde-
pendently from a specific application or domain, shall simplify the process
of integrating personalization functionality in new applications regardless of
the application’s context. This might, for example, be achieved by picking
personalization algorithms which are reusable and domain-independent. As
candidates for discovering these generic algorithms, we selected personaliza-
tion algorithms that have been used in different application domains:

• Recommender algorithms: Collaborative recommender systems
[Adomavicius and Tuzhilin, 2005] do not need any domain knowledge as
they merely use information about user interaction. Success in various
application fields makes this a perfect candidate field for generic person-
alization.

• Adaptive hypermedia algorithms: Adaptive hypermedia systems like
AHA! [Bra and Calvi, 1998] have been designed to be domain-independent
and provide generic methods to specify adaptivity in a hypermedia graph.

• Rule-based personalization approaches: Even though rule-based
personalization is used in the areas of recommender systems and adap-
tive hypermedia, rules can be utilized in various personalization-related
tasks, like protection of confidential profile information (like policies) or
to describe the behavior of an adaptive system (like reactive rules).

In the following, we will inspect these candidates in more detail regarding
their possible usage in generic settings.

2.1.1 Recommender Systems

Recommender systems aim at supporting users in discovery of interesting
items, like books, websites, social contacts and so on. The area received great
attention over the last years by both, research and business. The importance
of recommender systems can be estimated when considering that the online
video rental company Netflix issued a price of 1 million dollars to those who
managed to outperform their own recommender algorithm by 10%1.

Recommender systems can be distinguished broadly into two classes: con-
tent-based and collaborative recommender systems. Content-based recom-
mender systems rely on a detailed database describing the properties of the
available items. Users are represented as vectors containing their preferences
according to the properties of the item database. The recommender algorithms
use various measurements to find a good match between the preferences of a
user and the properties of the items.

1http://www.netflixprize.com/
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In comparison, collaborative recommender systems, which are also known
as collaborative filtering systems, observe the attitude of the users towards
items. This data is often available without additional effort: in a shop, for
example, the assumption is drawn that users who bought an item are inter-
ested in this item. Then, the sales logs can be used to infer which users are
interested in some specific item. The recommender algorithm searches similar
users for a given user (according to similar buying behavior) and creates a list
of most popular items among these users. These items are then used as base
for the recommendations. For a more detailed survey on collaborative filter-
ing techniques, we refer to the work of Su et al. [Su and Khoshgoftaar, 2009].
For a more detailed taxonomy of recommender systems, we refer to the work
of Adomavicius et al. [Adomavicius and Tuzhilin, 2005] and Montaner et
al. [Montaner et al., 2003].

In this thesis, we focus on using recommender algorithms as generic per-
sonalization components. Both recommender approaches, content-based and
collaborative, can be used in different application domains: the content-based
recommender considers users and items in a vector-space, defined by the prop-
erties, while collaborative recommender systems predict items that similar user
liked, regardless of the domain2.

First, we will show hybrid recommender systems that can utilize various
kinds of input data to generate recommendations. We have a closer look at
work from Berkovsky that discusses the use of recommender systems to gener-
ate cross-domain recommendations, i.e. based on input data from one domain
recommend items from another domain. Finally, we will discuss known draw-
backs of recommender systems and their relevance for generic personalization.

2.1.1.1 Cross-domain Recommender Systems

Berkovsky et al. [Berkovsky et al., 2007] conducted an interesting experiment
on cross-domain user profiles. They divided a movie rating database into
separate databases based on the genre of the rated movie. They used different
collaborative recommender strategies to generate movie recommendations:

• Standard collaborative filtering This collaborative recommender op-
erates on the entire movie database and does not take any genre informa-
tion into account.

• Local The local recommender only takes information on one specific genre
into account to generate recommendations.

• Remote-Average The remote-average strategy applies the local strategy
and takes it as one input parameter. Then, the local strategy is applied
on other genre databases that the movie belongs to. This means that

2N.B. There are also content-based recommender systems available that are not domain-independent.
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there is one genre specific rating created for each genre of a movie. These
values are finally averages to calculate an overall recommendation score.

The results of the paper outline that the standard collaborative recom-
mender delivers the highest mean average error (MAE), while the local strategy
delivers a significantly lower MAE. The remote-average strategy outperforms
the local strategy when the movie ratings are very sparse. The experiment
shows that personalization functionality can benefit from using external data
from other application domains.

2.1.1.2 Generic Hybrid Recommender Systems

Content-based as well as collaborative recommender algorithms suffer from
various problems3 [Balabanović and Shoham, 1997, Lee, 2001]: collaborative
recommender systems for example cannot generate recommendations for new
users as the system has no knowledge about them. The same holds for new
items that have not yet been rated. Another serious issue is the lack for
adaptability of collaborative recommender systems.

In comparison, content-based recommender algorithms rely on features that
need to be extracted and make recommendations expensive if the required
information needs to be hand-crafted. A second problem is over-specialization:
the recommender estimates preferences of a user based on ratings of the items.
Items are recommended that fit best to these preferences. These items are
mostly those which are very similar to items that the user already knows.

Hybrid recommender systems combine different recommender strategies,
like content-based and collaborative recommender, to overcome the aforemen-
tioned problems. Burke [Burke, 2002] presented six approaches to combine
recommender algorithms:

• Weighted The final score of different recommender algorithms is aver-
aged.

• Mixed Displays results of different recommender algorithms in the user
interface.

• Switching Among different recommender algorithms, the best matching
is chosen.

• Feature combination Input data is mixed. An interesting approach is
presented by Berkovsky et al. [Berkovsky et al., 2006] who transform a
user profile based on user ratings into a content based profile. They used
genre information of the movies that a user rated to derive which genre
a user is interested in.

3http://www.readwriteweb.com/archives/5 problems of recommender systems.php
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• Cascade The first recommender creates a candidate set that is refined
by the next recommender and so on.

• Feature Augmentation the results of one recommender are used as
(additional) input data for a second recommender.

• Meta-level The input model of one recommender algorithm is used as
input model of another recommender.

While hybrid recommender systems flexibly combine single recommendation
strategies, selecting the best hybrid recommender for a specific application
scenario is a domain- and application-specific problem. Thus, implementing
personalization by hybrid recommender systems still bears a high manual effort
to optimize the recommendation quality.

2.1.2 Adaptive Hypermedia

Adaptive Hypermedia is based on a well-known principle form knowledge struc-
turing and organization, namely hypertext: in 1945, Bush presented Memex
[Bush, 1945], the memory extender, which offered the functionality of storing
and scrolling documents. Associations could be added to a document that
references another document. This structure of documents and links between
documents was taken up by Berners-Lee in his Mesh proposal4. This finally
lead to the definition of the World Wide Web, which soon became the largest
hypertext of the world. By increasing bandwidth and storage, the WWW
turns from a hypertext to hypermedia, which embeds multimedia documents,
like images, videos or audio files into a hypertext. With the growing size of a
hypermedia graph, users cannot find content they are looking for or tend to
lose the overview of the graph, a problem called lost in space [Conklin, 1987].
Techniques, like graphical browsers, could help to to get a better overview on
the graph, but delivering users with the information parts they need requires
a personalization of the hypergraph.

Adaptive hypermedia systems (AHS) [Brusilovsky, 1996] tackle this prob-
lem by adapting the hypermedia graph. Several techniques for adaptation are
know which can be grouped into two classes, adaptive presentation and adap-
tive navigation support. Adaptive presentation focuses on the nodes of the
hypermedia graph and generally annotates, structures and omits parts of the
content of a hypermedia document while adaptive navigation support focuses
on the links of a hypermedia graph and provides guidance, maps of the graph
or link annotations. One well known AHS is De Bra’s Adaptive Hypermedia
Architecture (AHA!) [Bra and Calvi, 1998], an open, multi-purpose AHS. To
use AHA!, first an author needs to define a user profile which contains a set
of boolean values representing the user knowledge. Second, the author needs

4http://www.w3.org/History/1989/proposal.html
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to annotate hypermedia pages to define rules based on conditions that a user
needs to fulfill in order to visit a complete page, a paragraph of it, or click
a link, and the knowledge that a user receives after visiting the page. The
conditions and user knowledge use and modify the variables from the user
profile. Finally, the AHA! engine adapts the hypermedia graph based on the
user profile and the conditions. The main drawback of such a system is that
the usefulness and expressivity is strongly coupled to the effort undertaken by
the author to model a specific corpus and create a fine-grained user profile.
The created rules are domain-specific and cannot be reused in another corpus
without adjustment.

This problem of an adaptive hypermedia system relying on a well-defined
information corpus is also called the open corpus problem of adaptive hy-
permedia [Brusilovsky and Henze, 2007]. For some domains, like educational
hypermedia, there exist solutions for application-independent personalization.
Brusilovsky and Henze [Brusilovsky and Henze, 2007] propose several tech-
niques, like keyword-based text similarity, meta-data based similarity calcu-
lation and community-based approaches to find edges between open corpus
documents and hence automatically build a hypermedia graph. However, the
conducted research focuses on the educational domain and might not be ap-
plicable in other domains.

2.1.3 Rules for Personalization

Rules are by their nature very generic. We showcase three different areas
where rules are successfully used in personalization, namely rules for: a) access
control, b) description of the behavior of a (personalized) application and c)
rules for the generation of recommendations.

2.1.3.1 Rules for Access Control

According to [Bonatti and Olmedilla, 2007] policies are rules with the pur-
pose of describing the behavior of a system. Therefore, rule-based policy
systems can be used to describe the behavior of a system regarding pro-
tecting of disclosing user profile data. Existing policy engines like Protune
[Bonatti and Olmedilla, 2005a] offer advantages in comparison to a domain
specific access component: instead implementing code that describes access
restrictions, policies can be defined by a user without having programming
knowledge. A policy database can be replaced or extended without changing
the application. As Protune is a declarative language, Policies are in an easy-
to-read format. The following example policy5 allows access to emails whose
subject is “payment“ if the current user is an Enron employee:

5from http://skydev.l3s.uni-hannover.de/gf/project/protune/wiki/?pagename=RDF+policy
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allow(access(X, Y, Z),

[ rdfTriple(User, employer, Enron),

rdfTriple(X, type, email),

rdfTriple(X, subject, payment) ], []) :-

currentUser(User).

Policies can be used to simplify the negotiation process. If a website for
example needs a user name, an address and a credit card number, the user is
often first asked about her user name, in a second step she is asked about her
address and finally about the credit card information. If the user is not willing
or able to provide the credit card information all the previous input data is
wasted. If she will only give her credit card information to members of the
BBB6, she has no option to tell this the website. If the user and the website
would define their needs about data and the requirements to provide confi-
dential data into a policy engine, the engine can immediately decide whether
there is a solution to fulfill the requirements of both, the user and the website.

2.1.3.2 Rules for Modeling the Behavior of a Personalized Application

Reactive rules detect events and react on these events. These rules can be used
to describe the event-based behavior of a (personalized) application. An exam-
ple for a reactive rule is the calculation of a shop’s discount [Berstel et al., 2007]:

• If the customer is a new customer, grant 5% discount

• If the total amount of the shopping basket is greater 100, grant
10% discount

An intuitive formalism for expressing reactive rules are the so-called Event
Condition Action (ECA) rules. ECA rules can be read as ON events IF con-
dition DO action. In ECA notation the discount example would be expressed
as follows:

ON customer clicks checkout

IF customer is new customer

DO price=price*0.95

ON customer clicks checkout

IF price>100

DO price=price*0.9

Such rules can hence be used to separate the business logic from the appli-
cation code. Changes in the business logics can be modeled by domain experts
instead of programmers. Reactive rule languages like XChange
[Bailey et al., 2005] can be used to model, execute and query these ECA rules.

6http://www.bbb.org/
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2.1.3.3 Rule-based Recommendations

Lin et al. present the ASARM algorithm [Lin et al., 2002], which uses as-
sociation rules to provide recommendations. Association rules require (sales)
transaction as input data stating which user bought, watched, or visited which
items within a specific period of time, namely a session. ASARM transforms
a user-item rating matrix into transactions by ordering positive and negative
ratings. For each user, two transactions are created, namely one containing
all positively rated items and the other containing all negatively rated items.
From the transactions, association rules are learned that follow two patterns:
a) user related rules, for example if userx likes an item, usery will also like this
item and b) item related rules, for example if a user likes itemx then the user
will also like itemy.

Association rules can be considered as domain-independent because they
take no underlying semantics of the transactions’ domain into account: solely
based on co-occurrence rules are formed. Domain independence is outlined by
various application scenarios of association rules. Fu et al. [Fu et al., 2000],
for example, apply association rules in the SurfLen system to analyze a user’s
web navigation history.

Zhang et al. [Zhang and Chang, 2005], claim that association rules will de-
liver only a limited amount of recommendations and that the rule mining
process needs to be precomputed. They use different kinds of rules (like se-
quential rules) and rule mining approaches to build a general rule database.
These rules are weighted according to their support and confidence values and
are applied all together.

2.1.4 Discussion

In this section we shortly described possible candidates for generic personal-
ization algorithms from the three areas recommender systems, adaptive hyper-
media and rule-based personalization.

For the recommender systems, we analyzed approaches for cross-domain
recommendations and hybrid recommender systems: Hybrid approaches out-
line the flexibility of combining different recommender algorithms while cross-
domain recommendations show the potential of reuse of user profile informa-
tion. Collaborative recommender systems are candidates for generic personal-
ization as they do not rely on domain knowledge but purely on the behavior of
the users. However, drawbacks like the new-user problem might render them
useless in settings were predictions for new items are essential. Hybrid recom-
mender solve those issues but require a domain-dependent optimization and
tuning.

We have seen in the analysis of adaptive hypermedia that they provide a
good framework for modeling adaptive systems. The drawback is that they
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depend on the domain-knowledge, which needs to be provided by a domain
expert. Approaches to overcome the open-corpus problem exist, but are fo-
cused to the E-Learning domain. In this thesis we do not focus on E-Learning
and hence cannot make use of these generic adaptive hypermedia algorithms
without adaptation effort.

We showcased the successful usage of rules in different areas of personal-
ization, like privacy protection as so-called policy and reactive rules for the
description of the behavior of an adaptive system. Rules by their abstract
nature offer the advantage of domain-independence and predictable behavior.

We have seen that several approach do exist that offer generic personal-
ization. In our opinion, an urgent issue is to combine these approaches in a
flexible manner: a personalization framework, which offers different generic
personalization algorithms and allows for a simple plug-and-play combination
and exchange of the single algorithms does not yet exist.

2.2 Questionnaire

To substantiate our impression of the needs for a generic personalization frame-
work, we designed a questionnaire that should reveal the opinions and ideas
of personalization experts how to foster the stronger usage of personalization.

From own usage and implementation experiences, discussions with end-
users, and literature research, we collected an initial set of possible reasons
why an application is deliberately not personalized. We grouped these reasons
by the three shareholders of the personalized application, namely the user who
interacts with the application, the programmer who implements the application
and the manager who needs to maximize the profit of an application.

We consider the distinction by shareholders as important as most of the per-
sonalization experts play multiple roles: For example, a user of a personalized
application might be mainly interested in the functionality and the benefit that
personalization offers while a manager focuses on the costs and the program-
mer has the additional effort in mind that implementation of personalization
functionality costs. We will therefore ask the participants to answer questions
from different shareholder’s perspectives and compare these perspectives with
each other.

Based on the interests of the different shareholders, our hypothesis is that
the following reasons are most important for not using personalization:

1. From a user’s perspective:

• Personalization delivers wrong results, e.g. recommended items are
not relevant for a user.
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• Personalization complicates the workflow, e.g. users have to man-
ually re-enable options that the personalization algorithm disabled
to simplify the menu structure (see Microsoft’s Smart Menus
[Jameson, 2003]).

• Uncontrollable behavior: personalization is often considered as an un-
adjustable black box, lacking of scrutability. For example, the adap-
tive video recorder TiVo draws wrong conclusion about the sexual
interests of the user and hence records the wrong titles [Zaslow, 2002].

• Missing awareness: the advantage of personalization functionality
might be not obvious to the end-user.

2. From a programmer’s perspective:

• High implementation effort, i.e. existing personalization functionality
needs to be reimplemented mostly from scratch to fit domain-specific
settings.

• Personalization is just an excuse for a poor user interface: Jakob
Nielsen stated7 that personalization is often used to overcome the fact
that websites are poorly designed and recommends to run usability
studies and optimize the interfaces instead of using personalization.

3. From a manager’s perspective:

• High costs : Adding personalization to an existing application comes
along with a high financial investment that needs to charge back.

• Uncontrollable behavior : As personalization adapts content by ob-
serving user behavior, it is hard to be controlled. A popular exam-
ple is the revenge of the gay community against Pat Robertson, a
TV evangelist by using Amazons recommendations to link to explicit
material8.

To verify whether the community of personalization experts agrees on these
reasons, we designed a questionnaire and distributed it with the conference
material of the Adaptive Hypermedia Conference 2008. We will describe the
layout and purpose of the questionnaire in detail in next sections. The com-
plete questionnaire is attached to the thesis in Appendix B.

2.2.1 Layout of the Questionnaire

Based on the identified shareholders and hypotheses our questionnaire contains
25 questions. These questions were assigned to four major blocks:

1. Experiences from a user’s perspective,
7http://www.useit.com/alertbox/981004.html
8http://news.cnet.com/2100-1023-976435.html
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2. experiences from a developer’s perspective,

3. future perspectives on personalization, and

4. open questions

Deliberately, we omitted a separate block for the management shareholders
as the majority of the participants have a research oriented background. We
incorporated the management related issues into the blocks of the users and
developers. The content and design rationale of the blocks are described in
the next four paragraphs.

2.2.1.1 Experiences from a user’s perspective

The first part of the questionnaire aims at ascertaining the participants’ us-
age background of personalization techniques and their perception of today’s
usage frequency of personalization (Question 3 and 4). Question 1 and 6 shall
reveal the general attitude of the participants towards personalization. If par-
ticipants do not like personalization in general, it might be because they have
particular personalization techniques in mind that are not satisfying for most
of the participants. For example, one of Microsoft’s first attempts to introduce
personalization in a mainstream software product, namely the Smart Menus,
were not accepted by the users [Weld et al., 2003] and might have cause a
negative attitude towards personalization of several Microsoft customers.

Questions 2b and 5 ask the participants about the advantages and disad-
vantages of personalization, giving the possible reasons that we have identified.

2.2.1.2 Experiences from a developer’s perspective

The second part of the questionnaire asks the participants about their per-
sonalization experience from a developer’s point-of-view. Question 7-10 focus
on the experience of the programmer in terms of general programming expe-
rience and experience in implementing personalization. Question 11 focuses
on technical and non-technical reasons why, if applicable, they did not use
personalization in their own applications. Question 12 finally asks for a short
description of their own developed personalized applications and whether they
reused code or created reusable code for providing personalization.

2.2.1.3 Future perspectives on personalization

The third section of the questionnaire focusses on getting advice from the
participants how they estimate the future of reusability and interoperability for
personalization. The first three questions (13-15) focus on the interoperability
aspect and ask the participant if interoperability is applicable and useful in
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general, and which techniques like Web Services, XML interface, etc. would
support interoperability best.

Questions 16-21 focus on reusability of personalization functionality. First,
the users are asked about their general attitude towards reusability in person-
alization. Then the participants shall declare which components of an adaptive
system they consider to be reusable and to which degree. We therefore offered
the following levels of reusability:

• Data, i. e. usage of a unified data structures, like XML.

• Algorithm, i. e. reimplementation of existing algorithms.

• Code template, i. e. adaption of existing programming code.

• Code library, i. e. use of programming code without modifications.

• Web Service, i. e. the usage of existing Web Services.

Finally, we asked the participants which level of reusability offers the great-
est advantage for creating adaptive systems.

2.2.1.4 Open questions

The open questions in block four have the purpose to address general issues
about the future of personalization. Namely, what are the hot topics, tech-
niques and challenges for the future of personalization beyond reusability and
interoperability.

2.2.2 Evaluation

We designed this questionnaire to get an overview of the personalization ex-
pert’s opinions. To get a reasonable amount of participants we distributed the
questionnaire among the conference proceedings of the Adaptive Hypermedia
Conference9 2008, that took place in Hannover from 29th July to 1st August.
During the opening ceremony and the conference we asked the participants to
fill the questionnaire. Overall, from the 130 participants of the AH conference,
24 filled and returned the questionnaire.

We will briefly explain our measurements, followed by the analysis of the
questionnaire and finally draw conclusions for a personalization infrastructure.

2.2.2.1 Measurements

In the following sections, we present the results of the evaluation of the ques-
tionnaire. To find dependencies and relationship among different questions

9http://www.ah2008.org
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(for example to compare the different shareholders), we used association rules
[Agrawal et al., 1993].

To find associations between two answers, we constrained the valid asso-
ciations rules by several measures. Assume an association rule stating that
participants who marked answer a of question X will also mark answer b of
a given question Y , is formally expressed by (X.a → Y.b). Let #Y.b/#Y be
the percentage of participants who gave answer b for question B. Then, the
requirements and the underlying purpose of the requirement, that the rules
have to fulfil, are:

Requirement Purpose of the requirement
The confidence of the rule Remove rules with a too low confidence.
must be at least 60%.
The confidence of the rule This requirement ensures that a high confidence
must be 20% higher than the is not generated purely because of a popular
occurrence rate of answer b for answer in the rule’s head.
question Y.
The occurrence rate of answer b If more than 50% of all participants give the
for question Y is lower than 50%. same answer, the answer is popular in general

and it is hard to assume a relationship to
another answer.

The coverage of answer Y.b in Y The requirement ensures that rules find those
of the rule is higher than the user groups that give a specific answer
percental occurrence of answer over-proportionally frequent.
Y.b in Y

Table 2.1: Requirements for the association rules

A list of identified association rules (R1-R248), that fulfil the constraints,
is given in Appendix C. We will refer to these rules within the next sections.

2.2.3 Experiences from a user’s perspective

Figure 2.1: Benefits of personalization

All of the 24 participants consider personalization as useful in general (ques-
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tion 3). The most important advantages of personalization are saving of time,
a simplified interaction for beginners, improved interaction possibilities, and a
better orientation (see Figure 2.1).

Figure 2.2 depicts the satisfaction of the participants regarding the kind of
personalization which is offered by current applications. While nearly half of
the participants (45%) are satisfied, the majority is not yet fully satisfied. As-
sociation rules show that users who are not satisfied with existing personalized
applications are especially dissatisfied with the adaption of content (see R1 in
Appendix C). In comparison, participants which are satisfied with currently
offered personalization, consider device adaptation as useful (see R5). A possi-
ble reason for the satisfaction might be that device adaptation works properly
today while adaptation of content does not.

Figure 2.2: User’s satisfaction of personalization offered by current systems

We tried to get a more detailed view on the participant’s satisfaction based
on the personalization techniques they used. Figure 2.3 depicts the satisfaction
and value separated by the type of personalization, like recommendations, de-
vice adaption, etc. Important to note is that for all strategies, the participants
consider the value of the personalization strategy higher than their satisfac-
tion, which again gives information about user’s satisfaction with currently
available personalized applications.

Participants, who are not satisfied with currently available device adapta-
tion are mostly well experienced programmers with about 10 years of expe-
rience in this field (see R30). These participants are also not satisfied with
adaptive presentation (see R41) and adaption of content (see R42). Still, it
is remarkable is that they are very interested in a reusable device adaptation
component (see R33).

The relatively low values of satisfaction – which is especially remarkable as
all participants are experts in the are of personalization – may be a reason for
the usage of personalization in today’s applications: The participants estimate
that 22% of currently available applications are personalized and 95% of the
participants agree that more applications can benefit from personalization.

We asked the participants about possible reasons why personalization is not
used more often. The main reasons given are unclear functionality, privacy con-
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Figure 2.3: User’s satisfaction of personalization technique from low (=1) to high (=5)

cerns, that the results of personalization are not satisfying, and missing trans-
parency (see Figure 2.4). Participants that consider missing transparency as
problem also criticize a lack of best practices for implementing personalization
(see R142).

User who are satisfied with personalization offered by today’s applications
(see R2) and users who consider better feedback as an advantage of person-
alization (see R121), consider slow adjustment of the personalized systems as
main problem. Participants who consider recommendations as useful criticize
mostly that personalization suffers from unclear functionality (see R8), while
participants that are not satisfied by recommendations offered by existing ap-
plications see privacy issues as main problem (see R12).

Figure 2.4: Reasons for not using personalization

2.2.4 Experiences from a developer’s perspective

It is remarkable that the participants in general are very experienced in the
area of personalization: 38% of the participants have more than 10 years of
experience in developing personalized systems. In average, every participant
created 5.6 software systems. From these applications 55% were personalized,
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while the participants claim that 83% of them could benefit from personaliza-
tion.

Similar as from the user’s perspective, there is again a gap between actual
usage and usefulness of personalization. We divided possible reasons for not
implementing personalization in own applications into technical (see Figure
2.5 ) and pragmatic (see Figure 2.6) reasons. The participants agree that the
main technical obstacle is high implementation effort that is amplified by a
pragmatic reason, namely a low return on investment.

Figure 2.5: Technical reasons for not using personalization in own applications

Figure 2.6: Pragmatic reasons for not using personalization in own applications

Overall, programmers acknowledge the benefit of personalization but con-
sider a too low effort-benefit ratio as reason to not use personalization more
often. Interestingly, the low effort-benefit ratio is mentioned more frequently
by users who consider recommendations as useful (see R11) and might be an
indication for the lack of reusable recommender tools. Programmers with ex-
perience of more than 10 years point out that missing libraries and tools are
the main reason why personalization is not used more often (see R154).

Possible approaches for improving the usage of personalization are given in
the figures as well: Solving the lack of reusable components, libraries, tools
and/or best practices are considered by the participants as promising strate-
gies.
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2.2.5 Reusability and Interoperability of Personalization

Reusability and interoperability may offer important directions for a standard-
ized and hence more simple use of personalization in future applications. We
asked the participants about their opinion regarding the importance and fea-
sibility of reusability and interoperability in the area of personalization.

70% of the participants believe that both, reusability and interoperability
are techniques that could be incorporated in the area of personalization. And
more than 70% agree that reusability and interoperability are valuable and
can increase the usage of personalization.

We asked the participants what techniques they consider as most promis-
ing for enabling interoperability and reusability in personalized applications.
Web Services (62%) and Semantic Web Services (50%) are considered as main
techniques for interoperable personalized applications. In comparison, reuse of
data (53%) and Web Services (58%) are considered to have the highest impact
for providing reusable personalization while – from a programmer’s point of
view – code libraries (55%), Web Services (50%) and reuse of data (45%) are
the preferred techniques. Interestingly, especially participants who consider
personalization as useful for time saving see Web Services as most promising
for reusability (see R119 and R120). Web Services are also most promising for
experienced programmers who created ten or more applications (see R162).
Participants who consider recommendations as useful would be most satisfied
with the reuse of data (see R9).

As a personalized system is composed of different components, its potential
for being interoperable and/or reusable may vary. We asked the participants
which component of an adaptive system can be made generic (see Figure 2.7).
On a scale from impossible (=1) to possible (=5), all components receive a
score higher than 3 which expresses that the participants agree that all com-
ponents of a personalized system can be made generic.

Participants that never used personalization in their own applications con-
sider reusability of user modeling as very important (see R169). It might
indicate that providing generic user modeling could foster the usage of person-
alization in own applications.

Programmers that see a lack of results/effects of a personalized system
wish to have code libraries for reusability (see R180). This might indicate that
those programmers in general would use personalization, but that they are not
willing to invest in implementing own personalization algorithms from which
benefit they are not yet fully convinced.

According to Figure 2.7 the two components of user event detection and
user modeling can be considered as most promising for being made generic.
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Figure 2.7: Which components of an adaptive system can be made generic? Scale from
impossible (=1) to possible (=5)

2.2.6 Future Perspectives on Personalization

The fourth part of the questionnaire consists of free text questions to receive
a feedback about the future perspectives of personalization beyond reusability
and interoperability. We do deliberately not give an quantitative overview as
we compared the given answers and tried to combine them by finding descrip-
tive classes.

Regarding challenges for personalization participants consider the following
topics as important:

• Standardization, reusability, interoperability, transparency, authoring
tools,

• awareness in industry,

• privacy, trust, and

• proof the value in applications.

While techniques like standardization, reusability and interoperability focus
on easing the use of personalization for the programmer, most of the points
aim at making the user and industry more aware of personalization: Making
the purpose and usage of personal data transparent to the user as well as
showing the benefits of personalization (e.g. by good examples of personalized
applications and demonstrators) will increase the acceptance on the user side.

For simplifying personalization, the participants propose these solutions:
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• Multiagents, decoupling components,

• tutorials and best practices,

• visual tools, and

• educating people.

Most of these strategies focus on involving the user more in the personaliza-
tion process. Tutorials, educating the users as well as visual tools for creating
and adjusting personalization are good techniques for increasing the awareness
and visibility of personalization.

Personalization will be influenced considerably by the following trends:

• Coping with short term changing needs of users, detect what a user wants.

• Mobile applications.

• Context detection (and usage).

• Move towards Semantic Web.

• Exploit Web 2.0, social network data, collaborative filtering.

• Combination of social network aspects, semantics, and adaptive tech-
niques.

• Personalized add-ons: Personalization as add-on feature without altering
the original application.

2.3 Requirements

Based on the results of the questionnaire, we identified the following charac-
teristics for a promising personalization platform:

• Usage of Web Services: Using Web Services offers frameworks to con-
nect to various available applications and APIs on the Web and allows
other applications to access single components of the framework in a flex-
ible manner.

• Reusable personalization modules: Personalization techniques like
recommendations are considered to be reusable. To decrease the costs of
implementing personalization, programmers shall be assisted by providing
a tool box, containing important generic personalization algorithms.

• Generic User Modeling: Applications based on user models suffer
heavily from the new user problem. The framework shall provide shared
user modeling functionality that is able to combine knowledge about a
user gathered from different applications.
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• Generic Event Detection: Participants consider the components user
observation and event detection as most promising to be made generic.
Techniques based on web log analysis do not rely on domain knowledge of
the particular web site. These techniques are a strong evidence for that
assumption. The personalization framework shall offer an event detection
mechanism that is able to: a) extract events from the user interaction as
well as b) identify the usage context of the user to identify possible tasks
of a user.

• User Centric Design: Studies have shown [Kobsa, 2007] that the ma-
jority of the users is willing to contribute personal data if the data is: a)
kept confidential and b) the disclosure results in a benefit for the user
(e.g. the user gets better product recommendations). To motivate users
contributing personal data, the framework needs to take scrutability and
privacy into account. Users need to be able to inspect and modify their
own user data as well as define what application is allowed to access which
part of the user profile. The users must have full control over their data
at any point of time.

2.4 Conclusion

In this chapter we searched for possible reasons and solutions for our obser-
vation that personalization is sparsely used in today’s real-world applications.
We looked to related work of generic personalization algorithms which simplify
the usage of personalization. We focussed on the areas of recommender sys-
tems, especially on collaborative algorithms and hybrid recommender systems,
adaptive hypermedia and rule-based approaches for access control, policies for
the behavior description of a system and association rules. Our analysis outline
that mature generic personalization techniques exist but have not been used
in a generic manner: Techniques, like collaborative recommender algorithms
and hybrid recommender systems, are not yet provided in a framework offering
personalization functionality as external plug-and-play component.

To underline the needs for a generic personalization framework, we designed
a questionnaire that should reveal the opinions and ideas of personalization
experts how to foster the stronger usage of personalization. The questionnaire
reveals that the participants agree that personalization is useful in general
and that the benefits of personalization are valuable. The satisfaction values
of currently available personalized applications outline that personalization
is already at an advanced level and satisfies a reasonable amount of users.
However, the participants see the potential and need for further improvement
on both, the quality of personalization techniques as well as the quantity of
applications that use personalization.

The participants identified gaps on the user’s and programmer’s side of us-
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ing personalization. This leads to the situation that personalization is used
much less in today’s applications than it is considered as useful. The main
reasons are that users are not fully satisfied with currently available person-
alized applications while programmers see a high implementation effort and
limited improvements. Both together result in a low return on investment
(ROI), making the use of personalization unattractive for the management.

In the questionnaire, we focused on asking the participants to name so-
lutions that will lead to a higher usage of personalization. The participants
identified promising techniques for decreasing the implementation costs for
personalization like reusability, generic personalization components as well as
the use of standardized interfaces. It is remarkable that the participants con-
sider reusability and interoperability of all adaptive components as possible
and consider Web Services as most promising approach. Concluding, from a
technical point of view, reusability and interoperability are the most important
future directions for personalization.

It is further mentionable that even the group of participants with a strong
technical background named a large number of non-technical approaches to
make personalization more scrutable for the user. The participants recom-
mended to take the user into the focus when designing a personalized appli-
cation: The personalization process shall be more transparent and visible for
the user, advantages of integrating personalization into an application shall be
expressed more explicitly for the user. These trends show that personalization
needs to be seen in a larger context. It is not enough to personalize based on
previous knowledge gathered by a single application. Personalization should
also take the possibly quickly changing usage context into account as well as
exploit Web 2.0 and social network data, like friend relationships or character-
istics of a group of users, to overcome problems like slow adjustment or weak
performance.



28 2.4. CONCLUSION



Chapter 3

A Framework for Generic
Personalization

The conducted literature research and the survey shows that experts in the
area of personalization desire a Web Service-based personalization platform,
which provides interoperable and reusable personalization functionality. In
this chapter, we model and implement a framework that assists application
developers to create personalized Web applications. In Section 3.1, we first
study related work in the area of the Semantic Web, covering service-oriented
architectures, Semantic Web Services, and matchmaking, which could be used
to build such a flexible framework. The Personal Reader [Abel et al., 2005,
Henze and Krause, 2006], a design approach to split applications into logic
parts, serves as a basis for our framework. The core idea of the newly de-
veloped Personal Reader Framework is the concept of making personalization
functionality reusable by encapsulating the functionality into Web Services.
These Web Services are called Personalization Services and are accompanied
by a machine-processable semantic description of the provided functionality
using Semantic Web techniques. Thus, functionality can be discovered dy-
namically and applied to existing applications in a plug-and-play manner.

Functionalities that are required by the majority of adaptive applications,
like user authentication, or functionalities that shall operate across applica-
tions, like user modeling, can be accessed via a centralized component, called
Connector Service. The Framework and its components are described in Sec-
tion 3.2. Section 3.3 describes the personalized matchmaking of Personaliza-
tion Services and the personalized portal of the Personal Reader Framework.

29
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PERSONALIZATION AND USER MODELING

3.1 Related Work on Semantic Web Techniques for
Generic Personalization and User Modeling

Personalization as well as user modeling are based on an efficient processing
of data: on the one hand a large amount of data needs to be processed, on
the other hand both fields benefit from accessing and merging different data
sources in order to improve user and item profiles. While the first task is not in
the scope of this thesis, we consider Semantic Web techniques as a promising
approach for data federation for personalization and user modeling.

3.1.1 Introduction into the Semantic Web

The World Wide Wide is a web made for humans. HTML is used to structure
information in a human-visualizable format. Machines can hardly access infor-
mation on the Web in an automated fashion: NLP techniques, which require
a high computational effort and are not error-free, are required to interpret
the information on HTML Web sites. As the information, which is available
on the Web, grows exponentially, the need and benefit of processing Web data
by machines becomes more important. For building a Web for humans and
machines, Tim Berners-Lee coined the term of the Semantic Web. He defined
the vision of the Semantic Web as follows:

“The Semantic Web is an extension of the current web in which infor-
mation is given well-defined meaning, better enabling computers and
people to work in cooperation.” Tim Berners-Lee [Berners-Lee et al., 2001]

To realize the Semantic Web idea, Berners-Lee proposed a stack architec-
ture (see Figure 3.1) where every layer builds upon and extends the previous
layer. Uniform Resource Identifiers (URI) and Unicode are used to reference
web objects uniquely and exchange documents over language boundaries. The
extensible markup language (XML) uses the concept of elements and attributes
to structure documents in a machine-processable format. XML Schema is used
to define the structure of an XML document and the element and attribute
names. To disambiguate element and attribute names, namespaces provide
unique URI prefixes, which clearly define the validity of XML terms.

On top of structured XML documents, the Resource Description Framework
(RDF) is used to add machine-processable meta-data. RDF triples consists of
a subject, a predicate, and an object and can be read as a natural language-
based sentence. With RDF it is for example possible to specify the properties
of an instance, like X has the color red. These RDF triples act on the instance
level as they add properties to objects that are accessible via a URI or relate
different objects with each other by relationships. However, RDF does not con-
tain a machine-processable semantics as there are no ontological rules how to
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Figure 3.1: Berners-Lee’s Semantic Web Stack from 2000 [Berners-Lee, 2000]

interpret the RDF statements. The RDF Schema (RDFS) layer first introduces
semantics by defining classes, properties as well as hierarchical relationships.
RDFS hence allows to specify that, for example, the class car is a subclass
of vehicle. Given the additional information that X is a car, reasoning tools
can now infer knowledge that was not explicitly given, like that instance X is
not only a car but also a vehicle. The ontology layer, which is realized by the
Web Ontology Language (OWL), extends the expressivity of RDFS by several
new relationships, the use of XML Schema datatypes, cardinalities, and other
new language constructs. Due to the expressive power of OWL, three OWL
dialects have been standardized, namely OWL-Full, OWL-DL, and OWL-Lite.
OWL-Full contains the entire feature set of OWL, OWL-DL contains a subset
of OWL-Full which allows the creation of efficient reasoning algorithms. OWL-
Lite is a subset of OWL-DL and the most limited OWL dialect. It is intended
to be used for mobile environments where processing power is limited.

The upper layers of the Semantic Web stack are still in their definition
phase and no W3C standard is yet published. The purpose of the rule layer
is to provide reasoning mechanism that are able to infer new knowledge by
exploiting the information given by ontologies as well as knowledge on instances
level from different sources. A major challenge for the reasoners is to process
a Web scale amount of input data. The proof layer will provide provenance
data, like information source, used inference mechanism etc. to allow a client
to verify how trustworthy a given information is. The trust layer aims at
establishing trust between single users that finally leads to a global network of
trust.
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3.1.2 Service Oriented Architectures

While the Semantic Web stack defines how different techniques build upon
each other to process and exchange data, nothing is said about the underlying
software architecture of Semantic Web-enabled applications. Service Oriented
Architectures (SOA) [Perrey and Lycett, 2003] are a software engineering ap-
proach to create modularized software applications, which build upon Semantic
Web techniques standards, like XML. The main building block of SOA are so-
called Web Services. A Web Service encapsulates functionality and provides a
standardized interface to access the functionality. The Web Service Definition
Language1 (WSDL) is used to describe the interfaces syntactically by using
XML Schema. For example, a WSDL document states that a web service
offers a method getPersonDetails that requires a string person as input pa-
rameter. However, WSDL does not allow to link the parameter person to an
ontological concept person stating that the name of a person shall be passed.

The Universal Description, Discovery and Integration2 (UDDI) framework
is a directory service for web service descriptions, which provides different
discovery functionality. White Pages allow to search based on information
about the service provider, Yellow Pages allow a search based on the rough
purpose of the Web Service while the Green Pages contain the searchable
WSDL descriptions of the registered Web Services.

3.1.2.1 Semantic Web Services

WSDL and UDDI are industry standards for describing and discovering Web
services. However, their focus lies on specifying the structure of the service
interfaces and the exchanged messages.

Thus, they address the discovery problem relying on structural, keyword-
based matching, which limits their search capabilities. Other earlier works have
also focused on applying Information Retrieval techniques to the service dis-
covery problem. For example, the work presented by [Dong et al., 2004] deals
with similarity search for Web services, using a clustering algorithm to group
names of parameters into semantically meaningful concepts, which are then
used to determine the similarity between input/output parameters. An online
search engine for Web services is seekda3, which crawls and indexes WSDL
files from the Web. It allows users to search for services by entering keywords,
by using tag clouds, or by browsing different facets, such as the country of the
service provider, the most often used services or the most recently found ones.

To deal with the shortcomings of keyword search, several approaches have
been proposed for exploiting ontologies to semantically enhance the service

1http://www.w3.org/TR/wsdl
2http://www.uddi.org/pubs/uddi v3.htm
3http://seekda.com/
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Figure 3.2: Distribution of Semantic Web Services based on service description from
[Klusch and Zhing, 2008]

descriptions (SWASDL4, WSDL-S [Akkiraju and et. al., 2005], OWL-S
[Burstein and et. al., 2004], WSMO/WSML [Lausen et al., 2005]). These so-
called Semantic Web services can better capture and disambiguate the service
functionality, allowing for formal, logic-based matchmaking. Figure 3.2 il-
lustrates a distribution of Semantic Web service description formats among
real-world Semantic Web Services. We will focus on the two most often used
formats, namely WSMO and OWL-S.

WSMO is an ontology with the four main concepts ontologies, Web Services,
Goals, and Mediators. Ontology describes the domain-knowledge that a service
relies on to provide the functionality. Web Services provides the semantic
description of a Web Service and goals provide the vocabulary to specify the
service request. Mediators define mappings between different specifications
of ontologies and goals. The Web Service Modeling Language (WSML) uses
WSMO and adds Description Logics and Logical Programming to describe
further aspects of a Web Service.

OWL-S describes a service by four components Service, Service Profile,
Service Process Model and Service Grounding. Service is an organizational
class to link to the three underlying components. Service profile describes the
high-level functionality while service process model describes the internal func-
tionality of the process. This allows to distinguish for example services that
have the same input and output parameters but a different algorithm to pro-
cess the data. Service grounding finally contains technical invocation details
like the endpoint URL. It is remarkable that in OWL-S both, a service discov-
ery request and a service description use the same format. This is particular
useful for discovering Web Services, which is also known as matchmaking.

3.1.2.2 Matchmaking of Semantic Web Services

Matchmaking describes the task of finding most appropriate Web Services for
a given service request, describing the requested functionality. A logic reasoner

4http://www.w3.org/2002/ws/sawsdl/
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is employed to infer subsumption relationships between requested and provided
service parameters [Paolucci et al., 2002, Li and Horrocks, 2003]. Along this
line, several matching algorithms assess the similarity between requested and
offered inputs and outputs by comparing the positions of the corresponding
classes in the associated domain ontology [Cardoso, 2006, Skoutas et al., 2007,
Skoutas et al., 2008]. Similarly, the work in [Bellur and Kulkarni, 2007] se-
mantically matches requested and offered parameters, modeling the match-
making problem as one of matching bipartite graphs. In [Hau et al., 2005],
OWL-S services are matched using a similarity measure for OWL objects,
which is based on the ratio of common RDF triples in their descriptions. An
approach for incorporating OWL-S service descriptions into UDDI is presented
in [Srinivasan et al., 2004], focusing also on the efficiency of the discovery pro-
cess. Efficient matchmaking and ranked retrieval of services is also studied
in [Constantinescu et al., 2005].

Given that logic-based matching can often be too rigid, hybrid approaches
have also been proposed. In an earlier work [Colgrave et al., 2004], the need
for employing many types of matching has been discussed, proposing the in-
tegration of multiple external matching services to a UDDI registry. The
selection of the external matching service to be used is based on specified
policies, e.g., selecting the first available, or the most successful. If more
than one matching services are invoked, again the system policies specify
whether the union or the intersection of the results should be returned. OWLS-
MX [Klusch et al., 2006] and WSMO-MX [Kaufer and Klusch, 2006] are hy-
brid matchmakers for OWL-S and WSMO services, respectively. More re-
cently, an approach for simultaneously combining multiple matching criteria
has been proposed [Skoutas et al., 2009].

On the other hand, some approaches already exist about involving the user
in the process of service discovery. Ontologies and user profiles are applied
in [Balke and Wagner, 2003], which are then used by techniques like query
expansion or relaxation to better satisfy user requests. The work presented
in [Xu et al., 2007] focuses on QoS-based Web service discovery, proposing a
reputation-enhanced model. A reputation manager assigns reputation scores
to the services based on user feedback regarding their performance. Then,
a discovery agent uses the reputation scores for service matching, ranking
and selection. The application of user preferences, expressed in the form
of soft constraints, to Web service selection is considered in
[Kießling and Hafenrichter, 2002], focusing on the optimization of preference
queries. The approach in [Lamparter et al., 2007] uses utility functions to
model service configurations and associated user preferences for optimal ser-
vice selection. In [Dong et al., 2004], different types of similarity for service pa-
rameters are combined using a linear function, with manually assigned weights.
Learning the weights from user feedback is proposed, but it is left as an open
issue for future work.
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3.1.3 Visualizing Semantic Web Data

One drawback of RDF data is that it does not contain meta-data about how to
display the information, like HTML does. Therefore, solutions for visualizing
Semantic Web data are required.

Currently, we can distinguish two main strategies for providing a view for
Semantic Web data: the first strategy visualizes RDF documents without tak-
ing into account any particularities of the underlying domain knowledge of
the RDF documents. Examples are Piggy Bank, Longwell5 or Brownsauce6.
These tools are, more appropriately, called RDF browsers.

The second strategy for providing Semantic Web browsing is focusing on
a certain domain, which might be narrow (as in the case of DynamicView
[Gao et al., 2005] or mSpace [Shadbolt et al., 2004]) or broad (Haystack
[Quan and Karger, 2004] or SEAL [Hartmann and Sure, 2004]). These ap-
proaches’ architectures are all based on a domain-specific fundament requiring
considerable modifications for applying them in other domains. At this time
there exists no approach that copes with both issues at the same time: be-
ing generic enough to handle any application domain while offering a domain
optimized user interface.

3.1.4 Discussion

In this section we gave a short introduction into the Semantic Web and out-
lined how RDF and OWL can be used for knowledge representation. A major
advantage of the Semantic Web is the clear distinction of data and meta-data,
which simplifies the exchange of information and the inference of new infor-
mation utilizing reasoning mechanisms.

We explored Service-oriented architectures, which split an application into
loosely-coupled distributed Web Services, having a clearly defined interface.
Semantic Web Services build upon the Service-oriented architecture and de-
scribe their functionality in a machine-readable format. With Semantic Web
Services, new applications can be created automatically by composing existing
services. Matchmaking is a technique for performing this automatic composi-
tion by discovering Semantic Web Services for a specific task.

3.2 Architecture of the Personal Reader Framework

The Personal Reader Framework (see Figure 3.3) aims at supporting program-
mers in the development of interoperable, personalized Semantic Web appli-
cations. Applications are split into logical parts and encapsulated in reusable

5http://simile.mit.edu/longwell/
6http://brownsauce.sourceforge.net/
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Figure 3.3: The basic Personal Reader Framework.

Web Services. The framework distinguishes three different types of services: a)
Personalization Services, b) Syndication Services, and c) a Connector Service.

Personalization Services (PServices for short) provide a specific personal-
ization functionality by accessing and processing a specific part of the Semantic
Web, mostly one specific domain. For this domain, PServices contain domain-
specific knowledge and offer methods to access, personalize and process the
Semantic Web data. These PServices are registered at the Connector Service
(CService for short) that maintains a directory of available PServices and their
offered functionality, stored as OWL-S [Burstein and et. al., 2004] description.
Syndication Services (SynServices for short), which contain the business logic
of an application, invoke the Connector Service to discover personalization
functional offered by PServices. Users enter an application by a user interface
that is optimized for their device and personal preferences. The user interface
is provided by the corresponding SynService. It reports user interactions to
the SynService and receives and visualizes personalized data.

A more detailed description about the SynServices, CService and PServices
is given in the next sections, as well as the communication between them (see
Section 3.2.4).
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3.2.1 Personalization Services

Applications can be enriched with personalization features in a plug-and-play
manner by using Personalization Services.

Typical examples of Personalization Services range from services that sim-
ply wrap non-RDF data sources – e.g. a service that calls the Flickr API7

considering the user’s preferences and transforms the Flickr results into RDF
using taxonomies like Dublin Core Metadata Element Set8 – to services that
carry out more complex tasks – e.g. a music recommender service that searches
for music and filters music items based on user’s preferences. This service 1)
detects feeds in the music domain, 2) filters the content of the detected feeds
according to the user profile and her context, and 3) aggregates the relevant
items into a new feed.

In general, Personalization Services provide a personalized view on data
available on the Semantic Web. To provide data, PServices perform mostly
reasoning or information filtering tasks and use different kinds of data for
the tasks: a) the applications context passed by the invoking SynService, b)
user data from a centralized repository [Abel et al., 2008] and c) the domain-
specific knowledge. Thus, applications can focus on their functionality instead
of taking care about changes in domain-specific knowledge or the processing
of input data.

Personalization Services are described using the Semantic Web Services
standard OWL-S [Burstein and et. al., 2004] so that they can be discovered
and used by other services at runtime. Therefore, the CService provides an
interface to register new PServices in the framework. After registration, new
PServices can be used immediately. The Personal Reader Framework pro-
vides the so-called Configuration Ontology to describe the input and output
parameters of PServices in a standardized vocabulary.

3.2.2 Syndication Services

The Syndication Services contain the business logic of an application and in-
teract directly with the CService and the user interfaces. A typical Personal
Reader setting, that illustrates how a SynService can offer added value by
combining different basic functionality, provided by PServices, is given within
the Personal Publication Reader [Abel et al., 2005]:

Personalization Service A provides users with recommendations for scien-
tific publications according to the users’ interests. Service B offers detailed
information about authors or researchers. By integrating both services via a
Syndication Service users can browse publications they like within an embedded
context.

7http://www.flickr.com/services/api/
8http://dublincore.org/documents/dces/
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To receive (personalized) data, SynServices invoke Personalization Services,
which allow a personalized access to a specific part of the Semantic Web. To in-
voke a PService, the SynService first creates an OWL-S based Service request.
The request contains a) the Semantic description of the needed functionality,
b) user-specific information that can be passed to the PService if it is exe-
cuted and c) further information that can be provided to invoke the PService
successfully (e.g. parameters like search keywords, etc.).

If the CService discovers appropriate PServices, a list of PService candidates
is passed to the SynService. The SynService selects some PServices that shall
be executed and invokes them by passing an invocation request to the CService.
The CService then passes the invocation request to the PServices and receives
the invocation results that are finally passed to the SynService. The Personal
Reader deliberately does not allow a direct communication between PService
and SynService to be able to better detect malicious services by observing the
communication and to adhere to user’s preferences regarding which services
shall be invoked.

3.2.3 Connector Service

The Connector Service (CService for short) is an application-independent cen-
tralized component which performs and controls information exchange be-
tween the single services (mainly between PService and SynService) within
the framework. Therefore all communication between PServices and SynSer-
vices is passed to the CService that forwards the messages to the corresponding
services. By controlling the communication at a central point, user’s restric-
tions on PServices are enforced. For example, users can define that only those
PServices shall be invoked that are free of charge or that are trusted by a
trust authority. Other pragmatic benefits of the centralized architecture are
the simplified registration and discovery of Syn- and PServices and a unified
access to centralized functionality.

The second task of the CService is to provide interfaces for application-
independent core functionality of the Personal Reader framework. This in-
cludes interfaces for user modeling tasks, which are passed to a central user
modeling service, managing lists of available PServices and SynServices and
the discovery of PServices with a specific functionality.

3.2.4 Message Exchange Format

The Configuration Ontology defines, on the one hand, the vocabulary that is
needed to describe the inputs of Web Services and, on the other hand, concepts
that are required for personalization functionalities. Figure 3.4 illustrates the
concepts of the Configuration Ontology.
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Figure 1: Configuration Ontology

4

Figure 3.4: Configuration Ontology for describing adjustable inputs of Personalization Ser-
vices.

Core Configurable Vocabulary (needed to describe a Configurable Web Ser-
vice):

Configurable An instance of this class characterizes the configurable inputs
of a Personalization Service. The name and a description of the Web
Service are defined as follows:

(#MyEarConfigurable, name, "MyEar Configurable")
(#MyEarConfigurable, description, "Configurable things of my MyEar Music Web Service")
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ConfigurableItem A Configurable consists of several ConfigurableItems. Example:

(#MyEarConfigurable, hasConfigurableItem, #DurationItem)
(#DurationItem, name, "Duration")
(#DurationItem, description, "Duration of a Song that should be

taken into account by my Web Service.")

Input Every ConfigurableItem has at least one Input. We define two special Inputs: a
SelectionInput, which allows only predefined values, and a TextInput, which allows
arbitrary values. For an Input a type, a minNumber- and a maxNumberOfInputValues

have to be specified. Example:

(#DurationItem, input, #MinDurationInput)
(#MinDurationInput, description, "The minimum duration of a song (in minutes)")
(#MinDurationInput, type, http://www.w3.org/2001/XMLSchema#nonNegativeInteger)
(#MinDurationInput, minNumberOfInputValues, 0)
(#MinDurationInput, maxNumberOfInputValues, 1)

(#DurationItem, input, #MaxDurationInput)
...

User and their configured Personalization Services – concepts needed to
realize personalization functionalities:

User This concept models the users of the Personal Reader. A User is a sub-
class of foaf:Person and is featured with a username, password, name,
etc. and a list of ConfiguredWebservices (hasConfiguredWebservice).
To link other descriptions, which characterize the user, we will use the
UMService as introduced in the following chapter. Example of a user:

(#user1, username, "user1")
(#user1, name, "John Doe")
(#user1, foafURL, "http://www.example.com/foaf.rdf")
(#user1, hasConfiguredWebservice, #user1MyEarJazzConfigWS)
...

ConfiguredWebservice This concept is used to store configurations of Web
Services made by a user. The properties name and description allow to
describe the concrete configuration. The boolean property isPublic in-
dicates whether a ConfiguredWebservice can be accessed and re-used by
other users than the user who configured it (isConfiguredBy). owlsURL
points to the OWL-S description of the Web Service that was config-
ured by the user and configurableURL points to the Configurable

description. The values that belong to the concrete configuration are
listed within the ListOfConfiguredValues. Example:

(#abelFabianMyEarJazzConfigWS, name, "Jazz Music")
(#abelFabianMyEarJazzConfigWS, description, "This configuration of the MyEar Music Web

Service effects the Web Service to aggregate
podcasting items that are related with Jazz.")

(#abelFabianMyEarJazzConfigWS, isPublic, "true")
(#abelFabianMyEarJazzConfigWS, isConfiguredBy, #abelFabian)
(#abelFabianMyEarJazzConfigWS, owlsURL, "...MyEar/rdf/MyEarOWLS.owl")
(#abelFabianMyEarJazzConfigWS, configurableURL, #MyEarConfigurable)
(#abelFabianMyEarJazzConfigWS, hasListOfConfiguredValues, #abelFabianMyEarJazzValueList)
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ListOfConfiguredValues This is a list of the values that are configured by
a user. Each ConfiguredValue has a value (range: typed Literals) and
a reference to the Input (inputForm) which defines what is applicable in
general. Example:

(#abelFabianMyEarJazzValueList, hasConfiguredValue, #abelFabianMyEarJazzValue1)
(#abelFabianMyEarJazzValue1, value, "3")
(#abelFabianMyEarJazzValue1, inputForm, #MinDurationInput)
(#abelFabianMyEarJazzValueList, hasConfiguredValue, #abelFabianMyEarJazzValue2)
...

3.2.5 Conclusion

The reuse of personalization functionality and sharing of corresponding al-
gorithms are an important requirement for the future of personalization (see
also Section 2). The Personal Reader architecture enables sharing and reuse
of personalization functionality across different applications by encapsulating
personalization functionality into PServices. The framework uses state-of-the-
art Semantic Web techniques and is due to the service based architecture
extensible. In the next sections, we will have a detailed view how generic
personalization functionality is provided by the framework.

3.3 Personalization in the Personal Reader Framework

The Personal Reader Framework provides mainly three building blocks for
personalization:

1. Personalization functionality provided by Personalization Services.

2. Personalized configuration of the invocation of a Personalization Services.

3. Personalized discovery of Personalization Services.

While the basic concept of the personalization functionality provided be the
PServices has been described in the last section, the personalized invocation of
PServices is provided by the Personal Reader Agent. The Agent tries to com-
plete PService invocation parameters automatically by searching appropriate
properties from the user profile. A detailed description about the Agent will
be given in chapter 5.

The personalized discovery of Personalization Services is handled in the
Personal Reader by incorporating user preferences expressed as ratings when
discovering PServices. The discovery is provided by a personalized matchmak-
ing algorithm, which we will describe in detail.
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Figure 3.5: Extended Personal Reader Architecture: the personalized matchmaking compo-
nent

3.3.1 Personalized Matchmaking of PServices

Personalization Services offer personalized functionality for applications. There
are many settings available where different personalization strategies can be
invoked to solve a problem. In the Personal Reader, we provide a meta-
personalization approach that selects Personalization Services based on user
preferences. Therefore, the provided functionality of each Personalization Ser-
vice is described by using Semantic Web techniques. OWL-S provides an
ontology to create a Web Service description that provides – among other in-
formation – input and output parameters of a Web Service. A Syndication
Service can specify a service request, describing the required functionality as
well as the application context information offered by the SynService.

We present a method for leveraging user feedback to improve the results of
the service discovery process implemented in the Personal Reader Framework
as Personalized Matchmaking Service: given a service request, the matchmaker
searches the repository for available services and returns a ranked list of can-
didate matches. Then, the system allows the user posing the query to rate
any of these matches, indicating how relevant or appropriate they are for this
request. The provided ratings are stored in the system for future use, when
the same or a similar request is issued.
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Designing intuitive, easy-to-use user interfaces, can help the process of col-
lecting user feedback. In this thesis, we do not deal with this issue; instead,
our focus is on how the collected feedback is processed and integrated in the
matchmaking process to improve the results of subsequent searches. Notice,
that it is also possible to collect user feedback automatically, assuming that
the system can track which service(s) the user actually used; however, this
information would typically be incomplete, since not all relevant services are
used.

3.3.1.1 Architecture of the Personalized Matchmaker

Typical service matchmaking systems are based on a unidirectional information
flow. First, an application that needs a specific Web Service to perform a task
creates a service request, containing the requirements that a service should
fulfill. This service request is then delivered to a matchmaking component that
utilizes one or more match filters to retrieve the best-matching services from
a repository of Semantic Web Service descriptions. These services are finally
returned to the application which invoked the matchmaker. The drawback
in this scenario is that if a service is not appropriate or sufficient for any
reason to perform the original task, the application has no option to inform
the matchmaker about the inappropriateness of this match result.

Hence, our matchmaking architecture is extended by a feedback loop, as
illustrated in Figure 3.6, enabling the matchmaking mechanism to use previ-
ously provided user feedback in order to improve the quality of the retrieved
results.

Enabling this feedback loop relies on the assumption that the application
users can assess the quality of retrieved Web services. This is a common
principle in Web 2.0 applications, where users can rate available resources.
One possibility is that users can rate services explicitly. If it is not possible or
easy for the users to rate services directly, the application can still infer implicit
ratings for a service through user behavior. For example, if an applications
uses services to generate music recommendations, then users can be asked
whether they consider the given recommendations appropriate. Based on the
assumption that services delivering high quality recommendations are better
matches for this task, the application can infer the relevance of a service, and
pass this information as a user rating to the matchmaking service.

The user ratings are stored in Personal Reader’s RDF-based user modeling
service, entitled UMService (see Chapter 4). As user ratings refer to a given
service request, each Rating instance contains the user who performed the
rating, the service request, the rated service, and finally a rating score that
ranges from 0 to 1 (with higher scores denoting higher rating). For example,
a rating from Bob about a request X and a service Y would be stored as:
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Figure 3.6: Matchmaking service with feedback component

<r:Rating>

<foaf:Person rdf:about="#bob"/>

<r:Request rdf:about="#requestX"/>

<r:Service rdf:about="#serviceY"/>

<r:Score rdf:datatype="&xsd;double">0.90</r:score>

</r:Rating>

The user feedback in form of ratings, is exploited by the user feedback
component. This component aggregates previous ratings provided by different
users, to determine the relevance between a service request and an actual
service.

Then, given a service request, the matchmaker component combines the
relevance score from the feedback component with the similarity scores calcu-
lated by the match filter(s) to assess the degree of match for each available
service, and returns a ranked list of match results to the application.
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3.3.1.2 Service Matchmaking

We first describe the basic service matchmaking and ranking process, with-
out taking into account user feedback. For this task, we adopt the approach
from [Skoutas et al., 2009]. The reason for this choice is that, as will be shown
in the next section, it allows us to integrate user feedback in a more flexi-
ble and seamless way. In the following, we give a brief overview of how the
matchmaking and ranking of services is performed.

Let R be a service request with a set of input and output parameters,
denoted by RIN and ROUT , respectively. We focus on input and output pa-
rameters; other types of parameters can be handled in the same way. We use
R.pj to refer to the j-th input parameter, where pj ∈ RIN (similarly for out-
put parameters). Also, assume an advertised service S with input and output
parameters SIN and SOUT , respectively. Note that S can be a match to R,
even when the cardinalities of their parameter sets differ, i.e., when a service
advertisement requires less inputs or produces more outputs than requested.

The matchmaking process applies one or more matching functions to assess
the degree of match among pairs of parameters. Each matching function,
denoted by mi, produces scores in the range [0, 1], where 1 indicates a perfect
match, while 0 indicates the lack of a match. Given a request R, a service
S, and a matching function mi, the match instance of S with respect to R is
defined as a vector si such that

si[j] =

 max
pk∈SIN

{mi(S.pk, R.pj)}, ∀j : pj ∈ RIN

max
pk∈SOUT

{mi(S.pk, R.pj)}, ∀j : pj ∈ ROUT

(3.1)

The match instance si has a total of d = |RIN | + |ROUT | entries that cor-
respond to the input and output parameters of the request. Intuitively, each
si entry quantifies how well the corresponding parameter of the request R is
matched by the advertisement S, under the matching criterion mi. Clearly,
an input (output) parameter of R can only match with an input (output)
parameter of S.

Let M be a set of matching functions. Given a request R and an adver-
tisement S, each mi ∈ M results in a distinct match instance. We refer to
the set of instances as the match object of the service S. In the following, we
use the terms service and match object interchangeably, denoted by the same
uppercase letter (e.g., S). On the other hand we reserve lowercase letters for
match instances of the corresponding service (e.g., s1, s2, etc.). The notation
si ∈ S implies that the match instance si corresponds to the service S. Hence,
a match object represents the result of the match between a service S and a
request R, with each contained match instance corresponding to the result of
a different match function.
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Match Filter Book Price
M0 0.88 1.00
M1 0.93 1.00
M2 0.69 1.00
M3 0.72 1.00
M4 0.93 1.00

Table 3.1: Example of the match object for the request book price service.owls and the
service novel price service.owls

As a concrete example, consider the request
book price service.owls and the service novel price service.owls, both
taken from the service collection OWLS-TC and matched applying the five
matching filters M0–M4 of the OWLS-MX service matchmaker (see Sec-
tion 3.3.1.5 for more information about OWLS-TC and OWLS-MX). The re-
sulting match object is shown in Table 3.1.

Next, we describe how services are ranked based on their match objects.
Let I be the set of all match instances of all services. Given two instances
u, v ∈ I, we say that u dominates v, denoted by u � v, iff u has a higher or
equal degree of match in all parameters and a strictly higher degree of match
in at least one parameter compared to v. Formally

u � v ⇔ ∀i u[i] ≥ v[i] ∧ ∃j u[j] > v[j] (3.2)

If u is neither dominated by nor dominates v, then u and v are incomparable.

Given this dominance relationship between match instances, we proceed
with defining dominance scores that are used to rank the available service
descriptions with respect to a given service request. Intuitively, a service should
be ranked highly in the list if

• its instances are dominated by as few other instances as possible, and

• its instances dominate as many other instances as possible.

To satisfy these requirements, we formally define the following dominance
scores, used to rank the search results for a service request.

Given a match instance u, we define the dominated score of u as

u.dds =
1

|M|
∑
V 6=U

∑
v∈V

|v�u| (3.3)

where |u � v| is 1 if u � v and 0 otherwise. Hence, u.dds accounts for the
instances that dominate u. Then, the dominated score of a service U is defined
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as the (possibly weighted) average of the dominated scores of its instances:

U.dds =
1

|M|
∑
u∈U

u.dds (3.4)

The dominated score of a service indicates the average number of services that
dominate it, i.e., a lower dominated score indicates a better match result.

Next, we look at the instances that a given instance dominates. Formally,
given a match instance u, we define the dominating score of u as

u.dgs =
1

|M|
∑
V 6=U

∑
v∈V

|u�v| (3.5)

Similarly to the case above, the dominating score of a service U is then defined
as the (possibly weighted) average of the dominating scores of its instances:

U.dgs =
1

|M|
∑
u∈U

u.dgs (3.6)

The dominating score of a service indicates the average number of services that
it dominates, i.e., a higher dominating score indicates a better match result.

Finally, we define the dominance score of match instances and services, to
combine both of the aforementioned criteria. In particular, the dominance
score of a match instance u is defined as

u.ds = u.dgs− λ · u.dds (3.7)

where the parameter λ is a scaling factor. This promotes u for each instance it
dominates, while penalizing it for each instance that dominates it. Then, the
dominance score of a service U is defined as the (possibly weighted) average
of the dominance scores of its instances:

U.ds =
1

M

∑
u∈U

u.ds (3.8)

The ranking process comprises computing the aforementioned scores for
each service, and then sorting the services in descending order of their dom-
inance score. Efficient algorithms for this computation can be found in
[Skoutas et al., 2009].

3.3.1.3 Incorporating User Feedback

As described in Section 3.3.1.1, our approach is based on the assumption that
the system collects feedback from the users by allowing them to rate how
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appropriate the retrieved services are with respect to their request. Assume
that the collected user ratings are stored as a set T ⊆ U ×R× S × F in the
Ratings Database, where U is the set of all users that have provided a rating,
R is the set of all previous service requests stored in the system, S is the set
of all the available Semantic Web service descriptions in the repository, and
F ∈ [0, 1] denotes the user rating, i.e., how relevant a particular service was
considered with respect to a given request (with higher values representing
higher relevance). Thus, a tuple T = (U,R, S, f) ∈ T denotes that a user U
considers the service S ∈ S to be relevant for the request R ∈ R with a score
f .

To aggregate the ratings from different users into a single feedback score,
different approaches can be used. For example, [Whitby et al., 2004] em-
ploys techniques to identify and filter out ratings from spam users, while
[Yu et al., 2004] proposes the aging of feedback ratings, considering the more
recent ratings as more relevant. It is also possible to weight differently the
ratings of different users, assigning, for example, higher weights to ratings pro-
vided previously by the same user as the one currently issuing the request, or
by users that are assumed to be closely related to him/her, e.g., by explicitly
being included in his/her social network or being automatically selected by the
system through techniques such as collaborative filtering or clustering. How-
ever, as the discussion about an optimal aggregation strategy for user ratings
is orthogonal to our main focus in this paper, without loss of generality we
consider in the following all the available user ratings as equally important.
Therefore, we calculate the feedback value as the average of all user ratings
of the corresponding service. Hence, the feedback score fb between a service
request R ∈ R and a service advertisement S ∈ S is calculated as:

fb(R, S) =

∑
(U,R,S,f)∈T

f

|{(U,R, S, f) ∈ T }|
(3.9)

However, it may often occur that for a given pair of a request R and a
service S, no ratings (U,R, S, f) exist in the database. This may be because
the request R is new, or because the service S has been recently added to the
database and therefore has been rated only for a few requests. Moreover, even
if some ratings exist, they may be sparse and hence not provide sufficiently
reliable information for feedback. In these cases, Equation (3.9) is not appro-
priate for determining the feedback information for the pair (R, S). To address
this issue, we generalize this method to consider not only those ratings that
are directly assigned to the current service requests R, but also user ratings
that are assigned to requests that are similar to R. Let SIM(R) denote the
set of requests which are considered to be similar to R. Then, the feedback
can be calculated as:
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fb(R, S) =

∑
(U,Q,S,f)∈T :Q∈SIM(R)

f ∗ sim(R,Q)

|{(U,Q, S, f) ∈ T : Q ∈ SIM(R)}|
(3.10)

In Equation (3.10), sim(R,Q) is the match instance of Q with respect to R,
calculated by a similarity measure mi, as discussed in Section 3.3.1.2. Notice
that sim(R,Q) is a vector of size equal to the number of parameters of R, hence
in this case fb(R, S) is also such a vector, i.e., similar to a match instance.
Also, Equation (3.9) can be derived as a special case of Equation (3.10), by
considering SIM(R) = {R}. By weighting the given feedback by the similarity
between the requests, we ensure that feedback from requests which are more
similar to the considered one, is taken more into account.

A question that arises is how to select the similar requests for a given request
R, i.e., how to determine the set SIM(R). This choice involves a trade-off.
Selecting a larger number of similar queries allows the use of more sources
of information for feedback; however, if the similarity between the original
request and the selected ones is not high enough, then the information from
this feedback is also not highly appropriate, and may eventually introduce noise
in the results. On the other hand, setting a very strict criterion for selecting
similar queries, reduces the chance of finding enough feedback information.
As a solution to this trade-off, we use a top-k query with constraints: given a
request R, we select the top-k most similar requests from the database, given
that the values of their match instances are above a specified threshold.

The process described above results in a feedback instance fb(R, S) for the
given request R and a service S. The next step is to integrate this instance
to the match object of the service S, comprising the other instances obtained
by the different similarity measures mi. We investigate two different strategies
for this purpose:

1. Feedback instance as an additional match instance. In this case we add the
feedback information to the match object of the service as an additional
instance (combined with the average of the previous values). That is,
this method treats the feedback mechanism as an extra matchmaking
function.

2. Feedback instance integrated with match instances. In this case we update
the values of the match instances by adding the values of the feedback
instance. That is, this method adjusts the results of the matchmaking
functions applying the feedback information.

As a concrete example, consider the match object presented in Table 3.1.
Assume that the feedback instance for the pair (book price service.owls,
novel price service.owls) is
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(a) Method 1

Match Filter Book Price
M0 0.88 1.00
M1 0.93 1.00
M2 0.69 1.00
M3 0.72 1.00
M4 0.93 1.00

AVG(Mi)+FB 1.60 2.00

(b) Method 2

Match Filter Book Price
M0+FB 1.65 2.00
M1+FB 1.70 2.00
M2+FB 1.46 2.00
M3+FB 1.49 2.00
M4+FB 1.70 2.00

Table 3.2: Example of the match object for the request book price service.owls

and the service novel price service.owls updated using feedback information

fb = [0.77 1.00].

Then this match object will be modified as shown in Table 3.2.

3.3.1.4 Personalized Matchmaking

For the personalized matchmaking, we use a domination based matchmaking
approach, as described in [Skoutas et al., 2009]. This approach uses the skyline
algorithm [Kossmann et al., 2002] to combine multiple matchmaking metrics.
Besides the existing matchmaker metrics M0−M4 from the OWLS-MX match-
maker [Klusch et al., 2006], we define an additional metric recx, that expresses
whether a service shall be recommended to a user or not.

Assume that the collected user ratings are stored as a set T ⊆ U×R×S×F
in the ratings database, where U is the set of all users that have provided a
rating, R is the set of all previous service requests stored in the system, S is
the set of all the available Semantic Web service descriptions in the repository,
and F ∈ [0, 1] denotes the user rating, i.e., how relevant a particular service
was considered with respect to a given request (with higher values representing
higher relevance). Thus, a tuple T = (U,R, S, f) ∈ T denotes that a user U
considers the service S ∈ S to be relevant for the request R ∈ R with a score
f .

The recommendation score rec1 of a service s1 and a given request r1 for a
specific user u1 can be calculated as the average of the previous ratings from
the user u1 for service s1 in respect to request r1:

rec1(u1, s1, r1) =

∑
(u1,s1,r1,f)∈T f

|{(u1, s1, r1, f) ∈ T |}
(3.11)

However, if a user specifies a request for the first time this formula is not
applicable. We can overcome this new-request problem by assuming that for
similar requests a user will rate services similarly.

If SIMr ⊆ R denotes a set of services requests that are considered as similar
to a given service request r and sim(r1, r2) ∈ [0, 1] denotes the similarity value
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between r1 and r2, rec2 is calculated by:

rec2(u1, s1, r1) =

∑
x∈X f ∗ sim(r1, r2)

|X|
(3.12)

with

X := {(u1, s1, r2, f) ∈ T : r2 ∈ SIMr1} (3.13)

Hence, the more similar a request r2 is to a given request r1, the more
important is the given feedback of s1 to r2 for r1.

As the amount of available Web Services grows rapidly (already today the
latest OWLS test collection9 contains more than 1000 Semantic Web Services)
the user ratings - service matrix will become very sparse. Hence, the above
formula will not be applicable in many cases.

To overcome the sparsity problem, we now consider also ratings from other
users u2, which are similar to the given user u1. We consider users to be similar
if they have rated services similarly. Assume that the users are represented by
their rating vector, sim(u1, u2) denotes the cosine similarity between the two
rating vectors of the users u1 and u2. Further, SIMu contains the set of users
that are considered to be similar to user u. Then, the collaborative filtering
approach as presented in [Shardanand and Maes, 1995] can be applied to rec3

by:

rec3(u1, s1, r1) =

∑
y∈Y f ∗ sim(u1, u2) ∗ sim(r1, r2)

|Y |
(3.14)

with

Y := {(u2, s1, r2, f) ∈ T : r2 ∈ SIMr1, u2 ∈ SIMu1} (3.15)

Hence, ratings from very similar users that rated a service s1 in the context
of a given request r2 that is very similar to the request r1 is considered as
highly relevant for the recommendation score of s1 in respect to r1.

3.3.1.5 Experimental Evaluation

In this section, we evaluate the quality of our feedback-based matchmaking
approach in comparison to state-of-the-art matchmaking algorithms.

9available at http://www.semwebcentral.org/projects/owls-tc/
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Collection # of requests # of services # of rel. services per req. (average)
OWL-S TC I 28 576 15.2
OWL-S TC II 28 1007 25.4

Table 3.3: Characteristics of the test collections

Experimental Setup We have implemented the feedback-based matchmaking
and ranking process described in Sections 3.3.1.2 and 3.3.1.3. The imple-
mentation utilizes the OWLS-MX service matchmaker [Klusch et al., 2006],
to process service requests and advertisements described in OWL-S, and to
compute the pairwise similarities between parameters. In particular, OWLS-
MX provides 5 different matching filters. The first performs a purely logic-
based match (M0). The other four perform hybrid match, by combining the
semantic-based matchmaking with the following measures: loss-of-information
(M1), extended Jaccard similarity coefficient (M2), cosine similarity (M3), and
Jensen-Shannon information divergence based similarity (M4). Notice, that
for each pair (R, S) of a service request and service advertisement, OWLS-MX
applies one of the filters M0–M4, and calculates a single score denoting the
degree of match between R and S. We have modified this functionality to get
all the individual degrees of match between the compared parameters of R and
S (i.e., a vector); also, we have applied for each pair (R, S) all the similarity
measures M0–M4, to get the individual match instances, as described in Sec-
tion 3.3.1.2. Finally, our implementation includes also the process described
in Section 3.3.1.3 for processing and using the available feedback information.

For our experiments, we have used the publicly available service retrieval
test collection OWLS-TC v210. This collection comes in two versions, an orig-
inal one containing 576 services, and an extended one, containing 1007 ser-
vices. To better assess the performance of our method, we have conducted our
experiments on both versions, denoted in the following as OWLS-TC I and
OWLS-TC II, respectively. The contained service descriptions are based on
real-world Web services, retrieved mainly from public IBM UDDI registries,
covering 7 different domains, such as economy, education, and travel. Also, the
collection comprises a set of 28 sample requests. Notice that the extended ver-
sion of the collection comprises one extra request, namely EBookOrder1.owls;
however, in our experiments, we have excluded this request, so that in both
cases the set of queries used for the evaluation is the same. For each request,
a relevance set is provided, i.e., the list of services that are considered relevant
to this request, based on human judgement. The characteristics of the two
data sets are summarized in Table 3.3.

To evaluate our feedback-based mechanism, there needs to be, for each

10This collection is available at http://projects.semwebcentral.org/projects/owls-tc/. Before
running the experiments we have fixed some typos that prevented some services from being processed
and/or retrieved.
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Figure 3.7: Precision-Recall curve for the OWLS test collections

request, at least one similar request for which some services have been rated as
relevant. As this was not the case with the original data set, due to the small
number of provided requests, we have extended both of the aforementioned
collections by creating a similar query for each of the 28 original ones. This
was done by selecting a request, then selecting one or more of its input and/or
output parameters, and replacing its associated class in the ontology with
one that is a superclass, subclass or sibling. Then, for each of these newly
created queries, some of the services in the collection were rated as relevant. To
simplify this task, we have restricted our experimental study in binary ratings,
i.e., the value of the user rating was either 1 or 0, based on whether the user
considered the service to be relevant to the request or not. The new queries
and the ratings, provided in the form of corresponding relevance sets, are made
available for further use at: http://www.l3s.de/~krause/collection.tar.

gz.

Experimental Results In the following, we evaluate the performance of our
approach, including both strategies described in Section 3.3.1.3. For this pur-
pose, we compare the retrieved results to the ones produced without taking
user feedback into consideration. In particular, we have implemented and
compared the following 5 methods:

• NF1 : no feedback is used; one match instance per service is considered.
The values of the match instance are the degrees of match between the
request and service parameters, computed applying the Jensen-Shannon
similarity measure, i.e., the filter M4 from OWLS-MX, which is shown
in [Klusch et al., 2006] to slightly outperform the other measures.

• NF5 : no feedback is used; five match instances per service are considered.
The values of the match instances are the degrees of match between the
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request and service parameters computed by the filters M0–M4 of OWLS-
MX.

• FB1 : feedback is used; one match instance per service is considered. The
values of the match instance are the sum of the degrees of match between
the request and service parameters computed by M4 and the feedback
values calculated by Equation (3.10).

• FB5 : feedback is used; five match instances per service are considered.
The value of each match instance is the sum of the degrees of match
between the request and service parameters computed by one of the mea-
sures M0–M4 and the feedback values calculated by Equation (3.10).

• FB6 : feedback is used; six match instances per service are considered.
The values of the first five match instances are the degrees of match be-
tween the request and service parameters computed by the filters M0–M4.
The values of the sixth match instance are computed as the averages of
the previous ones plus the feedback values calculated by Equation (3.10).
Notice, that the reason for using also the average values of the initial in-
stances, instead of only the feedback values, is mainly to avoid penalizing
services that constitute good matches but have not been rated by users.

To measure the effectiveness of the compared approaches, we apply the
following standard IR evaluation measures [Manning et al., 2008]:

• Interpolated Recall-Precision Averages : measures precision, i.e., percent
of retrieved items that are relevant, at various recall levels, i.e., after a
certain percentage of all the relevant items have been retrieved.

• Mean Average Precision (MAP): average of precision values calculated
after each relevant item is retrieved.

• R-Precision (R-prec): measures precision after all relevant items have
been retrieved.

• bpref : measures the number of times judged non-relevant items are re-
trieved before relevant ones.

• Reciprocal Rank (R-rank): measures (the inverse of) the rank of the top
relevant item.

• Precision at N (P@N): measures the precision after N items have been
retrieved.
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(a) OWLS-TC I

Method MAP R-prec bpref R-rank P@5 P@10 P@15 P@20

FB6 0.8427 0.7772 0.8206 0.9762 0.9214 0.8357 0.7690 0.6589
FB5 0.8836 0.7884 0.8600 1.0000 0.9714 0.8857 0.7952 0.6696
FB1 0.8764 0.7962 0.8486 1.0000 0.9786 0.8786 0.7929 0.6625
NF5 0.8084 0.7543 0.7874 0.9405 0.9071 0.7964 0.7500 0.6393
NF1 0.8027 0.7503 0.7796 0.9405 0.9214 0.8143 0.7357 0.6357

(b) OWLS-TC II

Method MAP R-prec bpref R-rank P@5 P@10 P@15 P@20

FB6 0.8426 0.7652 0.8176 1.0000 0.9714 0.8964 0.8476 0.7875
FB5 0.9090 0.8242 0.8896 1.0000 0.9857 0.9679 0.9214 0.8536
FB1 0.8960 0.8024 0.8689 1.0000 0.9857 0.9607 0.9167 0.8411
NF5 0.8007 0.7388 0.7792 0.9643 0.9429 0.8607 0.8119 0.7536
NF1 0.7786 0.7045 0.7499 0.9643 0.9357 0.8607 0.7976 0.7268

Table 3.4: IR metrics for the OWLS test collections

Figure 3.7 plots the precision-recall curves for the 5 compared methods,
for both considered test collections. Overall, the main observation is that the
feedback-aware methods clearly outperform the other two ones in both test
collections. The best overall method in both collections is FB5, because it
provides two advantages: a) it utilizes user feedback, and b) it combines all
the available similarity measures for matchmaking service parameters. The
method FB1, which combines feedback information with the Jensen-Shannon
hybrid filter, also demonstrates a very high accuracy. The method FB6, which
treats the feedback information as an additional match instance, achieves lower
precision, but it still outperforms the non-feedback methods. This behavior
is due to the fact that although feedback is utilized, its impact is lower since
it is not considered for the 5 original match instances, but only as an extra
instance. Regarding NF5 and NF1, the former exhibits better performance,
which is expected as it combines multiple similarity measures. Another inter-
esting observation is that FB5 and FB1 follow the same trend as NF5 and
NF1, respectively, which are their non-feedback counterparts, however having
considerably higher precision values at all recall levels. Finally, for the collec-
tion OWLS-TC II, which comprises an almost double number of services, the
trends are the same as before, but with the differences between the feedback-
aware and the non-feedback methods being even more noticeable. Another
interesting observation in this case is that after the recall level 0.8 the pre-
cision of FB1 drops much faster than that of FB6; thus, although FB1 has
an overall higher performance than FB6, the latter appears to be more sta-
ble, which is due to having more instances per match object, i.e., taking into
account more similarity measures.

Table 3.3.1.5 presents the results for the other IR evaluation metrics dis-
cussed above. These results again confirm the aforementioned observations.
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For all the considered metrics, FB5 and FB1 perform better, followed by
FB6.

3.3.2 Conclusion

Current state-of-the-art matchmaking algorithms generate recommendations
regardless of a user’s preferences. This issue becomes more serious as most
modern Web 2.0 applications allow users to explicitly express their opinion by
giving feedback about available resources, in the form of rating, tagging, etc.
We extended the Personal Reader Framework to collect user feedback on re-
trieved services and incorporate it in the Semantic Web Service matchmaking
process. We have proposed different methods to combine user feedback with
dominance based-matchmaking algorithms in order to improve the quality of
the match results. To overcome the problem of limited amount of feedback or
of previously unknown requests (i.e., where no previous feedback is available
for the request), we utilize information from similar requests. To compare
our feedback-aware matchmaking strategies to state-of-the-art matchmaking
algorithms that do not take feedback into account we used a publicly avail-
able collection of OWL-S services. Our experimental results show that user
feedback is a valuable source of information for improving the matchmaking
quality.

3.4 Critical Review of the Personal Reader Framework

In the introduction we defined five research questions that need to be tackled to
provide support for personalization in Web Service-based environments. We
will now revise these questions and verify if the proposed Personal Reader
Framework can help to answer the questions. The five questions were:

1. Can the strongly-coupled personalization process of monolithic applica-
tions be divided into logic and independent services?

2. Can such personalization services be reused in various applications?

3. How shall user profiles be stored, maintained, and accessed in a Semantic
Web Service-based environment?

4. Can personalization be used to orchestrate personalized applications from
single Web Services?

5. Which requirements need to be fulfilled by a personalization framework
and which support need to be offered to assist the programmer to create
personalized applications?



CHAPTER 3. A FRAMEWORK FOR GENERIC PERSONALIZATION 57

Regarding question 1: the Personal Reader Framework splits an application
into logical parts and encapsulates them into Web Services. An applications
consists of an Syndication Service and is supplemented by Personalization Ser-
vices: while SynServices encapsulate the application logics, PServices encap-
sulate personalization functionality into Semantic Web Services. An example
for such a PService is a content-based recommender algorithm: the idea is that
the SynService delivers input data, like items and their features, the algorithm
then processes the data and generates recommendations which are passed back
to the SynService. In the Personal Reader Framework, there exists a reasonable
amount of PServices (detailed statistics will be given in Chapter 5), which sim-
plifies the (re-)use of personalization in new applications and showcases that
personalization can be externalized in various application scenarios.

Regarding question 2: the Personal Reader Framework supports applica-
tion developers to reuse existing PServices. The plug-and-play concept al-
lows existing applications to benefit from future improvements of algorithms
and newly emerging PServices. PServices can be used and interpreted off the
shelf and hence decrease development costs of personalized applications sig-
nificantly. This motivates programmers to discover and use existing PServices
during runtime. Our state-of-the-art matchmaking algorithm does not only
take the global quality of a service into account when it searches for PServices,
but also preferences of a user. Different real-world scenarios will be presented
in Chapter 5 where PServices are successfully reused by different applications.

Regarding question 3: the UMService, which will be presented in detail in
the next chapter, is a centralized component in the Personal Reader Framework
and allows all Personal Reader services to store and access the profiles of the
users. For the users, the advantage of keeping profile data separate from the
applications in a centralized repository is that they need to maintain and
update only one profile. Slow adjustment of personalization is reduced as new
services can access the entire user profile if the users allow this. A simple-to-
use user interface allows user to specify precisely which service is allowed to
access what kind of user data. Developers have the advantage of a simplified
management of user profile data as defined interfaces for accessing and storing
data exist.

Regarding question 4: in the Personal Reader, applications are orchestrated
according to a user’s preferences by: a) allowing to fill PService invocation pa-
rameters based on user profile information and b) select PServices, that a
SynService should invoke, based on user preferences. Compared to existing
personalized applications, not only the data, interface or functionality is per-
sonalized, but also the composition of the application code is selected based
on user preferences.

Regarding question 5: a personalization framework needs to support the
entire lifecycle of a personalized application. The Personal Reader Framework
provides support for the creation of PServices, SynService and entire Personal
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Reader applications: Personal Reader libraries transform RDF messages into
Java objects and vice versa so that programmers do not need to have a deeper
understanding of Semantic Web techniques. The matchmaker simplifies the
discovery of existing, reusable personalization functionality while the UMSer-
vice takes care on persisting and retrieving information about the user. All
central services can be invoked by simple Java methods without the need to
instantiate a Web Service or performing Web Service calls. Utilizing the Per-
sonal Reader framework, an application developer can focus on creating the
application logic while personalization and user modeling can be implemented
with a low additional implementation effort.

3.5 Conclusion

In this chapter we presented the core components of the Semantic Web and
introduced the concept of service-oriented architectures. The building blocks
of a SOA application, namely Web Services are annotated by machine-readable
metadata and become so-called Semantic Web Services. Semantic Web Ser-
vices allow an automatic discovery of functionality with the help of match-
making. The Personal Reader Framework building upon those Semantic Web
techniques and assists programmers at the creation of personalized, service-
based applications. The single building blocks of a Personal Reader applica-
tion, namely PServices, for providing external personalization functionality,
SynService, which encapsulate the business logic of an application and search
for PServices, and the Connector service, supporting the discovery and com-
munication with PServices, were introduced. The underlying concepts of the
Personal Reader Framework, namely plug-and-play personalization and encap-
sulation of personalization functionality are ensured by the architecture.

We have shown and discussed that the Personal Reader contributes to the
state-of-the-art in the area of personalization by encapsulating generic person-
alization functionality, fostering reuse of existing personalization algorithms.
In the area of matchmaking, we provide a personalized matchmaking algo-
rithm, which incorporates Web 2.0-style feedback, namely ratings, into the
matchmaking process. Evaluations prove that our personalized matchmaker
outperforms non-personalized state-of-the-art matchmaker.



Chapter 4

Web Service-based Generic User
Modeling

In traditional desktop environments, users interact with an application over
a long term. Hence, applications can create user profiles by observing the
behavior of the users and due to the long-term usage users are mostly will-
ing to adapt applications by explicitly specifying applications’ options. On the
Web, applications are created via a dynamic network of services that are inter-
weaved with each other. In such setting, the number of available applications
increases while users access most of such web applications only seldomly or
just once. This effect is even enforced when using the Personal Reader Frame-
work: for example, a user accesses an application by invoking a SynService,
which calls two other PServices to provide the requested functionality. While
the SynService can gather low-level events, like mouse clicks, it will pass only
those user-specific events and observations to a PService that are required to
execute the PService. However, PServices contain background knowledge that
enable them to interpret user interactions in the context of the domain and
thus infer knowledge about a user that would not have been possible without
background knowledge. Therefore, it is important that different services can
create and update a central user profile collaboratively.

When a service is accessed for the first time, it cannot rely on the users’ sup-
port to provide (sensitive) user profile data. Instead, services need to retrieve
and exchange existing information about a user in order to build a detailed pro-
file about a user and avoid the cold start problem [Schein et al., 2002]. In Sec-
tion 4.1 we will inspect related work in the area of generic user modeling: typ-
ical solutions for a shared user profile are User Modeling Servers [Kobsa, 2001]
or approaches that use a Lingua franca, like the Generalized User Modeling
Ontology [Heckmann et al., 2005]. However, both approaches require the ser-
vices to refuse their own user profile storage format and adhere to a shared
format. If new concepts, or facets of a user need to be described, these central
vocabularies needs to be changed.

59
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In Section 4.2 we propose the User Modeling Service (UMService for short),
a domain-independent central storage place for cross-application user profiles,
that enables services to use their own vocabulary to model a user. The UMSer-
vice is a centralized web service, storing and maintaining the user profiles and
providing interfaces to access and modify the profile information. The service
can be accessed via the Connector Service (see Figure 4.1), which provides
interfaces to the UMService to be accessed by Syn- and PServices.

A serious concern of shared user profiles are privacy issues: while a trustful
application known by the user is allowed to access her bank account informa-
tion, an unknown application should not be allowed to access the same data.
Existing work on RDF data protection does not suit to enforce user-defined
policies on RDF-based user profiles: available solutions do not handle contex-
tual information in a proper way, as they either require a large amount of mem-
ory or unacceptably increase the response time. To address these problems we
decided to enforce access control as a layer on top of RDF stores (see Section
4.2.5), which also has the positive side-effect of making our solution store-
independent. For this access control system, rule-based policy languages, like
Protune [Bonatti and Olmedilla, 2005a, Bonatti and Olmedilla, 2005b], can be
used as they allow precisely to specify which application can operate on which
data at which time. We realize a user interface that enables non-expert users
to control the access to their RDF-based user profiles. For the ease-of-use we
provide configurable access policy templates and embed them into the user
interface. The user interface provides immediate feedback to the user, which
includes information about which part of the RDF data is covered by the
policy and additionally a graphical presentation about consequences that the
specified policy has.

4.1 Related Work on Generic User Modeling

Jameson [Jameson, 2003] defines user modeling as a task, which fills the user
profile by processing the low-level information about the user (see Figure 4.2).
This low-level information is collected by the application and is simple and
non-processed observations, like click events. Reasoning is used to fill the final
user profile with high-level information about the user.

Please note that some authors, like Jameson, call the user profile also the
user model. We use the term user profile for information about a user that
is stored (for example, processed high-level inferences or non-processed demo-
graphic data or direct input by the user)1. We refer to the term user model if
we describe the rule-set or formalism that describes how to transfer observa-
tions into high-level user profile information.

1we also consider observations as part of the user profile if these observations are stored and could be
used in a later point of time for applying personalization or inferring high-level information
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Figure 4.1: Extended Personal Reader Architecture: the user modeling component

Figure 4.2: General schema of a user modeling and adaptation process from [Jameson, 2003]

We consider a user modeling system generic if all the central components of
such a system are domain- and application-independent. By domain-indepen-
dence we refer to the fact that the core components of a user modeling sys-
tem do not provide or rely on domain-specific functionality or information.
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Application-independence means that different applications can use the user
modeling system for different usage settings. A generic user modeling sys-
tem is composed of several central components: events can either be detected
and reported generically on the user modeling system’s site or be provided in
a generic format by the non-generic applications. The user modeling process,
the user profile itself as well as parts of the user profile application, namely the
process of deriving personalized data based on the user profile (for example, the
generation of recommendations), shall be generic. The non-generic application
can use additional domain-knowledge to adapt the application further (for ex-
ample filter the delivered recommendations by availability in a shop). In this
section, we first present User Modeling Shells and User Modeling Servers that
offer generic user modeling functionality. We then discuss generic user profile
storage formats and finally cover related issues like shared user modeling as
well as handling privacy issues. For examples of generic algorithms, that apply
the user profile, we refer to presented related work for generic personalization
(see Section 2.1).

4.1.1 User Modeling Shells

The first approaches to separate user modeling from the application, were
coined User Modeling Shells [Kobsa, 1990] to express the interaction character
of the systems. First systems, like the GUMS [Finin and Drager, 1986] or
the BGP-MS [Kobsa and Pohl, 1995] provided high-level functions to query
and update the user profile and maintained the user profiles apart from the
application.

GUMS provides methods to add new information about a user and to query
the GUMS user profile. Stereotypic user modeling [Rich, 1979] is used to
complete user profile information: predefined stereotypes contain user profile
properties, which are considered to be valid for a stereotypic group of users
(e.g. the group of computer scientists have a high interest in math). So-called
triggers describes the required observations (e.g. a user accesses the computer
science faculty’s website) that are sufficient to assign a user to a stereotype.
Overall, GUMS focuses at modeling the long-term user profile of a user.

BGP-MS, in comparison, allows an application to report the user’s actual
goal or observations, aiming at the short term user context. As the shell is –
from a programmer’s perspective – a part of the application, it can also initiate
interaction with the application’s user interface component to interact with the
user directly or to inform the application about important events (like newly
drawn conclusions) in the user profile. Inference capability is offered by some
pre-defined components that the application’s developer needs to enrich by
domain knowledge. User profile exchange as well as distributed user modeling
were originally not covered in User Modeling Shells.
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Figure 4.3: Layout of the CUMULATE server from [Brusilovsky et al., 2005a]

4.1.2 User Modeling Servers

In comparison to User Modeling Shells, User Modeling Servers are appli-
cation-independent software components that provide well-defined interfaces.
A detailed comparison of different User Modeling Servers is given by Fink
[Fink, 2004]. We will showcase the servers: CUMULATE and PersonIs.

4.1.2.1 CUMULATE

CUMULATE [Brusilovsky et al., 2005a, Yudelson et al., 2007] is a user mod-
eling server for the E-Learning domain and was developed by Brusilovsky et
al. CUMULATE uses a topic-based overlay model to represent the knowledge
level of students. Course authors therefore have to specify topics that are cov-
ered by their course and define how activities that can be performed within an
E-Learning system should influence the knowledge level of a topic.

The CUMULATE server contains two independent repositories (see Figure
4.3), a so-called event storage and an inferenced user model. The E-Learning
applications log low-level user activity and send them as events to the CU-
MULATE server that stores the events directly in the event storage. So-called
inference agents then access the raw event data and try to infer from the events
information about the topic-based knowledge of the user. The inference agents
finally update the user profile accordingly.

4.1.2.2 PersonIs

The PersonIs [Kay et al., 2002] architecture is focussed on user control and
scrutability. It is composed of the PersonIs User Model Server (see Figure
4.4), that stores the user profile information. User profile data is delivered by
the applications, which are in the PersonIs architecture adaptive hypermedia
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Figure 4.4: Layout of the PersonIs server from [Kay et al., 2002]

systems. It is remarkable that for every application, a separate scrutinity inter-
face is offered that allows users to inspect and control their user profile. Views
offer access to a (limited) part of the user profile provided by the PersonIs User
Model Server. This ensures that only that part of the user profile is provided
to that application that is needed and can be processed by the application.
Views are also used to enforce user controlled access rules, hiding confidential
user profile information from an application.

The storage format of the PersonIs user profile contains attribute-value pairs
together with evidences. These evidences are observations and actions taken by
the system’s reasoners as reaction of the observation (for example activation of
a stereotype). PersonIs offers two methods, tell and ask to submit observations
and retrieve user profile information.

4.1.3 Generic User Profile Formats

The presented User Modeling Shells and Servers operate purely on a self-
defined data format and do not describe the stored information in a semantic
way. Hence, applications have to specify exactly what kind of information
in which storage format they need. A search using inference to specify the
required information on a semantic level is not possible.

More recent approaches, that cover a semantic description of the user pro-
file data are Friend of a Friend (FOAF) and the Generalized User Modeling
Ontology. These approaches will be described in more detail.
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<rdf:RDF>

<foaf:Person>

<foaf:name>Daniel Krause</foaf:name>

<foaf:givenname>Daniel</foaf:givenname>

<foaf:depiction

rdf:resource="http://www.daniel-krause.org/daniel.jpg"/>

<foaf:knows>

<foaf:Person>

<foaf:name>Fabian Abel</foaf:name>

<rdfs:seeAlso

rdf:resource="http://www.l3s.de/~abel/foaf.rdf"/>

</foaf:Person>

</foaf:knows>

<foaf:Organization>

<foaf:name>L3S Research Center</foaf:name>

<foaf:homepage rdf:resource="http://www.l3s.de/"/>

</foaf:Organization>

</foaf:Person>

</rdf:RDF>

Figure 4.5: Example of a FoaF file

4.1.3.1 Friend of a Friend

The Friend of a Friend2 project has defined an RDF-based ontology to describe
persons as well as their relationship. By using the FOAF ontology, users can
describe personal properties, like name, email address, affiliation, as well as
providing links to people they know. By following these links, a social network
arises, called a FoaF network. An example of a FoaF file is given in Figure
4.5. As FoaF uses RDF, any RDF based-ontology can be used to extend
the original FoaF vocabulary: by using a Geo data ontology3, users can, for
example, annotate their home or work location. With graphical browsers like
the FoaF Explorer4, users can navigate a FoaF network.

FoaF provides a simple vocabulary for defining a user profile, however it is
not useful for expressing fine-grained properties. Still, it shows how Semantic
Web techniques like RDF and the Linked Data paradigm5 can build a shared
and extendable user profile.

2http://www.foaf-project.org/
3http://www.w3.org/2003/01/geo/wgs84 pos#
4http://xml.mfd-consult.dk/foaf/explorer/
5http://www.w3.org/DesignIssues/LinkedData.html
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Figure 4.6: Metadata layers of SituationStatements from [Heckmann, 2005]

4.1.3.2 Generalized User Modeling Ontology

The Generalized User Modeling Ontology6 (GUMO) [Heckmann et al., 2005]
is mainly an extensible ontology that allows to express various user profile
statements. GUMO allows to incorporate knowledge from various domains by
refining and extending the ontology’s concepts. The Web Ontology Language
(OWL) was chosen as underlying ontology language for GUMO. The main
concept of GUMO are SituationalStatements. The main information of such
statements is expressed by a basic RDF triple structure, namely a subject, a
predicate and an object. This basic RDF structure is extend it by the auxiliary
and range concept. Such an extended RDF statement is called mainpart of
the SituationalStatement. According to [Heckmann et al., 2005], a person’s
medium interest in football would be expressed by the following mainpart:

subject: #DanielKrause

auxiliary: hasInterest

predicate: football

range: low-medium-high

object: low

SituationalStatements can be enriched with further metadata that are layers
around the mainpart. These layers are depicted in Figure 4.6.

The situation layer contains spatial and time constraints; the explanation
layer contains an explanation for the user about how the statement was de-
rived and who created it. The privacy layer implements a simple role based
access control while the administrative layer contains internal information, like
linkage between statements and a unique ID or URL to make single statements
referable.

6an experimental version can be found at http://www.ubisworld.org
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GUMO allows a fine grained and detailed description of user profile data.
However, due to the definition of the ontology and the extensible nature, it is
hard to maintain consistency when the ontology grows.

4.1.4 User Profile Exchange

Today, ubiquitous scenarios became reality, where users interact with different
devices at different locations and times. Mobile phones have an impressive
processor power, enabling Web browsing, Email exchange and the execution
of arbitrary desktop applications. In such a scenario, different devices as well as
different applications will create and maintain domain-specific user profiles. To
transfer existing user profile information from one device to another, different
solutions have been proposed.

Besides generic user modeling approaches as discusses in the previous sec-
tion, there exist user modeling systems that try to enhance their locally main-
tained profiles by exchanging user profile information with other systems.

In this section we present three approaches for distributed user modeling:
a) user profile query, b) user profile integration and c) OpenSocial.

Retrieving User Profile Information with UserQL UserQL [Heckmann, 2005]
is an XML-based query language to receive user profile information. It is
based on the Generalized User Modeling Ontology and uses so-called Situa-
tionRequests to query a user profile. Every SituationRequest is composed of
SituationalQueries which contains three components, namely the match box,
the filter box and the control box. The match box corresponds to Situation-
Statements as described in Section 4.1.3.2 and allows to specify properties that
the SituationStatements in the query result need to fulfill. This can be used
to search for all statements about a specific user or to retrieve all interests in
the user profile. The filter box provides additional metadata to describe the
purpose of the request and further constraints like a minimum confidence level
of the returned statements. The control box allows to specify the repository
that will be queried and some postprocessing options, like conflict handling,
and aggregation of statements.

The weak point of UserQL is that it is tightly coupled to SituationState-
ments and does not adhere to standard query languages, like SQL or SPARQL.

User Profile Integration User profile integration describes the process of merg-
ing different user profiles. This problem occurs especially in the area of group
recommender systems, where several users will have access to a shared medium,
like music playlists at a party or the selection of a movie in the cinema. Yu
et al. [Yu et al., 2006] propose a profile merging algorithm for shared watch-
ing TV. Their profile merging algorithm performs on user profiles containing
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attribute value pairs between -1 (dislike) and 1 (like). First, the algorithm
selects those attributes where most of the users have a similar rating (like or
dislike). All other attributes are then removed from the original user profiles
and the remaining user profile attributes are normalized. Then, the value for
the common attributes of the merged user profile is calculated as the average
of the single ratings. The merging algorithm handles contradictions very well
while it cannot be applied to more complex user profiles that do not contain
numerical ratings.

Heckmann [Heckmann, 2005] reduces the user profile merging task to the
task of conflict resolution. Two user profiles are merged by merging the obser-
vations from the single user profiles. Then these new observations are used to
fill an empty user profile. As Heckmann’s architecture provides inference and
conflict resolution by the user profile storage, contradicting observations can
be solved so that the merged user profile will be be generated from the merged
observations. This solution is very convenient as it does not require additional
programming effort for providing merging functionality. All the required func-
tionality, like conflict resolution is also needed to handle contradicting obser-
vations in a single user profile. The disadvantage of this solution is that the
inference engine must be accessible by the user profile. Thus, decentralized
inference engines that do process their own observation during runtime cannot
be implemented in this setting. A disadvantage of the approach is scalability:
it requires to keep all low-level observations, which might require large storage
capacity. Further performance issues might arise when merger and process a
large set of observations.

OpenSocial OpenSocial7 provides an API that is supported by several Social
Network sites, like XING8, MySpace9, and MeinVZ10. It provides standardized
methods for third party applications to access user profile information in the
Social Network. The user profile includes demographic information, friendship
relations and the communication between the users. An application created for
XING which uses the OpenSocial API to receive user data and uses OpenSocial
Gadgets, a JavaScript-based rendering engine, can hence be executed without
changes at any other Social Network, supporting OpenSocial.

While OpenSocial does not provide methods for aggregating or exchanging
user profiles between platforms, it is up to the application to aggregate user
profile data. The main advantage of OpenSocial is that it reduces the costs of
porting personalized applications between different social networks. OpenSo-
cial can be considered to be currently the most successful approach in industry
for generic personalization.

7http://code.google.com/apis/opensocial/
8http://www.xing.com/
9http://www.myspace.com/

10http://www.meinvz.net/
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4.1.5 Privacy Protection of User Profiles

Privacy protection is an essential requirement to gain the trust of the users and
their willingness to contribute data [Kobsa, 2007]. Self-determination about
how to use, change, and exchange user related information must be ensured
by the user modeling systems. We require the support of machine-readability
and availability of reasoners and due to the fact that any user profile data can
be stored in RDF, we focus on access control systems for RDF data.

Most current RDF databases provide no or only rudimentary access control
mechanisms. For example, one of today’s most widespread RDF database
management systems, Sesame [Broekstra et al., 2002], allows to define access
rights only for a whole database. Hence, access to all triples stored in a Sesame
repository is either allowed or prohibited. Other standard protocols to access
RDF data such as the SPARQL protocol [Clark et al., 2008], do not support
any access control.

Semantic policy languages (e.g., KAOS [Uszok et al., 2003], Rei
[Kagal et al., 2003], PeerTrust [Gavriloaie et al., 2004] or Protune
[Bonatti and Olmedilla, 2005a]) lately emerged in order to address these re-
quirements: they provide the ability to specify complex conditions both on
(i) the data in the repository to be accessed itself and (ii) external conditions
such as time constraints, or even interfaces to query external packages such
as other repositories. However, in the context of RDF stores, evaluating such
constraints for each triple to be potentially returned is not affordable for result
sets exceeding a certain size.

Filtering query results in a separate post-processing step after query execu-
tion as proposed by Cozzi et al. [Cozzi et al., 2006] is not an adequate solution
for restricting access to RDF: current RDF query languages allow to arbitrarily
structure the results, as shown in the following example11.

CONSTRUCT {CC} newNs:isOwnedBy {User}

FROM {User} ex:hasCreditCard {CC};

foaf:name {Name}

WHERE Name = ’Alice’

Here, post-filtering the query results is not straightforward since the result
structure is not known in advance. In fact, not the results produced by the
query, but rather only the data accessed in the FROM clause should be restricted.
It could be possible to split constructs queries into (i) a select query and (ii) the
generation of the returned graph (construct), therefore avoiding this problem.
However, the query response time may be considerably too large since this

11Our examples use SeRQL [Broekstra and Kampman, 2004] syntax (and for simplicity we do not include
the namespace definitions)
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approach cannot make use of repository optimizations and policies are enforced
after all data (allowed and not allowed) has been retrieved.

A different way to address this problem is defining a priori which subsets of
an RDF database can be accessed by some requester. This approach is taken
in [Carroll et al., 2005] which shows how Named Graphs can be used to eval-
uate SPARQL queries [Prud’hommeaux and Seaborne, 2008]. A framework
which first applies all rules to the whole RDF database and afterwards executes
the query only on the subset of it, which only contains allowed RDF triples, is
proposed by [Dietzold and Auer, 2006]. TriQL.P [Bizer and Oldakowski, 2004]
allows the formulation of trust-policies in order to answer graph-based queries.
Those queries describe conditions under which suitable data should be consid-
ered trustworthy. However, if all requesters and the graphs they are allowed
to access were known in advance, identity-based access control could also be
an option to consider for access control.

We note that a priori solutions are not sufficient in our scenario presented
above, since data access may be additionally restricted depending on exter-
nally checked, contextual conditions. Static pre-computing of Named Graphs
for each possible combination of environmental factors is infeasible, since the
amount of combinations can be arbitrary high; additionally, named graph cre-
ation at runtime seems to be infeasible either, since the creation process would
excessively slow down the response time. Furthermore, the plug-and-play na-
ture of the Personal Reader Framework where services dynamically change the
RDF database itself by adding or removing data from the user profiles would
significantly complicate managing such named graphs.

Simple rule-based policies over the RDF database are defined by
[Reddivari et al., 2005]: such policies exploit graph patterns in order to iden-
tify subgraphs of the database on which actions like read and update can
be executed. Other approaches also exploit RDF Schema entailment
[Jain and Farkas, 2006]. However, all these approaches require to instantiate
the graph patterns, i.e., to generate one graph for each policy and execute the
given query on each graph, hence leading to longer response times.

Finally, many policy languages (e.g., KAOS, Rei, PeerTrust or Protune)
allow in general to express access rules on the Semantic Web by means of
policies. However, none of them describes how such policies can be integrated
in RDF databases.

4.1.6 Discussion

In this section we presented approaches for an application independent user
modeling. First application code-independent user modeling components were
presented, called User Modeling Shells, like GUMS and BGP-MS, which pro-
vided first encapsulated user modeling functionality. These Shells bear the
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disadvantage that they are still bound to one specific application and can-
not be used simultaneously in a multi-application setting. Therefore, User
Modeling Servers like CUMULATE and PersonIs were presented, that allow
cross-application user modeling. Due to the required domain-knowledge these
systems are intended to be used in a specific application domain and cannot be
used in a generic manner. To overcome this issue, we discussed state-of-the-
art Semantic Web-based generic user profile formats, like Friend-of-a-Friend
and the Generalized User Modeling Ontology. Both techniques add metadata
to the user profile information to make it machine understandable and inter-
pretable. We finally presented solutions that supporting the exchange of user
profiles as well as privacy protection of confidential user profile information.

We conclude that several promising approaches for generic user modeling do
exist but that none of the presented related work covers all aspects of generic
user modeling that we consider important, like application-independent sys-
tems, utilizing a generic user modeling format that adhere to privacy protection
and allow a profile exchange.

In the area of protecting RDF-based user profiles, we could not find any
solution that can be applied without modification. However, the work in the
area of (access) policies is promising for implementing access control.

4.2 The User Modeling Service

The User Modeling Service (UMService) is a centralized service, which is im-
plemented within the Personal Reader Framework. With store, update, and
query requests, every Personal Reader service (SynServices, PServices and
CService) can access the UMService. For querying the user profile, the UM-
Service offers a simple query language that selects profile statements based on
pattern-matching and a generic SERQL12 endpoint to perform more powerful
queries.

To allow services to use their own vocabulary and still be able to exchange
information with other services, we defined the User Modeling Ontology, which
is an extensible high-level ontology defined on top of the GUMO. This ontology
allows to define a shared structure of the statements, enabling a common
understanding of the content of the statements. We adhere to the Linked Data
principle and provide mappings between GUMO and UMO so that knowledge
from GUMO can be further used in our UMO.

4.2.1 The User Modeling Ontology

The User Modeling Ontology (UMO for short) defines a basic structure of
the statements that are stored in the User Modeling Service. RDF has been

12http://www.openrdf.org/doc/sesame/users/ch06.html
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<rdf:Description rdf:about="#HobbyStatement">

<umo:subject rdf:resource="#John"/>

<umo:predicate rdf:resource="#hasHobby"/>

<umo:object rdf:resource="#sailing"/>

<umo:ambit rdf:resource="&umo;hasInterest"/>

<umo:scope rdf:resource="#importanceInterval"/>

<umo:scopeValue>important</umo:scopeValue>

<umo:identityValue>neutral</umo:identityValue>

<umo:owner rdf:resource="#John"/>

<umo:creator rdf:resource="#schedulerService"/>

<umo:method rdf:resource="#questionnaire"/>

<umo:confidence>100</umo:confidence>

<umo:start>2008-06-01</umo:start>

<umo:durability rdf:resource="&umo;month"/>

<umo:replaces rdf:about="#oldHobbyStatement">

</rdf:Description>

Figure 4.7: An example statement expressed in the User Modeling Ontology

chosen as the underlying data model, due to its high flexibility: arbitrary
RDF data referring to various ontologies can be stored, and RDF databases
which allow efficient storage and access to the data are available. As the
base vocabulary for our ontology, we selected Heckmann’s Generalized User
Modeling Ontology (GUMO) described in [Heckmann et al., 2005]. To adhere
to the Linked Data principle and to allow the reuse of GUMO-formated user
profile data, we defined mappings between UMO and GUMO. A UMO example
statement is shown in Figure 4.7.

UMO consists of four segments, which contain the following attributes:

Main Segment provides the attributes user, subject, predicate, object, ambit,
scope, scopeValue, and identityElement.

Explanation Segment contains creator, method, evidence, confidence, and
trust.

Validity Segment consists of start, end, durability, and retention.

Administration Segment provides administrative attributes like notes, re-
places, and deleted.

4.2.1.1 Main Segment

The Main Segment stores the basic statement about the user. Every state-
ment is addressable by its own URI. Subject, predicate, and object represent
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the reified RDF triple. The attributes subject and user can differ from each
other. E.g. to model the fact that John’s credit card has the number 123,
we allow to create a statement whose owner (user) is John and whose subject
is the credit card. The predicate and object values can be chosen freely from
the application’s domain-specific ontology. The ambit predicate relates the
statement into one of six domain-independent classes of statements about the
user. Possible values are:

• hasActivity describes statements about activities of the user, e.g. hobbies.

• hasDone describes statements about passed activities of the user.

• hasPreference describes statements about the preferences of the user.

• hasInterest describes statements about the interests of the user.

• hasKnowledge describes statements about the knowledge of the user.

• hasConfiguration describes statements about configurations of the user,
e.g. program settings like Configurable Descriptions (see Section 3.2.4).

The ambit allows services to classify their own statements and especially
the predicates of their domain ontologies into the generic UMO. This enables
a basic mapping between statements of different applications and hence an
exchange of user profile data across different ontologies: E.g. an application
A utilizing the domain ontology OA stores a statement

S = (u, oa:interest, dbpedia:SemanticWeb)

with the ambit hasInterest in the UMService. If another application B,
which utilizes a different domain ontology OB, queries the UMService for
knowledge of the user (hasKnowledge), the UMService will not return the state-
ment of application A. Hence, application B is aware that no appropriate data
is stored in the UMService although neither application B nor the UMService
itself can process the ontology OA directly. On the other hand, if application
B queries for interests of the user (hasInterest) then it will receive statement
S. Although B does not understand the full meaning of (u, oa:interest, dbpe-
dia:SemanticWeb), it can, based on the ambit hasInterest, still interpret that
user u has interest into the object of the statement. By requesting additional
information about dbpedia:SemanticWeb, utilizing the Link Data principle, ap-
plication B is able to draw further conclusions about the particular interest of
the user.

The predicates scope, scopeValue, and identityElement are used to describe
the value of a property: scope describes the interval from which values can be
selected. Intervals can either be numerical, e.g. from 1-10, or enumerations
like excellent, good, average, bad. IdentityElement contains the neutral element
to enable an automatic mapping between different intervals. The scopeValue
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predicate finally contains the actual value of the statement chosen from the
specified interval.

4.2.1.2 Explanation Segment

The Explanation Segment contains the author of the statement (creator) and
which method was used to create the statement (e.g. was it a direct input of the
user, or a derived information based on observations). Evidence contains the
data that lead to the final statement. The evidence is important for a service
to preserve its trustfulness. E.g. if a service A bases its assumptions on wrong
data from service B, the distrust regarding this statement can be directed
against service B instead of the direct creator of the wrong statement.

The confidence value contains the certainty of the creating service that the
statement is true. In contrast, trust holds the percentage of agreement of the
user to this statement. The difference between both values, confidence and
trust, can be used to calculate the accuracy of the assumptions about a user
drawn by a specific Syn- or PService.

4.2.1.3 Validity Segment

The Validity Segment defines how long – beginning from the start point of
time – a statement shall be valid. If the validity can be defined precisely, the
predicate end is used to indicate the end of time. This holds for statements
like “John plays tennis from 6-7 pm”. The validity of other statements like
“John is currently in a good mood” cannot be specified precisely. Therefore,
the predicates durability and retention are used: durability contains vague time
specifications like seconds, minutes, hours, years, etc. To respect the durability
of a statement, we use a linear function that decreases the confidence value of
the statement as it becomes older. The retention predicate contains the point
of time when a statement shall not be used any longer.

4.2.1.4 Administration Segment

The Administration Segment contains various meta data: notes are a free-form
text field with arbitrary content, replaces refers to an older statement which
is replaced by the current statement. Statements which shall be deleted are
marked with deleted and are not delivered any more from this point of time.
The user can decide whether statement marked as deleted should physically
be removed or recovered.
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Figure 4.8: User interface to review, modify and delete the statement in the UMService

4.2.1.5 Extending the User Modeling Ontology

Due to the open nature of OWL and RDF, services can use their own vocab-
ulary to store information in the UMService. To use own vocabulary services
can use the subClassOf and subPropertyOf mechanisms to map their own
vocabulary concepts to the corresponding concepts in the User Modeling On-
tology.

4.2.2 User Interface

A crucial point of the UMService is the user awareness. Every user shall be
able to revise her user profile and perform updates or changes when needed.
To enable non-technical users to use the UMService, we provide an easy-to-
use interface, which does not require any specific knowledge about RDF or
policies. This user interface is divided into two parts: a) the data access and
modification interface, which allows a user to access and modify the user profile
data and b) the access policy editor interface, which allows users to define their
access policies in a graphical fashion (see Section 4.2.6).

The data access and modification interface, called Profile Manager (see Fig-
ure 4.8) allows users to exploit and adjust their own user profile. They can
change the trust value of the statement to express their agreement or disagree-
ment with the statement. If they consider a statement as fully inappropriate,
they can also remove complete statements. We decided to not let users modify
single properties of the statements as this would on the one hand require a com-
plicated user interface, which needs to describe the possible values and checks
if the new statement complies to the ontology constraints. On the other hand
it would also require application ontology creators to describe their ontologies
in detail, which is hard to be enforced in a distributed architecture.

4.2.3 Reasoning

New information about users can be derived for the user profile by analyzing
observations about a user or by combining profile information about a user
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stored by different services. Additionally, background knowledge can be used
to infer new information about the user. We refer to theses tasks with the
term user profile reasoning.

Domain-independence of centralized components is a very important design
rationale of the Personal Reader Framework as it ensures that: a) Syn- and
PService from various domains can use the Personal Reader infrastructure, b)
updates of central components caused by changes in the domain ontology are
avoided and c) wrong reasoning caused by faulty services can be handled by
access control rules. In the Personal Reader Framework, user profile reasoning
is performed directly within the corresponding Syn- or PServices. SynServices
can also reuse reasoning functionality offered by PServices while the overall
protection of user profile data in still ensured: If a SynService is not authorized
by the user to access user profile information, stored by another application,
the PService, invoked by the SynService, is also not able to access the required
information and hence cannot disclose any confidential user profile data.

4.2.4 Authentication and Single Sign On

User authentication requires the input of a username and password. Once
authenticated, it is desirable that a user stays authenticated within the entire
Personal Reader Framework and her session moves along with the user across
application borders without requiring a re-authentication. It should not matter
which application performed the initial authentication. Also, transmitting
sensitive data like the user’s password across applications is not an option. To
resolve this issue, the Identity Service provides user session management. Once
a user authenticates, a session is created and a user token is returned to the
client component identifying that session. The token can safely be passed to
other applications within the Personal Reader Framework as it will only have
a limited validity (until the session is finished) and does not contain sensible
data.

While in our settings, a basic authentication and authorization management
was sufficient, the Identity Service can easily adapted to use functionality
offered by Shibboleth13 or OpenID14.

4.2.5 Enforcing User-Defined Access Control

Users shall be fully aware of which data to share and with whom. The Personal
Reader Framework offers an access control layer (see Figure 4.9 that enforces
user-defined access control policies on the RDF-based user profile. The highly
dynamic nature of the Personal Reader infrastructure complicates the chal-
lenge of controlling access to user profile data. Services that may request, add,

13http://shibboleth.internet2.edu
14http://openid.net
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Figure 4.9: Extended Personal Reader Architecture: The access control component

or manipulate user data are not known in advance just like the data (RDF
statements) and the vocabulary used to formulate these RDF statements it-
self. We thus need an infrastructure which allows to define and enforce access
policies dynamically.

4.2.5.1 Access Control Layer

The access control layer of the User Modeling Service has to restrict the access
to the data stored in the User Modeling Service. Therefore, a user should
specify which web services are allowed to access which kind of data in the user
profile and in which way. The environment of the access control layer is similar
to a personal firewall: whenever an application tries to access a specific port,
if an access rule for such application and port has been specified, the specified
action (allow or deny) is performed. Otherwise the firewall asks the user how
to behave. The firewall is at no time aware of which applications or ports exist
in a system.

Similarly, as the framework allows to plugin new services immediately, the
access control layer is not aware of which services will try to access which part
of the user profile. Hence, specifying static access rules a priori like in other
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access control systems is not applicable.

Our access control layer solves this issue by a deny-by-default behavior.
Every Syn- or PService that tries to access an RDF statement is rejected if no
existing policy is applicable. The service is informed why it was rejected and
will report this to the user. Afterwards, the user can enter the user interface of
the access control layer to grant or deny access. The user interface can take the
context into account, which contains the statements a service tried to access,
and hence supports the user in specifying policies by reducing the choices to
the affected statements. By allowing users to specify also general policies we
try to avoid that the user is overwhelmed by too much interaction with the
access control layer. Keeping user interaction low enhances usability and at
the same time avoids that users ignore repeatedly displayed confirm messages.

In the following sections, we focus for the reason on simplicity on granting
read access. A similar approach can be used for write access requests.

Policies for Securing Data Securing RDF data is different from securing usual
datasets. Because RDF datasets can be considered as graphs we take into
account this graph structure in order to provide a definition of “security”.

There are many possibilities to secure the data in the user profile, like black-
or whitelisting of services for specific RDF statements by means of access
control lists. We do not want to mark resources as “accessible” or not in an
automatic way, because the user should keep full control on which resources
(not) to grant access for. But we also want to relieve the user from marking
each resource individually, so we need a more flexible solution. We think that
policies provide such a flexible solution. In the following we examine how
Protune policies can be applied to RDF statements and graphs.

Scenario Different services need to add, modify, or request sensitive data
from the user profile data in an RDF repository within the Personal Reader
Framework. Services need to store confidential contact information like email
addresses or online e-commerce account information securely, in our example
profile (see Figure 4.10). It is crucial that the user a) can inspect and modify
the user profile as she wishes and b) has full control about which (kind of)
services are allowed to access and retrieve which parts of the data stored in
her profile.

We utilize the Protune [Bonatti and Olmedilla, 2005a]
[Bonatti and Olmedilla, 2005b] policy language to enforce policies that con-
trol access to the single triples, for example to support John to make the
phone numbers of his friends publicly available, but to hide statement Sm or
maybe even statement Sm−1.
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S1: (John, phoneNumber, 123)

S2: (John, hasFriend, Friend 1)

S3: (Friend 1, phoneNumber, 234)

...
Sm−4: (John, hasFriend, Friendn)

Sm−3: (Friendn, phoneNumber, 345)

Sm−2: (John, hasFriend, Mary)

Sm−1: (Mary, phoneNumber, 456)

Sm : (John, loves, Mary)

Figure 4.10: John’s RDF Triple based user profile

Protune Policy Templates for a User Modeling Service We need to specify
prerequisites that a service has to fulfill in order to access some resource in a
declarative manner. The policy language Protune allows to formulate a broad
range of policies like access control policies, privacy policies, reputation-based
policies, provisional policies, and business rules.

One of the main differences between Description Logics-based (DL-based)
and Logic Programming-based (LP-based) policy languages can be found in
the way they deal with negation: Description Logics allow to define negative
information explicitly, whereas LP-based systems can deduce negative infor-
mation by means of the so-called negation as failure inference rule. LP-based
policy languages like Protune may decide whether the user should only spec-
ify allow policies (thereby relying on the negation-as-failure inference rule) or
the other way around. The first approach is usually preferred, since wrongly
disclosing private information is a more serious issue than not disclosing infor-
mation that should be publicly available.

In our framework we need both, usual deny policies and deny-by-default
policies: If a deny-by-default policy applies, the user is directed to the user
interface to specify new policies; if a usual deny policy occurs the user is
not informed since she already defined a policy. This feature allows us to
implement in a very clean way the algorithm to be executed by the access
control component, namely

if (a deny policy is defined) deny access

else

if (an allow policy is defined) allow access

else

deny access and ask the user

The access control component checks first whether a deny policy is appli-
cable to the current access request and, if it is the case, denies access. If not,
the system checks whether an allow policy is applicable. If this is not the case,
access is denied and the user is asked how to proceed.

The following Protune policy applies to John’s RDF-based user profile given
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in the previous chapter. Its intended meaning is to allow services that belong
to the user-defined group trustedServices to access the telephone numbers of
John’s friends, except Mary’s number.

allow(access(rdfTriple(Y, phoneNumber, X))) :-

requestingService(S),

rdfTriple(S, memberOf, ’#trustedServices’),

rdfTriple(’#john’, hasFriend, Y),

not Y = ’#mary’.

Predicate rdfTriple retrieves RDF triples from some RDF repository,
whereas predicate requestingService accesses runtime data in order to retrieve
the value of the current requesting service. The rule the policy consists of
can be read as a rule of a Logic Program, i.e., allow(access(. . . )) is satis-
fied if predicate requestingService, all literals rdfTriple and the inequality are
satisfied. Predicates which represent an action (i.e., requestingService and
rdfTriple) are supposed to be satisfied if the action they represent has been
successfully executed. The policy can therefore be read as follows: access to
RDF triple (Y, phoneNumber, X) is allowed if the current requesting service
(S ) belongs to trustedServices and X is the phone number of someone who is
a friend of John different than Mary.

Policy Templates for an RDF based User Profile Since expressive policies be-
come quickly hard to read for non-technical users we defined some general
purpose policies in so-called templates.

Policy types can be defined in several ways:

1. One may group targets (in our case RDF statements or parts of them),
so that the user is enabled to state, what triples should be accessible.
Examples for such a group of targeted RDF statements are:

• Allow access to some specific phone numbers.

• Allow access only to my own phone number.

• Allow access only to my friends’ phone numbers.

2. Policies may also be grouped according to the requester, so that the user
is enabled to state who gets access to the triples (i.e. allow access for one
service or a specific group/category of services).

Protune policies allow the usage of both kind of policy types to protect
specific RDF statements, a specific group of statements or, in general, an
arbitrary part of an RDF graph. So, it is possible to

• Specify RDF-predicates anywhere used in the user profile to be secured
by a policy.
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• Specify RDF-object/RDF-subject types anywhere used in the user profile.

• Specify RDF statements that contain information directly related to the
user, like (John, loves, Mary), and not just information indirectly related
to the user, like (Friendx, phoneNumber, xyz).

• Specify meta-data predicates like requester or current time.

Our user interface allows to define policies protecting RDF graph patterns.
When defining a policy the user must instantiate such patterns and adapt them
to the given context (see Figure 4.15).

Conflict Handling in the User Interface If there is no policy defined on an RDF
statement, an incoming request is denied by default and the accessing service
will point the user to the user interface to define a new policy regulating the
access to the RDF statement in the future. On the other hand, no user feedback
is requested if a deny policy applies to the RDF statement and the current
requester. Therefore, the service needs to distinguish between default denial
and policy-based denial. Protune by itself uses only positive authorizations
in order to avoid conflicts. For this reason we defined a deny predicate on
top of Protune to enable also the definition of deny policies. However, if we
allow for both positive and negative authorizations, conflicts can arise: This
is the case whenever a resource is covered by both an allow and a deny policy.
To avoid such situations we designed our user interface (see Section 4.2.6) in
order to ensure that no conflict situations will arise or that they are solved in
precedence.

When the user defines an allow policy affecting a resource that is already
covered by a deny policy, the user interface will show a dialog, notifying the user
that there is a conflict. If the user does not want to allow access to the resource,
the allow policy will still be defined (since in our framework deny policies have
by default higher priority than allow policies), otherwise the deny policy will
be modified in order to exclude from its scope the resource. On the other hand
when the user defines a deny policy affecting a resource that is already covered
by an allow policy, the user interface will show a dialog, notifying the user that
there is a conflict. If the user does not want to allow access to the resource,
the deny policy will simply be added (for the same reason described above),
otherwise a modified version of it will be added, which excludes from its scope
the covered resource.

Finally, if the user model changes, new RDF statements can be automat-
ically covered by existing policies. But the user has also the option to apply
her policy only to RDF statements existing at policy creation time. As soon
as a service adds RDF statements, the user will be asked by the user interface
whether her policy should also apply to the new statements.
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Policy-Based Query Expansion Our strategy to enforce access policies is to
split and pre-evaluate the context-dependent conditions of the policies, i.e.,
the conditions which are data-dependent. Then, we modify the queries before
they are sent to the database by integrating the enforcement of the other data-
dependent conditions with the query processing, thereby restricting the queries
in such a way that they can only include pre-filtered (and therefore allowed)
RDF statements. This way, policies can hold a greater expressiveness and
support both metadata and contextual conditions, while relying on the highly
optimized query evaluation of the RDF store for the enforcement of metadata
constraints. This approach allows to include more complex conditions without
dramatically increasing the overhead produced by policy evaluation, and while
relying on the underlying RDF store to evaluate RDF Schema capabilities (as
discussed in [Jain and Farkas, 2006]).

RDF Queries Definition 1 uses a similar notation as in [Polleres, 2007] to
describe the RDF graph. In Definition 2 we use RDFTerm to denote the set
I ∪B ∪ L.

Definition 1 (RDF graph) Let I, B and L, denote the disjoint infinite sets of IRIs,
blank nodes, and literals as usual. Then, an RDF graph is a finite subset of (I ∪ B) ×
I × (I ∪B ∪ L).

Definition 2 (Path Expression) Let I, B, L be as above and V ar denote an infinite
set of variables. Then, a path expression is a set of triples of the form (s, p, o) such that
s ∈ I ∪B ∪ V ar, p ∈ I ∪ V ar and o ∈ RDFTerm ∪ V ar.

Definition 3 (Query) A query is a triple (RF, PE, BE) where

• RF is either a set of variables or a path expression (result form)

• PE is a path expression (query pattern)

• BE is a set of boolean expressions representing a set of constraints in the form
of (in)equality and comparison predicates (such us greater than or less than) con-
nected by boolean connectives (AND and OR)

Intuitively, path expressions are templates, or conjunctive queries formed by
triple patterns, for matching RDF graphs which allow variables in any position
(see Definition 3).
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In the following we will use vars(e) to refer to the set of all unbound vari-
ables occurring in a result form, path or boolean expression e. Intuitively,
our definition of “query” is meant to model RDF queries having the following
structure (see also Section 6.19 in [Aduna, 2005]) 15 16:

SELECT RF /CONSTRUCT RF
FROM PE
WHERE BE

In SELECT queries RF is a set of variables, modeling a projection, whereas in
CONSTRUCT queries, RF is a path expression. The special result form RF =’*’
denotes either the set of all variables occurring in PE for SELECT queries or a
copy of PE in CONSTRUCT queries, respectively. An example query is provided
in Figure 4.11. If no access control policy were defined, this query would return
an RDF graph containing all RDF triples matching the graph pattern defined
in the FROM block, i.e., the query answer would include identifier and name
of a person, her phone number(s) and social connections.

Definition 4 (disunify function) Given a path expression e = (s, p, o) and a set of
variable substitutions θ the function disunify(e, θ) returns the pair (e′, BE), where e′

is a new triples pattern (s′, p, o′) and BE is a set of boolean expressions such that

•


s′ = vs and BEs = {vs = s} if s /∈ V ar
s′ = vs and BEs = {vs = V alue} if s ∈ V ar, V alue/s ∈ θ
s′ = s and BEs = ∅ otherwise

•


o′ = vo and BEo = {vo = o} if o /∈ V ar
o′ = vo and BEo = {vo = V alue} if o ∈ V ar, V alue/o ∈ θ
o′ = o and BEo = ∅ otherwise

where vs and vo are fresh variables and BE = BEs ∪BEo.

The disunify function is shown in Definition 4. Intuitively, the variable
substitutions for the subject and object of the path expression are extracted
and converted into boolean expressions. The purpose of this function is to
extract variable substitutions in order to be able to reuse path expressions in
the final RDF query, even if they are specified in different policies.

15Although our examples will use the syntax of the SeRQL query language, the results also to other
languages with similar structure (e.g., SPARQL [Prud’hommeaux and Seaborne, 2008]).

16We focus on common read operations which all RDF query languages like
SeRQL [Broekstra and Kampman, 2004] or SPARQL [Prud’hommeaux and Seaborne, 2008] support.
Data manipulations elements, such as insert or delete operations, are proposed in some extensions such as
SPARUL [Seaborne and Manjunath, 2008], but not yet part of any standard.
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CONSTRUCT * FROM

{Person} phoneNumber {Phone};

hasFriend {Friend};

loves {Name};

Figure 4.11: Example RDF query

No. Policy
pol1 ALLOW ACCESS TO

(#John, hasFriend, X) AND

(X, phoneNumber, Y)

pol3 DENY ACCESS TO

(#John, loves, #Mary)

Table 4.1: Example of high-level policies controlling access to RDF statements

Specifying policies on RDF data In order to restrict access to RDF statements
a policy language must allow to specify graph patterns (path expressions and
boolean expressions), such as one can do in an RDF query. In addition, the
ability of checking contextual properties such as the ones of the requester
(possibly to be certified by credentials) or current time (in case access is allowed
only in a certain period of time) is desirable. Therefore, we consider a policy
rule pol to be a rule of the form:

ALLOW/DENY ACCESS TO PE IF
CP1 AND . . .CPl AND
PE1 AND . . .PEm AND
BE1 AND . . .BEn

where l,m, n ≥ 0, PE and PEi (1 ≤ i ≤ m) are path expressions, CPj

(1 ≤ j ≤ l) are contextual predicates (i.e., conditions related to time, location,
properties of the requester, etc.) and BEk (1 ≤ k ≤ n) are boolean expressions.
In the following we will use H(pol) (resp. HPE(pol)) to refer to the (resp. path
expression in the) head of pol, and B(pol) to refer to the (possibly empty) body
of pol.

Notice that our policies are expressed in a high-level syntax: this way we
allow them to be mapped to different existing policy languages. On the other
hand it is true that the final choice of the policy language will impact the
expressiveness and power of the policies which can be specified as well as the
set of supported contextual predicates.

Suppose that John specified the policies presented in Table 4.1

1. Everyone can access Johns’ friends’ phone number(s)
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2. Nobody is allowed to access the relation between John and Mary

Policy Evaluation and Query Expansion Our approach analyzes the set of
RDF statements to be accessed and restricts it according to the policies in
force. Contextual conditions (e.g., time constraints and conditions on proper-
ties of the requester) are evaluated by the policy engine, whereas other con-
straints are added to the given query and enforced during query processing.

Definition 5 (Policy applicability) Given a path expression e, a set of policies P
and a time-dependent state Σ [Bonatti and Olmedilla, 2005a], we say that a policy pol ∈
P is applicable to e according to Σ iff e and HPE(pol) are unifiable and there exists a
variable substitution σ′′ such that

• σ′ = mgu(e,HPE(pol)), where mgu denotes the most general unifier

• σ = σ′σ′′

• ∀cp ∈ B(pol), P ∪ Σ |= σcp

• ∀be ∈ B(pol) such that

– vars(σbe) ∩ vars(σe) = ∅
– ∀pe ∈ B(pol), vars(σbe) ∩ vars(σpe) = ∅

it holds that P ∪ Σ |= σbe

and the result of its application to e is a pair (PE,BE) such that for all pe,
disunify(pe, θ) = (pe′, BE′)

• PE = {pe′|pe ∈ B(pol), pe′ 6= pe}

• B̃E = {σbe|be ∈ B(pol) ∧ ∃pe : vars(σbe) ∩ (vars(σpe) ∪ vars(σe)) 6= ∅}

• BE = BE′ ∪ B̃E ∪ {X = Y |σi = X/Y ∧ (X ∈ Const ∨ Y ∈ Const)}

In the following we will use isApplP,Σ(pol, e) to refer to the fact that a policy
pol belonging to a set of policies P is applicable (see Definition 5) to a path
expression e according to a state Σ and applP,Σ(pol, e) to refer to the result of
such application.

Intuitively, the state Σ determines at each instance the extension of the
contextual predicates. Moreover a policy pol is applicable to a path expression
e if the triple the policy is protecting unifies with e and all contextual predicates
and bound boolean expressions (or those not dependent on path expressions
in the policy) are satisfied. The result of the application is a pair whose first
element is the set of path expressions found in the body of the policy and
whose second element is the set of all extracted boolean expressions which
have not been evaluated and relate to the path expressions found.
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Before we describe the query expansion algorithm, and for sake of clarity,
we describe the conditions under which a query does not need to be evaluated
since the result is empty.

Intuitively, a query fails if there does not exist any triple to be returned
according to both the query and the applicable policies, that is if the query
contains at least a path expression for which no matching triples are allowed
to be accessed (disallow by default) or for which all matching triples are not
allowed to be accessed (explicit disallow).

The pre-filtering algorithm is defined as follows.

Input:
a query q = (RF,PE,BE)
a set of policies P
a state Σ

Output:
PE+

new ≡ new optional path expressions
(from allow policies)

PE−new ≡ new optional path expressions
(from disallow policies)

BE+
new ≡ conjunction of boolean expressions

(from allow policies)
BE−new ≡ conjunction of boolean expressions

(from disallow policies)

policy prefiltering(q, P,Σ):
BE+

or ≡ disjunction of boolean expressions
(from allow policies)

BE−or ≡ disjunction of boolean expressions
(from disallow policies)

Papp ≡ a set of applicable policies

01) PE+
new = PE−new = ∅

02) ∀e ∈ PE
03) BE+

or = BE−or = ∅
// check allow policies

04) Papp = {pol|pol ∈ P ∧H(pol) = allow( ) ∧ isApplP,Σ(pol, e)}
05) if Papp = ∅

// no triples matching e can be accessed
return query failure

06) if ∃pol ∈ Papp : applP,Σ(pol, e) = (∅, ∅)
// all triples matching e can be accessed

else
07) ∀pol ∈ Papp

applP,Σ(pol, e) = (PE′, BE′)
08) if PE′ = ∅
09) BE+

or∪ = {∧be∈BE′be}
10) else if ∃θ, P̃E ∈ PE+

new : θ = mgu(P̃E, PE′)
11) BE+

or∪ = {∧be∈BE′θbe}
else

12) PE+
new∪ = PE′
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13) BE+
or∪ = {∧be∈BE′be}

14) BE+
new∪ =

{
∨

be∈BE+
or
be
}

// check disallow policies
15) Papp = {pol|pol ∈ P ∧H(pol) = disallow( ) ∧ isApplP,Σ(pol, e)}
16) if ∃pol ∈ Papp : applP,Σ(pol, e) = (∅, ∅)

// all triples matching e cannot be accessed
return query failure

17) ∀pol ∈ Papp

18) applP,Σ(pol, e) = (PE′, BE′)
19) if PE′ = ∅
20) BE−or∪ = {∧be∈BE′be}
21) else if ∃θ, P̃E ∈ PE−new : θ = mgu(P̃E, PE′)
22) BE−or∪ = {∧be∈BE′θbe}

else
23) PE−new∪ = PE′

24) BE−or∪ = {∧be∈BE′be}

25) BE−new∪ =
{
∨

be∈BE−or
be
}

Detailed description of the algorithm: The algorithm makes no initial static
addition to the path expressions contained in the query. This is stated by 1),
where the variables containing additional path expression additions for allow
and deny policies both start from a clean slate.

Each path expression contained in the query is evaluated in the loop, in-
troduced in 2). Also, each path expression that probably leads to additions
in the query comes with an own set of added boolean expressions. Therefore,
the variables containing those boolean expressions are cleaned in 3). In 4) it is
checked, if any applicable allow policies are existing that contain the path ex-
pression in their policy head / condition. If there are no such policies existing,
failure is returned immediately in 5), since at least one allow policy is needed
to allow for at least one result. If there is an allow policy applicable, but its
evaluation leads to no extension of the query it is assumed in 6), that any re-
sult of the given query is allowed to be returned without restriction according
to that one policy, since no allow policy could disclose more information. The
algorithm can then directly start to evaluate the deny policies at 15).

In all other cases, the applicable policies are evaluated one by one starting
at 7) and their extensions to the query is filled into the variables PE’ (for
added path expressions) and BE’ (for added boolean expressions belonging to
the added path expressions).

Now, several cases have to be distinguished: If it is detected in 8) that
there was previously no addition made to the path expressions in PE’, then in
9) the obtained boolean expressions are directly added to BE+or the variable,
containing all boolean expressions for added path expression from allow policies
and connected to the existing BE+or by AND. In 10) the path expressions are
checked against all other. If the path expression to be added already exists
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among the path expressions targeted for addition, its variables can be extracted
and unified with the already existing path expression to reuse variables that
would elsewise appear without connection to each other.

The boolean expressions to be added will be targeted for variable substi-
tutions in 11) and the changed boolean expression string will then be added
to the BE+or variable, connected with AND afterwards to the other boolean
expressions to be added. If there is a path expression to be added and its not
already existing in the set of path expressions to be added, in 12), this path
expression is appended to the list of new path expressions and so are the new
boolean expressions added to the list of boolean expressions belonging to this
path expression in 13) connected by AND.

In 13) the loop that started in 7) is finished and in 14) all boolean ex-
pressions collected for the path expression are appended to the overall list of
boolean expressions to be added to the query, this time connected by OR. After
every path expression for allow policies was checked, now the algorithm enters
the section where it looks for applicable deny policies. First, the applicable
deny policies are collected in 15). If among those policies, there’s at least one
policy not leading to any extension of the query, the whole query fails in 16).

The reason for this is, that allow and deny parts of the newly created query
are combined using a MINUS operator later. This means, that each of those
parts needs to have some statements, limiting the returned results to take
effect. As for the allow policies a new loop is started for each applicable policy
in 17) and the policies are applied to the path expressions contained in the
query in 18).

In 19), even if there is no addition for the path expressions after applying
a policy, the boolean expressions obtained are added to the overall boolean
list for the path expression BE-or in 20). As in 10), also in 21), if there is
an additional path expression returned by the policy already contained in the
path expressions to be added, the variables of the additions are unified and
only the (modified) boolean expressions are added in 22). In any other case,
the additional path expressions are added in 23) and so are the new boolean
expressions in 24). After this, in 25) the overall boolean expression list for
the whole query is extended by the addition of the list of boolean expressions
BE-or obtained for the examinated path expression.

Definition 6 (Expanded query) An expanded query is a pair ((RF+, (PE+, PE+
O),

BE+), (RF−, (PE−, PE−O ), BE−)) where

• (RF+, PE+, BE+) and (RF−, PE−, BE−) are (usual) queries

• PE+
O and PE−O are path expressions
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Intuitively, our definition of “expanded query” as formalized in Definition
6 is meant to model RDF queries having the following structure:

CONSTRUCT RF+

FROM PE+ [ PE+
O ]

WHERE BE+

MINUS
CONSTRUCT RF−

FROM PE− [ PE−O ]
WHERE BE−

where “[” and “]” denote the optional path expression modifier (according to
the SeRQL [Aduna, 2005] notation).

The extended query is constructed as follows:

Input:
1) a query q = (RF,PE,BE)

PE+
new ≡ new optional path expressions

(from allow policies)
PE−new ≡ new optional path expressions

(from disallow policies)
BE+

new ≡ conjunction of boolean expressions
(from allow policies)

BE−new ≡ conjunction of boolean expressions
(from disallow policies)

Output:
2) an expanded query

q = (RF+, (PE+, PE+
O), BE+), (RF−, (PE−, PE−O ), BE−))

3) expandQuery(q, PE+
new, PE

−
new, BE

+
new, BE

−
new)

4) RF+ = RF− = RF
5) PE+ = PE− = PE
6) PE+

O = PE+
new

7) PE−O = PE−new

8) BE+ = BE ∪
{
∧

be∈BE+
new

be
}

9) BE− = BE ∪
{
∧

be∈BE−new
be
}

As shown in the combined CONSTRUCT query above, the resulting query
consists of two parts connected by a MINUS operator. The CONSTRUCT
queries are each extended by additional path expressions and boolean expres-
sions. The first CONSTRUCT query is the original query enriched by expres-
sions related to allow policies. The second CONSTRUCT query is built to
express the limitations represented by deny policies. This algorithm extracts
the new path expressions found in the body of the policy rules. It extracts
their variable bindings. This is essentially important to reuse them coherently
in case they appear in more than one policy rule. However, if the same path
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CONSTRUCT {Person} phoneNumber {Phone};

hasFriend {Friend};

loves {Name}

FROM {Person} phoneNumber {Phone};

hasFriend {Friend};

loves {Name}

[ Johns hasFriend {Var2} ]

WHERE ( Var2 = Person )

MINUS

CONSTRUCT {Person} loves {Name}

FROM {Person} loves {Name}

WHERE ( (Person = #John) AND (Name = #Mary) )

Figure 4.12: Expanded RDF query

expression is found in policies being applied to multiple from clauses, then they
cannot be reused (since conditions on different expressions are connected con-
junctively). After prefiltering each policy, a set of AND boolean expressions
are extracted. The set of all boolean expressions from applicable allow policies
to one from clause are connected by OR. The set of all boolean expressions
applicable to multiple from clauses are connected by AND. From that query
we have to remove the triples affected by disallow policies, which are specified
in a similar fashion and added to the query using the MINUS operator.

In 4), the set of variables or set of triples used in the original query is the
same in both CONSTRUCT queries (RF). This is also the case for the original
path expressions (PE) (in 5) ). In 6) and 7) the added path expressions are
identical to the path expressions additionally built by the core query extension
algorithm. 8) and 9) show that the boolean expressions are extended by the
additional boolean expressions found by the algorithm.

Example 1 Figure 4.12 shows the result of applying the above algorithm to
the query in Figure 4.11 and the policies in Table 4.1.

Architecture A key goal of our implementation is to be applicable and reusable
for different settings, in which access to RDF data should be controlled. Our
approach of re-writing RDF queries is based on three units, which should be
adaptable to a particular setting.

RDF Query Language. Today there exist several RDF query languages like
SPARQL [Prud’hommeaux and Seaborne, 2008], SeRQL [Aduna, 2005],
or RDQL [RDQL, 2005]. None of them has yet prevailed in becoming a
de facto standard so that the implementation has to be flexible regarding
the RDF query language.

Policy language. As outlined in Section 4.1.5, there are a couple of policy
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Access Control for RDF Stores (AC4RDF)

RDF Store

Query Extension

SeRQL SPARQL ...

RDF Store Access

Access Control

Protune Rei ...

Policies

restrictions

context

QueryRDF

Extended QueryRDF

Sesame Jena ...

Figure 4.13: Architecture – Access Control for RDF Stores (AC4RDF)

languages and corresponding engines, which can be applied in order to
specify and enforce RDF access control policies. Selecting an appropriate
policy language should not influence the other components of the imple-
mentation.

RDF store. The implementation should further be independent from the way,
RDF data is stored, because different stores – like Sesame 17, Kowari 18

or Jena 19 – may be preferable depending on the application scenario.

The generic architecture Access Control for RDF Stores (AC4RDF), which
we illustrated in Figure 4.13 was designed under consideration of those require-
ments. It is composed of three main modules, which enable decoupling of the
units mentioned above, namely: Query Extension, Policy Engine and RDF
Store Access.

Query Extension. The main task of this core module is to rewrite a given
query with the support of the policy engine in a way that only allowed
RDF statements are accessed and returned. It is in charge of querying
the policy engine for each FROM clause of the original query in order
and expand it with the extra path expressions and constraints (cf. Sec-
tion 4.2.5.1). Our initial implementation provides query extension capa-
bilities for the SeRQL [Broekstra and Kampman, 2004] query language.

Policy Engine. This module is responsible for the policy evaluation. Input
information (query context) such as the requester or disclosed credentials

17http://www.openrdf.org
18http://www.kowari.org
19http://jena.sourceforge.net
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Figure 4.14: Defining Policies - Overview

may be used as well.

RDF Store Access. After extending a query the extended query can be
passed to the underlying RDF repository. Since our solution is repository-
independent, any store supporting SeRQL, such as Sesame
[Broekstra et al., 2002] (which we integrated in our actual implementa-
tion), can be used. The result set returned contains only allowed state-
ments and can be directly returned to the requester.

The three modules are interdependent (see Figure 4.13). When a query to
the RDF store is received by the Query Extension module, the query language
used is recognized and the access context of the query is passed to the policy
engine. Based on the query, the policy engine can now process the existing
policy set and generates additions for the query. Depending on the policies,
these additions will be used in the query later to narrow down the result
set of RDF triples to an allowed subset. These additions are passed back to
the Query Extension module and are added there to the original query. The
extended query is then passed to the RDF store access and executed on the
underlying RDF repository.

4.2.6 User Interface for Defining Access Policies

The interface that enables users to specify Protune access policies is called
Policy Editor and operates on top of the access control layer of the User
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Modeling Service as outlined in Figure 4.9. If a service attempts to access user
data for which no access policies have been defined yet, then the operation of
the service fails and the user is forwarded to the Policy Editor. The interface
which is shown to the user (see Figure 4.14) is adapted to the context of
the failed operation. Such a context is given by the RDF statements which
the service needed to access. Thus, the overview is split into a part which
outlines these RDF statements, and a part which allows the specification of
corresponding access policies. RDF statements are colored according to the
policies affecting them (e.g. if a statement is not affected by any policy it
may be colored yellow, green statements indicate that at least one service is
allowed to access, etc.). Next to such statements the interface additionally
shows conflicting policies by marking affected policies and RDF statements.

Warnings make the user aware of critical policies. In Figure 4.14 the user
wants to allow the access to “names“ to all instances of a class “Contact“. But
as the user may not be aware that such a policy would also disclose all future
user profile entries containing a name, she is explicitly prompted for validation.
If the user disagrees, she will be prompted whether the policy should be refined
to cover only those name instances that are currently stored in the user profile.

In general, policies are edited using the interface depicted in Figure 4.15.
This interface consists of two main parts which allow to:

1. define policies (top frame), and

2. dynamically show the effects of the policy (bottom frame).

An expert mode is available, which allows the user to directly enter Protune
policies. Users that do not use the expert mode just have to instantiate a
template consisting of four steps (see top right in Figure 4.15):

what The main task during creation of access policies is the specification of
RDF graph patterns which identify statements that should be accessible
or not. The predefined forms for defining these patterns are generated
on basis of a partial RDF graph consisting of a certain RDF statement
(here: (#contact1, name, ’Daniel Krause’)) and its relation to the user
(#henze, hasContact, #contact1). To clarify this fact the RDF graph is
presented to the user on the left hand.
To determine the options within the forms, schema information of domain
ontologies is utilized. In the given example the property name is part of
the statement from which the forms are adapted. As name is a subprop-
erty of contactDetail both appear within the opened combo box.
By clicking on add pattern or remove the user is enabled to add/remove
RDF statement patterns to/from the overall graph pattern.

allow/deny The user can either allow or deny the access to RDF statements
expressly.
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Figure 4.15: Editing a policy in a detailed view

who The policy has to be assigned to some services or category of services.
For example to ContactInfo, the service trying to access user data, or to a
category like Address Data Services with which ContactInfo is associated.

period of validity This parameter permits the temporal restriction of the
policy.

According to Figure 4.15 the resulting Protune policy would be (without
period of validity):

allow(access(rdfTriple(X, contactDetail, _))) :-

requestingService(S),

rdfTriple(S, memberOf,

’#addressDataServices’),

rdfTriple(’#henze’, hasContact, X).

Thus, Address Data Services are allowed to access all statements (X, con-
tactDetail, Y) that match the RDF graph pattern (#henze, hasContact, X),
(X, contactDetail, Y). This policy overlaps with another policy that denies
the access to statements of the form (X, privateMail, Y) wherefore a warning
is presented to the user. This warning also lists the statements affected by
this conflict: As (#henze, privateMail, ’nicola@home.com’) does not suit, the
pattern specified in Figure 4.15 (#contact5, privateMail, ’juri@home.com’) is
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Figure 4.16: Prototype of the Policy Editor User Interface

the only covered statement. By clicking on “Yes, overwrite!” the deny policy
would be amended with the exception:

not rdfTriple(#contact5, privateMail, ’juri@home.com’).

Otherwise, by selecting “No, do not overwrite!” both policies would over-
lap. But as deny policies outrank allow policies (cf. section 4.2.5.1) the affected
statement would still be protected.

Next to such warnings the Policy Editor makes the user aware of how spec-
ified policies will influence the access to RDF statements. As name, email,
etc. are subproperties of contactDetail the above policy permits access to a
big part of the user’s RDF graph which is consequently shown in green (see
bottom of Figure 4.15).

4.2.6.1 Evaluation of the Interface

Regarding usability issues, the main advantages of our user interface are:

• Easy-to-use – the users do not need to learn any policy language, policies
are created by specifying simple pattern.

• Scrutability – users can inspect the effect of the policy immediately as
the RDF data is colored either red (access not allowed) or green (access
allowed).

• Awareness of effects – whenever a change in a policy will disclose data in
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the future, it is not visualized in the current graph. Hence, users get a
confirmation message to make the aware of the effects of the changes.

We evaluated the user interface for defining access control policies for RDF
data by a prototype (see Figure 4.16) that supports the core functionality
described in Section 4.2.6. Within our evaluation, students had to accomplish
six small tasks with gradient complexity. After we read the tasks to the student
in full, we took the time the student needed upon completion of the task. In all
of these tasks the students had to create policies with the help of the editor’s
interface. After the creation, the editor generates Protune policies from the
visual creation process.

Our student test group consists of five students, advanced in their study,
3 male and 2 female, coming from computer science and math. None of the
students had previous knowledge of policy languages and Protune. None of
the students had previously used or tested the Protune policy editor. While
some students already had a basic understanding of RDF and some did not
we gave a short introduction into RDF in order to make all of them aware of
the graph structure and the meaning of RDF triples.

Every student conducted the tasks separately. Therefore, we gave him/her
a 10 minute introduction into the Protune editor. The introduction was on a
need-to-know basis and contained examples how to accomplish general tasks.
We explained further issues in deeper detail, only if asked by the student.
An introduction into Protune or formal policies was unnecessary, since the
students did not need knowledge about Protune and policies itself in order to
work with the editor.

After the introductory phase, the students had to fulfill the six tasks. Every
task had to be completed after the previous one, i. e. the students received
task two when they finished task one and so on. After the students have
finished a task, the Policy editor was reset to an initial state. The starting
state of the editor is a scenario state, in which the Policy editor shows the
request for a set of RDF triples from a specific service. Those triples are based
on an example dataset, we created for this scenario. We measured the time in
seconds the student needed from touching the computer mouse until finishing
the task.

The tasks in detail are20:

1. Allow the access to one specific requested RDF triple for the requesting
service.

2. Allow the access to all currently requested RDF triples for the requesting
service.

20For a users study incorporating students without a basic computer science-related background, the tasks
could have been rephrased to omit the term RDF.
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Figure 4.17: Overview of evaluation results (n=5, time measured in seconds)

3. Allow the access to all RDF triples of the user profile database that do
contain a specific RDF predicate for a requesting service.

4. Allow the access to all RDF triples of the user profile database that con-
tain a specific RDF subject; limit the access until a certain date for the
requesting service.

5. Deny the access to all RDF triples of the user profile database that do
contain a specific RDF subject, except of one given RDF triple.

6. Allow the access to all RDF triples of the user profile database with a
specific RDF subject for a requesting service, only, if there is existing a
specific RDF triple that contains this specific RDF subject as RDF object
(utilizing the graph structure of RDF triples).

In Figure 4.17 the time (in seconds) is illustrated that students required
in order to finish the task. The time ranged from five seconds for the most
simple first task up to 50 seconds in average for the complex exercises. This
was much shorter than we expected and presumably shorter than creating
Protune policies by hand. Furthermore, it is remarkable that all tasks have
been solved by the students. Although, the testing group was not very big,
the time the students needed did not show big variance.

However, the students did also make small mistakes in solving the tasks,
but corrected themselves after seconds. For example, in task 3, 3 of 5 students
confused ”all RDF triples” (which means ”all of the user profile database”)
with ”all requested triples”, which are only the triples shown in our scenario
that the service requests.
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4.3 Conclusion

The advantage of the presented UMService is that it does not contain domain-
specific knowledge and can be used for arbitrary applications. The User Mod-
eling Ontology on the one hand allows the usage of a domain specific vocab-
ulary and on the other hand allows to specify the content of the statements
in a generic way. Thus, different applications can exchange user profile data
with each other and are able to partially process unknown domain knowledge.
All user profile statements are stored in an RDF repository, which makes them
easy accessible and searchable from other applications.

We provided two user interfaces that enable users to exploit and maintain
their user profiles and that allow users to specify access policies. Both in-
terfaces were designed with the purpose to support non-technical users while
using the UMService. Users do not need to have knowledge about RDF data or
policies. The conducted user study reveals that our expectation regarding the
performance of the interface were exceeded as users without a basic knowledge
of access policies were able to specify complex policies in a very short period
of time.

We described how to integrate the expressed policies into the UMService
in order to provide a fine-grained access control mechanism for RDF-based
user profiles. These policies may state conditions on the RDF nature and
content of the RDF store as well as other external (e.g., contextual) conditions.
The evaluation of the process is divided in order to pre-evaluate conditions of
the policy engine not depending on the RDF store and relying on the highly
optimized query evaluation of semantic databases for RDF pattern and content
constraints.



Chapter 5

Applying Generic User
Modeling and Personalization

In this section, we present real-world applications which were implemented
using the Personal Reader Framework to prove the advantages of the Personal
Reader architecture. We give a detailed description about selected Personal
Reader applications, like the Thread Recommender (see Section 5.1) that em-
ploys the framework to generate recommendations in an E-Learning discus-
sion board. Based on the user profile information, PServices implementing
different collaborative recommender algorithms are dynamically selected dur-
ing runtime. The Personal Reader Agent (see Section 5.2) provides a portal to
store and maintain a user’s invocation configuration of PServices. The MyEar
application provides a personalized music player that uses the agent to store
previous search criteria of a user and to personalize the search results based
on the Personal Reader’s global user profile.

Section 5.3 gives an overview on applications developed with the Personal
Reader Framework. We present a timeline containing developed Personal
Reader Framework components as well as Personal Reader applications. A
table summarizes all known Personal Reader applications and their use of core
components. Access statistics of the Personal Reader website1 outline the
visibility of the conducted research.

5.1 Thread Recommender

Current E-Learning systems focus on supporting the creation and presentation
of learning materials. The communication between the learners, which is also
an important factor for a successful learning experience [Bodendorf, 2009], is
mostly covered by non-personalized tools like chats, wikis and discussion fo-
rums in today’s E-Learning systems. Discussion forums provide unique com-

1http://www.personal-reader.de
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munication features, which make them a perfect candidate for providing per-
sonalized communication in an E-Learning environment. Some of these prop-
erties are:

• Asynchronous messages: Learners can decide on their own when they
access content, create own content or rate content of other learn-
ers [Schwier and Balbar, 2002]. This allows a better planning of the
learning behavior than communication tools, which interrupt the learner
and require immediate attention, like chats.

• Feedback to teachers Learner-learner communication is considered to be
the most important interaction type in E-Learning [Soo and Bonk, 1998].
By observing the ongoing discussions among the learners, teachers can get
an unbiased feedback about the learning process and are able to detect
opaque learning content [Helic et al., 2004].

• Motivation for the learners: Discussion forums motivate learners in
two ways: first, active discussion forums provide new content nearly ev-
ery time the user accesses the forum and thus make it more attractive
for a user to visit the forum regularly. Second, whenever a learner ex-
pressed her own opinion she tends to defend this opinion against others.
In this way, users are turned into active participants of ongoing discus-
sions [Thomas, 2002].

This combination of features turns discussion forums into a prominent ob-
ject of research in the E-Learning area: in [Webb et al., 2004] the authors
have shown that participation in discussion forums can improve the learning
performance while Bradshaw et al. [Bradshaw and Hinton, 2004] state that
discussion forums support collaborative learning.

Another benefit of discussion forums is their tree-like structure. While a
discussion forum usually has an overall topic, user can further divide the fo-
rum into sub-forums where specific sub-topics can be discussed separately.
Below these sub-forums, different discussions can be distinguished by so-called
threads. This structure enables learners to browse through discussion topics
quickly, and to navigate directly to relevant topics. Thus, users are less over-
whelmed by unrelated information as this could happen in mailing lists where
users can only decide to opt-in and receive all mails or opt-out and receive non
of the mails.

Drawbacks of the structure arise when a) users start a discussion in a wrong
thread, b) a topic would fit in multiple threads or c) the forum becomes so
big that the structure can not be overlooked by the users immediately. In
such cases, learners could possibly miss relevant information or need to spend
a high time effort to find relevant information. In these situations keyword-
based search, which is implemented in most of the current discussion board
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systems, is not an appropriate solution as most users can hardly express their
interests by keyword-based queries [Sieg et al., 2004].

A promising approach to match users and relevant threads is to use collab-
orative filtering techniques. The number of approaches, that are purely based
on collaborative filtering, like those used in the Smart E-Learning Frame-
work [Soonthornphisaj et al., 2006], are very limited in the E-Learning do-
main. The reason for this is that either the explicit ratings of the users
are missing [Zaiane, 2002] or that there are not enough users in the sys-
tem. The E-Learning domain is different from other domains where recom-
mender systems perform well: as most E-Learning systems (like the Comtella-
D [Webster and Vassileva, 2006b] system as well) are used to support univer-
sity courses, the number of users is relatively small in comparison to other
systems, like large online stores. Hence, recommender systems need to create
recommendations based on a small amount of input data and might fail to
generate high-quality recommendations.

Users in online communities, like forums, are not homogeneous
[Kelly et al., 2002]. There are some users, who actively contribute new content
while other users seldomly or even never publish own content. Those, who
never publish own content may or even may not rate the content of other users.
With such heterogeneous kind of input data from the users, the question arises
whether a single recommendation algorithm can be appropriate to generate
recommendations.

Many E-Learning systems cannot use general purpose discussion forums as
they would not fit in the E-Learning systems’ data structure, programming
style or bear legal issues regarding the licence. We expect that most discus-
sion forums in the E-Learning domain will be created from scratch or adapted
with specific extensions and hence limit reusability of tightly integrated per-
sonalization algorithms. A promising solution is to apply the Personal Reader
Framework and provide personalization functionality apart from a specific dis-
cussion board. Therefore, we propose a solution, that is loosely coupled and
offers recommendation functionality as reusable PServices. Thus, different
discussion forums, as well as other E-Learning systems, can benefit from the
personalization features, offered by such a solution. Furthermore, by introduc-
ing personalization rules, which select the PService to be invoked based on the
user profile, we make the offered functionality adjustable while applications
and services can still use their existing ontologies and interfaces.

5.1.1 The Comtella-D System

Comtella Discussions (Comtella-D) [Webster and Vassileva, 2006a] is discus-
sion tool, which has been successfully applied in different E-Learning settings,
for example to discuss the social, ethical, legal and managerial issues associated
with information technology or social navigation-related issues. Moreover, it
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Figure 5.1: Screenshot of the Comtella application: a light color represents actively discussed
threads, i.e. energy has been assigned recently to posts within the thread

represents a mechanism for motivating participation in interest-based online
communities, which engages non-contributing members by modeling and visu-
alizing the asymmetrical relations [Webster and Vassileva, 2006b] formed when
reading, evaluating, or commenting other community member’s contributions.
It was used to support the coursework related to a 4th year undergraduate
class on Ethics and IT taught in spring 2006 at the University of Saskatchewan.
Access to content is restricted to registered members. Members are relatively
anonymous because they are identified just by their aliases. The purpose of
using Comtella-D in the class was sharing and discussing information (Internet
publications, popular magazine, articles, etc.) related to the course’s topics.
The students had to share at least one link to an online article related to the
weekly topic and summarize the article in a way that stimulates discussion.
As part of their coursework, the students also had to discuss two of their col-
leagues’ postings each week. In parallel with the students of the Ethics and IT
class (4th year Computer Science students), the Comtella-D system was used
in a class on Ethics and Technology offered by the Philosophy department in
2006. These students used the system as an additional resource, recommended
by the instructor. The system was not related to their coursework and it was
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used entirely voluntary.

Figure 5.2: Screenshot of the Comtella application: Users can increase of decrease the energy
level of every post by up and down buttons

In Comtella-D, a forum is an initial theme related to a course topic (usually
weekly), defined and created by the instructor. A thread is started when a
student contributes a link (URL) to a paper related to the topic of the forum.
The first post in a new thread contains the URL and a summary of the paper
(usually half a page). Further posts in the thread are added as other students
respond to/discuss the first post of the thread. Each post can be commented.
A comment is usually a very specific local comment to the post rather than to
the entire thread. In Comtella-D comments were used mostly by the marker to
give feedback on the quality of arguments raised in the students posts. Figure
5.1 presents a thread view in Comtella-D which can be accessed by registered
users to follow the discussion. For each thread, the users can view the name
of the forum, a description, the number of posts and the last reply.

In addition, Comtella-D allows students to rate posts (positively and nega-
tively) by adding or removing so-called “energy“ to or from it. A user can rate
every post once, if there is free energy in the system available. To make energy
distribution more valuable for the users, the system provides a limited number
of energy units, depending on the level of activity in the system. Figure 5.2
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shows two posts with different colors. The post with the lightest color rep-
resents the contribution of the user that received the most positive attention
from the other users. In other words, the more the users give energy to the
posts the lighter the color of the post gets. In total, ten different energy levels
are visualized (see Figure 5.3). The sum of energy that is available within an
online community measures the current level of contributions/activity in the
community.

Figure 5.3: Different energy levels in the Comtella application
from [Webster and Vassileva, 2006a]

With the use of energy, users who are not willing to contribute actively new
content by posting or commenting, can be engaged. As the energy distribution
is done by a simple mouse click and shows an immediate effect (the color
changes), we assume that some of the previously passive users will at least
become active in the sense that they distribute energy.

Moreover, the number of energy units in the system increases every time
when a new post is created (2 new units are added), and it decays with time.
In this way, the scarcity of energy in the system prevents users from overrating
their colleagues’ posts, and encourages them to carefully read a post before
assigning energy to it. This mechanism is described in
[Webster and Vassileva, 2006b].

As every week several new threads are started and popular threads attract
many posts, keeping an overview of the discussion is a time consuming task.
A student who does not spend the time to read all new posts could easily miss
important topics of his/her interest. Hence, a recommender system is needed
which points the student to relevant posts.

We determined different behavior styles among the users within the discus-
sion forum:

• Regularly contributing users: These users contribute new posts regularly.
Often, they discuss their opinion with other users.
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• Casual contributing users: These users contribute only seldomly.

• Regularly rating users: These users do not contribute content by creating
posts, but rate posts of other users regularly.

• Casual rating users: These users do not contribute content by creating
posts, and rate posts of other users only seldomly.

• Passive users: These users never contribute own posts nor do they rate
posts of other users.

These different user types2 were considered when the Comtella-D System
was designed to generate recommendation. Using a rule-based personalization
framework as described in the following section, we can utilize collaborative
recommender services to take different user groups into account.

5.1.2 Personalized Discussion Board Architecture

Figure 5.4: Architecture of the System – Personalization Rules map requests from the
application, expressed in the Application Ontology vocabulary to the Data Source Services
and their Integration Ontology

We decouple personalization algorithms, data sources, and pre- and post-
processing from each other by applying the PService/SynService structure
from the Personal Reader Framework. To describe the selection of the in-
voked PService, we allow the use of personalization rules. Furthermore, rules
have be commonly used in the E-Learning environment [Dolog et al., 2004,

2Users who contributed posts regularly as well as rated posts by other user, will also be counted to the
group of regularly contributing users. For other combinations this holds respectively.
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Odeh and Ketaneh, 2007] so that E-Learning designers are used to them and
are able to extend existing rules. In this architecture, rules have three main
purposes that enable a flexible coupling of applications and services:

1. Rules define a clear syntactic interface by receiving requests from appli-
cations and transforming them into requests that are submitted to the
PServices.

2. Rules map between applications’ and PServices’ ontologies and hence en-
sure integration on the ontology level by maintaining appropriate map-
pings.

3. Rules use PServices as bricks for offering complex functionality. Hence,
for adjusting the functionality, it is mostly sufficient to modify or adjust
the rules while there is no need to change the services.

Figure 5.4 shows the architecture of the rule-based recommender system
with is based on the Personal Reader Framework as presented in Section 3.2.
A description of the components of the architecture is given below.

• DB : DB represents databases that contain information to be used for
personalization. The databases are independent from each other but can
be combined by data sources if it is considered as necessary. Examples of
these databases are Comtella access logs, forum posts or data provided
on the Web.

• DS : each data source (DS) represents an encapsulated personalization
algorithm. In other words, these data sources are interfaced by PSer-
vices. As a consequence of following the Personal Reader Framework,
each function is separated into a distinct PServices, so that functionality
can be combined and reused in a flexible manner. The development of
new DS services is convenient as the Personal Reader Framework reduces
the amount of code that has to be written by the programmer.

• PServices : PServices provide interfaces to different recommender algo-
rithms and enrich the provided functionality of DS services by machine-
readable OWL-S-based descriptions of the functionality.

• Integration Ontology : this ontology contains information about the users
and personalization algorithms to be used by the system. For this reason,
matchmaking algorithms [Klusch et al., 2006] [OWL-S/UDDIM, 2005]
[Calado et al., 2009] use this ontology to discover, compose, and invoke
the PServices that are used according to the user specification in the rule-
based recommender interface. In addition, this ontology can be extended
by the developers without causing any problems to the PServices, which
have been implemented before extending the ontology. The class hierarchy
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Figure 5.5: The Integration Ontology contains concepts to describe the functionality of the
Data Sources. It must be fine-grained to distinguish different recommendation services from
each other.

of this ontology is presented in Figure 5.5. The ontology describes three
main concepts:

1. RecommendedItem: it represents the kind of item considered in the
recommendation. In other words, based on the ontology the algo-
rithms can recommend Posts or Threads in a forum discussion.

2. User : description about the users that receive the recommendation
of the algorithms.

3. RecommendationSource: this concept defines the kind of source used
in the recommendation. For example, the algorithms can take into
account the post, threads, or even the energy (rating) of a discussion
provided by a user (cf. Section 5.1.1).

• Application: it represents applications that can be used by the recom-
mender architecture. In this thesis, we used Comtella-D as application.

• Rule-adjustment Interface: this interface is used to specify personalization
rules according to the application used.

• Application Ontology : this ontology has the description about the con-
figuration of the recommendation and the users. The hierarchy of the
concepts of this ontology is described in Figure 5.6.

We map applications’ and services’ ontologies to each other to semantically
combine the application with recommender PServices and to enable every com-
ponent to use its own vocabulary. In the example of the Comtella-D system,
the ontology is comparatively small so that a mapping was defined by hand3.

3For larger mappings and the semi-automatic creation of mappings, we recommend to use the SILK
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Figure 5.6: The Application Ontology contains concepts that are needed to request recom-
mendations for the Data Sources.

5.1.3 Benefits of Using a Personalization Framework

Utilizing a personalization framework, like the Personal Reader Framework, to
implement the Comtella-D Thread Recommender offered several advantages:

• Reduce development time: We reuse the existing recommender PServices
from the Personal Reader Framework. No new recommender algorithm
needed to be reimplemented. PServices were created independently from
the data source. The only adjustment, which was needed, was to specify
how to access the data base containing the user-thread-post relationship
of the Comtella-D system. That was passed as a parameter containing an
SQL query.

• Simple exchange of recommender strategy: For the evaluation of the ef-
fectiveness of the recommender strategies we ran several experiments. In
these experiments it was necessary to replace the recommender strategies
often. Due to the fact that every recommender strategy was provided
by a separate Web Service, we just needed to change a single variable,
namely the service URI.

• Simple extension of experiments: Whenever new PServices are developed
within the Personal Reader, all applications can use the offered functio-
nality. For experiments this means that it is easy to compare the perfor-
mance of new algorithms with existing ones as it normally needs just a
change of a parameter.

• Future improvement of recommender strategies: The Personal Reader pro-
vides the Personalized Matchmaker (see Section 3.3.1.2), which discovers
PServices during runtime based on user feedback. Thus, even if program-
mers do not update their Personal Reader application, but use the match-
maker, they can immediately benefit from newly available PServices. For
the following evaluation we did not use the Personalized Matchmaker but
decided to use a static selection rule because user feedback required by
the Personal Reader matchmaker was not available.

framework [Bizer et al., 2009].
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5.1.4 Adjusting the Selection of Personalization Functionality

While the Personal Reader Framework offers the advantage of existing, config-
urable and reusable PServices, it is still in the responsibility of the application’s
developer to integrate the PServices into her own application. From several
PServices with similar functionality, the best (in respect to context, available
input data, etc.) service needs to be chosen. While this can be done by using
our personalized matchmaker (see Section 3.3.1), an alternative is to specify
the selection of the best service as a rule before the application is launched,
utilizing test data.

In this section, we show such an optimization based on Comtella-D. We used
a database snapshot from Comtella-D to adjust the personalization rule. This
dataset was created while Comtella-D was used for a 13 week course on Ethics
and IT (see Section 5.1.4.1) given in 2006 at the University of Saskatchewan.
From the snapshot, we identified representative users in Section 5.1.4.2 and
extracted relevant research questions to determine the selection of the best
recommender PService.

5.1.4.1 Data Set

Based on the features of Comtella-D, there are different possibilities about
which input data can be used by a collaborative recommender:

a) recommendations based on explicit feedback: we consider energy assign-
ment done by the users as explicit feedback as users explicitly rate whether
they like (add energy) or dislike (remove energy) the content. Energy as-
signments require free energy in the application, which is generated when
user activity contribute new content to the application, and are therefore
considered valuable.

b) recommendations based on implicit feedback: we consider the posting be-
havior of a user as implicit feedback, based on the assumption that a user
is interested in a specific thread when she contributed a post.

For the evaluation we took a snapshot of the Comtella-D system of the
Ethics and Computer Science course 2006. Overall, there were 110 registered
users. From these users only 36 contributed actively by posting a least one
message in the discussion forum. Users rated other users 183 times and posted
756 messages in 173 threads over a time period of approximately 3 months. In
these three months, the lass dealt every week with a new topic.

5.1.4.2 Scenario

Assume three users A, B and C: A is a very active user, she regularly creates
new posts and rates posts of other users as well. B is a user who was active
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some weeks ago but did not use the system afterwards, and now requests
recommendations from the system. C has used the system rarely and has
contributed only two posts.

To define a personalization rule which recommends threads, we need to
find a rule that takes all the different behavior patterns into account. We
need to know for user A if all information that we have in our system shall be
taken into account when recommendations are generated. Can we still use the
possibly outdated information from user B and is C’s contribution sufficient
to generate recommendations?

From this scenario, we derived the following four research questions, that
we will answer in this section:

1. How much training data is required to generate precise recommendations
(see Section 5.1.4.3)?

2. What kind of input data (explicit or implicit) gives the best quality to
recommend threads (see Section 5.1.4.4)?

3. Does the behavior of users in the discussion forum change over time (see
Section 5.1.4.5)?

4. Are active users, i.e. users who have posted frequently and hence are more
experienced, more reliable as source for recommendations (see Section
5.1.4.6)?

In particular, questions 1, 3 and 4 are of special interest within an E-
Learning tool. E-Learning environments, like Comtella-D, are often used as
a supplement for a given university course and the number of participants is
small compared to other domains, where collaborative filtering techniques are
used. Hence, the available amount of input data is very limited. Learners
increase their knowledge level during the semester quickly. We assume that
learners will also change their opinion when learning new information. Thus,
old opinions and interests might be used to predict current interests. Regarding
question 4, we search for domain experts and assume that these experts can
be found among the most active learners.

For all of the following measurements, we used the recommender library
RenkGround4, which implemented the collaborative recommender algorithm
presented in Ringo [Shardanand and Maes, 1995] and GroupLens
[Herlocker et al., 1999].

5.1.4.3 Required Amount of Training Data

To determine how much training data is required to generate precise recom-
mendations (first question) we divided our data set into weeks corresponding

4http://www.l3s.de/˜diederich/SW/renkground-2006-09-07-1030.zip
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Figure 5.7: Division of the data set into training data (week 1, containing threads T1-T4)
and test data (week 2, containing threads T5-T8)

to the different topics of the lectures. Afterwards, we iterated over the weeks,
selecting every week x as training set. Then, a test user was selected for whom
we tried to forecast the thread in that this user will create a post in week x+1.

For example in Figure 5.7, week 1 (containing threads T1-T4) is used as
training set to find the neighborhood of similar users for the test user. After-
wards, all posts from week 2 (containing threads T5-T8), which is considered
as test data, are removed from the test user (bold cross). Finally, post recom-
mendations for week 2 are generated from the posting behavior of the similar
users in week 2. A hit is achieved if the recommendations contain the original
thread (bold cross) of the test user.

To ensure that users have contributed enough input data to generate ap-
propriate recommendations we classified the users into different classes. These
classes contain sets of users who have posted at least y posts in different threads
in the training period and at least one post in the test time.

To compare our results we used a non-personalized baseline algorithm. We
recommend the top-k threads, based on the number of posts in the test week.
This baseline algorithm seems fair as the overall data set is comparatively
small and top-k lists can thus contain good recommendations for the users.

Our research hypothesis is that the more data from a user is available in
the training set, the more precise the recommendation for the test set are.

The precision-recall distribution is build by iterating over all users in the
class and calculating the top-k recommendations for these users. k is chosen
from one to the number of all posts. For every k, the precision and recall is
calculated as the average mean of all precision and recall values of all users in
the class. Therefore, the recommendation system is invoked as follows: first,
the posts generated in the training set are passed to the recommender system to
determine the similarity between the users. Afterwards, the recommendations
are calculated by passing all posts to the recommender system which were
created in the test set.

Figure 5.8 displays the precision-recall distribution for the non-personalized
baseline algorithm and the personalized recommendations based on users who
have contributed at least 2, 3, 4, or 5 posts in the training set. While for
k <= 3 the classes 3 to 5 perform better than class 2, class 2 performs better
for k > 4. However, none of the different classes results in significantly better
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Figure 5.8: The precision-recall diagram based on implicit user feedback for users who have
posted at least 2, 3, 4, or 5 times in the training set week.

results than the other classes. Furthermore, all approaches are able to retrieve
not more than 80% of the threads the users have contributed to. This can
be explained by the characteristics of the recommendation process: when a
thread is recommended, a user who is similar to the current user must have
contributed to this thread. Hence, threads which are discussed by a limited
number of users are recommended rarely. This issue is known as new item
problem in collaborative recommender systems [Burke, 2002].

Overall, the results imply that a) the non-personalized baseline algorithm is
outperformed by the personalized algorithm and b) two posts in one week are
sufficient to generate precise personalized recommendations while more posts
do not improve the results significantly.

5.1.4.4 Implicit vs. Explicit User Feedback

In the second step we tried to deduce what kind of input data (explicit or
implicit) gains the best quality regarding the recommendation of threads (sec-
ond question). By explicit data we mean user ratings expressed by energy
assignments5 whereas implicit data is based on the posting behavior of a user.
Analog to the classes defined in the previous section, we define classes of ex-
plicit user feedback. These classes contain users who have contributed at least
x ratings (added or removed energy points to posts from other users) in the
training set week and have contributed at least one rating in the test set week.

To recommend posts by using user ratings we modified the similarity func-
tion of the recommender system. Instead of comparing the similarity of user
vectors containing threads a user has posted in, we use vectors containing the

5users can express that they like a post by adding energy to it or that the dislike a post by removing
energy from it
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energy distribution. Two users are considered as similar when they gave en-
ergy to the same post, hence expressing interest in the same post. We did not
take into account if users added or removed energy as we interpreted every
form of energy assignment as interest in a post. The recommender algorithm
itself was not modified.
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Figure 5.9: The precision-recall diagram based on explicit user feedback for users who have
rated at least 2, 3, or 4 posts of other users in the training set week.

Figure 5.9 gives an overview of the precision-recall ratio of recommenda-
tions based on explicit feedback for the classes of users having rated at least
2 or 3 other users in the training set period. The class with 5 energy assign-
ments was omitted as it did not contain enough users to deliver reliable results.
The graph outlines that – like in the previous section – a comparable small
amount of input data, namely two energy assignments, are sufficient to create
appropriate recommendations and that increasing the amount of input data
does not increase the precision or recall of the recommendations significantly.
Compared to the precision-recall distribution generated by implicit user feed-
back, the quality of the results generated by explicit feedback, in respect of
both, precision and recall, are lower.

We also considered that the smaller number of ratings in comparison to
posts (in the dataset we had 183 ratings and 756 posts) might be a reason
for the weaker performance. To verify this assumption we repeated the ex-
periments by modified classes: Instead of setting only a minimum amount
of feedback, we also set a maximum amount of feedback equal to the mini-
mum amount (e.g. a class now contains those users who contributed exactly
3 posts or 3 ratings). This resulted for both, implicit and explicit feedback, in
lower precision-recall values, but did not change the performance gap between
implicit and explicit feedback.

To improve the overall performance, we tried to use more input data and
joined explicit and implicit feedback. We used the average mean to combine
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the weighted result sets of the recommendations based on explicit feedback
and implicit feedback. We observed that the more we increased the weight of
the explicit user feedback, the worse our recommender system performed.

Our conclusion for the given setting is that explicit feedback (energy assign-
ments) performs worse than implicit feedback (posting behavior) and cannot
be used to improve recommendation based on implicit feedback. However,
if no implicit feedback is given for a specific user, explicit feedback performs
better than the non-personalized baseline algorithm. Hence, explicit feedback
based recommendations can be used as a fall-back if no implicit feedback is
available.

Based on these results we used implicit user feedback as source for the
recommendations applied in the following evaluations.

5.1.4.5 User Behavior

The Comtella-D system was strongly coupled with the timeline of the lectures.
This means that the users discussed every week a new topic. The overlap
between the topics was quite low so that it was not possible use the previous
attitude or behavior of a student towards a specific topic to predict the future
behavior. We assume that the behavior of users changes over time and over
different topics, which means that the more weeks ahead recommendations are
created, the more imprecise they become. Furthermore, as topics discussed in
a given week should still be somewhat fresher in the memory of the students,
we assume that the forecast for the next week would be more precise than
forecasts for two or more weeks ahead.

To verify our assumptions, we iterated over all weeks and used them as
training data. We calculate the recommendations for n weeks ahead, where
n = 1, 2, .., 7 and compared them with the test data. Afterwards, we created
the precision-recall diagram displayed in Figure 5.10.

The figure displays a result which does not comply with our assumptions:
the one week ahead precision-recall values for small top-k result sets are worse
than all other forecasts. Furthermore, the forecasts for more weeks ahead
do not comply to any rule or trend. This means that the behavior of the
users indeed change over time and topic (third question), but that the change
of behavior is not predictable. External factors, like students’ deadlines for
assignments or projects, might also have lead to the observed unpredictable
behavior. We have to remark that our dataset covers only three months of
data, which cannot normalize peaks from external factors. Thus, we have only
reported about the short time behavior of users. We assume that a long-lasting
trend, like a learner’s general aptitude (how active, diligent she is), could be
predicted more precisely.
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Figure 5.10: The precision-recall diagram shows prediction quality for x+ 1, x+ 2, ..., x+ 7
weeks ahead generated based on the training data of week x.

5.1.4.6 Effect of Observation Timeframe

In the previous section we have shown that the user behavior changes over the
weeks making a constantly high forecast for several weeks ahead impossible. To
lower this effect, we increase the input data timeframe by aggregating several
weeks as training set and creating recommendations for one week ahead. We
expect that aggregating several weeks of input data normalizes the behavior of
a user on the one hand and increases the amount of input data one the other.
Both effects should result in an increased quality of the recommendations.
Figure 5.11 displays the measurement aggregating one to five weeks of input
data and calculating the precision and recall of the recommendations for the
following week.
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Figure 5.11: The precision-recall diagram shows prediction quality of one week ahead rec-
ommendations based on the previous 1 to 5 weeks of training data.
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All reviewed input periods deliver similar results. Our expectation that
more input weeks could improve the result could not be proven. This also
underlines our previous observation that the changes of quality regarding pre-
cision and recall seem to follow no rule or trend. Hence, we can also answer
our fourth question: active users, i.e. users who have posted frequently in
Comtella-D, are not more reliable as source for recommendations than users
who posted less frequently.

5.1.4.7 Personalization Rule

The results show that a small amount of input data (two posts or two energy
assignments) and a small number of users – which is a typical scenario within
an E-Learning application – is enough to generate precise recommendations.
As we compared our algorithms against a very reasonable and often applied
baseline, namely a top-k list of most popular topics, we conclude that collab-
orative recommender algorithms are appropriate to be used in the E-Learning
domain.

Furthermore, we have shown that collaborative filtering provided by the
RankGround library can be successfully applied in this E-Learning setting.
More precisely, implicit user feedback, based on the posting behavior of users
results in better recommendations than explicit user feedback given by the
energy assignment of the users while the user behavior tends to follow no
predictable trends over the weeks. A further experiment has shown that more
input data does not always generate better recommendations. Thus, a flexible
method to combine different recommender algorithms based in the available
input data is required.

According to these observations, a personalization rule to select the optional
recommender algorithm to recommend threads in the Comtella-D system is the
following:

if

at least two posts of the user exist

then

create recommendation based on implicit user feedback

else if

at least two energy assignments of the user exist

then

create recommendation based on explicit user feedback

else

use the non-personalized baseline algorithm

By enhancing already existing rules or adding this personalization rule to
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the E-Learning environment, E-Learning systems can easily recommend rele-
vant information/discussions to a learner.

In systems, where the number of user groups, personalization algorithms,
or different kind of input data become too large to create personalization rules
by hand, data mining tools like Weka6 can be used to automatically identify
the most appropriate strategies to personalize content according to a user’s
input data.

5.1.5 Conclusion

In this section, we outlined the advantages of discussion boards for E-Learning
and specified the problems of providing personalization in such a board. We
proposed an discussion-board independent architecture for flexible integration
of personalization functionality in E-Learning based discussion boards utilizing
the Personal Reader Framework: different generic recommender algorithms are
provided as PServices and are selected during runtime based on the available
user profile information.

To optimize the selection process, we used a dataset from the Comtella-D
system of the University of Saskatchewan, which provides different kind of user
feedback. In the evaluation, we have shown that a small amount of input data
is sufficient to generate appropriate personalized recommendations and that
some kind of input data are more useful for generating recommendations than
others. We conclude that a careful selection of input data and correspond-
ing personalization algorithm results in better results than using all available
information of a specific user. As a result of this evaluation we provide a per-
sonalization rule, which selects the best personalization algorithm based on
the available user profile information.

Using the Personal Reader Framework for providing personalization functio-
nality for Comtella-D offered the following benefits: a) a reduced development
time as some recommender algorithms could be reduced, b) a simplified ex-
change of recommender algorithms as they were encapsulated into PServices
and c) due to the plug-and-play characteristics of the Personal Reader Frame-
work, new recommender algorithms can easily be incorporated at any later
point in time.

5.2 The Personal Reader Agent

Personalized Semantic Web applications, that provide a graphical user inter-
face, have to cope with three user-centered issues:

• allowing users to specify their needs (customization)
6http://www.cs.waikato.ac.nz/ml/weka/
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• optimizing result evaluation according to explicit and implicit needs of the
user (adaptation; explicit needs are directly obtained during a particular
interaction, implicit needs are derived from previous interactions and are
interpreted and consolidated by aid of a user modeling component)

• presenting their results in a way that a) user-side applications can vi-
sualize the results and b) transparency and controllability of the result-
determining processes and the adaptation steps are guaranteed.

The Personal Reader Agent is a portal to access Personal Reader applica-
tions and to personalize the invocation of PServices accordingly.

5.2.1 Usage of the Agent

First, the user accesses the Personal Reader Framework by visiting a portal
website provided by the Agent. The user selects an Personal Reader applica-
tion (the SynService) that shall be invoked. Then the user profile information
is used to invoke the personalized matchmaker (see Section 3.3.1.2). The goal
is to discover PServices that can be invoked and adapt best to the provided
user data from both, the actual user’s request and user profile data. N.B.:
not all PServices need to receive the same user profile data, as some of them
might be more trusted than others. The necessary negotiation based on the
user-defined policies in the UMService and credentials of the PServices have
to be executed beforehand.

Afterwards, all matching PServices will be displayed to the user who can
choose which Web service(s) shall be invoked. With this selection step, it is
ensured that only Web services are invoked that a user trusts, and negotia-
tions about user profile credentials can be controlled by the user if necessary.
Afterwards, PServices’ customization parameters – if PServices offer them –
are displayed to the user who can adjust them according to her requirements.

Every selected and customized PService is executed and returns its con-
tent, plus optionally one or several visualization templates. The visualiza-
tion templates enable the SynServices to reach a high usability by providing
domain–optimized visualization. The user can interact with the applications
by clicking on links or completing forms in the generated user interface. As
these interactions are sent back to the SynService it can adapt it’s content
more precise to the user’s requirements and deliver more personalized content,
for example displaying a higher level of detail of the relevant informations.

5.2.2 Visualization and Interface

The Agent provides the interface for searching and configuring SynServices,
as described above. After PServices were selected, configured and invoked,
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the SynService displays the results of all PServices which have been invoked
and returned results. This separation of content collection and syndication /
visualization ensures an easy processing of the PServices’ output, and it allows
the SynServices to adjust visualization according to user devices’ capabilities
and limitations, or further user preferences.

By delivering visualization templates, every PService can optimize visual-
ization and usability, as certain domain-specific information can be taken into
account for creating the user interface.

Figure 5.12: Dialog for Selecting Personalization Services

5.2.3 Scenario: MyEar Syndication Service

We use the MyEar Syndication Service, our Personal Music Syndicator7, which
provides recommendations for music podcast, for explaining the use of the
Agent:

Assume a user who searches for podcasts in the Web. She enters a query
and receives a list of appropriate podcast delivery services. She specifies which
of these services she wants to launch. The user gets a list of all mandatory and
optional parameters which can be used to tailor the services – the MyEar Syn-
dication Service tries to fill all these parameters according to the information
it has about the user’s preferences. The user can change or simply approve
these parameters, eventually the user is requested to enter information that

7We also created MyNews, a news aggregator with a similar usage scenario reusing services from MyEar
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the MyEar Syndication Service was not able to provide. Finally, the user gets
the syndicated output of all the services she launched, displayed in her per-
sonal Web interface. The appropriate visualization is chosen with respect to
the currently used display device of the user.

The user can configure selected PServices. For example, the MyEar Syndi-
cation Service allows the user to specify keywords, duration and iTunes cate-
gory of the podcasts she wants to listen to. The description of these customiza-
tion parameters is provided by the PServices. The user profiling, which enables
the automatic configuration of the PServices, is kept simple for this demon-
strator: it stores the parameters the user has entered the last time she used
this Web service in the UMService, and returns them as the default selection
in the configuration dialog (see Figure 5.13).

The Agent can be seen as a dialog tool for application developers: whenever
an application developer needs to know specific properties of a user, she nor-
mally asks the user to fill a form. The programmer will then process the data
and might store it in a user profile for later use. The Agent simplifies this step
by providing automatically missing parameters extracted from the global user
profile, maintained by the UMService. This user profile will possibly contain
a large set of standard properties as it is used for all Personal Reader applica-
tions. Only if the Agent has no information about the property, the user has
to fill the property manually.

Figure 5.13: Configuration of the MyEar Syndication Service

After configuration, the MyEar Syndication Service is invoked with the
specified parameters. This invocation is passed - via the connector - to the
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corresponding PServices and MyEar receives the determined content (encoded
as RDF document), as well as visualization templates. For MyEar, only one
visualization template is currently available, which displays the RDF document
on PCs within a Web browser, as can be seen in Figure 5.14.

The possibility to provide visualization templates by the PServices allows
for domain-specific optimization of the user interface, which is not realizable
with general-purpose RDF browsing approaches. In the case of the MyEar
Syndication Service, for example drag and drop operations are available for se-
lecting podcasts and controlling the audio together with further, music domain-
specific gadgets.

Figure 5.14: Visualization of the MyEar Syndication Service

5.2.4 Conclusion

With the Personal Reader Agent, we showcased how to provide a user-friendly
interface to explore the Personal Reader Applications and to personalize the
invocation of PServices. Thus, users are able to specify which PServices shall
be invoked and which user profile information they shall receive. By querying
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the UMService, the Agent is able to pre-fill PService’s invocation parameters
automatically and hence increases the ease of usages.

By utilizing the Agent’s functionality a Personal Reader application does
not need to take care on the user interaction required to personalize and adjust
an application. Only the processing and visualization of the PService’s results
are still handled by the application. A usage scenario based on the MyEar
Music Syndication Service shows the advantage of integrating the Agent into
a Personal Reader application.

5.3 Usage of the Personal Reader Framework

This section gives an overview of the usage of the Personal Reader framework.
First, a timeline of the Personal Reader applications as well as a table contain-
ing details of the usage of the Personal Reader components is given. Second,
the usage statistics of the Personal Reader Website are evaluated.

5.3.1 Personal Reader Applications

As indicated in Figure 5.15, both, the extension of Framework functionality as
well as the development of new Personal Reader applications was constantly
performed over the entire considered time period. Personal Reader Framework
components were developed when there was a need for it from a specific ap-
plication and incorporated into existing applications. For example, the Agent
and MyEar were upgraded to use the UMService after their development was
finished. The continuous growth of core components based on real needs un-
derlines the applicability of the framework in real-world applications. Table
5.1 gives an overview over the existing Personal Reader applications.
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5.3.2 Usage Statistics of the Personal Reader Project

Figure 5.16 depicts the access statistics for the website of the Personal Reader
Framework8 created by AWStats9. This website promotes the framework itself
and the various Personal Reader applications. In 2007 we promoted the website
actively which resulted in more than 26.000 visitors (supplementary graphs
are provided in Appendix D). In the following years the Personal Reader
received continuous attention resulting in more than 1000 visits per month.
This effect lasts until today without active promotion of the Website. In
Figure 5.16 we analyzed the origin country of the visitors, which outlines the
strong international attention that the project receives.

Figure 5.16: Countries of visitors of the Personal Reader website from 2009

5.4 Conclusion

In this chapter, we gave a detailed description of two applications, utilizing
the Personal Reader Framework, namely the Thread Recommender for the
Comtella-D discussion forum and the personalized invocation of PServices of
MyEar by using the Agent.

In Comtella-D, the Personal Reader Framework shortened the development
time massively, as existing recommender PServices were available and could

8http://www.personal-reader.de
9http://awstats.sourceforge.net/
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be reused for this recommendation task. The plug-and-play architecture of
the Personal Reader allowed to develop a prototype of the Comtella-D rec-
ommender to perform the evaluation of different recommender algorithms.
This evaluation revealed that a small amount of user feedback is sufficient
to provide better recommendations as a top-k list of most favorite discussion
board posts would do. An interesting observation of the evaluation was that
taking all available user profile information for generating recommendations
does not offer the highest quality. Instead, selecting high-quality user data
carefully, resulted in better recommendations. This outcome was transformed
into a PService selection rule which selects the recommender algorithm (and
hence the PService) based on available user profile data. Finally, Comtella-
D benefits from the Personal Reader infrastructure as further developed and
improved recommender strategies can be easily integrated as new PServices
without changing the existing applications.

The Personal Reader Agent provides an application-independent user inter-
face that allows users to discover Personal Reader applications and to configure
PServices. Application developers do no longer need to take care on receiving
user information as they are provided directly by the Agent. By accessing the
UMService, the Agent automatically receives user’s preferred default values to
minimize the interaction with the user.

An overview about the purpose-driven development process of the Personal
Reader Framework is finally given. The reasonable amount of Personal Reader
applications outlines the success of the framework. The constantly large num-
ber of visitors of the project’s homepage from several countries is an additional
indicator for the success of the Personal Reader Framework.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

Currently available personalization and user modeling functionality is strongly
optimized for a specific application, making it hardly reusable. The motivation
of this thesis is to present and discuss approaches for supporting the entire
life-cycle of a personalized application by providing centralized functionality
and offering generic personalization and user modeling components. Based
on the motivation, I presented the following five research questions in the
introduction:

a) Can the strongly-coupled personalization process of monolithic applica-
tions be divided into logically independent services?

b) Can such personalization services be reused in various applications?

c) How shall user profiles be stored, maintained, and accessed in a Semantic
Web Service-based environment?

d) Can personalization be used to orchestrate personalized applications from
single Web Services?

e) Which requirements need to be fulfilled by a personalization framework to
ease the process of creating a personalized application and which support
needs to be offered to assist the programmers in this process?

To answer these questions, I first conducted a literature research and evalu-
ated the current state-of-the-art approaches for generic user modeling and per-
sonalization. From this, I derived possible obstacles why personalization and
user modeling is not used more frequently in today’s applications. Together
with open questions about the possible future and trending topics of person-
alization and the questions served a input for the design of a questionnaire.
The questionnaire was filled by personalization and user modeling experts at

129
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the Adaptive Hypermedia Conference 2008 and revealed that interoperability,
reusability and the usage of Web Service are key techniques to ease the process
of creating personalized applications.

I picked up these techniques and implemented the Personal Reader Frame-
work, which makes personalization functionality reusable by encapsulating
generic personalization algorithms into Semantic Web Services, so-called PSer-
vices. Applications, represented in the framework as SynServices, shall dis-
cover PServices during runtime and hence be able to use personalization in
a plug-and-play manner. To assist the discovery of PServices, I incorporated
Web 2.0-style user feedback into the matchmaking process, turning it into a
personalized matchmaker. Users were involved in the service selection pro-
cess and actively improved the service selection. In this chapter, I used the
concepts of the Personal Reader Framework to answer the above mentioned
research questions.

The framework additionally supports developers of personalized applica-
tions by providing centralized user modeling. I developed the User Model-
ing Ontology to store user-related data in a central place within the Per-
sonal Reader Framework. This central repository was realized as a Web Ser-
vice, called the User Modeling Service. This services allows different Personal
Reader applications to exchange data with each other even if they use differ-
ent vocabularies. In order to protect the RDF-based user profiles within the
User Modeling Service, I developed AC4RDF, which allows to protect arbi-
trary RDF repositories on RDF Triple level by the use of expressive Protune
policies. A user interface allows non-technical user to specify policies without
the need of having knowledge of RDF or Protune.

The Personal Reader Framework was successfully used to generate recom-
mendations in an online discussion forum. PServices, which provide recom-
mendations based on different kinds of input data, are selected during runtime.
With different experiments, I determined a selection rule which ensures that
the best-performing PService was invoked. I presented the Personal Reader
Agent as a central entry point into the portal, allowing to store and reuse con-
figuration values of Personal Reader applications. The development timeline
of the Personal Reader and a table of all currently available Personal Reader
applications complements the thesis.

Concluding, this thesis goes beyond state-of-the-art in the following five
areas:

Generic Personalization The Personal Reader Framework introduces the con-
cept of Personalization Services to support personalization in a plug-and-play
manner. Personalization Services encapsulate reusable personalization func-
tionality, like recommender algorithms and offer Web Service interfaces to
adjust the service’s functionality. To adopt the functionality according to
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a user, Personalization Services can access the User Modeling Service with-
out any additional implementation effort from the application’s programmer.
The framework offers different Personalization Services for collaborative rec-
ommendations and personalized search. Several applications, that have been
presented in the previous chapter, verify that the PService concept is beneficial
applicable.

Generic User Modeling I presented the User Modeling Service, which is a
generic, domain- and application-independent component. The service pro-
vides an extensible, domain-independent ontology and uses RDF as message
storage format. By enhancing the ontology according to domain-specific needs,
applications can still pertain their own vocabulary. The ontology and the pro-
vided methods for user profile access and mapping ensure interoperability so
that different applications can easily exchange user profile data. The User
Modeling Service is realized as a centralized component and acts on behalf of
the user to allow the user to inspect and modify the user profile as well as
protect it. The User Modeling Service was successfully integrated into MyEar.

User Profile Protection utilizing Policies The Access Control for RDF com-
ponent allows a fine-grained protection of RDF-based user profiles. The com-
ponent enforces expressive Protune policies by enhancing an RDF query by
additional constraints, which exclude the protected data from the result set.
Experiments show that the rewritten queries decrease performance predictably
and scale well. Access protection in the Personal Reader Framework comes
with a user-friendly user interface that allows the user to specify powerful ac-
cess restrictions. Users are forwarded to the GUI whenever new applications
try to access data or known applications try to access new data, so there is no
initial configuration effort to ensure privacy in the Framework. A user study
proves that users can specify and handle complex access policies utilizing the
GUI.

Personalized Matchmaking State-of-the-art matchmaking of Semantic Web
Services was based on the match of input and output parameters as well as
pre- and postconditions defined by the Semantic Web Service description and a
service request. For a matchmaker it is not possible to distinguish services with
the same service description that deliver results of a different quality. I used the
Web 2.0 paradigm of user generated feedback and incorporated user ratings
into the matchmaking process to rank the most-popular and best-matching
services first. The evaluation reveals that feedback-aware matchmaking algo-
rithms outperformed the state-of-the-art baseline matchmakers.
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Personalization and User Modeling Framework The Personal Reader Frame-
work is the first framework that supports the development process of personal-
ized applications by providing central functionality, like user modeling, privacy
protection, and personalized matchmaking, ready-to-run personalization func-
tionality encapsulated into PServices and an overall design architecture for
personalized applications, splitting the application into SynServices and PSer-
vices. The framework realizes the recommendations given by the experts in
the survey: interoperability and reusability of personalization functionality as
well as storage of user profile data have been realized by usage of Semantic
Web techniques.

6.2 Outlook to Future Research Directions

From the open issues mentioned in the thesis, I selected the three most promis-
ing approaches for continuing research in the area of personalization:

Enhance Application Fields of Generic User Modeling and Personalization

With the framework, I have proven that some personalization algorithms, like
collaborative recommender systems can be made reusable by encapsulating
the functionality. Other areas, where generic personalization algorithms have a
strong potential are adaptive hypermedia systems. Especially with the increas-
ing popularity of E-Learning systems, support for simplified implementation
of personalization in that area is strongly needed.

Awareness and Scrutability of Personalization and User Modeling In the Per-
sonal Reader Framework, the key techniques, which have been proposed by the
participants of the questionnaire, like interoperability, reuse and Web Service-
based architecture have been implemented. In the last part of the question-
naire, the participants named non-technical challenges like scrutability and
increased user awareness of personalization. In the framework we tried to
simplify the usage by hiding technical details from the end user. An inter-
esting challenge for an improved interface design is to integrate explanations
of the personalization process or to show a comparison of personalized and
non-personalized output to the end-users.

Extended PService Composition In the thesis, we proposed a matchmaker
which is able to select from a given list of available Personalization Services
the best matching. The matchmaker did not take into account that a com-
position of several services might result in a better fit than a single service.
We have foreseen this composition of single PServices in our Personal Reader
architecture. However, to the best of our knowledge there is no Web Service
orchestration algorithm available which does take user feedback into account.
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I plan to apply the underlying idea of the personalized matchmaker algorithm
to develop a personalized Web Service orchestrater.
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Appendix B

Questionnaire

For the evaluation of the future trends in the area of personalization the fol-
lowing questionnaire was used. The questionnaire was given to the attendees
of the 5th International Conference on Adaptive Hypermedia and Adaptive
Web-Based Systems that took place in Hannover in 2008.
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Hannover, 29 July - 1 August 2008

Questionnaire

Future Perspectives on Personalization

Dear AH2008 participants,

I am Daniel Krause and work as Phd student at L3S Research Center in Hannover. This questionnaire 
aims at identifying the next, important steps towards advanced, easy-to-implement and easy-to-maintain 
personalized systems for the Web and solicits responses from experts in the field.

All data provided by you will by used for research purposes only. The questionnaire is part of my Phd 
work and the results of this study will be published online at:

http://personal-reader.de/questionnaire/

The evaluation will be published by 20th August 2008. 

Please return the questionnaire at the welcome desk.

Thank you very much for your filling out this questionnaire!

Daniel Krause

142



I Experiences from a user perspective

1. Are you satisfied with personalization offered by current personalized 
applications (like Amazon, AHA!, Last.fm, etc.)?

2. Which kind of personalization was offered by the systems that you have used? Do you consider 
the personalization functionality as valuable and have you been satisfied with the result?

Kind of personalization 
functionality

Valuable?

high        low

Satisfying?

high         low

If you were not satisfied, can you give a 
reason why?

recommendations
e.g. book recommendations in Amazon □□□□□ □□□□□

device adaptation
e.g mobile versions of websites □□□□□ □□□□□

navigation support
e.g personalized links to relevant sites □□□□□ □□□□□

adaptive presentation
e.g order item according to user's needs □□□□□ □□□□□

adaptation of content
e.g. omitting text details from news □□□□□ □□□□□

3. a) Do you agree that personalization is useful in general?

b) From a user's perspective: For which purposes do you consider personalization as most useful? 
    Please select at most 3 items.

□ simplified interaction for beginners □ better orientation
□ time saving □ fun to use
□ better feedback from the system □ improved interfaces
□ improved interaction □ ______________________

4. How many of the applications that you have used were personalized?

5. Based on the previous question, how many of the applications should be personalized?
□ much more      □ some more        □ just right        □ some less       □ much less

6. The personalization potential of today's applications is rarely used. What are the main reasons for 
this? Please select at most 3 items.

□ functionality unclear     □ results not satisfying  □ missing transparency
□ missing controllability □ too fast adjustment  □ privacy concerns of the users 
□ slow adjustment □ __________________

□□□□□□□□□□□

yes           no

100%    50%       0%

yes           no

□ □ □ □ □

□ □ □ □ □
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II Experiences from a developer's perspective

7. How many years of experience in developing personalized systems  
(web-applications, applications, prototypes, exploitables, etc.) do you have? _________

8. How many systems ( personalized and non-personalized) have you created? _________

9. How many of the applications that you have created were personalized?

10. How many of the applications that you have created could benefit from 
personalization?

11. a) From a developer's/designer's/manager's perspective: What are the reasons for not 
implementing personalization? Please select at most 3 items.

□ return on investment too low   □ lack of software engineering support
□ lack of results/effects   □ uncontrollable system behavior
□ acceptance of the users is critical   □ interoperability to existing systems is not given
□ lack of reusable components   □ ________________________

b) What are the main technical problems for implementing personalization?

□ lack of libraries/tools □ implementation effort too high   □ results are hard to control
□ lack of best practices / common approaches                             □ ____________________

12. If you have realized personalization in your applications, please give us some details in the 
following tables:

a) Name and short description of the application:

b) Description of the implemented personalization functionality:

c) Did you reuse existing personalization algorithms (includes pseudo-code)?
□ yes, an existing algorithm without modifications □ no, a newly developed algorithm
□ yes, an existing algorithm with modifications □  _____________________________

d) Did you reuse existing personalization code (exclusive pseudo-code)?
□ yes, a coding template1 □ yes, a coding library2

□ yes, a web service □ no
□  ____________________________________

e) What were the main challenges for implementing personalization functionality?

f) Reusability of code for personalization functionality of this application is

1 A coding template is a snippet of code which can be inserted, e.g. by the IDE, and afterwards is edited by the programmer
2 A coding library is encapsulated code, e.g. a whole class, which can be used via interfaces

□□□□□□□□□□□

□□□□□□□□□□□

100%    50%       0%

□ □ □ □ □
possible     not possible
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a) Name and short description of the application:

b) Description of the implemented personalization functionality:

c) Did you reuse existing personalization algorithms?
□ yes, an existing algorithm without modifications □ no, a newly developed algorithm
□ yes, an existing algorithm with modifications □  _____________________________

d) Did you reuse existing personalization code?
□ yes, a coding template □ yes, a coding  library
□ yes, a web service □ no
□  ____________________________________

e) What were the main challenges for implementing personalization functionality?

f) Reusability of code for personalization functionality of this application is

III Future perspectives on personalization

13. Do you think that it is possible to establish  interoperability between 
personalized applications?

14. Would interoperability between personalized applications increase the 
number of personalized applications?

15. Which techniques fit best to improve interoperability between personalized applications? Please 
select at most 2 items.

□ Web Services □ Semantic Web Services      □  RSS/RDF interfaces
□ Ontologies □ other XML interfaces □ _________________

16. Do you think that it is possible to create  reusable personalization 
functionality?

17. Would reusable personalization functionality increase the number of 
personalized applications?

 
18. Please explain your answer of question 17: Why do you/don't you think that personalization can 

benefit from reusability?

yes           no

□ □ □ □ □

□ □ □ □ □

□ □ □ □ □
possible     not possible

□ □ □ □ □

□ □ □ □ □

yes           no
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19. How important do you consider the reusability of the following components:

Importance
high                      low

user event detection □  □  □  □  □

user modeling □  □  □  □  □

user modeling ontology □  □  □  □  □

recommendations □  □  □  □  □

device adaptation □  □  □  □  □

navigation support □  □  □  □  □

adaptive presentation □  □  □  □  □

adaptation of content □  □  □  □  □

other: ___________________ □  □  □  □  □

20. a) Which of the following components of a personalization system can be made reusable in 
which way? Please fill in your ratings in each cell. (Score ranges from 1 to 5: 1=impossible, 
5=possible)

data algorithm code template code library web service

user event detection

user modeling

user modeling ontology

recommendations

device adaptation

navigation support

adaptive presentation

adaptation of content

other: _____________

b) Can you give a reason why components are not reusable?

Reason

user event detection

user modeling

user modeling ontology

recommendations

device adaptation

navigation support

adaptive presentation

adaptation of content

other: _______________
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21. a) Which of the reusability levels (data, algorithm, code template, ...) bear the highest impact?
Please select at most 2 items.

□ data □ algorithm    □ code template □ code library □ web service

b) Which strategies would you prefer for reusing personalization functionality? 
     Please select at most 2 items.

□ data □ algorithm    □ code template □ code library □ web service

IV Open questions

22. What do you consider as the biggest challenges for making personalization reusable?

23. What other techniques can be used to simplify the usage of personalization?

24. What do you consider as the biggest challenges for personalization?

25. What do you think are the most promising future trends in the area of personalization?
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Appendix C

Association Rules

R1.
Q1.2 → Q2.Adaption of Content.Satisfying.2
Confidence: 0,80 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R2.
Q1.4 → Q6 slow adjustment.1
Confidence: 0,78 Support: 0,29 #Y(Y.b)/#Y 0,46 Coverage: 0,64

R3.
Q1.4 → Q15 RSS/RDF interfaces.1
Confidence: 0,78 Support: 0,29 #Y(Y.b)/#Y 0,50 Coverage: 0,58

R4.
Q1.4 → Q19 user modeling.4
Confidence: 0,67 Support: 0,25 #Y(Y.b)/#Y 0,38 Coverage: 0,67

R5.
Q1.5 → Q2.DeviceAdaption.Valuable.4
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R6.
Q2.Recommendations.Valuable.3 → Q2.NavigationSupport.Valuable.4

Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R7.
Q2.Recommendations.Valuable.3 → Q19 user modeling ontology.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R8.
Q2.Recommendations.Valuable.4 → Q6 functionality unclear.1
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,46 Coverage: 0,55

R9.
Q2.Recommendations.Valuable.4 → Q21a data.1
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R10.
Q2.Recommendations.Valuable.5 → Q3b improved interaction.1
Confidence: 0,64 Support: 0,29 #Y(Y.b)/#Y 0,42 Coverage: 0,70

R11.
Q2.Recommendations.Valuable.5 → Q11a return on investment too low.1

Confidence: 0,73 Support: 0,33 #Y(Y.b)/#Y 0,42 Coverage: 0,80
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R12.
Q2.Recommendations.Satisfying.2 → Q6 privacy concerns of the users.1

Confidence: 0,71 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R13.
Q2.Recommendations.Satisfying.4 → Q19 device adaptation.3
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R14.
Q2.Recommendations.Satisfying.4 → Q19 adaptation of content.2
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,25 Coverage: 0,67

R15.
Q2.Recommendations.Satisfying.5 → Q9.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R16.
Q2.Recommendations.Satisfying.5 → Q13.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R17.
Q2.Recommendations.Satisfying.5 → Q19 user event detection.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R18.
Q2.Recommendations.Satisfying.5 → Q19 recommendations.4
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R19.
Q2.Recommendations.Satisfying.5 → Q19 adaptation of content.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R20.
Q2.DeviceAdaption.Valuable.4 → Q2.Adaption of Content.Valuable.4

Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R21.
Q2.DeviceAdaption.Valuable.5 → Q3b improved interaction.1
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,42 Coverage: 0,60

R22.
Q2.DeviceAdaption.Valuable.5 → Q6 missing controllability.1
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R23.
Q2.DeviceAdaption.Valuable.5 → Q6 privacy concerns of the users.1
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,42 Coverage: 0,60

R24.
Q2.DeviceAdaption.Valuable.5 → Q11a uncontrollable system behavior.1

Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,38 Coverage: 0,56

R25.
Q2.DeviceAdaption.Valuable.5 → Q14.5
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,46 Coverage: 0,55

R26.
Q2.DeviceAdaption.Valuable.5 → Q15 other XML interfaces.1
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,33 Coverage: 0,62

R27.
Q2.DeviceAdaption.Valuable.5 → Q19 user event detection.5
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,42 Coverage: 0,60
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R28.
Q2.DeviceAdaption.Valuable.5 → Q21a code library.1
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,29 Coverage: 0,71

R29.
Q2.DeviceAdaption.Valuable.5 → Q21b code library.1
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,42 Coverage: 0,60

R30.
Q2.DeviceAdaption.Satisfying.1 → Q7.10
Confidence: 1,00 Support: 0,17 #Y(Y.b)/#Y 0,25 Coverage: 0,67

R31.
Q2.DeviceAdaption.Satisfying.1 → Q8.10
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,21 Coverage: 0,60

R32.
Q2.DeviceAdaption.Satisfying.1 → Q15 other XML interfaces.1
Confidence: 1,00 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R33.
Q2.DeviceAdaption.Satisfying.1 → Q19 device adaptation.4
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R34.
Q2.DeviceAdaption.Satisfying.1 → Q21a code library.1
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R35.
Q2.DeviceAdaption.Satisfying.2 → Q2.Adaption of Content.Valuable.4

Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R36.
Q2.DeviceAdaption.Satisfying.2 → Q15 Semantic Web Services.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,38 Coverage: 0,44

R37.
Q2.DeviceAdaption.Satisfying.3 → Q11a uncontrollable system behavior.1

Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,38 Coverage: 0,44

R38.
Q2.DeviceAdaption.Satisfying.3 → Q19 user modeling.4
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,38 Coverage: 0,44

R39.
Q2.DeviceAdaption.Satisfying.5 → Q19 navigation support.5
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R40.
Q2.DeviceAdaption.Satisfying.5 → Q19 adaptation of content.5
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R41.
Q2.NavigationSupport.Valuable.1 → Q2.AdaptivePresentation.Valuable.1

Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,08 Coverage: 1,00

R42.
Q2.NavigationSupport.Valuable.1 → Q2.Adaption of Content.Satisfying.1

Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R43.
Q2.NavigationSupport.Valuable.1 → Q7.10
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33
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R44.
Q2.NavigationSupport.Valuable.1 → Q11b implementation effort too high.1

Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R45.
Q2.NavigationSupport.Valuable.1 → Q17.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,08 Coverage: 1,00

R46.
Q2.NavigationSupport.Valuable.1 → Q19 user modeling ontology.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R47.
Q2.NavigationSupport.Valuable.1 → Q21b code template.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R48.
Q2.NavigationSupport.Valuable.2 → Q9.2
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R49.
Q2.NavigationSupport.Valuable.3 → Q2.Adaption of Content.Satisfying.1

Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R50.
Q2.NavigationSupport.Valuable.3 → Q5.4
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R51.
Q2.NavigationSupport.Valuable.3 → Q11b lack of best practices.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R52.
Q2.NavigationSupport.Valuable.3 → Q14.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R53.
Q2.NavigationSupport.Valuable.3 → Q17.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R54.
Q2.NavigationSupport.Valuable.3 → Q19 user modeling ontology.4
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R55.
Q2.NavigationSupport.Valuable.3 → Q19 adaptive presentation.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R56.
Q2.NavigationSupport.Valuable.4 → Q2.NavigationSupport.Satisfying.4

Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,29 Coverage: 0,57

R57.
Q2.NavigationSupport.Valuable.4 → Q19 recommendations.3
Confidence: 0,83 Support: 0,21 #Y(Y.b)/#Y 0,33 Coverage: 0,62

R58.
Q2.NavigationSupport.Valuable.5 → Q2.AdaptivePresentation.Valuable.5

Confidence: 0,83 Support: 0,21 #Y(Y.b)/#Y 0,25 Coverage: 0,83

R59.
Q2.NavigationSupport.Valuable.5 → Q3b improved interaction.1
Confidence: 0,83 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50
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R60.
Q2.NavigationSupport.Valuable.5 → Q4.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,29 Coverage: 0,57

R61.
Q2.NavigationSupport.Valuable.5 → Q11b lack of libraries/tools.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R62.
Q2.NavigationSupport.Valuable.5 → Q11b implementation effort too high.1

Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,29 Coverage: 0,57

R63.
Q2.NavigationSupport.Valuable.5 → Q15 other XML interfaces.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R64.
Q2.NavigationSupport.Satisfying.1 → Q8.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R65.
Q2.NavigationSupport.Satisfying.1 → Q15 Ontologies.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R66.
Q2.NavigationSupport.Satisfying.1 → Q19 navigation support.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R67.
Q2.NavigationSupport.Satisfying.1 → Q19 adaptive presentation.3
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,33 Coverage: 0,38

R68.
Q2.NavigationSupport.Satisfying.1 → Q21a algorithm.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R69.
Q2.NavigationSupport.Satisfying.2 → Q2.Adaption of Content.Satisfying.2

Confidence: 0,80 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R70.
Q2.NavigationSupport.Satisfying.4 → Q2.AdaptivePresentation.Satisfying.4

Confidence: 0,86 Support: 0,25 #Y(Y.b)/#Y 0,42 Coverage: 0,60

R71.
Q2.NavigationSupport.Satisfying.4 → Q19 recommendations.3
Confidence: 0,86 Support: 0,25 #Y(Y.b)/#Y 0,33 Coverage: 0,75

R72.
Q2.AdaptivePresentation.Valuable.1 → Q7.10
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R73.
Q2.AdaptivePresentation.Valuable.1 → Q21b code template.1
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R74.
Q2.AdaptivePresentation.Valuable.4 → Q15 RSS/RDF interfaces.1
Confidence: 0,77 Support: 0,42 #Y(Y.b)/#Y 0,50 Coverage: 0,83

R75.
Q2.AdaptivePresentation.Valuable.5 → Q11b lack of libraries/tools.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50
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R76.
Q2.AdaptivePresentation.Valuable.5 → Q11b implementation effort too high.1

Confidence: 0,83 Support: 0,21 #Y(Y.b)/#Y 0,29 Coverage: 0,71

R77.
Q2.AdaptivePresentation.Valuable.5 → Q15 other XML interfaces.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R78.
Q2.AdaptivePresentation.Valuable.5 → Q21a code library.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,29 Coverage: 0,57

R79.
Q2.AdaptivePresentation.Satisfying.1 → Q2.Adaption of Content.Satisfying.1

Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R80.
Q2.AdaptivePresentation.Satisfying.1 → Q3b improved interfaces.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R81.
Q2.AdaptivePresentation.Satisfying.1 → Q7.10
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R82.
Q2.AdaptivePresentation.Satisfying.1 → Q8.5
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R83.
Q2.AdaptivePresentation.Satisfying.1 → Q19 adaptation of content.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R84.
Q2.AdaptivePresentation.Satisfying.2 → Q2.Adaption of Content.Satisfying.2

Confidence: 0,80 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R85.
Q2.AdaptivePresentation.Satisfying.2 → Q21b data.1
Confidence: 0,80 Support: 0,17 #Y(Y.b)/#Y 0,38 Coverage: 0,44

R86.
Q2.AdaptivePresentation.Satisfying.3 → Q15 Ontologies.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R87.
Q2.AdaptivePresentation.Satisfying.3 → Q16.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R88.
Q2.AdaptivePresentation.Satisfying.3 → Q19 adaptation of content.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R89.
Q2.AdaptivePresentation.Satisfying.3 → Q21a code template.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R90.
Q2.AdaptivePresentation.Satisfying.3 → Q21b algorithm.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R91.
Q2.AdaptivePresentation.Satisfying.3 → Q21b code template.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40
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R92.
Q2.Adaption of Content.Valuable.1 → Q2.Adaption of Content.Satisfying.1

Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R93.
Q2.Adaption of Content.Valuable.1 → Q11b lack of best practices.1

Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R94.
Q2.Adaption of Content.Valuable.1 → Q19 adaptation of content.2
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R95.
Q2.Adaption of Content.Valuable.3 → Q2.Adaption of Content.Satisfying.3

Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,08 Coverage: 1,00

R96.
Q2.Adaption of Content.Valuable.3 → Q7.10
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R97.
Q2.Adaption of Content.Valuable.3 → Q19 user modeling.3
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R98.
Q2.Adaption of Content.Valuable.3 → Q19 adaptation of content.2
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R99.
Q2.Adaption of Content.Valuable.3 → Q21a algorithm.1
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R100.
Q2.Adaption of Content.Valuable.4 → Q6 slow adjustment.1
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,46 Coverage: 0,55

R101.
Q2.Adaption of Content.Valuable.4 → Q11a return on investment too low.1

Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R102.
Q2.Adaption of Content.Valuable.4 → Q19 user event detection.5
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R103.
Q2.Adaption of Content.Valuable.4 → Q19 user modeling ontology.4
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,29 Coverage: 0,71

R104.
Q2.Adaption of Content.Valuable.5 → Q19 adaptive presentation.4
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R105.
Q2.Adaption of Content.Valuable.5 → Q19 adaptation of content.4
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R106.
Q2.Adaption of Content.Satisfying.1 → Q5.4
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R107.
Q2.Adaption of Content.Satisfying.1 → Q19 recommendations.4
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43
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R108.
Q2.Adaption of Content.Satisfying.2 → Q3b improved interaction.1
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R109.
Q2.Adaption of Content.Satisfying.2 → Q6 privacy concerns of the users.1

Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R110.
Q2.Adaption of Content.Satisfying.2 → Q15 other XML interfaces.1
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,33 Coverage: 0,62

R111.
Q2.Adaption of Content.Satisfying.2 → Q16.5
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,46 Coverage: 0,55

R112.
Q2.Adaption of Content.Satisfying.2 → Q19 navigation support.4
Confidence: 0,88 Support: 0,29 #Y(Y.b)/#Y 0,50 Coverage: 0,58

R113.
Q2.Adaption of Content.Satisfying.3 → Q7.10
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R114.
Q2.Adaption of Content.Satisfying.3 → Q19 user modeling.3
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R115.
Q2.Adaption of Content.Satisfying.3 → Q19 adaptation of content.2
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R116.
Q2.Adaption of Content.Satisfying.3 → Q21a algorithm.1
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R117.
Q2.Adaption of Content.Satisfying.4 → Q7.6
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,08 Coverage: 1,00

R118.
Q2.Adaption of Content.Satisfying.4 → Q19 adaptation of content.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R119.
Q3b time saving.1 → Q21a web service.1
Confidence: 0,70 Support: 0,29 #Y(Y.b)/#Y 0,46 Coverage: 0,64

R120.
Q3b time saving.1 → Q21b web service.1
Confidence: 0,70 Support: 0,29 #Y(Y.b)/#Y 0,46 Coverage: 0,64

R121.
Q3b better feedback from the system.1 → Q6 slow adjustment.1
Confidence: 0,67 Support: 0,33 #Y(Y.b)/#Y 0,46 Coverage: 0,73

R122.
Q3b improved interfaces.1 → Q7.5
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,08 Coverage: 1,00

R123.
Q3b improved interfaces.1 → Q9.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50
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R124.
Q3b improved interfaces.1 → Q14.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R125.
Q3b improved interfaces.1 → Q17.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R126.
Q3b improved interfaces.1 → Q19 user event detection.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R127.
Q3b improved interfaces.1 → Q19 user modeling.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R128.
Q3b improved interfaces.1 → Q19 device adaptation.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R129.
Q3b improved interfaces.1 → Q19 adaptive presentation.3
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,33 Coverage: 0,38

R130.
Q3b improved interaction.1 → Q6 privacy concerns of the users.1
Confidence: 0,70 Support: 0,29 #Y(Y.b)/#Y 0,42 Coverage: 0,70

R131.
Q4.2 → Q6 missing controllability.1
Confidence: 0,78 Support: 0,29 #Y(Y.b)/#Y 0,42 Coverage: 0,70

R132.
Q4.2 → Q10.10
Confidence: 0,78 Support: 0,29 #Y(Y.b)/#Y 0,50 Coverage: 0,58

R133.
Q4.2 → Q19 navigation support.4
Confidence: 0,78 Support: 0,29 #Y(Y.b)/#Y 0,50 Coverage: 0,58

R134.
Q4.2 → Q21b web service.1
Confidence: 0,67 Support: 0,25 #Y(Y.b)/#Y 0,46 Coverage: 0,55

R135.
Q4.3 → Q5.4
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R136.
Q4.3 → Q21a code library.1
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R137.
Q4.4 → Q19 user modeling ontology.4
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R138.
Q4.4 → Q19 adaptive presentation.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R139.
Q4.4 → Q19 adaptation of content.5
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50
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R140.
Q5.4 → Q21b code library.1
Confidence: 0,71 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R141.
Q6 functionality unclear.1 → Q21b code library.1
Confidence: 0,64 Support: 0,29 #Y(Y.b)/#Y 0,42 Coverage: 0,70

R142.
Q6 missing transparency.1 → Q11b lack of best practices / common approaches.1

Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R143.
Q6 missing transparency.1 → Q16.4
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R144.
Q7.3 → Q8.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R145.
Q7.3 → Q11b lack of best practices / common approaches.1
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,25 Coverage: 0,50

R146.
Q7.3 → Q13.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R147.
Q7.3 → Q14.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R148.
Q7.3 → Q19 user event detection.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R149.
Q7.3 → Q19 adaptive presentation.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R150.
Q7.3 → Q19 adaptation of content.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R151.
Q7.4 → Q9.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R152.
Q7.4 → Q19 adaptation of content.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R153.
Q7.6 → Q19 adaptation of content.4
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R154.
Q7.10 → Q11b lack of libraries/tools.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50

R155.
Q7.10 → Q15 other XML interfaces.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50
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R156.
Q7.12 → Q8.3
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R157.
Q8.3 → Q19 adaptation of content.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R158.
Q8.4 → Q11b lack of best practices / common approaches.1
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R159.
Q8.4 → Q19 adaptation of content.3
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R160.
Q8.5 → Q19 user modeling.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R161.
Q8.5 → Q19 adaptation of content.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R162.
Q8.10 → Q15 Semantic Web Services.1
Confidence: 0,80 Support: 0,17 #Y(Y.b)/#Y 0,38 Coverage: 0,44

R163.
Q9.2 → Q19 user event detection.3
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,25 Coverage: 0,50

R164.
Q9.5 → Q16.4
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R165.
Q9.7 → Q19 user modeling ontology.3
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R166.
Q9.7 → Q21b algorithm.1
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R167.
Q9.7 → Q21b code template.1
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R168.
Q9.10 → Q11b lack of libraries/tools.1
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,33 Coverage: 0,38

R169.
Q9.10 → Q19 user modeling.4
Confidence: 1,00 Support: 0,17 #Y(Y.b)/#Y 0,38 Coverage: 0,44

R170.
Q9.10 → Q19 adaptive presentation.3
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,33 Coverage: 0,38

R171.
Q10.8 → Q13.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40
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R172.
Q10.8 → Q14.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R173.
Q10.8 → Q19 user event detection.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R174.
Q10.8 → Q19 user modeling.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R175.
Q10.8 → Q19 adaptation of content.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R176.
Q10.9 → Q11a lack of reusable components.1
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R177.
Q10.9 → Q16.4
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,25 Coverage: 0,50

R178.
Q10.10 → Q16.5
Confidence: 0,67 Support: 0,33 #Y(Y.b)/#Y 0,46 Coverage: 0,73

R179.
Q11a lack of results/effects.1 → Q21a code library.1
Confidence: 0,71 Support: 0,21 #Y(Y.b)/#Y 0,29 Coverage: 0,71

R180.
Q11a lack of results/effects.1 → Q21b code library.1
Confidence: 0,71 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R181.
Q11a uncontrollable system behavior.1 → Q14.5
Confidence: 0,78 Support: 0,29 #Y(Y.b)/#Y 0,46 Coverage: 0,64

R182.
Q11b lack of libraries/tools.1 → Q19 user event detection.5
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R183.
Q11b lack of libraries/tools.1 → Q19 navigation support.4
Confidence: 0,88 Support: 0,29 #Y(Y.b)/#Y 0,50 Coverage: 0,58

R184.
Q11b lack of libraries/tools.1 → Q21a web service.1
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,46 Coverage: 0,55

R185.
Q11b lack of libraries/tools.1 → Q21b code library.1
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,42 Coverage: 0,60

R186.
Q11b lack of libraries/tools.1 → Q21b web service.1
Confidence: 0,75 Support: 0,25 #Y(Y.b)/#Y 0,46 Coverage: 0,55

R187.
Q11b implementation effort too high.1 → Q21b code library.1
Confidence: 0,71 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50
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R188.
Q11b results are hard to control.1 → Q14.5
Confidence: 0,69 Support: 0,46 #Y(Y.b)/#Y 0,46 Coverage: 1,00

R189.
Q11b lack of best practices / common approaches.1 → Q19 user modeling.4

Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,38 Coverage: 0,44

R190.
Q13.5 → Q14.5
Confidence: 0,67 Support: 0,33 #Y(Y.b)/#Y 0,46 Coverage: 0,73

R191.
Q14.2 → Q19 user modeling ontology.3
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R192.
Q14.2 → Q21b algorithm.1
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R193.
Q14.3 → Q17.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R194.
Q14.3 → Q19 user event detection.3
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,25 Coverage: 0,50

R195.
Q14.3 → Q19 user modeling.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R196.
Q14.3 → Q19 device adaptation.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R197.
Q14.4 → Q17.4
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,21 Coverage: 0,80

R198.
Q14.5 → Q16.5
Confidence: 0,73 Support: 0,33 #Y(Y.b)/#Y 0,46 Coverage: 0,73

R199.
Q14.5 → Q19 user event detection.5
Confidence: 0,64 Support: 0,29 #Y(Y.b)/#Y 0,42 Coverage: 0,70

R200.
Q15 Semantic Web Services.1 → Q21a data.1
Confidence: 0,67 Support: 0,25 #Y(Y.b)/#Y 0,42 Coverage: 0,60

R201.
Q15 RSS/RDF interfaces.1 → Q21b web service.1
Confidence: 0,67 Support: 0,33 #Y(Y.b)/#Y 0,46 Coverage: 0,73

R202.
Q15 Ontologies.1 → Q19 user modeling ontology.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R203.
Q15 Ontologies.1 → Q19 navigation support.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67
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R204.
Q15 Ontologies.1 → Q19 adaptation of content.4
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R205.
Q15 Ontologies.1 → Q21a algorithm.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R206.
Q15 Ontologies.1 → Q21a code template.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R207.
Q15 Ontologies.1 → Q21b algorithm.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R208.
Q15 Ontologies.1 → Q21b code template.1
Confidence: 0,78 Support: 0,29 #Y(Y.b)/#Y 0,46 Coverage: 0,64

R209.
Q15 other XML interfaces.1 → Q19 device adaptation.4
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,29 Coverage: 0,71

R210.
Q16.2 → Q19 user event detection.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R211.
Q16.2 → Q19 navigation support.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,08 Coverage: 1,00

R212.
Q16.2 → Q19 adaptation of content.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R213.
Q16.3 → Q19 adaptation of content.2
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R214.
Q17.2 → Q19 user event detection.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R215.
Q17.2 → Q19 user modeling.3
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R216.
Q17.2 → Q19 device adaptation.2
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,12 Coverage: 1,00

R217.
Q17.2 → Q21a algorithm.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R218.
Q17.3 → Q19 user modeling ontology.3
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R219.
Q17.4 → Q19 adaptive presentation.3
Confidence: 0,80 Support: 0,17 #Y(Y.b)/#Y 0,33 Coverage: 0,50
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R220.
Q19 user event detection.3 → Q19 user modeling.4
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,38 Coverage: 0,44

R221.
Q19 user event detection.4 → Q19 adaptation of content.5
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R222.
Q19 user modeling.3 → Q19 adaptive presentation.3
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,33 Coverage: 0,38

R223.
Q19 user modeling.3 → Q21a code library.1
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,29 Coverage: 0,43

R224.
Q19 user modeling ontology.1 → Q19 recommendations.3
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,33 Coverage: 0,38

R225.
Q19 user modeling ontology.2 → Q19 adaptation of content.3
Confidence: 1,00 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R226.
Q19 user modeling ontology.3 → Q21a algorithm.1
Confidence: 0,67 Support: 0,17 #Y(Y.b)/#Y 0,25 Coverage: 0,67

R227.
Q19 user modeling ontology.4 → Q19 device adaptation.3
Confidence: 0,71 Support: 0,21 #Y(Y.b)/#Y 0,33 Coverage: 0,62

R228.
Q19 recommendations.2 → Q19 device adaptation.3
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,33 Coverage: 0,38

R229.
Q19 device adaptation.2 → Q21a algorithm.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R230.
Q19 device adaptation.3 → Q21a data.1
Confidence: 0,62 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R231.
Q19 navigation support.2 → Q21a algorithm.1
Confidence: 1,00 Support: 0,12 #Y(Y.b)/#Y 0,25 Coverage: 0,50

R232.
Q19 navigation support.2 → Q21a code template.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R233.
Q19 navigation support.2 → Q21b code template.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,21 Coverage: 0,40

R234.
Q19 navigation support.4 → Q21a web service.1
Confidence: 0,75 Support: 0,38 #Y(Y.b)/#Y 0,46 Coverage: 0,82

R235.
Q19 navigation support.4 → Q21b web service.1
Confidence: 0,75 Support: 0,38 #Y(Y.b)/#Y 0,46 Coverage: 0,82
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R236.
Q19 navigation support.5 → Q19 adaptive presentation.5
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,12 Coverage: 0,67

R237.
Q19 navigation support.5 → Q19 adaptation of content.5
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R238.
Q19 adaptive presentation.5 → Q19 adaptation of content.5
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R239.
Q19 adaptive presentation.5 → Q21a algorithm.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,25 Coverage: 0,33

R240.
Q19 adaptive presentation.5 → Q21b algorithm.1
Confidence: 0,67 Support: 0,08 #Y(Y.b)/#Y 0,17 Coverage: 0,50

R241.
Q19 adaptation of content.2 → Q21b code library.1
Confidence: 0,83 Support: 0,21 #Y(Y.b)/#Y 0,42 Coverage: 0,50

R242.
Q21a data.1 → Q21a web service.1
Confidence: 0,70 Support: 0,29 #Y(Y.b)/#Y 0,46 Coverage: 0,64

R243.
Q21a data.1 → Q21b data.1
Confidence: 0,70 Support: 0,29 #Y(Y.b)/#Y 0,38 Coverage: 0,78

R244.
Q21a data.1 → Q21b web service.1
Confidence: 0,70 Support: 0,29 #Y(Y.b)/#Y 0,46 Coverage: 0,64

R245.
Q21a code template.1 → Q21b code template.1
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,21 Coverage: 0,60

R246.
Q21a code library.1 → Q21b code library.1
Confidence: 0,86 Support: 0,25 #Y(Y.b)/#Y 0,42 Coverage: 0,60

R247.
Q21a web service.1 → Q21b web service.1
Confidence: 0,82 Support: 0,38 #Y(Y.b)/#Y 0,46 Coverage: 0,82

R248.
Q21b algorithm.1 → Q21b code template.1
Confidence: 0,75 Support: 0,12 #Y(Y.b)/#Y 0,21 Coverage: 0,60



Appendix D

Web Usage Statistics

The following diagrams depict the access statistics for the website of the Per-
sonal Reader framework1 created by AWStats2

1http://www.personal-reader.de
2http://awstats.sourceforge.net/

165



166

Figure D.1: Web usage statistics of the Personal Reader website from 2007, evaluated at
09th July 2010.

Figure D.2: Web usage statistics of the Personal Reader website from 2008, evaluated at
09th July 2010.
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Figure D.3: Web usage statistics of the Personal Reader website from 2009, evaluated at
09th July 2010.

Figure D.4: Web usage statistics of the Personal Reader website from 2010, evaluated at
09th July 2010.
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