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Abstract

In the present thesis we discuss some integrable equations and systems of equations

suitable for the modelling of 1D water waves, using methods coming from geometric

analysis. A novel variant of the periodic b-equation is defined by the operator μ − ∂2x;

here, μ gives the mean of a periodic function. For b = 2 and b = 3 we obtain the

μ-Camassa-Holm equation and the μ-Degasperis-Procesi equation, respectively. A two-

component generalization of the Camassa-Holm equation and its μ-variant is obtained

by including the continuity equation for the fluid velocity and density. Analogously,

it is possible to define a two-component system for the Degasperis-Procesi equation,

its μ-variant or related equations like the Hunter-Saxton equation. We show that the

equations under consideration reexpress a geodesic flow on the group of orientation-

preserving diffeomorphisms of the circle S (or a suitable semidirect product, respectively);

in particular, they can be treated within Arnold’s geometric approach. The geometric

picture yields some local well-posedness theorems, in particular for the smooth category,

as well as stability results. The thesis also shows ways to generalize the obtained results

to non-periodic equations and other modified variants, e.g., coming up in the study of

water waves under the influence of weak energy dissipation.
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Zusammenfassung

In der vorliegenden Arbeit werden integrable Gleichungen und Gleichungssysteme zur

Modellierung von 1D Wasserwellen mit Methoden der geometrischen Analysis studiert.

Eine Variante der periodischen b-Gleichung wird durch den linearen Operator μ−∂2x rea-

lisiert; hierbei liefert μ den Mittelwert einer periodischen Funktion. Für b = 2 und b = 3

erhält man die μ-Camassa-Holm Gleichung bzw. die μ-Degasperis-Procesi Gleichung.

Eine Verallgemeinerung der Camassa-Holm Gleichung und ihrer μ-Variante wird durch

Hinzunahme der Kontinuitätsgleichung für die Geschwindigkeit und die Fluiddichte erhal-

ten. Analog definiert man ein Zwei-Komponenten-System für die Degasperis-Procesi Glei-

chung, ihre μ-Variante und verwandte Gleichungen wie die Hunter-Saxton Gleichung. Wir

zeigen auf, daß die genannten Modellgleichungen äquivalent sind zu Geodätengleichungen

auf der Diffeomorphismengruppe des Einheitskreises (bzw. einem geeigneten semidirekten

Produkt); insbesondere lassen sie sich im Rahmen der Arnold’schen Theorie beschreiben.

Aus der geometrischen Betrachtung resultieren Theoreme zur lokalen Wohlgestelltheit,

insbesondere in Fréchet-Räumen, sowie Aussagen zur Stabilität von Lösungen. Die Ar-

beit beinhaltet auch Ansätze zur Verallgemeinerung der Resultate auf nicht-periodische

Gleichungen und diskutiert Modifizierungen der untersuchten Gleichungen, etwa zur Mo-

dellierung von schwacher Energiedissipation.
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Schlagwörter. (μ-)b-Gleichung, geodätischer Fluß, Diffeomorphismengruppe des Ein-

heitskreises
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Preface

Mathematical studies of fluid motion have been carried out for more than 300 years and

there is a number of famous mathematicians, physicists and engineers who contributed

important results to the mathematical theory of fluids: Daniel Bernoulli (Hydrodynam-

ica, 1738), Georges Gabriel Stokes (Mathematical and Physical Papers, 1880-1905) or the

universal genius Leonhard Euler (Principes généraux du mouvement des fluides, 1757),

to name only a few. Isaac Newton (Principia II, 1687) was the first to attempt a math-

ematical theory of water waves. Much later, after the derivation of Euler’s equations

of hydrodynamics, Pierre-Simon Laplace (1776) reexamined wave motion (although his

work remained disregarded). Joseph-Louis Lagrange (Méchanique analytique, 1788), per-

haps independently, derived the linearized governing equations for small amplitude waves

and obtained a solution in the limiting case of long plain waves in shallow water, [29].

Laplace was the first who posed the general initial value problem: Given any localized

initial disturbance of the liquid surface what is the subsequent motion? Even nowadays,

problems like that are of great importance; the reader might think of the prediction of

tsunamis and huge cresting waves which motivate the study of water wave problems from

the mathematical point of view, within the framework of a modern area of research. The

well-posedness problem for the general Navier-Stokes system in three dimensions is only

one prominent example among many other attractive open problems where we probably

need some deep new ideas.

Until the second half of the 20th century, the study of wave motion was confined almost

exclusively to linear theory, [27]. Nevertheless, linear water wave theory cannot capture

effects like wave breaking or solitary waves. On account of that, nonlinear equations have

been introduced and a pioneering candidate has been proposed by Boussinesq (1877),

ut − 6uux + uxxx = 0,

later named after Diederik Korteweg and Gustav de Vries (1895). The Korteweg-de Vries

(KdV) equation is a paradigmatic example of an integrable nonlinear PDE, i.e., the

solutions can be exactly and precisely specified. In addition, KdV is bi-Hamiltonian and

can be solved by means of the inverse scattering transform; hence there is an infinite

number of conservation laws and a corresponding Lax pair representation, [78, 110].

Eventually, it has been shown that KdV allows for soliton solutions but not for wave

breaking, cf. [10] where global existence for L2(S) initial data is proved.

Not more than 20 years ago, Roberto Camassa and Darryl D. Holm derived a novel

nonlinear equation for the motion of shallow water waves, applying Hamiltonian methods:

v
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ut + 3uux = 2uxuxx + uuxxx + utxx.

Camassa and Holm proved the existence of solitary waves and studied the associated

Lax pair, showing in that way the integrability of the Camassa-Holm (CH) equation,

[11]. In the subsequent years, the CH became subject of a wide range of papers, e.g.,

dealing with blow-up solutions and hence wave breaking, cf., e.g., [19, 21, 22, 111]. In

1999, the research for integrable nonlinear PDEs in form similar to the CH led to the

Degasperis-Procesi (DP) equation

ut + 4uux = 3uxuxx + uuxxx + utxx,

see [30, 32], and later to a general family of nonlinear equations,

mt = −(mxu+ buxm), m = u− uxx, b ∈ R,

which is also called b-equation, [36]. For b = 2 and b = 3, the b-equation becomes

the CH equation and the DP equation, respectively, and only for these choices of b, the

resulting equation is integrable, [30, 69]. Interestingly, although discovered solely because

of its mathematical properties, it turned out later that the DP equation plays a role in

the water wave theory, quite similar to the CH, [27]. Further recent papers establish

the bi-Hamiltonian formulation and the scattering approach, [30, 31], and until today,

researchers try to obtain various types of solutions of DP by using numerical methods as

well as powerful analytical tools, see, e.g., [44, 60, 83].

The present thesis is devoted to some variants of the periodic b-equation. If we replace

the momentum variable m = u− uxx by m = μ(u) − uxx where μ(u) is the mean of the

function u(t, x), i.e., the real valued time-dependent function
∫ 1

0
u(t, x) dx, we obtain the

novel family of equations

mt = −(mxu+ bmux), m = μ(u) − uxx, b ∈ R,

which first appeared in a paper by Lenells, Misio�lek and Tiglǎy in 2009, [99]. The motiva-

tion for considering this partially averaged variant comes from geometry: In the pioneer-

ing work [5], Arnold explains that the motion of inertia rigid bodies and the motion of an

ideal fluid can be described within the same mathematical approach: Euler’s equations

of motion for the body and the fluid can both be obtained as the geodesic equations of

a one-sided invariant Riemannian metric on a Lie group. In each case the metric cor-

responds to the kinetic energy and is given by an inner product on the Lie algebra of

the group. The inertia matrix for the rigid body corresponds to an inertia operator for

the fluid motion which maps the fluid velocity u to the momentum variable m. For the

b-equation, the inertia operator is 1 − ∂2x and choosing −∂2x, the b-equation for b = 2

becomes the Hunter-Saxton (HS) equation which appears in the study of nematic liquid

crystals, [65]. In some intuitive sense, choosing μ−∂2x, we obtain an equation which might

inherit properties of the b-equation and the HS equation. In this thesis, we mainly discuss

the μ-b-equation for b = 2 and b = 3 where we obtain the μCH and the μDP equation

(which are two integrable members of the μ-family, [99]).

In physical experiments with real water waves, it is not possible to omit the effect of

energy dissipation. For the CH and the DP, some recent studies show that by adding a

term proportional to m on the right-hand side one obtains a suitable model for water

waves with weak energy dissipation, [46, 124]. This motivates the study of a weakly

dissipative μ-b-equation
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mt = −(mxu+ buxm+ λm), m = μ(u) − uxx, (b, λ) ∈ R× (0,∞),

which we discuss only for b = 3.

The periodic CH equation possesses an integrable two-component extension, denoted

as 2CH, which includes the continuity equation for fluid velocity and fluid density in the

second component: {
mt = −umx − 2mux − ρρx,

ρt = −(ρu)x,

where m = u−uxx, cf., e.g., [13, 49]. A two-component variant of DP has been suggested

by Popowicz [115], {
mt = −3mux −mxu− ρux + 2ρρx,

ρt = −2ρux − ρxu.

That 2DP is in fact integrable — which manifests itself in the existence of a Lax pair

and a bi-Hamiltonian structure — is not proved but conjectured in [115]; Popowicz only

generalizes a Hamiltonian operator for the DP to a suitable matrix Hamiltonian operator

for the extended equation. A two-component variant of HS has been suggested by Lenells

and Lechtenfeld [90]; it is of the same form as the 2CH but with m = −uxx. The 2HS

can be regarded as a supersymmetric extension of the Camassa-Holm equation. In [90],

the authors also work out the bi-Hamiltonian formulation and a Lax pair representation

for the 2HS equation and present some explicit solutions like bounded travelling waves.

Very often the main step to obtaining a solution of a mathematical problem is to find

an adequate representation for it. After that finding the solution becomes easy or is at

least possible. For the b-equation, there is a beautiful generalization of Arnold’s powerful

geometric approach, see, e.g., [41]. In the geometric picture, the b-equation reexpresses

a geodesic flow and, concerning local well-posedness, it is much easier to discuss the

geodesic equation than the equation in its initial form. It will be the general concept of

the present work to rewrite the equations under consideration in a suitable geometric

picture. The geometric viewpoint on our equations and families is not only aesthetically

appealing but will also be useful in the study of well-posedness and stability issues.

Up to now, there are only a few results about the μ-variant of the b-equation and

two-component systems, related to the fact that these equations have only begun lately

to appear in the literature. In particular, geometric interpretations of nonlinear PDEs

for the water wave theory are a current area of research. Let us summarize in detail the

main results collected in this work which is organized as follows:

The first chapter introduces the basic concepts of fluid mechanics to the reader. We

explain the derivation of Euler’s equations of motion and give a precise description of the

classical water wave problem. We also make clear how the families of model equations

mentioned above come up within the mathematical theory of ideal fluids. In addition,

we present Arnold’s geometric approach to fluid dynamics and recall some elementary

concepts from Riemannian geometry like geodesics, curvature and the geometric aspects

of some Lie groups. This introductory chapter does not contain any new results and can

be skipped by the experienced reader.

In Chap. 2, we consider a more general family of CH equations obtained from the

inertia operator 1 − λ∂2x for λ ∈ [0, 1]; this is motivated by the variational principle.

As for the CH, it is possible to show that the so obtained generalization is integrable
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since it possesses a bi-Hamiltonian structure and a Lax par. Similar to Lenells’ approach

[94] for the CH equation, the generalized family is a reexpression of the geodesic flow

for a canonically defined affine connection on the group Diff(S) of orientation-preserving

diffeomorphisms of the circle S. We specify the Christoffel map and derive a convenient

formula for the sectional curvature of the circle diffeomorphism group associated with the

generalized CH. Next, we present an infinite-dimensional subspace of positive sectional

curvature and compute explicit formulas for the variation of the Christoffel map and the

sectional curvature with respect to the parameter λ.

The CH and the DP share many similarities: They allow for breaking waves, solitary

waves, peakon solutions, have an integrable structure and are both obtained from the

b-equation. Nevertheless, in the geometric picture we find the following main difference:

While the affine connection defined for the CH is compatible with a Riemannian metric,

this is not the case for the DP. We thus call the CH a metric Euler equation; the DP

belongs to the class of non-metric Euler equations. In [45], Escher and Seiler prove that

only for b = 2 (that is, the Camassa-Holm) the b-equation is a metric Euler equation: For

any b �= 2, it is impossible to find a regular inertia operator A such that the corresponding

b-equation reexpresses geodesic motion with respect to the right-invariant metric induced

by A. For non-metric Euler equations, the geometric theory only works on account of the

affine connection defined in terms of the Christoffel map.

For the DP equation (which is a prototypical example for the general case b �= 2),

Escher and Kolev established a meaningful local well-posedness result for the smooth

category in 2009, cf. [41]. One goal of Chap. 3 is to point out that the arguments in

[41, 45] also work well for the μ-b-equation. Precisely, we show that the μCH is the

only equation obtained from the μ-b-equation which is compatible with a Riemannian

structure; the corresponding inertia operator is μ− ∂2x. For any b �= 2 we prove that the

μ-b-equation is of non-metric type. We then consider the μDP equation and prove that it

is locally well-posed in the smooth category, i.e., for any smooth initial value u0 ∈ C∞(S),

there exists a unique smooth short-time solution which depends smoothly on time and on

the initial data. The strategy of our proof is to make consequently use of the geometric

reformulation: On the diffeomorphism group of the circle (in the Cn(S)-category with

n ≥ 3) the μDP becomes a geodesic equation which is an ODE with smooth right-hand

side. Applying standard Banach space theory, we immediately get a local well-posedness

result for the geodesic flow. But concluding that the geodesic flow for smooth initial data

is smooth, is not trivial for several technical reasons: First C∞(S) is a Fréchet space in

which we cannot apply the local existence and uniqueness theorems for Banach spaces.

On the other hand, in the Cn(S)-category the diffeomorphism group of the circle is only

a topological group and not a Lie group. And letting n→ ∞ we have to make sure that

the existence intervals for the Cn-flows corresponding to smooth initial values do not

converge to zero.

Finally, Chap. 3 presents some well-posedness and blow-up results for a weakly dissipa-

tive μDP equation and continues the discussion of one-parameter families of Riemannian

metrics, as explained in Chap. 2: We define a one-parameter family of μCH equations

which is obtained from the inertia operator μ − λ∂2x for λ ∈ [0, 1]. Again, we find the

Christoffel map for the novel family, compute the sectional curvature and establish a pos-

itivity result. The chapter ends with a computation of the λ-derivatives of some geometric

quantities.
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Chap. 3 also contains a detailed overview about the different inertia operators coming

into the play, as well as a short introduction to Sobolev spaces on the circle, which we

will need in this and in our next chapter.

Chap. 4 is about two-component variants of CH, DP and HS as well as the associated

μ-equations. After a short summary of well-known facts about semidirect product groups

we show that 2CH and 2DP can be regarded as geodesic equations on the semidirect

product Diff(S)�F(S), where F(S) denotes a space of sufficiently smooth real-valued

functions on the circle. For 2CH, the geodesic equation derives from a natural right-

invariant Riemannian metric, whereas for 2DP the affine connection is not compatible

with any such metric. The geometric construction will give immediate proofs of local

well-posedness for both systems in Hs(S) ×Hs−1(S) or Cn(S) ×Cn−1(S) for sufficiently

smooth initial data. Moreover, we will show that the local well-posedness can be extended

to the Fréchet space C∞(S) × C∞(S). For 2CH, we perform some explicit calculations

of the sectional curvature and we prove the existence of a large subspace of positive

sectional curvature. Finally, we point out that our approach to the 2CH is analogous to

Euler’s formalism for the rigid body motion which already proved to be successful for the

one-component CH, [81]. Our treatment of the 2HS and its μ-variant is quite similar: We

find a suitable semidirect product configuration space for the 2HS equation, prove that

2HS reexpresses a geodesic flow and show that the sectional curvature associated with the

2HS equation is constant and positive. This generalizes a result for the one-component

HS established by Lenells in [95]. Our discussion of 2μHS begins with the presentation

of a Lax pair and the geometric setting. We also perform some curvature computations

for the 2μHS.

In Chap. 5 we are concerned with the non-periodic b-equation, i.e., the family mt =

−(mxu+buxm) with b ∈ R, m = u−uxx and x a real variable. Some recent studies show

that local well-posedness in the smooth category can be achieved from the geometric

picture, quite similarly to the periodic case, but using a different Lie group setting. For

b = 2 and the group of H∞-diffeomorphisms, a proof is written down in [34] and we

generalize the approach to an arbitrary b and diffeomorphism groups of general Sobolev

class. The main problem is to establish that the groups under consideration have the

structure of a regular Fréchet Lie group in the sense of Milnor, cf. [105, 108].

There are three appendices which summarize some key results of the analysis in Banach

and Fréchet spaces, Kato’s semigroup approach to abstract evolution equations and the

theory of integrable infinite-dimensional systems.

To sum it up, the thesis shows how analytical methods coming from physics, differential

geometry and analysis lead to new interesting results in the mathematical theory of water

waves. Some unanswered questions and further tasks can be found in the open problem

chapter: there is still a lot of work to do! Some of the results mentioned above have already

been published by the author, see the reference list, and further preprints will follow. I

hope to have succeeded in writing a text accessible for mathematicians, engineers and

physicists working in different fluid mechanics research communities and I am thankful

for any kind of feedback.

Hannover, January 18, 2011 Martin Kohlmann
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Chapter 1

Preliminaries

“What we know is a drop, what we don’t know is an ocean.” (Sir Isaac Newton, 1643-1727)

Fig. 1.1 The free surface of a water wave.

(http://www.how-to-purify-water.com/images/waterwave.jpg, cited 13 May 2010)

The mathematical theory of water waves is a modern area of research which is based on

the classical analysis of partial differential equations but also uses methods coming from

geometry, harmonic analysis or the theory of infinite-dimensional Hamiltonian systems.

This introductory chapter aims to explain the fundamental aspects of the mathemati-

cal modelling of fluids, in particular the governing equations of fluid motion. We show

that one-dimensional (1D) water waves can be described by a novel family of evolution

equations, the so called b-equation. The b-equation includes the Camassa-Holm equa-

tion as well as the Degasperis-Procesi equation. We also recall some basic concepts from

Riemannian geometry and the group structure of fluid dynamics since this is absolutely

necessary for all the following considerations. Finally, we introduce the Hunter-Saxton

equation by physical arguments and explain its connection to the water wave problem.

1
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2 1 Preliminaries

1.1 The mathematical theory of ideal fluids and water waves

The motion of a perfect fluid is described by a system of partial differential equations

named after Leonhard Euler who first published them in 1757 in his famous article

Principes généraux du mouvement des fluides. We explain the intuitive and mathematical

ideas which lead to the notion of an ideal fluid and derive a complete set of conservation

laws for the motion of such a fluid. Most importantly, we discuss a general water wave

problem in which we are interested in the water’s free surface over a flat bottom, moving

under the influence of gravity. We discuss different approximations to the Euler equations

for this model leading to the famous Korteweg-de Vries equation, the Camassa-Holm

equation or the Degasperis-Procesi equation which was derived recently in [30, 32]. Our

summary mainly follows [4, 14] for the general theory and [27, 36, 69] for the modelling

of water waves.

1.1.1 Euler’s equations for the flow of an ideal fluid

Let Ω be a region in two- or three-dimensional space filled with a fluid. Our aim is to

describe the fluid’s motion. The basic mathematical idea of a fluid motion is that it can

be regarded as a point transformation. We imagine the fluid to consist of small moving

particles: A fluid particle which is at a position ξ at time t = 0 is at position x at a later

time so that

x = x(ξ, t) or xi = xi(ξ1, ξ2, ξ3, t). (1.1)

Clearly, this model violates the concepts of the kinetic theory of fluids saying that the

fluid particles are the molecules which are in random motion. Our treatment of fluid

motion is based on a continuum model , which turned out to be suitable for macroscopic

phenomena, and we assume that the velocity at any point is the average velocity of the

molecules in a suitable neighborhood of this point. The initial coordinates ξ of a particle

are called material coordinates (or convected coordinates , Lagrangian coordinates) of the

particle and the particle itself may be called the fluid particle ξ. The spatial coordinates

x of the particle may be referred to as its position or place. The transformation (1.1) can

be regarded as a curve with parameter t and we call this curve the particle path of the

particle ξ. Let us assume that the motion is continuous, single valued and that Eq. (1.1)

can be inverted, i.e.,

ξ = ξ(x, t) or ξi = ξi(x1, x2, x3, t)

and that ξ is continuous and single valued. Physically, these assumptions mean that

the particle paths are continuous functions and that fluid particles do not split up or

that two distinct particles occupy the same place. If we consider a physical quantity Q

of the fluid, we thus have two ways of interpreting the values of Q: On the one hand,

Q(ξ, t) is obtained by an observer riding on the particle ξ through the fluid whereas

Q(x, t) is obtained by an observer who is fixed at the spatial position x and watches the

fluid motion through a small neighborhood of the point x. We call the first picture the

Lagrangian description of fluid motion and the second picture the Eulerian description.

For each fixed time t, we define the Eulerian velocity of the fluid by

dxi
dt

= vi(x, t)
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Fig. 1.2 Fluid particle

flowing in a region Ω.

and observe that v = (v1, v2, v3) is a time-dependent vector field on Ω.

Ω

v(x, t)

x

We assume that

for each time t the fluid has a well-defined mass density ρ(x, t), i.e., if Ω′ ⊂ Ω is a

subregion of Ω, then the mass of fluid inside Ω′ at time t is

m(Ω′, t) =

∫
Ω′
ρ(x, t) dV,

where dV denotes the volume element in plane or in space. Again, the existence of ρ

follows from our continuum assumption which ignores somehow the molecular structure

of matter. In the following, we assume that ρ and v inherit appropriate smoothness so

that standard operations of calculus can be applied to them. To obtain the governing

equations for the fluid motion we stick to the following three basic principles:

1. Mass is neither created nor destroyed.

2. Newton’s second law: The rate of change of momentum of a portion of the fluid

equals the force applied to it.

3. Energy is neither created nor destroyed.

Let Ω′ ⊂ Ω be a subregion of the fluid domain Ω. Conservation of mass means that

the rate of change of mass in Ω′ equals the volume flow across ∂Ω′, i.e.,

d

dt

∫
Ω′
ρ(x, t) dV = −

∫
∂Ω′

ρv · n dA, (1.2)

where n denotes the outward normal at points of ∂Ω′ and dA the area element on ∂Ω′.
Applying the divergence theorem, we find the continuity equation

∂ρ

∂t
+ div (ρv) = 0. (1.3)

Second, the total force F∂Ω′ on ∂Ω′ is given by the surface stress and hence the pressure

p = p(x, t) on ∂Ω′ and external forces, i.e.,

F∂Ω′ = −
∫
∂Ω′

pn dA+

∫
Ω′
ρb dV,
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where b = b(x, t) is the given body force per unit mass . If we fix some vector e in space,

it follows from the divergence theorem that

e · F∂Ω′ =

∫
Ω′

(−gradp+ ρb) · e dV

and if we write
Dv

Dt
≡ d

dt
v(x(t), t) =

∂v

∂t
+ (v · ∇)v

for the material derivative of v, we see that Newton’s law reads as

ρ
Dv

Dt
= −gradp+ ρb. (1.4)

In three-dimensional space, (1.3) and (1.4) are four equations for the five unknown quan-

tities v = (v1, v2, v3) and the scalar variables p and ρ. To describe the fluid motion

completely, we need a third equation which is obtained from conservation of energy. The

fluid’s energy E is given by the sum of the kinetic energy

Ekin =
1

2

∫
Ω′
ρ|v|2 dV, |v| = (v21 + v22 + v23)1/2,

and an internal energy which we cannot see on a macroscopic scale and which comes

from intermolecular potentials and the thermodynamics of the fluid. A straightforward

computation shows that, for a moving fluid portion Ω′(t), the rate of change of the kinetic

energy is given by

d

dt
Ekin =

∫
Ω′(t)

ρ

(
v ·

(
∂v

∂t
+ (v · ∇)v

))
dV. (1.5)

If we assume that E = Ekin, then the rate of change of kinetic energy in a portion of

fluid equals the rate at which the pressure and body forces do work, i.e.,

d

dt
Ekin = −

∫
∂Ω′(t)

pv · n dA+

∫
Ω′(t)

ρv · b dV. (1.6)

Using (1.5) together with the divergence theorem we get from (1.6) under the assumption

div v = 0 the identity∫
Ω′(t)

ρv · Dv

Dt
dV = −

∫
Ω′(t)

(v · grad p− ρv · b) dV

which is also a consequence of Eq. (1.4). We say that a fluid with divergence free velocity

field is incompressible1 . If the density ρ is only depending on time, i.e., grad ρ = 0, we call

the fluid homogeneous . An incompressible, homogeneous and non-viscous fluid is called

ideal fluid . For an ideal fluid, the governing equations of motion are

1 Letting J be the Jacobian determinant of the coordinate transformation ξ → x, an easy computation

shows that J ′ = J · div v. Since J can be regarded as the ratio of an elementary material volume to its

initial volume, it follows that div v = 0 implies that the fluid does neither expand nor squeeze.
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ρ
Dv

Dt
= −grad p+ ρb, (1.7)

ρ = const., (1.8)

div v = 0. (1.9)

We call the system (1.7)–(1.9) the system of Euler equations for the ideal fluid flow.

Usually, one adds the boundary condition v · n = 0 on ∂Ω′.

1.1.2 The classical problem of 1D water waves

We consider the the unidirectional irrotational motion of water waves on a free surface

under the influence of gravity. The water layer is regarded as an ideal fluid in R3 with

Euclidean coordinates x, y, z over a flat bad which is assumed to be at z = 0. For simplic-

ity, we assume that the wave propagates in x-direction and that all physical variables do

not depend on y. We write v = (u, 0, w) and b = (0, 0,−g) for the constant acceleration

due to gravity of earth. Let h be the mean level of water and η(x, t) the shape of the

water surface, i.e., the deviation from the average level. The total pressure follows from

Bernoulli’s equation

P = PA + ρg(h− z) + p

where PA is the constant atmospheric pressure and p measures the deviation from the

hydrostatic pressure distribution. On the surface z = h+ η, P = PA and hence p = ηρg.

We also have the boundary conditions

w = ∂η
∂t + u ∂η∂x , z = h+ η, (1.10)

w = 0, z = 0, (1.11)

which are explained in [69]. The Euler equations (1.7)–(1.9) together with (1.10) and

(1.11) yield ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut + uux + wuz = − 1
ρpx,

wt + uwx + wwz = − 1
ρpz,

ux + wz = 0,

w = ηt + uηx on z = h+ η,

p = ηρg on z = h+ η,

w = 0 on z = 0.

(1.12)

In the next step, one introduces the dimensionless parameters

ε =
a

h
, δ =

h

λ
, μ = δ2,

where a denotes the typical amplitude and λ the typical wavelength of waves under

consideration, and scales the variables
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Fig. 1.3 The classical

water wave problem.
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The idea behind this is that making assumptions on the respective size of ε and δ one is

led to derive simpler asymptotic models for (1.12). Substituting the new dimensionless

variables in the system (1.12) gives⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut + ε(uux + wuz) = −px,
μ(wt + ε(uwx + wwz)) = −pz,

ux + wz = 0,

w = ηt + εuηx on z = 1 + εη,

p = η on z = 1 + εη,

w = 0 on z = 0.

Finally, for right-moving waves, one introduces the far-field quantities

ζ =
√
ε(x− t), τ = ε3/2t, w =

√
εW,

and obtains the system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εuτ − uζ + ε(uuζ +Wuz) = −pζ ,
εμ(εWτ −Wζ + ε(uWζ +WWz)) = −pz,

uζ +Wz = 0,

W = εητ − ηζ + εuηζ on z = 1 + εη,

p = η on z = 1 + εη,

W = 0 on z = 0.

Now the heuristical strategy is to assume that the variables u, W and p can be expressed

as double expansions in ε and δ with terms depending only on η(x, t) and explicitly on

z. As a result, one obtains a single nonlinear equation for η and all the variables can be

expressed in terms of the solution of this equation. In the so-called long wave regime we

have
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μ� 1, ε = O(μ),

and explicit calculations show that a right-going wave should satisfy the KdV equation

ut + ux + ε
3

2
uux + μ

1

6
uxxx = 0

which becomes the transport equation with speed 1 if ε, μ → 0. Benjamin, Bona and

Mahoney [9] found out that the KdV equation belongs to a wider class of equations, the

so-called BBM equations , which provide an approximation of exact water waves equations

of the same accuracy as the KdV equation:

ut + ux +
3

2
εuux + μ(αuxxx + βuxxt) = 0, α− β =

1

6
. (1.13)

Observe that Eq. (1.13) contains both non-linear effects, described by the uux-term, and

dispersive effects, modelled by the uxxx-term and the uxxt-term.

For medium or large amplitude waves, it was observed that the behavior is more

nonlinear than dispersive and thus one uses the scaling

μ� 1, ε = O(δ), (1.14)

which characterizes the medium amplitude shallow water regime. Observe that we still

have ε � 1 and thus the same reduction to a simple wave equation at leading order,

but since the dimensionless parameter is larger than in the long wave regime, we capture

stronger nonlinear effects. Observe that stronger nonlinearity could allow the appearance

of breaking waves which are not modelled by the BBM equations. It is shown in [27],

that the correct generalization of the family (1.13) under the scaling (1.14) is provided

by the class

ut + ux +
3

2
εuux + μ(αuxxx + βuxxt) = εμ(γuuxxx + δuxuxx), (1.15)

with appropriate conditions on the parameters α, β, γ and δ. It can be shown that

Eq. (1.15) is not well-posed if β is positive. Second, among all β ≤ 0-members of the fam-

ily (1.15) only two have a bi-Hamiltonian structure: the Camassa-Holm equation and the

Degasperis-Procesi equation. In general, bi-Hamiltonian equations are of particular inter-

est since they may form completely integrable Hamiltonian systems (see Appendix C).

Notice that the KdV equation is the only bi-Hamiltonian member of the family (1.13).

In addition, the Camassa-Holm and Degasperis-Procesi equations allow for solitons, i.e.,

wave packets which do not change their shape while travelling at constant speed.

The Camassa-Holm (CH) equation is usually written in the form

Ut + κUx + 3UUx − Utxx = 2UxUxx + UUxxx, κ ∈ R. (1.16)

For κ �= 0, we can transform (1.16) to (1.15) by setting

u(t, x) = aU(b(x− vt), ct), (1.17)

with

a =
2

εκ
(1 − v), b2 = − 1

βμ
, v =

α

β
�= 1, c =

b

κ
(1 − v)
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which requires β < 0 and yields β = −2γ and δ = 2γ. Similarly, the Degasperis-Procesi

(DP) equation is usually written as

Ut + κUx + 4UUx − Utxx = 3UxUxx + UUxxx, κ ∈ R,

and using the transformation (1.17) with

a =
8

3εκ
(1 − v), b2 = − 1

βμ
, v =

α

β
, c =

b

κ
(1 − v)

and β < 0, α �= β, β = −8γ/3 and δ = 3γ, one sees that the DP equation is of the form

(1.15).

The Korteweg-de Vries (KdV) equation

ut − 6uux + uxxx = 0 (1.18)

is an asymptotic equation for the unidirectional motion of water waves in the long

wave regime. The function u(t, x) depends on a time variable t and a space variable

x and represents the wave profile over the flat bottom. In the shallow water medium

amplitude regime, the Camassa-Holm (CH) equation

ut + 3uux = utxx + 2uxuxx + uuxxx (1.19)

and the Degasperis-Procesi (DP) equation

ut + 4uux = utxx + 3uxuxx + uuxxx (1.20)

are approximations to the governing equations of wave motion which capture

stronger nonlinear effects.

The KdV equation first appeared in Boussinesq’s article Essai sur la théorie des eaux

courantes (1877) and is named for Diederik Korteweg and Gustav de Vries who stud-

ied the equation in 1895. The KdV equation is the prototypical example of an exactly

solvable non-linear partial differential equation and its solutions in turn are paradigmatic

examples for soliton solutions. The mathematical theory behind the KdV equation is rich

and interesting: The method of inverse scattering is applicable to KdV and the equation

possesses a bi-Hamiltonian structure, a Lax pair and hence an infinite number of con-

served quantities (see Appendix C). Furthermore, KdV is obtained from a variational

principle and defines a symplectic structure in the theory of infinite-dimensional Hamil-

tonian systems, cf. [104].

The CH equation was introduced by Roberto Camassa and Darryl D. Holm as a bi-

Hamiltonian model for water waves in shallow water, see [11] where the authors also

specify a Lax pair and so-called peakon solutions for (1.19); that are solitons with a

sharp peak and hence a discontinuity at the peak in the wave slope. In [18, 23] it is

shown that the CH equation is solvable via the inverse scattering transform.

The DP equation was discovered by A. Degasperis and M. Procesi [30, 32] in the search

for a bi-Hamiltonian equation in form similar to the CH equation. In [30], the authors

present a Lax pair and show that the DP equation has peaked solitons.

In the general theory of 1D water wave equations, one distinguishes between two types
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of models: in the periodic case, we assume that the space variable x is defined on the

unit circle S = R/Z. Formally, S consists of equivalence classes of real numbers such that

x and y are equivalent if and only if x − y is an integer. Since for any real x there is

an integer n satisfying n ≤ x < n + 1, each equivalence class can be represented by an

element of [0, 1). We write u : S → R if u : R → R is periodic with period 1. Physically,

x ∈ S means that the wave has a periodic profile. For non-periodic equations, we write

x ∈ R; in this case the equation is considered on the real line.

For applications, one is often led to study the following question: Let u be a function

depending on time and space. Given the initial data u0 in some function space and the

evolution equation ut = Au with the unknown u and some (in general nonlinear) operator

A, can we solve the initial value problem{
ut = Au,

u(0, x) = u0(x)
(1.21)

in the sense that

1. the problem in fact has a solution in the underlying function space, at least for some

open time interval containing zero,

2. this solution is unique,

3. the solution depends continuously on the initial data u0?

We call the problem (1.21) a Cauchy problem (or initial value problem) and say that it

is well-posed if it has a solution u as specified above. If the problem (1.21) is well-posed

and the solution u exists for all t ∈ R, we say that (1.21) is globally well-posed, otherwise,

the problem is locally well-posed. The third condition in the above definition is of great

practical importance since we would prefer that our (unique) solution changes only a

little when the conditions specifying the problem only change a little.

Note also that we have not carefully defined what we mean by a solution; presumably,

we would demand that our solution possesses as much as regularity as necessary to plug

it into the evolution equation. However, apart from so called classical solutions or strong

solutions , there might be weak solutions which are obtained if we multiply the equation

ut = Au with some smooth test function, integrate and perform integration by parts.

Note that peakon solutions

u(t, x) =

n∑
i=1

mi(t)e
−|x−xi(t)|

of a water wave equation are weak solutions since they fail to be differentiable at the

cusps.

For (1.18), (1.19) and (1.20), various well-posedness results and properties of strong

and weak solutions have been established. Here, we only mention some examples for the

periodic case since we will mainly discuss periodic equations in the following. For the

KdV equation (1.18), Bourgain [10] proved global well-posedness for square integrable

initial data, see also [72, 78] for further results. The Cauchy problem for the periodic

CH equation (1.19) in spaces of classical solutions has been studied extensively (see, e.g.,

[109]); in [33] the authors explain that this equation is also well-posed in spaces which

include peakons, showing in this way that peakons are indeed meaningful solutions of

CH. The precise blow-up setting, the blow-up rate and examples for finite time solutions

of the CH equation are presented in [19, 21, 22, 111]. Well-posedness for the periodic DP
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Fig. 1.4 Four-peakon wave

profile formed by adding

peakons at x1 = −5, x2 =

−1, x3 = 3, x4 = 7 and

with m1 = m3 = 1, m2 =

1/2 and m4 = 3/2.
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equation (1.20) and various features of solutions of the DP on the circle are discussed in

[44]. Just a small selection for further reading is [15, 16, 47, 126] and [59], and for readers

with a particular interest in travelling waves [93, 119] and in peakons, (multi)solitons

and shock waves [100, 103].

1.2 Euler’s equations as reexpression of a geodesic flow on the
circle diffeomorphisms

Euler found out that the motion of a rigid three-dimensional body can be described along

geodesics in the group of rotations of three-dimensional Euclidean space equipped with a

left-invariant Riemannian metric. A significant part of Euler’s theory depends only upon

this invariance so that it can be extended to other groups. Most interestingly, Euler’s

formalism can be applied to the hydrodynamics of an ideal fluid where the relevant

group is the diffeomorphism group of smooth and volume-preserving diffeomorphisms.

Basically, the kinetic energy defines a right-invariant metric and the key result is that

the fluid motion is described by the geodesics with respect to this metric. Of course, we

have to pay attention when generalizing results from a finite-dimensional Lie algebra to

an infinite-dimensional one. This section summarizes the most important facts about the

circle diffeomorphism group (in the smooth category) and the geometric approach to fluid

dynamics. In addition, we also recall some elementary facts from differential geometry

which we will need in the following.

1.2.1 The diffeomorphism group of the circle as manifold
configuration space for the motion of an ideal fluid

To describe the dynamics of a physical system, one first needs a configuration space, i.e.,

a Lie group such that the motion of the system is given by a smooth path in this Lie

group. For clarity, let us first recall the following definition.

Definition 1.1. A group G is a non-empty set G together with a map G × G → G,

(g, h) → gh, such that

1. for all g1, g2, g3 ∈ G we have that (g1g2)g3 = g1(g2g3),

2. there is an element e ∈ G satisfying eg = ge = g for all g ∈ G,

3. for any g ∈ G there is a unique element g−1 ∈ G such that gg−1 = g−1g = e.
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If, in addition, G is a smooth manifold and the group product G×G→ G, (g, h) �→ gh,

and the inversion G→ G sending any g to g−1 are smooth, we say that G is a Lie group.

Let C∞(M ;N) denote the set of all smooth maps between smooth manifolds M and N .

For an ideal fluid, filling a domain M , we choose the configuration space

Diff∞(M) :=
{
ϕ ∈ C∞(M ;M); ϕ bijective, volume-preserving and

ϕ−1 ∈ C∞(M ;M)
}

of smooth and volume-preserving diffeomorphisms of M . The group product is just the

composition of two diffeomorphisms and the neutral element is the identity map id.

Indeed, the fluid flow determines for every time t a map t �→ ϕ(t) in Diff∞(M) such that

the initial position of every fluid particle is mapped to its position at time t. To model

periodic 1D waves, we will consider diffeomorphisms on the circle S.

Definition 1.2. Let C∞(S) denote the set of all functions S → R which have continuous

derivatives of order n for any n ∈ N. We write Cn(S) for the space of n-times continuously

differentiable functions S → R. By C0(S) ≡ C(S), we denote the continuous functions on

S.

Obviously,

C∞(S) =
⋂

n∈N∪{0}
Cn(S).

Clearly, the spaces Cn(S) are Banach spaces, where

||u||Cn :=
n∑
j=0

∣∣∣∣∣∣u(j)∣∣∣∣∣∣
∞
, u(j)(x) :=

∂ju

∂xj
(x), u(0) := u, ||v||∞ := max

x∈S

|v(x)|.

The space C∞(S) is a Fréchet space (see Appendix A.3); more precisely, its topology is

induced by the countable family {||·||Cn ; n ≥ 0}. A sequence (uk)k∈N converges to u in

C∞(S) if and only if

||uk − u||Cn(S) → 0, k → ∞, ∀n ∈ N ∪ {0}.

In a Fréchet space, only directional derivatives (Gateaux derivatives) are meaningful.

Definition 1.3. Let X,Y be Fréchet spaces. A function f : X → Y is called continuously

differentiable (or C1) on an open subset U ⊂ X , if the directional derivative

[Df(x)]u = lim
h→0

1

h
(f(x+ hu) − f(x))

exists for all x ∈ U and all u in X and the map (x, u) �→ [Df(x)]u is continuous.

Higher order derivatives and Cn-classes in Fréchet spaces are defined inductively. Note

that for Banach spaces X,Y our definition of continuous differentiability is weaker than

the usual one, cf. Appendix A. Now we introduce some diffeomorphism groups.

Definition 1.4. We write Diffn(S) for the set of all diffeomorphisms ϕ : S → S which are

Cn-functions with strictly positive derivative. Similarly, we let Diff∞(S) denote the set

of all smooth and orientation-preserving diffeomorphisms of the circle S.
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Given a diffeomorphism ϕ ∈ Diff∞(S), we define its derivative ϕx ∈ C∞(S) by the

following construction, cf. [56]. We denote by p : R → S, x �→ e2πix the universal cover of

the circle. A lift of ϕ is a smooth map f : R → R satisfying p ◦ f = ϕ ◦ p, i.e.,

ϕ
(
e2πix

)
= e2πif(x), ∀x ∈ R.

By definition, a lift f for ϕ is unique only up to some integer constant. The fact that ϕ

is orientation-preserving implies f(x+ 1) = f(x) + 1. The map f ′ is smooth and periodic

and we set

ϕx := f ′

to obtain a well-defined derivative of ϕ. Next, we observe that Diff∞(S) is naturally

equipped with a Fréchet manifold structure2 modelled on the Fréchet vector space C∞(S).

We briefly sketch how to obtain a smooth atlas with only two charts, cf. [56]. Given a

ϕ ∈ Diff∞(S) it is always possible to find a lift f : R → R of ϕ such that

−1/2 < f(0) < 1/2 or 0 < f(0) < 1;

these conditions being not exclusive. We now let

V1 := {ϕ ∈ Diff∞(S); ϕ has a lift f satisfying − 1/2 < f(0) < 1/2} ,
V2 := {ϕ ∈ Diff∞(S); ϕ has a lift f satisfying 0 < f(0) < 1} ,

and obtain open subsets of Diff∞(S) with V1 ∪ V2 = Diff∞(S). For any ϕ ∈ Diff∞(S) let

u = f − id.

Then u has period 1 and hence lies in C∞(S). In addition u′(x) > −1 and u(0) = f(0).

Thus, defining the open sets

U1 := {u ∈ C∞(S); −1/2 < u(0) < 1/2 and u′ > −1} ,
U2 := {u ∈ C∞(S); 0 < u(0) < 1 and u′ > −1} ,

and the maps

Φj : Uj → Vj , u �→ f = id + u, j = 1, 2,

we get charts of Diff∞(S) with values in C∞(S). The change of charts corresponds to a

change of lift and is just translation in C∞(S) by ±1.

Since the composition and the inversion are smooth maps Diff∞(S) × Diff∞(S) →
Diff∞(S) and Diff∞(S) → Diff∞(S) respectively, Diff∞(S) is a Fréchet Lie group, [58].

The tangent space at the identity of Diff∞(S) is naturally identified with the smooth

vector fields on the circle. To see this, one may choose a smooth path t �→ ϕ(t) ⊂ Diff∞(S)

with ϕ(0) = id so that, on the one hand, ϕt(0) ∈ TidDiff∞(S), and on the other hand,

ϕt(0, x) ∈ TxS for any x ∈ S. Since TS � S × R, we also have TidDiff∞(S) � C∞(S).

Later on, we will explain that TidDiff∞(S) is the Lie algebra g of Diff∞(S), equipped with

the Lie bracket [u, v] = uxv − vxu. Observe that Diff∞(S) is itself parallelizable, i.e.,

TDiff∞(S) � Diff∞(S) × C∞(S).

2 Fréchet manifolds are defined as sets which can be covered by charts taking values in a given Fréchet

space and such that the transition maps are smooth. The notions Banach manifold, Hilbert manifold

etc. are defined analogously.
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Fig. 1.5 Lie group G

with Lie algebra g. The

curve g(t) starts at id with

velocity v.

For n ∈ N, the diffeomorphism groups Diffn(S) are equipped with a smooth Banach

manifold structure modelled on the Banach space Cn(S). However, Diffn(S) is only a

topological group an not a Banach Lie group; the composition and the inversion map are

continuous but not differentiable, cf. [37].

1.2.2 A geometric approach to Euler’s equations of motion

Arnold [5, 6, 7], Ebin and Marsden [37] found out that the motion of inertia rigid objects

in Classical Mechanics and the incompressible flow of some ideal fluid can be described

by the same mathematical approach. In this section, our aim is to introduce this powerful

geometric formalism and to explain the results using the example of a rigid body in R3

and some ideal fluid inside a domain M ⊂ R
3 (see also [62, 81, 83]).

G

g id

v

g(t)

g′(t)

The configuration

space for a rigid three-dimensional body is the Lie group SO(3). Recall that an ideal fluid

inside a domain M is modelled on the manifold configuration space Diff∞(M). Let ϕ(t) ⊂
Diff∞(M) be a smooth path. The velocity field of the fluid motion described by ϕ(t) is

given by v(t) = d
dtϕ(t) and hence v(t) is an element of the tangent space Tϕ(t)Diff∞(M).

The kinetic energy Ekin = 1
2

∫
M ρv2 dx is a quadratic form on Tϕ(t)Diff∞(M). Observe

that, since our fluid is incompressible, the integration can be carried out with the volume

element occupied by an initial fluid particle or with the volume element dx occupied at

time t. Moreover, the kinetic energy is right-invariant in the sense that it is invariant

under right translations on the diffeomorphism group.

Definition 1.5. Let G be a Lie group and let g ∈ G. The maps

Rg : G→ G, h �→ hg, Lg : G→ G, h �→ gh, (1.22)

are called the right translation and left translation given by g. The map Ig := Rg−1Lg : G→
G sending h to ghg−1 is called the inner automorphism of G.

Observe that the operations Lg and Rg commute and that Ig is indeed an automorphism

because Ig(h1h2) = Ig(h1)Ig(h2). Since Igh = IgIh the map sending any g ∈ G to the

inner automorphism Ig is a group homomorphism. Note that the differential of Ig at the

identity is a map TeG→ TeG.

Definition 1.6. Let G be a Lie group. The tangent space at the unity TeG is called the

Lie algebra g of the Lie group G.
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Fig. 1.6 Angular velocities

for a rigid body B and a

circle diffeomorphism. We

denote by X a point in

the body and describe the

body’s motion by a curve

R(t) ⊂ SO(3); similarly

for the ideal fluid with

ϕ(t) ⊂ Diff∞(S). For the

body, the Eulerian velocity

satisfies u(t, x) = Ṙ(t)X =

Ṙ(t)R−1(t)x and similarly

for the fluid u(t, x) =

ϕt(t, X) = (ϕt ◦ ϕ−1)(t, x).

From the invariance of the kinetic energy under right translations (left translations for

the rigid body, respectively), we get the crucial idea that it will often be enough to define

geometric objects on the Lie algebra so that the values on all the other tangent spaces

follow from right invariance (left invariance, respectively).

The Lie algebra of SO(3) is denoted by so(3) and consists of all real antisymmetric

3 × 3-matrices. The space so(3) is three-dimensional and its elements are called angular

velocities . More precisely, for a smooth path R(t) ⊂ SO(3), we call Ṙ(t) the material

angular velocity ,

(DR(t)RR−1(t))Ṙ(t) = Ṙ(t)R−1(t) ∈ g

the spatial angular velocity and

(DR(t)LR−1(t))Ṙ(t) = R−1(t)Ṙ(t) ∈ g

the body angular velocity since these velocities correspond to the spatial reference frame

and the body’s reference frame respectively. Observe that LR and RR are linear maps so

that DLR = LR and DRR = RR. The Lie algebra of Diff∞(M) consists of the smooth

divergence-free vector fields on M and is denoted as Vect∞(M). For M = S, applying

DϕRϕ−1 and DϕLϕ−1 to the velocity ϕt, we obtain the velocities u = ϕt ◦ϕ−1 (from the

linearity of Rϕ−1) and

U =
d

dε
ϕ−1 ◦ (ϕ + εϕt)

∣∣∣∣
ε=0

=
ϕt
ϕx

=
u ◦ ϕ
ϕx

.

R(t) ϕ(t)

X

R(t)−1Ṙ(t)X

R(t)X = x
u(t, x)

X

U(t, X)

ϕ(t, X) = x
u(t, x)

B

S

Definition 1.7. We define the adjoint action of G on g by

Adg : g → g, Adg ξ := (DeIg) ξ, ξ ∈ g.

For the rigid body, the map AdR sends body angular velocities Ω to spatial angular

velocities ω, i.e., ω = AdRΩ = RΩR−1. The adjoint action of Diff∞(S) on C∞(S) is

given by u = AdϕU = (Uϕx) ◦ ϕ−1.

Definition 1.8. Let End(g) be the space of linear operators taking g to itself and let

Ad: G→ End(g), g �→ Adg.
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We define the adjoint representation of the Lie algebra g as the map

ad := DeAd: g → End(g), adη =
d

dt
Adg(t)

∣∣∣∣
t=0

,

where t �→ g(t) is a curve in G which starts at g(0) = e with velocity g′(0) = η.

If G = SO(3), then by direct computation adab = ab − ba = [a, b] and [·, ·] is the

commutator of 3 × 3-matrices. Using that so(3) can be identified with R3 via the map

·̂ : R3 → so(3), x = (x1, x2, x3) �→ x̂ =

⎛⎝ 0 −x3 x2
x3 0 −x1
−x2 x1 0

⎞⎠ ,

we have adab = a× b, where × denotes the vector product in R3. For G = Diff∞(S) and

a curve ϕ(t) with ϕ(0) = id and ϕt(0) = u, we compute

aduv =
d

dt
(vϕx) ◦ ϕ−1

∣∣∣∣
t=0

=

[
vϕtx − (vϕx)x

ϕt
ϕx

]
◦ ϕ−1

∣∣∣∣
t=0

= uxv − vxu,

where we have used that ϕ(t) ◦ ϕ−1(t) = id and hence ϕt ◦ ϕ−1 + (ϕx ◦ ϕ−1) d
dtϕ

−1 = 0,

ϕtx(0) = ux and ϕxx(0) = 0.

Definition 1.9. We define the commutator in the Lie algebra g as the map

[·, ·] : g× g → g, (ξ, η) �→ adξη = [ξ, η].

The pair (g, [·, ·]) is called (abstract) Lie algebra of the Lie group G.

It is easy to see that the operation [·, ·] is bilinear, skew-symmetric and satisfies the

Jacobi identity. A vector space V equipped with a bilinear, skew-symmetric operation

[·, ·] : V ×V → V satisfying the Jacobi identity is called abstract Lie algebra. Every finite-

dimensional abstract Lie algebra is the Lie algebra of some Lie group G. However, this

correspondence fails in the infinite-dimensional case.

The adjoint operators Adg : g → g form a representation of the Lie group G by the

automorphisms of its Lie algebra g:

[Adg ξ,Adg η] = Adg [ξ, η], Adgh = AdgAdh.

Definition 1.10. The orbit of ξ ∈ g under the action of Adg for all g ∈ G is called the

adjoint (group) orbit of ξ.

The adjoint orbits of SO(3) are spheres centered at the origin and the origin itself.

If v ∈ Vect∞(S), the associated adjoint orbit under the action of Diff∞(S) is the set{
(vϕx) ◦ ϕ−1; ϕ ∈ Diff∞(S)

}
. Note that the vectors aduv, u ∈ Vect∞(S), form the tan-

gent space to the adjoint orbit of v.

We denote by g∗ the vector space dual to the Lie algebra g. The space g∗ consists

of continuous linear functionals on g. To every linear operator A : X → Y , mapping a

vector space X to a vector space Y , one can associate an adjoint operator A∗ acting in

the reverse direction, between the corresponding dual spaces, by
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A∗ : Y ∗ → X∗, (A∗y)(x) = y(Ax), ∀y ∈ Y ∗, x ∈ X.

For the differentials of the translation maps (1.22) on a Lie group G we have

DhLg : ThG→ TghG, DhRg : ThG→ ThgG,

and thus

(DhLg)
∗ : T ∗

ghG→ T ∗
hG, (DhRg)

∗ : T ∗
hgG→ T ∗

hG.

This motivates why several authors use the notation DRg = (Rg)∗ and (DRg)
∗ = (Rg)

∗

(and DLg = (Lg)∗ and (DLg)
∗ = (Lg)

∗ respectively).

Definition 1.11. Let G be a Lie group with Lie algebra g. The map Ad∗ which associates

to any group element g ∈ G the linear transformation

Ad∗
g : g∗ → g∗

is called the coadjoint (anti)representation of G. The orbit of a point ω ∈ g∗ under the

action of the coadjoint representation of G is the set
{

Ad∗
gω; g ∈ G

} ⊂ g∗ which is called

the coadjoint orbit of ω.

Recall that the dual transformation Ad∗
g : g∗ → g∗ is defined by

(Ad∗
gω)(ξ) = ω(Adgξ), g ∈ G, ξ ∈ g, ω ∈ g∗.

The operators Ad∗
g form an antirepresentation since

Ad∗
gh = Ad∗

hAd∗
g.

Definition 1.12. Let G be a Lie group with Lie algebra g. Then the coadjoint represen-

tation of an element η ∈ g is the rate of change of the operator Ad∗
g(t) of the coadjoint

group representation as the group element g(t) leaves the unity g(0) = e with velocity

ġ(0) = η. We denote the operator of the coadjoint representation of the algebra element

η ∈ g by

ad∗
η : g∗ → g∗.

The operator ad∗
η is dual to the adjoint representation, i.e.,

ad∗
η(ω)(ξ) = ω(adηξ) = ω([η, ξ]),

for all η ∈ g, ξ ∈ g and ω ∈ g∗. For any ω ∈ g∗, the vectors ad∗
ηω, η ∈ g, form the tangent

space to the coadjoint orbit of ω.

Assume now that we are given a Riemannian metric on a Lie groupG which is invariant

under left translations Lg, i.e., for any g ∈ G, there is a bilinear map 〈·, ·〉g : TgG×TgG→
R, depending smoothly on g, such that

〈ξ, η〉e = 〈(DeLg)ξ, (DeLg)η〉g
for all ξ, η ∈ g and for any g ∈ G. Clearly, such a metric is defined uniquely by its

restriction to the tangent space at the group unity, i.e., by a quadratic form on the Lie

algebra g of the group. We are dealing with left-invariant metrics to describe the motion

of a rigid body. To model the motion of an ideal fluid, one uses right-invariant metrics

and the theory is similar.
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Definition 1.13. Let A : g → g∗ be the linear, symmetric and positive definite operator

which defines the inner product 〈·, ·〉 = 〈·, ·〉e, i.e.,

〈ξ, η〉 = (Aξ, η) = (Aη, ξ).

Here, (·, ·) denotes the dual pairing of elements belonging to g and g∗. Then A is called

the inertia operator for 〈·, ·〉. For any g ∈ G, let

Ag : TgG→ T ∗
gG, Agξ = [(DeLg)

∗]−1A[(DgLg−1)ξ],

i.e., 〈ξ, η〉g = (Agξ, η) = (Agη, ξ) = 〈η, ξ〉g for all ξ, η ∈ TgG.

The dual space so(3)∗ has a vector representation given by the map

·̌ : R3 �→ so(3)∗, y = (y1, y2, y3) �→ y̌,

where

〈y̌, x̂〉 = y1x1 + y2x2 + y3x3.

In the following, we omit the hat and check notation and identify elements of so(3) and

so(3)∗ directly with R3-vectors. The dual space of Vect∞(S) is given by the distributions

Vect′(S) on S. The subspace of regular distributions which can be represented by smooth

densities is denoted by Vect∗(S), i.e., T ∈ Vect∗(S) if and only if there is a C∞(S)-function

ρ such that

T (ϕ) =

∫
S

ϕ(x)ρ(x) dx, ∀ϕ ∈ C∞(S).

Given a curve g(t) ⊂ G, the velocity ġ(t) is an element of the tangent space of G at

the point g(t). Recall that we can apply left and right translations to transport ġ to the

Lie algebra g to obtain

ωc := (DgLg−1)ġ ∈ g and ωs := (DgRg−1)ġ ∈ g,

the angular velocity in the body frame and the spatial angular velocity, related by ωs =

Adgωc. The kinetic energy Ekin is left-invariant and thus completely determined by ωc,

i.e.,

Ekin =
1

2
〈ġ, ġ〉g =

1

2
〈ωc, ωc〉e =

1

2
(Aωc, ωc) =

1

2
(Ag ġ, ġ).

We now apply left and right translations to

m := Agġ ∈ T ∗
gG

to obtain two elements of g∗.

Definition 1.14. The dual space g∗ is called the space of angular momenta. The vectors

mc := (DeLg)
∗m ∈ g∗ and ms := (DeRg)

∗m ∈ g∗

are called the vector of the angular momentum relative to the body and the spatial angular

momentum.

We have mc = Ad∗
gms and

Ekin =
1

2
(mc, ωc) =

1

2
(m, ġ).
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Altogether, we consider four vectors moving in the spaces g and g∗: the vectors of angular

velocity and momentum in the body and in space, i.e.,

ωc(t), ωs(t) ∈ g and mc(t),ms(t) ∈ g∗. (1.23)

We furthermore obtain the following commutative diagram.

g
Adg ��

A

��

g

TgG

Ag

��

DgLg−1

�������������������

DgRg−1

�������������������

T ∗
gG

(DeLg)
∗

����
��

��
��

��
��

��
��

(DeRg)
∗

���
��

��
��

��
��

��
��

�

g∗ g∗
Ad∗

g

��

ωc ��

��

ωs

ġ

��

�������������������

�������������������

m

����
��

��
��

��
��

��
��

���
��

��
��

��
��

��
��

�

mc ms��

The following system of differential equations for the four moving vectors (1.23) in the

rigid body problem was established by Leonhard Euler.

Theorem 1.15 (Euler). The vector of spatial angular momentum is preserved under

motion, i.e.,
d

dt
ms = 0. (1.24)

The vector of angular momentum relative to the body satisfies the Euler equation

d

dt
mc = ad∗

ωc
mc. (1.25)

The first statement is a consequence of the symmetry of Ekin with respect to left trans-

lations. The Euler equation follows from this conservation law and mc(t) = Ad∗
g(t)ms by

differentiating at t = 0 with g(0) = e. If we replace ωc = A−1mc, we see that the Euler

equation defines a quadratic vector field on g∗ and its flow determines the motion of mc.

Using the isomorphism A−1 : g∗ → g, we can also obtain an Euler equation on the Lie

algebra g which is an an evolution equation for the vector ωc = A−1mc.

Theorem 1.16. The vector of angular velocity in the body evolves according to the fol-

lowing equation with quadratic right-hand side:

d

dt
ωc = B(ωc, ωc), (1.26)

where the bilinear (nonsymmetric) map B : g× g → g is defined by
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〈[a, b], c〉 = 〈B(c, a), b〉 , ∀a, b, c ∈ g, (1.27)

i.e., the operator B is the image of the operator of the algebra coadjoint representation

under the isomorphism of g and g∗ defined by the operator A.

For a fixed first argument, B is skew-symmetric with respect to the second argument,

i.e.,

〈B(c, a), b〉 + 〈B(c, b), a〉 = 0.

For a proof of Theorem 1.16, we refer to [7].

For the group G = SO(3) Euler’s equation takes the following form: The angular

momentum m = Aω evolves according to ṁ = m × ω. With the inertia operator A =

diag(I1, I2, I3), one has ⎧⎨⎩
ṁ1 = γ23m2m3,

ṁ2 = γ31m3m1,

ṁ3 = γ12m1m2,

with γij = I−1
j − I−1

i . The Ii are called the principal moments of inertia and they

satisfy the triangle inequality |Ii − Ij | ≤ Ik. The Euler equation (1.25) describes the

evolution of the momentum vector in the three-dimensional space so(3)∗. Any solution

mc(t) of Euler’s equation lies in the intersection of the coadjoint orbits (which are spheres

centered at the origin) with the energy levels. Note that the kinetic energy is a quadratic

first integral on the dual space and the energy level surfaces are given by the ellipsoids〈
A−1mc,mc

〉
= const.

Remark 1.17. The inertia operator for a rigid body is usually defined as the integral

A =

∫
B
ρ(X)

(|X |2 idR3 −XXT
)

d3X

where B ⊂ R3 is the region of space occupied by the body in its reference configuration,

X is the spatial position of a particle in the body and ρ denotes the mass density. Since

A is symmetric it is diagonalizable by a rotation matrix and transforming to the system

of principal axes, we can assume that A is a diagonal matrix.

We now apply Euler’s theorem to ideal hydrodynamics where we have the infinite-

dimensional group of smooth and volume-preserving diffeomorphisms. Among all the

parallels in the formalism, let us recall one crucial difference: Motions of an ideal (=

incompressible, homogeneous, inviscid) fluid filling a domain M are modelled by a right -

invariant metric on the Lie group G = Diff∞(M). To transfer our results about left-

invariant metrics to the right-invariant case, it suffices to change the sign of the com-

mutator [·, ·] as well as of all operators depending linearly on it, i.e., adv, ad∗
v and B.

Generalizing Euler’s results for the motion of a rigid body to the group Diff∞(M), we

obtain Euler’s equations of fluid motion as well as the conservation laws for them. In

particular, the right invariance of the metric results in the following form of the Euler

equation:

v̇ = −B(v, v),

with B according to Theorem 1.16. Arnold also showed that the bilinear operator B on

the Lie algebra g = Vect∞(M) for the Euler equation has the form

B(c, a) = rot c× a+ grad p,
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where p is a function on M which represents the pressure of the fluid. Hence the Euler

equation for three-dimensional ideal hydrodynamics is the evolution

∂v

∂t
= v × rot v − gradp

of a divergence-free vector field v in M ⊂ R3 tangent to ∂M . To finish this section and

to lead over to the next one, we consider the following theorem which is proved in [7].

Theorem 1.18. The operation B(v, v) for a divergence-free vector field v on a Rieman-

nian manifold M of any dimension is

B(v, v) = ∇vv + gradp.

Here ∇vv is the vector field on M which is the covariant derivative of v along itself

in the Riemannian connection on M given by the chosen Riemannian metric and p is

determined modulo a constant by the same conditions as above.

1.2.3 Affine connections, Riemannian structures and geodesics
on Lie groups

Let us assume that M is a smooth manifold of finite dimension n ∈ N. Local coordinates

are denoted as x1, . . . , xn, the coordinate derivatives as ∂1, . . . , ∂n and the set of smooth

vector fields on M as Vect∞(M). Let us assume that M is equipped with an affine

connection, i.e., an R-bilinear map

∇ : Vect∞(M) × Vect∞(M) → Vect∞(M), (X,Y ) �→ ∇XY

satisfying ∇fXY = f∇XY for all f ∈ C∞(M) and ∇X(fY ) = (Xf)Y + f∇XY . Given

a local chart, an affine connection ∇ is completely determined by the Christoffel symbols

Γ kij = (∇∂i∂j)
k. (1.28)

Let X(t) be a vector field along the curve t �→ x(t) ⊂M , i.e., X(t) = X(x(t)). Then the

covariant derivative of X along the path x(t) is

DX

Dt
(t) = (∇ẋX)(x(t)).

In local coordinates, we have (
DX

Dt

)k
= Ẋk + Γ kij ẋ

iXj,

where we use Einstein summation convention, cf. [35].

Definition 1.19. Let M be a finite-dimensional smooth manifold, equipped with an

affine connection ∇. A geodesic on M is a smooth curve x(t) in M such that

Dẋ

Dt
= 0. (1.29)
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The geodesic equation in local coordinates is

ẍk + Γ kij ẋ
iẋj = 0.

For affine connections, we next define the notion of invariance under diffeomorphisms.

Definition 1.20. Let ϕ be a diffeomorphism of M and X ∈ Vect∞(M). We define

(ϕ∗X)(x) = (Dϕ(x)ϕ
−1)X(ϕ(x))

and say that an affine connection ∇ on M is invariant under ϕ if

ϕ∗(∇XY ) = ∇ϕ∗Xϕ
∗Y, ∀X,Y ∈ Vect∞(M).

If M = G is a Lie group, one usually considers right and left translations G × G → G

as in (1.22) and says that a connection ∇ is right-(left-)invariant, if it is invariant under

Rg (Lg) for any g ∈ G. A connection which is both right- and left-invariant is called

bi-invariant.

On any Lie group G with affine connection ∇, a canonical bi-invariant connection is

defined by

∇0
ξuξv :=

1

2
[ξu, ξv],

where [·, ·] denotes the Lie bracket on the Lie algebra TeG of G and ξu and ξv are

the right-invariant vector fields on G with values u and v at the identity. (Observe

that right -invariant vector fields are of great importance for the study of the motion of

incompressible fluids.) If ∇ is right-invariant,

B(X,Y ) := ∇XY −∇0
XY (1.30)

defines a right-invariant tensor field on G which is uniquely determined by its value at

the identity, i.e., a bilinear operator g× g → g. Conversely, any bilinear operator B on g

defines uniquely a right-invariant affine connection on G via (1.30), i.e.,

∇ξuξv =
1

2
[ξu, ξv] +B(ξu, ξv), (1.31)

where we use the same notation for B and the right-invariant tensor field it generates

on G. The operator B is called Christoffel operator , since it generalizes the Christoffel

symbols defined in (1.28).

Finally, let us choose a basis (ek)1≤k≤n for the Lie algebra g. Let (ξk)1≤k≤n be

the global right-invariant frame on G which equals (ek)1≤k≤n at the identity and let

(ωk)1≤k≤n be its dual co-frame. For a smooth path t �→ g(t) ⊂ G, let

u(t) = (uk(t))1≤k≤n = (Dg(t)Rg−1(t))ġ(t)

be the Eulerian velocity ; the components uk are given by

uk = ωke (u) = ωkg ((DeRg)u) = ωkg (ġ).

The covariant derivative along g(t) is obtained from(
DX

Dt

)k
= Ẋk +

(
1

2
ckij + bkij

)
uiXj,
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where ckij are the structure constants of g and bkij are the tensor components of B, and

since ckij = −ckji, Eq. (1.29) in terms of u reads as

u̇k + bkiju
iuj = 0.

We have the following theorem.

Theorem 1.21. A smooth curve g(t) on a Lie group G with right-invariant affine con-

nection ∇ is a geodesic if and only if its Eulerian velocity u = (DgRg−1)ġ is a solution

of the Euler equation

ut = −B(u, u). (1.32)

In general, for a bilinear operator B which defines an Euler equation of the type (1.32),

the associated affine connection ∇ given by (1.31) is not necessarily Riemannian in the

sense that it is compatible with a Riemannian metric3 on G.

Let A be an inertia operator on G, i.e., A : g → g∗ is a symmetric isomorphism. The

corresponding right-invariant metric on G is denoted by ρA. We denote the Lie bracket

on g by [·, ·] and write (adv)∗ for the adjoint with respect to ρA of the natural action of

g on itself given by adv : g → g, u �→ [v, u]. Formally, the bilinear operator B in (1.32) is

B(u, v) = ad∗
vu, cf. Theorem 1.16, but since we prefer to have a symmetric operator, we

will work with

B(u, v) =
1

2
[(adu)∗v + (adv)

∗u] .

Fix now G = Diff∞(S) and recall that the topological dual space of Vect∞(S) � C∞(S) is

given by the distributions Vect′(S) on S. In order to get a convenient representation of the

Christoffel operator B we restrict ourselves to Vect∗(S), the set of all regular distributions

as introduced in Sect. 1.2.2. By Riesz’ representation theorem we may identify Vect∗(S) �
C∞(S). This motivates the following definition.

Definition 1.22. Let Lsym
is (C∞(S)) denote the set of all continuous isomorphisms on

C∞(S) which are symmetric with respect to the L2 inner product. EachA ∈ Lsym
is (C∞(S))

is called a regular inertia operator on Diff∞(S).

We now come to one of the most important definitions for all the following considerations.

Definition 1.23. Let G = Diff∞(S) and let ut = −B(u, u) be an Euler equation on the

Lie algebra g. We call this Euler equation metric if there exists a regular inertia operator

A on G such that B(u, v) = ad∗
vu where ad∗ is the adjoint of advu = [v, u] with respect

to the right-invariant metric ρA on G induced by A. Otherwise, we say that the Euler

equation is non-metric.

While the periodic Camassa-Holm equation is of metric type with A = 1 − ∂2x this does

not hold true for the Degasperis-Procesi equation (see [45, 83]). In the metric case, it is

important to establish that the metric ρA and the connection (1.31) are compatible in

the following sense.

Definition 1.24. Let M be a Banach manifold endowed with a Riemannian metric 〈·, ·〉
and let Vect∞(M) denote the space of smooth vector fields on M . An R-bilinear oper-

ator (X,Y ) �→ ∇XY : Vect∞(M) × Vect∞(M) → Vect∞(M) is a Riemannian covariant

derivative if the following properties are satisfied:

3 Observe that, if G is a finite-dimensional Riemannian manifold, the Levi-Civita Theorem guarantees

the existence and uniqueness of a symmetric affine connection ∇ on G compatible with the Riemannian

metric. This does not hold true in the infinite-dimensional case in general.
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1. punctual dependence on X:

X(m) = 0 =⇒ (∇XY )(m) = 0

for m ∈M and X,Y ∈ Vect∞(M),

2. torsion-freeness:

∇XY −∇YX = [X,Y ]

for X,Y ∈ Vect∞(M),

3. derivation in Y :

∇X(fY ) = (Xf)Y + f∇XY

for f ∈ C∞(M) and X,Y ∈ Vect∞(M),

4. compatibility with the metric:

X 〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉

for X,Y and Z in Vect∞(M).

It is important to recall that in the case of an infinite-dimensional Riemannian manifold,

the Levi-Civita Theorem does in general not hold true. Let 〈·, ·〉 be a Riemannian metric

on a finite-dimensional manifold M and denote by ∇ the Levi-Civita connection. For

vector fields X , Y and Z on M , one obtains ∇XY from the formula

2 〈∇XY, Z〉 = −〈[Y,X ], Z〉 − 〈X, [Y, Z]〉 − 〈Y, [X,Z]〉
+X 〈Y, Z〉 + Y 〈Z,X〉 − Z 〈X,Y 〉 , (1.33)

see [35]. The bracket 〈·, ·〉 establishes an isomorphism TmM → T ∗
mM for each m ∈ M

which guarantees the existence of ∇XY (m) for all m. In general, this approach fails if

one does not have a finite number of local coordinates. In our setting, the crucial point

is that the natural topology on any TϕG � C∞(S) is stronger than the topology given

by the right-invariant metric ρA—we have defined a weak Riemannian metric on G and

there are elements in T ∗
ϕG which cannot be written as ρA(·, ξ) for some ξ ∈ TϕG. In

other words: Any open set in the topology induced by ρA on TϕG is open in C∞(S),

but the converse is not true. Nevertheless, uniqueness of ∇ can be deduced from formula

(1.33): Since ∇ satisfies the properties in Definition 1.24, writing down the compatibility

relation for the cyclic permutations of X,Y, Z ∈ Vect∞(M) yields

X 〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉 ,
Y 〈Z,X〉 = 〈∇Y Z,X〉 + 〈Z,∇YX〉 ,
Z 〈X,Y 〉 = 〈∇ZX,Y 〉 + 〈X,∇ZY 〉 .

Adding the first two and subtracting the third of these equations shows that (1.33) holds

with necessity. The non-degeneracy of 〈·, ·〉 now implies that ∇ is unique.

If M is a Banach manifold with a (Riemannian) covariant derivative ∇ in the above

sense, the theory established in [88, 89] guarantees the existence of geodesics and a

curvature tensor on M . In addition, we have a well-defined exponential map which is

defined as the geodesic flow at time one, i.e., if t �→ γ(t) is the (unique) geodesic in M

starting at p = γ(0) with velocity γt(0) = u ∈ TpM then expp(u) = γ(1), cf. [35]. Roughly

speaking, the map expp(·) is a projection from TpM to the manifold M . Moreover,

geodesics are homogeneous in the sense that expp(tu) = γ(t) for any t > 0. Since the
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derivative of expp at zero is the identity, the exponential map is a local diffeomorphism

from a neighbourhood of zero of TpM to a neighbourhood of p ∈M . However, this fails for

Fréchet manifolds like Diff∞(S) in general. Nevertheless, it could be shown that, for the

Camassa-Holm equation, the exponential map is in fact a smooth local diffeomorphism,

[25, 26]. Recently, this result was generalized to the Degasperis-Procesi equation, [41, 82].

1.2.4 Curvature in a two-dimensional direction

Given a manifold M with affine connection ∇, one defines the curvature tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (1.34)

where X,Y and Z are vector fields on M . Since R(X,Y )Z ≡ 0 for M = Rn, we are able

to think of R as a way of measuring how much M deviates from being Euclidean. Closely

related to the curvature operator is the sectional curvature S that we are now going to

define. Given a vector space V with inner product 〈·, ·〉, we denote

|x ∧ y|2 = ||x||2 ||y||2 − 〈x, y〉2 ,

which represents the area of a two-dimensional parallelogram determined by the pair

of vectors x, y ∈ V . Let σ ⊂ TpM be a two-dimensional subspace of the tangent space

TpM and assume that 〈·, ·〉 is an inner product on TpM . Let x, y ∈ σ be two linearly

independent vectors for which we define the sectional curvature

S(x, y) :=
〈R(x, y)y, x〉

|x ∧ y|2 .

Indeed, S only depends on the two-dimensional space σ and not on the particular basis

{x, y} for σ. Another important motivation for studying the sectional curvature is that

knowledge of S(σ) for all σ determines the curvature R completely, see [35].

The sectional curvature of a manifold is closely connected to the question of stability

of its geodesics. Consider a geodesic on M , starting at p ∈M with velocity v ∈ TpM , and

then alter the initial conditions p and v slightly to obtain a second geodesic, which at

first only differs very little from the geodesic with initial data (p, v). In order to describe

the divergence of both geodesics one linearizes the geodesic equation close to the original

geodesic and obtains a so-called variational equation which is also known as the Jacobi

equation. Let x(t) be a point moving along a geodesic in M with velocity v(t) ∈ Tx(t)M .

If the initial conditions of the curve x(t) depend smoothly on an additional parameter s,

then the geodesic also depends smoothly on s. For fixed t, we now consider the motion

s �→ x(t, s) with x(t, 0) = x(t) and define the vector field of geodesic variation

d

ds
x(t, s)

∣∣∣∣
s=0

= ξ(t) ∈ Tx(t)M.

Then the Jacobi equation reads as

D2ξ

Dt2
= −R(ξ, v)v. (1.35)
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Fig. 1.7 Nearby geodesics

on manifolds with positive

and negative sectional cur-

vature.

Conversely, every solution of Eq. (1.35) is a field of variation of the original geodesic,

cf. [6]. Now we decompose the variation vector ξ into components parallel and perpen-

dicular to the velocity vector v. Then, since R(v, v) = 0, the second covariant derivative

of the parallel component vanishes and for the normal component we get again the Jacobi

equation. More precisely, for the normal component, we find that

D2ξ

Dt2
= −gradU, U(ξ) =

1

2
〈R(v, ξ)ξ, v〉 =

1

2
S 〈ξ, ξ〉 〈v, v〉 ,

and if we assume ||v|| = 1 then the normal component of the variation vector is described

by the equation of a non-autonomous linear oscillator with potential energy U equal to

the product of the curvature in the direction of the plane of velocity vectors and variations

with the square of length of the normal component of the variation.

Assume now that the sectional curvature S is negative in all two-dimensional directions

containing the velocity vector v. In this case the divergence of nearby geodesics in the

normal direction is described by the equation of an oscillator with negative potential

energy. In the stability theory of dynamical systems, this suggests that the geodesics

near the given will diverge exponentially from it—we might compare this behavior to an

unstable equilibrium of some rigid object. The exponential instability of geodesics can

be concluded rigorously if we assume that the curvature in the different two-dimensional

directions containing v has values in the interval [−a2,−b2], where 0 < b < a. Then the

solutions of the Jacobi equation (1.35) for normal divergence are linear combinations of

exponential functions with exponents ±λi and b < λi < a and hence every solution of

the Jacobi equation grows at least as fast as eb|t| as t → ±∞; most solutions grow even

faster, with rate ea|t|, cf. [6]. On the contrary, S > 0 implies that the perturbed geodesics

might converge as depicted in Fig. 1.7.

1.3 A one-parameter family of evolution equations on spaces of
tensor densities

Recall that the configuration space for the motion of periodic 1D waves is the diffeomor-

phism group Diff∞(S); the Lie algebra g of Diff∞(S) coincides with the space of smooth

vector fields Vect∞(S). The dual space Vect′(S) is the space of distributions on S. Again,

we are only interested in the regular part Vect∗(S) of g∗ which can be identified with the

space of quadratic differentials
{
m(x) dx2; m ∈ C∞(S)

}
with the pairing

(
m dx2, v∂x

)
=

∫ 1

0

m(x)v(x) dx, (1.36)
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where dx2 := (dx)2 = dx ⊗ dx. As usual, vector fields X ∈ Vect∞(S) are directional

derivatives, i.e., if γ(t) is a smooth curve in Diff∞(S) with γ(0) = id and γ′(0) = v, we

associate X = Xv via

Xf =
d

dt
f ◦ γ(t)

∣∣∣∣
t=0

= fxv

and have X = v(x)∂x.

Proposition 1.25. The Euler equation on g∗ reads as

mt = −ad∗
A−1mm = −umx − 2uxm, m = Au. (1.37)

Proof. We have ad∗
u∂xm dx2 = (umx + 2uxm) dx2 since(

ad∗
u∂xm dx2, v∂x

)
=
(
m dx2, adu∂xv∂x

)
= − (

m dx2, [u∂x, v∂x]
)

= − (
m dx2, (uvx − uxv)∂x

)
=

∫ 1

0

m(uxv − vxu) dx

=

∫ 1

0

(mxu+ 2uxm)v dx,

where we have used (1.36) and the identity [u∂x, v∂x] = (uvx − uxv)∂x. ��
Writing down Eq. (1.37) on g we find that

Aut + 2uxAu + u(Au)x = 0

which is equivalent to the Camassa-Holm equation (1.19) if A = 1 − ∂2x. We now extend

this formalism to include the Degasperis-Procesi equation (1.20) and replace the space

of quadratic differentials by the space of all tensor densities of weight b on the circle,

cf. [56, 99].

Definition 1.26. Let b ∈ Z. A tensor density of weight b ≥ 0 (b < 0) on the circle S is

a section of the bundle
⊗b T ∗S (

⊗−b TS, respectively).

Choosing a parameter x on the circle, a tensor density α of weight b can be written as

α = m(x) dxb where m is a smooth function on the circle and

dxb :=

{
dx⊗ · · · ⊗ dx (b factors), b ≥ 0,
d
dx ⊗ · · · ⊗ d

dx (−b factors), b < 0.

In order to generalize the concept of tensor densities α = m(x) dxb for b ∈ R, we define

αx : TxS → R δx �→ m(x)(dx(δx))b

where m is a smooth periodic function. We write Fb =
{
m(x) dxb; m ∈ C∞(S)

}
for the

set of tensor densities of weight b on S. Clearly, Fb is a vector space isomorphic to C∞(S).

We have F−1 = Vect∞(S), F0 = C∞(S), F1 = Ω1(S) (the space of 1-forms on S) and F2

coincides with the space of quadratic differentials. In order to generalize the coadjoint

action Ad∗ : Diff∞(S) → End(F2) on the space of quadratic differentials we define, for

any ϕ ∈ Diff∞(S), the action
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Fb → Fb : m dxb �→ (m ◦ ϕ)ϕbx dxb.

The infinitesimal generator of this action is given by

Lbu∂x(m dxb) =
d

dt
(m ◦ ϕ(t))ϕx(t)b dxb

∣∣∣∣
t=0

=
(
[mx ◦ ϕ(t)]ϕt(t)ϕx(t)b dxb + b[m ◦ ϕ(t)]ϕx(t)b−1ϕtx(t) dxb

)∣∣
t=0

= (umx + buxm) dxb (1.38)

where ϕ(t) is a curve with ϕ(0) = id and ϕt(0) = u ∈ C∞(S); in particular, we have

ϕx(0) = 1 and ϕtx(0) = ux. The operator L can be thought of as the Lie derivative of

tensor densities. Furthermore it represents the action of Vect∞(S) on Fb which coincides

with the (algebra) coadjoint action on F2 for b = 2, i.e., L2
u∂x

= ad∗
u∂x . Using (1.38), we

generalize the Euler equation in Proposition 1.25 to

mt = −umx − buxm (1.39)

and substituting m = Au we finally arrive at

Aut + buxAu+ u(Au)x = 0. (1.40)

If A = 1 − ∂2x, we will call the family (1.40) the b-equation. Observe that, if b = 3, we

obtain the DP equation (1.20).

The periodic b-equation is the 1-parameter family of evolution equations

ut = −(1 − ∂2x)−1
(
bux(1 − ∂2x)u+ u(1 − ∂2x)ux

)
, b ∈ R, (1.41)

where u(t, x) is a function depending on time t ∈ R and a space variable x ∈ S.

The b-equation (1.41) attracted a considerable amount of attention in the fluid dy-

namics research community in recent years, see [48]. Each of these equations models the

unidirectional irrotational free surface flow of a shallow layer of an inviscid fluid moving

under the influence of gravity over a flat bed, cf. Sect. 1.1.2, where u(t, x) represents the

wave’s height at time t and position x above the flat bottom. For b = 2, the single terms

in Eq. (1.39) model convection, stretching and expansion of the fluid, cf. [62]; observe

that in the one-dimensional case the stretching term equals the expansion term.

For further details concerning the hydrodynamical relevance of Eq. (1.41) we refer to

[27, 36, 69, 70, 71]. As shown in [32, 36, 64, 68, 107], the b-equation is asymptotically in-

tegrable which is a necessary condition for complete integrability, but only for b = 2 and

b = 3 for which it becomes the Camassa-Holm equation (1.19) and the Degasperis-Procesi

equation (1.20) respectively.
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Fig. 1.8 Nematic

phase liquid crystals.

(http://birgeneau.berkeley.edu/lxtaltest.php,

cited 15 Mai 2010)

1.4 The Hunter-Saxton equation and nematic liquid crystals

The Hunter-Saxton (HS) equation is an integrable PDE that arises in the theoretical

study of nematic liquid crystals. Liquid crystals are a state of matter that has properties

between those of a conventional liquid and those of a solid crystal. For instance, a liquid

crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way.

The various phases of a liquid crystal can be characterized by the type of ordering.

Due to the high viscosity of liquid crystals, it is assumed in many models that there

is no fluid flow, i.e., no kinetic energy, so that only the orientation of the molecules is

of interest. Within the elastic continuum theory, the orientation is described by a field

of unit vectors n(x, y, z, t). For nematic liquid crystals, there is no difference between

orienting a molecule in the n direction or in the −n direction, and the vector field n

is then called a director field . The potential energy density of a director field is usually

assumed to be given by the Oseen-Frank energy functional

W (n,∇n) =
1

2

(
α(∇ · n)2 + β(n · (∇× n))2 + γ|n× (∇× n)|2) ,

where the positive coefficients α, β, γ are known as the elastic coefficients of splay, twist,

and bend, respectively. Hunter and Saxton investigated the case when viscous damping is

ignored and a kinetic energy term is included in the model, [65]. The governing equations

follow from minimizing the action defined by the Lagrangian

L =
1

2
|nt|2 −W (n,∇n) − λ

2
(1 − |n|2);

λ is a Lagrange multiplier enforcing |n| = 1. For splay waves, the director field is of the

form

n(x, y, z, t) = (cosϕ(x, t), sinϕ(x, t), 0)

and the Lagrangian reduces to

L =
1

2

(
ϕ2
t − a(ϕ)2ϕ2

x

)
, a(ϕ)2 = α sin2 ϕ+ γ cos2 ϕ.

The Euler equation for the angle ϕ is

ϕtt = a(ϕ)[a(ϕ)ϕx]x.

http://birgeneau.berkeley.edu/lxtaltest.php
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Apart form trivial constant solutions ϕ = ϕ0 where the molecules are perfectly aligned,

the linearization

ϕ(x, t; ε) = ϕ0 + εϕ1(θ, τ) + O(ε2), θ := x− a(ϕ0)t, τ := εt

around such an equilibrium yields in order ε2 the equation

(ϕ1τ + a′(ϕ0)ϕ1ϕ1θ)θ =
1

2
a′(ϕ0)ϕ2

1θ.

Under the assumption a′(ϕ0) �= 0, this equation is equivalent to (ut+uux)x = 1
2u

2
x, after

renaming and scaling the variables. Taking the x-derivative yields the Hunter-Saxton

equation

utxx + 2uxuxx + uuxxx = 0. (1.42)

The HS equation is closely related to the CH equation since we can rewrite HS in the

form

mt = −(mxu+ 2mux), m = −uxx. (1.43)

Replacing the inertia operator 1 − ∂2x for the CH equation by −∂2x, the b-equation for

b = 2 becomes the HS equation. That is why some authors call the HS equation the

λ→ ∞-limit of the Camassa-Holm equation

mt = −(mxu+ 2mux), m = (1 − λ∂2x)u = u− λuxx.

Equation (1.43) possesses a bi-Hamiltonian structure and has an associated Lax pair,

cf. [66]. Local existence of strong solutions to the periodic HS equation is established

in [127], using semi-group methods. Formulas for the classical periodic solutions are

presented in [97], proving existence up to breaking time.





Chapter 2

A one-parameter family of Camassa-Holm
equations on the diffeomorphism group of
the circle

The Camassa-Holm equation can be obtained from Lagrange’s variational principle, i.e.,

defining an appropriate Lagrangian L, the CH equation is the Euler-Lagrange equation

obtained from

δ

∫
Ldt = 0.

In this chapter we generalize the Lagrangian L for CH and obtain a one-parameter family

of integrable equations similar to the CH equation (1.19) and lying in some sense between

the CH equation and the Burgers equation. We construct a family of Riemannian metrics

on Diffn(S), n ≥ 2, such that the general CH equation is the geodesic equation on Diffn(S)

for a covariant derivative compatible with the Riemannian structure and obtained via

(1.31). While this is a little bit reminiscent of the results of Kouranbaeva and Lenells

[84, 94] for the CH equation we then perform an explicit calculation of the sectional

curvature S for all two dimensional directions and find a large subspace of C∞(S) for

which S > 0. Finally, we derive formulae to describe the variation of geometric quantities

like the Christoffel map or the sectional curvature. This chapter is also important due to

some lengthy computations which will be needed in the following.

2.1 A variational approach to variants of the Camassa-Holm
equation

We consider the infinite-dimensional Lie group G = Diff∞(S) of smooth and orientation-

preserving diffeomorphisms of S = R/Z, equipped with the L2 and the H1 right-invariant

metric respectively, given at the identity by the positive definite and symmetric inner

products

〈f, g〉L2
:=

∫
S

f(x)g(x) dx

and

〈f, g〉H1 := 〈f, g〉L2
+ 〈fx, gx〉L2

for f, g ∈ g � C∞(S). The corresponding norms are denoted by ||·||L2
and ||·||H1 . It is

well-known that the triple (G, g, 〈·, ·〉L2
) corresponds to the Burgers equation

ut + 3uux = 0

31
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in the sense that the Burgers equation is the Euler-Lagrange equation obtained by min-

imizing the functional γ �→ 1
2

∫ b
a

∣∣∣∣γt ◦ γ−1
∣∣∣∣2
L2

dt, where γ : [a, b] → G is a smooth path.

Similarly, the triple (G, g, 〈·, ·〉H1 ) yields the Camassa-Holm equation (1.19) which is de-

rived by minimizing γ �→ 1
2

∫ b
a

∣∣∣∣γt ◦ γ−1
∣∣∣∣2
H1 dt, cf. [25, 67].

Here, our aim is to study a one-parameter family of Riemannian metrics which are

“between” the L2- and the H1-metric in the following sense: Let λ ∈ [0, 1] and let

〈f, g〉λ := (1 − λ) 〈f, g〉L2
+ λ 〈f, g〉H1 .

Then 〈·, ·〉0 = 〈·, ·〉L2
and 〈·, ·〉1 = 〈·, ·〉H1 and for λ ∈ (0, 1), one obtains a one-parameter

family of metrics which are convexly combined of the L2-metric and the H1-metric.

Applying the least action principle to

γ �→ 1

2

∫ b

a

〈
γt ◦ γ−1, γt ◦ γ−1

〉
λ

dt,

we obtain the Euler equation

ut + 3uux − λ(utxx + 2uxuxx + uuxxx) = 0. (2.1)

As expected, this is the Burgers equation for λ = 0 and the Camassa-Holm equation if

we set λ = 1. Introducing the operator Aλ := 1 − λ∂2x : C∞(S) → C∞(S), we can rewrite

(2.1) in the form

mt = −(mxu+ 2uxm), m = Aλu; (2.2)

here, A = Aλ is the inertia operator which induces the λ-metric 〈·, ·〉λ in the sense that

〈f, g〉λ =

∫
S

fAg dx =

∫
S

gAf dx, f, g ∈ g.

It is an interesting question and the goal of this chapter to find out which geometric

properties coming from the CH equation and the Burgers equation are inherited to the

λ-equation (2.1) which lies between both of these equations, cf. [82]. Note that

〈f, g〉λ = 〈f, g〉L2
+ λ 〈f, g〉∗ , 〈f, g〉∗ =

∫
S

fxgx dx,

so that we can regard 〈·, ·〉λ as the L2-metric plus a perturbation controlled by the

parameter λ. We will explain in Sect. 3.1 that (G, g, 〈·, ·〉∗) leads to the Hunter-Saxton

equation (1.42). If one is interested in the effect of the 〈·, ·〉∗-metric compared to the

effect of the L2-metric, it might be useful to study the family

[0, 1] � λ �→ λ 〈f, g〉∗ + (1 − λ) 〈f, g〉L2
. (2.3)

Note that this modified family gives the Burgers equation for λ = 0 and the CH equation

if λ = 1/2. Choosing λ = 1, one obtains the HS equation. For λ �= 1, the metric (2.3)

equals (up to a scalar factor) the metric 〈f, g〉L2
+β 〈f, g〉∗, where β = λ

1−λ ∈ [0,∞), and

reduces for λ ≤ 1/2 to the case studied in the following section.

First, we show that Eq. (2.1) is a geodesic equation on (Diffn(S), 〈·, ·〉λ), n ≥ 2. Then

we compute the Christoffel operator and the sectional curvature of Diffn(S) associated

with Eq. (2.1) and derive formulas for the λ-derivatives of these geometric quantities.
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2.2 The geometric setting

The operator A = Aλ = 1 − λ∂2x is a textbook example for a regular inertia operator on

C∞(S) in the sense of Definition 1.22; for λ = 1, we will show this in detail in Sect. 3.1.

We write

〈u, v〉id =

∫
S

uAv dx =

∫
S

(uv + λuxvx) dx

for the metric 〈·, ·〉λ on Cn(S), n ≥ 2, and denote the corresponding right-invariant inner

product on Diffn(S) by

〈U, V 〉ϕ =
〈
U ◦ ϕ−1, V ◦ ϕ−1

〉
id

=

∫
S

(U ◦ ϕ−1)A(V ◦ ϕ−1) dx,

for all U, V ∈ TϕDiffn(S) � Cn(S). Recall that (DϕRϕ−1)U = U ◦ ϕ−1 since the map

Rϕ−1 : Diffn(S) → Diffn(S) is linear. Then 〈·, ·〉λ is indeed a Riemannian metric on

Diffn(S) which is compatible with the connection defined locally by

∇XY (ϕ) =
1

2
[X(ϕ), Y (ϕ)] +B′(X(ϕ), Y (ϕ)). (2.4)

Here, B′ is the symmetric operator given by 2B′(u, v) = B(u, v) +B(v, u) and

B(u, v) = A−1 ((Aux)v + 2(Au)vx) . (2.5)

Observe that the CH equation now reads as ut = −B(u, u) and hence is rewritten as

a metric Euler equation in the sense of Definition 1.23. As explained in Theorem 1.16

the operator B defined in (2.5) can also be regarded as the 〈·, ·〉λ-adjoint of the natural

action aduv = uxv − uvx, i.e.,∫
S

(uxv − uvx)Aw dx =

∫
S

B(w, u)Av dx.

Recall that, for finite n, Diffn(S) is not a Lie group; nevertheless, we now regard the

Camassa-Holm equation ut = −B(u, u) as an evolution equation on the tangent space at

the identity of Diffn(S), n ≥ 2. For technical purposes it is useful to introduce another

bilinear symmetric operator Γϕ(X(ϕ), Y (ϕ)) = Γ (ϕ;X(ϕ), Y (ϕ)) such that

∇XY (ϕ) = DY (ϕ) ·X(ϕ) − Γϕ(Y (ϕ), X(ϕ)). (2.6)

Observe that the commutator of vector fields is locally given by

[X,Y ](ϕ) = DY (ϕ) ·X(ϕ) −DX(ϕ) · Y (ϕ) (2.7)

so that the representation (2.6) is a direct consequence of (2.4). Precisely, we have

Γid(u, v) =
1

2
(uv)x −B′(u, v) = −A−1∂x

(
uv +

λ

2
uxvx

)
(2.8)

and

Γϕ(X(ϕ), Y (ϕ)) = Γid(X(ϕ) ◦ ϕ−1, Y (ϕ) ◦ ϕ−1) ◦ ϕ.
We will use the notion Christoffel operator optionally for the maps Γ and B′.
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Proposition 2.1. The pair (Diffn(S), 〈·, ·〉λ), n ≥ 2, with the right-invariant metric 〈·, ·〉λ
is a Riemannian manifold. The bilinear map ∇ on Vect∞(Diffn(S)) defined in (2.6) de-

pends smoothly on ϕ and is a Riemannian covariant derivative on Diffn(S); in particular,

∇ is compatible with the right-invariant metric 〈·, ·〉λ.
Proof. The proof is similar to the proofs of Theorem 3.4, Theorem 4.1 and Theorem 5.3

in [94]. ��
As a key result in [84, 94], we now obtain a unique geodesic flow ϕ(t) ∈ Diffn(S) for

the connection (2.6) standing in a one to one correspondence with the solution u of the

Camassa-Holm equation (2.1). Observe that ϕt(t) ∈ Tϕ(t)Diffn(S) and hence for any t the

Eulerian velocity u(t) := ϕt(t)◦ϕ−1(t) lies in TidDiffn(S); more interestingly, the function

u is a solution of the CH equation. Contrariwise, a solution u of the CH equation can be

interpreted as a time-dependent vector field on S whose flow is the geodesic flow for the

connection (2.6).

Theorem 2.2. For n ≥ 2, let ϕ : J → Diffn(S) be a C2-curve and define u : J → Cn(S)

by u(t) = ϕt(t) ◦ ϕ(t)−1 so that u ∈ C(J,Cn(S)) ∩C1(J,Cn−1(S)). Then ϕ is a geodesic

for the connection ∇ defined in (2.6) if and only if u solves the Camassa-Holm equation

(2.1).

Proof. This is a direct consequence of the arguments in the proof of Theorem 6.5 in

[94]. ��
Remark 2.3. (i) The geodesic equation in Lagrangian coordinates reads as Γϕ(ϕt, ϕt) =

ϕtt which follows from differentiating ϕt = u ◦ ϕ with respect to t, Eq. (2.2) and the

definition of the Christoffel map, cf. [94]. Writing the CH as ut +uux = Γid(u, u) we also

see that n ≥ 2 is sufficient for our purposes.

(ii) Recently it could be shown that the periodic b-equation is an Euler equation in the

sense of Theorem 1.21 for any real b but it is compatible with a Riemannian structure if

and only if b = 2. Whenever b �= 2, geometric information is obtained only by using the

connection ∇ defined via the Christoffel operator for the corresponding equation. Only

for b = 2 there is a unique regular inertia operator, namely 1 − ∂2x, cf. [45].

We will now establish a formula which shows that the sectional curvature of a plane

spanned by two vectors u, v ∈ TidDiffn(S) can be expressed explicitly in terms of the

Christoffel map Γ . We denote by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

the curvature tensor for the family (2.1), in accordance to definition (1.34). (Observe that

we use the same sign convention for R as in [79, 94] so that we will be able to compare

our results for μ-equations and two-component systems in the following.) In particular,

the sectional curvature for the CH equation is given by

S(u, v) = 〈R(u, v)v, u〉 ,

for orthonormal functions u and v.

Theorem 2.4. Let S(u, v) = 〈R(u, v)v, u〉 be the sectional curvature of Diffn(S) endowed

with the right-invariant metric given at the identity by 〈·, ·〉 = 〈·, ·〉λ. Then

S(u, v) = 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉 , u, v ∈ TidDiffn(S).
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Proof. By the definition of R and the local formula (2.6) for the affine connection ∇ we

have

R(X,Y )Z = ∇X [DZ · Y − Γϕ(Z, Y )] −∇Y [DZ ·X − Γϕ(Z,X)]

−DZ · [X,Y ] + Γϕ(Z, [X,Y ])

= D(DZ · Y ) ·X −D1Γϕ(Z, Y )X − Γϕ(DZ ·X,Y )

−Γϕ(Z,DY ·X) − Γϕ(DZ · Y,X) + Γϕ(Γϕ(Z, Y ), X)

−D(DZ ·X) · Y +D1Γϕ(Z,X)Y + Γϕ(DZ · Y,X)

+Γϕ(Z,DX · Y ) + Γϕ(DZ ·X,Y ) − Γϕ(Γϕ(Z,X), Y )

−DZ · [X,Y ] + Γϕ(Z, [X,Y ])

= D1Γϕ(Z,X)Y −D1Γϕ(Z, Y )X + Γϕ(Γϕ(Z, Y ), X)

−Γϕ(Γϕ(Z,X), Y ),

for all X,Y, Z ∈ TϕDiffn(S) � Cn(S). Here

D1Γϕ(Z,X)Y =
d

dε
Γ (ϕ+ εY ;Z,X)

∣∣∣∣
ε=0

=
d

dε
Γ (id;Z ◦ (ϕ+ εY )−1, X ◦ (ϕ+ εY )−1) ◦ (ϕ+ εY )

∣∣∣∣
ε=0

.

Writing u = X ◦ ϕ−1, v = Y ◦ ϕ−1 and w = Z ◦ ϕ−1 we find that

d

dε
Z ◦ (ϕ+ εY )−1

∣∣∣∣
ε=0

= −(Z ◦ ϕ−1)x(Y ◦ ϕ−1) = −wxv; (2.9)

recall that the derivative of (ϕ+ εY )−1 is obtained from the identity

(ϕ+ εY ) ◦ (ϕ+ εY )−1 = id

by differentiating with respect to ε at ε = 0. Together with

(Z ◦ ϕ−1)x =
Zx ◦ ϕ−1

ϕx ◦ ϕ−1

we get (2.9). Writing Γ (·, ·) for Γid(·, ·) we have

D1Γ (w, u)v =
d

dε

∣∣∣∣
ε=0

Γid+εv(w, u)

=
d

dε

{[
−A−1

((
wu +

λwxux
2(1 + εvx)2

)
◦ (id + εv)−1

)
x

]
◦ (id + εv)

}∣∣∣∣
ε=0

= A−1∂x

(
(wu)xv +

λ

2
(wxux)xv + λwxuxvx

)
−v∂xA−1∂x

(
wu+

λ

2
wxux

)
= −Γ (wxv, u) − Γ (uxv, w) + Γ (w, u)xv.

It follows that
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S(u, v) = 〈Γ (Γ (v, v), u), u〉 − 〈Γ (Γ (v, u), v), u〉 + 〈Γ (v, u)xv − Γ (v, v)xu, u〉
+ 〈−Γ (vxv, u) − Γ (v, uxv) + 2Γ (vxu, v), u〉 .

Recall the definition of Γ in Eq. (2.8) and that

−〈B(u, v), w〉 = 〈u, [v, w]〉 , u, v, w ∈ Cn(S),

where [v, w] = vwx − vxw is the Lie bracket induced by right-invariant vector fields.

(Indeed, if X(ϕ) and Y (ϕ) denote the right-invariant vector fields with values u, v at id

we conclude from

DY (ϕ) ·X(ϕ) =
d

dε
Y (ϕ+ εX(ϕ))

∣∣∣∣
ε=0

=
d

dε
v ◦ (ϕ+ ε(u ◦ ϕ))

∣∣∣∣
ε=0

= (vxu) ◦ ϕ

and Eq. (2.7) that [X,Y ](ϕ) ◦ϕ−1 = [u, v] = vxu−uxv. Observe that this bracket differs

from the Lie bracket introduced in Sect. 1.2.2 by a sign.) We thus can rewrite

〈Γ (v, u)xv − Γ (v, v)xu, u〉 + 〈Γ (Γ (v, v), u), u〉 − 〈Γ (Γ (v, u), v), u〉
= 〈Γ (v, u)xv − Γ (v, v)xu, u〉 +

1

2
〈(Γ (v, v)u)x −B(Γ (v, v), u) −B(u, Γ (v, v)), u〉

−1

2
〈(Γ (v, u)v)x −B(Γ (v, u), v) −B(v, Γ (v, u)), u〉

=
1

2
〈[v, Γ (v, u)], u〉 +

1

2
〈[Γ (v, v), u], u〉 +

1

2
〈u, [Γ (v, v), u]〉

−1

2
〈Γ (v, u), [v, u]〉 − 1

2
〈v, [Γ (v, u), u]〉

= −1

2
〈B(u, v), Γ (v, u)〉 + 〈B(u, u), Γ (v, v)〉 − 1

2
〈Γ (v, u), [v, u]〉 − 1

2
〈B(v, u), Γ (v, u)〉

= 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉
−1

2
〈(uv)x, Γ (v, u)〉 + 〈uux, Γ (v, v)〉 − 1

2
〈Γ (v, u), [v, u]〉

= 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉 − 〈uxv, Γ (v, u)〉 + 〈uux, Γ (v, v)〉 .

Therefore

S(u, v) = 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉
+ 〈−Γ (vxv, u) − Γ (v, uxv) + 2Γ (vxu, v), u〉
− 〈uxv, Γ (v, u)〉 + 〈uux, Γ (v, v)〉 . (2.10)

Using (2.8) we find that all but the first two terms on the right-hand side of Eq. (2.10)

cancel. This proves the theorem. ��
As explained in Sect. 1.2.4, subspaces of positive curvature are of particular interest

since the positivity of S(u, v) is related to meaningful results from stability theory. For

the family (2.1) it turns out that S(u, v) is strictly positive on all planes spanned by

two trigonometric functions1 of the form cos kx and sin lx for k, l ∈ 2πN. Recall that, by

standard results from Fourier theory, periodic functions on S can be written as a Fourier

series with respect to the trigonometric functions which we discuss here.

1 The calculations also appear in a preprint of J. Lenells, G. Misio�lek and S.C. Preston, 2009.
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Theorem 2.5. Let S(u, v) = 〈R(u, v)v, u〉 denote the sectional curvature of Diffn(S)

endowed with the right-invariant metric given at the identity by 〈·, ·〉 = 〈·, ·〉λ. Then, for
k �= l ∈ 2πN,

S(cos kx, cos lx) = S(cos kx, sin lx) = S(sinkx, sin lx) = Sec(k, l) > 0 (2.11)

where

Sec(k, l) =
1

8

(
(1 + λ

2kl)
2

1 + λ(k − l)2
(k − l)2 +

(1 − λ
2kl)

2

1 + λ(k + l)2
(k + l)2

)
.

Moreover, for k ∈ 2πN,

S(cos kx, sin kx) = 2 Sec(k, k) =
(1 − λ

2k
2)2

1 + 4λk2
k2 (2.12)

and

S(cos kx, 1) = S(sinkx, 1) = 2 Sec(k, 0) =
k2

2(1 + λk2)
> 0. (2.13)

Proof. By the previous theorem,

S(u, 1) =

∫
S

uxA
−1ux dx.

Since A−1 sin kx = 1
1+λk2 sinkx and

∫
S

sin2 kxdx = 1
2 for k ∈ 2πN the expression for

S(cos kx, 1) follows. A similar computation gives the same value for S(sin kx, 1) and

(2.13) follows. To obtain the equalities (2.11) and (2.12) we use that, for k, l ∈ 2πN,

AΓ (cos kx, cos lx) = ∂x

[
− 1

2

(
1 − λ

2
kl

)
cos(k + l)x− 1

2

(
1 +

λ

2
kl

)
cos(k − l)x

]
,

(2.14)

AΓ (cos kx, sin lx) = ∂x

[
−1

2

(
1 − λ

2
kl

)
sin(k + l)x+

1

2

(
1 +

λ

2
kl

)
sin(k − l)x

]
,

(2.15)

AΓ (sin kx, sin lx) = ∂x

[
1

2

(
1 − λ

2
kl

)
cos(k + l)x− 1

2

(
1 +

λ

2
kl

)
cos(k − l)x

]
,

(2.16)

Γ (cos kx, cos lx) = ∂x

[
−

1
2 (1 − λ

2 kl)

1 + λ(k + l)2
cos(k + l)x−

1
2 (1 + λ

2 kl)

1 + λ(k − l)2
cos(k − l)x

]
,

(2.17)

Γ (coskx, sin lx) = ∂x

[
−

1
2 (1 − λ

2 kl)

1 + λ(k + l)2
sin(k + l)x+

1
2 (1 + λ

2kl)

1 + λ(k − l)2
sin(k − l)x

]
,

(2.18)

Γ (sinkx, sin lx) = ∂x

[
1
2 (1 − λ

2kl)

1 + λ(k + l)2
cos(k + l)x−

1
2 (1 + λ

2kl)

1 + λ(k − l)2
cos(k − l)x

]
.

(2.19)
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We only give a proof for u = cos kx and v = cos lx with k �= l ∈ 2πN. The other compu-

tations are similar and we leave them to the reader. Again, by the previous theorem,

S(cos kx, cos lx) =

∫
S

Γ (cos kx, cos lx)AΓ (cos kx, cos lx)dx

−
∫
S

Γ (cos kx, cos kx)AΓ (cos lx, cos lx)dx.

Using Eqs. (2.14) and (2.17), we can rewrite the right-hand side terms as

−
∫
S

[
−

1
2 (1 − λ

2kl)

1 + λ(k + l)2
cos(k + l)x−

1
2 (1 + λ

2 kl)

1 + λ(k − l)2
cos(k − l)x

]

×∂2x
[
−1

2

(
1 − λ

2
kl

)
cos(k + l)x− 1

2

(
1 +

λ

2
kl

)
cos(k − l)x

]
dx

−
∫
S

∂x

[
−

1
2 (1 − λ

2 k
2)

1 + 4λk2
cos 2kx

]
∂x

[
−1

2

(
1 − λl2

2

)
cos 2lx

]
dx.

Using the orthogonality relations for trigonometric functions, we find that

S(cos kx, cos lx) =
1

4

(1 + λ
2 kl)

2

1 + λ(k − l)2
(k − l)2

∫
S

cos2(k − l)xdx

+
1

4

(1 − λ
2kl)

2

1 + λ(k + l)2
(k + l)2

∫
S

cos2(k + l)xdx

= Sec(k, l).

��

2.3 Variation of geometric quantities

In classical differential geometry, one studies one-parameter families of Riemannian met-

rics, i.e., if M is a manifold and I is a non-empty interval, then for any t ∈ I, there is a

Riemannian metric

gt : M � p �→ 〈·, ·〉t,p : TpM × TpM → R

such that t �→ gt is smooth. A trivial example is a Riemannian manifold (M, 〈·, ·〉) where

a one-parameter family of metrics is obtained simply by scaling the given metric, i.e.,

for t ∈ (0,∞), one defines 〈·, ·〉t = t · 〈·, ·〉. A more interesting example which is closely

related to our problem is the following: Given two Riemannian metrics g0 and g1, then

gt := (1 − t)g0 + tg1, t ∈ [0, 1],

defines a one-parameter family of Riemannian metrics between g0 and g1. If the manifold

M has finite dimension, then any p ∈ M has a neighborhood V such that p = ϕ(x),

x = (x1, . . . , xn) ∈ U , U ⊂ Rn open and ϕ : U → V , and TpM is spanned by {∂xi}i=1,...,n.

One defines covariant components of gt via

gij(t, x) :=

〈
∂ϕ

∂xi
(x),

∂ϕ

∂xj
(x)

〉
t,ϕ(x)
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and the Christoffel symbols Γ kij = (∇∂i∂j)
k; ∇ denoting the Levi-Civita connection.

Contravariant components are defined by inverting the matrix g = (gij)i,j=1,...,n. A

standard question is how quantities of the inner geometry of M change when the metric

varies, controlled by the parameter t. In [8], the author discusses this problem for regular

surfaces in R3 and comes to the following results: First, the derivative of gij follows from

the Taylor expansion

gij(t, x) = gij(t0, x) + (t− t0)ġij(t0, x) + O((t− t0)2)

and with ġjk = −∑
il g

ij ġilg
lk one checks that

Γ̇ kij =
1

2

∑
α

gkα
(
∂ġjα
∂xi

+
∂ġiα
∂xj

− ∂ġij
∂xα

)
−
∑
β,l

Γ βijg
lkġβl

and

2Ġ = div (div ġ) −Δ(tr ġ) − G tr ġ

where G = 1
2

∑
ijk g

jkRiijk denotes the Gaussian curvature.

In this section, we discuss a similar question for the family {〈·, ·〉λ ; λ ∈ [0, 1]} of Rie-

mannian metrics on the circle diffeomorphisms. Basically, we compute the λ-derivatives of

the Christoffel map Γ (u, v) in (2.8) and the sectional curvature S(u, v) obtained in The-

orem 2.4. Therefore, all we need is to compute the λ-derivative of A−1. In the following

lemma we find the Green’s function for A−1.

Lemma 2.6. The operator Aλ = 1 − λ∂2x : C∞(S) → C∞(S), λ ∈ [0, 1], is invertible and

for λ �= 0 its inverse is

A−1
λ f = Gλ ∗ f, Gλ(x) :=

1

2λ1/2

∑
k∈Z

e−λ
−1/2|x+k|.

Furthermore, the map λ �→ λjGλ is differentiable for all j ∈ N0 and [∂x, A
−1
λ ] = 0.

Proof. For λ ∈ (0, 1], let f1 := exp( x√
λ

)χ{x<0} be the function which equals exp( x√
λ

) on

the negative half-axis and which is zero for positive x. Similarly, let f2 := exp(− x√
λ

)χ{x>0}.

Note that f1, f2 ∈ L2(R)\S (R) so that

(Ff1)(k) = l.i.m.R→∞
1√
2π

∫
|x|<R

f1(x)e−ikx dx =
1√
2π

1

λ−1/2 − ik

where F is the Fourier transform L2(R) → L2(R). Similarly,

(Ff2)(k) =
1√
2π

1

λ−1/2 + ik

and
λ

1 + λk2
=

1

λ−1/2 + ik

1

λ−1/2 − ik
= 2π(Ff1)(k)(Ff2)(k).

Given f ∈ C∞(S), we consider the equation u−λuxx = f in S ′. Applying F , we conclude

that (1 + λk2)Fu = Ff . If we apply F−1 to the equation Fu = (1 + λk2)−1Ff and

use the identity F (u ∗ v) =
√

2πFuFv, we get

u =
1√
2π

(
f ∗ F−1(1 + λk2)−1

)
=

1

λ
(f ∗ (f1 ∗ f2)).
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Note that

f1 ∗ f2 =

∫
R

exp

(
x− y√
λ

)
χ{x<y} exp

(
− y√

λ

)
χ{y>0} dy

= exp

(
x√
λ

)∫ ∞

max{0,x}
exp

(
− 2y√

λ

)
dy

=

{ √
λ
2 exp( x√

λ
)[− exp(− 2y√

λ
)]∞0 , x ≤ 0,

√
λ
2 exp( x√

λ
)[− exp(− 2y√

λ
)]∞x , x > 0,

=

√
λ

2
exp

(
− |x|√

λ

)
.

Since f has period 1, it follows that

u = (1 − λ∂2x)−1f

=
1

2
√
λ

∫
R

f(x− y) exp

(
− |y|√

λ

)
dy

=
1

2
√
λ

∑
k∈Z

∫ k+1

k

f(x− y) exp

(
− |y|√

λ

)
dy

=
1

2
√
λ

∑
k∈Z

∫ 1

0

f(x− y − k) exp

(
−|y + k|√

λ

)
dy

=

∫
S

f(x− y)

(
1

2
√
λ

∑
k∈Z

exp

(
−|y + k|√

λ

))
dy.

Thus Gλ is as desired. ��
Remark 2.7. For fixed x ∈ [0, 1] we can rewrite the integral kernel of (1 − λ∂2x)−1 as

2
√
λGλ(x) =

−1∑
k=−∞

exp

(
x+ k√
λ

)
+

∞∑
k=0

exp

(
−x+ k√

λ

)

= exp

(
x√
λ

) ∞∑
k=1

[
exp

(
− 1√

λ

)]k
+ exp

(
− x√

λ

) ∞∑
k=0

[
exp

(
− 1√

λ

)]k

= exp

(
x√
λ

)⎛⎝ 1

1 − exp
(
− 1√

λ

) − 1

⎞⎠+ exp

(
− x√

λ

)
1

1 − exp
(
− 1√

λ

)
=

exp
(
x√
λ

)
+ exp

(
1−x√
λ

)
exp

(
1√
λ

)
− 1

=
cosh

(
1√
λ

(
x− 1

2

))
sinh

(
1

2
√
λ

) .

Since Gλ has period 1, we obtain
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Gλ(x) =
cosh

(
1√
λ

(
x− [x] − 1

2

))
2
√
λ sinh

(
1

2
√
λ

)
for any x ∈ R and λ ∈ (0, 1], cf. [19] for the case λ = 1.

From Remark 2.7 we get that

∂λGλ(x) = −
sinh

(
1√
λ

(
x− [x] − 1

2

))
4λ2 sinh

(
1

2
√
λ

) (
x− [x] − 1

2

)
− Gλ(x)

2λ

⎛⎝1 −
coth

(
1

2
√
λ

)
2
√
λ

⎞⎠ .

(2.20)

Next we derive the formula

∂λΓ (u, v) = −(∂λGλ) ∗ ∂x
(
uv +

λ

2
uxvx

)
− 1

2
Gλ ∗ (uxvx)x.

Using Theorem 2.4 and Eq. (2.20) we have

∂λS(u, v) =

〈
(∂λGλ) ∗ ∂x

(
uv +

λ

2
uxvx

)
, ∂x

(
uv +

λ

2
uxvx

)〉
L2

+
1

2

〈
Gλ ∗ (uxvx)x, ∂x

(
uv +

λ

2
uxvx

)〉
L2

+
1

2

〈
Gλ ∗ ∂x

(
uv +

λ

2
uxvx

)
, (uxvx)x

〉
L2

−
〈

(∂λGλ) ∗ ∂x
(
u2 +

λ

2
u2x

)
, ∂x

(
v2 +

λ

2
v2x

)〉
L2

−
〈
Gλ ∗ (uxuxx), ∂x

(
v2 +

λ

2
v2x

)〉
L2

−
〈
Gλ ∗ ∂x

(
u2 +

λ

2
u2x

)
, vxvxx

〉
L2

.

Letting u and v be equal to a trigonometric function, we computed the sectional curvature

in Theorem 2.5 and found that it equals, up to a factor, the quantity Sec(k, l). Note that

∂λSec(k, l) = A(λ)(k − l)2 + B(λ)(k + l)2

where

A(λ) =
kl − (k − l)2 + λ

2k
2l2 + λ2

4 (k − l)2k2l2

8[1 + λ(k − l)2]2

and

B(λ) =
−kl− (k + l)2 + λ

2k
2l2 + λ2

4 (k + l)2k2l2

8[1 + λ(k + l)2]2
.





Chapter 3

A partially averaged version of the periodic
b-equation

A novel family of equations related to the b-equation is proposed in [99]. The key idea

is to replace the inertia operator 1 − ∂2x for the b-equation by the operator μ− ∂2x where

μ(u) is the average value of the periodic function u. We will call this new family the

μ-b-equation. In this chapter we come to the following results:

First, we comment on the fact that the b-equation, the μ-b-equation and the HS

equation have the same form and only differ in the particular choice of the inertia operator

and the parameter b respectively. Then we show that a novel method proving local well-

posedness in the smooth category for the b-equation with smooth initial data (see [41])

can be generalized to the μDP equation. In particular, we obtain a geodesic flow and an

exponential map for μDP which are smooth objects if the initial data are smooth.

Escher and Seiler showed in [45] that only for b = 2 the b-equation is a metric Euler

equation. We generalize this result to the μ-b-equation and prove that the μCH equation

is the only member of the novel family which possesses a regular inertia operator. In

addition, we extend our discussion of a one-parameter family of CH equations in Chap. 2

and compute the Christoffel operator and the sectional curvature for a general μCH

equation.

As a corollary, our results show that the μDP equation is a non-metric Euler equation;

the same has been established for the DP equation for which some recent studies dealing

with a dissipative term have been done, [46, 122]. This motivates our study of a weakly

dissipative μDP equation for which we prove local well-posedness —using our geometric

methods— and specify the precise blow-up scenario. We finally discuss blow-up solutions

as well as criteria for the global existence of strong solutions.

3.1 A couple of regular inertia operators and some preliminary
remarks

In this introductory section our aim is to give a brief overview about the different inertia

operators with which we will deal in the following. We make clear how the operators

have to be defined so that they are topological isomorphisms, we compute the Green’s

functions (as far as they exist) and explain how our theory can be extended to Sobolev

spaces which play an important role for various applications.

43
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Fig. 3.1 Green’s function

for the operator A = 1−∂2
x,

periodically extended to the

real axis.
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3.1.1 The b-equation

The inertia operator for the b-equation is A = 1−∂2x. We have proved in Lemma 2.6 that

the operator A as a map C∞(S) → C∞(S) has the inverse

A−1u = G ∗ u, G(x) =
1

2

∞∑
k=−∞

e−|x+k| =
cosh(x − [x] − 1

2 )

2 sinh(12 )
. (3.1)

Note that −∂2xA−1f = f − A−1f and that the existence of a Green’s function implies

that A−1 commutes with ∂x (which is a consequence of carrying out the differentiation

under the integral sign). Since for any n ≥ 2 we have ||Au||Cn−2 ≤ 2 ||u||Cn it follows that

A is continuous and since∣∣∣∣A−1u
∣∣∣∣
Cn+2 =

∣∣∣∣A−1u
∣∣∣∣
∞ +

∣∣∣∣A−1ux
∣∣∣∣
∞ +

∣∣∣∣u−A−1u
∣∣∣∣
Cn

≤ ||G||∞ (||u||∞ + ||ux||∞) + ||u||Cn +

n∑
k=0

∣∣∣∣∣∣A−1u(k)
∣∣∣∣∣∣
∞

≤ (||G||∞ + 1) ||u||Cn + ||G||∞
n∑
k=0

∣∣∣∣∣∣u(k)∣∣∣∣∣∣
∞

≤ (2 ||G||∞ + 1) ||u||Cn

for any n ≥ 2 it follows that A−1 is continuous. Observe that the inner product on C∞(S)

generated by A is the H1 inner product. Hence A is a regular inertia operator in the

sense of Definition 1.22.

3.1.2 The µ-b-equation

If we replace the momentum variable m = u− uxx by the partially averaged momentum

m = μ(u) − uxx in (1.39) we obtain the periodic μ-b-equation. Note that if u is a Cn(S)-

function then μ(∂kxu) = 0 for k ∈ {1, . . . , n}. Furthermore, it is important to mention

that μ(u(t, ·)) does not depend on x but is still a function of the time variable t.
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The periodic μ-b-equation is the 1-parameter family of evolution equations

ut = −(μ− ∂2x)−1 (bμ(u)ux − buxuxx − uuxxx) , b ∈ R, (3.2)

where u(t, x) is a function depending on time t ∈ R and a space variable x ∈ S.

The inertia operator for the μ-variant (3.2) is A = μ − ∂2x. We first establish that

A : C∞(S) → C∞(S) defines indeed an inner product on C∞(S).

Lemma 3.1. The bilinear map

〈·, ·〉μ : C∞(S) × C∞(S) → R, 〈u, v〉μ = μ(u)μ(v) +

∫
S

ux(x)vx(x) dx

defines an inner product on C∞(S).

Proof. Clearly, 〈·, ·〉μ is a symmetric bilinear form and 〈u, u〉μ ≥ 0 for all u. If u ∈ C∞(S)

satisfies 〈u, u〉μ = 0, then ux = 0 on S and hence u is constant. The fact that μ(u) = 0

implies u = 0 and hence 〈·, ·〉μ is positive definite. ��
Next we show that A is invertible and that A and A−1 are continuous maps on C∞(S).

Lemma 3.2. The operator A = μ − ∂2x maps Cn(S) to Cn−2(S), n ≥ 2, and has the

inverse

(A−1f)(x) =

(
1

2
x2 − 1

2
x+

13

12

)∫ 1

0

f(a) da+

(
x− 1

2

)∫ 1

0

∫ a

0

f(b) db da

−
∫ x

0

∫ a

0

f(b) db da+

∫ 1

0

∫ a

0

∫ b

0

f(c) dc db da. (3.3)

In particular, A and A−1 are continuous maps on C∞(S).

Proof. Clearly, μ(A−1f) = μ(f) and (A−1f)xx = μ(f) − f so that A(A−1f) = f for

any f ∈ Cn−2(S). To conclude that A is surjective, we observe that (∂kxA
−1f)(0) =

(∂kxA
−1f)(1) for all k ∈ {0, . . . , n}. To see that A is injective, assume that Au = 0 for

u ∈ Cn(S) and n ≥ 2. Then there are constants c, d ∈ R such that u = 1
2μ(u)x2 + cx+ d.

Since u must be periodic, c = 0 and μ(u) = 0 from which we get d = 0 and hence

u = 0. ��
Remark 3.3. We get from Lemma 3.2 that ∂2xA

−1 = μ− 1.

In fact, the operator A−1 is an integral operator: To obtain Green’s function for A−1 we

first look for elements in the kernel of A. As explained in the above proof, Au = 0 implies

that u = 1
2μ(u)x2 + cx+ d. Applying μ to this equation shows that

u =
1

2
μ(u)x2 +

(
5

3
μ(u) − 2d

)
x+ d.

Using that u(0) = u(1) yields

u =

(
1

2
x2 − 1

2
x+

13

12

)
μ(u).
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Fig. 3.2 Green’s function g for the operator A = μ− ∂2
x, periodically extended to the real axis, and the

difference to the function G in Fig. 3.1. The fact that the difference is small suggests that results for the

b-equation might also be valid for its μ-variant.

Clearly, since 2ux(0) = −μ(u) and 2ux(1) = μ(u) we have μ(u) = 0, i.e., u = 0, but

nevertheless, we find that

(μ− ∂2x)

(
1

2
x2 − 1

2
x+

13

12

)
= 0.

This motivates the identity

((μ− ∂2x)−1u)(x) =

∫ 1

0

g(x− y)u(y) dy, g(x) =
1

2
x2 − 1

2
|x| +

13

12
. (3.4)

Observe that1 −∂2x| · | = −2δ. In conclusion, we have shown that μ − ∂2x is a regular

inertia operator in the sense of Definition 1.22.

Remark 3.4. The μ-b-equation can be rewritten as

ut + uux +A−1∂x

(
bμ(u)u+

1

2
(3 − b)u2x

)
= 0. (3.5)

Applying μ to this equation shows that μ(ut) = 0. Thus the μ-b-equation reduces to

− utxx + bμ(u)ux − buxuxx − uuxxx = 0. (3.6)

3.1.3 The Hunter-Saxton equation

As explained in Chap. 1, the Hunter-Saxton equation is of the same form as the CH

equation since it can be written as mt = −mxu − 2uxm, but with m = −uxx. That is

why we introduce the inertia operator A = −∂2x for the Hunter-Saxton equation. It is

not a priori clear how to chose the domain of A so that it is an isomorphism.

Lemma 3.5. Let A be the operator −∂2x with domain

D(A) = {f ∈ Cn(S); f(0) = 0} , n ≥ 2.

1 Using integration by parts we see that 〈| · |,−ϕ′′〉 =
∫ 0
−∞ xϕ′′(x) dx−∫∞

0
xϕ′′(x) dx = −2ϕ(0) for any

test function ϕ.
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For any n ≥ 2, A is a topological isomorphism

D(A) →
{
f ∈ Cn−2(S);

∫
S

f(x) dx = 0

}
with the inverse

(A−1f)(x) = −
∫ x

0

∫ y

0

f(z) dz dy + x

∫
S

∫ y

0

f(z) dz dy. (3.7)

Proof. Clearly, for all f ∈ Cn−2(S) with zero mean, −∂2x(A−1f) = f and A−1f ∈ D(A)

since (∂kxA
−1f)(0) = (∂kxA

−1f)(1) for all k ∈ {0, . . . , n}. To see that A is injective, we

assume that u ∈ ker(A) and have u = ax+b with real constants a and b. Since u(1) = u(0)

we see that a = 0 and since u(0) = 0, we also get b = 0. ��
Remark 3.6. Note that we have −A−1fxx = f − f(0) and −∂2xA−1f = f for any C2-

function f and that ∂xA
−1fx = −f + μ(f). Note also that ∂x and A−1 do not commute

since

(A−1fx)(x) = −
∫ x

0

f(y) dy + xμ(f) �= −
∫ x

0

f(y) dy +

∫
S

∫ y

0

f(z) dz dy = (A−1f)x(x).

Lemma 3.7. The bilinear form on {u ∈ C∞(S); u(0) = 0} defined by

(u, v) �→
∫
S

uAv dx

is a positive definite inner product.

Proof. It is clear that the map under consideration is bilinear and symmetric and that∫
S
uAu dx =

∫
S
u2x dx ≥ 0. If

∫
S
uAu dx = 0 we get ux = 0; then u is constant and

u(0) = 0 enforces u = 0. ��
Definition 3.8. We call the metric induced on {u ∈ C∞(S);u(0) = 0} by the symmetric

operator A = −∂2x the Ḣ1-metric and write

〈u, v〉Ḣ1 =

∫
S

uAv dx =

∫
S

uxvx dx. (3.8)

Remark 3.9. More general, one considers the homogeneous Sobolev spaces

Ḣs(S) =

{
f =

∑
n∈Z

f̂(n)e2πinx; f(0) = 0, ||f ||2Ḣs =
∑
n∈Z

(4π2n2)s
∣∣∣f̂(n)

∣∣∣2 <∞
}

where the f̂(n) are the Fourier coefficients of f and s is non-negative2. The reader can

compare this definition to the one for the ordinary Sobolev spaces on the circle in the

following section. Note that the operator −∂2x maps a function in Ḣs(S) to a function with

zero mean. On the real axis, the spaces Ḣs(R) are defined by completing the Schwartz

space S (R) with respect to

||u||2Ḣs =

∫
R

|ξ|2s|û(ξ)|2 dξ;

2 Observe that {u ∈ Hs(S); u(0) = 0} 	 {v ∈ Hs(S); μ(v) = 0} via the isomorphism u 
→ u−μ(u) with

the inverse v 
→ v − v(0).
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again this is similar to the definition of Hs(R) which is the completion of S (R) with

respect to the Sobolev norm

||u||2Hs =

∫
R

(1 + |ξ|2)s|û(ξ)|2 dξ.

We see that A = −∂2x is a regular inertia operator in the sense of Definition 1.22. Let us

summarize our results.

For

A =

⎧⎨⎩
1 − ∂2x and b ∈ R,

μ− ∂2x and b ∈ R,

−∂2x and b = 2,

(3.9)

the equation mt = −(mxu + buxm), m = Au, becomes the b-equation, the μ-b-

equation and the Hunter-Saxton equation respectively. In any case, the operator A

defines a regular inertia operator.

The fact that the Green’s functions for (1 − ∂2x)−1 and (μ − ∂2x)−1 resemble each

other motivates to study the μ-b-equation under similar aspects as it has been done for

the b-equation recently. We can also motivate the study of μ-variants of Eq. (1.41) by

perturbing the inertia operators for the b-equation or the HS equation respectively, either

by adding the operator μ to the inertia operator for the HS equation or by replacing id

by μ in the inertia operator for the b-equation. In the following we will always write

A for the inertia operator of the respective equation and we do not introduce different

notations for the three types of operators in (3.9).

3.1.4 A short introduction to Sobolev spaces

In this section, we briefly recall elementary facts about Sobolev spaces, in particular on

the circle S, and explain how the inertia operators introduced in the previous section can

be defined on Sobolev spaces.

We denote by Hs = Hs(S), s ≥ 0, the Sobolev space of periodic functions. If s ∈ N0,

Hs is the space of all L2(S)-functions f with square integrable distributional derivatives

up to the order s, ∂ixf ∈ L2(S), i ∈ {0, . . . , s}. Endowed with the norm

||f ||2Hs =

s∑
i=0

∫
S

(∂ixf)2(x) dx =

s∑
i=0

〈
∂ixf, ∂

i
xf
〉
L2(S)

=

s∑
i=0

∣∣∣∣∂ixf ∣∣∣∣2L2(S)
,

the spaces Hs become Hilbert spaces. Note that we have H0 = L2(S). For general s ≥ 0,

we define the Sobolev spaces Hs(S) by using the Fourier transform on L2(S) which maps

a periodic function f to its Fourier series (f̂(n))n∈Z, see [129]. Let Qs = (1 − ∂2x)s/2

be the elliptic pseudo-differential operator with the symbol (1 + 4π2n2)s/2, i.e., for any

f =
∑

n∈Z
f̂(n)e2πinx we have

Q̂sf(n) = (1 + 4π2n2)s/2f̂(n).

The Sobolev space Hs(S) is the function space
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Hs(S) :=

{
f ∈ L2(S); ||f ||2Hs =

∑
n∈Z

∣∣∣Q̂sf(n)
∣∣∣2 <∞

}
.

The operator Q2 = 1 − ∂2x : Hs(S) → Hs−2(S) is an isomorphism for all s ≥ 2. That Q2

and Q−2 are continuous follows from∣∣∣∣Q2u
∣∣∣∣2
Hs−2 =

〈
Q2(s−2)Q2u,Q2u

〉
L2(S)

=
〈
Q2su, u

〉
L2(S)

= ||u||2Hs .

It is easy to check that the operator μ− ∂2x : Hs(S) → Hs−2(S) has the inverse (3.3) and

the Green’s function (3.4), see [99]. We compute for any f ∈ Hs

∣∣∣∣(μ− ∂2x)f
∣∣∣∣2
Hs−2 =

∣∣∣∣∣∣
∣∣∣∣∣∣f̂(0) +

∑
n∈Z\{0}

f̂(n)4π2n2e2πinx

∣∣∣∣∣∣
∣∣∣∣∣∣
2

Hs−2

≤ 2
∣∣∣f̂(0)

∣∣∣2 + 2
∑

n∈Z\{0}
(4π2n2)2(1 + 4π2n2)s−2

∣∣∣f̂(n)
∣∣∣2

≤ 2
∑
n∈Z

(1 + 4π2n2)s
∣∣∣f̂(n)

∣∣∣2
= 2 ||f ||2Hs

and together with the open mapping theorem this achieves the continuity of both, μ−∂2x
and its inverse; i.e., μ − ∂2x is a topological isomorphism. For the HS equation, it is

explained in [97] that −∂2x is a topological isomorphism

Es := {f ∈ Hs(S); f(0) = 0} → {
f ∈ Hs−2(S); μ(f) = 0

}
, s ≥ 3.

We now introduce the Hs(S)-diffeomorphisms

HsDiff(S) =
{
ϕ ∈ Hs(S); ϕ bijective, orientation-preserving and ϕ−1 ∈ Hs(S)

}
.

The Hs-diffeomorphisms form a topological group for any s > 3/2, as we will see in

Lemma 3.35. Furthermore, HsDiff(S) is a Hilbert manifold modelled on Hs(S) and

TϕH
sDiff(S) � Hs(S) for all ϕ ∈ HsDiff(S). We will implicitly use the natural iden-

tification

THsDiff(S) � HsDiff(S) ×Hs(S) (3.10)

and a vector field X on HsDiff(S) is viewed as a map HsDiff(S) → Hs(S); the evaluation

of X at ϕ ∈ HsDiff(S) is viewed as a map S → TS covering ϕ with value (X(ϕ))(x) ∈
R � Tϕ(x)S at the point ϕ(x) for x ∈ S. The identification (3.10) is given explicitly as

follows. The map ϕ �→ (ϕ(0), ϕ(x) − x− ϕ(0)) is a diffeomorphism HsDiff(S) → S× Us,

where

Us := {f ∈ Hs(S); f(0) = 0, fx > −1} .
Since Us is an open subset of the closed linear subspace Es ⊂ Hs, this map provides a

local chart on HsDiff(S) with values in I ×Us ⊂ R×Es for any open subinterval I ⊂ S.

Moreover, using that TS � S× R, we find

THsDiff(S) � T (S× Us) � S× Us × R× Es � HsDiff(S) ×Hs(S).
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Remark 3.10. Note that, according to Sobolev’s embedding theorem, Hs(S) ⊂ C1(S) for

all s > 3/2.

3.2 The special role of the case b = 2

In [45], the authors explain that for the b-equation the case b = 2 is of particular interest

since only for b = 2 one obtains a metric Euler equation. More precisely, for all b �= 2,

Eq. (1.41) is a family of non-metric Euler equations. In this section, we generalize this

result to the periodic μ-b-equation.

Proposition 3.11. Let A ∈ Lsym
is (C∞(S)). Then the associated bilinear symmetric op-

erator B(u, v) = 1
2 [ad∗

uv + ad∗
vu] has the form

B(u, v) =
1

2
A−1 [2(Au)vx + 2(Av)ux + u(Av)x + v(Au)x] ,

for all u, v ∈ C∞(S).

Proof. Let ρA be the metric induced by A, i.e., ρA(u, v) = 〈Au, v〉L2
. By direct compu-

tation we find that

ρA(ad∗
uv, w) = ρA(v, aduw) =

∫
S

Av(uxw − wxu) dx =

∫
S

[(Av)ux + ((Av)u)x]w dx

for all u, v, w ∈ C∞(S). Hence

ad∗
uv = A−1(2(Av)ux + (Av)xu)

and symmetrization achieves the proof. ��
It may be instructive to recall the following paradigmatic examples.

Example 3.12. Let λ ∈ [0, 1] and let A be the inertia operator for the equation mt =

−(mxu+ 2uxm).

1. The choice A = −∂2x yields B(u, u) = −A−1(2uxuxx + uuxxx) and ut = −B(u, u) is

the Hunter-Saxton equation

utxx + 2uxuxx + uuxxx = 0.

2. We choose A = 1 − λ∂2x. If λ = 0, the equation mt = −(mxu + 2uxm) becomes the

periodic inviscid Burgers equation ut +B(u, u) = ut + 3uux = 0. For λ �= 0, we obtain

ut +B(u, u) = ut + 3uux − λ(2uxuxx + uuxxx + utxx) = 0,

a version of the Camassa-Holm equation which we discussed in the previous chapter.

3. Choosing A = μ− ∂2x, we arrive at the μCH equation

μ(ut) − utxx + 2μ(u)ux = 2uxuxx + uuxxx

which coincides with the μHS equation which we will study later.
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Each regular inertia operator induces an Euler equation on Diff∞(S). We now consider

the question for which b ∈ R there is a regular inertia operator such that the μ-b-equation

is the corresponding Euler equation on Diff∞(S). Example 3.12 shows that, for b = 2, the

operator μ − ∂2x ∈ Lsym
is (C∞(S)) induces the μCH. Our goal is to show that this works

only for b = 2.

Theorem 3.13. Let b ∈ R be given and suppose that there is a regular inertia operator

A ∈ Lsym
is (C∞(S)) such that the μ-b-equation

mt = −(mxu+ bmux), m = μ(u) − uxx,

is the Euler equation on Diff∞(S) with respect to ρA. Then b = 2 and A = μ− ∂2x.

Proof. We write L = μ− ∂2x. Let us assume that, for given b ∈ R and A ∈ Lsym
is (C∞(S)),

the μ-b-equation is the Euler equation on the circle diffeomorphisms with respect to ρA.

By Proposition 3.11

ut = −A−1((Au)xu+ 2(Au)ux), u ∈ C∞(S),

and the μ-b-equation can be written as

(Lu)t = −((Lu)xu+ b(Lu)ux), u ∈ C∞(S).

Using that (Lu)t = Lut and resolving the second equation with respect to ut we get that

A−1 (2(Au)ux + u(Au)x) = L−1 (b(Lu)ux + u(Lu)x) , (3.11)

for all u ∈ C∞(S). Denote by 1 the constant function with value 1. If we set u = 1 in

(3.11), then A−1(1(A1)x) = 0 and hence (A1)x = 0, i.e., A1 = c1. Scaling (3.11) shows

that we may assume c = 1. Replacing u by u+ λ in (3.11) and scaling with λ−1, we get

on the left-hand side

1

λ
A−1

(
2(A(u+ λ))(u + λ)x + (u+ λ)(A(u + λ))x

)
=

1

λ
A−1

(
2((Au) + λ)ux + (u+ λ)(Au)x

)
= A−1

(
2(Au)ux + u(Au)x

λ
+ 2ux + (Au)x

)
→ A−1(2ux + (Au)x), λ→ ∞,

and a similar computation for the right-hand side gives

1

λ
L−1

(
b(L(u+ λ))(u + λ)x + (u+ λ)(L(u + λ))x

)
→ L−1(bux + (Lu)x), λ→ ∞.

We obtain

A−1 (2ux + (Au)x) = L−1(bux + (Lu)x), (3.12)

for all u ∈ C∞(S). Let us consider the functions un = einx, n ∈ 2πZ\{0}, for which we

have Lun = n2un and
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L−1(b(un)x + (Lun)x) = iαnun, αn =
b

n
+ n.

We now apply A to (3.12) with u = un and see that

2inun + (Aun)x = iαn(Aun).

Therefore vn := Aun solves the ordinary differential equation

v′ − iαnv = −2inun. (3.13)

If b = 0, then αn = n and hence the general solution of (3.13) is

v(x) = (c− 2inx)un, c ∈ R,

which is not periodic for any c ∈ R. Hence b �= 0 and there are numbers γn so that

vn = Aun = γne
iαnx + βnun, βn =

2

b
n2.

We first discuss the case γn = 0 for all n, secondly we show that γp �= 0 for some

p ∈ 2πZ\{0} is not possible. If all γn vanish, then Aun = βnun and A is a Fourier

multiplication operator; in particular A commutes with L. Therefore (3.11) with u = un
is equivalent to

L(2(Aun)(un)x + un(Aun)x) = A(b(Lun)(un)x + un(Lun)x)

and by direct computation

12in3βnu2n = i(b + 1)n3β2nu2n.

Inserting βn = 2n2/b we see that b = 2 and βn = n2. Therefore A = L. Assume that

there is p ∈ 2πZ\{0} with γp �= 0. Since vp = Aup is periodic, αp ∈ 2πZ and hence b = kp

for some k ∈ 2πZ\{0}. Let αp = m. If m = p, then b = 0 which is impossible. We thus

have 〈um, up〉 = 0 and

〈Aup, um〉 =
〈
γpe

imx, um
〉

= γp.

The symmetry of A yields

γp = 〈Aup, um〉 = 〈up, Aum〉 = γm
〈
up, e

iαmx
〉
.

Since γp �= 0, γm is non-zero and periodicity implies αm ∈ 2πZ. More precisely, αm = p

since otherwise
〈
up, e

iαmx
〉

= 0 = γp. Using b = kp and the definition of αp, we see that

m = αp = k + p. Furthermore,

p(k + p) = αm(k + p) = αk+p(k + p) = kp+ (k + p)2

and hence 0 = k2 + 2pk. Since k �= 0, it follows that k = −2p and hence b = −2p2. We

get αp = −p and observe that γn = 0 for all n �= ±p, since otherwise repeating the above

calculations would yield b = −2n2 contradicting b = −2p2. Inserting u = up in (3.11)

shows that

ipγp1− 3ip

β2p
u2p = ip3(b+ 1)

u2p
4p2

;



3.3 Local well-posedness in the smooth category and a smooth exponential map for μDP 53

here we have used that Aup = γp/up + βpup, βp = −1 and A−1u2p = u2p/β2p, since 2p

does not coincide with ±p and hence γ2p = 0. It follows that pγp = 0 in contradiction to

p, γp �= 0. ��
From the above theorem we immediately get the following result for the μDP equation.

Corollary 3.14. The μDP equation on the circle

mt = −(mxu+ 3mux), m = μ(u) − uxx,

cannot be realized as a metric Euler equation in the sense of Definition 1.22 for any

regular inertia operator A ∈ Lsym
is (C∞(S)).

3.3 Local well-posedness in the smooth category and a smooth
exponential map for µDP

This section is about a local well-posedness result for the periodic μDP equation

μ(ut) − utxx + 3μ(u)ux − 3uxuxx − uuxxx = 0, (3.14)

which belongs to the family (3.2) and is obtained for b = 3. Throughout the following

considerations, we will assume that

u ∈ C((−T, T ), Cn(S)) ∩ C1((−T, T ), Cn−1(S))

for some n ≥ 3 (so that all derivatives exist in the classical sense), where T denotes a

positive real number. We will reformulate the μDP equation in terms of a geodesic flow

on Diff∞(S) to obtain the following main result: For smooth initial data u0(x) for which

||u0||C3(S) is small, we prove the short-time existence of a smooth solution u(t, x) of (3.14)

which depends smoothly on (t, u0).

Theorem 3.15. There exists an open interval J centered at zero and δ > 0 such that for

each u0 ∈ C∞(S) with ||u0||C3(S) < δ, there exists a unique solution u ∈ C∞(J,C∞(S))

of the μDP equation such that u(0) = u0. Moreover, the solution u depends smoothly on

(t, u0) ∈ J × C∞(S).

Furthermore, we show that the exponential map for the μDP equation is a smooth local

diffeomorphism from a neighbourhood of 0 ∈ C∞(S) to a neighbourhood of id ∈ Diff∞(S).

Theorem 3.16. The exponential map exp at the unity element for the μDP equation on

Diff∞(S) is a smooth local diffeomorphism from a neighbourhood of zero in Vect∞(S) to

a neighbourhood of id on Diff∞(S).

Our results will extend the work done in [41] to the periodic μDP equation and presum-

ably our analysis will also work for general b, cf. Chap. 6. For concreteness, we restrict

ourselves to the case b = 3 where we deal with a non-metric Euler equation. The results

have been published by the author in [39].

This section is organized as follows: First, we explain how to rewrite (3.14) in terms

of a local flow ϕ ∈ Diffn(S), n ≥ 3, and briefly comment on the geometric setting. The

resulting equation is an ordinary differential equation and we can apply the Cauchy-

Lipschitz Theorem to obtain a solution of class Cn(S) with smooth dependence on t and



54 3 A partially averaged version of the periodic b-equation

u0(x). In addition, we show that the solution (ϕ, ϕt) in Diffn(S)×Cn(S) does neither lose

nor gain spatial regularity as t varies through the existence interval. We then approxi-

mate the Fréchet Lie group Diff∞(S) by the topological groups Diffn(S) and the Fréchet

space C∞(S) by the Banach spaces Cn(S) to obtain an analogous existence result for

the geodesic equation on Diff∞(S). From this, we directly conclude Theorem 3.15 and

Theorem 3.16 which is more or less a corollary to our theorem which shows the existence

of a smooth geodesic flow.

The crucial point here is that Diff∞(S) is a Lie group so that if ϕ(t) is the smooth

geodesic flow for the μDP with smooth initial data, the solution u of (3.14) is given by

u(t) = ϕt(t) ◦ ϕ−1(t) and is again smooth. Nevertheless, to obtain a smooth flow ϕ(t)

is rather difficult since our standard local existence theorem for ODEs only applies in

Banach spaces and not in Fréchet spaces like C∞(S). Hence the strategy is to obtain first

a geodesic flow ϕ(t) in some Diffn(S) and then to check that, for smooth initial data,

ϕ(t) is in fact smooth. A further technical difficulty is that Diffn(S) only possesses the

structure of a topological group and not a Banach Lie group. Our approach will point

out how we obtain a smooth solution within this difficult scenario.

3.3.1 The periodic b-equation with smooth initial values

In this subsection, we recast some important results from [41], where the authors discuss

the periodic b-equation in a geometric framework and prove local well-posedness for

smooth initial data as well as smoothness of the corresponding exponential map as a

diffeomorphism C∞(S) → Diff∞(S). The b-equation can be written in the form

ut = −A−1 [u(Au)x + b(Au)ux] ,

where A is the operator 1 − ∂2x. Hence

ut + uux = −A−1 [3uxuxx + b(Au)ux] . (3.15)

Let J ⊂ R be an open interval. If we regard u(t, x) as a time-dependent vector field on

J × S of class Cn, then u has a (unique) local flow ϕ(t, x) of class Cn such that

u = ϕt ◦ ϕ−1.

Conversely, for any pair (ϕ, ξ), where ϕ ∈ Diffn(S) is a Cn(S)-diffeomorphism and ξ is a

Cn(S)-function, ξ ◦ ϕ−1 is of class Cn. It is easy to check that (3.15) is equivalent to{
ϕt = ξ,

ξt = −Pϕ(ξ),
(3.16)

where

Pϕ(ξ) = P (ξ ◦ ϕ−1) ◦ ϕ, P = A−1Q, Q(u) = 3uxuxx + b(Au)ux.

The fact that A and Q are polynomial differential operators with constant coefficients and

the inverse mapping theorem for Banach spaces show that the second order vector field

F (ϕ, ξ) := (ξ,−Pϕ(ξ)) : Diffn(S) × Cn(S) → Cn(S) × Cn(S) is smooth so that the short-

time existence of a solution of (3.16) in Diffn(S) × Cn(S) with smooth dependence on t
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and u0 ∈ Cn(S) follows immediately from the Cauchy-Lipschitz Theorem. Furthermore,

it can be shown that the solution (ϕ(t), ξ(t)) does neither lose nor gain spatial regularity

as t increases or decreases from zero. This follows from the equations

ϕxx(t) = ϕx(t)

[∫ t

0

ξ(s)ϕx(s) ds−m0

∫ t

0

ϕx(s)1−b ds

]
(3.17)

and

ξxx(t) = ξx(t)

[∫ t

0

ξ(s)ϕx(s) ds−m0

∫ t

0

ϕx(s)1−b ds

]
+ϕx(t)

[
ξ(t)ϕx(t) −m0ϕx(t)1−b

]
, (3.18)

where m0 = Au0 = u0 − (u0)xx. To obtain Eqs. (3.17) and (3.18), one uses the conserva-

tion of the quantity [(u− uxx) ◦ ϕ]ϕbx, i.e.,

[(u− uxx) ◦ ϕ]ϕbx = m0. (3.19)

Lemma 3.17. Let (ϕ(t), ξ(t)) ∈ Diff3(S) × C3(S), t ∈ J , be a short-time solution of

(3.16). If u0 ∈ Cn(S), n ≥ 3, then we have (ϕ(t), ξ(t)) ∈ Diffn(S) × Cn(S) for all t ∈ J .

Lemma 3.18. Let (ϕ(t), ξ(t)) ∈ Diff3(S) × C3(S), t ∈ J , be a short-time solution of

(3.16). If there exists a nonzero t ∈ J such that ϕ(t) ∈ Diffn(S) or ξ(t) ∈ Cn(S), n ≥ 3,

then ξ(0) = u0 ∈ Cn(S).

The main theorem (formulated in the geometric picture) reads as follows.

Theorem 3.19. There exists an open interval J centered at zero and δ > 0 such

that for all u0 ∈ C∞(S) with ||u0||C3(S) < δ, there exists a unique solution (ϕ, ξ) ∈
C∞(J,Diff∞(S) × C∞(S)) of (3.16) such that ϕ(0) = id and ξ(0) = u0. Moreover, the

flow (ϕ, ξ) depends smoothly on (t, u0) ∈ J × C∞(S).

In the smooth category, the map

Diff∞(S) × C∞(S) → C∞(S), (ϕ, ξ) �→ ξ ◦ ϕ−1 = u

is smooth. We thus have the following result.

Corollary 3.20. There exists an open interval Jcentered at zero and δ > 0 such that for

each u0 ∈ C∞(S) with ||u0||C3(S) < δ, there exists a unique solution u ∈ C∞(J,C∞(S))

of the b-equation such that u(0) = u0. Moreover, the solution u depends smoothly on

(t, u0) ∈ J × C∞(S).

The flow ϕ(t) ⊂ Diff∞(S) can be interpreted as geodesic flow with respect to a right-

invariant affine connection ∇ which is defined on the Lie algebra of Diff∞(S) by the sum

of the Lie bracket and a bilinear operator, see Eq. (1.31). Hence it makes sense to study

the exponential map defined by ∇ which is just evaluation of the geodesic flow at time

t = 1. For finite n, the exponential map expϕ(·) is a map from TϕDiffn(S) � Cn(S) to the

manifold Diffn(S). Moreover, expϕ(·) is a local diffeomorphism. In general, this fails to

hold true for Fréchet manifolds and taking the example of the right-invariant L2-metric

(Burgers equation) on Diff∞(S) we see that we do not get a local C1-diffeomorphism near

the origin, cf. [25, 26]. For the Camassa-Holm equation and more general for the Hk-

metrics, k ≥ 1, the Riemannian exponential map in fact is a smooth local diffeomorphism.

This result has been extended to the general (non-metric) b-equation in [41].
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Theorem 3.21. The exponential map exp at the unity element for the b-equation on

Diff∞(S) is a smooth local diffeomorphism from a neighbourhood of zero in C∞(S) to a

neighbourhood of id on Diff∞(S).

3.3.2 A generalization to the µDP equation

Recall that the μDP equation (3.14) can be written as

ut = −A−1(u(Au)x + 3(Au)ux) (3.20)

where A = μ − ∂2x. As for the b-equation, the vector field u(t, x) possesses a unique

local flow ϕ of class Cn(S), i.e., ϕt(t, x) = u(t, ϕ(t, x)) for all x ∈ S and all t in some

open interval J ⊂ R. Again, we use the short-hand notation ϕt = u ◦ ϕ for ϕt(t, x) =

u(t, ϕ(t, x)); i.e., ◦ denotes the composition with respect to the space variable. Hence

u = ϕt ◦ ϕ−1. The other way round, if (ϕ, ξ) ∈ C1(J,Diffn(S) × Cn(S)) is given, then

ϕ−1(t) is a Cn(S)-diffeomorphism and (ξ ◦ ϕ−1)(t) is a continuously differentiable curve

in Cn(S). The Christoffel operator for the μDP equation is

B(u, v) =
1

2
A−1(u(Av)x + v(Au)x + 3(Au)vx + 3(Av)ux) (3.21)

since we have

B(u, u) = A−1(u(Au)x + 3(Au)ux) = −ut,
which is the μDP equation written as an Euler equation on the tangent space at the

identity of the Cn-diffeomorphisms of S. We also know that the μDP belongs to the

class of non-metric Euler equations and hence we cannot expect to obtain geometric

information by defining some right-invariant metric on the diffeomorphism group of the

circle. Instead of that we will work with the affine connection

∇ξuξv =
1

2
[ξu, ξv] +B(ξu, ξv), (3.22)

where ξu, ξv are the right-invariant vector fields on the circle diffeomorphism group with

values u, v at the identity. Let X(t) = (ϕ(t), ξ(t)) be a vector field along the curve

ϕ(t) ∈ Diff∞(S) or ϕ(t) ∈ Diffn(S) respectively. The covariant derivative of X(t) in the

present case is defined as

DX

Dt
(t) =

(
ϕ(t), ξt +

1

2
[u(t), ξ(t)] +B(u(t), ξ(t))

)
,

where u = ϕt ◦ ϕ−1. In particular, we see that u is a solution of the μDP if and only if

its local flow ϕ is a geodesic for the connection ∇ defined by B in (3.21) via (3.22). That

is why we will call ϕ(t) the geodesic flow for the μDP equation in the following.

Although our goal is to handle the Diff∞(S)-case, we will first discuss flows ϕ(t)

in Diffn(S) for technical purposes3. Regarding Diffn(S) as a smooth Banach manifold

modelled on Cn(S), the following result has to be understood locally, i.e., in any local

3 Observe that Eq. (3.20) is not an ODE on Cn(S) since the term (Au)x is not regularized by the

operator A−1 of order −2. In particular, if u is in C((−T, T );Cn(S)) then Eq. (3.20) implies that

ut ∈ C((−T, T );Cn−1(S)).
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chart of Diffn(S).

Proposition 3.22. The function u ∈ C(J,Cn(S)) ∩ C1(J,Cn−1(S)), for n ≥ 3, is a

solution of (3.14) if and only if (ϕ, ξ) ∈ C1(J,Diffn(S) × Cn(S)) is a solution of{
ϕt = ξ,

ξt = −Pϕ(ξ),
(3.23)

where Pϕ := Rϕ ◦ P ◦Rϕ−1 and P (f) := 3A−1(fxfxx + (Af)fx).

Proof. The function u and the corresponding flow ϕ ∈ Diffn(S) satisfy the relation ϕt =

u ◦ ϕ. If we set ϕt = ξ, then, by the chain rule,

ξt = (ut + uux) ◦ ϕ.

Using (3.20), we see that u is a solution of the μDP equation (3.14) if and only if

ut + uux = −A−1(u(Au)x −A(uux) + 3(Au)ux)

= −A−1(−uuxxx + uxxux + uuxxx + 2uxuxx + 3(Au)ux)

= −3A−1(uxuxx + (Au)ux)

= −P (u).

Recall that

μ(uux) =

∫ 1

0

uux dx =
1

2

∫ 1

0

∂x(u2) dx =
1

2
(u2(1) − u2(0)) = 0,

since u is continuous on S. With u = ξ ◦ ϕ−1 the desired result follows. ��
We now define the vector field

F (ϕ, ξ) := (ξ,−Pϕ(ξ))

so that (ϕt, ξt) = F (ϕ, ξ). We know that

F : Diffn(S) × Cn(S) → Cn(S) × Cn(S),

since P has order zero. Note that the second order vector field F is equivariant by

the action of Diffn(S) on Diffn(S) × Cn(S), i.e., F (X ◦ ψ) = F (X) ◦ ψ, for any X ∈
Diffn(S) × Cn(S) and ψ ∈ Diffn(S). We aim to prove smoothness of the map F . It is

important to mention that this will not follow from the smoothness of P since neither

the composition nor the inversion are smooth maps on Diffn(S). The following lemma

will be crucial for our purposes.

Lemma 3.23. Assume that p is a polynomial differential operator of order r with coef-

ficients depending only on μ, i.e.,

p(u) =
∑

I=(α0,...,αr),

αi∈N∪{0}, |I|≤K

aI(μ(u))uα0(u′)α1 · · · (u(r))αr .

Then the action of pϕ := Rϕ ◦ p ◦Rϕ−1 is
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pϕ(u) =
∑
I

aI

(∫ 1

0

u(y)ϕx(y) dy

)
qI(u;ϕx, . . . , ϕ

(r)),

where qI are polynomial differential operators of order r with coefficients being rational

functions of the derivatives of ϕ up to the order r. Moreover, the denominator terms only

depend on ϕx.

Proof. It is sufficient to consider a monomial

m(u) = a(μ(u))uα0(u′)α1 · · · (u(r))αr .

We have

mϕ(u) = a(μ(u ◦ ϕ−1))uα0 [(u ◦ ϕ−1)′ ◦ ϕ]α1 · · · [(u ◦ ϕ−1)(r) ◦ ϕ]αr .

First, we observe that

μ(u ◦ ϕ−1) =

∫
S

u(ϕ−1(x)) dx =

∫ 1

0

u(y)ϕx(y) dy,

where we have omitted the time dependence of u and ϕ. Recall that ϕ(S) = S, ϕx > 0 and

that μ(u ◦ ϕ−1) is a constant with respect to the space variable x ∈ S. Let us introduce

the notation

ak = (u ◦ ϕ−1)(k) ◦ ϕ, k = 1, 2, . . . , r.

Then, by the chain rule,

a1 = (∂x(u ◦ ϕ−1)) ◦ ϕ =
ux ◦ ϕ−1

ϕx ◦ ϕ−1
◦ ϕ =

ux
ϕx

and

ak+1 = (∂x(u ◦ ϕ−1)(k)) ◦ ϕ
= (∂x(ak ◦ ϕ−1)) ◦ ϕ
=
∂xak
ϕx

,

so that our theorem follows by induction. ��
In the Banach algebras Cn(S), n ≥ 1, addition and multiplication as well as the mean

value operation μ and the derivative d
dx are smooth maps. We see that if the coefficients aI

are smooth functions for any multi-index I and u and ϕ are at least r times continuously

differentiable, then pϕ(u) depends smoothly on (ϕ, u).

Proposition 3.24. The vector field

F : Diffn(S) × Cn(S) → Cn(S) × Cn(S)

is smooth for any n ≥ 3.

Proof. We write F = (F1, F2). Since F1 : (ϕ, ξ) �→ ξ is smooth, it remains to check that

F2 : (ϕ, ξ) �→ −Pϕ(ξ) is smooth. For this purpose, we consider the map

P̃ : Diffn(S) × Cn(S) → Diffn(S) × Cn(S)
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defined by

P̃ (ϕ, ξ) = (ϕ,Rϕ ◦ P ◦Rϕ−1(ξ)).

Observe that we have the decomposition P̃ = Ã−1 ◦ Q̃ with

Ã(ϕ, ξ) = (ϕ,Rϕ ◦A ◦Rϕ−1(ξ))

and

Q̃(ϕ, ξ) = (ϕ,Rϕ ◦Q ◦Rϕ−1(ξ)),

where Q(f) := 3(fxfxx + (Af)fx). We now apply Lemma 3.23 to deduce that

Ã, Q̃ : Diffn(S) × Cn(S) → Diffn(S) × Cn−2(S)

are smooth. To show that Ã−1 : Diffn(S) × Cn−2(S) → Diffn(S) × Cn(S) is smooth, we

compute the derivative DÃ at an arbitrary point (ϕ, ξ). We have the following directional

derivatives of the components Ã1 and Ã2:

DϕÃ1 = id, DξÃ1 = 0, DξÃ2 = Rϕ ◦A ◦Rϕ−1 ,

and it remains to compute (DϕÃ2(ϕ, ξ))(ψ) = d
dε Ã2(ϕ + εψ, ξ)

∣∣
ε=0

. In a first step, we

calculate

∂2x(ξ ◦ (ϕ+ εψ)−1) = ∂x

[(
ξx

ϕx + εψx

)
◦ (ϕ+ εψ)−1

]
=

(
ξxx

(ϕx + εψx)2
− ξx

ϕxx + εψxx
(ϕx + εψx)3

)
◦ (ϕ+ εψ)−1,

from which we get

d

dε

(
∂2x(ξ ◦ (ϕ+ εψ)−1) ◦ (ϕ+ εψ)

)
=

d

dε

(
ξxx

(ϕx + εψx)2
− ξx

ϕxx + εψxx
(ϕx + εψx)3

)
= −2

ξxxψx
(ϕx + εψx)3

− ξxψxx
(ϕx + εψx)3

+ 3
ξxψx

(ϕx + εψx)4
(ϕxx + εψxx)

and finally

d

dε

(
∂2x(ξ ◦ (ϕ+ εψ)−1) ◦ (ϕ+ εψ)

)∣∣∣∣
ε=0

= −2
ξxxψx
ϕ3
x

− ξxψxx
ϕ3
x

+ 3
ϕxxξxψx
ϕ4
x

.

Secondly, we observe that

d

dε
μ(ξ ◦ (ϕ+ εψ)−1)

∣∣∣∣
ε=0

=
d

dε

∫
S

ξ(y)(ϕx + εψx)(y) dy

∣∣∣∣
ε=0

=

∫
S

ξ(y)ψx(y) dy,

since ϕ+ εψ ∈ Diffn(S) for small ε > 0. Hence

(DϕÃ2(ϕ, ξ))(ψ) =

∫
S

ξ(y)ψx(y) dy + 2
ξxxψx
ϕ3
x

+
ξxψxx
ϕ3
x

− 3
ϕxxξxψx
ϕ4
x
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and

DÃ(ϕ, ξ) =

(
id 0

DϕÃ2(ϕ, ξ) Rϕ ◦A ◦Rϕ−1

)
.

It is easy to check thatDÃ(ϕ, ξ) is an invertible bounded linear operatorCn(S)×Cn(S) →
Cn(S)×Cn−2(S). By the open mapping theorem, DÃ is a topological isomorphism and,

by the inverse mapping theorem, Ã−1 is smooth. ��
Remark 3.25. In fact, Proposition 3.24 shows that the Christoffel map Γϕ(ϕt, ϕt) = ϕtt
for μDP is smooth, cf. Remark 2.3.

Since F is smooth, we can apply the Banach space version of the Picard-Lindelöf Theorem

(also known as Cauchy-Lipschitz Theorem) as explained in Appendix A. This yields the

following theorem about the existence and uniqueness of integral curves for the vector

field F .

Theorem 3.26. Let n ≥ 3. Then there is an open interval Jn centered at zero and

an open ball B(0, δn) ⊂ Cn(S) such that for any u0 ∈ B(0, δn) there exists a unique

solution (ϕ, ξ) ∈ C∞(Jn,Diffn(S) × Cn(S)) of (3.23) with initial conditions ϕ(0) = id

and ξ(0) = u0. Moreover, the flow (ϕ, ξ) depends smoothly on (t, u0).

From Theorem 3.26 we get a unique short-time solution u = ξ◦ϕ−1 of μDP in Cn(S) with

continuous dependence on (t, u0). Note that, to obtain an analogous result for smooth

initial data u0, we cannot send n → ∞ in Theorem 3.26 since the δn or the Jn might

converge to zero. On the other hand, since C∞(S) is a Fréchet space, classical results

like the Picard-Lindelöf Theorem or the local inverse theorem for Banach spaces are no

longer valid. In the proof of our main theorem, we will make use of a Banach space

approximation of the Fréchet space C∞(S). First, we observe that any solution (ϕ, ξ)

of the μDP equation (3.23) does not lose nor gain spatial regularity as t increases or

decreases from zero. For this purpose, we are in need of a conservation law.

Lemma 3.27. Let u be a C3(S)-solution of the μDP equation on (−T, T ) and let ϕ be

the corresponding flow. Then

(m ◦ ϕ)ϕ3
x = m0,

for all t ∈ (−T, T ), where m = Au = (μ− ∂2x)u and m0 = Au0.

Proof. We compute

d

dt
(m ◦ ϕ)ϕ3

x = [(mt +mxu) ◦ ϕ]ϕ3
x + 3ϕ2

xϕtx(m ◦ ϕ)

= [(−3uxm) ◦ ϕ]ϕ3
x + 3ϕ3

x(mux) ◦ ϕ
= 0.

Since ϕ(0) = id and ϕx(0) = 1, we are done. ��
Lemma 3.28. Let (ϕ, ξ) ∈ C∞(J3,Diff3(S) × C3(S)) be a solution of (3.23) with initial

data (id, u0) according to Theorem 3.26. Then, for all t ∈ J3,

ϕxx(t) = ϕx(t)

(∫ t

0

μ(u)ϕx(s) ds−m0

∫ t

0

1

ϕx(s)2
ds

)
(3.24)

and
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ξxx(t) = ξx(t)
ϕxx(t)

ϕx(t)
+ ϕx(t)

[
μ(u)ϕx(t) − m0

ϕx(t)2

]
. (3.25)

Proof. We have
d

dt

(
ϕxx
ϕx

)
=
ϕxxtϕx − ϕxtϕxx

ϕ2
x

.

Here

ϕxt = ϕ̇x = ∂x(u ◦ ϕ) = (ux ◦ ϕ)ϕx

and

ϕxxt = ϕ̇xx

= ∂2x(u ◦ ϕ)

= ∂x[(ux ◦ ϕ)ϕx]

= (uxx ◦ ϕ)ϕ2
x + (ux ◦ ϕ)ϕxx.

Hence
d

dt

(
ϕxx
ϕx

)
= (uxx ◦ ϕ)ϕx.

According to the previous lemma, we can replace

uxx ◦ ϕ = μ(u) − m0

ϕ3
x

.

Integrating
d

dt

(
ϕxx
ϕx

)
= μ(u)ϕx − m0

ϕ2
x

over [0, t] leads to equation (3.24) and taking the time derivative of (3.24) yields (3.25).

��
From Remark 3.4 we know that μ(ut) = 0 and hence μ(u) = μ(u0) so that μ(u) can in

fact be written in front of the first integral sign in equation (3.24). As in the discussion

of the periodic b-equation, we obtain the following corollaries which guarantee that the

geodesic flow for the μDP equation does not lose its spatial regularity as t increases or

decreases from zero.

Corollary 3.29. Let (ϕ, ξ) be as in Lemma 3.28. If u0 ∈ Cn(S) then we have (ϕ(t), ξ(t)) ∈
Diffn(S) × Cn(S) for all t ∈ J3.

Proof. We proceed by induction on n. For n = 3 the corollary follows immediately

from our assumption on (ϕ(t), ξ(t)). Let us assume that (ϕ(t), ξ(t)) ∈ Diffn(S) × Cn(S)

for some n ≥ 3. Then Lemma 3.28 shows that, if u0 ∈ Cn+1(S), then (ϕ(t), ξ(t)) ∈
Diffn+1(S) × Cn+1(S), finishing the proof. ��
Corollary 3.30. Let (ϕ, ξ) be as in Lemma 3.28. If there exists a nonzero t ∈ J3 such

that ϕ(t) ∈ Diffn(S) or ξ(t) ∈ Cn(S) then ξ(0) = u0 ∈ Cn(S).

Proof. Again, we use a recursive argument. For n = 3, there is nothing to do. For some

n ≥ 3, suppose that u0 ∈ Cn(S). By the previous corollary, (ϕ(t), ξ(t)) ∈ Diffn(S)×Cn(S)

for all t ∈ J3. Assume that there is 0 �= t0 ∈ J3 such that ϕ(t0) ∈ Diffn+1(S) or

ξ(t0) ∈ Cn+1(S). In the first case, we can resolve (3.24) with respect to m0 and see
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that m0 ∈ Cn−1(S), which of course implies u0 ∈ Cn+1(S). In the second case, we use

Eqs. (3.24) and (3.25) to obtain the identity

ξxx(t0) = μ(u0)ξx(t0)

∫ t0

0

ϕx(s) ds+ μ(u0)ϕ2
x(t0) +m0

[
−ξx(t0)

∫ t0

0

ds

ϕx(s)2
− 1

ϕx(t0)

]
.

To resolve this identity with respect to m0 we have to guarantee that the expression

in brackets does not vanish. To see that this is true we claim that there is a nontrivial

interval I ⊂ R containing zero such that for all x ∈ S and any t ∈ I

f(t, x) := −ξx(t, x)

∫ t

0

ds

ϕx(s, x)2
− 1

ϕx(t, x)
�= 0.

Replacing J3 by J3 ∩ I this will achieve the proof. Let us show that f converges to −1,

uniformly in x, as t→ 0 and t ≥ 0 (w.l.o.g.):

|f(t, x) + 1| ≤ t ||ξx(t)||∞ max
0≤s≤t

∣∣∣∣∣∣∣∣ 1

ϕx(s)

∣∣∣∣∣∣∣∣2
∞

+

∣∣∣∣1 − 1

ϕx(t, x)

∣∣∣∣ .
Note that ϕx is the unique solution of{

vt = (ux ◦ ϕ)v,

v(0) = 1,

and thus

ϕx(t, x) = exp

(∫ t

0

(ux ◦ ϕ)(s, x) ds

)
.

We now estimate ∣∣∣∣1 − 1

ϕx(t, x)

∣∣∣∣ =

∣∣∣∣exp

(
−
∫ t

0

(ux ◦ ϕ)(s, x) ds

)
− 1

∣∣∣∣
=

∣∣∣∣∣
∞∑
k=1

(−1)k

k!

[∫ t

0

(ux ◦ ϕ)(s, x) ds

]k∣∣∣∣∣
≤

∞∑
k=1

1

k!

(
t max
0≤s≤t

||ux(s)||∞
)k

= exp

(
t max
0≤s≤t

||ux(s)||∞
)
− 1

and obtain

||f(t) + 1||∞ ≤ t ||ξx(t)||∞ max
0≤s≤t

∣∣∣∣∣∣∣∣ 1

ϕx(s)

∣∣∣∣∣∣∣∣2
∞

+ exp

(
t max
0≤s≤t

||ux(s)||∞
)
− 1 → 0

as t → 0; recall that ξx(t) → u0x, ϕx(t) → 1 and ux(t) → u0x as t → 0. We conclude

that, for any ε > 0, there is an interval Iε ⊂ R with positive measure and containing

zero, such that

|f(t, x) + 1| < ε, ∀x ∈ S, ∀t ∈ Iε,

and in particular |f(t, x)| > 1 − ε. Finally, we choose ε ∈ (0, 1) arbitrarily and are done.

��



3.3 Local well-posedness in the smooth category and a smooth exponential map for μDP 63

Now we discuss Banach space approximations of Fréchet spaces.

Definition 3.31. Let X be a Fréchet space. A Banach space approximation of X is a

sequence {(Xn, ||·||n); n ∈ N0} of Banach spaces such that

X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ X, X =
∞⋂
n=0

Xn

and {||·||n ; n ∈ N0} is a sequence of norms inducing the topology on X with

||x||0 ≤ ||x||1 ≤ ||x||2 ≤ . . .

for any x ∈ X .

We have the following result. For a proof, we refer to [41].

Lemma 3.32. Let X and Y be Fréchet spaces with the Banach space approximations

{(Xn, ||·||n); n ∈ N0} and {(Yn, ||·||n); n ∈ N0}. Let Φ0 : U0 → V0 be a smooth map between

the open subsets U0 ⊂ X0 and V0 ⊂ Y0. Let

U := U0 ∩X and V := V0 ∩ Y,

as well as

Un := U0 ∩Xn and Vn := V0 ∩ Yn,
for any n ≥ 0. Furthermore, we assume that, for each n ≥ 0, the following properties are

satisfied:

1. Φ0(Un) ⊂ Vn,

2. the restriction Φn := Φ0|Un
: Un → Vn is a smooth map.

Then Φ0(U) ⊂ V and the map Φ := Φ0|U : U → V is smooth.

Now we come to our main theorem which we first formulate in the geometric picture.

Theorem 3.33. There exists an open interval J centered at zero and δ > 0 such

that for all u0 ∈ C∞(S) with ||u0||C3(S) < δ, there exists a unique solution (ϕ, ξ) ∈
C∞(J,Diff∞(S) × C∞(S)) of (3.23) such that ϕ(0) = id and ξ(0) = u0. Moreover, the

flow (ϕ, ξ) depends smoothly on (t, u0) ∈ J × C∞(S).

Proof. Theorem 3.26 for n = 3 shows that there is an open interval J centered at zero

and an open ball U3 := B(0, δ) ⊂ C3(S) such that for any u0 ∈ U3 there exists a unique

solution (ϕ, ξ) ∈ C∞(J,Diff3(S)×C3(S)) of (3.23) with initial data (id, u0) and a smooth

flow

Φ3 : J × U3 → Diff3(S) × C3(S).

Let

Un := U3 ∩ Cn(S) and U∞ := U3 ∩ C∞(S).

By Corollary 3.29, we have

Φ3(J × Un) ⊂ Diffn(S) × Cn(S)

for any n ≥ 3 and the map

Φn := Φ3|J×Un
: J × Un → Diffn(S) × Cn(S)
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is smooth. Lemma 3.32 yields that

Φ3(J × U∞) ⊂ Diff∞(S) × C∞(S),

proving the short-time existence in the smooth category, and that the map

Φ∞ := Φ3|J×U∞ : J × U∞ → Diff∞(S) × C∞(S)

is smooth, proving the smooth dependence on time and the initial condition. ��
In the smooth category, the map

Diff∞(S) × C∞(S) → C∞(S), (ϕ, ξ) �→ ξ ◦ ϕ−1 = u

is smooth. Thus we obtain the result stated in Theorem 3.15.

3.3.3 The exponential map for the µDP equation

The basic idea of the proof of Theorem 3.16 is to consider a perturbed problem: Let

(ϕε, ξε) denote the local expression of an integral curve of (3.23) in TDiffn(S) with initial

data (id, u+ εw), where u,w ∈ Cn(S). We have

(ϕε, ξε) → (ϕ, ξ), ε→ 0,

where (ϕ, ξ) is the solution with initial values (id, u). Let

ψ(t) :=
∂ϕε(t)

∂ε

∣∣∣∣
ε=0

.

Then

ψ(t) = Ln(t, u)w,

where Ln(t, u) is a bounded linear operator Cn(S) → Cn(S), for any t in the existence

interval of (ϕ, ξ).

In our next lemma we show that, for u ∈ Cn+1(S) and any t �= 0, we have

Ln(t, u)w ∈ Cn+1(S) =⇒ w ∈ Cn+1(S).

In the proof, we proceed in a similar manner as Escher and Kolev in their proof of

Lemma 15 in [41].

Lemma 3.34. Suppose that u ∈ Cn+1(S). Then, for t �= 0,

Ln(t, u)(Cn(S)\Cn+1(S)) ⊂ Cn(S)\Cn+1(S).

Proof. First, we write down Eq. (3.24) for ϕε(t),

ϕεxx(t) = ϕεx(t)

[
μ(u+ εw)

∫ t

0

ϕεx(s) ds−mε
0

∫ t

0

1

ϕεx(s)2
ds

]
,

and take the derivative with respect to ε,
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∂ϕεxx
∂ε

(t) =
∂ϕεx
∂ε

(t)

[
μ(u+ εw)

∫ t

0

ϕεx(s) ds−mε
0

∫ t

0

1

ϕεx(s)2
ds

]
+ ϕεx(t)

[
μ(w)

∫ t

0

ϕεx(s) ds+ μ(u + εw)

∫ t

0

∂ϕεx
∂ε

(s) ds

]
− ϕεx(t)

[
∂mε

0

∂ε

∫ t

0

1

ϕεx(s)2
ds+mε

0

∫ t

0

∂

∂ε

1

ϕεx(s)2
ds

]
.

Notice that
∂mε

0

∂ε
= μ(w) − wxx = Aw

and that mε
0 → m0 = Au as ε→ 0. Hence

ψxx(t) = ψx(t)

[
μ(u)

∫ t

0

ϕx(s) ds−m0

∫ t

0

1

ϕx(s)2
ds

]
+ ϕx(t)

[
μ(w)

∫ t

0

ϕx(s) ds+ μ(u)

∫ t

0

ψx(s) ds

]
− ϕx(t)

[
(μ(w) − wxx)

∫ t

0

1

ϕx(s)2
ds− 2m0

∫ t

0

ψx(s)

ϕx(s)3
ds

]
= a(t)ψx(t) + b(t)

∫ t

0

c(s)ψx(s) ds+ d(t) + e(t)wxx

with a(t), b(t), c(t), d(t), e(t) ∈ Cn−1(S) and e(t) �= 0 for t �= 0. Finally, if

w ∈ Cn(S)\Cn+1(S),

then

ψ(t) = Ln(t, u)w ∈ Cn(S)\Cn+1(S).

��
Let us now come to the proof of Theorem 3.16. Since C3(S) is a Banach space and

Diff3(S) is a Banach manifold modelled on C3(S), we know that the μDP exponential map

C3(S) → Diff3(S) is a smooth diffeomorphism near zero, i.e., there are neighbourhoods

U3 of zero in C3(S) and V3 of id in Diff3(S) such that

exp3 := exp |U3 : U3 → V3

is a smooth diffeomorphism. For n ≥ 3, we now define

Un := U3 ∩ Cn(S) and Vn = V3 ∩ Diffn(S).

Let expn := exp3 |Un . Since expn is a restriction of exp3, it is clearly injective. We now use

Corollary 3.29 and Corollary 3.30 to deduce that expn is also surjective, more precisely,

expn(Un) = Vn. If the geodesic ϕ with ϕ(1) = exp(u) starts at id ∈ Diffn(S) with velocity

vector u belonging to Cn(S), then ϕ(t) ∈ Diffn(S) for any t and hence expn(Un) ⊂ Vn.

Conversely, if v ∈ Vn is given, then there is u ∈ U3 with exp3(u) = v. Corollary 3.30

immediately implies that u ∈ Cn(S); hence u ∈ Un and expn(u) = v. We conclude that

expn is a bijection from Un to Vn. Furthermore, expn is a smooth map and diffeomorphic

as a map Un → Vn (since it is a restriction of exp3). We now show that expn is a smooth

diffeomorphism; precisely we show that exp−1
n : Vn → Un is smooth by virtue of the
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inverse mapping theorem. For each u ∈ Cn(S), D expn(u) is a bounded linear operator

Cn(S) → Cn(S). Notice that

D expn(u) = D exp3(u)|Cn(S),

from which we conclude that D expn(u) is injective. Let us prove the surjectivity of

D expn(u), n ≥ 3, by induction. For n = 3, this follows from the fact that exp3 : U3 → V3
is diffeomorphic and hence a submersion. Assume that D expn(u) is surjective for some

n ≥ 3 and that u ∈ Cn+1(S). We have to show that this implies the surjectivity of

D expn+1(u). But this is a direct consequence of D expn(u) = Ln(1, u) and the previous

lemma: Let f ∈ Cn+1(S). We have to find g ∈ Cn+1(S) with the propertyD expn+1(u)g =

f . By our assumption, there is g ∈ Cn(S) such that D expn(u)g = f . It remains to check

that g ∈ Cn+1(S). To see this, we assume g ∈ Cn(S)\Cn+1(S). But then f = Ln(1, u)g /∈
Cn+1(S) in contradiction to the choice of f . Thus g ∈ Cn+1(S) and D expn+1(u)g = f .

Now we can apply the open mapping theorem to deduce that for any n ≥ 3 and any

u ∈ Cn(S) the map

D expn(u) : Cn(S) → Cn(S)

is a topological isomorphism. By the inverse function theorem, expn : Un → Vn is a

smooth diffeomorphism. If we define

U∞ := U3 ∩ C∞(S) and V∞ := V3 ∩ Diff∞(S),

Lemma 3.32 yields that

exp∞ := exp3 |U∞ : U∞ → V∞

as well as

exp−1
∞ : V∞ → U∞

are smooth maps. Thus exp∞ is a smooth diffeomorphism between U∞ and V∞.

3.4 The µDP equation with weak dissipation

In general, it is difficult to avoid energy dissipation mechanisms in real experiments

with water waves. On account of that, Ott and Sudan [114] investigated how the KdV

equation has to be modified to include the effect of energy dissipation. Ghidaglia [53]

studied the long-time behavior of solutions of the weakly dissipative KdV equation as a

finite-dimensional dynamical system. Some results for a weakly dissipative CH equation

are proved in [124] and recently, [46, 123] discussed blow-up and global existence for a

weakly dissipative DP equation.

The goal of the present section is to study the Cauchy problem for the periodic weakly

dissipative μDP equation⎧⎨⎩
mt + umx + 3uxm+ λm = 0,

m = μ(u) − uxx,

u(0, x) = u0(x),

(3.26)

which has not been discussed up to now. Again, the function u(t, x) is depending on time

t ≥ 0 and a space variable x ∈ S and μ is the projection μ(u) =
∫ 1

0 u(t, x) dx. The con-
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stant λ is assumed to be positive and the term λ(μ(u)− uxx) models energy dissipation.

By the replacement μ(u) → u in (3.26), we obtain the weakly dissipative DP equation

discussed in [46, 123]. Note that the quantity E1(u) =
∫
S
m dx is conserved for the DP

equation and that E1 can be interpreted as an energy, since it equals (up to a factor) a

Hamiltonian function for the DP as explained in [30, 31]. However, for the weakly dissi-

pative DP equation, d
dtE1(u) = −λμ(u), so that μ(u0) > 0 implies that the quantity E1

decreases as t increases. The weak dissipation also breaks other conservation laws of the

DP equation like E2(u) =
∫
S
mv dx or E3(u) =

∫
S
u3 dx, where v = (4 − ∂2x)−1u, cf. [46].

The general framework in which we discuss Eq. (3.26) is based on a geometric tech-

nique since we will regard Eq. (3.26) as an evolution equation on the group HsDiff(S)

of orientation-preserving diffeomorphisms of the circle S of class Hs, for s > 3/2,

cf. Sect. 3.1.4: The vector field u(t, ·) ∈ Hs(S) has a unique local flow ϕ(t, ·) ∈ HsDiff(S)

such that ϕt ◦ ϕ−1 = u, ϕ(0) = id and ϕtt = −F (ϕ, ϕt) with some map F defined on

HsDiff(S) × Hs(S). The latter equation can be handled with standard ODE methods

for Banach spaces. Altogether, it will turn out that the weakly dissipative μDP equation

behaves quite similarly to the μDP equation (for which λ = 0) or the weakly dissipative

DP equation. That we work with the Sobolev classes Hs has to do with the spadework

in [99].

This section is organized as follows: We first prove local well-posedness for the initial

value problem (3.26) with u0 ∈ Hs(S) for s > 3/2. Secondly, we establish the precise

blow-up scenario for s = 3. Then we give an example that for smooth initial data with

zero-mean, the solution u(t, ·) of (3.26) can blow-up in finite time. If μ(u0) �= 0 and

μ(u0)− (u0)xx is non-negative or non-positive, the corresponding solution u(t, ·) will ex-

ist globally in time.

In this section, we writeA = μ−∂2x for the inertia operator andAu = m,Au0 = m0. We

begin with some preliminary remarks about the manifold configuration space HsDiff(S).

Recall that TϕH
sDiff(S) � Hs(S) for any ϕ ∈ HsDiff(S). Our first lemma establishes

that HsDiff(S) is a topological group for any s > 3/2. The reader can find a proof in

[109].

Lemma 3.35. For s > 3/2, the composition map ϕ �→ ω ◦ ϕ with an Hs-function ω and

the inversion map ϕ �→ ϕ−1 are continuous maps HsDiff(S) → Hs(S) and HsDiff(S) →
HsDiff(S) respectively and

||ω ◦ ϕ||Hs ≤ C(1 + ||ϕ||sHs) ||ω||Hs ;

C only depending on supx∈S |ϕx(x)| and infx∈S |ϕx(x)|.
Before we proceed, we prepare the following lemma ensuring the existence and uniqueness

of a local flow for the weakly dissipative μDP on the Hilbert manifold HsDiff(S).

Lemma 3.36. Let u(t, x) be a time-dependent Hs-vector field on S for s > 3/2. Then

the problem {
ϕt(t, x) = u(t, ϕ(t, x)),

ϕ(0, x) = x,

has a unique solution ϕ ∈ C1([0, Tmax), HsDiff(S)) and Tmax > 0 is maximal.

Local flows on diffeomorphism groups of Sobolev class have approved to be powerful tools

for the analysis of model equations for water waves, see, e.g., [94].
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In many texts, local well-posedness results for Cauchy problems similar to (3.26) are

obtained by applying Kato’s theory for abstract quasi-linear evolution equations, cf. Ap-

pendix B. We now present a method of proof which is based on a geometric argument,

most importantly using local flows as introduced in Lemma 3.36. A technical disadvan-

tage of this method is that it does not yield a priori a maximal existence time for our

solution which we will obtain inductively. The key idea is to rewrite the weakly dissipative

μDP equation in the form

ut + uux + 3μ(u)∂xA
−1u+ λu = 0. (3.27)

Equation (3.27) is suitable for a reformulation of (3.26) in the geometric picture, i.e., in

terms of a local flow on the group HsDiff(S). To improve the structure of the subsequent

well-posedness proof, we begin with the following lemma.

Lemma 3.37. Let Rϕ denote the right translation map on HsDiff(S) and let A−1
ϕ =

Rϕ ◦A−1 ◦Rϕ−1 and ∂x,ϕ = Rϕ ◦ ∂x ◦Rϕ−1 . Then

3μ(ξ ◦ ϕ−1)
(
A−1∂x

(
ξ ◦ ϕ−1

)) ◦ ϕ = A−1
ϕ ∂x,ϕh(ϕ, ξ) (3.28)

with h(ϕ, ξ) = 3ξ
∫
S
ξ ◦ ϕ−1 dx. Furthermore, we have the identities

∂ϕA
−1
ϕ (v) = −A−1

ϕ

[
(v ◦ ϕ−1)∂x, A

]
ϕ
A−1
ϕ , (3.29)

∂ϕ∂x,ϕ(v) =
[
(v ◦ ϕ−1)∂x, ∂x

]
ϕ
, (3.30)

∂ϕh(ϕ, ξ)(v) = 3ξ

∫
S

ξ ◦ ϕ−1∂x(v ◦ ϕ−1) dx. (3.31)

Proof. Equation (3.28) follows directly from our definitions. We have

∂ϕ(f ◦ ϕ−1)(v) =
d

dε

∣∣∣∣
ε=0

f ◦ (ϕ+ εv)−1 = (fx ◦ ϕ−1)
d

dε

∣∣∣∣
ε=0

(ϕ+ εv)−1

and differentiating (ϕ+ εv) ◦ (ϕ+ εv)−1 = id with respect to ε at ε = 0, we obtain that

d

dε

∣∣∣∣
ε=0

(ϕ+ εv)−1 = − v ◦ ϕ−1

ϕx ◦ ϕ−1

so that ∂ϕ(f ◦ ϕ−1)(v) = −(f ◦ ϕ−1)x(v ◦ ϕ−1). Using this, we directly get

[∂ϕ(A−1
ϕ w)](v) =

(
A−1

(
d

dε

∣∣∣∣
ε=0

w ◦ (ϕ+ εv)−1

))
◦ ϕ+

(
(A−1(w ◦ ϕ−1)x) ◦ ϕ)v

= −A−1
(
(w ◦ ϕ−1)x(v ◦ ϕ−1)

) ◦ ϕ+
(
(v ◦ ϕ−1)A−1(w ◦ ϕ−1)x

) ◦ ϕ
= −A−1

ϕ

[
(v ◦ ϕ−1)∂x, A

]
ϕ
A−1
ϕ w,

[∂ϕ(∂x,ϕw)](v) =

(
d

dε

∣∣∣∣
t=0

w ◦ (ϕ+ εv)−1

)
x

◦ ϕ+
(
(w ◦ ϕ−1)xx ◦ ϕ

)
v

= −((w ◦ ϕ−1)x(v ◦ ϕ−1)
)
x
◦ ϕ+

(
(v ◦ ϕ−1)(w ◦ ϕ−1)xx

) ◦ ϕ
=
[
(v ◦ ϕ−1)∂x, ∂x

]
ϕ
w

and (3.31) after integration by parts. ��
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Let us now come to our local well-posedness result. Observe that we establish the exis-

tence of a solution of Eq. (3.26) on an interval [0, T ) for physical reasons, in contrast to

our discussion of the μDP in Sect. 3.3 where we also allowed negative values of t.

Theorem 3.38. Let s > 3/2 and u0 ∈ Hs(S). Then there is a maximal time T = T (u0) ∈
(0,∞] and a unique solution

u ∈ C([0, T );Hs(S)) ∩ C1([0, T );Hs−1(S))

of the Cauchy problem (3.26) which depends continuously on the initial data u0, i.e., the

mapping

Hs(S) → C([0, T );Hs(S)) ∩ C1([0, T );Hs−1(S)), u0 �→ u(·, u0)

is continuous.

Proof. Writing

Tu = 3μ(u)∂xA
−1u+ λu = T0u+ λu,

(3.27) shows that (3.26) is equivalent to ut + uux = −Tu. Let ϕ(t) ∈ HsDiff(S) denote

the local flow for the vector field u(t, ·) according to Lemma 3.36, i.e., ϕt = u ◦ ϕ and

ϕ(0) = id on [0, Tmax). We then have

ϕtt = (ut + uux) ◦ ϕ = −T (ϕt ◦ ϕ−1) ◦ ϕ.

Let F (ϕ, ξ) := Rϕ ◦ T ◦Rϕ−1ξ so that

ϕtt = −F (ϕ, ϕt), ϕt(0) = u0, ϕ(0) = id, (3.32)

which is an ordinary second order equation. By Lemma 3.35, F : HsDiff(S) ×Hs(S) →
Hs(S). We next show that F is continuously differentiable in a neighborhood of any

(ϕ, ξ) ∈ THsDiff(S) � HsDiff(S) × Hs(S) and therefore decompose F = F1 + F2 with

F1 = Rϕ ◦ T0 ◦ Rϕ−1 and F2 just being multiplication with λ. By (3.28), F1(ϕ, ξ) =

A−1
ϕ ∂x,ϕh(ϕ, ξ), and using (3.29)–(3.31) and the relation ∂2xA

−1 = A−1∂2x = μ − 1,

cf. Sect. 3.1.2, we get

∂ϕF1(ϕ, ξ)v = [(∂ϕA
−1
ϕ )(∂x,ϕh(ϕ, ξ))]v +A−1

ϕ [(∂ϕ∂x,ϕ)h(ϕ, ξ)]v +A−1
ϕ ∂x,ϕ[∂ϕh(ϕ, ξ)]v

= −3μ(ξ ◦ ϕ−1)
(
A−1(v ◦ ϕ−1)∂2x(ξ ◦ ϕ−1)

) ◦ ϕ
+ 3μ(ξ ◦ ϕ−1)

(
(v ◦ ϕ−1)∂2xA

−1(ξ ◦ ϕ−1)
) ◦ ϕ

+ 3μ(ξ ◦ ϕ−1)
(
A−1(v ◦ ϕ−1)∂2x(ξ ◦ ϕ−1)

) ◦ ϕ
− 3μ(ξ ◦ ϕ−1)

(
A−1∂x((v ◦ ϕ−1)∂x(ξ ◦ ϕ−1))

) ◦ ϕ
+ 3

(∫
S

(ξ ◦ ϕ−1)∂x(v ◦ ϕ−1) dx

)(
A−1∂x(ξ ◦ ϕ−1)

) ◦ ϕ
= 3

(
− vξ

∫
S

ξ ◦ ϕ−1 dx+ v

(∫
S

ξ ◦ ϕ−1 dx

)2

−A−1
ϕ ∂x,ϕ(v∂x,ϕξ)

∫
S

ξ ◦ ϕ−1 dx+A−1
ϕ ∂x,ϕξ

∫
S

ξ ◦ ϕ−1∂x(v ◦ ϕ−1) dx

)
= 3

(
− μ(ξϕx)vξ + μ(ξϕx)2v − μ(ξϕx)A−1

ϕ ∂x,ϕ(v∂x,ϕξ) + μ(ξvx)A−1
ϕ ∂x,ϕξ

)
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and

∂ξF1(ϕ, ξ)v = 3A−1
ϕ ∂x,ϕv

∫
S

ξ ◦ ϕ−1 dx+ 3A−1
ϕ ∂x,ϕξ

∫
S

v ◦ ϕ−1 dx

= 3μ(ξϕx)A−1
ϕ ∂x,ϕv + 3μ(vϕx)A−1

ϕ ∂x,ϕξ,

for arbitrary (ϕ, ξ) ∈ THsDiff(S). Since we have the relation

∂xA
−1w =

(
x− 1

2

)∫ 1

0

w(x) dx−
∫ x

0

w(y) dy +

∫ 1

0

∫ x

0

w(y) dy dx

we get

A−1
ϕ ∂x,ϕ(v∂x,ϕξ) =

[(
x− 1

2

)
μ
(
(v ◦ ϕ−1)(ξ ◦ ϕ−1)x

)− ∫ x

0

(v ◦ ϕ−1)(ξ ◦ ϕ−1)x dy

+

∫ 1

0

∫ x

0

(v ◦ ϕ−1)(ξ ◦ ϕ−1)x dy dx

]
◦ ϕ

=

(
ϕ(x) − 1

2

)
μ(vξx) −

∫ x

ϕ−1(0)

vξx dy +

∫ 1

0

∫ ϕ−1(x)

ϕ−1(0)

vξx dy dx

and

A−1
ϕ ∂x,ϕξ =

[(
x− 1

2

)
μ(ξ ◦ ϕ−1) −

∫ x

0

ξ ◦ ϕ−1 dy +

∫ 1

0

∫ x

0

ξ ◦ ϕ−1 dy dx

]
◦ ϕ

=

(
ϕ(x) − 1

2

)
μ(ξϕx) −

∫ x

ϕ−1(0)

ξϕx dy +

∫ 1

0

∫ ϕ−1(x)

ϕ−1(0)

ξϕx dy dx.

To prove that v �→ ∂ϕF1(ϕ, ξ)v and v �→ ∂ξF1(ϕ, ξ)v are bounded operators on Hs(S), it

suffices to estimate the sum

||∂ϕF1(ϕ, ξ)v||L2
+ ||∂x(∂ϕF1(ϕ, ξ)v)||Hs−1

by a constant independent of v times ||v||Hs , and similarly for the other partial derivative.

Therefore, we differentiate the equations for ∂ϕF1(ϕ, ξ)v and ∂ξF1(ϕ, ξ)v with respect to

x and use Sobolev’s embedding theorem, the fact that Hs is an algebra and some standard

estimates to obtain

||∂ϕF1(ϕ, ξ)v||Hs ≤ C ||v||Hs ||ξ||2Hs

and

||∂ξF1(ϕ, ξ)v||Hs ≤ C ||v||Hs ||ξ||Hs ,

with C only depending on ϕ. Now it remains to establish the continuity of both partials

in ϕ and ξ. Continuity in the ξ-variable follows from the fact that the dependence of

∂ϕF1 and ∂ξF1 on ξ is polynomial. To see that ∂ϕF1(ϕ, ξ) depends continuously on ϕ,

we perform a tedious but straightforward computation of a bound for the sum

||∂ϕF1(ϕ, ξ)v − ∂ϕF1(ϕ̃, ξ)v||L2
+ ||∂x[∂ϕF1(ϕ, ξ)v − ∂ϕF1(ϕ̃, ξ)v]||Hs−1

which tends to zero as ϕ → ϕ̃ in Hs; therefor, we use again the algebra property of

Hs, Sobolev’s embedding theorem and Lemma 3.35. That ϕ �→ ∂ξF1(ϕ, ξ)v is continu-

ous can be proved very similarly. Clearly, F2(ϕ, ξ) = λξ is differentiable; the directional
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Fig. 3.3 Wave breaking.

(Hokusai, “The breaking

wave of Kanagawa” and

snapshot of a wave crest,

www.heartsandminds.org/

global/actnow.htm, cited

15 August 2010)

derivatives ∂ϕF2 = 0 and ∂ξF2 = λ are bounded linear operators on Hs(S) with contin-

uous dependence on (ϕ, ξ). Since F is continuously differentiable near (id, 0), our local

existence theorem for Banach spaces (cf. Appendix A) establishes the well-posedness of

(3.32), i.e., there is a time 0 < T1 < Tmax and a unique solution (ϕ, ϕt) of (3.32) on [0, T1]

with continuous dependence on t and u0. To show that there is a maximal interval of ex-

istence, we apply the local existence theorem once more to the problem ϕtt = −F (ϕ, ϕt)

with initial data (ϕ(T1), ϕt(T1)) to continue the solution (ϕ, ϕt) to a solution on a time

interval [0, T2] with T1 < T2 < Tmax. Iterating this procedure, the local well-posedness

of (3.26) is now a simple consequence of u = ϕt ◦ ϕ−1 and the fact that HsDiff(S) is a

topological group whenever s > 3/2. ��
Remark 3.39. As explained in the proof of Theorem 3.38, we obtain a strictly increasing

sequence (Tn)n∈N describing the continuation of our solution u(t, x) in Hs(S). Note that

Tn → T with either T < ∞ or T = ∞. In the first case, we say that the solution has

a finite existence time, whereas T = ∞ means that the solution exists globally in time.

It is an interesting problem and the aim of the following considerations to describe the

behavior of finite time solutions as t → T from below and to find criteria for the global

existence of strong solutions as well as so called finite time blow-up.

In physics, a breaking wave is a wave whose amplitude reaches a critical level at which

some process suddenly starts to occur that causes large amounts of wave energy to be

transformed in turbulent kinetic energy. At this point, simple physical models describing

the dynamics of the wave will often become invalid, particularly those which assume

linear behavior. Wave breaking has been studied for various classes of non-linear 1D

wave equations, [21, 22, 38, 101, 102, 130], and a reasonable way is to show that there

is a finite-time solution u satisfying an L∞-bound for all t ∈ [0, T ) so that the norm of

u is unbounded as t → T if and only if the first order derivative ux approaches −∞ as

t → T from below (cf., e.g., [46] for a discussion of the DP equation with a dissipative

term). The physical interpretation of this is that the wave steepens, while the height of

its crests stays bounded, until wave breaking occurs in the sense that u ceases to be a

classical solution (see Figs. 3.3 and 3.4).

Here, we first describe the blow-up of finite time-solutions of (3.26) in terms of the

first order derivative and then discuss examples in which blow-up occurs or where one

gets global solutions, respectively. Henceforth, we will restrict ourselves to s = 3.

Theorem 3.40. Given u0 ∈ H3(S), the solution u of (3.26) obtained in Theorem 3.38

blows up in finite time T > 0 if and only if

lim inf
t→T

min
x∈S

ux(t, x) = −∞.

Proof. Let T > 0 be the maximal time of existence of the solution u to Eq. (3.26) with

initial data u0. Since H3(S) ⊂ C2(S) we find that

 www.heartsandminds.org/
global/actnow.htm
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Fig. 3.4 A breaking wave profile u(t, x). The wave propagates in the positive x direction with constant

speed 1 and steepens while its height does not change. We say that the wave breaks at t = T < ∞ if its

slope ux becomes unbounded from below as t → T and hence u ceases to be a classical solution of the

governing wave equation for t ≥ T . We also say that the solution u blows up in finite time T .

d

dt

∫
S

m2 dx = 2

∫
S

mmt dx

= −2

∫
S

umxm dx− 6

∫
S

uxm
2 dx− 2λ

∫
S

m2 dx

= −5

∫
S

uxm
2 dx− 2λ

∫
S

m2 dx. (3.33)

If we assume u0 ∈ H4(S) and use that H4(S) ⊂ C3(S), we can obtain

d

dt

∫
S

m2
x dx = 2

∫
S

mxmtx dx

= −2

∫
S

mxmxxu dx− 8

∫
S

m2
xux dx− 6

∫
S

mmxuxx dx− 2λ

∫
S

m2
x dx

= −7

∫
S

m2
xux dx− 2λ

∫
S

m2
x dx. (3.34)

Adding (3.33) and (3.34) we get

d

dt
||m||2H1 = −7

∫
S

m2
xux dx− 5

∫
S

uxm
2 dx− 2λ ||m||2H1 . (3.35)

Next we observe that (3.35) also holds true for u0 ∈ H3(S): We approximate u0 in H3(S)

by functions un0 ∈ H4(S), n ≥ 1. Let un = un(·, un0 ) be the solution of (3.26) with initial

data un0 . By Theorem 3.38 we know that

un ∈ C([0, Tn);H4(S)) ∩C1([0, Tn);H3(S)), n ≥ 1,
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mn = μ(un) − unxx ∈ C([0, Tn);H2(S)) ∩ C1([0, Tn);H1(S)), n ≥ 1,

un → u in H3(S) and Tn → T as n→ ∞. Since un0 ∈ H4(S), we have

d

dt

∫
S

(mn
x)2 dx = −7

∫
S

(mn
x)2unx dx− 2λ

∫
S

(mn
x)2 dx.

Since un → u in H3(S) it follows that unx → ux in L∞(S) as n → ∞. Note also that

mn → m in H1(S) and mn
x → mx in L2(S) as n→ ∞. We deduce that, as n→ ∞, (3.34)

also holds for u0 ∈ H3(S). If ux is bounded from below on [0, T ), i.e., ux ≥ −c, where c

is a positive constant, then we can apply Gronwall’s inequality to Eq. (3.35) and have

||m||2H1 ≤ ||m0||2H1 exp((7c− 2λ)t).

This shows that ||u||H3 does not blow up in finite time. The converse direction follows

from Sobolev’s embedding theorem. This completes the proof of our assertion. ��
Remark 3.41. The previous theorem shows that if ux stays bounded from below, then u

also persists in H3. Thus Theorem 3.40 provides us with a sufficient criterion for global

existence: The boundedness of ux from below implies T = ∞ in Theorem 3.38.

We already know that the mean μ(u) of a solution u(t, ·) of the μDP equation is conserved,

i.e., μ(u0) = μ(u), cf. Remark 3.4. We now show that the mean μ(u) of a solution of the

weakly dissipative μDP equation decreases exponentially as t increases from zero. More

precisely, we prove that the damping constant is equal to the dissipation parameter λ.

Lemma 3.42. Let u0 ∈ H3(S) and let u(t, x) be the solution of (3.26) obtained in The-

orem 3.38. Then the mean of u satisfies

μ(u) = μ(u0)e−λt

for t ≥ 0 in the existence interval of u. In particular, if μ(u0) = 0, then the mean of the

solution u is conserved.

Proof. We apply μ to (3.27) and change the order of time derivative and integration to

obtain

d

dt
μ(u) = μ

(−uux − 3μ(u)∂xA
−1u− λu

)
= −μ

(
1

2
∂x

(
u2
))− 3μ(u)μ

(
∂xA

−1u
)− λμ(u),

as long as the solution u(t, ·) ∈ H3(S) exists. Hence

d

dt
μ(u) = −λμ(u)

from which the lemma follows. ��
With the help of Lemma 3.42, we are able to establish the following blow-up scenario. It

is important to notice that our result shows the blow-up of smooth initial data. A similar

blow-up setting for the μDP equation is discussed in [99].

Theorem 3.43. Assume that 0 �= u0 ∈ C∞(S) has zero mean and that there is y ∈ S

satisfying
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0 < 1 +
λ

u0x(y)
< 1. (3.36)

Let u be the corresponding solution of (3.26). Then there is 0 < τ <∞ such that ||ux(t)||∞
blows up as t → τ from below. In particular, the solution u blows up in the H3-norm in

finite time.

Proof. Differentiating Eq. (3.27) with respect to x and the identity ∂2xA
−1 = μ− 1 yield

utx + uuxx + u2x + λux = 3μ(u)(u− μ(u)).

By Lemma 3.42, it follows that the right-hand side equals zero. Again, we denote by ϕ

the local flow of the time-dependent vector field u(t, ·), i.e., ϕt = u ◦ ϕ. We set

w :=
ϕtx
ϕx

= ux ◦ ϕ

and with

ϕttx = [(utx + uuxx + u2x) ◦ ϕ]ϕx

we obtain

wt =
ϕttxϕx − (ϕtx)2

ϕ2
x

= (utx + uuxx) ◦ ϕ

and hence

wt + w2 + λw = 0.

With Λ := −λ < 0, we finally arrive at the logistic equation

wt = w(Λ − w)

and standard ODE techniques show that the solution is given by

w(t) =
Λ

1 +
(

Λ
w(0) − 1

)
e−Λt

.

Recall that w(0) = u0x(x). By our assumption on u0, we can find a point y ∈ S satisfying

(3.36). Setting

τ = − 1

λ
ln

(
1 +

λ

u0x(y)

)
,

it follows that the solution must blow up in the H3-norm. ��
Remark 3.44. Condition (3.36) means that we can find y ∈ S such that

1. u0x(y) < 0 and

2. |u0x(y)| > λ.

Since we assume μ(u0) = 0, it follows that u0 must change sign. Since u0 ∈ C∞(S), u0
has to change sign at least twice and so it is always possible to find y ∈ S satisfying the

first condition. Our second condition says that the slope of u0 must exceed λ in order to

obtain blow-up: The larger the dissipation given by λ, the larger must |u0x| be locally

in order to obtain a blow-up solution. So (3.36) is a non-trivial condition for u0 in our

blow-up setting.
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The following lemma is similar to Lemma 2.2. in [46]. Furthermore, we see that as λ→ 0,

we obtain conservation of the quantity (m ◦ϕ)ϕ3
x, which is explained for the DP and the

μDP equation in [41, 99].

Lemma 3.45. Let u0 ∈ H3(S) and let T > 0 be the maximal existence time of the

corresponding solution u(t, x) according to Theorem 3.38. Let ϕ be the associated local

flow according to Lemma 3.36. Then we have

m(t, ϕ(t, x))ϕ3
x(t, x) = m0(x)e−λt.

Proof. An easy calculation shows that the function

[0, T ) �→ R, t �→ eλtm(t, ϕ(t, x))ϕ3
x(t, x)

is constant. Using ϕ(0) = id and ϕx(0) = 1, we are done. ��
Finally, we come to the following global well-posedness result. Note that our assumptions

on the initial condition u0 are quite similar to the ones in Theorem 5.4. in [99].

Theorem 3.46. Assume that u0 ∈ H3(S) has positive mean and satisfies the condi-

tion Au0 ≥ 0. Then the Cauchy problem (3.26) has a unique global solution u in

C([0,∞), H3(S)) ∩ C1([0,∞), H2(S)).

Proof. Let u(t, ·) ∈ H3(S), t ∈ [0, T ), denote the solution of (3.26) obtained in The-

orem 3.38. According to Theorem 3.40, we only have to show that ||ux(t, ·)||∞ stays

bounded as t approaches T from below. Note that, for any periodic function w, differen-

tiating formula (3.3) yields

||∂xw||∞ ≤ C ||Aw||L1
,

where C is a positive constant. Now Lemma 3.45 and the assumption Au0 ≥ 0 imply

that

||Au||L1
= μ (Au) .

Using Lemma 3.42, we obtain the estimate

||∂xu(t, ·)||∞ ≤ C

∫ 1

0

Au dx = Cμ(u) ≤ Cμ(u0) <∞,

from which the indefinite persistence of the solution u follows. ��
Remark 3.47. It is easy to see that Theorem 3.46 also holds if μ(u0) < 0 and Au0 ≤ 0.

3.5 A one-parameter family of µCH equations

In Chap. 2 we discussed a one-parameter family of CH equations coming up from the

variational principle for the inner product induced by the operator 1−λ∂2x which is con-

vexly combined of the canonical inner products on L2 and H1 respectively. We computed

the Christoffel map and sectional curvatures and determined the variation of geometric

quantities with respect to the parameter λ ∈ [0, 1]. Here, we want to extend this dis-

cussion to the novel family of equations which is obtained from the CH equation if we

replace the inertia operator by A = μ− λ∂2x; precisely, we discuss the family
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μ(ut) + 2uxμ(u) = λ(utxx + uuxxx + 2uxuxx), λ ∈ (0, 1]. (3.37)

The inner product defined by A is the bilinear form

〈f, g〉μ,λ = μ(f)μ(g) + λ

∫
S

fx(x)gx(x) dx

which can be defined on any tangent space of the circle diffeomorphisms by right invari-

ance. For λ = 1 we obtain the μCH equation which is mentioned in [99]. Observe that,

for λ = 0, Eq. (3.37) does not become the so-called μ-Burgers (μB) equation, which one

might expect in analogy to what we get from the family (2.1) for λ = 0; as explained in

[99], the μB reads as utxx + 3uxuxx + uuxxx = 0. Note that, for any 0 < λ ≤ 1 we have

that μ(ut) = 0 if u is sufficiently regular since Eq. (3.37) is equivalent to the evolution

equation

ut + uux +A−1∂x

(
2μ(u)u+

λ

2
u2x

)
= 0,

cf. Remark 3.4. The Christoffel operator Γ = Γid for Eq. (3.37) is

Γ (u, v) = −A−1

(
μ(u)v + μ(v)u +

λ

2
uxvx

)
x

, (3.38)

since

ut + uux = −A−1(umx + 2mux −A(uux))

= −A−1(−λuuxxx + 2(μ(u) − λuxx)ux + 3λuxuxx + λuuxxx)

= −A−1

(
2μ(u)u+

λ

2
u2x

)
x

= Γ (u, u).

Let Γϕ be the associated right-invariant Christoffel map on Diffn(S). In the following

proposition, we show that μCH possesses a unique geodesic flow ϕ ∈ Diffn(S) for n ≥ 2.

The μCH equation thus reads as Γϕ(ϕt, ϕt) = ϕtt in local coordinates (see Remark 2.3).

Proposition 3.48. The pair (Diffn(S), 〈·, ·〉μ,λ), n ≥ 2, is a Riemannian manifold. The

bilinear map ∇ defined on Vect∞(Diffn(S)) via (2.6) with the Christoffel operator (3.38)

depends smoothly on ϕ and is a Riemannian covariant derivative on Diffn(S); in partic-

ular it is compatible with the right-invariant metric 〈·, ·〉 = 〈·, ·〉μ,λ.
Proof. Clearly, 〈·, ·〉μ,λ is a positive definite and symmetric bilinear from on Cn(S). That

the map

g(ϕ)(X,Y ) =

∫
S

(X ◦ ϕ−1)
(
μ− λ∂2x

)
(Y ◦ ϕ−1) dx

is smooth for any X,Y ∈ TϕDiffn(S) � Cn(S) follows from Proposition 2.1 and∫
S

(X ◦ ϕ−1)(μ − 1)(Y ◦ ϕ−1) dx = μ(Xϕx)μ(Y ϕx) − μ(XY ϕx).

Obviously, ∇ satisfies the properties 1.–3. in Definition 1.24. That ∇ depends smoothly

on ϕ follows from the smoothness of ϕ �→ Γϕ; this can be proved as explained in Propo-

sition 3.24, with the aid of Lemma 3.23, cf. also Remark 3.25. We finally show the

compatibility of ∇ with the right-invariant metric on Diffn(S) induced by the operator
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A. Let X,Y, Z be vector fields on Diffn(S) and define the functions u, v and w by

X(ϕ) ◦ ϕ−1 = u, Y (ϕ) ◦ ϕ−1 = v, Z(ϕ) ◦ ϕ−1 = w,

for ϕ ∈ Diffn(S). Using Eq. (2.9), we have

(X 〈Y, Z〉)(ϕ) =

∫
S

[
(DY (ϕ) ·X(ϕ)) ◦ ϕ−1 − vxu

]
Aw dx

+

∫
S

[
(DZ(ϕ) ·X(ϕ)) ◦ ϕ−1 − wxu

]
Av dx

and

〈∇XY, Z〉ϕ =
〈
(DY (ϕ) ·X(ϕ)) ◦ ϕ−1 − Γ (v, u), Aw

〉
L2

=

∫
S

[
(DY (ϕ) ·X(ϕ)) ◦ ϕ−1

]
Aw dx

+

∫
S

(
μ(u)vx + μ(v)ux +

λ

2
(uxvx)x

)
w dx.

Using integration by parts, it is now easy to see that

X 〈Y, Z〉 = 〈∇XY, Z〉 + 〈∇XZ, Y 〉 .

��
Note that we also have a well-defined curvature tensor R for μCH which is given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

Expressing the sectional curvature in terms of the Christoffel map Γ we obtain an addi-

tional term compared to the result in Theorem 2.4, cf. [79] for the case λ = 1.

Theorem 3.49. The sectional curvature S(u, v) = 〈R(u, v)v, u〉 for the family (3.37) is

given by

S(u, v) = 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉 − 3μ(uxv)2

= μ(u)2
(

1

λ
μ(v2) + μ(v2x)

)
+ μ(v)2

(
1

λ
μ(u2) + μ(u2x)

)
+μ(u)μ((vux − uvx)vx) + μ(v)μ((uvx − vux)ux)

−2μ(u)μ(v)

(
1

λ
μ(uv) + μ(uxvx)

)
−λ

4
μ(uxvx)2 +

λ

4
μ(u2x)μ(v2x) − 3μ(uxv)2,

for any u, v ∈ TidDiffn(S).

Proof. Replacing 1−λ∂2x by μ−λ∂2x the same calculations as in the proof of Theorem 2.4

show that

〈R(u, v)v, u〉 = 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉
+ 〈−Γ (vxv, u) − Γ (v, uxv) + 2Γ (vxu, v), u〉
− 〈uxv, Γ (v, u)〉 + 〈uux, Γ (v, v)〉 .
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Now, using (3.38), it is easy to derive that the second and third row terms are equal to

−3μ(uxv)2. Substituting the Christoffel symbol in 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉
we see that S(u, v) equals

−
∫
S

(
μ(u)v + μ(v)u+

λ

2
uxvx

)
∂xA

−1∂x

(
μ(u)v + μ(v)u +

λ

2
uxvx

)
dx

+

∫
S

(
2μ(u)u+

λ

2
u2x

)
∂xA

−1∂x

(
2μ(v)v +

λ

2
v2x

)
dx− 3μ(uxv)2.

Since ∂xA
−1∂x = ∂2xA

−1 = 1
λ(−1 + μ) our theorem follows by simplifying the above

expression. ��
To deduce an expression for the sectional curvature of a plane spanned by two vectors u

and v, we may assume, after taking linear combinations, that u and v are orthonormal

with respect to 〈·, ·〉μ,λ and that v has zero mean, i.e.,

μ(u)2 + λμ(u2x) = 1, μ(v) = 0, λμ(v2x) = 1, μ(uxvx) = 0.

With these assumptions, the previous theorem yields

S(u, v) =
1

λ
μ(u)2(μ(v2) + 1) + μ(u)μ((vux − uvx)vx) +

1

4
μ(u2x) − 3μ(uxv)2. (3.39)

If u also has zero mean and λ is large enough, we obtain the following positivity result

for the sectional curvature.

Theorem 3.50. For any orthonormal vectors u, v ∈ TidDiffn(S) with μ(u) = μ(v) = 0,

the sectional curvature S(u, v) of the plane spanned by u and v satisfies

S(u, v) =
1

4λ
− 3μ(uxv)2 ≥ 1

4λ

(
1 − 3

λπ2

)
.

In particular, the sectional curvature S(u, v) is strictly positive for all λ ∈ (3/π2, 1].

Proof. Letting μ(u) = 0 in Eq. (3.39) we find the expression stated in the theorem. Since

v has zero mean, we further deduce that

λ2μ(uxv)2 ≤ λ2μ(u2x)μ(v2) = λμ(v2) ≤ λ

4π2
μ(v2x) =

1

4π2
.

For the latter estimate, we have used that v can be written as a Fourier series v =∑
k∈Z\{0} vke

2πikx. This achieves

μ(v2x) = 〈vx, vx〉L2(S)
=
∑
k 
=0

|vk|24π2k2 ≥ 4π2
∑
k 
=0

|vk|2 = 4π2 〈v, v〉L2(S)
= 4π2μ(v2).

��
In [79], the authors discuss the μHS equation under geometric aspects and obtain that

the sectional curvature, for u and v satisfying the assumptions of the above theorem, is

always positive. Furthermore, a result comparable to the following one is established.

Theorem 3.51. Let v ∈ TidDiffn(S) be orthonormal to the constant function 1. Then
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S(1, v) =
1

λ
μ(v2) > 0.

Proof. This follows from Eq. (3.39) by inserting u = 1. ��
Note that the functions

vk :=

√
2

k
sin kx, k ∈ 2πZ\{0},

satisfy the assumptions of Theorem 3.51 and

S(1, vk) =
1

λk2
→ 0, k → ∞.

In conclusion, let us decompose the tangent space at the identity TidDiffn(S) = U ⊕V in

such a way that U consists of the zero mean functions on S and V � R are the constants

so that u = ũ + μ(u) and μ(ũ) = 0 for any u ∈ TidDiffn(S). Theorem 3.50 shows that,

for λ > 3/π2, the sectional curvature for any plane contained in (i.e., parallel to) the

subspace U is strictly positive. Theorem 3.51 establishes that the sectional curvature

is also positive on the planes perpendicular to U , i.e., the planes containing constant

functions, which constitute V .

To obtain formulas describing the variation with respect to λ of the Christoffel map

and the sectional curvature for the μCH we will need the λ-derivative of A−1.

Lemma 3.52. The operator A = μ−λ∂2x : C∞(S) → C∞(S), λ ∈ (0, 1], is invertible and

its inverse is

(μ− λ∂2x)−1f = G ∗ f, G(x) =
1

2λ

(
x2 − |x| +

1

6

)
+ 1.

In particular, the map λ �→ λjG is differentiable for all j ∈ N0 and we have the relation

[∂x, (μ− λ∂2x)−1] = 0.

Proof. This follows from AG = δ. ��
Remark 3.53. The kernel G can be computed as in the case λ = 1 (see Sect. 3.1). For

λ = 1 we obtain the formula presented in (3.4) for the Green’s function of μ− ∂2x.

It is now easy to derive the formula

∂λΓ (u, v) = −(∂λG) ∗ ∂x
(
μ(u)v + μ(v)u +

λ

2
uxvx

)
− 1

2
G ∗ (uxvx)x.

From this, we get immediately a result for ∂λS(u, v) by applying Theorem 3.49. We

leave it to the reader to write down the explicit formulae which follow from elementary

calculations.

Example 3.54. For the family (3.37) we computed the sectional curvature S(u, v) for

orthonormal vectors u and v with zero mean in Theorem 3.50. We have

∂λS(u, v) = − 1

4λ2
;

i.e., the λ-derivative of S(u, v) is strictly negative.
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Example 3.55. For the orthonormal vectors 1 and v we found the sectional curvature

S(u, v) in Theorem 3.51. We have

∂λS(1, v) = − 1

λ2
μ(v2);

in particular, the λ-derivative of the strictly positive quantity S(1, v) is strictly negative.



Chapter 4

Two-component generalizations of the
periodic b-equation and its µ-variant

The CH equation (1.19) possesses an integrable two-component extension, denoted as

2CH, [13, 42, 49, 86], which involves both fluid density and momentum. What makes the

2CH particularly interesting is that it possesses peakon and multi-kink solutions as well

as a bi-Hamiltonian structure and a Lax pair formulation. The basic idea of generalizing

the CH equation was to include an additional function in the Lax pair and to derive

some properties of the new equation from the generalized Lax pair representation, [115].

A first geometric approach to two-component variants of CH and DP is shown in [54, 55].

In [90, 116] the authors show that the HS equation has a supersymmetric two-

component generalization, called 2HS, and discuss the geometric interpretation of the

2HS as an Euler equation on the superconformal algebra of contact vector fields on a cer-

tain supercircle. Simple examples of explicit solutions and a description of the bounded

travelling wave solutions of 2HS are given in [90].

In this chapter it is our goal to extend the results from Sect. 3.3 to the two-component

CH and HS as well as a two-component version of the DP introduced in [115] where the

author generalizes a Hamiltonian operator of the DP to a suitable 2× 2-matrix operator.

We also consider the corresponding μ-variants as introduced in Chap. 3. To establish the

geometric setting we first need a brief introduction to semidirect products of Lie groups,

which proved to be suitable configuration spaces. To obtain the existence of a geodesic

flow and a sectional curvature for 2CH we show that 2CH allows for a smooth Rieman-

nian structure compatible with a smooth affine connection. From this, we will conclude

local well-posedness for the geodesic equation (and later for the original equation) in

different function spaces: the Hs-category, the Cn-category and finally the smooth cate-

gory (which again requires additional technical effort). Finally, we present some explicit

calculations of the curvature of 2CH and obtain subspaces of positive sectional curva-

ture. To round everything off, we compare the 2CH equation to a rotating rigid body

and the one-component CH in the context of Arnold’s geometric framework. After that

we discuss two-component extensions of the DP and the HS and some μ-equations under

similar aspects.

Some of the results presented in this chapter have been published by the author,

cf. [40].

81
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4.1 Generalities on semidirect products

As explained in Chap. 1, the geometric analysis for rigid bodies and fluids is based on

the same mathematical principles and uses the same analytical tools like Lagrangian or

Hamiltonian formulations or Lie group-techniques.

As a motivation for the issues of this chapter, let us consider a three-dimensional

rigid body having three translational degrees of freedom modelled by v ∈ R3 and with

rotations parametrized by R ∈ SO(3). The configuration space is the Lie group SE(3) �
SO(3) × R3, the special Euclidean group, of 4 × 4-matrices of the form

E(R, v) =

(
R v

0 1

)
.

For any w ∈ R3, (
R v

0 1

)(
w

1

)
=

(
Rw + v

1

)
so that E(R, v) corresponds to rotation by R followed by translation by v, cf. [62]. The

group operation

� : SE(3) × SE(3) → SE(3), (R1, v1) � (R2, v2) = (R1R2, v1 +R1v2)

can be generalized naturally to arbitrary Lie groups, leading to the notion of a semidirect

product of a Lie group G with a vector space V . Assuming that G acts on the left on V

with the left-action denoted by (g, v) �→ gv, the operation

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2)

defines a Lie group structure on G× V ; we denote this Lie group by G�V . If G acts on

the right on V , one defines

(g1, v1)(g2, v2) = (g1g2, v2 + v1g2)

similarly. It is easy to see that (e, 0) is the neutral element, where e denotes the neutral

element of G, and that (g, v) has the inverse (g−1,−vg−1). While for rigid bodies, left-

invariant formulations lead to the correct equations of motion, the mathematical analysis

of fluid motion is always based on right actions and right invariance. That is why we will

use the second definition stated above henceforth in this chapter. To obtain the Lie

bracket on the Lie algebra g�V , we consider the inner automorphism

I(g,v)(h,w) = (g, v)(h,w)(g, v)−1 = (ghg−1,−vg−1 + (w + vh)g−1).

Writing vξ for the induced infinitesimal action of g on V , i.e., the map

V × g �→ V, (v, ξ) �→ vξ :=
d

dt
vg(t)

∣∣∣∣
t=0

,

g(t) being a curve in G starting from e in the direction of ξ, we obtain

Ad(g,v)(ξ, w) = (Adgξ, (w + vξ)g−1),

ad(η,v)(ξ, w) = (adηξ, vξ − wη)
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and hence

[(ξ1, v1), (ξ2, v2)] = ad(ξ2,v2)(ξ1, v1) = ([ξ1, ξ2], v2ξ1 − v1ξ2).

In [61], the authors explain the main differences when working with semidirect products

in case of right and left actions.

From now on, we consider the semidirect product of the orientation-preserving diffeo-

morphisms Diff(S) with a space of scalar functions F(S); the exact regularity assumptions

will be made precise in the following. We will use the notation G and g for the Lie group

Diff(S)�F(S) and its Lie algebra Vect(S)�F(S). The group product in G is defined by

(ϕ1, f1)(ϕ2, f2) := (ϕ1 ◦ ϕ2, f2 + f1ϕ2)

where ◦ denotes the group product in Diff(S) (i.e., composition) and fϕ := f ◦ ϕ is a

right action of Diff(S) on F(S). The neutral element of G is (id, 0) and (ϕ, f) has the

inverse (ϕ−1,−f ◦ ϕ−1). The above calculations show that

Ad(ϕ,f)(u, ρ) = (Adϕu, (fxu+ ρ) ◦ ϕ−1),

ad(v,f)(u, ρ) = (advu, fxu− ρxv)

and

[(u1, u2), (v1, v2)] = ([u1, v1], v2xu1 − u2xv1),

where [u1, v1] = v1xu1 − u1xv1 is the Lie bracket induced by right-invariant vector fields

on Diff(S).

Several different regularity assumptions can be imposed on the elements of G. The

structure of the two-component equations under consideration suggests that the density

variable ρ should be allowed to have one spatial derivative less than the velocity u. This

suggests the following choice for G:

HsG := HsDiff(S)�Hs−1(S), (4.1)

where HsDiff(S) denotes the group of orientation-preserving diffeomorphisms of S of

Sobolev class Hs. We will assume that s > 5/2. In this case, HsDiff(S) is a Hilbert

manifold and a topological group and the composition map

(ϕ, f) �→ f ◦ ϕ : HsDiff(S) ×Hs−1(S) → Hs−1(S)

is continuous, cf. [37]. Thus, HsG is a topological group and a smooth manifold modelled

on the Hilbert space Hs(S) ×Hs−1(S).

Another natural choice for G is

CnG := Diffn(S)�Cn−1(S); (4.2)

recall that Diffn(S) is the set of orientation-preserving diffeomorphisms of S of class Cn.

We will assume that n ≥ 2. In this case, CnG is a topological group and a smooth

manifold modelled on the Banach space Cn(S)×Cn−1(S). Note that HsG and CnG are

not Lie groups, since left multiplication is only continuous and not smooth.

Finally, we may choose G as

C∞G := Diff∞(S)�C∞(S), (4.3)
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with Diff∞(S) the smooth orientation-preserving diffeomorphisms of S. This is a Lie group

(the multiplication and inverse maps are smooth) and a Fréchet manifold modelled on

C∞(S) × C∞(S). In contrast to HsG and CnG, it is not a Banach manifold.

The three choices (4.1)–(4.3) for G are all of interest due to their different advantages.

We will first develop the theory for HsG and then consider CnG and C∞G. We refer to

[61, 63] for further information on geodesic flows on semidirect products.

4.2 The 2CH equation as a metric Euler equation

We now introduce the generalizations of the CH equation and the DP equation which

we want to study in this and in the following section; see [115] where the author also

considers an interacting system of equations and works out Hamiltonian structures.

Let t ≥ 0 and x ∈ S. By a solution of the periodic 2-component Camassa-Holm

equation with initial data (u0, ρ0) we mean a function (u(t, x), ρ(t, x)) which satisfies{
mt = −mxu− 2mux − ρρx,

ρt = −(ρu)x,
(4.4)

for t > 0, and (u(0, x), ρ(0, x)) = (u0, ρ0), where m = u − uxx. Similarly, we say

that (u, ρ) solves the 2DP equation with initial data (u0, ρ0) if{
mt = −mxu− 3mux − ρux + 2ρρx,

ρt = −2ρux − ρxu,
(4.5)

for t > 0, and (u(0, x), ρ(0, x)) = (u0, ρ0).

Clearly, (4.4) and (4.5) reduce to (1.19) and (1.20) for ρ = 0. It is our first aim to

study Eq. (4.4) under geometric aspects as explained in Sect. 2.2: We show that Eq. (4.4)

is a reexpression of a geodesic flow on HsG. In a preliminary step we find the Christoffel

operator Γ(ϕ,f) for (4.4); this is a smooth bilinear map Γ(ϕ,f) which defines a smooth

connection ∇ on HsG. In addition we consider the right-invariant metric 〈·, ·〉(ϕ,f) on

HsG equal to the H1-metric for the first plus the L2-metric for the second component

at (id, 0). Then we show that the connection ∇ is compatible with the metric 〈·, ·〉(ϕ,f)
and obtain the existence and uniqueness of a geodesic flow. The scenario is similar for

CnG and in both cases, we establish local well-posedness for the original equation from

the geometric theory.

The next step is to prove that, for smooth initial data in the geometric picture, the

2CH equation possesses a smooth short-time solution. As a corollary, we see that Eq. (4.4)

is well-posed in the smooth category.

Throughout the whole discussion, we deal with several geometric quantities which we

relate to the corresponding quantities for a rotating rigid body in the end (cf. Sect. 1.2

and [81] for a discussion of the CH equation in this context). This section also deals with

the sectional curvature of HsG associated with the 2CH equation.
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4.2.1 Geometric aspects of the 2CH equation

The CH equation is the Euler-Lagrange equation for the Lagrangian L : TDiff∞(S) → R

defined by L(g, ġ) = 1
2 ||ġ(t)||2g(t), where ||·||g denotes the H1 right-invariant metric on

Diff∞(S) and g(t) ⊂ Diff∞(S) is a smooth curve. Precisely, the CH is equivalent to

d

dt

δL
δu

= −ad∗
u

δL
δu
, u(t) = Dg(t)Rg(t)−1 ġ(t),

where ad∗ is the adjoint of ad with respect to the H1 inner product and u is the Eulerian

velocity of the curve g(t). Similarly, as explained in [62, 63], Eq. (4.4) comes up from the

variational principle

δ

∫ b

a

L(u, ρ) dt = 0, L(u, ρ) =
1

2

∫
u(1 − ∂2x)u dx+

1

2

∫
ρ2 dx,

in the sense that the 2CH is equivalent to the Euler-Lagrange equations

d

dt

( δL
δu
δL
δρ

)
=

(−ad∗
u · � ρ

0 −u
)( δL

δu
δL
δρ

)
.

In terms of the Eulerian velocity (u, ρ), Eq. (4.4) can be regarded as an equation on

the Lie algebra T(id,0)C
∞G. In this section, it is our aim to write (4.4) as an evolution

equation on the semidirect product C∞G and furthermore to show that the resulting

equation reexpresses a geodesic flow. We begin to develop the geometric theory for the

configuration spaceHsG and come to the following key observation which gets us started:

To any tangent vector v ∈ TpH
sG, p ∈ HsG, we associate an element of the Lie algebra

g � Hs(S) ×Hs−1(S) by applying the differential of the right shift Rp−1 : HsG → HsG

sending any q ∈ HsG to qp−1. Let us write p = (ϕ, f) and v = (v1, v2). To compute

DpRp−1v explicitly, we choose a curve γ(t) = (γ1(t), γ2(t)) ⊂ HsG satisfying γ(0) = p

and γ′(0) = v. Then

DpRp−1v =
d

dt
Rp−1γ(t)

∣∣∣∣
t=0

=
d

dt
(γ1(t), γ2(t))(ϕ−1,−f ◦ ϕ−1)

∣∣∣∣
t=0

=
d

dt
(γ1(t) ◦ ϕ−1,−f ◦ ϕ−1 + γ2(t) ◦ ϕ−1)

∣∣∣∣
t=0

= (v1 ◦ ϕ−1, v2 ◦ ϕ−1)

= v ◦ ϕ−1.

Note that this result is similar to what we obtained in the one-component case, where

Rψ : ϕ �→ ϕ ◦ ψ is a linear map. For a curve (ϕ(t), f(t)) in HsG, we write

(u, ρ) = (ϕt ◦ ϕ−1, ft ◦ ϕ−1) (4.6)

for the Eulerian velocity, i.e., we have ϕt = u◦ϕ and ft = ρ◦ϕ. Next, we define a bilinear

operator Γ(id,0) : g× g → g by
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Γ(id,0)(X,Y ) :=

(
Γ 0
id(X1, Y1) − 1

2A
−1(X2Y2)x

− 1
2 (X1xY2 + Y1xX2)

)
, (4.7)

for all X = (X1, X2), Y = (Y1, Y2) ∈ g. Here, A is the operator 1 − ∂2x and

Γ 0
id(u, v) = −A−1∂x

(
uv +

1

2
uxvx

)
is the Christoffel operator for the CH equation (see Sect. 2.2). For vector fields X,Y on

HsG, we define

Γ(ϕ,f)(X,Y ) = Γ(id,0)(X(ϕ, f) ◦ ϕ−1, Y (ϕ, f) ◦ ϕ−1) ◦ ϕ.

Differentiating Eq. (4.6) with respect to t and using (4.4) and (4.6) shows that(
ϕtt
ftt

)
=

(
(ut + uux) ◦ ϕ
(ρt + uρx) ◦ ϕ

)
=

(−[A−1(u(Au)x + 2(Au)ux −A(uux))] ◦ ϕ− [A−1(ρρx)] ◦ ϕ
−(ρux) ◦ ϕ

)
=

(−[A−1(u2 + 1
2u

2
x)x] ◦ ϕ− [A−1(ρρx)] ◦ ϕ
−(ρux) ◦ ϕ

)
= Γ(ϕ,f)((ϕt, ft), (ϕt, ft)). (4.8)

Let us define locally an affine connection on HsG by setting

∇XY (ϕ, f) := DY (ϕ, f) ·X(ϕ, f) − Γ(ϕ,f)(Y (ϕ, f), X(ϕ, f)). (4.9)

We also define an inner product on g,

〈X,Y 〉(id,0) := 〈X1, Y1〉H1(S) + 〈X2, Y2〉L2(S)
,

and obtain a right-invariant inner product on HsG by setting

〈X,Y 〉(ϕ,f) :=
〈
X(ϕ, f) ◦ ϕ−1, Y (ϕ, f) ◦ ϕ−1

〉
(id,0)

, (4.10)

where X,Y are vector fields on HsG. In the following, we will use the short hand notation

〈·, ·〉(id,0) = 〈·, ·〉. First we prove that the right-invariant metric (4.10) defines indeed a

Riemannian metric on HsG, s > 5/2. Since HsG is only a topological group, it is not a

priori clear that p �→ 〈·, ·〉p is smooth.

Proposition 4.1. Let s > 5/2. Let HsG = HsDiff(S)�Hs−1(S) and let Γ be the

Christoffel map defined in (4.7). Then Γ defines a smooth spray on HsG, i.e., the map

(ϕ, f) �→ Γ(ϕ,f) : HsG→ L2
sym

(
Hs(S) ×Hs−1(S);Hs(S) ×Hs−1(S)

)
(4.11)

is smooth. Moreover, the metric 〈·, ·〉 defined by (4.10) is a smooth (weak) Riemannian

metric on HsG, i.e., the map

(ϕ, f) �→ 〈·, ·〉(ϕ,f) : HsG→ L2
sym

(
T(ϕ,f)H

sG;R
)

(4.12)

is a smooth section of the bundle L2
sym (THsG;R). Finally, the connection ∇ in (4.9) is

a Riemannian covariant derivative in the sense of Definition 1.24.



4.2 The 2CH equation as a metric Euler equation 87

Proof. In order to establish smoothness of (4.11), it is sufficient to show that the following

map is smooth:

((ϕ, f), w) �→ Γ(ϕ,f)(w,w) : HsG× [Hs(S) ×Hs−1(S)] → Hs(S) ×Hs−1(S),

where w = (w1, w2) ∈ T(ϕ,f)H
sG � Hs(S) ×Hs−1(S) and

Γ(ϕ,f)(w,w) =

(
Γ 0
id(w1 ◦ ϕ−1, w1 ◦ ϕ−1) − 1

2A
−1∂x(w2

2 ◦ ϕ−1)

−(w1 ◦ ϕ−1)xw2 ◦ ϕ−1

)
◦ ϕ.

We will show that the term − 1
2

(
A−1∂x(w2

2 ◦ ϕ−1)
) ◦ ϕ makes a smooth contribution to

Γ ; the other terms can be treated by similar arguments1. Consider the map

P : HsDiff(S) ×Hs−1(S) → HsDiff(S) ×Hs(S)

defined by

P (ϕ,w) =
(
ϕ,
(
A−1∂x(w2 ◦ ϕ−1)

) ◦ ϕ) .
We write P as the composition P = Ã−1 ◦ P2 ◦ P1, where the maps

P1 : HsDiff(S) ×Hs−1(S) → HsDiff(S) ×Hs−1(S),

P2 : HsDiff(S) ×Hs−1(S) → HsDiff(S) ×Hs−2(S),

Ã : HsDiff(S) ×Hs(S) → HsDiff(S) ×Hs−2(S)

are defined by

P1(ϕ,w) = (ϕ,w2),

P2(ϕ,w) =
(
ϕ, (w ◦ ϕ−1)x ◦ ϕ

)
=

(
ϕ,
wx
ϕx

)
,

Ã(ϕ,w) = (ϕ,
(
A(w ◦ ϕ−1)

) ◦ ϕ) =

(
ϕ,w − wxx

ϕ2
x

+
wxϕxx
ϕ3
x

)
.

The maps P1, P2, and Ã are smooth since Hs(S) is a Banach algebra under pointwise

multiplication for s > 1/2. To show that Ã−1 is smooth, we compute

DÃ(ϕ,w) =

(
id 0

∗ id − 1
ϕ2

x
∂2x + ϕxx

ϕ3
x
∂x

)
.

This is, for each (ϕ,w) ∈ HsDiff(S) × Hs(S), a bijective bounded linear map Hs(S) ×
Hs(S) → Hs(S) ×Hs−2(S). The open mapping theorem implies that its inverse is also

bounded. The inverse mapping theorem now implies that Ã−1, and hence also P , is a

smooth map.

We next establish the smoothness of (4.12). It is sufficient to show that the map

g : HsG× [
Hs(S) ×Hs−1(S)

] → R,

defined by

1 The smoothness of ϕ 
→ Γ 0
ϕ has already been established for the one-componet CH in [94].
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g((ϕ, f), w) =

∫
S

(w1 ◦ ϕ−1)A(w1 ◦ ϕ−1) dx+

∫
S

(w2 ◦ ϕ−1)2 dx

is smooth. The change of variables y = ϕ−1(x) yields

g((ϕ, f), w) =

∫
S

(
w2

1ϕx +
w2

1x

ϕx
+ w2

2ϕx

)
dy,

and written in this form the smoothness of g is clear. Let us check the properties 1.–4.

in Definition 1.24 for (4.9). While 1.–3. are almost trivial, the check of 4. is a lengthy

but straightforward computation. By our local definition (4.9), X(ϕ, f) = 0 implies

(∇XY )(ϕ, f) = 0. That ∇ is torsion-free is an immediate consequence of the symmetry

of Γ and the fact that the commutator of two vector fields is defined locally by

[X,Y ](ϕ, f) = DY (ϕ, f) ·X(ϕ, f) −DX(ϕ, f) · Y (ϕ, f).

Another direct consequence of our definition is ∇X(hY ) = X(h)Y +h∇XY for all vector

fields X,Y and functions h on HsG. It remains to check, that ∇ is compatible with the

right-invariant metric 〈·, ·〉 defined in (4.10), i.e.,

X 〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉

for all vector fields X,Y, Z on HsG. Let us write ui = Xi(ϕ, f) ◦ ϕ−1 for i = 1, 2 and

vi = Yi(ϕ, f) ◦ ϕ−1, wi = Zi(ϕ, f) ◦ ϕ−1 analogously. Let γ(t) ⊂ HsG be a curve with

γ(0) = (ϕ, f) and γ′(0) = X(ϕ, f). On the one hand,

(X 〈Y, Z〉)(ϕ, f) =
d

dt
〈Y (γ(t)), Z(γ(t))〉γ(t)

∣∣∣∣
t=0

=
d

dt

〈
Y1(γ(t)) ◦ γ−1

1 , Z1(γ(t)) ◦ γ−1
1

〉
H1

∣∣∣∣
t=0

+
d

dt

〈
Y2(γ(t)) ◦ γ−1

1 , Z2(γ(t)) ◦ γ−1
1

〉
L2

∣∣∣∣
t=0

,

and a straightforward computation yields

d

dt

〈
Y2(γ(t)) ◦ γ−1

1 , Z2(γ(t)) ◦ γ−1
1

〉
L2

∣∣∣∣
t=0

=
〈
DY2(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 − v2xu1, w2

〉
L2

+
〈
DZ2(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 − w2xu1, v2

〉
L2
.

On the other hand,

〈∇XY, Z〉(ϕ,f) =
〈
DY1(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 − Γ 0

ϕ(Y1, X1) ◦ ϕ−1, w1

〉
H1

+

〈
1

2
(v2xu2 + u2xv2), w1

〉
L2

+

〈
DY2(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 +

1

2
(v1xu2 + u1xv2), w2

〉
L2

and similarly
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〈Y,∇XZ〉(ϕ,f) =
〈
DZ1(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 − Γ 0

ϕ(Z1, X1) ◦ ϕ−1, v1
〉
H1

+

〈
1

2
(w2xu2 + u2xw2), v1

〉
L2

+

〈
DZ2(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 +

1

2
(w1xu2 + u1xw2), v2

〉
L2

.

The calculations in [94] for the CH equation show that

d

dt

〈
Y1(γ(t)) ◦ γ−1

1 , Z1(γ(t)) ◦ γ−1
1

〉
H1

∣∣∣∣
t=0

=

+
〈
DY1(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 − Γ 0

ϕ(Y1, X1) ◦ ϕ−1, w1

〉
H1

+
〈
DZ1(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 − Γ 0

ϕ(Z1, X1) ◦ ϕ−1, v1
〉
H1 ,

so that it remains to check that〈
DY2(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 − v2xu1, w2

〉
L2

+
〈
DZ2(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 − w2xu1, v2

〉
L2

=

〈
1

2
(v2xu2 + u2xv2), w1

〉
L2

+

〈
DY2(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 +

1

2
(v1xu2 + u1xv2), w2

〉
L2

+

〈
1

2
(w2xu2 + u2xw2), v1

〉
L2

+

〈
DZ2(ϕ, f) ·X(ϕ, f) ◦ ϕ−1 +

1

2
(w1xu2 + u1xw2), v2

〉
L2

which is equivalent to∫
S

(
u1v2xw2 + u1v2w2x +

1

2
u2v2xw1 +

1

2
u2xv2w1 +

1

2
u2v1w2x +

+
1

2
u2xv1w2 +

1

2
u2v1xw2 +

1

2
u1xv2w2 +

1

2
u2v2w1x +

1

2
u1xv2w2

)
dx = 0.

Since the left-hand side is equal to∫
S

(
1

2
∂x(u2v1w2) +

1

2
∂x(u2v2w1) + ∂x(u1v2w2)

)
dx = 0

we are done. ��
Remark 4.2. In general, the Christoffel map is only defined locally. In Proposition 4.1,

we implicitly use the natural smooth identification

THsG � HsG× (
Hs(S) ×Hs−1(S)

)
(4.13)

and view Γ as a map from HsG to the space of bilinear symmetric maps from Hs(S) ×
Hs−1(S) to itself. Similarly, a vector field X on HsG is viewed as a map HsG→ Hs(S)×
Hs−1(S). The identification (4.13), for the non-trivial part, is given in Sect. 3.1.4.
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Since the existence of a smooth connection on a Banach manifold immediately yields the

local existence and uniqueness of a geodesic flow (see [88]), Proposition 4.1 implies the

following result.

Theorem 4.3. Let s > 5/2. Then there exists an open interval J centered at 0 and

an open neighborhood U of (0, 0) ∈ Hs(S) × Hs−1(S) such that for each (u0, ρ0) ∈ U

there exists a unique solution (ϕ, f) ∈ C∞(J,HsG) of (4.8) satisfying (ϕ(0), f(0)) =

(id, 0) and (ϕt(0), ft(0)) = (u0, ρ0). Furthermore, the solution depends smoothly on the

initial data in the sense that the local flow Φ : J × U → HsG defined by Φ(t, u0, ρ0) =

(ϕ(t;u0, ρ0), f(t;u0, ρ0)) is a smooth map.

We write the Cauchy problem for 2CH in the form⎧⎨⎩
ut + uux = −A−1∂x

(
u2 + 1

2u
2
x + 1

2ρ
2
)
,

ρt + uρx = −ρux,
(u(0), ρ(0)) = (u0, ρ0).

(4.14)

This formulation of 2CH is suitable for the formulation of weak solutions. It follows from

Theorem 4.3 that the 2CH equation is locally well-posed in Hs(S)×Hs−1(S) for s > 5/2.

Corollary 4.4. Suppose s > 5/2. Then for any (u0, ρ0) ∈ Hs(S) ×Hs−1(S) there exists

an open interval J centered at 0 and a unique solution

(u, ρ) ∈ C(J,Hs(S) ×Hs−1(S)) ∩ C1(J,Hs−1(S) ×Hs−2(S)) (4.15)

of the Cauchy problem (4.14) which depends continuously on the initial data (u0, ρ0).

Proof. Theorem 4.3 yields the existence of a smooth curve (ϕ(t), f(t)) ∈ HsG such that

(ϕ(0), f(0)) = (id, 0) and (ϕt(0), ft(0)) = (u0, ρ0). Define (u(t), ρ(t)) by equation (4.6).

Then, (u, ρ) has the regularity specified in (4.15) and depends continuously on (u0, ρ0).

By right-invariance of Γ , the geodesic equation (4.8) can be written as(
ut + uux
ρt + uρx

)
= Γ(id,0)((u, ρ), (u, ρ)).

This is equation (4.14). ��
Remark 4.5. The well-posedness result of Corollary 4.4 can also be proved using Kato’s

semigroup approach (see [42] for the case on the line).

The results of the previous discussion hold with the obvious changes also in the Cn-

category. Assuming n ≥ 2, the proofs are the same with HsG replaced with CnG. In

particular, Γ defines a smooth spray on CnG = Diffn(S)�Cn−1(S) compatible with the

metric defined in (4.10). For the sake of brevity, we only state the analog of Theorem 4.3.

Theorem 4.6. Let n ≥ 2. Then there exists an open interval J centered at 0 and an

open neighborhood U of (0, 0) ∈ Cn(S) × Cn−1(S) such that for each (u0, ρ0) ∈ U there

exists a unique solution (ϕ, f) ∈ C∞(J,CnG) of (4.8) satisfying (ϕ(0), f(0)) = (id, 0)

and (ϕt(0), ft(0)) = (u0, ρ0). Furthermore, the solution depends smoothly on the ini-

tial data in the sense that the local flow Φ : J × U → CnG defined by Φ(t, u0, ρ0) =

(ϕ(t;u0, ρ0), f(t;u0, ρ0)) is a smooth map.
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4.2.2 Local well-posedness for smooth initial data

We now want to extend the results of the previous subsection to the space C∞G =

C∞Diff(S)�C∞(S). Since C∞G is not a Banach manifold, the local existence and unique-

ness theorems for differential equations fail. We will therefore take an indirect approach

and start with the local geodesic flows on HsG, s > 5/2. We will first show that the

domains of definition of these flows do not shrink to zero as s → ∞. By considering

the limit as s → ∞, the existence of a smooth local geodesic flow on C∞G will then

be established. We will use a blow-up result for the 2CH equation which is proved in

[42] for the 2CH on the real axis; observe that for the non-periodic 2CH, the term ρρx
has to be replaced by the term −ρρx in (4.4). The following conservation law for the

two-component CH equation will be essential for our purposes.

Lemma 4.7. Let (u, ρ) be a solution of (4.4) with the geodesic flow (ϕ, f). Then, for

any time t in the existence interval of (u, ρ), we have

d

dt

[
(m ◦ ϕ)ϕ2

x + (ρ ◦ ϕ)fxϕx
]

= 0

and
d

dt
[(ρ ◦ ϕ)ϕx] = 0.

Proof. We have

d

dt

[
(m ◦ ϕ)ϕ2

x

]
= [mt ◦ ϕ+ (mx ◦ ϕ)ϕt]ϕ

2
x + (m ◦ ϕ)2ϕxϕtx

= [(mt +mxu+ 2mux) ◦ ϕ]ϕ2
x

= [−(ρρx) ◦ ϕ]ϕ2
x

and
d

dt
[(ρ ◦ ϕ)ϕx] = [(ρt + uρx) ◦ ϕ]ϕx + [(ρux) ◦ ϕ]ϕx = 0.

Since

ftx = ∂x(ρ ◦ ϕ) = (ρx ◦ ϕ)ϕx

the lemma follows. ��
Remark 4.8. Since ϕtx = (ux ◦ ϕ)ϕx and ϕx(0) = 1 we have

ϕx(t) = exp

(∫ t

0

(ux ◦ ϕ)(s) ds

)
.

If there exists M > 0 such that ux(t, x) ≥ −M for all (t, x) ∈ [0, T )×S, then ||1/ϕx||∞ ≤
eMT . Hence we get from Lemma 4.7 that

||ρ(t)||∞ = ||(ρ ◦ ϕ)(t)||∞ =

∣∣∣∣∣∣∣∣ ρ0
ϕx(t)

∣∣∣∣∣∣∣∣
∞

≤ ||ρ0||∞ eMT , ∀t ∈ [0, T ). (4.16)

Proposition 4.9. Let s > 5/2. Let (u0, ρ0) ∈ Hs(S) × Hs−1(S) and let T > 0 be the

maximal time of existence of the solution

(u, ρ) ∈ C([0, T ), Hs(S) ×Hs−1(S)) ∩ C1([0, T ), Hs−1(S) ×Hs−2(S))
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of the Cauchy problem (4.14). Then the solution (u, ρ) blows up in finite time if and only

if

lim
t→T

inf
x∈S

ux(t, x) = −∞ or lim sup
t→T

||ρx(t)||L∞ = ∞. (4.17)

Proof. We multiply the first equation in (4.4) by 2m and integrate over S to obtain

d

dt
||m||2L2

= −2

∫
S

mmxu dx− 4

∫
S

uxm
2 dx− 2

∫
S

mρρx dx

= −3

∫
S

uxm
2 dx+

∫
S

uxρ
2 dx−

∫
S

uxxxρ
2 dx.

Differentiating the first equation in (4.4) with respect to x, multiplying the obtained

equation by 2mx and integrating over S we next find that

d

dt
||mx||2L2

= −2

∫
S

mxxmxu dx− 6

∫
S

m2
xux dx− 4

∫
S

uxxmmx dx

−2

∫
S

ρ2xmx dx− 2

∫
S

ρρxxmx dx

= −5

∫
S

m2
xux dx+ 2

∫
S

uxxxm
2 dx+

∫
S

uxxx(2ρ2x + 2ρρxx − ρ2) dx.

Combining both equations we get

d

dt

∫
S

(m2 +m2
x) dx = −

∫
S

uxm
2 dx− 5

∫
S

m2
xux dx+

∫
S

uxρ
2 dx

+

∫
S

uxxx(2ρ2x + 2ρρxx − 2ρ2) dx.

Since the second equation in (4.4) is the same as for the 2CH on the real line, we refer

to [42] for the derivation of the equation

d

dt

∫
S

(ρ2 + ρ2x + ρ2xx) dx = −
∫
S

uxρ
2 dx− 3

∫
S

uxρ
2
x dx− 5

∫
S

uxρ
2
xx dx

+

∫
S

uxxx(ρ2 + 3ρ2x − 2ρρxx) dx.

Thus

d

dt

∫
S

(m2 +m2
x + ρ2 + ρ2x + ρ2xx) dx = −

∫
S

uxm
2 dx− 5

∫
S

m2
xux dx− 3

∫
S

uxρ
2
x dx

−5

∫
S

uxρ
2
xx dx+

∫
S

uxxx(5ρ2x − ρ2) dx.

Assume that there exist M1,M2 > 0 such that

ux(t, x) ≥ −M1, ∀(t, x) ∈ [0, T ) × S, (4.18)

and

||ρx(t)||∞ ≤M2, ∀t ∈ [0, T ). (4.19)

In view of (4.16), (4.18), (4.19), we find that
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d

dt

∫
S

(m2 +m2
x + ρ2 + ρ2x + ρ2xx) dx ≤ C(M1,M2, T, ρ0)

∫
S

(m2 +m2
x + ρ2 + ρ2x + ρ2xx) dx

with a positive constant C. By means of Gronwall’s inequality,

||u(t)||2H3 + ||ρ(t)||2H2 ≤ ||m(t)||2H1 + ||ρ(t)||2H2 ≤ (||m0||2H1 + ||ρ0||2H2)eCt,

for all t ∈ [0, T ). By the above inequality, Sobolev’s imbedding theorem and the fact that

the solution does not blow up in Hs(S) ×Hs−1(S) on [0, T ) if

∃M > 0 ∀t ∈ [0, T ) : ||ux(t)||∞ + ||ρ(t)||∞ + ||ρx(t)||∞ ≤M, (4.20)

see [42], we obtain that the solution (u, ρ) does not blow up in finite time. On the other

hand, by Sobolev’s imbedding theorem, if

lim
t→T

inf
x∈S

ux(t, x) = −∞ or lim sup
t→T

||ρx(t)||L∞ = ∞

then the solution will blow up in finite time. This completes the proof of our theorem. ��
Let

Φ3 : [0, T3) × U3 → H3G,

where T3 > 0 and U3 ⊂ H3(S)×H2(S), be the local geodesic flow on H3G whose existence

is guaranteed by Theorem 4.3. In the next proposition, we show that the restriction of

Φ3 to Hs(S) ×Hs−1(S), s ≥ 3, defines a smooth flow on HsG for t ∈ [0, T3). Thus, the

flow on HsG exists for all t ∈ [0, T3) for any s ≥ 3.

Proposition 4.10. Suppose s > 3 and let Φs denote the restriction of Φ3 to [0, T3)×Us,
where Us = U3 ∩ (Hs(S) × Hs−1(S)). Then Φs is a smooth local flow of the geodesic

equation (4.8) on HsG, that is:

a. Φs is a smooth map from [0, T3) × Us to HsG.

b. For each (u0, ρ0) ∈ Us, Φs(·, u0, ρ0) is a smooth solution of Eq. (4.8) on [0, T3) satis-

fying Φs(0, u0, ρ0) = (id, 0) and ∂tΦs(0, u0, ρ0) = (u0, ρ0).

Proof. Fix (u0, ρ0) ∈ U3 and let (u(t;u0, ρ0), ρ(t;u0, ρ0)) be the corresponding solution in

H3(S)×H2(S) of the Cauchy problem (4.14). This solution is defined at least on [0, T3).

Since the criterion (4.17) is independent of s ≥ 3, it follows from Proposition 4.9 that if

(u0, ρ0) ∈ Us for some s ≥ 3, then the curve t �→ (u(t;u0, ρ0), ρ(t;u0, ρ0)) belongs to the

space

C([0, T3), Hs(S) ×Hs−1(S)) ∩ C1([0, T3), Hs−1(S) ×Hs−2(S)).

Let (ϕ, f) ∈ C∞([0, T3), H
3G) be the geodesic flow defined on [0, T3). Let s > 3. Suppose

(u0, ρ0) ∈ Us and ϕ ∈ C1([0, T3), H
rDiff(S)) for some r with 3 ≤ r ≤ s− 1. We will show

that ϕ ∈ C1([0, T3), H
r+1Diff(S)). Since

ϕtx = (ux ◦ ϕ)ϕx, ϕtxx = (uxx ◦ ϕ)ϕ2
x + (ux ◦ ϕ)ϕxx,

we have
d

dt

(
ϕxx
ϕx

)
= (uxx ◦ ϕ)ϕx.

Thus,

ϕxx(t) = ϕx(t)

∫ t

0

(uxx ◦ ϕ)(s)ϕx(s) ds. (4.21)
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Since ϕx ∈ C1([0, T3), H
r−1(S)) and uxx ∈ C([0, T3), Hs−2(S)), Eq. (4.21) implies that

ϕxx ∈ C1([0, T3), Hr−1(S)). (4.22)

This implies that ϕ ∈ C1([0, T3), Hr+1Diff(S)). Indeed,∥∥∥∥ϕ(t) − ϕ(s)

t− s
− u ◦ ϕ

∥∥∥∥2
Hr+1

=

∥∥∥∥ϕ(t) − ϕ(s)

t− s
− u ◦ ϕ

∥∥∥∥2
H1

+

∥∥∥∥ϕxx(t) − ϕxx(s)

t− s
− (u ◦ ϕ)xx

∥∥∥∥2
Hr−1

.

As t→ s, the first term on the right-hand side vanishes since ϕ ∈ C∞([0, T3), H3Diff(S))

and the second vanishes in view of (4.22). Induction shows that

ϕ ∈ C1([0, T3), H
sDiff(S)). (4.23)

We now show that in fact (ϕ, f) ∈ C∞([0, T3), H
sG). By Lemma 4.7, ftϕx = (ρ◦ϕ)ϕx =

ρ0 and we infer that

f(t) = ρ0

∫ t

0

ds

ϕx(s)
. (4.24)

It follows that

f ∈ C2([0, T3), H
s−1(S)). (4.25)

Moreover, by Theorem 4.3, (ϕ, f) is a smooth solution of (4.8) in HsDiff(S) ×Hs−1(S)

for sufficiently small t ≥ 0. Standard ODE results show that the only way this solution

can cease to exist (Corollary IV.1.8 in [88]) is either that the condition ϕx > 0 ceases to

hold or that one of the norms

||(ϕt, ft)||Hs(S)×Hs−1(S) ,
∣∣∣∣Γ(ϕ,f)

(
(ϕt, ft), (ϕt, ft)

)∣∣∣∣
Hs(S)×Hs−1(S)

(4.26)

blows up. But we know that ϕx > 0 on [0, T3) and Eqs. (4.23) and (4.25) together

with the smoothness of Γ imply that the norms in (4.26) remain bounded on [0, T3).

This proves (b). The standard ODE theorems on smooth dependence on initial data

(Theorem IV.1.16 in [88]) imply (a). ��
The Sobolev spaces Hs(S) provide a Banach space approximation of the Fréchet space

C∞(S) in the sense of Definition 3.31. Proposition 4.10 together with Lemma 3.32 imply

local well-posedness of the geodesic flow on C∞G.

Theorem 4.11. There exists an open interval J centered at 0 and an open neighborhood

U of (0, 0) ∈ C∞(S) × C∞(S) such that for each (u0, ρ0) ∈ U there exists a unique solu-

tion (ϕ, f) ∈ C∞(J,C∞G) of (4.8) satisfying (ϕ(0), f(0)) = (id, 0) and (ϕt(0), ft(0)) =

(u0, ρ0). Furthermore, the solution depends smoothly on the initial data in the sense that

the local flow Φ : J × U → C∞G defined by Φ(t, u0, ρ0) = (ϕ(t;u0, ρ0), f(t;u0, ρ0)) is a

smooth map.

Since C∞G is a Lie group with smooth multiplication and (u, ρ) = (ϕt ◦ ϕ−1, ft ◦ ϕ−1),

we immediately get the following result.

Corollary 4.12. There exists an open interval J centered at 0 and an open neighborhood

U of (0, 0) ∈ C∞(S)×C∞(S) such that for each (u0, ρ0) ∈ U there exists a unique solution
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(u, ρ) ∈ C∞(J,C∞(S) × C∞(S))

of (4.4) with (u(0), ρ(0)) = (u0, ρ0). Furthermore, the solution depends smoothly on the

initial data in the sense that the local flow Φ : J × U → C∞(S) × C∞(S) defined by

Φ(t, u0, ρ0) = (u(t;u0, ρ0), ρ(t;u0, ρ0)) is a smooth map.

Remark 4.13. In [120, 121], we find the general form of the geodesic equation on a semidi-

rect product of two Lie groups G and H . In terms of the right logarithmic derivative

(which corresponds to the Eulerian velocity in our terminology), the geodesic equation

onG�H with a right-invariant metric given by the sum of positive definite inner products

on the Lie algebras g and h is {
ut = −ad∗

uu+ h(ρ, ρ),

ρt = −ad∗
ρρ− b(u)∗ρ.

(4.27)

(If the smooth map B : G×H → H denotes a left action of G on H and if we define the

map β : G → Aut(h), β(g) = DeB(g) then b : g → Der(h) is the derivative of β at the

identity; Aut(h) denotes the automorphism group of h and Der(h) the set of derivations

of h. The map h : h×h → g is defined by the relation 〈b(X)Y1, Y2〉h = 〈h(Y1, Y2), X〉g.) If

V is a vector space with inner product and B is a linear action of G on V , the geodesic

equation (4.27) on G�V becomes{
ut = −ad∗

uu+ h(ρ, ρ),

ρt = −b(u)∗ρ.

In [120, 121] it is worked out that this general system reduces to the classical equations

modelling ideal hydrodynamical flow for G = Diff∞(S) and V = C∞(S) with the (left)

action ϕf = f ◦ ϕ−1.

4.2.3 Subspaces of positive sectional curvature

We have shown that the 2CH equation is a geodesic equation on the semidirect product

HsG = HsDiff(S)�Hs−1(S) with respect to a smooth affine connection. The existence

of a smooth connection ∇ on a Banach manifold immediately implies the existence of a

smooth curvature tensor R defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where X,Y, Z are vector fields on HsG. Since there exists a metric 〈·, ·〉 for 2CH, we can

also define an (unnormalized) sectional curvature S by2

S(X,Y ) := 〈R(X,Y )Y,X〉.
2 Recall that the sectional curvature S(σ) of a subspace σ spanned by two tangent vectors u and v is

defined by

S(σ) =
〈R(u, v)v, u〉

|u ∧ v|2 .
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In this section, we will derive a convenient formula for S and use it to determine large

subspaces of positive curvature for the 2CH equation. We will work in the Hs-category;

similar results are valid with HsG replaced with CnG. In view of the right-invariance

of ∇, it is enough to consider the curvature at the identity (id, 0). We will write Γ for

Γ(id,0).

In a first step, we rewrite the Christoffel operator (4.7) as

Γ (u, v) =
1

2

[(
(u1v1)x

u2xv1 + v2xu1

)
+B(u, v) +B(v, u)

]
(4.28)

with the bilinear operator B = (B1, B2) on the Lie algebra g � Hs(S)�Hs−1(S) satisfy-

ing

〈B(u, v), w〉 = 〈u, [v, w]〉 ,
cf. Theorem 1.16. Writing u = (u1, u2), v = (v1, v2) and w = (w1, w2), we obtain from

〈u, [v, w]〉 =

∫
S

u1A(w1xv1 − v1xw1) dx+

∫
S

u2(w2xv1 − v2xw1) dx

= −
∫
S

A−1(2v1xAu1 + v1Au1x)Aw1 dx

+

∫
S

(−(u2v1)xw2 − u2v2xw1) dx

that (
B1(u, v)

B2(u, v)

)
=

(−A−1(2v1xAu1 + v1Au1x + u2v2x)

−(u2v1)x

)
and hence

B(u, u) +

(
u1xu1
u2xu1

)
=

(−A−1(2u1xAu1 + u1Au1x + u2u2x −A(u1xu1))

−(u2u1)x + u2xu1

)
=

(−A−1(u21 + 1
2u

2
1x)x − 1

2A
−1(u22)x

−u2u1x

)
= Γ(id,0)(u, u).

Let us write Γp(·, ·) = Γ (p; ·, ·) and denote by D1 differentiation of Γp with respect to p.

The resulting formula for the sectional curvature for the 2CH equation is analogous to

the formula obtained in Theorem 2.4—we only have to replace the Christoffel operator

Γ 0 by Γ and the metric by its two-component extension in Theorem 2.4.

Theorem 4.14. Let s > 5/2. Let R be the curvature tensor on HsG associated with the

2CH equation. Then S(u, v) := 〈R(u, v)v, u〉 is given at the identity by

S(u, v) = 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉 , u, v ∈ T(id,0)H
sG.

Proof. Let (ϕ, f) = p ∈ HsG, X,Y, Z ∈ TpH
sG and (X,Y, Z) ◦ ϕ−1 = (u, v, w). By the

local formula for the curvature,

R(X,Y )Z = D1Γp(Z,X)Y −D1Γp(Z, Y )X + Γp(Γp(Z, Y ), X) − Γp(Γp(Z,X), Y ),

see the proof of Theorem 2.4. For the CH equation we found that
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d

dε

∣∣∣∣
ε=0

Γ 0
id+εv1(w1, u1) = −Γ 0

id(w1xv1, u1) − Γ 0
id(u1xv1, w1) + Γ 0

id(w1, u1)xv1.

Since

d

dε

∣∣∣∣
ε=0

[
−1

2
(u2w2) ◦ (id + εv1)−1

]
x

=
1

2
((w2xv1)u2)x +

1

2
((u2xv1)w2)x

and

d

dε

∣∣∣∣
ε=0

{[
−1

2
(w1xu2 + u1xw2)

]
◦R(id+εv1)−1

}
=

1

2
((w1xv1)u2)x +

1

2
((u1xv1)w2)x,

we get

D1Γ (w, u)v = −Γ (wxv1, u) − Γ (uxv1, w) + Γ (w, u)xv1

and hence

S(u, v) = 〈Γ (Γ (v, v), u), u〉 − 〈Γ (Γ (v, u), v), u〉 + 〈Γ (v, u)xv1 − Γ (v, v)xu1, u〉
+ 〈−Γ (vxv1, u) − Γ (v, uxv1) + 2Γ (vxu1, v), u〉 .

Using that Γ = (Γ1, Γ2) is given by (4.28) we now compute

〈Γ (v, u)xv1 − Γ (v, v)xu1, u〉 + 〈Γ (Γ (v, v), u), u〉 − 〈Γ (Γ (v, u), v), u〉
= 〈Γ (v, u)xv1 − Γ (v, v)xu1, u〉 +

+
1

2

〈(
(Γ1(v, v)u1)x

Γ2(v, v)xu1 + u2xΓ1(v, v)

)
+B(Γ (v, v), u) +B(u, Γ (v, v)), u

〉
−1

2

〈(
(Γ1(v, u)v1)x

Γ2(v, u)xv1 + v2xΓ1(v, u)

)
+B(Γ (v, u), v) +B(v, Γ (v, u)), u

〉
=

1

2

〈(
Γ1(v, u)xv1 − Γ1(v, u)v1x
Γ2(v, u)xv1 − Γ1(v, u)v2x

)
, u

〉
+

1

2
〈u, [Γ (v, v), u]〉

+
1

2

〈(
Γ1(v, v)u1x − Γ1(v, v)xu1
Γ1(v, v)u2x − Γ2(v, v)xu1

)
, u

〉
− 1

2
〈Γ (v, u), [v, u]〉

−1

2
〈v, [Γ (v, u), u]〉

=
1

2
〈[v, Γ (v, u)], u〉 + 〈u, [Γ (v, v), u]〉 − 1

2
〈Γ (v, u), [v, u]〉 − 1

2
〈v, [Γ (v, u), u]〉

=
1

2
〈B(u, v), Γ (v, u)〉 − 〈B(u, u), Γ (v, v)〉 − 1

2
〈Γ (v, u), [v, u]〉

+
1

2
〈B(v, u), Γ (v, u)〉

= 〈Γ (u, v), Γ (u, v)〉 − 1

2

〈(
(u1v1)x

u2xv1 + v2xu1

)
, Γ (u, v)

〉
− 1

2
〈Γ (v, u), [v, u]〉

− 〈Γ (u, u), Γ (v, v)〉 +
1

2

〈(
(u21)x

u2xu1 + u2xu1

)
, Γ (v, v)

〉
= 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉 +

〈(
u1u1x
u1u2x

)
, Γ (v, v)

〉
−1

2

〈(
(u1v1)x + u1xv1 − u1v1x

u2xv1 + v2xu1 + u2xv1 − v2xu1

)
, Γ (u, v)

〉
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which is equal to

〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉 +

〈(
u1u1x
u1u2x

)
, Γ (v, v)

〉
−
〈(

u1xv1
u2xv1

)
, Γ (u, v)

〉
.

Hence

S(u, v) = 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉
+ 〈−Γ (vxv1, u) − Γ (v, uxv1) + 2Γ (vxu1, v), u〉
−
〈(

u1xv1
u2xv1

)
, Γ (u, v)

〉
+

〈(
u1xu1
u2xu1

)
, Γ (v, v)

〉
.

We now claim that that the sum of the last three terms is zero. To see this, we use that

Γ (u, v) =

(
Γ 0(u1, v1) − 1

2A
−1(u2v2)x

− 1
2 (u1xv2 + v1xu2)

)
(4.29)

and that the terms involving Γ 0 cancel out as explained in the proof of Theorem 2.4.

The remaining terms are〈(
1
2A

−1(v2xv1u2)x
1
2 ((v1xv1)xu2 + u1x(v2xv1))

)
, u

〉
+

〈(
1
2A

−1(v2u2xv1)x
1
2 ((v1xu2xv1 + (u1xv1)xv2)

)
, u

〉

−
〈(

A−1(v2xu1v2)x
((v1xu1)xv2 + v1xv2xu1)

)
, u

〉
+

〈(
u1xv1
u2xv1

)
,

(
1
2A

−1(u2v2)x
1
2 (u1xv2 + v1xu2)

)〉
−
〈(

u1xu1
u2xu1

)
,

(
1
2A

−1(v22)x
v1xv2

)〉
.

We first consider the H1-terms, i.e., the first row terms:

1

2

∫
S

(v2xv1u2)xu1 dx+
1

2

∫
S

(v2u2xv1)xu1 dx−
∫
S

(v2xu1v2)xu1 dx

+
1

2

∫
S

u1xv1(u2v2)x dx−
∫
S

u1xu1v2v2x dx.

The L2-terms can be found in the second row:

1

2

∫
S

(v1xv1)xu
2
2 dx+

1

2

∫
S

u1xv2xv1u2 dx+
1

2

∫
S

v1xu2xv1u2 dx

+
1

2

∫
S

(u1xv1)xv2u2 dx−
∫
S

(v1xu1)xv2u2 dx−
∫
S

v1xv2xu1u2 dx+

+
1

2

∫
S

u2xv1u1xv2 dx+
1

2

∫
S

u2xv1v1xu2 dx−
∫
S

u2xu1v1xv2 dx.

The terms quadratic in u2 cancel out since

1

2

∫
S

(v1xv1)xu
2
2 dx+

∫
S

v1xv1u2xu2 dx = 0.

Similarly, the terms quadratic in u1 cancel out:
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−
∫
S

(v2xu1v2)xu1 dx−
∫
S

u1u1xv2v2x dx = 0.

A careful observation shows that the other terms also give zero:

1

2

∫
S

u1xv2xv1u2 dx+
1

2

∫
S

(u1xv1)xv2u2 dx−
∫
S

(v1xu1)xv2u2 dx

−
∫
S

v1xv2xu1u2 dx+
1

2

∫
S

u2xv1u1xv2 dx−
∫
S

u2xu1v1xv2 dx

+
1

2

∫
S

(v2xv1u2)xu1 dx+
1

2

∫
S

(v2u2xv1)xu1 dx+
1

2

∫
S

u1xv1(u2v2)x dx

=
1

2

∫
S

u1xv1u2v2x dx− 1

2

∫
S

u1xv1u2xv2 dx− 1

2

∫
S

u1xv1u2v2x dx

−
∫
S

(u1v1x)xu2v2 dx−
∫
S

u1v1xu2v2x dx+
1

2

∫
S

u1xv1u2xv2 dx

−
∫
S

u1v1xu2xv2 dx− 1

2

∫
S

u1xv1u2v2x dx− 1

2

∫
S

u1xv1u2xv2 dx

+
1

2

∫
S

u1xv1u2xv2 dx+
1

2

∫
S

u1xv1u2v2x dx

=

∫
S

u1v1xu2xv2 dx+

∫
S

u1v1xu2v2x dx−
∫
S

u1v1xu2v2x dx−
∫
S

u1v1xu2xv2 dx

= 0.

This finishes our proof. ��
Let us write S2 for the sectional curvature of 2CH and S1 for the CH sectional curvature.

We are now interested in two-dimensional subspaces for which S2 is positive. As explained

in Chap. 1, this has various interesting geometric interpretations, e.g., concerning stability

of the geodesics. Since

S2

((
u1
0

)
,

(
v1
0

))
= S1(u1, v1), (4.30)

we directly conclude that the same examples of subspaces of positive curvature for the CH

equation found in Sect. 2.2 work for the 2CH: Recall Theorem 2.5 where we showed for

the CH equation that S1(u1, v1) is positive whenever u1, v1 are trigonometric functions

of the form cos kx, sin lx with k �= l ∈ 2πN. We now investigate the curvature of HsG in

directions which are non-trivial along the second component.

Proposition 4.15. Let s > 5/2. Let S(u, v) = S2(u, v) := 〈R(u, v)v, u〉 be the unnor-

malized sectional curvature on HsG associated with the 2CH equation. Then

S(u, v) > 0

for all vectors u, v ∈ T(id,0)H
sG, u �= v, of the form

u =

(
cos k1x

cos k2x

)
, v =

(
cos l1x

cos l2x

)
, k1, k2, l1, l2 ∈ {2π, 4π, . . .}.

Moreover, the normalized sectional curvature satisfies

S(u, v)

|u ∧ v|2 ≥ 1

8
(4.31)
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for all vectors u, v ∈ T(id,0)H
sG, u �= v, of the form

u =

(
0

cos k2x

)
, v =

(
0

cos l2x

)
, k2, l2 ∈ {2π, 4π, . . . }.

Proof. Let us denote the components of u and v by u1, u2 and v1, v2. In the following

computations, we use the relation

A−1 cosαx =
1

1 + α2
cosαx,

Eq. (2.17) for Γ 0(cos k1x, cos l1x),

Γ 0(cos k1x, cos l1x) = ∂x

[
−

1
2 (1 − 1

2k1l1)

1 + (k1 + l1)2
cos(k1 + l1)x−

1
2 (1 + 1

2k1l1)

1 + (k1 − l1)2
cos(k1 − l1)x

]
,

the trigonometric identities

cosα cosβ =
1

2
(cos(α − β) + cos(α+ β)),

sinα sinβ =
1

2
(cos(α − β) − cos(α+ β)),

sinα cosβ =
1

2
(sin(α− β) + sin(α + β)),

as well as the orthogonality relations∫ 1

0

cos(αx) cos(βx) dx =

∫ 1

0

sin(αx) sin(βx) dx =
1

2
(δα,β ± δα,−β) (4.32)

and ∫ 1

0

cos(αx) sin(βx) dx = 0 (4.33)

for α, β ∈ 2πZ. According to Theorem 4.14 and (4.29),

S2(u, v) = 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉
=

∫
S

Γ1(u, v)AΓ1(u, v) dx+

∫
S

Γ2(u, v)2 dx

−
∫
S

Γ1(u, u)AΓ1(v, v) dx−
∫
S

Γ2(u, u)Γ2(v, v) dx

=

∫
S

(
Γ 0(u1, v1) − 1

2
A−1(u2v2)x

)
A

(
Γ 0(u1, v1) − 1

2
A−1(u2v2)x

)
dx

−
∫
S

(
Γ 0(u1, u1) − 1

2
A−1(u22)x

)
A

(
Γ 0(v1, v1) − 1

2
A−1(v22)x

)
dx

+
1

4

∫
S

(u1xv2 + v1xu2)2 dx−
∫
S

u1xu2v1xv2 dx,

and thus

S2(u, v) = S1(u1, v1) +

4∑
j=1

Ij

where
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I1 =
1

4

∫
S

(u2v2)xA
−1(u2v2)x dx,

I2 = −1

4

∫
S

(u22)xA
−1(v22)x dx,

I3 =
1

2

∫
S

[
Γ 0(u1, u1)(v22)x + Γ 0(v1, v1)(u22)x − 2Γ 0(u1, v1)(u2v2)x

]
dx,

I4 =
1

4

∫
S

(u21xv
2
2 + v21xu

2
2) dx− 1

2

∫
S

u1xu2v1xv2 dx

so that S2(u, v) equals the CH-curvature of u1 and v1 plus additional terms. Now using

integration by parts we obtain

I1 = −1

4

∫
S

(u2v2)xxA
−1(u2v2) dx

= − 1

16

∫
S

(cos(k2 − l2)x+ cos(k2 + l2)x)xxA
−1 (cos(k2 − l2)x+ cos(k2 + l2)x) dx

=
1

16

∫
S

(
(k2 − l2)2 cos(k2 − l2)x + (k2 + l2)2 cos(k2 + l2)x

)
×A−1 (cos(k2 − l2)x+ cos(k2 + l2)x) dx

=
1

16

∫
S

(
(k2 − l2)2 cos(k2 − l2)x + (k2 + l2)2 cos(k2 + l2)x

)
×
(

cos(k2 − l2)x

1 + (k2 − l2)2
+

cos(k2 + l2)x

1 + (k2 + l2)2

)
dx

=
1

32

(
(k2 − l2)2

1 + (k2 − l2)2
+

(k2 + l2)2

1 + (k2 + l2)2

)
and

I2 = −
∫
S

u2u2xA
−1v2v2x dx

= −k2l2
4

∫
S

(sin 2k2x)A−1(sin 2l2x) dx

= −1

8

k22
1 + (2k2)2

δk2,l2

and

I3 =

∫
S

Γ 0(u1, v1)x(u2v2) dx− 1

2

∫
S

Γ 0(u1, u1)xv
2
2 dx+

1

2

∫
S

Γ 0(v1, v1)(u22)x dx

=

∫
S

( 1
2 (1 − 1

2k1l1)(k1 + l1)2

1 + (k1 + l1)2
cos(k1 + l1)x+

1
2 (1 + 1

2k1l1)(k1 − l1)2

1 + (k1 − l1)2
cos(k1 − l1)x

)
×1

2
(cos(k2 − l2)x+ cos(k2 + l2)x) dx

−1

4

∫
S

1
2 (1 − 1

2k
2
1)

1 + (2k1)2
(2k1)2 cos(2k1x)(1 + cos 2l2x) dx

+
1

2

∫
S

Γ 0(v1, v1)(u22)x dx
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=
1

8

(1 − 1
2k1l1)(k1 + l1)2

1 + (k1 + l1)2
(δk1+l1,k2−l2 + δk1+l1,l2−k2 + δk1+l1,k2+l2)

+
1

8

(1 + 1
2k1l1)(k1 − l1)2

1 + (k1 − l1)2
(δk1−l1,k2−l2 + δk1−l1,l2−k2 + δk1−l1,k2+l2 + δl1−k1,k2+l2)

−k
2
1

4

1 − 1
2k

2
1

1 + (2k1)2
δk1,l2 −

l21
4

1 − 1
2 l

2
1

1 + (2l1)2
δk2,l1

and

I4 =
1

4
k21

∫
S

sin2 k1x cos2 l2xdx+
1

4
l21

∫
S

sin2 l1x cos2 k2xdx

−1

2
k1l1

∫
S

sin k1x cos k2x sin l1x cos l2xdx

=
1

16
k21

∫
S

(1 − cos 2k1x) (1 + cos 2l2x) dx+
1

16
l21

∫
S

(1 − cos 2l1x) (1 + cos 2k2x) dx

−1

8
k1l1

∫
S

(cos(k1 − l1)x− cos(k1 + l1)x) (cos(k2 − l2)x+ cos(k2 + l2)x) dx

=
1

16
k21

(
1 − 1

2
δk1,l2

)
+

1

16
l21

(
1 − 1

2
δl1,k2

)
− 1

16
k1l1(δk1−l1,k2−l2 + δk1−l1,l2−k2 + δk1−l1,k2+l2 + δl1−k1,k2+l2

−δk1+l1,k2−l2 − δk1+l1,l2−k2 − δk1+l1,k2+l2).

The sum of the negative terms occurring in the above computations can be estimated as

follows:

− 1

8

k22
1 + (2k2)2

δk2,l2

− 1

16
k1l1

(k1 + l1)2

1 + (k1 + l1)2
(δk1+l1,k2−l2 + δk1+l1,l2−k2 + δk1+l1,k2+l2)

− 1

16
k1l1

(
δk1−l1,k2−l2 + δk1−l1,l2−k2 + δk1−l1,k2+l2 + δl1−k1,k2+l2

)
≥− 1

32
− k1l1

16
− k1l1

16
, (4.34)

because at most one delta function within each bracket can give a nonzero contribution

for a given set of values of k1, k2, l1, l2 ∈ {2π, 4π, . . . }. On the other hand, the term

S1(u1, v1) contributes to S(u, v) the positive term

1

8

(1 − 1
2k1l1)2

1 + (k1 + l1)2
(k1 + l1)2, (4.35)

and the sum of the right-hand side of (4.34) and (4.35) is positive:

1

8

(1 − 1
2k1l1)2

1 + (k1 + l1)2
(k1 + l1)2 − 1

32
− k1l1

8
≥ 1

16

(
1 − 1

2
k1l1

)2

− 1

32
− k1l1

8

=
k21l

2
1

16

[
1

k21l
2
1

− 1

k1l1
+

1

4
− 1

2k21l
2
1

− 2

k1l1

]
> 0,
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where we used that k1, l1 ≥ 2π. This shows that S2(u, v) > 0. In remains to prove (4.31).

Suppose u1 = v1 = 0 and u2 �= v2. Then

S

((
0

u2

)
,

(
0

v2

))
= I1 + I2

=
1

32

(
(k2 − l2)2

1 + (k2 − l2)2
+

(k2 + l2)2

1 + (k2 + l2)2

)
− 1

8

k22
1 + (2k2)2

δk2,l2

≥ 1

64
+

1

64
,

where we used that k2 �= l2. On the other hand, for this choice of u and v,

〈u, v〉 = 0,

and hence

〈u, u〉〈v, v〉 − 〈u, v〉2 =
1

4
.

This yields (4.31). ��
Remark 4.16. Although Proposition 4.15 establishes the existence of a large subspace of

positive curvature, there are also directions for 2CH of strictly negative curvature. Indeed,

it can be shown that there exist directions of strictly negative sectional curvature for the

CH equation, [40]. In view of (4.30), this implies that 2CH also admits directions of

negative curvature.

4.2.4 The 2CH equation and the motion of a rigid body

In this section, we make clear that the 2CH fits into the geometric approach introduced

in [5, 37] to describe the motion of an ideal fluid in analogy to the motion of a rigid body

(which already proved to be successful for the CH equation, cf. [62]). For the motion of a

rigid body, we now recall the results presented in Sect. 1.2.2 for clarity. In the next step,

we discuss the CH equation under the same aspects and include our results for 2CH in

the final subsection.

4.2.4.1 The rotating rigid body

The configuration space of a rigid body in R3 rotating around its center of mass is the

Lie group SO(3). The corresponding Lie algebra is so(3), the space of antisymmetric

3 × 3-matrices, which is canonically identified with R3. We can also identify the dual

space so(3)∗ with R3. Let I : R3 → R3 be the inertia matrix of the body. A left -invariant

metric 〈·, ·〉 on SO(3) is given at the identity by

〈a, b〉 = a · Ib, ∀a, b ∈ so(3) � R
3.

The fact that the body’s motion is described by the classical Euler equation can then be

reformulated in the geometric picture: R(t) is a geodesic on (SO(3), 〈·, ·〉) if and only if

Ω(t) := R(t)−1Ṙ(t) solves the Euler equation
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IΩ̇ = (IΩ) ×Ω.

Physically, Ω(t) represents the angular velocity in the reference frame of the rotating

body. The angular velocity in the spatially fixed frame of reference is given by Ṙ(t)R−1(t).

In other words: Applying left and right translations to the material angular velocity Ṙ(t),

one obtains the body and the spatial angular velocity which both are elements of the

Lie algebra so(3). The body and spatial angular momenta, which are elements of the

dual so(3)∗, are given by Π(t) = IΩ(t) and π(t) = R(t)Π(t), respectively. The body and

spatial quantities are related by the adjoint and coadjoint actions

ω(t) = AdR(t)Ω(t) = R(t)Ω(t)R−1(t), Π(t) = Ad∗
R(t)π(t). (4.36)

Conservation of (spatial) angular momentum means that π is constant in time, i.e.,

dπ

dt
= 0. (4.37)

4.2.4.2 The CH equation

For the CH equation

ut − utxx + 3uux = 2uxuxx + uuxxx, x ∈ S, t > 0,

the configuration space is Diff(S) with multiplication (ϕ, ψ) �→ ϕ◦ψ. Elements of the Lie

algebra g are identified with functions S → R. A right -invariant metric is defined at the

identity by

〈u, v〉H1 =

∫
S

uAv dx =

∫
S

(uv + uxvx) dx;

here, A = 1 − ∂2x : g → g∗ is the inertia operator. In this picture, the CH equation

is the Euler equation on the diffeomorphism group Diff(S) in the sense that ϕ(t) is a

geodesic in (Diff(S), 〈·, ·〉H1) if and only if its Eulerian velocity u(t) = Dϕ(t)Rϕ−1(t)ϕt(t) =

ϕt(t) ◦ ϕ−1(t) solves the CH equation. Letting U = DϕLϕ−1ϕt = (u ◦ ϕ)/ϕx, U and u

are the analogs of the body and spatial angular velocities: they are obtained by left resp.

right translation of the material velocity ϕt to the Lie algebra. The momentum in the

spatial frame is m = Au. The analog of Eq. (4.36) is

u(t) = Adϕ(t)U(t), m0(t) = Ad∗
ϕ(t)m(t),

where m0 = (m◦ϕ)ϕ2
x is the momentum in the body frame. Since the metric is now right-

instead of left-invariant, the analog of the conservation law (4.37) is that the momentum

m0 in the body frame is conserved,

dm0

dt
= 0, i.e., (m ◦ ϕ)ϕ2

x = m0.
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4.2.4.3 The 2CH equation

For the 2CH equation (4.4) the configuration space is the semidirect product G =

Diff(S)�F(S) introduced in Section 4.1. The Lie algebra g is identified with F(S)×F(S).

The inertia operator is diag(A, id) and the metric is the right-invariant metric 〈·, ·〉 defined

in (4.10). The basic observation is that (ϕ(t), f(t)) is a geodesic in (Diff(S)�F(S), 〈·, ·〉)
if and only if

(u(t), ρ(t)) = D(ϕ(t),f(t))R(ϕ(t),f(t))−1(ϕt(t), ft(t))

satisfies (4.4). The analog of the body angular velocity is (U1, U2) = D(ϕ,f)L(ϕ,f)−1(ϕt, ft)

and is obtained from

D(ϕ,f)L(ϕ,f)−1v =
d

dt
(ϕ−1,−f ◦ ϕ−1)(γ1(t), γ2(t))

∣∣∣∣
t=0

=
d

dt
(ϕ−1 ◦ γ1(t), γ2(t) − (f ◦ ϕ−1) ◦ γ1(t))

∣∣∣∣
t=0

=

(
v1
ϕx
, v2 − fx

ϕx
v1

)
,

where γ(t) is a curve starting at (ϕ, f) with velocity v. Thus(
U1

U2

)
=

(
u◦ϕ
ϕx

ρ ◦ ϕ− fx
ϕx
u ◦ ϕ

)
.

The spatial momentum is (m, ρ) = (Au, ρ). The analog of equation (4.36) is

(u(t), ρ(t)) = Ad(ϕ(t),f(t))(U1(t), U2(t)), (m0(t), ρ0(t)) = Ad∗
(ϕ(t),f(t))(m(t), ρ(t)),

where (m0, ρ0) is the momentum in the body frame. In order to find an explicit expression

for (m0, ρ0), we need to compute the adjoint and coadjoint actions. We have

Ad(ϕ,f)

(
v

η

)
=

(
(vϕx) ◦ ϕ−1

(η + fxv) ◦ ϕ−1

)
.

The L2-pairing is used to identify the (regular part of the) dual g∗ of g with F(S)×F(S).

Since〈(
m

ρ

)
,Ad(ϕ,f)

(
v

η

)〉
=

∫
S

m[(vϕx) ◦ ϕ−1] dx+

∫
S

ρ[(fxv + η) ◦ ϕ−1] dx

=

∫
S

m(ϕ(y))ϕ2
x(y)v(y) dy +

∫
S

ρ(ϕ(y))(fxv + η)(y)ϕx(y) dy

=

〈(
(m ◦ ϕ)ϕ2

x + (ρ ◦ ϕ)fxϕx
(ρ ◦ ϕ)ϕx

)
,

(
v

η

)〉
we find

Ad∗
(ϕ,f)

(
m

ρ

)
=

(
(m ◦ ϕ)ϕ2

x + (ρ ◦ ϕ)fxϕx
(ρ ◦ ϕ)ϕx

)
,

(
m

ρ

)
∈ g∗.

The analog of the conservation law (4.37) is that the momentum (m0, ρ0) in the body

frame is conserved,
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d

dt

(
m0

ρ0

)
= 0, i.e.,

(
(m ◦ ϕ)ϕ2

x + (ρ ◦ ϕ)fxϕx
(ρ ◦ ϕ)ϕx

)
=

(
m0

ρ0

)
.

This explains the origin of the conservation law established in Lemma 4.7.

Table 4.1 A rigid body, the CH equation and the 2CH equation: Geometric aspects.

Rigid body CH 2CH

configuration space SO(3) Diff(S) Diff(S)�F(S)

Lie algebra so(3) F(S) F(S) × F(S)

material velocity Ṙ ϕt (ϕt, ft)

spatial velocity ω = ṘR−1 u = ϕt ◦ ϕ−1 (u, ρ) = (ϕt, ft) ◦ ϕ−1

body velocity Ω = R−1Ṙ U = u◦ϕ
ϕx

(
U1

U2

)
=

(
u◦ϕ
ϕx

ρ ◦ ϕ− fx
ϕx

(u ◦ ϕ)

)

inertia operator I A = 1 − ∂2
x

(
A 0

0 id

)
spatial momentum π = RIΩ m = Au = u− uxx (m, ρ) = (Au, ρ)

body momentum Π = IΩ m0 = (m ◦ ϕ)ϕ2
x

(
m0

ρ0

)
=

(
(m ◦ ϕ)ϕ2

x + (ρ ◦ ϕ)fxϕx

(ρ ◦ ϕ)ϕx

)
spatial velocity (Ad) ω = AdRΩ u = AdϕU (u, ρ) = Ad(ϕ,f)(U1, U2)

body momentum (Ad∗) Π = Ad∗
Rπ m0 = Ad∗

ϕm (m0, ρ0) = Ad∗
(ϕ,f)(m, ρ)

momentum conservation π = const m0 = const (m0, ρ0) = const

4.3 A generalization to the 2DP equation

Here we study the two-component generalization (4.5) of the DP equation as proposed

in [115] on account of an appropriate Hamiltonian structure. Most of the results for

2CH presented in the previous section have direct counterparts in the case of 2DP; the

main exception being that the geodesic flow associated with 2DP is not induced by any

right-invariant metric. Therefore, we can apply the technology developed for the 2CH,

working for the configuration spaces HsG for s > 5/2, CnG for n ≥ 2 and finally C∞G.

We introduce a bilinear operator on g = T(id,0)H
sG � Hs ×Hs−1 by setting

Γ(id,0)(X,Y ) =

(
Γ 0
id(X1, Y1) − 1

2A
−1(X2Y1x +X1xY2) +A−1(X2Y2)x
−(X2Y1x +X1xY2)

)
(4.38)

for X = (X1, X2), Y = (Y1, Y2) ∈ g, where

Γ 0
id(u, v) = −3

2
A−1(uv)x

denotes the Christoffel operator for the DP equation. It is important to recall that the

DP equation belongs to the family of non-metric Euler equations, i.e., there exists no

Riemannian metric 〈·, ·〉 on HsDiff(S) such that the DP equation can be written in the

form

ut = −ad∗
uu,

where u is the Eulerian velocity of some smooth path in HsDiff(S) and ad∗ denotes the

adjoint of ad with respect to 〈·, ·〉, cf. [45]. We will use the bilinear operator introduced
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in (4.38) to define a right-invariant affine connection ∇ on HsG by the local formula

(4.9) and it will turn out that the 2DP equation is a geodesic equation on on HsG with

respect to this connection (although ∇ is not compatible with any Riemannian metric).

The proof of the following proposition is similar to that of Proposition 4.1.

Proposition 4.17. Let s > 5/2. Let HsG = HsDiff(S)�Hs−1(S) and let Γ be the 2DP

Christoffel map defined in (4.38). Then Γ defines a smooth spray on HsG, i.e., the map

(ϕ, f) �→ Γ(ϕ,f) : HsG→ L2
sym(Hs(S) ×Hs−1(S);Hs(S) ×Hs−1(S))

is smooth.

Proof. The first component terms in (4.38) are of the form A−1 applied to a polyno-

mial expression in Xi, Yi and Xix, Yix. The second component is a polynomial term in

X1x, X2, Y1x, Y2. Hence the same arguments as in the proof of Proposition 4.1 can be

applied. ��
The existence of a smooth spray implies local existence and uniqueness of the geodesic

flow. We obtain, by our definition of Γ(ϕ,f), that(
ϕtt
ftt

)
=

(
(ut + uux) ◦ ϕ
(ρt + uρx) ◦ ϕ

)
=

(−[A−1((Au)xu+ 3(Au)ux −A(uux))] ◦ ϕ− [A−1(ρux − 2ρρx)] ◦ ϕ
−2(ρux) ◦ ϕ

)
=

(−3[A−1(uux)] ◦ ϕ− [A−1(ρux)] ◦ ϕ+ 2[A−1(ρρx)] ◦ ϕ
−2(ρux) ◦ ϕ

)
= Γ(ϕ,f)((ϕt, ft), (ϕt, ft)) (4.39)

so that the 2DP equation is in fact the geodesic equation for the connection ∇, cf.

Remark 2.3 and [88].

Theorem 4.18. Let s > 5/2. Let Γ be the 2DP Christoffel map defined in (4.38).

Then there exists an open interval J centered at 0 and an open neighborhood U of

(0, 0) ∈ Hs(S) × Hs−1(S) such that for each (u0, ρ0) ∈ U there exists a unique solu-

tion (ϕ, f) ∈ C∞(J,HsG) of the geodesic equation (4.39) satisfying (ϕ(0), f(0)) = (id, 0)

and (ϕt(0), ft(0)) = (u0, ρ0). Furthermore, the solution depends smoothly on the ini-

tial data in the sense that the local flow Φ : J × U → HsG defined by Φ(t, u0, ρ0) =

(ϕ(t;u0, ρ0), f(t;u0, ρ0)) is a smooth map.

We write the Cauchy problem for 2DP in the form⎧⎨⎩
ut + uux = −A−1

((
3
2u

2 − ρ2
)
x

+ ρux
)
,

ρt + uρx = −2ρux,

(u(0), ρ(0)) = (u0, ρ0).

(4.40)

It follows from Theorem 4.18 that 2DP is locally well-posed in Hs(S) × Hs−1(S) for

s > 5/2. According to a referee’s suggestion it might be useful to repeat the arguments

used in the proof of the well-posedness of the original 2DP equation (although everything

works as for the 2CH equation).

Corollary 4.19. Suppose s > 5/2. Then for any (u0, ρ0) ∈ Hs(S)×Hs−1(S) there exists

an open interval J centered at 0 and a unique solution
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(u, ρ) ∈ C(J,Hs(S) ×Hs−1(S)) ∩ C1(J,Hs−1(S) ×Hs−2(S))

of the Cauchy problem (4.40) which depends continuously on the initial data (u0, ρ0).

Proof. Let (ϕ(t), f(t)) ∈ HsG be the smooth curve with (ϕ(0), f(0)) = (id, 0) and

(ϕt(0), ft(0)) = (u0, ρ0) obtained in Theorem 4.18 and define (u(t), ρ(t)) := (ϕt(t), ft(t))◦
ϕ−1(t). Then, (u, ρ) has the regularity specified in the corollary and depends continu-

ously on (u0, ρ0). By right-invariance of the 2DP Christoffel map Γ , the geodesic equation

(ϕtt, ftt) = Γ(ϕ,f)((ϕt, ft), (ϕt, ft)) can be written as(
ut + uux
ρt + uρx

)
= Γ(id,0)((u, ρ), (u, ρ)).

This is equation (4.40).

The results of the above discussion hold with the obvious changes also in the Cn-category,

n ≥ 2. The following conservation laws are also only slightly different to the conservation

laws presented in Lemma 4.7 for 2CH.

Lemma 4.20. Let (u, ρ) be a solution of (4.5) with geodesic flow (ϕ, f). Then for any

time t in the existence interval of (u, ρ) we have

d

dt
[(m ◦ ϕ)ϕ3

x − (ρ ◦ ϕ)ϕ2
x(−ϕx + 2fx)] = 0

and
d

dt
[(ρ ◦ ϕ)ϕ2

x] = 0.

Proof. We have

d

dt

[
(m ◦ ϕ)ϕ3

x

]
= [(mt + umx) ◦ ϕ]ϕ3

x + 3ϕ3
x(mux) ◦ ϕ

= [(−ρux + 2ρρx) ◦ ϕ]ϕ3
x

and
d

dt

[
(ρ ◦ ϕ)ϕ2

x

]
= [(ρt + uρx) ◦ ϕ]ϕ2

x + 2[(ρux) ◦ ϕ]ϕ2
x = 0.

With

−ϕtx + 2ftx = −(u ◦ ϕ)x + 2(ρ ◦ ϕ)x = [(−ux + 2ρx) ◦ ϕ]ϕx

we are done. ��
We have the following blow-up result for 2DP; the proof is similar to that of Proposi-

tion 4.9, cf. [40].

Proposition 4.21. Let s > 5/2. Let (u0, ρ0) ∈ Hs(S) × Hs−1(S) and let T > 0 be the

maximal time of existence of the solution

(u, ρ) ∈ C([0, T ), Hs(S) ×Hs−1(S)) ∩ C1([0, T ), Hs−1(S) ×Hs−2(S))

of the Cauchy problem (4.40). Then the solution (u, ρ) blows up in finite time if and only

if

lim
t→T

inf
x∈S

ux(t, x) = −∞ or lim sup
t→T

||ρx(t)||L∞ = ∞.
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Let

Φ3 : [0, T3) × U3 → H3G,

where T3 > 0 and U3 ⊂ H3(S)×H2(S), be the local geodesic flow on H3G whose existence

is guaranteed by Theorem 4.18.

Proposition 4.22. Suppose s > 3 and let Φs denote the restriction of Φ3 to [0, T3)×Us,
where Us = U3∩ (Hs(S)×Hs−1(S)). Let Γ be the 2DP Christoffel map defined in (4.38).

Then Φs is a smooth local flow of the geodesic equation (4.39) on HsG, that is,

a. Φs is a smooth map from [0, T3) × Us to HsG.

b. For each (u0, ρ0) ∈ Us, Φs(·, u0, ρ0) is a smooth solution of equation (4.39) on [0, T3)

satisfying Φs(0, u0, ρ0) = (id, 0) and ∂tΦs(0, u0, ρ0) = (u0, ρ0).

Proof. The proof is identical to that of Proposition 4.10 except that equation (4.24) must

be replaced with

f(t) = ρ0

∫ t

0

ds

ϕ2
x(s)

,

cf. Lemma 4.20. ��
We thus obtain the following well-posedness results.

Theorem 4.23. Let Γ be the 2DP Christoffel map. There exists an open interval J

centered at 0 and an open neighborhood U of (0, 0) ∈ C∞(S) ×C∞(S) such that for each

(u0, ρ0) ∈ U there exists a unique solution (ϕ, f) ∈ C∞(J,C∞G) of the geodesic equation

(4.39) satisfying (ϕ(0), f(0)) = (id, 0) and (ϕt(0), ft(0)) = (u0, ρ0). Furthermore, the

solution depends smoothly on the initial data in the sense that the local flow Φ : J ×U →
C∞G defined by Φ(t, u0, ρ0) = (ϕ(t;u0, ρ0), f(t;u0, ρ0)) is a smooth map.

Corollary 4.24. There exists an open interval J centered at 0 and an open neighborhood

U of (0, 0) ∈ C∞(S)×C∞(S) such that for each (u0, ρ0) ∈ U there exists a unique solution

(u, ρ) ∈ C∞(J,C∞(S) × C∞(S))

of (4.5) with (u(0), ρ(0)) = (u0, ρ0). Furthermore, the solution depends smoothly on the

initial data in the sense that the local flow Φ : J × U → C∞(S) × C∞(S) defined by

Φ(t, u0, ρ0) = (u(t;u0, ρ0), ρ(t;u0, ρ0)) is a smooth map.

4.4 The Euler formalism for the 2HS equation and the 2µHS
equation

We now consider a two-component variant of the HS equation which we introduced in

Sect. 1.4. The idea is to start with Eq. (4.4) and to replace m = −uxx, cf. [90]. From the

2HS equation we also obtain the corresponding μ-version by setting m = μ(u) − uxx.

Let t ≥ 0 and x ∈ S. By a solution of the periodic 2-component Hunter-Saxton

equation with initial data (u0, ρ0) we mean a function (u(t, x), ρ(t, x)) which satisfies
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
mt = −umx − 2mux − ρρx, t > 0,

ρt = −(ρu)x, t > 0,

m = −uxx, t ≥ 0,

u = u0, t = 0,

ρ = ρ0, t = 0.

(4.41)

Similarly, we say that (u, ρ) solves the 2μHS equation if (4.41) holds true with

m = μ(u) − uxx.

Remark 4.25. Eq. (4.41) reduces to the HS (the μHS, respectively) for ρ = 0. The 2μHS

equation is also called 2μCH equation since the μ-variant of HS equals the μ-variant of

CH. Observe that we obtain the same operator if we add μ to the inertia operator for

the HS or replace the identity by μ in the inertia operator for the CH.

In [90] the authors derive the 2HS equation as the N = 2 supersymmetric extension of

the Camassa-Holm equation. They also work out the bi-Hamiltonian formulation and

a Lax pair representation for the 2HS equation. Concerning geometry, the 2HS can be

regarded as an Euler equation on the superconformal algebra of contact vector fields on

the 1|2-dimensional supercircle. Finally, the paper [90] presents some explicit solutions

of Eq. (4.41), like bounded travelling waves.

In this section we are concerned with some geometric aspects of the 2HS equation. We

prove that the 2HS can be regarded as an evolution equation on a semidirect product

obtained from the Hs-diffeomorphisms on S for s sufficiently large3. Most importantly,

we show that Eq. (4.41) is compatible with the Riemannian structure induced by the

Ḣ1 inner product for the first component plus the L2 inner product for the second one

at the identity (id, 0). Defining an affine connection in terms of the Christoffel operator

for the 2HS equation, we therefrom establish that 2HS is related to a geodesic flow on

the underlying semidirect product configuration space. We are mainly concerned with

the sectional curvature for the 2HS equation and show that it has the constant value 1/4

for any two-dimensional subspace. An analogous result has been obtained in [95] for the

one-component Hunter-Saxton equation.

Finally, we discuss the 2μHS equation for which we first construct a Lax pair. Second,

we explain that the 2μHS is an Euler equation on HsDiff(S)�Hs−1(S) and a reexpression

of a geodesic flow on the semidirect product; therefore we specify the Christoffel operator

for 2μHS. We then obtain an infinite-dimensional subspace of positive sectional curvature

for 2μHS.

The reader can easily see how the geometric point of view on the 2HS equation and

the 2μHS equation corresponds to Arnold’s powerful geometric picture which proved to

be successful not only for the motion of inertia rigid objects in Classical Mechanics but

also for water wave equations like the CH and its two-component version, as explained

in Sect. 4.2.4. Since many of the arguments for HS and 2μHS are very similar to the

corresponding arguments for 2CH we will often refer to Sect. 4.2.

3 More precisely, we will work with the diffeomorphisms modulo rotations in the first component to

enforce that any u ∈ TidH
sDiff(S) satisfies u(0) = 0. This will be explained in the following subsection.
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4.4.1 Geometry associated with the HS equation

In Sect. 3.3.1, we explained taking the example of the periodic b-equation how to obtain

a local well-posedness result in case of smooth initial data: The solution u(t, x) of (1.41)

can be regarded as a vector field on S so that, if u(t, ·) ∈ Cn(S) for some finite n ∈ N,

there exists a local flow ϕ(t, ·) ∈ Diffn(S) such that u = ϕt ◦ ϕ−1 and ϕ(0) = id. Then

some elementary calculations show that Eq. (1.41) is equivalent to a first order differential

equation for the flow X(t) = (ϕ(t), ϕt(t)) where the right-hand side depends smoothly

on X . The Cauchy-Lipschitz Theorem proves the existence of a solution, uniqueness and

smooth dependence on time and the initial data, for some time interval containing zero.

Some further arguments show that this solution is in C∞(S), provided u0 ∈ C∞(S).

Let us try to adopt this technique for the HS equation, i.e., let us rewrite the HS as

an autonomous system in terms of the local flow X(t) ∈ Diff(S) × F(S) for the time-

dependent vector field u(t, ·) on S. The usual starting point is to compute ϕtt. By the

chain rule and from the relation ϕt = u ◦ ϕ, we obtain

ϕtt = (ut + uux) ◦ ϕ.

We now have to replace ut by using Eq. (1.42). But since Eq. (1.42) only includes utxx,

we differentiate twice with respect to x to obtain

∂2x(ut + uux) = utxx + 3uxuxx + uuxxx

= uxuxx

=
1

2
∂xu

2
x. (4.42)

Let A−1 be the inverse of the operator A = −∂2x studied in Lemma 3.5. If ux ∈ C(S),

the right-hand side of (4.42) is a function with zero mean; hence it is in the domain of

A−1 and we conclude

ϕtt = −1

2

[
A−1∂x(ϕt ◦ ϕ−1)2x

] ◦ ϕ.
Note also that ut+uux must belong to the domain of A which suggests that we will need

the assumption u(0) = 0. Setting

Γ (u, v) = −1

2
A−1(uxvx)x, (4.43)

we obtain a symmetric bilinear operator F(S) × F(S) → F(S). In fact, this Christoffel

map is smooth (in the categories under consideration) which enables the following geo-

metric approach, established in [97]:

For s ≥ 3 we consider the the Banach manifold HsDiff(S) of orientation-preserving

diffeomorphisms S → S of Sobolev class Hs. Let Rot(S) ⊂ HsDiff(S) be the sub-

group of rotations x �→ x + d for some d ∈ R. We denote by HsDiff(S)/Rot(S) the

space of right cosets Rot(S) ◦ ϕ = {ϕ(·) + d; d ∈ R}, for ϕ ∈ HsDiff(S), and set

M s = {ϕ ∈ HsDiff(S); ϕ(0) = 0}. We have

M s = {id + u; u ∈ Hs, ux > −1, u(0) = 0}

and thus M s is an open subset of the closed hyperplane

id + Es = id + {u ∈ Hs; u(0) = 0} ⊂ Hs.
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Writing the elements of HsDiff(S)/Rot(S) as [ϕ], the map [ϕ] �→ ϕ − ϕ(0) establishes a

diffeomorphism HsDiff(S)/Rot(S) →M s, showing in this way that M s is a global chart

for HsDiff(S)/Rot(S). Furthermore, all tangent spaces TϕM
s can be identified with Es.

Next, we define a right-invariant metric on HsDiff(S)/Rot(S) by setting

〈U, V 〉ϕ =
1

4

∫
S

(U ◦ ϕ−1)A(V ◦ ϕ−1) dx =
1

4

∫
S

UxVx
ϕx

dx (4.44)

for tangent vectors U, V ∈ TϕM
s � Es at ϕ ∈ M s. Recall that the bilinear form 〈·, ·〉id

at the identity, induced by the operator A defined in Lemma 3.5, is the Ḣ1-metric and

that our definition of A ensures that 〈·, ·〉id is indeed a positive definite inner product4.

Furthermore the metric (4.44) is compatible with the affine connection ∇ defined locally

by

∇XY (ϕ) = DY (ϕ) ·X(ϕ) − Γ (ϕ;Y (ϕ), X(ϕ)),

where Γ (ϕ; ·, ·) = Rϕ ◦Γ (id, ·, ·)◦R−1
ϕ is the smooth Christoffel map for the HS equation

with Γ (id, u, v) = − 1
2A

−1(uxvx)x. As proved in [97], the geodesics of the Ḣ1 right-

invariant metric are described by the HS equation: Let J ⊂ R be an open interval

and let ϕ : J → HsDiff(S) be a smooth curve. Then the curve u : J → TidH
sDiff(S)

defined by u : t �→ ϕt ◦ ϕ−1 satisfies the HS equation (1.42) if and only if the curve

[ϕ] : J → HsDiff(S)/Rot(S) given by [ϕ] : t �→ [ϕ(t)] is a geodesic with respect to ∇. The

geodesic inHsDiff(S)/Rot(S) can be found explicitly by the method of characteristics: For

u0 ∈ TidM
s with 〈u0, u0〉 = 1 the unique geodesic ϕ : [0, T ∗(u0)) → M s with ϕ(0) = id

and ϕt(0) = u0 is given by

ϕ(t) = id − 1

8

(
A−1∂x

(
u20x

))
(1 − cos 2t) +

1

2
u0 sin 2t,

where the maximal time of existence is

T ∗(u0) =
π

2
+ arctan

(
1

2
min
x∈S

u0x(x)

)
< π/2.

Observe that the corresponding solution u = ϕt◦ϕ−1 ∈ C([0, T ∗);Es)∩C1([0, T ∗);Es−1)

of the HS is not unique; the set of solutions is

{t �→ u(t, · − c(t)) + c′(t)} ⊂ C([0, T );Hs(S)) ∩ C1([0, T );Hs−1(S)),

where T ≤ T ∗ is the maximal time of existence, c : [0, T ) → R is an arbitrary C1-function

with c(0) = c′(0) = 0 and if T < T ∗, then |c(t)| → ∞ as t → T from below. Further

geometric aspects of the HS equation are discussed in [95, 96].

4.4.2 The geodesic flow for the 2HS equation

We define HsG0 = [HsDiff(S)/Rot(S)]�Es−1(S), s ≥ 3; this definition is motivated by

the results in Sect. 4.4.1, where we recalled that the group HsDiff(S) modulo rotations

is suitable for the one-component HS, and Sect. 4.2, where we saw for the 2CH that the

4 The factor 1/4 is introduced to obtain that the sectional curvature for HS is identically equal to one.

Here and in the sequel, we assume that A is an operator on {u ∈ Hs(S); u(0) = 0} for s ≥ 3.
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product of the group and its tangent space at id (with regularity lowered by one) is a

good candidate for the two-component generalization. Let us define a bilinear operator

Γ on Es × Es−1 by

Γ (X,Y ) :=

(
Γ 0
id(X1, Y1) − 1

2A
−1(X2Y2)x

− 1
2 (X1xY2 + Y1xX2)

)
; (4.45)

A and Γ 0 are as in Lemma 3.5 and (4.43). As a map Γ : (M s×Es−1)× (Es×Es−1)2 →
Es × Es−1, Γ is defined by

Γ(ϕ,f)(X,Y ) = Γ ((ϕ, f);X,Y ) = Γ (X ◦ ϕ−1, Y ◦ ϕ−1) ◦ ϕ. (4.46)

We next introduce the positive definite inner product 〈u, v〉 := 〈u1, v1〉Ḣ1
+ 〈u2, v2〉L2

, for

u, v ∈ Es×Es−1, and for (ϕ, f) ∈M s×Es−1 and X,Y ∈ T(ϕ,f)(M
s×Es−1) � Es×Es−1

we define

〈X,Y 〉(ϕ,f) :=
〈
X ◦ ϕ−1, Y ◦ ϕ−1

〉
, (4.47)

to obtain a right-invariant metric on HsG0. Furthermore, we let

∇XY (ϕ, f) = DY (ϕ, f) ·X(ϕ, f) − Γ(ϕ,f)(Y (ϕ, f), X(ϕ, f)), (4.48)

for vector fields X and Y on HsG0; here, X,Y : M s × Es−1 → Es × Es−1 are repre-

sentatives of the vector fields X and Y in the global chart M s × Es−1. As for the 2CH

equation we establish that 〈·, ·〉(ϕ,f) defines indeed a (weak) Riemannian metric which

is compatible with the smooth connection ∇ to ensure the existence and uniqueness of

geometric objects like geodesic flows or sectional curvatures.

Proposition 4.26. Let s ≥ 3. Let HsG0 = [HsDiff(S)/Rot(S)]�Es−1(S) and let Γ be

the Christoffel map defined in (4.45) and (4.46). Then Γ defines a smooth spray on

HsG0, i.e., the map

(ϕ, f) �→ Γ(ϕ,f) : HsG0 → L2
sym(Es × Es−1;Es × Es−1)

is smooth. Moreover, the metric 〈·, ·〉 defined in (4.47) is a smooth (weak) Riemannian

metric on HsG0, i.e., the map

([ϕ], f) �→ 〈·, ·〉([ϕ],f) : HsG0 → L2
sym(T([ϕ],f)H

sG0;R)

is a smooth section of the bundle L2
sym(THsG0;R). Finally, the connection ∇ in (4.48)

and the metric 〈·, ·〉 are compatible in the sense that

X 〈Y, Z〉 = 〈∇XY, Z〉 + 〈Y,∇XZ〉

for all vector fields X,Y, Z on HsG0.

Proof. That the Christoffel map is smooth follows from the smoothness of ϕ �→ Γ 0(ϕ, ·, ·)
established in [97]. The other terms can be discussed as for the 2CH equation. That

([ϕ], f) �→ 〈·, ·〉([ϕ],f) is smooth follows from the smoothness of the Ḣ1 right-invariant

metric on HsDiff(S)/Rot(S) and the fact that the second component makes the same

contribution to the first component term as for the 2CH. Since the Ḣ1 right-invariant

metric is compatible with the connection defined canonically by Γ 0 we are done since the
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terms including the second component can be discussed as in the proof of Proposition 4.1.

��
By our definition of Γ(ϕ,f),(

ϕtt
ftt

)
=

(
(ut + uux) ◦ ϕ
(ρt + uρx) ◦ ϕ

)
=

(−[A−1(u(Au)x + 2(Au)ux −A(uux))] ◦ ϕ− [A−1(ρρx)] ◦ ϕ
−(ρux) ◦ ϕ

)
=

(−[A−1(uxuxx)] ◦ ϕ− [A−1(ρρx)] ◦ ϕ
−(ρux) ◦ ϕ

)
= Γ(ϕ,f)((ϕt, ft), (ϕt, ft)) (4.49)

so that the 2HS equation is in fact the geodesic equation for the connection ∇, i.e.,

(u, ρ) = (ϕt, ft) ◦ ϕ−1 solves the 2HS if and only if (ϕt, ft) is a solution of (4.49). Again,

we conclude the following local well-posedness result from Proposition 4.26.

Theorem 4.27. Let s ≥ 3. Then there exists an open interval J centered at 0 and an

open neighborhood U of (0, 0) ∈ Es × Es−1 such that for each (u0, ρ0) ∈ U there ex-

ists a unique solution (ϕ, f) ∈ C∞(J,HsG0) of (4.49) satisfying (ϕ(0), f(0)) = (id, 0)

and (ϕt(0), ft(0)) = (u0, ρ0). Furthermore, the solution depends smoothly on the ini-

tial data in the sense that the local flow Φ : J × U → HsG0 defined by Φ(t, u0, ρ0) =

(ϕ(t;u0, ρ0), f(t;u0, ρ0)) is a smooth map.

It follows from Theorem 4.27 that 2HS is locally well-posed in Es × Es−1 for s ≥ 3.

Recall that HS is not well-posed in Hs(S); concerning unity of the second component

solution we refer to Chap. 6.

Corollary 4.28. Suppose s ≥ 3. Then for any (u0, ρ0) ∈ Es×Es−1 there exists an open

interval J centered at 0 and a unique solution

(u, ρ) ∈ C(J,Es × Es−1) ∩ C1(J,Es−1 × Es−2)

of the Cauchy problem ⎧⎨⎩
ut + uux = − 1

2A
−1

(
u2x + ρ2

)
x
,

ρt + uρx = −ρux,
(u(0), ρ(0)) = (u0, ρ0),

which depends continuously on the initial data (u0, ρ0).

Observe that we also have the following conservation laws.

Lemma 4.29. For the 2HS equation, we have the conservation laws

d

dt

[
(m ◦ ϕ)ϕ2

x + (ρ ◦ ϕ)fxϕx
]

= 0 and
d

dt
[(ρ ◦ ϕ)ϕx] = 0.

Proof. The proof is exactly the same as for Lemma 4.7. ��
Concerning the question of local well-posedness of 2HS in the smooth category, we refer

to the open problem chapter.
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4.4.3 The sectional curvature for the 2HS equation

For the 2HS equation we obtain an expression for the curvature tensor which is in form

similar to the equation in [95] for the curvature for HS. In particular we see that the

sectional curvature for 2HS is identically equal to 1/4—as it has been established in

[95] for the one-component HS. Note also that, in finite dimensions, any Riemannian

manifold with constant positive curvature is locally isometric to a sphere, [91], and for

the HS equation, an isometry from HsDiff(S)/Rot(S) to an open subset of an infinite-

dimensional L2-sphere is constructed in [95, 96]. Hence the geometric picture motivates

to ask for extensions of solutions beyond their breaking time by extending the geodesic

flow on a sphere. This problem has been considered by Lenells for the one-component

HS in [95, 96].

Theorem 4.30. The curvature tensor R for the 2HS equation on HsG0, s ≥ 3, equipped

with the right-invariant metric (4.47), for vector fields X,Y, Z, is given by

4R(X,Y )Z = X 〈Y, Z〉 − Y 〈X,Z〉 .

In particular, the sectional curvature for 2HS is constant and equal to 1/4.

Proof. We have the following local formula for R in terms of the Christoffel map (4.46):

R(X,Y )Z = D1Γp(Z,X)Y −D1Γp(Z, Y )X + Γp(Γp(Z, Y ), X) − Γp(Γp(Z,X), Y ),

for any vector fields X,Y, Z on HsG0. By right-invariance of Γ , i.e.,

Γp(X,Y ) ◦ ψ = Γp◦ψ(X ◦ ψ, Y ◦ ψ),

it holds that [R(X,Y )Z] ◦ ϕ−1 = R(u, v)w if X = u ◦ ϕ, Y = v ◦ ϕ and Z = w ◦ ϕ.

Therefore, it suffices to consider the curvature at (id, 0). We have

R(u, v)w = D1Γ (w, u)v −D1Γ (w, v)u + Γ (Γ (w, v), u) − Γ (Γ (w, u), v),

= −Γ (wxv1, u) − Γ (uxv1, w) + Γ (w, u)xv1

+Γ (wxu1, v) + Γ (vxu1, w) − Γ (w, v)xu1

+Γ (Γ (w, v), u) − Γ (Γ (w, u), v),

using some of the results presented in the proof of Theorem 4.14. In the first component,

we have the terms

−Γ 0(w1xv1, u1) +
1

2
A−1(w2xv1u2)x − Γ 0(u1xv1, w1) +

1

2
A−1(u2xv1w2)x

+Γ 0(w1, u1)xv1 − 1

2
[A−1(w2u2)x]xv1 + Γ 0(w1xu1, v1) − 1

2
A−1(w2xu1v2)x

+Γ 0(v1xu1, w1) − 1

2
A−1(v2xu1w2)x − Γ 0(w1, v1)xu1 +

1

2
[A−1(w2v2)x]xu1

+Γ 0

(
Γ 0(w1, v1) − 1

2
A−1(w2v2)x, u1

)
+

1

4
A−1(w1xv2u2 + v1xw2u2)x

−Γ 0

(
Γ 0(w1, u1) − 1

2
A−1(w2u2)x, v1

)
− 1

4
A−1(w1xu2v2 + u1xw2v2)x.

Using that ∂xA
−1∂x = μ− 1, cf. Remark 3.6, and the relation
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Γ 0(Γ 0(w1, v1), u1) − Γ 0(Γ 0(w1, u1), v1) = −1

4
u1μ(w1xv1x) +

1

4
v1μ(w1xu1x),

cf. [95], we see that these terms equal

1

2
A−1∂x [(w1xv1)xu1x + (u1xv1)xw1x − (w1xu1)xv1x − (v1xu1)xw1x]

−1

2
(μ− 1)(w1xu1x)v1 +

1

2
(μ− 1)(w1xv1x)u1

+
1

2
A−1 [(w2xv1u2)x + (u2xv1w2)x − (w2xu1v2)x − (v2xu1w2)x]

−1

2
(μ− 1)(w2u2)v1 +

1

2
(μ− 1)(w2v2)u1

−1

4
u1μ(w1xv1x) +

1

4
v1μ(w1xu1x) − 1

2
A−1∂x

[(
−1

2
(μ− 1)(w2v2)

)
u1x

]
+

1

2
A−1∂x

[(
−1

2
(μ− 1)(w2u2)

)
v1x

]
+

1

4
A−1∂x(v1xw2u2 − u1xw2v2). (4.50)

To see that the terms with A−1∂x cancel out, we use that u1(0) = v1(0) = 0 so that, by

Remark 3.6,

1

2
w1xu1xv1 − 1

2
u1w1xv1x = −A−1∂2x

(
1

2
w1xu1xv1 − 1

2
u1w1xv1x

)
=

1

2
A−1∂x(w1xx(u1v1x − u1xv1)

+w1xu1v1xx − w1xu1xxv1),

which coincides up to sign with the first row terms in (4.50), and

1

2
w2u2v1 − 1

2
w2v2u1 = −A−1∂2x

(
1

2
w2u2v1 − 1

2
w2v2u1

)
=

1

2
A−1∂x(w2x(v2u1 − u2v1) + w2(v2xu1 − u2xv1)

+w2(v2u1x − u2v1x)).

Using A−1∂2xv1 = −v1 and A−1∂2xu1 = −u1, the first component terms (4.50) thus reduce

to
1

4
u1(μ(w1xv1x) + μ(w2v2)) − 1

4
v1(μ(w1xu1x) + μ(w2u2)),

which is the desired expression. The second component terms are

1

2
[(w1xv1)xu2 + u1xw2xv1] +

1

2
[(u1xv1)xw2 + w1xu2xv1] − 1

2
v1[w1xu2 + u1xw2]x

−1

2
[(w1xu1)xv2 + v1xw2xu1] − 1

2
[(v1xu1)xw2 + w1xv2xu1] +

1

2
u1[w1xv2 + v1xw2]x

−1

2
(Γ1(w, v)xu2 + u1xΓ2(w, v)) +

1

2
(Γ1(w, u)xv2 + v1xΓ2(w, u)) (4.51)

and with ∂xA
−1∂x = μ− 1 we can simplify the last row terms

Γ1(w, v)x =
1

2
w1xv1x − 1

2
μ(w1xv1x) +

1

2
w2v2 − 1

2
μ(w2v2)
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and

Γ1(w, u)x =
1

2
w1xu1x − 1

2
μ(w1xu1x) +

1

2
w2u2 − 1

2
μ(w2u2).

It is now easy to see that the terms in (4.51) reduce to

1

4
u2(μ(w1xv1x) + μ(w2v2)) − 1

4
v2(μ(w1xu1x) + μ(w2u2))

so that we obtain

R(u, v)w =
1

4
u 〈v, w〉 − 1

4
v 〈u,w〉 .

By the definition of the sectional curvature, we have

S(u, v) =
〈R(u, v)v, u〉

〈u, u〉 〈v, v〉 − 〈u, v〉2 =
1

4
.

��
Remark 4.31. Since Lenells [95] uses a different scaling for the Ḣ1-metric, he comes to

the result that the sectional curvature for the HS is identically equal to 1. Note carefully

that we have only used that u1 and v1 vanish at zero; a corresponding assumption on

the second component terms is not necessary in the above proof (cf. Chap. 6).

4.4.4 A two-component generalization of the µHS equation

As explained in Chap. 3, an interesting variant of the family (1.39) is obtained by setting

m = μ(u) − uxx where μ(u) =
∫
S
u(t, x) dx. Equation (1.39) is then called μ-b-equation.

Two-component generalizations of the μ-b-equation have not been studied so far. In this

section, we are mainly interested in the case b = 2 and discuss the 2μHS equation which

is obtained from (4.41) by setting m = μ(u) − uxx. First of all, we show the existence of

a Lax pair for 2μHS in the following lemma.

Lemma 4.32. Compatibility of the equations

ψxx + (mλ+ ρ2λ2)ψ = 0

ψt = −
(

1

2λ
+ u

)
ψx +

1

2
ψux

together with isospectrality λt = 0 implies the 2μHS equation.

Proof. A straightforward computation, using that λ does not depend on time, shows that

ψxxt = −(mtλ+ 2ρρtλ
2)ψ + (mλ+ ρ2λ2)

(
1

2λ
+ u

)
ψx − 1

2
ux(mλ+ ρ2λ2)ψ

and

ψtxx =
3

2
ux(mλ+ ρ2λ2)ψ +

(
1

2λ
+ u

)
(mxλ+ 2ρρxλ

2)ψ

+

(
1

2λ
+ u

)
(mλ+ ρ2λ2)ψx +

1

2
uxxxψ.
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Assuming ψtxx = ψxxt and using that ψ �= 0, we get

λ2(2uxρ
2 + 2ρρt + 2uρρx) + λ(2mux +mt + umx + ρρx) +

1

2
(mx + uxxx) = 0.

Since mx = −uxxx, we obtain

mt + umx + 2mux + ρρx = 0 and 2ρ(ρt + (ρu)x) = 0

and hence the 2μHS equation. ��
Remark 4.33. A two-component μDP equation has not been studied up to now; 2μDP

could be the system{
mt = −umx − 3mux + 2ρρx − ρux,

ρt = −2ρux − ρxu,
m = (μ− ∂2x)u, x ∈ S, t > 0,

(4.52)

or {
mt = −umx − 3mux + k3ρρx,

ρt = −k2ρxu− (k1 + k2)ρux,
m = (μ− ∂2x)u, x ∈ S, t > 0, (4.53)

with k1 = k2 = 1 and k3 arbitrary or k2 = 1, k3 = 0 and k1 arbitrary. Observe that the

replacement μ → id in Eq. (4.52) and Eq. (4.53) yields the two-component versions of

the DP equation which are studied in [115]. Here, the author generalizes a Hamiltonian

operator of the DP equation to an appropriate 2 × 2-matrix operator; nevertheless, the

paper does not prove integrability of the 2DP equation and we are not aware of the

integrability of Eqs. (4.52) and (4.53) either.

Let

Γ 0
id(u, v) = −(μ− ∂2x)−1

(
μ(u)v + μ(v)u+

1

2
uxvx

)
x

be the Christoffel operator for the μHS equation, as introduced in Sect. 3.5. To obtain

the Christoffel operator for Eq. (4.41) with m = μ(u) − uxx, we set

Γ(id,0)(X,Y ) =

(
Γ 0
id(X1, Y1) − 1

2 (μ− ∂2x)−1(X2Y2)x
− 1

2 (X1xY2 + Y1xX2)

)
. (4.54)

Again, we show that the connection

∇XY (ϕ, f) = DY (ϕ, f) ·X(ϕ, f) − Γ(ϕ,f)(Y (ϕ, f), X(ϕ, f)) (4.55)

with

Γ(ϕ,f)(X,Y ) = Γ(id,0)(X(ϕ, f) ◦ ϕ−1, Y (ϕ, f) ◦ ϕ−1) ◦ ϕ
and Γ(id,0) as in (4.54) is compatible with the right-invariant metric on HsG given at the

identity by

〈X,Y 〉 = μ(X1)μ(Y1) + 〈X1x, Y1x〉L2
+ 〈X2, Y2〉L2

. (4.56)

The following proposition is quite similar to Proposition 4.1.
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Proposition 4.34. Let s ≥ 3. Let HsG = HsDiff(S)�Hs−1(S) and let Γ be the Christof-

fel map defined in (4.54). Then Γ defines a smooth spray on HsG, i.e., the map

(ϕ, f) �→ Γ(ϕ,f) : HsG→ L2
sym(Hs(S) ×Hs−1(S);Hs(S) ×Hs−1(S))

is smooth. Moreover, the metric 〈·, ·〉 defined by (4.56) is a smooth (weak) Riemannian

metric on HsG, i.e., the map

(ϕ, f) �→ 〈·, ·〉(ϕ,f) : HsG→ L2
sym

(
T(ϕ,f)H

sG;R
)

is a smooth section of the bundle L2
sym (THsG;R). Finally, the connection ∇ is a Rie-

mannian covariant derivative in the sense of Definition 1.24.

Proof. The smoothness of the Christoffel map is obtained as in the proof of Proposi-

tion 4.1; we simply have to replace the operator A by μ− ∂2x. Clearly, 〈·, ·〉 is a positive

definite and symmetric bilinear from on Hs(S) ×Hs−1(S). It remains to check that the

map sending (ϕ, f) to

g(ϕ, f)(X,Y ) =

∫
S

(X1 ◦ ϕ−1)
(
μ− ∂2x

)
(Y1 ◦ ϕ−1) dx+

∫
S

(X2 ◦ ϕ−1)(Y2 ◦ ϕ−1) dx

is smooth for any X,Y ∈ T(ϕ,f)H
sG. This follows from

g(ϕ, f)(X,Y ) = μ(X1ϕx)μ(Y1ϕx) +

∫
S

X1x(y)Y1x(y)

ϕx(y)
dy +

∫
S

X2(y)Y2(y)ϕx(y)dy.

The compatibility with ∇, in view of the preparatory work in Sect. 3.5, follows from the

compatibility of Γ 0 with the right-invariant metric induced by the one-component inertia

operator μ−∂2x; the remaining terms are of the same form as for the 2CH equation which

we discussed in Proposition 4.1. ��
We know that the 2μHS is a reexpression of the geodesic flow of the connection ∇ defined

in (4.55) on the product HsG. The geodesic equation reads as

(ϕtt, ftt) = Γ(ϕ,f)((ϕt, ft), (ϕt, ft)). (4.57)

We have the following local well-posedness result.

Theorem 4.35. Let s ≥ 3. Then there exists an open interval J centered at 0 and

an open neighborhood U of (0, 0) ∈ Hs(S) × Hs−1(S) such that for each (u0, ρ0) ∈ U

there exists a unique solution (ϕ, f) ∈ C∞(J,HsG) of (4.57) satisfying (ϕ(0), f(0)) =

(id, 0) and (ϕt(0), ft(0)) = (u0, ρ0). Furthermore, the solution depends smoothly on the

initial data in the sense that the local flow Φ : J × U → HsG defined by Φ(t, u0, ρ0) =

(ϕ(t;u0, ρ0), f(t;u0, ρ0)) is a smooth map.

We write the Cauchy problem for 2μHS in the form⎧⎨⎩
ut + uux = −(μ− ∂2x)−1

(
1
2u

2
x + 2μ(u)u+ 1

2ρ
2
)
x
,

ρt + uρx = −ρux,
(u(0), ρ(0)) = (u0, ρ0).

(4.58)

It follows from Theorem 4.35 that 2μHS is locally well-posed in Hs ×Hs−1 for s ≥ 3.
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Corollary 4.36. Suppose s ≥ 3. Then for any (u0, ρ0) ∈ Hs(S) ×Hs−1(S) there exists

an open interval J centered at 0 and a unique solution

(u, ρ) ∈ C(J,Hs(S) ×Hs−1(S)) ∩ C1(J,Hs−1(S) ×Hs−2(S))

of the Cauchy problem (4.58) which depends continuously on the initial data (u0, ρ0).

The previous results hold with the obvious changes also in the Cn-category. Assuming

n ≥ 2, the proofs are the same with HsG replaced with CnG. Observe that we also have

the following conservation laws.

Lemma 4.37. For the 2μHS equation, we have the conservation laws

d

dt

[
(m ◦ ϕ)ϕ2

x + (ρ ◦ ϕ)fxϕx
]

= 0

and
d

dt
[(ρ ◦ ϕ)ϕx] = 0.

Proof. The proof is exactly the same as for Lemma 4.7. ��
The discussion of the local well-posedness problem for 2μHS will be continued in Chap. 6.

We are now concerned with the sectional curvature for the 2μHS.

Theorem 4.38. The unnormalized sectional curvature S(u, v) = S2(u, v) for the 2μHS

equation is given by

S2(u, v) = 〈Γ (u, v), Γ (u, v)〉 − 〈Γ (u, u), Γ (v, v)〉 − 3μ(u1xv1)2.

Proof. This is a straightforward calculation similar to the proof of Theorem 4.14; we

simply have to replace the inertia operator by μ− ∂2x. Observe that the additional term

−3μ(u1xv1)2 comes from the sectional curvature formula for the μHS equation found in

[79], see also Theorem 3.49; the unnormalized sectional curvature S1(u1, v1) for the μHS

equation equals

S1(u1, v1) =
〈
Γ 0(u1, v1), (μ− ∂2x)Γ 0(u1, v1)

〉
L2

− 〈
Γ 0(u1, u1), (μ− ∂2x)Γ 0(v1, v1)

〉
L2

− 3μ(u1xv1)2.

��
In [79], the authors establish positivity results for S1(u1, v1) by considering a decompo-

sition of TidH
sDiff(S) according to the representation u = ũ + μ(u) with μ(ũ) = 0, cf.

Sect. 3.5. Since we have

S2

((
u1
0

)
,

(
v1
0

))
= S1(u1, v1),

we see that the same positivity results are valid for HsG in the HsDiff(S)-direction.

To find a large subspace of positive sectional curvature for 2μHS with non-trival second

component we compute S2(u, v) for

u =

(
cos k1x

cos k2x

)
, v =

(
cos l1x

cos l2x

)
,
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where ki �= li ∈ 2πN, i = 1, 2. Note that

S2(u, v) = S1(u1, v1) +
1

4

∫
S

(u2v2)x(μ− ∂2x)−1(u2v2)x dx−
∫
S

Γ 0(u1, v1)(u2v2)x dx

+
1

4

∫
S

(u1xv2 + v1xu2)
2 dx− 1

4

∫
S

(u22)x(μ− ∂2x)−1(v22)x dx

+
1

2

∫
S

Γ 0(u1, u1)(v
2
2)x dx+

1

2

∫
S

Γ 0(v1, v1)(u22)x dx−
∫
S

u1xu2v1xv2 dx

= S1(u1, v1) +
4∑
j=1

Ij , (4.59)

where

I1 =
1

4

∫
S

(u2v2)x(μ− ∂2x)−1(u2v2)x dx,

I2 = −1

4

∫
S

(u22)x(μ− ∂2x)−1(v22)x dx,

I3 = −
∫
S

Γ 0(u1, v1)(u2v2)x dx+
1

2

∫
S

Γ 0(u1, u1)(v22)x dx+
1

2

∫
S

Γ 0(v1, v1)(u22)x dx,

I4 =
1

4

∫
S

(u1xv2 + v1xu2)2 dx−
∫
S

u1xu2v1xv2 dx.

We write A = μ− ∂2x and apply the identity

A−1∂2x = ∂xA
−1∂x = ∂2xA

−1 = μ− 1,

cf. Remark 3.3. Using integration by parts and the orthogonality relations (4.32) and

(4.33) we find

S1(u1, v1) =
〈
Γ 0(u1, v1), Γ 0(u1, v1)

〉− 〈
Γ 0(u1, u1), Γ 0(v1, v1)

〉− 3μ(u1xv1)2

= −1

2

∫
S

A−1[∂x(u1xv1x)]AΓ 0(u1, v1) dx+
1

2

∫
S

A−1[∂x(u21x)]AΓ 0(v1, v1) dx

=
1

2

∫
S

u1xv1xΓ
0(u1, v1)x dx− 1

2

∫
S

u21xΓ
0(v1, v1)x dx

= −1

4

∫
S

u1xv1x(A−1∂2x)(u1xv1x) dx+
1

4

∫
S

u21x(A−1∂2x)(v21x) dx

=
1

4
μ(u21x)μ(v21x)

=
1

16
k21l

2
1. (4.60)

Our choice of k1 and l1 implies that the one-component sectional curvature is strictly

positive. All we have to show is that the second component terms do not contribute

negative terms which make the total sectional curvature negative. Similar computations

show that the terms I1 and I2 in (4.59) are

I1 = −1

4

∫
S

u2v2∂
2
xA

−1u2v2 dx =
1

4

∫
S

u2v2(1 − μ)(u2v2) dx =
1

4

∫
S

u22v
2
2 dx

and
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I2 =
1

4

∫
S

u22∂
2
xA

−1v22 dx =
1

4

∫
S

u22(μ− 1)v22 dx = −1

4

∫
S

u22v
2
2 dx+

1

16
.

Since

−
∫
S

Γ 0(u1, v1)(u2v2)x dx =
1

2

∫
S

A−1(u1xv1x)x(u2v2)x dx

=
1

2

∫
S

[(1 − μ)(u1xv1x)]u2v2 dx

=
1

2

∫
S

u1xu2v1xv2 dx

we find that

I3 + I4 =
1

2

∫
S

Γ 0(u1, u1)(v22)x dx+
1

2

∫
S

Γ 0(v1, v1)(u22)x dx+
1

4

∫
S

(u21xv
2
2 + v21xu

2
2) dx

=
1

4
μ(u21x)μ(v22) +

1

4
μ(v21x)μ(u22)

=
1

16
(k21 + l21).

It follows from (4.59) and (4.60) that

S2(u, v) =
1

16

(
1 + k21 + l21 + k21l

2
1

)
>

1

16
.

The importance of this estimate lies in the fact that we cannot find a sequence

{(un, vn); n ∈ N} of elements in the subspace under consideration such that S(un, vn) →
0 as n → ∞. Recall that, for the one-component μHS equation, we constructed a se-

quence of sine functions such that the sectional curvature of these functions with the

constant function 1 tends to zero, cf. Sect. 3.5. This cannot happen within our subspace

for the two-component extension of the μHS equation.

Our calculation also shows that the sectional curvature is equal to 1/16 in the direction

of the second component since

S2

((
0

u2

)
,

(
0

v2

))
= I1 + I2 =

1

16
.

We have thus shown the following proposition.

Proposition 4.39. Let s ≥ 3. Let S(u, v) := 〈R(u, v)v, u〉 be the unnormalized sectional

curvature on HsG associated with the 2μHS equation. Then

S(u, v) >
1

16

for all vectors u, v ∈ T(id,0)H
sG, of the form

u =

(
cos k1x

cos k2x

)
, v =

(
cos l1x

cos l2x

)
, ki �= li ∈ {2π, 4π, . . .}.

Moreover, the normalized sectional curvature satisfies

S(u, v)

|u ∧ v|2 =
1

4
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for all vectors u, v ∈ T(id,0)H
sG of the form

u =

(
0

cos k2x

)
, v =

(
0

cos l2x

)
, k2 �= l2 ∈ {2π, 4π, . . . }.





Chapter 5

The non-periodic b-equation

Up to now we have only discussed periodic equations, i.e., we assumed that x ∈ S = R/Z.

In this section we will extend some of our results to the non-periodic case. Our aim is to

discuss the b-equation on the real line, i.e., the family

mt = −mxu− buxm, m = u− uxx, x ∈ R, t > 0. (5.1)

In [48] the authors show that the Cauchy problem for the b-equation (5.1) is locally

well-posed in the Sobolev spaces Hs(R) for any s > 3/2. Furthermore, they explain the

precise blow-up scenario and global well-posedness settings.

The goal of this chapter is to apply the theory in [41] to the non-periodic b-equation.

Precisely, we will deal with the b-equation on the group of W∞
p -diffeomorphisms on the

real axis. Our key result is that the Eulerian velocity u in fact has a local flow on the

diffeomorphism group under consideration, at least for a small time interval; this property

is described by the notion regularity (in the sense of Milnor) in the analysis of infinite-

dimensional Lie groups, cf. [108]. Once we have established regularity of our group, it

will be straightforward to apply the theory explained in Sect. 3.3.1.

The main problem with the group Diff∞(R) of smooth and orientation-preserving

diffeomorphisms R → R is that Diff∞(R) is not a regular Fréchet Lie group, and hence

we cannot ensure the existence of local flows for our purposes. Strictly speaking not every

element of the Lie algebra Vect∞(R) can be integrated into a one-parameter subgroup,

cf. Appendix A. To overcome this, one suitable candidate was proposed in [105], namely

the rapidly decreasing diffeomorphisms

S Diff(R) := {id + f ; f ∈ S (R), f ′ > −1} . (5.2)

Here S (R) denotes the Schwartz space of rapidly decreasing functions. This group turned

out to be a regular Fréchet Lie group. A simpler example is studied in [34]; it is the

subgroup of Diff∞(R) defined by

H∞Diff(R) := {id + f ; f ∈ H∞(R), f ′ > −1} (5.3)

where H∞(R) = ∩∞
n=1H

n(R) and Hn(R) are the Sobolev spaces on the real line. In [34]

the authors work out a proof that Eq. (5.1) for b = 2 is well-posed in H∞(R). We extend

this result to a larger class of function spaces and consider, for 1 < p <∞, the spaces

125
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W∞
p (R) :=

∞⋂
k=1

W k
p (R)

and the diffeomorphism groups

W∞
p Diff(R) :=

{
id + f ; f ∈W∞

p (R) and f ′ > −1
}

(5.4)

and write the non-periodic b-equation as an evolution equation on W∞
p Diff(R). Note that

the group H∞Diff(R) corresponds to the case p = 2 in our setting; hence our work is

a generalization to arbitrary 1 < p < ∞ and a general b. More precisely, we prove the

following theorem in which the space WC3
p (R) stands for the intersection of the Sobolev

space W 3
p (R) with the space C3

b (R) consisting of C3(R)-functions f such that f, f ′, f ′′

and f ′′′ are bounded.

Theorem 5.1. There is an open neighborhood V ⊂ WC3
p (R) of zero and a real number

δ > 0 such that for all ξ ∈ V ∩W∞
p (R), the problem

mt = −(mxu+ bmux), m = u− uxx, u(0) = ξ

has a unique solution u ∈ C∞((−δ, δ),W∞
p (R)). Furthermore, the map

(−δ, δ) × (V ∩W∞
p (R)) →W∞

p (R), (t, ξ) �→ u(t)

is smooth.

For any regular Fréchet Lie group, the exponential map is well-defined (cf. Appendix A).

For the b-equation on R, we show that this map is a smooth local diffeomorphism.

Theorem 5.2. The exponential map for the b-equation on W∞
p Diff(R) is a smooth local

diffeomorphism near 0 ∈ W∞
p (R) onto a neighborhood of id ∈W∞

p Diff(R).

In a first step we establish that the diffeomorphism groups defined in (5.4) are regular

Fréchet Lie groups. Let k ∈ N and 1 < p <∞ and recall that

W k
p (R) =

{
f ∈ Lp(R); f (n) exists in the weak sense and

f (n) ∈ Lp(R) for all n = 1, . . . , k

}
and

Ckb (R) =

{
f ∈ Ck(R); sup

x∈R

∣∣∣f (n)(x)
∣∣∣ <∞ for all n = 0, . . . , k

}
,

endowed with the usual norms

||f ||Wk
p (R) :=

(
k∑

n=0

∣∣∣∣∣∣f (n)
∣∣∣∣∣∣p
Lp(R)

)1/p

and ||f ||Ck
b (R)

:=
k∑

n=0

∣∣∣∣∣∣f (n)
∣∣∣∣∣∣
∞
.

Observe that since we do not fix p = 2, we have in general no inner product on the

spaces W k
p (R). For k = 0 we define W 0

p (R) = Lp(R) and C0
b (R) = Cb(R), the space of

continuous and bounded functions on R.

It is well-known that the spaces (W k
p (R), ||·||Wk

p (R)) and (Ckb (R), ||·||Ck
b (R)

) are Banach

spaces. Furthermore, according to Theorem 5.4 in [2], we have the imbedding
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W k
p (R) ↪→ Ck−1

b (R)

for k ∈ N and 1 < p <∞. We now define

WCkp (R) := W k
p (R) ∩ Ckb (R), ||·||WCk

p (R)
:= ||·||Wk

p (R) + ||·||Ck
b (R)

.

Lemma 5.3. The spaces (WCkp (R), ||·||WCk
p (R)

), k ∈ N, 1 < p <∞, are Banach algebras.

Proof. Clearly, (WCkp (R), ||·||WCk
p (R)

) is a normed vector space. We check that WCkp (R)

is complete: Any Cauchy sequence (fn)n∈N
⊂ WCkp (R) is also a Cauchy sequence in

the Banach spaces (W k
p (R), ||·||Wk

p (R)) and (Ckb (R), ||·||Ck
b (R)

). Let us denote the limits by

f ∈ W k
p (R) and g ∈ Ckb (R), i.e.,

fn → f in W k
p (R), fn → g in Ckb (R).

It remains to check that f = g. This will follow from ||f − g||Ck−1
b (R) = 0. Note that

||·||Ck−1
b (R) ≤ ||·||Ck

b (R)
implies that fn → g in Ck−1

b (R). Hence

||f − g||Ck−1
b (R) = lim

n→∞ ||f − fn||Ck−1
b (R)

≤ C lim sup
n→∞

||f − fn||Wk
p (R)

= 0.

To see that WCkp (R) is a Banach algebra1 (where the product of two functions is defined

by pointwise multiplication), we have to show that fg ∈WCkp (R) for all f, g ∈WCkp (R),

with a suitable estimate. For this purpose, we apply the Leibniz rule

(fg)(j) =

j∑
i=0

(
j

i

)
f (i)g(j−i),

the estimate ∣∣∣∣∣∣(fg)(j)
∣∣∣∣∣∣
∞

≤ C ||f ||WCk
p (R)

||g||WCk
p (R)

and ∫
R

∣∣∣(fg)(j)(x)
∣∣∣p dx ≤

∫
R

(
j∑
i=0

(
j

i

) ∣∣∣∣∣∣f (i)
∣∣∣∣∣∣
∞

∣∣∣g(j−i)(x)
∣∣∣)p dx

≤ Cp ||f ||pWCk
p (R)

∫
R

(
k∑
i=0

∣∣∣g(i)(x)
∣∣∣)p dx

≤ Cp ||f ||pWCk
p (R)

kp
k∑
i=0

∣∣∣∣∣∣g(i)∣∣∣∣∣∣p
Lp(R)

≤ (Ck)p ||f ||pWCk
p (R)

||g||pWCk
p (R)

,

for all j ∈ {0, . . . , k} and with C = C(j). This achieves our proof. ��
1 That W k

p (Ω) for Ω ⊂ Rn having the cone property and kp > n is a Banach algebra is proved in

[2] where the author establishes the estimate ||uv||Wk
p (Ω) ≤ K ||u||Wk

p (Ω) ||v||Wk
p (Ω) and redefines the

W k
p -norm by scaling with K = K(n, k, p).
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Next, we consider the infinite intersection

W∞
p (R) =

∞⋂
k=1

W k
p (R).

Recall that we have the inclusions

W k+1
p (R) ⊂WCkp (R) ⊂W k

p (R).

Hence ∞⋂
k=1

W k
p (R) ⊂

∞⋂
k=1

W k+1
p (R) ⊂

∞⋂
k=1

WCkp (R) ⊂
∞⋂
k=1

W k
p (R)

and we see that

W∞
p (R) =

∞⋂
k=1

WCkp (R).

In particular, the space W∞
p (R) is approximated by Banach algebras in the sense of

Definition 3.31.

Now we study the diffeomorphism groups (5.4) which we can approximate by the

groups WCkpDiff(R) :=
{

id + f ; f ∈WCkp (R) and f ′ > −1
}
. Note that the derivative of

any id + f is strictly positive whenever f ′ > −1 so that the diffeomorphisms considered

here are orientation-preserving. The tangent space of WCkpDiff(R) at id is WCkp (R). Note

that we have no inner product on WCkp (R), so that WCkpDiff(R) cannot be regarded as a

Riemannian Banach manifold. In our next theorem, we show that W∞
p Diff(R) is a regular

Lie group with the Lie algebra W∞
p (R), using techniques written down in [34, 105].

Proposition 5.4. The diffeomorphism group W∞
p Diff(R) is a regular Fréchet Lie group.

Proof. Our proof is subdivided into the following steps.

Step 1: We establish that W∞
p Diff(R) is a group.

Let f, g ∈ W∞
p (R) with f ′, g′ > −1 be given. First, we show that (id + f) ◦ (id + g) ∈

W∞
p Diff(R). To this end, we have to verify that h(x) := g(x) + f(x+ g(x)) is in W∞

p (R)

with h′ > −1. Clearly, h ∈ C∞(R) and f (j), g(j) are in Lp(R) ∩ Cb(R) for any j ≥ 0.

Furthermore, 1 + g′(x) ≥ ε for some ε > 0 and hence∫
R

∣∣∣f (j)(x+ g(x))
∣∣∣p dx =

∫
R

∣∣f (j)(y)
∣∣p

1 + g′((id + g)−1(y))
dy ≤ ε−1

∣∣∣∣∣∣f (j)
∣∣∣∣∣∣p
Lp(R)

(5.5)

for all j ≥ 0. Since any derivative of f ◦ (id + g) is a finite sum in which each term is a

product of derivatives of id+g with some f (j)◦(id+g), the fact that 1+g′(x), g′′(x), . . . ∈
Cb(R) and (5.5) show that h ∈WCkp (R) for all k ≥ 0. Finally,

h′(x) = g′(x) + f ′(x+ g(x))(1 + g′(x))

= (1 + g′(x))[1 + f ′(x+ g(x))] − 1

> −1.

Second, we must show the existence of f̃ ∈ W∞
p (R) with f̃ ′ > −1 such that (id + f)−1 =

id + f̃ . Let us prove that

f̃ = −f ◦ (id + f)−1.
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Of course, (id + f̃) ◦ (id + f) = id. Clearly, f̃ is smooth and f̃ (j) is bounded for any j ≥ 0

since f (j) ∈ Cb(R) for all j ≥ 0 and

d

dx
(x+ f(x))−1 =

1

1 + f ′((id + f)−1(x))
≤ ε−1 <∞

and similarly for higher order derivatives of (id + f)−1. The fact that all f (j) are Lp(R)-

functions and the boundedness of the derivatives of (id + f)−1 immediately yield that

f̃ (j) ∈ Lp(R) for any j ≥ 0. Finally, it follows from f̃(x+f(x)) = −f(x) with y = x+f(x)

that

f̃ ′(y) = − f ′(x)

1 + f ′(x)
= −1 +

1

1 + f ′(x)
> −1.

Since id + f is a diffeomorphism, this holds for all y ∈ R.

Clearly, id is the neutral element of W∞
p Diff(R) and ◦ is associative so that W∞

p Diff(R)

is a group.

Step 2: We show that W∞
p Diff(R) is a Lie group, i.e., we show that the multiplication

map and the inversion map are smooth as defined in Appendix A.

Let us assume that we are given smooth curves t �→ id + f(t, ·) and t �→ id + g(t, ·) in

W∞
p Diff(R). By definition, we have to check that

t �→ (id + f(t, ·)) ◦ (id + g(t, ·))

and

t �→ [id + f(t, ·)]−1

are smooth. Obviously, x + g(t, x) + f(t, x + g(t, x)) depends smoothly on t and hence

multiplication is smooth. Recall that we have (id + f(t, ·))−1 = id + f̃(t, ·) with f(t, x) =

−f̃(t, (id + f̃(t, ·))−1(x)). Thus

− f̃t(t, x) =
d

dt
f(t, x+ f̃(t, x))

= ft(t, x+ f̃(t, x)) + fx(t, x+ f̃(t, x))f̃t(t, x)

and hence

f̃t(t, x) = − ft(t, x+ f̃(t, x))

1 + fx(t, x+ f̃(t, x))
.

By the successive computation of t-derivatives of the left-hand side, one proves inductively

the smoothness of t �→ (id + f(t, ·))−1.

Step 3: We claim that W∞
p Diff(R) is regular.

By definition, cf. Appendix A, we have to prove that for any X ∈ C∞(R,W∞
p (R)) the

problem {
ϕ(0, x) = x

ϕ̇(t, x) = X(t, ϕ(t, x))

has a solution ϕ ∈ C∞(IX , id + W∞
p (R)), where IX ⊂ R is some non-empty interval

containing zero. First, there is a solution ϕ ∈ C∞(IX ,WC1
pDiff(R)) satisfying

ϕ(t, x) = x+

∫ t

0

X(s, ϕ(s, x)) ds.
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By the same arguments as in the proof of Theorem 2.7 in [34] one sees that ϕ is as

desired. ��
The proof of Proposition 5.4 also shows that u ◦ ϕ ∈ WCkp (R) for all ϕ ∈ WCkpDiff(R)

and u ∈ WCkp (R). Finally, we observe that the operator ∂mx maps the space WCkp (R)

continuously into WCk−mp (R). In the proof of our main theorem, we apply the Cauchy-

Lipschitz Theorem to obtain the existence and uniqueness of solutions in the geometric

picture for the b-equation. As explained in Sect. 3.3.1, we write Pϕ(f) = Rϕ ◦ P ◦Rϕ−1 ,

where Rϕ denotes the right translation given by ϕ, P (u) = A−1[3uxuxx + b(Au)ux] and

A = 1 − ∂2x, and set Q = AP .

Theorem 5.5. There is an open neighborhood U of 0 in WC3
p (R) and a real number

δ > 0 so that for all ξ ∈ U ∩W∞
p (R), there exists a unique ϕ ∈ C∞((−δ, δ),W∞

p Diff(R))

solving ⎧⎨⎩
ϕtt(t) = −Pϕ(ϕt),

ϕ(0) = id,

ϕt(0) = ξ.

(5.6)

Furthermore, the map

(−δ, δ) × (U ∩W∞
p (R)) → W∞

p Diff(R) ×W∞
p (R), (t, ξ) �→ (ϕ(t), ϕt(t))

is of class C∞.

Proof. Since A,Q are polynomial differential operators with constant coefficients, it is

easy to see that Rρ◦A◦Rρ−1 and Rρ◦Q◦Rρ−1 are again polynomial differential operators

with coefficients being rational functions of derivatives of ρ (cf. [41]). Hence

WCkpDiff(R) ×WCkp (R) → WCk−2
p (R),

(ρ, v) �→ Rρ ◦A ◦Rρ−1v

and

WCkpDiff(R) ×WCkp (R) → WCk−2
p (R),

(ρ, v) �→ Rρ ◦Q ◦Rρ−1v

are smooth. Furthermore, the local inverse theorem shows that also

WCkpDiff(R) ×WCk−2
p (R) → WCkp (R),

(ρ, v) �→ Rρ ◦A−1 ◦Rρ−1v

is of class C∞. Hence

WCkpDiff(R) ×WCkp (R) → WCkp (R),

(ρ, v) �→ Rρ ◦ (A−1Q) ◦Rρ−1v

and

WCkpDiff(R) ×WCkp (R) → WCkp (R) ×WCkp (R),

(ρ, v) �→ (v,−Pρ(v))
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are smooth for all k ≥ 3. From the Cauchy-Lipschitz Theorem we obtain the existence

of an open neighborhood U ⊂ WC3
p(R) of zero and δ > 0 so that (5.6) has a unique

solution in WC3
pDiff(R), defined on (−δ, δ), and that for all ξ ∈ U the map

(−δ, δ) × U →WC3
pDiff(R) ×WC3

p(R), (t, ξ) �→ (ϕ(t), ϕt(t))

is smooth. For k ≥ 3, let

Uk := U ∩WCkp (R).

Let us proof by induction that, assuming ξ ∈ Uk, ϕ(t) ∈ WCkpDiff(R) and ϕt(t) ∈
WCkp (R) for any t ∈ (−δ, δ) and all k ≥ 3. The strategy of our proof can be found in [34].

For k = 3 there is nothing to show. Assume that ϕ(t) ∈WCkpDiff(R) for some k ≥ 3. By

(3.19),

[(u− uxx) ◦ ϕ]ϕbx = ξ − ξxx,

with u = ϕt◦ϕ−1. Hence if ξ ∈ Uk+1, then u(t) ∈ WCk+1
p (R) for all t ∈ (−δ, δ). A further

application of the Cauchy-Lipschitz Theorem yields a solution ϕ̃ ∈ C∞(It,WCk+1
p Diff(R))

of ϕtt = −Pϕ(ϕt) with ϕ̃(t) = id and ϕ̃t(t) = u(t), where It is an open interval containing

t. Unity of the solution implies that

ϕ(s) = ϕ̃(s) ◦ ϕ(t) (5.7)

for all s ∈ It ∩ (−δ, δ). That ϕ(t) ∈ WCk+1
p Diff(R) for all t ∈ (−δ, δ) follows from the

fact that the set {
t ∈ (−δ, δ); ϕ(t) ∈WCk+1

p Diff(R)
}

is both open and closed in (−δ, δ), which is a direct consequence of (5.7). ��
Theorem 5.1 is an immediate consequence of the above result and of the fact that

W∞
p Diff(R) is a regular Lie group. The proof of Theorem 5.2 is totally similar to the

proof of Theorem 3.16 or Theorem 3.21.





Chapter 6

An outlook: open problems and further
topics

In this final chapter, we present some open problems and further questions related to

the issues of this thesis. The following list does not make any claims of being complete;

it rather presents topics which might be worthwhile to study on account of our results.

Maybe, some of the problems can be solved quite similarly to what we presented. Others

might need some new and profound ideas.

1. A more general variant of the b-equation is discussed in [48] and reads as

ut − α2utxx + c0ux + (b+ 1)uux + Γuxxx = α2(buxuxx + uuxxx), (6.1)

where α, b, Γ, c0 are arbitrary real constants. Interestingly, Eq. (6.1) includes the KdV

equation (α = 0, b = 2) and reduces to (1.41) for Γ = c0 = 0 and α = 1. We call

Eq. (6.1) the dispersive b-equation because of the terms proportional to ux and uxxx.

For b = 3, additional results are presented in [57, 112]. In [48], the authors mainly es-

tablish local well-posedness of (6.1), and look for blow-up solutions and global strong

and weak solutions. It is an interesting question whether Eq. (6.1) is suitable for a

reformulation on the diffeomorphism group of the circle and to which novel results the

geometric picture might lead. Perhaps, the geometric viewpoint results in a further

interpretation of the effect of the dispersive terms. Similar questions can be asked for

possible μ-variants and 2-component generalizations of Eq. (6.1).

2. In this thesis, we only discussed strong solutions, i.e., the functions under consideration

inherited enough regularity to be plugged into our equations. In Chap. 1 we motivated,

taking the example of peakons, that weak solutions also form a class of meaningful

solutions. The CH and the DP can be written in the form

ut + F (u)x = 0, t > 0, x ∈ S,

cf., e.g., [20, 43, 128]. Let u0, the initial data, be in some function space F(S). A weak

solution is a function u : [0,∞) × S → R, if, given T > 0, u ∈ L∞
loc([0, T );F(S)) and

the identity ∫ T

0

∫
S

(uϕt + F (u)ϕx) dxdt+

∫
S

u0(x)ϕ(0, x) dx = 0

is satisfied for all ϕ ∈ C∞
c ([0, T ) × S) where ϕ ∈ C∞

c ([0, T ) × S) if it is the restric-

tion to [0, T )× S of a function having continuous derivatives of arbitrary order on R2

133
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with compact support contained in (−T, T ) × R. If u is a weak solution on [0, T ) for

every T > 0 then it is called a global weak solution. A natural question which comes

up is whether our geometric approach is appropriate to include weak solutions. Note

that s > 3/2 is the required assumption in order for HsDiff(S) to be a topological

group, but the interesting peaked solutions of the Camassa-Holm equation belong to

H3/2−ε(S) for any ε > 0 and not to H3/2(S). Lenells [94] remarks that peakons can

at any rate not be captured rigorously by means of his approach.

3. In Chap. 3 we restricted ourselves to the case b = 3 and discussed the μDP equation

and its weakly dissipative variant. Presumably, the local well-posedness result pre-

sented in Sect. 3.3.2 can directly be generalized to arbitrary b ∈ R. Then the formulas

for the Christoffel map, the geodesic equation and the conservation law in Lemma 3.27

slightly change. It is a further task to find out whether our approach to the weakly

dissipative μDP can be generalized. There might occur some difficulties when applying

our arguments in Sect. 3.4 to the equation with general b since the weak form of the

weakly dissipative μ-b-equation reads as

ut + uux + λu = −(μ− ∂2x)−1(buxμ(u) − buxuxx + 3uxuxx),

and for b �= 3 the last two parenthesis terms do not cancel out. What is also still open

is whether the geometric theory applied in the proof of Theorem 3.38 yields a maxi-

mal existence time which is independent of s in the sense of Remark B.8 (which would

be achieved from Kato’s theory, cf. [125]). Are there strongly dissipative variants of

μDP? How can dissipative effects be included in the two-component versions which

we discussed?

4. By suggestions of a referee, it is worthwhile to study whether Theorem 3.26 can be

improved by showing that the flow is analytic. It requires to improve Proposition 3.24

by showing that the vector field is actually analytic. The proof might become even

somewhat shorter as it suffices to show that the vector field is complex differentiable.

There are already results of this type in the literature.

5. The real line case: Most of our work yields results for periodic equations. A very gen-

eral question is which changes have to be done to handle the non-periodic case. In our

final chapter, we saw that we needed to exchange the manifold configuration space to

extend our theory.

6. It would be nice to have some numerical results to reinforce our theorems. For instance,

some computer-based calculations related to the blow-up result in Theorem 3.43 would

be illustrative. In [60] the author applies a numerical scheme to compute solutions of

the DP equation.

7. Up to today, only a few studies of two-component generalizations have been published

so that our results, in particular the geometric aspects, are quite groundbreaking.

There are several open problems for systems with two variables, e.g., derived from the

DP equation. The question of integrability is not answered yet (although there are

some conjectures, [115]). The construction of a Lax pair seems to be a hard exercise.

Similarly: Is it possible to define an integrable two-component extension of μDP? In

[12], the authors discuss a tree-component generalization of the Camassa-Holm equa-
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tion, see also [50]. Further research projects might deal with three-component versions

of our equations.

8. It would also be nice to have a local well-posedness result for the 2HS and the 2μHS

in the smooth category. Note that we have established suitable conservation laws in

Lemma 4.29 and Lemma 4.37. Maybe a problem is to generalize Proposition 4.9 to

the 2HS and the 2μHS; recall that in the proof of Proposition 4.9 the condition (4.20)

is crucial and it has been obtained from Kato’s semi group approach. Thus a further

task would be to find out whether Proposition 4.9 holds in a similar manner for the

2HS and the 2μHS. Using our approach, this would result in a well-posedness theorem

as desired. It might also be possible to apply the techniques presented in [41], but

with the second component we have the problem that integrating the equations in

Lemma 4.29 gives

f(t) = ρ0

∫ t

0

1

ϕx(s)
ds

and

ϕxx(t) = ϕx(t)

(
ρ0

∫ t

0

fx(s)

ϕx(s)
ds−m0

∫ t

0

1

ϕx(s)
ds

)
;

hence ϕxx depends on fx which itself depends on ϕxx. Thus it is not straightforward to

apply the results of Escher and Kolev for the b-equation, cf. Sect. 3.3.1. The problem

for 2μHS is similar.

9. We showed that 2HS is locally well-posed in Es × Es−1, cf. Sect. 4.4.2. We do not

expect that 2HS is well-posed in Hs × Hs−1, since setting the second component ρ

equal to zero we would obtain well-posedness of HS in Hs, which is not possible; recall

Sect. 4.4.1 where we explained that the solution of HS is not unique. Our motivation

for choosing the second component to be Es−1 is motivated by our experiences with

the 2CH and the 2DP. Can we obtain local well-posedness for 2HS in Es × Hs−1?

A closely related problem is to solve the geodesic equation for 2HS explicitly (as it

has been done by Lenells [97] for the one-component equation). Integrating the first

equation of 2HS gives

utx = −1

2
u2x − uuxx +

1

2
ρ2 + c(t)

with some function c. Integrating this equation once again over S we obtain from∫
S
utx dx = 0 that

c(t) = −1

2

∫
S

(u2x + ρ2) dx.

Moreover,

1

2

d

dt

∫
S

u2x dx =

∫
S

uxutx dx =

∫
S

(
−1

2
u3x − uuxuxx +

1

2
ρ2ux

)
dx =

1

2

∫
S

ρ2ux dx

and

1

2

d

dt

∫
S

ρ2 dx =

∫
S

ρtρ dx = −
∫
S

(ρu)xρ dx =

∫
S

uρρx dx = −1

2

∫
S

uxρ
2 dx
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so that c(t) is constant and assuming (u0, ρ0) is nontrivial, we may rescale to obtain

c = −2. This shows that

utx = −1

2
u2x − uuxx +

1

2
ρ2 − 2.

Let ϕ be the geodesic flow associated with u, i.e., ϕt = u ◦ ϕ and ϕ(0) = id. Since

(ux ◦ ϕ)t = (utx + uuxx) ◦ ϕ

we conclude

(ux ◦ ϕ)t = −1

2
(ux ◦ ϕ)2 +

1

2
(ρ ◦ ϕ)2 − 2

where

(ρ ◦ ϕ)t = (ρt + uρx) ◦ ϕ = −(ux ◦ ϕ)(ρ ◦ ϕ).

In terms of the variables z1(t) = (ux◦ϕ)(t, x) and z2(t) = (ρ◦ϕ)(t, x) we finally obtain

the system {
ż1(t) = − 1

2 (z1(t)2 − z2(t)2 + 4),

ż2(t) = −z1(t)z2(t).

For ρ = 0, this system reduces to Eq. (5.4) in [97] and can be solved explicitly to ob-

tain the solution formula presented in Sect. 4.4.1. Can we solve the above system for

2HS and what does the result tell us about the solution of 2HS? Finally, our curvature

computation for 2HS raises the following issue: Is there a sphere interpretation for

2HS, similar to the one-component equation? Can we apply continuation arguments

for the geodesic flow on this sphere? Is there a connection between the integrability of

the 2HS equation and the fact that it describes geodesic motion on a sphere?

10. For 2CH and 2μCH, we computed the sectional curvature for pairs of vectors with a

cosine function in each component. Similar computations could be carried out admit-

ting the components to be equal to a sine function or 1. We did not concentrate on

subspaces of negative sectional curvature.

11. In this thesis, we did not consider the Virasoro group Diff(S) × R. The Virasoro

group and the Virasoro algebra Vect(S) × R are one-dimensional extensions of the

diffeomorphism group Diff(S) and the Lie algebra of vector fields. It could be shown

that KdV, CH and HS can also be modelled on Diff(S)×R; precisely, these equations

reexpress the geodesic flow with respect to different right-invariant metrics on an

appropriate homogeneous space. In [80] the authors describe how Arnold’s approach

to the Euler equations as geodesic flows of one-sided invariant metrics extends from

Lie groups to homogeneous spaces. For further reading, we recommend [24] where

the authors consider geodesic exponential maps and prove that KdV on the Virasoro

group does not allow for a local diffeomorphism near the origin.



Appendix A

Basic facts from Banach space analysis

In this appendix, we summarize some basic results from the analysis of Banach spaces

and Fréchet spaces as explained in [85] (where the authors discuss even more general

locally convex vector spaces) and [87].

A.1 Differential calculus in Banach spaces

Let E,F be Banach spaces, U ⊂ E open and x ∈ U . A map f : U → F is called

differentiable at x if there exists a continuous linear map λ : E → F and a map ψ defined

for all sufficiently small h in E with values in F such that

f(x+ h) = f(x) + λ(h) + |h|ψ(h), lim
h→0

ψ(h) = 0.

The (unique) linear map λ is called the derivative of f at x and is also denoted by f ′(x)

or Df(x). If f is differentiable at all x ∈ U we say f is differentiable in U . In that case,

the derivative f ′ is a map

Df = f ′ : U → L(E,F )

from U to the Banach space of continuous linear maps E → F , associating to each

x ∈ U the linear map f ′(x) ∈ L(E,F ). If f ′ is continuous, we say f is of class C1. Since

L(E,F ) is a Banach space, we can define higher order derivatives inductively and we say

that f is Cp if all derivatives Dkf exist and are continuous for 1 ≤ k ≤ p. Note that

Dpf(x) ∈ L(E,L(E, . . . ,L(E,F ) . . .)). The notion smooth is used for C∞-maps. It is not

hard to prove that many of the well-known results from calculus (e.g. the product rule,

the chain rule etc.) are also true for maps f : E → F and the multi-variable analysis is

also similar, cf. [87].

We also need a second notion of differentiability; recall Sect. 1.2.1. The following

definition deals with Fréchet spaces, i.e., complete metrizable locally convex spaces. We

will discuss Fréchet spaces in a subsequent section.

Definition A.1. Let E and F be Fréchet spaces, let U ⊂ E be open and f : U → F .

We say that f is Gateaux differentiable at x ∈ U if there exists a continuous linear map

Df(x) : E → F such that

Df(x)v = lim
t→0

1

t
(f(x+ tv) − f(x))
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for all v ∈ E. We call f Gateaux differentiable in U if f is Gateaux differentiable for all

x ∈ U . We say that f is Gateaux-C1 in U if f is Gateaux differentiable in U and the

map

(x, v) �→ Df(x)v : U × E → F (A.1)

is continuous (jointly on a subset of the product).

We say that f is Gateaux-C2 if both f and the map in (A.1) are Gateaux-C1. The notion

of Gateaux-Cp for p ≥ 3 is defined inductively. We refer to [58] for further details about

the calculus for Gateaux differentiable functions in Fréchet spaces.

If f is a map between Banach spaces then both definitions of differentiability apply. If f

is differentiable in the Fréchet sense then f is Gateaux differentiable and both derivatives

coincide. Contrariwise, if f is Gateaux-C1 then f is differentiable in the normal sense.

Observe also that a Fréchet differentiable function is continuous and that this implication

fails for Gateaux differentiability.

We know that the fact that a map f is Cp, p ≥ 1, implies that f is Gateaux-Cp. In

the converse direction we have the following result.

Proposition A.2. Let E and F be Banach spaces, let U ⊂ E be open and f : U → F be

a continuous map. If f is Gateaux-Cp+1 for some p ≥ 0, then f is Cp. In particular for

smooth maps between Banach spaces the two definitions coincide.

A proof can be found in [77], p. 99 and p. 110. Note that our Gateaux-Cp maps correspond

to the class Cpc in [77]. We also have the following result.

Proposition A.3. Let E,F and G be Banach spaces and let U ⊂ E be open. Let f : U ×
F → G be a Cp-mapping such that f(x, u) is linear with respect to the second variable

u. Set h(x)u = f(x, u) and regard h has a mapping of U into L(F,G). Then h is a

Cp−1-mapping.

For a proof we refer to [113], Thm. 5.3. The way in which we use Proposition A.2 and

Proposition A.3 is the following: Let E and F be Banach spaces, U ⊂ E open and

(x, u, v) �→ P (x, u, v) : U × E × E → F be a continuous mapping, linear in u and v.

Assume that P is Gateaux-Cp+1. Then P is Cp by Proposition A.2. By Proposition A.3

the map

(x, u) �→ (v �→ P (x, u, v)) : U × E → L(E,F )

is Cp−1. Since L(E,L(E,F )) � L2(E,F ), where Lk(E,F ) is the Banach space of con-

tinuous k-multilinear maps E → F , another application of Proposition A.3 yields that

x �→ ((u, v) �→ P (x, u, v)) : U → L2(E,F )

is Cp−2. We see that if P is Gateaux-smooth then x �→ Px = P (x, ·, ·) is a smooth map

U → L2(E,F ).

A.2 Inverse mappings and differential equations

Let U ⊂ E be open, E a Banach space, and let f : U → F be a Cp-map for p ≥ 1 into

the Banach space F . Then f is called a Cp-isomorphism or Cp-invertible on U if the

image f(U) = V is open in F and there exists a Cp-map g : V → U such that g ◦ f
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and f ◦ g are the identity maps on U and V respectively. We say that f is a local Cp-

isomorphism at a point x ∈ U (or is locally Cp-invertible at x), if there exists an open

set U1, x ∈ U1 ⊂ U , such that f |U1 is Cp-invertible on U1. Clearly, the composite of two

(local) Cp-isomorphisms is again a (local) Cp-isomorphism. The inverse mapping theorem

provides a criterion for a map to be locally Cp-invertible in terms of its derivative.

Theorem A.4 (Inverse Mapping Theorem). Let U be open in a Banach space E

and let f : U → F be of class Cp. Let x0 ∈ U and assume that f ′(x0) : E → F is a

topological isomorphism (i.e., invertible as a continuous linear map). Then f is a local

Cp-isomorphism at x0.

An important corollary of the Inverse Mapping Theorem is the following.

Corollary A.5. Let U and V be open subsets of Banach spaces and let f : U → V be a

Cp-map which is also a C1-diffeomorphism. Then f is a Cp-diffeomorphism.

One of the most important theorems in the multivariable Banach space analysis is the

Implicit Function Theorem.

Theorem A.6 (Implicit Function Theorem). Let U, V be open sets in the Banach

spaces E,F and let f : U ×V → G be a Cp-mapping. Let (a, b) ∈ U ×V and assume that

the second partial derivative D2f(a, b) : F → G is a topological isomorphism. Let f(a, b) =

0. Then there exists a continuous map g : U0 → V defined on an open neighborhood U0 of

a such that g(a) = b and f(x, g(x)) = 0 for all x ∈ U0. If U0 is taken to be a sufficiently

small ball, then g is uniquely determined and is also of class Cp.

By a vector field on U ⊂ E we mean a mapping f : U → E which we interpret as

assigning a vector to each point of U . Let x0 ∈ U . An integral curve for f with initial

condition x0 is a mapping α : J → U , defined on some open interval J containing zero,

such that α(0) = x0 and such that α′(t) = f(α(t)). An integral curve can also be viewed

as a solution of the integral equation

α(t) = x0 +

∫ t

0

f(α(s)) ds.

By a local flow of a vector field f : U → E at x0 ∈ U we mean a mapping α : J×U0 → U ,

where 0 ∈ J ⊂ R and U0 ⊂ U are open and x0 ∈ U0, such that for each x ∈ U0 the map

t �→ αx(t) = α(t, x)

is an integral curve for f with initial condition α(0, x) = x. We have the following

existence and uniqueness result, see also [3].

Theorem A.7 (Cauchy-Lipschitz). Let f : U → E be a vector field satisfying a Lip-

schitz condition

||f(x) − f(y)|| ≤ K ||x− y|| ,
where K > 0. Let x0 ∈ U . Let 0 < a < 1, assume that the closed ball B2a(x0) is contained

in U and that f is bounded by a constant L > 0 on this ball. If b > 0 satisfies b < a/L

and b < 1/K, then there exists a unique local flow

α : (−b, b) ×Ba(x0) → U.
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Note that any C1-function is (locally) Lipschitz continuous. Concerning uniqueness, one

can show that, if f : U → E, U ⊂ E open, is of class Cp, p ≥ 1, and

α1 : J1 → U, α2 : J2 → U

are two integral curves for f with the same initial condition x0, then α1 and α2 are equal

on J1 ∩ J2. Concerning regularity of the flow, we have the following theorem.

Theorem A.8. Let 1 ≤ p ≤ ∞ and let f : U → E be a Cp-vector field. Then the flow of

f is of class Cp on its domain of definition.

If a Cp-vector field f has an additional dependence on time, i.e.,

f : J × U → E,

then, by setting

f : J × U → R× E, f(t, x) = (1, f(t, x)),

one can regard f as a time-independent vector field on J × U and it is easy to see that

the study of time-dependent vector fields reduces to the study of time-independent ones.

The same is true if f depends on some additional parameters.

A.3 Fréchet spaces

The traditional differential calculus works well in finite-dimensional vector spaces and

Banach spaces. Interestingly there are various differences to the analysis of general locally

convex topological vector spaces. We will concentrate our attention to Fréchet spaces

in this section and, of course, we will only mention the essential facts to develop an

understanding of regular Fréchet Lie groups.

Recall that a Fréchet space is a locally convex topological vector space X such that

the topology of X is generated by a countable family of semi-norms (ρn)n∈N and such

that (X, d) is a complete metric space where

d(x, y) =

∞∑
n=1

2−n
ρn(x− y)

1 + ρn(x− y)
.

A major difference to Banach spaces is that there exists no Inverse Function Theorem

for Fréchet spaces. Instead there is a theorem by John Forbes Nash and Jürgen Moser

which can be regarded as a generalization of the Inverse Function Theorem on Banach

spaces to the class of so called tame Fréchet spaces. In contrast to Banach spaces for

which the invertibility of the derivative at a point is sufficient for a map to be locally

invertible, the Nash-Moser theorem requires the derivative to be invertible in a whole

neighbourhood. The theorem is widely used to prove local well-posedness for non-linear

partial differential equations in spaces of smooth functions, cf. [58].

First of all, we need to have a notion of continuity and smoothness. Let E and F be

locally convex topological spaces with families of semi-norms (ρα)α∈A and (ηβ)β∈B. We

call a map f : E → F continuous if and only if for all β ∈ B there exist α1, . . . , αn ∈ A

and C > 0 with

ηβ(f(x)) ≤ C(ρα1(x) + · · · + ραn(x)).
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If the family (ρα)α∈A is directed , i.e., for any α1, α2 ∈ A there is α3 ∈ A and a constant

C such that ρα1(x) + ρα2(x) ≤ Cρα3(x) for any x ∈ E, then f is continuous if and only

if, for all β ∈ B,

ηβ(f(x)) ≤ Cρα(x)

for some α ∈ A, cf. [117].

Let E and F be locally convex vector spaces. A curve c in E is called smooth or

C∞ if all derivatives exist and are continuous; Michor [105] calls this a concept without

problems. The space of smooth curves in E is denoted by C∞(R, E). It turns out that

this space does not depend on the locally convex topology of E, but on the associated

bornology (which is the system of bounded sets), cf. [51]. A map f : E → F between

locally convex vector spaces E and F is smooth if any smooth curve c(t) ⊂ E is mapped

to a smooth curve (f ◦ c)(t) ⊂ F .

A (Fréchet) Lie group G is a smooth manifold modelled on open subsets of a Fréchet

space and a group such that the multiplication G × G → G and the inversion G → G

are smooth maps. The Lie algebra g of G is the tangent space at the neutral element e

and consists of left-invariant vector fields on G. We say that G admits an exponential

mapping if there exists a smooth mapping exp: g → G such that t �→ exp(tX) is the

(unique) one-parameter subgroup with tangent vector X at 0. Note that exp(0) = e and

D0 exp = id. If a suitable inverse function theorem is applicable, it follows that exp is a

diffeomorphism from 0 ∈ g onto a neighborhood of e ∈ G. This holds true for smooth

Banach Lie groups but in general not for diffeomorphism groups, cf. [105]. Lie groups in

which an exponential mapping is defined, are also called regular . This notion goes back

to Milnor, cf. [34, 106, 108].

Definition A.9. Let G be a Lie group with Lie algebra g. For all g ∈ G, let Rg : G→ G

be the right translation h �→ hg. We define the logarithmic derivative δr : C∞(R;G) →
C∞(R; g) by

(δrϕ)(t) = (Dϕ(t)Rϕ−1(t))ϕ
′(t), t ∈ R.

The Lie group G is called regular, if there is a smooth map

evolr : C∞(R; g) → C∞(R, G),

called the right evolution, so that for all X ∈ C∞(R; g) we have that

δr ◦ evolr(X) = X, evolr(X)(0) = e.

Equivalently, a Lie group is regular, if any (smooth) left-invariant vector field has a lo-

cal flow, cf. [1]. Up to now, all known Lie groups are regular, [105]. Finite-dimensional

Lie groups and Banach Lie groups are regular. Note that for diffeomorphism groups,

the evolution operator is just integration of the time-dependent vector fields with com-

pact support. Each regular Lie group admits an exponential mapping, which is just the

restriction of evolr to the constant curves R → g, [85, 105].





Appendix B

Kato’s theory for abstract quasi-linear
evolution equations

Here our aim is to give a short introduction to Kato’s theory proving the local well-

posedness for a very general class of abstract evolution equations. For suitable non-linear

equations Kato’s semigroup method is fairly standard and our brief overview follows

[19, 125]. To illustrate the theory we consider the periodic Camassa Holm equation (1.19).

It is easy to generalize the results to the DP equation or the general b-equation as

explained in [48, 125].

We use the short hand notation 〈·, ·〉s for the Hs inner product, s ≥ 0, and write ||·||s
for the corresponding norm, cf. Sect. 3.1.4. Before we start let us recall the following

definition, cf. [73, 75].

Definition B.1. Let H be a Hilbert space and let T be an operator on H. We say that

T is accretive if its numerical range is a subset of the right half-plane, i.e., Re 〈Tu, u〉 ≥
0 for all u ∈ D(T ). If, for Reλ > 0, we have (T + λ)−1 ∈ L(H) with the estimate∣∣∣∣(T + λ)−1

∣∣∣∣ ≤ 1/Reλ we say that T is m-accretive. We call T quasi-accretive if T + α

is accretive for some scalar α. Similarly, we say that T is quasi-m-accretive if T + α is

m-accretive for some α.

Remark B.2. An m-accretive operator T is maximal accretive in the sense that T is

accretive and has no proper accretive extension. An m-accretive operator is necessarily

densely defined. That an operator is quasi-accretive means that its numerical range is

contained in a half-plane of the form Re z ≥ const. Like an m-accretive operator, a

quasi-m-accretive operator is maximal quasi-accretive and densely defined.

Kato’s famous theorem reads as follows.

Theorem B.3. Consider the abstract quasi-linear evolution equation

d

dt
v +A(v)v = f(v), t ≥ 0, v(0) = v0. (B.1)

Let X and Y be Hilbert spaces such that Y is continuously and densely injected into

X and let Q : Y → X be a topological isomorphism. Furthermore, we assume:

1. The operator A(y) is in L(Y,X) for any y ∈ Y with

||(A(y) −A(z))w||X ≤ μA ||y − z||X ||w||Y , y, z, w ∈ Y, (B.2)
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and A(y) is quasi-m-accretive, uniformly on bounded sets in Y .

2. For any y ∈ Y there is a bounded operator B(y) ∈ L(X), uniformly on bounded

sets in Y , such that QA(y)Q−1 = A(y) +B(y) and

||(B(y) −B(z))w||X ≤ μB ||y − z||Y ||w||X , y, z ∈ Y, w ∈ X. (B.3)

3. The map f : Y → Y extends to a map from X into X, is bounded on bounded

sets in Y and

||f(y) − f(z)||Y ≤ μ1 ||y − z||Y , y, z ∈ Y, (B.4)

||f(y) − f(z)||X ≤ μ2 ||y − z||X , y, z ∈ X. (B.5)

Here μA, μB and μ1 depend only on max{||y||Y , ||z||Y } and the number μ2 depends

only on max{||y||X , ||z||X}. Then, given v0 ∈ Y , there is a maximal time T > 0

depending only on ||v0||Y and a unique solution v to Eq. (B.1) such that

v = v(·, v0) ∈ C([0, T );Y ) ∩ C1([0, T );X).

Moreover the map v0 �→ v(·, v0) is continuous from Y to C([0, T );Y )∩C1([0, T );X).

For a proof we refer to [73, 74, 76]. For the Camassa-Holm equation on the circle the

natural choice is X = L2(S), Y = H1(S) and Q = (1 − ∂2x)1/2. The momentum variable

is denoted as m = u− uxx and we have

mt + (Q−2m)mx = −2m(Q−2m)x, m(0) = m0

which is of type (B.1) if we set

A(y) = (Q−2y)∂x, f(y) = −2y(Q−2y)x, y ∈ H1(S),

where D(A(y)) =
{
v ∈ L2(S); (Q−2y)v ∈ H1(S)

}
. We now proceed in three steps to

establish that the assumptions of Theorem B.3 are satisfied. In the first step, we check

that the linear operator A is quasi-m-accretive. In [19] this is shown by considering

operators D and D0 with the common domain consisting of all L2(S)-functions v such

that mv ∈ H1(S) for some fixed m ∈ H2(S) and

Dv := (mv)x −mxv, D0v := −(mv)x.

For v in the domain of D we find that

Dv = (mv)x −mxv = mvx ∈ L2(S)

and the strategy is to prove that D and D0 are both quasi-accretive in L2. Since D0 = D∗

it follows from the theory of semigroups that D is quasi-m-accretive, [118]. All we have

to do is to give a proof of the following lemma. In the proof, we use that C∞(S) is a core

for the operator D, i.e., v belongs to the domain of D if and only if there is a sequence

(vn)n∈N of smooth periodic functions such that vn → v and Dvn → Dv in L2(S). This

follows from a standard mollification argument, [19].

Lemma B.4. The operators D and D0 are both quasi-accretive in L2(S) and D0 = D∗.
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Proof. First we establish the existence of a positive constant K such that

〈Dv, v〉0 ≤ K ||v||20 , 〈D0v, v〉0 ≤ K ||v||20
for all v in the domain of D. Therefore, we show that

〈Dv, v〉0 = 〈D0v, v〉0 = −1

2

∫
S

mxv
2 dx.

Approximating v by a sequence (vn)n∈N ⊂ C∞(S) such that vn → v and Dvn → Dv in

L2(S) we come to the conclusion that

〈Dv, v〉0 =

∫
S

(mv)xv dx−
∫
S

mxv
2 dx

= lim
n→∞

∫
S

(
(mvn)xvn −mxv

2
n

)
dx

= lim
n→∞

∫
S

mvn(vn)x dx

= −1

2
lim
n→∞

∫
S

mxv
2
n dx

= −1

2

∫
S

mxv
2 dx.

Since mx ∈ C(S) we conclude that D is quasi-accretive. A similar computation for D0

shows that D0 is quasi-accretive. To prove that D0 = D∗ we show that D0 is an extension

of D∗ and vice versa. For fixed w belonging to the domain of D∗ the map

F (ϕ) = 〈Dϕ,w〉0 =

∫
S

mϕxw dx = 〈ϕ,D∗w〉0 , ϕ ∈ C∞(S),

defines a continuous linear functional. Therefore mw ∈ H1(S) and

F (ϕ) = −
∫
S

ϕ(mw)x dx, ϕ ∈ C∞(S).

Thus w ∈ D(D0) and D0w = D∗w and hence D∗ ⊂ D0. Conversely, for v ∈ D(D0)

the above approximation argument shows that 〈Dz, v〉0 = 〈z, w〉0 with w = D0v and for

every z in the domain of D. This proves that D0 ⊂ D∗. ��
In the next step we define the operator B(y) = QA(y)Q−1 − A(y) where y ∈ H1(S) is

fixed. Let M(y) be multiplication with Q−2y, i.e., M(y)v = (Q−2y)v for v ∈ L2(S). By

direct computation

B(y) = [Q,M(y)]∂xQ
−1 −M(y)[∂x, Q]Q−1

on C∞(S). Note that [∂x, Q] = 0 which follows from the representations

∂xf = F−1(2πinf̂n), Qf = F−1
(√

1 + 4π2n2f̂n

)
where (f̂n)n∈Z ⊂ S (Z) stands for the Fourier series of f ∈ C∞(S) and the operator

F ∈ Isom(C∞(S),S (Z)) denotes the Fourier transform.
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Lemma B.5. Given y ∈ H1(S), the operator B(y) extends to a map B(y) ∈ L(L2(S))

and a map B1(y) ∈ L(H1(S)) that are uniformly bounded on bounded subsets of H1(S).

Proof. Clearly, ∂xQ
−1 extends to a bounded linear operator on L2(S) which is indepen-

dent of y ∈ H1. Since Q is a first-order pseudo-differential operator and Q−2y ∈ H3(S)

some standard results from harmonic analysis, cf. [19], show that [Q,M(y)] extends to

a bounded linear operator in L2(S) with norm less than or equal to K ||y||1. To complete

the proof we estimate the norm of the operator ∂x[Q,M(y)]Q−1 in L(L2(S)). Writing

Mx(y) for the multiplication operator induced by the function ∂x(Q−2y) ∈ H2 we find

that

∂x[Q,M(y)]Q−1 = QMx(y)Q−1 +Mx(y) + [Q,M(y)]∂xQ
−1

and are done. ��
Remark B.6. Since B(y)−B(z) = B(y− z) the proof also establishes the estimate (B.3).

It remains to check that the estimates (B.2), (B.4) and (B.5) are valid. Obviously, A(y) ∈
L(H1(S), L2(S)) for y ∈ H1(S) and by Lemma B.4 we know that A(y) is quasi-m-accretive

uniformly on bounded sets in H1(S). Let y, z, w ∈ H1(S). Then

||(A(y) −A(z))w||20 =

∫
S

[
Q−2(y − z)wx

]2
dx

≤ K
∣∣∣∣Q−2(y − z)

∣∣∣∣2
∞ ||w||21

≤ K
∣∣∣∣Q−2(y − z)

∣∣∣∣2
2
||w||21

≤ K
∣∣∣∣Q−2

∣∣∣∣2
L(L2,H2)

||y − z||20 ||w||21 .

Since H1(S) is a Banach algebra, f maps H1(S) into itself and is bounded on bounded

sets in H1(S). Moreover, it extends to a map L2(S) → L2(S) that satisfies the local

Lipschitz properties (B.4) and (B.5), cf. [19].

Altogether, we have thus shown the following theorem.

Theorem B.7. Given m0 ∈ H1(S) there is a maximal time T > 0, depending only on

||m0||1 and a unique solution m to the Camassa-Holm equation mt = −mxu − 2uxm

satisfying m(0) = m0 such that

m = m(·,m0) ∈ C([0, T );H1(S)) ∩ C1([0, T );L2(S)).

Moreover the map m0 → m(·,m0) is continuous from H1(S) to C([0, T );H1(S)) ∩
C1([0, T );L2(S)).

Remark B.8. In [125], the author discusses the DP equation on the real line and works

with the Sobolev spaces Hs(R) for s > 3/2. Here the underlying spaces are X = L2(R)

and Y = Hs(R) and the isomorphism in this case is (1 − ∂2x)s/2. A further nice result of

Kato’s approach is that the maximal existence time is independent of s in the following

sense: If

v = v(·, v0) ∈ C([0, T ), Hs(R)) ∩ C1([0, T ), Hs−1(R))

is a solution to (B.1) and if v0 ∈ Hs′(R) for some s′ �= s, s′ > 3/2, then

v = v(·, v0) ∈ C([0, T ), Hs′(R)) ∩ C1([0, T ), Hs′−1(R)),
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with the same value of T . In particular, we see that if v0 ∈ H∞(R) = ∩s≥0H
s(R), then

v ∈ C([0, T ), H∞(R)).

Remark B.9. Since Kato’s theorem requires Hilbert spaces it is clear why many authors

model evolution equations like the CH on Sobolev spaces and not on Cn-spaces as we

did in many of the previous considerations.





Appendix C

Integrable systems: Lax pairs and
bi-Hamiltonian structures

Very often, the fact that a given equation is bi-Hamiltonian implies that one can find an

infinite sequence of conservation laws. Rewriting a certain equation in Lax pair form, it

might be integrated via the scattering approach. In this appendix we give a brief overview

about the bi-Hamiltonian formalism and the method of inverse scattering and explain

the corresponding theory for the Camassa-Holm equation (for which it works well). The

main references are [11, 17, 18, 23, 62]. The integrable structure of the DP and HS is

explained in [30, 66]. For the μ-variants of CH, DP and HS we refer to [79, 99].

C.1 The bi-Hamiltonian structure of the Camassa-Holm equation

Our first aim is to present the Hamiltonian structure of the Camassa-Holm equation

(1.19). Since we do not deal with classical Hamiltonian systems, [6], we will start with

a digression aimed at a more comprehensive picture of the Hamiltonian formalism we

present. Our technical assumptions are kept deliberately vague in the sense that a func-

tion f : R → R will be either a smooth function vanishing rapidly at ±∞ (together with

as many derivatives as necessary) or a smooth periodic function with period 1. We focus

on what is happening rather than look for the sharpest technical conditions. This sum-

mary mainly presents the results of [17].

Let F (f) be a functional defined on some underlying linear space of functions f . We

call F differentiable if

δF

δf
[g] =

d

dε
F (f + εg)

∣∣∣∣
ε=0

= lim
ε→0

1

ε
(F (f + εg) − F (f))

exists for all f, g and is a linear functional of g. If this linear functional can be expressed

as a scalar product (inherited from L2(R) or L2[0, 1] accordingly to the considered case),

δF

δf
[g] =

〈
∂F

∂f
, g

〉
,

we call ∂F∂f the gradient of F at f . Note that ∂F
∂f is a function whereas δF

δf is a functional.

A linear operator D on the underlying space is called Hamiltonian if the bracket

[F,H ](f) :=

〈
∂F

∂f
,D∂H

∂f

〉

149
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is skew-symmetric,

[F,H ] = −[H,F ],

and satisfies the Jacobi identity

[[F,G], H ] + [[G,H ], F ] + [[H,F ], G] = 0.

Clearly, [·, ·] is bilinear since ∂(F+H)
∂f = ∂F

∂f + ∂H
∂f . We call [·, ·] the Lie-Poisson bracket

defined by D.

Let us consider evolution equations of the form

ut = Au (C.1)

whereA is an operator, in general nonlinear, mapping the linear space to itself. We assume

that the Cauchy problem for Eq. (C.1) is globally well posed, i.e., solutions are uniquely

determined by their values at t = 0, the initial value can be prescribed arbitrarily (within

the linear space) and solutions exist for all t ≥ 0. The map sending initial data to the

solution of (C.1) at time t can be thought of as a flow . We say that Eq. (C.1) can be

written in Hamiltonian form if we can find a Hamiltonian operator D and a functional

H such that the equation takes the form

ut = D∂H
∂u

. (C.2)

For any solution of Eq. (C.2) we have

d

dt
F (u(t)) =

〈
∂F

∂u
, ut

〉
=

〈
∂F

∂u
,D∂H

∂u

〉
= [F,H ]. (C.3)

We say that F is a conserved functional if F (u(t)) is independent of t for all solutions of

Eq. (C.2).

Theorem C.1. 1. F is a conserved functional if and only if [F,H ] = 0.

2. H is a conserved functional for Eq. (C.2).

3. If F,G are conserved functionals for Eq. (C.2), then so is [F,G].

Proof. This follows from the definition of a conserved functional, Eq. (C.3) and the

properties of the Lie bracket. ��
The proof of our next proposition is a lengthy but straightforward computation which

is written down in [17].

Proposition C.2.

{F,H}(m) = −
∫

∂F

∂m
(∂m+m∂)

∂H

∂m
dx

defines a Lie-Poisson bracket.

Define H1 = 1
2

∫
(u2 + u2x) dx = 1

2

∫
um dx with the momentum m = u − uxx. Then the

Camassa-Holm equation can be written in the form

mt = {m,H1} = −(∂m+m∂)u

and we have thus shown that the Camassa-Holm equation is Hamiltonian.
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Theorem C.3. The Camassa-Holm equation (1.19) is Hamiltonian with the Hamilton

operator −(m∂ + ∂m).

Observe that Eq. (1.19) is equivalent to

mt = −∂
(

3

2
u2 − 1

2
u2x − uuxx

)
.

Let us try to rewrite the right-hand parenthesis as a variational derivative. Knowing that

u or m include the same physical information the nature of this expression suggests that

it would be easier to try to write it as ∂H2

∂u with an appropriate H2, i.e., we would like

to find H2 with∫
∂H2

∂u
f dx =

1

2

∫
(3u2 − u2x − 2uuxx)f dx = lim

ε→0

1

ε
(H2(u+ εf) −H2(u)).

The presence of 3u2 suggests that under the integral in H2(u) there might be a term u3.

Since
∂

∂u

∫
u3 dx = 3u2

we proceed with the next two terms that seem to suggest the presence of a term uu2x in

H2(u) under the integral sign. We have that

lim
ε→0

1

ε

∫
[(u+ εf)(u2x + 2uxfxε+ ε2f2

x) − uu2x] dx =

∫
(2uuxfx + u2xf) dx

and thus after integration by parts

∂

∂u

∫
uu2x dx = −u2x − 2uuxx

so that we come to the conclusion that

H2 =
1

2

∫
(u3 + uu2x) dx (C.4)

is a good choice. Our next lemma establishes that the operator 1−∂2x does not only map

the function u to the function m but also the derivative of functionals with respect to m

to the corresponding derivative with respect to u.

Lemma C.4. If F is a functional then

∂F

∂u
= (1 − ∂2x)

∂F

∂m
.

Proof. Let g = f − fxx. We have

d

dε
F (m+ εg)

∣∣∣∣
ε=0

=

∫
∂F

∂m
g dx =

∫ (
∂F

∂m
−
(
∂F

∂m

)′′)
f dx

and
d

dε
F (m+ εg)

∣∣∣∣
ε=0

=
d

dε
F (u + εf)

∣∣∣∣
ε=0

=

∫
∂F

∂u
f dx

and this achieves the proof. ��
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We thus can write the Camassa-Holm equation as

mt = −(∂ − ∂3)
∂H2

∂m
.

If we could show that the operator −∂ + ∂3 is Hamiltonian, we would obtain a second

Hamiltonian structure. Before we prove that this is indeed so, let us explain what impli-

cations this has for the Camassa-Holm equation.

Let us assume that the equality

E ∂F0

∂m
= D∂F1

∂m

holds where F0 and F1 are functionals and E and D are Hamiltonian operators. We then

say that F0 raises to F1 and F1 lowers to F0, in symbols F0 ↑ F1 and F1 ↓ F0. If we

assume that F0 ↑ F1 ↑ F2 ↑ F3 · · · , i.e., the raising is unobstructed, then, for i < j,

[Fi, Fj ]D = [Fi, Fj−1]E = −[Fj−1, Fi]E = −[Fj−1, Fi+1]D = [Fi+1, Fj−1]D

where [·, ·]D and [·, ·]E denote the Lie-Poisson brackets induced by D and E respec-

tively. Hence if k = i+j
2 is an integer, then [Fi, Fj ]D = [Fk, Fk]D = 0. Otherwise,

[Fi, Fj ]D = [Fj , Fi]D = −[Fi, Fj ]D = 0. The most important consequence of this is

that if the evolution equation mt = Au has the Hamiltonian form

mt = E ∂F1

∂m

then all the Fi, i ≥ 0, are conserved functionals in view of Theorem C.1 since [F1, Fi]E =

[F1, Fi+1]D and the latter is zero as proved above. The only unpleasant thing in this

construction is that the raising is unobstructed. To overcome this we introduce the notion

of compatibility.

Definition C.5. We say that the Hamiltonian operators D and E are compatible if their

sum D + E is still a Hamiltonian operator. We say that an evolution equation is bi-

Hamiltonian if it can be written in two different Hamiltonian forms with compatible

Hamiltonians.

Remark C.6. In general the sum of two Lie-Poisson brackets would fail to satisfy the

Jacobi identity.

A proof of the following lemma can be found in [9].

Lemma C.7. Assume that D and E are compatible Hamiltonian operators. If the func-

tions f1, f2, f3 are such that

Ef1 = Df2, Ef2 = Df3
and there are functionals F1, F2 such that f1 = ∂F1

∂m and f2 = ∂F2

∂m then there is a func-

tional F3 such that f3 = ∂F3

∂m .

Again, the following theorem follows from a lengthy computation written down in [17].
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Theorem C.8. The Camassa-Holm equation (1.19) is bi-Hamiltonian with the

Hamiltonian operators E = −(∂m+m∂) and D = −∂ + ∂3.

Proposition C.9. For the compatible pair of Hamiltonian operators E = −(∂m + m∂)

and D = −∂ + ∂3, if a functional F can be lowered, it can also be raised.

Proof. Assume that F can be lowered to F−1,

E ∂F−1

∂m
= D ∂F

∂m
.

Let f be the solution of the third-order linear differential equation

m′ ∂F
∂m

+ 2m

(
∂F

∂m

)′
= f ′ − f ′′′,

i.e., E ∂F
∂m = Df . By Lemma C.7 we deduce the existence of a functional F1 such that

f = ∂F1

∂m and we can write

E ∂F
∂m

= D∂F1

∂m
,

i.e., F ↑ F1. ��
Now we obtain an infinite number of conservation laws for the Camassa-Holm equation.

First,

H0 =

∫
m dx

is conserved for Eq. (1.19) since

d

dt
H0 =

∫
mt dx = −

∫
(mxu+ 2mux) dx = −

∫
mux dx = −

∫
(uux − uxuxx) dx = 0.

By construction we also have the conserved functional

H1 =
1

2

∫
(u2 + u2x) dx

satisfying

E ∂H0

∂m
= D∂H1

∂m

and by Proposition C.9 we know that H1 raises to some H2, i.e.,

E ∂H1

∂m
= D∂H2

∂m
.

We have already seen that we can choose H2 as in (C.4). Again, by Proposition C.9,

H2 raises to some H3 and so on. This procedure continues indefinitely because in the

equality (expressing the fact that Hn ↑ Hn+1)

(m∂ + ∂m)
∂Hn

∂m
= (∂ − ∂3)

∂Hn+1

∂m
, n ≥ 0, (C.5)
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we see that ∂Hn+1

∂m , the unknown, is differentiated three times, whereas ∂Hn

∂m is differen-

tiated only once so that Hn+1 is functionally independent of H0, . . . , Hn. To find Hn+1,

we use Lemma C.4 to transform Eq. (C.5) to

(∂m+m∂)
∂Hn

∂m
= ∂

∂Hn+1

∂u
, (C.6)

compute ∂Hn+1

∂u and finally Hn+1. Let

Fn+1(x) =

∫ x

0

(
m′ ∂Hn

∂m
+ 2m

(
∂Hn

∂m

)′)
dy,

i.e., for some a ∈ R,
∂Hn+1

∂u
(x) = Fn+1(x) + a.

If we can find a functional H0
n+1 such that

∂H0
n+1

∂u = Fn+1(x) then the general solution

of Eq. (C.6)—viewed as an equation in the unknown Hn+1—is

Hn+1 = H0
n+1 + a

∫
u dx+ b (C.7)

or equivalently Hn+1 = H0
n+1 + a

∫
m dx+ b. To find H0

n+1 we “guess” as we did to find

H2 at the beginning. The fact that (C.7) yields all solutions is ensured by the following

lemma.

Lemma C.10. Let H(f) be a functional. If ∂H
∂f ≡ 0 then H(f) = H(0).

Proof. Clear. ��
Hence if F1 and F2 are functionals such that ∂F1

∂f = ∂F2

∂f then F1 = F2 + c for some real

c. The fact that (C.7) gives all solutions of (C.6) is now plain since

∂

∂u

∫
u dx = 1.

From the general form (C.7) we have the liberty to choose Hn+1 the neatest expression.

An explicit calculation of H3 is presented in [17].

Remark C.11. That H1 =
∫

(u2 + u2x) dx and H2 =
∫

(u3 + uu2x) dx are conserved for the

CH equation (1.19) can also be verified by direct computation, cf. [19].

Remark C.12. Similarly, it is possible to produce conserved quantities by lowering H0 ↓
H−1 ↓ H−2 ↓ · · · . Here, the assumption that m has no zeros is necessary to obtain

functionals Hj for j < 0 from our recipe. It can be shown that for m ∈ C1(R) without

zeros and for the compatible pair E = −(∂m+m∂) and D = −∂ + ∂3, if a functional F

can be raised it can also be lowered.

The Camassa-Holm equation (1.19) possesses an infinite hierachy of independent

conserved functionals obtained via the recursion formula (C.5).
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C.2 The scattering approach for the Camassa-Holm equation

In Quantum Mechanics, the single particle motion under the influence of a potential

u(t, x) is described by the Schrödinger equation

ψxx + (λ− u)ψ = 0. (C.8)

The Schrödinger equation can be seen as coming from the wave equation

ψxx − uψ =
1

c2
ψtt (C.9)

since the plain wave ansatz

ψ(t, x) = ϕ(x) exp(±iωt)

gives Eq. (C.8), for the function ϕ, if λ = (ω/c)2. For u = 0 the wave equation (C.9)

admits travelling waves of the form

ψ±(t, x) = C± exp(−i(kx± ωt)), C± ∈ C, k, ω > 0,

if k = ω/c. More precisely, ψ− describes right-propagating waves with velocity c = ω/k

and ψ+ describes left-propagating waves. For potentials belonging to the Schwartz class

S (R), the Schrödinger equation has the asymptotic form

ψxx + λψ = 0, |x| → ∞,

and we expect that

ψ → A exp
(

i
√
λx
)

+B exp
(
−i

√
λx
)
.

Let us first assume that λ < 0. Let κ :=
√|λ|. In search of bounded solutions of (C.8),

it turns out that, for certain values λn, there are solutions

ψn = A(κ, x) exp(−κx) +B(κ, x) exp(κx),

A → 0 as x → −∞ and B → 0 as x → +∞, called bound states . By Sturm-Liouville

Theory the number of eigenvalues λn is finite. Indeed, if κ2 = |λ| > max(−u) then

ψxx
ψ

= u− λ = u+ |κ|2 > 0

and hence ψxx > ψ if ψ is positive and this implies that ψ is unbounded. Hence

min(u) < λ1, λ2, . . . , λp < 0

for eigenvalues belonging to bound states. If λ > 0 one obtains oscillating eigenfunctions

of the form

ψ →
{

exp(−iκx) + b(κ, u) exp(iκx), x→ ∞,

a(κ, u) exp(−iκx), x→ −∞.

The physical interpretation of this solution is an incoming wave from the right which is

reflected back to +∞ and transmitted on to −∞. We call b(κ, u) the reflection coefficient

and a(κ, u) the transmission coefficient . In addition, the quantities
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cn(t) :=

(∫
R

ψn(t, x)2 dx

)−1

, ψn bound state,

play a key role for the scattering problem for Eq. (C.8). We call {aκ, bκ, cn} the scattering

data for the problem (C.8). Most importantly, knowing the scattering data at time zero

we can calculate them for all positive t since they evolve according to linear ordinary

differential equations.

Let us connect this concept with the well-known theory of finite-dimensional Hamil-

tonian systems: We describe a finite-dimensional Hamiltonian system in terms of a set

of Hamiltonian functions

Hj : R2n = {(pi, qi); i = 1, . . . , n} → R, j ∈ {1, . . . , n}.

We also assume that the differentials dHj are linearly independent and that the Hamil-

tonians are in involution,

{Hj1 , Hj2} = 0,

where {·, ·} is the canonical Poisson bracket on R2n. The equationsHj = cj with constants

c1, . . . , cn define hyper surfaces in R2n and their common level set has dimension n.

Furthermore, the Arnold-Liouville Theorem (see [6]) says that the common level set1 is

diffeomorphic to an n-dimensional torus T. Thus if we have n independent conservation

laws, an integral curve u(t) can be thought of a line winding around T. Flattening out the

torus and changing to a new set of variables (the so-called action-angle variables), one

finally sees that the flow becomes linear. The inverse scattering approach generalizes this

change of coordinates to infinite-dimensional Hamiltonian systems. While a flow u(t) is

described by the 2n coordinates u1(t), . . . , u2n(t) in the finite-dimensional case, we have

a potential function u(t, x) on the real axis2 in the scattering problem for the Schrödinger

operator L = −∂2x + u. The scattering data are also called action-angle variables and the

crucial result is that the motion in these coordinates is linear.

For evolution equations ut = Au the idea behind the scattering transform is to find

a suitable operator L and the corresponding scattering data (which requires information

about the spectrum of L). In fact, the Schrödinger operator L = −∂2x + u is the right

candidate for the KdV equation and we now want to work out what we get for CH.

Anyway, the upshot is:

For an integrable equation ut = Au, suitable for the scattering approach, the scat-

tering transform maps the initial problem to a sequence of separated ordinary dif-

ferential equations for the action-angle variables which can be integrated trivially.

Inverse scattering recovers the potential u(t, x) from the scattering data (which is

much harder from the mathematical point of view than vice versa).

We see that the inverse scattering approach is a method to integrate an equation

of the form ut = Au. Very often, inverse scattering is also called a non-linear Fourier

transform: In the classical theory of ordinary differential equations the Fourier transform

is used to solve certain classes of equations since it maps derivatives to polynomials.

1 The common level set is assumed to be a smooth compact and connected manifold.
2 Recall that bi-Hamiltonian equations like CH have an infinite hierarchy of conservation laws.
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Solving the problem in terms of the co-variables (which is rather easy) and applying the

inverse Fourier transform yields the solution of the initial problem.

Let us now explain the scattering approach for the CH equation (1.19). Therefore, we

first introduce a spectral parameter λ. Recall the recursion relation

D∂Hn

∂m
= E ∂Hn−1

∂m
, D = −(∂ − ∂3), E = −(m∂ + ∂m).

Multiplying with λn and summing over n yields

D
∞∑

n=−∞
λn
∂Hn

∂m
= λE

∞∑
n=−∞

λn−1 ∂Hn−1

∂m
.

Let us introduce the squared eigenfunction

ψ2(x, t;λ) :=

∞∑
n=−∞

λn
∂Hn

∂m
.

Then, formally,

Dψ2(x, t;λ) = λEψ2(x, t;λ). (C.10)

Equation (C.10) is a third-order eigenvalue problem for the squared eigenfunction ψ2

which is in fact equivalent to the following second order Sturm-Liouville problem for the

function ψ.

Lemma C.13. If ψ satisfies

λ

(
1

4
− ∂2x

)
ψ =

1

2
mψ,

then ψ2 is a solution of Eq. (C.10).

Proof. This is a straightforward computation, cf. [62]. ��
Next, we assume that λ does not depend on time and that the time dependence of ψ is

given by an evolution equation

ψt = aψx + bψ

with coefficients a and b so that the compatibility condition ψtxx = ψxxt implies the

Camassa-Holm equation. Cross-differentiation shows that

b = −1

2
ax, a = −(λ+ u).

Consequently,

ψt = −(λ+ u)ψx +
1

2
uxψ

is the desired evolution equation for the eigenfunction ψ.

Theorem C.14. Equation (1.19) admits a Lax pair formulation: The eigenvalue problem

λ

(
1

4
− ∂2x

)
ψ =

1

2
mψ
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and the evolution equation

ψt = −(u+ λ)ψx +
1

2
uxψ

imply (1.19) if they are compatible, ψxxt = ψtxx, and λ is constant in time (isospectrality).

Proof. From the eigenvalue equation, we obtain

λψxx =

(
λ

4
− m

2

)
ψ,

λψxxx =

(
λ

4
− m

2

)
ψx − mx

2
ψ.

Hence, differentiating the eigenvalue equation with respect to t and the evolution equation

twice with respect to x, we obtain

λψxxt =

(
λ

4
− m

2

)(
−(u+ λ)ψx +

1

2
uxψ

)
− mt

2
ψ

and

λψtxx = −(u+ λ)

((
λ

4
− m

2

)
ψx − mx

2
ψ

)
− 2ux

(
λ

4
− m

2

)
ψ

+
1

2
λuxxxψ +

1

2
ux

(
λ

4
− m

2

)
ψ

and a careful examination shows that the compatibility condition implies that

(mt + umx + 2mux)ψ = 0.

Since ψ is an eigenfunction, it is nonzero and we obtain Eq. (1.19). ��
The squared-eigenfunction approach leading to the isospectral problem for the CH equa-

tion goes back to [52]. We now explain the general Lax pair formalism, discovered by

Peter Lax in 1968. Starting from the isospectral problem, we obtain operators L and B

such that the equation under consideration is equivalent to

Lψ = λψ, ψt = Bψ.

The operator L is linear and symmetric and B is the evolution operator for the eigen-

function ψ. Differentiating the first of these equations with respect to time, under the

assumption that λ does not depend on time, we obtain

0 = Ltψ + Lψt − λψt

= Ltψ + LBψ − λBψ

= Ltψ + LBψ −Bλψ

= (Lt + LB −BL)ψ

and hence

Lt = [B,L], (C.11)
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where [B,L] = BL − LB denotes the usual commutator. Contrariwise, starting with

Eq. (C.11) where L and B are spatial but time-dependent operators on some Hilbert

space H and L is linear and symmetric, we consider the eigenvalue problem Lψ = λψ,

ψ �= 0. Differentiating the eigenvalue equation with respect to time we find that

Ltψ + Lψt = λtψ + λψt

and hence

λtψ = (L− λ)ψt + [B,L]ψ

= (L− λ)ψt +Bλψ − LBψ

= (L− λ)ψt + (λ− L)Bψ

= (L− λ)(ψt −Bψ). (C.12)

Let 〈·, ·〉 denote the inner product in H. Then

λt 〈ψ, ψ〉 = 〈ψ, (L− λ)(ψt −Bψ)〉
= 〈(L− λ)ψ, (ψt −Bψ)〉
= 〈0, ψt −Bψ〉
= 0.

Since ψ �= 0 it follows that λt = 0 and by (C.12),

(L − λ)(ψt −Bψ) = 0,

i.e., ψt − Bψ is an eigenfunction of L with eigenvalue λ. Assuming that the eigenspace

of λ has dimension one, we can find a function f only depending on time such that

ψt −Bψ = f(t)ψ.

Note that f commutes with the spatial operator L so that B̃ := B + f satisfies both

ψt = B̃ψ, Lt =
[
B̃, L

]
.

Theorem C.15. Let L be a symmetric linear spatial operator, B a spatial operator

and suppose that Lψ = λψ holds on some Hilbert space H and ψ �= 0. Then:

1. If λt = 0 and ψt = Bψ then Lt = [B,L].

2. If Lt = [B,L] then λt = 0 (and often one can redefine B to get ψt = Bψ).

The pair L,B is called Lax pair and Lt = [B,L] is called Lax equation.

Example C.16. For the Camassa-Holm equation (1.19) with potential m = u − uxx one

finds the equivalent Lax pair representation

ψxx =
1

4
ψ + λmψ, ψt =

(
1

2λ
− u

)
ψx +

1

2
uxψ,
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c.f., e.g., [18, 28, 92].

Example C.17. For the DP equation, we have the third order equation

ψx − ψxxx − λmψ = 0

in the corresponding scattering problem. The time evolution of the wave function is given

by

ψt +
1

λ
ψxx + uψx −

(
ux +

2

3λ

)
ψ = 0,

cf. [30]. Indeed, the compatibility of both equations implies the DP equation for the

function u.

In this framework, forward scattering means determining the Lax pair for the given

equation (so that the Lax equation recovers the original PDE). Then, for any fixed λ,

the time evolution of ψ and the corresponding scattering data are determined; here we

have to solve ordinary differential equations. Finally, the inverse scattering procedure

yields the solution of the initial equation. Inverse scattering enables modern analytical

approaches like the Riemann-Hilbert formalism and is a current area of research, cf. [98].



References

1. Abraham, R., Marsden, J.E.: Hamiltonian mechanics on Lie groups and hydrodynamics. Proc.

Sympos. Pure Math. 16, 237–244 (1970)

2. Adams, R.A.: Sobolev spaces. Academic Press, New York (1975)
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51. Frölicher, A., Kriegl, A.: Linear Spaces and Differentiation Theory. Pure and Applied Mathemat-

ics, J. Wiley, Chichester (1988)

52. Gelfand, I.M., Dorfman, I.: Hamiltonian operators and algebraic structures associated with them.

Funct. Anal. Appl. 13, 248–254 (1979)

53. Ghidaglia, J.M.: Weakly damped forced Korteweg-de Vries equations behave as finite dimensional

dynamical system in the long time. J. Differential Equations 74, 369–390 (1988)



References 163
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der Deutschen Französischen Gesellschaft (2001)

• Preis der Deutschen Physikalischen Gesellschaft für besondere Leistungen
im Abiturfach Physik (2004)

• Braunschweiger Bürgerpreis (Preisgeld 2000 Euro, 2007)
• Stipendien aus Studiengebühren (2007, 2008), Stipendium der Studien-
stiftung des Deutschen Volkes (2008)

• Preis des Departments für Mathematik der Technischen Universität Braun-
schweig (2008, 2009)

• Preis der Deutschen Mathematikervereinigung im Rahmen der Studen-
tenkonferenz 2010 (Einladung in das Mathematische Forschungszentrum
Oberwolfach)

Mitgliedschaften (Auswahl)

• Deutsche Physikalische Gesellschaft (bis 2005)
• Studienstiftung des Deutschen Volkes (bis 2009)
• Deutsche Mathematikervereinigung
• Graduiertenkolleg 1463 (Analysis, Geometrie, Stringtheorie)

Workshops, Konferenzen, Seminare (Auswahl)

• Sommerschule “Functional Analytic Methods in PDE”, Hannover, Sep-
tember 2008

• Symposium “Wissenschaft als Beruf”, Köln, Juni 2009
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