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Abstract

In the present thesis we discuss some integrable equations and systems of equations
suitable for the modelling of 1D water waves, using methods coming from geometric
analysis. A novel variant of the periodic b-equation is defined by the operator u — 2%
here, p gives the mean of a periodic function. For b = 2 and b = 3 we obtain the
pu-Camassa-Holm equation and the p-Degasperis-Procesi equation, respectively. A two-
component generalization of the Camassa-Holm equation and its p-variant is obtained
by including the continuity equation for the fluid velocity and density. Analogously,
it is possible to define a two-component system for the Degasperis-Procesi equation,
its p-variant or related equations like the Hunter-Saxton equation. We show that the
equations under consideration reexpress a geodesic flow on the group of orientation-
preserving diffeomorphisms of the circle S (or a suitable semidirect product, respectively);
in particular, they can be treated within Arnold’s geometric approach. The geometric
picture yields some local well-posedness theorems, in particular for the smooth category,
as well as stability results. The thesis also shows ways to generalize the obtained results
to non-periodic equations and other modified variants, e.g., coming up in the study of
water waves under the influence of weak energy dissipation.
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Zusammenfassung

In der vorliegenden Arbeit werden integrable Gleichungen und Gleichungssysteme zur
Modellierung von 1D Wasserwellen mit Methoden der geometrischen Analysis studiert.
Eine Variante der periodischen b-Gleichung wird durch den linearen Operator p— 9?2 rea-
lisiert; hierbei liefert p den Mittelwert einer periodischen Funktion. Fiir b =2 und b = 3
erhilt man die p-Camassa-Holm Gleichung bzw. die p-Degasperis-Procesi Gleichung.
Eine Verallgemeinerung der Camassa-Holm Gleichung und ihrer p-Variante wird durch
Hinzunahme der Kontinuititsgleichung fiir die Geschwindigkeit und die Fluiddichte erhal-
ten. Analog definiert man ein Zwei-Komponenten-System fiir die Degasperis-Procesi Glei-
chung, ihre pu-Variante und verwandte Gleichungen wie die Hunter-Saxton Gleichung. Wir
zeigen auf, dafl die genannten Modellgleichungen dquivalent sind zu Geodétengleichungen
auf der Diffeomorphismengruppe des Einheitskreises (bzw. einem geeigneten semidirekten
Produkt); insbesondere lassen sie sich im Rahmen der Arnold’schen Theorie beschreiben.
Aus der geometrischen Betrachtung resultieren Theoreme zur lokalen Wohlgestelltheit,
insbesondere in Fréchet-Riumen, sowie Aussagen zur Stabilitit von Losungen. Die Ar-
beit beinhaltet auch Ansétze zur Verallgemeinerung der Resultate auf nicht-periodische
Gleichungen und diskutiert Modifizierungen der untersuchten Gleichungen, etwa zur Mo-
dellierung von schwacher Energiedissipation.
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Schlagwérter. (u-)b-Gleichung, geodétischer Flul, Diffeomorphismengruppe des Ein-
heitskreises
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Preface

Mathematical studies of fluid motion have been carried out for more than 300 years and
there is a number of famous mathematicians, physicists and engineers who contributed
important results to the mathematical theory of fluids: Daniel Bernoulli (Hydrodynam-
ica, 1738), Georges Gabriel Stokes (Mathematical and Physical Papers, 1880-1905) or the
universal genius Leonhard Euler (Principes généraux du mouvement des fluides, 1757),
to name only a few. Isaac Newton (Principia II, 1687) was the first to attempt a math-
ematical theory of water waves. Much later, after the derivation of Euler’s equations
of hydrodynamics, Pierre-Simon Laplace (1776) reexamined wave motion (although his
work remained disregarded). Joseph-Louis Lagrange (Méchanique analytique, 1788), per-
haps independently, derived the linearized governing equations for small amplitude waves
and obtained a solution in the limiting case of long plain waves in shallow water, [29].

Laplace was the first who posed the general initial value problem: Given any localized
initial disturbance of the liquid surface what is the subsequent motion? Even nowadays,
problems like that are of great importance; the reader might think of the prediction of
tsunamis and huge cresting waves which motivate the study of water wave problems from
the mathematical point of view, within the framework of a modern area of research. The
well-posedness problem for the general Navier-Stokes system in three dimensions is only
one prominent example among many other attractive open problems where we probably
need some deep new ideas.

Until the second half of the 20th century, the study of wave motion was confined almost
exclusively to linear theory, [27]. Nevertheless, linear water wave theory cannot capture
effects like wave breaking or solitary waves. On account of that, nonlinear equations have
been introduced and a pioneering candidate has been proposed by Boussinesq (1877),

Uy — 6Uly + Uggr = 0,

later named after Diederik Korteweg and Gustav de Vries (1895). The Korteweg-de Vries
(KdV) equation is a paradigmatic example of an integrable nonlinear PDE, i.e., the
solutions can be exactly and precisely specified. In addition, KdV is bi-Hamiltonian and
can be solved by means of the inverse scattering transform; hence there is an infinite
number of conservation laws and a corresponding Lax pair representation, [78] [I10].
Eventually, it has been shown that KdV allows for soliton solutions but not for wave
breaking, cf. [10] where global existence for Lo(S) initial data is proved.

Not more than 20 years ago, Roberto Camassa and Darryl D. Holm derived a novel
nonlinear equation for the motion of shallow water waves, applying Hamiltonian methods:
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U + 3UUy = 2UgUgy + Ulgpr + Uiz

Camassa and Holm proved the existence of solitary waves and studied the associated
Lax pair, showing in that way the integrability of the Camassa-Holm (CH) equation,
[11]. In the subsequent years, the CH became subject of a wide range of papers, e.g.,
dealing with blow-up solutions and hence wave breaking, cf., e.g., [19, 21} 22| 111]. In
1999, the research for integrable nonlinear PDEs in form similar to the CH led to the
Degasperis-Procesi (DP) equation

Ut —+ 4UU;C = 3'leu;mc + UlUgrx + Utz
see [30, 32], and later to a general family of nonlinear equations,
my = —(mgu + buy,m), m=u—ugy,, bER,

which is also called b-equation, [36]. For b = 2 and b = 3, the b-equation becomes
the CH equation and the DP equation, respectively, and only for these choices of b, the
resulting equation is integrable, [30] [69]. Interestingly, although discovered solely because
of its mathematical properties, it turned out later that the DP equation plays a role in
the water wave theory, quite similar to the CH, [27]. Further recent papers establish
the bi-Hamiltonian formulation and the scattering approach, [30} [3I], and until today,
researchers try to obtain various types of solutions of DP by using numerical methods as
well as powerful analytical tools, see, e.g., [44] [60, B3].

The present thesis is devoted to some variants of the periodic b-equation. If we replace
the momentum variable m = u — u,, by m = p(u) — uyz, where p(u) is the mean of the
function u(t, z), i.e., the real valued time-dependent function fo u(t, x) dx, we obtain the
novel family of equations

my = —(mgu + bmug), m=p(u) — uge, bER,

which first appeared in a paper by Lenells, Misiolek and Tiglay in 2009, [99]. The motiva-
tion for considering this partially averaged variant comes from geometry: In the pioneer-
ing work [5], Arnold explains that the motion of inertia rigid bodies and the motion of an
ideal fluid can be described within the same mathematical approach: Euler’s equations
of motion for the body and the fluid can both be obtained as the geodesic equations of
a one-sided invariant Riemannian metric on a Lie group. In each case the metric cor-
responds to the kinetic energy and is given by an inner product on the Lie algebra of
the group. The inertia matrix for the rigid body corresponds to an inertia operator for
the fluid motion which maps the fluid velocity u to the momentum variable m. For the
b-equation, the inertia operator is 1 — 92 and choosing —d2, the b-equation for b = 2
becomes the Hunter-Saxton (HS) equation which appears in the study of nematic liquid
crystals, [65]. In some intuitive sense, choosing y— 2, we obtain an equation which might
inherit properties of the b-equation and the HS equation. In this thesis, we mainly discuss
the p-b-equation for b = 2 and b = 3 where we obtain the yCH and the uDP equation
(which are two integrable members of the u-family, [99]).

In physical experiments with real water waves, it is not possible to omit the effect of
energy dissipation. For the CH and the DP, some recent studies show that by adding a
term proportional to m on the right-hand side one obtains a suitable model for water
waves with weak energy dissipation, [46, [124]. This motivates the study of a weakly
dissipative p-b-equation
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my = —(Mgu + bugm + Am), m = p(u) — Uzy, (b,A) € R x (0,00),

which we discuss only for b = 3.

The periodic CH equation possesses an integrable two-component extension, denoted
as 2CH, which includes the continuity equation for fluid velocity and fluid density in the
second component;:

{mt = —umg — 2Mmuy — ppy,
pr = —(pu)e,

where m = u— uyy, cf., e.g., [I3L49]. A two-component variant of DP has been suggested
by Popowicz [115],

{mt —3Mmug — Myt — Py + 2ppa,
pt = —2pUg — pau.

That 2DP is in fact integrable — which manifests itself in the existence of a Lax pair
and a bi-Hamiltonian structure — is not proved but conjectured in [I15]; Popowicz only
generalizes a Hamiltonian operator for the DP to a suitable matrix Hamiltonian operator
for the extended equation. A two-component variant of HS has been suggested by Lenells
and Lechtenfeld [90]; it is of the same form as the 2CH but with m = —uy,. The 2HS
can be regarded as a supersymmetric extension of the Camassa-Holm equation. In [90],
the authors also work out the bi-Hamiltonian formulation and a Lax pair representation
for the 2HS equation and present some explicit solutions like bounded travelling waves.

Very often the main step to obtaining a solution of a mathematical problem is to find
an adequate representation for it. After that finding the solution becomes easy or is at
least possible. For the b-equation, there is a beautiful generalization of Arnold’s powerful
geometric approach, see, e.g., [4I]. In the geometric picture, the b-equation reexpresses
a geodesic flow and, concerning local well-posedness, it is much easier to discuss the
geodesic equation than the equation in its initial form. It will be the general concept of
the present work to rewrite the equations under consideration in a suitable geometric
picture. The geometric viewpoint on our equations and families is not only aesthetically
appealing but will also be useful in the study of well-posedness and stability issues.

Up to now, there are only a few results about the p-variant of the b-equation and
two-component systems, related to the fact that these equations have only begun lately
to appear in the literature. In particular, geometric interpretations of nonlinear PDEs
for the water wave theory are a current area of research. Let us summarize in detail the
main results collected in this work which is organized as follows:

The first chapter introduces the basic concepts of fluid mechanics to the reader. We
explain the derivation of Euler’s equations of motion and give a precise description of the
classical water wave problem. We also make clear how the families of model equations
mentioned above come up within the mathematical theory of ideal fluids. In addition,
we present Arnold’s geometric approach to fluid dynamics and recall some elementary
concepts from Riemannian geometry like geodesics, curvature and the geometric aspects
of some Lie groups. This introductory chapter does not contain any new results and can
be skipped by the experienced reader.

In Chap. 2l we consider a more general family of CH equations obtained from the
inertia operator 1 — Ad? for A € [0, 1]; this is motivated by the variational principle.
As for the CH, it is possible to show that the so obtained generalization is integrable
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since it possesses a bi-Hamiltonian structure and a Lax par. Similar to Lenells’ approach
[04] for the CH equation, the generalized family is a reexpression of the geodesic flow
for a canonically defined affine connection on the group Diff(S) of orientation-preserving
diffeomorphisms of the circle S. We specify the Christoffel map and derive a convenient
formula for the sectional curvature of the circle diffeomorphism group associated with the
generalized CH. Next, we present an infinite-dimensional subspace of positive sectional
curvature and compute explicit formulas for the variation of the Christoffel map and the
sectional curvature with respect to the parameter \.

The CH and the DP share many similarities: They allow for breaking waves, solitary
waves, peakon solutions, have an integrable structure and are both obtained from the
b-equation. Nevertheless, in the geometric picture we find the following main difference:
While the affine connection defined for the CH is compatible with a Riemannian metric,
this is not the case for the DP. We thus call the CH a metric Euler equation; the DP
belongs to the class of non-metric Euler equations. In [45], Escher and Seiler prove that
only for b = 2 (that is, the Camassa-Holm) the b-equation is a metric Euler equation: For
any b # 2, it is impossible to find a regular inertia operator A such that the corresponding
b-equation reexpresses geodesic motion with respect to the right-invariant metric induced
by A. For non-metric Euler equations, the geometric theory only works on account of the
affine connection defined in terms of the Christoffel map.

For the DP equation (which is a prototypical example for the general case b # 2),
Escher and Kolev established a meaningful local well-posedness result for the smooth
category in 2009, cf. [41]. One goal of Chap. Bl is to point out that the arguments in
[41] 45] also work well for the p-b-equation. Precisely, we show that the uCH is the
only equation obtained from the p-b-equation which is compatible with a Riemannian
structure; the corresponding inertia operator is y — 92. For any b # 2 we prove that the
pu-b-equation is of non-metric type. We then consider the pDP equation and prove that it
is locally well-posed in the smooth category, i.e., for any smooth initial value ug € C*°(S),
there exists a unique smooth short-time solution which depends smoothly on time and on
the initial data. The strategy of our proof is to make consequently use of the geometric
reformulation: On the diffeomorphism group of the circle (in the C™(S)-category with
n > 3) the uDP becomes a geodesic equation which is an ODE with smooth right-hand
side. Applying standard Banach space theory, we immediately get a local well-posedness
result for the geodesic flow. But concluding that the geodesic flow for smooth initial data
is smooth, is not trivial for several technical reasons: First C°°(S) is a Fréchet space in
which we cannot apply the local existence and uniqueness theorems for Banach spaces.
On the other hand, in the C™(S)-category the diffeomorphism group of the circle is only
a topological group and not a Lie group. And letting n — oo we have to make sure that
the existence intervals for the C™-flows corresponding to smooth initial values do not
converge to zero.

Finally, Chap.[3 presents some well-posedness and blow-up results for a weakly dissipa-
tive uDP equation and continues the discussion of one-parameter families of Riemannian
metrics, as explained in Chap. 2} We define a one-parameter family of nCH equations
which is obtained from the inertia operator p — A92 for A € [0,1]. Again, we find the
Christoffel map for the novel family, compute the sectional curvature and establish a pos-
itivity result. The chapter ends with a computation of the A-derivatives of some geometric
quantities.
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Chap. Bl also contains a detailed overview about the different inertia operators coming
into the play, as well as a short introduction to Sobolev spaces on the circle, which we
will need in this and in our next chapter.

Chap. @l is about two-component variants of CH, DP and HS as well as the associated
p-equations. After a short summary of well-known facts about semidirect product groups
we show that 2CH and 2DP can be regarded as geodesic equations on the semidirect
product Diff(S)®F(S), where F(S) denotes a space of sufficiently smooth real-valued
functions on the circle. For 2CH, the geodesic equation derives from a natural right-
invariant Riemannian metric, whereas for 2DP the affine connection is not compatible
with any such metric. The geometric construction will give immediate proofs of local
well-posedness for both systems in H*(S) x H*~1(S) or C"(S) x C"~1(S) for sufficiently
smooth initial data. Moreover, we will show that the local well-posedness can be extended
to the Fréchet space C(S) x C*°(S). For 2CH, we perform some explicit calculations
of the sectional curvature and we prove the existence of a large subspace of positive
sectional curvature. Finally, we point out that our approach to the 2CH is analogous to
Euler’s formalism for the rigid body motion which already proved to be successful for the
one-component CH, [8I]. Our treatment of the 2HS and its p-variant is quite similar: We
find a suitable semidirect product configuration space for the 2HS equation, prove that
2HS reexpresses a geodesic flow and show that the sectional curvature associated with the
2HS equation is constant and positive. This generalizes a result for the one-component
HS established by Lenells in [95]. Our discussion of 2uHS begins with the presentation
of a Lax pair and the geometric setting. We also perform some curvature computations
for the 2pHS.

In Chap. Bl we are concerned with the non-periodic b-equation, i.e., the family m; =
—(mgzu+bu,m) with b € R, m = u—u,, and x a real variable. Some recent studies show
that local well-posedness in the smooth category can be achieved from the geometric
picture, quite similarly to the periodic case, but using a different Lie group setting. For
b = 2 and the group of H-diffeomorphisms, a proof is written down in [34] and we
generalize the approach to an arbitrary b and diffeomorphism groups of general Sobolev
class. The main problem is to establish that the groups under consideration have the
structure of a regular Fréchet Lie group in the sense of Milnor, cf. [105] [108].

There are three appendices which summarize some key results of the analysis in Banach
and Fréchet spaces, Kato’s semigroup approach to abstract evolution equations and the
theory of integrable infinite-dimensional systems.

To sum it up, the thesis shows how analytical methods coming from physics, differential
geometry and analysis lead to new interesting results in the mathematical theory of water
waves. Some unanswered questions and further tasks can be found in the open problem
chapter: there is still a lot of work to do! Some of the results mentioned above have already
been published by the author, see the reference list, and further preprints will follow. I
hope to have succeeded in writing a text accessible for mathematicians, engineers and
physicists working in different fluid mechanics research communities and I am thankful
for any kind of feedback.

Hannover, January 18, 2011 Martin Kohlmann
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Chapter 1
Preliminaries

“What we know is a drop, what we don’t know is an ocean.” (Sir Isaac Newton, 1643-1727)

Fig. 1.1 The free surface of a water wave.
(http://www.how-to-purify-water.com/images/waterwave. jpg, cited 13 May 2010)

The mathematical theory of water waves is a modern area of research which is based on
the classical analysis of partial differential equations but also uses methods coming from
geometry, harmonic analysis or the theory of infinite-dimensional Hamiltonian systems.
This introductory chapter aims to explain the fundamental aspects of the mathemati-
cal modelling of fluids, in particular the governing equations of fluid motion. We show
that one-dimensional (1D) water waves can be described by a novel family of evolution
equations, the so called b-equation. The b-equation includes the Camassa-Holm equa-
tion as well as the Degasperis-Procesi equation. We also recall some basic concepts from
Riemannian geometry and the group structure of fluid dynamics since this is absolutely
necessary for all the following considerations. Finally, we introduce the Hunter-Saxton
equation by physical arguments and explain its connection to the water wave problem.


http://www.how-to-purify-water.com/images/waterwave.jpg

2 1 Preliminaries

1.1 The mathematical theory of ideal fluids and water waves

The motion of a perfect fluid is described by a system of partial differential equations
named after Leonhard Euler who first published them in 1757 in his famous article
Principes générauz du mouvement des fluides. We explain the intuitive and mathematical
ideas which lead to the notion of an ideal fluid and derive a complete set of conservation
laws for the motion of such a fluid. Most importantly, we discuss a general water wave
problem in which we are interested in the water’s free surface over a flat bottom, moving
under the influence of gravity. We discuss different approximations to the Euler equations
for this model leading to the famous Korteweg-de Vries equation, the Camassa-Holm
equation or the Degasperis-Procesi equation which was derived recently in [30} B2]. Our
summary mainly follows [4], [14] for the general theory and [27, [36] [69] for the modelling
of water waves.

1.1.1 Euler’s equations for the flow of an ideal fluid

Let 2 be a region in two- or three-dimensional space filled with a fluid. Our aim is to
describe the fluid’s motion. The basic mathematical idea of a fluid motion is that it can
be regarded as a point transformation. We imagine the fluid to consist of small moving
particles: A fluid particle which is at a position £ at time ¢ = 0 is at position = at a later
time so that

x=uz(&t) or z; =ux;(&,8,E,1). (1.1)

Clearly, this model violates the concepts of the kinetic theory of fluids saying that the
fluid particles are the molecules which are in random motion. Our treatment of fluid
motion is based on a continuum model, which turned out to be suitable for macroscopic
phenomena, and we assume that the velocity at any point is the average velocity of the
molecules in a suitable neighborhood of this point. The initial coordinates £ of a particle
are called material coordinates (or convected coordinates, Lagrangian coordinates) of the
particle and the particle itself may be called the fluid particle &. The spatial coordinates
x of the particle may be referred to as its position or place. The transformation (1)) can
be regarded as a curve with parameter ¢ and we call this curve the particle path of the
particle £. Let us assume that the motion is continuous, single valued and that Eq. ()
can be inverted, i.e.,

§=€($,t) or gizfi(l‘lax%x&t)

and that £ is continuous and single valued. Physically, these assumptions mean that
the particle paths are continuous functions and that fluid particles do not split up or
that two distinct particles occupy the same place. If we consider a physical quantity @
of the fluid, we thus have two ways of interpreting the values of : On the one hand,
Q(&,t) is obtained by an observer riding on the particle £ through the fluid whereas
Q(x,t) is obtained by an observer who is fixed at the spatial position x and watches the
fluid motion through a small neighborhood of the point . We call the first picture the
Lagrangian description of fluid motion and the second picture the Fulerian description.
For each fixed time ¢, we define the Fulerian velocity of the fluid by

dt‘ = vi(xat)
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Fig. 1.2 Fluid particle
flowing in a region (2.

and observe that v = (v1,v2,v3) is a time-dependent vector field on {2. We assume that
for each time t the fluid has a well-defined mass density p(x,t), i.e., if 2 C 2is a
subregion of §2, then the mass of fluid inside 2’ at time ¢ is

m(2,1) = //p(x,t) av,

where dV' denotes the volume element in plane or in space. Again, the existence of p
follows from our continuum assumption which ignores somehow the molecular structure
of matter. In the following, we assume that p and v inherit appropriate smoothness so
that standard operations of calculus can be applied to them. To obtain the governing
equations for the fluid motion we stick to the following three basic principles:

1. Mass is neither created nor destroyed.

2. Newton’s second law: The rate of change of momentum of a portion of the fluid
equals the force applied to it.

3. Energy is neither created nor destroyed.

Let £’ C {2 be a subregion of the fluid domain 2. Conservation of mass means that
the rate of change of mass in 2’ equals the volume flow across 92, i.e.,

4 pz,t)dV = —/ pv-ndA, (1.2)
a9

where n denotes the outward normal at points of 92" and dA the area element on 9f2'.
Applying the divergence theorem, we find the continuity equation

dp . _
En + div (pv) = 0. (1.3)

Second, the total force Fygr on 82" is given by the surface stress and hence the pressure
p = p(x,t) on 92" and external forces, i.e.,

Fag/:—/ pndA—l—/ pbdV,
a5 fo
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where b = b(x,t) is the given body force per unit mass. If we fix some vector e in space,
it follows from the divergence theorem that

e Fagr :/ (—gradp + pb) - edV

and if we write

Dv d ov
Dt = Ev(m(t),t) =% + (v-V)v
for the material derivative of v, we see that Newton’s law reads as
D
pD—: = —gradp + pb. (1.4)

In three-dimensional space, (L3]) and (L4]) are four equations for the five unknown quan-
tities v = (v1,v2,v3) and the scalar variables p and p. To describe the fluid motion
completely, we need a third equation which is obtained from conservation of energy. The
fluid’s energy E is given by the sum of the kinetic energy

1
Bun =5 [ oAV ol = (o} + o + )2
Q/

and an internal energy which we cannot see on a macroscopic scale and which comes
from intermolecular potentials and the thermodynamics of the fluid. A straightforward
computation shows that, for a moving fluid portion {2’ (¢), the rate of change of the kinetic

energy is given by
d v
< Fin = (L4 ; 1.
3 Bx /Q/(t)p (v <8t + (v V)v)) dv. (1.5)

If we assume that E = Fy,, then the rate of change of kinetic energy in a portion of
fluid equals the rate at which the pressure and body forces do work, i.e.,

d
_Ekin:_/ pv-ndA+/ pv - bdV. (1.6)
dt 29 (1) (b

Using (L) together with the divergence theorem we get from (LL6) under the assumption
divv = 0 the identity

D
/ pv-—Ude—/ (v-gradp — pv - b)dV
2/ (t) Dt 2/ (t)

which is also a consequence of Eq. (I4]). We say that a fluid with divergence free velocity
field is incompressibldD. If the density p is only depending on time, i.e., grad p = 0, we call
the fluid homogeneous. An incompressible, homogeneous and non-viscous fluid is called
ideal fluid. For an ideal fluid, the governing equations of motion are

I Letting J be the Jacobian determinant of the coordinate transformation £ — z, an easy computation
shows that J' = J - divwv. Since J can be regarded as the ratio of an elementary material volume to its
initial volume, it follows that divv = 0 implies that the fluid does neither expand nor squeeze.
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D
%%:—gwp+m, (1.7)
p = counst., 8)
dive = 0.

We call the system (LX)—(L9) the system of Euler equations for the ideal fluid flow.
Usually, one adds the boundary condition v -n = 0 on 92'.

1.1.2 The classical problem of 1D water waves

We consider the the unidirectional irrotational motion of water waves on a free surface
under the influence of gravity. The water layer is regarded as an ideal fluid in R3 with
Euclidean coordinates z, y, z over a flat bad which is assumed to be at z = 0. For simplic-
ity, we assume that the wave propagates in x-direction and that all physical variables do
not depend on y. We write v = (u,0,w) and b = (0,0, —g) for the constant acceleration
due to gravity of earth. Let h be the mean level of water and n(z,t) the shape of the
water surface, i.e., the deviation from the average level. The total pressure follows from
Bernoulli’s equation
P=Pa+pgh—z)+p

where P4 is the constant atmospheric pressure and p measures the deviation from the
hydrostatic pressure distribution. On the surface z = h +1n, P = P4 and hence p = npg.
We also have the boundary conditions

w:%—l—u%, z=h+mn, (1.10)
w=0, z=0, (1.11)

which are explained in [69]. The Euler equations ([LZ)-(T9) together with (LI0) and
(CII) yield

up + uug +wu, = —Lp,,
Wy + uwy + ww, = —2ps,
ugtw: = 0, (1.12)
w —m+un, on  z=h+n,
p = npg on z=h+m,
w = 0 on z=0.

In the next step, one introduces the dimensionless parameters

E = E’ 5 = X’ M = 62,
where a denotes the typical amplitude and A the typical wavelength of waves under
consideration, and scales the variables



6 1 Preliminaries

Fig. 1.8 The classical z
water wave problem.

X

x
z zh

t At
nl|— an

u evghu
w edv/ghw
p

epgh

The idea behind this is that making assumptions on the respective size of € and ¢ one is
led to derive simpler asymptotic models for (ILI2)). Substituting the new dimensionless
variables in the system (LI2]) gives

ug + e(uty +wuy) = —pa,
plwy + e(uwg +ww,)) = —ps,
Ugp + W, = 0,
w =m+eun, on z=1+en,
P = n on z=1+en,
w = 0 on z=0.

Finally, for right-moving waves, one introduces the far-field quantities

(=Velx—t), 7=t w= W,

and obtains the system

eur — uc + e(uue + Wu) = —pcs
ep(eWr — We + e(uWe + WW,)) = —Dzs
u¢ + W, = 0,
W =€enr —N¢ +eunc on  z=1+en,
P = n on z=14¢en,
W = 0 on z=0.

Now the heuristical strategy is to assume that the variables u, W and p can be expressed
as double expansions in ¢ and § with terms depending only on n(z,t) and explicitly on
z. As a result, one obtains a single nonlinear equation for 1 and all the variables can be
expressed in terms of the solution of this equation. In the so-called long wave regime we
have
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p<l, &=0(u),

and explicit calculations show that a right-going wave should satisfy the KdV equation
3 1
U + Uy + 5§uux + uaumm =0

which becomes the transport equation with speed 1 if €, — 0. Benjamin, Bona and
Mahoney [9] found out that the KAV equation belongs to a wider class of equations, the
so-called BBM equations, which provide an approximation of exact water waves equations
of the same accuracy as the KdV equation:

3 1
U + Uy + §€uux + p(QUggy + Buzet) =0, a— = 6 (1.13)
Observe that Eq. (LI3)) contains both non-linear effects, described by the uu,-term, and
dispersive effects, modelled by the u,,,-term and the wu,,-term.

For medium or large amplitude waves, it was observed that the behavior is more
nonlinear than dispersive and thus one uses the scaling

p<l, e=0(9), (1.14)

which characterizes the medium amplitude shallow water regime. Observe that we still
have ¢ < 1 and thus the same reduction to a simple wave equation at leading order,
but since the dimensionless parameter is larger than in the long wave regime, we capture
stronger nonlinear effects. Observe that stronger nonlinearity could allow the appearance
of breaking waves which are not modelled by the BBM equations. It is shown in [27],
that the correct generalization of the family (LI3]) under the scaling (LI4) is provided
by the class

Uy + Up + ;a?uum + Uz ze + BUzat) = epp(YUUzzz + SULULL ), (1.15)
with appropriate conditions on the parameters «, 3,7 and 4. It can be shown that
Eq. (LI5) is not well-posed if 3 is positive. Second, among all 8 < 0-members of the fam-
ily (I5) only two have a bi-Hamiltonian structure: the Camassa-Holm equation and the
Degasperis-Procesi equation. In general, bi-Hamiltonian equations are of particular inter-
est since they may form completely integrable Hamiltonian systems (see Appendix [C]).
Notice that the KdV equation is the only bi-Hamiltonian member of the family (LI3]).
In addition, the Camassa-Holm and Degasperis-Procesi equations allow for solitons, i.e.,
wave packets which do not change their shape while travelling at constant speed.

The Camassa-Holm (CH) equation is usually written in the form

Ui+ kUy + 30U, — Uy = 2U, Uy + UUpyy, Kk €R. (1.16)
For x # 0, we can transform (LI6) to (LIR) by setting
u(t,z) = aU(b(x — vt), ct), (1.17)
with 5 ) N
a= e—ﬁ(l—v), bQZ—E, v = 3 #1, c=—-(1-v)



8 1 Preliminaries

which requires § < 0 and yields 8 = —2v and § = 2. Similarly, the Degasperis-Procesi
(DP) equation is usually written as

Ui+ kU +4UU, — Upyy = 3UUzy + UUger, K €R,

and using the transformation ([I7) with

8 1 @ b
= (1— R — = =2(1—
a 36/<c( v), B v 5 c /<;( v)
and 8 <0, a # B, B = —87y/3 and § = 3, one sees that the DP equation is of the form

(@C13).

The Korteweg-de Vries (KdV) equation
up — 6UUy + Ugpy = 0 (1.18)

is an asymptotic equation for the unidirectional motion of water waves in the long
wave regime. The function u(t, z) depends on a time variable ¢ and a space variable
z and represents the wave profile over the flat bottom. In the shallow water medium
amplitude regime, the Camassa-Holm (CH) equation

Uy + BUUp = Uppr + 2UpUpy + Ulgas (1.19)
and the Degasperis-Procesi (DP) equation
Wi + duty = Upgy + SUgUpy + Ullgre (1.20)

are approximations to the governing equations of wave motion which capture
stronger nonlinear effects.

The KdV equation first appeared in Boussinesq’s article Fssai sur la théorie des eaux
courantes (1877) and is named for Diederik Korteweg and Gustav de Vries who stud-
ied the equation in 1895. The KdV equation is the prototypical example of an exactly
solvable non-linear partial differential equation and its solutions in turn are paradigmatic
examples for soliton solutions. The mathematical theory behind the KdV equation is rich
and interesting: The method of inverse scattering is applicable to KdV and the equation
possesses a bi-Hamiltonian structure, a Lax pair and hence an infinite number of con-
served quantities (see Appendix [C)). Furthermore, KdV is obtained from a variational
principle and defines a symplectic structure in the theory of infinite-dimensional Hamil-
tonian systems, cf. [104].

The CH equation was introduced by Roberto Camassa and Darryl D. Holm as a bi-
Hamiltonian model for water waves in shallow water, see [II] where the authors also
specify a Lax pair and so-called peakon solutions for (ILIJ); that are solitons with a
sharp peak and hence a discontinuity at the peak in the wave slope. In [I8, 23] it is
shown that the CH equation is solvable via the inverse scattering transform.

The DP equation was discovered by A. Degasperis and M. Procesi [30} 82] in the search
for a bi-Hamiltonian equation in form similar to the CH equation. In [30], the authors
present a Lax pair and show that the DP equation has peaked solitons.

In the general theory of 1D water wave equations, one distinguishes between two types
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of models: in the periodic case, we assume that the space variable z is defined on the
unit circle S = R/Z. Formally, S consists of equivalence classes of real numbers such that
x and y are equivalent if and only if x — y is an integer. Since for any real x there is
an integer n satisfying n < x < n + 1, each equivalence class can be represented by an
element of [0,1). We write u: S — R if u: R — R is periodic with period 1. Physically,
x € S means that the wave has a periodic profile. For non-periodic equations, we write
r € R; in this case the equation is considered on the real line.

For applications, one is often led to study the following question: Let u be a function
depending on time and space. Given the initial data ug in some function space and the
evolution equation u; = Au with the unknown u and some (in general nonlinear) operator
A, can we solve the initial value problem

up = Au,
{um,x) — uo(a) (1:21)
in the sense that

1. the problem in fact has a solution in the underlying function space, at least for some
open time interval containing zero,

2. this solution is unique,

3. the solution depends continuously on the initial data ug?

We call the problem (LZI) a Cauchy problem (or initial value problem) and say that it
is well-posed if it has a solution u as specified above. If the problem (L2]]) is well-posed
and the solution u exists for all t € R, we say that (L21)) is globally well-posed, otherwise,
the problem is locally well-posed. The third condition in the above definition is of great
practical importance since we would prefer that our (unique) solution changes only a
little when the conditions specifying the problem only change a little.

Note also that we have not carefully defined what we mean by a solution; presumably,
we would demand that our solution possesses as much as regularity as necessary to plug
it into the evolution equation. However, apart from so called classical solutions or strong
solutions, there might be weak solutions which are obtained if we multiply the equation
uy = Au with some smooth test function, integrate and perform integration by parts.
Note that peakon solutions

n

u(t,z) = Z mi(t)ef‘mfm"'(t)l

i=1

of a water wave equation are weak solutions since they fail to be differentiable at the
cusps.

For (TI8), (II9) and (L20)), various well-posedness results and properties of strong
and weak solutions have been established. Here, we only mention some examples for the
periodic case since we will mainly discuss periodic equations in the following. For the
KdV equation (I8, Bourgain [10] proved global well-posedness for square integrable
initial data, see also [72] [78] for further results. The Cauchy problem for the periodic
CH equation (I.I9) in spaces of classical solutions has been studied extensively (see, e.g.,
[109]); in [33] the authors explain that this equation is also well-posed in spaces which
include peakons, showing in this way that peakons are indeed meaningful solutions of
CH. The precise blow-up setting, the blow-up rate and examples for finite time solutions
of the CH equation are presented in [19] 211, 22] [TTT]. Well-posedness for the periodic DP
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Fig. 1.4 Four-peakon wave ulx]
profile formed by adding
peakons at x1 = —5, z2 =
—1, z3 = 3, x4 = 7 and
with m1 = m3 =1, mg =
1/2 and m4 = 3/2.

equation ([L20]) and various features of solutions of the DP on the circle are discussed in
[44]. Just a small selection for further reading is [15] 16} 47, 126] and [59], and for readers
with a particular interest in travelling waves [93, [I19] and in peakons, (multi)solitons
and shock waves [100, [103].

1.2 Euler’s equations as reexpression of a geodesic flow on the
circle diffeomorphisms

Euler found out that the motion of a rigid three-dimensional body can be described along
geodesics in the group of rotations of three-dimensional Euclidean space equipped with a
left-invariant Riemannian metric. A significant part of Euler’s theory depends only upon
this invariance so that it can be extended to other groups. Most interestingly, Euler’s
formalism can be applied to the hydrodynamics of an ideal fluid where the relevant
group is the diffeomorphism group of smooth and volume-preserving diffeomorphisms.
Basically, the kinetic energy defines a right-invariant metric and the key result is that
the fluid motion is described by the geodesics with respect to this metric. Of course, we
have to pay attention when generalizing results from a finite-dimensional Lie algebra to
an infinite-dimensional one. This section summarizes the most important facts about the
circle diffeomorphism group (in the smooth category) and the geometric approach to fluid
dynamics. In addition, we also recall some elementary facts from differential geometry
which we will need in the following.

1.2.1 The diffeomorphism group of the circle as manifold
configuration space for the motion of an ideal flurd

To describe the dynamics of a physical system, one first needs a configuration space, i.e.,
a Lie group such that the motion of the system is given by a smooth path in this Lie
group. For clarity, let us first recall the following definition.

Definition 1.1. A group G is a non-empty set G together with a map G x G — G,
(g, h) — gh, such that

1. for all g1, g2, g3 € G we have that (g192)93 = 91(9293),
2. there is an element e € G satisfying eg = ge = g for all g € G,

3. for any g € G there is a unique element g~' € G such that gg—!

=g lg=c.
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If, in addition, G is a smooth manifold and the group product G x G — G, (g, h) — gh,
and the inversion G — G sending any g to g~ ' are smooth, we say that G is a Lie group.

Let C*°(M; N) denote the set of all smooth maps between smooth manifolds M and N.
For an ideal fluid, filling a domain M, we choose the configuration space

Diff>* (M) = {ap € C*°(M; M); ¢ bijective, volume-preserving and
¢t e C(M; M)}

of smooth and volume-preserving diffeomorphisms of M. The group product is just the
composition of two diffeomorphisms and the neutral element is the identity map id.
Indeed, the fluid flow determines for every time ¢ a map ¢ — (t) in Diff>*(M) such that
the initial position of every fluid particle is mapped to its position at time t. To model
periodic 1D waves, we will consider diffeomorphisms on the circle S.

Definition 1.2. Let C°°(S) denote the set of all functions S — R which have continuous
derivatives of order n for any n € N. We write C™(S) for the space of n-times continuously
differentiable functions S — R. By C°(S) = C(S), we denote the continuous functions on
S.

Obviously,
c@S)= () CS).

neNU{0}

Clearly, the spaces C™(S) are Banach spaces, where
lulgn = z": Hu(j)H , uW(z) = %(x), u® =, |v| = max|v(z)|.
¢ = S oxJ o z€eS

The space C*(S) is a Fréchet space (see Appendix [A3); more precisely, its topology is
induced by the countable family {|-|-.; n > 0}. A sequence (uy)ren converges to u in
C>=(S) if and only if

luk — u|cn — 0, k— oo, VneNU{0}

In a Fréchet space, only directional derivatives (Gateaux derivatives) are meaningful.

Definition 1.3. Let X,Y be Fréchet spaces. A function f: X — Y is called continuously
differentiable (or C') on an open subset U C X, if the directional derivative

[DF ()= Jim - (F(z + hu)  f(2)

exists for all z € U and all w in X and the map (z,u) — [Df(z)]u is continuous.

Higher order derivatives and C"™-classes in Fréchet spaces are defined inductively. Note
that for Banach spaces X,Y our definition of continuous differentiability is weaker than
the usual one, cf. Appendix [Al Now we introduce some diffeomorphism groups.

Definition 1.4. We write Diff" (S) for the set of all diffeomorphisms ¢: S — S which are
C"-functions with strictly positive derivative. Similarly, we let Diff>*(S) denote the set
of all smooth and orientation-preserving diffeomorphisms of the circle S.



12 1 Preliminaries

Given a diffeomorphism ¢ € Diff*(S), we define its derivative ¢, € C°°(S) by the
following construction, cf. [56]. We denote by p: R — S, 2 + €*™'* the universal cover of
the circle. A lift of ¢ is a smooth map f: R — R satisfying po f = pop, i.e.,

© (eQTri;c) _ 627rif(x)7 Vz € R.

By definition, a lift f for ¢ is unique only up to some integer constant. The fact that ¢
is orientation-preserving implies f(z+1) = f(z)+ 1. The map f’ is smooth and periodic
and we set
Pz = f/

to obtain a well-defined derivative of . Next, we observe that Diff>(S) is naturally
equipped with a Fréchet manifold structuré® modelled on the Fréchet vector space > (S).
We briefly sketch how to obtain a smooth atlas with only two charts, cf. [56]. Given a
v € Diff*™*(S) it is always possible to find a lift f: R — R of ¢ such that

—-1/2< f(0)<1/2 or 0< f(0)<1;
these conditions being not exclusive. We now let

V1 == {p € DiIff*™(S); ¢ has a lift f satisfying —1/2 < f(0) < 1/2},
Vo == {p € Diff™(S); ¢ has a lift f satisfying 0 < f(0) < 1},

and obtain open subsets of Diff>*(S) with V4 U V4 = Diff>*(S). For any ¢ € Diff>*(S) let
u=f—id.

Then « has period 1 and hence lies in C*°(S). In addition u/(z) > —1 and u(0) = f(0).
Thus, defining the open sets

Uy ={ueC>@S); -1/2<u(0)<1/2and v’ > -1},
Uy ={ueC™@S); 0<u(0)<1landu >-1},

and the maps
D;:U; — Vj, u— f=id+u, j=12,

we get charts of Diff>*(S) with values in C°°(S). The change of charts corresponds to a
change of lift and is just translation in C*°(S) by +1.

Since the composition and the inversion are smooth maps Diff>*(S) x Diff>*(S) —
Diff>*(S) and Diff>*(S) — Diff>*(S) respectively, Diff>*(S) is a Fréchet Lie group, [58].
The tangent space at the identity of Diff**(S) is naturally identified with the smooth
vector fields on the circle. To see this, one may choose a smooth path ¢ — ¢(t) C Diff™*(S)
with ¢(0) = id so that, on the one hand, ¢.(0) € TigDiff>*(S), and on the other hand,
vt(0,2) € T,S for any « € S. Since TS ~ S x R, we also have TigDiff™*(S) ~ C>(S).
Later on, we will explain that T}¢Diff>°(S) is the Lie algebra g of Diff>*(S), equipped with
the Lie bracket [u,v] = uzv — vyu. Observe that Diff™(S) is itself parallelizable, i.e.,

TDIff* (S) ~ Diff*(S) x C*(S).

2 Fréchet manifolds are defined as sets which can be covered by charts taking values in a given Fréchet
space and such that the transition maps are smooth. The notions Banach manifold, Hilbert manifold
etc. are defined analogously.



1.2 Euler’s equations as reexpression of a geodesic flow on the circle diffeomorphisms 13

Fig. 1.5 Lie group G
with Lie algebra g. The
curve g(t) starts at id with

velocity v. l

For n € N, the diffeomorphism groups Diff"(S) are equipped with a smooth Banach
manifold structure modelled on the Banach space C"(S). However, Diftf"(S) is only a
topological group an not a Banach Lie group; the composition and the inversion map are
continuous but not differentiable, cf. [37].

1.2.2 A geometric approach to Euler’s equations of motion

Arnold [5 (6] [7], Ebin and Marsden [37] found out that the motion of inertia rigid objects
in Classical Mechanics and the incompressible flow of some ideal fluid can be described
by the same mathematical approach. In this section, our aim is to introduce this powerful
geometric formalism and to explain the results using the example of a rigid body in R?
and some ideal fluid inside a domain M C R? (see also [62 81 83]). The configuration
space for a rigid three-dimensional body is the Lie group SO(3). Recall that an ideal fluid
inside a domain M is modelled on the manifold configuration space Diff> (M). Let ¢(t) C
Diff>*(M) be a smooth path. The velocity field of the fluid motion described by ¢(t) is
given by v(t) = %gp(t) and hence v(t) is an element of the tangent space T,,;)Diff™ (M).
The kinetic energy Fuin = 3 [,, pv*da is a quadratic form on T, Diff>(M). Observe
that, since our fluid is incompressible, the integration can be carried out with the volume
element occupied by an initial fluid particle or with the volume element dz occupied at
time t. Moreover, the kinetic energy is right-invariant in the sense that it is invariant
under right translations on the diffeomorphism group.

Definition 1.5. Let G be a Lie group and let g € G. The maps
Ry: G— G, hw—hg, Ly:G—=G, hwgh, (1.22)

are called the right translation and left translation given by g. The map Iy :== Rg-1Ly: G —
G sending h to ghg~! is called the inner automorphism of G.

Observe that the operations L, and R, commute and that I, is indeed an automorphism
because Iy(hiha) = I5(h1)I4(h2). Since Iy, = Iy, the map sending any g € G to the
inner automorphism I, is a group homomorphism. Note that the differential of I, at the
identity is a map T.G — T.G.

Definition 1.6. Let G be a Lie group. The tangent space at the unity 7.G is called the
Lie algebra g of the Lie group G.
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Fig. 1.6 Angular velocities R(t)"'R()X
for a rigid body B and a
circle diffeomorphism. We
denote by X a point in B
the body and describe the
body’s motion by a curve

R(t) C SO(3); similarly SE— U(t, X)
for the ideal fluid with /
o(t) C Diff**(S). For the lR(t) (1)

body, the Eulerian velocity

satisfies u(t, z) = R(t)X = ’
R(t)R~1(¢)z and similarly R)X ==
for the fluid u(t,z) = u(t, @)
et(t, X) = (pr o™ H)(t, @)
o u(t, )

From the invariance of the kinetic energy under right translations (left translations for
the rigid body, respectively), we get the crucial idea that it will often be enough to define
geometric objects on the Lie algebra so that the values on all the other tangent spaces
follow from right invariance (left invariance, respectively).

The Lie algebra of SO(3) is denoted by s0(3) and consists of all real antisymmetric
3 x 3-matrices. The space s0(3) is three-dimensional and its elements are called angular
velocities. More precisely, for a smooth path R(t) C SO(3), we call R(t) the material
angular velocity,

(DriyRr-1(0))R(t) = ROR™'(t) € g

the spatial angular velocity and
(DreyLr-1))R(t) = R ()R(t) € g

the body angular velocity since these velocities correspond to the spatial reference frame
and the body’s reference frame respectively. Observe that Lr and Rg are linear maps so
that DLr = Lg and DRr = Rg. The Lie algebra of Diff> (M) consists of the smooth
divergence-free vector fields on M and is denoted as Vect™(M). For M = S, applying
DyR,-1 and DyL,-1 to the velocity ¢, we obtain the velocities u = ¢; o o~ ! (from the
linearity of R,-1) and

d _ Pt uow
U = — 1 o) + e = — = .
Ev Clten) eco Pz Po

Definition 1.7. We define the adjoint action of G on g by
Adg:g—g, Adg&:=(Dely)¢, €9
For the rigid body, the map Adgr sends body angular velocities {2 to spatial angular

velocities w, i.e., w = Adrf2 = RNR~!. The adjoint action of Diff**(S) on C*(S) is

given by u = Ad,U = (Up,) o p~ L.

Definition 1.8. Let End(g) be the space of linear operators taking g to itself and let

Ad: G — End(g), g+ Ad,.
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We define the adjoint representation of the Lie algebra g as the map

ad := D,Ad: g — End(g), ad, = iAdg(t)
dt o

)

where t — g(t) is a curve in G which starts at g(0) = e with velocity ¢’(0) = 7.
If G = SO(3), then by direct computation ad,b = ab — ba = [a,b] and [,-] is the
commutator of 3 x 3-matrices. Using that s0(3) can be identified with R? via the map

0 —x3 T2
SR = s0(3), z=(r1,a0,23) == 23 0 —z1 |,
—x9 1 O

we have ad,b = a x b, where x denotes the vector product in R?. For G = Diff>*(S) and
a curve @(t) with ¢(0) = id and ¢;(0) = u, we compute

1

d _
ad,v = &(vgox) o .
= |:U<pt;c - (wa)x%} © 50_1

x

t=0
= UpV — VU,

where we have used that ¢(t) o ¢~ !(¢) = id and hence ¢; 0 ™1 + (¢ 0 1)L p~! =0,
©12(0) = u, and @, (0) = 0.
Definition 1.9. We define the commutator in the Lie algebra g as the map

[]:axg—g, (§n)— aden= [ n)]

The pair (g, [, -]) is called (abstract) Lie algebra of the Lie group G.

It is easy to see that the operation [, -] is bilinear, skew-symmetric and satisfies the
Jacobi identity. A vector space V equipped with a bilinear, skew-symmetric operation
[,:]: VxV — V satisfying the Jacobi identity is called abstract Lie algebra. Every finite-
dimensional abstract Lie algebra is the Lie algebra of some Lie group G. However, this
correspondence fails in the infinite-dimensional case.

The adjoint operators Ad,: g — g form a representation of the Lie group G by the
automorphisms of its Lie algebra g:

[Adg €, Adgn) = Adg [€,m], Adgn = AdgAdy,.

Definition 1.10. The orbit of £ € g under the action of Ad, for all g € G is called the
adjoint (group) orbit of €.

The adjoint orbits of SO(3) are spheres centered at the origin and the origin itself.
If v € Vect™(S), the associated adjoint orbit under the action of Diff>*(S) is the set
{(ves) 097! o € Diff**(S) }. Note that the vectors ad,v, u € Vect™(S), form the tan-
gent space to the adjoint orbit of v.

We denote by g* the vector space dual to the Lie algebra g. The space g* consists
of continuous linear functionals on g. To every linear operator A: X — Y, mapping a
vector space X to a vector space Y, one can associate an adjoint operator A* acting in
the reverse direction, between the corresponding dual spaces, by
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A Y 5 X7 (A"y)(z) =y(Ax), YyeY™ zeX.
For the differentials of the translation maps (L22) on a Lie group G we have
DthZ ThG — TghG, DhRgZ ThG — Tth,
and thus
(DnLg)*: T;,G — TG, (DnRy)": T;,,G — T;G.
This motivates why several authors use the notation DR, = (Ry). and (DRy)* = (Ry)*
(and DLy = (Lg)+ and (DLy)* = (L,)* respectively).

Definition 1.11. Let G be a Lie group with Lie algebra g. The map Ad* which associates
to any group element g € G the linear transformation

Ady:g" — g

is called the coadjoint (anti)representation of G. The orbit of a point w € g* under the
action of the coadjoint representation of G is the set {Ad;w; geqd } C g* which is called
the coadjoint orbit of w.

Recall that the dual transformation Ad;: g* — g* is defined by
(Adjw)(€) =w(Adg€), geG, ey, weg
The operators Ad; form an antirepresentation since

AdZ, = AdjAdL.

Definition 1.12. Let G be a Lie group with Lie algebra g. Then the coadjoint represen-
tation of an element n € g is the rate of change of the operator Ad;(t) of the coadjoint
group representation as the group element g(t) leaves the unity g(0) = e with velocity
g(0) = n. We denote the operator of the coadjoint representation of the algebra element
n € g by

ady: g" —g".

The operator adf] is dual to the adjoint representation, i.e.,

ad;(w)(ﬁ) = w(adnf) = W([Uaf]),

foralln € g, £ € gand w € g*. For any w € g*, the vectors ad;w, 7 € g, form the tangent
space to the coadjoint orbit of w.

Assume now that we are given a Riemannian metric on a Lie group G which is invariant
under left translations Ly, i.e., for any g € G, there is a bilinear map (-, ~>g TG xTyG —
R, depending smoothly on g, such that

(&.m), = (D.Ly)&, (DeLy)n),

for all £,n € g and for any g € G. Clearly, such a metric is defined uniquely by its
restriction to the tangent space at the group unity, i.e., by a quadratic form on the Lie
algebra g of the group. We are dealing with left-invariant metrics to describe the motion
of a rigid body. To model the motion of an ideal fluid, one uses right-invariant metrics
and the theory is similar.
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Definition 1.13. Let A: g — g* be the linear, symmetric and positive definite operator
which defines the inner product (-,-) = (-,-),, i.e.,

(€&,m) = (A&, n) = (An,¢).

Here, (-,-) denotes the dual pairing of elements belonging to g and g*. Then A is called
the inertia operator for (-,-). For any g € G, let

Ag: TyG = T;G, Ayl = [(DeLg)*] Y A[(DgL,—1)E],

i'e'a <€777>g = (Ag€777) = (Agnaf) = <777§>g fOI‘ a’H 5777 E TgG

The dual space s0(3)* has a vector representation given by the map
T:IR:i’_>50(3)*7 Y= (y17y25y3)'_>g5

where
(U,%) = y1x1 + Yor2 + yaxs.

In the following, we omit the hat and check notation and identify elements of s0(3) and
50(3)* directly with R3-vectors. The dual space of Vect™(S) is given by the distributions
Vect'(S) on S. The subspace of regular distributions which can be represented by smooth
densities is denoted by Vect™(S), i.e., T € Vect*(S) if and only if there is a C*°(S)-function
p such that

7o) = [ plalpla)da. Vo€ C=(@).

Given a curve g(t) C G, the velocity ¢(¢) is an element of the tangent space of G at
the point g(t). Recall that we can apply left and right translations to transport ¢ to the
Lie algebra g to obtain

we = (DgLy1)g€g and w,:= (DygRy-1)g € g,

the angular velocity in the body frame and the spatial angular velocity, related by ws; =
Adgwe. The kinetic energy Fiin is left-invariant and thus completely determined by we,

ie.,
1., 1 1 1, .,
5 (9:9)y = 5 (we, we) . = 5 (Awe, we) = 5(Ag9, 9)-

We now apply left and right translations to

Ekin =

m = Asg € T,G
to obtain two elements of g*.
Definition 1.14. The dual space g* is called the space of angular momenta. The vectors
me = (DeLg)*m € g* and my = (D.Ry)*m € g

are called the vector of the angular momentum relative to the body and the spatial angular
momentum.

We have m. = Ad;ms and

1 1 .
Ekin = §(m05w6) = §(mag)
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Altogether, we consider four vectors moving in the spaces g and g*: the vectors of angular
velocity and momentum in the body and in space, i.e.,

we(t),ws(t) € g and mc(t), ms(t) € g*. (1.23)

We furthermore obtain the following commutative diagram.

Ad,

g g We Ws
DyL, 1 DyR, 1 \ /
T,G g

A Ag
* m
e
(D.Ly)* (DeRy)* / \
me ms
g A g

The following system of differential equations for the four moving vectors (L23)) in the
rigid body problem was established by Leonhard Euler.

Theorem 1.15 (Euler). The vector of spatial angular momentum is preserved under

motion, i.e.,
d

—ms = 0. 1.24
™ (1.24)
The vector of angular momentum relative to the body satisfies the Euler equation
d dr (1.25)
—m,. = ad}, me. .
dt e

The first statement is a consequence of the symmetry of Ey;, with respect to left trans-
lations. The Euler equation follows from this conservation law and m.(t) = Adj ms by
differentiating at ¢t = 0 with g(0) = e. If we replace w. = A~1m,, we see that the Euler
equation defines a quadratic vector field on g* and its flow determines the motion of m..
Using the isomorphism A~!: g* — g, we can also obtain an Euler equation on the Lie
algebra g which is an an evolution equation for the vector w. = A= m..

Theorem 1.16. The vector of angular velocity in the body evolves according to the fol-
lowing equation with quadratic right-hand side:

%wc = B(we,we), (1.26)

where the bilinear (nonsymmetric) map B: g x g — g is defined by
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([a,b],¢) = (B(c,a),b), Va,b,c€g, (1.27)

i.e., the operator B is the image of the operator of the algebra coadjoint representation
under the isomorphism of g and g* defined by the operator A.

For a fixed first argument, B is skew-symmetric with respect to the second argument,
ie.,

(B(c,a),b) + (B(c,b),a) = 0.

For a proof of Theorem [[LT6, we refer to [7].

For the group G = SO(3) Euler’s equation takes the following form: The angular
momentum m = Aw evolves according to m = m X w. With the inertia operator A =
diag(I, I2, I3), one has

My = Y23Mams,
Mo = y31mgmy,
mg = y12mimsa,

with v;; = I j_l - Ii_l. The I; are called the principal moments of inertia and they
satisfy the triangle inequality |I; — I;| < I. The Euler equation (25 describes the
evolution of the momentum vector in the three-dimensional space s6(3)*. Any solution
m.(t) of Euler’s equation lies in the intersection of the coadjoint orbits (which are spheres
centered at the origin) with the energy levels. Note that the kinetic energy is a quadratic
first integral on the dual space and the energy level surfaces are given by the ellipsoids
<A’1mc,mc> = const.

Remark 1.17. The inertia operator for a rigid body is usually defined as the integral
A= / p(X) (|X[*idgs — X XT) d°X
B

where B C R? is the region of space occupied by the body in its reference configuration,
X is the spatial position of a particle in the body and p denotes the mass density. Since
A is symmetric it is diagonalizable by a rotation matrix and transforming to the system
of principal axes, we can assume that A is a diagonal matrix.

We now apply Euler’s theorem to ideal hydrodynamics where we have the infinite-
dimensional group of smooth and volume-preserving diffeomorphisms. Among all the
parallels in the formalism, let us recall one crucial difference: Motions of an ideal (=
incompressible, homogeneous, inviscid) fluid filling a domain M are modelled by a right-
invariant metric on the Lie group G = Diff*™*(M). To transfer our results about left-
invariant metrics to the right-invariant case, it suffices to change the sign of the com-
mutator [-,-] as well as of all operators depending linearly on it, i.e., ad,, ad} and B.
Generalizing Euler’s results for the motion of a rigid body to the group Diff>™* (M), we
obtain Euler’s equations of fluid motion as well as the conservation laws for them. In
particular, the right invariance of the metric results in the following form of the Euler
equation:
v = —B(v,v),

with B according to Theorem Arnold also showed that the bilinear operator B on
the Lie algebra g = Vect™ (M) for the Euler equation has the form

B(e,a) =rote x a + gradp,
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where p is a function on M which represents the pressure of the fluid. Hence the Euler
equation for three-dimensional ideal hydrodynamics is the evolution

v
— =wv Xrotv —gradp

ot

of a divergence-free vector field v in M C R3 tangent to M. To finish this section and
to lead over to the next one, we consider the following theorem which is proved in [7].

Theorem 1.18. The operation B(v,v) for a divergence-free vector field v on a Rieman-
nian manifold M of any dimension is

B(v,v) = V,v + gradp.

Here Vv is the vector field on M which is the covariant derivative of v along itself
in the Riemannian connection on M given by the chosen Riemannian metric and p is
determined modulo a constant by the same conditions as above.

1.2.3 Affine connections, Riemannian structures and geodesics
on Lie groups

Let us assume that M is a smooth manifold of finite dimension n € N. Local coordinates
are denoted as z!,..., 2", the coordinate derivatives as 01,...,d, and the set of smooth
vector fields on M as Vect®™(M). Let us assume that M is equipped with an affine
connection, i.e., an R-bilinear map

V: Vect™ (M) x Vect™ (M) — Vect™ (M), (X,Y)— VxY

satisfying VyxY = fVxY for all f € C*(M) and Vx(fY) = (Xf)Y + fVxY. Given
a local chart, an affine connection V is completely determined by the Christoffel symbols

Il = (V05" (1.28)

Let X (t) be a vector field along the curve t — z(t) C M, i.e., X(t) = X («(t)). Then the
covariant derivative of X along the path x(t) is

DX

o (&) = (VaX)(x(t)).

In local coordinates, we have
k
DX - R
(B st erow
where we use Einstein summation convention, cf. [35].

Definition 1.19. Let M be a finite-dimensional smooth manifold, equipped with an
affine connection V. A geodesic on M is a smooth curve z(t) in M such that

Di—o (1.29)
Dt ’
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The geodesic equation in local coordinates is
it + Ihitil = 0.

For affine connections, we next define the notion of invariance under diffeomorphisms.

Definition 1.20. Let ¢ be a diffeomorphism of M and X € Vect™ (M). We define
(6" X)() = Dy X (0(2))
and say that an affine connection V on M is invariant under ¢ if
" (VxY) = Veoxe'Y, VXY € Vect™ (M).

If M = G is a Lie group, one usually considers right and left translations G x G — G
as in (L22) and says that a connection V is right-(left- invariant, if it is invariant under
R, (Lg) for any g € G. A connection which is both right- and left-invariant is called
bi-invariant.

On any Lie group G with affine connection V, a canonical bi-invariant connection is
defined by

vgufv = % [gu; gv]a

where [-,-] denotes the Lie bracket on the Lie algebra T.G of G and &, and &, are
the right-invariant vector fields on G with values uw and v at the identity. (Observe
that right-invariant vector fields are of great importance for the study of the motion of
incompressible fluids.) If V is right-invariant,

B(X,Y):=VxY - V%Y (1.30)

defines a right-invariant tensor field on G which is uniquely determined by its value at
the identity, i.e., a bilinear operator g x g — g. Conversely, any bilinear operator B on g
defines uniquely a right-invariant affine connection on G via (LL30), i.e.,

Ve = glew&] + BlEw &), (131)

where we use the same notation for B and the right-invariant tensor field it generates
on G. The operator B is called Christoffel operator, since it generalizes the Christoffel
symbols defined in ([28]).

Finally, let us choose a basis (ex)1<g<n for the Lie algebra g. Let (£x)i<k<n be
the global right-invariant frame on G which equals (eg)i<k<n at the identity and let
(wF)1<k<n be its dual co-frame. For a smooth path t — g(t) C G, let

u(t) = (u"(t)1<hen = (Dgiy Rg-1(2))d(t)
be the Eulerian velocity; the components u* are given by
ut = wg (u) = wy((DeRg)u) = wy(9).

The covariant derivative along g(t) is obtained from

k
DX - 1 k k . .
(E) =X + (561‘]‘ +b”> UzX‘],
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where cfj are the structure constants of g and bfj are the tensor components of B, and
since ¢f; = —c;, Eq. (L29) in terms of u reads as

W+ bfu'u? = 0.
We have the following theorem.

Theorem 1.21. A smooth curve g(t) on a Lie group G with right-invariant affine con-
nection V is a geodesic if and only if its Eulerian velocity uw = (DgRgy-1)g is a solution
of the Euler equation

uy = —B(u,u). (1.32)

In general, for a bilinear operator B which defines an Euler equation of the type (L32),
the associated affine connection V given by (L31]) is not necessarily Riemannian in the
sense that it is compatible with a Riemannian metrid on G.

Let A be an inertia operator on G, i.e., A: g — g* is a symmetric isomorphism. The
corresponding right-invariant metric on G is denoted by p4. We denote the Lie bracket
on g by [-,-] and write (ad,)* for the adjoint with respect to p4 of the natural action of
g on itself given by ad,: g — g, u — [v, u]. Formally, the bilinear operator B in ([L32) is
B(u,v) = ad}u, cf. Theorem [[.I6 but since we prefer to have a symmetric operator, we
will work with

B(u,v) = % [(adu)*v + (ady)* 1]

Fix now G = Diff>*(S) and recall that the topological dual space of Vect™ (S) ~ C>(S) is
given by the distributions Vect’(S) on S. In order to get a convenient representation of the
Christoffel operator B we restrict ourselves to Vect™(S), the set of all regular distributions
as introduced in Sect. By Riesz’ representation theorem we may identify Vect™(S) ~
C*°(S). This motivates the following definition.

Definition 1.22. Let £Y™(C>°(S)) denote the set of all continuous isomorphisms on
C™(S) which are symmetric with respect to the Ly inner product. Each A € £Y™(C>(S))
is called a regular inertia operator on Diff>(S).

We now come to one of the most important definitions for all the following considerations.

Definition 1.23. Let G = Diff**(S) and let u; = —B(u, u) be an Euler equation on the
Lie algebra g. We call this Euler equation metric if there exists a regular inertia operator
A on G such that B(u,v) = adju where ad™ is the adjoint of ad,u = [v, u] with respect
to the right-invariant metric p4 on G induced by A. Otherwise, we say that the Euler
equation is non-metric.

While the periodic Camassa-Holm equation is of metric type with A =1 — 92 this does
not hold true for the Degasperis-Procesi equation (see [45] [83]). In the metric case, it is
important to establish that the metric p4 and the connection ([L3]]) are compatible in
the following sense.

Definition 1.24. Let M be a Banach manifold endowed with a Riemannian metric (-, -)
and let Vect®™ (M) denote the space of smooth vector fields on M. An R-bilinear oper-
ator (X,Y) — VxY: Vect™ (M) x Vect™ (M) — Vect™ (M) is a Riemannian covariant
derivative if the following properties are satisfied:

3 Observe that, if G is a finite-dimensional Riemannian manifold, the Levi-Civita Theorem guarantees
the existence and uniqueness of a symmetric affine connection V on G compatible with the Riemannian
metric. This does not hold true in the infinite-dimensional case in general.
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1. punctual dependence on X :
X(m)=0 = (VxY)(m)=0

for m € M and X,Y € Vect™ (M),
2. torsion-freeness:
VxY - VyX =[X,Y]

for X,Y € Vect™ (M),
3. derivation in Y :
Vx(fY) = (X[)Y + fVxY

for f € C>°(M) and X,Y € Vect™ (M),
4. compatibility with the metric:

XY, Z)=(VxY,Z)+ (Y,VxZ)
for X,Y and Z in Vect™ (M).

It is important to recall that in the case of an infinite-dimensional Riemannian manifold,
the Levi-Civita Theorem does in general not hold true. Let (-, -) be a Riemannian metric
on a finite-dimensional manifold M and denote by V the Levi-Civita connection. For
vector fields X, Y and Z on M, one obtains VxY from the formula

2<VXYa Z> = - <[Y7X]72> - <Xa [Yv Z]> - <Ya [Xv Z]>
+X<KZ>+Y<Z,X>—Z<X,Y>, (1.33)

see [35]. The bracket (-,-) establishes an isomorphism T,,M — T,5M for each m € M
which guarantees the existence of VxY (m) for all m. In general, this approach fails if
one does not have a finite number of local coordinates. In our setting, the crucial point
is that the natural topology on any T,G ~ C*°(S) is stronger than the topology given
by the right-invariant metric ps—we have defined a weak Riemannian metric on G and
there are elements in TG which cannot be written as pa(-,§) for some § € T,G. In
other words: Any open set in the topology induced by pa on T,G is open in C*(S),
but the converse is not true. Nevertheless, uniqueness of V can be deduced from formula
(T33): Since V satisfies the properties in Definition [[24] writing down the compatibility
relation for the cyclic permutations of X,Y, Z € Vect™ (M) yields

X(Y,Z) = (VxY,Z)+ (Y,VxZ),
Y(Z,X) = (VyZ,X)+ (Z,VyX),
Z(X,Y) = (VzX,Y)+ (X,VzY).

Adding the first two and subtracting the third of these equations shows that (IL33]) holds
with necessity. The non-degeneracy of (-,-) now implies that V is unique.

If M is a Banach manifold with a (Riemannian) covariant derivative V in the above
sense, the theory established in [88] [89] guarantees the existence of geodesics and a
curvature tensor on M. In addition, we have a well-defined exponential map which is
defined as the geodesic flow at time one, i.e., if ¢ — 7(t) is the (unique) geodesic in M
starting at p = ~(0) with velocity v;(0) = u € T, M then exp,(u) = v(1), cf. [35]. Roughly
speaking, the map exp,(-) is a projection from T,M to the manifold M. Moreover,
geodesics are homogeneous in the sense that exp,(tu) = (t) for any ¢t > 0. Since the
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derivative of exp,, at zero is the identity, the exponential map is a local diffeomorphism
from a neighbourhood of zero of T;, M to a neighbourhood of p € M. However, this fails for
Fréchet manifolds like Diff**(S) in general. Nevertheless, it could be shown that, for the
Camassa-Holm equation, the exponential map is in fact a smooth local diffeomorphism,
[25] 26]. Recently, this result was generalized to the Degasperis-Procesi equation, [41] [82].

1.2.4 Curvature in a two-dimensional direction

Given a manifold M with affine connection V, one defines the curvature tensor
R(X,Y)Z =VxVyZ -VyVxZ -V xyZ, (1.34)

where X,Y and Z are vector fields on M. Since R(X,Y)Z =0 for M = R"™, we are able
to think of R as a way of measuring how much M deviates from being Euclidean. Closely
related to the curvature operator is the sectional curvature S that we are now going to
define. Given a vector space V with inner product (-,-), we denote

2 2 2
ja Ay? = l2l” lyl” = (2,9)°,

which represents the area of a two-dimensional parallelogram determined by the pair
of vectors x,y € V. Let ¢ C T, M be a two-dimensional subspace of the tangent space
T,M and assume that (-,-) is an inner product on T,M. Let =,y € ¢ be two linearly
independent vectors for which we define the sectional curvature

(R(z,y)y, )

S(l‘,y) = |a:/\y|2

Indeed, S only depends on the two-dimensional space ¢ and not on the particular basis
{z,y} for o. Another important motivation for studying the sectional curvature is that
knowledge of S(o) for all o determines the curvature R completely, see [35].

The sectional curvature of a manifold is closely connected to the question of stability
of its geodesics. Consider a geodesic on M, starting at p € M with velocity v € T, M, and
then alter the initial conditions p and v slightly to obtain a second geodesic, which at
first only differs very little from the geodesic with initial data (p,v). In order to describe
the divergence of both geodesics one linearizes the geodesic equation close to the original
geodesic and obtains a so-called variational equation which is also known as the Jacobi
equation. Let x(t) be a point moving along a geodesic in M with velocity v(t) € Ty M.
If the initial conditions of the curve x(t) depend smoothly on an additional parameter s,
then the geodesic also depends smoothly on s. For fixed ¢, we now consider the motion
s+ x(t,s) with x(¢,0) = x(¢t) and define the vector field of geodesic variation

d
&x(t, S) o = f(t) S T;c(t)M~

Then the Jacobi equation reads as

D2
D—tf = —R(& v)v. (1.35)
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Fig. 1.7 Nearby geodesics
on manifolds with positive
and negative sectional cur-
ature. m

Conversely, every solution of Eq. (IL38) is a field of variation of the original geodesic,
cf. [6]. Now we decompose the variation vector £ into components parallel and perpen-
dicular to the velocity vector v. Then, since R(v,v) = 0, the second covariant derivative
of the parallel component vanishes and for the normal component we get again the Jacobi
equation. More precisely, for the normal component, we find that

D%

Dz —gradU, U(§) =

5 (R,680) = 35 (6,6) (0,0},

and if we assume |v| = 1 then the normal component of the variation vector is described
by the equation of a non-autonomous linear oscillator with potential energy U equal to
the product of the curvature in the direction of the plane of velocity vectors and variations
with the square of length of the normal component of the variation.

Assume now that the sectional curvature S is negative in all two-dimensional directions
containing the velocity vector v. In this case the divergence of nearby geodesics in the
normal direction is described by the equation of an oscillator with negative potential
energy. In the stability theory of dynamical systems, this suggests that the geodesics
near the given will diverge exponentially from it—we might compare this behavior to an
unstable equilibrium of some rigid object. The exponential instability of geodesics can
be concluded rigorously if we assume that the curvature in the different two-dimensional
directions containing v has values in the interval [—a?, —b?], where 0 < b < a. Then the
solutions of the Jacobi equation (38]) for normal divergence are linear combinations of
exponential functions with exponents +\; and b < \; < a and hence every solution of
the Jacobi equation grows at least as fast as e’l!l as t — 4-00; most solutions grow even
faster, with rate e/l cf. [6]. On the contrary, S > 0 implies that the perturbed geodesics
might converge as depicted in Fig. [7

1.3 A one-parameter family of evolution equations on spaces of
tensor densities

Recall that the configuration space for the motion of periodic 1D waves is the diffeomor-
phism group Diff>°(S); the Lie algebra g of Diff>(S) coincides with the space of smooth
vector fields Vect™(S). The dual space Vect'(S) is the space of distributions on S. Again,
we are only interested in the regular part Vect™(S) of g* which can be identified with the
space of quadratic differentials {m(x) dz?; m e C= (S)} with the pairing

1
(mdz?,v0,) :/0 m(z)v(x) dz, (1.36)
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where dz? = (dr)? = do ® dz. As usual, vector fields X € Vect™(S) are directional
derivatives, i.e., if y(¢) is a smooth curve in Diff**(S) with v(0) = id and 7/(0) = v, we
associate X = X, via

Xf=Sfoa)] = fu

=0
and have X = v(x)0;.

Proposition 1.25. The Fuler equation on g* reads as
my = —ad}y_1,,m = —umy — 2uym, m = Au. (1.37)
Proof. We have adjy mda? = (umg + 2u,m) da? since

(ad}y, mda?,v0,) = (mda?, adu, v9y)
= — (mda?, [ud,, v0,))

= — (m da?, (uv, — uxv)(‘)x)
1
= / m(ugv — vpu) de
0
1
— / (mzu + 2u,m)v d,
0

where we have used (L36) and the identity [u0,, v0;] = (uvy — V) s O
Writing down Eq. (I37) on g we find that
Auy 4 2uz Au + u(Au), =0

which is equivalent to the Camassa-Holm equation (LIJ) if A = 1 — §2. We now extend
this formalism to include the Degasperis-Procesi equation (L20) and replace the space

of quadratic differentials by the space of all tensor densities of weight b on the circle,
cf. [56, [99].

Definition 1.26. Let b € Z. A tensor density of weight b > 0 (b < 0) on the circle S is
a section of the bundle ®" T*S (® " TS, respectively).

Choosing a parameter x on the circle, a tensor density « of weight b can be written as
a = m(z) dx® where m is a smooth function on the circle and

dab dz®---®@dx (bfactors), b>0,
Tt w--®@L (—bfactors), b < 0.

In order to generalize the concept of tensor densities o = m(z) da® for b € R, we define
az: TeS =R 6z — m(x)(dz(dz))®

where m is a smooth periodic function. We write 7, = {m(z)dz’; m € C>(S)} for the
set of tensor densities of weight b on S. Clearly, F;, is a vector space isomorphic to C*°(S).
We have F_1 = Vect™(S), Fo = C*(S), F1 = 21(S) (the space of 1-forms on S) and F»
coincides with the space of quadratic differentials. In order to generalize the coadjoint
action Ad*: Diff**(S) — End(F2) on the space of quadratic differentials we define, for
any ¢ € Diff*(S), the action
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Fo— Fp: mdab — (mo )b dab.

The infinitesimal generator of this action is given by

L2y, (mdz®) = S (m o p(t))pa ()’ dz”

dt —o
= ([ma 0 ()] (t)pa (t)® dz® + blm o o(t)] e ()" 1 (t) da) |,
= (umg + buym) da® (1.38)

where ¢(t) is a curve with ¢(0) = id and ¢;(0) = w € C*°(S); in particular, we have
©2(0) = 1 and ¢4,(0) = u,. The operator L can be thought of as the Lie derivative of
tensor densities. Furthermore it represents the action of Vect®™(S) on F;, which coincides
with the (algebra) coadjoint action on F for b= 2, ie., L2, = ad;, . Using (L38), we
generalize the Euler equation in Proposition to /

my = —umg — buym (1.39)
and substituting m = Au we finally arrive at
Auy + buy Au + u(Au), = 0. (1.40)

If A=1- 02, we will call the family (LZ0) the b-equation. Observe that, if b = 3, we

obtain the DP equation (L20]).

The periodic b-equation is the 1-parameter family of evolution equations
up = —(1—02)"" (buy(1 — 02)u+u(l —0D)u,), beER, (1.41)

where u(t, z) is a function depending on time ¢ € R and a space variable z € S.

The b-equation (A1) attracted a considerable amount of attention in the fluid dy-
namics research community in recent years, see [48]. Each of these equations models the
unidirectional irrotational free surface flow of a shallow layer of an inviscid fluid moving
under the influence of gravity over a flat bed, cf. Sect. [[LT.2] where u(t,x) represents the
wave’s height at time ¢ and position x above the flat bottom. For b = 2, the single terms
in Eq. (L39) model convection, stretching and expansion of the fluid, cf. [62]; observe
that in the one-dimensional case the stretching term equals the expansion term.

For further details concerning the hydrodynamical relevance of Eq. (L4 we refer to
[27, [36] [69] [70] [71]. As shown in [32] [36] [64] [68] [107], the b-equation is asymptotically in-
tegrable which is a necessary condition for complete integrability, but only for b = 2 and
b = 3 for which it becomes the Camassa-Holm equation (LI9]) and the Degasperis-Procesi

equation ([L20) respectively.
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Fig. 1.8 Nematic
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1.4 The Hunter-Saxton equation and nematic liquid crystals

The Hunter-Saxton (HS) equation is an integrable PDE that arises in the theoretical
study of nematic liquid crystals. Liquid crystals are a state of matter that has properties
between those of a conventional liquid and those of a solid crystal. For instance, a liquid
crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way.
The various phases of a liquid crystal can be characterized by the type of ordering.
Due to the high viscosity of liquid crystals, it is assumed in many models that there
is no fluid flow, i.e., no kinetic energy, so that only the orientation of the molecules is
of interest. Within the elastic continuum theory, the orientation is described by a field
of unit vectors n(x,y, z,t). For nematic liquid crystals, there is no difference between
orienting a molecule in the n direction or in the —n direction, and the vector field n
is then called a director field. The potential energy density of a director field is usually
assumed to be given by the Oseen-Frank energy functional

W(n,Vn) = (a(V n)2 4+ B(n-(V xn))?+vnx (Vx n)|2) ,

N | =

where the positive coefficients «, 3,y are known as the elastic coefficients of splay, twist,
and bend, respectively. Hunter and Saxton investigated the case when viscous damping is
ignored and a kinetic energy term is included in the model, [65]. The governing equations
follow from minimizing the action defined by the Lagrangian

1 A
L= §|nt|2 —W(n,Vn) — 5(1 — |n|2);

A is a Lagrange multiplier enforcing |n| = 1. For splay waves, the director field is of the
form

n(z,y,z,t) = (cos p(x,t),sin p(x, t),0)

and the Lagrangian reduces to

2

(¢F —al()’¢2), alp)®

L= = asin? ¢ + 7y cos? .

N | =

The Euler equation for the angle ¢ is

i = a(p)|a(p)pz]z-
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Apart form trivial constant solutions ¢ = g where the molecules are perfectly aligned,
the linearization

o(z,t;e) = 0o +ep1(0,7) + O(?), 0:=x—alpo)t, T:=¢t

around such an equilibrium yields in order €2 the equation

1
(91 +a'(90)p1910)0 = 5 (90)H-

Under the assumption a’(po) # 0, this equation is equivalent to (u¢ + uuy), = %uﬁ, after
renaming and scaling the variables. Taking the x-derivative yields the Hunter-Saxton
equation

Upge + 2UzpUpe + Ulgry = 0. (1.42)

The HS equation is closely related to the CH equation since we can rewrite HS in the
form
my = —(Mgu + 2mug), M= —Ugy. (1.43)

Replacing the inertia operator 1 — 92 for the CH equation by —82, the b-equation for
b = 2 becomes the HS equation. That is why some authors call the HS equation the
A — oo-limit of the Camassa-Holm equation

me = —(mgu+ 2mug), m=(1—X02)u=u— Az,

Equation (L43) possesses a bi-Hamiltonian structure and has an associated Lax pair,
cf. [66]. Local existence of strong solutions to the periodic HS equation is established
in [127], using semi-group methods. Formulas for the classical periodic solutions are
presented in [97], proving existence up to breaking time.






Chapter 2

A one-parameter family of Camassa-Holm
equations on the diffeomorphism group of
the circle

The Camassa-Holm equation can be obtained from Lagrange’s variational principle, i.e.,
defining an appropriate Lagrangian £, the CH equation is the Euler-Lagrange equation

obtained from
) / Ldt =0.

In this chapter we generalize the Lagrangian £ for CH and obtain a one-parameter family
of integrable equations similar to the CH equation (I.I9]) and lying in some sense between
the CH equation and the Burgers equation. We construct a family of Riemannian metrics
on Diff"(S), n > 2, such that the general CH equation is the geodesic equation on Diff"(S)
for a covariant derivative compatible with the Riemannian structure and obtained via
(L31). While this is a little bit reminiscent of the results of Kouranbaeva and Lenells
[84) 4] for the CH equation we then perform an explicit calculation of the sectional
curvature S for all two dimensional directions and find a large subspace of C*°(S) for
which S > 0. Finally, we derive formulae to describe the variation of geometric quantities
like the Christoffel map or the sectional curvature. This chapter is also important due to
some lengthy computations which will be needed in the following.

2.1 A variational approach to variants of the Camassa-Holm
equation

We consider the infinite-dimensional Lie group G = Diff>*(S) of smooth and orientation-
preserving diffeomorphisms of S = R/Z, equipped with the Ly and the H'! right-invariant
metric respectively, given at the identity by the positive definite and symmetric inner
products

()5, = [ F@laa) s
and
<f79>H1 = <fa9>L2 + <fx,9:c>L2

for f,g € g =~ C*°(S). The corresponding norms are denoted by |[-[,, and [z Tt is
well-known that the triple (G, g, (-,-);.) corresponds to the Burgers equation

2

ur + 3uu, =0

31
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in the sense that the Burgers equation is the Euler-Lagrange equation obtained by min-
imizing the functional v — %f: H'yt o 'y_lHQLQ dt, where 7: [a,b] — G is a smooth path.
Similarly, the triple (G, g, (-, ) ;1) yields the Camassa-Holm equation (LI9) which is de-
rived by minimizing v — 3 fab e ’7_1“21 dt, cf. [25] [67].

Here, our aim is to study a one-parameter family of Riemannian metrics which are
“between” the Lo- and the H'-metric in the following sense: Let A € [0, 1] and let

<fag>)\ = (1_>‘) <fvg>L2 +>‘<fag>H1 :

Then (-,-)g = (-,+)z, and (-,-); = (-,-) ;n and for A € (0,1), one obtains a one-parameter
family of metrics which are convexly combined of the Lp-metric and the H'-metric.
Applying the least action principle to

I _ _
VF?E/Eﬁﬂﬂ/awoledt
a
we obtain the Euler equation
up + 3utly — AN(Utzg + 2UgUpy + Ulgzy) = 0. (2.1)

As expected, this is the Burgers equation for A = 0 and the Camassa-Holm equation if
we set A = 1. Introducing the operator Ay == 1 —\92: C°(S) — C*(S), we can rewrite
@) in the form

my = —(mgu + 2u,m), m= Ayu; (2.2)

here, A = A, is the inertia operator which induces the A-metric (-,-), in the sense that

<f,g>k:/Sngdx:/SgAfdx, fgcs.

It is an interesting question and the goal of this chapter to find out which geometric
properties coming from the CH equation and the Burgers equation are inherited to the
A-equation (ZI) which lies between both of these equations, cf. [82]. Note that

Foa)s = (0, + A Fg)es (frg) = /S foge da,

so that we can regard (-,-), as the Lo-metric plus a perturbation controlled by the
parameter A\. We will explain in Sect. Bl that (G, g, (-,-),) leads to the Hunter-Saxton
equation ([42). If one is interested in the effect of the (-,-) -metric compared to the
effect of the Lo-metric, it might be useful to study the family

0, ]2 A= A{f9), + (1 =N (£, 9)1, - (2.3)

Note that this modified family gives the Burgers equation for A = 0 and the CH equation
if A = 1/2. Choosing A\ = 1, one obtains the HS equation. For A # 1, the metric (23]
equals (up to a scalar factor) the metric (f, g);. + B (f,9),, where 3 = ﬁ € [0,00), and
reduces for A < 1/2 to the case studied in the following section.

First, we show that Eq. ([ZI)) is a geodesic equation on (Diff"(S), (-,-),), n > 2. Then
we compute the Christoffel operator and the sectional curvature of Diff"(S) associated
with Eq. (Z1)) and derive formulas for the A-derivatives of these geometric quantities.
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2.2 The geometric setting

The operator A = Ay =1 — \d? is a textbook example for a regular inertia operator on
C*(S) in the sense of Definition [[22} for A = 1, we will show this in detail in Sect. 311
We write

(u,v);q = /uAv dz = /(uv + Augv,) do
s S

for the metric (-,-), on C™(S), n > 2, and denote the corresponding right-invariant inner
product on Diff"(S) by

(U, V><p = <U o L Vo ‘Pil>id = /(U o @71)A(V o 3071) dz,
s
for all U,V € T,Diff"(S) ~ C™(S). Recall that (DyR,-1)U = U o ¢~ since the map
R,-1: Diff"(S) — Diff"(S) is linear. Then (-,-), is indeed a Riemannian metric on

Diff" (S) which is compatible with the connection defined locally by

VxY(p) = 5[X(9). Y (9)] + B'(X(9), Y (¢))- (2.4)

|~

Here, B’ is the symmetric operator given by 2B’(u,v) = B(u,v) + B(v,u) and
B(u,v) = A7 ((Aug)v + 2(Au)vy) . (2.5)

Observe that the CH equation now reads as uy = —B(u,u) and hence is rewritten as
a metric Euler equation in the sense of Definition [[.23l As explained in Theorem
the operator B defined in ([Z.1]) can also be regarded as the (-, -),-adjoint of the natural
action ad,v = u,v — uvy, i.e.,

/(umv — v, )Awdx = /B(w,u)Av dz.
s s

Recall that, for finite n, Diff"(S) is not a Lie group; nevertheless, we now regard the
Camassa-Holm equation u; = —B(u, u) as an evolution equation on the tangent space at
the identity of Diff"(S), n > 2. For technical purposes it is useful to introduce another
bilinear symmetric operator I, (X (¢), Y (¢)) = I'(¢; X (), Y (¢)) such that

VxY(p) = DY () - X(p) — I(Y(9), X(9))- (2.6)
Observe that the commutator of vector fields is locally given by
[X,Y](p) = DY(p) - X(p) = DX(p) - Y (p) (2.7)

so that the representation (2.0]) is a direct consequence of (2.4)). Precisely, we have
1 ) . A
Lig(u,v) = i(uv)x — B'(u,v) = —A7"0, [ uv+ 5 UaVe (2.8)

and
Tp(X(9),Y(9) = Ha(X(p) o Y (9) oo™ ) 0.

We will use the notion Christoffel operator optionally for the maps I" and B’.
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Proposition 2.1. The pair (Diff"(S), (-,-),), n > 2, with the right-invariant metric (-, -)
is a Riemannian manifold. The bilinear map V on Vect™ (Diff"(S)) defined in (20]) de-
pends smoothly on ¢ and is a Riemannian covariant derivative on Diff" (S); in particular,
V is compatible with the right-invariant metric (-,-),.

Proof. The proof is similar to the proofs of Theorem 3.4, Theorem 4.1 and Theorem 5.3
in [94]. O

As a key result in [84] [04], we now obtain a unique geodesic flow ¢(t) € Diff"(S) for
the connection (2.6) standing in a one to one correspondence with the solution u of the
Camassa-Holm equation (Z1I). Observe that ¢ (t) € T,,;)Diff" (S) and hence for any ¢ the
Eulerian velocity u(t) = ¢;(t)op~1(t) lies in TigDiff" (S); more interestingly, the function
u is a solution of the CH equation. Contrariwise, a solution u of the CH equation can be
interpreted as a time-dependent vector field on S whose flow is the geodesic flow for the
connection (Z6]).

Theorem 2.2. For n > 2, let ¢: J — Diff"(S) be a C?-curve and define u: J — C™(S)
by u(t) = pi(t) o p(t)~t so that u € C(J,C™(S)) N CH(J,C"L(S)). Then p is a geodesic
for the connection V defined in (28) if and only if u solves the Camassa-Holm equation

@D).

Proof. This is a direct consequence of the arguments in the proof of Theorem 6.5 in
[04]. O

Remark 2.3. (i) The geodesic equation in Lagrangian coordinates reads as I', (¢, ¢t) =
¢t which follows from differentiating ¢ = u o ¢ with respect to ¢, Eq. [22)) and the
definition of the Christoffel map, cf. [94]. Writing the CH as u + uuy = Iiq(u, u) we also
see that n > 2 is sufficient for our purposes.

(ii) Recently it could be shown that the periodic b-equation is an Euler equation in the
sense of Theorem [[.2]] for any real b but it is compatible with a Riemannian structure if
and only if b = 2. Whenever b # 2, geometric information is obtained only by using the
connection V defined via the Christoffel operator for the corresponding equation. Only
for b = 2 there is a unique regular inertia operator, namely 1 — 92, cf. [45].

We will now establish a formula which shows that the sectional curvature of a plane
spanned by two vectors u,v € TiqDiff"(S) can be expressed explicitly in terms of the
Christoffel map I'. We denote by

R(X.Y)Z =VxVyZ -VyVxZ -VxyZ

the curvature tensor for the family (2]), in accordance to definition (I34). (Observe that
we use the same sign convention for R as in [79, [94] so that we will be able to compare
our results for p-equations and two-component systems in the following.) In particular,
the sectional curvature for the CH equation is given by

S(u,v) = (R(u,v)v,u),

for orthonormal functions v and v.

Theorem 2.4. Let S(u,v) = (R(u,v)v,u) be the sectional curvature of Diff" (S) endowed
with the right-invariant metric given at the identity by (-,-) = (-,-). Then

S(u,v) = (I'(u,0), I'(u,0)) = (I'(u, ), I'(v,0)),  u,v € TaDiff"(8).
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Proof. By the definition of R and the local formula (2:6]) for the affine connection V we
have

R(X,Y)Z =Vx[DZ-Y —I,(Z,Y)-Vy[DZ -X —-T,(Z,X)]

-DZ-[X,Y]+T,(Z[X,Y])

=DDZ-Y)- X-Dil,(Z2,Y)X-T,DZ-X)Y)
—I,(Z,DY -X)-I,(DZ Y, X)+I,1I,2Y)X)
—D(DZ-X)-Y+DiI,(Z,X)Y+T,DZ -Y,X)
+I,(Z, DX -Y)+T,(DZ -X,Y)—-T,(I,Z,X),Y)
-DZ-[X,Y]+T,(Z,[X,Y])

=D I, (Z,X)Y —DiI,(Z,Y)X+T,I,(Z2Y)X)
_F<P(F<P(Z7X)ay)a

for all X,Y,Z € T, Diff"(S) ~ C™(S). Here

d
DiI,(Z,X)Y = = T(p+eY:Z,X)

e=0
d
= d—F(id;Zo(gp—l—&Y)_l,Xo((p—i—EY)_l)o((p—l—EY) .
9 e=0
Writing u = X op !, v =Y op ! and w = Z o o~ ! we find that
iZo( +ey) ! =—(Zop Hy(Yop!)=— ; (2.9)
de pTEe Y = ¥ )= ¥p = —Wg0; .

recall that the derivative of (o + eY) ™! is obtained from the identity
(p+eY)o(p+eY) t=id

by differentiating with respect to € at ¢ = 0. Together with
_ Zyop!
Pz 0!

we get (29). Writing I'(-, ) for Iiq(-,-) we have

(Z o 30_1)9c

d
DiI'(w,u)v = — Lgger(w,u)
de|__,

_ d% { [—A‘l <<wu+ ﬁ%) 0 (id—i—av)_l)x] 0 (id+5v)}

= A719, ((wu)xv + %(wzum)xv + )\wxuzvx>

e=0

—v0, A7, (wu + %wmum>
= —I'(wyv,u) — I'uzv,w) + I'(w,u),v.

It follows that
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S(u,v) = (L'(Iw,v),u),u) — (I'(I'(v,u),v),u) + (I'(v,u),v — I'(v,0)u,u)
+ (= (vgv,u) — I'(v, upv) + 21 (vpu, v),u) .

Recall the definition of I" in Eq. (Z.8) and that
—(B(u,v),w) = (u, [v,w]), u,v,weC"(S),

where [v,w] = vw, — vyw is the Lie bracket induced by right-invariant vector fields.
(Indeed, if X (¢) and Y (¢) denote the right-invariant vector fields with values w, v at id
we conclude from

DY(9)-X() = LY (o +eX()| = Tvolptetuog)| =(aw)og

and Eq. [Z7) that [X,Y](p) o' = [u,v] = vyu — uzv. Observe that this bracket differs
from the Lie bracket introduced in Sect. by a sign.) We thus can rewrite

<F(’U, U)IU - F(va)wua u> + <F(F(U7U)vu)a u> - <F(F(U,U), ’U), u>
= <F(Uvu)l’v - F(’U, v)xu, u> + % <(F(U7U)U)I - B(F(’U, ’U), U) - B(ua F(va))vu>

5 (@ ) — B (w,0),0) — Blo, (v, ) u)
= 2 (0. Do, w), ) + 3 ((0,0),ul, ) + 5 (o, [0, 0), )

= 5 (Bl 0), T(w,w) + (Blu,w), T(o,0)) — 3 {To,w), o,ul) ~ 3 (B(v, u), (v, )
= (I'(u,v), '(u,v)) — (I'(u,u), '(v,v))

g (), T, + (st T(0,0)) = 5 {7 (0, 0), [, ]
= (I(u,v), '(u,v)) — (I'(u,u), I'(v,v)) — (ugv, I'(v,u)) + (vug, I'(v,v)).

Therefore

S(u,v) = (I'(u,v), I'(u,v)) — {(I'(u,u), '(v,v))
+ (—I'(vgv,u) — I'(v,u,v) + 20 (vpu,v), w)
— (uyv, I'(v,u)) + (g, I'(v,v)) . (2.10)

Using (2.8) we find that all but the first two terms on the right-hand side of Eq. (Z10])
cancel. This proves the theorem. a

As explained in Sect. [L2.4] subspaces of positive curvature are of particular interest
since the positivity of S(u,v) is related to meaningful results from stability theory. For
the family (21 it turns out that S(u,v) is strictly positive on all planes spanned by
two trigonometric functiondl of the form cos kz and sin lz for k,[ € 27N. Recall that, by
standard results from Fourier theory, periodic functions on S can be written as a Fourier
series with respect to the trigonometric functions which we discuss here.

1 The calculations also appear in a preprint of J. Lenells, G. Misiolek and S.C. Preston, 2009.
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Theorem 2.5. Let S(u,v) = (R(u,v)v,u) denote the sectional curvature of Diff"(S)
endowed with the right-invariant metric given at the identity by (-,-) = (-,-),. Then, for
k#1e2nN,

S(cos kx,coslx) = S(coskx,sinlz) = S(sinkx,sinlx) = Sec(k,l) > 0 (2.11)

where
1 (142K ) — ki) >
Sec(h, 1) = 5 (ﬁ“‘” et )

Moreover, for k € 2N,

(1 3422
S(cos kx,sin kx) = 2 Sec(k, k) = ﬁixz@ 2 (2.12)
and
k2
S(coskx,1) = S(sinkz, 1) = 2Sec(k,0) = 0+ D) > 0. (2.13)
Proof. By the previous theorem,
S(u,1) = /uxA_lux dz.
s
Since A~ !sinkr = ﬁ sin kz and fs sin? kxdr = % for k € 27N the expression for

S(coskx,1) follows. A similar computation gives the same value for S(sinkx,1) and
(Z13)) follows. To obtain the equalities (ZI1)) and (ZI2]) we use that, for k,1 € 27N,

Al (coskx, coslz) = 0y { - % <1 - %k‘l) cos(k + l)x — % <1 + %kl) cos(k — l)x},
(2.14)
. [ 1 A . 1 A .
Al (coskx,sinlz) = 0, ~3 (1 - 5kl> sin(k + 1)z + 3 (1 + 5kl> sin(k — l)a:] ,
) (2.15)
. . 1 A 1 A
Al (sin kx,sinlz) = 0, 3 1- Ekl cos(k + l)x — 3 1+ §kl cos(k — x|,
) (2.16)
1 A 1 A
11— A L(1+ 2ki)
a _o, |-2- 2% _ Utk _
(coskz,coslx) = 0 T+ A1) cos(k + 1)z FSYCEE cos(k — )z | ,
(2.17)
: LA -3k A+ 3k
I'(coskz,sinlz) = 0, —m sin(k + )z + 12—|—Tk2—l)2 sin(k — )z |,
(2.18)
, , [ 11— 2ki) 114 2k
I'(sinkz,sinlz) = 0y m cos(k + ) — m cos(k — x| .

(2.19)
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We only give a proof for u = cos kx and v = coslz with k # [ € 27N. The other compu-
tations are similar and we leave them to the reader. Again, by the previous theorem,

S(coskzx,coslx) = /F(cos kx,coslz) AL (cos kx, cosla)dx
s

— / I'(cos kx, cos kx) AT (cos lz, cos lx)dz.
s

Using Egs. (ZI4) and (ZI7), we can rewrite the right-hand side terms as

1(1 - k1) 3(1+ k1)
- | st + e = 58 g ot~
%92 {_l <1 _ ékl) cos(k + 1)z — 1 (1 + )\k‘l) cos(k — l)x] dx
l1-2 2
/8 21 " 4)\k2) cos kal 0y {—% (1 — %) cos 2la:] dz.

Using the orthogonality relations for trigonometric functions, we find that

1 (14 3ki)?
S(cos kx,coslz) = 471(_’_—;(]6 )l)2(k—l)2/0082(k—l)xda:
- S
1— 2kl)?
i%(k#—lﬁ/cos%k-l—l)xdx
S
= Sec(k, ).

2.3 Variation of geometric quantities

In classical differential geometry, one studies one-parameter families of Riemannian met-
rics, i.e., if M is a manifold and I is a non-empty interval, then for any t € I, there is a
Riemannian metric

gi: M >p— <','>t7p oM x T,M - R

such that ¢ — g, is smooth. A trivial example is a Riemannian manifold (M, (-, -)) where
a one-parameter family of metrics is obtained simply by scaling the given metric, i.e.,
for t € (0,00), one defines (-,-), =t - (-,-). A more interesting example which is closely
related to our problem is the following: Given two Riemannian metrics go and g7, then

gt = (1—1%)go +tg1, te€l0,1],

defines a one-parameter family of Riemannian metrics between gg and g;. If the manifold
M has finite dimension, then any p € M has a neighborhood V such that p = ¢(z),
x=(T1,...,2,) €U, U CR™openand ¢: U — V, and T, M is spanned by {0y, }i=1,... n-
One defines covariant components of g; via

9i(t,x) = <gi( ) gfz( )>w<z>
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and the Christoffel symbols I i’} = (Vy,0;)%; V denoting the Levi-Civita connection.
Contravariant components are defined by inverting the matrix ¢ = (¢i5)ij=1,....n- A
standard question is how quantities of the inner geometry of M change when the metric
varies, controlled by the parameter ¢. In [§], the author discusses this problem for regular
surfaces in R? and comes to the following results: First, the derivative of g;; follows from
the Taylor expansion

i (t,m) = gij(to, @) + (t — t0)gi; (to, x) + O((t — to)?)
and with ¢/ = — > g7 g g"* one checks that

. 1 8Gia  OGia  OGi; _
k2 ko o ia _ 99ij \ _NT B Ik
” 2%:9 <8xi " Dy Oua ; CR

and _
2G = div(div g) — A(trg) — Gtrg

where G = § Diik gij;fjk denotes the Gaussian curvature.

In this section, we discuss a similar question for the family {(-,-),; A € [0,1]} of Rie-
mannian metrics on the circle diffeomorphisms. Basically, we compute the A-derivatives of
the Christoffel map I'(u,v) in (Z8]) and the sectional curvature S(u,v) obtained in The-
orem [2.4] Therefore, all we need is to compute the A-derivative of A~1. In the following

lemma we find the Green’s function for A=1.

Lemma 2.6. The operator Ay =1 —Xd2: C>(S) — C>™(S), A € [0,1], is invertible and
for X\ # 0 its inverse is

_ 1 A2,
A)\lf:G)\*.ﬁ GA(Q;) ;:mze A | +k‘.
kEZ

Furthermore, the map X\ — NG, is differentiable for all j € Ny and [0, A;l] =0.

Proof. For A € (0,1], let f1 := exp(%)x{x@} be the function which equals exp(%) on
the negative half-axis and which is zero for positive z. Similarly, let f2 := exp(— \/LX) X{z>0}-
Note that f1, fo € L2(R)\.(R) so that

1 ; 1 1
y k) = Lim. — 71kzd - -
(Z f)(k) =Lim.g- \/%/|x|<3f1(x)e G = T Vo

where .# is the Fourier transform Ly(R) — Lo(R). Similarly,

1 1

(yf2)(k) = Em

and N ) .
_ = 2n(F k(F k).
T2~ R rma g T EF L))
Given f € C°(S), we consider the equation u—Auz, = f in .. Applying %, we conclude
that (1 4+ M\k?).Fu = Ff. If we apply .F ! to the equation Fu = (1 + \k?)"1L.Z f and
use the identity . (u x v) = V27 FuF v, we get

(f* Z7HA+ M) 71 = <(f * (fi = f2))-

> =

u =

1
V2T
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Note that

r—y Y
Jix fa= exp ( N ) X{z<y} €XP (_ﬁ> X{y>0} dy

- p(i) °° eXp(_ﬂ)dy
\/X max{0,z} \/X
_{éexp%)[ exp(— )|, @ <0,

R 2

p(5)[—exp(— 2 )|F, 2> 0,
Ly (-121)
= 7
Since f has period 1, it follows that
w=(1-202)7'f
=#/f(x—y)exp( %)dy
B k+1 - lyl
2\erz/ v eXp( f)
_ e (K
WA, femvwen (L0
+k
= dy.
/sf(x (mﬂ% ( )) ’
Thus G is as desired. a

Remark 2.7. For fixed z € [0, 1] we can rewrite the integral kernel of (1 — A92)~1 as

W@ = 3 exp (x—““) £ esp (_%)

[ A k=0
e (20) S ()] v (25) S e ()]
“o () (g ) ) e

Since G\ has period 1, we obtain
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cosh (% (z—[2] - %))

= 2v/Asinh (ﬁ)

for any € R and A € (0,1], cf. [I9] for the case A = 1.

From Remark 2.7 we get that

e = (& @-ll-93) <x_ ] ;) Galw) (1  coth (ﬁ)) |

4X2 sinh (ﬁ)

Next we derive the formula
A 1
I (u,v) = —(O\Gy) * Oy [ uv + §uxvx — §G)‘ * (UgVy ) -

Using Theorem 2.4 and Eq. (Z20]) we have

S (u,v) = <(8>\G)\) * O <uv + gumvx> , Oz (uv + %ulfum)>

—l—l <G>\ * (UgVg) g, O (uv + éugcvgc>>
2 2 Lo
—l—l <G)\ * Oy (uv + éuggvgg) , (umvm)m>
2 2 )
— <(8>\GA) * Oy <u2 + éLL?E) , O <v2 + é11325)>
2 2% )/,
2, Ao
— <G)\ * (UglUpy ), O (v + —vx>>
2 Lo
2 A o
— <GA * Oy (u + —ux> ,vxvm> .
2 Lo

Letting u and v be equal to a trigonometric function, we computed the sectional curvature
in Theorem [Z8] and found that it equals, up to a factor, the quantity Sec(k, ). Note that

Lo

OnSec(k, 1) = AN)(k = 1)+ B\ (k +1)?

where 2 A272 4 A2 21.272
AQ) = kl — (k 1)8[1—|—+2>l\c(]i _+l)§]2(k 1)*k=1
and )
B() = —kl — (k+1)? + 3k%% + 2 (k + 1)2K212

S[L+ A(k + )22






Chapter 3

A partially averaged version of the periodic
b-equation

A novel family of equations related to the b-equation is proposed in [99]. The key idea
is to replace the inertia operator 1 — 92 for the b-equation by the operator u — 02 where
w(u) is the average value of the periodic function u. We will call this new family the
p-b-equation. In this chapter we come to the following results:

First, we comment on the fact that the b-equation, the p-b-equation and the HS
equation have the same form and only differ in the particular choice of the inertia operator
and the parameter b respectively. Then we show that a novel method proving local well-
posedness in the smooth category for the b-equation with smooth initial data (see [4I])
can be generalized to the uDP equation. In particular, we obtain a geodesic flow and an
exponential map for uDP which are smooth objects if the initial data are smooth.

Escher and Seiler showed in [45] that only for b = 2 the b-equation is a metric Euler
equation. We generalize this result to the p-b-equation and prove that the pCH equation
is the only member of the novel family which possesses a regular inertia operator. In
addition, we extend our discussion of a one-parameter family of CH equations in Chap.
and compute the Christoffel operator and the sectional curvature for a general pCH
equation.

As a corollary, our results show that the uDP equation is a non-metric Euler equation;
the same has been established for the DP equation for which some recent studies dealing
with a dissipative term have been done, [46], [122]. This motivates our study of a weakly
dissipative uDP equation for which we prove local well-posedness —using our geometric
methods— and specify the precise blow-up scenario. We finally discuss blow-up solutions
as well as criteria for the global existence of strong solutions.

3.1 A couple of regular inertia operators and some preliminary
remarks

In this introductory section our aim is to give a brief overview about the different inertia
operators with which we will deal in the following. We make clear how the operators
have to be defined so that they are topological isomorphisms, we compute the Green’s
functions (as far as they exist) and explain how our theory can be extended to Sobolev
spaces which play an important role for various applications.

43
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Fig. 3.1 Green’s function G[x]
for the operator A = 1—092,
periodically extended to the 1.08
real axis.
1.0
1.0
1.02
X
-2 -1 1 2
0.98
.96

3.1.1 The b-equation

The inertia operator for the b-equation is A = 1 — 2. We have proved in Lemma 2.6 that
the operator A as a map C*°(S) — C*°(S) has the inverse

o 1 > _‘;H_kl_cosh(x—[x]—%)
A7 u =G *u, G(Jt:)—2 Z e = 2simh(L) . (3.1)

k=—o00

Note that —92A71f = f — A~'f and that the existence of a Green’s function implies
that A~! commutes with 9, (which is a consequence of carrying out the differentiation
under the integral sign). Since for any n > 2 we have |Au|qn-2 < 2 |uf . it follows that

A is continuous and since

[A™ el gz = AT 0l o + A7 000 ] + = A7

(It
k=0

n
en 161 Y [«
k=0

< 216Gl + 1) Julen

S NGl (Tl oo + ual o) + lul

oo

< (1G] +1) |ul

for any n > 2 it follows that A~! is continuous. Observe that the inner product on C*°(S)
generated by A is the H! inner product. Hence A is a regular inertia operator in the
sense of Definition [1.27]

3.1.2 The p-b-equation

If we replace the momentum variable m = v — u,, by the partially averaged momentum
m = pu(u) — ugy in (L39) we obtain the periodic p-b-equation. Note that if u is a C™(S)-
function then pu(d¥u) = 0 for k € {1,...,n}. Furthermore, it is important to mention
that wu(u(t,-)) does not depend on x but is still a function of the time variable ¢.
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The periodic p-b-equation is the 1-parameter family of evolution equations
up = —(u — 027 (bp(w)ug — Duglipy — Wlzzz), bER, (3.2)

where u(t, z) is a function depending on time ¢ € R and a space variable € S.

The inertia operator for the p-variant [3.2]) is A = p — 92. We first establish that
A: C®(S) — C*°(S) defines indeed an inner product on C*°(S).

Lemma 3.1. The bilinear map
(- '>u : C°(S) x C*(S) — R, <u,fu>u = p(u)p(v) + /Sum(x)vm(x) dx

defines an inner product on C°(S).

Proof. Clearly, (-,-),, is a symmetric bilinear form and (u, u), > 0 for all u. If w € C*°(S)
satisfies (u,u), = 0, then u; = 0 on S and hence u is constant. The fact that p(u) =0
implies u = 0 and hence (-, -) ., is positive definite. O

Next we show that A is invertible and that A and A~! are continuous maps on C*°(S).

Lemma 3.2. The operator A = pu — 92 maps C™(S) to C"~%(S), n > 2, and has the
inverse

(A1) (z) = (%xQ _ %H %) /Olf(a)da+ (a:— %) /Ol/oaf(b)dbda

_/Ox/o f(b)dbda+/()1 /Oa/obf(c)dcdbda. (3:3)

In particular, A and A~ are continuous maps on C>(S).

Proof. Clearly, u(A=1f) = u(f) and (A= f)px = pu(f) — f so that A(A"1f) = f for
any f € C"2(S). To conclude that A is surjective, we observe that (9¥A~1f)(0) =
(OFA=1f)(1) for all k € {0,...,n}. To see that A is injective, assume that Au = 0 for
u € C"(S) and n > 2. Then there are constants ¢, d € R such that u = $p(u)2? + cz + d.
Since u must be periodic, ¢ = 0 and p(u) = 0 from which we get d = 0 and hence
u = 0. O

Remark 3.5. We get from Lemma B2 that 924! = p — 1.

In fact, the operator A~! is an integral operator: To obtain Green’s function for A~! we
first look for elements in the kernel of A. As explained in the above proof, Au = 0 implies
that u = %u(u)xQ + cx + d. Applying p to this equation shows that

u= %u(u)xQ + (gu(u) - 2d) z+d.

Using that «(0) = u(1) yields
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g[x] Difference
1.08 01
1.0
0005
1.0
1.0p -2 -1 1 PR

o3 ) ] 5 x 0.000Q5
0.98 -0.00
.96
Fig. 3.2 Green’s function g for the operator A = yu— 92, periodically extended to the real axis, and the

difference to the function G in Fig. 3] The fact that the difference is small suggests that results for the
b-equation might also be valid for its p-variant.

Clearly, since 2u,(0) = —p(u) and 2uy(1l) = p(uw) we have p(u) = 0, i.e., u = 0, but

nevertheless, we find that
1 1 13
— 2 — 2 —_ = —_ =
(u—03) <2x 5%+ 12) 0.

This motivates the identity

1

— 1 1 13

(=" 0@ = [ gl -pul)ds, o) =50 - lal + 150 G4)
0
Observe thatl —92| .| = —26. In conclusion, we have shown that p — 02 is a regular
inertia operator in the sense of Definition
Remark 3.4. The u-b-equation can be rewritten as
1
g + ugy + A0, (bu(u)u + 5(3 - b)ui) =0. (3.5)

Applying 4 to this equation shows that u(u:) = 0. Thus the p-b-equation reduces to

— Utge + b/-l(u)u:c — bUgUpy — Uz = 0. (36)

3.1.3 The Hunter-Saxton equation

As explained in Chap. [[l the Hunter-Saxton equation is of the same form as the CH
equation since it can be written as m; = —mg,u — 2u,m, but with m = —u,,. That is
why we introduce the inertia operator A = —9?2 for the Hunter-Saxton equation. It is
not a priori clear how to chose the domain of A so that it is an isomorphism.

Lemma 3.5. Let A be the operator —02 with domain

D(4) = {f € C"(S); f(0)=0}, n>2.

1 Using integration by parts we see that (| - |, —") = ffoo x@” (z) dz — [~ z¢” (z) do = —2¢(0) for any
test function .
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For any n > 2, A is a topological isomorphism

D(A) — {f € C"%(S); /f(x) dr = o}
S
with the inverse

(A1 f)(z) = —/: /Oyf(z)dzdy—i—x/g/oyf(z)dzdy. (3.7)

Proof. Clearly, for all f € C"~2(S) with zero mean, —92(A~1f) = f and A~'f € D(A)
since (OFA71£)(0) = (08 A=1£)(1) for all k € {0,...,n}. To see that A is injective, we
assume that u € ker(A) and have u = az+b with real constants a and b. Since u(1) = u(0)
we see that a = 0 and since u(0) = 0, we also get b = 0. O

Remark 3.6. Note that we have —A~1f,, = f — f(0) and —92A~1f = f for any C?-
function f and that 9,A~'f, = —f + u(f). Note also that 9, and A~! do not commute
since

(A L) (@) = — /O ") dy + ou(f) # - /0 ")y + /S /O " f(2) dzdy = (A )a(a).

Lemma 3.7. The bilinear form on {u € C*(S); u(0) = 0} defined by

(u,v) — /uAvdx
s

is a positive definite inner product.

Proof. Tt is clear that the map under consideration is bilinear and symmetric and that
fs wAudx = fs u2dr > 0. If fs uAudr = 0 we get u, = 0; then u is constant and
u(0) = 0 enforces u = 0. O

Definition 3.8. We call the metric induced on {u € C*°(S); u(0) = 0} by the symmetric
operator A = —9?2 the H'-metric and write

(U, v) g = /uAvda: = /uxvx dz. (3.8)
S s

Remark 3.9. More general, one considers the homogeneous Sobolev spaces

) . ) L2
A(S) = {f = 3 Fmem e f0) =0, |71, = S ey [fn)| < oo}

neE”Z nez
where the f (n) are the Fourier coefficients of f and s is non-negativé2. The reader can
compare this definition to the one for the ordinary Sobolev spaces on the circle in the
following section. Note that the operator —d2 maps a function in H*(S) to a function with
zero mean. On the real axis, the spaces H *(R) are defined by completing the Schwartz
space .(R) with respect to

[l

- / €2 a(€) 2 de;

2 Observe that {u € H*(S); u(0) =0} ~ {v € H*(S); u(v) = 0} via the isomorphism u — u — p(u) with
the inverse v — v — v(0).
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again this is similar to the definition of H*(R) which is the completion of .#(R) with
respect to the Sobolev norm

ul. = / (1+ [€)%]a(e)]? de.

We see that A = —0? is a regular inertia operator in the sense of Definition [L22l Let us
summarize our results.

For
1-092 and beR,
A= p—09% and beR, (3.9)
—02 and b=2,
the equation m; = —(mgu + buym), m = Au, becomes the b-equation, the pu-b-

equation and the Hunter-Saxton equation respectively. In any case, the operator A
defines a regular inertia operator.

The fact that the Green’s functions for (1 — 92)~! and (u — 8%)~! resemble each
other motivates to study the p-b-equation under similar aspects as it has been done for
the b-equation recently. We can also motivate the study of p-variants of Eq. (L4I]) by
perturbing the inertia operators for the b-equation or the HS equation respectively, either
by adding the operator u to the inertia operator for the HS equation or by replacing id
by w in the inertia operator for the b-equation. In the following we will always write
A for the inertia operator of the respective equation and we do not introduce different
notations for the three types of operators in (39)).

3.1.4 A short introduction to Sobolev spaces

In this section, we briefly recall elementary facts about Sobolev spaces, in particular on
the circle S, and explain how the inertia operators introduced in the previous section can
be defined on Sobolev spaces.

We denote by H® = H*(S), s > 0, the Sobolev space of periodic functions. If s € Ny,
H? is the space of all Lao(S)-functions f with square integrable distributional derivatives
up to the order s, 9% f € Ly(S), i € {0,...,s}. Endowed with the norm

S

1£17 =D /S (@52 @) dz =Y (OLF0LF) 6 = D00 e)
=0 =0

=0

the spaces H*® become Hilbert spaces. Note that we have H® = Lo(S). For general s > 0,
we define the Sobolev spaces H*(S) by using the Fourier transform on Ly(S) which maps
a periodic function f to its Fourier series (f(n))nez, see [129]. Let Q% = (1 — 92)%/2
be the elliptic pseudo-differential operator with the symbol (1 + 47r2n2)s/2, i.e., for any
=2 ez f(n)e*™n* we have

Q f(n) = (1 + 472n2)*/2 f(n).

The Sobolev space H*(S) is the function space



3.1 A couple of regular inertia operators and some preliminary remarks 49

s 2 s 7 2
H'(S) = { f € Lo(8): 1fI3. = Y |QF ()| < o0
ne’
The operator Q% =1 — §%: H*(S) — H*~2(S) is an isomorphism for all s > 2. That Q2
and Q2 are continuous follows from

[Q%ul e = (@ PQ7u @) = (Quu),, o) =l

L2(S)
It is easy to check that the operator u— 8%: H*(S) — H*~2(S) has the inverse (3.3)) and
the Green’s function ([34), see [99]. We compute for any f € H®
2
2 £ £ i
[ =D e = | FO) + > f(m)annZe2mne
TLEZ\{O} Hs—2
~ 2 ~
2 \f(())\ +2 3 (4nPn?)(1 + dn’n?)e ‘f(n)
n€Z\{0}

<2 Z(l + 4n%n?)*
nez

= 2|7l

IA

‘ 2

f(n)

A }2

2
Hs

and together with the open mapping theorem this achieves the continuity of both, y — 92
and its inverse; i.e., u — 92 is a topological isomorphism. For the HS equation, it is
explained in [97] that —9? is a topological isomorphism

B = {f € H*(S); f(0)=0} = {f € H*(S); u(f) =0}, s>3.
We now introduce the H?*(S)-diffeomorphisms
H*Diff(S) = {¢ € H*(S); ¢ bijective, orientation-preserving and ¢! € H*(S)}.

The H*-diffeomorphisms form a topological group for any s > 3/2, as we will see in
Lemma Furthermore, H*Diff(S) is a Hilbert manifold modelled on H*(S) and
T,H*Diff(S) ~ H*(S) for all ¢ € H°Diff(S). We will implicitly use the natural iden-
tification

TH’Diff(S) ~ H°Diff(S) x H*(S) (3.10)

and a vector field X on H*Diff(S) is viewed as a map H*Diff(S) — H*(S); the evaluation
of X at ¢ € H*Diff(S) is viewed as a map S — T'S covering ¢ with value (X (p))(x) €
R ~ T, ;S at the point ¢(x) for € S. The identification ([B.I0) is given explicitly as
follows. The map ¢ — (p(0), ¢(x) —z — ¢(0)) is a diffecomorphism H*Diff(S) — S x U?,
where

Us:={feHS) f(0)=0, f, >—-1}.

Since U*® is an open subset of the closed linear subspace E* C H?, this map provides a
local chart on H*Diff(S) with values in I x U® C R x E® for any open subinterval I C S.
Moreover, using that TS ~ S x R, we find

TH*Diff(S) ~ T(S x U*) ~ S x U x R x E* ~ H*Diff(S) x H*(S).
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Remark 3.10. Note that, according to Sobolev’s embedding theorem, H*(S) C C*(S) for
all s > 3/2.

3.2 The special role of the case b = 2

In [45], the authors explain that for the b-equation the case b = 2 is of particular interest
since only for b = 2 one obtains a metric Euler equation. More precisely, for all b # 2,
Eq. (L) is a family of non-metric Euler equations. In this section, we generalize this
result to the periodic u-b-equation.

Proposition 3.11. Let A € LY™(C>(S)). Then the associated bilinear symmetric op-
erator B(u,v) = 3[ad’v + adju] has the form

B(u,v) = %A‘l 2(Au)vy + 2(Av)us + u(Av)s + o(Au)a)] |

for all u,v € C(S).

Proof. Let pa be the metric induced by A, i.e., pa(u,v) = (Au,v);, . By direct compu-
tation we find that

palad;v,w) = pa(v,ad,w) = /SAv(umw — wyu)de = /S[(Av)ux + ((Av)u)z]w dx

for all u,v,w € C*>(S). Hence
adiv = A7 (2(Av)u, + (Av),u)
and symmetrization achieves the proof. O

It may be instructive to recall the following paradigmatic examples.

Ezample 3.12. Let A € [0,1] and let A be the inertia operator for the equation m; =
—(mgu + 2um).

1. The choice A = =92 yields B(u,u) = —A~Y(2ugtizy + ttze,) and uy = —B(u,u) is
the Hunter-Saxton equation

2. We choose A = 1 — A2, If A = 0, the equation m; = —(mzu + 2u;m) becomes the
periodic inviscid Burgers equation u; + B(u, u) = us + 3uu, = 0. For A # 0, we obtain

ug + Blu,u) = up + 3uty — A(2ugptzy + Ulpre + Utgr) = 0,

a version of the Camassa-Holm equation which we discussed in the previous chapter.
3. Choosing A = pu — 92, we arrive at the uCH equation

p(ue) — Utgz + 20(W)Ug = 2UgUpy + Ulgea

which coincides with the uHS equation which we will study later.
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Each regular inertia operator induces an Euler equation on Diff>*(S). We now consider
the question for which b € R there is a regular inertia operator such that the p-b-equation
is the corresponding Euler equation on Diff*°(S). Example B.I2lshows that, for b = 2, the
operator p — 92 € L™ (C>(S)) induces the pCH. Our goal is to show that this works
only for b = 2.

Theorem 3.13. Let b € R be given and suppose that there is a reqular inertia operator
A€ LYT(C>(S)) such that the p-b-equation

my = —(mgu + bmug), m= p(u) — uge,
is the Euler equation on Diff>*(S) with respect to pa. Then b =2 and A = p — 92.

Proof. We write L = ju— 02. Let us assume that, for given b € R and 4 € L™ (C*>(S)),
the p-b-equation is the Euler equation on the circle diffeomorphisms with respect to p4.
By Proposition B.1T]

up = — A" (Au)pu + 2(Au)u,), u € C(S),
and the p-b-equation can be written as
(Lu) = = ((Lu)zu 4+ b(Lu)ug), u € C>(S).
Using that (Lu); = Lu; and resolving the second equation with respect to u; we get that
AT (2(Au)uy 4+ u(Au),) = L1 (b(Lu)u, + u(Lu),) , (3.11)

for all u € C*°(S). Denote by 1 the constant function with value 1. If we set u = 1 in
(BI1), then A~'(1(A1),) = 0 and hence (A1), =0, i.e., A1 = c1. Scaling (BIT]) shows
that we may assume ¢ = 1. Replacing u by v + A in (3.I0]) and scaling with A1, we get
on the left-hand side

%A‘l (2(A(u+ ) + N)g + (1 + N (A + N)).)

_ %A‘l (2((Au) + Nug + (u+ N)(Au),)

_ 4t (2(Au)ux + u(Au)y

A
— A7 Quy + (Au),), X = oo,

ou, + (Au»)

and a similar computation for the right-hand side gives
%L*l (b(L(u+ A)(u+ Az + (u+ N (L(u+ N)z)
— L7 (bug + (Lu)z), A — oc.
We obtain
A7 (2uy + (Au),) = L H(bug + (Lu),), (3.12)

for all w € C*°(S). Let us consider the functions u,, = €"* n € 27Z\{0}, for which we
have Lu,, = n?u,, and
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b
L (b(un)e + (Ln)a) = iotin, @ =~ + 1.

We now apply A to B12) with v = u,, and see that
2inuy, + (Aup ), = oy, (Auy,).
Therefore v,, := Au,, solves the ordinary differential equation
v — i, v = —2inu,. (3.13)
If b = 0, then «,, = n and hence the general solution of (13 is
v(z) = (¢ — 2inx)uy, ceR,

which is not periodic for any ¢ € R. Hence b # 0 and there are numbers ,, so that
iapx 2 2
Vp = Aty = 1€ " + Buun,  Bn = En .

We first discuss the case 7, = 0 for all n, secondly we show that v, # 0 for some
p € 27Z\{0} is not possible. If all ~,, vanish, then Au, = B,u, and A is a Fourier
multiplication operator; in particular A commutes with L. Therefore (BI1) with u = u,
is equivalent to

L(2(Aun)(un)z + un(Aup)z) = Ab(Lup) (Un)z + tn(Luy)z)
and by direct computation
121n35nu2n = l(b + 1)n352nu2n~

Inserting (3, = 2n?/b we see that b = 2 and 3, = n?. Therefore A = L. Assume that
there is p € 2nZ\{0} with , # 0. Since v, = Au,, is periodic, «, € 27Z and hence b = kp
for some k € 27Z\{0}. Let o, = m. If m = p, then b = 0 which is impossible. We thus
have (m,up) =0 and

(Aup, um) = <'7pelmma UM> = Tp-

The symmetry of A yields
Yp = (Atp, Um) = (Up, Aty,) = 'y_m<up, eia""””> .

Since v, # 0, v, is non-zero and periodicity implies a,, € 27nZ. More precisely, o, = p
since otherwise <up, eia’"””> =0 = ~,. Using b = kp and the definition of «,, we see that
m = ap = k + p. Furthermore,

p(k +p) = am(k +p) = app(k +p) = kp+ (k +p)?

and hence 0 = k2 + 2pk. Since k # 0, it follows that k = —2p and hence b = —2p?. We
get a, = —p and observe that -y, = 0 for all n # +p, since otherwise repeating the above
calculations would yield b = —2n? contradicting b = —2p?. Inserting u = u, in GII)
shows that

. 3i . u
ipypl — /ijwp =ip’(b+ 1)4—;’2’;
7Y
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here we have used that Au, = v,/u, + Bpup, Bp = —1 and A~ ug, = ugy/Bap, since 2p
does not coincide with £p and hence 2, = 0. It follows that py, = 0 in contradiction to
P, # 0. O

From the above theorem we immediately get the following result for the uDP equation.

Corollary 3.14. The uDP equation on the circle
my = —(mgu + 3muy), m= p(u) — Ugg,

cannot be realized as a metric FEuler equation in the sense of Definition for any
reqular inertia operator A € L™ (C>(8S)).

3.3 Local well-posedness in the smooth category and a smooth
exponential map for pDP

This section is about a local well-posedness result for the periodic pDP equation
w(ug) — e + 3p(u)ty — BUglpy — Ulgry = 0, (3.14)

which belongs to the family ([32]) and is obtained for b = 3. Throughout the following
considerations, we will assume that

u € C((_Ta T)a Cn(S)) n Cl((_Tv T)v Cnil(S))

for some n > 3 (so that all derivatives exist in the classical sense), where T' denotes a
positive real number. We will reformulate the pDP equation in terms of a geodesic flow
on Diff*(S) to obtain the following main result: For smooth initial data wug(z) for which
|uoll os sy 1s small, we prove the short-time existence of a smooth solution u(t, z) of (3.14)
which depends smoothly on (¢, ug).

Theorem 3.15. There exists an open interval J centered at zero and § > 0 such that for
each ug € C*(S) with |uo|css) < 0, there exists a unique solution u € C>(J,C*(8))
of the nDP equation such that u(0) = ug. Moreover, the solution u depends smoothly on
(t,ug) € J x C*°(8).

Furthermore, we show that the exponential map for the pDP equation is a smooth local
diffeomorphism from a neighbourhood of 0 € C'*°(S) to a neighbourhood of id € Diff™(S).

Theorem 3.16. The exponential map exp at the unity element for the pDP equation on

Diff>*(S) is a smooth local diffeomorphism from a neighbourhood of zero in Vect™(S) to
a neighbourhood of id on Diff**(S).

Our results will extend the work done in [41] to the periodic uDP equation and presum-
ably our analysis will also work for general b, cf. Chap. [6l For concreteness, we restrict
ourselves to the case b = 3 where we deal with a non-metric Euler equation. The results
have been published by the author in [39].

This section is organized as follows: First, we explain how to rewrite (8I4) in terms
of a local flow ¢ € Diff"(S), n > 3, and briefly comment on the geometric setting. The
resulting equation is an ordinary differential equation and we can apply the Cauchy-
Lipschitz Theorem to obtain a solution of class C™(S) with smooth dependence on ¢ and
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uo(x). In addition, we show that the solution (¢, ;) in Diff" (S) x C™(S) does neither lose
nor gain spatial regularity as t varies through the existence interval. We then approxi-
mate the Fréchet Lie group Diff>(S) by the topological groups Diff" (S) and the Fréchet
space C*°(S) by the Banach spaces C™(S) to obtain an analogous existence result for
the geodesic equation on Diff*(S). From this, we directly conclude Theorem and
Theorem 316 which is more or less a corollary to our theorem which shows the existence
of a smooth geodesic flow.

The crucial point here is that Diff>°(S) is a Lie group so that if ¢(t) is the smooth
geodesic flow for the uDP with smooth initial data, the solution u of ([3.I4]) is given by
u(t) = ¢4(t) o ¢~ 1(t) and is again smooth. Nevertheless, to obtain a smooth flow (t)
is rather difficult since our standard local existence theorem for ODEs only applies in
Banach spaces and not in Fréchet spaces like C*°(S). Hence the strategy is to obtain first
a geodesic flow ¢(t) in some Diff"(S) and then to check that, for smooth initial data,
p(t) is in fact smooth. A further technical difficulty is that Diff”(S) only possesses the
structure of a topological group and not a Banach Lie group. Our approach will point
out how we obtain a smooth solution within this difficult scenario.

3.3.1 The periodic b-equation with smooth initial values

In this subsection, we recast some important results from [41], where the authors discuss
the periodic b-equation in a geometric framework and prove local well-posedness for
smooth initial data as well as smoothness of the corresponding exponential map as a
diffeomorphism C*°(S) — Diff**(S). The b-equation can be written in the form

up = — A" [u(Au), + b(Au)u,],
where A is the operator 1 — 92. Hence
wp + utly = — A7 [Bugtize + b(Au)uy,] . (3.15)

Let J C R be an open interval. If we regard u(t,x) as a time-dependent vector field on
J xS of class C", then u has a (unique) local flow (¢, z) of class C™ such that

u=pop .

Conversely, for any pair (¢, £), where ¢ € Diff"(S) is a C™(S)-diffeomorphism and ¢ is a
C™(S)-function, & o o=t is of class C™. It is easy to check that ([3.15]) is equivalent to

Pt = ga
(e me, 310

where
Piﬁ(g) = P(§ o 50_1) ° Y, P= A_lQa Q(’U,) = 3uxux;c + b(A'U/)U;c

The fact that A and @ are polynomial differential operators with constant coefficients and
the inverse mapping theorem for Banach spaces show that the second order vector field
F(p,§) = (&, —P,(&)): Diff"(S) x C™(S) — C™(S) x C™(S) is smooth so that the short-
time existence of a solution of BI6) in Diff"(S) x C™(S) with smooth dependence on ¢
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and ug € C™(S) follows immediately from the Cauchy-Lipschitz Theorem. Furthermore,
it can be shown that the solution (p(t),£(¢)) does neither lose nor gain spatial regularity
as t increases or decreases from zero. This follows from the equations

porlt) = a(0)| [ €(s)pa(s) ds — g / t pole) s (3.17)

and

Soa(t) = & () [ /0 §(s)pa(s) ds —mo /0 sﬁx(s)l_bds]
—pr(t) [f(t)sﬁm (t) - mogpx(t)lib} ) (3.18)

where mg = Aug = ug — (up)zz. To obtain Egs. (8I7) and (B.I8), one uses the conserva-
tion of the quantity [(u — ugz) o p]@2, ie.,

[(u = wzz) © @liply = mo. (3.19)

Lemma 3.17. Let (p(t),&(t)) € Diff*(S) x C3(S), t € J, be a short-time solution of
@I8). If up € C™(S), n > 3, then we have (p(t),£(t)) € Diff"(S) x C™(S) for all t € J.

Lemma 3.18. Let (p(t),&(t)) € Diff*(S) x C3(S), t € J, be a short-time solution of
BIG). If there exists a nonzero t € J such that p(t) € Diff*(S) or £(t) € C™(S), n > 3,
then £(0) = ug € C™(S).

The main theorem (formulated in the geometric picture) reads as follows.

Theorem 3.19. There exists an open interval J centered at zero and § > 0 such
that for all ug € C°°(S) with |uo|cs@ < 0, there exists a unique solution (¢,§) €
C(J, DI (S) x C=(8S)) of BIA) such that ©(0) = id and £(0) = ug. Moreover, the
flow (¢, &) depends smoothly on (t,up) € J x C*(S).

In the smooth category, the map
Diff™*(S) x C(S) = C=(S), (p,&) = Eop ' =u

is smooth. We thus have the following result.

Corollary 3.20. There exists an open interval Jcentered at zero and § > 0 such that for
each ug € C*(S) with |uo|csg) < 6, there exists a unique solution u € C*(J,C*(S))
of the b-equation such that w(0) = wug. Moreover, the solution u depends smoothly on

(t,u0) € J x C=(S).

The flow (t) C Diff™°(S) can be interpreted as geodesic flow with respect to a right-
invariant affine connection V which is defined on the Lie algebra of Diff>*(S) by the sum
of the Lie bracket and a bilinear operator, see Eq. (L31]). Hence it makes sense to study
the exponential map defined by V which is just evaluation of the geodesic flow at time
t = 1. For finite n, the exponential map exp¢(-) is a map from T, Diftf"(S) ~ C"(S) to the
manifold Diff"*(S). Moreover, exp,(-) is a local diffeomorphism. In general, this fails to
hold true for Fréchet manifolds and taking the example of the right-invariant Lo-metric
(Burgers equation) on Diff>(S) we see that we do not get a local C''-diffeomorphism near
the origin, cf. [25, 26]. For the Camassa-Holm equation and more general for the H*-
metrics, k > 1, the Riemannian exponential map in fact is a smooth local diffeomorphism.
This result has been extended to the general (non-metric) b-equation in [41].
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Theorem 3.21. The exponential map exp at the unity element for the b-equation on
Diff>*(S) is a smooth local diffeomorphism from a neighbourhood of zero in C*°(S) to a
neighbourhood of id on Diff>(S).

3.3.2 A generalization to the pnDP equation

Recall that the uDP equation (3I4]) can be written as
up = — A" N(u(Au), + 3(Au)u,) (3.20)

where A = u — 02. As for the b-equation, the vector field u(t,x) possesses a unique
local flow ¢ of class C™(S), i.e., @i(t,x) = u(t,p(t,z)) for all z € S and all ¢ in some
open interval J C R. Again, we use the short-hand notation ¢; = u o ¢ for ¢ (t,x) =
u(t, p(t,x)); i.e., o denotes the composition with respect to the space variable. Hence
u = ¢ o ¢~ 1. The other way round, if (p,&) € C1(J,Diff"(S) x C™(S)) is given, then
e~ 1(t) is a C"(S)-diffeomorphism and (£ o ¢~1)(¢) is a continuously differentiable curve
in C™(S). The Christoffel operator for the uDP equation is

B(u,v) = %A_l(u(Av)x + v(Au), + 3(Au)v, + 3(Av)uy) (3.21)

since we have
B(u,u) = Ail(u(Au)x + 3(Au)uy) = —uy,

which is the uDP equation written as an Euler equation on the tangent space at the
identity of the C"-diffeomorphisms of S. We also know that the yDP belongs to the
class of non-metric Euler equations and hence we cannot expect to obtain geometric
information by defining some right-invariant metric on the diffeomorphism group of the
circle. Instead of that we will work with the affine connection

Ve, 6o = %[fu,&)] + B(&u, &) (3.22)

where &,, &, are the right-invariant vector fields on the circle diffeomorphism group with
values w,v at the identity. Let X (¢) = (v(t),£(t)) be a vector field along the curve
©(t) € Diff™*(S) or ¢(t) € Diff"(S) respectively. The covariant derivative of X (¢) in the
present case is defined as

T 0= (90,6 + 0.0+ Bt €0)

where u = ¢; 0 L. In particular, we see that u is a solution of the uDP if and only if
its local flow ¢ is a geodesic for the connection V defined by B in 321 via (8:22). That
is why we will call ¢(t) the geodesic flow for the uDP equation in the following.
Although our goal is to handle the Diff**(S)-case, we will first discuss flows (t)
in Diff"(S) for technical purposes®. Regarding Diff”(S) as a smooth Banach manifold
modelled on C™(S), the following result has to be understood locally, i.e., in any local

3 Observe that Eq. (320) is not an ODE on C™(S) since the term (Au), is not regularized by the
operator A™1 of order —2. In particular, if u is in C((=T,T); C™(S)) then Eq. 320) implies that
ut € C((=T,T); C*~L(S)).
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chart of Diff"(S).
Proposition 3.22. The function u € C(J,C™(S)) N C*(J,C"7L(S)), for n > 3, is a
solution of BI4) if and only if (p,€) € C(J,Diff*(S) x C™(S)) is a solution of

Pt = 5;
S 629

where P, == R, 0 Po Ry,-1 and P(f) :=3A" (fufoa + (Af) f2)-

Proof. The function u and the corresponding flow ¢ € Diff"(S) satisfy the relation ¢; =
u o . If we set p; = &, then, by the chain rule,

& = (up + uug) o .
Using (3:20), we see that u is a solution of the uDP equation (314) if and only if
ug +uty = —A" (u(Au), — Aluug) + 3(Au)u,)
= — AN (~UlUgrr + Upplly + Uy + 2Uztpy + 3(Au)uy)

= —3A71(Uzuzz + (Au)uﬂv)
= —P(u).

Recall that
! e 1
pluug) = / ut, do = —/ Oz (u?) dx = = (u*(1) — u?(0)) = 0,
o 2 J, 2

since v is continuous on S. With © = £ o ¢! the desired result follows. O

We now define the vector field

F(%f) = (57 _Pw(f))
so that (¢, &) = F(p,§). We know that

F: Diff"(S) x C™(S) — C™(S) x C™(S),

since P has order zero. Note that the second order vector field F' is equivariant by
the action of Diff"(S) on Diff"(S) x C™(S), i.e., F(X o) = F(X) o4, for any X €
Diff"(S) x C™(S) and ¢ € Diff"(S). We aim to prove smoothness of the map F. It is
important to mention that this will not follow from the smoothness of P since neither
the composition nor the inversion are smooth maps on Diff"(S). The following lemma
will be crucial for our purposes.

Lemma 3.23. Assume that p is a polynomial differential operator of order r with coef-
ficients depending only on u, i.e.,

p(u) = Z ar(p(u)) u® (u)er - - - (u)er,

I=(ag,...,ar),
a; ENU{0}, |T|<K

Then the action of p, = R,0opo R,-1 is
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pe(u) = ar </01 w(y)pa () dy> qr(u; @ .., "),

I

where qr are polynomial differential operators of order r with coefficients being rational
functions of the derivatives of ¢ up to the order r. Moreover, the denominator terms only
depend on @, .

Proof. Tt is sufficient to consider a monomial
m(u) = a(p(w))u® (u')* - (u(r))a".
We have
mg(u) = alpluop™)u[(wo ™) og]™ - [(wo ™) o]

First, we observe that

u@i0¢_1)=téld¢‘l@ﬂ)¢v=té () paly) dy

where we have omitted the time dependence of u and ¢. Recall that ¢(S) =S, ¢, > 0 and
that pu(u o p~1) is a constant with respect to the space variable x € S. Let us introduce
the notation

ay = (uosafl)(k) o, k=1,2,...,m

Then, by the chain rule,

1

_ Ug O Uz
@ = @uuog ) op =T Cq0p="2
and
api1 = (Ds(uop™)M)op
= (8:c(ak © 30_1)) oY
&Cak

= o

so that our theorem follows by induction. O

In the Banach algebras C™(S), n > 1, addition and multiplication as well as the mean

value operation p and the derivative % are smooth maps. We see that if the coefficients ay

are smooth functions for any multi-index I and u and ¢ are at least r times continuously
differentiable, then p,(u) depends smoothly on (¢, u).

Proposition 3.24. The vector field
F: Diff"(S) x C"™(S) — C™(S) x C™(S)
is smooth for any n > 3.

Proof. We write F' = (F1, Fy). Since Fi: (p,&) — £ is smooth, it remains to check that
Fy: (p,&) = —P, (&) is smooth. For this purpose, we consider the map

P: Diff"(S) x C"(S) — Diff*(S) x C™(S)
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defined by .
P(p,§) = (¢, Ry o P o Ry-1(€)).

Observe that we have the decomposition P=A"10 Q with

A(p,&) = (p, Ry 0 Ao R,-1(€))

and

Q(p,€) = (¢, Ry 0 Qo Ry-1()),
where Q(f) = 3(fufza + (Af) fz). We now apply Lemma 323 to deduce that

A, Q: Diff"(S) x C™(S) — Diff"(S) x C"%(S)

are smooth. To show that~fi_1: Diff"(S) x C"%(S) — Diff"(S) x C™(S) is smooth, we
compute the derivative DA at an arbitr%ry point (p, &). We have the following directional
derivatives of the components A; and As:

Dy,A; =id, D¢A; =0, De¢As=R,0A0R, 1,

and it remains to compute (Dwig(go,f))(i/)) = %flg(gp + ew,f)‘ezo. In a first step, we
calculate

2(¢ o - £a ° -1
(e (pter)™) =2 [(@ +%) (o0
_ P + wa:c o 1
from which we get
d o _ d un az + EPaa
@ toren o toren) = 1 (s - e )
(SO;C +e1,)3 (SO:E + 5¢x)3
+ 3&(30 +ey )
and finally
d 2 -1 - f:c;c'lpx f:cw:c:c @xxfxw;c
= (OEo(ptev) o (p+ev)) TS P
Secondly, we observe that
d 4 _d
greeeren ™| =4 [ewie e

/S E)a(y) dy,

since ¢ + e € Diff"(S) for small € > 0. Hence

©3 ©3 03

(DyAsz(p,€)) / E(y)be(y) dy + 2
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and

. id 0
DA(yp,§) = <D<pf‘i2(‘/”5) R, o AoR¢_1> :

It is easy to check that DA(¢p, £) is an invertible bounded linear operator C™(S)x C™(S) —
C"™(S) x C"~2(S). By the open mapping theorem, DA is a topological isomorphism and,
by the inverse mapping theorem, A~! is smooth. O

Remark 3.25. In fact, Proposition B.:24] shows that the Christoffel map I'y (¢, vr) = @i
for uDP is smooth, cf. Remark 23]

Since F' is smooth, we can apply the Banach space version of the Picard-Lindel6f Theorem
(also known as Cauchy-Lipschitz Theorem) as explained in Appendix [Al This yields the
following theorem about the existence and uniqueness of integral curves for the vector
field F.

Theorem 3.26. Let n > 3. Then there is an open interval J, centered at zero and
an open ball B(0,d,) C C™(S) such that for any uy € B(0,6,) there exists a unique
solution (p,&) € C°(J,,Diff"(S) x C™(S)) of B23) with initial conditions p(0) = id
and £(0) = ug. Moreover, the flow (¢,&) depends smoothly on (t,ug).

From Theorem 326l we get a unique short-time solution u = £o ™! of uDP in C™(S) with
continuous dependence on (t,ug). Note that, to obtain an analogous result for smooth
initial data ug, we cannot send n — oo in Theorem since the §,, or the J,, might
converge to zero. On the other hand, since C*°(S) is a Fréchet space, classical results
like the Picard-Lindel6f Theorem or the local inverse theorem for Banach spaces are no
longer valid. In the proof of our main theorem, we will make use of a Banach space
approximation of the Fréchet space C°°(S). First, we observe that any solution (¢, ¢)
of the uDP equation ([23) does not lose nor gain spatial regularity as ¢ increases or
decreases from zero. For this purpose, we are in need of a conservation law.

Lemma 3.27. Let u be a C3(S)-solution of the uDP equation on (=T, T) and let ¢ be
the corresponding flow. Then

(m o @)pl = mo,

for all t € (=T, T), where m = Au = (u — 8%)u and mo = Auo.

Proof. We compute

d
(Mo @)l = [(me +mau) 0 ] 91 + 3¢5 pu(m 0 0)
= [(=3uam) o ¢le} + 3¢5 (mus) o ¢
=0.
Since ¢(0) = id and ¢, (0) = 1, we are done. O

Lemma 3.28. Let (¢, &) € C™(J3, Diff*(S) x C3(S)) be a solution of B3.23) with initial
data (id,uo) according to Theorem[Z26. Then, for all t € J3,

Goalt) = @u(t) ( / ' i(u)a(s) ds — mg / t ﬁ ds) (3.24)

and
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61e() = &0 2 + 02(0) [n(winlt) -

Pa(1)? (3.25)

Proof. We have

i % _ PratPr — PatPax
dt 2 '

Pz Pz
Here
Ot = Pz = 896(“ o) = (u:c © SO)SO:E
and
Prat = @xm
= 92 (uoy)
= 0z[(uz © ©)¢a]
= (ugg © 90)90925 + (Uz © P)Pra-
Hence

d (Yez)
a ( o ) = (Uzz © 0)Pu-

According to the previous lemma, we can replace

mo

—-
Pz

A (P22 g, — T

over [0, 1] leads to equation (3:24)) and taking the time derivative of ([3:24) yields (3.23]).
O

Ugz © 0 = p(u) —

Integrating

From Remark 34 we know that u(u;) = 0 and hence p(u) = p(ug) so that p(u) can in
fact be written in front of the first integral sign in equation (324]). As in the discussion
of the periodic b-equation, we obtain the following corollaries which guarantee that the
geodesic flow for the uDP equation does not lose its spatial regularity as t increases or
decreases from zero.

Corollary 3.29. Let (o, &) be as in LemmalZ 28, Ifug € C™(S) then we have (p(t),&(t)) €
Diff"(S) x C™(S) for all t € Js.

Proof. We proceed by induction on n. For n = 3 the corollary follows immediately
from our assumption on (¢(t),&(t)). Let us assume that (p(¢),£(¢)) € Diff"(S) x C™(S)
for some n > 3. Then Lemma shows that, if ug € C"TL(S), then (p(t),£(t)) €
Diff"*(S) x C"*1(S), finishing the proof. O

Corollary 3.30. Let (¢,§) be as in Lemma [328. If there exists a nonzero t € Js such
that o(t) € Diff"(S) or £(t) € C™(S) then £(0) = ug € C™(S).

Proof. Again, we use a recursive argument. For n = 3, there is nothing to do. For some
n > 3, suppose that ug € C™(S). By the previous corollary, (¢(¢), £(t)) € Diff"*(S) x C™(S)
for all t € J3. Assume that there is 0 # to € J3 such that ¢(ty) € Diff"™!(S) or
&(to) € C™TL(S). In the first case, we can resolve ([3.24)) with respect to mg and see
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that mg € C™~1(S), which of course implies ug € C"*1(S). In the second case, we use
Eqgs. (324) and (3:28) to obtain the identity

Eoelt0) = p(u0)6st0) [ a(5)ds o)) 4 mo | ol [ s -

To resolve this identity with respect to mg we have to guarantee that the expression

in brackets does not vanish. To see that this is true we claim that there is a nontrivial
interval I C R containing zero such that for all x € S and any ¢t € I

ds 1

ft,z) = _gx(t’m)/o @z (s, )2 - Pa(t, ) 7

Replacing J3 by J3 N I this will achieve the proof. Let us show that f converges to —1,
uniformly in z, as ¢ — 0 and ¢t > 0 (w.l.o.g.):

2 1

Pu(t,z) |

<
/(6 2) + 1] < t€a(t)] o max,

#]i-

Pz (s)

o0

Note that ¢, is the unique solution of

{ iy 2o

and thus .
pattea) =exo ([ (urop)(s.)as).
0
We now estimate

-
oz (t, )

and obtain

2

(D) + 1 < &0 o #ou (#ua fus ()1 ) <150

o 0<s<t

Pz (s)

oo

as t — 0; recall that £, (t) = oz, pz(t) = 1 and u,(t) = uo, as t — 0. We conclude
that, for any € > 0, there is an interval I. C R with positive measure and containing
zero, such that

|[ft,z)+ 1] <e, VxesS, Vtel,

and in particular |f(¢,2z)| > 1 — e. Finally, we choose € € (0, 1) arbitrarily and are done.
O
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Now we discuss Banach space approximations of Fréchet spaces.

Definition 3.31. Let X be a Fréchet space. A Banach space approrimation of X is a
sequence {(Xy, |-|,); n € No} of Banach spaces such that

XoD2X1DX9D - DX, X:ﬂXn

n=0

and {|-],,; » € No} is a sequence of norms inducing the topology on X with

n?

lzlo < lzly < 2l < -

for any z € X.
We have the following result. For a proof, we refer to [41].

Lemma 3.32. Let X and Y be Fréchet spaces with the Banach space approrimations
{(Xn, |-],,); n € No} and {(Yy,|],,); » € No}. Let @g: Uy — Vi be a smooth map between
the open subsets Uy C Xg and Vy C Yy. Let

U=UsNnX and V =VyNY,
as well as
U, =UNX, and V,=VyNY,,

for any n > 0. Furthermore, we assume that, for each n > 0, the following properties are
satisfied:

1. @Q(Un) C V,,
2. the restriction ®,, = ¢0|U” : U, — V, is a smooth map.

Then ®o(U) C V' and the map @ :== Do, : U =V is smooth.
Now we come to our main theorem which we first formulate in the geometric picture.

Theorem 3.33. There exists an open interval J centered at zero and § > 0 such
that for all uo € C*(S) with [uo|cas) < 6, there exists a unique solution (¢,§) €
C(J, DI (S) x C=(8S)) of B23) such that ©(0) = id and £(0) = ug. Moreover, the
flow (¢, &) depends smoothly on (t,up) € J x C*°(S).

Proof. Theorem for n = 3 shows that there is an open interval J centered at zero
and an open ball Us := B(0,5) C C3(S) such that for any ug € Us there exists a unique
solution (¢, &) € C°°(J, Diff*(S) x C3(S)) of B23) with initial data (id, up) and a smooth
flow

®3: J x Us — Diff*(S) x C3(S).

Let
U, =UsNC™"S) and Uy =UsNC™(S).

By Corollary B.29] we have
D3(J x U,) C Diff"(S) x C™(S)
for any n > 3 and the map

Dy = P35, 1 JJ x Up — Diff*(S) x C"(S)
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is smooth. Lemma [3.32] yields that
@3(J x Uso) C DIff™(S) x C*(8),
proving the short-time existence in the smooth category, and that the map
Doo = P3| s,y J X Uso — DIf(S) x C*(8S)
is smooth, proving the smooth dependence on time and the initial condition. O
In the smooth category, the map
Diff>*(S) x C°(S) = C°(S), (g, &)= Efop t=u

is smooth. Thus we obtain the result stated in Theorem [3.15]

3.3.3 The exponential map for the uDP equation

The basic idea of the proof of Theorem is to consider a perturbed problem: Let
(¢°, £°) denote the local expression of an integral curve of (323 in TDiff" (S) with initial
data (id, u 4+ ew), where u, w € C™(S). We have

(¢5,€7) = (»,6), e—0,

where (¢, ) is the solution with initial values (id, u). Let

_09°(1)
Oe

P(t) :

e=0

Then
1/)(t) = Ln(t, u)wa

where L, (t,u) is a bounded linear operator C™(S) — C"(S), for any ¢ in the existence
interval of (¢, &).
In our next lemma we show that, for u € C"*1(S) and any t # 0, we have

L,(t,w)w e C"(S) = we " (S).

In the proof, we proceed in a similar manner as Escher and Kolev in their proof of
Lemma 15 in [41].

Lemma 3.34. Suppose that u € C"TY(S). Then, fort # 0,
Ln(t,u)(C"(S)\C™(S)) € C*(S)\C™H(S).

Proof. First, we write down Eq. (3.24) for ¢°(t),

Poall) = 51 [u(u+ew> / s (s)ds —m / t ﬁd] ,

and take the derivative with respect to ¢,
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9 () = 92 o) [utu+cw) [ i(o)as i [ —ra

4620 [utw) [ i as b utut ) [ ) a

R oms [t 1 S [to 1
-0 5 | gz | wa]

= p(w) — Wyy = Aw

Notice that

Oe
and that m§ — mo = Au as € — 0. Hence

anlt) = 2(0) ) [ () ds —mg / t L

at) [u(w) / () ds + () / ba(s) ds}

¢ wz(s)
) Pa(s)? ds]

—oul®) [(u(w) ~ ) /0 ﬁsp ds — 2me
= a(t)a(t) + b(t) / ()b (3)ds + d(t) + e(t)wsa

with a(t), b(t), c(t),d(t),e(t) € C"~L(S) and e(t) # 0 for t # 0. Finally, if
w € C"(S)\C"(S),

then
P(t) = Ln(t, u)w € C"(S)\C"(S).

O

Let us now come to the proof of Theorem Since C3(S) is a Banach space and
Diff3 (S) is a Banach manifold modelled on C3(S), we know that the uDP exponential map
C3(S) — Diff}(S) is a smooth diffeomorphism near zero, i.e., there are neighbourhoods
Us of zero in C3(S) and V3 of id in Diff*(S) such that

expg == expluz: Us = V3
is a smooth diffeomorphism. For n > 3, we now define
U, =UsNC"(S) and V, =V3NDiff"(S).

Let exp,, := exps |u, . Since exp,, is a restriction of exps, it is clearly injective. We now use
Corollary 329 and Corollary B:30] to deduce that exp,, is also surjective, more precisely,
exp,,(Uy,) = V,,. If the geodesic ¢ with p(1) = exp(u) starts at id € Diff"(S) with velocity
vector u belonging to C"(S), then ¢(t) € Diff"(S) for any ¢ and hence exp,,(U,) C V.
Conversely, if v € V,, is given, then there is u € Us with exps(u) = v. Corollary B30
immediately implies that uw € C™(S); hence v € U,, and exp,,(u) = v. We conclude that
exp,, is a bijection from U, to V,,. Furthermore, exp,, is a smooth map and diffeomorphic
as a map U, — V,, (since it is a restriction of exp;). We now show that exp,, is a smooth
diffeomorphism; precisely we show that exp,': V,, — U, is smooth by virtue of the
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inverse mapping theorem. For each u € C"(S), Dexp,, (u) is a bounded linear operator
C™(S) — C™(S). Notice that

Dexp,,(u) = D expsz(u)|cn(s),

from which we conclude that Dexp,, (u) is injective. Let us prove the surjectivity of
D exp,,(u), n > 3, by induction. For n = 3, this follows from the fact that expg: Us — V3
is diffeomorphic and hence a submersion. Assume that D exp,,(u) is surjective for some
n > 3 and that v € C"T(S). We have to show that this implies the surjectivity of
D exp,,,;(u). But this is a direct consequence of D exp,, (u) = L,(1,u) and the previous
lemma: Let f € C"*1(S). We have to find g € C""*(S) with the property D exp,, 1 (u)g =
f. By our assumption, there is g € C"(S) such that D exp,,(u)g = f. It remains to check
that g € C™T1(S). To see this, we assume g € C"(S)\C"*1(S). But then f = L,(1,u)g ¢
C™T1(S) in contradiction to the choice of f. Thus g € C"*1(S) and Dexp,, ., (u)g = f.
Now we can apply the open mapping theorem to deduce that for any n > 3 and any
u € C™(S) the map
Dexp,,(u): C™"(S) = C™(S)

is a topological isomorphism. By the inverse function theorem, exp,: U, — V, is a
smooth diffeomorphism. If we define

Us :=UsNC™(S) and Vi = V3N Diff>*(S),

Lemma [3.32] yields that
eXPy, = €xPs3 U, ! Uso = Vo

as well as
expgolz Voo = Uso

are smooth maps. Thus exp,, is a smooth diffeomorphism between Uy, and V.

3.4 The uDP equation with weak dissipation

In general, it is difficult to avoid energy dissipation mechanisms in real experiments
with water waves. On account of that, Ott and Sudan [114] investigated how the KdV
equation has to be modified to include the effect of energy dissipation. Ghidaglia [53]
studied the long-time behavior of solutions of the weakly dissipative KdV equation as a
finite-dimensional dynamical system. Some results for a weakly dissipative CH equation
are proved in [124] and recently, [46] [123] discussed blow-up and global existence for a
weakly dissipative DP equation.

The goal of the present section is to study the Cauchy problem for the periodic weakly
dissipative uDP equation

my + umg + 3uzm + Am = 0,
m = p(u) — Ugy, (3.26)
u(0,x) = ug(x),

which has not been discussed up to now. Again, the function u(t, z) is depending on time
t > 0 and a space variable € S and p is the projection p(u) = fol u(t, ) dz. The con-
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stant A is assumed to be positive and the term A(u(u) — uy,) models energy dissipation.
By the replacement p(u) — u in ([B.26]), we obtain the weakly dissipative DP equation
discussed in [46, 123]. Note that the quantity E)(u) = [, mdz is conserved for the DP
equation and that E; can be interpreted as an energy, since it equals (up to a factor) a
Hamiltonian function for the DP as explained in [30] [31I]. However, for the weakly dissi-
pative DP equation, %El (u) = —Au(u), so that p(up) > 0 implies that the quantity F4
decreases as t increases. The weak dissipation also breaks other conservation laws of the
DP equation like Ey(u) = [ mvdz or Es(u) = [qu® dz, where v = (4 — 92)'u, cf. [46].

The general framework in which we discuss Eq. ([3.26]) is based on a geometric tech-
nique since we will regard Eq. (3:26]) as an evolution equation on the group H*Diff(S)
of orientation-preserving diffeomorphisms of the circle S of class H*®, for s > 3/2,
cf. Sect. B4t The vector field u(¢, ) € H*(S) has a unique local flow ¢(¢,-) € H*Diff(S)
such that ¢; 0 ™! = u, p(0) = id and @y = —F(p, ;) with some map F defined on
H*Diff(S) x H*(S). The latter equation can be handled with standard ODE methods
for Banach spaces. Altogether, it will turn out that the weakly dissipative uDP equation
behaves quite similarly to the uDP equation (for which A = 0) or the weakly dissipative
DP equation. That we work with the Sobolev classes H*® has to do with the spadework
in [99].

This section is organized as follows: We first prove local well-posedness for the initial
value problem B20) with ug € H*(S) for s > 3/2. Secondly, we establish the precise
blow-up scenario for s = 3. Then we give an example that for smooth initial data with
zero-mean, the solution u(t,-) of ([B26) can blow-up in finite time. If u(ug) # 0 and
w(ug) — (up)zs s non-negative or non-positive, the corresponding solution u(t, -) will ex-
ist globally in time.

In this section, we write A = u—02 for the inertia operator and Au = m, Aug = mg. We
begin with some preliminary remarks about the manifold configuration space H*Diff(S).
Recall that T, H°Diff(S) ~ H*(S) for any ¢ € H*Diff(S). Our first lemma establishes
that H*Diff(S) is a topological group for any s > 3/2. The reader can find a proof in
[109).

Lemma 3.35. For s > 3/2, the composition map ¢ — w o @ with an H*-function w and
the inversion map ¢ — @' are continuous maps H*Diff(S) — H*(S) and H*Diff(S) —
H?*Difl(S) respectively and

lwo el < CO+lelye) g ;
C only depending on sup,cg |¢z(x)| and inf,cs @, (x)|.

Before we proceed, we prepare the following lemma ensuring the existence and uniqueness
of a local flow for the weakly dissipative uDP on the Hilbert manifold H*Diff(S).

Lemma 3.36. Let u(t,z) be a time-dependent H?®-vector field on S for s > 3/2. Then
the problem

{ @t(ta J)) = u(t7 @(ta J))),
¢(0,7) =z,

has a unique solution ¢ € C1([0, Tmax), H*Diff(S)) and Tmax > 0 is mazimal.

Local flows on diffeomorphism groups of Sobolev class have approved to be powerful tools
for the analysis of model equations for water waves, see, e.g., [94].
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In many texts, local well-posedness results for Cauchy problems similar to ([3:26]) are
obtained by applying Kato’s theory for abstract quasi-linear evolution equations, cf. Ap-
pendix [Bl We now present a method of proof which is based on a geometric argument,
most importantly using local flows as introduced in Lemma [336l A technical disadvan-
tage of this method is that it does not yield a priori a maximal existence time for our
solution which we will obtain inductively. The key idea is to rewrite the weakly dissipative
uDP equation in the form

wg + utiy + 3p(u)0, A" u 4+ Mu = 0. (3.27)

Equation ([.271) is suitable for a reformulation of (3.26) in the geometric picture, i.e., in
terms of a local flow on the group H*Diff(S). To improve the structure of the subsequent
well-posedness proof, we begin with the following lemma.

Lemma 3.37. Let R, denote the right translation map on H®Diff(S) and let A" =
R, o A lo R, and Oy p = Ry, 00, 0 Ry-1. Then

Bu(€op ™) (A0, (Cop™h)) oo = A 0p oh(0,€) (3.28)

with h(p, &) = 3¢ [ & o @~ dx. Furthermore, we have the identities

&FA;l(v) = —A;l [(voe™)0,, A]w A;l, (3.29)
000 0(v) = [(v0 o™ )01,04] . (3.30)
Oph(p, &) (v) = 3£/S€ 0p t0,(vop ) dr. (3.31)

Proof. Equation ([B:28)) follows directly from our definitions. We have

folpten)y ™t =(froe™) L (ptev)!

=0 de|__,

Du(for)0) = =

and differentiating (o + ev) o (p + ev)~! = id with respect to ¢ at ¢ = 0, we obtain that

-1

— vop
(p+ev)t = —L2F
e=0 SDIO¢71

de

so that 9,(f o™ 1) (v) = —(fop ). (vop™t). Using this, we directly get

=Ow o(p+ 61))1>> oo+ (A (woph),) o p)v

Nawop ™)) op+ ((op A wop h),) 0w
_1)8x,A}¢A;1w,

wo (p+ Ev)_l) o+ ((w 0 e o @)v
t=0 T

= —((wop™a(wop ™)) cp+ (vop N wop ) o
= [(U o w_l)ﬁx,ax] w

©

and (B31) after integration by parts. O
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Let us now come to our local well-posedness result. Observe that we establish the exis-
tence of a solution of Eq. (328 on an interval [0, T) for physical reasons, in contrast to
our discussion of the uDP in Sect. B3] where we also allowed negative values of ¢.

Theorem 3.38. Let s > 3/2 and ug € H*(S). Then there is a mazimal time T = T (ug) €
(0,00] and a unique solution

u € C([0,T); H*(8)) N CH([0,T); H*~X(S))

of the Cauchy problem [B20) which depends continuously on the initial data ug, i.e., the
mapping

H*(S) — C([0,7); H*(S)) N CH([0,T); H*~X(S)),  uo = (-, uo)
18 continuous.

Proof. Writing
Tu = 3u(u)0 A~ u + M = Tou + Mu,

BZ17) shows that (320) is equivalent to u; + uu, = —Tu. Let p(t) € H*Diff(S) denote
the local flow for the vector field u(t,-) according to Lemma B30l i.e., ¢ = u o ¢ and
©(0) = id on [0, Tinax). We then have

e = (e +uug) oo = ~T(prop™t) o

Let F(p,&) =R, 0T o R,-1£ so that

o =—F(p, 1), @i(0) =uo, ¢(0)=id, (3.32)

which is an ordinary second order equation. By Lemma B35 F': H*Diff(S) x H*(S) —
H*(S). We next show that F' is continuously differentiable in a neighborhood of any
(p,&) € TH*DIfI(S) ~ H*Diff(S) x H*(S) and therefore decompose F = F; + F, with
Fi = R,0Tyo0 R,-1 and F, just being multiplication with A\. By B28), Fi(,§) =
A1 0z oh(p, ), and using B29)-B3T) and the relation 924~ = A7192 = pu—1,
cf. Sect. B2 we get

OpF1 (0, 6)v = [(8p A1) (Do h(s0, E))v + AL (802 ) R0, )]V + AL 02 [0 h (0, €)]v
= 3o ) (A wop )P (Eop ™)) op
+3u(Eop ) (o AT (Eop™)) op
+3uoe ™) (A o di(Eop ")) o
—3u(op ") (A7 0((vop ™ )Bu(Eop™))) 0 p

+3 (/S(g op N (vop™) dx) (A0, (Eop ™)) oy

2
23(—vf/sﬁowldx+v(/sfo<pldx>

— AZ10, (00, ,) /S oot dr+ AZ'0, o€ /S fow_lax(vosfl)dx)

A
A

= 3( - M(&Pz)vg + M(&px)QU - N(f%px)Aglax,cp(vax,cpf) + N(E'U:C)Aglax,cp§>
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and

OcFi(p, v = 3A;18x7¢v/§ oo tdx + 3A;18x7¢§/v op tdx
s s
= Bu(Epa) A Or v + Bul(vipa) AS 1 O 6,

for arbitrary (¢, &) € TH®Diff(S). Since we have the relation

DAt = (m—%) /Olw(m)dx—/ dy+/ / y)dy dz

1510000106 = | (2= 5 ) (o0 )Eop ) = [(wouiEo ™). dy

we get

1 x
+/ (vowl)(éowl)xdydx} oy
0 0

1 x L e Ha)
(w3 )ute - [ e [T Cig g
»=1(0) 0 Jp=1(0)

A0 o€ = [<x—%) / Eoyp™ 1dy+/ / Eoyp™ ldydx}ogp
= (w(w)—l> (é“som)—/_l(o) bz dy+/ /_1(0) i, dyde.

To prove that v = 0, F1 (¢, &)v and v — 0¢F (p, §)v are bounded operators on H*(S), it
suffices to estimate the sum

”a«pFl (Spa f)””LQ + ”az (athl (Spa f)”)”Hs—l

and

by a constant independent of v times |v| ., and similarly for the other partial derivative.
Therefore, we differentiate the equations for 9, F (y, &)v and 0: Fi (p, §)v with respect to
x and use Sobolev’s embedding theorem, the fact that H*® is an algebra and some standard
estimates to obtain

100 F1 (0, €)0] o < C 0l gz 1€]3r.
and
18¢ Fr (0, )0l 0 < C 10l gge 1€l 570 »

with C only depending on ¢. Now it remains to establish the continuity of both partials
in ¢ and £. Continuity in the £-variable follows from the fact that the dependence of
O0,F1 and 0¢Fy on ¢ is polynomial. To see that 0,Fi(p, &) depends continuously on ¢,
we perform a tedious but straightforward computation of a bound for the sum

10.F1 (0, E)v — o F1 (@, §)vl 1, + 102[0pF1 (0, E)v — Dp 1 (&, €) ]|

Hs—1

which tends to zero as ¢ — @ in H?; therefor, we use again the algebra property of
H?#, Sobolev’s embedding theorem and Lemma [335 That ¢ — 0¢Fi(p,§)v is continu-
ous can be proved very similarly. Clearly, Fz(p,&) = A is differentiable; the directional
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Fig. 3.3 Wave breaking.
(Hokusai, “The breaking
wave of Kanagawa” and

snapshot of a wave crest,
www.heartsandminds.org/
global/actnow.htm|, cited
15 August 2010)

derivatives 0,F> = 0 and J¢F» = A are bounded linear operators on H*(S) with contin-
uous dependence on (¢, &). Since F' is continuously differentiable near (id,0), our local
existence theorem for Banach spaces (cf. Appendix [A]) establishes the well-posedness of
B32), i.e., there is a time 0 < T < Tyax and a unique solution (¢, ¢;) of ([B32]) on [0, T} ]
with continuous dependence on ¢ and ug. To show that there is a maximal interval of ex-
istence, we apply the local existence theorem once more to the problem @y = —F(p, o)
with initial data (¢(71),¢+(T1)) to continue the solution (p, ;) to a solution on a time
interval [0,75] with T7 < To < Tyhax. Iterating this procedure, the local well-posedness
of ([B:28) is now a simple consequence of u = ¢; o ¢! and the fact that H*Diff(S) is a
topological group whenever s > 3/2. O

Remark 3.39. As explained in the proof of Theorem [3.38] we obtain a strictly increasing
sequence (T, )nen describing the continuation of our solution u(t,z) in H*(S). Note that
T, — T with either T < oo or T' = co. In the first case, we say that the solution has
a finite existence time, whereas T' = oo means that the solution exists globally in time.
It is an interesting problem and the aim of the following considerations to describe the
behavior of finite time solutions as ¢t — T from below and to find criteria for the global
existence of strong solutions as well as so called finite time blow-up.

In physics, a breaking wave is a wave whose amplitude reaches a critical level at which
some process suddenly starts to occur that causes large amounts of wave energy to be
transformed in turbulent kinetic energy. At this point, simple physical models describing
the dynamics of the wave will often become invalid, particularly those which assume
linear behavior. Wave breaking has been studied for various classes of non-linear 1D
wave equations, [21] 22| 38, [T0T] 102} [I30], and a reasonable way is to show that there
is a finite-time solution u satisfying an L.o-bound for all ¢ € [0,T) so that the norm of
u is unbounded as t — T if and only if the first order derivative u, approaches —oo as
t — T from below (cf., e.g., [46] for a discussion of the DP equation with a dissipative
term). The physical interpretation of this is that the wave steepens, while the height of
its crests stays bounded, until wave breaking occurs in the sense that u ceases to be a
classical solution (see Figs. and [3.4).

Here, we first describe the blow-up of finite time-solutions of ([B:26]) in terms of the
first order derivative and then discuss examples in which blow-up occurs or where one
gets global solutions, respectively. Henceforth, we will restrict ourselves to s = 3.

Theorem 3.40. Given ug € H3(S), the solution u of ([B.26) obtained in Theorem
blows up in finite time T > 0 if and only if

lim inf min u, (¢, z) = —o0.
t—=T z€S

Proof. Let T > 0 be the maximal time of existence of the solution u to Eq. (3:28]) with
initial data ug. Since H3(S) C C?(S) we find that
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Fig. 3.4 A breaking wave profile u(t, z). The wave propagates in the positive z direction with constant
speed 1 and steepens while its height does not change. We say that the wave breaks at t =T < oo if its
slope uz becomes unbounded from below as ¢t — T and hence u ceases to be a classical solution of the
governing wave equation for ¢ > T. We also say that the solution w blows up in finite time 7.

g/deﬂc:2/mmtdac

= —2/umxmdx—6/uxm2dx—2/\/m2dx
S S S

—5/uxm2 dJ;—Z/\/m2 dz. (3.33)
S s

If we assume ug € H*(S) and use that H*(S) C C3(S), we can obtain

g/m?gdac:Z/m;gmmdac

= —Z/mxmmudx— S/miux dx —G/mmxum dz — ZA/mi dz
S S S S

—7/miux dz — ZA/mi dz. (3.34)
s s

Adding (333) and B34) we get

d, 2 2 2 2

— |m|7 = =7 [ miugde —5 [ upm=da —2X|m|. . (3.35)
Next we observe that ([3.35)) also holds true for ug € H?(S): We approximate ug in H3(S)

by functions u? € H4(S), n > 1. Let u™ = u™(-,u?) be the solution of ([3.26) with initial
data uf}. By Theorem B.38 we know that

u" € C([0,T,); H(8)) N CH([0, Tn); H*(S)), n>1,
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m" = p(u") —ug, € C((0,T); H*(S)) N CH([0,T); H'(S)), n=>1,
u™ — win H3(S) and T;, — T as n — oo. Since uf € H*(S), we have

4 (m2)? de = —7/(m2)2u2 dz — 2/\/(m2)2 dz.
dt Js s $

Since u,, — u in H3(S) it follows that u? — u, in Lo(S) as n — oo. Note also that
m"™ — m in HY(S) and m? — m, in La(S) as n — co. We deduce that, as n — oo, (3.34)
also holds for ug € H3(S). If u, is bounded from below on [0,T), i.e., u, > —c, where ¢
is a positive constant, then we can apply Gronwall’s inequality to Eq. (3:38]) and have

Iml7 < Imol 7 exp((7e — 22)¢).

This shows that |u|,s does not blow up in finite time. The converse direction follows
from Sobolev’s embedding theorem. This completes the proof of our assertion. O

Remark 3.41. The previous theorem shows that if u, stays bounded from below, then u
also persists in H?3. Thus Theorem B.40] provides us with a sufficient criterion for global
existence: The boundedness of u, from below implies T'= oo in Theorem [3.38

We already know that the mean p(u) of a solution u(t, -) of the uDP equation is conserved,
ie., p(ug) = p(u), cf. Remark 341 We now show that the mean u(u) of a solution of the
weakly dissipative uDP equation decreases exponentially as ¢ increases from zero. More
precisely, we prove that the damping constant is equal to the dissipation parameter .

Lemma 3.42. Let ug € H3(S) and let u(t,x) be the solution of ([B.26) obtained in The-
orem [3.38. Then the mean of u satisfies

p(u) = p(ug)e™

for t >0 in the existence interval of u. In particular, if p(ug) = 0, then the mean of the
solution u is conserved.

Proof. We apply u to (327) and change the order of time derivative and integration to
obtain

%u(u) = p (—uug — 3p(u)0y A" u — Au)

=—p (%&c (u2)) = 3p(u)p (0. A ) — Au(u),

as long as the solution u(t,-) € H3(S) exists. Hence

< () = ~A(u)

from which the lemma follows. a

With the help of Lemma [3.42] we are able to establish the following blow-up scenario. It
is important to notice that our result shows the blow-up of smooth initial data. A similar
blow-up setting for the uDP equation is discussed in [99].

Theorem 3.43. Assume that 0 # ug € C°(S) has zero mean and that there is y € S
satisfying
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0<1+ < 1. (3.36)

oz (y)

Let u be the corresponding solution of [B.20]). Then there is 0 < 7 < 0o such that |u.(t)] .,
blows up as t — 7 from below. In particular, the solution u blows up in the H3-norm in
finite time.

Proof. Differentiating Eq. (3.27) with respect to x and the identity 024~ = p — 1 yield
Upy + Uy + U2 + Mgy = 3p(u)(u — p(u)).

By Lemma [3:42] it follows that the right-hand side equals zero. Again, we denote by ¢
the local flow of the time-dependent vector field u(t,-), i.e., ¢r = u o . We set

W= —— = Ug O (p
P
and with
_ 2
Sattz — [(utx + Ul gy + ux) o @]SOI
we obtain )
wy = Ptz Px —2 (Sﬁtx) _ (um + uum) o
Pz
and hence

we + w? + Aw = 0.

With A := —X < 0, we finally arrive at the logistic equation
wy = w(Ad —w)

and standard ODE techniques show that the solution is given by
B A
= - —.

1 =+ (m — 1) e At

Recall that w(0) = ug,(z). By our assumption on wug, we can find a point y € S satisfying

B30]). Setting
L In <1 + A >
T=—= — ),
A 'U/Ox(y)

it follows that the solution must blow up in the H3-norm. a

w(t)

Remark 3.44. Condition (3:306) means that we can find y € S such that

1. oz (y) < 0 and
2. |uoz(y)| > A

Since we assume p(ug) = 0, it follows that wo must change sign. Since ug € C*>(S), uo
has to change sign at least twice and so it is always possible to find y € S satisfying the
first condition. Our second condition says that the slope of ug must exceed A in order to
obtain blow-up: The larger the dissipation given by A, the larger must |ug.| be locally
in order to obtain a blow-up solution. So ([B36]) is a non-trivial condition for ug in our
blow-up setting.
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The following lemma is similar to Lemma 2.2. in [46]. Furthermore, we see that as A — 0,
we obtain conservation of the quantity (m o )3, which is explained for the DP and the
uDP equation in [4T] [@9].

Lemma 3.45. Let ug € H3(S) and let T > 0 be the mazimal existence time of the
corresponding solution u(t,x) according to Theorem [3.38. Let ¢ be the associated local
flow according to Lemma[Z38. Then we have

m(t, o (t, 2))¢2 (£ 2) = mo(w)e .

Proof. An easy calculation shows that the function
0,T) =R, t eMm(t, ot )3 (t,z)
is constant. Using ¢(0) = id and ¢, (0) = 1, we are done. O

Finally, we come to the following global well-posedness result. Note that our assumptions
on the initial condition ug are quite similar to the ones in Theorem 5.4. in [99)].

Theorem 3.46. Assume that ug € H3(S) has positive mean and satisfies the condi-
tion Aug > 0. Then the Cauchy problem (B26) has a unique global solution u in
C([0,00), H*(8)) N C*([0, 00), H(S)).

Proof. Let u(t,-) € H3(S), t € [0,T), denote the solution of (3.26]) obtained in The-
orem According to Theorem [340, we only have to show that [u.(t,-)|, stays
bounded as t approaches T from below. Note that, for any periodic function w, differen-
tiating formula ([B3.3]) yields

10:w], < ClAw]y,

where C' is a positive constant. Now Lemma [3.45] and the assumption Aug > 0 imply
that
lAuly, = p(Au).

Using Lemma [3.42] we obtain the estimate
1
10su(t, ) < C [ Auds = Cutu) < Cpuo) < .
0

from which the indefinite persistence of the solution u follows. O

Remark 3.47. 1t is easy to see that Theorem also holds if p(up) < 0 and Aug < 0.

3.5 A one-parameter family of uCH equations

In Chap. 2] we discussed a one-parameter family of CH equations coming up from the
variational principle for the inner product induced by the operator 1 — 9?2 which is con-
vexly combined of the canonical inner products on Ly and H' respectively. We computed
the Christoffel map and sectional curvatures and determined the variation of geometric
quantities with respect to the parameter A € [0,1]. Here, we want to extend this dis-
cussion to the novel family of equations which is obtained from the CH equation if we
replace the inertia operator by A = u — \9?; precisely, we discuss the family
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() + 2ugp(u) = Mugzs + Wlzzs + 2ugtee), A € (0,1]. (3.37)

The inner product defined by A is the bilinear form

s g)n = B(F)nlg) + A /S Fo(2)g0(2) da

which can be defined on any tangent space of the circle diffeomorphisms by right invari-
ance. For A = 1 we obtain the uCH equation which is mentioned in [99]. Observe that,
for A =0, Eq. B31) does not become the so-called p-Burgers (uB) equation, which one
might expect in analogy to what we get from the family 21) for A = 0; as explained in
[99], the uB reads as utyy + 3Uzlsze + Uz, = 0. Note that, for any 0 < A < 1 we have
that u(uy) = 0 if u is sufficiently regular since Eq. (837) is equivalent to the evolution
equation

A
g + uugy + A1, (Qu(u)u + 5ui> =0,

cf. Remark [34] The Christoffel operator I' = I'yq for Eq. (837 is

I(u,v) =—-A"1 <u(u)v + p(v)u + %uxvgg)x : (3.38)

since

g + uty = — A" (umg + 2muy — A(uuyg))
= — A (= Mutigrr + 2((1) — Miga )tz + 3NUzUpy + ALz
=-A"! <2u(u)u + %ui)
= I'(u,u).

Let I, be the associated right-invariant Christoffel map on Diff”(S). In the following
proposition, we show that 4CH possesses a unique geodesic flow ¢ € Diff"(S) for n > 2.
The pCH equation thus reads as I, (¢4, ¢r) = @4 in local coordinates (see Remark 2.3)).

Proposition 3.48. The pair (Diff"(S), (-, '>u7>\)’ n > 2, is a Riemannian manifold. The
bilinear map V defined on Vect™ (Diff"(S)) via (26) with the Christoffel operator (3.38))
depends smoothly on ¢ and is a Riemannian covariant derivative on Diff" (S); in partic-
ular it is compatible with the right-invariant metric (-,-) = (-, '>u7>\'

Proof. Clearly, (-, ) .. is a positive definite and symmetric bilinear from on C™(S). That
the map

9(2)(X,Y) = /S (X 0pb) (1= A2) (V 0 1) da

is smooth for any X,Y € T, Diff"(S) ~ C"(S) follows from Proposition 2] and

[ o™= 04 de = (XY o) = (XY 20).
Obviously, V satisfies the properties 1.-3. in Definition That V depends smoothly
on ¢ follows from the smoothness of ¢ — I,; this can be proved as explained in Propo-
sition [3.24] with the aid of Lemma B.23] cf. also Remark We finally show the
compatibility of V with the right-invariant metric on Diff"(S) induced by the operator
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A. Let X, Y, Z be vector fields on Diff*(S) and define the functions u, v and w by
X(p)opt=u, Y(p)op l=v, Z(p)op ' =uw,

for v € Diff"(S). Using Eq. ([29), we have

(X (Y, 2))() = /S (DY (¢) - X(0)) 0 9! — vyu] Aw da

+ [ [(0260) X (@) 0! = wau] Ava
S

and

(VxY,Z), = ((DY (p) - X(p)) o p~" = I'(v,u), Aw)

_ / (DY (¢) - X () 0 9~ '] Awdz

S

A
—|—/ (u(u)vm + p(v)ug, + §(umvm)m> wdz.
S
Using integration by parts, it is now easy to see that

Note that we also have a well-defined curvature tensor R for pCH which is given by
R(X,Y)Z =VxVyZ —VyVxZ —Vxy|Z.

Expressing the sectional curvature in terms of the Christoffel map I" we obtain an addi-
tional term compared to the result in Theorem 24] cf. [79] for the case A = 1.

Theorem 3.49. The sectional curvature S(u,v) = (R(u,v)v,u) for the family B31) is
given by

S(0.) = (1 (w,0). D)) = (Do), I(0,0)) = 3p(us0)?
= uw? (02 +162)) (0 () + i) )
(0, — w0 )0) + ), — v )
~2uwuv) ( Futun) + puse)

A A
—hava)? + () p(0?) = Bu(uo)?,

for any u,v € TigDiff" (S).
Proof. Replacing 1— 9?2 by p— A\d? the same calculations as in the proof of Theorem 2.4]
show that
<R(u7 U)’U, u> = <F(u7 U)v F(uv U)> - <F(7.L, u)a F(Uv U)>
+ (—I'(vgv,u) — I'(v, uzv) + 21 (vpu,v), u)
— (uzv, I'(v,u)) + (uty, I'(v,v)) .
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Now, using ([B38)), it is easy to derive that the second and third row terms are equal to
—3u(uzv)?. Substituting the Christoffel symbol in (I"(u,v), I'(u,v)) — (I'(u,u), ['(v,v))
we see that S(u,v) equals

- / (u(u)v + p(v)u+ %uxvx) D, A0, (u(u)v + p(v)u + %uxvx> dx
s
Ao -1 A g 2
+ 2p(u)u + 5l 0: A7 0y | 2p(v)v + 50 dz — 3p(ugv)”.
s

Since 9, A710, = 9?47! = %(—1 + p) our theorem follows by simplifying the above
expression. a

To deduce an expression for the sectional curvature of a plane spanned by two vectors u
and v, we may assume, after taking linear combinations, that v and v are orthonormal
with respect to (-,-), \ and that v has zero mean, i.e.,

With these assumptions, the previous theorem yields

1

S(u,v) = () (p(v?) + 1) + plu)p((vus = uwvp)ve) + iu(%@) = 3u(ugv)®. (3.39)

If u also has zero mean and A is large enough, we obtain the following positivity result
for the sectional curvature.

Theorem 3.50. For any orthonormal vectors u,v € TigDiff" (S) with p(u) = u(v) = 0,
the sectional curvature S(u,v) of the plane spanned by u and v satisfies

1 1 3
S(u,v) = oo 3u(ugv)? > o (1 - W) .

In particular, the sectional curvature S(u,v) is strictly positive for all X € (3/72,1].

Proof. Letting p(u) = 0 in Eq. (839) we find the expression stated in the theorem. Since
v has zero mean, we further deduce that

A 1
2 2 2, 0,2 2 2 2
A p(uzv)® < Mp(ug)p(v®) = Ap(v?) < 4—7T2u(vx) =2

For the latter estimate, we have used that v can be written as a Fourier series v =
>_kez\ {0} vge®™**_ This achieves

p(v3) = (vg, Vo) p,(5) = Z |vg 4w k? > 4 Z |og|? = 4n® (V,0) y8) = 4 p(v?).
k0 k£0

O
In [79], the authors discuss the uHS equation under geometric aspects and obtain that

the sectional curvature, for u and v satisfying the assumptions of the above theorem, is
always positive. Furthermore, a result comparable to the following one is established.

Theorem 3.51. Let v € TiqDiff"(S) be orthonormal to the constant function 1. Then
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S(1,v) = %u(vQ) > 0.

Proof. This follows from Eq. (339) by inserting u = 1. O

Note that the functions
2
Vg = \/T_ sinkz, k€ 2nZ\{0},
satisfy the assumptions of Theorem [B.51] and

S(1,vg) = =0, k— oo

1
AE2
In conclusion, let us decompose the tangent space at the identity T}¢Diff*(S) = U ¢V in
such a way that U consists of the zero mean functions on S and V ~ R are the constants
so that v = @ + p(u) and p(a) = 0 for any u € TigDiff"(S). Theorem shows that,
for A > 3/m2, the sectional curvature for any plane contained in (i.e., parallel to) the
subspace U is strictly positive. Theorem [B.51] establishes that the sectional curvature
is also positive on the planes perpendicular to U, i.e., the planes containing constant
functions, which constitute V.

To obtain formulas describing the variation with respect to A of the Christoffel map
and the sectional curvature for the 4CH we will need the A-derivative of A~!.

Lemma 3.52. The operator A = j1—\d2: C*(S) — C>(S), X € (0,1], is invertible and
its inverse is

(W= 'f=Gxf, G(x):% (x2—|x|+%>+1.

In particular, the map X\ — NG is differentiable for all j € Ng and we have the relation
D, (11— A02)~1] = 0.
Proof. This follows from AG = 4. O

Remark 3.53. The kernel G can be computed as in the case A = 1 (see Sect. B]). For
A = 1 we obtain the formula presented in ([3.4) for the Green’s function of u — §2.

It is now easy to derive the formula
A 1
I (u,v) = —(O\G) * Oy | p(u)v + p(v)u + 5 UaVa | — §G * (Ug Vs )z

From this, we get immediately a result for 0xS(u,v) by applying Theorem 349 We
leave it to the reader to write down the explicit formulae which follow from elementary
calculations.

Ezample 3.54. For the family (837) we computed the sectional curvature S(u,v) for
orthonormal vectors u and v with zero mean in Theorem [3.501 We have

1

3)\S(u,v) = _4—A2’

i.e., the A-derivative of S(u,v) is strictly negative.
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Ezample 3.55. For the orthonormal vectors 1 and v we found the sectional curvature
S(u,v) in Theorem B5T] We have

1
OAS(1,0) = — 5 (0?);

in particular, the A-derivative of the strictly positive quantity S(1,v) is strictly negative.



Chapter 4

Two-component generalizations of the
periodic b-equation and its p-variant

The CH equation ([TI9]) possesses an integrable two-component extension, denoted as
2CH, [13}, 42} [49] [86], which involves both fluid density and momentum. What makes the
2CH particularly interesting is that it possesses peakon and multi-kink solutions as well
as a bi-Hamiltonian structure and a Lax pair formulation. The basic idea of generalizing
the CH equation was to include an additional function in the Lax pair and to derive
some properties of the new equation from the generalized Lax pair representation, [I15].
A first geometric approach to two-component variants of CH and DP is shown in [54] [55].

In [90, 116] the authors show that the HS equation has a supersymmetric two-
component generalization, called 2HS, and discuss the geometric interpretation of the
2HS as an Euler equation on the superconformal algebra of contact vector fields on a cer-
tain supercircle. Simple examples of explicit solutions and a description of the bounded
travelling wave solutions of 2HS are given in [90].

In this chapter it is our goal to extend the results from Sect. B3] to the two-component
CH and HS as well as a two-component version of the DP introduced in [I15] where the
author generalizes a Hamiltonian operator of the DP to a suitable 2 x 2-matrix operator.
We also consider the corresponding p-variants as introduced in Chap.[Bl To establish the
geometric setting we first need a brief introduction to semidirect products of Lie groups,
which proved to be suitable configuration spaces. To obtain the existence of a geodesic
flow and a sectional curvature for 2CH we show that 2CH allows for a smooth Rieman-
nian structure compatible with a smooth affine connection. From this, we will conclude
local well-posedness for the geodesic equation (and later for the original equation) in
different function spaces: the H*-category, the C™-category and finally the smooth cate-
gory (which again requires additional technical effort). Finally, we present some explicit
calculations of the curvature of 2CH and obtain subspaces of positive sectional curva-
ture. To round everything off, we compare the 2CH equation to a rotating rigid body
and the one-component CH in the context of Arnold’s geometric framework. After that
we discuss two-component extensions of the DP and the HS and some p-equations under
similar aspects.

Some of the results presented in this chapter have been published by the author,
cf. [40].

81
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4.1 Generalities on semidirect products

As explained in Chap. [l the geometric analysis for rigid bodies and fluids is based on
the same mathematical principles and uses the same analytical tools like Lagrangian or
Hamiltonian formulations or Lie group-techniques.

As a motivation for the issues of this chapter, let us consider a three-dimensional
rigid body having three translational degrees of freedom modelled by v € R? and with
rotations parametrized by R € SO(3). The configuration space is the Lie group SFE(3) ~
SO(3) x R3, the special Euclidean group, of 4 x 4-matrices of the form

E(R,v) = (1371’)

Rwv w\ [ Rw+vwv

01 1) 1
so that E(R,v) corresponds to rotation by R followed by translation by v, cf. [62]. The
group operation

For any w € R3,

*: SE(3) x SE(3) — SE(3), (R1,v1)* (Ra,v2) = (R1Ra,v1 + Riva)

can be generalized naturally to arbitrary Lie groups, leading to the notion of a semidirect
product of a Lie group G with a vector space V. Assuming that G acts on the left on V'
with the left-action denoted by (g,v) — gv, the operation

(91,v1)(g2,v2) = (9192, v1 + g1v2)

defines a Lie group structure on G x V; we denote this Lie group by GOV. If G acts on
the right on V', one defines

(91,v1)(g2,v2) = (9192, v2 + v192)

similarly. It is easy to see that (e, 0) is the neutral element, where e denotes the neutral
element of G, and that (g,v) has the inverse (¢~!, —vg~!). While for rigid bodies, left-
invariant formulations lead to the correct equations of motion, the mathematical analysis
of fluid motion is always based on right actions and right invariance. That is why we will
use the second definition stated above henceforth in this chapter. To obtain the Lie
bracket on the Lie algebra g®V, we consider the inner automorphism

Ig.0)(hyw) = (g,v)(h,w)(g,v) " = (ghg™", —vg™" + (w +vh)g™").

Writing v for the induced infinitesimal action of g on V, i.e., the map

d
V x g Va (’U7§) = ’Ug = avg(t) )
t=0

g(t) being a curve in G starting from e in the direction of £, we obtain
Ad(g0) (&, w) = (Adgé, (w +vE)g ™),

ad(y ) (§, w) = (ad,&, v§ — wn)
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and hence

[(€1,01), (&2,v2)] = ad (g, 0, (§1,v1) = ([€1, &2, v261 — v162).

In [61], the authors explain the main differences when working with semidirect products
in case of right and left actions.

From now on, we consider the semidirect product of the orientation-preserving diffeo-
morphisms Diff(S) with a space of scalar functions F(S); the exact regularity assumptions
will be made precise in the following. We will use the notation G and g for the Lie group
Diff(S)®F(S) and its Lie algebra Vect(S)®F(S). The group product in G is defined by

(¢1, [1)(02, f2) = (P10 2, f2 + f1p2)

where o denotes the group product in Diff(S) (i.e., composition) and f¢ = foy is a
right action of Diff(S) on F(S). The neutral element of G is (id,0) and (¢, f) has the
inverse (¢p~%, —f o p~1). The above calculations show that

Ad, ) (u, p) = (Adyu, (fou+p) o),

ad(v,f) (’U,, p) = (advu, fﬂfu - va)
and
[(u1,uz), (v1,v2)] = ([ur, v1], vagur — uzzv1),
where [uq,v1] = v1,u1 — 1,01 is the Lie bracket induced by right-invariant vector fields
on Diff(S).
Several different regularity assumptions can be imposed on the elements of G. The
structure of the two-component equations under consideration suggests that the density

variable p should be allowed to have one spatial derivative less than the velocity u. This
suggests the following choice for G:

H*G = H*Diff(S)®H*1(S), (4.1)

where H°Diff(S) denotes the group of orientation-preserving diffeomorphisms of S of
Sobolev class H®. We will assume that s > 5/2. In this case, H*Diff(S) is a Hilbert
manifold and a topological group and the composition map

(¢, f) = fop: H'Difi(S) x H*7'(S) — H*7'(S)

is continuous, cf. [37]. Thus, H*G is a topological group and a smooth manifold modelled
on the Hilbert space H*(S) x H*~(S).
Another natural choice for G is

C"G = Diff"(S)®C"1(S); (4.2)

recall that Diff"(S) is the set of orientation-preserving diffeomorphisms of S of class C™.
We will assume that n > 2. In this case, C"G is a topological group and a smooth
manifold modelled on the Banach space C™(S) x C"~1(S). Note that H*G and C"G are
not Lie groups, since left multiplication is only continuous and not smooth.

Finally, we may choose G as

%G = Diff* (S)OC=(S), (4.3)
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with Diff*°(S) the smooth orientation-preserving diffeomorphisms of S. This is a Lie group
(the multiplication and inverse maps are smooth) and a Fréchet manifold modelled on
C>®(S) x C*°(8). In contrast to H*G and C™G, it is not a Banach manifold.

The three choices [@I)-(E3)) for G are all of interest due to their different advantages.
We will first develop the theory for H°G and then consider C"G and C'*°G. We refer to
[61] [63] for further information on geodesic flows on semidirect products.

4.2 The 2CH equation as a metric Euler equation

We now introduce the generalizations of the CH equation and the DP equation which
we want to study in this and in the following section; see [115] where the author also
considers an interacting system of equations and works out Hamiltonian structures.

Let t > 0 and = € S. By a solution of the periodic 2-component Camassa-Holm
equation with initial data (ug, po) we mean a function (u(t, x), p(¢, x)) which satisfies

{mt = —muu — 2Muy — PPy,

05 = —(p)e; (“.4)

for ¢ > 0, and (u(0,z), p(0,2)) = (uog, po), where m = u — u,,. Similarly, we say

that (u, p) solves the 2DP equation with initial data (ug, po) if

{ Mg = —Mgt — 3MUg — Py + 20pg, (@5)
pt = —2pUz — P,

for t > 0, and (u(0, z), p(0,x)) = (uo, pPo)-

Clearly, [@4) and [@3H) reduce to (LI9) and (L20) for p = 0. It is our first aim to
study Eq. (£4) under geometric aspects as explained in Sect. We show that Eq. (£4)

is a reexpression of a geodesic flow on H*G. In a preliminary step we find the Christoffel
operator I, yy for ([@4); this is a smooth bilinear map I, sy which defines a smooth
connection V on H*G. In addition we consider the right-invariant metric (-,-), ;) on
H*G equal to the H'-metric for the first plus the Lo-metric for the second component
at (id, 0). Then we show that the connection V is compatible with the metric (-,-), ¢,
and obtain the existence and uniqueness of a geodesic flow. The scenario is similar for
C™@G and in both cases, we establish local well-posedness for the original equation from
the geometric theory.

The next step is to prove that, for smooth initial data in the geometric picture, the
2CH equation possesses a smooth short-time solution. As a corollary, we see that Eq. (£4])
is well-posed in the smooth category.

Throughout the whole discussion, we deal with several geometric quantities which we
relate to the corresponding quantities for a rotating rigid body in the end (cf. Sect.
and [81] for a discussion of the CH equation in this context). This section also deals with
the sectional curvature of H°G associated with the 2CH equation.



4.2 The 2CH equation as a metric Euler equation 85

4.2.1 Geometric aspects of the 2CH equation

The CH equation is the Euler-Lagrange equation for the Lagrangian £: TDiff>*(S) — R
defined by L(g,9) = %||g(t)||§(t), where [-], denotes the H! right-invariant metric on
Diff**(S) and g¢(¢) C Diff>*(S) is a smooth curve. Precisely, the CH is equivalent to

d oL oL _
Tiou = g wlt) = Doy Ryy-19(1),

where ad” is the adjoint of ad with respect to the H' inner product and u is the Eulerian
velocity of the curve g(¢). Similarly, as explained in [62] 63], Eq. (£4) comes up from the
variational principle

b 1 1
5/ L(u, p)dt =0, E(u,p):§/u(1—8§)udx+§/p2dx,

in the sense that the 2CH is equivalent to the Euler-Lagrange equations

i ()= (1)
dt 5_p 0 —U 5_p
In terms of the Eulerian velocity (u,p), Eq. (£4]) can be regarded as an equation on
the Lie algebra T{;q,0)C°°G. In this section, it is our aim to write ([£4]) as an evolution
equation on the semidirect product C*°G and furthermore to show that the resulting
equation reexpresses a geodesic flow. We begin to develop the geometric theory for the
configuration space H*G and come to the following key observation which gets us started:
To any tangent vector v € T,H°G, p € H°G, we associate an element of the Lie algebra
g~ H5(S) x H*~'(S) by applying the differential of the right shift R,-:: HG — H*G
sending any ¢ € H*G to gp~!. Let us write p = (¢, f) and v = (v1,v2). To compute
DyR,,-1v explicitly, we choose a curve y(t) = (71(t),72(t)) C H*G satisfying v(0) = p
and 7/(0) = v. Then

d
DpRp—lv = aRp—l’y(t)

t=0
d _ _
= L)~ op™)
t=0
d _ _ _
= a(%(t)osﬂ L—fop t4ma(t)op™)
t=0
=(vop Luop )
zvow_l.

Note that this result is similar to what we obtained in the one-component case, where
Ry: ¢ — o1 is a linear map. For a curve (¢(t), f(t)) in H*G, we write

(u,p) = (pro@™! frop™) (4.6)

for the Eulerian velocity, i.e., we have p; = uop and f; = poy. Next, we define a bilinear
operator Iiq,0y: g X g — g by
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(X, Y1) — %A‘l(Xng)x>

Tia,0)(X,Y) = ( —3(X12Y2 + Y1, X5) o

for all X = (X1, X5),Y = (Y7,Ys) € g. Here, A is the operator 1 — 92 and
0 -1 1
Fid(uvv) =—-A""0, <uv + guxvz>

is the Christoffel operator for the CH equation (see Sect. [Z2]). For vector fields X,Y on
H*G, we define

Lo n(X,Y) = Tia o) (X (0, fow LY (o, fog M) o

Differentiating Eq. (£6) with respect to t and using ([@4]) and ([@0]) shows that

(5) = (Larmee)
_ (—[AI(U(AU)x + 2(Au)u, — A(uug))] o @ — [A™Hppa)] 0 @)

—(puz) o ¢
_ (—[A‘l(u2 + 5ul)el oo — [A (ppa)] 0 w)
—(puz) 0w
= F(q:,f)((@ta ft), (pe, ft))- (4.8)

Let us define locally an affine connection on H*G by setting

VxY(p, f)=DY(p, ) X(p, f) = Lo,y (Y (0, f), X (@, f))- (4.9)

We also define an inner product on g,

(X,Y) a,0) = (X1, Y1) gy + (X2, Ya) 6 5

and obtain a right-invariant inner product on H*G by setting

<Xa Y>(4p7f) = <X(90a f) °© 5071, Y(@a f) ° 9071>(id70) ) (410)

where X, Y are vector fields on H°G. In the following, we will use the short hand notation
() a,0) = (7). First we prove that the right-invariant metric (£I0) defines indeed a
Riemannian metric on H*G, s > 5/2. Since H*G is only a topological group, it is not a
priori clear that p — (-, ->p is smooth.

Proposition 4.1. Let s > 5/2. Let H’G = H*Diff(S)\®H*"(S) and let I' be the
Christoffel map defined in [@T). Then I' defines a smooth spray on H*G, i.e., the map

(0, f) = L py: H'G — L2, (H*(S) x H*7Y(S); H¥(S) x H*(S)) (4.11)

is smooth. Moreover, the metric (-,-) defined by (@IQ) is a smooth (weak) Riemannian
metric on H*G, i.e., the map

(0, f) = () opy s HYG = L2 (T, ) H°G; R) (4.12)

is a smooth section of the bundle L2, (TH*G;R). Finally, the connection V in ([E3) is

Sym
a Riemannian covariant derivative in the sense of Definition [1-24)
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Proof. In order to establish smoothness of [I1]), it is sufficient to show that the following
map is smooth:

(¢, ), w) = L, py(w,w): H'G x [H*(S) x H*71(S)] — H*(S) x H*7\(S),
where w = (w1, w2) € T(y, ) H*G ~ H*(S) x H*~!(S) and

Teontow) = ( —(w1 09T )zwy 0 7

We will show that the term —3(A710,(w3 o 1)) o ¢ makes a smooth contribution to
I'; the other terms can be treated by similar argumentsZ. Consider the map

P: H*Diff(S) x H*"X(S) — H*Diff(S) x H*(S)
defined by
Pp,w) = (¢, (A7 0p(w? 0 p™1)) 0 ) .

We write P as the composition P = A~! o P, o P, where the maps

Py: H*Diff(S) x H*~1(S) — H*Diff(S) x H*~(S),

Py: H*Diff(S) x H*~}(S) — H*Diff(S) x H*"%(S),

A:  H°Diff(S) x H*(S) — H°Diff(S) x H*"%(S)
are defined by

Pi(p,w) = (p,w?),

Palip,w) = (0, (wo o 1)s 0 ) = (go, ij—) 7

~ _ w w.
A, w) = (¢, (A(wop ")) o) = (so,w - ;2’” + ’;ﬁ“) :
xr xr

The maps Py, P>, and A are smooth since H 5(S) is a Banach algebra under pointwise
multiplication for s > 1/2. To show that A~! is smooth, we compute

~ id 0
DA, w) = ( «id - 502 *;f;a) ~
This is, for each (p,w) € H*Diff(S) x H*(S), a bijective bounded linear map H*(S) x
H*(S) — H*(S) x H*~%(S). The open mapping theorem implies that its inverse is also
bounded. The inverse mapping theorem now implies that A~!, and hence also P, is a
smooth map.
We next establish the smoothness of ([.I2]). It is sufficient to show that the map

g: H*G x [H*(S) x H*7'(S)] = R,

defined by

1 The smoothness of ¢ — Fg has already been established for the one-componet CH in [94].



88 4 Two-component generalizations of the periodic b-equation and its p-variant

o((o. fow) = /S (wr 0 o™ ) Afws 0 ) da + /S (wn 0o~ 1)? dz

is smooth. The change of variables y = ¢~ !(z) yields

2
9((¢, f),w) = /S (wf%c + U:;“’ +w§s0x) dy,
and written in this form the smoothness of g is clear. Let us check the properties 1.—4.
in Definition for ([A3). While 1.-3. are almost trivial, the check of 4. is a lengthy
but straightforward computation. By our local definition (@3), X (¢, f) = 0 implies
(VxY)(p, f) = 0. That V is torsion-free is an immediate consequence of the symmetry
of I' and the fact that the commutator of two vector fields is defined locally by

(X, Y](p, ) = DY (e, f) - X(p, f) = DX(#, f) - Y (¢, f)-

Another direct consequence of our definition is Vx (hY) = X (h)Y +hVxY for all vector
fields X, Y and functions h on H*G. It remains to check, that V is compatible with the
right-invariant metric (-,-) defined in (@I0), i.e.,

X<YaZ> = <VXYaZ>+ <Y7VXZ>

for all vector fields X,Y,Z on H*G. Let us write u; = X;(p, f) o p~! for i = 1,2 and
v = Yi(o, f) oo™t w; = Zi(p, f) o ¢! analogously. Let v(t) C H*G be a curve with
~v(0) = (i, f) and 7/(0) = X (¢, f). On the one hand,

(X (V. 2)(p. 1) = S (Y (D), Z(1(0))

d

= S (M) o, 26 E) 07

t=0

t=0

+ S BOM) 0w 200 o),

)
t=0

and a straightforward computation yields

% <Y2('Y(t)) o 71_1’ Z2(7(t)) © 71_1>L2 t=0

= <DY’2(90a f) : X(SOa f) © 50_1 - U2zu1;w2>L2
+(DZa(p, f) - X(p. f) o™ —wagur,v2), -

On the other hand,
(VxY,Z) o 5y = (DYi(p, f) - X(p, fl o™t = To(Y1, X1) o9~ L)

1
+ §(U2zu2 + U2z V2), W1
Lo

1
+ <DY2(507 f) : X(@a f) © 5071 + 5(")1:8”2 + lev2)7w2>
L2

and similarly
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<Y5VXZ>(<,@’f) = <Dzl(307f) X((,O, f) 030_1 - Fg(zlaxl) OQO_17’U1>H1

1
+ §(w2xu2 + U2z ws), 1
Lo

1
+ <DZz(s0, )X, o™ + = (wizuz + uipws), v2> :
Lo

2

The calculations in [94] for the CH equation show that

RO T BO0) o5 | =

+(DYi(p, f)- X(p, f) o™t = T2(Y1,X1) 0 w)
+(DZi(o, f)- X(o, [ o™ =TY(Z1, X1) o~ o1) 1y s

so that it remains to check that

<D}6(507 f) ! X(SOa f) © 5071 — V22 U1, w2>L2
+(DZs(p, f) - X(p, [lop™" = w2xu1702>L2

1
= §(U2zu2 + U2z V2), Wy
Lo
1
+ <DY2(807 R X(% f)o <P_1 + §(leu2 + U1,v2), w2>
L2

1
+ 5(11)295“2 + Ugzwa), V1
Lo

1
+ <DZ2(<Pa ) X(p, flop '+ §(w1xu2 + urzwa), U2>
L2

which is equivalent to

1 1 1
/ <U1U2xw2 + u1v2wo, + §U202xw1 + §U2xv2w1 + §u2U1w2x +
S

1 1 1 1 1
F U2z V1 W2 + UV W2 + U1 V2W2 + —U2V2Wig + S UIV2ws | dz = 0.

2 2 2 2 2

Since the left-hand side is equal to

1 1
/ (5896(1@11111)2) + Eax(uQvgwl) + &E(ulvgwg)) dz=0
S

we are done.

89

O

Remark 4.2. In general, the Christoffel map is only defined locally. In Proposition [£T],

we implicitly use the natural smooth identification

THG ~ H*G x (H*(S) x H*"(S))

(4.13)

and view I' as a map from H*G to the space of bilinear symmetric maps from H*(S) x
H*~L(S) to itself. Similarly, a vector field X on H*G is viewed as a map H*G — H*(S) x

H*~Y(S). The identification (@I3]), for the non-trivial part, is given in Sect. B.1.4l
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Since the existence of a smooth connection on a Banach manifold immediately yields the
local existence and uniqueness of a geodesic flow (see [88]), Proposition ] implies the
following result.

Theorem 4.3. Let s > 5/2. Then there exists an open interval J centered at 0 and
an open neighborhood U of (0,0) € H*(S) x H*~Y(S) such that for each (ug,po) € U
there exists a unique solution (¢, f) € C*(J,H*G) of @) satisfying (¢(0), f(0)) =
(id,0) and (¢+(0), f+(0)) = (uo, po). Furthermore, the solution depends smoothly on the
ingtial data in the sense that the local flow @: J x U — H*G defined by D(t,ug, po) =

(¢(t;uo, po), f(t; w0, po)) is a smooth map.
We write the Cauchy problem for 2CH in the form

u Fuug, =—A"19, (u2 + %ui + %pQ),
pt+ups = — Pz, (4.14)
(u(0)7p(0)) = (UOapO)'

This formulation of 2CH is suitable for the formulation of weak solutions. It follows from
Theorem A3 that the 2CH equation is locally well-posed in H*(S) x H*~1(S) for s > 5/2.

Corollary 4.4. Suppose s > 5/2. Then for any (uo, po) € H*(S) x H*~(S) there exists
an open interval J centered at 0 and a unique solution

(u,p) € C(J, H*(S) x H*"XS)) N CH(J, H*~(S) x H*7%(S)) (4.15)
of the Cauchy problem ([EI4)) which depends continuously on the initial data (uo, po)-

Proof. Theorem [£3] yields the existence of a smooth curve (p(t), f(¢)) € H*G such that
(0(0), £(0)) = (id,0) and (¢4(0), £i(0)) = (o, po). Define (u(z), p()) by equation ().
Then, (u, p) has the regularity specified in (£I5) and depends continuously on (ug, po)-
By right-invariance of I, the geodesic equation (£8)) can be written as

(ut +uux) = Tia)((u, p), (u, p)).

Pt + UPy
This is equation (Z14]). O

Remark 4.5. The well-posedness result of Corollary [£4] can also be proved using Kato’s
semigroup approach (see [42] for the case on the line).

The results of the previous discussion hold with the obvious changes also in the C™-
category. Assuming n > 2, the proofs are the same with H*G replaced with C"G. In
particular, I" defines a smooth spray on C"G = Diff"(S)®C"~1(S) compatible with the
metric defined in (ZI0). For the sake of brevity, we only state the analog of Theorem 3]

Theorem 4.6. Let n > 2. Then there exists an open interval J centered at 0 and an
open neighborhood U of (0,0) € C™(S) x C"~L(S) such that for each (ug,po) € U there
exists a unique solution (p, f) € C*(J,C"G) of @Y satisfying (¢(0), f(0)) = (id, 0)
and (¢(0), f:(0)) = (uo, po). Furthermore, the solution depends smoothly on the ini-
tial data in the sense that the local flow ®: J x U — C"G defined by P(t,ug, po) =
(p(t; uo, po), f(t;uo, po)) is a smooth map.
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4.2.2 Local well-posedness for smooth initial data

We now want to extend the results of the previous subsection to the space C*°G =
C>Diff(S)®C>(S). Since C*°G is not a Banach manifold, the local existence and unique-
ness theorems for differential equations fail. We will therefore take an indirect approach
and start with the local geodesic flows on H*G, s > 5/2. We will first show that the
domains of definition of these flows do not shrink to zero as s — oo. By considering
the limit as s — oo, the existence of a smooth local geodesic flow on C*°G will then
be established. We will use a blow-up result for the 2CH equation which is proved in
[42] for the 2CH on the real axis; observe that for the non-periodic 2CH, the term pp,,
has to be replaced by the term —pp, in ([@4]). The following conservation law for the
two-component CH equation will be essential for our purposes.

Lemma 4.7. Let (u,p) be a solution of (@A) with the geodesic flow (v, f). Then, for
any time t in the existence interval of (u, p), we have

d
7 Lme ©)ps 4+ (po @) fapa] =0
and

%[(p 0 )pe] = 0.

Proof. We have

d

3 [me ©)p2] = [mu o o + (Mma 0 ©)i]p2 + (M 0 ©) 204010
= [(mu + mgu + 2mug) o ¢lp2
= [~ (pps) © ]2

and d
(o)l = [(pr + ups) o ples +[(pua) 0 ¢los = 0.
Since
Jre = 0x(po @) = (pz 0 @)pu
the lemma follows. O

Remark 4.8. Since i, = (uz © ©)p, and ¢, (0) =1 we have

pu(t) = exp </Ot(ux °®)(s) d8> :

If there exists M > 0 such that u,(t,z) > —M for all (t,x) € [0,T) xS, then [1/¢.|, <
eMT  Hence we get from Lemma A7 that

P (1)

Proposition 4.9. Let s > 5/2. Let (ug,po) € H*(S) x H*"X(S) and let T > 0 be the
maximal time of existence of the solution

||p<t>||oo=||<posa><t>||oo=H o H <ol T, Vie[0,T). (4.16)

(u,p) € C([0,T), H*(S) x H*~(S)) N C([0,T), H*~'(S) x H*7*(S))
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of the Cauchy problem ([@I4)). Then the solution (u, p) blows up in finite time if and only
if

lim inf ug(f,z) = — li ()] oo = 00. 4.1
Jin inf u,(¢,2) = —o0 or ntnj;lpllp()llL 00 (4.17)

Proof. We multiply the first equation in ([@4]) by 2m and integrate over S to obtain

—Z/mmxudx—él/ume dx — Z/mppx dz
S S S

—3/uxm2 dx—l-/upr dx—/uxme dz.
S S S

Differentiating the first equation in (£4]) with respect to x, multiplying the obtained
equation by 2m, and integrating over S we next find that

—2/mmmxudx—6/mium dfc—4/ummmx dzx
S S S

—2/pimx dx—2/ppmmx dx
S S

— —5/mg2€ux dz + 2/uggmm2 dz + /umx(2pi + 2ppgz — p2) dz.
S S S

d
at

2
Iz,

d
dt

2
ImalL,

Combining both equations we get

(m* +m?)dx = —/umedfc—5/miuxdx+/uxp2dfc
s s

dtS S

S
Since the second equation in (4] is the same as for the 2CH on the real line, we refer

to [42] for the derivation of the equation

d

— (p2+pi+pix)dfc:—/uprd:c—?)/uxpidx—5/umpimdx
dt Jg S S s

+/U;c:c:c (/)2 + 3/)% - ZPP:C:C) du.
S

Thus
d 2 2. 2., 2., 2 2 2 2
— [ (m +mZ+p°+p;+pi)de=— [ uymde —5 [ miuyde —3 [ ugp; da
dt Js $ $ $
—5/uxp92m, dz + /uxm(5pi — p?)da.
s s
Assume that there exist M7, My > 0 such that
ug(t,x) > =My, V(t,x) €[0,T) xS, (4.18)
and
pa(t)le < Ma, Vi€ [0,T). (4.19)

In view of (@I6), (£I]), ([EI9), we find that
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d
3 [ mi 4 pl+ ply) du < C(Ma, Mo, T, po) /(m2 +mg 0%+ pp+ ) da
S S

with a positive constant C. By means of Gronwall’s inequality,

2 2 2 2 2 2
lu@®) s + 1oz < Im@) 5 + 1)z < (Imolf + lpolz=)e

for all t € [0,T"). By the above inequality, Sobolev’s imbedding theorem and the fact that
the solution does not blow up in H*(S) x H*~1(S) on [0,T) if

IM >0Vt c[0,T):  Jua(t)|oo + 1p(0)]oo + P2 (@)l < M, (4.20)

see [42], we obtain that the solution (u, p) does not blow up in finite time. On the other
hand, by Sobolev’s imbedding theorem, if

Jim inf u, (1, 2) = — I £)] e =
Jimy inf uq(f,2) = —o0  or 1131_>S%1pllﬂz()||L 00

then the solution will blow up in finite time. This completes the proof of our theorem. O

Let
®3: [0,T3) x Us — H3G,

where T3 > 0 and Uz C H3(S) x H2(S), be the local geodesic flow on H?G whose existence
is guaranteed by Theorem In the next proposition, we show that the restriction of
@3 to H*(S) x H*7L(S), s > 3, defines a smooth flow on H*G for t € [0,T3). Thus, the
flow on H*G exists for all ¢ € [0,T3) for any s > 3.

Proposition 4.10. Suppose s > 3 and let § denote the restriction of @3 to [0,T3) x Us,
where Us = Uz N (H*(S) x H*7Y(S)). Then &, is a smooth local flow of the geodesic
equation [@R) on H*G, that is:

a. D4 is a smooth map from [0,T3) x Uy to H*G.
b. For each (ug, po) € Us, P5(-, uo, po) s a smooth solution of Eq. (L8) on [0,T3) satis-
fylng @S(O, Uo, pO) = (1d7 O) and 0y P (07 Uuo, PO) = (’LL(), PO)

Proof. Fix (ug, po) € Us and let (u(t;uo, po), p(t; uo, po)) be the corresponding solution in
H3(S) x H?(S) of the Cauchy problem (&I4]). This solution is defined at least on [0, T5).
Since the criterion ([@I7) is independent of s > 3, it follows from Proposition L9l that if
(uo, po) € Us for some s > 3, then the curve t — (u(t; uo, po), p(£; w0, po)) belongs to the
space

C([0,Ts), H*(S) x H*™X(S)) N C* ([0, Ts), H*~1(S) x H*"2(S)).

Let (¢, f) € C°([0,T3), H>G) be the geodesic flow defined on [0, T3). Let s > 3. Suppose
(ug, po) € Us and ¢ € C1([0,T3), H'Diff(S)) for some r with 3 < r < s — 1. We will show
that ¢ € C1([0,T3), H™ ' Diff(S)). Since

Otz = (Uz © ©)Pu, Ptox = (uxw © W)Wi + (u:c © W)mev

we have

g (Sﬁm) = (Uze © P)Pu-
dt \ ¢z

Thus, ,
Gaalt) = pult) / (ttas 0 9)() s (5) ds. (4.21)
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Since ¢, € CH([0,T3), H™1(S)) and u.. € C([0,T3), H*=%(S)), Eq. (£Z1)) implies that
©rz € CH([0,T3), HX(S)). (4.22)

This implies that ¢ € C*([0,T3), H" "' Diff(S)). Indeed,

2 2
t) — t) —
et ee
t—s Hr+1 t—s H1
2
t) —
" H SR — (uo @)z .
t—s Hr—1

As t — s, the first term on the right-hand side vanishes since ¢ € C*°([0, T3), H3Diff(S))
and the second vanishes in view of ([£22)). Induction shows that

¢ € C'([0, Ts), H*Diff(S)). (4.23)

We now show that in fact (¢, f) € C*([0,T53), H*G). By LemmalT, fio, = (pop)p, =
po and we infer that

f() :po/o (pj;s). (4.24)

It follows that
fe CQ([O,Tg),Hsfl(S)). (4.25)

Moreover, by Theorem B3] (¢, f) is a smooth solution of ) in H*Diff(S) x H*~1(S)
for sufficiently small ¢ > 0. Standard ODE results show that the only way this solution
can cease to exist (Corollary IV.1.8 in [88]) is either that the condition ¢, > 0 ceases to
hold or that one of the norms

I (ot fo)l

blows up. But we know that ¢, > 0 on [0,73) and Egs. (£23) and (£23) together
with the smoothness of I" imply that the norms in (£20]) remain bounded on [0,T3).
This proves (b). The standard ODE theorems on smooth dependence on initial data
(Theorem IV.1.16 in [88]) imply (a). O

Hs(S)xHs—1(S) » ”F(«P,f)((%7 fo), (e, ft)) ||HS(S)><H5—1(S) (4.26)

The Sobolev spaces H*(S) provide a Banach space approximation of the Fréchet space
C*°(S) in the sense of Definition 331l Proposition 10l together with Lemma [3.32] imply
local well-posedness of the geodesic flow on C*°G.

Theorem 4.11. There exists an open interval J centered at 0 and an open neighborhood
U of (0,0) € C*°(S) x C*(S) such that for each (ug, po) € U there exists a unique solu-
tion (g, f) € C°(J,CG) of @) satisfying ((0), f(0)) = (id, 0) and (4(0), f:(0)) =
(uo, po)- Furthermore, the solution depends smoothly on the initial data in the sense that
the local flow @: J x U — C>®°G defined by P(t,ug, po) = (©(t;uo, po), f(t;u0, po)) is a
smooth map.

Since C*°@ is a Lie group with smooth multiplication and (u, p) = (@1 0 91, frop™1),
we immediately get the following result.

Corollary 4.12. There exists an open interval J centered at 0 and an open neighborhood
U of (0,0) € C°°(S)xC>(S) such that for each (ug, po) € U there exists a unique solution
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(u,p) € CF(J,C=(8) x C=(8))

of @A) with (u(0), p(0)) = (uo, po). Furthermore, the solution depends smoothly on the
initial data in the sense that the local flow ®: J x U — C=(S) x C*°(S) defined by
P(t,u0, po) = (u(t; uo, po), p(t; uo, po)) is a smooth map.

Remark 4.13. In [120] 121], we find the general form of the geodesic equation on a semidi-
rect product of two Lie groups G and H. In terms of the right logarithmic derivative
(which corresponds to the Eulerian velocity in our terminology), the geodesic equation
on G@H with a right-invariant metric given by the sum of positive definite inner products
on the Lie algebras g and b is

Ut = _a‘d*u + h(ﬂ, p)a
v . 4.27
{pt = —ad,p — b(u)*p. (4.27)

(If the smooth map B: G x H — H denotes a left action of G on H and if we define the
map f: G — Aut(h), 8(g) = D.B(g) then b: g — Der(h) is the derivative of 8 at the
identity; Aut(h) denotes the automorphism group of h and Der(h) the set of derivations
of h. The map h: h x h — g is defined by the relation (b(X)Y1,Y2), = (h(Y1,Y2), X)) If
V' is a vector space with inner product and B is a linear action of G on V', the geodesic
equation [E27) on GOV becomes

{ upy = —ad,u + h(p, p),
pr = —b(u)p.

In [120] [121] it is worked out that this general system reduces to the classical equations

modelling ideal hydrodynamical flow for G = Diff>*(S) and V' = C*°(S) with the (left)

action pf = fop™1.

4.2.3 Subspaces of positive sectional curvature

We have shown that the 2CH equation is a geodesic equation on the semidirect product
H*G = H*Diff(S)®H*"}(S) with respect to a smooth affine connection. The existence
of a smooth connection V on a Banach manifold immediately implies the existence of a
smooth curvature tensor R defined by

R(X,Y)Z =VxVyZ -VyVxZ - Vxv|Z,

where X, Y, Z are vector fields on H*G. Since there exists a metric (-, -) for 2CH, we can
also define an (unnormalized) sectional curvature S by2

S(X,Y) = (R(X,Y)Y, X).

2 Recall that the sectional curvature S(o) of a subspace o spanned by two tangent vectors u and v is
defined by
(R(u, v)v, u)

luAv2

S(o) =
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In this section, we will derive a convenient formula for S and use it to determine large
subspaces of positive curvature for the 2CH equation. We will work in the H*-category;
similar results are valid with H*G replaced with C"G. In view of the right-invariance
of V, it is enough to consider the curvature at the identity (id,0). We will write I" for
I'ia,0)-
In a first step, we rewrite the Christoffel operator {7 as
I(u,v) = E (u1v1)a + B(u,v) + B(v,u) (4.28)
2 [\ u2gv1 + 2z

with the bilinear operator B = (B1, Bz) on the Lie algebra g ~ H*(S)®H*~1(S) satisfy-
ing

<B(’U,, U)a w> = <U'a [’va]> ’

cf. Theorem [[L.TO Writing u = (u1,u2), v = (v1,v2) and w = (w1, wa), we obtain from

(u, [v,w]) = /ulA(wlxvl — V1w ) dx + /UQ('LUval — vggwy) dx
S S

= — /A*I(ZUMAul + v1 Aug ) Awy dz
S

+ /(—(u2vl)xw2 — UgUggwr) dx
s

that
(Bl (u, ’U)) _ ( —A_1(2v1xAu1 + ’UlAul;c + 'U:Q'ng) )
—(UQUl)x

and hence

B(u, u) L (ulxul ) _ (—A‘l(Zuleul + w1 A1y + UsUoy — A(ulxul))>

U2U1 —(ugu1)y + uzzu
_ <_A_1(U% + %u%z)x - %A_l(U%)x>
—UU1x
= I'ia,0) (u, u).
Let us write I',(-,-) = I'(p; -, -) and denote by D, differentiation of I, with respect to p.
The resulting formula for the sectional curvature for the 2CH equation is analogous to

the formula obtained in Theorem [Z4}—we only have to replace the Christoffel operator
I'° by I' and the metric by its two-component extension in Theorem 241

Theorem 4.14. Let s > 5/2. Let R be the curvature tensor on H*G associated with the
2CH equation. Then S(u,v) = (R(u,v)v,u) is given at the identity by

S(u,v) = (I'(u,v), I'(u,v)) — (I'(u,u), '(v,v)), u,v € Tia,0)H*G.

Proof. Let (¢, f) =p € H*G, X,Y,Z € T,H*G and (X,Y,Z) oo~ = (u,v,w). By the
local formula for the curvature,

R(X,Y)Z = DiI,(Z, X)Y — D1 I,(Z,Y)X + T,(I,(2,Y),X) — [,(I,(Z,X),Y),

)

see the proof of Theorem 2.4l For the CH equation we found that
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d
= Dy e (w1,u1) = =T (wiav1,u1) — T (urzv1, wi) 4 T (wr, ug) 01
=0

Since

d

de

[—%(quz) o (id + Em)‘l] = %((wQ:cvl)UfQ);c + %((UQ;C'Ul)wQ)x

e=0 x
and

d

1 1 1
e |y { {_5“‘”’”“2 ' ““’)} ’ R“d“““} = 5(wiouz)s + 5 ((wav)wz).,

we get
DiINw,u)v = —INwgvy, u) — INugvr, w) + T'(w, w) 01

and hence
S(u,v) = (I'(I(v,v),u),u) — (I(T(v,u),v),u) + (I'(v,u)zv1 — IT'(v,0)zu1,u)
+ (=I'(vgvr,u) — I'(v,upv1) + 21 (vur,v),uw) .
Using that I' = (I, I) is given by ([{28]) we now compute
<F(’U, U)Ivl - F(’U, v)xu17u> + <F(F(’U, ’U), u),u) - <F(F(U,U), ’U), u>
= (I'(v,u)zv1 — I'(v,v)zu1,u) +
(I'n(v,v)u1)s
(FQ( )> +B(F(v,v),u)—|—B(u,F(U,v)),u>

0, 0) gty + Uz 1 (v, v

v, )01 + Vo 1 (v, u

<

(It (v, u)v1)s + B(I'(v,u),v) + B(v, I'(v,u)),u
<<F2( )) >
(
<

1 I (v, u)zv1 — (v, u)vr, " 1 " o0
) Fg(v,u)xvl—Fl(v,u)vgx)’ >+2< [ (v,0), )
1 I (v, v)ur, — Ii(v,v)puq 1
+5 (Fl(U,U)UQI o FQ(U,U)EU1> au> - 5 <F(U7U)a [Uqu
1
_5 <Uv [F(U,U),U]>
= <[v,F(v,u)],u) + <7.l,, [F(va)qu - % <F(’U,7.L), [’U,UD -5 <’U, [F(’U,U),UD

<<U2zgjflfz));u1> ’F(“’“)> - % (I (v,u), [v,u])
(I, w), D, 0) + <( (u)a > . (v’v)>

Uz UL + U2 UL
U1U12

= (I'(u,v), '(u,v)) — (I'(u,u), ['(v,v)) + << ) ,F(v,v)>

U1U2g

1 (U1v1)g + U101 — UIV1g
—= , T (u,v)
2 U2, V1 + Vg U1 + U2z V1 — Vog Ul
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which is equal to

([(u,v), T(u,v)) — (I (u,u), [(v,0)) + <<Z$) ,F(v,v)> - <<Z;Z> ,I’(u,v)> .

Hence

S(u,v) = (I'(u,v), I'(u,v)) — (I'(u,u), ['(v,v))
+ (—I'(vgv1,u) — D(v,uzv1) + 2N (vgug, v), uw)

U12V1 Uz UL
— I'(u,v) )+ I'(v,v) ).
We now claim that that the sum of the last three terms is zero. To see this, we use that

I(u,v) = P(ur, v1) = 347 (uzva)a (4.29)
’ —%(quz + V12 U2) '

and that the terms involving I'° cancel out as explained in the proof of Theorem 24l
The remaining terms are

AT (vapv1u2), A7 (vausev1)s
1 , U + 1 , U
5 (V12v1) U2 + U1 (V22v1)) 5 (V1zU20v1 + (U12V1)202)
AN v2u102), U1,V 1A (ugvy),
- , U + ) 1
((v12U1)zV2 + V15V2zU1) U22V1 §(u1xv2 + vigU2)

/[ wzur 3 AT (v3),
Uz U1 ) VizV2 '

We first consider the H'-terms, i.e., the first row terms:

1 1
= /(U2zvlu2)xu1 de + = /(U2u2zvl)zu1 dz — /(U2zulv2)zu1 dz
2 Js 2 Js s
1
+§/U1I'U1(’u2’02)m dz — /ulxuva’ng dz.
S S

The Ls-terms can be found in the second row:

1 1 1
= /(levl)xug dz + = /le'UQx'UluQ dr + = /'Ulgc'U'Q;c'Ul'UfQ dx
2 Js 2 Js 2 Js
1
+§ /(levl)x’UQUQ dz — /(leul)xvgug dz — /levgxuluQ dz +
S S S

1 1
+§ U2, V1 U1, V2 AT + 3 [, U2eV1vialio dz — [ ugzu1v1,v2 dz.
S S S

The terms quadratic in us cancel out since

1
5 /(levl)xug dz + /vuvlugxug dz = 0.
S S

Similarly, the terms quadratic in u; cancel out:
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— /(vgxulvg)xul dz — /’U,l’ulx’Ug’ng dz =0.
S S

A careful observation shows that the other terms also give zero:

1

1
- /uuvgmvlug dz + = /(ulmvl)xvqu dz — /(vlmul)xvqu dz
2 Js 2 Js s

1
— [ vigUazuus dz + 3 Uz V1 U1z V2 AT — | UopU1V14V2 AT
s s S

1 1 1
+= /(U2zvlu2)xu1 de + = /(vzuh»m)zm dz + - /uum (ugv2), dz
2 Js 2 Js 2 Js

1 1 1
= — [ u1z01U2V9 dz — = [ U1V U202 dT — = [ U1zV1 UV, AT
2 Js 2 Js 2 Js

1
— [ (u1v1)zugv2 dx — | u1v1,U2v2, dz + 3 W14V Uy U AT
S S S

1 1
— [ u1v12U2.V2dT — = [ U1VIULV2, AT — = | U1V1U2,V2 A
S 2 S 2 S

1 1
+= [ U1pv1U2,V2dx + = [ ULV UV, dT
2 Js 2 Js

= /ulleuvag dl‘“‘/UlleUQUQx dl‘_/U1U1xU,2U2x dx—/ulleumvg dx
S S S S
0.

This finishes our proof. a

Let us write Sy for the sectional curvature of 2CH and Sy for the CH sectional curvature.
We are now interested in two-dimensional subspaces for which S is positive. As explained
in Chap.[I this has various interesting geometric interpretations, e.g., concerning stability

of the geodesics. Since
U v
SQ (( 01> 5 ( 01)> = Sl(ul,vl), (430)

we directly conclude that the same examples of subspaces of positive curvature for the CH
equation found in Sect. work for the 2CH: Recall Theorem where we showed for
the CH equation that Sy (u1,v1) is positive whenever uq,v; are trigonometric functions
of the form cos kx, sinlx with k # [ € 2rN. We now investigate the curvature of H*G in
directions which are non-trivial along the second component.

Proposition 4.15. Let s > 5/2. Let S(u,v) = Sa(u,v) = (R(u,v)v,u) be the unnor-
malized sectional curvature on H°G associated with the 2CH equation. Then

S(u,v) >0

or all vectors u,v € T30 0)H°G, u # v, of the form
(id,0)

" coskix - coslix 7 ki, ko, Iy, 1o € {2m, 47, ... ).
cos kox coslax

Moreover, the normalized sectional curvature satisfies

(4.31)



100 4 Two-component generalizations of the periodic b-equation and its p-variant

Jor all vectors u,v € T(iq,0)H°G, u # v, of the form

0 0
v (coskgx)’ U= (coslgx>’ ko, ly € {27, 4m,.. . }.

Proof. Let us denote the components of v and v by u1,us and vy, vs. In the following
computations, we use the relation

A" cosax = i cos ax,
e

Eq. @I7) for I'°(cos ki, cosly ),

%(1— %klll) _ %(1+%k1l1)

0 — —
I'(coskiz,cosliz) = 0, L+ Ut h)? os(kr + 1)z T+ Un L)

cos(k1 — l1)z|,
the trigonometric identities

cosacos B = %(cos(a — ) + cos(a + 3)),
sinasinf§ = %(cos(a — B8) — cos(a+ 3)),
sinacos B = %(sin(a — B) +sin(a + 3)),

as well as the orthogonality relations

/1 cos(azx) cos(fz)dx = /1 sin(ax) sin(fz) dz = 1 (0a,8 £ 00,—B) (4.32)

0 0 2

and .
/ cos(ax) sin(fx) dz =0 (4.33)
0

for «, 8 € 27Z. According to Theorem T4 and (Z29)),

SQ(“?”) = <F(u,v),F(u,v)> - <F( ) (’U,’U)>
/Fl(u v) AT (u, v)dx—l—/Fg(u,v) dz

/Fl(uu)Aflvvdm /Fguufgvv)dx
S S

—/S(Fo(ul,vl)——A (uzv9) > < (u1,v1 —%Al(uQvg)m> dx
—/S (Fo(ul,ul) - §A1(u§)x) A (Fo(vl,vl) - %Al(vg)x) da

1
+ /(mxvz + vipug)? do — /mzuwuvz dx,
S S

and thus
Sa(u,v) = Sy(ur,v1) + Y I

where
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1
IQ = _Z /(Ug)xAil(’Ug)x dl‘,
S

1

=3 /S 1 (g, wn) (62)s + T°(vn, 00) (i) — 20°(utr, v1) (ugvn)] d,

1 1
Iy = - /( %xvg —+ v%xug) dox — - /ulqu’Uu’Uz dz
4 S 2 S

so that Sa(u,v) equals the CH-curvature of u; and v; plus additional terms. Now using
integration by parts we obtain

1
I, = -1 /(uQvg)mA_l(uQvg) dz
S

1
=7 (cos(ke — l2)x + cos(ka + 12)x) . AL (cos(ke — l2)x + cos(kz + l2)x) da
S
1 2 2
=16 ((k‘g —la)? cos(ka — lo)x + (ko + 12)* cos(ka + lg)x)
S

)
x A7 (cos(kz — l2)x + cos(kz + l2)x) dx
_ 1_16 [ (k2 = 12 cos(hs — Ia)a + (ks + 1) cos(hs + 1))
(cos(kg — o)z cos(ke + l2)x ) d
14 (k2 —12)2 14 (k2+12)?

_L< (ks = 1) (ko +1o)? )

32\ 1+ (k2 —12)2 1+ (kg +12)2
and
I, = — /uquxA_lvgvgx dz
S
_ kalp : 1
== (sin 2koz) A™ " (sin 2lyz) dz
s
1 k2
= — 2575 0ka I
81+ (2ky)
and

1 1
Is = /Fo(ul,vl)m(uwg) dz — i/FO(ul,ul)mvg dz + 5/F0(v1,v1)(u§)x dx
S

s s
- / (é(l — skil) (k1 + 1) 3(1+ gkila) (ks — 1h)?
S 1+ (kl + ll)2

R ll)x)

cos(ky + 1)z +

1
x5 (cos(ka — l2)x + cos(kz + l2)x) da

_l/w(zk )2 cos(2kn2) (1 + cos 2lsz) d
1) 1T @k 1)° cos(2kix cos 2lsx) dz

1
+—/F0(v1,v1)(u§)x dz
2 Js



102 4 Two-component generalizations of the periodic b-equation and its p-variant

(1= 3kaly) (k1 +1)?
L+ (k1 + )2
11+ 3kily)(ky —11)?

8 1+ (ki —1p)2
k21— 2k? 2 1-12
_Zm ki,lo — Zm ka,l1

1
= g (6k1+l17k2—12 + 5k1+117l2—k2 + 5k1+11,k2+l2)

(6k1—l17k2—l2 + 6k1—l1712—k2 + 6k1—l17k2+l2 + 5l1—k17k2+l2)

and

1 1
I, = Zkf/siHQ k2 cos? sz dz + Zl%/siHQlecos2 kox dx
S S

1
_5k1l1 /sin kix cos kaxsinlix coslox dz
S

1 1
= Ek% / (1 — cos2k1x) (1 + cos2lox) dx + 1—61% / (1 —cos2l1z) (1 + cos 2kez) dx
s s

_%klll / (cos(kr — l1)x — cos(k1 + I1)x) (cos(kz — l2)x + cos(ka + l2)x) dx
s

1 1 1 1
= Ek% (1 - §5k1,12> + 1_61% (1 - §5l1,k2>

1
_1_6k1l1(5k1—11,k2—l2 + 5k1—11,12—k2 + 5k1—11,k2+12 + 5l1—k17k2+l2

~Oky 1y ko —lo — Oky 1y la—ky — Oky+1y katls)-

The sum of the negative terms occurring in the above computations can be estimated as
follows:

1 k2
— =50kl
81+ (2ka)

1 (kl + l1)2
— —kilj————=— (0 _, +90 ko T+ 0
16 1 11 (kl 11)2 ( k1+l1,ka—1s ki+l1,la—k2 k1+11,k2+l2)

1
- 1—6/‘~‘1l1(5k141,k242 + Oy —1y da—hy T Oky—1y kol + Ol — k1 ko tia)
1 kily kily

4.34
= 32 16 16’ (4.34)

because at most one delta function within each bracket can give a nonzero contribution
for a given set of values of ki,ko,l1,lo € {27, 4m,...}. On the other hand, the term
S1(u1,v1) contributes to S(u,v) the positive term

(1= 3kilh)?

1
=2 (k1 +1;)? 4.
81+(l€1+11)2( 1+ 1) ) ( 35)

and the sum of the right-hand side of (£34)) and (£38) is positive:

1 (1= 1k0)2 1kl 1 1 1 Kyl
e g (k)

8 ~ 16 2 32 8
(i S S S S I
16 K22 kil 4 2833 Kl
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where we used that kq,l; > 2m. This shows that Sa(u,v) > 0. In remains to prove [{@3T]).
Suppose u; = v1 = 0 and ug # vy. Then

(2 ()=

_ L (ko —12)? L (ko + 12)? 1 2 5
T2 \T+ (ke — )2 1+ (ke+12)2) 81+ (2ky)2 2"
1 1

>
~ 64 + 64’
where we used that ks # l3. On the other hand, for this choice of u and v,

<u7 U> =0,

and hence 1
<u7u><vvv> - <u7v>2 = Z

This yields (3T)). 0

Remark 4.16. Although Proposition [£.T5] establishes the existence of a large subspace of
positive curvature, there are also directions for 2CH of strictly negative curvature. Indeed,
it can be shown that there exist directions of strictly negative sectional curvature for the
CH equation, [40]. In view of ([@30)), this implies that 2CH also admits directions of
negative curvature.

4.2.4 The 2CH equation and the motion of a rigid body

In this section, we make clear that the 2CH fits into the geometric approach introduced
in [5, 37] to describe the motion of an ideal fluid in analogy to the motion of a rigid body
(which already proved to be successful for the CH equation, cf. [62]). For the motion of a
rigid body, we now recall the results presented in Sect. [[2.2]for clarity. In the next step,
we discuss the CH equation under the same aspects and include our results for 2CH in
the final subsection.

4.2.4.1 The rotating rigid body

The configuration space of a rigid body in R? rotating around its center of mass is the
Lie group SO(3). The corresponding Lie algebra is so(3), the space of antisymmetric
3 x 3-matrices, which is canonically identified with R®. We can also identify the dual
space 50(3)* with R3. Let I: R?* — R3 be the inertia matrix of the body. A left-invariant
metric (-,-) on SO(3) is given at the identity by

{a,b) = a-Ib, Va,bc s0(3)~R3.

The fact that the body’s motion is described by the classical Euler equation can then be
reformulated in the geometric picture: R(t) is a geodesic on (SO(3), (-, -)) if and only if
2(t) = R(t)"1R(t) solves the Euler equation



104 4 Two-component generalizations of the periodic b-equation and its p-variant

I0=(12) x Q.

Physically, £2(t) represents the angular velocity in the reference frame of the rotating
body. The angular velocity in the spatially fixed frame of reference is given by R(t)R™(t).
In other words: Applying left and right translations to the material angular velocity R(t),
one obtains the body and the spatial angular velocity which both are elements of the
Lie algebra so0(3). The body and spatial angular momenta, which are elements of the
dual s0(3)*, are given by II(t) = I£2(t) and 7 (t) = R(t)II(t), respectively. The body and
spatial quantities are related by the adjoint and coadjoint actions

w(t) = Adg2(t) = ROLHRM(D),  TI() = Adj7(t). (4.36)

Conservation of (spatial) angular momentum means that 7 is constant in time, i.e.,

dr
ar _ .. 4,
gr 0 (4.37)

4.2.4.2 The CH equation

For the CH equation
Up — Uppg + BUUr = 2UzUpy + UlUgrr, TES, >0,

the configuration space is Diff(S) with multiplication (¢, %) — ¢ o). Elements of the Lie
algebra g are identified with functions S — R. A right-invariant metric is defined at the
identity by

(U, v) o = /uAvdx = /(uv + uzv,) da;
s s

here, A = 1 — 92: g — g* is the inertia operator. In this picture, the CH equation
is the Euler equation on the diffeomorphism group Diff(S) in the sense that ¢(t) is a
geodesic in (Diff(S), (-, -) 1) if and only if its Eulerian velocity u(t) = Dy ) Ry-14)0:(t) =
@i(t) o 71 (t) solves the CH equation. Letting U = DyLy,-19¢ = (w0 ¢)/¢z, U and u
are the analogs of the body and spatial angular velocities: they are obtained by left resp.
right translation of the material velocity ¢, to the Lie algebra. The momentum in the
spatial frame is m = Au. The analog of Eq. (£.38)) is

u(t) = AdyyU(t), — mo(t) = Adggym(t),

where mg = (mog)p? is the momentum in the body frame. Since the metric is now right-
instead of left-invariant, the analog of the conservation law ([£37]) is that the momentum
myg in the body frame is conserved,

dmo

Tk 0, ie., (m o )2 = my.
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4.2.4.3 The 2CH equation

For the 2CH equation ({4 the configuration space is the semidirect product G =
Diff(S)®F(S) introduced in Section @Il The Lie algebra g is identified with F(S) x F(S).
The inertia operator is diag(A, id) and the metric is the right-invariant metric (-, -) defined
in ([@I0). The basic observation is that (p(t), f(t)) is a geodesic in (Diff(S)®F(S), (-, -))
if and only if

(u(t), p(t)) = D), 1t Rty peyy-1 (e (t), fe(t))

satisfies (£.4)). The analog of the body angular velocity is (U, Us) = Dy, 1) L(e, 1)1 (¢4, ft)
and is obtained from

d

Dip.pyLig.py-10 = (07 =f o™ )(m(®),712(#)
t=0
d
= &(vfl ovi(t),72(t) — (fop ) oml(t)
t=0

=\ —02— _Ul )
Pz P

where 7(t) is a curve starting at (p, f) with velocity v. Thus

-3
Us pop—Lruogp |’

The spatial momentum is (m, p) = (Au, p). The analog of equation ({36l is

(u(®), p(t)) = Ad (). r(e) (U1(1), U2(1),  (mo(t), po(t)) = Adig), pey) (A1), p(1)),

where (mo, po) is the momentum in the body frame. In order to find an explicit expression
for (mo, po), we need to compute the adjoint and coadjoint actions. We have

v (vpz) 0 ™! )
Ad = )
(:]) (n) ((n+fxv)os0‘1
The Lo-pairing is used to identify the (regular part of the) dual g* of g with F(S) x F(S).
Since

<<7Z> s Adg,p) <Z>> = /m[('USO:c)Ogo_l]dl‘+/sp[(fxy+n)Ow—l]dx

= [t ay+ [ o)+ nes o) dy

-<<<m°¢>fswafoz@fm>,<z>>

i (5) (). ()er

The analog of the conservation law ([@37) is that the momentum (mg, pp) in the body
frame is conserved,

we find
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% (7;100> —0. el ((mw)fgjw()iz @)fxsox) _ (7;100> .

This explains the origin of the conservation law established in Lemma (7]

Table 4.1 A rigid body, the CH equation and the 2CH equation: Geometric aspects.

Rigid body CH 2CH

configuration space SO(3) Diff(S) Diff(S)®F(S)
Lie algebra 50(3) F(S) F(S) x F(S)
material velocity R Pt (t, ft)
spatial velocity w=RR™! u=ptop L (u,p) = (pt, fr) o™t

. —17 uUoY Uy %
body velocity 2=R "R U= o (U2>7 pocp—%(uozp)
. . _ 5 A0
inertia operator 1 A=1-0; ( 0 id)
spatial momentum T=RINQ |m=Au=1u— ugs (m, p) = (Au, p)
body momentum =10 | mo=(moy)p2 (mo ) = ( (mo@)es +(po @) fope )

PO (pop)pe

spatial velocity (Ad) w=Adr u=Ad,U (u, p) = Ad(y, 5)(U1,U2)
body momentum (Ad*) |II = Adzm| mo = Adim (mo, po) = Ad?w,f)(m’ p)
momentum conservation| m = const mg = const (mo7 po) = const

4.3 A generalization to the 2DP equation

Here we study the two-component generalization (@) of the DP equation as proposed
in [II5] on account of an appropriate Hamiltonian structure. Most of the results for
2CH presented in the previous section have direct counterparts in the case of 2DP; the
main exception being that the geodesic flow associated with 2DP is not induced by any
right-invariant metric. Therefore, we can apply the technology developed for the 2CH,
working for the configuration spaces H*G for s > 5/2, C"G for n > 2 and finally C*°G.
We introduce a bilinear operator on g = T{jq,0)H°G ~ H® x H*~1 by setting

FH(X1, Y1) = $ATH (XY, + X1, Ya) + A7H(XpY2),
Tia,0)(X,Y) = < d 2 —(X2Yie + X1.Y) (4.38)
for X = (X1,X>2),Y = (Y1,Y3) € g, where
0 3,1
I, 0) = 5 A7 (uo),

denotes the Christoffel operator for the DP equation. It is important to recall that the
DP equation belongs to the family of non-metric Euler equations, i.e., there exists no
Riemannian metric (-,-) on H*Diff(S) such that the DP equation can be written in the
form

u = —ad)u,

where u is the Eulerian velocity of some smooth path in H*Diff(S) and ad” denotes the
adjoint of ad with respect to (-, -), cf. [45]. We will use the bilinear operator introduced
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in (£38) to define a right-invariant affine connection V on H*G by the local formula
(#3) and it will turn out that the 2DP equation is a geodesic equation on on H*G with
respect to this connection (although V is not compatible with any Riemannian metric).
The proof of the following proposition is similar to that of Proposition E1l

Proposition 4.17. Let s > 5/2. Let H*G = H*Diff(S)®H*~(S) and let I" be the 2DP
Christoffel map defined in (L38). Then I defines a smooth spray on H*G, i.e., the map

(@, )= Lppy: HG — L2, ,(H*(S) x H**(S); H*(S) x H*"*(S))

sym
18 smooth.

Proof. The first component terms in (£38) are of the form A~! applied to a polyno-
mial expression in X;,Y; and X,,,Y;,. The second component is a polynomial term in
X1z, X2,Y1,,Ys. Hence the same arguments as in the proof of Proposition 1] can be
applied. |

The existence of a smooth spray implies local existence and uniqueness of the geodesic
flow. We obtain, by our definition of I, ¢, that

()= (Gs)
_ <—[A1((AU)zu + 3(Au)uy — A(uug))] o ¢ — [A7 (pus — 2pps)] w)

—2(puz) o
_ (—3[A—1<uux>] 0 — [A7 (pus)] 0 ¢ + 2[4 (ppa)] © @)
~2(puy) o
= F(ap,f)((%a ft), (06, ft)) (4.39)

so that the 2DP equation is in fact the geodesic equation for the connection V, cf.
Remark 23] and [88].

Theorem 4.18. Let s > 5/2. Let I' be the 2DP Christoffel map defined in (E38).
Then there exists an open interval J centered at O and an open meighborhood U of
(0,0) € H5(S) x H*Y(S) such that for each (ug,po) € U there erxists a unique solu-
tion (¢, f) € C*(J, H°G) of the geodesic equation (Z39) satisfying (v(0), f(0)) = (id,0)
and (¢¢(0), f:(0)) = (uo, po). Furthermore, the solution depends smoothly on the ini-
tial data in the sense that the local flow ®: J x U — H*G defined by P(t,ug,po) =
(¢(t; uo, po), f(t; uo, po)) is a smooth map.

We write the Cauchy problem for 2DP in the form

wobue = A7 (302 ), + pu).
pt +upy = —2pug, (4.40)
(u(0), p(0)) = (1o, po)-

It follows from Theorem LIS that 2DP is locally well-posed in H*(S) x H*~(S) for
s > 5/2. According to a referee’s suggestion it might be useful to repeat the arguments
used in the proof of the well-posedness of the original 2DP equation (although everything
works as for the 2CH equation).

Corollary 4.19. Suppose s > 5/2. Then for any (ug, po) € H*(S) x H5~1(S) there exists
an open interval J centered at 0 and a unique solution
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(u, p) € C(J, H*(S) x H*7X(S)) N CH(J,H>"H(S) x H**(S))
of the Cauchy problem [@AN) which depends continuously on the initial data (ug, po).

Proof. Let (¢(t), f(t)) € H®G be the smooth curve with (¢(0), f(0)) = (id,0) and
(¢+(0), ft(0)) = (uo, po) obtained in Theorem I8 and define (u(t), p(t)) := (p+(t), f:(t))o
@ 1(t). Then, (u,p) has the regularity specified in the corollary and depends continu-
ously on (uo, po). By right-invariance of the 2DP Christoffel map I, the geodesic equation

(@1t, frt) = Lo, 1) (@1, ft), (01, [t)) can be written as

Ut + U
:Fi ’ ’ ) -
(m +upm) (ia.0) ((: ) (u, p))

This is equation ([€40).

The results of the above discussion hold with the obvious changes also in the C"™-category,
n > 2. The following conservation laws are also only slightly different to the conservation
laws presented in Lemma [£7] for 2CH.

Lemma 4.20. Let (u, p) be a solution of ([Bh) with geodesic flow (¢, ). Then for any
time t in the existence interval of (u, p) we have
d 3 2 2 _
qlmo)en = (po@)pa(—pe +2fa)] =0
and
Sllpop)] =0

Proof. We have

d
3 [me ©)P3] = [(my + umy) o @l + 3¢5 (mug) o ¢

= [(—pua + 2ppz) © ©l¢5

and
d
7 [Po9)ez] = (o +upa) 0 0l + 2[(pua) o ¢l = 0.
With
~¢tz +2fte = —(uo )z +2(po p)e = [(—uz +2pz) 0 Plips
we are done. 0

We have the following blow-up result for 2DP; the proof is similar to that of Proposi-

tion 9] cf. [40].

Proposition 4.21. Let s > 5/2. Let (ug, po) € H*(S) x H*7Y(S) and let T > 0 be the
mazximal time of existence of the solution

(u, p) € C([0,T), H*(S) x H*~Y(S)) N CH([0,T), H*~(S) x H*"*(8))
of the Cauchy problem ([@AQ). Then the solution (u, p) blows up in finite time if and only
if

li fug(t — li t)] ;o = 00.
lim, irésux( x)=—00 or llglj%lp lp=(®)l o0
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Let
®3: [0,T3) x Us — H3G,

where T3 > 0 and Uz C H3(S) x H2(S), be the local geodesic flow on H?G whose existence
is guaranteed by Theorem [£L.I8

Proposition 4.22. Suppose s > 3 and let @5 denote the restriction of P3 to [0,T3) x Us,
where Uy, = UsN(H*(S) x H*~Y(S)). Let I be the 2DP Christoffel map defined in [#3]).
Then @4 is a smooth local flow of the geodesic equation [@39) on H*G, that is,

a. D4 is a smooth map from [0,T3) x Uy to H*G.
b. For each (ug, po) € Us, Ds(+,u0, po) is a smooth solution of equation [E39) on [0,T3)
satisfying Ds(0,uo, po) = (id, 0) and 0;Ps(0, uo, po) = (uo, po)-

Proof. The proof is identical to that of Proposition dI0except that equation ([@24]) must

be replaced with
t
ds
fo=m [ 2
D=m ), 26
cf. Lemma (201 O

We thus obtain the following well-posedness results.

Theorem 4.23. Let I' be the 2DP Christoffel map. There exists an open interval J
centered at 0 and an open neighborhood U of (0,0) € C(S) x C*(S) such that for each
(ug, po) € U there exists a unique solution (¢, f) € C®(J,C®G) of the geodesic equation

@.39) satisfying (¢(0), f(0)) = (id,0) and ((0), f¢(0)) = (uo,po). Furthermore, the
solution depends smoothly on the initial data in the sense that the local flow @: J x U —
C>®G defined by D(t,uo, po) = ((t;uo, po), f(t;uo, po)) is a smooth map.

Corollary 4.24. There exists an open interval J centered at 0 and an open neighborhood
U of (0,0) € C°°(S)xC>(S) such that for each (ug, po) € U there exists a unique solution

(u,p) € CF(J,C=(8) x C=(8))

of @A) with (u(0), p(0)) = (uo, po). Furthermore, the solution depends smoothly on the
initial data in the sense that the local flow ®: J x U — C=(S) x C*°(S) defined by

P(t,uo, po) = (u(t; uo, po), p(t; o, po)) is a smooth map.

4.4 The Euler formalism for the 2HS equation and the 2uHS
equation

We now consider a two-component variant of the HS equation which we introduced in
Sect. [l The idea is to start with Eq. (4] and to replace m = —uyy, cf. [90]. From the
2HS equation we also obtain the corresponding p-version by setting m = p(u) — uyy.

Let t > 0 and x € S. By a solution of the periodic 2-component Hunter-Saxton
equation with initial data (ug, po) we mean a function (u(t, x), p(¢, x)) which satisfies
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my = —UMyg — 2MUy — PPz, t > 0,

pr = —(pu)a, t>0,

m = —Ugg, t>0, (4.41)
= Uop, t = 0,

p = pos t=0.

Similarly, we say that (u,p) solves the 2uHS equation if (£4I) holds true with
m = pu(u) — Uyy.

Remark 4.25. Eq. ([@41) reduces to the HS (the pHS, respectively) for p = 0. The 2pHS
equation is also called 2uCH equation since the p-variant of HS equals the p-variant of
CH. Observe that we obtain the same operator if we add g to the inertia operator for
the HS or replace the identity by p in the inertia operator for the CH.

In [90] the authors derive the 2HS equation as the N = 2 supersymmetric extension of
the Camassa-Holm equation. They also work out the bi-Hamiltonian formulation and
a Lax pair representation for the 2HS equation. Concerning geometry, the 2HS can be
regarded as an Euler equation on the superconformal algebra of contact vector fields on
the 1|2-dimensional supercircle. Finally, the paper [90] presents some explicit solutions
of Eq. (£41)), like bounded travelling waves.

In this section we are concerned with some geometric aspects of the 2HS equation. We
prove that the 2HS can be regarded as an evolution equation on a semidirect product
obtained from the H*-diffeomorphisms on S for s sufficiently largdd. Most importantly,
we show that Eq. (Z4I) is compatible with the Riemannian structure induced by the
H' inner product for the first component plus the Lo inner product for the second one
at the identity (id,0). Defining an affine connection in terms of the Christoffel operator
for the 2HS equation, we therefrom establish that 2HS is related to a geodesic flow on
the underlying semidirect product configuration space. We are mainly concerned with
the sectional curvature for the 2HS equation and show that it has the constant value 1/4
for any two-dimensional subspace. An analogous result has been obtained in [95] for the
one-component Hunter-Saxton equation.

Finally, we discuss the 2uHS equation for which we first construct a Lax pair. Second,
we explain that the 2uHS is an Euler equation on H*Diff(S)@H*~!(S) and a reexpression
of a geodesic flow on the semidirect product; therefore we specify the Christoffel operator
for 2uHS. We then obtain an infinite-dimensional subspace of positive sectional curvature
for 2uHS.

The reader can easily see how the geometric point of view on the 2HS equation and
the 2pHS equation corresponds to Arnold’s powerful geometric picture which proved to
be successful not only for the motion of inertia rigid objects in Classical Mechanics but
also for water wave equations like the CH and its two-component version, as explained
in Sect. 2.4l Since many of the arguments for HS and 2uHS are very similar to the
corresponding arguments for 2CH we will often refer to Sect.

3 More precisely, we will work with the diffeomorphisms modulo rotations in the first component to
enforce that any u € Tjq H*Diff(S) satisfies u(0) = 0. This will be explained in the following subsection.
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4.4.1 Geometry associated with the HS equation

In Sect. [33T] we explained taking the example of the periodic b-equation how to obtain
a local well-posedness result in case of smooth initial data: The solution u(¢, z) of (I.4I)
can be regarded as a vector field on S so that, if u(t,-) € C™(S) for some finite n € N,
there exists a local flow ¢(t,-) € Diff"(S) such that u = ¢; 0o =1 and (0) = id. Then
some elementary calculations show that Eq. (LZ4I]) is equivalent to a first order differential
equation for the flow X (t) = (¢(t), ¢:(t)) where the right-hand side depends smoothly
on X. The Cauchy-Lipschitz Theorem proves the existence of a solution, uniqueness and
smooth dependence on time and the initial data, for some time interval containing zero.
Some further arguments show that this solution is in C*°(S), provided ug € C*°(S).

Let us try to adopt this technique for the HS equation, i.e., let us rewrite the HS as
an autonomous system in terms of the local flow X (¢) € Diff(S) x F(S) for the time-
dependent vector field u(¢,-) on S. The usual starting point is to compute ¢y. By the
chain rule and from the relation p; = u o p, we obtain

ou = (u + uuy) o .

We now have to replace u; by using Eq. (L42). But since Eq. (T42]) only includes gy,
we differentiate twice with respect to x to obtain

2
895 ('U't + 'U"U'x) = Utzz + FUzgUgey + Ulgza

Uz Uy

1
= 501@. (4.42)

Let A~! be the inverse of the operator A = —§? studied in Lemma If uy € C(S),
the right-hand side of [@42) is a function with zero mean; hence it is in the domain of
A~1 and we conclude

1
o =—3 [A70,(prop™h)2] 0 .

Note also that u; + uu, must belong to the domain of A which suggests that we will need
the assumption u(0) = 0. Setting

I’(u,v) = _%Ail(uxvx)x; (443)

we obtain a symmetric bilinear operator F(S) x F(S) — F(S). In fact, this Christoffel
map is smooth (in the categories under consideration) which enables the following geo-
metric approach, established in [97]:

For s > 3 we consider the the Banach manifold H*Diff(S) of orientation-preserving
diffeomorphisms S — S of Sobolev class H®. Let Rot(S) C H*Diff(S) be the sub-
group of rotations = +— x + d for some d € R. We denote by H*Diff(S)/Rot(S) the
space of right cosets Rot(S) o ¢ = {¢(-) +d; d € R}, for ¢ € H?®Diff(S), and set
M* = {p € H*Diff(S); ©(0) = 0}. We have

M*®={id+wu; ue€ H® uy, >—1,u(0) =0}
and thus M*® is an open subset of the closed hyperplane

id+ E° =id+ {u e H*, u(0) =0} C H®.
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Writing the elements of H*Diff(S)/Rot(S) as [¢], the map [p] — ¢ — ¢(0) establishes a
diffeomorphism H*Diff(S)/Rot(S) — M?, showing in this way that M* is a global chart
for H°Diff(S)/Rot(S). Furthermore, all tangent spaces T, M*° can be identified with E*.
Next, we define a right-invariant metric on H*Diff(S)/Rot(S) by setting

1

1 _ _ Uz Ve
WV, =1 [Worawepae =g [

Pz

dz (4.44)

for tangent vectors U,V € T,M?* ~ E*® at ¢ € M*. Recall that the bilinear form (-, ),
at the identity, induced by the operator A defined in Lemma [B.5] is the H'-metric and
that our definition of A ensures that (-,-),; is indeed a positive definite inner product®.
Furthermore the metric (£44]) is compatible with the affine connection V defined locally
by
VxY(p) = DY (p) - X(p) = I'(#:Y (), X (),

where I'(p; -,-) = R,0I'(id, -, ) o R;l is the smooth Christoffel map for the HS equation
with I'(id,u,v) = —3 A" (ugvs)s. As proved in [97], the geodesics of the H' right-
invariant metric are described by the HS equation: Let J C R be an open interval
and let p: J — H®Diff(S) be a smooth curve. Then the curve u: J — TiqH®Diff(S)
defined by u: t — ¢ o p~! satisfies the HS equation (L42) if and only if the curve
[¢]: J — H*Diff(S)/Rot(S) given by [¢]: t — [p(t)] is a geodesic with respect to V. The
geodesic in H*Diff(S)/Rot(S) can be found explicitly by the method of characteristics: For
ug € TigM*® with (ug,up) = 1 the unique geodesic : [0,T*(ug)) — M?® with ¢(0) = id
and ¢4 (0) = ug is given by

1 1
p(t) =id — 3 (A0, (ug,)) (1 — cos2t) + 3o sin 2t,
where the maximal time of existence is
T*(ug) = = + arctan ( = minua(z) | < /2
= — rctan | = min .
o) =g rarcan | o Ty o) p =

Observe that the corresponding solution u = @09~ ! € C([0,T*); E5)NCL ([0, T*); E571)
of the HS is not unique; the set of solutions is

{t = ult,- —c(t) + ()} € C([0,T); H*(S)) N C'([0,T); H*(S)),

where T' < T* is the maximal time of existence, c: [0,7) — R is an arbitrary C!-function
with ¢(0) = ¢/(0) = 0 and if T < T*, then |c(t)] — oo as t — T from below. Further
geometric aspects of the HS equation are discussed in [95] [96].

4.4.2 The geodesic flow for the 2HS equation

We define H*G = [H*Diff(S)/Rot(S)|®FE*~1(S), s > 3; this definition is motivated by
the results in Sect. [L41] where we recalled that the group H*Diff(S) modulo rotations
is suitable for the one-component HS, and Sect. [£.2], where we saw for the 2CH that the

4 The factor 1/4 is introduced to obtain that the sectional curvature for HS is identically equal to one.
Here and in the sequel, we assume that A is an operator on {u € H*(S); u(0) = 0} for s > 3.
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product of the group and its tangent space at id (with regularity lowered by one) is a
good candidate for the two-component generalization. Let us define a bilinear operator
I'on E* x E5~! by

r%(Xx,,v;) — %A‘l(XzYz)x> ; (4.45)

I'X,Y) = !
(X, Y) ( — 2 (X122 + Y1, X2)

A and I'Y are as in Lemma 3.5 and (@43). As a map I': (M* x E5~1) x (E® x B5~1)2 —
E® x E5~1, I' is defined by

Fion(X,Y)=T((, f); X,Y)=T(X oo " Yop oo (4.46)

We next introduce the positive definite inner product (u,v) = (ur,v1) g, +(uz,v2),, for
u,v € E¥x B! and for (p, f) € M*xE*tand X,Y € T, p)(M*x E*™1) ~ ESx B!
we define

<Xa Y>(<p,f) = <X05071aY09071>7 (447)
to obtain a right-invariant metric on H*Gy. Furthermore, we let

VxY (e, f)=DY (o, f)- X (¢, f) = Lo, ) (Y (0, ), X (9, £)), (4.48)

for vector fields X and Y on H*Gy; here, X,Y: M*® x E*~1 — E° x E%~! are repre-
sentatives of the vector fields X and Y in the global chart M* x E5~!. As for the 2CH
equation we establish that (-,-), ) defines indeed a (weak) Riemannian metric which
is compatible with the smooth connection V to ensure the existence and uniqueness of
geometric objects like geodesic flows or sectional curvatures.

Proposition 4.26. Let s > 3. Let H*Gy = [H*Diff(S)/Rot(S)|@E*~1(S) and let ' be
the Christoffel map defined in [@A5) and (LZL). Then I' defines a smooth spray on
H*Gy, i.e., the map

(o, f) = Li,py: H'Go — L2,(E° x B EBS x B571)

sym
is smooth. Moreover, the metric (-,-) defined in [@AT) is a smooth (weak) Riemannian
metric on H*Gy, i.e., the map

(lel £) = (s '>(M,f) : H°Go — L2 (T([go],f)HSGmR)

sym

is a smooth section of the bundle L2, (TH*Go;R). Finally, the connection V in ([£AR)

Sym
and the metric {-,-) are compatible in the sense that

XY, Z)=(VxY,Z)+ (Y,VxZ)
for all vector fields X,Y,Z on H*Gj.

Proof. That the Christoffel map is smooth follows from the smoothness of ¢ — I'%(¢p, -, )
established in [97]. The other terms can be discussed as for the 2CH equation. That
(Iel, f) = (-, ~)([¢]7 1) is smooth follows from the smoothness of the H' right-invariant
metric on H®Diff(S)/Rot(S) and the fact that the second component makes the same
contribution to the first component term as for the 2CH. Since the H' right-invariant
metric is compatible with the connection defined canonically by I'® we are done since the
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terms including the second component can be discussed as in the proof of Proposition 1]

O
By our definition of I', fy,
Pre \ (ue + uug) o
(ftt) B ( pt+upz)os0)
( o + 2(Au)ug — A(un,))] 0 9 — [A(pp,)] 0 @)
(pux) o®
_ ( “Hugtzs)] 0@ — [A7 (ppa)] 0 50>
(puz) ®
F(«p f)((@t,ft) (@t,ft)) (4-49)

so that the 2HS equation is in fact the geodesic equation for the connection V, i.e.,
(u, p) = (1, fi) 0 o~ ! solves the 2HS if and only if (¢, f;) is a solution of ([#Z9). Again,
we conclude the following local well-posedness result from Proposition

Theorem 4.27. Let s > 3. Then there exists an open interval J centered at 0 and an
open neighborhood U of (0,0) € E* x E*~! such that for each (ug,po) € U there ex-
ists a unique solution (¢, f) € C*(J,H*Gy) of (EZ9) satisfying (©(0), f(0)) = (id, 0)
and (¢¢(0), f:(0)) = (uo, po). Furthermore, the solution depends smoothly on the ini-
tial data in the sense that the local flow ®: J x U — H*Gq defined by D(t,ug, po) =

(¢(t; uo, po), f(t; uo, po)) is a smooth map.

It follows from Theorem that 2HS is locally well-posed in E* x E*~! for s > 3.
Recall that HS is not well-posed in H*(S); concerning unity of the second component
solution we refer to Chap.

Corollary 4.28. Suppose s > 3. Then for any (ug, po) € E* x E5~ there exists an open
interval J centered at 0 and a unique solution

(u,p) € C(J,E* x B nCHJ,E~' x E¥7?%)
of the Cauchy problem

U+ uuy, = —3A71 (ui—l—pQ)z,
prtup, = — P,
(u(0), p(0)) (w0, po),

which depends continuously on the initial data (ug, po)-

Observe that we also have the following conservation laws.

Lemma 4.29. For the 2HS equation, we have the conservation laws

% [(mo)p?+(pop)faps] =0 and %[(p 0 ©)pa] = 0.

Proof. The proof is exactly the same as for Lemma [£7] O

Concerning the question of local well-posedness of 2HS in the smooth category, we refer
to the open problem chapter.
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4.4.3 The sectional curvature for the 2HS equation

For the 2HS equation we obtain an expression for the curvature tensor which is in form
similar to the equation in [95] for the curvature for HS. In particular we see that the
sectional curvature for 2HS is identically equal to 1/4—as it has been established in
[05] for the one-component HS. Note also that, in finite dimensions, any Riemannian
manifold with constant positive curvature is locally isometric to a sphere, [91], and for
the HS equation, an isometry from H*Diff(S)/Rot(S) to an open subset of an infinite-
dimensional Lo-sphere is constructed in [95] [96]. Hence the geometric picture motivates
to ask for extensions of solutions beyond their breaking time by extending the geodesic
flow on a sphere. This problem has been considered by Lenells for the one-component
HS in [95] 06].

Theorem 4.30. The curvature tensor R for the 2HS equation on H*Gy, s > 3, equipped
with the right-invariant metric [@AT), for vector fields X,Y, Z, is given by

AR(X,)Y)Z =X (Y,Z2)-Y (X,Z).
In particular, the sectional curvature for 2HS is constant and equal to 1/4.
Proof. We have the following local formula for R in terms of the Christoffel map (£.40):
R(X,Y)Z =D1I,(Z,X)Y — D1 I,(Z,Y)X +I,(I,(Z2,Y),X)—-I,(I,(Z,X),Y),
for any vector fields X, Y, Z on H*Gg. By right-invariance of I, i.e.,
(X, Y) 09p = Doy (X 09, Y 0 9)),

it holds that [R(X,Y)Z] oyt = R(u,v)w if X =uop, Y =vopand Z = wo ¢.
Therefore, it suffices to consider the curvature at (id,0). We have

R(u,v)w = D1I'(w,u)v — D1 I'(w,v)u + I'(I'(w,v),u) — I'(I'(w,u),v),
= —I'(wyv1,u) — I'(uzvr, w) + I'(w, u),v1
+IM(wyug,v) + I'(vgug, w) — I'(w,v)zu1
+I(IN(w,v),u) — I'(INw,u),v),

using some of the results presented in the proof of Theorem .14l In the first component,
we have the terms

1 1
—I(wigv1,u1) + §A71(w2zv1u2)z — I%(ugpvr, wr) + §A*1(U2xv1w2)x
1
+I0 (w1, u1) 01 — §[A71(w2u2)z]zvl + I (wipur,v1) — 5A*1(wzxuwz)x
0 L, 0 Loy
+I (vigur, wr) — §A (vazrwa)y — I (wr,v1)zu1 + 5[14 (wav2)z]zu1

1 1
+1° (I’O(wl, 1)1) — §A1(w202)m,u1) + ZAil(wlz”UQUQ + ’lew2u2)m

1

1
-9 (Fo(wl, uy) — EA_l(wgug)x, v1> - ZA_l(wlefQUQ + U1 WoV2) g

Using that 9,A7'0, = u — 1, cf. Remark [3.6] and the relation
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1 1
ror(wy,v1),ur) = KO0 (wy,uy),01) = _Zulﬂ(wlxle) + va(mxmx),

cf. [95], we see that these terms equal

1 _
§A laz [(wlzvl)zulz + (ulxvl)xwlx - (wlzul)zle - (Ulzul)xwlx]
1

1
_i(ﬂ - 1)(w1xu1z)vl + 5(# - 1)(w1zv1x)u1

1 _
+-471 [(wagvi1u2)s + (U2zV1W2) g — (WagU1V2)y — (VazU1W2) 4]

2
1 1

—5 (1= D(wauz)vr + 5 (p = 1)(wav2)us

1 1 — lAfla Lo 1
4U1u(w1xv1x) + 4v1u(w1zulz) 5 . 2(u N (wav2) | U1g

1 1 1
+§A718E |:<—5(/L — 1)(11)2U2)> Ulmj| + ZAflax(lewqu — U1IU)2’U2). (450)

To see that the terms with A=19, cancel out, we use that u;(0) = v1(0) = 0 so that, by
Remark [3.6]

1 1

1.0 (1 1
Ewlxulxvl - §U1w1xle =-A 396 Ewlxulxvl - §u1w1xle

1
- 5147181 (wlzz (ulvlz - ulxvl)

FW1U1 V12 — wlxulxxvl);
which coincides up to sign with the first row terms in (@350), and

1 1 1 1
5’[1)211,2’01 - 5’[1)21)2’111 = —A‘18§ (5’[1)211,21)1 — 5’[1)2’02111)

1,
§A lazc(wQ;c (vour — ugv1) + wa(Vagur — Uz 1)

+w2(v2u1x — UgV1g)).

Using A=192v1 = —v; and A=10%u; = —wuy, the first component terms (E50) thus reduce

to
1 1
Zul(ﬂ(wlxle) + p(wave)) — 7Y ((wizure) + p(wauz)),

which is the desired expression. The second component terms are

1 1 1
5[("1}13:111)3:“2 + U1 wov1] + 5[(“1;101)1)3:“}2 + Wiz Uogv1] — 501 [Wizu2 + U1,W2]g
1 1 1
_5[(w1xu1)xv2 + V1 Wag U] — 5[(U1xu1)xw2 + WizVogu1] + §U1[w1xv2 + V1 W2y
1 1
_E(Fl (w,v)guz + ur [o(w,v)) + E(Fl(w’ )z V2 + V1,12 (w, uw)) (4.51)

and with 0, A0, = i — 1 we can simplify the last row terms

1 1 1
I (w,v)y = zwiaV1p — = (WizV12) + WV —

1
5 S (wavz)

2 2 2
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and

1 1 1 1
I(w,u), = 3 Wislis — §u(w1xulx) + w2z — Eu(wzuz).

It is now easy to see that the terms in (@E]]) reduce to

1 1
7u2((wizvie) + p(w2v2)) — Zoa(p(wizrz) + plwzuz))
so that we obtain ) 1
R(u,v)w = Y (v, w) — i (u, w) .

By the definition of the sectional curvature, we have

(R(u,v)v,u) 1
S(u,v) = 5 = .
() (u, u) (v,v) — {u,v) 4

O

Remark 4.31. Since Lenells [95] uses a different scaling for the H L_metric, he comes to
the result that the sectional curvature for the HS is identically equal to 1. Note carefully
that we have only used that w; and v; vanish at zero; a corresponding assumption on
the second component terms is not necessary in the above proof (cf. Chap. [@]).

4.4.4 A two-component generalization of the uHS equation

As explained in Chap. 3], an interesting variant of the family (I.39) is obtained by setting
m = p(u) — Uze where p(u) = [gu(t, z) dz. Equation (L39) is then called p-b-equation.
Two-component generalizations of the pu-b-equation have not been studied so far. In this
section, we are mainly interested in the case b = 2 and discuss the 2pHS equation which
is obtained from (A1) by setting m = p(u) — uy,. First of all; we show the existence of
a Lax pair for 2uHS in the following lemma.

Lemma 4.32. Compatibility of the equations

Yoz + (MA+ P2 A =0

together with isospectrality Ay = 0 implies the 2uHS equation.

Proof. A straightforward computation, using that A does not depend on time, shows that
1 1
Yazt = —(MeX + 2ppe X)) + (MA + p*A?) (ﬁ - “) Vo = Sua(mA + p?A%)y
and
3 919 1 9
Vigw = Eux(m/\ +p A )w + ﬁ +u (mx)\ + 2ppx/\ )w

1 919 1
+ <2>\ +u> (m/\—l—p A )w:c + 2umx¢-
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Assuming Yy, = V¢ and using that ¢ # 0, we get

)\2(2uxp2 + 2ppt + 2upps) + A(2muy + my + umy + pps) + %(mx + Ugza) = 0.
Since m, = —Uzzz, We obtain
my + umy + 2mug, + pp, =0 and  2p(pr + (pu)z) =0
and hence the 2pHS equation. O

Remark 4.33. A two-component yDP equation has not been studied up to now; 2uDP
could be the system

My = —UMg — 3MUg + 2Py — PUg, a2
{Pt — 2pu, — pau, m=(p—05)u, €S8, t>0,
(4.52)

or

{mt = —umg = 3mug + k3ppe, (n—0%u, z€S, t>0, (4.53)

pr = —kopzu— (k1 + k2)pug,

with k1 = ko = 1 and k3 arbitrary or ko = 1, k3 = 0 and k; arbitrary. Observe that the
replacement ;1 — id in Eq. (I52) and Eq. (£53) yields the two-component versions of
the DP equation which are studied in [I15]. Here, the author generalizes a Hamiltonian
operator of the DP equation to an appropriate 2 x 2-matrix operator; nevertheless, the
paper does not prove integrability of the 2DP equation and we are not aware of the

integrability of Eqs. ([A52]) and ([@53)) either.
Let

P (w0) = == 7 (o + (o) + G

be the Christoffel operator for the yHS equation, as introduced in Sect. To obtain
the Christoffel operator for Eq. (Z41]) with m = p(u) — ugy, we set

_(TA(X1, Y1) = 5(p = 97) 7N (X2Ya),
Tia,0)(X,Y) = ( L(X 1Y + Vi Xa) : (4.54)
Again, we show that the connection
VxY (e, f) = DY (@, f)- X(, ) = Lo (Y (0, £), X (0, f)) (4.55)

with
Lo (X,Y) = a0y (X (o, f)ow Y (o, flop Hoyp

and I';q,0) as in ([@.54) is compatible with the right-invariant metric on H*G given at the
identity by

(X,Y) = (X)) + (X1, Yia) p, + (X2, Y2) - (4.56)

The following proposition is quite similar to Proposition .11
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Proposition 4.34. Let s > 3. Let H*G = H*Diff(S)\®H*~1(S) and let I' be the Christof-
fel map defined in [E54). Then I' defines a smooth spray on H*G, i.e., the map
(@, )= Lp.py: H°G — L2, (H*(S) x H**(S); H*(S) x H*~*(S))

sym

is smooth. Moreover, the metric (-,-) defined by (@320 is a smooth (weak) Riemannian
metric on H°G, i.e., the map

(@, ) = (oo - HG = L2 (TipnH G R)

sym

is a smooth section of the bundle L2, (TH*G;R). Finally, the connection V is a Rie-

sym
mannian covariant derivative in the sense of Definition [1.27).

Proof. The smoothness of the Christoffel map is obtained as in the proof of Proposi-
tion BT} we simply have to replace the operator A by p — 92. Clearly, (-,-) is a positive
definite and symmetric bilinear from on H*(S) x H*~(S). It remains to check that the
map sending (¢, f) to

g@zfxxyy>:3éaxlowfw<u—wﬁ)aao¢*wdx+3écxzo¢*waaow*5dx

is smooth for any X,Y € T(, y)H*G. This follows from

m%ﬁamrwawmmww+A£%%ﬁ@@+é&@n@%@@.

y)
The compatibility with V, in view of the preparatory work in Sect. 3.5l follows from the
compatibility of I'° with the right-invariant metric induced by the one-component inertia
operator 1 — 0%; the remaining terms are of the same form as for the 2CH equation which
we discussed in Proposition 411 |

We know that the 2pHS is a reexpression of the geodesic flow of the connection V defined
in ([@355) on the product H*G. The geodesic equation reads as

(Pt frr) = L, 1) (1, fr), (o1, f1))- (4.57)

We have the following local well-posedness result.

Theorem 4.35. Let s > 3. Then there exists an open interval J centered at 0 and
an open neighborhood U of (0,0) € H*(S) x H*"Y(S) such that for each (ug,po) € U
there exists a unique solution (p, f) € C®(J,H*G) of @ED) satisfying (¢(0), f(0)) =
(id,0) and (¢+(0), f+(0)) = (uo, po). Furthermore, the solution depends smoothly on the
ingtial data in the sense that the local flow @: J x U — H*G defined by D(t,ug, po) =
(¢(t; uo, po), f(t; uo, po)) is a smooth map.

We write the Cauchy problem for 2uHS in the form

up +uuy = —(p—02)7t (Ful + 2u(u)u + 30°)
pt + Upz —pPUz, (4.58)
(u(0), p(0)) (uo, po)-

It follows from Theorem E35] that 2pHS is locally well-posed in H* x H*~! for s > 3.
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Corollary 4.36. Suppose s > 3. Then for any (ug,po) € H*(S) x H*~X(S) there exists
an open interval J centered at 0 and a unique solution

(u,p) € C(J, H*(S) x H*"Y(S)) N C*(J, H*~1(S) x H*7%(S))
of the Cauchy problem [@I8) which depends continuously on the initial data (ug, po).

The previous results hold with the obvious changes also in the C"-category. Assuming
n > 2, the proofs are the same with H*G replaced with C™G. Observe that we also have
the following conservation laws.

Lemma 4.37. For the 2uHS equation, we have the conservation laws

L [mop)p? + (po @) fapa] =0

dt
and
Cllpop)es] =0
ar pPOP)Pz] = .
Proof. The proof is exactly the same as for Lemma [£7] O

The discussion of the local well-posedness problem for 2p/HS will be continued in Chap.
We are now concerned with the sectional curvature for the 2pHS.

Theorem 4.38. The unnormalized sectional curvature S(u,v) = Sa(u,v) for the 2uHS
equation is given by

So(u,v) = (I'(u,v), I'(u,v)) — (I'(u,u), T(v,0)) — 3u(uivr)?

Proof. This is a straightforward calculation similar to the proof of Theorem T4 we
simply have to replace the inertia operator by y — 82. Observe that the additional term
—3p(u1,v1)? comes from the sectional curvature formula for the uHS equation found in
[79], see also Theorem [B.49} the unnormalized sectional curvature Sy (uq,v1) for the pHS
equation equals

Sl(ul, ’Ul) = <FO(’U,17 ’Ul)7 (M — ({)i)FO(’U,l, ’U1)>L2

— (I (ur,wr), (= NI (v1,01)) . — Bp(uagvn).
O

In [79], the authors establish positivity results for Si(u1,v1) by considering a decompo-
sition of Tiq H*Diff(S) according to the representation v = @ + p(u) with p(a) = 0, cf.

Sect. Since we have
al(5).(3)) -3

we see that the same positivity results are valid for H*G in the H?®Diff(S)-direction.
To find a large subspace of positive sectional curvature for 2pHS with non-trival second
component we compute Sa(u,v) for

coskix cosliz
u = , v= ,
cos kox coslyx



4.4 The Euler formalism for the 2HS equation and the 2uHS equation 121

where k; # [; € 2N, i = 1, 2. Note that

1
Sa(u,v) = S1(u1,v1) + 1 /(UQ'UQ);C(/J/ — 83)_1(1@112);5 dz — /FO(U,17U1)(U,2U2)33 dz
S S

1 1
g [ o de = 3 [ @d)tn - 02) (1), do
S S

1 1
+§/F0(u1,u1)(vg)x dz + §/F0(v1,v1)(u§)x dx—/ulxuglevg dz
s S S
4

= Si(ur,v1) + Y I, (4.59)
where
1
b= [[Cuava)ae = ) (uar), de,
S

1
B == [@)0u= 037 ) o

1 1
I = —/Fo(ul,vl)(uz’vz)x de+5 /FO(UhUl)(US)z dz + 3 /Fo(vlvvl)(u@m dz,
S S §
1
I, =~ /(lev2 + ’leu2)2 dz — /ulwu?lev? dz.
4 S S

We write A = p — 92 and apply the identity
A2 =0,A710, =2PA = -1,

cf. Remark [33l Using integration by parts and the orthogonality relations ([€32]) and

#33) we find

Sl(ulavl) = <FO(U1,01),FO(U1,’U1)> - <F0(u17u1)7F0(Ulav1)> - 3:“‘(7"‘1961)1)2

1 1
=-3 / AT, (urv12)JAT (ur, v1) do + 5 / AT, (u2)]AT (01, v1) dar
S S
1 1
P /ulxlepo(ulvvl)x dr — = /’U,%IFO(’Ul,’Ul)x dz
2 Js 2 Js
1 1
= —Z/lele(A_laz)(ulx’le)dl‘—|— Z/u%x(A_laﬁ)(U%x)dl‘
8 S
1
1
- 1_6";%1%' (4.60)

Our choice of k1 and [y implies that the one-component sectional curvature is strictly
positive. All we have to show is that the second component terms do not contribute
negative terms which make the total sectional curvature negative. Similar computations
show that the terms I; and I5 in (53] are

1 1 1
I =—= /uQvgaﬁA*Iugvg de = - /ugvg(l — p)(ugve) da = = /u%v% dz
4 Js 4 Js 4 Js

and
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1 1 1 1
I, = —/u%(‘)ﬁA‘lvgdx: —/u%(,u— 1)v3de = ——/ugvgdx—l——
1) 1) 1

s 16
Since
1 _
- /I’O(ul,vl)(ugvg)m dz = 5 /A 1(ulmvu)x(uw2)x dz
S S
1
=3 /[(1 — 1) (U12V14) | ugve do
S
7
= - [ u1,u2v1,v2dx
2 Js
we find that
1 1 1
Is+ Iy = 3 /I’O(ul,ul)(vg)m dz + 5 /Fo(vl,vl)(ug)m dz + 1 /(u%xvg +v? ud)dz
S S S
1 1
= o n(v3) + (vl )p(uz)
1
= 1_6(k% +13).

It follows from ([@59) and (L60) that

So(u,v) = 1—16 (L+ K +13+K13) > %
The importance of this estimate lies in the fact that we cannot find a sequence
{(tn,vn); n € N} of elements in the subspace under consideration such that S(uy, vy) —
0 as n — oo. Recall that, for the one-component pHS equation, we constructed a se-
quence of sine functions such that the sectional curvature of these functions with the
constant function 1 tends to zero, cf. Sect. This cannot happen within our subspace
for the two-component extension of the pHS equation.

Our calculation also shows that the sectional curvature is equal to 1/16 in the direction
of the second component since

s((n)(n)=r+e-5

We have thus shown the following proposition.

Proposition 4.39. Let s > 3. Let S(u,v) = (R(u,v)v,u) be the unnormalized sectional
curvature on H*G associated with the 2uHS equation. Then

Jor all vectors u,v € Tiiq,0)/H*G, of the form

" — (coskw)7 V= (Cosllw), ki #1; € {2m, 4m, ... }.

coskox coslyx

Moreover, the normalized sectional curvature satisfies

S(u,v) 1

lunvfz2 4
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Jor all vectors u,v € Tiiq,0)H*G of the form

0 0
u_<cosk2x>’ U_<COSl2x)’ ko # Iy € {2, 4m,... }.






Chapter 5
The non-periodic b-equation

Up to now we have only discussed periodic equations, i.e., we assumed that z € S = R/Z.
In this section we will extend some of our results to the non-periodic case. Our aim is to
discuss the b-equation on the real line, i.e., the family

my = —Mgt — buym, m=u— Uz, xR, t>0. (5.1)

In [48] the authors show that the Cauchy problem for the b-equation (GI)) is locally
well-posed in the Sobolev spaces H*(R) for any s > 3/2. Furthermore, they explain the
precise blow-up scenario and global well-posedness settings.

The goal of this chapter is to apply the theory in [41] to the non-periodic b-equation.
Precisely, we will deal with the b-equation on the group of W°-diffeomorphisms on the
real axis. Our key result is that the Eulerian velocity u in fact has a local flow on the
diffeomorphism group under consideration, at least for a small time interval; this property
is described by the notion regularity (in the sense of Milnor) in the analysis of infinite-
dimensional Lie groups, cf. [I08]. Once we have established regularity of our group, it
will be straightforward to apply the theory explained in Sect. B.3.11

The main problem with the group Diff>(R) of smooth and orientation-preserving
diffeomorphisms R — R is that Diff**(R) is not a regular Fréchet Lie group, and hence
we cannot ensure the existence of local flows for our purposes. Strictly speaking not every
element of the Lie algebra Vect®™ (R) can be integrated into a one-parameter subgroup,
cf. Appendix [Al To overcome this, one suitable candidate was proposed in [105], namely
the rapidly decreasing diffeomorphisms

SDifE(R) == {id + f; f € S(R), f' > —1}. (5.2)

Here . (R) denotes the Schwartz space of rapidly decreasing functions. This group turned
out to be a regular Fréchet Lie group. A simpler example is studied in [34]; it is the
subgroup of Diff>*(R) defined by

H®Diff(R) == {id + f; f € H®(R), f’ > —1} (5.3)

where H*(R) = N2, H"(R) and H™(R) are the Sobolev spaces on the real line. In [34]
the authors work out a proof that Eq. (5)) for b = 2 is well-posed in H>°(R). We extend
this result to a larger class of function spaces and consider, for 1 < p < oo, the spaces
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W2 (R) = ﬁ WF(R)
k=1

and the diffeomorphism groups
W eDiff(R) == {id+ f; f € W;°(R) and f' > —1} (5.4)

and write the non-periodic b-equation as an evolution equation on Wp‘X’Diff(R). Note that
the group H*°Diff(R) corresponds to the case p = 2 in our setting; hence our work is
a generalization to arbitrary 1 < p < oo and a general b. More precisely, we prove the
following theorem in which the space WC3(R) stands for the intersection of the Sobolev
space W2(R) with the space C(R) consisting of C*(R)-functions f such that f, f', f”
and f"” are bounded.

Theorem 5.1. There is an open neighborhood V C WC;’ (R) of zero and a real number
6 > 0 such that for all £ € VN W2 (R), the problem

my = —(mgu 4+ bmug), m=u—uz,, u(0)=E¢
has a unique solution u € C*°((—9,9), W °(R)). Furthermore, the map

(=0,0) x (VNW(R)) — W°(R), (t,&) = ult)
is smooth.

For any regular Fréchet Lie group, the exponential map is well-defined (cf. Appendix [A]).
For the b-equation on R, we show that this map is a smooth local diffeomorphism.

Theorem 5.2. The exponential map for the b-equation on Wp‘X’Diff(]R) is a smooth local
diffeomorphism near 0 € W°(R) onto a neighborhood of id € W Diff(R).

In a first step we establish that the diffeomorphism groups defined in (&.4]) are regular
Fréchet Lie groups. Let £ € N and 1 < p < co and recall that

Wf (R) = {f € L,(R); f™ exists in the weak sense and

F™ e L,(R) foralln=1,.. k;}

and

CFR) = {f € C*(R); sup‘f(”)(x)’ < oo for all n = O,...,kj},
z€R

endowed with the usual norms

k , 1/p k
b = | 2 £ and fleg =3 |1
? n=0 »(R) n=0

Observe that since we do not fix p = 2, we have in general no inner product on the
spaces WF(R). For k = 0 we define WJ(R) = L,(R) and C)(R) = Cy(R), the space of
continuous and bounded functions on R.

It is well-known that the spaces (W} (R), ||~||W§<R)) and (CF(R), ||~||C§(]R)) are Banach

spaces. Furthermore, according to Theorem 5.4 in [2], we have the imbedding

oo
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Wy(R) = C ' (R)

for k e Nand 1 < p < co. We now define
WCR) =Wy R)NCyR), | lwesm = llwse + lepm -
Lemma 5.3. The spaces (WC’,’; (R), ||-||WC’,C(R)), keN, 1< p< oo, are Banach algebras.

Proof. Clearly, (WC}(R), I-lwcrr)) is a normed vector space. We check that WCF(R)

is complete: Any Cauchy sequence (fy),cy C WCI’f (R) is also a Cauchy sequence in
the Banach spaces (W (R), ||y (r)) and (CK(R), ||||Cl;)c (R))- Let us denote the limits by

f € WER) and g € Cf(R), i.e.,
o= [ in Wy(R),  fn—gin Ci(R).
It remains to check that f = g. This will follow from |f — g||C§—1(]R) = 0. Note that
"'”C{;’I(R) < ”'”C{j(R) implies that f, — ¢ in Cf~*(R). Hence
If - g"cf‘l(R) = nh_{l;o If - fnncf—l(]g)
< Climsup |f = falws g
n—00 P
=0.

To see that WC’Z]f (R) is a Banach algebral (where the product of two functions is defined
by pointwise multiplication), we have to show that fg € WC}’D“ (R) for all f,g € WCI’f (R),
with a suitable estimate. For this purpose, we apply the Leibniz rule

(fo)) = z]: <Z>f(i)g(ji)’

=0

the estimate
|99 _ < CUlwesm lolwor e

/R‘(fg)(j)(x)‘p dz < /R (é <Z> Hf(i)
. | P
<P ||f||'v)vc,§<R>/R (; ‘g(l)(x)D dm

k
N4
<CP ||f||€vc;y(R) kpz Hg(l) L,(R)
i=0 ?

< (WP U Py oy 19 cn o -

and

p
o)) a

for all j € {0,...,k} and with C' = C(j). This achieves our proof. O

1 That WZIf(Q) for 2 C R™ having the cone property and kp > n is a Banach algebra is proved in
[2] where the author establishes the estimate |uv|y k(o) < Klulwr(g) [vlwe (o) and redefines the
p p p

sz—norm by scaling with K = K (n, k,p).
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Next, we consider the infinite intersection
o0
=Wy (®)
k=1
Recall that we have the inclusions

WitHR) C WCE(R) € W (R).

Hence

38

ﬂ Wk-i—l ﬂ ch ﬂ Wk

1 k=1

= ﬁ WCF(R)
k=1

In particular, the space W °(IR) is approximated by Banach algebras in the sense of
Definition [3.31]

Now we study the diffeomorphism groups (5.4]) which we can approximate by the
groups WC’leff ={id+f; fe WC”“( ) and f’ > —1} . Note that the derivative of
any id + f is strlctly positive whenever f’ > —1 so that the diffeomorphisms considered
here are orientation-preserving. The tangent space of WCFDiff(R) at id is W CJ (R). Note
that we have no inner product on WC} (R), so that WC}Diff(R) cannot be regarded as a
Riemannian Banach manifold. In our next theorem, we show that W °Diff(R) is a regular
Lie group with the Lie algebra W°(R), using techniques written down in [34} [105].

k

and we see that

Proposition 5.4. The diffeomorphism group Wy Diff(R) is a reqular Fréchet Lie group.

Proof. Our proof is subdivided into the following steps.

Step 1: We establish that W °Diff(R) is a group.

Let f,g € Wy°(R) with f’,g" > —1 be given. First, we show that (id + f) o (id + g) €
WeDiff(R). To this end, we have to verify t.hat h(x) = g(x) + f(x + g(x)) is in W°(R)
with k' > —1. Clearly, h € C°(R) and f@, g\ are in L,(R) N Cy(R) for any j > 0.
Furthermore, 1+ ¢’(z) > € for some £ > 0 and hence

j p _ f(j)( ) o1
/R‘f()(x—l-g(x))‘ dx_41+g’L(id+yg‘)l(y)) H

for all j > 0. Since any derivative of f o (id 4 g) is a finite sum in which each term is a
product of derivatives of id+g with some f) o (id+g), the fact that 1+g¢'(z), ¢"(x),... €
Cy(R) and (5.5) show that h € WCE(R) for all k > 0. Finally,

W(z) =g'(x)+ f'(x+ g(x) 1+ g (2))
=1+ @)1+ f(z+g@)) -1
> —1.

(5.5)

L, (R)

Second, we must show the existence of f € Wye(R) with f' > —1such that (id+ f)~! =
id + f. Let us prove that

f=—fold+f)
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Of course, (id+ f)o (id + f) = id. Clearly, f is smooth and f() is bounded for any j > 0
since ) € Cy(R) for all j > 0 and

1
Tt (Gd+ (@)

and similarly for higher order derivatives of (id 4+ f)~'. The fact that all fU) are L,(R)-
functions and the boundedness of the derivatives of (id + f)~! immediately yield that
f9) € L,(R) for any j > 0. Finally, it follows from f(z+ f(z)) = — f(x) with y = x4+ f (=)
that ) )

~/ x

S

T =T It P @
Since id + f is a diffeomorphism, this holds for all y € R.
Clearly, id is the neutral element of W Diff(R) and o is associative so that W *Diff(R)
is a group.
Step 2: We show that W °Diff(R) is a Lie group, i.e., we show that the multiplication
map and the inversion map are smooth as defined in Appendix [Al

(ot f@) <e ! <oo

Let us assume that we are given smooth curves ¢t — id + f(¢,-) and ¢t — id + g(¢,-) in
WeDiff(R). By definition, we have to check that

t— (id+ f(t,-)) o (id+ g(t,-))

and
te [id+ f(t,)] "
are smooth. Obviously, = + g(t,x) + f(t,x + g(t,z)) depends smoothly on ¢ and hence
multiplication is smooth. Recall that we have (id + f(t, )"t =id+ f(t,-) with f(t,2) =
—f(t, (id + f(t,-))"1(x)). Thus
_ d _

= ft(ta T+ f(ta (E)) + fm(tvx + f(tvx))ﬁ(ta (E)
and hence B

~ t,x + f(t,x

ft(t,x):— ft( f(~ )) )

1+ fult,z + f(t,x))

By the successive computation of t-derivatives of the left-hand side, one proves inductively
the smoothness of ¢ — (id + f(¢,-))~!.
Step 3: We claim that W °Diff(R) is regular.

By definition, cf. Appendix [Al we have to prove that for any X € C*°(R, W;*(R)) the
problem

{so(O,x) =z
o(t,x) = X (t, p(t,x))

has a solution ¢ € C*(Ix,id + W;°(R)), where Ix C R is some non-empty interval
containing zero. First, there is a solution ¢ € C*°(Ix, WC)Diff(R)) satisfying

o(t.a) o+ [ X(spls.0)ds
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By the same arguments as in the proof of Theorem 2.7 in [34] one sees that ¢ is as
desired. O

The proof of Proposition (4] also shows that u o ¢ € WCF(R) for all ¢ € WC}DIff(R)
and u € WC’Z]f (R). Finally, we observe that the operator 92" maps the space WC’Z]f (R)
continuously into WC;;*’”(R). In the proof of our main theorem, we apply the Cauchy-
Lipschitz Theorem to obtain the existence and uniqueness of solutions in the geometric
picture for the b-equation. As explained in Sect. B.3.1] we write P,(f) = R, 0 Po R,-1,
where R, denotes the right translation given by ¢, P(u) = A7 [Buyuzs + b(Au)u,] and
A=1-0? and set Q = AP.

Theorem 5.5. There is an open neighborhood U of 0 in WC3(R) and a real number
§ >0 so that for all § € UNW°(R), there exists a unique p € C*((—6,5), W Diff(R))
solving

@it(t) = —Py(pt),
o(0) =id (56)

¢i(0) =&
Furthermore, the map
(=6,0) x (UNW;*(R)) = WEDiff(R) x WE(R), (£,€) — (o(t), (1))
is of class C*°.

Proof. Since A,(Q are polynomial differential operators with constant coefficients, it is
easy to see that R,0 AoR,-1 and R,0QoR,-1 are again polynomial differential operators
with coefficients being rational functions of derivatives of p (cf. [4I]). Hence

WCIDIff(R) x WCFHR) — WCE*(R),
(p,v) = Ry0 Ao R,1v

and

kT); k k—
WCEDiff(R) x WCF(R) — WC;*(R),
(p,v) = R,0QoR,-1v

are smooth. Furthermore, the local inverse theorem shows that also

WCFDIff(R) x WCH2(R) — WCH(R),
(p,v) = Ry0 A" o R-1v

is of class C'°°. Hence

WCIDIff(R) x WC) (R) — WCE(R),
(p,v) = Ryo (AT'Q) o Ryorw

and

WCFDIff(R) x WCFH(R) — WCE(R) x WCH(R),
(psv) = (v, =F,(v))
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are smooth for all £ > 3. From the Cauchy-Lipschitz Theorem we obtain the existence
of an open neighborhood U C WC3(R) of zero and § > 0 so that (5.0) has a unique
solution in WCS’Diff(R), defined on (—4,0), and that for all £ € U the map

(=6,6) x U — WCpDIff(R) x WC(R),  (£,€) = (2(t), 21 (1)

is smooth. For k£ > 3, let
Up :=UNWCE(R).

Let us proof by induction that, assuming & € Uy, @(t) € WCFDIff(R) and ¢ (t) €
WC’Z]f (R) for any t € (=4, 6) and all k > 3. The strategy of our proof can be found in [34].
For k = 3 there is nothing to show. Assume that ¢(t) € WC}FDiff(R) for some k > 3. By
M))
[(u = tga) 0 @]‘Pg =& — &aa,

with u = @0~ . Hence if § € U1, then u(t) € WCETH(R) for all t € (—4,6). A further
application of the Cauchy-Lipschitz Theorem yields a solution ¢ € C'*° (13, WC}’D“HDiff (R))
of @y = —P,(¢¢) with ¢(t) = id and @;(t) = u(t), where I; is an open interval containing
t. Unity of the solution implies that

p(s) = @(s) o p(t) (5.7)

for all s € I; N (—4,6). That ¢(t) € WCFDiff(R) for all ¢t € (—4,6) follows from the
fact that the set
{t € (=0,0); p(t) e WCLH'Diff(R) }

is both open and closed in (—4¢,¢), which is a direct consequence of ([B.7). O

Theorem [£.]] is an immediate consequence of the above result and of the fact that
W Diff(R) is a regular Lie group. The proof of Theorem is totally similar to the
proof of Theorem [3.16] or Theorem [3.21]






Chapter 6

An outlook: open problems and further
topics

In this final chapter, we present some open problems and further questions related to
the issues of this thesis. The following list does not make any claims of being complete;
it rather presents topics which might be worthwhile to study on account of our results.
Maybe, some of the problems can be solved quite similarly to what we presented. Others
might need some new and profound ideas.

1. A more general variant of the b-equation is discussed in [48] and reads as
U — P Uppn + Coly + b+ Duug + Nuger = a2(buxum + Ulgzy), (6.1)

where o, b, I', ¢y are arbitrary real constants. Interestingly, Eq. (G.]) includes the KdV
equation (o = 0, b = 2) and reduces to (LZI)) for I' = ¢y = 0 and a = 1. We call
Eq. 1) the dispersive b-equation because of the terms proportional to u, and .
For b = 3, additional results are presented in [57, [112]. In [48], the authors mainly es-
tablish local well-posedness of (G.]), and look for blow-up solutions and global strong
and weak solutions. It is an interesting question whether Eq. (6.)) is suitable for a
reformulation on the diffeomorphism group of the circle and to which novel results the
geometric picture might lead. Perhaps, the geometric viewpoint results in a further
interpretation of the effect of the dispersive terms. Similar questions can be asked for
possible p-variants and 2-component generalizations of Eq. (G.1]).

2. In this thesis, we only discussed strong solutions, i.e., the functions under consideration
inherited enough regularity to be plugged into our equations. In Chap. [[lwe motivated,
taking the example of peakons, that weak solutions also form a class of meaningful
solutions. The CH and the DP can be written in the form

u+ F(u), =0, t>0,z€S,

cf., e.g., |20, [43] [128§]. Let g, the initial data, be in some function space F(S). A weak
solution is a function w: [0,00) X S = R, if, given T' > 0, u € L2 ([0,T); F(S)) and
the identity
T
/ /(ugpt + F(u)ps)dedt + /uo(a:)go(o, xz)dz =0
o Js s

is satisfied for all ¢ € C°([0,T) x S) where ¢ € C([0,T) x S) if it is the restric-
tion to [0,T) x S of a function having continuous derivatives of arbitrary order on R?

133
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with compact support contained in (=7,T) x R. If u is a weak solution on [0,7") for
every T > 0 then it is called a global weak solution. A natural question which comes
up is whether our geometric approach is appropriate to include weak solutions. Note
that s > 3/2 is the required assumption in order for H*Diff(S) to be a topological
group, but the interesting peaked solutions of the Camassa-Holm equation belong to
H3/275(S) for any € > 0 and not to H3/2(S). Lenells [94] remarks that peakons can
at any rate not be captured rigorously by means of his approach.

3. In Chap. Bl we restricted ourselves to the case b = 3 and discussed the uDP equation
and its weakly dissipative variant. Presumably, the local well-posedness result pre-
sented in Sect. 3.3.2 can directly be generalized to arbitrary b € R. Then the formulas
for the Christoffel map, the geodesic equation and the conservation law in Lemma [3.27]
slightly change. It is a further task to find out whether our approach to the weakly
dissipative uDP can be generalized. There might occur some difficulties when applying
our arguments in Sect. 3.4 to the equation with general b since the weak form of the
weakly dissipative p-b-equation reads as

up + vty + Au=—(u — 8§)_1(buxu(u) — bug gy + 3Ugtys),

and for b # 3 the last two parenthesis terms do not cancel out. What is also still open
is whether the geometric theory applied in the proof of Theorem B.38] yields a maxi-
mal existence time which is independent of s in the sense of Remark [B.8 (which would
be achieved from Kato’s theory, cf. [125]). Are there strongly dissipative variants of
1DP? How can dissipative effects be included in the two-component versions which
we discussed?

4. By suggestions of a referee, it is worthwhile to study whether Theorem can be
improved by showing that the flow is analytic. It requires to improve Proposition 3.24]
by showing that the vector field is actually analytic. The proof might become even
somewhat shorter as it suffices to show that the vector field is complex differentiable.
There are already results of this type in the literature.

5. The real line case: Most of our work yields results for periodic equations. A very gen-
eral question is which changes have to be done to handle the non-periodic case. In our
final chapter, we saw that we needed to exchange the manifold configuration space to
extend our theory.

6. It would be nice to have some numerical results to reinforce our theorems. For instance,
some computer-based calculations related to the blow-up result in Theorem B.43] would
be illustrative. In [60] the author applies a numerical scheme to compute solutions of
the DP equation.

7. Up to today, only a few studies of two-component generalizations have been published
so that our results, in particular the geometric aspects, are quite groundbreaking.
There are several open problems for systems with two variables, e.g., derived from the
DP equation. The question of integrability is not answered yet (although there are
some conjectures, [I15]). The construction of a Lax pair seems to be a hard exercise.
Similarly: Is it possible to define an integrable two-component extension of pDP? In
[12], the authors discuss a tree-component generalization of the Camassa-Holm equa-
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tion, see also [50]. Further research projects might deal with three-component versions
of our equations.

8. It would also be nice to have a local well-posedness result for the 2HS and the 2pHS
in the smooth category. Note that we have established suitable conservation laws in
Lemma and Lemma [£37 Maybe a problem is to generalize Proposition [£9] to
the 2HS and the 2uHS; recall that in the proof of Proposition 9] the condition (Z20)
is crucial and it has been obtained from Kato’s semi group approach. Thus a further
task would be to find out whether Proposition [£9 holds in a similar manner for the
2HS and the 2pHS. Using our approach, this would result in a well-posedness theorem
as desired. It might also be possible to apply the techniques presented in [4I], but
with the second component we have the problem that integrating the equations in

Lemma [4.29] gives
t
1
fO=p0 [ s
0 Pa(s)

Paa(t) = @a(t) (Po Ot SJ;Z((SS)) ds —my /O t w%(s) ds) ;

hence ¢, depends on f, which itself depends on ;. Thus it is not straightforward to
apply the results of Escher and Kolev for the b-equation, cf. Sect. B3Il The problem
for 2pHS is similar.

and

9. We showed that 2HS is locally well-posed in E° x E°~1, cf. Sect. 42 We do not
expect that 2HS is well-posed in H* x H°~!, since setting the second component p
equal to zero we would obtain well-posedness of HS in H*, which is not possible; recall
Sect. 2Tl where we explained that the solution of HS is not unique. Our motivation
for choosing the second component to be E*~! is motivated by our experiences with
the 2CH and the 2DP. Can we obtain local well-posedness for 2HS in E® x H*~'?
A closely related problem is to solve the geodesic equation for 2HS explicitly (as it
has been done by Lenells [97] for the one-component equation). Integrating the first
equation of 2HS gives

1 1
Upy = ——ui — Ulgy + =p° + c(t)
2 2
with some function c. Integrating this equation once again over S we obtain from
Js tte dz = 0 that
1
o) =~ [+ ),
2 Js
Moreover,

1 1
Sq Sui dx = /Sumum dx = /S <—5u935 — UlgUpy + §p2um> dx =

/p2uxdx
S

1d 1
——/dew=/ptpdx= —/(pU)xpdx=/wpxdw= ——/uprdw
2dt Js s s s 2 Js

| =
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10.

11.

so that ¢(t) is constant and assuming (ug, p) is nontrivial, we may rescale to obtain

¢ = —2. This shows that

Lo
T

1y
utx:—au — Ulgy + =p° — 2.

2

Let ¢ be the geodesic flow associated with u, i.e., ¢ = u o ¢ and ¢(0) = id. Since
(uz 0 P)t = (Wia + UUzz) 0

we conclude
1 1

(uz 0 @) = =5 (s 0 )" + 5 (po )" =2

where
(po@) = (pt +ups) oo =—(uz0p)(pop)
In terms of the variables z;(t) = (uz0p)(t, ) and 22(t) = (pop)(t, x) we finally obtain

the system
{21(75) = —3(21(t)* = 22(t)* + 4),
Z9(t) = —2z1(t)2za(t).

For p = 0, this system reduces to Eq. (5.4) in [97] and can be solved explicitly to ob-
tain the solution formula presented in Sect. 4l Can we solve the above system for
2HS and what does the result tell us about the solution of 2HS? Finally, our curvature
computation for 2HS raises the following issue: Is there a sphere interpretation for
2HS, similar to the one-component equation? Can we apply continuation arguments
for the geodesic flow on this sphere? Is there a connection between the integrability of
the 2HS equation and the fact that it describes geodesic motion on a sphere?

For 2CH and 2pCH, we computed the sectional curvature for pairs of vectors with a
cosine function in each component. Similar computations could be carried out admit-
ting the components to be equal to a sine function or 1. We did not concentrate on
subspaces of negative sectional curvature.

In this thesis, we did not consider the Virasoro group Diff(S) x R. The Virasoro
group and the Virasoro algebra Vect(S) x R are one-dimensional extensions of the
diffeomorphism group Diff(S) and the Lie algebra of vector fields. It could be shown
that KAV, CH and HS can also be modelled on Diff(S) x R; precisely, these equations
reexpress the geodesic flow with respect to different right-invariant metrics on an
appropriate homogeneous space. In [80] the authors describe how Arnold’s approach
to the Euler equations as geodesic flows of one-sided invariant metrics extends from
Lie groups to homogeneous spaces. For further reading, we recommend [24] where
the authors consider geodesic exponential maps and prove that KdV on the Virasoro
group does not allow for a local diffeomorphism near the origin.



Appendix A
Basic facts from Banach space analysis

In this appendix, we summarize some basic results from the analysis of Banach spaces
and Fréchet spaces as explained in [85] (where the authors discuss even more general
locally convex vector spaces) and [87].

A.1 Differential calculus in Banach spaces

Let E,F be Banach spaces, U C E open and x € U. A map f: U — F is called
differentiable at x if there exists a continuous linear map A: E — F and a map 1 defined
for all sufficiently small A in E with values in F' such that

flw+h) = f(@)+AB) + [Blo(h),  Jim y(h) =0.

The (unique) linear map A is called the derivative of f at x and is also denoted by f'(z)
or Df(z). If f is differentiable at all x € U we say f is differentiable in U. In that case,
the derivative [’ is a map

Df=f":U— L(E,F)

from U to the Banach space of continuous linear maps F — F, associating to each
x € U the linear map f’(z) € L(E, F). If f’ is continuous, we say f is of class C*. Since
L(E, F) is a Banach space, we can define higher order derivatives inductively and we say
that f is CP if all derivatives D* f exist and are continuous for 1 < k < p. Note that
D?f(x) € L(E,L(E,...,L(E,F)...)). The notion smooth is used for C*°-maps. It is not
hard to prove that many of the well-known results from calculus (e.g. the product rule,
the chain rule etc.) are also true for maps f: F — F and the multi-variable analysis is
also similar, cf. [87].

We also need a second notion of differentiability; recall Sect. [[2.1] The following
definition deals with Fréchet spaces, i.e., complete metrizable locally convex spaces. We
will discuss Fréchet spaces in a subsequent section.

Definition A.1. Let F and F' be Fréchet spaces, let U C F be open and f: U — F.
We say that f is Gateaux differentiable at x € U if there exists a continuous linear map
Df(z): E — F such that

Df () = lim +(f(z +t0) ~ [(x))
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for all v € E. We call f Gateaux differentiable in U if f is Gateaux differentiable for all
x € U. We say that f is Gateauz-C* in U if f is Gateaux differentiable in U and the
map

(x,v) » Df(x)v: U X E— F (A1)

is continuous (jointly on a subset of the product).

We say that f is Gateaux-C? if both f and the map in (A1) are Gateaux-C*. The notion
of Gateaux-C? for p > 3 is defined inductively. We refer to [58] for further details about
the calculus for Gateaux differentiable functions in Fréchet spaces.

If f is a map between Banach spaces then both definitions of differentiability apply. If f
is differentiable in the Fréchet sense then f is Gateaux differentiable and both derivatives
coincide. Contrariwise, if f is Gateaux-C' then f is differentiable in the normal sense.
Observe also that a Fréchet differentiable function is continuous and that this implication
fails for Gateaux differentiability.

We know that the fact that a map f is CP, p > 1, implies that f is Gateaux-C?. In
the converse direction we have the following result.

Proposition A.2. Let E and F be Banach spaces, let U C E be open and f: U — F be
a continuous map. If f is Gateauz-CPT1 for some p > 0, then f is CP. In particular for
smooth maps between Banach spaces the two definitions coincide.

A proof can be found in [77], p. 99 and p. 110. Note that our Gateaux-CP? maps correspond
to the class C? in [77]. We also have the following result.

Proposition A.3. Let E, F and G be Banach spaces and let U C E be open. Let f: U x
F — G be a CP-mapping such that f(x,u) is linear with respect to the second variable
u. Set h(x)u = f(z,u) and regard h has a mapping of U into L(F,G). Then h is a
CP~-mapping.

For a proof we refer to [113], Thm. 5.3. The way in which we use Proposition and
Proposition [A3 is the following: Let £ and F be Banach spaces, U C E open and
(z,u,v) = P(z,u,v): U x E x E — F be a continuous mapping, linear in » and v.
Assume that P is Gateaux-CP*!. Then P is CP by Proposition [A.2l By Proposition [A.3]
the map

(x,u) = (v P(z,u,v)): Ux E— L(E,F)

is CP~L. Since L(E,L(E,F)) ~ L%(E, F), where L¥(E, F) is the Banach space of con-
tinuous k-multilinear maps E — F, another application of Proposition [A.3] yields that

x = ((u,v) =» P(z,u,v)): U — EQ(E,F)

is CP~2. We see that if P is Gateaux-smooth then x — P, = P(z,-,-) is a smooth map
U— L2(E,F).

A.2 Inverse mappings and differential equations

Let U C E be open, E a Banach space, and let f: U — F be a CP-map for p > 1 into
the Banach space F'. Then f is called a CP-isomorphism or CP-invertible on U if the
image f(U) = V is open in F and there exists a CP-map ¢g: V — U such that go f
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and f o g are the identity maps on U and V respectively. We say that f is a local CP-
isomorphism at a point x € U (or is locally CP-invertible at x), if there exists an open
set Uy, x € Uy C U, such that f|y, is CP-invertible on U;. Clearly, the composite of two
(local) CP-isomorphisms is again a (local) CP-isomorphism. The inverse mapping theorem
provides a criterion for a map to be locally CP-invertible in terms of its derivative.

Theorem A.4 (Inverse Mapping Theorem). Let U be open in a Banach space E
and let f: U — F be of class CP. Let xg € U and assume that f'(x9): E — F is a
topological isomorphism (i.e., invertible as a continuous linear map). Then f is a local
CP-isomorphism at xg.

An important corollary of the Inverse Mapping Theorem is the following.

Corollary A.5. Let U and V be open subsets of Banach spaces and let f: U =V be a
CP-map which is also a C*-diffeomorphism. Then f is a CP-diffeomorphism.

One of the most important theorems in the multivariable Banach space analysis is the
Implicit Function Theorem.

Theorem A.6 (Implicit Function Theorem). Let U,V be open sets in the Banach
spaces E,F and let f: UxV — G be a CP-mapping. Let (a,b) € U XV and assume that
the second partial derivative Dy f(a,b): F — G is a topological isomorphism. Let f(a,b) =
0. Then there exists a continuous map g: Uy — V defined on an open neighborhood Uy of
a such that g(a) = b and f(z,g(x)) =0 for all x € Uy. If Uy is taken to be a sufficiently
small ball, then g is uniquely determined and is also of class CP.

By a wvector field on U C E we mean a mapping f: U — E which we interpret as
assigning a vector to each point of U. Let g € U. An integral curve for f with initial
condition x¢ is a mapping «: J — U, defined on some open interval J containing zero,
such that a(0) = o and such that o/ (t) = f(«(t)). An integral curve can also be viewed
as a solution of the integral equation

a(t) = xg —1—/0 fla(s))ds.

By a local flow of a vector field f: U — E at x¢p € U we mean a mapping a: J x Uy — U,
where 0 € J C R and Uy C U are open and xy € Up, such that for each x € Uy the map

t— ax(t) = alt, z)

is an integral curve for f with initial condition «(0,2) = x. We have the following
existence and uniqueness result, see also [3].

Theorem A.7 (Cauchy-Lipschitz). Let f: U — E be a vector field satisfying a Lip-
schitz condition

| (@) = f)] < Kz =yl

where K > 0. Let xo € U. Let 0 < a < 1, assume that the closed ball Bag (x0) is contained
in U and that f is bounded by a constant L > 0 on this ball. If b > 0 satisfies b < a/L
and b < 1/K, then there exists a unique local flow

a: (=b,b) X By(zg) = U.
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Note that any C*-function is (locally) Lipschitz continuous. Concerning uniqueness, one
can show that, if f: U — F, U C E open, is of class CP, p > 1, and

Oélljl—)U, 0422.]2—>U

are two integral curves for f with the same initial condition zg, then a1 and aw are equal
on J; N Ja. Concerning regularity of the flow, we have the following theorem.

Theorem A.8. Let 1 <p < oo and let f: U — E be a CP-vector field. Then the flow of
f is of class CP on its domain of definition.

If a CP-vector field f has an additional dependence on time, i.e.,
f:dxU—=E,

then, by setting
JrIxU—=RxE, J(to)=(1f(tz),

one can regard f as a time-independent vector field on J x U and it is easy to see that
the study of time-dependent vector fields reduces to the study of time-independent ones.
The same is true if f depends on some additional parameters.

A.3 Fréchet spaces

The traditional differential calculus works well in finite-dimensional vector spaces and
Banach spaces. Interestingly there are various differences to the analysis of general locally
convex topological vector spaces. We will concentrate our attention to Fréchet spaces
in this section and, of course, we will only mention the essential facts to develop an
understanding of regular Fréchet Lie groups.

Recall that a Fréchet space is a locally convex topological vector space X such that
the topology of X is generated by a countable family of semi-norms (p,)nen and such
that (X, d) is a complete metric space where

_ = -n pn(x_y)
d(x’w_;z 1+ po(z —y)

A major difference to Banach spaces is that there exists no Inverse Function Theorem
for Fréchet spaces. Instead there is a theorem by John Forbes Nash and Jiirgen Moser
which can be regarded as a generalization of the Inverse Function Theorem on Banach
spaces to the class of so called tame Fréchet spaces. In contrast to Banach spaces for
which the invertibility of the derivative at a point is sufficient for a map to be locally
invertible, the Nash-Moser theorem requires the derivative to be invertible in a whole
neighbourhood. The theorem is widely used to prove local well-posedness for non-linear
partial differential equations in spaces of smooth functions, cf. [58].

First of all, we need to have a notion of continuity and smoothness. Let F and F' be
locally convex topological spaces with families of semi-norms (pq)aca and (73)sep. We
call a map f: E — F continuous if and only if for all 8 € B there exist ay,...,a, € A
and C' > 0 with

1p(f(2)) < Clpay (x) + -+ + pa,, (2))-



A.3 Fréchet spaces 141

If the family (pa)aca is directed, i.e., for any aq,as € A there is a3 € A and a constant
C such that pa, (z) + pa,(x) < Cpa,(z) for any x € E, then f is continuous if and only
if, for all g € B,

ns(f(x)) < Cpalx)

for some « € A, cf. [117].

Let E and F be locally convex vector spaces. A curve ¢ in F is called smooth or
C if all derivatives exist and are continuous; Michor [I05] calls this a concept without
problems. The space of smooth curves in E is denoted by C°(R, E). It turns out that
this space does not depend on the locally convex topology of E, but on the associated
bornology (which is the system of bounded sets), cf. [51]. A map f: E — F between
locally convex vector spaces E and F' is smooth if any smooth curve ¢(t) C E is mapped
to a smooth curve (f oc)(t) C F.

A (Fréchet) Lie group G is a smooth manifold modelled on open subsets of a Fréchet
space and a group such that the multiplication G x G — G and the inversion G — G
are smooth maps. The Lie algebra g of G is the tangent space at the neutral element e
and consists of left-invariant vector fields on G. We say that G admits an exponential
mapping if there exists a smooth mapping exp: g — G such that ¢ — exp(tX) is the
(unique) one-parameter subgroup with tangent vector X at 0. Note that exp(0) = e and
Dgexp = id. If a suitable inverse function theorem is applicable, it follows that exp is a
diffeomorphism from 0 € g onto a neighborhood of e € G. This holds true for smooth
Banach Lie groups but in general not for diffeomorphism groups, cf. [I05]. Lie groups in
which an exponential mapping is defined, are also called regular. This notion goes back
to Milnor, cf. [34] [T06] T08].

Definition A.9. Let G be a Lie group with Lie algebra g. For all g € G, let R;: G = G
be the right translation h — hg. We define the logarithmic derivative §,: C*°(R;G) —
C>(R; g) by

(57"90)("') = (Dap(t)Rapfl(t))SO/(t)v teR.

The Lie group G is called regular, if there is a smooth map
evol,.: C°(R; g) = C(R,G),
called the right evolution, so that for all X € C*°(RR;g) we have that
or oevol,(X) =X, evol(X)(0)=e.

Equivalently, a Lie group is regular, if any (smooth) left-invariant vector field has a lo-
cal flow, cf. [I]. Up to now, all known Lie groups are regular, [I05]. Finite-dimensional
Lie groups and Banach Lie groups are regular. Note that for diffeomorphism groups,
the evolution operator is just integration of the time-dependent vector fields with com-
pact support. Each regular Lie group admits an exponential mapping, which is just the
restriction of evol, to the constant curves R — g, [85] [105].






Appendix B

Kato’s theory for abstract quasi-linear
evolution equations

Here our aim is to give a short introduction to Kato’s theory proving the local well-
posedness for a very general class of abstract evolution equations. For suitable non-linear
equations Kato’s semigroup method is fairly standard and our brief overview follows
[19,125]. To illustrate the theory we consider the periodic Camassa Holm equation (I9I).
It is easy to generalize the results to the DP equation or the general b-equation as
explained in [48] [125].

We use the short hand notation (-, ), for the H® inner product, s > 0, and write |-|
for the corresponding norm, cf. Sect. B.1.4l Before we start let us recall the following
definition, cf. [73] [75].

Definition B.1. Let H be a Hilbert space and let T" be an operator on H. We say that
T is accretive if its numerical range is a subset of the right half-plane, i.e., Re (T'u, u) >
0 for all u € D(T). If, for ReXA > 0, we have (T'+ \)~! € L(H) with the estimate
(T + /\)_1H < 1/Re X we say that T is m-accretive. We call T quasi-accretive if T + «
is accretive for some scalar «. Similarly, we say that T is quasi-m-accretive if T + « is
m-accretive for some a.

Remark B.2. An m-accretive operator T is maximal accretive in the sense that T is
accretive and has no proper accretive extension. An m-accretive operator is necessarily
densely defined. That an operator is quasi-accretive means that its numerical range is
contained in a half-plane of the form Rez > const. Like an m-accretive operator, a
quasi-m-accretive operator is maximal quasi-accretive and densely defined.

Kato’s famous theorem reads as follows.

Theorem B.3. Consider the abstract quasi-linear evolution equation

%v + AWy = f(v), t>0, v(0)= . (B.1)

Let X andY be Hilbert spaces such that'Y is continuously and densely injected into
X and let Q: Y — X be a topological isomorphism. Furthermore, we assume:

1. The operator A(y) is in L(Y,X) for any y € Y with

[(A(y) — A(2))wlx < paly —zlx lwly, v,2,weY, (B2)
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and A(y) is quasi-m-accretive, uniformly on bounded sets in'Y .
2. For any y € Y there is a bounded operator B(y) € L(X), uniformly on bounded
sets in Y, such that QA(y)Q~t = A(y) + B(y) and

IB(y) = B(z))wlx <pply—zlylwlx, yz€Y, weX. (B.3)

3. The map f: Y — Y extends to a map from X into X, is bounded on bounded
sets in'Y and

If) = fly <mly—=zly, y,2€Y, (B.4)
If) = f)lx Spely—z2lx, y,2€X. (B.5)

Here pa, pp and py depend only on max{|y|y ,|z|y} and the number po depends
only on max{|y|yx . |z|x}- Then, given vo € Y, there is a mazimal time T > 0
depending only on |voly and a unique solution v to Eq. (B.)) such that

v=uv(-,v) € C0,T);Y)NC[0,T); X).

Moreover the map vy — v(-,vg) is continuous from'Y to C([0,T); Y)NC([0,T); X).

For a proof we refer to [73 [74, [76]. For the Camassa-Holm equation on the circle the
natural choice is X = Ly(S), Y = H*(S) and Q = (1 — 92)'/2. The momentum variable
is denoted as m = u — u,,; and we have

me + (Q*m)m, = —2m(Q*m),, m(0) =mg
which is of type (B.) if we set

Aly) = (Q*Y)0z,  fly) = —29(Q*Y)e, y € H'(S),

where D(A(y)) = {v € La(S); (Q2y)v € H'(S)}. We now proceed in three steps to
establish that the assumptions of Theorem [B.3] are satisfied. In the first step, we check
that the linear operator A is quasi-m-accretive. In [19] this is shown by considering
operators D and Dy with the common domain consisting of all Ly(S)-functions v such
that mv € H(S) for some fixed m € H%(S) and

Dv = (mv)y; —mgv, Dov = —(mv),.
For v in the domain of D we find that
Dv = (mv)y — mzv = muy € La(S)

and the strategy is to prove that D and Dy are both quasi-accretive in Ly. Since Dy = D*
it follows from the theory of semigroups that D is quasi-m-accretive, [118]. All we have
to do is to give a proof of the following lemma. In the proof, we use that C*°(S) is a core
for the operator D, i.e., v belongs to the domain of D if and only if there is a sequence
(vn)nen of smooth periodic functions such that v, — v and Dv,, — Dv in Ly(S). This
follows from a standard mollification argument, [19].

Lemma B.4. The operators D and Dg are both quasi-accretive in Lo(S) and Do = D*.



B Kato’s theory for abstract quasi-linear evolution equations 145

Proof. First we establish the existence of a positive constant K such that
2 2
(Dv,v)g < K vfg,  (Dov,v)q < K vl

for all v in the domain of D. Therefore, we show that
(Dv,v), = (Dov,v), = ——/mxv da.

Approximating v by a sequence (v,)nen C C(S) such that v, — v and Dv,, = Dv in
Lo(S) we come to the conclusion that

(Dv,v), = /(mv)mvdx— /mggv2 dz
s s

— 1 _ 2
_nh—{r;o S((mvn)xvn mgvy) do

= lim [ mv,(v,), dz
n—oo S

1
—— lim mxv dzx
TL—)OO

:——/mxv dz.

Since m, € C(S) we conclude that D is quasi-accretive. A similar computation for Dy
shows that Dy is quasi-accretive. To prove that Dy = D* we show that Dy is an extension
of D* and vice versa. For fixed w belonging to the domain of D* the map

F(g) = (Dpuy = [ mprwdo = (0. D)y, o€ C™(9)
defines a continuous linear functional. Therefore mw € H*(S) and

ﬂ@:—é¢WMMM o € C(S).

Thus w € D(Dy) and Dow = D*w and hence D* C Dy. Conversely, for v € D(Dy)
the above approximation argument shows that (Dz,v), = (2, w), with w = Dyv and for
every z in the domain of D. This proves that Dy C D*. O

In the next step we define the operator B(y) = QA(y)Q~! — ( ) where y € H(S) is
fixed. Let M (y) be multiplication with @2y, i.e., M (y)v = (Q~2y)v for v € Lo(S). By
direct computation

B(y) =[Q. M)]0:Q~" = M(y)[0:,Q1Q™"
on C*(S). Note that [0, Q] = 0 which follows from the representations

O f = ﬁ_l(ZTrin.fn)v Qf = F! (\/ 1 +4772n2fn)

where (fn)nez C .#(Z) stands for the Fourier series of f € C°(S) and the operator
F € Isom(C*(S),.#(Z)) denotes the Fourier transform.
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Lemma B.5. Given y € H(S), the operator B(y) extends to a map B(y) € L(La(S))
and a map B1(y) € L(H(S)) that are uniformly bounded on bounded subsets of H'(S).

Proof. Clearly, 9,Q~! extends to a bounded linear operator on Lo(S) which is indepen-
dent of y € H!. Since Q is a first-order pseudo-differential operator and Q 2y € H3(S)
some standard results from harmonic analysis, cf. [19], show that [@Q, M (y)] extends to
a bounded linear operator in Ly(S) with norm less than or equal to K |y|,. To complete
the proof we estimate the norm of the operator 9,[Q, M (y)]Q~! in £(L2(S)). Writing
M, (y) for the multiplication operator induced by the function 9,(Q~2y) € H? we find
that

9:1Q, M1)]Q™" = QM (y)Q ™" + Mz(y) + [Q, M (y)]0.Q "

and are done. O
Remark B.6. Since B(y) — B(z) = B(y — z) the proof also establishes the estimate (B.3).

It remains to check that the estimates (B.2)), (B4) and (BE) are valid. Obviously, A(y) €
L(HY(S), L2(S)) for y € H(S) and by Lemmal[B.4lwe know that A(y) is quasi-m-accretive
uniformly on bounded sets in H'(S). Let y, z,w € H(S). Then

I(A@W) — A@))wl? = /S 02y — 2)w.)” da

< K[Q72y - =) Jwl?
< K[|Q 2y — 2|2 Jwl?

<K Q2% ey Iy — 215 el

Since H!(S) is a Banach algebra, f maps H'(S) into itself and is bounded on bounded
sets in H'(S). Moreover, it extends to a map La2(S) — Lo(S) that satisfies the local
Lipschitz properties (B4) and (B.A), cf. [19).

Altogether, we have thus shown the following theorem.

Theorem B.7. Given mo € H(S) there is a mazimal time T > 0, depending only on
Imol; and a unique solution m to the Camassa-Holm equation my = —mgzu — 2uzm
satisfying m(0) = mg such that

m =m(-,mg) € C([0,T); H(S)) N C*([0,T); L2(S))-

Moreover the map mo — m(-,mg) is continuous from H(S) to C([0,T); H(S)) N
CH([0,T); La(S)).-

Remark B.8. In [125], the author discusses the DP equation on the real line and works
with the Sobolev spaces H*(R) for s > 3/2. Here the underlying spaces are X = La(R)
and Y = H*(R) and the isomorphism in this case is (1 — 92)*/2. A further nice result of
Kato’s approach is that the maximal existence time is independent of s in the following
sense: If

v=uv(-,v9) € C([0,T), H*(R)) N C*([0,T), H*"*(R))

is a solution to (B) and if vy € H* (R) for some s’ # s, s' > 3/2, then

v= ’U(-, 'UO) € C([OvT)v HSI (R)) N Cl([oa T)a HS/_l(R))a



B Kato’s theory for abstract quasi-linear evolution equations 147

with the same value of T'. In particular, we see that if vg € H>*(R) = Ng>oH*(R), then
v e C([0,T), H=(R)).

Remark B.9. Since Kato’s theorem requires Hilbert spaces it is clear why many authors
model evolution equations like the CH on Sobolev spaces and not on C™-spaces as we
did in many of the previous considerations.






Appendix C

Integrable systems: Lax pairs and
bi-Hamiltonian structures

Very often, the fact that a given equation is bi-Hamiltonian implies that one can find an
infinite sequence of conservation laws. Rewriting a certain equation in Lax pair form, it
might be integrated via the scattering approach. In this appendix we give a brief overview
about the bi-Hamiltonian formalism and the method of inverse scattering and explain
the corresponding theory for the Camassa-Holm equation (for which it works well). The
main references are [IT] [I7, I8, 23] 62]. The integrable structure of the DP and HS is
explained in [30 66]. For the p-variants of CH, DP and HS we refer to [79, [09].

C.1 The bi-Hamiltonian structure of the Camassa-Holm equation

Our first aim is to present the Hamiltonian structure of the Camassa-Holm equation
(TI9). Since we do not deal with classical Hamiltonian systems, [6], we will start with
a digression aimed at a more comprehensive picture of the Hamiltonian formalism we
present. Our technical assumptions are kept deliberately vague in the sense that a func-
tion f: R — R will be either a smooth function vanishing rapidly at oo (together with
as many derivatives as necessary) or a smooth periodic function with period 1. We focus
on what is happening rather than look for the sharpest technical conditions. This sum-
mary mainly presents the results of [17].

Let F(f) be a functional defined on some underlying linear space of functions f. We
call F' differentiable if

oF d

—F(f +eg)

= 3 = lim Z(F(f +29) ~ F(f))

e=0

exists for all f, g and is a linear functional of g. If this linear functional can be expressed
as a scalar product (inherited from Lo(R) or Ls[0, 1] accordingly to the considered case),

5F . . JOF
la_F OF

we cal oF the gradient of F' at f. Note that %_1; is a function whereas 57 is a functional.
A linear operator D on the underlying space is called Hamiltonian if the bracket
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is skew-symmetric,
[FaH] = _[HaF]v

and satisfies the Jacobi identity

([F,G], H] + [[G, H], F] + [[H, F],G] = 0.
Clearly, [-, -] is bilinear since 8(1;7;}1) = g—? + %—1}1. We call [-,-] the Lie-Poisson bracket
defined by D.
Let us consider evolution equations of the form

ur = Au (C.1)

where A is an operator, in general nonlinear, mapping the linear space to itself. We assume
that the Cauchy problem for Eq. ([CJ) is globally well posed, i.e., solutions are uniquely
determined by their values at ¢t = 0, the initial value can be prescribed arbitrarily (within
the linear space) and solutions exist for all ¢ > 0. The map sending initial data to the
solution of (C)) at time ¢ can be thought of as a flow. We say that Eq. (CI)) can be
written in Hamiltonian form if we can find a Hamiltonian operator D and a functional
H such that the equation takes the form

For any solution of Eq. ([C.2)) we have
d OF oF __O0H
< Fu(t) = <%u> - <%,D%> — (FH). (©3)

We say that F'is a conserved functional if F(u(t)) is independent of ¢ for all solutions of
Eq. ([C2).

Theorem C.1. I. F is a conserved functional if and only if [F, H] = 0.
2. H 1is a conserved functional for Eq. (C2]).
3. If F,G are conserved functionals for Eq. (C2), then so is [F,G].

Proof. This follows from the definition of a conserved functional, Eq. (C3) and the
properties of the Lie bracket. a

The proof of our next proposition is a lengthy but straightforward computation which
is written down in [I7].

Proposition C.2.

oF OH

defines a Lie-Poisson bracket.

Define Hy = 1 [(u® + u2)dz = § [umdz with the momentum m = u — u,,. Then the
Camassa-Holm equation can be written in the form

me = {m,H1} = —(0m + md)u

and we have thus shown that the Camassa-Holm equation is Hamiltonian.
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Theorem C.3. The Camassa-Holm equation ([LI9)) is Hamiltonian with the Hamilton
operator —(md + Om).

Observe that Eq. (1Y) is equivalent to

3 1

Let us try to rewrite the right-hand parenthesis as a variational derivative. Knowing that
u or m include the same physical information the nature of this expression suggests that
it would be easier to try to write it as 8522 with an appropriate Hs, i.e., we would like

to find Hy with

/%fdx = %/(3u2 —u? = 2uuy,) fdr = gi_%é(Hz(quef) — Ha(u)).

The presence of 3u? suggests that under the integral in Ho(u) there might be a term u3.

Since 9
3 2
— | u’dx = 3u
ou /
we proceed with the next two terms that seem to suggest the presence of a term uu? in
Hjy(u) under the integral sign. We have that

11_1}(1)% [(u+ ef)(ui + 2ug fre + 52f§) - uui] dz = /(Quumfx + uif) dz

and thus after integration by parts

0
0 /uui dz = —u? — 2uug,
so that we come to the conclusion that

Hy, = %/(u‘3 + uu?) dzx (C4)

is a good choice. Our next lemma establishes that the operator 1 — 9?2 does not only map
the function u to the function m but also the derivative of functionals with respect to m
to the corresponding derivative with respect to wu.

Lemma C.4. If F is a functional then

or
om’

oF _
ou
Proof. Let g = f — fzz. We have

(1-02)

d OF oF oF\"
and d d OF
£F(m+€g) EzO: £F(u—|—5f) Ezo—/%fdx

and this achieves the proof. O
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We thus can write the Camassa-Holm equation as

4, O0H>
my = —(0 — 0%)=——=.
== )
If we could show that the operator —0 + 9% is Hamiltonian, we would obtain a second
Hamiltonian structure. Before we prove that this is indeed so, let us explain what impli-
cations this has for the Camassa-Holm equation.
Let us assume that the equality
OF oF
g0 _ptt
om om
holds where Fyy and F; are functionals and £ and D are Hamiltonian operators. We then
say that Fj raises to F; and F; lowers to Fp, in symbols Fy 1 Fy and Fy | Fy. If we
assume that Fy T Fy 1T Fy 1 F5 - -+, i.e., the raising is unobstructed, then, for i < j,

[Fi, Filp = [Fy, Fj—1le = —[Fj-1, File = —[Fj—1, Fitalp = [Fit1, Fj-ilp

where [,-]p and [-,-]¢ denote the Lie-Poisson brackets induced by D and & respec-
tively. Hence if k = HTJ is an integer, then [F}, Fj]lp = [F, Filp = 0. Otherwise,
[Fi, Fjlp = [Fj, Filp = —[F;, F;]lp = 0. The most important consequence of this is

that if the evolution equation m; = Au has the Hamiltonian form

my =E——
k om
then all the F}, i > 0, are conserved functionals in view of Theorem [C]since [F}, F}]e =
[F1, Fi11]p and the latter is zero as proved above. The only unpleasant thing in this
construction is that the raising is unobstructed. To overcome this we introduce the notion
of compatibility.

Definition C.5. We say that the Hamiltonian operators D and & are compatible if their
sum D + £ is still a Hamiltonian operator. We say that an evolution equation is bi-
Hamiltonian if it can be written in two different Hamiltonian forms with compatible
Hamiltonians.

Remark C.6. In general the sum of two Lie-Poisson brackets would fail to satisfy the
Jacobi identity.

A proof of the following lemma can be found in [9].

Lemma C.7. Assume that D and £ are compatible Hamiltonian operators. If the func-
tions f1, fo, f3 are such that

Efi =Dfy, Efa=Dfs3

and there are functionals Fy, Fy such that fi = R ond fo= I then there is a func-

5 om om
tional F3 such that f3 = 8—1;3.

Again, the following theorem follows from a lengthy computation written down in [I7].
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Theorem C.8. The Camassa-Holm equation ([I9) is bi-Hamiltonian with the
Hamiltonian operators € = —(0m +md) and D = —0 + 03.

Proposition C.9. For the compatible pair of Hamiltonian operators € = —(Om + md)
and D = —0 + 03, if a functional F can be lowered, it can also be raised

Proof. Assume that F' can be lowered to F_1,

oF_

1 oF
=D—.
om om
Let f be the solution of the third-order linear differential equation

OF oF
8— +2m (8—) =f=f",

ie, £22 — Df. By Lemma we deduce the existence of a functional Fj such that
and we can write

g

oF or
gr _pdit
gam om’
ie., F1F,.

O
Now we obtain an infinite number of conservation laws for the Camassa-Holm equation
First,

H, :/mdx
—HO = /mt dz = /(mxu—l— 2muy) de = —/mux dz = —/(uux — Uglgy) dz = 0.

By construction we also have the conserved functional

is conserved for Eq. (ILT9)) since

1
H, = 5/(u2+ui)dx

satisfying
88H0 B 8H 1
om 8m
and by Proposition [C.9] we know that H; raises to some H, i.e
oH 8H
g0H 2

om 8m
We have already seen that we can choose Hs as in (C4). Again, by Proposition [C9]
H, raises to some Hj3 and so on. This procedure continues indefinitely because in the
equality (expressing the fact that H,, 1T Hy11)

OH, o OHp
= — >
om (0-9%) om ~ ' F 0

(md + 0m)

(C.5)
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we see that =5+, the unknown, is differentiated three times, whereas is differen-

tiated only once so that H,,; is functionally independent of Hy,..., H,. To find H, 41,
we use Lemma [C4] to transform Eq. (CH) to

OH,
om

OH, ,0H,1
(Om +md) S 0 VR (C.6)
8Pln-f—l
compute =5+ and finally H,, 1. Let
“( ,0H OH,\'
F, = ' 42 =) ] d
)= [ <m o m(am)> "
i.e., for some a € R,
0H,
(@) = Fun (@) +a.
0
If we can find a functional HY, such that 8%2“ = F,11(z) then the general solution
of Eq. (Cl6)—viewed as an equation in the unknown H,41—is
Hy s :H2+1+a/udx+b (C.7)

n

Ho at the beginning. The fact that (C.7) yields all solutions is ensured by the following
lemma.

or equivalently H, 41 = H0+1 +a [mdz+b. To find H2+1 we “guess” as we did to find

Lemma C.10. Let H(f) be a functional. If %—I}{ =0 then H(f) = H(0).

Proof. Clear. 0O

Hence if ', and F5 are functionals such that %iEl = %if then F; = Fy + ¢ for some real

c. The fact that (CX) gives all solutions of is now plain since

0
a/udx—l.

From the general form (C.Z)) we have the liberty to choose H, 11 the neatest expression.
An explicit calculation of Hj is presented in [I7].

Remark C.11. That Hy = [(u?® +u2)dz and Hy = [(u® + uu?) dz are conserved for the
CH equation (ILI9) can also be verified by direct computation, cf. [19].

Remark C.12. Similarly, it is possible to produce conserved quantities by lowering Hy |
H_ 1| H 5 | ---. Here, the assumption that m has no zeros is necessary to obtain
functionals H; for j < 0 from our recipe. It can be shown that for m € C'(R) without
zeros and for the compatible pair & = —(m + md) and D = —9 + 93, if a functional F
can be raised it can also be lowered.

The Camassa-Holm equation ([I9]) possesses an infinite hierachy of independent
conserved functionals obtained via the recursion formula (C.H]).
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C.2 The scattering approach for the Camassa-Holm equation

In Quantum Mechanics, the single particle motion under the influence of a potential
u(t, z) is described by the Schrodinger equation

Yz + (A —u)p = 0. (C.8)

The Schréodinger equation can be seen as coming from the wave equation

1
Yow —up = C_tht (CQ)
since the plain wave ansatz
P(t, x) = p(x) exp(iwt)

gives Eq. (C8), for the function ¢, if A = (w/c)?. For u = 0 the wave equation (C.9)
admits travelling waves of the form

Yy(t,x) = Cypexp(—i(kr twt)), Ci eC, k,w>D0,

if k = w/c. More precisely, 1) describes right-propagating waves with velocity ¢ = w/k
and 14 describes left-propagating waves. For potentials belonging to the Schwartz class
Z(R), the Schrodinger equation has the asymptotic form

%x+/\¢=07 |J)|—)OO,

and we expect that

1 — Aexp (1\/Xx> + Bexp (—i\/Xx) .

Let us first assume that A < 0. Let x := y/|)|. In search of bounded solutions of (C.g]),
it turns out that, for certain values \,, there are solutions

n = A(k, z) exp(—kz) + B(k, x) exp(kz),

A—0asx — —oo and B — 0 as  — o0, called bound states. By Sturm-Liouville
Theory the number of eigenvalues \,, is finite. Indeed, if k? = || > max(—u) then

.
"

and hence ¥, > v if ¥ is positive and this implies that ¢ is unbounded. Hence

mm(u) < /\1,)\2,...,)\;,, <0

for eigenvalues belonging to bound states. If A > 0 one obtains oscillating eigenfunctions
of the form
. {exp(—inm) + b(k,u) exp(ikz), T — o0,
a(k, u) exp(—ikx), T — —00.
The physical interpretation of this solution is an incoming wave from the right which is
reflected back to +00 and transmitted on to —oco. We call b(x, u) the reflection coefficient
and a(k,u) the transmission coefficient. In addition, the quantities
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-1
cn(t) = (/R Yn(t, )2 da:) , %, bound state,

play a key role for the scattering problem for Eq. (C.8)). We call {a, by, ¢, } the scattering
data for the problem (C8). Most importantly, knowing the scattering data at time zero
we can calculate them for all positive ¢ since they evolve according to linear ordinary
differential equations.

Let us connect this concept with the well-known theory of finite-dimensional Hamil-
tonian systems: We describe a finite-dimensional Hamiltonian system in terms of a set
of Hamiltonian functions

H;: R*™ ={(pi,qi); i=1,....,n} =R, je{l,...,n}.

We also assume that the differentials df{; are linearly independent and that the Hamil-
tonians are in involution,

{Hj1 ) sz} =0,

where {, -} is the canonical Poisson bracket on R?". The equations H; = ¢; with constants
€1,...,cy define hyper surfaces in R?" and their common level set has dimension n.
Furthermore, the Arnold-Liouville Theorem (see [6]) says that the common level set® is
diffeomorphic to an n-dimensional torus T. Thus if we have n independent conservation
laws, an integral curve u(t) can be thought of a line winding around T. Flattening out the
torus and changing to a new set of variables (the so-called action-angle variables), one
finally sees that the flow becomes linear. The inverse scattering approach generalizes this
change of coordinates to infinite-dimensional Hamiltonian systems. While a flow u(t) is
described by the 2n coordinates us(t),. .., u2,(t) in the finite-dimensional case, we have
a potential function u(¢, z) on the real axis? in the scattering problem for the Schrédinger
operator L = —92 + u. The scattering data are also called action-angle variables and the
crucial result is that the motion in these coordinates is linear.

For evolution equations u; = Au the idea behind the scattering transform is to find
a suitable operator L and the corresponding scattering data (which requires information
about the spectrum of L). In fact, the Schrédinger operator L = —82 + u is the right
candidate for the KdV equation and we now want to work out what we get for CH.
Anyway, the upshot is:

For an integrable equation u; = Au, suitable for the scattering approach, the scat-
tering transform maps the initial problem to a sequence of separated ordinary dif-
ferential equations for the action-angle variables which can be integrated trivially.
Inverse scattering recovers the potential u(t, ) from the scattering data (which is
much harder from the mathematical point of view than vice versa).

We see that the inverse scattering approach is a method to integrate an equation
of the form w; = Au. Very often, inverse scattering is also called a non-linear Fourier
transform: In the classical theory of ordinary differential equations the Fourier transform
is used to solve certain classes of equations since it maps derivatives to polynomials.

1 The common level set is assumed to be a smooth compact and connected manifold.

2 Recall that bi-Hamiltonian equations like CH have an infinite hierarchy of conservation laws.
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Solving the problem in terms of the co-variables (which is rather easy) and applying the
inverse Fourier transform yields the solution of the initial problem.

Let us now explain the scattering approach for the CH equation (II9]). Therefore, we
first introduce a spectral parameter . Recall the recursion relation

OH, _ OH,
om  Om

D=—(0-0°%, &=—(md+0om).

Multiplying with A™ and summing over n yields

D i w2 _ e i sy

S om S om
Let us introduce the squared eigenfunction
[ee]
0H
2 n n
t;A) = A
Vet = 3, NG
Then, formally,
D2 (z,t; \) = A2 (z, 15 \). (C.10)

Equation (CCI0Q) is a third-order eigenvalue problem for the squared eigenfunction 1
which is in fact equivalent to the following second order Sturm-Liouville problem for the
function .

Lemma C.13. If ¢ satisfies
1, 1
then 12 is a solution of Eq. (CI0).
Proof. This is a straightforward computation, cf. [62]. O

Next, we assume that A does not depend on time and that the time dependence of ¥ is
given by an evolution equation

e = ay + by

with coefficients a and b so that the compatibility condition ¢z = ..t implies the
Camassa-Holm equation. Cross-differentiation shows that

1
b= —50s, a= —(A+u).

Consequently,
1
P = _()‘ + u)"bx + Euzcw
is the desired evolution equation for the eigenfunction .

Theorem C.14. Fquation (LI9) admits a Laz pair formulation: The eigenvalue problem

1 9 _l
A(-) v =gmo
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and the evolution equation
1
Yo = (et Ny + 5t
imply (LI9) if they are compatible, Yyt = VYrza, and X is constant in time (isospectrality).

Proof. From the eigenvalue equation, we obtain

A m
A m My

Hence, differentiating the eigenvalue equation with respect to ¢ and the evolution equation
twice with respect to x, we obtain

A

and

= (3o 20) (3

1 1 Aom

and a careful examination shows that the compatibility condition implies that
(my + umy + 2mug )1y = 0.
Since 9 is an eigenfunction, it is nonzero and we obtain Eq. (I.I9). O

The squared-eigenfunction approach leading to the isospectral problem for the CH equa-
tion goes back to [52]. We now explain the general Lax pair formalism, discovered by
Peter Lax in 1968. Starting from the isospectral problem, we obtain operators L and B
such that the equation under consideration is equivalent to

Ly =X, oy = Bip.

The operator L is linear and symmetric and B is the evolution operator for the eigen-
function 1. Differentiating the first of these equations with respect to time, under the
assumption that A does not depend on time, we obtain

0= L)+ Lpy — Ay
— Lib + LB — ABip
— Ljb+ LB — BAY
— (Ly+ LB — BL)y

and hence

Ly =B, L], (C.11)
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where [B,L] = BL — LB denotes the usual commutator. Contrariwise, starting with
Eq. (CII) where L and B are spatial but time-dependent operators on some Hilbert
space H and L is linear and symmetric, we consider the eigenvalue problem Lip = A\,
1 # 0. Differentiating the eigenvalue equation with respect to time we find that

Ly + Lipy = Aetp + Ay

and hence
A = (L= Ay + [B, Ly
= (L — Ay + B\p — LBy
~ (= 0=y
= (L =Nt — BY). (C.12)
Let (-,-) denote the inner product in . Then
At (9, 9) = (@, (L = A) (¢ — BY))
= ((L = N, (¢r — By))
<07 wt - Bw>
0.

Since 1) # 0 it follows that Ay = 0 and by (C12),

i.e., ¥y — Bt is an eigenfunction of L with eigenvalue A. Assuming that the eigenspace
of A has dimension one, we can find a function f only depending on time such that

Yy — By = f(t).

Note that f commutes with the spatial operator L so that B:=B+ f satisfies both

b= By, L= [B,L] .

Theorem C.15. Let L be a symmetric linear spatial operator, B a spatial operator
and suppose that Ly = A holds on some Hilbert space H and 1 # 0. Then:

1. If >y =0 and ¢y = By then L, = [B, L].
2. If Ly = [B, L] then A\s =0 (and often one can redefine B to get 1y = Bi).

The pair L, B is called Lax pair and L; = [B, L] is called Lax equation.

Ezample C.16. For the Camassa-Holm equation (LI9) with potential m = u — gy, one
finds the equivalent Lax pair representation

1 1 1
Yoz = Zw + /\mw Py = (ﬁ - u) Ve + Euxwv
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c.f., e.g., [18 28, [92].
Example C.17. For the DP equation, we have the third order equation

in the corresponding scattering problem. The time evolution of the wave function is given
by
1 2
Py + X'prx"‘uw;c - (U:c+ 3_>\> P =0,
cf. [30]. Indeed, the compatibility of both equations implies the DP equation for the
function wu.

In this framework, forward scattering means determining the Lax pair for the given
equation (so that the Lax equation recovers the original PDE). Then, for any fixed A,
the time evolution of 1 and the corresponding scattering data are determined; here we
have to solve ordinary differential equations. Finally, the inverse scattering procedure
yields the solution of the initial equation. Inverse scattering enables modern analytical
approaches like the Riemann-Hilbert formalism and is a current area of research, cf. [98].
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