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Abstract

The possibility of variations of fundamental constants is highly debated and inves-
tigations have not yet reached a final conclusion. In the case of the fine-structure con-
stant, the latest terrestrial experiments that employ ultra-precise spectroscopy on the
timescales of a few years are consistent with no variation, whereas recent studies of quasar
absorption spectra indicate a positive finding on both temporal and spatial variations of
the fine-structure constant on astronomical scales.

The astrophysical investigations strongly depend on accurate laboratory wavelength
of a number of transitions of various complex ions, such as Ti+ and Fe+, which, up
to present, have resisted precision laser spectroscopy. In this thesis, a versatile setup
that lays the basis to study such ions with a frequency comb as a spectroscopy source
and theoretical calculations on the expected spectroscopy signal are presented. In this
approach, the ions of interest (spectroscopy ions) are sympathetically cooled by well-
controlled magnesium ions (logic ions) which are simultaneously stored in a Paul trap.
Quantum logic techniques are employed to detect the spectroscopy signal from the spec-
troscopy ion on the logic ion. In contrast to previously implemented experiments that
obtained precision data on such ions, the described apparatus is based on a single or a
few ions and will therefore allow for isotope-selective spectroscopy.

As an initial stage of the proposed spectroscopy scheme, a single 25Mg+ ion is cooled
to the motional ground state of the trap confinement. The presented setup is a major
simplification over previously used setups, since a single solid-state laser system is em-
ployed to cool, manipulate, repump and detect the logic ion. The cooling performance is
studied by driving Raman-stimulated Rabi oscillations on the motional sidebands. An
average motional population number of n̄ = 0.03± 0.01 is achieved.

Additionally, this work explores different detection schemes for 25Mg+ ions with po-
tential application to other ions with hyperfine ground states. In contrast to the com-
monly implemented electron-shelving technique, the combination of electron-shelving
with well-controllable radio-frequency induced spin-flips allows for post-selection of the
observed statistics by filtering uncorrelated detection events. The achievable fidelity and
the robustness of different detection strategies are studied.

Future applications of the developed apparatus include deterministic state prepara-
tion and detection of molecular ions, highly charged ions and other exotic species for
which laser cooling is not available.

keywords: ground state cooling, ion trap, frequency comb spectroscopy



Zusammenfassung

Eine mögliche Variation fundamentaler Konstanten ist ein viel debattiertes Thema
und Untersuchungen hierzu haben zurzeit noch kein abschließendes Ergebnis erbracht.
Im Falle der Feintstrukturkonstanten sind die neuesten terrestrischen Experimente, welche
Präzisionsspektroskopie auf einer Zeitskala von mehreren Jahren einsetzen, konsistent
mit einem Nullresultat. Andererseits liefern kürzliche Studien von Quasarabsorptions-
spektren ein Indiz dafür, dass sich die Feinstrukturkonstante sowohl zeitlich als auch
räumlich auf astronomischen Skalen ändert.

Die astrophysikalischen Untersuchen hängen sehr stark von exakten Laborwellenlängen
einiger Übergänge in verschiedenen komplexen Ionen, wie Ti+ und Fe+, ab, die bis
zum heutigen Zeitpunkt kein Gegenstand von Präzisionslaserspektroskopie waren. In
dieser Arbeit werden sowohl ein vielseitiger Aufbau, welcher die Basis bildet, um der-
artige Ionen mit einem Frequenzkamm als Spektroskopiequelle zu untersuchen, als auch
theoretische Berechnungen zum erwarteten Spektroskopiesignal präsentiert. Der hier
diskutierte Ansatz verwendet gut kontrollierbare Magnesium-Ionen (Logik-Ionen) zum
mitfühlenden Kühlen der zu untersuchenden Ionen (Spektroskopie-Ionen), welche simul-
tan in einer Paul-Falle gespeichert sind. Quantenlogikmethoden werden eingesetzt, um
das Spektroskopiesignal des Spektroskopie-Ions auf dem Logik-Ion zu detektieren. Im
Gegensatz zu bisherigen Experimenten, welche Präzisionsdaten solcher Ionen erzielten,
arbeitet der beschriebene Messplatz mit einem einzelnen Ion oder mit mehreren Ionen.
Dies ermöglicht die Implementierung von isotopenselektiver Spektroskopie.

In einem ersten Schritt des beabsichtigten Spektroskopieschemas wird ein einzelnes
25Mg+-Ion in den absoluten Bewegungsgrundzustand des Falleneinschlusses gekühlt. Der
beschriebene Aufbau ist eine bedeutende Vereinfachung gegenüber bisher verwendeten
Aufbauten, da ein einzelnes Festkörperlasersystem für Kühlung, Manipulation, Recycling
und Detektion des Logik-Ions eingesetzt wird. Die Effizienz des Kühlverfahrens wird an-
hand von ramanstimulierten Rabi-Oszillationen der Bewegungsseitenbänder untersucht,
wobei eine mittlere Bewegungspopulation von n̄ = 0.03± 0.01 erreicht wird.

Zusätzlich untersucht diese Arbeit verschiedene Detektionsverfahren für 25Mg+ mit
potentiellen Anwendungen für andere Ionen mit Hyperfeingrundzuständen. Im Gegen-
satz zu der üblicherweise genutzten ”electron-shelving”-Methode erlaubt die Kombi-
nation aus ”electron-shelving” und gut kontrollierbaren radiofrequenzinduzierten Spin-
flips eine Postselektion der Messergebnisse durch Filterung unkorrelierter Detektions-
ereignisse. Die erwartete Genauigkeit und die Robustheit verschiedener Detektions-
strategien wird untersucht.

Zukünftige Anwendungen des entwickelten Messaufbaus umfassen deterministische
Zustandspräparation und Detektion von Molekül-Ionen, hochgeladenen Ionen und an-
deren ausgefallenen Spezies, für die Laserkühlung nicht möglich ist.

Schlagworte: Grundzustandskühlen, Ionenfalle, Frequenzkammspektroskopie
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Fundamental Constants1

Quantity Symbol Value Unit

Fine-structure constant α 7.297352537(50)× 10−3

Speed of light c 2.99792458× 108 m s−1

Boltzmann Constant kB 1.3806504(24)× 10−23 J K−1

Elementary Charge e 1.60217648(40)× 10−19 C

Planck Constant h 6.62606896(33)× 10−34 J s

h/2π 1.054571628(82)× 10−34 J s

Bohr Magneton µB 927.400915(23)× 10−26 J T−1

Vacuum Permittivity ǫ0 8.854187817× 10−12 A s V−1 m−1

Atomic Mass Unit amu 1.660538782(83)× 10−27 kg

1CODATA recommended values [1]
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Chapter 1

Introduction

”The constancy of the [fundamental] constants is merely an experimental fact”

Savely G. Karshenboim [2]

When Kepler presented his laws governing the motion of the planets, he introduced

a quantity in the third law which was believed to be constant and universal. Only years

later did Newton prove that this property actually depends on the particular stellar

system and can be expressed by the mass of the host star and the gravitational con-

stant. This historical example demonstrates the importance of a critical view and a deep

understanding of what is commonly accepted as being correct regarding fundamental

principles.

At present, there is no known way to derive the fundamental constants from axiomatic

principles and there is no theoretical reason whatsoever why they should be constant

at all. Paul Dirac was one of the first physicists to bring forward the idea of their

temporal variation in his large numbers hypothesis [3]. He realized that the ratio of the

electrostatic and gravitational forces between a proton and an electron is on the same

order of magnitude as the age of the universe in atomic units. Based on this observation,

he proposed that the gravitational constant change with the age of the universe.

The general idea of replacing the constants by varying quantities has over time been

extended to allow for their possible spatial variation and culminates in modern field theo-

ries which strive to describe the unification of all fundamental forces in an expanding uni-

verse. These theories include additional spatial dimensions which might have detectable

effects in our universe. For instance, it is proposed in the high-energy Kaluza-Klein

model that the extra dimensions might expand or contract, which could reflect itself

in a temporal change of the fundamental constants that are projected onto our three

dimensions [4]. Thus, experiments that indicate a variation of a fundamental constant

could either rule out or corroborate certain theories.

From a practical point of view, natural questions that arise in this scope are: a) on
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which scales we expect to observe possible variations; and b) which of the constants are

optimal for an investigation. Usually dimensionless constants are preferred since they do

not have the additional complication of deliberating whether the unit or the value itself

varies1. A detailed description of theoretical and experimental constraints of all constants

and the consequences for modern theories is found in [6, 7]. From all dimensionless

constants, the present observational status of variations of the fine-structure constant is

discussed here in more detail.

The fine-structure constant α = e2/4πǫ0~c ∼ 1/137 governs the strength of the

electro-magnetic interaction. Thus, it is quite natural to search for changes in atomic

absorption spectra2. The comparison of atomic transition frequencies ω at different times

gives a hint at possible variations of α. While the energy of atomic levels is proportional

to α2, the fine- and hyperfine interaction corrections scale with α4. The corresponding

shifts in frequency ∆(t) due to a change in α are usually written in the form

∆(t) := ω(t)− ω(0) = q1

(
α2(t)

α2
− 1

)

+ q2

(
α4(t)

α4
− 1

)

≈
(
α̇

α

)

t (2q1 + 4q2) ,

where α is the present value of the fine-structure constant and α(t) = α̇t+α. The intro-

duced properties q1,2 are determined by varying α in ab initio relativistic Hartree-Fock

calculations of the energy levels [8, 9]. Their values span a broad range, including positive

and negative numbers, and strongly depend on the atom and transition under consid-

eration. For instance, the 282 nm transition from the ground state 2S1/2 to the excited

state 2D5/2 in Hg+ is expected to vary with q1 = −36785 cm−1 and q2 = −9943 cm−1 [10].

This corresponds to a frequency shift of ∼ 0.4Hz over the course of one year assuming

a linear change3 in the fine-structure constant with a rate α̇/α ∼ 10−16 a−1. Clearly,

the expected shifts are rather small and, consequently, the investigation of possible α

variations requires precision spectroscopy measurements.

Current investigations are divided in two major branches: In a first approach, changes

in a particular transition are observed very accurately in repetitive measurements during

a period of a few years. The latest and currently most accurate finding puts an upper

limit of α̇/α = (−1.6 ± 2.3) × 10−17 a−1 by comparing the Al+ and the Hg+ single-ion

optical clock frequencies over the course of one year [12]. There are a number of other

atomic neutral and charged species which are used to pursue this endeavour. Among

them we find Hg+ [13], Yb+ [14, 15, 16], Rb [17], H [18], Sr [19] and Dy [10, 20]. Apart

1An investigation that studied a non-dimensionless constant which is worth mentioning is the
Michelson-Morley experiment carried out in 1887 with the goal of measuring the isotropy of the speed
of light [5].

2For a detailed analysis on other methods to determine a variation of α, the reader is referred to
[6, 7].

3It is worth mentioning that the assumption of a linear change is the simplest one, but not necessarily
correct [11].
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from atomic species, it is worth mentioning that recent investigations yielded enhanced

sensitivities to a variation of α for more complex systems, e.g. diatomic molecules [21,

22, 23], highly-charged ions [24] or nuclear transitions [25, 26, 27].

The second branch of experiments compares spectra of various elements on cosmologi-

cal timescales. The light emitted by far-distant quasars which travels through interstellar

clouds carries the imprinted spectral information of the particular cloud constituents and

is matched to todays laboratory data. This is commonly referred to as quasar absorption

spectroscopy (QSO) [11, 28]. The advantage of this method is that spectra are compared

at large time differences of ∼ 1010 years, thus making the expected small shifts more

accessible. However, apart from the need for a model of the α variation, QSO is af-

fected by several systematic effects which need to be taken into account for the analysis

[29, 30]. A quite recent observation, which so far cannot be explained by any systematic

error, suggests that the fine-structure constant varies temporally as well as spatially [31].

This study analyses data from two different telescopes, namely the Very Large Telescope

(VLT) in Chile and the Keck telescope in Hawaii. The combined analysis using many

transitions lines in a so-called many-multiplet method [9, 10, 32] yields different values

for α for different directions in the universe [31]. However, in order to intensify this study

and to further exclude possible systematic errors, more accurate knowledge of laboratory

reference spectra4 is required [36]. At present, most laboratory data has been obtained

by Fourier transform spectroscopy in combination with hollow-cathode discharge lamps

(see e.g. [37]). A compilation of the obtained data with typical accuracy values ranging

from 5× 10−3 nm to 5× 10−4 nm is found in [38, 39, 40]. While the desired accuracy of

10−5 nm is not yet reached for many lines [36], a more intriguing issue is the inability

to resolve the isotope shifts. Since the heated cathode consists of the natural abun-

dances of the various materials under study, usually isotope shifts are not resolved in the

Doppler-broadened spectrum [41].

In the quasar spectra analysis, the isotope abundances were assumed to have ter-

restrial ratios. Since a cosmic evolution of such abundances cannot be unambiguously

distinguished from a variation of α, one could argue that the isotope ratios were different

at the time when the quasar light was absorbed and α had no other value than today’s

[42, 43]. Therefore it is highly desirable to obtain a precise knowledge and accurate

spectroscopy data, in particular the isotope shifts of the used species. It should further

be noted that an additional complication is that the expected isotope shifts are on the

4Yet another concern, not further detailed here, is the calibration of the used Echelle spectrographs.
Currently, the spectra of Thorium-Argon hollow-cathode lamps often serve as a reference for calibration.
These lamps, however, suffer problems such as aging which makes reproducibility harder. Also, the
available line density is rather low over the required spectral bandwidth. Effects of different line choices
on the α analysis have been studied [33]. The recent development of astro-combs will eventually overcome
these problems and provide for more accurate calibration [34, 35].



4

same order of magnitude as the expected line shifts given the present constraints on α̇/α.

Overcoming this obstacle and providing more accurate spectroscopy data for the

quasar absorption analysis with an independent method to confirm previous measure-

ments is the basic motivation of the experiments described in this thesis. Among the

broad range of elements which are of relevance for improving the described QSO anal-

ysis are singly-charged metal ions, such as Ti+. A compilation of all species of interest

with their particular transitions is found in [36]. At present, most of these species have

resisted precision laser spectroscopy due to their complex level structure. Their lack of

a closed cycling transition inhibits laser cooling and renders state detection via fluores-

cence measurement impossible. Setting up lasers to repump the ion back to the cycling

transition for every decaying channel is impractical due to the required broad spectral

coverage of several nm and the number of laser systems. These obstacles are commonly

overcome by employing a large ion crystal or a beam of ions in combination with a

broadband spectral source, such as the mentioned hollow-cathode discharge lamps. In

general these methods are affected, nevertheless, by the finite temperature in the system

and not precisely known local gas pressure, leading to e.g. transition line broadening and

shifting effects.

In a different approach, while using only a single or a few ions, such difficulties

disappear. In contrast to neutral atoms, the strong long-range Coulomb interaction

between ions makes it possible to sympathetically cool the ion of interest (spectroscopy

ion) with a different ion species (logic ion) which is easily accessible [44]. This approach

is highly flexible, since the cooling performance does not depend on the internal level

structure of the spectroscopy ion. In addition to the cooling feature, the coupling between

the ions is used as a readout channel for the spectroscopy information from the ion, which

cannot be directly accessed. This strategy is called quantum logic spectroscopy and has

been successfully implemented in the group of D. Wineland in the year 2005 [45]. In

that experiment, an Al+ ion has been sympathetically cooled with a Be+ ion. The

technique, which originates in the field of quantum computing, enabled for the first time

precision laser spectroscopy of the previously inaccessible Al+ ion by mapping the state

information of the Al+ ion onto the Be+ ion for state readout.

In order to implement a similar spectroscopy method for an ion with a more complex

level structure, e.g. a heavy metal ion like Ti+, a broadband and narrow linewidth

spectroscopy source is required. It should be emphasized that a single cw laser which

is tunable over the spectral range, e.g. a Dye laser, is not suitable since the ion will

eventually decay into a dark state after a few photon scattering events. In contrast

to that, an optical frequency comb [46, 47] serves as an ideal source, since it provides

the necessary bandwidth to drive the desired transition and, at the same time, can act

as a repumper to keep the ion in the spectroscopy cycle. This type of spectroscopy is



5

commonly referred to as direct frequency comb spectroscopy [48] and has been successfully

implemented with neutral atoms [49, 50] and recently with trapped ions [51, 52, 53].

This work lays out the path towards isotope-selective direct frequency comb spec-

troscopy, in a linear Paul trap [54], of several species which are interesting for the astro-

physical investigations, namely Ca+, Ti+ and Fe+ ions. Due to its rather simple level

structure, Ca+ will initially serve as a testbed for the experimental setup and technique,

while confirming the previously acquired results with cw laser sources [55, 56, 57] and

comb spectroscopy [51, 52, 53]. Ti+ and Fe+ have been chosen for investigation in the

same setup since the Ti:Sapphire frequency comb, which will be used as a spectroscopy

source, provides the desired spectral coverage in the ultra-violet after its output is ac-

cordingly upconverted. It is worth mentioning that, also from a purely spectroscopic

point of view, a better understanding of the electronic structure of heavy metal ions

is desirable since accurate theoretical predictions for complex multi-level systems are

difficult and can only be given approximately.

Carrying out these experiments requires the following steps: The realization of ground

state cooling of the trapped two-ion crystal, a theoretical understanding of the interaction

of the frequency comb with the ion and the implementation of the quantum logic scheme

to readout the spectroscopy signal. This work focuses on the first two steps and their

implementation.

For all investigations, 25Mg+ has been chosen for the logic ion since the requirements

of the laser system for state manipulation are rather simple. In the scope of this the-

sis, a single solid-state laser setup was developed to implement ground state cooling,

state preparation and readout. This is a major simplification over previously operated

setups [58] which usually require up to three separate laser systems. The performance

of the setup is determined by observing the temporal evolution of Raman-stimulated

sideband transitions between two hyperfine ground states of a single 25Mg+ ion. The

setup has promising applications in the ongoing challenge of cooling molecules to their

ro-vibrational ground state. Furthermore, given the measured performance results, op-

erations that require high fidelities, such as quantum gates, can be implemented with

the same setup.

The spectroscopy signal will be acquired by measuring the vibrational state of the

initially cooled ion crystal as a function of the comb repetition rate or the respective

offset frequency. Since every photon scattering event involves a photon recoil momentum,

any comb line resonant to an electronic transition leads to heating of the ion crystal.

The heating excites the shared mode of both ions in the trap. This excitation can be

read out via the simultaneously confined 25Mg+ ion with almost unity fidelity. The exact

transition frequencies are then determined by measuring the vibrational state for varying

comb parameters and comparing the results with density matrix simulations that include
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the electronic and motional excitation levels of the combined ion and trap system.

In a similar fashion, this method of photon-recoil spectroscopy has been successfully

implemented for a cloud of Doppler-cooled ions [59]. In contrast to that, we expect

higher sensitivities for ground state cooled ions, which are available in our setup.

This thesis is organized as follows: In Chapter 2, a theoretical overview of the basics

of Paul traps, along with a quantum mechanical description of the ion-laser interaction,

are given. Chapter 3 discusses in detail the numerical simulations of the interaction

of a phase-stabilized pulsed laser with a multi-level system in the framework of the

semi-classical optical Bloch equations. The simulation results of different spectroscopy

strategies are presented in Chapter 4. The experimental setup, including the laser sys-

tems, the ion trap and the vacuum chamber, is described in Chapter 5. The ion trap is

characterized by means of standard calibration measurements presented in Chapter 6.

Different detection schemes to perform quantum state detection on 25Mg+, as well as

their estimated fidelity and robustness, are discussed in Chapter 7. In Chapter 8, the

experimental results on ground state cooling of a single 25Mg+ ion and the expected

theoretical limits on the cooling performance are presented. A summary and outlook

for future prospects and possible experiments conclude this work. Furthermore, several

appendices are attached to present details on various calculations used in the thesis.
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Chapter 2

Ions in a Linear Paul Trap

In this chapter, the motion of a trapped ion in a linear Paul trap, as well as its interaction

with light, are described. The discussion includes the state preparation and the coherent

manipulation of a magnesium ion. The discussed methods are employed to cool an ion

to the absolute ground state of its confining potential as experimentally realized and de-

scribed in Chapter 8. Ground state cooling is a necessity for the described and proposed

experiments within this thesis. For a more detailed analysis on ion trap dynamics, the

reader is referred to textbooks [60, 61, 62, 63].

2.1 Operation Principle of Ion Traps

A charged particle can easily be trapped in one dimension by being subjected to a static

confining potential. Extending the confinement to three dimensions is not possible for

the following reason: Assuming a static potential of the form

Φ(~r) = ax2 + by2 + cz2 , (2.1)

where ~r = (x, y, z) is a vector of the spatial coordinates x, y, z and a, b, c are real-valued

constants, Laplace’s equation ∆φ = 0 reads a + b + c = 0. Given that two directions

act as a confining potential (e.g. a > 0, b > 0), the third one has to be repulsive, since

c = −(a + b). Thus, a complete three-dimensional confinement is impossible using a

three-dimensional static potential (Theorem of Earnshaw).

The problem is overcome by replacing the potential in the radial directions (x, y) by

a time-dependent oscillating electric potential Φrf while leaving a static potential Φdc for

the axial direction (z). A trap based on this principle is called a Paul trap [54]. While the

original design was meant to act as a two-dimensional mass filter only, in modern designs

the static potential for a complete confinement is added. In the trap that is used for the

experiments described in this thesis, the oscillating field is applied to a pair of opposing
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electrodes, while a second pair is grounded (see Fig. 2.1). The total electric field can

substantially be understood as a saddle potential which changes the sign of the slopes

in x and y-direction with the oscillation period. If the oscillation is fast enough, this

configuration provides a confinement for the ion in radial direction since it gets pushed

back (on average over time) as soon as it moves away from the center. Additionally,

a static field is applied to two opposing tip electrodes. The charged particles are then

harmonically trapped in an effective three-dimensional confinement. In the following,

the relation among the confining potential, the trap geometry and parameters is briefly

derived. For an extended description the reader is referred to [54, 62, 63, 64, 65].

x

y

z

Figure 2.1: Linear Paul trap with two pairs of electrodes. The oscillating field for radial
(x, y) confinement is applied to one opposing blade pair, while the other pair is grounded.
At the same time, a static field is applied to an opposing pair of tip electrodes (not shown
in the picture) to provide the confinement in axial direction (z) of the trap.

2.1.1 Trapping Potential

In a linear Paul trap of the type described in the previous section, a charged particle

experiences to a good approximation a potential of the form

Φ(~r, t) =
x2 − y2

2r20
Urf

︸ ︷︷ ︸

Φrf

cos(Ωrft) +
κUdc

r20

(

z2 − 1

2
(x2 + y2)

)

︸ ︷︷ ︸

Φdc

, (2.2)

where Urf cos(Ωrft) is the time-varying potential with an oscillation frequency Ωrf, r0

the distance between opposite blades and κ a constant geometrical factor. Using the
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following ansatz for the radial part of Schrödinger’s equation

ψ(x, y, t) = ϕ(x, y, t) exp (−ieΦrf(x, y, t) sin(Ωrft)/~Ωrf) , (2.3)

and averaging over one oscillation period of the radio-frequency yields [66]

i~
∂

∂t
ϕ = − ~

2

2m
∇2ϕ+ eΦeff(x, y)ϕ . (2.4)

In the above equation m is the mass of the particle and an effective time-independent

potential was introduced:

Φeff ≈ e
~∇Φrf · ~∇Φrf

4mΩ2
rf

=
eU2

rf

4mΩ2
rfr

4
0

(
x2 + y2

)
. (2.5)

If the static potential in z-direction is included in the consideration, the time-average

shows that the particle is subject to a static harmonic potential in all three dimensions.

However, this approximation is only valid within a certain parameter range. Parameters

exceeding certain limits lead to resonances in the amplitude of motion and consequently

to an unstable trap. The parameters for achieving a stable confinement are described in

the following section by developing the equations of motion.

2.1.2 Equations of Motion

For simplicity, a classical treatment is considered here1. The equations of motion are

derived by comparing the inertial and the electro-magnetic forces acting on a particle

which carries one elementary charge e:

m
d2

dt2
~r = −e∇Φ(~r, t) . (2.6)

In dimensionless coordinates, the equations take the form of the Matthieu equation

d2

dτ 2
xi + [ai + 2qi cos(2τ)] xi = 0 ; xi ∈ {x, y, z} , (2.7)

1For this case, the full quantum mechanical treatment yields the same stability parameters as the
classical discussion. This is attributed to the fact that the equation of motion of the Wigner function
of this problem is equal to the classical Liouville equation. The reader is referred to [66] for a detailed
discussion.
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with a scaled time variable τ = Ωrft/2 and the following parameter definitions:

ax = ay = −1

2
az = −4eκUdc

mr20Ω
2
rf

;

qx = −qy =
2eUrf

mr20Ω
2
rf

; (2.8)

qz = 0 .

This equation has stable solutions only if a, q ≪ 1 [63]. To first order in q these read

xi(t) ≈ x0i cos(ωit+ φi) ·
(

1 +
qi
2
cos(Ωrft)

)

, (2.9)

with the secular frequencies ωi defined as

ωz =

√

eκUdc

2mr20
;

ωx,y =
1

2
Ωrf

√

ax,y +
q2x,y
2

.

(2.10)

The particle undergoes an oscillating motion with two different frequencies: the first

corresponds to a three-dimensional harmonic oscillation in the effective trapping poten-

tial and is called secular motion. The second and faster oscillation originates from the

high-frequency driving field (Ωrf) and is called micromotion. In an ideal trap, it only

occurs in the radial direction in an ideal potential.

2.1.3 Excess Micromotion

Since the amplitude of the micromotion is only a factor of qi/2 of that of the secular

motion, it is usually neglected. However, if the charged particle is subject to an additional

static electric field ~Edc, this situation changes dramatically. The equations of motion

become

d2

dτ 2
xi + [ai + 2qi cos(2τ)] xi =

e ~Edc · x̂i
m

, (2.11)

and the solution changes accordingly to

xi(t) ≈ (xEi + x0i cos(ωit+ φi)) ·
(

1 +
qi
2
cos(Ωrft)

)

;

xEi ≈
e ~Edc · x̂i
mω2

i

.
(2.12)
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where x̂i is a dimensionless unit vector in direction xi. The additional static field thus

shifts the particle away from the line of vanishing radio-frequency potential. The high-

frequency field at that position generates micromotion, but with an increased amplitude

xEiqi/2. This effect is called excess micromotion. The same type of micromotion occurs

if a phase shift between opposite blades of the high-frequency field exists. In this case

the line of vanishing radio-frequency potential oscillates in position. Both effects have

to be avoided in the experiment, since this type of motion is driven, thus it can not be

cooled by means of lasers, and its existence can introduce heating effects which decrease

the efficiency of laser cooling the motion of the ion. Since the experiments presented in

this thesis rely on ground state cooling of the external motion of the ion, care has to

be taken to minimize the micromotion amplitude as much as possible. This situation

becomes even more critical for the case of a Coulomb crystal of several ions. There the

kinetic energy is dominated by the micromotion since the equilibrium position of the

ion crystal is not at the center of the trap. In a later stage of the experiment, when
25Mg+ is used for sympathetic cooling of spectroscopy ions, this effect will introduce

additional limits on the cooling performance and has to be considered. For an extensive

discussion on the influence of micromotion on laser cooling and other related effects in

an experimental and theoretical context see [67, 68, 69].

2.2 Magnesium as a Qubit

For the experimental work presented in this thesis, the ion 25Mg+ was used. The main

motivation for choosing this species lies in the requirements for the necessary laser sys-

tem. In other employed species often several individual laser setups are necessary to

provide cooling, coherent manipulation, repumping and state detection of the ion. For

instance in the case of 40Ca+, the used electronic states are coupled by optical transitions

which are largely separated: 397 nm for Doppler cooling, 854 nm and 866 nm for repump-

ing and 729 nm for coherent manipulation (see also Fig. 4.2 for a 40Ca+ level scheme).

In contrast to that, a two-level system in ions with hyperfine structure, like 9Be+ or
25Mg+, can be implemented by using two long-lived ground states. Since the separation

of these states is on the order of ∼GHz, coherent manipulation can be achieved in a

Raman configuration derived from a single laser by means of acousto-optic modulators.

In addition to that one or two laser systems for repumping and detecting purposes are

commonly used. With the incorporation of an additional electro-optic modulator in the

setup this configuration can be even more simplified to just a single laser system for

cooling, detecting, repumping and manipulating the ions. The experiments presented

in this thesis have been carried out using such a single laser system (see Section 5.1 for

details). The particular 25Mg+ isotope was chosen because of its hyperfine structure.
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However, some of the calibration and laser alignment experiments have been performed

with the 24Mg+ isotope.

Throughout this section, the atomic structure of magnesium ions, as well as its inter-

action with laser fields, are discussed. The description follows [70, 71] and was adapted

to magnesium ions.

2.2.1 Magnesium Level Scheme

Magnesium is an alkaline earth metal with atomic number Z=12. The most common iso-

tope is 24Mg, with a natural abundance of 79%. The second most common are 25Mg and
26Mg, with 10% and 11% percent, respectively. The corresponding singly-charged ions

have one electron in their valence shell and their three lowest electron configurations are

the hydrogen-like S1/2, P1/2 and P3/2 shells with inter-shell transitions at 279.6 nm and

280.3 nm and a common linewidth of Γ ∼ 2π × 41.4MHz [72]. The transition frequen-

cies of 24Mg+ and 26Mg+ have been determined by precision spectroscopy experiments

[72, 73]:

Transition Frequency ν (MHz)

24Mg+ 3s2S1/2 - 3p2P1/2 1 069 338 342.56 (16)

24Mg+ 3s2S1/2 - 3p2P3/2 1 072 082 934.33 (16)

26Mg+ 3s2S1/2 - 4p2P1/2 1 069 341 427.47 (16)

26Mg+ 3s2S1/2 - 4p2P3/2 1 072 086 021.89 (16)

Of the different isotopes, 25Mg+ is the only one with a nuclear spin. As a consequence,

the energy levels are split into the so-called hyperfine structure. These energy shifts

arise from a coupling of the nuclear momentum with the electric field of the electrons.

Their quantity can be expressed in terms of the nuclear spin I, the total electronic spin

J = L+S, where L corresponds to the orbital angular momentum and S to the intrinsic

spin, and the total angular spin F = J + I as follows [74]

∆EHFS =
K

2
· A+

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
· B , (2.13)

where K = F (F + 1) − I(I + 1) − J(J + 1). The first term results from the energy of

the nuclear dipole moment in the magnetic field produced by the electrons, whereas the

second one accounts for the energy of the electric quadrupole moment of the nucleus in

the electric field gradient. For I = 0, 1/2 the quadrupole moment vanishes (B = 0) [75].

The combined total spin F fulfills the condition |I − J | ≤ F ≤ I + J .

The resulting level scheme for 25Mg+ with its nuclear spin I = 5/2, as well as the
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corresponding hyperfine constants, A and B, have been either calculated or measured

[76, 77] and are listed in Fig. 2.2. In accordance with the predicted isotope shifts and

hyperfine splittings, we observe for the 25Mg+ transition 3s2S1/2 |3, 3〉 to 3p2P3/2 |4, 4〉
with a calibrated wavelength meter a resonance frequency of 1 072.085 265 (60) THz.

A = -596.254 376(54) MHz0

279.552 nm

(F|g )F

A -19.29 MHz2 »

B 22 MHz2 »

1.789 GHz

(1|-1)

(2|1/9)

(3|7/18)

(4|1/2)

(2|-1/3)

(3|1/3)

1043.45 MHz (-7/4A )0

-745.32 MHz (5/4A )0

-466.54 kHz/G

466.54 kHz/G

101.27 MHz (-21/4A )2

62.69 MHz (-13/4A )2

4.82 MHz (-1/4A )2

-72.34 MHz (15/4A )2

-1399.63 kHz/G

155.51 kHz/G

544.30 kHz/G

699.81 kHz/G

DE = -466.54 kHz/G m B(G)F

Zeeman-Splitting:

2
S1/2

2
P3/2

2
P1/2

A -103.4 MHz1 »

280.270 nm

(2|-1/9)

(3|1/9)

180.95 MHz (-7/4 A )1

-129.25 MHz (5/4 A )1

-155.51 kHz/G

155.51 kHz/G

25
Mg

+

Figure 2.2: Level scheme of 25Mg+ including hyperfine structure. Only the levels
of relevance to the experiments are shown. The quadrupole fraction of the hyperfine-
splitting for the P3/2 is included in the frequency shift values but not mentioned in the
energy levels.

The hyperfine states are further split into magnetic sub-states which are denoted by

the magnetic quantum number mF , where mF ∈ {−F,−F + 1, . . . , F}. Without any

external magnetic field, these levels are degenerate. Such degeneracy is lifted in the

experiments by applying an external field of typically Bz ∼ 6mT. Within the limit of

weak fields, the levels experience a Zeeman-shift in energy according to2

∆EZM = µBgFmFBz , (2.14)

2Derivation of the Zeeman effects and the Landé factors can be found in textbooks [78].
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where the Landé factors are approximately given in terms of the electronic spin S and

orbital spin L by

gJ ≈ 1 +
J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
;

gF ≈ gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
.

(2.15)

The corresponding values for gF are shown in Fig. 2.2.

Of particular interest for the experiments in this thesis is the ground state splitting

of 1.789GHz of the S1/2 state. The magnetic sub-states |↓〉 := |F = 3,mF = 3〉 and

|↑〉 := |2, 2〉 are used to encode the required two-level system. Both manifolds can be

coupled via a magnetic dipole transition (M1) and are consequently long-lived states.

In contrast to the electric dipole transitions, the decay rate is much smaller. The 2S1/2

F=2 state of 25Mg+ has a decay rate [79, 80]

ΓHF =
4αω3

~
2I

27m2
ec

4(2I + 1)
(
√
2
√
1 + κ+ 1)2 ∼ 10−141

s
, (2.16)

where κ =
√
1− Z2α2, α is the fine-structure constant, me the electron mass, I the

nuclear spin of 25Mg+ and ω = 2π×1.789 GHz the hyperfine-splitting. This corresponds

to a lifetime of > 106 years and thus spontaneous decay is neglected in what follows.

It should be further noted that the extremal magnetic sub-state |4, 4〉 of the P3/2

manifold has only a single decay channel, namely to the |↓〉 state. Thus, by coupling the

S1/2 and P3/2 states with a laser field and choosing the correct polarization (σ±), this

optical cycling transition can be employed for Doppler cooling the ion and initializing

its internal state via optical pumping, where the ion is successively transferred into the

|↓〉 state independently of its initial state distribution in the S1/2 F = 3 manifold. At

the same time, an additional repumper which couples the S1/2 F = 2 state to the P3/2

state is used to address the population in the F = 2 manifold.

2.2.2 Interaction of Light with Trapped Magnesium Ions

In this section, the interaction of a laser field with an ion confined in a harmonic trapping

potential is described. The ion is assumed to be in a state distribution

ψ = (a |↑〉+ b |↓〉)⊗
∞∑

n=0

cn |n〉 , (2.17)
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where |n〉 represents the oscillator levels and the following normalization condition ap-

plies for the complex constants a, b and cn:

|a|2 + |b|2 = 1 ;
∑

n

|cn|2 = 1 . (2.18)

The combined system essentially shows two new types of resonances in addition

to the resonance of the isolated two-level system. These allow for coupling the internal

electronic and external motional degrees of motion and are used e.g. in ion trap quantum

computing as a quantum bus between different ions [81]. An extensive study of such

systems is found in [63, 64, 65].

Hamiltonian

The Hamiltonian of a two-level system trapped in a harmonic oscillator with frequency

ωT and interacting with a running electro-magnetic wave E(t) = E0 cos(~k~̂x−ωLt) reads
3

[65]

Ĥ = Ĥ0 + Ĥ1 ;

Ĥ0 =
p̂2

2m
+

1

2
mω2

T x̂
2 +

1

2
~ω0σ̂z ; (2.19)

Ĥ1 =
1

2
~Ω
(
σ̂+ + σ̂−)

(

ei(
~k~̂x−ωLt+φ) + e−i(~k~̂x−ωLt+φ)

)

,

where σ̂+,−
z represent the Pauli spin matrices, Ω the Rabi frequency, ω0 the atomic

transition frequency, ωL the electro-magnetic wave frequency with a phase φ and wave

vector ~k with |~k| = k. The Rabi frequency depends on the amplitude E0 of the electric

field and on the dipolar matrix element between the electronic states as follows

~Ω = E0 · 〈↑ | ~̂d|↓〉 , (2.20)

where ~̂d is the dipole operator. The Hamiltonian consists of two parts: Ĥ0 describes

the energy levels of the ion whereas Ĥ1 couples the internal (electronic) to the external

(motional) states of the ion. This becomes clearer by expressing the Hamiltonian in

terms of creation and annihilation operators

â |n〉 =
√
n |n− 1〉 ; x̂ = x0(â+ â†) ;

â† |n〉 =
√
n+ 1 |n+ 1〉 ; p̂ = i

x0
(â† − â) ,

(2.21)

3For simplicity, only the 1D Hamiltonian is considered here.
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where n = 0, 1, 2, . . . and x0 =
√

~

2mωT
. The Hamiltonian (Eq. (2.19)) now reads

Ĥ0 = ~ωT

(

ââ† +
1

2

)

+
1

2
~ω0σ̂z ;

Ĥ1 =
1

2
~Ω
(

eiη(â+â†)σ̂+e−iωLt + e−iη(â+â†)σ̂−eiωLt
)

.

(2.22)

Here, the Lamb-Dicke parameter η = kx0 was introduced. Its square defines the ratio

between the photon recoil energy and the energy level spacing in the harmonic oscillator

η2 =
(~k cos θ)2

2m
/~ωT → η = k cos θ

√
~

2mωT
, (2.23)

where θ is the angle between the wave vector and the trap axis cos(θ) = ~kx̂.

The Hamiltonian can be further simplified in the rotating frame of the interaction

picture with the unitary transformation Û = eiĤ0t~

ĤI = Û †ĤÛ =
1

2
~Ω
(

eiη(ã+ã†)σ̂+e−i∆t + e−iη(ã+ã†)σ̂−ei∆t
)

(2.24)

and the co-rotating operators ã = âeiωt and the atom-laser detuning ∆ = ωL − ω0.

Allowed Transitions

The interaction Hamiltonian in Eq. (2.24) allows for transitions between internal (elec-

tronic) and external (vibrational) states. Their amplitudes are given by the matrix

elements of the interaction Hamiltonian. While the diagonal elements are zero, the

off-diagonal are calculated as follows4

〈ψ′| ĤI |ψ〉 = 〈↑, n′| ĤI |↓, n〉

=
1

2
~Ω 〈↑, n′| eiη(ã+ã†)σ̂+e−i∆t + e−iη(ã+ã†)σ̂−ei∆t |↓, n〉

=
1

2
~e−i∆t · Ω 〈n′| eiη(ã+ã†) |n〉

︸ ︷︷ ︸

Scaled Rabi Frequency Ωn′n

. (2.25)

The transition amplitudes depend on the overall Rabi frequency Ω and on the occupation

level n in the harmonic oscillator. These matrix elements can be expressed in terms of

4Only Fock states are considered here since the generalization to an arbitrary state distribution is
straightforward. Furthermore, the amplitudes for 〈↓, n′| → |↑, n〉 are omitted here, since the derivation
is the same.
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the associated Laguerre polynomials [65]

〈n′| eiη(ã+ã†) |n〉 = e−η2/2

√

n<!

n>!
η|n

′−n|L|n′−n|
n<

(η2) ; (2.26)

Lα
n(x) =

n∑

k=0

(−1)k




n + α

n− k




xk

k!
,

where n<(n>) is the lesser (greater) of n
′ and n. There are three categories of transitions:

• carrier transition, in which only the electronic spin is flipped while the vibrational

quantum number stays unchanged; For instance, its scaled Rabi frequency for the

|↓〉 |0〉 to |↑〉 |0〉 transition reads

Ω00 = Ω 〈0| eiη(ã+ã†) |0〉 = Ωe−η2/2 . (2.27)

• red sideband transition, in which the electronic spin is flipped along with a decrease

of the vibrational quantum number; For instance, its scaled Rabi frequency for the

|↓〉 |1〉 to |↑〉 |0〉 transition reads

Ω10 = Ω 〈1| eiη(ã+ã†) |0〉 = Ωηe−η2/2 . (2.28)

• blue sideband transition, in which the electronic spin is flipped along with an in-

crease of the vibrational quantum number. The scaled Rabi frequency for the

|↓〉 |0〉 to |↑〉 |1〉 is the same as the same as for the red sideband, i.e. Ω10 = Ω01.

The blue and red sideband transitions can add or subtract multiple motional quanta at

a time which is determined by the order of the transition.

Lamb-Dicke Approximation

In the limit of a very small Lamb-Dicke parameter and/or low average vibrational oc-

cupation, the wave packet is confined to a region much smaller than the transition

wavelength. This is called the Lamb-Dicke regime. Under this condition the expression

for the transition amplitudes can be expanded in a Taylor series

η2(2n+ 1) ≪ 1 → eiη(ã+ã†) ≈ 1 + iη(ã+ ã†)− η2

2
(ã+ ã†)2 + · · · (2.29)
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Figure 2.3: Transition amplitudes as a function of the trap level. The scaling of the
Rabi frequencies (right ordinate) with the harmonic oscillator level is shown for the
different types of transitions: carrier transitions (black solid line), 1st blue/red sideband
(blue/red solid line), 2nd blue/red sideband (blue/red dashed line). The approximations
in the Lamb-Dicke regime are depicted by the thin dot-dashed lines for the carrier and
the red sidebands, only. Furthermore, the population distribution for a thermal state
at the Doppler cooling temperature is plotted (yellow bars, left ordinate). The inset
depicts the different types of transitions between the two hyperfine states in the same
color coding. For this graph, the Lamb-Dicke parameter was chosen to be η = 0.28 and
the trap frequency ωT = 2π × 2.2MHz.

The transition amplitudes take the following form up to third order in η

〈n′| eiη(ã+ã†) |n〉 ≈ δn′,n ·
{

1− η2

2
(2n+ 1)

}

+ δn′−1,n ·
{

iη
√
n− i

η3

2

(√
n
)3
}

+ δn′+1,n ·
{

iη
√
n+ 1− i

η3

2

(√
n+ 1

)3
}

+ δn′−2,n ·
{

−η
2

2

√

(n− 1)n

}

+ δn′+2,n ·
{

−η
2

2

√

(n+ 1)(n+ 2)

}

,

(2.30)

where δn′,n represents the Kronecker-Delta. The amplitudes are sorted by the dif-

ferent transition forms: 〈n′|n〉 corresponds to a carrier transition, whereas 〈n′ ± 1|n〉
(〈n′ ± 2|n〉) correspond to 1st (2nd) order sideband transitions. The transition ampli-

tudes along with their approximate results (Eq. (2.30)) are plotted in Fig. 2.3.
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2.2.3 Coherent Manipulation

In the following two sections a description of the coherent coupling of the two hyperfine

states, noted |↑〉 (
∣
∣F↑, mF↑

〉
= |2, 2〉) and |↓〉 (

∣
∣F↓, mF↓

〉
= |3, 3〉), is given. The coupling

is employed either by using two-photon stimulated Raman transitions or by a direct

application of radio-frequency fields. The discussion is restricted to the coupling between

the qubit states via the P3/2 state. For a more detailed analysis on Raman-induced Rabi

oscillations, the reader is referred to [82, 83].

Raman Transitions

Coherent transitions between the hyperfine ground states (|↓〉 and |↑〉) are achieved by

applying two phase-coherent laser fields5 ~E = ǫ̂1E1 cos(ω1t + ~k1~r) + ǫ̂2E2 cos(ω2t + ~k2~r)

to the ion, where E1,2 are the laser field amplitudes, ~k1,2 correspond to the wave vectors

and ǫ̂1,2 represent the unit polarization vectors of each laser field.

Under the assumption that both lasers couple off-resonantly to intermediate states

|i〉 whose detunings are large compared to their individual decay rates, ∆i ≫ Γi, the

auxiliary states are not significantly populated. If the difference of the laser field energies

furthermore corresponds to the energy difference of the hyperfine states, i.e. ω1 − ω2 ∼
ω↑−ω↓, the states undergo sinusoidal Rabi-type oscillations. The 2-level Rabi frequency

is replaced by an effective Rabi frequency which reads

Ωeff =
E1E2

4~2

∑

i

〈↑ | ~̂d · ǫ̂1|JiFimFi
〉〈JiFimFi

| ~̂d · ǫ̂2| ↓〉
∆i

, (2.31)

where ~̂d represents the dipole operator. It is convenient to rewrite this operator in

spherical components as follows [84]:

d̂σ± =
1√
2
(∓d̂x − id̂y) ;

d̂π = d̂z .

(2.32)

The indices represent the different transition types, π corresponding to a transition which

does not change the magnetic quantum number, whereas σ± changes it by ±1.

Here, a Raman transition, comprised of a combination of σ- and π-polarized laser

beams, is considered to couple the hyperfine states (see Fig. 2.4). Using the Wigner-

5One way to realize such laser fields is to split one laser beam into two branches and shift each
branch using acousto-optic modulators to bridge the frequency difference of the two long-lived ground
states. This way laser phase fluctuations are common mode rejected, since both branches originate from
the same local oscillator, while the frequency difference is in the radio-frequency regime and thus easily
controlled with high precision.
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Figure 2.4: Coherent manipulation of the ion. The Raman transition between the two
hyperfine ground states driven by a π-polarized and a phase-coherent σ-polarized beam is
shown. Both lasers are resonant to a virtual level which is detuned by ∆ = 2π×9.2GHz
with respect to the P3/2-state.

Eckart theorem, the effective Rabi frequency simplifies to [78, 85]

∑

i

1

∆i

〈↑ |d̂σ+
· ǫ̂1,σ+

|JiFimFi
〉〈JiFimFi

|d̂π · ǫ̂2,π| ↓〉 =

∑

i

1

∆i

〈↑ ||d̂||JiFi〉〈↑ |FimFi
Jphq1〉 · 〈JiFi||d̂|| ↓〉〈FimFi

| ↓ Jphq2〉 =

∑

i

1

∆i

〈↑ ||d̂||JiFi〉(−1)Fi−1+m↑
√

2F↑ + 1




Fi Jph F↑

mFi
q1 −mF↑





3j

·

〈JiFi||d̂|| ↓〉(−1)F↓−1+mFi

√

2Fi + 1




F↓ Jph Fi

mF↓
q2 −mFi





3j

,

(2.33)

where the photon angular momentum is given by Jph = 1 and the polarizations are

defined by q1 = −1 and q2 = 0. In this sum, the Wigner 3-j symbols are non-zero only

if the following selection-rules are fulfilled:

mFi
+ q1 = mF↑

;

mF↓
+ q2 = mFi

.
(2.34)

This relation represents the conservation of angular momentum of the photon-electron
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system.

The reduced matrix elements 〈·|| · ||·〉 can be further simplified in terms of the Wigner

6-j symbols

〈↑ ||d̂||JiFi〉 = (−1)J↑+I+Fi+1
√

(2J↑ + 1)(2Fi + 1)







J↑ F↑ I

Fi Ji 1







6j

〈J↑||d̂||Ji〉 ;

〈JiFi||d̂|| ↓〉 = (−1)Ji+I+F↓+1
√

(2Ji + 1)(2F↓ + 1)







Ji Fi I

F↓ J↓ 1







6j

〈Ji||d̂||J↓〉 .

(2.35)

It should be noted that different normalizations are used in the literature. This issue is

discussed in Appendix A.

Using the fact that the Wigner 3-j symbols are non-vanishing for Fi = 3 and mFi
= 3

only, the final expression for the effective Rabi frequency reads

|Ωeff| =
E1E2

4~2∆

( √
5

3
√
6
· | 〈J = 1/2||d||J = 3/2〉 |2

)

. (2.36)

Taking the motion of the ion in the trap into account, this Rabi frequency is to be

scaled with the transition amplitudes in Eq. (2.26) to obtain the Rabi frequencies as a

function of the harmonic oscillator level for the specific transition type: For instance, the

scaled Rabi frequency for the carrier transition of the ground state reads Ω0,0 = Ωeffe
−η2/2.

The Lamb-Dicke parameter η is determined by the k-vector difference of the Raman

beams, i.e. k = |~k1−~k2| in Eq. (2.23). It has a typical value of η ∼ 0.3 in our experiments.

Besides the coherent coupling between the qubit levels, the interaction of the laser

field shifts the energy levels according to [83]

δ↑ =
∑

i

E2
1

4~2∆i
|〈↑ |~d~ǫ |i〉|2 and δ↓ =

∑

i

E2
2

4~2∆i
|〈↓ |~d~ǫ |i〉|2 , (2.37)

where the detuning ∆i is large compared to the decay rate ∆i ≫ Γi of state |i〉. This

effect is called AC-Stark shift. The sum includes coupling to all excites states.

Consequently, the transition frequency between the |↓〉 and |↑〉 states is changed by

the difference of the individual shifts δ↓−δ↑. In contrast to the Rabi frequency calculation

presented before, the P3/2 |4, 3〉 level has to be taken into account, since it couples to

the π-polarized Raman beam. The differential shift of the states reads

δ↑ − δ↓ = g22
2

9

1

∆
− g21

(
5

24

1

∆
+

1

8

1

∆ + ωHF

)

≈ 2g22 − 3g21
9∆

,

(2.38)
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where the hyperfine splitting of the excited states was neglected, since ∆ ≫ ωHF, and the

constants gi are defined as gi =
E2

i

4~2∆
| 〈J = 1/2||d||J = 3/2〉 |2. In principle the Stark shift

can be compensated for by choosing the relative beam intensities as g21 =
2
3
g22. However,

for practical reasons, this is commonly done in a different way by choosing different

polarizations for each individual beam. An example for this type of compensation for

the case of 9Be+ can be found in [82].

Radio-Frequency Transitions

The second possibility for a coherent coupling between the two hyperfine ground states in
25Mg+ is by directly exciting the magnetic dipole (M1) transition with a radio-frequency

field at 1.789 GHz.

The transition amplitudes between the different Zeeman sub-states are calculated

in the same way as above using the Wigner-Eckart theorem with the magnetic dipole

operator M = ~µM
~B

〈FmF|M |F ′mF’〉 = (−1)F−mF−1
√
2F ′ + 1




F 1 F ′

mF q −mF’



 〈F ||M ||F ′〉 , (2.39)

where q corresponds to the polarization of the oscillating field and ~µM represents the

magnetic dipole moment. Similar to the electric dipole transition, the same selection

rules apply. The matrix elements are non-zero, if mF + q − mF’ = 0, where q = 0

corresponds to π-transitions and q = ±1 represents σ±-transitions between the Zeeman

states.

The Lamb-Dicke parameter for radio-frequency transitions is extremely small, namely

η ∼ 10−7 for a harmonic trapping frequency of 2MHz. As a result, sideband transitions

can only be driven with very high field amplitudes since their Rabi frequency is reduced

by the factor η (see Section 2.2.2). This is not possible in our experiment and conse-

quently only carrier transitions are driven by application of radio-frequency fields. It is

worth mentioning that in a recent experiment that employs a surface-electrode trap high

radio-frequency field gradients could be achieved to overcome this limit and drive carrier

and sideband transitions in the ion [86].
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Chapter 3

Theoretical Description of Direct

Frequency Comb Spectroscopy

In usual fluorescence spectroscopy, a cw-laser is used to excite an atomic transition

and fluorescence due to spontaneous emission is then recorded as a spectroscopy signal.

Measuring the fluorescence spectrum as a function of the laser detuning with respect

to the atomic resonance frequency yields the desired frequency information about the

transition under investigation. This situation is rather different when a frequency comb

is used as a spectroscopic probe instead. In the frequency domain, this situation can

be understood as if a large number of very low-power cw-lasers (> 100000) excited

the atomic transition. For a multi-level system, this means that many transitions are

excited simultaneously and multi-photon processes also become relevant, since photons

from different parts of the comb spectrum can participate in the excitation. Those

processes occurring concomitantly, it cannot be unambiguously identified which photon

(or comb tooth) excited a certain transition only by measuring fluorescence photons; the

interpretation of the acquired signals is thus rendered accordingly difficult.

Looking at the interaction in the time domain is equally challenging. Since a fre-

quency comb is generated by a train of phase-stabilized femtosecond laser pulses with

repetition periods typically from 100MHz up to 1GHz, each pulse interferes with the

coherence built-up in the ion, i.e. the ion acts as an interferometer for the cascading

pulses. Each of the pulses containing many frequency components, again, it cannot be

unambiguously decided only by measuring the fluorescence which component excited a

specific transition after the interaction with a single laser pulse.

It is also worthwhile mentioning that it is the pulsed nature of this spectroscopy

probe that imposes a fundamental limitation on the types of transitions that can be

investigated. If the lifetime of the excited states is much smaller than the repetition

period of the frequency comb, no significant population can be transferred to the excited
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states since they decay completely via spontaneous emission before the arrival of the

consecutive laser pulse. Thus, in practise the ion will not experience a frequency comb

spectrum since the interference with the following pulses is suppressed and the frequency

resolution of the spectroscopy is restricted to that of a single laser pulse.

For these reasons, it is important to have a good understanding of the underlying

dynamics of the ion-comb interaction in order to interpret the acquired complex spec-

tra. In this chapter, these dynamics are theoretically developed yielding the expected

population evolution as a function of the exact comb parameters. In the first part, the

frequency comb structure is derived from a train of phase-stabilized laser pulses. In

the second part, the semi-classical optical Bloch equations are solved to determine the

time-evolution of the atomic states.

3.1 Spectrum of a Phase-Stabilized Pulsed Laser

In this section, the spectrum of a phase-stabilized pulsed laser is derived in the time-

domain. In this picture, the interference of consecutive laser pulses leads to the emergence

of a frequency comb structure. In an equivalent alternative way, this derivation can be

done in the frequency-domain (see e.g. [47]).

Let Ek(t) be the electric field of a single laser pulse

Ek(t) = σ(t) ·
(
eiωct+iφk + c.c.

)
, (3.1)

where σ(t) is a real-valued envelope function. This function is usually assumed to be

a Gaussian or a hyperbolic secant, i.e. for example σ(t) = e0 · sech(t/σ) with a field

amplitude e0. The laser carrier frequency is denoted by ωc and φk represents the carrier-

envelope phase.

A phase-stable train of p pulses is then given by

ET (t) =

p
∑

k=0

Ek(t− tk) =

p
∑

k=0

σ(t− tk) · eiωc(t−tk)+iφk , (3.2)

where the following definitions are used:

tk =
k

νR
= kτR ;

φk = φ0 + k · δφ ; (3.3)

δφ = 2π · ν0
νR

= ω0τR .

Here, νR = τ−1
R is the repetition rate of the train of pulses, ω0 = 2πν0 the offset frequency,
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φ0 an initial offset-phase and δφ a constant pulse-to-pulse phase shift. The reasons for

these designations will become clear in the frequency domain, which is considered in

what follows.

The Fourier spectrum of the train of pulses ET (t) reads

FT {ET (t)} =

p
∑

k=0

{
e−iωtk+iφkσF (ω − ωc) + e−iωtk−iφkσF (ω + ωc)

}
, (3.4)

where σF (ω) is the Fourier transform of the envelope function. The second term will be

left out henceforth since it only represents the (symmetric) negative frequencies.

FT {ET (t)} = σF (ω − ωc) ·
p
∑

k=0

e−iωtk+iφk

= σF (ω − ωc)
︸ ︷︷ ︸

envelope

·eiφ0 ·
p
∑

k=0

e−i(ω−ω0)kτR

︸ ︷︷ ︸

comb structure

. (3.5)

The sum is simplified as (see Appendix D)

FT {ET (t)} = σF (ω − ωc) · e−i(ω−ω0)
p

2
τR+iφ0 ·

{

sin
(
1
2
(ω − ω0)(p+ 1)τR

)

sin
(
1
2
(ω − ω0)τR

)

}

.(3.6)

The extrema of this function are found when (ω − ω0) · τR/2 = π · n, yielding

ω = ω0 + ωR · n with n ∈ {0, 1, 2, . . .}

This periodic structure corresponds to a frequency comb in the Fourier domain. The

offset frequency ω0 results from the constant pulse-to-pulse phase shift. The repetition

rate of the laser pulses is reflected in the equidistant structure of the comb teeth.

The power spectrum of the frequency comb is given by the square of the Fourier

transform of the electric field

P (ω) = |FT {ET (t)} |2

= |σF (ω − ωc) |2 ·
{
cos ((ω − ω0) · (p+ 1) · τR)− 1

cos ((ω − ω0) · τR)− 1

}

. (3.7)

Using the rule of L’Hôpital, the power value at the position of the comb teeth is given

by

P (ω0 + ωR · n) = |σF (ω0 + ωR · n− ωc) |2 · (p+ 1)2 . (3.8)
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Figure 3.1: The normalized power comb spectrum P (ω)/|σF (ω − ωc) |2(p + 1)2 is de-
picted. The difference in the curves is the number of total pulses (blue dot-dashed line:
1 pulse, green dashed line: 2 pulses, red solid line: 20 pulses). The emergence of the
comb structure after the interference of even a small number of pulses is clearly observed.

The divergence in the power spectrum for an infinite number of pulses is explained by the

fact that the comb teeth transform into peak-like delta-distributions which are Fourier

limited in width. In Fig. 3.1, the comb spectrum for a different number of pulses p is

shown. Even after only a few pulses, the emergence of the comb structure is clearly

visible.

3.2 Time Evolution of the Atomic System

In this section, the interaction of the phase-locked pulsed laser with a multi-level atom

is described in the framework of the semi-classical optical Bloch equations. An efficient

numerical algorithm is developed with which the temporal evolution of the population

in the different energy states of the multi-level atom can be obtained as a function of

the comb parameters.

Numerically1, one major challenge is the existence of very different timescales (see

Fig. 3.2): the pulse length (typically ∼ 10−100 fs), the repetition rate (typically ∼ 1 ns)

and the spontaneous decay (typically ∼ 10th of ns). As a consequence, during the in-

teraction of the laser pulse with the ion, spontaneous decay can be neglected. After

the interaction took place, a period of free evolution that is only governed by spon-

taneous emission events follows and consequently laser interaction is neglected. These

1An analytical result for a two-level system interacting with a pulse train is found in [87].
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approximations are used in the following considerations.

The algorithm discussed here is based and adapted from the work of D. Felinto [88,

89, 90] and A. Marian [91]. In contrast to these references, the interaction Hamiltonian

is not expanded and approximated in a Dyson series, instead solved numerically. This

introduces more flexibility in the application. For instance, in the case of 40Ca+, the

existence of clock transitions (from the S to the D states), along with dipole transitions

(from the S to the P states), introduces transition matrix elements which differ by orders

of magnitude, preventing the Dyson series to converge. This problem is overcome in the

approach presented here.

Figure 3.2: Time scales in the comb theory. The comb is comprised of phase-locked laser
pulses with a width on the femto-second scale, while the repetition period is typically in
the nano-second regime. As a consequence, the laser-atom interaction only needs to be
taken into account during the shorter timescale, while a process of (trivial) free decay
governs the longer periods between the pulses.

3.2.1 Definition of the Ion-Laser-Trap System

The atomic system confined in an ion trap is represented by a set of N electronic energy

states {|r〉} and a set of Ntrap harmonic oscillator levels {|n〉}. As shown in Fig. 3.3, the

energy of the states of the combined system are sorted ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫN ·Ntrap
. They

read2

ǫi := ǫr,n = ǫ′r + ~ωT ·
(

n+
1

2

)

, (3.9)

2 For simplicity, an additional magnetic field is not considered in the simulation here. This is,
however, easily added by shifting the energies correspondingly as mr

F/J · grF/J · µBBz, where mr
F/J is

the magnetic quantum number, grF/J the Landé-factor of the rth electronic level (including magnetic

sub-states).



28 3.2 Time Evolution of the Atomic System

where r denotes the electronic levels with r = 1, . . . , N , ωT the trap frequency, n the

trap excitation quantum number with n = 1, . . . , Ntrap and i = n +Ntrap(r − 1).
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Energy

e1

e2

e3

e4

Figure 3.3: Energy level nomenclature for the ion-comb-trap system. The energies are
sorted ǫ1 ≤ ǫ2 ≤ · · · ≤ ǫN ·Ntrap

. This is an example for an S-P level system including
magnetic sub-structure and two harmonic trap levels.

In the same way, we define the set of energy states as |i〉 := |r〉 |n〉.
The dipole matrix elements µij between energy levels i and j are determined by the

Einstein Aij coefficients and the laser polarization (see Section 2.2.2 and Appendix B),

µij = 〈i|ǫ̂~r|j〉 = Cij ·

√

3ǫ0~Aijλ3ij
8π2

, (3.10)

where ǫ̂ is the polarization vector, Cij the Clebsch-Gordan coefficient and λij the wave-

length of the corresponding transition. In order to take the effect of the harmonic con-

finement into account, the Einstein coefficients need to be replaced by scaled coefficients

which are a function of the trap level and the Lamb-Dicke parameter of the particular

transition3

Aij = Aij(ηij) with ηij =
2π

λij
·
√

~

2mωT

. (3.11)

With the above designated quantities, the total Hamiltonian of the atomic system inter-

3This introduces the different strength of the carrier and the sideband transitions in the system. See
Section 2.2.2 for their functional behavior. The Einstein coefficients have to be multiplied by the square
of the corresponding transition amplitudes between different trap levels.



29

acting with a train of p laser pulses in the dipole approximation reads

H = H0 +Hint ;

H0 =

N∑

i=1

ǫi|i〉〈i| ;

Hint = −ET (t)
∑

i,j

µij|i〉〈j|+ c.c. ;

ET (t) =

p
∑

k=0

σ(t− tk)e
iωc(t−tk)+iφk + c.c. ,

(3.12)

where ~ωij = ǫj − ǫi. It should be noted that the Hamiltonian is periodic with a change

in the carrier-envelope phase φk = φ0 + kω0τR from pulse-to-pulse. This feature is used

in the following derivation.

3.2.2 Optical Bloch Equations with a Pulsed Laser

In the following, the approximations mentioned in the introduction that make use of the

different timescales in the system are used develop an iterative algorithm which outputs

the state of the system after the interaction with a single laser pulse and a period of

spontaneous decay. The final state serves again as an input of the algorithm to interact

with the consecutive laser pulse. Following this protocol, the density matrix after a

certain number of pulses is determined.

The time-evolution of the atom-laser system is modelled by the semi-classical optical

Bloch equation. In the density matrix formalism, they read

ρ̇ij = − i

~
[H, ρ]ij − Γijρij + δij

∑

r

γirρrr . (3.13)

Here, Γij represent the decay rates of the matrix elements and γij the population ’feeding’

terms, i.e. γij is the rate with which the jth level decays into the ith level. The Kronecker-

Delta guarantees that these terms only occur on the diagonal. The parameters follow

the properties

γij = C2
ij · Ãij(η̃ij) ;

Γjj =
∑

i

γij ;

Γij =
1

2
(Γii + Γjj) .

(3.14)

It should be noted that the Einstein coefficients Ãij(η̃) used here, differ from the previous

one used in the calculation of the matrix elements in Eq. (3.10). In contrast to the laser
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excitation, which is determined by the direction of the wave vector ~k, the spontaneous

decay can emit photons into the full solid angle. This effect reduces the Lamb-Dicke

parameter for the decay. It is assumed in the simulations here, that the emission occurs

with equal probability in each direction and the Lamb-Dicke parameter is assumed to

be an average over all three direction, thus η̃ij ≈ 1
3

∑

k∈{x,y,z} ηij(ωk). For typical experi-

mental parameters for an axial trapping frequency ωz = 2π×2MHz and radial trapping

frequencies ωx,y = 2π × 5MHz we find η̃ij ∼ 0.8 · ηij(ωz).

For simplification, the Bloch equations are transformed into the rotating frame of the

interaction picture (denoted I), i.e.

ρ̇Iij = − i

~

[
HI

int, ρ
I
]

ij
− Γijρ

I
ij + δij

∑

r

γirρ
I
rr . (3.15)

After applying the rotating wave approximation where fast-oscillating terms are ne-

glected [92], the quantities in the interaction picture are of the form

HI
int = U †

0HintU0 = −
p
∑

k=0

∑

i,j

σ(t− tk)e
−i∆I

ij(t−tk)+i(φk−ωijtk)µij|i〉〈j|+ c.c.

ρI = U †
0ρU0 → ρIij = e−iωijtρij ,

(3.16)

where U0 = e−i
H0
~

t and ~∆I
ij = ωij − ωc.

It is now convenient to integrate the optical Bloch equations in order to use the

mentioned approximations regarding the timescales of the system. The goal is to seek

the density matrix after the interaction of the system with the kth laser pulse. For this,

the Bloch equations are integrated over one repetition period (t1, t2) := (kτR, (k+1)τR).

The integral form of the optical Bloch equations reads4

ρIij(t2) = e−Γij ·(t2−t1)

(

ρIij(t1)−
i

~

∫ t2

t1

dt′eΓij ·(t′−t1)
[
HI

int, ρ
I
]

ij

+δij
∑

r

γir

∫ t2

t1

dt′eΓii·(t′−t1)ρIrr(t
′)

) (3.19)

4 Here, the following trivial relation was used:

ρ̇(t) = αρ(t) + f(t)

∣
∣
∣
∣
∣
·
∫ t2

t1

dt′e−αt′ (3.17)

→ ρ(t2) = eα(t2−t1)

(

ρ(t1) +

∫ t2

t1

dt′eα(t1−t′)f(t′)

)

(3.18)
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Here, ρI(t2) corresponds to the density matrix after the pulse, whereas ρI(t1) represents

the density matrix prior to the kth laser pulse.

These equations are further simplified by using the fact that the interaction of the

laser pulse with the atom is short compared to all other timescales in the system.

Approximations and Iterative Method

Since the electric field in the interaction Hamiltonian HI
int is only present for a short

time on the order of femto-seconds, the exponential term is approximately unity for both

diagonal and off-diagonal elements, i.e. Γij · (t′2− t1) ≈ 0 for t′2 = t1+ ǫ where ǫ ∼ 10−13s

denotes the length of the pulse and Γ ∼ 108s−1 is the typical atomic relaxation rate.

The integral is simplified as

∫ t′2

t1

dt′eΓij ·(t′−t1)
[
HI

int, ρ
I
]

ij
≈
∫ t′2

t1

dt′
[
HI

int, ρ
I
]

ij
. (3.20)

In the same way, the feeding terms are neglected during the laser pulse excitation

∫ t′2

t1

dt′eΓii·(t′−t1)ρIrr ≈ ǫ · ρIrr ≈ 0 . (3.21)

This leads to the following expressions for the density matrix

ρIij(t2) = e−Γij ·(t2−t1) ·
(

ρI,cij (t
′
2) + δij

∑

r

γir

∫ t2

t′2

dt′eΓii·(t′−t1)ρIrr

)

;

with ρI,cij (t
′
2) = ρIij(t1)−

i

~

∫ t′2

t1

dt′
[
HI

int, ρ
I
]

ij
(t′) ,

(3.22)

where ρI,cij is the coherently excited density matrix. It only takes the unitary interaction

of the laser with the atomic system into account.

The algorithm to solve for the time-evolution works in the following way:

1. Given the initial conditions for the density matrix and the frequency comb, namely

population distribution, offset frequency and repetition rate, the Hamiltonian HI
int

is determined and the coherently excited density matrix Eq. (3.22) is solved. This

yields the time evolution of the density matrix during a single laser pulse on a

femtosecond timescale.

2. After the laser pulse excited the system, Eq. (3.22) is applied to the density matrix,

which corresponds to a free evolution of the system since no laser field is present

for the rest of the repetition period.
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3. Repeat steps 1 and 2 while using the resulting density matrix of step 2 as new

initial condition to apply the next pulse to the system. It should be noted that

the Hamiltonian HI
int has to be adjusted for each pulse due to the pulse-to-pulse

change of the carrier-envelope phase.

This algorithm is applied up to the number of desired pulses. In the following, the

solution to the different parts of Eq. (3.22) and Eq. (3.22) are presented.

Coherently Excited Density Matrix

The coherently excited density matrix is best determined using the time propagation

formalism. First, Eq. (3.22) is rewritten in differential form

ρ̇I,cij = − i

~

[
HI

int, ρ
I
]

ij
, (3.23)

The formal solution of this differential equation is given by

ρI,c(t2) = UI(t2, t1) · ρI,c(t1) · U †
I (t1, t2) , (3.24)

where UI(t) denotes the time-propagation operator. It is determined by the Schrödinger

equation i~U̇I(t) = HI
int(t)UI(t). In order to solve for the time propagation operator that

yields the time evolution between consecutive pulses k and k + 1, the time variable is

shifted t = t′+kτR and the Schrödinger equation is integrated over one repetition period:

i~U̇I(t
′ + kτR, ϕk)

= HI
int(t

′ + kτR)UI(t
′ + kτR, ϕk)

=

(

−
p
∑

m=0

∑

i,j

σ(t′ + (k −m)τR)e
−i∆I

ij(t
′+(k−m)τR)+iϕmµij |i〉〈j|

)

UI(t
′ + kτR, ϕk)

≈
(

−
∑

i,j

σ(t′)e−i∆I
ijt

′+iϕkµij|i〉〈j|
︸ ︷︷ ︸

=:HI
k,int

(t′+kτR)

)

UI(t
′ + kτR, ϕk)

= HI
k,int(t

′ + kτR)UI(t
′ + kτR, ϕk)

∣
∣
∣
∣
∣

∫ τR

0

dt′ . (3.25)

Since the integration only takes place over the duration of the kth laser pulse, only the

kth term in the sum remains and all other terms can be neglected.

The solution of Eq. (3.25) yields the time-propagation operator UI(t
′ + kτR, ϕk) as a

function of the phase ϕk := φk − ωijtk = k(ω0 − ωij)τR during the kth laser pulse5. This

5The first term corresponds to the phase shift between consecutive laser pulses and equals δφ = ω0τR,
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phase dependence can be factored out by a unitary transformation (K ·K† = 1) [93]

K†(ϕk)H
I
k,int(t

′ + kτR)K(ϕk) = −σ(t′)
∑

i,j

µije
−i∆I

ijt
′ |i〉〈j|+ c.c. (3.26)

The time-propagation operator containing the full phase dependence is then given by

UI(t
′ + kτR, ϕk) = K(ϕk)UI(t

′ + kτR)K
†(ϕk) . (3.27)

It should be emphasized that the full phase dependence is obtained by solving the differ-

ential equation Eq. (3.25) for ϕk = 0 and applying the unitary transformation K(ϕk) to

the resulting UI . Some examples and explicit expressions for K are given in Appendix D.

Direct Integration of the Time Propagation Operator

In order to integrate Eq. (3.25), standard numerical functions, like ode45 in Matlab [94]

are employed. As a numerical precision check, it is convenient to observe the unitarity

of the time propagation operator, which is typically UI · U †
I − 1 ≈ 10−12...−15 in our

algorithm6.

In principle, the method of directly integrating the differential equation Eq. (3.25) can

be used in general and has no restrictions regarding the atomic system. In an alternative

way, the time-propagation operator can be expanded in a Dyson series as

UI(t
′) = 1 +

∞∑

m=1

(

− i

~

)m ∫ t′

0

dt1

∫ t1

0

dt2 · · ·
∫ tm

0

dtm

m∏

κ=1

HI
int(tκ) . (3.28)

As before, this operator determines the time evolution of the density matrix. Here,

only the nested integrals have to be calculated. They represent the different orders

of photon absorption processes, e.g. the term m = 2 represents two-photon processes.

This method was applied in other experiments taking up to fourth-order processes into

account [91]. However, the Dyson expansion does not always converge very fast and yields

a much rougher approximation, its advantage coming uniquely from the relatively short

computing times. In particular, the convergence of the Dyson series breaks down for the

calcium ion level scheme due to the matrix elements of the clock transition (S – D state)

and the dipolar transitions (S – P state) which are different by orders of magnitudes.

This was the main reason why this approach was not followed in the description given

here.

whereas the second term is an effect of the sampling with the repetition frequency in the rotating frame.
6Before the unitary transformation was implemented, Eq. (3.25) was solved directly for many different

phases and the result was interpolated with a spline or a sinusoidal function. Apart from much more
computer time which was required, it turned out that the unitarity condition was only given to a level
of 10−8 per pulse.



34 3.2 Time Evolution of the Atomic System

Additional Frequency-Doubled Comb

In order to achieve a better coverage of the atomic transition lines, an additional frequency-

doubled comb derived from the original comb can be employed. This is for instance of

relevance for the case of calcium ions (see Section 4.2), where the main comb at 800 nm

covers the P-D (repumping) transition at ∼ 860 nm while the Doppler cooling transition

at ∼ 400 nm is covered by the frequency-doubled part.

The interaction Hamiltonian is then split into two separate partsHI
int = HI

1,int+H
I
2,int,

each of which describes an individual comb part. Since the wavelengths differ by a

factor of two, the cross terms in the interaction are neglected and the rotating wave

approximation is applied by assuming that the 400 nm transition is not affected by the

800 nm part of the comb and vice-versa. It should be noted that the phase evolution of

the frequency-doubled comb is twice as fast, i.e. the second part of the Hamiltonian is

of the form

HI
2,int = −

p
∑

k=0

∑

i,j

σ2(t− tk)e
−i(ωij−2ωc)(t−tk)+i(2φk−ωijtk)µij|i〉〈j|+ c.c. (3.29)

Similarly to the case of a single frequency comb, a unitary transformation K is applied

to the time-propagation operator of the complete system i~U̇I,total = HI
intUI,total to factor

out the phase dependence. The full solution and the phase dependence for the case of a
40Ca+ ion is given in Appendix D.

Feeding Terms

The last missing elements in order to get the desired time evolution of the system are

the feeding terms which govern the spontaneous decay of the diagonal elements (see

Eq. (3.22)). Since only the diagonal elements of Γ and ρI,c contribute, the convention

Γii = Γi and ρ
I,c
ii = ρI,ci is used for clarity.

The time dependence of the diagonal elements in the integral of Eq. (3.22) is rewritten

as follows7

ρIa1(t) = e−Γa1
·(t−t1) ·

(

ρI,ca1 (t) +
∑

a2

γa1a2

∫ t

t1

dt′eΓa1
·(t′−t1)ρIa2(t

′)

)

= e−Γa1
·(t−t1) ·

(

ρI,ca1 (t) +
∑

a2

γa1a2

∫ t−t1

0

dt′′eΓa1
·t′′ρIa2(t

′′ + t1)

)

.

(3.30)

with t1 = kτR ≈ t′2 and t1 ≤ t ≤ t1 + τR. The indices ai represent the different energy

7Throughout this calculation, the starting point in time t′2 = kτR + ǫ is set to t′2 ≈ t1 = kτR to
simplify the time arguments.
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levels ai ∈ {1, 2, . . . , N ·Ntrap} and i ∈ {1, 2, . . . , N · · ·Ntrap}. After inserting the relation

for the density matrix elements recursively, the feeding terms are found to be

∑

a2

γa1a2

∫ t−kτR

0

dt2e
Γa1

t2ρIa2(t2 + kτR)

=
∑

a2

γa1a2ρ
I,c
a2
(t)

∫ t−kτR

0

dt2e
(Γa1

−Γa2)·t2

+
∑

a2,a3

γa1a2γa2a3ρ
I,c
a3 (t)

∫ t−kτR

0

dt2

∫ t2

0

dt3e
(Γa1

−Γa2)·t2+Γa2
·t3ρIa3(t3 + kτR)

=
N∑

k=2

∑

a2,...,ak

(
k−1∏

j=1

γajaj+1

)

ρI,cak
(t)

∫ t−kτR

0

dt2 · · ·
∫ tk−1

0

dtk exp

(
k−1∑

l=1

(
Γal − Γal+1

)
· tl+1

)

.

(3.31)

Since the levels are sorted in ascending order of energy, the recursion stops at the highest

level N since this level is not fed by any other levels via spontaneous emission:

ρIN (t) = e−ΓN ·(t−kτR)ρI,cN . (3.32)

There is no general solution for this integral since it strongly depends on the given atomic

system. Thus, in our implementation these feeding terms are integrated symbolically for

the system of interest using either the Matlab [94] symbolic toolbox or the symbolic

integration of Maxima [95].

The rather complicated expression Eq. (3.31) can be rewritten in a more intuitive and

also practical way: As mentioned before, the upmost state is trivially given by Eq. (3.32).

Every state with less energy has a possible feeding term which originates only in higher

energy states since a spontaneous emission event will project the system into a state

with lower energy. In that way, the population can be imagined to ’drip’ down like water

in a cascaded fountain where each level represents an energy level of the ion. Rewriting
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Eq. (3.31) for each state leads to the following expressions:

ρIN (t) = e−ΓN ·(t−kτR)ρI,cN ;

ρIN−1(t) = e−ΓN−1·(t−kτR)

(

ρI,cN−1 + γN−1,N

∫ t−kτR

0

dt′eΓN−1·t′ρIN (t
′ + kτR)

)

;

ρIN−2(t) = e−ΓN−2·(t−kτR)

(

ρI,cN−2 + γN−2,N−1

∫ t−kτR

0

dt′eΓN−2·t′ρIN−1(t
′ + kτR)

+ γN−2,N

∫ t−kτR

0

dt′eΓN−2·t′ρIN (t
′ + kτR)

)

;

...

It is maybe worthwhile mentioning that also from a practical point of view this form

of the feeding terms is advantageous since the implementation in a computer code is

simpler.
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Chapter 4

Simulation Results

In this section, the results of the simulated interaction of a frequency comb with two

different systems are presented. First, one- and two-photon transitions in a three-level

system are discussed, aiming to provide an intuitive picture of the underlying dynamics.

This serves as a basis to the second part of this chapter where numerical results and

different strategies to map the full calcium level scheme are studied.

In all scans presented here, the offset frequency is only varied over one repetition rate,

after which the spectrum repeats itself, which is due to the periodicity of the repetition

rate in the spectrum.

4.1 Three-Level Raman System

Consider a three-level Raman system (|1〉 , |2〉 , |3〉), as depicted in Fig. 4.1 (a), interacting

with a frequency comb with a repetition rate of 824MHz1. Applying the frequency comb,

centered at 800 nm, a Raman transition between the |1〉 and the |3〉 level via the |2〉 level
is driven. In addition to that, a single-photon transition can be driven between the |1〉
and the |2〉 level. Since this system contains all types of transitions relevant for the 5-

level system of 40Ca+, i.e. one- and two-photon transitions, it represents an ideal model

for a basic understanding of the underlying dynamics and the spectroscopy signal.

A scan of the offset frequency over a full repetition period yields several resonances

in the spectrum. In Fig. 4.1 the population in the second level (ρ22) is shown after

interacting with 10000 laser pulses (blue solid curve). The initial population was set to

be ρ11(t=0) = 1. The two different types of resonances occur in the following way: one-

photon resonances occur if a comb tooth is resonant with the |1〉 to |2〉 transition and

two-photon resonances occur if the combination of two comb teeth matches the frequency

1The relevant parameters for this simulation are: The frequency comb is defined by νR =
824MHz; tP = 50 fs;E0 = 151.08 × 106V/m;ωc = 12500 /cm, whereas the energies and the decay
rates are: ǫ1 = 13650.19 /cm; ǫ2 = 25191.51 /cm; Γ1,2 = 1.01× 106 1/s; Γ2,3 = 1.00× 105 1/s.
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Figure 4.1: Three-level system interacting with a frequency comb. The population of the
level |2〉 as a function of the offset frequency over one repetition rate is shown in picture
(b). Additional shifts in each individual level move the corresponding one- (R12) and
two-photon resonances (R13) at an offset frequency of ∼ 110MHz and ∼ 50(450)MHz,
respectively. The blue curve represents the non-shifted system, the green curve shows
the result for the shift of the middle level and the red curve depicts the result of shifting
both upper levels according to the picture (a).

difference between the |1〉 and |3〉 state. This is corroborated and easily understood by

repeating the simulation for various shifted energy levels: A 100MHz shift of the |2〉 level
clearly shifts the single-photon resonance at ∼ 100MHz to ∼ 200MHz leaving the other

resonances untouched (green curve). An additional shift of the |3〉 level by 140MHz also

moves the two-photon resonances at ∼ 50 and ∼ 450MHz (red curve). The two-photon

resonances occur twice during one scan over one repetition period since each photon

provides half of the necessary energy. With the same argument, the additional shift of

the upmost level only shifts the resonance by half of the amount.

Given this simple model, the simulations on the 40Ca+ 5-level system are discussed

in the next section.

4.2 The 5-Level System of 40Ca+

Calcium is an alkaline earth metal with the atomic number 20. Its most common iso-

tope is 40Ca, with a natural abundance of 96.941% [96]. Singly-ionized calcium has a

level structure similar to that of magnesium, but with the addition of two meta-stable D

states which introduce two dipole-forbidden clock transitions from the ground state. The

level scheme with the five lowest energy levels and relevant transitions, that are used in

the simulations, are shown in Fig. 4.2. Some of these transitions have been investigated
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Figure 4.2: Level Scheme of 40Ca+. Only the lowest five levels and their corresponding
transitions used in the simulations are shown (the transition to the next higher S level
is at ∼ 374 nm and is not covered by the comb spectrum). While the S-P and P-
D transitions are rather strong dipole transitions (see text), the S-D transitions are
quadrupole clock transitions with a sub-Hz linewidth (see table for details).

using precision laser spectroscopy. Their characteristic values, including the Einstein A

coefficients, are listed in the following table:2

Transition Frequency ν λvac (nm) Aij coeff. (s
−1) Ref.

4s2S1/2 - 3d2D5/2 411 042 129 776 393.2 (1.0)Hz 729.347 1.3 [53, 56]

4s2S1/2 - 3d2D3/2 ∆FS = 1 819.599 021 504(37) MHz 732.591 1.3 [97]

4s2S1/2 - 4p2P3/2 761 905 012.7 (0.5) MHz 393.477 135.0(4)× 106 [51, 55]

4s2S1/2 - 4p2P1/2 755 222 766.2 (1.7) MHz 396.959 1.4× 108 [57]

3d2D3/2 - 4p2P3/2 – 850.035 0.955(6)× 106 [55]

3d2D5/2 - 4p2P3/2 – 854.444 8.48(4)× 106 [55]

3d2D3/2 - 4p2P1/2 – 866.452 1.06× 107 [96]

Given a calcium system initialized to the S state, the existence of the dipole-forbidden

transitions hinders the excitation of the upper levels, especially if no comb tooth is reso-

nant to the S-D transition. In the next section, this issue and different ways to overcome

it are discussed.

2Values that are not referenced are taken from [96]. ∆FS corresponds to the fine-structure splitting
between both D levels.
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4.3 Calcium Raman Resonances with a Frequency

Comb

As a first approach, the interaction of a Ti:Saph frequency comb emitting at 800 nm with

the 5-level 40Ca+ ion is discussed. The different excitations that occur are similar to the

case of the three-level system discussed in the previous section, i.e. a Raman two-photon

excitation connects the S1/2 with the P1/2 and P3/2 levels, whereas the S1/2 to D3/2

and D5/2 transitions are single-photon excitations. In Fig. 4.3, the frequency spectrum

assuming a pulse width of ∼50 fs of the comb is depicted along with all possible single-

photon transitions.
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Figure 4.3: Frequency comb interacting with calcium ions in a Raman configuration
and the assumed comb power spectrum. (a) The 40Ca+ level scheme is shown with an
example for a possible Raman excitation from the S to the P level via the D level. (b)
The theoretical power spectrum of the comb. The spectrum was derived from a 50 fs
laser pulse of hyperbolic secant form.

At first sight, it appears that all transitions are covered by the frequency comb

spectrum and can be driven. The presence of the clock transition, however, strongly

reduces the excitation of the upper levels. In Fig. 4.4, the population of the excited

levels is plotted as a function of the offset frequency of the comb after the interaction

of laser 5000 pulses. The comb parameters are the same as for the three-level example

in the previous section. As is seen in the different plots, each of the P levels has two

resonances. These correspond to the two-photon Raman resonances. The D states are

populated by the finite branching ratio of the P states into the D states. In both D states

resonances occur when either of the P states is excited. This is related to the existence

of the 850 nm transition which is also excited and transfers population from the D3/2 to

the P3/2 level. This population has two decay channels, namely back to the D3/2 or to

the D5/2 state.
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The population of the upper states is at a rather low level of ∼10−8 − 10−9. Taking

the decay rates of the P states into account, the number of fluorescence photons at the

wavelength 393 nm and 379 nm is on the order of ∼10. These photons are emitted into

the full solid angle, which imposes challenging requirements on the fluorescence detection

optics. Though shining the comb laser for much longer times generates more scattering

events, in a different approach using a partially frequency-doubled comb this problem

can be circumvented. This is discussed in the next section.
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Figure 4.4: Direct frequency comb spectroscopy of 40Ca+ in a Raman configuration.
The population distribution for the P and D states, summed over the trap levels, is
shown as a function of the offset frequency of the frequency comb (see also Fig. 4.3).
The scan is taken over a complete repetition rate of 824MHz. For each scanning point,
the population was initialized to the S1/2 n = 0 state. The low excitation probability of
10−8 − 10−9 in the P levels only leads to a number of ∼10 fluorescence photons on the
S-P transitions at 393 nm and 397 nm. For this reason, a different approach is favorable,
where the S-P transition is directly excited with a partially frequency-doubled comb.

4.4 Calcium Single-Photon Resonances with a Frequency-

Doubled Comb

In order to circumvent the excitation of the clock transition, the frequency comb is par-

tially frequency-doubled. In particular, given a Ti:Saph frequency comb laser which emits



42 4.4 Calcium Single-Photon Resonances with a Frequency-Doubled Comb

at ∼800 nm, the main comb covers the D-P transitions, while the frequency-doubled part

encompasses the S-P transitions3. This situation is depicted in Fig. 4.5: In contrast to

the three-level system described before, there are two single-photon resonances between

the S level and both P levels at 397 nm and 393 nm. These resonances combine to a

Raman resonance if the comb is simultaneously resonant with the corresponding D-P

transition at e.g. 866 nm. In this case, the ion is continuously pumped between the S

and D states. In a non-Raman configuration, i.e. if only the S-P transition is resonantly

excited, the ion will eventually decay into the D states due to the finite branching ratio

between the P and D states and remain there. It should be noted that the situation of

a Raman configuration can be synthesized by correctly choosing the comb parameters.

This is discussed in detail in Section 4.5.
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Figure 4.5: Frequency comb interacting with calcium ions and the assumed comb
power spectra. (a) The 40Ca+ level scheme is shown with an example for a possible
excitation where the S-P transition is covered by the frequency-doubled comb (other
combinations of transitions are omitted for clarity). (b) The theoretical power spectra of
both parts of the comb, i.e. the main and the frequency-doubled part, are shown. Here,
it was assumed that the doubled part has an electric field amplitude of 10% of the main
comb. The spectrum was derived from a 50 fs laser pulse of hyperbolic secant form. For
simplicity, the pulse width was assumed to be the same for the doubled part.

It should be noted that the resulting population distribution strongly depends on

the exact frequency power spectrum of the applied comb. For simplicity, laser pulses of

hyperbolic secant form are assumed in all simulations. However, in order to compare the

numerical results with experimental data, the theoretical power spectrum, and thus the

pulse shape, of the comb must be adapted to the experimental situation. Furthermore,

the doubling efficiency as well as the phase-matching of the frequency-doubled part of

the comb need to be taken into account.

3A detailed overview of frequency doubling strategies of a pulsed laser is given in [98].
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In addition to that, the motion of the ion needs to be taken into account for two major

reasons. While for a Doppler-cooled ion the observed spectroscopy line shapes follow a

Cauchy-Lorentzian function to good approximation, this situation changes for a ground

state cooled ion. There, the line shape is mainly determined by the carrier transition

with additional components due to the motional sidebands. Since the linewidth of the

S-P and P-D transitions are on the order of ∼ 10 − 20MHz, these sidebands are not

resolved given typical trap frequencies of ∼ 1−2MHz and, consequently, a distorted line

shape is expected. In order to reproduce such line shapes, the motional trap levels and

thus sideband transitions need to be taken into account in the simulations.

Apart from laser-induced fluorescence spectroscopy, a new spectroscopy technique

is proposed in this context which is based on quantum logic spectroscopy [45], namely

photon-recoil spectroscopy. The basic idea of this approach is to measure the motional

excitation of a previously ground state cooled ion crystal consisting of a 25Mg+ and a
40Ca+ ion as a function of the comb parameters. Therefore it is also required to include

the motional states in the simulation.

4.4.1 393 nm and 397 nm Transitions

In Fig. 4.6, the population distribution of all considered excited levels 40Ca+ are plotted

for a scan of the offset frequency over one full repetition rate. For each scanning point, the

system is initialized in the S1/2 state and in the absolute ground state of the harmonic

oscillator (n = 0). In the simulation, three trap levels (n = 0, 1, 2) are taken into

account, resulting in a total of 15 energy levels. The trap frequency is assumed to be

ωT = 2π×2.2MHz. In Fig. 4.6, the trace is taken over the trap levels, whereas in Fig. 4.7

the trace over the electronic levels is shown.

All plotted populations are the result of the interaction of the ion with 1000 laser

pulses. Several resonances are observed in the spectrum: at ν0 ≈ 50MHz a comb tooth

is resonant with the 397 nm transition, transferring the initial population in the S level

to the P1/2 state, which in turn decays into the D3/2 state via spontaneous emission. The

population in the D5/2 state at this frequency results from off-resonant coupling of the

850 nm laser between the D3/2 and the P3/2 levels. At ν0 ≈ 180MHz, the resonance of the

393 nm transition is retrieved. The additional wiggles on the resonance peak occur when

a tooth of the main comb is resonant with one of the D-P transitions. Since the P3/2

state additionally decays into the D3/2 state, one would expect an additional peak in the

lower D level at this offset frequency. Since the branching ratio of the spontaneous decay

is 10 times smaller, this peak is on the level of 10−4 and is not visible at the particular

scale.

It should be noted that even though the obtained spectra look similar to the ones
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Figure 4.6: Direct frequency comb spectroscopy of 40Ca+. The population distribution
for the P and D states, summed over the trap levels, is shown as a function of the offset
frequency of the frequency comb (see also Fig. 4.5). The scan is taken over a complete
repetition rate of 824MHz. In between the graphs, the positions of the theoretically
expected resonances at 393.5 nm and 393 nm are shown. The color coding (in arbitrary
units) represents the detuning of a single comb tooth of the frequency-doubled comb to
the theoretical atomic transition. The prediction does not include the expected stark
shifts of the lines which explains the shift in each of the resonances (see Fig. 4.8). The
spectrum repeats itself after half the repetition rate due to the phase evolution of the
doubled-part of the comb. For each scanning point, the population was initialized to the
S1/2 n = 0 state. The tiny wiggles at the resonance at ∼ 200MHz originate from the
resonant repumping transitions at ∼850 nm (see Fig. 4.9).

of the previous comb configuration (see Fig. 4.3) that these resonances have a different

origin. In this case, all resonances are single-photon excitations. Furthermore, the

397 nm and 393 nm resonances repeat themselves in the spectrum. This results from

the carrier-envelope phase evolution of the frequency-doubled part of the comb, which

is twice as fast.

Additionally to the expected population distributions, the theoretically expected po-

sitions of the resonances are shown in the pictures. These are determined by evaluating

the comb tooth number in the vicinity of the resonance

na =

⌊
ωa

ωR

⌋

(4.1)



45

and plotting the detuning ∆ = ωa − (ω0 + naωR) as a function of the offset frequency

ω0. Since this method does not include the AC-stark shift, the predicted resonances are

offset to the observed numerical calculations.

It is worth mentioning that the strong asymmetry in the excitation of the 397 nm and

the 393.5 nm transitions is not a result of the (only slightly) different transition matrix

elements. Instead, the asymmetry is due to the particular power in the comb at the

individual wavelength and can be drastically changed by moving the central frequency

of the comb by mere 5 nm, from 800 nm to 795 nm.

4.4.2 Laser-Induced Fluorescence Spectroscopy

The spectroscopy signal yielding the precision measurement of the desired transitions

can be acquired in two different ways: In a direct way, fluorescence resulting from the

spontaneous decay on the 397 nm and the 393.5 nm transitions is collected as a function

of the offset frequency (laser-induced fluorescence spectroscopy). The photon scattering

rate depends on the Einstein A coefficient Aij = Γa of the particular transition and is

proportional to the population ρa of the decaying state. The expected number of emitted

photons after a time T is given by4

Nph =

∫ T

0

dtΓaρa(t) . (4.2)

In the case of calcium, an instantaneous scattering rate Γ397ρ397(t
′) ≈ 910 kHz is ex-

pected on the 397 nm transition at the time of the 1000th laser pulse t′ = 1000τR. The

collection of these fluorescence photons requires detection optics designed for that par-

ticular wavelength. In principle this can be achieved with an implemented wavelength

independent parabolic mirror (see Chapter 5), but will be, nevertheless, limited by a

large amount of stray light from the frequency comb which cannot be spectrally filtered

sufficiently. These issues are overcome with a new spectroscopy method which will be

explained in detail in the next paragraph.

4.4.3 Photon-Recoil Spectroscopy

In a different approach, a much more sensitive and wavelength-independent detection

method is proposed here. First, two ions are loaded into the ion trap: a 25Mg+ ion (logic

ion) and a 40Ca+ ion (spectroscopy ion). The logic ion is used to sympathetically cool the

two-ion crystal to the absolute motional ground state. After that, the frequency comb is

applied for exciting the spectroscopy ion. Every scattering event imposes a photon-recoil

4The actual number of collected photons differs from this number by the collection efficiency of the
optics and the detection efficiency.
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which is absorbed by the crystal. This effect is strongly enhanced as soon as a comb

tooth is resonant with an electronic transition. Both ions are affected by this recoil due

to their Coulomb interaction. Given that the system is initially in the absolute ground

state, the photon-recoil induces a heating to higher harmonic oscillator states which can

be read out with almost unity efficiency with the logic ion by observing the excitation

on the motional red sideband. The probability that a photon-recoil excites a motional

quantum scales with the square of the Lamb-Dicke parameters η2, which equals the ratio

of recoil energy to the trap energy spacing. For typical trap frequencies in the case

of 40Ca+ only ∼ 10 photons need to be scattered on the 397 nm transition to excite

a motional quantum in the trap. Achieving similar detection efficiencies with regular

optics is a formidable challenge. A further advantage of this method is that its principle

does not strictly depend on the spectroscopy ion. As long as the laser probe covers the

required transitions and sympathetic cooling is efficient with both species in the trap,

only the logic ion needs to be well controlled and fluorescence detection optics is only

required for the logic ion. In case of 25Mg+, complete control can be achieved by only a

single laser system which provides cooling, state preparation and readout. Such a system

is presented in Chapter 5 and its performance is characterized in Chapter 8.
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Figure 4.7: Photon-recoil spectroscopy with 40Ca+. The population distribution for the
excited harmonic oscillator levels (n = 1, 2), summed over all electronic levels (S,P and
D), is shown. The parameters are the same as in Fig. 4.6. Additionally, the sum over
the first and the second trap level is shown (n > 0). This corresponds to the expected
heating signal after scattering photons for 1000 laser pulses (∼1µs).

The fluorescence signal is then acquired by detecting the motional state of the, ini-

tially ground state cooled, ion crystal after the interaction with the frequency comb
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as a function of the offset frequency5. This is performed by measuring the red side-

band excitation on the 25Mg+ ion. This way, the full spectrum can be inferred. It is

worth mentioning that the inclusion of higher order red sidebands in the analysis should

improve the detection efficiency even further.

In order to calculate the expected heating signal, the trace over the electronic states

needs to be considered. This is shown in Fig. 4.7 for the different trap levels. The

same resonances as for the case of fluorescence spectroscopy are observed. Given the

same parameters as for the simulation in Fig. 4.6, a total population of 20% in the

first and second motional state is expected when the 397 nm resonance is excited. At

the offset frequency where the 393 nm transition is resonantly driven, the excitation is

much smaller since the P3/2 state is populated with a factor of 10 less compared to

the P1/2 state. As mentioned before, this is a result of the particular comb spectrum.

The underlying broadband constant excitation of the first motional state is a result of

offresonant excitation by the whole frequency comb.

4.4.4 Line Shapes and AC-Stark Shifts

A closer inspection of the particular line shapes in the resonance spectra yields asymme-

tries. These are the result of the introduction of the sideband transitions in the harmonic

confinement and need to be taken into account if line centers are to be determined. A

comparison of the line shapes is found in Fig. 4.8. A Cauchy-Lorentz function of the

form

ρ(ω) = a
γ2

(ω − ωcenter)2 + γ2
(4.3)

was fitted to the chosen transition. Here, a is the amplitude, 2γ the FWHM of the

resonance and ωcenter the center of the line. While in the case of no trap levels the line

is found to be symmetric (seen in the residuals in Fig. 4.8 (a))6, the presence of trap

levels adds to the asymmetry (part (c)). This effect is amplified when the trace over the

electronic levels is taken (shown in part (b)).

Given these effects, the fits reveal a systematic shift of the line center by almost one

trap frequency. This issue can be tackled by a multi-component fit (also shown in part

(b)), where a sum of Lorentzian with components shifted by multiples of the trap fre-

quency is used. Such an approach resembles the observed line shape significantly better.

All fitting results are summarized in the following table:

5A similar type of heating spectroscopy with much lower sensitivity has been implemented by the
group of K. Brown for Doppler-cooled calcium ions [59].

6The remaining non-zero residuals are due to power broadening of the line.



48 4.4 Calcium Single-Photon Resonances with a Frequency-Doubled Comb

0 4 8 12 16 20

452

456

460

464

Peak Electric Field Amplitude E (MV/m)0

C
e

n
te

r 
F

re
q

u
e

n
c
y
 (

M
H

z
)

0.02

0.06

0.1

400 420 440 460 480 500
-5

0

5

10

Offset Frequency (MHz)n0

D
P

o
p

u
la

ti
o

n
3

/2
R

e
s
id

u
a

ls
 (

1
0

)
-4

(b)

0.05

0.1

0.15

0.2

400 420 440 460 480 500

-5

0

5

P
o

p
. 

in
 n

>
0

R
e

s
id

u
a

ls
 (

1
0

)
-3

Offset Frequency (MHz)n0

(c)

0.02

0.06

0.1

400 420 440 460 480 500

0

2

4

D
P

o
p

u
la

ti
o

n
3

/2
R

e
s
id

u
a

ls
 (

1
0

)
-4

Offset Frequency (MHz)n0

(a)

(d)

Figure 4.8: Symmetry of transition resonances and AC Stark-shifts. A zoom of the
resonance at ∼450MHz of Fig. 4.6 is shown. The red circles correspond to the simulated
population distribution, the solid blue lines are fits to a Cauchy-Lorentz distribution (see
text). In the lower part of the graphs, the residuals of the fit in each plot are shown.
(a) shows the simulation without trap levels, whereas (b) depicts the population in the
D3/2 state while tracing over the trap levels. There, an asymmetry in the line shape
is observed by introducing the trap levels. This is amplified if the trace is taken over
the electronic levels instead (photon-recoil spectroscopy signal Fig. 4.7), as is shown in
part (c). Also shown in (c) is a Lorentz fit with additional components shifted by the
trap frequency (black line) which resembles the calculated absorption curve better. The
dashed lines in all pictures show the theoretically expected position of the transition,
omitting the AC stark-shift. In part (d), the center position of the resonance in (a) is
plotted as a function of the peak electric field of the laser pulses (red circles). A quadratic
fit yields a frequency shift of 492MHz/mW for a spot size of 100µm.

ωcenter (MHz) Shift (MHz)

(a) No trap levels 451.48 -

(b) Trace over trap levels 450.86 0.62

(c) Trace over electronic levels 449.38 2.10

Multi-component fit 451.36 0.12

A further systematic effect is introduced by the presence of strong AC-stark shifts.

In part (d) of Fig. 4.8, the fitted line center following from the simulations is shown

as a function of the electric field of the interacting laser comb. The function follows a
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quadratic behavior with a Stark-shift coefficient of ∼ 492MHz/mW7 for a spot size of

100µm for this particular transition and needs to be carefully calibrated in the experi-

ment.

4.4.5 866 nm, 854 nm and 850 nm Transitions

In the spectra shown before, no D-P transitions are observed due to the rather low

D state occupation during the excitation process. This situation changes significantly

if the calcium ion is initialized in the D state instead of the S state. One way to

deterministically achieve this using the same laser system is to tune the comb to the

right offset frequency (see above) and drive a S-P transition for a sufficiently long time

to populate the D level via spontaneous decay. After that, a re-cooling step should

be performed to cool the system again to the ground state of motion. Starting from

there, the expected resonances after 1850 laser pulses are shown in Fig. 4.9. In these

simulations the field amplitude of the frequency comb was reduced by a factor of two

compared to Fig. 4.6. Nevertheless, the AC stark shifts are larger in this case since the

∼850 nm transitions are driven by the main part of the comb.

Several resonances are observed in the spectrum. First, the excitation of the re-

pumping D-P transitions are found at offset frequencies ∼ 180MHz and ∼ 790MHz.

The additional peak at 200MHz in the D3/2 population is a result of the 850 nm excita-

tion which effectively transfer part of the population to the P3/2 state. This is seen in

the distortion of the P3/2 line shape. In addition to that, resonances at ∼ 50MHz and

∼ 450MHz occur in the P1/2 population. These are a result of the 397 nm excitation

which couples the S1/2 with the P1/2 state (see also Fig. 4.6). Photon-recoil spectroscopy

is equally applicable to this case and the expected results are shown in Fig. 4.10.

It is worthwhile mentioning that all simulations here do not represent the steady-state

of the system. Instead, only a few thousands laser pulses are applied. In the experiments,

this can be achieved by switching the frequency comb with a KD*P Pockels cell8 and

has been successfully demonstrated in the group of J. Ye [99].

4.5 Comb Engineering

In what has been described, the repetition rate of the comb was assumed to be constant

and at some (arbitrary) value while the offset frequency was used for scanning over

the resonances. It is worth mentioning that by adjusting the repetition rate, the comb

structure can be engineered to match certain frequency conditions. For instance, it is

7This coefficient is related to the time-averaged power of the comb.
8Conoptics Inc., Model 25D
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Figure 4.9: Direct frequency comb spectroscopy with 40Ca+. The population distribu-
tion for the P and D states, traced over the trap levels, are shown as a function of the
offset frequency. The plots and parameters differ to that in Fig. 4.6 only by the laser
power, which is reduced by a factor of two. Here, the population was initialized equally
to both D states to observe the anti-resonances of the ∼850− 866 nm transitions in the
D state population.

always possible to make two different atomic transitions, with ωa 6= ωb, resonant with

two different comb teeth at one particular offset frequency. Since

ωa = n1ωR + ω0,a ;

ωb = n2ωR + ω0,b ,
(4.4)

both offset frequencies are equal ω0,a = ω0,b, if the repetition rate follows the equation

ωR =
ωa − ωb

n1 − n2
. (4.5)

That means that by a particular choice of the repetition rate, the resonances of the S-P

and the D-P transition can be overlapped. This process is shown in Fig. 4.11 by plotting

the detuning of the individual atomic resonances as a function of the repetition rate

and the offset frequency. Given the parameters at the crossing of the resonances (red

circle in the plot) and correcting for the Stark shift, Raman transitions between the S-D

levels with the intermediate P level are driven. The population distribution after 5000

pulses of the laser, with the population initially in the S state, is shown in Fig. 4.12.
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Figure 4.10: Photon-recoil comb spectroscopy with 40Ca+. The population distribution
for the excited harmonic oscillator levels (n = 1, 2), traced over all electronic levels (S,P
and D), is shown. The plots and parameters are the same as in Fig. 4.7, only here, the
laser power is reduced by a factor of two and the population was initialized equally to
both D states.

The overlap of the transitions introduces a Raman mechanism that populates the D5/2

state at an offset frequency of ∼85MHz with a peak shaped feature. This also reflects

itself in a dark resonance in the excited state population in the P3/2 level. At the same

time, this population is missing in the D3/2 state since it is pumped between the D5/2

and the S1/2 state. Furthermore, the complete time evolution of the system is shown in

Fig. 4.13. Initially the excitation of the P3/2 level pumps the population in both D states

over the scanned frequency range. The creation of a narrow-linewidth Raman resonances

is observed after ∼3 − 4µs of temporal evolution.

In conclusion, such configurations can in principle be used to design the frequency

comb in a way that the ion cycles between the S and D states. Furthermore, since the

Raman excitation depends on the relative phase between different parts of the comb

spectrum, also coherence phenomena among the comb teeth could be investigated by

driving this transition with different comb parameter sets that resemble the same Raman

configuration.
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Figure 4.11: Engineering the frequency comb. The color coding (in arbitrary units)
represents the detuning of the 393 nm and the 854 nm transition to a single comb tooth
of the frequency-doubled and respectively the main comb. The detuning is shown as a
function of the offset frequency and a shift in the repetition rate in units of MHz. At the
position of the crossing blue lines (red circle), two different comb lines are resonant with
the individual transitions. The simulation does not include the AC-Stark shift. (The
horizontal and vertical lines are a sampling artefact of selecting the nearest comb tooth.)
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Figure 4.12: Raman resonance with a frequency comb. The population in the P and
D levels as a function of the offset frequency after the interaction with 5000 pulses is
shown. A shift of the repetition rate overlaps the resonances of the 393 nm and the
854 nm transition at a certain offset frequency (see Fig. 4.11). Given these parameters,
a Raman resonance between the S and D levels is observed. No trap levels have been
included in this simulation.
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Figure 4.13: Raman resonance with a frequency comb (II). The time evolution for the
system in Fig. 4.12 is shown. The individual pictures show: (a) D3/2 state population,
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trap levels have been included in this simulation.
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Chapter 5

Experimental Setup

This chapter contains a detailed description of the experimental apparatus, including

laser systems and the vacuum setup. With this setup, the ground state cooling of a

single 25Mg+ ion, which is the initial step of the proposed frequency comb spectroscopy

experiments using the photon-recoil technique has been implemented. The description

encompasses the generation of magnesium ions with a photoionization laser system, the

setup for cooling, manipulation and detection with a frequency-quadrupled fibre laser

system, an overview of the operation of the Paul trap and of the detection optics.

During the experiments, it was observed that certain optical components suffered

from damage induced by ultra-violet irradiation at the magnesium resonance wavelength

of 280 nm. Such effects triggered a redesign of commonly used acousto-optic modula-

tor configurations which provide the Raman laser beams to manipulate the ion qubit.

Such a configuration, a description of which is found in this chapter, was successfully

implemented.

5.1 Magnesium Laser System

5.1.1 Photoionization Laser

Magnesium ions are produced by photoionizing a thermal beam of neutral magnesium

atoms. The beam is provided by resistive-heating of a stainless steel tube filled with

magnesium powder (see Section 5.6). Photoionization takes place in a two-photon process

[100]. In a first step, neutral magnesium is excited by laser light at a wavelength of

285 nm to the 1P1 state. This light is provided by a frequency-quadrupled diode laser1.

The diode laser with an output power of ∼70mW at 1140 nm and a specified linewidth

of 100 kHz is frequency-doubled in a second-harmonic generation (SHG) bow-tie cavity

1Toptica DL Pro ECDL
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using a 0.5 × 3 × 10mm periodically-poled LiNbO3·MgO doped crystal2 in a quasi-

phase matching configuration at a temperature of ∼ 493K. Typical output powers of

20mW at 570 nm are achieved. The cavity is length-stabilized using the Pound-Drever-

Hall (PDH) technique [101]. The required sidebands at ±20MHz are generated by fast

current modulation of the laser diode.

A small fraction of the green light is fibre-coupled to a wavelength meter3 for mon-

itoring purposes. The main part of the light is frequency-doubled in a second SHG

cavity using an anti-reflection coated 3 × 3 × 10mm β-Barium-Borate (BBO) crystal4

which is critically phase-matched. The cavity is also stabilized with the PDH technique5.

Typical output powers of 300µW at 285 nm are achieved for a non-optimized system.

The whole setup is depicted in Fig. 5.1. A detailed study of this laser system and the

characterization of the doubling-cavities is found in the diploma thesis of Daniel Nigg

[102].

It is worth mentioning that in the initial stage of the experiment, an electron-emitter

was used for ion production. However, since this method was not isotope-selective and

resulted in difficulties for loading single magnesium ions, it was abandoned after success-

fully implementing the ionization laser system.

The second step of the ionization process is provided by the Doppler cooling laser

(see below) at 280 nm which excites the magnesium atoms from the 1P1 state to the

continuum. Isotope-selective loading is provided by tuning the diode laser according to

the corresponding isotope shifts of neutral magnesium. Due to its large specified tuning

range of > 30GHz, all three isotopes of magnesium are accessible in our setup.

5.1.2 Magnesium Ion Laser System

The laser light for Doppler cooling, detection and coherent manipulation is provided by a

frequency-quadrupled fibre laser system, similar to the setup used in the group of Tobias

Schätz [58]. A major simplification to their and other, similar setups is the introduction

of an electro-optic modulator to provide a fast switch between an off-resonant coherent

and a resonant laser configuration. This methods allows operating the ion trap system

with one single laser source only, which will be described in this section. A general

overview of this part of the laser setup is shown in Fig. 5.2.

2HG Photonics
3HighFinesse WS/7 Super Precision
4Castech Crystal Inc.
5It is worth mentioning that the current modulation of the diode laser is sufficient to produce an

error signal for both cavities.
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Figure 5.1: Photoionization laser setup. A diode laser at 1140 nm is frequency-
quadrupled in two cascading doubling cavities. The first incorporates a PPLNb crystal,
whereas the second an anti-reflection coated BBO crystal. Both cavities are length sta-
bilized with the Pound-Drever Hall technique. A typical output power of ∼ 300µW is
achieved. Picture taken from [102]. Legend: S: mirror; Z,L: lenses; W: wavelength me-
ter; K: crystal; PZ: piezo-actuated mirror; La: waveplate; PD: photodiode; OI: optical
isolator.

Doubling Cavities

The ∼ 1.2W output power of the fiber laser6 at 1118 nm is frequency-doubled in a first

SHG cavity in a bow-tie configuration with a 4× 4× 18mm3 Lithium Triborate (LBO)

crystal7 using 90◦ non-critical phase-matching of type I. The crystal is temperature-

stabilized at ∼ 370K to provide the phase-matching. The cavity length is stabilized

using the Hänsch-Couillaud technique [103] and has a typical output power of ∼450mW

at 559 nm. The main part of this light is used in a second SHG cavity for frequency

doubling to the UV. Here, a 3 × 3 × 10mm3 BBO crystal8 in critical phase-matching

of type I is used. The cavity is stabilized in the same way as the first one in the setup

and an output power of ∼ 60mW at 279.5 nm is achieved. A detailed characterization

of the doubling-cavities and the locking-schemes is found in the diploma thesis of Lukas

An der Lan [104].

6Koheras BoostikTMY10/Menlo Systems GmbH orange one-1
7Castech Crystal Inc.
8Döhrer Elektrooptik
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Figure 5.2: Overview of main laser setup. A fibre laser at 1118 nm is frequency-
quadrupled to 279.5 nm to provide light for Doppler cooling, detection and coherent
manipulation. The doubling takes place in two cascaded SHG cavities with a LBO and
a BBO crystal, respectively. The system has a typical output power of ∼60mW in the
UV. A fraction of the green light is used to frequency-stabilize the fibre laser with an
iodine saturation spectroscopy and monitor the wavelength on a wavemeter. An EOM
modulates sidebands at ±9.2GHz onto the green light, which allows for switching be-
tween a resonant and off-resonant configuration, respectively. Legend: PD: photodiode;
PBS: polarizing beam splitter; λ/2, λ/4: waveplates; OD: optical diode.

Iodine Spectroscopy

Approximately 15mW of the green output power is fibre-coupled and guided to an

iodine saturation spectroscopy setup [105] which incorporates a molecular 129I2 cell
9 (see

Fig. 5.2). The error signal of the spectroscopy is provided by a lock-in amplifier10 and

fed back to a proportional-integral controller loop (PI) connected to a piezo-electrical

fiber stretcher of the fibre laser to lock its frequency to an iodine transition.

Electro-Optic Modulator

A resonant electro-optic modulator11 (EOM) with an MgO-doped LiNbO3 crystal12 is

located in between the two cascaded SHG cavities. Driven with a sinusoidal electronic

drive field, the EOM imprints sidebands on the spectrum of the laser field in the following

way: Consider an incidenting field E(t) = 1
2
E0 ·eiωt+c.c. The EOM, which is driven with

a radio-frequency of Ω = 2π× 9.2GHz, phase-modulates the signal leading to sidebands

9The cell was provided by the group of Uwe Sterr, PTB.
10Scitec Instruments Model 410
11Laser 2000 GmbH NFO-4851-M
12This material is chosen due to its large electro-optic coefficient and its broadband optical trans-

parency and low radio-frequency losses.



58 5.1 Magnesium Laser System

as follows

E(t) =
1

2
E0 · eiωt+iβ sin(Ωt) + c.c. =

1

2
E0 · eiωt

∞∑

n=−∞
Jn(β)e

inΩt + c.c. , (5.1)

where Jn are the Bessel functions of order n and β is the modulation index which depends

on the EOM π-voltage and the driving electric field amplitude. The particular EOM used

in the setup has a specified π-voltage of ∼ 33V at 560 nm and a modulation depth of

∼0.05 rad/V.

After the sidebands are imprinted, the light is frequency-doubled in the second SHG

cavity. It should be emphasized that this process does not change the frequency difference

of the sidebands to the carrier [106]. Instead, the modulation index is doubled since the

SHG process squares the field amplitude

E(t) −→SHG E(t)2 =
1

2
E2

0 +
1

4
E2

0 · ei2ωt+i2β sin(Ωt) + c.c.

=
1

2
E2

0 +
1

4
E2

0 · ei2ωt
∞∑

n=−∞
Jn(2β)e

inΩt + c.c.
(5.2)

However, the free-spectral range of the cavity needs to be adjusted to be a multiple of Ω

in order to guarantee the transmission of the sidebands and the carrier simultaneously13.

In Fig. 5.3, the theoretical power distribution in the different sidebands is shown as a

function of the modulation index β before entering the BBO cavity. In the experiment,

a typical modulation index of β ≈ 0.58 is used. This yields a power of ∼24% in the first

sidebands after frequency doubling by the BBO cavity. This ratio was measured with

the help of two separate Fabry-Perot cavities [107], one located before and one after the

doubling cavity.

The driving electric field is provided by an amplified frequency-multiplier14, as shown

in the inset of Fig. 5.3. Here, the output of a frequency generator15 is multiplied by 920

to ∼ 9.2GHz and amplified up to 3W. After the amplifier, a variable-gain attenuator

allows adjusting the output power of the system. Furthermore, a TTL input channel is

used to switch the frequency output on a timescale of < 5µs. The output frequency is

adjusted to match the resonance frequency of the EOM circuit.

Driving the EOM with radio-frequency powers higher than 1.3W yields significant

beam deflection probably through thermal effects in the EOM crystal. This leads to

a decrease in the coupling efficiency to the BBO cavity. Furthermore, a change in the

EOM’s resonance frequency is observed. In order to avoid these effects, the EOM is

13This is done by changing the distance of the flat mirrors in the bow-tie cavity. This way, only the
FSR changes without changing the waists in the cavity significantly.

14Kuhne electronic GmbH KULO092A;KUPA092X;KUATT092A
15Stanford Research Systems DS-345
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Figure 5.3: Sideband generation with the EOM before the BBO cavity. The power
distribution in the carrier J0(β)

2, the first and second sideband J1,2(β)
2 is shown as a

function of the modulation index β. Typical experimental parameters are β ≈ 0.58.
This corresponds to ∼ 8% of the power in the first order sidebands and ∼ 25% after
frequency doubling. Effects of the second order sideband are neglected since that order
only carries ∼ 2% of the total power. The inset shows the electronic EOM setup. The
10MHz reference is multiplied by 920 and amplified to provide the 9.2GHz drive for the
EOM.

driven with powers below 1.3W.

The EOM is used to switch between a resonant configuration for Doppler cooling and

detection of the ions and an off-resonant configuration for driving Raman transitions.

The fiber laser is thereby adjusted to be 9.2GHz detuned from the P3/2 state of Mg+.

This way, one of the sidebands of the EOM is resonant with the P3/2 when the EOM is

switched on. The laser beams configuration are described later in Section 5.2.

A positive or a negative detuning for the Raman beams can be chosen. Both config-

urations work in principle, however, it turned out that the blue-detuned laser induced

significant heating of the ions when loading multiple ions in the trap. For that reason, a

red-detuned laser configuration was chosen later.

It is worth mentioning that the introduction of the EOM into the setup simplifies

the requirements of the magnesium laser systems tremendously. In other setups [58], a

second laser source resonant to the S1/2 to P1/2 transition is used to provide coherent

manipulation while the first laser system is used for detection and Doppler cooling pur-

poses. A third laser system is then used to generate Raman beams with several 10th of

GHz detuning. The advantage of the EOM is the possibility to combine all requirements

in one single laser system. However, the relatively small detuning of 9.2GHz introduces
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off-resonant scattering which effectively limits the fidelity of coherent manipulation. This

issue is discussed in Section 8.3. It is worth mentioning that this limit can be overcome

by employing higher order sidebands with a larger detuning, e.g. 18.4GHz detuning for

the 2nd order sideband. Also, an increase of the resonance frequency of the EOM reduces

this limitation further.

Wavemeter

During the operation of the experiment, all visible lasers are monitored by a precision

wavemeter16. The wavemeter has a specified absolute accuracy of ∼ 60MHz in the

range of 370-1100 nm, while showing a much better reproducibility. However, due to

temperature drifts and air fluctuations, the wavemeter needs to be re-calibrated to a

known frequency to guarantee this precision. This is done by referencing the wavemeter

to a temperature-stabilized Helium-Neon laser which is frequency-stabilized to the 127I2

R(127) 11-5 d-component at the frequency 473.612 379 828THz [108, 109, 110]. This

calibrated laser was provided by the group of U. Sterr, PTB.

5.2 Doppler Cooling and Raman Beam Configura-

tion

The laser light for Doppler cooling, detection and coherent manipulation is produced

by guiding the UV output of the frequency-quadrupled fibre laser system through a

combination of acousto-optic modulators (AOM) to allow for frequency-adjusting and

phase-coherent fast switching. An overview of the setup is given in Fig. 5.4 and is detailed

in the following.

5.2.1 Optical Setup

The Raman laser beams are provided by splitting the beam into two branches, each

of which passes through a single-pass AOM1/217 resonantly driven at 450MHz and a

double-pass AOM3/418 resonantly driven at 220MHz. This way, the frequency difference

of the beams matches the hyperfine splitting of∼1.8GHz in 25Mg+. The employed radio-

frequencies are provided by several individual DDS circuit boards in combination with

a pulse sequencer hardware (see Section 5.11).

The single-pass AOMs usually operate at a diffraction efficiency of ∼ 70%, whereas

∼50% is achieved in the double-pass configurations. Throughout this thesis, the Raman

16HighFinesse WS/7 Super Precision
17Brimrose Corp. QZF-450-100-.280
18IntraAction Corp. ASM-2202B3
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Figure 5.4: Laser-beam configuration. The output of the laser is split into two branches
which produce both Raman beams (AOM1/2 and AOM3/4). The zeroth order of AOM3
is used for the Doppler cooling beam path. The setup is designed to avoid foci near any
optical surfaces in order to avoid UV damage. The inset shows the different driving
frequencies of each individual AOM.

beams are referred to as σ and π-beam, referring to their polarization entering the

vacuum chamber (see Section 5.10).

The zeroth order of AOM3 is diverted into yet another double-pass AOM configura-

tion (AOM5 and AOM7, both driven at 220MHz) to provide the Doppler cooling and

detection beam. Due to this configuration, this beam has the same frequency as the

π-Raman beam. However, the Doppler cooling beam is σ-polarized to drive the cycling

transition in 25Mg+.

Due to the 9.2GHz detuning of the laser with respect to the P3/2 state, the Doppler

cooling beam becomes resonant as soon as the EOM is switched on, whereas the Raman

beams are applied when the EOM is switched off.

5.2.2 Double-Pass Configuration Avoiding UV damage

UV induced damage on the optical surfaces of miscellaneous components (mirrors, prisms,

waveplates, ...) made a re-design of the double-pass AOM configuration, compared to
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commonly used setups [111, 112], necessary.

The major problem in double-pass AOM setups is the separation of the incoming and

the outgoing beam. In the visible, AOM crystals are available whose diffraction efficiency

is polarization independent. Here, the combination of a polarizing beam-splitter, AOM,

quarter-waveplate and retro-reflector allows for the separation of the beams. This is not

possible in the UV, since the efficiency drops significantly if the polarization is turned

by 90◦ in the second passage. Commonly, the beams are separated geometrically by

inclining the incoming collimated beam through the AOM crystal, shining the outgoing

beam through a lens and retro-reflecting it with a vertical offset and reversed inclination

angle by total internal reflection in a right-angle prism (see Fig. 5.5 (a) and (b)). For

this setup to work, the AOM and the prism are required to be at the focal distance of the

lens. This ensures that the first and zeroth order beams are parallel for all AOM driving

frequencies. The AOMs we use contain a long crystal and require a near-collimated

laser beam for optimum efficiency. The negative effect hereby is that the mentioned

requirement at the prism-lens distance imposes an optical focus near the prism surface.

In such a configuration, visible optical damage was observed on the prism surface

after operating the AOM setup for several hours. The incident beam typically had a

power of 5mW and was focused onto the prism yielding a waist of ∼50 − 70µm which

corresponds to an intensity of 320 − 640 kW/m2. The damage manifested itself in a

distorted beam shape after passing through the prism and a significant degradation

of the AOM efficiency. A parallel shift of the prism recovered the efficiency and the

beam shape. Additionally, operating the setup at a decreased beam power shows no

degradation at all. Both effects support the conclusion that the degradation originates

from UV induced damage when the intensity overcomes a certain threshold [113].

This problem is eliminated by a novel double-pass configuration, as shown in Fig. 5.5

(c). In this setup, both Raman beams counter-propagate through the same AOMs. The

principle is the same as in the conventional setup with the difference that all optical

foci near surfaces are avoided. It should be noted that all beams are in a single plane.

However, the beam separation is achieved by shifting the beams slightly in the plane of

diffraction by a few ∼mm. This results in a small non-significant shift in the switching

times of the Raman beams. It should be noted that both AOMs need to be driven by

the same frequency to guarantee the Bragg condition for each beam. Thus, an individual

frequency scan of each individual AOM is not possible. At the same time the shared

optical path reduces phase noise between the Raman beams.
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Figure 5.5: Schematics of the double-pass AOM setup. (a) and (b) show top and
side views of commonly implemented AOM setups in a double-pass configuration, where
polarization optics cannot be used for beam separation. The different diffraction orders
are labeled, where the superscript represents the first and second pass. L: lens; P: prism.
(c) This setup avoids foci near optical surfaces. Both Raman beams (σ and π) are
produced with this configuration. While all beams are in the same plane, the beam
separation takes place by shifting one of the beams in the plane of diffraction by a few
mm. The zeroth order of AOM3 serves as an input for the double-pass of AOM5/7 for
the Doppler cooling beam (not shown). Both AOMs are driven by the same frequency
to fulfill the Bragg condition for both beams.

5.3 Microwave Antenna Setup

The radio-frequency to directly drive coherent Rabi oscillations between the |↓〉 and

the |↑〉 states is provided by mixing a DDS output channel with a function generator19

and amplifying20 the resulting radio-frequency up to 4W. The complete setup including

filters is shown in Fig. 5.6.

´2

DDS

Antenna

ZFL-2000
ZFL-1000LN

ZHL-5W-2G-S

VBF-1560
VBFZ-1690

SHP-400
SLP-100

ZAD-11

L

RI

600 MHz

1789 MHz

2389 MHz

Figure 5.6: Radio-frequency setup. The radio-frequency for driving coherent oscilla-
tions is generated by mixing the output of a DDS board with a function generator and
amplifying it to ∼ 4W. The antenna is comprised of a special coaxial cable (see text).

The amplified field is sent to an impedance-matched quarter-wave antenna made of

19Marconi Instruments 2024
20Mini-Circuits ZHL-5W-2G-S
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a special coaxial cable21 with a very low attenuation of 0.27 dB/m at 1.8GHz. The

production of sufficiently strong field amplitudes at the position of the ion is realized by

mounting the antenna on top of the vacuum chamber at a distance of ∼12 cm from the

center of the trap.

5.4 Laboratory Frequency-Reference

All components providing radio-frequency fields that are phase-sensitive are referenced

to a single 10MHz frequency-reference22 with an accuracy of ±5 ppm. The signal is

distributed to all relevant components by a frequency-distribution amplifier23. The

schematic of the distribution is shown in Fig. 5.7. In the near future, the common

reference will be replaced by a direct connection to a hydrogen maser provided by PTB.

It is worthwhile mentioning that even though the AOMs and the function generator

producing the Raman beams and the radio-frequency have a common reference, differen-

tial fluctuations in the optical path of the two Raman beams introduce phase fluctuations

between the laser field and the radio-frequency field at the position of the ion.

Ref

DDS

EOM

FPGA

Freq.
Comb

wR w0

6x AOMs

Freq
Dist

T
ra

p
 D

ri
v
e

H
F
S
 R

a
d
io

fr
e
q
.

´2

´2

10 MHz

800 MHz

¸8

Figure 5.7: Reference frequency distribution. All components used in the experiment
are referenced to a single timebase (SRS DS-345).

5.5 Vacuum Chamber

The vacuum setup comprises of a stainless-steel octagon chamber (size CF200), as shown

in Fig. 5.8 in a cross-section. In the center of the chamber, the ion trap with the atomic

ovens is placed. Close to the trap is a parabolic mirror and an inverted viewport24

21Andrew CommScope FSJ1-50A
22Stanford Research Systems DS-345 with Standard Timebase
23TimeTech, Frequency Distribution Amplifier 10219
24UKAEA, custom-made
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containing a self-build objective for fluorescence collection. A six-way cross is connected

to the port behind the parabolic mirror25 (P in picture) which holds the vacuum pumps

(ion-getter pump26 and Titanium sublimation pump27, a vacuum gauge28, a needle-

valve29 and a full-metal valve30). While the chamber has been pre-evacuated using a

roughing pump connected to the metal-valve, the final vacuum of < 10−11mbar31 is

reached with the two remaining pumps32 after several days of bake-out at 180◦C.

Optical access is provided via six fused-silica viewports33 (size CF63), connected to

the ports of the main chamber and a single fused-silica viewport34 (size CF100) on top

of the chamber. The inverted viewport and the viewports have a MgF2 anti-reflection

coating35 centered at 280 nm.

The parabolic mirror is placed on a dynamical bellow36 which is attached to a self-

build translation stage and a self-build mirror holder outside the chamber. This allows

for precision adjustments (via x, y, z-axes translation and 2-axis rotation) of the position

of the parabolic mirror.

The needle-valve allows for a specified leak rate of 1.3× 10−10mbar l/sec and can be

used for leaking hydrogen into the chamber to produce hydrid ions, such as MgH+. This

is of relevance for a later stage of the experiment where molecular ions shall be prepared

in the ro-vibrational ground state.

Two 8-pin electrical feedthroughs37 serve as leads for all required DC voltage connec-

tions to the Paul trap, the atom ovens and two separate electronic emitters38. A third

feedthrough on top of the chamber guides the radio-frequency to the blades of the trap.

5.6 Paul Trap and Atom Ovens

The Paul trap is shown in Fig. 5.9. It consists of four stainless-steel blades to which

the radio-frequency is applied and two tip electrodes to which a DC voltage provided

by a precision power supply39 is applied. Typical operating values are 24.8MHz for the

25KUGLER GmbH, custom-made
26Varian Star Cell 20l
27Varian TSP
28Varian UHV-24 Gauge
29Caburn MDC ULV-150
30VAT Deutschland GmbH
31The actual value is at the limit of the vacuum gauge.
32During the pre-evacuation, the chamber was baked for about two weeks to improve the vacuum.
33Caburn MDC
34Caburn MDC
35Torr Scientific LTD
36COMVAT, custom-made
37Caburn-MDC HV5-30C-8-C40
38Kimball Physics ES-015 on CB-104
39iseg Spezialelektronik GmbH DPR206052410
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Ob

P

Figure 5.8: Main vacuum chamber. In the center of the chamber, the Paul trap is
placed. Fluorescence detection is performed via a parabolic mirror (P) and an objective
(Ob) which is located inside an inverted viewport. The atom ovens are placed below the
trap. Optical access is provided by eight viewports connected to the hexagon.

radio-frequency drive at 3-5W input power and DC voltages between 0 and 2000V.

Furthermore, two pairs of compensation electrodes are available to shift the ion’s

radial position by applying DC voltages40 between 0 and 500V. In axial direction, a

differential voltage of up to 130V41 between the endcaps allows for shifting the ion. All

voltages are applied for compensation of micromotion.

Apart from the openings at the side of the trap, optical access is given on the trap

axis via holes that are drilled into the trap electrodes. The whole construction is fixed

by a macor piece on each side and pressed together with screws.

Below the trap, an array of six different ovens is placed (unless otherwise mentioned,

the ovens contain the natural abundances): two magnesium ovens, one enriched 25Mg42,

a calcium oven, a titanium oven and an iron oven. The complete construction is shown

in Fig. 5.9. Apart from the case of titanium and iron, all ovens are resistively-heated

steel tubes which contain a powder of the corresponding material. This doesn’t work for

40iseg Spezialelektronik GmbH DPR05106245
41This is provided by self-build electronics.
42OAK Ridge National Laboratories
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(a) (b)

Figure 5.9: (a) Drawing of the linear Paul trap. The radio-frequency is applied to the
stainless steel blades and the DC voltage is applied to the stainless steel tip electrodes.
The whole construction is held together by two macor pieces, one on each side. The
compensation electrodes (welding rods, colored brown in the picture) allow for shifting
the ion in radial direction. (b) Oven setup. Six individual ovens supply thermal atomic
beams by resistive heating. The stainless-steel tubes contain 24Mg, enriched 25Mg and
40Ca. Additional two ovens comprise of a titanium and respectively an iron wire spooled
around a tungsten wire. The ovens have a common ground and are placed below the ion
trap and their outlets are directed towards its center.

titanium or iron since their melting point is too high (see Fig. 5.10). For this reason,

these ovens consist of a tungsten wire with a wound up thin titanium/iron wire (similar

to a light bulb). The tungsten wire is heated and the material in the surrounding of the

wire starts evaporating.

All ovens are directed towards the center of the trap. Since the ionization laser

shines through the trap axis, it is almost perpendicular to the thermal beam of the

atoms and no significant Doppler shift is expected for the excitation frequencies. A

single magnesium ion is loaded into the trap by heating the oven with typically ∼ 6W

for one or more minutes while shining the photoionization laser through the trap center.

After photoionization took place, the laser is blocked with a mechanical shutter to stop

the loading process.
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Figure 5.10: Vapor pressure for different elements. The vapor pressure is plotted as
a function of the temperature up to the melting point. The functional behaviour is
a1 + a2/T + a3 log(T ) + a4/T

3, where ai are material constants (see [114]).

5.7 Radio-Frequency Drive of the Paul Trap

The oscillating potential for radial confinement in the Paul trap is provided by a function

generator43 whose output is amplified44 and sent through a self-build helical resonator

[115] for amplitude enhancement. One pair of opposing trap electrodes is connected to

the output of the resonator, while the remaining pair is grounded to the vacuum chamber

at the outside. The resonator shows an unloaded (without trap) resonance frequency of

∼55MHz. Its resonance frequency changes to ∼25MHz, if the trap is connected.

It is worthwhile mentioning that the resonator showed a rather low quality factor

when the trap was connected for the first time (Q ∼ 60). It turned out that the main

reason for this low value was caused by capacitive coupling to components close to the

blades of the trap. These components are connected to the electrical feedthroughs at the

bottom of the chamber and supposedly act as antennas producing large radio-frequency

noise in the laboratory. In the meantime, the radiation issue has been overcome by a

direct capacitive45 shunting - optimized for ∼ 23MHz - between the entry point of the

feedthroughs and the chamber. No other low-pass filter is used in the setup. With

the new configuration, a quality factor of Q ∼ 250 is achieved and the radio-frequency

noise in the lab is significantly reduced. The results of a S-parameter measurements to

determine the quality factor is shown in Fig. 5.11.

43Marconi Instruments 2024
44Mini-Circuits ZHL-5W-1
45Vishay Draloric Ceramic AC Capacitors Class X1, 760 VAC
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Figure 5.11: Quality factor of the helical resonator. The reflected voltage (S11-
Parameter) of the helical resonator (connected to the Paul trap) is shown as a function
of the frequency. The measurement was done using the S-Parameter set of a Hewlett-
Packard network analyzer. The quality factor of Q ∼ 60 (black curve) has been improved
toQ ∼ 250 (red curve) by adding capacitive couplings to the feedthroughs at the chamber
(see text for details).

5.8 Magnetic Field Coils

The magnetic quantization field to lift the degeneracy of the magnetic substates is pro-

vided by a pair of self-build coils in Helmholtz configuration. The coil axis is aligned to

the Doppler cooling beam (see Section 5.10). Typically, a field of ∼ 0.6mT is achieved

at the ions position with 6A driving current. Additionally, two pairs of compensation

coils are employed along the remaining two perpendicular directions. Both coils produce

a compensation field of 0.18mT and respectively 0.28mT with 1A driving current [102].

All coils are driven with individual precision current drivers46.

5.9 Fluorescence Detection of the Ion

There are two channels to observe the ions fluorescence: a self-build UV objective and a

parabolic mirror. Both channels are imaged onto either a photomultiplier tube (PMT)47

with a specified quantum efficiency of ∼30% or a charge-coupled device (CCD) camera48

with a specified quantum efficiency of ∼ 25% at 280 nm. While the PMT is used for

quantitative analysis, the camera is mainly used for monitoring and alignment purposes

46Agilent 3615A/3616A
47Hamamatsu H8259MOD w/ R7518P
48Andor iXon 885
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due to the slow readout process. A computer controlled flipping mirror is installed in

the beam path to either guide the fluorescence onto the PMT or the CCD camera.

5.9.1 UV Objective

The UV objective is a six-lens system, based on an existing design [116] which was

adapted to be used at a wavelength of 280 nm. The objective was designed and opti-

mized with the software Zemax [117]. Since our experiments do not require high spatial

resolution images, the optimal lenses were replaced by commercial lenses for economic

reasons. A detailed description of the lens parameters is given in Appendix E. Using

this objective, the ion is imaged onto an iris for mode and stray light filtering. The

intermediate image is in turn imaged by a two-lens objective onto either the CCD cam-

era or the PMT. The estimated overall f-number of this configuration is approximately

∼1.24, for a full aperture of the objective. This corresponds to a solid angle of ∼3.6%

for fluorescence collection.

In Fig. 5.12 an example image of an ion string in the Paul trap taken with the CCD

camera is shown. Clearly, optical aberrations lead to a distortion of the ion images which

act as point sources. This is due to the chosen non-optimal lens parameters and due to

misalignments of the lenses with respect to each other inside the objective.

200 300 400 500 600 700 800

700
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Figure 5.12: Picture of magnesium ions string. A picture of a string of 24Mg+ ions
imaged by the self-build UV objective onto the CCD camera is shown. The pixel size
of the camera is 8 × 8µm2. The deviation from point source images is due to optical
aberrations which result from lens misalignment and the used non-optimal commercial
lenses.

5.9.2 Parabolic Mirror

The parabolic mirror is custom-made and consists of aluminium. It does not contain any

anti-reflective coating and has a specified reflectivity of > 90% at 280 nm. Theoretically,

it covers a solid angle of ∼ 11%. In Fig. 5.13 a picture of a single ion simultaneously

imaged with the parabolic mirror and the UV objective onto the CCD camera is shown.

Strong aberrations are observed which are expected to result from coma for off-axis
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imaging. The typically observed photon counting histograms of the combined image

onto the PMT is shown in Fig. 7.3. Even though the estimated solid angle which is

covered by the parabolic mirror is much larger than that of the objective, we observe

only roughly the same amount of light as with the objective. This is probably due to a

non-optimum alignment. In addition to that, a much larger background due to stray light

is observed. An explanation for that can be a reduced surface quality due to remaining

grooves from the machining process of the mirror and the fact that the image of the

parabolic mirror is not spatially filtered with an iris like the image of the UV objective.

450

500

550

250 300 350 400 450 500 550

Figure 5.13: A single 24Mg+ ion is simultaneously imaged onto the CCD camera by the
UV objective (rhs) and the parabolic mirror (lhs). Strong aberrations of the parabolic
mirror image result from coma, if the ion is misaligned from the focal point of the mirror.

5.10 Laser Beam Configuration

The polarization of each laser beam in the setup depends on its direction with respect

to the quantization axis defined by the main magnetic field. It defines which transitions

in the ion are driven and needs to be carefully adjusted in the experiments to avoid

excitations to unwanted auxiliary states. Both Doppler cooling and σ-Raman beam are

co-aligned with the magnetic field and thus circular polarized driving σ-transitions. The

π-Raman beam is perpendicular to the magnetic field and drives pure π-transitions. All

beams are in the horizontal plane and focused onto the ion using lenses of 200 or 300mm

focal length. The main magnetic field is tilted by 45◦ with respect to the trap axis. In

Fig. 5.14 the geometry of all beams entering the vacuum chamber is shown. Before the

beams enter the chamber, a beam pickup is used to monitor their individual intensity.

The signals are fed back to a sample-and-hold proportional-integral controller loop to

control the AOMs for intensity stabilization. The sample-and-hold configuration allows

for intensity stabilized pulsed operation of the laser beams on a µs timescale.
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Figure 5.14: Top view of the geometry of the setup. The Doppler cooling (DC) beam
is co-linear to the σ-Raman beam, whereas the π-Raman beam is perpendicular to both
of these beams. All beams enter the chamber at an angle of 45◦ with respect to the
trap axis. The photoionization beam (PI) is co-linear to the trap axis. The magnetic
field is in direction of the Doppler cooling beam allowing for driving σ transitions with
circular polarised light on that axis. Additional coils serve as compensation fields in
horizontal Bhorz and vertical direction Bvert. The Raman beams are guided to the center
of the trap by fibres (see text for details). Each beam has an individual pickup in front
of the chamber which is used as feedback for intensity stabilization (not shown). The
fluorescence of the ion is collected with an objective (only two lenses are shown) and a
parabolic mirror (P) and imaged onto a CCD camera or a PMT, respectively. In the
objective path, the ion is imaged onto a pinhole (Thorlabs P100S) to reduce stray light.

Additionally, each Raman beam is coupled to a ∼10 cm hollow-core photonic-crystal

fiber [118] to suppress beam pointing and for mode cleaning purposes. It should be

noted though that this particular type of fiber exhibits multi-mode behaviour at 280 nm.

However, it was kept in the setup as an alignment aide and for the purpose of decreasing

beam pointing instabilities.

The power of each Raman beam is typically on the order of 1mW with a beam

diameter of ∼500µm before the focusing lens. The Doppler cooling beam is adjusted to

match the saturation intensity of the 280 nm transition by observing fluorescence counts

on the PMT.
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5.11 Experimental Control

All time-critical components are handled by a pulse sequencer hardware based on a field-

programmable gate array49 (FPGA) [119]. The user frontend is a Labview interface which

communicates with the sequencer via an open-source Python server [120]. Furthermore,

two data acquisition cards with various analogue and digital I/O channels are used for

remote control of various components like power supplies, shutters, etc.

The pulse sequencer hardware has six direct-digital synthesizer (DDS) boards con-

nected to it, each of which is equipped with an individual FPGA50. The DDS chip

is clocked with 800MHz so that a frequency output between ∼ 10 and ∼ 350MHz is

achieved. Since the present design does not allow for a sufficient (60dBc) radio-frequency

output suppression when the DDS output is switched off, additional RF switches51 are

used for further suppression.

The complete setup allows for phase-coherent switching between the individual fre-

quency output channels and amplitude modulation on a sub-µs timescale. A summary

of important figures of merit are given in the following table [121]:

Figures of Merit

Frequency Switching Time < 150 ns

Phase Offset Accuracy 2π × 2.4× 10−4

Signal to Noise 50 dBc

Frequeny Resolution 0.18Hz

Maximum Output Level ∼ 1 dBm

For a detailed description of the complete sequencer system, the reader is referred to

[119, 121].

49Altera Cyclone 1
50Altera Cyclone 2
51Mini-Circuits ZFSW-2-46
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Chapter 6

Experimental Prerequisites

In this chapter, first experiments to characterize the Paul trap are discussed. In the first

part, the calibration of the trap parameters is presented. This includes the measurement

of the axial and radial trap frequencies and the calibration of the magnetic field strength.

In the last part of this chapter, different ways to compensate for micromotion in the Paul

trap, along with their experimental results, are presented.

6.1 Axial Trap Frequencies

There are two major ways to calibrate the axial trap frequency, i.e. the frequency of the

ion’s secular motion along the trap axis. In a first way, a direct excitation by applying a

radio-frequency field to a component nearby the ion heats the ion crystal. This effectively

decreases the fluorescence which is observed with the CCD camera. Since the axial trap

frequency scales with the inverse square-root of the ion’s mass, this method can be used

to determine the loaded isotope. In Fig. 6.1, the measured axial trap frequencies as a

function of the applied tip electrode voltage are shown. The radio-frequency exciting

the ion has been applied to one of the electron emitters which is close to the ion. The

corresponding fit yields a trap frequency dependence for 25Mg+ of

ωz = 2π × 49.2(1) ·
√

Udc . (6.1)

Given the applied DC voltages of 0 – 2000V, axial trap frequencies up to ∼2.2MHz are

achieved. The different isotopes are clearly distinguished in their frequency ratios (see

Fig. 6.1). Additionally, the geometric factor of the employed Paul trap (see Eq. (2.2)) is

determined to be κ ∼ 0.08 from a trap frequency measurement with a single 24Mg+ ion.

In a second way, the axial trap frequencies are determined by exciting Raman-

stimulated sideband transitions. This method has a higher precision and is discussed

in Section 8.
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Figure 6.1: Axial trap frequency calibration. (a) The axial trap frequency is shown as a
function of the endcap voltage for 24Mg+ ions. The error bars are on the order of 3 kHz
and omitted for clarity. (b) The ratio of the axial trap frequency for 24Mg+/25Mg+ (blue
curve) and 24Mg+/26Mg+ as a function of the endcap voltage is shown. The expected
ratios are given by the dashed lines. The picture is taken and adapted from [102].

6.2 Radial Trap Frequencies

The radial trap frequencies are measured in a similar way as the axial ones. Only here, the

radio-frequency excitation is mixed with the trap drive. The setup and the measurement

results are shown in Fig. 6.2. With a tip electrode voltage of 1000V and an incoupled

radio-frequency power of 5W, a radial trap frequency of ∼4.5MHz is achieved.

Since the wave vector difference of the Raman beam configuration does not have

a projection onto the radial directions, it is not possible to excite radial sidebands.

However, one way to achieve this, is to send the π-Raman beam from the opposite

side of the chamber onto the ion or irradiating it vertically by going through the upper

viewport on top of the chamber. These configurations were used for compensating the

micromotion in all three dimensions.

6.3 Magnetic Field

The magnetic field is calibrated by measuring the excitation frequency of the transition

between the hyperfine ground states |↓〉 and |↑〉 as a function of the current through

the coils producing the B-field. The result is shown in Fig. 6.3. A linear fit yields a

magnetic field dependence of 0.089±0.001mT/A at the position of the ion. Additionally,

magnetic field fluctuations have been characterized with a Hall probe1. After moving

1Stefan Mayer Instruments, FL3-100
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Figure 6.2: Radial trap excitation and photon-correlation setup. (a) To excite the ion
radially, the trap drive is split and the excitation frequency is mixed to one line. The
second line is phase-shifted by π/2 and both lines are combined again. This way, the
amplitude modulation before going into the amplifier is reduced. In a saturated regime
of the amplifier (though not desirable), where amplitude modulation is suppressed, this
configuration can be helpful. The incoupled RF power is measured by a reflecto-meter
(RM) and fed into the helical resonator (HR). Also shown is the photon correlation setup:
The PMT signal is used as a start trigger and the second line of the trap drive is used as
a stop trigger (see Section 6.4) to measure photon arrival times. (b) The measured radial
trap frequencies as a function of the power which is incoupled to the trap are shown.
The measurements were taken at a tip electrode voltage of 1000V.

power supplies and other electronic equipment as far as possible from the trap, the

fluctuations have been optimized to be on the order of ∼ 0.1 − 0.2µT directly outside

the vacuum chamber.

6.4 Compensation of Micromotion

The amount of excess micromotion in the ion trap is critical for the experiments. From

a precision spectroscopic point of view it needs to be decreased as far as possible since it

leads second order Doppler shifts and to a distortion of spectral lines due to the presence

of micromotion sidebands. However, with respect to our work, since it is a driven motion,

it is essential to cancel it since it can lead to heating of the secular motion of the ion.

This is critical, if ground state cooling is to be achieved. A detailed discussion of such

influences is found in [67, 68, 69].

There are different reasons for micromotion in Paul traps, among which one finds sur-

face charges or relative phase-shifts between the radio-frequency lines. Surface charges,

for instance, produce static electric fields which move the ion away from the center of

the trap leading to excess micromotion (see Section 2.1.3). It is worth noting, that in the

experiment, a direct illumination of the trap electrodes with UV laser light is therefore to

be avoided since the photoeffect charges up the blades significantly, shifting the position

of the ion. Relative phase-shifts originating from e.g. asymmetries in the cables guiding
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Figure 6.3: Magnetic field calibration. The frequency of the S1/2 |3, 3〉 to |2, 2〉 transition
is plotted as a function of the driving current of the magnetic field coils. At very low
driving current of < 1A, the field magnitude is so low that the earth’s magnetic field
becomes dominant leading to larger deviations from the linear behaviour. The dashed
line corresponds to the expected zero-field transition frequency.

the radio-frequency to the trap, are to be avoided. Especially, since this type of shift

can not be adjusted from outside the vacuum chamber.

There are several ways to compensate for micromotion three of which are explained

in the following. A detailed overview including a complete theoretical description of the

effects is found in [67].

6.4.1 Camera

An initial rough compensation is achieved by observing the position of the ion on the

CCD camera for varying radio-frequency powers. At high powers, the position is deter-

mined only by the radio-frequency and stray fields are negligible. That means, that any

shift of the ion while lowering the radio-frequency power needs to be compensated to

arrive at the high-field position again. This way, the position of the ion can be made

independent of the RF power and the ion is placed at the RF zero line of the Paul trap.

In principle all directions can be roughly compensated with this technique. However,

since a spatial shift in direction of the optical axis of the objective is difficult to observe,

mainly the vertical and the axial compensation is performed in this way.
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6.4.2 Photon-Correlation Measurements

In a second and more precise way, a correlation measurement between fluorescence pho-

ton arrival times and the phase of the trap frequency drive using a frequency counter2

has been performed. For optimal performance, the laser is detuned off-resonantly to the

slope of the Doppler cooling absorption line. Any movement of the ion will modulate the

amount of fluorescence due to the corresponding frequency change of the Doppler effect.

Since the excess micromotion is an oscillation driven by the trap drive, the number of

measured fluorescence photons is correlated to the phase of the radio-frequency.

It should be noted that a vertical spatial offset of the ion from the trap center results

in horizontal (micro)motion and vice versa. However, the Doppler shift is only sensitive

to the projection of the k-vector of the exciting laser onto the direction of the motion.

Consequently for a compensation in all directions, laser beams in all three spatial dimen-

sions are needed. In the experiment, the horizontal direction is covered by the Doppler

cooling beam, since it has one projection onto the trap axis and one in the direction

of the objective. The vertical direction needs an additional laser beam which is guided

through the viewport on top of the chamber onto the ion. The axial direction is covered

by an additional beam which is guided through the trap axis.

In Fig. 6.4, the result of a measurement for the compensation of the axial micromotion

is shown in form of the described photon arrival histograms. While shifting the ion on

the trap axis, a clear minimum is observed in the contrast of the histogram function

which is quantified by the standard deviation of the events. Additionally, while crossing

the optimal point, the correlation experiences a 180◦ phase shift. This results from the

sinusoidal drive of the trap blades.

6.4.3 Micromotion Sideband Spectroscopy

The third and most precise way to minimize excess micromotion is resolved sideband

spectroscopy on micromotion sidebands. The (micromotion) sidebands are offset by a

multiple of the radio-frequency of the trap drive Ωrf from the carrier transition and their

strength depends on the amount of excess micromotion. The ion can be excited on these

transitions using the Raman lasers. In the limit of low saturation, the excitation rate on

the nth order micromotion sideband is given by [67, 122]

ρ ≈
∑

n=0,±1,...

Ω2

4

J2
n(β)

(ωlaser − ωa − nΩrf)2 + (Γ/2)2
, (6.2)

2Stanford Research Systems SR620
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Figure 6.4: Photon-correlation measurements. (a) Histogram of the number of photons
as a function of their arrival time with respect to the phase of the trap drive. The curves
differ in the relative axial compensation voltage: -60V (blue), 0V (red), 60V (black).
(b) The standard deviation of the histograms in (a) is shown as a function of the axial
compensation voltage.

where Jn are the Bessel functions of nth kind, ωlaser−ωa the laser detuning with respect

to the atomic transition frequency, Γ the natural linewidth of the transition and Ω the

carrier Rabi frequency. Thus, the modulation index β is determined experimentally by

comparing the excitation on the carrier and a micromotion sideband, i.e. by comparing

their respective Rabi frequencies

Ωs

Ωc
=
J1(β)

J0(β)
≈ β

2
+
β3

16
+O(β5) . (6.3)

In Fig. 6.5, this ratio is shown as a function of the differential tip electrode voltage for

the 1st order axial micromotion sideband. A hyperbolic fit to the data yields a minimal

modulation index of β ∼ 0.005 which corresponds to an amplitude of the micromotion of

ui = β/|~k| = βλ/2π
√
2 ∼ 0.2 nm3. This is in very good agreement with values observed

in similar trap configurations, where β was found to be 0.004(1) [123].

Given the value of the modulation index, the second-order Doppler shift due to

residual motion of the ion can be estimated [67]

(
∆ν

ν

)

Doppler

≈ −
(
Ωrf

ck
· β
2

)2

. (6.4)

Inserting typical experimental parameters, we find an expected relative frequency shift

3The factor
√
2 is a result of the Raman beam configuration.
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of < 10−19 which corresponds to < 1mHz for the transition at 280 nm. In other words,

this shifts can be neglected in our experiments.
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Figure 6.5: Micromotion sideband spectroscopy. The ratio of the Rabi frequency of
the first micromotion sideband and the carrier transition is shown as a function of the
differential voltage between the tip electrodes. The measurement was carried out with a
ground state cooled 25Mg+ ion at a tip voltage of 1000V and a RF trap power of 5W.
This corresponds to an axial trap frequency of ∼ 1.55MHz. The error bars represent
the average fitting error. The solid line corresponds to a hyperbolic fit [70] yielding an
estimate for the modulation index β ∼ 0.005 at a differential voltage of -60.3V.
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Chapter 7

Quantum State Detection Schemes

When performing the spectroscopy schemes, the only information that results from each

experiment is the quantum state of the logic ion. Here, one experiment is understood as

consisting of a sequence of cooling, state preparation, state manipulation (with e.g. spec-

troscopy pulses) and readout. That means that, after exposing the ion to the resonant

detection laser field, it is projected into either the |↓〉 or the |↑〉 state. These are dis-

tinguished by the electron-shelving technique [124]. The state discrimination is based on

the fact that the fluorescence rate of one of the states is high (bright state), whereas the

fluorescence of the other state is ideally negligible (dark state). In the case of hyperfine

qubits, this technique is limited by the rather small frequency separation of the qubit

states (1.789GHz in the case of 25Mg+), which effectively introduces a finite scattering

rate of the dark state because the ion can be depumped to the bright state during the

detection pulse, thus yielding wrong state information.

In the scope of this thesis, different detection schemes have been investigated to both

overcome this limitation and improve detection fidelity. In the following, the detection

error and the optimal detection parameters for a single 25Mg+ ion are discussed. Similar

treatments on limits of the achievable detection errors for a number of species, namely
40Ca+ [70], 111Cd+ [125], 9Be+ [126, 127] and 88Sr+ [128], are found in the literature.

In addition to the detection schemes, initial experiments on radio-frequency induced

spin flips are presented. These are furthermore used as a tool to determine the coherence

time of the ion confined in the Paul trap.

7.1 Offresonant Depumping of the Bright State

State discretization by electron-shelving in ions relies on the fact that the fluorescence

rate largely differs between the states to be distinguished. For the case of 25Mg+, if the

ion is in the |↓〉 state, it resides in the cycling transition when the detection pulse is
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applied and scatters photons with a rate of Γ/2 = 1.285 × 108 1/s. On the other hand,

being in the |↑〉 state, the laser is detuned by ∆HF = 2π × 1.789GHz and the scattering

rate is decreased as

Γ′ = Γ · s0/2

1 + s0 + (2∆HF/Γ)
2 ∼ Γ · 0.26% (s0 ∼ 1) . (7.1)

The difference in scattering rates results in two distinguishable photon counting his-

tograms. In Fig. 7.3, measured example histograms for a typical detection time of

∼12− 15µs are shown. Longer detection times are avoided in the experiment since the

non-zero value of the scattering rate of the |↑〉 state depopulates it with a finite probabil-

ity and lets the ion eventually enter the cycling transition. Once in the cycling transition,

the ion will scatter photons at a higher rate, thus yielding wrong state information.

A consequence of the limited detection time is a small number of detected photons.

This results in overlapping photon distributions for the two states. For the particular

example shown in Fig. 7.3, this overlap is approximately ∼ 1.4%. This percentage

effectively imposes a limit on the single-shot state detection fidelity, since it cannot be

decided in the overlapping region to which distribution a collected photon belongs.

It should be noted that this situation is rather different for optical qubits. There, the

energy difference between the states is so large that readout fidelities of > 99.99% are

achieved since the off-resonant scattering rate of the dark state is negligible [129, 130]. On

the other hand, the finite life time of the metastable dark state also imposes a limitation

on the maximum readout time, whereas the lifetime of a qubit encoded in two hyperfine

states is practically infinite.

The off-resonant depumping effect is demonstrated in Fig. 7.1. In a first experiment,

a single 25Mg+ ion is prepared in the |↓〉 (bright) state and the average number of

photons is measured as a function of the detection time (red circles). A linear slope is

observed with increasing errors with higher average number of photons due to photon

shot noise. In a second experiment, the ion is initialized in the |↑〉 (dark) state by

a radio-frequency induced spin-flip after Doppler cooling before the detection time is

varied (black circles). The average number of photons is much lower than that of the

first sequence in the beginning. Due to the discussed depumping effect, the photon

scattering rate asymptotically approaches that of the ion being in the |↑〉 state.

In order to model the depumping effect we assume that the dark state exponentially

decays with a rate 1/T and the probability of having decayed is given by W (t) = 1 −
exp(−t/T ) or a respective rate w(t) = dW/dt = 1/T exp(−t/T ). We further introduce

the number of collected photons ξ. The probability of detecting k photons is given by a
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Figure 7.1: Optical depumping of the dark state. The average number of measured
photons as a function of the detection time is shown for the bright (red) and dark
(black) state. While the bright state fluorescence follows the expected linear curve, the
dark state experiences a depumping due to its finite detuning to the bright state and its
fluorescence rate asymptotically reaches the slope of the bright state. The black solid
line is a fit to Eq. (7.4) with ξ↓/τ ∼ 290 kHz and ξ↑/τ ∼ 2.2 kHz. The scattering rates in
this measurement are slightly different to those of the simulations in this chapter, since
only the UV objective was used here. This does, nevertheless, not affect the observed
depumping time. The dashed line corresponds to the expected asymptotic behavior after
the ion has been depumped to the bright state.

Poissonian distribution [92]

p(ξ = k) := p(k) =
ξ̄keξ̄

k!
, (7.2)

where ξ̄ =
∑
p(k)k denotes the average number of detected photons.

Let ξ↓(ξ↑) be the number of photons scattered if the ion is in the |↓〉 (|↑〉) state. ξ↑
corresponds to the background count rate. Given a detection time τ , the amount of

photons that is observed if the ion is depumped from the dark to the bright state at time

t < τ reads

ξt =
ξ↑
τ
t +

ξ↓
τ
(τ − t) . (7.3)

Here, the first term corresponds to the background counts while the ion is in the dark

state and the second term covers the scattering rate during the remaining time of the

detection interval when the ion is in the bright state.

The average number of photons is determined by weighting it with the decay rate
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and integrating it over time

ξ̄ =

∫ τ

0

dtw(t)ξ̄t
︸ ︷︷ ︸

A

+

∫ ∞

τ

dtw(t)ξ̄↑
︸ ︷︷ ︸

B

= ξ̄↓ −
(
ξ̄↓ − ξ̄↑

) T

τ

(
1− e−τ/T

)
. (7.4)

Term A represents the number of photons that have been measured if the decay took

place during the detection time, whereas B corresponds to the weighted average photon

number if the decay took place at a later time, i.e. the event when only dark counts

were measured. All averaged quantities are designated with a bar, e.g. ξ̄t. In Fig. 7.1,

a measurement of the average number of photons as a function of the detection time is

shown. The detection laser frequency was adjusted to the resonance and the laser power

was calibrated to the saturation intensity1. The fit of Eq. (7.4) to the measured data in

Fig. 7.1 yields a decay time of T = 268± 10µs. The dark state is depumped for longer

detection times and the scattering rate converges asymptotically to that of the bright

state.

Based on this lifetime measurement, different detection strategies including their

corresponding errors are presented and discussed in the following sections to improve

the state detection fidelity for 25Mg+ ions.

7.2 Discrete Threshold Detection

The simplest detection method to distinguish the fluorescing from the non-fluorescing

state is the threshold detection. Every event with a number of photons above a constant

threshold σ is considered to belong to the bright state, whereas every other event is

assigned to the dark state. This technique is commonly used for qubits encoded in

hyperfine ground states, like 9Be+ [131], and optical qubits, like 40Ca+ [70].

Two different sources of errors yield wrong state information:

• The finite overlap of both photon distributions of the dark and bright state, makes

it impossible to unambiguously determine the state in the overlap region (see below

Fig. 7.3).

• Depumping from the dark into the bright state changes the ion state and yields

wrong state information. The bright state is not affected by this type of error,

resulting in a bias towards the bright state.

1Typically, in the experiments the frequency of the Doppler cooling laser is adjusted to the slope
of the DC transition, whereas the detection pulse is performed with a resonant laser to increase the
number of detected photons.
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It should be noted that polarization misalignments also introduce state detection errors,

since a wrong polarization distributes both of the states to other magnetic sub-states.

During this discussion, this type of error is neglected. However, for this reason the

polarization needs to be carefully adjusted in the experiments.
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Figure 7.2: Threshold detection errors. The expected error of the (a) dark and (b)
bright state as a function of the detection time and the chosen threshold is shown. The
dash-dotted black lines depict the average number of photons following approximately
the peak of the photon distribution. (c) corresponds to the average square of both
errors. The solid line shows the optimal points of detection, i.e. the minimum error as
a function of detection time and threshold. The parameters for the scattering rates in
this simulation were ξ↓/τ = 464 kHz and ξ↑/τ = 16 kHz.

Given a threshold σ, the probability with which the bright state is measured to be a

dark state is given by

pB(ξ↓ ≤ σ) =

σ∑

k=0

(
ξ̄↓
)k
eξ̄↓

k!
. (7.5)

The probability with which the dark state is mistaken to be a bright state needs to be
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weighted with the decay rate as in Eq. (7.4)

pD(ξ↑ > σ) =

∫ τ

0

dtw(t)p(ξt > σ) +

∫ ∞

τ

dtw(t)p(ξ↑ > σ) . (7.6)

In Fig. 7.2 (a) and (b) both errors pB(ξ↓ ≤ σ) and pD(ξ↑ > σ) are depicted as a

function of the threshold and the detection time. The dark error pD(ξ↑ > σ) gets worse

when the detection time is increased due to a higher depumping probability. Whereas

increasing the threshold barrier, decreases the error since all photon counting events,

including the ones when the ion was depumped, are taken into account. In contrast to

that, bright errors pB(ξ↓ ≤ σ) decrease if the detection time is higher since the part of

the photon distribution which is below the threshold shrinks. For the same reason, the

error increases if the threshold is set to higher values.

The question on the optimal detection point is not answerable in an unambiguous

way since it depends on the requirements of the experiment. In our case, the lowest

possible error value for both states is desired. In Fig. 7.2 (c) the squared average of both

errors

ptotal =
√

pB(ξ↓ ≤ σ)2 + pD(ξ↑ > σ)2 (7.7)

is depicted. At the optimal detection parameters with the threshold method (depicted by

the black solid line), the lowest error achievable in our setup is on the order of ∼ 5−6%

at ∼15− 20µs detection time and a chosen threshold of σ ∼ 2− 3.

7.3 Distribution-Fit-Detection

In a second approach, not only the information of the amount of detected photons is

used. Instead, a fit to the histogram of the measured photon distribution yields the state

information. A similar method, which takes the full histogram information into account

by a maximum likehood estimate, for the case of 9Be+ is discussed in [126].

The fitting method requires two calibrated initial photon distributions, one for each

state as a reference. These histograms are taken in the following way: After the ion

is Doppler-cooled and optically pumped to the |↓〉 state, a histogram of the measured

number of photons ξ↓ for typically 250 experiments is taken with a certain detection

time. The second histogram ξ↑ is measured by either switching off the EOM sidebands,

yielding only off-resonant lasers, or releasing the ion from the trap, thus measuring only

dark counts2.

2That way, it is guaranteed, that the dark state is compared to a background count distribution. If
instead the dark state was prepared e.g. by a radio-frequency pulse, one could argue that other states
were populated due to pulse imperfections and the ’dark distribution’ represents a mixture of different
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Figure 7.3: Measured photon distributions of the two hyperfine ground states |↑〉 and
|↓〉 for detection times of ∼12.5µs. The measured photon distribution is fitted to such
calibrated histograms to determine the state of the ion. This reduces the error introduced
by the finite overlap of the distributions. The measured scattering rates for the bright
(dark) state are ξ↓/τ ∼ 464 kHz (ξ↑/τ ∼ 16 kHz).

In order to determine the expected error with this kind of distribution-fit-detection

method, Monte-Carlo simulations have been performed with the following procedure: For

each experiment, a dice is thrown. Its value is weighted with the sum of the Poissonian

probability distribution of the bright and the dark state to determine the number of

’measured’ photons. A number of k repetitions then yields a random histogram with k

events. This histogram is fitted to the calibrated distributions with the function

ξ(a) = a · ξ↓ + (1− a) · ξ↑ , (7.8)

where a determines the state of the ion, described by |ψ〉 =
√
a |↓〉 +

√
1− a |↑〉. The

simulation is iterated N times and the results are averaged ā =
∑
ai/N . The error is

determined by the squared average as ∆ā =
√∑

(∆ai)2/N , where ∆ai corresponds to

the fitting error to Eq. (7.8). The fitted value along with the fitting error of the simulated

photon distribution is plotted in Fig. 7.4 as a function of repetitions and averages. It

should be noted that no significant decrease of the fitting error is observed if the number

of averages instead of the number of repetitions is increased.

In the experiments on the ground state cooling performance, the distribution fit

detection method was used to determine the state of the ion. Most of the measurement

have been performed with 100 repetitions and 3 averages and yielded a statistical error

of ∼3% in accordance with the simulation.

states.
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Figure 7.4: Monte-Carlo simulation of the distribution fit technique. The fit result
(top graph) and fit error (bottom graph) is shown as a function of the number of total
measurements (no. of repetitions × no. of averages) for a superposition state with a = 1/2
(see text). The simulated error of 2–3% at 3 × 100 repetitions corresponds well to the
statistical error observed in the measured data.

7.4 π-Pulse Detection

The fact that coherent transitions between hyperfine states, as oppose to optical qubits,

are easily driven by the application of a radio-frequency pulse, is used for yet another

detection method: As shown in Fig. 7.5, in a first detection pulse, the fluorescence is

measured and hereby the ion is projected into either of the |↑〉 or |↓〉 state. The threshold
technique is used to determine the state. After that, the ion is coherently driven by a

RF π-pulse to invert the state with high fidelity. This is followed by another detection

pulse with state discrimination. Due to the inversion pulse, an anti-correlation between

both detection events can be considered, i.e. only detection events which yield opposite

states are kept. If both events result in the same state, the measurement is discarded.

This way, the effective detection time is doubled.

The detection error of the π-pulse detection method is determined by a combination

of errors arising from the threshold detection and the fidelity of the intermediate radio-

frequency pulse (1−α). Again, we distinguish between errors of the dark and the bright

state. In Fig. 7.6, a decision tree for the case when the ion is in the bright state is shown.

Summing over all branches which yield a false measurement, the total bright state error
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Figure 7.5: Sequence for the π-detection technique. After the ion is cooled and subjected
to spectroscopy, the ion state is determined with a resonant detection pulse which is
followed by a radio-frequency π-pulse and a second detection pulse. All events that yield
the same result in both detection pulses are discarded (red circles).

probability reads

pBerr = p(ξ↓ ≤ σ) · α · p(ξ↑ > σ)+

p(ξ↓ ≤ σ) · (1− α) ·
(∫ τ

0

dtw(t)p(ξt > σ) +

∫ ∞

τ

dtw(t)p(ξ↑ > σ)

)

.
(7.9)

Here, the second term, for instance, covers the events where the ion is initially in the

bright state, but measured to be in the dark state due to wrong photon counts and then

transferred to the dark state. After that it decays during the second detection event into

the bright state, where it is also measured to be in the bright state. Thus, the whole

sequence yielded a detection of a dark ion, though it was initially bright.

In a similar way, the detection error for the dark state is determined. The corre-

sponding decision tree is shown in Fig. 7.7. Again, summing over all branches that yield

a measurement error, the total dark error probability reads

pDerr =

(∫ τ

0

dtw(t)p(ξt > σ)

)

·
[

α · p(ξ↓ ≤ σ) + (1− α) ·
(∫ τ

0

dtw(t)p(ξt ≤ σ)

+

∫ ∞

τ

dtw(t)p(ξ↑ ≤ σ)

)]

+

(∫ ∞

τ

dtw(t)p(ξ↑ > σ)

)

·
[

(1− α) · p(ξ↓ ≤ σ) + α ·
(∫ τ

0

dtw(t)p(ξt ≤ σ)

+

∫ ∞

τ

dtw(t)p(ξ↑ ≤ σ)

)]

.

(7.10)

In Fig. 7.8, the bright (dark) errors pBerr(p
D
err) are depicted in part (a) and (b) as a func-

tion of the detection time and the threshold. The (error) fidelity of the radio-frequency

pulse was assumed to be α = 2%. While the detection error becomes arbitrarily small
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Figure 7.6: Decision tree for the π-detection technique for the bright state (1). Apart
from detection errors resulting from a depumping of the dark state (0), an additional
spin-flip error α for the RF π-pulse is introduced. All measurements that yield twice the
same state, i.e. 00 or 11, are discarded (yellow boxes). A correct measurement (green
box) in this case are all paths which yield a 10, whereas a 01 is a detection error (red
boxes). In each step, circles represent the real state of the ion, whereas quadratic boxes
represent the detected state.

when the detection time approaches zero, it should be noted that this is in principle

true but not very helpful since it suffers from the fact that most of measurements are

discarded by the algorithm. In part (c), a figure of merit which equally assesses the used

statistics for both dark and bright is shown by plotting

pstat = p(ξ↓ > σ) · p(ξ↑ ≤ σ) . (7.11)

If the threshold is, for instance, set to a very high value with respect to the average

number of collected photons, i.e. σ ≫ ξ̄↑ and σ ≫ ξ̄↓, then the errors for the dark

state become negligible and almost no bright state will be detected. That means that,

while discarding all events that yield twice a dark state, the few remaining events where

an actual bright state was measured, have a very low error probability. However, this

situation is for practical reasons not desirable since the number of discarded events

increases tremendously. For that reason the squared average error
√

(pBerr)
2 + (pDerr)

2,

which is mainly governed by the dark state errors, has to be balanced with the number

of discarded events (see part (d)). Though half of the events are discarded, an average

error of ∼ 1% is expected, which improves the state detection efficiency by a factor of
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Figure 7.7: Decision tree for the π-detection technique for the dark state (0). Color
coding and description are the same as for the bright state shown in Fig. 7.6.

three compared to the distribution fit method.

7.5 Radio-Frequency Driven Rabi Flops

As an initial experiment radio-frequency driven Rabi oscillations between the |↑〉 and |↓〉
for a Doppler-cooled single ion were measured. The experimental sequence consists of

a Doppler cooling pulse, a radio-frequency pulse and a detection pulse. In Fig. 7.9, the

measured state population is shown as a function of the radio-frequency pulse length,

where the distribution detection method has been used to obtain the state of the ion.

The fit to a sinusoidal function ρ = a sin2(Ωt/2) yields a Rabi frequency of Ω = 2π ×
63.74(7) kHz and a contrast of 2a = 97.8±1.4%. It should be mentioned that almost unity

contrast with a single-frequency behaviour is observed here since the radio-frequency

transition is not affected by the motion of the Doppler-cooled ion. This is a consequence

of the negligible Lamb-Dicke parameter of η ∼ 10−7 for radio-frequency radiation with a

wavelength of ∼16 cm. In order to drive transitions which couple the motion of the ion

to the internal degrees of freedom (sideband transitions) much higher-field gradients are

required. This is only possible in different trap setups, where the field generating wires

are much closer to the ion. In a recent experiment, radio-frequency driven sideband

transition have been successfully implemented in a surface-electrode trap [86].
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Figure 7.8: π-detection errors. The expected detection errors of the dark (a) and bright
(b) state are shown as a function of the detection time and the chosen threshold. The
dash-dotted lines correspond to the average number of photons. Part (c) shows the used
combined statistics according to Eq. (7.11). The combined errors of bright and dark
states are shown in part (d) along with the 90% (red) and the 50% (blue) line of the
used statistics. While the error can be made arbitrarily small, the number of discarded
measurements approaches 100%, which is, of course, undesirable from a practical point
of view. The parameters for the scattering rates in this simulation were ξ↓/τ = 464 kHz
and ξ↑/τ = 16 kHz.

The simplicity of the radio-frequency induced Rabi flops makes them an ideal tool for

several parameter checks prior to any experimental run. A major step worth mentioning

is the following: The efficiency of the σ-repumper (see Fig. 8.3) along with its polarization

can be checked. The ion is first prepared in the |↑〉 state via a radio-frequency induced

spin-flip. Then the σ-repumper laser is applied. After that, the contrast of the radio-

frequency induced Rabi flops between the |↑〉 and the |↓〉 state is observed. A reduced

contrast is an indication that a part of the population is repumped to states other than

|↓〉.

In the next section, such Rabi flops are used to characterize the different detection

techniques and study their robustness.
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Figure 7.9: Rabi oscillation between the |↓〉 and the |↑〉 state driven by radio-frequency.
The probability of finding the ion in the |↑〉 is plotted as a function of the pulse length
of the radio-frequency. A sinusoidal fit yields a Rabi frequency of Ω = 2π×63.74(7) kHz
and a contrast of 97.8 ± 1.4%. The statistical errors of each measurement, which has
been repeated 3× 100 times, are on the order of 3% and omitted for clarity.

7.6 Comparison and Robustness of Detection Meth-

ods

In order to compare the three different detection methods, a radio-frequency driven

Rabi oscillation was measured as a function of radio-frequency pulse time whose result is

shown in Fig. 7.10. A fit to the function ρ = a cos2(Ωt/2) yields the following parameters

including their fitting errors for each individual method:

Method Rabi Frequency Ω/2/π (kHz) Contrast 2a (%) Est. Error (%)

Threshold 64.22± 0.23 91.6± 1.1 ∼6 − 7%

Distribution Fit 64.30± 0.23 98.7± 1.1 ∼2 − 3%

π-pulse 64.13± 0.21 96.0± 1.0 ∼3%

While all detection methods result in the same Rabi frequency within the fitting

errors, it is worth noting that no systematic deviations from the sinusoidal behaviour

are observed in the residuals for neither of the techniques3. The major difference between

the detection methods lies in the measured contrast. Here, the threshold technique is

affected the most due to the finite overlap of each photon distribution.

While the graphs (a,b,c) in Fig. 7.10 are generated with a threshold of σ = 1, the

dependence of the fitted contrast as a function of the chosen threshold is shown in

part (d). Clearly, the results of the threshold technique (blue diamonds) suffer from

an increased threshold since more and more events are assigned to the dark state. In

3That the detection methods behave like this, is not clear from the beginning. For instance, extending
the threshold technique from a point to an interval to discard all events in the overlapping region of the
histograms, results in asymmetries of the sinusoidal behavior since more events of one distribution are
discarded than of the other and a bias for one of the states is introduced.
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Figure 7.10: Comparison of detection methods. Radio-frequency driven Rabi oscilla-
tions are shown, which are analysed with (a) the threshold, (b) the π-pulse and (c) the
distribution fit technique with a chosen threshold of σ = 1. All three methods show no
significant deviation from the sinusoidal behavior, which is seen in the residuals below
each part. In part (d), the fitted contrast is plotted as a function of the threshold. While
the distribution fit method is independent of the threshold (black dashed line), the con-
trast resulting from the threshold technique various significantly (blue diamonds). The
π-detection technique (red circles) also yields a threshold-independent contrast at the
expense of the number of events which are taken into account (red dot-dashed line). The
error corresponds to the fitting error and increases with less used statistics accordingly.

contrast to that, the π-pulse detection technique (red circles) filters out wrong events

at higher thresholds while the contrast stays almost constant. The percentage of non-

discarded events is depicted as well (red dashed line) and follows the fitted contrast of

the threshold technique. This is explained by the fact that more events are assigned to

the dark state with a higher threshold, while the π-detection method filters out exactly

this fraction of events. At the same time, the fitting error increases due to the high

number of discarded events. Furthermore, as a reference comparison - independent of

the chosen threshold - the fitted contrast of the distribution fit method is plotted (black

dashed line).

It should be noted that the expected detection error with respect to the measured

contrast does not take any type of experimental imperfections such as power or frequency

fluctuations and e.g. resonance frequency mismatches into account. Thus the expected
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Figure 7.11: Robustness of detection methods. The result of the measured state de-
tection for all three techniques is depicted as a function of the detection beam power.
While both threshold and distribution fit technique suffer from power fluctuations and
over- or underestimate the state of the ion, the π-detection technique corrects for that
by discarding more statistics, as is shown in the insets. The parts vary in the chosen
thresholds: (a) σ = 0 (b) σ = 1 and (c) σ = 2.

error slightly underestimates the measured deviation from unity contrast.

Judging only by the absolute contrast, the distribution fit technique seems to be

the obvious method of choice. This conclusion is, however, misleading. This method

in particular relies on stable experimental parameters, since fluctuations e.g. in the de-

tection power, shift the observed photon distributions resulting in fitting errors. The

threshold technique suffers from the same issue, in case the bright and dark state pho-

ton distributions are not sufficiently separated. In contrast, the π-detection method is

more robust against fluctuations. In Fig. 7.11, the sensitivity to power fluctuations has

been characterized by measuring the ion state as a function of the detection power. The

analysis for different thresholds (σ = 0 in (a), σ = 1 in (b), σ = 2 in (c)) clearly shows

that the ion, which is initially in the ψ = 1√
2
(|↑〉+ |↓〉) state, is biased towards the dark

state |↑〉 by the threshold and distribution technique for lower detection powers. At the

same time, the π-pulse detection yields an almost constant value for the state population

over the full power range, since it is not affected by shifts in the photon distributions.
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Instead more events are discarded with lower detection powers, as can be seen in the

insets. Thus, from a robustness point of view, the π-detection clearly outweighs both

other techniques.

7.7 Coherence Time Measurements

Every measurement sequence is subject to various types of fluctuations among which

there are magnetic field noise and background gas collisions. These contribute to internal

state decoherence. The corresponding timescale is called coherence time Tcoh
4 and can

be measured using Ramsey experiments [132, 133].

In the applied Ramsey sequence, the ion is first brought into a superposition of the

|↓〉 and the |↑〉 state by a resonant π/2 radio-frequency pulse. It is followed by a waiting

time τ where the system evolves freely. A second π/2-pulse with phase φ0 (relative to

the first pulse) flips the spin from the |↓〉 to the |↑〉 state. In the presence of fluctuations,

the frequency of the second radio-frequency pulse is detuned by δ from the resonance

which introduces an additional phase evolution. For a single experiment, the probability

to measure the ion in the |↑〉 state is given by

ρ↑ =
1

2
+

1

2
cos(φ0 + δ · τ) . (7.12)

Assuming symmetric fluctuations P (δ) in the detuning δ, an average over many experi-

ments decreases the measured contrast as a function of the waiting time τ as follows

〈ρ↑〉 =
1

2
+

1

4

∫ ∞

−∞
dδP (δ)

(
eiφ0+iδ·τ + e−iφ0−iδ·τ)

=
1

2
+

1

2
cos(φ0)

∫ ∞

−∞
dδP (δ) cos(δ · τ) .

(7.13)

Assuming a Gaussian distribution for the fluctuations P (δ) = 1
σ
√
2π
e−δ2/2σ2

, the contrast

reads

〈ρ↑〉 =
1

2
+

1

2
cos(φ0)e

−σ2τ2/2 . (7.14)

The FWHM of these type of fluctuations is given by ∆ω =
√

16 ln(2)σ and the coherence

time is defined as the time where the contrast decreases to 1/e, namely Tcoh =
√
2/σ.

The result of the Ramsey experiment is shown in Fig. 7.12. One major source of

fluctuations results from 50Hz magnetic field noise5. The blue curve corresponds to a

4This quantity is often called T2 in nuclear-magnetic resonance experiments.
5For a full investigation of the decoherence effects, the complete Fourier spectrum of the fluctuations

needs to be studied. High-frequency magnetic fields can e.g. result from the oscillating currents in the
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free-running experiment executed at different phases with respect to the line phase each

time the experiment is run. The red curve shows the improvement in coherence time

when the experiment is synchronized to the AC-line (line-triggered). The measurement

was taken at different phases of the AC-line and averaged over. At each phase the fre-

quency was adjusted to resonance. In the following table, the fitting results and the

corresponding frequency and magnetic field fluctuations for a 25Mg+ ion are listed:

line-triggered Tcoh (µs) ∆ω (kHz) ∆B (µT)

no 385(22) 2π × 1.38(0.08) 0.059(0.003)

yes 1202(114) 2π × 0.44(0.04) 0.019(0.002)
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Figure 7.12: Coherence time measurement. The average contrast of multiple Ramsey
experiments as a function of the waiting time τ is shown. Each experiment is comprised
of two π/2 pulses with a relative phase of φ0 = 0. An improvement of the coherence time
is observed if the experiment is synchronized to the AC-line (red diamonds). Assuming
a Gaussian distribution for the fluctuations, a coherence time of ∼ 1200µs is fitted (blue
circles). Without line triggering only ∼ 385µs are observed. The representative error in
the graph corresponds to the standard deviation of the measurements.

Though the measured coherence time of ∼ 1ms is sufficient for our experiments,

it should be noted that sequences extended over several ms are subject to systematic

frequency shifts due to the magnetic field oscillations. If one was to further increase the

coherence time for future experiments, spin-echo techniques can be employed [134] or an

blades of the trap. Since such effects are negligible for the experiments presented here, the reader is
referred to [65] for a detailed analysis.
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active or passive field-stabilization including a µ-metal shielding can be incorporated. In

general, the result is in good agreement with values observed in a similar type of trap in

the group of R. Blatt. They measured a coherence time for a single 40Ca+ ion without

any further active stabilization of Tcoh = 940(50)µs [135].
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Chapter 8

Experimental Results

Since the proposed photon-recoil spectroscopy relies on the detection of an increase in

the motional quantum number of the ion after the spectroscopy probe laser has been

applied, the best signal-to-noise ratio is achieved if the ion crystal is initially in the

motional ground state of the trap. In this chapter, the cooling scheme of the motional

states of the ion in the Paul trap is discussed and the results are presented. This is the

first and basic step for the implementation of the recoil spectroscopy.

In the first part, the theoretically expected cooling limits, given by the available

experimental parameters, are discussed for Doppler cooling as well as for a pulsed ground

state cooling approach. After that, the main experimental results are presented and

the achieved cooling performance and experimental limitations are investigated. It is

worthwhile mentioning that all experiments in this chapter have been performed with

only a single laser system (see Chapter 5). This rather economic approach has promising

applications in other experiments that employ similar cooling schemes. The results of

the scheme have been published in reference [136].

In the last part of this chapter, the ground state cooling scheme is employed to

investigate heating rates of the ion. This is of relevance for the comb spectroscopy

sequence, which will be implemented in the near future, since it imposes an experimental

limitation on the spectroscopy pulse lengths and, thus, needs to be considered for the

design of the exact spectroscopy protocol.

8.1 Limit for Laser Cooling of Trapped Ions

In this section, the limits of two common cooling methods are discussed: Doppler cooling

[137] in the weak binding regime and resolved-sideband cooling [138] in the strong binding

regime, where the narrow transition linewidth allows to spectroscopically resolve the

motional sidebands, i.e. Γ ≪ ωT. While Doppler cooling usually acts as a pre-cooling
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stage, the absolute ground state of the harmonic oscillator is reached in the second stage

by applying sideband cooling. The discussion on Doppler cooling is restricted to a free

particle, since the results correspond to the case of a particle confined in a harmonic

trap with Γ ≫ ωT. The interested reader is referred to reviews [63, 137, 139, 140, 141]

for details and comparisons between the case of a confined and a free particle.

8.1.1 Doppler Cooling

Consider a two-level atom that interacts with a traveling electro-magnetic plane-wave.

The polarization of the wave is given by the unit vector ǫ̂ and its wave vector by ~k = kk̂.

In the non-relativistic limit of a particle of mass m at velocity ~v, the change in energy

to absorb and emit a photon is given by

∆E =
1

2
m
(
~v′2 − ~v2

)
. (8.1)

The primed variables designate the corresponding properties after the scattering process.

The emission of the photon goes into a random direction. Using momentum conservation,

the energy change in each dimension (α = x, y, z) is rewritten as

∆Eα =
1

2
m (~v′α − ~vα) (~v

′
α − ~vα + 2~vα)

=
~

2

(

~kα − ~k′α

)(
~

m

(

~kα − ~k′α

)

+ 2~vα

)

=
~
2

2m

(

~kα − ~k′α

)2

+ ~

(

~kα − ~k′α

)

· ~vα

≈ ~
2k2

2m

(

k̂2α − 2k̂αk̂′α + k̂′2α

)

+ ~

(

~kα − ~k′α

)

· ~vα ,

(8.2)

where |~k| ≈ |~k′| ≈ k is assumed in the last line.

After absorption, the photons are randomly emitted. The emission distribution de-

pends on the particular transition. The random processes are taken into account by

averaging over the complete solid angle for the scattered photons:

〈∆Eα〉Ω =

∫

dΩP (k̂′)∆Eα =

∫ 2π

0

dφ

∫ π

0

dθ sin θP (k̂′)∆Eα , (8.3)

where P (k̂′) defines the emission pattern. It is determined by the normalized dipole

operator and the polarization vector ǫ̂1,2 as follows:

P (k̂′)dΩ =
3

8π

(

|d̂ · ǫ̂1(k̂′)|2 + |d̂ · ǫ̂2(k̂′)|2
)

dΩ . (8.4)
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The pre-factor 3/8π is a result of normalization
∫
dΩP (k̂′) = 1. Since the emission

process is not restricted to a certain polarization, the sum contains two perpendicular

polarization vectors, where ǫ̂1 · ǫ̂∗2 = 1 and k̂′ · ǫ̂1,2 = 0.

It follows for the energy change per scattering event

〈∆Eα〉Ω =
~
2k2

2m

(

k̂2α + fα

)

+ ~~kα~vα ;

fα =

∫

dΩP (k̂′)k̂′2α .
(8.5)

All terms linear in k̂′ vanish due to the symmetry of the emission pattern P (k̂) = P (−k̂).
Particular patterns are discussed in detail in Appendix B.

The cooling rate, which is equivalent to the energy change per time unit, is given by

the product of the photon scattering rate Γ/2 and the change in energy per scattering

event as follows

dEα

dt
= Γ · Γ2s0/2

Γ2(1 + s0) + 4(ω0 − ωL + ~k~v)2
· 〈∆Eα〉Ω , (8.6)

where s0 = I/Isat represents the saturation parameter, I the laser intensity and Isat =

πhcΓ/3λ3 the saturation intensity, which depends on the wavelength λ of the particular

transition.

Assuming that significant cooling has already occurred, the scattering probability

can be expanded in the weak binding regime in terms of small velocities ~k~v ≪ ω0 − ωL

and ~k~v ≪ Γ and averaged over all velocity components, designated by 〈·〉v. A symmetric

velocity distribution is assumed, canceling all terms linear in ~v. The steady-state is

reached when the energy change equals zero, i.e.

d〈Eα〉v
dt

= 0 , (8.7)

with the steady-state energy

〈Eα,∞〉v =
1

2
m〈v2α〉v = ~(1 + fα)

Γ2(1 + s0) + 4(ω0 − ωL)
2

32(ω0 − ωL)
. (8.8)

This energy is minimized by appropriately choosing the laser detuning, so that

ω0 − ωL =
Γ

2

√
1 + s0 . (8.9)

The final energy is often expressed in units of temperature as

〈Eα,∞〉v =
1

2
kBTD → TD =

~Γ

4kB
(1 + fα)

√
1 + s0 . (8.10)
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This quantity is referred to as Doppler temperature in the literature. It represents the

lowest achievable temperature with Doppler cooling. After the application of Doppler

cooling to the ion, the motional states in the harmonic trap are distributed according

to a thermal state distribution [142]. In Fig. 2.3, an example of such a distribution is

shown for typical parameters in our experiments. Though a 25Mg+ ion can be cooled

with this method to a low temperature of ∼ 1mK, a number of higher motional states

are populated at this temperature. Since the discussed photon-recoil spectroscopy ex-

periments depend on the fact that the ion is initially in the absolute motional ground

state, a more sophisticated method, i.e. resolved-sideband cooling, must to be employed.

In the following section, the theoretical limit of sideband cooling is discussed in more

detail.

8.1.2 Pulsed Sideband Cooling

Similarly to the case of Doppler cooling, we consider a two-level system in a harmonic

trap. Here, the excited state is assumed to have a long life time. In the regime where

both the laser linewidth and the decay rate of the upper state are much smaller than

the trap frequency Γ ≪ ωT, sometimes referred to as strong binding regime, resolved-

sideband cooling is applicable [138]. In contrast to the case of Doppler cooling, the

motional sideband transitions are spectroscopically resolved.

The principle of the cooling process is as follows: in a first step, a red sideband tran-

sition is coherently driven, coupling both electronic states and decreasing the motional

quantum number of the ion. This step is followed by an (irreversible) spontaneous emis-

sion which takes entropy out of the system. Since the upper state is assumed to be a

long-lived ground state, the emission process needs to be accelerated by resonant cou-

pling of the excited state to an auxiliary state with high decay rate (repumping process).

Ideally, neither the laser used for repumping nor the red sideband couple directly to the

absolute ground state (|↓, n = 0〉). Hence, the cooling process transfers and leaves the

ion in the ground state. However, this ideal situation is compromised by off-resonant

coupling of the laser fields and leads to a limitation on the lowest achievable ground state

occupation.

In our experiment, sideband cooling is achieved by coupling the two hyperfine ground

states (|↑〉 and |↓〉) of a harmonically confined 25Mg+ ion with a Raman transition. In

the following, the lowest obtainable energy with this configuration is derived in a rate

equation approach, where coherences are neglected. It is furthermore assumed that pre-

cooling has already taken place, so that the Lamb-Dicke criterion applies, i.e. only terms

lower or equal to second order in η2 are considered. In this case, it is sufficient to only take

the lowest two trap levels into account. For a detailed discussion on cooling processes of
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ions or atoms outside the Lamb-Dicke regime the reader is referred to [143, 144]. In the

discussion presented here, the focus is on the limitations of the sideband cooling given

by the lowest obtainable energy.

Consider a four-level system, as depicted in Fig. 8.1, with the following parameter

definitions: Ωeff and Γeff are the Rabi frequency and decay rate of the |↓, n = 1〉 →
|↑, n = 0〉 Raman transition; Γre is the decay rate of the (repumping) coupling to an

auxiliary state. sre = I/Isat corresponds to the saturation parameter of the repumper; η

and η̃ are the Lamb-Dicke parameters for absorption and emission, respectively. These

are different since the emission process takes place in the full solid angle; ∆HF = 2π ×
1789MHz corresponds to the hyperfine splitting of the ground state in 25Mg+.

n=0 1

(a)

|­ñ

|¯ñ

n=0 1

(b)

|­ñ

|¯ñ

n=0 1

(c)

|­ñ

|¯ñ
n=0 1

(d)

|¯ñ

|­ñ

Figure 8.1: Heating and cooling processes in the pulsed sideband cooling scheme. (a) A
red sideband cooling pulse transfers the population to the upper state while decreasing
the vibrational quantum number by one. The ground state is a dark state for the red
sideband. (b) Off-resonant excitation processes of the red sideband pulse on carrier and
blue sideband. (c) Resonant repumping process with different decay channels. (d) Off-
resonant coupling of the repumping pulse to the absolute ground state which leads to
heating.

For typical experimental parameters, the quantities are related as

Ωeff ∼ Γeff
︸ ︷︷ ︸

<50kHz

≪ ωT
︸︷︷︸

∼2MHz

≪ Γre
︸︷︷︸

∼40 MHz

≪ ∆HF . (8.11)

In order to set up rate equations, the heating and cooling process rates need to be
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considered. In a pulsed strategy1, the time evolution can be split into two separate steps:

First, the coherent red sideband excitation and then the resonant repumping stage. As

shown in Fig. 8.1, the considered effects to second order in η are:

• Cooling Process: The excitation pulse on the red sideband transfers all population

from the |↓, n = 1〉 state to the |↑, n = 0〉 state. It is assumed that the only mo-

mentum transfer is given by the two-photon Raman process and that the π-time

of the transition is exactly adjusted.

• Heating Processes:

– The red sideband pulse excites a carrier transition off-resonantly and the ion

decays on a sideband again, thus increasing the motional quantum number

by one. This process is shown in Fig. 8.1 (b). The rate at which this process

happens is given by

h1 =

(
Ω2

eff

2Ω2
eff + Γ2

eff + 4ω2
T

)

· η̃2Γeff ≈
(
Ωeff

2ωT

)2

· η̃2Γeff . (8.12)

– The red sideband pulse excites the first blue sideband transition off-resonantly

and the ion decays on the carrier. This process is also shown in Fig. 8.1 (b).

It occurs with a rate

h2 =

(
ηΩeff

4ωT

)2

· Γeff(1− 3η̃2) =

(
ηΩeff

4ωT

)2

· Γeff +O(η4) . (8.13)

– The repumper couples resonantly to the |↑〉 state (part (c) in Fig. 8.1) and

the ion decays on the first sideband or the carrier with the rate

h3 =

(
sre/2

1 + sre

)

Γreη̃
2 ,

h4 =

(
sre/2

1 + sre

)

Γre

(
1− η̃2

)
+O(η̃4) .

(8.14)

– The repumper couples off-resonantly to the ground state and decays on the

first sideband or it couples to the first sideband and decays on the carrier

1A similar treatment of continuous-wave sideband cooling is found in [64, 70].
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(part (d) in Fig. 8.1). These processes occur with the rate

h5 =






sre/2

1 + sre +
(

2∆HF

Γre(1−η̃2/2)2

)2




 η̃2Γre =

η̃2Γ3
resre

8∆2
HF

+O(η4) ,

h6 =






sre
2η̃2

1 + sre
η̃2

+
(

2∆HF

Γreη̃2

)2




Γre(1− 3η̃2/2)2 =

η̃2Γ3
resre

8∆2
HF

+O(η4) .

(8.15)

Comparing the magnitudes of the different scattering rates (h2 ∼ 1Hz ≪ h5 ∼ 2 kHz), it

is clear that the repumping pulses dominate the dynamics limiting the lowest achievable

average population. Thus, the off-resonant sideband excitations are neglected and the

rate equations take the following form:

ρ̇0 = −(h5 + h6)ρ0 − h4ρaux ;

ρ̇1 = (h5 + h6)ρ0 + h3ρaux ;

ρ̇aux = −(h3 + h4)ρ̇aux ;

ρ0 + ρ1 + ρaux = 1 ,

(8.16)

where ρ0,1 := |↓, n = 0, 1〉 correspond to the population in the n = 0, 1 harmonic oscillator

states, respectively, and ρaux corresponds to an auxiliary upper state (see also Fig. 8.1).

These equations are trivially solved using a symbolic algebraic software, such as the

open-source program Maxima [95].

In order to completely simulate the described sideband cooling process, an iterative

procedure is followed. Starting with the ion in the ρ
(0)
1 = |↓, n = 1〉 state and applying a

consecutive sideband and repumping pulses, the analytical steady-state solution reads

ρ
(k+1)
1 − ρ

(k)
1 ≈ 0 −→ ρ

(∞)
1 ≈ tsreΓ

3
reη̃

2

4∆2
HF

+O(η4) . (8.17)

Here, it is assumed that the repumping time t is long enough to completely empty the

auxiliary state in each step. For shorter times, a numerical approach is taken includ-

ing insufficient repumping. The average motional quantum number corresponds to the

steady-state population in the first vibrational state, since

〈n〉∞ := n̄ =
∑

nρn = ρ1 ≈ ρ
(∞)
1 . (8.18)

In Fig. 8.2 the average motional quantum number is shown as a function of the repumping

time t. The minimum population of 〈n〉∞ ∼ 5 × 10−5 is reached for a repumping time

of ∼ 4.7 ns. At shorter times, the repumping pulse does no longer efficiently empty the
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Figure 8.2: Limit on the achievable average population for pulsed sideband cooling.
The theoretically expected average vibrational population is shown as a function of the
repumping pulse time (solid blue line). The parameters for the plot were η̃ = 0.28; sre =
1; Γre = 2π × 41.3MHz and ∆HF = 2π × 1789MHz. When the repumping time is large
compared to the decay rate, a linear analytical solution approximates the solution (black
dashed line). For shorter times, the repumping becomes inefficient since the |↑〉 state is
not completely emptied after each pulse. Repumping times which are typically employed
in our experiment are indicated in red.

upper state, so that the following sideband pulse transfers the population back to the

|↓〉|n = 1〉 state. However, these repumping times are not applicable in our experiment.

Nevertheless, it is worth mentioning that theoretically the pulsed strategy for sideband

cooling is comparable to the expectations for a continuous approach (see [70]).

A further limitation, not included in this simple model, originates from micromotion

in the Paul trap. A detailed discussion including this effect is found in [68].

In the following section, the performance of resolved-sideband cooling is studied for

a single 25Mg+ ion using the presented laser system and the main experimental results

are presented.

8.2 Measurement Principle and Doppler Cooling

In the following sections, the basic elements of the experimental sequence to achieve

ground state cooling of a single 25Mg+ ion are discussed. This represents the first step

towards performing photon-recoil spectroscopy in the ion trap.

All measurements presented here follow a similar protocol: The ion is subject to
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Doppler cooling for <1ms, then Raman-stimulated sideband cooling followed by a Ra-

man spectroscopy pulse and after that a detection pulse of ∼10 − 15µs which projects

the ion into one of the |↑〉 or |↓〉 state. This procedure is repeated several hundred times

at each point of the scanned parameter of interest to obtain sufficient statistics. The

result of each measurement is the ratio between the number of times the ion was found

in the |↑〉 state compared to |↓〉 state occurrences. For all measurements the distribution

fitting technique has been used for quantum state detection (see Section 7).

As shown in Fig. 8.3, during the Doppler cooling step, two lasers cool the ion and

prepare its initial state: the DC beam and the resonant σ-Raman beam (σ-repumper).

The laser is tuned in such a way that both beams have one sideband resonant to the P3/2

level, if the EOM is switched on. While the DC beam optically pumps the population into

the extremal magnetic sub-state, the repumper guarantees that no population remains

in the S1/2 F=2 manifold.

It should be noted that the interdependent AOM configuration used in the experiment

does not allow for switching off the π-Raman beam when the σ-Raman beam and the

Doppler cooling beam is in use. If the σ-Raman beam was made resonant via the EOM,

the π-Raman beam would simultaneously be resonant as well. Hence, the combination

of Doppler cooler and repumper laser requires a pulsed operation mode, as shown in

Fig. 8.3. In the experiment, no particular disadvantage has been observed for this way

of Doppler cooling.

Prior to all measurements, the magnetic field alignment is adjusted by optimizing

the σ-polarization of the Doppler cooling beam and the repumper. Furthermore, the

Doppler cooling beam is detuned by half the linewidth to the slope of the transition and

its power is calibrated to the saturation intensity s0 ∼ 1 for optimal performance. For

the state detection pulse, the Doppler cooling beam has been tuned to the resonance to

increase the number of detected photons.

It is worthwhile mentioning that all measurements presented here have been per-

formed using a laser which is blue-detuned with respect to the P3/2 level. The main

reason for this configuration was the fact that the LBO cavities could not be stabilized

due to resonances in the transmission spectrum that lead to strong asymmetries in the

error signal possibly originating from molecular resonances in air. After covering the

whole laser setup and preventing air flow, these resonances were significantly suppressed

and locking the laser in a red-detuned way was possible. Since the latter configuration

has lead to a much stabler ion crystal if more than a single ion has been loaded, it

has been kept henceforth. In particular, in the case of simultaneously loading different

species, much longer lifetimes were observed with the red-detuned configuration.
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Figure 8.3: Cooling and manipulation of 25Mg+. (a) Laser beams used for resonant
Doppler cooling (DC + repumper) and Raman stimulated coherent manipulation (σ and
π) are shown. While the laser is tuned 9.2GHz off-resonant to the P3/2 level, one of the
sidebands of the EOM is resonant. Additionally shown is the coherent manipulation
via radio-frequency radiation. (b) The Doppler cooling sequence for 25Mg+ consists of
a Doppler cooling pulse followed by a repumping pulse to repump any population from
the S1/2 F=2 manifold. The sequence is typically repeated up to three times yielding a
total Doppler cooling length of ∼1ms.

8.3 Ground State Cooling of a Single Magnesium

Ion

The initial step of the cooling process, namely Doppler cooling, prepares the ions motion

in a thermal state [142]. At optimum laser parameters for the Doppler cooling beam,

i.e. saturation intensity and a detuning of Γ/2, the motional degrees of freedom are

ideally at the Doppler cooling temperature of 1mK (see Eq. (8.10)). In addition to that,

the Doppler cooling beam, including the σ-repumper, optically pumps the ion to the |↓〉.
Thus, the expected population distribution is given by

ρ = |↓〉 ⊗
∞∑

n=0

pn |n〉 , (8.19)

where pn follows the Bose-Einstein distribution

pn =
(
1− e−~ωz/kBT

)
e−n~ωz/kBT . (8.20)

This distribution is depicted in Fig. 2.3 at the Doppler cooling limit for a single 25Mg+

ion in a 1D-confinement with a trapping frequency ωT = 2π× 2MHz and a Lamb-Dicke
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parameter η = 0.28. In this case, the average population number is approximately

n̄ ∼ 10 with the given trap frequency. In order to reduce n̄ further and cool the ion to

the absolute ground state, resolved-sideband cooling is employed to the axial motional

degree of freedom. While the radial degrees of freedom stay in a thermal state at the

Doppler cooling temperature, the axial mode is in a Fock state after the cooling process.

In order to cool all degrees of freedom, additional Raman beams addressing the other

two directions are required.

An overview of the sideband cooling sequence is shown in Fig. 8.4. After Doppler

cooling, a red sideband is driven by adjusting the Raman lasers resonant to the red

sideband transition frequency and irradiating the ion for a time tn. The pulse length

tn is adjusted to match the π-time for a red sideband transition of the nth trap level.

This pulse transfers the population from the |↓〉|n〉 state into the |↑〉|n− 1〉 state. After
that, the ion is reinitialized into the |↓〉|n − 1〉 by applying a short (∼ 10µs) resonant

σ-Raman repumping pulse. This is achieved by simultaneously switching on the EOM

during the excitation. However, due to a finite branching ratio between the excited

P3/2 |3, 3〉 and the S1/2 |3, 2〉 states, a second repumping step is required. It is achieved

by transferring the complete population from S1/2 |3, 2〉 to |↑〉 by a radio-frequency π-

pulse (RFRe in Fig. 8.3), followed by another optical σ-repumping pulse. Typically 2 to 3

repetitions guarantee the reinitialization to the |↓〉|n− 1〉 state. It should be noted that

higher-order and off-resonant processes lead to population in the |↓〉|n± 1, 2, . . .〉 states.
This effectively imposes a lower limit on the achievable average population number (see

Section 8.1.2).

Both, first and second order sideband pulses are used in the cooling sequence. The

2nd order sideband pulses are introduced to optimize the population transfer of the states

beyond the zero-crossing of the Rabi frequency of the 1st order sideband. Furthermore,

this method decreases the total time of the cooling sequence by ∼ 20% due to the higher

Rabi frequencies of the 2nd order red sideband at higher trap levels (see Fig. 2.3).

The whole ground state cooling sequence comprises of two major steps: First, typ-

ically 25× 2nd order red sideband pulses are applied, starting at a high trap level of

n ∼ 40 down to n ∼ 15. The pulse times tn are adjusted correspondingly for each

sideband pulse to act as individual π-pulses. When the point of n ∼ 15 is reached, the

remaining steps are covered by 1st order red sideband pulses. Since the trap state at

n = 0 is a dark state for the sidebands and not affected by the repumping steps, the ion

is cooled to the ground state and remains there.

Each part of the sequence is repeated several times to improve the cooling perfor-

mance. The total length of the sequence depends on the corresponding overall Rabi

frequency which is determined by the laser power and is typically on the order of 10 –

15ms, including all repetitions. The intermediate σ- and RF-repumping steps are each
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on the order of 10µs.

It is worth mentioning that the AOMs are left switched on between experimental

repetitions to reduce thermal effects.
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Figure 8.4: Experimental sideband cooling sequence. The complete sequence to imple-
ment and investigate ground state cooling of a single 25Mg+ is shown. The four major
steps are: Doppler cooling, sideband cooling, Raman spectroscopy and state detection.
Not shown are auxiliary pulses for intensity stabilization. In the upper line, the EOM
switching times are shown. They correspond to the times when resonant transitions are
driven.

8.3.1 Sideband Cooling Results

The performance of the sideband cooling scheme is analysed by means of Raman spec-

troscopy. In Fig. 8.5, the result of a frequency scan over the carrier, the red and blue

sideband is shown for a (a) Doppler-cooled and a respective (b) sideband-cooled ion.

The first major difference is the missing excitation on the red sideband after sideband

cooling. This is due to the fact that the ground state is a dark state for the red sideband.

Secondly, the excitation of the carrier and the 1st blue sideband increase compared to

the case of a Doppler-cooled ion. This is best understood in the scope of Rabi oscillations

of the different transitions.

In the case of a Doppler-cooled ion, many different motional trap levels are populated,

ideally following a thermal state distribution as described. Driving a Raman transition

between the |↓〉 |n〉 and the |↑〉 |n′〉 states, will excite all different trap levels at the

same time since the transitions are degenerate in frequency. Consequently, an overlap of

many Rabi oscillations is expected. Since the Rabi frequencies of the different types of

transitions, i.e. carrier and sideband transitions, depend on the trap level, the π-times for

each level are different (see Fig. 2.3). This reflects itself in an average of many sinusoidals

with different frequencies in the population of the |↓〉 and the |↑〉 states and results in

a reduced amplitude. In contrast to that, a ground state cooled ion resides in a Fock
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state. Thus, only a single-frequency oscillation with full amplitude is expected there.

Furthermore, while the red sideband is a dark state for a ground state cooled ion, the

blue sideband and the carrier differ in their Rabi frequencies by a factor of the Lamb-

Dicke parameter η (see Eq. (2.27)). This comparison can be used to experimentally

determine the Lamb-Dicke parameter.
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Figure 8.5: Sideband spectroscopy of a single 25Mg+ ion. (a) Frequency scans over the
carrier transition (CAR) and the 1st red and blue sideband (RSB and BSB) for a Doppler-
cooled ion are shown. The frequencies are shifted for clarity. In the corresponding scans
for a sideband-cooled ion (b), the almost unity excitation on the carrier and the blue
sideband and the missing excitation on the red sideband clearly indicates a high ground
state occupation. Each point corresponds to 3 × 100 measurements and the average
fitting error is on the order of 3%, omitted for clarity. The solid lines correspond to
Gaussian fits. The excitation pulse has a length of 25µs in (a) and 45µs in (b) for the
sidebands, respectively, and 14µs in (a) and 25µs in (b) for the carrier.

In Fig. 8.6, Raman-driven Rabi oscillations on the carrier and the sideband transitions

for a Doppler- and a sideband-cooled single 25Mg+ ion are shown. While the excitation

on the red sideband almost vanishes as expected, the oscillation on the blue sideband

becomes more single-frequency like. This effect is even stronger when it comes to the

carrier transition. Here, the Doppler-cooled ion shows no oscillation at all since an

average over many sinusoidals with different Rabi frequencies is given. In contrast to

that, as described, the ion is approximately in the Fock state |↓〉 |0〉 after sideband cooling

and the carrier, as well as the blue sideband transition, exhibit a clear single-frequency

behavior.

In order to quantify the performance of the sideband cooling processes, the tem-

perature defined by the motional state distribution in the harmonic trap needs to be

determined. There are several methods to infer this temperature from properties easily
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accessible in the setup. An overview of these methods can be found in [63]. Here, a

comparison of the red and the blue sideband excitation is employed to determine the

temperature.

Assuming that the motional state of the ion is given by a thermal distribution, the

ratio of the excitation probabilities on the rth order red and blue sidebands is given by

[145]

Q :=
ρrsbr (t)

ρbsbr (t)
=

(
n̄

1 + n̄

)r

. (8.21)

Re-arranging terms yields a simple formula for the average population number

n̄ =
Q1/r

1−Q1/r
. (8.22)

This way, the temperature of the ion is determined as

kBT = ~ωT
1

log (1 + 1/n̄)
, (8.23)

where ωT is the harmonic trapping frequency. A more detailed calculation is given in

Appendix C.

It should be noted that the ratio in Eq. (8.21) is time-independent. This is a result of

the assumed thermal population distribution. In other situations, where the population

follows e.g. a Gaussian distribution, Eq. (8.21) is no longer applicable.

Comparing in total nine individual measurements at the maximum of the first side-

band oscillation yields n̄ = 0.03 ± 0.01 as an upper limit for the average vibrational

population number. The measured value corresponds to a population in ∼ 97% of the

harmonic oscillator ground state and a temperature of T = 30µK. Given the repumping

time of ∼ 10µs used in the sequence, this is in excellent agreement with the expected

achievable values from Section 8.1.2.

In addition to the analysis of the vibrational population in the ground state, the

theoretically expected Rabi oscillations for the red and blue sideband transitions are

plotted for the Doppler-cooled ion in Fig. 8.6 in form of a weighted sum over sinusoidal

functions with Rabi frequencies corresponding to a thermal state with n̄ = 16 ± 5.

Within this range, the curves resemble the observed behavior reasonably well. The

result indicates that the ion is cooled closely to the expected Doppler cooling limit of

n̄ ∼ 10.

In a similar approach, where acousto-optic modulators instead of an electro-optic

modulator were used to bridge the frequency splitting between the two hyperfine ground

states, an average population of n̄ = 0.34±0.08 was achieved [146]. Among other issues,
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Figure 8.6: Rabi oscillations of a single 25Mg+ ion. Rabi oscillations of a single Doppler-
cooled (DC) and sideband-cooled (SBC) 25Mg+ ion on the (a) blue sideband, (b) red
sideband and (c) the carrier transition are shown. Each point corresponds to 3 × 100
measurements and the average error of 3% is omitted for clarity. The measurements were
taken at a trap frequency of ωz ∼ 2.2MHz. The fit of the sideband-cooled data of the
carrier and blue sideband with an exponentially decaying sinusoidal yields a Lamb-Dicke
parameter of η = 0.282 ± 0.004. The solid curves surrounded by the gray area for the
Doppler-cooled ion are no fits, instead they correspond to a weighted sum over sinusoidal
functions with Rabi frequencies corresponding to a thermal state of n̄ = 16 ± 5, which
resembles the measured behavior reasonably well.

off-resonant incoherent photon scattering due to a small detuning of the Raman laser

beams of 900MHz from the excited state imposed a lower limit on the lowest achievable

n̄ [147]. However, in our case, this effect is reduced due to the higher EOM detuning,

but imparts a loss of contrast in the observed Rabi oscillations. This is discussed in more

detail in the next section.

8.3.2 Off-Resonant Depumping

The observed decay in the oscillations in Fig. 8.6 for a ground state cooled ion can be

caused by at least three different reasons: i) remaining population in upper trap levels

(n > 0) results in a dephasing; ii) residual fluctuations in the laser intensity and the

magnetic field leads to frequency shifts and readout errors; iii) loss of contrast due to

off-resonant scattering events of the Raman laser beams [126, 147, 148].

Due to the finite detuning of 9.2GHz of both Raman laser beams from the P3/2 state,

an unavoidable amount of scattering events occurs during each spectroscopy pulse. These

events lead to depumping of the internal states as shown in Fig. 8.7. To demonstrate



114 8.3 Ground State Cooling of a Single Magnesium Ion

this effect, the ion is first initialized in the |↓〉 state and a Raman pulse, which is detuned

from the carrier transition by half the trap level spacing, irradiates the ion. The blue

circles depict the state population as a function of the Raman pulse length. Assuming

a linear decay, the fit yields a depumping to other states by γ1 ∼ 0.02± 0.01%/µs. The

red circles depict the same experiment with the difference that the ion has been initially

prepared in the |↑〉 state. Here, a stronger decoherence is observed and a linear fit yields

a rate of γ2 ∼ 0.06± 0.01%/µs.

Taking both rates into account by correcting the population excitation in Fig. 8.6

according to

ρ′↓ = ρ↓ + (γ1t) ρ↓ − (γ2t) (1− ρ↓) (8.24)

and performing the same analysis, yields an average population number of n̄ = 0.02 ±
0.01.
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Figure 8.7: Off-resonant excitation by the Raman Lasers. The measured state popula-
tion is plotted as a function of excitation pulse length. The Raman beams are detuned
by half the trap frequency. The off-resonant excitation differs between the initial states:
the bright state is de-excited with a fitted rate γ1 ∼ 0.02± 0.01%/µs, whereas the dark
state experiences a rate γ2 ∼ 0.06± 0.01%/µs.

It is worth mentioning that the amount of off-resonant excitation in the experiment re-

stricts the implementation of sequences that require high-fidelity operations, as e.g. gate

operations. A change of the EOM resonance frequency to higher values as well as the

use of the second order sideband instead of the first with a laser detuned by 18.4GHz

with respect to the P3/2 level, would be one way to overcome this limitation. However,

since high-fidelity operations are not required in the proposed spectroscopy experiments

here, this issue is not further discussed.



115

8.3.3 Heating Rates

The fact that the temperature of the ion is accessible by comparing the excitation on the

blue and the red sidebands can be used to study heating rates of the trap setup. These

are of relevance to the design of the photon-recoil spectroscopy scheme since the heating

rates introduce a background which reduces the expected signal to noise ratio.

After the ion is cooled to the absolute ground state of the harmonic confinement all

cooling and spectroscopy lasers are switched off for a certain time. During this time, the

ion is subject to environmental fluctuations and it experiences an excitation to higher

motional states. Measuring the average vibrational population number as a function

of the waiting time yields the desired heating rate. In Fig. 8.8, such a measurement is

shown and heating rates for different axial trap frequencies. For the measurement, the

micromotion of the ion was compensated in all three directions by re-directing one of

the Raman beams and performing resolved sideband spectroscopy to compensate for the

micromotion in all directions. It should be noted that the rather large error bars are a

result of laser intensity and pointing fluctuations since no stabilization scheme can be

employed during the waiting.

Unfortunately, the observed heating rates of ∼ 1 phonon per 10ms are rather high

compared to similar setups (e.g. 1 phonon in 390(20)ms in [71]). There are different

sources which can be the reason for such high heating rates. A possible explanation are

remaining electrical forces on the ion at the trap frequency. These can be induced in

different ways. A prominent candidate is found to be fluctuations of parameters of the

trap confinement [149]. This effect originates for instance in the remaining noise of the

output of the precision voltage supplies. In addition to that, the occurrence of patch po-

tentials on the blade electrodes is found [65, 145]. This second effect might be even more

critical for motional heating. The patch potentials have various origins. In our case,

during the initial stage of the experiment, an electron emitter was used for photoion-

ization of neutral magnesium atoms. The impact or absorption of the electrons by the

blade electrodes charges the blades leading to unwanted additional electric stray fields.

This effect resulted in a macroscopic change of the necessary micromotion compensation

voltages for operating the trap. For the same reason, a macroscopic change in the ion

position is observed if the blade electrodes are irradiated with the UV light at 280 nm.

In addition to directly charging the trap electrodes, a deposition of oven materials, like

magnesium or calcium, onto the electrodes also induces patch potentials. In our case,

even though no macroscopic deposition is observed from outside the vacuum chamber,

the activation and the first tests with the calcium oven made it necessary to change one

of the compensation voltages by several hundred volt.

At present, the previously described capacitive shunting is installed in the DC voltage
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lines and no further electronic filtering is employed. Though the voltage supply shows a

rms noise of only ∼1.6mV, additional low-pass filters to further reduce the noise at the

trap frequencies are currently under construction to further reduce the heating rates of

the ion in the Paul trap.
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Figure 8.8: Heating rates of a single 25Mg+ ion. (a) The average motional quantum
number is plotted as a function of the waiting time after ground state cooling. The mea-
surement has been carried out for an axial trap frequency of ωax ∼ 2π × 1.55MHz. A
linear fit yields a heating rate of ∼0.1 phonon per ms. (b) The heating rates are plotted
for different axial trap frequencies. The black crosses correspond to measurements where
only the axial micromotion was compensated for, whereas the blue circles represent sit-
uations if the micromotion was compensated in all three directions by resolved sideband
spectroscopy. No significant difference is observed between both cases.
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Chapter 9

Summary and Outlook

In the scope of this thesis, a versatile experimental setup that allows for precision spec-

troscopy of single ions stored in a linear Paul trap using an optical frequency comb has

been designed and characterized. The major motivation of its development is to provide

more accurate data for various complex species such as Ca+, Ti+ and Fe+ with a special

focus on the determination of their isotope shifts, as an input to the ongoing analysis of

quasar absorption spectra in view of a search for a possible variation of the fine-structure

constant [9]. Such ions have resisted laser spectroscopy due to both missing cycling

transitions and the necessity for a broad-band laser source with a narrow linewidth. At

present, mainly Fourier transform spectroscopy using hollow-cathode lamps has been

implemented with such types of ions. It is worth mentioning that even though a very

good accuracy of < 10−5 nm due to a high signal-to-noise ratio is achieved in these ex-

periments, they do not resolve the isotope shifts of the different elements, owing to the

Doppler-broadened line profiles. It is therefore desirable to confirm the acquired results

and extend the spectroscopy data with the isotope shifts with an independent method.

The principle of the spectroscopy scheme presented in this thesis is to sympatheti-

cally cool the ion of interest to the absolute motional ground state via a simultaneously

confined 25Mg+ ion and employ a phase-stabilized optical frequency comb as a spec-

troscopy source. While the investigation of the Ca+ ion mainly serves the purpose of

a calibration leading to a better understanding of the systematics of the spectroscopy

scheme, the long-term goal of the experiment is to investigate the desired transitions in

Ti+ and Fe+.

The theoretical calculations on the expected spectroscopy signal using semi-classical

optical Bloch equations have been discussed and presented in detail. In this context,

different strategies to perform spectroscopy on all individual transitions among the S, P

and D states in a 40Ca+ ion have been studied. A very sensitive type of spectroscopy,

which measures the photon recoil induced by a few resonant scattering events of the

spectroscopy source, is proposed. The expected transition lineshapes are distorted due
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to the presence of the sideband transitions which need to be taken into account when

carrying out the experiment. The approach discussed within this thesis promises an

accuracy at least on the level of the natural linewidth of the considered elements, which

is on the order of 10MHz or larger. This is in contrast to other heating spectroscopy

techniques, were only Doppler-cooled ions are used [59].

With the presented strategies, all electronic excitations between the lowest five energy

levels in Ca+ are accessible and can be measured. It is worth mentioning that, though

not of astrophysical relevance, the repumping transitions between the D-P levels have

so far to our best knowledge not been subject to precision spectroscopy. As a further

application, it has been shown that, with correctly tuned parameters, the comb spectrum

can be engineered at will and drive e.g. a Raman transition between different Ca+ levels,

which provide a means to study of coherence properties of the comb spectrum.

The first necessary step of the spectroscopy schemes is cooling a 25Mg+ ion to the

absolute ground state. In the experiments presented here, this has been successfully

implemented using a single solid-state laser system. The novelty of the setup is the

incorporation of an electro-optic modulator which allows for switching between an off-

resonant coherent manipulation and a resonant repumping and detection configuration.

This is an enormous simplification to other setups where several laser systems are often

required for the same purposes [58, 65].

The efficiency of the setup has been quantified by its cooling performance. With

the applied schemes, an average vibrational population number of n̄ = 0.03 ± 0.01 has

been inferred. In a similar approach, using acousto- instead of electro-optic modulators,

a population of n̄ = 0.34 ± 0.08 was measured [146]. The major limitation in these

approaches arises from the finite detuning to intermediate states, leading to off-resonant

scattering events. In future experiments, we envision to use either higher order sidebands

or an electro-optic modulator with a higher resonance frequency to access a regime where

the realization of high-fidelity quantum gates becomes feasible. However, in the near

future, the performance of the implemented pulsed cooling schemes will be compared to

a continuous-wave approach by studying cooling rates and the achievable ground state

occupation.

Since the spectroscopy signal is to be obtained by acquiring the vibrational state

information of the 2-ion crystal, the internal state discrimination plays a crucial role

in our experiments. While the finite splitting between the qubit states limits the in-

teraction time due to off-resonant depumping effects, the photon distributions of both

states are not unambiguously defined. For that reason, different detection schemes have

been investigated, along with their detection error limits and sensitivity towards exper-

imental fluctuations. Among the different techniques, the π-pulse detection, that makes

use of the statistically gathered information and correlation between detection events by
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combining resonant laser pulses and radio-frequency induced spin-flips, is a very promis-

ing candidate due to its simplicity for application in other experimental setups which

also utilize hyperfine ground states for state discrimination. In a next step, a further

detection method which is based on Bayesian analysis of the detected photons will be

studied and compared to the previously used ones. This method, in combination with

the mapping to an optical qubit, yielded in a different experiment a net readout fidelity

of 99.77(3)% of a hyperfine qubit [129, 130].

The direct frequency comb spectroscopy source will be a passively mode-locked pulsed

Ti:Saph laser. The electronics for phase-stabilizing and scanning both the offset fre-

quency and repetition rate is currently being set up and tested. After that, a calcium

ion simultaneously confined with a magnesium ion will be cooled to the ground state

and the spectroscopy will be carried out. One necessary step in the analysis of the first

spectroscopy signals will be to adapt the pulse shape of the frequency comb used in

the simulations to the true output of the laser. Especially the inclusion of pulse broad-

ening and chirping, which result from the employed micro-structured fibre to provide

an octave-spanning spectrum, is a formidable challenge to be taken into account in the

simulations.

After the calcium electronic level structure is mapped out, Ti+ and Fe+ transitions

in the ultra-violet will be studied in the same setup. Since the necessary atomic sources

are already built into the vacuum chamber, only a photo-ionization laser system for

each individual element is needed. We plan to implement two different strategies for

these elements. In a first approach, in a similar way as in the case of 40Ca+ ion, direct

frequency comb spectroscopy with a comb that is upconverted to the ultra-violet will

be employed. The second approach employs quantum logic spectroscopy with a cw dye

laser as a spectroscopy source while using a frequency comb in combination with an

ultra-violet lamp for repumping.

At present, certain dipole transitions in the spectrum of Ti+ have been investi-

gated, experimentally and theoretically, by means of high-resolution Fourier transform

spectroscopy [150], as well as several isotope shifts in a beam or vapor configurations

[151, 152, 153]. It is worth mentioning that apart from dipole transitions, also forbid-

den lines are of astrophysical interest and are currently being studied by other groups

[154, 155].

Fe+ has transition lines which are extremely sensitive to a change in the fine-structure

constant and are thus even more interesting for astrophysical analyses. At present,

spectroscopy of Fe+ has only been accomplished using hollow-cathode lamps and ion

clouds [156, 157, 158]. Various theoretical predictions on the corresponding isotope shifts

are available [159, 160]. However, no independent verification of the Fourier transform

spectroscopy results or isotopically resolves spectroscopy has been performed to our best
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knowledge.

As a further future prospect, the cooling of molecular ions should be mentioned. In

the last years, there has been an enormous progress in this field [23, 161]. We plan to

employ methods similar to the cooling schemes presented in this thesis to cool molecular

ions, such as MgH+ and CaH+, to the ro-vibrational ground states and subsequently

subject them to precision spectroscopy. The results of such measurements are of interest

both from a pure spectroscopic point of view as well as for astrophysical studies of the

variation of the electron to proton mass ratio [162, 163].
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Appendix A

Wigner Symbols and Normalizations

An detailed overview of the Wigner symbols and their relation to the Clebsch-Gordan

coefficients can be found in [164]. Here, only the relations used in this thesis are sum-

marized. For a further discussion on different normalizations, the reader is referred to

[165, 166].

The Wigner-3j and the Wigner-6j symbol follow the orthogonality relations

(2j + 1)
∑

m1,m2




j1 j2 j

m1 m2 m





2

3j

=
∑

j,m

(2j + 1)




j1 j2 j

m1 m2 m





2

3j

= 1 ,

∑

j3

(2j3 + 1)







j1 j2 j3

j4 j5 j6







2

6j

=
1

2j6 + 1
.

These relations can be used to calculate sums over the magnetic quantum numbers

mF and q

∑

mF ,m′
F
,q




F F ′ Jph

mF −mF ′ q





2

3j

=
∑

q

1

2Jph + 1
= 1 ,

∑

mF ,q




F Jph F ′

mF q −mF ′





2

3j

=
1

2F ′ + 1
.

The normalization of the reduced matrix elements is also of importance. As mentioned
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in Section 2.2.3, the reduced matrix element can be further simplified as

〈JIF ||d||J ′IF ′〉 = (−1)J+I+F ′+1
√

(2J + 1)(2F ′ + 1)







J F I

F ′ J ′ 1







6j

〈J ||d||J ′〉 .

Again, using the orthogonality relation above, the sums over different quantum numbers

can be calculated using the symmetry under permutations1

∑

F ′

|〈JIF ||d||J ′IF ′〉|2 = (2J + 1)
∑

F ′

(2F ′ + 1)







I J ′ F ′

1 F J







2

6j

| 〈J ||d||J ′〉 |2

= | 〈J ||d||J ′〉 |2 .

Using these relations, the full matrix element reads

|〈JFmF |d|J ′F ′mF ′〉|2 (A.1)

= (2F + 1)(2F ′ + 1)(2J + 1)







J F I

F ′ J ′ 1







2

6j




F ′ Jph F

mF ′ q −mF





2

3j
︸ ︷︷ ︸

=:κ2

| 〈J ||d||J ′〉 |2 .

It is normalized in the following ways

∑

F ′,mF ′ ,q

|〈JFmF |d|J ′F ′mF ′〉|2 = | 〈J ||d||J ′〉 |2 ,

∑

F,mF ,q

|〈JFmF |d|J ′F ′mF ′〉|2 =

(
2J + 1

2J ′ + 1

)

| 〈J ||d||J ′〉 |2 .

1It should be noted that for quadrupole transitions the term 1 in the Wigner-6j symbol is to be
replaced with 2.
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Figure A.1: Transition strengths |κ|
√
2J ′ + 1/

√
2J + 1 (see Eq. (A.1)) of the S1/2(F =

2, mF ) → P1/2(F
′, mF ′) in 25Mg+ are shown. The difference ∆m = mF −mF ′ represents

the kind of transition, i.e. ∆m = ±1 corresponds to a σ±-transition, whereas ∆m = 0
corresponds to a π-transition.



125

0.33 0.43 0.47 0.47 0.43 0.33

0.58 0.38 0.19 0.00 0.19 0.38 0.58

0.33 0.43 0.47 0.47 0.43 0.33

0.75 0.61 0.47 0.33 0.19

0.43 0.54 0.58 0.54 0.43

0.19 0.33 0.47 0.61 0.75

mF¢ -3 -2 -1 0 +1 +2 +3

Dm=+1

Dm=0

Dm=-1

Dm=+1

Dm=0

Dm=-1

F =2¢

F =3¢

2
S -1/2

2
P F=3 F1/2 ® ¢

Figure A.2: Transition strengths |κ|
√
2J ′ + 1/

√
2J + 1 (see Eq. (A.1)) of the S1/2(F =

3, mF ) → P1/2(F
′, mF ′) in 25Mg+ are shown. The difference ∆m = mF −mF ′ represents

the kind of transition, i.e. ∆m = ±1 corresponds to a σ±-transition, whereas ∆m = 0
corresponds to a π-transition.
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Figure A.3: Transition strengths |κ|
√
2J ′ + 1/

√
2J + 1 (see Eq. (A.1)) of the S1/2(F =

2, mF ) → P3/2(F
′, mF ′) in 25Mg+ are shown. The difference ∆m = mF −mF ′ represents

the kind of transition, i.e. ∆m = ±1 corresponds to a σ±-transition, whereas ∆m = 0
corresponds to a π-transition.
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Figure A.4: Transition strengths |κ|
√
2J ′ + 1/

√
2J + 1 (see Eq. (A.1)) of the S1/2(F =

3, mF ) → P3/2(F
′, mF ′) in 25Mg+ are shown. The difference ∆m = mF −mF ′ represents

the kind of transition, i.e. ∆m = ±1 corresponds to a σ±-transition, whereas ∆m = 0
corresponds to a π-transition.
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Appendix B

Polarization and Radiation Pattern

In this section, some general considerations on the basis transformation to spherical

harmonics are given. After that, the radiation pattern for different transition types is

calculated. The calculations closely follow the quantum mechanics script of Prof. Peter

S. Riseborough [167].

Spherical Harmonics

The vector ~aC = (x, y, z) in cartesian coordinates can be expressed in a basis of spherical

harmonics as

~aS =








1√
2
(−x− iy)

1√
2
(x− iy)

z








= r

√

4π

3








Y1,1

Y1,−1

Y1,0








.

The spherical harmonics have the following definition

Y1,0 =

√

3

4π
cos θ ;

Y1,1 = −
√

3

8π
sin θeiφ ;

Y1,−1 =

√

3

8π
sin θe−iφ .

The scalar product of two vectors ~aS and ~bS stays unchanged under this orthogonal

transformation

~aS ·~bS = ~aC ·~bC =
∑

k

a∗kbk .
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Vectors in this basis are useful to determine selection rules for dipolar transitions, for

instance.

Polarization Vector and Emission Pattern

Consider a planar wave with a unit k-vector in spherical coordinates

k̂ =








sin θ cos φ

sin θ sinφ

cos θ








.

Here, the quantization axis is chosen to be in the z-direction, B̂ · k̂ = cos θ. The corre-

sponding unit polarization vectors are perpendicular to the k-vector perpendicular with

respect to each other

ǫ̂k · ǫ̂l = δkl ;

k̂ · ǫ̂k = 0 .

They can be expressed as

ǫ̂1 =








cos θ cosφ

cos θ sin φ

− sin θ








; ǫ̂2 =








− sin φ

cosφ

0








.

The radiation pattern is determined by the product of the dipole operator ~r = (x, y, z)

and the unit polarization vector. It can be expressed in spherical harmonics as follows:

〈ψ′|ǫ̂1 · ~r|ψ〉 = − sin θ 〈ψ′|z|ψ〉+ 1

2
cos θeiφ 〈ψ′|x− iy|ψ〉 − 1

2
cos θe−iφ 〈ψ′| − x− iy|ψ〉 ;

〈ψ′|ǫ̂2 · ~r|ψ〉 = i
eiφ

2
〈ψ′|x− iy|ψ〉 − i

e−iφ

2
〈ψ′| − x− iy|ψ〉 .

The angular dependence of the dipolar decay is found by summing over all possible

polarizations

| 〈ψ′|ǫ̂1 · ~r|ψ〉 |2 + | 〈ψ′|ǫ̂2 · ~r|ψ〉 |2

= sin2 θ| 〈ψ′|z|ψ〉 |2
︸ ︷︷ ︸

π−transition

+
1

4
(1 + cos2 θ)| 〈ψ′|x− iy|ψ〉 |2
︸ ︷︷ ︸

σ−−transition

+
1

4
(1 + cos2 θ)| 〈ψ′| − x− iy|ψ〉 |2
︸ ︷︷ ︸

σ+−transition

.
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Including this result, the emission pattern distribution for different types of transitions

are

P (k̂) Transition/Emission Type fα

3
8π

sin2 θ π − transition 1
5
· (2, 2, 1)

3
16π

(1 + cos2 θ) σ− − transition 1
10

· (3, 3, 4)
3

16π
(1 + cos2 θ) σ+ − transition 1

10
· (3, 3, 4)

1
2
(δ(θ − π

2
)δ(φ) + δ(θ − π

2
)δ(φ− π)) Parallel to k-vector (θ, φ) = (π/2, 0) (1, 0, 0)

1
4π

Isotropic 1
3
· (1, 1, 1)

The distributions are chosen such that the normalization condition
∫
dΩP = 1 is fulfilled.

In the Doppler cooling model (see Section 8.1.1), the distribution weighted with the

wave vector of the emitted photon

fα =

∫

dΩP (k̂)k̂2α

needs to be calculated. The corresponding values are listed in the table above.
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Appendix C

Population Distribution and

Sideband Ratios

In a thermal state, the probability population distribution of the nth state of the har-

monic oscillator is given by the expectation value of the density operator in the grand

canonical ensemble

ρ =
1

Z
e−H/kBT where Z = tr

(
e−H/kBT

)
;

pn = 〈n| ρ |n〉 =
[
1− e−~ωz/kBT

]
e−n~ωz/kBT .

With the definition of the average vibrational number

n̄ ≡ 〈n〉 :=
∑

n

npn =
1

e~ωz/kBT − 1
,

the population distribution can be simplified as

pn =
n̄n

(1 + n̄)n+1 .

In order to get an estimate for the average population n̄ after doppler cooling, the

population in the bright and dark state of the red and blue sideband. The temporal

evolution of the population on the rth red sideband is given as the sum over Rabi
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oscillations with n-dependent frequencies as

ρrsbr =
∞∑

n=r

pn · sin2 (Ωn−r,n · t)

=
∞∑

n=r

n̄n

(1 + n̄)n+1 · sin2 (Ωn−r,n · t)

=

∞∑

n′=0

n̄n′+r

(1 + n̄)n
′+r+1

· sin2 (Ωn′,n′+r · t)

=

(
n̄

1 + n̄

)r ∞∑

n′=0

n̄n′

(1 + n̄)n
′+1

· sin2 (Ωn′+r,n′ · t)

=

(
n̄

1 + n̄

)r ∞∑

n′=0

pn′ · sin2 (Ωn′+r,n′ · t)

=

(
n̄

1 + n̄

)r

ρbsbr .

Here, the symmetry in the red and blue sidebands was used. Re-arranging terms yields

n̄ =
r
√
Q

1− r
√
Q

where Q =
ρrsbr

ρbsbr

.

Thus, the comparison of the rth red and rth blue sideband excitation yields the average

population n̄, assuming a thermal distribution. Given n̄, the ground state population

can be calculated

p0 =
1

1 + n̄
= 1− r

√

Q .

Assuming that the ion is well enough in the absolute ground state, the Lamb-Dicke

parameter is related to the Rabi frequencies of the carrier transition Ω0,0 and the first

blue sideband transitions Ω1,0 as follows:

Ω0,0 = Ω · e−η2/2

Ω1,0 = Ω · e−η2/2 · η






→ η =

Ω1,0

Ω0,0

.

Thus, by comparison of the carrier and blue sideband excitations, the Lamb-Dicke pa-

rameter can be determined.
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Appendix D

Comb Structure and Unitary Phase

Transformation

D.1 Comb Structure

The sum appearing in the Fourier transformation of the comb spectrum (see Eq. (3.5))

p
∑

k=0

e−i(ω−ω0)kτR

corresponds to a geometric sum which can be simplified as

Sp =

p
∑

k=0

eiαk =
1− eiα(p+1)

1− eiα
=

sin
(

α(p+1)
2

)

sin
(
α
2

) · eiαp

2 ,

where α = (ω − ω0)τR. Taking the square yields

|Sp|2 =
cos(α(p+ 1))− 1

cos(α)− 1
.

D.2 Unitary Transformation for the Phase Depen-

dence

In the following, three examples of the unitary transformation to remove the phase

dependence of the time propagation operator are shown. The Hamiltonian and the time



134 D.2 Unitary Transformation for the Phase Dependence

propagation operator are transformed in the following way

UI(t, ϕ) = K(ϕ) · UI(t) ·K†(ϕ) ;

HI
int(t, ϕ) = K(ϕ) ·HI

int(t) ·K†(ϕ) ;

K(ϕ) ·K†(ϕ) = 1 .

2-Level System This is an example for a generic two-level system. For clarity, the

time arguments are omitted.

K =




eiϕ 0

0 1



 ; HI
int =




0 h12

h21 0



 ;

HI
int(ϕ) = KHI

intK
† =




0 h12e

iϕ

h21e
−iϕ 0



 ;

UI(ϕ) = K




u11 u12

u21 u22



K† =




u11 u12e

iϕ

u21e
−iϕ u22





3-Level System Regarding the three-level system, there are two possibilities. In the

first example, two-photon transitions are allowed from the first, via the second, to the

third level.

K =








1 0 0

0 eiϕ 0

0 0 e2iϕ








; HI
int =








0 h12 0

h21 0 h23

0 h32 0








;

HI
int(ϕ) =








0 h12e
iϕ 0

h21e
−iϕ 0 h23e

iϕ

0 h32e
−iϕ 0








;

UI(ϕ) =








u11 u12e
iϕ u13e

2iϕ

u21e
−iϕ u22 u23e

iϕ

u31e
−2iϕ u32e

−iϕ u33







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The second example describes a V-type level system where only single-photon transitions

from the ground state are allowed.

K =








1 0 0

0 e−iϕ 0

0 0 e−iϕ








; HI
int =








0 h12 h13

h21 0 0

h31 0 0








;

HI
int(ϕ) =








0 h12e
iϕ h13e

iϕ

h21e
−iϕ 0 0

h31e
−iϕ 0 0








;

UI(ϕ) =








u11 u12e
iϕ u13e

iϕ

u21e
−iϕ u22 u23

u31e
−iϕ u32 u33








The 5-Level Calcium System The calcium ion consists of five energy levels (see

Fig. 4.2) with the following definitions for the electronic levels: S1/2 ↔ |1〉, D3/2 ↔ |2〉,
D5/2 ↔ |3〉, P1/2 ↔ |4〉 and P3/2 ↔ |5〉. In the presented simulations, the following

Hamiltonian and transformation matrix was used:

K =














1 0 0 0 0

0 eiǫ2tk−iφk 0 0 0

0 0 eiǫ3tk−iφk 0 0

0 0 0 eiǫ4tk−2iφk 0

0 0 0 0 eiǫ5tk−2iφk














;

HI
int(t

′ + kτR) =














0 0 0 µ14σ2(t
′)e−i(ω14−2ωL)t

′

µ15σ2(t
′)e−i(ω15−2ωL)t

′

· 0 0 µ24σ(t
′)e−i(ω24−ωL)t

′
µ25σ(t

′)e−i(ω25−ωL)t
′

· · 0 0 µ35σ(t
′)e−i(ω35−ωL)t

′

· · · 0 0

· · · · 0














;



136 D.2 Unitary Transformation for the Phase Dependence

HI
int(t

′ + kτR, φk) =













0 0 0 µ14σ2(t
′)e−i(ω14−2ωL)t

′+i(2φk−ω14tk) µ15σ2(t
′)e−i(ω15−2ωL)t

′+i(2φk−ω15tk)

· 0 0 µ24σ(t
′)e−i(ω24−ωL)t

′+i(φk−ω24tk) µ25σ(t
′)e−i(ω25−ωL)t

′+i(φk−ω25tk)

· · 0 0 µ35σ(t
′)e−i(ω35−ωL)t

′+i(φk−ω35tk)

· · · 0 0

· · · · 0














;

UI(φk) =













u11 u12e
−iω12tk+iφk u13e

−iω13tk+iφk u14e
−iω14tk+i2φk u15e

−iω15tk+i2φk

u21e
iω12tk−iφk u22 u23e

−iω23tk u24e
−iω24tk+iφk u25e

−iω25tk+iφk

u31e
iω13tk−iφk u32e

iω32tk u33 u34e
−iω34tk+iφk u35e

−iω35tk+iφk

u41e
iω14tk−i2φk u42e

iω24tk−iφk u43e
iω34tk−iφk u44 u45e

−iω45tk

u51e
iω15tk−i2φk u52e

iω25tk−iφk u53e
iω35tk−iφk u54e

iω45tk u55













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Appendix E

UV objective

The objective used in the setup is an extension of the one presented in [116]. Since no

high resolution was aimed for, the optimal design was approximated by commericially

available lenses for economic reasons.

The complete imaging setup comprises of two steps: First, the five-lens UV-objective

images the ion onto an iris with a 150µm diameter to minimize stray light. The iris is

then imaged with a separate two-lens objective onto the CCD camera or the PMT. The

complete optical setup is defined in the following listing of the optical surfaces (all values

are given in units of mm):

No Curvature Distance Focal Length Thorlabs Item #

1 -135.3 7.8 150 LE 4125

2 -46.5 0.5 -

3 -193.4 6.6 200 LE 4560

4 -63 0.5 -

5 ∞ 5.4 300 LA 4855

6 -138 0.5 -

7 67 12.5 75 LB 4553

8 -67 8.91 -

9 -46 4 -100 LC 4743

10 ∞ 295.44 -

11 - 77.6 - Intermediate Picture

12 ∞ 10.6 100 LA 4545

13 -46 0.5 -

14 46 10.6 100 LA 4545

15 ∞ 95.7 -

16 - 0 - Image
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In Fig. E.1 an image of a precision test target1 with the objective is shown. The

analysis yields a conservative upper limit for the resolution of 4.4µm. This is sufficient

for the experiment since all quantitative readout is done by integrating over the complete

image using the photo-multiplier tube. The main reason for this rather low resolution

is the replacement of the optimal lenses by ones which approximate the ideal surface

curvatures and the fact that the lenses are tilted with respect to each other when being

put into the objective mount.

400 450 500 550 600 650

380

400

420

440

460

480

500

520

540

Figure E.1: A Thorlabs USAF 1951 test target is used to estimate the resolution of the
objective. The contrast of ∼60% of the smallest line pair on the target yields an upper
limit of 4.4µm.

1Thorlabs USAF 1951
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amor.

Vera e Domingos, muito obrigado pela calorosa acolhida em sua famı́lia. Vocês agora
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