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Kurzfassung

Die Analyse nichtlinearen Verhaltens ökonomischer Zeitreihen, hat aufgrund ihrer Implikationen

für die Anwendung und Analyse ökonomischer Theorien einer lange Tradition in der Statistik

und Ökonometrie. Diese Arbeit beinhaltet fünf Kapitel, die sich mit unterschiedlichen Aspekten

von nichtlinearem Verhalten in ökonomischen Zeitreihen beschäftigen.

Kapitel 2, verfasst mit Stefanie Michael und Philipp Sibbertsen, untersucht das exponential

smooth transition autoregressive model (ESTAR). Dieses Modell besitzt die Eigenschaft, dass

der Parameter der die Nichtlinearität steuert schwierig zu schätzen ist. Dieses Kapitel beinhaltet

eine detailierte Studie der Eigenschaften dieses Parameters und es wird gezeigt, dass er unter

bestimmten Bedingungen nicht identifizierbar ist. Es wird ein neues Modell, das TSTAR Modell,

vorgeschlagen, dass diese Eigenschaft verbessert. Zusätzlich wird ein Linearitätstest sowie ein

Einheitswurzeltest entwickelt. Kapitel 3 erweitert die Betrachtung des TSTAR Modells, indem

verschiedene Fehlspezifikationstests für dieses Modell entwickelt werden.

Kapitel 4, verfasst mit Hendrik Kaufmann und Philipp Sibbertsen, untersucht die Theorie

der Kaufkraftparität aus der Perspektive der Ökonometrie. Da die Modellierung realer Wech-

selkurse, als Maß für die Abweichung von der Kaufkraftparität, mit unterschiedlichen Modellen

erfolgen kann, die wiederum unterschiedliche ökonomische Erklärungsansätze zulassen, ist es von

Interesse diese Modelle unterscheiden zu können. In Kapitel 4 wird eine solche Methode auf Ba-

sis rechenintensiver Verfahren vorgeschlagen und auf verschiedene reale Wechselkurse angewand.

Das Kapitel 5 beschäftigt sich mit der Frage, ob Standardinferenztechniken der Statistik durch

nichtlineare Datentransformation in ihren Eigenschaften beeinflusst werden. Da in der Ökonomie

häufig eine logarithmische Transformation der Daten vorgenommen wird, ist es wichtig zu un-

tersuchen, ob und inwiefern die Testresultate ihre Aussagekraft behalten.

Kapitel 6, verfasst mit Juliane Willert, nähert sich den Nichtlinearitäten aus einem anderen

Blickwinkel. Da nichtlineares Verhalten häufig durch Regimewechselmodelle beschrieben wird,

sind Strukturänderungen und Nichtlinearitäten eng verwand. Dieses Kapitel entwickelt eine

Methode, die es erlaubt eine Strukturänderung der Persistenz einer Zeitreihe aufzudecken, sobald

neue Daten eintreffen. Die zusätzliche Schwierigkeit ergibt sich dadurch, dass die Zeitreihe eine

langfristige Korrelationstruktur aufweisen kann.

Schlagwörter: Nichtlinearitäten, Spezifikationstests, Identifikationsproblem, Kaufkraftparität



V

Short summary

The analysis of nonlinear behavior in economic time series has a long standing tradition in

econometrics and statistics due to the implications for the application and analysis of economic

theories. This collection of five essays deals with different aspects of nonlinearity in economic

time series.

Chapter 2, co-authored with Stefanie Michael and Philipp Sibbertsen, analyzes the exponential

smooth transition autoregressive model (ESTAR). This model possesses the property that it is

hard to obtain a reliable estimate for the parameter that governs the nonlinearity. This chapter

contains a detailed study of the properties of this parameter and we are able to show that it

is unidentified under certain conditions. A new model, termed the TSTAR model, is proposed

that improves on the ESTAR in terms of identifiability. Additionally a linearity test and an

unit root test is proposed for this model. Chapter 3 extends the study of the TSTAR model by

proposing various kinds of misspecification tests.

Chapter 4, co-authored with Hendrik Kaufmann and Philipp Sibbertsen, deals with the pur-

chasing power parity from an econometric perspective. Because modeling real exchange rates,

as a measure of deviation from purchasing power parity, can be accomplished using different

models that might lead to different economic theories it is of interest to discriminate between

these models. In chapter 4 such a method, based on computational intensive techniques, is

proposed and applied to various real exchange rates. Chapter 5 deals with the question whether

the properties of standard inference techniques are affected by nonlinear data transformation.

Because in applied economics the logarithm is applied frequently to the data it is important

to know whether the test results remain reliable. Chapter 6, co-authored with Juliane Willert,

approaches nonlinearity from a different angle. As nonlinearities are frequently captured by

regime switching models, structural change and nonlinearity are closely intertwined. This chap-

ter develops a method that allows to detect changes in the persistence property of a time series

whenever new data arrives. The additional difficulty is that the time series under study is al-

lowed to display long range dependency.

Keywords: Nonlinearities, Specification testing, Identificationproblem, Purchasing Power Parity
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Introduction



2

Introduction

The study of nonlinearity in time series has a long standing tradition in the statistics and econo-

metrics literature. Early contributions date back to Bacon and Watts (1971), Jones (1978),

Ozaki (1980), Haggan and Ozaki (1981), White and Domowitz (1984), Tjøstheim (1986) or

Tong (1990).

However, it was not until the contributions of Hamilton (1989) and Teräsvirta (1994) that

economists have started to use nonlinear time series models more often in empirical applica-

tions. In the following two decades nonlinear time series models have been used to successfully

describe various economic time series such as real exchange rates, nominal exchange rates, real

interest rates, gross domestic product or US unemployment rate, to name but a few (see e.g Tay-

lor et al. (2001), Franses and van Dijk (2000), Kapetanios et al. (2003), Potter (1995), Pesaran

and Potter (1997) or van Dijk et al. (2002b)). For economic time series, models which provide a

state- or regime-dependent dynamic have been most successful and enjoyed most attention both

from theoretical studies and empirical applications (see e.g. the special issues of the Journal

of Econometrics (1996, 2002) and Studies in Nonlinear Dynamics & Econometrics (2008a,b)).

Teräsvirta et al. (2010) provide a recent up-to-date overview of nonlinear time series models and

their application. This growing interest in nonlinear time series models can be explained by the

fact that ”linearity is at best a convenient artefact, and because the world is full of nonlinear

phenomena such as limit cycles and jump resonance, we need to study nonlinearity to explore

the nature” (Chen and Tsay (1993)). The additional increase in computer capacity has further

reduced the burden of conducting nonlinear analysis and thus improved applicability.

Although substantial progress has been made over the last years to better understand the be-

havior of nonlinear time series and also various tools for statistical inference have been proposed

many questions are still unanswered. This is mainly due to the myriad of possible forms of

nonlinearity encountered.

Some open questions are for example:

• How do parameters in nonlinear dynamic models interact?

• Do they affect each other?

• How can we discriminate between different, non-nested nonlinear models?

• Are standard inference techniques affected by nonlinear data transformations?

The first two questions are vital as they refer to reliable parameter estimates. Although there

are consistency results for the parameter estimates available in the literature (see Tjøstheim

(1986)) there is at the same time a consensus that certain parameters are notoriously hard to

estimate reliably (see e.g. Luukkonen et al. (1988) or Teräsvirta (2004)). This gap between

theoretical results and empirical experience leaves room to explore the interaction between the

parameters of nonlinear dynamic models in more depth as it directly affects the applicability of

the models. The third question alludes to evaluate the adequacy of two competing non-nested

models, a classical topic in statistical inference. Discriminating between two nonlinear models is
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important because different models might lead to different economic intuitions and it is therefore

of interest which theory best describes the empirical data. Further, if the models are nonlin-

ear and non-nested, i.e. they are not special cases of each other, standard inference techniques

fail. The last question is of a more technical nature. There are often good reasons to apply

the logarithm to empirical data, especially with financial data. For example one often wants to

stabilize the variance, wants to linearize exponential growth or wants to obtain approximately

percentage growth if the logarithm is applied to first differences. In many applications however

it is not a priori clear whether to apply the logarithm to the data or not. As many economic

theories, especially equilibrium theories such as the law of one price or the Fisher hypotheses,

rely on testing for a unit root it is of of interest for the applied economist whether the conclu-

sions drawn from standard inference are reliable or biased in some direction if the logarithm is

applied, possibly erroneously.

This thesis attempts to study these questions more thoroughly. It comprises of five self-contained

chapters dealing with different aspects of nonlinear time series models. The common theme of

these essays is statistical inference for univariate, nonlinear time series models.

Chapter 2, co-authored with Stefanie Michael and Philipp Sibbertsen, considers the exponential

smooth transition autoregressive (ESTAR) model. Although popular in empirical applications,

it is well known that it is very hard to obtain reliable estimates for the parameters of the ESTAR

model. In this chapter we undertake a detailed study of the crucial parameter that governs the

degree of nonlinearity. We are able show that if the variance of the innovation process becomes

very small the parameter becomes unidentified in the sense that the standard deviation goes to

infinity. This has important implications for the interpretability of such models. In order to

improve on the ESTAR model in terms of identifiability we propose a new model formulation,

termed the TSTAR model, that maintains the desirable properties of the ESTAR model. To

ease the empirical application of this newly developed model we also propose a linearity test and

a unit root test in this nonlinear framework.

Chapter 3 considers the TSTAR model in more detail. We focus mainly on misspecification

testing for models of such type. Following the modeling cycle for nonlinear time series models

of specification, estimation and evaluation we first treat how to choose an adequate transition

function and then contribute to the evaluation stage by proposing tests against serial correlation,

no remaining nonlinearity and parameter constancy.

Chapter 4, co-authored with Hendrik Kaufmann and Philipp Sibbertsen, considers a long stand-

ing problem in economics, namely the purchasing power parity (PPP). While it is widely agreed

that PPP holds as a long-run concept the specific dynamic driving the process is largely build

upon a priori economic belief rather than a thorough statistical modeling procedure. The two

prevailing time series models, i.e. the ESTAR model and the Markov switching autoregressive

(MSAR) model, are both able to support the PPP as a long-run concept. However, the dynamic

behavior of real exchange rates implied by these two models is very different and leads to differ-

ent economic interpretations. In this chapter we approach this problem by offering a bootstrap

based testing procedure to discriminate between these two rival models. This helps us to base
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the modeling of PPP on a thorough statistical ground.

Chapter 5 is a theoretical contribution that examines the behavior of unit root tests against

nonlinear alternatives of the ESTAR type if the data is erroneously nonlinearly transformed.

We show analytically and by a Monte Carlo study that the probability of rejecting the correct

null of a random walk depends on the type of data transformation.

Nonlinear time series models such as the ESTAR or the MSAR model describe the data gen-

erating process as consisting of different regimes with different dynamic behavior at different

points in time. Therefore nonlinear state-dependent dynamics and structural change are closely

intertwined. Nonlinear time series model prove useful whenever there are two or more regimes

assumed to be present in the data. A different perspective on this regime changing behavior

is taken in the concluding chapter 6, co-authored with Juliane Willert. It deals with a single

change in the long-run correlation structure of a time series at some unknown future point in

time. We propose a monitoring technique that allows us to detect such a change in persistence

whenever new data arrives. An additional difficulty arises because we cast this method into the

framework of long range dependent time series.



Chapter 2

Two competitive models and their identification problem:
The ESTAR and TSTAR model
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Two competitive models and their identification problem:
The ESTAR and TSTAR model

Co-authored with Stefanie Michael and Philipp Sibbertsen.

Published as Leibniz University of Hannover Discussion Paper No. 474.

2.1 Introduction

Nonlinear time series models have become more and more popular over the last decade. In

particular, Exponential Smooth Transition Autoregressive (ESTAR) models have been found

attractive for modeling real exchange rates. These models contain of two autoregressive regimes

which are connected by a smooth transition function of an exponential type. Under certain

regularity conditions they are globally stationary even if one regime is assumed to be a random

walk. Moreover, the U-shape of the transition function is a desired property in the context of

real exchange rates.

Contrary to linear models where parameter estimates are independent of the size of the error

variable, we face an identification problem in ESTAR models due to the influence of the error

term variance. Small or large error variances no longer allow to identify the ESTAR model in

the sense that the variance of parameter estimates tends to infinity. This happens intuitively

because the process stays only in one of the two regimes and does not switch between the

regimes any more. This problem was first observed in Luukkonen et al. (1988) who mention it

in a short remark. However, to the best of our knowledge it has not been further considered in

the literature since.

The size of the error variance leads to an artificial linearization of the process and thus causes

troubles in linearity and nonlinear unit root tests. Linearity tests against ESTAR have been

developed by for example Teräsvirta (1994) and unit root tests against an ESTAR alternative

can be found among others in Kapetanios et al. (2003). Both of these tests have the nonintuitive

property of a low power when the error term variance is either very small or very large. For

the linearity test this was stated in Luukkonen et al. (1988) and for the unit root test see Kruse

et al. (2010). This effect is less surprising for a large error term variance as in this case the

noise dominates the signal. However, it is rather surprising in the opposite case of a small error

variance as in this case the signal dominates the noise. Therefore, an increase of the power would

be expected. As real exchange rates have extremely small error variances (see for example Taylor

et al., 2001) this problem is of a high practical relevance and can lead to false non-rejections of

the null and therefore rejecting a nonlinear adjustment process for real exchange rates.

This effect is independent of the well known estimation problem of the transition parameter

in ESTAR models. In order to circumvent this problem various ideas have been proposed (see

e.g. Haggan and Ozaki (1981), Teräsvirta (2004)) to guarantee a better performance of the

mailto: michael@statistik.uni-hannover.de
mailto: sibbertsen@statistik.uni-hannover.de
http://www.wiwi.uni-hannover.de/Forschung/Diskussionspapiere/dp-474.pdf
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estimators. Here a high though finite variance of the parameter estimate is obtained whereas

in our situation the variance becomes unbounded. Therefore, no general estimation procedure

will produce reasonable estimators, making some modification to the optimization procedure

necessary. This has of course its limits as there is no theory saying that these methods work in

general.

We introduce an alternative of the ESTAR model by using a different transition function, leading

to the TSTAR model. This transition function possess the same desired properties as the

exponential function and can therefore be applied to the same situations. The new transition

function has however fatter tails which turns out to reduce the identification problem. We can

improve the estimation procedure for extreme error term variances. In particular, standard

optimization tools can be used. Moreover, we develop a linearity and a unit root test for this

new model and study their performances in extensive simulations.

The rest of the paper is organized as follows. In the next section we define ESTAR models in

more detail and analyze the identification problem, in particular with respect to small error term

variances. In order to do so we derive results about the moment behavior of ESTAR models

which might be of some interest also in another context. The new TSTAR model is examined

in Section 2.3. After describing the model we derive the linearity as well as the unit root test

in Sections 2.3.1 and 2.3.2, respectively. The simulation studies we performed are summarized

in Section 2.3.3. A comparison of the ESTAR and TSTAR model is presented in Section 2.4,

discussing real exchange data. Section 2.5 concludes whereas all proofs are collected in the

Appendix, together with certain technical lemmas.

2.2 Exponential Smooth Transition Autoregressive Models

One speaks of a Smooth Transition Autoregressive (STAR) model, if two autoregressive regimes

are connected by a transition function which satisfies certain smoothness conditions. In general,

a univariate stochastic process {yt}t∈Z is called STAR(p), p ≥ 1, if

yt = [Ψwt] · [1−G(yt−d;γ,c)] + [Θwt] ·G(yt−d;γ,c)+ εt. (2.1)

The parameter vectors Ψ and Θ as well as wt are given by Ψ = (ψ0,ψ1, . . . ,ψp), Θ = (ϑ0,ϑ1, . . . ,ϑp),

and wt = (1,yt−1, . . . ,yt−p)′. The transition function G( · ;γ,c) : IR→ [0,1] governs the transition

between the two autoregressive regimes Ψwt and Θwt in a smooth way. Alternatively, a STAR

model can also be interpreted as a continuum of regimes which is passed through by the process.

However, note that (2.1) can alternatively be written in somewhat less intuitive representations

yt = [Ψwt] + [Φwt] ·G(yt−d;γ,c)+ εt (2.2)

= [Ξwt] · [1−G(yt−d;γ,c)] + [Θwt] + εt (2.3)

with Φ = Θ−Ψ and Ξ = Ψ−Θ.
Different choices of the transition function G lead to different STAR models. Common choices
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are the exponential function, leading to the Exponential STAR (ESTAR) model, or the logistic

function, depending on the nature of the studied transition. The parameter γ is always the

transition parameter that governs the speed of the regime changes. A recent overview of STAR

models, estimation techniques and model building procedures can be found in Franses and van

Dijk (2000). However, general STAR models have not yet been studied systematically, if possible

at all.

In this paper we will consider functions G that are symmetrically U-shaped around the location

parameter c ∈ IR with

lim
γ→+∞

G(·;γ,c) ≡ 1−1lc, lim
γ→0

G(·;γ,c) ≡ 0 and lim
z→±∞

G(z;γ,c) ≡ 1 (2.4)

where 1lc denotes the indicator function being one only at the value c. The ESTAR model, for

instance, is defined by taking G as

G(z;γ,c) = 1−exp(−γ(z− c)2), z ∈ IR. (2.5)

As one often chooses p = 1 in practical applications, we restrict ourselves in this text to the case

p = d = 1. Moreover, we assume according to (2.3) ξ0 = ϑ0 = 0, c = 0, ξ = ξ1 and ϑ = ϑ1 and obtain

the process

yt =
[

ξexp
(

−γy2
t−1

)

+ϑ
]

yt−1+ εt, t ∈ Z. (2.6)

Example 2.2.1.

Figures 2.1 and 2.2 show two realizations of the ESTAR(1) process (2.6) of length T = 500,

both generated with ϑ = 1 and ξ = −0.45. The variances are chosen as σ2
= 4 and σ2

= 0.04,

respectively.

Time

y t

0 100 200 300 400 500

−
6

−
4

−
2

0
2

4
6

Figure 2.1: σ = 2,ϑ = 1 and ξ = −0.45.

Time

y t

0 100 200 300 400 500

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 2.2: σ = 0.2,ϑ = 1 and ξ = −0.45.

In order to prove statements about the ESTAR(1) model, the random error terms {εt}t∈Z are

assumed to satisfy the following conditions.

Assumption 2.2.2.

(i) The innovations {εt}t∈Z are assumed to have a symmetric density around zero with full

support IR and with IE[ ε2k
t ] = cε,kσ2k for k ∈ IN0 and constants cε,k.
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(ii) For some p > β > 2, {εt} is a strong mixing sequence with mixing coefficients αm of size

−pβ/(p−β) and supi≤1 ‖εi‖p =C <∞. In addition, (1/T )E
[

(
∑T

i=1εi)2
]

λ2 > 0 for T →∞.

The first assumption is of technical nature to derive properties of yt. It is in particular satisfied

if εt ∼ N(0,σ2). Assumption (ii) makes sure that the error term has a flexible structure allowing

for various forms of temporal dependence and heteroscedasticity.

In order to verify basic properties of the ESTAR(1) model, we interpret the process {yt}t∈Z
as a functional coefficient autoregressive model (see Chen and Tsay (1993)) and hence as a

homogeneous Markov chain with state space IR equipped with the Borel σ−algebra. Then

geometric ergodicity guarantees the existence and uniqueness of s stationary distribution F of

yt. Sufficient conditions for ergodicity (see also Tjøstheim (1990), Tweedie (1975)) and some

properties of the moments of {yt}t∈Z that will play an important role in the following section are

summarized in the following Lemma, proven in the Appendix.

Lemma 2.2.3 (Moment properties of yt).

Let {yt}t∈Z be as in (2.6) with |ξ|+ |ϑ| < 1 and with innovations {εt}t∈Z that satisfy Assumption

2.2.2.

(i) Then {yt}t∈Z is geometrically ergodic, and in particular strictly stationary.

(ii) The density of yt is symmetric for all t ∈ Z, and in particular the stationary distribution

has a symmetric density,

(iii) For n,k ∈ IN0 and all t ∈ Z,

IE
[

exp(−nγy2
t )y2k+1

t

]

= 0. (2.7)

(iv) For n ∈ IN0,k ∈ IN and all t ∈ Z, there exists a constant ck such that

lim
σ↓0

∣
∣
∣
∣
∣
∣
∣
∣

IE
[

exp(−nγy2
t )y2k

t

]

σ2k
− ck

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (2.8)

and, for J = { j = 0, . . . ,2k : j mod 2= 0},

ck =
1

1− (ϑ+ ξ)2k

∑

j∈J\{0}

(

2k
j

)

ck− j/2 cε, j (ϑ+ ξ)
2k− j, k ∈ IN,

with c0 = 1.

Remarks.

• Symmetry of the stationary distribution is in line with Jones (1978) who approximated the

stationary distribution by Taylor approximations and derives a picture of the approximated

stationary density for an ESTAR(1) process (see Figure 3c), p.93).

• Formula (2.7) implies that all odd moments of yt vanish for all t ≥ 0 by choosing n = 0. The

even moments behave like (2.8) again for n = 0.
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2.2.1 The Identification Problem of the ESTAR model

If transition functions G1 and G2, resulting from different parameter combinations in the ESTAR

setting, cannot be distinguished, it is obviously nearly impossible to fit a ‘good’ model to given

data. Whenever changes of the parameters do not result in significant changes of the transition

function, we speak of the so-called identification problem. Due to (2.6) this happens in the ES-

TAR setting for extreme values (i.e. large values or values close to zero) of γy2
t−1, caused either

by γ or by y2
t−1. The latter turns out to occur for very small or very large values of the error

term variance σ2. This observation is clearly in contrast to linear models and was mentioned by

Luukkonen et al. (1988) but has not been studied further in the literature since.

We are aware that this problem is different from other settings of non-identification such as

non-identified parameters under a null or alternative hypothesis as it occurs when testing STAR

models. The problem we consider leads to the impossibility of estimating the transition pa-

rameter in the sense that its variance tends to infinity. Our problem is in line with findings by

Nelson and Startz (2007) who show that parameter identification problems can occur in non-

linear models when a model parameter tends to a specific limit. However, our situation goes

beyond the findings of Nelson and Startz (2007) as they consider only the case of explicitly used

model parameters whereas in this paper we consider the effect of a scaling parameter of the error

variance which has only implicit effects on the model.

Before giving more profound results, we want to describe the intuition behind the identification

problem. With respect to γ, it is obvious that for different large values (say roughly γ > 1), the

corresponding transition functions hardly change any more. As for y2
t , one can already see from

Figures 2.1 and 2.2, which show realizations of ESTAR processes with different values of σ2,

that -while only appearing implicitly in the definition (2.6)- the error term variance influences

the behavior of the process. Large values for σ2 allow the error term to dominate the process,

resulting in large values for yt and causing the identification problem, independent of the choice

of γ. On the other hand, very small values for σ2 result in small values of yt.

As a consequence of the identification problem, the transition function G in the ESTAR model

is either close to zero or close to one. This means that one of the two regimes is no longer

present. The transition parameter γ as well as one of the autoregressive parameters are there-

fore unidentified and can not be estimated consistently. To illustrate this behavior, we estimate

the parameter vector (ψ,ϕ,γ) by means of the conditional Maximum Likelihood method for the

model yt = 0.3yt−1+0.65yt−1G( · )+εt. The resulting highly biased estimators for γ using different

choices of σ are summarized in Table 2.1. Note also, that ψ as well as ϕ are estimated quite well

showing that it is indeed G( · ) that cannot be determined in a good way.
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H
H
H
H
HH

γ

σ
0.1 0.5

Mean SD Mean SD

0.5

ψ̂ 0.315 0.117 0.311 0.358

ϕ̂ 0.646 0.102 0.372 0.391

γ̂ 2.850 75.09 78.736 1065.299

0.8

ψ̂ 0.312 0.121 0.294 0.354

ϕ̂ 0.649 0.101 0.370 0.397

γ̂ 1.694 12.288 64.777 717.136

1.5

ψ̂ 0.311 0.129 0.286 0.334

ϕ̂ 0.646 0.109 0.357 0.404

γ̂ 2.953 27.719 98.055 1498.332

Table 2.1: Estimation results for ESTAR: yt = 0.3yt−1+0.65yt−1G( · )+ εt

It is definitely worth studying this phenomena as it is in particular counter intuitive that tiny

error term variances do not allow for good estimators as one would expect to observe (and

estimate) the process well. Moreover, although not called identification problem, people are

aware of the problems (e.g. Teräsvirta et al., 2010, p.381) and a lot of subjective ‘tricks’ have

been proposed and used to circumvent them, allowing for a broader range for γ and σ without

experiencing unidentified parameters. The common idea is to exclude γ from the estimation

process and use an alternative way to fit the model. Haggan and Ozaki (1981) propose, for

instance, to define a grid for γ and estimate only the remaining parameters, followed by a search

for the best γ. By doing so, they do not estimate the transition variable γ. In order to reduce

the influence of σ, Teräsvirta (2004, p.229) standardizes the exponent present in G by writing

G(yt;γ,c) = 1−exp(−γy2
t ) = 1−exp

(

−γσ̂2 ·
(

y2
t

σ̂2

))

,

where σ̂ is the standard deviation, in oder to obtain a scale free γ. However, this is not the case

as the resulting Volterra series (see Priestley, 1988, p.25) is not bounded.

Although these modifications seem to help in certain situations they are not quite satisfying

as it is hard to reproduce the parameter estimates and as they have not been studied well

mathematically. However, it would indeed be desirable to have a mathematical unified approach

for the estimation problem, in particular for very small σ2, as one does find tiny estimated values

σ̂ in practical applications. See for example Gatti et al. (1998, p.56) or Öcal (2000, p.129), where

small values for σ2 together with huge estimates for γ are computed.

We close this section by proving that for small σ2 one indeed will never find a good estimator

for the unidentified γ. Tjøstheim (1986) derives in Theorem 3.2 asymptotic normality for a

conditional Maximum Likelihood estimator β̂ of β = (ϑ,ξ,γ) of a more general model than studied

in this text. Specifying that result for the ESTAR model stated in (2.6) we obtain the following

theorem, proved in the Appendix.
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Theorem 2.2.4 (Asymptotic Variance of β̂).

Let yt be as in (2.6) where γ > 0 and |ξ|+ |ϑ| < 1. Let β̂ = (ϑ̂, ξ̂, γ̂) be the conditional ML estimator

of β = (ϑ,ξ,γ). Assume that εt satisfies Assumption 2.2.2. Then

lim
σ↓0

Var(γ̂) → ∞. (2.9)

Remarks.

• We are aware that the limiting situation in (2.9) never occurs in practical applications.

However, the result should be read that the transition parameter γ can hardly be identified

for very small sizes of the error variance, which results in biased estimators if no other

correction is included in the optimization routine for deducing β̂.

• We restrict the parameter vector in Theorem 2.2.4 to the three dimensional β not containing

σ2 only for technical reasons. In Tjøstheim (1986, Theorem 5.2) one can also find a general

limiting result for β̃ = (ϑ,ξ,γ,σ). That however neither yields any new information about

the behavior of γ̂, nor any substantial information about the remaining parameters and

has therefore not been included in order to keep the proof of the above theorem somewhat

readable.

• Theorem 2.2.4 only covers the case σ→ 0. As mentioned earlier, σ→∞ causes the identi-

fication problem, too. This is not just intuitive but has also been supported by simulation

studies. Details are not included here as small values for σ2 are the more interesting case

in practical applications.

2.3 The TSTAR Model

In the ESTAR model, unidentified parameters occur for values (γ,σ) in a certain region, say

RE
γ,σ. In particular estimating γ in the presence of a small σ ∈ RE

γ,σ becomes impossible while on

the other hand those values for σ2 are used in the literature.

We now propose a new model within the STAR-framework, the so-called TSTAR model. The

region RT
κ,σ for which the identification of the parameters is not possible is smaller than RE

γ,σ,

making the TSTAR model superior to the ESTAR-model.

The TSTAR(p) is defined by (2.1) using the transition function

G(z;κ,c) =
[

1−
(

1+ (z− c)2
)−κ]

, z ∈ IR, (2.10)

with κ > 0, 1 ≤ d ≤ p and c ∈ IR. The parameters κ and c can be interpreted as the transition

and the location variable, respectively, just like in the ESTAR model. However, we denote the

transition parameter differently as in the ESTAR setting to keep in mind that the mechanism

with which κ affects the shape of the transition function is differently and thus the numerical

values of γ for ESTAR and κ for TSTAR are not directly comparable. Nevertheless, properties

like boundedness, the limit behavior for z→±∞ and κ→±∞ (see (2.4)) as well as the shape of G

remain unchanged compared to the ESTAR transition function. The TSTARmodel can therefore
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been seen as an alternative model to the ESTAR model, applicable to the same situations.

We are aware that definition (2.10) is just one possible alternative to the ESTAR model. Formula

(2.10) is motivated by the density of Student’s t-distribution while the transition function (2.5)

can be related to the normal density function. Moreover the chosen G has a series expansion

which allows to prove linearity tests (see below) similar as to the well known tests in the ESTAR

setting. However, more general forms of G are left for further research. The TSTAR model

satisfies the analogous properties that are stated in Lemma 2.2.3 (i)-(iii), which follows directly

from the proof of this Lemma which is stated in more general form for the ESTAR as well as

the TSTAR setting.

As properties of the transition function G were mainly used to derive the results of Section

2.2 it is not surprising that we also encounter an identification problem in the TSTAR model.

However, the identification problem causes less problems as different functions G are clearly

distinct for a larger range of values for κ than in the ESTAR model. This is also visible in Figure

2.3 which illustrates for different values of κ the resulting transition functions in comparison to

the ESTAR setting shown in Figure 2.4 (note the different scale on the x-axis).
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Figure 2.3: TSTAR: Transition function for dif-
ferent κ.
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Figure 2.4: ESTAR: Transition function for differ-
ent γ.

As κ and y2
t no longer appear as a product in the transition function (2.10), the interplay between

these two parameters is reduced. For different values of κ the transition functions still differ even

for small values of σ2. This however implies that better estimates for β = (ϑ,ξ,κ,σ2) are obtained

even for parameter combinations of κ and σ2 that cause problems in the ESTAR setting. This

is also visible in Figure 2.5 which illustrated the quotient of the standard deviations of κ̂ of

the TSTAR model and the standard deviation of γ̂ of the ESTAR model, each computed from

5000 repetitions. Note that all values stay below one pointing to the better performance of the

TSTAR model.
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Figure 2.5: Comparison of the estimators in ESTAR and TSTAR settings.

2.3.1 Linearity testing

The procedure we derive in this section for testing linearity against non-linear TSTAR dynamics

is related to the test against non-linearity proposed by Luukkonen et al. (1988). First, the

transition function G is approximated by a suitable linear function; a common practice in non-

linear time series analysis (see also Teräsvirta, 1994). Afterwards, a simple F−test is performed.

For constructing the test it is convenient to use representation (2.2) of the TSTAR(p) model,

i.e.

yt = [Ψwt] + [Φwt] · G(yt−d;κ,c)+ εt. (2.11)

Linearity then holds if the middle term on the right hand side vanishes, caused by either Φ

or G( · ) being equal to zero. In the first case the autoregressive parameters are then identical

for both regimes (see also (2.1) with Θ = Φ+Ψ = Ψ). As we do not have to allow for switching

between identical regimes a more parsimonious model is achieved by using a linear AR(p) model.

In the latter case switching between different regimes it not performed as only one regime is

considered. Hence, the pair of hypothesis we are interested in can be expressed either as

H0 : Φ = 0(1×p) vs. H1 : at least one ϕi , 0; i = 1, . . . , p
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or

H0 : κ = 0 vs. H1 : κ > 0 .

In both cases the TSTAR model (2.11) reduces to a linear autoregressive model of order p.

However, our test procedure employs the former pair of hypothesis.

Under H0 the alternative is not identified, given that the vector Φ and c can take on any value

without changing the value of the likelihood function when κ = 0 and vice versa. This can be

circumvented by replacing G with a linear approximation. Based on the Binomial series, i.e.

(1+ x)−m
= 1+

∞∑

n=1

(−1)n
m(m+1)(m+2). . .(m+n−1)

n!
xn, m > 0, (2.12)

the transition function G in (2.11) can be approximated arbitrarily well by

Gk( · ) =
k∑

n=1

(−1)n
κ(κ+1). . . (κ+n−1)(yt−d − c)2n

n!
(2.13)

choosing x = (yt−d − c)2 and m = κ in (2.12) as well as a sufficiently large k. We then obtain the

auxiliary regression model for a fixed d ≤ p and k

yt =

p∑

i=1

ψiyt−i +

p∑

j=1

δ j,0 yt− j +

p∑

j=1

δ j,1 yt− jyt−d + . . .+

p∑

j=1

δ j,2k yt− jy
2k
t−d +ut (2.14)

where the error terms are now denoted by ut rather than εt as they are the sum of the original

error terms and the approximation error caused by replacing G with Gk.

A test against non-linearity can then be carried out using a simple F-test for a subvector of

parameters. Under the null the actual model is linear and hence the approximation error is zero

leading to ut = εt. Consequently the properties of the error term under the null and thus the

asymptotic distribution of the F-test remain unaffected.

Example 2.3.1.

As an example consider the simple TSTAR(1) model,

yt = ψ1yt−1+ϕ1yt−1

[

1−
(

1+ (yt−d − c)2
)−κ]
+ εt, t ≥ 1 ,

with nonzero location parameter c. Approximating G by G3 results in the regression model

yt = ψ1yt−1

+ϕ1yt−1

[

κ(yt−1− c)2− 1
2
κ(κ+1)(yt−1− c)4

+
1
6
κ(κ+1)(κ+2)(yt−1− c)6

]

+ut

= ψ1yt−1+ δ1,0yt−1+ δ1,1y2
t−1+ δ1,2y3

t−1+ δ1,3y4
t−1+ δ1,4y5

t−1+ δ1,5y6
t−1+ δ1,6y7

t−1+ut
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where

δ1,0 = ϕ1κc
2
+

1
6
ϕκ(κ+1)(κ+2)c6,

δ1,1 = −2cϕ1κ+2ϕ1κ(κ+1)−ϕ1κ(κ+1)(κ+2)c5,

δ1,2 = ϕ1κ−3ϕ1κ(κ+1)c2
+

5
2
ϕ1κ(κ+1)(κ+2)c4,

δ1,3 = 2ϕ1κ(κ+1)c− 1
2
ϕ1κ(κ+1)c4− 10

3
ϕ1κ(κ+1)(κ+2)c3,

δ1,4 = −1
2
ϕ1κ(κ+1)+

5
2
ϕ1κ(κ+1)(κ+2)c2,

δ1,5 = −ϕ1κ(κ+1)(κ+2)c,

δ1,6 =
1
6
ϕ1κ(κ+1)(κ+2) .

The hypothesis of linearity against TSTAR can now be tested via an F-test for the null

H0 : δ1,0 = . . . = δ1,6 = 0 vs. H1 : at least one δ1,i , 0; i = 1, . . . ,6

for which extensive Monte Carlo simulations are summarized in Section 2.3.3.

2.3.2 Unit Root Testing

Kapetanios et al. (2003) develop a unit root test in the ESTAR framework and compute a

Dickey-Fuller type t-test in this set-up based on a first order Taylor expansion. Our test is of the

same type and thus we test the null of a linear unit root process against a globally stationary

TSTAR process containing a partial unit root in one regime.

Based on parametrization (2.2) the TSTAR(1) model can be written in first differences as

∆yt = ρyt−1+ϕ1yt−1

[

1−
(

1+ y2
t−1

)−κ]
+ εt (2.15)

where ρ = ψ1− 1. Setting the location parameter c equal to zero is motivated by simulation

results in Kruse (2009) that show convincing power results even if the location parameter c is

set to zero ex-ante. This is also consistent with Kapetanios et al. (2003). Hence, for the sake

of simplicity we constrain ourselves to this case and further impose d = 1 which is in line with

empirical applications of non-linear time series models (see e.g. Taylor et al. (2001) or Rapach

and Wohar (2006)).

Setting ρ = 0 yields a unit root in the first regime and we have to distinguish between two cases:

(i) ρ = 0 and κ > 0: In this case we have a globally stationary TSTAR process that contains a

partial unit root in the first regime, provided that −2<ϕ1< 0 as we will assume henceforth.

(ii) ρ = 0 and κ = 0: In this case the model reduces to a linear random walk.

Thus we will test case (ii) against case (i) and formulate the pair of hypotheses as

H0 : κ = 0 vs. H1 : κ > 0 . (2.16)
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We now proceed in the same way as in the previous section and approximate the nonlinearity

with a Binomial expansion as in (2.13) setting the number of summands to k = 3. This yields

the auxiliary regression (see also (2.14))

∆yt = δ1,2y3
t−1+ δ1,4y5

t−1+ δ1,6y7
t−1+ut (2.17)

leading to the hypothesis

H0 : δ1,2 = δ1,4 = δ1,6 = 0 vs. H1 : at least one δ1,i , 0; i = 2,4,6

which can also be expressed as

H0 : I3β = r vs. H1 : at least one δ1,i , 0; i = 2,4,6

with β = (δ1,2, δ1,4, δ1,6)′, r = (0,0,0)′ and

I3 =





1 0 0

0 1 0

0 0 1





.

Due to the three parameter restrictions an F-statistic for the significance of the whole parameter

vector β needs to be computed. Using r̂ = Rβ̂, where β̂ denotes the LS-estimator of β, we can

write the F-statistic as

F∗ =
1
3

(r̂− r)′
[

σ̂2R(X′X)−1R′
]−1

(r̂− r) =
1
3

(Rβ̂)′
[

σ̂2R(X′X)−1R′
]−1

(Rβ̂)

=
1
3
β̂′σ̂2(X′X)β̂ (2.18)

where X is a (T × 3)−design matrix with its t-th row given by xt = (y3
t−1,y

5
t−1,y

7
t−1) and

σ̂2
=

1
T−4

T∑

t=1

(

∆yt − δ̂1,2y3
t−1− δ̂1,4y5

t−1− δ̂1,6y7
t−1

)2
. The limit distribution of F∗ under H0 is computed

in the next theorem and proven in the Appendix.

Theorem 2.3.2.

Consider the TSTAR(1) model (2.15) and let εt satisfy Assumption 2.2.2. Then the test statistic

F∗ as given in (2.18) converges weakly under the null of a random walk as follows

F∗ ⇒ 1

3σ2
v′Q−1v, T →∞,
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where the matrices Q and v are given by

Q =





σ6
1∫

0

B6(r)dr σ8
1∫

0

B8(r)dr σ10
1∫

0

B10(r)dr

σ8
1∫

0

B8(r)dr σ10
1∫

0

B10(r)dr σ12
1∫

0

B12(r)dr

σ10
1∫

0

B10(r)dr σ12
1∫

0

B12(r)dr σ14
1∫

0

B14(r)dr





and

v′ =





σ4






1
4

1∫

0

B(1)4− 3
2

1∫

0

B(r)dr






σ6






1
6

1∫

0

B(1)6− 5
2

1∫

0

B(r)dr






σ8






1
8

1∫

0

B(1)8− 7
2

1∫

0

B(r)dr










with B denoting the standard Brownian motion.

Under the alternative the test is consistent.

In order to deal with deterministic components such as non-zero intercept terms or linear trends

one can use a two-step approach and de-mean or de-trend the data prior to computing the test

statistic F∗. In this case the true data generating process is given by

yt = ω′zt + xt

where xt = yt−1+εt and ω
′ is a parameter vector of suitable dimensions and zt = 1 for all t for the

de-meaned case and zt = [1, t ] for the de-trended case. The test can then be based on the OLS

residuals x̂t, where the asymptotic distribution now depends on functionals of de-meaned and

de-trended Brownian motion, respectively. These are given by

B(r)−
1∫

0

B(r)dr

for the de-meaned Brownian motion and by

B(r)+ (6r−4)

1∫

0

B(r)dr+ (12r−6)

1∫

0

rB(r)dr

for the de-trended Brownian motion. Considering the case of serially correlated errors and

assuming that the dependence enters in a linear fashion we can generalize our results by aug-

menting the auxiliary regression with lagged differences as in Dickey and Fuller (1979) and Said
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and Dickey (1984). The test regression then reads

∆yt = δ1,2y3
t−1+ δ1,4y5

t−1+ δ1,6y7
t−1+

p∑

i=1

πi∆yt−i +ut . (2.19)

The pair of hypotheses as well as the test statistic in this more general set up do not change

with respect to the auxiliary regression in (2.17).

Theorem 2.3.3.

Consider the test statistic F∗ as in Theorem 2.3.2 but computed from (2.19). Under the null of

a unit root the test statistic maintains the same asymptotic distribution as in Theorem 2.3.2.

Under the alternative the test statistic is consistent.

Theorem 2.3.3 holds also true for the case of including deterministic terms as in auxiliary re-

gression (2.19). The asymptotic distribution in this case is such as in Theorem 2.3.2 when de-

terministic terms are included, i.e. replacing the standard Brownian motion with the de-meaned

or de-trended Brownian motion, respectively.

The large exponents in the auxiliary regressions necessarily lead to rather strong moment con-

ditions. This could potentially be circumvented by using a different testing approach such as

a sup-LM test. This is, however, beyond the scope of this paper as we only want to provide a

simple test based on a well know procedure as a first approach.

Setting the approximation of the infinite sum from the Binomial series expansion to k = 1 it is

readily seen that
√

F∗ has the same asymptotic distribution as the unit root test against ESTAR

developed by Kapetanios et al. (2003) and thus the statistic F∗ contains their test as a special

case. It is also noteworthy that the F-test version of the ESTAR unit root test of Kapetanios

et al. (2003) that would result if the location parameter c is not set equal to zero a priori is also

a special case of our test. Setting the series expansion again to k = 1 and also letting the location

parameter c , 0 the resulting limiting distribution of the test statistic from the related auxiliary

regression is the same as for the respective ESTAR unit root test and thus we also contain this

test version as a special case.

Containing these tests as special cases we expect a satisfying performance also against ESTAR

processes but higher power against globally stationary alternatives than the Kapetanios et al.

(2003) test as indicated by a faster rate of convergence in Theorem 2.3.2.

2.3.3 Monte Carlo Simulations

In this section we study the finite sample performance of the two tests developed above for the

TSTAR(1) model given in (2.11). Two different data generating processes are investigated: c = 0

in the first scenario and c = 1 in the second one. If not stated differently, M = 50000replications

were performed combined with different sample sizes T . For all power simulations reported we

consider a type 1 error of α = 0.05 to save space.1

1The results for the cases α = 0.01 and α = 0.1 as well as all other unreported results are available from the authors
upon request.
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Linearity Testing:

In order to keep the experiment simple we conduct the simulations under the null of linearity

using a simple AR(1) model and compute the auxiliary regression using the location parameter

c = 0 for the first scenario and c = 1 for the second scenario. The empirical size results for the

linearity test introduced in Section 2.3.1 are stated in Tables 2.2 and 2.3 for scenario one and

scenario two, respectively. The test shows only minor deviations from its nominal level and it

tends to under-reject somewhat. However, the test -although conservative- seems to be properly

sized for reasonable sample sizes encountered in monthly or daily data.

ψ1 = 0.3 ψ1 = 0.5 ψ1 = 0.8

T α = 1% α = 5% α = 10% α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

100 0.826 4.258 8.752 0.738 4.152 8.440 0.856 4.194 8.606

200 0.872 4.442 9.038 0.786 4.200 8.664 0.820 4.206 8.504

500 0.910 4.546 9.404 0.876 4.470 8.986 0.744 4.248 8.680

1000 0.858 4.594 9.554 0.840 4.360 9.008 0.878 4.152 8.578

5000 0.886 4.766 9.906 0.856 4.536 9.354 0.888 4.498 8.986

Table 2.2: Size results (linearity test) for scenario one.

ψ1 = 0.3 ψ1 = 0.5 ψ1 = 0.8

T α = 1% α = 5% α = 10% α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

100 0.912 4.298 8.608 0.818 4.256 8.594 0.838 4.402 8.744

200 0.776 4.200 8.764 0.802 3.986 8.268 0.796 4.150 8.504

500 0.818 4.266 8.866 0.776 4.184 8.434 0.892 4.270 8.530

1000 0.882 4.626 9.276 0.868 4.318 8.708 0.848 4.218 8.528

5000 0.968 4.584 9.372 0.882 4.450 8.892 0.792 4.260 8.764

Table 2.3: Size results (linearity test) for scenario two.

In order to study the power of the test, TSTAR(1) models with several values for ψ1, ϕ1 and

κ were used in the experiments. The results are shown in Table 2.4 for scenario one and in

Table 2.5 for scenario two. The results suggest that the linearity test is a useful device to detect

non-linearity in the data. As expected the rejection frequency becomes closer to 100% the more

pronounced the difference between the regimes is and/or the larger the sample size is. Overall we

obtain very similar power results against TSTAR compared to Luukkonen et al. (1988) for their

linearity test against ESTAR. Unreported experiments confirmed that the proposed linearity

test has also similar high power against the other non-linear alternatives ESTAR, LSTAR and

Double LSTAR (see Jansen and Teräsvirta, 1996). Reasonable power results were also obtained

against the Markov switching model proposed by Hamilton (1989).
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T = 200 T = 500 T = 1000
P
P
P
P
P
P
PP

ψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

0.3 0.5 5.452 5.468 5.650 7.502 8.628 8.708 11.796 14.488 15.014

0.3 0.6 6.638 7.414 7.686 12.534 16.060 16.154 24.166 32.020 31.766

0.3 0.7 9.434 11.456 11.570 22.000 29.264 29.014 44.362 57.616 58.062

0.3 0.8 13.642 17.872 18.238 36.348 49.194 48.964 69.112 83.718 83.360

0.3 0.9 21.276 29.262 28.098 56.726 74.030 71.142 89.640 97.252 96.482

Table 2.4: Power results (linearity test) for scenario one.

T = 200 T = 500 T = 1000
P
P
P
P
P
P
PP

ψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

0.3 0.5 5.964 6.970 7.070 10.302 13.826 14.790 19.392 27.412 30.088

0.3 0.6 9.228 11.804 12.514 21.240 31.126 34.288 45.714 63.610 68.202

0.3 0.7 14.444 20.502 22.364 40.652 58.280 62.524 77.352 91.816 94.004

0.3 0.8 24.126 34.482 36.886 66.438 84.038 86.562 95.732 99.448 99.634

0.3 0.9 38.434 53.024 53.978 87.566 97.006 96.840 99.692 99.998 99.986

Table 2.5: Power results (linearity test) for scenario two.

Unit Root Testing:

We first report the asymptotic critical values for the unit root test in Table 2.6. Case 1 denotes

raw data, i.e. no deterministic components, Case 2 denotes the case of de-meaned data and Case

3 denotes the case of de-trended data. Here, the sample size is set to T = 10000and the number

of replications to M = 1000000. The results from the size experiments are summarized in Table

α Case 1 Case 2 Case 3

1% 4.730 5.477 6.595

2.5% 3.124 4.722 5.783

5% 3.458 4.137 5.136

7.5% 3.124 3.778 4.739

10% 2.884 3.515 4.450

Table 2.6: Asymptotic critical values for unit root testing.

2.7. For larger sample sizes (T > 500) the test is correctly sized and as the sample size increases it

reaches its nominal level. For smaller sample sizes some minor size distortions are visible but the

overall impression is that the test maintains good size properties also for smaller sample sizes.

For the power experiment for the unit root test we exemplarily show our results for T = 200and

various values for κ,ψ and ϕ (see Table 2.8). For increasing sample size, the results improve which

was seen from the same simulations for T = 500. The results indicate a good overall performance

of the unit root test in all sample sizes considered. The ability to distinguish between a unit

root process and a globally stationary TSTAR model increases if either the difference between
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Case 1 Case 2 Case 3

T α = 1% α = 5% α = 10% α = 1% α = 5% α = 10% α = 1% α = 5% α = 10%

100 0.826 3.898 7.628 0.786 3.484 6.916 0.954 3.830 7.484

200 0.882 4.106 8.246 0.748 3.648 7.436 0.758 3.594 7.218

500 0.912 4.504 9.168 0.864 4.174 8.602 0.828 3.998 8.146

1000 0.932 4.920 9.528 0.904 4.370 9.076 0.862 4.324 8.868

5000 0.952 4.958 10.060 0.916 4.734 9.692 1.048 4.952 9.766

10000 0.984 5.036 10.006 1.004 4.982 9.990 0.966 4.918 9.886

50000 0.974 4.968 10.054 1.000 4.978 10.062 0.998 5.012 9.882

Table 2.7: Size for unit root testing using asymptotic critical values [in %].

the regimes becomes larger or even faster if the sample size increases.

T = 200 Case 1 Case 2 Case 3
P
P
P
P
P
P
PP

ψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1.0 0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1.0 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1.0 0.6 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

1.0 0.7 99.95 99.97 99.97 99.95 10.00 100.00 99.97 10.00 100.00

1.0 0.8 95.52 98.86 99.36 96.58 99.30 99.59 97.65 99.46 99.71

1.0 0.9 45.95 58.63 62.44 55.04 67.01 70.45 65.79 75.30 77.97

1.0 0.95 14.90 18.44 19.47 23.68 27.84 28.76 36.00 39.77 41.77

Table 2.8: Power results for unit root testing using asymptotic critical values [in %]

As empirical studies using smooth transition models such as ESTAR frequently find very small

variances of the innovation term we examine the behavior of the newly developed unit root test

against TSTAR in such a framework. Studying this behavior is critical since Kruse et al. (2010)

show via Monte Carlo simulation that under small error term variances the power of unit root

tests developed for non-linear models rapidly deteriorates. We report simulation results for small

sample sizes of T = 100 (Table 2.9) and T = 500 (Table 2.10) and consider error term standard

deviations of σε = 0.1. The results show satisfying power results even for such small sample

sizes. Low power results are only found for cases in which the difference between the regimes

is only very small or the transition is so slow that only little observations are in the stationary

regime. In these cases it is notoriously hard to distinguish between the two regimes and as a

consequences the power decreases. However, the power is still high enough to deliver reliable

test results and is in particular higher than found by Kruse et al. (2010) for extant test. In the

case T = 500 no decline in power is visible and the test works under small error variances just

as well as under white noise disturbances.

The newly developed test in particular shows better power properties as the test developed by

Kapetanios et al. (2003) and therefore yields more reliable results in empirical applications as

indicated by Kruse (2009).
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T = 100 Case 1 Case 2 Case 3
P
P
P
P
P
P
PP

ψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 77.108 95.104 98.174 79.610 95.388 98.378 84.538 96.526 98.716

1.0 0.4 66.452 88.956 95.106 69.914 90.042 95.444 77.190 92.464 96.662

1.0 0.5 52.768 77.878 87.560 58.408 80.730 88.988 67.572 85.324 91.724

1.0 0.6 38.304 60.896 72.470 44.878 66.622 76.096 56.658 73.874 81.682

1.0 0.7 24.404 40.558 49.668 33.204 48.180 57.018 45.100 59.096 65.972

1.0 0.8 13.952 21.662 26.456 22.466 30.732 35.064 34.442 42.484 47.878

1.0 0.9 6.714 8.604 9.888 13.770 16.748 17.924 24.864 28.176 29.830

1.0 0.95 4.608 5.062 5.298 10.360 11.518 12.048 21.382 21.926 22.620

Table 2.9: Power results for unit root testing [in %] with σε = 0.1

T = 500 Case 1 Case 2 Case 3
P
P
P
P
P
P
PP

ψ1 ϕ1

κ
0.5 0.8 1.0 0.5 0.8 1.0 0.5 0.8 1.0

1.0 0.3 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00

1.0 0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00

1.0 0.5 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.0

1.0 0.6 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00

1.0 0.7 100.00 100.00 100.00 100.00 100.00 100.00 100.000 100.00 100.00

1.0 0.8 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00 100.00

1.0 0.9 93.25 99.09 99.70 94.01 99.19 99.74 95.57 99.38 99.77

1.0 0.95 44.70 63.54 70.72 53.48 70.29 76.52 64.24 77.55 82.39

Table 2.10: Power results for unit root testing [in %] with σε = 0.1
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With regards to the linearity test we find the power only slightly reduced under small error

variances compared to the white noise assumption. These results however are unreported to

save space.

Varying Error Term Variances:

Having described the behavior of the two tests extensively, we now consider two fixed parameter

combinations and illustrate how the power of the two test changes as we let the error term

variance σε become smaller and smaller in accordance with the main statement of this text.

Figures 2.6 and 2.7 are based on the unit root test for the parameters ψ1 = 0.3,ϕ1 = 0.6, κ = 1 and

ψ1 = 0.7,ϕ1 = 0.2, κ = 1, respectively, while σε varies from an almost vanishing value up to 1.5.

One clearly sees that except for very small values of σε we obtain a very high power, independent

of the chosen α where α ∈ {0.01,0.05,0.1} is considered.
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Figure 2.6: Power curve of the unit root test: ψ1 =

0.3,ϕ1 = 0.6 and κ = 1.
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Figure 2.7: Power curve of the unit root test: ψ1 =

0.7,ϕ1 = 0.2 and κ = 1.

Using the same parameter combinations as mentioned above but now for the linearity test we

obtain the curves for the power as shown in Figures 2.8 and 2.9. Although the range of σε

where the power lies below 100% is bigger than for the unit root test, the overall behavior is

still identical and the power increases steeply.
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Figure 2.8: Power curve of the linearity test: ψ1 =

0.3,ϕ1 = 0.6 and κ = 1.
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Figure 2.9: Power curve of the linearity test: ψ1 =

0.7,ϕ1 = 0.2 and κ = 1.
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2.4 Empirical Illustration

To illustrate the application of the newly introduced TSTAR model with empirical data we

investigate one of the most highly debated theories in international finance: the purchasing

power parity (PPP). The initial finding of a unit root in real exchange rates by Meese and

Rogoff (1988) subsequently shifted the interest in modeling real exchange rates to non-linear

models (see e.g. Taylor et al., 2001). Technically spoken the real exchange rate should be non-

linear but globally stationary (i.e. mean-reverting) and not behave like a unit root process to

support PPP.

To ensure comparability we use the same data that has been analyzed by Taylor et al. (2001)

and by Rapach and Wohar (2006). Namely, we analyze monthly real exchange data for Germany

against the US from 1973:02 - 1996:12.2 The series is depicted in Figure 2.10.
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Figure 2.10: Monthly log real exchange rate for Germany

We choose the lag length to be used subsequently with the Bayesian information criterion (BIC)

which yields a lag length of p = 1.

Applying the linearity test against TSTAR described in Section 2.3.1 we obtain a test statistic

of 3.69 which is significant on the α = 5% level of significance and thus we reject the null of

linearity.

Validity of the PPP suggests that the real exchange rate should be a globally stationary process

albeit non-linear. Applying the ESTAR unit root test developed by Kapetanios et al. (2003) as

well as the unit root test against TSTAR developed in Section 2.3.2 yields support for the PPP.

Both test are able to reject the null of a random walk on the α = 5% level of significance. These

test results support the theory that transaction costs in financial markets lead to a non-linear

convergence to a long-run equilibrium and thus support the validity of the PPP as a long run

2The data set is available from David Rapach’s website at: http://pages.slu.edu/faculty/rapachde/Nlfit.zip.

http://pages.slu.edu/faculty/rapachde/Nlfit.zip


2.4. Empirical Illustration 26

concept.

Since the data has already been under study by Taylor et al. (2001) we adopt the parameter

estimates they found and which have also been confirmed by estimations undertaken by Rapach

and Wohar (2006). It should be noted that Taylor et al. (2001) and Rapach and Wohar (2006)

also estimated the location parameter c. However, as their estimate is very close to zero, namely

c = −0.007, we restrict c = 0 in our estimation to keep it simple. Furthermore the authors fix the

parameter of the second regime to be -1 which yields one unit root regime and one white noise

regime. As this seems to be rather restrictive we only fix the unit root regime and estimate the

autoregressive parameter of the second regime.

Table 2.11 shows the estimation results for the parameter γ for the model under the null for the

ESTAR and the TSTAR model respectively.

ESTAR TSTAR

ϕ̂= -1 ϕ̂= -0.023

γ̂ = 0.264 κ̂ = 275.284

σ̂ε = 0.035 σ̂ε = 0.032

Table 2.11: Estimation of the transition parameter under the null.

At a first glance the estimation result for ESTAR looks reasonable. But if we plot the estimated

transition function against the transition variable yt−1 and against time (see Figure 2.11) we

get to the conclusion that the ESTAR model basically reduces to a random walk model as the

transition function is always close or equal to zero effectively switching off the stationary regime.
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Figure 2.11: Left panel: One minus transition function against transition variable. Right panel: One
minus transition function against time.

The figure supports the results that, albeit the parameter estimate for γ leads to a reasonable
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looking transition function (note the range of the y-axis) plotting it against time, γ̂ = 0.264

actually produces a random walk model and by this contradicts PPP caused by a degenerated

transition function. To further investigate whether an ESTAR specification seems appropriate

we also estimate a STAR model using a double logistic form for the transition function

G(·;γ,c1,c2) =
{
1+exp(−γ(yt−1− c1)(yt−1− c2))

}−1
.

The estimation led to ĉ1 = ĉ2 = −0.0069and γ̂ = 0.1719. These parameters are very similar to the

ESTAR results suggesting that the ESTAR model might be inappropriate.

Producing the same plots for TSTAR as for ESTAR in Figure 2.11 we obtain Figure 2.12.
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Figure 2.12: Left panel: One minus transition function against transition variable. Right panel: One
minus transition function against time.

The estimation of a large κ̂ = 275.284 still produces a transition function that is by no means

close to the limit for κ→∞ (see the properties in Section 2.2). In addition we see from the

left panel that the estimated process is far more often in the stationary regime and becomes

a random walk only on few occasions. This finding is in line with theoretical work on PPP.

Deviations from the law of one price may stem from transaction costs between different markets

(see e.g. Sercu et al. (1995)). This notion has subsequently been more refined by Coleman (1995)

in whose model transaction costs create a band of no arbitrage for the real exchange rate. Once

the real exchange rate, as a measure of deviation from PPP, hits the upper or lower threshold

the process becomes mean-reverting to the equilibrium. Once within the transaction cost band,

no trade takes place and the process diverges away from PPP. As a result the real exchange

rate spends most of the time away from the equilibrium (see also the discussion in Taylor et al.

(2001, p.1018) and Taylor (2003, p.444)).
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Figure 2.13: Rescaled real exchange rate with TSTAR transition function.

Figure 2.13 shows the real exchange rate from Figure 2.10 rescaled to be in [ 0,1 ] and the

transition function from the right panel of Figure 2.12. The gray shaded area shows the periods

in which the process behaves like a random walk, i.e. PPP holds exactly. At the very beginning

of the data, when the Bretton Woods system of fixed exchange rates was abandoned in favor

of a free floating exchange rate regime, PPP holds exactly. It then starts to deviate from PPP

until the upper threshold is reached and starts to revert back to the mean. Whenever the real

exchange rate hits the equilibrium it quickly deviates away from exact PPP and we observe that

the real exchange rate behaves like a nonlinear mean reverting process most of the time and like

a random walk when deviation from PPP is near zero (note that the dotted line at 0.5 is the

zero line of the unscaled series).

It is noteworthy that the plot in Figure 2.11 is not unique for this particular data set but

a common finding in empirically estimated ESTAR models. Kruse et al. (2010) for example

support these findings for other real exchange rates (see their Figure 1).

The panels in Figure 2.11 and Figure 2.12 also support the theoretical results that the estimation

of the transition parameter heavily depends on the error term variance σε derived in Section 2.2.

Looking at the estimated values for γ and κ in Table 2.11 and the left panels in Figures 2.11 and

2.12 we obtain a reasonable form of the transition function from a mathematical point of view.

However plotting the transition function against time we see that the estimated function does

not support the hypothesis that the data comes from the assumed data generating process. This

supports that the estimation of γ is heavily influenced by the small error standard deviation.

The estimated κ for the TSTAR model might look awkward at first. However, looking at the

plots in Figure 2.12 this yields a transition function that is not degenerated in the sense that

the actual range exploits its whole domain and it does not behave as in the limiting case (see

Section 2.2). This supports the assumed data generating process, i.e. a globally stationary
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TSTAR model. The estimation of κ in the TSTAR case is by far not so heavily influenced

from the small error standard deviation and thus we can extend the range of possible values

for the transition parameter for which we obtain a non-degenerated transition function. This

also supports the conclusion that we can largely reduce the influence of σε on the transition

parameter by reformulating the transition function G with respect to the ESTAR setting.

2.5 Conclusions

We have studied the ESTAR and TSTAR model, two competing models of the STAR family

sharing the same characteristic properties of their transition functions. Due to their nonlinear

structure, unidentified parameters occur for certain combinations of γ and σ2, the transition

parameter and the error term variance, respectively. This phenomena has not been studied

systematically before although it is of importance in applications.

In the ESTAR setting, very small values of σ2, among others, yield in particular an unidentified

γ, making a consistent estimation of γ nearly impossible. In Theorem 2.2.4 we verified this by

showing that the variance of the conditional Maximum Likelihood estimator γ̂ tends to infinity

as σ2 vanishes. Hence, in order to estimate γ, somewhat unpleasant modifications need to be

incorporate into the optimization routine.

In order to avoid this, we define the TSTAR model where the transition parameter becomes

unidentified much later as σ2→ 0 compared to the ESTAR model. As a consequence, the pa-

rameter can be included in the parameter vector that is to be estimated. By deriving a linearity

and a unit root test for the TSTAR model we support our opinion that this new model is indeed

a worthy alternative, applicable to the same situations and should therefore be preferred to the

ESTAR model.

This conclusion is illustrated by fitting both models to the same data set containing real ex-

change rates. The estimators one obtains in the ESTAR setting do not allow for a meaningful

interpretation of the fitted model as one regime is basically switched off. One can clearly see that

this is the result of the identification problem caused by a small error term variance. Contrary

to that, the fitted TSTAR model allows for switching between the two regimes, leading to a

better fit, although the estimators for γ and σ2 look not very promising without interpreting

them in the right context.

As this text deals with a topic that is not well studied yet, there are many possible open ques-

tions and possibilities how to go from here. The most interesting question at the moment is

whether it is possible to quantify and compare the regions for which (γ,σ) cause the identifica-

tion problem in both regimes. A more theoretical, in depth study of the TSTAR model would

be needed for this. Also, a general theory about a whole class of transition functions G sharing

some characteristic properties would be very helpful to fully understand STAR models.
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2.6 Appendix: Proofs and Technical Lemmas

Lemma 2.2.3 is stated in terms of the ESTAR model. However, properties (i)-(iii) hold more

generally. Therefore in the proof below we consider the models

yt =
[

ϑ+ ξexp(−γη(y2
t−1))

]

yt−1+ εt, t ∈ Z,

for η ∈ {η1 : [0,∞)→ IR, η1(z) = z; η2 : [0,∞)→ IR, η2(z) = log(1+ z) }. Note that η1 corresponds to

the ESTAR model and η2 to the TSTAR model. The proof of property (iv) depends heavily on

η1 and can therefore not be generalized although we believe that (iv) also holds for η2.

Proof of Lemma 2.2.3.

Ad (i): Geometric ergodicity follows from general conditions for ergodicity of nonlinear time

series which are satisfied due to | ξ | + | ϑ |< 1 (see in particular Example 8.2 in Yao and Fan

(2005)).

Ad (ii): In order to prove that the density of yt is symmetric around zero for all t we use an

inductive argument. Let y0 = ε0 which then has a symmetric density by choice. Now, let t ≥ 1

and assume that yt−1 has a symmetric density and recall from (2.6) that

yt =
[

ϑ+ ξ(1−G(ηi(y
2
t−1)))

]

yt−1+ εt =
[

ϑ+ ξexp(−γηi(y
2
t−1))

]

yt−1+ εt, t ≥ 1, i = 1,2.

We know from Lemma 2.6.1 that
[

ϑ+ ξexp(−γηi(y2
t−1))

]

yt−1, i = 1,2, has a symmetric density

around zero. As the same holds for εt by assumption, it follows from Lemma 2.6.2 that also the

denisty of yt is symmetric around zero due to yt−1 and εt being independent.

The above argument requires the stationary distribution Fs of yt to have a symmetric density.

Ad (iii): Let n,k ∈ IN0 and t ∈ Z. Then the density of exp(−nγηi(y2
t ))y2k+1

t , i = 1,2, is symmetric

around zero by combining (ii) with an application of Lemma 2.6.1 choosing a = 0, b = 1 and

c = nγ > 0. Hence, IE
[

exp(−nγy2
t )y2k+1

t

]

= 0.

Ad (iv): Let n ∈ IN0,k ∈ IN. In order to show that IE
[

exp(−nγy2
t )y2k

t

]

behaves asymptotically like

σ2k as σ goes to zero we use an inductive argument and determine two sequences {lk(σ)}σ>0 and

{uk(σ)}σ>0 such that for all t

lk(σ) ≤
IE

[

exp(−nγy2
t )y2k

t

]

σ2k
≤ uk(σ)

with limσ↓0 lk(σ) = limσ↓0 uk(σ) = ck for some constants ck.

The sequences {lk(σ)}σ>0 and {uk(σ)}σ>0 are determined by the even moments of the process yt

due to

IE
[

exp(−nγy2
t )y2k

t

]

σ2k
≤

IE
[

y2k
t

]

σ2k
(2.20)
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and

IE
[

exp(−nγy2
t )y2k

t

]

σ2k
≥

IE
[

(1−nγy2
t )y2k

t

]

σ2k
≥

IE
[

y2k
t

]

σ2k
−nγ

IE
[

y2k+2
t

]

σ2k+2
σ2 (2.21)

using exp(x) ≥ 1+ x, x ∈ IR. Note that we have for k ∈ IN0, t ∈ Z,

IE
[

y2k
t

]

= IE
[[[

ϑ+ ξexp(−γy2
t−1)

]

yt−1+ εt

]2k
]

=

∑

j∈J

(

2k
j

)

IE
[[

ϑ+ ξexp
(

−γy2
y−1

)]2k− j
y2k− j

t−1

]

IE
[

ε
j
t

]

=

∑

j∈J

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξν IE
[

exp
(

−νγy2
t−1

)

y2k− j
t−1

]

cε, jσ
j (2.22)

where J = { j = 0, . . . ,2k : j mod 2 = 0} as the expected value of any product of yt−1 and εt with

odd powers vanishes and where IE[ ε j
t ] = cε, jσ j with constants cε, j due to Assumption 2.2.2.

Let t = 1 and assume y0 ∼ N(0,σ2). Then, for m!! being the product of every odd number from

1 to m with (−1)!! = 0!! = 1,

IE
[

y2k
1

]

σ2k
→

∑

j∈J

(

2k
j

)

(ϑ+ ξ)2k− j cε, j (2k− j−1)!! as σ ↓ 0

due to the following argument. Formula (2.22) implies

IE
[

y2k
1

]

=

∑

j∈J

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξν cε, jσ
j
∫

IR
y2k− j 1

√
2πσ

exp

(

−νγy2− 1
2

y2

σ2

)

dy.

As the exponent of the exponential term can be written as

−νγy2− 1
2

y2

σ2
= −1

2

[

y2(1+2σ2νγ)

σ2

]

= y2





σ
√

1+2σ2νγ





−2

we obtain with f being the density of a N(0,σ2/(1+2σ2νγ)) distribution

IE
[

y2k
1

]

=

∑

j∈J

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξν cε, jσ
j 1
√

1+2σ2νγ

∫

IR
y2k− j f (y)dy

=

∑

j∈J

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξν cε, jσ
j 1
√

1+2σ2νγ

σ2k− j

(√

1+2σ2νγ
)2k− j

(2k− j−1)!!

=

∑

j∈J

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξν cε, jσ
2k (2k− j−1)!!

1
(
1+2σ2νγ

)(2k− j+1)/2
.
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As the last factor in the previous display converges to one as σ goes to zero, we obtain

lim
σ↓0

IE
[

y2k
1

]

σ2k
=

∑

j∈J

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξν cε, j (2k− j−1)!!

=

∑

j∈J

(

2k
j

)

(ϑ+ ξ)2k− j cε, j (2k− j−1)!! .

This proves (2.8) for t = 1 by combining the previous display with (2.20) and (2.21).

Now assume that (2.8) holds for t−1, t ≥ 2. Then, due to stationarity IE
[

y2k
t

]

= m2k, independent

of t. Formula (2.22) then implies

m2k = ϑ2kIE
[

y2k
t−1

]

+

2k∑

ν=1

(

2k
ν

)

ϑ2k−νξνIE
[

exp
(

−νγy2
t−1

)

y2k
t−1

]

+

∑

j∈J\{0}

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξνIE
[

exp
(

−νγy2
t−1

)

y2k− j
t−1

]

cε, jσ
j

and eventually

m2k

σ2k
=

1

1−ϑ2k





2k∑

ν=1

(

2k
ν

)

ϑ2k−νξν
IE

[

exp
(

−νγy2
t−1

)

y2k
t−1

]

σ2k

+

∑

j∈J\{0}

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξν
IE

[

exp
(

−νγy2
t−1

)

y2k− j
t−1

]

σ2k− j
cε, j




=: uk(σ)

with

lk(σ) =
m2k

σ2k
−nγ

m2k+2

σ2k+2
σ2
= uk(σ)−nγ

m2k+2

σ2k+2
σ2

and

lim
σ↓0

lk(σ) = lim
σ↓0

uk(σ)

=
1

1−ϑ2k





2k∑

ν=1

(

2k
ν

)

ϑ2k−νξνck +

∑

j∈J\{0}

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξν ck− j/2 cε, j





by assumption so that the constants ck,k ∈ IN, can be determined recursively by

ck =
1

1− 1
1−ϑ2

[

(ϑ+ ξ)2k −ϑ2k
]

1

1−ϑ2k

∑

j∈J\{0}

(

2k
j

)2k− j∑

ν=0

(

2k− j
ν

)

ϑ2k− j−νξν ck− j/2 cε, j

=
1

1− (ϑ+ ξ)2k

∑

j∈J\{0}

(

2k
j

)

ck− j/2 cε, j (ϑ+ ξ)
2k− j

with c0 = 1.

According to statement (i) the effect of the initially chosen distribution for y0 dies out as t
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increases due to the ergodicity. Hence, condition (2.8) holds for the underlying stationary

distribution Fs of yt and hence for all t ∈ Z regardless the chosen distribution for y0. �

Lemma 2.6.1.

Let X be a real valued random variable with symmetric density around zero. Then also the

density of [a+bexp(−cη(X2))]X2k+1 for some k ∈ IN0 and a,b,c ∈ IR, |a|+ |b| > 0,c ≥ 0, with η ∈ {η1 :

[0,∞)→ IR, η1(z) = z; η2 : [0,∞)→ IR, η2(z) = log(1+ z) } is symmetric around zero.

Proof.

The result is obtained by applying theorems deriving the density of a transformed random

variable (see e.g. Theorems 22.2 and 22.3 in Behnen and Neuhaus (1995)).

First note, that the condition |a|+ |b| > 0 simply guarantees that a and b do not vanish at the

same time making the statement of the lemma redundant. Wlog we restrict ourselves to the

case c > 0 as c = 0 is incorporated in the computations for b = 0.

First let b = 0. For a ∈ IR\ {0} and c > 0 define gk : IR→ IR, gk(x) = ax2k+1 for some fixed k ∈ IN0 as

well as Yk = gk(X). Since g′k(x) = (2k+1)ax2k , x ∈ IR, and g−1
k (x) = (x/a)1/(2k+1), x ∈ IR, we obtain

fYk(y) =






0 for y = 0,

fX (g−1
k (y))

|g′k(g−1
k )(y)| =

fX
(

y
1

2k+1 a−
1

2k+1

)

(2k+1)
(

y
1

2k+1 a−
1

2k+1

)2k for y , 0,

where fX and fYk denote the densities of X and Yk, respectively. Note that (−y/a)1/(2k+1)
=

(−1)1/(2k+1)(y/a)1/(2k+1)
= −(y/a)1/(2k+1) which implies, for y , 0,

fYk(−y) =
fX

(

−y
1

2k+1 a−
1

2k+1

)

(2k+1)
(

−y
1

2k+1 a−
1

2k+1

)2k
=

fX

(

y
1

2k+1 a−
1

2k+1

)

(2k+1)
(

y
1

2k+1 a−
1

2k+1

)2k
= fYk(y), (2.23)

where the second last equality is due to the symmetry of fX.

Now consider the case b , 0 which is incomparable more complex. Let a ∈ IR and c > 0 with

gk,i : IR→ IR, gk,i(x) = (a+bexp(−cηi(x2)))x2k+1 for i = 1,2 and some fixed k ∈ IN0 and Yk,i = gk,i(X).

Contrary to the case b = 0, gk,i can now change its monotonic behavior and might therefore be

only piecewise invertible.

We can verify the following properties (see below) for all k ∈ IN0:

(i) gk,i is continuous on IR with gk,i(0)= 0, i = 1,2,

(ii) gk,i is point symmetric around zero, i = 1,2,

(iii) the limit behavior for x→∞ can be described by

lim
x→∞

gk,i(x) = lim
x→∞

(

ax2k+1
+b

x2k+1

ecηi(x2)

)

= lim
x→∞

ax2k+1
=






−∞ for a < 0,

κi for a = 0,

∞ for a > 0

(2.24)
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with

κi =






0 for i = 1,

0 for i = 2,c > k+1/2,

1 for i = 2,b > 0,c = k+1/2,

−1 for i = 2,b < 0,c = k+1/2,

∞ for i = 2,b > 0,c < k+1/2,

−∞ for i = 2,b < 0,c < k+1/2.

(iv) the monotonic behavior of gk,1, k ∈ IN0, (corresponding to the ESTAR model) can be sum-

marized in the following table, where ξk,1 =
2

2k+1e−
2k+3

2 :

b > 0 a > ξk,1 b > 0 gk,1 is strictly monotone increasing

b > 0 a < −b < 0 gk,1 is strictly monotone decreasing

b > 0 a ∈ [−b, ξk,1b ]

= [−b,0] gk,1 changes its monotone behavior twice, starting

with being strictly decreasing

∪ (0, ξk,1b ] gk,1 changes its monotone behavior four times, starting

with being strictly increasing

b < 0 a > −b > 0 gk,1 is strictly monotone increasing

b < 0 a < ξk,1 b < 0 gk,1 is strictly monotone decreasing

b < 0 a ∈ [ ξk,1b,−b ]

= [ ξk,1 b,0) gk,1 changes its monotone behavior four times, starting

with being strictly decreasing

∪ [0,−b ] gk,1 changes its monotone behavior twice, starting

with being strictly increasing

If gk,1 changes its monotonic behavior twice, it always happens at

w1,2 = ±

√

−W0

(

− a
b

2k+1
2 e

2k+1
2

)

+
2k+1

2

c

no matter which parameter combination for a and b we consider. Here, W0 denotes the prin-

cipal branch of the Lambertsche W-function with domain [−exp(−1),∞), i.e. the function

that satisfies x =W0(x)exp(W0(x)). If gk,1 changes its behavior four times, it additionally
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happens at

w3,4 = ±

√

−W−1

(

− a
b

2k+1
2 e

2k+1
2

)

+
2k+1

2

c

where W−1 is the second real branch of the W-function defined on [exp(−1),0).

Figures 2.14 and 2.15 illustrate the function g0,1 for different parameters a and b with

c = 1. While we choose b = 1, a = −1.2 < −b in Figure 2.14, the latter corresponds to

b = 1, a = 0.2 ∈ (0,−ξ0,1b ] = (0,0.4463].

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Figure 2.14: g0,1 with a = −1.2 and b = 1.
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−
0.

5
0.

0
0.

5

Figure 2.15: g0,1 with a = 0.2 and b = 1.

(v) the monotonic behavior of gk,2, k ∈ IN0, (corresponding to the TSTAR model) could be

summarized in a similar explicit table as in (iv) using ξk,c,2 =
1(2c−2k−1)

(2k+1)(2c+2) depending on

different ranges for the parameter c. Later on it is only important that gk,2 is piecewise

strictly monotone so that the details are skipped due to space. However the proof is exactly

the same as for (iv).

Properties (i)-(iii) are easily verified. We prove property (iv) by writing, for x ∈ IR,

g′k,i(x) = (2k+1)bx2k
[

a
b
+exp(−cηi(x2))

(

1− 2
2k+1

cx2η′i (x2)

)]

= (2k+1)bx2k
[a
b
−hk,i(x)

]

,

with

hk,i : IR→ IR, hk,i(x) = − 2
2k+1

exp(−cηi(x2))

(

2k+1
2
− cx2η′i(x2)

)

and

h′k,i : IR→ IR, h′k,i(x) = − 2
2k+1

cx exp(−cηi(x2)) ·
(

−2η′i(x2)−2x2η′′i (x2)− 2k+1
2

2η′i (x2)+2cx2η′i(x2)2
)

Consider i = 1. Let k ≥ 0 and assume b > 0.
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Then (2k+1)bx2k > 0 for x ∈ IR \ {0}. Hence, g′k,1(x) > 0, x ∈ IR \ {0}, (i.e. strictly monotone increas-

ing) if a/b > hk,1(x) for all x ∈ IR \ {0}. As

max
x∈IR

hk,1(x) = max





hk,1(0),hk,1



±
√

2k+3
2c









=

2
2k+1

exp

(

−2k+3
2

)

=: ξk,1,

we obtain a strictly increasing gk,1 for a/b > ξk,1 and by a similar argument a strictly decreasing

gk,1 as long as a/b < −1 since

min
x∈IR

hk,1(x) = hk,1(0) = −1.

For a/b ∈ [−1, ξk,1 ] the monotone behavior changes, driven by the sign of the parameter a (see

(2.24)). Note that g′k,1(x) = 0 whenever x = 0 (k ≥ 1) or

a
b
+

(

2k+1
2
− cx2

)

2
2k+1

exp(−cx2) = 0

which is equivalent to

(

2k+1
2
− cx2

)

exp

(

2k+1
2
− cx2

)

= −a
b

2k+1
2

exp

(

2k+1
2

)

. (2.25)

For solving (2.25) we need to consider two different cases. Note that for a ∈ (0, ξk,1 b ], the right

hand side of (2.25) is contained in [−exp(−1),0), hence in the range where W has two real-values

branches, denoted by W0 and W−1. Therefore, from (2.25), for j = 0,−1,

2k+1
2 − cx2

= W j

(

− a
b

2k+1
2 exp

(
2k+1

2

))

(2.26)

⇔ w1,2,3,4 = ±
√

−W j(− a
b

2k+1
2 exp( 2k+1

2 ))+ 2k+1
2

c

which are well defined as

−W0

(

−a
b

2k+1
2

exp

(

2k+1
2

))

≥ −W0

(

2k+1
2

exp

(

2k+1
2

))

≥ −2k+1
2

and

−W−1

(

−a
b

2k+1
2

exp

(

2k+1
2

))

≥ −W−1
(−exp(−1)

)
= 1.

For a ∈ [−1,0] the argument of W j in (2.26) is in the domain of only one real branch, namely

W0, so that (2.25) has only two solution leading to two monotone changes of gk,1.

An analogue argument shows the behavior of gk if b < 0.

For i = 2 one could work out the details in the same way as for i = 1.

For those combinations of a,b and c where gk,i, i = 1,2, is strictly monotone on IR, symmetry of

the denisty of fYk,i can be derived in the same way as in (2.23). Note that g′k,i, i= 1,2, is symmetric

around zero and that g−1
k,i , i = 1,2, is point symmetric around zero as an inverse function shares



2.6. Appendix: Proofs and Technical Lemmas 37

this property with gk,i, i = 1,2. Thus, for y ∈ IR, i = 1,2,

fYk,i(−y) =
fX

(

g−1
k,i (−y)

)

∣
∣
∣
∣g′k,i

(

g−1
k,i (−y)

)∣∣
∣
∣

=

fX

(

−g−1
k,i (−y)

)

∣
∣
∣
∣g′k,i

(

−g−1
k,i (−y)

)∣∣
∣
∣

=

fX

(

g−1
k,i (y)

)

∣
∣
∣
∣g′k,i

(

g−1
k,i (y)

)∣∣
∣
∣

= fYk,i(y).

For the remaining parameter combinations of a,b and c we divide the real line in disjunct open

intervals on which gk,i possesses a strictly monotone behavior. As an example we present the

argument for the situation i= 1, b> 0 and a ∈ (0, ξk,1 b ] where the open intervals can be determined

explicitly. All other cases can be done in an analogous way and are omitted due to space. Define

G(1)
= (−∞,−z2)∪ (z2,∞), G(2)

= (−z2,−z1)∪ (z1,z2) and G(3)
= (−z1,z1)

where z1 = w1 and z2 = w3. On the open sets G( j), j = 1, . . . ,3, g( j)
k,1 := gk,11lG( j) , j = 1, . . . ,3, is strictly

monotone with derivatives and inverse functions g( j)′

k,1 and (g( j)
k,1)−1, respectively. Hence, from

Theorem 22.3 of Behnen and Neuhaus (1995), k ∈ IN0,

fYk,1(y) =
3∑

j=1

fX

((

g( j)
k,1

)−1
(y)

)

∣
∣
∣
∣
∣
g( j)′

k,1

((

g( j)
k,1

)−1
(y)

)∣∣
∣
∣
∣

1ly∈Hk,i , y ∈ IR,

for Hk,i = gk,1(G(i)). As Hk,1∪Hk,2∪Hk,3 = IR, as g( j)′

k,1 , j = 1, . . . ,3, are symmetric around zero and as

(g( j)
k,1)−1, i = 1, . . . ,3, are point symmetric around zero, we obtain fYk,1(−y) = fYk,1(y) for all y ∈ IR. �

Lemma 2.6.2.

Let X and Y be independent real valued random variables with densities fX and fY , respectively.

Symmetries of fX around c ∈ IR ( fX(x+ c) = fX(−x+ c), x ∈ IR) and fY around d ∈ IR then imply

that the convolution density fZ of Z = X+Y is symmetric around c+d.

Proof.

The density fZ of Z is given by

fZ(z) =
∫

IR
fX(z− x) fY(x)dx, z ∈ IR.

Hence, for all x ∈ IR,

fZ(−x+ c+d) =
∫

IR
fX(−x+ c+d− y) fY(y)dy =

∫

IR
fX(−(x−d+ y)+ c) fy(y)dy

=

∫

IR
fX(x−d+ y+ c) fy(y)dy =

∫

IR
fX(x+ c+d+ y−2d) fY(y)dy

=

∫

IR
fX(x+ c+d− z) fY(−z+2d)dz =

∫

IR
fX(x+ c+d− z) fY(−(z−d)+d)dz

=

∫

IR
fX(x+ c+d− z) fY(z−d+d)dz = fZ(x+ c+d). �
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Proof of Theorem 2.2.4.

Let β̂n be the conditional Maximum Likelihood estimator of β = (ϑ,ξ,γ). Then by Theorem 3.2

of Tjøstheim (1986)

n1/2(β̂n−β)
d→ N(0,σ2U−1)

and where the matrix U =
(

ui j

)

i, j=1,...,3
is given by

U =





IE[y2
t−1] IE[y2

t−1 exp(−γy2
t−1)] −IE[ξy4

t−1 exp(−γy2
t−1)]

IE[y2
t−1 exp(−γy2

t−1)] IE[y2
t−1 exp(−2γy2

t−1)] −IE[ξy4
t−1 exp(−2γy2

t−1)]

−IE[ξy4
t−1 exp(−γy2

t−1)] −IE[ξy4
t−1 exp(−2γy2

t−1)] IE[ξ2y6
t−1 exp(−2γy2

t−1)]





.

In order to obtain the limiting behavior of Var(γ̂) we therefore study

σ2
(

U−1
)

33
=

σ2

det(U)
det





u11 u12

u21 u22





. (2.27)

The last factor of (2.27) behaves like O(σ4) for σ→ 0 as

lim
σ↓0

σ−4det





u11 u12

u21 u22





= lim
σ↓0

σ−4
(

IE[y2
t−1] IE[y2

t−1 exp(−2γy2
t−1)] −

[

IE[y2
t−1 exp(−γy2

t−1)]
]2
)

= c4

due to Lemma 2.2.3 (iv) for some constant c4. By a similar argument we obtain det(U) =O(σ10).

Hence

lim
σ↓0

σ2

det(U)
det





u11 u12

u21 u22





= lim
σ↓0

σ6σ−4 det





u11 u12

u21 u22





σ10σ−10det(U)
= 0

which finishes the proof. �

Proof of Theorem 2.3.2.

In order to derive the asymptotic distribution of F∗ we first study the asymptotic behavior of

β̂ = (δ̂1,2, δ̂1,4, δ̂1,6). Under the null ∆yt = ut, β̂ can be written as

β̂ =





T∑

t=1

x′t xt





−1 T∑

t=1

x′tut (2.28)
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with

T∑

t=1

x′t xt =





T∑

t=1
y6

t−1

T∑

t=1
y8

t−1

T∑

t=1
y10

t−1

T∑

t=1
y8

t−1

T∑

t=1
y10

t−1

T∑

t=1
y12

t−1

T∑

t=1
y10

t−1

T∑

t=1
y12

t−1

T∑

t=1
y14

t−1





and

T∑

t=1

x′tut =

[
T∑

t=1
y3

t−1ut

T∑

t=1
y5

t−1ut

T∑

t=1
y7

t−1ut

]

.

In order to determine the asymptotic behavior we have to scale the estimator β̂ properly. We

thus multiply β̂ with the scaling matrix Γ = diag(T 2,T 3,T 4) and obtain




Γ
−1

T∑

t=1

x′t xtΓ
−1





−1 

Γ
−1

T∑

t=1

x′tut




= Γβ̂ .

Now the asymptotic behavior of the first part of Γβ̂ follows directly from Hamilton (1989) (p.

479 ff.) and the behavior of the second part follows from the convergence to stochastic integrals

for products of I(1) variables (Theorem 4.2 from Hansen (1992), Sandberg (2009), the CMT and

Itô’s Lemma). This yields the following general result for i ∈ IN>0 and T →∞

1

T (i+1)/2

T∑

t=1

yi
t−1ut ⇒

1∫

0

Bi(r)dB(r) = σ(i+1)






1
(i+1)

B(1)(i+1)− i
2

1∫

0

B(r)dr






.

Given these results the OLS estimator converges as T →∞ as follows

Γβ̂ =




Γ
−1

T∑

t=1

x′t xtΓ
−1





−1 

Γ
−1

T∑

t=1

x′tut




⇒Q−1v

where

Q =





σ6
1∫

0

B6(r)dr σ8
1∫

0

B8(r)dr σ10
1∫

0

B10(r)dr

σ8
1∫

0

B8(r)dr σ10
1∫

0

B10(r)dr σ12
1∫

0

B12(r)dr

σ10
1∫

0

B10(r)dr σ12
1∫

0

B12(r)dr σ14
1∫

0

B14(r)dr
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and

v =





σ4






1
4

1∫

0

B(1)4− 3
2

1∫

0

B(r)dr






σ6






1
6

1∫

0

B(1)6− 5
2

1∫

0

B(r)dr






σ8






1
8

1∫

0

B(1)8− 7
2

1∫

0

B(r)dr










.

The scaled F-statistic we are concerned with reads

F∗ =
1
3
Γβ̂′

[

σ̂2
Γ(X′X)−1

Γ

]−1
Γβ̂ .

By the law of large numbers it is easy to show that under the null as T →∞

σ̂2
=

1
T −4

T∑

t=1

(

∆yt − δ̂0y3
t−1− δ̂1y5

t−1− δ̂2y7
t−1

)2 P→ σ2

and hence

F∗⇒ 1
3σ2

(Q−1v)′(Q−1)−1(Q−1v) =
1

3σ2
v′Q−1v.

Under the alternative ∆yt and yi
t−1,∀i ∈ IN>0 are I(0) and thus it is readily seen that

1
T

T∑

t=1

∆yt = OP(1) and
1
T

T∑

t=1

yi
t−1 = OP(1)

are bounded in probability. Furthermore the innovation process ut is by assumption I(0) and

thus

1
T

T∑

t=1

ut = OP(1)

as well. As

T
1
T

T∑

t=1

x′t xt = T OP(1) = OP(T ) .

and

T∑

t=1

x′tut =

T∑

t=1

x′t

T∑

t=1

ut = T
1
T





T∑

t=1

x′t

T∑

t=1

ut




= T

1
T

T∑

t=1

x′t

︸   ︷︷   ︸

OP(1)

T
1
T

T∑

t=1

ut

︸   ︷︷   ︸

OP(1)

= T 2OP(1) = OP(T 2)
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we get for the OLS estimator β̂, according to (2.28),

β̂ = (OP(T ))−1OP(T 2) = (TOP(1))−1 T 2OP(1) =
1
T

T 2OP(1) = TOP(1) = OP(T ) .

Analogously for the test statistic F∗ it follows that

F∗ =
1

3σ̂2
β̂′(X′X)β̂ =

1

3σ̂2
OP(T )OP(T )OP(T ) =

1

3σ̂2
OP(T 3) .

Hence as T →∞ the test statistic F∗ diverges to infinity. �

Proof of Theorem 2.3.3.

We have to show that the inner product of the regressor matrix including the additional regressors

is asymptotically block diagonal (see e.g. Hamilton (1994) or Hatanaka (1996)). The inner

product (X′X) of the regressor matrix from (2.19) reads





T∑

t=1
y6

t−1

T∑

t=1
y8

t−1

T∑

t=1
y10

t−1

T∑

t=1
y3

t−1∆yt−1 . . .
T∑

t=1
y3

t−1∆yt−p

T∑

t=1
y8

t−1

T∑

t=1
y10

t−1

T∑

t=1
y12

t−1

T∑

t=1
y5

t−1∆yt−1 . . .
T∑

t=1
y5

t−1∆yt−p

T∑

t=1
y10

t−1

T∑

t=1
y12

t−1

T∑

t=1
y14

t−1

T∑

t=1
y7

t−1∆yt−1 . . .
T∑

t=1
y7

t−1∆yt−p

T∑

t=1
∆yt−1y3

t−1

T∑

t=1
∆yt−1y5

t−1

T∑

t=1
∆yt−1y7

t−1

T∑

t=1
∆y2

t−1 . . .
T∑

t=1
∆yt−1∆yt−p

...
...

...
... . . .

...
T∑

t=1
∆yt−py3

t−1

T∑

t=1
∆yt−py5

t−1

T∑

t=1
∆yt−py7

t−1

T∑

t=1
∆yt−p∆yt−1 . . .

T∑

t=1
∆y2

t−p





.

Remember (see e.g Hamilton, 1994, p.517) that an AR(p) process

(1−φ1L−φ2L2− . . .−φpLp)yt = εt

can be written equivalently as

{(1−ρL)− (ζ1L+ ζ2L2
+ . . .+ ζp−1Lp−1)(1− L)}yt = εt

where ρ = φ1+ φ2+ · · ·+ φp and ζ j = −[φ j+1+ φ j+2+ . . .+ φp] for j = 1,2, . . . , p− 1. Under the as-

sumption of a unit root, i.e. ρ = 1, the process can be written as

(ζ1L− ζ2L2− . . .− ζp−1Lp−1)∆yt = εt

or

∆yt = et

where et = (ζ1L− ζ2L2− . . .− ζp−1Lp−1)−1. The behavior of the process yt is such that it fulfills

proposition 17.3 in Hamilton (1994, p.505).
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First, letting et = yt − yt−1 we obtain





T∑

t=1
y6

t−1

T∑

t=1
y8

t−1

T∑

t=1
y10

t−1

T∑

t=1
y3

t−1et−1 . . .
T∑

t=1
y3

t−1et−p

T∑

t=1
y8

t−1

T∑

t=1
y10

t−1

T∑

t=1
y12

t−1

T∑

t=1
y5

t−1et−1 . . .
T∑

t=1
y5

t−1et−p

T∑

t=1
y10

t−1

T∑

t=1
y12

t−1

T∑

t=1
y14

t−1

T∑

t=1
y7

t−1et−1 . . .
T∑

t=1
y7

t−1et−p

T∑

t=1
et−1y3

t−1

T∑

t=1
et−1y5

t−1

T∑

t=1
et−1y7

t−1

T∑

t=1
e2

t−1 . . .
T∑

t=1
et−1et−p

...
...

...
... . . .

...
T∑

t=1
et−py3

t−1

T∑

t=1
et−py5

t−1

T∑

t=1
et−py7

t−1

T∑

t=1
et−pet−1 . . .

T∑

t=1
e2

t−p





.

Using the results (c) and (e) stated in proposition 17.3 in Hamilton (1994, p.505) combined with

the CMT and the results from theorem 2.3.2 we have

(X′X)⇒





Q 0

0 W





where

W =





γ0 γ1 . . . γp−2

γ1 γ0 . . . γp−3
...

... . . .
...

γp−2 γp−3 . . . γ0





, γ j = E[(∆yt)(∆yt− j)]

and where Q is as given in Theorem 2.3.2 but with σk replaced by its long-run counterpart given

by λ = σ/(1− ζ1− . . .− ζp−1). Thus the inner product of the regressor matrix is asymptotically

block diagonal and therefore the distribution of the coefficients δ2
1, δ

4
1 and δ6

1 is independent of

the distribution of the additional regressors.

Using similar arguments as in Theorem 2.3.2 it is straightforward to show that the test is

consistent under (2.19). �
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Evaluating a class of nonlinear time series models
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Evaluating a class of nonlinear time series models

Published as Leibniz University of Hannover Discussion Paper No. 445.

3.1 Introduction

Over the last decade and a half the interest in nonlinear time series models has been grown

steadily. Especially the class of smooth transition autoregressive (STAR) models, initiated by

the work of Bacon and Watts (1971) and popularized by Teräsvirta (1994), has enjoyed great

success. A lot of work in this area has been devoted to estimation, specification, testing and

applications such as forecasting. For a recent review of this field see e.g. Potter (1999) and van

Dijk et al. (2002b).

Within the class of STAR models the two most notable are the logistic STAR (LSTAR) and

the exponential STAR (ESTAR) model. The ESTAR model in particular has been very popular

with empirical investigations of economic theories such as purchasing power parity (PPP) or

the Fisher hypothesis (see e.g. Taylor et al. (2001) and Rose (1988)). It is by now well known

that the estimation of the parameters in ESTAR models is notoriously hard as noticed early

by Haggan and Ozaki (1981), Tong (1990) or Teräsvirta (1994). In fact, as shown by Heinen

et al. (2011) some crucial parameters in ESTAR models are unidentified if the variance of the

innovation term becomes very small. This is especially important within the context of real

exchange rates as estimated innovation variances are usually extremely small (see e.g. Gatti

et al. (1998), Öcal (2000), Taylor et al. (2001) or Rapach and Wohar (2006) among others).

In order to remedy this problem Heinen et al. (2011) propose a new type of nonlinear model

formulation called TSTAR that maintains the desirable properties of ESTAR but reduces the

estimation problem for the most part. In addition the authors propose a linearity test and an

unit root test for the new model.

A complete account of this new model however would require to run through all steps of the

empirical modeling cycle devised by Teräsvirta (1994). This paper is mainly devoted to the

evaluation stage of the modeling cycle and proposes a suite of Lagrange multiplier (LM) tests

designed for this newly developed model. The development of specialized parametric tests for

nonlinear models is important since standard misspecification tests such as the well known Ljung-

Box test have been shown to be badly sized when the true data generating process is nonlinear

(see Eitrheim and Teräsvirta (1996)). However, before considering residual based tests we treat

the problem of how to choose between two different nonlinear models by proposing a direct test

based on the encompassing principle.

The paper is organized as follows: In section 3.2 we review the class of models under study and

the empirical modeling cycle for nonlinear models. A method to discriminate between competing

nonlinear model formulations is described in section 3.3. In section 3.4 we propose different tests

http://www.wiwi.uni-hannover.de/Forschung/Diskussionspapiere/dp-445.pdf
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against serial dependency of the residuals, no remaining nonlinearity of the residuals as well

as parameter constancy of the estimated model. In addition we cover evaluation via impulse

response analysis. In section 3.6 we study the finite sample performance of the afore mentioned

tests. In section 3.7 we run through the whole modeling cycle to model real exchange rates

before section 3.8 concludes. Some additional results are collected in the appendix 3.9.

3.2 The modeling cycle

A general STAR model is given by two autoregressive regimes connected by a smooth transition

function. Smoothness means that the transition function changes continuously from zero to one

and therefore governs the transition between the two regimes in a smooth way. Alternatively, a

STAR model can also be interpreted as a continuum of regimes which is passed through by the

process.

In general, univariate STAR(p) models, p ≥ 1 and d ≤ p, are given by

yt = [Ψwt] × [1−G(yt−d;γ,c)] + [Θwt] ×G(yt−d;γ,c)+ εt (3.1)

= [Ψwt] + [Φwt] ×G(yt−d;γ,c)+ εt, t ≥ 1, (3.2)

with εt
iid
∼ (0,σ2).

The parameter vectors Ψ and Θ as well as wt are given by Ψ = (ψ0,ψ1, . . . ,ψp), Θ = (ϑ0,ϑ1, . . . ,ϑp),

and wt = (1,yt−1, . . . ,yt−p)′. For the alternative parametrization in (3.2) we haveΦ= (ϕ0,ϕ1, . . . ,ϕp)=

(ψ0−ϑ0,ψ1−ϑ1, . . . ,ψp−ϑp), i.e. the second regime realizes as sum of Ψ and Φ.

Different choices of the transition function G( · ;γ,c) : IR→ [0,1] lead to different STAR models.

A popular choice is the exponential form leading to the ESTAR model

G(·;γ,c) = 1−exp
{

−γ(yt−d − c)2
}

; γ > 0 . (3.3)

This functional form for the transition function is popular for modeling real exchange rates or

real interest rates (see e.g. Kapetanios et al. (2003)). However the estimation of the parameter

γ that governs the functional form and thereby the transition speed is notoriously hard. In fact

it is shown by Heinen et al. (2011) that

lim
σεt↓0

Var(γ̂)→∞ . (3.4)

As the parameter γ is absolutely crucial in STAR models (see Tong (1990)) this result makes it

almost impossible to obtain reliable estimation results for reasonable small innovation variances.

To remedy this problem Heinen et al. (2011) propose to reformulate the well known transition

function in (3.3) as

G(·;γ,c) = 1−
{

1+ (yt−d − c)2
}−γ

; γ > 0 . (3.5)

The resulting model is called TSTAR model and reduces the identification problem for the most

part. Both transition functions in (3.3) and (3.5) share the same properties which make them
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applicable in the same situations. For further details we refer to Heinen et al. (2011).

The modeling cycle for nonlinear models as proposed in Teräsvirta (1994) consists of three main

steps:

Step 1: Specification

• Specifying a linear autoregressive model via an information criterion such as AIC (see

Akaike (1974)) or BIC (see Schwarz (1978)).

• Testing linearity for different values of d and if it is rejected specify d by minimizing the

p-value of the linearity test via a grid search over possible values of d (see Tsay (1986) or

Teräsvirta (1994)).

• Choosing an adequate transition function by testing a series of nested hypotheses (see

Teräsvirta and Anderson (1992), Teräsvirta (1994) and Escribano and Jordá (2001)).

Step 2: Estimation

• Estimate the specified model using either nonlinear least squares or conditional (quasi)

maximum likelihood. Consistency for these techniques has been established by Klimko

and Nelson (1978) and Tjøstheim (1986) respectively.

Step 3: Evaluation

• Perform residual based tests against serial dependence, no remaining nonlinearity and pa-

rameter constancy as proposed in Eitrheim and Teräsvirta (1996). Evaluate the dynamic

behavior via generalized impulse response function developed by Koop et al. (1996). Mod-

ify the model if necessary.

After an adequate model is identified it can be used either for descriptive purposes or for comput-

ing forecasts. Forecasting techniques for nonlinear models are studied extensively by Clements

and Smith (1997) (see also Granger and Teräsvirta (1993) and Clements and Hendry (1998)).

Specification testing on the first stage, i.e. linearity testing and selecting the transition function,

is partially considered in Heinen et al. (2011) by developing a linearity test for the new model.

This test will be only briefly reviewed here for the sake of completeness. Starting with the model

formulation in (3.2) with transition function in (3.5) Heinen et al. (2011) proceed in the spirit of

Luukkonen et al. (1988) and approximate the nonlinearity by expanding G(·;γ,c) as a Binomial

series which they truncate at a suitable length k. This yields the following general auxiliary

regression for a fixed d ≤ p and k:

yt =

p∑

i=1

φiyt−i +

p∑

j=1

δ
(0)
j yt− j +

p∑

j=1

δ
(1)
j yt− jyt−d +

p∑

j=1

δ
(2)
j yt− jy

2
t−d + . . .+

p∑

j=1

δ
(2k)
j yt− jy

2k
t−d +ut . (3.6)

The null in this auxiliary model reads:

H0 : δ(ℓ)
j = 0 vs. H1 : at least one δ(ℓ)

j , 0; j = 1, . . . , p and ℓ = 0, . . . ,2k .

This null can be tested by using a standard F-test for a subvector of parameters.
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3.3 Choosing the transition function

Selecting an adequate transition function is crucial to capture the in-sample dynamic of the

data generating process properly. A first approach has been made by Teräsvirta and Anderson

(1992) and Teräsvirta (1994). These methods concentrate on discriminating between the two

most popular STAR models, namely ESTAR and LSTAR. Their proposed technique exploits

the properties of the Taylor series expansion of the two nonlinear alternatives and is based on

testing a sequence of nested hypotheses. Using such a procedure involves some problems: First

the size is not under control anymore because of sequential testing. A second problem is that

the classical approach only considers a first order expansion. As Escribano and Jordá (2001)

point out this approximation is only adequate if the location parameter c is restricted to zero a

priori. To circumvent this and related problems they propose to always include cubic and fourth

power terms in the auxiliary regression. This improves the discriminatory power of the test but

as this procedure is still based on sequential testing the size is not under control in neither of

these approaches.

A rather different approach is proposed by Chen (2003). Based on an encompassing principle

for non-nested models from Chen and Kuan (2002, 2007) he directly test whether an ESTAR

or LSTAR formulation is more adequate. In simulations he shows that his approach is more

powerful in detecting the correct specification. It is however important to note that the test

of Chen (2003) is erroneous due to a falsely estimated covariance matrix. Nevertheless, the

principle approach could be applied by using the results in Chen and Kuan (2007).

The TSTAR model was proposed as an alternative to the ESTAR model and therefore we con-

centrate on distinguishing between TSTAR and LSTAR model formulations.

Our approach is related to Chen (2003) in the sense that we also aim to directly test whether

TSTAR or LSTAR is more appropriate. The approach we take is a more straightforward en-

compassing approach to conditional mean testing for non-nested hypotheses as proposed by

Wooldridge (1990a). The idea is that the residuals of the model under the null estimated by

nonlinear least squares should be orthogonal to the gradient of the null model and the residuals

should also be independent of the gradient of the model under the alternative. More formally,

let

{mt(wt,α) : α ∈ A, t = 1,2, . . . ,T } , A ⊂ IRP (3.7)

be the model under the null. In our case this is the TSTAR model in (3.2) together with the

transition function in (3.5). The model under the alternative reads

{µt(wt,β) : β ∈ B, t = 1,2, . . . ,T } , B ⊂ IRQ . (3.8)

In our case this is an LSTAR model defined as in (3.2) with the transition function

G(·;γ,c) = {1+exp(−γ(yt−d − c))}−1 . (3.9)
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Define the residuals under the null as

êt = yt − m̂t(wt, α̂) .

The test considers to test for δ = 0 in

yt = mt(wt,α)+ δ∇βµ(β̂)+ errort, (3.10)

where ∇βµ(β̂) =∇βµ(wt, β̂) is the Q×1 gradient of µt(wt,β) evaluated at the nonlinear least squares

estimate β̂ of β. Denote by ∇αm(α̂) the same P×1 quantity for the null model mt(wt,α). The test

can be carried out by computing

LM = TR2, (3.11)

where T is the sample size and R2 is the coefficient of determination from the regression of êt on

∇βµ(β̂) and ∇αm(α̂). Asymptotically this test statistic follows a χ2(Q) distribution.

If no homoscedasticity is assumed the test can be robustified by using results from Wooldridge

(1990b) and run through the steps described in Procedure 3.1 in Wooldridge (1990a, p. 336).

3.4 Residual based misspecification tests

3.4.1 Test of serial independence

In deriving the evaluation tests for the TSTAR model we roughly follow the steps taken in

Eitrheim and Teräsvirta (1996). However, there are some crucial differences between their tests

and the ones developed during the course of this section.

Consider the following general TSTAR model of order p

yt = [Ψwt] + [Φwt] ×
[

1−
{

1+ (yt−d − c)2
}−γ]
+ut , (3.12)

with Ψ = (ψ0,ψ1, . . . ,ψp), Φ = (ϕ0,ϕ1, . . . ,ϕp) and wt = (1,yt−1, . . . ,yt−p)′. The innovation process ut

is autocorrelated and follows an invertible moving-average process of order q (MA(q))1

ut = [1+α(L)] εt; εt
iid
∼ (0,σ2) , (3.13)

where L denotes the lag operator and α(L) = (α1L+α2L2
+ . . .+αqLq).

Under the null of no serial correlation the innovations ut in (3.12) are iid and under the alternative

they follow (3.13). The testable pair of hypotheses thus reads

H0 : αi = 0 vs. H1 : at least one αi , 0; i = 1, . . . ,q .

1This is not restrictive as this is also the test against innovations following an AR(q) process since they are
asymptotically local equivalent alternatives of each other (see Godfrey (1988, p. 114)).
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Based on results given in Godfrey (1988), we can proceed to develop a Lagrange multiplier (LM)

test against serially correlated innovations.

To keep the notation simple define the so-called skeleton (see Franses and van Dijk (2000))

f (wt;Γ)≔ [Ψwt] + [Φwt] ×
[

1−
{

1+ (yt−d − c)2
}−γ]

, (3.14)

with Γ = (Ψ,Φ,γ,c) and the model becomes

yt = f (wt;Γ)+ut .

Further define

ût ≔ yt − f (wt; Γ̂) ,

where Γ̂ = (Ψ̂, Φ̂, γ̂, ĉ) is the minimizer of

Q =
T∑

t=1

[
yt − f (wt;Γ)

]2
.

The test statistic for the null of no serial correlation can now be obtained as

LM(1) = TR2 , (3.15)

where T is the sample size and R2 is the coefficient of determination from the regression of ût

on lagged residuals ût−1, . . . , ût−q and ẑt =
∂ f (wt;Γ)

∂Γ

∣
∣
∣
∣
Γ̂
. This ’TR2’ variant of the LM test has been

proposed for detecting misspecifications by Breusch (1978) and Godfrey (1978) (see also Godfrey

(1988)).

Eitrheim and Teräsvirta (1996) provide the components needed for computing (3.15) for the

ESTAR and LSTAR case. The respective components for the TSTAR case are as follows:

∂ f (wt;Γ)
∂Ψ

= wt (3.16)

∂ f (wt;Γ)
∂Φ

= wt ×
[

1−
{

1+ (yt−d − c)2
}−γ]

(3.17)

∂ f (wt;Γ)
∂γ

= [Φwt] ×
{[

1+ (yt−d − c)2
]−γ

ln
(

1+ (yt−d − c)2
)}

(3.18)

∂ f (wt;Γ)
∂c

= [Φwt] ×






[

1+ (yt−d − c)2
]−γ

γ (−2γ+2c)

1+ (yt−d − c)2






. (3.19)

Eitrheim and Teräsvirta (1996) point out that such a test can suffer from size distortions in finite

samples because the estimation procedure in the first step may result in a solution in which the

residuals are not perfectly orthogonal to the gradient ẑt. We adopt their proposed remedy for

this situation and take an extra orthogonalization step after estimating the model in (3.12) and

obtaining the residuals. The test can now be performed in three stages:
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(i) Estimate the TSTAR model using either nonlinear least squares or conditional (quasi)

maximum likelihood under the null and obtain the residuals ût.

(ii) Regress ût on the gradient ẑt and obtain the residuals ǔt.

(iii) Regress ǔt on ǔt−1, . . . , ǔt−q and the partial derivatives of f (wt;Γ) evaluated at Γ̂ as detailed

in (3.16) - (3.19) and compute the respective R2.

Under the null of no serial correlation the test statistic follows

LM(1) ∼ χ
2(q) .

3.4.2 Test of no remaining nonlinearity

Since there a numerous ways in which a nonlinear model can be misspecified we restrict ourselves

to the case of additive nonlinearity. Therefore consider the model

yt = [Ψwt] + [Φwt] ×G1(yt−d ;γ1,c1)+ [Ξwt] ×G2(yt−e;γ2,c2)+ εt , (3.20)

where G1(·) and G2(·) are transition functions of the form in (3.5). As the null model we consider

(3.20) but without the second nonlinear component. The respective null can be formulated as

H0 : γ2 = 0 vs. H1 : γ2 > 0 . (3.21)

This situation can also be interpreted as testing a two regime TSTAR model against a three

regime TSTAR model. In this interpretation the test is readily extendable to more general

models containing more than two or three regimes.2

If we want to test the pair of hypotheses in (3.21) we face a similar problem as Luukkonen et al.

(1988) and Heinen et al. (2011) when constructing linearity tests, i.e. that under the null the

model in (3.20) is not fully identified. We circumvent this problem similarly and approximate the

second nonlinearity by using an adequate linear series expansion around γ2 = 0. As a Taylorian

expansion is impractical here we follow Heinen et al. (2011) and use a Binomial series expansion

which we truncate after k = 3 summands.

The linear approximation to G2(·) reads

G(3)
2 = γ2(yt−e − c2)2− 1

2
γ2(γ2+1)(yt−e − c2)4

+
1
6
γ2(γ2+1)(γ2+2)(yt−e − c2)6 . (3.22)

After substituting the transition function and combining terms we obtain the auxiliary model

yt = [Ψwt] + [Φwt] ×G1(yt−d ;γ1,c1)+ (3.23)

δ0wt + δ1wtyt−e + δ2wty
2
t−e + δ3wty

3
t−e + δ4wty

4
t−e + δ5wty

5
t−e + δ6wty

6
t−e + rt ,

2To test against a very general form of remaining nonlinearity in the residuals, artificial neural network tests as
studied by Lee et al. (1993) or nonparametric bootstrap tests as in Lee and Ullah (2001) could be used. See also
Teräsvirta et al. (2008).
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where δi, i = 0, . . . ,6, are functions of the parameters Ξ,γ2 and c2 given in the appendix 3.9.

This reformulation solves the identification problem as the parameters γ2,c2 and Ξ are now

multiplicatively connected. The innovation term is now denoted by rt as it not only contains εt

but also the approximation error from truncating the infinite Binomial series. Notice that under

H0, rt = εt.

The pair of hypotheses for the auxiliary model reads

H0 : δi = 0 vs. H1 : at least one δi , 0 ;i = 0, . . . ,6 .

This most general case simplifies if the location parameter c2 is set to zero a priori which is

frequently done in empirical applications. Then only the odd powers remain in the auxiliary

model.

The test can be carried out using the test statistic in (3.15). The corresponding R2 is obtained

from regressing the residuals obtained under the null, i.e. model (3.20) without the second non-

linearity, on the partial derivatives of the regression function evaluated under the null, i.e. ẑt

given in (3.16) - (3.19) and the auxiliary regressors wt and wtyi
t−e, i = 1, . . . ,6 . After the estima-

tion of the null model the additional orthogonalization step (ii) as for the test against serially

correlated innovations can be performed to avoid numerical problems as described at the end of

section 3.4.1.

The resulting test statistic follows

LM(2) ∼ χ
2 (7(p+1)) .

Note that in the model formulation (3.20) the delay parameter of the second nonlinear component

is assumed to be e with e , d but e ≤ p. Similar to determine the delay d described in step 1 of

the modeling cycle the test can be carried out for various values of e and the test yielding the

minimal p-value is chosen as the decisive test decision.

3.4.3 Test of parameter constancy

Testing for the constancy of estimated parameters a well established way of checking the ade-

quacy of linear models (see e.g. Chow (1960), Quandt (1960) or Andrews (1993)). In the context

of nonlinear time series this maintains its importance but the assumption of an abrupt break in

the parameters is questionable. Therefore, we propose a parametric test of the null of parameter

constancy against the alternative that the autoregressive parameters change smoothly over time.

Assuming the parameters of the transition function fixed the model under the alternative reads

yt = [Ψ(t)wt] + [Φ(t)wt] ×G(yt−d;γ,c)+ εt , (3.24)
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with εt
iid
∼ N(0,1). The parameter vectors Ψ(t) and Φ(t) are now functions of time and can be

represented as

Ψ(t) = Ψ+λ1K(t;γ1,c1) (3.25)

Φ(t) = Φ+λ2K(t;γ1,c1) , (3.26)

where λi, i= 1,2 , are vectors conformable to the dimension of Ψ and Φ andK(·) has the functional
form

K(t;γ1,c1) = 1−
{

1+ (t− c1)2
}−γ1

; γ1 > 0 . (3.27)

This function induces a nonmonotonic change which is symmetric around t = c1. If K(·) takes

on the limiting case γ1→∞ then K(·)→ 1−1c1 which corresponds to a single abrupt break only

at t = c1. 1c1 denotes the indicator function at c1. The null of parameter constancy against the

alternative of smoothly changing parameters over time can now be expressed as

H0 : γ1 = 0 vs. H1 : γ1 > 0 .

Again we face an identification problem under the null as γ1 is not identified. We expand K(·)
as Binomial series and truncate after k = 3 summands. This yields

K (3)
= γ1(t− c1)2− 1

2
γ1(γ1+1)(t− c1)4

+
1
6
γ1(γ1+1)(γ1+2)(t− c1)6 . (3.28)

Upon substitution of the approximation in (3.28) into the model in (3.24) we obtain after com-

bining terms the auxiliary regression

yt =
[

Ψwt + δ0wt + δ1twt + δ2t2wt + δ3t3wt + δ4t4wt + δ5t5wt + δ6t6wt

]

+ (3.29)
[

Φwt +β0wt +β1twt +β2t2wt +β3t3wt +β4t4wt +β5t5wt +β6t6wt

]

×G(yt−d;γ,c)+ rt ,

where under the null rt = εt. The coefficients δi, i = 0, . . . ,6, and βi, i = 0, . . . ,6, are functions of

γ1,c1 and λi, i = 1,2 and given in the appendix 3.9.

The pair of hypotheses for the auxiliary model reads

H0 : δi = βi = 0 vs. H1 : at least one δi or βi , 0 ;i = 0, . . . ,6 .

The test against smoothly changing parameters can now be computed using (3.15) where the

R2 is obtained from the regression of the residuals under the null on the gradient ẑt and the

auxiliary regressors. The additional orthogonalization step (ii) is again recommended. The

additional regressors in (3.29) are trending but using Theorem 1 in Lin and Teräsvirta (1994)

the OLS estimates are still normally distributed and the usual asymptotic holds.

The test statistic follows

LM(3) ∼ χ
2 (14(1+ p)) .

As with the test against remaining nonlinearity the auxiliary regression simplifies when c1 = 0 is

assumed a priori. Then only the even powers of the trend remain.
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3.5 Generalized impulse response function

Impulse response functions (IRF) are a well established way to analyze the effect of a shock on

the behavior of a time series model. Traditional impulse response analysis therefore considers

the question: ’What is the effect of a shock of size δ hitting the system at time t on the state

of the system at time t+ n, if no other shock hits the system in the meantime?’. Denote with

δ the size of a shock hitting the system at time t and with ωt−1 a particular realization of the

information set Ωt−1 then we can define the impulse response function more formally as

IRF(n, δ,ωt−1) = E[yt+n |εt = δ,εt+1 = . . . = εt+n = 0,ωt−1] − (3.30)

E[yt+n |εt = εt+1 = . . . = εt+n = 0,ωt−1] .

The second conditional expectation is often called the ’baseline’ which acts as a reference point.

For linear models Koop et al. (1996) point out three properties of the impulse response functions:

Symmetry, i.e. a shock of -1 has exactly the opposite effect of a shock of +1, shock linearity, i.e. a

shock of size 2 has exactly twice the effect as a shock of 1, and the IRF is history independent,

i.e. the past does not effect the response in any way. The authors also provide various examples

to show that these properties do not carry over to the nonlinear case. To remedy this drawbacks

Koop et al. (1996) propose a generalized impulse response function (GIRF) which is itself a

random variable and is defined as

GIRF(n, δ,ωt−1) = E[yt+n |εt = δ,ωt−1] −E[yt+n |ωt−1] . (3.31)

Here, the conditional expectation is conditioned only on the shock δ and the past ωt−1. The

shocks occurring in the meantime are handled by averaging them out. For computing the GIRF

obviously we need the conditional expectation of a nonlinear model which is cumbersome as the

dimension of the integral defining the conditional expectation grows with n (see Granger and

Teräsvirta (1993)). To ease implementation Koop et al. (1996) propose a numerical technique

to compute the conditional expectation by means of Monte Carlo integration (for further details

see Koop et al. (1996, p. 135)).

The history on which we condition the GIRF can also be only a subset of the entire history such

as ωt−1 ∈ A. Where A could be the subset containing only the observations coming from one

regime. Such an approach is useful in determining whether the dynamic behavior is different in

periods of recession compared with expansionary periods (see e.g. van Dijk et al. (2002a) and

Kapetanios (2003)).

The GIRF can also be used to analyze whether the model under consideration produces asym-

metric effects over time. This could be done as in Potter (1995) by defining

AS Y M(n, δ,ωt−1) =GIRF(n, δ,ωt−1)+GIRF(n,−δ,ωt−1) . (3.32)

Another use of the GIRF is to examine the persistence of shocks (see Koop et al. (1996)). If a

time series model is stationary, at least globally, then the effect of a shock should eventually fade
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away to zero if the horizon n goes to infinity. As a consequence the density of the GIRF defined

by (3.31) should collapse to a single spike at zero. Therefore, the dispersion of the densities

of the GIRF at different horizons n can be used as a pragmatic measure of the persistence of

shocks.

3.6 Finite sample properties

To study the behavior of the tests in finite samples we conduct a small scale simulation study.

We report size results from simulating the following TSTAR process

yt = 0.7yt−1−0.5yt−1

[

1−
{

1+ y2
t−1

}−1
]

+ εt , (3.33)

where εt
iid
∼ N(0,1). The location parameter is set to c = 0 only to reduce computational burden

in the estimation process and it does not effect the results reported here.

We study different sample sizes of T = 300,500,1000. For all time series generated we discard

the first 500 observations in order to be independent of the initial values. The first step in each

simulation is to compute the linearity test against TSTAR proposed by Heinen et al. (2011). If

the null cannot be rejected at the 5% level of significance the series is discarded and a new one

is simulated. If the null is rejected the size or power experiment is conducted. This is done until

the number of replication M = 50000 is reached. Applying the linearity test in the first step is

done to avoid the estimation of a series in which there is not much evidence of nonlinearity.

The results of the size experiment for the test against LSTAR models from section 3.3 are shown

in Table 3.1.

α T = 300 T = 500 T = 1000

1% 0.950 0.912 0.922

5% 4.822 4.844 4.750

10% 9.900 9.890 9.956

Table 3.1: Empirical size of the test against LSTAR [in %].

The size of the test procedure to choose between competing STAR formulations shows virtually

no distortions in the considered sample sizes. This is especially notable as the encompassing test

to discriminate between ESTAR and LSTAR proposed by Chen (2003) is generally undersized.

The power of the test against LSTAR was simulated using the following LSTAR specification

as alternative:

yt = 0.7yt−1−0.5yt−1
[
1+exp(−2yt−1)

]−1
+ εt .

The results are given in Table 3.2.
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α T = 300 T = 500 T = 1000

1% 21.050 39.078 67.472

5% 39.838 57.910 78.750

10% 50.675 66.920 83.512

Table 3.2: Empirical power of the test against LSTAR [in %].

The power of the testing procedure shows reasonable discriminatory power of the test. In

particular it yields better results than the selection procedures of Teräsvirta and Anderson

(1992) and Teräsvirta (1994), relying on the simulation results in Chen (2003). Compared to

the test procedure for the ESTAR–LSTAR case of the latter author the power is comparable in

most settings. In some cases the power of the test of Chen (2003) is clearly higher but given the

serious size distortions3 the power of his test is not readily interpretable.

When studying the empirical power of the test against serially correlated innovations described

in section 3.4.1 we simulate from (3.33) but assume that the innovation process follows an AR(1)

process ut = ρut−1+ εt, with εt
iid
∼ N(0,1) and ρ = 0.2,0.4,0.6.

The results for the size and power experiment are summarized in Table 3.3 and Table 3.4

respectively.

T = 300 T = 500 T = 1000

α q = 1 q = 2 q = 5 q = 1 q = 2 q = 5 q = 1 q = 2 q = 5

1% 1.066 1.044 0.990 0.982 1.072 0.910 1.074 0.982 1.014

5% 5.254 5.208 5.022 5.074 5.186 4.892 5.362 5.028 5.100

10% 10.302 10.506 10.104 10.234 10.438 10.032 10.164 10.240 10.100

Table 3.3: Empirical size of the test of no innovation correlation [in %].

The results in Table 3.3 show that the empirical size is always very close to its nominal level.

Although some minor distortions are visible the overall result confirms a satisfactorily behavior

of the test in finite samples.

3In some settings he obtains a size of only 0.5% at a nominal α = 5% level.
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ρ = 0.2 T = 300 T = 500 T = 1000

α q = 1 q = 2 q = 5 q = 1 q = 2 q = 5 q = 1 q = 2 q = 5

1% 4.030 7.210 4.112 18.004 12.424 7.038 38.910 29.094 17.606

5% 10.036 20.176 13.880 38.422 30.090 20.644 62.968 52.822 37.888

10% 14.276 30.718 23.064 50.936 42.136 31.470 74.304 65.226 50.902

ρ = 0.4 T = 300 T = 500 T = 1000

α q = 1 q = 2 q = 5 q = 1 q = 2 q = 5 q = 1 q = 2 q = 5

1% 43.138 32.416 19.384 68.482 57.274 40.060 95.498 91.406 81.562

5% 67.250 56.998 41.046 86.474 78.716 64.146 98.962 97.478 93.382

10% 77.660 68.994 54.452 92.132 86.608 75.366 99.568 98.828 96.610

ρ = 0.6 T = 300 T = 500 T = 1000

α q = 1 q = 2 q = 5 q = 1 q = 2 q = 5 q = 1 q = 2 q = 5

1% 75.702 65.084 46.986 94.442 89.720 77.784 99.950 99.814 99.100

5% 90.392 84.140 70.484 98.626 97.014 91.434 99.994 99.986 99.846

10% 94.778 90.658 80.636 99.398 98.576 95.508 99.996 99.992 99.946

Table 3.4: Empirical power of the test of no innovation correlation [in %].

The results for the empirical power displayed in Table 3.4 show a similar behavior to the test for

the ESTAR case described in Eitrheim and Teräsvirta (1996). The power slightly decreases if

the tested order of autocorrelation q increases. This might be expected as q = 1 is the true data

generating process. Another factor that influences the power is the degree of autocorrelation ρ.

In finite samples and a low degree of serial correlation the power is quite low but increases steeply

if the sample size and/or the ρ becomes larger. Such a behavior is somewhat expected as the χ2

distribution holds only asymptotically and if ρ increases the serial correlation becomes easier to

detect. In general the test yields good results for most situations encountered in practice and

helps to reveal severe misspecifications.

For the assessment of the test of no remaining nonlinearity from section 3.4.2 we simulate data

from (3.33) to perform the size experiment. The results for the size and power experiments are

displayed in Tables 3.5 and 3.6 respectively.

α T = 300 T = 500 T = 1000

1% 0.806 0.834 0.852

5% 4.552 4.728 4.640

10% 9.540 9.600 9.566

Table 3.5: Empirical size of the test of no remaining nonlinearity [in %].

The results of the size experiment show that the empirical size is close to its nominal level. If

anything, the test is slightly conservative.
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For the power experiment we simulate data from

yt = 0.3yt−1−0.1yt−1

[

1−
{

1+ y2
t−1

}−1
]

+0.75yt−1

[

1−
{

1+ y2
t−1

}−3.5
]

+ εt ,

where εt
iid
∼ N(0,1). Additionally to this data generating process we simulate from an LSTAR(1)

and ESTAR(1) process and induce remaining nonlinearity by fitting the wrong model, namely

an TSTAR(1). The respective processes read

yt = 0.7yt−1−0.5yt−1
[

1+exp(−2yt−1)
]−1
+ εt

yt = 0.7yt−1−0.5yt−1

[

1−exp(−2y2
t−1)

]

+ εt ,

with εt
iid
∼ N(0,1). The results for these simulations are presented in Table 3.6.

Another variant of the power simulation inspired by Eitrheim and Teräsvirta (1996) is also

explored: The data is generated by (3.33) but misspecification is assumed by fitting a STAR

model of the wrong kind to the data, namely a LSTAR(1). These results are presented in Table

3.7.

H1 : TSTAR

α T = 300 T = 500 T = 1000

1% 3.120 2.986 3.772

5% 12.224 11.424 12.184

10% 21.474 20.076 20.676

H1 : LSTAR

α T = 300 T = 500 T = 1000

1% 4.430 5.522 8.274

5% 13.924 16.898 27.044

10% 24.070 28.614 43.822

H1 : ESTAR

α T = 300 T = 500 T = 1000

1% 1.348 1.292 1.276

5% 6.848 6.480 6.210

10% 13.440 12.716 11.990

Table 3.6: Empirical power of the test of no remaining nonlinearity [in %].

For this test the empirical power results reveal a comparable performance for this test as for

the test in the ESTAR case reported in Eitrheim and Teräsvirta (1996). The test appears to

have reasonably good power against LSTAR models especially in larger samples where the power

increases quite steeply.

Interestingly the test appears to have some nontrivial power also against ESTAR at least in

small samples. This is surprising given that TSTAR has been designed to resemble the desirable

properties of ESTAR. This power vanishes as T increases underlining that the TSTAR model can
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very well serve as an alternative to ESTAR as they can hardly be distinguished for reasonable

sample sizes.

α T = 300 T = 500 T = 1000

1% 31.512 34.200 41.434

5% 49.670 52.924 60.868

10% 61.682 64.914 71.762

Remark: An LSTAR(1) model was fitted to data generated from (3.33).

Table 3.7: Empirical power of the test of no remaining nonlinearity [in %].

Analyzing the power experiment set up as in Eitrheim and Teräsvirta (1996) we obtain rather

good results for the test against no remaining nonlinearity even in finite samples. In particular

we obtain higher power as in the ESTAR case.

Turning to the results for the test of parameter constancy we report size and power results in

Tables 3.8 and 3.9 respectively.

α T = 300 T = 500 T = 1000

1% 0.778 0.850 0.940

5% 4.490 4.504 4.784

10% 9.278 9.354 9.522

Table 3.8: Empirical size of the test of parameter constancy [in %].

The test shows only minor size distortions in finite samples and approaches its nominal level as

the sample size increases. Overall the test seems to be conservative, if anything.

For the power simulations we generate data from (3.24) of order one and set ψ0(t) = 2K(·), ψ1(t)=

−0.2, ϑ0(t) = 0 and ϑ1(t) = (1.1−0.9K(·)) where K(·) =K(t/T ;3,0) as in (3.27).

α T = 300 T = 500 T = 1000

1% 3.008 22.110 99.248

5% 11.458 44.252 99.746

10% 19.528 57.336 99.824

Table 3.9: Empirical power of the test of parameter constancy [in %].

The test shows reasonable power to detect parameter changes in finite samples. If the sample

size increases the power of the test increases very steeply. Thus the test is a useful tool to detect

parameter changes in most sample sizes.

3.7 Modeling real exchange rates

To demonstrate the application of the test developed in this paper we run through the whole

modeling cycle described in section 3.2 to model real exchange rates.
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We use the same data that has been analyzed by Taylor et al. (2001) and by Rapach and Wohar

(2006). Namely, we analyze monthly real exchange data for Germany against the US from

1980:01 - 1994:12 (T = 288).4 The series is depicted in Figure 3.1.
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Figure 3.1: Monthly log real exchange rate for Germany.

Determining the lag length using the consistent BIC we obtain p = 1. The linearity test rejects

the null of linearity on the α = 5% level of significance. The test against LSTAR yields a test

decision in favor of the null model, i.e. TSTAR.

As the data set has also been analyzed by Taylor et al. (2001) and by Rapach and Wohar (2006)

we report also their estimates for an ESTAR model. The estimated model has been theoretically

justified by the assumption that real exchange rates follow a nonlinear STAR model with one

unit root regime and one stationary regime that pulls the real exchange rate back into its stable

equilibrium once it wanders too far off. The model reads

yt = yt−1+πyt−1G(·)+ εt , (3.34)

where −2< π < 0 to ensure global stationarity of the model. The transition function G(·) is either
as in (3.3) for the ESTAR model or as in (3.5) for the TSTAR model. Additionally Taylor et al.

(2001) and Rapach and Wohar (2006) set π≔ −1.

The estimation results are in table 3.10.

4The data set is available from David Rapach’s website at: http://pages.slu.edu/faculty/rapachde/Nlfit.zip.

http://pages.slu.edu/faculty/rapachde/Nlfit.zip
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ESTAR TSTAR

π̂ -1 -0.023

γ̂ 0.264 275.284

σ̂ε 0.035 0.032

Table 3.10: Estimation of STAR models.

Albeit the estimates for the TSTAR model might look puzzling at first Heinen et al. (2011) show

that these estimates are much more reasonable than the corresponding ESTAR estimates as the

ESTAR model actually degenerates to a random walk as opposed to the TSTAR model which

maintains the regime switching behavior. Further support of the PPP can be seen in Figure 3.2.
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Figure 3.2: Monthly log real exchange rate for Germany and transition function.

The figure shows the time series, rescaled to be in the closed interval [0,1], and one minus the

estimated transition function over time. The gray shaded area are the time periods in which

the process behaves like a random walk. This is always the case when the process is close to its

equilibrium near zero (note that the dotted line at 0.5 is the zero line of the unscaled series).

Thus we have a stationary but nonlinear process most of the time which behaves like a random

walk near the equilibrium as predicted by the PPP. Heinen et al. (2011) further show that

the data is globally stationary although one unit root regime is present. Global stationarity is

important for the asymptotic distributions of the misspecification tests to hold. Performing the

misspecification tests yields the results in table 3.11.
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Test Statistic Critical Value

Test against LSTAR LM = 5.779 χ2
0.99;ν=2 = 9.210

Test of serial independence LM(1) = 0.501 χ2
0.99;ν=1 = 6.635

Test of no remaining nonlinearity LM(2) = 8.935 χ2
0.99;ν=3 = 11.345

Test of parameter constancy LM(3) = 1.283 χ2
0.99;ν=6 = 16.812

Table 3.11: Results of the misspecification tests.

The respective null hypotheses of the tests cannot be rejected at the α = 0.01 level of significance

hinting at a well specified model.

To gain further insights about the dynamic properties of the fitted model we estimate generalized

impulse response functions. As the test against ARCH effects as described in Engle (1982)

provides no evidence of conditional heteroscedasticity we randomly sample the innovations with

replacement from the estimated model. The shocks we use are δt = δσ̂ε, with δ = ±2,±1. We

compute the GIRF for a horizon of n = 150 and estimate the conditional expectations in (3.31)

as means over 5000 Monte Carlo repetitions. Figure 3.3 shows the estimated impulse response

functions.
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Figure 3.3: Generalized impulse response functions.

Obviously the shocks hitting the system are very persistent over time but eventually vanish.

This supports the parameter estimates that show a highly persistent model. Additionally a

high persistence of shocks in the model can also be induced by nonlinearities which in turn

leads to such highly persistent impulse response functions (see e.g. van Dijk et al. (2002a) and

Kuswanto and Sibbertsen (2008)). Another interesting aspect is whether the response to shocks
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is asymmetric depending on the sign of the shock. A measure for asymmetry is defined in (3.32).

Figure 3.4 shows the estimated quantities.
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Figure 3.4: Measure of asymmetry.

For both shocks the behavior is asymmetric depending on the sign of the shock. If the shock

is negative but relatively small the response to it is larger compared to a positive shock of the

same size. This difference vanishes quite fast as the horizon increases. If however the shock is

negative and relatively large (δt = |2σ̂ε|) the response to a negative shock is heavier and decreases

much slower. Indeed the asymmetry first increases before it decreases.

3.8 Conclusion

In this paper we extend the treatment of the newly developed nonlinear time series model named

TSTAR developed by Heinen et al. (2011). We consider the modeling cycle for nonlinear time

series models and contribute to the evaluation stage by proposing LM tests against serially

correlated innovations, no remaining nonlinearity and parameter constancy. We also consider

evaluation by generalized impulse response functions as proposed by Koop et al. (1996). In

simulations we show that all the tests have reasonable power against their respective alternatives

and are therefore an useful addition to the evaluation toolbox for nonlinear TSTAR models.

In an empirical application to real exchange data we put the evaluation techniques to the test and

verify that a proposed TSTAR formulation adequately captures the nonlinear behavior of the

data. Impulse response analysis is used to further evaluate the dynamic propagation behavior

of the estimated model.
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3.9 Appendix

3.9.1 Regression coefficients in (3.23)

Expanding the expressions containing c2 as

(yt−e − c2)2
= y2

t−e −2yt−ec2+ c2
2,

(yt−e − c2)4
= y4

t−e −4y3
t−ec2+6y2

t−ec2
2−4yt−ec3

2+ c4
2,

(yt−e − c2)6
= y6

t−e −6y5
t−ec2+15y4

t−ec2
2−20y3

t−ec3
2+15y2

t−ec4
2−6yt−ec5

2+ c6
2,

we obtain after some algebra

δ0 =

[(

γ2c2−
1
2
γ2(γ2+1)+

1
6
γ2(γ2+1)(γ2+2)c6

2

)

Ξ

]

δ1 =

[(

−2γ2c2+2γ2(γ2+1)c3
2−γ2(γ2+1)(γ2+2)c5

2

)

Ξ

]

δ2 =

[(

−3γ2(γ2+1)c2
2+2

1
2
γ2(γ2+1)(γ2+2)c4

2

)

Ξ

]

δ3 =

[(

2γ2(γ2+1)c2−3
1
3
γ2(γ2+1)(γ2+2)c3

2

)

Ξ

]

δ4 =

[(

−1
2
γ2(γ2+1)+2

1
2
γ2(γ2+1)(γ2+2)c2

2

)

Ξ

]

δ5 =
[
(−γ2(γ2+1)(γ2+2)c2)Ξ

]

δ6 =

[(

1
6
γ2(γ2+1)(γ2+2)

)

Ξ

]

.

3.9.2 Regression coefficients in (3.29)

Expanding the expressions containing c1 as

(t− c1)2
= t2−2tc1+ c2

1,

(t− c1)4
= t4−4t3c1+6t2c2

1−4tc3
1+ c4

1,

(t− c1)6
= t6−6t5c1+15t4c2

1−20t3c3
1+15t2c4

1−6tc5
1+ c6

1 .
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we obtain after some algebra for λ1

δ0 =

[(

γ1c1−
1
2
γ1(γ1+1)+

1
6
γ1(γ1+1)(γ1+2)c6

1

)

λ1

]

δ1 =

[(

−2γ1c1+2γ1(γ1+1)c3
1−γ1(γ1+1)(γ1+2)c5

1

)

λ1

]

δ2 =

[(

−3γ1(γ1+1)c2
1+2

1
2
γ1(γ1+1)(γ1+2)c4

1

)

λ1

]

δ3 =

[(

2γ1(γ1+1)c1−3
1
3
γ1(γ1+1)(γ1+2)c3

1

)

λ1

]

δ4 =

[(

−1
2
γ1(γ1+1)+2

1
2
γ1(γ1+1)(γ1+2)c2

1

)

λ1

]

δ5 =
[
(−γ1(γ1+1)(γ1+2)c1)λ1

]

δ6 =

[(

1
6
γ1(γ1+1)(γ1+2)

)

λ1

]

and for λ2 respectively

β0 =

[(

γ1c1−
1
2
γ1(γ1+1)+

1
6
γ1(γ1+1)(γ1+2)c6

1

)

λ2

]

β1 =

[(

−2γ1c1+2γ1(γ1+1)c3
1−γ1(γ1+1)(γ1+2)c5

1

)

λ2

]

β2 =

[(

−3γ1(γ1+1)c2
1+2

1
2
γ1(γ1+1)(γ1+2)c4

1

)

λ2

]

β3 =

[(

2γ1(γ1+1)c1−3
1
3
γ1(γ1+1)(γ1+2)c3

1

)

λ2

]

β4 =

[(

−1
2
γ1(γ1+1)+2

1
2
γ1(γ1+1)(γ1+2)c2

1

)

λ2

]

β5 =
[
(−γ1(γ1+1)(γ1+2)c1)λ2

]

β6 =

[(

1
6
γ1(γ1+1)(γ1+2)

)

λ2

]

.



Chapter 4

The dynamics of real exchange rates
– A reconsideration



4.1. Introduction 66

The dynamics of real exchange rates
– A reconsideration

Co-authored with Hendrik Kaufmann and Philipp Sibbertsen.

Published as Leibniz University of Hannover Discussion Paper No. 463.

4.1 Introduction

An ongoing debate about the behavior of real exchange rates suggests that Purchasing Power

Parity (PPP) holds as a long-run concept (see e.g. Edison and Klovland (1987), MacDonald

(1998) or Taylor et al. (2001)). Econometrically speaking PPP states that real exchange rates

fluctuate finitely around an equilibrium, i.e. a time stable mean, and are thus weakly stationary.

However, stationarity of real exchange rates does not say anything about the detailed dynam-

ics driving them. Modeling real exchange rates by linear stationary models does not lead to

convincing results as standard unit root tests can not reject the null of a random walk in the

linear framework and thus can not confirm PPP (see e.g. Adler and Lehmann (1983), Meese and

Rogoff (1983), Meese and Rogoff (1988) or Caporale et al. (2003)). In a theoretical framework

Sercu et al. (1995) suggest among others that under transaction costs the adjustment process

towards PPP is nonlinear (see also Sarno (2005) and the discussion in Taylor et al. (2001, p.

1018)). Empirical evidence that a nonlinear adjustment mechanism could solve the PPP puzzle

is recently provided by Lo (2008) and Norman (2010). Therefore, recently nonlinear models

came into the focus of economists.

The two prevailing approaches to model the dynamic of nonlinear adjustment towards PPP are

exponential smooth transition autoregressive (ESTAR) models (see e.g. Michael et al. (1997),

Taylor et al. (2001) and Kilian and Taylor (2003)) and Markov switching autoregressive (MSAR)

models (see e.g. Bergman and Hansson (2005) and Kanas (2006)).1 Both approaches imply under

certain conditions that PPP may hold as a long-run concept. However, the nonlinear dynamics

driving the respective processes are very distinct. The dynamic of an ESTAR process is driven

by lagged values of the endogenous, and therefore observable, variable while an unobservable

Markov process governs the dynamic in the MSAR case. This implies different economic in-

tuition. The ESTAR approach is based on the idea that international trade only starts if the

price differences between countries exceed a certain level which is determined by the costs of

trading such as transportation costs, taxes and many others. As long as the price differences are

smaller than this level no trading takes place and therefore real exchange rates fluctuate freely

and behave like a random walk. As soon as the price differences exceed this level international

trading starts and real exchange rates are pulled back to a long-run equilibrium. This economic

1An exception is Lahtinen (2006) who uses a symmetric, second order logistic STAR model. However, second
order logistic STAR models are designed to closely resemble ESTAR models and the estimation results imply a
dynamic very similar to a switching regression.

mailto: kaufmann@statistik.uni-hannover.de
mailto: sibbertsen@statistik.uni-hannover.de
http://www.wiwi.uni-hannover.de/Forschung/Diskussionspapiere/dp-463.pdf
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view of real exchange rates is expressed in the ESTAR model by a unit root regime close to

the equilibrium and a stabilizing regime anywhere else. This approach has been applied to real

exchange rates by Taylor et al. (2001), Kapetanios et al. (2003) and Rapach and Wohar (2006)

amongst others.

In contrast, the MSAR view supports the overshooting or bubble theory by Dornbusch (1976)

on real exchange rates. It emphasizes the point that real exchange rates are not just driven

by a long-run behavior but that there are dominating short-run forces which are stabilized by

some long-run adjustment. These short-run forces can be explained by short-run speculation

or other exogenous shocks such as political regime changes, wars or economic crises. Taking

the short-run speculation on real exchange rates as an example, these could be strong enough

to create bubbles and therefore, in econometric terms, can create exploding regimes in MSAR

models. A second stabilizing regime in the MSAR model determines the overall stationarity

of the model and therefore the long-run convergence towards PPP. MSAR models are able to

capture such occasional, sudden and large exchange rate changes caused by unobservable spec-

ulation (see e.g. van Norden (1996)). Regarding the MSAR approach there are two possibilities

of modeling this economic behavior. One possibility is to implement Markov switching within

the autoregressive parameter and thus having a model with two autoregressive regimes, one of

them being explosive and the other stabilizing. This model was applied among others by Kanas

(2006). Stationarity conditions for this model are given in Francq and Zaköıan (2001). A second

option is to implement Markov switching in the mean rather than in the autoregressive param-

eter and thus to obtain a switching mean model. This approach was motivated by Engel and

Hamilton (1990) and Hamilton (1993) who argue that switches in the mean are more appropriate

for modeling the dynamics of financial data. Bergman and Hansson (2005) apply this approach

to real exchange rates.

The application of either approach has so far been motivated by an a priori economic belief about

the behavior of real exchange rates rather than a formal statistical model selection procedure.

In this paper we suggest for the first time a formal model selection procedure based on a paramet-

ric bootstrap to discriminate between ESTAR and MSAR models. We study the finite sample

behavior of the proposed method and analyze several major real exchange rates to shed some

light on the question which model and by that which theory describes the dynamic behavior of

real exchange rates best.

The rest of this paper is organized as follows: In section 4.2 we describe the two competing

models for real exchange rates. In section 4.3 we briefly discuss some specifics when testing

non-nested models. In section 4.3.1 we describe the bootstrap procedure in order to distinguish

the competing models in more detail and investigate the finite sample properties of this test in

section 4.3.2. Section 4.4 applies the model selection procedure to empirical data before section

4.5 concludes.
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4.2 Two Competing models for real exchange rates

The general ESTAR model is given by two autoregressive regimes connected by a smooth expo-

nential transition function G( · ;γ,c) : IR→ [0,1]. This function governs the transition between

the two regimes in a smooth way. Alternatively, an ESTAR model can also be interpreted as a

continuum of regimes which is passed through by the process.

In general, univariate ESTAR(p) models, p ≥ 1 and d ≤ p, are given by

yt = [Ψwt] × [1−G(yt−d;γ,c)] + [Θwt] ×G(yt−d;γ,c)+ εt (4.1)

= [Ψwt] + [Φwt] ×G(yt−d;γ,c)+ εt, t ≥ 1, (4.2)

with εt
iid
∼ (0,σ2).

The parameter vectors Ψ and Θ as well as wt are given by Ψ = (ψ0,ψ1, . . . ,ψp), Θ = (ϑ0,ϑ1, . . . ,ϑp),

and wt = (1,yt−1, . . . ,yt−p)′. For the alternative parametrization in (4.2) we haveΦ= (ϕ0,ϕ1, . . . ,ϕp)=

(ψ0−ϑ0,ψ1−ϑ1, . . . ,ψp−ϑp), i.e. the second regime realizes as sum of Ψ and Φ.

For an ESTAR model the transition function G(·) is given by

G(·;γ,c) = 1−exp
{

−γ(yt−d − c)2
}

; γ > 0 . (4.3)

Due to the symmetry of G(·) this functional form for the transition function is popular for

modeling real exchange rates or real interest rates (see e.g. Taylor et al. (2001), Kapetanios

et al. (2003) or Rapach and Wohar (2006)). Surveys of the broad field of nonlinear time series

models in general and STAR models in particular are given by Potter (1999) and van Dijk et al.

(2002b); see also Teräsvirta (1994). The most frequently used special case of the general ESTAR

model in (4.2) is the ESTAR(1) model

yt = ψyt−1+φyt−1

{

1−exp
(

−γ (yt−1− c)2
)}

+ εt . (4.4)

Moreover, the additional restriction c = 0 is also frequently imposed (e.g. Kapetanios et al.

(2003)). To model the globally stationary but nonlinear behavior of real exchange rates one

unit root regime is also commonly imposed (see e.g. Taylor et al. (2001) and Kapetanios et al.

(2003)). This leads to the model

yt = yt−1+φyt−1

{

1−exp
(

−γ (yt−1− c)2
)}

+ εt , (4.5)

with −2< φ < 0 to ensure global stationarity. Kapetanios et al. (2003) show that the model in

(4.5) although locally non-stationary is globally stationary as long as |ψ+φ| < 1.

Estimation of these models either by nonlinear least squares or maximum likelihood techniques

is treated by Klimko and Nelson (1978) and Tjøstheim (1986) respectively.

A standard MSAR model based on the work of Hamilton (1989) reads (see also Hamilton and

Raj (2002) for an introduction)

yt = µst +φ1,st yt−1+ . . .+φp,styt−p + εt . (4.6)
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The values of the autoregressive parameters φ1,st , . . . ,φp,st and the mean µst and thus the regime

switching is governed by an unobservable Markov chain

IP(st = j|st−1 = i, st−2 = k, . . . ,yt−1,yt−2, . . .) = IP(st = j|st−1 = i) = pi j .

Extensions of this basic framework are possible, see e.g. Hamilton and Raj (2002) and the papers

cited therein.

Although such a general model is possible to use in principle the models usually found in applied

work are more restrictive and only have a few parameters that change depending on the regime.

In the real exchange rate work in particular the most frequently used model is a first order, or

at least low order, autoregression with a Markov switching mean (see e.g. Engel and Hamilton

(1990), Bergman and Hansson (2005) or Kanas (2006)). This model is empirically justified by

Hegwood and Papell (1998) and Montañés (1997) who find reversion to a mean which is subject

to structural breaks.

Considering the special case of a first order MSAR model with a switching mean only we have

two possible ways to describe such a process

(yt −µst) = φ(yt−1−µst−1)+ εt (4.7)

(yt −µst) = φ(yt−1−µst)+ εt . (4.8)

Although the difference between these two models seems negligible the dynamic patterns they

produce are rather different (see Hamilton (1993)). Suppose that the process shifts from regime

1 to regime 2 at date t and stays there for j periods. Using the specification in (4.8) the value

yt+ j will be (µ2−µ1)(1+φ+φ2
+ . . .+φ j) units higher as a consequence of the regime switch. Thus,

the consequences of a shift accumulate over time. If the specification (4.7) is used the value

yt+ j will only be (µ2−µ1) units higher. The formulation in (4.7) is the more promising one for

economic and financial time series according to Hamilton (1993). Thus, we will consider such a

model in our model selection approach.

Regarding stationarity conditions for MSAR models Francq and Zaköıan (2001) show that for

the model in (4.7) to be globally stationary the following conditions must hold

(p11+ p22)φ
2
+ (1− p11− p22)φ

4 < 1 (4.9)

(p11+ p22)φ
2 < 2 . (4.10)

For the model in (4.7) to be locally stationary the usual condition |φ| < 1 must hold.

Maximum likelihood estimation by direct, numerical maximization of the likelihood function of

such models is treated in detail by Hamilton (1989). Alternatively an iterative EM algorithm is

given by Hamilton (1990).
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4.3 Testing non-nested hypotheses

Usually the comparison of different hypotheses, i.e. of competing models may be performed

using standard approaches such as likelihood-ratio tests, Wald tests, Lagrange multiplier tests

or the principle of Hausman (1978) (see Engle (1984) for a survey of these procedures). These

principles assume that the null model can be obtained from the competing model by imposing

some parameter restrictions. If this assumption is violated, i.e. none of the hypotheses is a

special case of the other one, these approaches fail. For a survey of several aspects of testing

non-nested hypotheses see Gourieroux and Monfort (1994).

Cox (1961, 1962) generalizes the likelihood-ratio principle to the case of non-nested models. He

shows that the usual unadjusted likelihood-ratio statistic does not converge to zero if the two

models are non-nested. Put more formally, let the two models for the conditional density be

denoted by

H f : Fθ =
{
f (yt |Ft−1;θ), θ ∈ Θ ⊆ IRr} , t = 1, . . . ,T (4.11)

Hg : Fλ =
{
g(yt |Ft−1;λ), λ ∈ Λ ⊆ IRq} , t = 1, . . . ,T . (4.12)

The process is denoted by yt and Ft−1 is the sigma algebra generated by (yt−1,yt−2, . . .). For the

sake of brevity we will suppress the dependence on yt and Ft−1 and simply write f (θ) and g(λ)

whenever possible. The likelihood-ratio statistic of Cox (1961, 1962) reads

T f (θ̂, λ̂) =
[

log f (θ̂)− logg(λ̂)
]

−E f

[

log f (θ̂)− logg(λ̂)
]

, (4.13)

where θ̂ and λ̂ denote the maximum likelihood estimates. E f [·] is the expectation operator

evaluated with respect to the ’true’ density f (θ). This serves as a measure of closeness between

the two densities and is defined by the Kullback-Leibler information criterion (KLIC) which is

defined by

E f [·] =
∫

IR

log
f (θ)
g(λ)

f (y;θ) dy . (4.14)

The quantity in (4.14) is then minimized by choosing λ. This can be equivalently reformulated

as

max
λ

E f
[
logg(λ)

]
. (4.15)

The solution to this problem is called the pseudo-true value of λ given θ.

The main problem when using the Cox test statistic is that the measure of closeness can be

analytically derived in a closed form only for very specific and simple cases such as the linear

versus log-linear model (see Aneuryn-Evans and Deaton (1980)). It is however not possible in

general. In cases where the exact expression of the KLIC is very complicated or even impossible

to obtain, e.g. for nonlinear models, Pesaran and Pesaran (1993) and Lu et al. (2008) propose

simulation based methods for approximating the quantity.

Regularity conditions for the applicability of Cox’s test are given by White (1982b) for the i.i.d.

case. It is basically required that consistent and asymptotically normally distributed estimators
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for the parameters θ and λ can be obtained. This is especially important for the estimator

of λ as we need a consistent and asymptotically normally distributed estimator which allows

the likelihood function to fail to correspond to the true joint density of the observations. Such

an estimator is the quasi-maximum-likelihood estimator (QMLE). Consistency and asymptotic

normality results are provided by White (1982a) for the i.i.d. case, by White (1981) for the

nonlinear case, by Bollerslev and Wooldridge (1992) for the dynamic linear case and by Gallant

and White (1988) for the dynamic nonlinear case. These results ensure a wide applicability of

Cox’s test.

4.3.1 A bootstrap based likelihood ratio test

For the likelihood-ratio approach of Cox (1961, 1962) a simulation method for the test statistic

is developed by Pesaran and Pesaran (1993) and compared to extant tests in the literature by

Pesaran and Pesaran (1995). Lu et al. (2008) also consider simulation methods for the Cox

test statistic and additionally propose a simulated Wald-type encompassing test. However, the

latter test is computationally very costly in the context of nonlinear models as it involves a

double loop design similar to a double bootstrap. Coulibaly and Brorsen (1999) report the

results of a simulation study in which they compare different ways of computing the Cox test

statistic. Their results suggest that simulation of the whole test statistic and the use of Monte

Carlo p-values instead of simulating only parts of the test statistic and relying on asymptotic

critical values is the more promising approach in finite samples. These results have also been

confirmed more recently by Godfrey and Santos Silva (2005) and Kapetanios and Weeks (2003).

The latter authors consider non-nested testing in a time series context to distinguish between

several non-nested nonlinear time series models for the conditional mean. Different methods

and test statistics based on the likelihood ratio principle are explored. Similar to Coulibaly and

Brorsen (1999) Kapetanios and Weeks (2003) find that a studentized but not mean-adjusted test

statistic with a simple variance estimator performs best over a variety of different settings; see

also Lee and Brorsen (1997) for an application to nonlinear models for the conditional variance.

Using the notation from section 4.3 we write the two rival non-nested models described in section

4.2 as

H f : Fθ =
{
f (yt |Ft−1;θ), θ ∈ Θ ⊆ IRr} , t = 1, . . . ,T (4.16)

Hg : Fλ =
{

g(yt |Ft−1;λ), λ ∈ Λ ⊆ IRq} , t = 1, . . . ,T . (4.17)

For our test the model Fθ in (4.16) is an ESTAR model as in (4.2) and the model Fλ in (4.17)

is a MSAR model as in (4.6).

To keep the notation simple we write f (θ) and g(λ) for (4.16) and (4.17) respectively whenever
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possible. The log-likelihood functions for the models (4.16) and (4.17) can be written as

l f =
1
T

T∑

t=1

log ft(θ)

lg =
1
T

T∑

t=1

loggt(λ) .

Let θ̂ and λ̂ denote the parameter values maximizing these functions. Then the log-likelihood

ratio reads l f (θ̂)− lg(λ̂). In order to studentize this likelihood ratio Coulibaly and Brorsen (1999)

and Kapetanios and Weeks (2003) consider different estimators based on the outer-product of the

scores of the models under consideration as in Berndt et al. (1974) and based on the information

equality. A third alternative calculates

V̂2
=

1
T −1

T∑

t=1

(

dt − d̄
)2
, (4.18)

where dt = l f , t (θ̂)− lg, t (λ̂) is the likelihood ratio for the t-th observation of yt and d̄ is the re-

spective arithmetic mean. These three methods are asymptotically equivalent but Pesaran and

Pesaran (1993), Coulibaly and Brorsen (1999) and Kapetanios and Weeks (2003) report superior

performance of the simple variance estimator in (4.18). Therefore, we adopt this approach in

our test.

The test statistic we consider reads

S =

√
T

{

l f (θ̂)− lg(λ̂)
}

√

V̂2
. (4.19)

Note that the test statistic in (4.19) is not mean adjusted by an estimate of a measure of closeness

of the two distributions in (4.16) and (4.17) such as the KLIC. This reduces the computational

burden significantly compared to the methods of Pesaran and Pesaran (1993) and Lu et al. (2008)

but renders the test statistic asymptotically non pivotal (see e.g. Pesaran and Pesaran (1993)

and Godfrey (2007)).2 However, as Hall and Titterington (1989) show, non pivotal statistics

will have the same asymptotic accuracy regarding size and power as pivotal statistics. Thus we

can reduce the computational burden by using the non mean adjusted statistic in (4.19) as we

only need one bootstrap loop instead of two nested loops for computing an estimate of the KLIC

(see Lee and Brorsen (1997) for a related approach).

We use the following parametric bootstrap to resample the likelihood ratio statistic in (4.19):

(i) Obtain the initial estimates θ̂ and λ̂ from yt and compute the test statistic S in (4.19).

(ii) Generate bootstrap samples by parametric resampling from the fitted model under the

null f (θ̂). yb
t denotes the t-th observation of the b-th bootstrap sample which is dependent

on θ̂, i.e. yb
t

(

θ̂
)

.

2A statistic η is called asymptotically pivotal if an + bnη has a proper nondegenerate limiting distribution not
depending on unknowns for a sequence of known constants {an} and {bn}; see Hall (1992, p. 14).
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(iii) For the b-th bootstrap sample let θ̂b and λ̂b denote the parameter estimates obtained from

maximizing lbf = T−1∑T
t=1 log f

(

yb
t

(

θ̂
)

|θ
)

and lbg = T−1∑T
t=1 logg

(

yb
t

(

θ̂
)

|λ
)

. Using θ̂b and λ̂b

compute the bootstrap analog to S in (4.19):

S b
=

√
T

{

lbf
(

θ̂b
)

− lbg
(

λ̂b
)}

√

V̂2
b

.

(iv) Repeat steps (ii) – (iii) B times and save the bootstrap test statistic S b. This will give a

small sample approximation of the distribution of S in (4.19).

(v) Compare S from (i) with critical values obtained from the distribution of S b to decide

which model captures the data best.

This bootstrap algorithm can be easily implemented using only a single loop design and thus

the computational burden is not as heavy as the simulated Wald-type test of Lu et al. (2008).

The applied hypotheses in (4.16) and (4.17) are beneficial compared to e.g. a Wald-type test

because we have a closed form alternative. Common testing procedures claim that the model

under the null is the correct model and test this model against a universe of alternative models.

We, however, merely decide whether ESTAR is the better approximation to the data compared

to an MSAR model. By this we are able to translate the competing economic theories about real

exchange rates into econometric models and decide which theory is best supported by empirical

data.

4.3.2 Finite sample properties

For the size experiment of the bootstrap likelihood ratio test we use the following data generating

process

yt = 0.95yt−1−0.55yt−1

{

1−exp
(

− (yt−1−1)2
)}

+ εt , (4.20)

where εt
iid
∼ N(0,1). The first regime is moderately persistent while the second is highly persistent.

This feature of our data generating process is consistent with the empirical literature on ESTAR

models, see e.g. Rapach and Wohar (2006), Taylor et al. (2001), Öcal (2000) or Gatti et al. (1998).

To keep the computational burden reasonable we consider B = 200 bootstrap replications and

M = 1000Monte Carlo repetitions.

Table 4.1 shows the size properties of the bootstrap likelihood ratio test for finite samples.

α T = 100 T = 200 T = 300 T = 400

1% 2.10 1.10 1.10 1.00

5% 7.30 5.50 6.00 5.30

10% 13.60 11.70 11.60 11.20

Table 4.1: Empirical size of bootstrap likelihood ratio test [in %].

The test shows virtually no size distortions even in small samples which are frequently encoun-
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tered when using monthly or quarterly macro data.

For the power results we consider a Markov switching model which is parameterized such as to

resemble empirically estimated MSAR models as in Bergman and Hansson (2005). These mean

switching AR(1) models contain a stationary but strongly persistent autoregressive parameter

and a switching mean which is significantly different across both regimes. The model we use

reads

yt = 0.85(yt−1+µst−1)+ εt . (4.21)

The mean across regimes is specified as

µst =






1, if st = 1

5, if st = 2 .

The transition probabilities for the regimes are p11 = p22 = 0.9. This leads to two regimes with

equal unconditional ergodic regime probabilities (see Hamilton (1994)) of

IP(st = 1)= IP(st = 2)=
1− p22

2− p11− p22
=

1− p11

2− p11− p22
= 0.5 .

The power results for this experiment are displayed in table 4.2.

α T = 100 T = 200 T = 300 T = 400

1% 64.70 93.10 97.80 97.80

5% 86.50 98.30 98.60 98.30

10% 94.90 98.90 98.60 98.40

Table 4.2: Empirical power of bootstrap likelihood ratio test [in %].

The power results are very encouraging especially for the empirically most important cases of

small sample sizes. The power increases steeply with the sample size and we also recommend

to preferably use the 5% and 10% level of significance rather than the restrictive 1% level.

An alternative is to increase the bootstrap replications to smooth the tails of the bootstrap

distribution and obtain an even better approximation to the real distribution.3

4.4 Modeling real exchange rates

The real exchange rate data we use is the data set of Smallwood (2005) to ensure comparability

with the existing literature.4 However, the focus of Smallwood (2005) lies on the joint testing

of long memory and nonlinearity in real exchange rates. The nonlinearity found by him is then

modeled as the usual ESTAR transition function and no comparison to a nonlinear alternative is

3In another set of simulations we specified the data generating process such as to resemble empirical estimates
of Bergman and Hansson (2005). These simulations yielded equally satisfactory results. However, they are
unreported for the sake of brevity but can be obtained on request.

4The data is available at the article’s website at: http://www.bepress.com/snde/vol9/iss2/art7/.

http://www.bepress.com/snde/vol9/iss2/art7/


4.4. Modeling real exchange rates 75

considered. Hence, our analysis adds to the literature by providing thorough statistical evidence

of how the underlying nonlinear dynamic of real exchange rates is best described.

The data set comprises the exchange rates of 11 countries against the United States dollar as

domestic currency. It includes data of Argentina, Brazil, France, Germany, Italy, Japan, Mexico,

the Netherlands, Portugal, Spain, and the United Kingdom. The data starts in January 1973

and is sampled at a monthly frequency. The data set ends for all countries from the Euro area

in December 1998 (T = 312), for Japan in February 2002 (T = 350) and for the rest in March

2002 (T = 351).

For real exchange rates Taylor et al. (2001) propose a formulation of the ESTAR model which

reads

(yt −µ) = ψ(yt−1−µ)+φ(yt−1−µ)
{

1−exp
(

−γ (yt−1−µ)2
)}

+ εt . (4.22)

The real exchange rate fluctuates around the location parameter µ which models the long-run

equilibrium. If we are in the extreme case of yt−1 = µ the process behaves like a random walk

and is pulled back into the stationary region once the deviation becomes too large and yt−1 , µ.

The parameter γ governs the speed of the mean reversion. Thus, Taylor et al. (2001) assume

that µ is the long-run mean around which the process fluctuates. We de-mean the data prior to

testing. Thus, the long-run mean is µ = 0 and we obtain a simplified model

yt = ψyt−1+φyt−1

{

1−exp
(

−γy2
t−1

)}

+ εt . (4.23)

Note that this only reduces the computational burden of estimating a nonlinear model and does

not affect our results. Additionally, this is economically reasonable as the log real exchange rate

is equal to zero if PPP holds.

We test this model against a MSAR(1) model with a switching mean as in (4.7) using B = 500

bootstrap repetitions.5

The results of the tests for the individual countries are displayed in table 4.3. The column ’Criti-

cal value’ shows the critical value at the 5% level of significance from the bootstrap distribution.

Note that the column ’Test statistic’ displays negative values because we minimized the negative

log-likelihood function.

5We confirmed by simulation that the procedure from section 4.3.1 maintains its good size and power properties
in this special situation. The results are unreported to save space but can be obtained on request.
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Country Test statistic Critical value Suggested model

Argentina -0.499 1.230 MSAR

Brazil -0.727 -0.244 MSAR

France -4.302 -17.758 ESTAR

Germany -4.136 -17.324 ESTAR

Italy -0.162 -3.815 ESTAR

Japan -5.084 -0.981 MSAR

Mexico -0.611 -0.215 MSAR

Netherlands -4.480 -18.496 ESTAR

Portugal -3.123 -16.744 ESTAR

Spain -0.748 -5.806 ESTAR

United Kingdom -0.210 -3.039 ESTAR

Table 4.3: Empirical test results for real exchange rates.

We can roughly classify the countries into three categories: Western European countries such

as France and Germany, Latin-American countries such as Argentina and Brazil and Japan as

another western-oriented major industrial nation.

The test decisions are obtained based on unrestricted models. This is in contrast to Taylor et al.

(2001) who restrict the ESTAR model a priori to have a unit root in the first regime and a white

noise process in the second regime. However, it turns out that the first regime is consistently

estimated as a unit root and that the second regime is very close to white noise. Therefore, we

perform a likelihood ratio test of the null that ψ = 1 and φ = −1. This test supports evidence

that the restricted model yields equally good results. As in Taylor et al. (2001) we can not reject

the hypothesis that the restricted model is an equally reasonable description of the data. We

subsequently estimate the restricted model. Estimation results and test results are displayed in

table 4.4.

Country γ̂restricted LR test p-value

France 0.1083 1.245 0.5367

Germany 0.0905 1.233 0.5400

Italy 0.2381 0.006 0.9968

Netherlands 0.1012 1.582 0.4533

Portugal 0.0771 0.399 0.8193

Spain 0.1034 0.645 0.7243

United Kingdom 0.3261 0.3811 0.8265

Table 4.4: Estimation and test results ESTAR.

The results are comparable with the results of Rapach and Wohar (2006) given that we use an

extended data set. The conclusion is similar in that we find evidence of slight nonlinearity in

the data but the speed of adjustment towards an equilibrium is slower, i.e. the interval of the

fluctuation around PPP is wider.



4.4. Modeling real exchange rates 77

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Real exchange rate Brazil

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 50 100 150 200 250 300 350

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 4.1: Real exchange rate Brazil with smoothed transition probabilities.

The estimation results for the MSAR models are displayed in table 4.5.

Country µ̂(1) µ̂(2) φ̂ p̂11 p̂22 σ̂2

Argentina 0.090 0.733 0.582 0.983 0.976 0.018

Brazil -0.126 0.150 -0.940 0.983 0.975 0.092

Japan -0.392 0.005 0.588 0.990 0.989 0.109

Mexico -0.191 0.123 -0.785 0.982 0.972 0.108

Table 4.5: Estimation results MSAR.

All estimated regime probabilities show a highly persistent behavior over time. All real exchange

rates show a distinct mean switch between the regimes with a changing sign in each regime. An

exception is Argentina. However, the difference between the mean coefficients is quite large

given the range of the data. Note that our estimates are smaller than those of Bergman and

Hansson (2005) because we did not multiply the data by 100. Looking at the stationarity condi-

tions for our models in (4.9) and (4.10) we see that all estimated models fulfil these conditions.

As an example of how the regime change dynamic behaves over time figures 4.1 and 4.2 show

the real exchange rates of Brazil and Mexico along with their smoothed transition probabilities,

respectively.

The investigated countries show some interesting and distinctive results. According to the the-

ory reviewed in section 4.1, adequacy of the MSAR model supports the bubble theory for real

exchange rates. Looking at the Latin-American countries a MSAR model seems to be more
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Figure 4.2: Real exchange rate Mexico with smoothed transition probabilities.

appropriate to model the dynamics of real exchange rates while the western European countries

seem to be well-described by an ESTAR model. For Japan, again, the MSAR specification

seems to be more appropriate. The question is: What is the difference between these groups

that explains the different real exchange rate dynamic?

To answer this question for the Latin-American countries we focus our analysis on economic

bubbles based on expectations about monetary policy and developments. In the 1960s and

1970s many of these countries borrowed huge amounts from international creditors to foster in-

dustrialization. With the beginning of the world recession and the first oil crisis during the first

half of the 1970s the developing countries found themselves in a severe liquidity crunch. This

situation raised interest rates in the United States and Europe and caused the deterioration of

the exchange rates of the Latin-American countries. In the aftermath of the declaration of the

national bankruptcy of Mexico in 1982 the incomes in the Latin-American countries dropped,

economic growth stagnated and inflation rose to levels of hyperinflation.

In Argentina, the crisis was intensified by the military coup in 1976 which led to a monetarist

financial liberalization. The excessive money supply increased the inflation rate to over 100% a

year and rose the national foreign debt causing bank-runs and destroying business confidence.

During the 1980s and early 1990s Argentina experienced periods of high inflation rates peaking

in 1989 with 5000% a year which subsequently decreased to single digits by 1993 due to a more

liberal economic policy. High government spending increased the national debt during the 1990s

resulting in loss of confidence of foreign investors and causing another bank-run and a subse-

quent economic crisis in the late 1990s and early 2000s.
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In Brazil, the oil crisis stopped economic growth and caused a recession which piled up foreign

debt. Inflation remained a major problem during these periods due to the exchange rate devalua-

tion of the austerity programm by the IMF and a growing public deficit. Inflation peaked in 1993

to 5000% per year. In the 1990s the first post-military government introduced a stabilization

plan (’plano real’) including a monetary reform which stabilized the inflation rate subsequently

on a moderate level.

The history of Mexico can be classified into three phases. In the 1970s as a response to the oil

shock the inflation rose and foreign debt was piled up. From 1983 to 1988 inflation rose to an

average of 100% per year. In the 1990s Mexico ratified the North American Free Trade Agree-

ment (NAFTA) which contributed to the economic recovery and helped controlling inflation.

All three countries are characterized by frequent and sudden economic regime changes in response

to adverse economic situations which caused very volatile and high inflation rates. Despite of no

formal cooperation on the political level, the economies in the countries behave very similar (see

Singh (2006)). The changes could not have been anticipated and are thus better characterized

by an abrupt change modeled by the MSAR model.

During the same period the western European countries started to cooperate politically as well

as in economic policy in particular within the European Economic Community (EEC). This col-

laboration got even closer with the transition to the European Community (EC). This led to a

rather similar behavior of the real exchange rates of these countries. In particular, central banks

of the western European countries are independent from each other but nevertheless pursued a

similar interest rate policy to control inflation on a rather low level. This led to the adoption of

inflation targeting during the 1990’s.

In Europe the aftermath of the oil crisis was not as severe as in the Latin-American countries

because the foreign national deficit was not as high. Additionally the European countries were

much more developed compared to the Latin-American countries and therefore able to deal with

increasing inflation without risking hyperinflation. This is empirically investigated by Catão and

Terrones (2005) who show a strong positive correlation between fiscal deficit and inflation for

developing countries but not for industrialized countries.

In those stable regimes the information of past periods is always useful to describe real exchange

rates. Therefore, the effect for the western European countries is described more appropriately

by a smooth adjustment process such as postulated by the ESTAR model.

The finding that Japan, although a highly developed country, is better characterized by a MSAR

model is due to the persistent deflation over the last two decades. After the oil crisis in 1973

inflation rose. During the late 1980 a lot of speculative money has been invested in Japan caus-

ing the Japanese asset price bubble which burst in 1991 followed by a decade of zero inflation

rates and deflation in the 1990s. Since then, the Japanese central bank has kept the interest

rate close to zero but could not stop deflation tendencies. These two regimes of high inflation

during the 1970s and extremely low inflation during the late 1980s and 1990s can be captured

well by a MSAR model. It is however important to note that in the case of Japan this result

is much less clear because standard economic paradigms such as the relation regarding interest

rate and inflation rate levels do not hold for Japan.
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4.5 Conclusion

Different theories about the existence of the PPP support different economic views of the in-

sample dynamic driving real exchange rates. These different views result in different models

frequently used in the analysis of PPP; namely ESTAR and MSAR models. As both models

are able to support PPP under certain conditions the question which model to use for the

analysis is usually answered upon prior economic belief rather than statistical model selection

procedures. However, as the dynamics of the competing models are rather different the question

which model captures the data best is important as it results in different economic theories.

In this paper we propose a bootstrap based likelihood ratio test that allows us to discriminate

between both classes of nonlinear time series models. The bootstrap approximation of the

asymptotic distribution of the test statistic allows us to obtain convincing power results for

sample sizes frequently encountered in empirical studies. This is important as asymptotic tests

have been shown to work unsatisfactorily in small samples (see Coulibaly and Brorsen (1999)

and Kapetanios and Weeks (2003)).

In an empirical application we find that the real exchange rates of countries with high inflation

rates such as Argentina or Japan are modeled best using MSAR models, thus supporting the

theory of bubbles in real exchange rates. Countries not suffering from high inflation such as

France or Germany are better described by an ESTAR model. Therefore, continuous adjustment

towards a long-run PPP equilibrium can be concluded.
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A note on testing for purchasing power parity
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A note on testing for purchasing power parity

Published as Leibniz University of Hannover Discussion Paper No. 471.

5.1 Introduction

Purchasing power parity (PPP) is arguably one of the most important parities in international

economics because ”most [economists] instinctively believe in some variant of purchasing power

parity as an anchor for long-run real exchange rates”(Rogoff (1996)). At the same time there is an

ongoing debate whether PPP holds or not. One popular way to test for PPP is to check whether

real exchange rate data follows a mean reverting process and is thus (globally) stationary. The

first studies used the classical Dickey-Fuller test (DF test) to check whether a random walk

can be found in real exchange rates (see e.g. Adler and Lehmann (1983), Meese and Rogoff

(1983), Meese and Rogoff (1988) or Caporale et al. (2003)). As these studies could not reject

the null of a random walk and therefore found no evidence for PPP economists have turned to

nonlinear models to capture a possibly nonlinear adjustment towards PPP (see e.g Taylor et al.

(2001)). Especially models that allow for a symmetric adjustment towards PPP have been found

useful. The most notable is the exponential smooth transition autoregressive (ESTAR) model

(see Teräsvirta (1994)). In this framework Kapetanios et al. (2003) have developed a unit root

test against an ESTAR alternative which subsequently has been successfully applied to confirm

PPP (see e.g. Liew et al. (2004), Chortareas et al. (2002) and Chortareas and Kapetanios (2004)).

Many papers construct real exchange rates from log data to obtain the log real exchange rate

which is consistent with the theory. However, before the analysis is performed the logarithm is

applied a second time to the constructed series although, based on theory, it is not a priori clear

whether the suspected unit root behavior is in the logs or in the levels (see e.g. Chortareas et al.

(2002), Caporale et al. (2003), Bergman and Hansson (2005), Kruse (2009)). It is therefore of

interest whether the applied unit root tests maintain their properties if applied to erroneously

transformed data. For the linear case this has been done by Krämer and Davies (2002) and

Davies and Krämer (2003) (see also de Jong (2010)). Krämer and Davies (2002) are able to

analytically confirm parts of the simulation results of Granger and Hallman (1991) that the DF

test overrejects a correct null of a random walk. Another striking feature of real exchange rates

are the unusual small estimated variances of the innovation term (see e.g. Taylor et al. (2001),

Rapach and Wohar (2006) or Smallwood (2005)). An important question is whether or not the

unit root tests maintain their properties if the innovation variance becomes very small or very

large.

This paper extends the analysis of Krämer and Davies (2002) to the nonlinear unit root test of

Kapetanios et al. (2003). We show analytically and by Monte Carlo evidence that the behavior

of the test statistic depends heavily on the innovation variance of the underlying process if the

http://www.wiwi.uni-hannover.de/Forschung/Diskussionspapiere/dp-471.pdf
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data is erroneously nonlinearly transformed.

The rest of the paper is structured as follows: Section 5.2 presents the considered unit root tests

and derives their asymptotic behavior under nonlinear transformation. Section 5.3 underpins

the analytical results with some Monte Carlo evidence before section 5.4 concludes. All proofs

are collected in the appendix 5.5.

5.2 Unit root tests and their asymptotic behavior under misspecifi-

cation

The first studies researching the PPP relied on the DF test for a unit root against a linear

alternative by Dickey and Fuller (1979). The DF test regression reads

yt = ρyt−1+ εt . (5.1)

The pair of hypotheses is given as

H0 : ρ = 1 vs. H1 : ρ < 1 . (5.2)

The DF test checks if T (ρ̂−1) is sufficiently close to zero. The quantiles of the resulting non-

standard distribution of ρ are tabulated e.g. in Hamilton (1994, p. 762).

Kapetanios et al. (2003) extend the linear framework to the nonlinear ESTAR case (KSS test).

The prototypical ESTAR process they consider reads

yt = φyt−1+ θyt−1G(γ,c; ·)+ εt, with εt
iid
∼ (0,σ2) . (5.3)

G(γ,c; ·) : IR→ [0,1] is a symmetrically u-shaped transition function governing the regime switch-

ing behavior of the process in (5.3). It reads

G(γ,c;yt−d) = 1−exp
(

−γ (yt−d − c)2
)

. (5.4)

For simplicity Kapetanios et al. (2003) set c = 0 and d = 1. If φ = 1 the process is still globally

mean reverting as long as −2< θ < 0 which is assumed henceforth.

To derive the unit root test against the model in (5.3) they approximate the transition function

in (5.4) by a first order Taylor approximation resulting in the following auxiliary regression

model

∆yt = δy
3
t−1+ εt . (5.5)

The pair of hypotheses in this framework reads

H0 : δ = 0 vs. H1 : δ < 0 , (5.6)

which is also tested via a conventional t-test. Critical values are reported in Kapetanios et al.

(2003, p. 364).
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We first consider the case when the unit root test is applied to the levels of the time series but

the random walk is in the logs.

In this case let zt ≔ ln(yt) and assume

zt = µ+ zt−1+σεt, with εt
iid
∼ (0,1) , (5.7)

and 0< σ <∞. The DF test is applied to the levels yt ≔ exp(zt). The OLS estimator for ρ in the

model

yt = ρyt−1+ εt (5.8)

reads

ρ̂ =

T∑

t=1
yt−1yt

T∑

t=1
y2

t−1

. (5.9)

For the linear case the behavior of the DF test for σ2→ 0 and σ2→∞ (T fixed) and for T →∞
(σ2 fixed) has been studied by Krämer and Davies (2002) and Davies and Krämer (2003). For

the case of T →∞ and fixed σ2 Davies and Krämer (2003) show that the rejection probability

tends to unity.

Krämer and Davies (2002) show that if σ→∞ the probability for rejecting the null tends to

zero if the random walk is in the logs but the DF test is erroneously applied to the levels. In the

appendix we show that a similar result also holds for the nonlinear unit root test of Kapetanios

et al. (2003).

Theorem 5.2.1.

If the data is generated by (5.7), and δ̂ is the OLS estimator in (5.5) where yt = exp(zt) we have:

(i) σ2→ 0 implies δ̂
D→ 0.

σ2→ 0 implies s.e.
(

δ̂
) D→ 0.

(ii) σ2→∞ implies δ̂
D→−1.

σ2→∞ implies s.e.
(

δ̂
) D→ 1.

The theorem shows that analog to the linear case the probability of rejecting the unit root

hypotheses tends to zero as σ→ 0 because the test statistic defined as

t̂KS S =
δ̂

s.e.
(

δ̂
) , (5.10)

where s.e.
(

δ̂
)

is the standard error of δ̂ tends to zero as well because δ̂ tends to zero more quickly

than s.e.
(

δ̂
)

.

For the part (ii) of the theorem it is important to note that the test statistic formally tends to

-1 but at such a slow rate that in finite samples with reasonable sample sizes and fairly large

values of σ the test statistic will be large because s.e.
(

δ̂
)

approaches 1 from below and much

slower than δ̂ approaches -1.
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Now we consider the situation when the unit root test is applied to the logs but the unit root

process is in the levels. The true data generating process is now given by (5.7) but the unit

root test is applied to yt ≔ ln(zt). Of course this type of misspecification can only happen if

zt > 0 (t = 0,1, . . . ,T ). Theoretically this only happens if z0 is rather large and/or a substantial

drift component is present in the data generating process. This is however of practical importance

because given a finite sample of empirical data, there is a good chance to encounter only positive

values although negative values might be possible from a theoretical argument. For the linear

case Krämer and Davies (2002) show that ρ̂ in (5.9) tends to one both as σ→ 0 and as σ→∞.
The next theorem, which is proven in the appendix 5.5, gives the limiting behavior of the OLS

estimate for δ in (5.5).

Theorem 5.2.2.

If the data is generated by (5.7), and δ̂ is the OLS estimator in (5.5) where yt = log(zt) we have:

(i) σ2→ 0 implies δ̂
D→ 0.

σ2→ 0 implies s.e.
(

δ̂
) D→ 0.

(ii) σ2→∞ implies δ̂
D→ 0.

σ2→∞ implies s.e.
(

δ̂
) D→ 0.

This theorem implies that the test statistic of the KSS test in (5.10) converges to 0 because δ̂

converges faster than its standard error and hence the null is never rejected given that the test

is one-sided with negative critical values.

5.3 Monte Carlo evidence

This section illustrates the analytic results from the previous section by means of Monte Carlo

experiments. We start with the case that the random walk is in the logs but the unit root test

is applied to the levels.

To illustrate the asymptotic behavior from theorem 5.2.1 figure 5.1 shows plots of δ̂ and s.e.(δ̂)

for various values of σ and T = 100. Each point is obtained as a mean over 5000 Monte Carlo

repetitions.
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Figure 5.1: Illustration of theorem 5.2.1 part (i) I.

As predicted in the theorem both estimates tend to zero as σ→ 0. As a consequence also t̂KS S

tends to zero because δ̂ tends to zero more quickly. This is shown in figure 5.2. The right panel

clearly shows a faster convergence of δ̂.
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Figure 5.2: Illustration of theorem 5.2.1 part (i) II.

The associated power curves for the KSS test for this situation are depicted in figure 5.3.
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Figure 5.3: Power curves for exponential random walk I.

As expected the power curves are very low for small values of σ and eventually tend to one as

σ increases.

Part (ii) of theorem 5.2.1 is illustrated in the following figures. Note that for these figures each

point is obtained as the median over 5000 Monte Carlo repetitions rather than the mean. This

is due to numerical instabilities when dealing with very large standard deviations. In such a

case the noise dominates the signal and one obtains larger deviations from the mean estimate.

However in order to get a notion about the central value of the distribution of the estimates we

choose the more robust median as estimate.

Figure 5.4 shows the behavior of δ̂ and its standard deviation as σ→ ∞. As shown in the

theorem δ̂ goes to -1 with increasing σ while the standard deviation goes very slowly to 1.
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Figure 5.4: Illustration of theorem 5.2.1 part (ii) I.

Because of the slow convergence of s.e.
(

δ̂
)

the associated test statistic t̂KS S is rather large (see

figure 5.5) leading to a power of 1 displayed in figure 5.6.
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Figure 5.5: Behavior of t̂KS S under theorem 5.2.1
part (ii).
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Figure 5.6: Power curves for exponential random
walk II.

For the case that the random walk is in the levels but the unit root test is applied to the logs

analog Monte Carlo experiments have been conducted. For part (i) of theorem 5.2.2 figure 5.7

shows the convergence of δ̂ and its associated standard error to zero as σ→ 0.
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Figure 5.7: Illustration of theorem 5.2.2 part (i) I.

As predicted by theorem 5.2.2, δ̂ converges from negative values to zero and s.e.
(

δ̂
)

converges

from positive values to zero. Figure 5.8 shows the associated test statistic and illustrates the

rates of convergence of δ̂ and s.e.
(

δ̂
)

.
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Figure 5.8: Illustration of theorem 5.2.2 part (i) II.

According to the theory the test statistic t̂KS S converges to zero for small values of σ leading

to non-rejection of the random walk hypotheses. The figures also clearly show an abnormal

non-monotonic behavior of δ̂, s.e.
(

δ̂
)

and t̂KS S . This induces even more uncertainty regarding

the test decisions in this situation.

Figure 5.9 shows the associated power curves. As expected the power decreases with σ tending
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to zero.
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Figure 5.9: Power curves for logarithmic random walk.

The second part of theorem 5.2.2 analyzes the behavior of the KSS test for the case of σ→∞.
Figure 5.10 shows the convergence of the OLS estimates δ̂ and s.e.

(

δ̂
)

to zero as σ→∞.
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Figure 5.10: Illustration of theorem 5.2.2 part (ii).

The OLS estimates δ̂ is much faster than the convergence of s.e.
(

δ̂
)

causing the test statistic

t̂KS S to rapidly converge to zero as well. This leads the KSS test to lose its power properties as

the null cannot be rejected even for moderate values of σ. This is also supported by figure 5.11

that shows the power of the KSS test for large variances.



5.4. Conclusion 91

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

σεt

E
m

pi
ric

al
 P

ow
er

α = 1%
α = 5%
α = 10%

0.11 0.5 1 1.5

Figure 5.11: Power curves for logarithmic random walk and large variances.

The power decreases rapidly to zero. The vertical dashed line shows the maximal power value

for the α = 5% level. Except in the region around σ ≈ 0.11 the power is virtually zero and thus

the unit root hypothesis is never rejected in this case.

5.4 Conclusion

This paper studies the asymptotic behavior of the unit root test against a globally stationary

ESTAR model proposed by Kapetanios et al. (2003). In particular we study the behavior of the

test statistic if the innovation variance becomes very small or very large and the data has been

erroneously nonlinearly transformed. I.e. the unit root is in the logs but the unit root test is

applied to the levels or vice versa. We find that the behavior of the test depends heavily on the

innovation variance if the data is transformed. If the unit root is in the logs but the unit root

test is applied to the levels the test never rejects the random walk hypotheses if σ→ 0.

The situation when the unit root is in the levels but the unit root test is applied to the logs is

even more severe. In this situation the test virtually never rejects the null. Only in a very small

region of around σ ≈ 0.11 the test rejects the null. This leads to a non-monotonic power of the

KSS test.

The consequences for testing for PPP are that one should be very careful if nonlinear data trans-

formation should be applied or not because in both considered cases the KSS test loses power

and thus yields unreliable results.

Regarding data transformation in nonlinear time series future work should focus on discriminat-

ing between linear or logarithmic model formulation for nonlinear time series. A possible road is

to extend the work of Kobayashi and McAleer (1999) or Spanos et al. (2008) to nonlinear time

series models.

Possibly the asymptotic distributions of unit root tests for the case of erroneously transforming
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the time series according to log(|zt |) where zt is I(1) could be derived using the results in de Jong

(2004) (see also de Jong and Schmidt (2002)).
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5.5 Appendix

5.5.1 Proof of Theorem 5.2.1

Assume without loss of generality that z0 = 0 and set the drift to µ = 0. Then write

zt = zt−1+σεt = σ

t∑

i=1

εi , (5.11)

and notice that

∆yt = yt − yt−1 = exp(zt)−exp(zt−1) . (5.12)

With this the OLS estimator of δ̂ in (5.5) reads

δ̂ =

T∑

t=1
y3

t−1∆yt

T∑

t=1
y6

t−1

=

T∑

t=1

[

exp(3zt−1+ zt)−exp(4zt−1)
]

T∑

t=1
exp(6zt−1)

=

T∑

t=1

[

exp

(

3σ
t−1∑

i=1
εi+σ

t∑

j=1
εi

)

−exp

(

4σ
t−1∑

i=1
εi

)]

T∑

t=1
exp

(

6σ
t−1∑

i=1
εi

) . (5.13)

As the numerator tends to zero and the denominator tends to T as σ→ 0 the first part of (i) of

the Theorem follows.

Now consider the OLS estimator of the standard deviation of δ̂

s.e.
(

δ̂
)

=

1
T−1

T∑

t=1

(

∆yt − δ̂y3
t−1

)2

T∑

t=1
y6

t−1

=

T∑

t=1

[(

exp(zt)−exp(zt−1)
)2−2δ̂

(

exp(zt)−exp(zt−1)
)

exp(3zt−1)+ δ̂2exp(6zt−1)
]

T∑

t=1
exp(6zt−1)

. (5.14)

Given the representation from above we immediately see that the numerator tends to zero and

the denominator tends to T as σ→ 0. Consequently s.e.
(

δ̂
)

tends to zero as claimed in part the

second part of (i) in the theorem. Note that δ̂ tends to zero more quickly so that t̂KS S tends to

zero as σ→ 0.

To prove the part (ii) note that for the case σ → ∞ the slope of the exponential function

becomes much steeper with increasing positive values as for negative values where the difference

in the slopes eventually becomes negligible. We have from the representation in (5.13) that the
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numerator tends to −∞ because of the higher power of the second term. As the denominator

tends to ∞ with σ→∞ the whole expression for δ̂ tends to -1 as claimed. In the representation

(5.14) for the standard deviation the denominator clearly tends to ∞. In the numerator the

crucial term is the last one. This expression also goes to∞ but much slower than the denominator

(because
∣
∣
∣δ̂
∣
∣
∣ < 1). Thus the whole term will eventually go to one but very slowly. �

5.5.2 Proof of Theorem 5.2.2

Assume without loss of generality that z0 = 0 and set the drift to µ = 0. Then write

zt = zt−1+σεt = σ

t∑

i=1

εi , (5.15)

and notice that

∆yt = yt − yt−1 = log(zt)− log(zt−1)

= log



σ

t∑

i=1

εi



− log




σ

t−1∑

i=1

εi





= log(σ)+ log





t∑

i=1

εi



− log(σ)− log





t−1∑

i=1

εi





= log





t∑

i=1
εi

t−1∑

i=1
εi





= log





1+
εt

t−1∑

i=1
εi





≕ log(η) . (5.16)

With this the OLS estimator reads

δ̂ =

T∑

t=1
y3

t−1∆yt

T∑

t=1
y6

t−1

=

T∑

t=1

[

log(zt−1)3 log(η)
]

T∑

t=1

[

log(zt−1)6]

=

T∑

t=1





{

log(σ)+ log

(
t−1∑

i=1
εi

)}3

log(η)





T∑

t=1

[

log(σ)+ log

(
t−1∑

i=1
εi

)]6
.
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Using the binomial theorem we can expand the powers of the binomials in the numerator and

the denominator. Leading to the following expression for the numerator

T∑

t=1










log(σ)3
+3log(σ)2 log





t−1∑

i=1

εi




+3log(σ) log





t−1∑

i=1

εi





2

+ log





t−1∑

i=1

εi





3


log(η)




.

And for the denominator

T∑

t=1




log(σ)6

+6log(σ)5 log





t−1∑

i=1

εi




+15log(σ)4 log





t−1∑

i=1

εi





2

+20log(σ)3 log





t−1∑

i=1

εi





3

+

15log(σ)2 log





t−1∑

i=1

εi





4

+6log(σ) log





t−1∑

i=1

εi





5

+ log





t−1∑

i=1

εi





6

.

The numerator tends to −∞ as σ→ 0 and the denominator eventually tends to ∞. Thus δ̂ tends
to 0 as claimed. Note that, because of the complex interplay of the powers of the logarithms

involved and the associated changes of signs and the different slopes of the logarithmic functions

in the interval (0,1] the convergence is expected to be slow. However because the denominator

converges at a higher rate than the numerator (because of the higher powers involved) the OLS

estimate will eventually converge to zero.

Analyzing the standard deviation of δ̂ in (5.14) for yt = log(zt) we see for the same reasons as

above that numerator slowly converges to zero (as δ̂ goes to zero) and the denominator diverges

to ∞. Thus s.e.
(

δ̂
)

→ 0 as claimed.

For the first part of (ii) notice that the numerator as well as the denominator diverge to ∞. But
again the denominator diverges much faster due to the high powers of log(σ) involved. Therefore

δ̂ will eventually diverge to zero as claimed. The result for the standard error of δ̂ is obtained

with the same reasoning. �



Chapter 6

Monitoring a change in persistence of a long range depen-
dent time series



6.1. Introduction 97

Monitoring a change in persistence of a long range depen-
dent time series

Co-authored with Juliane Willert.

6.1 Introduction

The assumption of structural stability of an econometric model is a major issue in time se-

ries econometrics. If the parameter estimates stem from an unstable relationship they are not

meaningful and additionally inference can be biased and forecasts yield inaccurate results (see

e.g. Hansen (2001), Andrews and Fair (1988), Ghysel et al. (1997), Garcia and Perron (1996) or

Clements and Hendry (1998)). In reaction to these findings a large amount of literature emerged

that incorporated structural change in the inference techniques or analyzes forecasting subject

to structural change more closely (see e.g. Perron (1989), Zivot and Andrews (1992) or Pesaran

and Timmermann (2005)). Recently the possibility of a change in persistence, i.e. a change in

the memory structure of the time series as a special case of structural instability, has become

object of study (see e.g. Kim (2000), Kim et al. (2002), Busetti and Taylor (2004), Banerjee

et al. (1992), Leybourne et al. (2003) or Leybourne et al. (2007)). This work has been placed

within the I(0) vs. I(1), or vice versa, framework where the focus lies on short memory time

series with an exponentially decaying autocorrelation structure.

However, since the seminal papers of Granger and Joyeux (1980) and Hosking (1981), long mem-

ory time series have become widely used in economics to model highly persistent time series as

diverse as inflation rates or realized volatility (see e.g. Hassler and Wolters (1995) and Corsi

et al. (2008)). Baillie (1996) provides an overview about various applications of long memory

time series in economics.

Despite these facts little work has been done to test for a change in persistence in long range

dependent time series. Notable exceptions are Beran and Terrin (1996), Ray and Tsay (2002),

Sibbertsen and Kruse (2009) or Yamaguchi (2011). These test belong to the class of so-called

”one-shot” tests (see Chu et al. (1996, p. 1045)), i.e. tests that are applied a posteriori to detect

a structural break within a historical data set.

Because breaks can occur at any given time and also new data arrives steadily it is desirable for

the applied econometrician to detect a change in persistence as soon as possible. This leads to a

sequential testing problem (see Siegmund (1985) for an overview). As the usual ”one-shot” tests

work with constant critical values they cannot be applied sequentially given that the true null of

no change would eventually be rejected with probability one (see Robbins (1970)). Starting with

Bauer and Hackl (1978) a strand of literature has emerged that studies monitoring procedures

that allow to detect structural change whenever new data arrives. Important contributions on

this field are Chu et al. (1995), Kuan and Hornik (1995), Chu et al. (1996), Leisch et al. (2000),

Altissimo and Corradi (2003), Zeileis et al. (2005), Andreou and Ghysels (2006) and Hsu (2007).

mailto: willert@statistik.uni-hannover.de
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These papers contribute to the literature on monitoring structural stability on different levels

ranging from theoretical contributions to detecting structural change in the conditional mean or

the conditional variance or comparing different types of rejection regions for the null.

In this paper we use a monitoring approach based on moving sums of residuals and place it

into a long memory framework. We develop a procedure to detect an increase in persistence

for the case that the process becomes non-stationary. This is important because an increase

in persistence implies a loss of controllability for important macroeconomic time series such as

inflation rate or the European overnight rate (EONIA) (see Sibbertsen and Kruse (2009) and

Hassler and Nautz (2008)). Further, a change in persistence also affects forecast accuracy in

long memory time series (see Heinen et al. (2009)).

The rest of the paper is organized as follows: In section 6.2 we describe the test procedure we

use and develop the asymptotic behavior. We further discuss and motivate different forms of

boundary functions for the test. In section 6.3 we undertake a simulation study to asses the

finite sample performance of the monitoring test. Section 6.4 contains an empirical application

before section 6.5 concludes. All proofs are collected in the appendix 6.6.

6.2 Monitoring a change in persistence

We assume that the data generating process follows an ARFIMA(p,d,q) process as proposed by

Granger and Joyeux (1980)

Φ(L)(1− L)dyt = Θ(L)εt, with εt
iid
∼ (0,σ2) and t = 1,2, . . . ,T . (6.1)

The differencing parameter d can take fractional values but is assumed to be |d| < 1
2. Thus the

process yt is in the stationary region (see e.g. Beran (1995)).

Bauer and Hackl (1978) propose the use of moving sums of cumulated residuals (MOSUM) to

detect parameter changes in regression models. These tests are further investigated by Chu et al.

(1995).

We are interested in detecting a change in persistence, i.e. a change in the fractional differencing

parameter d, in the monitoring period T +1 up to [Tτ], τ > 1. Where [·] denotes the integer part
of its argument.

In particular, we test the null of no change in persistence, i.e. d = d0 within the monitoring period

where |d0| < 1
2, against the alternative of an increase in persistence. More formally we test the

null that

H0 : dℓ = d0, ℓ = T +1, . . . , [Tτ] , (6.2)

against the alternative that at some point in the monitoring period the persistence increases

and 1
2 < dℓ < 3

2. Thus we test whether the process stays in the stationary region throughout the

whole monitoring period or changes into the non-stationary region with an infinite variance at

some point in the monitoring period. For the period from t = 1, . . . ,T we follow Chu et al. (1996)
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and make the ”noncontamination” assumption that

dt = d0, t = 1, . . . ,T ,

with |d0| < 1
2. Consider for simplicity the case of an ARFIMA(0,d,0) process.

Let êt be an ARFIMA(0,d,0) process as in (6.1) and σ̂2
= T−1∑T

i=1 ê2
i a consistent estimator of

σ2. Based on a moving sum of residuals obtained from a fixed window size [Th], 0< h ≤ 1, the

prototypical MOSUM test reads

MS T,h,d = max
T+1≤k≤[Tτ]

σ−1T−
1
2−d

∣
∣
∣
∣
∣
∣
∣
∣

k∑

i=k−[Th]+1

êi−
[Th]

T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣
∣

, (6.3)

for each value k in the monitoring period T +1 through [Tτ].

The next theorem gives the asymptotic behavior of the test statistic in (6.3) if yt follows a long

range dependent process as in (6.1) and (6.2).

Theorem 6.2.1.

Assume the process yt follows an ARFIMA(0,d,0) process as in (6.1) with |d| < 1
2. Then, as

T →∞, we have for MS T,h,d in (6.3) that

MS T,h,d⇒
1
σ

max
t∈[1,τ]

∣
∣
∣BB0(t,d)−BB0(t−h,d)

∣
∣
∣ ,

where BB0(t,d) denotes a fractional Brownian Bridge depending on fractional Brownian motion

with parameter d. ⇒ denotes weak convergence on a function space.

Under the alternative of a break in persistence the test is consistent.

The limiting distribution thus depends on the increments of a fractional Brownian bridge which

in turn depends on the differencing parameter d of the data generating process. Therefore the

asymptotic critical values of MS T,h,d are determined by the boundary crossing probabilities of

the increments of a fractional Brownian bridge:

IP
{
MS T,h,d ≤ b

}
= IP

{∣
∣
∣BB0(t,d)−BB0(t−h,d)

∣
∣
∣ ≤ b

}

. (6.4)

The use of the test statistic in (6.3) is beneficial because the sequential application of usual

CUSUM tests as in Sibbertsen and Kruse (2009) with constant critical values will eventually

reject a correct null of no change in persistence with probability 1 (see Robbins (1970)).

Generally, every strictly increasing function b(t) = zq(t) could serve as a boundary function where

z is some suitable scaling factor and q(t) is some monotonically increasing function in time.

However if the boundary function grows too slowly the monitoring test will commit the type one

error almost surely as it will detect a break in persistence with probability one. On the contrary

if the boundary grows too quickly the test will loose power because a break in persistence cannot

be detected anymore. For the short memory case a variety of different boundary functions have

been proposed (see Andreou and Ghysels (2006, p. 92) for an overview). In particular Altissimo
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and Corradi (2003) derive a boundary function based on the almost sure asymptotically uniform

equicontinuity of the Brownian bridge obtaining an almost sure boundary function. This is

convenient because it gives the rate of convergence with which the sequence of functions converges

to a relatively compact set in the sense of an Arzelà-Ascoli theorem (see e.g. Davidson (1994,

p. 335)). This provides useful information as we are interested in the behavior of the limiting

distribution independently of the test statistic. We also derive almost sure results similar to the

ones obtained by Altissimo and Corradi (2003) which are collected in the next theorem.

Theorem 6.2.2.

Let BB0(t,d) = B(t,d)− tB(1,d) be a fractional Brownian bridge. Then, d−1
T |BB0(t,d)| is almost

surely asymptotically uniform equicontinuous in t ∈ [0,1]. With dT ≔
√

2T 2H log log(T ).

The use of this theorem is that it provides the rate with which the increment of the fractional

brownian bridge becomes asymptotically uniform equicontinuous. In the proof this derived to

be
√

2log log(T ). Hence, if we use this growth rate for the boundary function we will obtain a

slowly growing function and therefore detect a change in persistence but at the same time the

growth rate of this function is independent of the long memory parameter under the null d0.

Different forms of the boundary function are possible. For example one could use the boundary

function

b1(t) = z
√

2t log2(t) , (6.5)

where log2(t)≔ log(log(t)). This boundary function is based on the law of iterated logarithm and

is motivated by the fastest detection of change because it grows as slowly as possible. From

theorem 6.2.2 we deduce the boundary function

b2(t) = z
√

2log2(t) . (6.6)

Because both boundary functions rely on the square root of a logarithm one needs to find a way

to deal with values ≤ log(1) to ensure real valued boundaries. One way of doing so is to define

log′2(t)≔






1 if t ≤ exp(1)

log log(t) if t > exp(1),

similar to Leisch et al. (2000). Another way which avoids the constant behavior of the boundary

function at the beginning of the monitoring period is to define

log′′2 (t)≔






t if t ≤ exp(1)

log log(t) if t > exp(1).
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Formally this leads to four possible boundary functions

b3(t) = z
√

2t log′2(t) (6.7)

b4(t) = z
√

2t log′′2 (t) (6.8)

b5(t) = z
√

2log′2(t) (6.9)

b6(t) = z
√

2log′′2 (t) . (6.10)

One could think of different boundary functions such as functions that are dependent on the

long memory parameter under the null to account for the gradually increasing variance of the

process. However, unreported simulations showed that such a boundary function does not

perform satisfactorily and we therefore restrict ourselves to the above boundary functions.

6.3 Monte Carlo evidence

We start by providing some Monte Carlo evidence on the small sample behavior of the usual

MOSUM test as considered in Leisch et al. (2000) under long range dependence. Table 6.1 shows

some of the simulation results.

τ = 4 τ = 6 τ = 8

d h = 0.25 h = 0.5 h = 1 h = 0.25 h = 0.5 h = 1 h = 0.25 h = 0.5 h = 1

0.1 66.22 57.26 51.08 70.04 62.80 53.72 72.52 67.12 57.02

0.2 98.06 96.38 91.90 99.28 97.94 94.90 99.76 98.98 96.86

0.3 99.96 99.90 99.64 100.00 100.00 99.96 100.00 100.00 99.96

0.4 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 6.1: Empirical size of the fluctuation test by Leisch et al. (2000) [in %] for T = 250 and α = 5%.

As expected the generalized fluctuation test does not keep its size. Even if the long memory

is only moderately present the test does not allow a secure conclusion whether a change in

persistence is present or not because the boundary functions are too narrow.

In order to assess the finite sample performance of the monitoring procedure described in section

6.2 we consider different values for the long memory parameter d = 0.1,0.2,0.3,0.4, the monitoring

window h = 0.25,0.5,0.75,1 and the out-of-sample monitoring period τ = 2,4,6,8,10. We also

consider different sample sizes of T = 200,250,300 and the different boundary functions bi(t), for

i = 3, . . . ,6, from (6.7) to (6.10) for the simulations. The number of Monte Carlo repetitions is

set to M = 10000and the levels of significance are set to α = 1%,5%,10%.1

1Some of the results here and in the sequel are unreported to save space but can be obtained from the authors
on request.
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Boundary function b3(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 6.86 7.10 8.59 6.26 6.95 9.03 7.07 6.97 8.60

0.2 6.77 6.80 8.73 6.47 6.56 8.52 5.75 6.82 8.97

0.3 5.68 7.12 9.76 6.16 7.08 9.54 6.21 7.08 10.24

0.4 10.77 12.29 16.43 9.96 12.82 16.18 10.07 12.24 16.09

Table 6.2: Empirical size of the monitoring procedure [in %] for T = 250 and α = 5%.

Table 6.2 shows the size results for the boundary function motivated by the law of iterated

logarithm. Using this boundary we obtain a procedure that is generally oversized. This overre-

jection of the correct null becomes more severe as the degree of persistence increases and/or the

monitoring window h increases.

Table 6.3 displays the respective results based on the almost sure results from theorem 6.2.2.

These results are more promising compared to the ones of boundary b3(t) as the nominal size level

is better adhered to. Looking at the dependencies between the size, the long memory parameter

d, the monitoring window h and the monitoring period τ we see that a moderate window size of

h = 0.5 or h = 0.75 is generally preferable regardless of the monitoring period τ. If the persistence

increases a reduced window size of h = 0.5 yields the most accurate size results. Reducing the

window size even further to h = 0.25, however, leads to overrejection again as unreported results

show.

As the boundary function b6(t) is only a slight modification of boundary function b5(t) the same

argument as above applies to the results in table 6.4. The only difference is that the test

overrejects somewhat when using boundary function b6(t).

Boundary function b5(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 7.55 7.02 7.09 7.12 6.16 6.69 7.30 6.56 6.29

0.2 6.76 5.85 6.56 6.64 5.85 5.60 5.90 5.66 5.23

0.3 5.15 4.87 4.87 5.08 4.28 4.29 5.16 3.89 3.92

0.4 5.61 5.10 5.78 4.86 4.12 4.28 4.32 3.63 3.89

Table 6.3: Empirical size of the monitoring procedure [in %] for T = 250 and α = 5%.
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Boundary function b6(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 7.00 7.52 8.65 6.75 6.71 8.42 7.34 7.05 7.59

0.2 7.13 6.92 8.60 6.69 6.31 7.33 6.02 6.20 6.70

0.3 6.12 6.96 8.94 5.96 5.86 7.26 5.84 5.58 6.49

0.4 10.26 11.22 13.96 8.39 9.61 10.83 7.67 8.06 9.53

Table 6.4: Empirical size of the monitoring procedure [in %] for T = 250 and α = 5%.

The size results for the α = 10% level are unreported but show the same general behavior of the

previously discussed results. However, in this setting it becomes even more obvious that the

boundary function b5(t) yields the best performance over all considered settings.

Generally the size distortions are minor and acceptable and also comparable to the short mem-

ory case as reported in Leisch et al. (2000).

In an empirical setting the long memory parameter d0 is unknown and has to be estimated.

We therefore conduct the size experiment again but this time using an estimated d0. Generally

every consistent estimation method is applicable but estimators that converge faster than the

asymptotic distribution to the true value of d0 are preferable. One such estimator is the approxi-

mate maximum likelihood estimator proposed by Beran (1995) which is
√

T consistent. Another

popular method to estimate d0 is the log-periodogram regression (see Geweke and Porter-Hudak

(1983)). The rate of convergence of this estimator is
√

m where m is the number of frequencies

used. The estimator is consistent as long as (m log(m))/n→ 0 as m,n→∞, with n being the sample

size (see Hurvich et al. (1998)). In our simulations we use this estimator with T 4/5 frequencies.

The results are reported for the α = 5% level in table 6.5.

Boundary function b5(t)

τ = 4 τ = 6 τ = 8

d h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1 h = 0.5 h = 0.75 h = 1

0.1 8.68 7.62 8.50 8.62 7.14 7.48 7.72 7.20 6.42

0.2 7.12 6.62 6.02 7.44 6.08 5.82 6.36 5.86 5.42

0.3 5.74 4.98 5.26 5.14 4.28 4.40 4.26 4.24 4.04

0.4 5.36 4.86 5.38 4.32 4.36 4.34 3.74 3.42 4.04

Table 6.5: Empirical size of the monitoring procedure with estimated d0.

We observe small size distortions for smaller values of d0 and larger monitoring periods but

generally the size is well kept even if we estimate the long memory parameter.

When the persistence changes from stationary to non-stationary the MOSUM test will even-

tually detect this with probability one due to consistency (see theorem 6.2.1).2 Therefore it is

more interesting how fast a change in persistence can be detected.

2This has also been confirmed in unreported simulations.
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To study the detection delay we consider breaks from the stationary region, namely d0 =

0.1,0.2,0.3,0.4, to the non-stationary region, d1 = 0.6,0.7,0.8,0.9,1. The break occurs within

the monitoring period at t∗ =
[
ρτT

]
, where ρ = 0.3,0.5,0.7 and τ = 2,4,6,8,10 as above and [·]

denotes the integer part of its argument. We use a sample size of T = 250 and the boundary

functions bi(t), for i = 3, . . . ,6, from (6.7) to (6.10). As an example the average detection delay

for the α = 5% level for the boundary function b5(t) for different breaks is displayed in tables 6.6,

6.7 and 6.8.

Boundary function b5(t)

τ = 2 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 53.33 43.40 37.23 77.61 63.15 49.58 91.34 72.67 56.20

0.2 79.23 63.41 54.45 112.58 95.82 81.91 126.86 112.28 95.50

0.3 112.44 92.12 76.31 144.79 137.08 122.53 158.95 156.00 148.96

0.4 133.96 118.80 99.73 150.59 158.25 151.10 157.33 172.92 172.75

τ = 4 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 57.89 46.73 38.50 91.25 71.51 57.13 116.31 90.09 69.96

0.2 94.31 72.12 59.49 149.92 118.26 98.78 186.03 152.03 127.12

0.3 160.65 109.40 86.93 222.47 183.72 152.57 265.43 240.25 210.58

0.4 225.64 167.07 121.51 272.32 258.26 214.56 293.90 309.68 282.91

τ = 6 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 53.52 41.29 32.36 96.13 71.78 56.47 124.22 94.77 72.26

0.2 98.55 69.55 55.80 167.16 124.39 104.44 217.05 169.95 138.28

0.3 190.16 111.91 85.96 282.65 204.74 165.30 339.06 276.86 231.03

0.4 315.36 192.13 126.20 380.04 315.26 239.72 419.28 396.05 320.28

Table 6.6: Average detection delay of the monitoring procedure for T = 250, α = 5% and ρ = 0.3.

Table 6.6 shows the results for the case of an early break within the monitoring period. As one

expects the detection is easier and therefore faster if the difference between d0 and d1 is large.

Consequently the detection delay is rather small if the persistence changes from stationary, say

d0 = 0.2, long memory to non-stationary, say d1 = 0.8, and even faster if the process becomes a

unit root process after the break. In fact, the detection delay for larger breaks is comparable

with the short memory case (see table 3 in Leisch et al. (2000)). This is encouraging given the

well known slow rate of convergence in long memory time series. Another result is that it is

easier and faster to detect a change in persistence if the width of the monitoring window [Th] is

rather small. Detection delays for values of h = 0.25 and h = 0.5 are generally smaller compared

to larger values of h. This is also in line with the findings of Leisch et al. (2000) for the short

memory case. It is well known also in related areas of the structural change literature (see

e.g Pesaran and Timmermann (2005) for results regarding forecasts under structural breaks)
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that smaller windows of data are usually better to detect and deal with structural change. The

results for later breaks within the monitoring period are shown in tables 6.7 and 6.8. The general

conclusions from above remain valid but the detection delay becomes even smaller if the breaks

occurs later. This is also a similar behavior to the short memory case reported in Leisch et al.

(2000).

Boundary function b5(t)

τ = 2 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 44.55 35.39 28.67 65.85 54.45 43.62 74.23 60.25 48.20

0.2 65.49 55.62 47.31 89.16 82.66 72.46 96.55 91.89 81.20

0.3 85.56 78.49 68.26 110.59 112.02 106.93 118.37 123.46 118.71

0.4 89.62 92.35 84.78 99.62 115.70 117.50 95.06 110.72 125.06

τ = 4 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 51.01 35.76 29.86 88.67 68.46 52.90 113.94 87.37 67.87

0.2 88.44 64.41 51.54 141.47 116.89 98.79 172.76 150.65 129.69

0.3 143.60 108.29 82.25 190.48 174.08 152.71 223.04 217.80 204.48

0.4 169.54 153.31 114.90 204.31 218.35 201.99 225.85 250.99 241.94

τ = 6 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 36.59 24.66 16.15 87.80 65.26 47.83 122.35 90.52 67.80

0.2 86.31 58.32 41.59 158.73 120.80 99.18 204.27 169.67 140.36

0.3 174.06 106.13 74.87 242.96 201.27 163.20 289.19 264.62 229.60

0.4 235.73 181.23 121.38 287.28 279.41 231.81 303.02 332.77 302.43

Table 6.7: Average detection delay of the monitoring procedure for T = 250, α = 5% and ρ = 0.5.
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Boundary function b5(t)

τ = 2 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 28.02 24.45 18.84 39.55 35.59 30.44 41.95 38.81 31.69

0.2 39.24 38.55 33.06 53.02 52.25 50.44 54.65 53.90 52.27

0.3 45.85 53.02 50.46 61.29 69.01 69.73 50.52 60.77 69.68

0.4 27.52 44.96 50.19 21.71 38.06 52.93 -77.72 -86.60 -61.95

τ = 4 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 38.81 24.41 16.72 69.65 58.49 44.95 86.56 79.32 63.26

0.2 66.51 51.73 40.02 101.49 101.71 92.10 121.38 117.65 112.30

0.3 90.24 82.78 69.57 124.50 133.20 131.38 146.83 156.16 159.54

0.4 77.71 100.90 92.53 96.81 138.45 144.58 93.48 140.91 166.83

τ = 6 h = 0.25 h = 0.5 h = 0.75

d0 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1 d1 = 0.6 d1 = 0.8 d1 = 1

0.1 12.08 4.92 -5.71 68.34 50.98 33.94 99.05 76.97 55.14

0.2 63.08 37.87 20.33 120.52 103.78 87.11 155.37 142.54 128.07

0.3 104.40 85.53 57.51 163.12 161.03 145.76 188.54 197.29 196.56

0.4 110.33 132.11 96.32 139.56 185.50 185.40 148.29 215.15 222.53

Table 6.8: Average detection delay of the monitoring procedure for T = 250, α = 5% and ρ = 0.7.

6.4 Empirical Application

To illustrate the use of the monitoring approach we analyze monthly US price inflation series

from Stock and Watson (2005).3 In particular we consider the first difference of the logarithmic

implied price deflator for durable goods. This series has also been under investigation from

Cavaliere and Taylor (2008) who report a change in persistence from I(0) to I(1). However, they

did not consider the possibility of fractional integration in the series although inflation related

time series are likely to show long memory behavior (see e.g. Hassler and Wolters (1995)). The

sample spans from 01/1959 to 12/2003. The series is depicted in figure 6.1.

3The data is available at Mark Watson’s website at: http://www.princeton.edu/∼mwatson/wp.html.

http://www.princeton.edu/~mwatson/wp.html
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Figure 6.1: First difference of logarithmic price deflator for durable goods.

To determine the value of the long memory parameter we use log-periodogram regression as

proposed by Geweke and Porter-Hudak (1983). The decision of how many frequencies should

be used in the regression is a trade-off between reducing the bias and reducing the asymptotic

variance. We use T 1/2 frequencies to deal with potential short memory components in the data

(see e.g. Agiakloglou et al. (1993)). For the whole sample this yields an estimate of d̂ = 0.61.

This value is highly significant as judged by its p-value which is < 1e−03.

To test whether a change in persistence can be detected in the data we apply the CUSUM of

squares test for a change in persistence proposed by Sibbertsen and Kruse (2009) to the whole

sample. This leads to a test statistic of R = 0.0373 which is significant at the α = 5% level in

favor of an increasing persistence. The estimated breakpoint is at t∗ = 107which is 11/1967 (the

dotted line in figure 6.1).

To use the monitoring approach we split the sample in an in-sample part ranging from 01/1959

to 12/1965 and leave the rest as monitoring period. This yields a τ ≈ 5. The estimated d0 within

the in-sample period is d̂0 = 0.23.

For the application of the MOSUM test we use the boundary function b5(t) and set h = 0.5. The

first time the sequence of test statistics exceeds the α = 1% boundary function is at t = 55 in the

monitoring period. This is equivalent to an estimated breakpoint at t∗ = 139 which is 06/1970

(the dashed line in figure 6.1). The first time the sequence of test statistics exceeds the α = 5%

and α = 10% boundary functions is only one period earlier.

The estimation of d1 in the monitoring period yields d̂1 = 0.68. Thus we can confirm a change in

persistence with high probability from stationary long memory to non-stationary long memory.

Notably the detection delay is rather short and we obtain a fast indication of the change in

persistence from using the monitoring procedure.
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6.5 Conclusion

Detecting a change in persistence as soon as possible is of paramount interest because structural

change affects the subsequent analysis of the data heavily. The usual approach is to use one-

shot tests to detect a change in persistence a posteriori. However, these tests cannot be applied

sequentially because a correct null of no change would eventually be rejected with probability

one. We propose a monitoring procedure based on moving sums that allows to detect a change in

the long memory parameter of a long range dependent time series whenever new data arrives. By

means of a Monte Carlo experiment we show good size properties and also study the detection

delay when a change in persistence occurs. Depending on the width of the monitoring window

and the difference between the pre- and post-break long memory parameter the detection is

rather fast. Smaller monitoring windows generally prove more useful to detect a change in

persistence early and also larger differences between the long memory parameters are detected

faster.

In an empirical illustration of the method we are able to confirm a change in persistence from

stationary to non-stationary long memory in an inflation time series.
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6.6 Appendix

6.6.1 Proof of Theorem 6.2.1

First, let k = [Tt] for each value in the monitoring period then write the test statistic as

MS T,h,d = max
T+1≤k≤[Tτ]
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1
2−d

∣
∣
∣
∣
∣
∣
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.

Then using the FCLT for fractionally integrated processes (see Sowell (1990) and Davidson and

de Jong (2000)) and the continuous mapping theorem (CMT) we have

MS T,h,d ⇒ max
T+1≤[Tt]≤[Tτ]

σ−1 |B(t,d)− tB(1,d)−B(t−h,d)+ (t−h)B(1,d)|

= max
T+1≤[Tt]≤[Tτ]

σ−1
∣
∣
∣BB0(t,d)− [B(t−h,d)− (t−h)B(1,d)]

∣
∣
∣

= max
T+1≤[Tt]≤[Tτ]

σ−1
∣
∣
∣BB0(t,d)−BB0(t−h,d)

∣
∣
∣ ,

where BB0(t,d) denotes a fractional Brownian bridge.

To prove consistency we consider that at some point in the monitoring period, say k∗, the

persistence changes from stationary long memory with 0< d0 <
1
2 to non-stationary long memory

with 1
2 < d1 <

3
2 and then split the test statistic into its stationary and non-stationary parts. We

write the test statistic as

MS T,h,d0 = max
T+1≤k≤[Tτ]
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,

where k = [rT ] for some r > 1. Part III only contains I(d0) variables due to the noncontamination

assumption.

We have to distinguish two cases:

(i) k∗ ≤ [rT ] − [Th] ⇒ in this case both I and II contain I(d1) variables

(ii) [rT ] − [Th] ≤ k∗ ≤ [rT ] ⇒ in this case only I contains I(d1) variables.
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Ad (i):

The case (i) is depicted in figure 6.2 where [rT ] is denoted by k1 and [rT ] − [Th] is denoted by

k0. The gray shaded area is the monitoring window.

T

in−sample out−of−sample

[T ⋅ τ]k* k0 k1

[T ⋅ h]

Figure 6.2: MOSUM case (i).

Write the test statistic as

MS T,h,d0 = max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣

k∗∑
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êi+

[rT ]∑

i=k∗+1

êi −
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êi −
[rT ]−[hT ]∑

i=k∗+1

êi −
[hT ]

T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣

= max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣

− [hT ]
T

T∑

i=1

êi

∣
∣
∣
∣
∣
∣
∣

+ max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣
∣

[rT ]∑

i=[rT ]−[hT ]

êi

∣
∣
∣
∣
∣
∣
∣
∣

.

Now, the first part is I(d0) and is correctly standardized. Therefore, using the arguments from

above it converges to −hB(1,d0) which is the standard deviation of the fractional Brownian

motion. For the second part the standardization is obtained from d0 but the variables are I(d1)

and so the expression diverges and we obtain

MS T,h,d0 = op(1)+Op

(

T d1−d0
)

. (6.11)
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Ad (ii):

The situation (ii) is depicted in figure 6.3.

T

in−sample out−of−sample

[T ⋅ τ]k*k0 k1

[T ⋅ h]

Figure 6.3: MOSUM case (ii).

Now only I contains I(d1) variables. Write the test statistic as

MS T,h,d0 = max
T+1≤[rT ]≤[Tτ]

σ−1T−
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êi

∣
∣
∣
∣
∣
∣
∣

+ max
T+1≤[rT ]≤[Tτ]

σ−1T−
1
2−d0

∣
∣
∣
∣
∣
∣
∣
∣

k∗∑

i=[rT ]−[hT ]

êi
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.

With the arguments from case (i) we obtain

MS T,h,d0 = Op

(

T d1−d0
)

+op(1)+op(1) , (6.12)

where the second part of the above expression does not expand with T anymore and therefore

vanishes as T →∞. �
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6.6.2 Proof of Theorem 6.2.2

Denote by dT ≔
√

2T 2d+1 log log(T ). By the reverse triangle inequality we have for some r ∈ [0,1]

d−1
T

∣
∣
∣B(Tr,d)− rB(T,d)− (

B(Tr′,d)− r′B(T,d)
)∣∣
∣ ≤ d−1

T

∣
∣
∣B(Tr,d)−B(Tr′,d)

∣
∣
∣+d−1

T

∣
∣
∣(r− r′)B(T,d)

∣
∣
∣ ,

for distinct values r and r′. Using the notation from Altissimo and Corradi (2003, p. 232) we

write S (r, δ) = (r′ : |r− r′| ≤ δ). Now, by the fact that (see Davidson (1994, p. 335 ff.))

sup
θ∈Θ

sup
θ′∈S (θ,δ)

∣
∣
∣ fn(θ′)− fn(θ)

∣
∣
∣ ≤ 2sup

θ∈Θ
| fn(θ)|

and the LIL for the fractional Brownian motion (see e.g. Taqqu (1977)) we have for the second

part of the right side

limsup
T→∞

sup
r∈[0,1]

sup
r′∈S (r,δ)

d−1
T

∣
∣
∣(r− r′)B(T,d)

∣
∣
∣ ≤ 2δσ ,

with σ the variance of the fractional Brownian Motion. As δ→ 0 the whole part approaches

zero which ensures the asymptotic uniform equicontinuity almost surely.

For the first part of the right hand side we have by self-similarity

limsup
T→∞

sup
r∈[0,1]

sup
r′∈S (r,δ)

d−1
T

∣
∣
∣B(Tr)−B(Tr′)

∣
∣
∣ = limsup

T→∞
sup

r∈[0,1]
sup

r′∈S (r,δ)
d−1

T

∣
∣
∣T d+1/2B(r)−T d+1/2B(r′)

∣
∣
∣

= limsup
T→∞

sup
r∈[0,1]

sup
r′∈S (r,δ)

T d+1/2d−1
T

∣
∣
∣B(r)−B(r′)

∣
∣
∣ .

Now note that

dT =

√

2T 2d+1 log log(T ) =
√

T 2d+1
√

2log log(T ) = T d+1/2
√

2log log(T ) .

Therefore we obtain

limsup
T→∞

(

2log log(T )
)− 1

2 sup
r∈[0,1]

sup
r′∈S (r,δ)

∣
∣
∣B(r)−B(r′)

∣
∣
∣ .

Because |B(r)−B(r′)| is almost surely Hölder continuous of order strictly less than H (see Biagini

et al. (2008, p. 11)) and limsupT→∞
(
2log log(T )

)− 1
2 tends to zero as T →∞ it follows that the

above expression is almost surely asymptotically uniform equicontinuous. �
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