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ABSTRACT 

The TREX (Transcription/export) complex is evolutionarily conserved from yeast to humans 

and is required for coupled transcription elongation and nuclear export of mRNA. In 

eukaryotes the TREX complex is composed of UAP56, ALY and the THO–sub complex 

members. Although it is known that THO is not essential for the export of bulk poly (A)+ 

RNA, it has been observed that export of a subset of mRNA was affected by the depletion of 

THO complex members in Drosophila. However it is not known which genes depend on 

THO complex in mammalian system. Furthermore it is unknown whether THO complex 

plays any additional role other than export of mRNA to the cytoplasm. 

This thesis consists of two parts:- 

Firstly, THOC5 dependent genes were identified using conditional THOC5 knockout system 

followed by microarray analysis. Secondly, to identify novel binding partners of THOC7 

which is a known interacting partner of THOC5 in cytoplasm by using tandem affinity 

purification followed by mass spectrometry. 

1) Identification of THOC5 dependent genes 

A  mouse embryonic fibroblast cell line (MEF) THOC5/FMIP flox/flox was established  by 

flanking exons IV and V region of FMIP with lox P sites, making it possible to inactivate 

THOC5/FMIP in a conditional manner. Upon infection of MEF THOC5/FMIP with 

adenovirus carrying Cre recombinase (Ade-GFP-Cre) THOC5/FMIP is downregulated more 

than 95% within 4 days at protein level. Microarray analysis of MEF with conditional 

knockdown of THOC5/FMIP revealed that only 72 functionally known genes were 

downregulated more than 3 fold. Strikingly half of the downregulated genes are known to be 

involved in differentiation and development. These data show that THOC5/FMIP plays a role 



    Abstract 
 

  V 

in exporting only a subset of genes, however it plays an important role in mouse development 

and differentiation. 

2)  Potential involvement of the cytoplasmic THOC7/THOC5 complex in translation process. 

In this study Tandem affinity purification followed by mass spectrometry was performed to 

look for proteins interacting with THOC7 in order to determine its possible function.THOC7 

gene was cloned in a commercially available TAP construct from stratagene and were 

transiently transfected  into HEK293 cells. The THOC7 interacting proteins were Tap 

purified and identified by mass spectrometry. About 94 proteins were identified among them 

(40%) were cytoplasmic proteins involved in protein synthesis and translation. These results 

suggests a potential role of THOC7 in protein synthesis and translation. 

 

Key words :- THO complex, Transcription export complex (TREX), THOC5, THOC7, 
mRNA export. 
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ZUSAMMENFASSUNG 

Der TREX (Transkription/Export) Komplex ist evolutionär von der Hefe bis zum Mensch 

konserviert und ist notwendig für die gekoppelte Transkriptions elongation und der nuklearer 

Export von mRNA. In Eukaryoten besteht der TREX komplex aus den mitgliedern UAP56, 

ALY und dem THO-Subkomplex. In Drosophila ist THO nicht erforderlich für den Poly (A)+ 

RNA Export, da nur ein Teil vom mRNA Export durch Abbau der Mitglieder des THO 

Komplexes beeinflusst wird. Es ist jedoch nicht bekannt, welche Gene im Säugetiersystem 

abhängig vom THO Komplex sind. Ferner ist es unbekannt, ob der THO Komplex außer im 

mRNA Export zum Zytoplasma eine zusätzliche Rolle spielt. 

Diese Arbeit besteht aus zwei Teilen: 

Zunächst wurden THOC5-abhängige Gene unter Verwendung vom THOC5 Knock-out 

System mit einer anschließenden Microarray - Analyse identifiziert. Zweitens wurden neue 

Bindungspartner von THOC7, ein bekannter interagierender Partner von THOC5 im 

Zytoplasma mittels Tandem-Affinitäts-Aufreinigung (TAP) und mit anschließender 

Massenspektrometrie identifiziert. 

1) Identifizierung von THOC5-abhängigen Genen: 

Es wurde eine Maus embryonale Fibroblasten Zelllinie (MEF) THOC5/FMIP flox/flox  

durch Flankieren der Exons IV und V Region von FMIP mit lox P Stellen etabliert. Diese 

ermöglicht die THOC5/FMIP-Inaktivierung in einer konditionalen Weise. Nach Infizierung 

der MEF THOC5/FMIP mit konditionalem Adenovirus, was eine Cre Rekombinase (Ade-

GFP-Cre) trägt, ist THOC5/FMIP auf Proteinebene mehr als 95% innerhalb 4 Tagen 

herunterreguliert. 
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Microarray Analysen von MEF mit konditionalem Knockdown von THOC5/FMIP zeigten, 

dass nur 72 funktionell bekannte Gene mehr als 3-Fach herunterreguliert wurden. Auffallig 

ist, dass die Hälfte von herunterregulierten Genen ander Differenzierung und Entwicklung 

beteiligt sind. Diese Daten zeigen, dass THOC5/FMIP eine Rolle beim Export von einer 

bestimmten Gruppe von Genen spielt. es Jedoch, eine wichtige Rolle in der Maus  bei der 

Entwicklung und Differenzierung spielt. 

2) Mögliche Beteiligung des zytoplasmatischen THOC7/THOC5 Komplexes im 

Translationsprozess: 

In dieser Arbeit wurde eine Tandem-Affinitäts-Aufreinigung mit anschließender 

Massenspektrometrie durchgeführt, um die THOC7-interagierende Proteine zu suchen und 

ihre eventuelle Funktion festzustellen. Das THOC7 Gen ist in einem kommerziell erhältlichen 

TAP Konstrukt von Stratagene kloniert und transient in HEK293 Zellen transfiziert. Die 

THOC7-interagierenden Proteine sind mittels TAP aufgereinigt und durch 

Massenspektrometrie identifiziert worden. Etwa 94 Proteine sind identifiziert worden, 

darunter (40%) waren zytoplasmatische Proteine, die an der  Proteinsynthese und Translation 

beteiligt sind. Diese Ergebnisse deuten auf eine neue potenzielle Funktion von THOC7 in der 

Proteinsynthese und Translation hin. 

Schlagwörter :- THO komplex, Transkription export  komplex (TREX), THOC5, THOC7, 
mRNA  export. 
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1  INTRODUCTION 

The flow of genetic information occurs from DNA to RNA to proteins. In eukaryotes, mRNA 

is transcribed from DNA as primary transcripts and has to be processed in the nucleus before 

they are exported to the cytoplasm for translation. The processing steps include capping at the 

5’end, splicing of introns, and polyadenylation at the 3’end. Further, the integrity of mRNA is 

also checked by quality control mechanisms such as nonsense mediated decay (NMD),  

which eliminates improper mRNAs with premature termination codons. The processed 

mRNA has to be exported across the nuclear membrane into the cytoplasm for translation. 

Nuclear export of mRNA is a complex procedure and involves elaborate nuclear transport 

pathways.  

1.1 Export of eukaryotic RNA 

In eukaryotes the process of gene expression occurs in different compartments of the cell. 

Several complex mechanisms exist to transport macromolecules across compartment 

boundaries. The trafficking of macromolecules between the nucleus and cytoplasm occurs via 

nuclear pore complex (NPC). Each NPC is an assembly of several different proteins that form 

a pore across the nuclear membrane. Transport through NPCs is an active process and is 

assisted by a family of conserved nuclear transport receptors known as karyopherins or 

importins. Karyopherins that are involved in the import of the cargo are called importins and 

those involved in the export of cargo are called exportins. These cargo carriers recognize 

certain short peptide signal on the cargo that could be either a nuclear localization signal 

(NLS) or a nuclear export signal (NES). Two key features of karyopherins, their ability to 

bind nucleoporins and to form complexes with Ran-GTPase, are essential for nuclear export. 

Karyopherins are also involved in the export of RNA and recognize specific nucleotide motifs 

in RNA cargos. Different RNA species within the cell (mRNA, snRNA, rRNA, tRNA) use 
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separate pathways to ease their movement from the nucleus to the cytoplasm. Export of 

tRNA, microRNA (miRNA), and ribosomal (r)RNA follows this normal pattern that involves 

exportins and the RanGTPase (Rodriguez, M. S., 2004). The export of small nuclear (sn)RNA 

is carried out by CRM1 (also known as exportin1), which recognizes the proteins that contain 

Leu rich- type NES (Fornerod, M., 1997). CRM1 does not directly interact with the snRNA 

cargo, but requires the cap-binding complex (CBC) and a NES-containing adaptor protein 

called PHAX to be targeted to the 5′ cap of the snRNA (Hamm, J.1990, Ohno, M., 2000). 

Phosphorylation of PHAX in the nucleus is required for recruitment of CRM1 and RanGTP 

to the CBC-bound snRNA complex (Figure 1.1). 

However, general mRNA export is different as it uses a transport receptor that is not related 

to karyopherins and does not directly depend on the RanGTP–RanGDP gradient (Reed, 

R.2002, Conti, E. 2001). Export of mRNA is mediated by a group of evolutionarily conserved 

proteins called nuclear mRNA export factors. Among these, the key mediator of mRNA 

export is an heterodimer of Tap and a small cofactor p15 (Figure 1.1). Atleast six such export 

factors in humans, four in Drosophila and two in Caenorhabditis elegans have been 

identified. Yeast has only a single ortholog of Tap-p15 termed as Mex67p-Mtr2p (JA 

Erkmann 2004). These proteins are distinct from the prototypical importin-exportin family of 

proteins as they lack the characteristic Ran-binding domain found in all karyopherins. Hence 

the directionality of mRNA transport would have to be mediated by other mechanisms. 
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Figure 1.1 The different RNA export pathways. The major RNA export routes are shown, 

snRNA, mRNA, In both case, the primary RNA transcript is shown, as well as the transport-

competent RNA after it has undergone processing, maturation and assembly with export 

factors (adapted from Alwin Köhler 2007). 

1.2 THO/TREX complex in mRNA export 

In order to increase the fidelity of gene expression, transcription, splicing and mRNA export 

is often coupled to each other. There is enough evidence suggesting that highly conserved 

mRNA export machinery, the transcription export (TREX) complex is involved in this 

process. TREX is a multisubunit complex composed mainly of THO complex, UAP56 and 

RNA export factor 1 (REF1) also known as ALY. Studies in yeast associate TREX complex 

with transcription elongation and co-transcriptional recruitment of the mRNA export 

machinery (Fischer et al 2002, Jimeno et al 2003, Huertas and Aguilera 2003). In mammalian 

cells TREX complex has been shown to colocalize with the splicing factors. Moreover, 

recruitment of TREX complex to the mRNA during splicing reaction suggest that TREX 
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complex also plays a role in coupling mRNA export to splicing. The role of TREX complex 

in mRNA export has been studied in different species including yeast, Drosophila and 

humans (Table 1.1). Recent reports have also identified the existance of a yeast homolog of 

THO-complex in plants (Furumizu.C et al 2010). 

1.2.1 Yeast 

In yeast, TREX complex contains the mRNA export factors Sub2 and Yra1 and the THO 

complex components Tho2, Hpr1, Mft1, and Thp2 (Chavez et al 2000). Mutants of these 

genes showed a transcription-dependent hyper-recombination phenotype and impairment of 

transcription, giving the first hint that TREX complex has a role in gene expression. As the 

transcription is in progress the adaptor protein Yra1 (Aly/REF1 in humans) interacts with 

Sub2p (UAP56 in humans) of transcription elongation factor, and further helps in recruiting 

the members of THO complex to nascent mRNA (Zenklusen et al. 2002; Abruzzi et al. 2004; 

Jimeno et al. 2006). Recently it has been proposed that THO/Sub2p may also be involved in 

mRNA 3’-end processing. This was supported by the observations that mutants of 

THO/Sub2p showed defective 3’-end processing (Saguez et al. 2008), and that THO together 

with Sub2p participates in an mRNP remodeling event that follows mRNA 3’-end processing 

(Rougemaille et al. 2008). 

1.2.2 Drosophila 

As in yeast, the TREX complex in Drosophila is composed of UAP56, Aly/THOC4 and 

members of THO complex THOC1 (HPR1 in yeast), THOC2 and TEX1. Apart from this, the 

THO complex also consists of three other proteins THOC5, THOC6 and THOC7, the 

orthologs of which have not been identified in yeast (Rehwinkel et al., 2004). It has been 

reported that UAP56 is essential for bulk mRNA export whereas the role of Aly in this 

process is dispensable. Gene knockdown experiments performed with cultured fruit fly cells 

shows that <20 % of genes expression depend on THO complex, whereas expression of 
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nearly 75% genes are affected upon UAP56 depletion (Gatfield et al, 2001; Herold et al, 

2001; Gatfield and Izaurralde, 2002; Farny et al, 2008). Although THO complex functions in 

mRNA exportin Drosophila, majority of mRNAs are transcribed and exported independent of 

THO complex (Rehwinkel et al 2004). 

1.2.3 Humans 

The THO complex in humans consist of hHpr1, hThoc2, fSAPs (functional spliceosome-

associated proteins) fSAP79, fSAP35, fSAP24, now known as THOC5, THOC6, THOC7 and 

hTex1 (THOC3 in Drosophila; Masuda et al 2005, Dufu et al 2010) (Table 1.1). The THO 

complex with UAP56 and Aly forms the TREX complex. Unlike in yeast, the human TREX 

complex is associated with splicing machinery and is not a transcription coupled mechanism. 

The recruitment of THO to RNA therefore requires nuclear cap binding complex (CBC) and 

several splicing factors (Masuda et al., 2005; Cheng et al., 2006). The TREX component 

ALY assists the recruitment of THO complex to 5’ end of the mRNA by interacting with the 

CBC component CBP80. This interaction ensures the transport of mRNA in a 5’ to 3’ 

direction through the nuclear pore. 
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                 Table 1.1: THO complex members in different species 

Saccharomyces 
cerevisiea 

Drosophila 
melanogaster 

Homosapiens 

 Protein 
length 

 Protein 
length 

 Protein 
length 

THO2 1597 THO2 1641 THOC2 1478 

HPR1 752 HPR1 701 THOC1 657 

- - THOC5 616 THOC5 683 

- - THOC6 350 THOC6 317 

- - THOC7 287 THOC7 204 

TEX1 422 TEX1 320 THOC3 350 

MFT1 392 MFT1  -  

THP2 261 THP2  -  

 

1.3 THO complex and its members 

Most of the information about the THO complex has been obtained from studies in yeast 

system and it has been proposed that the THO complex has a role in at least three cellular 

processes: transcription, mRNA export and genomic stability (Rougemaille et al 2008). 

1.3.1 THO complex in transcription 

Association of THO complex in transcription was proposed based on the observation that 

expression of the bacterial LacZ gene in yeast cells was defective in THO mutants. However, 

in these mutants other genes were efficiently expressed under LacZ promoter and this led to 

the conclusion that transcription activation was not defective in THO mutants rather it was 

faulty transcription elongation that was specific to long or G+C rich genes such as LacZ 

(Chavez et al., 2001). Other studies have proposed that this defective transcription could also 

be due to decreased processivity of RNAPII in THO mutants. However, conclusive 

biochemical evidance for this proposed mechanism is lacking. In another study Huerats and 
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Aguilera observed defects in transcription elongation as a consequence of formation of R-

loops, a structure formed when the nascent mRNA folds back and hybridizes with DNA. This 

could be attributed to the failure in functional mRNP assembly, the role of which is to prevent 

the mRNA from hybridizing to the transcribed DNA. Interestingly, depletion of THO 

complex in human cell extracts did not show any defects in transcription but severe defects in 

gene expression, altogether suggesting a different role of THO complex in humans. 

1.3.2 THO complex and mRNA export 

As mentioned above THO complex interacts with both RNA and DNA and at the same time 

forms complex with the export factors Sub2p and Yra1p. Hence it was proposed that THO 

complex forms an interface between transcription and mRNA metabolism (Jimeno et al., 

2002; Strasser et al., 2002). 

In agreement with a role in mRNA export, deletion of an individual THO component in yeast 

results in rapid accumulation of poly(A)+ transcripts within the nucleus (Schneiter et al., 

1999; Libri et al., 2002; Strasser et al., 2002; Zenklusen et al., 2002). However THO complex 

is not required for the export of all mRNAs, rather it is needed for specific heat shock 

mRNAs. In case of Drosophila it has been shown that less than 20% of its transcriptome is 

regulated by THO (Rehwinkel et al., 2004). 

1.3.3 THOC1 

A nuclear matrix protein hHpr1/p84/THOC1 was identified in yeast two-hybrid screening 

using the amino terminal domain of the retinoblastoma tumor suppressor protein as bait 

(Durfee T et al 1994). THOC1 is a component of the TREX (Transcription/Export) complex 

that physically couples the elongating RNA polymerase II with factors important for 

messenger ribonucleoprotein particle (mRNP) formation, RNA processing, and mRNA export 

(Abruzzi KC et al 2004, Rondon AG et al 2003, Strasser K et al 2002). THOC1 is expressed 

in most tissues throughout the cell cycle (Durfee T, et al 1994), except in the G0 phase 
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(Gasparri F et al 2004). THOC1 overexpression can trigger p53-independent apoptosis that is 

inhibited by binding of hHpr1/p84/THOC1 to the retinoblastoma tumor suppressor protein 

(Doostzadeh-Cizeron J, 1999, 2001).  

Depletion of hHpr1/p84/THOC1 decreases growth rates in multiple cancer cell lines, such as 

Hela, 293T, HCT116, U2OS, and MDA-MB-231 (Guo S et al 2005). In humans, high levels 

of hHpr1/p84/THOC1 have been observed in breast cancer cells and are strongly associated 

with tumor size and aggressiveness, implying potential significance of this protein in tumor 

transformation, progression, and metastasis (Guo S et al 2005). THOC1 requirement was 

compared in the proliferation and survival of isogenic normal and oncogene transformed cells 

(Li Y et al 2007). It was found that neoplastic cells rapidly lose viability via apoptotic cell 

death following depletion of pTHOC1. In contrast, viability of normal cells is largely 

unaffected by pTHOC1 loss, suggesting that THOC1 may provide a novel molecular target 

for cancer therapy (Li Y et al 2007). 

1.3.4 THOC7 

THOC7 was identified as a binding partner of a putative transcriptional repressor, Ngg1 

interacting factor like 1 (NIF3L1) by yeast two hybrid screening (Tascou, S et al 2003). 

THOC7 is a member of THO/TREX complex and it interacts with other THO complex 

member THOC5. THOC7 is a protein of molecular weight 24kDa and at its C-terminal region 

it contains a leucine zipper (LZ) (figure 1.2).  

 

 

 

Figure 1.2 Scheme showing potential functional domains in THOC7, LZ:leucine zipper 
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Though THOC7 lack a nuclear localization signals (NLS) motif, still it was detected in the 

nucleus and cytoplasm. Interaction of THOC7 with THOC5 is therefore required for its 

nuclear translocation. FMIP/THOC5 binding domain of THOC7 is located within the centre 

portion of THOC7. THOC7 binds to THOC5 at its N-terminal domain (1-199) the exact 

binding region of  which has been mapped using Myc tagged THOC5 mutants (El. bounkari 

et al 2009). Mouse and human THOC7 show 90% homology at the nucleotide level and 97% 

homology at the amino acid level. 

1.3.5 THOC5/FMIP 

THOC5/Fms interacting protein (FMIP), a member of the THO complex, was originally 

identified as a substrate for the macrophage colony stimulating factor (M-CSF) receptor 

tyrosine kinase, Fms (Tamura et al., 1999). FMIP is a nuclear cytoplasmic shuttling protein 

with a NLS (nuclear localization signal), two LxxLL motifs, a PEST domain and a putative 

leucine zipper (Figure 1.3). The N-terminal domain of FMIP (1-199) binds to THOC7 

directly and the C-terminal domain (559-683) is required for its interaction with other 

member of THO complex THOC1. Mouse and human FMIP share 89.6% and 95.6% identity 

at the nucleotide and the amino acids levels respectively. 

 

 

 

 

Figure 1.3 Scheme showing functional domains of FMIP/THOC5 (adapted from 

T.Tamura et al 1999). NLS: nuclear localization signal, FBD: Fms binding domain, LZ: 

leucine zipper, PEST: PEST domain, WWB: binding sites for proteins with WW motif, 

numbers represent amino acid position. 

FMIP/THOC5 is phosphorylated not only by several tyrosine kinases such as Fms, (Tamura 

et al 1999) Bcr-Abl, c-kit, and Tel- PDGF (Pierce et al., 2008), but also by protein kinase C 
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(Mancini et al., 2004), downstream kinase from insulin stimulus (Gridley et al., 2005) or 

ATM kinase (Matsuoka et al., 2007), suggesting that extracellular stimulation regulates the 

function of THOC5/FMIP.  

Depletion of THOC5/FMIP by siRNA or ectopic expression causes abnormal hematopoiesis 

and abnormal muscle differentiation in myeloid progenitor or mesenchymal progenitor cell 

lines, indicating that the THO complex is essential for differentiation process in mammals 

(Carney et al 2009, Tamura et al 1999, Mancini et al 2007). Recently it was shown that 

THOC5 binds directly to the M-domain of Tap, which has an Ntf2-like fold. Knockdown of 

THOC5 using siRNA showed nuclear accumulation of HSP70 mRNA but bulk poly (A) + 

RNA was not affected. THOC5 together with ALY functions in the nuclear export of heat 

shock mRNAs (J. Katahira et al 2009) (Figure 1.4). 
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Figure 1.4 Model for nuclear export of HSP70 in mammalian cells. The human TREX 

components THOC5 and Aly bind to the different domains of the export receptor Tap-p15 

heterodimer and act as an adaptor and coadaptor for nuclear export of HSP70 mRNA. 

Whether loading of the human TREX complex on the target mRNA depends on interactions 

with the nuclear cap binding complex (CBC) and/or the 3'-end processing factors is still 

unknown (indicated by question marks).(adapted from Katahira et al 2009). 

1.3.6 Conditional knockout mouse THOC5 

The major insights into the fucntion of a particular protein in vivo is obtained from specific 

gene knockout mouse models. Attempts to generate THOC5/FMIP knockout failed as the 

THOC5 deficiency was embryonic lethal. Most of the information about the THOC5/FMIP in 

vivo, was obtained from conditional knockout mice. A floxed THOC5/FMIP allele 

(THOC5/FMIP flox) was generated by recombination in embryonic stem (ES) cells (Niendorf 
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S et al 2007). The THOC5/FMIP gene spans 20 exons in a 33, 523 kb region on chromosome 

11. A targeting strategy was adopted whereby flanking exons IV and V with loxP sites, 

THOC5/FMIP could be inactivated in a conditional manner. The deletion of exons IV/V of 

THOC5/FMIP causes a frame shift of product and the truncated protein obtained was 83 

amino acids long which lacks THOC1 binding domain (El. Bounkari et al 2009). 

 

The interferon-inducible cre-recombinase based conditional THOC5 knockout mouse, died 

within the first 2 weeks. It was observed that conditional knockout mice had developed acute 

leukocytopenia (reduction in white blood cell numbers) and anemia (reduction in red blood 

cell numbers). The number of blood cells in peripheral blood was decreased; probably 

because bone marrow cells became apoptotic, and due to loss of committed myeloid 

progenitor cells and of cells with long-term reconstituting potential. Normal bone marrow 

cells were transferred to rescue the mice from death. After bone marrow transplantation 9 out 

of 14 THOC5/FMIP depleted mice survived over 2 months. These data suggests that THOC5 

plays an important role during early embryogenesis and hematopoietic differentiation 

(Mancini et al 2010). 
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1.4 Aim of the thesis:- 

THO complex is involved in mRNA processing and export, yet the role of individual THO 

members in this process remains unclear. Furthermore, the genes that depends on THO 

complex for its expression remains elusive (except HSP70). 

THO complex is originally isolated from the nuclear fraction. However certain members of 

THO complex like THOC1, THOC5 and THOC7 has been identified to be proteins shuttling 

between nucleus and cytoplasm. Hence it is not known if a counterpart of THO complex also 

occurs in cytoplasm. Therefore the major aim of this study was 

1) To Identify THOC5 dependent mRNA by microarray using MEF cells from 

conditional THOC5 knockout mouse. 

2) To examine if THOC7 or THOC5 has any additional functions other than mRNA 

export and which member of THO complex forms a complex with THOC7. 

 

 

 

 

 

 

 

 

 

 

 

 



    Introduction 
 

  14 

 

 

 

Figure 1.5 Scheme representing the basic aim of the thesis. 

1) Which genes are THO dependent? 

2) Does THOC7 forms a complex with other THO complex members in cytoplasm? 

3) Is THOC7 involved in some novel function in cytoplasm?

 

THOC3 

THOC3 
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2  MATERIALS  

All standard chemicals for making buffers and solutions were purchased from the suppliers 

listed below:- 

Ambion     Austin, TX, USA 

Amersham    Buckinghamshire, UK 

ATCC     Manassas, VA, USA 

Bayer     Leverkusen, Germany 

BD Biosciences   San Jose, CA, USA 

Beckman Coulter Inc   Fullerton, CA, USA 

Biochrom    Berlin, Germany 

Biometra    Gottingen, Germany 

Biorad     Munich, Germany 

Biozym GmbH   Hess.Oldendorf, Germany 

Boehringer    Ingelheim, Germany 

Clontech    Palo Alto, CA, USA 

Dianova    Hamburg, Germany 

DNA Star.Inc    Madison, WI, USA 

DSMZ     Braunschweig, Germany 

Eppendorf    Hamburg, Germany 

Eurogentec    Seraing, Belgium 

Falcon     Heidelberg, Germany 

Fuji photo film   Kanagawa, Japan 

GFL     Burgwedel, Germany 

Gibco BRL    Carlsbad, CA, USA 

Heraeus         Hanau, Germany 
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Hettich         Tuttlingen, Germany 

Invitek        Berlin, Germany 

Invitrogen        Carlsbad, CA, USA 

Kodak     Rochester, NY, USA 

Kuhn & Bayer    Nidderau, Germany 

Liebehere    Germany 

MBI Fermantas   St.Leon-Rot, Germany 

Merck     Darmstadt, Germany 

Mettler-Toledo    Giessen, Germany 

Millipore    Bedford, MA, USA 

NEN Perkin Elmer   Boston, MA, USA 

New England Biolabs   Beverly, USA 

Nikon     Dusseldorf, Germany 

Novex, Invitrogen   Carlsbad, CA, USA 

Nunc     Wiesbaden, Germany 

PAA Laboratories   Pasching, Austria 

Packard GMI Inc   Ramsey, MN, USA 

Pan Biotech    Aidenbach, Germany 

Peqlab Biotechnology GmbH  Erlangen, Germany 

Perkin-Elmer    Forster City, USA 

Pharmacia Amersham   Buckinghamshire, UK 

Pierce     Rockford, IL, USA 

Promega    Madison, WI, USA 

Qiagen     Hilden, Germany 

Roche     Basel, Germany 
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Roth     Karlsruhe, Germany 

Santa Cruz Biotechnology  Santacruz CA, USA 

Sarstedt    Numbracht, Germany 

Sartorius    Goettingen, Germany 

Serva     Heidelberg, Germany 

Siemens    Frankfurt, Germany 

Sigma Aldrich    St.Louis, CA, USA 

Stratagene    la Jolla, CA, USA 

Terumo Europe   Leuven, Belgem 

Thermoquest     Engelsbach, Germany 

Visitron  Puchheim, Germany  

 

2.1 Chemical Reagents  

Agar       Roth 

Agarose      Roth 

Ampicillin      Roth 

Acrylamide      Sigma 

APS (ammonium persulfate)    Roth 

Bacto Agar      Roth 

Brilliant Blue G250      Sigma-aldrich 

BSA (bovine serum albumin)    Roth 

ATP (deoxyadenosine triphosphate)   MBI Fermentas 

dCTP (deoxycytidine triphosphate)   MBI Fermantas 

DEPC (diethylpyrocarbonate)    Sigma 

dGTP (deoxyguanosine triphosphate)   MBI Fermentas 
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DNA ladder (1kb)     MBI Fermentas 

DTT (dithiotreitol)      Roth 

dTTP (desoxythymidine triphosphate)  MBI Fermentas 

Ethidium bromide     Roth 

Formaldehyde 37%     Roth 

Formamide      Roth 

HEPES      Roth 

Roti marker       Roth 

N, N, N’N, Tetramethylethylendiamine TEMED Sigma 

PEG (polyethyleneglycol)    ATCC 

PMSF (phenyl-methly-sulfonylfluoride)  Merk 

Precision Protein Marker prestained    BioRad 

Glutathione Sepharose 4Bbeads   Amersham 

Salmon sperm DNA     Sigma 

Streptavidin sepharose beads    Amersham 

Calmodulin sepharose beads    Amersham 

Triton X-100      Roth 

Tryptone       Merck 

Trasylol      Bayer 

Tween20      Roth 

Yeast extract      Roth 

Trypan Blue      Sigma 

β-Mercaptoethanol     Roth 

EDTA       Roth 

10x Trypsin/EDTA, 0.5%/0.25%w/v)  Biochrom 
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Bacto tryptone      Roth 

Bacto Yeast extract     Roth 

Dimethlysulfoxide (DMSO)    Roth 

DMEM       Biochrom 

Fetal calf serum (FCS)    Biochrom 

MOPS       Roth 

 

2.2 Kits 

Nucleic Acid & Protein Purification Nucleospin extract II  Macherey & Nagel 

pGEM T easy cloning kit       Promega 

Plasmid Maxi kit       Qiagen 

Plasmid Midi Kit       Qiagen 

Rneasy Mini Kit       Qiagen 

cDNA Isolation kit       Qiagen 

Jet Nick “Probe Purification after Labelling’’     Genomed 

Megaprime Labelling       Amersham 

 

2.3 Antibodies 

Mouse monoclonal anti-Thoc1 (p84N5    Gene Tex inc 

Monoclonal anti –FMIP (F6d)     (Mancini et al:2007) 

Mouse monoclonal anti-Myc (9E10)     Santacruzbiotechnology 
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2.4 Enzymes 

Dnase I, Rnase free   Qiagen 

T4 DNA Ligase   MBI Fermentas 

Restriction Enzymes    New England Biolabs, MBI Fermentas, Roche 

 

2.5 E.coli strains 

DH5α - F -, recA1, endA1, gyrA96 (nal+), thi, hsdR17, supE44, relA1 (Gibco BRL) 

HB101- F-, hsd20 (r-B-m-B), recA13, ara-14, proA2, lacY1, galk-2, rpsl20 (strR), xyl-5 

  mtl-1, supE44 (Boyer & Roulland- Dussoix, 1969, Bolivar et al, 1977) 

JM101- F-, ▲ (lac-pro), proAB, supE, rK+, mK+, thi/F, traD36, laclqZ, ▲M15 

 

2.6 Cell Lines 

HEK293 Human embryonic kidney (HEK-293) fibroblast derived packaging cell 

line CRL-1573, ATCC 

MEF   Mouse embryonic fibroblast 

Hela   Human cervix carcinoma (Hela) (ATCC, Cat.No-CCL-2) 

 

2.7 Plasmids 

pCDNA3      Invitrogen 

pGEM T Easy     Promega 

pNTAP       Stratagene 

pGEX 2T      Pharmacia 
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2.8 List of Primers used for RTPCR 

Gene                                        Sequence 5´-3´  

 
ß-Actin Forward- AACACCCCAGCCATGTACGTAG 
  Reverse- GTGTTGGCATAGAGGTCTTTACGG 
 
Fmip   Forward- TCTGCCTTTTCACCTGGAAG     
  Reverse- CTCGGTACTTTTCTGCCAGC 

Hoxb3   Forward- CCACCTACTACGACAACACC      
  Reverse -TTGCCTCGACTCTTTCATCC  

Top3b   Forward- GGAGATTGCACAGATGTTTTTAAAC    
  Reverse- TTCTGTCCGTGGGTAGCTGATATAGC 

Tfrc    Forward- TGGATTCATGAGTGGCTACCTGG     
  Reverse- GTTCATCTCGCCAGACTTTGCTG 

Bcl2    Forward- TCGCTACCGTCGTGACTTC     
  Reverse- AAACAGAGGTCGCATGCTG   

Cbx2    Forward- GTAGTCCCAAAGCCCAGTCAG      
  Reverse- CAAGTGCCTACATCAGCTTGC 

Sox15   Forward- CGGCGTAAGAGCAAAAACTC       
  Reverse –TGGGATCACTCTGAGGGAAG 

Pou6f2  Forward- ATAGCTGGACAAGTCAGTAAGCC     
  Reverse- TCCTCGCTGTCATTTGATTCC 

Runx1   Forward- GCAGGCAACGATGAAAACTACT      
  Reverse- GCAACTTGTGGCGGATTTGTA 

IL7     Forward- TTCCTCCACTGATCCTTGTTCT       
  Reverse- AGCAGCTTCCTTTGTATCATCAC 

Tnrc15  Forward- CGCCGACTGGAAGAGAACC      
  Reverse- TTGCTGTGTTAGACTGCTGAC 

Ptgfr    Forward- CTGGACTCATCGCAAACACAA       
  Reverse- AGGAAGCCTTTGACTTCTGTCTA 

Zranb3  Forward- GCAGTCATCGAAAGCAAGTCT       
  Reverse- CTGCACTGTCCGATTCGGT 

Kcna7  Forward- GAAAGCTCAAGAGATCCACGG       
  Reverse- GCGGGTAAAAATAGCATGGAAAG 



Materials & Methods 

  22 

Cryl1   Forward- AGGAGTGTGTTCCAGAGAACC       
  Reverse- TGGTGGATTGACAGGATGAGC 

Ret    Forward- GCATGTCAGACCCGAACTGG      
  Reverse- CGCTGAGGGTGAAACCATCC 

Gys1   Forward- CGCTGGAAGGGTGAGCTTT       
  Reverse- GAAGTGGGCAACCACATACG 

Ptprs    Forward- GTGGTGTCTGTGGTGGGTC        
  Reverse- CTCTCTGATAAACCTGGGTGGT 

Fosl1    Forward- ATGTACCGAGACTACGGGGAA      
  Reverse- CTGCTGCTGTCGATGCTTG 

Cops5   Forward- GCTTCCGGGAGTGGTATGG       
  Reverse- CGCCGCCAGGATTTCTTGT 

Id2    Forward- GTCCGGTGAGGTCCGTTAG       
  Reverse- TGTAGAGCAGACTCATCGGGT 

Arf6  Forward- GGTGGGCTTCAACGTGGAG       
  Reverse- CGGTGTAGTAATGCCGCCAG  

Twsg1  Forward- ACTGTGTCGGTATGTGCAACC      
  Reverse- GGAGACGATGTTCCAGTTCAG 

Mt2  Forward- GCCTGCAAATGCAAACAATG       
  Reverse- AGCTGCACTTGTCGGAAGC 

Plp1  Forward- TGAGCGCAACGGTAACAGG       
  Reverse- TTCCCAAACAATGACACACCC 

Dnaj  Forward- TTCGACCGCTATGGAGAGGAA      
  Reverse- CACCGAAGAACTCAGCAAACA 

Traf3  Forward- CAGCCTAACCCACCCCTAAAG       
  Reverse-TCTTCCACCGTCTTCACAAAC 

Thoc7   Forward- GTGACTGACGACGAAGTTATACG       
  Reverse- ACTGGCTATACCCTTCCTCTTG 

 

2.9 Radionucleotides 

[32P]-dCTP (3000 Ci/mmol)    Hartmann, Amersham 
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2.10 Equipments 

Adjustable air-displacement pipettes   Gilson 

Biomax MS films     Kodak 

Centrifuge Biofuge     Heraeus 

Centrifuge Megafuge 1.0 R    Heraeus 

CO2 incubator Hera Cell    Heraeus 

Digital camera      Nikon 

Dounce homogenizer     Braun 

Exposition chamber Hypercassette   Amersham 

Hyperfilm ECL      Amersham Pharmacia 

Incubator Function Line Heraeus 

Laminar flow hood Hera Safe    Heraeus 

Light microscope Wilovert A    Hund 

Magnetmixer Variomag     H+P Labortechnik 

Nitrocellulose membrane    Schleider & Schuell 

Nylon Membrane Amersham Pharmacia 

PCR machine T3 thermocycler   Biometra 

pH meter      Radiometer 

Orbital Shaker      Forma Scientific 

Refgrigerator 80°C Freezer    Forma Scientific 

Rotor SS-34      Sorvall 

Scintillation Counter     Packard 

Ultracentrifuge L7-55     Beckman 

UV-Bank UV Transilluminator 2000   Bio-Rad 

Vortex Genie 2     Scientific industries 

Phosphoimager Fujix BAS1000   Fuji 
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2.11 Other Materials 

24-well plates      Nunc 

6-well plates      Nunc 

Blotting paper      Schleicher & Schuell 

Cannules (1.2x40mm, 0.45x12mm)   Terumo Europe 

Cell culture flasks     Nunc 

Cell Culture Petridishes    Nunc 

Chromatographic paper, Whatman 3mm  Machery-Nagel 

Eppendorf tubes     Sarstedt 

Filmcassette Coenex high plus   Dupont 

Filmcasstte      Siemens 

Cryotubes, Nalgene     Nalgene, Falcon 

Petridishes flasks 15cm    Greiner 

Petridishes for cell culture    Greiner 

Plastic 15ml tubes     Falcon 

Plastic Tubes 50ml     Falcon 

Polyfect Qiagen 

Sterile filters      Schleicher & Schuell 

Sterile filter      Nalgene 

Sterile filte 0.22um     Sarstedt 

X-ray films X-OMAT     Kodak 
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3 METHODS 

3.1 Culture of E.coli 

E.coli cultures were grown according to standard protocols in 2YT medium supplemented 

with antibiotics needed for selection of plasmids. 

   2YT medium: Yeast extract - 1% (w/v) 

      Tryptone- 1.6% (w/v) 

      Nacl- 0.5% (w/v) 

   2YT Agar:  2YT medium + agar- 2% (w/v)  

      Antibiotics:  Ampicillin- 100µg/ml 

         Kanamycin- 25µg/ml  

         Chloramphenicol- 10µg/ml   

3.2 Maintenance of bacterial strains 

Strains were stored as glycerol stocks (2YT medium, 20% v/v glycerol) at -80°C. An aliquot 

of the stock was streaked on to 2YT agar plates containing the appropriate antibiotics and 

incubated overnight at 37°C. Plates were stored upto 6 weeks at 4°C. 

3.3 Preparation of competent bacteria (Calcium chloride method) 

A single colony was inoculated into 2ml 2YT medium and incubated overnight at 37°C. 

500µl of overnight culture was inoculated into 200ml of LB medium and incubated on a 

shaker at 37°C for 4-6hrs until OD reaches OD 600 = 0.4-0.6. The culture was transferred to 

sterile centrifuge tubes and centrifuged at 4000rpm for 10min at 4°C. The supernatant 

removed and the cell pellet was kept on ice. The cell pellet was resuspended in 10ml of ice 

cold sterile 50mM CaCl2, and incubated for 30min on ice. After centrifugation at 5000rpm for 

10min at 4°C the cells were resuspended in 5ml of ice cold 50mM CaCl2 containing 10% 
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glycerol. Aliquot of 100-150µl were made and incubated on ice for 2hrs. The suspension was 

frozen in liquid nitrogen and stored at -80°C. 

3.4 Transformation of E.coli  

To 100-150µl of competent E.coli (DH5α, HB101, or JM101) cells either 50-100ng of 

plasmid DNA or 10µl of ligation mixture were added and incubated for 30min on ice. Heat 

shock was given for 1.5 min at 42°C and cells were incubated on ice for 2min. 200µl of 2T 

medium was added to the bacteria and incubated at 37°C for 60min. Aliquots were plated on 

2YT plates containing the appropriate antibiotic. Plates were incubated at 37°C overnight. 

3.5 Plasmid preparation  

For isolation of plasmid DNA, mini/midi prep was performed according to the QIAGEN 

plasmid prep kit following manufactures protocol. 

3.6 Enzymatic modification of DNA  

3.6.1 Digestion of DNA by restriction endonucleases. 

DNA was incubated with appropriate enzymes and buffer for 2-24hrs at recommended 

temperature according to the manufacturers protocol. 

Each 20µl digestion reaction contains: 

DNA:   1-2µg 

10×buffer:   2µl 

restriction enzyme:  1unit 

Water to make up the final volume 
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3.6.2 Ligation of DNA fragments  

Ligation of DNA fragments was performed by mixing 50-100ng of vector DNA with three 

fold to eightfold molar excess of insert DNA. 

1µl of T4 DNA ligase (1unit/µl) and 2µl of 10x ligation buffer were added and the reaction 

mix volume was brought to 20µl. The reaction was incubated for 3-12hrs at 4°C. The ligation 

mixture was used directly for transformation without any further purification. 

   Each 20µl ligation reaction contains: 

   vector DNA:    50-100ng 

   DNA fragment:   150-800ng 

   10× ligation buffer:   2µl 

   T4 DNA ligase (1U/µl): 1µl 
       -------------- 
   total volume    20 µl 

3.7 DNA electrophoresis 

The size and purity of DNA was analyzed by agarose gel electrophoresis. Concentration of 

agarose used for analysis is inversely proportional to the size of the DNA of interest, that is, 

the larger the DNA the lower the concentration of agarose. 

  Agarose concentration (% [w/v])  Separation area (Kb)       

     0.6      1-20 

     0.9     0.5-7 

     1.2     0.4-6 

     1.5     0.2-4 

      2.0     0.1-3 

DNA fragments were separated in horizontal electrophoresis chambers (5×7.5cm or 

11×14cm) using agarose gels. Agarose gels were prepared by heating 1% (w/v) agarose in 

1xTAE buffer (25ml for 5×7.5cm and 80ml for 11×14cm gels). The gel was covered with 
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1xTAE buffer, the DNA samples were mixed with sample buffer and loaded in agarose gel 

pockets. The gel was run at constant voltage (10V/cm gel length) until the loading dye had 

reached the end of the gel. The gel was the immersed in water containing 0.5µg/ml ethidium 

bromide for 15-20min at room temperature and further developed using a UV light imaging at 

254nm. 

   1% agarose gel:  0.25g agarose                                            

    (5×7.5cm chamber)   25ml TAE buffer. 

   1% agarose gel:   0.8g agarose 

   (11×14cm chamber)   80ml TAE buffer. 

    

   1× TAE buffer:  40mM Tris, pH 8 

       5mM Na Acetate 

       1mM EDTA 

   6× loading buffer:   0.25% (w/v) bromophenol blue 

       30% (v/v) glycerol in water  

3.8 DNA purification 

3. 8.1 DNA extraction from agarose gels 

The DNA gel extraction kit (Nucleospin) was used for isolation and purification of DNA 

fragments from agarose gels. Ethidium bromide stained gels were illuminated with UV light 

and the appropriate DNA band was excised out from the gel using a clean scalpel and 

transferred into an eppendorf tube. The DNA fragment was purified following the 

manufacturers protocol. 

3.8.2 Determination of DNA and RNA concentration 

The DNA concentration was determined using Nanodrop ND-1000 spectrophotometer. DNA 

was diluted in water and the absorbance was measured at 260nm. Absorbance or optical 
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density (OD) of 1 at 260nm corresponds to ~50µg/ml of double stranded DNA or ~40µg/ml 

of single stranded DNA and RNA. The ratio between the readings at 260nm and 280nm 

(OD260/OD280) provides an estimate of the purity of the nucleic acid. Pure preparations of 

DNA and RNA have OD260/OD280 values of 1.8 and 2.0, respectively. Any contamination 

would yield values less than mentioned above. 

3.9 Protein extraction from mammalian cells. 

To harvest cells, medium was removed and cells were washed with PBS then lysed by using 

appropriate lysis buffer (200-500µl/5cm petridishes). Lysates were transferred to a 

microcentrifuge tubes and centrifuged for 15min at 4°C. The clear supernatant containing 

protein extracts were stored at -20°C. 

Whole cell lysates were prepared by direct lysis in laemli buffer. Cells were first washed with 

PBS, pelleted and then resuspended in 160µl 2x SDS sample buffer. The tubes were 

incubated at room temperature and centrifuged for 10 min at 13000rpm. Aliquots from the 

supernatants were analyzed by SDS-PAGE followed by immunoblotting analysis. 

  4 x SDS loading buffer: 1ml 4xSDS-solution 

      320µl 0.1% bromophenol blue 

      50µl β- mercaptoethanol. 

 

3.10 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE (sodium dodecyl sulphate–polyacrylamide gel electrophoresis) is a method for 

separation of proteins according to their molecular mass (Laemmli, 1970). In the present 

work gels were casted using biometra equipment and were 1.5mm thick. Depending on the 

size of the protein to be analyzed the pore size of the polymerized gel was altered (usually7-

15%) by adjusting the concentration acrylamide. Mostly 11% gels were used in the present 

work. Separating and stacking gels were prepared according to protocols published by 
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Sambrook et al (1989). After complete polymerization of the gel, the chamber was assembled 

as described by the manufacturer’s protocol. Protein samples were mixed with laemmli 

sample buffer, denatured at 95°C for 5-10 min centrifuged and directly loaded onto the gels. 

The gel was run at constant current at 10mA for the stacking gel and then at 20mA for the 

separating gel. The molecular weight of proteins was estimated by running 5µl of pre-stained 

marker proteins. The run was stopped when the bromophenol blue dye had reached the end of 

the gel. The gel was then either stained or subjected to western blotting.     

     11% Separating gel   5% Stacking gel: 

  Acrylamide   2.2ml    0.334ml 

  1M Tris-HCL pH8.8  2.5ml    ------- 

  1MTris HCl pH 6.8  ----    0.25ml 

  Water    1.55ml    1.4ml 

  20%SDS   30µl    10µl 

  TEMED   6µl    3µl 

  10%APS   20µl    10µl 

  1x SDS running buffer: 

  Tris    3.03g 

  Glycine   14.22g 

  SDS    1g 

  Water to final volume of 1 litre. 

  4x SDS loading buffer: 

  4x SDS solution   1ml  

  0.1% bromophenol blue  320µl  

  β-mercaptoethanol   50µl 
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3.11 Western Blot (Semi-Dry) 

Proteins were separated by 11% SDS-PAGE and transferred to polyvinyldendifluorid 

membrane (PVDF, Macherey & Negel) using the Bio-Rad Trans-Blot semi-Dry apparatus. 

For proteins transfer, the current was set to 0.8mA/cm2 gel size for 30min. The gel was 

sandwiched between 3mm whatman papers cut exactly to the size of gel and soaked in anode 

or cathode buffer.  

      Cathode (-) 

 3 pieces of whatman paper soaked in cathode buffer 

        SDS polyacrylamide gel 

       PVDF membrane soaked in ddH2O 

     1 piece of whatman paper soaked in anode buffer II 

    2pieces of Whatman paper soaked in anode buffer I 

      Anode (+) 

After transfer the membrane was placed in blocking buffer and incubated for 1hr at room 

temperature. After 1hr the primary antibody was diluted in TBST and added to the 

membrane, and incubated overnight at room temperature. Membrane was then washed thrice 

with TBST for 10-15min and was further incubated for 1hr at room temperature with horse 

radish peroxidise (HRP) coupled secondary antibody diluted in TBST. The unbound 

secondary antibody was washed away with TBST (3times for 10-15min) and the blot was 

incubated with chemiluminescence substrate solution (pierce). Protein antibody complexes 

was detected using LAS.  

Anode buffer I (pH 10.4): 300mM Tris  

    20% (v/v) methanol 

    pH was adjusted before addition of methanol. 
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Anode buffer I (pH 10.4): 25mM Tris 

    20% (v/v) methanol 

    pH was adjusted before addition of methanol 

Cathode buffer (pH 9.4): 40mM 6-amino-n-Hexanacid 

    25mM Tris 

    20% (v/v) methanol 

    pH was adjusted before addition of methanol. 

Tris- buffered saline (TBS): 10mM Tris –HCL pH 7.4 

    150mM Nacl 

TBST:    0.1% (v/v) Tween 20 in TBS 

Blocking buffer:  2% BSA (bovine serum albumin) in TBST 

  

Stripping of PVDF Membranes. 

Removal of antibodies from a blot was done under mild conditions. After washing the 

membrane 3times in TBST, the blot was incubated in SDS stripping buffer for 30mins, 

followed by washing with TBST. The membrane was incubated with new antibody as 

described above, starting from the blocking step. 

SDS stripping buffer:  16mM Tris-Cl pH 6.8 

    2% SDS 

    10mM  β-mercaptoethanol 

3.12 Detremination of protein concentration (Bradford) 

The Bradford dye binding assay is a colorimetric assay for measuring total protein 

concentration (Bradford 1976). It involves the binding of coomassie Brilliant blue to protein. 
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3.13 Staining of protein gels. 

Coomassie staining 

Proteins were separated by SDS-PAGE, and protein gels were incubated in coomassie 

staining solution with gentle shaking at room temperature for 2hrs or overnight. To remove 

Unspecific staining was removed by incubating gels in destaining solution for 2-3hrs at room 

temperature. 

Staining solution:  0.1% (w/v) coomassie brilliant blue R250 

   45% (v/v) methanol 

   10 % (v/v) acetic acid 

Destaining solution: 45% (v/v) methanol 

   10% (v/v) acetic acid. 

3.14 GST pull – down assays. 

3.14.1 Expression and purification of recombinant GST-fusion protein in E.coli. 

The E.coli strain DH5α were transformed with the expression plasmid expressing GST tagged 

protein and cultured in 50ml of 2YT medium with ampicillin antibiotic overnight at 37°C. 

The overnight culture was diluted 1:500 in 100ml of 2YT medium containing the antibiotic 

and cultured at 37°C until cell density reaches OD 600 of 0.3. To induce expression of the 

recombinant protein 1mM IPTG was added and the culture was incubated for 2-6hrs at 37°C. 

Cells from a 100ml bacterial culture was harvested at 4000rpm and washed once with ice cold 

PBS. All the following steps were performed on ice. The cell pellet was resuspended in 4ml 

lysis buffer. The suspension was sonicated (8 times, each 30sec, amplitude 50%Branson 

sonifier). The cell extracts were seperated by centrifugation at 5000rpm for 15mins at 4°C 

(centrifuge, Hettich). 

The clear supernatant was transferred to a new tube and incubated overnight at 4°C with 50µl 

of glutathione sepharose 4B beads (Amersham). Next day beads were washed 3 times and 
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resuspended in 1ml washing buffer (1:2 ratio of beads and washing buffer), 8-10ul of the 50% 

beads slurry was separated by SDS –PAGE and bead bound proteins were stained with 

coomassie to determine the amount of immobilized proteins. Beads were either stored at 4°C 

untill further use or the bound proteins were eluted immediately. 

For elution, beads were washed in 20mM tris-HCl, pH 8.0 containing protease inhibitors, 

before incubating with 200µl elution buffer at 4°C for 2hrs or overnight. The elution step was 

repeated twice, and 7µl of the eluate was analyzed by SDS-PAGE followed by coomassie 

staining. The eluted fractions were dialyzed using micron columns (Millipore) and stored at -

80°C. 

GST lysis Buffer: 20mM Tris-HCl pH 7.5 

   0.1% Triton X -100 

   1mM PMSF 

   1% Trasylol  

   1% SDS 

Washing Buffer: 20mM Tris –HCl pH 7.5 

   0.5% Triton X -100 

   15mM β-mercaptoethanol 

   1mM PMSF 

   2% Trasylol in PBS 

Elution Buffer: 20mM Tris- HCl pH 7.5 

   20mM glutathione 

   1mM PMSF 

   1% Trasylol. 
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3.14.2 GST pull- down assay using HEK293, Hela, MEF Cell Lysates. 

Beads slurry containing equal amount of GST tagged proteins (GST, GST-THOC5, GST-

THOC7) was used for pull down assay. Beads were washed 3 times with lysis buffer, after 

the final wash the supernatant was removed and cell lysate transfected or untransfected was 

added and incubated at 4°C for 4hrs or overnight. The beads were then washed 3 times with 

buffer and centrifuged at 2000rpm for 2 min at 4°C. After the final wash the supernatant was 

removed and 20µl of 4xSDS loading buffer was added, the sample was boiled for 15min, 

chilled on ice and centrifuged at 13000rpm at 4°C. The supernatant was loaded onto 11% 

SDS-PAGE and analysed by western blotting using appropriate antibody. 

3.15 Mammalian Tandem affinity purification 

Tandem affinity purification (TAP) is a method to identify protein–protein interaction. It 

allows identification of all the components in a multisubunit complex that either directly or 

indirectly interacts with the protein of interest. The basic principle involves expression of Tap 

tag construct fused with the protein of interest at its amino or carboxy terminal. The Tap 

vector contains (SBP) streptavidin binding protein and Calmodulin binding proteins (CBP). 

The SBP tag allows the protein of interest and its interacting proteins to be captured through 

the tight binding of SBP to streptavidin resin and purified by eluting with excess biotin. The 

CBP tag allows a second purification step in which the CBP tag binds to calmodulin resin and 

released by EGTA through calcium (Ca2+) chelation. The final eluate contains almost the 

proteins in the same complex with the protein of interest and can be further indentified using 

mass spectrometry. In this study one step TAP purification was performed using streptavidin 

beads. 

3.15.1 Cloning of Tap-THOC7-myc  

The interplay TM N-terminal mammalian TAP system pNTAP vector from stratagene was 

used (Figure 3.1). The vector was linearised using EcoRI and XhoI and the PCR product 
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(myc tagged THOC7 fragment) was then inserted into the linearised pNTAP vector. The 

insertion pntap-THOC7-myc construct was verified by DNA sequencing. 

 

 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 3.1 Circular map of pNTAP expression vector (Adapted from interplayTM TAP 

purification kit protocol). 

 

3.15.2 Establishment of mammalian Tandem affinity purification 
 
HEK293 cells were transfected with TAP-THOC7-Myc construct or empty vector (pNTAP). 

The transfected cells were washed twice with ice cold PBS. Cells were lysed with lysis buffer 

and were harvested by scraping. To improve protein recovery freeze thaw method was done 

twice in liquid nitrogen and 37°C thermomixer. 
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The cell lysates were centrifuged for 15mins at maximum speed 13000rpm and the 

supernatant was collected into a fresh eppendorf tube. Streptavidin beads were washed twice 

with lysis buffer before adding the to the cell lysates and incubated at 4°C overnight (10µl 

cell lysates was stored separately). Next day beads were washed with lysis buffer and 

supernatant was removed completely. Sample buffer was added directly to the beads and 

were boiled at 95°C for 10mins. It was briefly centrifuged and was loaded in SDS 

polyacrylamide gel. Gel was stained with coomassie to check for proteins. Western blot was 

performed using myc antibody. 

 Lysis Buffer: 

10 mM  Tris-Cl pH 8.0 

   150mM NaCl 

   0.1%  NP40 

   1mM  PMSF 

   1%  Trasylol 

   Streptavidin binding buffer (SBB) 

   10mM  Tris – Cl pH 8.0 

   150mM NaCl 

   0.1%  NP40 

   1mM  PMSF 

   1%  Trasylol 

   10mM  β-mercaptoethanol 

   0.5mM  EDTA 

   Streptavidin elution buffer (SEB) 

   10mM  Tris-Cl pH8.0 

   150mM NaCl 

   0.1%  NP40 

   1mM  PMSF 

   1%  Trasylol 

   10mM  β-mercaptoethanol 

   0.5mM  EDTA 

   10mM  D- Biotin 
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   Calmodulin binding buffer (CBB) 

   10mM  β-mercaptoethanol 

   10mM  Tris- Cl pH8.0 

   150mM NaCl 

   1mM  Mg- acetate 

   1mM  imidazole 

   2mM  CaCl2 

   0.1%   NP40 

 

   Calmodulin elution buffer (CEB) 

   10mM  Tris-Cl pH 8.0 

   150mM NaCl 

   1mM  Mg-acetate 

   10mM  β-mercaptoethanol 

   1mM  imidazole 

   2mM  EDTA 

   0.1%  NP40 

 
 

3.15.3 Purified protein separation and visualization 
 
To analyse the results in TAP procedure the protein aliquots were visualized on a 11% SDS-

PAGE. The 0.5 to 4µg of protein samples or 15µl beads were added to 2x SDS loading 

sample buffer. The samples were boiled for 12mins and loaded on 11% SDS gel. For the 

molecular weight markers, 1µl of protein standard (Bio-Rad) with a range of 10- 250 kDa 

were used. The gel was then stained using silver stain plus kit (Bio-Rad) or stained for 2hrs 

using coomassie stains (Sigma). 
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3.16 Mass Spectroscopy and Maldi-TOFF 
 
The identification of low level proteins from the SDS-PAGE was performed in the laboratory 

of Prof. Tony Whetton at the university of Manchester. 

Mass spectroscopy is a powerful tool used extensively in proteomics. In order to identify the 

major proteins present in the SDS-PAGE gel. Gel slices were cut and subjected to enzymatic 

digestion using trypsin, which typically generates peptides which can be analysed by mass 

spectroscopy. Separated peptides were eluated from the analytical column directly into the 

electrospray ion source of a QSTAR XL hybrid mass spectrometer. MS/MS data was 

acquired using an established information dependent acquisition (IDA) protocol enabling 

peptide sequence information to be obtained. The instrument was instructed to scan for 

potential peptide ions.  

3.17 Cell culture 
 

3.17.1 Cell culture and maintenance of cell lines. 
 
Human embryonic kidney (HEK)293 cells, Hela cells, MEF (mouse embryonic fibroblast) 

cells were routinely cultured in 37°C, 5% CO2 in dulbecco’s modified eagle medium 

(DMEM; GIBCO) containing 10% fetal calf serum (FCS), 100µg/ml penicillin, 100µg/ml 

streptomycine and 2mM L-glutamine in PBS. Medium was changed after 2-3 days and the 

cells were passaged at a dilution 1:5 or 1:10 when the cells were 90 – 95 % confluent. 

3.17.2 Passaging by trypsinization 
 
For passaging, the cells were allowed to reach confluence and then the medium was 

discarded. The cells were washed carefully with PBS. An appropriate amount of trypsin 

(according to the size of the culture flask or petri dish) was added to the cells. The cells were 

incubated at 37°C for 2-3min until they detached from the surface of the culture vessel. Fresh 
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medium was immediately added to the cells and the cells were split into an appropriate 

number of culture flasks according to the need. 

3.17.3 Counting the cells 

The cell count was determined using the heamocytometer. An aliquot of the cell suspension 

obtained after trypsinizing the cells was diluted 1:1 with Trypan Blue (0.8% v/v in PBS). 

Trypan Blue is a cell permeable dye; while living cells are able to extrude the dye, dead cells 

are unable to do so and hence stain blue. To obtain an accurate count, the cells have to be 

uniformly distributed over the entire chamber. The chamber is divided into 9 squares. Each 

square has a surface area of 1mm2 and depth of the chamber is 0.1mm. To get the final count 

in cells/ml, first divide the total count by 0.1mm (chamber depth) then divide the result by the 

total surface area counted. 

3.17.4 Transient transfection in MEF, Hela and HEK293 cells 

Cells were grown till they are 70% confluent in 10cm petridishes. Before transfection the 

media is removed and fresh media is added to the plate. Polyfect reagent was used for the 

DNA transfer following manufacturers instructions. About 5µg of DNA was mixed in a total 

volume of 300µl DMEM without antibiotics. Polyfect 30µl was added to the mixture and was 

incubated at room temperature for 8-10mins to allow the formation of liposomes. After this 

incubation 1ml of DMEM medium with antibiotics is added to this reaction and transferred to 

the cells. The cells are incubated at 37°C for next 24hrs. The transfected cells were analyzed 

by western blotting for checking the expression of the construct. 

3.17.5 Freezing and thawing of cells 

Cells that are to be frozen are cultured until they reach confluence. Cells from a confluent 

10cm flask were frozen as 2-4 vials. Each freezing ampoule was labeled with the name of the 

cell line and the date of freezing. Cells were pelleted after trypsinization, resuspended in 1ml 
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freezing medium per vial, immediately placed on ice and stored at -80°C overnight. Next day 

the vials were transferred to the liquid nitrogen container. 

Freezing medium: 90% FCS  

   10% DMSO 

For thawing cells the cell line stored in liquid nitrogen was taken out and allowed to thaw in 

37°C water bath. The cells were transferred to a 75cm2 cell culture flask containing 10ml 

medium. The cells were incubated for 4hrs under standard conditions (5% CO2, 37°C) the 

medium was changed after 4hrs and the cells were allowed to grow till they are confluent. 

3.18 Adenovirus infection 

MEF cells were used for adenovirus infection. The cells were seeded one day before infection 

1x104cells /well for 24 well plates. The medium was removed from the plates and fresh 

medium was added to the plate (235µl). 1µl of virus stock (titre :1x 1010IFU/ml) was added to 

each well, it was mixed and the plate was incubated at 37°C, 5%CO2 incubator. 5hrs after 

infection fresh medium was added to each wells (800µl). Next day the media was changed 

from the plates and fresh medium was added to each wells. After 4 days the media was 

removed and the cells were washed with PBS and Lysed with RLN buffer, cytoplasmic RNA 

was isolated from the cells using qiagen RNA isolation kit. 

 

Ad-CMV-GFP (Vector Biolabs) 

Viral backbone - Adenovirus-Type 5 (dE1/E3) 

Promotor  - CMV 

Transgene  - eGFP 

Titre   - 1x1010IFU/ml 

Storage buffer  - DMEM w/2%BSA &2.5%Glycerol 
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Ad-Cre –GFP (Vector Biolabs) 

Viral backbone - Adenovirus-Type 5 (dE1/E3) 

Promotor  - CMV 

Transgene  - Cre 

Marker/Tag  - GFP 

Titre    - 1x1010IFU/ml 

Storage Buffer  - DMEM w/2%BSA&2.5% Glycerol 

 

3.19 Isolation of Cytoplasmic RNA  

Cytoplasmic RNA was isolated after four days from MEF cells infected with Ade-Cre 

(adenovirus carrying Cre recombinase) and Ade-GFP(adenovirus+GFP, control) Mock 

(uninfected) MEF cells. RLN buffer was used to lyse the cells. RNA Isolation protocol 

according to manufactures instructions. RNA concentration was measured in Nanodrop. 

  RLN Buffer 

  50mM    Tris, pH 8.0 

  140mM   NaCl 

  1.5mM    MgCl2 

  1.06g/ml    0.5%(v/v)nonidet P-40  

  Just before use add: 1000U/ml RNase inhibitor(optional), 1mM DTT(optional) 

3.19.1 Isolation of POLY A+ RNA from total RNA using Dynabeads Oligo(dT)25 

 Buffers required: 

   Binding Buffer (50ml) 

   20mM  Tris-HCl pH 7.5 

   1M  LiCl 

   2mM  EDTA 

     RNAse free water 

   Washing Buffer (50ml) 

   10mM  Tris-HCl pH 7.5 

   0.15M  LiCl 

  1mM  EDTA 

    RNAse free water 
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  Elution Buffer (15ml) 

  10mM  Tris-HCl pH 7.5 

    RNAse free water 

 

To every100µg of total RNA, 200µl of oligodT-linked Dyna bead suspension was used in this 

isolation procedure. The beads were washed twice with washing buffer. The supernantant was 

discarded completely and the beads were resuspended in binding buffer. RNA was dissolved 

in equal volume of binding buffer and was incubate at 65°C for 5mins. The sample was 

shortly centrifuged for 30 seconds. RNA sample was mixed with the bead and left at RT for 

5mins. The tube was now placed in a magnetic stand and the supernatant was removed. The 

sample was washed twice with washing buffer. The supernatant was completely removed 

after the second wash. The tube was removed from the magnetic stand and the elution buffer 

was added to the beads and incubated at 65°C for 2mins. Tubes were then placed back into 

the magnetic stand and the supernatant was now collected in a new sterile eppendorf tube. 

The poly A+ RNA prep was stored at -80°C until further use. 

3.19.2 RNA gels 

Dependeing on the percentage of gel and the pore size required amount of agarose was 

dissolved in DEPC water and boiled. Accordingly 10X MOPS and formaldehyde solution 

were added and the gel was immediately poured into gel chambers. 

Small 1% agarose gel:  0.25g agarose 

(5x7.5cm)   18.5 ml DEPC water  

    2.5 ml 10x MOPS 

                                           4 ml formaldehyde 37% (v/v) 

Big 1% agarose gel:  0.8 g agarose 

(11x 14 cm)   59ml DEPC water 

    8 ml 10x MOPS 

    13 ml formaldehyde 37% (v/v) 
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10 x MOPS buffer:  0.4 M Morpholinpropanesulfonic acid 

    100mM Natrium acetate 

    10mM EDTA 

For sample preparation 

A master mix was prepared by adding  

RNA  - 5.5µl (5- 10 µg) 

10x MOPS -  1µl 

Formaldehyde -  3.5 µl 

Formamide -  10 µl 

Mixed by Pipetting up and down and incubated at 60°C for 15 min. The samples were stored 

on ice untill further use. Loading buffer mix was added to the samples and load on to the gel. 

The gel was run at 120V till the dye front migrated halfway down the gel. 

3.20 Northern Transfer 

The RNA gel was visualized under the transilluminator to check the presence of RNA. The 

gel was dipped in 10x SSC for 30 min, in the meantime the transfer apparatus was set up. The 

nylon membrane were cut to the size of gel to be transferred and were dipped in 10x SSC 

buffer for 30mins. After 30mins the transfer was set up was done, a long piece of whatman 

filter paper was placed on top of the tray such that both of its end were dipped in 10xSSC, the 

gel was carefully placed on top of the paper, nylon membrane was placed on top of the gel, 3 

pieces of whatman filter paper which were cut according to the gel size was placed on top of 

membrane, stack of paper towels were placed on top, and a weight was placed over the whole 

set up (Figure 3.2). The transfer was allowed to take place for about 20hrs. Membranes was 

washed in 2x SSC for 2mins and baked for 2hrs at 80° C. 
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 Figure 3.2 Transfer system for Northern blotting 

 

3.20.1 Hybridization of Northern blots 

The membrane was incubated in prehybridization solution for at least 6 hrs at 42° C. After 

incubation the denatured salmon sperm DNA (for blocking) and denatured radiolabelled 

probe was added to the tube, (the probe was radiolabelled by 32P using megaprime labelling 

systems and was purified using jetnick kit protocol according to manufaucturers instructions). 

the membrane was incubated O/N at 42 °C, next day the membrane is :- 

a) washed twice with 2X SSC at room temperature for 5mins,  

b) washed twice with 2X SSC and 1%SDS for 30mins at 60 °C,  

c) washed twice with 0.1 X SSC for 30mins at room temperature. 

After the last wash the membrane was dried in whatman filter paper and wrapped in fresh 

wrap. The membrane was placed along with X-ray films in a cassette and was stored in -

80°C. The film is developed using a developer. 

3.21 Microarray Analysis 

For microarray analysis, the quality and integrity of the total RNA were confirmed using an 

Agilent Technology 2100 Bioanalyzer (Agilent Technology, Palo Alto, CA, USA). Biotin-

labeled target synthesis was performed by Affymetrix (Memphis TN, USA). About 12.5 µg 
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of each biotinylated cRNA preparation were fragmented and placed in a hybridization 

cocktail that contained four biotinylated hybridization controls (BioB, BioC, BioD, and Cre) 

as recommended by the manufacturer. All samples were hybridized to the same lot of 

Affymetrix MGU74A for 16h. The GeneChips were washed, stained with streptavidin-

phycoerythrin, and read by using an Affymetrix GeneChip fluidic station and scanner. 

Analysis of microarray data was done by using the Affymetrix Microarray Suite 5.0, 

Affymetrix Micro DB 3.0, and Affymetrix Data Mining Tool 3.0. For normalization all array 

experiments were scaled to a target intensity of 150 (Kroger et al., 2007). 

3.22 Ingenuity Pathway analysis (IPA) 
 
Ingenuity Pathway Analysis (IPA) assigns biological functions to genes using the Ingenuity 

Pathways Knowledge Base. The knowledge base comprises over 200,000 full text articles and 

information about thousands of human, mouse, and rat genes (Calvano SE et al 2005). This 

information is used to form networks to create an ‘interactome’ of genes all involved in 

specific biological processes. IPA groups significant genes according to the biological 

processes in which they function. The program displays the genes’ significance values, the 

other genes with which it interacts, and how the gene products directly or indirectly act on 

each other, including those not involved in the microarray analysis (Subramanian A et al, 

2005). IPA was used to analyse the microarray results. 
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3.23 RT- PCR 

Procedure for the reverse transcription reaction is mentioned below :- 

10X buffer RT    2µl 

dNTP mix (5mM each dNTP)  2µl 

Oligo dT primer (10uM)  2µl 

RNase Inhibitor (10 units/µl)  10 units (per 20 µl reaction) 

Omniscript reverse transcriptase 1µl (4 units per 20 µl reaction) 

     RNase free water varies 

Template RNA   varies (upto 2µg per 20 µl reaction 

Total volume    20 µl  

 

A master mix is made by adding all the above components, the master mix is mixed and 

centrifuged briefly and is incubated for 60mins at 37°C. 

3.24 Polymerase chain reaction(PCR). PCR master mix was purchased from pEQlab. 

 Master mix   10µl 

 Primer forward(10uM) 1µl 

 Primer reverse(10uM)  1µl 

 cDNA    1µl 

 water (adjust total vol.with water)   

   ----------------------------------------------------- 

 total    20µl 

 PCR was carried out using an automated thermal cycler. 

 PCR program 

 1min 94°C(denaturation) 

 1min 60°C(annealing) 

 3min 72°C (extension) 

 PCR products were separated by agarose gel electrophoresis. 
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4 RESULTS 

I) To identify THOC5 dependent mRNA by microarray using MEF cells from 

conditional THOC5 knockout mouse. 

4.1 Conditional knockout of fmip from the mouse embryonic fibroblast.  

Published work from our lab, using conditional THOC5/FMIP knockout mice has 

demonstrated that THOC5/FMIP is critical in embryo development and in haematopoiesis 

(Mancini et al 2010). Earlier studies in Drosophila suggested that more than 20% of the 

transcriptome was regulated by THO component (Rehwinkel et al 2004). In the same system 

it has also been shown that upon deletion of UAP56 and NXF1 (TAP) or p15 ~75% of 

Drosophila gene expression is affected (Herold A et al 2003). Hence we were interested in 

examining the effects of deletion of FMIP/THOC5, a member of the THO complex on the 

gene expression. FMIP flox/flox mice were created in our lab. A mouse embryonic fibroblast 

cell line was generated from the embryos of these mice. Initial efforts were to strategically 

delete fmip from the MEF cells using Cre-loxP system. Infection of these MEF cells with 

adenoviruses expressing cre-recombinase (Ade-Cre) resulted in excision of region containing 

exon IV and V of fmip thereby making it functionally equivalent to fmip null cells (Fig.4.1). 

As a control MEF cells were infected with adenoviruses expressing GFP. Kinetics of FMIP 

knockdown was tested both at protein level and mRNA level. 

 

 

 

 

Figure 4.1 Schematic representation of fmip deletion. FMIP flox/flox mice were generated 

using Cre loxP system. loxP sites were introduced flanking exon IV and exon V of FMIP 

gene. By infecting MEF cells by adenoviruses carrying cre recombinase these exon IV and V 

region of fmip will be floxed out and a truncated protein of about 83 amino acid is obtained. 
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4.2 Confirmation of FMIP deletion at protein level. 

Knockdown of FMIP protein in infected MEF cells was tested by doing western blots. At 4 

days of post-infection no FMIP protein was detectable in MEF cells infected with Ade-Cre 

while the levels of THOC5 protein expression remained unchanged in control MEF cells 

infected with Ade-GFP (Figure 4.2).  

 

 

 

 
 
Figure 4.2 Western blot analysis to confirm fmip deletion. Adequately confluent MEF 

cultures were infected with Ade-Cre or Ade-GFP. On the specified days post-infection cell 

lysates from these cells were loaded on to the gel and were probed using anti-FMIP and 

GAPDH  antibodies. 

4.3 Confirmation of FMIP deletion at mRNA level. 

Analysis of fmip mRNA level by northern blot analysis and RT-PCR provided further 

confirmation of fmip deletion. The cytoplasmic RNA was isolated from MEF cells infected 

with Ade-Cre and Ade-GFP at various time points post infection and was probed with FMIP 

and GAPDH probes. Downregulation of fmip mRNA was detected as early as day2 post-

infection. RT-PCR analysis of cytoplasmic RNA from the MEF cells infected with Ade-Cre 

was performed using fmip specific primers. Primers selected were located in exon II (forward 

primer) and exon VII (reverse primer) region of fmip gene. The product detected in the fmip 

depleted fraction was shorter and had a length of 429bp, thus confirming the excision of exon 

IV and V from the fmip gene. MEF controls infected with Ade-GFP showed a fmip product of 

643bp (Figure 4.3).      
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Figure 4.3 Testing fmip deletion (a) Northern blot analysis to confirm fmip deletion. Four 

days after infection of MEF cells with Ade-cre or Ade-GFP, cytoplasmic poly A+ RNA was 

isolated and northern blot analysis was performed. Nylon membrane was hybridized with 

THOC5 and GAPDH specific 32P radiolabeled probes. (b) RT-PCR using FMIP specific 

primers was performed with the RNA isolated from MEF cells. Actin was used as control. 

cDNA was checked on agarose gel electrophoresis. 

4.4 Gene array analysis of FMIP deleted MEF. 

As mentioned above, deletion of certain members of THO complex severely affected the gene 

expression pattern in Drosophila. Hence we sought to examine if similar phenomenon was 

observed in MEF cells upon fmip deletion. A genome wide screening was performed to study 

the level of fraction of genes whose expression requires THOC5. Cytoplasmic fraction of 

RNA was isolated from the MEF cells infected with Ade-Cre or Ade-GFP and microarray 

analysis was done (Figure 4.4). 

 

a) b) 
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Figure 4.4 Schematic representation of samples subjected to microarray. All samples 

were hybridised to the same lot of Affymetrix MGU74A for 16 h. 

 

Initially, genes that were down-regulated more than 3-fold by Ade-Cre infection, but were 

down regulated less than 1.5-fold by Ade-GFP control virus infection were chosen for further 

analysis. According to this criterion only 199 genes showed more than 3-fold down-

regulation from the fraction that were FMIP depleted. This corresponds to 1% of the total 

genes analyzed. By selecting genes that were down regulated more than 2-fold, 559 genes 

were found. When searched for the function associated with these genes, it was observed that 

50 genes among 559 genes were transcriptional regulators, indicating that not all 559 genes 

are regulated directly by THOC5/FMIP. Among the 199 genes which are down regulated 

more than 3-fold by depletion of THOC5/FMIP, 72 genes has known functions (Table 4.1). 

Looking for the exact functions of these 72 genes using ingenuity pathway analysis (IPA) we 

found that 44% genes among these are involved in cell differentiation and development 

(Table 4.2). 
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Table 4.1 Differentially expressed genes in THOC5/FMIP depleted MEF cells identified 

by cDNA microarray analysis. 

Symbol Gene name Genbank ID Molecular function 
Fold 

change 

AGPAT6 

1-acylglycerol-3-

phosphate O-

acyltransferase 6 

NM_018743 

acyltransferase activity, glycerol-

3-phosphate O-acyltransferase 

activity 

-4.7 

AKT1S1 AKT1 substrate 1 BM068933 Protein binding -3.1 

ARF6 
ADP-ribosylation 

factor 6 
BI248938 GTP binding, protein binding -4.2 

ARMC9 
armadillo repeat 

containing 9 
AK017564 protein-protein interactions -14.5 

ARNT 

aryl hydrocarbon 

receptor nuclear 

translocator 

AU022700 

DNA binding, protein binding, 

receptor activity, transcription 

regulator activity 

-6.2 

ATOX1 

ATX1 antioxidant 

protein 1 homolog 

(yeast) 

BM210947 
Copper ion binding, metal ion 

binding 
-4 

ATP6V1B2 

ATPase, H+ 

transporting, 

lysosomal 

56/58kDa, V1 

subunit B2 

AI790362 

ATP binding, hydrogen ion 

transporting ATP synthase 

activity, rotational mechanism, 

hydrolase activity 

-3.3 

BCL11B 

B-cell 

CLL/lymphoma 

11B 

AK020296 
Metal ion binding, nucleic acid 

binding, zinc ion binding 
-6.8 

CBX2 
chromobox 

homolog 2 
NM_007623 

DNA binding chromatin binding 

protein binding 
-5.8 

CD274 CD274 molecule NM_021893 Protein binding, receptor activity -10 

CHRNA1 

cholinergic receptor, 

nicotinic, alpha 1 

(muscle) 

NM_007389 

contributes to acetylcholine 

receptor activity,  nicotinic 

acetylcholine-activated cation-

selective channel activity 

-4.1 

COPS5 

COP9 constitutive 

photomorphogenic 

homolog subunit 5 

AI662452 

Hydrolase activity, metal ion 

binding, metallopeptidase 

activity,  transcription coactivator 

activity 

-4.8 

CRYL1 crystallin, lambda 1 AI482548 
3-hydroxyacyl-CoA 

dehydrogenase activity 
-11.2 
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DDX11 
DEAD/H box 

polypeptide 11 
BB133021 DNA repair helicase activity -4.5 

DIMT1L 

DIM1 

dimethyladenosine 

transferase 1-like (S. 

cerevisiae) 

AK015145 

RNA binding, methyltransferase 

activity, rRNA (adenine) 

methyltransferase activity,  rRNA 

(adenine-N6, N6-)-

dimethyltransferase activity,  

rRNA methyltransferase activity 

-3 

DOCK1 
dedicator of 

cytokinesis 1 
BB283533 

GTP binding, GTPase binding, 

SH3 domain binding, guanyl-

nucleotide exchange factor 

activity, protein binding 

-3.7 

ENY2 

enhancer of yellow 

2 homolog 

(Drosophila) 

AV033253 Zinc finger domain binding -7 

FAM38B 

family with 

sequence similarity 

38, member B 

BM220702 Molecular function -4.3 

FMO3 
flavin containing 

monooxygenase 3 
NM_008030 

FAD binding, NADP or NADPH 

binding, oxidoreductase activity 
-5.5 

FOSL1 FOS-like antigen 1 U34245 

DNA binding, protein 

dimerization activity, 

transcription factor activity 

-4.8 

GJA1 

gap junction 

membrane channel 

protein alpha 1 

M63801 

SH3 domain binding , gap 

junction channel activity, PDZ 

domain binding 

-3.1 

GIGYF2 
GRB10 interacting 

GYF protein 2 
BB782031 Protein binding -11.7 

GRIK2 
glutamate receptor, 

ionotropic, kainate 2 
BB355480 

extracellular-glutamate-gated ion 

channel activity, ion channel 

activity, ubiquitin protein ligase 

binding 

-4 

GRIN3B 

glutamate receptor, 

ionotropic, N-

methyl-D-aspartate 

3B 

NM_130455 

extracellular-glutamate-gated ion 

channel activity,  transporter 

activity 

-4.8 

HMOX1 
heme oxygenase 

(decycling) 1 
NM_010442 

heme binding, heme oxygenase 

(decyclizing) activity,  

oxidoreductase activity, 

phospholipase D activity 

-3.3 
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HOXB3 homeobox B3 X66177 

DNA binding,  transcription 

factor activity, transcription 

regulator activity 

-5.2 

ID2 
inhibitor of DNA 

binding 2 
NM_010496 

Protein binding, transcription 

regulator activity, transcription 

repressor activity 

 

IL7 interleukin 7 NM_008371 

Cytokine activity, growth factor 

activity, interleukin-7 receptor 

binding 

-3.5 

IL7R 
interleukin 7 

receptor 
AI573431 Cytokine receptor activity -7 

INADL InaD-like AV287690 Protein binding -3.6 

KCNA7 

potassium voltage-

gated channel, 

shaker-related 

subfamily, member 

7 

NM_010596 

Ion channel activity, postassium 

channel activity, protein binding, 

voltage-gated potassium channel 

activity 

-8.9 

LGALS2 
lectin, galactoside-

binding, soluble, 2 
NM_025622 

Galactoside binding, sugar 

binding 
-5.8 

LPAR4 
lysophosphatidic 

acid receptor 4 
BB297502 

G-protein coupled receptor 

activity, lipid binding, signal 

transducer activity 

-8.9 

MT1E metallothionein 1E AA796766 
Cadmium ion binding, copper ion 

binding, zinc ion binding 
-3.5 

MYRIP 

myosin VIIA and 

Rab interacting 

protein 

BB429683 

Rab GTPase binding, actin 

binding, metal ion binding, 

myosin binding, protein 

binding/zinc ion binding 

-6.3 

PMS2 

Postmeiotic 

segregation 

increased 2 

AK014190 

endonuclease activity, hydrolase 

activity, mismatched DNA 

binding 

-7.8 

POU6F2 
POU class 6 

homeobox 2 
BB244362 

Sequence-specific DNA binding, 

transcription factor activity 
-15.6 

PPP2R1B 

protein phosphatase 

2 regulatory subunit 

A, beta isoform 

AI505185 Protein phosphatase activity -10.2 

PREB 
prolactin regulatory 

element binding 
AV362891 

Protein binding, DNA binding, 

transcription factor activity, 

transcription activator activity 

-3.1 
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PRKAR2A 

protein kinase, 

cAMP-dependent, 

regulatory, type II, 

alpha 

AV112640 

cAMP-dependent protein kinase 

regulator activity,  nucleotide 

binding,  protein 

homodimerization activity 

-3 

PRMT6 
protein arginine 

methyltransferase 6 
BB233495 

histone-arginine N-

methyltransferase activity, protein 

methyltransferase activity 

-14.2 

PSMG4 

proteasome 

(prosome, 

macropain) 

assembly chaperone 

4 

AV090264 Protein binding -4.6 

PTF1A 

pancreas specific 

transcription factor, 

1a 

NM_018809 

Sequence-specific DNA binding, 

protein binding, transcription 

regulator activity 

-11.2 

PTPRT 

protein tyrosine 

phosphatase, 

receptor type, T 

NM_021464 

Alpha-actinin binding, catenin 

binding, hydrolase activity, 

phosphatase activity, receptor 

activity, thioester hydrolase 

activity 

-5.3 

RAMP3 

receptor (G protein-

coupled) activity 

modifying protein 3 

NM_019511 
Coreceptor, soluble ligand 

activity 
-3.4 

RPS25 
ribosomal protein 

S25 
BM729504 structural constituent of ribosome -3 

RSBN1 
round spermatid 

basic protein 1 
AI551821 Protein binding -5.9 

RUFY2 
RUN and FYVE 

domain containing 2 
AI852705 Zinc ion binding -4.2 

SERINC3 serine incorporator 3 NM_012032 Induction of apoptosis -3.5 

SIK1 
salt-inducible kinase 

1 
NM_010831 

ATP binding, Magnesium ion 

binding, protein kinase activity 
-3.5 

SLC2A3 

solute carrier family 

2 (facilitated 

glucose transporter), 

member 3 

M75135 
D-glucose transmembrane 

transporter activity 
-7.4 

SLC39A6 

solute carrier family 

39 (zinc 

transporter), 

member 6 

BB213740 
metal ion transmembrane 

transporter activity 
-3.2 
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SMC3 

structural 

maintenance of 

chromosomes 3 

AK005647 ATP- and protein-binding -4.2 

SOX9 

SRY (sex 

determining region 

Y)-box 9 

BC024958 
Sequence-specific DNA binding, 

transcription factor activity 
-3 

SOX15 

SRY (sex 

determining region 

Y)-box 15 

AF182945 
DNA-and Chromatin-binding, 

transcription factor activity 
-5.1 

SOX5 

(includes 

EG:6660) 

SRY (sex 

determining region 

Y)-box 5 

BB018032 
DNA-and Chromatin-binding, 

transcription factor activity 
-4.5 

STX8 syntaxin 8 AK011376 ubiquitin protein ligase binding -3.3 

SYN3 synapsin III AV327590 ATP binding, catalytic activity -52.7 

TEX9 testis expressed 9 BB428851 Chromatin binding -10 

TFRC 
transferrin receptor 

(p90, CD71) 
AK011596 

iron ion transmembrane 

transporter activity, HSP70 

protein binding 

-3.9 

TMSB10 thymosin beta 10 AV148480 Actin monomer binding -4.3 

TOP3B 
topoisomerase 

(DNA) III beta 
BB107606 

DNA topoisomerase type I 

activity 
-11.2 

TSFM 

(includes 

EG:10102) 

Ts translation 

elongation factor, 

mitochondrial 

AK020437 
translation elongation factor 

activity 
-25.2 

TWSG1 

twisted gastrulation 

homolog 1 

(Drosophila) 

AF292033 Protein binding -11.5 

USF1 

upstream 

transcription factor 

1 

BB385241 
Sequence-specific DNA binding, 

transcription factor activity 
-6.4 

VCAN versican AK017328 
hyaluronic acid binding, calcium 

ion binding 
-19.5 

VRK1 
vaccinia related 

kinase 1 
AV341598 ATP binding, kinase activity -4.3 

WDR37 
WD repeat domain 

37 
AK014128 Protein-protein interaction -4.6 

WIPI1 

WD repeat domain, 

phosphoinositide 

interacting 1 

BI251603 Receptor binding -3.3 
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ZDHHC2 
zinc finger, DHHC-

type containing 2 
BB342242 

Zinc ion binding, 

methyltransferase activity 
-9.5 

ZFP119 
zinc finger protein 

119 
AF242376 Metal ion binding, protein binding -4.6 

ZNF81 
zinc finger protein 

81 
BB281667 

Metal ion binding, transcription 

factor activity 
-3.3 

 

Table 4.2 THOC5/FMIP dependent genes are involved in differentiation and development. 

  Category  Genes 

Hematological System Development 

and Function 

ID2, GJA1, CHRNA1, CBX2, BCL11B, TWSG1, IL7, IL7R, 

HOXB3, HMOX1, LGALS2, USF1, CD274, GRIK2 

Lymphoid Tissue Structure and 

development 

IL7R, GJA1, ID2, BCL11B, IL7 

Connective Tissue Development and 

Function 

GJA1, ID2, COPS5, CBX2, TWSG1, IL7, VCAN, HOXB3, 

HMOX1, SOX9, MT1E, FOSL1, AGPAT6, SOX5  

Skeletal and Muscular System 

Development and Function 

HOXB3, HMOX1, ID2, GJA1, SOX9, SOX15, CBX2, 

FOSL1, RAMP3, TWSG1, IL7, SOX5 

Digestive System Development and 

Function 

ARF6, ID2, SOX9, ARNT 

Hepatic System Development and 

Function 

ARF6, MT1E, ARNT 

 

Reproductive System development 

and Function 

GJA1, ID2, SOX9, SOX15, FOSL1, AGPAT6, TOP3B 

Embryonic Development SOX9, CBX2, FOSL1, SLC2A3, ARNT, SOX5 

Nervous System Development and 

Function 

SOX9, ID2, GJA1, CHRNA1, POU6F2, SYN3, PTF1A, 

BCL11B, GRIK2, VCAN 

Respiratory System Development and 

Function 

HMOX1 

Visual System Development and 

Function 

PTF1A 

 

Cardiovascular System Development 

and Function 

HMOX1, HOXB3, ID2, SOX9, GJA1, VCAN, ARNT 

Renal and Urological System 

Development and Function 

GJA1, USF1 

Hair and Skin Development and 

Function 

GJA1, ID2, MYRIP, ATOX1 

 

Endocrine System Development and 

Function 

PTF1A 
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Furthermore, IPA analysis also revealed the down-regulation of certain interesting candidate 

genes upon FMIP deletion. These include HOXb3, which is important during mouse 

embryonic development, Sox15, which belongs to Sox genes family of transcription factors 

known to play a important role in the determination of cell fate during development.(Lee et al 

2004) and GLUT3 glucose transporter gene Slc2a3 that is essential for the development of 

early post-implanted embryos (S Schmidt et al 2009; Table 4.1, 4.2). Altogether this explains 

the embryonic lethal phenotype of THOC5/FMIP knockout mice. 

4.5 Validation of  microarray data with RT-PCR 

The results obtained from the affimetrix gene analysis was further validated by RT-PCR. 

MEF cells were infected with Ade-Cre or Ade-GFP and at 4days post-infection the 

cytoplasmic RNA was isolated from the cell lysates. Certain genes with altered gene 

expression were selected and was screened by RT-PCR using specific primers. In accordance 

with the microarray data these genes showed either no expression or lower expression upon 

fmip depletion (Figure 4.5). 
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Figure 4.5 RT-PCR of downregulated genes  RNA isolated from the MEF cells infected 

with Ade-Cre or Ade-GFP was screened by RT-PCR using specific primers for the genes that 

showed altered gene expression in affimetrix analysis. 

We performed a literature search for the phenotype of the available knockout mouse of those 

genes that were downregulated upon FMIP depletion in order to confirm its role in regulation 

of genes involved in mouse development and haematopoiesis in vivo. Consistent with our 

previous experience most of these mice were either embryonic lethal or showed severe 

defects in growth and haematopoesis (Table 4.3). Taken together these data suggest that, 

THO complex FMIP also participate in the expression of genes that are involved in embryo 

development and haematopoesis. 
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Table 4.3. Phenotype of the knockout mice for the genes downregulated by 

THOC5/FMIP depletion. 
Gene Symbol Name Phenotype/Knockout Reference. 

FMIP 
 
 Fms interacting protein 
 

Embryonic lethal 
Mancini et al  
BMC Biology 2010 

Hoxb3 
 
  Homeobox 3 
 

Inhibit multicellular 
organismal development 

King-Hung Ko,et 
al 2007 

Cbx2 
M33 

 
Chromobox homolog 2 
 

M33 (-/-) mice show greatly 
retarded growth, homeotic 
transformations of the axial 
skeleton, failure to expand in 
vitro of several cell types 
including lymphocytes and 
fibroblasts. 

Core N et al 
Development 1997 

Glut3/Slc2A3 
 
Glucose transporter  
 

glut3-/- embryonic lethal Ganguly et al 2007 

Twsg1 
 
Twisted gastrulation homolog 1 
 

twsg-/- mice died within 4 
weeks after birth, 
lymphopenia, forebrain 
defects including rostral 
truncations 

Petryk A et al 2004 

Fosl1 
 
FOS-like antigen 1 
 

osteopetrosis due to an early 
differentiation 
block in the osteoclast lineage 

Koichi Matsuo,  
Nature genetics 2000 

 
  IL7 

 
interleukin 7 
 

IL7-/- lymphopenia 
von Freeden-Jeffry 
U, J Exp Med 1995 

 
 Sox15 

 
SRY (sex determining region 
Y)-box 15 
 

Inhibit skeletal muscle 
regeneration. 

 
Heon-Jin Lee et al 
Molecular & 
Cellular Biology 
2004 
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II) To identify novel binding partners of THOC7 using tandem affinity purification 

followed by mass spectroscopy. 

4.6 THO complex 

THO complex is a member of TREX transcription export complex and is involved in mRNA 

processing and export. TREX complex contains UAP56, ALY, Tex1 and THO complex 

members THOC1, THOC2, THOC5, THOC6 and THOC7. The potential role of the 

individual members of THO complex is still unclear. If they function individually or in 

cooperation with other members of THO complex is the area of immense interest. This study 

was aimed at deciphering the potential proteins that interact with the members of THO 

complex which can therefore provide certain valuable clues regarding their function. To 

understand the biological functions of THOC5 and THOC7 was of specific interest. 

Overexpression studies performed in our lab has shown cytoplasmic localization of THOC7. 

Intriguingly, overexpression of THOC5 in cells resulted in nuclear localization of THOC7. 

Although we provide evidence for direct interaction with THOC5 is essential for nuclear 

import of THOC7 (El Bounkari et al 2009), it is still unclear if THOC5 is also required for 

THOC7 to exit the nucleus. Further we were interested in knowing if THOC5-THOC7 

interaction resulted in synergistic or counteracting effects. This is based on the observation 

that overexpression of THOC5 enhanced cell proliferation while overexpression of THOC7 

suppresses proliferation. Being a member of THO complex, the potential role of THOC7 in 

mRNA export is expected. To investigate if THOC7 exhibits any additional function other 

than mRNA export, it was decided to use THOC7 as a bait to trap the proteins that interact 

either directly or indirectly with THOC7. The binding partners were then characterized using 

mass spectrometry. 
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4.7 Isolation of new binding partners of THOC7 by using tandem affinity purification  

The location of a particular protein and the partners with which they interact could provide 

valuable insights into the function of a protein. In this study the method of tandem affinity 

purification (TAP) was employed in order to screen the interacting partners of THOC7. TAP 

is an efficient method used to isolate proteins involved in a protein complex. Using the 

protein of interest as bait, all the proteins that interact with it was captured from the cell 

lysates and was later pulled down by a one-step affinity purification procedure.  

TAP plasmid pNTAP was purchased from stratagene. Full length THOC7 gene was inserted 

in frame to the downstream of the TAP sequence. Antibodies that specifically detect THOC7 

is unavailable at this moment. Hence THOC7 was expressed as a fusion to Myc at its C-

terminal and this allowed the detection of THOC7 using antibodies against Myc. The entire 

gene cassette was cloned under the CMV promoter for its constitutive expression (Figure 

4.6). 

 

 

 

Figure 4.6 Scheme showing TAP tagged THOC7-Myc construct. CBP: calmodulin 

binding peptide, SBP: streptavidin binding peptide, Myc: Myc epitope. 

 

To examine if the TAP tag constructs were in desired reading frame and are suitable for 

mammalian cell expression, HEK293 cells were transfected with Tap-THOC7-Myc plasmid 

or with empty vector (pNTAP). The cell lysates of the transfected HEK293 cells were 

prepared and the expression of the recombinant TAP-THOC7-Myc construct was analyzed by 

western blotting. Probing the membranes using anti-Myc antibody detected a specific band of 

35kDa only in the cells that were transfected with TAP-THOC7 constructs. The weight of the 
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protein detected correlated with the sum of the weights of individual proteins (TAP-6kDa, 

THOC7-24kDa, MYC-4kDa) of fusion construct thereby confirming the expression of 

THOC7 in HEK293 cells (Figure 4.7). 

 

 

 

 

 

Figure 4.7 TAP-THOC7-Myc construct expression in Hek293 cells. Hek293 cells were 

seeded and next day transfected with pNTAP (empty vector) and TAP-THOC7-Myc 

construct. Cell lysates was prepared by adding lammeli buffer and lysates were loaded on gel 

and protein was detected by immunoblot using anti-Myc antibody. 

 

Once the expression of THOC7 was confirmed, large-scale purification of THOC7 protein 

complexes from the transfected HEK293 cells was performed. Cell lysates from the 

transfected cells were incubated with streptavidin coated beads. These beads enriched TAP-

THOC7 from the lysate by binding to its N-terminal streptavidin binding peptide. Along with 

the TAP-THOC7 fusion protein all other proteins that interact with THOC7 were also 

enriched by this method. The protein complexes bound to the beads were separated from the 

unbound fraction of cell lysate by centrifugation. To test if the bound fraction contained 

THOC7, a small portion of beads was subjected to SDS-polyacrylamide gel electrophoresis 

and stained with Coomassie Blue Brilliant G-250. In addition to the expected band of 

THOC7-MYC fusion protein, several other bands were detected in sample from TAP-THOC7 

transfected cells that were not found in the control fraction (pNTAP transfected). This 

implicated the purification of THOC7 and its new binding partners. To further characterize 

the proteins that were complexed with THOC7 the remaining beads fraction was sent to Prof. 

Anthony D Whetton’s lab in Manchester University for mass spectrometric analysis. 
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Figure 4.8 Silver staining of TAP-THOC7-Myc purified proteins. HEK293 cells were 

transfected with pNTAP (empty vector) and TAP-THOC7-MYC constructs. Cell lysates was 

prepared by adding lammeli buffer and proteins were purified by TAP method. The eluate 

from streptavidin beads were separated by SDS-page and stained by silver staining.  As a 

protein size marker prestained protein standard was used. The asterix (*) represent the 

potential binding partners of THOC7. 

 

4.8 Interacting partners identified by mass spectrometry 

The proteins from the complex were resolved on SDS-PAGE and all the distinct bands were 

dissected from the gel. After trypsin digestion the proteins were analyzed by mass 

spectrometry. 

About 94 proteins that interact with THOC7 were identified in mass spectrometric analysis 

(Table 4.4). The identified proteins were classified based on their location and function using 

ingenuity pathway analysis. Majority of interacting partners were identified as cytoplasmic 
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proteins (40%), while others included nuclear proteins (22%), mitochondrial proteins (13%), 

plasma membrane proteins (11%), and ribosomal proteins (9%) (Fig 4.9). When screened the 

MS results for the proteins that were involved in mRNA processing or export, 4 proteins 

identified were involved in mRNA processing and 2 proteins belonged to the nuclear pore 

complex. Novel putative interacting partners for THOC7 are: 

• NUP35, that forms structural components of nuclear pore complex (NPC) or act as 

docking or interaction partners for transiently associated nuclear transport factors 

(Hawryluk-Gara L.A et al (2005). NUP95, member of nuclear pore complex and is 

required for proper nuclear pore assembly. 

• PABPC1 that has been implicated in governing the stability and translation of mRNA 

by binding to the 3′-poly (A) tail of mRNA. 

• CPSF6 Cleavage and polyadenylated specific factor 6, a 68kDa protein subunit of 

cleavage factor that is required during 3' RNA cleavage and polyadenylation of 

mRNA. Interaction of this factor with the RNA is one of the initial steps in the 

assembly of the 3' end processing complex and facilitates the recruitment of other 

processing factors.  

Identification of these proteins as interacting partners suggest that potentially THOC7 is 

involved in translation and protein synthesis in cytoplasm.  

Among the new interacting partners for THOC7 we found 5 proteins that are involved in 

translation such as EEF1A1, EEF1D, EIF2B2, EIF2S1 and EIF3H. It was interesting to find 

as many as 14 ribosomal proteins interacting wiith THOC7. The role of ribosomal proteins in 

rRNA processing, ribosome biogenesis and in translation has already been described (Blaha. 

G, and Nierhaus, K.H 2004). Altogether this set of data suggests that THOC7 may have some 

role in translation in cytoplasm. 
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Figure 4.9 The pie diagram shows classification of identified proteins based on location. 

The protein hits obtained by mass spectrometry was grouped based on their location within 

the cell. 
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Table 4.4 Interacting partners of THOC7 identified by mass spectroscopy 

 Symbol Entrez Gene Name Location Possible function 

1 ACAD11 
acyl-Coenzyme A dehydrogenase family, 

member 11 
Cytoplasm Oxidation-reduction 

2 ACTA1 actin, alpha 1, skeletal muscle Cytoplasm Protein binding 

3 ACTA2 actin, alpha 2, smooth muscle, aorta Cytoplasm Protein binding 

4 ACTG2 actin, gamma 2, smooth muscle, enteric Cytoplasm Protein binding 

5 ADH7 
alcoholdehydrogenase 7 (class IV), mu or 

sigma polypeptide 
Cytoplasm  

6 ALDH18A1 
aldehydedehydrogenase 18 family, member 

A1 
Cytoplasm  

7 APOL2 apolipoprotein L, 2 Cytoplasm  

8 ARD1A 
ARD1 homolog A, N-acetyltransferase (S. 

cerevisiae) 
Nucleus  

9 ARD1B ARD1 homolog B (S. cerevisiae) unknown  

10 ATAD3A ATPase family, AAA domain containing 3A Nucleus ATP binding 

11 ATAD3B ATPase family, AAA domain containing 3B Nucleus ‘’ 

12 ATAD3C ATPase family, AAA domain containing 3C unknown ‘’ 

13 ATP5A1 
ATP synthase, H+ transporting, mitochondrial 

F1 complex, alpha subunit 1, cardiac muscle 
Cytoplasm  

14 ATP5C1 
ATP synthase, H+ transporting, mitochondrial 

F1 complex, gamma polypeptide 1 
Cytoplasm  

15 BTF3 basic transcription factor 3 Nucleus transcription 

16 BTN3A3 butyrophilin, subfamily 3, member A3 unknown  

17 CDK2 cyclin-dependent kinase 2 Nucleus Cell cycle control 

18 CDK3 cyclin-dependent kinase 3 Nucleus Cell-cycle control 

19 CPSF6 
cleavage and polyadenylation specific factor 

6, 68kDa 
Nucleus mRNA processing 

20 DNAJB6 
DnaJ (Hsp40) homolog, subfamily B, member 

6 
Nucleus transcription 

21 EEF1A1 
eukaryotic translation elongation factor 1 

alpha 1 
Cytoplasm translation 

22 EEF1D 
eukaryotic translation elongation factor 1 delta 

(guanine nucleotide exchange protein) 
Cytoplasm translation 

23 EIF2B2 
eukaryotic translation initiation factor 2B, 

subunit 2 beta, 39kDa 
Cytoplasm translation 

24 EIF2S1 
eukaryotic translation initiation factor 2, 

subunit 1 alpha, 35kDa 
Cytoplasm translation 
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25 EIF3H 
eukaryotic translation initiation factor 3, 

subunit H 
Cytoplasm translation 

26 EPRS glutamyl-prolyl-tRNAsynthetase Cytoplasm  

27 ERLIN2 ER lipid raft associated 2 
Plasma 

Membrane 
Protein binding 

28 FDPS 

farnesyldiphosphatesynthase (farnesyl 

pyrophosphate 

synthetasedimethylallyltranstransferase, 

geranyltranstransferase) 

Cytoplasm  

29 GALK1 galactokinase 1 Cytoplasm  

30 GJA1 gap junction protein, alpha 1, 43kDa 
Plasma 

Membrane 
 

31 GM12141 Chaperonin unknown  

32 GNA13 
guanine nucleotide binding protein (G 

protein), alpha 13 

Plasma 

Membrane 
 

33 GNAO1 

guanine nucleotide binding protein (G 

protein), alpha activating activity polypeptide 

O 

Plasma 

Membrane 
 

34 GNAS GNAS complex locus 
Plasma 

Membrane 
 

35 GNAT1 

guanine nucleotide binding protein (G 

protein), alpha transducing activity 

polypeptide 1 

Plasma 

Membrane 
GTP binding 

36 GNAT2 

guanine nucleotide binding protein (G 

protein), alpha transducing activity 

polypeptide 2 

Plasma 

Membrane 
 

37 GNAT3 
guanine nucleotide binding protein, alpha 

transducing 3 

Plasma 

Membrane 
 

38 GOT2 
glutamic-oxaloacetictransaminase 2, 

mitochondrial (aspartateaminotransferase 2) 
Cytoplasm  

39 HIST1H1C histone cluster 1, H1c Nucleus  

40 HSP90AA1 
heat shock protein 90kDa alpha (cytosolic), 

class A member 1 
Cytoplasm  

41 HSPA1L heat shock 70kDa protein 1-like Cytoplasm  

42 HSPA7 heat shock 70kDa protein 7 (HSP70B) unknown  

43 HSPD1 heat shock 60kDa protein 1 (chaperonin) Cytoplasm  

44 IMMT 
inner membraneprotein, mitochondrial 

(mitofilin) 
Cytoplasm  

45 KARS lysyl-tRNAsynthetase Cytoplasm  
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46 LMNA lamin A/C Nucleus  

47 MAT2A methionineadenosyltransferase II, alpha Cytoplasm  

48 MCCC1 
methylcrotonoyl-Coenzyme A carboxylase 1 

(alpha) 
Cytoplasm  

49 MRPL13 mitochondrial ribosomal protein L13 Cytoplasm  

50 MYLK2 myosin light chain kinase 2 Cytoplasm  

51 NAPA 
N-ethylmaleimide-sensitive factor attachment 

protein, alpha 
Cytoplasm  

52 NDUFA9 
NADH dehydrogenase (ubiquinone) 1 

alphasubcomplex, 9, 39kDa 
Cytoplasm  

53 NDUFS1 

NADH dehydrogenase (ubiquinone) Fe-S 

protein 1, 75kDa (NADH-coenzyme Q 

reductase) 

Cytoplasm  

54 NPM1 
nucleophosmin (nucleolarphosphoprotein 

B23, numatrin) 
Nucleus  

55 NSF N-ethylmaleimide-sensitive factor Cytoplasm  

56 NUP35 nucleoporin 35kDa Nucleus NPC component 

57 NUP93 nucleoporin 93kDa Nucleus NPC component 

58 PABPC1 poly(A) binding protein, cytoplasmic 1 Cytoplasm mRNA processing 

59 PABPC4 
poly(A) binding protein, cytoplasmic 4 

(inducible form) 
Cytoplasm mRNA processing 

60 PHGDH phosphoglyceratedehydrogenase Cytoplasm  

61 POLR1C polymerase (RNA) I polypeptide C, 30kDa Nucleus  

62 POLR1D polymerase (RNA) I polypeptide D, 16kDa Nucleus  

63 QARS glutaminyl-tRNAsynthetase Cytoplasm tRNA synthesis 

64 RFC2 replication factor C (activator 1) 2, 40kDa Nucleus DNA replication 

65 RPL13 ribosomal protein L13 Cytoplasm Protein synthesis 

66 RPL17 ribosomal protein L17 Cytoplasm Protein synthesis 

67 RPL19 ribosomal protein L19 Cytoplasm Protein Synthesis 

68 RPL23 ribosomal protein L23 Cytoplasm Protein Synthesis 

69 RPL27A ribosomal protein L27a Nucleus Protein synthesis 

70 RPL6 ribosomal protein L6 Cytoplasm Protein synthesis 

71 RPL7 ribosomal protein L7 Cytoplasm Protein synthesis 

72 RPL7A ribosomal protein L7A Nucleus Protein synthesis 

73 RPS25 ribosomal protein S25 Cytoplasm Protein synthesis 

74 RPS4Y1 ribosomal protein S4, Y-linked 1 Cytoplasm Protein synthesis 

75 RPS4Y2 ribosomal protein S4, Y-linked 2 unknown Protein synthesis 

76 RPS8 ribosomal protein S8 Cytoplasm Protein synthesis 

77 RPS9 ribosomal protein S9 Cytoplasm Protein synthesis 
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78 SEC13 SEC13 homolog (S. cerevisiae) Cytoplasm  

79 SEC23A Sec23 homolog A (S. cerevisiae) Cytoplasm  

80 SEPT9 septin 9 Cytoplasm  

81 SNX2 sortingnexin 2 Cytoplasm  

82 SNX9 sortingnexin 9 Cytoplasm  

83 STOML2 stomatin (EPB72)-like 2 
Plasma 

Membrane 
 

84 THOC5 THO complex 5 
Nuclear/Cyto

plasm 
mRNA processing 

85 THOC6 THO complex 6 homolog (Drosophila) Nucleus mRNA processing 

86 TTC35 tetratricopeptide repeat domain 35 Nucleus  

87 TUBB3 tubulin, beta 3 Cytoplasm  

88 TUBB4 tubulin, beta 4 Cytoplasm  

89 TUBB6 tubulin, beta 6 Cytoplasm  

90 VPS35 
vacuolar protein sorting 35 homolog (S. 

cerevisiae) 
Cytoplasm  

91 ZNF607 zinc finger protein 607 Nucleus  

92 MRPL17 mitochondrial ribosomal protein L17 Cytoplasm Translation 

93 RPL13A ribosomal protein L13a Cytoplasm Translation 

94 NCF2 neutrophilcytosolic factor 2 Cytoplasm  

 

4.9 Common binding partners of THOC5 and THOC7 

In the lab similar mass spectrometric analysis was performed to identify interacting partners 

of THOC5. One of the interacting partners of THOC5 that was identified in this analysis was 

THOC7. Hence we were interested in fishing out the candidates that were interacting with 

both THOC5 and THOC7. For this purpose a comparative analysis of the MS data of THOC5 

and THOC7 was performed. The analysis showed that among the total interacting partners of 

THOC5, 73 were nuclear proteins, while THOC7 interacted only with 17 nuclear proteins. It 

is known that THOC5 is a nuclear-cytoplasmic shuttling protein whereas THOC7 per se is a 

cytoplasmic protein. Only when THOC7 interacts with THOC5 or other nuclear shuttling 

proteins it is translocated to nucleus. This could be a possible explanation for the few hits of 

nuclear proteins identified in the MS analysis of THOC7. Another interesting observation was 
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the detection of nuclear pore complex proteins in THOC7 MS that were absent in THOC5 

MS result. This suggests that apart from THOC5, THOC7 might also interact with other 

nuclear- cytoplasmic shuttling protein that helps in their translocation between nucleus and 

cytoplasm. When compared for the interaction with other members of THO complex it was 

identified that THOC5 interacted with THOC1, THOC2, THOC3, THOC4 and THOC7 

whereas THOC7 interacted only with THOC5 and THOC6. (Table 4.5). 

Table 4.5 Common binding partners of THOC5 and THOC7  

S.nr Symbol    Name Location Function 

1 AIFM1 
Apoptosis inducing factor, mitochondrion 

associated-1 
Cytoplasm 

 

Enzyme 

2 ALDH18A1 Aldehydedehydrogenase 18 family, member A1 
 

Cytoplasm 

 

Kinase 

3 ATP5B 
ATP synthase, H+ transporting, mitochondrial F1 

complex, beta polypeptide 
Cytoplasm transporter 

4 CCT3 Chaperonin containing TCP1, subunit3 (gamma) Cytoplasm other 

5 DYNC1I2 Dynein, cytoplasmic1, intermediate chain2 Cytoplasm other 

6 EEF1A1 Eukaryotic translation initiation factor 1 alpha 1 Cytoplasm 
Translation 

regulator 

7 EIF2S1 
Eukaryotic translation initiation factor 2, subunit 1 

alpha, 35kDa 
Cytoplasm 

Translation 

regulator 

8 ERLIN1 ER lipid raft associated 1 
Plasma 

membrane 
other 

9 GNA13 
Guanine nucleotide binding protein (G protein), 

alpha 13 

Plasma 

membrane 
enzyme 

10 LMNA Lamin A/C Nucleus other 

11 MCCC1 Methylcrotonoyl-CoAcarboxylase 1 alpha Cytoplasm enzyme 

12 MCM7 
Minichromosome maintenance complex component 

7. 
Nucleus Enzyme 

13 NDUFS1 
NADH dehydrogenase (ubiquinone) F-S protein 1, 

75kDa (NADH-coenzyme Q reductase) 
Cytoplasm enzyme 

14 PHGDH Phosphoglyceratedehydrogenase Cytoplasm enzyme 

15 POLR1C Polymerase (RNA)I polypeptide C, 30kDa Nucleus Other 

16 RFC2 
Replication factor C 

(activator 1)2, 40kDa 
Nucleus Other 

17 RPL19 Ribosomal protein L19 Cytoplasm other 
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18 RPLP0 Ribosomal protein large P0 Cytoplasm Other 

19 RPS6 Ribosomal protein S6 Cytoplasm Other 

20 TUBB4 Tubulin, beta 4 Cytoplasm Other 

 

The MS analysis revealed that THOC7 interacted only with THOC5 and THOC6 but not with 

other members of THO complex. When overexpressed THOC7 interacts with THOC5 and 

not with THOC1 in cytoplasm. To confirm these findings, TAP purification of protein 

complexes from the Hek293 cells transfected with pNTAP-THOC7-Myc or empty vector 

pNTAP was performed. Cell lysates were incubated with streptavidin beads and after 

centrifugation both, the beads fraction and the supernatants were analysed by western blots 

using Myc, THOC1, and THOC5 antibodies. When probed with THOC5 antibody, specific 

bands were detected in the bead-bound fraction as well as in the unbound fraction of the cells 

transfected with pNTAP-THOC7-Myc. On the other hand THOC1 signal was detected only 

in the unbound fraction and not in the bead bound fraction of pNTAp-THOC7-Myc 

transfected cells. In the cells transfected with pNTAP signals of THOC1 and THOC5 was 

detected only in the unbound fraction (Figure 4.10).  
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Figure 4.10 Western blot analysis THOC7 interaction with other THO members. 

Hek293 cells were transfected with pNTAP or pNTAP-THOC7-Myc. The lysates prepared 

from these cells were incubated with streptavidin beads. The bound proteins were separated 

by 11% SDS-PAGE and western blot analysis was done using THOC5, THOC1 and Myc 

antibody. 

 

Taken together these results further confirm the observations made in the MS analysis and 

suggest that THOC7 interacts with THOC5 and not with THOC1 in cytoplasm. Therefore it is 

speculated that THOC7 might play a role in translation and protein synthesis independent of 

THOC1. 
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5 DISCUSSION 

Cell differentiation is paralleled by a timely ordered expression of a set of genes. Most genes 

are regulated at the transcriptional level. However, several epigenetic mechanisms exist that 

can greatly influence gene expression. For instance, recent data has shown that regulatory 

RNAs and certain RNA-binding proteins serve as developmental regulators (Biedermann et 

al., 2010). Depending on the signals issued these regulators can alter mRNA stability, 

localization, translation etc. that ultimately influence pattern of gene expression in a cell 

specific manner. In response to differentiation and DNA damage signals, THOC5/FMIP, a 

member of the mRNA export complex is also modified post-translationally. Stimulation of 

myeloid cells with growth factor M-CSF causes phosphorylation of tyrosine residue 255 of 

THOC5/FMIP (Pierce et al., 2008; Tamura et al., 1999) where as insulin signalling for 

adipocyte differentiation leads to threonine 328 phosphorylation (Gridley et al., 2005). In 

contrast the phosphorylation of THOC5/FMIP by protein kinase C impairs the THOC5/FMIP 

nuclear/cytoplasm shuttling (Mancini et al., 2004). DNA damage leads to phosphorylation of 

THOC5/FMIP by ATM kinase (Matsuoka et al., 2007). All these facts suggest a major role of 

THO complex in fine-tuning differentiation processes dependent upon the extracellular cues. 

5.1 THO complex and mRNA export 

THO complex is involved in mRNA export yet its actual role in this process remains unclear. 

Initial evidence relating THO complex to mRNA export was provided by Cheng et al where 

they showed the association of THO complex with the cap binding protein (CBP) 80, a 

nuclear factor that is involved in bulk poly (A)+ RNA export (Cheng et al., 2006). However, 

recent data show that the depletion of THOC5 does not affect on bulk poly (A)+ RNA export, 

but severely affected Hsp70 mRNA export in Hela cells (Katahira et al., 2009). Further it has 

been shown that in Drosophila only 20% of all genes were down-regulated by the knockdown 

of THO members THOC1 and THOC2 (Rehwinkel et al., 2004). At the same time about 80% 
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of all genes were down-regulated when NXF1 (TAP in mammals), UAP56, or p15 that are 

involved in bulk poly A+ RNA were depleted (Herold et al., 2001; Herold et al., 2003). This 

suggest that THO complex has influence only on certain set of genes. 

In this study THOC5/FMIP was conditionally depleted from the MEF cells and a microarray 

analysis was performed to identify the percentage of genes influenced by THOC5/FMIP 

depletion. The array data suggested that only 2.9% of the total genes were affected by 

THOC5/FMIP depletion. Among the 559 genes down-regulated 9% of the genes belong to 

the gene family of transcription regulators. Hence there is a possibility that not all the genes 

that are down-regulated upon THOC5/FMIP depletion are directly dependent on THO 

complex. This could rather be an indirect effect of down-regulation of transcription regulator 

that might be crucial in the expression of certain genes. Interestingly many of the genes, such 

as Hoxb3, CBX2, Gja1, IL7, Pou6f2, Glut3, Sox15 and Twsg1 are involved in cell 

differentiation and development. These data indicate that the role of the THO complex is 

limited to a subset of genes. How the THO complex selects a subset of mRNA still remains to 

be elucidated. Understanding the relevance of THO complex in differentiation, development 

and cell proliferation can provide a better understanding of its functional role. 

5.2 THOC5 involved in early embryo development   

Among the down regulated genes more than 44% of them are involved in the differentiation 

and development process. Earlier our attempts to generate THOC5/FMIP knockout mice 

failed as it was embryonic lethal. Later it was known that THOC1 and THOC5/FMIP are 

required for viability of the early mouse embryo (Wang et al., 2006; Wang et al., 2009; 

Mancini et al., 2010) although the actual reason for this was unclear at that time. Here, the 

array analysis revealed that among those genes that were affected by THOC5/FMIP 

depletion, 6 genes are involved in embryo development (Table 4.2). In particular, the 

expression of a solute carrier family 2 member 3 (Slc2a3 or Glut3) that facilitated glucose 
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transport, was reduced by 87%. There were reports showing that mutation in glut3 gene 

causes early pregnancy loss and fetal growth restriction (Ganguly et al., 2007). Hence we 

believe that down-regulation of this gene in FMIP deficient mice could be the reason for its 

embryonic lethality.  

5.3 THOC5 essential for cell differentiation 

Indeed, THO depletion in differentiating cells showed severe defects in cell differentiation. In 

addition, we have shown previously that overexpression of THOC5/FMIP enhances muscle 

differentiation of C2C12 cells and down regulation of THOC5/FMIP suppressed muscle 

differentiation (Mancini et al., 2007). Supporting these findings, we have observed down 

regulation of 12 genes that are involved in skeletal and muscle development upon 

THOC5/FMIP depletion (Table 4.2). Our previous study also showed that hematopoietic 

differentiation was severely impaired by THOC5/FMIP depletion in adult mice (Mancini et 

al., 2010). Although this effect was not due to arrested cell growth but was rather due to 

increased apoptosis of differentiating hematopoietic cells. Similar observation was also made 

with the deletion of THOC1, another major conserved component of THO complex, as this 

deletion caused apoptosis in transformed cells, but not in normal fibroblasts (Li et al., 2007). 

These findings implicate a potential role of THO members not only in cell growth and 

differentiation but also in cell survival as lack of THO components leads to cell death. On the 

other hand, we show here that THOC5/FMIP deficient fibroblasts just cease growing. 

Similarly, yeast THO null mutants are sick and slow growers (Chavez et al., 2001; Garcia-

Rubio et al., 2008), and THOC1 and/or THOC2 depletion has a negative effect on growth rate 

of Drosophila cell line (Rehwinkel et al., 2004). The bulk of these data shows that the THO 

complex has different roles in distinct cell types.  
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5.4 THOC7 forms a complex with THOC5 and THOC6 but not with THOC1 
 

The THO complex was initially isolated from Hela nuclear extract (Masuda et al 2005). How 

ever interaction of each individual member of THO complex is yet to be characterised. Thus 

far interaction between only THOC1-THOC5 and THOC7-THOC5 has been 

proven(El.bounkari et al 2009). Earlier we have shown that THOC7 in association with 

THOC5 (FMIP) is translocated to the nucleus and interacts with mRNA processing 

machinery. Over expression of THOC7 revealed its cytoplasmic localization. Since no 

information regarding THO complex in cytoplasm is known we used an approach of tandem 

affinity purification followed by mass spectrometry to identify proteins that interact with 

THOC7 which can provide us valuable clues to predict its function. 

A total of 94 proteins were identified using this method (Table 4.4). Among the interacting 

partners identified for THOC7 majority of the proteins are localized in cytoplasm further 

supporting the overexpression of THOC7. When screened for its association with other 

members of the THO complex it was found that THOC7 interacted only with THOC5/FMIP 

and THOC6. Apart from interacting with certain members of THO complex, the newly 

identified interacting partners of THOC7 consists of proteins involved in mRNA processing, 

nuclear pore complex, protein synthesis etc. 

5.5 Potential role of THOC7 in mRNA processing and export 
 

Proteins such as CPSF6 (cleavage and poladenylated specific factor6) that is involved in 3’ 

end processing and polyadenylation and PABP1 (poly A binding protein1) that increases the 

mRNA stability were also found to interact with THOC7. Additionally, some of the novel 

interacting partners identified were the proteins associated with nuclear pore complex such as 

NUP35 and NUP93, which is a main feature of proteins involved in mRNA export. 
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Association of THOC7 with the members of TREX complex, proteins involved in mRNA 

processing and nuclear pore complex suggests a potential role of THOC7 in mRNA 

processing and export. 

5.6 THOC7/THOC5 might couple mRNA export with translation  
 

Interestingly, 14 ribosomal proteins were identified to interact with THOC7. It is known from 

the literature that ribosomal proteins play a crucial role in rRNA processing, protein 

assembly, RNA folding, transport of the ribosomal precursors etc. which are the key events in 

ribosome biogenesis and in translation(Blaha. G, and Nierhaus, K.H 2004). Taken together 

these findings suggest that THOC7 might form an interface between mRNA export and 

translation. 

Similar studies were performed to identify the interacting partners of THOC5 and as 

mentioned above THOC5 also interacted with THOC7 (El.bounkari et al 2009). To examine 

if this interaction led to a synergistic effect or had a counteracting influence on each other we 

compared the mass spectrometry results of THOC5 and THOC7. The comparitive analysis 

revealed only a few common interacting partners for both proteins (Table 4.6). While 

majority of hits obtained for THOC5 were proteins involved in mRNA processing, THOC7 

associated mainly with the translation machinery in the cytoplasm. One of the interesting 

candidate among the common interacting proteins for THOC5 and THOC7 was eEF1A1 

(eukaryotic translation elongation factor 1 alpha 1) that is involved in the delivery of all 

amino acyl–tRNAs to the ribosome (Mateyak et al 2010). A recent report has shown that in 

addition to delivery of tRNAs, eEF1A1 also functions in nuclear export of proteins by 

recognizing transcription dependent-nuclear export motif(TD-NEM, DxGx2Dx2L) (M.Kacho 

et al 2008). When the sequence was analyzed for both THOC7 and THOC5 it revealed that 

only THOC5 but not THOC7 contained such motif. This is an interesting observation as it 



Discussion 

  79 

explains the relavance of THOC5-THOC7 interaction. THOC7 which is a cytoplasmic 

protein uses THOC5 that contain both NLS and NEM, as a vehicle to shuttle between nucleus 

and cytoplasm. Although eEF1A is being pulled down by both THOC5 and THOC7, exact 

role of THOC5 and THOC7 in translation/protein synthesis is not clear. To address this 

question, further studies involving depletion of THOC7 would be needed.  
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6  CONCLUSION 

The results of this study reveals that depletion of THOC5/FMIP gene influences expression of 

only 72 functionally known genes, indicating that the relevance of the THO function is not a 

consequence of a general genome-wide role, but its role is limited to a subset of genes. 

However, about 44% of down-regulated genes are involved in cell differentiation and 

development. Since THOC5/FMIP is regulated by extracellular signalling, it may play an 

important role in fine tuning the differentiation and development process.  

THOC7, a member of THO complex localized in cytoplasm shuttles in to the nucleus in 

association with THOC5. Cytoplasmic localization of THOC7 is further supported by the fact 

that majority of the interacting partners identified for THOC7 were cytoplasmic proteins with 

few proteins belonging to mRNA processing machinery and nuclear pore complex. 

Furthermore, although 6 members of THO complex forms a complex in the nucleus, only 

THOC7, THOC5, THOC6 are detected in cytoplasm and not THOC1, THOC2, and THOC3. 

Hence THOC7 in association with THO complex might be involved in coupling mRNA 

export with translation.  
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8.2 Abbreviations 
 
2YT    modified luria- bertani broth 

AA    amino acid 

Ade-Cre   adenovirus carrying cre recombinase 

Ade- GFP   adenovirus carrying GFP 

ADP    adenosine diphosphate 

Amp     ampicillin 

App.     Approximately 

APS    ammonium persulfate 

ATP    adenosine-5’-triphosphate 

bp   base pairs 

BSA    bovine serum albumin 

Ci     Curie 

C-terminal  carboxy terminal 

DMEM   dulbecco’s modified eagle medium 

DMSO   Dimethylsulfoxide 

DNA     Deoxyribonucleic acid 

DTT     Dithiothreitol 

E.coli    Escherichia coil 

EDTA    Ethylemediaminetetraacetic acid 

ER    endoplasmic reticulum 

FCS    Fetal calf serum 

Fig.    Figure 

FITC     Fluoresceine- isothiocyanate 

FMIP    FMS interacting protein 

GAPDH   glutamate dehydrogenase 

GFP    green fluorescent protein 

GST    glutathione-S-transferase 

GTP    guanine triphosphate 

HEPES    N-2-hydroxyethylenepiperazine-N-2-ethanesulfonic acid 

hnRNP    heterogenous nuclear ribonucleoprotein 

IP     immunoprecipitation 

IPTG    isopropyl  β –D- thiogalactopyranoside 
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Kb     kilo basepairs 

kDa     kilodalton 

M      molar 

mM     milimolar 

MOPS   3-(N-morpholino)propanesulfonic acid 

mRNA   messenger RNA 

NLS     nuclear localisation signal 

NES   nuclear export signal 

NP-40   nonident P-40 

nt      nucleotide 

N-terminal    Amino terminal 

OD      optical density 

OD600   optical density at 600nm 

PBS     phosphate buffer saline 

PCR     polymerase chain reaction 

RNA     ribonucleic acid 

RNP     ribonucleoprotein 

Rpm     rounds per minute 

rRNA    ribosomal RNA 

RT      room temperature 

SDS     sodium dodecylsulfate 

SDS-PAGE   Sodium dodecyl sulphate polyacrylamide gel electrophoresis 

SSC     saline sodium citrate buffer 

TAP     Tandem affinity purification 

TBE     Tris-EDTA-borate buffer 

TEMED   N, N, N, N’-tetramethyl-ethylene diamine 

THOC    THO complex subunit 

TREX    transcription export complex 

Tris      Tris(hydroxymethyl)-amino-methane 

v/v     volume/volume 

Vol      volume 

w/v      weight/volume 

wt     wild type 

X-gal    5-bromo-4-chloro-3-indoyl-β-D- galactopyranoside
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