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Abstract
Thermal noise of optical components is among the major impediments to reaching bet-

ter sensitivities in high precision interferometry, such as interferometric gravitational wave

detectors as well as quantum opto-mechanical experiments. It arises from thermally driven

fluctuations closely related to mechanical dissipation of energy in these components. Re-

cent research has revealed that one dominant contribution is caused bymechanical loss of

the coating materials used to realize highly reflective surfaces.

The research presented in this thesis addresses the challenging problemof realizing low

mechanical dissipation and low optical loss in a single optical component. Resonant waveg-

uide gratings are investigated as substitute for multilayer coatings to reduce theamount of

mechanical lossy coating materials. Design studies based on rigorous coupled wave anal-

ysis and the subsequent realization of custom-made samples were carried out in close col-

laboration with the Institute of Applied Physics Jena. Theoretical predictionsof thermally

induced phase noise revealed that broadband resonant structures are required to achieve

levels of thermorefractive noise comparable to that of multilayer coatings. A monocrys-

talline silicon mirror was developed. Its reflectivity was determined to be99.79(±0.01)%

at a laser wavelength of1550nm, inferred from a cavity finesse ofF ≈ 3000. The im-

plementation of a waveguide grating in a large-scale experiment was demonstrated. In this

experiment it was used as a cavity coupling mirror in a fully suspended, low noise envi-

ronment at the 10 meter prototype interferometer at the University of Glasgow. Based on a

tabletop cavity experiment with a tantala grating, the optical loss for the given sample was

determined to be less than1300ppm.

A Michelson-Sagnac interferometer was experimentally realized, for whicha translu-

cent mechanical oscillator serves as an opto-mechanical coupler. It was experimentally

confirmed that lowest optical absorption can be achieved by placing a single-layer mate-

rial (e.g. silicon nitride membranes) with subwavelength thickness in the opticalnode of

a light field’s standing wave, which is inherent to this interferometer. As this operation

condition yields a dark signal port, it is compatible with optical cavity techniquessuch as

signal and power recycling. Prospects for utilizing signal recycling arediscussed in order

to enhance the current displacement sensitivity of about4×10−16 m/
√
Hz to enable a direct

measurement of off-resonant thermal noise and quantum back-action noise.
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Kurzfassung
Das thermische Rauschen optischer Komponenten setzt eine Grenze für die Messempfind-

lichkeit laserbasierter Präzisionsexperimente in der Quanten-Optomechanik und bei der in-

terferometrischen Gravitationswellendetektion. Die thermisch angeregte Bewegung beruht

auf Energieverlust, der zu einem großen Teil auf optische Mehrschichtsysteme von Spiegeln

zurückgeführt werden kann. Im Rahmen dieser Arbeit wurden Konzepte entwickelt und re-

alisiert, die es erlauben hohe mechanische Qualität und geringe optische Verluste in einer

optischen Komponente zu vereinen.

Resonante Wellenleitergitter wurden als Ersatz für Mehrschichtsysteme untersucht, um

das verlustbehaftete Schichtmaterial zu reduzieren. Das Design und die Realisierung dieser

Strukturen wurde in Zusammenarbeit mit dem Institut für Angewandte Physikin Jena

durchgeführt. Theoretische Betrachtungen bezüglich des thermisch induzierten Phasen-

rauschens zeigten, dass optimierte Strukturen ein thermorefraktives Rauschen vergleich-

bar niedrig zu Mehrschichtsystemen haben können. Es wurde ein monokristalliner Ober-

flächenspiegel bestehend aus Silizium entwickelt. Die experimentellen Ergebnisse auf Ba-

sis eines optischen Resonators mit einer Finesse von etwa3000 demonstrierten eine Re-

flektivität von99.79(±0.01)% bei einer Laserlichtwellenlänge von1550nm. Die Imple-

mentierung eines Wellenleitergitters aus Tantalpentoxid in einem seismisch isolierten, 10 m

langen Resonator mit einer Finesse von790 wurde an der Universität Glasgow demonstri-

ert. Auf Basis eines Tischexperiments wurde ein oberes Limit für optische Verluste eines

Tantalpentoxid Gitters bei einer Wellenlänge von1064nm zu1300ppm bestimmt.

Ein Michelson-Sagnac Interferometer wurde experimentell realiziert, beidem ein halb-

durchlässiges Substrat als opto-mechanischer Koppler verwendet wurde. Die theoretischen

und experimentellen Ergebnisse zeigten das für Materialen mit einer Dicke kleiner der

Wellenlänge des verwendeten Lichts (z.B. Siliziumnitrid Membranen) geringsteoptische

Absorption möglich ist. Dafür wurde der Knoten einer optischen stehendenWelle aus-

genutzt, die inhärent in der untersuchten Topologie ist. Dies ist kompatibel mitoptischen

Resonatoren zur Leistungs- und Signalüberhöhung. Auf Basis dieserTechnologien wird

ein Ausblick gegeben wie die erreichte Messgenauigkeit von4× 10−16 m/
√
Hz verbessert

werden kann, um grundlegende Fragestellungen bezüglich des thermischen Rauschens als

auch der Quantenmechanik mit makroskopischen Objekten zu untersuchen.

Keywords: Interferometrie, Thermisches Rauschen, Wellenleitergitter, SiN Membranen
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Chapter 1

Introduction

Coupling of mechanical devices to light fields is a rapidly growing field in fundamental

physics. With increasing the measurement precision by means of laser interferometric

techniques and carefully decoupling such devices from their environment,quantum mea-

surements on macroscopic objects [1, 2] come into reach.

One prominent example is the back-action noise in a continuous position measurement

that is introduced by the measurement process itself. This is a consequence of the Heisen-

berg uncertainty principle. According to this, the standard quantum limit (SQL) in the

context of laser interferometry is an important reference for the measurement precision. It

arises from quantum fluctuations of the phase and amplitude of the light commonly termed

as shot noise and radiation pressure noise, respectively. Investigations in 1980 by Caves

[3] on the example of a Michelson interferometer revealed that quantum noise enters the

measurement process via vacuum fluctuations at the central beam splitter.While the dis-

placement measurement precision set by the shot noise level can be improved by increasing

the light power, the radiation pressure noise due to momentum transfered to the mirrors

increases (back-action noise). If the corresponding phase and amplitude fluctuations are

uncorrelated, one can find an optimal power for a given measurement frequency where the

incoherent sum of both noises is minimal. This limit in measurement precision is the SQL.

However, there are several theoretical proposals on how to overcomethe SQL using

various quantum nondemolition measurement techniques. These are basedon utilizing

correlations of phase and amplitude fluctuations [4–7], modifying the mirror dynamics in

optical cavities [8–12] or using dedicated read out variables [13–18].Exploring this regime

1



CHAPTER 1: INTRODUCTION
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Figure 1.1: (a) Noise coupling to a mechanical oscillator sensed by a light field. (b) Sketch of a

second generation gravitational wave detector. The design is based on aMichelson interferometer

enhanced by optical cavity techniques in order to increase the measurement sensitivity to differential

arm length changes.

experimentally will provide insights into quantum physics of macroscopic objects. Further-

more, it will lead to strategies on how to improve measurement devices by accounting for

their quantum properties.

The design and construction of opto-mechanical systems must address a variety of noise

sources such as technical laser noise and disturbances from external forces due to seis-

mic and acoustics as depicted in Fig. 1.1(a). With a displacement sensitivity of about

10−19 m/
√
Hz at around1 kHz, currently operating laser interferometric gravitational wave

detectors are the most sensitive differential length measurement devices ever build. Their

topology and construction is designed to measure differential displacementsof suspended

(approximately free falling) test masses induced by disturbances of space-time [19]. While

the search for the first direct detection of a gravitational wave signal is ongoing, techno-

logical upgrades for second generation detectors have been developed and will be installed

within the next few years. These are based on Michelson interferometers,improved by

optical cavities as sketched in Fig. 1.1(b). A ten-fold better sensitivity is anticipated to

presumably detect events on a daily to weekly basis, thus leading to gravitational wave

astronomy [20]. These upgrades include monolithically suspended40 kg mirrors and an

ultra-stable high power laser of about200W [21] for the Advanced LIGO detector [22].

Thereby, the second generation detectors will achieve a sensitivity that islimited by quan-

tum noise in most of their frequency band. However, the limit in their peak sensitivity

2
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Figure 1.2: Images of highly reflective mechanical oscillators based on multilayer coatings, exem-

plifying the realizable range in mass and frequency. From left to right: anAdvanced LIGO test mass

mirror [38], a tiny mirror [39] suspended by a silica fiber [40], and a micro mirror on a doubly clamped

flexure beam [41].

frequency band around200Hz is not set by optical but mechanical properties of the test

masses, leading to randomly excited thermal motion. Theoretical and experimental re-

search over more than one decade has revealed that the dominant contribution originates

from multilayer coatings, conventionally used to realize highly reflective mirrors as re-

quired for cavities with high optical gain. Coating Brownian thermal noise will be the

limiting noise source in all forthcoming second generation detectors operatedat room tem-

perature, namely Advanced LIGO [22], Advanced Virgo [23] and GEO-HF [24]. Already

now, third generation detectors such as the Einstein Telescope [25, 26] are being designed

for another ten-fold improvement for the entire frequency band, for which thermal noise is

a particular challenge [27]. Thus, the Einstein telescope is based on operation at cryogenic

temperatures. This is currently investigated in the prototype interferometer CLIO [28] and

is part of the baseline of the forthcoming large-scale detector LCGT [29].Thermal noise

is also a limiting factor in ultra-stable cavities [30], used for instance, as a frequency ref-

erence for optical clocks [31–33] or investigating fundamental constants and principles of

nature [34, 35].

The strength of the opto-mechanical coupling increases with the amount of light power

that is used to sense the position of the mechanical oscillator. It further depends on the

oscillator’s susceptibility to the radiation pressure force (in particular its mass). Modern

3



CHAPTER 1: INTRODUCTION

fabrication techniques for micro-mechanical oscillators have opened newpossibilities to

study the coupling of light to mechanical devices as can be found in recentreviews [36, 37].

Examples of mechanical oscillators utilizing multilayer coatings are shown in Fig. 1.2,

illustrating the wide range of opto-mechanical systems in terms of mass and frequency

available today. While the principles of quantum measurements are the same, thetechnical

challenges regarding optical quality and decoupling from the environmentare intrinsically

different due to the geometrical dimensions as well as mechanical eigenfrequencies. To

date, thermal noise or laser shot noise is covering the quantum limit in current experiments

with macroscopic mechanical oscillators in large-scale as well as tabletop experiments.

The realization of high optical and mechanical quality in a single device remainsa major

challenge in the field of high precision metrology.

1.1 Mirror thermal noise

In the context of laser interferometric experiments, the read-out variablesensed by a laser

beam is usually the position of a mirror’s surface along the beam axis. Random thermal

fluctuations in a mirror lead to motion of its surface, thereby limiting the precision ofa

position measurement. Two mechanisms are commonly considered for how a finitetem-

perature leads to thermal noise. The first one is given by volume fluctuations of a material,

typically referred to as Brownian noise. The second mechanism is based on thermal fluctu-

ations around an average temperature that leads to heat flux inside the material and thus a

surface displacement via thermal expansion (thermoelastic noise). Closelyrelated are fluc-

tuations of the optical path inside a material originating from the temperature dependence

of the material’s index of refraction as well as thermal expansion (thermorefractive noise).

For a mirror each of these can be divided into a contribution from the substrate and the

coating.

In the following, thermal noise of mirrors will be discussed briefly as exemplified by the

Brownian thermal noise of multilayer coated substrates, for it gives the dominant contribu-

tion in many experimental approaches carried out. A discussion of thermoelastic [42, 43]

and thermorefractive noise [44, 45], which are typically smaller than Brownian thermal

noise, is given in section 2.3.2. An extensive study on the overall thermal noise for a vari-

ety of potential substrate and coating materials for future gravitational wavedetectors can

be found in [27, 46].

4



1.1 MIRROR THERMAL NOISE

One fundamental result in thermodynamics is that microscopic fluctuations of asystem

are related to energy loss. This is stated by the fluctuation-dissipation theorem (FDT)

originally formulated for mechanical systems in the 1950s [47, 48]. It statesthat the power

spectral density for thermal noise is given by

S2
x =

4kbT

π2f2
Re[Y(f)], (1.1)

wherekb is the Boltzmann constant,f the frequency,T the temperature. The admittance

Re[Y(f)] is given by the amplitude responsex̃(f) to an external forceF0 via

Y(f) = i2πf
x̃(f)

F0
. (1.2)

The first application of the FDT to a mirror substrate was based on the modal expansion

method [49]. In this approach the overall motion of a substrate is first decomposed into

its eigenmodes accounting for their effective masses, frequencies and mechanical losses

(defining the admittance of each mode). The individual contributions are then summed up

with weights consistent with the shape of the laser beam sensing the surface. This approach

is valid as long as the mechanical loss is distributed homogeneously over the material and

thus independent of the actual deformation of each eigenmode. This doesnot hold if a

coating is applied to the substrate, which adds inhomogeneities in terms of mechanical

loss. Levin suggested a direct approach of the FDT, where an external forceF0 is applied

to the surface, which has the same spatial distribution as the laser beam [50]. Following

Levin the admittance should be rewritten as

Re[Y(f)] =
4πfU

F 2
0

φ, (1.3)

whereU is the maximal stored elastic energy of the deformed substrate andφ is the me-

chanical loss. Equation (1.3) was derived for frequencies below the mirror substrate’s first

mechanical resonance, which is outside the detection band of gravitationalwave detectors.

The power spectral density for thermal noise of a substrate with a coating of thicknessh is

in good approximation given by [51]

S2
x =

2kbT

π3/2f

1

Y r0

[

φsub +
h√
πr0

(
Y ′

Y
φ|| +

Y

Y ′
φ⊥

)]

, (1.4)

which was derived for a gaussian laser beam with radiusr0 (at which the intensity is1/e2

of the maximum light power). The first part is the contribution from the substrate, where

5



CHAPTER 1: INTRODUCTION

Y is the Young’s modulus andφsub is the substrate’s mechanical loss. The mechanical

loss of the coating is divided into the mechanical lossesφ|| andφ⊥ associated with strain

parallel and perpendicular to the coating, respectively. For equal coating mechanical losses

(φ|| = φ⊥) the lowest thermal noise is found if the Young’s moduli for substrate and coating

are matched (Y = Y ′).

According to Eq. (1.4), the best starting point to achieve mirrors with low thermal noise

is to use materials with low mechanical loss. This quantity differs by orders of magni-

tude for dielectric materials. For substrates, high mechanical and optical quality is found

in materials such as fused silica (SiO2), silicon (Si) and sapphire (Al2O3). These materi-

als can exhibit mechanical loss of orderφsub = 5 × 10−9 at room temperature [46]. At

cryogenic temperatures, fused silica is no longer suitable as its mechanical loss increases

dramatically to10−3, while there is evidence that the mechanical loss of silicon and sap-

phire is even decreased or at least preserved. Although the amount ofmaterial in a typical

multilayer coating (thicknesses of about6µm) is small when compared to the substrate’s

dimensions, its contribution to the overall Brownian thermal noise is dominant. Thin film

coating materials such as fused silica or tantala show significantly higher mechanical loss

of about10−4 at room temperature and5 × 10−4 at cryogenic temperatures [46]. Current

research to obtain a better understanding of the underlying mechanical loss processes in-

cludes investigations in theoretical solid state physics as well as experimentalefforts such

as doping [52] or annealing [53].

Another possibility to address thermal noise is given by the beam size (and shape) sens-

ing the surface. As the spot size increases the thermal displacement noiseSx due to the

mechanical lossy coating scales as1/r0 in comparison to1/r1/20 for the substrate accord-

ing to Eq. (1.4). Hence, by using large beam sizes one can address boththe substrate

and (even more significantly) the coating thermal noise. Practical limits for this approach

are set by the realizable mirror dimensions, which must be scaled accordingly in order to

avoid diffraction loss. Ongoing investigations utilize beam shapes that allow for a better

averaging over the surface fluctuations. For this it is better to have the intensity distribu-

tion more flat on average than that of a gaussian beam for the same beam radius. One

method investigated that is compatible with conventionally curved mirrors uses higher or-

der Laguerre-Gauss modes [54, 55].

Another approach is to lessen thermal noise is to reduce the coating thickness, that is,

to minimize the amount of mechanically lossy material. This can be realized to some ex-

6



1.1 MIRROR THERMAL NOISE

tent by using non quarter wavelength multilayer designs, optimized for high reflectivity

while reducing the amount of material having the highest mechanical loss [56]. However,

a further reduction of coating material or even coating free approachesare of enormous

interest in high precision interferometric experiments. Khalili suggested using short opti-

cal cavities [57] tuned to anti-resonance as a substitute for a single mirror.This allows a

reduction of coating material for the first mirror of the cavity to only a few double layers.

Etalons based on the same principle have also been discussed [58]. However, the control

and set up of these designs add complexity to any interferometer topology; itsapplicability

is part of ongoing research. Other approaches avoiding coatings altogether have been in-

vestigated as well. These include corner reflectors based on total internal reflection [59–61]

or whispering gallery mode resonators [62]. A common drawback of theseapproaches is

the comparably long optical path inside the substrate material, giving rise to absorption and

thermorefractive noise.

Outline of the thesis

The research presented in this thesis is focused on developing conceptsfor interferometry

with coating-free mirrors. This includes investigations on highly reflective surface mirrors

based on nanostructures (resonant waveguide grating mirrors) as well as the development

of a novel interferometer topology (Michelson-Sagnac interferometer) which allows for

quantum opto-mechanical experiments with low reflectivity mirrors. Chapter 1provides

an introductory overview of the challenges addressed in this thesis.

Chapter 2 introduces the concept of resonant waveguide gratings as asubstitute for mul-

tilayer coatings. By utilizing nanotructured surfaces it is possible to achievehighly reflec-

tive surface mirrors with a significantly reduced amount of coating material. The focus of

this chapter investigates single-layer tantala gratings on a silica substrate as these materi-

als are currently used for a laser wavelength of1064nm. Their performance with respect

to broadband reflectivity is discussed with respect to thermally induced phase noise. In

collaboration with the Institute of Applied Physics (IAP) Jena, this concept could be im-

proved to purely monolithic devices. This is investigated for silicon as it provides very

good mechanical properties at cryogenic temperatures, thus being optimallysuited to ad-

dress thermal noise.

Chapter 3 presents experimental results with custom-made waveguide gratings mirrors,

7



CHAPTER 1: INTRODUCTION

which have been used to set up linear Fabry-Perot cavities. The analysis of the cavity per-

formance yielded an accurate measure for the reflectivity of the devices under investigation

when operated under normal incidence. Lower limits of optical loss derived from the ex-

perimental results are presented. With regard to implementation into large-scalesetups,

the results obtained with a fully suspended10m cavity at the University of Glasgow are

presented. All experimental results are compared to theoretical design simulations.

Chapter 4 introduces a Michelson-Sagnac interferometer, for which a semitransparent

substrate is used as common end mirror for the two arms of a Michelson interferometer.

Theoretical results are presented highlighting that such a configuration is compatible with

additional cavity techniques. The optical absorption of translucent thin filmmechanical os-

cillators is investigated, exemplified for silicon nitride membranes. An outlook forutilizing

signal recycling with this topology is given in this chapter as well.

Chapter 5 summarizes the results obtained and provides some concluding remarks.

8



Chapter 2

Broadband resonant waveguide gratings

In this chapter, the concept of resonant waveguide gratings (RWGs) isintroduced. Re-

garding the realization of highly reflective cavity mirrors the focus is set onbroadband

structures optimized for normal incidence. Basic design considerations are presented using

a ray picture, which is followed by exact calculations based on rigorous coupled wave anal-

ysis (RCWA). Regarding the latter one, tantala and fused silica are considered as waveguide

grating and substrate material, respectively. These materials are commonly used for a laser

wavelength of1064nm, for instance in the first and forthcoming second generation grav-

itational wave detectors. Theoretical estimates of thermally induced phase noise, known

as thermorefractive noise, are presented. Special emphasis is put on the importance of

optimized designs with respect to broad parameter tolerances.

Furthermore, it is shown by which means single-layer waveguide grating structures can

be improved to monolithic architectures [63, 64]. These novel concepts are particularly

promising when using silicon, which has a high index of refraction and a potentially low

optical absorption at a laser wavelength of1550nm. The use of silicon in combination with

1550nm laser light is currently under consideration for future gravitational wave detectors

as well as for ultra-stable optical cavities, operating at cryogenic temperatures.

2.1 From diffraction anomalies to cavity mirrors

The functionality of diffraction gratings is based on periodically modulated structures. In

the simplest case, the surface of a material is structured with parallel grooves and ridges.

9



CHAPTER 2: BROADBAND RESONANT WAVEGUIDE GRATINGS

For a given wavelength this gives rise to discrete diffraction orders thatare located in a

plane perpendicular to this structure. Grating anomalies have been discovered by Wood

in 1902 [65] in the course of spectroscopic experiments with reflection gratings. These

anomalies present itself as sharp changes in diffraction efficiency whena parameter such

as the angle of incidence or the wavelength of light is varied. Rayleigh couldgive a first

explanation of these anomalies [66] for TE-polarized light (electric field vector parallel to

the grating ridges). Later, these anomalies were also discovered for TM-polarized light

(electric field vector perpendicular to the grating ridges) using deep grating structures [67],

which could not be explained by theories existing at that time.

A turning point in understanding grating anomalies was reached in 1965, when Hessel

and Oliner [68] theoretically distinguished two kinds of anomalies, namely the formerly

known Rayleigh type and a new resonance type. The latter one arises from resonant exci-

tation of guided modes in a nanostructured layer, having an index of refraction higher than

the one of the surrounding materials. The first experimental demonstration of a first order

[69, 70] and a zeroth order [71] resonance type anomaly for dielectricstructures followed

in the 1980s. From then on, the resonant type attracted attention for narrowband filter

application [72–76]. These results were already based on rigorous methods (numerical so-

lution of Maxwell’s equations). Among these, rigorous coupled wave analysis (RCWA)

had been worked out by Moharam and Gaylord [77] for rectangular grating structures, at a

time when their fabrication became feasible by means of lithography techniques.

Also investigations on RWGs under normal incidence were carried out [78, 79], where in

contrast to oblique incidence two counterpropagating waveguide modes areexcited. How-

ever, it was found that shallow grating structures under normal incidence show a strong

angular dependence, which appears as a splitting of the resonance with respect to the wave-

length of the incident light. To overcome this problem, strongly modulated structures that

provide better parameter tolerances were investigated [80, 81].

The interest in broadband RWGs further increased with regard to applications in inte-

grated optical circuits aiming at the telecommunication wavelength range [82]. The feature

of broadband reflectivity was realized by the use of silicon on a silica layer, thus providing

a large difference with respect to their indices of refraction. A reflectivity of ≥ 98.5% over

a range of1.12−1.62µm [83] was measured by comparison with a silver mirror of known

reflectivity.

Due to the small amount of coating material required in order to realize a perfect reflec-
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tivity in theory, RWG structures were proposed by Bunkowski et al. [84] to reduce coating

Brownian thermal noise. This noise originates in mechanically lossy coating materials and

sets a sensitivity limit to a variety of high precision laser interferometric experiments. In

[84] a single-layer design is presented, which was optimized in terms of parameter toler-

ances for a laser wavelength of1064nm. The investigations were based on tantala and

fused silica as waveguide grating and substrate material, respectively. Within the scope of

this thesis, this concept has been further improved to monolithic devices [63,64] in collab-

oration with the Institute of Applied Physics (IAP) in Jena. These were based on silicon

for a laser wavelength of1550nm, which is a promising candidate for interferometry at

cryogenic temperatures [85, 86].

Dedicated experiments with custom made RWGs used as mirrors in linear Fabry-Perot

cavities have been carried out during this work. This includes table-top experiments [87,

88] as well as a fully suspended setup [89], namely a 10 meter Fabry-Perot cavity at the

University of Glasgow. These experiments are described in Chapter 3. One of the high-

lights among in this series of experiments was a monocrystalline silicon mirror, regarding

both fabrication technology and performance. Its reflectivity could be measured with a

high accuracy to be99.79(±0.01)% at a wavelength of1550nm [88].

2.2 Resonant waveguide gratings (RWGs) in the ray

picture

The principle of a resonant waveguide grating (RWG) can be understood in a ray picture

[78, 81]. In Fig. 2.1, the coupling and outcoupling of light under normal incidence for this

grating type is illustrated. The structured waveguide with the index of refractionnH can be

designed in a way such that only specular reflection (0R) and three transmitted orders (0T

and±1T) exist. The first order transmitted fields are guided due to total internal reflection

at the substrate, that has a smaller index of refractionnL < nH, and are partly coupled out

after each round trip under zero degree (-1T∗, -1R∗) at the structured layer. If the grating

parameters, namely the grating periodd, groove depthg, fill factor f (ratio of ridge widthb

and grating periodd) and waveguide layer thicknesst are designed properly, all outcoupled

light fields can be forced to interfere constructively in reflection and destructively in the

direction of the substrate. Hence, this concept describes a highly reflective surface mirror

based solely on a single-layer nanostructured material. Before taking into account the

11
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Figure 2.1: (a) Schematic of a waveguide grating in the ray picture with light under normal incidence.

The light coupled in via the first diffraction orders (±1T) is totally reflected at the substrate. The rays

heading to the grating are coupled out via diffraction (±1T∗), and interfere with the reflected light (0R)

under zero degree. If all grating parameters are designed properly, a reflectivity of100% can in theory

be achieved by constructive interference at the superstrate side. (b)Illustration for how the polarization

(TE- and TM-pol.) of the light’s electric field is defined with respect to a grating structure.

exact optical properties of a nanostructured layer by means of rigorous simulations, basic

design considerations can be derived from the ray picture. This includesthe restriction to

subwavelength structures and the demand of high coupling efficiencies in order to realize

broadband reflectivity.

The existence of diffraction orders and their directions for an incident beam of wave-

lengthλ and a grating periodd are governed by the grating equation [90]

nb sin(βm) = na sin(α) +
mλ

d
, (2.1)

whereα is the angle of incidence andβm is the angle of them-th diffraction order with

respect to the grating normal. The indices of refractionna andnb are determined by the

medium where the incident beam and the diffracted beam propagate, respectively. The sign

convention for diffraction angles and diffraction orders is illustrated in Fig. 2.2. The angles

are measured from the grating normal and are positive if the wave vector has a component

to the right. Beams that have an angle larger than the angle of specular reflection 0R (or

zeroth order transmission 0T) are of positive order. Diffraction orders that are not allowed

by means of Eq. (2.1) are called evanescent orders; they do not appear in the far field.

The range of possible values for the grating period that enables resonant excitation de-

pends on the wavelength, the angle of incidence and the material’s indices ofrefraction

12
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Figure 2.2: Graphical representation of sign conventions for diffraction anglesβm and diffraction

ordersm.

nH, nL. According to the grating equation Eq. (2.1), this range is given by the following

inequalities

d ≤ λ (only zeroth order in air), (2.2)

λ/nH ≤ d ≤ 2λ/nH (first orders in waveguide layer), (2.3)

d ≤ λ/nL (only zeroth order in substrate). (2.4)

While Eqs. (2.2) and (2.3) restrict the occurrence of diffraction orders, Eq. (2.4) is derived

from the condition for total internal reflection of the first order modes at the substrate

(β±1 ≥ arcsin(nL/nH)). As a result, waveguide grating structures under normal incidence

are limited to subwavelength grating periods by

1

nH
≤ d

λ
≤ 1

nL
, (2.5)

for a material combination withnH/2 ≤ nL. For a larger differences of the indices of

refraction, Eq. (2.3) becomes dominant, defining the upper boundary.

2.2.1 Multiple interference model

Following the ray picture, the light reflected from a waveguide grating can be described

as the sum of all outcoupled electrical fields interfering at the superstrateside as shown in

Figs. 2.3(a) and (b) for oblique and normal incidence. Here, all fields originating from a

single incident light fieldE0 are shown. However, all calculations are equivalent to the case

of all fields originating from different points added at one particular point.As mentioned
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Figure 2.3: Ray picture for waveguide grating mirrors for light under (a) oblique and (b) normal

incidence. The red rays are considered in the presented multiple interference model, while the gray

rays have been omitted. For normal incidence, the forward and backward diffraction coefficients inside

the waveguide layer (η0R∗ , η−2R∗ ) were combined to an effective guiding efficiencyηeff .

before, these fields can be prompted to interfere constructively by a proper design of the

structured layer, which is referred to as resonance condition in analogyto Fabry-Perot

cavities. In the following, specular reflection (0R) and Fresnel reflections at the substrate

(gray rays in Fig. 2.3) are neglected . The obtained results allow for a qualitative discussion

(exact solutions are based on rigorous methods as used in section 2.3). The amplitude

reflectivity for oblique incidence (mode guided in one direction) can then bewritten as

rob = η−1T∗
η+1Te

iφ
∞∑

n=1

(

η0R∗
eiφ
)n

(2.6)

=
η−1T∗

η+1Te
iφ

1− η0R∗
eiφ

, (2.7)

whereη+1T andη−1T∗
are the coupling efficiencies for fields incident at the grating structure

from the superstrate side and waveguide layer andη0R∗
is the guiding efficiency. The

accumulated phase for a single round-trip is denoted byφ and will be discussed in the next

section. Forη±1T = η±1T∗
(reciprocity) the normalized reflectivity for oblique incidence is

given by

|rob|2 =
(η−1T∗

η+1T)
2

(1− η0)2 + 4η0R∗
sin(φ/2)2

, (2.8)

which is maximal (|rob|2 = 1) on resonance (φ = 0) for η0R∗
= 1−ηob. On resonance, de-

structive interference occurs in transmission, caused by two diffractionprocesses that each
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add a phase of−π/2 [78]. This model has been extended to include Fresnel reflections

[91], which is possible for oblique incidence, since only one waveguide mode is propagat-

ing. The phase shift for the outcoupled light in reflection is then compensated by a phase

shift of π for the specular reflected light which is omitted here.

In case of normal incidence, two fields are symmetrically coupled (η+1T = η−1T) into

the waveguide layer as shown in Fig. 2.3(b). In contrast to oblique incidence, not only

forward reflected fields with efficiencyη0R∗
but also backward diffracted fields withη±2R∗

are present (blue arrows). This leads in general to coupling of two counterpropagating

modes. For shallow grating structures, specular reflection dominates backwards diffraction

(η0R∗
≫ η±2R∗

). Thus, no significant coupling occurs. For strongly modulated grating

structures this coupling cannot be neglected anymore and in particular depends on the rel-

ative phase between forward and backward diffracted fields. However, one can assume an

effective guiding efficiencyηeff . As a result, the amplitude reflectivityrno for a waveguide

grating under normal incidence can be written as

rno = 2η−1T∗
η+1Te

iφ
∞∑

n=1

(

ηeffe
iφ
)n

(2.9)

=
2η−1T∗

η+1Te
iφ

1− ηeffeiφ
. (2.10)

The corresponding normalized power reflectivity for normal incidence reads

|rno|2 =
4(η−1T∗η+1T )

2

(1− ηeff)2 + 4ηeff sin(φ/2)2
, (2.11)

and reaches the maximal value of|rno|2 = 1 for ηeff = 1 − 2η−1T∗
η+1T. Since the actual

coupling of the two modes is not considered here, the resulting resonanceprofiles described

by Eq. (2.11) are symmetric around the resonance for varying the round-trip phaseφ. Gen-

erally, the forward and backward diffracted fields experience a different phase change,

which leads to asymmetric resonance profiles. The use of an effective guiding efficiency

allows to derive qualitative results. In this case, the linewidth (full width at half maximum)

in terms of a phase change∆φ is given by

∆φ = 2arcsin

(
η

2
√
1− η

)

, (2.12)

with η = η−1T∗
η+1T andη = 2η−1T∗

η+1T for oblique and normal incidence, respectively. It

turns out that the waveguide grating’s response to changes of the roundtrip phase depends
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Figure 2.4: (a) Waveguide grating reflectivity under normal incidence as a functionof the round-trip

phaseφ, based on Eq. (2.11). The resonance width increases with higher coupling efficiency|η±1T|2

into the waveguide. (b) Corresponding phase for the reflected light. With increasing bandwidth, the

slope of the phase change at resonance becomes shallower, as it is known from Fabry-Perot cavities.

on the coupling efficiency. Broadband devices are realized based on high coupling effi-

ciencies, which is exemplarily shown in Fig. 2.4 for different coupling efficiencies under

normal incidence. The phaseϕ of the light field in reflection is derived via

ϕ = arctan

(
Im(rno)

Re(rno)

)

. (2.13)

For waveguide gratings under normal incidence and narrow bandwidth,small deviations

of the incident angle (near normal incidence) result in a spectral splitting of the resonance.

The two propagating modes are not symmetric in terms of optical path length anymore

(see e.g. [78]). As a result, the wavelength at which resonant excitationoccurs is highly

sensitive to the angle of incidence. This can be overcome by broadband structures as they

have been investigated throughout this work. In the next section, the round-trip phaseφ

will be derived in the homogeneous representation.
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2.2.2 Homogeneous representation

The phase accumulated during a single round-trip, denoted asφ in the previous section,

depends on the geometrical and optical parameters of the RWG. Here the basic dependen-

cies, which will be used in section 2.3.2 to investigate thermally induced phase noise, are

discussed. The round-trip phase can be derived by assuming an infinitely thin grating struc-

ture (homogeneous representation). This is equivalent to a slab waveguide with indices of

refractionnH > nL > n0 = 1 as depicted in Fig. 2.5(a). The superposition of down-
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t

z

x

φ
23

φ
12

Θ
kn

H

q
p

t

n
0
=1

n
H

n
L

d

β
m

α

A

B

D

C

C‘

n
0
=1

n
H

n
L

D‘

Figure 2.5: (a) Principle of light propagation in a slab waveguide with indices of refraction nH >

nL > n0 = 1. In order to derive the optical thickness of the waveguide, the phase changesφ12 and

φ23 that occur at the upper and lower boundary at total internal reflection (evanescent coupling) are

considered. (b) Adding a thin nanostructure on top enables to couple lightinto the waveguide layer,

which is resonantly enhanced when fulfilling the phase matching condition given by Eq. (2.24).

propagating (red arrow) and up-propagating (blue arrow) fields of amplitudeE0 leads to an

interference inside the high index layer material, which is described by [92]

E(x, z) = E0e
−i(ωt+pz−qx) + E0e

−i(ωt+pz+qx+φ12+φ23)

= 2e−i(ωt+pz+(φ12+φ23)/2) cos(qx− (φ12 + φ23)/2)). (2.14)

Hereω is the angular frequency of light,p = knH sin(Θ) is the propagation constant and

q = knH cos(Θ) is the transverse wave number withk = 2π/λ. The reflection angle

Θ needs to be large enough to ensure total internal reflection at the high index material

boundaries. Besides the optical path length, the two additional phasesφ12 andφ23 have to

be considered. They arise from Fresnel reflections at the upper andlower surface, respec-

tively, or more precisely, from evanescent coupling to the low index materials. Hence, the
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reflected light has a finite penetration depth which effectively increases the optical thick-

ness of the waveguide layer. The phase shifts for total internal reflection are polarization

dependent and are given for the lower boundary as

φTE
23 = −2 tan−1

(√

sin2(Θ)− (nL/nH)2

cos(Θ)

)

, (2.15)

φTM
23 = −2 tan−1

(√

sin2(Θ)− (nL/nH)2

(nL/nH)2 cos(Θ)

)

, (2.16)

for TE- and TM-polarized light [92]. In accordance to this a phase change will occur at the

superstrate side (substitutingnL → 1 in Eqs. (2.15) and (2.16)). The field distribution given

by Eq. (2.14) describes a mode propagating in z-direction with an amplitude modulation in

x-direction. Due to the boundary condition for vanishing but continuous fields at the high

index material boundaries, the wave numberq becomes quantized according to Eq. (2.14).

Hence, the phase matching condition for light propagating in a slab waveguide is given by

2tknH cos(Θ)− φ12 − φ23 = 2Nπ, (2.17)

whereN is the integer mode number. Given a nanostructured waveguide layer, lightis

coupled into the waveguide via first order diffraction as shown in Fig. 2.5(b). The optical

path length differenceφp of an coupled light field with the internal propagating field at

point D’ is given as

φp = φABC − φCC′ − φDD′ . (2.18)

Deriving these phases on the basis of Fig. 2.5(b) and Eq. (2.1) yields

φABC = 2k
n2t

cos(βm)
, (2.19)

φCC′ = kn2 sin(βm) [2t tan(βm)− LAD′ ] , (2.20)

φDD′ = k sin(α)LAD′ , (2.21)

= k

(

n2 sin(βm)− λ

d

)

LAD′ , (2.22)

whereLAD′ is an integer multiple of the grating period. As a result, the phase difference is

given by

φp = 2k
n2t

cos(βm)

(
1− sin2(βm)

)
− φ12 − φ23 (2.23)

= 2kn2t cos(βm)− φ12 − φ23. (2.24)
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A comparison with Eq. (2.17) yields the phase matching condition, for which light is effec-

tively coupled into the waveguide grating (resonant excitation) to beφp = 2Nπ. Hence,

resonant excitation depends on the grating period and the wavelength of light that define

the diffraction angleβm for a given material combination.

2.2.3 Invariance to lateral displacement

It is known that lateral displacement of an incident laser beam relative to agrating struc-

ture results in a defined phase shift for higher order diffracted beams [93], while the phase

for the zeroth diffraction orders remain constant. In [94, 95] it was shown how reflection

gratings add phase noise in particular interferometric setups, which would result in more

strict requirements regarding the alignment of such optical components when used for in-

terferometric gravitational-wave detectors. Since higher diffraction orders are involved in

the concept of RWGs, the question arose whether they show phase noiseas well. Based

on the ray picture it is shown here that lateral beam displacements relative tothe grating

structure do not change the phase of the reflected field.

Phase shifts of a diffracted beam caused by lateral displacement of the incident beam

relative to the grating (perpendicular to the grooves) can be derived from a geometrical

point of view [94]. Therefore, the incident and diffracted beams are assumed to be plane

waves. This is indicated in Fig. 2.6 using two parallel rays (solid and dashed) that have

the same phase in every reference plane (dotted line) perpendicular to their direction of

propagation. Form < 0, the dashed ray in Fig. 2.6(a), having a distance∆x to the solid

ray, propagates a longer geometrical path and thus collects an additional phase of

φm<0 = φ1 + φ2 = na sin(α)∆x
2π

λ0
− nb sin(βm)∆x

2π

λ0
. (2.25)

The− sin(βm) term gives a positive value due to the sign convention for diffraction angles

introduced above. In the casem > 0 (see Fig. 2.6(b)), the phase is given by

φm>0 = φ1 − φ2 = na sin(α)∆x
2π

λ0
− nb sin(βm)∆x

2π

λ0
, (2.26)

becauseφ2 > 0 can be interpreted as a delay of the dashed ray, whileφ1 gives an advance

in phase again. Transmitted orders (not shown here) can be treated equally obeying the

same mathematical relations. Since the sign conventions for diffraction orders have been
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Figure 2.6: Geometrical explanation why position depending phase changes occur for diffraction

orders (a)m < 0 and (b)m > 0. The incident and diffracted beams are assumed to be plane waves,

which is indicated by two parallel rays (solid and dashed). After diffraction, the geometrical path of the

two rays differs, depending on the diffraction angleβm and on their distance∆x. Hence, the grating

must retard or advance their relative phase, which is equivalent to a position depending phase shift.

accounted for, one can rewrite Eqs. (2.25) and (2.26) using the gratingequation Eq. (2.1)

in the form

φm = −m
∆x

d
2π. (2.27)

The grating compensates this phase shift, thus preserving the plane wave character. From

this, one can conclude that displacements of a finite beam to a reference position result in

a phase shift for diffraction orders|m| > 0. The significance for high precision interfero-

metric experiments is especially given by the ratio of displacement and grating period.

Based on these results, this effect is discussed for waveguide gratingsin the following.

Therefore, it is assumed that the phase matching condition for resonant excitation is met.

By displacing the incident beam, higher order modes get a retarded or an advanced phase

according to Eq. (2.27). For the coupled +1T and outcoupled -1T∗ rays, depicted in Fig. 2.1,

these phases cancel (φ+1T + φ−1T∗
= 0) if the displacement is slow compared to the light

storage time in the waveguide. The forward diffracted ray 0R∗ will be partly coupled out

later. The result remains the same, since no phase change occurs for specular reflection.

For the second diffraction order in the waveguide (-2R∗) one again obtains a vanishing

phase for the outcoupled light (+1T∗) given byφ1T + φ−2R∗
+ φ+1T∗

= 0, since the phase

change is proportional to the diffraction orderm. Naturally, the same arguments hold for

the counterpropagating mode starting with the coupled -1T ray. By considering the sign
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convention for all involved diffraction orders, it turns out that the phases of the outcoupled

beams are invariant to the position of the incident beam at the grating. Hence, a waveguide

grating does not introduce phase noise via lateral displacement although higher diffraction

orders are involved in this concept.

2.3 Design optimization using rigorous coupled wave

analysis

While the ray picture discussed above can provide an intuitive understanding as well as

qualitative results for waveguide grating structures, it does not address the optical proper-

ties of a specific grating profile. This includes amplitude and phase relations of propagating

diffraction orders. A qualified method is based on solving the Maxwell equations by taking

into account the periodicity of grating structures via boundary conditions.Today a variety

of numerical methods exist that have been developed to deal with different grating geome-

tries and materials. These modern approaches are known as rigorous methods. A historical

overview and technical details regarding a variety of rigorous methods can be found in [96].

Among these is the rigorous coupled wave analysis (RCWA), which has been developed

for rectangular structures by Moharam and Gaylord [77]. One commercially available nu-

merical implementation is given by UNIGIT [97], which has been used throughout this

work in conjunction with Matlab [98] routines. The latter were used for varying grating

parameters and for post-processing of the obtained numerical results.

2.3.1 Tantala based RWGs at 1064 nm

Fused silica with an index of refractionnL ≈ 1.45 is used as high optical quality material

for mirror substrates as well as low index material in multilayer coatings. The most com-

monly used high index material for this wavelength is tantala (Ta2O5) with nH ≈ 2.04.

Based on these qualified materials, RWGs with broadband reflectivity at1064nm under

normal incidence have been investigated theoretically [84]. As concludedin the previous

section on the basis of a multiple interference model, a broadband reflectivityrequires high

coupling efficiencies into the nanostructured waveguide layer. It will first be shown that

larger grating periods are beneficial for this purpose, as suggested in[84]. In addition,

the phase slope of the reflected light on resonance is introduced here asa measure for the
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bandwidth. This approach is then extended to investigate phase noise of RWGs originating

from thermodynamical fluctuations, namely from thermorefractive noise.

According to Eq. (2.5), the grating periodd is restricted to sub-wavelength structures in

the range of

522 nm ≈ λ/nH ≤ d ≤ λ/nL = 733 nm (2.28)

for the wavelength and materials investigated here. This restriction is illustratedin Fig. 2.7

for a tantala structure on top of a substrate with varying index of refractionnL by means

of rigorous calculations. The white arrows mark the upper and lower boundary given by
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Figure 2.7: The restriction for the grating periodd, given by Eq. (2.28), is illustrated by means of

rigorous simulations for a tantala grating with index of refractionnH = 2.04 and a laser wavelength

of 1064 nm for (a) TE-polarized light (electric field vector parallel to the grating grooves) and (b) TM-

polarized light (electric field vector perpendicular to the grating grooves). For a low index of refraction

(fused silica substrate) the first order diffraction efficiency is zero for d ≤ λ/1.45, while for a high

index of refraction (waveguide layer) the diffraction efficiency is non-zero (d ≥ λ/1.45). The grating

parametersg andf used here resulted from an optimization for maximal coupling based on a grating

period ofd = 720 nm.

Eq. (2.28). For an index of refraction ofnL = 2.04 (waveguide layer material) high cou-

pling into the first order is aspired, while for a low index of refractionnL = 1.45 (substrate

material) no coupling should occur. The grating parameters used in Fig. 2.7 for TE- and

TM-polarization resulted from adjusting the grating depthg and the fill factorb/d in order
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Figure 2.8: (a) and (b) First order diffraction efficiencies for a grating period ofd = 720 nm versus the

fill factor and the grating depth, showing maximum coupling efficiencies of20% and31.7% for TE-

and TM-polarized light, respectively. (c) Maximum achievable coupling efficiencies versus the grating

period within the range ofλ/nH ≤ d ≤ λ/nL which in principle allows for resonant excitation for

a wavelength ofλ = 1064 nm. A parameter scan was done for each grating period in the ranges of

b/d = 0.05− 0.95 and ofg = (0− 800) nm.

to obtain the maximal coupling for a grating period ofd = 720nm. The corresponding

parameter scan is shown in Figs. 2.8(a) and (b) for TE- and TM-polarized light, respec-

tively. The maximal coupling efficiencies which can be achieved for gratingperiods within

the range stated by Eq. (2.28) are shown in Fig. 2.8(c). As a result, higher coupling effi-

ciencies via the first diffraction order become possible with larger grating periods, which

holds for both polarizations. Consequently, small guiding efficiencies andthus broadband

resonant excitation can be realized. In order to quantify this conclusion, the phaseϕ of

the reflected light is investigated here. In analogy to Fabry-Perot cavities, the slope of this

phase at resonance depends on the bandwidth as predicted from the multiple interference
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Figure 2.9: (a) Reflectivity versus deviation from the optimal waveguide layer thickness, revealing

resonance peaks of different width for TE- and TM-polarized light. The grating periods ofd = 702 nm

andd = 552 nm represent structures with high and low coupling efficiencies, respectively. (b) The

corresponding phase for the reflected light shows a steeper slope at resonance for narrowband struc-

tures (dotted lines) when compared to broadband ones (solid lines). (c)Phase change with thickness

variation∆ϕ/∆t versus grating period based on optimized structures in terms of maximal coupling

efficiency according to Fig. 2.8(c). The results indicate that broadband resonant reflection is related to

high diffraction efficiencies.

model (see Fig. 2.4). In order to investigate this effect by means of rigorous simulations the

waveguide layer thickness was varied. This is the only parameter that solelychanges the

optical path (detuning from the phase matching condition) without modifying thediffrac-

tion efficiencies and associated phases. By keeping the surface at a fixed position with

respect to the incident light field, it was assured that the numerical resultsoriginate exclu-

sively from optical effects. In Figs. 2.9(a) and (b), the reflectivity and phase are shown

versus a deviation∆t from the optimum waveguide layer thicknesst. The grating peri-
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ods ofd = 552nm andd = 720nm represent structures with relatively low (< 10%)

and high (> 20%) coupling efficiencies. In Fig. 2.9(c), the phase slope with a waveguide

layer thickness deviation∆ϕ/∆t at resonance is shown. These results are based on grat-

ing structures that have maximal coupling efficiencies for each grating period according to

Fig. 2.8(c).

The results obtained so far indicate that high diffraction efficiencies (large grating peri-

ods) lead to broadband devices. This was quantified by investigating the phase response of

the reflected light with respect to a variation of the waveguide layer thickness. However, a

design optimization must address all parameters, due to the complexity of such adevice.

Even for a perfectly homogeneous sample, these deviations are induced by temperature

fluctuations, which change the geometry of a RWG by thermal expansion as well as its

optical properties via the temperature dependence of the indices of refraction. The follow-

ing section will provide more insight into this topic and an estimate on thermally induced

phase noise for RWGs.

2.3.2 Thermally induced phase noise

Thermal fluctuations inside the reflecting surface of a mirror lead to two different noise

sources for a mirror’s position measurement as illustrated in Fig. 2.10 . The first one is

known as coating thermoelastic noise [42, 43, 99], which arises from non-zero thermal

expansion coefficients of the materials that are used. These cause a surface displacement

of

δzα
δT

= αct− αst
Cc

Cs
, (2.29)

wheret is the coating thickness andCc andCs are the heat capacity of the reflecting surface

and substrate material, respectively. The effective thermal expansion coefficients of the

coating and the substrate can be approximated byα ≈ 2α(1 + σ) with the Poisson’s ratio

σ and the thermal expansion coefficientα. Note that Eq. (2.29) describes an effect due to

the coating material and vanishes if coating and substrate are made of the samematerial.

The second noise source is thermorefractive noise [44, 45, 99]. It considers that light

senses fluctuations of the optical length inside a material, which generally arise from the

temperature dependence of the indices of refraction and thermal expansion. For multilayer

coatings the light senses fluctuations inside the reflecting volume, which leadsto a phase
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Figure 2.10: Temperature fluctuationsδT in a multilayer stack or resonant waveguide grating lead to

a phase change of the reflected light caused by the thermal expansion coefficientα and thermo-optic

coefficientdn/dT of the materials used.

changeδϕ for the reflected light. This phase change converts into displacement via

δzβ
δT

=
1

2

λ

2π

δϕ

δT
= βλ. (2.30)

whereβ denotes the effective thermorefractive coefficient, which is discussedbelow. Since

thermoelastic and thermorefractive noise have the same origin, a coherenttreatment has

been suggested [99, 100], known as thermo-optic noise. This analysis has led to the insight

that both effects might cancel each other to a certain extent.

The descriptions given above are valid for thermal noise of multilayer coatings, but can

indeed be used by extension for RWGs. A difference between multilayer coatings and

RWGs is that RWGs are resonant devices, for which the interaction time of light inside the

material is generally increased. The light reflected from a typical multilayer coating effec-

tively senses only a few double layers. On the other hand, RWGs achievehigh reflectivities

with a reduced coating thickness, which is a factor in the formulas for Brownian as well

as for thermoelastic noise, as it can be found in Eqs. (1.4) and (2.29), respectively. Hence,

thermorefractive noise can be expected to contribute significantly to the overall thermal

noise of RWGs, as they are based on resonant excitation. Note that this conclusion holds

only if the material properties of the grating structure and the single layer material are as-

sumed to be the same or at least similar. Based on this assumption, RWGs are compared

with a multilayer stack in the following, with a focus set on thermorefractive noise.
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Thermorefractive noise for multilayer coatings (Ta 2O5/SiO2)

Thermorefractive noise for multilayer coatings was discussed for the first time by Bragin-

sky et al. [44] using the Langevin approach. Levin [45] derived the same results based on

the fluctuation-dissipation theorem. As a result, the power spectral density of temperature

fluctuationsδT as sensed by a Gaussian beam of radiusr0 (defined as 1/e2 in power) is

given by [45]

S2
T =

2
√
2kBT

2

πr20
√
κsCsρs2πf

, (2.31)

wherekB is the Boltzmann constant,κs the thermal conductivity of the substrate,ρs its

density andf the frequency. The conversion to displacement noise in units of [m/
√
Hz] is

done via

S∆z = ST
δzα,β
δT

. (2.32)

Comparing with Eqs. (2.29) and (2.30), one readily finds that the level of thermally induced

displacement depends linearly on the the coating thicknesst and on the the phase change

δϕ/δT , respectively. One assumption made to derive Eq. (2.31) is that the thermaldiffusion

length, which is given by [42]

rT =

√
κ

Cρ2πf
, (2.33)

is larger than the coating thicknessrT > t. Hence, thermal fluctuations in volumes of size

r3T are uncorrelated and, thus, averaged by a Gaussian beams with radiusr0 ≫ rT. In case

of two or more coating materials it was suggested to take the averaged values given by [43]

C =
N∑

k=1

Ck
tk
t

, κ =

(
N∑

k=1

1

κk

tk
t

)−1

and ρ =
N∑

k=1

ρk
tk
t
, (2.34)

wherek denotes a given layer of thicknesstk andN the total number of layers. For a

multilayer stack made ofN = 40 layers (alternating tantala and fused silica) each having

quarter wavelength optical thicknesstk = λ/(4nk) one finds that the diffusion length at

a frequency off = 100Hz is aboutrT ≈ 20µm, which is larger when compared to the

coating thickness oft =
∑N

k=1 tk ≈ 6µm. These values are derived on the basis of the

material parameters given in Tab. 2.1. A good approximation for the effective thermore-
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Symbol SiOsub
2 SiOlay

2 Ta2O
lay
5

Φ 5× 10−9 0.5× 10−4 2× 10−4

σ 0.17 0.17 0.23

Y [Pa] 72× 109 60× 109 140× 109

n 1.45 1.45 2.04

α [1/K] 0.51× 10−6 0.51× 10−6 3.6× 10−6

dn/dT [1/K] 8× 10−6 8× 10−6 2.3× 10−6

κ [W/m/K] 1.38 0.5 0.35

C [J/K/kg] 746 746 269

ρ [kg/m3] 2200 2200 6425

Table 2.1: Material parameters for a fused silica SiO2 substrate and layer as well as a tantala Ta2O5

layer as can be found in Ref. [46].

fractive coefficientβ of a multilayer stack withN/2 ≥ 6 double layers (with the lower

index material on top) is given by

β =
n2
L(βH + αHnH) + n2

H(βL + αLnL)

4(n2
L − n2

L)
. (2.35)

Here, the thermo-optic coefficientβH = dnH/dT andβL = dnL/dT as well as the effec-

tive thermal expansion coefficientsαH andαL of the layers are considered [99]. The latter

are given for thek-th layer by

αk = αk
1 + σs
1− σk

(
1 + σk
1 + σs

+ (1− 2σs)
Ek

Es

)

≈ αk2(1 + σk), (2.36)

whereσk, Ek andσs, Es are the Poisson’s ratios and Young’s moduli of the coating and

substrate materials, respectively. The approximation in Eq. (2.36) is valid for materials

with Ek ≈ Es andσk ≈ σs. While an analytical expression for the thermorefractive

coefficient of multilayer coatings exists, the investigations of RWGs carried out here are

based on rigorous simulations. In order to compare the performance of multilayer coatings

and RWGs, the effective thermorefractive coefficient is converted via

δφβ

δT
= 2× 360β, (2.37)

giving the phase change with temperature in units of [deg/K]. In Fig. 2.11, the transmissiv-

ity and phase change for multilayer coatings with an increasing number of double layers is
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Figure 2.11: (a) Transmissivity of a multilayer stack made ofN/2 double layers (Ta2O5 and SiO2)

with quarter wavelength optical thickness at a wavelength of1064 nm. The reflectivity exceeds

99.99% for N/2 ≥ 15. (b) Temperature induced phase changeδφ/δT of the reflected light ver-

sus the number of double layers. The black line depicts the result derived by the analytical expression

for a large number of coating layers given by Eq. (2.35), while the reddots are derived by means of

rigorous simulations.

shown by means of rigorous simulations. At least 20 double layers are required to achieve

10ppm residual transmission, which corresponds to a coating thickness of about6µm. The

rigorous results converge to the analytical result ofδφβ/δT = 0.0087deg/K with increas-

ing number of double layers. This validates the numerical method, which was applied in

the following section for RWGs.

Thermorefractive noise for RWGs (Ta 2O5/SiO2)

The power spectral density of thermal fluctuations given by Eq. (2.31) isbased on the

argument that the thermal diffusion length is larger than the coating thickness. In case

of RWGs this also has to hold for the lateral dimension, due to the guidance of light in

the waveguide layer. For broadband structures with coupling efficiencies larger than10%,

light fields only propagate a few cycles before they are coupled out. Therefore, a grating

period of720nm was investigated. It provides a high coupling efficiency over a broad

range of the grating fill factorf and grating depthg, as shown in Figs. 2.8(a) and (b)

for TE- and TM-polarized light, respectively. Parameters around the achievable maximal

coupling efficiency have been investigated, namely aroundf = 0.372, g = 297nm and
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Figure 2.12: Plots (a) and (b) show combinations of waveguide layer thicknesst, fill factor b/d and

grating depthg at which resonant excitation occurs for TE- and TM-polarized light, respectively. The

grating period isd = 720 nm. (c) and (d) Phase change of the reflected light caused by tempera-

ture changes. The results are based on rigorous simulations by taking intoaccount that the indices

of refractionnH, nL and the thickness (g + t) of the waveguide grating structure are temperature de-

pendent. The lowest value of0.0128 deg/K was found for TE-polarization, which is supported by the

small waveguide layer thickness of75 nm. This value is larger when compared to0.0087 deg/K of a

standard multilayer coating.

f = 0.523, g = 606nm. For each combination off andg, the waveguide layer thickness

t, at which resonant excitation occurs, was found. The results are shown in Figs.2.12(a)

and (b). The phase change due to temperature variations was derived by means of rigorous

simulations, which included thermal expansion of the tantala waveguide structure t+ g via

the effective thermal expansion coefficient given by Eq. (2.36) as well as changes innH

andnL. The index of refraction of the substrate has been accounted for, in order to include
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evanescent coupling, which affects the effective waveguide layer thickness. The numerical

results for TE- and TM-polarization are shown in Figs. 2.12(c) and (d),respectively. The

lowest value found in the investigated range of parameters isδϕTE
wg /δT = 0.0128deg/K

for a waveguide grating withf = 0.5 andg = 400nm. This is in particular supported by

the low waveguide layer thickness oft = 75nm. The lowest value for TM-polarization

was found to beδϕTM
wg /δT = 0.0218 with f = 0.625, g = 450nm andt = 206nm.

Note that the coupling efficiencies for these structures were significantly smaller than the

achievable maximal values for a grating period ofd = 720nm, namely(15.1 < 20.0)%

and(22.51 < 31.7)% for TE- and TM-polarized light, respectively (see Fig. 2.8). This

is most probably due to a partial compensation of the different phase contributions, in

particular the evanescent coupling at the material boundaries.

Due to the complex interaction of geometrical and optical parameters, a general opti-

mization procedure for RWGs with respect to thermal fluctuations can hardlybe defined.

As a rule of thumb, high diffraction efficiencies and a thin RWG structure result in ben-

eficial properties. While this can work out in terms of the waveguide layer thickness as

shown in Fig. 2.12(a), it does set a conflict as high coupling efficienciesare not provided

by shallow grating structures. Another limit is set by the temperature induced change of

the substrate’s index of refraction, which was found to contribute significantly. The results

with dnL/dT = 0 were roughly a factor of two smaller than the ones given here, based

on dnL/dT = 2.3 × 10−6. Hence, the presented results provide a good estimate of ther-

morefractive noise for RWGs made of tantala and fused silica, which in general turns out

to be larger than for multilayer coatings made of the same materials. The results imply

that design optimization with respect to thermal fluctuations is required in orderto achieve

a comparable performance. As a result, the phase change with temperaturefluctuations

can be expected to be larger for RWGs when compared to a multilayer coating,namely

δϕTE
wg /δT = 0.0128deg/K andδϕml/δT = 0.0087deg/K, respectively. As the phase

change is directly linked to the thermorefractive coefficientβ via Eq. (2.37), these variables

contribute linearly to the predicted level of thermorefractive noise, basedon Eqs. (2.32) and

(2.30).

Thermal noise estimates

In the following, the material parameters such as the quality factor and the thermal conduc-

tivity of a grating structure are assumed to be same (or at least similar) to that of a single
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Figure 2.13: (a) Thermal noise estimates for a conventional multilayer stack and a resonant waveg-

uide grating. While Brownian and thermoelastic coating noise are higher dueto the larger amount of

coating material, thermorefractive noise is significantly enhanced for resonant waveguide gratings. (b)

Incoherent sum of the individual contributions in comparison with a fused silica substrate for a beam

size ofr0 = 0.062m (the ratio of coating and substrate thermal noise scales with1/
√
r0). For this

comparison it was assumed that material properties of a nanostructured layer are the same as for a

single layer material.

layer material. This enables a comparison regarding the overall level of thermal noise of

RWGs with a multilayer coating. The individual contributions of Brownian, thermoelas-

tic and thermorefractive noise are shown in Fig. 2.13(a), where a ratherlarge beam size

of r0 = 0.062m is assumed. While Brownian and thermoelastic noise are lower for a

RWG, which is simply due to the reduced amount of coating material, thermorefractive

noise is significantly increased. The incoherent sum of all terms is shown inFig. 2.13(b) in
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comparison to Brownian noise of a silica substrate. The results indicate that an optimized

RWG potentially can have lower thermal noise than a quarter wavelength multilayer stack.

Since the ratio of coating and substrate thermal noise scales with1/
√
r0, the coating con-

tribution becomes more pronounced with smaller beam sizes as commonly used in tabletop

experiments.

The results for a multilayer coating can in principle be improved by using non quarter

wavelength designs giving a factor1.2 in thermal noise reduction [56]. While the presented

results for RWGs give a first order estimate, a refinement of the presented model is of

fundamental interest. This must include mechanical and thermal properties of a grating

structure as well as effects due to a possible lateral expansion, which were omitted here.

On the other hand, investigations on how to cancel different contributions that determine

the round-trip phase might reveal improvements, for instance by adjusting phase changes

at the upper and lower boundary of the waveguide structure. Furthermore, a coherent

treatment of thermoelastic and thermorefractive noise as proposed for multilayer coatings

[99, 100] needs further investigations.

The most significant improvements regarding thermal noise can be expectedfrom the

employment of other materials and cryogenic temperatures. Silicon at a wavelength of

1550nm is a promising proposal [85, 86] due to its very good mechanical properties at

cryogenic temperatures, more concretely a low mechanical dissipation [102–104] and a

thermal expansion coefficient potentially close to zero [101]. Thereby,the Brownian and

thermoelastic noise of a silicon substrate are significantly reduced. Regarding the con-

cept of RWGs, the use of silicon at1550nm enables broadband structures due to its high

index of refraction of≈ 3.48. This, together with the small thermo-optic coefficient of

dn/dT = 5.86× 10−6 K−1 at30K [105] can provide a significant reduction of thermore-

fractive noise. Furthermore, a monolithic implementation is possible as introduced in the

following section. The first results revealed that the thermally induced phase change of

these monolithic silicon structures can be on the order of only0.001deg/K. The mechan-

ical loss of such structures remains the most crucial factor with regard to Brownian ther-

mal noise. Experiments with a nanostructured silica substrate (cylindrical test mass with

a diameter of76.2mm and a thickness of12mm) showed no decrease of the substrate’s

quality factor [106]. More dedicated experiments with nanostructured silicon cantilevers,

to address the mechanical loss dominated by the surface, are currently being carried out.
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2.4 From single-layer RWGs to monolithic mirrors

The amount of material needed to theoretically achieve a perfect reflectivity is highly re-

duced for single-layer RWG structures when compared to the amount needed for conven-

tionally used multilayer stacks. This additional layer, however, will still add mechanical

loss to a substrate’s surface. The most straightforward approach to themonolithic imple-

mentation of RWGs is given by nanostructured thin films, for which the low indexsubstrate

is substituted by air.

A prominent example of such structures are micro-electro-mechanical systems (MEMS)

acting as microsensors. Their fabrication technology is well established and can be trans-

ferred to manufacture optical components. In Fig. 2.14 examples of nanostructured single-

layer are sketched. These can be designed to provide a high reflectivity(see e.g. [107]).

Experimental realizations have been reported in [108–110]. Also shownis a two-dimensional

(a) (b) (c) 

structured thin film self supported ridges 2 dimenisonal structure 

n
H

n
0
=1

Figure 2.14: Substituting the low index substrate with with air in principle allows the monolithic

implementation of RWGs based on (a) nanostructured thin films, (b) self supported grating ridges and

(c) two dimensional structures.

structure, which formerly had been investigated for realizing polarization-independent fil-

ters [111, 112]. While for these concepts applications in the field of opto-mechanics are

conceivable, they don’t seem to be suitable for the implementation in large-scale experi-

ments due to the small realizable dimensions of such devices and their fragility. For mak-

ing the concept of monolithic RWGs applicable to large-scale experiments, two novel ap-

proaches have been developed during this work in close collaboration withthe Institute of

Applied Physics (Jena) [113].
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2.4.1 Silicon based T-structure at 1550 nm

The monolithic implementation of highly reflective RWGs in conjunction with large sub-

strates can be realized with a T-shaped nanostructured surface. The evolution of this mono-

lithic surface mirror is depicted in Fig. 2.15. The starting point is a high index grating

n
eff

<n
H

n
H

n
H

n
L

n
H

(a) 

n
Lsubstrate

n
Hsubstrate substrate

n
H

(b) (c) 

monolithic mirror

Figure 2.15: (a)-(c) Evolution from a single-layer to a monolithic T-structure resonant waveguide

grating. The material with low index of refractionnL < nH is substituted by a grating structure with

a sufficiently low fill factor, acting as an effective medium withneff < nH. This approach enables a

monolithic implementation of RWGs on large substrates.

structure on top of a low index substrate material. It is possible to reduce the low index

material to an amount such that no evanescent coupling to the outer region occurs. By

substituting the low index material with a thin grating structure of the high index material,

acting as a medium with low effective index of refractionneff < nH, the connection to the

substrate is preserved. The lower grating structure needs to have a low enough fill factor

in order to be sensed by the light as an effective low index material. This ideahas been

theoretically investigated on the basis of silicon [63], which has a high index of refrac-

tion nH ≈ 3.5 at a laser wavelength of1550nm. A theoretical design and experimental

results regarding this concept are presented in Chapter 3.4. Recently, double T-structures

have been investigated, which allow to increase the parameter tolerance with respect to the

angle of incidence [114].

2.4.2 Silicon based encapsulated structure at 1550 nm

With respect to device handling,more precisely to surface polishing and cleaning, a so-

called encapsulated structure has been proposed and realized [64]. Its functionality can

be understood in the ray picture as an inverted RWG structure in a sense that diffraction

now occurs inside the top layer, while the light is guided due to total internal reflection
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Figure 2.16: (a)-(c) Evolution to encapsulated resonant waveguide gratings. By switching the bound-

aries at which the diffraction process and guidance via total internal reflection occurs, a RWG with a

flat surface can be realized. This is in principle, advantageous in terms of device handling, namely

of surface polishing and cleaning. Since the experimental realization of the architecture shown in (c)

requires overcoating of a grating or direct wafer bonding, it is called here a quasimonolithic structure.

at the boundary between waveguide layer and superstrate (see Fig. 2.16). A first experi-

mental realization, which was based on a nanostructured silicon substrate and overcoated

by a silicon layer, had a reflectivity of about93%. This value was recorded by means

of a spectral reflection measurement in comparison with a multilayer mirror as reference

at the Institute of Applied Physics (Jena). More details on this approach can be found in

[64, 113, 115].Alternatively, this this concept could be realized by employing direct wafer

bonding, which has not been carried out yet. In either case, the resultis not a monocrys-

talline device. The mechanical loss associated with a bonded layer or a siliconcoating

needs further investigation. The compatibility of an encapsulated structure with vacuum

conditions has not been verified yet.

2.5 Chapter summary

Resonant waveguide grating structures can theoretically achieve a100% reflectivity under

normal incidence and, thus, are a potential substitute for multilayer stacks in order to re-

duce coating thermal noise. It was shown that broadband structures are not only relevant

for the feasibility of the fabrication process, but also with respect to thermally induced

phase noise. While this is at least challenging to achieve for tantala based structures at

a wavelength of1064nm, the presented novel monolithic concepts based on silicon pro-

vide a promising approach for experiments at cryogenic temperatures. The modeling of

thermal noise requires refinements of the model presented here. These,for example, need
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to include calculations on how a grating structure is deformed with temperature changes

as well as the information on material parameters (mechanical loss, thermal conductivity)

based on actual measurements. Regarding the T-structure approach, the fundamental limit

can be expected to be set by mechanical loss due to the enhanced surface area or by the

treatment during the fabrication process.
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Chapter 3

Resonant waveguide gratings as cavity
mirrors

In this chapter, the experimental results based on three different waveguide grating archi-

tectures are presented. Each of the samples was incorporated in a linear Fabry-Perot cavity

together with a conventional highly reflective mirror. This allowed a precisecharacteri-

zation of the waveguide gratings in terms of their reflectivity under normal incidence for

a given laser wavelength. Besides being the highest reflectivities of99.08(±0.04)% and

≥ 99.2(±0.1)% at 1064nm and99.79(±0.01)% at 1550nm [87–89], these are, to the

best of our knowledge, also the most accurate measurements ever reported for RWGs. As

the next step towards the implementation in large-scale interferometers, a fully suspended

10m linear Fabry-Perot cavity incorporating a waveguide grating mirror could be demon-

strated [89] at the prototype facility of the University of Glasgow. The experimental results

are accompanied by design consideration by means of Rigorous Coupled Wave Analysis

and a brief desciption of their fabrication process as it was carried out incollaboration with

the Institute of Applied Physics (IAP) in Jena.

3.1 Cavity basics

All experiments presented in this chapter include linear Fabry-Perot cavities that were com-

posed of one waveguide grating and one conventional highly reflectivemultilayer mirror.

Besides being a key technology for high precision interferometry, an optical cavity is also

a means to determine the reflectivity of an unknown mirror via a finesse measurement.
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CHAPTER 3: RESONANT WAVEGUIDE GRATINGS AS CAVITY MIRRORS

3.1.1 Dynamic cavity

The basic principle of a linear Fabry-Perot cavity is sketched in Fig. 3.1. Two mirrors with

L=L
0
+vτ

r
1
, it

1
r

2
, it

2

a
in m=0

m=1

~2L
0
v/c

Figure 3.1: Sketch of a linear Fabry-Perot cavity. The total transmitted (reflected) field is given by

the sum of the partial fields that have undergone2m + 1 (2m) cavity transits at a timeτ . Assuming

the second mirror to move with a velocityv results in a phase lack of≈ m(m + 1)kv2L0/c for the

m-th beam, due to the round-trip time of the light. This gives rise to a dynamicalcavity response

(ringing effect). For small velocitiesv → 0 this effect can be neglected, which yields the well-known

Airy-peaks of a static cavity.

amplitude reflectivities and transmissivities ofr1,r2 andit1,it2, respectively, are separated

by a distanceL. The choice of complex transmission coefficients ensures energy conser-

vation (see e.g. [116]). An incident light field with the amplitudeain enters the cavity at

the coupling mirror M1. It accumulates a phase ofφ0 = kL, with k = 2π/λ being the

wavenumber, before it is partly transmitted and reflected at the end mirror M2. The field

aT transmitted through the cavity consists of a number of partial beams with complex am-

plitudesam that have undergone2m+ 1 cavity transits. Hence, the normalized sum of all

transmitted fields is written as

aT
ain

= −t1t2

∞∑

m=0

(r1r2)
m exp(iφm), (3.1)

whereφm is the accumulated phase for them-th partial field. As depicted in Fig. 3.1,

allowing the second mirror to move with a velocity much smaller than the speed of light

v ≪ c results in a time-dependent cavity lengthL = L0+vτ , whereL0 is the macroscopic

cavity length at timeτ = 0. Assuming the cavity length change with each round-trip to be

negligible for the round-trip time calculation, the total accumulated phase of them-th field
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3.1 CAVITY BASICS

can be approximated by [117]

φm ≈ (2m+ 1)kL− 2

m∑

n=0

nkv
2L0

c
(3.2)

= (2m+ 1)kL−m(m+ 1)kv
2L0

c
, (3.3)

where the gaussian sum was applied to the second term withL ≈ L0. The first term in

Eq. (3.3) represents a cavity where at a given timeτ and the corresponding cavity lengthL

an equilibrium for the intra-cavity field is reached, thus giving the well-known Airy peaks.

The second term of Eq. (3.3) describes the increasing phase shift forfields withm > 0

that are transmitted through M2 at a timeτ due to the non-zero round-trip time of light

with respect to the mirror motion. The total normalized field reflected at the cavitycan be

derived in the same manner yielding

aR
a0

= r1 − t21r2

∞∑

m=0

(r1r2)
m exp(iφm), (3.4)

with

φm ≈ 2(m+ 1)kL−m(m+ 1)kv
2L0

c
. (3.5)

The dynamical response of a cavity that is tuned over its resonance is shown in Fig. 3.2

by means of the transmitted and reflected power,|aT/a0|2 and|aR/a0|2, respectively. For

slow cavity tunings (v → 0) the resonance peak has a symmetrical profile with a maximum

value of the power transmissivity of|aT/a0|2 = 1 on resonance (impedance matched cav-

ity with t1 = t2). When the velocity of the end mirror is increased, the intra cavity field

cannot reach the equilibrium state. This limits the power build up and consequently the

peak transmitted power. Furthermore, a ringing effect occurs. The maximain transmission

originate from the phase change associated with each round-trip, which leads to an effec-

tively constructive interference. From Eq. (3.3) one finds that the dephasing is proportional

to the product of the macroscopic cavity length and the end mirror velocity. Hence, the

ringing effect will occur in large-scale cavities with correspondingly smaller mirror veloc-

ities (see experimental results with a 10 meter cavity in chapter 3.3). The same arguments

hold for the reflected power. A more detailed discussion on the ringing effect of Fabry-

Perot cavities can be found in [117, 118]. In the following, the characteristic quantities of

a static cavity (v → 0) are discussed.
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Figure 3.2: Transmissivity and reflectivity of a cavity traversing resonance for various velocitiesv of

the end mirror. A deformation of the Airy peak accompanied by a ringing effect occurs. The results

are based on an impedance matched cavity with a finesse of about1000 (|r1|2 = |r2|2 = 0.9937) and

a length ofL0 = 0.1m. Since the dynamical effect scales with the productvL0, it occurs for longer

cavities with correspondingly smaller velocities in the same manner.

3.1.2 Static cavity

For slow variations of the cavity length with respect to the round-trip time of the light,

the second term in Eqs. (3.3) and (3.5) can be neglected. Then the geometrical sum in

Eqs. (3.1) and (3.4) can be evaluated which yields

aT
a0

≈ −t1t2 exp(ikL)

1− r1r2 exp(i2kL)
and (3.6)

aR
a0

≈ r1 − r2(r
2
1 + t21) exp(i2kL)

1− r1r2 exp(i2kL)
(3.7)

for the complex transmission and reflection coefficient, respectively. A tuning of kL = 0

(mod2π) gives the maximal transmission. The separation of two resonances in terms of

the optical frequency is called the free spectral range (FSR) which is related to the length

of a cavity via

νFSR =
c

2L
. (3.8)

Another characteristic quantity of an optical resonator is its linewidth∆ν which is defined

as the full width at the half maximum of the intra cavity power (or equivalently ofthe
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transmitted power). The corresponding tuning in terms of a phaseφ∆ν can be derived from

Eq. (3.1) to be

φ∆ν = 2arccos

(

1− (1− r1r2)
2

2r1r2

)

. (3.9)

The ratio of the free spectral range and the cavity bandwidth defines the cavity finesse via

F =
νFSR
∆ν

=
2π

φ∆ν
= π arccos−1

(

1− (1− r1r2)
2

2r1r2

)

. (3.10)

Hence, in case of a lossless cavity, the finesse only depends on the product of the amplitude

reflectivities of the cavity mirrors, which is given by

R = r1r2 = 2− cos
( π

F

)

−
√
(

cos
( π

F

)

− 2
)2

− 1. (3.11)

The most straightforward approach to measure the finesse of a cavity is to determine the

ratio of its free spectral range and its linewidth according to Eq. (3.10). This requires

a linear scan of at least one free spectral range by varying the cavity length or the laser

frequency. However, due to a non-linear response of the actuator thisis usually not given

in an experiment. In order to minimize the influence of a possible nonlinearity, frequency

markers close to the resonance peak can be utilized to determine its linewidth. Together

with a measurement of the cavity length in order to derive the free spectral range, this allows

to determine the cavity finesse. For determining individual mirror reflectivitiesbased solely

on finesse measurements at least three mirrors are needed. These can be used to set up

three cavities with all possible mirror combinations. In order to determine the reflectivity

r1 of a single mirror by setting up a two mirror cavity, a separate characterizationof the

second mirror is necessary. Forr22 ≈ 1 andr21 < r22 the finesse is limited in particular by

the first mirror. Therefore, a characterization of the second mirror by means of a power

measurement does only add a minor error when determining the reflectivity ofthe first

mirror.

Pound-Drever-Hall technique

The Pound-Drever-Hall (PDH) technique [119] is widely used to generate error signals for

stabilizing the laser frequency to an optical cavity or vice versa. Basically,this method

allows to measure the phase of the light that is reflected from the cavity, whichindicates
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Figure 3.3: (a) Principle setup for the Pound-Drever-Hall technique including laserphase modulation

via an electro-optical modulator (EOM), electronic demodulation of the fieldreflected from a cavity

detected with a photodiode (PD) and a feedback loop to the laser frequency. (b) Depending on the

demodulation phaseΘ, the derived signal shows either a zero-crossing on resonance (red line), which

can be used as error signal in order to stabilize the laser frequency to thecavity resonance, or frequency

marker (green line) that are separated by twice the modulation frequency around resonance. The

modulation frequency applied here is a factor of ten larger than the cavity bandwidthφ∆ν , which is

designated by the gray area.

a mismatch of the laser frequency to the cavity length. During this work it was applied to

stabilize cavities as well as to generate frequency markers, which were used to calibrate

the tuning over the resonance peak of a cavity in order to determine its linewidth. One

setup for the PDH locking scheme is sketched in Fig. 3.3(a). The incident light field is

phase modulated by means of an electro-optical modulator (EOM). Usually thisis done at

a frequency larger than the cavity linewidth and within the free spectral range, although not

necessarily. The resulting sideband fields experience a definite phase change with respect

to the carrier field, thus serving as a phase reference. If the laser frequency is detuned

with respect to the cavity, the phase of the reflected carrier changes. This partially converts

the formerly phase modulation into an amplitude modulation that can be detected with a

photodiode (PD). The shape of the demodulated and low-pass filtered signal depends on the

relative phase of the electronic oscillator with respect to the optical signal. In Fig. 3.3(b),

two demodulated signals of particular interest are shown. The red line exhibits a steep

zero crossing at resonance which can be used as a feedback signalfor the laser frequency

or the cavity length in order to keep the cavity on resonance. To obtain the green line the
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3.2 TANTALA WAVEGUIDE GRATING MIRROR AT 1064NM

demodulation phase is changed by90deg. This signal allows to set the demodulation phase

precisely due to the zero slope at resonance. It further provides frequency markers that are

separated by exactly twice the modulation frequency and are symmetric around resonance.

The mathematical description and a more detailed discussion of the PDH method can be

found in [120]. The PDH technique was used throughout this work for stabilization as well

as for characterization of optical cavities incorporating a waveguide grating mirror.

3.2 Tantala waveguide grating mirror at 1064 nm

In this section the first demonstration of a resonant waveguide grating (RWG) as a mirror in

a Fabry-Perot cavity is presented [87]. Following the proposal in [84]a resonant waveguide

grating mirror for a laser wavelength of1064nm has been fabricated in collaboration with

the Institute of Applied Physics (IAP) in Jena. Its design is based on single tantala grating

ridges on top of a fused silica substrate, thus minimizing the amount of material added. The

fabricated structures showed trapezoidal grating profiles, which had tobe accounted for in

the design by means of rigorous methods. A staircase approximation was used, which is

described in the following along with the experimental results.

3.2.1 Design and fabrication

The starting point for the experimental realization was a single layer of tantalawith an

index of refractionnH = 2.105 on a substrate of sodalime glass withnL = 1.515. The

tantala layer, having a thicknesst = 400nm, was applied via Plasma-Ion-Assisted Depo-

sition (PIAD) at the IOF Jena [121]. After creating a mask for the grating via electron

beam lithography, the etching of tantala was processed down to the substrate as sketched in

Fig. 3.4(a). Thereby, the groove depthg was defined by the layer thickness. The fill factor

was the most uncertain parameter with respect to the fabrication, due to the appearance of

trapezoidal grating ridges. An upper boundary is introduced by defining the fill factorf

via the ratio of ridge widthb (top of a ridge) and grating periodd. The inequality

f ≤ 1− 2g

d tan(α)
(3.12)

ensures that the lower edges of neighboring ridges do not touch each other (b + 2a ≤ d).

The additional widtha is due to the trapezoid angleα. It vanishes for rectangular ridges

(α = 90deg).
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Figure 3.4: (a) Sketch of a trapezoidal grating structure. (b) Staircase approximation of the trape-

zoidal structure at the example ofN = 2 layers of thicknessg/N .

In order to calculate non-rectangular grating structures by means of rigorous simula-

tions, a staircase approximation was used [122]. This procedure to approximate the trape-

zoidal structure ensures that the area of the grating ridge is reconstructed as illustrated in

Fig. 3.4(b). The width of thej-th layer is calculated via

bj = fd+ 2(2j − 1)
g

N tan(α)
, (3.13)

whereN is the total number of steps. The rigorously simulated reflectivity for TM-

polarized light (electric field vector perpendicular to the grating ridges) versus the grating

periodd and the fill factorb/d is shown in Fig. 3.5 for a groove depth ofg = 400nm.

Compared are the results for a rectangular grating (α = 90deg) and a trapezoidal grating

with α = 70deg. The number of stairs that was found to be sufficient in order to produce

converging numerical results wasN = 50. The area of high reflectivity is shifted to smaller

fill factors with a decreasing trapezoid angle, since the effective fill factor (b1 + bN)/(2d)

increases withα. The white area in Fig. 3.5(b) marks parameter combinations off and

d that do not fulfill Eq. (3.12). Hence, by considering trapezoidal structures, smaller fill

factors turn out to be necessary to avoid an overlapping of ridges.

In order to meet an effective fill factor of≈ 0.515, fill factors in the range ofb/d ≈ 0.3−
0.45 were targeted. This range takes the appearance of trapezoidal shapes into account.

Several gratings withd = 690nm and an area of7.5mm × 7.5mm were written on a

single substrate. An Inductively-Coupled-Plasma etching was adjusted in order to meet the

groove depth ofg = 400nm. Only one sample showed a high reflectivity and was further

characterized experimentally. A top view scanning electron microscope (SEM) image of

this sample is shown in Fig. 3.6(a), revealing an effective fill factor of≈ (0.308+0.73)/2 =
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Figure 3.5: (a) Reflectivity for TM polarized light versus grating period and fill factor for a rectangular

grating structure based on a groove depth ofg = 400 nm. The white lines mark an area of reflectivity

≥ 99%. (b) For trapezoidal grating ridges the area of high reflectivity shifts to smaller fill factors due

to the effective broadening of the structure.

0.52. A cross-sectional view of a sample from the same fabrication process but with a

different fill factor is shown in Fig. 3.6(b), showing a groove depth ofg ≈ 400nm as a

result of the etching process. The trapezoid angle can be determined to be≈ 70deg from

the upper and lower fill factor as well as directly from the cross-sectional view.

3.2.2 Waveguide grating as cavity coupling mirror

The waveguide grating described above was used as a coupling mirror in alinear Fabry-

Perot cavity. The end mirror was a superpolished, highly reflective multilayer mirror

with a measured transmissivity of(300 ± 30) ppm. The experimental setup is sketched

in Fig. 3.7(a). The light source was a Nd:YAG laser (Mephisto) [123] with alaser wave-

length of1064nm. A triangular cavity (MC) was used for spatial filtering of the laser light

[124]. The cavity length was stabilized via the PDH technique to the laser frequency using

47



CHAPTER 3: RESONANT WAVEGUIDE GRATINGS AS CAVITY MIRRORS

g~400nm ~70deg
Ta

2
O

5

SiO
2

f
top

~0.308

f
bot

~0.730

d~690nm

(a) (b)

α

Figure 3.6: (a) Top view SEM image of the waveguide grating used as the cavity couplingmirror in

this work. (b) Cross-sectional view of a grating from the same fabrication process but with a different

fill factor [87].

a phase modulation at12.18MHz. The cavity length ofL = 0.495(±0.001)m defined

the free spectral rangeνFSR = 303(±1)MHz. The cavity tuning over the resonance via

piezo actuation of the end mirror was calibrated using frequency markers around one Airy

peak. Experimentally, the markers were obtained from the residual sideband fields trans-

mitted through the filter cavity (MC). The light reflected at the cavity was detected by a

photodiode (PDR) and was electronically demodulated. The demodulation phase was ad-

justed to give a flat signal at resonance, which yields a separation of thefrequency marker

of twice the modulation frequency. A typical measurement of an Airy peak together with

the obtained frequency marker signal is shown in Fig. 3.7(b). The linewidth was averaged

over twenty measurements, which resulted in∆ν = 461(±19) kHz, where a4% error for

the linewidth and a1% error for the uncertainty of the frequency markers were taken into

account. The deduced cavity finesse wasF = 657(±27), which yields a power reflectivity

for the waveguide grating mirror ofr21 = 0.9908(±0.0004). This was the highest reflec-

tivity for a RWG reported at this time. The error stated here is determined froman error

propagation of each measured value based on Eq. (3.11) withr2 =
√

1− |t2|2. The results

are listed in Tab. 3.1. Since all errors are independent from each other, they sum up to a total

rms-error for the waveguide grating power reflectivity of≈ 400ppm. The transmissivity of

the grating was measured to be0.94(±0.094)% by means of power measurements. Hence,

optical losses due to scattering or absorption could not be resolved and are within the error

of the sum of the power reflectivity and transmissivity of100.02(±0.13)%. These results
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Figure 3.7: (a) Sketch of the experimental setup for the characterization of the waveguide grating as

cavity coupling mirror. The Pound-Drever-Hall scheme was utilized forderiving frequency markers.

(b) Scan over one Airy-peak (red trace) of linewidth461 kHz, measured in transmission with PDT.

The cavity detuning was calibrated via the demodulated signal (green trace) recorded in reflection. (c)

Photograph of the cavity having a length of0.495m.

are in good agreement with spectral transmission measurements carried outat the IAP Jena

(see [87]). In both experiments the location of the laser spot on the gratingwas optimised

by minimizing the transmission. Based on the cavity experiments the reflectivity over the

whole grating area was determined to be higher than96%. The radius of the beam waist

on the grating was100µm, which was calculated from the cavity length and the nominal

radius of curvature of the end mirror of0.5m. In Fig. 3.8 the impact that deviations from

the parameters of the sample (b ≈ 213nm, g ≈ 400nm andd ≈ 690nm) have on the

reflectivity of the waveguide grating is shown by means of rigorous simulations. The gray
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Quantity Error Projected error forρ21
Marker frequency f = 12.18MHz ±1% ±95ppm

Linewidth ∆ν = 461 kHz ±4% ±380ppm

Cavity length L = 0.495m ±0.001m ±190ppm

End mirror transmission = 300ppm ±10% ±30ppm

total rms error ±393ppm

Table 3.1: Error propagation regarding the reflectivity of the investigated RWG.

areas indicate deviations that lead to a reflectivity between96% and99.08%, which cor-

responds to the experimental results. For optimally adjusted grating parameters the same

deviations (black dotted lines) would give a reflectivity of better than99.5% for this de-

sign. Although absolute deviations of the grating periodd show the strongest impact on

the reflectivity, it is unlikely to be the reason for inhomogenities, since it is realized with

subnanometer accuracy by means of electron-beam-lithography. The grating depthg can

also be ruled out here due to the low etching rate of silica compared to tantala. Hence,

fluctuations of the ridge widthb most probably give the dominant contribution, since they
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Figure 3.8: Reflectivity for TM-polarized light versus deviations of the grating parameter of the

investigated sample, namely the grating ridge widthb, groove depthg and grating periodd. The gray

areas mark deviations that result in a reflectivity from96% to 99.08%, which corresponds to the range

of measured values over the grating area. The same deviations with respect to optimized values would

lead to a reflectivity≥ 99.5% (black dotted lines).
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Figure 3.9: (a) Reflectivity for TE-polarized light for a waveguide grating with tantala thickness

t + g = 400 nm versus groove depth and fill factor. The dotted line corresponds to agrating depth of

326 nm, for which the reflectivity versus ridge width is shown in (b), demonstrating a fill factor tolerant

design. The black dotted lines mark a deviation of±2 nm from the optimal grating width. The grating

period isd = 690 nm and the trapezoid angle isα = 70 deg.

originate from two stochastic processes, namely the resist exposure andthe actual gas etch-

ing. Since the sample investigated here was restricted to a zero waveguide layer thickness,

only a low tolerance to fill factor variations is provided. By allowing non-zero waveguide

layer thickness, the fill factor tolerance can be vastly improved. This is exemplarily shown

in Fig. 3.9 for TE-polarization based on the same structure but withg + t = 400nm. This

however requires to meet the grating depth precisely, which again is affected by stochas-

tic effects of the etching process. One way to address this problem is the implementation

of an additional etch stop layer, as described in the following section, whichin principle

enables to use fill factor tolerant designs with a defined grating depth and waveguide layer

thickness.

3.3 Waveguide grating mirror in a fully suspended 10 m

cavity

In this section, the implementation of a waveguide grating mirror in a large-scale exper-

iment is described. The Glasgow prototype facility was commissioned to incorporate a

custom-made waveguide grating mirror in a10m linear Fabry-Perot cavity. The cavity was
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kept on resonance with the Pound-Drever-Hall technique. The waveguide grating design

was based on tantala and fused silica and included a20nm thin etch stop layer of Al2O3.

This layer enabled to define the grating depth accurately and to preserve the waveguide

thickness during the fabrication process. This section is based on [89].

3.3.1 Design and fabrication

Broadband resonant waveguide grating structures are favorable for the purpose of highly

reflective surface mirrors in high precision interferometric experiments. Starting with a

single layer with high index of refraction as depicted in Fig. 3.10(a), a design optimization

usually reveals that the groove depthg and waveguide thicknesst need to have a partic-

ular value. Since both parameters are simultaneously affected by the etchingprocess, the

etching depth has to be adjusted with (sub)nanometer accuracy in order to meet the design

parameters and consequently to realize (theoretical) reflectivities of100%. The waveg-

g

s

t

d b

waveguide

substrate

etchstop 

destructive interference

constructive interference

incident light

n
H

Al
2
O

3 
(n

M
=1.66)

Ta
2
O

5 
(n

H
=2.186)

SiO
2 
(n

L
=1.45)

(a) (b)

n
L substrate

Figure 3.10: (a) Sketch of a single-layer waveguide grating. In order to meet a specific design in terms

of groove depth and waveguide layer thickness, the etching rate has to beadjusted with (sub)nanometer

accuracy during the fabrication process. (b) Equivalent waveguidegrating architecture realized in the

work presented in this section, including an Al2O3 layer serving as an etch stop to define the grating

depth and waveguide layer thickness in the fabrication process.

uide grating investigated here is based on tantala (Ta2O5) with an index of refraction of

nH = 2.186 and fused silica (SiO2) with nL = 1.45 at a wavelength ofλ = 1064nm. An

additional thin etch stop layer of Al2O3 has been implemented as depicted in Fig. 3.10(b).

The grating period without the etch stop layer is restricted by

487 nm = λ/nH ≤ d ≤ λ/nL = 734 nm. (3.14)
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Figure 3.11: (a) First order diffraction efficiency from a tantala grating (nH = 2.186, g = 390 nm,

f = b/d = 0.38, TE-polarization) to a material with varying index of refractionnL. The white arrows

mark the range of the grating period that allows for resonant excitation aspredicted by Eq. (3.14). (b)

If an etch stop layer with index of refractionnM = 1.66 is implemented, the first diffraction orders

(depicted as black arrow) can propagate through the etch stop layer ford ≥ λ0/nM independent of its

thicknesss.

This inequality is illustrated in Fig. 3.11(a) by means of rigorous simulations for atantala

grating structure and TE-polarized light. The white arrows mark the upper and the lower

boundary for the grating period with respect to the indices of refraction for the substrate

and waveguide layer material, respectively. The index of refraction of Al2O3 (nM = 1.66)

is high enough to allow first order coupling to the waveguide layer ifd ≥ λ0/nM holds

for the grating period. This is independent of the etch stop layer thicknesss as shown in

Fig. 3.11(b)). Especially for small thicknesses of only a few nanometers there is no sig-

nificant influence on the coupling efficiency (s → 0nm in Fig. 3.11(b)) and consequently

on the waveguide grating’s optical properties in comparison with the conventional design

(s = 0nm in Fig. 3.10(b)).

The starting point for the fabrication was a standard5 inch fused silica mask blank coated

by a layer system of tantala (t = 80nm), Al2O3 (s = 20nm) and tantala (g = 390nm). A

top chromium (Cr) layer of60nm thickness was attached onto the layer system, serving as

the mask during tantala etching. This mask was realized by an electron beam sensitive resist

and applying electron beam lithography for an area of10mm×15mm, aiming at a grating
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Figure 3.12: (a) SEM image of a fabricated waveguide grating structure. Except forthe fill factor

all parameters are the same for the sample investigated here. (b) Calculated reflectivity (RCWA) of

a waveguide grating under normal incidence for the parameters marked in the SEM image and a fill

factor off = 0.38. The white lines mark an area of reflectivity≥ 99%.

period ofd = 688nm, which satisfiesλ0/nM ≤ d ≤ λ0/nL, and a fill factor of about0.38.

After resist development the chromium layer was structured via an Inductively Coupled

Plasma (ICP) dry-etching process. Finally, the binary chromium mask was transferred

only into the upper tantala layer by means of an anisotropic Reactive Ion Beam Etching

(RIBE) process based on tetrafluoromethane (CF4) supported by the high etching contrast

of about10 : 1 between tantala and Al2O3. The etching rate for tantala was on the order

of 10nm/min. A scanning electron microscope (SEM) cross-sectional image of a structure

fabricated from this process is shown in Fig. 3.12(a). This structure is based on the same

layer system and etching process but has a different fill factor than theone used in the

experiment. The sample preparation for SEM characterization was done using a focused

ion beam (FIB) which requires the grating spot of interest to be coveredby a platinum (Pt)

layer (see Fig. 3.12(a)). This image also shows the residual chromium mask, which was

removed prior to sample application.

Corresponding to the values for the grating parameters given in Fig. 3.12(a), RCWA was

used to predict the reflectivity for TE-polarized light and a fill factor ofb/d = 0.38 (see

Fig. 3.12(b)). These results indicate reflectivities higher99% to be feasible within param-

eter uncertainties of a few nanometers that are difficult to resolve on the basis of the SEM
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image. The most crucial parameter here is the tantala layer thicknesst. A variation of this

layer thickness by±3nm leads to an absolute decrease in reflectivity of about1%, since

the area of high reflectivity shifts to larger grating periods with smaller waveguide layer

thickness (not shown here). The etch stop layer design in principle offers the possibility to

reduce the grating depth of an already fabricated grating sample via an additional etching

step. The other waveguide grating parameters remain unaffected during this process. This

has not been done yet for this sample.

3.3.2 The 10 meter waveguide grating cavity

Figure 3.13(a) shows a schematic overview of the section of the Glasgow10m prototype

(see e.g. [125–127]) used for the work described here. A Nd:YAG laser at a wavelength of

1064nm was spatially filtered by a single-mode fiber before being injected into the vacuum

system and guided to the waveguide cavity via a beam splitter (BS) and a steering mirror

(SM). Both optics are realized as double suspensions. The cavity mirrorsare suspended as

triple pendulums (see Fig. 3.13(b)) based on the GEO 600 suspension design [128]. While

the end mirror was a conventional multilayer mirror with a nominal power reflectivity of

|r2|2 = 0.9996 , the coupling to the cavity was realized with the waveguide grating mirror

having an area of10mm × 15mm (see Fig. 3.13(c)). Their separation wasL0 = 9.78m,

yielding a free spectral range ofνFSR = c/(2L0) = 15.33MHz. The radius of curvature

of the end mirror (≈ 15m) defines the beam waist diameter on the plane waveguide grating

to be3.1mm, which is at least three times smaller than the grating. Therefore, any power

loss from beam clipping is assumed to be negligible.

For all measurements the vacuum system was evacuated to a pressure of≤ 10−4 mbar,

in order to suppress acoustic noise and residual gas pressure noise.The laser was stabilized

to the cavity resonance using the Pound-Drever-Hall scheme [119]. A phase modulation

at 18MHz was imprinted on to the incident light via an electro-optical-modulator (EOM),

which is equivalent to sidebands atΩ = 2.67MHz around a resonance for the given free

spectral range of the cavity. The reflected light was detected with the photodiode PDE and

was electronically demodulated. Thereby, an error signal with zero crossing at the cavity

resonance was provided, which was fed back to the laser frequency.The reflected light

power (red trace) and the error signal (green trace) for a ramped laser frequency are shown

in Fig. 3.14. The reflected signal for the stabilized cavity is shown as the bluetrace.

As shown in Fig. 3.15 for different mirror velocitiesv, the cavity finesse was already
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Figure 3.13: (a) Schematic of the prototype facility including the laser bench, vacuum system and

waveguide cavity with a length of≈ 10m. The cavity was stabilized using the Pound-Drever-Hall

scheme. (b) Photograph of the intermediate and lower stages of the triple suspension system used for

the cavity mirrors. Behind the main test mass, a second triple suspension carries the so-called reaction

mass, which is used to act on the main test mass. (c) Test mass with the waveguide grating mirror (area

of 10mm× 15mm) attached.

high enough to exhibit the dynamical effect of ringing for a sweep through resonance. To

move the cavity end mirror it was pushed longitudinally via its reaction mass (magnet-coil

actuators). The end mirror’s velocity with respect to the coupling mirror wasdetermined

via

v =
2Ω

FSR

λ

2

1

∆τ
, (3.15)

whereΩ is the sideband frequency at2.67MHz and∆τ is the separation in time of the two

sideband signals around resonance.

The theoretical model used to calculate the light field dynamics of a swept cavity is
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Figure 3.14: Cavity scan via tuning of the laser frequency. Reflected power (red trace) and Pound-

Drever-Hall error signal (green trace) detected with the photodiodes PDR and PDE, respectively. The

blue trace is the reflected signal for the cavity stabilized on resonance.

described in section 3.1. The theoretical results presented in Fig. 3.15 arebased on a prod-

uct of the amplitude reflectivitiesr1r2 = 0.996(±0.0005), which yields a cavity finesse

of 790(±100). The error stated here arises from the uncertainty of the cavity length of

±0.1m and from the measured time separation∆τ of ±3%, which both determine the

mirror velocity via Eq. (3.15). Since the reflectivity of the end mirror is close to100%,

the finesse was limited by the waveguide grating. Assuming a perfect end mirror r2 = 1

and a zero round-trip loss, the minimal value for the power reflectivity of thewaveguide

grating can be derived to|r1|2 ≥ 0.992(±0.001). This value is in good agreement with the

numerical prediction shown in Fig. 3.12(b) (d = 690nm,g = 390nm). Hence, the results

support the principle of the waveguide grating architecture investigated here.

The power transmissivity of the waveguide grating was measured to be0.3(±0.03)% in

air. Due to the potentially different measurement conditions (spot size and position on the

grating) and due to the unknown round-trip loss, an estimate of the optical loss would be

highly inaccurate.
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Figure 3.15: Typical measurements of the transmitted light of a swept cavity resonance for different

mirror velocitiesv (red trace). The theoretical results for the transmitted power are basedon Eq. (3.1)

with r1r2 = 0.996 (black lines), which corresponds to a cavity finesse of790. Hence, a lower bound-

ary for the waveguide grating power reflectivity is|r1|2 ≥ 0.992.

3.4 Monocrystalline silicon waveguide grating mirror at

1550 nm

In this section, the experimental realization and characterization of a novelmonocrystalline

surface mirror based on silicon is presented. It follows the proposal to use a T-structured

surface [63]. Due to a sophisticated fabrication process that has beendeveloped and opti-

mized at the IAP Jena, an addition of any material is not required. The design is presented

here, demonstrating that highly parameter tolerant designs exist, which is supported by the

high index of refraction of silicon ofnH = 3.5 at a laser wavelength of1550nm. Set-

ting up a linear Fabry-Perot cavity with a finesse of nearly3000 allowed the most precise

characterization of a RWG reported so far [88].
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3.4.1 Design and fabrication

The theoretical investigations and experimental results presented in section3.2 have demon-

strated that the functionality of a RWG can be realized with single grating ridgeson top of a

substrate with lower index of refractionnL < nH. In principle, the low index material can

be reduced to a single layer as sketched in Fig. 3.16(a). This layer needsto have a minimal

thickness in order to prevent evanescent coupling to the substrate. Thenovel idea of using

a T-structured surface is to replace the low index material by a grating serving as a medium

with an effective index of refractionneff < nH. Therefore, sufficiently thin grating ridges

of width blow and thus small fill factorflow = blow/d can be used. For a fill factorflow → 0
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Figure 3.16: (a) The low index substrate can be reduced to a single layer still providing resonant

excitation. (b) The low index layer can be substituted by a grating having a sufficiently small fill factor

flow = blow/d that acts as an effective medium with index of refractionneff < nH. Thereby, a

monocrystalline surface mirror is formed when using silicon.

approaching zero the effective index of refraction converges toneff → 1. Consequently,

the grating periodd that in principle allows for resonant excitation is restricted according

to Eqs. (2.2)-(2.4) by

443 nm ≈ λ/nH ≤ d ≤ 2λ/nH ≈ 886 nm, (3.16)

for silicon having an index of refraction ofnH = 3.5 at a laser wavelength ofλ =

1550nm. The most robust design regarding fabrication tolerances can be realized for TM-

polarization and a grating period ofd = 700nm [63]. The simulated reflectivity under

normal incidence is shown in Figs. 3.17(a) and (b) for a parameter scan of the upper and

the lower grating structure by means of rigorous simulations. The design parameters were

59



CHAPTER 3: RESONANT WAVEGUIDE GRATINGS AS CAVITY MIRRORS

TM-reflectivity (d=700nm) [%]

 0.2  0.4  0.6  0.8  1

Fill factor bup/d

 0

 200

 400

 600

 800

G
ra

ti
n

g
 d

e
p

th
 g

u
p

 [n
m

]

 0

 20

 40

 60

 80

 100

TM-reflectivity (d=700nm) [%]

 0  0.2  0.4  0.6

Fill factor blow/d

 0

 400

 800

 1200

 1600

G
ra

ti
n

g
 d

e
p

th
 g

lo
w

 0

 20

 40

 60

 80

 100

Figure 3.17: Reflectivity of a silicon T-structure for varying (a) the upper grating and(b) the lower

grating with respect to the optimal design values ofd = 700 nm, fup = 0.56, gup = 350 nm,

flo = 0.26 andglo = 430 nm. The white lines mark an area with reflectivity≥ 99.9%.

d = 700nm, fup = 0.56, gup = 350nm, flow = 0.26 andglow = 430nm as depicted in

Fig. 3.18(a). When varying the parameters of the upper grating, the onesfor the lower grat-

ing were kept constant according to the design specifications and vice versa. As a result,

for fill factorsflow < 0.3 resonant excitation can be efficiently achieved [see Fig. 3.17(b)].

Furthermore, a minimal groove depth is needed in order to avoid evanescent coupling to

the substrate. The white lines mark an area with reflectivity≥ 99.9%, revealing broad

parameter tolerances with respect to the fabrication process. This is particularly supported

by the high index of refraction of silicon. The fabrication procedure hasbeen developed

and optimized at the IAP Jena. It is based on a stepwise etching process, starting with a

standard silicon wafer. The first step involves an isotropic etching for theupper grating

structure. A second anisotropic etching is adjusted to excavate the lower structure. A de-

tailed description of the fabrication process can be found in [88]. The sample investigated

here had a grating area of7.5mm× 13mm.

SEM images of a structure from the same fabrication process as the sample that has

been characterized in this work are shown in Figs. 3.18(b) and (c). Although the idealized

T-shape could not be met, the effective dimensions of the fabricated structure are within

the parameter tolerances provided by the design. A comparison of rigorous simulations

based on the actual shape with a spectral measurement of the sample’s reflectivity under

normal incidence has been carried out at the IAP and is presented in [88]. The results show
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Figure 3.18: (a) Design values for an idealized T-structure [63]. (b) SEM image of afabricated

structure. Its effective dimensions are within the parameter tolerances of the optimal design. (c) The

wider view of≈ 30µm shows a good homogeneity of the structure [88].

a reflectivity≥ 91.5% for a rather broad spectral range from1.21µm to 1.61µm. The

peak reflectivity of almost100% with a measurement error of±0.3% was found around

the design wavelength of1550nm.

3.4.2 Experimental setup and results

The fabricated monocrystalline mirror (T-structured silicon wafer) was incorporated into

a linear Fabry-Perot cavity in order to determine its reflectivity via a finessemeasurement

for light incident under exactly zero degrees. A sketch of the experiment is shown in

Fig. 3.19(a). The laser source was a benchtop fiber laser system [129, 130]. The light

was spatially filtered by a triangular cavity (MC) before being guided to the linear cavity.

The silicon wafer had an unpolished rear surface, which significantly disturbed the beam

shape due to scattering and hardly allowed to match the transmitted beam to an eigenmode

of the cavity. Therefore, a multilayer coated mirror with a measured transmissivity of

200(±20) ppm served as coupling mirror. Due to the expected high finesse, a shortcavity

of lengthL = 24(±0.5)mm was set up in order to minimize the influence of air fluctu-
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Figure 3.19: (a) Sketch of the experimental setup used to characterize the monocrystalline T-

structured waveguide grating (RWG) as a cavity mirror. (b) Scan over one Airy peak (red trace) of

linewidth2.24MHz measured in transmission with a photodiode (PDT). The cavity detuning was cal-

ibrated via the demodulated signal (green trace) detected in reflection with PDR. The analysis of the

experimental results was based on a fit of the measured traces (black dashed line). (c) Image of the

cavity having a length of24mm and a closeup view of the waveguide grating.

ations. The finesse of the cavity was determined from the ratio of the free spectral range

νFSR = 6.246(±0.13)GHz and the cavity linewidth. The latter was measured by calibrat-

ing the tuning of the cavity via frequency markers at30MHz around a resonance peak.

The required phase modulation sideband fields were imprinted on to the incident light by

means of an EOM placed between the filter cavity and the linear cavity. Althoughthe rear

surface of the monolithic RWG was unpolished, the resonance peak could be detected in
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Figure 3.20: (a) Measured finesse for 25 beam positions over an grating area of2mm × 2mm. (b)

The corresponding power reflectivity of the T-structured waveguide grating, with a highest reflectivity

of 99.795(±0.009)%.

transmission using a lens in short distance (integrated in the end mirror mount).A typical

measurement is shown in Fig. 3.19(b) together with an analytical fit (black dashed lines).

The cavity linewidth was measured for 25 positions over an area of2mm×2mm. For that,

the waveguide grating mirror mount was moved in horizontal and vertical direction via mi-

crometer screws [see image of the cavity setup in Fig. 3.19(c)]. The radiusof the beam

waist on the plane grating was≈ 50µm, which is derived from the nominal value of the

coupling mirror’s radius of curvature of25mm and the cavity length. For each position 12

measurements were taken and averaged. The results in terms of finesse and corresponding

grating reflectivity are shown in Figs. 3.20(a) and (b), respectively. The smallest averaged

bandwidth for a position on the grating was found to be∆ν = 2.24(±0.07)MHz. Hence,

the highest finesse wasF = 2780(±100), which corresponds to a power reflectivity of the

waveguide grating of99.7945(±0.0086)%. This is the highest as well as most accurate

value for a resonant waveguide grating ever reported. The error stated is derived from a

propagation of the errors of each measured value as summarized in Tab. 3.2. The measured

transmissivity of the waveguide grating of230(±20) ppm by means of power measure-

ments was limited by scattering at the unpolished rear surface. Hence, an upper limit of

1820(±110) ppm on the optical loss of the T-structure due to scattering and absorption

could be derived.
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Quantity Error Projected error forρ21
Marker frequency f = 30MHz ±0.5% ±11ppm

Linewidth ∆ν = 2.24MHz ±3% ±68ppm

Cavity length L = 24mm ±0.5mm ±47ppm

End mirror transmission = 200ppm ±10% ±20ppm

total rms error ±86ppm

Table 3.2: Error propagation regarding the reflectivity of the T-structured RWG.

3.5 Chapter summary

In this chapter, three different waveguide grating designs and their experimental character-

ization in cavity setups was presented. Each sample was incorporated into a linear Fabry-

Perot cavity together with a highly reflective multilayer mirror. This enabled anaccurate

determination of the reflectivity of the waveguide gratings under normal incidence.

The investigations on a monocrystalline silicon mirror, based on a T-structured surface,

have revealed a reflectivity of99.79(±0.01)% at a wavelength of1550nm. This is the

highest and most accurate value of a resonant waveguide grating everreported. The so far

lowest estimate on optical loss could be derived from the experiments with a trapezoidal

grating structure at a wavelength of1064nm. Based on the measured reflectivity and trans-

missivity of 99.08(±0.04)% and0.94(±0.094)%, respectively, the optical loss could not

be resolved, but is within the measurement error of0.13%. The 10 meter cavity experi-

ment is the first demonstration of a waveguide grating mirror in a large-scale,low noise

environment (suspended optics, laser stabilization, vacuum conditions).The determined

lower value for the reflectivity of≥ 99.2% is the highest ever reported at a laser wave-

length of1064 nm. The waveguide design included a thin etch stop layer made of Al2O3.

This is advantegeous regarding the fabrication process as this etch stop layer defines the

grating depth and waveguide layer thickness. Whether the optical and mechanical proper-

ties of this layer can meet the strict requirements for high precision experiments needs to

be further investigated. The power transmissivity of the waveguide gratingwas measured

to be(0.3 ± 0.03)% in air. Due to the potentially different measurement conditions (spot

size and position on the grating) and to the unknown round-trip loss, an estimate on optical

loss would be highly inaccurate.
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Chapter 4

Interferometry with translucent mechanical
oscillators

In this chapter, a Michelson-Sagnac interferometer is presented. This configuration is based

on a semitransparent mechanical oscillator serving as the common end mirror of the two

arms of a Michelson interferometer. The optical properties of thin films in combination

with the Michelson-Sagnac interferometer are theoretically investigated. It isshown that

the lowest optical absorption can be achieved by placing a mechanical oscillator with sub-

wavelength optical thickness in the node of an optical standing wave that is inherent to the

Michelson-Sagnac interferometer.

A theoretical background of the mechanical properties of high stress thinfilms is pro-

vided, accompanied by experimental measurements taking thin silicon nitride (SiN) mem-

branes as an example. The experimental realization of a Michelson-Sagnacinterferometer

under vacuum condition and at room temperature is described. A key result is that the

operation at a dark fringe is compatible with lowest optical loss [131], whichin principle

enables the use of optical recycling techniques. A prospect for utilizing signal recycling is

given based on [132], which efficiently allows to increase the shot-noise-limited sensitivity

as well as opto-mechanical coupling.

4.1 Michelson-Sagnac interferometer - A new tool

The sensitivity of laser interferometers can be pushed into regimes that enable the direct

observation of quantum behavior of macroscopic mechanical oscillators.The strength of
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Figure 4.1: (a) Sketch of a Michelson-Sagnac interferometer with a translucent mechanical oscillator

as common end mirror for the two arms of a Michelson interferometer. The transmitted light forms a

Sagnac interferometer, which has a dark signal port for a 50/50 beamsplitter independent of the mirror

position. (b) The combined Michelson-Sagnac interferometer operatedon its dark fringe enables the

use of advanced interferometer techniques such as power recycling and signal recycling to increase the

opto-mechanical coupling.

opto-mechanical coupling increases with the amount of light power that is used to sense

the test mass position and its susceptibility to the radiation pressure force, in particular

with smaller masses. Today’s fabrication techniques for micro-mechanical oscillators have

opened new possibilities to study the coupling of light with mechanical devices.The real-

ization of a high optical and mechanical quality in a single device remains a major chal-

lenge in this field. Several approaches, where small mass mirrors with high reflectivities

based on multilayer coatings are used, are currently under investigation. These range from

harmonically suspended1g [10] and20mg [40] mirrors to micro-mirrors with an effective

mass on the order of100ng [41] attached to flexure beams. The multilayer coating itself

already sets a lower limit in terms of mass. A quarter wavelength stack of 20 double lay-

ers of fused silica (SiO2) and tantala (Ta2O5) and a diameter of only50µm yields a mass

of about50ng. Avoiding such coatings in order to preserve the quality factor of a blank

substrate and to minimize its mass usually comes at the expense of low reflectivity.One ap-

proach to overcome this limitation is based on a thin silicon nitride (SiN) membrane placed

inside a high finesse cavity [133–135]. These investigations target the quantization of an

oscillator’s mechanical energy via non-linear opto-mechanical coupling.Besides the low
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effective mass of about100ng for a window size of1mm2, these membranes also provide

high mechanical quality factors exceeding106 at300K and107 at300mK [136].

Using a semi-transparent component (e.g. a SiN membrane with a reflectivity≤ 40% at

a laser wavelength of1064nm) as end mirror in a Michelson interferometer leads to high

optical loss. Hence, the implementation of cavity techniques that have been developed for

gravitational-wave detectors becomes inefficient. In this work a Michelson-Sagnac inter-

ferometer is investigated, where a translucent mechanical oscillator serves as the common

end mirror for both arms of a Michelson interferometer as depicted in Fig. 4.1(a). The

light (carrier field) transmitted through the end mirror forms a Sagnac interferometer. A

Sagnac interferometer with a central50/50 beamsplitter acts as a mirror for the incident

light independent of the arm lengths. For a Michelson interferometer operated at (or near)

its dark fringe the carrier light is reflected to the laser port as well. The sideband fields cre-

ated by a displacement of the end mirror leave the interferometer at the signalport. Thus,

the combined Michelson-Sagnac interferometer is compatible with advanced interferome-

ter techniques such as power recycling and signal recycling [137, 138] that are sketched in

Fig. 4.1(b). These techniques are based on optical cavities and allow to resonantly enhance

the circulating light power inside the interferometer as well as the signals.

Light transmission through a homogeneous material is generally accompaniedby heat-

ing due to light absorption. This limits the light power that can be used for opto-mechanical

experiments. A key feature of this topology is that the lowest optical absorption can be

achieved for mechanical oscillators with subwavelength optical thickness placed in the

node of an optical standing wave that is inherent to the Michelson-Sagnacinterferometer.

Thereby, the residual absorption inside the oscillator’s material can be minimized, when

e.g. compared to single-pass transmission. Hence, high optical quality doesnot necessar-

ily refer to a high reflectivity, but rather to low optical loss due to absorptionand scattering.

4.1.1 Light field amplitudes in a Michelson-Sagnac interfero meter

The light fields (amplitude and phase) at the interferometer’s signal port will be derived in

this section. A displacement∆x of the common end mirror in a Michelson-Sagnac (MiSa)

interferometer (see Fig. 4.2(a)) causes a differential arm length change of∆l = la − lb =

2∆x, thus leading to light power variations at the output ports. With respect to advanced

interferometer techniques as power and signal recycling an operation ofthe interferometer

at a dark signal port is essential. The phase relations of the reflected and the transmitted
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Figure 4.2: (a) Michelson interferometer: A displacement∆x of the membrane leads to a differential

arm length change of∆l = la − lb = 2∆x. (b) Sagnac interferometer: The transmitted light forms a

Sagnac interferometer, which has a dark signal port for a 50/50 beamsplitter independent of the mirror

position.

light fields at the central beam splitter used here are based on Ref. [116]. With the num-

bering of ports given in Fig. 4.2, the complex amplitude reflectivity and transmissivity of

a lossless beam splitterrij = rbsexp(iΘij) andtij = tbsexp(iΘij), respectively, are re-

stricted byr12 = r∗34 andt13 = −t∗24 to satisfy energy conservation. Assuming the beam

splitter further to be reciprocal (Θij = Θji), these relations are fulfilled for the following

phase relations

Θ12 = −Θ34, (4.1)

Θ13 = −Θ24 ± π. (4.2)

This enables to set the phases for reflection and transmission independent from each other.

The complex coefficients of the common end mirror are written in the same manner as

r = rmexp(iΘrm) andt = tmexp(iΘtm). They are derived in detail in the next section for

a single layer material with non-zero absorption. The accumulated phases for propagating

light fields of wavelengthλ in a MiSa interferometer with arm lengthsla andlb leaving at
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the signal port are

Θsa1 = Θ12 +Θ34 +Θtm + k(la + lb), (4.3)

Θsa2 = Θ13 +Θ24 +Θtm + k(la + lb), (4.4)

Θmi1 = Θ12 +Θ24 +Θrm + 2kla, (4.5)

Θmi2 = Θ13 +Θ34 +Θrm + 2klb, (4.6)

with the wavenumberk = 2π/λ. The differential phase of the Sagnac interferometer is

given by

Θsa1 −Θsa2 = ±π. (4.7)

Consequently, the sum of all light field amplitudes at the signal port is givenby

aout
ain

= tmr
2
bse

iΘsa1 + tmt
2
bse

iΘsa2 + rbstbsrme
iΘmi1 + rbstbsrme

iΘmi2 (4.8)

= tme
iΘsa1

(
r2bs − t2bs

)

︸ ︷︷ ︸

Sagnac interferometer

+ rbstbsrme
i
2
(Θmi1+Θmi2)2 cos

(
Θmi1 −Θmi2

2

)

︸ ︷︷ ︸

Michelson interferometer

.(4.9)

Hence, in case of a balanced beam splitter (r2bs = t2bs = 0.5) the light fields interfere

destructively and the resulting normalized output power reads

P50/50

Pin
= |aout/ain|2 = r2m cos2 [k(la − lb) + Θ12 −Θ13 ± π/2] . (4.10)

The output power is minimal (dark fringe condition) for differential arm lengths of∆l =

la − lb fulfilling the condition

k∆l = (Θ13 −Θ12 ±mπ) with m = 0, 1, 2, . . . . (4.11)

In case of unbalanced splitting ratios, the residual but constant output amplitude of the

Sagnac interferometer needs to be considered. These basic results areexemplarily illus-

trated in Fig. 4.3 for three different splitting ratiosr2bs/t
2
bs assuming a power reflectivity of

r2m = 0.3. The maximal achievable output power is limited by the reflectivity of the end

mirror. For moderate splitting ratios, the amplitudes of a detuned Michelson interferometer

(counter-rotating blue phasors) cancel the residual amplitude of the Sagnac interferometer

(non-rotating black phasors). Hence, destructive interference caneven occur for non 50/50

splitting ratios. This is of particular importance for any experimental realizationof this

scheme, in which small deviations from the ideal splitting ratio typically occur.
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Figure 4.3: Normalized power at the signal port of a Michelson-Sagnac interferometer for different

splitting ratios of the central beam splitter. The phasors illustrate the phase relations of light fields

in a MiSa interferometer. While the light fields transmitted through the membrane (black arrows) are

constantly out of phase by180 deg, the reflected ones (blue arrows) are counterrotated proportional

to the end mirror displacement∆x. For moderate splitting ratios, the amplitudes of the Michelson

interferometer can compensate a residual amplitude from the Sagnac interferometer.

Remarks on diverging beams

So far the divergence of a real laser beam, when propagating throughthe interferometer, has

not been taken into account. Due to the geometrical symmetry of the MiSa interferometer,

the common end mirror needs to be placed in the optical center (la = lb). In this case, the

reflected and transmitted beams show the same divergence and can interfere optimally at

the beam splitter independent of the beam waist position. In case of additional (recycling)
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cavities and a plane end mirror, the beam waist is defined by the position of thismirror.

4.1.2 Standing wave: Nodes and anti-nodes

The two counter propagating light fields in the interferometer, transmitted through the com-

mon end mirror, form a standing wave in terms of the electrical field. An anti-node (max-

imal electric field amplitude) will be present where both fields have accumulatedequal

phase, namely at the interferometer center or in integer (m = 0, 1, 2, . . .) distances of half

a wavelength from that point. This can be written as

Θ12 + k(la ±
m

2
λ) = Θ13 + k(lb ∓

m

2
λ) (4.12)

⇒ k(la − lb) = Θ13 −Θ12 ∓ 2mπ, (4.13)

while nodes (minimal electric field amplitude) are described by

Θ12 + k(la ±
2m+ 1

4
λ) = Θ13 + k(lb ∓

2m+ 1

4
λ) (4.14)

⇒ k(la − lb) = Θ13 −Θ12 ∓ (2m+ 1)π. (4.15)

Comparing these relations with Eq. (4.11) one finds that the positions of nodes and anti-

nodes correspond to the dark fringe condition for the signal port in case of a 50/50 beam

splitter. This result is independent of the actual beam splitter phases, since they have not

been specified so far. For unbalanced splitting ratios, a superposition ofa standing and a

traveling wave will be present in the interferometer, for which the minimum and maximum

values in electrical field amplitude are at the same positions. Hence, only for ’roughly

balanced’ beam splitting ratios nodes and anti-nodes will coincide with a darksignal port.

In the next section, the implication of the standing wave regarding the optical absorption

of a translucent mirror is quantified.

4.1.3 Optical properties of single layer materials

The optical properties of a translucent material with a complex index of refractionn2 =

n
′

+ in′′ and the geometrical thicknessh, surrounded by a non-absorbing material with

Im(n1) = 0 can be derived from a multiple interference model as depicted in Fig. 4.4(a).

This model is based on the well known Fresnel equations for reflection and transmission

under normal incidence at the material boundaries [139]

r1 =
n1 − n2

n1 + n2
, r2 =

n2 − n1

n1 + n2
, t1 =

2n1

n1 + n2
, and t2 =

2n2

n1 + n2
. (4.16)
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Figure 4.4: (a) Multiple interference model used to calculate the complex reflection andtransmission

coefficients (r, t) of a translucent material with thicknessh and non-zero absorption Im(n2) > 0

surrounded by vacuum (n1 = 1). (b) Membrane position in the Michelson-Sagnac interferometer with

respect to the counterpropagating light fieldsa1 anda2.

The incident light fielda0 is partly reflected (r1) and transmitted (t1) at the surface. The

transmitted light field undergoes several internal reflections (r2). A fraction is coupled out

via transmissiont2 after each pass of lengthn2h. Summing up all fields, one arrives at the

membrane’s complex amplitude reflectivity

r = r1 + t1t2r2e
2ikn2h

∞∑

m=0

(

r22e
2ikn2h

)m
=

r1 + r2e
2ikn2h

1− r22e
2ikn2h

(4.17)

and transmissivity

t = t1t2e
ikn2h

∞∑

m=0

(

r22e
2ikn2h

)m
=

t1t2e
ikn2h

1− r22e
2ikn2h

. (4.18)

For a layer surrounded by vacuum (n1 = 1), this simplifies to

r = − (n2
2 − 1) sin(kn2h)

2in2 cos(kn2h) + (n2
2 + 1) sin(kn2h)

, (4.19)

t =
2in2

2in2 cos(kn2h) + (n2
2 + 1) sin(kn2h)

. (4.20)

In Fig. 4.5(a), the reflectivity|r|2 of a single layer of silicon nitride as a function ofh

is shown. The index of refraction of silicon nitride for a wavelength ofλ = 1064nm is

n2 = 2.2 + i1.5 × 10−4 [134]. The highest reflectivity of43% is reached at a thickness

of d ≈ 120nm. For a translucent mirror in the MiSa interferometer, one has to consider
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Figure 4.5: (a) Reflectivity of a single layer material versus its geometrical thicknessh, exemplified

for a silicon nitride film with the index of refraction ofn2 = 2.2 + i1.5× 10−4 at a laser wavelength

of λ = 1064 nm. (b) Corresponding optical absorption for such a sample placed in the node and anti-

node of a standing wave as well as for a traveling wave. In particular forthin films (h ≤ 100 nm), the

absorption can be significantly smaller when being placed at a node.

two counterpropagating incident fields (a1, a2) as depicted in Fig. 4.4(b). Generalizing

for arbitrary incident fields, as a result from unequal beam splitting ratios (tbs 6= rbs), the

outgoing fields are given by

b1 = rrbse
i(2kla+Θ12)ain + ttbse

i(k(la+lb)+Θ13)ain, (4.21)

b2 = rtbse
i(2klb+Θ13)ain + trbse

i(k(la+lb)+Θ12)ain. (4.22)
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The absorption loss can then be derived to

A = 1−
(
|b1|2 + |b2|2

)
/|ain|2 (4.23)

= 1−
[
|r|2 + |t|2 + (r∗t+ t∗r)2rbstbs cos(k(∆l) + Θ12 −Θ13)

]
. (4.24)

In case ofrbs = 0, this expression describes the absorption of a traveling wave and is

independent of the mirror position. For other splitting ratios, the last term modifies this

absorption loss depending on the mirror displacement. Its maximum/minimum value cor-

responds to tunings at node and anti-node given by Eqs. (4.13) and (4.15). In Fig. 4.5(b),

the absorption of a silicon nitride membrane versus its geometrical thickness is shown.

Here, a 50/50 beam splitter was chosen, which gives the largest difference for a membrane

placed at a node (blue line) and a anti-node (red line) according to Eq. 4.24. Also shown is

the absorption of a membrane in a traveling wave (green line) for single passtransmission.

The oscillation of these curves with increasing layer thickness arises frominterference in-

side the material, which leads to a varying power reflectivity (compare to Fig. 4.5(a)). For a

traveling wave, the peaks in absorption coincide with the minimum value of the reflectivity.

At these layer thicknesses, the light fields interfere constructively insidethe material and

are resonantly enhanced. This corresponds to an impedance-matched cavity through which

all light is transmitted on resonance. The absorption at a node or anti-nodeis found to be

either higher or smaller when compared to a traveling wave, as the layer senses a different

distribution in terms of optical field strength. The absorption at a node can behigher than

at an anti-node if the layer thickness is extended to such an amount that it covers a larger

contribution from the anti-nodes. However, in particular for membranes having a thickness

h < 100nm, optical absorption can be significantly lower if being placed at a node.

4.1.4 Quantum noise in a Michelson-Sagnac interferometer

The measurement of differential arm length changes in a Michelson-type interferometer

is based on the detection of light power variations at its signal port. According to this,

the corresponding measurement precision depends on how accurate theoptical power can

be measured. For a coherent laser field, this limit is set by the photon counting statistics

in the detection process (shot noise), arising from the quantum nature oflight. These

quantum fluctuations in photon numbers moreover lead to fluctuating radiation pressure

forces inside the interferometer, due to momentum transfer on the mirrors. Inthe 1980s
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[3, 4] these forces were explained for a Michelson interferometer on thebasis of vacuum

fluctuations of the electromagnetic field that are coupling in at the (open) signal port. These

interfere with the internal laser field and give rise to the radiation pressurefluctuations that

drive the mirrors. In this section, the quantum noise, composed of shot noise and radiation

pressure noise, in a Michelson-Sagnac interferometer is outlined based on [132].

In a Michelson interferometer the differential arm length equals the differential displace-

ment of the two end mirrors. In a Michelson-Sagnac interferometer, the samedifferential

displacement equals half the actual displacement of the common end mirror. Hence, the

equivalent displacement noise, due to shot noise, is different for bothtopologies. The out-

put powerPout of a Michelson-Sagnac interferometer with a 50/50 beam splitter, as given

by Eq. (4.10), can be rewritten to

Pout =
r2Pin

2

[

1− cos

(

φ0 +
8π

λ
x

)]

, (4.25)

wherex is the displacement of the membrane andφ0 is the operational point of the inter-

ferometer (φ0 = 0 corresponds to a dark fringe). The signal caused by a displacement at

x = 0 is given by the derivative of Eq. (4.25) yielding

Psig =
dPout

dx
=

4πr2Pin

λ
sin(φ0). (4.26)

The laser shot noise at the signal port depends on the detected powerPout and thus on the

operational point of the interferometer as well. Its single sided spectral density is given by

[140]

Gshot =

√

4π~cPout

λ
, (4.27)

where~ is the reduced Planck constant andc is the speed of light. Hence, the signal

normalized shot noise in terms of equivalent displacement noise is given by

xsn =
Gshot

Psig
=

√

~cλ

16πr2Pin

1

cos2(φ0/2)
, (4.28)

which is minimal at a dark fringe

xsn =

√

~cλ

16πr2Pin
. (4.29)
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This result is a factor of two larger (forr2 = 1) when compared to a Michelson interferom-

eter (see e.g. [140]). An increase in power leads to an improved signal toshot noise ratio.

On the other hand, the fluctuations of radiation pressure forces acting onthe end mirror due

to the momentum transfer of reflected photons increase (all other optical components such

as the beam splitter are assumed to be much heavier and are thus neglected).The common

end mirror in a Michelson-Sagnac interferometer is exposed to two counterporpagating

light fields. While the radiation pressure forces associated with the incidentlaser power

(including technical laser intensity noise) cancel each other at the end mirror, the vacuum

fluctuations are anti-correlated in the two arms and lead to differential radiation pressure

forces [3]. In order to derive the net force on the common end mirror, the interference of

the counterpropagating fields must be taken into account, namely the superposition of the

reflected and transmitted light fields. These calculations can be found in [132], yielding the

spectral density of the force on the common end mirror to be

GF =

√

16π~r2Pin

cλ
. (4.30)

The corresponding displacementxrpn caused by the radiation pressure force is given by

xrpn = |H(f)|GF = |H(f)|
√

16π~r2Pin

cλ
, (4.31)

whereH(f) is the susceptibility of the mirror, which depends on the measurement fre-

quencyf . The susceptibility for a mechanical oscillator of massm, eigenfrequencyf0 and

mechanical quality factorQ reads

H(f) =
1

m(2π)2
1

f2
0 − f2 + if2

0 /Q
. (4.32)

A detailed description of mechanical oscillators can be found in section 1.2.

The shot noise and radiation pressure noise given by Eqs. (4.29) and(4.31), respectively,

scale inversely with the incident power and depend on the frequency in a different way.

Hence, the dominating contribution in the uncorrelated sum of both

xqn =
√

x2rpn + x2sn (4.33)

depends on the measurement frequency. The uncorrelated sum of bothis minimal if both

contribute equally. This defines the standard quantum limit (SQL). The corresponding
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optimal powerPopt is found by solvingxrpn = xsn with respect to the incident power,

which yields

Popt =
cλ

16πr2|H| . (4.34)

Inserting this result in Eq. (4.33) yields the standard quantum limitxsql for a Michelson-

Sagnac interferometer to

xsql =
√

2|H|~ (4.35)

This result is the same as derived from the Heisenberg uncertainty relationregarding the

position measurement of a single mechanical oscillator [1].

4.2 Silicon nitride membranes as mechanical oscillators

The fabrication of thin silicon nitride (SiN) films is well established as there is a wide

variety of applications. They are for instance utilized as etch stop for the fabrication of

micro-electro-mechanical systems (MEMS) or serve as sample holder in electron and x-

ray microscopy. The application of thin SiN membranes for opto-mechanical experiments

was first investigated in [133] (membrane inside a cavity). Besides their smalleffective

mass of about100ng, SiN membranes provide high mechanical quality factors exceeding

106 at 300K and 107 at 300mK [136]. A photograph of a SiN membrane on a silicon

frame is shown in Fig. 4.6(a). The dimensions as given there correspondto the membrane

used throughout this work, although a wider range in terms of area and thickness is avail-

able. The basic principle of their fabrication process is sketched in Fig. 4.6(b). The starting

point is a silicon substrate that is coated by a mixture of silane (SiH4) and ammonia (NH3)

in a low pressure chemical vapor deposition (LPCVD) process at temperatures of about

700K to 900K. Depending on the excess of ammonia, the layer formed will show the sto-

ichiometric (Si3N4) or silicon rich (SiN) composition of silicon nitride. Details about this

process can be found in [141, 142]. The stoichiometric silicon nitride membranes typically

have a tensile stress of about1GPa, while the silicon rich membranes show a lower stress

of ≤ 200MPa [143]. In either case the stress is introduced during the deposition process

and the subsequent formation to silicon nitride. It is of intrinsic origin and in particular

cannot be explained solely by the difference of the thermal expansion coefficients of the

layer and the substrate. During this work, silicon rich membranes (Si1.05N) have been used.
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Figure 4.6: (a) Photograph of a silicon nitride (SiN) membrane attached to a silicon frame. (b)

Sketch of the fabrication process. After the deposition of a SiN layer, a window is etched through the

silicon substrate, revealing a single SiN layer with a high intrinsic tension. The dimensions depicted

correspond to the sample used throughout this work.

In the following sections the mechanical properties of such membranes are described

in more detail as they are the key for the design of opto-mechanical experiments. The

eigenfrequency, mass and mechanical loss are discussed as they are essential to describe

the membrane as a damped harmonic oscillator and subsequently to predict the level of

thermally excited displacement noise.

4.2.1 Eigenmotion and effective mass

The eigenmotion of a membrane is given by the geometry and tension. In Fig. 4.7(a), the

deflection of a membrane out of the horizontal plane (x/y) is illustrated. The intrinsic ten-

sionT leads to differential forces on each volume elementdV = hdxdy that are tangential

to the surface of the membrane. The net force in the x-direction on a specific volume el-

ement due to tension is given byFT(x + dx, y) − FT(x, y) as depicted in Fig. 4.7(b). If

the amplitude of deflectionu(x, y, t) of the membrane is small compared to its area, the

tension is assumed to be constant. In this approximation, counteracting forces in the hor-

izontal plane cancel out due to the small inclination angle. The resulting vertical force is
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Figure 4.7: (a) Sketch of a deflected membrane that is fixed to a rectangular frame.(b) Cut in the y-

direction of a deflected membrane, illustrating the forces acting tangential tothe membrane’s surface.

For a small deflectionu(x, y, t) (small inclination angles), the net restoring force on a specific volume

elementFx acts in vertical direction.

given by [144]

Fx = Tδxu(x, y, t)|x+δxdy − Tδxu(x, y, t)|xdy (4.36)

≈ Tδ2xu(x, y, t)dxdy. (4.37)

The forces caused by tension along the y-direction can be derived in thesame manner.

Hence, the total restoring forceFres caused by the intrinsic tension of a membrane is given

by

Fres = T (δ2x + δ2y)u(x, y, t)dxdy. (4.38)

For a homogeneous material of thicknessh, the densityρ and thus the mass per areaµ = ρh

is constant. The inertia of a volume element is thus described byF = µδ2t dxdy. Hence,

the equation of motion is given by

δ2t u(x, y, t) =
T

µ
(δ2x + δ2y)u(x, y, t), (4.39)

which is known as the Helmholtz equation. Due to the boundary condition of zero ampli-

tude at the frame for all timest [ u(x = 0, Lx) = u(y = 0, Ly) = 0], a base system for

solutions is given by

u(x, y, t) = sin

(
nπx

Lx

)

sin

(
mπy

Ly

)

cos(ωnmt), (4.40)
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Figure 4.8: Measured spectrum of the membrane’s eigenfrequencies (red trace) and detector dark

noise (blue line). The frequencies of higher order modes (gray dots)have been predicted on the basis of

f11 = 101 kHz. The squared images show calculated mode shapes exemplarily forn = m. Their color

coding (blue,green,red) corresponds to a normalized amplitude (-1,0,1). The widths of the measured

peaks were dominated by the frequency resolution of the spectrum analyzer.

wheren,m ≥ 1 are integer numbers, denoting the eigenmodes, andLx, Ly are the side

lengths of the membrane. The angular eigenfrequenciesωnm are then found to be

ωnm = π

√

T

µ

(
n2

L2
x

+
m2

L2
y

)

. (4.41)

A measured spectrum of the membrane’s motion/eigenfrequencies is shown inFig. 4.8.

The spectrum was recorded by means of an interferometric setup under vacuum conditions.

The dimensions of the membrane wereLx = Ly = 1.5mm andh ≈ 65nm. Based on the

fundamental frequency off11 = 101 kHz, the tension of the membrane can be derived via

Eq. (4.41) to beT = 8.77N/m, based on a material density ofρ = 3.1g/cm3 [143]. The

tensile stress isσ = T/h = 148MPa, which is in agreement with the specification provided

by the manufacturer. The eigenfrequencies of higher order modes canbe predicted based

on these parameters via Eq. (4.41). They are represented by the grey dots in Fig. 4.8 and

are in good agreement with the measured spectrum.
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Effective mass

Due to the position dependent displacement of each volume elementdV = hdxdy, the

overall kinetic energy of the membrane depends on its amplitude functionu(x, y, t). By

introducing an analogy to an one-dimensional spring pendulum, as depictedin Fig. 4.9,

one can assign an effective mass to the membrane. Therefore, a comparison of the kinetic

m
i

u(x,y,t)

m
eff

Figure 4.9: The effective mass of a membrane is derived by comparison of its kinetic energy with

that of a one-dimensional oscillator with massmeff .

energies of a one-dimensional oscillator and a vibrating membrane yields

meff

2
ẋ(t)2 =

ρh

2

∫ Lx

0

∫ Ly

0
u̇(x, y, t)2dxdy (4.42)

=
ρh

2

LxLy

4
u̇(t)2 =

1

4

m

2
u̇(t)2. (4.43)

As a result, the effective mass of the membrane’s fundamental mode is a fourth of its geo-

metrical mass. Consequently, a membrane can be modeled as an one-dimensional harmonic

oscillator by accounting for its effective mass. According to Hooke’s law,the equation of

motion of an elastic pendulum with positive spring constantD is given by

ẍ(t) + w2
0x(t) = 0 (4.44)

wherew2
0 = D/meff is the angular frequency.
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4.2.2 Quality factor of a damped oscillator (time domain)

The quality factorQ of a mechanical oscillator is a dimensionless quantity. It is a measure

for the dissipation of energy and generally defined as

Q = 2π
E

∆E
, (4.45)

whereE is the energy of the mode and∆E the dissipated energy during one oscillation

cycle [145]. After exciting a mechanical oscillator at its eigenmode, its amplitudex(t) will

show an exponential decay with time. Assuming a velocity dependent drag force bẋ, the

equation of motion reads

ẍ+ γẋ+ ω2
0x = 0, (4.46)

with γ = b/m. A solution for small dissipation is given by [145]

x(t) = x0e
−γt/2 cos(ωt), (4.47)

whereω2 = ω2
0 − γ2/4 ≈ ω2

0 is the damped eigenfrequency. In terms of energy the decay

is given by

E(t) =
1

2
x20mω2

0e
−γt. (4.48)

Inserting this into the definition of the quality factor Eq. (4.45) yields

Q = 2π
1

1− e
−γ 2π

ω0

≈ ω0

γ
= πf0τ, (4.49)

where the ringdown time is defined asτ = 2/γ. The ringdown time describes the time

after which the excited amplitude has dropped to1/e (or equivalently the energy to1/e2).

Hence, by measuring the amplitude ringdown time and the eigenfrequencyf0 of a mechan-

ical oscillator, its quality factor can experimentally be determined.

A typical measurement for the fundamental mode of a silicon nitride membrane under

vacuum conditions (≤ 10−6 mbar) is shown in Fig. 4.10. The membrane was excited on

its eigenfrequency off11 ≈ 100 kHz via a piezo element. Its amplitude was measured

by means of a laser interferometer, which is explained in detail in section 4.3. Here, the

envelope of the detected signal is shown, which is derived by taking the maximal/minimal

valuesxmax(t)/xmin(t) for time intervals including a few thousand oscillation cycles. The
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Figure 4.10: (a) Typical ringdown measurement of a membrane with a quality factor of Q ≈ 106

under vacuum condition (≤ 10−6 mbar). Shown is the upper (xmax) and lower (xmin) envelope of

the membrane’s amplitude versus time. (b) The ringdown time was determined from a linear fit of the

logarithmic amplitude within the dashed lines.

ringdown time was then determined by means of the logarithmic decrement via a linear fit

of ln(|xmax/min(t)|) = −tτ as shown in Fig. 4.10(b). The times of initial excitation and

detector noise dominance were excluded from the fit. The quality factor measured here

for a membrane with eigenfrequency of about100 kHz is Q ≈ 106. This corresponds to

Q/π ≈ 320000 oscillation cycles before the amplitude has dropped to1/e.

In general, energy is potentially dissipated by a variety of loss mechanisms ofdifferent

origin as e.g. intrinsic loss, recoil loss and gas damping. According to Eq. (4.45), it is

useful to introduce the loss angle asφ = 1/Q, which is proportional to the sum of different
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loss contributions

1

2πE

∑

i

∆Ei =
∑

i

1

Qi
=
∑

i

φi. (4.50)

Equation (4.50) can be used to derive the energy dissipation of a mechanical system. How-

ever, it is limited to the eigenfrequency of an oscillator, where the oscillators response to

an external driving force is amplified and thus detectable. It does not tellyet about any fre-

quency dependence of the loss angle and thus about off-resonant thermal noise, for which

two models are discussed in the following.

4.2.3 Structural and viscous damping (frequency domain)

In this section, the mechanical quality factor is related to two different dampingmecha-

nisms which are known as structural and viscous damping [146]. The complex transfer

functionH(ω) of a damped oscillator

H(ω) =
x̃(ω)

F̃ext(ω)
. (4.51)

is the amplitude responsẽx(ω) of a system normalized to an external driving forceF̃ext(ω)

For a single-mode mechanical oscillator, the fluctuation-dissipation theorem states that the

power spectral densityxT of thermally driven motion is given by [147]

x2T = −4kBT

ω
Im[H(ω)], (4.52)

whereIm[H(ω)] is the imaginary part of the transfer function.

Structural damping

According to Hooke’s law, the restoring force of an elastic spring pendulum is proportional

to its spring constantD. Structural damping considers anelasticity of a material, which in-

troduces a phase lack of the oscillators response to the driving force. For small dissipation,

the restoring force is described byFres ≈ D(1 + iφstr), whereφstr is the loss angle for

structural damping. Based on this, the equation of motion given in Eq. (4.44)in frequency

domain becomes

−ω2x̃(ω) + ω2
0(1 + iφstr)x̃(ω) =

F̃ext(ω)

m
. (4.53)
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Hence, the complex transfer function for structural (frequency independent) damping reads

H(ω) =
x̃(ω)

F̃ext

=
1

m

(w2
0 − w2)− iφstrω

2
0

(ω2
0 − ω2)2 + φ2

strω
4
0

, (4.54)

with the real and imaginary parts already separated. By inserting the imaginary part in

Eq. (4.52), the power spectrum for thermally excited displacement causedby a frequency

independent damping mechanism is derived to

x2str(ω) =
4kBT

mω

φstrω
2
0

(ω2
0 − ω2)2 + φ2

strω
4
0

. (4.55)

The frequency dependence below and above the oscillators eigenfrequency in terms of

displacement is given by

ω ≪ ω0 → xstr ∝ ω− 1
2 , (4.56)

ω ≫ ω0 → xstr ∝ ω− 5
2 . (4.57)

Viscous damping

Viscous damping is usually considered for drag forces proportional to the velocity of an

oscillator such as gas damping. However, it can also be considered as a mathematical

description for internal damping processes. Adding an external forceto the equation of

motion for an oscillator with viscous damping given in Eq. (4.46) and converting it to the

frequency domain yields

−ω2x̃(ω) + iωγx̃(ω) + ω2
0x̃(ω) =

F̃ext(ω)

m
. (4.58)

By comparing with Eq. (4.53), one finds the loss angle for viscous damping

φvis(ω) =
γω

ω2
0

. (4.59)

to be frequency dependent. By substitutingφstr → φvis in Eq. (4.55), the thermal noise

spectrum for a viscous damping model is given by

x2vis =
4kBT

m

γ

(ω2
0 − ω2)2 + γ2ω2

(4.60)
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The off-resonant frequency dependence then reads

ω ≪ ω0 → xvis ∝ const, (4.61)

ω ≫ ω0 → xvis ∝ ω−2 (4.62)

On resonance, the loss angle for viscous damping is the inverse of the quality factor as

given by Eq. (4.49). Hence, the loss angles for viscous and structural damping are related

to the quality factor on resonance by

Qvis =
1

φvis(ω0)
=

ω0

γ
and Qvis =

1

φstr
. (4.63)

The level of thermal noise for a membrane with an effective mass of100ng and an eigen-

frequency of100 kHz in terms of displacements is shown in Fig. 4.11. The quality factors
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Figure 4.11: Thermal noise for a silicon nitride membrane at room temperature (red lines) and cryo-

genic temperature (blue lines). For comparison, structural (solid lines)and viscous damping (dashed

lines) have been taken into account. Targeting sensitivities at the standardquantum limit (black solid

line) of such an oscillator requires to operate at cryogenic temperatures.

are assumed to a value ofQ = 106 at room temperature andQ = 107 for T = 1K, as

they have been reported based on experimental results [136]. Regarding quantum measure-

ments, the standard quantum limit as given by Eq. (4.35) is depicted for comparison. One

already finds that cryogenic cooling of these membranes is needed to reach the quantum

regime.

86



4.3 EXPERIMENTAL REALIZATION OF A M ICHELSON-SAGNAC INTERFEROMETER

4.3 Experimental realization of a Michelson-Sagnac

interferometer

An overview of the experiment is shown in Fig. 4.12 by means of a simplified sketch and

a photograph of the actual setup. The parts marked in the photograph will be described in

 ≤ 10-6 mbar

@1064nm

faraday isolator

filter cavity

signal detection

Laser

laser preperation

Michelson-Sagnac interferometer

vacuum system

signal detection

periscopes

Figure 4.12: Illustrated overview of the experiment and a photograph of the actual setup. The

Michelson-Sagnac interferometer was operated under vacuum condition (≤ 10−6 mbar) in order to

prevent gas damping of the membrane motion.
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the following. They are at a glance:

• Laser preparation: Spatial filtering via a triangular cavity and mode matching tothe

interferometer.

• Michelson-Sagnac interferometer: Components and control for operating the exper-

iment under vacuum conditions.

• Vacuum system: A constant pressure lower than10−6 mbar and a low noise environ-

ment was needed to minimize disturbances on the membrane eigenmotion.

• Signal detection: Polarization adjustment and calibrated power measurementsas re-

quired for subsequent experiments.

4.3.1 Laser preparation

The laser source was a continuous wave Nd:YAG laser of2W output power at a wavelength

of 1064nm (Mephisto) [123]. A triangular cavity was used for spatial filtering of the laser

light [124] to provide a well defined gaussian beam for the subsequentexperiment. The

round trip length was stabilized to the laser frequency via the PDH-technique(see section

3.1) by means of a piezo-actuated cavity mirror. An additional low frequency temperature

control of the cavity spacer based on peltier elements was implemented, providing a long

term stability. Namely, compensating thermal drifts of the spacer, for which theactuation

range of the piezo-element was insufficient.

The beam reflected from the interferometer coincides with the ingoing beam and thus

was matched to the filter cavity. Although the photodiode supplying the error signal of the

filter cavity is not in the path of this reflected beam, the stabilization was found to become

unstable. This was most probably caused by residual reflections or back scattering at optical

components. In order to avoid this effect, a Faraday isolator has been implemented in

between the filter cavity and the interferometer setup.

The beam was guided into and out of the vacuum tank via two periscopes. These were

designed to be rigid and highly damped in order to avoid suppress frequency beam jitter

with respect to the interferometer. A modematching telescope by means of two lenses was

set up outside the vacuum chamber. A beam waist with a diameter of about450µm at the

interferometer’s center (membrane position) was realized in order to avoid beam clipping at

the membrane, which had an side length of1.5mm. The realization of even smaller beam
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sizes is challenging with standard optical components due to the rather large separation

between the modematching telescope and the membrane position of about1.3m. The

telescope mount was designed to enable a separate as well as a common fine positioning of

the two lenses by means of micrometer screws. Finally, the polarization of the laser beam

was adjusted via aλ/2-plate in front of the optical feedthrough to the vacuum tank. The

remaining available power at the beam splitter of the Michelson-Sagnac interferometer was

on the order of1W.

4.3.2 Michelson-Sagnac interferometer

A photograph of this part of the experiment is shown in Fig. 4.13. Since onlyone optical

throughput was available, two steering mirrors were used to guide the laserbeam to the

central beam splitter of the Michelson-Sagnac interferometer. Both were mounted in long

term stable Siskiyou mounts [148]. The beam splitter has been glued to its mountin order

to prevent any misalignment due to vibrations introduced by the vacuum pumps. Hence, it

defined the plane of the interferometer in terms of light propagation. The folding mirrors

of the interferometer were mounted in remote controllable Agilis mounts [149], containing

piezo-actuated stepper motors. These do not introduce additional noise due to the actuating

elements itself and allowed for an adjustment accuracy of1µrad for rotation and tilt.

The membrane, being the key element of the interferometer, was further adjustable in

its longitudinal direction (along the beam axis). Its macroscopic positioning withrespect

to the interferometer’s center was done via a remote controllable mount. The position of

the membrane was optimized to the interferometer’s center, giving the optimal interference

contrast. Also, the microscopic tuning of the differential length of the interferometer was

adjusted via the membrane. Therefore, the membrane was actuated via a ring piezo along

the beam axis. For initial experiments, the membrane’s frame was directly attached to a

ring piezo. It turned out that the eigenfrequency of the membrane changed by several kHz

when tuning the membrane’s position. This could be attributed to a change of its tension.

With higher voltages applied to the piezo (and a corresponding longitudinal expansion) its

radius decreased according to its Poisson’s ratio. This lead to a smaller tension applied to

the frame and thus to a smaller eigenfrequency of the membrane as predicted by Eq. (4.41).

This effect could however be efficiently suppressed by mechanically decoupling the mem-

brane from the piezo element via an additional aluminum cylinder (open end caps) to which

the membrane frame was glued.
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signal port

laser port

SiN membranebeam splitter

Figure 4.13: Photograph of the Michelson-Sagnac interferometer inside the vacuum tank.

Initially, the interferometer was adjusted in air with respect to a high interference contrast

of about0.998. After evacuating the system, the alignment of the interferometer had to be

readjusted. This was mainly caused by deformations of the vacuum chamberand of the

interferometer base plate. Vibrations during the pumping process had, on the other hand,

no significant effect. Further, no degradation in terms of alignment occurred for weeks in

vacuum.

4.3.3 Vacuum system and gas damping

The vacuum system in particular had to fulfill two requirements. First, a long term stable

pressure below10−6 mbar was needed in order to avoid gas damping of the membrane (see

experimental results below). Second, it should not add any vibrations whileoperating the

interferometer. The full system is sketched in Fig. 4.14. In order to achieve and hold a

pressure lower than10−6 mbar, a three way pump system was set up. First, a scroll pump

was used to achieve a vacuum of about10−2 mbar. This was followed by a turbomolecular

pump in order to achieve the targeted pressure. The model used was a TPH520M from
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Figure 4.14: Illustration of the vacuum system. A combination of scroll pump and turbomolecular

pump is used to achieve a pressure of≤ 10−6 mbar. An ion-getter pump was used to hold the pressure

without adding vibrations, after the gate valve between vacuum chamber and turbo pump was closed

and the set of pumps was shut down.

Pfeiffer with a magnetic bearing. In comparison with the formerly used Turbo-V 550 from

Varian, which is based on mechanical bearings, the vibrations during the pumping process

could be reduced by a factor of about 10. However, the TPH520M still introduced signif-

icant vibrations that were shaking the in-vacuum components, which lead todifferential

arm lengths changes on the order of micrometers. The sealing of the vacuum chamber by

means of a viton ring was not able to hold the pressure after closing a valve between the

experiment and the turbo pump after the latter one was shut down. Therefore, an additional

vibration free ion-getter pump was added to the system. The model chosen was a VacIon

Plus 20 from Varian, which provided a sufficient pump rate to hold the pressure below

10−6 mbar. More details on this initial setup can be found in [150].

Gas damping of a membrane

Due to a membrane’s large area to mass ratio, its motion is found to be significantly damped

by the surrounding gas molecules. The measured quality factor versus residual pressure is

shown in Fig. 4.15. At a pressure larger than0.1mbar, no signal could be found with the

precision allowed by the interferometric setup. For smaller pressures the membrane could

be excited sufficiently strong on its eigenfrequency to take ringdown measurement. Below
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Figure 4.15: Measured quality factor of a membrane versus air pressure. The theoretical prediction

on gas damping is based on a free molecular model for thin films. Pressures below10−6 are sufficient

in order not to be limited by gas damping.

10−6 mbar, the residual gas had no significant influence anymore. Here, the quality factor

of aboutQint = 0.9 × 106 is limited by the intrinsic mechanical loss of the membrane

itself. For low pressures, as investigated here, the mean free path of individual molecules

(distance between collisions) becomes large compared to the size of the membrane. There-

fore, a free molecular model for gas damping of thin films [151, 152] was used here to

compare the experimental results with theoretical predictions. For the fundamental motion

of the membrane (in the direction orthogonal to its surface), the number of collisions with

gas molecules is different on the front and on the back surface due to therelative speed

(viscous damping). Thereby, a net momentum transfer from the oscillator tothe surround-

ing gas molecules occurs. In [152], the dissipated energy for one oscillating cycle due to

collisions with the surrounding gas molecules is derived and linked to the qualityfactor for

gas damping yielding

Qgas = phf0

(π

2

)3/2
√

RT

Mmol

1

p
, (4.64)

whereR = 8.31447 is the gas constant,Mmol the molar weight of the gas molecules andp

the pressure in units of [Pa] or equivalently [10−2 mbar]. The theoretical results in Fig. 4.15

are based onMmol(N2) ≈ 0.028 kg/mol for molecular nitrogen, which is assumed to be
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dominant in the setup. The overall quality factor is derived via Eq. (4.50) to

Q =

(
1

Qint
+

1

Qgas

)−1

. (4.65)

Hence, at low pressures the intrinsic mechanical loss1/Qint of the oscillator becomes

dominant. The agreement of experiment and theory is rather good at low pressures (p ≤
10−3 mbar), where a Pirani gauge was used to measure the gas pressure. The deviations

at higher pressures ofp ≥ 10−3 mbar are most probably caused by a degradation of the

Penning gauge used for measurements in this regime. As a result, the quality factor of

Qint = 0.9 × 10−6 measured here is practically not limited by gas damping for pressures

p ≤ 10−6 mbar. This conclusion even holds for thinner membranes withh ≈ 10nm or with

quality factors of the order of107. In order to account for thinner membranes and a higher

quality factor at the same time, a pressure of≤ 10−7 mbar would be required according to

this model.

4.3.4 Power detection

The output fringe pattern of a Michelson-Sagnac interferometer depends on the splitting

ratio of the central beam splitter and the end mirror reflectivity as derived insection 4.1.1 .

The transmissivity of the membrane was measured to bet2m = 0.696 at the laser wavelength

of 1064nm. Based on the index of refraction ofn = 2.2 for SiN, the layer thickness can

be derived via Eq. (4.20) to beh = 66nm. The beam splitter used in the experiment was

measured to have a ratio of0.486/0.514 for s-polarized light and of0.241/0.759 for p-

polarized light. This results in significantly different interferometer fringesregarding the

light field polarization. The power measurements of the ingoing and outgoing light fields

with respect to the interferometer were done with calibrated photodiodes, asdepicted in

Fig. 4.16. The photodiodes detecting the incident power (PDin) and the power at the signal

port (PDT) were calibrated via a power meter placed before the beam splitter and in the

signal port, respectively. The light reflected from the interferometer was measured with

a photodiode (PDR) in reflection of the Faraday isolator. For the calibration of PDR, the

optical loss of the light propagating from the Faraday isolator to the beam splitter as well

as the optical loss at the Faraday isolator itself were measured and considered. As a result,

the incident and outgoing powers could be measured simultaneously as shown in Fig. 4.17

for s- and p-polarized light. The polarization was adjusted via aλ/2 plate (P1) in front
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Figure 4.16: Sketch of the experiment including calibrated photodiodes for measurements of the

incident (PDin), transmitted (PDT), and reflected (PDR) light power. The photodiode PDA and the

polarizing beam splitter (PBS) were used to analyze the polarization of the transmitted light. P0,P1

and P2 denoteλ/2 plates.

of the optical feedthrough. The powers transmitted (red trace) and reflected (blue trace)

by the interferometer were normalized to the incident power (not shown here). Their sum

(green trace) is about one over the full fringe, thus matching the incident power. However,

a relative error of about7% must be assumed for each trace as the calibration was based on

measurements with a power meter. The shape of the measured fringes is in good agreement

with theoretical predictions as shown in the next section. The interferencecontrast at the

signal port (s-polarized light) was

C =
Pmax − Pmin

Pmax + Pmin
= 0.9978, (4.66)

wherePmax andPmin denote the maximal and minimal power of the fringe, respectively.

This value corresponds to a residual light power of350ppm at the dark fringe with respect

to the incident power caused by an imperfect interference contrast.

In general, the detected fringe is composed of both polarizations in terms of power, if the

polarization of the incident light is rotated with respect to the reference frame defined by the

beam splitter. This was analyzed separating both polarizations via a polarizing beam split-

ter (PBS) in conjunction with aλ/2-plate (P2) in the signal port. The latter was adjusted

such that the reference frame of the PBS and the beam splitter in the interferometer are

matched to each other. The incident polarization could be optimized via P1 by minimizing

the detected signal at the analyzer photodiode PDA. When changing the input polarization
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Figure 4.17: Measured fringes of the Michelson-Sagnac interferometer for s- andp-polarized light.

All traces were simultaneously recorded using calibrated photodiodes while the membrane position

was scanned. The traces are normalized to the incident power. Blue: laser port, red: signal port and

green: their sum. The difference for s- and p-polarization is due to the polarization dependence of the

central beam splitter having a splitting ratio of 0.486/0.514 and 0.241/0.759, respectively. The residual

power at the dark fringe due to an imperfect interference contrast was 350 ppm of the incident power,

corresponding to an interference contrast of about0.9978.

via P1, the analyzer was changed accordingly via P2. As a result, the polarization could

be adjusted accurately. The overall light power entering the interferometer was defined via

the waveplate P0 in front of the Faraday isolator.

4.4 Position dependent absorption in a standing wave

In this section, the impact of high laser power on a translucent mechanical oscillator in a

Michelson-Sagnac interferometer is experimentally investigated on the exampleof a SiN

membrane. One can expect that heating the membrane (neglecting effects from the frame)

via optical absorption will result in a decreased eigenfrequency due to thermal expansion

and thus in a lower stress according to Eq. (4.41). The experimental results in terms of

frequency shifts and a corresponding decrease in the membrane’s mechanical quality factor

caused by optical absorption are presented and related to a standing wave that is inherent

to this interferometer topology [131].
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Figure 4.18: (a) Measured decrease of the membrane eigenfrequency∆f with increasing light pow-

ers for the membrane placed at the optical node and anti-node of a standing wave in the Michelson-

Sagnac interferometer as well as for a traveling wave. (b) Corresponding optical absorption calculated

via Eq. (4.24), givingA∆f = 0.0373∆f − 0.0011∆f2 via a polynomial fit.

The nearly balanced splitting ratio of the beam splitter for s-polarized light allowed to

measure frequency shifts for a membrane positioned at an optical node and an anti-node for

the interferometer operated close to its dark fringe. The measured decrease in frequency

∆f for a varying input power is shown in Fig. 4.18(a). The impact of a traveling wave

was measured by misaligning one of the interferometer’s folding mirrors suchthat only a

single beam was transmitted through the membrane. In order to measure the membrane’s

eigenfrequency, the light reflected from the membrane was then broughtto interference

with an auxiliary beam outside the vacuum chamber, forming a Michelson interferometer.

The results already demonstrate the lowest influence of incident power to be found for a

membrane being placed at a node. For further comparison, the corresponding absorption

was calculated based on Eq. (4.24) assuming a layer thickness of66nm and an index of
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refraction of2.2 + i1.5 × 10−4 (see Fig. 4.18(b)). This leads to a relation between a par-
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Figure 4.19: (a)(b) Measured and predicted (solid line) output powers of the Michelson-Sagnac inter-

ferometer for s- and p-polarized light versus the membrane displacement∆x and a constant incident

power of≈ 600mW. (c)(d) Corresponding optical absorption, derived from measured frequency shifts.

The lowest optical absorption can be achieved for a balanced beam splitter operated at a dark fringe.

ticular frequency decrease∆f and the optical absorptionA∆f . The result of a polynomial

fit is

A∆f = 0.0373∆f − 0.0011∆f2 (4.67)

for the given membrane and beam size. It was assumed that optical properties do not

change for larger absorption. The frequency shift described by Eq. (4.67) is independent

from the actual membrane position. This allowed to verify the theoretical predictions for
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Figure 4.20: Measured decrease of the mechanical quality factor caused by opticalabsorption with

increased laser power for a range of negative frequency shifts∆f . Each point shown is the averaged

value of five ringdown measurements.

the position dependent absorption in the Michelson-Sagnac interferometer, namely the co-

sine dependence of Eq. (4.24). Therefore, the interferometer’s output powers (PDR, PDT)

for different membrane displacements∆x and the corresponding frequency shifts were

recorded. The measurements were carried out for s- and p-polarizedlight to test the the-

oretical predictions for different splitting ratios of the central beam splitter. The experi-

mental results and theoretical predictions (solid lines) are shown in Fig. 4.19(a)-(d). The

measured frequency shift/absorption varies with a period half as large theoutput power,

which is in full agreement with the theory. The results further demonstrate thatthe lowest

optical absorption can be achieved in a Michelson-Sagnac interferometer operated at its

dark fringe for a close to 50/50 splitting ratio of the central beam splitter. Theabsorption

for p-polarized light is less pronounced compared to s-polarized light dueto the existence

of a partial standing wave.

One consequence of optical absorption investigated in this work is the impacton the

mechanical quality factor of a membrane. Therefore, ringdown measurements of the mem-

brane’s amplitude after an excitation were taken for various frequency shifts adjusted via

the incident power. The results given in Fig. 4.20 show a significant decrease in the mem-

brane’s mechanical quality factor by about an order of magnitude. Eachpoint shown was
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averaged over five measurements. Although the presented decrease ofthe mechanical qual-

ity factor is specific for the given setup (membrane dimension, beam size andposition), it

emphasizes that optical absorption needs to be minimized for high-power experiments.

With the current setup, an input power of about1W can be used without significantly de-

grading the mechanical quality factor, if the membrane is placed at a node. Regarding

experiments at cryogenic temperatures, the heating of the membrane will become a cru-

cial factor. This requires further characterization by means of a dedicated experiment to

measure the actual temperature of the membrane. This should be carried outat cryogenic

temperatures, for which material parameters of the membrane and the frame willdiffer

from that at room temperature. Alternatively, a theoretical model based on finite element

simulations could be developed. This, however, requires a detailed knowledge of material

parameters in particular for thin film materials as used here.

4.5 Achieved displacement sensitivity

In the following, the calibration of the interferometer regarding its spectral displacement

sensitivity is described. The procedure applied is based on a DC-readout, for which the

interferometer is slightly detuned from its dark fringe. In this scheme, the residual carrier

field leaving the interferometer serves as a local oscillator for the signal fields. Therefore,

the DC-readout provides a special case of a homodyne detection. A detailed discussion of

readout schemes including DC-readout can be found in [153].

One limitation found in the current setup is set by technical laser intensity noise. For

the measurement band around100 kHz, the laser used has an optional power stabilization

(noise eater). This provided a suppression of about10db at100 kHz and was turned on

for all experiments. An external stabilization stage was set up [154], which provided an

additional suppression of12db. In Fig. 4.21, two measured spectra for an incident laser

power to the interferometer ofPin = 90mW are shown. The off-resonant spectrum without

laser stabilization (red trace) is dominated by technical laser noise (dashedred line). With

the laser stabilization turned on (blue trace) the technical laser intensity noise(dashed blue

line) was suppressed sufficiently, for not being the limiting factor in the recorded spectrum.

The relation of the detected power spectrum in the signal port and the equivalent dis-

placement was deduced on the basis of the interferometer fringe. The tuning of the inter-

ferometer over one fringe was done by actuating the membrane via a piezo element. The
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Figure 4.21: Power spectral density measured at the interferometer signal port PDT using a DC-

readout for an incident laser power to the interferometer ofPin = 90mW. The resolution bandwidth

of the power spectrum was3Hz. The level of laser intensity noise without (dashed red line) and with

laser stabilization (dashed blue line) is based on a separate measurement,giving an improvement of

12 db [154].

piezo had a non-linear response within the applied voltage range (see Fig.4.16). This was

corrected by means of a second order polynomial fit applied to the tuning. Thereby, the

relation between the detected power and the actual membrane displacement is found as

shown in Fig. 4.22. The derivative of this function provides the calibrationfactor gcal in

units of [V/m]. For this step, a low input power ofPcal = 16mW to the interferometer

was used in order to not saturate the photodiode while scanning the full fringe. The actual

power spectrum was measured close to a dark fringe of the interferometer. This allowed to

use a higher input powerPin in order to improve the interferometer’s shot-noise sensitiv-

ity. The calibration factor was gained accordingly by the ratiogp = Pin/Pcal. While the

DC-voltage of PDT was used to derive the calibration factor and to determine the offset

from the dark fringe (operation point), the actual spectrum was measured using a filtered

AC-output of the photodiode. The latter one had an additional gain ofgac = 23.04 around

100 kHz. The calibration of the amplitude spectral densityPV in units of [V/
√
Hz] to

equivalent displacementxdis is finally derived via

xdis = PV
gpgac
gcal

[m/
√
Hz]. (4.68)
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factor for each operation point. The vertical black line depicts the membrane displacement used for a

DC-readout.

The amplitude spectral densitỹPV is derived from the the measured power spectral density

P̃dbm in units of [dbm/
√
Hz] via

PV = 10(Pdbm)/20R10−3, (4.69)

whereR = 50Ω is the input impedance of the spectrum analyzer. In Fig. 4.23, the cali-

brated displacement sensitivity is shown, based on the measurement presented in Fig. 4.21

with the laser stabilization turned on. The measured signal (blue trace) around the mem-

brane resonance agrees well with the predicted level for thermal noise (red line) based on

Eq. (4.60). The measured dark noise (gray trace) was dominated by the spectrum analyzer.

A higher gain in order to increase the signal-to-dark-noise ratio is in principle feasible, but

caused saturation of the analyzer when resolving the resonance peak.The shot noise (green

line), calculated from the photodiode current, was above the technical laser intensity noise

(dashed green line). The sum of all noise sources mentioned (black dotted line) is in good

agreement with the measured spectrum.

The dominant contribution aside the resonant frequency was given by shot noise at a
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Figure 4.23: Measured and calibrated displacement sensitivity of the current setup around the fun-

damental frequency of the SiN membrane. The sum of measured darknoise (gray trace), calculated

shot noise (green line) and predicted thermal noise (red line) is in good agreement with the measured

spectrum (blue trace).

displacement sensitivity of about4× 10−16 m/Hz1/2. This was achieved by using a rather

large DC-offset (see Fig. 4.22) in conjunction with a low input power. TheDC-offset was

adjusted in order to not be dominated by residual light at the signal port, which is due to an

imperfect interference contrast. When the laser power was increased,technical laser noise

became the dominant noise source as it increases linear with the power and thus faster

when compared to shot noise. Hence, technical laser intensity noise is impeding to achieve

even better displacement sensitivities in the current setup. However, several approaches

exist that potentially allow for a significant reduction of laser noise as outlined in the fol-

lowing. At present, the residual light power due to an imperfect interference contrast is

about350ppm of the incident power. Improvements regarding the interference contrast

would allow to operate the interferometer closer to the actual dark fringe. Regarding this,

an exchange of the interferometer’s optical components as well as the setup up of a smaller

interferometer are part of an upgrade carried out at present [155]. A filter cavity at the signal

port would provide an effective way for suppressing higher order modes. Improvements on

the laser intensity stabilization itself can in principle be achieved based on state-of-the-art

technology (see e.g. [156]). A detailed investigation on this may be part of acontinuation

102



4.6 PROSPECTS FOR UTILIZING SIGNAL-RECYCLING

of this project, based on the results achieved with the upgraded setup. According to the

approaches mentioned here, significant improvements regarding technical laser noise can

be made. Hence, the following section provides an outlook for future experiments.

4.6 Prospects for utilizing signal-recycling

Regarding the current setup, a further laser power increase is in particular associated with

two problems. First, it would require significant improvement regarding technical laser

noise, as discussed in the previous section. Second, it will lead to an increased amount of

light power that is absorbed by the membrane, which thereupon leads e.g. toa decreased

quality factor via heating (see experimental results in Fig. 4.20). Hence, experiments com-

ing along with the implementation of signal recycling (SR) are of particular interest. In the

following, the benefits and constraints of SR are briefly discussed. The formulas for the

equivalent displacement of the shot noisexsrsn and quantum radiation pressure noisexsrrpn
for a Michelson-Sagnac interferometer with SR are given as [132]

xsrsn =

√

~cλ

16πr2Pingsr

√

1 +

(
f

fsr

)2

(4.70)

and

xsrrpn = |H(ω)|
√

16π~r2Pingsr
cλ

1
√

1 + (f/fsr)2
. (4.71)

Here,gsr andfsr are the gain and bandwidth of the SR cavity, respectively, andf is the mea-

surement frequency. Assuming that the interferometer is almost a perfectmirror (the optical

losses should be smaller than the transmissivity of the SR mirror), the signal-recycling gain

gsr can be approximated by [132]

gsr =
1 + rsr
1− rsr

, (4.72)

wherersr is the amplitude reflectivity of the SR mirror. This gain is effectively achieved

only within the bandwidthfsr of the cavity, which is given by

fsr =
c(1− rsr)

4π(Lsr)
, (4.73)
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Figure 4.24: Signal-recycling gaing1/2sr versus the power transmissivity of the SR mirror. as well as

the cavity length required to achieve a cavity bandwidth of200 kHz.

whereLsr is the distance between the SR mirror and the common end mirror (membrane).

As a result, signal recycling increases the signal-to-shot-noise ratio at the expense of a

reduced bandwidth. The required cavity length for a bandwidth offsr = 200 kHz versus the

power transmissivity of the SR mirror is shown in Fig. 4.24 together with the corresponding

SR gain for frequencies smaller than the cavity bandwidth. With regard to the practical

implementation, the realization of SR gainsg1/2sr > 30 is challenging for two reasons.

First, the optical loss inside the interferometer should be significantly smaller than the

transmissivity of the SR mirror, namely less than4000ppm. Moreover, a cavity length

of Lsr ≤ 0.1m needs to be realized, including the arm length of the interferometer. In

the following, two prospects for the utilization of signal recycling are outlined, based on

signal-recycling gains ofg1/2sr ≤ 30.

4.6.1 Off-resonant thermal noise at 300 K

The thermal noise of a mechanical oscillator at off-resonant frequencies depends on the

internal damping mechanism, as discussed in section 4.2.3. Therefore, two theoretical

models, namely viscous and structural damping, were considered. Since thermal noise is

a serious barrier in experiments targeting the quantum regime, it is of fundamental inter-

est to investigate the underlying mechanisms by means of a direct measurement.While

the slope of thermal noise is rather steep for frequencies above resonance, the measure-
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Figure 4.25: The shot noise level for an incident laser power of0.1W (green line), as used in the

current experiment, is about a factor of ten larger than the level of off-resonant thermal noise at room

temperature based on viscous damping (red dashed line). The thermalnoise predicted by structural

damping (red line) is frequency dependent below the resonance. Theuse of a signal-recycling cavity

with a gain ofgsr = 10, corresponding to a reflectivity of the SR mirror of95%, leads to a sufficiently

low level of shot noise (blue line) to enable the direct measurement of thermal noise at off-resonant

frequencies.

ment below resonance would already be sufficient to distinguish one damping mechanism

from the other. Regarding the current setup, the shot noise for an incident laser power of

100mW, as currently used, is about one order of magnitude higher than the off-resonant

thermal noise at frequencies near the resonance as shown in Fig. 4.25.The improvement by

utilizing signal recycling and keeping an incident power of100mW is shown in Fig. 4.25

exemplified for a reflectivity of the SR mirror ofr2sr = 0.95%. The cavity length is not

limiting in terms of the cavity bandwidth and is set to0.087m. These values correspond to

an actual upgrade of the interferometer carried out at present [155].

4.6.2 Observation of quantum back-action noise at 1 K

The observation of quantum back-action noise on a macroscopic scale has not been demon-

strated yet, as it is highly ambitious in terms of experimental techniques. However, it would

be a milestone in quantum physics and can be targeted with the topology investigated here,
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as outlined in the following.

The direct observation of quantum radiation pressure noise (QRPN) requires a significant

reduction of shot noise as well as of thermal noise. The ratio of QRPN to shot noise for fre-

quencies below the oscillator’s eigenfrequency (ω ≪ ω0) can be derived from Eqs. (4.70)

and (4.71) to be

xsrrp
xsrsn

=
16πr2Pingsr
mω2

0cλ
(4.74)

Consequently, the light powerPin required to enter the QRPN dominated regime is given

by

Pin ≥ cλ

16π

mω2
0

r2gsr
Dsn, (4.75)

whereDsn ≥ 1 denotes a factor by which QRPN is higher. According to Eq. (4.41), the

eigenfrequency of the fundamental mode scales asω0 ∝ 1/
√
m. Hence, when decreasing

the oscillator’s mass, the ratio given by Eq. (4.75) stays constant. Moreover, the eigenfre-

quency should be within the bandwidth of the signal-recycling cavity.

A similar comparison can be done with regard to thermal noise. Close to the mem-

brane’s eigenfrequency, the predictions for thermal noise originating either from viscous or

structural damping are of a comparable level. Since the model based on viscous damping

predicts a constant level to small frequencies, it is used here for a direct comparison with

QRPN. The ratio of the QRPN and the thermal noise based on viscous damping, given by

Eq. (4.60), for frequencies below the oscillator’s eigenfrequency (ω ≪ ω0) reads

xsrrp
xvis

=

√

4π~

cλkbT

r2Pingsr
mω0φ

. (4.76)

Solving this equation for the light power results in the expression

Pin ≥ cλkbT

4π~

mω0φ

r2gsr
D2

vis, (4.77)

where the factorDvis ≥ 1 defines the dominance of QRPN when compared to thermal

noise (viscous damping). Let us first consider a membrane with a thicknessof abouth =

60nm (r2 ≈ 0.3) and a frame size of1.5mm×1.5mm, being similar to the sample used

throughout this work. Let us further assume a tension of about80MPa as reported in
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Figure 4.26: Design sensitivity for a Michelson-Sagnac interferometer with signal-recycling to mea-

sure quantum radiation pressure noise (blue line) at a temperature of1K. The mass and mechanical

loss of the membrane arem = 100 ng andφ = 10−7. The shot noise (green line) is a factor of two

lower by using an incident power of1W and a signal-recycling gain of aboutg1/2sr = 30. Thermal

noise based on structural damping (red line) and viscous damping (reddashed line) is at least a factor

of two smaller around resonance.

[150]. The corresponding eigenfrequency and mass then aref0 = 75 kHz andm = 100ng,

respectively. Inserting these numbers in Eqs. (4.75) and (4.77) yields

Pin &
470W

gsr
Dsn. (4.78)

and

Pin &
53W

gsr
D2

vis, (4.79)

for the parameters used above and a mechanical loss ofφ = 10−7 atT = 1K [136]. One

finds that the criterion regarding shot noise is more stringent for factorsof Dsn andDrpn

on the order of two. As a result, for an incident power of about1W a signal-recycling gain

of g1/2sr ≈ 30 is required. These values are similar to the ones presented in [132]. The

design sensitivity, according to the values given above, is shown in Fig. 4.26. With respect

to optical absorption, thinner membranes are highly beneficial. Going from areflectivity

of r2 = 0.3 to r2 = 0.1 requires a power three times higher in order to achieve the same
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sensitivity. However, the absorption is found to be factor of nine smaller (see Fig. 4.5),

which effectively leads to a smaller absorption by a factor of three. The reduced mass,

leading to a higher eigenfrequency, can in principle be compensated for by the membrane

area. Recently, it was shown that stoichiometric SiN membranes can have10 − 20 times

lower absorption at a wavelength of935nm [157]. Their tensile stress is typically of the

order of1GPa. This results in eigenfrequencies that are about a factor of four higher when

compared to the silicon rich membranes, making them a candidate for experimentswith a

higher laser power and smaller signal-recycling gain.

Using thin films with a higher reflectivity would relax the requirements for the signal-

recycling cavity. Regarding this, investigations on materials having a higher index of re-

fraction may be part of a continuation of this project. One candidate is silicon with an

index of refraction ofn ≈ 3.5 at a laser wavelength of1550nm, which enables a peak

reflectivity of72%. Employing the concept of resonant waveguide gratings can, in theory,

provides even higher reflectivities. Regarding this approach, the effect of a nanostructure

on the mechanical loss of thin film materials, as well as on scattering and absorption needs

to be determined. The outcome of such investigations could have significant impact in the

field of opto-mechanics with micro-mechanical oscillators.
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Chapter 5

Summary and conclusion

In the framework of this thesis, two concepts for high precision interferometry based on

coating-free optical components were developed and experimentally investigated.

The research carried out on resonant waveguide gratings (RWGs) as a substitute for mul-

tilayer coatings, targets the realization of high reflectivity and low mechanicalloss in laser

mirrors. As RWGs are basically realized by nanostructured surfaces, they are in principle

applicable to a variety of devices, ranging from test masses in large scale laser interfero-

metric gravitational wave detectors to micro-mechanical oscillators such as cantilever or

thin films in the field of cavity opto-mechanics. The theoretical investigations carried out

focused on broadband structures having a perfect reflectivity under normal incidence. The

combination of a nanostructured tantala layer in conjunction with a fused silica substrate at

a wavelength of1064nm was formerly proposed to reduce the amount of mechanical lossy

coating material and thereby coating Brownian thermal noise. These investigations were

extended throughout this work with respect to thermally induced phase noise for the re-

flected light (thermorefractive noise). The results obtained by means of rigorous numerical

methods emphasize that design optimization of the structure with respect to the parameter

tolerances is required to keep the overall thermal noise of tantala based RWGs below that

of multilayer coatings. Refinements of the presented model are of fundamental interest to

develop strategies for how to remove different contributions to thermorefractive noise. As

the refinements depend on the optical and mechanical properties of the materials, it might

be beneficial to substitute tantala for another material. One potential candidateis diamond,

which has similar optical properties at a wavelength of1064nm, but shows for instance a
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substantially larger thermal conductivity. As a continuation to the single layer approach, the

evolution to monolithic architectures was investigated in this work. The monolithic archi-

tecture based on a T-structured surface is a promising approach for a significant reduction

of Brownian thermal noise as no mechanical lossy material is added to a high quality sub-

strate. A monolithic realization based on silicon is investigated here that may be suitable

for experiments at cryogenic temperatures due to its low mechanical loss andpotentially

close to zero thermal expansion coefficient. Additionally, the high index of refraction at a

wavelength of1550nm enables the design of broadband structures that are highly tolerant

to parameter deviations. Hence, all kinds of thermal noise are addressed.

Three custom-made samples have experimentally been investigated as cavity mirrors

throughout this work, as described in Chapter 3. Among these a monocrystalline silicon

RWG showed a reflectivity of99.79(±0.01)% at a wavelength of1550nm. This was

determined from a cavity finesse of about3000. This is the highest and most accurate

value for a RWG reported ever. The lowest boundary on optical loss was determined from

a cavity experiment with a tantala based RWG (single ridges on a silica substrate) at a

wavelength of1064nm to be smaller than1350ppm. Since the determined reflectivity

and measured transmissivity were99.08(±0.04)% and0.94(±0.094)%, respectively, the

given uncertainty on optical loss solely arises from the measurement errors. The results of

these tabletop cavity experiments indicate that reflectivities of about99.9% and potentially

higher are in reach with current technology. The third sample, based on an etch stop design,

was implemented in a fully suspended 10 m cavity at the prototype facility of the Univer-

sity of Glasgow. Based on the cavity finesse of about790 the reflectivity of the sample was

determined to be≥ 99.2% at a wavelength of1064nm. The cavity was operated in a low

noise environment under vacuum conditions and stabilized via the Pound-Drever-Hall tech-

nique. So far no evidence is found that RWGs require a specific handlingwhen compared

to conventional mirrors. The experimental results are compared to theoretical simulations

by means of rigorous methods. A good agreement for all three investigatedRWGs (single

tantala ridges, T-struture and etch stop design) is found, supporting the principle of the

architectures investigated here.

The demonstrated cavity finesse of about3000 with a monolithic T-structure RWG as the

end mirror, indicates that a fully monolithic cavity with a finesse of about1500 is feasible.

This already paves the way for a variety of opto-mechanical experiments.To set up a stable

monolithic cavity requires at least one RWG to feature a curved surface. This needs to be
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demonstrated in future. Recently, a RWG with a non-periodic patterning was demonstrated,

which enables to control the phase front of the reflected light [158]. Thereby, a focusing

effect can be achieved even for plane substrates. Strategies on how toimplement a grating

structure on micro-mechanical oscillators exist e.g. for thin film materials [108] and are

currently tested for nanostructured silicon cantilever at the IAP Jena. Withrespect to ultra-

high finesse optical cavities and test masses in gravitational wave detectors, significant

improvements in terms of optical quality and substrate size are needed.

The second project included the development of an interferometer topology, where a

semitransparent substrate is used as common end mirror for the two arms of a Michelson

interferometer. The transmitted light forms a Sagnac interferometer, which gives rise to a

standing wave in terms of optical field strength. Theoretical as well as experimental inves-

tigations have revealed that for a balanced central beam splitter the dark fringe condition of

the Michelson-Sagnac interferometer coincides with the common end mirror being placed

in a node of a standing wave that is inherent to this topology. This operation point pro-

vides lowest optical absorption and optimum laser noise rejection. Thus, it iswell suited

for quantum opto-mechanical experiments with translucent mechanical oscillators. This

topology is further compatible with optical cavity techniques (power and signal recycling)

to enhance opto-mechanical coupling. The experimental realization of a Michelson-Sagnac

interferometer under vacuum conditions (≤ 10−6 mbar) and room temperature is demon-

strated. On the example of a65nm thin high quality silicon nitride (SiN) membrane with

a power reflectivity of about30% the impact of the standing wave regarding optical ab-

sorbtion was experimentally investigated. The results confirm that such a membrane can

be coupled to a laser power of about1W without significantly decreasing its mechanical

quality factor, which was of the order of106. By using even thinner membranes opti-

cal absorption can be lowered substantially. Moreover, the use of a different wavelength

might reveal lower optical absorption, as was recently found for stoichiometric (Si3N4)

membranes [157]. The current displacement sensitivity of4 × 10−16 m/
√
Hz around the

first mechanical resonance at about100 kHz was dominated by the sum of the shot noise

and technical laser intensity noise. At resonance displacement spectrumagreed well with

the predicted level of thermal noise. Signal recycling was discussed as aprospect for a

continuation of this project in order to measure off-resonant thermal noise at room temper-

ature. Subsequently, a more ambitious project could be the direct observation of quantum

back-action noise in a continuous position measurement at cryogenic temperatures.
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