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Abstract 

 

Although data processing in geodetic applications often relies on the least-squares method, the 
Gauss-Markov model with uncertain model matrix has to be solved rigorously using the total least-
squares (TLS) technique. Recently, a large number of reports have been published to adjust the er-
rors-in-variables model. However, the general solutions and the computational advantages of the 
TLS problem are mostly unknown in various scientific domains. 

In this contribution the auxiliary Lagrange multipliers are used to give some solutions of the TLS 
problem, where the variance covariance matrix of the extended observation vector is considered as 
a fully populated matrix in the adjustment. In contrast to solving the problem using the nonlinear 
Gauss-Helmert model, the solutions proposed in this thesis do not require any linearization. Fur-
thermore, it is widely agreed that the method of Lagrange multipliers or the nonlinear Gauss-
Helmert model (implicitly using Lagrange multipliers) yield only necessary conditions for optimal-
ity in the constrained problems. However, the second derivative of the objective function with re-
spect to the parameter vector representing the sufficient condition of the optimization is reasonable 
to be presented. Based on the aforementioned second derivative the Newton algorithm is designed 
for the optimization problem. In contrast to the Gauss-Newton algorithm, which is popularly ap-
plied for the weighted TLS problem, the Newton algorithm works more efficiently in the final 
stage. In addition, the Newton or the Gauss Newton method can be modified via the combination 
with, for example the steepest descent method obtained by the first derivative. 

After given the theoretical development of the fully weighted TLS problem, some extensions are 
presented. The weighted TLS problem with fixing columns is taken into account, where the model 
matrix with fixing columns in the weighted TLS problem can be separated into the deterministic 
and stochastic parts. In this case, the parameters corresponding to the fixed columns are eliminated 
based on the normal equation system. In the more general case, fixing elements is also solved by 
means of the non-linear iterative Gauss-Helmert model. Moreover, Lagrange multipliers are applied 
to solve the constrained weighted TLS problems and the weighted TLS problem, in which the pa-
rameters and the conventional observations are expressed matrix-wise instead of vector-wise. 
Undoubtedly, the iterative Gauss-Helmert model method can solve a lot of non-linear TLS 
problems due to its simplicity. However, it should be generalized for the weighted TLS problem by 
integrating the nonlinear constraints of parameters and the observation equation simultaneously. 

Based on the solutions discussed in previous chapters, some geodetic applications are demonstrated. 
The purpose of the orthogonal regression is to show the solutions leading to identical results. The 
performances of the solutions are compared with current methods with respect to the convergence 
behavior and the weight information. In addition, the 3D similarity transformation considering the 
errors in the model matrix is solved by Gauss Newton method in this study. At the later part the 
weighted TLS solution is investigated in the quadratic form analysis and the free stationing with 
stochastic parameter within geodetic networks with the weak datum. 
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Kurzfassung 

 

Obwohl die Datenverarbeitung in geodätischen Anwendungen häufig auf der Methode der kleinsten 
Quadrate basiert, ist es nötig, das Gauß-Markov-Modell mit unsicherer Modellmatrix mit der Total 
Least Squares (TLS) Technik zu lösen. Viele Lösungen für die Berechnung der TLS wurden in letz-
ter Zeit in verschiedenen wissenschaftlichen Bereichen publiziert, die allgemeinen Lösungen und 
die numerische Vorteile müssen allerdings noch untersucht werden. 

In diesem Beitrag werden die Lagrange-Multiplikatoren als Hilfsmittel eingesetzt, um einige Lö-
sungen des TLS Problems zu präsentieren, bei dem die Kovarianzmatrix des vollständigen Beo-
bachtungsvektors als vollbesetzte Matrix gegeben ist. Im Gegensatz zur Lösung mit Hilfe des nicht-
linearen Gauss-Helmert-Modell erfordern die vorgeschlagenen Lösungen keine Linearisierung. Im 
Weiteren ist bekannt, dass die Methode der Lagrange-Multiplikatoren oder des nichtlinearen Gauss-
Helmert-Modells (implizit mit Lagrange-Multiplikatoren) nur die notwendige Bedingung für Opti-
malität im vorliegenden Restriktionsproblem liefern. Deshalb ist es sinnvoll, die zweite Ableitung 
der Zielfunktion in Bezug auf den Parametervektor herzuleiten, weil sie die hinreichende Bedin-
gung für die Optimierung repräsentiert. Basierend auf der oben erwähnten zweiten Ableitung ist der 
Newton Algorithmus für das Optimierungsproblem zu entwickeln. Im Gegensatz zum Gauss-
Newton-Algorithmus, der für das (gewichtete) TLS Problem am häufigsten angewendet wird, kon-
vergiert der Newton Algorithmus effizienter in der Endphase. Darüber hinaus kann das Newton- 
oder Gauß-Newton-Verfahren durch die Kombination mit z.B. der steilsten Abstiegsmethode, die 
durch die erste Ableitung erhalten wird, modifiziert werden. 

Nach der theoretischen Entwicklung des voll gewichteten TLS-Problems werden ein paar Erweite-
rungen vorgestellt. Das gewichtete TLS-Problem, bei dem die Spalten festgelegt sind, ist zu berück-
sichtigen. In dem Fall besteht die Modellmatrix aus einem deterministischen und stochastischen 
Anteil. Die Parameter, die den fixierten Spalten entsprechen, können durch das Normalgleichungs-
system eliminiert werden. Im allgemeineren Fall wird das Problem mit den festgehaltenen Elemen-
ten auch durch das nichtlineare Gauss-Helmert-Modell gelöst. Darüber hinaus werden die Lagran-
ge-Multiplikatoren angewendet, um das gewichtete TLS-Problem mit der linearen Restriktion und 
das gewichtete TLS Problem, in dem die Parameter und die herkömmlichen Beobachtungen in Mat-
rixweise anstatt in Vektorweise dargestellt sind, zu lösen. Das iterative Gauß-Helmert-Modell Ver-
fahren kann offensichtlich eine Menge von nicht-linearen TLS Problemen lösen. Es sollte jedoch 
für das TLS-Problem der gleichzeitigen Integration der nichtlinearen Nebenbedingungen der Para-
meter und der Beobachtungsgleichung verallgemeinert werden. 

Basierend auf der theoretischen Entwicklung werden einige geodätische Anwendungen dargestellt. 
Der Zweck der orthogonalen Regression ist zu prüfen, ob die Lösungen die gleichen Ergebnisse 
liefern. Das Verhalten der Lösungen wird mit den aktuellen Methoden in Bezug auf das Konver-
genzverhalten und die Gewichtsinformationen verglichen. Weiterhin wird die 3D Ähnlichkeits-
Transformation unter Berücksichtigung der Fehler in der Modellmatrix durch das Gauss-Newton-
Verfahren gelöst. Bei Letzterem wird die gewichtete TLS Lösung auf die Analyse quadratischer 
Formen und die freie Stationierung mit stochastischen Parametern innerhalb geodätischer Netze mit 
schwachem Datum angewendet. 
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1 Introduction 

 

1.1 Background 
 

The traditional geodetic task consists of measuring and representing the earth mostly through a 
mathematical model. Based on sufficient observations the unknown parameters of the mathematical 
model can be estimated. The method of least-squares (LS), which has been developed by C.F. 
Gauss and A.M. Legendre in the nineteenth century, is applied to approximate solutions of these 
overdetermined systems. These overdetermined systems can be usually expressed as + yy v = Aξ , 
where the traditional observation vector y  is affected by errors having the corresponding residual 
vector yv , and ξ  is an unknown parameter vector. 

However, the principal hypothesis of the certain model matrix A  is not necessarily fulfilled in 
geodetic applications. A type of models with an uncertain model matrix is known in the literature 
(e.g. Gleser 1981) as errors-in-variables (EIV) models. The problem was studied already in Adcock 
1877, and has been rediscovered many times independently in statistics (see Markovsky and van 
Huffel 2007). In 1980 the total least-squares (TLS) was introduced to adjust the EIV model by Go-
lub and van Loan in the field of numerical analysis. Nowadays the terminology TLS has been 
widely used as a standard technique of the estimation method for the EIV model in many fields in 
science and engineering. 
The classical TLS method is to find the solution for an overdetermined system of equation 

( )+ +y Ay v = A V ξ , where the matrix A  is also affected by errors. The residuals AV  and yv  have 
an independent and identical distribution in this case. The unweighted TLS can be alternatively 
formulated as a problem of low rank matrix approximation (e.g. Kupferer 2005). This problem usu-
ally has a unique solution, which can be obtained in a closed form in terms of the singular value 
decomposition (SVD) of the data matrix (e.g., Golub and van Loan 1980, Van Huffel and Vande-
walle 1989). More general problems taking different errors size and correlation into consideration 
have been discussed by many authors. In the generalized TLS estimator, the residual matrix 

,⎡ ⎤⎣ ⎦A yV v  are assumed to be row-wise independent and correlated within the rows with identical 
variance covariance matrix (vcm). However, the so-called generalized TLS (GTLS) does not refer 
to a general vcm. Some research groups (e.g. Schaffrin and Wieser 2008) call it ‘equilibrated TLS’ 
in order to avoid confusions. The solution for the so-called generalized TLS using a three-step algo-
rithm can be found in Van Huffel and Vandewalle (1989). Further generalization where elements of 
the residual matrix ,⎡ ⎤⎣ ⎦A yV v  are independent, but not identically distributed with element-wise dif-
ferent variances is called as the element-wise-weighted TLS (EW-TLS). Under this circumstance, 
solving the EIV model in this case has been proved to be a non-convex optimization problem, and 
there is no analytical-form solution (cf. Markovsky et al. 2006). 
Recently, the investigation about the TLS estimation has been shown in quite a number of publica-
tions in geodesy. From the methodological point of view, the most frequently used approach, which 
rigorously adjusts the EIV model, is the closed form solution in terms of the SVD of the data matrix 
(e.g., Teunissen 1988, Felus 2004, Akyilmaz 2007, Schaffrin and Felus 2008). Another kind of 
methods uses auxiliary Lagrange multipliers to rearrange the TLS problem as a constrained minimi-
zation optimization, where the covariance matrix of the observations including the conventional 
observations and the observation in the model matrix is fairly general (e.g., Felus and Burtch 2009, 
Schaffrin and Felus 2008, Schaffin and Wieser 2008, Schaffrin and Wieser 2009). Furthermore, 
avoiding pitfalls the non-linear Gauss Helmert model (GHM) method proposed by Pope (1972) can 
solve the TLS and weighted TLS problem without any limitation of the vcm. This proves the TLS 
adjustment not referring to a new adjustment method but the adjustment for the model containing 
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the uncertain model matrix (see, Neitzel and Petrovic 2008, Neitzel 2010, Schaffrin and Snow 
2010). However, in order to hold the consistency we will still use the term TLS throughout the the-
sis as a synonym for the LS estimation of the parameters in the EIV model. From the theoretical 
point of view: The TLS problem (e.g., Kupferer 2006), the multivariate TLS problem (Schaffrin 
and Felus 2008), weighted TLS problem (e.g., Neitzel 2010), the regularized TLS problem (e.g., 
Schaffrin and Snow 2010) and the constrained TLS (Schaffrin and Felus 2009) has been discussed. 

 

1.2 Scope and outlines of the thesis 
 

The special structure of the weight matrix for the vector [ ]( )vec A y  (vec‘ denotes the operator that 
stacks one column of a matrix underneath the previous one) results in special weighted TLS prob-
lems. The following Figure 1.1 shows a hierarchical classification of the problems with various 
weighted matrices. The weighted TLS problem with a fully populated vcm is called as the WTLS 
Problem, which is in the top hierarchy of the figure. 

 

 

Figure 1.1 Hierarchy of weighted TLS Problems according to the structure of the weight matrix 

Such problems as an orthogonal regression, the EIV model or the TLS have been discussed over a 
hundred years in different research fields and occurred in quite a number of publications. However, 
the solution and computational advantages of the WTLS problem is not widely discussed (see 
Chapter 4 in detail). Thus, it makes sense that this thesis elaborates general solutions for the WTLS 
problem. The solutions based on different principles are rigorously presented, and the advantages of 
solutions in comparison to the existing methods are discussed. Furthermore, extensions and applica-
tions of the WTLS solution are also demonstrated in the thesis. 

The rest of the thesis is organized as follows: In Chapter 2 the estimation properties, which provide 
qualitatively good estimates of unknown parameter, are explained. The Gauss-Markov model 
(GMM) as well as the GHM and the popular estimations for this linear model, e.g. Best Linear Un-
biased Estimation (BLUE) and LS estimation, are briefly presented. Chapter 3 gives an overview of 
the classical TLS, which has a closed form expression in terms of the SVD. We then extend the 
classical TLS to fixing columns, constrained TLS, structured TLS, generalized and element-wise 
TLS. In Chapter 4 the WTLS problem is defined and solved based on different principles, such as, 
the Lagrange multipliers, the iterative non-linear GHM method, Newton, Gauss-Newton and steep-
est descend methods. Meanwhile, the sufficient conditions for the optimization problem are given 
based on the second derivative of the objective function w.r.t. the parameter vector. In Chapter 5, 
the extensions such as fixing column, fixing elements, and the linear constrained problem are stud-
ied. In addition, an integrated nonlinear EIV model (nonlinear GHM plus nonlinear constraints of 
parameters and condition equations) is presented and solved by the Gauss-Newton algorithm. Chap-
ter 6 presents some numerical geodetic applications, which are solved by the method proposed in 
the thesis. Finally, Chapter 7 concludes this thesis and presents the recommendations for further 
works. 
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2 Basic Knowledge for Parameter Estimation 

 
One important task of geodesy is to estimate the unknown parameters of mathematical model repre-
senting real objects in a statistical sense. In this chapter we firstly review the theory of LS estima-
tion technique in inconsistent linear models where the inconsistency is caused by errors in the ob-
servations. Considering the parameter vector is required to be estimated from the observation vec-
tor, the essential estimation problem is therefore to find a function ( )s y . The function ( )s y  called 
an estimator of ( )h ξ  is a random function, while the estimate of ( )h ξ  is a realized value of the 
estimator and thus a deterministic vector. After choosing a proper function ( )s y , all results can be 
obtained via the normal equations system. Moreover, the solutions for non-linear models (non-
linear GMM and GHM) will be mentioned. The fundamental concept of the estimation methods 
presented through the whole chapter can be also primarily found in Koch (1999). 
 

2.1 Optimal Properties of Estimation 
 

Since ( )s y  depends on the chosen function s , one must set criteria for the optimal estimation func-
tion. In the following we list some desirable properties for the function ( )s y : 

 
Unbiasedness 

 
The estimator ( )s y  is defined as an unbiased estimator of ( )h ξ  only if the mathematical expecta-
tion of the estimation error expressed as the difference ( ) ( )−s y h ξ  is zero. An unbiased estimator 
is therefore 

 ( ) ( )( )E − =s y h ξ 0 , (2.1) 

where E  denotes the expectation operator. Here and later on the boldface letters represent the vec-
tors and matrices, the non-boldface letters stand for variables. 
 
Mean square error 

 

The second moment of estimation error ( ) ( )( )2
 E −s y h ξ  is the mean square error of the estima-

tion. This should be expected to be the smallest quantity which corresponds to the minimum vari-
ance representing the best estimator in the absence of bias. 
 
Best unbiased estimator 

 
Hence, we obtain a best unbiased estimator if 

 ( ) ( )( ) ( ) ( )( )2
     and     minE E− = − →s y h ξ 0 s y h ξ . (2.2) 
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If the parameter vector ξ  is not stochastic, we can express this property as follows 

 ( )( ) ( ) ( )( )2
     and     minE E= →s y h ξ s y  (2.3) 

or 

 ( )( ) ( ) ( )( )2ˆ ˆ     and     minE E= →h ξ h ξ h ξ . (2.4) 

Both properties are criteria for measuring closeness to the true value according to the first and sec-
ond moment for the distribution of ( )ˆh ξ . If such an unbiased estimator with minimum variance 

exists for all the parameters, it is called a uniformly best unbiased estimator. 
Note that the other properties such as consistency, resistance, robust and sufficiency are not de-
scribed in the thesis. 
 

2.2 Gauss Markov Model 
 
After introducing the criteria for the optimal properties, we present the GMM which is defined as 

 
( )

( ) 1

   or   

=

E

D σ σ −

=

=

y

2 2

yy 0 yy 0 yy

y Aξ y + v = Aξ

Σ y = Q P
 (2.5) 

where A  is a n u×  deterministic model matrix with a full column rank, i.e. ( )rank u=A , yyΣ  is the 
vcm of the observation vector y . The difference = −yv Aξ y  is called the residual vector and also 
the vector of corrections in the least-squares adjustment. The symbol D  denotes the dispersion op-
erator. yyQ  and yyP  are the n n×  positive definite cofactor matrix and the weight matrix according 
to the observation vector y , respectively. The properties of a positive definite matrix can be found 
in Koch (1999). σ 2

0  is the unknown variance component in the GMM. 

In some situations there is no linear relationship between parameters and observations. However, in 
this case one can connect the expectation of the observation vector y  and the parameter vector ξ  
through a non-linear, differentiable equation. 

 ( ) ( ) ( )0    or     E d= + = +yy f ξ y v f ξ ξ , (2.6) 

where 0ξ  is the initial value of the parameter. 0d = −ξ ξ ξ  denotes the increment of the parameter 
vector. 
The model matrix can be obtained by the partial derivative of the function f  with respect to ξ  as 
follows 

 
0

0

T
∂=
∂ ξ

fA
ξ

. (2.7) 

The model is linearized at the position 0ξ  and expressed as  

 ( )0 0d+ = +yy v f ξ A ξ , (2.8) 

The reduced observation vector ( )0−y f ξ  is often called observed minus computed (O-C) in geo-

detic applications (e.g., Xu 2007). The LS solution of the non-linear GMM may be iteratively proc-
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essed and has been explained in detail in Lenzmann and Lenzmann (2007). Some standard estima-
tion techniques presented in this part are utilized in the linear (or linearized) GMM to give out the 
estimated parameter vector and other variables. In addition, the corresponding cofactor matrices and 
the unbiased estimator of the unit of weight are also shown. 
 
Leastsquares estimation 

 
The weighted LS solution in the linear or linearized GMM is defined as follows 

 ( ) ( )ˆ arg min T= − −yyξ
ξ Aξ y P Aξ y . (2.9) 

Through a partial derivative one can have the normal equation as follows 

 ( )ˆT − =yyA P Aξ y 0 . (2.10) 

Then, we list the vectors of the estimated parameters, observations and residuals as follows 

 ( ) 1ˆ T T−
= yy yyξ A P A A P y , (2.11) 

 ˆ =y Ry , (2.12) 

 ( )ˆ n= − −yv I R y , (2.13) 

where the matrix R  is known as the ‘hat matrix’ since it projects the observation vector y  into the 

vector of adjusted observation ŷ  (Schaffrin 1997). The matrix ( ) 1T T

n n

−

− = − yy yyI R I A A P A A P  is 

the well-known projection matrix whose geometrical meaning is mentioned in, e.g., Koch (1999), 
Vennebusch et al. (2009). The matrix n −I R  is also called the reliability matrix (Shan 1989) or re-
dundancy matrix (Schaffrin 1997). nI  is the n n×  identity matrix. 

The cofactor matrices of the estimated vectors are obtained by error propagation as follows 

 ( ) 1

ˆˆ
T −

= yyξξ
Q A P A , (2.14) 

 ˆ ˆ
T=yy yyQ RQ R , (2.15) 

 ( ) ( )ˆ ˆ

T

n n= − −
y yv v yyQ I R Q I R . (2.16) 

The unbiasedness property of the parameter vector, observation vector, residual vector and mean 
squared error of the estimated parameter vector can be shown as follows 

 ( ) ( ) 1ˆ T TE
−

= =yy yyξ A P A A P Aξ ξ , (2.17) 

 ( ) ( ) ( ) ( )ˆ ˆˆE E E E= = = =y Aξ A ξ Aξ y , (2.18) 

 ( ) ( )( ) ( ) ( )ˆ n nE E E= − − = − − = =y yv I R y I R Aξ 0 v , (2.19) 

 ( ) ( )( )( )( ) ( )2 2

ˆˆ0
ˆ ˆ ˆ T

E tr E trσ− = − − =
ξξ

ξ ξ ξ ξ ξ ξ Q , (2.20) 

where the symbol tr  denotes the trace operation. 
The unbiased and best estimator of the unit of weight can be obtained as  

 
( ) ( ) ( ) ( )2

0

ˆ ˆ
ˆ

T
TT

n n

n u n u
σ

− − − −
= =

− −
yy yy

Aξ y P Aξ y y I R P I R y
. (2.21) 
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which can be expressed without the estimated parameter vector. 
 
Best linear unbiased estimation 

 

The BLUE (cf. Koch 1999) is obtained according to the optimal properties ( ) ( )( )E s h− =y ξ 0 and 

( ) ( )( )2
minE s h− →y ξ . Through the LS estimator and BLUE in linear model based on the dif-

ferent principles, both estimators lead to the identical estimator for the unknown parameters.  
 
Parameter elimination  

 
The general approach for the elimination of unknown parameters is a block-wise reduction of the 
functional model. In this case, the parameter vector and model matrix are decomposed to two sub-
parameter vectors and sub model matrices 

 [ ] 1
1 2

2

 ⎡ ⎤
⎢ ⎥
⎣ ⎦

y

ξ
y + v = A A

ξ
 (2.22) 

Inserting the decomposed model matrix and the parameter vector to the normal equation (2.10), we 
will have 

 [ ]1 1 1 2 1
1 2

2 1 2 2 2

ˆ

ˆ

T T
T

T T

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

yy yy

yy

yy yy

A P A A P A ξ
A A P y

A P A A P A ξ
. (2.23) 

Through the matrix identities (Niemeier 2002 p. 287), the subparameter vector 2ξ̂  can be elimi-
nated. The subparameter vector 1ξ̂  can be estimated with the following formula 

 ( )( ) ( )( )1 1

1 2 1 1 2 1 1 1 2 1 1 2
ˆT T T T T T

n n

− −

− = −yy yy yy yy yy yyA P I A A P A A P A ξ A P I A A P A A P y . (2.24) 

where the matrix ( ) 1

2 1 1 2

T T

n

−

− yy yyI A A P A A P  is idempotent and plays an important role in the pa-

rameter elimination process. Then, the subparameter vector 2ξ̂  can be given. 

 
GMM with linear constraints 

 
The GMM with linear constraints is frequently encountered in geodetic applications. There are 
some approaches to solve the problem (e.g., Lagrange multipliers or using the pseudo observation 
equation). The functional model can be described as follows 

 
0

+

=
yy v = Aξ

κ Kξ
, (2.25) 

where K  is the deterministic constraints matrix and 0κ  is the constraints constant. 

Applying the Lagrange multiplier vector μ̂ , the normal equation can be arranged: 
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0

ˆ

ˆ

TT T ⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

yyyy A P yA P A K ξ
κK 0 μ

, (2.26) 

If one inverts the normal matrix, the parameter vector can be obtained. 

 

2.3 Gauss-Helmert Model 

 

A generalized model ( )( )E =f l ,ξ 0  in comparison to ( ) ( )E =l f ξ  is frequently encountered. One 
can connect the expectation of the observation vector y  and the parameter vector ξ  through a non-
linear, differentiable equation 

 ( )( ) ( )0    or    E d= + + =f l ,ξ 0 f l v,ξ ξ 0 . (2.27) 

which is termed as the non-linear GHM. 

The Jacobian matrices (model matrices) with respect to parameters and observations can be ex-
pressed as 

 
0 0

0 0

0

0

T

T

∂=
∂
∂=
∂

l ,ξ

l ,ξ

fA
ξ
fB
l

. (2.28) 

where 0l  is the initial value of the observation vector. Note the vector must be deterministic so that 
both Jacobian matrices are non-random. The Jacobian matrices 0A  and 0B  have the dimension 
n u×  and n m× , where n  and m  denote the number of equations and observations. 

Then, the model can be linearized and rewritten as a linear (or linearized) GHM as follows 

 
( ) ( )

0 0 0

1     

d

E D σ −

+ + =

= 2

0

A ξ B v w 0

v 0 l = P
 (2.29) 

where ( )0 0 0 0 0 0,= + −w f l v ξ B v .  

Here we note that matrix 0A  has full column rank, and matrix 0B  has full row rank. According to 
the minimization of the objective function Tv Pv , the LS solution is produced as follows (e.g., Koch 
1999) 

 ( ) ( )( ) ( ) ( )( ) ( )
11 1

0 0 0 0 0 0 0 0ˆ T T T T

d
−− −⎛ ⎞= −⎜ ⎟

⎝ ⎠ll llξ A B Q B A A B Q B w  (2.30) 

More detailed information on the linear or non-linear GHM can be found in Pope (1972), Wolf 
(1978) or Lenzmann and Lenzmann (2004). This special case of the general mixed model that each 
residual occurs only in one observation equation is called the quasi indirect error adjustment (in 
German: Quasi-vermittelnde Ausgleichung, see Wolf 1968 p. 105). In this case the row rank of the 
model matrix 0B  equals to the row number of the matrix, which guarantees the matrix 

( )( ) 1
0 0 T −

llB Q B  exists. The problem introduced in Chapter 4 can be also classified as this adjustment 

category. 
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3 Total Least-Squares: A Review 

 

3.1 Classical TLS and Errors-in-Variables model 
 
In this chapter the classical Total Least-Squares method is introduced. The attribute ‘classical’ re-
fers to an unweighted case, in which there is a unique solution. 
 
Motivation  and formulation of TLS problem 

 
It is well-known that for the solution of the overdetermined system = + yAξ y v  LS is used as stan-
dard method. Unfortunately, the model does not always match the reality. In Wicki (1998), Yang 
(1999) et al, it is shown that the measurement errors do not necessarily fulfill the principal hypothe-
sis of normal distribution in geodetic applications. For this case one can add parameters to model 
the outliers or reduce the influence on the parameters from the residuals. The observation errors 
may preclude the possibility of knowing the model matrix A  exactly. If the model matrix A  is 
mathematically inexact or rather contaminated with errors, the model should be dealt with another 
strategy. 
The terminology TLS was introduced by Golub and Van Loan (1980) and is considered as an esti-
mation problem where the observation vector y  and the model matrix A  are erroneous. The ma-
thematical model of the classical TLS is 

 
( )

min

  
F

subject to
⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

+ +
A y

A yV v

y A

V v

y v = A V ξ
 (3.1) 

where the full rank matrix A  affected by errors and the vector y  have the residuals AV  and yv , and 
ξ  is an unknown parameter vector. 

F
 denotes the Frobenius norm, which is defined as 

( )T

F
tr=H H H . The model of this type ( )+ +y Ay v = A V ξ  is known in the literature (e.g. Gle-

ser 1981) as EIV model. 
 
Solution 

 
The key role of LS for the GMM is the same as one of TLS in EIV modeling. The model can be 
rewritten as 

 
1

⎡ ⎤
+ + =⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎣ ⎦

A y

ξ
A V y v 0 . (3.2) 

In the generic case this problem has a unique solution, which can be obtained in a closed form in 
terms of the SVD of the data matrix. The SVD decomposition of this augmented matrix is  

 [ ] T=A y UΣV , (3.3) 

where 



Chap. 3: Total Least-Squares: A Review 11 

 
[ ]
[ ] [ ] ( ) ( )

1 2

1 1

1 2 1

, ,...,

, ,...,

n n

n

u u

u ikv

×

+ × +

+

= ∈ℜ

= = ∈ℜ

U u u u

V v v v
, (3.4) 

and  

 ( )1 2 1, ,..., u ijdiag σ σ σ σ+= = ⎡ ⎤⎣ ⎦Σ  (3.5) 

is an ( )1n u× +  matrix. Diagonal elements are equal to the singular values and off-diagonal ele-
ments are zero. i.e. ii iσ σ=  if 1,..., 1i u= +  and 0ijσ =  if i j≠ . The augmented matrix denotes the 
matrix A  that has an extra column containing the right-hand side (rhs) terms y  of the equation sys-
tem. 

The conditions for the existence and uniqueness of the TLS solution are 

1. A TLS solution exists if and only if 1, 1 0u uv + + ≠ . 

2. A TLS solution is unique if and only if 1u uσ σ +≠ . 

The equivalent condition for the existence and uniqueness of the TLS solution can be described as 
1u uγ σ +> , where uγ  is the minimum singular value of the matrix TA A  (e.g., Van Huffel and 

Vandewalle 1991). If the solution is not unique, this problem is often called nongeneric TLS prob-
lem. If the conditions are satisfied, the estimated data matrix is given by 

 
*ˆ ˆ T⎡ ⎤ =⎣ ⎦A y UΣ V , (3.6) 

where ( )*

1 2, ,..., ,0udiag σ σ σ=Σ . 

Then, the solution is solved by using the Eckart-Young-Mirsky theorem (e.g., Eckart and Young 
1936) to let the data matrix to reduce the rank of data matrix and have minimal 
norm [ ]ˆ ˆ

F
⎡ ⎤ −⎣ ⎦A y A y . Because of ( ) ( )1

ˆ ˆ uN R +
⎡ ⎤ =⎣ ⎦A y v  we have the estimated parameter after 

scaling the last component 1, 1u uv + +  of 1u+v  to 1−  to identify the vector 
1

⎡ ⎤
⎢ ⎥−⎣ ⎦

ξ
 

 1, 1 , 1 1, 1
ˆ : ,..., /

T

TLS u u u u uv v v+ + + += −⎡ ⎤⎣ ⎦ξ  (3.7) 

and the residual matrix 

 [ ] 1 1 1
ˆˆ ˆ ˆ T

u u uσ + + +
⎡ ⎤⎡ ⎤ = − = −⎣ ⎦ ⎣ ⎦A yV v A y A y u v , (3.8) 

where the symbol N  and R  denote the null space and column space. 

The classical TLS problems can be solved by the strategy introduced above. Other methods to solve 
this problem are also widely discussed in geodesy. The first investigation taking uncertain model 
matrix into account in geodesy was carried out by Teunissen (1988). He derived a closed form solu-
tion for the EIV model from a two-step procedure. Afterward, Schaffrin (2006) solved the classical 
TLS problem using a non-linear Lagrange function approach. In addition, an unweighted multivari-
ate TLS approach was presented by Schaffrin and Felus (2008) for the geodetic transformation. The 
geometrical interpretation and alternative definition of the TLS problem can be found in Kupferer 
(2005). 

The TLS problem has an analytical expression (e.g., Schaffrin 2006) 

 ( ) 12

1
ˆ T T

TLS u uσ
−

+= −ξ A A I A y , (3.9) 

where the 1uσ +  is the smallest singular value, as mentioned above. 
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The alternative form indicates that the TLS solution is more ill-conditioned than the LS solution due 
to the higher condition number (It must be noted that the both solutions are not certainly ill-
conditioned. Here, ‘more ill-conditioned’ only denotes a relative comparison). The reason is that the 

form ( ) 12

1

T T

u uσ
−

+−A A I A y  is also the solution of the minimization problem for 

( )2 22

12 2uσ +− + −Aξ y ξ  considered as a reverse ridge regression (Golub and Van Loan 1980) or as 

deregularizing procedure (Markovsky and Van Huffel 2007). It means that errors in the data can 
exert a more considerable influence on the LS solution. It is also shown by Van Huffel and 
Vandewalle (1991) that differences between the LS and TLS solution increase if the ratio between 
the second smallest singular value of [ ]A y  and the smallest singular value of A  is growing. 

 

3.2 Fixing columns 
 
In many geodetic applications (e.g., geodetic transformation) some of the columns of A  are known 
exactly. Consequently, for the estimation of parameters in this case one should keep the 
corresponding columns of A  unchanged since they are fixed. 
We separate the model matrix A  into two parts: the uncertain, known (and hence deterministic) 
part 1A  and the stochastic part 2A . This separation is often called fixing columns of the design ma-
trix in TLS (e.g., Schaffrin and Felus 2008) or mixed LS-TLS problem (e.g., Kupferer 2005). We 
write the optimization problem as follows 

 
( )

2

1 2 2 2

min

  
F

subject to

⎡ ⎤⎣ ⎦
+ + = + +

y

y A 1 2

V v

y v = A V ξ A ξ A ξ V ξ
, (3.10) 

where [ ]1 2,=A A A , [ ]2,=AV 0 V , [ ];1 2ξ = ξ ξ . The 2ξ  vector is the subparameter vector with u t−  
elements corresponding to the sub matrix 2A ; 1ξ  with t  elements is corresponding to the determi-
nistic part 2A  of A . 

In order to solve this problem the QR decomposition of the augmented matrix [ ]1 2A A y  is ap-
plied as follows 

 [ ] = ⋅1 2A A y Q R  (3.11) 

or with the matrix transpose of Q  as 

 [ ]
11 12 1

22 2

1

b
T T

b

t
n t

t u t

⎡ ⎤
⎢ ⎥= = = −⎣ ⎦

−
1 2

R R r
Q A A y Q QR R 0 R r , (3.12) 

which leads the problem to 

 111 12

222

b

b

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
1

2

rR R ξ
r0 R ξ

. (3.13) 

Thus, the solution of this mixed problem has two steps: 

1) The subparameters 2ξ  can be estimated as 

 22 2
ˆ

b≈2R ξ r , (3.14) 
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which can be solved with classical TLS approach. 
2) The subparameters 1ξ  can be estimated as 

 11 1 1 12 2
ˆ ˆ

b= −R ξ r R ξ  (3.15) 

with a regular inversion. 

 

3.3 Constrained TLS 
 
Recently, Schaffrin and Felus (2005), Schaffrin (2006) and Schaffrin and Felus (2009) described a 
strategy to solve the classical TLS problem with linear (stochastic and deterministic) and quadratic 
constraints. The problem with linear constraints will be described in detail as follows 

 
( )

0

+ +

=
y Ay v = A V ξ

κ Kξ
, (3.16) 

which leads to 

 
( ) ( )

[ ]
1 21 1 2 2

1 2

0 2 2 1 1 1

,
,   invertible

rank rank u n

+ + + +

= = <

= +

y A Ay v = A V ξ A V ξ

A A A
κ K ξ K ξ K

, (3.17) 

where q is the number of constraints, [ ]1 2,rank q u= <K K . K  is the deterministic constraints ma-
trix and 0κ  is the constraints constant. 1K  and 2K  are the fixed constraints matrix correspondent to 

1ξ  and 2ξ , respectively. 

Part of the parameters can be presented from the other parameter part via constraints 

 ( )1

1 1 0 2 2

−= −ξ K κ K ξ . (3.18) 

By inserting these parameters back to the model we have 

 ( ) ( ) ( ) ( )2 1 1

1 1 1 1

2 1 1 2 1 2 2 1 1 0 1 0

− − − −⎡ ⎤− + − = − + −⎣ ⎦A A y AA A K K V V K K ξ y A K κ v V K κ , (3.19) 

which leads to a weighted TLS problem. The stochastic property for the vectors ( )2 1

1

1 2vec −−A AV V K K  

and 
1

1

1 0

−−y Av V K κ  can be obtained through the error propagation.  

This constrained problem can be solved with the traditional Lagrange multiplier as follows: 

 ( ) ( ) ( )( ) ( )0, , , , 2 2T T T TtrΦ = + + + − + + −A y A A y y y AV v λ ξ μ V V v v λ y v A V ξ μ κ Kξ , (3.20) 

where μ  is the Lagrange multiplier for the constraints. 

After some simplifications (see Schaffrin and Felus 2005) the non-linear normal equation can be 
expressed as 

 
0

0

ˆ ˆ

ˆ1 1
ˆ ˆ ˆ

T T

T T

q

v
v

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

A A A y K ξ ξ
y A y y κ
K κ I μ μ

, (3.21) 

where ( ) ( ) ( )ˆ / 1T Tv = − − +y Aξ y Aξ ξ ξ . 
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Obviously, this system can be interpreted implicitly as an eigenvalue problem. Based on it a con-
verging algorithm has been proposed in Schaffrin and Felus (2005). 
 

3.4 Structured TLS 
 
If the structure of the model matrix A  is composed in the way that some variables appear twice or 
more, this is called Structured TLS problem. The name Structured TLS (STLS) was first introduced 
by De Moor (1993). The STLS problem occurs frequently in signal processing applications (e.g. 
Markovsky and Van Huffel 2007). In geodesy a practical coordinate transformation problem is pre-
sented to demonstrate this technique by Felus and Schaffrin (2005), and a comparison with the LS 
is made. In this part we give an example to demonstrate this problem. A six parameter transforma-
tion (cf. Schaffrin and Felus 2008) is presented as follows 

 

( )
( )

1 21 1 1

1 22 2 2

3111 21 1

3212 22 2

cos sin
sin cos

:

s sy x t
s sy x t

x
x

β β ε
β β ε

ξξ ξ
ξξ ξ

− +⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
≈ +⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, (3.22) 

where 1s  and 2s  are the two scale factors, β  and β ε+  are the respective rotation angels, 1t  and 2t  
are the shifts along the respective axes, 1y  and 2y  are the transformed coordinates, 1x  and 2x  are 
the original coordinates. The six physical (geometric) parameters 1s , 2s , β , ε , 1t  and 2t  are usu-
ally replaced by six mathematical parameters 11ξ , 21ξ , 31ξ , 12ξ  22ξ , 32ξ  in the adjustment. 

If some identical points in both coordinate systems are measured, the transformation equation sys-
tem can be written as follows 

 

11

21

1 2 311

1 2 122

22

32

n

n

ξ
ξ
ξ
ξ
ξ
ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤

= ⎢ ⎥⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎣ ⎦

x x 1 0 0 0y
0 0 0 x x 1y

, (3.23) 

where n1  is a 1n×  vector of ones. 1x , 2x  are the coordinate vectors in the original coordinate sys-
tem, whereas 1y , 2y  are the coordinate vectors in the transformed coordinate system. 

It is obvious that the model matrix has the special structure, and the correspondent residuals for the 
model matrix should also have this structure as follows 

 1 2

1 2

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x x

A
x x

v v 0 0 0 0
V

0 0 0 v v 0
. (3.24) 

Note that the residual vector should be the vector of zeros for the deterministic variables. 
Hence we cannot obtain a correct result with the classical TLS estimator, because in the classical 
case the residual vector does not appear twice or more in the residual matrix. The STLS solution put 
forward by Felus and Schaffrin (2005) has replaced the model matrix by a vector of independent 
elements in the structured matrix multiplying the characteristic matrix, and used an iterative SVD 
process. The solution has been employed to estimate the rotation and the scale parameters of a co-
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ordinate transformation problem. The estimation process is usually called Cadzow’s algorithm (see 
Schaffrin et al 2009). The modified version has been presented by Schaffrin et al (2009). The modi-
fied Cadzow’s algorithm presented the identical parameter estimates (except the variance compo-
nent) as the exact solution, which has been solved by the iterative GHM method proposed (e.g., in 
Neitzel 2010). However, the computation of the (modified) Cadzow’s algorithm is expensive since 
the SVD method has to be applied many times. 
 

3.5 Generalized TLS and element-wise TLS 
 
In this section we introduce extensions of the classical TLS problem, in which the errors have dif-
ferent size. 

In the generalized TLS estimator, the residual matrix ,⎡ ⎤⎣ ⎦A yV v  is assumed to be row-wise inde-
pendent and correlated within the rows with identical vcm. Yet, the so-called generalized TLS does 
not refer to a general vcm. Some authors (e.g., Schaffrin and Wieser 2008) call it ‘equilibrated TLS’ 
to avoid the confusions. The solution for the so-called generalized TLS using a three-step algorithm 
has been propounded by Van Huffel and Vandewalle (1991), Felus (2004). The optimization prob-
lem can be expressed as follows 

 
( )

2
2

1 1 2 2 2 2

min

  
F

subject to
⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

+ + = + +
y

yV v

y A

D V v C

y v = A V ξ A ξ A ξ V ξ
, (3.25) 

where D  is an n n×  diagonal row-scaling matrix, and C  is a ( ) ( )1 1u t u t− + × − +  diagonal col-
umn-scaling matrix. The elements of the matrix D  represent the inverse standard deviations associ-
ated with rows. The elements of the matrix C  represent the inverse standard deviations associated 
with the columns of [ ]A y  (see Schaffrin and Felus 2008). 

In this case the GTLS problem can be solved by a three step algorithm as follows 

1. Find the QR factorization of the augmented matrix [ ],D A y  

 [ ]
11 12 1

22 2

1

b
T

b

t
n t

t u t

⎡ ⎤
⎢ ⎥= −⎣ ⎦

−
1 2

R R r
Q D A A y 0 R r . (3.26) 

2. Compute the classical TLS solution 2ξ̂  for a reduced system 

 [ ] 1 2
22 2 1b

−⎛ ⎞⎡ ⎤
≈⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

ξ
R r C C 0 . (3.27) 

where C  is the diagonal column-weighted matrix. 

3. Use SVD to obtain the 2ξ̂  and 1ξ̂  

 [ ]22 2

T

b =R r C UΣV , (3.28) 

 2 11 1, 1 , 1

22 1, 1

1ˆ ,...,
T

u u u

u u

v v
c v + +

+ +

= − ⎡ ⎤⎣ ⎦ξ C , (3.29) 

 11 1 1 12 2
ˆ ˆ

b= −R ξ r R ξ , (3.30) 
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where 11

22c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C
C  with diagonal matrix 11C . 

When the elements of the residual matrix ,⎡ ⎤⎣ ⎦A yV v  are independent, but not identically distributed 
with element-wise different variances, this further generalization is called element-wise-weighted 
TLS. Solving EIV model in this case has been proved as a non-convex optimization problem (e.g., 

in the simplest case the optimization problem can be described as ( )
( )

2

2

1
min

1

x

x

−

+
), and there is no ana-

lytical solution of EW-TLS (Markovsky et al. 2006, Schaffrin and Wieser 2008). In Markovsky et 
al. (2006) this optimization problem was solved as n  independent optimization problems. An itera-
tive algorithm was designed which led to a local minimum. Lately, Schaffrin and Wieser (2008) 
introduced a solution with a certain block structured vcm using Lagrange multiplier which is only a 
special type of EW-TLS. 

The problems, such as the special weighted TLS problem, the TLS problem with fixing column, the 
TLS problem with linear constraints, introduced in this chapter will be generalized in the case that 
the vcm is fully populated. The general weighted TLS solution which can treat the fully correlated 
data will be presented in Chapter 4. The fact that the general solution cannot be established by the 
presented strategies (e.g., SVD method) is proved. Thus, the methods which have been presented in 
this chapter do not explicitly relate to the approaches applied in the general weighted TLS Problem. 
The corresponding extension (e.g., with fixing column and linear constraints) will be discussed in 
Chapter 5. 
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4 Weighted TLS solutions 

 

In the previous chapter we reviewed the development and extension of the classical TLS technique. 
In addition, solutions have been presented for its extension to structured, constrained and weighted 
problems. The classical TLS has a unique analytical solution in the generic case, whereas the struc-
tured, constrained and weighted TLS problems have no such closed solution and are currently 
solved numerically to a local minimum. However, the weighted TLS problem with the general vcm 
has not been widely discussed until now. 

The WTLS solution is useful for, e.g., the rigorous modeling of point clouds for surface reconstruc-
tion. There the vcm is usually obtained from the error propagation of the original error source, 
which varies dependent on, e.g. distance, angles, intensity, etc. The typical surface reconstruction is 
also very important in the geosciences and used to adjust gravity or magnetic observations and to 
remove the global trend and systematic effects (Schaffrin and Felus 2009). For another geodetic 
application, ‘the empirical coordinate transformation’, the vcm mentioned in the present TLS 
literature takes the correlation between the columns of the data matrix into account rather than the 
vcms of the point coordinates in the coordinate set resulting from network adjustment (Akyilmaz 
2007). Meanwhile, Schaffrin and Felus (2005) and Schaffrin and Felus (2009) have shown that the 
WTLS can be used as a promising tool to solve the constrained TLS problem. Furthermore, the data 
sets can provide large temporal or regional correlations, and the character of uncertainty should be 
expressed as a general vcm. One common statistical model for many types of geodetic and geo-
physical signals may be described as a power-law process, whose variance covariance matrix struc-
ture can be seen in Williams (2003). The efficient algorithms for the structured TLS with large 
block matrices are given by Markovsky and Van Huffel (2005). In the aspect of combination of the 
surface reconstruction and signal processing, the rigorous collocation method used, e.g., in the grav-
ity domain could be also concerned. 

Although the error adjustment problem has been studied as TLS, EIV model and orthogonal regres-
sion over a hundred years in different science domains and occurred in numerous literature, the 
general solution of a Total Least-Squares problem is still not available (cf. Markovsky et al., 2006 
and Schaffrin and Wieser 2008). The situation of the research on the general solution of the fully 
weighted TLS can be also found in other geodetic literature: 

 The solution of a fully weighted TLS problem is still an open question (Schaffrin and Felus 
2009). 

 A TLS problem that can handle differently weighted and correlated measurements is still 
under investigation (Felus and Burtch 2009). 

 No solution to such a problem, which takes purely the variance covariance matrices of the 
two coordinate sets into account, has been achieved yet, even in mathematical science 
(Akyilmaz 2007). 

 It is emphasized, however, that the notion of a suitable weight choice is still unclear and 
needs to be investigated in the future (Schaffrin 2007). 

 After avoiding the pitfalls, the problem can be solved without the limitation of the vcm us-
ing the non-linear GHM. However, the approach is only a particular method to solve the 
non-linear normal equation (Schaffrin 2007).  

However, from the statistician’s point of view, a general approach and thorough understanding for 
adjusting the EIV model is required. From the geodesist’s point of view, the estimation method with 
general vcm is an urgent task, as the different precision and correlation of the observations is en-
countered nowadays in many geodetic applications. Hence, it makes sense to solve this problem not 
only for theoretical understanding, but also for practical purposes. 

In this chapter the fully weighted TLS problem is studied. Firstly, the various objective functions 
are presented and proved as being equivalent. In addition, after giving the standard definition for the 
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weighted TLS, the traditional Lagrange approach is applied to solve the fully weighted univariate 
EIV model. Based on the full analysis of the non-linear normal equations, three solutions are dis-
played and the correspondent algorithms are designed. Although one of our solutions, which do not 
require the linearization, is obtained by the different starting points from the LS estimator (nonlin-
ear GHM method) proposed by e.g., Neitzel (2010), one can see that they have the identical closed-
form expression. The alternative definition for the WTLS problem, which can be easily compared 
with that of the LS estimator, is convenient to calculate the first and second derivative of the objec-
tive function w.r.t. the parameter vector from the numerical analysis aspect, the latter of which 
represents the sufficient conditions of the WTLS solutions. Based on the second derivative one can 
obtain a better understanding about the non-convex optimization problem and design an algorithm 
of the Newton type, which converges more efficiently than the algorithms of Gauss-Newton type at 
least in the final stage of the iteration. Furthermore, the WTLS problem with the quadratic objective 
function can be interpreted as the standard Gauss-Newton type problem from the view of the nu-
merical analysis. After comprising the algorithms designed in the thesis with the existing methods, 
e.g., Schaffrin and Wieser (2008), Neitzel (2010) and Shen et al. (2010) the advantages of the gen-
eral solutions are presented. 

 

4.1 Objective function and general solution based on SVD decomposition 

 

Objective function  

 

The objective function of the classical TLS to solve the EIV model can be expressed in various 
forms. The original LS estimation minimizes the sum of squared residuals whereas the classical 
total least-squares optimization problem is to find the minimal sum of weighted squared residuals: 

2

2min
1

−

+ξ

Aξ y
ξ

 (cf. Markovsky and Van Huffel 2007). The objective function can be understood as 

the squared residuals multiplying the correspondent weight matrix if the errors are independent and 
identically distributedThe other formulation of the objective function is the minimum Frobenius 
norm ,

F
⎡ ⎤⎣ ⎦A yV v  of the residual matrix (see Chapter 3), or as minimization of 

( ) ( )T Tvec vec +A A y yV V v v  after the maximum likelihood method if similarly expressed (see Schaf-
frin and Felus 2008). 

The objective function about the generalized TLS is defined as min
F⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦
A y

A yV v
D V v C . Both scal-

ing matrices can be defined as =C I  and ( )11 ,...,1 ndiag s s=D  (cf. Felus 2004). With the matrix 

property ( )( ) ( ) ( )T T Tvec vec tr⊗T S U V = UVST  (e.g., Amiri-simkooei 2007, Appendix A1) and 

the definition of the Frobenius norm (see chapter 3.1) we see 

 

( )
( )( ) ( )

1
22 2

1
22 2

1
2

T

F

T

T

GTLS

tr

vec vec

⎡ ⎤=⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤= ⊗⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤= ⎣ ⎦

A y A y A y

A y A y

D V v C D V v C V v

V v C D V v

v P v

, (4.1) 
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where ( )vec= ⎡ ⎤⎣ ⎦A yv V v  is the extended residual vector. 2 2

GTLS = ⊗P C D  is the weighted matrix in 
this generalized TLS case. The operator ⊗  is the ‘Kronecker-Zehfuss product’ (e.g., Grafarend and 
Schaffrin 1993 p. 409), which is defined by : ijb⊗ = ⋅⎡ ⎤⎣ ⎦B A A  if ijb= ⎡ ⎤⎣ ⎦B . 

We can easily see that the Frobenius norm objective function is the same as the maximum likeli-
hood objective function ( ) ( )T Tvec vec +A A y yV V v v  in the classical TLS case and GTLS case. 

Since ( ) ( ) ( )Tvec vec= ⊗ABC C A B  (see e.g., Koch 1999), we see that 

 
( )

, ,T T

n n n n

vec⎡ ⎤
⎡ ⎤ ⎡ ⎤− − = ⊗ − = ⊗ −⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦

A
A y

y

V
y Aξ = V ξ v ξ I I ξ I I v

v
, (4.2) 

which can be regarded as a condition equation adjustment problem + =Bv w 0  if ,T

n n
⎡ ⎤= ⊗ −⎣ ⎦B ξ I I  

and ( )= − −w y Aξ . Then, one can transform ( ) ( )ˆ
ˆ ˆ

ˆ
T T vec

vec
⎡ ⎤

⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

A

A y

y

V
V v

v
 to the weighted sum of 

squared residuals 

2

2

ˆ

ˆ 1

−

+

Aξ y

ξ
 in the unweighted TLS case (see Eq (4.19) for detail). 

After recognizing the identity of the Frobenius norm objective function and the maximum likeli-
hood objective function, the objective function expressed as sum of weighted squared residuals will 
be proven in Eq (4.19) as being equivalent to both mentioned objective functions; it leads to identi-
cal results. 
 
The solution based  on SVD decomposition 

 
The solution for weighted TLS based on SVD has been given in the literature (e.g., Van Huffel and 
Vandewalle, 1991, Felus 2004, Akyilmaz 2007 and Schaffrin and Felus 2008). The weighted matrix 
for the extended observation vector can be expressed as 2 2

GTLS = ⊗P C D , where both scaling matri-
ces are diagonal.  
In this part the general solution based on the SVD decomposition is given (the both scaling matrices 
are not diagonal). The functional model ( ) ( )+ − + =A yA V ξ y v 0  can be rewritten as follows 

 1

1
− ⎡ ⎤

+ + =⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎣ ⎦
A y

ξ
D A V y v CC 0  (4.3) 

or 

 
1

11 2
21

c c
−

−⎡ ⎤
+ + =⎡ ⎤ ⎢ ⎥⎣ ⎦ −⎣ ⎦

A y

C ξD A V y v C 0 , (4.4) 

where 2D  is a symmetric positive definite matrix. 1

2c
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

C 0
C

0
, 1

1

−C  exists and 2 0c ≠ . 2 2⊗C D  is 

also a symmetric positive definite matrix. 
This system can then be solved with the SVD approach and the solution can be obtained as follows 

 
[ ]

( )1 1, 1 , 1 1, 1 2
ˆ : ,..., /

T

T

u u u u uv v v c+ + + +

=

= − ⎡ ⎤⎣ ⎦

D A y C UΣV

ξ C
, (4.5) 
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where the structure of the matrix V  can be found in Eq (3.4). 

The vector 1 1

1 2c− −⎡ ⎤−⎣ ⎦C ξ  is the eigenvector associated with the smallest eigenvalue of 

[ ] [ ]2TC A y D A y C  yielding the following eigenvector equation 

 

[ ] [ ]2 1 1

1 2

2 2 1

1 1 1 2 1

2 2 1

2 1 2 2 2

1
2 1

1 1

2

TT

T T

T T

u

c

c

c c c c

c
σ

− −

−

−

−

+ −

⎡ ⎤−⎣ ⎦
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
= ⎢ ⎥

−⎢ ⎥⎣ ⎦

C A y D A y C C ξ

C A D AC C A D y C ξ

y D AC y D y

C ξ

. (4.6) 

After some rearrangement of Eq (4.6) we have the normal equations of TLS estimation 

 2 2 2 2

1 1
ˆ ˆT T

uσ
−

+− =A D Aξ C ξ A D y . (4.7) 

The TLS estimator based on SVD with the most general weight matrix is 

 ( ) 12 2 2 2

1 1
ˆ : T T

uσ
−−

+= −ξ A D A C A D y . (4.8) 

In this case the weighted matrix for the extended observation vector should have the structure 
2 2

1

2 2

2c

⎡ ⎤⊗
= ⎢ ⎥
⎢ ⎥⎣ ⎦

C D 0
P

0 D
. In comparison with the present TLS solution the matrices 1C  and D  could 

be fully populated.  
 

4.2 Definition of the WTLS problem 
 
In the chapters 2 and 3 we have reviewed the LS and TLS method and the corresponding models. 
The least-squares estimation is the best linear unbiased estimation when the design matrix A  is free 
of noise and the observation vector y  is affected by errors. This kind of estimation has frequently 
been applied in the Gauss-Markov model for the error adjustment. In contrast, an EIV model is a 
model similar to GMM except that the elements of the design matrix are observed with errors. The 
LS adjustment is statistically motivated as a maximum likelihood estimator in a linear GMM, and 
the TLS as maximum likelihood estimator in the EIV model. The definition of the WTLS can be 
expressed as an optimization problem 

 
( )

min                            
  

T

subject to
=

+ +y A

v Pv
y v = A V ξ

. (4.9) 

With ( )vec= ⎡ ⎤⎣ ⎦A yv V v . Note that there is an alternative formulation, which uses the error vector 

and matrix instead of the correction vector and matrix. i.e. error matrix = −A AE V  , and error vector 
= −y ye v  (see, e.g., Schaffrin and Wieser 2008). 

If one wants to take the stochastic property of all errors into account, the observations may be writ-
ten in an extended vector. Thus, the uncertainty vector and the stochastic properties of the uncer-
tainty can be characterized by the extended dispersion matrix 
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( ) ( )

( ) 2 2 2 1

0 0 0

,       ,

= ,

vecvec

D σ σ σ −

⎡ ⎤ ⎡ ⎤⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

AA

yy

AA Ay

ll
yA y y

vVA
l v

vvy

Q Q
l Q P

Q Q

 (4.10) 

with 

 

( )

( )

( ) ( ) ( )( )

11 1 1 11

1 1

1 1 1 1 1 1

... ...

... ... ......
... ...

... ... ... ...
... ...

j u

k kj k uk

u u u j u u

+

+

+ + + + +

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

ll

Q Q QQ

Q Q QQ Q

Q Q Q Q

. (4.11) 

kQ  is a ( )1n n u× +  matrix representing the variances and covariances between the elements of the 

k’th column of the augmented matrix [ ]A y  and all elements, kjQ  is the n n×  matrix correspond-
ing to the vcm of the k’th column ( k j= ) or the covariance matrix between the k’th and j’th col-
umns of the augmented matrix [ ]A y . 2

0σ  is the unknown variance component. l  is the extended 
observation vector, which includes the elements of A  and the conventional observation vector y , 
v  is the corresponding correction vector of the extended observation vector. llQ  and P  are the 
symmetric and positive definite cofactor matrix and the weighted matrix of l , respectively. AAQ  is 
the cofactor matrix for Av , and the cofactor matrices AyQ  and yAQ  refers to correlations of Av  and 

yv . 

 

4.3 General solutions using Lagrange multipliers 
 

In this section we will show how to solve the fully weighted TLS with ‘Lagrange multipliers’. Ac-
cording to the traditional Lagrange approach we form the target function as follows 

 ( ) ( ), , 2T TΦ = + − − +A yv λ ξ v Pv λ y Aξ V ξ v , (4.12) 

where λ  is the Lagrange multipliers vector. 

Setting the partial derivatives of the target function w.r.t. , ,ξ v λ  equal to 0 , gives the necessary 
conditions as 

 ˆ ˆˆ, ,

1 ˆ ˆˆ
2

T T∂Φ
= − −

∂ Aξ v λ
A λ V λ = 0

ξ
, (4.13) 

 ˆ ˆˆ, ,

1 ˆ ˆ ˆˆˆ ˆ,
2

T
T T

n n

∂Φ ⎡ ⎤= − ⊗ − = −⎣ ⎦∂ ξ v λ
Pv ξ I I λ Pv B λ = 0

v
, (4.14) 

 ˆ ˆˆ, ,

1 ˆ ˆ ˆ
2
∂Φ

= − − =
∂ ξ v λ

y Aξ Bv 0
λ

, (4.15) 

where ( )1
ˆˆ ,T

n nn n u× +
⎡ ⎤= ⊗ −⎣ ⎦B ξ I I  with the full row rank. The symbol ‘hat’ of the matrix B̂  is because 

of the use of the estimated parameter vector ξ̂ . 
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The solution above represents the necessary condition for the minimum of the objective function. 

The sufficient condition is fulfilled for the residual vector by 1
2 T

∂Φ =
∂

P
vv

 since the Hessian matrix 

of second derivatives of the objective function w.r.t. the extended residual vector is a positive semi-
definite matrix. However, in the non-linear model all of the residuals and parameters as well as the 
auxiliary vector of Lagrange multipliers should be regarded as the (deterministic or stochastic) vari-
ables in the function (4.12). Only the semi-positive Hessian matrix of second derivatives of the ob-
jective function w.r.t. the extended residual vector cannot guarantee that the parameter estimates 
converge to the minimum of the objective function, because for this matrix it is not known whether 
it is positive definite or not. The analytical form and property of the matrix is not mentioned in the 
present literature and will be discussed in the later part of this chapter. 
From Eq (4.14) we can have the estimated residual vector as follows 

 
ˆ ˆˆˆ
ˆ

T⎡ ⎤
= =⎢ ⎥
⎣ ⎦

A
ll

y

v
v Q B λ

v
, (4.16) 

Using Eq (4.16) in Eq (4.15) λ̂  can be expressed as follows 

 ( ) ( )1 ˆˆ ˆ ˆ T
−

= −llλ BQ B y Aξ . (4.17) 

Then by reinserting Eq (4.17) to Eq (4.16) we have 

 

( ) ( )

( ) ( )
( ) ( )

1

1

1

ˆ ˆˆ ˆ ˆˆ
ˆ

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

T T

T T

T T

−

−

−

⎡ ⎤
= = −⎢ ⎥
⎣ ⎦

⎡ ⎤⎡ ⎤ −⎣ ⎦⎢ ⎥= ⎢ ⎥
⎡ ⎤ −⎢ ⎥⎣ ⎦⎣ ⎦

A
ll ll

y

AA Ay ll

yA yy ll

v
v Q B BQ B y Aξ

v

Q Q B BQ B y Aξ

Q Q B BQ B y Aξ

, (4.18) 

where the residual vector can be obtained from the condition error adjustment problem + =Bv w 0  
which is equivalent to ( )+ +y Ay v = A V ξ , if ,T

n n
⎡ ⎤= ⊗ −⎣ ⎦B ξ I I  and ( )= − −w y Aξ . This equation 

also indicates that 

 ( ) ( ) ( )1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ
T

T T T T
−

= − − =ll llv Pv y Aξ BQ B y Aξ λ BQ B λ , (4.19) 

which shows the equivalence of both minimization problems on the estimation level. Note that the 
matrix A  is the original (observed) model matrix (not the estimated one). Furthermore, the Hessian 
matrix representing the second derivative of the target function w.r.t. the vector of Lagrange multi-
pliers is ˆ ˆ T

llBQ B , which can be proven as positive definite matrix due to the full column rank of the 
transposed matrix ˆ TB  (see Koch 1999 for detail). The identity of Eq (4.19) serves as the proof of the 
equivalence of both WTLS definition (the alternative definition is given in chapter 4.5). 
We use the vectorization of a transposed vector to be the same vector and 

( ) ( ) ( )Tvec vec= ⊗ABC C A B  in order to obtain 

 ( ) ( )ˆ ˆ ˆˆ ˆ ˆT T Tvec= = ⊗A A u u AV λ λ V I I λ v . (4.20) 

With the help of Eqs (4.20), (4.13) and (4.17) we obtain 

 ( ) ( ) ( )1 ˆˆ ˆ ˆˆ ˆ ˆˆT T T T T
u

−

⊗ = = − = −A A llI λ v V λ A λ A BQ B Aξ y . (4.21) 
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Now, ξ̂  can be derived by use of ( ) ( )1 ˆˆˆ ˆ ˆT T T
−

= −A llV λ A BQ B Aξ y (see Eq (4.17)) as 

 

( )( ) ( )( )
( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )

11 1

11 1

11 1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ ˆˆ 

ˆˆ ˆ ˆ ˆ ˆ ˆˆ 

T T T T T

T T T T T

T
T T T T T

−− −

−− −

−− − −

= +

= ⊗ +

⎛ ⎞⎛ ⎞= ⊗ − +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

ll A ll

ll u A ll

ll u ll A ll

ξ A BQ B A V λ A BQ B y

A BQ B A I λ v A BQ B y

A BQ B A I y Aξ BQ B v A BQ B y

. (4.22) 

with ( )ˆ ˆˆˆT T
u ⊗ =A AI λ v V λ  (see Eq (4.21)) and ( ) ( )1 ˆˆ ˆ ˆ T

−

= −llλ BQ B y Aξ  (see Eq (4.17)). 

If ˆ
AV  is obtained through ˆ ˆ( )n uIvec ×=A AV v , where the operator n uIvec ×  is the opposite of the ‘vec’ 

operator and reshapes the vector as the assigned matrix form (Matlab’s reshape), one can compute 
this solution with other two closed-form expressions. From Eqs (4.13) and (4.17) we present the 
non-linear normal equation 

 ( ) ( )( ) ( )1 ˆˆˆ ˆ ˆ ˆT T T T T
−

+ = + − =A A llA V λ A V BQ B Aξ y 0  (4.23) 

leading to 

 ( )( ) ( )( )1 1ˆˆ ˆ ˆ ˆ ˆ ˆT T T T T T
− −

+ = +A ll A llA V BQ B Aξ A V BQ B y . (4.24) 

Based on Eq (4.24) one solution should be 

 ( )( )( ) ( )( )
11 1ˆ ˆ ˆ ˆ ˆ ˆ ˆT T T T T T
−− −

= + +A ll A llξ A V BQ B A A V BQ B y . (4.25) 

If we add ( )( ) 1 ˆˆ ˆ ˆ ˆT T T
−

+ A ll AA V BQ B V ξ  to both sides of Eq (4.24), the other solution can be expressed 

as follows 

 
( )( ) ( ) ( )( ) ( )

( )( ) ( )( ) ( )( ) ( )

1 1

11 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T T T T T T

T T T T T T

− −

−− −

+ + = + + ⇒

= + + + +

A ll A A ll A

A ll A A ll A

A V BQ B A V ξ A V BQ B y V ξ

ξ A V BQ B A V A V BQ B y V ξ
. (4.26) 

In the non-linear problem, the estimated parameter vector cannot be separated from the predicted 
residual matrix ˆ

AV  and even the estimated parameter vector per se. Based on the various closed-
form expressions of the estimated parameter vector the algorithms can be designed correspondingly. 
Eq (4.22) using the original model matrix A  is discussed in Björck et al (2000) and Schaffrin and 
Felus (2008) for the unweighted case, the latter of which shows that the algorithm converges mono-
tonically (but slowly) to the solution. The algorithm based on the solution (4.26) can be interpreted 
as the standard Gauss-Newton algorithm (see chapter 4.6 for details), with which we expect linear 
convergence in general while this algorithm can also converge with a quadratic rate, provided that 
the initial values are close enough to the true solution. For the property of the convergence of the 
Gauss-Newton type we refer to Teunissen (1990) and Frandsen et al. (2004). The mixed form (4.25) 
of the original and estimated model matrix can be also applied to derive the desired solution 
through the iteration in this case although the exact convergence properties are still to be deter-
mined. It must be emphasized that in the non-linear case the normal matrix is not necessarily sym-
metric. Due to the non-convexity of the problem (Markovsky et al. 2006, Schuermans et al. 2007), 
the second derivative (the Hessian matrix) w.r.t. the parameter vector is not always positive definite. 
The sufficient condition for the optimization problem is not always fulfilled, so that the iterative 
procedures are not always guaranteed to converge to the minimum. The Hessian matrix representing 
the sufficient condition will be algebraically calculated in the next part of the chapter. 
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After deriving the general solutions, we resolve the solutions of WTLS and give the algebraic for-
mulation based on the weighted LS solution. Firstly, the cofactor matrix is partitioned in two parts 

 

( )

( ) ( ) ( ) ( )

ˆ
ˆˆ ˆ ,

ˆ ˆ ˆ ˆ

ˆ

T T n
n n

n

T T

n n n n
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= ⊗ ⊗ + ⊗ + ⊗ +

= +

AA Ay
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yA y y

AA yA Ay y y

y y

Q Q ξ I
BQ B ξ I I

Q Q I

ξ I Q ξ I Q ξ I ξ I Q Q

Q Q

 (4.27) 

with ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ T T

n n n n= ⊗ ⊗ + ⊗ + ⊗AA yA AyQ ξ I Q ξ I Q ξ I ξ I Q , which leads to  

 

( ) ( )
( )

11

11

ˆˆ ˆ

ˆ

ˆ

T

n n

−−

−−

= +

= − +

= − Δ

ll y y

y y y y y y y y

y y yy

BQ B Q I QI

P P Q P P

P P

. (4.28) 

using the matrix identity according to Koch (1999 p. 34). 

Inserting Eq (4.28) into (4.23), the normal equation can be expressed as the following form 

 

( )( )( )
( ) ( ) ( ) ( )

( ) ( ) ( )

ˆˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

T T

T T T T

T T T T T

= + −Δ −

= − + − − + Δ −

= − + − − + Δ −

A y y yy

y y A y y A yy

y y y y A y y A yy

0 A V P P y Aξ

A P y Aξ V P y Aξ A V P y Aξ

A P y A P Aξ V P y Aξ A V P y Aξ

. (4.29) 

leading to 

 ( ) ( ) ( )ˆ ˆ ˆˆ ˆ ˆT T T T T= + − − + Δ −y y y y A y y A yyA P Aξ A P y V P y Aξ A V P y Aξ . (4.30) 

Based on Eq (4.30), we derive the WTLS solution formulated via the WLS solution 

 ( ) ( ) ( ) ( ) ( )1 1ˆ ˆ ˆ ˆˆ ˆ ˆT T T T T
LS

− −
= − + Δ − + −y y A yy y y A y yξ ξ A P A A V P y Aξ A P A V P y Aξ . (4.31) 

which represents the difference of WLS and WTLS solution without any limitation of the covari-
ance matrix of the extended observations. 

On the basis of the formulas (4.22), (4.25) and (4.26) three algorithms can be designed here. The 
convergence depends on the initial approximation. The LS solution could be used as the start value 
to solve the EIV model (e.g., Schaffrin and Wieser 2008). In the following the index i is the number 
of the iteration step. The i’th (approximate) estimates are stripped of the randomness while keeping 
their numerical value. i.e. 1 1ˆi i+ += −ξ ξ 0  where the 0  denotes a random zero vector (or vector of 
‘pseudo-observation’) of suitable size, in accordance with notion in Harville (1997). I.e. the deter-
ministic term 1i+ξ  is obtained by stripping the randomness of 1ˆ i+ξ  (linear combinations of random 
variables) using 0  (see Schaffrin and Snow 2010 for detail). It is also for the estimated residual 
vector with 1 1ˆi i+ += −v v 0 . ε  is a sufficiently small threshold chosen to accomplish the iteration pro-
cedure. The variables e.g., 1i+B  without the hat symbol mean that the random character is stripped. 
The three algorithms are designed in the following diagram: 
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4.4 Solution using non-linear GHM method 
 
Alternatively, the EIV model can be adjusted through another class of the adjustment algorithm 
with linearization, namely the iterative non-linear GHM. The mixed model, which combines fixed 
parameters and random parameters, was introduced as a general case of the LS adjustment by F. 
Helmert and therefore it is often called GHM. For the nonlinear case ( )( )  E =f l ,ξ 0  one often uses 
the LS type non-linear GHM. A false linearization and update of model matrices may lead to an 
incorrect convergence to the true solution. The first successful investigation for solving the non-
linear GHM was addressed by Pope (1972), and the rigorous algorithm for the non-linear GHM was 
also proposed by Lenzmann and Lenzmann (2004). The LS estimator is used also for solving the 
TLS and WTLS problem, respectively. The false linearization to solve the TLS problem applying 
the GHM occurs in Kupferer (2005) (see Neitzel and Petrovic 2008). Using the non-linear GHM 
Neitzel and Petrovic (2008) established the identity with the classical TLS solution for fitting a 
straight line. Csanyi May (2008) utilized it in a comprehensive performance analysis of state-of-the-
art airborne mobile mapping systems. Recently, based on the non-linear GHM Schaffrin and Snow 
(2010) put forward the regularized TLS solution in Tykhonov’s sense to solve the circle fitting 
problem. Neitzel (2010) applied it to solve the 2D similarity transformation. However, the solution 
using the LS estimator is not explicitly algebraically formulated. (I.e. the detailed structures of the 
model (Jacobian) matrices and the inconsistency vector, which are represented by the parameters 
and the observations as well as residuals, are not presented and built into the final solution of the 
non-linear GHM method.) 
From Chapter 2.3 we know that the WTLS problem can be also classified as a non-linear GHM. 
The model variable v  and parameter ξ  mentioned in (2.27) and (2.28) can be set to =v 0 , 0=ξ ξ  

(initial value) in the first step and ˆi i= −v v 0 , ˆi i= −ξ ξ 0  (estimated value stripping of the random-
ness) in the i+1’th steps of the iterative process, respectively. The residual vector is estimated and 

used to update the first model (Jacobian) matrix 
0T i i+

∂
∂ l v ,ξ

f
ξ

 (see following). Here, we linearize the 

model ( )  + =f l v,ξ 0  as (e.g., Schaffrin and Snow 2010) 

 ( ) ( ) ( )0 0
,i i i i

T Ti i i i+ +
∂ ∂− + − + + =
∂ ∂l v ,ξ l v ,ξ

f fξ ξ v v f l v ξ 0
ξ l

 (4.32) 

neglecting the terms of the higher order. Note that approximate values used for the position of lin-
earization are not random. Thus, 0 = −l l 0 . 

Eq (4.32) can be rewritten as the linear GHM as (e.g., Schaffrin and Snow 2010) 

 ( )0 0

1 ,i i

T Ti i i id +

+ +
∂ ∂+ + =
∂ ∂l v ,ξ l v ,ξ

f fξ v f l ξ 0
ξ l

, (4.33) 

with 1i id + = −ξ ξ ξ  through combining the two terms 

 

( )
( ) ( )

( )

0
,

,

,

i i i

T

Ti i i i i

n n

i i

i i+
∂+ −
∂

⎡ ⎤= + − − − ⊗ −⎢ ⎥⎣ ⎦

= − =

A y

l v ,ξ
ff l v ξ v
l

A V ξ y v ξ I I v

Aξ y f l ξ

 (4.34) 

The detailed structure of both Jacobian matrices and the inconsistency vector are explicitly ex-
pressed here as the algebraic formulation of the observations and parameters as well as the residuals 
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( )
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0
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1
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i

T

Ti i

T n n

i i i

i i

i i
+

+

+

+

∂ = +
∂

∂ ⎡ ⎤= ⊗ − =⎢ ⎥⎣ ⎦∂

= − =

Al v ,ξ

l v ,ξ

f A V
ξ
f ξ I I B
l

f l ξ Aξ y w

, (4.35) 

where iw  is the inconsistency vector in the i’th iteration step. 
By inserting the model matrices and inconsistency vector into the model and the final solution, the 
alternative representation of the EIV model as linearized GHM reads 

 ( ) ( )
1

1

1,
i

Ti i i i

n n id
+

+

+

⎡ ⎤⎡ ⎤+ + ⊗ − + − =⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

A

A

y

v
A V ξ ξ I I Aξ y 0

v
, (4.36) 

and the WTLS solution can be derived as follows 

 

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )
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ξ = ξ ξ

ξ A V B Q B A V A V B Q B w

= A V B Q B A V A V B Q B y Aξ + ξ

    = A V B Q B A V A V B Q B( )( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( ) ( )

1
1

11 1
1 1 1 1 

Ti i i i

T T T Ti i i i i i i i i

−
+

−− −
+ + + +

− +

⎛ ⎞+ + + +⎜ ⎟
⎝ ⎠

A

A ll A A ll A

y Aξ + A V ξ

    = A V B Q B A V A V B Q B y V ξ

,(4.37) 

where 0 =AV 0 , and i

AV  can be reconstructed through  

 ( ) ( )( ) ( )( )
1

1 1 1 1 1ˆ
T Ti i i i i i id

−
+ + + + +− − +⎡ ⎤⎣ ⎦A AA Ay ll Av = Q Q B B Q B w A V ξ , (4.38) 

Note that the residuals and parameters are updated with ˆi i= −v v 0 , 1 1ˆi i id+ += + −ξ ξ ξ 0 . i.e. the re-
siduals are not added on the previous residuals predicted. In contrast to the update of residuals, pa-
rameters are accumulated at the last stage. Schaffrin and Felus (2008) mentioned that the non-linear 
GHM’s inverse computation is required at every iteration because of much larger matrices. How-
ever, the solution (4.37) solves this difficulty, as we have reduced the matrix size in Eq (4.37). The 
process stops if the parameter or the extended residual vector does not change in the order of mag-
nitude. The numerically obtained result is defined as the solution for the WTLS problem: 

1ˆ : i

WTLS

+=ξ ξ . 

 

4.5 Solution based on the Newton type 
 
In the previous part the solutions proposed are obtained with the help of the auxiliary Lagrange 
multipliers. However, it is broadly acknowledged that the method of Lagrange multipliers or the 
non-linear GHM (implicitly using Lagrange multipliers) yield only necessary conditions for opti-
mality in the constrained problems. Although the sufficient condition is fulfilled for the residual 

vector by 1
2 T

∂Φ =
∂

P
vv

, little importance has been attached to the study about the sufficient condition 

of WTLS problem for the parameter vector until now. For the fully weighted case we can define the 
TLS problem alternatively as the minimum of a sum of weighted squared residuals, namely 
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( ) ( ) ( )1
min T T −

− −llξ
y Aξ BQ B y Aξ . The target function can be also classified as quasi indirect error 

adjustment (Wolf 1968, Eq (2153, 10)). The objective function is similar to the objective function 
of the weighted LS case since only the weighted matrices are different. In this case the objective 
function is not subject to any constraints and the variables such as AV  and yv  as well as the auxil-
iary vector of the Lagrange multipliers disappear. The equivalence of both definitions of the WTLS 
problem has been already proved in Eq (4.19) on the estimation level. 
The first and second derivatives of the objective function mentioned above w.r.t. the parameters are 
analytically presented. This represents the necessity and sufficiency conditions of the WTLS solu-
tion. On the basis of the analytical expression of the gradient and the Hessian matrix derived, the 
Newton algorithm is designed for the WTLS problem to bring some advantages versus the Gauss-
Newton algorithm, which is widely employed to solve the WTLS problem, respectively. At the end 
of this part, the minimization problem is interpreted as the non-linear LS problem from the aspect of 
the numeric analysis. Based on the study the WTLS problem can be not only treated by the classical 
Newton or Gauss-Newton algorithm, but also by the other modified algorithms from numerical 
analysis. 
The necessity condition for the local minimizer is given by 

 ( )f∂
=

∂
ξ

0
ξ

, (4.39) 

where ( ) ( ) ( ) ( )1T Tf
−

= − −llξ y Aξ BQ B y Aξ , where ,T

n n
⎡ ⎤= ⊗ −⎣ ⎦B ξ I I . 

It is obvious that the function ( ) ( ) ( )1T T −
− −lly Aξ BQ B y Aξ  is scalar. The matrix analysis property 

(differentiation of a scalar function w.r.t. a vector) in Grafarend and Schaffrin (1993) is applied as 
follows 

 ( )

( )

( )

( )

1

...

...
k

u

f

f f

f

ξ

ξ

ξ

⎡ ⎤∂
⎢ ⎥∂⎢ ⎥
⎢ ⎥
⎢ ⎥

∂ ∂⎢ ⎥= ⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

ξ

ξ ξ
ξ

ξ

, (4.40) 

where ( ) ( ) ( ) ( )1T T

k k

f
ξ ξ

−
∂ − −∂

=
∂ ∂

lly Aξ BQ B y Aξξ  with [ ]1,...,
T

uξ ξ=ξ  and1 k u≤ ≤ . 

The first derivative w.r.t. the parameter vector can be extended in three parts according to the prod-
uct rule (the well-known Leibniz’s Law) as follows 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1
1

1

...

  

T T

k

T T
TT

k k

T T

k

ξ

ξ ξ

ξ

−

−

−

−

∂ − −

∂

∂∂ −
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ll
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BQ By Aξ
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y Aξ
y Aξ BQ B

 (4.41) 
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Since ( ) ( ) ( )1T T −
− −lly Aξ BQ B y Aξ  is scalar, it is not difficult to obtain 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
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−

∂ − −

∂

∂∂ −
= − + − −

∂ ∂

∂
= − − + − −

∂

ll

ll
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ll
ll

y Aξ BQ B y Aξ

BQ By Aξ
BQ B y Aξ y Aξ y Aξ

BQ B
a BQ B y Aξ y Aξ y Aξ

, (4.42) 

where 1,... u= ⎡ ⎤⎣ ⎦A a a  (i.e. ka  is the k’th column of the matrix A ). 

Then, the second part can be solved with 
1

1 1

k kξ ξ

−
− −∂ ∂

= −
∂ ∂
A AA A  (e.g., Grafarend and Schaffrin 1993) 

as 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1
1 1

1 1 1 1

1 1
2

T T
T T T T

k k

T TT T T T T T
k k

T T T T
k

ξ ξ

−

− −

− − − −

− −

∂ ∂
− − = − − −
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= − − − − − −

= − − −

ll ll
ll ll

ll ll ll ll

ll ll

BQ B BQ B
y Aξ y Aξ y Aξ BQ B BQ B y Aξ

y Aξ BQ B BQ BQ B y Aξ y Aξ BQ B Q B BQ B y Aξ

y Aξ BQ B BQ BQ B y Aξ

.(4.43) 

The last step of Eq (4.43) can use the following property: A scalar is given as Ts = a Ca  (exempla-
rily square matrix C  and vector a ). Then, T T T Ts s= = =a Ca a C a . If a scalar is expressed as 

Ts = a Cb , T Ts ≠ a C b  in general (unless the matrix C  is symmetric). 
We combine the Eqs (4.41) (4.42) and (4.43), and finally have the gradient (the first derivative 
w.r.t. the parameter vector) 

 ( ) ( ) ( ) ( )1*2
T Tf −∂

= = − + −
∂ ll

ξ
g A A BQ B y Aξ

ξ
, (4.44) 

with ( ) ( ) ( ) ( )1 1*
1 , ... ,T T T T

u

− −⎡ ⎤= − −⎣ ⎦ll llA Q B BQ B y Aξ Q B BQ B y Aξ
 
through 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
2 2 TT T T T T

k k
k

f − − −∂
= − − − − −

∂ ll ll ll

ξ
a BQ B y Aξ y Aξ BQ B BQ BQ B y Aξ

ξ
, (4.45) 

Note that ( ) ( )1ˆ T T
k

−
−llQ B BQ B y Aξ  is the k’th column in the matrix *A . 

Based on the analytical formulation of the gradient (4.44), obtaining the stationary point should be 
fulfilled the following condition 

 ( ) ( ) ( )1
* ˆˆ ˆT T

−

+ − =llA A BQ B y Aξ 0 . (4.46) 

which is identical to the normal equation (4.23) solved by the Lagrange multipliers, since the matrix 
*A  is actually identical with ( ) ( )( )1 ˆˆ ˆ ˆT T

n uIvec
−

× ⎡ ⎤ −⎣ ⎦AA Ay llQ Q B BQ B y Aξ , namely ˆ
AV . 

Certainly, the normal equation can be identically gained from a different starting point. As well 
known by geodesists, the gradient per se is also an essential quantity to design the algorithms for 
non-linear adjustment problems. Based on it, the descent direction can be calculated, and one of the 
oldest iterative descent methods (the steepest descent method) for solving a minimization problem 

is established (see. e.g., Teunissen 1990). In the method ( )f∂
−

∂
ξ
ξ

 is as the direction vector, and the 
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positive scalar can be chosen according to the different line search strategies. The advantages and 
disadvantages are significant, which can also be found in Teunissen (1990). 
After finding the necessary condition the second derivative representing the sufficiency condition 
for the local minimizer can be illustrated as  

 ( ) ( ) ( ) ( )122 T T

kjT T

f
h

−
∂ − −∂

⎡ ⎤= = ⎣ ⎦∂ ∂ ∂ ∂
lly Aξ BQ B y Aξξ

ξ ξ ξ ξ
, (4.47) 

where 
( ) ( ) ( )12 T T

kj
k j

h
−

∂ − −
=

∂ ∂
lly Aξ BQ B y Aξ

ξ ξ
 with 1 j u≤ ≤ . 

The Hessian matrix is calculated in Appendix. The result is here given as: 

 ( ) ( ) ( )1* ** * **2 2
T T

kjϖ
−

⎡ ⎤= + + + + − ⎣ ⎦llH A A A BQ B A A A . (4.48) 

with ( ) ( ) ( ) ( )1 1T T T
kj kjϖ

− −
= − −ll lly Aξ BQ B Q BQ B y Aξ  

( ) ( ) ( ) ( )1 1**
1 , ... ,T T T T

u

− −⎡ ⎤= − −⎣ ⎦ll llA BQ BQ B y Aξ BQ BQ B y Aξ . 

Here, the analytical formulation of the second derivative of the objective function w.r.t. parameter 
vector is given, based on which the Newton algorithm can be designed for the non-linear problem 
as 1d −= −ξ H g . Being as a Newton’s type, the algorithm works efficiently in the final stage of the 
iteration. If the Hessian matrix at the position of the solution is positive definite (the sufficient con-
dition for the minimizer), in the region around the convergence value we can get quadratic conver-
gence rate which is normally not the case with the Gauss-Newton method (see e.g., Frandsen et al. 
2004). The profit about the convergence rate in comparison with the Gauss-Newton algorithm can 
be also found for solving the non-linear GMM in the geodetic literature, e.g., Lenzmann and Lenz-
mann (2007). 
Except requiring analytical second order derivatives of the objective function the original Newton 
method has three further disadvantages: 1. It is not globally convergent for many problems, 2. It 
may converge towards a maximum or saddle point, 3. The system of linear equations to be solved 
in each iteration may be ill-conditioned or singular (see Frandsen et al. 2004). In contrary, some 
modified versions of the Newton method such as Levenberg-Marquardt type damped Newton me-
thod can perform successfully in general and avoid all the disadvantages above if the second order 
derivatives are analytical available. The Levenberg-Marquardt type damped Newton method (Le-
venberg 1944, Marquardt 1963) can be described as ( ) 1d μ −

= − +ξ H I g . By proper adjustment of 
the damping parameter μ  the method combines the good qualities of the steepest descent method in 
the global part of the iteration process with the fast ultimate convergence of the Newton method. In 
Levenberg-Marquardt type the parameter μ  is updated in each iteration (Frandsen et al. 2004). If 
the parameter is small, the method fall back to the standard Newton method. Of course, all modified 
Newton type methods (or said the combination of methods) based on the analytical formulated gra-
diant and Hessian matrix can be applied to solve the WTLS problem with their own strength. 
 

4.6 WTLS solution of the standard Gauss-Newton type 
 

Due to the positive definiteness of the matrix ( ) 1T −

llBQ B , we rewrite the objective function as  

 ( ) ( ) ( )1 2 1 2

TT Tf = = − −ξ f f y Aξ C C y Aξ . (4.49) 
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where ( ) 1

1 2 1 2
T T−

=llBQ B C C  and ( )1 2= −f C y Aξ . 1 2C  can be derived by e.g., Cholesky decomposi-
tion or eigenvalue decomposition. 

From Eqs (4.42) and (4.43) we can easily see that ( )
k

f
ξ

∂
∂
ξ

 as follows 

 ( ) ( ) ( )( ) ( )1

1 2 1 22 T T T T T
i k

k

f
ξ

−∂
= − − + −

∂ ll

ξ
y Aξ BQ B BQ a C C y Aξ , (4.50) 

which also equals to  

 ( )1 22 2
T T T T

T

k k k k kξ ξ ξ ξ ξ
∂ ∂ ∂ ∂ ∂

= + = = −
∂ ∂ ∂ ∂ ∂
f f f f f ff f f C y Aξ . (4.51) 

We combine Eqs (4.50) and (4.51), and derive  

 ( ) ( )( )1

1 2

T
T T T T T

k k
kξ

−∂
= − − +

∂ ll

f y Aξ BQ B BQ a C  (4.52) 

which yields the transposed Jacobian matrix  

 ( ) ( )*
1 2

T
TT T∂

= = − +
∂
fJ ξ A A C
ξ

. (4.53) 

The classical Gauss-Newton method can be applied here to solve the WTLS problem as follows 
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A V BQ B A V A V BQ B y Aξ
 (4.54) 

leading to 

 
( ) ( ) ( )( ) ( ) ( ) ( )

11 1

ˆ ˆ ˆ:

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ  
T T

T T

d
−− −

= +

= + + + +A ll A A ll A

ξ ξ ξ

A V BQ B A V A V BQ B y V ξ
, (4.55) 

which is identical to our solution (4.26) and (4.37). 
As mentioned above, the WTLS problem is interpreted as a non-linear LS problem instead of a 
normal unconstrained optimization problem. In this case it is not necessary to design an extra itera-
tion procedure for the solution (4.55), because the third and fourth algorithms using the original 
Gauss-Newton method have already provided the iteration processes for the solution itself. The 
original Gauss-Newton method can be modified by, e.g., the well-known damped Gauss-Newton 
method, namely Levenberg-Marquardt method, which is more suitable than the Gauss-Newton al-
gorithm if the current iterate is far from the desired solution.  
The computational advantages of TLS problem (also in weighted case) are still largely unknown in 
the statistical community (Markovsky and Van Huffel 2007). However, with this contribution we 
have a more thorough understanding of the WTLS problem since the problem interpreted as the 
unconstrained optimization problem as well as the non-linear LS problem can be settled by numer-
ous approaches from the numerical analysis aspect. It must be noted that the non-linear LS problem 
can be classified as the quasi indirect error adjustment problem (see Wolf p. 105), because the rank 
and the row number of the matrix B̂  are identical. If the row number larger than the rank, the prob-
lem is attributed to the general case of the problem of the mixed model adjustment. 
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4.7 Comparison between the general solutions and the existing solutions  
 
Comparison  with  the  solution  of  the  nonlinear  GHM  method   proposed  in  Neitzel 
(2010) and Schaffrin  and Snow  (2010) 

 
As mentioned in chapter 4.4, the EIV model is adjusted by the iterative GHM method proposed by 
e.g., Schaffrin and Snow (2010) and Neitzel (2010). Being a non-linear adjustment problem, the 
various solutions are presented based on the different principles. Lenzmann and Lenzmann (2007) 
pointed out that there are two different ways for solving problems of non-linear adjustment. In one 
way, one linearizes all non-linear functions and solves the minimization problem of least squares 
for this approximated linear model. In the other way, one takes the non-linear minimization prob-
lem into account without any previous linearizations. For the WTLS problem presented in this the-
sis it is obvious that our third algorithm (Eq (4.26)) has the identical analytical formulation as the 
non-linear GHM method. However, Schaffrin (2007) pointed out that a LS solution of the non-
linear GHM may be formed by proper iterative linearization and can be tricky as was pointed out 
already by Pope (1972), followed by another discussion by many authors. On the other hand, the 
solution of linear normal equation for iteratively linearized GHM only defines one particular algo-
rithm to solve the non-linear normal equations for the GHM. The argument has actually been 
brought forward by Lenzmann and Lenzmann (2007) for the non-linear GMM and is equally valid 
for the present context. 
Although the Algorithm 3 and the iterative GHM method have the same analytical formulation of 
the estimated parameters, the iterative processes of the Algorithm 3 have a different design from 
non-linear GHM. The i’th step of the iterations can be expressed as follows  
The iterative process of the iterative GHM algorithm can be described as follows: 

( )1 ,
Ti i

n n

+ ⎡ ⎤= ⊗ −⎢ ⎥⎣ ⎦
B ξ I I , 

( ) ( )( ) ( ) ( ) ( )( ) ( )
11 1

1 1 1 1 1T TT Ti i i i i i i i i i
−− −

+ + + + +⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠A A A All llξ A V B Q B A V A V B Q B y V ξ  

( ) ( )( ) ( )( )
1

1 1 1 1 1T Ti i i i i i id
−

+ + + + += − − +⎡ ⎤⎣ ⎦A AAA Ay llv Q Q B B Q B y Aξ A V ξ  and ( )1 1i i

n uIvec+ +

×=
A A

V v  

 

The iterative process (the Algorithm 3) reads: ( )1 ,
Ti i

n n

+ ⎡ ⎤= ⊗ −⎢ ⎥⎣ ⎦
B ξ I I  

( ) ( )( ) ( )
1

1 1 1 1T Ti i i i i
−

+ + + += −⎡ ⎤⎣ ⎦A AA Ay llv Q Q B B Q B y Aξ  and ( )1 1i i

n uIvec+ +

×=
A A

V v  

( ) ( )( ) ( ) ( ) ( )( ) ( )
11 1

1 1 1 1 1 1 1 1 1T TT Ti i i i i i i i i i
−− −

+ + + + + + + + +⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠A A A All llξ A V B Q B A V A V B Q B y V ξ  

The residual vector 1i+

A
v  estimated in the iteration has already been considered in the same iteration 

of the parameter vector estimated whereas in the non-linear GHM algorithm the parameter vector is 
always derived through the residual matrix i

A
V  of the last iteration. Furthermore, the expressions of 

the residual vector are different. One is based on the iterative approach without linearization (see Eq 
(4.18)), the other is based on the iterative linearized GHM method (see Eq (4.38)). The difference 
between using linearization or not, the order of updating parameter or residuals, the formulas of the 
residual vector can influence the convergence behavior e.g., the iteration times to the convergence 
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point. However, both will converge to the same end, i.e. they have identical results. The different 
iteration times and identical result will be seen in the numerical example (Chapter 6). 
 

Comparison with  the  fairly weighted TLS methods proposed  in Schaffrin  and Wieser 
(2008) 

 
The fairly weighted TLS methods proposed in Schaffrin and Wieser (2008) belongs to the EW-TLS 
according to the structure of the vcm. In this EW-TLS case the cofactor matrix can be expressed as 
follows (see Schaffrin and Wieser 2008) 

 
0

n nu u ××
⊗⎡ ⎤

⎢ ⎥=
⎢ ⎥⎣ ⎦

xx

ll

yy

Q Q 0
Q

0 Q
. (4.56) 

Certainly, the cofactor matrix is not fully populated. In Schaffrin and Wieser (2008) the sufficiency 
condition of the minimization problem is discussed, which has not been widely mentioned in the 
other TLS literature. However, the second derivatives of the target function w.r.t. the residual vector 
cannot completely represent the sufficiency condition, because the objective function is related to 
the parameter vector, which is indispensable in the final solution. 
 

Comparison with the iterative TLS solution  proposed in Shen et al. (2010) 

 
Shen et al. (2010) uses the Gauss-Newton strategy after the linearization to solve the TLS problem 
proposed originally by Pope (1974). The algorithm has the identical form with the iterative GHM 
algorithm (Note that the third algorithm proposed in the thesis has the same analytical expression of 
the estimated parameter vector but the different algorithm design from the iterative GHM method). 
However, the method proposed by Pope (1974) and the iterative GHM method presented by Pope 
(1972) are almost identical in principle, since the difference is only ascribed to forming the solution 
to the GHM or not. 
 

Comparison with the existing (weighted) TLS solutions in general 

 
In this thesis three different types of the normal matrix are presented according the thorough analy-
sis of the normal equation system. The difference to the LS solution is also analytically given. If the 
vcm does not have the form of Kronecker product, the solution of the weighted TLS problem is not 
more given by the SVD approach (see chapter 4.2). The existing algorithms (e.g., Neitzel (2010), 
Schaffrin and Snow (2010), Shen et al. (2010)) follow the same pattern, where the Gauss-Newton 
algorithm is used to solve the weighted TLS problem, because the method class takes advantage of 
the special structure (sum of squares) of the objective function. In this thesis except obtaining the 
solutions of the standard or modified Gauss-Newton type, a more efficient Newton algorithm is 
analytically derived based on the quadratic approximation of the loss function. As a consequence, if 
the loss function is quadratic, Newton’s method locates the minimum in one iteration step, whereas 
the method based on the linear approximation needs in general an infinite number of iteration steps 
(Teunissen 1990). The character of the convergence performance will be demonstrated in Chapter 
6. Furthermore, the standard Newton algorithm may be modified by combining with other algo-
rithms to exhibit their own advantages. 
 



35  Chap. 5: Extension of the weighted TLS problem 

 

 

5 Extension of the weighted TLS problem 

 
In some geodetic applications, the reality cannot be explicitly modeled using the standard EIV 
model. Hence, some problems extended from the standard WTLS problem should be discussed in 
this chapter. 
The WTLS problem with fixing columns is taken into account, where the model matrix A  with 
fixing columns in the WTLS problem can be separated into two parts, namely the deterministic and 
stochastic columns, respectively. This approach is frequently used for, e.g., the regression model, 
where the column corresponding to the intercept parameter is fixed, and the transformation model, 
where the column for the translations is deterministic. One approach has been developed by van 
Huffel and Vandewalle (1991, p. 84), who use the QR decomposition to eliminate the parameter 
corresponding to the fixed columns (see Chapter 3). Another approach is that one may shift all co-
ordinates to the center of mass by multiplying both sides of the equation with the idempotent cen-
tering matrix ( )1n n= − T

n nΨ I 1 1  , where n1  is the vector of ones (see e.g., Shen et al. (2006), Schaf-
frin and Felus (2008), Felus and Burtch (2009)). However, the idempotent matrix is valid only for 
the equally weighted case. Considering the general vcm, the parameters corresponding to the fixed 
columns should be eliminated based on the normal equation system. In the more general case fixing 
elements may be also considered, where some elements (not column-wise) in the model matrix A  
are known exactly in the WTLS problem. The problem is not investigated in the present literature. 
The possible approach for the problem is the iterative GHM method, where one picks up the sto-
chastic elements of the model matrix A  and the observation vector to be arranged in the extended 
residual vector and updated with the predicted values. 
The constrained adjustment problem is also an important issue in geodesy. This procedure is en-
countered in numerous geodetic research areas, e.g., the free net adjustment (Koch 1999), in the 
adjustment of gravity measurements (Hwang et al., 2002), in the Very Long Baseline Interferome-
try analysis (Kutterer 2003) or in integrated navigation (Yang 2010). For the framework of the TLS 
problem, Yeredor (2006) claims that the TLS problem with constraints holds an essential position in 
various parameter estimation problems. For the equally weighted TLS problem with linear, fiducial 
and quadratic constraints we refer to Schaffrin and Felus (2005), Schaffrin (2006) and Schaffrin and 
Felus (2009), in which the solutions are obtained based on the SVD. However, the WTLS problem 
with the linear constraints, which cannot be obtained by matrix decompositions, is not yet well un-
derstood. To solve the constrained problems Lagrange multipliers are applied in this section to at-
tain the correspondent solutions. 
In the standard EIV model the parameters and the conventional observations are expressed as the 
vectors. In some geodetic applications, e.g., affine transformation, the parameters and the conven-
tional observations are always expressed matrix-wise in the model. The TLS solution with identity 
(Schaffrin and Felus 2008, Kwon et al., 2009) and the multivariate TLS solution (Schaffrin and 
Wieser 2009) was successfully used for 2D affine transformation. However, the WTLS cannot be 
defined as multivariate TLS problem, in which the errors can be expressed as a Kronecker product 
of two positive definite matrices. In order to solve the 2D, 3D affine transformation in the hetero-
scedastic case, the WTLS solution with the parameter matrix is presented here. 
Undoubtly, the iterative GHM method can solve a lot of non-linear LS problems due to its 
simplicity. In this procedure one linearizes the non-linear function in the GHM. However, in many 
cases one must generalize a strategy to solve some geodetic applications: 1. The solution for the 
non-linear problem with the quadratic form should be regarded as the nonlinear TLS problem with 
the linear constraints about the paramters (see Chapter 6 for detail). 2. Although the 7-parameter 
transformation encountered to convert the World Geodetic system 84 and local coordinate is widely 
discussed (e.g. Teunissen 1988, Grafarend and Awange 2003, Shen et al. 2006, Felus and Burtch 
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2009), the solution for the problem with the general vcm is still not available. For the problem one 
can explicitly use the iterative GHM method (using the partial derivative w.r.t. the rotation angles) 
or solve it as the non-linear TLS problem with the non-linear (here, quadratic due to the orthogonal-
ity of the rotation matrix) constraints about the parameters. If one or more baselines are fixed, the 
constraints about the observations estimated may be taken into account. 3. In geodetic networks the 
TLS solution for the non-linear problem is discussed in Reinking (2008), however no one puts for-
ward the solution if the stochastic parameters are available. Thus, the non-linear TLS problem with 
the linear and non-linear constraints about the parameter or observations should be considered, even 
at the same time. In addition, the proper modeling and solution for the non-linear problems with the 
stochastic parameter should be given. These applications and the state of research will be demon-
strated in the Chapter 6 in detail. 
 

5.1 Fixing columns 
 
In the Chapter 3 we have reviewed fixing columns of the design matrix in the EIV model, which is 
alternatively called the mixed LS-TLS problem. In this part fixing columns in the fully weighted 
case will be solved. The objective function and the model is expressed as follows 

 
( ) ( )21 1 2 2

min

  

T

subject to + + = + +y A A

v Pv

y v = A V ξ A ξ A V ξ
 (5.1) 

where 
2

TT Tvec⎡ ⎤= ⎣ ⎦A yv V v . [ ]1 2,=A A A , [ ]2,=AV 0 V , [ ];1 2ξ = ξ ξ . The 2ξ  vector is the subparam-

eter vector with u t−  elements corresponding to the sub matrix 2A ; 1ξ  with t  elements is corre-
sponding to the deterministic part 1A  of A . 

To obtain the result the Lagrange multiplier is applied as follows 

 ( ) ( )2 2, , 2T TΦ = + − − +A yv λ ξ v Pv λ y Aξ V ξ v . (5.2) 

The corresponding necessary conditions for the stationary point read 

 ( )2ˆ ˆˆ, ,

1 ˆ ˆˆ
2

T
T∂Φ ⎡ ⎤= − − ⎣ ⎦∂ Aξ v λ

A λ 0 V λ = 0
ξ

, (5.3) 

 ˆ ˆ 2ˆ, ,

1 ˆ ˆ ˆˆˆ ˆ,
2

T
T T

n n

∂Φ ⎡ ⎤= − ⊗ − = −⎣ ⎦∂ ξ v λ
Pv ξ I I λ Pv B λ = 0

v
, (5.4) 

 ˆ ˆˆ, ,

1 ˆ ˆ ˆ
2
∂Φ

= − − =
∂ ξ v λ

y Aξ Bv 0
λ

, (5.5) 

where 2
ˆˆ ,T

n n
⎡ ⎤= ⊗ −⎣ ⎦B ξ I I  in this case. 

After some simplifications the solution can be given as 

 ( ) ( ) ( )2 2

2 2

1 11 1

1 2

2 2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ

T T− −⎛ ⎞⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎜ ⎟+ = +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎜ ⎟+ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

ll A ll A

A A

A A
BQ B A A V ξ BQ B y 0 V ξ

A V A V
 (5.6) 

which is analogous to Eq (4.26). 
The normal matrix can be alternatively written as  
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 (5.7) 

 
Parameter elimination  

 

By means of parameter elimination (e.g., Niemeier 2002 p. 286) the estimated 2ξ  reads 

 ( )( ) ( ) ( )( ) ( )2 2 2 2

1 1

2 2 2 2
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆT T T T T T− −

⎡ ⎤+ + = + + ⎣ ⎦A ll A A ll AA V BQ B Ψ A V ξ A V BQ B Ψ y 0 V ξ , (5.8) 

where ( )( ) ( )
11 1

1 1 1 1
ˆ ˆ ˆ ˆT T T T

n

−− −

= − ll llΨ I A A BQ B A A BQ B . 

Instead of the QR decomposition and the centering matrix utilized in the unweighted case, the 
idempotent matrix Ψ  is analytically derived. It is valid for the fully populated vcm of observations. 
Since then, the subparameter vector 1ξ̂  can easily be obtained after deriving 2ξ̂ . 

 

5.2 Fixing elements 
 
There is a more generalized case, namely fixing elements, which means that arbitrary elements in 
the model matrix instead of a whole column are stochastic. For fixing elements only in the model 
matrix the optimization problem can be expressed as 

 
( ) ( )1 2

min

  

T

subject to + + = + +y A A

v Pv

y v = A V ξ A ξ A V ξ
 (5.9) 

where 
#⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

A

y

v
v

v
. #

Av  denotes the vectorization of the stochastic part of the residual matrix AV  (ex-

cepting the 0 element, which represents the deterministic element in the model matrix). P  is the 
correspondent weight matrix of the vector v . 
An example is shown to illustrate the structure of these matrices. If we have the corrected design 
matrix  

 

# #
11 13

11 13

# #
21 2321

# #
32 33

# #
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22 23

1 2 # #
31 32 33

41 42 43

0
0 0 0

00 0 0
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⎡ ⎤⎡ ⎤ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥+ = + + = + +
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

A AA V A A V , (5.10) 

the model matrix B  is the partial derivative w.r.t. the vector  

 # # # # # #
32 23 3311 21 13

T
T

a a a a a a
v v v v v v⎡ ⎤= ⎢ ⎥⎣ ⎦yv v , (5.11) 

 
should be organized as 
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1 3

1 3
4

2 3

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0

ξ ξ
ξ ξ

ξ ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥= −
⎢ ⎥
⎢ ⎥
⎣ ⎦

B I , (5.12) 

where 4−I  is the derivative w.r.t. yv . 

The solution of iterative GHM method (see Eq (4.37)) can be described as follows 

 ( )( ) ( )( ) ( )( ) ( )
11 1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆT T T T T T

−− −

= + + + +A ll A A ll Aξ A V BQ B A V A V BQ B y V ξ , (5.13) 

The stochastic part and deterministic part of the matrix ˆ
AV  can be also retrieved through #

Av  and 
zeros, respectively. 
 

5.3 Linear constrained WTLS problem 
 
The definition for unweighted TLS problem with linear constraints has been addressed in Chapter 3 
whereas the linear constrained WTLS case is given here: 

 
( )

( ) ( )
0

2

0
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vec
D D σ

+ + =
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y A

ll

y v = A V ξ κ Kξ

A
l Q

y

. (5.14) 

To obtain the solution the Lagrange multiplier is applied: 

 ( ) ( ) ( )0, , , 2 2T T TΦ = + − − + − −A yv λ μ ξ v Pv λ y Aξ V ξ v μ κ Kξ . (5.15) 

The corresponding necessary conditions for the stationary point read 
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 (5.17) 
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2
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∂ ξ v λ μ

y Aξ Bv 0
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 ˆ ˆ 0ˆ ˆ, , ,

1 ˆ
2
∂Φ

= − =
∂ ξ v λ μ

κ Kξ 0
μ

 (5.19) 

where ˆˆ ,T

n n
⎡ ⎤= ⊗ −⎣ ⎦B ξ I I . 

The vector of the estimated multipliers is derived from (5.17) and (5.18) as follows 

 ( ) ( )1 ˆˆ ˆ ˆ T
−

= −llλ BQ B y Aξ , (5.20) 

which is same as the unconstrained case. 

Re-inserting the multiplier λ̂  to Eq (5.16), the normal equation system is derived as 
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ˆ

T ⎡ ⎤⎡ ⎤ ⎡ ⎤
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nN K ξ
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, (5.21) 

where ( )( ) ( )1ˆ ˆ ˆ ˆ ˆT T T
−

= + +A ll AN A V BQ B A V  and ( )( ) ( )1ˆ ˆ ˆ ˆˆ T T T
−

= + +A ll An A V BQ B y V ξ . 

Then, the estimated parameter vector for the linear constrained WTLS (LCWTLS) problem can be 
expressed with the help of matrix identities (Koch 1999 p. 33) as  
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, (5.22) 

or alternatively as 

 ( ) ( )1
1 1

0
ˆ ˆ ˆˆ ˆ: T T

LCWTLS WTLS WTLS

−
− −= − −ξ ξ N K KN K Kξ κ . (5.23) 

Now, we get access to the algorithm for the linear constrained WTLS with the iteration based on Eq 
(5.22) or (5.23). 
 

5.4 WTLS with parameter matrix  
 
In some geodetic applications, e.g., affine transformation, one formulates the parameters and the 
conventional observations always as the matrix-wise instead of the vector-wise. The well-known 
model for 3D affine transformation with 12 parameters, which can be obtained from the extension 
of 2D affine transformation mentioned in chapter 3, can be written as follows 

 
1 1

2 2

3 3

1 11 21 31 1 41

2 12 22 32 2 42

3 13 23 33 3 43

y x

y x

y x

y v x v
y v x v
y v x v

ξ ξ ξ ξ
ξ ξ ξ ξ
ξ ξ ξ ξ

⎡ ⎤ ⎡ ⎤+ +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ = + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

, (5.24) 

where the 12 mathematical parameters represent the 12 implicit or explicit geometrical parameters, 
namely 3 translations, 3 rotation angles, 3 shears and 3 scale factors. The coordinates for a particu-
lar point are 1x , 2x  and 3x  in one coordinate system and 1y , 2y  and 3y  in another coordinate sys-
tem. Besides, v  with the indices denotes the correspondent corrections. 
With the help of Eq (5.24) we obtain the EIV model with fixing column for the whole system as 
follows 

 

11 12 13 11 12 13

21 22 23 21 22 23

1 2 3 1 2 3

11 12 13 11 12 13 11 12

21 22 23 21 22 23

1 2 3 1 2 3

1
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1

n n n n n n

y y y x x x

y y y x x x

n y n y n y n x n x n x

y v y v y v x v x v x v
y v y v y v x v x v x v

y v y v y v x v x v x v

ξ ξ ξ+ + + + + +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ + + + + +⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ + + + + +⎣ ⎦ ⎣ ⎦

13

21 22 23

31 32 33

41 42 43

ξ ξ ξ
ξ ξ ξ
ξ ξ ξ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

, (5.25) 

where ijx  and ijy  (1 ,  1 3i n j≤ ≤ ≤ ≤ ) are the coordinates in both coordinate system with the corre-
spondent residual 

ijxv  and 
ijyv  while n  is the number of the observations. 

In this case one may solve the WTLS problem with the parameter matrix instead of the parameter 
vector. The functional and stochastic model of the WTLS problem with parameter matrix can be 
expressed in the following equations: 
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 ( )+ +Y AY V = A V Ξ  (5.26) 

 

( )
( )

( )
( )

( ) 2 2 1

0 0

       
vec vec
vec vec

D σ σ −

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤
= = =⎢ ⎥

⎣ ⎦

A

Y

AA AY
ll

YA YY

A V
l v

Y V

Q Q
l Q P

Q Q

 (5.27) 

Ξ  denotes the u d×  parameter matrix. Y  is the n d× observation matrix, and YV  is the n d×  re-
sidual matrix referring to Y . 
To solve the system, the Lagrange function reads 

 
( ) ( )( )( )

( ) ( )( )
, , 2

2

T T

T T

tr

vec vec

Φ = + + − +

= + + − +

Y A

Y A

v Λ Ξ v Pv Λ Y V A V Ξ

v Pv Λ Y V A V Ξ
, (5.28) 

where Λ  denotes the n d×  matrix of Lagrange multipliers. 
We then obtain the necessary Euler-Lagrange conditions: 

 ( )( ) ( )ˆˆ ˆ, ,

1 ˆ ˆ ˆˆ ˆ
2

T T T T
d vec∂Φ

= − − − ⊗ + =
∂ A AΞ v Λ

A Λ V Λ = I A V Λ 0
Ξ

. (5.29) 

 ( ) ( )ˆˆ ˆ, ,

1 ˆ ˆˆ ˆˆ ˆ,
2

T
T T

n d n vec vec∂Φ ⎡ ⎤= − ⊗ − ⊗ = −⎣ ⎦∂ Ξ v Λ
Pv Ξ I I I Λ Pv B Λ = 0

v
. (5.30) 

 ( )( ) ( )ˆˆ ˆ, ,

1 ˆ ˆ ˆ ˆ ˆ ˆ
2

vec∂Φ
= + − + = ⇒ − − =

∂ Y AΞ v Λ
Y V A V Ξ 0 Y AΞ Bv 0

Λ
, (5.31) 

with ˆ ˆ ,T
n d n

⎡ ⎤= ⊗ − ⊗⎣ ⎦B Ξ I I I . 

Inserting ( )ˆˆˆ T vec− llv = Q B Λ  obtained by Eq (5.30) into Eq (5.31) leads to 

 ( ) ( ) ( )1ˆ ˆ ˆ ˆTvec vec
−

= −llΛ BQ B Y AΞ , (5.32) 

 
The residual vector can be derived as 

 ( )ˆˆˆ T vec= llv Q B Λ . (5.33) 

Then, we obtain the normal equation from Eqs (5.29) and (5.32) as 

 ( )( )( ) ( )1ˆ ˆ ˆ ˆT T T
d vec

−

⊗ + − =A llI A V BQ B Y AΞ 0  (5.34) 

or 

 ( )( )( ) ( ) ( ) ( )( )( )1ˆ ˆ ˆ ˆ ˆ ˆ ˆT T T
d d dvec vec vec

−

⊗ + + ⊗ − ⊗ + =A ll A AI A V BQ B Y I V Ξ I A V Ξ 0 . (5.35) 

with 

( ) ( ) ( )( ) ( )( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
d d d d dvec vec vec vec vec= ⊗ = ⊗ + − = ⊗ + − ⊗A A A AAΞI I A Ξ I A V V Ξ I A V Ξ I V Ξ . 

To solve the WTLS problem with parameter matrix we rearrange Eq (5.35) and write: 

 ( ) ( )( )( ) ( ) ( )( )1
1ˆ ˆ ˆ ˆ ˆ ˆT T T

d dvec vec vec
−

−= ⊗ + + ⊗A ll AΞ N I A V BQ B Y I V Ξ , (5.36) 
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where ( )( )( ) ( )( )( )1ˆ ˆ ˆ ˆT T T
d d

−

= ⊗ + ⊗ +A ll AN I A V BQ B I A V . 

The WTLS problem with parameter matrix with fixing columns to solve the transformation problem 
can be analogously treated as shown in Chapter 5.1 and is left out here. 
 

5.5 Rigorous solutions of the non-linear EIV model 
 
In some case of handling the geodetic data, the linear EIV model presented in previous part is im-
proper. For example, the method proposed by Drixler (1993) for estimation of the form parameters 
is widely used in geodesy. Of course, the model can be solved with the non-linear GHM method 
proposed in Pope (1972). However, in many cases the parameters and observations are constrained, 
e.g., some parameters are fixed if the quadratic form is a sphere. Thus, the Gauss-Newton algorithm 
should be generalized to treat the non-linear TLS problem with constraints. Thus, the general func-
tional models can be organized as 

 
( )
( )
( )

1

2

3

, + =

=

+ =

f ξ l v 0

f ξ 0

f l v 0

 (5.37) 

The function 1f  denotes the observation equations containing the parameters and observations; This 
is also called non-linear GHM. 2f  denotes the linear or non-linear constraints about the parameters. 

3f  is the conditional function about the observations. The combination is complicated. However, the 
model is useful for some open geodetic applications (see Chapter 6 for detail). 
The objective function expressed with Lagrange multipliers is given as follows 

 ( ) ( ) ( ) ( )1 1 2 2 3 3, , 2 , 2 2T T T TΦ = + + + + +v λ ξ v Pv λ f ξ l v λ f ξ λ f l v  (5.38) 

where 1 2 3

TT T T⎡ ⎤= ⎣ ⎦λ λ λ λ . 

In order to obtain the minimum of the objective function, the functions ( )2f ξ  and ( )3 +f l v  are re-
built as two pseudo observation equations ( )2 pseudo= +f ξ 0 v  and ( )3 + = ⋅f l v 0 ξ , where the vector 

pseudov  with small variances ensures the fulfillment of the constraints. The both functions are origi-
nally introduced as the constraints and conditional function of observations, and are now formulated 
as pseudo observation equations and integrated into the non-linear GHM. In order to obtain the 
minimum, we give the partial derivative of the objective function w.r.t the parameter vector and the 
residual vector as 
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 (5.39) 
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 (5.40) 

if we define : , :total total
pseudo pseudo

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

P 0 v
P v

0 P v
, 2n  is the number of the constraints function 2f .  

The normal equation system can be obtained by combining the Eq (5.39) and (5.40) as 

 ( ) 11

1 2 2 2
ˆ ˆ ˆ ˆ ˆT T

total total

−− =J J P J J v 0  (5.41) 

If we linearize the combined functional model ( ) ( ) ( )1 2 3, , ,
TT T T

pseudo
⎡ ⎤+ + + =⎣ ⎦f ξ l v f ξ 0 v f 0 l v 0  at 

0ξ  and ( )0 0 0+ = −l v l l 0  neglecting the terms of the higher order, we have  
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, (5.42) 

leading to 
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where the vector 
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 is usually called the inconsistency vector in 

the sense of GHM. 
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Because 2J  is the first partial derivative of the functional model w.r.t. the observations, 
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if there are no terms of the quadratic and higher form 

of the observations. 

Inserting the Eq (5.43) into Eq (5.41), the updated term of the estimated parameter 1dξ  and the es-
timated parameter vector 1ξ̂  can be obtained as 
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 (5.44) 

and 

 ( ) ( )( ) ( ) ( )( )
11 1

1 0 0 0 1 0 0 0 0 1 0 0

1 2 2 1 1 2 2
ˆ T T T T

total total total

−− −
− −⎛ ⎞= − ⎜ ⎟

⎝ ⎠
ξ ξ J J P J J J J P J w  (5.45) 

respectively. 
The residual vector is estimated as 

 ( ) ( )( ) ( )
1

1 1 0 0 1 0 0 0 1

2 2 2 1
ˆT T

total total total total d
−

− −= − +v P J J P J w J ξ , (5.46) 

The estimated parameters and residuals should substitute the old parameters and update the cor-
rected observations with 0 i+l v  in the both Jacobian matrices and the inconsistency vector. The 
process is iteratively computed until the values of parameters do not change in the given magnitude. 

Considering the stochastic parameter expressed as ( )N ξξξ μ Σ∼  (e.g., from the previous adjust-
ment), the objective function based on Eq (5.38) reads 

  ( ) ( ) ( ) ( ) ( ) ( )1

1 1 2 2 3 3, , 2 , 2 2T T T T T−Φ = − − + + + + + +ξξv λ ξ ξ μ Σ ξ μ v Pv λ f ξ l v λ f ξ λ f l v  (5.47) 

With the partial derivative 
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ξ
 and Eq (5.44) the 

solution taking the stochastic information observed into consideration can be derived as 
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(5.49) 

If there is only the observation equation ( )1 , +f ξ l v , the integrated Gauss-Newton solution is identi-
cal to the non-linear GHM method proposed by Pope (1972). The formulas proposed in this part 
will solve some typical geodetic problem presented in Chapter 6. 
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6 Applications 

 
In the chapter some typical geodetic applications are demonstrated via the solutions proposed in the 
thesis. The purpose of the examples is to show the applicability of the solutions in geodetic prob-
lems and to compare their performances with the one of the existing methods. 
In the well-known orthogonal regression problem, our methods are investigated to present advan-
tages according to the convergence behavior and the weight information. In this example the solu-
tions proposed in the thesis provide identical results but different convergence times from the exist-
ing methods, and exhibit the applicability without any limitation of the weight information. 
Although using the TLS technique to solve the similarity transformation problem is widely dis-
cussed recently, the 3D transformation model with different variances and correlations of the errors 
can be only adjusted within the EIV model by the method proposed in Chapter 5.5. The adjusted 
result indicates that the estimated scale of the transformation (from the source system to the target 
system) multiplying the estimated scale of the reverse transformation (from the target system to the 
source system) equals exactly to 1. The phenomenon denotes the correct symmetric treatment of 
two set of coordinates for identical point fields. When distances between points are fixed or not, the 
generalized Gauss Newton algorithm proposed in Chapter 5.5 can solve the transformation prob-
lem. 
In the next example the quadratic form of point clouds are estimated by means of the WTLS tech-
nique. The method can be used for estimating the form parameters of the general quadratic equation 
when the form is exactly known (e.g., circle) or unknown. 
Moreover, the free stationing with stochastic parameters is presented within geodetic networks with 
the weak datum. The result indicates that our solution is the weighted mean of the WTLS solution 
and the mean given by the prior stochastic information. 
 

6.1 Orthogonal regression 
 
One of the common applications in geodesy, where the observations in the model matrix A  and the 
conventional observation vector y  are stochastic, is the orthogonal regression. In this application 
one minimizes the sum of the squared orthogonal distances instead of the sum of the squared verti-
cal distances from the data to fitting line. The application is frequently used for the surface recon-
struction of point clouds in engineering geodesy, and also to find the relationship between some 
quantities observed. For example, Mann and Emanuel (2006) is concerned with finding statistical 
evidence for a natural climate cycle, which may be related to Atlantic hurricane activity. 
The target of this example is as follows: 
1. To validate that our solutions give the identical solution with existing methods under the condi-
tion that the vcm is not general. 
2. To show the advantages of convergence behavior, especially the iteration times of various solu-
tions. 
3. To solve the problem with fully populated vcm: It is emphasized that our solutions can solve the 
WTLS, and results may significantly differ from the TLS solution. 
4. To show the constrained WTLS problem: in this scenario it is also discussed that only our solu-
tion can solve the constrained WTLS problem. 
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As the first scenario, we use the data in Tab 6.1, to solve a simple orthogonal regression problem, 
where the slope ξ  should be estimated. The model can be expressed as follows 

 ( )ξy xy + v = x + v , (6.1) 

where the intercept is omitted in the model. 

The data of this example are given in the following Table. The data are originally given in Neri et al 
(1989) and also presented in Schaffrin and Wieser (2008) and Shen et al (2010). However, the val-
ues of the 4th column for y is changed to be proper for the model (6.1). 

point number x weight of x y weight of y 

1 0.0 1000 14.5 1.0 

2 0.9 1000 15.1 1.8 

3 1.8 500 34.7 4.0 

4 2.6 800 37.4 8.0 

5 3.3 200 40.4 20 

6 4.4 80 58.1 20 

7 5.2 60 62.9 70 

8 6.1 20 69.9 70 

9 6.5 1.8 78.9 100 

10 7.4 1.0 86.4 500 

Table 6.1 Observation data vector (x, y) and corresponding weights 

A comparison of our solutions to the weighted LS and TLS solution is shown in the following Ta-
ble.  

parameter TLS WLS Algorithms 1 until 5 

ξ  12.3902755822 11.7614570786 14.0066360261 

Table 6.2 Results of orthogonal regression with the data of Table 6.1; TLS solution with vcm, weighted LS using only 

individual weights of y, WTLS solutions with the uncorrelated weighted information 

The WTLS solutions are derived with the algorithms developed in the thesis. The Algorithms 1 to 5 
give identical results within the magnitude of 1010− . The differences between the WTLS solutions 
and the WLS solution, or WTLS solutions and TLS solution are clearly shown in Tab 6.2. This in-
dicates that the WTLS solution can be significantly different to the traditional LS and TLS results, 
if one take the weights of the uncertainty of the model matrix into account and calculates with the 
WTLS solutions.  

Algorithm Algorithm 
1 

Algorithm 
2 

Algorithm 
3 

Algorithm 
4 

Algorithm 
5 

 Non-
linear 
GHM 

Schaffrin 
and Wie-
ser 2008 

Times 11 10 9 4 16 13 11 

Table 6.3 Number of iteration of different solutions using the WLS solution as the initial values 

In the Chapter 4 we have intensively discussed the convergence behavior of the different solutions. 
Here, we present the convergence speed represented with the iteration times in the following table, 
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where the WLS solution is set as the initial value for the calculation process, and the WTLS solu-
tions converge within the given magnitude ( 1010− ). 
The Algorithms 1, 2 and 3 have almost the same iteration times of the algorithm presented in Schaf-
frin and Wieser (2008), whereas Algorithm 4 (Newton approach) needs less iterations. Though our 
Algorithms 3 and 5 have the identical analytical formulation as the non-linear GHM algorithm, the 
iteration times of the non-linear GHM are more than Algorithm 3 and less than Algorithm 5 due to 
the original algorithm design. The time for one iteration of the methods presented in Tab 6.3 is in 
the same level. The reason can be that the algorithms except Algorithm 4 have the similar design 
(the inversion of the same dimension). Furthermore, Algorithm 4 needs only one inversion (without 
the inversion of the normal matrix) though it requires more matrix multiplication. 
Being an one-dimensional problem, it is able to demonstrate the values of the objective function 
(see Eq (4.19)) according to parameter values. The values of the objective function are plotted in the 
following left-up figure where our WTLS solution is exactly minimal. In the right-up figure we pre-
sent the estimated line using the WTLS technique introduced in the thesis. The two figures below 
indicate the trend of the second and first derivative of the objective function at the region, which is 
close to the WTLS solution. The objective function is (local) convex at the region. The convexity 
guarantees the sufficient condition of the Lagrange conditions, because the second derivative of the 
objective function is positive. Furthermore, the first derivative is 0 at the WTLS solution, which 
means identically that the WTLS result corresponds to the minimum of the objective function (sta-
tionary point and the positive definite Hessian matrix). 

 
Figure 6.1 The objective function, the observation and the fitting line, the second derivative and the first derivative of 

the objective function w.r.t. parameter vector 

In previous part we have shown that our solutions yield the identical result as Schaffrin and Wieser 
(2008) in this numerical example. However, the EW-TLS solution (e.g., Schaffrin and Wieser 
2008) cannot solve the fully weighted TLS problem. The case of correlated observation is always 
encountered in geodesy. In order to exhibit the advantage of solutions designed in the thesis, we 
give the correlation coefficients between the ith observation of x and ith observation of y as 0.1, 0.5, 
or 0.9 (i =1…10). At the same time, weights are still hold (see Tab 6.1). 
The results with various correlation coefficients are presented in Tab 6.4. The bigger correlation 
coefficient leads to a more significant difference to the WTLS solution without correlation. It means 
that the fully populated vcm could affect the WTLS result. Furthermore, the difference between the 
TLS solution and the WTLS solution could be significantly larger than the difference between the 
TLS and the LS solution (see Tab 6.2 and 6.4).  
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Parameter 
WTLS with cor-
relation coeffi-

cient 0.1  

WTLS with cor-
relation coeffi-

cient 0.5 

WTLS with cor-
relation coeffi-

cient 0.9 

WTLS without 
correlations 

ξ  14.07208090823 14.4438768236 15.3638711544 14.0066360261 

Table 6.4 The parameter estimates obtained by using the different vcm, which have a different correlation coefficient 

between the observation the ith observation of x and ith observation of y 

 

Fixing column 

 

In order to demonstrate the solution of the WTLS problem with fixing columns, the slope 1ξ  and the 
intercept 2ξ  are estimated and hence the model can be expressed as follows:  

 ( ) 1

2

,
ξ
ξ
⎡ ⎤

⎡ ⎤⎣ ⎦ ⎢ ⎥
⎣ ⎦

y xy + v = x + v e , (6.2) 

Thus, the model becomes more complete in comparison with the model of (6.1). 

point number x weight of x Y weight of y 

1 0.0 1,000 5.9 1.0 

2 0.9 1,000 5.4 1.8 

3 1.8 500 4.4 4.0 

4 2.6 800 4.6 8.0 

5 3.3 200 3.5 20 

6 4.4 80 3.7 20 

7 5.2 60 2.8 70 

8 6.1 20 2.8 70 

9 6.5 1.8 2.4 100 

10 7.4 1.0 1.5 500 

Table 6.5 Observation data vector (x, y) and corresponding weights, taken from Neri et al. (1989) 

Table 6.6 The parameter estimates using the data of Table 6.5 

The data of this example can be seen in Tab 6.5. A comparison of our solution to the solution of 
Schaffrin and Wieser (2008) is shown in Table 6.6. In fact, our solutions of parameters correspond 
with the solution of Schaffrin and Wieser (2008). After the elimination of the parameter 2ξ  the 
model can also be transformed as an one-dimensional problem like in Eq (6.1). The comparison of 
the solutions proposed in the theses with Schaffrin and Wieser (2008) are intensively discussed in 
Chapter 4. For example, the convergence behavior of the Newton algorithm has the advantage that 

Parameter 
Unweighted 

TLS 
Solution of Schaffrin 
and Wieser (2008) 

Solutions designed in 
the thesis 

1̂ξ  

2̂ξ  

-0.545561197 
5.784043775 

-0.480533407 
5.479910224 

-0.480533407 
5.479910224 
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we can get quadratic convergence rate which is normally not the case with the Gauss-Newton me-
thod. 
 
Constrained WTLS  

 
The example in this section demonstrates the use of the WTLS algorithm with linear constraints. 
The data of the example is taken from Schaffrin and Felus (2009), which easily shows the differ-
ence between the algorithm of Schaffrin and Felus (2009) and ours. The data are given as follows  

 [ ]
0

0.5 1 0 6
0 1 0 3 2 0 3

      and   
0 0 1 4 16
1 0 1 10

κ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ = −⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥ =
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

K
A y , (6.3) 

For the model and the notation refer to Chapter 5.3. 
Using the solution proposed in the thesis (see Chapter 5.3) the result of the parameters, squared re-
siduals and fulfillment of constraints are presented in the following table and compared with the 
result of Schaffrin and Felus (2009). In order to make the comparison to Schaffrin and Felus (2009), 
the weights for all observations are equal. 

 Algorithm proposed in 
this thesis  

Algorithm proposed 
in Schaffrin and Felus 

Result of 
Schaffrin and Felus  

1̂ξ  2.36823 2.36823 2.36819 

2̂ξ  5.69850 5.69850 5.69844 

3̂ξ  6.91215 6.91215 6.91213 
Tv v  0.21284 0.21284 0.21284 

Table 6.7 Results of the parameters and sum of the squared residuals using the constrained WTLS approach 

Obviously, first two results do not have the difference. The first result is obtained by the algorithm 
proposed in the thesis, and the second one is derived by using the algorithm proposed in Schaffrin 
and Felus (2009). Both algorithms convergence at exactly identical positions which represent the 
estimate of the parameters at the magnitude of 510− . The result presented in Schaffrin and Felus 
(2009) (in 4th column of Tab 6.7) has slight difference to the first two results. Although the sums of 
squared residuals are identical, the estimates must be same for treating the identical data. However, 
the differences should be investigated in the future. 
The strategy of Schaffrin and Felus (2009) is based on the SVD method and can only solve the TLS 
problem with a fairly vcm. In geodesy and related science domains, the vcm may be expressed as a 
Toeplitz matrix (c.f. Xu et al 2007). In this example the vcm of the model matrix A  is given as a 
positive definite Toeplitz matrix with the structure: 
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0 1 9

1 0 9

1 9

9 0

9 0 1

9 1 0

... 0 0
0

... ...
... ... ...

0
0 0 ...

Γ Γ Γ⎡ ⎤
⎢ ⎥Γ Γ Γ⎢ ⎥
⎢ ⎥Γ Γ

= ⎢ ⎥Γ Γ⎢ ⎥
⎢ ⎥Γ Γ Γ
⎢ ⎥

Γ Γ Γ⎣ ⎦

AAΣ , (6.4) 

where 0 1 2 8 91, 0.9, 0.8... 0.2, 0.1Γ = Γ = Γ = Γ = Γ = . In Matlab code, this matrix can be written as toe-
plitz([1:-0.1:0,0]). The correlation coefficients of the vcm are between 0 and 1. 

The results are presented as 

 TLS WTLS LCTLS  LCWTLS 

1̂ξ  
4.68316 3.52734 2.36823 5.25272 

2̂ξ  
6.24535 33.75578 5.69850 9.38222 

3̂ξ  
5.13041 34.74160 6.91215 8.83515 

1T −v Σ v  0.18400 0.26490 0.21284 0.84946 

Table 6.8 Results of the parameters and sum of the squared residuals using TLS, WTLS, the constrained WTLS ap-

proach with identity and the Toeplitz vcm structure 

Tab 6.8 indicates that if one considers the correlation information the results can be significantly 
changed, especially between the TLS and the WTLS solutions. Though the parameters estimated 
from the TLS and WTLS cases are totally different, the sums of squared (weighted) residuals are at 
the same level. The phenomenon may be explained by the objective function 

( ) ( ) ( )1
min T T −

− −llξ
y Aξ BQ B y Aξ . Some estimates of the WTLS solution can lead to a large value 

of ( ) ( )T
− −y Aξ y Aξ . However, the WTLS solution has the minimum of the function 

( ) ( ) ( )1T T −
− −lly Aξ BQ B y Aξ , which can be significantly reduced by ( ) 1T −

llBQ B . The correlated 
case cannot be solved with the existing methods, e.g., Schaffrin and Felus (2009), because the vcm 
of the model matrix cannot be expressed as a Kronecker structure. The LCTLS solution differs from 
the LCWTLS solution, particularly the weighted sum of squared residuals. 

 

6.2 3D similarity transformation  
 

The 3-D similarity transformation is frequently used to transform spatial data from a source coordi-
nate system to a target coordinate system (e.g., WGS84 coordinates to a local datum) in geodesy 
and the related science domains. The main task of the problem is the estimation of the 7 transforma-
tion parameters (scale factor, three rotation angles, and three translations). If the 7 parameters are 
obtained, an optimal fitting of the data sets is achieved. 

It is well-known that the mathematical model of the similarity transformation can be simplified into 
a linear system if the rotation angles are small enough (see e.g., Yang 1999). However, the solution 
of the nonlinear system is required if the angles are not small in general. Many LS algorithms are 
employed to adjust the GMM representing the problem. Two key algorithms are procrustes analysis 
(e.g., Grafarend and Awange 2003) and the unit quaternion-based approach (e.g., Shen et al. 2006). 
The standard GMM assumes that the elements of the coefficient matrix are error-free. However, this 
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is not always the case because the elements of the coefficient matrix can be the quantities observed 
in the 3D similarity problem. 
A successful investigation considering the randomness of the coefficient matrix on the 2-D similar-
ity transformation is firstly given by Teunissen (1985, 1988) who obtained a closed form solution 
based on the singular values decomposition. Bleich and Illner (1989) proposed the linearized GHM 
method to solve transformation problems. For the similarity transformation they used the constraint 
that the scale factors are identical in x, y and z directions. To solve the constrained problem pseudo 
observation equations are applied. From the result obtained by processing the data given in their 
paper, the method proposed by Bleich and Illner (1989) does not give the optimal solution. The 
false convergence may be referred to pitfalls discussed in Pope (1972). Felus and Schaffrin (2005) 
use the Cadzow algorithm for solving the planar similarity problem, which has been modified by 
Schaffrin et al (2009). The structured TLS solution proposed can only estimate rotation and scale 
parameters. Felus and Burtch (2009) derive a novel algorithm, which is based on the equivalence 
between the solutions for the rotation matrix of the GMM and the EIV model in the fairly weighted 
case. Using the estimated rotation matrix the scale factor is obtained by the meaningful solution of a 
quadratic equation. Neitzel (2010) uses the iterative Gauss-Newton approach originally proposed by 
Pope (1972) to estimate the implicit parameters (the scale multiplying the sine and cosine of the 
angle instead of the scale and angle) for the 2-D similarity transformation in the heteroscedastic 
case. The transformation model in 2-D can be arranged to a standard EIV model presented in Eqs 
(7) to (10) in Neitzel (2010). However, the method cannot be explicitly extended for the 3-D simi-
larity transformation problem, as the elements of the rotation matrix for the 3-D problem are totally 
different. Thus, it is necessary to put forward an algorithm to adjust the 3-D similarity transforma-
tion model in the general weighted case. 
 
The 3D similarity  transformation model 

 
The functional model of the similarity transformation in the 3-D space is considered as follows 

 
t s

t s

t s

t x s x

T
t y s y

t z s z

x v x vx
y v y y v

zz v z v

μ

⎡ ⎤ ⎡ ⎤+ +Δ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥+ = Δ +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥Δ+ +⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ M  (6.5) 

, ,x y zΔ Δ Δ  are the three translation parameters, μ  is the scale factor. The vector [ ]Tt t tx y z  

represents the coordinates in the target system whereas [ ]Ts s sx y z  denotes the coordinates in the 
source system. 

txv , 
tyv , 

tzv are the corrections of unavoidable errors for the correspondent observa-
tions in the target coordinate system, and 

sxv , 
syv , 

szv  are the corrections of unavoidable errors for 
the corresponding observations in the source coordinate system. The structure of the rotation matrix 
M  is here introduced as  

 

3 2 1

3 3 2 2 1 2 3

3 3 1 1 1 2 3

2 2 1 1 1 2 3

( ) ( ) ( )
cos sin 0 cos 0 sin 1 0 0
sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

a a a
b b b
c c c

α α α
α α α α
α α α α

α α α α

=

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3 2 1M M M M

, (6.6) 

1 2,α α  and 3α  are the rotation angles about the x, y and z axes, respectively. 1( )α1M , 2( )α2M  and 

3( )α3M  are three skew-symmetric matrices. M  is an orthonormal matrix. ,a b  and c with indices 
denote the 9 elements of the rotation matrix. TM  is the rotation matrix for the single point. 
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Considering the whole observations, the system is given as 

 ( ) [ ]n x y zμ+ = + + ⊗ Δ Δ ΔY AY V A V M 1  (6.7) 

with 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

t t t

s s s

t x t y t zi i ii i i

s x s y s zi i ii i i

x v y v z v

x v y v z v

⎡ ⎤
⎢ ⎥

+ = + + +⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥

+ = + + +⎢ ⎥
⎢ ⎥
⎣ ⎦

Y

A

Y V

A V

 (6.8) 

where the lower index i denote the ith observation group. n1  is the vector of ones with dimension 
1n× . 

Thus, the functional model connecting the parameters and observations can be expressed as  

 ( )Model I : , + =f ξ l v 0  (6.9) 

where [ ]1 2 3 x y zα α α μ= Δ Δ Δξ , 
( )
( )

( )
( )

,  
vec vec
vec vec
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A

Y

A V
l v

Y V
. 

or alternatively formulated as 

 ( ) ( )1 2Model II : , ,  C C+ = =f ξ l v 0 f ξ 0 , (6.10) 

where 1 2 3 1 2 3 1 2 3C a a a b b b c c c x y zμ⎡ ⎤= Δ Δ Δ⎣ ⎦ξ . 

( )1 ,C + =f ξ l v 0  is the function using all nine elements of the rotation matrix instead of the rotation 
angles as the parameters and ( )2 C =f ξ 0  is the constrained function for the orthogonality of the ro-
tation matrix (see Eq (6.19)). 
 
Using Model I 

For the transformation problem, the Model I is given as  

 ( ) ( )( ) [ ] ( ), T
nvec x y z vecμ+ = + + Δ Δ Δ ⊗ − + =A Yf ξ l v A V M 1 Y V 0 , (6.11) 

where 3 2 1( ) ( ) ( )α α α= 3 2 1M M M M . 

According to the discussion of the Chapter 5.5, the partial derivative w.r.t. the parameters should be 
calculated as 

 ( ) ( )( )',
 i

i

vec αμ
α

∂ +
= +

∂ A

f ξ l v
A V M , (6.12) 

 ( ) ( )( ),
vec

μ
∂ +

= +
∂ A

f ξ l v
A V M , (6.13) 

 ( )
[ ] 3

,
nx y z

∂ +
= ⊗

∂ Δ Δ Δ
f ξ l v

I 1 , (6.14) 

with 
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1 3 3 2 2 1 1

2 3 3 2 2 1 1

3 3 3 2 2 1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

d d

d d

d d

α

α

α

α α α

α α α

α α α

=

=

=

M M M M

M M M M

M M M M

, (6.15) 

where 1 1
1 1 1 1

1
1 1

0 0 0
( )( ) 0 sin cos

0 cos sin

d d
dα

αα α α
α

α α

⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥− −⎣ ⎦

MM , 
2 2

2 2

2 2

sin 0 cos
( ) 0 0 0

cos 0 sin

d
α

α α
α

α α

− −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

M  and  

3 3

3 3 3 3

sin cos 0
( ) cos sin 0

0 0 0

d
α

α α
α α α

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥⎣ ⎦

M . 

Thus, the Jabobian matrix 1J  is obtained by Eqs (6.12), (6.13) and (6.14) as  

 
( )

( )( ) ( )( ) ( )( ) ( )( )

1

1 2 3 3

,
T

d d d
nvec vec vec vecα α αμ μ μ

∂ +
=

∂

+ + + + ⊗⎡ ⎤= ⎣ ⎦A A A A

f ξ l v
J

ξ

A V M A V M A V M A V M I 1

 (6.16) 
The Jacobian matrix 2J  representing the partial derivative w.r.t. the observations can be also de-
rived as 

 ( ) ( ) 3

,
 T

n nT μ
∂ + ⎡ ⎤= ⊗ − ⊗⎣ ⎦∂
f ξ l v

M I I I
l

, (6.17) 

due to ( )( ) ( )( ) ( )T
n nvec vecμ μ+ = ⊗ +A AI A V M M I A V . 

If the initial values for the parameters and residuals are given, the function can be linearized. In this 
case the vector ( )0 0 ,=w f ξ l , since there is no quadratic and higher order term of the observations 
in the functional model (see Chapter 5.5). The solution can be obtained by iterative Gauss-Newton 
algorithm (see Eqs (5.45) and (5.46)). 
 
Using Model II 

 
Analogously, Model II reads 

 ( ) ( )( ) [ ] ( )1 , T
C nvec x y z vecμ+ = + + Δ Δ Δ ⊗ − + =A Yf ξ l v A V M 1 Y V 0 , (6.18) 

where 
1 2 3

1 2 3

1 2 3

a a a
b b b
c c c

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M , with the constraints ( )2 Cf ξ  represented by 
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2 2 2
1 2 3

2 2 2
1 2 3
2 2 2
1 2 3

1 2 1 2 1 2

1 3 1 3 1 3

2 3 2 3 2 3

1 0

1 0

1 0
0
0
0

a a a

b b b

c c c
a a b b c c
a a b b c c
a a b b c c

+ + − =

+ + − =

+ + − =

+ + =
+ + =
+ + =

 (6.19) 

which fulfill the conditions of the orthonormal matrix. Note that based on the 6 constraints both 
functional models (Eq (6.9)and Eq (6.10)) have identical degrees of freedom. 

Here, the constraints are arranged as the pseudo observation equations ( )2 C pseudo≈ +f ξ 0 v  (see 
Chapter 5.5). In this case, the Jacobian matrix 1CJ  is given as 

 

( )

( )

1

1
2

,C
T
C

C
C

T
C

∂ +⎡ ⎤
⎢ ⎥∂⎢ ⎥=
⎢ ⎥
⎢ ⎥

∂⎢ ⎥⎣ ⎦

f ξ l v
ξ

J
f ξ
ξ

 (6.20) 

with 

 
( )

( )( ) ( )( ) ( )( )

1

1 3 3

,

...

C
T
C

d d
a c nvec vec vecμ μ

∂ +
=

⎡ ⎤⎦+ + + ⊗⎣

∂

A A A

f ξ l v
ξ

A V M A V M A V M I 1
 (6.21) 

and 

 

( )2

1 2 3

1 2 3

1 2 3

2 1 2 1 2 1
6 4

3

3 1 3 1 3 1

3 2 3 22

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 0 0
0 0 0

0 0 0

2 2 2
2 2 2

2 2 2

C
T
C

a a a
b b b

c c c
a a b b c c
a a b b c c

a a b b c c

×

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎢⎣ ⎦

∂

⎢ ⎥
⎥

f ξ

0

ξ

 (6.22) 

where 1
1

1 0 0
0 0 0
0 0 0

d
a

d
da

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

MM ,…, 3
3

0 0 0
0 0 0
0 0 1

d
c

d
dc

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

MM . 

The Jacobian matrix 2CJ  representing the partial derivative w.r.t. the observations and pseudo ob-
servations can be given as 

 

( )
( ) ( )

1

2 3
2

6

 

,C
T

C n n
C T

total

μ

+⎡ ⎤
∂ ⎢ ⎥ ⎡ ⎤⊗ − ⊗⎣ ⎦= = ⎢ ⎥

∂ −⎢ ⎥⎣ ⎦

f ξ l v
f ξ M I I I 0J
v 0 0 I

, (6.23) 

where total
pseudo

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

v
v

v
. 
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In this functional model there is no quadratic and higher order term of observations. Thus, the vec-

tor 
( )
( )

1

2

,i

total i
C

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

f ξ l
w

f ξ
. The corresponding weight matrix for the vector totalv  is 

1

6
total δ

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

llQ 0
P

0 I
, 

where δ  is a given constant variance level at which the six constrained equations should be. By 
iterative Gauss-Newton algorithm (updating the Jabobian matrices 1

i
CJ , 2

i
CJ and vector i

totalw ) the 
solution can be obtained (see Eqs (5.45) and (5.46)). 

 

Experiments 

 

The experiments are demonstrated to present our proposed methods. The data in the first example 
originates from Felus and Burtch (2009). This example is based on an actual experiment of fitting 
two surfaces that are surveyed in two different reference systems (datum’s). Four control points are 
identified and recorded in the two coordinate systems. The data in the source and target system are 
represented in the matrices A  and Y , respectively. 

 

40 10 150 15
100 40 10 420 80 2

 and  
10

30

0 130 10 540 200 20
30 130 10 390 3

2 0

 

0

9

0 5

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A Y  (6.24) 

In order to solve this adjustment problem, Felus and Burtch (2009) proposed a new algorithm which 
employs a closed-form Procrustes method to obtain the rotation matrix, while the scale parameter is 
derived later from the solution of a quadratic equation. However, the method based on the matrix 
decomposition cannot solve the problem with a general weight matrix. Thus, we organize the dem-
onstration as follows: 

1. These points are assumed to be measured using the same method and have the same statistical 
properties, namely 24=P I , and it is assumed that the weight matrix is expressed as a Kronecker 
product ( )6 1, 4,6.25,16diag= ⊗P I .  

2. The results using the fully populated weight matrix are given.  

3. The distance between two points is fixed 

4. The method is also valid for the real data. 

The algorithms based on the Model I and II are implemented for solving the nonlinear 3D similarity 
transformation. The standard assumptions (no translations, no rotations, scale equals to 1) are given 
for the initial value of the parameters whereas the initial values of the residuals are zeros. The trans-
formation parameters are estimated with the identity weight matrix ( 24=P I ) and the fairly general 
weight matrix ( ( )6 1, 4,6.25,16diag= ⊗P I ). Tab 6.9 displays that the solutions based on Model I 
and II yield the identical result to Felus and Burtch (2009) (The estimated elements in the rotation 
matrix are transformed to the angles for the Model II). Note that Felus and Burtch (2009) presents 

Tv v  instead of 1T −v Σ v . We do not discuss the difference between TLS solution and LS solution in 
general since this is widely done in the geodetic literature e.g., Schaffrin and Felus (2008). But the 
argument ‘even small differences between LS and TLS solution may result in significant differ-
ences which can exceed the required 5cm accuracy’ (Schaffrin and Felus 2008) is also valid for the 
difference between the TLS and WTLS solution. 
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For Model 2 the weights for the six constrained equations are 1012 and the constraints for the fulfill-
ing the orthogonality are given in Tab 6.10, which shows that the conditions of the constraints are 
numerical successfully fulfilled. For the example, the residuals are not shown since they are also 
identical to those presented by Felus and Burtch (2009). 

Parameters The weight matrix 
Algorithm using the 

Model I 

Algorithm using the 

Model II 

Algorithm (Felus 

and Burtch 2009) 

Translation 

xΔ  

24=P I  

( )6 1,4,6.25,16diag= ⊗P I  

193.01696 

188.97714 

193.01696 

188.97714 

193.01696 

188.97714 

Translation 

yΔ  

24=P I  

( )6 1,4,6.25,16diag= ⊗P I  

117.40274 

101.51720 

117.40274 

101.51720 

117.40274 

101.51720 

Translation 

zΔ  

24=P I  

( )6 1,4,6.25,16diag= ⊗P I  

-15.40738 

-33.38008 

-15.40738 

-33.38008 

-15.40738 

-33.38008 

Scale μ  
24=P I  

( )6 1,4,6.25,16diag= ⊗P I  

2.1216362 

2.1761269 

2.1216362 

2.1761269 

2.1216362 

2.1761269 

Rotation 1α  
24=P I  

( )6 1,4,6.25,16diag= ⊗P I  

-0˚54′45.3561″ 

-0˚30′51.4666″ 

-0˚54′45.3561″ 

-0˚30′51.4666″ 

-0˚54′45.3561″ 

-0˚30′51.4666″ 

Rotation 2α  
24=P I  

( )6 1,4,6.25,16diag= ⊗P I  

0˚57′47.4029″ 

4˚31′21.1255″ 

0˚57′47.4029″ 

4˚31′21.1255″ 

0˚57′47.4029″ 

4˚31′21.1255″ 

Rotation 3α  
24=P I  

( )6 1,4,6.25,16diag= ⊗P I  

35˚49′30.6166″ 

33˚32′19.5111″ 

35˚49′30.6166″ 

33˚32′19.5111″ 

35˚49′30.6166″ 

33˚32′19.5111″ 

1T −v Σ v  
24=P I  

( )6 1,4,6.25,16diag= ⊗P I  

236.89 

1359.20 

236.89 

1359.20 

236.89 

1359.20 

Table 6.9 The Comparison of the estimated transformation parameters to Felus and Burtch (2009) 

Constraints Values Constraints Values 

2 2 2
1 2 3ˆ ˆ ˆ 1a a a+ + −  -3.42789e-09 1 2 1 2 1 2

ˆ ˆˆ ˆ ˆ ˆa a b b c c+ +  -3.98909e-09 

2 2 2
1 2 3
ˆ ˆ ˆ 1b b b+ + −  3.46923e-09 1 3 1 3 1 3

ˆ ˆˆ ˆ ˆ ˆa a b b c c+ +  9.45261e-11 

2 2 2
1 2 3ˆ ˆ ˆ 1c c c+ + −  -4.13325e-11 2 3 2 3 2 3

ˆ ˆˆ ˆ ˆ ˆa a b b c c+ +  -2.38012e-10 

Table 6.10 The fulfillment of the pseudo equations 

In order to highlight the advantage of our method with respect to the general weight information, 
the weight matrix with the Toeplitz structure is given 
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1 0.95 0.9 0 0 0
0.95 1 0.95 0 0 0
0.9 0.95 1 0 0 0

0 0 0 1 0.95 0.9
0 0 0 0.95 1 0.95
0 0 0 0.9 0.95

 

1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P , (6.25) 

which is generated by the Matlab function P =toeplitz([1:-0.05:0,zeros(1,3)]). Note that the weight 
matrix is positive definite, and correlation coefficients of the corresponding cofactor matrix are be-
tween -0.7010 and 1. 
The approach proposed in Felus and Burtch (2009) is based on matrix decomposition and it cannot 
solve the problem with such a weight matrix. Furthermore, in Schaffrin and Felus (2008) the serious 
limitations of the method based on the SVD are discussed (e.g., the accuracy of the method based 
on SVD may be a concern for applications that require high precision, because the SVD operation is 
only guaranteed to have a few correct digits). Certainly, the fully populated weight matrix can be 
frequently encountered in error adjustment. The algorithms based on Model I and II are tested for 
the problem of the weight matrix. Here, we do not only transform coordinates of the source system 
to coordinates of the target system but also from the target system to the source system (reverse 
transformation). The results based on Model I and II are identical for transformation and reverse 
transformation and presented in the following table  

Parameters 

Algorithms proposed in the 

thesis 

Source system to Target system 

Parameters 

Reverse transformation 

Algorithms proposed in the 

thesis 

Target system to source 

system 

Translation xΔ  199.69690 Translation rxΔ  -42.82873 

Translation yΔ  120.25074 Translation ryΔ  -102.84880 

Translation zΔ  -23.04864 Translation rzΔ  16.56097 

Scale μ  2.0796914 Scale rμ  0.4808406 

Rotation 1α  -0˚25′50.3770″ Rotation 1rα  2˚7′54.6758″ 

Rotation 2α  3˚1′14.2924″ Rotation 2rα  -2˚10′59.9964″ 

Rotation 3α  36˚10′41.0091″ Rotation 3rα  -36˚13′48.1482″ 

Tv Pv  8.39 ( )T

r
v Pv  8.39 

Table 6.11 The result of the transformation parameter and sum of squared residuals for the 3D similarity transformation 

and the reverse transformation 

The two important quantities to check the correctness of the solutions are the sum of the residuals 
squared and the scale μ  multiplying the scale rμ of the reverse transformation. Teunissen (1998) 



Chap. 6: Applications 57 

claims that the scale multiplying the scale of the reverse transformation in 2D similarity transforma-
tion equals to 1 if the model is considered as an EIV model with an identity weight matrix. Tab 6.11 
indicates that the scale of the transformation multiplying the scale of the reverse transformation 
equals exactly to 1 (2.0796914*0.4808406=1). Of course, the identity 1rμ μ⋅ =  is not fulfilled if 
one adjusts the 3D similarity transformation within the GMM. The sums of the squared residuals 
for the both transformations are identical, since the optimal fitting for both transformations are 
achieved. The sum of the squared residuals (8.39, see Tab 6.11) is significantly smaller than one in 
the equal case (236.89, see Tab 6.9) since the residuals are strongly correlated. For example: 

[ ] [ ]1 0.95 1 1 0 1
1 1 0.1 2 1 1

0.95 1 1 0 1 1
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

− = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. 

The translation parameters for both transformations can be controlled by the formula 
[ ] [ ]T

r r r r rx y z x y z μ− Δ Δ Δ = Δ Δ Δ ⋅M , where rM  is the rotation matrix of the reverse trans-
formation. If the rotation angles are not small, the translation parameters for both transformations 
should be not proportional. The relationship between the two rotation matrices is T

r =M M . The 
corresponding rotation angels (e.g., 1α  to 1rα ) do not have the same absolute values, because the 
rotation matrix is not skew symmetric. 

Considering the fixing of distance between two points in the transformation problem is also useful. 
In geodesy, the distance between two GPS antennas mounted in aircraft for gravimetry is known 
and fixed. In an integrated vehicle navigation system, the distances among various sensors are in-
variant when in motion (Yang et al. 2010). Therefore they can be used as constraints within the es-
timated observations ( )3 + =f l v 0 . Although the 3D similarity transformation with constraints 
within the GMM is discussed in Shen et al. (2006) with the quaternion approach, the transformation 
with constraints within the EIV model is given neither for the equal weight case nor for the unequal 
weight case. In order to demonstrate the approach proposed in this thesis, we assume the baseline-
length between the 3th point and 4th point in the source system (third and fourth rows of matrix A  
in Eq (6.24)) is fixed to its original length 70. The algorithm based on Model II is implemented, 
since we want to present the solution of the complete combination of ( )1 ,C + =f ξ l v 0 , ( )2 C =f ξ 0  
and ( )3 + =f l v 0 . Thus, both Jacobian matrices are 

 1
1

1 13

C
CC

×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

J
J

0
, (6.26) 

and 

 
2

2 31 32 33 4341 42
1 6 1 12

2 2 2 22 2
C

CC a a a aa a
s s s s s s× ×

⎡ ⎤
⎢ ⎥= −− −⎢ ⎥
⎣ ⎦

J
J

0 0
, (6.27) 

where ( ) ( ) ( )2 2 2
31 41 32 42 33 43s a a a a a a= − + − + − . 

The parameters are estimated in the equal weighted case, and result is not completely given here. 
The sum of squared residuals is 563.63, which is larger than 236.89 (see Tab 6.9) due to the con-
straints. The estimated baseline length minus 70 is 1.42e-014, which indicates that the constraint is 
numerically fulfilled. Meanwhile, the six constraints for the orthogonality of the rotation matrix are 
fulfilled in magnitude of about 1e-008.  

Solutions based on Model I and II are tested also on a real example involving a geodetic datum 
conversion. The data are originally provided by the Coordinate System Analysis Team of the office 
of GEOINT Sciences at the National Geospatial-Intelligence Agency and presented in the Felus and 
Burtch (2009). The data set includes the rectangular coordinates of six control points in Tunisia. 
The rectangular coordinates were converted from measured geographic coordinates (latitude, longi-
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tude, and ellipsoidal heights) in WGS84 datum and in the local CARTHAGE datum (CGE- a 
Clarke 1880 ellipsoid). 

The algorithms proposed, for the real data, are based on the Model I and II and are implemented. 
The results derived using the method proposed in the thesis are totally identical to the results pre-
sented in Felus and Burtch (2009) in equally weight case. When processing the real data the inver-
sion of the matrix ( )( )11

1 2 2 1

T T −−J J P J J  or ( )( )11

1 2 2 1

T T

C C total C C

−−J J P J J  may be close to singularity. In this 

case we can use the idempotent matrices proposed in Eq (5.8) multiplying the data matrix to signifi-
cantly reduce the conditional number of the matrix required to be inverted. 

 

6.3 Quadratic form analysis 

 

In engineering geodesy there are some methods for fitting a surface to a point cloud, such as, De-
launay triangulation, Non-Uniform rational B-Splines and the estimation of a quadratic form (c.f. 
Eling 2010). In the thesis of Eling a dam was scanned using a terrestrial laser scanner of Geodetic 
Institute of Hannover in order to detect the deformations. In order to segment the point cloud, the 
scanned points of the dam was modeled by a best fitted ellipsoid with 3 translations and only one 
rotation axes from the original coordinate system. As in a typical deformation scenario the shape of 
the objects changes due to bending and flexing, a thorough but information preserving parameter 
reduction is needed by a set of a few characteristic parameters. This is often possible by describing 
the objects or parts of them using quadratic forms (Hesse and Kutterer 2006). Moreover, it is well-
known that one important task of processing scanned data is registration. The parameters obtained 
by registration can transform the different point clouds in an identical coordinate system. For laser 
scan it is not possible to specifically measure the discrete points. Therefore, the artificial target is 
usually used to obtain the position of a single point. The type of the reference targets is described in 
Table 2.2 in Eling (2010). One popular target is the pass sphere, which can be scanned and then be 
adjusted to obtain the center of the ball for the late registration of point clouds.  

The algorithm to fit the quadratic form has been proposed by Drixler (1993), and also used in Hesse 
and Kutterer (2006). In Niemeier (2002) and Kupferer (2005) the methods for fitting the special 
quadratic form ‘circle’ are discussed. Unfortunately, some linearization pitfalls are not avoided in 
the approaches proposed. The exact solution for the circle fitting can be found in Schaffrin and 
Snow (2010) in geodesy, who use the iterative GHM method to give the solution for the fitting 
problem. Here, methods of Drixler (1993) and Schaffrin and Snow (2010) are briefly presented with 
fitting circle as the special form of the 2D quadratic form. Then, our solution proposed in Chapter 
5.5 is demonstrated to compare the methods in the case of the known quadratic form. At the end, 
the parameters can be also obtained by our method if the quadratic form is not exactly known. It is 
also presented that our method is an optimal method in the sense of the minimal sum of squared 
residuals. 

 

Method  of Drixler (1993) for circle fitting 

 

The quadratic form for the 2D is given in e.g., Drixler (1993) as  

 1 3 4
6

3 2 5

0i
i i i i

i

a a axx y x y a
a a ay

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤+ + =⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
, (6.28) 
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where i ix y⎡ ⎤⎣ ⎦  represents the observations of ith point. If the quadratic form is confirmed as a cir-

cle, the estimation of the quadratic parameters is obtained in Eq (5.2.17) of Drixler (1993) as fol-
lows 

 ( )
4

1

5 2 2 2 1

6

ˆ
ˆ
ˆ

T T

a
a
a

−
⎡ ⎤
⎢ ⎥ = −⎢ ⎥
⎢ ⎥⎣ ⎦

A A A A , (6.29) 

where 2 2

1 i ix y
⎡ ⎤
⎢ ⎥

= − +⎢ ⎥
⎢ ⎥
⎣ ⎦

A  and [ ]2 n= −A x y 1  with ix
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x  and iy
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

y . The first 3 parameters 

are fixed as 1, 1, 0 for the circle fitting (see Drixler 1993). 
 
Method  of Schaffrin  and Snow  (2010) for circle fitting 

 
For the circle fitting Schaffrin and Snow (2010) give the original functional model of a circle as  

 ( ) ( ) ( )2 2 2, , 0i i m i mf x x y y r= − + − − ≈ξ x y , (6.30) 

where , ,
T

m mx y r⎡ ⎤= ⎣ ⎦ξ . In this thesis Eq (6.28) is called as the general function or equation of the 

quadratic form (using the parameter 1a  to 6a ) whereas the equations such as Eq (6.30) are termed 
as the original equation of the quadratic form (using parameter ξ ). 

Being a non-linear system, the model can be linearized as follows  

 ( )0 , ,f d+ + =ξ x y A ξ Bv 0 , (6.31) 

where  

 
( ) ( )

( ) ( )

0 0 0

0 0

2 , 2 , 2

2 , 2

m n m n m n

m n m n

x y r

x y

⎡ ⎤= − − −⎣ ⎦
⎡ ⎤= − −⎣ ⎦

A x 1 y 1 1

B x 1 y 1
 (6.32) 

In the next iteration, the approximations 1v  and 1ξ  are used after stripping the solutions 1v̂  and 1ξ̂  
of their random character (see Chapter 4.4). Then, the linearized model can be expressed in the 
GHM as  

 1 1 1d+ + =w A ξ B v 0 , (6.33) 

where  

 

( ) ( )
( ) ( )

( )

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

2 , 2 , 2

2 , 2

, ,

, ,

m n m n m n

m n m n

m m m

x y r

x y

x y r

f

⎡ ⎤= − − −⎣ ⎦
⎡ ⎤= − −⎣ ⎦
⎡ ⎤= ⎣ ⎦

− =

y

A x 1 y 1 1

B x 1 1

ξ

ξ x y B v w

 (6.34) 

and 1 1

xx = x + v , 1 1

yy = y + v . 

 
Method  proposed in this thesis for circle fitting 
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Some parameters are fixed if one transforms the original functional model (6.30) to the general qu-
adratic form (6.28), which leads to the constrained problem. Thus, we formulate the circle fitting 
problem as 

 

2 2

1 2 3 4 5 6

1

2

3

0
1
1
0

i i i i i ia x a y a x y a x a y a
a
a
a

+ + + + + =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, (6.35) 

According to the discussion of Chapter 5.5 the both Jacobian matrices for the first iteration are  

  0

1

1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

i i i i i i i ix x x y y y x y
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

J , (6.36) 

and 

 ( ) ( )0 1 3 4 2 3 5
2

3

, 2diag a a a diag a a a+ + + +⎡ ⎤
= ⎢ ⎥−⎣ ⎦

x y y x 0
J

0 I
, (6.37) 

where the constraints 
1

2

3

1
1
0

a
a
a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 are regarded as pseudo observation equations. The last 3 rows of 

both Jacobian matrices denote the pseudo observation equations representing the constraints in the 
estimation process. 

Meanwhile, the vector 0w  is given as 

 

( )0 0 0

0
0 0 01

20

2

0

3

, ,

1

1
total

f

a

a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥−= −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

ξ x y

w J v , (6.38) 

where 0

total

pseudo

⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎣ ⎦

x

y

v
v v 0

v
, 0 =x x  and 0 =y y . 

In the next iteration the Jacobian matrices and the vector 0w  should be updated with the estimated 
parameters and residuals after stripping their randomness  
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1 1 1 1 1 1 1 1

1

1

1

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

i i i i i i i ix x y y x y x y
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

J , (6.39) 

 ( ) ( )1 1 1 1 1 1 1 1 1
1 1 3 4 2 3 5
2

3

, 2diag a a a diag a a a⎡ ⎤+ + + +
= ⎢ ⎥
⎢ ⎥−⎣ ⎦

x y y x 0
J

0 I
, (6.40) 

and 

 

( )1 1 1

1
1 1 11

21

2

1

3

, ,

1

1

f

a

a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥−= −⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

ξ x y

w J v , (6.41) 

where 1

xx = x + v  and 1

yy = y + v . 

 

Comparison of results 

 

The data demonstrated came from Gander et al. (1994) who fit a circle to six data points using a 
parametric form of the circle. 

Points number X coordinates Y coordinates 

1 1 7 

2 2 6 

3 3 8 

4 7 7 

5 9 5 

6 3 7 

Table 6.12 The data for circle fitting from Gander et al. (1994) 

With this data we present the results of the three methods discussed as  

 Method of Drixler 
1993 

Method of Schaffrin 
and Snow 2010 

Method proposed in 
the thesis 

mx  4.742331 4.739782 4.739782 

my  3.835123 2.983533 2.983533 

r  4.108762 4.714226 4.714226 
Tv Pv  1.398289 1.227599 1.227599 

Table 6.13 The result of parameter and sum of squared residuals for the circle fitting example 
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The approach of Drixler (1993) without any iteration cannot obtain the optimal solution, which can 
be seen by comparing the sum of the squared residuals. As the method of Drixler (1993) is rela-
tively simple, it can be used for the approximation of the exact solution. 

Tab 6.13 indicates also that our result is exactly identical to the TLS solution proposed in Schaffrin 
and Snow (2010) for the circle fitting (we transform the parameters 1a  until 6a  to the parameters 
given in Tab 6.13). Although the method proposed by Schaffrin and Snow (2010) and our method 
are Gauss-Newton type, the iterative processes are totally different. The advantage of our method is 
that the linearization of the general equation (6.28) of the quadratic form is very simple (also for the 
3D case). Schaffrin and Snow (2010) proposed the method for fitting a circle. If one generalizes the 
method in another quadratic form, the linearization for the original function representing the quad-
ratic form (e.g., (6.30) for the circle) w.r.t. the parameters and observations may be very difficult. 
Furthermore, one needs to linearize the original function for any special case. For example, in 3D 
case except the sphere, three orientation parameters should be considered for the quadratic form. 
Here, the original function of the rotated ellipsoid is given as 

 

( ) ( ) ( )2 2 2

2 2 2

3 3

1o m o m o m

o

o

o i i

x x y y z z
a b c

x x
y y
z z

×

− − −
+ + =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

R
, (6.42) 

where 

i

x
y
z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 are the original observations. 
o

o

o i

x
y
z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 are observations transformed by the rotation matrix 

3 3×R , which contains 3 parameters (3 rotation angles).  

If one wants to linearize the model (6.42) explicitly w.r.t. the parameters (e.g., translations, rota-
tions) and the observations, the task is rather complicated. However, with the method proposed in 
this thesis the estimation is relative simple, because the linearization of the quadratic function w.r.t. 
parameters ( 1 10...a a  in 3D case) and the observations is identical. In this case, the constraints can be 
given as e.g., 10 1a = , with which the degrees of freedom (10 paramters-1 constraint) using the equa-
tion of the general quadratic form are identical to the degrees of freedom of Eq (6.42) (9 parame-
ters: 3 rotations, 3 translations and 3 regular ellipsoid parameters). Based on the discussion above, 
the TLS method proposed in the thesis provides the exact TLS solution and can be easily general-
ized for the estimation of any quadratic forms. 

 

The estimation  method for the unknown form  

 

If the actual type of the quadratic form (e.g., circle, parabola) is unknown, Drixler (1993) porposed 
a method based on the eigenvalue decomposition in order to obtain the quadratic parameters. In the 
estimation process the quadratic form of the observations is approximated as the linear term (i.e. 

( )2

ii xx v+  where ( )20,
i ix xv qσ∼  is replaced by 2

i ixτ =  with the variance 22
ix iq xσ ). This approxima-

tion cannot give the optimal solution and it is suitable for the initial values of our iterative estima-
tion process. 
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In order to demonstrate the difference between our results and the results of Drixler (1993), an el-

lipsoid with 400 points is generated with the function 
22 2

2 2 2 1
4 3 1

yx z+ + = ; noise is added with the nor-

mal distribution ( )20,  0.05N  in all three spatial directions x, y and z. The parameter vector is firstly 

obtained by the eigenvalue decomposition method of Drixler (1993). Then, the constraint is given 
that 10a  equals to the value of 10a  obtained by the eigenvalue decomposition method. Based on the 
constraint the iterative process can be implemented. Hence, the constrained model is given as  

 
( )

2 2 2

1 2 3 4 5 6 7 8 9 10

10 10

0
ˆ

i i i i i i i i i i i i

eig

a x a y a z a x y a x z a x z a x a y a z a
a a

+ + + + + + + + + =

=
 (6.43) 

According to the discussion in Chapter 5.5 the two Jacobian matrices for the first iteration are  

 0

1

1

0 0 0 0 0 0 0 0 0 1

i i i i i i i i i i i i i i ix x y y z z x y x z y z x y z
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

J  (6.44) 

and 

 ( ) ( ) ( )0 1 4 5 7 2 4 6 8 3 5 6 9 1
2

2 , 2 , 2
1

ndiag a a a a diag a a a a diag a a a a ×+ + + + + + + + +⎡ ⎤
= ⎢ ⎥−⎣ ⎦

x y z y x z z x y 0
J

0
(6.45) 

where n  is the number of points. 

Meanwhile, the vector 0w  is given as 

 
( )

( )

0 0 0

0 0 0

20

10 10

, ,

ˆ
total

eig

f

a a

⎡ ⎤
⎢ ⎥= −
⎢ ⎥−
⎣ ⎦

ξ x y
w J v , (6.46) 

The iterative process is implemented using Eqs (5.45) and (5.46) and updating both Jacobian matri-
ces as well as the vector iw  until convergence. 
The results of the parameters of one generation are exemplarily given as  

 

-0.063420 -0.063576
-0.110654 -0.110377
-0.991682 -0.995654
0.001049 0.000294
-0.000001 -0.001208ˆ ˆ      and    
0.017248 0.014478
-0.001488 -0.002646
0.002845
0.010736
1.015013

eig

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= =⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ξ ξ

0.002515
0.011647
1.015013

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (6.47) 

The first three parameters represent the parameters of the original function of the ellipsoid. The 
fourth until the sixth parameters indicate that the rotation is not significant since the estimates are 
close to 0. The same case is also for the parameters 7 8 9, ,a a a , which means that there are almost no 
translations of the center of ellipsoid. If the parameters are estimated, one can use the method pro-
posed in Kutterer and Schön (1999) to confirm the form. 
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The generation of the ellipsoid is repeated 20 times (the function 
22 2

2 2 2 1
4 3 1

yx z+ + =  is fixed and only 

the noises are generated according to the normal distribution with standard deviation 0.05). The 
sums of squared residual of the eigenvalue decomposition method and our iterative method are 
computed and presented in Fig 6.2. 
Our iterative method gives the optimal solution represented by minimal sum of the squared residu-
als, though the difference to the method based on the eigenvalue decomposition is small. Mean-
while, the method based on the eigenvalue cannot solve the problem without any limitation of vcm. 
Furthermore, the estimated sum of squared residuals is smaller than the sum of squared generated 
errors, because we estimate the general form of the quadratic equation instead of the exact ellipsoid 
(i.e. more parameters are used). 

 
Figure 6.2 The sum of squared residuals obtained by the iterative method and eigenvalue method for 20 time genera-

tions of the quadratic form estimation 

 

6.4 TLS solution for geodetic networks 
 
In order to establish the datum of a local geodetic network, one approach may be the geodetic net-
work adjustment with the weak datum, which takes the stochastic prior information of the coordi-
nates of the connection stations into account. In this case, such connection stations cannot not be 
regarded as fixed (error free) station. The corresponding linear model has been described in, e.g., 
Niemeier (2002) 

 N C N

C C C

E
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

l A A ξ
l 0 I ξ

, (6.48) 

where Nξ  and Cξ  are the regular parameters and the parameters for the coordinates of the stations 
carrying the stochastic information, respectively. NA  and CA  are the design matrix for the linear 
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relationship between the observations and regular parameters Nξ  or between the observations and 
parameters Cξ . Cl  contain coordinates of the connection stations possessing the stochastic informa-
tion, which may be obtained by a pre-processing. 
Recently, Reinking (2008) proposed the use of TLS technique in order to treat the problem of the 
stationing through the stochastic datum points (connection stations). The approximated coordinates 
of the 3 connection stations in the weak datum are given in the following table, where the measured 
distances to the point N required to be determined are also presented 

Points X Y Distance to point N 

1 528.76 440.27 85.350 

2 697.31 518.85 145.503 

3 650.23 288.64 124.397 

Table 6.14 The coordinates of 3 known network points and corresponding distances measured to the point required to 

be stationed 

 
Figure 6.3 The geodetic networks 

The situation representing the coordinates and distance in Table 6.14 is illustrated in the above fig-
ure. The coordinates and the measured distance are stochastic in this case. In this contribution, the 
stochastic parameters are also taken into account within the EIV model. The prior stochastic infor-
mation of the coordinates of the point N is here assumed as a normal distribution with 

( ) 21
0

2

606.5 1 0
,  ,  

405.1 0 1sto

ξ
σ

ξ
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= =⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠

ξξξ ξ Σ∼ , where [ ]1 2ξ ξ  are the coordinates of the point to be de-

termined. 
In order to solve the problem, the nonlinear functional relationship for each distance measured is 
described as  

 ( )( ) ( )( ) ( )2 2

2 1 0i i i if E y E x E sξ ξ= − + − − = , (6.49) 

where ix  and iy  are the 2D coordinates of the ith connection point. is  is the measured distance be-
tween the point to be stationed and the ith control point. 
The observations and their vcm are organized in vectors as follows 
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According to the functional relationship (6.49) the partial derivative w.r.t. the parameter vector and 
observation vector is obtained 
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where ( ) ( )2 20 0 0 0 0

2 1i i id y xξ ξ= − + − . 

Furthermore, the inconsistency vector for the first iteration can be written as 
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According to Eq (5.49) the solution of the first iteration is obtained as follows 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
11 1 1
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 (6.53) 

After some iterations (updating both Jacobian matrices and the inconsistency vector by the esti-
mated parameters and residuals) the result converges at the solution presented as follows 

 X Y 

Mean of stochastic parameters (prior known) 606.5000 405.1000 

Estimate of parameters without stochastic prior information 606.5417 405.1197 

Estimate of parameters with stochastic prior information 606.5161 405.1056 

Table 6.15 The result of estimated coordinates of new point without or with stochastic prior information 
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In Tab 6.15 the first row represents the mean given by the prior stochastic information about pa-
rameters. In the second row the parameters estimated by the weighted TLS solution are given, 
which are identical to the solution presented by Reinking (2008). Considering the stochastic pa-
rameters within the EIV model the solution (6.53) is calculated and exhibited in the last row of Tab 
6.15. The solution could be the weighted mean of the expectation of the given stochastic parameter 
and the weighted TLS solution. Hence, the estimates of the parameters of the weighted TLS solu-
tion considering the stochastic parameters lie between both other values. 

6.5 Summary of applications 
 
By means of the theoretical development some geodetic applications are demonstrated. The exam-
ple of the orthogonal regression indicates that our solutions provide identical results with other pre-
sent methods in the not fully populated weights case. They present their advantages in the aspect of 
the convergence behavior as well as the limitation of stochastic information. Furthermore, it is ex-
hibited that the WTLS solution can be significantly different to the TLS solution; the difference is 
even larger than the difference between the LS and TLS solution. In the second example the 3D 
similarity transformation problem is rigorously solved in the different weight cases. Our method 
results the identical estimates to the existing method in the particular weight case and can be used 
with any vcm (e.g., Toeplitz structure). The estimation is not only implemented in the transforma-
tion from the source coordinate system to the target system but also from the target system to the 
source system. By comparison of results it is presented that the product of both scales is exactly 1 
and the sums of the squared residuals are identical. In addition, the Gauss-Newton type estimation 
can also be used if the distance between two points is fixed in the transformation problem. In the 
next example parameters of quadratic form are estimated in the condition that the quadratic form is 
exact known or unknown. The last application the WTLS technique under the consideration of the 
stochastic parameter is used in geodetic networks. In this example the datum points and the point to 
be determined are stochastic simultaneously. The result indicates that our solution is the weighted 
mean of the WTLS solution and the mean given by the prior stochastic information. 
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7 Conclusions and outlook 

 

In this thesis, various solutions of the WTLS problem are intensively investigated. From the meth-
odological aspect, a class of the traditional geodetic methods, for example Lagrange multiplier and 
the non-linear GHM, is applied to solve the fully weighted TLS problem with and without lineariza-
tion, respectively. Another class of methods is from the community of numerical analysis, such as 
the Newton approach and the non-linear unconstrained LS method. From the algorithms points of 
view, the Gauss-Newton algorithm and Newton algorithm are presented. They can overcome the 
computational difficulty of the WTLS problem if they are modified. The necessary and sufficiency 
conditions are obtained by the first and second derivative of the target function w.r.t. the parame-
ters, which guarantee the convergence of the algorithm to the (local) minimum. Therefore, the gen-
eral solutions for the WTLS problem can be put forward based on the complete and reliable analy-
sis. 

Furthermore, some extensions of the WTLS problem are presented. First, the WTLS problem with 
fixing columns, which cannot be solved by the matrix decomposition and the centering matrix, is 
introduced. The solution is given by the parameter elimination based on the normal equation sys-
tem. The idempotent matrix for the parameter elimination is identical with the centering matrix if 
the observations are equally weighted. The WTLS problem with fixing elements, is also presented 
and solved by the iterative GHM. Subsequently, the linear constrained WTLS problem is demon-
strated, and is solved by Lagrange multipliers. In order to adjust the geodetic transformation model, 
the WTLS solution for the parameters formulated in matrix-wise way is given. In addition, the inte-
grated Gauss-Newton solution of the general non-linear EIV model is proposed. 

Therefore, some geodetic problems are solved by the methods proposed in this thesis. The examples 
have shown the correctness as well as the applicability of the methods via the comparison with ex-
isting methods. In the first example the convergence behavior of different algorithms is shown 
when the parameters of the lines are estimated. Moreover, the WTLS solution is used in the similar-
ity transformation, quadratic form analysis and geodetic networks. 

The presented results give a good basis for further work; some studies can be systematically inves-
tigated in the future: 

 From a mathematical aspect the TLS problem with inequality constraints may be investi-
gated on the basis of the first and second derivatives given analytically in the thesis. 

 Solving the problem with the Bayesian statistic will be investigated in the future, based on 
which the solution may be put forward under the assumptions that other probability distribu-
tions of observations instead of the traditional normal distribution are available. 

 It may be also a problem that outliers occur in observations within the EIV model. It may be 
treated by using the generalized maximum likelihood objective function ( )2ρ v  instead of 

the function 2v . 

 In order to give a rigorous estimation about the variance factor of the unit weight, we refer to 
repro-BIQUE in Schaffrin (1983) and BIQUUE (Best Invariant Quadratic Uniformly Unbi-
ased Estimate) in Grafarend and Schaffrin (1993 p. 315-319). As stated above, the rigorous 
estimation of the vcm of the estimated parameters as well as variance components will be 
also the research topic in further work. 
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Appendix 

 
The second  derivative of the WTLS objective function  w.r.t.  the parameter vector 

 
According to the first derivative (4.45) the second derivative can be organized in two parts as fol-
lows 
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In the last step the property introduced in Eq (4.43) and the property of the transposed scalar are 
used. Thus, combining the solved equations of first and second part, the Hessian matrix is given as 
follows 
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