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Zusammenfassung 
Ein Charakteristikum der Säugetierzelle ist die Glykokalyx, eine über Proteine und Lipide der 

Zellmembran verankerte Kohlenhydratschicht, die die Zelle nach außen begrenzt. Als 

Sialinsäure wird ein aus neun C-Atomen bestehender saurer Zucker bezeichnet, der sich 

ausschließlich in terminalen (d.h. den nicht reduzierenden) Positionen von Glykokonjugaten 

befindet. Sialinsäuren sind im Wesentlichen für die negative Ladung der Zelloberfläche 

verantwortlich und sind entsprechend ihrer exponierten Position entscheidende 

Kommunikationselemente. Die Embryonalentwicklung der Vertebraten ist essentiell an die 

Anwesenheit der Sialinsäure (Sia) gebunden. Inaktivierung des Schlüsselenzyms der 

Sialinsäurebiosynthese führt in der Maus zu embryonaler Letalität. Darüber hinaus hat in der 

jüngsten Zeit das Auffinden von Mutationen in Enzymen entlang des zellulären 

Sialylierungsweges im Zusammenhang mit Erbkrankheiten dazu beigetragen die hohe Relevanz 

dieser Modifikation auch im Menschen zu bestätigen. Weiterhin wurde gezeigt, dass Sia als 

Bestandteile von Gangliosiden und in polymerer Form (Polysialinsäure; polySia) entscheidend 

an der Entwicklung und Funktion des Gehirns beteiligt ist.  

Der Hauptakzeptor für die PolySia ist das Neurale Zelladhäsionsmolekül (NCAM). Der Transfer 

der PolySia auf NCAM wird durch zwei Polysialyltransferasen, ST8SiaII und ST8SiaIV, 

katalysiert. Die hohe Selektivität der Erkennung des NCAMs durch die Polysialyltransferasen ist 

ein unverstandener Prozess. Eine bedeutende Hürde ist dabei das Fehlen funktioneller 

rekombinanter Proteine zur Verwendung in einem in vitro Testsystem. Beim Versuch ein 

robustes Expressionssystem für die Herstellung der Interaktionspartner aufzubauen, musste der 

Tatsache Rechung getragen werden, dass sowohl die Polysialyltransferasen wie auch das NCAM 

Glykoproteine sind und die Glykosylierung für die Funktion der Proteine von Bedeutung ist. 

Daher wurde ein Insektenzellsystem für die Herstellung der rekombinanten Proteine aufgebaut. 

Auf diese Weise wurden funktionelle lösliche Formen beider Proteine hergestellt und begleitet 

durch funktionelle Testsysteme in sukzessiven Schritten weiter verkürzt bzw. in minimal 

glykosylierte Formen überführt. Zusätzlich wurde eine Reihe von NCAM-Fragmenten 

hergestellt, die zur Aufklärung der Beiträge der einzelnen NCAM-Domänen zur Funktion des 

Moleküls genutzt werden konnten. Alle rekombinanten Proteine konnten mit guter Ausbeute und 

in hoher Reinheit hergestellt werden und ermöglichen so die Durchführung erster Struktur-

Funktionsstudien. Über analytische Ultrazentrifugation konnte gezeigt werden, dass die 

Ektodomäne des NCAM in Lösung dimerisiert und diese Interaktion im wesentlichen über die 

Immunglobulin-ähnlichen Domänen 1 und 2 vermittelt ist. Die Anwesenheit der Fibronektin III-

ähnlichen Domäne 2 verstärkt die Dimerbildung. Auf dem gleichen Wege durchgeführte 
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Analysen zur Komplexbildung zwischen NCAM und der Polysialyltransferase ST8SiaII waren 

bislang nicht aussagekräftig. Da die hergestellten rekombinanten Proteine in Menge und Reinheit 

jedoch ausreichend waren, konnte zur Beantwortung dieses Fragenkomplexes mit 

Kristallisationsstudien begonnen werden. Wenngleich auswertbare Kristalle im Rahmen dieser 

Studie nicht erreicht wurden, so war es doch möglich erste Bedingungen zu finden, die die Ko-

Kristallisation der beiden Interaktionspartner erlauben und eine gute Grundlage für zukünftige 

Studien bilden.  

In einer zweiten Studie (Kapitel 3) wurden die hergestellten NCAM-Fragmente eingesetzt, um 

Einzelbeiträge von NCAM-Domänen und PolySia in der Tumorzellmigration und –adhäsion zu 

untersuchen. Es konnte gezeigt werden, dass die NCAM-induzierte Stimulierung fokaler 

Adhäsion die Anwesenheit eines heterophilen, bislang nicht beschriebenen NCAM-Rezeptors 

voraussetzt jedoch unabhängig von einer FGF-Rezeptor-Aktivierung und ERK 1/2-

Phosphorylierung abläuft. Durch Nutzung der NCAM-Fragmente konnte die für die Interaktion 

mit dem Rezeptor notwendige NCAM-Region auf die Immunglobulin-ähnlichen Domänen 3 

und/oder 4 festgelegt werden. Diese Ergebnisse erbringen neue Einsichten in die Funktion von 

polySia-NCAM und liefern neue Ansatzpunkte für Entwicklung neuer Konzepte für die 

Krebstherapie. 

Obwohl NCAM das Hauptträgermolekül der Polysialinsäure ist, wurde in NCAM-negativen 

Mäusen ~5% verbleibende Polysialinsäure gefunden. In einem glykoproteomischen Ansatz 

wurde das Synaptische Zelladhäsionsmolekül 1 (SynCAM 1), ein wichtiger Stimulator der 

Synapsenbildung, als neues PolySia-Träger im postnatalen Maushirn identifiziert. Die im 

Rahmen meiner Doktorarbeit hergestellten rekombinanten Polysialyltransferasen wurden 

genutzt, um ein Testsystem für die in vitro Polysialylierung des SynCAM 1 aufzubauen. Dabei 

konnte gezeigt werden, dass unter den Bedingungen in vitro beide Polysialyltransferasen 

SynCAM 1 als Akzeptor nutzen. Die Polysialylierung interferiert mit der Ausbildung 

homophiler SynCAM 1 Kontakte. Die Arbeit zeigt darüber hinaus dass die Polysialylierung am 

N-Glykan des Asn116 in der 1. Immunglobulinähnlichen Domäne erfolgt und polysialyliertes 

SynCAM 1 ausschließlich auf einem spezialisierten Zelltyp mit der Bezeichung NG-2 

vorkommt. 

Schließlich konnte ich mit meinen Arbeiten zur molekularen Interpretation des Krankheitsbildes 

„geistige Behinderung“ beitragen. Im Rahmen einer humangenetischen Studie (durchgeführt von 

Prof. Dr. A. Kuß, Max-Planck-Institut for Molecular Genetics, Berlin) wurde in betroffenen 

Individuen zweier irakischer Familien Mutationen im Gen für die Sialyltransferase ST3GalIII 

gefunden. Die im Rahmen meiner Arbeit durchgeführte biochemische Charakterisierung dieser 
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mutierten Enzyme zeigte, dass beide Mutationen den Transport der Sialyltransferase in den 

Golgi-Apparat behindern. Eine innerhalb der Transmembrandomäne (TMD) gefundene Mutation 

verursacht dabei eine Teilrückhaltung im endoplasmatischen Retikulum (ER), während die 

zweite, nahe dem C-Terminus des Enzyms gelegene Mutation den aus Austritt aus dem ER 

vollständig verhindert. Durchgeführte Expressionsanalysen weisen darauf hin, dass das Enzyms 

aufgrund einer Fehlfaltung über das ER assozierte Degradationssystem (ERAD) erkannt und 

abgebaut wird. Durch forcierte Überexpression konnten kleine Mengen einer löslichen Form der 

C-terminalen Mutante hergestellt und in vitro getestet werden, wobei eine mit der 

angenommenen Fehlfaltung des Proteins vereinbare drastische Aktivitätsabnahme beobachtet 

wurde. Mit der Analyse dieser Patienten konnte eindrucksvoll der Beweis geführt werden, dass 

die Gehirnentwicklung essentiell an die Integrität der Sialylierungsstoffwechselwege gebunden 

ist.  
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Abstract 
The glycocalyx, a layer of carbohydrates that is bound to proteins and lipids of the cell 

membrane, is a characteristic of the mammalian cell. Sialic acid is an acidic sugar consisting of 

nine carbon atoms, exclusively bound in terminal (i.e. the non-reducing) positions of 

glycoconjugates. Sialic acids are the major constituents determining the negative charge of the 

cell surface and according to their exposed position, are crucially involved in cellular 

communication. Vertebrate development essentially depends on the presence of sialic acids. 

Inactivation of the key enzyme of sialic acid biosynthesis causes embryonic lethality in the 

mouse. Moreover, the recent discovery that hereditary diseases can be caused by mutations in 

enzymes in the cellular sialylation pathway, confirmed the high relevance of this modification 

also in the human organism. Sia as a part of gangliosides and in its polymeric form (polysialic 

acid, polySia) is crucially involved in brain development and function. 

The major acceptor for polySia is the neural cell adhesion molecule NCAM. The transfer of 

polySia onto NCAM is mediated by two polysialyltransferases (polySTs), ST8SiaII and 

ST8SiaIV. The high selectivity of NCAM recognition by the polySTs is a poorly understood 

process, mainly hampered by the lack of recombinant proteins for the use in an in vitro test 

system. With the aim to overcome this limitation, a robust expression system for the production 

of the interaction partners (NCAM and polySTs) was the major goal of this study. To pursue this 

goal, it was important to consider that both NCAM and the polySTs are glycoproteins and that 

the glycan additions had been shown to influence the proteins functions. Here, an insect cell 

system was established for the production of the recombinant proteins. Functional soluble 

truncations for both proteins could be produced and, as controlled by functional test systems, 

could be successively further engineered to generate maximally truncated and minimally 

glycosylated forms. In addition, a series of NCAM fragments was produced, allowing to analyse 

the distinct impact of individual NCAM domains. All recombinant proteins were produced in 

good yields and high purity and thus enabled first investigations on structure-function-

relationships. Using analytical ultracentrifugation (AUC), the NCAM ectodomain was shown to 

dimerise in solution and this interaction was mainly mediated by the immunoglobulin like 

domain 1 and 2. The presence of the fibronectin III like domain 2 enhanced dimerisation. AUC 

studies were extended towards analysing complex formation between NCAM and ST8SiaII but 

did not produce unambiguous results. However, since the produced recombinant proteins were 

satisfying in terms of yield and purity, crystallisation studies could be initiated to address this 

question. Although, diffracting crystals have not yet been obtained, the information elaborated 

on crystallisation conditions will support subsequent studies planed in this area. 
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In a second study, the produced NCAM fragments were used to dissect the individual impact of 

the distinct NCAM domains and of polySia in tumour cell migration and adhesion. Thus, 

NCAM-mediated stimulation of focal adhesions was shown to depend on the presence of a so far 

unknown heterophilic receptor and to be independant of FGF receptor activation and ERK 1/2 

phosphorylation. By using the NCAM fragments, the interaction site for the receptor could be 

shown to reside in Ig 3 and/or 4 of NCAM. These findings provide new insights into polySia-

NCAM function and might lead to new therapeutic approaches in cancer therapy. 

Although NCAM is the major scaffold for polySia, NCAM negative mice retain ~5% of total 

polySia in the brain. Using a glycoproteomics approach, the potent synapse inducing molecule 

Synaptic Cell Adhesion Molecule 1 (SynCAM 1) was identified as a novel polySia carrier in 

mouse brain. The recombinant polySTs produced in the course of my thesis were used to 

establish an in vitro test system for SynCAM 1 polysialylation. Thus, it could be demonstrated 

that both polySTs were able to recognise SynCAM 1 as an acceptor under in vitro conditions. 

Polysialylation was shown to interfere with SynCAM 1 homophilic binding. Moreover, the study 

demonstrates that polysialylation occurs on the N-glycan residing on Asn116 in Ig1 and that 

polysialylated SynCAM 1 is restricted to a specialised cell type named NG-2. 

Finally, I was able to contribute to the molecular interpretation of the disease “Intellectual 

Disability”. In the frame of a genetic study, Prof. Dr. A. Kuß (Max-Planck-Institut for Molecular 

Genetics, Berlin), identified mutations in the gene encoding the sialyltransferase ST3GalIII in 

two Iranian families affected by Intellectual Disability. To understand how the identified 

mutations influence the function of the enzyme, a biochemical characterisation of the mutant 

enzymes was performed. In chapter 5 of this study, I was able to show that both mutations 

impacted the transport of the enzyme to the Golgi apparatus. One mutation identified in the 

transmembrane domain (TMD) evoked a partial retention in the endoplasmic reticulum (ER), 

while a second mutation located close to the C-terminus of ST3GalIII completely abolished 

transport out of the ER. Analysing the expression of the mutant enzymes pointed towards a 

misfolding of the C-terminal mutant leading to the elimination of the protein by the ER 

associated degradation system (ERAD). By forced overexpression small amounts of the 

C-terminal mutant protein could be obtained for in vitro activity testing. Compatible with the 

assumed misfolding of the protein, a drastic reduction of activity was observed. The 

identification of this mutation in patients impressively demonstrates that brain development is 

crucially dependant on the integrity of the sialylation pathway. 
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Chapter 1 - General introduction 
1. Sialylation 
Glycosylation is a complex modification of biomolecules, which determines numerous important 

cellular functions. For instance glycosylation influences protein folding and half-life, the 

catalytic activity of enyzmes, the organisation of the extracellular matrix, the functionality of the 

immune system, the binding of receptors, and finally determines the host susceptibility for 

toxins, viruses, bacteria and parasites (reviewed in Varki, 1993). In comparison to possible 

combinations of the four bases of DNA or the 20 amino acids of proteins, glycans offer an 

extremely high diversity, adding to the 10 most important building blocks the diversity of 

glycosidic linkage and of numerous sugar modifications (Krishnamoorthy and Mahal, 2009; 

Cohen and Varki, 2010).  

Sialic acid (Sia), a nona-sugar with a carboxylate function in position one, is of particular 

importance as it decorates terminal positions of glycans and thus plays a pivotal role in cellular 

communication processes (Varki and Varki, 2007). 5-N-acetylneuraminic acid (Neu5Ac) and 5-

N-glycolylneuraminic acid (Neu5Gc) (see Fig. 1) are the most common Sia species found in 

mammals (Traving and Schauer, 1998; Varki and Varki, 2007), while 2-keto-3-deoxy-D-

glycero-D-galacto-nonulosonic acid (Kdn) is frequently found in fish and a major component in 

bacteria and lower vertebrates (reviewed in Inoue and Kitajima, 2006).  

Sialic acids are typically found in α2,3- or α2,6-linkage attached to a galactosyl or 

N-acetylgalactosyl residue, while polysialic acid (polySia) consists exclusively of α2,8-linked 

monomers. The negative charge at the C1 atom is an individual property of sialic acid and 

mediates its unusual biophysical properties (Traving and Schauer, 1998). 

Transfer of sialic acids onto glycoconjugates is mediated by specialised sialyltransferases that 

reside in the Golgi apparatus. The sialyltransferases use the activated form, CMP-Sia, as a donor 

substrate. The synthesis of this activated donor sugar is performed by the CMP-sialic acid-

synthetase, a nuclear localised enzyme (reviewed in Münster-Kühnel, 2004) and afterwards 

transported to the Golig by the CMP-Sia transporter (Eckhardt and Gerardy-Schahn 1997; Aoki 

et al., 2003). 

Fig. 1: Chemical structures of the three most abundant sialic acids. Neu5Ac, 5-N-acetylneuraminic acid; 

Neu5Gc, 5-N-glycolylneuraminic acid; Kdn, 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid. 
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2. Sialyltransferases 
The mammalian sialyltransferase family consists of 20 members (Audry et al., 2010). As 

mentioned above, all localise to the Golgi apparatus and use the CMP-activated form to transfer 

Sia onto glycoproteins or glycolipids. The enzymes are classified into 4 families according to the 

synthesised linkages: β-galactoside α2,6-sialyltransferases (ST6Gal I-II), β-N-acetylgalactoside 

α2,6-sialyltransferases (ST6GalNAc I-VI), β-galactoside α2,3-sialyltransferases (ST3Gal I-VI) 

and α2,8-sialyltransferases (ST8Sia I-VI) (Audry et al., 2010; Harduin-Lepers et al., 2001; for an 

overview see Table 1). 

All sialyltransferases belong to the class of type II membrane proteins and thus consist of a short 

N-terminal cytoplasmic tail followed by a transmembrane domain (TMD), a stem region and a 

catalytic domain (see Fig. 2). Four motifs are highly conserved among sialyltransferases: the 

sialylmotif L (large), which was shown to be involved in binding of the sugar donor CMP-

Neu5Ac (Datta et al., 1995), sialylmotif S (small), which is involved in both donor and acceptor 

binding (Datta et al., 1998) and sialylmotif III and VS (very small), which are further required 

for activity (Geremia et al., 1997; Kitazume-Kawaguchi et al., 2001; Jeanneau et al., 2004). In 

the sialylmotif L and S, highly conserved cysteine residues were observed to be important for 

activity and to be involved in the formation of a disulfide bond (Datta et al., 1998; Datta et al., 

2001). 

Regulation of sialyltransferase activity takes place at a transcriptional level and influences cell 

surface sialylation and glycosylation patterns (reviewed in Harduin-Lepers et al., 2001). 

The high number of sialyltransferases exhibiting distinct but overlapping expression patterns in 

the organism underlines their role in the fine tuning of sialylation processes and the importance 

of accurate regulation of sialylation patterns. 

 

 

 

 

 

 
 

Fig. 2: Schematic representation of a sialyltransferase. TMD: transmembrane domain; L, S, III, VS: sialylmotifs 

L, S, III and VS, C: cysteine residue. 
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Sialyltransferase Accptor Synthesised structure 

ST6GalI glycoproteins, 
oligosaccharides 

Neu5Ac-α2,6-Gal-β1,4-GlcNAc- 

ST6GalII glycoproteins, 
oligosaccharides 

Neu5Ac-α2,6-Gal-β1,4-GlcNAc- 

ST6GalNAcI glycoproteins  
(O-linked) 

(Neu5Ac-α2,3)0-1-(Gal-β1,3)0-1-GalNAc 
                                                       / 
                                            Neu5Ac-α2,6 

ST6GalNAcII glycoproteins 
(O-linked) 

(Neu5Ac-α2,3)0-1-Gal-β1,3-GalNAc-Ser 
                                                 / 
                                     Neu5Ac-α2,6 

ST6GalNAcIII glycolipids Neu5Ac-α2,3-Gal-β1,3-GalNAc-R 
                                          / 
                              Neu5Ac-α2,6 

ST6GalNAcIV glycoproteins 
(O-linked) 

Neu5Ac-α2,3-Gal-β1,3-GalNAc-R 
                                          / 
                              Neu5Ac-α2,6 

ST6GalNAcV glycolipids GD1a, GT1aα, GQ1bα 

ST6GalNAcVI glycolipids GD1α, GT1aα, GQ1bα 

ST3GalI glycoproteins, 
glycolipids 
(O-linked) 

Neu5Ac-α2,3-Gal-β1,3-GalNAc- 

ST3GalII glycoproteins, 
glycolipids 
(O-linked) 

Neu5Ac-α2,3-Gal-β1,3-GalNAc-  
 

ST3GalIII glycoproteins Neu5Ac-α2,3-Gal-β1,3-GlcNAc- 
(Neu5Ac-α2,3-Gal-β1,4-GlcNAc-) 

ST3GalIV glycoproteins Neu5Ac-α2,3-Gal-β1,4-GlcNAc- 
(Neu5Ac-α2,3-Gal-β1,3-GalNAc-) 

ST3GalV glycolipids GM3: Neu5Ac-α2,3-Gal-β1,4-Glc-Cer 

ST3GalVI glycoproteins, 
glycolipids 

Neu5Ac-α2,3-Gal-β1,4-GlcNAc- 

ST8SiaI glycolipids GD3: Neu5Ac-α2,8-Neu5Ac-α2,3-Gal-β1,4-Glc-
Cer 

ST8SiaII glycoproteins (Neu5Ac-α2,8)poly-Neu5Ac-α2,3-Gal-β1,4-
GlcNAc- 

ST8SiaIII glycoproteins, 
(glycolipids) 

(Neu5Ac-α2,8)oligo-Neu5Ac-α2,3-Gal-β1,4-
GlcNAc- 

ST8SiaIV glycoproteins (Neu5Ac-α2,8)poly-Neu5Ac-α2,3-Gal-β1-R 

ST8SiaV glycolipids GD1c, GT1a, GQ1b, GT3 

ST8SiaVI glycoproteins 
(O-linked), 
oligosaccharides 

Neu5Ac-α2,8-Neu5Ac-α2,3(6)-Gal- 

 

Table 1: Overview of to date characterised sialyltransferases with their acceptor structures and synthesised 

products.  (reviewed in Harduin-Lepers et al., 2001 and Takashima et al., 2008)   
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2.1. ST3GalIII 
The β-galactoside α2,3-sialyltransferases ST3GalIII is mainly expressed in uterus and skeletal 

muscle tissue, but also in brain, adrenal gland, peripheral blood leukocytes, spleen, testis, 

placenta and heart tissue and a variety of fetal tissues (Kitagawa et al., 1994; Grahn et al., 2002). 

So far, 26 different mRNAs derived by alternative splicing have been identified, most of which 

are lacking crucial parts of the catalytic domain including sialylmotifs and thus are supposed to 

be inactive (Grahn et al., 2002; Grahn et al., 2004). ST3GalIII preferentially acts on Gal-β1,3-

GlcNAc-residues (so called type I precursors) present on glycoproteins, while Gal-β1,4-GlcNAc-

residues (type II precursors) represent weaker acceptors (Kono et al., 1997). Thus, ST3GalIII is a 

major enzyme in the synthesis of sialyl Lewis a glycotopes (sLea). However, an increase in both 

sLea and sLex epitope was reported upon overexpression of ST3GalIII in gastrointestinal 

carcinoma cells (Carvalho et al., 2010). 

sLex is involved in recruiting peripheral blood leukocytes to sites of inflammation and infection 

by interaction with E- and P-selectins (Phillips et al., 1990; Tyrrell et al., 1991; Polley et al., 

1991), but E-selectin has also been demonstrated to bind to sLea (Tyrrell et al., 1991; Berg et al., 

1991). sLea and sLex are further supposed to play a role in cancer malignancy (Iwai et al., 1993). 

Transfection of neuroblastoma cells with ST3GalIII resulted in an up-regulation of α2,3 

sialylated structures and to the overexpression of polySia (Georgopoulou et al., 1999a). 

However, since elevated polySia expression was also observed upon transfection of cells with a 

β-galactoside α2,6-sialyltransferase, this seems to be caused by an increased allocation of 

terminally α2,3- or α2,6-sialylated glycan structures on NCAM molecules, which both provide 

acceptors for polysialylation (Georgopoulou et al., 1999b). 

 

 
Fig. 3: Biosynthesis of Lewis and Sialyl-Lewis epitopes (modified from Grahn et al., 2002). 
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2.2. Polysialyltransferases 
The polysialyltransferases (polySTs) ST8SiaII and ST8SiaIV mediate the biosynthesis of 

polySia, a linear homopolymer of α2,8-linked sialic acid, which is specifically attached to a 

small group of protein acceptors. The main carrier of polySia is the Neural Cell Adhesion 

Molecule (NCAM), which by this modification is turned from an adhesive into an anti-adhesive 

molecule. PolySia is a bulky, highly hydrated and negatively charged structure, which increases 

the hydrodynamic radius of NCAM and thus impairs the molecules intrinsic capability to 

perform heterophilic and homophilic interactions in trans (i.e. between neighbouring cells) 

(Rutishauser et al., 1988; Yang et al., 1994; Fujimoto et al., 2001; Johnson et al., 2005; reviewed 

in Mühlenhoff et al., 1998; Rutishauser, 2008). 

ST8SiaII and ST8SiaIV exhibit the common structure of sialyltransferases. Apart from the four 

sialylmotifs conserved in all sialyltransferases, the polySTs comprise two additional specific 

regions: the polysialyltransferase domain (PSTD) (Nakata et al., 2006) which seems to be 

involved in polysialyltransferase activity per se and the polybasic region (PBR) which seems to 

play a special role in NCAM polysialylation (Foley et al., 2009). 

Furthermore, both polysialyltransferases comprise three cystein residues in sialylmotif L (SM L), 

one in sialylmotif S (SM S) and one at the C-terminus. Using ST8SiaIV as a model, Angata et al. 

(2001) observed the formation of two disulfide bonds, which were formed between the first 

cysteine residue in SM L and the cysteine residue in SM S and the second cysteine in SM L and 

the cysteine residue located at the enzymes’ C-terminus, while the third cysteine residue in SM L 

was not involved in disulfide bond formation, but still showed to be important for activity. 

ST8SiaII and ST8SiaIV are decorated by 6 and 5 N-glycosylation sites, respectively, namely 

Asn60
, Asn72

, Asn89
, Asn134

, Asn219
 and Asn234

 (murine ST8SiaII) and Asn50
, Asn74

, Asn119, Asn204 

and Asn219 (hamster ST8SiaIV). Mutation of the highly conserved 3rd N-glycosylation site in 

ST8SiaII and the corresponding 2nd N-glycosylation site in ST8SiaIV leads to inactivation of the 

enzymes. In ST8SiaII, the 5th and, though to a lesser extend, the 6th N-glycosylation contribute to 

the installation of full catalytic activity (Mühlenhoff et al., 2001; Close et al., 2001; Günzel, 

2008). Both enzymes can modify themselves in a process called autopolysialylation, shown to 

involve N-glycosylation site 3, 5, 6 in ST8SiaII and 2, 3, 4 in ST8SiaIV (Close et al., 2000; 

Mühlenhoff et al., 2001; Günzel, 2008). 
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Fig. 4: Schematic representation of the polySTs. TMD: transmembrane domain; L, S, III, VS: sialylmotifs L, S, 

III and VS; PBR: polybasic region; PSTD: polysialyltransferase domain; Ψ: N-glycosylation site; C: Cysteine 

residue. N-glycosylation sites that are involved in enzymatic activity are marked by asterisks. 

 

3. PolySia acceptors 
As mentioned before, polysialylation is a highly specific reaction occurring only on a restricted 

number of proteins. Apart from the polysialyltransferases themselves, five polySia acceptors 

have been identified to date: the Neural Cell Adhesion Molecule (NCAM) (Finne et al., 1983; 

see Colley, 2010 and Hildebrandt et al., 2010 for a detailed review on NCAM polysialylation), 

the α-subunit of the voltage-dependant sodium channel (Zuber et al., 1992), a soluble fragment 

of the scavenger receptor CD 36 found in human milk (Yabe et al., 2003), neuropilin-2 on 

dendritic cells (Curreli et al., 2007) and the synaptic cell adhesion molecule SynCAM 1 

(Galuska et al., 2010). Two of these acceptors, namely SynCAM 1 and NCAM will be described 

in more detail in the following. 

 

3.1. The Synaptic Cell Adhesion Molecule (SynCAM) 
The Synaptic Cell Adhesion Molecule (SynCAM) family consists of 4 members, SynCAM 1-4, 

which are expressed throughout the brain, suggesting an important function in all brain 

structures. SynCAM 1 (also named CADM1, nectin-like protein-2 (necl-2), tumor suppressor in 

lung cancer 1 (TSLC-1), spermatogenic Ig superfamily molecule (SgIGSF) and RA-175) is a 

potent inducer of synapse formation and is further involved in reducing complexity of migrating 

growth cones and the number of filopodia in a FAK dependant way, and thus supports axons in 

maintaining target contacts for synapse formation (Biederer et al., 2002; Stagi et al., 2010). 

Furthermore, SynCAM 1 was shown to recruit NMDA receptors and possibly AMPA receptors 

via its intracellular protein 4.1 binding motif (Hoy et al., 2009). 

The overall molecule structure is conserved among family members, comprising three 

N-terminally located Immunglobulin like (Ig) domains, followed by a stem region, a 

transmembrane domain and a cytoplasmic tail containing a protein 4.1 and a PDZ domain 

binding site for intracellular signalling (Biederer et al., 2002; Biederer et al., 2006; Fogel et al., 
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2007; Hoy et al., 2009; Stagi et al., 2010). SynCAM 1 contains 6 N-glycosylation sites, namely 

Asn70, Asn104 and Asn116, located in Ig1, Asn168 in Ig2 and Asn307 and Asn311 in Ig3. Moreover, 

alternatively spliced exons can be inserted in the stem region bearing potential O-glycosylation 

sites (Biederer et al., 2006). 

SynCAMs 1-3 are capable of homophilic binding, however, heterocomplexes of SynCAM 1 and 

2 or 3 and 4, respectively, represent the most stable binding states. Weaker binding is observed 

between SynCAM 1 and 3 and has also been detected for SynCAM 2 and 4 (Fogel et al., 2007; 

Thomas et al., 2008). The binding site of SynCAM 1 for homophilic interactions and binding to 

SynCAM 2 has been mapped to Ig1 and Ig2 (Fogel et al., 2007; Fogel et al., 2010). 

The Ig1 domains of SynCAM 1 and 2 are decorated by three or one N-glycosylation site, 

respectively. While the presence of the N-glycan on Asn 60 of SynCAM 2 has been shown to 

reduce interaction with both SynCAM 1 and 2, glycosylation of Asn70 and Asn104 of the 

SynCAM 1 Ig1 domain in contrast enhances both homophilic binding and binding to 

SynCAM 2, and these effects have been shown to directly translate into functional effects in 

synapse formation. These findings, together with the notion, that glycosylation of SynCAM 1 is 

developmentally altered, suggests a regulatory role of N-glycan modification in SynCAM 

function (Fogel et al., 2010). Interestingly, enzymatic removal of sialic acid from SynCAM 1 

resembled the effect of complete deglycosylation on homophilic binding, pointing towards a role 

for Sia in regulating SynCAM function. In the course of my thesis SynCAM 1 was identified as 

a novel polySia acceptor and first insights have been obtained into the functional relevance of 

polysialylated SynCAM 1 (see chapter 4; Galuska et al., 2010).  

 

3.2. The Neural Cell Adhesion Molecule (NCAM) 

3.2.1. The biological impact of polySia-NCAM  
The biological impact of polySia on NCAM has been impressively demonstrated by a series of 

mouse models with progressively lowered polySia expression (for review see Hildebrandt et al., 

2007). NCAM knockout mice retain ~5% of total polySia in the brain as compared to wild-type 

mice (Cremer et al., 1994, Galuska et al., 2010) and, surprisingly, despite of the depletion of two 

major neurodevelopmental markers (polySia and NCAM), exhibit a mild phenotype. A 

prominent morphological characteristic found in NCAM-knock-out mice was a small olfactory 

bulb (ob), which resulted from a defective migration of subventricular zone (SVZ) derived 

neuronal precursors along the rostral migratory stream (RMS) (Tomasiewicz et al., 1993; 

Cremer et al., 1994; Ono et al., 1994; Hu et al., 1996; Chazal et al., 2000). Additionally, defects 

in mossy fibre lamination (Tomasiewicz et al., 1993; Cremer et al., 1997; Seki and Rutishauser 
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1998) and electrophysiological alterations associated with deficits in learning and memory 

(Cremer et al., 1994; Becker et al., 1996; Muller et al., 1996; Muller et al., 2000; Bukalo et al., 

2004; Dityatev et al., 2004) were observed. Similarly, knock-out mice lacking ST8SiaII (Angata 

et al., 2004) or ST8SiaIV (Eckhardt et al., 2000) were found to exhibit a mild phenotype. 

Importantly, since both single knock-outs retained significant polySia expression levels, these 

models demonstrated that the polysialyltransferases are able to substitute for each other to a 

certain extent. 

In marked contrast to the previous models, double knock-out mice lacking both polySTs were 

found to exhibit a postnatally lethal phenotype. While gross anatomical structures are normal at 

the day of birth, polySia-depleted mice fail to thrive and > 80% die within 3 weeks after birth. 

The double-knock-out mice develop a hydrocephalus with high incidence and show defects in 

important commissural and non-commissural fibre tracts (Hildebrandt et al., 2009). Remarkably, 

further ablation of NCAM in the polySia-negative background rescues the severe phenotype and 

ST8Sia2-/-ST8Sia4-/-NCAM-/- triple knock-out mice display a phenotype similar to that of NCAM 

knock-out mice. These results demonstrate the importance of polySia for the regulation of its 

acceptor molecule NCAM. In fact, recent studies carried out in our laboratory show that polySia 

is essential to prevent untimed functions of the NCAM-protein (Weinhold et al., 2005; 

Hildebrandt et al., 2009). 

 

3.2.2. NCAM Structure 
The three main isoforms of NCAM are named after their apparent molecular weight NCAM-120, 

NCAM-140 and NCAM-180 and derive from alternative splicing. NCAM consists of 5 

N-terminally located Ig domains followed by two fibronectin III like (FN) domains, a GPI 

anchor (NCAM-120) or a transmembrane domain followed by a short cytoplasmic tail (NCAM-

140 and NCAM-180), respectively (see Fig. 5). Six N-glycosylation sites were identified, which 

are located in Ig3 (Asn204), Ig4 (Asn297 and Asn329) and Ig5 (Asn405, Asn431 and Asn460) (numbers 

are according to murine NCAM) (Cunningham et al., 1987). Polysialylation has been shown to 

be restricted to the 5th and 6th N-glycosylation site (Nelson et al., 1995; Liedtke et al., 2001; von 

der Ohe et al., 2002)  and to depend on the priming of polySia acceptor glycan structures by the 

addition of α2,3- or α2,6-linked sialic acid residues (Mühlenhoff et al., 1996a). 
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Fig. 5: Schematic representation of the three NCAM isoforms (A) and polysialylated NCAM displaying an 

enlarged hydrodynamic radius (B).  

 

As mentioned above, polysialylation is a highly specific modification restricted to a small 

number of proteins. This suggests a specific protein-protein interaction between the polySTs and 

the acceptor protein. However, to date little is known about structural motifs that determine 

NCAM as the main carrier for the polySia occurs. Mendiratta et al. (2005) described membrane-

spacing, i.e. the correct distance of the respective polysialylation sites to the plasma membrane, 

to be important for interaction. In contrast, Foley et al. (2010a) demonstrated that the placement 

of artificial polysialylation sites within Ig5 allows for flexibility in rotational orientation. 

Other studies conducted to elucidate the molecular details underlying the specific interaction of 

NCAM and the polySTs used truncation and deletion of NCAM domains. Thereby, the minimal 

polySia acceptor was determined to comprise the NCAM domains Ig5 and FN1 (Mendiratta et 

al., 2005). However, data from this and an earlier study (Nelson et al., 1995) suggest a 

supporting role of Ig4 in polysialyltransferase recognition.  

By use of bioinformatics Mendiratta et al. (2006) identified unique elements in NCAM that may 

promote the interaction with the polySTs. Studies using site directed mutagenesis confirmed the 

relevance of these elements which comprise an α-helix between β-strands 4 and 5 and an acidic 

patch consisting of Asp497, Asp511, Glu512 and Glu514 in FN1. In a recent follow up study the 
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group identified the QVQ and PYS sequence as polyST interaction motifs in NCAM. For the 

identification of these motifs NCAM was compared to a close relative, the Olfactory Cell 

Adhesion Molecule (OCAM), which is not an acceptor for polySia transfer. Moreover, in 

subsequent mutational studies the authors demonstrate that the α-helix and the QVQ motif are 

important for polysialylation of N-glycans in NCAM, while the acidic patch and the PYS motif 

play a role in the polysialylation of O-glycans (Foley et al., 2010b). Since polySia in NCAM is 

chiefly bound to N-glycans, the O-linked polySia fraction is very small and may have been 

overlooked in earlier studies. Interestingly, an artificial fragment consisting only of FN1 and 

FN2, which is naturally lacking N-linked polySia acceptors, as well as an NCAM-OCAM 

chimera, where FN1 of NCAM had been replaced by OCAM FN1, were found to be heavily 

polysialylated on O-linked glycans (Mendiratta et al., 2005; Foley et al., 2010b). It is important 

in this context to stress the point that NCAM is a complex transcriptional unit of which >100 

protein isoforms can be formed. Some of these contain potential O-glycan attachment sites. The 

finding by Foley et al. (2010b) thus points towards the need for improved reagents suited to 

monitor the dynamics that underlies NCAM and polySia expression during neurodevelopment.  

 

3.2.3. NCAM interactions  
NCAM homophilic interactions have been subject to intense investigation, resulting in different 

binding models, which are, however, still under controversial discussion (Rao et al., 1992; Rao 

et al., 1993; Rao et al., 1994; Ranheim et al., 1996; Kiselyov et al., 1997; Jensen et al., 1999; 

Atkins et al., 1999; Atkins et al., 2001; Kasper et al., 2000; Soroka et al., 2003; Johnson et al., 

2004; Wieland et al., 2005; Kiselyov et al., 2005). As the study of homophilic NCAM-NCAM 

interactions is subject of investigation in this doctorial thesis, a detailed summary of the existing 

data is given in the introduction of chapter 2. 

Apart from homophilic binding and its transient but specific contact made to polySTs, NCAM 

has been shown to be involved in diverse heterophilic interactions. Among those, binding to 

other cell adhesion molecules such as Tag-1 (Milev et al., 1996), L1 (Kadmon et al., 1990a; 

Kadmon et al., 1990b; Horstkorte et al., 1993) and cadherins (Fujimoto et al., 2001) were 

observed. Moreover, NCAM interacts with collagen (Probstmeier et al., 1992) and chondroitin 

sulphate proteoglycans such as neurocan (Friedlander et al., 1994; Retzler et al., 1996) and 

phosphacan, which represents the extracellular domain of protein-tyrosine-phosphatase-ζ/β 

(Grumet et al., 1993; Milev et al., 1994) and with heparan sulphate proteoglycans such as agrin 

(Cole et al., 1986; Lubec et al., 1986; Storms et al., 1996) as well as to prion protein (Schmitt-

Ulms et al., 2001). 
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NCAM is further known to interact with the fibroblast growth factor receptor-1 (FGFR-1) 

(Saffell et al., 1997; Ronn et al., 2000; Kiselyov et al., 2003) and the glial derived neurotrophic 

factor (GDNF) (Paratcha et al., 2003), while the brain derived neurotrophic factor (BDNF) and 

the platelet-derived growth factor (PDGF) bind to the polySia-portion of NCAM and are thus 

only indirectly associated with NCAM functions (Vutskits et al., 2001; Zhang et al., 2004). 

 

3.2.4. NCAM signalling 
NCAM is involved in a variety of signalling events leading to neurite outgrowth, reorganisation 

of the cytoskeleton, formation of focal adhesion contacts, cell migration, adhesion and 

differentiation and neuronal survival (Beggs et al., 1994; Cavallaro et al., 2001; Prag et al., 

2002; Ditlevsen et al., 2003; Bazou et al., 2008; Röckle et al., 2008; Francavilla et al., 2009; for 

a detailed review on NCAM signalling pathways see Hinsby et al., 2004a and Ditlevsen et al., 

2008). 

The molecule has been shown to promote the formation of focal adhesions, but its role in cell 

migration and adhesion is still under debate and the signalling pathways involved remain unclear 

(Cavallaro et al., 2001; Prag et al., 2002; Francavilla et al., 2009). Moreover, also the role of 

polySia in modulating NCAM signalling in cell migration and adhesion remains largely elusive 

and is topic of the current study (see Chapter 3 of this thesis). 

The best studied example of NCAM signalling is the process of neurite outgrowth. The 

prevailing model assumes that NCAM acts via homophilic trans-interactions, which in turn lead 

to binding and activation of FGF receptors (FGFR) in cis, i.e. within the plane of the same 

membrane (Saffell et al., 1997; Ronn et al., 2000; Kiselyov et al., 2003). Complex formation 

between NCAM and FGFR results in intracellular binding of FGFR substrate 2 (Frs2) and of 

docking protein Shc, which together recruit the adaptor protein Grb2 and the GTP exchange 

factor SOS. Bound SOS than activates the small GTP binding protein Ras (Hadari et al., 1998; 

Rozakis-Adcock et al., 1992; Hinsby et al., 2004b), resulting in activation of the serine/threonine 

kinase Raf followed by activation of the MAP kinase kinase (MEK) and finally phosphorylation 

of ERK MAP kinases (Kolkova et al., 2000; Schmid et al., 1999). Via ERK MAP kinases and 

PKA, NCAM has been shown to activate cAMP-responsive-element-binding protein (CREB), a 

transcription factor associated with neurite outgrowth as well as learning and memory processes 

(Schmid et al., 1999; Jessen et al., 2001). 

In addition, NCAM-induced FGFR activation may activate PLCγ which leads to the cleavage of 

PIP2 into IP3 and DAG (Saffell et al., 1997). IP3 activates Ca2+ from intracellular stores 

(Berridge et al., 1993), while DAG mediates an increased Ca2+ influx by elevating activity of N- 
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and L-type Ca2+ channels (Doherty et al., 1991; Williams et al., 1994). An increase in 

intracellular calcium levels seems to be crucial for NCAM-mediated neurite outgrowth, either by 

directly activating protein kinase C (PKC) and Ca2+/Calmodulin kinase II (CaMKII) or by 

indirect activation of protein kinase A (PKA) via a Ca2+/Calmodulin sensitive adenylyl cyclase, 

(Kolkova et al., 2000; Kolkova et al., 2005; Williams et al., 1995; Ditlevsen et al., 2007; Jessen 

et al., 2001). 

Moreover, NCAM mediated neurite outgrowth and neuronal survival has been shown to rely on 

phosphatidyl inositol-3 kinase (PI3K) (Ditlevsen et al., 2003). PI3K can be activated by FGFR 

via the docking protein Gab1 (Ong et al., 2001), by phosphorylated focal adhesion kinase (FAK) 

(Chen et al., 1996), by G-proteins and by Ras, and probably acts via the serine/threonine kinase 

Akt, which becomes activated by binding to lipid products of PI3K (Ditlevsen et al., 2003). 

FGFR independant NCAM signalling relies on lipid raft association of NCAM-120 and NCAM-

140 and results in activation of the non-receptor tyrosine kinase Fyn (Beggs et al., 1997; Kramer 

et al., 1999; Niethammer et al., 2002; Lehembre et al., 2008), which is probably mediated by the 

receptor protein tyrosine phosphatase RPTPα. Fyn activation was shown to result in FAK 

recruitment and leads to phosphorylation of ERK MAP kinases and activation of CREB (Beggs 

et al., 1997, Schmid et al., 1999; Bodrikov et al., 2005). In this, the FGFR and Fyn dependant 

pathways seem to converge, most probably at the level of Ras, and act together to regulate 

neurite outgrowth (Kolkova et al., 2000, Niethammer et al., 2002). 

To allow for neurite outgrowth to take place, a reorganisation of the cytoskeleton is required. An 

important link from NCAM to the cytoskeleton has been established by the finding that NCAM, 

and preferentially the NCAM-180 isoform, binds to the actin binding protein spectrin spectrin 

(Pollerberg et al., 1986; Pollerberg et al., 1987; Leshyns’ka et al., 2003). The growth-associated 

protein-43 (GAP-43) seems to act as a switch between NCAM-180 and NCAM-140 signalling; 

in the presence of GAP-43, NCAM-induced neurite outgrowth depends on the NCAM-

180/spectrin/GAP-43 pathway, while in the absence of GAP-43, the NCAM-140/Fyn pathway is 

pivotal (Korshunova et al., 2007). GAP-43 binds and modifies F-actin and thus influences 

cytoskeletal reorganisation and growth cone motility (Caroni et al., 2001; Oestreicher et al., 

1997). Furthermore, ERK MAP kinases are associated with microtubuli and phosphorylate 

microtubuli-associated proteins (Gundersen et al., 1999). They further activate myosin light 

chain (MLC) kinase, resulting in phosphorylation of MLC and thus enhanced actomyosin-

mediated contraction, which influences growth cone advancement or retraction (Cheresh et al., 

1999; Suter et al., 1998; Suter et al., 2000). 
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More recently, it has been demonstrated that NCAM in association with the GDNF receptor 

alpha1 can also act as a signalling receptor for ligands of the GDNF family, resulting in 

activation of Fyn and FAK and inducing Schwann cell migration and axonal growth in 

hippocampal and cortical neurons (Paratcha et al., 2003; Nielsen et al., 2009). 
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Objectives 
The modification of biomolecules with sialic acid (Sia) is crucially involved in steering 

molecular, cellular and physiological processes. The polymeric form of Sia, polysialic acid 

(polySia), is found on a restricted number of proteins with the major carrier being the neural cell 

adhesion molecule NCAM. The expression of polySia-NCAM has been shown to play a pivotal 

role in brain development and to influence cancer malignancy. Thus, an in depth understanding 

of the polysialylation reaction is a prerequisite to understand and influence this process.  

The first goal of this study was therefore to produce soluble recombinant polysialyltransferase 

and NCAM proteins to enable in vitro investigations on structure-function-relationships that 

underly the polysialylation reaction. A major focus was thereby set on the question, which 

structural determinants qualify NCAM as the preferred acceptor for polysialyltransferases. 

Further, NCAM fragments should be produced and used in studies to dissect NCAM-dependant 

from –independant polySia specific functions and to elucidate the functional impact of individual 

NCAM domains on cellular signal transduction processes associated with cell migration and 

focal adhesion formation.  

 

In the course of my studies, the β-galactoside α2,3-sialyltransferase ST3Gal-III was found to be 

mutated in individuals affected by non-syndromal autosomal recessive intellectual disability 

(NSARID). A second goal of this thesis was therefore to biochemically characterise how the 

identified mutations impact the functionality of the sialyltransferase.   
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Chapter 2 - Studies towards understanding the structural 

elements promoting NCAM-NCAM homophilic interactions 

and interactions between NCAM and the 

polysialyltransferases. 
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Preface 
In this study, a production sytem for recombinant murine ST8SiaII as well as a series of human 

NCAM fragments was established, using a baculoviral expression system in insect cells. Purified 

proteins were used to determine the oligomerisation status of NCAM in solution. Using 

analytical ultracentrifugation and size exclusion chromatography, the soluble ectodomain of 

NCAM was identified to form a stable dimer. Consequently, NCAM fragments were used to 

dissect the influence of individual subdomains on dimer formation. Moreover, by use of the 

same experimental techniques, trials were undertaken to investigate complex formation between 

ST8SiaII and NCAM. Because recombinant proteins could be expressed in good yields and 

purified close to homogeneity, crystallisation trials were set up to obtain functional 3D structures 

of the NCAM ectodomain and NCAM-ST8SiaII complexes.  
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Chapter 2 - Studies towards understanding the structural elements 

promoting NCAM-NCAM homophilic interactions and interactions 

between NCAM and the polysialyltransferases. 
 

Abstract 
Polysialic acid (polySia) is a post-translational modification of the Neural Cell Adhesion 

Molecule NCAM consisting of α2,8-linked 5-N-Acetylneuraminic acid (Neu5Ac). Its 

expression on NCAM plays a pivotal role in brain development, neural plasticity in the 

adult brain and nerve repair. Two polysialyltransferases (polySTs) have been identified to 

add polySia onto NCAM, namely ST8SiaII and ST8SiaIV. To provide a basis for the 

investigation of the structural features that promote the preferred recognition of NCAM by 

the polySTs, robust expression systems for NCAM and ST8SiaII were established. Since 

the functionality of polySTs and of NCAM depends on disulfide bond formation and 

N-glycosylation, a baculoviral-based insect cell expression system was used for the 

production of these proteins. In addition a library of NCAM fragments was generated to 

enable evaluation of the impact of individual domains on NCAM homo-dimer formation. 

All proteins were generated in quantities and qualities sufficient to pursue detailed protein-

protein interaction studies and to initiate first crystallisation trials. Moreover, with the help 

of analytical ultracentrifugation studies we were able to demonstrate that dimerisation of 

the NCAM ectodomain in solution is mediated by the immunoglobulin (Ig) like domains 

Ig1 and Ig2 and to a lesser extend by the fibronectin III like domain FN2.  
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Introduction 
The neural cell adhesion molecule (NCAM) is a type I transmembrane protein, consisting of five 

N-terminal immunoglobulin like (Ig) domains and two fibronectin III like (FN) domains. These 

are, depending on the NCAM isoform, followed by a glycosylphosphatidylinositol anchor in 

NCAM-120 or a transmembrane domain and a cytoplasmic tail in NCAM-140 and NCAM-180. 

Of the six N-glycosylation sites, the fifth and sixth, both located in Ig5, can be modified by 

polysialic acid (polySia), a linear homopolymer consisting of α2,8-linked N-acetyl neuraminic 

acid (reviewed in Mühlenhoff et al., 1998). Due to the bulky structure of this hydrated and 

highly negatively charged polymer, polySia modulates NCAM functions, attenuates cell 

adhesion mediated by both NCAM dependant and NCAM independant mechanisms, and 

increases membrane repulsion (Rutishauser et al., 1988; Fujimoto et al., 2001; Johnson et al., 

2005b). These specific features combined with the high expression level of NCAM and polySia 

in the nervous system make them crucial factors in neural development, which has been 

impressively demonstrated using a series of mouse models with progressively lowered polySia 

expression (Cremer et al., 1994; Eckhardt et al., 2000; Angata et al., 2004; Weinhold et al., 

2005; Hildebrandt et al., 2009; Schiff et al., 2010) reviewed in Hildebrandt 2007). Existing data 

further indicate that polySia and NCAM impact cell adhesion and migration, axon branching, 

fasciculation and pathfinding and are involved in steering synaptic and neuronal plasticity in the 

adult organism (reviewed in Mühlenhoff et al., 2009 and Rutishauser 2008). Moreover, polySia 

has been shown to positively impact nerve regeneration. Reconstitution of plasticity by 

overexpression of polySia has therefore gained considerable attraction as a potential therapeutic 

approach after nerve lesions (El Maarouf et al., 2006; Jungnickel et al., 2009; Haastert-Talini et 

al., 2010). 

The biosynthesis of polySia is mediated by two polysialyltransferase, ST8SiaII and ST8SiaIV.  

 Both ST8SiaII and ST8SiaIV can independantly act on NCAM and in principal hold the same 

function, but differ in details of acceptor specificity, length of synthesised polySia (Kojima et al., 

1997; Kitazume-Kawaguchi et al., 2001; Angata et al., 2002; Oltmann-Norden et al., 2008; 

Galuska et al., 2008), and in temporal and spatial expression patterns (Ong et al., 1998; 

Hildebrandt et al., 1998). During development, ST8SiaII is highly expressed in all neural tissues, 

while the expression of ST8SiaIV is lower in the level. After birth, ST8SiaII expression levels 

decrease more drastically than those of ST8SiaIV, so that the latter becomes the dominant 

polyST in adult brain. Accordingly, ST8SiaIV is the prominent enzyme espressed in areas of 

ongoing neuronal and synaptic plasticity in the adult (Ong et al., 1998; Hildebrandt et al., 1998; 

Oltmann-Norden et al., 2008) 
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NCAM-mediated effects on cellular processes upon polySia removal was shown to depend on 

both heterophilic and homophilic interactions (reviewed in Hinsby et al., 2004 and Ditlevsen et 

al., 2008). Understanding the structural basis of these homophilic interactions has been subject to 

intense discussion with partially ambiguous or opposing conclusions (reviewed in Kiselyov et 

al., 2005). Using a mutational approach Rao et al. mapped the homophilic binding site to Ig 

domain 3 and identified a sequence KYSFNYDGSE spanning from Lys243 to Glu252 to be 

crucially involved in this interaction (Rao et al., 1992; Rao et al., 1993; Rao et al., 1994). Using 

bead aggregation assays, Ranheim et al. (1996) demonstrated binding of Ig1 to Ig5 and of Ig2 to 

Ig4 in addition to Ig3-Ig3 reciprocal binding. However, surface plasmon resonance binding 

studies by Kiselyov et al. (1997) did not confirm any of these interactions, but demonstrated an 

interaction of Ig1 with Ig2 instead. This was confirmed by size-exclusion chromatography, NMR 

and analytical ultracentrifugation studies and the crystal structure of Ig1-Ig2 (Jensen et al., 1999; 

Atkins et al., 1999; Atkins et al., 2001; Kasper et al., 2000). Atkins et al. (2001) also confirmed 

the lack of reciprocal binding of the soluble Ig3 domain. The crystal structure of Ig1-Ig2-Ig3 

seemed to shed more light on these seemingly contradictory data by revealing three binding 

states of NCAM: cis dimerisation mediated by reciprocal binding of Ig1 to Ig2, and two modes 

of trans interactions leading to the formation of the so called flat zipper (mediated by interaction 

of Ig2 with Ig3) and dense zipper (mediated by interaction of Ig1 with Ig3 and Ig2 reciprocal 

binding) or cluster structures upon combination of both zipper models. Interestingly, the Ig3-Ig1 

interface involved in the formation of the dense zipper included the sequence Lys243-Glu252 

identified by Rao et al. to be responsible for Ig3 reciprocal binding (Soroka et al., 2003). 

Studies using surface force measurements and atomic force microscopy confirmed the existence 

of two trans-binding states, which were interrupted by deletion of Ig1 and 2 or Ig3, respectively 

(Johnson et al., 2004; Wieland et al., 2005). The authors interpret the data in support of the 

primarily described models displaying a reciprocal overlap of (1) all five Ig-domains and (2) Ig1 

and Ig2, respectively. However, the data obtained by these experiments are not unambiguous and 

further studies are required to eventually solve the dynamics inhering NCAM homophilic 

binding. 

Similarly, the mechanism of NCAM interaction with the polySTs is barely understood, although, 

based on the high specificity of the polysialylation reaction, it is supposed to rely on protein-

protein interactions. Supporting this, Colley and colleagues have found that ST8SiaIV 

coprecipitates with NCAM in pull down experiments (Colley, 2010). Mediratta et al. (2005) 

identified an NCAM fragment consisting of the domains Ig5 and FN1 to be the minimally 

required acceptor structure for recognition by the ST8SiaIV. FN1 seems to be crucially involved 
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in making the contact to the enzyme, since deletion of this domain abolished polysialylation of 

N-glycans on Ig5. Bioinformatic evaluations conducted by this group identified structures in 

FN1 involved in enzyme recognition in more detail. Thereby, an α-helix linking β-strands 4 and 

5 of the  β-sandwich structure, which is unique to NCAM FN1, and the so called QVQ sequence 

support polysialylation of Ig5 N-glycans, while the core residues of the so called acidic patch 

and the PYS sequence play a role in O-glycan polysialylation (Mendiratta et al., 2006; Foley 

2010b). 

The polySTs ST8SiaII and ST8SiaIV are type II membrane proteins containing the sialylmotifs 

L, S, III and VS, shared as a common feature with all characterised mammalian sialyltransferases 

(reviewed in Harduin-Lepers et al., 2001). The enzymes further comprise a polybasic region 

directly upstream of sialylmotif S, conserved only among the polySTs, and thus called 

Polysialyltransferase Domain (PSTD). Mutation of central amino acids or deletion of the whole 

domain resulted in drastically reduced activity (Nakata et al., 2006). In ST8SiaIV, this domain 

has been shown to be important for NCAM- as well as for autopolysialylation, indicating a 

general role in the polysialylation process. In contrast, mutations in the polybasic region (PBR) 

located upstream of sialylmotif L, strongly decreased NCAM polysialylation, while only 

partially impacting autopolysialylation, suggesting a role in interaction with the NCAM 

molecule (Foley et al., 2009). 

ST8SiaIV and ST8SiaII are decorated by 5 and 6 N-glycosylation sites, respectively, and it has 

been shown that the presence of the highly conserved N-glycosylation site 2 in ST8SiaIV and 3 

in ST8SiaII is essential for enzyme activity. In ST8SiaII, N-glycosylation sites 5 and, to a lesser 

extend, 6 are further required for full catalytic activity (Mühlenhoff et al., 2001; Close et al., 

2001). As the aim of this study was to obtain material for an in depth structural and biochemical 

analysis of the polyST/NCAM interaction, expression constructs were cloned to allow the 

production of both proteins in insect cell systems. The set of proteins produced enabled a 

differential evaluation of homophilic NCAM interactions and NCAM-polyST interactions. 

Moreover, initial steps have been implemented towards determining the crystal structure of 

NCAM and the polyST ST8SiaII.  
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Material and Methods 
ST8SiaII constructs  

The constructs pFastBac-HBM-6xHis-mST8SiaIIΔ56 and pFastBac-HBM-6xHis-mST8SiaIIΔ72 

were cloned by Almut Günzel as described in Günzel (2004). ST8SiaII fragments were PCR 

amplified using the following primer pairs: KS93: GCATCCATGGTTGTAATAAATGGCTCTTCA / 

KS10r: TGAAGCTTTTACGTAGCCCCATCACA CTG (pFastBac-HBM-6xHis-mST8SiaIIΔ56) 

and KS94: GCATCCATGGAAAGCCTTAAGCACAA CATC / KS10r : 

TGAAGCTTTTACGTAGCCCCATCACACTG (pFastBac-HBM-6xHis-mST8SiaIIΔ72). 

For the generation of pFastBac-HBM-6xHis-mST8SiaIIΔ56(+3,5) and pFastBac-HBM-6xHis-

mST8SiaIIΔ56(+3,5,6) the ST8SiaII portion was PCR amplified from pFastBac-HBM-

ST8SiaIIΔ31 (+3,5)-mycHis and pBlueScript-STX Δ1,2,4, respectively, using the primer pair 

KS93: GCATCCATGGTTGTAATAAATGGCTCTTCA / KE01: GCTGAAGCTTTTACGTAGCCCCATCACAC, 

and ligated into pFastBac-HBM-6xHis via NcoI and HindIII restriction sites. 

The primers originally used for mutation of the N-glycosylation sites are described in 

Mühlenhoff et al. (2001). 

For the generation of pFastBac-HBM-mST8SiaIIΔ56-HRV3C-myc-6xHis, the ST8SiaII 

fragment was PCR amplified from pFastBac-HBM-6xHis-mST8SiaIIΔ56 using the primer pair 
KE07: GCTTGAGCTCGAGAGTTGTAATAAATGGCTCTTCAC / KE08: CGTTTCTAGATTACGTA 

GCCCCATCACAC and cloned into the myc-6xHis tag containing vector pFastBac-HBM-PST-MH 

via restriction sites for SacI and XbaI, and a subsequent adaptor ligation using the primer pair 
KE02: CTAGAAGTGGTGGTGGCCTTGAAGTCCTCTTTCAGGGACCCGGTTCAACTAGTGGTGGT 

GGCGGTTCTAATAACAATCCTCCTACTG / KE03: CTAGCAGTAGGAGGATTGTTATTAGAACCGCCACC

ACCACTAGTTGAACCGGGTCCCTGAAAGAGGACTTCAAGGCCACCACCACTT resulted in insertion of 

the HRV3C protease cleavage site via an XbaI restriction site. 

For the generation of pFastBac-HBM-protA-6xHis-HRV3C-mST8SiaIIΔ56, the protA-6xHis-

HRV3C portion was PCR amplified from pProtA-His-HRV3C using the primer pair 
KE04: GATCCGAGCTCAGCTGATAACAATTTCAACAAAG / KE05: ATCGTACCATGGCTGGGCCTTGGA

ACAGCA. PCR products were ligated into pFastBac-HBM-6xHis by the use of SacI and NcoI. 

For the generation of pFastBacDual*6xHis-mST8SiaIIΔ56*6xHis-NCAM Ig1-FN2*, the 

ST8SiaII fragment was subcloned from pFastBac-6xHis-mST8SiaIIΔ56 using the restriction 

sites for BssHII and HindIII. The NCAM fragment was subsequently PCR amplified from 

pFastBac-6xHis-NCAM Ig1-FN2 using the primer pair KE09: GAAGCTCGAGATGAAATTCTT 

AGTCAACGTTG / KE10: GCCGGCTAGCTTAGGTCCTGAACACAAAATGA and ligated into the vector 

using XhoI and NheI restriction sites. 
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NCAM constructs 

The insert for NCAMIg1-FN2 was PCR amplified from the plasmid pAM1 containing the 

sequence for human NCAM-140. All further constructs were amplified from pFastBac-HBM-

6xHis-NCAM Ig1-FN2 using the following primer pairs: 

 

Construct Primer pair 

tk07: 5’-GCAGGGATCCCTGCAGGTGGATATTG-3’  
NCAM Ig1-Fn2 
 tk05r: 5’-ATCGCGGCCGCCGAGGTCCTGAACAC-3’ 

tk23:  5’-TTTGCGTCGACCAAAATCACTTATGTAGAG-3’  
NCAM Ig4-Fn1 
 tk04r:  5’-GTTAAAGCTTTTATGGCTGCGTCTTGAAC-3’ 

tk02: 5’-ACCGGATCCCAGGACTCCCAGTC-3’  
NCAM Ig5-Fn1 
 tk04r: 5’-GTTAAAGCTTTTATGGCTGCGTCTTGAAC-3’ 

KE24: 5’-GATCGGCGCCATGAGAACCATCCAGGCCAGGCAG-3’  
NCAM Ig3-Fn2 
 tk08:  5’-GTGGGAAGCTTTTAGGTCCTGAACAC-3’ 

KE24: 5’-GATCGGCGCCATGAGAACCATCCAGGCCAGGCAG-3’  
NCAM Ig3-Fn1 
 tk04: 5’-GTTAAAGCTTTTATGGCTGCGTCTTGAAC-3’ 

KE13: 5’-TGACCTCGAGTG ATGAAATTCTTAGTCAACGTT-3’  
NCAM Ig1-Ig5 
 KE25: 5’-TAGCAAGCTTTTATGCTTGAACAAGGATGAATTCC-3’ 

KE26: 5’-GATCGGCGCCGACACCCCCTCTTCACCAT-3’  
NCAM Fn1-Fn2 
 KS7R: 5’-CAACAATTGCATTCATTTTAT-3’ 

 

The PCR products were cloned into a modified pFastBac HT A vector (Invitrogen) containing a 

Honey Bee Mellitin secretion signal and an N-terminal Hexahistidine (6xHis) tag using the 

following restriction sites: NotI/BamHI (NCAM Ig1-Fn2), SalI/HindIII (NCAM Ig4-Fn1), 

BamHI/HindIII (NCAM Ig5-Fn1) and KasI/HindIII (NCAM Ig3-Fn2, NCAM Ig3-Fn1, NCAM 

Ig1-Ig5 and NCAM Fn1-Fn2). NCAM Ig1-Fn1sec was generated by two sequential adaptor 

ligations introducing the sequence of primer pairs KE18/KE19 (BsiWI/KpnI) and KE20/KE21 

(KasI/HindIII) into the plasmid pFastBac NCAM Ig1-Fn2.  
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 Primer pair 

KE18: 5’-GTACGCCGTAAGGCTGGCGGCGCTCAATGGCAAAGGGCT 

GGGTGAGATCAGCGCGGCCTCCGAGTTCAAGACGCAACCGGTCCGT

AC-3’ 

 
 
 
1st adaptor 
ligation KE19: 5’-CGGACCGGTTGCGTCTTGAACTCGGAGGCCGCGCTGATCT 

CACCCAGCCCTTTGCCATTGAGCGCCGCCAGCCTTACGGC-3’  

KE20: 5’- CCGGTCAAGAACATAGCACAGAATCACTGCTGCAACATG 

TTCCAAGCTGGACTGCATAATGCACTGATGAAGTAAA-3’ 

 
 
2nd adaptor 
ligation KE21: 5’- AGCTTTTACTTCATCAGTGCATTATGCAGTCCAGCTTGGA 

ACATGTTGCAGCAGTGATTCTGTGCTATGTTCTTGA-3’ 

 

The constructs code for the following NCAM protein fragments (according to UniProt 13596), 

none of them comprising the VASE exon: 

Construct protein fragment 

NCAM Ig1-Fn2 Ser19-Thr702 

NCAM Ig4-Fn1 Lys309-Pro607 

NCAM Ig5-Fn1 Gln393-Pro607 

NCAM Ig3-Fn2 Thr213-Thr702 

NCAM Ig3-Fn1 Thr213-Pro607 

NCAM Ig1-Ig5 Ser19-Ala507 

NCAM Fn1-Fn2 Ala497-Thr702 

NCAM Ig1-Fn1sec Ser19-Val608  followed by the  

sec-sequence: KNIAQNHCCNMFQAGLHNALMK 

 

 

Sf9 insect cell culture 

Sf9 insect cells were grown in suspension culture at a density of 0.5-5x106 cells/ml in protein 

free Insect Xpress Medium (BioWhittaker, Cambrex-Lonza) at 70-90 rpm and 27 °C. Cells were 

counted and diluted to a density of 0.5x106 cells/ml with fresh medium every 2-3 days. 

For long-term storage, cells were pelleted by centrifugation at 150xg for 4 min and resuspended 

in 50 % conditioned medium containing 7.5 % DMSO at a density of 2x107 cells/ml. 1 ml-

Aliquots of this suspension were frozen stepwise (4 °C for 30 min, -20 °C for 1h and -80 °C over 

night) before being transferred to liquid nitrogen. 
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For recovering frozen cells, samples were incubated in a water bath at 37 °C and cells were 

transferred into 29 ml of fresh medium immediately after thawing. Cells were counted daily and 

kept at a density of 0.7-2x106 cells/ml during the first 2 weeks after thawing. 

 

Protein expression in Sf9 insect cells 

Baculoviruses coding for the respective NCAM fragments were generated using the Bac-to-

Bac® Baculovirus Expression System (Invitrogen) according to the manufacturer’s instructions. 

In short, pFastBac derived plasmids were transformed into E. coli DH10Bac, and the gene of 

interest was transposed into the contained bacmid. Bacmids were purified by anion exchange 

chromatography and transfected into Sf9 insect cells to generate a low-titer virus stock (P1) 

which was harvested after 7 days’ incubation. To enhance virus concentration, freshly seeded 

cells were infected with P1 in a dilution of 1:100 and incubated for 3-4 days to generate a 

medium-titer virus stock (P2). Infection of cells with P2 (1:1000) and incubation for another 4 

days yielded a high-titer virus stock (P3). 

log-phase Sf9 cells at a density of 1.7-2x106 cells/ml were infected with different amounts of P3 

virus stock with dilutions ranging between 1:100 and 1:1000. Every 24 h cells were counted and 

examined microscopically to analyse viability and infection status of the cells, and the cell 

culture supernatants were analysed in SDS-PAGE and western blots directly and after TCA 

precipitation (3.4.). Thus, optimal viral dilutions for infection and harvesting timepoints were 

determined. 

 

Protein precipitation by trichloroacetic acid (TCA) 

200 μl TCA were added to 800 μl cell culture supernatant and incubated on ice for 10 min. After 

centrifugation at 13,500 rpm and 4 °C for 10 min, pellets were washed with 500 μl acetone and 

centrifuged again (13,500 rpm, 4 °C, 10 min). Pellets were resuspended in 40 μl 2 x Laemmli 

buffer containing 5 % β-mercaptoethanol. 

 

SDS-PAGE 

SDS-PAGE was performed according to Laemmli (1970) under reducing conditions. Gels were 

composed of a 3 % stacking gel (125 mM Tris-HCl pH 6.8, 0.1 % SDS 3 % acrylamide [40 % 

4K-Mix, AppliChem]) and an 8 % or 10 % separating gel (375 mM Tris-HCl pH 8.8, 0.1 % 

SDS, 8 % or 10 % acrylamide [40 % 4K-Mix, AppliChem]). Polymerisation was mediated by 

addition of 0.1 % TEMED and 1 % ammonium persulfate. 
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Samples were diluted with 2x Laemmli buffer containing 5 % β-mercaptoethanol and incubated 

for 5 min at 99 °C or for 10 min at 60 °C if containing heat sensitive polySia. 

Electrophoresis was performed in 50 mM Tris buffer containing 350 mM glycine and 

0.1  % SDS at 70 V, while samples traversed the stacking gel, and 140 V after entering into the 

separating gel. 

Gels were subjected to western blotting (3.7.) for specific staining or developed with colloidal 

Coomassie blue staining (Roti-Blue, Roth) or silver staining for unspecific protein staining. For 

the latter purpose, gels were incubated in fixation solution (1.85 % formaldehyde, 10 % acetic 

acid, 30 % ethanol) for 20 min, washed three times in 50 % ethanol for 20 min and incubated for 

1 min in a solution of 0.2 mg/ml Na2S2O3. After washing three times in deionised water for 20 s, 

gels were incubated in silver staining solution (0.2 % AgNO3, 2.8 % formaldehyde) for 20 min 

and washed twice in deionised water for 20 s. Gels were incubated in developing solution 

(6 % Na2CO3, 4 μg/ml Na2S2O3, 1.85 % formaldehyde) until bands became visible. Staining was 

stopped by washing with deionised water and incubation with stop solution (10 % acetic acid, 

30 % ethanol). Gels were incubated in drying solution (10 % glycerol, 20 % ethanol) and dried in 

cellophane foil. 

 

Western Blotting 

Western blotting was performed at 2 mA/cm2 in blotting buffer (48 mM Tris buffer, 39 mM 

glycine) for 45 min. Proteins were transferred onto nitrocellulose membranes (Schleicher & 

Schüll) using a semidry blotting chamber (Biometra). 

Membranes were blocked in blocking buffer (2 % milk powder in PBS containing 0.02 % NaN3) 

for 1 h at room temperature or over night at 4 °C and incubated with 1 μgml anti 5xHis antibody 

(Qiagen) or 5 μg/ml monoclonal antibody 735 or 3.76 μg/ml mouse IgG (Pierce) in blocking 

buffer. After washing three times with PBS, the membranes were incubated with alkaline 

phosphatase (AP) conjugated goat anti mouse antibody (Dianova) diluted 1:5,000 in blocking 

buffer. After washing twice with PBS and once with AP buffer (100 mM Tris-HCl pH 9.5, 

100 mM NaCl, 5 mM MgCl2), bands were visualized by incubation with 162.5 μg/ml BCIP and 

325 μg/ml NBT in AP buffer.  

 

Protein purification  

1-4 l of Sf9 insect cell cultures were infected with the optimal amount of P3 baculoviral stock 

and incubated at the optimal timeframe as determined earlier. Cell culture supernatants were 

centrifuged at 300xg and 4 °C for 10 min. Supernatants were adjusted to pH 7.5 by adding 5 M 
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NaOH and centrifuged again at 7,000xg and 4 °C for 25 min. After filtration (0.2 μm, Steritop, 

Millipore) the supernatants were concentrated using an Ultrasette (Pall, MWCO 10,000) at 4 °C. 

After concentration to ca. 100 ml, the supernatant was diluted 1:5 with buffer D (50 mM Tris-

HCl pH 7.5, 100 mM NaCl) and concentrated to 50-100 ml. After filtration (0.2 μm, Millex, 

Millipore), 10 % Glycerol was added. Expressed proteins were bound to an appropriate volume 

of Ni2+ chelating matrix (1-4 ml ProBond Resin, Invitrogen) or to 1-2 x 1 ml HisTrap columns 

(GE Healthcare) over night. The columns were washed and eluted using an Äkta FPLC system 

(GE Healthcare) at a flow rate of 1 ml/min. Using buffers A (50 mM Tris-HCl pH 7.5, 100 mM 

NaCl, 10 % Glycerol) and B (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 400 mM Imidazole, 10 % 

Glycerol), a stepwise imidazole gradient was generated for washing the column and eluting the 

6xHis tagged proteins. 

Fractions containing ST8SiaII or NCAM, respectively, were pooled and concentrated using an 

Amicon Ultra (Amicon) or Vivaspin (Vivascience) ultrafiltration device. Size-exlusion 

chromatography was applied for further purification and for analysis of the oligomerisation 

status. 

Therefore, a Superdex 200 HR 10/300 GL (Amersham Biosciences; used for mST8SiaIIΔ56, 

NCAM Ig4-Fn1, NCAM Ig5-Fn1, NCAM Ig3-Fn1,  NCAM Ig1-Ig5, NCAM Fn1-Fn2)  or 

HiLoad 16/60 Superdex 200 (Amersham Biosciences; used for NCAM Ig1-Fn2, NCAM Ig3-

Fn2, NCAM Ig1-Fn1sec) gelfiltration column was equilibrated with 1-2 volumes of buffer G 

(10 mM Tris-HCl pH 7.5, 100 mM NaCl) with the pH adjusted to the respective temperatures 

(room temperature using Superdex 200 HR 10/300 GL; 4 °C using HiLoad 16/60 Superdex 200). 

Samples were loaded onto the column, using a 500 μl-loop for Superdex 200 HR 10/300 GL and 

a 5 ml-loop for HiLoad 16/60 Superdex 200, and separated at a flow-rate of 0.5 ml/min. 

Fractions containing ST8SiaII or NCAM, respectively, were pooled and further concentrated to 

1 mg/ml total protein as determined by Bio-Rad Protein Assay (BioRad). Samples were shock 

frozen in liquid nitrogen and stored at -80 °C. 

 

Polysialyltransferase activity assay 

37.5 μg/ml mST8SiaIIΔ56 were incubated with 125 μg/ml NCAM produced in CHO 2A10 or 

insect cells, respectively, and 1 mM CMP-Neu5Ac in 10 mM MES buffer pH 6.5 containing 

10 mM MnCl2. 2A10 cells lack polysialyltransferase activity due to a mutation in the ST8SiaIV 

gene, and thus produce NCAM in an unpolysialylated form (Windfuhr et al., 2000). After three 

hours incubation, 0.05-0.1 μg/ml endoneuraminidase (EndoN) was added for specific 

degradation of polySia chains. To avoid competing re-building of the chains, this incubation step 
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was performed in Laemmli buffer under reducing conditions which inactivates mST8SiaII but 

not EndoN. Samples were applied to 10 % SDS-PAGE and western blotting with subsequent 

immunostaining of the membranes. 

The radioactive version of this assay has been described in Eggers (2006).  

 

Crystallisation 

Purified proteins were concentrated to 5 mg/ml or 10 mg/ml (ST8SiaII), or 10 mg/ml (NCAM), 

respectively, in 10 mM Tris-HCl buffer pH 7.5 containing 100 mM NaCl and were subjected to 

crystallisation trials performed as sitting drop vapour diffusion experiments in our laboratory and 

at the High Throughput Crystallisation facility of the European Molecular Biology Lab (EMBL) 

in Hamburg (Muller-Dieckmann, 2006). 

Prior to shock freezing the obtained crystals in liquid nitrogen, 15% ethylenglycole were 

successively added to the buffer as a cryoprotectant. 

 

Analytical ultracentrifugation 

Analytical ultracentrifugation experiments were performed with an An-50 Ti rotor in a Beckman 

Optima XL-A or a Beckman Coulter ProteomeLab XL-I analytical ultracentrifuge using the 

respective Beckman Coulter software for programming and data recording. Concentration 

profiles were measured at 280 nm using the centrifuge’s UV absorption scanning optics.  

Sedimentation velocity experiments were performed at 23,000-50,000 rpm in 3 or 12 mm double 

sector centrepieces filled with 100 µl or 400 µl, respectively, and obtained data were analysed 

using the SEDFIT program package providing a model for diffusion corrected differential 

sedimentation coefficient distributions (c(s) distributions) (Schuck et al., 2000). Measured s-

values were corrected to s20,W using the partial specific volumes calculated from amino acid 

composition (Durchschlag et al., 1986) 

Sedimentation equilibrium experiments were carried out in standard 3 or 12 mm double sector 

centrepieces filled with 40 µl or 150 µl sample, respectively, and the samples were centrifuged at 

12,000, 14,000, 18,000, 22,000, 25,000 and 28,000 rpm until no change in the concentration 

gradients could be observed for at least 12 h. Scans from these 12 h were averaged and molar 

masses were evaluated using BPCFIT software as described in Witte et al. (2005). 
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Results 

1. Production of recombinant ST8SiaII 
The restricted accessibility of recombinant polySTs is a major problem for their structural 

characterisation. The aim of this study was therefore to establish a robust protocol for the 

production of mammalian polySTs. Based on pioneering expression studies carried out by a 

previous doctorial student in the laboratory (Dr. Almut Günzel), murine ST8SiaII (mST8SiaII) 

was chosen as a model protein. Trials to express mST8SiaII in a bacterial system were 

unsuccessful as activity and soluble expression of the enzyme is dependant on correct disulfide 

bonds and the presence of N-glycosylation sites. In my diploma thesis (Eggers 2006), expression 

of murine ST8SiaII was tested in different eukaryotic expression systems. Since expression in 

CHO cells resulted in low protein yields, a production system was established using High Five 

and Sf9 insect cells in combination with a baculoviral system to express the murine enzyme 

lacking the first 56 amino acids and carrying an N-terminal hexa-histidine tag (6xHis-

mST8SiaIIΔ56). 

This part of my thesis was aimed at further optimising the described purification procedure to 

gain active and stable enzyme in reasonable amounts to start crystallisation trials and to provide 

material for further investigations of the polysialylation reaction.  

 

Determination of an enzymatically active mST8SiaII construct harbouring 

optimal features for recombinant expression in insect cells.  
Sialyltransferases are typical type II membrane proteins with a short cytoplasmic tail located at 

the N-terminus, a single transmembrane spanning region and a large catalytic domain facing the 

Golgi lumen (Harduin-Lepers et al., 2001). For production of the recombinant enzyme we 

intended the expression of the isolated catalytic domain. However, because it is known that the 

extend of truncation can impact protein expression, N-terminally truncated constructs of variable 

length were generated. The constructs with 72 and 56 amino acid deletions (mST8SiaIIΔ72 and 

mST8SiaIIΔ56) (see Fig. 1) were comparatively tested in this study. Furthermore, as protein 

crystallisation was an important goal in this study, attempts were undertaken to facilitate 

crystallisation by reducing conformational flexibility. Therefore, the number of N-glycosylation 

sites in the recombinant mST8SiaII variants were reduced to a minimum, since N-glycans were 

shown to potentially disturb crystallisation. As described in the introduction (Mühlenhoff et al., 

2001; Close et al., 2001) the N-glycan residing on the highly conserved 3rd N-glycosylation site 

(Asn89) is essential for activity and Asn219 (N-glycosylation site 5) and, to a lesser extend, Asn234 
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(N-glycosylation sites 6) support the functionality of the recombinant protein. Thus, two 

constructs containing only the above described N-glycosylation sites were generated by mutating 

the respective Asn residues to Gln (constructs mST8SiaIIΔ56(+3,5) and mST8SiaIIΔ56(+3,5,6); 

see Fig. 1). All constructs contained an N-terminal 6xHis tag (see Fig. 1). 

In preliminary experiments (diploma thesis Eggers 2006), affinity purification using Ni2+ 

chelating chromatography showed that efficiency and specificity in this first binding step was not 

always optimal. Therefore, a second aim of this study was to improve affinity purification by 

using alternative epitope tags allowing for usage of antibody based affinity chromatography. As 

shown in Fig. 1,  constructs containing a C-terminal myc epitope or an N-terminal protein A 

(protA) tag, respectively, were generated (mST8SiaIIΔ56-HRV3C-myc-6xHis and protA-6xHis-

HRV3C-mST8SiaIIΔ56), Both epitope tags are removable by usage of the HRV3C protease 

cleavage site, thus allowing elution of the enzyme by highly specific on-column cleavage. 

Furthermore, the protA tag was chosen to potentially improve solubility and expression level.  

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Schematic of ST8SiaII constructs. ψ: N-glycosylation site, TMD: transmembrane domain, PBR: polybasic 

region, PSTD: polysialyltransferase domain, L: sialylmotif L, S: sialylmotif S, III: sialylmotif III, VS: sialylmotif 

VS, blue: 6xHis tag, red: protA tag, yellow: HRV3C protease cleavage site, green: myc tag, N-glycosylation sites 

crucial for activity are marked by asterisks. 
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All constructs were cloned into a pFastBac vector containing a honey bee mellitin (HBM) 

secretion signal and were transformed into E. coli DH10Bac to obtain a transposition of the gene 

of interest into the contained bacmid for the generation of baculovirus. The bacmid DNA was 

purified and transfected into Sf9 cells for generation of a low-titer virus stock. The high-titer 

virus stock was generated by two amplification steps in freshly seeded cells. For optimisation of 

expression conditions, a test expression was performed using different dilutions of the viral stock 

and different harvesting time points. To detect recombinant proteins, which were secreted by use 

of the HBM signal, cell culture supernatants were analysed by Western blotting before and after 

20-fold concentration by protein precipitation.  

The test expression shown in Fig. 2 clearly demonstrated that depletion of N-glycan attachment 

sites in mST8SiaII resulted in a considerable reduction of protein expression. While 

mST8SiaIIΔ56 was readily detectable already after 24h in the supernatant of transfected cells, all 

variants with reduced N-glycosylation sites were only detectable after 20-fold concentration. 

Notably, the expression level of the more intensely truncated variant mST8SiaIIΔ72 was low 

compared to mST8SiaIIΔ56. However, as this construct lacks the first two N-glycosylation sites, 

reduction of protein expression may also be due to incomplete N-glycosylation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2: Test expression of mST8SiaII truncation and glycosylation mutants. Sf9 cells were infected with varying 

dilutions of a P3 baculoviral stock, and cell culture supernatants were harvested at varying time points, as indicated. 

Samples were analysed before and after 20-fold concentration by TCA precipitation on a 10% SDS-PAGE followed 

by Western blotting. Blot membranes were immunostained with anti 5xHis antibody. hpi, hours post infection 

Typically, migration of glycoproteins in SDS-PAGE is shifted to higher molecular weights by 3 

kDa per occupied N-glycosylation site. Accordingly, all protein bands appear at a higher 
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molecular weight as expected from the amino acid sequence (Fig. 1). This effect increases with 

the number of N-glycosylation sites present (Fig. 2). 

Due to the impressive differences in expression levels, mST8SiaIIΔ56 was used for further 

optimisation in all following studies. 

 

To evaluate the suitability of alternative tag sequences, the constructs mST8SiaIIΔ56-HRV3C-

myc-6xHis and protA-6xHis-HRV3C-mST8SiaIIΔ56 (Fig. 1) were expressed in insect cells as 

described above and cell culture supernatants were analysed by western blotting. For the myc 

tagged variant mST8SiaIIΔ56-HRV3C-myc-6xHis, no protein could be detected in two 

independant experiments starting from the generation of baculovirus (data not shown). In 

contrast, the construct containing a cleavable protA-6xHis tag (protA-6xHis-HRV3C-

mST8SiaIIΔ56) was well expressed and appeared as a double band at ~60 kDa. Since the 

expression level was comparable to that of the respective non-cleavable 6xHis tagged construct 

(6xHis-mST8SiaIIΔ56), protA-6xHis-HRV3C-mST8SiaIIΔ56 seemed a suited candidate for the 

development of an alternative purification procedure.  

 
Fig. 3: Test expression of ProtA-6xHis-

HRV3C-mST8SiaIIΔ56.  Indicated dilutions 

of a P3 viral stock were used to infect Sf9 

cells. Cell culture supernatants were harvested 

at indicated time points and analysed on a 10% 

SDS-PAGE followed by western blotting and 

immunostaining with anti 5xHis antibody. 

Supernatants were analysed before or after 20x 

concentration by TCA precipitation. (hpi: 

hours post infection) 

 

Thus, purification trials for protA-6xHis-HRV3C-mST8SiaIIΔ56 were performed. The enzyme 

was expressed using the optimised conditions, and extracted with IgG-sepharose beads. 

Subsequently, release of the enzyme was performed by HRV3C protease cleavage and beads and 

supernatants were analysed in parallel by SDS-PAGE and coomassie staining or by western 

blotting, using anti-protA and anti-5xHis antibodies (the latter recognising the 6xHis tagged 

HRV3C protease and the tag released from protA-6xHis-HRV3C-mST8SiaIIΔ56). Results are 

shown in Fig. 4 and demonstrate that more than 50% of the protein could be cleaved by this 

procedure. However, it is remarkable that despite of efficient cleavage, only a minor portion of 
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the expressed protein was eluted, since again, more than 50% of the cleaved protein adhered 

unspecifically to the beads.  

As the activity of polySTs depends on the presence of divalent cations, we speculated that the 

EDTA contained in the protease buffer may have a negative influence on the conformation of 

mST8SiaII and thus promote adherence to the beads. The experiment was therefore repeated in 

the absence of EDTA. Moreover, sodium chloride concentrations were increased in the washing 

buffer to overcome non-specific protein interactions. However, considerable improvement of the 

purification could not be achieved. Since despite of high expression levels only a minor portion 

of the recombinant protein could be isolated, the construct 6xHis-mST8SiaIIΔ56 was used in 

subsequent experiments.  

 

 
Fig. 4: Purification trials for ProtA-HRV3C-mST8SiaIIΔ56.  300 ml of Sf9 cells were infected with a P3 viral 

stock at a 1:250 dilution. Cell culture supernatants were harvested 72 h post infection, and protA tagged proteins 

were extracted with  IgG sepharose. To release ST8SiaIIΔ56 from the fusion tag, beads were treated with HRV3C 

and after an incubation time of 13 h, released (sn) and bead-bound (b) protein fractions were analysed by coomassie 

stained 15% SDS-PAGE and by western blot using mouse IgG (anti protA) and anti 5xHis antibody.  

 

Simultaneous expression of mST8SiaIIΔ56 and NCAM Ig1-FN2 

Glycosyltransferases are typically expressed at very low level inside the mammalian cell and 

although expression of soluble proteins variants may improve protein yields, the large scale 

expression of glycosyltransferases remains a challenge (Kleene and Berger, 1993; Malissard et 

al., 1999). Assuming that this restriction might be overcome if the nascent glycosyltransferase 

could form an enzyme-acceptor complex, an expression system for the co-expression of 

mST8SiaII with its interaction partner NCAM was established. Therefore, both 6xHis-

mST8SiaIIΔ56  and a construct termed NCAM Ig1-FN2, which represents the N-terminally 

6xHis tagged ectodomain of NCAM (for more details see page 42) were subcloned into the 
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vector pFastBacDual, which allows the simultaneous expression of two proteins under the 

control of two independant late promoters, namely the p10 and the polyhedrin promoter. 

Baculovirus particles were produced as described and used for transfection of Sf9 cells. The 

expression of pFastBacDual*6xHis-mST8SiaIIΔ56*6xHis-NCAM Ig1-FN2* resulted in the 

production of two proteins displaying the expected sizes (Fig. 5). However, if compared to 

samples expressing the single proteins, expression levels were not increased. Nevertheless, with 

the availability of this system new possibilities arise for the intended studies on NCAM-polyST 

interactions. 

 

 

 

 

 

 

 

 
Fig. 5: Test expression of pFastBacDual*6xHis-mST8SiaIIΔ56*6xHis-NCAM Ig1-FN2*.  Cell culture 

supernatants were applied to 10% SDS-PAGE before or after 20-fold concentration by TCA precipitation and 

analysed by anti 5xHis staining after western blotting. 

 

 

Large-scale expression and purification of 6xHis-mST8SiaIIΔ56 
To obtain material for biochemical and structural investigations, 6xHis-mST8SiaIIΔ56 was 

expressed in a 4 l culture of Sf9 insect cells under optimised conditions as determined in the 

small-scale test expression. Secreted enzyme was bound to Ni2+ sepharose and subsequently 

eluted with a stepwise gradient of imidazole. Size-exclusion chromatography (SEC) was used for 

further purification of the protein and to determine the quarternary structure. Upon calibrating 

the column with protein standards, it could be concluded that the recombinant ST8SiaII elutes 

exclusively as a monomer (data not shown). 

Using this purification strategy, 250-500 mg of pure protein were obtained per litre cell culture, 

serving as the fundament for further characterisation of the enzyme. 
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Fig. 6: Purification of 6xHis-mST8SiaIIΔ56. A, Elution profile of Ni2+ chelating chromatography. Absorbance at 

280 nm representing protein concentration is depicted in blue, while the imidazole concentration is depicted in 

green. Fractions that were analysed in SDS-PAGE are marked in red, fractions that were combined and used for 

further purification are shaded in gray. B, Elution profile of size-exclusion chromatography. C, Analysis of selected 

fractions on 10% SDS-PAGE followed by coomassie staining (upper panel) or western blotting followed by anti 

5xHis staining (lower panel).  

 

 

Activity testing of 6xHis-mST8SiaIIΔ56  
The activity of 6xHis-mST8SiaIIΔ56 in NCAM polysialylation and autopolysialylation has 

already been demonstrated in Eggers (2006) (Fig. 7A). Therefore, the enzyme was incubated 

with radiolabelled substrate CMP-[14C]Neu5Ac in the presence or absence of NCAM. Samples 

were applied to a SDS-PAGE, and radiolabelled products were visualised by autoradiography. 

The diffuse radioactive smear indicates activity of 6xHis-mST8SiaIIΔ56. Treatment of 

polysialylated samples with EndoN specifically removes polySia. However, because EndoN is 

not able to remove the proximal 5 – 7 sialic acid residues, former polySia-carriers can still be 

visualised by autoradiography. As shown in Fig. 7A, bands corresponding to the molecular 

weight of NCAM and ST8SiaII appeared in the gel, confirming that the proteins were 

polysialylated. Remarkably, autopolysialylation of the recombinant 6xHis-mST8SiaIIΔ56 was 

found to be high in the presence, but not in the absence of NCAM (Fig. 7A). 

When autopolysialylation of polySTs was first detected, Mühlenhoff et al. (1996b) showed that 

there are profound mechanistic differences between the process of autopolysialylation and 
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polysialylation of NCAM. With ST8SiaIV as a model the authors demonstrated that an initiating 

sialic acid residue at the non-reducing end of the polySia-acceptor glycans in NCAM was 

required for transfer of polySia. In marked contrast, a terminal galactose residue on polySia-

acceptor sites of the enzyme was sufficient to allow for autopolysialylation (Mühlenhoff et al., 

1996a). Given that insect cell produced proteins contain mostly paucimannosidic type N-glycans, 

NCAM derived from Sf9 cells was not expected to act as an acceptor for ST8SiaII. However, 

when performing the activity assay using insect cell derived NCAM Ig1-FN2 (see page 42) small 

amounts of polySia could be detected by monoclonal antibody 735 after western blotting (Fig. 

7B). These results imply that further analytical steps are needed to determine the structures that 

underlie these polysialylated proteins. 

 

 
Fig. 7: NCAM polysialylation and autopolysialylation activity of mST8SiaIIΔ56. A, Figure taken from Eggers 

(2006). mST8SiaIIΔ56 was incubated with radiolabelled substrate in the presence or absence of CHO cell derived 

NCAM. Synthesised polySia was specifically degraded by EndoN. Samples were analysed by 10% SDS-PAGE and 

products were visualised by autoradiography. B, polysialyltransferase assay performed with cold substrate. PolySia 

was detected with mAb 735 after western blotting. In addition to the CHO cell derived NCAM (mammalian), 

NCAM Ig1-FN2 produced in Sf9 cells (insect) was used as an acceptor.  

 

The purified enzyme appears to be very stable, since long-term storage at -80°C, even in 

presence of 80 mM imidazole, repeated thawing and re-freezing or storage at 4°C for three 

weeks did not notably change activity (data not shown). Moreover, and important in the light of 

the recent detection of SynCAM 1 as a novel polySia acceptor, the purified ST8SiaII was also 

able to polysialylate SynCAM 1 (Galuska et al., 2010; see chapter 4).  
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Crystallisation trials 
To gain further insights into the structure of ST8SiaII, crystallisation trials were performed at the 

High Throughput Crystallisation facility of the European Molecular Biology Lab (EMBL) in 

Hamburg. Approximately 1,000 buffer conditions were tested for ST8SiaII preparations at a 

concentration of 5 mg/ml or 10 mg/ml, respectively. Promising hits are depicted in Fig. 8, but 

conditions have to be further optimised to obtain crystals for X-ray diffraction. Since the 

structural studies require significantly more time investment, these are planned to be followed up 

in a future PhD study.  

 

 Buffer conditions 

 

JCSG F10: 
1.1 M sodium malonate pH 7.0 
0.1 M HEPES pH 7 
0.5% Jeffamine ED-2001 pH 7.0 
 
c (ST8SiaII) = 10 mg/ml 

 

Jena1-4 C6: 
100 mM MES sodium salt pH 6.5 
30% (w/v) PEG 4,000 
 
c (ST8SiaII) = 10 mg/ml 

 

Wizard C12: 
0.1 M Tris pH 7.0 
0.2 M MgCl2 
10% (w/v) PEG 8,000 
 
c (ST8SiaII) = 10 mg/ml 

 

Fig. 8: Crystallisation trials for 6xHis-mST8SiaIIΔ56. Pre-crystals were obtained for 10 mg/ml mST8SiaII 

solution in 10 mM Tris pH 7.5, 100 mM NaCl by sitting drop crystallisation at the EMBL Hamburg (left panel). The 

respective buffer conditions are depicted in the right panel. 
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2. Production of NCAM fragments 
To gain a deeper insight into NCAM function and to enable dissection of the roles of individual 

domains, a series of NCAM fragments as depicted in Fig. 9 were cloned and expressed in Sf9 

insect cells as described above. All constructs described here comprise N-terminal 6xHis tags. In 

addition, a C-terminally 6xHis tagged construct of NCAM Ig1-FN2 was generated (NCAM Ig1-

FN2-6xHis). The constructs’ names indicate the first and last domain of the NCAM fragments; 

internal domains are in the natural order without deletions. All constructs except NCAM Ig4-

FN1 were purified to a satisfying purity in good yields (see Fig. 9B). NCAM Ig1-Ig5 has so far 

been processed until test expression, so that only the large-scale purification of this fragment 

remains to complete the series of NCAM fragments. 

 
Fig. 9: Schematic of NCAM fragments (A) and analysis in SDS-

PAGE (B). Purified samples were applied to 10% SDS-PAGE and 

analysed after coomassie staining (upper panel) and western blotting 

followed by anti 5xHis staining (lower panel). (Ω: Ig domain, black 

boxes: FNIII like domain, sec: sec sequence). 

 

The produced fragments were used in co-crystallisation trials with mST8SiaII (NCAM Ig1-FN2, 

Ig5-FN1 and Ig4-FN1), crystallisation trials addressing NCAM homophilic binding 

(N-terminally and C-terminally 6xHis tagged NCAM Ig1-FN2 and NCAM Ig1-FN1sec) and 

oligomerisation studies using analytical ultracentrifugaion (NCAM Ig1-FN2, NCAM Ig3-FN2, 

NCAM Ig3-FN1 and NCAM Ig5-FN1), which will be described in detail in the following. 

Moreover, a series of these fragments was used in a study addressing polySia and NCAM 

signalling in the context of tumour biology (see Chapter 3).  
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Crystallisation trials 
Co-crystallisation with the polysialyltransferase ST8SiaII  
The fact that polysialylation is restricted to specific acceptor molecules led us to the assumption 

that protein-protein interactions are crucially involved in the recognition of the protein acceptors. 

Supporting this, intensive interactions between NCAM and ST8SiaIV have been demonstrated 

by Colley et al. in a pull-down assay (Colley, 2010). 

To gain deeper insight into this interaction, the co-crystallisation of ST8SiaII and NCAM was an 

aim of this study. Therefore, the minimally required acceptor domain of NCAM as proposed by 

Close et al. (2003) was generated (NCAM Ig5-FN1). However, studies by Nelson et al. (1995) 

and Fujimoto et al. (2001) suggest that Ig4 is not crucially required for, but might support 

NCAM recognition by the polySTs. Bearing in mind that binding of the polyST to the “minimal 

fragment” may be significantly reduced, also NCAM Ig4-FN1 and NCAM Ig1-FN2 were 

generated for use in co-crystallisation studies. 

The purification of NCAM Ig4-FN1 yielded small amounts of this fragment, containing a 

considerable amount of protein contaminants (see Fig. 9B). Thus, it can be used as a basis for 

further studies relying on robust and undemanding methods. However, to obtain protein for 

methods as demanding as crystallisation in terms of purity and material input, further 

optimisation remains to be performed. The fragments NCAM Ig1-FN2 and NCAM Ig5-FN1 

were purified with good yields and purity, allowing us to start the co-crystallisation trials (data 

not shown). 

 

Crystallisation of the NCAM ectodomain  
The nature of NCAM-NCAM homophilic interaction has been subject to intense and converse 

discussions (reviewed in Kiselyov et al., 2005). The prevailing model is based on the crystal 

structure of Ig1-Ig2-Ig3. However, it cannot be excluded that trans interactions take place that 

cannot be observed in this structure due to the severe truncation of the Ig1-Ig2-Ig3 fragment. The 

crystal structure of the entire ectodomain of NCAM would open possibilities towards a deeper 

understanding of these probably complex interactions. 

 

Purification of NCAM Ig1-FN2-6xHis for crystallisation trials 

The preparation of N-terminally 6xHis tagged NCAM Ig1-FN2 contained considerable amounts 

of degradation products (Fig. 9B), which were recognised by an anti 5xHis antibody, indicating 

the integrity of the tag and thus arguing for C-terminal degradation. Changing the position of the 
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6xHis tag from the N-terminus to the C-terminus was supposed to possibly interfere with 

C-terminal degradation and, furthermore, C-terminally degraded products would be left untagged 

and thus unable to bind to the Ni2+ column. On this basis, the C-terminally tagged NCAM 

Ig1-FN2-6xHis was generated with the intention to increase stability and purity of the protein.  

Indeed, after test expression the samples showed less degradation upon harvesting cell culture 

supernatants 72 h post infection (Fig. 10A). However, large-scale production reproduced the 

appearance of degradation products (Fig. 10B). 
 

 

 

 

 

 

 

 

 

 

 

Fig. 10: Testexpression (A) of NCAM Ig1-FN2-6xHis and purified protein sample (B). A, Cell culture 

supernatants were applied to 8% SDS-PAGE before (upper panel) or after 20x concentration by TCA precipitation 

(lower panel) and analysed by anti 5xHis staining after western blotting. B, After large-scale purification the 

purified sample was analysed by 8% SDS-PAGE followed by coomassie (upper panel) or anti 5xHis staining after 

western blotting (lower panel). 

 
Crystallisation of NCAM Ig1-FN1sec  

Another trial to obtain more stable protein was to express the naturally secreted variant of 

NCAM, NCAMsec, which consists of all 5 Ig domains followed by FN1 and the so called sec 

sequence (KNIAQNHCCNMFQAGLHNALMK). This construct was expected to be less prone 

to degradation due to its naturally occurring sequence. Additionally, structural studies on NCAM 

suggest another advantage of using NCAMsec in crystallisation studies. Becker et al. (1989) 

observed a bend in NCAM molecules when performing electron microscopy studies and 

proposed a flexible hinge region located between Ig5 and FN1. Studies by Johnson et al. further 

supported the existence of a hinge region (Johnson et al., 2005a; Johnson et al., 2005b). Based 

on the crystal structure of FN1-FN2, Carafoli et al. (2008) suggested the hinge region to be 

located between FN1 and FN2. If these data hold true, the construct NCAM Ig1-FN1sec would 

not only promise a higher homogeneity of the purified sample, but also lack the flexible hinge 

region, which might have a negative impact on crystallisation. The protein was purified with a 
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very good yield and a purity comparable to that of NCAM Ig1-FN2 (Fig. 9B). Crystallisation 

trials were carried out at the High Throughput Crystallisation facility of the EMBL Hamburg, 

testing ~1000 buffer conditions at a protein concentration of 10 mg/ml applying the sitting drop 

method. Promising results are shown in Fig. 11. 

 

 Buffer conditions  Buffer conditions 

 

Index G8 
0.1 M HEPES pH 7.0 
5% (v/v) tacsimate pH 7.0 
10% (w/v) PEG methyl 
ether 5,000 

 

MembFac G5 
0.1 M HEPES sodium salt 
pH 7.5 
0.1 M potassium sodium 
tartrate 
0.1 M Li2SO4 

 

Jena1-4 A12 
0.05 mM MgSO4 
0.2 M LiCl 
8% (w/v) PEG 8,000 

 

Natrix B6 
0.05 M Tris-HCl pH 7.5 
0.01 MgCl2 
5% (v/v) 2-propanol 

 

Jena1-4 B1 
0.1 M MES sodium salt 
pH 6.5 
15% (w/v) PEG 400 

 

Natrix H3 
0.05 M sodium cacodylate 
pH 6.5 
0.2 M ammonium acetate 
0.01 M CaCl2 
10% (w/v) PEG 4,000 

 
Fig. 11: Crystallisation trials for NCAM Ig1-FN1sec.  Depicted are the (pre-)crystals and the respective buffer 

conditions. 
 

 Buffer conditions  Buffer conditions 

 

Grid B1 
0.1 M citric acid pH 4.0 
5% (w/v) PEG 6,000 

 

Wizard A2 
0.1 M acetate pH 4.5 
1 M ammonium hydrogen 
phosphate 

 

J5-8 G3 
0.1 M Tris-HCl pH 8.5 
0.1 MgCl2 
17% (w/v) PEG 20,000 

 

Wizard B5 
0.1 imidazole pH 8.0 
1 M ammonium hydrogen 
phosphate 

 

Qia Classic B5 
0.1 M HEPES pH 7.5 
1 M sodium acetate 
0.05 M cadmium sulfate 

 

Wizard B8 
0.1 M Tris-HCl pH 8.5 
1 M ammonium hydrogen 
phosphate 

 
Fig. 12: Crystallisation trials for NCAM Ig1-FN2. Depicted are the (pre-)crystals and the respective buffer 

conditions. 

 

 



  Chapter 2 – Results 
   

 46

Crystallisation of NCAM Ig1-FN2 

Also for the N-terminally 6xHis tagged NCAM Ig1-FN2 (c = 10 mg/ml), ~1,000 buffer 

conditions were tested for crystallisation at the EMBL Hamburg. Promising results are depicted 

in Fig. 12. Two especially promising crystallisation conditions were further optimised in our lab 

by varying pH and precipitant concentrations (Fig. 13).  
 

 Buffer conditions  Buffer conditions 

 

Jena1-4 G4   
0.1 M Tris-HCl pH 8.5 
0.2 lithium sulfate 
16% (w/v) PEG 4,000 

 

Wizard B7 
0.1 M MES pH 6.0 
0.2 M lithium sulfate 
35% (v/v) MPD 

 

optimised condition 1 
0.1 M Tris-HCl pH 8.7 
10% PEG 4,000 
 

 

optimised condition 2 
0.07 M MES pH 6.5 
0.2 M Li2SO4 
25% MPD 

 
Fig. 13: Optimisation of crystallisation conditions for NCAM Ig1-FN2. Depicted are the (pre-)crystals and the 

respective buffer conditions. 

 

For the PEG conditions (Fig. 13, left panels), small crystals with a brownish colour were 

observed. For the MPD conditions (Fig. 13, right panels), bigger crystals of the same brownish 

colour were obtained with a maximal size of 200 μm, and successfully shock frozen in liquid 

nitrogen. 

A small crystal was dissolved and analysed on an SDS-PAGE (Fig. 14). Silver staining revealed 

two bands of much too small size (~30 and 35 kDa), demonstrating that the crystals did not 

consist of NCAM protein, but of a contamination which most probably derived from the insect 

cell medium. Crystals of this contamination have already been reported in Stummeyer 2004, and 

the fact that all protein preparations obtained in the course of this study contain small amounts of 

this easy-to-crystallise protein (see Fig. 6 and 9B), the urge for an efficient 

method to eliminate this contamination becomes clear. Analysing the 

35 kDa band using mass spectrometry did not reveal similarity to any 

known protein in a first trial. 
 

Fig. 14: Composition of crystals grown in optimised buffer condition 2. A small   

crystal was dissolved in 2x Laemmli buffer containing 5% β-mercaptoethanol and analysed 

by 10% SDS-PAGE followed by silver staining. 
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3. Oligomerisation studies 

NCAM Ig1-FN2 forms dimers in solution 
During purification of NCAM Ig1-FN2, an unexpected running behaviour in size-exclusion 

chromatography (SEC) was observed. Calculated by the retention time on the calibrated SEC 

column, NCAM Ig1-FN2 showed an oligomerisation status of 4.0, corresponding to a tetramer. 

To obtain further insights into NCAM homophilic oligomerisation, analytical ultracentrifugation 

(AUC) experiments were conducted.  

 

In a first experiment, the composition of the sample was analysed by observing the progressing 

sedimentation of all molecular species contained in the solution over time (sedimentation 

velocity experiment), and the concentration of the species was plotted against their sedimentation 

coefficient after normalising to 20°C and water as a solvent (corrected differential sedimentation 

coefficient distribution (c(s) distribution); Schuck et al., 2000) (Fig. 15A). The sedimentation 

coefficient of a particle is influenced by the size, mass and shape of the particle, thus providing 

information about the oligomerisation state, and is determined by its sedimentation velocity. 

First sedimentation velocity experiments for NCAM Ig1-FN2 showed that the protein sample 

was inhomogeneous, containing a high amount of species with high sedimentation coefficients 

(20-30% of the total protein mass, data not shown). This might be due to aggregation of 

degrading protein. The fact that frozen samples appeared clowdy after thawing and white 

precipitates were obtained after centrifugation is in line with this explanation. But also the 

formation of higher organised NCAM molecules building large clusters in solution cannot be 

excluded. Consequently, the samples were analysed at high rotor velocity (45,000 rpm) and the 

first measurements, obtained during sedimentation of higher organised species, were excluded 

from analysis in all further studies. 

 As shown in Fig. 15A, two peaks at 4.2 S and 5.1 S were obtained for NCAM Ig1-FN2. As the 

sedimentation coefficient is a combined measure for shape and size of a particle and the shape of 

NCAM molecules has not been unequivocally described, it is not possible to directly assign 

sedimentation coefficients and oligomer species. However, as the ratio between the two peaks 

changed with NCAM concentrations (Fig. 15A), it is very likely that this represents a change in 

the equilibrium between two oligomerisation states.  

To obtain further information about the shape and oligomeric state of NCAM molecules, 

different oligomeric compositions of the sample were assumed and the resulting frictional ratio 

was determined, providing information on the shape of a particle. For a hydrated spherical 
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protein, the frictional ratio is 1.1-1.2, whereas increasing deviation from this value argues for an 

increasingly asymmetric form and/or the presence of unstructured loops. 

Assuming that the major peak of NCAM Ig1-FN2 corresponds to a dimer, a frictional ratio of ~2 

is observed. This is an unusual high value, arguing for a highly asymmetric shape of 

NCAM Ig1-FN2. NCAM has been described as an elongated, rod-shaped molecule (Becker et 

al., 1989; Johnson et al., 2005a; Johnson et al., 2005b) and its consistently reported abnormal 

running behaviour in SDS-PAGE underlines the assumption that NCAM forms a unique 

asymmetric structure. Thus, the unusually high frictional ratio agrees perfectly with previous 

observations. 

Moreover, it should be noted that, assuming dimer a slow reaction for dimer formation, the 

major peak would represent a slower sedimenting reaction boundary instead of a pure dimer 

sedimentation boundary. In this case, the pure dimer would sediment faster than observed from 

this peak, leading to an elevated s20,w and a smaller frictional ratio. 

On the other hand, it cannot be excluded that the major peak corresponds to a monomer, while 

the smaller one arises from a ~42 kDa contaminant, which is visible in SDS-PAGE (Fig. 9). 

However, this would change the frictional ratio to 1.3, pointing to an almost globular shaped 

protein, which is not consistent with current observations. Furthermore, the changing ratio 

between the two peeks depending on protein concentration cannot be explained by this model. 

 

To further analyse the oligomeric state of the protein, sedimentation diffusion equilibrium 

experiments were performed applying different protein concentrations and rotor speeds 

(Fig. 16A), and data analysis was performed with the help of the programme BPCfit (Witte et 

al., 2005). A model using a single species was not sufficient to explain the experimental data 

(data not shown), while assuming two species resulted in good fits and yielded molecular 

weights of 62 kDa and 152 kDa, respectively. Data analysis using the programme Sedphat 

assuming a monomer/dimer equilibrium resulted in similarly good fits with a molecular weight 

of 80.9 kDa for the monomer (data not shown). This matches very well with the predicted weight 

of 77.65 kDa. 

In sum, the data obtained by analytical ultracentrifugation argue strongly for a monomer/dimer 

equilibrium of NCAM Ig1-FN2 in solution. 

 

As described above, the oligomerisation state obtained by SEC pointed towards the formation of 

tetramers, which does not correspond to the results obtained from AUC. However, in SEC, the 

elution time is not dependant on the mass of a protein but on its hydrodynamic radius (rH) with a 
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linear relation between elution and the negative logarithm of rH. Based on the frictional ratio 

obtained by AUC, rH should differ in a factor of about 1.6 from an rH expected for a spherical 

protein, thus, an apparent oligomerisation status of 8-9 would be expected to be observed by 

SEC. However, for molecules of this size, SEC is a very inexact method, and the fact that the 

column was calibrated with spherical proteins depending on molecular weight rather than on the 

hydrodynamic radius gives rise to further inaccuracies. 

Considering this, the results obtained by AUC appear to be compatible with dimer formation of 

NCAM Ig1-FN2.  

 

Fig. 15: Analysis of the oligomerisation state by sedimentation velocity experiments (analytical 

ultracentrifugation). Four different NCAM fragments were analysed at varying concentrations and c(s) 

distributions were obtained using the programme Sedfit (Schuck et al., 2000). 
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Fig. 16: Analysis of the oligomerisation state by sedimentation diffusion equilibrium experiment (analytical 

ultracentrifugation). Four different NCAM fragments (A, NCAM Ig1-FN2, B, NCAM Ig3-FN2, C, NCAM Ig3-

FN1, D, NCAM Ig5-FN1) were analysed at varying concentrations and rotor velocities as indicated. Calculated 

curves were obtained by use of the programme BPCfit (Witte et al., 2005). 

 

NCAM dimerisation depends on Ig1 and Ig2 and is influenced by the presence 

of FN2 
To analyse the underlying interactions of NCAM dimerisation, three further recombinant NCAM 

variants were analysed in AUC. Since the crystal structure of the first Ig domains of NCAM 

(Soroka et al., 2003) suggests the previously described interaction of Ig1 with Ig2 to be 

responsible for dimerisation (Jensen et al., 1999; Kasper et al., 2000; Atkins et al., 2004), a 

construct lacking Ig1 and Ig2, was generated (NCAM Ig3-FN2). The crystal structure and SEC 

experiments of FN1-FN2 (Carafoli et al., 2008) also suggest an influence of FN2 on 

dimerisation. To test this assumption, an NCAM construct additionally lacking FN2 was 

analysed (NCAM Ig3-FN1; see Fig. 9). As a control, NCAM Ig5-FN1 (see Fig. 9) was further 

included in this study.  
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NCAM Ig3-FN2 

In sedimentation velocity experiments, NCAM Ig3-FN2 turned out to be a homogeneous sample, 

which contained only one species (Fig. 15B) exhibiting an s20,w of 3.7 S. This corresponds to a 

frictional ratio of 1.47 for a monomer (assumed molecular weight: 56.06 kDa) indicating a less 

pronounced asymmetric form of the truncated protein when compared to NCAM Ig1-FN2. 

Also the analysis of the sedimentation diffusion equilibrium experiment argued for a monomeric 

state of the protein with a molecular weight of 65-75 kDa (Fig. 16B). The elevated apparent 

molecular weight might be caused by glycosylation which has not been considered in the above 

described calculations. 

In contrast to the clear presence of only one species in AUC, an equilibrium between monomeric 

and dimeric state was observed in SEC (Fig. 17), with the major portion being monomeric. Also 

for NCAM Ig1-FN2, a higher likelihood for oligomerisation has also been observed in SEC, 

where it elutes as a single peak most probably corresponding to a dimer (data not shown), while 

an equilibrium between monomers and dimers was observed in AUC. 

This is probably due to the significantly higher protein concentrations in the range of mg/ml in 

these SEC experiments when 

compared to the AUC studies.  

Thus, it can be concluded that 

deletion of Ig1 and Ig2 abolished 

dimerisation effeciently in AUC, but 

residual oligomerisation was observed 

in SEC, arguing for a contribution of 

further domains on the process of 

dimer formation. 

 

 
Fig. 17: Analysis of oligomerisation status 

of NCAM Ig3-FN2 by size-exclusion 

chromatography. Ni2+ affinity purified 

NCAM Ig3-FN2 was applied to a HiLoad 

16/60 Superdex 200 size-exclusion 

chromatography column. Fractions were 

analysed on a 10% SDS gel by coomassie 

staining (upper panel) and anti 5xHis staining 

following western blotting (lower panel). 
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NCAM Ig3-FN1 

NCAM Ig3-FN1 showed a single peak in the sedimentation experiment at 3.4 S (s20,w), 

corresponding to a frictional ratio of 1.45 (assumed molecular weight: 45.4 kDa), which is 

similar to that of NCAM Ig3-FN2 (Fig. 15C). Moreover, also the sedimentation diffusion 

equilibrium experiment argued for a solution containing only one species with a molecular 

weight of 55-60 kDa (Fig. 16C). In SEC, this NCAM variant eluted as a single peak, 

demonstrating that dimerisation was completely abolished by the additional deletion of FN2 

(data not shown). 

 

NCAM Ig5-FN1 

For NCAM Ig5-FN1, a sedimentation coefficient s20,w of 2.3 S corresponding to a frictional ratio 

of 1.37 for the monomer was obtained, suggesting a molecular weight of 25.5 kDa (Fig. 15D). In 

perfect agreement, the sedimentation diffusion equilibrium experiment argued for a monomeric 

species with a molecular weight of 25.5 kDa (Fig. 16D). 

Taken together, these data show that Ig1 and Ig2 are the major mediators of dimerisation, but 

that also FN2 has an impact on the stability of this interaction. 

 

 

Interactions between ST8SiaII and NCAM 
To gain deeper insight into NCAM-ST8SiaII interaction, complex formation was addressed in 

analytical ultracentrifugation studies.Therefore, NCAM Ig1-FN2 and mST8SiaIIΔ56 were 

investigated in sedimentation velocity experiments individually and in combination. The c(s) 

distribution (Fig. 18) revealed a single species for ST8SiaII, exhibiting an s20,w of 3.1 S 

(Fig. 18A). This leads to a frictional ratio of 1.3 for a monomer and 2.0 for a dimer, assuming a 

molecular weight of the enzyme of 39.0 kDa as calculated by the amino acid sequence. Since for 

ST8SiaII no gross deviations from a globular shape were expected, this confirms the finding 

from SEC that the enzyme exists in a monomeric state in solution. 

The molecular weight obtained by analysis of diffusion broadening of the sedimenting boundary 

is 40-45 kDa, which is slightly higher than the molecular weight calculated by the amino acid 

sequence. However, the fact that glycosylation has not been considered in analysis of the AUC 

data might again be the reason for the deviation of the obtained molecular weight. 

The investigation of ST8SiaII or NCAM alone resulted in single peaks. After combining the two 

protein samples, a shift of the peak exhibiting the higher sedimentation coefficient towards 

higher s-values would be expected upon complex formation (assuming a slow reaction). The 
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shifted peak would in this case represent the reaction boundary instead of the sedimentation 

boundary of the faster sedimenting species. 

Since no such shift could be observed and, importantly, the area beyond the peaks for the single 

proteins did not change considerably, this experiment demonstrated that no effective complex 

formation occurred, although unphysiologically high protein concentrations in the range of 2-

6 μM were used. This demonstrates, that the binding of ST8SiaII to its acceptor NCAM, both 

derived from insect cells, is a weak interaction, and cannot be detected at these protein 

concentrations.  

 

 
Fig. 18: Sedimentation velocity experiment for the investigation of complex formation between ST8SiaII and 

NCAM. mST8SiaIIΔ56 and NCAM Ig1-FN2 were analysed individually or in combination in sedimentation 

velocity experiments at concentrations of 6 μM and 2.8 μM, respectively. 
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Discussion 
 
Purification of recombinant ST8SiaII and initiation of crystallisation trials  
The structural characterisation of the polySTs is mainly hampered by the lack of recombinant 

protein. The need for correct glycosylation and disulfide bond formation trigger high demands 

on the expression system. In my diploma thesis (Eggers, 2006), I achieved the baculoviral 

mediated expression of polySTs in insect cells and implemented the system as a most promising 

system for a robust production of active ST8SiaII in reasonable yields. 

In my doctorial thesis I further optimised this production system. Therefore, several constructs 

were generated and tested for expression in Sf9 insect cells. Constructs differing in length and in 

the content of N-glycosylation sites were all expressed at low levels when compared to the fully 

N-glycosylated variant lacking 56 amino acids of the N-terminus used in Eggers (2006). This 

demonstrated the sensibility of the expression system and confirmed that interfering with 

N-glycosylation leads to low-level expression. 

A protein A (protA) tagged variant of mST8SiaII was efficiently expressed in insect cells and 

seemed to be a promising candidate for the establishment of an improved purification protocol, 

allowing for the use of antibody based affinity chromatography und highly specific release of the 

protein by on-column protease cleavage. However, only a minor portion of the expressed protein 

could be retrieved by purification due to unspecific adhesion to the matrix. 

Thus, the N-terminally 6xHis tagged Δ56 truncation of murine ST8SiaII was chosen to be used 

in all further studies. 

Assuming that acceptor binding of the nascent polyST might stabilise the enzyme and enhance 

expression levels, simultaneous expression of this construct with a soluble NCAM fragment 

comprising the complete ectodomain was conducted by use of the vector pFastBacDual. 

Although the expression level of the polyST was not considerable increased, this system is 

interesting for the investigation of interactions between the polySTs and NCAM. 

To gain material for biochemical and structural studies on the polyST, the purification procedure 

described in Eggers (2006) was further refined by addition of a size-exclusion chromatography 

step. The purified ST8SiaII showed to be active in terms of autopolysialylation and was able to 

transfer polySia onto NCAM and SynCAM 1. Unexpectedly, the protein showed to be very 

stable and allowed both long-term storage at -80°C and short-term storage at 4°C.  

This expression system enabled crystallisation trials for ST8SiaII, which provide information on 

promising buffer conditions as an ideal basis for future studies. 
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Polysialylation of insect cell derived glycans 
Terminal sialylation in α2,3- or α2,6-linkage showed to be a prerequisite for NCAM 

polysialylation (Mühlenhoff et al., 1996a). Since the major portion of insect cell derived 

N-glycans is paucimannosidic (reviewed in Marchal et al., 2001), insect cell produced NCAM 

was not expected to act as an acceptor for ST8SiaII. However, small amounts of polySia were 

detected in an in vitro assay. The possibility that sialylated complex-type glycan structures 

occasionally occur in insect cells is an issue of major debate (for review see Marchal et al. 2001). 

With the polysialylated NCAM-fraction obtained in this study, a new starting point has been set 

for the specific enrichment and detailed glycan analysis of the core structures underlying the 

polySia chains. Moreover, as it is known that polySTs are capable to synthesise polySia chains 

on asialo-core glycans in a process called autopolysialylation (Mühlenhoff et al., 1996b), it 

cannot be excluded that the biosynthesis of polySia chains on the insect cell expressed NCAM 

occurs in the same way. The detailed analysis of the polysialylated core structures (e.g. bei mass 

spectrometry) will shed light on these questions.  

 

Production of a library of NCAM fragments 
The nature of NCAM homo- and heterophilic interactions influencing cell adhesion and 

signalling has been subject of intensive discussion (reviewed in Kiselyov et al., 2005; Soroka et 

al., 2010; Hinsby et al., 2004; Ditlevsen et al., 2008 ). The NCAM library generated in the 

course of this project raises new opportunities to elucidate the functions of the individual 

domains and to gain structural data on NCAM homophilic interactions. Constructs were obtained 

as soluble proteins in high yields with good purity and can be applied to a variety of experiments 

(see also chapter 3). 

 

Initiation of NCAM crystallisation trials 
The crystallisation trials carried out with the full-length ectodomain of NCAM, NCAM Ig1-FN2, 

and the fragment representing the natural secreted form of NCAM, NCAM Ig1-FN1sec, provide 

information on a multiplicity of promising buffer conditions which might lead to the production 

of diffracting crystals upon further optimisation. For NCAM Ig1-FN2, two buffer conditions 

were selected and further optimised with respect to pH values and concentration of precipitating 

agents. In both settings, crystals were obtained exhibiting a brownish colour. Analysing the 

composition of the larger crystals (around 200 μm) on SDS-PAGE revealed two protein bands at 

~30 and ~35 kDa that did not correspond to the NCAM-fragments. Instead, the brownish 

coloured crystals contained a contamination most probably derived from the insect cell medium. 
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Similarly, small crystals of identical properties had already been reported by Stummeyer (2004). 

The repeated crystallisation of this contamination underlines that this is a major problem in 

growing crystals out of insect cell derived proteins. Given that in every purified sample produced 

during this project, variably prominent bands of this easy-to-crystallise protein can be observed, 

it becomes clear, that a major effort should be invested in clearing protein samples for 

crystallisation of this contamination. As subjecting the ~35 kDa protein to mass spectrometry did 

not reveal any similarity to known proteins, we were not able to further elucidate the nature of 

this contaminant. 

 

Studies on the structural domains involved in NCAM dimerisation 
Dimerisation of NCAM fragments was studied by analytical ultracentrifugation (AUC) and size-

exclusion chromatography (SEC). Thus, it could be demonstrated, that NCAM Ig1-FN2 exhibits 

an exclusively dimeric state in SEC, while a concentration dependant equilibrium between 

monomeric and dimeric state was observed in AUC at lower protein concentrations with the 

main fraction being in the dimeric state. Deletion of Ig1 and Ig2 turned the protein in an 

exclusively monomeric state in AUC, while at high protein concentrations in SEC an equilibrium 

was observed with the major fraction in the monomeric state. Further deletion of FN2 finally led 

to an exclusively monomeric protein. As expected, also the shorter fragment NCAM Ig5-FN1 is 

only observed as a monomer. These results point towards the importance of the previously 

described Ig1-Ig2 interaction (Atkins et al., 1999; Jensen et al., 1999; Kasper et al., 2000; 

Soroka et al., 2003; Atkins et al., 2004) for the dimerisation of this soluble NCAM fragment. 

However, also interaction mediated by FN2 as described by Carafoli et al. (2008) plays a role in 

dimerisation.  

This is in consistence with previously described data. Atkins et al. (1999) observed an 

equilibrium between monomers and dimers for a construct consisting of the two most N-terminal 

Ig domains (Ig1-Ig2) at a ratio of 12% to 88% in AUC experiments, and this equilibrium was 

also observed for Ig1-Ig2-Ig3 by Atkins et al. (2001). Furthermore, Ig1-Ig2 eluted as a dimer in 

SEC (Jensen et al., 1999). 

Supporting the role of the fibronectin III like domains, Carafoli et al. (2008) reported an 

equilibrium between monomers and dimers for a construct comprising FN1 and FN2 in SEC. In 

contrast, dimerisation of Ig5-FN1 was reported to occur upon removal, but not in the presence of 

N-glycosylation site 4. Interestingly, mutation of this N-glycosylation site also showed to impact 

oligomerisation of the soluble NCAM ectodomain (Foley et al., 2010a) 
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A reagent interfering with dimerisation could contribute to improved purification, helping to 

reduce contamination by degradation products, but would also represent an interesting tool to 

investigate the influence of cis dimerisation on trans interaction and the role of dimerisation in a 

physiological context. 

Performing AUC sedimentation velocity experiments with NCAM Ig1-FN2 with elevated salt 

concentrations turned the double peak of the monomer-dimer equilibrium into a single peak 

exhibiting a sedimentation coefficient exhibiting a value between those of the monomer and the 

dimer. However, SEC studies did not reveal any difference between low-salt and high-salt 

conditions (data not shown). Kulahin et al. (2005) demonstrated that the heparin binding site 

located on Ig2 overlaps with the binding site of Ig1 and that application of heparin interferes 

with binding of Ig1 to Ig2. A small chemical analogue to heparin, sucrose octasulfate (SOS), 

might thus be an attractive candidate to disrupt homophilic NCAM interactions leading to 

improved purification protocols. 

Moreover, this system should also allow to elucidate how different NCAM mimetic peptides 

(Berezin and Bock, 2004) impact the dimerisation. The peptides P1-B and P2, for example, are 

derived from the Ig1 and Ig2 interface and are suggested to disrupt this interaction. Also, a 

possible influence of plannexin and dennexin, two inhibitors of the respective zipper structures, 

should be tested. 

 

Interactions between NCAM and ST8SiaII 
Until now, only six natural polySia acceptors have been identified. In addition to NCAM, which 

is by far the most abundant acceptor for polySia, also the polySTs themselves 

(autopolysialylation) (Mühlenhoff et al., 1996b; Close et al., 2000), the α-subunit of the voltage-

dependant sodium channel (Zuber et al., 1992), a soluble fragment of the scavenger receptor CD 

36 found in human milk (Yabe et al., 2003), neuropilin-2 on dendritic cells (Curreli et al., 2007) 

and the synaptic cell adhesion molecule SynCAM 1 (Galuska et al., 2010) have been shown to 

be targets for polysialylation.  

With the aim to elucidate the mechanisms that determine this high selectivity, complex 

formation of ST8SiaII with NCAM was investigated in analytical ultracentrifugation (AUC). 

Although stable complex formation of ST8SiaIV in a pull-down assay has been observed by 

Colley and colleagues (Colley, 2010), no such binding could be detected for ST8SiaII and the 

soluble ectodomain of NCAM (NCAM Ig1-FN2) by AUC. An experiment carried out by Kojima 

et al. (1997) can potentially help to explain these different findings. By use of transfection 

experiments in Neuro2A cells the authors showed that ST8SiaII exhibits a high selectivity for 
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NCAM-180 and NCAM-140, while ST8SiaIV was able to polysialylate a variety of proteins, 

including all three NCAM isoforms. While this on the one hand might be a hint for a higher 

specificity of ST8SiaII caused by more frail acceptor binding, it should also be kept in mind that 

the N-terminal protein domains (cytoplasmic tail, TMD, stem region) missing in the in vitro 

experiment might help selecting the acceptor structure.  

Nevertheless, if the differential binding properties of the two polysialyltransferases can be 

confirmed, this would indicate different physiological roles and might lead to a new insight into 

the advantage of the existence of two seemingly redundant enzymes. 

However, this is so far speculation, since the experiments carried out by Colley and colleagues 

and in our laboratory are not comparable due to the unequal methods, demanding repetition of 

the AUC experiments with ST8SiaIV. Importantly, the different expression systems used in 

these studies might further be a reason for the contradictory results. It is possible that effective 

polysialyltransferase binding is dependant on complex N-glycosylation, which cannot be 

performed by insect cells. As already discussed, insect cell produced NCAM was thus not 

expected to act as an acceptor for the enzyme, and although polyST activity was unexpectedly 

detected, the amount of polysialylation was extremely low if compared to NCAM isolated from 

CHO cells. A likely explanation would be that the correct underlying core-structure of N-glycans 

are needed for polysialylation activity itself, but also a lack of NCAM binding would be an 

explanation for missing or reduced activity.  

Furthermore, it has been reported that the interaction of NCAM with L1 is carbohydrate-

dependant (Kadmon et al., 1990), underlining the possible role of glycans in protein binding. 

Thus, the AUC experiments need to be repeated with mammalian cell derived NCAM to 

investigate, if N-glycans play a role in the interaction with the polysialyltransferases. 

 

In sum, I was able to obtain material for structural and biochemical characterisation of ST8SiaII 

and NCAM and to thereby provide a basis for in depth studies on the interaction of these two 

reaction partners. Interestingly, the NCAM ectodomain was found to dimerise in solution and 

this interaction was shown to be mediated by the interaction of Ig1-Ig2 and by FN2 binding. 
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Preface 
In the course of this study, the influence of polySia-NCAM and in particular the dinstinct impact 

of these two players on cell migration and stimulation of focal adhesion was investigated. 

Thereby, NCAM was identified to be the pivotal actor in these events of cell regulation. 

Furthermore, the pathway leading to stimulation of focal adhesions was shown to depend on a so 

far unknown heterophilic NCAM receptor and the interaction site was shown to reside in Ig3 

and/or Ig4 of NCAM. Further, this pathway showed to be independent from FGF receptor 

activation and ERK 1/2 phosphorylation. My contribution to this work was to provide a series of 

NCAM fragments allowing for dissection of the distinct domains’ impact, and to perform assays 

addressing NCAM mediated ERK 1/2 phosphorylation and stimulation of focal adhesions. 
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Abstract 
The polysialic acid (polySia) modification of the neural cell adhesion molecule NCAM is a 

key regulator of cell migration. Yet its role for NCAM-dependent or NCAM-independent 

modulation of motility and cell-matrix adhesion is largely unresolved. Here, we 

demonstrate that loss of polySia attenuates tumour cell migration and augments the 

number of focal adhesions in a cell-cell contact- and NCAM-dependent manner. In the 

presence or absence of polySia, NCAM never co-localized with focal adhesions but was 

enriched at cell-cell contacts. Focal adhesion of polySia- and NCAM-negative cells was 

enhanced by incubation with soluble NCAM or by removing polySia from heterotypic 

contacts with polySia-NCAM-positive cells. Focal adhesion was compromised by the src-

family kinase inhibitor PP2, while loss of polySia or exposure to NCAM promoted the 

association of p59Fyn with the focal adhesion scaffolding protein paxillin. Unlike other 

NCAM responses, NCAM-induced focal adhesion was not prevented by inhibition of FGF 

receptor activity and could be evoked by NCAM lacking the first two immunoglobulin 

domains but neither by the NCAM fibronectin domains alone nor by an NCAM-derived 

peptide known to interact with and activate FGF receptors. Together, these data indicate 

that polySia regulates cell motility via NCAM-induced but FGF receptor-independent 

signalling to focal adhesions. 

 

Introduction 
The balanced regulation of cell-cell and cell-matrix adhesion is crucial for coordinated cell 

motility in development, while dysregulated adhesion is a hallmark of tumour progression 

(Christofori, 2003; Friedl and Wolf, 2010). The neural cell adhesion molecule NCAM, a 

recognition molecule of the immunoglobulin superfamily plays a pivotal role in cell-cell 

interactions, as studied mainly in nervous system development (Maness and Schachner, 2007), 

but also modulates matrix adhesion of tumour cells (Cavallaro et al., 2001). Alternative splicing 

generates three major NCAM isoforms (NCAM120, NCAM140 and NCAM180) (Cunningham 

et al., 1987). These differ in their transmembrane and intracellular domains, but have identical 

extracellular parts composed of five amino-terminal immunoglobulin-like domains (Ig1-Ig5) 

followed by two fibronectin type 3 modules (FnI, FnII), and therefore can interact with the same 

extracellular binding partners. Initially, NCAM was characterized to exert homophilic binding 

(Hoffman and Edelman, 1983), but later numerous heterophilic cis- and trans-interactions have 

been identified, e.g. with other CAMs of the immunoglobulin superfamily like TAG1 or L1, 

cellular prion protein, and ligands of the GDNF family and the 
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GDNF family receptor alpha-1, but also with heparan and chondroitin sulphate proteoglycans of 

the extracellular matrix through heparin-binding sites localized to the Ig2 domain of NCAM (for 

review, see Nielsen et al., 2010).  

 

The most studied extracellular interaction partners in terms of NCAM function, however, are 

members of the FGF receptor family (Maness and Schachner, 2007; Kiselyov, 2010). Activation 

of FGF receptors is mainly implicated in neurite outgrowth in response to homophilic NCAM 

trans-interactions (Saffell et al., 1997; Niethammer et al., 2002; Kiselyov et al., 2003), but also 

contributes to the cell-autonomous modulation of matrix adhesion by an NCAM-dependent 

signalling complex in pancreatic tumour cells (Cavallaro et al., 2001). More recently, FGF 

receptor-dependent promotion of cell migration was demonstrated by soluble NCAM applied to 

NCAM-negative cells (Francavilla et al., 2009). Other functions of NCAM as a signalling 

receptor are independent from interactions with FGF receptors. Activation of the src-family 

kinase Fyn and subsequent recruitment of the focal adhesion kinase (FAK) to NCAM140 

depends on lipid raft association of NCAM and complements FGF receptor signalling in 

neuritogenesis induced by homophilic NCAM interactions (Beggs et al., 1997; Niethammer et 

al., 2002). Similarly, translocation of NCAM from FGF receptor complexes to lipid rafts and 

activation of Fyn was observed after up-regulation of NCAM in response to a loss of E-cadherin, 

while knockdown of NCAM caused a loss of focal adhesion and enhanced migration of cells 

with a mesenchymal phenotype (Lehembre et al., 2008).  

 

Polysialic acid (polySia) is a major determinant of NCAM binding but also a general modulator 

of cell-cell interactions (Rutishauser, 2008; Hildebrandt et al., 2010). This unusual polymeric 

sugar can be added to N-glycosylation sites within the fifth Ig domain of NCAM by two 

polysialyltransferases, ST8SiaII (STX) and ST8SiaIV (PST), which exhibit a high specificity for 

the acceptor protein (Colley, 2010). PolySia, therefore, is confined to a small subset of proteins, 

with NCAM being by far the most abundant carrier of polySia in most mammalian cells (Colley, 

2010; Galuska et al., 2010; Hildebrandt et al., 2010). Although polySia is diminished in the 

majority of tissues during development, various tumours are known to re-express polySia on 

NCAM and high polySia levels have been correlated with malignant potential and poor 

prognosis of small cell lung carcinoma, neuroblastoma, glioblastoma, medulloblastoma, and 

rhabdomyosarcoma (Scheidegger et al., 1994; Figarella-Branger et al., 1996; Glüer et al., 1998a; 

Glüer et al., 1998b; Hildebrandt et al., 1998; Tanaka et al., 2000; Daniel et al., 2001; Amoureux 

et al., 2010). In the developing nervous system, polySia is crucially involved in the migration of 
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neuronal precursors (Ono et al., 1994; Hu et al., 1996; Chazal et al., 2000; Weinhold et al., 2005; 

Angata et al., 2007; Burgess et al., 2008) and modulates the responsiveness of oligodendrocyte 

precursor to chemotactic migration cues (Barral-Moran et al., 2003; Zhang et al., 2004; Glaser et 

al., 2007). In both settings, polySia seems to affect motility independent from specific functions 

of its protein carrier NCAM. Instead, polySia may act as a non-specific steric inhibitor of cell–

cell apposition or by modulation of chemotactic growth factor sensing. In pancreatic carcinoma 

cells, enhanced polysialylation of NCAM has been correlated with facilitated migration due to 

reduced E-cadherin-mediated cell-cell aggregation (Schreiber et al., 2008). So far, however, the 

impact of polySia on NCAM-induced or NCAM-independent modulation of motility and cell-

matrix interactions of tumour cells has not been directly addressed. Here, we demonstrate that 

loss of polysialic acid reduced migration of tumour cells and increased focal adhesion in a cell-

cell contact- and NCAM-dependent manner but independent from FGF receptor activity.  
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Materials and Methods 
Antibodies and reagents 

The following commercial reagents were used: FGF receptor inhibitor PD173074, Rho-

associated protein kinase inhibitor Y-27632, fluorescein isothiocyanate (FITC) -labelled 

phalloidin, goat IgG (all from Sigma-Aldrich, St Louis, MO), MFP647 Phalloidin (MoBiTec, 

Göttingen, Germany), src-family kinase inhibitor PP2 (Merck, Darmstadt, Germany ), MEK 

inhibitor PD98059 (Alexis, San Diego, CA), bovine fibronectin (Biomol, Hamburg, Germany), 

and heparinases I and III from Flavobacterium heparinum (Sigma-Aldrich). 

 

Mono- and polyclonal primary antibodies (mAb, pAb) were: anti-ERK1/2 rabbit pAb, anti-

dually phosphorylated ERK1/2 mouse mAb, clone E10 (New England Biolabs, Ipswich, MA), 

anti-fibronectin goat pAb, anti-fibronectin mouse mAb, clone FN-15, anti-SynCAM 1 rabbit 

pAb, (all from Sigma-Aldrich), anti SynCAM 1 chicken mAb 3E1 (MBL, Woburn, MA), anti-

FAK rabbit pAb, anti-Fyn rabbit pAb, anti-neuropilin2 rabbit pAb, anti-phospho-tyrosine mouse 

mAb, clone PY99 (all from Santa Cruz Biotechnology, Santa Cruz, CA), anti-paxillin mouse 

mAb, clone 394 (BD Biosciences, San Jose, CA), anti-polySia mouse mAb, clone 735 (IgG2a; 

Frosch et al., 1985), and anti-NCAM mouse mAb, clone 123C3 (IgG1), directed against a 

membrane-proximal region of NCAM comprising the first fibronectin type III module and 

reactive with all isoforms of human NCAM (Gerardy-Schahn and Eckhardt, 1994; kindly 

provided by R. Gerardy-Schahn).  

Endo-N-acetylneuraminidase F (endoNF) specifically degrading polySia was isolated as 

described (Stummeyer et al., 2005) and used in cell culture media at a concentration of 200 ng 

per ml to remove polySia from the cell surface. As a control for endoNF, the inactive double 

mutant endoNF-R596A/R647A, that binds to polySia but does not degrade it (Stummeyer et al., 

2005), was used in some of the experiments. Human IgG1-Fc fragments and secreted, polySia-

free NCAM-Fc chimera, consisting of the extracellular domain of human NCAM (amino acids 

1–705) fused to the constant (Fc) part of human IgG1, were produced as described (Röckle et al., 

2008) and used at a concentration of 1 μg/ml. Soluble NCAM extracellular domain fragments 

were produced as described below. C3d, a synthetic dendrimeric undeca peptide, which binds to 

the first Ig-like module of NCAM, its inactive variant C3d2ala (Ronn et al., 1999), and a dimeric 

form of the FGL peptide derived from the second fibronectin type III module of NCAM, which 

is capable of binding to and activating FGF receptors (Neiiendam et al., 2004), were kindly 

provided by E. Bock (Panum Institute, Copenhagen, Denmark).  
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Production of NCAM protein fragments 

NCAM fragments were PCR amplified from human NCAM-140 with the following primer 

pairs: 5’-GCAGGGATCCCTGCAGGTGGATATTG-3/5’-ATCGCGGCCGCCGAGGTCCTGA

ACAC-3’ (NCAM Ig1-Fn2), 5’-GATCGGCGCCATGAGAACCATCCAGGCCAGGCAG-3’/5’

-GTGGGAAGCTTTTAGGTCCTGAACAC-3’ (NCAM Ig3-Fn2), 5’-GATCGGCGCCATGAG

AACCATCCAGGCCAGGCAG-3’/5’-GTTAAAGCTTTTATGGCTGCGTCTTGAAC-3’ (NC

AM Ig3-Fn1), 5’-ACCGGATCCCAGGACTCCCAGTC-3’/5’-GTTAAAGCTTTTATGGCTGC

GTCTTGAAC-3’ (NCAM Ig5-Fn1), 5’-GATCGGCGCCGACACCCCCTCTTCACCAT-3’/5’-

CAACAATTGCATTCATTTTAT-3’ (NCAM Fn1-Fn2). The PCR products were cloned into a 

modified pFastBac HT A vector (Invitrogen, Paisley, UK) containing a Honey Bee Mellitin 

secretion signal and an N-terminal His-Tag using the following restriction sites: NotI/BamHI 

(NCAM Ig1-Fn2), BamHI/HindIII (NCAM Ig5-Fn1) and KasI/HindIII (NCAM Ig3-Fn2, NCAM 

Ig3-Fn1, NCAM Fn1-Fn2). The constructs code for the following NCAM protein fragments 

(according to UniProt 13596), none of them comprising the alternatively spliced VASE exon 

coding for10 amino acids in the fourth Ig-like domain of NCAM: NCAM Ig1-FnII: Ser19-Thr702; 

NCAM Ig3-FnII: Thr213-Thr702; NCAM Ig3-FnI: Thr213-Pro607; NCAM Ig5-FnI: Gln393-Pro607; 

NCAM FnI-FnII: Ala497-Thr702. Baculoviruses coding for the respective NCAM fragments were 

generated using the Bac-to-Bac® Baculovirus Expression System (Invitrogen) according to the 

manufacturer’s instructions. Sf9 insect cells were grown in suspension culture at a density of 0.5-

5x106 cells/ml in protein free Insect Xpress Medium (Lonza, Basel, Switzerland) at 70-90 rpm 

and 27°C. 1-4 l of Sf9 cell cultures were infected at a density of 1.7-2.0 cells/ml with P3 

baculoviral stock, cell culture supernatants were harvested 72 h post infection and secreted 

proteins were purified by Ni2+ chromatography using HisTrap columns (GE healthcare, Munich, 

Germany) followed by size-exclusion chromatography (Superdex 200 HR 10/300 GL or HiLoad 

16/60 Superdex 200; Amersham Biosciences, Freiburg, Germany) in 10 mM Tris-HCl buffer pH 

7.5, containing 100 mM NaCl. 

 

Tumor cells, culture and transfection 

The human neuroblastoma cell lines SH-SY5Y (ATCC-no. CRL-2266), Kelly (ECACC-no. 

92110411) and LS (Rudolph et al., 1991) and the rhabdomyosarcoma cell line TE-671 (ATCC-

no. CRL-7774) were used. SH-SY5YEGFP, stably transfected to express cytosolic EGFP and LS 

cell clones stably transfected to express either polySia-negative NCAM-140, (LSAM1), 

polysialylated NCAM-140 (LSAM1PST) or polysialylated NCAM-140 plus cytosolic EGFP 

LSAM1PSTegfp were generated as described previously (Seidenfaden et al., 2003; Seidenfaden et al., 
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2006). Cells were cultured at 37°C and 9% CO2 in DMEM-Ham's F12 medium containing 10% 

(v/v) heat-inactivated fetal bovine serum and 2mM glutamate (all from Biochrom, Berlin, 

Germany). Media were changed every two days and cells were re-plated before confluency.  

 

Cell migration 

Time-lapse videomicroscopy and measurements of single cell motility were performed as 

described elsewhere (Röckle et al., 2008). For 2D scratch wound migration assays, cells were 

grown to confluency in 35 mm Petri dishes (uncoated, if not stated otherwise). A plastic pipette 

tip was used to produce a scratch wound of approximately 10 mm length and 500 μm widths. 

Medium was replaced to remove dead cells and to apply reagents, as specified for each 

experiment. After acute cellular reactions at the wound edge had abated (time point t0) and 6 

hours later (time point t6) the entire scratch was documented using the MosaiX module of 

AxioVision software (see "Image acquisistion"). To assess the number of cells that invaded the 

cell free area a mask outlining the edges of the scratch at t0 was superimposed on the image of 

the same region at t6 using CorelDraw X3 software and the area newly covered by cells was 

determined using the thresholding and particle analyses tools of NIH ImageJ software.  

Immunoprecipitation and immunoblotting 

Immunoprecipitation of neuropilin-2 and SynCAM 1 was performed from cells lysed in 50 mM 

Tris-HCl, pH 7.4 containing 1% Triton X-100, 0.5% sodium deoxycholate, 150 mM NaCl, 5 

mM EDTA, 1 mM phenylmethylsulfonylfluoride (PMSF), 10 pg/ml leupeptin and 10 mg/ml 

aprotinin. After centrifugation at 20,000 x g (15 minutes, 4°C), supernatants were pre-cleared by 

incubation with normal IgG for 30 minutes and Protein G-Sepharose beads (GE-Healthcare, 

Freiburg, Germany) for 30 minutes followed by centrifugation at 9,000 x g. 1 μg of primary 

antibody was added to extracts containing 1 mg protein in a 1 ml volume. After overnight 

incubation at 4 °C with gentle inversion, immune complexes were recovered by incubation with 

15 μl bed volume of Protein G-Sepharose (4 hours, 4°C). Pellets were collected by centrifugation 

at 9,000 x g for 1 minute, washed 3 times with lysis buffer and reacted with 1 μg endoNF for 30 

minutes on ice, where indicated. Proteins were eluted in reducing SDS sample buffer and 

separated by 10% SDS polyacrylamide gel electrophoresis.  

 

Immunoprecipitation of Fyn and paxillin was conducted in the same way, but cells were lysed in 

Brij 96 lysis buffer consisting of 20 mM Tris-HCl, pH 7.4, 1% Brij 96, 150 mM NaCl, 10 mM 

NaF, 1 mM EDTA, 1 mM EGTA, 1 mM Na3VO4, 1 mM PMSF, 10 pg/ml leupeptin and 10 

mg/ml aprotinin. Protein A Sepharose was used with the mouse anti- paxillin mAb. 
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Immunoblotting and analysis of ERK1/2 mitogen activated protein (MAP) kinase or protein 

tyrosine phosphorylation was performed as described (Seidenfaden et al., 2003). Except for 

analyses of Fyn immunoprecipitation and detection of SynCAM 1, which were performed by 

enhanced chemiluminescence (ECL; Seidenfaden et al., 2003; Galuska et al., 2010), the Odyseey 

Infrared Imaging system (LI-COR Biosystems, Homburg, Germany) was used for semi-

quantitative evaluation. To assess ERK1/2 phosphorylation, cells were washed with ice-cold 

PBS and harvested with a cell scraper in ice-cold Brij 96 lysis buffer. After 10 minutes of 

incubation on ice the lysates were centrifuged at 20,000 x g (15 min, 4 °C) and supernatants were 

mixed with reducing electrophoresis buffer. 20 or 40 μg of protein were separated on 10% SDS 

polyacrylamide gels. After transfer to PVDF membranes, double-immunostaining was performed 

by combined incubation with rabbit anti-ERK and mouse anti-phospho ERK primary antibodies 

followed by IRDye 680- and 800-labelled secondary antibodies diluted in Odyssey Blocking 

Buffer according to the manufacturer's instructions. Signals were detected and quantified with 

the Odyssey Infrared Imaging System. If antibodies from different species were available, the 

presence of two antigens was assessed by double-immunolabelling and simultaneous detection 

with the Odyssey Infrared Imaging System, as described for the analysis of ERK 

phosphorylation. For further detection or application of a second primary antibody from the 

same species, antibodies were washed off with NewBlot Stripping Buffer (LI-COR Biosystems). 

Prior to re-probing, membranes were scanned to ensure complete antibody removal. 

 

Immunocytochemistry 

Immunostaining was performed as described before (Seidenfaden and Hildebrandt, 2001; Schiff 

et al., 2009). Briefly, cells were fixed with 4% paraformaldehyde (PFA) for 30 min, blocked 

with 2% bovine serum albumin, and incubated with primary antibodies overnight at 4°C. For 

detection of intracellular epitopes, cells were permeabilized with 0.1% Triton X-100. Rabbit and 

mouse IgG-specific and subtype-specific Cy3- (Chemicon, Temecula, CA), Alexa488-, 

Alexa568-, and Alexa647- (Molecular Probes/Invitrogen) conjugated antibodies and phalloidin 

conjugates were used as suggested by the suppliers. In double stained immunofluorescence 

samples, cross-reactivity of secondary antibodies was controlled by omitting either of the two 

primary antibodies. Cells were coverslipped in Vectashield mounting medium with 4',6'-

diamidino-2-phenylindole (DAPI; Vector Laboratories, Burlingame, CA). 
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Image acquisition, counting, and statistics 

Microscopy was performed using a Zeiss Axiovert 200 M equipped with an ApoTome device for 

near confocal imaging, AxioCam MRm digital camera and AxioVison software (Carl Zeiss 

Microimaging, Göttingen, Germany). For evaluation of scratch migration, high contrast bright 

field micrographs covering the entire area of the approximately 1 cm scratch wound were 

acquired using the MosaiX module. For co-localization studies, optical sections of 0.81 μm 

thickness were obtained using a 63x Plan-Apochromat oil immersion objective with 1.4 

numerical aperture (Zeiss).  

 

For evaluation of peripheral focal adhesions, stained cultures and micrographs were coded and 

randomized to ensure that the observer was blind to the experimental conditions. Per culture, a 

minimum of 30 micrographs were acquired at 63x magnification. Positions of frames were 

selected using only the channel for nuclear stain (DAPI) first, before the frame was adjusted to 

image the entire cell of interest using the channel for actin staining (FITC- or MFP647-

phalloidin). Typical peripheral focal adhesions were identified as sites of FAK 

immunofluorescence colocalized with actin staining and counted by visual inspection assisted by 

the interactive event counting tool of AxioVision software.  

 

Statistical analyses were performed using Graphpad Prism software. Differences between two 

groups were evaluated with Student’s t test (two-tailed). For more than two groups to compare, 

one way ANOVA with Newman-Keuls multiple comparison post hoc test (two-tailed) was 

applied.  
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Results 
PolySia enforces and NCAM inhibits cell-cell contact-dependent cell migration 

The role of polySia in migration of tumour cells was studied in vitro with 2D scratch wound 

assays. In a first approach, an EGFP transfected clone of the polySia- and NCAM-positive 

neuroblastoma cell line SH-SY5Y was used (SH-SY5YEGFP) (Seidenfaden et al., 2003). As 

illustrated in Fig. 1A, the number of cells populating the cell free area within 6 hours was 

significantly reduced in the presence of endo-N-acetylneuraminidase (endosialidase, endo), 

which reliably removes polySia from the surface of living cells (Seidenfaden et al., 2003; see 

also supplementary material Fig. S1). Image analyses revealed that significantly less new cell 

clusters were detected in the scratched area (Fig. 1B), whereas the size of the newly arrived 

clusters was unaltered (Fig. 1C). In contrast to these results with cells that move in close contact 

with each other, we found that removal of polySia had no influence on the motility of single cells 

(Fig. 1D, and supplementary material Movie 1, Movie 2 and Fig. S2).  

 

 
Figure 1: PolySia removal attenuates migration 

in scratch wound assays with SH-SY5YEGFP cells.  

(A) Representative micrographs of SH-SY5YEGFP 

cells migrating into a scratch wound over a period 

of 6 hours in the absence (ctrl.) or presence of 200 

ng/ml endoneuraminidase (endo). Scale bar, 250 

μm. (B, C) Number and size of newly appearing cell 

clusters within the cell-free area of scratch wounds 

after 6 hours as shown in (A). (D) Velocity of 

solitary SH-SY5Y cells traced in low density 

cultures in the absence (ctrl.) or presence of 200 

ng/ml endoneuraminidase (endo) for variable 

periods during which the cell of interest had no 

contact with other cells. Average observation times 

(+/- standard error of the mean, SEM) were 363 +/- 

56 minutes and 364 +/- 54 minutes for the control or 

endo-treated group, respectively. Means +/- SEM 

from n= 4-7 independent experiments (B, C) or n = 

16 cells, each (D). n.s., not significant (P > 0.01), 

***, significant with P < 0.001, t-test. 
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As described before, SH-SY5Y cells express the two transmembrane isoforms of NCAM, 

NCAM140 and NCAM180, and the entire NCAM pool is polysialylated (Seidenfaden et al., 

2000; Seidenfaden and Hildebrandt, 2001). To corroborate that the effect of endo treatment was 

indeed caused by removal of polySia from NCAM, polysialylation of two recently identified 

alternative polySia acceptors, neuropilin-2 and SynCAM 1 (Curreli et al., 2007; Galuska et al., 

2010) was analysed. Affinity isolation revealed that both proteins were present in SH-SY5Y 

cells, but neither of them was immunopositive for polySia (supplementary material Fig. S3).  

 

Further scratch wounds assays were performed with non-transfected SH-SY5Y and other cell 

lines using image analysis of high contrast bright field images (see Materials and Methods for 

details and supplementary material Movie 3, Movie 4 and Fig. S4 for an example). Consistent 

with the results described above, a significant reduction of cells repopulating a scratch wounded, 

cell-free area indicated reduced migration after removing polySia from SH-SY5Y (Fig. 2A) as 

well as from Kelly (neuroblastoma) and TE671 (rhabdomyosarcoma, Fig. 2B), two other 

polySia- and NCAM-positive tumour cell lines (Seidenfaden et al., 2000). As with SH-

SY5YEGFP (Fig. 1), analyses were restricted to a 6 hour time window to avoid a major bias due to 

the slightly reduced cell proliferation in response to polySia removal or NCAM exposure 

(Seidenfaden et al., 2003).  

 

Asking whether changes in NCAM binding abilities may be responsible for reduced migration in 

response to endo treatment, we used the NCAM peptide ligand C3d (Ronn et al., 1999) and a 

non-polysialylated NCAM-Fc chimera to interfere with or to mimic interactions of polySia-free 

NCAM. C3d is known to bind to NCAM in the absence of polySia and thus prevents the 

formation of other NCAM contacts (Seidenfaden et al., 2003). In the presence of endo, i.e. after 

loss of polySia, C3d improved migration of SH-SY5Y cells (Fig. 2A). In contrast, C3d had no 

effect on migration if added to native, polySia-NCAM-positive SH-SY5Y (Fig. 2A) or LS 

neuroblastoma cells (Fig. 2C), which are negative for polySia- and NCAM (Seidenfaden et al., 

2003). Migration of LS cells, however, was attenuated by the addition of NCAM-Fc indicating 

that these cells respond to heterophilic NCAM contacts (Fig. 2C, see also supplementary 

material Movie 3, Movie 4 and Fig. S4). The assumed modulation of migration via polySia-

negative NCAM was substantiated by the observation that addition of C3d to two different 

NCAM140-expressing, polySia-negative LS clones significantly enhanced the repopulation of a 

scratch wound (Fig. 2D). Finally, reduced migration after endo treatment and its reversal by the 

C3d peptide was confirmed with LSAM1PST transfected to express polysialylated NCAM140 (Fig. 
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2E). Previous and current observations indicate that polysialylated NCAM as well as non-

polysialylated NCAM after endo treatment is concentrated at sites of cell-cell contact 

(Seidenfaden et al., 2003; see also Fig. 3D, E). This localization and the results from the scratch 

wound assays suggest that reduced migration after removal of polySia is due to enhanced 

NCAM-mediated cell-cell contacts.  

 

 
Figure 2: Reduced migration after polySia removal depends on NCAM. 

Scratch wound assays were performed with polySia-NCAM-positive SH-SY5Y or Kelly neuroblastoma or TE671 

rhabdomyosarcoma cells (A, B), polySia- and NCAM-negative LS neuroblastoma cells (C), LS cell transfectants 

expressing polySia-negative NCAM-140 (LSAM1, D), or polysialylated NCAM-140 (LSAM1PST, D). Repopulation of 

the cell-free area was analysed after 6 hours of incubation with either cell culture medium alone (ctrl.) or with 

medium containing 200 ng/ml endoneuraminidase (endo), 1 μM of the NCAM binding peptide C3d, or 1 μg/ml 

soluble NCAM-Fc (N.Fc) or Fc fragment, as indicated. Means +/- SEM from at least 6 (A, B, E) or 3 independent 

scratch wound assays (C, D). In A, C, and E (clone #1), one-way ANOVA indicated significant differences 

(P<0.001) and Newman-Keuls post test was applied. t-tests were performed in B, D, and E (clone #2). *, P < 0.05; 

**, P < 0.01 versus all other groups. 
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PolySia and NCAM modulate peripheral focal adhesions 

Cell migration requires the continuous formation and disassembly of adhesions to transmit 

motion generated by the actin cytoskeleton to the extracellular environment (Webb et al., 2002; 

Geiger et al., 2009; Parsons et al., 2010). We therefore analysed changes of actin-associated focal 

adhesions as a measure for altered cell-substrate adhesiveness and a potential cause of altered 

cell motility after endo treatment or exposure to soluble NCAM-Fc. The polySia-NCAM-

positive clone LSAM1PST and parental, polySia- and NCAM-negative LS cells appeared 

particularly suited for such analyses. These cells display a clearly discernible pattern of 

peripheral focal adhesions characterized as focal adhesion kinase (FAK) and paxillin 

immunoreactive spots located at the tip of actin fibres (see Fig. 3A,G for FAK and 

Supplementary Material, Fig. S5, for paxillin).  

 

Consistent with the data obtained by migration assays, LSAM1PST cells responded to endo 

treatment with a significant increase in the number of peripheral focal adhesions per cell (Fig. 

3A-C). Application of a mutant, enzymatically inactive variant of endo had no effect. Notably, 

the endo-induced increase was observed only in cells that were in contact with each other and 

not in isolated cells (Fig. 3C). Independent from the presence or absence of polySia, NCAM was 

enriched at cell-cell contacts and never co-localized with focal adhesions (Fig. 3D,E). 

Application of the C3d peptide, which interferes with NCAM binding, completely blocked the 

cellular response to the enzymatic removal of polySia by endo (Fig. 3F). The observation that 

NCAM-induced modulation of cell motility is tightly linked to altered focal adhesion was further 

substantiated by experiments with NCAM-negative LS cells. Both, isolated LS cells and LS cells 

in contact with each other, showed an increased focal adhesion upon exposure to soluble 

NCAM-Fc (Fig. 3G-I). Finally, mixed co-cultures of EGFP-transfected, polySia-NCAM-positive 

LSAM1PST cells (LSAM1PSTegfp) and NCAM-negative LS cells were treated with endo followed by 

an evaluation of focal adhesions of EGFP-negative LS cells in contact with EGFP-positive 

LSAM1PSTegfp, and vice versa (Fig. 3J-L). Under these conditions, focal adhesion was increased 

exclusively in NCAM-negative cells. This outcome provides direct evidence that unmasking 

NCAM by enzymatic removal of polySia instructs neighbouring cells to form more focal 

adhesions. Since these neighbouring cells do not need to express NCAM themselves to respond 

to the NCAM signal, focal adhesion must be induced by heterophilic NCAM binding. 
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Figure 3: Removal of polySia and trans-interacting NCAM enhance focal adhesion. 

(A, B) Detection of peripheral focal adhesions with FAK-specific antibody (red), actin staining with FITC-

phalloidin (green) and nuclear counterstain with DAPI (blue) in LS cell transfectants expressing polysialylated 

NCAM-140 (LSAM1PST). In (B), cells were incubated for 30 minutes with 200 ng/ml endoneuramindase (endo). (C) 

Evaluation of peripheral focal adhesions per cell in cultures incubated for 30 minutes with only cell culture medium 

(ctrl.) or medium containing 200 ng/ml of either active or mutated, inactive endo, as indicated. Cells in contact with 

other cells and isolated cells were evaluated separately. Per condition, a minimum of 30 cells were evaluated in each 

culture. Data represent means +/- SEM from 4-8 independent experiments for each condition. One-way ANOVA 

indicated significant differences (P<0.001) for cells in contact. ***, P < 0.001 versus all other groups (Newman-

Keuls post test); n.s., not significant (P > 0.01), t-test. 

 

(D, E) LSAM1PST cells immunolabelled for FAK (red), NCAM (green) and counterstained with DAPI (blue) under 

control conditions (D) and after treatment with 200 ng/ml endo for 30 minutes (E). Note enrichment of NCAM at 

cell-cell contact sites (arrows) and lack of co-localization with FAK-positive peripheral focal adhesions 

(arrowheads) under both conditions.  
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(F) Number of peripheral focal adhesions in LSAM1PST cells treated with 200 ng/ml inactive or active endo (ei, ea) in 

the presence of 1 μM of control peptide C3d2ala (C3d2A) or NCAM-binding peptide C3d (C3d). Means +/- SEM 

from 4 independent experiments, each. One-way ANOVA (P<0.01) with Newman-Keuls post test. **, P < 0.01 

versus all other groups.  

 

(G, H) Staining of focal adhesions (see A, B) in polySia- and NCAM-negative LS cells incubated for 30 minutes in 

the presence or absence of soluble NCAM-Fc (N.Fc). (I) Evaluation of peripheral focal adhesions in LS cells in 

contact and in isolated cells treated with 1 μg/ml soluble NCAM-Fc (N.Fc) or Fc fragment, as indicated. Means +/- 

SEM from 3-4 independent experiments, each. One-way ANOVA (P<0.01) with Newman-Keuls post test ('contact') 

or t-test ('isolated') was applied. ***, P < 0.001 versus all other groups (post test); **, P < 0.01 (t-test).  

 

(J, K) LS cells in contact with co-cultured polySia-NCAM-140- and EGFP-positive LSAM1PSTegfp (green) after 30 

minutes of incubation with 200 ng/ml inactive (J) or active endo (K). Immunolabelling of FAK (red) and actin 

staining with MFP647 Phalloidin (cyan). (L) Evaluation of peripheral focal adhesions in LSAM1PSTegfp contacting only 

LS cells and in LS cells with contact to at least one LSAM1PSTegfp after incubation with inactive or active endo (see J. 

K). Means +/- SEM from 4 independent experiments, each. n.s., not significant (P > 0.01); *, P < 0.05 (t-test). 

 

Scale bars: 20 μm (A-B, F-G, J-K), 10 μm (D-E). 

 

The data presented so far strongly argue that NCAM interactions at cell-cell contacts induce 

reduced cell motility by increased focal cell-substrate adhesion. This raises the question of which 

matrix components may be involved. When scratch wound migration assays were performed on 

standard cell culture plastic, LS cells efficiently organized a fibronectin-containing extracellular 

matrix (Fig. 4), which assembled independent from the presence or absence of additional 

fibronectin coating of the plastic surface (compare Fig. 4B and C). Cell-associated fibronectin 

did not co-localize with peripheral focal adhesions visualized by FAK immunoreactivity, but 

frequently aligned with FAK-positive streaks indicative of fibrillar adhesions (for review, see 

Parsons et al., 2010) (Fig. 4D-F). Consistent with the observation that substrate coating of plastic 

surfaces had no significant effects on the assembly of cell-associated fibronectin, only minor 

alterations in cell migration were seen in scratch wound assays that were performed on 

fibronectin-coated plates and further attenuation of migration could be achieved by the addition 

of NCAM-Fc in the case of NCAM-negative LS cells and by enzymatic polySia removal in the 

case of polySia-NCAM-positive LSAM1PST cells (Fig. 4G,H). Thus, exposure of polySia-free 

NCAM attenuates cell migration on fibronectin, but the segregation of fibronectin-containing 

adhesions and peripheral focal adhesions suggests a modulation of fibronectin-independent cell-

substrate interactions. 

NCAM interactions with heparin-like molecules are involved in neuronal cell-cell and cell 



                                                      Chapter 3 – Eggers et al. – Results 
   

 81

substrate adhesion (Cole et al., 1986; Cole and Glaser, 1986) and NCAM-induced inhibition of 

glioma cell motility is modulated by interference with heparin or heparan sulphate proteoglycan 

(HSPG) binding (Prag et al., 2002). Moreover, polySia promotes NCAM binding to HSPGs and 

these interactions are sensitive to digestion of heparan sulfates by combined heparinase I and III 

treatment (Storms and Rutishauser, 1998). Indeed, migration of the polySia-NCAM-positive 

LSAM1PST cells was significantly enhanced by application of heparinase I and III, but the same 

effect was observed with parental, polySia- and NCAM-negative LS cells (Fig. 4I,J). In addition, 

heparinase treatment prevented neither the inhibition of migration (Fig. 4I,J) nor the increase of 

focal adhesion after treatment with polySia-negative NCAM-Fc or in response to enzymatic 

removal of polySia, respectively (Fig. 4K,L). The migration promoting effects of heparinase, 

therefore, were not related to the altered migration and focal adhesion induced by NCAM 

application or polySia removal.  

 
Figure 4: Peripheral focal 

adhesions are not co-localized with 

fibronectin and neither fibronectin 

coating nor heparinase application 

prevents effects of polySia-

NCAM-related treatments. 

(A-C) Phase contrast image (A) and 

fibronectin staining (FN; B, C) of LS 

cells at the edge of a scratch wound. 

Cells were grown on uncoated (A, 

B) or fibronectin-coated plastic (2 

μg/cm2; C). (D-E) LS cells double 

labelled for FN (red, D) and FAK 

(green, E); merged image (F). Note 

the co-localization at fibrillar 

adhesions (arrows in D) but not at 

peripheral focal adhesions 

(arrowheads in F). Scale bars, 20 

µm.  

 

(G-J) Evaluation of scratch wound 

migration assays performed with LS 

(G, I) or LSAM1PST cells (H, J) on 

uncoated (ctrl.) or fibronectin-coated 

plastic (FN; 2 μg/cm2; G, H) or in 
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the presence or absence of freshly dissolved heparinase I and III (0.5 U/ml, each; I, J) combined with soluble 

NCAM-Fc (N.Fc; 1 μg/ml) or active endo (200 ng/ml), as indicated. Means +/- SEM from at least 3 independent 

assays, each (n = 3 in G, H; n = 3 for N.Fc or n = 6 for all other groups in I; n = 6 in J).  

 

(K, L) Number of peripheral focal adhesions in LS (K) or LSAM1PST cells (L) pre-treated for 2h with cell culture 

medium (control) or with medium containing freshly dissolved heparinase I and III (0.5 U/ml, each) before N.Fc (1 

μg/ml; K) or active endo (200 ng/ml; L) was added for 30 minutes, as indicated. Means +/- SEM from 4 (K) or 5 (L) 

independent experiments, respectively.  

 

In (G-L) one-way ANOVA (P < 0.01 in G, H, K; P < 0.001 in I, J, L) with Newman-Keuls post test was applied. 

***, P < 0.001; **, P < 0.01; *, P < 0.05; n.s., not significant for pair-wise comparisons, as indicated. 

 

PolySia-free NCAM promotes focal adhesion independent of FGF receptor activity 

The absence of NCAM from the sites of focal adhesion together with the promotion of focal 

adhesion by soluble NCAM implies that these effects are not caused by direct adhesive 

interactions of NCAM but are mediated by a cellular signalling cascade. Together with the 

dynamic modulation of the actin cytoskeleton, the src-family kinase Fyn and the focal adhesion 

scaffolding protein paxillin are well established determinants of focal adhesion turnover (Webb 

et al., 2002; Mitra et al., 2005; Schaller, 2010). To demonstrate that focal adhesions of LS cells 

depend on both components we used PP2 for pharmacological inhibition of Fyn and the Rho-

dependent protein kinase (ROCK) inhibitor Y27632 to disrupt actin fibre assembly. As expected, 

both treatments effectively reduced the number of focal adhesions in LS cells (Fig. 5A-D). 

Furthermore, co-immunoprecipitation experiments indicated the recruitment of Fyn to the focal 

adhesion scaffolding protein paxillin after treating LS cells with NCAM-Fc or LSAM1PST with 

endo (Fig. 5E,F).  

 

Engagement of ERK1/2 is on the one hand a hallmark of NCAM-induced signalling initiated by 

the loss of polySia (Seidenfaden et al., 2003; Seidenfaden et al., 2006) and triggered at least in 

part by activation of FGF receptors (Kolkova et al., 2000; Cavallaro et al., 2001; Niethammer et 

al., 2002; Francavilla et al., 2009). On the other hand, the ERK1/2 pathway is in intimate cross-

talk with the regulation of focal adhesion in a stimulus- and cell-type specific manner (for 

review, see Schwartz and Ginsberg, 2002; Huang et al., 2004; Mitra et al., 2005). We therefore 

wondered if the NCAM-induced increase of focal adhesion in LS cells depends on ERK1/2 and 

FGF receptor activity. Confirming previous findings, exposure of LS cells to soluble NCAM-Fc 

enhanced and pre-incubation with the MEK inhibitor PD98059 completely abolished the fraction 
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of dually phosphorylated, active ERK1/2 (Fig. 5G). Consistent with the observed tyrosine 

phosphorylation of Fyn associated with paxillin (Fig. 5E, lower panel) NCAM-Fc also induced 

an increase in tyrosine phosphorylation of Fyn immunoprecipitated from LS cell lysates (Fig. 

5H). Surprisingly, however, inhibition with PD98059 was not able to prevent this increase 

indicating that activation of ERK1/2 occurs either downstream or independent of Fyn 

phosphorylation (Fig. 5H).  

 
Figure 5: PolySia-free NCAM recruits Fyn to 

paxillin. 

(A) PP2 inhibits Fyn. Fyn was immunoprecipitated 

from lysates of LS cells incubated for 1 hour with 

medium containing 10 μM PP2 or solvent (DMSO) 

and analysed by Western blot (WB) with phospho-

tyrosine- (upper) or Fyn-specific antibodies (lower 

panel). (B) PP2 treated LS cells round up and loose 

focal adhesions. Immunofluorescent staining with 

FAK-specific antibody (red), actin staining with 

FITC-phalloidin (green) and nuclear counterstain 

with DAPI (blue). (C, D) Evaluation of peripheral 

focal adhesions in LS cells treated with medium 

containing PP2 (10 μM for 1 hour, C), ROCK 

inhibitor Y27632 (30 μM for 30 minutes, D) or 

solvent (s, DMSO for C, PBS for D). Means +/- SEM 

from 9 (C) or 3 (D) independent assays, each. ***, P 

< 0.001; **, P < 0.01 (t-test).  

 

(E, F) Immunoprecipitation (IP) of paxillin (pax) 

from lysates of LS or LSAM1PST incubated for 30 

minutes with cell culture medium (ctrl.) or medium 

containing 1 μg/ml of either NCAM-Fc (N.Fc) or Fc 

(E), or 200 ng/ml of either active or mutated, inactive 

endo (F), as indicated. IP fractions were analysed by 

Western blot (WB) for Fyn, paxillin, and phospho-

tyrosine (pY in E). Note the phospho-tyrosine band at 

the position of Fyn (E, arrow) migrating below the 

strong signal indicating tyrosine phosphorylated 

paxillin. This band is particularly prominent in the 

NCAM-Fc treated sample. Such a separate phospho-

tyrosine band could not be observed in the IP 
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fractions from LSAM1PST, most likely because the weak signal is overshadowed by the strong signal for tyrosine 

phosphorylated paxillin.  

(G, H) Western blot analysis of dually phosphorylated ERK (pERK) and total ERK protein in LS cell lysates (G) and 

tyrosine phosphorylation of Fyn immunoprecipitated from LS cells (H) pre-incubated for 1 hour with 50 μM 

PD98059 (+) or solvent (DMSO, -) followed by incubation with or without 1 μg/ml soluble NCAM-Fc for 30 

minutes, as indicated.  

 

Arrows in (A) and (E) indicate the position of Fyn, * denotes secondary antibody binding to the IP antibody. 

 

To address a possible involvement of FGF receptor activity in the up-regulation of focal 

adhesion after NCAM exposure or polySia removal we used PD173074, which specifically 

inhibits signalling of the FGF receptor, leaving other tyrosine kinases unaffected (Skaper et al., 

2000). Consistent with recent data by Francavilla et al. (2009) pre-incubation with PD173074 

inhibited the NCAM-Fc induced stimulation of ERK1/2 (Fig. 6A). In contrast, the same protocol 

of PD173074 pre-treatment was not able to prevent the increase of focal adhesion induced by 

NCAM-Fc (Fig. 6B). Along the same line, the previously described activation of ERK1/2 after 

polySia removal with endo (Seidenfaden et al., 2003), but not the increase of focal adhesion, was 

prevented by pre-incubation of LSAM1PST with PD173074 (Fig. 6C,D).  

 
Figure 6: NCAM exposure or 

polySia removal promotes focal 

adhesion independent from FGF 

receptor and ERK1/2 activation.  

(A, C) Western blot analyses of 

dually phosphorylated ERK (pERK) 

and total ERK protein in lysates of 

LS (A) or LSAM1PST cells (B) pre-

incubated for 1 hour with 5 μM 

PD173074 (+) or solvent (DMSO, -) 

followed by incubation with or 

without 1 μg/ml soluble NCAM-Fc for 10 minutes (A), or 200 ng/ml endo for 30 min (C), as indicated.  

 

(B, D) Evaluation of peripheral focal adhesions in LS cells pre-incubated for 1 hour with 5 μM PD173074 or solvent 

(DMSO) and 1 μg/ml Fc or NCAM-Fc for 10 min (B) or 200 ng/ml inactive or active endo (ei, ea) for 30 min (D), as 

indicated. Means +/- SEM from 5 independent assays, each. *, P < 0.05 (t-test).  

  

These results indicate that FGF receptor activity is involved in ERK1/2 activation but not in the 

modulation of focal adhesion in response to polySia removal or NCAM-induced signals. 
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According to the prevailing model, homophilic NCAM binding (in trans) involves the first two 

immunoglobulin domains (Ig1, Ig2) (Kiselyov, 2010) and activates FGF receptors by cis-

interactions involving the two fibronectin (Fn) modules of NCAM (Kiselyov et al., 2003; 

Christensen et al., 2006). Interestingly, peptides corresponding to sites in either FnI or FnII are 

able to bind to the FGF receptor and activate ERK1/2 (Kiselyov et al., 2003; Neiiendam et al., 

2004; Anderson et al., 2005; Jacobsen et al., 2008; Palser et al., 2009), whereas NCAM-Fc 

lacking the second Fn module failed to elicit various FGF receptor-dependent responses induced 

by NCAM-Fc containing the entire NCAM extracellular domain (Francavilla et al., 2007; 

Francavilla et al., 2009). To elucidate which of these NCAM modules are necessary for 

specifically stimulating focal adhesion in addition to ERK1/2, a number of different NCAM 

fragments were created (summarized in Fig. 7A). In addition to the entire NCAM extracellular 

domain (ecd) comprising the five Ig domains (Ig1-Ig5) and the two Fn modules (FnI and FnII), 

deletion constructs consisting of Ig3 through FnII (3-II), Ig3 through FnI (3-I), Ig5 and FnI (5-I) 

or FnI and FnII (I-II) were expressed in insect cells. Purified recombinant proteins were adjusted 

to approximately equimolar concentrations as evidenced by immunodetection with the NCAM 

specific antibody mAb 123C3, which maps to a region comprising FnI and therefore is able to 

bind to all fragments (Fig. 7A). In a first step, activity of NCAMecd was confirmed by dose 

dependent activation of ERK1/2 (Fig. 7B) before the other constructs were tested at 

concentrations of approximately 0.1 µM (corresponding to 10µg NCAMecd per ml; Fig. 7C). As 

summarized in Fig. 7D all NCAM fragments were equally able to activate ERK1/2. In stark 

contrast, only the fragments containing Ig3 through FnI but not those consisting of only FnI-FnII 

or Ig5-FnI induced an increase of focal adhesion (Fig. 7E). Thus, Ig1, Ig2 and FnII were 

dispensable for NCAM-induced activation of ERK1/2 and focal adhesion in NCAM-negative LS 

cells, while the Ig3-Ig4 region of NCAM is needed to trigger enhanced focal adhesion. On the 

one hand, this suggests that interactions with chondroitin or heparan sulphate containing 

proteoglycans via the heparin-binding domain in Ig2 were not involved, which is consistent with 

the inability of heparinase treatment to interfere with the effects of NCAM exposure or polySia 

removal (see Fig. 4I-L). On the other hand, the observation that FnI-FnII stimulated ERK1/2 but 

not focal adhesion is in perfect agreement with the assumption that enhanced focal adhesion in 

response to NCAM is not mediated by activation of FGF receptor and ERK1/2 signalling.  
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Figure 7: Some NCAM fragments activate ERK1/2 but fail to promote focal adhesion.  

(A) Imunoblot analysis of NCAMecd and other soluble NCAM fragments consisting of different Ig- and Fn-modules 

as indicated. Detection with mAb 123C3 mapping to a region comprising FnI. For each NCAM fragment, 

concentrations were adjusted to approximately 0.1 μM.  

 

(B) LS cells were incubated for 10 minutes with 10 μg/ml goat IgG or different concentrations of NCAMecd as 

indicated, lysed and analysed by immunoblotting with combined detection of phospho-ERK 1/2 (pERK) and total 

ERK 1/2 (ERK) using the LI-COR Odyssey imaging system.  

 

(C) LS cells were incubated for 10 minutes with 10 μg/ml goat IgG or 0.1 μM of the different NCAM fragments, as 

indicated. Immunodetection of pERK and ERK, as in (B). 

 

(D) Densitometric evaluation of pERK relative to ERK protein bands for the experiment described in (C). Since 

ERK1 and ERK2 were not always separated unambiguously, the respective bands were evaluated together. For each 

experiment, values were normalized to untreated controls. Values are means (+/- SEM) from 5-9 independent 

incubations for each of the NCAM fragments or IgG controls. ANOVA (P<0.01) with Newman-Keuls post test. **, 

P < 0.01, *, P < 0.05 versus IgG treated controls. 

 

(E) Evaluation of peripheral focal adhesions in LS cells incubated as described in (C). For each experiment, values 

were normalized to untreated controls. Values are means (+/- SEM) from 6-15 independent incubations for each of 

the NCAM fragments or IgG controls. ANOVA (P < 0.0001) with Newman-Keuls post test. ***, P < 0.001, **, P < 

0.01, *, P < 0.05 versus IgG treated controls or between experimental groups as indicated. 

 

NCAM-induced activation of FGF receptor and ERK1/2 signalling can be mimicked by a 

peptide comprising the FG loop region of the NCAM FnII module involved in FGF receptor 

binding (FGL; Kiselyov et al., 2003; Neiiendam et al., 2004; Francavilla et al., 2009). We 

therefore used this peptide to further dissect the effects of NCAM on focal adhesion and FGF 
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receptor signalling. A dose-dependent, saturating activation of ERK1/2 was achieved by FGL 

application (Fig. 8A,B) and in line with previous data (Neiiendam et al., 2004; Francavilla et al., 

2009) the FGL-induced ERK1/2 activation was efficiently prevented by pre-incubation with 

PD173074 (Fig. 8C). The capacity of FGL to promote focal adhesion of LS and LSAM1PST cells 

was tested in direct comparison with application of NCAMecd. Unlike NCAMecd, which 

promoted focal adhesion in both cell types, the application of FGL had no such effect (Fig. 

8D,E). In the absence of polySia-free NCAM, the NCAM-binding C3d peptide also had no effect 

on focal adhesion. These distinct activities indicate that FGL recapitulates FGFR-dependent 

functions of NCAM, but is unable to mimic NCAM-induced focal adhesion.  
 

Figure 8: ERK1/2 activation by 

the FGL peptide depends on FGF 

receptor activity but FGL fails to 

promote focal adhesion. 

(A, C) Western blot analyses of 

dually phosphorylated ERK (pERK) 

and total ERK protein in lysates of 

LS cells incubated with FGL peptide 

at the indicated concentrations (A) 

or pre-incubated for 1 hour with 5 

μM PD173074 (+) or solvent 

(DMSO, -) followed by incubation 

with or without 1 μg/ml FGL for 30 

minutes, as indicated (C). (B) 

Densitometric evaluation of pERK 

relative to ERK protein bands for 

the experiment shown in (A). Means 

(+/- SEM) from 3-4 independent incubations, each, normalized to untreated controls. ANOVA (P < 0.01) with 

Newman-Keuls post test. *, P < 0.05 versus controls.  

 

(D, E) Evaluation of peripheral focal adhesions in LS (D) or LSAM1PST cells (E) incubated with medium (ctrl.), 0.1 

μM NCAMecd (Necd), 1 μg/ml (0.3 µM) FGL or 0.3 μM C3d peptide for 30 minutes, as indicated. Means +/- SEM 

from 4 independent assays, each. ANOVA (P < 0.05 in D; P < 0.001 in E) with Newman-Keuls post test. **, P < 

0.01, *, P < 0.05 versus all other groups. 
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Discussion 
Numerous studies describe a close correlation of polySia-NCAM expression with increased 

tumour invasion and metastatic potential (Scheidegger et al., 1994; Figarella-Branger et al., 

1996; Figarella-Branger et al., 1996; Tanaka et al., 2000; Daniel et al., 2000; Daniel et al., 2001; 

Trouillas et al., 2003; Suzuki et al., 2005; Amoureux et al., 2010). In all these studies, a role of 

polySia in promoting tumour cell motility has been inferred from its long-known role in 

modulating adhesiveness and migration in the nervous system (Sadoul et al., 1983; Hoffman and 

Edelman, 1983; Ono et al., 1994; Wang et al., 1994; Hu et al., 1996; Chazal et al., 2000) but the 

NCAM-dependent or NCAM-independent modulation of tumour cell migration by polySia has 

been elusive. In the current study we demonstrate that migration of neuroblastoma and 

rhabdomyosarcoma cells in a 2D scratch assay is promoted by the presence of polySia. This 

outcome is not unexpected, since it has been shown before in similar scratch assays that 

migration of oligodendrocyte precursors is attenuated after removal of polySia (Barral-Moran et 

al., 2003) and that over-expression of polySia after transfection with ST8SiaII (STX) promotes 

migration of Schwann cells and embryonic stem cell-derived glial precursors (Lavdas et al., 

2006; Glaser et al., 2007). Surprising, however, are the findings that loss of polySia promotes 

focal adhesion in an NCAM-dependent manner although NCAM is enriched at cell-cell contacts 

and not localized to focal adhesions. The resulting implication is that removal of polySia 

promotes focal adhesion by initiating NCAM-induced cellular signalling. This is supported by 

the observed recruitment of phosphorylated Fyn to the focal adhesion scaffolding protein paxillin 

in response to polySia removal or application of polySia-negative NCAM. Together, these 

results suggest a novel role of polySia-regulated NCAM signalling in the crosstalk between cell-

cell and cell-matrix adhesion to control cell migration.  

 

Removing polySia from NCAM caused reduced migration and promoted focal adhesion only if 

cells were in contact with each other. Both effects were prevented by the NCAM-binding peptide 

C3d, a potent inhibitor of NCAM interactions (Ronn et al., 1999; Ronn et al., 2000; Kiryushko et 

al., 2003; Kiselyov et al., 2009), and could be recapitulated by exposing NCAM-negative cells to 

NCAM. Moreover, the loss of polySia from NCAM-positive cells enhanced focal adhesion of 

adjacent NCAM-negative cells. These data provide strong evidence that removal of polySia 

initiates interactions of NCAM as a heterophilic ligand at cell-cell contacts. This mechanism is 

on the one hand consistent with earlier studies showing that polySia controls instructive NCAM 

signals and that heterophilic NCAM interactions can direct the differentiation of NCAM-

negative neuroblastoma cells and of neural progenitors derived from NCAM-deficient mice 
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(Amoureux et al., 2000; Seidenfaden et al., 2003; Röckle et al., 2008). Along the same lines 

some of the phenotypic traits of mice with complete or partial ablation of polySia are not caused 

by the reduced amounts of polySia itself but depend strictly on the untimely appearance of 

polySia-negative NCAM (Weinhold et al., 2005; Hildebrandt et al., 2009).  

 

On the other hand, this mode of polySia-regulated cell motility differs clearly from the role of 

polySia as a permissive factor in neuronal migration. Streaming of interneuron precursors from 

the subventricular zone towards the olfactory bulb is disturbed by either ablation of polySia 

alone or by a loss of polySia due to NCAM deficiency (Ono et al., 1994; Hu et al., 1996; Chazal 

et al., 2000; Weinhold et al., 2005) and therefore has been attributed to the general anti-adhesive 

properties of polySia caused by steric inhibition of membrane-membrane apposition independent 

of NCAM-mediated interactions (Fujimoto et al., 2001; Rutishauser, 2008). In the context of 

tumour cell motility, the suggested mechanism that a loss of polySia causes NCAM to act as a 

ligand in trans also excludes, at least for the experimental setting of the current study where 

NCAM negative cells are effected, that polySia modulates the function of NCAM as a signalling 

receptor (Beggs et al., 1997; Kolkova et al., 2000; Niethammer et al., 2002; Hinsby et al., 2004; 

Bodrikov et al., 2005; Cassens et al., 2010; Kleene et al., 2010a; Kleene et al., 2010b). 

Moreover, the current data are neither compatible with a role of polySia in the assembly of an 

NCAM-dependent signalling complex or other cell-autonomous functions of NCAM (Cavallaro 

et al., 2001; Prag et al., 2002; Lehembre et al., 2008) nor with the assumption that polySia on 

either NCAM or neuropilin-2 modulates a cell's sensitivity towards chemotactic migration cues 

(Zhang et al., 2004; Glaser et al., 2007; Rey-Gallardo et al., 2010). Notably, constitutive 

shedding of soluble NCAM extracellular domain fragments was held responsible for enhanced 

migration of rat B35 neuroblastoma cells transfected with NCAM-140, whereas the inhibition of 

shedding reduced migration and increased attachment to fibronectin (Diestel et al., 2005). This 

raises the possibility that polySia removal affects migration and adhesion by modulating NCAM 

shedding. In this scenario, the concurrent effects of soluble NCAM and cell contact-dependent 

interactions after polySia removal would predict that loss of polySia increases cell surface 

NCAM by inhibition of shedding. There is, however, no reason to assume that NCAM shedding 

is facilitated by the presence of polySia and all data so far indicate that shed NCAM fragments 

are not polysialylated (Diestel et al., 2005; Hübschmann et al., 2005; Hinkle et al., 2006; Kalus 

et al., 2006).  

 

Unlike activation of the ERK MAP-kinase pathway, the stimulation of focal adhesion by 
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removal of polySia or exposure to polySia-negative NCAM was independent from FGF receptor 

activity and could not be achieved by the NCAM modules containing the sites that were 

identified to mediate FGF receptor interaction. This again was unexpected, because most of the 

previously described NCAM signalling functions depend on FGF receptor activation, either 

directly or via FGF receptor co-signalling (Kolkova et al., 2000; Cavallaro et al., 2001; 

Niethammer et al., 2002; Hinsby et al., 2004; Francavilla et al., 2009). Furthermore, a study on 

the role of NCAM in regulating the motility of glioma cells indicates a crucial function of the 

intracellular NCAM domain as well as the involvement of heterophilic interactions of the first 

two Ig modules with membrane associated heparansulfate proteoglycans (Prag et al., 2002). 

Heterophilic binding of NCAM to heparan sulphate proteoglycans is well-known (Cole and 

Akeson, 1989), but this binding is promoted by the presence of polySia (Storms and Rutishauser, 

1998), i.e., in contrast to the results of the current study, removal of polySia and NCAM 

exposure should have contrary effects. In fact, our results argue that the polySia-dependent 

effects observed in the current study are not caused by interactions of polySia or NCAM with 

glycosaminoglycans. First, the second Ig domain containing the heparin or chondroitin sulfate 

binding site of NCAM was dispensable for NCAM-induced focal adhesion. Second, heparinase 

treatment promotes migration per se, but interferes neither with the inhibition of migration nor 

with enhanced focal adhesion induced by NCAM-treatment or polySia-removal.  

 

In summary, polySia promotes tumour cell motility by acting as a negative regulator of NCAM-

induced but FGF receptor-independent signalling from cell-cell contacts to focal adhesions. The 

heterophilic NCAM interactions responsible for activating the cellular response initiated by a 

loss of polySia remain to be defined. Nevertheless, the proposed mechanism allows for several 

important predictions concerning future development and assessment of polySia- or NCAM-

directed tools aiming at a reduction of motility of the highly metastatic polySia-NCAM-positive 

tumours. First, attempts to reduce polySia levels should target the glycan itself without 

interfering with the expression of NCAM or with trans-interactions of polySia-free NCAM. 

Second, NCAM mimetic peptides targeted at FGF receptor interaction and activation are not 

likely to directly enhance cell-matrix adhesiveness but, as shown by others (Kiselyov et al., 

2003; Neiiendam et al., 2004; Francavilla et al., 2009) and confirmed in the current study, exert 

potent effects via activation of ERK MAP kinase signalling and possibly other pathways. Third, 

motifs contained within the Ig3 and Ig4 modules of the NCAM extracellular domain, but not the 

regions comprising Ig1 and Ig2 or Ig5 through FnII, appear to be crucially involved in the 

heterophilic trans-interactions that cause enhanced focal adhesion. Fourth, strategies to mimic 
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these heterophilic NCAM contacts seem to be as promising as approaches to prevent or abolish 

polysialylation. It remains a major challenge for future studies to define these interactions and to 

address the question on the role of polySia in regulating NCAM binding to FGF receptors. An 

anti-apoptotic effect of ERK activation in response to heterophilic NCAM interactions after 

polySia removal has been demonstrated before (Seidenfaden et al., 2003). Assuming that the 

underlying NCAM contacts correspond to those responsible for the FGF-receptor-mediated 

activation of ERK by applying NCAM-Fc or FGL peptide to NCAM-negative neuroblastoma 

(this study) or Hela cells (Francavilla et al., 2009) even raises the possibility to develop different 

NCAM mimetic peptides in order to dissect the survival promoting function of NCAM from its 

inhibitory effect on tumour cell motility due to the stimulation of focal adhesion.  
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Supplementary Material 
 

Supplementary Figure S1:  

Endoneuraminidase efficiently removes polySia. 

PolySia produced by LSAM1PST cells is associated 

with NCAM-140 and can be efficiently removed by 

active but not mutant endoneuraminidase (endoactive, 

endoinact.) applied to live cells for 30 minutes or 6 

hours as indicated. Per lane, 60 μg of cell lysate 

were applied and Western blots were 

simultaneously reacted with polySia-specific mAb 

735 (mouse IgG2a) and NCAM-specific mAb 

123C3 (mouse IgG1), followed by detection with sub-type specific secondary antibodies and Odyseey Infrared 

Imaging. Polysialylated NCAM is displayed as a diffuse high molecular weight smear hardly detectable with 

mAb123C3, whereas sharp bands at 140 kDa indicate non-polysialylated NCAM-140 (arrow). Efficient removal of 

polySia by active endo is indicated by the absence of polySia-specific bands. The lack of sharp bands at 140 kDa in 

controls and after treatment with inactive endo demonstrates that the entire pool of NCAM-140 is polysialylated in 

LSAM1PST cells.  

 

Supplementary Figure S2:  

Migration of single SH-SY5Y cells is not affected by polySia removal. 

(A, B) Selected frames from time lapse-recordings (available as supplementary 

Movie 1 and 2) of control (left column) and endo-treated SH-SY5Y cells (right 

column) seeded at low density to observe single cell migration. Images at 0, 2, 4, 

and 6 hours recording time and tracks of cell movements over 6 h are shown (C, 

D). After fixation, cultures were stained with polySia-specific mAb 735. 

Combined bright field and immunofluorescence images of representative cells are 

shown. Scale bars: 100 μm (A,B), 20 μm (C, D). 
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Supplementary Figure S3:  

SH-SY5Y cells express non-polysialylated 

neuropilin-2 and SynCAM 1. 

Immunoprecipitation (IP) of neuropilin-2 (A) or 

SynCAM 1 (B) from SH-SY5Y cell lysates and 

Western blot (WB) analyses of polySia and 

neuropilin-2 or SynCAM 1 immunoreactive bands.  

 

(A) IP and immunodetection of neuropilin-2 (NRP-

2) by Western blot with Odyssey Infrared Imaging. 

Cell lysate was split and treated with 

endoneuraminidase (endo) to remove polySia, 

where indicated. Lysate prior to IP (Pre-IP, 20 μg) 

and IP fractions were subjected to Western blot 

analysis. Detection with neuropilin-2 specific 

rabbit pAb yielded a doublet band lacking the 

characteristic shift after endo treatment, which 

would be indicative for the presence of polySia 

(Curreli et al., 2007). This is consistent with the 

absence of immunoreactive signals with polySia-specific mAb 735 at the position of the NRP-2 bands (right panel, 

arrows). Endo treatment abolished the immunoreactive band corresponding to the expected size of polysialylated 

NCAM in the cell lysates confirming removal of polySia. *, unspecific signal resulting from antibody used for IP. 

 

(B) Immunodetection of SynCAM 1 by Western blot and ECL using chicken anti-SynCAM 1 mAb 3E1. Cell lysates 

(60 μg) before, but not after IP (Pre- and Post-IP, respectively), as well as the IP fraction obtained with SynCAM-

specific rabbit pAb yielded an immunoreactive band centered at approximately 110 kDa (left panel). After stripping 

and re-probing with polySia-specific mAb 735, an immunoreactive band corresponding to the expected size of 

polysialylated NCAM was obtained with cell lysates. No polySia signals were detected in the IP fraction (right 

panel). Arrow, position of SynCAM 1 imunoreactive band. *, unspecific signal resulting from antibody used for IP.  
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Supplementary Figure S4: 

NCAM-Fc attenuates migration of 

LS neuroblastoma cells into a scratch 

wound. 

(A, B) Selected frames from time lapse-

recordings (available as supplementary 

Movie 3 and 4) of control (upper row) 

and NCAM-Fc treated LS cells (lower 

row) migrating into a scratch wound. 

Images at 0, 3, and 6 hours recording 

time are shown. Scale bar: 250 μm. 

Please note that time-lapse 

videomicroscopy was performed with cells maintained in a microscope stage incubation chamber (controlled for 

temperature and CO2). In contrast, all results summarized in Figs 1 and 2 were obtained with cells incubated under 

standard conditions during the 6 hours of treatment. 

 

 

 

 

 

 
 

Supplementary Figure S5: Focal adhesions of LS neuroblastoma cells. LS cells stained for FAK (red), paxillin 

(cyan), actin (green) and nuclear counterstain with DAPI (blue). FAK and paxillin co-localize at peripheral focal 

adhesions located at the tip of actin fibers. Scale bar: 10 μm.  

 

 



                                                                 Chapter 4 – Galuska et al. 
   

 103

 

 

 

 

Chapter 4 – Synaptic cell adhesion molecule SynCAM 1 is a 

target for polysialylation in postnatal mouse brain. 

 

 
 

 

 

 

- This manuscript has originally been published in the journal Proceedings of the National 

Academy of Sciences (PNAS). -  

 

 

Sebastian P. Galuskaa, Manuela Rollenhagenb, Moritz Kaupa, Katinka Eggersb, Imke Oltmann-

Nordenb, Miriam Schiffb, Maike Hartmannb, Birgit Weinholdb, Herbert Hildebrandtb, Rudolf 

Geyera, Martina Mühlenhoffb,1 and Hildegard Geyera,1 

 
a Institute of Biochemistry, Faculty of Medicine, University of Giessen, D-35392 Giessen, Germany 

 
b Institute of Cellular Chemistry, Hannover Medical School, D-30625 Hannover, Germany 

 
1 To whom correspondence should be addressed. E-mail: hildegard.geyer@biochemie.med. uni-giessen.de or 

muehlenhoff.martina@mh-hannover.de. 

 

Proceedings of the National Academy of Sciences, Volume 107, Issue 22, p.10250-10255, June 

1, 2010 

© 2010 by National Academy of Sciences, USA 



                                                                 Chapter 4 – Galuska et al. 
   

 104

Preface 
In the course of this study, SynCAM 1 was identified as a novel carrier for polysialic acid. 

PolySia on SynCAM 1 was shown to reside on Asn116 and to be restricted to SynCAM 1 on NG-

2 glial cells. SynCAM 1 was polysialylated by ST8SiaII and ST8SiaIV in vitro and 

polysialylation abolished homophilic binding. My contribution to this study was to provide 

recombinant ST8SiaII produced in insect cells and to contribute to ST8SiaIV production. 
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Among the large set of cell surface glycan structures, the carbohy-
drate polymer polysialic acid (polySia) plays an important role in
vertebrate brain development and synaptic plasticity. The main
carrier of polySia in the nervous system is the neural cell adhesion
molecule NCAM.As polySiawith chain lengths ofmore than 40 sialic
acid residues was still observed in brain of newborn Ncam−/− mice,
we performed a glycoproteomics approach to identify the underly-
ing protein scaffolds. Affinity purification of polysialylated mole-
cules from Ncam−/− brain followed by peptide mass fingerprinting
led to the identification of the synaptic cell adhesion molecule Syn-
CAM1 as a so far unknown polySia carrier. SynCAM1 belongs to the
Ig superfamily and is a powerful inducer of synapse formation. Im-
portantly, the appearance of polysialylated SynCAM 1 was not re-
stricted to the Ncam−/− background but was found to the same
extent in perinatal brain of WT mice. PolySia was located on N-
glycans of the first Ig domain, which is known to be involved in
homo- and heterophilic SynCAM 1 interactions. Both polysialyltrans-
ferases, ST8SiaII and ST8SiaIV, were able to polysialylate SynCAM 1
in vitro, and polysialylation of SynCAM 1 completely abolished ho-
mophilic binding. Analysis of serial sections of perinatal Ncam−/−

brain revealed that polySia-SynCAM 1 is expressed exclusively by
NG2 cells, a multifunctional glia population that can receive glutama-
tergic input via unique neuron-NG2 cell synapses. Our findings sug-
gest that polySia may act as a dynamic modulator of SynCAM 1 func-
tions during integration of NG2 cells into neural networks.

polysialic acid | NG2 cells | glycosylation | polysialyltransferases |
glycoproteomics

Glycosylation represents the most complex posttranslational
modification, with an overwhelming diversity of oligosac-

charide structures. Moreover, a single protein can be variably
glycosylated giving rise to multiple glycoforms with distinct bi-
ological functions. Unraveling the impact of glycosylation on the
structure and function of proteins is therefore often an arduous
task. A striking example for the capability of an individual glycan
structure to induce dramatic functional changes on the underlying
protein is polysialic acid (polySia). In vertebrates, this linear α2,8-
linked homopolymer of 5-N-acetylneuraminic acid (Neu5Ac) was
first described as a developmentally regulated modification of the
neural cell adhesion molecule (NCAM) (1–3). Polysialylation
disrupts the adhesive properties of NCAM and appearance of the
bulky polyanionic glycan on the cell surface generally increases
the intercellular space (4, 5). Thus, polySia is a modulator of cell
interactions involved in dynamic processes such as neural cell
migration, neurite outgrowth, neural path finding, and synaptic
plasticity (6–9). Although it is abundantly expressed during em-
bryonic and early postnatal brain development, polySia is re-
stricted to areas with ongoing neurogenesis and synaptic plasticity
in adult brain (10–12).
In mammals, polysialylation is catalyzed by the Golgi-resident

polysialyltransferases (polySTs) ST8SiaII and ST8SiaIV, and si-
multaneous ablation of both enzymes leads to a complete loss of
polySia (13, 14). In contrast to Ncam−/− mice, which still contain

residual amounts of polySia and manifest only a mild phenotype
(15), St8sia2−/−St8sia4−/− double KO mice are characterized by
postnatal lethality and severe malformations of major axon tracts
(14, 16, 17). Lethality and brain wiring defects could be attrib-
uted to erroneous exposure of polySia-free NCAM (14, 18),
highlighting the crucial role of polySia in masking the underlying
protein and thereby preventing improper interactions.
Although NCAM is by far the most abundant polySia carrier in

mammals, context-dependent polysialylation of a restricted set of
other glycoproteins has been described. These are CD36 in hu-
man milk, the α-subunit of a voltage-gated sodium channel in
adult rat brain, and neuropilin-2 in mature human dendritic cells
(19–21). Based on the observation that Ncam−/− brains still con-
tain low but clearly detectable amounts of polySia (ref. 15 and the
present study), we performed a glycoproteomic approach to
screen for respective polySia carriers. This led to the identifica-
tion of the synaptic cell adhesion molecule SynCAM 1 as a target
for polysialylation. SynCAM 1 is a member of the Ig superfamily
composed of three Ig modules comprising six potential N-
glycosylation sites, a variable stem region with several putative O-
glycosylation sites, a single transmembrane domain, and a short
carboxyl-terminal intracellular tail (22). Because of its identifi-
cation in different tissues, SynCAM 1 (official gene nameCadm1)
has various names: nectin-like protein 2 (Necl-2) (23), tumor
suppressor in lung cancer 1 (TSLC-1) (24), spermatogenic Ig su-
perfamily molecule (SgIGSF) (25), Ig superfamily 4 (IgSF4) (26),
and RA175 (27). SynCAM 1 contributes to a variety of inter-
cellular junctions by mediating Ca2+-independent cell adhesion
through homo- and heterophilic interactions (22, 23, 28–30). In
the brain, SynCAM 1 localizes to synapses, bridges the synaptic
cleft by homo- and heterophilic transinteraction with SynCAM 2,
and acts as a potent inducer of synapse formation (22, 31). Here
we demonstrate that, in vivo, a subfraction of SynCAM 1 is se-
lectively polysialylated at the third N-glycosylation site and
expressed by a subset of NG2 cells. In vitro polysialylation by ei-
ther ST8SiaII or ST8SiaIV completely abolished homophilic
SynCAM 1 binding, implying that polysialylation affects SynCAM
1 functions and may serve as a crucial modulator of SynCAM 1
interactions during integration of NG2 glia into neural networks.
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Results
Characterization of PolySia in Perinatal Brain of Ncam−/− Mice. By
immunostaining with an anti-polySia antibody, Cremer et al.
identified residual amounts of polySia in brain of Ncam−/− mice
(15). To analyze residual polySia, i.e., polymer length and total
amounts in more detail, we applied the 1,2-diamino-4,5-meth-
ylenedioxybenzene (DMB)–HPLC method (13, 32, 33) to whole
brain lysatesof newbornNcam−/−animals.ReleasedpolySia chains
werefluorescently labeledand separatedaccording to thedegreeof
polymerization by anion exchange chromatography. Although the
amount of all polymer species was drastically reduced compared
with WT samples, polySia with more than 40 residues was still
detectable in NCAM-deficient brain (Fig. 1 A and B). Quantifica-
tion revealed that brain of Ncam−/− mice contained only 3.5% of
the WT polySia level (Fig. 1C). Taking into account that visuali-
zation of long polySia chains strongly depends on the amount of
material applied (34), one might assume that polySia synthesized
in Ncam−/− and WT brain reaches similar chain lengths.

Identification of SynCAM 1 as PolySia Carrier in Developing Mouse
Brain. Polysialylated protein(s) in whole brain lysates of newborn
Ncam−/− mice were characterized by Western blotting applying
the tenfold amount of lysate compared with WT samples to com-

pensate for the low polySia level. In WT samples, immunostaining
with the polySia-specific mAb 735 revealed the typical broad
polySia-NCAM signal at approximately 250 kDa, which was
completely abolished after treatment with polySia-specific endo-
sialidase N (endoN; Fig. 2A). Reprobing with anti-NCAM mAb
H28 displayed a similar high molecular weight band which, after
endoN treatment, gave rise to two focused bands representing
the NCAM isoforms NCAM-140 and -180. In contrast, the
main endoN sensitive signal observed with mAb 735 in lysate of
Ncam−/− brain centered at approximately 110 kDa and no signal
was obtained with mAb H28. To identify the underlying protein
scaffold, polysialylated molecules were isolated from Ncam−/−

brain extracts by affinity chromatography using mAb 735. After
separation by SDS/PAGE, a gel slice spanning the molecular mass
range of 100 to 150 kDa was used for tryptic in-gel digest. Analysis
of the resulting peptides by peptide mass fingerprinting and mass
spectrometric fragmentation analysis resulted in the identification
of SynCAM1 with significant probability scores of 78 and 186 (P <
0.05), respectively (Fig. S1). To verify this result, polysialylated
proteins were affinity-isolated from Ncam−/− brain extracts and
characterized by Western blotting with an anti-SynCAM 1 anti-
body. As shown in Fig. 2B, a broad band with an apparent mo-
lecular mass of 100 to 120 kDa was observed. After endoN digest,
the signal broadened and bands with apparent molecular masses
ranging from 85 kDa to 110 kDa could be distinguished. The fact
that no discrete bands were formed is most likely because of the

Fig. 1. Chromatographic profiles of polySia from WT and NCAM KO mouse
brains. (A) Delipidated brain homogenates obtained from WT and NCAM KO
(Ncam−/−)mice (postnatal day 1)weredirectly derivatizedwith thefluorescence
dyeDMBand separatedonananion exchange columnaccording to thenumber
of sialic acid residues. In each case, 9% of the total brain homogenate (equiva-
lent to 7 mg of original brain tissue) was injected. To determine the maximally
detectable chain length, respective profiles were also generated with 86% ali-
quots (equivalent to 69 mg of brain tissue; Insets). The number of sialic acid
residues is given for selected peaks on top of the profiles. (B) The average
maximal chain lengthwas determined from four independent experiments and
amounted toapproximately 62andapproximately 44 forWTandNcam−/−mice,
respectively. (C) Peak areas corresponding to polySia chains with more than
eight sialic acid residues were calculated and summarized to obtain the total
amount of polySia in brains ofWT and Ncam−/−mice. Values are means of four
independent experiments andwere set to 100% forWT. The amount of polySia
in Ncam−/− brains comprised only approximately 3.5% of the WT value.

Fig. 2. Characterization of polysialylated proteins from WT and Ncam−/−

mouse brains by SDS/PAGE and Western blotting (WB). Apparent molec-
ular masses of standard proteins are indicated in kDa. (A) Brain homoge-
nates of WT and Ncam−/− mice were separated by 10% SDS/PAGE using 4
μg (WT) or 40 μg (Ncam−/−) protein per lane with or without prior endoN
pretreatment and immunostained using anti-polySia mAb 735 or anti-
NCAM mAb H28. (B) PolySia proteins of Ncam−/− mice were immu-
noaffinity purified (IP) using mAb 735, separated by SDS/PAGE, blotted,
and stained with rabbit polyclonal anti-SynCAM 1 antibody before and
after endoN treatment. (C ) Equal amounts of brain lysates (60 mg wet
weight each) of newborn WT and Ncam−/− mice were used for immuno-
precipitation with polyclonal anti-SynCAM 1 antibody. Immunoprecipi-
tates were analyzed before and after endoN treatment by Western blot
analysis with anti-polySia mAb 735.
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described heterogeneous glycosylation of SynCAM 1 by N- and
O-glycans and/or the presence of different isoforms (35, 36). In
a second experiment, SynCAM 1 immunoprecipitated with an
anti-SynCAM 1 antibody was analyzed by immunoblotting with
mAb 735 (Fig. 2C). Again, a polySia-signal in the molecular mass
range of 100 to 150 kDa was observed, which was not detected
after endoN pretreatment. The amount of total SynCAM 1 in
perinatal Ncam−/− brain decreased only slightly after complete
removal of the polySia-SynCAM 1 fraction by immunoprecipita-
tion withmAb 735 (Fig. S2A). Thus, only a subfraction of SynCAM
1 ismodified by polySia. Further analysis of the polySia-SynCAM1
levels at postnatal d 2, d 21, and adult stage demonstrated a drastic
decrease of polySia-SynCAM 1 during postnatal development,
whereas no obvious change in the level of total SynCAM 1 was
detected (Fig. S3).
Although our results clearly identified SynCAM 1 as a target for

polysialylation in Ncam−/− mice, the question remained whether
this is a compensatory response to the lack of NCAM. Conse-
quently, polysialylation of SynCAM 1 was studied in perinatal
brain of WT mice using 10 times the amount of brain extracts
compared with Fig. 1A (Fig. S2B). Under these conditions, the
polySia signal covered not only the dominating high molecular
mass band of polySia-NCAM but also the mass range around
110 kDa, where polySia-SynCAM 1 migrates. To prove the pres-
ence of polysialylated SynCAM 1 in WT brain, immunoprecipi-
tates obtained with an anti-SynCAM 1 antibody were stained with
mAb 735 (Fig. 2C). In both WT and Ncam−/− brain, comparable
amounts of polySia-SynCAM 1 were detected. Together these
data demonstrate that SynCAM 1 is an NCAM-independent poly-
Sia carrier.

Polysialic Acid Chains Are Located on N-Glycans of the First Ig
Domain. To determine whether polysialylation of SynCAM 1
occurs on N- or O-glycans, polysialylated SynCAM 1 immunopreci-
pitated from perinatalNcam−/− brain was treated withN-glycosidase
F (PNGaseF). As shown in Fig. 3A, PNGaseF digestion almost com-
pletely abolished mAb 735 staining, indicating that polySia chains
were linked to N-glycans. The faint residual band in the range of
approximately 90 kDa is presumably a result of incomplete PNGase
F digestion. Parallel staining with anti-SynCAM1 antibody (Fig. 3B)
revealed that removal ofN-glycans frompolySia-SynCAM1 resulted
in two prominent bands. The molecular masses of approximately
48 and 65 kDa match with the masses described for unglycosylated
and O-glycosylated SynCAM 1 variants, respectively (22, 35, 36).
For allocation of the polySia chains to distinct N-glycosylation

sites, the total fraction of polysialylated glycopeptides was
immunoaffinity-isolated from whole brain homogenates and an-
alyzed by MALDI-TOF MS. After de-N-glycosylation by PNGa-
seF, only one additional signal at m/z 1377.7 was detected (Fig.
3C), corresponding to the deglycosylated tryptic SynCAM 1
peptide comprising the third N-glycosylation site (Asn116) in
which the glycosylated Asn has been converted to Asp as a result
of PNGaseF action. Tandem MALDI-TOF MS analysis verified
the sequence of this peptide as V112SLTDVSISDEGR124 (Fig.
3D), demonstrating that SynCAM 1 is polysialylated on N-glycans
at Asn116. Thus, within the limit of detection, the presence of
other proteins carrying polySia on N-glycans can be ruled out.

SynCAM 1 Is Polysialylated by ST8SiaII and ST8SiaIV in Vitro. To in-
vestigate whether SynCAM 1 is a target for the two polysialyl-
transferases ST8SiaII and ST8SiaIV, an in vitro assay was per-
formed using soluble SynCAM 1 as Protein A fusion protein or
C-terminally tagged with a Myc-epitope. SynCAM 1 adsorbed to
Sepharose beads was incubated with CMP-[14C]sialic acid in the
presence of ST8SiaII or ST8SiaIV. A corresponding Protein A–

NCAM chimera was used as positive control, and reaction prod-
ucts were analyzed before and after treatment with endoN. As
shown in Fig. 4A, both ST8SiaII and ST8SiaIV were able to pol-

ysialylate SynCAM 1 as demonstrated by the appearance of radi-
olabeled protein that migrated significantly more slowly than
the same protein after endoN treatment. To prove that polySia
was added to SynCAM 1, reaction products obtained after poly-
sialylation with nonradiolabeled substrate were analyzed by
Western blotting with anti–SynCAM 1 antibody (Fig. 4B). Before
polysialylation, soluble SynCAM 1 migrated with an apparent
molecular mass of approximately 55 kDa (Fig. 4B Left), whereas
after incubation with either ST8SiaII or ST8SiaIV, a broad smear

Fig. 3. Identification of the polysialylated glycosylation site in polySia-
SynCAM 1 of Ncam−/− mice. (A and B) Western blot analyses of immu-
noaffinity purified (mAb 735) polySia–SynCAM 1 using anti-polySia mAb 735
(A) or polyclonal anti-SynCAM 1 antibody (B) with or without prior PNGaseF
treatment. Apparent molecular masses of standard proteins are indicated in
kDa. The asterisk indicates artifact. (C) MALDI-TOF MS spectra of immuno-
purified polysialylated glycopeptides before (−) or after (+) PNGaseF treat-
ment. Monoisotopic masses of the pseudomolecular ions [M+H]+ are given.
The asterisk indicates unknown contaminant. (D) Sequencing of the degly-
cosylated peptide by MALDI-TOF MS/MS. Sequence-specific ions are labeled
according to previous studies (48) and the deduced amino acid sequence is
shown. The Asp residue detected instead of Asn as a result of the known
conversion of N-glycosylated Asn during PNGaseF release of N-glycans is
underlined. After replacing Asp by Asn, the identified peptide sequence was
used for database search (Mascot) verifying again SynCAM 1 with a signifi-
cant score.
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ranging from 55 to 250 kDa appeared. This smear was sensitive to
endoN, confirming that polySia was added to SynCAM 1. Notably,
SynCAM 1 expressed in CHO-6B2 cells was not used as an ac-
ceptor molecule (Fig. 4B Right). Because of a lack of a functional
CMP-sialic acid transporter, CHO-6B2 cells express exclusively
asialo-glycoconjugates (37). Thus, the presence of terminally
monosialylated glycans is a prerequisite for both ST8SiaII and
ST8SiaIV to polysialylate SynCAM 1.

Homophilic SynCAM 1 Binding Is Abrogated by Polysialylation. To
study the impact of polysialylation on SynCAM 1–mediated inter-
actions, wemonitored the effect of thismodification onhomophilic
SynCAM 1 binding. An Fc-chimera of the extracellular part of
SynCAM 1 fused to the Fc region of human IgG was expressed in
CHO-2A10 cells and isolated by affinity chromatography on pro-
tein G–Sepharose. Fluorophore-labeled beads were coated with
purified SynCAM 1-Fc and bead aggregation was monitored
before and after in vitro polysialylation (Fig. 4C). Extensive ag-
gregation, leading to large bead clusters, was observed for the
nonpolysialylated form of SynCAM 1. However, after in vitro
polysialylation of SynCAM 1 by either ST8SiaII or ST8SiaIV,
aggregation was abrogated and only monodisperse beads were
visible. Subsequent removal of polySia by endoN restored Syn-
CAM 1 binding, and reaggregation of the beads to large clusters
was observed. Thus, polysialylation of SynCAM 1 inhibits homo-
philic binding in vitro, strongly indicating a functional role in
modulating SynCAM 1 interactions in vivo (Fig. 4D).

PolySia-SynCAM 1 Is Expressed on NG2 Cells. Analysis of serial brain
sections obtained from newborn Ncam−/− mice revealed that
polySia-positive cells were scattered throughout the gray matter
but scarcely found in the white matter such as corpus callosum.
PolySia staining was particularly abundant in the pontomedullary
hindbrain and completely absent in brain sections of Ncam−/−

St8sia2−/−St8sia4−/− triple KO mice (Fig. 5A). PolySia colocali-
zed with SynCAM 1 and was restricted to a subpopulation of
cells that are positive for the proteoglycan NG2 (Fig. 5 B and C

and Fig. S4), a marker protein characteristic for a distinct type
of glia cells. As NG2-negative cells that are wrapped by NG2-
positive processes can be mistaken for NG2-positive cells, we
confirmed our results by analyzing single cells in primary cultures
from basal hindbrain of newborn Ncam−/− mice. Again, polySia
was found colocalized with SynCAM 1 and associated with cells
positive for NG2 and Olig2, a transcription factor frequently used
as a second marker for NG2 cells (38) (Fig. S5). Consistent with
described characteristics of NG2 cells (39), polySia-SynCAM 1–
positive cells were negative for glial fibrillary acidic protein, β-III-
tubulin, and microtubule-associated protein 2 (Figs. S4 and S5).

Discussion
In the present study, we show that the synaptic cell adhesion
molecule SynCAM 1 is a target for polysialylation in developing
mouse brain. In vivo, polySia is selectively added to N-glycans at
the third N-glycosylation site located within the first Ig domain,
which is involved in homo- and heterophilic SynCAM 1 inter-
actions (36). Addition of the bulky polyanionic carbohydrate
polymer completely blocked homophilic binding in vitro. Although
we cannot exclude differences in the extend of polysialylation
under in vitro and in vivo conditions, this finding implicates that
polySia serves as a potent regulator of SynCAM 1 interactions in
vivo as it is known forNCAM (6). Compared withNCAM, which is
composed of five Ig and two fibronectin type III modules, Syn-
CAM 1 contains only three Ig-like domains. Both molecules
comprise six N-glycosylation sites but only particular sites are used
for polysialylation in vivo. Intriguingly, the polySia acceptor sites of
both NCAM and SynCAM 1 are located in an Ig domain that is
two domains apart from the membrane (Fig. S7). As polySTs are
also transmembrane proteins, proper spacing might determine
accessibility and in vivo selectivity for particular N-glycosylation
sites as indicated by loss of site specificity in N-glycosylation
mutants if both enzyme and acceptor molecule lack their trans-
membrane domain (Fig. S7).
In the perinatal brain, polySia-SynCAM 1 was found exclu-

sively on a subset of NG2 cells. These glia cells (also known as

Fig. 4. In vitro polysialylation of SynCAM 1 by ST8SiaII and ST8SiaIV. (A) Soluble Protein A (ProtA) fusion proteins of NCAM and SynCAM 1 as well as soluble
SynCAM 1 with a C-terminal Myc-epitope were adsorbed to Sepharose beads and incubated with ST8SiaII (Left) or ST8SiaIV (Right) in the presence of CMP-
[14C]sialic acid. Reaction products were separated by 7% SDS/PAGE before and after treatment with endoN and analyzed by autoradiography. (B) Soluble
SynCAM 1-Myc was expressed in sialylation-competent CHO-2A10 (Left) and sialylation-deficient CHO-6B2 cells (Right). After adsorption to Sepharose beads,
SynCAM 1 was incubated with CMP-sialic acid in the presence or absence of ST8SiaII or ST8SiaIV. Reaction products were separated by 8% SDS/PAGE before
and after endoN treatment and analyzed by Western blotting (WB) with anti-SynCAM 1 mAb 3E1. (C) Homophilic SynCAM 1 binding is abrogated by pol-
ysialylation. Fluorescent Protein A beads were loaded with purified SynCAM 1-Fc chimera or with isolated Fc-fragments as control. Extensive clustering of
SynCAM 1 coated beads was completely abolished by ST8SiaII and ST8SiaIV catalyzed polysialylation and was fully restored after removal of polySia by endoN
treatment. (D) Proposed model for abrogation of homophilic SynCAM 1 binding by polysialylation. Ig-like domains are represented as black spheres, N-glycans
are indicated by triangles, and polySia is shown as dashed red line with the hydrodynamic radius indicated by a red disk.
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polydendrocytes or synantocytes) are distinct from mature oli-
godendrocytes, astrocytes, and microglia, and make up 5% to
10% of all glia in the developing and mature CNS (39–41). They
are scattered throughout the developing and adult brain and are
considered as multipotential progenitor pool that can give rise to
oligodendrocytes, astrocytes, and neurons. Remarkably, a subset
of NG2 cells can promote presynaptic specialization in neurons,
leading to unique synaptic association between NG2 cells and
neurons (39, 41).
SynCAM 1 is known as a powerful inducer of synaptic differ-

entiation. When coexpressed with glutamate receptors in non-
neuronal cells, SynCAM1 is sufficient to induce artificial synapses
with cocultured neurons (22). To date, little is known what drives
the assembly of neuron-NG2 cell synapses. To our knowledge, this
is thefirst report of SynCAM1expression onNG2 cells, suggesting
that this cell adhesion molecule could play a role in inducing
this specialized neuron-glia synapse. By attenuating SynCAM 1–
mediated functions, polysialylation of SynCAM 1 may have an
important regulatory role in the formation of neuron-NG2 cell
interactions. Moreover, polySia-SynCAM 1 has the potential to
regulate the communication between NG2 cells and neurons, as it
is known that polySia directly increases the probability of the
open state of AMPA-type glutamate receptors (42), the receptor
type through which NG2 cells receive synaptic inputs (43, 44).

Remarkably, only a subfraction of SynCAM 1 is polysialylated
in perinatal brain. In contrast, at this developmental stage when
both polySTs reach peak level and almost ubiquitous expression,
NCAM is quantitatively converted to its polysialylated form (13,
45). As SynCAM 1 is broadly expressed in all brain regions peri-
natally, polysialylation might be restricted to particular glyco- and/
or isoforms of SynCAM 1. Alternative splicing of three variable
exons can theoretically give rise to eight transmembrane isoforms
that differ only in the region between Ig3 and the transmembrane
domain. The variably spliced peptides contain two to 17 putative
O-glycosylation sites, leading to multiple glycoforms (35). In vitro,
both polySTs were able to polysialylate soluble SynCAM 1 lack-
ing the variable stem region, demonstrating that Ig1-3 modules are
sufficient to mediate interaction with polySTs. However, it is still
possible that, in vivo, only particular isoforms allow proper spacing
and accessibility of the N-glycan acceptor site.
In summary, we characterized SynCAM 1 as a polySia ac-

ceptor in the developing brain and demonstrated that polySia-
SynCAM 1 is restricted to a subpopulation of NG2 cells. NG2
cells form functional synapses in the postnatal brain and serve as
the primary source of myelinating oligodendrocytes during de-
velopment and myelin repair. Future experiments will be needed
to determine the exact role of polySia-SynCAM 1 for NG2
cell functions.

Materials and Methods
Please refer to the SI Materials and Methods for details on mice, antibodies,
and further methods.

Identification of SynCAM 1 as Polysialylated Glycoprotein and Intramolecular
Localization of PolySia. Isolation of polysialylated proteins, isolation and
deglycosylation of polySia-glycopeptides, immunoblot, and DMB-HPLC anal-
ysis were carried out as previously described (13, 33, 45). PolySia-SynCAM 1was
identified by in-gel tryptic digest, peptide mass fingerprint analysis using
MALDI-TOF MS, MS fragmentation analysis, and database search. Isolated
polySia-glycopeptides were chemically desialylated, treated with PNGase F
and analyzed by tandem MALDI-TOF MS.

In Vitro Polysialylation and Bead Aggregation Assay. SynCAM 1 lacking
transmembrane domain and variably spliced stem region was produced in
CHO cells either as a Protein A–SynCAM 1 chimera or C-terminally tagged
with a Myc-epitope. After immunoadsorption to either IgG- or Protein G–
Sepharose coupled with anti-Myc mAb 9E10, in vitro polysialylation was
performed as described previously (46) with purified soluble ST8SiaII and
ST8SiaIV. Homophilic SynCAM 1 binding was analyzed in a bead aggregation
assay with purified SynCAM 1 fused to the Fc-part of human IgG1 (36).

Immunohistochemistry.Dissection of brains from transcardially perfusedmice,
preparation of paraffin sections, immunofluorescence staining and micros-
copy were performed as described (13, 47).
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SI Materials and Methods
Antibodies, Enzymes, and Chemicals.Anti-NCAMmAbH28 (1) and
mouse anti-polySia mAb 735 [IgG2a (2)] as well as endoN were
purified as previously described (3). For affinity chromatography,
mAb 735 was coupled to Protein A–conjugated magnetic beads
(Invitrogen). Rabbit polyclonal anti-SynCAM 1 antibody (pAb),
mouse anti–β-III-tubulin mAb (IgG2b,), rabbit anti-GFAP pAb,
and mouse anti-MAP2 mAb were purchased from Sigma-
Aldrich. Chicken anti-SynCAM 1 mAb 3E1 (IgY) was obtained
from MBL, rabbit anti-NG2 pAb from Millipore, and rabbit anti-
Olig2 pAb, rabbit anti-SynCAM 2 pAb, and rabbit anti-SynCAM
3 pAb were purchased from Abcam. Horseradish peroxidase
conjugated secondary antibodies were from Dako. Rabbit and
mouse IgG-specific and IgY-specific Alexa 568– or Alexa 488–
conjugated antibodies were obtained from Molecular Probes.
CMP-[14C]Neu5Ac (10.5 GBq/mmol) was purchased from GE
Healthcare and CMP-Neu5Ac from Sigma. DMB was obtained
from Dojindo and PNGaseF from Roche.

Animals. Ncam1−/− mice were provided by H. Cremer (Devel-
opmental Biology Institute of Marseille Luminy, Campus de Lu-
miny, Marseille, France) (4). Ncam1−/− and Ncam1−/−St8sia2−/−

St8sia4−/− triple KO mice (5) were back-crossed to the C57BL/6J
genetic background for 10 generations. Genotyping was performed
as described (5). All protocols for animal use were in compliance
with the German law for protection of animals and approved by
the local authorities.

Isolation of Polysialylated Proteins from Mouse Brain Extracts.
Postnatal d 1 brains of NCAM KO mice were homogenized in
20mMTris/HCl buffer, pH 8.0, containing 5mMEDTA, 150mM
NaCl, 1% (vol/vol) Triton X-100, 200 U/mL aprotinin, 1 mM
phenylmethylsulfonylfluoride, and 20 μg/mL leupeptin (1 mL
per brain) (3). The lysate was shaken overnight at 4 °C and,
after centrifugation, supernatants were mixed with mAb 735–
conjugated protein A magnetic beads (500 μL beads/14 mL ly-
sate). The beads were washed 10 times each with 10 mL of
washing buffer 1a [20 mM Tris/HCl, pH 8.0, 200 mM NaCl,
0.5% (vol/vol) Triton X-100] and washing buffer 2a (20 mM Tris/
HCl, pH 8.0, 150 mM NaCl). Polysialylated proteins were eluted
using 100 mM triethylamine buffer, pH 11.5, and lyophilized.
Immunopurification using polyclonal anti-SynCAM 1 antibody
was performed in an analogous manner.

SDS/PAGE and Western Blotting. Brain lysates as well as purified
proteins were resolved by 10% SDS/PAGE under reducing
conditions (6). For digestion of polySia chains proteins were
treated with endoN (2 ng/μL overnight at 8 °C). Release of N-
glycans by PNGaseF was performed as previously described for
polysialylated proteins (7). Proteins were transferred to poly-
vinylidene difluoride membrane (GE Healthcare), probed with
5 μg/mL anti-polySia mAb 735, anti-NCAM mAb H28, anti-
SynCAM 1 mAb 3E1, or anti-SynCAM 1 pAb and detected by
enhanced chemiluminescence (Pierce).

In-Gel Digest for Peptide Mass Fingerprint Analysis. For the in-gel
digest, commercially available gelswere used (10%;BioRad).The
tryptic digest was performed as described previously (8) with
adaptation for membrane proteins and the size of the gel section.
Briefly, respective gel slices were transferred with 100 μL H2O
into a LoBind tube (Eppendorf) and washed for 15 min under
shaking with 100 μL 50 mM ammonium bicarbonate, pH 8.5,

containing 50% (vol/vol) acetonitrile. After removal of the sol-
vent, the gel was dried and 100 μL acetonitrile were added. The
washing procedure was repeated twice with 100 μL 50 mM am-
monium bicarbonate, pH 8.5, respectively, and the gel piece was
dried in a vacuum centrifuge. After reduction and carbamido-
methylation trypsin (sequencing grade; Promega), diluted in
protease max enhancer (Promega) to a final concentration of
10 ng/μL, was added and incubated for 1 h at 37 °C. Peptides were
extracted by sonification with 100 μL 0.1% trifluoroacetic acid for
15 min and desalted using C-18 OMIX-Tips (Varian).

Isolation and Deglycosylation of PolySia-Glycopeptides. Four mouse
brains were suspended in 2 mL lysis buffer (20 mM ammonium
bicarbonate, pH 8.5, 6 M urea) and carbamidomethylated with
iodacetamide. The lysate was diluted to 12 mL with 20 mM am-
moniumbicarbonate and digestedwith 100μg trypsin (sequencing
grade; Promega) overnight at 37 °C. Trypsin was inactivated with
10 mM phenylmethylsulfonylfluoride. Resulting peptides were
desalted on a P4-Biogel column (1 × 100 cm; BioRad). Desalted
(glyco-)peptides were added to 50 μLmAb 735magnetic beads as
described earlier and the beads were washed with washing buffer
1b [20 mM ammonium bicarbonate, pH 8.5, 200 mMNaCl, 0.5%
(vol/vol) Triton X-100] and 2b (20 mM ammonium bicarbonate,
pH 8.5). PolySia peptides were eluted using 100 mM triethyl-
amine buffer, pH 11.5, and lyophilized. PolySia-glycopeptides
were desialylated by mild acid hydrolysis in 200 μL 1M acetic acid
at 80 °C for 30 min before deglycosylation using PNGaseF as
described earlier. Deglycosylated glycopeptides were desalted
using C-18 OMIX-Tip (Varian).

DMB-HPLC Analysis. To analyze the chain length and the amount of
polySia, brains of 1-d-oldmice were homogenized and delipidated
as described previously (9, 10). The dried tissue was dissolved in
300 μL DMB reaction buffer and incubated for 24 h at 4 °C with
shaking. The reaction was stopped by adding 70 μL of 1 M NaOH
and insoluble material was removed by centrifugation. For sepa-
ration of polySia chains, an LKB HPLC system was used, equip-
ped with aDNAPac PA-100 column and a fluorescent detector set
at 372 nm for excitation and 456 nm for emission. MilliQ water
and 4 M ammonium acetate (E2) were used as eluents as de-
scribed by Nakata et al. (11). Elution was performed by the fol-
lowing gradient: T0min = 0% (vol/vol) E2; T15min = 8% (vol/vol)
E2; T40min = 12% (vol/vol) E2; and T160min = 23% (vol/vol) E2.
The column was washed with 100% (vol/vol) E2 for 10 min. Ali-
quots corresponding to 9% or 86% of the supernatants were in-
jected for quantification of the peak or for determination of the
maximal detectable chain length, respectively.

MALDI-TOF MS/MS Analysis. MALDI-TOF MS analyses were per-
formed on anUltraflex TOFmass spectrometer (Bruker-Daltonik)
equipped with a nitrogen laser and a LIFT-MS/MS facility and
controlled by FlexControl 3.0 software as described previously (3,
12). The instrument was operated in positive-ion reflector mode.
Desalted peptides (1 μL) of the in-gel digest were transferred onto
prespotted anchorchip (PAC; Bruker-Daltonik) targets. After
drying, the spot was washed with 10 μL 20 mM ammonium phos-
phate buffer containing 0.1% trifluoroacetic acid. Isolated poly-
sialylated glycopeptides were loaded onto a stainless steel target
in 1 μL water and mixed with 1 μL matrix (10 mg/mL 2,5-
dihydroxybenzoic acid in 50% acetonitrile, 1% o-phosphoric acid)
before and after deglycosylation with PNGaseF (13). In general,
500 to 5,000 shots were accumulated in positive ionMS andMS/MS
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modes, respectively. External calibration of mass spectra was car-
ried out using peptide calibration standard for MS (Bruker-
Daltonik). Masses were annotated and processed with FlexAnal-
ysis 3.0. Annotation of fragment ions in the MS/MS mode was
performed according to Medzihradszky (14).

Database Search. For peptide mass fingerprinting scoring, the
MALDI MS data were searched against the Mascot data search
database using the Mascot program (http://www.matrixscience.
com) with the following parameters: restriction toMus musculus,
peptide mass tolerance, 25 ppm; allow up to one missed cleav-
age; variable modifications considered were cysteine carbami-
domethylation and methionine oxidation. For identification of
the polysialylated N-glycosylation site, the peptide mass toler-
ance was constricted to 15 ppm and potential deamination of
aspargine and glutamine was allowed as modification.

Plasmid Construction. To generate a SynCAM 1-Fc chimera, the
region encoding the extracellular domains of SynCAM1 (aa 1–346)
was amplified by PCR with the primers MR74s (5′-GACTGC-
TAGCATGGCGAGTGTAGTGCTG-3′) and MR75as (5′-GA-
CTAGATCTACTTACCTGTATGATCCACTGCCCTGATC-3′)
and full-length human SynCAM 1 cDNA (OriGene) lacking the
variable spliced exons (accession no. NM_001098517) as template.
The resulting PCR product was digested with NheI and BglII and
ligated into the NheI/BamHI sites of pcDNA3.1-Ig upstream of
the DNA sequence encoding the Fc part of human IgG1 (15). The
plasmid used for expression of soluble SynCAM 1 (aa 1–346) with
a C-terminal Myc-epitope was generated by PCR with the primers
MR72s (5′-GATCGGTACCGAATGGCGAGTGTAGTGCTG-
3′) and MR73as (5′-GACTCTCGAGATGATCCACTGCCCTG-
ATC-3′). After digestion with KpnI and XhoI, the obtained PCR
product was ligated in the corresponding sites of pcDNA3.1-myc/
His (Invitrogen). The plasmid used for expression of a soluble Pro-
tein A–SynCAM 1 fusion protein comprising aa 39 to 346 of Syn-
CAM1C-terminally fused to ProteinAwas generated by PCRusing
the primers MR58s (5′-GCATGAATTCGATCCCCACAGGTG-
ATGGG–3′) and MR59as (5′-GCATGGTACCTTAATGATCC-
ACTGCCCTGATCG-3′). The amplified PCR product was di-
gested with EcoRI and KpnI and ligated into the corresponding
sites of the vector pPROTA (16). The plasmid encoding the Pro-
tein A–NCAM chimera was generated as described previously (17).
Full-length cDNAs of murine SynCAM 1, SynCAM 2, and Syn-
CAM3were transcribed from 1 μg of total RNA of perinatal mouse
brain using the SuperScript First-Strand Synthesis System (In-
vitrogen). SynCAM 1 cDNA was amplified by PCR with the pri-
mer pair MR68s (5′-GATCGGTACCATGGCGAGTGCTGTG-
CTG-3′) and MR69as (5′-GCCATGCGGCCGCCTAGATGAA-
GTACTCTTTCTTTTCTTCG-3). After digestion with KpnI and
NotI, the obtained PCR product was ligated in the corresponding
sites of pcDNA3.1-Zeo (Invitrogen). SynCAM 2 cDNA was am-
plified with the primer pair MR80s (5′-GATCGGATCCGCCAC-
CATGATTTGGAAACGCAGCGC-3′) and MR81as (5′-GATC-
GCGGCCGCTTAAATGAAATACTCTTTTTTCTC-3). The ob-
tained PCR product was digested with BamHI and NotI and li-
gated in the corresponding sites of pcDNA3.1-Zeo (Invitrogen).
SynCAM 3 cDNA was amplified with the primer pair MR83s (5′-
GATC GATATCGCCACCATGGGGGCCCCTTCCGC-3′) and
MR84as (5′-GATCGCGGCCGC CTAGATGAAATATTCCTT-
CTTG-3′) and the resulting PCR product was digested with EcoRV
and NotI and ligated into the corresponding sites of pcDNA3.1-
Zeo. The identity of all constructs was confirmed by sequencing.

Cell Lines, Transfection, and Culture Conditions. CHO cells were
maintained in DMEM/Ham F12 1:1 (Seromed) supplemented
with 5% FCS and 1 mM sodium pyruvate in a 37 °C, 5% CO2
incubator. CHO-2A10 cells represent a genetic complementa-
tion group characterized by a deficient St8Sia4 gene rendering

these cells polySia-negative (18, 19). CHO-6B2 cells lack a
functional CMP-sialic acid transporter and express exclusively
asialo-glycoconjugates (20). Themurine fibroblast cell line LMTK−

was maintained in DMEM (Seromed) supplemented with 10%
FCS in a 37 °C, 5% CO2 incubator. Transient transfections were
performedwith Lipofectamine (Invitrogen) as described previously
(21). Spodoptera frugiperda (Sf9) cells (Gibco) were grown at 27 °C
in shaking culture at 75 rpm in protein-free Insect-Xpress medium
(BioWhittaker/Lonza) and maintained at a density of 0.5 × 106 to
6 × 106 viable cells per mL. Transient expression of soluble poly-
sialyltransferases was performed upon infection with recombinant
baculovirus generated by the Bac-to-Bac System (Invitrogen).

In Vitro Polysialylation Assay. Solublemouse ST8SiaII (residues 57–
375) and hamster ST8SiaIV (residues 26–359) with an N-terminal
hexa-histidine tag were secreted by Sf9 cells and purified by affinity
chromatography on Ni2+-chelating columns (GE Healthcare).
Soluble acceptor proteins were produced in CHO cells. Three days
after transfection, cell culture supernatant of one 100-mm dish
was harvested and concentrated 10-fold by ultrafiltration (Amicon
Ultra-15, 10 kDa cut-off; Millipore). After preclearing with IgG- or
Protein G–Sepharose (GE Healthcare), Protein A fusion proteins
and SynCAM 1-Myc were isolated by immunoprecipitation with
IgG-Sepharose and anti-Myc mAb 9E10 (Roche) covalently cou-
pled to Protein G–Sepharose, respectively. Immunoprecipitates
were washed twice with 1 mL of PBS solution (10 mM sodium
phosphate, pH 7.4, 100 mM NaCl) and twice with reaction buffer
(10 mM Mes, pH 6.7, 10 mM MnCl2). In vitro polysialylation
was performed in a final volume of 50 μL containing 2 μg of puri-
fied polysialyltransferase. For radioactive incorporation assays,
0.76 mM CMP-[14C]Neu5Ac (0.18 GBq/mmol) and 0.012 mM
CMP-[14C]Neu5Ac (10.8 GBq/mmol) were used for assays with
ST8SiaII and ST8SiaIV, respectively. For nonradioactive assays, 1
mMCMP-Neu5Ac (NacalaiTesque)was used.After incubation for
15 h at room temperature in a thermomixer at 1,350 rpm (Eppen-
dorf), reactions were stopped by washing twice with PBS solution.
After dividing samples into two aliquots, beads were resuspended
in 20 μL Laemmli buffer. For specific degradation of polySia, one
aliquot was treated with 1 μg of SDS-resistant endoN for 30 min at
37 °C. Reaction products were separated by SDS/PAGE and ana-
lyzed by either autoradiography or Western blotting using anti-
SynCAM 1 mAb 3E1.

Production and Purification of SynCAM 1-Fc Protein. Twenty-four
hours after transfection of CHO-2A10 cells with the plasmid
encoding SynCAM1-Fc and a Zeocin resistance gene, the medium
was supplemented with 0.75 mg/mL of Zeocin (Invitrogen). After
10 d of selection, cells were grown in protein-free CHO-Amedium
(Invitrogen). Conditioned mediumwas collected every 2 to 3 d and
stored at −20 °C. For isolation of SynCAM 1-Fc, 500 mL of
conditioned medium was concentrated 10-fold by tangential flow
ultrafiltration (Vivaflow 50, 10 kDa cut-off; Sartorius) and passed
over a Protein G Sepharose column (GE Healthcare). After
washing with 10 column volumes of 20 mM sodium phosphate
(pH 7.0), SynCAM 1-Fc was eluted with glycine buffer (0.1 M
glycine, pH 2.7) and fractions were neutralized by addition of 1 M
Tris-HCl, pH 9.0.

Bead Aggregation Assay. Homophilic SynCAM 1 binding was
analyzed in a bead aggregation assay (22) using purified SynCAM
1-Fc bound to Protein A beads. Protein A (Sigma) was co-
valently coupled to green fluorescent FluoSpheres (1 μm di-
ameter; Invitrogen) using 1-ethyl-1-3-(3-dimethylaminopropyl)-
carbodiimide (Invitrogen) and beads (10 μL of a 2% suspension)
were coated with 5 μg of purified SynCAM 1-Fc or human IgG
Fc fragment (Jackson Immunoresearch). After washing three
times with 1 mL of 0.5% BSA in PBS solution and twice with
Mes buffer (10 mM Mes, pH 6.7, 10 mM MnCl2), beads were
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incubated with 1 mM CMP-Neu5Ac (Nacalai Tesque) and 2 μg
of recombinant soluble ST8SiaII or ST8SiaIV for 15 h at room
temperature in a thermomixer (Eppendorf) at 1,350 rpm. For
specific degradation of polySia, beads were washed twice with
0.5% BSA in PBS solution and incubated with 2.5 μg endoN for
30 min at 37 °C. After washing three times with 0.5% BSA in
PBS solution, beads were monodispersed by applying a 1-s ul-
trasound pulse in an ultrasonic bath (Sonorex Super; Bandelin)
and loaded to chamber slides (μ-Slides; Ibidi). After incubation
for 1.5 h at room temperature, beads were imaged under
a fluorescence microscope (Axiovert 200 M; Zeiss).

Primary Cell Culture. Basal hindbrain of newborn Ncam−/− mice
was dissected, transferred to 1× Hanks Balanced Salt Solution
(Gibco), minced, and incubated with 10 mg/mL Trypsin type IX
(Sigma) and 0.5 mg/mL DNase I (Roche) at 37 °C for 10 min.
During the second half of the incubation period, 0.5 mg/mL
DNase I and 12 mM MgCl2 were added. After gentle trituration,
cells were collected by centrifugation (280 × g for 10 min at 4 °C)
and resuspended in DMEM (high glucose) containing 2 mM
Glutamax, 1% (vol/vol) N2 supplement, 2% (vol/vol) B27 (all
from Gibco), 10 μg/mL Insulin (Sigma), 10% (vol/vol) horse
serum (Biochrom), and 5 μg/mL gentamycin (Gibco). Single cell
suspensions were seeded at densities of 100,000 cells/cm2 in 24-
well plates containing glass coverslips coated with 100 μg/mL
poly-D lysine (Sigma). After incubation for 48 h in a 37 °C, 7.5%
CO2 incubator, cells were fixed for immunocytochemistry.

Immunocytochemistry. Cells were fixed with 4% paraformaldehyde
for 30 min, permeabilized with 0.1% Triton X-100, blocked with
2%BSA for 1 h at room temperature, and incubated with primary
antibodies for 2 h at room temperature. The following antibodies
were used: polySia-specific mouse mAb 735 (10 μg/mL), anti-
SynCAM 1 IgY mAb 3E1 (5 μg/mL,), NG2 Proteoglycan-specific
rabbit pAb (5 μg/mL), Olig2-specific rabbit pAb (1 μg/mL), β-III-
tubulin–specific mouse mAb (5 μg/mL), SynCAM 2–specific
rabbit pAb (5 μg/mL), and SynCAM 3–specific rabbit pAb (5
μg/m). Rabbit and mouse IgG-specific and IgY-specific Alexa
568– or Alexa 488–conjugated antibodies were used according to

the manufacturer’s recommendations. As first-layer control, cells
were incubated in blocking solution lacking primary antibody.
For double immunofluorescence staining, cross-reactivity of sec-
ondary antibodies was controlled by omitting either of the two
primary antibodies. For negative controls, cells were pretreated
with endosialidase (3 μg/mL in 0.1 M sodium phosphate, pH 7.4)
for 1 h at 37 °C before staining with mAb 735. Coverslips were
mounted in Vectashield mounting medium containing DAPI
(Vector Laboratories).

Immunohistochemistry. Whole brains of newborn Ncam−/− and
Ncam−/−St8sia2−/−St8sia4−/− triple KO mice were dissected from
animals transcardially perfused with 4% paraformaldehyde in 0.1
M phosphate buffer, pH 7.4, under anesthesia by hypothermia.
After overnight postfixation, brains were embedded in a single
paraffin block and cut into 3- to 4-μm serial sagittal sections. For
immunofluorescence staining, sections were deparaffinzed, re-
hydrated, blocked for 1 h in PBS solution containing 10% BSA,
0.1% Triton X-100, and incubated with primary antibodies
overnight at 4 °C. The following antibodies were used: polySia-
specific mouse mAb 735 (10 μg/mL), anti-SynCAM 1 mAb 3E1
(2.5 μg/mL), NG2 Proteoglycan–specific rabbit pAb (5 μg/mL),
GFAP-specific rabbit pAb (1:100), and MAP2-specific mouse
mAb (2 μg/mL). Rabbit and mouse IgG-specific and IgY-specific
Alexa 568– or Alexa 488–conjugated antibodies were used ac-
cording to the manufacturer’s recommendations. Antibody con-
trols were performed as described for immunocytochemistry.
Slides weremounted inVectashield mountingmedium containing
DAPI (Vector Laboratories).

Microscopy. Microscopy was performed with a Zeiss Axiovert 200
M equipped with ApoTome module, AxioCam MRm digital
camera, and AxioVison software (Zeiss). Low-magnification im-
ages were acquired using a×20 Plan-Apochromat (0.8 NA). Near-
confocal optical sections of 0.81 μm thickness were obtained by
ApoTome technology using a ×63 Plan-Apochromat oil immer-
sion objective with 1.4 numerical aperture (Zeiss). Z stacks (3.5
μm) comprising sequential x-y sections were taken at 0.25-μm z
intervals.
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Fig. S1. Identification of the polysialylated protein obtained from postnatal Ncam−/− mice. (A) The immunoaffinity purified (mAb 735) polysialylated protein
was separated by 10% SDS/PAGE and a gel slice covering the mass range of 100 to 150 kDa was excised. After reduction, carbamidomethylation, and treatment
with trypsin, resulting peptides were extracted and analyzed by MALDI-TOF MS. Database search (Mascot) revealed SynCAM 1 with a significant score (Inset).

Legend continued on following page
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Fig. S2. Characterization of polysialylated SynCAM 1 by SDS/PAGE and Western blotting. (A) Determination of the proportion of polysialylated SynCAM 1 in
Ncam−/− mice. Brain lysates of newborn Ncam−/− mice (40 μg protein per lane) were analyzed before or after removal of polysialylated protein by immu-
noprecipitation using anti-polySia mAb 735. Resulting supernatants were subjected to SDS/PAGE and Western blotting and stained with polyclonal anti-
SynCAM 1 antibody, anti-SynCAM 1 mAb 3E1, or anti-polySia mAb 735. Polysialylated protein is completely removed by preceding immunoprecipitation
(Right), whereas the majority of SynCAM 1 in the mass range of approximately 100 kDa as well as cross-reacting SynCAM 2 and SynCAM 3 (50–75 kDa) are still
retained (Left and Middle; see also Fig. S6). (B) Characterization of polysialylated proteins in WT mouse brains by SDS/PAGE and Western blotting. Brain
homogenates of WT and Ncam−/− mice were separated by 10% SDS/PAGE using 40 μg protein per lane and immunostained with anti-polySia mAb 735.
Applying this high protein concentration, the polySia-positive signal of WT brain lysates was further dispersed, covering not only the high molecular mass
region of polySia-NCAM at approximately 250 kDa but also the migration range of polySia-SynCAM 1 at approximately 110 kDa. Apparent molecular masses of
standard proteins are indicated in kDa.

Fig. S3. Developmental changes in the polysialylation status of SynCAM 1. Whole brains of Ncam−/− mice were obtained at postnatal d 2, d 21, and from adult
stage. PolySia-SynCAM 1 expression was analyzed in brain lysates by immunoprecipitation with anti-polySia mAb 735 followed by Western blot detection with
anti-SynCAM 1 mAb 3E1 (Upper). Total SynCAM 1 expression was analyzed by separating equal amounts of whole brain lysate by 10% SDS/PAGE followed by
Western blotting with anti-SynCAM 1 mAb 3E1 (Lower).

1. Medzihradszky KF (2005) Peptide sequence analysis. Methods Enzymol 402:209–244.

Tryptic peptides matching SynCAM 1 are printed in bold. Remaining signals could not be assigned and, therefore, might indicate the presence of additional
polysialylated components. (B) Peptide signals at m/z 2805.5 and 2888.4 were used for fragmentation analysis by tandem MALDI-TOF MS and database search
again verified SynCAM 1 as polySia protein. Sequence-specific ions are labeled as described earlier (1) and the deduced amino acid sequences are shown.
Monoisotopic masses of the pseudomolecular ions [M+H]+ are given.
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Fig. S4. Immunofluorescence localization of polySia in mouse brain sections of the pontomedullary hindbrain of newborn Ncam−/− mice. (A) A 3D re-
construction of ApoTome z-stack images of brain sections stained with anti-SynCAM 1 mAb 3E1 (red) and anti-polySia mAb 735 (green). Merged images show
colocalization of SynCAM 1 and polySia. (B) Staining with anti-NG2 antibodies (red) and anti-polySia mAb 735 (green). Merged images show colocalization of
NG2 and polySia. (C) Staining with anti-GFAP (glial fibrillary acidic protein) antibodies (red) and anti-polySia mAb 735 (green). Merged images show no overlap.
(D) Staining with anti-MAP2 (microtubule-associated protein 2) antibodies (red) and anti-polySia mAb 735 (green). Merged images show no overlap. In merged
images, nuclei are stained blue (DAPI stain). (Scale bars: 5 μm in A and B; 10 μm in C and D.)
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Fig. S5. Immunofluorescence localization of polySia in primary cell cultures obtained from basal hindbrain of newborn Ncam−/− mice. (A) Representative
ApoTome image of fixed primary cells stained with anti-SynCAM 1 mAb 3E1 (red) and anti-polySia mAb 735 (green). Merged images show colocalization of
SynCAM 1 and polySia. (B) Staining with anti-NG2 antibodies (red) and anti-polySia mAb 735 (green). Merged images show that polySia is expressed by NG2-
positive cells. (C) Staining with anti-Olig2 antibodies (red) and anti-polySia mAb 735 (green). Merged images show that polySia is expressed by Olig2-positive
cells. (D) Staining with anti–β-III-tubulin antibodies (red) and anti-polySia mAb 735 (green). Merged images show no overlap. In merged images, nuclei are
stained blue (DAPI stain). (Scale bar: 10 μm.)
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Fig. S6. Specificity of anti-SynCAM antibodies. The mouse fibroblast cell line LMTK− was transiently transfected with full length cDNA of SynCAM 1, SynCAM
2, SynCAM 3, or empty vector (mock). (A) Fixed cells were stained with a polyclonal antibody directed against the C terminus of SynCAM 1. As this part shows
high sequence similarity with the corresponding part in SynCAM 2 and 3, cross-reactivity with both proteins was observed. (B and C) Double immunofluo-
rescence staining with anti-SynCAM 1 mAb 3E1 (red) directed against the extracellular part of SynCAM 1 and anti-SynCAM 2 antibody (B, green) or anti-
SynCAM 3 antibody (C, green). No cross-reactivity of mAb 3E1 with SynCAM 2 or SynCAM 3 was observed.
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Fig. S7. (A) Model for site-specific polysialylation of NCAM and SynCAM 1 in vivo. Schematic representation of the polySia-acceptor proteins NCAM and
SynCAM 1 in complex with a Golgi-resident polysialyltransferase (polyST). Ig-like and fibronectin type III domains are represented as black spheres and rec-
tangles, respectively. N-glycans are indicated by triangles with those used as polySia acceptor sites highlighted in red. As a result of alternative splicing, the
extracellular part of SynCAM 1 can contain a stem region. Sequences of the respective peptides are given on top with the number of predicted O-glycosylation
sites (1) in parentheses. (B) In vitro polysialylation of WT and mutant forms of NCAM and SynCAM 1. The fourth, fifth, and sixth N-glycosylation sites of NCAM
and the third N-glycosylation site of SynCAM 1 were abolished by introducing Asn-to-Gln exchanges in the respective Asn-X-Ser/Thr sequons. Soluble Protein A
fusion proteins containing the extracellular part of WT or mutated forms of NCAM and SynCAM 1 were expressed in CHO-2A10 cells. After adsorption to IgG-
Sepharose, acceptor proteins were incubated with soluble ST8SiaII (Left) or ST8SiaIV (Right) in the presence of CMP-[14C]sialic acid. Reaction products were
separated by 7% SDS/PAGE before and after treatment with endoN and analyzed by autoradiography.

1. Biederer T (2006) Bioinformatic characterization of the SynCAM family of immunoglobulin-like domain-containing adhesion molecules. Genomics 87:139–150.
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Preface 
The following study identified mutations in the ST3GalIII gene in two Iranian families affected 

by intellectual disability. My contribution to this study was the biochemical characterisation of 

the mutant enzymes. Using cell transfection experiments and enzymatic testing of recombinant 

proteins, I was able to show that a mutation in the transmembrane domain of ST3GalIII (A13D) 

interfered with proper Golgi transport of the sialyltransferase and with catalytic activity. The 

second mutation identified in the C-terminally localised catalytic domain of ST3GalIII (D370Y) 

abolished Golgi transport, leading to complete retention of the enzyme in the ER. As 

demonstrated by in vitro activity assays, this mutation drastically reduced enzymatic activity.  
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Chapter 5 - Defects in the ST3GAL3 gene cause a loss of function in 

the gene product, which leads to cognitive impairment in 

homozygous mutation carriers. 
 

Abstract 
Intellectual disability (ID) severely impacts affected individuals and their families and, with 

lifetime costs of 1-2 million US Dollar, is the most costly disease in Europe and the United 

States. Here, we describe for the first time the involvement of ST3GalIII in disease 

establishment and present a first biochemical characterization of two mutations, which 

were identified in patients affected by non-syndromic autosomal recessive ID (NSARID) by 

linkage analysis and homozygosity mapping. The mutations, which are localized in the 

transmembrane domain and the catalytic domain of the enzyme, respectively, caused 

protein instability and alterations in cellular localization. Based on the biochemical data it 

can be concluded that the identified genetic defects translate into reduced functionality at 

systemic level.  

 

Introduction 
Nature’s enormous potential for the shaping of structures - most impressively documented in the 

plant kingdom - is made possible by the use of sugars. This group of molecular building blocks 

is unique in terms of permutation capacity (Varki et al., 2009). While, for instance, no more than 

six variant tripeptides or trinucleotides can be built from the respective monomers (amino acids 

and nucleotides, respectively), the theoretical number of trisaccharides that can be build from 

three hexoses reaches beyond 9,000. Considering, in addition, that the sugar alphabet in 

mammals consists of 10 “characters” (Krishnamoorthy and Mahal, 2009), that oligosaccharide 

additions to proteins and lipids comprise as a rule more than four monosaccharides and that the 

informational content of glycans is impacted by the scaffold structure and environmental 

components, it becomes obvious that this system is inexhaustible in terms of information storage 

and transfer (for a recent review see Cohen and Varki, 2010). Not surprising thus, that the 

outermost surface, i.e. the communication front of all animal cells consists of a dense array of 

glycans classically named the glycocalyx (Ito, 1969; Varki, 1993). Sialic acid, a negatively 

charged nine-carbon sugar, plays an extraordinary role in this scenario (Angata and Varki, 2002). 
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Exclusively added to terminal (non-reducing end) positions in glycan chains, this sugar primes 

the negative charge of animal cells and can per se or as a component act as a binding partner or 

carrier of information in a vast number of contextual situations. Vital processes ranging from the 

steering of cellular interactions to cellular migration and subtle processes like the modulation of 

synaptic plasticity essentially depend on the presence of sialoglycoconjugates (Schauer, 2009).  

Key enzymes in the biosynthesis of sialoglycoconjugates are the sialyltransferases (STs), a 

family of twenty members that, in accordance with their function in finishing surface exposed 

and secreted sialo-glycoconjugates, locate in late Golgi compartments. All STs are type II 

membrane proteins with short cytoplasmic tails and large luminal catalytic domains. All use 

CMP-activated sialic acid (CMP-Sia) as a donor sugar, but the enzymes differ significantly with 

respect to their products (sialoglycoconjugates) formed. Decisive in this latter function are the 

nature of the sugar acceptor (galactose, N-acetyl-galactoseamine, or sialic acid) and the type of 

the glycosidic linkage that is formed (α2,3; α2,6, α2,8) (for a review see Harduin-Lepers et al., 

2001; Breton et al., 2006). Based on these functional characteristics STs have been classified 

into four subgroups (ST6Gal, ST3Gal, ST6GalNAc, and ST8Sia), each consisting of several 

members that diverse the chemical nature of the glycan-acceptor carrier (lipid or protein) (Datta 

et al., 2009).  

ST3Gal III, the enzyme of relevance in this study, belongs to the subfamily ST3Gal 

encompassing a total of six members (ST3Gal I – VI). Together with its closest relatives 

(ST3Gal V > ST3Gal IV > ST3Gal VI) the enzyme is involved in the biosynthesis of sialyl-

Lewisa and sialyl-Lewisx epitopes, that, expressed on the surface of activated leukocytes mediate 

the first step in leukocyte extravasation (i.e. leukocyte rolling) into inflamed tissue. Cognate 

receptors for these glycotopes are E- and P-selectin expressed by the activated endothelial cells 

(Phillips et al., 1990; Tyrrell et al., 1991; Polley et al., 1991). However, human ST3Gal III 

exhibits a strong preference for type I core structures, thus essentially catalysing the synthesis of 

the sialyl-Lewisa epitope (Kono et al., 1997).  

The human ST3Gal3 gene is a complex transcriptional unit comprising fifteen exons stretched 

over 223 Kb. 26 alternatively spliced transcripts were identified to be generated in tissue specific 

patterns, of which only seven represent active enzymes. Highest isotranscript numbers with 

patterns different from all other tissues were observed in the neural and muscular tissues (Grahn 

et al., 2002; Grahn et al., 2004). The biological significance underlying this transcriptional 

complexity and the functional specialisation of human ST3Gal III, respectively, has not yet been 

identified.  
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Here we describe for the first time a role for ST3GalIII in intellectual disability. Linkage analysis 

and homozygosity mapping in two families with non-syndromic autosomal-recessive intellectual 

disability (NSARID) carried out by Prof. Dr. Andreas Kuss in the Max-Planck-Institut for 

Molecular Genetics, Berlin, revealed mutations in the ST3GAL3 gene at highly conserved 

positions in Exon 2 (c.215C>A) and Exon 13 (c.1492G>T), respectively. 

The goal of this study was to provide a biochemical characterization of these mutations to 

elucidate their influence on ST3GalIII function. 

 

 

Materials and Mehods 
Recombinant expression of ST3GalIII variants 

ST3GalIII variants were expressed in CHO cells (cultured at 37°C and 5% CO2 in 

DMEM/Ham’s F 12 (1:1) medium (Biochrom) containing 5% FCS and 1 mM sodium pyruvate) 

by transfection with Lipofectamin (Invitrogen) in OptiMEM (Gibco BRL). Cell culture 

supernatants from 9.5 cm tissue plates were coupled to IgG Fast Flow 6 Sepharose (GE 

Healthcare). Beads were washed with PBS and incubated at 100°C for 5 min in 25 μl Lämmli 

buffer containing 5% β-mercaptoethanol prior to applying the samples to 10% SDS-PAGE. 

Proteins were blotted onto a nitrocellulose membrane (Protran, Whatman) with 2 mA/cm2 in 

50 mM Tris buffer containing 40 mM glycin. Membranes were blocked with 2% milk powder in 

PBS, containing 0.02% NaN3 at 4°C over night, incubated in 3.76 μg/ml mouse IgG (Pierce) for 

1h at room temperature, washed three times with PBS and incubated with anti-mouse-AP 

(Dianova, 1:5,000) for 1 h at room temperature. Bands were obtained by  BCIP/NBT reaction 

(162.5 μg/ml BCIP, 325 μg/ml NBT in 100 mM Tris HCl pH 9.5, containing 100 mM NaCl and 

5 mM MgCl2). 

 

Protein A quantification assay (ELISA) 

96-well round bottom titer plates were coated for 1 h at room temperature with 30 μl of 2 μg/ml 

mouse IgG (Pierce) per well and, after washing three times with PBS, blocked with 200 μl 1% 

BSA (Sigma) in PBS, again for 1 h at room temperature or over night at 4°C. After washing 

three times with PBS, 25 μl of successive dilutions of cell culture supernatants with 1% BSA in 

PBS were applied (1 h at room temperature) followed by another washing step (three times with 

PBS) and detection of protein A tagged proteins with 25 μl of biotinylated Fab fragments of anti 

protein A antibody (SPA-27, Sigma, 1:50,000) in 1% BSA in PBS (1 h at room temperature). 
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Plates were washed three times with PBS and incubated with 25 μl Streptavidin-horseradish 

peroxidase (1:20,000, Roche) in 1% BSA in PBS (1 h at room temperature) and, after another 

washing step, with 50 μl of 0.1 mg/ml TMB in 90 mM sodium acetate, 90 mM citric acid pH 4.9, 

containing 0.003% H2O2 and 10% DMSO, for 20 min. The TMB colour reaction was stopped by 

adding 25 μl of 2 N H2SO4. Absorption was measured at 450 nm using a PowerWave 340 ELISA 

reader (BioTek). 

 

ST3GalIII activity assay 

Protein A tagged N-terminal truncations of ST3GalIII representing the wild-type enzyme and the 

C-terminal mutant lacking the first 40 amino acids were expressed in CHO cells. The 

concentration of protein A tagged proteins was determined by ELISA and equal amounts of 

wild-type and C-terminal mutant were adsorbed to IgG Fast Flow 6 Sepharose (GE Healthcare) 

for 1 h at 4°C. The beads were washed twice with reaction buffer (50 mM MES pH 6.5, 10 mM 

MnCl2) and incubated with 1 mM Gal-β1,3-GlcNac-β-para-nitrophenol (Carbosynth) and 50 μM 

CMP-[14C]Neu5Ac (0,9 kBq) in reaction buffer for 1 h at 37°C and 400 rpm. The reaction mix 

was loaded onto C18 columns (SepPak Plus C18, Waters) which were activated with 3 ml MeOH 

and washed with 3 ml water in advance. After loading, columns were washed three times with 3 

ml water and eluted with 4.5 ml MeOH. Elutes were air-dried, resolved in 3 ml Filtersafe 

scintillation cocktail (Zinsser Analytic) and measured in an LS 6500 Multi-Purpose Scintillation 

Counter (Beckman Coulter). 

Prior to starting the reaction, 1/6 of the beads were taken as separate aliquots, incubated at 100°C 

for 5 min in 40 μl 2x Laemmli buffer containing 5% β-mercaptoethanol and applied to 10% 

SDS-PAGE followed by western blot (2 mA/cm2 in 50 mM Tris buffer containing 40 mM 

glycin). Membranes were blocked in Odyssey Blocking Buffer mixed 1:1 with PBS for 1 h at 

room temperature or over night at 4°C, incubated with 3.76 μg/ml mouse IgG (Pierce) in 

Odyssey Blocking Buffer/PBS (1:1), washed 5x for 5 min with PBST (0.1% Tween-20 in PBS), 

incubated with anti mouse-IRDye 680 (LICOR, 1:20,000 in Odyssey Blocking Buffer/PBS (1:1)) 

for 1 h at room temperature and washed 5x for 5 min with PBST and once with PBS.  

Fluorescent bands were detected using an Odyssey Imaging System (LICOR) and quantified 

using the Odyssey 2.1 software. 
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Immunofluorescence 

LMTK- mouse fibroblasts were cultured in DMEM/Ham’s F-12 (1:1) medium (Biochrom) at 

37°C and 5% CO2. Cells were seeded the day before transfection at a density of 3.5x105 cells per 

well in a 6-well plate. Transfection was performed at 60-80% confluency with 1 μg of plasmid 

DNA and 6 μl Lipofectamine (Invitrogen) in 200 μl OptiMEM (Gibco BRL) and after 6 h of 

incubation transferred to normal medium containing 10% FCS. Cells were splitted 1:3 the day 

after transfection and seeded onto glass coverslips in medium containing 10% FCS. 48-72 h after 

transfection the cells were washed three times with PBS, fixated with 4% PFA (AppliChem) in 

PBS and stored at 4°C in PBS. For permeabilisation, the coverslips were incubated 30 min in 

0.2% Triton-100 in PBS. After washing three times with PBS, cells were incubated with rabbit 

anti α-mannosidase II antiserum (1:8,570) as a Golgi marker, rabbit anti IRE1 polyclonal 

antibody (Abcam, 1:40) as an ER marker, 5 μg/ml anti myc antibody 9E10 or (2 μg/ml) anti 

ST3GalIII antibody, respectively, for 1 h at room temperature, washed again three times with 

PBS, and incubated with Cy3 conjugated sheep anti mouse IgG (whole molecule) F(ab)2 

fragments (Sigma, 1:2,000) and 1 μg/ml Alexa Fluor 488 donkey anti rabbit IgG (H+L) 

(Invitrogen Molecular Probes) or Cy3 conjugated  sheep anti rabbit IgG (whole molecule) F(ab)2 

fragments (Sigma, 1:1,000) for 1 h at room temperature in the dark. After washing three times 

with PBS and once with water, coverslips were dried at 37°C, mounted in Vectashield mounting 

medium for fluorescence with DAPI (Vector laboratories) and analysed using an Axiovert 200M 

microscope (Zeiss). 
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1 Glycosyltransferases are generally expressed at very low levels (Kleene and Berger, 1993)  
2 At the N-termini glycosyltransferases carry non-cleavable signal peptides. To not interfere with the integrity of 
these sequences and in order to not interfere with the instructive nature that the N-terminal parts of the proteins have 
for subcellular targeting, epitope tags are as a rule added to the C-terminus. 
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Results and Discussion 
The beta-galactoside alpha-2,3-sialyltransferase III (ST3GalIII) is a member of a large family of 

Golgi resident sialyltransferases (ST). As typical type II membrane proteins, STs consist of a 

short N-terminally located cytoplasmic tail, a single transmembrane domain (TMD), a stem 

region and a large catalytic domain (CD) facing the Golgi lumen (see Fig. 1; for review see 

Harduin-Lepers et al., 2001). Hallmarks for the identification of vertebrate STs are four highly 

conserved sialylmotifs (L, large; S, small; III, motif III; VS, very small; see Fig. 1), that form 

parts of the active site (Datta et al., 1995; Datta et al., 1998; Geremia et al.1997; Kitazume-

Kawaguchi et al., 2001; Jeanneau et al. 2004). As displayed in Fig. 1, mutations identified in the 

patients leave intact the sialylmotifs but introduce sequence changes in the TMD (c.215C>A; 

Ala>Asp, A13D) and the C-terminal part of the CD (c.1492G>T; Asp>Tyr, D370Y). 

 

 

 

 

 
 

 

Fig. 1: Schematic representation of ST3GalIII and localization of the mutations found in NSARID patients. 

Sequences of the putative transmembrane domain (TMD; Kono et al., 1997) and of the C-terminus are depicted in 

detail and mutated amino acids are coloured in red. L, S, III, VS: sialylmotifs L, S, III, VS. 

 
To address localization of the enzymes, we used the mouse fibroblast cell line LMTK-, a well 

established cellular vessel for the reconstruction of glycosylation pathways. In a pilot experiment 

the cells were transfected with either ST3GalIIIwildtype or the mutants ST3GalIIIA13D and 

ST3GalIIID370Y, and a ST3GalIII specific antibody was used to control expression and 

subcellular localization of recombinant proteins (Fig. 2A). The expected faint1 Golgi-type signal 

could be detected in cells transfected with ST3GalIIIwildtype. Conversely, the signal generated by 

the mutant enzymes was bright and highly reminiscent to ER staining. To further explore these 

findings, transfection experiments were repeated with the three ST3GalIII variants carrying a 

myc-tag at their C-termini2, a measure that (i) improved signal intensities also for the wildtype 

and (ii) enabled the parallel display of ER and Golgi markers. 
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Fig. 2: Mislocalization of ST3GalIII mutants. Transiently transfected LMTK- (myc-tagged constructs) or 
CHO cells (untagged constructs) were fixated with paraformaldehyde, permeabilised with 0.2% Triton-100 and 
stained with combinations of antibodies against ST3GalIII, myc tag (9E10), α-mannosidase II as a Golgi marker 
and IRE1 as an ER marker, as indicated. As secondary antibodies, anti mouse-Cy3 (ST3GalIII, myc-tag) and anti 
rabbit-Alexa 488 (α-mannosidase II, IRE1) were applied. Wildtype (wt) ST3GalIII displays a punctuate staining 
co-localizing with Golgi marker α-mannosidase II. A13D mutants display partial retention in the ER, while 
D370Y mutants exclusively localize to the ER. 
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Results are shown in Figs. 2A and B and confirm that both mutants are erroneously retained in 

the ER. Unexpectedly, the segregation from the Golgi marker α-mannosidase II was complete 

with the CD-mutant ST3GalIIID370Y, indicating that this enzyme never reaches the Golgi 

apparatus. An intermediate phenotype was found for the TMD-mutant ST3GalIIIA13D in repeated 

experiments. 

Because the biosynthesis of glycotopes is a consecutive process and strictly dependant on the 

vectorial organization of enzymes in ER and Golgi, the obtained data implies a lack of functional 

ST3GalIII in the patients. However, as cellular systems suited to test this assumption by assaying 

activity in cellulo were not available, an in vitro test system was used to compare the activity of 

wildtype and mutant enzymes.  

 

Therefore, recombinant soluble enzymes were constructed by replacing 40 amino acids of the 

enzyme’s N-terminus (including the TMD) by Staphylococcus aureus protein A as a solubility 

mediating protein (Strati et al., 1983). Fusion constructs generated from wild-type and mutant 

enzymes were expressed in Chinese Hamster Ovary (CHO) cells, and the kinetic of appearance 

in the supernatant was monitored by Western blotting of IgG sepharose extracted proteins. The 

fusion protein produced from the wild-type enzyme (Fig. 3A, left panel) was efficiently secreted, 

and a maximal protein concentration was found 72 h after transfection. In contrast, the fusion 

protein containing the CD mutation D370Y appeared at very low level (Fig. 3A, right panel). 

Asking if the low secretion is due to ER-retention of the mutant protein, total cell lysates were 

prepared at the respective time points and additionally analysed by western blotting (Fig. 3B). 

No sign was obtained for an accumulation of mutant protein in the ER. Instead the slightly 

reduced intracellular expression seen for protA-Δ40D370Y in comparison to the wild-type fusion 

protein argues for similar translation rates that are followed by a rapid clearance of the putatively 

misfolded protA-Δ40D370Y protein (Ellgaard and Helenius, 2003; Hoseki et al., 2010). Despite of 

the low expression level, the production of fusion proteins enabled the in vitro testing of activity. 

Precipitates of the fusion proteins were therefore divided to be in parallel (i) applied in the 

activity assay (Fig. 4A) and (ii) analysed on a western blot as a loading control (Fig. 4B). 

Starting with similar protein concentrations, the highly sensitive and reliable radioactive test 

system indicated a dramatically reduced activity for the CD-mutant enzyme protA-Δ40D370Y 

(Fig. 4).  

 



  Chapter 5 – Results & Discussion 
    

 130

 

 

 

 

 

 

 
 

Fig. 3: Expression analysis of N-terminal Δ40 truncations of wild-type (wt) and D370Y mutant ST3GalIII. 
Transiently transfected CHO cells were harvested at indicated time points post transfection, and cell culture 
supernatants after immunoprecipitation (A) and cell lysates (B) were analysed by 10% SDS-PAGE followed by 
western blotting. Protein A-tagged ST3GalIII truncations were detected by mouse IgG and alkaline phosphatase 
conjugated anti mouse secondary antibody, followed by BCIP/NBT staining. The D370Y mutant exhibits 
considerably decreased expression levels as compared to the wild-type enzyme. 

 
Fig. 4: Activity assay with soluble Δ40 truncations 
of wild-type and D370Y mutant ST3GalIII. 
A, Protein A-tagged ST3GalIII truncations were 
coupled to IgG sepharose from cell culture 
supernatants of transiently transfected CHO cells 72h 
post infection. Beads were washed with reaction 
buffer and incubated with radiolabelled substrate 
CMP-[14C]Neu5Ac and acceptor Gal-β1,3-GlcNac-β-
para-nitrophenol in 50 mM MES pH 6.5 and 10 mM 
MnCl2. The acceptor structure was purified on C18 
columns and subjected to szintillation counting. 
Uncoupled IgG sepharose was used as a negative 
control (ctrl.). B, Aliquots of ST3GalIII coupled 
beads were analyzed by 10% SDS-PAGE followed 
by western blotting as a loading control. ST3GalIII 
was detected by mouse IgG and alkaline phosphatase 
conjugated anti mouse secondary antibody, followed 
by BCIP/NBT staining. At comparable amounts of 
employed enzyme, the D370Y mutant exhibits 
remarkably decreased activity. 

 

As the N-terminal mutation (A13D), affecting the transmembrane domain, escaped analysis in 

the above system, the activity assay was repeated with the full-length enzymes, allowing for 

comparative testing of both mutants after cell lysis and immunoprecipitation. In perfect 

agreement with the earlier data (see Fig. 4), the activity measured for mutant ST3GalIIID370Y is 

only slightly above background, whereas the mutant ST3GalIIIA13D preserves significant activity 

in this in vitro assay system (Fig. 5A). Importantly, the amount of recombinant mutant enzymes 

used was comparable in repeated experiments and always significantly above the level of 

recombinant wildtype ST3GalIII (Fig. 5B).  
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The reduced activity of the TMD mutant might be caused be immature glycosylation due to ER 

retention. Correct N-glycosylation has earlier been shown to be crucially involved in 

polysialyltransferase activity (Mühlenhoff et al., 2001), and since glycosylation takes place 

while newly synthesized proteins pass through the secretory pathway, the glycans of the partially 

mislocalized mutant might escape complete maturation. 

The drastically reduced activity of the CD mutant further supports the idea of protein misfolding 

evoked by this mutation. 

 
Fig. 5: Activity assay with full-length wild-type, 
A13D and D370Y ST3GalIII mutants. 
A, C-terminally myc-tagged full-length constructs of 
ST3GalIII wild-type and mutant enzyme were bound 
to 9E10 anti myc coupled IgG sepharose from cell 
lysates of transiently transfected CHO cells 72h post 
infection. Beads were washed with reaction buffer 
and incubated with radiolabelled substrate CMP-
[14C]Neu5Ac and acceptor Gal-β1,3-GlcNac-β-para-
nitrophenol in 50 mM MES pH 6.5 and 10 mM 
MnCl2. The acceptor structure was purified on C18 
columns and subjected to szintillation counting. Cell 
lysates from mock transfected cells was used as a 
negative control (mock). B, Aliquots of ST3GalIII 
coupled beads were analyzed by 10% SDS-PGE 
followed by western blotting as a loading control. 
ST3GalIII was detected by mouse IgG and alkaline 
phosphatase conjugated anti mouse secondary 
antibody, followed by BCIP/NBT staining. Although 
the loading control showed elevated enzyme levels 
for the mutants, decreased activity was observed for 
both A13D and D370Y. 

 

In sum, we here present for the first time a role for ST3GalIII in Intellectual Disability. The 

mutations identified by linkage analysis and homozygosity mapping in two families affected by 

NSARID were demonstrated to impact enzyme function by influencing protein stability and/or 

cellular localization and thus result in a loss of activity. 
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Chapter 6 - General Discussion 
Glycosylation and in particular sialylation crucially impact cell biology, e.g. by influencing 

protein characteristics, cell communication, virus-host interactions and the function of the 

immune system (Varki, 1993; Varki and Varki, 2007). Sialylation is essential for the synthesis 

of gangliosides and thus plays a central role in brain development and function (Rahmann, 

1995). More recently, the indispensable function of a polymeric form of sialic acid, polysialic 

acid (polySia) for brain development and neuronal plasticity has been demonstrated 

(Rutishauser, 2008; Mühlenhoff et al., 2009). Important in this context is that the dietary 

supplementation of sialic acid in infancy improves learning and memory (Wang et al., 2007).  

Apart from its role in brain function, polySia was shown to be involved in cancer malignancy, 

being associated with a high metastatic potential and a poor prognosis (Scheidegger et al., 

1994; Figarella-Branger et al., 1996; Tanaka et al., 2000; Daniel et al., 2000; Daniel et al., 

2001; Trouillas et al., 2003; Suzuki et al., 2005). This study aimed at further investigating the 

biochemical basis for physiological and pathological roles of sialic acid, polySia and its 

carriers NCAM and SynCAM 1, especially in cancer biology and brain development and 

function. 

 

Production of ST8SiaII and a library of NCAM fragments for structural 

studies on the polysialylation reaction and NCAM homophilic binding  
Polysialic acid (polySia) is a post-translational modification of the Neural Cell Adhesion 

Molecule (NCAM) consisting of α2,8-linked sialic acid residues with a chain length of up to 

60 residues in eukaryotes and 200 in prokaryotes (Inoue et al., 2000; Galuska et al., 2006; 

Barry and Goebel, 1957; McGuire and Binkley, 1964). The bulky structure of this hydrated 

and negatively charged homopolymer disrupts NCAM-dependant and -independant 

interactions of cell surface molecules by enlarging the intercellular space (Yang et al., 1994; 

Fujimoto et al., 2001; Johnson et al., 2005). 

Thus, NCAM-polySia plays an important role in brain development and cancer malignancy 

by influencing cell adhesion and migration as well as neuronal differentiation, neurite 

outgrowth and axon branching, fasciculation and pathfinding (reviewed in Mühlenhoff et al., 

1998; Gascon et al., 2007; Rutishauser, 2008; Mühlenhoff et al., 2009). 

Studies using mouse models with defects in the biosynthesis of polySia revealed that the 

molecule acts in two ways namely by (i) evoking effects by itself and (ii) by masking its 

carrier protein NCAM and thus steering NCAM functions in a time and space specific manner 

(Weinhold et al., 2005; Hildebrandt et al., 2007; Hildebrandt et al., 2009). An interesting new 
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field is thus to dissect polySia and NCAM function and to further characterise the complex 

process of NCAM signalling.   

PolySia is synthesised by two polysialyltransferases, ST8SiaII and ST8SiaIV. Both enzymes 

have been characterised in detailed in vivo studies (Eckhardt et al., 2000; Angata et al., 2004; 

Weinhold et al., 2005; Oltmann-Norden et al., 2008; Galuska et al., 2008; Galuska et al., 

2010) however, biochemical and particularly structural investigations have been hampered by 

the lack of recombinant enzyme. Since the enzymes depend on disulfide bond formation and 

correct N-glycosylation (Angata et al., 2001; Mühlenhoff et al., 2001), different eukaryotic 

expression systems were compared for the production of ST8SiaII in my diploma thesis 

(Eggers, 2006). This study established a baculovirus based insect cell expression system to be 

the most promising candidate for a robust and efficient production of the polysialytransferase. 

The aim of the current study was to further optimise and refine ST8SiaII production to gain 

material for structural studies. Further, a series of NCAM fragments were produced using the 

same expression system to provide material for structural studies and investigations to dissect 

the impact of distinct domains on NCAM function. 

The test expression of different constructs of the murine ST8SiaII highlighted the general 

sensibility of the system and in particular the importance of correct N-glycosylation for the 

enzymes’ expression. An N-terminal truncation lacking 56 amino acids but retaining all 

N-glycosylation sites proved to be the most promising candidate for the establishment of a 

robust expression system. The purification procedure introduced in Eggers 2006 was further 

optimised and this resulted in production of pure protein with yields high enough to start 

crystallisation trials. Conditions that allow the formation of precrystals and tiny crystals have 

been identified and provide an optimal basis for further structural studies. 

The recombinant enzyme isolated from insect cell cultures was active for both 

autopolysialylation (polysialylation of the enzymes themselves; first described by Mühlenhoff 

et al., 1996b) and the polysialylation of acceptor proteins like NCAM and SynCAM 1. 

Surprisingly, mST8SiaII also proved to act on insect cell derived NCAM. This was 

unexpected because insect cells do not generate sialylated complex N-glycan core structures, 

which were found to be required for polySia transfer onto NCAM in an earlier study 

(Mühlenhoff et al., 1996a). In contrast to this, autopolysialylation can be performed on 

asialoglycans, but is dependant on terminal galactosylation (Mühlenhoff et al., 1996b). 

However, both glycan structures are expected to be absent or only present in small amounts 

on insect cell produced proteins. Although unexpected acitivity was observed, only a small 

portion of the insect cell derived NCAM was found to be polysialylated when compared to the 
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mammalian cell derived NCAM. This small polysialylated NCAM fraction therefore provides 

an ideal starting material for further detailed analysis of requirements for glycan core 

structures to act as acceptors for polysialylation. 

The fact that only very few proteins can act as polySia carriers leads to the assumption that 

the polysialylation reaction relies on specific recognition of target molecules by the polySTs. 

In fact, co-immunoprecipitation of NCAM with ST8SiaIV has been described by Colley and 

colleagues (Colley, 2010). Trials undertaken in the current study to observe this protein 

interaction for ST8SiaII and NCAM by analytical ultracentrifugation (AUC) were not 

successful. To exclude an impact of the altered glycosylation in insect cells, the experiment 

should be repeated with mammalian cell derived proteins. Further, the experiment needs to be 

repeated with ST8SiaIV, as this was the polyST detected in complex with NCAM by Colley 

and colleagues (Colley, 2010). Finally it has to be considered, that the soluble constructs used 

in the AUC experiment miss the N-terminal domains of the polyST (cytoplasmic tail, TMD, 

and parts of the stem region) and C-terminal domains in NCAM (cytoplasmic domain and 

TMD), respectively. These protein domains may me important in mediating and stabilising 

protein-protein contacts.  

To allow for further characterisation of distinct parts of the NCAM molecule, a series of 

human NCAM fragments was generated using the same expression and purification system as 

for ST8SiaII. The purified proteins were used for the above mentioned experiments 

addressing complex formation with ST8SiaII, for diverse crystallisation trials, for studies 

concerning NCAM oligomerisation and to further clarify NCAM signalling events. A crystal 

obtained from the NCAM Ig1-FNII preparation emerged to consist of a contamination derived 

from the insect cell medium instead of NCAM protein. The fact that crystals of this 35 kDa 

protein were obtained earlier and that this easy-to-crystallise contamination is ubiquitously 

found in insect cell derived protein preparations highlights the urge for an efficient method to 

eliminate this contamination. 

The abnormal migration behaviour of NCAM Ig1-FN2 in size-exclusion chromatography 

(SEC) triggered detailed investigations on NCAM oligomerisation. Using AUC, the NCAM 

ectodomain was shown to dimerise in solution. Truncating the protein by Ig1 and Ig2 strongly 

diminished the interaction, while further deletion of FN2 completely abolished dimerisation. 

In sum, we successfully established a robust expression system for active ST8SiaII and a 

library of NCAM fragments, allowing for further characterisation of the impact of distinct 

domains on NCAM function.  
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The Influence of polySia-NCAM on regulation of focal adhesions and cell 

migration  
PolySia is well-known to promote cancer malignancy by increasing tumour invasion and 

metastatic potential (Scheidegger et al., 1994; Figarella-Branger et al., 1996; Tanaka et al., 

2000; Daniel et al., 2000; Daniel et al., 2001; Trouillas et al., 2003; Suzuki et al., 2005). 

Although polysialylated NCAM has earlier been shown to impact cell attachment and 

migration processes (Sadoul et al., 1983; Hoffman and Edelman, 1983; Ono et al., 1994; 

Wang et al., 1994; Hu et al., 1996; Chazal et al., 2000), the distinct contributions of NCAM 

and polySia as single affectors remain elusive. 

In this study, we were able to demonstrate that polySia removal from NCAM resulted in 

reduced cell migration and in stimulation of focal adhesions. These effects were inhibited by 

the NCAM binding peptide C3d, a potent inhibitor of NCAM interactions (Ronn et al., 1999; 

Ronn et al., 2000; Kiryushko et al., 2003; Kiselyov et al., 2009), and were reproduced by 

application of soluble NCAM to NCAM negative cells. This indicates that these effects were 

evoked by exogenous NCAM, which in this case acted as a ligand.  

The hitherto described pathways activated upon NCAM-induced signalling depend on FGF 

receptor stimulation or NCAM homophilic binding, which mediates signal transfer via 

RPTPα or the intracellular domain of NCAM-180 (reviewed in Hinsby et al., 2004a and 

Ditlevsen et al., 2008). 

The stimulation of focal adhesions was shown to result in increased phosphorylation of the 

src-family kinase Fyn and recruitment of phosphorylated Fyn to the adaptor protein paxillin. 

Further, this process involved actin fibre reassembly, but was independant of FGF receptor 

activation, as investigated by use of the FGF receptor specific inhibitor PD173074, and of 

NCAM homophilic interactions in trans, as determined by the use of NCAM negative LS 

neuroblastoma cells. Furthermore, changing amounts of extracellular fibronectin did not 

impact cell migration and heparin-induced changes in cell migration were independant of the 

NCAM-mediated effect. 

This suggests that a so far unknown heterophilic receptor must exist for transmittance of the 

signal evoked by exogenous NCAM acting as a ligand, leading to stimulation of focal 

adhesions.  

This notion is supported by the fact that anti-proliferative and pro-differentiating effects of 

NCAM occur in cells of both wild-type and NCAM negative knock-out mice and thus must 

rely on heterophilic interactions (Amoureux et al., 2000; Seidenfaden et al., 2003; Röckle et 

al., 2008). However, this is the first time for a heterophilic NCAM signalling event to be 
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observed, which is obviously independant from FGF receptor signalling and points towards a 

so far uncharacterised signalling pathway of ligand NCAM. 

Using the NCAM fragments produced in chapter 1, the sites responsible for activation of the 

pathway influencing focal adhesions could be shown to reside in Ig3 and/or Ig4, while FGF 

receptor dependant phosphorylation of ERK 1/2 was stimulated by all fragments used, with 

the minimal fragment consisting of Ig5 and FN1. Also, the NCAM mimicking peptide FGL 

induced ERK 1/2 phosphorylation as described earlier, but did not impact the number of focal 

adhesions, further underlining the presence of distinct pathways leading to ERK 1/2 

phosphorylation or stimulation of focal adhesions. 

These results might be of major importance for drug design targeting cancer malignancy, 

since it appears to be fundamental to target polySia independantly of its carrier molecule 

NCAM which increases adhesiveness and reduces migration. Further, it will be important to 

dissect this effect from the survival promoting action of NCAM mediated by FGF receptor 

dependant ERK 1/2 phosphorylation, which can be made possible due to the involvement of 

dinstinct NCAM regions. 

 

Identification of SynCAM 1 as a novel polySia carrier 
The crucial role of polySia residing on NCAM in brain development has impressively been 

demonstrated by the use of various mouse models (Weinhold et al., 2005; Hildebrandt et al., 

2007; Hildebrandt et al., 2009; also see General Introduction of this thesis). However, NCAM 

knock-out mice display a remainder of ~5% of polySia in brain lysates as compared to 

wild-type (Galuska et al., 2010). Applying peptide mass fingerprinting and mass 

spectrometric fragmentation analysis, SynCAM 1 was identified as a novel polySia carrier in 

NCAM positive as well as NCAM negative mice. The addition of polySia was shown to occur 

on the third N-glycosylation site Asn116, which is located in the first Ig domain of SynCAM 1 

and efficiently interrupts homophilic binding in bead aggregation assays (Galuska et al., 

2010). This finding is in accordance with the change in NCAM properties observed upon 

polysialylation (Yang et al., 1994; Fujimoto et al., 2001; Johnson et al., 2005). 

SynCAM 1 homophilic binding and binding to SynCAM 2 is responsible for the promotion of 

synapse assembly of SynCAM 1 (Biederer et al., 2002; Fogel et al., 2007). Deletion of 

N-glycans on Ig1 of SynCAM 1 results in decreased homophilic binding and this effect was 

found to be directly translated into reduced synapse formation (Fogel et al., 2010). Based on 

these observations we hypothesized that polySia on SynCAM 1, similar to polySia on NCAM 

is involved in regulating SynCAM 1 function by stereo-chemical means. 
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Recombinant ST8SiaII and ST8SiaIV produced in insect cells were able to polysialylate 

SynCAM 1 and depended on terminal sialylation, underlining similar acceptor requirements 

as observed for NCAM (Mühlenhoff et al., 1996a). The similarities in NCAM and 

SynCAM 1 structure open up new possibilities for investigating the details of the 

polysialyltransferases’ acceptor specificity, e.g. by structural comparison of their Ig domains. 

Interestingly, requirement for correct membrane spacing of NCAM acceptor has been 

demonstrated by Close et al. (2003) and SynCAM 1 and NCAM polysialylation sites show 

comparable distances to the plasma membrane.  

Immunostaining of brain sections and primary culture cells revealed that polySia on 

SynCAM 1 localises exclusively to NG-2 glial cells. These cells represent multipotent 

progenitors that can give rise to oligodendrocytes, astrocytes and neurons. Interestingly, a 

subset of NG-2 cells form unique neuron-glia synapses, which led to the speculation that 

polySia might be involved in regulating the timed appearance of the synapse promoting 

SynCAM 1 molecule. Thus, polySia-SynCAM 1 provides another interesting example for the 

influence of specific sialylation on brain function. 

 

ST3GALIII and Intellectual Disability  
Intellectual disability (ID) severely impacts affected individuals and their families and, with a 

lifetime cost of 1-2 million US dollar, is the most costly disease in Europe and the United 

states. However, little public attention is focused on this disease, probably because it is often 

regarded in a social and educational rather than a medical view (Ropers, 2010). ID is a 

genetically heterogenous disorder affecting ~0.5% of the population in developed countries 

(de Brouwer et al., 2007). The majority of patients are non-syndromic (NS), and autosomal 

recessive (ARID) forms are supposed to be common, yet only few genes have been identified 

to be involved in NSARID so far (Najmabadi et al., 2007). 

By linkage analysis and homozygosity mapping, the sialyltransferase ST3GalIII was 

identified as a novel gene affected by mutation in two Iranian families affected by NSARID. 

Sequence analysis revealed two non-related mutation, c.215C>A, leading to mutation of Ala13 

to Asp (A13D) in the transmembrane domain (TMD), and c.1492G>T, leading to a mutation 

of Asp370 to Tyr (D370Y) close to the C-terminus of ST3GalIII. The N-terminal region of 

glycosyltransferases, and especially the transmembrane domain have earlier been shown to be 

crucial for correct enzyme localisation in the Golgi (Munro et al., 1991; Nilsson et al., 1991; 

Tang et al., 1992; Wong et al., 1992; Teasdale et al., 1992; Graham et al., 1995; Becker et al., 
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2000; Sousa et al., 2003). Thus, localisation studies were performed for wild-type and mutant 

enzymes using immunofluorescent labelling. 

The TMD mutant A13D was indeed retained in the ER, although considerable amounts of the 

enzyme still reached the Golgi. In contrast and to our surprise, a complete retention of the 

C-terminal D370Y mutant in the ER was observed. This finding and the drastically reduced 

expression of the D370Y mutant as compared to the wild-type enzyme, when expressed in 

CHO cells as soluble proteins, supported the idea that this mutant is severely misfolded and 

thus not transported to the Golgi but rather degraded by the ER associated degradation 

(ERAD) system. This hypothesis needs to be investigated by further studies addressing ER 

stress and the unfolded protein response (UPR). 

The mislocalisation of the A13D mutant is probably caused by changing transmembrane 

characteristics through the introduction of a charged residue into this otherwise hydrophobic 

region. 

Interestingly, the length of a transmembrane domain has been correlated to its cellular 

localisation by the bilayer thickness theory proposed by Bretscher and Munro (1993). This 

theory is based on the observation that a gradient of cholesterol and sphingolipid 

concentrations in the membrane can be observed increasing from the ER through the Golgi 

apparatus to the plasma membrane, probably generating a gradient of increasing membrane 

thickness by influencing the degree of lipid organisation (Levine et al., 1971; Orci et al., 

1981; van Meer, 1989; Bretscher and Munro 1993). 

Supporting this, the TMD of glycosyltransferases (GT) localising to the cell surface is in 

general approximately 5 amino acids longer than that of Golgi localised GTs (Bretscher and 

Munro, 1993; Tu et al., 2010) and Golgi localisation of a chimera containing the 17 amino 

acid spanning TMD of ST6Gal I was maintained after substitution of the TMD by 17 leucin 

residues. In contrast, elongation of this artificial TMD to 23 leucin residues, corresponding to 

the TMD of the surface localised protein DDIV, shifted the chimera to the plasma membrane 

(Munro, 1995b). Furthermore, TMDs of Golgi resident GTs are enriched in amino acids with 

aromatic side chains, especially phenylalanine, when compared to surface localised GTs 

(Munro, 1995a; Tu et al., 2010) and the accommodation of these residues and of short TMDs 

is energetically disfavoured in cholesterol enriched membranes (Mouritsen and Bloom, 1993; 

Lundbaek et al., 2003). The mutation of Ala13 in ST3GalIII to Asp shortens the hydrophobic 

transmembrane domain by 4 amino acids. This might lead to a favoured localisation in the 

thinner and cholesterol poor ER membrane. Since this theory has so far only been applied for 
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the translocation of proteins from the Golgi apparatus to the plasma membrane, this would be 

a highly interesting first example accounting for the early part of the secretory pathway. 

However, Golgi localisation has been shown to depend on the interplay of a plethora of 

mechanisms, e.g. on so called oligomerisation/kin interaction and retrograde transport 

(reviewed in Tu et al., 2010) and further investigations are needed to eventually determine the 

cause of A13D ST3GalIII mislocalisation. 

Activity assays showed that the D370Y mutant exhibited a drastically reduced 

sialyltransferase activity in vitro as a soluble protein A fusion construct as well as in a full-

length variant. This effect can be explained by the severe misfolding suggested by the 

localisation experiments and supported by the drastically decreased expression of the soluble 

variant of the D370Y mutant. The A13D mutant again displayed an intermediate phenotype 

with reduced activity when compared to the wild-type, which yet exceeded the drastically 

decreased activity of the D370Y mutant.  

The reduced activity of the A13D mutant might be due to incorrect glycosylation evoked by 

the altered localisation of the enzyme. Proteins are post-translationally glycosylated as they 

pass through the ER and the Golgi apparatus and glycosyltransferases display specific 

localisation to distinct areas of the secretory pathway according to their order of action. Thus, 

glycans of the mislocalised ST3GalIII A13D mutant might escape maturation. 

Correct glycosylation has previously been demonstrated to be crucial for activity of the 

polysialyltransferases ST8SiaII and ST8SiaIV (Mühlenhoff et al., 2001; Close et al., 2001) 

and might also be pivotal for ST3GalIII function. 

It remains to be elucidated, which products are formed by ST3GalIII and by which means 

they are required for brain function. The notion that ST3GalIII is only weakly active on 

glycolipids (Kono et al., 1997) argues against a crucial role for gangliosides in the 

consequences of ST3GalIII mutation.  

Sialic acid was shown by Wang et al. (2007) to support learning and memory when fed to 

newborn piglets, and the crucial role for sialylated gangliosides (Rahmann, 1995) and polySia 

(Mühlenhoff et al., 2009; Rutishauser, 2008) regulation in brain development further supports 

the importance of this unusual sugar. Interestingly, also SynCAM 1 function has been shown 

to depend on correctly regulated sialylation (Fogel et al., 2010). If ST3GalIII takes part in 

SynCAM 1 sialylation and thus influences its function, needs to be elucidated.  

Together, these data strongly highlight the fundamental role of sialic acid in brain function 

and underline the urge to gain a deeper understanding of the underlying mechanism 

translating molecular events into a physiological context. 
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In sum, during the course of this study, a robust expression system for the 

polysialyltransferase ST8SiaII has been established, which provided material for structural 

and biochemical studies and was used for the characterisation of SynCAM 1 as a novel 

polySia carrier. Furthermore, a library of NCAM fragments was generated, enabling 

crystallisation trials, studies on the nature of NCAM oligomerisation and the dissection of 

NCAM and polySia functions in cancer biology. Using these constructs, the interaction site of 

NCAM leading to stimulation of focal adhesion by heterophilic signalling could be mapped to 

Ig3 and Ig4. Importantly, the identification of mutations in the gene coding for ST3GalIII as a 

cause for the establishment of intellectual disability demonstrated a pivotal role in brain 

development and function for this sialyltransferase. 
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Abbreviations 
Ala   Alanine 
AMPA   α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
Asn   Asparagine 
Asp   Aspartic acid  
AUC   Analytical ultracentrifugation 
BDNF    neurotrophic factor  
CD   Catalytic domain 
CMP   Cytidine 5’-monophosphate 
CNS    Central nervous system 
CREB    cAMP-responsive-element-binding  
EDTA   Ethylen-diamine-tetraacetic acid  
EMBL   European Molecular Biology Lab 
ER   Endoplasmic reticulum 
ERAD   ER associated degradation 
ERK   Extracellular signal regulated kinase  
FAK   Focal adhesion kinase 
FGF   Fibroblast growth factor 
FGFR   Fibroblast growth factor receptor 
FN domain  Fibronectin III like domain 
GDNF   glial derived neurotrophic factor 
GPI   Glycosylphosphatidylinositol 
GT   Glycosyltransferase 
hpi   hours post infection 
HSPG   Heparan sulphate proteoglycan 
ID   Intellectual disability 
Ig domain  Immunoglobulin like domain 
Kdn    2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid  
MAP kinase  Mitogen-activated protein kinase 
MEK    MAP kinase kinase  
mST8SiaII  murine ST8SiaII 
NCAM  Neural cell adhesion molecule 
Neu5Ac  5-N-acetylneuraminic acid 
Neu5Gc   5-N-glycolylneuraminic acid  
NMDA  N-methyl-D-aspartate 
NSARID   Non-syndromic autosomal recessive intellectual disability 
ob    small olfactory bulb  
OCAM   Olfactory Cell Adhesion Molecule  
PAGE   Polyacrylamide gel electrophoresis 
Pax   Paxillin 
PBR   Polybasic region 
PDGF    platelet-derived growth factor  
polySia  Polysialic acid 
polyST   polysialyltransferase 
PSTD   Polysialyltransferase domain 
RMS    rostral migratory stream  
SDS   Sodium dodecylsulphate 
SEC   Size-exclusion chromatography 
Sia   Sialic acid 
SM III   Sialylmotif III 
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SM L   Sialylmotif L 
SM S   Sialylmotif S 
SM VS  Sialylmotif VS 
ST   Sialyltransferase 
SVZ   subventricular zone  
SynCAM  Synaptic cell adhesion molecule 
TCA   Trichloroacetic acid 
TMD   Transmembrane domain 
Tyr   Tyrosine 
UPR   Unfolded protein response 
wt   Wild-type 
WB   Western Blot 
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