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Abstract

This experimental study focuses on revealing of magma ascent conditions (e.g.
decompression rate, volatile composition, P-T path) related to the 1991-1995
eruption of Unzen Volcano, Japan by investigating in degassing and crystallization
processes. Fluid-saturated phase stability and isothermal decompression experiments
were performed using a synthetic analogue to the rhyodacitic Unzen groundmass
composition. For decompression experiments at 850 and 930°C, we distinguished
between high pressure decompression (HPD; 300 to 50 MPa) and low pressure
decompression (down to surface pressures of 0.1 MPa). Finally, the experimental end
products were compared to natural Unzen dome and conduit samples.

The natural mineral assembly of plagioclase, amphibole, pyroxenes and oxides
were reproducted in decompression and phase stability experiments. Bubble number
densities (BNDs) follow a heterogeneous nucleation trend at decompression rates >
0.01 MPa/s, resulting in decreasing BND values with decreasing decompression
rates. While at lower decompression rates (< 0.01 MPa/s), the BND values of
decompression experiments including plagioclase microlites do not follow the above
mentioned trend anymore. Their relatively high BNDs are indicating dominant
bubble nucleation. Furthermore, there was no significant variation of the plagioclase
microlite number density (MNDp)) value observed as a function of  the
decompression rate, indicating overall dominant microlite nucleation during
decompression. Decompression-induced MND values are dependent on the initial
value at isobaric stating conditions. Anyway, our MNDp; values for HPD and LPD
experiments range from 10>* mm™ to 10" mm™ and from 10>” mm™ to 10°* mm™,
respectively. Natural large plagioclase microlites were best experimentally
reproducted in water-bearing HPD experiments at 850°C with decompression rates <
0.0005 MPa/s, reaching up to maximum sizes of 200-250 um.

In general, two main observations were made: (1) the large sizes and skeletal
shapes of natural Unzen plagioclase microlites can be experimentally reproduced
when its nucleation and growth occurs during decompression only and (2) amphibole
microlites are not stable at pressure below ~100 MPa and at temperatures above
900°C. Based on the textural and chemical analyses of experimental run products
(mineral phases and residual glasses), the average magma ascent rate of Unzen
magmas in the pressure range of > 200 to 0.1 MPa is estimated to be ~30-50 m/h,
presumable following a non-isothermal decompression path (< 900°C).

Keywords: crystallization, vesiculation, magma ascent
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Zusammenfassung

Die Magmaaufstiegsbedingungen (z.B. Druckentlastungsrate,
Volatilzusammensetzung, P-T-Pfad) der 1991-1995 Eruption des Unzen-Vulkans
(Japan) werden in dieser experimentellen Studie unter Beriicksichtigung der
Entgasungs- und Kristallisationsprozesse untersucht. Mittels eines synthetisierten
Rhyodazits analog zur Grundmassenzusammensetzung des Unzen-Vulkans wurden
fluidgesdttigte Phasenstabilitits- und isothermale Druckentlastungsexperimente
durchgefiihrt. Die Druckentlastungsexperimente wurden in Hochdruck- (HDE; 300
bis 50 MPa) und Niedrigdruckentlastungsexperimente (NDE; bis zu
Oberflachendriicken von 0.1 MPa) unterschieden und wurden bei 850°C und 930°C
durchgefiihrt. AbschlieBend wurden die chemischen und strukturellen Ergebnisse der
experimentellen Endprodukte mit den natiirlichen Dom- und Schlotproben
verglichen.

Die natiirliche Mineralparagenese von Plagioklas, Amphibol, Pyroxen und
Oxidmineralen wurde in Druckentlastungs- und Phasenstabilititsexperimenten
nachgebildet. Bei schnellen Druckentlastungsraten (> 0.01 MPa/s) folgen die
Blasenanzahldichten (BAD) einem heterogenen Nukleationstrend, welcher durch die
Abnahme von BAD mit abnehmenden Druckentlastungsraten charakterisiert wird.
Im Gegensatz dazu folgen die BAD bei langsamerer Druckentlastung (< 0.01 MPa/s)
nicht mehr diesem oben genannten Trend, speziell in Experimenten mit
Plagioklasmikrolithen. Deren relativ erhohte BAD-Werte weisen auf eine Dominanz
der Blasenbildung hin. Es konnte keine signifikante Variation der
Plagioklasmikrolithenanzahldichte (MADy)) in Abhéngigkeit der
Druckentlastungsrate beobachtet werden, welches auf eine allgemeine Dominanz des
Mikrolithenwachstums wiahrend der Druckentlastung schlieBen ldsst. Unsere
druckinduzierten MAD-Werte zeigen eine Abhédngigkeit vom Ausgangsmaterial bei
isobaren Bedingungen auf. Jedenfalls variieren unsere MADp-Werte der HDE- und
NDE-Experimente von 10°* mm™ bis 10°” mm™ bzw. von 10> mm™ bis 10°* mm’
> Die Reproduzierbarkeit der natiirlichen, lang gewachsenen Plagioklasmikrolithe
(mit Langen von bis zu 200-250 pum) wurde am besten in wassergeséttigten HDE-
Experimenten bei 850°C und einer Druckentlastungsrate von < 0.0005 MPa/s erzielt.

Aus den experimentellen Untersuchungen konnten zwei  wichtige
Schlussfolgerungen gezogen werden: (1) das skelettartige Wachstum und die Langen
der natiirlichen Plagioklasmikrolithe des Unzens konnen experimentell reproduziert
werden, wenn deren Keimbildung und Wachstum nur wihrend der Druckentlastung
stattfindet und (2) sind Amphibolmikrolithe instabil bei Driicken unter ~100 MPa
und bei Temperaturen iiber 900°C. Basierend auf strukturellen und chemischen
Analysen der experimentellen Endprodukte (Mineralphasen und Restschmelze) wird
eine Magmaaufstiegsrate von ~30-50 m/h im Druckbereich von > 200 bis 0.1 MPa
fiir die Unzen-Eruption angenommen, wobei der Druckentlastungpfad vermutlich
nicht isotherm verlief (< 900°C).

Schlagworter: Kristallisation, Blasenbildung, Magmaaufstieg
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1. INTRODUCTION

1.1  1991-1995 Mt. Unzen eruption, Japan

Mt. Unzen is situated on the Shimabara Peninsula of Kyushu Island, Japan. The volcano is
located in the volcanotectonic “Unzen graben”, approximately 70 km west of the volcanic
front of SW Japan, where the Philippine Sea Plate is subducting beneath the southwestern
part of Japan, see Fig. 1.1.

130°E 132°E

et -

KYUSHU TSURUMI
ISLAND ____A

Fig. 1.1. Location map of Kyushu Island and Unzen volcano, Japan modified after Hoshizumi et al.
(1999). Grey arrow shows the relative moving direction of the Philippine Sea Plate after Seno (1977).
Red triangles indicate active volcanoes, Unzen volcano is indicated by red triangle in red square.

Unzen volcano offers a unique opportunity to interpret magmatic textures and
volcanic processes because its latest eruption in 1991-1995 was well-observed and well-
documented before, during and after the eruption as its occurrence was announced by

seismic activity (e.g. Nakada & Fuji, 1993; Nakada et al., 1999). In the framework of an
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international project, a drilling was conducted in 2004 to reach the so-called conduit zone
at depth (USDP-4; e.g. Nakada & Eichelberger, 2004; Hoshizumi et al., 2005), see Figs.
1.2 and 1.3. Therefore, samples have been not only collected at the surface (e.g., Nakada et
al., 1999) but also at depth (ICDP drilling, Nakada et al., 2005).

The 1991-1995 Unzen eruption occurred as a result of mixing between andesitic and
rhyolitic magmas in deep magma chambers followed by an ascent of mixed dacitic magma
from depth (Venezky & Rutherford, 1999; Holtz ef al., 2005), see Fig. 1.4. It has to be
noted that enclave studies of Browne et al. (2006) conclude a mingling of basaltic and
dacitic magmas during magma recharge events. Petrological and experimental studies
indicate that before the eruption the mixed dacitic magma was stored at a minimum
pressure of about 160 MPa and temperatures from 870 to 930°C, while it contained about 6
wt% H,O (Venezky & Rutherford, 1999; Holtz et al., 2005). The maximum pressure of the
magma chamber is considered to be less than 300-400 MPa based on the geophysical data
(maximum storage depth of about 11 km, Nishi ez al., 1999) and on the H,O content of the
melt inclusions in phenocrysts (up to 7-8 wt.% H,O; Nishimura et al., 2005; Holtz et al.,
2005). Botcharnikov et al. (2008) estimated 0.02 wt% of sulphur and 0.05 wt% of chlorine
for the mixed magma, while additional 0.09 wt% of CO, are meant to be present
(estimated after Ohba et al., 2008).

During the eruption, a lava dome, composed of several lava lobes, was formed on the
top of the volcano, producing numerous pyroclastic flows (e.g. Nakada & Motomura). The
dome rocks consist of vesicular dacites with plagioclase, hornblende, biotite and quartz as
main phenocrysts which are presumably originated from silicic rocks at depth (e.g. Nakada
& Motomura, 1999; Holtz et al., 2005). The groundmass is interpreted to be representative
of the melt after magma mixing and it is composed of matrix glass, plagioclase, pargasite,
pyroxene, Fe-Ti oxides and apatite microlites (e.g. Nakada & Motomura, 1999, Sato ef al.,
1999). Since the vesiculation and crystallization of Unzen groundmass mainly occurred
during magma ascent, the textures and phase compositions of the groundmass in the dome

lavas may provide constraints on processes of magma degassing and crystallization

(Noguchi et al., 2008).
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Fig. 1.2. Vertical section through the USDP-4 well (purple color; modified after Nakada et al., 2005). A lava
dike that is considered to be the conduit of the 1991-1995 eruption was located at the deepest part of the
well, indicated in red color.
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Fig. 1.3. Three-dimensional image of conduit drilling (image courtesy of the Unzen Scientific Drilling
Project). Shown inside the volcano are the drilling trajectory of conduit drilling (USDP-4) and plate-shaped
conduit (dike) together with earthquake hypocenters, water table and explosion source (e.g. Nakada &
Eichelberger, 2004).
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Fig. 1.5. Schematic phase diagram for water-saturated rhyodacitic magma, corresponding to groundmass
of Unzen based on a compilation of experimental data from Rutherford & Hill (1993), Sato et al. (1999),
Holtz et al. (2005) and Larsen (2005).

The phase diagram in the pressure (P) — temperature (T) field for water-saturated
(X"H,0=1.0) rhyodacitic groundmass composition is shown in Fig. 1.5, based on the
available literature data relevant to Unzen rhyodacitic system (e.g. Rutherford & Hill,
1993; Sato et al., 1999; Holtz et al., 2005; Larsen, 2005). At a given temperature, the
stability fields of minerals expand with decreasing pressure due to exsolution of dissolved
water from the melt. On the other hand, some minerals such as amphibole belong to high-
pressure mineral phase assemblage and are not stable at pressures below 80-100 MPa.
Consequently, an isothermal magma ascent to the surface should result in a continuous
change in the mineral assemblage, in the compositions and textures of groundmass
microlites as well as in the vesicularity of erupted rocks. Similar variations are expected at
water-undersaturated conditions in presence of a HO-CO,-bearing fluid. However, a P-T
phase diagram for the H;O+CO,-bearing Unzen rhyodacitic system at given mole fraction
of water in the fluid phase (XﬂHzO) is not available from literature data.

However, the interpretation of the textures of Unzen rhyodacitic groundmass

observed at depth and at the surface requires quantitative data on growth kinetics of
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microlites resulting from slow decompression and related volatile degassing. Most
available data (see above) are not applicable for the example of Unzen. Even experimental
datasets from rhyodacitic or rhyolitic examples (e.g. Martel & Schmidt, 2003) are difficult
to apply to Unzen because the phase stability of minerals such as plagioclase and
amphibole are strongly dependent on small compositional variations. For example,
although the bulk compositions of Mt. St. Helens, Redoubt and Unzen are very similar
(63.4 to 65.2 wt% Si0,), the stability field of Unzen amphibole is extended to lower
pressures when compared to Mt. St. Helens and Redoubt (difference up to 60 MPa at same
temperature and aH,0, Sato et al., 1999; Holtz et al., 2005). Amphibole belongs to the
microlite assemblage at Unzen and, clearly, decompression-induced crystallization (or
dissolution) experiments with the groundmass composition of Unzen need to be conducted

to interpret and compare the natural textures at depth and at the surface.

1.2 Decompression-related dynamic processes

Magma ascent rate can control the eruption style (e.g., Hurwitz & Navon, 1994; Sparks et
al., 1998) and groundmass textures of erupted rocks (e.g., crystal and vesicle sizes and
number densities) may preserve important information about the decompression path and
processes related to the magma ascent within the conduit. Decompression in ascending
magmas leads to (homogeneous or heterogeneous) nucleation and growth of gas bubbles
(mainly H,O, CO,, SO,, H,S and HCI) and of microlites as a result of exsolution of
volatiles from the melt into bubbles increasing the magma liquidus temperatures and
therefore enabling extensive groundmass crystallization. There have been several studies to
quantify nucleation and growth rates of both microlites and bubbles as a function of
decompression or cooling rate (e.g. for microlites, Cashman & Marsh, 1988; Marsh, 1988,
1998; Higgins, 2000, 2002, 2006; Hammer & Rutherford, 2002; e.g. for bubbles Simakin
et al., 1999; Mourtada-Bonnefoi & Laporte, 1999, 2002; Gardner & Denis, 2004;
Toramaru, 2006; Gardner, 2007). In addition to decompression rate, these studies
emphasize the role of melt viscosity, of nucleation and undercooling on number and size of
bubbles and microlites. However, in order to interpret quantitatively parameters such as
textures and compositions of magmatic phases and to evaluate the dynamics of a magmatic

system, the processes of magma degassing and crystallization need to be simulated
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experimentally. Considering that each natural magmatic system has its own characteristics
before ascent, the available data can not be extrapolated to interpret quantitatively
parameters such as BND and MND (bubble number density and microlite number density)
to evaluate the dynamics of magmatic system (e.g., ascent rate).

Most previous works focused so far either on bubble nucleation and growth or on
microlite nucleation and growth as a result of decompression (see review of Hammer,
2008). Only little attention has been given to the characterization of experimental samples
in which bubbles and microlites nucleate and grow simultaneously (e.g., Simakin et al.,
1999). In this PhD study, it is aimed to experimentally simulate the magma ascent from
magma chamber to shallow levels or to surface pressures during the 1991-1995 Unzen
eruption and to correlate chemical compositions and textural features of the experimental
products with natural Unzen groundmass samples collected from the dome and from drill
cores provided by literature data. Therefore, several sets of isothermal decompression
experiments for high pressures (300 to 50 MPa) and for lower pressures (final pressure of
0.1 MPa) at two different temperatures (850°C and 930°C) were performed, varying the
decompression rates from 20 to 0.0001 MPa/s and using two fluid-saturated series: (a) H,O
and (b) H,O+CO,. Additionally phase stability experiments were conducted at different P-
T-X"H,O conditions to improve and complete the interpretation of the experimental
decompression datasets. The results will provide a unique opportunity to compare data
obtained experimentally with information from natural samples collected at the surface
(e.g., Nakada et al, 1999) and at depth (ICDP drilling, Nakada et al., 2005). The
experimental results on kinetics of decompression-induced nucleation and growth of
bubbles and microlites are used to interpret textures of erupted products and to constrain

processes occurring in magmatic conduit during the last Unzen eruption.



2. PHASE STABILITY EXPERIMENTS

Up to this point, no adequate literature data on mineral phase stabilities have been
published that are covering the investigated rhyodacitic groundmass composition of the
1991-1995 Unzen eruption, especially data at water activities lower than 1.0 are lacking. In
order to facilitate and support the interpretation of the isothermal decompression
experiments (chapter 3), phase stability experiments were performed at different P-T-
X"H,0 (pressure, temperature and mole fraction of water in the fluid, respectively)
conditions, using a synthetic analogue of the natural bulk groundmass composition of the
1991-1995 erupted Unzen magma (Sato et al., 1999, 2005; Botcharnikov et al., 2004; see
Table 2.1). The aim of this experimental approach is the determination of the stability
fields of the major microlite mineral phases observed in natural Unzen rocks such as
amphiboles, plagioclases, pyroxenes and Fe-Ti oxides (e.g. Nakada & Motomura, 1999;
Venezky & Rutherford, 1999), as a function of the parameters described above.

Table 2.1. Chemical composition of groundmass glasses (dry; in wt%) from natural Unzen analysis (1) and
used as starting materials for experimental studies (2), (3) and (4).

#  Groundmass compositions Si0, TiO, ALO; FeOyy MnO MgO CaO Na,O K,O Total

(1) natural Unzen groundmass glass 68.14 0.57 15.08 3.78 0.09 1.80 4.10 3.51 2.78 99.85
(Nakada & Motomura, 1999)

(2) experimental study of Sato ezal. 6824 0.53 1495 4.05 0.09 191 3.86 3.48 2.85 99.86
(1999) on Unzen 1991-1995
groundmass separate

(3) This experimental study 69.95 0.50 1421 3.57 0.12 144 4.05 3.16 2.75 99.75

(rhyodacitic groundmass
composition as a starting glass)

(4) experimental study of Venezky 64.74 0.66 1621 4.62 0.07 228 493 393 240 99.84
& Rutherford (1999) on Unzen
bulk rock composition (=crushed
bomb from June 11", 1991
Unzen eruption; U-2 Pdr),
chemical composition taken
from Nakada & Fuji (1993)

Starting material and experimental methods
A mixture of oxides (SiO,, TiO,, Al,Os, Fe;,03, MnO and MgO) and carbonates (CaCOs,

Na,CO; and K,COs) was ground in a rotary mortar. The mixed powder was melted for 2
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hours in platinum crucible at 1600°C, 1 atm in air (logfp,=-0.68). Afterwards, the melt was
quenched to glass by placing the crucible into a water bath. To improve the homogeneity
of the batch, the glass was ground again in the agate mortar and melted again for 0.5 hour,
using same P-T-conditions as described above.

For capsule preparation, 50 mg of the synthesized powdered silicate glass were
loaded in 18 to 25 mm long Au or AugoPdy capsules with a outer diameter of 3.2 mm.
Additionally, 10 wt% of fluids were added to the dry glass, containing of certain
proportions of liquid H,O and solid Ag,C,O4 (CO, source), which resulted in fluid-
saturated samples with mole fractions of water (X"H,0) between 1.0 and ~ 0.1. The
capsules were welded shut by arc welding. After the experimental runs, X"H,0 was
measured after opening the capsule using a conventional weight-loss method (e.g. Ebadi &
Johannes, 1991). Therefore, capsules were weighted after the runs and cooled by putting
them into liquid nitrogen to freeze H,O in the fluid phase. Frozen capsules were pierced
with a steel needle and warmed up to room temperature. By subsequent weighting, the
mass of CO; in the fluid was determined. The capsules were then placed into an oven at
110°C for 2-3 minutes and weighted to determine the mass of evaporated H,O. It has to be
noted that the technique to determine the mass of free CO, in the capsule does not
discriminate between CO, and N,. An entrapment of atmospheric nitrogen in the
experimental charge during loading the capsules was estimated to be negligible (0.5 to 4.0
mol%, Tamic et al., 2001). As main source of errors of the mole fractions of H,O in the
fluid we considered the uncertainty in the weighing of the capsule before and after
piercing. Additional uncertainty induced by atmospheric nitrogen was taken in account
(0.007 mol% for H,O and 0.02 mol% for CO,; Tamic ef al., 2001). In capsules, where
weight-loss procedure of determining of fluid composition failed, mole fractions of H,O
and CO; in the fluid were calculated by mass-balance, using initial amounts of loaded
volatiles and rock powder and measured concentrations of volatiles in run product glasses.
Nevertheless, our determined mole fractions of water are probably still afflicted with
relatively high errors due to difficulties in fluid measurements.

Phase equilibrium experiments were conducted in cold sealed pressure vessels or in
internally heated pressure vessels, depending on the P-T conditions (see next sections).
Temperatures ranged from 1000 to 800°C and pressures ranged from 300 to 50 MPa. The
experimental annealing duration varied between a minimum of four days to a maximum of

14 days before quenching.
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Cold seal pressure vessel (CSPV)

Externally heated cold seal pressure vessels (CSPV) were used for experiments at lower
temperatures (< 850°C). The vessels are made of an alloy containing mainly nickel and
were pressurized with water (Fig. 2.1), allowing a maximum pressure of 500 MPa. The
temperature variations were less than 5°C, while the accuracy in temperature was
estimated to be £ 10°C. Pressure was measured with pressure transducer calibrated against
a strain gauge manometer. The accuracy of pressure measurements were 1 MPa and
pressure variations during the experiments were less than + 5 MPa. Inside the CSPV, the
redox conditions were buffered by the reaction of water with a solid oxygen buffer (added
as a mixture of Ni and NiO powders, i.e. NNO buffer). An effective in-diffusion of H,
through the walls of Au capsules fixed the hydrogen fugacity (fH,) in the capsules and
controlled the redox conditions in the systems via the reaction of H, + %2 O, = H,0. Hence,
in the H,O-saturated systems, the redox conditions were close to NNO buffer while in the
H,0+CO;-bearing systems, the fugacity of fO, is expected to be about 0.5 log units lower.
The cold autoclave, including the capsules, was inserted into the pre-heated external
furnace to reduce the time of the heating process at the start of the experiment. The
experiments were quenched by removing the autoclave from the furnace and cooling it
with compressed air, while keeping the final pressure constant. The quench rate was
approximately 150°C per minute at the beginning of the cooling and was sufficient to

avoid quench effects in rhyodacitic magma (e.g. Chevychelov et al., 2008).

Fig. 2.1. Photo of externally heated pressure vessels (CSPV) at the high-pressure laboratory of the Institute
for Mineralogy, Leibniz University Hannover, Germany.
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Internally heated pressure vessels (IHPV)
Isobaric and decompression experiments at temperatures higher than 850°C were
conducted in internally heated pressure vessels (IHPV; see Fig. 2.2). The general
characteristics of IHPVs were already explained by Holloway (1971) and further details
can be also found in Berndt et al. (2002). The pressure vessel consists of several
components; (a) an autoclave, (b) an intensifier, (c) a pre-pressure pump and (d) a
switchboard. The autoclave is made of tool-steel cylinder surrounded by water-cooled
copper-tube windings, where a resistance furnace is inserted from the top and a sample
holder is inserted from the bottom; both are fixed onto closure heads sealing the vessel.
Argon (Ar) is the pressurizing gas and maximum pressures of 500 MPa and
maximum temperatures of 1250°C can be reached. Additionally, it is possible to adjust the
oxygen fugacity (fO,) to reducing conditions in the experimental system by adding
hydrogen (H) to the argon pressure medium. Furthermore, in each individual capsule is
the prevailing oxygen fugacity dependent on the water activity (aH,O). Here, fO, is
controlled by the equilibrium reaction of water dissociation (H, +1/2 O, = H,0) inside the
capsules. Water activities for every run were calculated using activity coefficients after
Aranovich & Newton (1999) and molar volumes of pure H,O after Pitzer & Sterner
(1994). The fO, was calculated for each experiment as log fO,capsule = logfO,vessel +
2log(aH,0) (see also Botcharnikov et al., 2008) and correlated to the NNO buffer
regression data of O’Neill (1987).

11
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| ]

internally heated
| pressure vessel

continuous
decompression valve

H, pressure line
with pressure transducer

=

Fig. 2.2. Picture of a the internally heated pressur vessel (IHPV) at the laboratory of the Institute for
Mineralogy, Leibniz University Hannover, Germany, with H-line at the bottom and a new developed
decompression valve on top.

Oxygen fugacity values for each experiment are reported in Appendix Table A.1. In
case of experiments with reduced fO,, the vessel is only pressurized until a certain pre-
pressure at room temperature, so final pressures are reached by the heating process itself
(heating rate of 30°C/min) while decoupling the autoclave from the intensifier (no pressure
automatic in use). This shall prevent the loss of hydrogen in the system, which would
result in more oxidizing conditions. Pressure transducers, having an accuracy of £ 1 %, are
installed for the autoclave and the intensifier, and are connected to displays in the
switchboard. The H, partial pressure can be detected during the experimental run with the
help of a so-called Shaw-membrane (Shaw, 1963). It consists of a platinum (Pt) tube which
is welded shut on one side, then filled with corundum (Al,O3;) powder and a one-hole
ceramic capillary. To seal the membrane a steel capillary, fixed in a steel plug, is soldered
to the Pt tube. Hydrogen diffuses through the wall of the Pt tube in the hot zone of the

experiment, while Argon molecules are too big. Through osmosis an equilibrium between
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the outside pressure (inside the autoclave) and the inside pressure (inside the membrane
including the steel capillary) of hydrogen will be enabled. At the end of the steel capillary,
outside the IHPV, a pressure transducer detects the actual H, partial pressure inside the
autoclave (Berndt et al., 2002).

The rapid-quench (RQ) sample holder used at Hannover was described by Berndt et
al. (2002) and consists of four S-type thermocouples (Pt-PtoyRh;¢), a H-membrane and a
Pt quench wire (0.5 mm thickness). The upper and the lower most thermocouples (distance
ca. 25 mm) are connected to the EUROTHERM program controller, which enables the
precise adjustment of the temperatures created by the two molybdenum wire (thickness 0.5
mm) windings of the furnace. The two middle thermocouples measure the sample
temperatures. Up to five samples are being packed into a basket (maximum length 30 mm),
hanging inside the ceramic falling tube while being connected through a ceramic ring to
the quench wire (0.3 mm thickness). After a successful experimental run, capsules are
rapidly quenched (150 °C/sec) by melting of the quench wire which results in immediate

falling of the capsule (basket) into the cold zone of the sample holder (Berndt et al., 2002).

Analytical methods

Electron microprobe analysis (EMPA)

Major element composition of solid experimental products, composed of minerals and
glass, were analyzed with a Cameca SX-100 microprobe using 15 kV as the acceleration
voltage. Glass analyses were conducted with 4 nA beam current, a defocused electron
beam (5-10 um diameter), and peak counting times of 4 sec for Na and K and 8 sec for the
other elements. Mineral phases were analyzed using a 15 nA beam current and a focused
electron beam. Multiple measurements (minimum 3) were made for each phase to reduce

possible analytical errors and to check the homogeneity.

Fourier transform infrared spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) was used to estimate concentrations of
dissolved water and carbon dioxide in the experimental glasses, using a Bruker IFS88
FTIR spectrometer with a connected /Rscopell microscope. For NIR (near infra-red)
analysis we used a tungsten light source, a CaF,-beam splitter and a MCT-detector. The
spectral resolution was 4 cm™. One hundred scans per background and per sample were
collected. The analyzed area was 80 x 80 pm. For MIR (mid infra-red) analysis we used a

globar light source, a KBr-beam splitter and a MCT-detector. The spectral resolution was 2
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cm’'. Fifty scans per background and per sample were collected. The analyzed area was 80
x 80 pum. The concentrations of molecular water and water dissolved as OH  were
calculated from the heights of the peaks at 5200 cm™ and 4500 cm™', respectively, and the
concentration of carbon dioxide (CO,) was calculated from the heights of the peak at 2350
cm™, using a tangential baseline correction. The extinction coefficients of water species in
the glasses for the calculation of water concentration in the glasses were estimated using an
empirical calibration of Ohlhorst ef al. (2001) and they varied from 1.34 to 1.97 I/mol*cm
for the 5200 cm™ peak and from 1.13 to 1.67 I/mol*cm for the 4500 cm™ peak, using the
straight line (TT) baseline correction method. Since the compositions of glasses were close
to rhyolites, glass densities were calculated applying the empirical calibration after Withers
& Behrens (1999): density (in g/L) = 2390 — 17.0 * wt% H,0. Sample thicknesses were
determined with a Mitutoyo digital micrometer (precision of + 2 um). The glass
thicknesses were chosen rather small, varying between 70 and 100 pum, to avoid noises
induced by bubbles and microlites. The low sample thickness results in relatively low
absorption from which a possible error of about 20 % in peak heights can be assumed.
Care was taken to choose areas without or with small amount of bubbles and crystals.
However, since they contain minerals and since bubbles could not be completely avoided,
the uncertainty of the calculated water concentration is high (+ 20 relative %) and the data
can only be used to discuss qualitatively the relative variations of water concentrations. In
some samples water and carbon dioxide concentrations were not determined by NIR and
MIR, respectively, because doubly polished slices of good quality could not be prepared
(cavities were still filled with fixation glue resulting in large disturbances in the absorption
spectra). The average values (and standard deviations) of NIR and MIR measurements
repeated at different locations on higher quality samples and are shown in Appendix Table

A2

RESULTS

Phase stabilities

The experimental products consist of glass and mineral phases + vesicles. It was able to
distinguish chemically between the following mineral phases: orthopyroxene (Opx),
clinopyroxene (Cpx), amphibole (Amph), plagioclase (P1), quartz (Qtz) and Fe-Ti oxides
(Ox, mainly ilmenite), see Appendix Table A.1. While the mineral phases Ox, Opx and

Cpx were observed in nearly all of the end products of the phase stability experiments,
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Amph, P1 and Qtz showed characteristic dependences on the P-T-X"H,0 conditions, which

will be described in detail in the following.

Phase stabilities at given pressures

Fig. 2.3 a-d show phase stability diagrams (T- XﬂH20) at constant pressures ranging from
300 to 50 MPa. At 300 MPa, Amph is only stable at low temperatures (less than ~875 °C)
and at higher mole fractions of water (X"H,O > 0.5), see orange fields in Fig. 2.3a. Pl
minerals are present at all investigated temperatures (1000-800°C) assumed that the mole
fraction of water is less than 0.5. Pl is present at all X"H,O if the temperatures are less than
~830°C. At 200 MPa, the stability fields of Amph and Pl are nearly similar to those at 300
MPa, compare Figs. 2.3a and 2.3b. Compared to 300 MPa, the stability line of Pl (dashed
green line) is only slightly shifted to higher mole fractions of water at 200 MPa (at given
temperatures). The Amph stability line (dashed orange line) is shifted slightly to lower
temperatures with decreasing pressure from ~870°C at 300 MPa to ~850°C at 200 MPa at
high X"H,0 (> 0.5). At pressures of 300 and 200 MPa, liquidus conditions (grey colored
fields in Fig. 2.3a and 2.3b) were determined in experiments at 1000°C and with the two
highest conducted mole fractions of water (X"H,O > 0.8). At lower pressures, no
experiments were run at 1000°C.

At 100 MPa (Fig. 2.3c) and at temperatures < 950°C, PI crystallized at all mole
fractions of water. At this condition, the stability field of Amph is restricted to T < 800°C
and X"H,0 > 0.8, see orange line and field in Fig. 2.3c. The phase stability diagram at 50
MPa and at temperatures of < 950°C (Fig. 2.3d) is very similar to that at 100 MPa with one

exception: Amph is not stable at the investigated conditions.
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2. PHASE STABILITY EXPERIMENTS

Phase stability at constant temperatures

Phase stability diagrams (P- X"H,O) at constant temperatures ranging from 850 to 930°C
are plotted in Fig. 2.4 a-c. At 850°C (Fig. 2.4a), Amph is only stable at pressure > 200 MPa
and at mole fractions of water higher ~0.7. P1 is stable at all conditions except at pressures
> 200 MPa and at mole fractions of water > 0.8. At higher temperatures of 900 and 930°C
(Figs. 2.4 b-c, respectively), amphibole is not stable anymore, while the stability lines of PI
(green dashed lines) shift to lower X"H,O values and to slightly lower pressures (minimum
P of ~150 MPa at 930°C) with increasing temperatures from 900 to 930°C. At 930 °C (Fig.
2.4c) and 300 MPa, PI is only stable at XﬂH20 < 0.55.

Two overall trends can be observed from the given SiO, contents of the residual
melts (white numbers in black boxes) and from the determined anorthite (An) contents of
crystallized PI (black numbers in white boxes) in all presented phase diagrams (Figs. 2.3 a-
d and 2.4 a-c). First, the SiO, content of the residual melts increases with decreasing P-T-
X"H,0 conditions, while secondly the An content of crystallized plagioclases decreases

simultaneously with decreasing P-T-X"H,O conditions.
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at 930 °C
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Fig. 2.4 (c) Phase stability diagrams at constant temperatures of 930°C in dependences on the mole fraction of
water (X"H,O; x-axis) and on the pressure (y-axis). Dashed lines represent the stability lines for the
corresponding mineral phases. For detailed symbol explanations see figure caption 2.3. a-b.

DISCUSSION
The mineral assemblage (PI, Amph, Opx, Cpx, Ox and Qtz) crystallized in our phase

stability experiments is consistent with those of other (experimental) studies (e.g.
Rutherford & Hill, 1993; Sato et al., 1999; Holtz ef al., 2005 and Larsen, 2005; see also
Fig. 3.2 in chapter 3.1.1.) which can be related to our rhyodacitic system, although those
studies were performed for water-saturated (X"H,0=1.0) systems only. Major differences
can be found in the individual mineral stability fields, which are obviously sensitive to the
investigated P-T-X"H,O conditions and the chemical composition of the used starting
materials, especially for Amph minerals. The compilation of water-saturated literature
data, see Fig. 2.5b, suggests that Amph is either stable down to pressures of 40-50 MPa
(Sato et al., 1999; dashed lines) at temperatures below ~850°C, or only stable down to
pressure of 60-80 MPa at temperatures below ~860°C (Venezky & Rutherford, 1999; solid

lines). While our experimental study show that at these water-saturated conditions
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(XﬂH20=1.O, see Fig. 2.5a) Amph is not stable at temperatures above ~880°C at all
investigates pressures (< 300 MPa) and that Amph stability was not observed at pressure
below ~100 MPa. Our determined Amph stability field is narrower that those determined
by Sato et al. (1999) and Venezky & Rutherford (1999), which could be explained by the
slightly differing starting compositions, see Table 2.1. As there are already major
discrepancies between the literature data (compare dashed and solid lines in Fig. 2.5b),
especially when looking at their liquidus conditions at high temperatures, it can be
assumed that this rhyodacitic groundmass system is very sensible to minor changes in
chemical composition leading to variable phase stability fields.

The observed trends of increasing silica content and of decreasing anorthite content
with decreasing P-T-X"H,O conditions are in agreement with former studies on
crystallization processes (e.g. Holtz et al., 2005; Larsen, 2005). Additionally, it is known
that the volatile component H;O has a major influence on the liquidus temperature of
silicate melts (e.g. Johannes & Holtz, 1996). As the mole fraction of water (XﬂHzo) in the
system decreases, the increase of the liquidus temperature results in an increase of the
mineral proportion in the system. This crystallization of mineral phases (here: mainly
plagioclase) from the melt is accompanied by the enrichment of the residual melt in SiO;

leading to the crystallization of quartz at conditions of oversaturation.

21



2. PHASE STABILITY EXPERIMENTS

"91qeIs SI (6661 ‘PIOHIDYIMY 29 ANZIUSA 666] BINWOIOIN 79 BPEYEN) SSBWPUNOI3 USZU() [RINJBU Ul PIAIISO
03e[quIdSSe [eIOUIW JY) UOIYM IOpun SUONIPuod Ay} sjuasaidor (8) ur poy pardyooyd oyl dpIxo=x( ‘maudew=)N ‘ooiq=1g ‘zuenb=z)Q) ‘ouoxoifdourjo=xd)
‘ouaxoikdoyio=xdQ ‘ojoqrydwe=ydury ‘ose[oorde[d=[J :SUONLIAIQQY '['Z 9[qe] Ul Punoj aq ued (6661) PIOJIOYINY 29 ANZAUS A JO 1o} Pue (6661) P 12 0IeS JO Jey) JO
‘Apnys Ino Jo s[erdjewr Junaels oy} Jo uonisodwod [eoIayo oY ], "Saul] PI[OS (6661) PIOHIYINY 29 ANZAUS A WOIJ pue Saul] paysep (6661) 7P 72 0JeS WO} 9jep AINJRINI]
Jo uoneidwos (q) pue Aprys o jo synsar () :(0'[=0H,X) SUONIPUOD pajernjes-1ojem Je uonisoduwiod ssewpunold udzun jo werderp Aijiqels aseyd ‘q-e ¢'¢ 31

[D,] @armeIadway, [Do] eayeIodUuay,
0501 0001 056 006 0S8 008 0SL 0501 0001 056 006 0S8 008 0SL
1 1 1 1 1 O L 1 1 1 O
snprjos
= 0§ 0s
= 001 001
o) o
2 2
L o1 & 0s1 5
< <
= =g
& L,
= 00T 00T
= 05T 0S¢
00€ 00¢
0'T = O'H,X 1® Blep 2IneId)] uszup) @ 0'T = O'H,X e Aprjs s1p (v)

22



2. PHASE STABILITY EXPERIMENTS

‘q-e ¢'z uondeo oSy 00s suoneue[dxd [0qUIAS SUE SUONLIAIQQY

'8'0=0°HyX (q) pue 9'0=0%H,X (&) J& ApmIs sIy} Jo SUOBIPUOD PIJEINES-PIM) Je UOHISOdWOD SSEWPUNOIS UdZU[) JO sanI[Iqels dseyd uo synsay “q-e 9°7 i

0c01

0001

&
w—-E:E_-
L |

[Do] @anyerodwa],
0s6 006 058

X0 +
xdD +
xdo +

8°0 = O°H, X e Aprs s1y)

008

0SL

08

001

0ST

00¢

0s¢

00¢

[edIAT] @anssaxg

(@

0501

[Do] @amyeraduwiay,

0001 0S6 006 0S8 008 0SL
L 0
0S
001
2~
g
0s1 5
<
Inel
5,
00T
0ST
00€
9°0 = O'H,X J& Apms s1y) (®)

23



2. PHASE STABILITY EXPERIMENTS

In Figs. 2.3 a-b, 2.4a, 2.5a and 2.6 a-b, the checkered areas represent the P-T-X"H,0
conditions under which the natural Unzen groundmass mineral assemblage was
experimentally reproduced. These conditions vary between pressures of 300-100 MPa,
mole fractions of water of 1.0 - 0.65 and temperatures < ~870°C. As magma storage
conditions of the mixed magma were suggested by earlier (analytical and experimental)
studies to lie within the pressure range of minimum 160 MPa (Venezky & Rutherford,
1999) to a maximum of 300-400 MPa (Nishi et al., 1995) and having a temperature range
of 900 £ 30°C (Venezky & Rutherford, 1999), it can be assumed that the Amph
phenocrysts in the mixed magma were not in equilibrium with the silicate melt after
mixing. Consequently, natural Amph microlites must have crystallized only during the
subsequent magma ascent while crossing the Amph stability field emphasized in this study.

Petrological studies of the natural Unzen dome samples distinguished between
hornblende phenocrysts and groundmass pargasites (e.g. Nakada & Motomura, 1999; Sato
et al., 1999). Natural hornblende phenocrysts have usually lower Al,Os; contents and
slightly lower Mg numbers (Mg#) when compared to natural groundmass pargasites, see
Fig. 2.7. Our crystallized Amph microlites produced during phase stability experiments
(green circles plotted in Fig. 2.7) have Al,Os3 contents ranging from ~7-10 wt% and Mg#
of 0.60 to 0.73, which are close to natural phenocryst hornblende compositions determined
by Nakada & Motomura (1999) and also similar to some natural groundmass pargasites
determined by Sato et al (1999), having also Al,Os; contents of less than the usual

minimum value of 10 wt%.
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Fig. 2.7. AL,O;, vs. Mg# (= Mg/[Mg+Fe]) of amphiboles determined for natural Unzen dome samples and
for our experimentally reproduced microlites. Natural phenocryst cores and groundmass pargasites given by
Sato et al. (1999) are plotted by empty squares and by grey-filled circles, respectively. Compositional ranges
by Nakada & Motomura (1999) of natural groundmass pargasites and natural phenocryst hornblendes are
indicated by the grey-shaded square and by the yellow square, respectively. Our experimentally reproduced
Amph microlites are plotted as green circles.

CONCLUSION

The mineral assemblage observed in natural erupted rocks was successfully reproduced by
our phase stability experiments, providing details on the magma storage conditions prior to
the 1991-1995 Unzen eruption as well as on the magma ascent dynamics.

As Amph microlites are preserved in natural surface rocks but are not in equilibrium
at pressures below ~80 MPa in the rhyodacitic Unzen groundmass system, two conclusions
can be made: (1) the mixed Unzen magma must have crossed P-T-X"H,O conditions that
allow the crystallization of Amph microlites (and the overgrowth of Amph phenocrysts)
during ascent and (2) the decompression rate of the rising magma from depth to surface
pressures had to be fast enough so that Amph crystals did not dissolve entirely during the

magma ascending process below their stability field.
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Isothermal magma decompression was simulated at 850°C (in CSPVs) and at 930°C (in
[HPVs), which covers the range of estimated Unzen magma storage temperatures at depth
(870-930°C; Venezky & Rutherford, 1999; Holtz et al., 2005). Furthermore, two main
approaches were used for decompression: high pressure decompression (HPD; chapter 3.1)
and low pressure decompression (LPD; chapter 3.2). For the HPD approach, a starting
pressure of 300 MPa was used, which is closely corresponding to magma mixing and
storage conditions at Mt. Unzen prior to the 1991-1995 eruption. In this case,
decompression was conducted until a final pressure of 50 MPa, corresponding to the
pressure at depth that was targeted during the Unzen Scientific Drilling Project (~1.5 km;
Nakada et al., 2005, see also chapter 1.1). In LPD experiments, we wanted to simulate the
final stage of magma ascent until surface pressures of 0.1 MPa.

Since natural magmas contain not only water but also other dissolved volatiles
(mainly CO,, SO, and HCIl) and magma degassing is accompanied by a release of multi-
component fluids, two series of HPD experiments were conducted: one using only water as
a volatile component (H,O-bearing) and the other one using a water and carbon dioxide
(H,O+CO,-bearing) fluid mixture. While in LPD experiments, only the H,O-bearing
system was investigated as it is assumed that CO, is completely exsolved from the melt at
these low pressures (e.g. Fogel & Rutherford, 1990; Behrens ef al., 2004; Liu ef al., 2005).
Multiple decompression rates were investigated and were performed either as a single
continuous pressure release or as a multi-step decrease in pressure, depending on the used
pressure vessel and the decompression rate. The overall conducted decompression rates
ranged from 20 to 0.0001 MPa/s, corresponding to ascent velocities of 2400 km/h to ~10
m/h.

This experimental approach can represent natural conditions during magma ascent in
volcanic conduits (e.g. Hammer & Rutherford, 2002; Couch et al., 2003), however it must
be noted that in natural systems the actual ascent rates and temperatures might not be
constant along the ascent path (e.g. Noguchi ef al., 2008a; Nakada & Motomura, 1999).
After the experiments, the quenched samples have been analyzed for compositional and

textural changes and compared with natural rocks from Unzen.
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3.1. High pressure decompression (HPD)

The main focus in HPD experiments is the magma ascent from a starting pressure of 300
MPa to a final pressure of 50 MPa at both investigated temperatures of 850°C (set-I;
chapter 3.1.1) and 930°C (set-1I; chapter 3.1.2), see Fig. 3.1. Two fluid-saturated systems
are investigated: H,O-bearing system (X"H,O0=1.0) and H,O+CO,-bearing system
(X"H,0=0.6).
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Fig. 3.1. Schematic phase diagram for fluid-saturated rhyodacitic magma, derived from this study chapter 2
(phase stability experiments). The purple and blue arrows show the isothermal decompression paths of HPD

set-I and set-II, starting from 300 MPa down to final 50 MPa at temperatures of 850°C and 930°C,
respectively.

3.1.1. HPD at low-temperature (850 °C; set-I) — modified after Journal of
Petrology paper Cichy et al. (2011)

Vesiculation and Microlite Crystallization Induced by Decompression: A Case Study

of the 1991-95 Mt Unzen Eruption (Japan)

SARAH B. CICHY*, ROMAN E. BOTCHARNIKOV, FRANCOIS HOLTZ AND HARALD BEHRENS
INSTITUT FUER MINERALOGIE, LEIBNIZ UNIVERSITAET HANNOVER, CALLINSTR. 3, D-
30167 HANNOVER, GERMANY
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ABSTRACT

Isothermal decompression experiments were performed to simulate magma ascent at
Unzen volcano from depths of magma storage to shallow level, corresponding to pressure
decrease from 300 to 50 MPa. A partially crystallized synthetic rhyodacitic magma
(representing equilibrium conditions at 850°C and 300 MPa) was used as a starting
material with a composition identical to the groundmass composition of Unzen rocks
erupted in 1991-1995. Decompression rates were varied from 0.0002 to 20 MPa/s. The
experiments were fluid-saturated, either containing only water as a fluid component (H,O-
bearing) or containing a water and carbon dioxide mixture (H,O+CO,, initial mole
fraction of H,O in the fluid ~ 0.6).

The experimental products of the H>O-bearing experiments consist of amphibole,
pyroxenes, oxides and glass. Plagioclase microlites only nucleated and grew in
experiments with the two lowest decompression rates of 0.0005 and 0.0002 MPa/s. The
length of those plagioclases reaches up to 200-250 um which is consistent with the size of
plagioclase microlites observed in natural samples. The experimental products of the
H,0+COs-bearing system are composed of pyroxenes, oxides, glass and plagioclase.
Plagioclase microlites in the H,O+CO;-system were already present in the starting
assemblage and grew to a maximum size of ~80 um.

Equilibrium concentrations of water in the residual glasses at final pressure of 50 MPa
are reached at decompression rates < 1 MPa/s for the H;O+CO;-bearing system and < 0.1
MPa/s for the H,O-bearing system. The bubble number density (BND) values range from
1077 mm? to 10°° mm™ in the H,O-bearing system and from 10*° mm? to 10°* mm? in
the H,O+COs-bearing system. In both systems, BND values decrease with decreasing
decompression rate from 20 to 0.01 MPa/s, and increase with decreasing decompression
rates < 0.01 MPa/s, which is interpreted to reflect a predominant bubble growth and
bubble nucleation, respectively.

The onset of crystallization, observed from changes in the chemical composition of the
residual melt, occurs at decompression rates < 0.1 MPa/s. At the lowest decompression
rate (0.0002 MPa/s) the chemical composition of the residual melt in the H,O+CQO,-
bearing system becomes similar to the natural matrix glass composition. There is no
significant variation of the microlite number density (MND) value as a function of the
decompression rate. The MND values for plagioclases-only range from 10°* mm™ to 107

mm”, whereas the MND values for the other phases range from 10°° mm™ to 10°° mm.
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Our experimental MNDp; values are in the range of those from natural samples (10°-10°
mm’).

We show that the size of microlites nucleating and crystallizing during decompression
(plagioclase in our experimental dataset) are useful to constrain magma ascent rates at the
onset of the crystallization of the corresponding phase. Based on the size of plagioclase
microlites and on the composition of residual melts, the average magma ascent rates of

Unzen magmas in the pressure range of 200 to 50 MPa is estimated to be 10 to 50 m/h.

KEY WORDS: crystallization,; decompression experiments, magma ascent; Unzen volcano, vesiculation

INTRODUCTION

Crystallization of a silicate melt during eruption is mainly caused by decompression-
induced volatile loss. The most abundant volatile in magmas is H,O, followed by CO,,
SO,, H,S and HCI. As the magma ascends, the exsolution of volatiles from the melt into
bubbles increases the magma liquidus temperatures and therefore enables extensive
groundmass crystallization. Vesicle and mineral nucleation and growth in the melt are
significantly influenced by magma decompression rate (e.g. Rutherford & Hill, 1993;
Geschwind & Rutherford, 1995; Simakin et al., 1999, 2000; Hammer & Rutherford, 2002;
Couch et al., 2003; Martel & Schmidt, 2003; Browne & Gardner, 2006). Hence, magma
ascent rate can control the eruption style (e.g. Sparks, 1978; Hurwitz & Navon, 1994), and
groundmass textures of erupted rocks (e.g., crystal and vesicle sizes and number densities)
may preserve important information about the decompression path and processes related to
the magma ascent within the conduit. However, in order to interpret quantitatively
parameters such as textures and compositions of magmatic phases and to evaluate the
dynamics of a magmatic system, the processes of magma degassing and crystallization
need to be simulated experimentally.

Up to now, most previous works focused either on bubble nucleation and growth or
on microlite nucleation and growth as a result of decompression (see review of Hammer,
2008). Little attention has been given to the characterization of experimental samples in
which bubbles and microlites nucleate and grow simultaneously. In this study we present
the results of decompression experiments aimed at understanding bubble and microlite
nucleation and growth in the magma ascending from magma chamber to shallow levels
during the 1991-1995 eruption of Unzen volcano, Japan. These processes are simulated

under controlled temperature and decompression rate. The results provide a unique
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opportunity to compare data obtained experimentally with information from natural
samples collected at the surface (e.g., Nakada et al., 1999) and at depth (ICDP drilling,
Nakada et al., 2005). The experimental results on kinetics of decompression-induced
nucleation and growth of bubbles and microlites are used to interpret textures of erupted
products and to constrain processes occurring in magmatic conduit during the last Unzen

eruption.

Magmatic system of Unzen volcano

The 1991-1995 eruption of Unzen volcano occurred as a result of mixing between
andesitic and rhyolitic magmas in deep magma chambers followed by an ascent of mixed
dacitic magma from depth (Venezky & Rutherford, 1999; Holtz et al., 2005). Petrological
and experimental studies indicate that before the eruption the mixed dacitic magma was
stored at a minimum pressure of about 160 MPa, temperature from 870 to 930°C and it
contained about 6 wt% H>O (Venezky & Rutherford, 1999). The maximum pressure of the
magma chamber is considered to be less than 300-400 MPa based on the geophysical data
(maximum storage depth of about 11 km, Nishi et al., 1995) and on the H,O content of the
melt inclusions in phenocrysts (up to 7-8 wt.% H,O; Holtz et al., 2005; Nishimura et al.,
2005).

During the eruption, a lava dome, composed of several lava lobes, was formed on
the top of the volcano, producing numerous pyroclastic flows. The dome rocks consist of
dacites with plagioclase, hornblende, biotite and quartz as main phenocrysts which are
presumably originated from silicic rocks at depth (e.g. Nakada & Motomura, 1999). The
groundmass is interpreted to be representative of the melt after magma mixing and it is
composed of matrix glass, and microlites of plagioclase, pargasite, pyroxene, Fe-Ti oxides
and apatite (Nakada & Motomura, 1999). Since the vesiculation and crystallization of
Unzen groundmass mainly occurred during magma ascent, the textures and phase
compositions of the groundmass in the dome lavas may provide constraints on processes of

magma degassing and crystallization (Noguchi ef al., 2008a,b).
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Fig. 3.2. Schematic phase diagram for water-saturated rhyodacitic magma, corresponding to groundmass of
Unzen based on a compilation of experimental data from Rutherford & Hill (1993), Sato ef al. (1999), Holtz
et al. (2005) and Larsen (2005). The purple arrow shows the isothermal decompression path which is
simulated in this study

The phase diagram in the pressure (P) — temperature (T) field for water-saturated
rhyodacitic groundmass composition is shown in Fig. 3.2, based on the available literature
data relevant to Unzen rhyodacitic system. At a given temperature, the stability fields of
minerals expand with decreasing pressure due to exsolution of dissolved water from the
melt. On the other hand, some minerals such as amphibole belong to high-pressure mineral
phase assemblage and are not stable at pressures below 80-100 MPa. Consequently, an
isothermal magma ascent to the surface should result in a change of the mineral
assemblage and in a continuous variation of the composition, of the texture of groundmass
microlites as well as of the vesicularity of erupted rocks. Similar variations are expected at
water-undersaturated conditions in presence of a H,O-CO,-bearing fluid. However, a P-T
phase diagram for the H;O+CO,-bearing Unzen rhyodacitic system at given mole fraction

of water in the fluid phase (XﬂHzo) is not available from literature data.
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EXPERIMENTAL AND ANALYTICAL APPROACHES

Experimental strategy

Magma decompression was simulated at different decompression rates. After annealing at
pressure of 300 MPa, corresponding to the depths of magma storage and mixing, the fluid-
bearing magmas were isothermally decompressed to 50 MPa which is equivalent to the
pressure at the final depth of ICDP drilling (Nakada et al., 2005). Since natural magmas
contain not only water but also other dissolved volatiles and magma degassing is
accompanied by a release of multi-component fluids, two different fluid-bearing magmas,
one containing only H,O and the other saturated with a H,O+CO, fluid, were investigated.
The decompression experiments were performed either as a single continuous pressure
release for fast decompressions or as a multi-step decrease in pressure. This approach can
represent natural conditions during magma ascent in volcanic conduits (e.g. Hammer &
Rutherford, 2002; Couch et al., 2003), however it must be noted that in natural systems the
actual ascent rates and temperatures might be not constant along the ascent path (e.g.
Noguchi et al., 2008a; Nakada & Motomura, 1999). After the experiments, the quenched
samples have been analyzed for compositional and textural changes and compared with

natural rocks from Unzen.

Starting material

A synthetic analogue of a rhyodacitic silicate melt was used as a starting material (Table
2.1 and 3.1). This composition, already investigated in several studies related to Unzen
volcano (Sato et al., 1999, 2005; Botcharnikov et al., 2004), corresponds to the bulk
groundmass of the 1991-1995 erupted magma. Hence, the decompression experiments are
focused on the evolution of the rhyodacitic melt formed after magma mixing. This
approach minimizes the possible effects of phenocrysts on nucleation and growth

processes of bubbles and microlites.
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For the preparation of the starting material, a mixture of oxides (SiO,, TiO,, Al,O3,
Fe;03, MnO and MgO) and carbonates (CaCOj;, Na,COs and K,COs) was ground in a
rotary mortar. The mixed powder was melted for 2 hours in platinum crucible at 1600°C, 1
atm in air (logfo,= -0.68). Afterwards, the melt was quenched to glass by placing the
crucible into a water bath. To improve the homogeneity of the batch, the glass was ground
again in the agate mortar and melted again for 0.5 hour (see same P-T conditions as
above). Finally, the glass was crushed and two fractions of < 100 um and 100-200 um
were mixed in a volume ratio of ~ 1:1 to minimize the free volume in the experimental

capsules and to reduce the incorporation of atmospheric nitrogen into the charge.

Experimental methods
Two series of decompression experiments were conducted: one using only water as a
volatile component (H,O-bearing) and the other one using a water and carbon dioxide
(H,O+COs-bearing) fluid mixture. In the first experimental series, 50 mg of the powdered
silicate glass and 5 mg of H,O were loaded in 20 to 25 mm long gold capsules with a
diameter of 3.2 mm. In the second experimental series, 3.8 mg of H,O and 7 mg of
Ag,C,04 (CO; source) were added to 50 mg of the glass. In both experimental series the
rhyodacitic melt was saturated with H;O- or H,O+CO;-bearing fluid phase at 300 MPa,
resulting in final fluid composition with mole fraction of water in the fluid phase (X"H,0)
equal to 1 and about 0.6, respectively. X"H,O was measured after opening the capsule
using a conventional weight-loss method. The capsules were welded shut by arc welding.
Experiments were performed in externally heated cold seal pressure vessels (CSPV)
made of an alloy containing mainly nickel. The vessels were pressurized with water. The
temperature was controlled with an external Ni-CrNi thermocouple (vessels were
calibrated for temperature). The temperature variations were less than 5°C, while the
accuracy in temperature was estimated to be = 10°C. Pressure was measured with pressure
transducer calibrated against a strain gauge manometer. The accuracy of pressure
measurements were 1 MPa and pressure variations during the experiments were less then +
5 MPa. Inside the CSPV, the redox conditions were buffered by the reaction of water with
a solid oxygen buffer (added as a mixture of Ni and NiO powders, i.e. NNO buffer). An
effective in-diffusion of H, through the walls of gold capsules fixed the hydrogen fugacity
(fHz) in the capsules and controlled the redox conditions in the systems via the reaction of
H; + %2 O, = H,0. Hence, in the H,O-saturated systems, the redox conditions were close to

NNO buffer while in the H,O+CO,-bearing systems, the fugacity of fO, is expected to be
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about 0.5 log units lower. It should be also noted that the proportions of H,O and CO; in
the fluid changed during decompression due to different dependences of water and carbon
dioxide solubilities on pressure and because of higher diffusivity of H,O in silicate melts
(e.g., Behrens & Zhang, 2001; Baker et al., 2005). This could presumably result in a small
increase in fO, mainly due to increasing fugacity of H,O in the fluid phase on pressure
release.

The pairs of H,O- and H,O+CO,-bearing capsules were annealed for 7 days at 850
°C (maximum temperature to conduct experiments in CSPVs) and 300 MPa before the
decompression, allowing initial equilibration in the systems at conditions that closely
correspond to magma storage conditions at Unzen. One series of experiments was
quenched isobarically after 7 days, producing reference samples equilibrated at 300 MPa.
Isobaric series were obtained in the same way at 50 MPa, representing the final
equilibrium reference material for the decompression experiments. After equilibration at
300 MPa, the capsule pairs were decompressed manually by reducing the pressure in the
autoclaves either continuously (decompression rates > 0.1 MPa/s) or at regular steps (see
Table 3.1) down to 50 MPa (multi-step decompression, decompression rates < 0.1 MPa/s).
The average decompression rates varied in the range from 0.0002 to 20 MPa/s (Table 3.1).
The experiments were quenched by removing the autoclave from the furnace and by
cooling it with compressed air, while keeping the final pressure constant. The quench rate
was approximately 150°C per min at the beginning of the cooling and was sufficient to
avoid quench effects on crystallization and presumably on vesiculation in rhyodacitic
magma. Several replicate runs were conducted to check the reproducibility of the

experimental approach (Table 3.1).

Analytical methods

Major element composition of solid experimental products

The chemical compositions of the experimental products, composed of minerals and glass,
were analyzed with a Cameca SX-100 microprobe using 15 kV as the acceleration voltage.
Glass analyses were conducted with 5-10 nA beam current, a defocused electron beam (5-
10 um diameter), and peak counting times of 4 sec for Na and K and 8 sec for the other
elements. Mineral phases were analyzed using a 15 nA beam current and a focused
electron beam, and peak counting times of 5 sec for Na and K and 10 sec for the other
elements. Multiple measurements (minimum 3) were made for each phase to reduce

possible analytical errors and to check the homogeneity. For some crystals (> 5 pum),
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profiles were measured through individual grains to determine changes in chemical

compositions from rim to core of the mineral.

Determination of H,O content of the glasses
Fourier transform infrared spectroscopy (FTIR) was used to estimate concentration of
dissolved water in the experimental glasses, using a Bruker [FS88 FTIR spectrometer with
a connected /Rscopell microscope. For NIR (near infra-red) analysis we used a tungsten
light source, a CaF,-beam splitter and a MCT-detector. The spectral resolution was 4 cm’™.
One hundred scans per background and per sample were collected. The analyzed area was
80 x 80 um. The concentrations of molecular water and water dissolved as OH were
calculated from the heights of the peaks at 5200 cm™ and 4500 cm™, respectively, using a
tangential baseline correction. Due to crystallization during decompression, the
compositions of the quenched melts (glasses) were different, presumably influencing the
extinction coefficients of water species in the glasses. The extinction coefficients used for
the calculation of water concentration in the glasses depend on the glass composition and
were estimated using an empirical calibration of Ohlhorst et al. (2001). They vary from
1.41 to 1.75 I/mol*cm for the 5200 cm™ peak and from 1.19 to 1.48 1/mol*cm for the 4500
cm” peak. Since the compositions of glasses were close to rhyolites, glass densities were
calculated applying the empirical calibration after Withers & Behrens (1999): density (in
g/L) = 2390 — 17.0 * wt% H,O. Sample thicknesses were determined with a Mitutoyo
digital micrometer (precision of = 2 pm). The thicknesses varied between 60 and 70 pm.
Care was taken to choose areas without or with small amount of bubbles. However, since
the samples contain minerals (especially those of the H,O+CO,-bearing system) and since
bubbles could not be completely avoided, the uncertainty of the calculated water
concentration is high (£ 20 relative %) and the data can only be used to discuss
qualitatively the relative variations of water concentrations. The average values of water
concentration (and standard deviations) of NIR measurements repeated at different
locations on higher quality samples are shown in Table 3.1. For some samples, (DA50 and
DAS1) water concentrations could not be determined by NIR because doubly polished
slices of good quality could not be prepared (cavities were still filled with fixation glue
resulting in large disturbances in the absorption spectra).

The determination of carbon dioxide concentrations in glasses by FTIR was not

possible because the CO, concentrations were too low and because the absorption bands of
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molecular CO, were superimposed with bands due to the presence of crystalline phases in

the mid infra-red (MIR) spectra.

Image and texture analysis

Back-scattered electron (BSE) images of the experimental samples were obtained with a
scanning electron microscope (SEM) FEI QUANTA 200. The picture sizes range from
minimum 30 x 26 pm to maximum 1500 x 1125 pm. These images were used to identify
the textures and to quantify the textural characteristics of the experimental products,
applying the public computer program ImageJ (http://rsb.info.nih.gov/ij). The image
analysis provided information about total area, average size, area fraction, as well as about
the width and length of each particle. The detection limit for the particle size is dependent
on the magnification and the resolution of the digitalized BSE pictures. For the
characterization of the run products, at least three BSE-pictures at different magnifications
were analyzed for each sample to ensure that particles of all sizes are included and to
minimize the truncation effect (e.g. Armienti, 2008). At the highest magnification (5000
x), the ImageJ program allowed detection of particles with a minimum diameter of 0.2 pm.
It must be noted that some voids in experimental samples were filled with epoxy and
abrasive materials during sample preparation, making the automatic processing by ImageJ
difficult. In order to minimize this effect, all bubbles in the images were outlined and
colored black manually to obtain better contrast between bubbles and the other phases
before processing by ImageJ.

The geometric information obtained by I/mageJ analysis was used to determine
textural characteristics such as bubble and crystal size distributions (BSD and CSD,
respectively) as well as bubble and microlite number densities (BND and MND,
respectively). The BSD and CSD values were determined following the methods of
Higgins (2000, 2002, 2006a,b) wusing the CSDcorrectionsl.3.8  software
(http://wwwdsa.uqac.ca/~mhiggins/csdcorrections.html).

The bubble or crystal size distribution in a rock is the number of bubbles or crystals
per unit volume within a series of defined size intervals. The population density n is
defined as the number of crystals in a given size class per unit volume, where N is the total
number of bubbles or crystals of size less than R, and R is some characteristic crystal size

(Marsh, 1988):
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dN

n= IR (1).

For the determination of bubble and microlite number density, we followed the
method of Noguchi et al. (2008a). The calculation procedure includes a 3D-correction as
an important contribution. We obtained data on the crystal (or bubble) numbers from the
CSDcorrections software (see above): The bubble or crystal number (N) of each given size
interval is represented by the multiplication of the population density (n) with the bin width
(see Higgins, 2006b). Therefore, the integration of crystal numbers N (number of
microlites/bubbles of a given size interval) for the observed range of microlite/bubble sizes
(R*) is defined as the microlite number density (MND) and as the bubble number density

(BND), respectively, per unit volume of the magma:

-
MND = [ NdR @,

According to the requirements of the CSDcorrections program, an aspect ratio and
a roundness factor have to be fixed for BSD and BND calculation. An aspect ratio of 1.0 :
1.1 : 1.2 (short axis : intermediate axis : long axis) and a roundness factor of 0.7 (roundness
factor varies from 0 for rectangular parallelepipeds to 1 for triaxial ellipsoids/spheres, see
Higgins, 2006 a,b) were used for BSD and BND analyses. The value chosen for the aspect
ratio assumes that bubbles are subspherical and the roundness factor is given by ImageJ
analysis.

For the CSD and MND determination, we have separated plagioclase microlites
from all other microlite phases (Opx, Cpx, Amph, oxides). For Pl microlites, an aspect
ratio of 1.0 : 2.0 : 5.0 (also corresponding to that used by Noguchi et al. 2008a) and a
roundness factor of 0.0 were used. Due to the difficulties in distinguishing between
pyroxenes and amphiboles in BSE pictures, both phases were treated as a one phase. For
all other phases other than Pl (OP), we considered an averaged aspect ratio of 1.0 : 1.5 : 3.0
and a roundness factor of 0.0. The roundness factor was obtained from the /mageJ analysis
of the samples whereas the aspect ratios were estimated manually by measuring size
characteristics of a number of microlites in each sample. Although the maximum aspect
ratios (=major/minor) of Pl microlites may reach up to ca. 30 (Table 3.2), the average
aspect ratios do not significantly differ from sample to sample for all decompression

experiments.
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RESULTS

Phase assemblages and compositions in water-saturated experiments

The experimental products consist of glass, microlites and vesicles (Fig. 3.3). The
vesicularity ranges from almost zero to nearly thirty percent. The solid experimental
products of the H,O-bearing system (in the following text, “H,O-bearing” refers to
experiments at H,O-saturated conditions) obtained at isobaric conditions of 300 MPa are
composed of glass, amphibole (Amph) and oxides (Ox, mainly ilmenite) as well as of
minor clinopyroxene (Cpx) and orthopyroxene (Opx). The products of the H,O-bearing
isobaric experiment at 50 MPa are composed of glass, plagioclase (Pl), Ox, Cpx and minor
amounts of Opx (see compositions in Appendix Tables A.5). Thus, the mineral
assemblages observed at 300 MPa and 50 MPa are consistent with the phase diagram in
Fig. 3.2 (note absence of Amph at 50 MPa and of P1 at 300 MPa).

In the H,O-bearing decompression experiments, the same assemblage as in the
isobaric 300 MPa experiment is observed, except for decompression rates lower than
0.0005 MPa/s (runs DA54 and DA28, Appendix Table A.5). In these experiments large Pl
microlites are found (e.g. Fig. 3.3g). Considering that Pl microlites are present as an
equilibrium phase at 50 MPa and not at 300 MPa (isobaric experiments), the large PI
microlites are expected to nucleate and grow during decompression from 300 to 50 MPa.
The large Pl microlites obtained at decompression rates < 0.0005 MPa/s have an average
An content of Ansg.s4. The rims of the plagioclase are slightly more Ab-rich than the cores
(difference of 1-2 mol% An). It can be noted that the An-contents of the experimental PI
are in the range of natural Pl microlites from Unzen dome rocks (52-69 mol%: Noguchi et
al., 2008a) and from the samples drilled from the conduit (40-70 mol%: Noguchi et al.,
2008b).
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HPD set-I: 300 to 50 MPa at 850°C

Decompression  H,O-bearing system H,0+CO,-bearing system
rate .

[4

7

1sobaric
at 300 MPa

20 MPa/s

0.01 MPa/s

0.0002 MPa/s

1sobaric
at 50 MPa

()
Fig. 3.3 a-j. BSE pictures of the products of isobaric and decompression experiments. Black bodies are
bubbles; light grey particles represent microlites such as Cpx, Opx, Amph, Pl and oxides. Note the large
plagioclase (Pl) crystals at a decompression rate of 0.0002 MPa/s in the H,O-bearing system (Fig 3.3g; light
grey color).
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Water-saturated amphibole stability experiments performed by Sato et al. (1999)
for Unzen groundmass composition showed that amphiboles are only stable at pressures
higher than 50 MPa for experimental temperature of 850°C. Therefore, at equilibrium
conditions Amph microlites should not be stable at the final experimental pressure of 50
MPa. However, Amph microlites were detected in nearly all our decompression
experiments of the H,O-bearing system. In some of those experiments it was possible to
observe a reaction rim around Amph. Although the rims are not found around all Amph
minerals, the size of the rim tends to increase with decreasing decompression rate in
agreement with other experimental studies (see e.g. Browne & Gardner, 2006). The
maximum width up to 4 um was measured at a decompression rate of 0.0002 MPa/s. It is
emphasized that the rim size can only be interpreted qualitatively because it is dependent
on the cut-section of the minerals. When possible, the compositions of Amph cores and
rims were analyzed and the Mg# [Mg/(Fe,x + Mg), moles] of the rims is systematically
lower than that of the cores, e.g., Mg#cre = 0.59-0.70 and Mg#in, = 0.57-0.64 for low

decompression rates.

Phase assemblages and compositions in the HO+CO,-bearing system

All experimental products of the H,O+CO,-bearing system obtained in isobaric runs at 300
MPa and at 50 MPa contain glass, Ox, Opx, Pl and Cpx. The same assemblage was found
in the decompression experiments (see compositions in Appendix Tables A.5). Amph was
found only as a minor phase in one experiment with decompression rate of 0.01 MPa/s. In
a duplicate experiment (DA65*, Appendix Table A.5.2), Amph was not observed,
indicating that the conditions with X"H,O = 0.6 are close to that of the stability limit for
Amph. In contrast to the HyO-bearing system, P1 microlites are already part of the mineral
assemblage in the H,O+CO;-bearing system at 300 MPa and are present in all
decompression experiments. In the H,O+CO;-bearing system, the An content of Pl cores
varies from Ans; to Anso. The An content of Pl in isobaric experiments at 300 MPa is Ansg
and this composition is also observed for experiments with decompression rates varying
from 0.1 to 0.0002 MPa/s. The An content of the Pl from experiments with decompression
rates of 20 and 1 MPa/s is slightly lower (Ans; to Ansg) which may be due to a slightly
lower water activity (an X"H,O of exactly 0.6 is difficult to realize experimentally). The

An content of Pl in isobaric experiments at 50 MPa is Anya.

42



3. DECOMPRESSION EXPERIMENTS

Melt compositions

The chemical analyses of the residual melts are listed in Table 3.1 and plotted in Fig. 3.4.
The chemical composition of the glasses in the H,O+CO,-bearing system remains nearly
constant for experiments at decompression rate > 0.1 MPa/s. At lower decompression rate,
the SiO, and K;O contents in residual glasses increase with decreasing decompression,
while ALOs;, FeO, MgO and CaO contents of glasses decrease with decreasing
decompression rate. The chemical composition of the glasses in the H,O-bearing system
remains nearly constant for experiments at decompression rate of 20 to 0.001 MPa/s while
with the beginning of Pl crystallization the compositions change, following similar trends
as described for the H,O+CO,-bearing system. The concentration of MgO in glasses from
H,O-bearing system starts to decrease at decompression rates < 0.1 MPa/s. The
experimental data are compared with the compositional range of natural matrix glasses in
Fig. 3.4 (grey fields). In the H,O-bearing system, only MgO concentrations in glasses
obtained from very low decompression rates overlap with natural matrix glasses. In
contrast, the concentrations of all major oxides overlap with natural compositions in the
H,O+CO;-bearing system at low decompression rates. In the H,O-bearing system,
concentration profiles in the residual melts in the vicinity of large Pl microlites show that
Al,O3 and CaO contents are decreasing while the SiO; content is increasing with the

distance from Pl microlites.
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Fig. 3.4. Normalized chemical compositions of the experimental residual melts as a function of the
decompression rate. The dark grey shaded areas show the chemical composition range of the erupted natural
groundmass glass in erupted rocks (Nakada & Motomura, 1999) and the light grey shaded areas show the
estimated chemical composition range of groundmass glass composition in the conduit rocks (Noguchi et al.,
2008b) of the 1991-1995 Unzen eruption. Error bars show standard deviation (7/¢) of replicate analyses.

The data of NIR spectroscopy and the totals of microprobe analyses indicate that
the water content of melts decreases with decreasing decompression rate, becoming similar
to the expected water solubility at 50 MPa for the lowest decompression rates (Fig. 3.5).
Equilibrium concentrations of water are reached at a decompression rate of 1 MPa/s for
H,0+CO,-bearing system and at 0.1 MPa/s for the H,O-bearing system. The H,O content
of the experiment DA28 in the H,O-bearing system with the slowest decompression
(0.0002 MPa/s) is slightly higher than that expected for 50 MPa. However, this
experimental product contains large plagioclase microlites (in contrast to all other samples)

which may affect the quality of the NIR determination.
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Fig. 3.5. HO-contents of the residual glasses (in wt%; determined by NIR) of the HO-bearing system and of
the HyO+CO,-bearing system as a function of the decompression rate. Circles are multi-step decompression
experiments and triangles are continuous decompression experiments. Error bars show standard deviation
(10) of replicate analyses.

Textures

Bubbles

The BSD in the samples shows concave-up size distribution curves, as illustrated in Fig.
3.6. There is no systematic variation of the BSD as a function of the decompression rate.
The BND values of the H,O+CO,-bearing system are slightly higher (0.9-1.2 log units)
when compared to values of the H;O-bearing system. Two distinct trends can be observed
in both systems. First, the BND values decrease with decreasing decompression rate at
high rates (20 to 0.01 MPa/s) ranging from 10®* mm™ to 10*® mm™ in the H,0+CO,-
bearing system and from 10°® mm™ to 10>” mm™ in the H,O-bearing system (Table 3.2,
Fig. 3.7). Secondly, BND values increase again at decompression rates lower than 0.01
MPa/s. Whereas, the BND value in the H,O+CO,-bearing system at 0.0002 MPa/s is
similar to that in the equilibrium experiment at 50 MPa, the BND value in the HO-bearing

system is 0.6 log units higher than that in the isobaric experiment at final pressure.
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Fig. 3.6 a-f. Bubble size distribution, calculated following the method of Higgins (2000), in samples after
decompression experiments.
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Fig. 3.7. Bubble number density (BND) as a function of the decompression rate for the H,O-bearing system
(empty symbols) and the H,O+CO,-bearing system (filled symbols). Circles are multi-step decompression
experiments and triangles are continuous decompression experiments. The black arrow indicates the onset of
plagioclase crystallization in the H,O-bearing system. Error bars show standard deviation (76) of replicate
analyses.

Microlites

The CSD in the samples shows concave-up size distribution curves (Fig. 3.8) and there is
no systematic variation of the CSD as a function of the decompression rate. In most cases,
the population density of crystals at sizes < 0.01 mm is slightly higher in the H,O+CO,-
bearing system when compared to the H,O-bearing systems for plagioclases as well as for
the other phases. At the lowest decompression rate (0.0002 MPa/s; see Fig. 3.8f), the size
of Pl microlites in the H,O-bearing system is significantly larger than that in the

H,0+CO;-bearing system.

47



3. DECOMPRESSION EXPERIMENTS

(@) - 20 MPa/s (b) = I MPa/s
= =
E £, O H,0 (OP)
g g ® H,0+CO,(0OP)
5 Q 5 S H,0 (PI)
5" g1 @ H,0+CO,(P))
S| O : | “de
& 10+ & 104
[T o,
R R
5 . T . T 5 T T T
0 0.05 0.1 0.15 02 0 0.05 01 0.15 0.2
microlite size [mm] microlite size [mm]
(©) = 0.1 MPa/s (d) = 0.01 MPa/s
TE 75
S g
=~ 20 =20
g 154 @P Ts
2 |'e 2
s | %o* :
&0 O 210
[N [=}
8= _=
5 T L L] L] L] 5 L L]
0 0.05 0.1 0.15 02 0.15 02
microlite size [mm)] mlcrollte size [mm]
(€) 0.001 MPas (f) 0.0002 MPa/s
78 T
£ E
S e
4% .% O
o i)
g 15 = 157 &o
§1o ( X2 o) §1o- (e} 4 P
= (o) = PY O o
5+ T T T T S T T T T
0.05 0.1 0.15 02 0 0.05 0.1 0.15 0.2
microlite size [mm)] microlite size [mm]

Fig. 3.8 a-f. Crystal size distribution, calculated following the method of Higgins (2000), for plagioclases (PI)
and other phases (OP) in samples after decompression experiments.

In the H,O+CO,-bearing system, the MNDp; values show no detectable dependence
on decompression rate and vary in the range from 10>* mm™ to 10>” mm>. In the H,O-
bearing system, plagioclase microlites only nucleated and grew at decompression rates <
0.0005 MPa/s, having MNDyp, values of 10>* mm™ to 10> mm™ (Fig. 3.9a). The MNDp,
values determined at the lowest decompression rate (0.0002 MPa/s) are 0.3 log units higher
in the H,O-bearing system when compared with the experiment in the H,O+CO;-bearing

system at the same conditions. The MNDs for other phases (MNDgp) range from 10>’ mm

-3

to 10>’ mm> in both systems, also showing no distinct change with changing
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decompression rate (Fig. 3.9b). The MNDgp values obtained in the H,O-bearing system are

in most cases ~ 0.3 log units higher than those in the H,O+CO;-bearing system.
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Fig. 3.9. Microlite number density (MND) as a function of the decompression rate for the-H,O-bearing
system (empty symbols) and the H,O+CO,-bearing system (filled symbols). (a) MND for plagioclases only
(MNDp,) and (b) MND for all other phases (MNDgp) such as amphiboles, pyroxenes and oxides. Circles are
multi-step decompression experiments and triangles are continuous decompression experiments. The black
arrow indicates the onset of plagioclase (Pl) crystallization in the H,O-bearing system. The grey shaded area

show the MNDp, of natural dome samples (Noguchi et al., 2008a). Error bars show standard deviation (/g) of
replicate analyses.
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The maximum length of Pl microlites in the H,O+CO;-bearing system increases
(Fig. 3.10), whereas the maximum aspect ratios of Pl microlites in the H,O+CO,-bearing
system show no variation with decompression rate (Table 3.2). In the H,O-bearing system,
PI microlites crystallized only at two decompression rates (0.0005 and 0.0002 MPa/s).
These experiments were duplicated and large P1 microlites were reproduced reaching up to
50-150 um in length at 0.0005 MPa/s and up to 200-250 um in length at 0.0002 MPa/s
(Table 3.2, Fig. 3.10). Plagioclase microlites of these runs show a skeletal appearance and

are often observed in close contact to bubbles.

300 ® H,0+CO,
o ¥ H,0+CO, isobaric at 50 MPa
M H,0+CQ, isobaric at 300 MPa
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Fig. 3.10. Maximum PI length as a function of the decompression rate. Dark grey shaded area represents the
range of Pl microlite lengths of Unzen natural dome samples after Noguchi et al. (2008a). Pl microlites in
core samples are smaller (<100 pm) (indicated by the light grey shaded area), except one sample (C14-1-1)
where P1 microlites reach up to 300 um in length (see Noguchi et al., 2008a,b; Goto et al., 2008).
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DISCUSSION

Dynamics of vesiculation

Equilibrium distribution of volatiles in melt and fluid

The analysis of water contents in the residual glasses gives information on the onset of
bubble formation processes, including nucleation, growth and coalescence of bubbles in
the samples. Although water concentrations are determined with a large error due to
influences of small bubbles and mineral phases, the plot of dissolved water in glasses as a
function of pressure (Figs. 3.5 and 3.11) clearly shows that no significant amount of water
is exsolved at the decompression rate of 20 MPa/s and that equilibrium water
concentrations are reached at decompression rates < (0.1 MPa/s in the HO-bearing system.
In a rhyolitic melt with a composition similar to our residual melts, Mangan & Sisson
(2000) observed that, at 900°C, some water already degassed at 8.5 MPa/s. They also
suggested that equilibrium conditions were not yet reached at the decompression rate of
0.003 MPa/s, which differs from our results (also plotted in Fig. 3.11). However, Mangan
& Sisson (2000) simulated crystal-free homogeneous bubble nucleation processes in
slightly more viscous rhyolitic melts (higher SiO, content) which may considerably affect
the kinetics of degassing. Another explanation for the observed difference can be that the
fluid exsolution processes might have been dramatically enhanced by the presence of
microlites. For instance, Hurwitz & Navon (1994) showed that Fe-Ti oxides, biotite etc.
can act as bubble nucleation sites. A review of Rutherford (2008), based on decompression
experiments in rhyolitic systems (Hurwith & Navon 1994; Gardner ef al., 1999; Mangan &
Sisson 2000; Gardner & Denis 2004; Baker et al., 2006; Gardner 2007b), shows that there
is a transition from non-equilibrium to near-equilibrium water release from the melt at
decompression rates of 0.025 to 0.25 MPa/s. At faster decompression rates (> 0.25 MPa/s),
at which the diffusion of water out of the melt into the bubbles is too slow, the melt

becomes water-supersaturated and the fluid-melt equilibrium cannot be reached.
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Fig. 3.11. Dissolved H,O contents (in wt%) of the glasses obtained from decompression experiments. Empty
purple circles are decompression experiments at 850°C in the H,O-bearing system (X"H,0=1). The solid
curve illustrates the equilibrium water contents from solubility experiments for a rhyolitic magma at 900°C
(from Mangan & Sisson, 2000), the black doted curve shows the water solubility for haplogranitic melts
(from Holtz et al., 1995). Crosses are experiments from Mangan & Sisson (2000) at decompression rates of

0.003, 0.025 and 8.5 MPa/s.

Bubble growth vs. bubble nucleation

The relatively high BND values in the H,O+CO;-bearing system (compared to the H,O-
bearing system) may result from two generations of bubbles (one with diameters > 20pm
and a second with diameters < 5um), which can be observed in BSE pictures (e.g. Fig.
3.3d) and in the BSD diagram (Fig. 3.6a). In contrast, in the H,O-bearing system, only one
bubble generation of intermediate sizes can be found (e.g. Fig. 3.3c and 3.6a). The two
generations of bubbles in the H,O+CO,-bearing system point to a possible delay in
nucleation of CO,-rich bubbles due to the lower diffusion rate of CO, in silicate melts
compared to that of H,O (Baker et al., 2005).

In general, it can be expected that as water exsolves from the melt, the melt-vapor
surface tension increases, lowering the bubble nucleation rate and therefore bubble growths
outweighs nucleation in the system (Mangan & Sisson, 2005). It is confirmed in our
experiments at high decompression rates, in which the BND decreases with decreasing
H,O content of the melt as decompression rates decrease from 20 to 0.01 MPa/s. This

observation indicates that bubble growth is the dominant process occurring at these
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decompression rates (Gardner, 2007a,b). In contrast, at lower decompression rates (0.01 to
0.0002 MPa/s) an increase in BND is observed.

Our results on bubble formation are consistent with previous experimental studies (e.g.
Toramaru 1995, 2006; Mourtada-Bonnefoi & Laporte, 2004; Cluzel et al., 2008) showing
that the main parameter controlling BNDs in magmas is indeed the decompression rate:
BND values decrease with decreasing decompression rates from 20 to 0.01 MPa/s (see Fig
3.7). In addition, the BND values determined in this study are within the BND range
obtained from other studies investigating heterogeneous bubble nucleation in rhyolitic
compositions (H,O-bearing system at decompression rates > 0.01 MPa/s; Fig. 3.12). The
BNDs of our H,O+CO,-bearing system follow the same trend but are shifted to higher
BNDs by ~ 0.6 log units. It is worth noting that the BND values determined at
decompression rates lower than 0.01 MPa/s do not follow the heterogeneous bubble
nucleation trend indicated by the black arrow in Fig. 3.12. The increase in BND with
decreasing decompression rate in the range 0.01 — 0.0002 MPa/s is interpreted as an
indication that bubble nucleation processes start to dominate over bubble growth processes.
This observation was not reported in previous studies and may be explained by the absence

of experiments with decompression rates lower than 0.02-0.01 MPa/s.

Significance of BND in the starting material

One important parameter controlling the BND values in the decompression experiments is
the bubble distribution in the starting material (isobaric experiments). The BND in the
starting material is dependent (1) on sample preparation (e.g., size of the glass powder
fractions used as a starting material, i.e., initial heterogeneity) and (2) on the annealing
period prior to decompression. As a result of Ostwald ripening, the BND decreases with
increasing annealing time (Lautze et al., 2010). Thus, the BND values determined in our
decompression experiments after 7-day annealing at 300 MPa can not be directly
transferred to interpret natural conditions (the residence time in the magma chamber prior
to an eruption is presumably longer than 7 days). However, based on our observations
obtained in both the H,O-bearing and the H,O+CO,-bearing systems, it is evident that the
effect of decompression rate on the BND trends is nearly identical for all samples,
independently on the bubble distribution in the starting material (compare open and black
symbols in Fig. 3.7). In this particular example, the difference in BND is due to the

difference in volatile composition of the bulk system. Thus, even if relevant quantitative
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data can be slightly affected by the initial heterogeneity of the sample, the dataset can be

used to predict qualitatively the evolution of BNDs as a function of decompression rates.
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Fig. 3.12. Compiled experimental data of the BND as a function of the decompression rate. In the legend,
ML99 refers to data from Mourtada-Bonnefoi & Laporte (1999; T= 800°C, Py~ 285-200 MPa, Pg,.= 198-
51 MPa) and ML02 from Mourtada-Bonnefoi & Laporte (2002; T= 1000°C, Py..= 295-200 MPa, Pgp= 179-
51 MPa) characterized by the occurrence of a homogeneous nucleation of bubbles. GD04 refers to data on

heterogeneous bubble nucleation from Gardner & Denis (2004; T= 800°C, Py, 175-125 MPa, Pgpa= 145-
80 MPa) and G07 from Gardner ef al. (2007b; T= 725-875°C, Py.= 100 MPa, Pg,,= 60-20 MPa). The inlet

shows the 3 distinct bubble nucleation trends.

Despite the fact that the determined BND values can not be directly applied to natural
case studies (see above), it is interesting to note that some of the data generated in this
study are very close (same order of magnitude) to the BND determined in natural rocks.
The experimental data obtained in this study are compared with the calculated BND values
of natural samples from several Plinian eruptions of different volcanoes in Fig. 3.13
(compiled by Toramaru, 2006). The experimental samples from the runs at the highest
decompression rate (20 MPa/s) are very close to the general trend reported by Toramaru

(2006). The deviation of the experimental data from the observed vesicularity trend of

Plinian eruptions has its maximum at 0.01 MPa/s (see Fig. 3.13b).
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Dynamics of magma crystallization

Crystallization processes occurring during decompression can best be detected by a shift in
the chemical composition of the residual melts. In the H,O+CO,-bearing system, the
decrease of the MgO, FeO, CaO and Al,Os contents and the simultaneous increase of the
Si0; and K,O content at decompression rates lower than 0.1 MPa/s are clearly related to
the crystallization of Pl and MgO-bearing phases such as Cpx and/or Opx. In the H,O-
bearing system, the decrease of the MgO content of residual melts at decompression rates
lower than 0.1 MPa/s indicates the crystallization of mafic minerals. The changes in Al,Os,
CaO and SiO, contents at decompression rates of 0.0002 and 0.0005 MPa/s are attributed
to the crystallization of the large Pl microlites. The delay of the decompression—induced
nucleation and growth of microlites, occurring at decompression rates lower than 0.1
MPa/s, relative to the onset of magma degassing (compare Fig. 3.4 and Fig. 3.5) can be
explained by the low diffusivity of major elements in silicate liquid when compared with
the diffusivity of volatiles. Moreover, the local oversaturation of the melt with respect to a
mineral phase (so-called undercooling of the system) may result in rapid and non-
equilibrium growth of microlites. In particular, the appearance of Pl in H,O-bearing
experiments only at low decompression rates and the fact that Pl microlites are
characterized by irregular skeletal shapes can be explained by kinetic effects (an
undercooling of ~ 100°C or less is necessary to explain the skeletal shape of Pl; Lofgren,
1974; Muncill & Lasaga, 1987, 1988). The chemical heterogeneity of the glasses
surrounding the Pl microlites also shows that equilibrium conditions are not reached during
decompression.

The determined logMNDp; and logMNDgp values for experimental samples range from
5.4-5.7 and 5.3-5.9, respectively, and do not show any clear dependence on the
decompression rate within the experimental and analytical uncertainties. This indicates
that, within the analytical uncertainty, no significant nucleation did. The absence of
nucleation and growth is possible at fast decompression, but we clearly observed rims
around amphiboles in the H>O-bearing system and thin rims around plagioclase in the
H,O0+CO,-bearing system at decompression rates < 0.01 MPa/s. Thus, at least crystal
overgrowth processes occurred in the slow decompression experiments, as confirmed by
the larger microlite sizes at decompression rates < 0.001 MPa/s in the CSD plots (Fig. 3.8e
and f). However, the analysis of the MND using our method does not show any significant

effect of this overgrowth on logMNDp; (H,O+CO;-bearing system) and on logMNDgp, The
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logMNDyp, of experiments in which PI nucleation clearly occurred (H,O-bearing system) is
not significantly different from that in the H,O+CO;-bearing system.

The results of isobaric experiments at 300 and 50 MPa (Table 3.1) can be used to
calculate the proportion of minerals which are expected to crystallize with decreasing
pressure. Such mineral proportions as a result of equilibrium crystallization can be

calculated in terms of mass fraction of crystallized material (¢ ) as a function of pressure,

assuming K,O concentration in the residual melt as a crystallization index (K is a strongly

incompatible element during magma differentiation):

¢ =1- |:((CK20start /CKZOeXp )— DK 20)j|

(1- DK ,0) ),

where K,Ogare 1s K2O concentration in the starting glass, K,Ocyp 18 the concentration of
K,0 in the experimental glasses, D is a partition coefficient of K,O between mineral

phases and melt, ¢ is the mass fraction of residual liquid. For this approach we assumed

that the partition coefficient is close to 0.0001 (Rollinson, 1993; this value may be a
minimum estimation assuming that plagioclase contain some K,O). The results show that
very small mineral proportions are expected for Unzen water-saturated groundmass
composition at 850°C (less than ~ 5 wt %) and that ~ 35 wt% crystals should present at
50 MPa (isobaric equilibrium experiments). Using equation (4), the calculated crystal
contents are in the range of 5-10 wt% for all decompression experiments in the H,O-
bearing system which is identical within error to the equilibrium value at 300 MPa. The
only experiment differing significantly from the initial crystal content was performed with
the slowest decompression (0.0002 MPa/s) with a calculated crystal fraction of ~ 19 wt%.
Thus, even in this experiment the equilibrium crystal fraction at 50 MPa was not reached

(Table 3.2).

Effect of degassing and crystallization: Implications for magma ascent dynamics at
Unzen

Decompression range from 50 MPa to surface pressure

The fact that the compositions of natural matrix glasses from the dome samples are similar
to the estimated composition of the groundmass glass of the conduit for most major
elements (see Fig. 3.4) could indicate that no significant crystallization processes did occur
during the last stage of magma ascent at Unzen. Such a conclusion is in agreement with

our results on MND. Our MND values (MNDp;= 10°4-10°7 mm'3) are in the same range as
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those of natural dome samples (MNDp= 10°>-10° mm™; Noguchi et al., 2008a; Toramaru et
al., 2008. On the other hand, observation contrasts with experimental results of Martel &
Schmidt (2003), who investigated in the nucleation processes in dacitic magma at low
pressures. They observed that at high pressure decompression (from 150 to 50 MPa)
crystal growth is a dominating process while at low pressure decompression (from 50 to 15
MPa) crystal nucleation is more favorable. Hence, further decompression experiments
conducted at lower pressures are needed to better interpret the dome textures and to
evaluate the actual magma ascent rates in the low pressure range (e.g. using MND rate-
meter from Toramaru et al., 2008). Moreover, although MND values have been determined
for the conduit samples (Noguchi et al., 2008b), which are similar to the dome data set,
these data should be used with caution since these rocks have undergone a different

thermal history after the eruption.

Decompression range from 300 MPa to 50 MPa

Based on the obtained compositional and textural data we can estimate the velocity of
magmas ascend from depths with pressures of 300 to shallow levels with pressure of 50
MPa during Unzen eruption. The two main observations which are useful for the
estimation of the magma ascent rate are (1) the chemical composition of natural matrix
glasses which can be well reproduced in the experiments performed in H,O+CO;-bearing
system at decompression rate of 0.0002 MPa/s (Fig. 3.4) and (2) the natural Pl microlite
lengths which can be reproduced in the H,O-bearing system at the same decompression
rate (Fig. 3.10). Considering that the second observation is crucial, the agreement between
experimental data and natural observation is expected to be reached best at decompression
rates lower than 0.0005 MPa/s which corresponds to approximately 50 m/h. If the water
activity is only slightly lower than 1.0 in the ascending system, the natural glass
compositions observed in the dome can only be reproduced at decompression rates lower
than 0.0001 MPa/s (Fig. 3.4) corresponding to ~ 10 -12 m/h. The exact determination of
the water activity in the ascending magmas close to the surface (~ 50 MPa) is difficult.
Considering that the estimated ascent rates are lower than 50 m/h, volatile exsolution must
have occurred at conditions close-to-equilibrium in the pressure range 300-50 MPa, which
is typical for effusive non-violent eruptions (e.g. Hurwitz & Navon, 1994), as observed at
Unzen. Assuming that the released volatiles are, at least in part, escaping from the
magmatic system (open system degassing; e.g., Turner et al., 1983; Gerlach, 1986) melts

would be almost free of CO; at low pressure. On the other hand, the model of Ohba et al.
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(2008) assumes that CO,-H,O-bearing fluids were continuously ascending in the Unzen
conduit, which would maintain a relatively low water activity in the ascending magmas
(the water activity would be mainly controlled by the percolation of CO,-H,O-bearing
fluids). Thus, if the percolation of such fluids were “buffering” the water activity in the
conduit, an ascent rate of ~ 50 m/h is more realistic than a value of ~ 10 m/h. In any case,
these values are in general agreement with estimations from petrology by Nakada &
Motomura (1999; 12-30 m/hour), from textural analysis by Noguchi et al. (2008a; 29-274
m/h in the pressure range 70-100 MPa) and from water exsolution rates by Toramaru et al.
(2008; 50-245 m/h), while data from electrical resistivity structure measurements by

Kagiyama et al. (1999) lead to lower estimated ascent rates (~0.8 m/h).

CONCLUSION

Decompression experiments using a rhyodacitic composition show that the size of natural
microlites can be only reproduced experimentally if the nucleation occurs during the
decompression path. For example, in the investigated system, plagioclase is not present as
equilibrium phase at 300 MPa but crystallizes during decompression because the stability
field of this mineral is dependent on pressure and water activity. Once nucleation has
proceeded, the degree of undercooling (as well as diffusivity of cations in the melts), which
is dependent on the decompression rate, is expected to be the main parameter influencing
mineral growth kinetics (mineral size). Thus, the size and shape of microlites can be used
to constrain ascent rates at the onset of the crystallization of the corresponding phase. In
the case of Unzen magmas, assuming that water activity is close to 1, the size of
plagioclases is compatible with magma ascent rates of ~ 30-50 m/h at depths
corresponding to ~ 200 to 50 MPa.

In our decompression experiments, using a partially crystallized starting material
containing bubbles, a transition from non-equilibrium to near-equilibrium water release
from the Unzen rhyolitic melt is observed at decompression rates between 1 and 0.1 MPa/s
(at water-saturated conditions). At the investigated pressures, the dominant exsolution
process is the result of bubble growth at relatively high decompression rates, which may be
explained by increasing melt-vapor surface tension with ongoing degassing. However, at
low decompression rates (< 0.01 MPa/s), heterogeneous bubble nucleation may become a
dominant process which could be facilitated by the beginning of crystallization of

microlites (overgrowth of preexisting crystals).
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3.1.2. HPD experiments at high-temperature (930 °C; set-11)

Starting material

The starting material (glass powder) was generated as already explained in chapter 2 and
in chapter 3.1.1. But instead of annealing each capsule pair individually (one H,O-
saturated and the other H,O+CO;-saturated) before the decompression run, first a large
homogeneous capsule (3.5-4.0 cm long and an inner diameter of 4.0 mm) was synthesized
for 4 days at the starting P-T conditions (300 MPa, 930°C) in the IHPV under reducing
conditions (Ar-H, gas mixture; ~NNNO+0.95 for H,O-bearing system and ~NNO-7.11 for
H,0+COs-bearing system) with final rapid quench. Then small cylinders with a total
length of about 5 mm were cut from the big synthesis capsules. The synthesized and fluid-
saturated glass cylinders were individually inserted into new capsules, which were again
welded shut. After another short annealing time (2-4 hours) at same starting P-T
conditions, isothermal continuous decompression (details see text below) was initialized
until final pressure of 50 MPa with subsequent rapid quench. Decompression rates varied

between 0.1 and 0.0002 MPa/s, see Table. 3.3.

Continuous decompression method

The decompression experiments at high-temperature (930°C) were conducted in THPVs,
using a new developed decompression valve that has been constructed by the team of Prof.
Dr. Nowak (University Tiibingen, Germany), which allows a continuous pressure release
even at very low decompression rates (Nowak et al., 2011). This new valve consists of a
movable thin steel needle connected to a manual rotating hand wheel and to an attached
preloaded high-load piezo actuator (HVPZT) with sensor option (company: PI GmbH &
Co. KG, model number: P-247.7S), referred to in the following as piezo ceramic for
simplicity. The piezo ceramic is attached to an external energy recovery power amplifier.

A schematic overview of the decompression valve can be found in Fig. 3.14.
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Fig. 3.14. Schematic illustration of the new decompression valve installed additionally to the IHPV. The
center piece of this valve is the piezo ceramic that can move the steel needle due to mechanical strain
induced by electrical voltage (source: Nowak ef al., 2011).

The piezo ceramic can be reversely expanded or contracted in one material-specific
direction induced by electrical voltage (piezoelectric effect: a linear interaction between
the mechanical and electrical state in the crystalline material). Therefore, the steel needle
which is carefully connected directly to the piezo ceramic can be moved for few
micrometers (max. 120 pm using max. 10 V), opening the gas pressure release valve. For
visualization of the gas release, a flexible tube has been inserted into the pressure release
valve, leading to a water filled container where gas escapes as bubbles, see Fig. 3.15.
Adjusting the decompression rate has been proceeded by visual inspection as a
combination of the rate of gas bubble release in the water container and the pressure

display of the IHPVs logging unit.
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Fig. 3.15. Photo of the decompression valve at the high-pressure laboratory of the Institute for Mineralogy,
Leibniz University Hannover, Germany. In the upper left corner the decompression valve is fixed to the
wall. On the table the power amplifier and a voltage display are situated. The gas pressure release opening
of the decompression valve is connected via a thin flexible tube to a filled water glass on the lower shelf of
the table, where the release of single gas bubbles can be observed.

RESULTS

Phase assemblages and compositions of set-Il HPD experiments

The experimental products of HPD set-1I consist of glass, microlites and vesicles (Fig.
3.16). The solid experimental products obtained from both fluid-saturated (H,O-bearing
and the H,O+CO;-bearing) starting assemblages at 930°C are composed of glass, oxides
(Ox, mainly limenite), pyroxenes (Opx and Cpx). Amphibole (Amph) and plagioclase (P1)
microlites are not detected in any of the decompression experiments or in isobaric
experiments at 300 MPa of both fluid-saturated systems. However, Pl is stable at the final
pressure of 50 MPa in the H,O-bearing and the H,O+CO,-bearing system (UN103 and
UNI105, respectively), as already shown in our previously discussed phase stability
experiments (see chapter 2 and Appendix Table A.3 for chemical composition of Pl

microlites).
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Melt compositions

The chemical analyses of the residual melts are listed in Table. 3.3 and plotted in Fig. 3.17.
The chemical composition of the glasses in both fluid-saturated systems remains nearly
constant with changing decompression rates and is in the same range as the composition of
the isobaric starting glasses at 300 MPa. The experimental data are compared with the
compositional range of natural Unzen dome and conduit groundmass glasses (grey fields in

Fig. 3.17; Nakada & Motomura, 1999; Noguchi et al., 200b). Except for the Na,O contents
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(Fig. 3.17g), none of the major oxides of the decompression experiments overlap with the
composition of the natural Unzen samples. On the other hand, the chemical compositions
of the H,O-bearing and H,O+CQO;-bearing isobaric experiments at 50 MPa are similar to

natural groundmass glasses for most major oxides.
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Fig. 3.17. Normalized chemical compositions of the experimental residual melts of set-1I as a function of the
decompression rate. The dark grey shaded areas show the chemical composition range of the erupted natural
groundmass glass in erupted rocks (Nakada & Motomura, 1999) and the light grey shaded areas show the
estimated chemical composition range of groundmass glass composition in the conduit rocks (Noguchi et al.,
2008b) of the 1991-1995 Unzen eruption. Error bars show standard deviation (/o) of replicate analyses.
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3. DECOMPRESSION EXPERIMENTS

Water concentrations obtained from NIR spectroscopy (details see chapter 2.1.) in
the fluid-saturated starting glasses at 300 MPa are 6.95 wt% and 4.42 wt% for the H,O-
bearing and for the H,O+COs-bearing system, respectively. The residual melts of the
decompression end products show water concentrations that are close to equilibrium
concentrations at final pressure (isobaric at 50 MPa ~2.0 + 0.2 wt%) for both systems, see
Table 3.3. The H,O content of all decompression end products are similar within the error
to that expected at isobaric 50 MPa. However, the quality of the NIR determination may

have been negatively affected by larger microlite phases or bubbles.

Textures
Bubble and crystal size distributions (BND and CSD, respectively) as well as bubble and
microlite number densities (BND and MND, respectively) have been determined following

the methods already described in chapter 3.1.1.

Bubbles

The BSD in the samples show concave-up shaped size distributions, as illustrated in
Appendix Figs. B.1 and B.2. In the H,O+CO,-bearing system, especially the population
densities at smaller sizes (< 0.05 mm) are higher when compare to the H,O-bearing
system. There seems to be a systematic variation of the BSD as a function of the
decompression rate: the population densities of smaller sized bubbles (< 0.05 mm)
decrease with decreasing decompression rate. While at the lowest conducted
decompression rate, two generations of bubbles were detectable in both fluid-saturated
systems: one generation at bubble sizes < 0.01 mm and another bubble generation having
sizes larger than 0.03 mm.

The BND values of the H,O+CO,-bearing system decrease with decreasing
decompression rate from 0.1 to 0.0007 MPa/s, ranging from 10>’ mm™ to 10>° mm~ (Fig.
3.18), respectively. The BND values of the H,O-bearing system follow the same trend as
that of the H,O+CO»-bearing system at very low decompression rates (< 0.001 MPa/s) and
are slightly lower than in the equilibrium experiment at 50 MPa. While the BND value of
the highest conducted decompression rate (0.1 MPa) in the H,O-bearing system is ~2.5 log
units lower than that of the H,O+CO,-bearing system and does not fit to the observed trend

of decreasing BNDs with decreasing decompression rates.
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7.0 930 °C (HPD: 300 to 50 MPa)
O H,0 at 300 MPa V H.,0 (continuous)
] 0 H.O at 50 MPa V H,0+CO, (continuous)
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Fig. 3.18. Bubble number density (BND) as a function of the decompression rate for the-H,O-bearing system
(empty symbols) and the H,O+CO,-bearing system (filled symbols). Triangles are continuous decompression
experiments. The blue arrow indicates the onset of plagioclase crystallization in the H,O-bearing system.
Error bars show standard deviation (7/¢) of replicate analyses.

Microlites

The average chemical composition of pyroxenes (Opx and Cpx) can be found in Appendix
Table A.6.1 and A.6.2. No MNDp; or CSD values for plagioclase microlites were
determined as Pl microlites did not crystallized in HPD experiments of the H,O-bearing
and H,O+COs-bearing system at 930°C. Most CSD curves for other phases (OP) in the
samples of both systems show concave-up shapes (4ppendix Figs. B.1 and B.2). There is a
systematic variation in the H,O-bearing samples: population densities with smaller
microlites sizes (< 0.05 mm) decrease with decreasing decompression rate, while the
maximum crystal sizes increase from 0.1 mm to 0.25 mm with increasing decompression
rate from 0.1 to 0.0002 MPa/s, respectively. In the HO+CO,-bearing system, only the
population densities at smaller crystal sizes (< 0.05 mm) decrease with decreasing
decompression rate, but there cannot be found any significant systematic variation in the

maximum microlite size with changing decompression rates (Appendix Fig. B.2).
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The MNDs for other phases (MNDgp) in the H,O+CO,-bearing system range from
10>? mm™ at decompression rates > 0.01 MPa/s to 10> mm™ at the lowest decompression
rate (0.0007 MPa/s), see Fig. 3.19. While the MNDgp values in the H,O-bearing system
range from 10>’ mm™ at decompression rates > 0.001 MPa/s to 10*' mm™ at the lowest

decompression rate (0.0002 MPa/s).

930 °C (HPD: 300 to 50 MPa)
5 3
7.0 O H,0at300MPa
< H,0at50 MPa
Bl H,0+CO,at 300 MPa
6.5 .
V H.O (continuous)
V' H,0+CO, (continuous)
—
(?E 6.0 | ‘
E 55
-9
&)
% 5.0 A ]
en 4.5 1
o
p—
4.0 -
3.5 1
3.0 L T

0.0001  0.001 0.01 0.1 1 10 100

decompression rate [MPa/s]

Fig. 3.19. Microlite number density for all other phases (MNDgp) such as pyroxenes and oxides as a function
of the decompression rate for the-H,O-bearing system (empty triangles) and the HyO+CO,-bearing system
(filled triangles). Error bars show standard deviation (/o) of replicate analyses.
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3.2. Low pressure decompression (LPD)

The main focus concerning the low pressure decompression (LPD) experiments was the
simulation of magma ascent from a starting pressure of 50 MPa to a final surface pressure
of 0.1 MPa at both investigated temperatures of 850°C and 930°C (set-III and set-IV,
respectively; chapter 3.2.1.), completing the data sets of our performed high pressure
decompression (HPD) experiments presented in chapter 3.1. In our LPD experiments, only
the water-bearing system was investigated as carbon dioxide is assumed to be totally
exsolved from the melt at those low depths (e.g. Fogel & Rutherford, 1990; Behrens et al.,
2004; Liu et al., 2005). Additionally, one LPD set was performed starting at a higher
pressure of 200 MPa down to surface pressure at 850 °C (set-V; see chapter 3.2.2.). This
experimental approach (starting at 200 MPa) is covering the lower pressure range
estimated for the storage conditions of the mixed dacitic magma prior to the 1991-1995
Unzen eruption (minimum pressure of 160 MPa; Venezky & Rutherford, 1999), and was
chosen as a result of our former presented phase stability experiment at these conditions
(sample Un06), where plagioclase microlites were not yet crystallized. The decompression
paths for our LPD experiments of set-III, set-IV and set-V are plotted schematically in Fig.
3.20.
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Fig. 3.20. Schematic phase diagram for water-saturated rhyodacitic magma, derived from this study chapter
2 (phase stability experiments). The purple and blue arrows show the isothermal decompression paths of
LPD set-1II and set-1V, starting from 50 MPa down to final 0.1 MPa at temperatures of 850°C and 930°C,

respectively. While the orange arrow indicates the isothermal decompression path of LPD set-V, starting
from 200 MPa down to final 0.1 MPa at a temperature of 850°C.

3.2.1. LPD: from 50 to 0.1 MPa at high- and low-temperatures (set-I1I and
set-1V)

Experimental strategy

For the capsule preparation, we followed the method described in chapter 3.1.2 (HPD
experiments), while starting pressure and annealing times were adjusted to the here
corresponding experimental approaches: annealing time of 14 days at 50 MPa for the
synthesis capsules. Decompression rates varied between 0.1 and 0.0001 MPa/s and
decompression was performed as multi-step decrease in pressure at 850°C in CSPVs or as
continuous pressure release at 930°C in the IHPVs, using the new developed valve

described above (chapter 3.1.2). Experimental conditions of each LPD run are given in
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Table 3.5. Chemical and textural data were determined by the analytical methods described

already above in chapter 2 and chapter 3.1.1.

RESULTS

Phase assemblage and compositions

The end products of water-saturated LPD experiments at 850°C and at 930°C consist of
glass, microlites and vesicles (Fig. 3.21 and Appendix Figs. B.3 and B.4). Solid
experimental products of the starting assemblage at 50 MPa are composed of glass,
plagioclase and oxides as well as + pyroxenes at both temperatures. The mineral
assemblage of all LPD end products is consistent with that of the starting materials at 50
MPa, while having additional quartz (Qtz) microlites crystallized in both LPD sets, usually
in close contact to the bubbles. Chemical compositions of plagioclases and pyroxenes can
be taken from Appendix Table A.7.1-3.

The average anorthite (An) contents of Pl microlites in LPD end products do not
differ much from the starting composition at 50 MPa: 54 mol% at 930°C and 44 mol% at
850°C, see Appendix Table A.7.1. Plagioclases crystallized at 850°C (set-I1I) have slightly
lower An contents (41-44 mol%) when compared to those of the high-temperature (set-1V;
930°C) LPD set (53-54 mol%). All anorthite contents are in the range of naturally
crystallized Pl microlites from Unzen dome and conduit samples (Noguchi et al., 2008a,

b).
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Melt compositions

The chemical analyses of the residual melts of LPD sets III and IV are listed in Table 3.5
and plotted in Fig. 3.22. The chemical composition of the residual glasses obtained from
LPD experiments at both temperatures change nearly constantly with decreasing
decompression rate for most major element oxides. The SiO, and K,O contents in residual
glasses increase with decreasing decompression rates, while Al,O3;, FeO, MgO and CaO
contents of glasses decrease with decreasing decompression rates. Over all, the chemical
compositions of the low-temperature (850°C) LPD experiments at all performed
decompression rates overlap with the compositional range of groundmass glasses of
natural erupted Unzen rocks (grey fields in Fig. 3.22; Nakada & Motomura, 1999). While
the chemical compositions of the high-temperature (930°C) LPD experiments are only

close to natural Unzen dome samples at very low decompression rates (< 0.001 MPa/s).
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Fig. 3.22. Normalized chemical compositions of the experimental residual melts as a function of the
decompression rate at 850°C (set-1II; purple symbols) and at 930°C (set-IV; blue symbols). The grey shaded
areas show the chemical composition range of the natural groundmass glass in erupted rocks (Nakada &
Motomura, 1999) of the 1991-1995 Unzen eruption. Error bars show standard deviation (70) of replicate
analyses.
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The determination of water concentrations in the residual glasses by NIR
spectroscopy was not practicable as all LPD end products were highly crystallized,
providing not enough space for high quality analysis (without the influence of crystals or

bubbles).

Textures

Bubbles

The BSD curves of the LPD samples show concave-up shapes for both temperatures, as
illustrated in Appendix Figs. B.3 and B.4. A systematic variation of the BSD can be
observed as a function of the decompression rate at 930°C: the maximum bubble size
decreases from ~0.55 mm at 0.2 MPa/s to ~0.15 mm at 0.0001 MPa/s, while the population
densities of small-sized bubbles increase at decompression rates < 0.001 MPa/s. Such
distinct variations are not detectable in the low-temperature (850°C) LPD samples:
maximum bubbles sizes range between ~0.35 and ~0.55 mm, while the population
densities of all bubble size intervals are similar at all decompression rates. The determined
BND values at 850°C are in the same order of magnitude for all decompression
experiments, varying from 10*' mm™ to 10*” mm™, see Fig. 3.23. Whereas at 930°C there
can be observed an (exponentially) increasing trend of BNDs with decreasing
decompression rates, ranging from 10*? mm™ to 10> mm™ at decompression rates of 0.02

to 0.0001 MPa/s, respectively.
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Fig. 3.23. Bubble number density (BND) as a function of the decompression rate for the-H,O-bearing system
at 850°C (set-1II; purple symbols) and at 930°C (set-IV; blue symbols). Circles are multi-step decompression
experiments and triangles represent continuous decompression experiments. Error bars show standard
deviation (/¢) of replicate analyses.

Microlites

The CSDs in the LPD samples show concave-up curves for both temperatures, as
illustrated in Appendix Figs. B.3 and B.4. A systematic variation of the CSDs with
changing decompression rates can not be observed for both LPD sets. Population densities
for plagioclase (P1) microlites are slightly higher than for all other phases (OP) at sizes >
0.02 mm. When comparing CSD curves of set-III and set-IV at correlating decompression
rates with each other then significant higher population densities at size intervals < 0.02
mm can be observed at 850°C, but generally higher maximum crystal sizes at 930°C. The
CSD curves for set-II1 have steeper slopes at crystal sizes < 0.02 mm than compare to set-
IV.

The determined MNDp values of both LPD sets at all decompression rates are in
the same order of magnitude, ranging from 10®° mm™ to 10®* mm™, see Fig. 3.24a. Except
for one decompression experiment at 930°C and 0.02 MPa/s, which is having a slightly
lower MNDp; value of 10°% mm>. Overall, the MNDp, values stay nearly constant with
changing decompression rates, while values of MNDp; are ~0.1-0.3 log units higher at low

temperatures. However, experimental MNDp values are ~0.3-0.5 log units higher than for
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natural plagioclase microlites in natural Unzen dome samples (Noguchi er al., 2008a).
MNDgp values are in the same range as MNDp; values and do not change significantly with
varying decompression rates (Fig. 3.24b). Again, values for high-temperature LPD
experiments are ~0.4-0.5 log units lower than for LPD experiments at 850°C. While
MNDp; and MNDgp values of decompression experiments are similar to the starting
materials at 50 MPa (indicated by square symbols in Fig. 3.24 a-b).

Experimentally crystallized plagioclase microlites in all LPD runs show tabular
appearances. The maximum length of Pl microlites are not significantly changing with
decreasing decompression rates at both investigated temperatures, see Fig. 3.25. At 850°C,
PI microlites grew to a maximum of ~20 um, while at 930°C maximum lengths of ~50 um
were reached, which is in the lower range of Pl microlites found in Unzen conduit samples
(Noguchi et al., 2008 b; Goto et al., 2008) but are to low for erupted Unzen dome samples
(Noguchi et al, 2008a).
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Fig. 3.24. Microlite number density (MND) as a function of the decompression rate for the-H,O-bearing
system at 850°C (purple symbols) and at 930°C (blue symbols). (a) MND for plagioclases only (MNDy;) and
(b) MND for all other phases (MNDgp) such as amphiboles, pyroxenes and oxides. The grey shaded area
shows the MNDy; of natural dome samples (Noguchi et al., 2008a). Error bars show standard deviation (/o)
of replicate analyses.
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Fig. 3.25. Maximum PI length as a function of the decompression rate. Dark grey shaded area represents the

range of Pl microlite lengths of Unzen natural dome samples after Noguchi ez al. (2008a).
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3.2.2. LPD: from 200 to 0.1 MPa at low-temperature (set-V)

Experimental strategy

For the capsule preparation, we followed the method described in chapter 3.1.2 (HPD
experiments at 930°C), while the annealing time was 7 days at 200 MPa and 850°C for
LPD set-V. Multi-step decompression experiments were conducted in CSPVs with
decompression rates ranging from 0.01 to 0.0001 MPa/s, see Table 3.7. Chemical and
textural data were determined by the analytical methods described already above in

chapters 2 and 3.1.1.

RESULTS

Phase assemblage and compositions

The experimental products of LPD set-V at 850°C (sample Big03+04) consist of glass,
microlites and vesicles (Fig. 3.26 and Appendix Fig. B.5). Solid experimental products of
the starting assemblage at 200 MPa are composed of glass, plagioclase, amphibole, oxides
and pyroxenes. Chemical composition of determined microlite phases are given in
Appendix Table A.8. The mineral assemblage of all LPD end products is consistent with
that of the starting materials at 200 MPa. Except at decompression rates < 0.0002 MPa/s,
Amph microlites are not present anymore in the LPD end products, which is in agreement
with former studies on Amph stabilities in the 1991-1995 Unzen system (e.g. Sato et al.,
1999; Venezky & Rutherford, 1999; see also this study chapter 2).

The average anorthite contents of the analysed Pl microlites show no systematic
variation with changing decompression rates and range from 65 to 50 mol%. The
compositions and magnesium numbers [Mg# = Mg/(Fe,,; - Mg), moles] of detected Amph
microlites were analyzed, see Appendix Table. A.8.1. At isobaric starting conditions, the
average Mg# is 0.64, while Mg numbers of the two LPD experiments at 0.01 MPa/s and
0.001 MPa/s are 0.72 and 0.70, respectively.
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LPD set-V: 200 to 0.1 MPa at 850°C
(a) isobaric at 200 MPa (b) 0.01 MPa/s

L::' ;\' hf A

Yt\ . : .‘;‘
) T e & “;'. “

o TR Y
7 ’.,\/

Fig. 3.26 a-j. Images of the products of isobaric and decompression experiments for LPD set-V (850°C).
Black bodies are bubbles; light grey particles represent microlites such as plagioclases, pyroxenes and
oxides + amphiboles.
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Melt compositions

The chemical analyses of the residual melts of LPD set-V are listed in Table 3.7 and
plotted in Fig. 3.37. The SiO, and K,O contents of the residual glasses increase with
decreasing decompression, while Al,O3, FeO, and CaO contents of the residual glasses
decrease with decreasing decompression rate. The experimental LPD data of set-V are
compared with the natural Unzen compositional range of dome groundmass glasses in Fig.
3.27 (grey fields; Nakada & Motomura, 1999). The concentrations of all major oxides

overlap with natural compositions at low decompression rates only (< 0.0002 MPa/s).
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Fig. 3.27. Normalized chemical compositions of the experimental residual melts as a function of the
decompression rate at 850°C of set-V (orange symbols). The grey shaded areas show the chemical composition
range of the erupted natural groundmass glass in erupted rocks (Nakada & Motomura, 1999).
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Water concentrations of the residual glass determined by NIR spectroscopy at
starting pressure (200 MPa) are in good agreement with each other and lie at 5.75 wt% and
5.71 wt%, respectively. Due to high crystallinity of the LPD experimental end products

NIR and MIR analyses were not of good quality and therefore not determined.

Textures

Bubbles

The bubbles size distribution curves are concave-up shaped for all LPD end products, see
Appendix Fig. B.5. The BSD curve of the starting material at isobaric conditions is
characterized by a nearly straight line with a relatively flat slope, having rather high In
population densities (7 to 15 mm™) for all bubble size intervals. The maximum bubble size
and maximum In population densities (for the smallest analysed size interval) are similar in
all four decompression samples, having values of ~0.85 mm and ~15 mm™, respectively.
BSD curves at decompression rates < 0.001 MPa/s show an even and continuous
distribution of the size intervals, whereas at the fastest conducted decompression rate (0.01
MPa/s) there is a gap at size intervals of ~0.2-0.8 mm. Otherwise no significant systematic
variation can be observed with changing decompression rate. BND values for
decompression rates > 0.0002 MPa/s are in the same range (10*' to 10** mm™), while
being slightly higher than at isobaric starting conditions at 200 MPa and 850°C, see Fig.
3.28. For the lowest decompression rate (0.0001 MPa/s), the BND value is similar to that
of the starting material (~10°° mm™), while their BSD curves show not the same trend, see

above.
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Fig. 3.28. Bubble number density (BND) as a function of the decompression rate for the-H,O-bearing system
at 850 °C (orange symbols). Error bars show standard deviation (/o) of replicate analyses.

Microlites

The crystal size distribution curves for plagioclase microlites (PI) and for other phases
(OP) are concave-up shaped, shown in Appendix Fig. B.5. CSD curves for LPS
experiments are characterized by a steeper slope at lower sizes intervals than the CSD
curves of the isobaric experiment. The maximum microlites sizes of the other phases (OP;
oxides, pyroxenes = amphiboles) are larger than for plagioclases at isobaric 200 MPa and
at the fast decompression rate of 0.01 MPa/s. At slower decompression rates (< 0.001
MPa/s) PI sizes become similar to OP sizes with a maximum of ~0.05 mm. While at the
lowest conducted decompression rate (0.0001 MPa/s) Pl microlites reach even maximum
size intervals of ~0.08 mm.

No distinct systematic variation of MNDp values is observable with changing
decompression rates, see Fig. 3.29a. MNDp, values for the isobaric sample and the LPD
end products range from 10> to 10! mm™. The MNDop values for our LPD experiments
are slightly higher than for isobaric conditions at 200 MPa, ranging from 10°' to 10®* mm™
3, (Fig. 3.29b). An increasing trend of maximum PI lengths with decreasing decompression

rate can be detected (Fig. 3.30), ranging from ~20 um at 0.01 MPa/s (equal to isobaric
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conditions at 200 MPa) to 76 um at 0.0001 MPa/s. Plagioclase microlites of these LPD

runs from 200 to 0.1 MPa show overall a tabular appearance.

(a)

log MND,, [mm”]

~
o
~

log MND,, [mm”]

Fig. 3.29. Microlite number density (MND) as a function of the decompression rate for the-H,O-bearing
system at 850°C (orange symbols). (a) MND for plagioclases only (MNDyp)) and (b) MND for all other phases
(MNDgp) such as amphiboles, pyroxenes and oxides. The grey shaded area show the MNDyp, of natural dome
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samples (Noguchi et al., 2008a). Error bars show standard deviation (7/¢) of replicate analyses.
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Fig. 3.30. Maximum plagioclase (Pl) length as a function of the decompression rate. Grey shaded area
represents the range of Pl microlite lengths of Unzen natural dome samples after Noguchi et al. (2008a).
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3.3. Comparison of three different decompression methods: continuous,

multi-step and single-step decompression (set-VI)

Decompression experiments presented in this chapter have been originally performed to
test the newly constructed continuous decompression valve described in chapter 3.1.2.
Results and interpretations of the experimental products are conforming to a certain extent
with sections of the paper of Nowak et al. (2011) to which I am the second author and

therefore I was significantly involved in co-writing the paper.

INTRODUCTION

Over the decades of investigating in magma ascent-related vesiculation and crystallization
processes, numerous experiments were conducted simulating the magma ascent at different
stages: from great depth as deep as the storage conditions of magma chambers, to
shallower depths and even to (near-) surface pressures. Therefore, different decompression
methods were performed. For example, Hurwitz & Navon (1994), Gardner & Denis (2004)
and Gardner (2007a) were using the single-step method where the entire pressure range,
from starting to final pressure, is released by a sudden instantaneous drop (within few
seconds) followed by a variable equilibration time (of seconds, minutes or days) at final
pressure, changing the effective decompression rate. In other experimental studies (e.g.
Mourtada-Bonnefoi & Laporte, 1999; Larsen & Gardner, 2004, Gardner, 2007b, 2009;
Marziano et al., 2007; Castro & Dingwell, 2009), especially investigating lower
decompression rates, pressure was released stepwise (multi-step decompression), meaning
that variable multiple smaller instantaneous pressure drops with subsequent dwell periods
are performed. Actual continuous decompression experiments were usually only conducted
at decompression rates higher than 0.1 MPa/s by manually bleeding-off the (gas) pressure
from the vessel (e.g. Mangan & Sisson, 2000, 2005; Martel & Schmidt, 2003, Marziano et
al., 2007; Hamada et al., 2010). There have been attempts to improve the method of
continuous decompression working at lower rates. Mourtada-Bonnefoi & Laporte (2004)
used an automatic computer-controlled decompression device, where the pressure vessel
was connected to a set of air-operated valves allowing small-scale pressure steps of ~0.1-
1.0 MPa (Laporte et al., 2000), allowing decompression rates of 0.0003-0.03 MPa/s. While
Brugger & Hammer (2010) performed continuous decompression experiments using a new

hydraulically driven screw pump pressure variator with programmable controller, starting
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at maximum pressures of 110-140 MPa and performing decompression rates of 0.0001-
0.03 MPa/s.

Brugger & Hammer (2010) showed also that crystal textures (e.g. crystal shape,
total crystallinity) are evidently influenced by the decompression path, comparing
continuous and multi-step decompression experiments. Former experimental studies (e.g.
Hurwitz & Navon, 1994) demonstrated that crystal textures can also affect the formation of
bubbles, acting as nucleation sites. Therefore, the main attention in this chapter is drawn to
the questions: Are bubble forming processes (in crystal-free systems) also influenced by
the decompression path? And are their results (here mainly: BND values) comparable to
each other?

From thermodynamics and kinetcs we already understood that several parameters
such as melt composition, viscosity and/or water saturation have an influence on the
formation (i.e. nucleation, growth and coalescence) of bubbles. For example, the review of
Sparks et al. (1994) showed that bubbles can either nucleate homogeneously or
heterogeneously from a supersaturated melt. In the case of homogeneous bubble
nucleation, small clusters of gas molecules form the so-called bubble embryos. Dependent
on the free energy, associated with the formation of the separate gas phase, and on the
interfacial energy, associated with the creation of the bubble surface, a bubble embryo can
grow or can shrink (see review of Sparks et al., 1994). An embryo can only grow when, by
adding one extra molecule to the cluster, the critical radius () is overcome. 7. is given by:
1= 26/AP 4),

where o is the interfacial tension (also referred to as melt-vapor surface tensions; e.g.
Mangan & Sisson, 2005) and AP the supersaturation pressure (i.e. difference between gas
pressure in the melt and the ambient pressure). Mangan & Sisson (2005) showed that as
water exsolves from the melt and the melt evolves to more silicic compositions, the melt-
vapor surface tensions (o) increase, thus lowering the bubble nucleation rate and ultimately
the number of bubbles produced. On the other hand, the higher the supersaturation pressure

the lower the critical size of an embryo, facilitating nucleation.

Experimental strategy

To investigate the influence of the decompression method on the formation of bubbles in
our experimental products, we performed a set (set-VI) of decompression experiments in
IHPVs. Decompression was conducted at an average constant decompression rate of 0.28

MPa/s (equivalent to an ascent velocity of 34 km/h) from a starting pressure of 300 MPa
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down to a final pressure of 50 MPa in a fluid-saturated system, using three different
decompression methods: single-step decompression, multi-step decompression and
continuous pressure release (see Fig. 3.31). The experimental temperature was chosen
above the liquidus (at 1050°C) to minimize the influence of crystals on the bubble
nucleation (e.g. Hurwitz & Navon, 1994).

For single-step decompression (sample DEC11-8), the entire pressure of 250 MPa
was instantaneously released from 300 MPa down to final 50 MPa within a few seconds
(~20 sec), equivalent to 12.5 MPa/s, and then the capsule was hold at the final pressure for
the next 15 minutes before quenching. For multi-step decompression (sample DEC11-6),
pressure was released in five equal steps of 50 MPa with an interval of three minutes.
During each step pressure was also released at a rate of 12.5 MPa/s. The continuous
decompression from 300 MPa to 50 MPa (sample DEC11-5) was conducted for 15
minutes, using the novel decompression valve described in chapter 3.1.2 (Nowak et al.,
2011). When pressure is released on gas, there will be significant cooling of the gas and the
sample up to 35°C (Hamada et al, 2010). However, during our decompression
experiments the temperature fluctuation of the samples where kept constant within 10°C
due to the fast response of the internal furnace. Furthermore, Hamada et al (2010)
demonstrate that temperature has an insignificant effect on BNDs in hydrous rhyolitic melt
at a given decompression rate. Thus, our results are not affected by small temperature

fluctuations within 10 °C.
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Fig. 3.31. Schematic diagram showing the differences of the P-t paths between continuous decompression

(diamond symbols), multi-step decompression (solid line) and single-step decompression (dashed line) at
experimental conditions of 1050°C in the H,O-saturated system.

Starting material and experimental method

Several cylinders of dry glass (details on glass preparation see chapter 2) were loaded with
about 10 wt% H,0O into AugoPdyo capsules (2.5 cm long and with inner diameter of 2.8
mm) and welded shut. The amount of water was chosen to be sufficient to saturate all
melts at given 300 MPa and 1050°C. The capsule was placed in Ar-pressurized internally
heated pressure vessel (IHPV) at oxygen fugacity corresponding to a range between
QFM+1.0 to QFM+1.7 (which was achieved by addition of hydrogen gas to Ar). After
annealing for four days at the P-T conditions of 300 MPa and 1050°C, the synthesis
capsule (DEC11syn, Table 3.9) was rapidly quenched by dropping it into the cold zone of
the sample holder. The quench rate was about 150 °C/second. This synthesized silica-rich
starting glass (65.99 wt% SiO,; DEC11syn) included only very few (total porosity < 0.5
vol%), isolated micro-bubbles (< 30 um in diameter) and contained 7.46 wt% H,O (see
Table 3.9 and Fig. 3.32a), which is in agreement with former water solubility experiments
on high-silicic melts (e.g. ~7.33 wt% H,O, Holtz et al., 1995; ~7.10 wt% H,0, Jaupart &
Tait, 1990).
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After quenching, the hydrated glass cylinder was cut to several small glass cylinders
(~0.5 cm length each). Finally, these fluid-saturated (+ bubbles) glass cylinders were
individually inserted into AugoPd,¢ capsules (~ 1.5 cm length), which were welded shut
(star-shaped on top and bottom) and loaded into the IHPV. After a short annealing time of
two hours at 300 MPa and 1050°C, an isothermal decompression to the final pressure of 50
MPa was initialized. After reaching the final P, the capsules were rapidly quenched.
Cylindrical cores with a diameter of 2.0 mm were drilled out of the quenched experimental
products. In addition, thin sections were prepared for electron microprobe and FTIR
analyses (analytical details see chapter 2). For image and textural analysis we followed the
methods of Higgins (BSD; 2000, 2002, 2006a,b) and that of Noguchi et al. (BND; 2008a),

see also chapter 3.1.1.

Table 3.9. Results of chemical and textural analyses for dry starting glass, fluid-saturated starting material
(DECl11syn) and experimental decompression end products of set- VI (DEC11-5, DEC11-6 and DEC11-8).

synthetic
sample thyodacitic  peciisyn  DECIS DEC11-6 DEC11-8
starting
glass
starting pressure [MPa] (dry) 300 300 300 300
final pressure [MPa] -- 50 50 50
decompression rate
[MPa/s] -- 0.28 0.28 0.28
decompression method -- isobaric continuous multi-step single-step
number of decompression _ _ _ 5 1
steps
pressure drop per
decompression step [MPa] B B B >0 250
glass composition:
Si0, [wt%] 69.95 6599 (0.26) 68.71 (0.25) 69.02 (0.22) 69.80 (0.38)
Ti0, [wt%] 0.50 0.47 (0.04) 0.50 (0.04) 052 (0.05) 0.51 (0.05)
ALO; [wt%] 14.21 13.17 (0.18) 13.89 (0.25) 13.96 (0.14) 13.88 (0.15)
FeO [wt%] 3.57 351 (0.24) 395 (0.16) 341 (0.24) 326 (0.36)
MnO [wt%] 0.12 -- (--) - (--) - (--) - (=)
MgO [wt%] 1.44 148 (0.13) 147 (0.10) 1.56 (0.07) 1.58 (0.15)
CaO [wt%] 4.05 386 (0.19) 396 (0.11) 4.18 (0.14) 4.08 (0.14)
Na,O [wt%] 3.16 272  (0.12) 3.13 (0.15) 3.19 (0.12) 3.20 (0.16)
K,0 [wt%)] 2.75 248 (0.11) 2.68 (0.12) 2.65 (0.12) 2.74 (0.14)
H,Oglass [wt%] by NIR -- 746  (0.32) 3.01 (031) 276 (0.29) 232 (0.31)
textural analyses.
vesicularity [vol%] -- <0.50 63.67 44.45 23.22

logBND [mm] after

Neguchi of al, (2008) - - —~ 237 (0.17) 337 (0.13) 481 (0.10)

Note: Numbers in parentheses show the standard deviation (1o) of replicated analyses
--: not determined (MnQO contents of decompression products were under the detection limit)
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RESULTS
The chemical melt compositions of the end products of all three different decompression
methods are similar within the uncertainties for all element oxides. Although it seems that
the water content of the residual melt decreases with changing decompression from a
continuous (3.01 wt%) to a multi-step (2.76 wt%) and to a single-step (2.32 wt%) path (see
Fig. 3.33). No significant H,O gradient was detected from EMPA totals in the residual
melts (between two neighboring bubbles).

The calculated BND values are shown in Fig. 3.33. The BND values obtained show a
distinct trend: increasing from continuous to multi-step and to single-step decompression

methods (Table 3.9, Fig. 3.33).

starting glass (DEC11syn) continuous (DEC11-5)

(c) (d)

multi-step (DEC11-6) single-step (DEC11-8)

Fig. 3.32 a-d. Modified images of the (a) starting glass (DEC11syn) and of the experimental end products of
(b) continuous decompression (DECI11-5), (¢) multi-step decompression (DEC11-6) and (d) single-step
decompression (DEC11-8). Black bodies are bubbles

93



3. DECOMPRESSION EXPERIMENTS
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O single-step decompression (DEC11-8)
S5.5
g
£ . o
Q D 4
Z
M
a0
3.5 -
= A
2.5 1
O
1.5 v v T T
1.5 2.0 2.5 3.0 35 4.0

H,O [wt%]

Fig. 3.33. H,O-content of the residual melts determined by NIR vs. log BND, plotted for decompression
experiments only. Gray line represents water solubility at 1050°C and final P 50 MPa given by experimental
literature data (e.g. Holtz et al., 1995 or Yamashita, 1999).

The bubble size distribution (BSD) curves of our experimental end products show
three different trends as illustrated in Fig. 3.34. The BSD curve for the sample of the
single-step decompression shows the largest variations both in the size of the bubbles and
in the population number density when compared with the other two decompression
methods. This single-step sample contains the largest proportion of small bubbles. The
BSD trend for the sample of multi-step decompression shows the smallest variations
between the size and the population density of bubbles, whereas the BSD of the
continuously decompressed sample shows a very flat curve in Fig. 3.34, indicating similar

proportions of bubbles with different size.
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Fig. 3.34. Bubble size distribution, calculated following the method of Higgins (2000), in samples after
decompression experiments.

DISCUSSION

Comparison of decompression methods

The observation that the BND values of the sample increase from continuous
decompression to multi-step decompression and to single-step decompression provides
important constraints on the mechanism of bubble formation. Changes in the BND values
combined with BSD and porosity data give information on the processes of nucleation and
growth of bubbles in the systems having different decompression histories. The BND value
is representing the total number of bubbles per unit volume; hence, difference in BND
reflects differences in bubble nucleation and growth.

Unfortunately, the nucleation pressure (Prn) was not directly determined for our
experimental setup, for example by intermediate runs or in-situ observation techniques,
which would provide further information on the origin of the bubble nucleation process:
heterogeneous or homogeneous. Pn is influencing directly the nucleation process: pressure
differences (AP) between the starting pressure and Pn as little as ~5 MPa may imply
heterogeneous nucleation, while greater AP (i.e. lower Pn) would imply homogeneous

nucleation (e.g. see review of Sparks et al., 1994).
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In our single-step decompression experiment, the volatile oversaturation produced
by instantaneous pressure drop to 50 MPa is definitely high enough for nucleation,
resulting in high BNDs as the decompression rate is fast. In the continuous
decompressions, water was not exsolved nor were bubbles nucleated until enough
oversaturation pressure was reached (Pn: here unknown). During further continuous
decompression the exsolved water would rather diffuse into already existing bubbles and
let those grow due to favourable energetics than to accumulate into new clusters that could
result in new nucleation (see review of Sparks et al., 1994) explaining the low BND
values. Pn in our multi-step decompressions experiments was probably higher than during
continuous but lower than during single-step decompression as we decompress by 50 MPa
(Fig. 3.31), resulting in intermediate bubble sizes.

As the fluid-saturated starting glass synthesized at 300 MPa and 1050°C was nearly
crystal- and bubble-free (Fig. 3.32a), homogeneous bubble nucleation is expected to be the
primary process in the decompression experiments. However, in the experimental product
of the single-step experiment the influence of heterogeneous bubble growth may be
observed, see large bubble at the right hand side of Fig. 3.32d. The secondary growth of a
preexisting bubble, already contained in the starting glass, could lead to an elongation and
bending of the primary homogeneously nucleated smaller bubbles.

Bubble growth can take place during decompression due to either diffusion of gas
out of a supersaturated melt into the bubble or due to expansion of existing gas bubbles as
pressure reduces (see review of Sparks et al., 1994). The effects of surface tension, of melt
viscosity and of inertia can hinder the growth of bubbles. Since the higher BND numbers
are attributed to higher proportion of nuclei, we can suggest that the bubble nucleation was
the dominant process during the single-step decompression experiment resulting in higher
numbers of relatively small-sized bubbles (compare BND and BSD, Table 3.9 and Fig.
3.33 and 3.34). Due to the sudden drop in pressure (equal to) of 250 MPa within the first
few seconds of the single-step decompression experiment, the melt became highly water-
supersaturated at the final pressure of 50 MPa. At these conditions, the critical size of
bubble embryo (see above: Sparks et al., 1994) was dramatically reduced due to a high
supersaturation pressure (AP) and relatively low initial melt-vapor surface tensions (o;
Mangan & Sisson, 2005). Thus, enhanced volatile exsolution (Hurwitz & Navon 1994) led
to major bubble nucleation in the system. In contrast, bubble growth was the dominant
bubble forming process (Gardner 2007a, b) in the continuously decompressed system as

indicated by the low BND value and the rather large average bubble size when compared

96



3. DECOMPRESSION EXPERIMENTS

to multi-step or single-step decompression runs (see Fig. 3.33 and 3.34). At the beginning
of the continuous decompression, bubble nucleation and therefore water exsolution can
only start when Pn is overcome. During the ongoing continuous pressure release and
therefore continuous water exsolution from the melt (starting at pressure < Pn), no
significant oversaturation was reached again for a given time interval, precluding further
nucleation of bubbles. Hence, water diffused rather into already existing bubbles, while
probably only a few new bubbles nucleated, undergoing continuous growth and
coalescence during decompression. Thus, the single-step and continuous decompression
paths represent two extreme cases in which bubble nucleation and bubble growth are
predominant processes, respectively. In this sense, the multi-step decompression method
represents the intermediate case between rapid and slow release of pressure in magmatic
system.

In comparison to the water solubility of high-silica melts at 1050°C and 50 MPa of
~2.4 wt% H,O (e.g. Holtz et al., 1995; Yamashita, 1999), it seems that the total loss of
water is more effective in the course of single drop of pressure than in the other cases (Fig.
3.33), indicating that rapid magma ascent or quick pressure release with a subsequent long
dwell time at low pressures will result in more efficient magma degassing. Although it has
to be noted that these changes in the determined water contents of the residual melts (by
NIR) are within the uncertainties (£ 0.3 wt%) and may be used for qualitative discussion
only. Therefore, the assumption that more bubbles per unit volume seem to be linked to
more effective degassing should be taken with care. As no significant water gradients in
the residual melts were detected (by EMPA totals) it can be assumed that the experimental

products were in equilibrium at final P.

Implication for previous experimental decompression studies on bubble formation

We have clearly demonstrated that the bubble forming processes are influenced by the
decompression path, indicated by great differences in vesicularity and BND values.
Although water contents of the residual melts are slightly differing (but still within the
uncertainties), it can be assumed that water exsolution in all three decompression scenarios
are similar, resulting in (near-) equilibrium conditions in our here conducted experiments.
When comparing results of former decompression experiments with each other, it should
be taken in account that in single-step decompression experiments BNDs are usually
higher due to the dominating nucleation process, while in continuous decompression

experiments bubble growth is dominating resulting in lower BNDs. It has to be further
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investigated if these differences are within the same order of magnitude at all
decompression rates (here: ~2 orders of magnitude for BND values between single-step
and continuous). Additionally, the height of decompression steps is an important factor
affecting the bubble forming process. Small decompression steps (e.g. < 5 MPa; becoming
similar to continuous decompression) are presumably negligible, as they are resulting in
rather low oversaturation pressures inadequate for initiating bubble nucleation after each
step. While, larger steps (> 20 MPa) are suggested to trigger further nucleation after each
(sudden) decompression step, increasing the total bubble numbers per unit volume and

becoming more similar to the single-step decompression method.

Implication for natural systems

During magma ascent in volcanic conduits, the magma can change its physical and
chemical properties either continuously or step-wise due to changes in P-T conditions,
water exsolution rate, bubble forming and crystallization processes (e.g. Hurwitz & Navon,
1994). These variations have a major impact on the rheological and dynamic behaviour of
the magma and therefore also on the magma ascent paths and rates (e.g. Ida, 1996; Melnik
& Sparks, 1999; Maeda, 2000). Thus, there is a self-sustaining feedback between the
physicochemical and flow properties of the magma and P-T-time conditions. Another
external parameter, potentially influencing magma ascent rate, can be the conduit diameter,
which is probably not constant over the entire distance from magma chambers to the
volcanic vent (e.g. Noguchi et al., 2008). Therefore, we can expect a broad range of
decompression rates from the onset of magma ascent at depth until the actual eruption at
the surface, as well as changing ascent velocities with time due to variation in the magma
supply from below. The data obtained in our study clearly show that the manner and
efficiency of fluid exsolution are strongly dependent on the style of decompression. The
most reactive system, in terms of bubble proportion and the amount of exsolved fluid, is
expected to be developed in eruptions with very rapid pressure release, for instance, in

plinian eruptions (Hamada et al., 2010) or in catastrophic caldera-forming events.
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3.4. 3D segmentation and visualization

The previously presented and discussed bubble and microlite number densities (BND,
MND, respectively) have been obtained by the 3D correction method following Noguchi et
al. (2008a) using the CSDcorrection software (Higgins 2006a,b), for details see chapter
3.1.1. Although truncation effects were minimized by analyzing more than one image per
sample at different positions and different magnifications (e.g. Armienti, 2008), it can be
assumed that the previously used determination method is still characterized by a relatively
large error. This error may derive from the generalization of aspect ratios and circularities
of the investigated objects (bubbles or microlites), as well as from the possible effect of
object coalescence that is not totally resolved by the 2D images. Therefore, it was aimed to
gain true 3D volume data from the segmentation and visualization of p-tomographical scan
datasets and to improve the BND and MND determination, using an enhanced version of
the open-source software YaDil (developed by Dr. K.-I. Friese, Welfenlab, Leibniz

University Hannover, Germany; Friese et al., 2011).

Synchrotron-based X-ray p-tomography

We analyzed our cylindrical experimental run products at the Synchrotron Light Source
(SLS) of the Paul-Scherrer-Institute in Villigen, Schwitzerland. The beamline for
TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) receives
photons from a 2.9 T superbending magnet with a critical energy of 11.1 keV and produces
a monochromatic beam, see Fig. 3.35.

This non-destructive synchrotron-based X-ray p-tomography was used to record a
series of 2048 digitalized 2D projection images (having 256 grey levels). A typical 2D
image has a resolution of 2048 x 2048 pixel with a pixel size of 0.74 pum at 10x
magnification or of 0.37 um at 20x magnification. The distance between two neighboring
images and the projection depth are defined by only one pixel. Grey values of the images
depend on the chemical composition and density of minerals and glasses as well as on the
presence of bubbles. Due to infiltration of noise by physical properties of this analytical
method, a filter (Parzen) was used for reconstruction and smoothing of the images.
Unfortunately, the images provided by TOMCAT cannot be used to investigate in
plagioclases statistics, as this mineral phase was poorly resolved by this analytical method

showing hardly any clear crystal boundaries.
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Fig. 3.35. Photo of p-tomography operation table of TOMCAT eamline at SLS, Villigen, Switzerland. A
sample is fixed on a centering and rotation stage in front of a microscope that detects the monochromatic X-
ray beam.

YaDiV software and further enhancements
For 3D segmentation and visualization of our TOMCAT-derived scans, we used the Java-
based  open-source  software  YaDiV  (“Yet another Dicom = Viewer™:
http://www.welfenlab.de/yadiv/) provided by the Welfenlab of the Leibniz University
Hannover, Germany. Major advantages of the YaDi} software are its independence from
hardware and operating systems as well as its low electronic storage requirements.
Originally this software was developed to handle medical data (Friese ef al., 2011), which
are usually processed in the relatively low-volume DICOM file format, which already
includes patient-related as well as size-related information (e.g. spacing in X-, y- or z-
direction). Therefore, this 3D software had to be modified to suit our demand which was
carried out in close cooperation by the software programmer Dr. Karl-Ingo Friese of the
Welfenlab, Leibniz University Hannover. Special focus was given to the processing of
large volume datasets (as 7iff or Jpeg file format) with total volume sizes of up to 1.2 GB
per scan compressed or 32 GB uncompressed. The second task was to obtain the true
volume value of single objects (here: bubble or microlite) within one sample.

First of all, the scan pictures were cropped and the pixel size of each picture was

reduced from 2048 x 2048 pixel to 1024 x 1048 pixel reducing the total file size of one
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scan. As the original pixel resolution of the single 2D projection images was high (e.g. 1
pixel = 0.74 pm at 10x magnification or 1 pixel = 0.37 pum at 20x magnification) and
particles < 3 um in diameter were not considered, changing the resolution to 1 pixel = 1.48
um (at 10x magnification or 1 pixel = 0.74 um at 20 magnification) is still accurate enough
for our purposes, which was confirmed by statistical analysis of different image resolutions
(2048, 1024 and 512 voxel).

Segmentation in terms of image analysis techniques is defined as the identification of
regions that are pixel-based or voxel-based forming a specific structure which does not
necessarily need to be geometrically connected. In general, two segments were created for
each scan: one for bubbles and one for mineral phases (excluding plagioclases because of
their poor resolution by this tomographical method), = one for oxides only. Due to the
differences in chemical composition and the related specific grey values in the scan
images, these phases were easily distinguished from the surrounding melt (intermediate
grey values). The object-related grey values were marked throughout the total length of the
scan (usually 1500 single images) and extracted into their individual segment using the
YaDiV software. Additional software features such as erosion and dilatation functions
(shrink and grow, respectively; for details see latter text and Fig. 3.40 a-d) and free-draw
functions facilitated and upgraded the image evaluation to create these segments. Finally,
the information of each segment is converted into 3D volume datasets (three dimensions;
X,y,z) by calculating the connectivity, allowing the 3D visualization of the bubbles and
minerals, see e.g. Fig. 3.36. Images and videos of the 3D visualized objects can be
obtained by desktop snapshots or by desktop session recorder (here: Istanbul),

respectively.
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2D projection image 3D segmentation and visualization
(um-tomopgraphy) (YaDiV software)
- bubbles - - Opx, Cpx and OX -
(a-D)

0.1 MPa/s

(b-D . (c-I)

N

LPDO5
N\
@ 0.01 MPa/s  (b-II)
LPD04 >
(a-111) 0.001 MPa/s  (b-III)
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Fig. 3.36. Comparison of 2D images and 3D segment visualization of set-I1II samples (LPD: 50 to 0.1 MPa, at
850°C). 2D projection images obtained by um-tomography are shown in a-I to a-V, where dark grey areas
represent bubbles. 3D visualization of the segments bubbles (blue/turquoise color) and minerals (Opx + Cpx
in yellow and Ox in pink color) are shown in b-I to b-V and in c-I to c-V, respectively. The diameter of the
samples in the images is approximately 1.5 mm, not to be mistaken with size of the boxes indicated in the 3D
images.
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Additionally, a statistical software feature was newly designed to determine and
extract volume characteristics of each individual (connected) object in one segment as a
text file. Hence, this statistical information can be used for the BND and MND
determination resulting in nearly true 3D volume data which errors are negligible.
Therefore, we followed the original BND calculation method of Gardner et al. (1999,
2007):

BND = 9.
n; (5),
> NV

where n; and V; are the number and true volume of bubbles of diameter i,

respectively, N7 is the total number of bubbles measured, and @,, is the measured volume
fraction of the vesicles. The same procedure has been used to determine the MNDgp values

for microlite phases excluding plagioclase (i.e. oxides, amphiboles and pyroxenes).

Table 3.10. Experimental run conditions and results of 2D and 3D textural analyses for the two low-
temperature (850°C) LPD sets: set-III (50 to 0.1 MPa) and set-V (200 to 0.1 MPa).

2D 3D 2D 3D
sample set# decompression| log error log  volume | log error log volume
# rate [MPa/s] BND [mm?®]| BND fraction| MNDop [mm™]|MNDgp fraction
[mm™] [mm™] @ [%] | [mm”] [mm”] @ [%]
LPD 01 set-III 0.0001 433 (0.13) | 296 1124 | 640 (0.17) | 433 1.13
LPD 02 set-III 0.0002 411 (0.09) | 298 1120 | 6.42 (0.15) | 435 0.99
LPD 03 set-IIl 0.001 440 (0.08) | 3.59 12.02 | 6.43 (0.30) | 4.33 1.11
LPD 04 set-III 0.01 473  (0.10) | 3.69 12.88 | 641 (0.16) | 4.02 0.28
LPD 05 set-III 0.1 473  (0.07) | 3.62 1547 | 6.13 (0.13) | 447 1.17
LPD 09 set-V  0.0001 3.52 (0.23) | 2.01 11.98 | 630 (0.08) | 3.69 0.17
LDP 06 set-V  0.0002 4.17 (0.15) | 3.88 4634 | 6.12 (0.10) | 4.43 2.58
LPD 12 set-V  0.001 413  (0.13) | 3.41 18.83 6.19  (0.09) | 3.72 0.13
LPD 13 set-V  0.01 414 (0.14) | 324 2234 | 620 (0.20) | 3.93 1.66

Note: Numbers in parentheses show the standard deviation (1o) of replicated 2D analyses
2D: following the method after Noguchi et al. (2008a) including a 3D correction described in chapter 3.1.1.
3D: obtained using YaDiV software described in this chapter
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Comparison of 2D or 3D generated BND and MND values

The BND and MNDgp values of set-III and set-V obtained by the two different calculation
methods, (1) from simple 2D images following the method of Noguchi et al. (2008a) using
Higgins CSDcorrection software (2000, 2002, 2006a) or (2) from the 3D segmentation and
visualization of tomographical scans using YaDiV software, are directly compared to each
other in Table 3.10 and Fig. 3.37 a-b. Values obtained by using method (1) will be referred
to as “2D” values and values that were determined using the YaDiV software will be
referred to as “3D” values in the following text. 2D values are in general higher than for
3D values. In detail, the log BND values obtained from 2D are ~0.5-1.5 log units higher
than the 3D values, while the log MNDgp values of 3D are even 2.0-2.5 log units lower
than for 2D values.

An explanation for the differences in BND and MNDgp values obtained by the two
calculation methods 2D and 3D can be found in the basic understanding of number
densities (ND). In principle, the number densities are defined as the number of objects per
unit volume (of the magma). The number density values do not provide direct information
on the sizes of the investigated objects, only on the total number of objects. Therefore an
increase in BND or MND is correlated to higher numbers of bubbles or microlites,
respectively, whereas a decrease in BND and MND is correlated to lower bubbles or
microlites numbers, respectively (e.g. Gardner, 2007). A parameter influencing the total
number, for example of bubbles, is the process of coalescence: when two (small-sized)
single bubbles are connected with each other in order to form one single bubble of a bigger
volume, the total number of bubbles is reduced. The process of bubble coalescence may
occur either (1) static or (2) dynamic (e.g. Cashman & Mangan, 1994). In case (1), the
neighboring bubble walls are thinning and/or rupturing and in case (2), bubbles collide due
to variable buoyancies of different-sized bubbles. On the other hand, mineral grains can
coalescent too by simply growing together. As these processes of bubble and crystal
coalescence are not restricted to one direction only, it is difficult to determine the degree of
connectivity of objects throughout a 3-dimensional volume from only looking at a 2-
dimensional image. For example, two bubbles that are separated from each other in a 2D
image (see Fig. 3.38 looking onto the x- and y-axes, white numbers 1 and 2), may actually
be connected in the third dimension (following the development along the z-axis in Fig.

3.38, yellow number 1), also see review by Armienti (2008).
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(a) 850 °C (LPD:50 to 0.1 MPa) 850 °C (LPD: 200 to 0.1 MPa)
A H,0 (3D-visualization, YaDiV) A H,0 (3D-visualization, YaDiV)
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Fig. 3.37. Comparison of 2D and 3D data of low-temperature (850°C) LPD experiments. (a) Bubble number
density (BND) and (b) microlite number density for all other phases (MNDgp) as a function of the
decompression rate for the-H,O-bearing system. Circles represent 2D data obtained following the method of
Noguchi ef al. (2008a) and triangles represent 3D data obtained using YaDiV software. Purple symbols show
LPD experimental results from 50 to 0.1 MPa and orange symbols show LPD results from 200 to 0.1 MPa.
Error bars show standard deviation (10) of replicate 2D analyses. Errors for 3D analyses are negligible.
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Fig. 3.38. Schematic example of the phenomenon of bubble coalescence influencing the accuracy of
stereological reconstruction methods. When looking onto the 2-dimensional plane of x- and y-axes we can
identify two separate bubbles indicated by the white numbers. While following their development along the
z-axis, we see that in reality these two bubbles are connected and have to be counted as only one, indicated
by the yellow number.

Additionally, it has to be noted that parameters concerning the image generation (e.g.
optical magnification of the microscope, pixel resolution of the digitalized image) can
influence the information if two bubbles are projected to be connected or separated. Thus,
this crucial information on coalescence of objects within a 3-dimensional volume may be
lacking or may get lost during the calculation method using the CSDcorrection software to
convert data obtained from 2D images into 3D volumes. Furthermore, the CSDcorrection
software requests the input of object-related data such as the roundness factor and the
shape (short:intermediate:long) which have to be generalized for all investigated single
objects throughout one image or sample (Higgins, 2000). This may be practical for
samples containing only perfectly and uniformly shaped bubbles or crystals (i.e. formed
without disturbances), but this is usually not the case in natural or experimental systems.
Therefore, it can be assumed that the here introduced 3D method, obtaining (true) volume
data by 3D segmentation and visualization using YaDiV software, is up to this date the
most adequate way to reduce analytical-related errors. Furthermore, results of former
stereological studies on size distributions and number densities containing 3D
reconstruction (and/or 3D manipulation) methods have to be taken with care and a direct
comparison with true 3D data from tomographical scan analysis might not be favorable or

should include a detailed discussion on the data accuracy of both methods.
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Outlook: Other YaDiV software applications related to rock textures

Orientation of objects within space

One advantage of 3D segmentation and visualization of tomographical scan data using the
YaDiV software is the spatial presentation of structures that may not be clear from looking
on 2D images only. Especially flow dynamics such as preferred orientation of bubbles
(Fig. 3.39 a) or orientated crystallization of minerals (Fig. 3.39¢), as well as single shape

phenomenon (e.g. hollow crystals in Fig. 3.39b) can be understood more easily when

presented to the human eye in three dimensions, especially in moving pictures.

Fig. 3.39 a-c. Screenshots of YaDiV 3D visualization of different segments. (a) Sample DEC11-6 shows
spatial orientation elongated bubbles [pink]. The main focus in (b) is concentrated on the hollow shape of an
amphibole mineral (green) right hand side of the natural Unzen dome sample DAC 4. (c) Visualization of
minerals (pyroxenes in yellow, oxides in purple color), grey background represents Texture2d Volume
Rendering (pixel cloud) of bubbles of sample LPDO7. Interesting here is the orientated crystallization of
yellow pyroxene minerals along a bubble-free crack zone on the left hand side.

In a next step, we are working on developing and programming a software algorithm

that is able to identify the preferred direction of orientated objects within a single segment.
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In case of Fig. 3.39 a, this would concern the orientation of bubbles or vesicles in our
samples, which could give implications on degassing processes (such as bubble
coalescence or on bubble segregation from the melt (e.g. relevant to the determination of

the eruption style: effusive vs. explosive).

Surface recognition algorithm

Another planned YaDiV software tool to edit and to simplify the 3D segmentation process
of mineralogical samples is a surface recognition algorithm (a so called model-based
segmentation method). Therefore, object specific shape characteristics (surface tension of
bubbles as spheres or ellipsoids; crystal systems or class, etc.) have to be determined and
taught to the software, which will then be automatically recognized and marked throughout
the entire scan (in all three dimensions) by using this special algorithm. Additionally, the
surface recognition algorithm could be integrated into the region shrinking and growing
process. Therefore, we have to go into detail on this particular shrinking and growing
process: when pixel of a certain range of grey values are marked and segmented, the tool
“shrink” or “grow” can delete or add pixel, respectively, to the segmented pixels if a
certain (user defined) grey value variance is respected, see Fig. 3.40 a-d. The variance
determines the maximum difference between the grey value of the seed pixel and its

surrounding pixel that are acceptable to be summarized in a marked segment.

(a)u (b). (C)E (d).
segment after

original image marked segment (pink) segment after

shrinking process _8rowing process
(using a given variance)

Fig. 3.40 a-d. Schematic presentation of segmentation and the tools (algorithms) shrinking and growing using a
given variance of grey values: (a) the original pixel image with different gray values (light, intermediate and
dark), (b) pixel having light grey values are marked in pink color and saved as one segment, (c) resulting
segment (pink) after a region shrinking process and (d) resulting segment after a region grow function respecting

a certain given grey value variance of image (b).

Thus, integrating the surface recognition algorithm to e.g. a grow function would
only allow the addition of a neighboring pixel to the segment if (1) it correlates to the

given grey value variance and if (2) the object characteristic (e.g. crystal shape or a,b,c-
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axes ratio) are not violated by the growth function. This algorithm would be especially
useful when the quality of tomographical projection images are affected by beam

dispersion or by preparation-related cracks, see Fig. 3.41 a-b respectively.

(a) (b)

Fig. 3.41. Tomographical 2D projection images showing (a) beam dispersion caused by high-density oxide
mineral (white color) and (b) cracks caused by the sample preparation.

Additional information preserved by u-tomography

Due to the non-destructive method of synchrotron-based X-ray p-tomography some
additional information are preserved on the projection images that would have been
destroyed through normal thin section preparation (cutting, polishing, etc). In our
decompression samples we were able to observe two distinct phenomena that were not
detectable by image analysis of simple 2D BSE pictures taken from microprobe thin
sections: (1) mineral phases that crystallized inside bubbles and (2) liquids trapped inside
intact bubbles, see Fig. 3.42 a and b respectively.

One possible explanation for the crystallization of minerals inside bubbles could
derive from the chemical composition of the bubble fluids. It can be expected that not only
pure H>O or a pure mixture of H,O+CO, is forming the decompression-induced vesicles
but to some extend other element oxides may have also diffused from the melt into the gas
bubbles, e.g. here: Si0,. When these volatile gases become oversaturated in respect to SiO;
or temperatures are decreased, these oxides can precipitate and lead to crystallization of

quartz minerals inside the vesicles (e.g. Newton & Manning, 2000, 2008).
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3. DECOMPRESSION EXPERIMENTS

Fig. 3.42. Additional information preserved in 2D projection images from pum-tomography. On the left,
original full-size image with red marked area of interest that is enlarged on the right. (a) mineral phase (here
maybe quartz) that crystallized inside a bubble (highlighted in yellow on the right) and (b) quenched liquids
(light blue shaded area on the right) trapped inside an intact bubble (dark blue contour indicating size of
bubble when fluid was still gaseous).

In samples without the influence of crystals, bubbles were preserved in perfect shape
(as spheres or ellipsoids), see Fig. 3.42b. Due to the image-given procedure of X-ray p-
tomography differences in chemical composition and/or density are indicated by different
grey values in the 2D projection images. Taking a closer look at undamaged bubbles (not
influenced by cylinder preparation), two areas within one single bubble can be observed:
(1) a major dark area in the middle and (2) minor light area on the bubble wall (highlighted
in light blue color in Fig. 3.42b). A very light frame (marked in dark blue in Fig. 3.42b) is
surrounding these two areas as a whole, which is interpreted as the original gas bubble
volume (before experimental quenching), while area (2) is representing the liquidized
volatile after quenching. As liquids have higher densities as air or gas, area (1) is meant to

be the air-filled cavity of the preserved gas bubble volume. Thus, from determination of
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3. DECOMPRESSION EXPERIMENTS

the chemical composition and the volume of the volatile fluids, one could then recalculate
the dominating gas pressure inside bubbles at given (experimental) pressure and
temperature conditions. The volume can be easily determined by YaDilV segmentation and
statistical option, while the chemical composition could be analyzed for instance by laser
ablation.

At this point, we have to emphasize the limitations of p-tomography: due to the
high resolution and restriction of voxel sizes, not our entire sample can be recorded at
once. At the highest resolution (20 x magnification leading to 0.37 um per pixel), a
maximum sample diameter of 757.76 um can be investigated, which in our case of
experimental cylinders of 1.9-2.0 mm is only a third of one sample. Increasing the image
diameter can only be achieved by reducing the resolution, which might result in loss of
existing micro-structures. But especially in our nucleation experiments it is important to
have a global view of one experimental sample. For example, are there any heterogeneous
nucleation events at the interface capsule wall and melt due to reduced theoretical
supersaturation pressure (e.g. Martel & Bureau, 2001)? Thus, is there a difference in
bubble distribution within one sample: outer-inner part, bottom-top? Answers to these
questions are essential to understand the processes occurring not only in our small-scaled
experiments but are also applicable to large-scaled natural systems, e.g. magma chambers,
conduits, etc. A solution to this problem can be the method of Pamukcu & Gualda (2010):

combining information at various resolutions.

CONCLUSION

Here we demonstrated successfully that the processing of non-destructive p-tomography
images using YaDiV software can provide useful (visual) insights and (nearly) true volume
data of mineralogical objects (here: bubbles and crystals). Although the quality and
quantity of obtained volume data are of course dependent on the tomographical scan
resolution as well as to some degree on the users’ accuracy, the ongoing development of
this originally medical-based software can lead to an important contribution to the
geoscientific field. Furthermore, YaDiV is an open-source freeware and can be adapted by
anyone with programming skills at all times, exhibiting advantages compared to other
commonly used and expensive 3D computer software programs (e.g. MATLAB, AVIZO
etc.) which properties are restricted by the software developing company and which

usually require high-capacity hardware (internal storage, graphic boards, etc.).

111



4. DISCUSSION

Dynamics of vesiculation

In general, it is difficult to compare our experimental BND data to natural erupted Unzen
samples, especially as the 1991-1995 eruption was more of the effusive, dome-forming
Merapi-type. Thus, progressing (complete) degassing of the magma close to the surface did
not preserve major vesicle structures in the erupted Unzen rocks (e.g. Nakada &
Motomura, 1999). Therefore, we will only discuss here qualitatively the results of
degassing (water exsolution and evolution of bubble number densities) along our
experimental decompression paths and will try to compare our experimental BND data to
natural explosive Plinian eruptions (see discussion section: comparison to natural BND
data) that have preserved vesicle structures in their erupted rocks due to fast magma ascent

and incomplete magma degassing.

Equilibrium distribution of volatiles in melt and fluid

The analyses of the chemical composition and the water content of the residual glasses of
HPD set-1 showed that the process of water exsolution from the melt is decoupled from the
onset of crystallization in the decompression system. At high decompression rates, no
significant amount of water was exsolved resulting in fairly high water contents of the
residual glasses at final pressures of 50 MPa. While at lower decompression rate (< 0.1
MPa/s, equilibrium conditions were reached in the H,O-bearing system and < 1.0 MPa/s in
the H,O+CO;-bearing system). These observations are in agreement with former
experimental studies on rhyolites compiled in a review of Rutherford (2008), showing the
transition from non- to near-equilibrium degassing at decompression rates of 0.025 to 0.25
MPa/s. As our other decompression sets II-V have been conducted using decompression
rates < 0.1 MPa/s, we can assume near-equilibrium conditions for those experiments,
which is also supported by the observation of similar water contents within each set being

close to equilibrium conditions (isobaric runs at final pressures).

Bubble nucleation vs. bubble growth
The process of bubble nucleation can either occur homogeneously from the melt or
heterogeneously along the surface of nucleation sites such as crystals (e.g. Hurwith &

Navon, 1994). The review of Sparks et al. (1994) explains that small clusters of gas
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molecules form due to local concentration fluctuations requiring energy to form the bubble
embryo interface. The bubble embryo will grow if the free energy associated with the
formation of the separate gas phase is greater than the interfacial energy. Therefore, a
critical bubble radius (7.) has to be overcome, which is dependent on the ratio between the
interfacial tension (o) and the supersaturation pressure (AP). In case of homogeneous
bubble nucleation, the required AP is greater than necessary for heterogeneous nucleation,
where the gas phase can wet the surface of crystals lowering the required supersaturation
pressure (e.g. Sparks et al., 1994). Anyway, at low saturation pressures it is more favorable
for gas molecules to diffuse into pre-existing bubbles, resulting in bubble growth, than
clustering to nucleate a new bubble.

A compilation of decompression-induced bubble nucleation studies performing
homogeneous nucleation (Mourtada-Bonnefoi & Laporte, 1999, 2002; Mangan & Sisson,
2000 and Gonde et al., 2011) and heterogeneous nucleation experiments (Gardner &
Denis, 2004 and Gardner, 2007) in rhyolitic systems are plotted in Fig. 4.1a, showing that
in general bubble number densities (BNDs) are decreasing with decreasing decompression
rates, while the homogeneous nucleation trend is having a steeper slope than the
heterogeneous nucleation trend (see also inlet in Fig. 4.1a). The dependence of the BND
values on the decompression rate can be explained by supersaturation kinetics (see review
of Sparks et al., 1994). At fast decompression, the melt becomes highly supersaturated
because the pressure release is faster than the ability of the system to react with volatile
exsolution. This leads to a low nucleation pressure (Pn) resulting in intensive bubble
nucleation. At low decompression, Pn is shifted to higher pressures. Here, lower degrees of
supersaturation are reached due to relatively more time for the system to relax after
decompression. Thus, the melt-vapor surface tension and the critical bubble radius are
increasing (e.g. Mangan & Sisson, 2005), lowering the bubble nucleation rate and hence
the bubble number density. However, a decrease in BND is not attributed to lower
nucleation only; it simply gives information about the number of bubbles per unit volume
but not on their sizes. If the total number of bubbles (N7) remains constant while their
individual volume increases, the BND values will remain constant too. On the other hand,
a lower nucleation rate or bubble coalescence would result in lower BND values (e.g.

Gardner, 2007a,b).
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Our experimental decompression experiments of set-I to set-V are following the

same trend as indicated for heterogeneous bubble nucleation in Fig. 4.1a at decompression

rates > 0.01 MPa/s

, while BND values for the HO+CO»-bearing system of set-1 and set-1I
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are usually higher when compare to their H,O-bearing counterparts. But at low
decompression rates and especially for LPD experiments (set-III to set-V), BND values are
higher than expected from the suggested heterogeneous nucleation trend. In general, two
heterogeneous nucleation trends can be extracted from our experimental BND data, see
inlet in Fig. 4.1b. The first trend (b./) is identical to the suggested heterogeneous
nucleation trend derived from literature data in Fig. 4.1a of decreasing BNDs with
decreasing decompression rates, which is valid for HPD experiments of set-II (930°C)
even at low decompression rates (< 0.0 MPa/s). While the second trend (b.2) is similar to
trend b./ at decompression rates > 0.01 MPa/s, whereas at decompression rates < 0.01 MPa
the BND values slightly increase again with decreasing decompression rates as seen in
experiments of HPD set-I and for LPD sets III-V. This difference in bubble number
densities at low decompression rates (< 0.01 MPa/s) can be explained by differences in
microlite number densities. MNDgp values of HPD set-1I are approximately 0.5-1.0 log
units lower (see Fig. 4.4b) than MNDgp values of the other decompression sets, resulting in
fewer bubble nucleation sites (see Hurwith & Navon (1994) and thus lower BNDs.

Lautze et al. (2010) have demonstrated the effect of Ostwald ripening on BND in
starting materials with increasing annealing time. BND values decrease by one order of
magnitude from one day annealing time to one month. In this case, the bubble fraction
nearly remained constant while the mean bubble radius more than doubled (series 3)
indicating dominating bubble coalescence with time. Additionally, the BND values of the
starting material are also dependent on the sample preparation. For sets I to V, we used
glass powder having two size fractions which could have lead to initial heterogeneities,
acting as nucleation sites. In our decompression set-VI, we investigated only bubble
forming processes above the liquidus, while we used homogeneously hydrated glass
cylinders as a starting material, avoiding the influence of crystals and of grain boundaries
of the glass powder fractions on bubble nucleation. Although our conducted annealing
periods of 4 to 14 days at starting P-T-conditions can not be directly transferred to interpret
natural residence times in the magma chamber prior to an eruption, our datasets are
adequate to predict qualitatively the evolution of BND as a function of the decompression
rate. Furthermore, we were able to show a clear dependence of BND on the decompression
path (see chapter 3.3), which should be taking in account when comparing decompression

results of different studies with each other.
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Comparison to natural BND data

Unfortunately, natural Unzen BND values are not given by literature yet and therefore our
experimental data can not be directly applied to the case of the 1991-1995 Unzen eruption
(see also beginning of the discussion section: dynamics of vesiculation). But we can try to
compare our BND results to a range of natural plinian eruptions compiled by Toramaru
(2006), see Fig. 4.2a. A trendline can be drawn from those natural data, showing a clear
dependence of logBND on the silica content of bulk rocks. Furthermore, it seems that there
is also a positive dependence of the estimated decompression rates for those plinian
eruptions following the vesicularity trend. When following this trend, using the chemical
composition of natural Unzen bulk rock (Nakada & Motomura, 1999), BND values of
~10"° m™ and approximately ~ 50 MPa/s are can be expected (see orange square in Fig.
4.2a). On the other hand, Unzen groundmass composition is more silica-rich and the
vesicularity trend would therefore predict higher BNDs and presumably also faster
decompression rates (see red square in Fig. 4.2a). But this dependence of the
decompression rate following the logBND-SiO, trend should be taken with care as
estimated decompression rates can already vary greatly for the one eruption (here e.g.
Towada: 6.3 to 91 MPa/s) although having similar vesicularities and chemical
compositions.

Our experimental BND data are all located below the trendline. LPD experiments
have higher SiO; contents (closer to natural Unzen groundmass composition; Nakada &
Motomura, 1999) and also larger deviations from the observed trend when compared to
HPD experiments, which is shown more clearly in Fig. 4.2b plotting the deviation from the
trend, derived from compiled data given by Toramaru (2006), in dependence of the
decompression rate. Here in Fig. 4.2b another trend can be observed from our experimental
data: increasing deviation from the natural vesicularity trend (see Fig. 4.2a) with
decreasing decompression rates, which is understandable as the 1991-1995 Unzen eruption

was not of an explosive character like plinian eruptions, having rather magma ascent rates.

Dynamics of magma crystallization

Crystallization processes occurring during our decompression experiments can be best
detected by shifting chemical compositions of residual glasses. The onset of crystallization
(delay of decompression-induced nucleation and growth of microlites) was only detected
in experimental runs of both fluid-saturated systems of HPD set-I (Fig. 3.4). In HPD set-II

(at 930°C) no change of the chemical composition with decreasing decompression rate was
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observed (see Fig. 3.17). While LPD sets III to V experiments were only performed using
decompression rates < 0.1 MPa/s, showing an immediate change in chemical composition
with decreasing decompression rate (see Figs. 3.22 and 3.27). A decrease of MgO, FeO,
CaO and/or Al,O3 contents and the simultaneous increase of SiO, and K,O content were
clearly related to the crystallization of plagioclases and pyroxenes. Especially the observed
systematic decrease of CaO in the residual melt and the simultaneous increase of CaO in
the Pl microlites (Appendix Tables A.3, A.5.1, A.7.1 and A.8.1) with decreasing

decompression rate are characteristic for P1 crystallization.

Plagioclase microlite crystallization
From our decompression experiments three distinct models of plagioclase crystallization
can be distinguished: (1) Pl is part of the starting mineral assemblage (at low pressures)
and do not grow significant larger in size during further decompression, (2) Pl is part of the
starting mineral assemblage (at relatively high pressures) while their maximum lengths
increase with decreasing decompression rate and (3) Pl is not part of the starting
assemblage (at high pressures) and is only nucleating as well as growing during further
decompression, becoming continuously larger in size with decreasing decompression rates.
The first case (1) is referring to our LPD experiments starting at 50 MPa (sets II1-
IV), where due to low water contents (~2.0 wt%) the crystallization kinetics are relatively
slow and do not significant dependence of the maximal lengths with decreasing
decompression rate (Fig. 4.3). LPD experiments of set-V starting from higher pressures
(200 MPa) represent the second case (2) where higher initial water contents (~ 5.8 wt%)
result in faster kinetics, leading to crystal growth and increasing microlites sizes with
decreasing decompression rates. The shapes of plagioclase microlites formed by model (1)
and (2) remain tabular, resulting from relatively low degrees of undercooling
(oversaturation of the melt with respect to a mineral phase; e.g. Lofgren, 1974; Muncill &
Lasaga, 1987, 1988). While in case of model (3), equivalent to two HPD experiments of
set-I (H,O-bearing, < 0.0005 MPa/s), we have relatively high water contents (~6.5 wt%) at
starting conditions (here: 300 MPa, 850°C) and therefore fast crystallization kinetics. PI
microlites nucleation during the decompression process and due to relatively high degrees
of undercooling (~100°C or less of undercooling) rapid and non-equilibrium growth of PI
microlites occurs, resulting in skeletal in mineral shapes. These large Pl microlites are
similar in length to natural Unzen dome samples (~ 250 um; Noguchi et al., 2008a; dark

grey shaded area in Fig. 4.3).
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No plagioclase microlites were crystallized in HPD set-II (300 to 50 MPa),
indicating that the experimental temperature of 930°C was presumably to high and
performed decompression rates (0.1 to 0.0002 MPa/s) were still to fast to result in

appropriate high degrees of undercooling leading to the (skeletal) crystallization of Pl

microlites.
O HPD set-I 850°C (300 to 50 MPa; H,0)
350 @ HPD set-I 850°C (300 to 50 MPa; H,0+CO,)
O LPD set-III 850°C (50 to 0.1 MPa; H,0)
O LPD set-IV 930°C (50 to 0.1 MPa; H,0)
300 O LPD set-V 850°C (200 to 0.1 MPa; H,0)
250
g
: natural Pl microlite w}]’:(:;;;),”i/mg
B 200 sizes in groundmass of || . crimenss
S Unzen dome samples at starting
_ (Noguchi et al., 2008a) pressures
=9 given here in
% 150 brackets
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=
100 ' o
o natural Pl microlite sizes in Q:f E §
groundmass of Unzen conduit sample. ; = =
50 @ 9 O (Noguchi et al., 2008a,b; Goto et al., 2008 = = é
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Fig. 4.3. Maximum P1I length as a function of the decompression rate. Dark grey shaded area represents the range
of Pl microlite lengths of Unzen natural dome samples after Noguchi et al. (2008a). P1 microlites in core samples
are smaller (<100 pm) (indicated by the light grey shaded area), except one sample (C14-1-1) where Pl
microlites reach up to 300 um in length (see Noguchi ef al., 2008a,b; Goto ef al., 2008). Maximum P1 lengths for
isobaric starting conditions are plotted in the right box, given the corresponding starting pressures in brackets.

Microlite number densities (MND)

First of all, it has to be noted that the MND values for both plagioclases-only (MNDp;) and
for all other phases (MNDgp) of our decompression experiments seem to be dependent on
the initial isobaric starting conditions. Thus, this makes the direct comparison of our
decompression-derived experimental MNDp; data with the MNDp; range of natural erupted

3

Unzen dome rocks (10°° to 10®' mm™, e.g. Noguchi e al., 2008a; indicated by grey
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shaded area in Fig. 4.4a) rather invalid and allows only a qualitatively discussion of our
experimental MND data.

In general, the MND values remain constant within the analytical uncertainties with
decreasing decompression rates (Fig. 4.4), indicating rather dominant microlite growth
during decompression if there is a simultaneously shift in chemical concentration of the
residual glasses. The pre-existence of particular mineral phases at starting P-T conditions
favors the growth of those crystals than the nucleation of new crystals, which would
require higher degrees of supersaturation. Two exceptions have to be made here for HPD
experiments at low decompression rates: (1) the above mentioned and discussed nucleation
of plagioclase minerals in water-bearing set-I at decompression rates < 0.0005 MPa/s and
(2) the decrease of MNDgp values in the H,O-bearing and H,O+CO,-bearing system of
set-II at decompression rates < 0.001 MPa/s and < 0.01 MPa/s, respectively. This second
observation can be explained by Ostwald ripening, where the numbers of crystals are
reduced due to the effect of coalescence or dissolution, which can be supported by
observations of our corresponding crystal size distributions (see Appendix Figs. B.1 and
B.2).

Furthermore, the determined MNDp; values of HPD experiments (set-I) are
approximately 0.5-1.0 log units lower than those of LPD experiments (set I1I-V, symbols
marked with yellow filling in Fig. 4.4), ranging from 10> to 10> mm™ and from 10°7 to
10%* mm™, respectively, which is presumably also an artefact of the initial microlite
number densities at isobaric starting conditions. From chemical changes of the residual
glasses and of the Pl microlites themselves as well as from overgrowth rims, we know that
crystallization processes take place even at shallower depths (~50 MPa) to surface
pressures, here preferably mineral growth. Therefore, our experimental study can not
confirm the observation of Martel & Schmidt (2003) from experimental decompression
experiments with pre-existing Pl minerals at isobaric starting conditions, showing that
mineral growth is dominating at pressures > 50 MPa and that at lower pressure (< 50 MPa)
microlite nucleation is dominating. On the other hand, such a distinct trend of dominating
crystallization processes was also not observed in the experimental study of Brugger &
Hammer (2010), where the investigated plagioclase microlites nucleated during
decompression, not being part of the starting assemblage at isobaric conditions. Here the
number densities of Pl microlites, taken from snapshot experiments at different pressures
along the decompression path, showed diverse developments of microlite number densities

at different decompression rates, allowing no clear statements of either dominating mineral

120



4. DISCUSSION

growth or nucleation at certain pressure ranges. Unfortunately, the number densities of PI
microlites given by Martel & Schmidt (2003) as well as by Brugger & Hammer (2010) are
referring only to 2-dimensional areas (N, in mm™) excluding 3D correction (e.g. Higgins,
2000, 2002, 2006), which does not allow the direct comparison of their data with our
experimental MNDp; values.

Toramaru et al. (2008) plotted log MNDp; versus the silica content of bulk rock
compositions of various eruption styles, including the 1991-1995 Unzen eruption, Fig.
4.5a. Our experimental decompression datasets have similar MNDp; values compare to the
natural Unzen rocks, but our experimental values are shifted to higher SiO, contents as we
used the 1991-1995 erupted groundmass composition for our experimental study excluding
phenocrysts. Therefore, we have plotted additionally the data for Unzen groundmass
composition (Nakada & Motomura), see red framed and grey shaded area in Fig. 4.5. The
diagram scale-up in Fig. 4.5b shows that only two decompression experiments match the
red framed field for 1991-1995 erupted Unzen groundmass: H,O+CO,-bearing sample
DA29 (0.0002 MPa/s; HPD set-I) and H,O-bearing sample LPD22 (0.0002 MPa/s, LPD
set-1V). Unfortunately, Pl microlites of these two runs are of tabular shape and reach only
maximum microlite sizes of ~50-100 pm, which is in the range of natural Unzen conduit
samples (Noguchi et al., 2008a,b; Goto et al., 2008) but not in the range of erupted dome
samples. The only experimental run reproducing the skeletal and 300 pum large PI
microlites of Unzen dome rocks (e.g. Noguchi et al., 2008a) was the HO-bearing sample
DA28 (HPD at 850°C) at 0.0002 MPa/s. Although at these conditions the residual melt is
having only ~74 wt% Si0,.
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Error bars are not shown again for simplicity.
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4. DISCUSSION

Effect of sample preparation and experimental setup on vesiculation and
crystallization processes

It has to be noted that there might have been parameters already during the capsule
preparation influencing our degassing and crystallization processes during our
experimental decompression runs already. For once, we have used a glass powder as a
starting material, whose grain size boundaries could have acted as nucleation sites for
bubbles as well as for microlites (e.g. Marziano et al., 2007), lowering the required
supersaturation pressure and favouring early heterogeneous nucleation processes (e.g.
Mangan & Sisson, 2005). This might explain why our MND values of the decompression
experiments are in the same range as the ones of the starting material for all experimental
sets. It seems that the MNDs of our decompression experiments were already given by the
MNDs at isobaric starting conditions. It might have been a better approach to use
homogeneous dry glass cylinders as a starting material instead of glass powder, and then
synthesizing the fluid-saturated samples at above-liquidus conditions prior to the
decompression process.

Secondly, the preparation of big synthesis capsules for the H,O+CO,-bearing
system (XﬂH20 ~0.6) of the high-pressure decompression set at 930°C (HPD set-II, see
chapter 3.1.2.), was probably followed by the loosing of important amounts of volatile
components during the opening of the big synthesis capsule to cut the glass cylinder into
smaller samples for further decompression experiments. Thus, a lowering of the
concentration of carbon dioxide in the fluid phase resulted prior to the decompression,
increasing the mole fraction of water and becoming close to 1.0 and therefore similar to the
conditions of the initial HO-bearing system. This might also explain the similarities in the
chemical compositions and texture, as well as the lack of crystallized Pl microlites in the
assumed H,O+CO;-bearing system of both fluid-saturated systems at 930°C.

Several decompression experiments needed to be repeated as capsule walls showed
holes or cracks, which are probably related to the high gas pressure inside the capsule. One
weak link were of course the welding seams on which capsules bursted open. The capsule
length (15 to 20 mm) was intentionally chosen to be large enough to allow the growing gas
pressure to expand, with increasing water exsolution from the melt, without destroying the
wholeness of the capsule. But anyway, deformed or inflated (intact) capsules also allow the
melt to flow, influencing the mass transport and for example the bubble formation

processes, which should be taken care off when discussing experimental results.
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4. DISCUSSION

Furthermore, there might have been differences in the P-T-paths of decompression
experiments conducted in CSPVs and IHPVs. The inertia of the rather slow external
furnace in CSPV experimental setups might have lead to high coolings (~30°C) at rather
high decompression rates and to even several cooling events related to each pressure
release in multi-decompression experiments. On the other hand, such thermal fluctuations
are not expected in IHPVs as the thermocouples are directly positioned next to the sample

inside the furnace, which therefore can react faster on changes in temperatures.

Effect of degassing and crystallization: Implications for magma ascent dynamics at
Unzen

Similar groundmass compositions for most major elements and similar MNDp; values of
natural Unzen dome (e.g. Nakada & Momomura, 1999) and conduit samples (e.g. Noguchi
et al., 2008a,b) could indicate no significant crystallization process occurring during Unzen
magma ascent from shallow depths to the surface. This stands in contrast to our chemical
and textural analyses of HPD and LPD experiments, showing continuous dominant crystal
growth at high and low pressures. However, the sampled Unzen conduit rocks have
probably undergone a different thermal history after the eruption and therefore their
textural and chemical data should be used with caution.

The two main observations which are useful for the estimation of the magma ascent
rate from our experimental run products are the reproduction of (1) the chemical
composition of natural matrix glasses and (2) the occurrence and characteristics of the
natural Unzen mineral assemblage; especially the preservation of Amph microlites as well
as the shapes and lengths of Pl microlites. The chemical composition of natural Unzen
groundmass glass was best reproduced by our H,O-bearing LPD experiments (set III to V)
and by our H,O+CO,-bearing HPD experiments of set-1 (850°C) at the lowest conducted
decompression rates (0.0002 — 0.0001 MPa/s), see Figs. 3.4, 3.22 and 3.27, corresponding
to ascent velocities of ~12-24 m/h. On the other hand, natural Pl microlites with skeletal
shapes and lengths of ~300 pm (e.g. Noguchi ef al., 2008a) are only observed when PI is
nucleating and growing during decompression, which was only the case in our H,O-
bearing HPD set-1 (850°C) at decompression rates < 0.0005 MPa (corresponding to ~50
m/h), although the chemical composition of the residual glasses did not match natural
dome samples yet. The phase relation experiments of our study have showed that the major
Unzen groundmass minerals (plagioclase, pargasite, pyroxenes and Fe-Ti-oxides; e.g.

Venezky & Rutherford, 1999) are only stable in a relatively narrow P-T-X"H,0 range (see
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checkered areas in Fig. 2.3 to Fig. 2.6). Although our stability experiments have showed
that amphiboles only crystallize at pressures above 100 MPa and at temperatures of less
than ~860°C in fluid-saturated systems having high mole fractions of water (> 0.6),
pargasite microlites were preserved in natural erupted dome samples, indicating that the
magma ascent had to be fast enough at lower pressure (< 100 MPa) to hinder the total
dissolution of former stable pargasite crystals. This effect can be seen in LPD experiments
of set-V, starting at 200 MPa with pressure release down to surface pressures (0.1 MPa).
Here amphiboles (having Al,O3 contents of 8-9 wt% and being ~20-25 um long) were part
of the starting assemblage at 200 MPa and 850 °C. But after the decompression runs,
Amph microlites were only detected in samples of LPD experiments with decompression
rates > 0.001 MPa/s. Groundmass pargasites observed in natural erupted Unzen dome
samples are still having lengths of 100-300 pm, which is nearly ten times larger than our
experimentally grown amphibole microlites. Thus it can be suggested that natural pargasite
microlites were large enough in size at depth to be not totally dissolved during magma
ascent at decompression rates even as low as 0.0001 MPa/s (correlating to 12 m/h).

The exact determination of the water activity in the ascending magmas to the
surface is difficult. Considering that the estimated ascent rates are lower than 50 m/h,
volatile exsolution must have occurred at conditions close-to-equilibrium in the pressure
range 300-0.1 MPa, which is typical for effusive non-violent eruptions (e.g. Hurwitz &
Navon, 1994), as observed at Unzen. Assuming that the released volatiles are, at least in
part, escaping from the magmatic system (open system degassing; e.g., Turner ef al., 1983;
Gerlach, 1986) melts would be almost free of CO, at low pressures (< 50 MPa). On the
other hand, the model of Ohba et al. (2008) assumes that CO,-H,O-bearing fluids were
continuously ascending in the Unzen conduit, which would maintain a relatively low water
activity in the ascending magmas (the water activity would be mainly controlled by the
percolation of CO,-H,O-bearing fluids). Thus, if the percolation of such fluids were
“buffering” the water activity in the conduit, an ascent rate of ~ 50 m/h is more realistic
than a value of ~ 10 m/h. In any case, these values are in general agreement with
estimations from petrology by Nakada & Motomura (1999; 12-30 m/hour), from textural
analysis by Noguchi et al. (2008a; 29-274 m/h in the pressure range 70-100 MPa) and by
the MND decompression rate meter of Toramaru et al. (2008; 29-132 m/h) as well as from
water exsolution rates by Toramaru et al. (2008; 50-245 m/h), while data from electrical
resistivity structure measurements by Kagiyama et al. (1999) lead to lower estimated

ascent rates (~0.8 m/h).
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Isothermal decompression experiments using a rhyodacitic composition show that the large
size (~ 300 pm; Noguchi et al., 2008a) and the skeletal shape of natural plagioclase
microlites can be only reproduced experimentally if the nucleation and growth occurs
along the decompression path; here in our study only in water-bearing decompression
experiments from 300 to 50 MPa at decompression rate < 0.0005 MPa/s. Once Pl
nucleation has proceeded, the degree of undercooling (as well as diffusivity of cations in
the melts), which is dependent on the decompression rate, is expected to be the main
parameter influencing mineral growth kinetics (mineral size). Thus, the size and shape of
PI microlites can be used to constrain ascent rates. Furthermore, phase relation experiments
indicate a narrow stability field for the mineral assemblage observed in natural erupted
Unzen rocks, including pargasite. Amphibole microlites were only preserved under certain
conditions in our decompression experiments which leads to the general conclusion that (1)
the ascending magma must have crossed P-T-X"H,O conditions that allow the
crystallization of Amph microlites (and the overgrowth of Amph phenocrysts), (2) the
decompression rate of the rising magma from shallow depths to surface pressures has to be
fast enough so that Amph crystals do not dissolve entirely during the magma ascending
process, dependent on the initial maximum Amph microlite sizes at depth, and (3) Pl
microlites were not part of the mineral starting assemblage prior to the magma ascent,
nucleating and growing only during decompression. In the case of Unzen magmas, we can
therefore assume water activities close to 1.0 and magma ascent rates of ~ 30-50 m/h
(probably not constant; Noguchi et al., 2008a). Furthermore, we also suggest a non-
isothermal decompression path in the lower temperature range estimated for Unzen mixed
dacite prior to the eruption (870-930°C; e.g. Venezky & Rutherford, 1999).

In our decompression experiments, using a partially crystallized starting material
containing bubbles, a transition from non-equilibrium to near-equilibrium water release
from the Unzen rhyolitic melt is observed at decompression rates between 1 and 0.1 MPa/s
(at water-saturated conditions from 300 to 50 MPa, 850°C). Furthermore, a major
influence of bubble forming processes on the decompression path was detected,
performing continuous, multi-step and single-step decompression. Efforts in further
development of a 3D segmentation and visualization software (YaDil) were successful in

providing true volume data from tomography scans for bubbles and microlites.
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Table A.1.1. Experimental conditions of phase stability experiments.

Joz
P T run fl (correlated
sample # vessel [MPa] [°C] duration X"H,0 after O’Neill. Amph Pl  Cpx Opx Qtz Ox melt
[days] 1987)
DALl CSPV 300 850 7 1.00 NNO X - X X - X X
DA12 CSPV 300 850 7 0.63 NNO - X X X - X X
DA44 CSPV 50 850 7 1.00 NNO - X X X - X X
DA46 CSPV 50 850 7 0.45 NNO -- X X x X)) x X
Big 01 CSPV 50 850 7 1.00 NNO - x ® ® - x x
Big_03+04 CSPV 200 850 7 1.00 NNO X - ® ® - x X
DEC02+06 IHPV 300 930 4 1.00 NNO -0.95 -- -- X X - X X
DECO05+10 IHPV 300 930 4 0.84 NNO -1.75 -- -- X X - X X
UNO06 CSPV 200 850 7 0.99 NNO - - x) x - X X
UNO7 CSPV 200 850 7 0.87 NNO - X - X - X X
UNI10 CSPV 200 850 7 0.35 NNO - - x X)) x (X x
UN11 CSPV 200 800 7 0.95 NNO X X x® ® - x X
UN16 CSPV 100 800 7 0.92 NNO - X (® x - x X
UN17 CSPV 100 800 7 0.83 NNO - X (® x - x X
UN18 CSPV 100 800 7 0.45 NNO -- X X X X X X
UN21 CSPV 100 800 7 0.98 NNO (x) X X x (x) x X
UN22 CSPV 100 800 7 0.79 NNO - x x) x (X)) x x
UN23 CSPV 100 800 7 0.65 NNO -- x ®xX x x (xX) x
UN26 CSPV 100 850 7 1.00 NNO -- X X x - (xX) x
UN27 CSPV 100 850 7 0.79 NNO - x x (® - ® x
UN31 CSPV 200 800 7 0.68 NNO X X x x (x) x
UN32 CSPV 200 800 7 0.56 NNO X X x x (x) x
UN33 CSPV 200 850 7 0.57 NNO - x x (® - ® x
UN34 CSPV 200 850 7 0.55 NNO -- X x x) x (x) x
UN35 CSPV 100 850 14 0.59 NNO -- X xX) x) x x X
UN36 CSPV 100 850 14 033 NNO - ® ® ® x x  x
UN37 CSPV 100 850 14 0.84 NNO -- x x) x - x X
UN40 CSPV 100 825 14 0.68 NNO - x o ® x ® x
UN41 CSPV 100 825 14 0.54 NNO - X ® ® x ® x
UN42 CSPV 100 825 14 038 NNO - X ® ® x ® x
UN44 CSPV 300 850 14 0.88 NNO X - (xX) x - x x
UN45 CSPV 300 850 14 0.46 NNO - X  ® x O ®
UN47 CSPV 300 800 14 0.97 NNO x - ® ® - x x
UN48 CSPV 300 800 14 0.82 NNO X x xX) x - X X
UNS1 IHPV 300 1000 5 0.99 NNO-0.50 -- -- -- -- - - X
UNS2 IHPV 300 1000 5 0.81 NNO-1.38 - - x (x) - x X
UNS3 IHPV 300 1000 5 0.54 NNO -0.99 - - x (x) - x X
UN54 [HPV 300 1000 5 030 NNO-199 | - x ® x - (x x
UNSS5 IHPV 300 1000 5 0.49 NNO -10.26 - X x (x) - x X
UNS56 IHPV 300 900 7 0.93 NNO -0.34 - - x) x - X X
UNS7 IHPV 300 900 7 095 NNO-067 | - - (x x - x x
UNS8 IHPV 300 900 7 0.50 NNO -0.60 - X x) x - X X
UN59 [HPV 300 900 7 020 NNO-171 | - ) x () x x x

x: positive mineral phase occurrence; (x): positive occurrence but no chemical analysis
--: negative mineral phase occurrence

CSPV: cold seal pressure vessel. IHPV: internally heated pressure vessel

X'H,0: mole fraction of HO in the fluid after the run

NNO: Ni/NiO-buffer

Amph=amphibole,; Pl=plagioclase; Cpx=clinopyroxene; Opx=orthopyroxene; Qtz=quartz; Ox=oxide (mainly ilmenite)
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Table A.1.2. Experimental conditions of phase stability experiments.

;amp le vessel [MI;’a] [O]é] run[g;l}rlzslﬁlon X"H,0 (correlfaotéd after | Amph Pl Cpx Opx Qtz Ox melt
O’Neill. 1987)
UN60 THPV 300 900 7 0.14 NNO -10.38 - ® ® ® x x x
UN61  IHPV 200 900 8 0.80 NNO +0.60 - - X x = x x
UN62 IHPV 200 900 8 0.65 NNO +0.59 - ® ® - x x
UN63  IHPV 200 900 8 0.74 NNO +0.17 - x x - x x
UN64 [HPV 200 900 8 0.94 NNO -0.34 - - ® x - x x
UN65 IHPV 200 900 8 1.00 NNO -9.25 - - N ® - ® ®
UN66 IHPV 200 1000 6 0.78 NNO +1.08 e R
UN67 IHPV 200 1000 6 0.95 NNO +0.68 - - - - - - X
UN68 IHPV 200 1000 6 0.66 NNO +0.87 - - - - - x x
UN70 IHPV 200 1000 6 0.35 NNO -9.02 - - - x x
UN71  CSPV 50 850 14 0.76 NNO - x x ®x x x
UN72  CSPV 50 850 14 0.85 NNO - x (X x - x x
UN73  CSPV 50 800 14 0.68 NNO - x X ® x x
UN76 IHPV 100 900 8 0.67 n.d. - x  (x) X - X X
UN77 IHPV 100 900 8 0.28 n.d. - x  (x) x (X)) x X
UN78 IHPV 100 900 8 0.84 n.d. - X X x - x X
UN79 IHPV 100 900 8 1.00 n.d. - X X X - X X
UNS&2 IHPV 300 930 6 0.47 n.d. - X X X - X X
UNS3 IHPV 300 930 6 0.63 n.d. - - X X - X X
UN84 IHPV 200 930 7 0.95 NNO +2.63 - - x (® - x x
UN85 IHPV 200 930 7 0.71 NNO +2.46 - - x (® - x x
UN86 IHPV 200 930 7 0.62 NNO +2.04 - x x (® - x x
UNS7 IHPV 200 930 7 0.42 NNO +1.29 - x (%) X - X X
UN89 IHPV 100 930 10 1.0% NNO +1.60 - X ® x - x x
UN90 IHPV 100 930 10 0.8 NNO +1.32 - X ® x - x x
UN9I  IHPV 100 930 10 0.6 NNO +1.42 - X ® x - x x
UN92 IHPV 100 930 10 0.3% NNO +0.52 - X X X - X X
UN94  CSPV 250 850 9 1.0% NNO X - ® ® - x X
UN95  CSPV 250 850 9 0.8 NNO - X ® x - x x
UN96  CSPV 250 850 9 0.6 NNO - X ® x - x x
UN98 IHPV 50 950 12 1.0% NNO +2.12 - X ® ® - x x
UN99 IHPV 50 950 12 0.8 NNO +1.48 - X ® x - x x
UN100 THPV 50 950 12 0.1% NNO +0.16 - x x x (X x x
UN101 THPV 50 950 12 0.3% NNO -0.38 - X ® ® - x x
UN102 IHPV 50 950 12 0.6 NNO -7.00 - N ® ® - ® x
UN103 IHPV 50 930 14 1.0% NNO -7.11 - X x (® - x x
UN104 IHPV 50 930 14 0.8 NNO +1.39 - X ® x - x x
UN105 IHPV 50 930 14 0.6 NNO +0.96 - X ® x - x x
UN106 IHPV 50 930 14 0.3% NNO -6.48 - X x (® ® x x
UN108 THPV 50 900 14 0.1% NNO +1.32 - X ® x ® x x
UN109 IHPV 50 900 14 0.8 NNO +1.47 - X x (® - x x
UN110 IHPV 50 900 14 0.6 NNO +1.65 - X x (® - x x
UN1I1 THPV 50 900 14 0.3% NNO +0.01 - X x (® x x x
UN1I2 IHPV 50 900 14 1.00 NNO -7.05 - ®» x ® x x ®

x: positive mineral phase occurrence; (x): positive occurrence but no chemical analysis

--: negative mineral phase occurrence

CSPV: cold seal pressure vessel. IHPV: internally heated pressure vessel

X'H,0: mole fraction of H;O in the fluid after the run; (*): approx. mole fraction of H,O in the fluid prior to the run
NNO: Ni/NiO-buffer

Amph=amphibole; Pl=plagioclase; Cpx=clinopyroxene; Opx=orthopyroxene; Qtz=quartz; Ox=oxide (mainly ilmenite)
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7. APPENDIX

7. APPENDIX B.2 - FIGURES

HPD set-11: 300 to 50 MPa at 930°C, H,O-bearing system
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Fig. B.1 a-d. BSE pictures of the H,O-bearing products of isobaric and HPD experiments of set-1I (right
column). Black bodies are bubbles; light grey particles represent microlites such as Cpx, Opx and oxides.
Bubble size distribution (middle column) and crystal size distribution (left column) of set-II, calculated

following the method of Higgins (2000), for other phases (OP) only.
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HPD set-II: 300 to 50 MPa at 930°C, H,0+CO,-bearing system
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Fig. B.2 a-d. BSE pictures of the H,O+CO,-bearing products of isobaric and HPD experiments of set-II
(right column). Black bodies are bubbles; light grey particles represent microlites such as Cpx, Opx oxides.
Bubble size distribution (middle column) and crystal size distribution (left column) of set-II, calculated

following the method of Higgins (2000), for other phases (OP) only.
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LPD set-III: 50 to 0.1 MPa at 850°C
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Fig. B.3 a-e. BSE pictures of the products of isobaric and LPD experiments of set-III (right column). Black
bodies are bubbles; light grey particles represent microlites such as Cpx, Opx, Pl and oxides. Bubble size
distribution (middle column) and crystal size distribution (left column) of set-III, calculated following the

method of Higgins (2000), for other phases (OP) and for plagioclase (PI) microlites.
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LPD set-IV: 50 to 0.1 MPa at 930°C
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Fig. B.4 a-e. BSE pictures of the products of isobaric and LPD experiments of set-IV (right column). Black
bodies are bubbles; light grey particles represent microlites such as Cpx, Opx, Pl and oxides. Bubble size
distribution (middle column) and crystal size distribution (left column) of set-IV, calculated following the

method of Higgins (2000), for other phases (OP) and for plagioclase (PI) microlites.
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LPD set-V: 200 to 0.1 MPa at 850°C
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Fig. B.5 a-e. BSE pictures of the products of isobaric and LPD experiments of set-V (right column). Black
bodies are bubbles; light grey particles represent microlites such as Cpx, Opx, Pl and oxides. Bubble size
distribution (middle column) and crystal size distribution (left column) of set-V, calculated following the

method of Higgins (2000), for other phases (OP) and for plagioclase (PI) microlites.
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