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Abstract 
 
This experimental study focuses on revealing of magma ascent conditions (e.g. 
decompression rate, volatile composition, P-T path) related to the 1991-1995 
eruption of Unzen Volcano, Japan by investigating in degassing and crystallization 
processes. Fluid-saturated phase stability and isothermal decompression experiments 
were performed using a synthetic analogue to the rhyodacitic Unzen groundmass 
composition. For decompression experiments at 850 and 930°C, we distinguished 
between high pressure decompression (HPD; 300 to 50 MPa) and low pressure 
decompression (down to surface pressures of 0.1 MPa). Finally, the experimental end 
products were compared to natural Unzen dome and conduit samples. 

The natural mineral assembly of plagioclase, amphibole, pyroxenes and oxides 
were reproducted in decompression and phase stability experiments. Bubble number 
densities (BNDs) follow a heterogeneous nucleation trend at decompression rates ≥ 
0.01 MPa/s, resulting in decreasing BND values with decreasing decompression 
rates. While at lower decompression rates (< 0.01 MPa/s), the BND values of 
decompression experiments including plagioclase microlites do not follow the above 
mentioned trend anymore. Their relatively high BNDs are indicating dominant 
bubble nucleation. Furthermore, there was no significant variation of the plagioclase 
microlite number density (MNDPl) value observed as a function of  the 
decompression rate, indicating overall dominant microlite nucleation during 
decompression. Decompression-induced MND values are dependent on the initial 
value at isobaric stating conditions. Anyway, our MNDPl values for HPD and LPD 
experiments range from 105.4 mm-3 to 105.7 mm-3 and from 105.7 mm-3 to 106.4 mm-3, 
respectively. Natural large plagioclase microlites were best experimentally 
reproducted in water-bearing HPD experiments at 850°C with decompression rates ≤ 
0.0005 MPa/s, reaching up to maximum sizes of 200-250 µm. 

In general, two main observations were made: (1) the large sizes and skeletal 
shapes of natural Unzen plagioclase microlites can be experimentally reproduced 
when its nucleation and growth occurs during decompression only and (2) amphibole 
microlites are not stable at pressure below ~100 MPa and at temperatures above 
900°C. Based on the textural and chemical analyses of experimental run products 
(mineral phases and residual glasses), the average magma ascent rate of Unzen 
magmas in the pressure range of > 200 to 0.1 MPa is estimated to be ~30-50 m/h, 
presumable following a non-isothermal decompression path (< 900°C). 
 
Keywords: crystallization, vesiculation, magma ascent 
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Zusammenfassung 
 
Die Magmaaufstiegsbedingungen (z.B. Druckentlastungsrate, 
Volatilzusammensetzung, P-T-Pfad) der 1991-1995 Eruption des Unzen-Vulkans 
(Japan) werden in dieser experimentellen Studie unter Berücksichtigung der 
Entgasungs- und Kristallisationsprozesse untersucht. Mittels eines synthetisierten 
Rhyodazits analog zur Grundmassenzusammensetzung des Unzen-Vulkans wurden 
fluidgesättigte Phasenstabilitäts- und isothermale Druckentlastungsexperimente 
durchgeführt. Die Druckentlastungsexperimente wurden in Hochdruck- (HDE; 300 
bis 50 MPa) und Niedrigdruckentlastungsexperimente (NDE; bis zu 
Oberflächendrücken von 0.1 MPa) unterschieden und wurden bei 850°C und 930°C 
durchgeführt. Abschließend wurden die chemischen und strukturellen Ergebnisse der 
experimentellen Endprodukte mit den natürlichen Dom- und Schlotproben 
verglichen. 

Die natürliche Mineralparagenese von Plagioklas, Amphibol, Pyroxen und 
Oxidmineralen wurde in Druckentlastungs- und Phasenstabilitätsexperimenten 
nachgebildet. Bei schnellen Druckentlastungsraten (≥ 0.01 MPa/s) folgen die 
Blasenanzahldichten (BAD) einem heterogenen Nukleationstrend, welcher durch die 
Abnahme von BAD mit abnehmenden Druckentlastungsraten charakterisiert wird. 
Im Gegensatz dazu folgen die BAD bei langsamerer Druckentlastung (< 0.01 MPa/s) 
nicht mehr diesem oben genannten Trend, speziell in Experimenten mit 
Plagioklasmikrolithen. Deren relativ erhöhte BAD-Werte weisen auf eine Dominanz 
der Blasenbildung hin. Es konnte keine signifikante Variation der 
Plagioklasmikrolithenanzahldichte (MADPl) in Abhängigkeit der 
Druckentlastungsrate beobachtet werden, welches auf eine allgemeine Dominanz des 
Mikrolithenwachstums während der Druckentlastung schließen lässt. Unsere 
druckinduzierten MAD-Werte zeigen eine Abhängigkeit vom Ausgangsmaterial bei 
isobaren Bedingungen auf. Jedenfalls variieren unsere MADPl-Werte der HDE- und 
NDE-Experimente von 105.4 mm-3 bis 105.7 mm-3 bzw.  von 105.7 mm-3 bis 106.4 mm-

3. Die Reproduzierbarkeit der natürlichen, lang gewachsenen Plagioklasmikrolithe 
(mit Längen von bis zu 200-250 µm) wurde am besten in wassergesättigten HDE-
Experimenten bei 850°C und einer Druckentlastungsrate von ≤ 0.0005 MPa/s erzielt. 

Aus den experimentellen Untersuchungen konnten zwei wichtige 
Schlussfolgerungen gezogen werden: (1) das skelettartige Wachstum und die Längen 
der natürlichen Plagioklasmikrolithe des Unzens können experimentell reproduziert 
werden, wenn deren Keimbildung und Wachstum nur während der Druckentlastung 
stattfindet und (2) sind Amphibolmikrolithe instabil bei Drücken unter ~100 MPa 
und bei Temperaturen über 900°C. Basierend auf strukturellen und chemischen 
Analysen der experimentellen Endprodukte (Mineralphasen und Restschmelze) wird 
eine Magmaaufstiegsrate von ~30-50 m/h im Druckbereich von > 200 bis 0.1 MPa 
für die Unzen-Eruption angenommen, wobei der Druckentlastungpfad vermutlich 
nicht isotherm verlief (< 900°C). 

 
Schlagwörter: Kristallisation, Blasenbildung, Magmaaufstieg 
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1. INTRODUCTION 
 

1.1  1991-1995 Mt. Unzen eruption, Japan  
 

Mt. Unzen is situated on the Shimabara Peninsula of Kyushu Island, Japan. The volcano is 

located in the volcanotectonic “Unzen graben”, approximately 70 km west of the volcanic 

front of SW Japan, where the Philippine Sea Plate is subducting beneath the southwestern 

part of Japan, see Fig. 1.1. 

 
Fig. 1.1. Location map of Kyushu Island and Unzen volcano, Japan modified after Hoshizumi et al. 
(1999). Grey arrow shows the relative moving direction of the Philippine Sea Plate after Seno (1977). 
Red triangles indicate active volcanoes, Unzen volcano is indicated by red triangle in red square. 
 

Unzen volcano offers a unique opportunity to interpret magmatic textures and 

volcanic processes because its latest eruption in 1991-1995 was well-observed and well-

documented before, during and after the eruption as its occurrence was announced by 

seismic activity (e.g. Nakada & Fuji, 1993; Nakada et al., 1999). In the framework of an 
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international project, a drilling was conducted in 2004 to reach the so-called conduit zone 

at depth (USDP-4; e.g. Nakada & Eichelberger, 2004; Hoshizumi et al., 2005), see Figs. 

1.2 and 1.3. Therefore, samples have been not only collected at the surface (e.g., Nakada et 

al., 1999) but also at depth (ICDP drilling, Nakada et al., 2005). 

The 1991-1995 Unzen eruption occurred as a result of mixing between andesitic and 

rhyolitic magmas in deep magma chambers followed by an ascent of mixed dacitic magma 

from depth (Venezky & Rutherford, 1999; Holtz et al., 2005), see Fig. 1.4. It has to be 

noted that enclave studies of Browne et al. (2006) conclude a mingling of basaltic and 

dacitic magmas during magma recharge events. Petrological and experimental studies 

indicate that before the eruption the mixed dacitic magma was stored at a minimum 

pressure of about 160 MPa and temperatures from 870 to 930°C, while it contained about 6 

wt% H2O (Venezky & Rutherford, 1999; Holtz et al., 2005). The maximum pressure of the 

magma chamber is considered to be less than 300–400 MPa based on the geophysical data 

(maximum storage depth of about 11 km, Nishi et al., 1999) and on the H2O content of the 

melt inclusions in phenocrysts (up to 7–8 wt.% H2O; Nishimura et al., 2005; Holtz et al., 

2005). Botcharnikov et al. (2008) estimated 0.02 wt% of sulphur and 0.05 wt% of chlorine 

for the mixed magma, while additional 0.09 wt% of CO2 are meant to be present 

(estimated after Ohba et al., 2008). 

During the eruption, a lava dome, composed of several lava lobes, was formed on the 

top of the volcano, producing numerous pyroclastic flows (e.g. Nakada & Motomura). The 

dome rocks consist of vesicular dacites with plagioclase, hornblende, biotite and quartz as 

main phenocrysts which are presumably originated from silicic rocks at depth (e.g. Nakada 

& Motomura, 1999; Holtz et al., 2005). The groundmass is interpreted to be representative 

of the melt after magma mixing and it is composed of matrix glass, plagioclase, pargasite, 

pyroxene, Fe-Ti oxides and apatite microlites (e.g. Nakada & Motomura, 1999, Sato et al., 

1999). Since the vesiculation and crystallization of Unzen groundmass mainly occurred 

during magma ascent, the textures and phase compositions of the groundmass in the dome 

lavas may provide constraints on processes of magma degassing and crystallization 

(Noguchi et al., 2008).  
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Fig. 1.2. Vertical section through the USDP-4 well (purple color; modified after Nakada et al., 2005). A lava 
dike that is considered to be the conduit of the 1991-1995 eruption was located at the deepest part of the 
well, indicated in red color.  
 

 
Fig. 1.3. Three-dimensional image of conduit drilling (image courtesy of the Unzen Scientific Drilling 
Project). Shown inside the volcano are the drilling trajectory of conduit drilling (USDP-4) and plate-shaped 
conduit (dike) together with earthquake hypocenters, water table and explosion source (e.g. Nakada & 
Eichelberger, 2004). 
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Fig. 1.5. Schematic phase diagram for water-saturated rhyodacitic magma, corresponding to groundmass 
of Unzen based on a compilation of experimental data from Rutherford & Hill (1993), Sato et al. (1999), 
Holtz et al. (2005) and Larsen (2005).  
 

The phase diagram in the pressure (P) – temperature (T) field for water-saturated 

(XflH2O=1.0) rhyodacitic groundmass composition is shown in Fig. 1.5, based on the 

available literature data relevant to Unzen rhyodacitic system (e.g. Rutherford & Hill, 

1993; Sato et al., 1999; Holtz et al., 2005; Larsen, 2005). At a given temperature, the 

stability fields of minerals expand with decreasing pressure due to exsolution of dissolved 

water from the melt. On the other hand, some minerals such as amphibole belong to high-

pressure mineral phase assemblage and are not stable at pressures below 80-100 MPa. 

Consequently, an isothermal magma ascent to the surface should result in a continuous 

change in the mineral assemblage, in the compositions and textures of groundmass 

microlites as well as in the vesicularity of erupted rocks. Similar variations are expected at 

water-undersaturated conditions in presence of a H2O-CO2-bearing fluid. However, a P-T 

phase diagram for the H2O+CO2-bearing Unzen rhyodacitic system at given mole fraction 

of water in the fluid phase (XflH2O) is not available from literature data.  

However, the interpretation of the textures of Unzen rhyodacitic groundmass 

observed at depth and at the surface requires quantitative data on growth kinetics of 
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microlites resulting from slow decompression and related volatile degassing. Most 

available data (see above) are not applicable for the example of Unzen. Even experimental 

datasets from rhyodacitic or rhyolitic examples (e.g. Martel & Schmidt, 2003) are difficult 

to apply to Unzen because the phase stability of minerals such as plagioclase and 

amphibole are strongly dependent on small compositional variations. For example, 

although the bulk compositions of Mt. St. Helens, Redoubt and Unzen are very similar 

(63.4 to 65.2 wt% SiO2), the stability field of Unzen amphibole is extended to lower 

pressures when compared to Mt. St. Helens and Redoubt (difference up to 60 MPa at same 

temperature and aH2O, Sato et al., 1999; Holtz et al., 2005). Amphibole belongs to the 

microlite assemblage at Unzen and, clearly, decompression-induced crystallization (or 

dissolution) experiments with the groundmass composition of Unzen need to be conducted 

to interpret and compare the natural textures at depth and at the surface. 

 

 

1.2  Decompression-related dynamic processes  
 

Magma ascent rate can control the eruption style (e.g., Hurwitz & Navon, 1994; Sparks et 

al., 1998) and groundmass textures of erupted rocks (e.g., crystal and vesicle sizes and 

number densities) may preserve important information about the decompression path and 

processes related to the magma ascent within the conduit. Decompression in ascending 

magmas leads to (homogeneous or heterogeneous) nucleation and growth of gas bubbles 

(mainly H2O, CO2, SO2, H2S and HCl) and of microlites as a result of exsolution of 

volatiles from the melt into bubbles increasing the magma liquidus temperatures and 

therefore enabling extensive groundmass crystallization. There have been several studies to 

quantify nucleation and growth rates of both microlites and bubbles as a function of 

decompression or cooling rate (e.g. for microlites, Cashman & Marsh, 1988; Marsh, 1988, 

1998; Higgins, 2000, 2002, 2006; Hammer & Rutherford, 2002; e.g. for bubbles Simakin 

et al., 1999; Mourtada-Bonnefoi & Laporte, 1999, 2002; Gardner & Denis, 2004; 

Toramaru, 2006; Gardner, 2007). In addition to decompression rate, these studies 

emphasize the role of melt viscosity, of nucleation and undercooling on number and size of 

bubbles and microlites. However, in order to interpret quantitatively parameters such as 

textures and compositions of magmatic phases and to evaluate the dynamics of a magmatic 

system, the processes of magma degassing and crystallization need to be simulated 
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experimentally. Considering that each natural magmatic system has its own characteristics 

before ascent, the available data can not be extrapolated to interpret quantitatively 

parameters such as BND and MND (bubble number density and microlite number density) 

to evaluate the dynamics of magmatic system (e.g., ascent rate). 

Most previous works focused so far either on bubble nucleation and growth or on 

microlite nucleation and growth as a result of decompression (see review of Hammer, 

2008).  Only little attention has been given to the characterization of experimental samples 

in which bubbles and microlites nucleate and grow simultaneously (e.g., Simakin et al., 

1999). In this PhD study, it is aimed to experimentally simulate the magma ascent from 

magma chamber to shallow levels or to surface pressures during the 1991-1995 Unzen 

eruption and to correlate chemical compositions and textural features of the experimental 

products with natural Unzen groundmass samples collected from the dome and from drill 

cores provided by literature data. Therefore, several sets of isothermal decompression 

experiments for high pressures (300 to 50 MPa) and for lower pressures (final pressure of 

0.1 MPa) at two different temperatures (850°C and 930°C) were performed, varying the 

decompression rates from 20 to 0.0001 MPa/s and using two fluid-saturated series: (a) H2O 

and (b) H2O+CO2. Additionally phase stability experiments were conducted at different P-

T-XflH2O conditions to improve and complete the interpretation of the experimental 

decompression datasets. The results will provide a unique opportunity to compare data 

obtained experimentally with information from natural samples collected at the surface 

(e.g., Nakada et al., 1999) and at depth (ICDP drilling, Nakada et al., 2005). The 

experimental results on kinetics of decompression-induced nucleation and growth of 

bubbles and microlites are used to interpret textures of erupted products and to constrain 

processes occurring in magmatic conduit during the last Unzen eruption. 
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2. PHASE STABILITY EXPERIMENTS 
 

Up to this point, no adequate literature data on mineral phase stabilities have been 

published that are covering the investigated rhyodacitic groundmass composition of the 

1991-1995 Unzen eruption, especially data at water activities lower than 1.0 are lacking. In 

order to facilitate and support the interpretation of the isothermal decompression 

experiments (chapter 3), phase stability experiments were performed at different P-T-

XflH2O (pressure, temperature and mole fraction of water in the fluid, respectively) 

conditions, using a synthetic analogue of the natural bulk groundmass composition of the 

1991-1995 erupted Unzen magma (Sato et al., 1999, 2005; Botcharnikov et al., 2004; see 

Table 2.1). The aim of this experimental approach is the determination of the stability 

fields of the major microlite mineral phases observed in natural Unzen rocks such as 

amphiboles, plagioclases, pyroxenes and Fe-Ti oxides (e.g. Nakada & Motomura, 1999; 

Venezky & Rutherford, 1999), as a function of  the parameters described above.  

 
Table 2.1. Chemical composition of groundmass glasses (dry; in wt%) from natural Unzen analysis (1) and 
used as starting materials for experimental studies (2), (3) and (4). 
 
# Groundmass compositions SiO2 TiO2 Al2O3 FeOtotal MnO MgO CaO Na2O K2O Total
   
(1) natural Unzen groundmass glass 

(Nakada & Motomura, 1999) 
68.14 0.57 15.08 3.78 0.09 1.80 4.10 3.51 2.78 99.85

            
(2) experimental study of Sato et al. 

(1999) on Unzen 1991-1995 
groundmass separate 

68.24 0.53 14.95 4.05 0.09 1.91 3.86 3.48 2.85 99.86

            
(3) This experimental study 

(rhyodacitic groundmass 
composition as a starting glass) 

69.95 0.50 14.21 3.57 0.12 1.44 4.05 3.16 2.75 99.75

            
(4) experimental study of Venezky 

& Rutherford (1999) on Unzen 
bulk rock composition (=crushed 
bomb from June 11th, 1991 
Unzen eruption; U-2 Pdr), 
chemical composition taken 
from Nakada & Fuji (1993) 

64.74 0.66 16.21 4.62 0.07 2.28 4.93 3.93 2.40 99.84

 

 

Starting material and experimental methods 

A mixture of oxides (SiO2, TiO2, Al2O3, Fe2O3, MnO and MgO) and carbonates (CaCO3, 

Na2CO3 and K2CO3) was ground in a rotary mortar. The mixed powder was melted for 2 
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hours in platinum crucible at 1600°C, 1 atm in air (logfO2=-0.68). Afterwards, the melt was 

quenched to glass by placing the crucible into a water bath. To improve the homogeneity 

of the batch, the glass was ground again in the agate mortar and melted again for 0.5 hour, 

using same P-T-conditions as described above.  

For capsule preparation, 50 mg of the synthesized powdered silicate glass were 

loaded in 18 to 25 mm long Au or Au80Pd20 capsules with a outer diameter of 3.2 mm. 

Additionally, 10 wt% of fluids were added to the dry glass, containing of certain 

proportions of liquid H2O and solid Ag2C2O4 (CO2 source), which resulted in fluid-

saturated samples with mole fractions of water (XflH2O) between 1.0 and ~ 0.1. The 

capsules were welded shut by arc welding. After the experimental runs, XflH2O was 

measured after opening the capsule using a conventional weight-loss method (e.g. Ebadi & 

Johannes, 1991). Therefore, capsules were weighted after the runs and cooled by putting 

them into liquid nitrogen to freeze H2O in the fluid phase. Frozen capsules were pierced 

with a steel needle and warmed up to room temperature. By subsequent weighting, the 

mass of CO2 in the fluid was determined. The capsules were then placed into an oven at 

110°C for 2-3 minutes and weighted to determine the mass of evaporated H2O. It has to be 

noted that the technique to determine the mass of free CO2 in the capsule does not 

discriminate between CO2 and N2. An entrapment of atmospheric nitrogen in the 

experimental charge during loading the capsules was estimated to be negligible (0.5 to 4.0 

mol%, Tamic et al., 2001). As main source of errors of the mole fractions of H2O in the 

fluid we considered the uncertainty in the weighing of the capsule before and after 

piercing. Additional uncertainty induced by atmospheric nitrogen was taken in account 

(0.007 mol% for H2O and 0.02 mol% for CO2; Tamic et al., 2001). In capsules, where 

weight-loss procedure of determining of fluid composition failed, mole fractions of H2O 

and CO2 in the fluid were calculated by mass-balance, using initial amounts of loaded 

volatiles and rock powder and measured concentrations of volatiles in run product glasses. 

Nevertheless, our determined mole fractions of water are probably still afflicted with 

relatively high errors due to difficulties in fluid measurements. 

Phase equilibrium experiments were conducted in cold sealed pressure vessels or in 

internally heated pressure vessels, depending on the P-T conditions (see next sections). 

Temperatures ranged from 1000 to 800°C and pressures ranged from 300 to 50 MPa. The 

experimental annealing duration varied between a minimum of four days to a maximum of 

14 days before quenching.  
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Cold seal pressure vessel (CSPV) 

Externally heated cold seal pressure vessels (CSPV) were used for experiments at lower 

temperatures (≤ 850°C). The vessels are made of an alloy containing mainly nickel and 

were pressurized with water (Fig. 2.1), allowing a maximum pressure of 500 MPa. The 

temperature variations were less than 5°C, while the accuracy in temperature was 

estimated to be ± 10°C. Pressure was measured with pressure transducer calibrated against 

a strain gauge manometer. The accuracy of pressure measurements were 1 MPa and 

pressure variations during the experiments were less than ± 5 MPa. Inside the CSPV, the 

redox conditions were buffered by the reaction of water with a solid oxygen buffer (added 

as a mixture of Ni and NiO powders, i.e. NNO buffer). An effective in-diffusion of H2 

through the walls of Au capsules fixed the hydrogen fugacity (fH2) in the capsules and 

controlled the redox conditions in the systems via the reaction of H2 + ½ O2 = H2O. Hence, 

in the H2O-saturated systems, the redox conditions were close to NNO buffer while in the 

H2O+CO2-bearing systems, the fugacity of fO2 is expected to be about 0.5 log units lower. 

The cold autoclave, including the capsules, was inserted into the pre-heated external 

furnace to reduce the time of the heating process at the start of the experiment. The 

experiments were quenched by removing the autoclave from the furnace and cooling it 

with compressed air, while keeping the final pressure constant. The quench rate was 

approximately 150°C per minute at the beginning of the cooling and was sufficient to 

avoid quench effects in rhyodacitic magma (e.g. Chevychelov et al., 2008). 

 
Fig. 2.1. Photo of externally heated pressure vessels (CSPV) at the high-pressure laboratory of the Institute 
for Mineralogy, Leibniz University Hannover, Germany. 
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Internally heated pressure vessels (IHPV) 

Isobaric and decompression experiments at temperatures higher than 850°C were 

conducted in internally heated pressure vessels (IHPV; see Fig. 2.2). The general 

characteristics of IHPVs were already explained by Holloway (1971) and further details 

can be also found in Berndt et al. (2002). The pressure vessel consists of several 

components; (a) an autoclave, (b) an intensifier, (c) a pre-pressure pump and (d) a 

switchboard. The autoclave is made of tool-steel cylinder surrounded by water-cooled 

copper-tube windings, where a resistance furnace is inserted from the top and a sample 

holder is inserted from the bottom; both are fixed onto closure heads sealing the vessel.  

 Argon (Ar) is the pressurizing gas and maximum pressures of 500 MPa and 

maximum temperatures of 1250°C can be reached. Additionally, it is possible to adjust the 

oxygen fugacity (fO2) to reducing conditions in the experimental system by adding 

hydrogen (H2) to the argon pressure medium. Furthermore, in each individual capsule is 

the prevailing oxygen fugacity dependent on the water activity (aH2O). Here, fO2 is 

controlled by the equilibrium reaction of water dissociation (H2 +1/2 O2 = H2O) inside the 

capsules. Water activities for every run were calculated using activity coefficients after 

Aranovich & Newton (1999) and molar volumes of pure H2O after Pitzer & Sterner 

(1994). The fO2 was calculated for each experiment as log fO2capsule = logfO2vessel + 

2log(aH2O) (see also Botcharnikov et al., 2008) and correlated to the NNO buffer 

regression data of O’Neill (1987). 
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Fig. 2.2. Picture of a the internally heated pressure vessel (IHPV) at the laboratory of the Institute for 
Mineralogy, Leibniz University Hannover, Germany, with H2-line at the bottom and a new developed 
decompression valve on top. 
 

Oxygen fugacity values for each experiment are reported in Appendix Table A.1. In 

case of experiments with reduced fO2, the vessel is only pressurized until a certain pre-

pressure at room temperature, so final pressures are reached by the heating process itself 

(heating rate of 30°C/min) while decoupling the autoclave from the intensifier (no pressure 

automatic in use). This shall prevent the loss of hydrogen in the system, which would 

result in more oxidizing conditions. Pressure transducers, having an accuracy of ± 1 %, are 

installed for the autoclave and the intensifier, and are connected to displays in the 

switchboard. The H2 partial pressure can be detected during the experimental run with the 

help of a so-called Shaw-membrane (Shaw, 1963). It consists of a platinum (Pt) tube which 

is welded shut on one side, then filled with corundum (Al2O3) powder and a one-hole 

ceramic capillary. To seal the membrane a steel capillary, fixed in a steel plug, is soldered 

to the Pt tube. Hydrogen diffuses through the wall of the Pt tube in the hot zone of the 

experiment, while Argon molecules are too big. Through osmosis an equilibrium between 



2. PHASE STABILITY EXPERIMENTS 
 

 13

the outside pressure (inside the autoclave) and the inside pressure (inside the membrane 

including the steel capillary) of hydrogen will be enabled. At the end of the steel capillary, 

outside the IHPV, a pressure transducer detects the actual H2 partial pressure inside the 

autoclave (Berndt et al., 2002). 

The rapid-quench (RQ) sample holder used at Hannover was described by Berndt et 

al. (2002) and consists of four S-type thermocouples (Pt-Pt90Rh10), a H2-membrane and a 

Pt quench wire (0.5 mm thickness). The upper and the lower most thermocouples (distance 

ca. 25 mm) are connected to the EUROTHERM program controller, which enables the 

precise adjustment of the temperatures created by the two molybdenum wire (thickness 0.5 

mm) windings of the furnace. The two middle thermocouples measure the sample 

temperatures. Up to five samples are being packed into a basket (maximum length 30 mm), 

hanging inside the ceramic falling tube while being connected through a ceramic ring to 

the quench wire (0.3 mm thickness). After a successful experimental run, capsules are 

rapidly quenched (150 °C/sec) by melting of the quench wire which results in immediate 

falling of the capsule (basket) into the cold zone of the sample holder (Berndt et al., 2002). 

 

Analytical methods 

Electron microprobe analysis (EMPA) 

Major element composition of solid experimental products, composed of minerals and 

glass, were analyzed with a Cameca SX-100 microprobe using 15 kV as the acceleration 

voltage. Glass analyses were conducted with 4 nA beam current, a defocused electron 

beam (5-10 µm diameter), and peak counting times of 4 sec for Na and K and 8 sec for the 

other elements. Mineral phases were analyzed using a 15 nA beam current and a focused 

electron beam. Multiple measurements (minimum 3) were made for each phase to reduce 

possible analytical errors and to check the homogeneity.  

 

Fourier transform infrared spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) was used to estimate concentrations of 

dissolved water and carbon dioxide in the experimental glasses, using a Bruker IFS88 

FTIR spectrometer with a connected IRscopeII microscope. For NIR (near infra-red) 

analysis we used a tungsten light source, a CaF2-beam splitter and a MCT-detector. The 

spectral resolution was 4 cm-1. One hundred scans per background and per sample were 

collected. The analyzed area was 80 x 80 µm. For MIR (mid infra-red) analysis we used a 

globar light source, a KBr-beam splitter and a MCT-detector. The spectral resolution was 2 
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cm-1. Fifty scans per background and per sample were collected. The analyzed area was 80 

x 80 µm. The concentrations of molecular water and water dissolved as OH- were 

calculated from the heights of the peaks at 5200 cm-1 and 4500 cm-1, respectively, and the 

concentration of carbon dioxide (CO2) was calculated from the heights of the peak at 2350 

cm-1, using a tangential baseline correction. The extinction coefficients of water species in 

the glasses for the calculation of water concentration in the glasses were estimated using an 

empirical calibration of Ohlhorst et al. (2001) and they varied from 1.34 to 1.97 l/mol*cm 

for the 5200 cm-1 peak and from 1.13 to 1.67 l/mol*cm for the 4500 cm-1 peak, using the 

straight line (TT) baseline correction method. Since the compositions of glasses were close 

to rhyolites, glass densities were calculated applying the empirical calibration after Withers 

& Behrens (1999): density (in g/L) = 2390 – 17.0 * wt% H2O. Sample thicknesses were 

determined with a Mitutoyo digital micrometer (precision of ± 2 µm). The glass 

thicknesses were chosen rather small, varying between 70 and 100 µm, to avoid noises 

induced by bubbles and microlites. The low sample thickness results in relatively low 

absorption from which a possible error of about 20 % in peak heights can be assumed. 

Care was taken to choose areas without or with small amount of bubbles and crystals. 

However, since they contain minerals and since bubbles could not be completely avoided, 

the uncertainty of the calculated water concentration is high (± 20 relative %) and the data 

can only be used to discuss qualitatively the relative variations of water concentrations. In 

some samples water and carbon dioxide concentrations were not determined by NIR and 

MIR, respectively, because doubly polished slices of good quality could not be prepared 

(cavities were still filled with fixation glue resulting in large disturbances in the absorption 

spectra). The average values (and standard deviations) of NIR and MIR measurements 

repeated at different locations on higher quality samples and are shown in Appendix Table 

A.2. 

 

RESULTS 

Phase stabilities 

The experimental products consist of glass and mineral phases ± vesicles. It was able to 

distinguish chemically between the following mineral phases: orthopyroxene (Opx), 

clinopyroxene (Cpx), amphibole (Amph), plagioclase (Pl), quartz (Qtz) and Fe-Ti oxides 

(Ox, mainly ilmenite), see Appendix Table A.1. While the mineral phases Ox, Opx and 

Cpx were observed in nearly all of the end products of the phase stability experiments, 
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Amph, Pl and Qtz showed characteristic dependences on the P-T-XflH2O conditions, which 

will be described in detail in the following. 

 

Phase stabilities at given pressures 

Fig. 2.3 a-d show phase stability diagrams (T- XflH2O) at constant pressures ranging from 

300 to 50 MPa. At 300 MPa, Amph is only stable at low temperatures (less than ~875 °C) 

and at higher mole fractions of water (XflH2O > 0.5), see orange fields in Fig. 2.3a. Pl 

minerals are present at all investigated temperatures (1000-800°C) assumed that the mole 

fraction of water is less than 0.5. Pl is present at all XflH2O if the temperatures are less than 

~830°C. At 200 MPa, the stability fields of Amph and Pl are nearly similar to those at 300 

MPa, compare Figs. 2.3a and 2.3b. Compared to 300 MPa, the stability line of Pl (dashed 

green line) is only slightly shifted to higher mole fractions of water at 200 MPa (at given 

temperatures). The Amph stability line (dashed orange line) is shifted slightly to lower 

temperatures with decreasing pressure from ~870°C at 300 MPa to ~850°C at 200 MPa at 

high XflH2O (> 0.5). At pressures of 300 and 200 MPa, liquidus conditions (grey colored 

fields in Fig. 2.3a and 2.3b) were determined in experiments at 1000°C and with the two 

highest conducted mole fractions of water (XflH2O > 0.8). At lower pressures, no 

experiments were run at 1000°C. 

At 100 MPa (Fig. 2.3c) and at temperatures ≤ 950°C, Pl crystallized at all mole 

fractions of water. At this condition, the stability field of Amph is restricted to T ≤ 800°C 

and XflH2O > 0.8, see orange line and field in Fig. 2.3c. The phase stability diagram at 50 

MPa and at temperatures of ≤ 950°C (Fig. 2.3d) is very similar to that at 100 MPa with one 

exception: Amph is not stable at the investigated conditions. 
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Phase stability at constant temperatures 

Phase stability diagrams (P- XflH2O) at constant temperatures ranging from 850 to 930°C 

are plotted in Fig. 2.4 a-c. At 850°C (Fig. 2.4a), Amph is only stable at pressure ≥ 200 MPa 

and at mole fractions of water higher ~0.7. Pl is stable at all conditions except at pressures 

≥ 200 MPa and at mole fractions of water ≥ 0.8. At higher temperatures of 900 and 930°C 

(Figs. 2.4 b-c, respectively), amphibole is not stable anymore, while the stability lines of Pl 

(green dashed lines) shift to lower XflH2O values and to slightly lower pressures (minimum 

P of ~150 MPa at 930°C) with increasing temperatures from 900 to 930°C. At 930 °C (Fig. 

2.4c) and 300 MPa, Pl is only stable at XflH2O < 0.55. 

 Two overall trends can be observed from the given SiO2 contents of the residual 

melts (white numbers in black boxes) and from the determined anorthite (An) contents of 

crystallized Pl (black numbers in white boxes) in all presented phase diagrams (Figs. 2.3 a-

d and 2.4 a-c). First, the SiO2 content of the residual melts increases with decreasing P-T-

XflH2O conditions, while secondly the An content of crystallized plagioclases decreases 

simultaneously with decreasing P-T-XflH2O conditions. 
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Fig. 2.4 (c) Phase stability diagrams at constant temperatures of 930°C in dependences on the mole fraction of 
water (XflH2O; x-axis) and on the pressure (y-axis). Dashed lines represent the stability lines for the 
corresponding mineral phases. For detailed symbol explanations see figure caption 2.3. a-b. 

 

 

DISCUSSION 

The mineral assemblage (Pl, Amph, Opx, Cpx, Ox and Qtz) crystallized in our phase 

stability experiments is consistent with those of other (experimental) studies (e.g. 

Rutherford & Hill, 1993; Sato et al., 1999; Holtz et al., 2005 and Larsen, 2005; see also 

Fig. 3.2 in chapter 3.1.1.) which can be related to our rhyodacitic system, although those 

studies were performed for water-saturated (XflH2O=1.0) systems only. Major differences 

can be found in the individual mineral stability fields, which are obviously sensitive to the 

investigated P-T-XflH2O conditions and the chemical composition of the used starting 

materials, especially for Amph minerals. The compilation of water-saturated literature 

data, see Fig. 2.5b, suggests that Amph is either stable down to pressures of 40-50 MPa 

(Sato et al., 1999; dashed lines) at temperatures below ~850°C, or only stable down to 

pressure of 60-80 MPa at temperatures below ~860°C (Venezky & Rutherford, 1999; solid 

lines). While our experimental study show that at these water-saturated conditions 
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(XflH2O=1.0, see Fig. 2.5a) Amph is not stable at temperatures above ~880°C at all 

investigates pressures (≤ 300 MPa) and that Amph stability was not observed at pressure 

below ~100 MPa. Our determined Amph stability field is narrower that those determined 

by Sato et al. (1999) and Venezky & Rutherford (1999), which could be explained by the 

slightly differing starting compositions, see Table 2.1. As there are already major 

discrepancies between the literature data (compare dashed and solid lines in Fig. 2.5b), 

especially when looking at their liquidus conditions at high temperatures, it can be 

assumed that this rhyodacitic groundmass system is very sensible to minor changes in 

chemical composition leading to variable phase stability fields. 

The observed trends of increasing silica content and of decreasing anorthite content 

with decreasing P-T-XflH2O conditions are in agreement with former studies on 

crystallization processes (e.g. Holtz et al., 2005; Larsen, 2005). Additionally, it is known 

that the volatile component H2O has a major influence on the liquidus temperature of 

silicate melts (e.g. Johannes & Holtz, 1996). As the mole fraction of water (XflH2O) in the 

system decreases, the increase of the liquidus temperature results in an increase of the 

mineral proportion in the system. This crystallization of mineral phases (here: mainly 

plagioclase) from the melt is accompanied by the enrichment of the residual melt in SiO2 

leading to the crystallization of quartz at conditions of oversaturation. 
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In Figs. 2.3 a-b, 2.4a, 2.5a and 2.6 a-b, the checkered areas represent the P-T-XflH2O 

conditions under which the natural Unzen groundmass mineral assemblage was 

experimentally reproduced. These conditions vary between pressures of 300-100 MPa, 

mole fractions of water of 1.0 - 0.65 and temperatures ≤ ~870°C. As magma storage 

conditions of the mixed magma were suggested by earlier (analytical and experimental) 

studies to lie within the pressure range of minimum 160 MPa (Venezky & Rutherford, 

1999) to a maximum of 300-400 MPa (Nishi et al., 1995) and having a temperature range 

of 900 ± 30°C (Venezky & Rutherford, 1999), it can be assumed that the Amph 

phenocrysts in the mixed magma were not in equilibrium with the silicate melt after 

mixing. Consequently, natural Amph microlites must have crystallized only during the 

subsequent magma ascent while crossing the Amph stability field emphasized in this study. 

Petrological studies of the natural Unzen dome samples distinguished between 

hornblende phenocrysts and groundmass pargasites (e.g. Nakada & Motomura, 1999; Sato 

et al., 1999). Natural hornblende phenocrysts have usually lower Al2O3 contents and 

slightly lower Mg numbers (Mg#) when compared to natural groundmass pargasites, see 

Fig. 2.7. Our crystallized Amph microlites produced during phase stability experiments 

(green circles plotted in Fig. 2.7) have Al2O3 contents ranging from ~7-10 wt% and Mg# 

of 0.60 to 0.73, which are close to natural phenocryst hornblende compositions determined 

by Nakada & Motomura (1999) and also similar to some natural groundmass pargasites 

determined by Sato et al. (1999), having also Al2O3 contents of less than the usual 

minimum value of 10 wt%. 

 



2. PHASE STABILITY EXPERIMENTS 
 

 25

 
Fig. 2.7. Al2O3, vs. Mg# (= Mg/[Mg+Fe]) of amphiboles determined for natural Unzen dome samples and 
for our experimentally reproduced microlites. Natural phenocryst cores and groundmass pargasites given by 
Sato et al. (1999) are plotted by empty squares and by grey-filled circles, respectively. Compositional ranges 
by Nakada & Motomura (1999) of natural groundmass pargasites and natural phenocryst hornblendes are 
indicated by the grey-shaded square and by the yellow square, respectively. Our experimentally reproduced 
Amph microlites are plotted as green circles. 
 

      

CONCLUSION 

The mineral assemblage observed in natural erupted rocks was successfully reproduced by 

our phase stability experiments, providing details on the magma storage conditions prior to 

the 1991-1995 Unzen eruption as well as on the magma ascent dynamics. 

As Amph microlites are preserved in natural surface rocks but are not in equilibrium 

at pressures below ~80 MPa in the rhyodacitic Unzen groundmass system, two conclusions 

can be made: (1) the mixed Unzen magma must have crossed P-T-XflH2O conditions that 

allow the crystallization of Amph microlites (and the overgrowth of Amph phenocrysts) 

during ascent and (2) the decompression rate of the rising magma from depth to surface 

pressures had to be fast enough so that Amph crystals did not dissolve entirely during the 

magma ascending process below their stability field. 
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3. DECOMPRESSION EXPERIMENTS 
 

Isothermal magma decompression was simulated at 850°C (in CSPVs) and at 930°C (in 

IHPVs), which covers the range of estimated Unzen magma storage temperatures at depth 

(870-930°C; Venezky & Rutherford, 1999; Holtz et al., 2005). Furthermore, two main 

approaches were used for decompression: high pressure decompression (HPD; chapter 3.1) 

and low pressure decompression (LPD; chapter 3.2). For the HPD approach, a starting 

pressure of 300 MPa was used, which is closely corresponding to magma mixing and 

storage conditions at Mt. Unzen prior to the 1991-1995 eruption. In this case, 

decompression was conducted until a final pressure of 50 MPa, corresponding to the 

pressure at depth that was targeted during the Unzen Scientific Drilling Project (~1.5 km; 

Nakada et al., 2005, see also chapter 1.1). In LPD experiments, we wanted to simulate the 

final stage of magma ascent until surface pressures of 0.1 MPa. 

Since natural magmas contain not only water but also other dissolved volatiles 

(mainly CO2, SO2 and HCl) and magma degassing is accompanied by a release of multi-

component fluids, two series of HPD experiments were conducted: one using only water as 

a volatile component (H2O-bearing) and the other one using a water and carbon dioxide 

(H2O+CO2-bearing) fluid mixture. While in LPD experiments, only the H2O-bearing 

system was investigated as it is assumed that CO2 is completely exsolved from the melt at 

these low pressures (e.g. Fogel & Rutherford, 1990; Behrens et al., 2004; Liu et al., 2005). 

Multiple decompression rates were investigated and were performed either as a single 

continuous pressure release or as a multi-step decrease in pressure, depending on the used 

pressure vessel and the decompression rate. The overall conducted decompression rates 

ranged from 20 to 0.0001 MPa/s, corresponding to ascent velocities of 2400 km/h to ~10 

m/h.  

This experimental approach can represent natural conditions during magma ascent in 

volcanic conduits (e.g. Hammer & Rutherford, 2002; Couch et al., 2003), however it must 

be noted that in natural systems the actual ascent rates and temperatures might not be 

constant along the ascent path (e.g. Noguchi et al., 2008a; Nakada & Motomura, 1999). 

After the experiments, the quenched samples have been analyzed for compositional and 

textural changes and compared with natural rocks from Unzen. 
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3.1.  High pressure decompression (HPD) 
 

The main focus in HPD experiments is the magma ascent from a starting pressure of 300 

MPa to a final pressure of 50 MPa at both investigated temperatures of 850°C (set-I; 

chapter 3.1.1) and 930°C (set-II; chapter 3.1.2), see Fig. 3.1. Two fluid-saturated systems 

are investigated: H2O-bearing system (XflH2O=1.0) and H2O+CO2-bearing system 

(XflH2O=0.6). 

 
Fig. 3.1. Schematic phase diagram for fluid-saturated rhyodacitic magma, derived from this study chapter 2 
(phase stability experiments). The purple and blue arrows show the isothermal decompression paths of HPD 
set-I and set-II, starting from 300 MPa down to final 50 MPa at temperatures of 850°C and 930°C, 
respectively. 
 

 

3.1.1.  HPD at low-temperature (850 °C; set-I) – modified after Journal of 

Petrology paper Cichy et al. (2011) 
 

Vesiculation and Microlite Crystallization Induced by Decompression: A Case Study 

of the 1991-95 Mt Unzen Eruption (Japan) 

 
SARAH B. CICHY*, ROMAN E. BOTCHARNIKOV, FRANÇOIS HOLTZ AND HARALD BEHRENS 

INSTITUT FUER MINERALOGIE, LEIBNIZ UNIVERSITAET HANNOVER, CALLINSTR. 3, D-

30167 HANNOVER, GERMANY 
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ABSTRACT  

Isothermal decompression experiments were performed to simulate magma ascent at 

Unzen volcano from depths of magma storage to shallow level, corresponding to pressure 

decrease from 300 to 50 MPa. A partially crystallized synthetic rhyodacitic magma 

(representing equilibrium conditions at 850°C and 300 MPa) was used as a starting 

material with a composition identical to the groundmass composition of Unzen rocks 

erupted in 1991-1995. Decompression rates were varied from 0.0002 to 20 MPa/s. The 

experiments were fluid-saturated, either containing only water as a fluid component (H2O-

bearing) or containing a water and carbon dioxide mixture (H2O+CO2; initial mole 

fraction of H2O in the fluid ~ 0.6).  

The experimental products of the H2O-bearing experiments consist of amphibole, 

pyroxenes, oxides and glass. Plagioclase microlites only nucleated and grew in 

experiments with the two lowest decompression rates of 0.0005 and 0.0002 MPa/s. The 

length of those plagioclases reaches up to 200-250 μm which is consistent with the size of 

plagioclase microlites observed in natural samples. The experimental products of the 

H2O+CO2-bearing system are composed of pyroxenes, oxides, glass and plagioclase. 

Plagioclase microlites in the H2O+CO2-system were already present in the starting 

assemblage and grew to a maximum size of ~80 µm. 

Equilibrium concentrations of water in the residual glasses at final pressure of 50 MPa 

are reached at decompression rates ≤ 1 MPa/s for the H2O+CO2-bearing system and ≤ 0.1 

MPa/s for the H2O-bearing system. The bubble number density (BND) values range from 

103.7 mm-3 to 105.6 mm-3 in the H2O-bearing system and from 104.6 mm-3 to 106.4 mm-3  in 

the H2O+CO2-bearing system. In both systems, BND values decrease with decreasing 

decompression rate from 20 to 0.01 MPa/s, and increase with decreasing decompression 

rates < 0.01 MPa/s, which is interpreted to reflect a predominant bubble growth and 

bubble nucleation, respectively.  

The onset of crystallization, observed from changes in the chemical composition of the 

residual melt, occurs at decompression rates < 0.1 MPa/s. At the lowest decompression 

rate (0.0002 MPa/s) the chemical composition of the residual melt in the H2O+CO2-

bearing system becomes similar to the natural matrix glass composition. There is no 

significant variation of the microlite number density (MND) value as a function of  the 

decompression rate. The MND values for plagioclases-only range from 105.4 mm-3 to 105.7 

mm-3, whereas the MND values for the other phases range from 105.3 mm-3 to 105.9 mm-3. 
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Our experimental MNDPl values are in the range of those from natural samples (105-106 

mm-3).  

We show that the size of microlites nucleating and crystallizing during decompression 

(plagioclase in our experimental dataset) are useful to constrain magma ascent rates at the 

onset of the crystallization of the corresponding phase. Based on the size of plagioclase 

microlites and on the composition of residual melts, the average magma ascent rates of 

Unzen magmas in the pressure range of 200 to 50 MPa is estimated to be 10 to 50 m/h.   

 
KEY WORDS: crystallization; decompression experiments; magma ascent; Unzen volcano; vesiculation 

 

INTRODUCTION 

Crystallization of a silicate melt during eruption is mainly caused by decompression-

induced volatile loss. The most abundant volatile in magmas is H2O, followed by CO2, 

SO2, H2S and HCl. As the magma ascends, the exsolution of volatiles from the melt into 

bubbles increases the magma liquidus temperatures and therefore enables extensive 

groundmass crystallization. Vesicle and mineral nucleation and growth in the melt are 

significantly influenced by magma decompression rate (e.g. Rutherford & Hill, 1993; 

Geschwind & Rutherford, 1995; Simakin et al., 1999, 2000; Hammer & Rutherford, 2002; 

Couch et al., 2003; Martel & Schmidt, 2003; Browne & Gardner, 2006). Hence, magma 

ascent rate can control the eruption style (e.g. Sparks, 1978; Hurwitz & Navon, 1994), and 

groundmass textures of erupted rocks (e.g., crystal and vesicle sizes and number densities) 

may preserve important information about the decompression path and processes related to 

the magma ascent within the conduit. However, in order to interpret quantitatively 

parameters such as textures and compositions of magmatic phases and to evaluate the 

dynamics of a magmatic system, the processes of magma degassing and crystallization 

need to be simulated experimentally.  

Up to now, most previous works focused either on bubble nucleation and growth or 

on microlite nucleation and growth as a result of decompression (see review of Hammer, 

2008). Little attention has been given to the characterization of experimental samples in 

which bubbles and microlites nucleate and grow simultaneously. In this study we present 

the results of decompression experiments aimed at understanding bubble and microlite 

nucleation and growth in the magma ascending from magma chamber to shallow levels 

during the 1991-1995 eruption of Unzen volcano, Japan. These processes are simulated 

under controlled temperature and decompression rate. The results provide a unique 
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opportunity to compare data obtained experimentally with information from natural 

samples collected at the surface (e.g., Nakada et al., 1999) and at depth (ICDP drilling, 

Nakada et al., 2005). The experimental results on kinetics of decompression-induced 

nucleation and growth of bubbles and microlites are used to interpret textures of erupted 

products and to constrain processes occurring in magmatic conduit during the last Unzen 

eruption.  

 

Magmatic system of Unzen volcano 

The 1991-1995 eruption of Unzen volcano occurred as a result of mixing between 

andesitic and rhyolitic magmas in deep magma chambers followed by an ascent of mixed 

dacitic magma from depth (Venezky & Rutherford, 1999; Holtz et al., 2005). Petrological 

and experimental studies indicate that before the eruption the mixed dacitic magma was 

stored at a minimum pressure of about 160 MPa, temperature from 870 to 930°C and it 

contained about 6 wt% H2O (Venezky & Rutherford, 1999). The maximum pressure of the 

magma chamber is considered to be less than 300–400 MPa based on the geophysical data 

(maximum storage depth of about 11 km, Nishi et al., 1995) and on the H2O content of the 

melt inclusions in phenocrysts (up to 7–8 wt.% H2O; Holtz et al., 2005; Nishimura et al., 

2005).  

During the eruption, a lava dome, composed of several lava lobes, was formed on 

the top of the volcano, producing numerous pyroclastic flows. The dome rocks consist of 

dacites with plagioclase, hornblende, biotite and quartz as main phenocrysts which are 

presumably originated from silicic rocks at depth (e.g. Nakada & Motomura, 1999). The 

groundmass is interpreted to be representative of the melt after magma mixing and it is 

composed of matrix glass, and microlites of plagioclase, pargasite, pyroxene, Fe-Ti oxides 

and apatite (Nakada & Motomura, 1999). Since the vesiculation and crystallization of 

Unzen groundmass mainly occurred during magma ascent, the textures and phase 

compositions of the groundmass in the dome lavas may provide constraints on processes of 

magma degassing and crystallization (Noguchi et al., 2008a,b).  
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Fig. 3.2. Schematic phase diagram for water-saturated rhyodacitic magma, corresponding to groundmass of 
Unzen based on a compilation of experimental data from Rutherford & Hill (1993), Sato et al. (1999), Holtz 
et al. (2005) and Larsen (2005). The purple arrow shows the isothermal decompression path which is 
simulated in this study 
 

The phase diagram in the pressure (P) – temperature (T) field for water-saturated 

rhyodacitic groundmass composition is shown in Fig. 3.2, based on the available literature 

data relevant to Unzen rhyodacitic system. At a given temperature, the stability fields of 

minerals expand with decreasing pressure due to exsolution of dissolved water from the 

melt. On the other hand, some minerals such as amphibole belong to high-pressure mineral 

phase assemblage and are not stable at pressures below 80-100 MPa. Consequently, an 

isothermal magma ascent to the surface should result in a change of the mineral 

assemblage and in a continuous variation of the composition, of the texture of groundmass 

microlites as well as of the vesicularity of erupted rocks. Similar variations are expected at 

water-undersaturated conditions in presence of a H2O-CO2-bearing fluid. However, a P-T 

phase diagram for the H2O+CO2-bearing Unzen rhyodacitic system at given mole fraction 

of water in the fluid phase (XflH2O) is not available from literature data.  
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EXPERIMENTAL AND ANALYTICAL APPROACHES 

Experimental strategy 

Magma decompression was simulated at different decompression rates. After annealing at 

pressure of 300 MPa, corresponding to the depths of magma storage and mixing, the fluid-

bearing magmas were isothermally decompressed to 50 MPa which is equivalent to the 

pressure at the final depth of ICDP drilling (Nakada et al., 2005). Since natural magmas 

contain not only water but also other dissolved volatiles and magma degassing is 

accompanied by a release of multi-component fluids, two different fluid-bearing magmas, 

one containing only H2O and the other saturated with a H2O+CO2 fluid, were investigated. 

The decompression experiments were performed either as a single continuous pressure 

release for fast decompressions or as a multi-step decrease in pressure. This approach can 

represent natural conditions during magma ascent in volcanic conduits (e.g. Hammer & 

Rutherford, 2002; Couch et al., 2003), however it must be noted that in natural systems the 

actual ascent rates and temperatures might be not constant along the ascent path (e.g. 

Noguchi et al., 2008a; Nakada & Motomura, 1999). After the experiments, the quenched 

samples have been analyzed for compositional and textural changes and compared with 

natural rocks from Unzen.  

 

Starting material 

A synthetic analogue of a rhyodacitic silicate melt was used as a starting material (Table 

2.1 and 3.1). This composition, already investigated in several studies related to Unzen 

volcano (Sato et al., 1999, 2005; Botcharnikov et al., 2004), corresponds to the bulk 

groundmass of the 1991-1995 erupted magma. Hence, the decompression experiments are 

focused on the evolution of the rhyodacitic melt formed after magma mixing. This 

approach minimizes the possible effects of phenocrysts on nucleation and growth 

processes of bubbles and microlites. 
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For the preparation of the starting material, a mixture of oxides (SiO2, TiO2, Al2O3, 

Fe2O3, MnO and MgO) and carbonates (CaCO3, Na2CO3 and K2CO3) was ground in a 

rotary mortar. The mixed powder was melted for 2 hours in platinum crucible at 1600°C, 1 

atm in air (logfO2= -0.68). Afterwards, the melt was quenched to glass by placing the 

crucible into a water bath. To improve the homogeneity of the batch, the glass was ground 

again in the agate mortar and melted again for 0.5 hour (see same P-T conditions as 

above). Finally, the glass was crushed and two fractions of < 100 µm and 100-200 µm 

were mixed in a volume ratio of ~ 1:1 to minimize the free volume in the experimental 

capsules and to reduce the incorporation of atmospheric nitrogen into the charge. 

 

Experimental methods 

Two series of decompression experiments were conducted: one using only water as a 

volatile component (H2O-bearing) and the other one using a water and carbon dioxide 

(H2O+CO2-bearing) fluid mixture. In the first experimental series, 50 mg of the powdered 

silicate glass and 5 mg of H2O were loaded in 20 to 25 mm long gold capsules with a 

diameter of 3.2 mm. In the second experimental series, 3.8 mg of H2O and 7 mg of 

Ag2C2O4 (CO2 source) were added to 50 mg of the glass. In both experimental series the 

rhyodacitic melt was saturated with H2O- or H2O+CO2-bearing fluid phase at 300 MPa, 

resulting in final fluid composition with mole fraction of water in the fluid phase (XflH2O) 

equal to 1 and about 0.6, respectively. XflH2O was measured after opening the capsule 

using a conventional weight-loss method. The capsules were welded shut by arc welding.  

Experiments were performed in externally heated cold seal pressure vessels (CSPV) 

made of an alloy containing mainly nickel. The vessels were pressurized with water. The 

temperature was controlled with an external Ni-CrNi thermocouple (vessels were 

calibrated for temperature). The temperature variations were less than 5°C, while the 

accuracy in temperature was estimated to be ± 10°C. Pressure was measured with pressure 

transducer calibrated against a strain gauge manometer. The accuracy of pressure 

measurements were 1 MPa and pressure variations during the experiments were less then ± 

5 MPa. Inside the CSPV, the redox conditions were buffered by the reaction of water with 

a solid oxygen buffer (added as a mixture of Ni and NiO powders, i.e. NNO buffer). An 

effective in-diffusion of H2 through the walls of gold capsules fixed the hydrogen fugacity 

(fH2) in the capsules and controlled the redox conditions in the systems via the reaction of 

H2 + ½ O2 = H2O. Hence, in the H2O-saturated systems, the redox conditions were close to 

NNO buffer while in the H2O+CO2-bearing systems, the fugacity of fO2 is expected to be 
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about 0.5 log units lower. It should be also noted that the proportions of H2O and CO2 in 

the fluid changed during decompression due to different dependences of water and carbon 

dioxide solubilities on pressure and because of higher diffusivity of H2O in silicate melts 

(e.g., Behrens & Zhang, 2001; Baker et al., 2005). This could presumably result in a small 

increase in fO2 mainly due to increasing fugacity of H2O in the fluid phase on pressure 

release.  

The pairs of H2O- and H2O+CO2-bearing capsules were annealed for 7 days at 850 

°C (maximum temperature to conduct experiments in CSPVs) and 300 MPa before the 

decompression, allowing initial equilibration in the systems at conditions that closely 

correspond to magma storage conditions at Unzen. One series of experiments was 

quenched isobarically after 7 days, producing reference samples equilibrated at 300 MPa. 

Isobaric series were obtained in the same way at 50 MPa, representing the final 

equilibrium reference material for the decompression experiments. After equilibration at 

300 MPa, the capsule pairs were decompressed manually by reducing the pressure in the 

autoclaves either continuously (decompression rates ≥ 0.1 MPa/s) or at regular steps (see 

Table 3.1) down to 50 MPa (multi-step decompression, decompression rates ≤ 0.1 MPa/s). 

The average decompression rates varied in the range from 0.0002 to 20 MPa/s (Table 3.1). 

The experiments were quenched by removing the autoclave from the furnace and by 

cooling it with compressed air, while keeping the final pressure constant. The quench rate 

was approximately 150°C per min at the beginning of the cooling and was sufficient to 

avoid quench effects on crystallization and presumably on vesiculation in rhyodacitic 

magma. Several replicate runs were conducted to check the reproducibility of the 

experimental approach (Table 3.1). 

 

Analytical methods 

Major element composition of solid experimental products 

The chemical compositions of the experimental products, composed of minerals and glass, 

were analyzed with a Cameca SX-100 microprobe using 15 kV as the acceleration voltage. 

Glass analyses were conducted with 5-10 nA beam current, a defocused electron beam (5-

10 µm diameter), and peak counting times of 4 sec for Na and K and 8 sec for the other 

elements. Mineral phases were analyzed using a 15 nA beam current and a focused 

electron beam, and peak counting times of 5 sec for Na and K and 10 sec for the other 

elements. Multiple measurements (minimum 3) were made for each phase to reduce 

possible analytical errors and to check the homogeneity. For some crystals (> 5 µm), 
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profiles were measured through individual grains to determine changes in chemical 

compositions from rim to core of the mineral. 

 

Determination of H2O content of the glasses 

Fourier transform infrared spectroscopy (FTIR) was used to estimate concentration of 

dissolved water in the experimental glasses, using a Bruker IFS88 FTIR spectrometer with 

a connected IRscopeII microscope. For NIR (near infra-red) analysis we used a tungsten 

light source, a CaF2-beam splitter and a MCT-detector. The spectral resolution was 4 cm-1. 

One hundred scans per background and per sample were collected. The analyzed area was 

80 x 80 µm. The concentrations of molecular water and water dissolved as OH were 

calculated from the heights of the peaks at 5200 cm-1 and 4500 cm-1, respectively, using a 

tangential baseline correction. Due to crystallization during decompression, the 

compositions of the quenched melts (glasses) were different, presumably influencing the 

extinction coefficients of water species in the glasses. The extinction coefficients used for 

the calculation of water concentration in the glasses depend on the glass composition and 

were estimated using an empirical calibration of Ohlhorst et al. (2001). They vary from 

1.41 to 1.75 l/mol*cm for the 5200 cm-1 peak and from 1.19 to 1.48 l/mol*cm for the 4500 

cm-1 peak. Since the compositions of glasses were close to rhyolites, glass densities were 

calculated applying the empirical calibration after Withers & Behrens (1999): density (in 

g/L) = 2390 – 17.0 * wt% H2O. Sample thicknesses were determined with a Mitutoyo 

digital micrometer (precision of ± 2 µm). The thicknesses varied between 60 and 70 µm. 

Care was taken to choose areas without or with small amount of bubbles. However, since 

the samples contain minerals (especially those of the H2O+CO2-bearing system) and since 

bubbles could not be completely avoided, the uncertainty of the calculated water 

concentration is high (± 20 relative %) and the data can only be used to discuss 

qualitatively the relative variations of water concentrations. The average values of water 

concentration (and standard deviations) of NIR measurements repeated at different 

locations on higher quality samples are shown in Table 3.1. For some samples, (DA50 and 

DA51) water concentrations could not be determined by NIR because doubly polished 

slices of good quality could not be prepared (cavities were still filled with fixation glue 

resulting in large disturbances in the absorption spectra). 

The determination of carbon dioxide concentrations in glasses by FTIR was not 

possible because the CO2 concentrations were too low and because the absorption bands of 
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molecular CO2 were superimposed with bands due to the presence of crystalline phases in 

the mid infra-red (MIR) spectra.   

 

Image and texture analysis  

Back-scattered electron (BSE) images of the experimental samples were obtained with a 

scanning electron microscope (SEM) FEI QUANTA 200. The picture sizes range from 

minimum 30 x 26 µm to maximum 1500 x 1125 µm. These images were used to identify 

the textures and to quantify the textural characteristics of the experimental products, 

applying the public computer program ImageJ (http://rsb.info.nih.gov/ij). The image 

analysis provided information about total area, average size, area fraction, as well as about 

the width and length of each particle. The detection limit for the particle size is dependent 

on the magnification and the resolution of the digitalized BSE pictures. For the 

characterization of the run products, at least three BSE-pictures at different magnifications 

were analyzed for each sample to ensure that particles of all sizes are included and to 

minimize the truncation effect (e.g. Armienti, 2008). At the highest magnification (5000 

x), the ImageJ program allowed detection of particles with a minimum diameter of 0.2 µm. 

It must be noted that some voids in experimental samples were filled with epoxy and 

abrasive materials during sample preparation, making the automatic processing by ImageJ 

difficult. In order to minimize this effect, all bubbles in the images were outlined and 

colored black manually to obtain better contrast between bubbles and the other phases 

before processing by ImageJ.  

The geometric information obtained by ImageJ analysis was used to determine 

textural characteristics such as bubble and crystal size distributions (BSD and CSD, 

respectively) as well as bubble and microlite number densities (BND and MND, 

respectively). The BSD and CSD values were determined following the methods of 

Higgins (2000, 2002, 2006a,b) using the CSDcorrections1.3.8 software 

(http://wwwdsa.uqac.ca/~mhiggins/csdcorrections.html).  

The bubble or crystal size distribution in a rock is the number of bubbles or crystals 

per unit volume within a series of defined size intervals. The population density n is 

defined as the number of crystals in a given size class per unit volume, where N is the total 

number of bubbles or crystals of size less than R, and R is some characteristic crystal size 

(Marsh, 1988): 
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dR
dNn =                      (1).  

For the determination of bubble and microlite number density, we followed the 

method of Noguchi et al. (2008a). The calculation procedure includes a 3D-correction as 

an important contribution. We obtained data on the crystal (or bubble) numbers from the 

CSDcorrections software (see above): The bubble or crystal number (N) of each given size 

interval is represented by the multiplication of the population density (n) with the bin width 

(see Higgins, 2006b). Therefore, the integration of crystal numbers N (number of 

microlites/bubbles of a given size interval) for the observed range of microlite/bubble sizes 

(R*) is defined as the microlite number density (MND) and as the bubble number density 

(BND), respectively, per unit volume of the magma: 

∫=
*

0

R
NdRMND                               (2).  

According to the requirements of the CSDcorrections program, an aspect ratio and 

a roundness factor have to be fixed for BSD and BND calculation. An aspect ratio of 1.0 : 

1.1 : 1.2 (short axis : intermediate axis : long axis) and a roundness factor of 0.7 (roundness 

factor varies from 0 for rectangular parallelepipeds to 1 for triaxial ellipsoids/spheres, see 

Higgins, 2006 a,b) were used for BSD and BND analyses. The value chosen for the aspect 

ratio assumes that bubbles are subspherical and the roundness factor is given by ImageJ 

analysis.  

For the CSD and MND determination, we have separated plagioclase microlites 

from all other microlite phases (Opx, Cpx, Amph, oxides). For Pl microlites, an aspect 

ratio of 1.0 : 2.0 : 5.0 (also corresponding to that used by Noguchi et al. 2008a) and a 

roundness factor of 0.0 were used. Due to the difficulties in distinguishing between 

pyroxenes and amphiboles in BSE pictures, both phases were treated as a one phase. For 

all other phases other than Pl (OP), we considered an averaged aspect ratio of 1.0 : 1.5 : 3.0 

and a roundness factor of 0.0. The roundness factor was obtained from the ImageJ analysis 

of the samples whereas the aspect ratios were estimated manually by measuring size 

characteristics of a number of microlites in each sample. Although the maximum aspect 

ratios (=major/minor) of Pl microlites may reach up to ca. 30 (Table 3.2), the average 

aspect ratios do not significantly differ from sample to sample for all decompression 

experiments.  
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RESULTS 

Phase assemblages and compositions in water-saturated experiments 

The experimental products consist of glass, microlites and vesicles (Fig. 3.3). The 

vesicularity ranges from almost zero to nearly thirty percent. The solid experimental 

products of the H2O-bearing system (in the following text, “H2O-bearing” refers to 

experiments at H2O-saturated conditions) obtained at isobaric conditions of 300 MPa are 

composed of glass, amphibole (Amph) and oxides (Ox, mainly ilmenite) as well as of 

minor clinopyroxene (Cpx) and orthopyroxene (Opx). The products of the H2O-bearing 

isobaric experiment at 50 MPa are composed of glass, plagioclase (Pl), Ox, Cpx and minor 

amounts of Opx (see compositions in Appendix Tables A.5). Thus, the mineral 

assemblages observed at 300 MPa and 50 MPa are consistent with the phase diagram in 

Fig. 3.2 (note absence of Amph at 50 MPa and of Pl at 300 MPa).  

In the H2O-bearing decompression experiments, the same assemblage as in the 

isobaric 300 MPa experiment is observed, except for decompression rates lower than 

0.0005 MPa/s (runs DA54 and DA28, Appendix Table A.5). In these experiments large Pl 

microlites are found (e.g. Fig. 3.3g). Considering that Pl microlites are present as an 

equilibrium phase at 50 MPa and not at 300 MPa (isobaric experiments), the large Pl 

microlites are expected to nucleate and grow during decompression from 300 to 50 MPa. 

The large Pl microlites obtained at decompression rates ≤ 0.0005 MPa/s have an average 

An content of An50-54. The rims of the plagioclase are slightly more Ab-rich than the cores 

(difference of 1-2 mol% An). It can be noted that the An-contents of the experimental Pl 

are in the range of natural Pl microlites from Unzen dome rocks (52-69 mol%: Noguchi et 

al., 2008a) and from the samples drilled from the conduit (40-70 mol%: Noguchi et al., 

2008b). 
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Fig. 3.3 a-j. BSE pictures of the products of isobaric and decompression experiments. Black bodies are 
bubbles; light grey particles represent microlites such as Cpx, Opx, Amph, Pl and oxides. Note the large 
plagioclase (Pl) crystals at a decompression rate of 0.0002 MPa/s in the H2O-bearing system (Fig 3.3g; light 
grey color). 
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Water-saturated amphibole stability experiments performed by Sato et al. (1999) 

for Unzen groundmass composition showed that amphiboles are only stable at pressures 

higher than 50 MPa for experimental temperature of 850°C. Therefore, at equilibrium 

conditions Amph microlites should not be stable at the final experimental pressure of 50 

MPa. However, Amph microlites were detected in nearly all our decompression 

experiments of the H2O-bearing system. In some of those experiments it was possible to 

observe a reaction rim around Amph. Although the rims are not found around all Amph 

minerals, the size of the rim tends to increase with decreasing decompression rate in 

agreement with other experimental studies (see e.g. Browne & Gardner, 2006). The 

maximum width up to 4 µm was measured at a decompression rate of 0.0002 MPa/s. It is 

emphasized that the rim size can only be interpreted qualitatively because it is dependent 

on the cut-section of the minerals. When possible, the compositions of Amph cores and 

rims were analyzed and the Mg# [Mg/(Fetot + Mg), moles] of the rims is systematically 

lower than that of the cores, e.g., Mg#core = 0.59-0.70 and Mg#rim = 0.57-0.64 for low 

decompression rates. 

 

Phase assemblages and compositions in the H2O+CO2-bearing system  

All experimental products of the H2O+CO2-bearing system obtained in isobaric runs at 300 

MPa and at 50 MPa contain glass, Ox, Opx, Pl and Cpx. The same assemblage was found 

in the decompression experiments (see compositions in Appendix Tables A.5). Amph was 

found only as a minor phase in one experiment with decompression rate of 0.01 MPa/s. In 

a duplicate experiment (DA65*, Appendix Table A.5.2), Amph was not observed, 

indicating that the conditions with XflH2O = 0.6 are close to that of the stability limit for 

Amph. In contrast to the H2O-bearing system, Pl microlites are already part of the mineral 

assemblage in the H2O+CO2-bearing system at 300 MPa and are present in all 

decompression experiments. In the H2O+CO2-bearing system, the An content of Pl cores 

varies from An53 to An59. The An content of Pl in isobaric experiments at 300 MPa is An58 

and this composition is also observed for experiments with decompression rates varying 

from 0.1 to 0.0002 MPa/s. The An content of the Pl from experiments with decompression 

rates of 20 and 1 MPa/s is slightly lower (An53 to An56) which may be due to a slightly 

lower water activity (an XflH2O of exactly 0.6 is difficult to realize experimentally). The 

An content of Pl in isobaric experiments at 50 MPa is An44.  
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Melt compositions 

The chemical analyses of the residual melts are listed in Table 3.1 and plotted in Fig. 3.4. 

The chemical composition of the glasses in the H2O+CO2-bearing system remains nearly 

constant for experiments at decompression rate ≥ 0.1 MPa/s. At lower decompression rate, 

the SiO2 and K2O contents in residual glasses increase with decreasing decompression, 

while Al2O3, FeO, MgO and CaO contents of glasses decrease with decreasing 

decompression rate. The chemical composition of the glasses in the H2O-bearing system 

remains nearly constant for experiments at decompression rate of 20 to 0.001 MPa/s while 

with the beginning of Pl crystallization the compositions change, following similar trends 

as described for the H2O+CO2-bearing system. The concentration of MgO in glasses from 

H2O-bearing system starts to decrease at decompression rates < 0.1 MPa/s. The 

experimental data are compared with the compositional range of natural matrix glasses in 

Fig. 3.4 (grey fields). In the H2O-bearing system, only MgO concentrations in glasses 

obtained from very low decompression rates overlap with natural matrix glasses. In 

contrast, the concentrations of all major oxides overlap with natural compositions in the 

H2O+CO2-bearing system at low decompression rates. In the H2O-bearing system, 

concentration profiles in the residual melts in the vicinity of large Pl microlites show that 

Al2O3 and CaO contents are decreasing while the SiO2 content is increasing with the 

distance from Pl microlites. 
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Fig. 3.4. Normalized chemical compositions of the experimental residual melts as a function of the 
decompression rate. The dark grey shaded areas show the chemical composition range of the erupted natural 
groundmass glass in erupted rocks (Nakada & Motomura, 1999) and the light grey shaded areas show the 
estimated chemical composition range of groundmass glass composition in the conduit rocks (Noguchi et al., 
2008b) of the 1991-1995 Unzen eruption. Error bars show standard deviation (1σ) of replicate analyses. 
 

The data of NIR spectroscopy and the totals of microprobe analyses indicate that 

the water content of melts decreases with decreasing decompression rate, becoming similar 

to the expected water solubility at 50 MPa for the lowest decompression rates (Fig. 3.5). 

Equilibrium concentrations of water are reached at a decompression rate of 1 MPa/s for 

H2O+CO2-bearing system and at 0.1 MPa/s for the H2O-bearing system. The H2O content 

of the experiment DA28 in the H2O-bearing system with the slowest decompression 

(0.0002 MPa/s) is slightly higher than that expected for 50 MPa. However, this 

experimental product contains large plagioclase microlites (in contrast to all other samples) 

which may affect the quality of the NIR determination.  
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Fig. 3.5. H2O-contents of the residual glasses (in wt%; determined by NIR) of the H2O-bearing system and of 
the H2O+CO2-bearing system as a function of the decompression rate. Circles are multi-step decompression 
experiments and triangles are continuous decompression experiments. Error bars show standard deviation 
(1σ) of replicate analyses. 
 

Textures 

Bubbles 

The BSD in the samples shows concave-up size distribution curves, as illustrated in Fig. 

3.6. There is no systematic variation of the BSD as a function of the decompression rate. 

The BND values of the H2O+CO2-bearing system are slightly higher (0.9-1.2 log units) 

when compared to values of the H2O-bearing system. Two distinct trends can be observed 

in both systems. First, the BND values decrease with decreasing decompression rate at 

high rates (20 to 0.01 MPa/s) ranging from 106.4 mm-3 to 104.6 mm-3 in the H2O+CO2-

bearing system and from 105.6 mm-3 to 103.7 mm-3 in the H2O-bearing system (Table 3.2, 

Fig. 3.7). Secondly, BND values increase again at decompression rates lower than 0.01 

MPa/s. Whereas, the BND value in the H2O+CO2-bearing system at 0.0002 MPa/s is 

similar to that in the equilibrium experiment at 50 MPa, the BND value in the H2O-bearing 

system is 0.6 log units higher than that in the isobaric experiment at final pressure.  
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Fig. 3.6 a-f. Bubble size distribution, calculated following the method of Higgins (2000), in samples after 
decompression experiments. 
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Fig. 3.7. Bubble number density (BND) as a function of the decompression rate for the H2O-bearing system 
(empty symbols) and the H2O+CO2-bearing system (filled symbols). Circles are multi-step decompression 
experiments and triangles are continuous decompression experiments. The black arrow indicates the onset of 
plagioclase crystallization in the H2O-bearing system. Error bars show standard deviation (1σ) of replicate 
analyses. 
 

Microlites 

The CSD in the samples shows concave-up size distribution curves (Fig. 3.8) and there is 

no systematic variation of the CSD as a function of the decompression rate. In most cases, 

the population density of crystals at sizes < 0.01 mm is slightly higher in the H2O+CO2-

bearing system when compared to the H2O-bearing systems for plagioclases as well as for 

the other phases. At the lowest decompression rate (0.0002 MPa/s; see Fig. 3.8f), the size 

of Pl microlites in the H2O-bearing system is significantly larger than that in the 

H2O+CO2-bearing system. 
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Fig. 3.8 a-f. Crystal size distribution, calculated following the method of Higgins (2000), for plagioclases (Pl) 
and other phases (OP) in samples after decompression experiments. 
 

In the H2O+CO2-bearing system, the MNDPl values show no detectable dependence 

on decompression rate and vary in the range from 105.4 mm-3 to 105.7 mm-3. In the H2O-

bearing system, plagioclase microlites only nucleated and grew at decompression rates ≤ 

0.0005 MPa/s, having MNDPl values of 105.4 mm-3 to 105.7 mm-3 (Fig. 3.9a). The MNDPl 

values determined at the lowest decompression rate (0.0002 MPa/s) are 0.3 log units higher 

in the H2O-bearing system when compared with the experiment in the H2O+CO2-bearing 

system at the same conditions. The MNDs for other phases (MNDOP) range from 105.3mm-3 

to 105.9 mm-3 in both systems, also showing no distinct change with changing 



3. DECOMPRESSION EXPERIMENTS 
 

 49

decompression rate (Fig. 3.9b). The MNDOP values obtained in the H2O-bearing system are 

in most cases ~ 0.3 log units higher than those in the H2O+CO2-bearing system.  

 
Fig. 3.9. Microlite number density (MND) as a function of the decompression rate for the H2O-bearing 
system (empty symbols) and the H2O+CO2-bearing system (filled symbols). (a) MND for plagioclases only 
(MNDPl) and (b) MND for all other phases (MNDOP) such as amphiboles, pyroxenes and oxides. Circles are 
multi-step decompression experiments and triangles are continuous decompression experiments. The black 
arrow indicates the onset of plagioclase (Pl) crystallization in the H2O-bearing system. The grey shaded area 
show the MNDPl of natural dome samples (Noguchi et al., 2008a). Error bars show standard deviation (1σ) of 
replicate analyses. 
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The maximum length of Pl microlites in the H2O+CO2-bearing system increases 

(Fig. 3.10), whereas the maximum aspect ratios of Pl microlites in the H2O+CO2-bearing 

system show no variation with decompression rate (Table 3.2). In the H2O-bearing system, 

Pl microlites crystallized only at two decompression rates (0.0005 and 0.0002 MPa/s). 

These experiments were duplicated and large Pl microlites were reproduced reaching up to 

50-150 µm in length at 0.0005 MPa/s and up to 200-250 μm in length at 0.0002 MPa/s 

(Table 3.2, Fig. 3.10). Plagioclase microlites of these runs show a skeletal appearance and 

are often observed in close contact to bubbles. 

 

 
Fig. 3.10. Maximum Pl length as a function of the decompression rate. Dark grey shaded area represents the 
range of Pl microlite lengths of Unzen natural dome samples after Noguchi et al. (2008a). Pl microlites in 
core samples are smaller (<100 µm) (indicated by the light grey shaded area), except one sample (C14-1-1) 
where Pl microlites reach up to 300 µm in length (see Noguchi et al., 2008a,b; Goto et al., 2008). 
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DISCUSSION 

Dynamics of vesiculation 

Equilibrium distribution of volatiles in melt and fluid  

The analysis of water contents in the residual glasses gives information on the onset of 

bubble formation processes, including nucleation, growth and coalescence of bubbles in 

the samples. Although water concentrations are determined with a large error due to 

influences of small bubbles and mineral phases, the plot of dissolved water in glasses as a 

function of pressure (Figs. 3.5 and 3.11) clearly shows that no significant amount of water 

is exsolved at the decompression rate of 20 MPa/s and that equilibrium water 

concentrations are reached at decompression rates < 0.1 MPa/s in the H2O-bearing system. 

In a rhyolitic melt with a composition similar to our residual melts, Mangan & Sisson 

(2000) observed that, at 900°C, some water already degassed at 8.5 MPa/s. They also 

suggested that equilibrium conditions were not yet reached at the decompression rate of 

0.003 MPa/s, which differs from our results (also plotted in Fig. 3.11). However, Mangan 

& Sisson (2000) simulated crystal-free homogeneous bubble nucleation processes in 

slightly more viscous rhyolitic melts (higher SiO2 content) which may considerably affect 

the kinetics of degassing. Another explanation for the observed difference can be that the 

fluid exsolution processes might have been dramatically enhanced by the presence of 

microlites. For instance, Hurwitz & Navon (1994) showed that Fe-Ti oxides, biotite etc. 

can act as bubble nucleation sites. A review of Rutherford (2008), based on decompression 

experiments in rhyolitic systems (Hurwith & Navon 1994; Gardner et al., 1999; Mangan & 

Sisson 2000; Gardner & Denis 2004; Baker et al., 2006; Gardner 2007b), shows that there 

is a transition from non-equilibrium to near-equilibrium water release from the melt at 

decompression rates of 0.025 to 0.25 MPa/s. At faster decompression rates (≥ 0.25 MPa/s), 

at which the diffusion of water out of the melt into the bubbles is too slow, the melt 

becomes water-supersaturated and the fluid-melt equilibrium cannot be reached. 
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Fig. 3.11. Dissolved H2O contents (in wt%) of the glasses obtained from decompression experiments. Empty 
purple circles are decompression experiments at 850°C in the H2O-bearing system (XflH2O=1). The solid 
curve illustrates the equilibrium water contents from solubility experiments for a rhyolitic magma at 900°C 
(from Mangan & Sisson, 2000), the black doted curve shows the water solubility for haplogranitic melts 
(from Holtz et al., 1995). Crosses are experiments from Mangan & Sisson (2000) at decompression rates of 
0.003, 0.025 and 8.5 MPa/s. 
 

Bubble growth vs. bubble nucleation  

The relatively high BND values in the H2O+CO2-bearing system (compared to the H2O-

bearing system) may result from two generations of bubbles (one with diameters > 20µm 

and a second with diameters < 5µm), which can be observed in BSE pictures (e.g. Fig. 

3.3d) and in the BSD diagram (Fig. 3.6a). In contrast, in the H2O-bearing system, only one 

bubble generation of intermediate sizes can be found (e.g. Fig. 3.3c and 3.6a). The two 

generations of bubbles in the H2O+CO2-bearing system point to a possible delay in 

nucleation of CO2-rich bubbles due to the lower diffusion rate of CO2 in silicate melts 

compared to that of H2O (Baker et al., 2005). 

 In general, it can be expected that as water exsolves from the melt, the melt-vapor 

surface tension increases, lowering the bubble nucleation rate and therefore bubble growths 

outweighs nucleation in the system (Mangan & Sisson, 2005). It is confirmed in our 

experiments at high decompression rates, in which the BND decreases with decreasing 

H2O content of the melt as decompression rates decrease from 20 to 0.01 MPa/s. This 

observation indicates that bubble growth is the dominant process occurring at these 
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decompression rates (Gardner, 2007a,b). In contrast, at lower decompression rates (0.01 to 

0.0002 MPa/s) an increase in BND is observed.  

Our results on bubble formation are consistent with previous experimental studies (e.g. 

Toramaru 1995, 2006; Mourtada-Bonnefoi & Laporte, 2004; Cluzel et al., 2008) showing 

that the main parameter controlling BNDs in magmas is indeed the decompression rate: 

BND values decrease with decreasing decompression rates from 20 to 0.01 MPa/s (see Fig 

3.7). In addition, the BND values determined in this study are within the BND range 

obtained from other studies investigating heterogeneous bubble nucleation in rhyolitic 

compositions (H2O-bearing system at decompression rates ≥ 0.01 MPa/s; Fig. 3.12). The 

BNDs of our H2O+CO2-bearing system follow the same trend but are shifted to higher 

BNDs by ~ 0.6 log units. It is worth noting that the BND values determined at 

decompression rates lower than 0.01 MPa/s do not follow the heterogeneous bubble 

nucleation trend indicated by the black arrow in Fig. 3.12. The increase in BND with 

decreasing decompression rate in the range 0.01 – 0.0002 MPa/s is interpreted as an 

indication that bubble nucleation processes start to dominate over bubble growth processes. 

This observation was not reported in previous studies and may be explained by the absence 

of experiments with decompression rates lower than 0.02-0.01 MPa/s.  

 

Significance of BND in the starting material  

One important parameter controlling the BND values in the decompression experiments is 

the bubble distribution in the starting material (isobaric experiments). The BND in the 

starting material is dependent (1) on sample preparation (e.g., size of the glass powder 

fractions used as a starting material, i.e., initial heterogeneity) and (2) on the annealing 

period prior to decompression. As a result of Ostwald ripening, the BND decreases with 

increasing annealing time (Lautze et al., 2010). Thus, the BND values determined in our 

decompression experiments after 7-day annealing at 300 MPa can not be directly 

transferred to interpret natural conditions (the residence time in the magma chamber prior 

to an eruption is presumably longer than 7 days). However, based on our observations 

obtained in both the H2O-bearing and the H2O+CO2-bearing systems, it is evident that the 

effect of decompression rate on the BND trends is nearly identical for all samples, 

independently on the bubble distribution in the starting material (compare open and black 

symbols in Fig. 3.7). In this particular example, the difference in BND is due to the 

difference in volatile composition of the bulk system. Thus, even if relevant quantitative 
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data can be slightly affected by the initial heterogeneity of the sample, the dataset can be 

used to predict qualitatively the evolution of BNDs as a function of decompression rates. 

 

 
Fig. 3.12. Compiled experimental data of the BND as a function of the decompression rate. In the legend, 
ML99 refers to data from Mourtada-Bonnefoi & Laporte (1999; T= 800°C, Pstart= 285-200 MPa, Pfinal= 198-
51 MPa) and ML02 from Mourtada-Bonnefoi & Laporte (2002; T= 1000°C, Pstart= 295-200 MPa, Pfinal= 179-
51 MPa) characterized by the occurrence of a homogeneous nucleation of bubbles. GD04 refers to data on 
heterogeneous bubble nucleation from Gardner & Denis (2004; T= 800°C, Pstart= 175-125 MPa, Pfinal= 145-
80 MPa) and G07 from Gardner et al. (2007b; T= 725-875°C, Pstart= 100 MPa, Pfinal= 60-20 MPa). The inlet 
shows the 3 distinct bubble nucleation trends. 
 

Despite the fact that the determined BND values can not be directly applied to natural 

case studies (see above), it is interesting to note that some of the data generated in this 

study are very close (same order of magnitude) to the BND determined in natural rocks. 

The experimental data obtained in this study are compared with the calculated BND values 

of natural samples from several Plinian eruptions of different volcanoes in Fig. 3.13 

(compiled by Toramaru, 2006). The experimental samples from the runs at the highest 

decompression rate (20 MPa/s) are very close to the general trend reported by Toramaru 

(2006). The deviation of the experimental data from the observed vesicularity trend of 

Plinian eruptions has its maximum at 0.01 MPa/s (see Fig. 3.13b).  

   



3. DECOMPRESSION EXPERIMENTS 
 

 55

 Fi
g.

 3
.1

3.
 L

og
 B

N
D

 v
s. 

Si
O

2-c
on

te
nt

 o
f b

ul
k 

ro
ck

 fo
r 

Pl
in

ia
n 

er
up

tio
ns

, m
od

ifi
ed

 a
fte

r T
or

am
ar

u 
(2

00
6)

. T
he

 g
re

y 
tre

nd
 li

ne
 is

 fr
om

 T
or

am
ar

u 
(2

00
6)

 a
nd

 
do

es
 n

ot
 a

cc
ou

nt
 fo

r t
he

 d
at

a 
ob

ta
in

ed
 in

 th
is

 st
ud

y 
(in

 p
ur

pl
e 

co
lo

r)
. 

 

 

 



3. DECOMPRESSION EXPERIMENTS 
 

 56 

Dynamics of magma crystallization  

Crystallization processes occurring during decompression can best be detected by a shift in 

the chemical composition of the residual melts. In the H2O+CO2-bearing system, the 

decrease of the MgO, FeO, CaO and Al2O3 contents and the simultaneous increase of the 

SiO2 and K2O content at decompression rates lower than 0.1 MPa/s are clearly related to 

the crystallization of Pl and MgO-bearing phases such as Cpx and/or Opx. In the H2O-

bearing system, the decrease of the MgO content of residual melts at decompression rates 

lower than 0.1 MPa/s indicates the crystallization of mafic minerals. The changes in Al2O3, 

CaO and SiO2 contents at decompression rates of 0.0002 and 0.0005 MPa/s are attributed 

to the crystallization of the large Pl microlites. The delay of the decompression–induced 

nucleation and growth of microlites, occurring at decompression rates lower than 0.1 

MPa/s, relative to the onset of magma degassing (compare Fig. 3.4 and Fig. 3.5) can be 

explained by the low diffusivity of major elements in silicate liquid when compared with 

the diffusivity of volatiles. Moreover, the local oversaturation of the melt with respect to a 

mineral phase (so-called undercooling of the system) may result in rapid and non-

equilibrium growth of microlites. In particular, the appearance of Pl in H2O-bearing 

experiments only at low decompression rates and the fact that Pl microlites are 

characterized by irregular skeletal shapes can be explained by kinetic effects (an 

undercooling of ~ 100°C or less is necessary to explain the skeletal shape of Pl; Lofgren, 

1974; Muncill & Lasaga, 1987, 1988). The chemical heterogeneity of the glasses 

surrounding the Pl microlites also shows that equilibrium conditions are not reached during 

decompression. 

The determined logMNDPl and logMNDOP values for experimental samples range from 

5.4-5.7 and 5.3-5.9, respectively, and do not show any clear dependence on the 

decompression rate within the experimental and analytical uncertainties. This indicates 

that, within the analytical uncertainty, no significant nucleation did. The absence of 

nucleation and growth is possible at fast decompression, but we clearly observed rims 

around amphiboles in the H2O-bearing system and thin rims around plagioclase in the 

H2O+CO2-bearing system at decompression rates ≤ 0.01 MPa/s. Thus, at least crystal 

overgrowth processes occurred in the slow decompression experiments, as confirmed by 

the larger microlite sizes at decompression rates ≤ 0.001 MPa/s in the CSD plots (Fig. 3.8e 

and f). However, the analysis of the MND using our method does not show any significant 

effect of this overgrowth on logMNDPl (H2O+CO2-bearing system) and on logMNDOP. The 
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logMNDPl of experiments in which Pl nucleation clearly occurred (H2O-bearing system) is 

not significantly different from that in the H2O+CO2-bearing system.   

The results of isobaric experiments at 300 and 50 MPa (Table 3.1) can be used to 

calculate the proportion of minerals which are expected to crystallize with decreasing 

pressure. Such mineral proportions as a result of equilibrium crystallization can be 

calculated in terms of mass fraction of crystallized material (φ ) as a function of pressure, 

assuming K2O concentration in the residual melt as a crystallization index (K is a strongly 

incompatible element during magma differentiation):  
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where K2Ostart is K2O concentration in the starting glass, K2Oexp is the concentration of 

K2O in the experimental glasses, D is a partition coefficient of K2O between mineral 

phases and melt, φ  is the mass fraction of residual liquid. For this approach we assumed 

that the partition coefficient is close to 0.0001 (Rollinson, 1993; this value may be a 

minimum estimation assuming that plagioclase contain some K2O). The results show that 

very small mineral proportions are expected for Unzen water-saturated groundmass 

composition at 850°C (less than ~ 5  wt %) and that ~ 35  wt% crystals should present at 

50 MPa (isobaric equilibrium experiments). Using equation (4), the calculated crystal 

contents are in the range of 5-10 wt% for all decompression experiments in the H2O-

bearing system which is identical within error to the equilibrium value at 300 MPa.  The 

only experiment differing significantly from the initial crystal content was performed with 

the slowest decompression (0.0002 MPa/s) with a calculated crystal fraction of ~ 19 wt%. 

Thus, even in this experiment the equilibrium crystal fraction at 50 MPa was not reached 

(Table 3.2). 

 

Effect of degassing and crystallization: Implications for magma ascent dynamics at 

Unzen 

Decompression range from 50 MPa to surface pressure  

The fact that the compositions of natural matrix glasses from the dome samples are similar 

to the estimated composition of the groundmass glass of the conduit for most major 

elements (see Fig. 3.4) could indicate that no significant crystallization processes did occur 

during the last stage of magma ascent at Unzen. Such a conclusion is in agreement with 

our results on MND. Our MND values (MNDPl= 105.4-105.7 mm-3) are in the same range as 
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those of natural dome samples (MNDPl= 105-106 mm-3; Noguchi et al., 2008a; Toramaru et 

al., 2008.  On the other hand, observation contrasts with experimental results of Martel & 

Schmidt (2003), who investigated in the nucleation processes in dacitic magma at low 

pressures. They observed that at high pressure decompression (from 150 to 50 MPa) 

crystal growth is a dominating process while at low pressure decompression (from 50 to 15 

MPa) crystal nucleation is more favorable. Hence, further decompression experiments 

conducted at lower pressures are needed to better interpret the dome textures and to 

evaluate the actual magma ascent rates in the low pressure range (e.g. using MND rate-

meter from Toramaru et al., 2008). Moreover, although MND values have been determined 

for the conduit samples (Noguchi et al., 2008b), which are similar to the dome data set, 

these data should be used with caution since these rocks have undergone a different 

thermal history after the eruption.  

 

Decompression range from 300 MPa to 50 MPa  

Based on the obtained compositional and textural data we can estimate the velocity of 

magmas ascend from depths with pressures of 300 to shallow levels with pressure of 50 

MPa during Unzen eruption. The two main observations which are useful for the 

estimation of the magma ascent rate are (1) the chemical composition of natural matrix 

glasses which can be well reproduced in the experiments performed in H2O+CO2-bearing 

system at decompression rate of 0.0002 MPa/s (Fig. 3.4) and (2) the natural Pl microlite 

lengths which can be reproduced in the H2O-bearing system at the same decompression 

rate (Fig. 3.10). Considering that the second observation is crucial, the agreement between 

experimental data and natural observation is expected to be reached best at decompression 

rates lower than 0.0005 MPa/s which corresponds to approximately 50 m/h. If the water 

activity is only slightly lower than 1.0 in the ascending system, the natural glass 

compositions observed in the dome can only be reproduced at decompression rates lower 

than 0.0001 MPa/s (Fig. 3.4) corresponding to ~ 10 -12 m/h. The exact determination of 

the water activity in the ascending magmas close to the surface (~ 50 MPa) is difficult. 

Considering that the estimated ascent rates are lower than 50 m/h, volatile exsolution must 

have occurred at conditions close-to-equilibrium in the pressure range 300-50 MPa, which 

is typical for effusive non-violent eruptions (e.g. Hurwitz & Navon, 1994), as observed at 

Unzen. Assuming that the released volatiles are, at least in part, escaping from the 

magmatic system (open system degassing; e.g., Turner et al., 1983; Gerlach, 1986) melts 

would be almost free of CO2 at low pressure. On the other hand, the model of Ohba et al. 
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(2008) assumes that CO2-H2O-bearing fluids were continuously ascending in the Unzen 

conduit, which would maintain a relatively low water activity in the ascending magmas 

(the water activity would be mainly controlled by the percolation of CO2-H2O-bearing 

fluids). Thus, if the percolation of such fluids were “buffering” the water activity in the 

conduit, an ascent rate of ~ 50 m/h is more realistic than a value of ~ 10 m/h. In any case, 

these values are in general agreement with estimations from petrology by Nakada & 

Motomura (1999; 12-30 m/hour), from textural analysis by Noguchi et al. (2008a; 29-274 

m/h in the pressure range 70-100 MPa) and from water exsolution rates by Toramaru et al. 

(2008; 50-245 m/h), while data from electrical resistivity structure measurements by 

Kagiyama et al. (1999) lead to lower estimated ascent rates (~0.8 m/h). 

 

CONCLUSION 

Decompression experiments using a rhyodacitic composition show that the size of natural 

microlites can be only reproduced experimentally if the nucleation occurs during the 

decompression path. For example, in the investigated system, plagioclase is not present as 

equilibrium phase at 300 MPa but crystallizes during decompression because the stability 

field of this mineral is dependent on pressure and water activity. Once nucleation has 

proceeded, the degree of undercooling (as well as diffusivity of cations in the melts), which 

is dependent on the decompression rate, is expected to be the main parameter influencing  

mineral growth kinetics (mineral size). Thus, the size and shape of microlites can be used 

to constrain ascent rates at the onset of the crystallization of the corresponding phase. In 

the case of Unzen magmas, assuming that water activity is close to 1, the size of 

plagioclases is compatible with magma ascent rates of ~ 30-50 m/h at depths 

corresponding to ~ 200 to 50 MPa.  

 In our decompression experiments, using a partially crystallized starting material 

containing bubbles, a transition from non-equilibrium to near-equilibrium water release 

from the Unzen rhyolitic melt is observed at decompression rates between 1 and 0.1 MPa/s 

(at water-saturated conditions). At the investigated pressures, the dominant exsolution 

process is the result of bubble growth at relatively high decompression rates, which may be 

explained by increasing melt-vapor surface tension with ongoing degassing. However, at 

low decompression rates (< 0.01 MPa/s), heterogeneous bubble nucleation may become a 

dominant process which could be facilitated by the beginning of crystallization of 

microlites (overgrowth of preexisting crystals).  
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3.1.2. HPD experiments at high-temperature (930 °C; set-II) 
 

Starting material 

The starting material (glass powder) was generated as already explained in chapter 2 and 

in chapter 3.1.1. But instead of annealing each capsule pair individually (one H2O-

saturated and the other H2O+CO2-saturated) before the decompression run, first a large 

homogeneous capsule (3.5-4.0 cm long and an inner diameter of 4.0 mm) was synthesized 

for 4 days at the starting P-T conditions (300 MPa, 930°C) in the IHPV under reducing 

conditions (Ar-H2 gas mixture; ~NNO+0.95 for H2O-bearing system and ~NNO-7.11 for 

H2O+CO2-bearing system) with final rapid quench. Then small cylinders with a total 

length of about 5 mm were cut from the big synthesis capsules. The synthesized and fluid-

saturated glass cylinders were individually inserted into new capsules, which were again 

welded shut. After another short annealing time (2-4 hours) at same starting P-T 

conditions, isothermal continuous decompression (details see text below) was initialized 

until final pressure of 50 MPa with subsequent rapid quench. Decompression rates varied 

between 0.1 and 0.0002 MPa/s, see Table. 3.3. 

 

Continuous decompression method 

The decompression experiments at high-temperature (930°C) were conducted in IHPVs, 

using a new developed decompression valve that has been constructed by the team of Prof. 

Dr. Nowak (University Tübingen, Germany), which allows a continuous pressure release 

even at very low decompression rates (Nowak et al., 2011). This new valve consists of a 

movable thin steel needle connected to a manual rotating hand wheel and to an attached 

preloaded high-load piezo actuator (HVPZT) with sensor option (company: PI GmbH & 

Co. KG, model number: P-247.7S), referred to in the following as piezo ceramic for 

simplicity. The piezo ceramic is attached to an external energy recovery power amplifier. 

A schematic overview of the decompression valve can be found in Fig. 3.14. 
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Fig. 3.14. Schematic illustration of the new decompression valve installed additionally to the IHPV. The 
center piece of this valve is the piezo ceramic that can move the steel needle due to mechanical strain 
induced by electrical voltage (source: Nowak et al., 2011). 
 

The piezo ceramic can be reversely expanded or contracted in one material-specific 

direction induced by electrical voltage (piezoelectric effect: a linear interaction between 

the mechanical and electrical state in the crystalline material). Therefore, the steel needle 

which is carefully connected directly to the piezo ceramic can be moved for few 

micrometers (max. 120 µm using max. 10 V), opening the gas pressure release valve. For 

visualization of the gas release, a flexible tube has been inserted into the pressure release 

valve, leading to a water filled container where gas escapes as bubbles, see Fig. 3.15. 

Adjusting the decompression rate has been proceeded by visual inspection as a 

combination of the rate of gas bubble release in the water container and the pressure 

display of the IHPVs logging unit.  
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Fig. 3.15. Photo of the decompression valve at the high-pressure laboratory of the Institute for Mineralogy, 
Leibniz University Hannover, Germany. In the upper left corner the decompression valve is fixed to the 
wall. On the table the power amplifier and a voltage display are situated.  The gas pressure release opening 
of the decompression valve is connected via a thin flexible tube to a filled water glass on the lower shelf of 
the table, where the release of single gas bubbles can be observed. 
 

RESULTS 

Phase assemblages and compositions of set-II HPD experiments 

The experimental products of HPD set-II consist of glass, microlites and vesicles (Fig. 

3.16). The solid experimental products obtained from both fluid-saturated (H2O-bearing 

and the H2O+CO2-bearing) starting assemblages at 930°C are composed of glass, oxides 

(Ox, mainly limenite), pyroxenes (Opx and Cpx). Amphibole (Amph) and plagioclase (Pl) 

microlites are not detected in any of the decompression experiments or in isobaric 

experiments at 300 MPa of both fluid-saturated systems. However, Pl is stable at the final 

pressure of 50 MPa in the H2O-bearing and the H2O+CO2-bearing system (UN103 and 

UN105, respectively), as already shown in our previously discussed phase stability 

experiments (see chapter 2 and Appendix Table A.3 for chemical composition of Pl 

microlites). 
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Melt compositions 

The chemical analyses of the residual melts are listed in Table. 3.3 and plotted in Fig. 3.17. 

The chemical composition of the glasses in both fluid-saturated systems remains nearly 

constant with changing decompression rates and is in the same range as the composition of 

the isobaric starting glasses at 300 MPa. The experimental data are compared with the 

compositional range of natural Unzen dome and conduit groundmass glasses (grey fields in 

Fig. 3.17; Nakada & Motomura, 1999; Noguchi et al., 200b). Except for the Na2O contents 
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(Fig. 3.17g), none of the major oxides of the decompression experiments overlap with the 

composition of the natural Unzen samples. On the other hand, the chemical compositions 

of the H2O-bearing and H2O+CO2-bearing isobaric experiments at 50 MPa are similar to 

natural groundmass glasses for most major oxides. 

 

Fig. 3.17. Normalized chemical compositions of the experimental residual melts of set-II as a function of the 
decompression rate. The dark grey shaded areas show the chemical composition range of the erupted natural 
groundmass glass in erupted rocks (Nakada & Motomura, 1999) and the light grey shaded areas show the 
estimated chemical composition range of groundmass glass composition in the conduit rocks (Noguchi et al., 
2008b) of the 1991-1995 Unzen eruption. Error bars show standard deviation (1σ) of replicate analyses. 
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Water concentrations obtained from NIR spectroscopy (details see chapter 2.1.) in 

the fluid-saturated starting glasses at 300 MPa are 6.95 wt% and 4.42 wt% for the H2O-

bearing and for the H2O+CO2-bearing system, respectively. The residual melts of the 

decompression end products show water concentrations that are close to equilibrium 

concentrations at final pressure (isobaric at 50 MPa ~2.0 ± 0.2 wt%) for both systems, see 

Table 3.3. The H2O content of all decompression end products are similar within the error 

to that expected at isobaric 50 MPa. However, the quality of the NIR determination may 

have been negatively affected by larger microlite phases or bubbles.  

 

Textures 

Bubble and crystal size distributions (BND and CSD, respectively) as well as bubble and 

microlite number densities (BND and MND, respectively) have been determined following 

the methods already described in chapter 3.1.1. 

 

Bubbles 

The BSD in the samples show concave-up shaped size distributions, as illustrated in 

Appendix Figs. B.1 and B.2. In the H2O+CO2-bearing system, especially the population 

densities at smaller sizes (< 0.05 mm) are higher when compare to the H2O-bearing 

system. There seems to be a systematic variation of the BSD as a function of the 

decompression rate: the population densities of smaller sized bubbles (< 0.05 mm) 

decrease with decreasing decompression rate. While at the lowest conducted 

decompression rate, two generations of bubbles were detectable in both fluid-saturated 

systems: one generation at bubble sizes < 0.01 mm and another bubble generation having 

sizes larger than 0.03 mm. 

 The BND values of the H2O+CO2-bearing system decrease with decreasing 

decompression rate from 0.1 to 0.0007 MPa/s, ranging from 105.9 mm-3 to 105.0 mm-3 (Fig. 

3.18), respectively. The BND values of the H2O-bearing system follow the same trend as 

that of the H2O+CO2-bearing system at very low decompression rates (≤ 0.001 MPa/s) and 

are slightly lower than in the equilibrium experiment at 50 MPa. While the BND value of 

the highest conducted decompression rate (0.1 MPa) in the H2O-bearing system is ~2.5 log 

units lower than that of the H2O+CO2-bearing system and does not fit to the observed trend 

of decreasing BNDs with decreasing decompression rates. 
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Fig. 3.18. Bubble number density (BND) as a function of the decompression rate for the H2O-bearing system 
(empty symbols) and the H2O+CO2-bearing system (filled symbols). Triangles are continuous decompression 
experiments. The blue arrow indicates the onset of plagioclase crystallization in the H2O-bearing system. 
Error bars show standard deviation (1σ) of replicate analyses. 
 

Microlites 

The average chemical composition of pyroxenes (Opx and Cpx) can be found in Appendix 

Table A.6.1 and A.6.2. No MNDPl or CSD values for plagioclase microlites were 

determined as Pl microlites did not crystallized in HPD experiments of the H2O-bearing 

and H2O+CO2-bearing system at 930°C. Most CSD curves for other phases (OP) in the 

samples of both systems show concave-up shapes (Appendix Figs. B.1 and B.2). There is a 

systematic variation in the H2O-bearing samples: population densities with smaller 

microlites sizes (< 0.05 mm) decrease with decreasing decompression rate, while the 

maximum crystal sizes increase from 0.1 mm to 0.25 mm with increasing decompression 

rate from 0.1 to 0.0002 MPa/s, respectively. In the H2O+CO2-bearing system, only the 

population densities at smaller crystal sizes (< 0.05 mm) decrease with decreasing 

decompression rate, but there cannot be found any significant systematic variation in the 

maximum microlite size with changing decompression rates (Appendix Fig. B.2). 
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 The MNDs for other phases (MNDOP) in the H2O+CO2-bearing system range from 

105.9 mm-3 at decompression rates ≥ 0.01 MPa/s to 105.1 mm-3 at the lowest decompression 

rate (0.0007 MPa/s), see Fig. 3.19. While the MNDOP values in the H2O-bearing system 

range from 105.0 mm-3 at decompression rates ≥ 0.001 MPa/s to 104.1 mm-3 at the lowest 

decompression rate (0.0002 MPa/s). 

 

 
Fig. 3.19. Microlite number density for all other phases (MNDOP) such as pyroxenes and oxides as a function 
of the decompression rate for the H2O-bearing system (empty triangles) and the H2O+CO2-bearing system 
(filled triangles). Error bars show standard deviation (1σ) of replicate analyses. 
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3.2.  Low pressure decompression (LPD) 
 

The main focus concerning the low pressure decompression (LPD) experiments was the 

simulation of magma ascent from a starting pressure of 50 MPa to a final surface pressure 

of 0.1 MPa at both investigated temperatures of 850°C and 930°C (set-III and set-IV, 

respectively; chapter 3.2.1.), completing the data sets of our performed high pressure 

decompression (HPD) experiments presented in chapter 3.1. In our LPD experiments, only 

the water-bearing system was investigated as carbon dioxide is assumed to be totally 

exsolved from the melt at those low depths (e.g. Fogel & Rutherford, 1990; Behrens et al., 

2004; Liu et al., 2005). Additionally, one LPD set was performed starting at a higher 

pressure of 200 MPa down to surface pressure at 850 °C (set-V; see chapter 3.2.2.). This 

experimental approach (starting at 200 MPa) is covering the lower pressure range 

estimated for the storage conditions of the mixed dacitic magma prior to the 1991-1995 

Unzen eruption (minimum pressure of 160 MPa; Venezky & Rutherford, 1999), and was 

chosen as a result of our former presented phase stability experiment at these conditions 

(sample Un06), where plagioclase microlites were not yet crystallized. The decompression 

paths for our LPD experiments of set-III, set-IV and set-V are plotted schematically in Fig. 

3.20. 
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Fig. 3.20. Schematic phase diagram for water-saturated rhyodacitic magma, derived from this study chapter 
2 (phase stability experiments). The purple and blue arrows show the isothermal decompression paths of 
LPD set-III and set-IV, starting from 50 MPa down to final 0.1 MPa at temperatures of 850°C and 930°C, 
respectively. While the orange arrow indicates the isothermal decompression path of LPD set-V, starting 
from 200 MPa down to final 0.1 MPa at a temperature of 850°C. 
 

 

3.2.1. LPD: from 50 to 0.1 MPa at high- and low-temperatures (set-III and 

set-IV) 
 

Experimental strategy 

For the capsule preparation, we followed the method described in chapter 3.1.2 (HPD 

experiments), while starting pressure and annealing times were adjusted to the here 

corresponding experimental approaches: annealing time of 14 days at 50 MPa for the 

synthesis capsules. Decompression rates varied between 0.1 and 0.0001 MPa/s and 

decompression was performed as multi-step decrease in pressure at 850°C in CSPVs or as 

continuous pressure release at 930°C in the IHPVs, using the new developed valve 

described above (chapter 3.1.2). Experimental conditions of each LPD run are given in 
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Table 3.5. Chemical and textural data were determined by the analytical methods described 

already above in chapter 2 and chapter 3.1.1. 

 

RESULTS 

Phase assemblage and compositions 

The end products of water-saturated LPD experiments at 850°C and at 930°C consist of 

glass, microlites and vesicles (Fig. 3.21 and Appendix Figs. B.3 and B.4). Solid 

experimental products of the starting assemblage at 50 MPa are composed of glass, 

plagioclase and oxides as well as ± pyroxenes at both temperatures. The mineral 

assemblage of all LPD end products is consistent with that of the starting materials at 50 

MPa, while having additional quartz (Qtz) microlites crystallized in both LPD sets, usually 

in close contact to the bubbles. Chemical compositions of plagioclases and pyroxenes can 

be taken from Appendix Table A.7.1-3. 

 The average anorthite (An) contents of Pl microlites in LPD end products do not 

differ much from the starting composition at 50 MPa: 54 mol% at 930°C and 44 mol% at 

850°C, see Appendix Table A.7.1. Plagioclases crystallized at 850°C (set-III) have slightly 

lower An contents (41-44 mol%) when compared to those of the high-temperature (set-IV; 

930°C) LPD set (53-54 mol%). All anorthite contents are in the range of naturally 

crystallized Pl microlites from Unzen dome and conduit samples (Noguchi et al., 2008a, 

b). 
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Melt compositions 

The chemical analyses of the residual melts of LPD sets III and IV are listed in Table 3.5 

and plotted in Fig. 3.22. The chemical composition of the residual glasses obtained from 

LPD experiments at both temperatures change nearly constantly with decreasing 

decompression rate for most major element oxides. The SiO2 and K2O contents in residual 

glasses increase with decreasing decompression rates, while Al2O3, FeO, MgO and CaO 

contents of glasses decrease with decreasing decompression rates. Over all, the chemical 

compositions of the low-temperature (850°C) LPD experiments at all performed 

decompression rates overlap with the compositional range of groundmass glasses of 

natural erupted Unzen rocks (grey fields in Fig. 3.22; Nakada & Motomura, 1999). While 

the chemical compositions of the high-temperature (930°C) LPD experiments are only 

close to natural Unzen dome samples at very low decompression rates (< 0.001 MPa/s). 

Fig. 3.22. Normalized chemical compositions of the experimental residual melts as a function of the 
decompression rate at 850°C (set-III; purple symbols) and at 930°C (set-IV; blue symbols). The grey shaded 
areas show the chemical composition range of the natural groundmass glass in erupted rocks (Nakada & 
Motomura, 1999) of the 1991-1995 Unzen eruption. Error bars show standard deviation (1σ) of replicate 
analyses. 
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 The determination of water concentrations in the residual glasses by NIR 

spectroscopy was not practicable as all LPD end products were highly crystallized, 

providing not enough space for high quality analysis (without the influence of crystals or 

bubbles).  

 

Textures 

Bubbles 

The BSD curves of the LPD samples show concave-up shapes for both temperatures, as 

illustrated in Appendix Figs. B.3 and B.4. A systematic variation of the BSD can be 

observed as a function of the decompression rate at 930°C: the maximum bubble size 

decreases from ~0.55 mm at 0.2 MPa/s to ~0.15 mm at 0.0001 MPa/s, while the population 

densities of small-sized bubbles increase at decompression rates < 0.001 MPa/s. Such 

distinct variations are not detectable in the low-temperature (850°C) LPD samples: 

maximum bubbles sizes range between ~0.35 and ~0.55 mm, while the population 

densities of all bubble size intervals are similar at all decompression rates. The determined 

BND values at 850°C are in the same order of magnitude for all decompression 

experiments, varying from 104.1 mm-3 to 104.7 mm-3, see Fig. 3.23. Whereas at 930°C there 

can be observed an (exponentially) increasing trend of BNDs with decreasing 

decompression rates, ranging from 103.2 mm-3 to 105.1 mm-3 at decompression rates of 0.02 

to 0.0001 MPa/s, respectively. 
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Fig. 3.23. Bubble number density (BND) as a function of the decompression rate for the H2O-bearing system 
at 850°C (set-III; purple symbols) and at 930°C (set-IV; blue symbols). Circles are multi-step decompression 
experiments and triangles represent continuous decompression experiments. Error bars show standard 
deviation (1σ) of replicate analyses. 
 

Microlites 

The CSDs in the LPD samples show concave-up curves for both temperatures, as 

illustrated in Appendix Figs. B.3 and B.4. A systematic variation of the CSDs with 

changing decompression rates can not be observed for both LPD sets. Population densities 

for plagioclase (Pl) microlites are slightly higher than for all other phases (OP) at sizes > 

0.02 mm. When comparing CSD curves of set-III and set-IV at correlating decompression 

rates with each other then significant higher population densities at size intervals < 0.02 

mm can be observed at 850°C, but generally higher maximum crystal sizes at 930°C. The 

CSD curves for set-III have steeper slopes at crystal sizes < 0.02 mm than compare to set-

IV. 

 The determined MNDPl values of both LPD sets at all decompression rates are in 

the same order of magnitude, ranging from 106.0 mm-3 to 106.4 mm-3, see Fig. 3.24a. Except 

for one decompression experiment at 930°C and 0.02 MPa/s, which is having a slightly 

lower MNDPl value of 105.6 mm-3. Overall, the MNDPl values stay nearly constant with 

changing decompression rates, while values of MNDPl are ~0.1-0.3 log units higher at low 

temperatures. However, experimental MNDPl values are ~0.3-0.5 log units higher than for 
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natural plagioclase microlites in natural Unzen dome samples (Noguchi et al., 2008a). 

MNDOP values are in the same range as MNDPl values and do not change significantly with 

varying decompression rates (Fig. 3.24b). Again, values for high-temperature LPD 

experiments are ~0.4-0.5 log units lower than for LPD experiments at 850°C. While 

MNDPl and MNDOP values of decompression experiments are similar to the starting 

materials at 50 MPa (indicated by square symbols in Fig. 3.24 a-b). 

 Experimentally crystallized plagioclase microlites in all LPD runs show tabular 

appearances. The maximum length of Pl microlites are not significantly changing with 

decreasing decompression rates at both investigated temperatures, see Fig. 3.25.  At 850°C, 

Pl microlites grew to a maximum of ~20 µm, while at 930°C maximum lengths of ~50 µm 

were reached, which is in the lower range of Pl microlites found in Unzen conduit samples 

(Noguchi et al., 2008 b; Goto et al., 2008) but are to low for erupted Unzen dome samples 

(Noguchi et al, 2008a). 
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Fig. 3.24. Microlite number density (MND) as a function of the decompression rate for the H2O-bearing 
system at 850°C (purple symbols) and at 930°C (blue symbols). (a) MND for plagioclases only (MNDPl) and 
(b) MND for all other phases (MNDOP) such as amphiboles, pyroxenes and oxides. The grey shaded area 
shows the MNDPl of natural dome samples (Noguchi et al., 2008a). Error bars show standard deviation (1σ) 
of replicate analyses. 
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Fig. 3.25. Maximum Pl length as a function of the decompression rate. Dark grey shaded area represents the 
range of Pl microlite lengths of Unzen natural dome samples after Noguchi et al. (2008a). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. DECOMPRESSION EXPERIMENTS 
 

 80 

3.2.2. LPD: from 200 to 0.1 MPa at low-temperature (set-V) 
 

Experimental strategy 

For the capsule preparation, we followed the method described in chapter 3.1.2 (HPD 

experiments at 930°C), while the annealing time was 7 days at 200 MPa and 850°C for 

LPD set-V. Multi-step decompression experiments were conducted in CSPVs with 

decompression rates ranging from 0.01 to 0.0001 MPa/s, see Table 3.7. Chemical and 

textural data were determined by the analytical methods described already above in 

chapters 2 and 3.1.1. 

 

RESULTS 

Phase assemblage and compositions  

The experimental products of LPD set-V at 850°C (sample Big03+04) consist of glass, 

microlites and vesicles (Fig. 3.26 and Appendix Fig. B.5). Solid experimental products of 

the starting assemblage at 200 MPa are composed of glass, plagioclase, amphibole, oxides 

and pyroxenes. Chemical composition of determined microlite phases are given in 

Appendix Table A.8. The mineral assemblage of all LPD end products is consistent with 

that of the starting materials at 200 MPa. Except at decompression rates ≤ 0.0002 MPa/s, 

Amph microlites are not present anymore in the LPD end products, which is in agreement 

with former studies on Amph stabilities in the 1991-1995 Unzen system (e.g. Sato et al., 

1999; Venezky & Rutherford, 1999; see also this study chapter 2). 

The average anorthite contents of the analysed Pl microlites show no systematic 

variation with changing decompression rates and range from 65 to 50 mol%. The 

compositions and magnesium numbers [Mg# = Mg/(Fetot + Mg), moles] of detected Amph 

microlites were analyzed, see Appendix Table. A.8.1. At isobaric starting conditions, the 

average Mg# is 0.64, while Mg numbers of the two LPD experiments at 0.01 MPa/s and 

0.001 MPa/s are 0.72 and 0.70, respectively. 
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Fig. 3.26 a-j. Images of the products of isobaric and decompression experiments for LPD set-V (850°C). 
Black bodies are bubbles; light grey particles represent microlites such as plagioclases, pyroxenes and 
oxides ± amphiboles. 
 

 

 



3. DECOMPRESSION EXPERIMENTS 
 

 82 

Ta
bl

e 
3.

7.
 E

xp
er

im
en

ta
l c

on
di

tio
ns

 a
nd

 c
he

m
ic

al
 c

om
po

si
tio

ns
 o

f r
es

id
ua

l g
la

ss
es

 fo
r t

he
 H

2O
-b

ea
rin

g 
sy

st
em

 (X
fl H

2O
=1

.0
) a

t 8
50

 °C
 (s

et
-V

). 

 

Ta
bl

e 
3.

8.
 E

xp
er

im
en

ta
l r

es
ul

ts
 o

f s
et

-V
 (L

PD
: 2

00
 to

 0
.1

 M
Pa

). 

 



3. DECOMPRESSION EXPERIMENTS 
 

 83

Melt compositions 

The chemical analyses of the residual melts of LPD set-V are listed in Table 3.7 and 

plotted in Fig. 3.37. The SiO2 and K2O contents of the residual glasses increase with 

decreasing decompression, while Al2O3, FeO, and CaO contents of the residual glasses 

decrease with decreasing decompression rate. The experimental LPD data of set-V are 

compared with the natural Unzen compositional range of dome groundmass glasses in Fig. 

3.27 (grey fields; Nakada & Motomura, 1999). The concentrations of all major oxides 

overlap with natural compositions at low decompression rates only (< 0.0002 MPa/s).  

 

Fig. 3.27. Normalized chemical compositions of the experimental residual melts as a function of the 
decompression rate at 850°C of set-V (orange symbols). The grey shaded areas show the chemical composition 
range of the erupted natural groundmass glass in erupted rocks (Nakada & Motomura, 1999). 
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 Water concentrations of the residual glass determined by NIR spectroscopy at 

starting pressure (200 MPa) are in good agreement with each other and lie at 5.75 wt% and 

5.71 wt%, respectively. Due to high crystallinity of the LPD experimental end products 

NIR and MIR analyses were not of good quality and therefore not determined.  

 

Textures 

Bubbles 

The bubbles size distribution curves are concave-up shaped for all LPD end products, see 

Appendix Fig. B.5. The BSD curve of the starting material at isobaric conditions is 

characterized by a nearly straight line with a relatively flat slope, having rather high ln 

population densities (7 to 15 mm-4) for all bubble size intervals. The maximum bubble size 

and maximum ln population densities (for the smallest analysed size interval) are similar in 

all four decompression samples, having values of ~0.85 mm and ~15 mm-4, respectively. 

BSD curves at decompression rates ≤ 0.001 MPa/s show an even and continuous 

distribution of the size intervals, whereas at the fastest conducted decompression rate (0.01 

MPa/s) there is a gap at size intervals of ~0.2-0.8 mm. Otherwise no significant systematic 

variation can be observed with changing decompression rate. BND values for 

decompression rates ≥ 0.0002 MPa/s are in the same range (104.1 to 104.2 mm-3), while 

being slightly higher than at isobaric starting conditions at 200 MPa and 850°C, see Fig. 

3.28. For the lowest decompression rate (0.0001 MPa/s), the BND value is similar to that 

of the starting material (~103.5 mm-3), while their BSD curves show not the same trend, see 

above.  
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Fig. 3.28. Bubble number density (BND) as a function of the decompression rate for the H2O-bearing system 
at 850 °C (orange symbols). Error bars show standard deviation (1σ) of replicate analyses. 
 

Microlites 

The crystal size distribution curves for plagioclase microlites (Pl) and for other phases 

(OP) are concave-up shaped, shown in Appendix Fig. B.5. CSD curves for LPS 

experiments are characterized by a steeper slope at lower sizes intervals than the CSD 

curves of the isobaric experiment. The maximum microlites sizes of the other phases (OP; 

oxides, pyroxenes ± amphiboles) are larger than for plagioclases at isobaric 200 MPa and 

at the fast decompression rate of 0.01 MPa/s. At slower decompression rates (≤ 0.001 

MPa/s) Pl sizes become similar to OP sizes with a maximum of ~0.05 mm. While at the 

lowest conducted decompression rate (0.0001 MPa/s) Pl microlites reach even maximum 

size intervals of ~0.08 mm.  

 No distinct systematic variation of MNDPl values is observable with changing 

decompression rates, see Fig. 3.29a. MNDPl values for the isobaric sample and the LPD 

end products range from 105.7 to 106.1 mm-3. The MNDOP values for our LPD experiments 

are slightly higher than for isobaric conditions at 200 MPa, ranging from 106.1 to 106.3 mm-

3, (Fig. 3.29b). An increasing trend of maximum Pl lengths with decreasing decompression 

rate can be detected (Fig. 3.30), ranging from ~20 µm at 0.01 MPa/s (equal to isobaric 
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conditions at 200 MPa) to 76 µm at 0.0001 MPa/s. Plagioclase microlites of these LPD 

runs from 200 to 0.1 MPa show overall a tabular appearance. 

 

 
Fig. 3.29. Microlite number density (MND) as a function of the decompression rate for the H2O-bearing 
system at 850°C (orange symbols). (a) MND for plagioclases only (MNDPl) and (b) MND for all other phases 
(MNDOP) such as amphiboles, pyroxenes and oxides. The grey shaded area show the MNDPl of natural dome 
samples (Noguchi et al., 2008a). Error bars show standard deviation (1σ) of replicate analyses. 
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Fig. 3.30. Maximum plagioclase (Pl) length as a function of the decompression rate. Grey shaded area 
represents the range of Pl microlite lengths of Unzen natural dome samples after Noguchi et al. (2008a). 
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3.3.  Comparison of three different decompression methods: continuous, 

multi-step and single-step decompression (set-VI) 
 

Decompression experiments presented in this chapter have been originally performed to 

test the newly constructed continuous decompression valve described in chapter 3.1.2. 

Results and interpretations of the experimental products are conforming to a certain extent 

with sections of the paper of Nowak et al. (2011) to which I am the second author and 

therefore I was significantly involved in co-writing the paper. 

 

INTRODUCTION 

Over the decades of investigating in magma ascent-related vesiculation and crystallization 

processes, numerous experiments were conducted simulating the magma ascent at different 

stages: from great depth as deep as the storage conditions of magma chambers, to 

shallower depths and even to (near-) surface pressures. Therefore, different decompression 

methods were performed. For example, Hurwitz & Navon (1994), Gardner & Denis (2004) 

and Gardner (2007a) were using the single-step method where the entire pressure range, 

from starting to final pressure, is released by a sudden instantaneous drop (within few 

seconds) followed by a variable equilibration time (of seconds, minutes or days) at final 

pressure, changing the effective decompression rate. In other experimental studies (e.g. 

Mourtada-Bonnefoi & Laporte, 1999; Larsen & Gardner, 2004, Gardner, 2007b, 2009; 

Marziano et al., 2007; Castro & Dingwell, 2009), especially investigating lower 

decompression rates, pressure was released stepwise (multi-step decompression), meaning 

that variable multiple smaller instantaneous pressure drops with subsequent dwell periods 

are performed. Actual continuous decompression experiments were usually only conducted 

at decompression rates higher than 0.1 MPa/s by manually bleeding-off the (gas) pressure 

from the vessel (e.g. Mangan & Sisson, 2000, 2005; Martel & Schmidt, 2003, Marziano et 

al., 2007; Hamada et al., 2010).  There have been attempts to improve the method of 

continuous decompression working at lower rates. Mourtada-Bonnefoi & Laporte (2004) 

used an automatic computer-controlled decompression device, where the pressure vessel 

was connected to a set of air-operated valves allowing small-scale pressure steps of ~0.1-

1.0 MPa (Laporte et al., 2000), allowing decompression rates of 0.0003-0.03 MPa/s. While 

Brugger & Hammer (2010) performed continuous decompression experiments using a new 

hydraulically driven screw pump pressure variator with programmable controller, starting 
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at maximum pressures of 110-140 MPa and performing decompression rates of 0.0001-

0.03 MPa/s.  

 Brugger & Hammer (2010) showed also that crystal textures (e.g. crystal shape, 

total crystallinity) are evidently influenced by the decompression path, comparing 

continuous and multi-step decompression experiments. Former experimental studies (e.g. 

Hurwitz & Navon, 1994) demonstrated that crystal textures can also affect the formation of 

bubbles, acting as nucleation sites. Therefore, the main attention in this chapter is drawn to 

the questions: Are bubble forming processes (in crystal-free systems) also influenced by 

the decompression path? And are their results (here mainly: BND values) comparable to 

each other? 

 From thermodynamics and kinetcs we already understood that several parameters 

such as melt composition, viscosity and/or water saturation have an influence on the 

formation (i.e. nucleation, growth and coalescence) of bubbles. For example, the review of 

Sparks et al. (1994) showed that bubbles can either nucleate homogeneously or 

heterogeneously from a supersaturated melt. In the case of homogeneous bubble 

nucleation, small clusters of gas molecules form the so-called bubble embryos. Dependent 

on the free energy, associated with the formation of the separate gas phase, and on the 

interfacial energy, associated with the creation of the bubble surface, a bubble embryo can 

grow or can shrink (see review of Sparks et al., 1994). An embryo can only grow when, by 

adding one extra molecule to the cluster, the critical radius (rc) is overcome. rc is given by: 

rc= 2σ/∆P          (4),  

where σ is the interfacial tension (also referred to as melt-vapor surface tensions; e.g. 

Mangan & Sisson, 2005) and ∆P the supersaturation pressure (i.e. difference between gas 

pressure in the melt and the ambient pressure). Mangan & Sisson (2005) showed that as 

water exsolves from the melt and the melt evolves to more silicic compositions, the melt-

vapor surface tensions (σ) increase, thus lowering the bubble nucleation rate and ultimately 

the number of bubbles produced. On the other hand, the higher the supersaturation pressure 

the lower the critical size of an embryo, facilitating nucleation. 

   

Experimental strategy 

To investigate the influence of the decompression method on the formation of bubbles in 

our experimental products, we performed a set (set-VI) of decompression experiments in 

IHPVs. Decompression was conducted at an average constant decompression rate of 0.28 

MPa/s (equivalent to an ascent velocity of 34 km/h) from a starting pressure of 300 MPa 
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down to a final pressure of 50 MPa in a fluid-saturated system, using three different 

decompression methods: single-step decompression, multi-step decompression and 

continuous pressure release (see Fig. 3.31). The experimental temperature was chosen 

above the liquidus (at 1050°C) to minimize the influence of crystals on the bubble 

nucleation (e.g. Hurwitz & Navon, 1994). 

For single-step decompression (sample DEC11-8), the entire pressure of 250 MPa 

was instantaneously released from 300 MPa down to final 50 MPa within a few seconds 

(~20 sec), equivalent to 12.5 MPa/s, and then the capsule was hold at the final pressure for 

the next 15 minutes before quenching. For multi-step decompression (sample DEC11-6), 

pressure was released in five equal steps of 50 MPa with an interval of three minutes. 

During each step pressure was also released at a rate of 12.5 MPa/s. The continuous 

decompression from 300 MPa to 50 MPa (sample DEC11-5) was conducted for 15 

minutes, using the novel decompression valve described in chapter 3.1.2 (Nowak et al., 

2011). When pressure is released on gas, there will be significant cooling of the gas and the 

sample up to 35°C (Hamada et al., 2010). However, during our decompression 

experiments the temperature fluctuation of the samples where kept constant within 10°C 

due to the fast response of the internal furnace. Furthermore, Hamada et al. (2010) 

demonstrate that temperature has an insignificant effect on BNDs in hydrous rhyolitic melt 

at a given decompression rate. Thus, our results are not affected by small temperature 

fluctuations within 10 °C. 
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Fig. 3.31. Schematic diagram showing the differences of the P-t paths between continuous decompression 
(diamond symbols), multi-step decompression (solid line) and single-step decompression (dashed line) at 
experimental conditions of 1050°C in the H2O-saturated system. 
 

 

Starting material and experimental method 

Several cylinders of dry glass (details on glass preparation see chapter 2) were loaded with 

about 10 wt% H2O into Au80Pd20 capsules (2.5 cm long and with inner diameter of 2.8 

mm) and welded shut. The amount of water was chosen to be sufficient to saturate all 

melts at given 300 MPa and 1050°C. The capsule was placed in Ar-pressurized internally 

heated pressure vessel (IHPV) at oxygen fugacity corresponding to a range between 

QFM+1.0 to QFM+1.7 (which was achieved by addition of hydrogen gas to Ar). After 

annealing for four days at the P-T conditions of 300 MPa and 1050°C, the synthesis 

capsule (DEC11syn, Table 3.9) was rapidly quenched by dropping it into the cold zone of 

the sample holder. The quench rate was about 150 °C/second. This synthesized silica-rich 

starting glass (65.99 wt% SiO2; DEC11syn) included only very few (total porosity < 0.5 

vol%), isolated micro-bubbles (< 30 µm in diameter) and contained 7.46 wt% H2O (see 

Table 3.9 and Fig. 3.32a), which is in agreement with former water solubility experiments 

on high-silicic melts (e.g. ~7.33 wt% H2O, Holtz et al., 1995; ~7.10 wt% H2O, Jaupart & 

Tait, 1990). 



3. DECOMPRESSION EXPERIMENTS 
 

 92 

After quenching, the hydrated glass cylinder was cut to several small glass cylinders 

(~0.5 cm length each). Finally, these fluid-saturated (± bubbles) glass cylinders were 

individually inserted into Au80Pd20 capsules (~ 1.5 cm length), which were welded shut 

(star-shaped on top and bottom) and loaded into the IHPV. After a short annealing time of 

two hours at 300 MPa and 1050°C, an isothermal decompression to the final pressure of 50 

MPa was initialized. After reaching the final P, the capsules were rapidly quenched. 

Cylindrical cores with a diameter of 2.0 mm were drilled out of the quenched experimental 

products. In addition, thin sections were prepared for electron microprobe and FTIR 

analyses (analytical details see chapter 2). For image and textural analysis we followed the 

methods of Higgins (BSD; 2000, 2002, 2006a,b) and that of Noguchi et al. (BND; 2008a), 

see also chapter 3.1.1. 

 
Table 3.9. Results of chemical and textural analyses for dry starting glass, fluid-saturated starting material 
(DEC11syn) and experimental decompression end products of set- VI (DEC11-5, DEC11-6 and DEC11-8). 
 

sample 

synthetic 
rhyodacitic 

starting 
glass 

DEC11syn DEC11-5 DEC11-6 DEC11-8 

starting pressure [MPa] (dry) 300 300 300 300 
final pressure [MPa] --  50 50 50 
decompression rate 
[MPa/s] --  0.28 0.28 0.28 

decompression method -- isobaric continuous multi-step single-step 
number of decompression 
steps -- -- -- 5 1 

pressure drop per 
decompression step [MPa] -- -- -- 50 250 

glass composition: 
SiO2 [wt%] 69.95 65.99 (0.26) 68.71 (0.25) 69.02 (0.22) 69.80 (0.38) 
TiO2 [wt%] 0.50 0.47 (0.04) 0.50 (0.04) 0.52 (0.05) 0.51 (0.05) 
Al2O3 [wt%] 14.21 13.17 (0.18) 13.89 (0.25) 13.96 (0.14) 13.88 (0.15) 
FeO [wt%] 3.57 3.51 (0.24) 3.95 (0.16) 3.41 (0.24) 3.26 (0.36) 
MnO [wt%] 0.12 -- (--) -- (--) -- (--) -- (--) 
MgO [wt%] 1.44 1.48 (0.13) 1.47 (0.10) 1.56 (0.07) 1.58 (0.15) 
CaO [wt%] 4.05 3.86 (0.19) 3.96 (0.11) 4.18 (0.14) 4.08 (0.14) 
Na2O [wt%] 3.16 2.72 (0.12) 3.13 (0.15) 3.19 (0.12) 3.20 (0.16) 
K2O [wt%] 2.75 2.48 (0.11) 2.68 (0.12) 2.65 (0.12) 2.74 (0.14) 
H2Oglass [wt%] by NIR -- 7.46 (0.32) 3.01 (0.31) 2.76 (0.29) 2.32 (0.31) 
textural analyses: 
vesicularity [vol%] -- < 0.50 63.67 44.45 23.22 
logBND [mm-3] after 
Noguchi et al. (2008) -- -- -- 2.37 (0.17) 3.37 (0.13) 4.81 (0.10) 

Note: Numbers in parentheses show the standard deviation (1σ) of replicated analyses 
--: not determined (MnO contents of decompression products were under the detection limit) 
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RESULTS  

The chemical melt compositions of the end products of all three different decompression 

methods are similar within the uncertainties for all element oxides. Although it seems that 

the water content of the residual melt decreases with changing decompression from a 

continuous (3.01 wt%) to a multi-step (2.76 wt%) and to a single-step (2.32 wt%) path (see 

Fig. 3.33). No significant H2O gradient was detected from EMPA totals in the residual 

melts (between two neighboring bubbles). 

The calculated BND values are shown in Fig. 3.33. The BND values obtained show a 

distinct trend: increasing from continuous to multi-step and to single-step decompression 

methods (Table 3.9, Fig. 3.33).  

 

 
Fig. 3.32 a-d. Modified images of the (a) starting glass (DEC11syn) and of the experimental end products of 
(b) continuous decompression (DEC11-5), (c) multi-step decompression (DEC11-6) and (d) single-step 
decompression (DEC11-8). Black bodies are bubbles 
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Fig. 3.33. H2O-content of the residual melts determined by NIR vs. log BND, plotted for decompression 
experiments only. Gray line represents water solubility at 1050°C and final P 50 MPa given by experimental 
literature data (e.g. Holtz et al., 1995 or Yamashita, 1999). 
 

The bubble size distribution (BSD) curves of our experimental end products show 

three different trends as illustrated in Fig. 3.34. The BSD curve for the sample of the 

single-step decompression shows the largest variations both in the size of the bubbles and 

in the population number density when compared with the other two decompression 

methods. This single-step sample contains the largest proportion of small bubbles. The 

BSD trend for the sample of multi-step decompression shows the smallest variations 

between the size and the population density of bubbles, whereas the BSD of the 

continuously decompressed sample shows a very flat curve in Fig. 3.34, indicating similar 

proportions of bubbles with different size.   
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Fig. 3.34. Bubble size distribution, calculated following the method of Higgins (2000), in samples after 
decompression experiments. 
 

 

DISCUSSION 

Comparison of decompression methods 

The observation that the BND values of the sample increase from continuous 

decompression to multi-step decompression and to single-step decompression provides 

important constraints on the mechanism of bubble formation. Changes in the BND values 

combined with BSD and porosity data give information on the processes of nucleation and 

growth of bubbles in the systems having different decompression histories. The BND value 

is representing the total number of bubbles per unit volume; hence, difference in BND 

reflects differences in bubble nucleation and growth. 

 Unfortunately, the nucleation pressure (Pn) was not directly determined for our 

experimental setup, for example by intermediate runs or in-situ observation techniques, 

which would provide further information on the origin of the bubble nucleation process: 

heterogeneous or homogeneous. Pn is influencing directly the nucleation process: pressure 

differences (∆P) between the starting pressure and Pn as little as ~5 MPa may imply 

heterogeneous nucleation, while greater ∆P (i.e. lower Pn) would imply homogeneous 

nucleation (e.g. see review of Sparks et al., 1994).  
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 In our single-step decompression experiment, the volatile oversaturation produced 

by instantaneous pressure drop to 50 MPa is definitely high enough for nucleation, 

resulting in high BNDs as the decompression rate is fast. In the continuous 

decompressions, water was not exsolved nor were bubbles nucleated until enough 

oversaturation pressure was reached (Pn: here unknown). During further continuous 

decompression the exsolved water would rather diffuse into already existing bubbles and 

let those grow due to favourable energetics than to accumulate into new clusters that could 

result in new nucleation (see review of Sparks et al., 1994) explaining the low BND 

values. Pn in our multi-step decompressions experiments was probably higher than during 

continuous but lower than during single-step decompression as we decompress by 50 MPa 

(Fig. 3.31), resulting in intermediate bubble sizes. 

As the fluid-saturated starting glass synthesized at 300 MPa and 1050°C was nearly 

crystal- and bubble-free (Fig. 3.32a), homogeneous bubble nucleation is expected to be the 

primary process in the decompression experiments. However, in the experimental product 

of the single-step experiment the influence of heterogeneous bubble growth may be 

observed, see large bubble at the right hand side of Fig. 3.32d. The secondary growth of a 

preexisting bubble, already contained in the starting glass, could lead to an elongation and 

bending of the primary homogeneously nucleated smaller bubbles.  

 Bubble growth can take place during decompression due to either diffusion of gas 

out of a supersaturated melt into the bubble or due to expansion of existing gas bubbles as 

pressure reduces (see review of Sparks et al., 1994). The effects of surface tension, of melt 

viscosity and of inertia can hinder the growth of bubbles. Since the higher BND numbers 

are attributed to higher proportion of nuclei, we can suggest that the bubble nucleation was 

the dominant process during the single-step decompression experiment resulting in higher 

numbers of relatively small-sized bubbles (compare BND and BSD, Table 3.9 and Fig. 

3.33 and 3.34). Due to the sudden drop in pressure (equal to) of 250 MPa within the first 

few seconds of the single-step decompression experiment, the melt became highly water-

supersaturated at the final pressure of 50 MPa. At these conditions, the critical size of 

bubble embryo (see above: Sparks et al., 1994) was dramatically reduced due to a high 

supersaturation pressure (∆P) and relatively low initial melt-vapor surface tensions (σ; 

Mangan & Sisson, 2005). Thus, enhanced volatile exsolution (Hurwitz & Navon 1994) led 

to major bubble nucleation in the system. In contrast, bubble growth was the dominant 

bubble forming process (Gardner 2007a, b) in the continuously decompressed system as 

indicated by the low BND value and the rather large average bubble size when compared 
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to multi-step or single-step decompression runs (see Fig. 3.33 and 3.34). At the beginning 

of the continuous decompression, bubble nucleation and therefore water exsolution can 

only start when Pn is overcome. During the ongoing continuous pressure release and 

therefore continuous water exsolution from the melt (starting at pressure < Pn), no 

significant oversaturation was reached again for a given time interval, precluding further 

nucleation of bubbles. Hence, water diffused rather into already existing bubbles, while 

probably only a few new bubbles nucleated, undergoing continuous growth and 

coalescence during decompression. Thus, the single-step and continuous decompression 

paths represent two extreme cases in which bubble nucleation and bubble growth are 

predominant processes, respectively. In this sense, the multi-step decompression method 

represents the intermediate case between rapid and slow release of pressure in magmatic 

system. 

 In comparison to the water solubility of high-silica melts at 1050°C and 50 MPa of 

~2.4 wt% H2O (e.g. Holtz et al., 1995; Yamashita, 1999), it seems that the total loss of 

water is more effective in the course of single drop of pressure than in the other cases (Fig. 

3.33), indicating that rapid magma ascent or quick pressure release with a subsequent long 

dwell time at low pressures will result in more efficient magma degassing. Although it has 

to be noted that these changes in the determined water contents of the residual melts (by 

NIR) are within the uncertainties (± 0.3 wt%) and may be used for qualitative discussion 

only. Therefore, the assumption that more bubbles per unit volume seem to be linked to 

more effective degassing should be taken with care. As no significant water gradients in 

the residual melts were detected (by EMPA totals) it can be assumed that the experimental 

products were in equilibrium at final P. 

 

Implication for previous experimental decompression studies on bubble formation 

We have clearly demonstrated that the bubble forming processes are influenced by the 

decompression path, indicated by great differences in vesicularity and BND values. 

Although water contents of the residual melts are slightly differing (but still within the 

uncertainties), it can be assumed that water exsolution in all three decompression scenarios 

are similar, resulting in (near-) equilibrium conditions in our here conducted experiments. 

When comparing results of former decompression experiments with each other, it should 

be taken in account that in single-step decompression experiments BNDs are usually 

higher due to the dominating nucleation process, while in continuous decompression 

experiments bubble growth is dominating resulting in lower BNDs. It has to be further 
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investigated if these differences are within the same order of magnitude at all 

decompression rates (here: ~2 orders of magnitude for BND values between single-step 

and continuous). Additionally, the height of decompression steps is an important factor 

affecting the bubble forming process. Small decompression steps (e.g. ≤ 5 MPa; becoming 

similar to continuous decompression) are presumably negligible, as they are resulting in 

rather low oversaturation pressures inadequate for initiating bubble nucleation after each 

step. While, larger steps (> 20 MPa) are suggested to trigger further nucleation after each 

(sudden) decompression step, increasing the total bubble numbers per unit volume and 

becoming more similar to the single-step decompression method. 

 

Implication for natural systems 

During magma ascent in volcanic conduits, the magma can change its physical and 

chemical properties either continuously or step-wise due to changes in P-T conditions, 

water exsolution rate, bubble forming and crystallization processes (e.g. Hurwitz & Navon, 

1994). These variations have a major impact on the rheological and dynamic behaviour of 

the magma and therefore also on the magma ascent paths and rates (e.g. Ida, 1996; Melnik 

& Sparks, 1999; Maeda, 2000). Thus, there is a self-sustaining feedback between the 

physicochemical and flow properties of the magma and P-T-time conditions. Another 

external parameter, potentially influencing magma ascent rate, can be the conduit diameter, 

which is probably not constant over the entire distance from magma chambers to the 

volcanic vent (e.g. Noguchi et al., 2008). Therefore, we can expect a broad range of 

decompression rates from the onset of magma ascent at depth until the actual eruption at 

the surface, as well as changing ascent velocities with time due to variation in the magma 

supply from below. The data obtained in our study clearly show that the manner and 

efficiency of fluid exsolution are strongly dependent on the style of decompression. The 

most reactive system, in terms of bubble proportion and the amount of exsolved fluid, is 

expected to be developed in eruptions with very rapid pressure release, for instance, in 

plinian eruptions (Hamada et al., 2010) or in catastrophic caldera-forming events.  
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3.4.  3D segmentation and visualization 
 

The previously presented and discussed bubble and microlite number densities (BND, 

MND, respectively) have been obtained by the 3D correction method following Noguchi et 

al. (2008a) using the CSDcorrection software (Higgins 2006a,b), for details see chapter 

3.1.1. Although truncation effects were minimized by analyzing more than one image per 

sample at different positions and different magnifications (e.g. Armienti, 2008), it can be 

assumed that the previously used determination method is still characterized by a relatively 

large error. This error may derive from the generalization of aspect ratios and circularities 

of the investigated objects (bubbles or microlites), as well as from the possible effect of 

object coalescence that is not totally resolved by the 2D images. Therefore, it was aimed to 

gain true 3D volume data from the segmentation and visualization of µ-tomographical scan 

datasets and to improve the BND and MND determination, using an enhanced version of 

the open-source software YaDiV (developed by Dr. K.-I. Friese, Welfenlab, Leibniz 

University Hannover, Germany; Friese et al., 2011). 
 

Synchrotron-based X-ray µ-tomography 

We analyzed our cylindrical experimental run products at the Synchrotron Light Source 

(SLS) of the Paul-Scherrer-Institute in Villigen, Schwitzerland. The beamline for 

TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) receives 

photons from a 2.9 T superbending magnet with a critical energy of 11.1 keV and produces 

a monochromatic beam, see Fig. 3.35.  

This non-destructive synchrotron-based X-ray µ-tomography was used to record a 

series of 2048 digitalized 2D projection images (having 256 grey levels). A typical 2D 

image has a resolution of 2048 x 2048 pixel with a pixel size of 0.74 µm at 10x 

magnification or of 0.37 µm at 20x magnification. The distance between two neighboring 

images and the projection depth are defined by only one pixel. Grey values of the images 

depend on the chemical composition and density of minerals and glasses as well as on the 

presence of bubbles. Due to infiltration of noise by physical properties of this analytical 

method, a filter (Parzen) was used for reconstruction and smoothing of the images. 

Unfortunately, the images provided by TOMCAT cannot be used to investigate in 

plagioclases statistics, as this mineral phase was poorly resolved by this analytical method 

showing hardly any clear crystal boundaries. 
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Fig. 3.35. Photo of µ-tomography operation table of TOMCAT beamline at SLS, Villigen, Switzerland. A 
sample is fixed on a centering and rotation stage in front of a microscope that detects the monochromatic X-
ray beam. 
 

 

YaDiV software and further enhancements 

For 3D segmentation and visualization of our TOMCAT-derived scans, we used the Java-

based open-source software YaDiV (“Yet another Dicom Viewer”: 

http://www.welfenlab.de/yadiv/) provided by the Welfenlab of the Leibniz University 

Hannover, Germany. Major advantages of the YaDiV software are its independence from 

hardware and operating systems as well as its low electronic storage requirements. 

Originally this software was developed to handle medical data (Friese et al., 2011), which 

are usually processed in the relatively low-volume DICOM file format, which already 

includes patient-related as well as size-related information (e.g. spacing in x-, y- or z-

direction). Therefore, this 3D software had to be modified to suit our demand which was 

carried out in close cooperation by the software programmer Dr. Karl-Ingo Friese of the 

Welfenlab, Leibniz University Hannover. Special focus was given to the processing of 

large volume datasets (as Tiff or Jpeg file format) with total volume sizes of up to 1.2 GB 

per scan compressed or 32 GB uncompressed. The second task was to obtain the true 

volume value of single objects (here: bubble or microlite) within one sample.  

First of all, the scan pictures were cropped and the pixel size of each picture was 

reduced from 2048 x 2048 pixel to 1024 x 1048 pixel reducing the total file size of one 
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scan. As the original pixel resolution of the single 2D projection images was high (e.g. 1 

pixel = 0.74 µm at 10x magnification or 1 pixel = 0.37 µm at 20x magnification) and 

particles < 3 µm in diameter were not considered, changing the resolution to 1 pixel = 1.48 

µm (at 10x magnification or 1 pixel = 0.74 µm at 20 magnification) is still accurate enough 

for our purposes, which was confirmed by statistical analysis of different image resolutions 

(2048, 1024 and 512 voxel).  

Segmentation in terms of image analysis techniques is defined as the identification of 

regions that are pixel-based or voxel-based forming a specific structure which does not 

necessarily need to be geometrically connected. In general, two segments were created for 

each scan: one for bubbles and one for mineral phases (excluding plagioclases because of 

their poor resolution by this tomographical method), ± one for oxides only. Due to the 

differences in chemical composition and the related specific grey values in the scan 

images, these phases were easily distinguished from the surrounding melt (intermediate 

grey values). The object-related grey values were marked throughout the total length of the 

scan (usually 1500 single images) and extracted into their individual segment using the 

YaDiV software. Additional software features such as erosion and dilatation functions 

(shrink and grow, respectively; for details see latter text and Fig. 3.40 a-d) and free-draw 

functions facilitated and upgraded the image evaluation to create these segments. Finally, 

the information of each segment is converted into 3D volume datasets (three dimensions; 

x,y,z) by calculating the connectivity, allowing the 3D visualization of  the bubbles and 

minerals, see e.g. Fig. 3.36. Images and videos of the 3D visualized objects can be 

obtained by desktop snapshots or by desktop session recorder (here: Istanbul), 

respectively. 
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Fig. 3.36. Comparison of 2D images and 3D segment visualization of set-III samples (LPD: 50 to 0.1 MPa, at 
850°C). 2D projection images obtained by µm-tomography are shown in a-I to a-V, where dark grey areas 
represent bubbles. 3D visualization of the segments bubbles (blue/turquoise color) and minerals (Opx + Cpx 
in yellow and Ox in pink color) are shown in b-I to b-V and in c-I to c-V, respectively. The diameter of the 
samples in the images is approximately 1.5 mm, not to be mistaken with size of the boxes indicated in the 3D 
images. 
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Additionally, a statistical software feature was newly designed to determine and 

extract volume characteristics of each individual (connected) object in one segment as a 

text file. Hence, this statistical information can be used for the BND and MND 

determination resulting in nearly true 3D volume data which errors are negligible. 

Therefore, we followed the original BND calculation method of Gardner et al. (1999, 

2007): 

∑
=

V iN
nBND

T

i

mφ
               (5), 

where ni and Vi are the number and true volume of bubbles of diameter i, 

respectively, NT is the total number of bubbles measured, and Φm is the measured volume 

fraction of the vesicles. The same procedure has been used to determine the MNDOP values 

for microlite phases excluding plagioclase (i.e. oxides, amphiboles and pyroxenes).  

 
Table 3.10. Experimental run conditions and results of 2D and 3D textural analyses for the two low-
temperature (850°C) LPD sets: set-III (50 to 0.1 MPa) and set-V (200 to 0.1 MPa). 
 
     2D 3D 2D 3D 

sample 

# 

 

set # 

 

 

decompression 

rate [MPa/s] 

 

log 

BND 

[mm-3]

error 

[mm-3]

 

log 

BND 

[mm-3]

volume 

fraction 

Φ [%] 

log 

MNDOP 

[mm-3] 

error 

[mm-3] 

 

log 

MNDOP 

[mm-3] 

volume 

fraction 

Φ [%] 

LPD 01 set-III 0.0001 4.33 (0.13) 2.96 11.24 6.40 (0.17) 4.33 1.13 

LPD 02 set-III 0.0002 4.11 (0.09) 2.98 11.20 6.42 (0.15) 4.35 0.99 

LPD 03 set-III 0.001 4.40 (0.08) 3.59 12.02 6.43 (0.30) 4.33 1.11 

LPD 04 set-III 0.01 4.73 (0.10) 3.69 12.88 6.41 (0.16) 4.02 0.28 

LPD 05 set-III 0.1 4.73 (0.07) 3.62 15.47 6.13 (0.13) 4.47 1.17 

LPD 09 set-V 0.0001 3.52 (0.23) 2.01 11.98 6.30 (0.08) 3.69 0.17 

LDP 06 set-V 0.0002 4.17 (0.15) 3.88 46.34 6.12 (0.10) 4.43 2.58 

LPD 12 set-V 0.001 4.13 (0.13) 3.41 18.83 6.19 (0.09) 3.72 0.13 

LPD 13 set-V 0.01 4.14 (0.14) 3.24 22.34 6.20 (0.20) 3.93 1.66 

Note: Numbers in parentheses show the standard deviation (1σ) of replicated 2D analyses 

2D: following the method after Noguchi et al. (2008a) including a 3D correction described in chapter 3.1.1. 

3D: obtained using YaDiV software described in this chapter 
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Comparison of 2D or 3D generated BND and MND values 

The BND and MNDOP values of set-III and set-V obtained by the two different calculation 

methods, (1) from simple 2D images following the method of Noguchi et al. (2008a) using 

Higgins CSDcorrection software (2000, 2002, 2006a) or (2) from the 3D segmentation and 

visualization of tomographical scans using YaDiV software, are directly compared to each 

other in Table 3.10 and Fig. 3.37 a-b. Values obtained by using method (1) will be referred 

to as “2D” values and values that were determined using the YaDiV software will be 

referred to as “3D” values in the following text. 2D values are in general higher than for 

3D values. In detail, the log BND values obtained from 2D are ~0.5-1.5 log units higher 

than the 3D values, while the log MNDOP values of 3D are even 2.0-2.5 log units lower 

than for 2D values.  

An explanation for the differences in BND and MNDOP values obtained by the two 

calculation methods 2D and 3D can be found in the basic understanding of number 

densities (ND). In principle, the number densities are defined as the number of objects per 

unit volume (of the magma). The number density values do not provide direct information 

on the sizes of the investigated objects, only on the total number of objects. Therefore an 

increase in BND or MND is correlated to higher numbers of bubbles or microlites, 

respectively, whereas a decrease in BND and MND is correlated to lower bubbles or 

microlites numbers, respectively (e.g. Gardner, 2007). A parameter influencing the total 

number, for example of bubbles, is the process of coalescence: when two (small-sized) 

single bubbles are connected with each other in order to form one single bubble of a bigger 

volume, the total number of bubbles is reduced. The process of bubble coalescence may 

occur either (1) static or (2) dynamic (e.g. Cashman & Mangan, 1994). In case (1), the 

neighboring bubble walls are thinning and/or rupturing and in case (2), bubbles collide due 

to variable buoyancies of different-sized bubbles. On the other hand, mineral grains can 

coalescent too by simply growing together. As these processes of bubble and crystal 

coalescence are not restricted to one direction only, it is difficult to determine the degree of 

connectivity of objects throughout a 3-dimensional volume from only looking at a 2-

dimensional image. For example, two bubbles that are separated from each other in a 2D 

image (see Fig. 3.38 looking onto the x- and y-axes, white numbers 1 and 2), may actually 

be connected in the third dimension (following the development along the z-axis in Fig. 

3.38, yellow number 1), also see review by Armienti (2008).  
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Fig. 3.37. Comparison of 2D and 3D data of low-temperature (850°C) LPD experiments. (a) Bubble number 
density (BND) and (b) microlite number density for all other phases (MNDOP) as a function of the 
decompression rate for the H2O-bearing system. Circles represent 2D data obtained following the method of 
Noguchi et al. (2008a) and triangles represent 3D data obtained using YaDiV software. Purple symbols show 
LPD experimental results from 50 to 0.1 MPa and orange symbols show LPD results from 200 to 0.1 MPa. 
Error bars show standard deviation (1σ) of replicate 2D analyses. Errors for 3D analyses are negligible. 
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Fig. 3.38. Schematic example of the phenomenon of bubble coalescence influencing the accuracy of 
stereological reconstruction methods. When looking onto the 2-dimensional plane of x- and y-axes we can 
identify two separate bubbles indicated by the white numbers. While following their development along the 
z-axis, we see that in reality these two bubbles are connected and have to be counted as only one, indicated 
by the yellow number. 
 

Additionally, it has to be noted that parameters concerning the image generation (e.g. 

optical magnification of the microscope, pixel resolution of the digitalized image) can 

influence the information if two bubbles are projected to be connected or separated. Thus, 

this crucial information on coalescence of objects within a 3-dimensional volume may be 

lacking or may get lost during the calculation method using the CSDcorrection software to 

convert data obtained from 2D images into 3D volumes. Furthermore, the CSDcorrection 

software requests the input of object-related data such as the roundness factor and the 

shape (short:intermediate:long) which have to be generalized for all investigated single 

objects throughout one image or sample (Higgins, 2000). This may be practical for 

samples containing only perfectly and uniformly shaped bubbles or crystals (i.e. formed 

without disturbances), but this is usually not the case in natural or experimental systems. 

Therefore, it can be assumed that the here introduced 3D method, obtaining (true) volume 

data by 3D segmentation and visualization using YaDiV software, is up to this date the 

most adequate way to reduce analytical-related errors. Furthermore, results of former 

stereological studies on size distributions and number densities containing 3D 

reconstruction (and/or 3D manipulation) methods have to be taken with care and a direct 

comparison with true 3D data from tomographical scan analysis might not be favorable or 

should include a detailed discussion on the data accuracy of both methods. 
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Outlook: Other YaDiV software applications related to rock textures 

Orientation of objects within space 

One advantage of 3D segmentation and visualization of tomographical scan data using the 

YaDiV software is the spatial presentation of structures that may not be clear from looking 

on 2D images only. Especially flow dynamics such as preferred orientation of bubbles 

(Fig. 3.39 a) or orientated crystallization of minerals (Fig. 3.39c), as well as single shape 

phenomenon (e.g. hollow crystals in Fig. 3.39b) can be understood more easily when 

presented to the human eye in three dimensions, especially in moving pictures. 

 

Fig. 3.39 a-c. Screenshots of YaDiV 3D visualization of different segments. (a) Sample DEC11-6 shows 
spatial orientation elongated bubbles [pink]. The main focus in (b) is concentrated on the hollow shape of an 
amphibole mineral (green) right hand side of the natural Unzen dome sample DAC_4. (c) Visualization of 
minerals (pyroxenes in yellow, oxides in purple color), grey background represents Texture2d Volume 
Rendering (pixel cloud) of bubbles of sample LPD07. Interesting here is the orientated crystallization of 
yellow pyroxene minerals along a bubble-free crack zone on the left hand side. 

 

In a next step, we are working on developing and programming a software algorithm 

that is able to identify the preferred direction of orientated objects within a single segment. 



3. DECOMPRESSION EXPERIMENTS 
 

 108 

In case of Fig. 3.39 a, this would concern the orientation of bubbles or vesicles in our 

samples, which could give implications on degassing processes (such as bubble 

coalescence or on bubble segregation from the melt (e.g. relevant to the determination of 

the eruption style: effusive vs. explosive). 

 

Surface recognition algorithm 

Another planned YaDiV software tool to edit and to simplify the 3D segmentation process 

of mineralogical samples is a surface recognition algorithm (a so called model-based 

segmentation method). Therefore, object specific shape characteristics (surface tension of 

bubbles as spheres or ellipsoids; crystal systems or class, etc.) have to be determined and 

taught to the software, which will then be automatically recognized and marked throughout 

the entire scan (in all three dimensions) by using this special algorithm. Additionally, the 

surface recognition algorithm could be integrated into the region shrinking and growing 

process. Therefore, we have to go into detail on this particular shrinking and growing 

process: when pixel of a certain range of grey values are marked and segmented, the tool 

“shrink” or “grow” can delete or add pixel, respectively, to the segmented pixels if a 

certain (user defined) grey value variance is respected, see Fig. 3.40 a-d. The variance 

determines the maximum difference between the grey value of the seed pixel and its 

surrounding pixel that are acceptable to be summarized in a marked segment. 

 

Fig. 3.40 a-d. Schematic presentation of segmentation and the tools (algorithms) shrinking and growing using a 
given variance of grey values: (a) the original pixel image with different gray values (light, intermediate and 
dark), (b) pixel having light grey values are marked in pink color and saved as one segment, (c) resulting 
segment (pink) after a region shrinking process and (d) resulting segment after a region grow function respecting 
a certain given grey value variance of image (b). 
 

Thus, integrating the surface recognition algorithm to e.g. a grow function would 

only allow the addition of a neighboring pixel to the segment if (1) it correlates to the 

given grey value variance and if (2) the object characteristic (e.g. crystal shape or a,b,c-
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axes ratio) are not violated by the growth function. This algorithm would be especially 

useful when the quality of tomographical projection images are affected by beam 

dispersion or by preparation-related cracks, see Fig. 3.41 a-b respectively. 

 

 
Fig. 3.41. Tomographical 2D projection images showing (a) beam dispersion caused by high-density oxide 
mineral (white color) and (b) cracks caused by the sample preparation. 
 

Additional information preserved by µ-tomography 

Due to the non-destructive method of synchrotron-based X-ray µ-tomography some 

additional information are preserved on the projection images that would have been 

destroyed through normal thin section preparation (cutting, polishing, etc). In our 

decompression samples we were able to observe two distinct phenomena that were not 

detectable by image analysis of simple 2D BSE pictures taken from microprobe thin 

sections: (1) mineral phases that crystallized inside bubbles and (2) liquids trapped inside 

intact bubbles, see Fig. 3.42 a and b respectively.  

One possible explanation for the crystallization of minerals inside bubbles could 

derive from the chemical composition of the bubble fluids. It can be expected that not only 

pure H2O or a pure mixture of H2O+CO2 is forming the decompression-induced vesicles 

but to some extend other element oxides may have also diffused from the melt into the gas 

bubbles, e.g. here: SiO2. When these volatile gases become oversaturated in respect to SiO2 

or temperatures are decreased, these oxides can precipitate and lead to crystallization of 

quartz minerals inside the vesicles (e.g. Newton & Manning, 2000, 2008).  
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Fig. 3.42. Additional information preserved in 2D projection images from µm-tomography. On the left, 
original full-size image with red marked area of interest that is enlarged on the right. (a) mineral phase (here 
maybe quartz)  that crystallized inside a bubble (highlighted in yellow on the right) and (b) quenched liquids 
(light blue shaded area on the right) trapped inside an intact bubble (dark blue contour indicating size of 
bubble when fluid was still gaseous). 
 

In samples without the influence of crystals, bubbles were preserved in perfect shape 

(as spheres or ellipsoids), see Fig. 3.42b.  Due to the image-given procedure of X-ray µ-

tomography differences in chemical composition and/or density are indicated by different 

grey values in the 2D projection images. Taking a closer look at undamaged bubbles (not 

influenced by cylinder preparation), two areas within one single bubble can be observed: 

(1) a major dark area in the middle and (2) minor light area on the bubble wall (highlighted 

in light blue color in Fig. 3.42b). A very light frame (marked in dark blue in Fig. 3.42b) is 

surrounding these two areas as a whole, which is interpreted as the original gas bubble 

volume (before experimental quenching), while area (2) is representing the liquidized 

volatile after quenching. As liquids have higher densities as air or gas, area (1) is meant to 

be the air-filled cavity of the preserved gas bubble volume. Thus, from determination of 
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the chemical composition and the volume of the volatile fluids, one could then recalculate 

the dominating gas pressure inside bubbles at given (experimental) pressure and 

temperature conditions. The volume can be easily determined by YaDiV segmentation and 

statistical option, while the chemical composition could be analyzed for instance by laser 

ablation. 

 At this point, we have to emphasize the limitations of µ-tomography: due to the 

high resolution and restriction of voxel sizes, not our entire sample can be recorded at 

once. At the highest resolution (20 x magnification leading to 0.37 µm per pixel), a 

maximum sample diameter of 757.76 µm can be investigated, which in our case of 

experimental cylinders of 1.9-2.0 mm is only a third of one sample. Increasing the image 

diameter can only be achieved by reducing the resolution, which might result in loss of 

existing micro-structures. But especially in our nucleation experiments it is important to 

have a global view of one experimental sample. For example, are there any heterogeneous 

nucleation events at the interface capsule wall and melt due to reduced theoretical 

supersaturation pressure (e.g. Martel & Bureau, 2001)? Thus, is there a difference in 

bubble distribution within one sample: outer-inner part, bottom-top? Answers to these 

questions are essential to understand the processes occurring not only in our small-scaled 

experiments but are also applicable to large-scaled natural systems, e.g. magma chambers, 

conduits, etc. A solution to this problem can be the method of Pamukcu & Gualda (2010): 

combining information at various resolutions. 

 

CONCLUSION 

Here we demonstrated successfully that the processing of non-destructive µ-tomography 

images using YaDiV software can provide useful (visual) insights and (nearly) true volume 

data of mineralogical objects (here: bubbles and crystals). Although the quality and 

quantity of obtained volume data are of course dependent on the tomographical scan 

resolution as well as to some degree on the users’ accuracy, the ongoing development of 

this originally medical-based software can lead to an important contribution to the 

geoscientific field. Furthermore, YaDiV is an open-source freeware and can be adapted by 

anyone with programming skills at all times, exhibiting advantages compared to other 

commonly used and expensive 3D computer software programs (e.g. MATLAB, AVIZO 

etc.) which properties are restricted by the software developing company and which 

usually require high-capacity hardware (internal storage, graphic boards, etc.). 
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4. DISCUSSION 
 

Dynamics of vesiculation  

In general, it is difficult to compare our experimental BND data to natural erupted Unzen 

samples, especially as the 1991-1995 eruption was more of the effusive, dome-forming 

Merapi-type. Thus, progressing (complete) degassing of the magma close to the surface did 

not preserve major vesicle structures in the erupted Unzen rocks (e.g. Nakada & 

Motomura, 1999). Therefore, we will only discuss here qualitatively the results of 

degassing (water exsolution and evolution of bubble number densities) along our 

experimental decompression paths and will try to compare our experimental BND data to 

natural explosive Plinian eruptions (see discussion section: comparison to natural BND 

data) that have preserved vesicle structures in their erupted rocks due to fast magma ascent 

and incomplete magma degassing. 

 

Equilibrium distribution of volatiles in melt and fluid  

The analyses of the chemical composition and the water content of the residual glasses of 

HPD set-I showed that the process of water exsolution from the melt is decoupled from the 

onset of crystallization in the decompression system. At high decompression rates, no 

significant amount of water was exsolved resulting in fairly high water contents of the 

residual glasses at final pressures of 50 MPa. While at lower decompression rate (< 0.1 

MPa/s, equilibrium conditions were reached in the H2O-bearing system and < 1.0 MPa/s in 

the H2O+CO2-bearing system). These observations are in agreement with former 

experimental studies on rhyolites compiled in a review of Rutherford (2008), showing the 

transition from non- to near-equilibrium degassing at decompression rates of 0.025 to 0.25 

MPa/s. As our other decompression sets II-V have been conducted using decompression 

rates ≤ 0.1 MPa/s, we can assume near-equilibrium conditions for those experiments, 

which is also supported by the observation of similar water contents within each set being 

close to equilibrium conditions (isobaric runs at final pressures). 

 

Bubble nucleation vs. bubble growth 

The process of bubble nucleation can either occur homogeneously from the melt or 

heterogeneously along the surface of nucleation sites such as crystals (e.g. Hurwith & 

Navon, 1994). The review of Sparks et al. (1994) explains that small clusters of gas 
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molecules form due to local concentration fluctuations requiring energy to form the bubble 

embryo interface. The bubble embryo will grow if the free energy associated with the 

formation of the separate gas phase is greater than the interfacial energy. Therefore, a 

critical bubble radius (rc) has to be overcome, which is dependent on the ratio between the 

interfacial tension (σ) and the supersaturation pressure (∆P). In case of homogeneous 

bubble nucleation, the required ∆P is greater than necessary for heterogeneous nucleation, 

where the gas phase can wet the surface of crystals lowering the required supersaturation 

pressure (e.g. Sparks et al., 1994). Anyway, at low saturation pressures it is more favorable 

for gas molecules to diffuse into pre-existing bubbles, resulting in bubble growth, than 

clustering to nucleate a new bubble. 

 A compilation of decompression-induced bubble nucleation studies performing 

homogeneous nucleation (Mourtada-Bonnefoi & Laporte, 1999, 2002; Mangan & Sisson, 

2000 and Gonde et al., 2011) and heterogeneous nucleation experiments (Gardner & 

Denis, 2004 and Gardner, 2007) in rhyolitic systems are plotted in Fig. 4.1a, showing that 

in general bubble number densities (BNDs) are decreasing with decreasing decompression 

rates, while the homogeneous nucleation trend is having a steeper slope than the 

heterogeneous nucleation trend (see also inlet in Fig. 4.1a). The dependence of the BND 

values on the decompression rate can be explained by supersaturation kinetics (see review 

of Sparks et al., 1994). At fast decompression, the melt becomes highly supersaturated 

because the pressure release is faster than the ability of the system to react with volatile 

exsolution. This leads to a low nucleation pressure (Pn) resulting in intensive bubble 

nucleation. At low decompression, Pn is shifted to higher pressures. Here, lower degrees of 

supersaturation are reached due to relatively more time for the system to relax after 

decompression. Thus, the melt-vapor surface tension and the critical bubble radius are 

increasing (e.g. Mangan & Sisson, 2005), lowering the bubble nucleation rate and hence 

the bubble number density. However, a decrease in BND is not attributed to lower 

nucleation only; it simply gives information about the number of bubbles per unit volume 

but not on their sizes. If the total number of bubbles (NT) remains constant while their 

individual volume increases, the BND values will remain constant too. On the other hand, 

a lower nucleation rate or bubble coalescence would result in lower BND values (e.g. 

Gardner, 2007a,b). 
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 Our experimental decompression experiments of set-I to set-V are following the 

same trend as indicated for heterogeneous bubble nucleation in Fig. 4.1a at decompression 

rates ≥ 0.01 MPa/s, while BND values for the H2O+CO2-bearing system of set-I and set-II 
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are usually higher when compare to their H2O-bearing counterparts. But at low 

decompression rates and especially for LPD experiments (set-III to set-V), BND values are 

higher than expected from the suggested heterogeneous nucleation trend. In general, two 

heterogeneous nucleation trends can be extracted from our experimental BND data, see 

inlet in Fig. 4.1b. The first trend (b.1) is identical to the suggested heterogeneous 

nucleation trend derived from literature data in Fig. 4.1a of decreasing BNDs with 

decreasing decompression rates, which is valid for HPD experiments of set-II (930°C) 

even at low decompression rates (< 0.0 MPa/s). While the second trend (b.2) is similar to 

trend b.1 at decompression rates ≥ 0.01 MPa/s, whereas at decompression rates < 0.01 MPa 

the BND values slightly increase again with decreasing decompression rates as seen in 

experiments of HPD set-I and for LPD sets III-V. This difference in bubble number 

densities at low decompression rates (< 0.01 MPa/s) can be explained by differences in 

microlite number densities. MNDOP values of HPD set-II are approximately 0.5-1.0 log 

units lower (see Fig. 4.4b) than MNDOP values of the other decompression sets, resulting in 

fewer bubble nucleation sites (see Hurwith & Navon (1994) and thus lower BNDs. 

 Lautze et al. (2010) have demonstrated the effect of Ostwald ripening on BND in 

starting materials with increasing annealing time. BND values decrease by one order of 

magnitude from one day annealing time to one month. In this case, the bubble fraction 

nearly remained constant while the mean bubble radius more than doubled (series 3) 

indicating dominating bubble coalescence with time. Additionally, the BND values of the 

starting material are also dependent on the sample preparation. For sets I to V, we used 

glass powder having two size fractions which could have lead to initial heterogeneities, 

acting as nucleation sites. In our decompression set-VI, we investigated only bubble 

forming processes above the liquidus, while we used homogeneously hydrated glass 

cylinders as a starting material, avoiding the influence of crystals and of grain boundaries 

of the glass powder fractions on bubble nucleation. Although our conducted annealing 

periods of 4 to 14 days at starting P-T-conditions can not be directly transferred to interpret 

natural residence times in the magma chamber prior to an eruption, our datasets are 

adequate to predict qualitatively the evolution of BND as a function of the decompression 

rate. Furthermore, we were able to show a clear dependence of BND on the decompression 

path (see chapter 3.3), which should be taking in account when comparing decompression 

results of different studies with each other. 
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Comparison to natural BND data  

Unfortunately, natural Unzen BND values are not given by literature yet and therefore our 

experimental data can not be directly applied to the case of the 1991-1995 Unzen eruption 

(see also beginning of the discussion section: dynamics of vesiculation). But we can try to 

compare our BND results to a range of natural plinian eruptions compiled by Toramaru 

(2006), see Fig. 4.2a. A trendline can be drawn from those natural data, showing a clear 

dependence of logBND on the silica content of bulk rocks. Furthermore, it seems that there 

is also a positive dependence of the estimated decompression rates for those plinian 

eruptions following the vesicularity trend. When following this trend, using the chemical 

composition of natural Unzen bulk rock (Nakada & Motomura, 1999), BND values of 

~1013.5 m-3 and approximately ~ 50 MPa/s are can be expected (see orange square in Fig. 

4.2a). On the other hand, Unzen groundmass composition is more silica-rich and the 

vesicularity trend would therefore predict higher BNDs and presumably also faster 

decompression rates (see red square in Fig. 4.2a). But this dependence of the 

decompression rate following the logBND-SiO2 trend should be taken with care as 

estimated decompression rates can already vary greatly for the one eruption (here e.g. 

Towada: 6.3 to 91 MPa/s) although having similar vesicularities and chemical 

compositions. 

 Our experimental BND data are all located below the trendline. LPD experiments 

have higher SiO2 contents (closer to natural Unzen groundmass composition; Nakada & 

Motomura, 1999) and also larger deviations from the observed trend when compared to 

HPD experiments, which is shown more clearly in Fig. 4.2b plotting the deviation from the 

trend, derived from compiled data given by Toramaru (2006), in dependence of the 

decompression rate. Here in Fig. 4.2b another trend can be observed from our experimental 

data: increasing deviation from the natural vesicularity trend (see Fig. 4.2a) with 

decreasing decompression rates, which is understandable as the 1991-1995 Unzen eruption 

was not of an explosive character like plinian eruptions, having rather magma ascent rates. 

  

Dynamics of magma crystallization  

Crystallization processes occurring during our decompression experiments can be best 

detected by shifting chemical compositions of residual glasses. The onset of crystallization 

(delay of decompression-induced nucleation and growth of microlites) was only detected 

in experimental runs of both fluid-saturated systems of HPD set-I (Fig. 3.4). In HPD set-II 

(at 930°C) no change of the chemical composition with decreasing decompression rate was 
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observed (see Fig. 3.17). While LPD sets III to V experiments were only performed using 

decompression rates ≤ 0.1 MPa/s, showing an immediate change in chemical composition 

with decreasing decompression rate (see Figs. 3.22 and 3.27). A decrease of MgO, FeO, 

CaO and/or Al2O3 contents and the simultaneous increase of SiO2 and K2O content were 

clearly related to the crystallization of plagioclases and pyroxenes. Especially the observed 

systematic decrease of CaO in the residual melt and the simultaneous increase of CaO in 

the Pl microlites (Appendix Tables A.3, A.5.1, A.7.1 and A.8.1) with decreasing 

decompression rate are characteristic for Pl crystallization.  

 

Plagioclase microlite crystallization 

From our decompression experiments three distinct models of plagioclase crystallization 

can be distinguished: (1) Pl is part of the starting mineral assemblage (at low pressures) 

and do not grow significant larger in size during further decompression, (2) Pl is part of the 

starting mineral assemblage (at relatively high pressures) while their maximum lengths 

increase with decreasing decompression rate and (3) Pl is not part of the starting 

assemblage (at high pressures) and is only nucleating as well as growing during further 

decompression, becoming continuously larger in size with decreasing decompression rates. 

 The first case (1) is referring to our LPD experiments starting at 50 MPa (sets III-

IV), where due to low water contents (~2.0 wt%) the crystallization kinetics are relatively 

slow and do not significant dependence of the maximal lengths with decreasing 

decompression rate (Fig. 4.3). LPD experiments of set-V starting from higher pressures 

(200 MPa) represent the second case (2) where higher initial water contents (~ 5.8 wt%) 

result in faster kinetics, leading to crystal growth and increasing microlites sizes with 

decreasing decompression rates. The shapes of plagioclase microlites formed by model (1) 

and (2) remain tabular, resulting from relatively low degrees of undercooling 

(oversaturation of the melt with respect to a mineral phase; e.g. Lofgren, 1974; Muncill & 

Lasaga, 1987, 1988). While in case of model (3), equivalent to two HPD experiments of 

set-I (H2O-bearing, ≤ 0.0005 MPa/s), we have relatively high water contents (~6.5 wt%) at 

starting conditions (here: 300 MPa, 850°C) and therefore fast crystallization kinetics. Pl 

microlites nucleation during the decompression process and due to relatively high degrees 

of undercooling (~100°C or less of undercooling) rapid and non-equilibrium growth of Pl 

microlites occurs, resulting in skeletal in mineral shapes. These large Pl microlites are 

similar in length to natural Unzen dome samples (~ 250 µm; Noguchi et al., 2008a; dark 

grey shaded area in Fig. 4.3).  
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 No plagioclase microlites were crystallized in HPD set-II (300 to 50 MPa), 

indicating that the experimental temperature of 930°C was presumably to high and 

performed decompression rates (0.1 to 0.0002 MPa/s) were still to fast to result in 

appropriate high degrees of undercooling leading to the (skeletal) crystallization of Pl 

microlites. 

 

  

Fig. 4.3. Maximum Pl length as a function of the decompression rate. Dark grey shaded area represents the range 
of Pl microlite lengths of Unzen natural dome samples after Noguchi et al. (2008a). Pl microlites in core samples 
are smaller (<100 µm) (indicated by the light grey shaded area), except one sample (C14-1-1) where Pl 
microlites reach up to 300 µm in length (see Noguchi et al., 2008a,b; Goto et al., 2008). Maximum Pl lengths for 
isobaric starting conditions are plotted in the right box, given the corresponding starting pressures in brackets. 
 

Microlite number densities (MND) 

First of all, it has to be noted that the MND values for both plagioclases-only (MNDPl) and 

for all other phases (MNDOP) of our decompression experiments seem to be dependent on 

the initial isobaric starting conditions. Thus, this makes the direct comparison of our 

decompression-derived experimental MNDPl data with the MNDPl range of natural erupted 

Unzen dome rocks (105.9 to 106.1 mm-3, e.g. Noguchi et al., 2008a; indicated by grey 
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shaded area in Fig. 4.4a) rather invalid and allows only a qualitatively discussion of our 

experimental MND data.  

 In general, the MND values remain constant within the analytical uncertainties with 

decreasing decompression rates (Fig. 4.4), indicating rather dominant microlite growth 

during decompression if there is a simultaneously shift in chemical concentration of the 

residual glasses. The pre-existence of particular mineral phases at starting P-T conditions 

favors the growth of those crystals than the nucleation of new crystals, which would 

require higher degrees of supersaturation. Two exceptions have to be made here for HPD 

experiments at low decompression rates: (1) the above mentioned and discussed nucleation 

of plagioclase minerals in water-bearing set-I at decompression rates ≤ 0.0005 MPa/s and 

(2) the decrease of MNDOP values in the H2O-bearing and H2O+CO2-bearing system of 

set-II at decompression rates < 0.001 MPa/s and < 0.01 MPa/s, respectively. This second 

observation can be explained by Ostwald ripening, where the numbers of crystals are 

reduced due to the effect of coalescence or dissolution, which can be supported by 

observations of our corresponding crystal size distributions (see Appendix Figs. B.1 and 

B.2).  

 Furthermore, the determined MNDPl values of HPD experiments (set-I) are 

approximately 0.5-1.0 log units lower than those of LPD experiments (set III-V, symbols 

marked with yellow filling in Fig. 4.4), ranging from 105.4 to 105.7 mm-3 and from 105.7 to 

106.4 mm-3, respectively, which is presumably also an artefact of the initial microlite 

number densities at isobaric starting conditions. From chemical changes of the residual 

glasses and of the Pl microlites themselves as well as from overgrowth rims, we know that 

crystallization processes take place even at shallower depths (~50 MPa) to surface 

pressures, here preferably mineral growth. Therefore, our experimental study can not 

confirm the observation of Martel & Schmidt (2003) from experimental decompression 

experiments with pre-existing Pl minerals at isobaric starting conditions, showing that 

mineral growth is dominating at pressures > 50 MPa and that at lower pressure (< 50 MPa) 

microlite nucleation is dominating. On the other hand, such a distinct trend of dominating 

crystallization processes was also not observed in the experimental study of Brugger & 

Hammer (2010), where the investigated plagioclase microlites nucleated during 

decompression, not being part of the starting assemblage at isobaric conditions. Here the 

number densities of Pl microlites, taken from snapshot experiments at different pressures 

along the decompression path, showed diverse developments of microlite number densities 

at different decompression rates, allowing no clear statements of either dominating mineral 
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growth or nucleation at certain pressure ranges. Unfortunately, the number densities of Pl 

microlites given by Martel & Schmidt (2003) as well as by Brugger & Hammer (2010) are 

referring only to 2-dimensional areas (NA in mm-²) excluding 3D correction (e.g. Higgins, 

2000, 2002, 2006), which does not allow the direct comparison of their data with our 

experimental MNDPl values.  

 Toramaru et al. (2008) plotted log MNDPl versus the silica content of bulk rock 

compositions of various eruption styles, including the 1991-1995 Unzen eruption, Fig. 

4.5a. Our experimental decompression datasets have similar MNDPl values compare to the 

natural Unzen rocks, but our experimental values are shifted to higher SiO2 contents as we 

used the 1991-1995 erupted groundmass composition for our experimental study excluding 

phenocrysts. Therefore, we have plotted additionally the data for Unzen groundmass 

composition (Nakada & Motomura), see red framed and grey shaded area in Fig. 4.5. The 

diagram scale-up in Fig. 4.5b shows that only two decompression experiments match the 

red framed field for 1991-1995 erupted Unzen groundmass: H2O+CO2-bearing sample 

DA29 (0.0002 MPa/s; HPD set-I) and H2O-bearing sample LPD22 (0.0002 MPa/s, LPD 

set-IV). Unfortunately, Pl microlites of these two runs are of tabular shape and reach only 

maximum microlite sizes of ~50-100 µm, which is in the range of natural Unzen conduit 

samples (Noguchi et al., 2008a,b; Goto et al., 2008) but not in the range of erupted dome 

samples. The only experimental run reproducing the skeletal and 300 µm large Pl 

microlites of Unzen dome rocks (e.g. Noguchi et al., 2008a) was the H2O-bearing sample 

DA28 (HPD at 850°C) at 0.0002 MPa/s. Although at these conditions the residual melt is 

having only ~74 wt% SiO2. 
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Fig. 4.4. Compiled HPD and LPD experimental data of the log MND for (a) plagioclases and for (b) all other 
phases as a function of the decompression rate. Grey shaded area represents the range of microlite number 
density of natural Unzen dome samples after Noguchi et al. (2008a). Low pressure data sets (final pressure = 
0.1 MPa) are additionally marked by yellow color filling empty symbols in Fig. (a). Log MND values for 
isobaric starting conditions are plotted in the right box, given the corresponding starting pressures in brackets. 
Error bars are not shown again for simplicity. 
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Effect of sample preparation and experimental setup on vesiculation and 

crystallization processes 

It has to be noted that there might have been parameters already during the capsule 

preparation influencing our degassing and crystallization processes during our 

experimental decompression runs already. For once, we have used a glass powder as a 

starting material, whose grain size boundaries could have acted as nucleation sites for 

bubbles as well as for microlites (e.g. Marziano et al., 2007), lowering the required 

supersaturation pressure and favouring early heterogeneous nucleation processes (e.g. 

Mangan & Sisson, 2005). This might explain why our MND values of the decompression 

experiments are in the same range as the ones of the starting material for all experimental 

sets. It seems that the MNDs of our decompression experiments were already given by the 

MNDs at isobaric starting conditions. It might have been a better approach to use 

homogeneous dry glass cylinders as a starting material instead of glass powder, and then 

synthesizing the fluid-saturated samples at above-liquidus conditions prior to the 

decompression process. 

 Secondly, the preparation of big synthesis capsules for the H2O+CO2-bearing 

system (XflH2O ~0.6) of the high-pressure decompression set at 930°C (HPD set-II, see 

chapter 3.1.2.), was probably followed by the loosing of important amounts of volatile 

components during the opening of the big synthesis capsule to cut the glass cylinder into 

smaller samples for further decompression experiments. Thus, a lowering of the 

concentration of carbon dioxide in the fluid phase resulted prior to the decompression, 

increasing the mole fraction of water and becoming close to 1.0 and therefore similar to the 

conditions of the initial H2O-bearing system. This might also explain the similarities in the 

chemical compositions and texture, as well as the lack of crystallized Pl microlites in the 

assumed H2O+CO2-bearing system of both fluid-saturated systems at 930°C. 

 Several decompression experiments needed to be repeated as capsule walls showed 

holes or cracks, which are probably related to the high gas pressure inside the capsule. One 

weak link were of course the welding seams on which capsules bursted open. The capsule 

length (15 to 20 mm) was intentionally chosen to be large enough to allow the growing gas 

pressure to expand, with increasing water exsolution from the melt, without destroying the 

wholeness of the capsule. But anyway, deformed or inflated (intact) capsules also allow the 

melt to flow, influencing the mass transport and for example the bubble formation 

processes, which should be taken care off when discussing experimental results. 
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 Furthermore, there might have been differences in the P-T-paths of decompression 

experiments conducted in CSPVs and IHPVs. The inertia of the rather slow external 

furnace in CSPV experimental setups might have lead to high coolings (~30°C) at rather 

high decompression rates and to even several cooling events related to each pressure 

release in multi-decompression experiments. On the other hand, such thermal fluctuations 

are not expected in IHPVs as the thermocouples are directly positioned next to the sample 

inside the furnace, which therefore can react faster on changes in temperatures. 

  

Effect of degassing and crystallization: Implications for magma ascent dynamics at 

Unzen 

Similar groundmass compositions for most major elements and similar MNDPl values of 

natural Unzen dome (e.g. Nakada & Momomura, 1999) and conduit samples (e.g. Noguchi 

et al., 2008a,b) could indicate no significant crystallization process occurring during Unzen 

magma ascent from shallow depths to the surface. This stands in contrast to our chemical 

and textural analyses of HPD and LPD experiments, showing continuous dominant crystal 

growth at high and low pressures. However, the sampled Unzen conduit rocks have 

probably undergone a different thermal history after the eruption and therefore their 

textural and chemical data should be used with caution. 

 The two main observations which are useful for the estimation of the magma ascent 

rate from our experimental run products are the reproduction of (1) the chemical 

composition of natural matrix glasses and (2) the occurrence and characteristics of the 

natural Unzen mineral assemblage; especially the preservation of Amph microlites as well 

as the shapes and lengths of Pl microlites. The chemical composition of natural Unzen 

groundmass glass was best reproduced by our H2O-bearing LPD experiments (set III to V) 

and by our H2O+CO2-bearing HPD experiments of set-I (850°C) at the lowest conducted 

decompression rates (0.0002 – 0.0001 MPa/s), see Figs. 3.4, 3.22 and 3.27, corresponding 

to ascent velocities of ~12-24 m/h. On the other hand, natural Pl microlites with skeletal 

shapes and lengths of ~300 µm (e.g. Noguchi et al., 2008a) are only observed when Pl is 

nucleating and growing during decompression, which was only the case in our H2O-

bearing HPD set-I (850°C) at decompression rates < 0.0005 MPa (corresponding to ~50 

m/h), although the chemical composition of the residual glasses did not match natural 

dome samples yet. The phase relation experiments of our study have showed that the major 

Unzen groundmass minerals (plagioclase, pargasite, pyroxenes and Fe-Ti-oxides; e.g. 

Venezky & Rutherford, 1999) are only stable in a relatively narrow P-T-XflH2O range (see 
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checkered areas in Fig. 2.3 to Fig. 2.6). Although our stability experiments have showed 

that amphiboles only crystallize at pressures above 100 MPa and at temperatures of less 

than ~860°C in fluid-saturated systems having high mole fractions of water (> 0.6), 

pargasite microlites were preserved in natural erupted dome samples, indicating that the 

magma ascent had to be fast enough at lower pressure (< 100 MPa) to hinder the total 

dissolution of former stable pargasite crystals. This effect can be seen in LPD experiments 

of set-V, starting at 200 MPa with pressure release down to surface pressures (0.1 MPa). 

Here amphiboles (having Al2O3 contents of 8-9 wt% and being ~20-25 µm long) were part 

of the starting assemblage at 200 MPa and 850 °C. But after the decompression runs, 

Amph microlites were only detected in samples of LPD experiments with decompression 

rates ≥ 0.001 MPa/s. Groundmass pargasites observed in natural erupted Unzen dome 

samples are still having lengths of 100-300 µm, which is nearly ten times larger than our 

experimentally grown amphibole microlites. Thus it can be suggested that natural pargasite 

microlites were large enough in size at depth to be not totally dissolved during magma 

ascent at decompression rates even as low as 0.0001 MPa/s (correlating to 12 m/h). 

 The exact determination of the water activity in the ascending magmas to the 

surface is difficult. Considering that the estimated ascent rates are lower than 50 m/h, 

volatile exsolution must have occurred at conditions close-to-equilibrium in the pressure 

range 300-0.1 MPa, which is typical for effusive non-violent eruptions (e.g. Hurwitz & 

Navon, 1994), as observed at Unzen. Assuming that the released volatiles are, at least in 

part, escaping from the magmatic system (open system degassing; e.g., Turner et al., 1983; 

Gerlach, 1986) melts would be almost free of CO2 at low pressures (< 50 MPa). On the 

other hand, the model of Ohba et al. (2008) assumes that CO2-H2O-bearing fluids were 

continuously ascending in the Unzen conduit, which would maintain a relatively low water 

activity in the ascending magmas (the water activity would be mainly controlled by the 

percolation of CO2-H2O-bearing fluids). Thus, if the percolation of such fluids were 

“buffering” the water activity in the conduit, an ascent rate of ~ 50 m/h is more realistic 

than a value of ~ 10 m/h. In any case, these values are in general agreement with 

estimations from petrology by Nakada & Motomura (1999; 12-30 m/hour), from textural 

analysis by Noguchi et al. (2008a; 29-274 m/h in the pressure range 70-100 MPa) and by 

the MND decompression rate meter of Toramaru et al. (2008; 29-132 m/h) as well as from 

water exsolution rates by Toramaru et al. (2008; 50-245 m/h), while data from electrical 

resistivity structure measurements by Kagiyama et al. (1999) lead to lower estimated 

ascent rates (~0.8 m/h). 
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5. CONCLUSION 
 

Isothermal decompression experiments using a rhyodacitic composition show that the large 

size (~ 300 µm; Noguchi et al., 2008a) and the skeletal shape of natural plagioclase 

microlites can be only reproduced experimentally if the nucleation and growth occurs 

along the decompression path; here in our study only in water-bearing decompression 

experiments from 300 to 50 MPa at decompression rate < 0.0005 MPa/s. Once Pl 

nucleation has proceeded, the degree of undercooling (as well as diffusivity of cations in 

the melts), which is dependent on the decompression rate, is expected to be the main 

parameter influencing mineral growth kinetics (mineral size). Thus, the size and shape of 

Pl microlites can be used to constrain ascent rates. Furthermore, phase relation experiments 

indicate a narrow stability field for the mineral assemblage observed in natural erupted 

Unzen rocks, including pargasite. Amphibole microlites were only preserved under certain 

conditions in our decompression experiments which leads to the general conclusion that (1) 

the ascending magma must have crossed P-T-XflH2O conditions that allow the 

crystallization of Amph microlites (and the overgrowth of Amph phenocrysts), (2) the 

decompression rate of the rising magma from shallow depths to surface pressures has to be 

fast enough so that Amph crystals do not dissolve entirely during the magma ascending 

process, dependent on the initial maximum Amph microlite sizes at depth, and (3) Pl 

microlites were not part of the mineral starting assemblage prior to the magma ascent, 

nucleating and growing only during decompression. In the case of Unzen magmas, we can 

therefore assume water activities close to 1.0 and magma ascent rates of ~ 30-50 m/h 

(probably not constant; Noguchi et al., 2008a). Furthermore, we also suggest a non-

isothermal decompression path in the lower temperature range estimated for Unzen mixed 

dacite prior to the eruption (870-930°C; e.g. Venezky & Rutherford, 1999). 

 In our decompression experiments, using a partially crystallized starting material 

containing bubbles, a transition from non-equilibrium to near-equilibrium water release 

from the Unzen rhyolitic melt is observed at decompression rates between 1 and 0.1 MPa/s 

(at water-saturated conditions from 300 to 50 MPa, 850°C). Furthermore, a major 

influence of bubble forming processes on the decompression path was detected, 

performing continuous, multi-step and single-step decompression. Efforts in further 

development of a 3D segmentation and visualization software (YaDiV) were successful in 

providing true volume data from tomography scans for bubbles and microlites. 
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7. APPENDIX A.2 – TABLES  
 
Table A.1.1. Experimental conditions of phase stability experiments. 

sample # vessel P 
[MPa] 

T 
[°C] 

run 
duration 
[days] 

XflH2O 

fO2 
(correlated 

after O’Neill. 
1987) 

Amph Pl Cpx Opx Qtz Ox melt

DA11 CSPV 300 850 7 1.00 NNO x -- x x -- x x 
DA12 CSPV 300 850 7 0.63 NNO -- x x x -- x x 
DA44 CSPV 50 850 7 1.00 NNO -- x x x -- x x 
DA46 CSPV 50 850 7 0.45 NNO -- x x x (x) x x 
Big_01 CSPV 50 850 7 1.00 NNO -- x (x) (x) -- x x 
Big_03+04 CSPV 200 850 7 1.00 NNO x -- (x) (x) -- x x 
DEC02+06 IHPV 300 930 4 1.00 NNO -0.95 -- -- x x -- x x 
DEC05+10 IHPV 300 930 4 0.84 NNO -1.75 -- -- x x -- x x 
UN06 CSPV 200 850 7 0.99 NNO -- -- (x) x -- x x 
UN07 CSPV 200 850 7 0.87 NNO -- x -- x -- x x 
UN10 CSPV 200 850 7 0.35 NNO -- -- x (x) x (x) x 
UN11 CSPV 200 800 7 0.95 NNO x x (x) (x) -- x x 
UN16 CSPV 100 800 7 0.92 NNO -- x (x) x -- x x 
UN17 CSPV 100 800 7 0.83 NNO -- x (x) x -- x x 
UN18 CSPV 100 800 7 0.45 NNO -- x x x x x x 
UN21 CSPV 100 800 7 0.98 NNO (x) x x x (x) x x 
UN22 CSPV 100 800 7 0.79 NNO -- x (x) x (x) x x 
UN23 CSPV 100 800 7 0.65 NNO -- x (x) x x (x) x 
UN26 CSPV 100 850 7 1.00 NNO -- x x x -- (x) x 
UN27 CSPV 100 850 7 0.79 NNO -- x x (x) -- (x) x 
UN31 CSPV 200 800 7 0.68 NNO x x x x x (x) x 
UN32 CSPV 200 800 7 0.56 NNO x x x x x (x) x 
UN33 CSPV 200 850 7 0.57 NNO -- x x (x) -- (x) x 
UN34 CSPV 200 850 7 0.55 NNO -- x x (x) x (x) x 
UN35 CSPV 100 850 14 0.59 NNO -- x (x) (x) x x x 
UN36 CSPV 100 850 14 0.33 NNO -- (x) (x) (x) x x x 
UN37 CSPV 100 850 14 0.84 NNO -- x (x) (x) -- x x 
UN40 CSPV 100 825 14 0.68 NNO -- x (x) (x) x (x) x 
UN41 CSPV 100 825 14 0.54 NNO -- x (x) (x) x (x) x 
UN42 CSPV 100 825 14 0.38 NNO -- x (x) (x) x (x) x 
UN44 CSPV 300 850 14 0.88 NNO x -- (x) x -- x x 
UN45 CSPV 300 850 14 0.46 NNO -- x (x) (x) x (x) (x) 
UN47 CSPV 300 800 14 0.97 NNO x -- (x) (x) -- x x 
UN48 CSPV 300 800 14 0.82 NNO x x (x) x -- x x 
UN51 IHPV 300 1000 5 0.99 NNO-0.50 -- -- -- -- -- -- x 
UN52 IHPV 300 1000 5 0.81 NNO-1.38 -- -- x (x) -- x x 
UN53 IHPV 300 1000 5 0.54 NNO -0.99 -- -- x (x) -- x x 
UN54 IHPV 300 1000 5 0.30 NNO -1.99 -- x (x) x -- (x) x 
UN55 IHPV 300 1000 5 0.49 NNO -10.26 -- x x (x) -- x x 
UN56 IHPV 300 900 7 0.93 NNO -0.34 -- -- (x) x -- x x 
UN57 IHPV 300 900 7 0.95 NNO -0.67 -- -- (x) x -- x x 
UN58 IHPV 300 900 7 0.50 NNO -0.60 -- x (x) x -- x x 
UN59 IHPV 300 900 7 0.20 NNO -1.71 -- (x) x (x) x x x 
x: positive mineral phase occurrence; (x): positive occurrence but no chemical analysis 

--: negative mineral phase occurrence 

CSPV:  cold seal pressure vessel. IHPV: internally heated pressure vessel 

XflH2O: mole fraction of H2O in the fluid after the run 

NNO: Ni/NiO-buffer 

Amph=amphibole; Pl=plagioclase; Cpx=clinopyroxene;Opx=orthopyroxene; Qtz=quartz; Ox=oxide (mainly ilmenite) 
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Table A.1.2. Experimental conditions of phase stability experiments. 

sample 
# vessel P 

[MPa] 
T 

[°C] 
run duration 

[days] XflH2O
fO2 

(correlated after 
O’Neill. 1987) 

Amph Pl Cpx Opx Qtz Ox melt

UN60 IHPV 300 900 7 0.14 NNO -10.38 -- (x) (x) (x) x (x) x 
UN61 IHPV 200 900 8 0.80 NNO +0.60 -- -- x x -- x x 
UN62 IHPV 200 900 8 0.65 NNO +0.59 -- (x) (x) x -- x x 
UN63 IHPV 200 900 8 0.74 NNO +0.17 -- x x x -- x x 
UN64 IHPV 200 900 8 0.94 NNO -0.34 -- -- (x) x -- x x 
UN65 IHPV 200 900 8 1.00 NNO -9.25 -- -- (x) (x) -- (x) (x) 
UN66 IHPV 200 1000 6 0.78 NNO +1.08 -- -- -- -- -- (x) x 
UN67 IHPV 200 1000 6 0.95 NNO +0.68 -- -- -- -- -- -- x 
UN68 IHPV 200 1000 6 0.66 NNO +0.87 -- -- -- -- -- x x 
UN70 IHPV 200 1000 6 0.35 NNO -9.02 -- -- (x) x -- x x 
UN71 CSPV 50 850 14 0.76 NNO -- x x x (x) x x 
UN72 CSPV 50 850 14 0.85 NNO -- x (x) x -- x x 
UN73 CSPV 50 800 14 0.68 NNO -- x (x) (x) x x (x) 
UN76 IHPV 100 900 8 0.67 n.d. -- x (x) x -- x x 
UN77 IHPV 100 900 8 0.28 n.d. -- x (x) x (x) x x 
UN78 IHPV 100 900 8 0.84 n.d. -- x x (x) -- x x 
UN79 IHPV 100 900 8 1.00 n.d. -- x x x -- x x 
UN82 IHPV 300 930 6 0.47 n.d. -- x x x -- x x 
UN83 IHPV 300 930 6 0.63 n.d. -- -- x x -- x x 
UN84 IHPV 200 930 7 0.95 NNO +2.63 -- -- x (x) -- x x 
UN85 IHPV 200 930 7 0.71 NNO +2.46 -- -- x (x) -- x x 
UN86 IHPV 200 930 7 0.62 NNO +2.04 -- x x (x) -- x x 
UN87 IHPV 200 930 7 0.42 NNO +1.29 -- x (x) x -- x x 
UN89 IHPV 100 930 10 1.0(*) NNO +1.60 -- x (x) x -- x x 
UN90 IHPV 100 930 10 0.8(*) NNO +1.32 -- x (x) x -- x x 
UN91 IHPV 100 930 10 0.6(*) NNO +1.42 -- x (x) x -- x x 
UN92 IHPV 100 930 10 0.3(*) NNO +0.52 -- x x x -- x x 
UN94 CSPV 250 850 9 1.0(*) NNO x -- (x) (x) -- x x 
UN95 CSPV 250 850 9 0.8(*) NNO -- x (x) x -- x x 
UN96 CSPV 250 850 9 0.6(*) NNO -- x (x) x -- x x 
UN98 IHPV 50 950 12 1.0(*) NNO +2.12 -- x (x) (x) -- x x 
UN99 IHPV 50 950 12 0.8(*) NNO +1.48 -- x (x) x -- x x 
UN100 IHPV 50 950 12 0.1(*) NNO +0.16 -- x x x (x) x x 
UN101 IHPV 50 950 12 0.3(*) NNO -0.38 -- x (x) (x) -- x x 
UN102 IHPV 50 950 12 0.6(*) NNO -7.00 -- (x) (x) (x) -- (x) x 
UN103 IHPV 50 930 14 1.0(*) NNO -7.11 -- x x (x) -- x x 
UN104 IHPV 50 930 14 0.8(*) NNO +1.39 -- x (x) x -- x x 
UN105 IHPV 50 930 14 0.6(*) NNO +0.96 -- x (x) x -- x x 
UN106 IHPV 50 930 14 0.3(*) NNO -6.48 -- x x (x) (x) x x 
UN108 IHPV 50 900 14 0.1(*) NNO +1.32 -- x (x) x (x) x x 
UN109 IHPV 50 900 14 0.8(*) NNO +1.47 -- x x (x) -- x x 
UN110 IHPV 50 900 14 0.6(*) NNO +1.65 -- x x (x) -- x x 
UN111 IHPV 50 900 14 0.3(*) NNO +0.01 -- x x (x) x x x 
UN112 IHPV 50 900 14 1.0(*) NNO -7.05 -- (x) x (x) x x (x) 
x: positive mineral phase occurrence; (x): positive occurrence but no chemical analysis 

--: negative mineral phase occurrence 

CSPV:  cold seal pressure vessel. IHPV: internally heated pressure vessel 

XflH2O: mole fraction of H2O in the fluid after the run; (*): approx. mole fraction of H2O in the fluid prior to the run 

NNO: Ni/NiO-buffer 

Amph=amphibole; Pl=plagioclase; Cpx=clinopyroxene;Opx=orthopyroxene; Qtz=quartz; Ox=oxide (mainly ilmenite) 
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7. APPENDIX B.1 – FIGURE INDEX  
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7. APPENDIX B.2 – FIGURES  

 
Fig. B.1 a-d. BSE pictures of the H2O-bearing products of isobaric and HPD experiments of set-II (right 

column). Black bodies are bubbles; light grey particles represent microlites such as Cpx, Opx and oxides. 

Bubble size distribution (middle column) and crystal size distribution (left column) of set-II, calculated 

following the method of Higgins (2000), for other phases (OP) only. 
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Fig. B.2 a-d. BSE pictures of the H2O+CO2-bearing products of isobaric and HPD experiments of set-II 

(right column). Black bodies are bubbles; light grey particles represent microlites such as Cpx, Opx oxides. 

Bubble size distribution (middle column) and crystal size distribution (left column) of set-II, calculated 

following the method of Higgins (2000), for other phases (OP) only. 
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Fig. B.3 a-e. BSE pictures of the products of isobaric and LPD experiments of set-III (right column). Black 

bodies are bubbles; light grey particles represent microlites such as Cpx, Opx, Pl and oxides. Bubble size 

distribution (middle column) and crystal size distribution (left column) of set-III, calculated following the 

method of Higgins (2000), for other phases (OP) and for plagioclase (Pl) microlites. 
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Fig. B.4 a-e. BSE pictures of the products of isobaric and LPD experiments of set-IV (right column). Black 

bodies are bubbles; light grey particles represent microlites such as Cpx, Opx, Pl and oxides. Bubble size 

distribution (middle column) and crystal size distribution (left column) of set-IV, calculated following the 

method of Higgins (2000), for other phases (OP) and for plagioclase (Pl) microlites. 
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Fig. B.5 a-e. BSE pictures of the products of isobaric and LPD experiments of set-V (right column). Black 

bodies are bubbles; light grey particles represent microlites such as Cpx, Opx, Pl and oxides. Bubble size 

distribution (middle column) and crystal size distribution (left column) of set-V, calculated following the 

method of Higgins (2000), for other phases (OP) and for plagioclase (Pl) microlites. 
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