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Zusammenfassung 

Cadherine stellen eine große Familie von transmembranen Adhäsionsrezeptoren auf Zelloberflächen 

dar, deren erlesene Bindungsspezifitäten für die Formation und Instandhaltung der Gewebearchitektur 

von Vertebraten und Invertebraten verantwortlich sind. Circa 100 nicht klassische und 19 klassische 

Cadherine sind in Wirbeltiergenomen kodiert. Klassische Cadherine gliedern sich in zwei 

Unterfamilien: Typ I und II, von denen beide Kalzium abhängige Zelladhäsion vermitteln, die 

morphologischen Prozessen in Wirbeltieren zu Grunde liegen. Typ I Cadherine sind zumeist 

großflächig in Keimblättern und Epithelien exprimiert, wohingegen Typ II Cadherine im sich 

entwickelnden und erwachsenen zentralen Nervensystem (ZNS) weitaus feingliedriger und auch 

überlappend exprimiert sind. Vaskulär-endotheliales (VE) Cadherin, ein divergentes Mitglied der Typ 

II Familie, vermittelt homophile Zelladhäsion ausschließlich im Endothel, das die Blutgefäße 

auskleidet und ist unabkömmlich für vaskuläre Angiogenese und Instandhaltung der Vaskulatur. Für 

bakteriell produzierte VE-cadherin Ektodomän Fragmente wurde ein Adhäsionsmodel vorgeschlagen, 

bei dem sich das Protein auf derselben Zelloberfläche lateral zu Trimeren organisiert, die mit Trimeren 

nebeneinander liegender Zellen trans adhäsive Hexamere bilden. Dieses Model weicht stark vom 

allgemein akzeptierten Bindungsmechanismus anderer Cadherine ab, der als ‚strand swap’ 

Mechanismus bezeichnet wird, da er auf dem Austausch N-terminaler Regionen der extrazellulären 

cadherin (EC) ähnlichen Domänen zwischen zwei Protomeren besteht, aber keine Bildung von 

Trimeren involviert. Die vorliegende Dissertation befasst sich mit der detaillierten Charakterisierung 

des adhäsiven Bindungsmechanismus von VE-cadherin Ektodomänen, die in Säugetierzellen 

produziert wurden. Biophysikalische Studien, wie analytische Ultrazentrifugation, Größenausschluß-

chromatographie, Lichtstreudetektion und Aggregation von Liposomen sowie spektroskopische 

Rasterkraftmikroskopie von Proteinen in Lösung und Elektronen-mikroskopie künstlicher 

Zellverbindungen, zeigen, dass VE-cadherin den ‚strand swap’ Mechanismus klassischer Cadherine 

adoptiert, indem ausschließlich trans adhäsive Dimere gebildet werden. Zusätzlich wurde gefunden, 

dass die beschriebenen Trimere Artefakte repräsentieren, deren Bildung durch die Abwesenheit von 

Glykosylierung bei bakteriell produzierten Proteinen hervorgerufen wurde. Die Kristallstruktur der 

adhäsiven Domänen EC1-2 von VE-cadherin mit einer Auflösung von 2.1Å enthüllte Homodimere, 

deren Formation der ‚strand swap’ Mechanismus zu Grunde liegt. Die adhäsive Interaktionsseite ist 

einzigartig, da sie Charakteristika von Typ I und II Cadherinen vereint, was zu einer unüblichen 

Konfiguration des Dimers führt. VE-cadherin stellt daher einen strukturellen Außenseiter der Typ II 

Cadherine dar. Eine Studie, die homo- und heterophile Interaktionen von Typ II Cadherinen 

untersuchte, schlägt zum ersten Mal einen Bindungscode für diese Zelladhäsionsproteine vor, der die 

Spezifität ihres heterophilen Bindungsmusters entschlüsselt. Interessanter Weise wurde auch eine 

Interaktion zwischen Typ I N- und Typ II VE-cadherin, identifiziert, die unabhängig vom ‚strand 

swap’ Mechanismus ist, und eine neuartige Form einer cis-Interaction verspricht.  

Schlüsselwörter: Zell-Zell-Adhäsion / Cadherine / Kristallstruktur.   



 
 

Abstract 

Cadherins constitute a large family of cell surface transmembrane adhesion receptors whose binding 

specificity is important in generation and maintenance of tissue architecture in vertebrates and 

invertebrates. About 100 nonclassical cadherins and approximately 18 classical cadherins are encoded 

in vertebrate genomes. Classical cadherins, comprised of two subfamilies the type I and type II 

cadherins, mediate calcium dependent cell-cell adhesion that is essential for morphogenesis in 

vertebrates. Type I cadherins are typically expressed broadly in germ layers or epithelia, whereas type 

II cadherins have a finely grained expression pattern, which is overlapping and primarily restricted to 

the developing and adult nervous system. A divergent member of the type II cadherin family, vascular 

endothelial (VE) cadherin, mediates homophilic adhesion in the vascular endothelium and is crucial 

for vascular angiogenesis, maintenance and restoration of vascular integrity after injury. In the past a 

binding model for VE-cadherin has been proposed based on data from bacterially produced 

ectodomain fragments in which the protein forms trimers laterally on the same cell surface, which bind 

to trimers presented by juxtaposed cells to form adherent hexamers. This model is substantially 

different from the well characterized binding mechanism of other classical cadherins, which is 

mediated by N-terminal extracellular cadherin (EC) domains in a three dimensional domain swapping 

mechanism, termed the ‘strand swap mechanism’, and involves no trimer interactions. Here I report 

extensive studies of purified mammalian produced VE-cadherin ectodomains to elucidate the adhesive 

binding mechanism of this crucial protein. Biophysical studies such as analytical ultracentrifugation, 

size exclusion chromatography and multi angle light scattering in addition to liposome aggregation 

and atomic force microscopy imaging studies and cryo electron microscopy of artificial junctions 

reveal that VE-cadherin forms adhesive trans dimers between monomers emanating from opposing 

cell surfaces and not hexamers. Trimerization of bacterially produced protein is found to be artifactual 

due to lack of glycosylation. I present the 2.1Å resolution crystal structure of VE-cadherin adhesive 

domains EC1-2 which reveals that the strand swap mechanism common to classical cadherins 

underlies homodimerization. The adhesive interface of VE-cadherin is unique as it features 

characteristics of both cadherin subfamilies. Two tryptophan residues are exchanged which is 

reminiscent of type II cadherins, but an extended non polar interface region specific to type II 

subfamily members is absent as observed for type I cadherins, resulting in an unusual overall dimer 

organization. VE-cadherin can therefore be described as a structural outlier among classical cadherins. 

A systematic binding study of homophilic and heterophilic interactions of type II cadherins, including 

VE-cadherin, was performed and reveals evidence for a new binding code which appears to govern the 

specificity of these important CNS cell adhesion proteins. In addition, for the first time, a strong 

heterophilic interaction between type I N-cadherin and type II VE-cadherin could be identified, which 

appears to be strand swap independent and may represent a novel cis interaction between these 

cadherins.  

Key words: Cell-cell adhesion / cadherins / crystal structure. 
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List of commonly used abbreviations 
 
Abbreviation Description 
  
A pool Adductor motor pool 
Å Angström 
AFM Atomic force microscopy 
AUC Analytical ultracentrifugation 
A*-strand N-terminal section of the A-strand used for strand swapping 
Avi-tag C-terminal tag (GGGLNDIFEAGKIEWE) 
Avi*bio-tag Biotinylated C-terminal tag (GGGLNDIFEAGKIEWE, Lys biotinylated) 
BSA Buried solvent accessible area 
Cα Carbon alpha atom of amino acid 
CAM Cell adhesion molecule 
C-cadherin Compact embryonal stage cadherin 
Cis Lateral association between proteins on the same cell or liposome surface 
CM-dextran Carboxymethyl-dextran 
CYS-tag C-terminal tag (GGGC)  
C9-tag C-terminal tag (GGGTETSQVAPA) 
Da Dalton 
DGS-NTA (Ni) 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)-succinyl] 

nickel salt 
DOPC 1,2-dioleyl-sn-glycero-3-phsphocholine 
E9.5 Embryonic stage day 9.5 
E-cadherin Epithelial cadherin 
EC-domain Extracellular cadherin domain 
EDC 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide 
eF motor pool External Femorotibialis motor pool 
EM Electron microscopy 
FLAG-tag C-terminal tag (DYKDDDDK), FLAG owned by Sigma 
GPI-anchor Glycosylphosphatidylinositole anchor 
HEK 293 F cells Human embryonal kidney cells line 293 fast growth 
HEK 293 GNTI- HEK-cells 293 lacking enzyme N-acetylglucosamine transferase I 
KD Dissociation constant as measure for binding affinity 
KD(i) Isodesmic dissociation constant 
MALDI Matrix-assisted laser desorption/ ionisation 
MALS Multi angle light scatterin 
MN-cadherin Motor neuron cadherin 
N-cadherin Neural cadherin 
NHS N-hydroxysuccinimide 
NTA Nitrilotriacetic acid (chelating agent) 
Ni-NTA Nitrilotriacetic acid chelating Nickel (II)  
P Crystallographic point group 
PAGE Poly acrylamid gel electrophoresis 
P-cadherin Placental cadherin 
Pdb Protein data bank 
PDEA 2-(2-pyrdinyldithio) ethaneamine 
PISA Protein interactions, surfaces and assemblies 
r. m. s. d.  Root mean square deviation 
RU Response Unit 
SDS Sodium Dodecyl Sulfate 
SPR Surface Plasmon Resonance 
T-cadherin Truncated cadherin 
TCEP Tris(2-carboxyethyl)phosphine 
TOF Time of flight 
Trans Association between two opposing cells or liposomes 
VE-cadherin Vascular endothelial cadherin 
1d4 Antibody recognizing C9 antigen 
3D Three dimensional 
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1.1 Cell adhesion in multicellular organisms 
Every multicellular organism is constituted of heterotypic cells arranged into specific tissues, 

which form the basis for the formation of organs and complex tissue architectures (Gumbiner, 

1996; Takeichi, 1991). Selective organization of cells within and between these tissues is 

governed by the process of cell adhesion through which cells bind to adjacent cells or to 

extracellular structures (Gumbiner, 1996; Takeichi, 1991). Cell surface associated 

glycoproteins, termed cell-adhesion molecules (CAMs), are responsible for these processes. 

CAMs adhere either to other CAMs on surfaces of adjacent cells to mediate cell-cell adhesion 

or instead to components of the extracellular matrix to mediate cell-matrix adhesion 

(Takeichi, 1991). Interactions of CAMs are highly specific and can be either homophilic, in 

which identical CAMs bind to each other, or heterophilic, in which binding occurs between 

distinct proteins. Specific interactions at the molecular level are thought to underlie tissue 

morphogenesis and architecture on the cellular level.  

 

Since the first observations of selective cell adhesion (Steinberg and Gilbert, 2004) several 

major families of CAMs have been identified. Integrins and integrin ligands are primarily 

responsible for cell-matrix adhesion (Tuckwell and Humphries, 1993). Calcium independent 

cell-cell adhesion is mediated by members of the immunoglobin-like superfamily, including 

nectins and NCAMs (Goridis and Brunet, 1992; Takai et al., 2008) in addition to smaller 

families of adhesion molecules such as claudins and connexins (Cruciani and Mikalsen, 2006; 

Koval, 2006). The major family of adhesion proteins responsible for calcium dependent cell-

cell adhesion in vertebrates and invertebrates are the cadherins. Cadherins are essential during 

all stages of development for intercellular adhesion and cell sorting and are expressed in 

virtually all solid tissues in the adult where they are responsible for maintenance of tissue 

architecture (Patel et al., 2003; Suzuki, 1997; Takeichi, 1990, 1991). This important family of 

cell adhesion proteins will be the focus of this thesis. 

 

1.1 The cadherin superfamily of calcium dependent cell adhesion molecules 
Cadherins, which mediate cell-cell adhesion dependent on calcium ions, constitute a large 

superfamily of more than 350 proteins (Hulpiau and van Roy, 2009). Members of this 

superfamily are expressed in all vertebrates and invertebrates and are found even in 

choanoflagellates, the closest known unicellular relative of animals (Abedin and King, 2008). 

Most are thought to function in cell adhesion or recognition processes. Cadherins are all 

membrane associated glycoproteins, most being single-pass transmembrane proteins, which 
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have at least two tandem repeats of a characteristic structural element, the extracellular 

cadherin-like (EC) domain in their extracellular region (Nollet et al., 2000). The overall 

protein domain organization, number of EC domains present in the molecule and other 

sequence characteristics vary widely between different cadherins, allowing division of this 

family into several subfamilies (Figure 1 and (Nollet et al., 2000)). The classical type I and II 

cadherins constitute the best characterized of these. Classical cadherins are single-pass 

transmembrane proteins with an extracellular region comprised of five EC domains and are 

linked to the actin cytoskeleton by a highly conserved cytoplasmic domain that interacts with 

adaptor proteins called catenins. Classical cadherins are expressed exclusively in vertebrates 

throughout all stages of development including in the adult and are essential for tissue 

morphogenesis. Type I and type II classical cadherins are the focus of this thesis work and 

will be described in detail in subsequent sections. Other subfamilies have been less studied, 

but have similarly important roles. Protocadherins represents the largest subfamily of 

cadherins in mammals with more than 60 different proteins, which are primarily expressed in 

the central nervous system where their diversity may be important for neural patterning 

(Hulpiau and van Roy, 2009; Sano et al., 1993). Desmocollin and desmoglein subfamily 

members are localized together in the same cellular structure in vertebrate animals, referred to 

as the desmosome, which is a specialized cell-cell junction found mostly in tissues subject to 

mechanical stress, that is anchored to intermediate filaments intracellularly (Huber, 2003). 

Flamingo cadherins are unusual in the superfamily in that they are seven-pass transmembrane 

receptors. These are involved in planar cell polarity processes in both vertebrates and 

invertebrates (Usui et al., 1999). In addition, there are a few solitary atypical cadherin 

superfamily members which, too, mediate cell-cell adhesion, but cannot be grouped into the 

aforementioned subfamilies. These include the invertebrate ‘classical’ cadherins such as 

drosophila melanogaster DN- and DE-cadherins (Hynes and Zhao, 2000), as well as FAT and 

dachsous proteins (Sopko and McNeill, 2009). They are comprised of large numbers (>5) of 

EC domain repeats intermixed with other structural motifs. Another solitary member of the 

cadherin family is truncated (T-) cadherin (Figure 1), which shows an overall extracellular 

domain organization closely similar to that of classical cadherins with the caveat that T-

cadherin lacks the cytoplasmic domain, which is replaced by a glycosylphophatidyl inositole 

(GPI)-anchor (Ranscht and Dours-Zimmermann, 1991). 
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1.2 General features of classical cadherins  
Classical cadherins are divided into two groups, type I and type II, on the basis of differences 

at the level of sequence and genomic organization (Nollet et al., 2000). Both type I and type II 

classical cadherins mediate calcium-dependent cell-cell adhesion and show some degree of 

homophilic specificity in that adhesion between identical cadherin subtypes is favored, at 

least to some extent, over that between different cadherins (see Section 8.4 for discussion). 

Type I and II cadherins are expressed in solid tissues of all vertebrates, but they exhibit 

different types of distribution regarding their expression pattern. Type I cadherins have rather 

broad expression patterns, which are separated by germ layers and tissue types (Nakagawa 

and Takeichi, 1998), whereas type II cadherins are predominantly expressed in finely grained, 

often overlapping patterns in the central nervous system (Price et al., 2002; Suzuki et al., 

1991), in which they occur often in combinations of two or more subsets per single cell (Price 

et al., 2002). A notable exception is the type II cadherin-5 (VE-cadherin) that is found to be 

expressed exclusively in the vascular endothelium (See Introduction 1.8, (Breier et al., 1996; 

Lampugnani et al., 1992). 18 classical cadherins have been identified so far in mouse and 

human, five of which are type I cadherins: Epithelial (E-), Neural (N-), Placental (P-), Retinal 

(R-) and Muscle (M-) cadherin and 14 are type II cadherins vascular endothelial (VE-) 

cadherin (sometimes referred to as cadherin-5), cadherin-6, -7, -8, -9, -10, -11, -12,  -18, -19, 

-20, -22 and -24 (Hulpiau and van Roy, 2009; Posy et al., 2008). The phenotypes of knockout 

mice for individual classical cadherin subtypes tend to reflect the different types of expression 

patterns observed for type I and type II cadherins. Effects of type I cadherin inactivation are 

severe, at least in the cases of E- and N-cadherin. E-cadherin null embryos die at the 

preimplantation stage due to failure of adhesion and compaction in the blastocyst, while N-

cadherin null embryos die during gestation due to severe cell adhesion defects in the heart and 

also show malformation of the neural tube (Charlton et al., 1997). Both knockouts underscore 

the essential role for classical cadherin-mediated calcium dependent adhesion throughout 

development. In contrast, type II cadherin knockout phenotypes tend to be more subtle. For 

example, cadherin-6 and cadherin-8 knockout mice are viable but show defects in 

compartmentalization in the CNS and kidney development or in cold sensation, respectively 

(Inoue et al., 2001; Suzuki et al., 2007). The VE-cadherin knockout phenotype will be 

discussed in a later Section 1.8.2. 
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Table 1: Classical type I and II cadherins identified in mouse and human. 

 

Classical type I cadherins Classical type II cadherins 

  

E-cadherin VE-cadherin /cadherin-5a 
N-cadherin cadherin-6 
P-cadherin cadherin-7 
R-cadherin cadherin-8 
M-cadherin cadherin-9 

 cadherin-10 

 cadherin-11 

 cadherin-12 

 cadherin-18b 

 cadherin-19 

 MN-cadherin / cadherin-20 a 

 cadherin-22 

 cadherin-24 

  

 
a These cadherins are more commonly known under the first listed name. 
b Human Cadherin-18 is sometimes referred to as cadherin-14. 
 

All classical cadherins share the same overall protein organization (Figure 1 and 2) and are 

expressed as inactive pro-proteins, with an N-terminal pro-domain resembling a cadherin EC-

like domain fold, which is removed by furine proteases on the cell surface yielding mature 

protein that is active in adhesion (Koch et al., 2004). The mature protein is comprised of a 

large extracellular domain, commonly referred to as the ectodomain, a single pass class I 

transmembrane domain and a short cytoplasmic tail of approximately 150 amino acids in 

length, which is highly conserved on the sequence level (Figure 2)(Nollet et al., 2000). 

Mature ectodomains are composed of five successive EC domains with approximately 110 

amino acids each connected by interdomain linkers, reminiscent of beads on a string. A wide 

array of structural data revealed that these EC domains are each composed of a seven stranded 

β-barrel (Boggon et al., 2002; Ciatto et al., 2010; Harrison et al., 2010a; Harrison et al., 

2010b; Haussinger et al., 2004; Nagar et al., 1996; Patel et al., 2003; Patel et al., 2006; 

Shapiro et al., 1995), in which the strands are by convention named A to G from the most N-

terminal to the most C-terminal strand (Figure 2b and c).  
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The A strand is further divided into an N-terminal portion (the A* strand) and a C-terminal 

portion (the A strand), which hydrogen bond to the B and G strands, respectively (Figure 2b). 

Three atomic resolution structures of full length classical cadherins (Boggon et al., 2002; 

Harrison et al., 2010b) gave detailed information about the arrangement and conformation of 

the cadherin ectodomain, which was found in each to adopt a highly similar crescent shaped, 

curved form (Figure 2a). Successive EC-domains bind three divalent calcium ions in their 

interdomain linker regions (Figure 2), principally via carboxylate side chains of acidic 

residues in three motifs, conserved on sequence level for all classical cadherins: DRE, in the 

EC domain preceding the interdomain linker, DXND directly in the linker region and DXD 

localized in the EC domain posterior to the linker (Figure 2 and 3) (Boggon et al., 2002; 

Nagar et al., 1996). Electron microscopy studies of cadherin ectodomains in presence and 

absence of calcium (II) revealed, that it is crucial for locking the orientation of successive EC 

domains to each other into a rigid curved overall shape; in the absence of calcium 

ectodomains are folded into globular shapes (Pokutta et al., 1994). In addition, cell-cell 

aggregation experiments of cadherin expressing cells showed that removal of calcium (II) 

resulted in abrogation of adhesion (Takeichi et al., 1988), which confirms its role for the 

biological importance of these proteins. Notably, the binding to calcium also protects the 

ectodomains of cadherins, especially the interdomain linker regions, from proteolytic 

digestion (Takeichi, 1991). These rigid cadherins ectodomains engage in binding interactions 

across intercellular contacts to mediate adhesion and are linked to the cytoplasm through 

interactions of the cadherin cytoplasmic tail with armadillo proteins β- or γ- and p120-catenin 

(Figure 2a and (Gentil-Dit-Maurin et al., 2010; Huber and Weis, 2001; Ishiyama et al., 2010; 

Lampugnani et al., 1995; Ozawa et al., 1989)). These adaptor proteins enable the indirect 

attachment of cadherins to the cytoskeleton via further intracellular protein interactions with 

proteins such as α-catenin (Figure 2a) (Kobielak and Fuchs, 2004). p120 catenin also has a 

well defined role in regulation of cadherin trafficking (Liu et al., 2007; Reynolds and 

Carnahan, 2004).  
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1.3 Molecular basis of cadherin-cadherin binding 
Early in vitro studies showed that a variety of cell lines that do not normally form aggregates 

in suspension could be induced to aggregate in a calcium dependent manner by transfection 

with cDNA encoding cell surface type I or type II classical cadherins (Breviario et al., 1995; 

Hatta et al., 1988; Nagafuchi et al., 1987; Takeichi et al., 1988). Blocking studies also 

demonstrated that calcium dependent adhesion between cells in culture or in embryonic 

tissues could be disrupted by addition of antibodies against the cadherin ectodomain (May et 

al., 2005; Vestweber and Kemler, 1985; Volk et al., 1984).Together with subsequent 

experiments, including mutational analyses and gene deletion studies, these assays established 

the role of molecular interactions between cadherins in driving calcium dependent cell-cell 

adhesion. These interactions occur between cadherin ectodomains presented on opposing 

cells. Purified ectodomain fragments were found to associate homophilically in a variety of 

assays (Harrison 2010b, 2010a, Katsamba 2009, Ahrens 2003, Boggon 2002, Nagar 1996). 

Additionally, while interactions between the cadherin cytoplasmic domain and the 

cytoskeleton were found to be essential for proper cellular cohesion (Gentil-dit-Maurin 2010, 

Kintner 1992, Nagafuchi 1989), recently it has been found that in cryo EM and transfection 

studies (Harrison et al., 2010b; Hong et al., 2010; Ozaki et al., 2010), cadherin ectodomains 

attached to the plasma membrane are sufficient for initial cell-cell adhesion. 

 

The binding interface between cadherin ectodomains that underlies homophilic classical 

cadherin adhesion has been extensively characterized by atomic resolution structures of 

adhesive ectodomain fragments from classical type I (Boggon et al., 2002; Harrison et al., 

2010a; Harrison et al., 2010b; Haussinger et al., 2004; Nagar et al., 1996; Shapiro et al., 1995) 

and type II (Patel et al., 2006) cadherins. In crystal structures of each type, dimers are 

observed between molecules oriented as if interacting across the intercellular space, in which 

two cadherin protomers bind to each other via their membrane distal EC1 domains (Figure 

3a). The dimers are two fold symmetrical and EC1 domains are arranged approximately 

parallel producing, due to the curvature of the protomers, an overall trans dimer orientation. 

In all native classical cadherin dimers, the amino terminal residues of the A-strand, designated 

the A*-strand, are exchanged between both protomers (Figure 3b) and are held in place by 

intermolecular hydrophobic and ionic interactions as well as hydrogen bonds. This 

arrangement is referred to as the strand swapped cadherin dimer. The exchange of β-strands is 

stabilized by docking of one tryptophan residue (Trp2) in type I cadherins or two tryptophan 
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residues, Trp2 and Trp4, in type II cadherins into a hydrophobic acceptor pocket of the 

partnering molecule (Figure 3b).  

 

Type I and type II cadherins share the mechanism of strand swapping, but there are a few 

major differences in the detail which may underlie adhesive specificity between the two 

subfamilies (see Section 1.6). Type II cadherins have in contrast to type I cadherins an 

extended hydrophobic region along the entire face of the EC1 domain whereas type I 

cadherins form contacts only close to the site of A*-strand swapping near the apex of the 

domain (Patel et al., 2006). Also, the size of the acceptor pocket of type I cadherins is rather 

small accommodating a single Trp2 side chain, whereas the acceptor pocket of type II 

cadherins has to accommodate Trp2 and Trp4 and thus is significantly larger (Patel et al., 

2006). These differences suggest potential steric incompatibility of type I and type II 

cadherins with regard to adhesive dimer formation. 

 

Biological importance of the strand swapped dimer observed in crystal structures of classical 

cadherins has been confirmed by a number of methods. Sequence analyses show that Trp2 in 

type I cadherins and Trp2 and Trp4 in type II cadherins as well as the respective residues 

lining the acceptor pocket are found to be highly conserved within classical cadherins (Figure 

3c). Mutation of Trp2 in type I cadherins (Kitagawa et al., 2000; Tamura et al., 1998) or either 

Trp2 or Trp4 in type II cadherins (Harrison et al., 2010b; May et al., 2005) to alanine is 

sufficient to abrogate strand swap mediated adhesion. In agreement with these results, 

alteration of one of the alanine residues lining the acceptor pocket to a large methionine in 

order to ‘occupy’ the pocket (Tamura et al., 1998) or addition of indole-3-acetic acid, which is 

the soluble analogue of the tryptophan side chain, resulted in loss of adhesive function in both 

cell based experiments (Tamura et al., 1998) and studies with purified cadherin proteins 

(Perret et al., 2002). Additionally, the N-terminal amino group of the cadherin engages in an 

intermolecular salt bridge in the dimer configuration, which is conserved for type I and II 

classical cadherins. Extension of the mature N-terminus by one or two residues prevents 

formation of the salt bridge and was shown to result in loss of adhesive binding (Bibert et al., 

2002; Boggon et al., 2002; Harrison et al., 2010a; Ozawa et al., 1990). Cross-linking studies 

with E- and N-cadherin also detected the strand swap dimer (Harrison et al., 2005; 

Troyanovsky et al., 2003). 
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More generally, the critical role for the EC1 domain suggested by structures of the adhesive 

dimer is also supported by several lines of evidence. The involvement of N-termini regions 

alone for trans adhesion was also observed in rotary shadowing electron microscopy 

experiments of full length type I E- and N-cadherin and type II VE-cadherin ectodomains 

conducted by Engel and collaborators (Ahrens et al., 2003; Pertz et al., 1999; Tomschy et al., 

1996). In addition, fluorescence resonance energy transfer (FRET) experiments with purified 

E-cadherin supported overlap of EC1 domains only (Sivasankar et al., 2009). In a more 

physiologically relevant context, He et al. (2003) and Al-Amoudi et al (2008) visualized the 

organization of desmosomal cadherins, which show the same overall domain organization as 

classical cadherins, in desmosomes of mouse and human skin, respectively (Figure 4a). 

Fitting of strand swapped C-cadherin trans dimer structures into electron tomography 

reconstructions of sections of mouse neo-natal and human skin, confirmed that N-terminal 

domains are employed also in situ (Figure 4b). In the tomograms, cadherins adopted the dimer 

arrangement observed in crystal structures and these therefore are very likely to be the 

biological relevant adhesive binding unit for classical and desmosomal cadherins.  

 

1.4 Cadherins utilize a 3D domain swapping mechanism for adhesion 
The strand swap mechanism described here for cadherin adhesive binding is an example of 

3D domain swapping (Bennett et al., 1995; Shapiro et al., 1995), because the swapped A* β-

strand, is replaced by the exact same domain from the partnering protomer and vice versa. 

The swapped domain has in monomer and homodimer configuration an identical residue 

environment, provided by intramolecular or intermolecular interactions, respectively. Domain 

swapping resulting in dimer formation is accompanied by an entropy loss, which can be 

compensated by a less energetically favorable monomeric conformation. In the case of 

cadherins this is likely to be caused by a strained conformation of the A-strand in the 

monomer configuration, which is eased in the dimer (Vendome et al., 2010). 3D domain 

swapping in cadherins is likely to be responsible for the relatively low binding affinities 

observed for type I E-, N- and C-cadherin and type II cadherin-6, which are found to be in the 

micromolar range (Chappuis-Flament et al., 2001; Ciatto et al., 2010; Harrison et al., 2010a; 

Harrison et al., 2010b; Katsamba et al., 2009). This is because the closed monomer form can 

act as a form of ‘competitive inhibitor’ by sequestering the A-strand. The low affinity of 

cadherin homophilic binding is thought to be important for specificity in adhesion, since 

higher affinity dimerization mechanisms would be less sensitive to small differences in 

interfacial residues between mismatched molecules (Chen et al., 2005). 
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1.5 T-cadherin structures reveal a novel adhesive binding mechanism 
Recently, the crystal structure of the adhesive interface of a divergent vertebrate cadherin, T-

cadherin, has been determined (Ciatto et al., 2010). The structure, comprising domains EC1-2, 

revealed a novel interface adopting an overall X shaped configuration (Figure 5a), which is 

characterized by a symmetrical contact region centered around the calcium linker region 

(Figure 5a). Domains EC1-2 are oriented almost parallel to each other with hydrophobic, 

ionic and hydrogen bonding interactions involving residues of the EC1 domain, the 

interdomain linker and domain EC2 (Figure 5b). The area of the EC1 domain involved in this 

interface is almost the same as found in the strand swapped dimer of classical cadherins, 

which was described above. However, the analogous region to the A* strand in classical 

cadherins is found not to be swapped between protomers. Instead, Ile2, at the same position as 

key residue Trp2 in type I cadherins (Figure 3c), is docked into a small hydrophobic pocket in 

its own protomer and no strand exchange occurs. Extensive mutagenesis studies targeting this 

novel interface revealed in biophysical assays, cell aggregation assays and axon guidance 

experiments (Ciatto et al., 2010) that the X interface is crucial to T-cadherin adhesion, 

suggesting this interface to be the biological adhesive interface. 

 

Interestingly, this interface was also observed in E-cadherin and cadherin-6 mutants, in which 

strand swap adhesion was impaired (Harrison et al., 2010a). Mutations specifically disrupting 

the X interface in type I E-cadherin and type II cadherin-6 whilst leaving the strand swap 

interface intact, lead to loss of adhesive binding in short time scale SPR and cell aggregation 

experiments without lowering the binding affinity in long time scale sedimentation 

equilibrium AUC analysis. Further biophysical experiments suggested that exchange between 

monomer and dimer was slowed in these mutants. This leads to a model, in which the X-

dimer interface acts as a binding intermediate, which positions the A-strands in close 

apposition for strand swapping (Figure 5c). 

 

Interestingly, despite the fact that EC1-domains alone are responsible for trans adhesive 

strand swapped binding and are able to form dimers at high concentration in protein crystals 

(Patel et al., 2006; Shapiro et al., 1995), deletion mutagenesis studies revealed, that EC1 

domains alone are not sufficient to mediate trans dimerization of cells and require, in 

addition, presence of domain EC2 in order to mediate adhesion (Shan et al., 2004). The 

requirement for EC2 may reflect its involvement in the X dimer interface, though other 

effects of EC2 removal such as changes in EC1 folding or orientation can not be ruled out. 
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1.6 Specificity and promiscuity of adhesive interactions between cadherins 
Numerous studies suggest that within and between each subfamily of vertebrate classical 

cadherins proteins bind homophilically to each other, preferring binding to the same or similar 

subtype (Boggon et al., 2002; Ciatto et al., 2010; Harrison et al., 2010a; Harrison et al., 

2010b; Katsamba et al., 2009; Nagar et al., 1996; Patel et al., 2006; Price et al., 2002; Shan et 

al., 2004; Shan et al., 2000; Shapiro et al., 1995; Shimoyama et al., 1999; Shimoyama et al., 

2000; Takeichi et al., 1988). This provides a potential simple and efficient mechanism, to 

segregate identical cells into homogenous tissues (Patel et al., 2003).  

 

In multiple cell aggregation studies it was found that cells transfected with type I cadherins 

fail to intermix with cells expressing type II cadherins and in all cases form separate cell 

aggregates (Duguay et al., 2003; Foty and Steinberg, 2005; Katsamba et al., 2009; Patel et al., 

2006; Shimoyama et al., 2000). These results suggest that type I and type II cadherin binding 

is orthogonal, because there were no cross reactions found between subfamilies, and may be 

explained by the substantial differences in the adhesive interface between these subfamilies 

(Section 1.3). 

 

Within type I cadherins, an example for homophilic binding was described by Nose et al 

(1989). Lungs of mouse embryos consist of epithelial cells expressing E- and P-cadherin and 

mesenchymal cells expressing N-cadherin. After dissociation of the lung tissues with trypsin, 

it was observed that these cells were able to re-assemble into a lung like tissue within which 

epithelial and mesenchymal cells were segregated. Further, this group found that L-cells 

expressing recombinant E-cadherin added after homogenisation colocalized with epithelial, 

but not with mesenchymal cells in the reconstituted structures showing that cadherin subtype 

expression could determine sorting in a tissue-like environment. Similar sorting of cells based 

on type I cadherin sub-type was observed in aggregation assays of mixtures of transfected 

cells singly expressing either E- or P cadherin, or E and N-cadherin (Nose et al., 1990; Shan 

et al., 2000). However, other experiments, mostly involving cell aggregation or co-culture 

assays revealed heterophilic binding between chicken and mouse N- and R-cadherin 

(Matsunami et al., 1993), chicken N- and E-cadherin (Volk et al., 1984), chicken and human 

E- and P-cadherin (Murphy-Erdosh et al., 1995) and chicken R- and P-cadherin and N- and P-

cadherin (Duguay et al., 2003), suggesting, that type I cadherin binding is considerably more 

promiscuous. Recent studies from Katsamba and Carroll et al (2009) reproduced in 

biophysical surface plasmon resonance (SPR) using purified E- and N-cadherin the 
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heterophilic binding behavior of type I E- and N-cadherin in vitro, which appears to be 

delicately regulated by homodimerization and heterodimerization affinities.  

 

The type II subfamily has an even more elaborate heterophilic binding pattern than found for 

type I cadherins. A well characterized example of homophilic selectivity for type II cadherins 

was reported by Price et al (2002). Type II cadherins are expressed throughout the cns during 

development and adult stages and are found to be expressed in motor pools in the spinal cord, 

which are functional subsets of motor neurons clustered in the lateral motor column (Price et 

al., 2002). Neurons within a motor pool are electrically coupled to each other (Price et al., 

2002) and control a single muscle target in the limbs. Cadherins are found to be expressed 

either alone or in subsets of different combinations of two or more subfamily members in 

motor pools. For example, motor neuron (MN-) cadherin (chicken homolog to human and 

mouse cadherin-20) expression becomes restricted to the Adductor (A) pool during 

segregation of motor pools (Price et al., 2002). In ovo electroporation studies, which re-

introduced MN-cadherin expression into the neurons of other segregated motor pools in the 

lateral motor column, found that MN-cadherin mis-expression resulted in intermixing of the 

A and external Femorotibialis (eF) pool exclusively, whereas other pools remained separated 

from each other. Reintroduction of MN-expression into the eF neurons removed any 

differences in cadherin expression between these pools in vivo. The A and eF neurons were 

then expressing the exact same set of type II cadherins whereas for the other motor pools cell 

surface differences where maintained, which suggests a complex fine tuned degree of 

adhesive specificity introduced by type II cadherins (Price et al., 2002). 

 

Shimoyama et al (2000) conducted a systematic cell aggregation study that revealed not only 

homophilic, but also heterophilic binding behavior of type II cadherins. The study was 

conducted with eight transfected L-cell lines of which each expressed one of the human type 

II cadherins 6, 7, 8, 9, 10, 11, 12 and 14. All of the type II cadherins tested exhibited equal 

homophilic binding behavior, in that they all formed approximately the same aggregate size, 

except cadherin-9 and -10 which had lower initial expression levels. Heterophilic cell 

aggregation assays conducted on all possible cadherin pairs of the eight proteins resulted in 

one of three outcomes: Some cadherin pairs aggregated homogenously, from which similar 

adhesive specificity was concluded; others were found in heterogeneous partially mixed 

aggregates, from which was assumed that these cadherins share part of their binding 

specificities; or complete segregation was observed, where no binding specificity is in 
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common between the two cadherins tested. For example, cells expressing cadherin-6 were 

found in homogeneous aggregates with those expressing cadherin-9, in heterogeneous 

aggregates with those expressing cadherin-10 and showed no intermixing with cadherin-11 

expressing cells. These assays indicated a complex pattern of type II specificity although they 

were conducted only on cadherin pairs. In vivo type II cadherins are found to be expressed in 

a complex pattern, sometimes with multiple cadherins on the same cell, which makes a highly 

complex homo- and heterophilic interaction pattern likely.  This may be important since type 

II cadherins are expressed in the developing brain and spinal cord, with notable regional 

expression patterns in the cerebral cortex, cerebellum and thalamus as well as in motor pools 

as described above (Price et al., 2002; Redies et al., 2003; Suzuki, 1997). 

 

Domain shuffling experiments using either type I or type II cadherins revealed that inherent 

cadherin specificity is governed by adhesive domain EC1 (Nose et al., 1990; Patel et al., 

2006; Shan et al., 2000). Type I and II chimera proteins were produced for these experiments, 

which were composed of domain EC1 (‘head’) of one cadherin and the ‘body’ (EC2-4) of 

another. Their binding behavior was assessed by cell aggregation assays and it was found that 

cells expressing cadherins with matched EC1-domains, e.g. E-cadherin wild type and E-

cadherin EC1 chimera or cadherin-6b wild type and its EC1 chimera, formed homogenous 

aggregates of wild type and chimera proteins and in contrast, proteins which had mis-matched 

EC1 domains (‘heads’), but matched domains EC2-4 (‘bodies’) formed separate aggregates 

(Patel et al., 2006). Based on these experiments and other studies (Chen et al., 2005; 

Klingelhofer et al., 2000; Posy et al., 2008) it was proposed that adhesive specificity is 

governed exclusively by amino terminal EC1 domains. This is in agreement with the 

localization of the strand swapped adhesive interface in the EC1 domain and suggests that 

differences between cadherin subtypes in the interface region may underlie specificity. 

 

 

1.7 Classical cadherins are the core molecules of adherens junctions 
Adherens junctions are intercellular structures which play a pivotal role in cell-cell adhesion 

and their major transmembrane components are classical cadherins (Farquhar and Palade 

1963; McNutt and Weinstein 1973; Takeichi 1991). In particular, cell-cell junctions found in 

the intestinal epithelium are well studied and electron microscopy of these shows an 

interesting arrangement of adherens junctions with other cell-cell junctions in what is referred 

to as the junctional complex (Figure 6a). Most apical positioned are tight junctions (O) which 
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are formed by claudins and occludins and seal the underlying tissues from the intestine lumen 

(Koval, 2006). Sub-apical to those are located the zonula adherens (ZA), which represent a 

specialized form of cadherin mediated adherens junction. In addition, smaller adherens 

junction clusters of cadherins are also found distributed along the entire lateral part of the cell 

(Ozaki et al., 2010).  

 

Further toward the basal side of the lateral membrane are desmosomes, in which as mentioned 

above the cadherin superfamily members desmogleins and desmocollins mediate adhesion 

between cells and are connected via intracellular proteins to intermediate filaments, visible as 

electron-dense plaques in the micrographs (Al-Amoudi and Frangakis, 2008; He et al., 2003). 

Zonula adherens a type of adherens junctions that are observed in intestinal epithelium link 

cells together in a belt extending around the sub apical zone, which assembles cells into 

sheets, allowing coordinated tissue movements across entire epithelial layers (Harris and 

Nelson, 2010). In addition, other examples for specialization of cadherin mediated adherens 

junctions are intercalated discs, which are found in the cardiac muscle, puncta adherentia 

which are adherens junctions found bordering synapses and adherens junctions in the vascular 

endothelium, which will be described in greater detail in Section 1.8. In all adherens 

junctions, opposing cell membranes are positioned parallel to each other with an 

intermembrane spacing of approximately 150-300Å (Farquhar and Palade, 1963; Harrison et 

al., 2010b; McNutt and Weinstein, 1973) and a high extracellular concentration of protein, 

representing cadherin ectodomains, is observed between the membranes. This assembly is 

accompanied by cytoplasmic plaques, representing the intracellular assembly of proteins and 

F-actin (Farquhar and Palade, 1963; McNutt and Weinstein, 1973).  

 

Extracellular domains of cadherins mediate trans adhesion in adherens junctions via the well 

understood strand swap binding mechanism as described above. However, the understanding 

of the molecular mechanism underlying lateral, cis, assembly of cadherins has been less clear. 

A potential cis interaction was described for the first time by Boggon et. al. (2002) for C-

cadherin and has been very recently extensively studied additionally for E- and N- type I 

classical cadherins (Harrison et al., 2010b). Together, these studies suggest that the assembly 

of ectodomains in a molecular layer formed by a single cis interface in addition to the 

swapped trans interface that was observed in the crystal structures of type I E-, N- and C-

cadherin represent the arrangement of cadherins in adherens junctions (Figure 6b) (Boggon et 

al., 2002; Harrison et al., 2010a). The cis interface was identified to be an interaction between 
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EC1, comprising a region opposite the strand swap interface involving strands C, F and G and 

residues of the quasi β-helix of one protomer, and strands B, D and E of EC2 of the following 

protomer (Figure 6c). The biological relevance of this interface for junction formation was 

tested by mutagenesis studies of E-cadherin mutants, in which hydrophobic core residues 

found in this interface, Val81 (EC1) and Leu175 (EC2), were substituted with negatively 

charged Asp residues to introduce repulsion and specifically inhibit cis interactions while 

leaving trans interactions functional. Crystal structures of two domain fragments of E-

cadherin cis mutant protein lacked the assembly of the molecular layer which was observed 

for all previous two domain and five domain type I cadherin structures, and, notably, even for 

strand swap mutants adopting X shaped dimer confirmations (Harrison et al., 2010a). In a 

cellular context, wild type E-cadherin formed stable, non fluctuating adherens junctions, 

whereas the mutant protein was found to produce highly mobile and unstable junctions, which 

the mutant protein diffused in and out of quickly (Harrison et al., 2010b). In addition, cryo 

EM studies of wild type and cis mutant proteins showed clearly, that despite the fact that both 

molecules were able to aggregate liposomes similarly well, only wild type E-cadherin 

arranged into an ordered array at intermembrane contact sites, closely resembling the 

molecular layer seen in the crystal structures (Figure 6d, left panel). The mutant protein was 

concentrated at junctions, but was shown to be unordered (Figure 6d, right panel). Together, 

the cell and liposome studies suggest that passive diffusion or cytoplasmic interactions alone 

are not sufficient to induce clustering of cadherins into ordered junctions, which is most likely 

driven by suggested cis interface.  

 

This cis interface observed for type I cadherins, or similar potential cis interface, could not be 

identified in type II cadherin crystal structures (Patel et al., 2006) or in electron tomography 

studies of desmosomal cadherins. Nonetheless, a comparable ectodomain-mediated clustering 

mechanism may operate, because both of these cadherin subfamilies are known to form 

adherens junctions or desmosomal junctions, respectively (Al-Amoudi and Frangakis, 2008; 

He et al., 2003; Kiener et al., 2006; Uehara, 2006). 
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1.8 Vascular endothelial cadherin, a divergent classical cadherin  

1.8.1 Special features of the vascular endothelium 

Under physiological conditions, fluids, cells and nutrients are exchanged between the blood 

compartment and surrounding tissues. Endothelial cells line the vasculature and represent a 

selective barrier separating blood from the underlying tissues as they control the passage of 

blood proteins, cells such as leukocytes, and fluids (Harris and Nelson, 2010). Passage of 

these is achieved by specialized transport vesicles and by coordinated disassembly, ‘opening’, 

and assembly, ‘closure’, of adherens junctions (Dejana et al., 2009). The endothelium is also 

the site for angiogenesis, which involves remodelling and extension of the vasculature (Harris 

and Nelson, 2010) and junctions found in this monolayer do function not only as barrier, but 

also as signalling structures which limit growth and apoptosis and regulate vascular 

homeostasis (Dejana, 2004). Thus, many pathological diseases such as atherosclerosis, 

diabetes, brain stroke and disease states like inflammation, allergy and hypertension and also 

tumor metastasis (Dejana et al., 2009; Harris and Nelson, 2010) are found to involve 

abnormal permeability of the endothelium layer.  

 

Cell-cell junctions in endothelial cells are less rigidly organized than those found in epithelial 

cells despite the mechanical stress and shear forces they endure (Sato and Ohashi, 2005), 

likely so they can accommodate the high degree of change these cells undergo during blood 

vessel formation, maintenance and remodelling (Dejana, 2004; Gavard, 2009). Endothelial 

cells contain tight junctions and adherens junctions, which are, in contrast to those in 

epithelial cells, intermingled in that tight junctions are not exclusively found at the apical side 

of the intercellular cleft (Dejana et al., 2009; Harris and Nelson, 2010). Tight junctions play a 

role especially in endothelial cells in stringent barriers, i.e. those of the blood-brain barrier, 

and in addition regulate the permeability of the monolayer. Adherens junctions are more 

important during initial cell-cell contact, establishment and maintenance of adhesion and also 

for remodelling processes (Harris and Nelson, 2010). Interestingly, it is suggested that 

adherens junctions are formed first and tight junctions occur once the junction is 

stabilized(Harris and Nelson, 2010), which is supported by the fact that in some cell systems 

blocking of adherens junctions ablates correct formation of tight junctions (Dejana et al., 

2009). Vascular endothelial (VE) cadherin, a divergent type II cadherin, is the endothelial-

specific protein in adherens junctions (Breier et al., 1996; Dejana et al., 1996; Lampugnani et 
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al., 1992; Vittet et al., 1997) and claudin-5 is the major component of tight junctions in the 

endothelium. 

 

1.8.2 VE-cadherin plays a pivotal role in the vascular endothelium 

VE-cadherin is found in vertebrate species including birds, fish, amphibia and mammals and 

plays a pivotal role in the vascular endothelium. Endothelial cells express, in addition to VE-

cadherin, type I N-cadherin and low levels of P-cadherin, but exclusively VE-cadherin is 

found to be concentrated in adherens junctions (Figure 7a and b)(Kapadia, 1984; Uehara, 

2006), whereas N-cadherin is found to be dispersed over the cell surface and absent from cell-

cell contacts (Gentil-Dit-Maurin et al., 2010; Jaggi et al., 2002; Liaw et al., 1990; Navarro et 

al., 1998; Salomon et al., 1992). VE-cadherin knockout mice die during gestation at E9.5 due 

to disintegration of primitive vasculature (Carmeliet et al., 1999) and, furthermore, VE-

cadherin gene null mutations in murine embryonic stem cells lead to a dispersed endothelium 

lacking organized vasculature in embryonic bodies (Vittet et al., 1997). Similarly, depletion of 

VE-cadherin in zebrafish embryos resulted in collapse of initial vascular networks as vessels 

could not form cell-cell junctions critical for lumen formation (Dejana, 2004).  

 

In another set of experiments, in which antibodies directed against VE-cadherin were injected 

into adult mice, permeability of the vasculature increased, leukocyte trafficking was enhanced 

and the vasculature disassembled, which resulted in death within 24 hours post injection 

(Corada et al., 1999; May et al., 2005). In contrast, knockout mice for claudin-5, which is the 

major component of tight junctions in the vascular endothelium, had a normal overall 

morphology of the vasculature, but died within 10 hours after birth due to dysfunction of the 

blood brain barrier. Overall, these experiments suggest a crucial, specific, non-redundant role 

for cell-cell adhesion mediated by VE-cadherin. This important protein is also involved in 

regulation of cellular processes like cell contact inhibition, leukocyte trafficking (Navarro et 

al., 1995), signaling processes (Harris and Nelson, 2010) and control of vascular permeability 

(Corada et al., 2001). 
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Interestingly, N-cadherin, which is co-expressed with VE-cadherin on endothelial cells, was 

not able to rescue the severe defects caused by VE-cadherin removal, although it is a potent 

cell-cell adhesion protein in other important tissues. Gentil-dit-Maurin et al (2010) conducted 

a study with embryonic bodies, in which VE-cadherin expression was silenced and N-

cadherin adhesive behavior observed. Embryoid bodies expressing VE-cadherin showed 

angiogenesis sprouting whereas bodies lacking VE-cadherin did not. N-cadherin also failed in 

these experiments to mediate sprouting in place of VE-cadherin once silenced, which supports 

VE-cadherins non-redundant role for adhesion in the vasculature. N-cadherin is found to be 

dispersed evenly over the cell surface in presence of VE-cadherin (Jaggi et al., 2002; Salomon 

et al., 1992), but localized to junctions when VE-cadherin was not expressed (Gentil-Dit-

Maurin et al., 2010; Navarro et al., 1998). In in vitro transfection experiments, 

immunofluorescence staining of endothelium cells and different transfected cell lines co-

expressing N-cadherin and VE-cadherin (Jaggi et al., 2002; Navarro et al., 1998) revealed that 

VE-cadherin excludes N-cadherin actively from junctional localization, which is the reason 

for its even distribution on the cell surface. A study by Jaggi et al (2002) provided additional 

insight, showing that the effect VE-cadherin has on type I N-cadherin is specific; it has no 

effect on other type I cadherins like E- and P-cadherin, because in immunofluorescence 

staining of cells co-expressing E- and VE-cadherin or P- and VE-cadherin, these proteins 

were found to co-localize at cell-cell contacts (Jaggi et al., 2002). This is the first time that 

competition between cadherins for clustering at junctions was observed. Nonetheless, N-

cadherin can in presence of VE-cadherin still homophilically adhere to cells expressing N-

cadherin only, which suggests that N-cadherin homophilic adhesion might be responsible for 

connection of the endothelial-monolayer to the surrounding cell types such as smooth muscle 

cells or pericytes (Navarro et al., 1998).  

 

1.8.3 Hexamer model for VE-cadherin binding 

VE-cadherin shares several features with classical type II cadherins including exon and intron 

arrangement on the DNA level and the overall domain organization of the protein (Nollet et 

al., 2000). It also has a small prodomain, an ectodomain composed of domains EC1-5, a 

single transmembrane domain and a short cytoplasmic tail similar to type II cadherins. In 

addition VE-cadherin is associated in endothelial cells with β-, γ- and p120 catenins (Gentil-

Dit-Maurin et al., 2010; Lampugnani et al., 1995; Lim et al., 2001; Potter et al., 2005) which 

promote interactions via α-catenin to F-actin for classical cadherins (see above).  



35 
 

 

Surprisingly, despite these similarities, bacterially produced VE-cadherin ectodomain 

fragments spanning domains EC1-4, purified from inclusion bodies, were not found to form 

adhesive dimers like other classical type II cadherins (Harrison et al., 2010b; Patel et al., 

2006). Instead, several experimental approaches including cryo electron microscopy (Hewat 

et al., 2007; Lambert et al., 2005; Legrand et al., 2001) and solution biophysics experiments 

such as chemical cross linking, analytical size exclusion chromatography and equilibrium 

analytical ultracentrifugation (Bibert et al., 2002) revealed a novel hexameric binding model 

for these VE-cadherin fragments in which six molecules associated in an approximately 

cylindrical arrangement. Single particle 3D reconstruction of EM-micrographs (Figure 7c) 

yielded 24Ǻ resolution electron density map, into which a homology model of VE-cadherin 

was fitted (Figure 7d). This shed light on the VE-cadherin hexamer binding configuration 

(Figure 7e), which was found to adopt a compact elongated cigar like shape with a length of 

233Ǻ corresponding to the length of two EC1-4 domain proteins in tandem (Hewat et al., 

2007). Protomers were oriented as if emanating from juxtaposed cells, with three molecules 

on each side (Figure 7e). Two different contact sites were identified in the hexamer: one 

involves a trans EC1 domain contact which was suggested to be mediated by strand swapping 

similar to that of classical cadherins forming anti parallel dimers; and the other was a novel 

trimeric interaction involving domain EC4 (Figure 7e). It appears that the EC4 contact is 

lateral, so that VE-cadherin ectodomains on the same cell surface would assemble into cis 

trimers, which form a dimer together with a cis trimer from the opposing cell to produce a 

final hexameric assembly. So far, however, the hexameric arrangement has been observed 

only for purified, bacterially expressed ectodomain fragments and the biological relevance of 

this novel VE-cadherin binding model remains to be determined. 
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1.9 Aims of this work 
The work described in this thesis will focus primarily on the investigation of the adhesive 

binding mechanism of VE-cadherin, a divergent type II cadherin crucial to the formation and 

maintenance of the vascular endothelium. No atomic level structure of the VE-cadherin 

binding interface is available and a novel binding mechanism has been proposed for which 

biological importance needs to be investigated. The binding affinities and specificities of 

other type II classical cadherins will also be investigated, as will the binding mechanism of 

the atypical classical cadherin T-cadherin. 

 
Specific experimental aims are: 

(1) VE-cadherin full ectodomains and a fragment containing the putative trimerization site 

will be expressed in a mammalian expression system to provide natively glycosylated soluble 

protein, which will be used in an extensive biophysical approach such as sedimentation 

equilibrium analytical ultracentrifugation (AUC), analytical size exclusion and multi angle 

light scattering (MALS) to characterize the adhesive binding mechanism and to test the 

hexamer binding model. 

 
(2) Fragments of the VE-cadherin ectodomain will be expressed in bacteria to identify the 

minimal adhesive binding unit of VE-cadherin and structural studies will be performed to 

determine the structure of the trans adhesive interface. 

 
(3) The homodimerization binding affinities of a set of five additional type II cadherins in 

addition to VE-cadherin, all produced in bacteria, will be assessed by equilibrium AUC 

experiments to determine general binding trends in the classical cadherin family. 

 
(4) To determine the relative binding specificities inherent to type II cadherins and assess the 

degree of promiscuous binding, surface plasmon resonance experiments will conducted. In 

addition, the ability of VE-cadherin to heterophilically interact with other type II subfamily 

members and with  type I cadherins, with which it is coexpressed in vivo, will be tested. 

 
(5) To test the dependency of T-cadherin mediated adhesion on the strand swap mechanism 

common to classical cadherins, in order to test models from structural studies suggesting that 

T-cadherin uses a non-swapped dimerization mechanism. I will introduce strand swap 

targeted mutations into T-cadherin and simultaneously into mouse type I E-cadherin and type 

II cadherin-6 so that the impact of these mutations on adhesive binding can be assessed by 

equilibrium AUC. 
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2.1 Protein Production 
Plasmid construction, protein expression and purification for all proteins produced in 

mammalian and bacterial systems that were used in the biophysical and biochemical studies 

in this work are described in this section. 

 

 

2.1.1 Mammalian protein production 

2.1.1.1 Plasmid construction 
Coding sequences for human VE-cadherin EC1-5 (Asp1-Asp542, all numbering according to 

the mature proteins), EC3-5 (Ile204-Asp542) and chicken VE-cadherin EC1-5 (Asp1-Glu545) 

were amplified by polymerase chain reaction (95°C for 2’ activation polymerase; 40 cycles of 

95°C 30’’ dissociation, 63°C 1’ annealing, 68°C 2’ extension; final extension at 68°C for 

10min, stored at 4°C) from cDNA libraries (human VE-cadherin from human heart library, 

Invitrogen and chicken cDNA library clone pgp 1n.pk007.i4, Delaware Biotechnology 

Institute) using KOD Hot start DNA polymerase (Novagen) according to manufacturer’s 

instructions with primers at a concentration of 10pM. A Kozak sequence (gtt gtt) was 

included before the start methionine; signal sequence and prodomain encoding regions found 

in naive cadherin sequences were replaced by the signal sequence of CD33 

(MPLLLLWAGALA) and the transmembrane and cytoplasmic domains were replaced by a 

hexa histidine tag. All proteins were cloned into the KpnI/NotI  restriction sites (enzymes 

from New England Biolabs)of the episomal expresion vector pCEP4 (Invitrogen). An 

expression construct encoding wild-type mouse E-cadherin (Asp1-Ala544), cloned in the 

same manner, was produced as described in Harrison et al (2010b). Point mutations W2A 

W4A in VE- and W2A K14E in E-cadherin were introduced by site directed mutagenesis 

using the Quickchange method (Stratagene). DNA sequences of produced plasmids were 

validated by Sanger DNA sequencing (Genewiz, Inc.).  

 

 

2.1.1.3 Tissue culture 

All proteins referred to as ‘mammalian produced’ were expressed either in adherent human 

embryonic kidney (HEK) 293 Fast Growth (F) cell lines or in 293 N-acetylglucosamine 

transferase I deficient (GNTI-) cell lines. HEK 293 F produce proteins with native N-linked 

glycosylation, whereas HEK 293 GNTI- cells produce proteins with limited N-linked 
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glycosylation (Man5GlcNac2) (Reeves, J. 2002). Both cell lines, which will be referred to 

together as HEK 293 cells, were cultured in advanced glutamine free DMEM/F12 medium 

(Gibco, Invitrogen) freshly supplemented with 100µg/ml Penicillin/Streptomycin (Gibco, 

Invitrogen), 4mM L-Glutamine (Gibco, invitrogen) and 10% Newborn calf serum (<10 days 

old, Fisher Scientific) in a Thermo Scientific Hepa class 100 incubator at 37°C in presence of 

5% CO2 and 90% humidity. This medium composition will be referred to as DMEM/F12, 

when composition is altered, supplements added will be specified. Cells were maintained by 

splitting 1:10 every seven days by removing medium, dissociating with pre-warmed trypsin 

0.05% (1X) with EDTA (Gibco, invitrogen) for 5 minutes, pelleting the cells by spinning at 

1000g at 25°C for 6 minutes and resuspension in 10mL of DMEM/F12. For replating, 1mL of 

cell suspension was transferred to 75cm² flask with vented caps (Corning) containing 20mL 

DMEM/F12 pre-warmed medium. 

 

 

2.1.1.4 Transfection of HEK 293 cells 

For transfection cells were lifted and pelleted as described in the previous section, 

resuspended in 20mL of DMEM/F12 without Penicillin and Streptomycin supplements and 

seeded into a 6 well plate of 2cm2 per well surface area to grow until they reached 

approximately 80% confluency. On the day of transfection cells were transfected with 6µg 

cadherin-pCEP4 expression construct plasmid DNA prepared with the HiSpeed Maxi prep kit 

according to the manufacturer’s instructions (Qiagen) using Lipofectamine 2000 following 

the instructions provided by the company (Invitrogen). On the following day, transfectant 

medium was removed from cells and cells were resuspended in 2mL of DMEM/F12 and 

transferred into a 75cm² flask containing 25mL of DMEM/F12. Selection for successfully 

transfected cells was begun 48 hours after transfection by supplementing the medium with 

200µM Hygromycin B (MediaGrowth, Fisher Scientific) as pCEP4 carries the resistance gene 

for this aminoglycoside. Transfected stable cell lines were cultured in the presence of 200µM 

Hygromycin at all times.  

 

 

2.1.1.5 Protein Expression 

Cells transfected as described above secrete the respective soluble cadherin proteins into the 

conditioned medium, so once cells reached confluence in 75cm² flasks, medium was tested 

for presence of hexa-histidine tagged cadherins by Western Blotting and immunological 
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detection by horseradish peroxidase (HRP) labeled monoclonal antibody against the His tag 

(Qiagen, see Section 2.3.3.2 below). Once protein expression was validated, the relevant cell 

culture was expanded to a 10 layer cell Stack flask with tissue culture surface totaling in 

6360cm² surface area (Corning). Cells were cultured in 1 liter DMEM/F12 + 200µM 

Hygromycin B per cell stack farm and every 14 days the culture split in half as described 

before, 200mL of trypsin solution are needed per split. Dissociated cells were spun down in 

50mL Corning graduated plastic tubes at 1000g for 6min at 25°C and were resuspended in 

DMEM/F12 for replating in cell stack farms. Each time, conditioned media were collected 

before trypsinization. and cell debris was removed by 20 minute spins at 13000g at 4°C.  

Conditioned media were then stored at -80°C until 4 liters of were collected for purification. 

 

 

2.1.1.6 Protein purification 

Supernatants were thawed on ice and filtered using a 1L 0.22µm PES funnel filter (Corning) 

and vacuum prior purification. Supernatants were supplemented with 500mM sodium 

chloride (Sigma), 20mM Tris-Cl pH8.0 (Fisher Scientific), 3mM calcium chloride (J.T. baker, 

Fisher Scientific) and 10mM imidazole pH8.0 (Fisher Scientific), then were transferred to 4L 

plastic beaker (Nalgene) covered by Styrofoam lid, in which a Wheaton BiStir stirrer ( Model 

356887, ‘floating stir bar’) was inserted. Hexa-histidine tagged cadherins were collected by 

nickel batch affinity purification through addition of 20mL nickel (II) charged IMAC 

Sepharose 6 fast flow resin (GE Healthcare), which was equilibrated in 500mM sodium 

chloride, 20mM Tris-Cl pH8.0, 3mM calcium chloride, 10mM imidazole pH8.0. After 

incubation for 3 hours at 4°C under gentle stirring, resin was extracted by passing through a 

7cm diameter Kontes column (Kimble Chase, ~250mL) using gravity and washed with 20 

column volumes total of 500mM sodium chloride, 20mM Tris-Cl pH8.0, 3mM calcium 

chloride and 12.5mM imidazole to remove non specifically bound contaminant serum 

proteins. Resin was transferred to a XK 16 column (GE Healthcare) and connected to an 

AKTA FPLC 900 (GE healthcare) operated by Unicorn software. After an additional 20 

column volumes of washing, proteins were eluted by increasing the imidazole concentration 

to 75mM (GE Healthcare) in ~5 column volumes. Protein elution was monitored by 

absorbance at a wavelength of 280nm. Eluted proteins were dialyzed in 10 MWCO snake skin 

dialysis tubing (Thermo Scientific) for 18 hours at 4°C in 5L of 100mM sodium chloride, 

20mM Tris-Cl pH8.0, 3mM calcium chloride. For further purification the protein was flown 

over a Mono S ion exchange column HR10/10 (GE Healthcare) to remove high molecular 
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weight contaminants, which were found to bind tightly the column. Cadherins uniformly were 

found in the flow through and were collected and then passed over an anion exchange column 

MonoQ MQ HR10/10 (GE Healthcare) to remove residual contaminants. The protein was 

concentrated to a volume of approximately 3mL using Amivon 50K MWCO Spin 

concentrators (Millipore). Proteins were spun at 4000g in 3min intervals at 4°C until desired 

volume of 3mL was reached. The last step of purification was size exclusion chromatography 

by a HiLoad 26/60 Superdex S200 prepgrade column. The peak containing the protein of 

interest was collected and purified protein was concentrated using same method as described 

above, tested for purity by SDS-PAGE (see below) and flash frozen in liquid nitrogen in 

aliquot sizes of 15-30µL. All proteins were in a final buffer of 150mM sodium chloride, 

10mM Tris-Cl pH8.0 and 3mM calcium chloride. 

 

 

2.1.2 Bacterial protein production 

2.1.2.1 Plasmid construction 

Coding sequences of two and three domain wild type cadherin proteins were amplified by 

PCR (95°C for 2’ activation polymerase; 40 repetitions of 95°C 30’’ dissociation, 63°C 1’ 

annealing, 68°C 1’ extension; final extension at 68°C for 10min, stored at 4°C) from cDNA 

libraries (human VE-cadherin from human heart library, Invitrogen and chicken cDNA library 

clone pgp 1n.pk007.i4, Delaware Biotechnology Institute, mouse proteins from mouse 

multiple tissue cDNA (MTC) panel I libraries, clontech) using KOD Hot start DNA 

polymerase (Novagen) according to manufacturer’s instructions with primers at concentration 

of 10pM. Mouse cadherin-6, -8, -9, -10, -11 and VE-cadherin EC1-2 and chicken VE-

cadherin and cadherin-6b as well as human VE-cadherin EC1-2 and mouse cadherin-8 EC1-3 

fragments were cloned in frame with an N-terminal hexa His tagged SUMO protein into the 

BamHI/NotI sites of the bacterial pSMT3 T7 polymerase expression vector (Invitrogen). 

Quickchange site-directed mutagenesis (Stratagene) was used to introduce all point mutations, 

extensions or to delete parts of the N-terminus. The same method was applied to remove extra 

bases between the encoded protease site (Gly-Gly) and the amino terminus of the encoded 

protein to ensure correct mature cadherin N-termini. Constructs encoding Avi-tagged proteins 

(Avidity) were prepared by inclusion of a sequence encoding the Avitag at the cadherin 

fragment C-terminus immediately prior to the stop codon. All plasmids were transformed into 

XL10-gold E. coli (Stratagene), positive colonies selected with Kanamycin and plasmid DNA 
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generated by Mini prep (Qiagen) according to the companies instruction. Correct DNA 

sequences were validated as for mammalian plasmids. 

 

 

2.1.2.2 Protein Expression 

Verified pSMT3plasmids encoding cadherin fragments were transformed into E. coli 

Rosetta2DE3 pLysS strains (Novagen) for expression following the manufacturer’s manual. 

Small cultures of 3mL LB medium (Miller, granulated LB-broth, EMD) were prepared with 

50µg/mL Kanamycin and 34µg/mL Chloramphenicol, inoculated with one colony of bacteria 

and incubated for 18h at 37°C shaking at 200rpm to grow. 100µL of this culture were used to 

inoculate a starter culture of 300mL LB with the same antibiotic composition, which was also 

incubated for 18h at 37°C. A glycerol stock of each culture was prepared where 1.2mL of 

culture were supplemented with 30% glycerol to be stored at -80°C. For protein expression, 

25mL of the starter culture were used per Liter of expression culture for a batch of 12Liters 

total. Once OD600 of 0.6 was reached by the bacterial culture, protein expression was induced 

by adding 100µM ITPG and temperature lowered to 18°C for a total of 18h of expression, 

shaking at 200rpm for all proteins but cadherin-6 (wild type, tagged protein and mutants), for 

which the temperature was kept at 37°C for an additional 5hours instead (Harrison 2010a).  

 

To obtain biotinylated Avi-tagged cadherins, pSMT3-cadherin with sequence encoding the 

Avi-tag at the C-terminus was co-transformed with BirA plasmid (Chloramphenicol 

resistance) which encodes for the biotin ligase and into E. coli strain BL21 (Invitrogen). 

Expression was as described above, with the addition that medium was supplemented with 

IPTG and 50µM Biotin. 

 

Bacteria were harvested in 1L buckets at 4,000g for 20min at 4°C, supernatants discarded and 

pellets retained for lysis and purification as described below.. 

 

 

2.1.2.3 Bacterial Protein Purification 

Bacterial pellets were resuspended in 250mL of 500mM sodium chloride, 20mM Tris-Cl 

pH8.0, 3mM calcium chloride and 20mM imidazole pH8.0. Cells were lyzed by sonication on 

ice for a total of 6 minutes in intervals of 15sec of pulse with 45sec rest with Branson Digital 

Sonifier. Cell debris was pelleted and lysates cleared by centrifugation for 30min at 20,000g 
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at 4°C. His-tagged SUMO-cadherin fusion proteins were collected from lysates by flowing 

over 5mL of nickel charged IMAC sepharose 6 Fast Flow resin (GE Healthcare). Resin with 

captured protein was washed with 40 column volumes of the same buffer and His-tagged 

SUMO-cadherin fusion proteins were eluted by increasing the imidazole pH8.0 concentration 

in the buffer to 250mM for a total volume of ~50mL (10 column volumes). His-SUMO tags 

were removed during dialysis in 50mM sodium chloride for E-, N-, T-cadherins and cadherin-

6 and 100mM sodium chloride for cadherins 8, 9, 10, 11 and VE-cadherin and 20mM Tris-Cl 

pH8.0 and 3mM calcium chloride by specific proteolytic cleavage after the Gly-Gly motif by 

2µg/mL ubiquitin ligase protein I (Invitrogen), leaving all proteins in this study with native N-

termini unless specifically altered. 

 

Hexa His-SUMO tags and uncut fusion proteins were removed from the dialyzates by batch 

binding for 30min at 25°C with rotation to 5mL of nickel charged resin (as above) 

preequilibrated in respective dialysis buffer. Cadherins were further purified by flowing over 

an anion exchange column MQ HR10/10 followed by size exclusion chromatography with a 

hiLoad 26/60 Superdex S75 (GE Healthcare). All proteins were in a final buffer of 150mM 

sodium chloride, 10mM Tris-Cl pH8.0, 3mM calcium chloride and for cadherins carrying the 

C-terminal CYS-tag 1mM TCEP was included in the buffer. Proteins were concentrated in 

10K MWCO Amicon spin concentrators (Millipore) and 10µg of each protein analyzed by 

SDS-PAGE. Biotinylation of proteins was verified after transfer to nitrocellulose membranes 

by binding NeutrAvidin-HRP followed by chemiluminescent detection. All proteins were 

flash frozen in 15-100µL aliquots according to need to avoid multiple freeze-thaw cycles. 
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2.2 Biophysical Methods 
2.2.1 Analytical ultracentrifugation 

All equilibrium analytical ultracentrifugation experiments were performed together with 

Goran Ahlsen (Columbia University) using a Beckman XLA/I ultracentrifuge, with a Ti50An 

or Ti60An rotor. All proteins were diluted with buffer (150mM sodium chloride, 10mM Tris-

Cl pH8.0, 3mM calcium chloride) and dialyzed for 16h at 4°C in 1L of the same buffer prior 

to each experiment. 120μL of proteins at three different concentrations 0.7mg/mL, 

0.46mg/mL and 0.24mg/mL were loaded into six-channel equilibrium cells with parallel sides 

and sapphire windows. All experiments were performed at 25°C and data was collected at 

wavelengths of 280 nm (UV) and 660 nm (interference). Five-domain proteins (VE-cadherin 

EC1-5 and E-cadherin EC1-5) were spun for 20h at 8,800g and four scans (1 per hour) were 

collected, then speed was increased to 12,300g for 10h and four scans (1 per hour) were 

collected and speed was increased to highest speed of 16,400g for another 10h and four scans 

(1 per hour) were taken, which yielded 72 scans per sample. Three-domain proteins (VE-

cadherin EC3-5, cadherin-8 EC1-3) were analyzed using the same protocol, except using 

speeds of initial 14,200g, followed by 23,500g and 35,200g as highest speed. For two-domain 

proteins (VE-cadherin EC1-2, EC3-4; type I cadherins E, N, P, T; type II cadherin-6, -8, -9, -

10, -11; wild type, tagged and mutant proteins), speeds of 23,500g, 35,200g and 49,100g were 

used. Relative centrifugal forces are given at the measuring cell center at a radius of 65mm. 

Buffer density and protein v-bars were calculated using the software SednTerp (Alliance 

Protein Laboratories), and retrieved data was analyzed using HeteroAnalysis 1.1.0.28 

(http://www.biotech.uconn.edu/auf). We fitted data from all concentrations and speeds 

globally by nonlinear regression to either a monomer-dimer equilibrium model or an ideal 

monomer model. All experiments were performed at least in duplicate, except for C-

terminally tagged bacterial cadherins, which were only measured once.  

 

2.2.2 Analytical size exclusion chromatography 

A volume of 150µL of purified proteins at a concentration of 6µM were flown over analytical 

superose 12 10/30 column (GE Healthcare) which was pre-equilibrated with 150mM sodium 

chloride, 100mM HEPES pH7.0, 3mM calcium chloride for at least two column volumes. 

Experiments were performed at 4°C using the AKTA FPLC-900 system operated by Unicorn 

and a steady low of 300µL/min. Fractions of 500µL each were collected and UV-signal at 

280nm recorded. Fractions of sufficient UV signal peaks were analyzed by SDS-PAGE and 

immunological detection with tetra His antibody (Qiagen), so every monitored peak was 
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validated to be the expected cadherin. Void volume of the column was determined to be 8mL 

using Blue Dextran (GE Healthcare). 

 

 

2.2.3 Multi angle light scattering 

Human VE-cadherin EC1-5 and EC3-5 and mouse E-cadherin mutant W2A K14E expressed 

in HEK 293 GNTI- cells and purified as described above were used at a concentration of 

1mg/mL for MALS experiments. Proteins were passed over a TSKgel Super SW3000 

operated by an HPLC to separate different protein species from each other and then measured 

for absolute molecular weight and dispersity by the triple-angle MALS light scattering 

detector miniDAWN Treos (Wyatt Technology, Europe GmbH) at New York Structural 

Biology Center (New York, USA) using continuous flow detection. Data were analyzed and 

absolute molecular weights calculated with Astra V Software. 

 

 

2.2.4 Liposome aggregation assays 

2.2.4.1 Preparation of liposomes 

1,2-dioleyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-[(N-(5-

amino-1-carboxypentyl)iminodiacetic acid)-succinyl] nickel salt (DGS-NTA-(Ni)) were 

obtained from Avanti lipids and prepared according to the manufacturer’s manual. Liposomes 

used for aggregation and cryo-EM studies were composed of a 9:1 ratio of DOPC and DGS-

NTA(Ni), respectively, and were prepared using the hydration and extrusion method, in 

which liposomes were suspended in 25mM HEPES pH7.4, 0.1M potassium chloride, 10% 

(v/v) glycerol, 3mM calcium chloride (liposome aggregation buffer). To equalize size within 

liposomes they were extruded through a 100nm filter membrane following Avanti’s 

instructions for the extruder. Liposomes were stored for 3 month at 4°C. 

 

 

2.2.4.2 Liposome aggregation assays 

Aggregation assays were conducted according to the method described by He et al (2009) and 

Harrison et al (2010b). Liposomes were first diluted in liposome buffer to a final 

concentration of ~5mg/mL and at the starting point of the experiment, hexa-His-tagged 

cadherin fragments were added to yield the final concentration of 6µM. Aggregation was 

monitored at OD of 650nm in 20sec intervals for a total of 2,500sec. For the reference 
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sample, protein was substituted with liposome aggregation buffer (negative control). 

Experiments were performed in triplicate for all human and chicken ectodomains and the 

negative control, and in duplicates for mouse E-cadherin ectodomains and human VE-

cadherin EC3-5 fragments. 

 

 

2.2.4.3 Cryo Electron microscopy studies 
Liposome aggregation was performed with full ectodomains of human VE-cadherin and 

mouse E-cadherin, both expressed in HEK 293 F cells as described in the previous section. 

Liposomes were allowed to aggregate for 10min and were then transferred to 300 mesh 

copper TEM grids with R2/1 Quantifoil. Samples were vitrified by blotting and plunge-frozen 

into liquid nitrogen cooled ethane using the automated Vitrobot (FEI company, Hillsboro, 

Oregon; as described by Harrison et al 2010b). Grids were stored in liquid nitrogen until 

imaging was performed using a Tecnai Polara F30 TEM (FEI company, Hillsboro, Oregon) at 

the New York Structural Biology center (New York, New York) by Ruben Diaz (New York 

Structural Biology Consortium). Frozen grids were imaged at 300kV using a Tietz 4Kx4K 

CCD camera (Tietz video and Image Processing Systems GmbH, Gauting, Germany). Images 

were recorded under low-dose conditions at ~10µm under focus using the serialEM software 

(Mastronarde, 2005) and processed with IMOD software (Kremer et al 1996) Microscope 

magnification was 39,000-59,000fold. 

 

 

2.2.5 Atomic force microscopy imaging 
AFM sample pucks were prepared as follows: 10mm diameter disks of Muscovite mica (Agar 

Scientific) were stamped out from the as-received sheets. Each sample puck was fixed to a 

13mm steel puck (agar Scientific) with cyanoacrylate super-glue and allowed to dry for 16h. 

Poly-L-lysine (Sigma Aldrich) was diluted 1/100 into BPC-grade water (Sigma Aldrich) and 

45μL of this solution pipetted onto freshly-cleaved mica, given 30min incubation at 25°C, 

washed 10 times with 1mL BCP-grade water and dried under a gentle, steady stream of 

nitrogen.  

 

Cadherin ectodomains used in AFM imaging studies were produced in HEK 293 F cells. VE-

cadherin samples were diluted in 150mM sodium chloride, 20mM Tris-Cl pH8.0, 3mM 
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calcium chloride to a final concentration of ~2nM and stored at 4°C which yielded workable 

and consistent surface concentrations of protein. E-cadherin samples were diluted using the 

same buffer, but to a higher concentration of E-cadherin, ~8μM, was needed to allow dimer 

formation to be observed. 45μL of sample was pipetted onto poly-L-lysine coated mica and 

incubated at room temperature for 10min, then washed 10x with 1mL of BPC-grade water 

and dried under a gentle and steady stream of dry nitrogen. 

 

Imaging was performed at the Department of Pharmacology (Henderson Laboratory, 

Cambridge University, UK) with a Multimode atomic force microscope with attached 

Nanoscope IIIa controller (both Veeco) under ambient conditions in tapping mode, using 

OMCL0AC160TS single-crystal silicon probes (Olympus, Japan) with a resonant frequency 

of ~300kHz, a nominal spring constant of ~42Nm and a radius of curvature <10nm. We 

collected images at 3Hz with an integral gain of 0.2, a proportional gain of 0.35, a look-ahead 

gain of 0 and a set point of ~0.85 (to minimize vertical probe-induced sample deformation). 

Length determination of molecules was performed using SPIP (Scanning Probe Image 

Processor) version 3.3 from 3-dimensional AFM data using the full-width at half-maximal 

approach. 

 

 

2.2.6 Protein crystallography 

2.2.6.1 Screening trials 
Sparse matrix screening and precipitant screening was performed in sitting drop assays at 

20°C and 4°C using 100nL protein solution at concentrations of 6.8-8.6mg/mL and 100nL 

well solution in 96 well screening plates (Axygen). Crystal suites used for screening were 

Index (Hampton), Wizard I+II (Emerald), Classics, Classics II, PEGs, PEGs II, pH clear, pH 

clear II, JCSG+,Anions and Cations (Qiagen). 75µL of crystallization condition was 

transferred to each well of the 96 well plate using a twelve channel electronic pipette and the 

crystallization experiments were set up using the mosquito nanodrop crystallization robot. 

Plates were stored after set up either at 20°C or 4°C and checked after 12h, 24h and then daily 

for 14 days and again after 30 and 60 days with a microscope. 
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2.2.6.2 Crystal optimization 
Crystal optimizations were performed using the hanging drop vapor diffusion method. 500µL 

of crystallization solution was prepared in reservoirs of 24 well screening plates (Hampton), 

of which the rims were greased prior to set up. For each crystallization condition three 

different protein: well solution ratios were used: 1 protein: 1 well solution, 1 protein: 2 well 

solution and 2 protein:1 well solution to increase the variation of crystallization conditions by 

varying initial and final precipitant and protein concentrations. Initial volumes of the mixed 

drops were 1.2 to 1.8µl. Protein and solution were pipetted on dust and lint free siliconized 

cover slips (Hampton) and placed above the well with the rim gently pushed onto the grease 

to seal the vapor diffusion chamber. Chicken VE-cadherin EC1-2 crystals grew within 18h at 

20°C in 18% (w/v) PEG 8,000, 200mM calcium acetate and 100mM sodium cacodylate 

pH6.5. Crystals were harvested for crystallization by mounting with 200µm nylon loops 

mounted on metal bases (Hampton), then transferred and immersed in cryo protectant (well 

solution + 30% (w/v) glycerol) for 5-10sec and immediately flash frozen in liquid nitrogen. 

Crystals were stored in Hampton vials under liquid nitrogen, which were transported in canes. 

 

 

2.2.6.3 Data collection 
Diffraction data was collected on beam line X4C at the National Synchrotron Light Source, 

Brookhaven National Laboratory, USA. A data set of 180 frames with 1° oscillation per frame 

was collected on a single frozen crystal of chicken VE-cadherin EC1-2 at a wavelength of 

0.979Å using an ADSC ccd Quantum 4 detector (Area Detector Systems Corporation) with 

20sec exposure time.  

 

 

2.2.6.4 Data processing 
The collected images of the chicken VE-cadherin EC1-2 diffraction pattern were processed 

using the HKL suite (Owtwinowski and Minor 1997). The structure was solved by molecular 

replacement with the phaser program as part of the ccp4i suite using the crystal structure of 

mouse cadherin-11 EC1-2 (pdb ID code 2A4E) as template. Refinement of the obtained 

structure was carried out by alternating cycles of manual building in coot (Emsley, Cowlan 

2004), followed by automated refinement in Refmac 5 (ccp4 suite, Bailey 1994). Data 

collection and refinement statistics are summarized in Table 11. Ramachandran plot statistics 
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for the final model of chicken VE-cadherin EC1-2 are 97.1% of residues in favored positions, 

100% in allowed regions and no residues found in disallowed regions. The structure factors 

and pdb file have been submitted to the protein data bank and can be found under pdb 

accession ID 3PPE. 

 

 

2.2.7 Surface plasmon resonance  
All Surface plasmon resonance (SPR) binding experiments were conducted with a Biacore 

T100 biosensor (Biacore, Uppsala, Sweden) using a low charge series S CM4 sensor chip 

(Biacore). Reagents used for amine and thiol coupling were also purchased from Biacore.  

 

2.2.7.1 Amine Coupling for affinity capture 
Sensor chip surface carboxymethyl (CM) groups were activated by injection of 50mM N-

hydroxysuccinimide (NHS) in presence of 200mM N-ethyl-N’-(3-dimethylaminopropyl) 

carbodiimide (EDC) over all four flow cells at 20µL per min for a total of 7min. Either 

Immunopure Neutravidin (Thermofisher), one of four different anti-FLAG antibodies, or a 

Rho1d4 (anti C9) antibody were dissolved in sodium acetate pH4.5 and flown over the 

activated surfaces for 7min with 20µL per min for coupling. Unoccupied activated 

carboxymethyl groups were quenched with a 7min injection of 1M ethanolamine-HCl pH8.5 

at 20µL per min. Immobilization levels and summary of antibodies and Neutravidin 

immobilized by amine coupling is shown in Table 2. Running buffer was HEPES-buffered 

saline (HBS, 10mM HEPES pH7.4, 150mM sodium chloride) and immobilization was 

performed at 32°C.  

Table 2: Immobilization levels of antibodies and NeutrAvidin used in SPR studies. 
 

Name Company Immobilization level [RU] 

   

Mouse mAB anti-FLAG M2 clone Sigma cat# F3165 7,069 
Mouse mAB anti-FLAG M2 clonea  Sigma cat# F1804 5,600 
Rat mAB anti-DYKDDDDDK Stratagene cat# 200473 5,684 
Rat mAB anti-FLAG M2 6F7 Sigma cat# SAB4200071 4,203 
Mouse Rho1d4 AB anti-C9 Flintbox 7,360 
Immunopure Neutravidin Thermo Fisher 9,000-13,000 

aAntibody was affinity purified. 
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C-terminally tagged cadherin captures and binding experiments were performed at 25°C in a 

running buffer composed of 150mM sodium chloride, 20mM Tris-Cl pH8.0, 3mM calcium 

chloride, 0.25mg/mL bovine serum albumin (Sigma) and 0.005% (v/v) Tween-20. In one 

experiment, cadherin-6-bio was captured over one flow cell and another was left with only 

immobilized NeutrAvidin which served as reference cell. In 10sec pulses cadherin-6-bio at a 

concentration of ~15µM was injected in 10sec pulses at a flow rate of 20µL/min until 

approximately 500RU were captured (Harrison et al., 2010a; Katsamba et al., 2009). The 

same approach was taken for cadherin-FLAG and -C9 captures and cadherin levels [RU] 

captured by antigen-antibody binding are shown in SPR traces in Figure 32a (FLAG) and 32b 

(C9) (Chapter 6).  

 

 

2.2.7.2 Ligand thiol coupling 

CYS-tagged proteins underwent a buffer change prior experiments as the proteins were kept 

in presence of 1mM TCEP. Zeba spin desalting columns (thermo fisher) were used by loading 

30µL of protein-CYS onto a 10mM sodium acetate pH4.0 pre-equilibrated column. Spinning 

was performed according to the manufacturer’s manual. Eluates were diluted ~10fold yielding 

final concentrations of 50µg/mL for N-cadherin-CYS and 300µg/mL for VE-cadherin-CYS 

and were tested in subsequent experiments for pre-concentration by ionic charge to the sensor 

chip surface (see Figure 33a, Chapter 6). For both proteins the highest binding response was 

achieved in sodium acetate pH4.0 buffer.  

 

For covalent coupling of the thiol tagged proteins to the SPR sensor chip, carboxymethyl 

groups of the CM4 sensor chip were activated only in flow cells needed by injecting for 2min 

a mixture of 50mM NHS and 200mM EDC. In the next step reactive sulfur groups were 

introduced during a 4min pulse of 80mM PDEA pH8.5, which was freshly prepared 

immediately before the experiment by mixing 100µL of 120mM PDEA with 50µL 100mM 

sodium borate pH8.5. Desalted N- or VE-cadherin-CYS were injected to produce a binding 

response of 1570RU (60sec pulse) for N- and 4660 (12sec pulse, high concentration surface) 

and 1575 RU (20sec, 6sec, 7sec pulse with 50µg/mL diluted VE-cadherin-CYS, low 

concentration surface) for VE-cadherin. Remaining reactive disulfides were quenched by a 

4min injection of 50mM L-cysteine (Sigma) in 1M sodium chloride, 100mM sodium acetate 
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pH4.0. Final immobilization levels were for N-cadherin-CYS 1542RU and for VE-cadherin-

CYS 4643 and 1575RU. Immobilization profiles are shown in Figure 33b and 34b for N- and 

VE-cadherin, respectively. All immobilizations were performed at 25°C in HBS buffer and a 

flow rate of 20µL/min. To obtain a reference flow cell, the surface was treated exactly the 

same as described above, but CYS-tagged cadherin injection was omitted. 

 

 

2.2.7.3 SPR binding experiments 
For all binding experiments the same running buffer composed of 150mM sodium chloride, 

20mM Tris-Cl pH8.0, 3mM calcium chloride, 0.25mg/mL bovine serum albumin (Sigma) and 

0.005% (v/v) Tween-20 was used. Cadherins were immobilized on the sensor chip surface 

either by thiol coupling or affinity capture as described above. All analyte proteins were used 

at a concentration range of 40µM-78.1nM in a 2fold dilution series unless otherwise noted in 

the results section. Injections were performed in duplicates for 60sec at a flow rate of 

50µL/min, which was followed by a 60sec dissociation phase and a buffer injection of 1min 

to minimize the contamination of the next sample by carryover. All binding experiments were 

conducted at 25°C except for a single experiment at 37°C with VE-cadherin. 

 

A slight modification of the above method was used for the VE-cadherin kinetic experiment 

at 37°C and 25°C and the experiment with strand swap mutant W2A of N-cadherin at 25°C. 

These were performed at only one concentration of 40µM using a flow rate of 30µL/min. 

Running buffer composition, 60sec dissociation phase and buffer injections to minimize 

sample carryover remain the same. 
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2.3 Biochemical Methods 

2.3.1 N-terminal sequencing 

Purified mammalian proteins at a concentration of 1-2mg/mL were sent in solution to the 

Protein Core Facility (Columbia University, NY, USA) for N-terminal sequencing of the first 

five amino terminal residues using the Edman Sequencing technique. 

 

 

2.3.2 Mass Spectrometry 

For determination of absolute mass from proteins expressed and purified from mammalian 

cells including all posttranslational modifications, cadherins were brought in solution to the 

Protein Core Facility (Columbia University, NY, USA) at a concentration of 1-2mg/mL for 

mass spectrometry using MALDI-TOF (matrix-assisted laser desorption ionization time-of-

flight). For determination of N-linked glycosylation sites, human VE-cadherin ectodomains 

produced in HEK 293 F cells and Endoglycosidase H treated ectodomains expressed in HEK 

293 GNTI- cells were digested with trypsin in presence of EDTA and peptide masses 

determined using MALDI-TOF. N-linked glycosylation sites were determined by deviations 

in peptide mass between the two differently glycosylated proteins. 

 

 

2.3.3 SDS-PAGE 

10µg of protein were supplemented with 4x SDS loading buffer (Invitrogen) run on precast 

NuPAGE 4-12% BisTris Gel 1.00mmx15well (Invitrogen) in 1xMES buffer  at 200V current 

using 4µL SDS SeeBlue(R) Plus prestained standard (Invitrogen).  

 

 

2.3.3.1 Coomassie staining of proteins separated by SDS-PAGE 
Protein bands were visualized by staining with Coomassie Brilliant Blue G-250 (0.2% (w/v) 

Coomassie, 7.5% (v/v) glacial acetic acid, 50% (v/v) ethanol) for 10minutes at 25°C and 

destained (0.75% (v/v) acetic acid, 10% ethanol) until gels were transparent and protein bands 

were clearly distinguishable from background. Gel images were taken by LAS 4000 Imaging 

system (Fujifilm). 
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2.3.3.2 Immunological detection of proteins separated by SDS-PAGE 
Protein visualization using immunological methods was performed as follows. 13µl of 

conditioned media from transfected cells or 5µL of purified protein solution of 1mg/mL were 

separated using SDS-PAGE and proteins were transferred to nitrocellulose membranes 

activated for 20sec in 100% methanol (Fisher Scientific), by using a semi-dry blotting 

technique in Biorad transblot semi-dry transfer chambers according to the manufacturers 

manual. Whatman paper was equilibrated in Towbin buffer (25mM Tris-base, 192mM 

glycine, 10% (v/v) methanol) and a transfer-sandwich assembled as follows from bottom to 

top electrode: 2 whatman papers, activated nitrocellulose membrane, SDS-polyacrylamide 

gel, 2 whatman papers. Trapped air bubbles were gently removed by rolling over a 5mL glass 

pipette. Proteins were transferred from the gel to the membrane in 60minutes with current of 

200mAmp. Following transfer,membranes were blocked either with TBS-Tween-20 0.025% 

and 5% milk when using 1:5,000 dilution of Tetra His Antibody (Qiagen) and secondary anti 

mouse-HRP coupled antibody (Peroxidase AffiniPure F(ab')2 fragment donkey anti-mouse 

IgG (H+L) from Jackson Immunoresearch) for detection of His tagged proteins or with 5% 

Bovine serum albumin, fraction V (Sigma, ~ 99% pure) for 1:2,000 dilution of Horse radish 

peroxidase conjugated NeutrAvidin (Thermo Scientific) for detection of biotinylated proteins. 

Blots were developed using Thermofisher thing and developed by the LAS 4000 Imaging 

system (Fujifilm). 

 

 

2.3.4 Removal of N-linked glycan with Endoglycosidase H 

Mammalian proteins expressed in HEK 293 GNTI- cells carry simplified N-linked glycans, 

which can be removed enzymatically by Endoglycosidase H to leave only a single mannose 

on Asn residues behind. N-linked glycosylation was removed from human and chicken VE-

cadherin EC1-5 and EC3-5 expressed in these cells by using Endoglycosidase H (New 

England Biolabs) according to the company’s instruction, with the exception, that the 

recommended reaction buffer was substituted with 150mM sodium chloride, 100mM HEPES 

pH7.0, 3mM calcium chloride and digest was carried out at 37°C. Subsequently, enzyme was 

removed by flowing proteins over size exclusion column Superdex S200 as described before. 
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2.3.5 Complex immunoprecipitation assays 

For Co-immunoprecipitation (ip) experiments of homophilic and heterophilic cadherin 

complexes, experiments were conducted at 25°C using mixtures of purified, differently 

tagged cadherin EC1-2 fragments. For homophilic complex formation assays using N-

cadherin-C9/N-cadherin-bio or VE-cadherin-C9/VE-cadherom-FLAG, 15µM of each protein 

were mixed, resulting in a total cadherin concentration of 30µM, which is well above the 

binding affinity of both proteins. The same concentration level of 15µM per tagged protein 

was also used for heterophilic Co-ip assays using mixtures of different cadherin subtypes. In 

negative controls the C9-tagged protein was replaced by immunoprecipitation buffer (150mM 

sodium chloride, 20mM Tris-Cl p8.0, 3mM calcium chloride, 1% Bovine serum albumin, 

0.1% Tween-20) and in preliminary tests none of the proteins were found to nonspecifically 

bind to dynabeads protein G coated with antibody that were used in the full experiments for 

precipitation of the complex. In all cases, the mixtures of purified proteins were incubated 

with slow rotation at 25°C for 3h to allow equilibration between differently tagged cadherins. 

In the meantime, 40µL of dynabeads protein G (Invitrogen) were coated with Rho1d4 

antibody prior each experiments at levels sufficient to provide equimolar binding sites for the 

total purified C9-tagged protein in the assay. Beads were washed with 3fold bead volume of 

ip buffer using a two sample dynabead magnet (Promega). Buffer was discarded and replaced 

with the Rho1d4 antibody solution. Beads were incubated rotating at 25°C for 15min to allow 

antibody immobilization and unbound antibody was then removed by three wash cycles with 

ip-buffer. The antibody coated beads were then added to the mixed protein solutions for 

precipitation of the C9-tagged cadherin along with any associated differently tagged cadherin. 

After 10min of incubation at 25°C on rotator, protein was removed, beads washed three times 

as described before, but this time with ice cold ip buffer. Finally, beads were resuspended in 

1x SDS gel loading buffer (Invitrogen) and boiled at 98°C for 5min and immediately the 

precipitated proteins were separated by SDS PAGE. Proteins were detected either 

immunologically with anti FLAG antibody (affinity purified M2mAB α-FLAG F1804, Sigma, 

see Table 2) and secondary anti mouse antibody or directly by Neutravidin-HRP, as described 

in Section 2.3.3.2 above.  
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3.1 Mammalian protein production in human embryonic kidney cells 293F 

and 293 GNTI- 
Previously published work showed that human VE-cadherin EC1-4 fragments formed 

hexamers to mediate adhesive binding(Hewat et al., 2007). Cryo EM data revealed that the 

hexamers are composed of two cell surface trimers which are formed by a cis interface 

located in EC4 (Section 1.8.3) and trans adhesion is mediated by EC1 domains between 

trimers on apposing cells. However, proteins used in these previously published studies did 

not include the membrane proximal domain EC5, and were produced in bacteria and purified 

from inclusion bodies, thus lacking post translational modifications like glycosylation. In 

order to study adhesive binding properties of VE-cadherin and investigate the proposed 

hexamer model in detail, we chose to work with soluble, native human and chicken VE-

cadherin full ectodomains (residues Asp1-Asp542 for human and Asp1-Glu545 for chicken) 

expressed in mammalian cells to allow full post-translational modification. Each protein was 

expressed with a C-terminal hexa-histidine tag replacing the single transmembrane and 

cytoplasmic domains. Based on known characteristics of adhesive binding of other classical 

cadherins, we also wanted to test the importance of Trp2 and Trp4, key amino acids for type 

II cadherin homophilic binding, for VE-cadherin adhesive behavior. We therefore chose to 

introduce a double mutation, in which Trp2 and Trp4 side chains are both reduced to that of 

alanine into an additional human VE-cadherin EC1-5 construct (W2A W4A mutant). To 

address the biological relevance and biophysical behavior of the unique EC4-mediated cis 

interface suggested in the previously published studies of bacterially expressed VE-cadherin 

EC1-4 (Bibert et al., 2002; Hewat et al., 2007; Legrand et al., 2001), a further construct was 

prepared in which the N-terminal trans adhesive domains EC1-2 were omitted from human 

VE-cadherin ectodomains fragments to produce a fragment containing only membrane 

proximal domains EC3-5 (Ile204-Asp542). 

 

In addition to VE-cadherin, ectodomains of wild type mouse E-cadherin (Section 2.1.1.1), an 

extensively studied, well characterized classical type I cadherin for which structural data is 

available (Harrison et al., 2010b), was used as reference protein in glycosylation studies 

(Section 3.2) and biophysical experiments described in Sections 4.2 and 4.7. We also 

conducted studies with monomeric W2A K14E mutants of E-cadherin (Harrison et al., 

2010b), which are described in the Section 4.4 and 4.5.  
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VE- and E-cadherin proteins were expressed in and secreted from two different mammalian 

cell lines: human embryonic kidney (HEK) 293F and 293 GNTI- cells (Figure 8). The latter 

cell line lacks N-acetylglucosamine transferase I, an enzyme in the glycosylation pathway 

responsible for producing complex N-linked carbohydrate (Figure 9a). Proteins secreted from 

293 GNTI- cells have simple N-linked glycosylation in form of Man5GlcNac2, moieties that 

can be removed by endoglycosidases in vitro, producing proteins without N-linked sugars 

(Figure 9b). VE-cadherin proteins used in studies described here are therefore produced in 

either of three forms: glycosylated (from 293F cells), minimally glycosylated (from 293 

GNTI- cells) or, after treatment with Endoglycosidase H, without N-linked glycosylation. In 

vivo, cadherins are expressed with a prodomain preceding the first EC domain, which is 

removed on cell surfaces by furin proteases to produce mature cadherins (Koch et al., 2004). 

To ensure homogenous, mature N-termini and to avoid potentially inefficient removal of the 

prodomain during overexpression, we replaced the native signal sequence and prodomain of 

VE-cadherin with the signal sequence of CD33 (Section 2.1.1.1). All proteins were N-

terminally sequenced to confirm native mature N-termini; which are listed in Table 3. The 

secreted proteins were purified from conditioned media as described in Section 2.1.1.5 and 

could be concentrated in glycosylated form to final concentrations of at least 10mg/mL. 

Minimally glycosylated and deglycosylated E-cadherin proteins also reached concentrations 

of at least 10mg/mL, but solubility of VE-cadherin was reduced to approximately 0.3mg/mL 

after removal of N-linked glycosylation. Solubility could not be improved significantly by 

increase or decrease of salt in the buffers, addition of 10% glycerol or by pH-change between 

pH8.0 and pH6.0. Concentrated proteins were examined by SDS poly acryl amid gel 

electrophoresis for purity and results show VE- and E-cadherin proteins used in this work are 

greater than 99% pure (Figure 8). Interestingly, VE-cadherin proteins have apparent 

molecular weights in SDS-PAGE that are approximately 10kDa higher than predicted 

molecular weights based on primary protein sequence, suggesting the presence of high levels 

of protein glycosylation.  In contrast, E-cadherin proteins migrate at apparent molecular 

weights more similar to those predicted (Table 3).   
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The human and chicken full VE-cadherin ectodomains and EC3-5 fragments described here 

were used to study the N-linked glycosylation pattern of VE-cadherin (Section 3.2) and for 

extensive biophysical experiments to investigate VE-cadherin mediated adhesion and to test 

the VE-cadherin hexamer model with native proteins (Chapter 4). 

 

Table 3: Statistics of mammalian produced cadherins.  

 

Protein N-terminus 
Predicted 
MW [Da] 

293F 
MW [Da] 

    

Chicken VE-cad EC1-5 DWIWN 62,088 71,591 
Human VE-cad EC1-5 DWIWN 62,383 75,451 
Human VE-cad EC3-5 INDNF 39,767 47,916 
Human VE-cad EC1-5 W2AW4A DAIAN 62,153 74,589 
Mouse E-cad EC1-5 DWIVI 60,907 65,878 
Mouse E-cad EC1-5 W2A K14E DAIVI 60,084 65,069 

 

 

3.2 VE-cadherin ectodomains are highly glycosylated 
We found that mammalian expressed VE-cadherin proteins migrate with an apparent 

molecular weight in SDS PAGE approximately 10kDa higher than predictions based on 

primary sequence, indicating likely glycosylation (Figure 8 and Table 3, see above). Also, 

when comparing the migration of VE-cadherin proteins expressed in HEK 293F cells to those 

of minimally glycosylated proteins expressed in HEK 293 GNTI- cells, we find that VE-

cadherin proteins secreted by GNTI- cells have significantly lower apparent molecular 

weights, suggesting the presence of complex N-linked glycans in the fully glycosylated 

protein (Lanes 1 and 2 in Figure 10). Removal of all N-linked sugars with Endoglycosidase H 

shifted the apparent molecular weights somewhat closer to the predicted molecular weights 

(Lane 3 in Figure 10). For comparison, E-cadherin, which migrates in SDS-PAGE closer to 

its predicted weight, was also included (Lanes 4, 5 and 6 in Figure 10). Endogylcosidase H 

treatment caused a small shift for E-cadherin consistent with the presence of N-linked glycans 

(Liwosz et al., 2006), Figure 9b). However, no significant difference in electrophoretic 

mobility was observed between fully and minimally glycosylated E-cadherin (Lanes 4-6 in 

Figure 10), suggesting that the N-linked glycans of E-cadherin are less complex than those of 

VE-cadherin. 
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These findings led us to experimentally determine the precise molecular weight contributed 

by glycans for each protein by MALDI-TOF mass spectrometry analysis. First, fully 

glycosylated ectodomains of human and chicken VE-cadherin as well as mouse E-cadherin 

were analyzed, with comparison of experimentally determined masses with predicted 

molecular weights (Table 3). We determined a total glycan of 13,144Da for human VE-

cadherin, 9,503Da for chicken VE-cadherin and 4,971Da for E-cadherin. Next, we wanted to 

elucidate the relative contributions of N- and O-linked glycosylation to the total glycan. 

Therefore VE-cadherin and E-cadherin, expressed in glycosylation deficient HEK 293 GNTI- 

cells, were treated with Endoglycosidase H to specifically remove N-linked glycan, and we 

determined the molecular weight of protein without N-linked glycosylation by MALDI-TOF. 

Subtracting the molecular weight of the ‘deglycosylated’ protein from that of the fully 

glycosylated protein revealed the quantity of N-linked glycosylation (Table 4). O-

glycosylation quantities could be calculated by subtraction of predicted molecular weight 

from the ‘deglycosylated’ weight. From this analysis we found that human VE-cadherin 

ectodomains carry 2,713Da of O-linked and 10,336Da of N-linked glycosylation and chicken 

VE-cadherin ectodomains 1,836Da of O-linked and 7,667Da of N-linked glycan. We repeated 

the experiment with truncated VE-cadherin EC3-5 and found that these three domains 

contribute 8,149Da (62%) to the total glycan, of which 6,570Da is N-linked and 1,579Da O-

linked glycosylation. Using the same method as described above total glycan for E-cadherin 

was determined to be 4,971Da, composed of 1,793Da of O- and 3,178Da of N-linked sugar. 

 

Table 4: Glycosylation quantities found on mammalian produced VE- and E-cadherin ectodomains.  

 

Protein 
Total glycan 

[Da] 
N-linked glycan 

[Da] 
O-linked glycan 

[Da] 

    

Chicken VE-cad EC1-5 9,503 7,667 1,836 
Human VE-cad EC1-5 13,144 10,336 2,713 
Human VE-cad EC3-5 8,149 6,570 1,579 
Mouse E-cad EC1-5 4,971 3,178 1,793 

 

We also determined the locations of the N-linked glycosylation sites in VE-cadherin. 

Glycosylated and deglycosylated human VE-cadherin ectodomains were subjected to trypsin 

digest and the mass of the obtained peptides was determined by MALDI-TOF. Comparison of 

the two sets of peptides revealed five N-glycosylation sites: Asn14 and Asn64 in EC1, 
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Asn110 in EC2, Asn315 in EC3 and Asn395 in EC4. In EC5, the most membrane proximal 

domain, no glycosylation sites were found. O-glycosylation sites on VE-cadherin could not be 

determined, as the O-linked glycans have molecular weights too small to be detected reliably 

by our method. 

 

To examine the positions of the N-linked glycosylation sites in regard of the whole 

ectodomain, we built a homology model of the ectodomain of human VE-cadherin using the 

Swissmodel server with C-cadherin (pdb-code: 1L3W) as template. Figure 11 shows the 

experimentally identified glycosylation sites mapped on to our homology model. Comparing 

glycosylation in VE-cadherin with that of E-cadherin determined from a recently published 

structure (Figure 11, (Harrison et al., 2010b) and from biochemical analyses (Liwosz et al., 

2006) it is evident that several equivalent regions are glycosylated in both proteins (Figure 11- 

glycosylation). These are the concave face of EC3 and the concave face of EC4. However, at 

the sequence level, only one N-linked site is conserved between the two cadherins – Asn395 

(VE-cadherin numbering) in EC4. Additionally, we included mouse type II cadherins -6, -8,  

-9, -10 and -11 in our analysis and, remarkably, we found that only the Asn395 consensus 

glycosylation site is also conserved in these cadherins.  

 

Taken together, our results show that VE-cadherin ectodomains are highly glycosylated in 

comparison to type I E-cadherin and that approximately 62% of the N-linked glycosylation is 

located in domains EC3-4. Only one N-linked glycosylation site, which is located in EC4, is 

conserved within most classical cadherins. The importance of glycosylation for VE-cadherin 

function will be discussed in Section 4.8. 
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3.3 Bacterial protein production in Escherichia coli 

3.3.1 VE-cadherin protein fragments expressed in E. coli 

To assess structural and biophysical features of VE-cadherin homophilic and heterophilic 

adhesive binding, we prepared adhesive fragments of human, chicken and mouse VE-

cadherin spanning domains EC1-2. In addition, a single human domain EC1 and a fragment 

spanning only EC3-4 were prepared. These proteins were expressed at an average yield of 

260µg per liter of Rosetta2 DE3 E.coli cells and could be purified by affinity 

chromatography, ion exchange and size exclusion chromatography as described in Section 

2.1.2.3. All produced proteins by this method have native mature N-termini. To investigate 

the importance of strand swap binding for these fragments, two strand swap mutant proteins 

were also designed for mouse and chicken VE-cadherin domains EC1-2. In the first, indole 

side chains of Trp2 and Trp4 were both mutated to that of alanine (W2A W4A mutant), 

similar to the full length VE-cadherin ectodomain mutant described above. In the second, the 

N-terminus was extended by a single methionine for human and chicken VE-cadherin to 

disrupt a salt bridge involving the N-terminal amino group found to contribute to strand swap 

binding in other type I and II cadherins (Met-extension mutant). All wild-type and mutant 

fragments were successfully purified (Section 2.1.2.3) and could be concentrated to at least 

7mg/mL. Figure 12 shows the result of SDS-poly acryl amide gel electrophoresis of the 

purified proteins, indicating all proteins to be greater than 99% pure. Molecular weights 

observed on the gel correspond to predicted molecular weights based on primary protein 

sequences. 

 

Structural studies using these VE-cadherin adhesive fragments are described in Section 5.2-

5.5 and biophysical characterization of the wild-type and mutant fragments are described in 

Section 5.1.  
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3.3.2 Classical cadherin fragments expressed in E. coli 

In addition to VE-cadherin we also wanted to characterize the binding properties of other type 

I and type II cadherins and the outlier T-cadherin, as well as to perform homophilic and 

heterophilic binding experiments to elucidate specificity in cadherins.  

 

A set of six wild type untagged type II cadherins was prepared (Section 2.1.2.3): mouse type 

II cadherins-6, -8, -9, -10, and 11 encompassing domains EC1-2 and additionally chicken 

cadherin-6b EC12. The EC1-2 fragment of cadherin-8 failed to dimerize and remained 

monomeric in gel filtration and equilibrium AUC experiments, therefore we extended the 

cadherin-8 construct by domain EC3. Cadherin-8 EC1-3 was able to form dimers in solution 

(see Section 5.1 for AUC results and Table 14 for KD). All proteins were expressed in E.coli 

and purified as described above for VE-cadherin fragments. Protein expression levels of type 

II cadherins were at an average of approximately 260µg/L bacterial culture and all proteins 

yielded had mature native N-termini. Figure 13a shows that proteins were greater than 98% 

pure. All type II cadherins were soluble to concentrations of at least 7mg/mL and only 

cadherin-11 showed minimal signs of degradation by proteolysis in some preparations. SDS-

PAGE of purified proteins is shown in Figure 13a. 

 

We also prepared the type I cadherins E-cadherin and N-cadherin as well as the outlier T-

cadherin as EC1-2 adhesive fragments from mouse using the same expression system. P-

cadherin protein, produced in the same way, was kindly provided by Fabiana Bahna. Yield for 

all type I proteins was at an average of approximately 1.3mg/L bacterial culture and all had 

native mature N-termini. E- and P-cadherin were soluble to concentrations of at least 

7mg/mL, but solubility of N-cadherin was limited to 1mg/mL.  

 

The type I and type II cadherin fragments were used for analytical ultracentrifugation studies 

of homophilic binding (Sections 5.1 and 6.1) and for surface plasmon resonance studies of 

homophilic and heterophilic binding (Sections 6.2 and 6.3). 
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Table 5: Summary of bacterial produced cadherins.  

Protein Description 

  

VE-cadherin  

Human VE-cadherin EC1-2 Wild type 

Chicken VE-cadherin EC1-2 Wild type 

Mouse VE-cadherin EC1-2a Wild type 

Human VE-cadherin EC1 Wild type 

Human VE-cadherin EC3-4 Wild type 

Chicken VE-cadherin EC1-2 W2A W4A Strand swapping mutant 

Mouse VE-cadherin EC1-2 W2A W4A Strand swapping mutant 

Chicken VE-cadherin EC1-2 Met-extension Strand swapping mutant 

Human VE-cadherin EC1-2 Met-extension Strand swapping mutant 

  

Type II cadherins Wild type 

Mouse cadherin-6 EC1-2a Wild type 

Mouse cadherin-6 EC1-2 W4A Strand swapping mutant 

Chicken cadherin-6b EC1-2 Wild type 

Mouse cadherin-8 EC1-2 Wild type 

Mouse cadherin-8 EC1-3 Wild type 

Mouse cadherin-9 EC1-2 Wild type 

Mouse cadherin-10 EC1-2 Wild type 

Mouse cadherin-11 EC1-2a Wild type 

  

Type I cadherins  

Mouse E-cadherin EC1-2 Wild type 

Mouse E-cadherin EC1-2 W2A Strand swapping mutant 

Mouse E-cadherin EC1-2 E89A Strand swapping mutant 

Mouse E-cadherin EC1-2 Ala-Ala-extension Strand swapping mutant 

Mouse E-cadherin EC1-2 Met-Arg-extension Strand swapping mutant 

Mouse E-cadherin EC1-2 Asp-Trp-deletion Strand swapping mutant 

Mouse N-cadherin EC1-2a Wild type 

Mouse N-cadherin EC1-2 Ala-Ala-extension Strand swapping mutant 

Mouse P-cadherin EC1-2b Wild type 

Mouse T-cadherin EC1-2c Wild type 

Mouse T-cadherin EC1-2 I2A Strand swapping mutant 

Mouse T-cadherin EC1-2 Gly-extension Strand swapping mutant 

Mouse T-cadherin EC1-2 Met-Arg-extension Strand swapping mutant 
 a tagged versions of these proteins are listed separately in table 16;   
b P-cadherin protein: courtesy of Fabiana Bahna.   
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Type I and type II cadherin EC1-2 fragments containing mutations targeting the strand swap 

binding interface were prepared for binding experiments reported in Chapter 7. Mutations 

were introduced into E-, T- and cadherin-6 as described in Section 2.1.2.1. Strand swap 

mutant proteins W2A, E89A, Ala-Ala extension, Met-Arg-extension for E-cadherin; I2A, a 

Gly-extension and Met-Arg extension mutant for T-cadherin and W4A for cadherin-6 were 

expressed and purified in the same way as the corresponding wild type proteins. In a second 

cadherin-6 EC1-2 mutant we extended the N-terminus by residues Met and Arg, however, this 

protein was unstable in solution resulting in precipitation and was thus omitted from the final 

studies. See section 7.2 for full description of the mutations. Yield for all mutant proteins was 

similar to wild type and proteins were successfully purified and had native mature N-termini 

unless specifically altered. SDS-PAGE of all mentioned proteins shown in Figure 13b. 

 

 

3.3.3 Preparation of C-terminally tagged classical cadherins 

For SPR and co- immunoprecipitation (IP) experiments, proteins needed to be tethered to 

sensor chips or beads, respectively, by suitable engineered tags. Due to their adhesive 

mechanism cadherins require native N-termini and need to be positioned such that their 

adhesive N-termini are accessible for binding as they would be in vivo on cell membranes. 

Therefore, only C-terminal tags were tested.  These were introduced into type I N-cadherin 

and type II cadherins-6, -11 and VE-cadherin, as is summarized in Table 6. Common tags like 

the biotinylated Avi-tag (GGGLNDIFEAQKIEWHE), FLAG- (DYKDDDDK) and C9- tag 

(GGGTETSQVAPA) were used for this purpose and additionally, we designed a novel tag 

consisting of a single cysteine after three glycine residues as spacer, which will be referred to 

as “CYS-tag” (GGGC). This tag allows the use of thiol coupling in order to covalently bind 

CYS-tagged proteins to surfaces. Approximate molecular weight was assessed by SDS-PAGE 

for the C-terminally tagged proteins and they were found to be pure (Figure 14a and b).  

 

The entire set of Avi*bio-, FLAG-, C9- and CYS-tagged proteins was used in SPR 

experiments described in chapter 6 and reported in Ciatto et al. (2010) and Harrison et al. 

(2010) and the subset of C9-, FLAG- and biotinylated VE- and N-cadherin proteins were used 

in IP-experiments (Section 6.4).  
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Table 6: Summary of C-terminally tagged classical mouse cadherins and associated experiments. 

 

Cadherin Tag Experiment Section 

    

VE-cadherin Avi*bio AUC 6.2 

VE-cadherin FLAG AUC, SPR, IP 6.2, 6.4 

VE-cadherin C9 AUC, SPR, IP 6.2, 6.4 

VE-cadherin CYS AUC, SPR 6.2 

N-cadherin Avi*bio AUC, SPR, IP 6.2, 6.4 

N-cadherin C9 AUC, SPR, IP 6.2, 6.4 

N-cadherin CYS AUC, SPR 6.2 

Cadherin-6 Avi*bio AUC, SPR 6.2a 

Cadherin-11 Avi*bio AUC 6.2 
 

a This protein has been used successfully in SPR studies in Harrison et al (2010) and 

Katsamba and Carrol et al (2009) 
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Chapter 4:  

Full length VE-cadherin ectodomains  

form dimers similar to those of classical cadherins 
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4.1 Biophysical studies of the adhesive binding mechanism of native VE-

cadherin ectodomains 
Previously published binding studies conducted on bacterially produced VE-cadherin EC1-4 

domain fragments (Bibert et al., 2002; Hewat et al., 2007; Legrand et al., 2001; Taveau et al., 

2008)suggest a novel and unique binding mechanism for VE-cadherin in the context of the 

adhesive mechanism known for other classical cadherins. In this proposed model VE-cadherin 

molecules associate laterally on the same cell surface, via a strong cis interface involving 

domain EC4. Trimers then adhere to a second trimer extending from the opposing cell to 

assemble a hexamer via trans interactions in EC1 domains (Hewat et al., 2007). By contrast, 

for other classical type I and II cadherins it is known that they mediate adhesive binding by a 

3D-domain swapping mechanism between opposing monomers, resulting in strand swapped 

adhesive cadherin dimers and not higher order multimers. For type I cadherins it was recently 

found using structural analysis, cryo EM of artificial adherens junctions and assays of cell 

adherens junction formation, that an additional cis interface is necessary in order to form 

junctions, involving the EC1 domain of one protomer and EC2 of the following protomer 

(Boggon et al., 2002; Harrison et al., 2010b). However, unlike the cis interactions determined 

for bacterially expressed VE-cadherin, these type I cadherin cis interactions are very weak 

and only trans dimerization can be detected in solution equilibrium AUC experiments. 

 

We took an extensive biophysical approach to analyze the degree of multimerization and 

adhesive behavior of soluble VE-cadherin ectodomains and to test the unique binding model 

described above. Since we found that VE-cadherin ectodomains are substantially glycosylated 

(see previous section), we used only glycosylated full ectodomains of human and chicken VE-

cadherin, in addition to the W2A W4A strand swap binding mutant and a truncated VE-

cadherin EC3-5 that includes the putative trimerizing domain EC4. Their binding behavior 

was assessed by sedimentation equilibrium analytical ultracentrifugation, analytical size-

exclusion chromatography, multi angle light scattering and liposome aggregation assays.  

 

4.2 Biophysical behavior of VE-cadherin in sedimentation equilibrium 

analytical ultracentrifugation  
Sedimentation equilibrium analytical ultracentrifugation (AUC) analysis was used to 

determine the oligomerization state of VE-cadherin. We chose to investigate the association 

behavior of full VE-cadherin ectodomains, expected to produce hexamers according to the 
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hexamer model of VE-cadherin binding; a strand swap mutant, which was expected to 

trimerize via domain EC4 and truncated VE-cadherin EC3-5, also expected to associate into 

trimers. Equilibrium AUC allows determination of an exact molecular mass independently 

from molecule shape and, in addition, data can be fit to dimeric or multimeric binding models 

to yield dissociation constants (KD) in equilibrium as a measure of adhesive binding affinity.  

Interestingly, glycosylated wild type human and chicken VE-cadherin both were found to 

reach a monomer/dimer equilibrium in all conducted experiments without evidence for the 

presence of any higher order multimers (Figure 15 AUC). Human and chicken VE-cadherin 

ectodomains exhibit strong binding affinities with determined KD values of 1.14μM and 

1.03μM, respectively, which are an order of magnitude stronger than KDs determined 

previously for hexamer association. The residual values for fitting of the data to monomer-

dimer equilibrium models were uniformly close to zero, indicating a reliable fit (Figure 15). 

 

After we found that a remarkably strong affinity is associated with VE-cadherin 

homodimerization, we wished to compare it to published affinities of other cadherins. A 

binding affinity for C-cadherin EC1-5 and for two domain EC1-2 fragments of type I E- and 

N-cadherin were available. To test, if a comparison of affinities between mammalian 

expressed full length cadherins with those of bacterially produced two domain fragments is 

feasible, we performed an equilibrium AUC experiment with our mammalian expressed 

mouse E-cadherin EC1-5. A monomer/dimer equilibrium could be confirmed for this type I 

cadherin with a KD of 109μM (Table 7) matching previously published KDs for EC1-2 

fragments of the same protein (96.5μM, (Harrison et al., 2010a; Katsamba et al., 2009)). This 

suggests that it is permissible to compare the determined VE-cadherin KD to previously 

published KDs for type I cadherins. Mouse N-cadherin EC1-2 associates with a KD value of 

25.8µM (Katsamba et al., 2009) and C-cadherin full ectodomains with a KD of 64µM 

(Chappuis-Flament et al., 2001), which leads to a range of approximately 26µM -109µM for 

type I cadherin affinities. Thus, VE-cadherin adhesive binding in the range of 1µM is 

considerably stronger than type I E-, N- and C-cadherin by between 20 to 110 fold.  

 

To reduce or ablate strand swap mediated cadherin binding we mutated docking tryptophans 

Trp2 and Trp4 to alanine in VE-cadherin. The double mutant protein was subjected to 

equilibrium AUC experiments and we found that the dimerization affinity is diminished 

approximately 120 fold (Figure 15c). 
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The dimerization of this mutant, though extremely weak compared to wild-type, may suggest 

a second binding mechanism deviating from strand swap binding, similar to behavior of 

strand swap mutants of other cadherins (Ciatto et al., 2010; Harrison et al., 2010a), discussed 

in Chapter 7). Because we could not exclude, that the observed binding might arise from EC4 

triggered cis interactions, we also conducted AUC experiments with truncated glycosylated 

VE-cadherin EC3-5 to investigate the adhesive contribution of domain EC4. The results 

reveal that EC3-5 fragments fail to dimerize or trimerize and are monomers in solution 

(Figure 15d).  

 

Table 7: Dissociation constants (KD) for homodimerization of mammalian produced VE-cadherin and 

E-cadherin. 

 

Protein Description KD [µM] 

   

Human VE-cadherin EC1-5 Wild type 1.03±0.22 
Chicken VE-cadherin EC1-5 Wild type 1.14±0.04 
Mouse E-cadherin EC1-5 Wild type 109±9 
Human VE-cadherin EC1-5 W2A 

W4A Strand Swapping mutant 122.5±62.5 
Human VE-cadherin EC3-5 Wild type Monomer 

 

Overall, AUC experiments show that VE-cadherin ectodomains do not associate into 

hexamers and instead, adopt a monomer/dimer equilibrium similar to other classical 

cadherins, though with a substantially higher affinity. VE-cadherin binding was markedly 

reduced when residues Trp2 and Trp4 important for strand swap mediated adhesion were 

mutated to alanines. In addition, no association of EC3-5 fragments could be observed in our 

experiments, supporting the assumption that VE-cadherin follows a classical cadherin 3D 

domain swapping mechanism. Thus, only domains EC1-2 of VE-cadherins appear to function 

directly in adhesion, indicating that the putative hexamer model may be artifactual. 

 

 

4.3 Analytical size-exclusion chromatography 
In a different approach to further biophysically study VE-cadherin binding behavior, we 

performed analytical size-exclusion experiments, which allow different molecular species to 

be resolved according to their hydrodynamic radii. Glycosylated VE-cadherin EC1-5 was 
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passed over an analytical Superose 6 column at a concentration of 7μM, which is well above 

its KD for dimerization (see previous section). Figure 16 shows the elution profile of wild type 

VE-cadherin, which elutes in a two peak distribution: one major peak at higher molecular size 

and a minor peak at lower molecular size. The strand swap targeted mutant W2A W4A has an 

inverse peak distribution with a minimal high molecular size peak and a major lower 

molecular weight peak (Figure 16, green trace), which both overlap with those of the wild 

type protein (Figure 16, blue trace). These findings suggest in combination with our AUC 

data that the two observed peaks represent a dimer - monomer distribution and that the 

increased abundance of the lower molecular size peak in the mutant reflects its low affinity 

dimerization observed in AUC. In contrast, truncated VE-cadherin ectodomain fragments 

spanning domains EC3-5 eluted at substantially higher volume in only one peak (Figure 16, 

orange trace), suggesting it to be smaller than the five domain strand swap proteins and thus 

monomeric. 

 

The size-exclusion chromatography data are in agreement with our AUC results. VE-cadherin 

full ectodomains form homodimers and monomers; strand swap ablated cadherin elutes 

predominantly as monomer and truncated VE-cadherin lacking adhesive domains EC1-2 

resolve as only one species in size-exclusion experiments, which is most likely monomeric. 

No evidence of trimers or hexamers could be found in these experiments. Notably, VE-

cadherin EC1-5 does not elute as one species representing a dynamic mixture of monomer 

and dimer in rapid exchange as seen for E-cadherin ((Harrison et al., 2010a): Figure 5c); it 

elutes as two distinct peaks, which might indicate in comparison to other classical cadherins a 

slowed kinetic rate as we have observed in studies of E-cadherin X-dimer interface mutants 

(Harrison et al., 2010a). 
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4.4 Multi angle light scattering 
Our biophysical data derived from AUC measurements and analytical size-exclusion 

chromatography strongly favor a monomer/dimer interaction for VE-cadherin. Analytical size 

exclusion chromatography as a technique separates different protein species dependent on 

molecule shape and size, hence it confirmed that VE-cadherin adheres as homodimer, but 

cannot provide accurate molecular masses to unambiguously identify each molecular species. 

Multi angle light scattering (MALS) preceded by an analytical size exclusion column allows 

the assessment of accurate masses of each chromatographic peak and provides additional 

information about dispersity found in the peak. We passed VE-cadherin EC1-5 and EC3-5 

and additionally as a control monomeric mutant E-cadherin W2A K14E all expressed in HEK 

293 GNTI- cells over a TSKgel Super SW3000 size exclusion column at concentrations of 

1mg/mL and their molecular mass and dispersity was determined by MALS (Table 8). All 

three proteins were monodisperse, with only one species of protein present in each 

chromatographic peak. E-cadherin EC1-5 W2A K14E mutant showed a mass of 66.5kDa 

corresponding to its monomeric weight. The mass of full length VE-cadherin EC1-5 was 

found to be 137 Da corresponding to the molecular weight of two cadherin molecules and the 

EC3-5 fragment revealed a mass of 52kDa showing it to be monomeric. 

 

Table 8: Molecular weight for human VE-cadherin EC1-5 and EC3-5 and mouse E-cadherin W2A 

K14E determined by MALS. 

 

Protein MALS MW [Da] Oligomerization state 

   

Human VE-cad EC1-5 137,400 Dimer 
Human VE-cad EC3-5 51,970 Monomer 
Mouse E-cad EC1-5 W2A K14E 66,500 Monomer 

 

The results of this experiment confirm data of AUC and analytical size-exclusion experiments 

supporting the conclusion that VE-cadherin forms adhesive dimers via adhesive domains 

EC1-2 and not higher order multimers. 
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4.5 Liposome aggregation assays with cadherin ectodomains 
VE-cadherin is crucial for the angiogenesis and maintenance of the integrity of the vascular 

endothelium, enabling formation of cell-cell adhesion junctions between endothelial cells 

(Uehara, 2006) Introduction 1.8). To mimic VE-cadherin adhesion at endothelial junctions 

and to study VE-cadherin interactions in an assay system more closely approximating cellular 

conditions, we used cadherin coated liposomes serving as ‘artificial cells’. Liposomes 100nm 

diameter lipid bilayer micelles composed of a 9:1 ratio of DOPC and Nickel chelating DGS-

NTA (Ni), were coated with cadherin ectodomains for aggregation experiments. C-terminally 

His-tagged VE- and E-cadherin ectodomains can be affinity bound to the liposome via their 

His-tag to Nickel (II) ions presented on the liposome surface (Figure 17, left panel). Thus, 

cadherins are oriented on liposomes with their N-terminal EC1 domains exposed. A lipid 

bilayer also has the beneficial property that it is not a static surface, but is instead fluid and 

allows proteins to diffuse similar to a cell membrane environment. Therefore, it is possible 

after initial cadherin-mediated contact between two liposomes has occurred for artificial 

junctions to assemble by recruitment of mobile cadherin on the surface. In the experiment, 

liposomes are incubated with the purified cadherin ectodomains to allow aggregation (Figure 

17, right panel). Multi liposome aggregates scatter more light than a suspension of single 

liposomes, thus scattering of light can be used to monitor cadherin-mediated liposome 

aggregation. Optical density (OD) at a wavelength of 650nm was measured over a time period 

of 2,500 seconds in 20 second intervals after addition of cadherin proteins to liposomes to 

initiate aggregation.  

 

First, we performed liposome aggregation assays with wild type E-cadherin ectodomains. E-

cadherin has been shown in many independent assay systems to mediate adhesion, including 

in cryo EM studies of adherens junctions (Farquhar and Palade, 1963; Harrison et al., 2010b; 

McNutt and Weinstein, 1973) and cell-cell aggregation assays (Katsamba et al., 2009; Patel et 

al., 2006; Shimoyama et al., 2000). Therefore, we used E-cadherin to test that liposome 

aggregation assays are applicable to cadherin adhesion. Figure 17b (right panel) shows the 

result of E-cadherin mediated liposome aggregation, as a plot of monitored OD against 

aggregation time. It can be observed that optical density increased steadily suggesting 

occurrence of liposome aggregation, which reached a ‘steady state’ at approximately 750sec, 

indicating an equilibrium in which rates of liposome association and dissociation are 

balanced. To test if aggregation is a general property of liposomes in solution or if it is a 

property inherent only to cadherin coated liposomes, we monitored uncoated liposomes for  
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the same period of time. No notable change in optical density could be detected during the 

course of the experiment, which clearly shows that no spontaneous liposome aggregation 

occurs in the absence of cadherin (Figure 17b).  

 

In addition, we tested the aggregation ability of E-cadherin mutants W2A K14E, in which 

mutations disrupt the strand swap and X-dimer interfaces leaving it with no adhesive 

properties (Harrison et al., 2010a). Liposomes were not aggregated by the double interface E-

cadherin mutants (Figure 17b, right panel). Thus, aggregation observed in the liposome assays 

is induced by specific E-cadherin strand swap interactions mimicking the extracellular 

process of cell adhesion and making liposome aggregation suitable to measure trans 

homophilic binding of cadherins. 

 

We tested wild type full ectodomains of human VE-cadherin EC1-5 in this assay system at 

concentrations of 8µM. VE-cadherin aggregated liposomes efficiently and the aggregation 

profile had a closely similar shape to that of type I E-cadherin-mediated aggregation with the 

difference that equilibrium was reached slightly later at around 1,500s (Figure 17b, left 

panel). We also conducted liposome aggregation experiments with the VE-cadherin strand 

swap mutant W2A W4A and the EC3-5 fragment. Introduction of the W2A W4A mutation 

into VE-cadherin reduced the ability to aggregate liposome significantly to only minimal 

levels in comparison to wild type VE-cadherin (Figure 17b, left panel, red trace). These data 

suggest that ablation strand swap mediated trans adhesion is sufficient to impair liposome 

aggregation, but at the same time, it was not able to abolish homophilic binding entirely. 

These findings closely agree with our AUC experiments showing residual binding for the VE-

cadherin strand swap mutant (see above). In contrast, the double interface mutant of E-

cadherin (W2A K14E) ablated E-cadherin adhesive binding almost entirely. Given that this 

mutant is designed to disrupt the strand swap binding and X-dimer interface in E-cadherin, 

one could assume, that the residual observed binding between strand swap VE-cadherin 

mutants might be due to X-dimer formation. To examine if VE-cadherins trans adhesive 

properties are localized solely in EC1-2 like in other type I and type II cadherins or if domains 

EC3-5 also participate in aggregation of liposomes, we tested truncated EC3-5 fragments. No 

change in absorbance could be detected during the course of the experiment above negative 

controls with liposomes alone (Figure 17b, left panel). Lack of any liposome aggregation 

indicates that VE-cadherin domains EC3-5 are not able to exhibit trans adhesive binding, 

which suggests in turn that residual binding observed for the VE-cadherin strand swap mutant 
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is likely to be mediated by EC1-2 domains, which could be speculated to arise from X-dimer 

formation (Harrison et al., 2010b). 

 

The liposome experiments show that wild type VE-cadherin can efficiently aggregate 

liposomes by protein inherent trans adhesive properties similar to those of E-cadherin. 

Further, these data suggest, that for initial VE- and E-cadherin mediated adhesive contact 

between lipid membranes the cadherin transmembrane and cytoplasmic domains and 

intracellular interactions appear to be dispensable.  

 

 

4.6 Electron microscopy studies of in vitro VE-cadherin junctions 
Electron micrographs of VE-cadherin junctions in the endothelium show that apposed plasma 

membranes are almost parallel to each other with an enrichment of protein density in the 

intercellular space and that extracellular adhesion is stabilized by linking of the cytoplasmic 

cadherin domain via intracellular proteins to actin filaments that concentrate at junctional sites 

(Uehara, 2006). In addition, Taveau et al. (2008) published cryo EM micrographs of artificial 

junctions formed by bacterially produced VE-cadherin EC1-4. These liposomes showed a 

double layered midline in between liposomes, which could be fitted with the VE-cadherin 

hexamer proposed by Hewat et. Al. (2007). Our laboratory also performed cryo EM studies 

on E-cadherin coated liposomes revealing artificial junctions different from those published 

for VE-cadherin EC1-4, but similar to cryo EM data of adhesive junctions (Harrison et al., 

2010b). Our studies of glycosylated, native full VE-cadherin ectodomains all suggest 

uniformly that VE-cadherin behaves as a classical cadherin dimer and does not associate into 

higher order multimers such as those reported for the bacterially produced EC1-4 fragments. 

Therefore, we wanted to visualize artificial adherens junctions assembled by our glycosylated 

VE-cadherin in order to compare these to junctions assembled by type I E-cadherin and to 

previously published data for bacterial VE-cadherin junction assembly. 

 

Liposomes, which were also used in liposome aggregation assays described in Section 4.5, 

were coated with C-terminally tagged wild type human VE –cadherin and incubated until 

liposome aggregation reached equilibrium. Aggregates were then transferred to holey copper 

carbon EM grids and flash frozen for imaging by cryo-EM. Figure 18a shows an electron 

micrograph of two single liposomes in the hole of the carbon grid in which buffer and  
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liposomes become trapped keeping the sample hydrated during freezing. Liposomes are easily 

determined in micrographs by two crisp dark bands around their edge, which represent the 

two leaflets of the lipid bilayer. Most of the liposomes visualized in these experiments have a 

mantle of dense, grainy, unorganized matter evenly distributed over the surface, representing 

a coating of cadherin ectodomains (Figure 18a, black arrow). These are easily distinguishable 

from liposomes that are uncoated or minimally coated on which there is no diffuse density 

attached to the surface and only the lipid bilayer is seen (Figure 18a, white arrow).  

 

Liposome aggregation occurs in three dimensions in suspension and the large clusters are then 

transferred to flat grids for freezing, so that mostly multilayered aggregates appear on the 

grids as Figure 18b shows.  

 

This sample thickness complicates intensive study as there is too much electron density for 

clear visualization of individual contacts. Nonetheless, single layers of ‘two dimensional’ 

contact forming liposomes were observed, as are shown in Figure 18c and d. These liposomes 

show examples of artificial adherens junctions, which have the following features:  

a) straightening of the lipid bilayer at the contact site in comparison to usual rather rounded 

shape of liposomes, b) membranes of apposing liposomes involved in junction formation are 

approximately in parallel and c) enrichment of electron density between the apposing 

liposomes (Figure 18c, black arrow). Another phenomenon we frequently observed is shown 

in Figure 18 (white arrow) in which soluble, ‘free’ cadherin, which is not affinity bound to a 

liposome surface, binds to cadherin ectodomains coated on liposomes. 

 

Figure 18d shows an electron micrograph of an aggregate of three liposomes including two 

large contact sites which show the characteristic features of artificial adherens junctions and 

an intermembrane spacing of approximately 40nm. It appears that almost all cadherin bound 

to the middle liposome was recruited into the junctions, as there is almost no apparent 

cadherin density on the liposome surface outside the junction. VE-cadherin ectodomains 

located in the junction appear to be densely concentrated and well ordered and show a thin, 

more electron-dense “midline”, which is parallel to and evenly spaced from both liposome 

lipid bilayers. The midline could be caused by overlapping cadherin EC1 domains in strand 

swap dimer conformation. The occurrence of a midline is reminiscent of junctions observed in 

desomosomes, which are assembled by desmocollins and desmogleins, also members of the 

cadherin superfamily (Al-Amoudi and Frangakis, 2008; He et al., 2003). Additionally, in EM 



86 
 

micrographs of E-cadherin coated liposomes which also formed artificial adherens junctions, 

a similar phenomenon was observed (Harrison et al., 2010b). Previously published cryo EM 

of liposome junctions assembled by bacterially produced VE-cadherin EC1-4 lacked this 

feature and had a more even distribution of density between apposed lipid layers, indicating a 

very different arrangement of cadherin from that observed here (Bibert et al., 2002; Taveau et 

al., 2008).  

 

In conclusion, artificial adherens junctions assembled by mammalian produced VE-cadherin 

have a dense “midline”, which suggests an arrangement of ectodomains different from that in 

previously reported artificial junctions formed by bacterially produced proteins. Our native 

VE-cadherin artificial junctions are more similar to those of type I E-cadherin (Figure 6, 

(Harrison et al., 2010b)), supporting in conjunction with our biophysical studies described in 

Section 4.1-4.3 and 4.4, a classical cadherin binding mechanism for VE-cadherin involving 

trans adhesion between monomers, possibly accompanied by weak cis interactions. Notably, 

VE-cadherin ectodomains are capable to form adherens junction like structures in liposomes 

without transmembrane and intracellular domains. This suggests that initial intermembrane 

contact and junction assembly are triggered by VE-cadherin ectodomains alone, although for 

strengthening of initial junctions into mature adherens junctions in vivo, the transmembrane 

and cytoplasmic domains as well as intracellular binding partners may be necessary.  

 

 

4.7 Atomic force microscopy imaging studies of VE-cadherin ectodomains 
Experiments conducted with glycosylated VE-cadherin involving equilibrium AUC (Section 

4.2), analytical size exclusion (Section 4.3), MALS (Section 4.4), liposome aggregation 

assays (Section 4.5) and cryo EM studies of artificial adherens junctions described in the 

previous section, strongly suggest, that natively glycosylated VE-cadherin adopts adhesive 

behavior closely similar to that of other classical cadherins. We wanted to obtain data on an 

atomic level about the binding mechanism of VE-cadherin, but attempts to obtain diffracting 

crystals of glycosylated full-length human and chicken VE-cadherin ectodomains were in 

vain. Therefore, we chose atomic force microscopy (AFM) imaging as an alternative to shed 

light on the overall arrangement of VE-cadherin dimers and those of E-cadherin for 

comparison. Full cadherin ectodomains were tethered to poly-L-lysine coated mica surfaces at 

a concentration of 2nM (8µM for E-cadherin) and subsequent imaging of the samples was 

performed in tapping mode (see Section 2.2.5).  
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Three dimensional AFM imaging data could be successfully derived from VE-cadherin and 

E-cadherin samples. Two distinct shapes reappeared in the resulting images for each protein 

(Figure 19a and b, c left and right panel). One of these can be described as a crescent shaped 

form and has a length of 28±2nm for VE-cadherin and 21.1±0.2nm for E-cadherin (19a, c left 

panel). They are markedly reminiscent in curvature and shape of individual protomers in the 

ublished C-cadherin crystal structure (Figure 19, (Boggon et al., 2002), pdb:1L3W). The other 

recurring form identified in the AFM images is approximately 48±9nm long for VE-  

(Figure 19b) and 33.2±1.3nm for E-cadherin (Figure 19c, right panel) and appears to be 

composed of two of the aforementioned crescent shaped forms, overlapped at their N-termini 

with a resulting increase in measured sample thickness in this region (Figure 19b and c, right 

panel). The overall arrangement of E- and VE-cadherin complexes is strikingly similar to the 

crystallographically determined C-cadherin strand swapped trans dimer and to dimers of E- 

and N-cadherin reported recently (Boggon et al., 2002; Harrison et al., 2010b). These data 

suggest that VE-cadherin ectodomains form complexes shaped like classical cadherin dimers, 

including a clear increase in sample thickness due to the overlap of EC1 domains, and a 

corresponding dimer length that is slightly less than twice the monomer length. Overall, it 

appears that the strand swap mechanism common to other classical cadherins also underlies 

VE-cadherin homophilic binding. Cigar shaped objects like the previously reported hexamers 

which were abundant and readily identifiable in cryo EM studies of bacterially produced VE-

cadherin EC1-4 (Hewat et al., 2007) could not be identified in any of the AFM images.  

 

Notably, in comparison to VE-cadherin images, in those for E-cadherin fewer dimeric forms 

and a larger number of single protomers were found. The different distinct distribution of 

monomers and dimers might arise due to a difference in affinities for homodimerization, 

because E-cadherin affinity is approximately two orders of magnitude lower than that of VE-

cadherin. At the low protein concentrations required for the imaging experiments, VE-

cadherin therefore has more dimers present than the lower affinity E-cadherin. 

 

This data supports our previous findings that native full VE-cadherin ectodomains form strand 

swapped dimers like other classical cadherins, which appear similar in arrangement to those 

of type I cadherins. 
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4.8 VE-cadherin EC4 domain enables multimerization only when 

glycosylation is absent 
Despite previously published evidence for a hexamer as the minimal adhesive unit, which was 

found for bacterially produced VE-cadherin EC1-4 fragments (Bibert et al., 2002; Hewat et 

al., 2007; Legrand et al., 2001), native, glycosylated VE-cadherin behaved as a classical 

cadherin dimer in all of our biophysical experiments (see Sections 4.2-4.7). Additionally, VE-

cadherin exhibited behavior similar to that of type I E-cadherin in liposome aggregation 

assays (Section 4.5), cryo EM studies of artificial adherens junctions (Section 4.6) and shares 

the overall dimer configuration with those of type I cadherins, as AFM imaging experiments 

revealed (see previous section). These findings question the biological relevance of the 

putative hexamer model for VE-cadherin mediated homophilic adhesion involving a strong 

cis trimer interface located in EC4.  

 

Between the published work in which hexamers are observed (Bibert et al., 2002; Hewat et 

al., 2007; Legrand et al., 2001) and our own studies, two striking differences in the protein 

used are evident. The differences are the presence glycosylation, which is present in our 

proteins but absent from the bacterially expressed proteins and the inclusion of domain EC5, 

which is again present only in our constructs. To investigate what effect glycosylation and 

domain EC5 have on VE-cadherin adhesive behavior, we initially produced a truncated VE-

cadherin EC3-4 fragment in bacteria lacking both glycosylation and domain EC5, in addition 

to lacking the N-terminal adhesive domains EC1-2 such that association of the EC3-4 

domains could be specifically studied. 

 

First, we tested the bacterially produced human VE-cadherin EC3-4 fragments in equilibrium 

AUC experiments. Surprisingly, we found it to behave as a strong dimer with a KD of 

1.93±0.26µM, which is approximately in the same range as the described KDs for full length 

VE-cadherin ectodomains (Table 7). Additionally, in some of these experiments, EC3-4 

domains associated via an isodemic mechanism, in which the dissociation constants for every 

addition of monomer are considered the same, which leads to multimerization. Although 

curves could not be fitted to an explicit trimer model, the data suggest that higher order 

complexes were formed, which is possibly triggered by non-specific hydrophobic protein 

interactions (Weis et al., 1991). These data are in direct contrast to the biophysical evaluation 

of mammalian produced glycosylated VE-cadherin EC3-5 proteins, which did not associate 

and consistently remained monomeric in all experiments (Section 4.2-4.5).  
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The results suggested that high affinity multimeric association of the bacterial protein might 

be directly due to absence of glycosylation in EC4, or to absence of the EC5 domain. To test 

this hypothesis, we studied association behavior of a human VE-cadherin EC3-5 fragment 

produced in glycosylation deficient HEK 293 GNTI- cells (Section 3.1) in equilibrium AUC 

experiments. Results showed that, unlike equivalent fully glycosylated fragments, minimally 

glycosylated EC3-5 proteins formed isodesmic aggregates or weak dimers with KD values in 

the range of 221µM, which is closely similar to the behavior of the bacterial EC3-4 fragment 

(Table 9). When N-glycosylation was fully removed from the protein by treatment with 

Endoglycosidase H, we obtained similar results as for the minimally glycosylated protein. 

Also, we found that this association happens independently from the presence of calcium (II) 

ions (not shown). The lower affinity in comparison to that found for bacterially expressed 

EC3-4 fragments might be due to the presence of O-glycosylation or to the presence of the 

EC5 domain, which had to be included in the mammalian constructs due to lack of expression 

in EC3-4 trials. Nonetheless, the experiments establish a clear role for N-linked glycosylation 

in preventing non-specific aggregation of EC3-4 domains. We wanted to identify if the non-

specific interaction in minimally glycosylated proteins is specific to cis interactions or if these 

proteins can also mediate trans adhesion in liposome aggregation assays. Natively 

glycosylated EC3-5 fragments failed to aggregate liposomes as described in Section 4.5. 

When glycosylation was only minimal, EC3-5 fragments gained the ability to aggregate 

liposomes (Figure 20a, left panel). This suggested that lack of complex glycosylation leads to 

non-specific protein associations in cis or trans. 

 

In liposome aggregation assays using full length ectodomains, minimally glycosylated VE-

cadherin EC1-5 behaves similar to the glycosylated protein, with the exception that 

equilibrium is reached in shorter time and the degree of aggregation appears to be higher 

(Figure 20a, right panel). In addition, we conducted equilibrium AUC experiments, which 

showed that minimally glycosylated or deglycosylated VE-cadherin EC1-5 formed isodesmic 

aggregates in presence or absence of calcium (II) ions with reproducible isodesmic KD(i) of 

approximately 7.8µM and 3.4µM, respectively. Despite the fact that cadherin homophilic 

interactions are calcium dependent (Harrison et al., 2010b; Takeichi, 1991), isodesmic 

aggregation was found to be independent from calcium, which strongly suggests the observed 

interactions to be artifactual. Interestingly, the ideal number of protomers in isodesmic 

polymerizing systems is n=6 (Frieden and Goddette, 1983), coinciding with the number of 

protomers in bacterially produced VE-cadherin multimers detected previously (Hewat et al., 
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2007). When N-linked glycosylation was fully removed from VE-cadherin EC1-5 by 

Endoglycosidase H the protein became unstable and prone to aggregate, resulting in heavy 

precipitation and precluding testing in functional assays. 

 

Table 10: Different glycosylation pattern of human VE-cadherin protein fragments results in different 

behavior in equilibrium AUC experiments.  

 

Protein Glycosylation 

Isodesmic 

behavior 

observed? Dimerization KD [µM] 

    

VE-cadherin EC3-4 None (produced in bacteria) Yes 1.93±0.26 
VE-cadherin EC3-5 Native No NAa 
VE-cadherin EC3-5 Minimal Yes 178±43 
VE-cadherin EC3-5 Deglycosylated Yes 299 
VE-cadherin EC1-5 Native No 1.03±0.22 
VE-cadherin EC1-5 Minimal Yes 65±19b 
VE-cadherin EC1-5 Deglycosylated Yes NAc 
 
a Protein is found to be monomeric; see Section 4.2 for detail. 
b Affinity value has a high error due to protein aggregation and precipitation during the experiment. 
c Deglycosylated VE-cadherin EC1-5 could only be fitted to an isodesmic model, not to an equilibrium 

dimer model. Heavy precipitation due to aggregation occurred during experiments. 

 

How does glycosylation affect association of EC3-4 domains? Our findings in concert with 

the fact that the cis interface found in putative hexameric structures is located in domain EC4, 

prompted us to look more closely at the N-linked glycosylation site Asn395 located in this 

domain, (Figure 20b). This site is conserved within most of the type I and II cadherins as 

described in Section 3.2. A close up view of the region of domain EC4 in which the glycan is 

positioned was generated based on the human VE-cadherin homology model (Figure 20b). 

The N-linked site appears to be nested in an environment of predominantly non-charged and 

hydrophobic surface residues, which an attached sugar moiety would shield from non specific 

contact (Figure 20b). Thus, this area might be responsible for the unspecific interactions 

prompting the observed multimers in VE-cadherin fragments without glycosylation.  
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Overall, data derived from different biophysical studies involving full length and truncated 

VE-cadherin fragments in various glycosylation states, suggest strongly that the trimeric cis 

association triggered by EC4 that forms the basis for hexamer formation previously reported 

in bacterially produced VE-cadherin EC1-4 fragments represent an artifact due to lack of 

glycosylation. Removal of N-linked glycosylation appears to expose protein regions which 

are normally shielded by sugar moieties in the native protein, allowing non-specific and non-

biologically relevant interactions which may result in artifactual multimers. These data 

support the hypothesis that domain EC4 is only able to form higher order multimers when 

glycosylation is absent. 
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Chapter 5:  

Structure of the homophilic binding interface  

of a VE-cadherin EC1-2 adhesive fragment 
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5.1 EC1-2 domains are responsible for strand swap mediated 

homodimerization 
We showed in biophysical experiments described in sections 4.1-4.8 that full length VE-

cadherin EC1-5 homodimerizes, whereas truncated EC3-5 domain fragments lack this ability 

and do not associate. These data suggest that domains EC1 and 2 are crucial for VE-cadherin 

to mediate trans adhesive binding. This is in agreement with published data from crystal 

structures (Boggon et al., 2002; Patel et al., 2006), biophysical experiments such as 

equilibrium AUC (Harrison et al., 2010a; Katsamba et al., 2009), cell-cell adhesion and 

domain shuffling experiments (Patel et al., 2006) showing that the trans-adhesive properties 

of all typical classical cadherins, map to N-terminal domains EC1-2 (Harrison et al., 2010a; 

Shan et al., 2004). The strand swapped mature adhesive interface itself involves residues in 

EC1 and in particular residue Trp2 for type I cadherins or Trp2 and Trp4 for type II cadherins 

(Patel et al., 2006; Shapiro et al., 1995). Further studies identified the X-dimer interface as a 

binding intermediate in E-cadherin and cadherin-6 adhesion and revealed, that EC1 and 2 are 

both required for this interface and for proper adhesive function, especially EC1 and EC2 

residues in and around the Ca2+ binding interdomain linker region (Ciatto et al., 2010; 

Harrison et al., 2010a) and Chapter 7). The detailed binding mechanism for VE-cadherin 

mediated adhesion has not been determined at the atomic level, but previous antibody binding 

studies targeting the A strand containing residues Trp2 and Trp4 (May et al., 2005) and our 

experiments  with full length ectodomains and truncated VE-cadherin fragments (Section 4.1-

4.5, 4.8) strongly suggest that VE-cadherin employs a similar binding mode to other classical 

cadherins and domains EC1-2 are crucial for adhesion.  

 

To test if VE-cadherin EC1-2 domains are also sufficient for full trans binding activity, 

human, chicken and mouse VE-cadherin fragments spanning putative adhesive domains EC1-

2 were produced in bacteria as described in Section 2.1.2.3. The multimerization behavior 

was analyzed by equilibrium analytical ultracentrifugation and we found, that all three VE-

cadherin formed dimers in solution which is in agreement with results we obtained for full 

length human and chicken ectodomains (Table 7). The KDs for dimerization were determined 

to be 1.63µM for chicken, 2.22µM for mouse and 4.38µM for human VE-cadherin (Table 

10), values in the same range to the corresponding full length proteins (Table 7), suggesting 

EC1-2 domains are sufficient for full activity and that absence of any glycosylation in EC1-2 

does not have any influence on adhesive binding and affinities of two domain fragments. This 

is in contrast to full length proteins, which are strongly dependent on native glycosylation in 
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domains EC3-5 (See Section 4.8). These data suggest that EC1-2 domain proteins are 

appropriate for studies focused on the VE-cadherin binding mechanism. 

 

Table 10: Dissociation constants (KD) for homodimerization of VE-cadherin EC1 and EC1-2 

fragments.   

 

Protein Description KD [µM] 

   

h VE-cadherin EC1-2 Wild type 4.38±1.2 
m VE-cadherin EC1-2 Wild type 2.22±0.11 
ck VE-cadherin EC1-2 Wild type 1.63±0.19 
h VE-cadherin EC1 Wild type NA a 
m VE-cadherin EC1-2 W2A W4A Strand swapping mutant NA a 
ck VE-cadherin EC1-2 W2A W4A Strand swapping mutant NA a 
h VE-cadherin EC1-2 Met-extension Strand swapping mutant 231±78 b 
m VE-cadherin EC1-2 Met-extension Strand swapping mutant 70±100 b 

 
a Protein is found to be monomeric in equilibrium AUC experiments. 
b Due to instability of mutant proteins heavy precipitation occured during the experiments resulting in 

errors. 

 

Classical cadherins bind by exchanging, or “swapping”, N-terminal A*-strands with each 

other to form strand swapped dimers, in which either Trp2 for type I cadherins or Trp2 and 

additionally Trp4 for type II cadherins are docked into a hydrophobic pocket in the partner 

EC1 domain. The adhesive properties of type I and type II cadherins are impaired and 

homodimerization involving the strand swap mechanism is prevented when indole side chains 

of tryptophan residues are mutated those of alanine (Harrison et al., 2010b; Kitagawa et al., 

2000; May et al., 2005; Tamura et al., 1998). We wanted to test if Trp2 and Trp4 in VE-

cadherin are needed for adhesive binding of our EC1-2 fragments, so Trp2 and Trp4 in 

human, mouse and chicken VE-cadherin were mutated to alanines and proteins used in 

equilibrium AUC experiments. Human mutant proteins had very low expression levels and 

could not be purified in sufficient amounts for AUC experiments. Data for mouse and chicken 

mutant VE-cadherin revealed that the mutant proteins fail to dimerize and remain monomeric 

after introduction of the strand swap mutation W2A W4A (Table 10). Human and mouse VE-

cadherin mutants, in which the N-terminus is extended by a single methionine, showed 
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reduced adhesive behavior (Table 10) These data strongly support the idea that VE-cadherin 

utilizes the strand swap mechanism common to classical cadherins. 

 

For E-cadherin and cadherin-6 it can been demonstrated, that after ablation of strand swap 

binding, some weak residual binding remains, which can be attributed to a different interface 

referred to as the X dimer, involving regions of both EC1 and EC2 (Chapter 7, Harrison 

2010). VE-cadherin EC1-2 W2A W4A mutants did not show residual binding within AUC 

detection limits (~1mM KD). Thus, we removed the entire domain EC2 and expressed domain 

EC1 alone for equilibrium AUC experiments. Results showed that VE-cadherin EC1 domain 

cannot homodimerize and remained monomeric in solution, suggesting that VE-cadherin also 

requires EC2 and therefore possibly an X dimer intermediate.  

 

Taken together, our data show that VE-cadherin EC1-2 forms homodimers in solution and 

appears to utilize a strand swap mechanism common to classical cadherins. Both domains are 

necessary to mediate adhesive binding. Notably, dimerization of two domain VE-cadherin 

fragments was independent of glycosylation state.  Therefore, VE-cadherin EC1-2 fragments 

expressed in bacteria are suitable for structural studies of the adhesive binding interface. 

 

 

5.2 Screening and optimization of crystals of VE-cadherin EC1-2 
While our experiments with full length native VE-cadherin ectodomains and with smaller 

adhesive fragments show that VE-cadherin is likely to bind via a strand swapped dimer 

mechanism with a similar overall configuration to other classical cadherins, details of the 

adhesive interface on a molecular level remain elusive. In order to determine details of the 

adhesive interface on atomic level we wanted to study the minimal EC1-2 binding unit  of 

VE-cadherin using protein crystallography. 

 

Chicken two domain fragments of VE-cadherin crystallized at 8.6mg/mL in sitting drop 

experiments of initial sparse matrix screens in three different conditions, all with high 

molecular weight PEG as precipitant (Figure 21a). Crystals found in the condition containing 

0.2M calcium acetate, o.1M sodium cacodylate, pH6.5 and 16% (w/v) PEG 8,000 were small, 

non bifringent, single crystals with sharp edges (Figure 21a, left panel). The other drop 

contained two sharp edged very bifringent hexagonal crystal plates found in precipitate  
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(crystallization condition listed in Figure 21a, middle panel) and the last drop (composition 

shown in Figure 21a, right panel) contained soft edged, very bifringent rectangular boxes 

surrounded by precipitate (Figure 21a right panel). 

 

Crystals shown in the left panel of Figure 21a, were chosen for optimization as they had sharp 

edges and no protein precipitate was found in the drop. A large number of small crystals is 

usually caused by high nucleation rates, which indicate a precipitant concentration and/or 

protein concentration that are too high. We changed for optimization to hanging drop assays 

and reduced the precipitant concentration in the crystallization solution. At the same time we 

shifted the protein:crystallant ratio from initial 1:1 to a 2:1 ratio with 2fold protein in 

comparison to mother liquor, lowering the initial precipitant concentration while increasing 

total protein concentration in the drop (Figure 21b, optimization). We found significantly 

improved crystals in the altered condition which were larger in all three dimensions, cuboidal 

and bifringent (Figure 21b). Crystals grew up to approximately 300-400µm size (Figure 21b), 

which were sufficiently sized to test for X-ray scattering behavior. We mounted crystals in 

Hampton nylon loops of 200µm size, immersed crystal prior to freezing in cryo-protectant 

composed of the crystallization solution with an additional 30% glycerol and flash froze the 

crystals in liquid nitrogen. Diffraction data was collected at the National Synchrotron Light 

Source, Brookhaven National Laboratories using beam line X4C. Crystals diffracted to 2.1Å 

resolution and a full data set 180 frames could be collected from a single VE-cadherin crystal 

with one degree rotation per image. One of the recorded diffraction images is shown in Figure 

22 depicting a representative diffraction pattern with sharp diffraction spots, indicating low 

mosaicity (0.57°). Data was processed to a resolution of 2.1Å with Denzo and Scalepack and 

unit cell dimensions were a=b= 99.973Å and c=105.987Å. With α=β=γ=90°. Examination of 

systematic absences in the data, identified the space group as either P43212 or P41212; of these 

two possibilities, P43212 was determined to be correct during molecular replacement.  

 

Matthews coefficient analysis indicated that two molecules were present in the 

crystallographic asymmetric unit, with a solvent content of approximately 56% (Vm=2.8 

Å3/Da). The structure could be solved with molecular replacement using the crystal structure 

of cadherin-11 EC1-2 (pdb code 2A4E) as search model. We built the structure in alternating 

cycles of molecular building in Coot and refinement in Refmac (ccp4i suite) to a final R-

factor of 18.29% and Rfree – factor of 24.18. Detailed data collection and refinement statistics  
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are summarized in Table 11. The Ramachandran plot of the refined structure revealed 97.1% 

of the residues were in favorable regions and no structural outliers are present. The structure 

of chicken VE-cadherin EC1-2 is described in Section 5.3. 

 

In addition to chicken VE-cadherin, we also screened human and mouse VE-cadherin EC1-2 

fragments at 4°C and 20°C for crystallization in over 800 different conditions each in sparse 

matrix crystal screening suites. Human VE-cadherin formed clear, non bifringent spherulites 

in one condition, (composition listed in Figure 23a), and mouse VE-cadherin yielded non 

bifringent needle clusters in a condition composed of 0.1M Imidazole pH8.0 and 10% (w/v) 

PEG 8,000 (Figure 23a, right panel). However, despite extensive optimization efforts 

including changes of precipitant concentrations, precipitant type, pH-variation and 96 

different additives, we could not improve the initially obtained spherulites during 

optimization trials. Mouse VE-cadherin crystals could be improved as the size of the blades in 

needle clusters could be enlarged and the number of clusters in comparison to the initial hit 

reduced (Figure 23b). However, despite extensive efforts, crystal blades remained too thin in 

the third dimension and were consequently highly fragile (Figure 23b, right panel, note the 

crystal cracking).  
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5.3 Crystal structure of chicken VE-cadherin EC1-2 reveals a strand 

swapped dimer 
We crystallized chicken VE-cadherin EC1-2 and obtained high resolution diffraction data up 

to 2.1Å from which a structure could be solved as described in the previous section. Data 

collection and refinement statistics are summarized in Table 11. 

 

Table 11: Crystallographic data and refinement statistics. 

Data collection  

Space group P43212  

Cell dimensions a, b, c (Å); α, β, � (°) 99.97, 99.97, 105.99; 90, 90, 90 

Resolution (Å) 80-2.1 
Rmerge 13.7 (41.8) 

I/�I 1,395.2/64.4 (339.1/48.2) 

Completeness 100(100) 
Redundancy 14.1 
Observed reflections 450,866 
Unique reflections 31,991 
Refinement   

Resolution (Å) 72.7-2.1 
Number of reflections 31,937  
Rwork 18.29 
Rfree 24.18 
Number of atoms 3,841 
Protein 3,247 
Ion 6 
water 588 
R. m. s. deviations  

Bond length (Å) 0.016 
Bond angles (°) 1.592 
Mean B factors (Å2)  

Protein 19.38 
Ion 13.58 
water 32.06 
Ramachandran plot  

Outliers (%) 0  
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Favored (%) 97.1 
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In the crystallographic asymmetric unit two molecules are present, which are both closely 

similar to each other (Figure 24). The protomers have an elongated, slightly curved overall 

shape reminiscent of that of previously published classical cadherin structures. Each molecule 

consists of two extracellular cadherin (EC) domains, which are each composed of a seven 

stranded β-barrel fold and are characteristic for cadherins. EC domains are connected with 

each other through a short interdomain linker (Figure 25a) in which three divalent calcium 

ions are coordinated (Figure 25a, inset) as observed in all previously reported type I and II 

cadherin structures. Predominantly, acidic residue side chains and backbone carbonyl groups 

of EC1, the interdomain linker and EC2, in addition to a single solvent water molecule, 

contribute to the calcium coordination (Figure 25a). Specifically, domain EC1 provides the 

calcium coordinating residues Glu11, Glu12, Asp 62 and Glu64, which are conserved within 

all type II cadherins. In type I subfamily members Glu12 is replaced with asparagine that does 

not directly coordinate calcium (II) and remains solvent exposed, but they otherwise share the 

same calcium (II) coordination pattern. Side chains of residues Asp96, Asn98 and Asp99 in 

the linker region and Asp132 and Asp184 of domain EC2 and in addition, back bone carbonyl 

groups of residues Ile97, Asn100 and His139 also coordinate calcium (II). This calcium 

binding linker region thus forms a continuous network of bonds between the successive 

domains and is likely to limit flexibility of the two EC domains relative to each other, and to 

rigidify VE-cadherins overall shape, precisely as suggested by other classical cadherins 

structures consistent with other experimental data (Ahrens et al., 2003; Sotomayor and 

Schulten, 2008). 

 

The two VE-cadherin protomers observed in the crystallographic asymmetric unit form a 

strand swapped dimer, which shares the essential features with those of other classical 

cadherins (Figure 24). Both N-terminal EC1 domains are arranged approximately 

perpendicular to each other forming a symmetrical adhesive dimer interface, in which the N-

terminal segments of the respective A-strand, the A*-strand, are exchanged between 

protomers (Figure 24, 25b). Protomers are arranged in a trans orientation in the dimer as if 

extending from opposing cell surfaces. On the molecular level, tryptophan side chains at 

positions two and four are central to this ‘strand swap’ dimer. Trp2 and Trp4 are located on 

the A*-strand and are reciprocally docked into a hydrophobic cavity, the ‘acceptor pocket’, of 

the partnering molecule. This intermolecular docking is stabilized by three types of 

interactions (Figure 25b, inset). Both ε1 nitrogen atoms of Trp2 and Trp4 indole rings engage  
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in intermolecular hydrogen bonds with the backbone carbonyl group of Pro86 and the side 

chain oxygen of Ser88, respectively. The interaction between Trp2 and Pro86 is also found in 

other structures of classical cadherins. whereas the latter hydrogen bond is unique to the VE-

cadherin dimer. In other type II cadherins, the Trp4 side chain forms instead an indirect 

hydrogen bond via a water molecule with the residue equivalent to Ser88. 

 

Additionally, Trp2 and Trp4 side chains partake in hydrophobic van der Waals interactions 

with residues lining the hydrophobic acceptor pocket. Residues Leu24, Ala73 and Phe90 are 

positioned at the “base” and Tyr35 and Ile75 towards the “top” of the hydrophobic pocket. 

The last of the observed pocket interactions is a salt bridge formed by the carboxyl group of 

Glu85, which holds the N-terminal amino group of Asp1 in place through an ionic interaction 

as if locking the exchanged strands. This salt bridge is conserved within classical cadherins 

and along with Trp related interactions is crucial for proper cadherin mediated binding 

(Harrison et al., 2005) explaining the necessity of native N-termini for strand swapping 

cadherins, since an extended N-terminus, would lead to a shift of the salt bridge position. In 

addition to the pocket related interactions, two more intermolecular hydrogen bonds can be 

observed near the periphery of the pocket region. The back bone carbonyl group of Asp1 and 

amide group of Ile3, both located on the donor A-strand of one protomer, engage in hydrogen 

bonds with the back bone amide and carbonyl group of B-strand residues Ser27 and Thr25, 

respectively, from the other protomer. 

 

 

5.4 The VE-cadherin strand swapped interface is unique 
The specific molecular interactions between the donor strand and acceptor pocket in the 

strand swapped dimer of VE-cadherin described above are closely similar to those observed 

in structures of type II cadherins -8, -11 and MN- (Patel et al., 2006). However, sequence 

identity analysis suggests an outlier position for VE-cadherin within the type II cadherins and 

indeed the crystal structure revealed features that are unique to the adhesive interface of VE-

cadherin, which will be elucidated below.  
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5.4.1 VE-cadherin uses a different set of residues for trans dimerization than other 

classical cadherins 

We examined the adhesive interface of VE-cadherin in comparison to those of type I and II 

subfamily members in detail and first determined how much solvent accessible surface area is 

buried in the respective interfaces using the program PISA. Resulting buried surface area 

(BSA) values are summarized in Table 12. We found that EC1 domains contribute almost all 

of the interface residues in the adhesive strand swapped dimer and thus focused our detailed 

comparison on EC1 domains. In type I subfamily members E-, N- and C-cadherin BSA values 

average approximately to 850Å per protomer (Table 12) and in type II cadherin-8, -11, and 

MN the adhesive interface buries a markedly larger region of 1,225-1,265Å per protomer 

(Table 12, (Patel et al., 2006)). In comparison, VE-cadherin buries an interface of 1067Å per 

protomer (Table 12), which is almost exactly intermediate between the areas buried in type I 

and II cadherins.  

 

Table 12: Buried accessible surface area (BSA) for type I and type II cadherin interfaces, BSA value 
for one protomer given.  
 

Protein BSA [Å²] a pdb ID 

   

EC1-domain   

ck VE-cadherin 913.0 3PPE 
m cadherin-8 1264.2 1ZXK 
m cadherin-11 1225.8 2A4C 
ck MN-cadherin 1254.9 1ZVN 
m E-cadherin 817.3 2QVF 
m N-cadherin 875.8 2QVI 
x C-cadherin 847.6 1L3W 

   

EC12-domains   

ck VE-cadherin 1066.2 3PPE 
m cadherin-8 1271.9 2A62 
m cadherin-11 1529.2 2S4E 
m E-cadherin 817.3 2QVF 
m N-cadherin 875.8 2QVI 
x C-cadherin 847.6 1L3W 

a In case of two molecules per asymmetric unit, values given for chain A.  
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To visualize the molecular surface area that is buried in the strand swap interface, EC1-

domains of VE-cadherin and representatives of the type I (E-cadherin) and type II (cadherin-

11) subfamilies are shown in Figure 26a as molecular surface representation with the surface 

region buried in the dimer interface shown in blue as the ‘footprint’ of the partner protomer. 

The ‘footprint’ for E-cadherin is relatively small (Figure 26a, left panel) and located around 

the ‘upper’ half of the EC1 domain, corresponding to the region in which the swapped A*-

strand is docked into the acceptor pocket of the partnering molecule (Figure 26b, left panel). 

In type II cadherins residues Trp2, as in type I cadherins, and in addition Trp4 are anchored in 

a proportionally larger hydrophobic acceptor pocket (Figure 26, middle panel).  

 

However, the dimer interface in type II cadherins is extended along the ‘face’ of the entire 

domain EC1 towards the base (Figure 26, middle panel), This is in contrast to the buried 

surface area found in type I cadherins, where the interface is restricted to the ‘upper half’ of 

the domain (Figure 26a and b, left and middle panel) and, together with the larger swapped 

element, explains the higher BSA values for type II cadherin dimers. In VE-cadherin is the 

adhesive region limited to the “upper” half of domain EC1 (Figure 26a, right panel) 

corresponding to the A*-strand and hydrophobic acceptor pocket (Figure 26b, middle panel), 

like in type I cadherins. Strikingly, despite VE-cadherin having close similarity in the strand 

swap region, the extended non-swapped region present in type II cadherins is absent from the 

adhesive interface of VE-cadherin leaving this particular region solvent exposed. 

 

The non-swapped hydrophobic region contributing to the adhesive dimer that is characteristic 

to type II cadherins is formed by hydrophobic residues 8, 10, 13 and 20 contributed from both 

protomers (Figure 27a and b). These residues interact via van der Waals interactions and stack 

closely against each other in the swapped dimer (Figure 26b, middle panel, (Patel et al., 

2006)). These residues are conserved in character at the sequence level in typical type II 

cadherins, but not in VE-cadherin, which has mostly hydrophilic residues at these positions 

similar to type I cadherins (Figure 27a). These residues in VE-cadherin are not found to 

engage in intermolecular protein-protein interactions of any kind in this region (Figure 27b, 

Figure 26, right panel), leading to an overall dimer arrangement more reminiscent of that of 

type I cadherins than type II cadherins (Figure 26). Although VE-cadherin lacks the extended 

non-swapped hydrophobic region of type II cadherins, it shares most residues required for 

interactions between the swapped strand and the acceptor pocket closely with those of type II 

cadherins (Figure 27b).  
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The structure of the adhesive VE-cadherin dimer reveals a unique adhesive interface, in that 

the VE-cadherin interface resembles that of type I cadherins, whereas the strand-swap 

interactions between A*-strand and acceptor pocket are almost completely conserved between 

VE-cadherin and type II subfamily members. This strongly suggests that VE-cadherin 

represents an outlier among the type II classical cadherins. 

 

 

5.4.2 Analysis of structural superpositions of VE-cadherin with type I and II cadherins 

To identify the impact of divergence at the sequence and binding interface level on general 

arrangement of the VE-cadherin protomer and dimer, we superposed VE-cadherin protomers 

with those available from type I and type II cadherin structures.  

 

The overall structures of EC1-2 single protomers appear quite similar to each other in respect 

of relative orientation of EC domains and the overall EC domain fold (Figure 28a, left panel, 

superpositions). Root mean square (r. m. s.) deviations were also determined for superposed 

cadherin pairs (Table 13). 

 

VE- and type II cadherin-11 have an r.m.s value of 1.85Å over 194 aligned Cα-atoms, 

whereas VE-cadherin and type I E-cadherin compare to 1.51Å over 187 Cα-atoms. In 

comparison, E-cadherin and cadherin-11 have a higher r. m. s deviation of 2.3Å over 183 Cα-

atoms. Evaluated over EC1-2 structures, VE-cadherin superpositions suggest that the structure 

is similarly different from type I and II cadherins. In comparison type I subfamily members  

E-, C- and N-cadherin superposed with each other yield in r. m. s. d. values in the range of 

0.99-1.13Å, indicating closely similar structural arrangement.  
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Table 13: Root mean square deviations between superposed EC1 (yellow), EC2 (red) and EC12 (blue) 

domains of type I and type II cadherins. 

 

 
EC1 

VE 11 8 MN E N C EC2 

EC12  

VE - 
1.16a 1.15 1.31 1.52 1.66 1.84 
1.02 1.16 NA b 1.09 1.17 1.27 

11 1.86 - 
0.78 0.55 1.42 1.67 1.67 
0.96 NA 1.01 1.04 1.18 

8 1.46 1.65 - 
0.80 1.34 1.63 1.62 
NA 1.35 1.35 1.30 

MN NA NA NA - 
1.49 1.75 1.75 
NA NA NA 

E 1.52 2.31 1.87 NA - 
0.94 0.86 
0.73 0.69 

N 1.70 2.13 1.83 NA 0.94 - 
1.01 
0.80 

C 2.01 2.36 2.40 NA 1.14 1.21 - 

 

a In case of two molecules present in the crystallographic asymmetric unit, values retrieved by 

superpositions of chain A only.   
b Structural data only available for domain EC1. 

 

Although, domains EC1-2 are required for trans adhesion, specificity appears to arise from 

differences in domain EC1 to which the mature swapped interface maps (Patel et al., 2006). 

Therefore, we also superposed single EC1 domains of selected strand-swapped cadherin 

structures separately with VE-cadherin and each other (Table 13, lavender for EC1, purple for 

EC2 domain r. m. d. values, respectively). When calculations are restricted to EC1 domains 

alone, VE-cadherin is more similar to type II cadherins with r. m. s. deviations in the range of 

1.11-1.16Å in comparison to values in the range of 1.53-1.84Å for comparisons with type I 

cadherins. This difference can be explained by the fact, that type II cadherins lack a structural 

feature of a quasi β-helix between A- and B-strands which is specific to type I cadherins 

(Figure 28b). Also, presence of two tryptophan residues in all type II cadherins, which require 

a larger acceptor pocket than type I cadherins, might contribute to the lower r. m. s. deviations 



115 
 

between VE-cadherins and type II subfamily members. Additionally, swapping A* strands of 

type II cadherins and VE-cadherin align closely in an orientation different from that in type I 

cadherins, which likely arises from the differences in the adhesive dimer interface between 

the two subfamilies (See Section 5.4, Figure 28a and c). Notably, however, type II cadherins 

MN, 8 and 11 are almost identical to each other as suggested by r. m. s. deviations in the 

range of 0.53-0.68Å (Table 13). These analyses suggest that VE-cadherin is to some extent a 

structural outlier within type II cadherins.  

 

Next, dimer superpositions were investigated. The overall arrangement of type I and II 

cadherin dimers was compared by superposing based on one of the protomers of the dimer 

with that of the other dimer (Figure 28a, right panel). Results reveal that VE-cadherin has a 

markedly divergent dimer arrangement in comparison to type I and II cadherin dimers as the 

relative orientation of the long axes of EC2 domains appears to be almost linear. We 

determined the angles between protomers in swapped dimers of VE-cadherin, E-cadherin as 

representative of type I cadherins and type II cadherin-11 using PyMol to determine angles 

between partner EC2 longitudinal axes. The angle of the VE-cadherin dimer was found to be 

168°. Type I E-cadherin and type II cadherin-11 have much smaller angles of 129° and 143°, 

respectively, which suggests that VE-cadherin adopts a different arrangement in the adhesive 

interface in comparison to those of other classical cadherins that is likely to arise from the 

unique features of the swapped interface described above. 

 

 

5.5 Investigation of other interfaces in the VE-cadherin crystal structure 
Recent crystal structures of E-, N- and C-cadherin revealed a potential cis interface between 

cadherins oriented as if originating from the same cell surface (Boggon et al., 2002; Harrison 

et al., 2010b). The interface occurs between the face of EC1 opposite the strand swap 

interface and the base of EC2 of a partner molecule. The interface was observed in EC1-2 as 

well as EC1-5 domain fragments of E- and N-cadherin (pdb-code 2QVF and 2QVI and E- and 

N-cadherin EC1) and the full ectodomain of C-cadherin (pdb-code 1L3W). Mutations that 

disrupt this interface were found to prevent the ordered assembly of these cadherins in 

artificial junctions between liposomes and to destabilize cellular junctions between cadherin 

transfected cells. These results suggest that the combination of cis and trans interactions in 

cadherin ectodomains are responsible for initial junction formation. VE-cadherin also forms 

adherens junctions (see Introduction 1.8.2 and Section 4.6) suggesting the possibility that a 
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similar set of cis and trans interactions is involved. We therefore set out to examine other 

crystal contacts of the chicken VE-cadherin structure that might function in assembly of the 

cadherin at junctions in addition to the swapped trans interface. In order to determine contacts 

of interest we evaluated the crystal packing by buried surface area in contact regions with 

PISA. There are four crystal contacts that bury a surface area over 300Å per protomer. The 

largest buried surface area, 1068.9Å2 per protomer, corresponds to the trans dimer described 

in the previous section (Figure 25 (overall dimer) in Section 5.4). The second largest buried 

area (716.8Å2) is found for a contact between EC1 domains of VE-cadherin protomers on the 

face opposite the strand swap interface (Figure 29a). The remaining two interfaces are found 

to bury 440.9-458.5Å2 of the solvent accessible surface area of a protomer. The same 

interfaces are found independently for both protomers present in the crystallographic 

asymmetric unit and have a highly similar arrangement, in which the molecules are oriented 

approximately perpendicular to each other with the contact region below the strand swap 

interface at the top of EC2 of one protomer and the side of EC1 for the other (Figure 29b). In 

principle, either of the interfaces observed in addition to the swapped trans interface could 

contribute to assembly of VE-cadherin in junctions. However, we have no evidence for 

biological relevance of these additional crystal contacts at this point. Notably, there is no 

indication of crystal contacts similar to the reported type I cadherin cis interface in the VE-

cadherin structure. The interface is also absent from previously reported type II cadherin -6, -

8 and 11 structures (pdb-codes 3LND, 2A62 and 2A4E, respectively). Nonetheless, there is 

evidence from cryo EM studies and other experiments (Kiener et al., 2006; Uehara, 2006) that 

VE-cadherin and other type II cadherins form adherens junctions. This assembly is likely to 

require an additional cis interaction enabling lateral junction formation that is different to that 

of E-, N- and C-cadherins, especially as it was shown that a passive ‘diffusion trap’ is not 

sufficient for junction formation in the absence of such interactions (Wu et al., 2010). Clearly, 

further studies of type II cadherins are needed to understand how their ectodomains assemble 

into adherens junctions.  
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Chapter 6: 

 Binding affinities and adhesive specificity in  

the type II cadherin subfamily 
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6.1 Comparison of VE-cadherin and type II cadherin homophilic binding 

affinities in analytical ultracentrifugation experiments 
Given the differences in the strand swapped adhesive interfaces of VE- and type I and II 

cadherins identified in our structure of VE-cadherin EC1-2 (see Section 5.3), we wanted to 

compare VE-cadherin binding affinities with those of other classical cadherins.  

 

VE-cadherin binding affinities for the full length ectodomain as well as the two domain 

fragments were reported in Sections 4.2 (mammalian) and 5.1 (bacteria) and bind tightly with 

affinities in the low micromolar range (Table 7 (mammalian VE-cadherin) and 10 (bacterial 

VE-cadherin), Section 4.2 and 5.1, respectively). Despite a similar overall binding interface 

between VE-cadherin and type I cadherins, reported type I cadherin binding affinities of 

human E-, N- and frog C-cadherin, 156µM, 24.6µM and 64µM, respectively, are overall at 

least one order of magnitude weaker than those of VE-cadherin (Table 7 and 10 , (Chappuis-

Flament et al., 2001; Katsamba et al., 2009). The only affinity measurement reported for type 

II cadherins at the time this work was conducted was for a two domain fragment of mouse 

cadherin-6 (Harrison et al., 2010a; Katsamba et al., 2009), which shows tight adhesive 

binding (KD 3.13µM) within the same range of that of VE-cadherin. Based on KD values 

found for these two type II cadherins, it appears that binding affinity in the low micromolar 

range may be a general property of this subfamily. To test this hypothesis a set of adhesive 

EC1-2 fragments of mouse type II cadherins -9, -10 and -11 and chicken cadherin-6b and in 

addition cadherin-8 EC1-3 were designed and produced in E. coli (Section 2.1.2.3). We 

performed sedimentation equilibrium AUC experiments for each of these proteins to 

determine their KD values for homodimerization. Surprisingly, type II cadherin affinities were 

found to stretch over a wide range from 9.2µM for cadherin-6b to 42.2µM for cadherin-10 

(Table 14). These data unambiguously show that not all type II cadherins share a dimerization 

affinity as strong as that of VE-cadherin and cadherin-6 and that significant variation in 

homodimerization affinity exists in the type II cadherin subfamily. Despite the large range of 

adhesive binding affinities, overall the tested type II cadherins showed stronger binding than 

type I subfamily members.  

 

In total, we determined affinities for five type II cadherins in addition to VE-cadherin and 

cadherin-6 and found a high degree of variation in homodimerization strength. Within this 

range, these data suggest that one of the strongest binding affinities yet determined belongs to 
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VE-cadherin. This is surprising based on our finding that the VE-cadherin strand swapped 

dimer buries a lesser surface area than in other type II cadherins (Section 5.4). 

 

Table 14: Dissociation constants (KD) for homodimerization of wild type classical type II cadherins.   

 

Protein Description KD [µM] 

   

ck cadherin-6b EC1-2 Wild type 9.2±0.6 
m cadherin-6 EC1-2 Wild type 3.13±0.1 a 
m cadherin-8 EC1-3 Wild type 15±0.4 
m cadherin-9 EC1-2 Wild type 17±1.1 
m cadherin-10 EC1-2 Wild type 42±2.7 
m cadherin-11 EC1-2 Wild type 33.8±0.2 
m VE-cadherin EC1-2 Wild type 2.22±0.11b 

 
a KD also reported by Katsamba and Carrol et al. (2009) and Harrison et al. (2010a). 
b KD also reported in Section 5.1. 

 

 

6.2 Adhesive specificity of type II cadherins in surface plasmon resonance 

assays 
Type II cadherins were reported previously to heterophilically interact promiscuously but in a 

specific pattern in cell-cell aggregation experiments involving a set of eight different proteins 

(Shimoyama et al., 2000). The results revealed that certain cadherin pairs: cadherin-6 and -9; 

cadherin-7 and -14; cadherin -8 and -11 and cadherin-9 and -10 form fully intermixed cell 

aggregates similar to those formed between cell lines expressing the same cadherins, 

suggesting that each pair has matched binding specificities. However, for cells expressing 

other combinations: cadherin-6 and -7, cadherin-6 and -10, cadherin-7 and -9, cadherin-7 and 

-12, cadherin -9 and -14 and cadherin-12 and -14 partial intermixing is observed in that cells 

expressing each cadherin form separate aggregates, which interact with each other to some 

extent. This type of aggregate was also found in cell aggregation assays of N- and E-cadherin 

transfected cells and was explained to arise from a heterophilic interaction with intermediate 

strength between both homophilic protein-protein binding strengths (Katsamba et al., 2009). 

Other combinations of type II cadherins, such as cadherin-6 and -8 and cadherin-9 and -11, 

showed no tendency to coaggregate in the study conducted by Shimoyama et al. (2000). 
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Interestingly, we found that specificities reported in Shimoyama et al. (2000) mirror the 

pattern of sequence identity in the type II cadherin subfamily and heterophilically adhering 

cadherins can be grouped by position in the phylogenetic tree (Figure 30). For example, 

cadherins -6, -9 and -10 form a group that are related at the sequence level and exhibit full or 

partial intermixing in all combinations(Shimoyama et al., 2000).  This suggested a potential 

rational basis for patterns of specificity in the subfamily that remained to be fully tested. 

 

Table 15: Sequence identities given in per cent between EC1 (lavender) and EC1-2 (light blue) 

domains of all strand swapping classical cadherins used in our studies. 

 

 EC1 
VE 11 8 10 9 6 N E 

EC12  

VE 100 45 45 38 41 39 / 26 
11 47 100 72 64 62 62 35 28 
8 45 76 100 59 59 60 35 29 
10 43 71 66 100 78 84 32 28 
9 45 68 65 82 100 79 32 27 
6 43 69 67 84 82 100 34 29 
N 34 40 40 38 38 39 100 58 
E 31 33 33 33 32 34 / 100 

 

The published cell aggregation study is not comprehensive as not all of the thirteen presently 

known type II cadherins, including VE-cadherin, were studied. Based on substantial 

differences on sequence level between VE-cadherin and other type II cadherins (Table 15) 

which were found to translate into a unique strand swapped adhesive interface (Section 5.4), 

the question arises if VE-cadherin can exhibit heterophilic binding to other type II or even to 

type I cadherins. Furthermore, although cell aggregation assays are a powerful tool to 

elucidate binding specificities of cell-cell adhesion proteins (Shimoyama et al., 2000), they 

are only semi-quantitative being strongly dependent on equal expression levels and are time 

consuming to conduct, limiting the suitability of the assay for large sets of proteins. We 

therefore set out to establish an assay system omitting these problems, where heterophilic 

binding within the type II cadherin subfamily can be quantitated. In studies our group 

conducted previously, surface plasmon resonance (SPR) was used as method for homophilic 
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binding studies including E-, N-, T- cadherin and cadherin-6 (Ciatto et al., 2010; Harrison et 

al., 2010a; Katsamba et al., 2009) and also to assess relative heterophilic binding specificity 

of type I E- and N-cadherins with each other and type II cadherin-6 (Katsamba et al., 2009). 

We wanted to test if this method can be used to thoroughly and quantitatively study homo- 

and heterophilic binding characteristics of purified cadherin proteins on molecular level and 

additionally, if our findings on molecular level correlate to cadherin behavior demonstrated 

on cellular level. 

 

 

6.2.1 Identification of a suitable tag for immobilization of VE-cadherin for SPR 

Surface Plasmon Resonance (SPR) as technique can assess relative binding between 

cadherins. One cadherin is immobilized on the sensor chip surface and the other, the 

‘analyte’, is passed over in solution, (Figure 31). In case of protein-protein interactions total 

mass on the surface changes which is detected by change of reflection angles of a laser 

focused on the opposite side of the sensor surface chip (Figure 31). In order to conduct 

homophilic and heterophilic binding studies with VE-cadherin and other classical cadherins, a 

suitable tag for immobilization on the sensor chip surface needed to be determined. Previous 

studies of binding behavior of type I E-, N- and outlier T-cadherin as well as type II cadherin-

6 were conducted with soluble native EC1-2 domain cadherins as the analytes and C-

terminally Avi-tagged biotinylated equivalents (cadherin-Avi*bio), which were captured on 

the sensor chip surface by immobilized NeutrAvidin, a high affinity biotin binding protein 

approximately with a binding affinity in the femtomolar range (Ciatto et al., 2010; Harrison et 

al., 2010a; Katsamba et al., 2009). The captured ‘cadherin-Avi*bio’ proteins are positioned 

upright resulting in proteins with free adhesive domains pointing away from the sensor chip 

surface, which can be used for homo- and heterophilic binding studies (Figure 31). This 

technique and experimental set up was suitable for binding experiments with type I N-, E- and 

atypical T- cadherin and type II cadherin-6 (Ciatto et al., 2010; Harrison et al., 2010a; 

Katsamba et al., 2009). However, limitations were discovered for detecting ‘slow’ kinetic 

binding behavior because molecules have a small limited time to engage in protein-protein 

interactions in the course of the experiment (Harrison et al., 2010a).  

 

Based on these data we prepared VE-cadherin and type II cadherin-11 both with C-terminal 

biotinylated Avi-tags (Section 3.3.3 and 2.1.2.3). However, we found that in equilibrium  
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AUC experiments homodimerization is ablated and the cadherins remained monomeric 

despite free unaltered N-termini (Table 16 (KD of C-terminally tagged cadherins). Abrogation 

of binding might arise from the hydrophobic nature of the Avi-tag 

(GGGLNDIFEAQKIEWHE; biotinylation on Lys), which may interfere with protein folding 

or association. Thus, this tag was found to be unsuitable for these particular cadherins and a 

new approach was taken, in which proteins are tethered to the chip-surface by an antibody-

antigen interaction. An eight amino acid FLAG- tag (DYKDDDDK) was chosen to replace 

the Avi*bio-tag on the VE-cadherin C-terminus. Purified VE-cadherin-FLAG (Section 2.1.2.3 

and 3.3.3), was subjected to equilibrium AUC experiments to test for proper 

homodimerization and was found to dimerize with a KD of 25.6±2µM, which a little weaker 

than that of the wild type protein but nonetheless indicative of binding (Table 16 and Table 

10). 

 

FLAG-antibodies were linked to the surface of the sensor chip by amine coupling and VE-

cadherin-FLAG was captured on the surface by antigen - antibody recognition. However, VE-

cadherin-FLAG proteins dissociated continuously from the surface after capture resulting in 

unreliable measurements (Figure 32a). Subsequently, three more FLAG-antibodies (Figure 

32a, Table 2) with different specifications were tested which all resulted in a highly unstable 

surface. This problem might be due to a weak affinity of antibody-FLAG binding. Therefore, 

an alternative antigen-antibody pair, the C9-tag and the Rho 1d4 antibody, were tried for VE-

cadherin and additionally for N-cadherin, a protein for which SPR studies can be conducted 

as a positive control. This tag has, like the FLAG tag, mostly hydrophilic residues and is 

composed of nine residues with the sequence TETSQVAPA (Table 16). AUC experiments of 

N-cadherin-C9 and VE-cadherin-C9 confirmed that homodimerization is not impaired and 

KDs are in the same range as those of wild type proteins (Table 16). In the same experimental 

set-up as for the FLAG-experiment, 1d4 antibodies were amine coupled to the CM4 sensor 

chip and either N-cadherin-C9 or VE-cadherin-C9 captured on the surfaces by the C9-1d4 

interaction. The diffusion of C9-tagged protein off the chip was monitored and found to be 

highly similar to that of the FLAG-tagged protein (Figure 32b, the C9 diffusion), so the C9-

tag is also unsuitable for the desired experiments.  
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Table 16: Dissociation constants (KD) for homodimerization of C-terminally tagged classical type I 

and II cadherins EC1-2 from mouse. Standard Error is reported.  

 

Protein Description KD [µM] 

   

VE-cadherin-Avi*bio GGGLNDIFEAQKIEWHE a Monomer 

Cadherin-11-Avi*bio GGGLNDIFEAQKIEWHE a Monomer 

Cadherin-6-Avi*bio GGGLNDIFEAQKIEWHE a 2.9±0.3 

N-cadherin-Avi*bio GGGLNDIFEAQKIEWHE 9.2±1.3 

VE-cadherin-FLAG DYKDDDDK 25.6±2.0 

VE-cadherin-C9 TETSQVAPA 42.4±3.8 

N-cadherin-C9 TETSQVAPA 24.2±0.73 

VE-cadherin-CYS GGGC 5.17±0.25 

N-cadherin-CYS GGGC 9.50±0.76b 
 
a Biotin is added to lysine. b KD also reported in Section 5.1. 
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For studies centered on the comparison of relative binding, a stable surface is a necessity, so a 

different approach was needed. Covalent amine coupling of cadherin proteins to the surface is 

not suitable as these proteins need to have free, unaltered N-termini and need to be positioned 

‘upright’ on the chip. A milder covalent coupling method targets free thiol groups from 

cysteine side chains instead of free amine groups on lysine side chains or N-terminal amino 

groups. This method was considered suitable for VE-cadherin as there is no cysteine group in 

the native EC1-2 protein. A single amino acid-tag, the CYS-tag (GGGC) was designed and 

added to the C-terminus of N- and VE-cadherin (Section 3.3.3). AUC experiments of VE- and 

N-cadherin-CYS confirmed functionality of the proteins as they homodimerize with affinities 

in the same range of those of wild type proteins (Table 16). To see if the CYS-tag is adequate 

for the desired experiments, we first conducted cadherin binding studies with N-cadherin-

CYS and native wild type N-cadherin at different concentrations, because binding profiles for 

comparative reasons using N-cadherin-Avi*bio were available (Katsamba et al., 2009).  

 

In order to couple the proteins chemically to the sensor chip surface, they first needed to be 

bound via ionic interactions to the negatively charged CM-dextran surface. In solution pH 

lower than the pI of the protein surface, proteins are positively charged and can be pre-

concentrated in the CM-dextran moiety of the chip. To find the optimal pH in which most 

protein accumulates on the surface, N-cadherin-CYS is diluted into different solution pHs in 

the range of 3.5-5.0 and flown over the sensor chip. Figure 33a shows that proteins at pH4.0 

yielded the highest binding response in comparison to other solution pH, which was then used 

to preconcentrate N-cadherin-CYS on the chip prior immobilization. As described in more 

detail in methods Section 2.2.7.2, the carboxyl groups on CM-dextran were activated with 

NHS/EDC (Figure 33b (1)) and prepared with PDEA to introduce reactive disulfide groups 

(Figure 33b (2)). After chip surface activation, N-cadherin-CYS is coupled to the chip (Figure 

33b (3)) and the remaining free thiol groups were blocked by L-cysteine (Figure 33b (4)). A 

total of 1,542 RU of N-cadherin-CYS was covalently bound to the surface (Figure 33b) and 

the surface was found to be stable with no dissociation like in antibody-antigen experiments 

observed (Figure 32a (FLAG-tagged cadherin), 32b (C9-tagged cadherin)). 

 

We conducted a homophilic binding N-cadherin experiment with a 3-fold dilution series of 

concentrations in the range of 40-0.49μM of wild type N-cadherin as analyte. The binding 

profile is depicted in Figure 33c  and shows concentration dependent binding behavior highly  
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similar to the published results of N-cadherin-Avi*bio (Katsamba et al., 2009). Due to 

chemical covalent binding, surfaces were stable during the experiments.  

 

These findings prompt the conclusion that the designed CYS-tag is a new, suitable tag for 

cadherin binding experiments performed with SPR. We proceeded to use this tag to conduct 

studies of VE-cadherin binding behavior.  

 

 

6.2.2 Identification of running buffer for VE-cadherin in SPR experiments 

In order to identify cadherin-specific binding, any unspecific binding of VE-cadherin analyte 

to the chip needs to be disrupted. We passed wild type mouse VE-cadherin in a buffer 

composed of 150mM NaCl, 10mM Tris-Cl pH8.0, 3mM CaCl2 over an unmodified chip-

surface and observed strong unspecific binding between VE-cadherin and the unmodified 

CM4 surface (Figure 34a, left panel, unspecific binding). To decrease unspecific interactions, 

0.25mg/mL Bovine serum albumin was added to the running buffer and the experiment was 

repeated. No binding to the unmodified surface could be detected (Figure 34a, right panel, no 

unspecific binding). Therefore, running buffer for all subsequent experiments was 150mM 

NaCl, 10mM Tris-Cl pH8.0, 3mM CaCl2 and 0.25mg/mL Bovine serum albumin.  

 

 

6.2.3 Assessing homophilic VE-cadherin binding in SPR-experiments 

In order to analyze VE-cadherin homophilic and heterophilic binding, VE-cadherin-CYS was 

immobilized on the CM4 sensor chip as described for N-cadherin-CYS (Section 6.2.1 and 

2.2.7.2). As shown in Figure 34b (immobiliziation) two different flow cells were prepared 

with distinct concentrations, 1,575RU (low surface, red trace) and 4643RU (high surface, 

green trace). As observed in the N-cadherin experiment, the surface is stable as VE-cadherin-

CYS does not diffuse off the surface due to covalent immobilization (Figure 34b). 

 

Native VE-cadherin was injected over these surfaces in a concentration range of 40µM to 

78.1nM in a two-fold dilution series.  
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A binding response was observed (Figure 35a) in shape reminiscent to that of type II 

cadherin-6 (Figure 36, (Harrison et al., 2010a)). The binding response produced is 

approximately 5RU for the low and ~10RU for the high concentration surface and was 

observed in two independent runs and two independent experiments. The binding response is 

above the background level, but because it is only ~10RU, it cannot be confidently attributed 

to homophilic cadherin binding. The low binding response is surprising because both the 

tagged and analyte VE-cadherin fragments used in the experiments are known to form 

homodimers in AUC experiments (Table 16). However, VE-cadherin mediates adhesion with 

very high affinity in comparison to other classical cadherins (Sections 4.2, 5.1 and 6.1), so it 

is possible, that most of the analyte VE-cadherin molecules and the ones immobilized on the 

chip are homodimerized leaving only very few proteins present as monomers that are 

available for interactions (Section 6.2). This would strongly inhibit the binding response only 

in the case that association and dissociation kinetics of the dimers were insufficiently rapid 

that little or no exchange between dimers occurs in the time frame of the experiment  

(~1 minute). This led us to suspect that VE-cadherin binding might be kinetically different 

from that of other type II cadherins. Type II cadherin-6 appears to have a slower on- and off-

rate than type I N-cadherin as suggested by the shallower association and dissociation SPR 

curves (Figure 33c, Figure 36), but it appears that the rates for VE-cadherin are even lower. 

Therefore, we tried to shift homodimerization kinetics into a more favorable area by raising 

the temperature in which experiments are conducted from 25°C to 37°C based on the idea, 

that higher temperature should accelerate on/off rates and therefore increase availability of 

free monomer in solution and on the surface. Indeed, it could be observed that binding 

responses are increased at 37°C and when comparing VE-cadherin high-surface and low-

surface result, it appears that the binding response is still concentration dependent (Figure 

35b). However, this set-up could not be used in further studies because after temperature 

increase, reproducibility of the binding responses suffered. This experimental outcome, 

together with the findings that VE-cadherin and VE-cadherin-CYS are capable of 

homodimerization in AUC (Table 16) and in addition to size exclusion experiments showing 

an elution profile of two separate peaks for monomer and dimer (Section 4.3, Figure 16), 

clearly suggests that low binding responses are produced by unfavorable kinetics for this type 

of experiment. This phenomenon has also been observed before for cadherins with impaired 

X-dimer interfaces, which like VE-cadherin failed to produce a strong binding response in 

SPR experiments despite the fact that they were found to dimerize in AUC and size exclusion 

studies(Harrison et al., 2010a).   
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6.2.4 Homophilic and heterophilic adhesive binding of type II cadherins 

Cell aggregation studies by Shimoyama et al. (2000) revealed a heterophilic binding 

specificity pattern for type II cadherins (see Introduction 1.6 and Section 6.2, see also: (Patel 

et al., 2006; Price et al., 2002)) and SPR was used successfully as method to analyze 

heterophilic binding of type I N- and E- cadherin (Katsamba et al., 2009). Now we wanted to 

test if it is also applicable to type II mediated heterophilic binding. It was interesting to 

examine heterophilic binding between VE-cadherin and other type II cadherins, as VE-

cadherin docks Trp2 and Trp4 into an acceptor pocket nearly identical to type II cadherins, 

but has outside this region a substantially different interface. We decided to assess relative 

heterophilic adhesive cadherin binding between a set of seven mouse type II cadherins as 

analytes: cadherin-6, -8, -9, -10, -11 and VE-cadherin to captured cadherin-6-Avi*bio or 

immobilized VE-cadherin. Notably, cadherin-6, -9, -10 and cadherin-8, -11 share high 

sequence identity within these subgroups and are closely related by phylogenetic analysis 

(Table 15 and Figure 30). 

  

Cadherin-6-Avi*bio dimerizes in AUC experiments with a KD of 2.9±0.3µM similar to that of 

the wild type protein and was used previously to study cadherin adhesive interactions 

(Harrison et al., 2010a; Katsamba et al., 2009). Type II cadherin-6-Avi*bio is captured by 

NeutrAvidin immobilized on the CM4 sensor chip, which leaves the two domain cadherin 

fragments oriented in an upright position with their adhesive EC1 domain easily accessible. In 

order to compare relative binding of different type II cadherins to each other, the 

concentrations for each analyte were chosen according to their KD, in order to have equal 

amounts of calculated free monomer present in SPR experiments. Concentrations for all 

analyte proteins used in this experiment are summarized in Table 17.  
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Table 17: Summary of analyte proteins and their concentrations and distribution of monomer and 

dimer for SPR experiments. 

 

Protein 
Protein 

concentration 

[µM] 
KD[µM] 

Concentration 

dimer [µM] 
Concentration 

monomer [µM] 

     

VE-cadherin EC1-2 141.8 2.2 64.9 12 
Cadherin-6 EC1-2 104 3.13 45.0 12 
Cadherin-8 EC1-3 31.2 15 9.6 12 
Cadherin-9 EC1-2 30.1 17 8.9 12 
Cadherin-10 EC1-2 18.8 42.2 3.4 12 
Cadherin-11 EC1-2 20.5 33.8 4.3 12 
 

Binding of each of the cadherin-analytes to immobilized cadherin-6-bio was tested over a 

time course of 1 minute at 25°C in two repeats with three buffer injections in between sample 

injections. Wild type, untagged cadherin-6 gives a specific homophilic binding response of 

84RU (Figure 36a) which is almost identical to that seen in previously conducted studies 

(Harrison et al., 2010a; Katsamba et al., 2009). Remarkably, cadherin-9 and cadherin-10 

could also be observed to bind to captured cadherin-6 with heterophilic binding responses of 

54RU and 28RU, respectively (Figure 36a). In contrast, cadherin-8, -11 and VE-cadherin 

failed to bind and no response above background could be detected.  

 

In a second experiment, we wanted to investigate if heterophilic binding between VE-

cadherin and other type II subfamily members could be detected when VE-cadherin is 

immobilized on the surface. VE-cadherin-CYS was immobilized as described in the previous 

section (Figure 34b) and the same set of analytes (Table 17) was consecutively injected. Wild 

type VE-cadherin produced the typical low homophilic binding response as described in 

Section 6.2.3 (Figure 35a). However, no binding was detected for cadherin-6, -8, -9, -10 and -

11 (Figure 36b) confirming the previous VE-cadherin-cadherin-6-Avi*bio result.  

 

The observation that VE-cadherin does not bind to captured cadherin-6 or to cadherin-6, -8, -

9, -10 and -11 when immobilized on the surface may suggest that VE-cadherin does not 

engage in heterophilic interactions with other members of the type II cadherin subfamily, with 

the caveat that even homophilic VE-cadherin binding can only be weakly detected by SPR 
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probably due to kinetic reasons. Ergo, heterophilic interaction between VE-cadherin and other 

type II subfamily members might occur, but in relation to an already weak wild type binding 

response, this result is inconclusive. This issue could be addressed by alternative functional 

assays such as immunoprecipitation and cell-cell aggregation, which allow longer contact of 

proteins with each other and are less dependent on binding kinetics. 

  

More broadly, the results of the SPR experiments regarding type II cadherin heterophilic 

binding on a molecular level correlate perfectly with binding specificities obtained from cell-

cell aggregation studies and reveal more subtle differences in binding between related 

cadherins (Shimoyama et al., 2000). Type II cadherins exhibit a high degree of specificity in 

heterophilic binding mirroring the phylogenetic tree despite the fact that they all share high 

levels of sequence identity in their adhesive domains (Table 15). In particular, our results 

indicate that the separate subgroups of cadherin-6,-9,-10 and cadherin-8,-11 may show 

binding within but not between groups. Within the cadherin-6,-9,-10 group it appears that 

even minor sequence differences translate into distinct binding specificity. In general, SPR 

experiments could be shown to be suitable to assess type II cadherin heterophilic binding 

properties in a quantitative fashion, which can in future be extended to the entire set of 13 

type II cadherins. 

 

 

6.3 Heterophilic adhesive binding between type I subfamily members and 

VE-cadherin 
Published cell-cell aggregation, SPR and domain shuffling experiments have shown that, 

while adhesive heterophilic binding is detectable in certain combinations within type I and 

type II cadherin subfamilies, heterophilic interactions between type I and type II subfamilies 

are not detected ((Katsamba et al., 2009; Patel et al., 2006; Shimoyama et al., 1999; 

Shimoyama et al., 2000) and Introduction 1.6). Molecular binding between VE-cadherin and 

type I cadherins has not been investigated, however, experiments focused on interactions 

between VE-cadherin and type I subfamily members in the vascular endothelium revealed 

that VE-cadherin expels from adherens junctions type I N- and P-cadherin, which are in vivo 

co-expressed with VE-cadherin on vascular endothelial cells (Jaggi et al., 2002) and 

Introduction 1.8.2). To test if there are interactions on a molecular level between adhesive 

EC1-2 fragments of VE-cadherin and those of type I cadherins, we tested E-, N- and P- 
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cadherin for potential heterophilic interactions with immobilized VE-cadherin-CYS in SPR 

assays. Immobilized N-cadherin-CYS was used as a control. 

 

One N-cadherin and two VE-cadherin surfaces (low and high concentration) were prepared as 

described in Section 6.2 (Figure 33b for N-cadherin-CYS immobilization, 34b for VE-

cadherin-CYS immobilization). When wild type, untagged N-cadherin was consecutively 

injected over the three described surfaces, a strong, concentration dependent homophilic 

binding response could be detected for the N-cadherin surface, as expected (see Section 6.2). 

Interestingly, strong binding was also detected between the N-cadherin analyte and both VE-

cadherin surfaces. Binding was well above 10RU, thus is likely to represent specific 

heterophilic binding. We also found that the binding was concentration dependent for both N-

cadherin in solution and immobilized VE-cadherin (Figure 37). When soluble, untagged E-

cadherin was injected as analyte no binding occurred on VE-cadherin surfaces (Figure 37), 

but a heterophilic binding response was observed on the N-cadherin surface, which is in 

agreement with results of previous N- and E-cadherin heterophilic binding studies (Figure 37, 

(Katsamba et al., 2009)). When P-cadherin was used as the analyte, heterophilic binding to 

VE- and N-cadherin was detected as minimal binding below 10RU on all three surfaces, with 

strongest binding, approximately 4RU, to N-cadherin (Figure 37). Lastly, we tested wild type 

T-cadherin binding to type I N-cadherin and II VE-cadherin, with the result, that no binding 

could be observed (Figure 37), suggesting that background non-specific binding levels are 

low such that even minimal binding responses found in these experiments should correspond 

to specific heterophilic interactions.  

 

N-cadherin bound heterophilically to VE-cadherin surfaces, so we tested if VE-cadherin as 

analyte would also bind to immobilized N-cadherin. Results showed that only a very minimal 

binding response could be detected in this combination, which nevertheless was dependent on 

analyte concentrations (Figure 38). VE-cadherin was suggested to have unfavorable kinetics 

for SPR experiments (Section 6.2.3), which might explain, why no heterophilic interactions 

could be observed with VE-cadherin as analyte based on the assumption that molecules can 

be ‘trapped’ by slowed kinetics in a dimer state in the analyte more readily than in the 

immobilized layer.  
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VE-cadherin has a divergent strand swapped adhesive interface in comparison to type I 

cadherins, so we tested if the N-/VE-cadherin interaction is dependent on the strand swap 

mechanism. We used strand swap impaired mutant N-cadherin W2A (Katsamba et al., 2009; 

Tamura et al., 1998) as the analyte, which was injected over the high and low concentration 

VE-cadherin surfaces and the N-cadherin surface. We recorded no binding response between 

N-cadherin mutant W2A and immobilized N-cadherin consistent with prevention of strand 

swapping. In contrast, strand swapping impaired N-cadherin W2A mutant bound to a high 

level to VE-cadherin surfaces, which was approximately 35-40fold stronger than the 

heterophilic binding observed for similar analyte concentrations of wild type N-cadherin, 

(Figure 37). This heterophilic interaction was also concentration dependent with regard to 

both VE-cadherin concentration on the surface and analyte mutant N-cadherin concentration, 

suggesting that this interaction is not artifactual.  

 

Overall, we found that VE-, E- and T-cadherin do not heterophilically interact, but minimal 

heterophilic interaction between P- and VE-cadherin occurred. Interestingly, N-cadherin and 

VE-cadherin show strong heterophilic interactions, which can be dramatically enhanced by 

impairing strand swapping in N-cadherin. Notably, the type I cadherins to which VE-cadherin 

binds, N-cadherin and P-cadherin, are in vivo both present in vascular endothelial cells along 

with VE-cadherin. In these cells, VE-cadherin is found to expel N-cadherin from junctions, 

leaving it dispersed over the cell surface (Gentil-Dit-Maurin et al., 2010; Jaggi et al., 2002). 

Therefore, it is possible that the observed heterophilic interactions may be important cis 

interactions and not adhesive trans interactions, supported by the data that N-cadherin wild 

type and mutant both bind well to immobilized VE-cadherin. 
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6.4 Co-immunoprecipitation assays to detect cadherin high affinity binding 
Mouse VE-cadherin EC1-2 produced only minimal binding responses in the SPR experiments 

described above, but these proteins adhere homophilically with strong affinities in low 

micromolar range in equilibrium AUC experiments (Section 4.2 and 5.1) and therefore the 

low SPR response may be due to kinetic effects as discussed in Section 6.2. We sought a 

complementary method which like AUC can detect cadherin interactions over long time 

periods and is relatively insensitive to kinetic effects, but that is, like SPR, suitable for 

detection of both, homophilic and heterophilic interactions. Thus, we conducted co-

immunoprecipitation (co-IP) experiments with soluble purified cadherin EC1-2 fragments at 

high concentrations. 

 

C-terminally tagged two domain cadherins were used in the assays to provide accessible, not 

sterically impaired antigens for immunoprecipitation and antibody detection. For E- and N-

cadherin we used Avi*bio-tags (E-, N-cadherin-Avi*bio), FLAG-tags were used for VE-

cadherin (VE-cadherin-FLAG) and C9-tags for VE- and N-cadherin (VE-, N-cadherin-C9). 

All proteins were previously confirmed by AUC to be able to dimerize in solution with KDs 

similar to that of wild type untagged proteins (Table 16 in Section 6.2.1).  

 

First, we conducted co-IP assays of homophilic adhesive cadherin binding. Equimolar 

quantities of N-cadherin-Avi*bio and N-cadherin–C9 were incubated together over a time of 

three hours to allow dimer formation. The complexes were precipitated by the immune 

reaction of 1d4 antibody recognizing C9-antigen tagged N-cadherin and pulled down with 

protein G coated magnetic beads. The pulled down proteins were separated by SDS-PAGE, 

transferred by western blot and presence of biotinylated N-cadherin in immunoprecipitates 

and supernatants was detected using NeutrAvidin-HRP (Figure 39). We found biotinylated N-

cadherin-Avi*bio in immunoprecipitates of N-cadherin-C9 (Figure 39a Lane 3 and Figure 

39b Lane 1), showing that differently tagged N-cadherin proteins dimerized and that these 

associations were sufficiently stable to be detected in this assay. A negative control, 

containing only biotinylated N-cadherin, protein G and 1d4 antibody, did not show presence 

of biotinylated N-cadherin in immunoprecipitates, thus, no unspecific binding between 

magnetic beads and N-cadherin-Avi*bio and NeutrAvidin-HRP occurred (Figure 39b, Lane 

2). These data show that co-immunoprecipitation assays are a suitable method to detect 

cadherin adhesive binding.  
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We performed the same experiment for VE-cadherin, using VE-cadherin-FLAG and VE-

cadherin-C9. Magnetic beads coated with antibodies against the C9 tag were used for 

immunoprecipitation (clone 1d4). VE-cadherin-FLAG was detected in the 

immunoprecipitates of VE-cadherin-C9 (Figure 39a Lane 1), and could not be detected in the 

negative control omitting the C9-tagged protein from the reaction (Figure 39a, Lane 5). 

Therefore, we can conclude that C-terminally tagged VE-cadherins have the ability to 

homophilically interact with each other. Co-IP experiments allow a long time for protein-

protein interaction to occur, so that dimerization of VE-cadherin-C9 and –FLAG can reach 

equilibrium, potentially overcoming the ‘slow’ binding kinetics which we suggest to be the 

cause for only minimal binding responses in SPR experiments.  

 

The homophilic binding results correlate with other biophysical data derived for adhesive 

cadherin binding, so in the same experiments we tested if heterophilic interactions can also be 

detected by this method. Therefore, the previously characterized heterophilic binding pair N- 

and E-cadherin were allowed to interact in form of E-cadherin-Avi*bio and N-cadherin-C9 

(Figure 39b). In addition, we investigated heterophilic binding between VE-cadherin and N-

cadherin observed in SPR using two combinations: N-cadherin-Avi*bio with VE-cadherin-C9 

and N-cadherin-C9 with VE-cadherin-FLAG (Figure 39a). The complexes were pulled down 

with respective C9-tagged proteins and 1d4 antibody as described before, separated by SDS-

PAGE and transferred by western blot. Biotinylated proteins were detected by NeutrAvidin-

HRP and VE-cadherin-FLAG by anti-FLAG antibodies in immunoprecipitates and 

supernatants. E-cadherin-Avi*bio and VE-cadherin-FLAG, were only detectable in the 

respective supernatants, but not in any of the heterophilic immunoprecipitates (Figure 39a). 

This suggests that heterophilic cadherin binding, between N- and VE-cadherin or between N- 

and E-cadherin is too unstable to be detected in this assay system in comparison to 

homophilic interactions. Our findings suggest in concert with previous data (Shan et al., 

2000), that only very stable, high affinity cadherin-cadherin interactions can be detected by 

co-immunoprecipitation experiments. 
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Chapter 7: 

 Homophilic adhesion  

without the cadherin strand swap motif 
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Recently our group published results describing the role of a novel, non-swapped binding 

interface, named the ‘X-dimer’ interface, in  T-cadherin adhesive binding in addition to a role 

for X-dimer formation in classical cadherin binding (Introduction 1.5, (Ciatto et al., 2010; 

Harrison et al., 2010a). Although I was not the first author, part of my thesis work contributed 

to both manuscripts and the impact will be addressed in this section. 

 

7.1 Background and significance 
In past extensive studies of the adhesive interface located on EC1 domains of classical type I 

and type II cadherins revealed that a three dimensional domain swapping mechanism 

underlies the homophilic binding, in which the N-terminal portion of the A*-strand, Trp2 

(type I) or Trp2 and Trp4 (type II), is docked into an hydrophobic acceptor pocket of the 

partnering molecule. However, the two domain crystal structure of wild type chicken T-

cadherin, an outlier of the classical cadherin family, revealed an adhesive dimer involving a 

similar face of domain EC1, but the region corresponding to the A*-strand of other classical 

cadherins was not strand swapped. This was named the ‘X-dimer’ interface due to the 

approximately cross shaped orientation of the protomers. Mutations targeting the novel 

interface based on the derived structural data were sufficient to abrogate T-cadherin 

dimerization in equilibrium AUC, SPR, cell aggregation and neuron outgrowth experiments 

(Ciatto et al., 2010), suggesting a biological role for this interface and supporting a model in 

which mature adhesive dimers of T-cadherin adopt an X shaped dimer configuration with no 

contribution of strand swapping. 

 

To test this model different mutations targeted to the strand swap region analogous to 

mutations known to prevent strand swapping were introduced into T-cadherin and for 

comparison into E-cadherin (type I) and cadherin-6 (type II), both known to form adhesive 

interfaces involving A*-strand exchange between partnering molecules. These mutations 

should diminish adhesive binding in the cadherins which bind via strand swapping, but should 

have no effect on T-cadherin adhesive properties if the proposed model is correct. 

 

 

7.2 Strand swap site directed T-cadherin mutations do not affect adhesive 

binding 
We altered in T-, E- and cadherin-6 residues required for strand swap dimer formation in 

typical classical cadherins to observe the effects on homodimerization in equilibrium AUC 
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experiments. Several different point mutations were tested. Residues Trp2 (type I) and Trp2 

and Trp4 (type II) are crucial for strand swapped dimerization and binding can be prevented 

by reduction of these side chains to those of alanine (Harrison et al., 2005). Thus, a W2A 

mutation was introduced into E-cadherin and a W4A mutation in cadherin-6 (single Trp 

mutation shown for type II VE-cadherin to abolish binding, (May et al., 2005)). In T-cadherin 

we changed Ile2, found at an equivalent position to that of Trp2 in strand swapping type I 

cadherins, and mutated it also to alanine. Another crucial interaction, which can be disrupted 

in order to prevent proper strand swapping, is the salt bridge between glutamic acid (at 

position 89 in E-cadherin) and the N-terminal amino group of the first residue, which 

stabilizes the A*-strand in the strand swap dimer conformation. Thus, the mutation E89A was 

introduced into E-cadherin, reducing the carboxyl side chain of Glu89 to that of alanine. In a 

different approach, we moved the N-terminal amino group further away from the stabilizing 

carboxyl group in order to disrupt salt bridge formation by extending the N-terminus of E-

cadherin by two alanines (Ala-Ala extension) or methionine and arginine (Met-Arg-

extension). Similarly, we extended the N-terminus of T-cadherin by a single glycine residue 

(Gly-extension) or by Met-Arg. In addition to these mutants targeting a single interaction in 

the strand swapped dimer, we created an E-cadherin mutant in which both two N-terminal 

residues Asp1 and Trp2 are deleted, which should prevent salt bridge formation (Asp1) and 

anchoring of the A*-strand (Trp2) at the same time. 

 

The strand swap dimer targeted mutations were introduced into adhesive EC1-2 fragments of 

T-cadherin, E-cadherin and cadherin-6 proteins that were produced in bacteria (Section 

2.1.2.3). Their homophilic binding was tested in sedimentation equilibrium AUC experiments 

in order to explore the effect of the introduced mutations. Determined affinities are 

summarized in Table 18  and profiles of sedimentation AUC experiments are presented in 

Figure 40. Wild type T-cadherin homodimerizes with a moderate affinity corresponding to a 

KD of 41.4±1.7µM, which is in the same range of those of C- and E-cadherin ectodomains 

described previously, 64µM and 109µM, respectively (Chappuis-Flament et al., 2001; 

Harrison et al., 2010b). Mutant proteins targeting potential strand swapping residues, T-

cadherin I2A, Gly- and Met-Arg-extension, were found to form dimers in solution with KDs 

similar to that of the wild type protein: 37.1±4.1µM (I2A), 16.5±0.8µM (Gly-extension) and 

34.1±6.3µM (Met-Arg-extension). Thus, strand swap interface targeted mutations did not 

inhibit T-cadherin homodimerization significantly. In contrast, equivalent mutations 

introduced into E-cadherin and cadherin-6 showed strong effects on their homodimerization 
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behavior and diminished adhesive binding affinities markedly (Figure 40b,c). In strand swap 

E-cadherin mutant W2A a ten fold decrease of affinity in comparison to that of wild type 

protein occurred (Figure 40, Table 18) and for cadherin-6 the wild type affinity was decreased 

by the strand swap W4A mutation even more significantly, resulting in a 100fold weakened 

affinity of 321±0.5µM (Figure 40c, Table 18). The Ala-Ala-extension mutant interfering with 

the stabilization of the swapped A*-strand and the Asp-Trp deletion E-cadherin mutant, 

removing part of the swapping strand, diminished the homodimerization properties similarly, 

resulting in KDs of 811±97µM and 662±28.5µM, respectively. A less severe effect is seen for 

the E-cadherin E89A mutation, which weakened the affinity approximately by 2.5fold (Figure 

40b, Table 18).  

 

Table 18: Dissociation constants KDs from equilibrium AUC analyisis for cadherin-6, E- and T-

cadherin wild type and strand swapping mutants. Standard error is given. 

  

Protein Description KD [µM] 

   

Cadherin-6 EC1-2   
Mouse cadherin-6 EC1-2a Wild type 3.1±0.1 
Mouse cadherin-6 EC1-2 W4A Strand swapping mutant 321±0.5 

   

E-cadherin EC1-2   
Mouse E-cadherin EC1-2 Wild type 98.6±15.5 
Mouse E-cadherin EC1-2 W2A Strand swapping mutant 916±47 
Mouse E-cadherin EC1-2 E89A Strand swapping mutant 293±11 
Mouse E-cadherin EC1-2 Ala-Ala-extension Strand swapping mutant 811±97 
Mouse E-cadherin EC1-2 Met-Arg-extension Strand swapping mutant 257.5±17.5 
Mouse E-cadherin EC1-2 Asp-Trp-deletion Strand swapping mutant 662±28.5 

   

T-cadherin EC1-2   

Mouse T-cadherin EC1-2 Wild type 41.4±1.7 
Mouse T-cadherin EC1-2 I2A Strand swapping mutant 37.1±4.1 
Mouse T-cadherin EC1-2 Gly-extension Strand swapping mutant 16.5±0.8 
Mouse T-cadherin EC1-2 Met-Arg-extension Strand swapping mutant 34.1±6.3 

 
a tagged versions of these proteins are listed separately in Table 16. 
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7.3 Context of the mutational data in the published work 
Strand swap mutations had no effect on T-cadherin adhesive binding in equilibrium AUC 

experiments, which shows that the swapped interface seen in other type I and II cadherins is 

not involved in T-cadherin mediated adhesion. Together with cell aggregation assays, AUC 

and SPR experiments showing that mutations targeting the observed novel X-dimer interface 

result in complete loss of T-cadherin adhesive binding (Ciatto et al., 2010), these data suggest 

that the X-shaped configuration is the primary adhesive interface of T-cadherin.  

 

Interestingly, although strand swap mutants of type I E-cadherin and type II cadherin-6 were 

found in AUC experiments to have markedly reduced affinities, they were not monomeric but 

formed weak homodimers. Structures of E-cadherin W2A, E89A, the Ala-Ala extension 

mutant and cadherin-6 W4A, determined by other authors and reported in Harrison et al. 

(2010a) revealed formation of X-shaped dimers closely similar to those of T-cadherin. These 

structures suggested potential biological relevance of this interface in type I and II cadherins 

in addition to the well studied strand swap adhesive interface. Mutations targeting the X-

dimer interface in these proteins slowed the exchange between monomers and strand swapped 

dimers considerably such that proteins no longer mediated adhesion in aggregation assays or 

SPR experiments despite having intact swapping interface regions, suggesting that in classical 

cadherins the X-dimer interfaces function as a kinetic intermediate indispensible for proper 

strand swap mediated cadherin adhesion.  

 

Therefore, cadherins appear to employ two different interfaces for homodimerization. One of 

these, the X-dimer interface, is shared by typical classical cadherins and atypical T-cadherin 

while the other interface, the strand swap dimer, is specific to typical classical cadherins, 

mediating mature adhesive cadherin binding. 
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Chapter 8: 

 Discussion 
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8.1 VE-cadherin adhesion is mediated by a classical cadherin dimer 
We embarked on an extensive biophysical study of VE-cadherin adhesive behavior to test a 

novel model for homophilic VE-cadherin adhesive interactions that has been suggested in the 

literature and is remarkably different from that known for other classical cadherins. The 

published model is based on solution biophysical data and cryo-EM studies of bacterially 

produced VE-cadherin EC1-4 fragments and suggests that the adhesive binding unit of VE-

cadherin is composed of six molecules which assemble into a hexameric structure based on 

two sets of interactions (Al-Kurdi et al., 2004; Bibert et al., 2002; Hewat et al., 2007; Lambert 

et al., 2005; Legrand et al., 2001). One of these, an extensive interaction involving domain 

EC4, organizes three VE-cadherin molecules laterally into a trimer and the second interaction, 

mediated by EC1 domains connects two trimers from juxtaposed cell surfaces in a trans 

fashion, which results in the proposed hexamer (Hewat et al., 2007). In contrast, for other type 

I and type II classical cadherins there is extensive evidence from a wide array of studies for 

formation of trans adhesive dimers between single protomers by 3D domain swapping 

mediated by EC1 domains (Boggon et al., 2002; Harrison et al., 2010b; Haussinger et al., 

2004; Patel et al., 2006; Shapiro et al., 1995). For type I cadherins, there is evidence for 

subsequent assembly into adherens junctions by weak cis interactions (Boggon et al., 2002; 

Harrison et al., 2010b), but strong trimeric interactions similar to those suggested for VE-

cadherin have not been observed for other cadherins. Both, the proposed hexamer model and 

the known classical cadherin interaction, have in common that EC1 domains mediate trans 

binding, but they differ in the respective cis interactions; a suggested strong trimeric 

interaction mediated by EC4 for VE-cadherin that is sufficiently stable to be detected in 

solution and a weak cis interaction for type I cadherins involving domains EC1 and EC2 that 

becomes detectable only in the context of adhesion between membranes. 

 

VE-cadherin fragments EC1-4 exhibiting hexameric behavior in cryo-EM and solution 

biophysics studies were all bacterially produced from inclusion bodies and lacked post-

translational modification as well as the membrane proximal domain EC5 (Legrand et al., 

2001). Bacterially produced fragments spanning domains EC1-5 also formed hexamers in 

analytical size exclusion chromatography experiments (Legrand et al., 2001). We embarked 

on extensive biophysical and imaging studies of VE-cadherin ectodomains produced in 

mammalian HEK 293 cells to examine hexameric VE-cadherin binding behavior in detail 

using proteins more closely similar to those in vivo in terms of post-translational modification. 

However, we found that these natively glycosylated VE-cadherin ectodomains uniformly 
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formed a monomer/dimer equilibrium in solution with no evidence of higher order multimers 

in analytical ultracentrifugation, gel filtration, multi-angle light scattering and imaging 

experiments.  We also found that isolated, natively glycosylated EC3-5 VE-cadherin 

fragments are monomeric, consistent with the idea that strong binding interactions of VE-

cadherin are mediated only by domains EC1-2. Confirming this, we observed VE-cadherin 

EC1-2 fragments to dimerize with similar affinities to full-length ectodomains. These data 

imply that EC4-mediated cis-trimer interactions do not form in solution for VE-cadherin 

ectodomains in their native state. Our findings for VE-cadherin are therefore more similar to 

behavior observed for other classical cadherins (Boggon et al., 2002; Harrison et al., 2010a; 

Harrison et al., 2010b; Haussinger et al., 2004; Nagar et al., 1996; Patel et al., 2006; Shapiro 

et al., 1995). 

 

Furthermore, we identified the likely reason for the discrepancies in VE-cadherin behavior 

between our findings and previous work in which the hexamer model was proposed. We find 

that VE-cadherin carries substantial quantities of N-linked glycosylation in comparison with 

glycosylation found in type I cadherins (Boggon et al., 2002; Harrison et al., 2010b; Liwosz et 

al., 2006). We identified one glycosylation site at Asn395 (numbering for mature human VE-

cadherin) conserved throughout type I and II cadherins, which is located in domain EC4 - the 

domain responsible for trimerization in the bacterial hexamer model (Bibert et al., 2002; 

Hewat et al., 2007). As mentioned above, domains EC3-5 of VE-cadherin, when glycosylated, 

failed to homodimerize and remained monomeric in all biophysical experiments, which is in 

direct contrast to the prediction of the hexamer model (Bibert et al., 2002). However, removal 

of N-linked glycosylation from VE-cadherin fragments encompassing the putative trimer site 

(domains EC3-4 and EC3-5) led to strong dimeric protein interactions or aggregation in 

analytical ultracentrifugation and appearance of the ability to aggregate liposomes. Similarly, 

dimerization was also found by Bibert et al (2002) for bacterially produced EC3-4. Although 

the fragments EC3-4 did not associate into trimers, it has been shown previously, that proteins 

with non-specific hydrophobic associations can sometimes form complexes composed of 

unexpected numbers of protomers (Weis et al., 1991). Interestingly, full-length VE-cadherin 

ectodomains also became prone to non-specific aggregation in AUC experiments and able to 

more efficiently aggregate liposomes after N-linked glycosylation was reduced enzymatically 

or by expression in HEK 293 GNTI- cells. Our data strongly suggest that EC4-mediated cis 

binding interactions, which are central to the hexamer binding model, are an artifact caused 

by lack of N-linked glycosylation in VE-cadherin and that expression of VE-cadherin 
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fragments in bacteria in previous studies (Al-Kurdi et al., 2004; Bibert et al., 2002; Hewat et 

al., 2007; Legrand et al., 2001) resulted in non-biological, artifactual hexamer assemblies. 

Interestingly, we find that lack of N-linked glycosylation does not equally affect all cadherins 

because, in contrast to the findings for VE-cadherin, binding interactions of purified E-

cadherin EC1-5 fragments were independent of their N-linked glycosylation. Proteins were 

stable and adopted the same adhesive binding behavior with highly similar affinity values. 

Nonetheless, even in type I cadherins, N-linked glycosylation may play a role, albeit a more 

subtle one, in regulating adhesion at the cell surface (Liwosz et al., 2006).  

 

Our finding of a classical cadherin monomer/dimer behavior for VE-cadherin is in agreement 

with electron microscopic studies performed by Ahrens et al. (2003), which also used 

mammalian expressed VE-cadherin ectodomains and suggested VE-cadherin to adopt a 

homodimerization mechanism similar to classical type I E-, N- and P-cadherins with no 

occurrence of hexamers (Ahrens et al., 2003). Hexamer interactions have therefore only been 

described for bacterially expressed constructs (Al-Kurdi et al., 2004; Bibert et al., 2002; 

Hewat et al., 2007; Lambert et al., 2005; Legrand et al., 2001). 

 

Our AFM imaging studies revealed that VE-cadherin not only homodimerizes in common 

with other studied classical cadherins, but that protomer and overall dimer arrangement are 

closely similar to those of type I cadherins based on previous structural data (Boggon et al., 

2002; Harrison et al., 2010b). Protomers adopted crescent shaped curved forms, and dimers 

appear to be composed of two protomers overlapping at their termini in a similar fashion and 

with similar overall length to those observed in structures and EM studies of E-, N-, P- and C-

cadherin(Ahrens et al., 2003; Farquhar and Palade, 1963; McNutt and Weinstein, 1973). Two 

previous AFM imaging studies of VE- (Baumgartner et al., 2000) and N-cadherin (Harrison et 

al., 2005) C-terminally attached to Fc domains, could also identify cadherin monomers 

similar in overall shape and curvature to those we observe, but dimers were not described. As 

mentioned above, VE-cadherin binding activity was found to reside in domains EC1-2 in 

solution studies, which lead us to conclude that the overlapping regions seen in our AFM 

studies are amino terminal.  

 

In addition to similarity in overall dimer configuration between VE-cadherin and previously 

characterized classical cadherins observed in the above expeiments, our structure of the 

adhesive dimer of chicken VE-cadherin EC1-2 shows that VE-cadherin homodimerization is 
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mediated by the 3D domain swapping mechanism typical for classical cadherins (Boggon et 

al., 2002; Haussinger et al., 2004; Patel et al., 2006). However, the adhesive interface reveals 

features specific to VE-cadherin, as discussed below. 

 

 

8.2 Variations on a common binding mechanism in classical cadherins 
The VE-cadherin structure reported in this work has characteristics of adhesive interfaces 

found in both type I and II cadherins. The strand swap region and domain orientation of EC1 

domains is closely similar to that of other type II cadherins in that the key residues Trp2 and 

Trp4 located on the A*-strand are docked into the large hydrophobic acceptor pocket of the 

interacting molecule. However, the interface outside the immediate pocket differs 

substantially from that of type II cadherins as intermolecular interactions are restricted to the 

hydrophobic pocket and do not extend along the entire face of the EC1 domain. Absence of 

these ‘outer’ interactions results in an overall dimer organization of EC1 domains more 

reminiscent of that of type I cadherins as only the upper half of domain EC1 partakes in 

homodimerization. VE-cadherin is the only cadherin found so far to combine these 

characteristics. A unique, almost linear overall arrangement of protomers in the dimer is also 

found, and accessible surface area per protomer buried in the adhesive interface is 

approximately intermediate between small type I interfaces and large type II cadherin 

interfaces. Overall, VE-cadherin is a structurally divergent type II cadherin based on the 

homodimer structure. 

 

Our structure of VE-cadherin shows clearly how differences on the sequence level, in this 

case in the region of the extended interface in EC1, translate into substantially divergent 

adhesive interfaces despite the same underlying strand swap mechanism. Numerous structures 

of classical cadherins have been reported to date, including. full length structures of type I 

cadherins E-, N- and C-cadherin (Boggon et al., 2002; Harrison et al., 2010b), and a wide 

array of adhesive EC1, EC1-2 or EC1-3 fragment structures of type II cadherins MN, 8 and 

11, (Patel 2006). In addition, in the final stages of preparation of this thesis, I determined a 

structure of a strand swapped dimer of another type II cadherin, cadherin-10 EC1-2, revealing 

an adhesive interface sharing the swapped A-strand using Trp2 and Trp4 and the extended 

non-swapped hydrophobic interface with other typical type II cadherins. Taken together with 

the newly determined chicken VE-cadherin EC1-2 structure of a divergent type II cadherin 

interface, we can infer from these numerous structures the diversity in strand swapped 
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adhesive interfaces within classical cadherins. Broadly, all classical cadherins except T-

cadherin (see below) commonly exchange the amino terminal part of the A-strand between 

EC1 domains, but differ with respect to the exact element that is swapped (Trp2 in type I, 

Trp2 and Trp4 in type II) and to the involvement of an extended non-swapped interface, 

which is absent in type I cadherin and atypical type II VE-cadherin dimers. 

 

Indirect evidence from all structures available provide insight to the adhesive mechanism of 

other cadherin subfamilies with similarity to the classical cadherins, like desmosomal 

cadherins, for which at present time no binding interface structures are available. Sequence 

analysis show presence of a tryptophan residue and pocket residues in similar positions to 

these structural elements in type I cadherins. Cryo electron tomography studies of 

desomosomes (Al-Amoudi and Frangakis, 2008) together with functional evidence suggest 

that these proteins are most likely to exchange A-strands for homodimerization, but further 

investigations are needed to reveal details of adhesion.  

 

But not all classical cadherins facilitate 3D domain swapping for adhesive binding. T-

cadherin, a divergent GPI-linked type I cadherin lacking strand swap residue Trp2 and 

residues lining the type I hydrophobic pocket forms adhesive dimers via a different interface, 

involving the ‘base’ of the EC1 domain and the ‘top’ of the EC2 domain resulting in an X-

shaped dimer configuration (Ciatto et al., 2010). Strand swap targeted mutations in T-

cadherin reported here did not impair dimerization and thus the strand swapping mechanism 

plays no role in T-cadherin adhesion (Ciatto et al., 2010). However, mutations targeting the 

X-dimer interface abrogated T-cadherin homodimerization completely suggesting this 

interface to be the only biological important site. Interestingly, when strand swapping was 

impaired by mutagenesis in type I E-cadherin (Harrison et al., 2010a), N-cadherin (J.V., 

personal communication) and type II cadherin-6 (Harrison et al., 2010a), structures of these 

proteins revealed that they use the same interface as observed for T-cadherin. Biophysical 

evidence suggests the interface to function as a binding intermediate in these cadherins. VE-

cadherin also might use the X-dimer as intermediate, based on the remaining ability of strand 

swap mutant VE-cadherin EC1-5 W2A W4A to form weak dimers in AUC experiments and 

to aggregate liposomes, however, this remains to be tested by direct mutational studies 

targeting the X interface.  
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Outside the classical sub branch of the cadherin superfamily, protocadherins, which have one 

additional EC domain in comparison to classical and desmosomal cadherins and other even 

more distantly related members show no conservation of strand swap residues. These will 

almost certainly employ even more divergent mechanisms to fulfill the task of adhesive 

binding, which need to be studied in detail in the future.  

 

 

8.3 Adherens junction assembly – differences within the classical cadherin 

subfamilies 
Although our studies revealed many details about trans dimerization of VE-cadherin, certain 

points remain elusive. How do VE-cadherin and other type II cadherins laterally organize into 

adherens junctions? We observed cadherin like junction formation in our cryo-EM studies of 

artificial junctions formed by VE-cadherin between liposomes. In addition, VE-cadherin was 

also found in vivo at adherens junctions in juxtaposed endothelial cells by EM (Uehara, 2006). 

Adherens junction formation has also been reported for type II cadherin-11 in 

immunoflourescence studies (Kiener et al., 2006) which show overall similar topology and 

organization as adherens junctions formed by type I cadherins (Boggon et al., 2002; Harrison 

et al., 2010b; McNutt and Weinstein, 1973). Abundant evidence from crystal structures, cryo 

EM of artificial junctions, EM of in vivo junctions and functional assays has led to some 

understanding of adherens junctions assembled by type I cadherins (Boggon et al., 2002; 

Haussinger et al., 2004; McNutt and Weinstein, 1973). Strand swapped cadherin dimers 

appear to use a second interface for lateral assembly, the so called cis interface, which forms 

involving β-strands C, F and G of the face of EC1 with contribution of the quasi β-helix on 

one molecule and B, D and E strands of the face towards the ‘top’ of EC2 on the second 

molecule (Boggon et al., 2002; Harrison et al., 2010a). Mutational studies targeting this 

interface reveal that both trans and cis interactions are essential for E-cadherin to assemble 

into stable junctions between cells, or into ordered artificial junctions between liposomes 

(Harrison et al., 2010b). It appears at least for type I cadherins that passive diffusion trap and 

cytoplasmic interactions are not sufficient to trigger initial clustering of cadherins into 

junctions (Wu et al., 2010). Therefore it is likely that type I cadherins rely on the described 

ectodomain mediated mechanism for stable junction formation. For type II cadherins, the 

requirements for junction assembly are not known. Although the cis interface was present in 

all EC1-2 and EC1-5 structures of mouse type I E-, N- and C-cadherins (Boggon et al., 2002; 

Harrison et al., 2010a; Harrison et al., 2010b; Haussinger et al., 2004; Parisini et al., 2007), no 
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similar cis interaction was present in type II cadherin EC1-3 and EC1-2 structures of 

cadherin-8, -11 (Patel et al., 2006) or in the VE-cadherin structure reported here. These 

findings strongly suggest that the cis interface observed for type I cadherins does not have a 

role in the type II subfamily. 

 

A critical look at EM images of artificial adherens junctions between liposomes reveals that 

junctions formed by VE-cadherins show a strong midline in the intermembrane density that is 

not observed in similar preparations of artificial junctions of type I cadherins. This might be 

therefore indicative of a different cis arrangement. Interestingly, desmosomes, which are 

formed by the classical cadherin-related cadherins desmocollin and desmoglein, also appear 

different from type I cadherin junctions in cryo-EM and show a broadly similar electron-

dense midline to that seen for VE (Al-Amoudi and Frangakis, 2008). Both desmosomal 

cadherins and type II cadherins also lack a structural element in EC1 referred to as a quasi β-

helix, which contributes to the cis interface in type I cadherins. 

 

Thus, at the current time we have no evidence for a cis interface responsible for lateral 

junction assembly with physiological relevance for type II cadherins. A full length VE-

cadherin structure would elucidate the ectodomain-mediated aspects of junction assembly of 

this important cadherin crucial to angiogenesis and maintenance of the vascular endothelium 

and may be relevant to other classical type II cadherins. Physiological relevance of any 

potential cis interface observed could then be assessed by mutagenesis studies, which could 

also be used to test the relevance of the additional lattice contacts observed in the EC1-2 

structure reported here. Trials to obtain diffracting crystals of chicken and human full 

ectodomains were unsuccessful, so in future experiments a multi species approach will be 

taken using bovine, mouse, frog and zebrafish (Larson et al., 2004) VE-cadherin, which show 

78%, 75%, 55% and 37% sequence identity differences to human VE-cadherin. The 

substantial sequence differences increase the chance of different behavior in crystallization 

trials. Another future aim is to elucidate the overall assembly of VE-cadherin junctions and 

other type II cadherin mediated junctions by cryo electron tomography of artificial adherens 

junctions between liposomes.   
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8.4 Type II cadherin specificity – a code to crack 
SPR experiments with purified type II cadherins to elucidate the binding specificity pattern 

within this group showed promiscuous binding between cadherin-6, -9 and -10, but no 

interactions were observed between cadherin-6 and cadherin-8 and -11. Type II cadherins-6, -

9, -10 are more related to each other on sequence level (78-84% sequence identity, EC1-

domains) than they are to cadherin-8 and -11 (59-64% sequence identity, EC1 domains). 

Similarly, cadherin-8 and -11 share with each other a higher similarity on sequence level 

(72% identity) than to cadherin-6, -9, -10 (59-64%). These data together suggest that there are 

subgroups within the type II family that engage in restricted heterophilic interactions. Our 

data agree with promiscuity and selectivity patterns derived from cell aggregation data (Patel 

et al., 2006; Price et al., 2002; Shimoyama et al., 1999; Shimoyama et al., 2000). From these 

data we can extract evidence for other subgroups that may interact preferentially, for example 

cadherin-8 and -11 and cadherin-7 and -14 (Shimoyama et al., 2000).  

 

Because data derived from our SPR studies directly correlates with data from cell aggregation 

assays we will expand the studies to include all combinations of type II cadherins. 

Preliminary data from SPR experiments further to those reported in Section 6.2.4 of this thesis 

show that cadherin-11 coupled to the sensor surface binds heterophilically to cadherin-8, in 

preference to binding to less related cadherins-6, -9, and -10. This supports our theory that 

type II cadherin promiscuity and selectivity directly relates to sequence identity and therefore 

to sub-subfamily organization within the type II family. Future experiments will aim to 

measure a type II cadherin-wide SPR matrix to test this more fully. 

 

In contrast to cell aggregation assays conducted by Shimoyama et al (2000), in which 

expression levels of cadherin-9 and -10 were substantially lower, SPR studies conducted on 

purified proteins had exact same protein concentrations for analyte cadherins, which enables 

quantitative comparisons of heterophilic binding facilitated by a certain cadherin. SPR 

experiments provided a more finely grained quantitation, as we can see that cadherin-6 prefers 

homophilic binding at least 1.5fold over heterophilic binding to cadherin-9 and 3fold over 

cadherin-10, which is difficult to discern from aggregation assays as for example homophilic 

cadherin-6 aggregates looked identical to cadherin-6/ cadherin-9 cell aggregates. Nonetheless, 

the general trend in our data correlates with the findings on cellular level. We see a hierarchy 

for binding to cadherin-6: homophilic > heterophilic with cadherin-9 > heterophilic with 

cadherin-10. Notably, cadherin-6 and -10 formed in cell-cell aggregation assays heterophilic 
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aggregates, with cadherin-6 expressing cells surrounded by cadherin-10 expressing cells 

(Shimoyama et al., 2000). This kind of heterogeneous aggregate has also been observed in N- 

and E-cadherin transfected cell aggregates (Katsamba et al., 2009; Patel et al., 2006), in which 

N-cadherin expressing cells (high affinity homophilic binding) were surrounded by E-

cadherin expressing cells (low affinity homophilic binding), which indicated that the 

organization of cell aggregates was driven by thermodynamical rules/ homophilic binding 

affinity. In agreement, with cadherin-6 has a homodimerization affinity of 3.1µM and 

cadherin-10 a substantially lower KD of 42.2µM. However, affinities of cadherin-6 and -9 are 

not equal, 3.13µM and 17µM, respectively, but nonetheless homogeneous aggregates are 

formed, indicating that affinities alone do not govern aggregate morphology.  

 

The observed fine differences in specificity are especially interesting because type II 

cadherins are all closely similar to each other on sequence and structural levels (Patel et al., 

2006) even more so than type I cadherins. For example mouse E- and N-cadherin share in 

their EC1 domain a sequence identity of 58%, whereas within the type II subfamily, sequence 

identity reaches up to 84%. The minimal differences in sequence between cadherin-8, -11 and 

cadherin-6, -9 , -10 nonetheless cause homophilic preference over heterophilic interactions as 

seen in our SPR experiments. For example, cadherin-6 shows preference for homophilic 

binding over binding with cadherin-9 and -10 (Shimoyama et al., 2000), although on sequence 

level it shares >82% of identity with specificity governing EC1 domains of the latter 

cadherins. It will be interesting to relate patterns of binding preference from SPR experiments 

conducted with all type II cadherins to specific residue differences in the binding interface. 

Results of these studies could then be applied to mutagenesis studies to determine the minimal 

set of residues that need to be mutated in order to convert type II cadherins specificity. Such 

an approach should be facilitated by the small number of non-conserved residues in EC1 for 

type II cadherins. 

 

It is not uncommon for cell-cell adhesion molecules that very small differences are sufficient 

to determine binding specificity. For example, in Dscam molecules, which function as 

important neural cell adhesion and recognition molecules in the fly, as few as one non-

conserved residue positioned in an important homophilic binding region localized within 

parallel β-strands in the dimer is enough to govern specificity (Wojtowicz et al., 2007). This is 

reminiscent of the fine tuned specificity found in type II cadherins and suggests the possibility 

that sensitivity of binding affinity to very small binding site differences might be a general 
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feature of homophilic systems. Considering the knowledge from domain shuffling 

experiments showing that cadherin domain EC1 governs specificity (Nose et al., 1990; Patel 

et al., 2006; Price et al., 2002) and structural data for type II cadherins MN, 8, 10 and 11 

(Patel et al., 2006), (Brasch, unpublished data), regions in which residue exchanges might 

have a dramatic effect on specificity must lie outside the core strand swap region, which 

shows essentially no variation. Thus, the region lining the rim of the acceptor pocket or the 

extended non swapped hydrophobic interface along domain EC1 are a likely possibility for 

minor residue changes to translate into specificity.  

 

But does type II cadherin binding specificity play a role in vivo? A wide array of type II 

cadherins are found to be co-expressed in the CNS (Price et al., 2002; Suzuki, 1997) in 

distinct but overlapping patterns. Also, there is a correlation between expression of certain 

type II cadherins and segregation of different regions in the CNS (Patel et al., 2006; Suzuki, 

1997). Studies of Price et al (2002) elucidated an important role for multiple type II cadherins 

in motor pools in the spinal cord which are linked to motor organization. Motor pools are 

small groups of clustered functional subsets of motor neurons in the lateral motor column of 

the spinal cord (Price et al., 2002). No type I cadherins, except divergent T-cadherin, are 

found to be expressed in motor pools (Fredette and Ranscht, 1994; Price et al., 2002) which 

appear to segregate from each other by switching on expression of different sets of type II 

cadherins, sometimes with different expression levels of each (Price et al., 2002). MN-

cadherin for example is abundant in all neurons of this region before distinct motor pools 

form. Then MN-cadherin expression is lost for most motor pools, but maintained in the 

Adductor pool, which leads to its segregation from the eF pool, which expresses an identical 

complement of cadherins except for MN (Price et al., 2002). When MN-cadherin expression 

is also induced in the eF pool by in ovo electroporation to equalize the cadherins,, loss of 

segregation leading to intermixing is observed (Price et al., 2002). Interestingly, 

electroporation of a mutant MN-cadherin containing the EC1 domain of cadherin-6b, a 

cadherin already expressed in both pools, does not cause intermixing suggesting that 

differences in the adhesive interface of MN and 6b (74% identical in EC1) are sufficient to 

drive biologically relevant cell sorting (Patel et al., 2006).  

 

One clear exception in the type II cadherin family regarding combinatorial type II cadherin 

expression is VE-cadherin which is expressed exclusively in the vascular endothelium and is 

unlikely to be involved in cell sorting processes with other type II cadherins. The divergent 
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interface we observe is likely to reflect that no selection pressure has acted on VE-cadherin to 

maintain selective, promiscuous interactions with other type II cadherin subfamily members. 

Our SPR experiments suggest that VE does not cross interact with any of type II cadherins-6, 

-8, -9, -10 and -11, which is most likely due to hydrophilic residues in VE-cadherin, where 

type II cadherins show a non-polar extended interface region. However, SPR experiments 

involving VE-cadherin binding were hampered by weak homophilic binding responses that 

were probably due to ‘slow’ kinetics, since VE-cadherin binding in longer time-frame AUC 

experiments was strong. VE-cadherin kinetic behavior studied in single molecule force 

microscopy experiments between endothelial cells by Wirtz et al (2006) revealed in 

comparison to type I cadherins E and N a substantially longer bond lifetime, which is in 

agreement with the binding responses we observe in SPR experiments. Notably, type II 

cadherins in general were found to have ‘slower’ kinetics than type I cadherins, which is 

reflected by the shape of the binding curves in our SPR experiments and in published results 

of dual pipette assays (Chu et al., 2006). Co-ip experiments could be successfully used to 

identify homophilic binding between the same VE-cadherin proteins used for SPR 

experiments, but appear not to be sensitive enough for detection of heterophilic binding such 

as that between VE- and N-cadherin or between N- and E-cadherin, which appears to be less 

stable. Nonetheless, if type II cadherin heterophilic binding is more stable, we might be able 

to assess heterophilic binding with co-ip experiments. Otherwise, cell aggregation assays of 

VE-cadherin transfected cells with those expressing other type II cadherins will be needed in 

order to confirm our results that show no binding between VE-cadherin and other members of 

the type II subfamily. Surprisingly, VE-cadherin has never been tested before in cell 

aggregation assays with other type II cadherins, published cell studies are limited to type I E-, 

N- and P-cadherin expressing cells. 

 

8.5 Interactions between cadherins in vascular endothelial cells  
VE-cadherin, a divergent type II cadherin crucial for angiogenesis and vascular maintenance, 

is expressed exclusively in the vascular endothelium and forms adherens junctions between 

endothelial cells (Breier et al., 1996; Dejana, 1996; Dejana et al., 1996; Gentil-Dit-Maurin et 

al., 2010; Lampugnani et al., 1992; Vittet et al., 1997). Co-expressed in the endothelium 

alongside VE-cadherin are type I N-cadherin and in low levels P-cadherin which do not co-

localize in adherens junctions in endothelial cells in which VE-cadherin is present (Gentil-

Dit-Maurin et al., 2010; Jaggi et al., 2002; Liaw et al., 1990; Navarro et al., 1998; Salomon et 

al., 1992). This is in contrast to other tissues, in which N-cadherin and P-cadherin are 
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junctional (Gentil-Dit-Maurin et al., 2010; Jaggi et al., 2002; Navarro et al., 1998). VE-

cadherin displaces N-cadherin actively from endothelial adherens junctions, leaving it evenly 

dispersed over the cell surface (Jaggi et al., 2002; Navarro et al., 1998; Salomon et al., 1992). 

This is not a general activity of VE-cadherin but is specific for N-cadherin because E-

cadherin and P-cadherin junction formation in transfected cells was not disturbed by co-

expressed VE-cadherin (Jaggi et al., 2002). In our SPR experiments we found very 

surprisingly a strong heterophilic binding of N-cadherin wild type or strand swap mutant 

protein to VE-cadherin. This is the first time that a strong interaction has been observed 

between a type I and type II cadherin; in most experiments conducted to investigate 

heterophilic binding no interactions were observed between type I and II cadherins, for 

example between cadherin-6 and N- or E-cadherin (Katsamba et al., 2009; Nakagawa and 

Takeichi, 1995; Patel et al., 2006; Shimoyama et al., 1999; Shimoyama et al., 2000). The 

interaction between VE- and N-cadherin was independent from strand swap exchange, as 

W2A strand swap mutant protein of N-cadherin was also observed to bind to VE-cadherin 

surfaces. This is in agreement with the fact that both proteins have remarkably different 

adhesive strand swap interfaces and also with previous results from plate-cell adhesion 

assays, in which cells transfected with either N- or VE-cadherin failed to heterophilically bind 

to each other (Breviario et al., 1995; Navarro et al., 1998). Therefore, it can be excluded that 

this interaction is mediating trans-adhesion, indicating it to be lateral. It is interesting to 

speculate that this interaction could trigger the displacement of N-cadherin by VE-cadherin 

from vascular endothelial adherens junctions. Interestingly, in transfection experiments the N-

cadherin extracellular domain was shown to be involved in the displacement, supporting this 

possibility. 

 

Despite strong evidence of binding between VE- and N-cadherin in SPR experiments, this 

interaction could not be observed in co-ip experiments, which might be due to instability and 

short bond life time, which appears likely considering the traces suggesting fast on/off 

binding rates in SPR experiments. In the future, we need to expand our studies and test if VE-

cadherin strand swap mutants also bind heterophilically to N-cadherin in SPR experiments to 

determine if the interaction is fully independent of the strand swap interface. In addition, we 

plan to investigate if the putative complex can be purified by size exclusion chromatography 

of N-cadherin VE-cadherin mixtures to confirm our SPR binding data and potentially to allow 

us to determine a crystal structure of the complex to shed light on this novel interaction on a 

molecular level.   
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9. Future Directions 
 

The described work provides detailed and extensive insight into the structure and binding 

mechanism of VE-cadherin, which is the major cell-cell adhesion receptor found in adherens 

junctions in the vascular endothelium, where it plays a critical role in vascular angiogenesis 

and maintenance. The adhesive dimer of VE-cadherin was found to utilize the 3D domain 

swapping mechanism in common with other classical cadherins, however, the adhesive 

interface was shown to be unique to this particular cadherin as it shares features of adhesive 

interfaces observed for type I and type II cadherins and exhibiting remarkably strong binding 

affinities. However, the molecular mechanism underlying VE-cadherin assembly in adherens 

junctions remains elusive. Electron micrographs of artificial junctions between liposomes are 

different from those of type I cadherins, suggesting that the junction assembly of VE-cadherin 

and maybe other type II cadherins, too, is different from that reported for type I cadherins. 

Therefore, crystallization of full length ectodomains of VE-cadherin of different species will 

be attempted so that potential ectodomain-mediated interfaces involved in clustering at 

junctions can be determined. In parallel we will examine the organization of VE-cadherin in 

junctions formed between liposomes by electron microscopy tomography. Additionally, 

relevance of crystal contacts other than the adhesive dimer observed in the VE-cadherin EC1-

2 crystal structure will be tested by targeted mutagenesis studies.  

 

An experimental set up was designed for systematic binding studies with the aim to 

understand promiscuous adhesive binding inherent to classical type II cadherins. Based on 

results reported here, which confirm and extend previous cell aggregation data, it was 

possible to propose for the first time a binding code underlying the regulation type II 

cadherin-mediated cell-cell adhesion in the CNS. This binding code will be tested in future by 

extending these experiments to an overall binding matrix including the 13 known classical 

type II cadherins. Binding preferences for the cadherins tested can then be used to relate 

specificity to the small set of non-conserved residues in the adhesive domain EC1. It will be 

of great interest to identify the minimal set of residues responsible for adhesive specificity in 

these cadherins. 

 

For the first time we observed binding between a type I and type II classical cadherin, N- and 

VE-cadherin, which are co-expressed in the vasculature. Based on our findings, this 

interaction appears to be independent from the strand swap mechanism and likely to be a 
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lateral interaction. This novel interaction needs to be validated in future experiments. The 

complexes formed between VE- and N-cadherin can be tested for stability by size exclusion 

chromatography and then could be co-crystallized, which would provide detail on this novel 

interface on atomic level.  

 

Overall, this work provides an extensive study of structural and biophysical adhesive binding 

features of VE-cadherin and insight into the binding code of classical type II cadherins, which 

contributes to the understanding of the binding interface diversity and specificity in cadherin 

cell-cell adhesion. 
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11. Table of Figures 
 
Figure Description 
  

Figure 1 Schematic representation of the domain organization of various subfamilies of the 

superfamily of cadherins. 
Figure 2 Domain organization and structural architecture of classical cadherins.  
Figure 3 Molecular basis of classical cadherin adhesive binding. 
Figure 4 EC1 domains govern cadherin mediated adhesion in classical and desmosomal 

cadherins. 
Figure 5 The adhesive interface found in T-cadherin adopts an X-shaped conformation. 
Figure 6 Cadherins are the major cell adhesion protein in adherens junctions. 
Figure 7 VE-cadherin, the major adhesion molecule of the vascular endothelium, is proposed to 

form adhesive hexamers. 
Figure 8 Mammalian expressed and purified human and chicken VE-cadherin at concentrations 

of 1mg/mL examined by SDS-PAGE and stained with coomassie brilliant b lue. 
Figure 9 Schematic representation of alterations in N-linked glycosylation. 
Figure 10 Mammalian expressed VE-cadherin carries substantial quantities of N-linked 

glycosylation in contrast to type I E-cadherin. 
Figure 11 N-linked glycosylation sites in the VE-cadherin ectodomain. 
Figure 12 SDS-PAGE of purified VE-cadherin fragments of three different species. 
Figure 13 SDS PAGE of purified EC1-2 and EC1-3 fragments of classical type I and type II 

cadherin. 
Figure 14 SDS-PAGE of two domain C-terminally tagged wild type cadherins. 
Figure 15 Sedimentation equilibrium analytical ultracentrifugation experiments showing similar 

profiles of different VE-cadherin ectodomains. 
Figure 16 Comparison of elution profiles from analytical size exclusion experiments with human 

VE-cadherin EC1-5 (blue), double tryptophan mutant W2A W4A (green) and EC3-5 

(orange) at a concentration of 0.5mg/mL. 
Figure 17 Liposome aggregation by VE- and E-caderin ectodomains 

Figure 18 Electron micrographs of VE-cadherin on liposomes. 
Figure 19 AFM-imaging of full ectodomains of VE-cadherin deposited on poly-L-lysine mica 

reveals monomer and dimer forms. 
Figure 20 VE-cadherin behaves differently with and without complex N-linked glycosylation. 
Figure 21 Chicken VE-cadherin EC1-2 crystals. 
Figure 22 Diffraction pattern from chicken VE-cadherin EC1-2 crystal in space group P43 21 2 
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with unit cell dimensions of a=b=99.973, c=105.987 and a=b=c=90. 
Figure 23 Images of crystals of human and mouse chicken VE-cadherin EC1-2. 
Figure 24 Crystal structure of the EC1-2 domain of chicken VE-cadherin showing astrand 

swapped cadherin dimer. 
Figure 25 Chicken VE-cadherin calcium coordination and detailed view of interactionsin the 

strand swapped dimer. 
Figure 26 Comparison of the srand swapped dimer interface of VE-cadherin with those of type I 
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Figure 27 VE-cadherin uses a different set of residues for trans-dimerization than type II 

cadherins. 
Figure 28 Superposed a-carbon traces from crystal structures of VE-cadherin and type I and type 
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Figure 29 Molecular surface presentation of crystal contacts found in the crystallographic 

asymmetric unit of chicken VE-cadherin. 
Figure 30 Phylogenetic tree branch of strand swap cadherins on the basis domain EC1 adapted 

from Nollet (2000). 
Figure 31 Surface Plasmon Resonance experiments with cadherins. 
Figure 32 Stability of antibody captured VE-cadherin-FLAG and VE- and N-cadherin-C9 

surfaces. 
Figure 33 Analysis of N-cadherin-CYS in SPR binding experiments. 
Figure 34 Preparations for VE-cadherin SPR experiments. 
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