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1. Abstract 

 

The influenza virus hemagglutinin (HA) mediates viral entry into target cells. Newly 

synthesized HA is inactive and requires cleavage by host cell proteases to transit into an 

active form. Activation is indispensable for viral infectivity and the responsible proteases are 

targets for antiviral intervention. However, the identity of the HA-activating proteases is 

incompletely defined. Highly pathogenic avian influenza viruses are activated by ubiquitously 

expressed subtilisin-like proteases. In contrast, the proteases responsible for activation of 

human influenza viruses and low pathogenic avian influenza viruses are largely unknown, and 

type II transmembrane serine proteases (TTSPs) have recently been suggested as candidates. 

Interestingly, the highly pathogenic 1918 influenza virus, the causative agent of the Spanish 

influenza, and the closely related virus A/WSN/33 seems to have evolved special mechanisms 

to ensure HA activation: Both viruses employ their neuraminidase (NA) protein to ensure HA 

cleavage. The A/WSN/33 NA accomplishes HA cleavage by recruiting the preprotease 

plasminogen, while the mechanism underlying 1918 NA-driven cleavage of 1918 HA is 

unknown. The goal of the present study was to examine if 1918 NA, like A/WSN/33 NA 

facilitates HA cleavage by recruiting plasminogen, and to analyze the role of TTSPs in the 

activation of human influenza viruses.  

Binding studies revealed that A/WSN/33 NA but not 1918 NA recruited plasminogen and 

analysis of viral infectivity showed that A/WSN/33 NA was unable to functionally replace 

1918 NA. Thus, 1918 NA and A/WSN/33 NA evolved different mechanisms to facilitate HA 

activation. In addition, evidence was obtained that 1918 NA-dependent activation of 1918 HA 

is a cell line-dependent phenomenon, casting doubts on the relevance of this process for viral 

spread in the host. The analysis of the NA-independent activation of 1918 HA showed that 

TMPRSS2, a TTSP previously found to activate human influenza viruses, also activated the 

1918 HA and the related protein TMPRSS4 was newly identified as an HA-activating 

protease. The activation of HA by TTSPs was observed in transfected cells, raising the 

question whether endogenously expressed TTSPs also activate HA. Expression of TMPRSS2 

and TMPRSS4 was detected in the Caco-2 cell line and siRNA knock-down revealed that 

these proteases facilitated viral spread in Caco-2 cells in the absence of an exogenously added 

HA-activating protease. Finally, TMPRSS2 and α-2,6-linked sialic acid, the major receptor 

determinant for human influenza viruses, were found to be coexpressed on type II 

pneumocytes, major viral target cells. These results indicate that TMPRSS2 could support 

viral spread in the infected host and constitutes an attractive target for antiviral intervention.  
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2. Zusammenfassung 

 
Das Hämagglutinin (HA) von Influenza Viren vermittelt den viralen Eintritt in Zielzellen. Es 

wird als inaktive Form synthetisiert und durch Wirtszellproteasen in die aktive Form 

überführt. Die proteolytische Aktivierung von HA ist für die Infektiosität unverzichtbar, 

jedoch sind die HA-aktivierenden Proteasen nur teilweise bekannt. Hoch pathogene aviäre 

Influenza Viren werden durch Subtilisin-ähnliche Proteasen gespalten. Welche Proteasen 

humane und gering pathogene aviäre Influenza Viren aktivieren ist dagegen weitgehend 

unklar. Als mögliche Kandidaten-Proteasen für die Aktivierung dieser Viren wurden Typ II 

Transmembran-Serinproteasen (TTSP) vorgeschlagen und die Rolle dieser Proteasen in der 

Influenza Virus-Aktivierung sollte im Rahmen dieser Arbeit untersucht werden. Der Erreger 

der Spanischen Grippe, das hoch pathogene 1918 Influenza Virus, und das verwandte Virus 

A/WSN/33 scheinen einen speziellen Mechanismus zur Spaltung des HA entwickelt zu haben. 

Die Neuraminidase- (NA) Proteine beider Viren vermitteln die Spaltung von HA. Die NA des 

A/WSN/33 Virus vermittelt die Spaltung des HA durch die Bindung der Präprotease 

Plasminogen. Die Rolle von Plasminogen in der NA-abhängigen Spaltung des 1918 HA ist 

dagegen unbekannt und sollte im Rahmen dieser Arbeit geklärt werden. 

Bindungsstudien zeigten, dass die A/WSN/33 NA jedoch nicht die 1918 NA Plasminogen 

bindet. Eine Analyse der Infektiosität demonstrierte, dass die A/WSN/33 NA nicht die 

Funktion der 1918 NA ersetzen kann. Es ist daher wahrscheinlich, dass das 1918 Influenza 

Virus und A/WSN/33 Virus unterschiedliche Mechanismen zur NA-abhängigen HA-

Aktivierung entwickelt haben. Zusätzlich wurden Hinweise erbracht, dass die 1918 NA-

abhängige Aktivierung des 1918 HA Zelllinien-abhängig ist. Die Relevanz dieses Prozesses 

für die Virusvermehrung im Wirt ist daher unklar. Die Analyse der NA-unabhängigen 

Aktivierung des 1918 HA zeigte, dass die Serinprotease TMPRSS2 und TMPRSS4 das 1918 

HA in transfizierten Zellen aktivieren. Die Analyse der mRNA- und Protein-Expression von 

TMPRSS2 und TMPRSS4 zeigte, dass beide Proteasen in der Zelllinie Caco-2 exprimiert 

werden und siRNA knock-down Experimente demonstrierten, dass beide Proteasen die 

Virusvermehrung in diesen Zellen in der Abwesenheit einer exogen zugegebenen HA-

aktivierenden Protease ermöglichen. Schließlich konnte die Koexpression von TMPRSS2 und 

α-2,6-verknüpfter Sialinsäuren, einer wichtigen Rezeptordeterminante humaner Influenza 

Viren, in Typ II Pneumozyten, wichtigen viralen Zielzellen, nachgewiesen werden. Diese 

Ergebnisse zeigen, dass TMPRSS2 die Virusvermehrung im infizierten Wirt fördern könnte 

und somit ein attraktives Ziel für die antivirale Intervention darstellt. 
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3. Introduction 

 

Influenza is an infectious disease that affects birds and mammals such as humans, swine, 

horses and dogs. In humans, the influenza virus infections usually affect the lungs and 

airways whereas viral infections in birds can also occur in the gastrointestinal tract. The most 

common symptoms of the disease are chills, fever, muscle pains, severe headache, coughing, 

weakness and general discomfort [Modrow et al., 2003; Behrens et al., 2006]. The human 

influenza viruses are readily transmitted from person-to-person by inhaling droplets from the 

nose and throat of an infected person who is coughing and sneezing. Transmission may also 

occur through direct skin-to-skin contact or indirect contact with respiratory secretions 

(touching contaminated surfaces then touching the eyes, nose or mouth). Infected adults begin 

to shed influenza virus from up to two days before the onset of symptoms, and are infectious 

for three to five days after the initial signs of diesease. Young children can spread the virus 

for up to six days before, and for ten days after they become ill [Modrow et al., 2003; Behrens 

et al., 2006]. Influenza exhibits a low mortality rate and infections with human influenza 

viruses are rarely fatal in healthy individuals [Reid and Taubenberger, 2003; Taubenberger 

and Morens, 2008]. Infections are more severe in the elderly, young children, people with 

respiratory or cardiac disease, and those who are immunosuppressed [Behrens et al., 2006; 

Taubenberger and Morens, 2008]. Death is most commonly associated with development of 

pneumonia, which can be viral, bacterial or both. In viral pneumonia, the influenza virus 

spreads into the lower parts of the lung. In bacterial pneumonia, a secondary infection with 

bacteria (such as Streptococcus pneumoniae and Staphylococcus aureus) attacks the person’s 

weakened defences [Modrow et al., 2003; Behrens et al., 2006]. 

Influenza emerges as epidemic (seasonal) outbreaks in annual cycles, usually in the winter 

months in temperate climates, and as pandemic outbreaks caused by a new strain of influenza 

virus [Taubenberger and Morens, 2008; Taubenberger and Kash, 2010]. Up to 50% of the 

population can be infected in a single pandemic year and the number of deaths caused by 

influenza can dramatically exceed up to millions as seen for the Spanish influenza [Simonsen, 

1999; Taubenberger and Morens, 2008]. In the last 100 years four influenza pandemics 

occured: Spanish influenza in 1918, Asian influenza in 1957, Hong Kong influenza in 1968 

and Swine-origin influenza in 2009. Despite intensive research, it is difficult to predict the 

next outbreak: Where will it takes place? What will be the source of the virus? How virulent 

the virus will be? These are just some of the questions that arise concerning the future of 

influenza. 



3. Introduction                                                                                                                           8 

 

3.1 Epidemiology of influenza viruses 

 

Influenza poses a significant public health problem worldwide. Seasonal influenza epidemics 

occur in temperate regions every autumn and winter. These epidemics emerge from an 

accumulation of subtle mutations, mainly amino acid changes, in the viral surface 

glycoprotein hemagglutinin (HA), a process termed antigenic drift [Webster et al., 1992; 

Steinhauer, 1999; Fauci, 2006]. The annual epidemics result in about three to five million 

cases of severe illness and about 250.000 to 500.000 deaths worldwide [WHO, 2010a].  

In addition to seasonal epidemics, influenza pandemics unfold every 10 to 50 years and arise 

by the emergence of a new virus in an immunologically naïve human population. The 

antigenically new virus can result from the reorganization of genome segments (see also 

section 3.3.3 Genome structure) from two different influenza A viruses (reassortment) which 

co-infected one cell (antigenic shift). The influenza pandemics are usually associated with 

much higher mortality rates than seasonal epidemics and, thus, can generate catastrophic 

public health crises as exemplified by the pandemic of the year 1918 (see below Spanish 

influenza). 

The recognition of the first influenza pandemic goes back to the year 1510 A.D. and 14 more 

pandemics can be documented until now [Morens and Taubenberger, 2009; Morens et al., 

2010]. In the last century, three pandemics of influenza occurred: The “Spanish influenza” 

(1918), the “Asian influenza” (1957) and the “Hong Kong influenza” (1968). The 21st century 

has seen its first influenza pandemic with the “Swine-origin influenza” (2009).  

 

Spanish influenza (1918-1919) 

The Spanish influenza pandemic represents the most fatal event in human history, which 

killed an estimated 50 million people or more worldwide in 1918 and 1919 [Johnson and 

Mueller, 2002; Morens and Fauci, 2007; Morens and Taubenberger, 2009]. Usually, influenza 

associated morbidity and mortality is highest among young children, the elderly, and 

immunosuppressed individuals, but the majority of victims of the Spanish influenza were 

healthy young adults aged between 20 and 40 years, resulting in a W-shape of the age-specific 

mortality curve (Figure 1) [Glezen, 1996; Reid et al., 2001; Palese, 2004; Morens and Fauci, 

2007]. The explanation for this unexpected high influenza mortality in persons 20-40 years of 

age in 1918 is still an unsolved fact. Several suggestions were made to explain the high death 

rates: People of this age group did not have enough antibody protection against this H1 

subtype virus in 1918 because they had only contact with an H3 influenza virus circulating 
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around 20 years before the Spanish influenza pandemic [Morens and Fauci, 2007]. A vigorous 

immune response directed against the virus in healthy young people could have also caused 

severe disease in 1918. Additionally, it needs to be mentioned that in 1918 many severe cases 

of influenza disease featured both severe bronchopulmonary tissue damage and severe 

secondary bacterial infection. On the other hand, people older than 55 years showed lower 

mortality rates compared to other influenza pandemics because they may have had partial 

protection through contact to a related virus that was circulating before 1889 [Reid et al., 

2001; Palese, 2004].  

 

 
Figure 1: U- and W-shaped curve of combined influenza and pneumonia mortality. The graph shows the age at 

death with 100000 persons in each age group in the United States from 1911 to 1918. Influenza- and pneumonia-

specific death rates are plotted for the interpandemic years 1911-1917 (dashed line) and for the pandemic year 

1918 (solid line) [Figure was taken from Taubenberger and Morens, 2006]. 

 

In contrast to other pandemic influenza viruses, the Spanish influenza virus did not result 

from a reassortment event. Sequence analysis by Taubenberger and colleagues revealed that 

all genome segments of the 1918 influenza virus are more closely related to avian influenza 

viruses than to influenza viruses from other species [Taubenberger et al., 1997]. The HA gene 

segment of the virus in particular may be derived from an avian source which differs from 

those currently circulating [Reid et al., 1999]. It was also postulated that the virus, or some of 

its gene segments may have evolved in a so-far unidentified intermediate host before its 

introduction into the human population [Reid and Taubenberger, 2003; Taubenberger, 2006]. 

Taken together, the Spanish influenza was caused by a particular virulent virus, the origin of 

which has not been fully elucidated. 
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Asian influenza (1957-1958) 

The virus responsible for the Asian influenza emerged in Southeast Asia and, subsequently, 

spread all over the world. More than two million deaths were attributed to this pandemic 

outbreak [WHO, 2005]. As postulated for pandemic viruses, the virus responsible for the 

Asian influenza resulted from the reassortment of a human and an avian virus. Specifically, 

the gene segments encoding for the two surface glycoproteins, HA and neuraminidase (NA), 

of the human virus were replaced by the corresponding gene segments present in avian 

influenza virus strains. The gene segment encoding for the polymerase protein PB1 was also 

replaced by an avian-like gene segment [Scholtissek et al., 1978; Kawaoka et al., 1989]. 

 

Hong Kong influenza (1968-1969) 

The virus responsible for the Hong Kong influenza also emerged in South Asia. The 

pandemic outbreak of the Hong Kong influenza claimed around one million lives and was 

thus associated with lower mortality rate compared to the pandemic viruses of the years 1918 

and 1957 [WHO, 2005]. Like the Asian influenza virus, the Hong Kong influenza virus also 

resulted from a reassortment event between avian and human influenza viruses. The gene 

segments encoding for the HA and the PB1 polymerase of the human virus were exchanged 

with avian-like segments while the remaining six segments (see also section 3.3.3 Genome 

structure) were retained from the 1957 influenza virus [Scholtissek et al., 1978; Kawaoka et 

al., 1989]. It has been suggested that the modest mortality rate of the 1968 virus resulted from 

conservation of the NA gene and some protection of the population which had previously 

been exposed to the 1957 influenza virus [Kilbourne, 1997; Lipatov et al., 2004]. 

 

Swine-origin influenza (2009-2010) 

The virus responsible for the 2009 pandemic emerged in Mexico and California in early April 

2009 and then spread quickly around the world by human-to-human transmission [Dawood et 

al., 2009; Fraser et al., 2009; Scalera and Mossad, 2009]. As of May 16 2010, 214 countries 

had reported 18.097 deaths, out of approximately hundred millions of infections worldwide 

[WHO, 2010b]. The Robert-Koch Institute in Germany noted more then 220000 cases, 

including 250 deaths, of pandemic influenza until March 2010 [RKI, 2010]. A 

disproportionately high infection rate of children and young adults compared to older age 

groups was noted for the 2009 influenza virus. This age distribution could be explained by the 

older population being partially immune, since antibodies recognizing both the 1918 influenza 
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virus and the 2009 influenza virus were found only in the elderly [Garten et al., 2009; 

Rothberg and Haessler, 2010].  

The 2009 pandemic resulted from the reassortment of recent North American swine influenza 

viruses (triple reassortant of avian/human/swine viruses) with European avian-like swine 

viruses [Garten et al., 2009; Dunham et al., 2009]. These viruses possess the polymerase PB2 

and the polymerase acidic protein gene segments from the North American avian virus origin, 

a polymerase PB1 gene segment of human virus origin, HA, nucleoprotein, and non-structural 

protein gene segments of classical swine virus origin, and NA and matrix gene segments from 

the Eurasian avian-like swine virus origin [Smith et al., 2009; Dawood et al., 2009]. 
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3.2 Treatment and prevention of influenza 

 

For the treatment of influenza virus infections, two classes of antiviral drugs are available. 

The drugs target the viral entry into cells and release of progeny particles from infected cells.  

Amantadine and rimantadine block the matrix 2 (M2) ion channel and, thus, inhibit uncoating 

of the incoming virion in target cells [Hay et al., 1985; Merck, 2009]. These drugs are only 

effective against influenza A viruses because influenza B viruses lack the M2 ion channel. A 

further drawback of using amantadine and rimantadine is the rapid emergence of viral 

resistance against these agents [Monto and Arden, 1992; Merck, 2009]. 

In addition, a second class of antivirals exists, comprising oseltamivir and zanamivir, which 

inhibit the NA protein of the influenza virus. These agents interfere with the release of the 

influenza virus from infected cells and represent important tools for treating influenza A and 

B virus infection [Mendel et al., 1998; Colman, 1999; Merck, 2009].  

A study by Tumpey and colleagues showed that both classes of antivirals were effective 

against viruses carrying the reconstructed genes of the 1918 influenza virus [Tumpey et al., 

2002]. In contrast, the Swine-origin influenza virus of 2009 exhibits resistance to the M2 

protein inhibitors amantadine and rimantadine but is susceptible to the NA inhibitors 

oseltamivir and zanamivir [CDC, 2009]. 

Besides these agents, several experimental antiviral drugs that target the NA or polymerase 

proteins are now in different stages of development. The NA inhibitor peramivir is active in in 

vitro tests against viruses of all nine NA subtypes (see section 3.3.1 Aetiology and 

classification of influenza viruses) and resides now in phase II of clinical investigations [Babu 

et al., 2000; Boltz et al., 2008]. A pro-drug of the new NA inhibitor R-125489, named CS-

8958, is a long-acting neuraminidase inhibitor including oseltamivir-resistant viruses and was 

found to be effective in phase II clinical trials against seasonal influenza [Yamashita et al., 

2009; Kiso et al., 2010]. T-705 acts as a nucleoside analogue that interferes with polymerase 

activity of influenza A, B and C viruses, but also other RNA viruses [Furuta et al., 2002]. The 

phase II clinical trials against seasonal influenza have been completed, and phase III clinical 

trials are scheduled. 

Furthermore, monoclonal antibodies binding HA are being developed for the treatment of 

influenza virus infections. Some antibodies demonstrated prophylactic and therapeutic 

efficacy against a lethal challenge with the H5N1 virus in mice, suggesting monoclonal 

antibody treatment as an alternative strategy to treat influenza virus infections [Sui et al., 

2009]. 
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Vaccination can provide protection against seasonal influenza. However, in order to produce 

highly effective vaccines they must be adapted to the virus strains currently circulating for 

every influenza season. The annual vaccine contains two influenza A viruses and one 

influenza B virus of the most prevalent strains [Merck, 2009]. 

Two conventional types of vaccines are being used: the trivalent inactivated influenza vaccine 

(TIV) and the live-attenuated influenza vaccine (LAIV). The TIV represents the most recently 

licensed influenza vaccines with three major formulations available. All formulations of TIV 

primarily work through the generation of antibodies against the HA. The first preparations of 

TIV contained whole particles while more recent formulations comprised of split virions 

derived from whole viral particles disrupted by detergents. The third preparation contain a 

subunit form with enriched HA and NA content on the surface of viral particles, which are 

disrupted by detergent treatment [Ellebedy and Webby, 2009; Merck, 2009]. Problems 

associated with inactivated vaccines are the labour intensive production system, embryonated 

chicken eggs, and the long time interval between the selection of vaccine strains and the 

availability of the first vaccine doses [Gerdil, 2003; Fedson, 2005].  

In comparison to TIV, LAIV is produced by the introduction of the HA and the NA of the 

target strain into the backbone of an attenuated, cold-adapted virus [Maassab et al., 1990; 

Wareing and Tannock, 2001]. One advantage of live-attenuated vaccines is the fact that 

theoretically both a humoral and a cell-mediated immune response can be generated. However, 

the generation time of LAIV does not substantially differ from inactivated vaccines at present.  

These findings suggest that further work needs to be invested to develop new vaccines with 

shorter production times and higher efficacy against new emerging viruses. To increase the 

speed of vaccine preparation and delivery, the usage of reverse genetics can enable to design 

faster seed strains which represent the background for TIV and LAIV vaccines [Neumann et 

al., 1999; Hoffman et al., 2000]. The usage of adjuvants can also increase the protective 

response to influenza vaccines and, additionally, are suggested to expand the breadth of an 

immune response [Ellebedy and Webby, 2009]. 
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3.3 Biology of influenza viruses 

 

3.3.1 Aetiology and classification of influenza viruses 

 

Influenza viruses belong to the family of Orthomyxoviridae and carry a segmented single-

stranded RNA genome with negative polarity, which is embedded into a viral envelope 

derived from the host cell membrane [Palese and Shaw, 2007]. The family consists of five 

different genera: Influenza A virus, influenza B virus, influenza C virus, thogotovirus and 

isavirus [ICTV, 2009; Modrow et al., 2003].  

 

Influenza A virus 

Influenza A virus is the most severe representative of influenza viruses. It mutates much faster 

than influenza B viruses and is responsible for the pandemics. This influenza virus subgroup 

includes avian, swine, equine, and canine viruses, as well as the human influenza A viruses. 

Influenza A viruses are classified into subtypes based on their HA and NA proteins. A total 

number of 16 HA types (H1-H16) and nine NA types (N1-N9) can be distinguished. The 

subtypes that are found in humans are H1N1, H1N2 and H3N2. In addition to the division 

into subtypes, influenza A viruses are classified into strains that are named by their type (A, B 

or C), host, place of first isolation, number of strain (if available), year of subtype isolation, 

and antigenic subtype [Hay et al., 2001].  

 

Avian influenza viruses 

Avian influenza viruses are a genetically and antigenically diverse group of influenza A 

viruses and are found in a wide variety of domesticated and wild birds [Taubenberger and 

Morens, 2008; CDC, 2010]. The natural reservoirs of avian influenza viruses are aquatic birds 

of the orders Anseriformes (ducks, geese, swans, etc.) and Charadriiformes (gulls, terns, etc.). 

The virus replicates in the gastrointestinal or respiratory tracts of aquatic birds and domestic 

poultry, usually causing no or only mild disease. The virus causing this generally mild 

infection is termed low pathogenic avian influenza virus (LPAIV). In contrast, a mutation in 

the surface protein HA, making the virus more susceptible for activating proteases (see 

section Proteolytic activation by cellular proteases), renders the virus highly pathogenic (high 

pathogenic avian influenza virus (HPAIV)) that causes severe disease in the infected animal. 
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Influenza B Virus 

Influenza B virus causes less severe diseases than influenza A virus. It usually leads to 

epidemics but not to pandemics like influenza A virus. This genus almost exclusively infects 

humans but seals and ferrets are also susceptible to influenza B virus infection [Hay et al., 

2001; Osterhaus et al., 2000; Jakeman et al., 1994]. So far, just one subtype of influenza B 

virus has been described corresponding to a lower mutation rate and less diverse 

glycoproteins relative to influenza A virus. Usually, one influenza B strain is included in the 

annual vaccine formulation. 

 

Influenza C virus 

Influenza C virus is the rarest and most stable (slowest evolving) of the three species of 

influenza viruses. It usually causes mild illness and was until now never associated with large 

scale epidemics. However, a nationwide epidemic of influenza C virus was reported in Japan 

in 2004 [Matsuzaki et al., 2007]. Influenza C viruses mainly infect humans but have also been 

found in animals, like dogs and pigs [Youzbashi et al., 1996; Kimura et al., 1997]. In contrast 

to influenza A and B viruses, this genus carries seven genomic segments and harbours one 

surface glycoprotein, which combines the functions of HA and NA [Palese and Shaw, 2007].  

 

 

3.3.2 Viral particle 

 

The influenza viruses particle is approximately 120 nm in diameter and usually roughly 

spherically shaped, although filamentous virions have also been observed [Modrow et al., 

2003; Palese and Shaw, 2007; Bouvier and Palese, 2008]. Despite differences in morphology, 

the viral particles of all influenza viruses are similar in their composition. The virion is 

enveloped with a host cell-derived lipid membrane wrapping around a central core (Figure 2).  
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Figure 2: Influenza virus particle. The two major surface glycoproteins, homotrimers of HA and homotetramers 

of NA, and small amounts of the matrix 2 protein (M2) ion channel protein are embedded in the viral envelope. 

The matrix 1 protein (M1) protein underlies the envelope and interacts with surface proteins as well as with the 

viral ribonucleoproteins (vRNPs). The RNPs consist of eight negative-stranded RNA segments, nucleoproteins 

(NP) and the polymerase complex heterotrimer, consistent of the polymerase basic protein 1 (PB1), the 

polymerase basic protein 2 (PB2), and the polymerase acidic protein (PA). 

 

Three proteins are embedded in the viral envelope: the homotrimers of HA, the 

homotetramers of NA, and monomers of the ion channel protein M2. Influenza C viruses bear 

only one major glycoprotein on their surface, called hemagglutinin-esterase-fusion (HEF), 

and one minor envelope protein (CM2), a putative ion channel protein [Hongo et al., 2004; 

Palese and Shaw, 2007]. Beneath the membrane, the matrix 1 protein (M1) covers the inner 

leaflet of the lipid bilayer and interacts with the cytoplasmic domains of the surface 

glycoproteins HA and NA, as well as with the viral ribonucleoprotein (vRNP) complexes. 

Moreover, the nuclear export protein (NEP; also called non-structural protein 2, NS2) is 

associated with the matrix formed by M1 [Ye et al., 1999; Shimizu et al., 2011]. The virion 

core is located in the center of the viral particle and exhibits the RNP complexes. The RNPs 

consist of the eight (for influenza C viruses seven) negative-stranded RNA segments, which 

are covered by viral nucleoproteins (NP). Additionally, each genomic segment is associated 

with the three polymerase proteins: the polymerase basic protein 1 (PB1), the polymerase 

basic protein 2 (PB2), and the polymerase acidic protein (PA).  
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3.3.3 Genome structure 

 

The size of the genome of influenza viruses ranges from 12.9 kb (for influenza C viruses) to 

14.6 kb (for influenza B viruses) and consists of eight (or seven for influenza C viruses) 

negative-sense, single-stranded viral RNA (vRNA) segments, which encode at least nine (for 

influenza C viruses) or eleven (for influenza A and B viruses) open reading frames (ORFs). In 

influenza B and C viruses, the first five segments encode for one protein where as the 

remaining three or two segments code for two proteins. In contrast, the second and the two 

last segments of influenza A viruses encode for two proteins and the remaining five segments 

code for only one protein [Modrow et al., 2003; Taubenberger and Kash, 2010]. 

The 3’- and 5’-ends of each vRNA segment form helical hairpins and possess non-coding 

regions, which function as promoter for vRNA replication and transcription by the viral 

polymerase complex. These non-coding regions also include the mRNA polyadenylation 

signal and are part of the packaging signals for virus assembly. Furthermore, the helical 

hairpin structure of the 3’-end is bound by the heterotrimeric RNA polymerase complex and 

the remaining single-stranded vRNA is associated with arginine-rich NP [Compans et al., 

1972; Murti et al., 1988; Modrow et al., 2003].   

 

 

3.3.4 Replication cycle 

 

The first step of the influenza virus life cycle constitutes the HA-mediated (or HEF-mediated 

for influenza C viruses) binding of the viral particle to its receptor, sialic acid (SA) on 

glycoproteins or glycolipids, expressed on the host cell surface (Figure 4) [Modrow et al., 

2003; Bouvier and Palese, 2008; Taubenberger and Kash, 2010]. After receptor binding, the 

viral particle is internalized by endocytosis [Lakadamyali et al., 2004]. The acidic 

environment of the endosomal compartment triggers a conformational change in the HA, 

during which a fusion peptide is inserted into the endosomal membrane and both viral and 

endosomal membrane are pulled into close contact and ultimately fused. As a result, the 

vRNPs are released into the host cell cytoplasm (Figure 4) [Stegmann, 2000; Sieczkarski and 

Whittaker, 2005]. Accordingly, hydrogen ions from the endosome are pumped into the virus 

particle via the M2 ion channel. The internal acidification of the viral particle then disrupts 

the protein-protein interactions between NP- and M1-proteins, allowing vRNPs to be released 

from the viral matrix into the cellular cytoplasm [Martin and Helenius, 1991].  
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After the vRNPs enter the cytoplasm, they are directly transported to the host cell nucleus due 

to nuclear localization signal of the M1 proteins [Ye et al., 1995; Cros and Palese, 2003]. 

Inside the nucleus, the viral RNA-dependent RNA polymerase (PB1) uses the negative-sense 

vRNA as a template to synthesize two positive-sense RNA species: mRNA templates for viral 

protein synthesis and complementary RNA (cRNA) intermediates from which the RNA 

polymerase subsequently transcribes more copies of negative-sense, genomic vRNA. For 

capping of the vRNA, PB1 and PB2 proteins exploit the 5’-capped primers from host pre-

mRNA transcripts and connect them to the 3’-end of the viral RNA segment thereby allowing 

the initiation of viral mRNA synthesis to occur (Figure 4). This cap-steeling mechanism is 

called “cap snatching” [Krug, 1981; Modrow et al., 2003]. The mRNAs of viral origin are 

exported and translated like host mRNAs, whereas the export of vRNAs is mediated by the 

viral proteins M1 and NEP/NS2 [Cros and Palese, 2003].  

The translation of the envelope proteins HA (or HEF), NA and M2 occurs on membrane-

bound ribosomes accompanied by co-translational translocation into the endoplasmic 

reticulum, where the proteins are folded, glycosylated (only HA and NA) and trafficked to the 

Golgi apparatus for post-translational modification (Figure 4). Golgi vesicles released from 

the Golgi apparatus direct the envelope proteins to the cell membrane for virion assembly 

[Modrow et al., 2003]. 

All remaining viral proteins (PB1, PB2, PA, NP, NS1, NS2/NEP and M1) are transported 

back to the host cell nucleus where the NP, PB1, PB2 and PA proteins associate with newly 

synthesized vRNAs producing new vRNPs (Figure 4). Afterwards, the nucleocapsids are 

covered with the M1 proteins, exported into the cytoplasm through the function of NS2/NEP 

proteins and transported to subdomains of the plasma membrane containing increased 

amounts of envelope proteins (HA or HEF, NA and M2).  

Virus budding is initiated at the cell membrane by an accumulation of M1 proteins at the 

cytoplasmic side of the lipid bilayer. During this initial budding structure, the vRNPs are 

associated with the M1 proteins and bind to the cytoplasmic domain of the surface proteins. 

Subsequently, the cellular membrane protrudes and covers the nucleocapsids, which are 

released as progeny virions through budding (Figure 4). The interaction of HA with its 

receptor, sialid acid, is abrogated by the activity of the NA protein and viral particles can be 

released from the host cell.  
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Figure 3: Replication cycle of influenza viruses. The first step of the influenza virus life cycle constitutes the 

HA-mediated binding of the viral particle to SA expressed on the host cell surface. After receptor binding, the 

viral particle is internalized by endocytosis. The acidic environment of the endosomal compartment triggers a 

conformational change in the HA, which induces the fusion between the viral and the endosomal membrane. As 

a result, the vRNPs are released into the host cell cytoplasm and were directly transported to the host cell nucleus. 

Inside the nucleus two positive-sense RNA species are synthesized: mRNA templates for viral protein synthesis 

and complementary RNA (cRNA) intermediates from which more copies of negative-sense, genomic vRNA are 

transcribed. For capping of the vRNA, the 5’-capped primers from host pre-mRNA transcripts are connected to 

the 3’-end of the viral RNA segment thereby allowing the initiation of viral mRNA synthesis to occur (cap 
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snatching). The mRNAs of viral origin are exported and translated like host mRNAs. The translation of the 

envelope proteins occur on membrane-bound ribosomes of the endoplasmatic reticulum, where the proteins are 

folded, glycosylated and trafficked to the Golgi apparatus for post-translational modification. Golgi vesicles 

released from the Golgi apparatus direct the envelope proteins to the cell membrane for virion assembly. All 

remaining viral proteins are transported back to the host cell nucleus and associate with newly synthesized 

vRNAs. Afterwards, the nucleocapsids are covered with the M1 proteins, exported into the cytoplasm, and 

transported to the plasma membrane containing increased amounts of envelope proteins. During budding, the 

vRNPs are surrounded by the cellular membrane and progeny virions are released [Figure was adapted from 

Modrow et al., 2003]. 

 

 

3.3.5 Viral entry 

 

The viral HA binds to sialic acids (SA) on glycoproteins or glycolipids, which triggers 

endosomal uptake of the viral particle [Lakadamyali et al., 2004]. The acidic environment of 

the endosomal compartment prompts a conformational change in the HA which encompasses 

the insertion of a fusion peptide into the endosomal membrane and ultimately results in the 

fusion of the viral envelope with the endosomal membrane. As a result of membrane fusion, 

the vRNPs are released into the host cell cytoplasm [Modrow et al., 2003; Bouvier and Palese, 

2008; Taubenberger and Kash, 2010]. 

 

Hemagglutinin 

The HA is a type I transmembrane fusion protein, which contains an N-terminal signal 

sequence (removed post-translationally), a surface unit, HA1, which binds the receptor, a 

transmembrane unit, HA2, which mediates fusion with the target cell membrane, and a short 

cytoplasmic tail (Figure 4) [Steinhauer, 1999; Bouvier and Palese, 2008; Harrison, 2008]. The 

HA also belongs to the group of class I fusion proteins, which exhibit an N-terminal or N-

proximal fusion peptide and heptad repeat (HR) regions. In contrast, class II fusion proteins 

(e.g., the alphavirus E1 and the flavivirus E fusion proteins) lack HR regions and have an 

internal fusion peptide [Bosch et al., 2003; Kielian and Rey, 2006]. Like influenza virus HA, 

several other viral glycoproteins (GP) are members of the class I fusion proteins: the HIV-1 

gp160 protein, the Ebola virus GP protein, the SARS-CoV spike protein, and the Simian virus 

5 F protein [Kielian and Rey, 2006]. 
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A     B  

Figure 4: Structural rearrangements of influenza virus HA associated with the cleavage by host cell proteases. 

The HA of influenza viruses is produced as an precursor protein, HA0, in the infected cell and to obtain its 

complete fusion potential the HA0 needs to be cleaved by host cell proteases. Influenza viruses differ in their 

cleavage site sequence: HPAIVs harbour a polybasic cleavage site of multiple arginines and/or lysines whereas 

LPAIVs and human influenza viruses exhibit a monobasic cleavage of a single arginine (Arg 344 in purple in 

case of the 1918 influenza virus). The activating proteases recognize a cleavage site in the HA1-HA2 connecting 

sequence and expose the fusion peptide (green). The two subunits HA1 (red) and HA2 (blue) are still covalently 

linked by a single disulfide bond (yellow). (A) Schematic scheme of the HA cleavage. (B) Structural changes 

associated with the cleavage of the 1918 influenza virus HA (A/South Carolina/1/18 (H1N1); Accession No: 

ADD17229, HA0 (1RD8.pdb), HA1+HA2 (1RUZ.pdb)) [Figure was taken from Bertram et al., 2010]. 

 

The HA is synthesized as an inactive precursor protein (HA0) that associates with chaperones 

to homotrimers in the endoplasmic reticulum and is transferred through the Golgi apparatus 

[Skehel and Wiley, 2000]. Furthermore, during the transport through the secretory pathway, 

the envelope protein is modified by the addition of glycans and the linkage of fatty acids 

(palmitoylation) [Modrow et al., 2003]. After post-translational modification in the Golgi 

apparatus, the HA is transported to the host cell membrane. Membrane regions with high 

amounts of envelope proteins (including HA and NA) serve as budding areas for newly 

produced nucleocapsids. Interactions of M1 with M1, M1 with vRNP, and M1 with HA and 

NA facilitate concentration of viral components and exclusion of host proteins from the 

budding site. The M1 protein interacts with the cytoplasmic tail and transmembrane domain 

of HA and NA and thereby functions as a bridge between the viral envelope and vRNP. To 

complete the budding process, the receptor-destroying activity of NA is needed which allows 

the release of virus particles from SA residues on the cell surface [Ali et al., 2000; Nayak et 

al., 2004; 2009]. 

For maturation of HA, it needs to be post-translationally cleaved by host cell proteases where 

the cleavage site sequence determines the pathogenicity of avian influenza viruses (see 
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section 3.3.6 Proteolytic activation of the hemagglutinin) [Klenk and Garten, 1994; 

Steinhauer, 1999; Choi et al., 2009; Bertram et al., 2010]. Cleavage of HA0 generates mature 

HA1 and HA2, which are covalently linked by a disulfide bond (Figure 4). After proteolytic 

cleavage, the remaining amino acid residue (arginine or lysine) on the C-terminus of the 

progeny HA1 is removed. The cleavage of HA is indispensable for viral infectivity and also 

liberates the fusion peptide (FP), which is present at the N-terminus of HA2 and is necessary 

for membrane fusion. 

 

Receptor 

The influenza virus HA binds SA (N-acetylneuraminic acid) on the host cell surface. Sialic 

acids are monosaccharides with a nine-carbon backbone, usually found on terminal sugar 

residues (galactose) of surface glycoproteins and glycolipids. Expression of SA is found 

widely distributed in different animal tissues and to a lesser extent in other species ranging 

from plants and fungi to yeast and bacteria [Varki and Schauer, 2009]. 

Sialic acids and galactose can be linked by α-2,3- or a α-2,6-glycosydic bond [Skehel and 

Wiley, 2000; Harrison, 2008; Nicholls et al., 2008]. Human influenza viruses bind to α-2,6-

SA while avian influenza viruses recognize the α-2,3-SA [Rogers and D’Souza, 1989; Connor 

et al., 1994; Matrosovich et al., 1997; Ito et al., 1998; Taubenberger, 2006]. The expression of 

α-2,3- and α-2,6-linked SA correlates with the viral cell tropism: In humans, α-2,6-linked SA 

is highly expressed in the lung epithelium and influenza is a respiratory infection [Baum and 

Paulson, 1990; Skehel and Wiley, 2000], while high levels of α-2,3-linked SA are found in 

the intestinal epithelium of waterfowl [Ito et al., 1998; Causey and Edwards, 2008], the 

natural reservoir of influenza viruses [Webster et al., 1992], and in these animals influenza is 

an enteric infection [Skehel and Wiley, 2000]. In contrast to water birds, poultry exhibit a 

higher concentration of α-2,3-linked SA in the lungs and only low concentrations of α-2,3-

linked SA in the colon [Kim et al., 2005]. 

Based on these receptor expressions being restricted to a specific host, one could assume that 

the viral replication only occurs in the appropriate host (avian viruses replicate in birds and 

human viruses replicate in humans). But the past showed that the correlation between 

specificity for α-2,3- or α-2,6-SA and influenza virus species tropism is not absolute: Avian 

influenza viruses can infect humans, although with reduced efficiency compared to human 

viruses [Beare and Webster, 1991]. The ability of avian viruses to replicate in humans is in 

agreement with the finding that SA in α-2,3-linkage is also expressed in human lung 

[Matrosovich et al., 2004], but to a much lesser extent than SA in α-2,6-linkage and 
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predominately in the lower respiratory tract. Since the lower respiratory tract is not as 

accessible to airborne viruses as the upper respiratory tract, human-to-human transmission of 

avian viruses is usually inefficient or absent. However, once avian viruses have reached the 

lower respiratory tract, viral spread is efficient and can result in severe and rapidly 

progressive pneumonia [Gambotto et al., 2008]. In 2003, a human-to-human transmission of 

an H7N7 avian influenza virus was detected during a large outbreak in commercially poultry 

farms in the Netherlands [Koopmans et al., 2004]. 

 

Membrane fusion 

Upon transport of influenza virus into host cell endosomes, the low endosomal pH triggers the 

membrane fusion activity of HA2. Lipid mixing of the viral and the endosomal membrane 

allows the formation of a fusion pore through which the vRNPs are released into the host cell 

cytoplasm. The FP in HA2 plays an essential role in membrane fusion: The FP is located at 

the N-terminus of HA2, which is liberated from HA1 upon HA cleavage by host cell 

proteases. Cleavage of the HA induces minor local rearrangements, in the course of which the 

newly generated N-terminus of HA2, and thus the FP, inserts into a pocket [Skehel and Wiley, 

2000; Floyd et al., 2008; Harrison, 2008]. Upon exposure of cleaved HA to endosomal pH 

(pH 5 to 6), HA undergoes large-scale conformational rearrangements: The FP is released 

from its pocket and inserts into the endosomal membrane and an extended intermediate is 

formed (Figure 5). At this stage, HA2 is inserted into both the endosomal membrane (via the 

FP) and the viral membrane (via the transmembrane domain) whereas HA1 remains flexibly 

tethered to the corresponding HA2 by a disulfide-bond (Figure 5).  

 

 

 
Figure 5: Schematic course of membrane fusion mediated by influenza virus HA. (A) In the prefusion state, the 

HA protein, anchored in the viral membrane by a C-terminal transmembrane domain, folds so that the fusion 

peptide (green) is sequestered. (B) The proton-binding induces a conformational change in which the fusion 

peptide projects toward the target membrane forming an extended intermediate that bridges the two membranes. 

(C) The intermediate collapses by zipping up of the C-terminal part of the ectodomain (dark blue) alongside the 
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trimer-clustered N-terminal part (red). (D) The collapse pulls the two membranes together leading to formation 

of a hemifusion stalk. (E) A fusion pore opens up and snapping into the place of the membrane-proximal and 

transmembrane segments of the HA completes the conformational transition and stabilizes the fusion pore 

[Figure was taken from Floyd et al., 2008; Harisson, 2008]. 

 

Subsequently, two domains in HA2, the FP and the transmembrane anchor, fold back onto 

each other and the extended intermediate collapses. As a consequence of the back-folding 

reaction, the viral and the host cell membrane are pulled into close contact and the HA2 

transits into an intermediate conformation, termed hemifusion stalk, in which lipid mixing but 

no content mixing occurs (Figure 5). Finally, the HA2 acquires a stable post-fusion 

conformation, in which the N- and C-terminal segments of the ectodomain of HA2 are tightly 

packed onto each other and which is associated with opening and/or stabilization of the fusion 

pore. 

 

 

3.3.6 Proteolytic activation of the hemagglutinin 

 

The HA of influenza viruses mediates vial attachment and fusion with the host cells. To 

acquire its membrane fusion potential, the precursor protein HA0 needs to be cleaved by host 

cell proteases [Klenk and Garten, 1994; Garten and Klenk, 1999; Steinhauer, 1999]. The 

proteolytic cleavage of HA0 separates the two subunits HA1 and HA2, which remains 

covalently connected by a disulfide bond and exposes the FP in HA2, which is essential for 

membrane fusion (Figure 5). The cleavage site sequences determine which type of cellular 

protease can activate HA and, in turn, the tissue distribution of these proteases determines 

influenza virus pathogenicity, as discussed below. 

 

Role of hemagglutinin cleavage in pathogenicity 

Influenza virus pathogenicity is multigenic including different viral genes and the 

determinants of pathogenicity may differ between hosts. Several viral proteins were identified 

which impact influenza virus pathogenicity, including the polymerase subunits, NA and HA 

[Almond, 1977; Webster and Bean, 1978; Oxford et al., 1978; Scholtissek et al., 1985; 

Snyder et al., 1987; Treanor et al., 1989; Wasilenko et al., 2009; Ping et al., 2010; Imai et al., 

2010]. The major determinant of viral pathogenicity in HA is the cleavage site and in the 

following we will discuss on how HA activation by host cell proteases determines the ability 

of influenza viruses to spread and cause disease [Horimoto and Kawaoka, 1994]. 
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For avian influenza viruses, a strict correlation between cleavage site and pathogenicity has 

been established: Low pathogenic avian influenza viruses (LPAIV) contain a monobasic 

cleavage site consisting of one single arginine or lysine. Monobasic cleavage sites are 

believed to be recognized by certain trypsin-like proteases exclusively expressed in the 

gastrointestinal tract of waterfowl and in the respiratory and gastrointestinal tract of poultry 

[Garten and Klenk, 1999; Klenk and Garten, 1994]. Therefore, viral replication is restricted to 

these compartments and is associated with only mild symptoms. In contrast, highly 

pathogenic avian influenza viruses (HPAIV) possess a polybasic cleavage site which harbours 

several arginine or lysine residues with R-X-R/K-R as a consensus motif [Bosch et al., 1981; 

Perdue et al., 1997; Webster and Rott, 1987]. Some HPAIV do not contain a polybasic 

cleavage site, but instead lack a carbohydrate side chain or several amino acids close to the 

cleavage site and these alterations increase cleavability [Kawaoka et al., 1984; Deshpande et 

al., 1987; Ohuchi et al., 1989; 1991; Skehel and Wiley, 2000]. The polybasic cleavage site of 

HPAIV is recognized by eukaryotic subtilisin-like proteases, particularly furin, which are 

ubiquitously expressed and thus allow systemic viral spread which is associated with severe 

disease in the avian host [Stieneke-Gröber et al., 1992; Thomas, 2002].  

Given the correlation between cleavability and pathogenicity of avian influenza viruses, one 

would expect that the same holds true for human influenza viruses. However, none of the 

pandemic viruses contained a polybasic cleavage site including the highly pathogenic 1918 

influenza virus and it is unclear which proteases activate human influenza viruses. Therefore, 

the potential implications of the cleavage site for pathogenicitiy of human viruses are unclear 

and the identification of the proteases responsible for activation of human viruses should shed 

light onto this matter. 

 

Different host cell proteases are involved in the cleavage of influenza viruses 

Different host cell proteases can activate the HA of influenza viruses in different cellular 

compartments and at different stages of the viral life cycle (Figure 7) [Klenk and Garten, 1994; 

Steinhauer, 1999; Bertram et al., 2010]. Cleavage can be mediated by soluble and by 

transmembrane proteases. Some of these enzymes are also required for activation of other 

viral and non-viral pathogens, as discussed below.  
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Figure 7: Activation of the influenza virus HA by different proteases. The influenza virus HA binds to α-2,3-

linked (avian viruses) or α-2,6-linked (human viruses) sialic acids presented by glycoproteins or -lipids on the 

host cell surface. During endocytosis of the viral particle, protons are pumped in the virions to trigger the 

membrane fusion between the viral and the endosomal membrane. After fusion, the viral ribonucleoproteins are 

released in the cytoplasm and transported to the nucleus where the genomic and viral RNAs are synthesized. The 

viral membrane proteins are synthesized in the secretory pathway of infected cells. The HA of HPAIVs are 

cleaved in the Golgi apparatus by subtilisin-like proteases, as furin or PC5/6, and the cleaved HA is incorporated 

into the progeny virions. The HA of human influenza viruses or LPAIVs can be incorporated in a uncleaved 

form into progeny particles and the cleavage could occur by, at the moment unknown, serine proteases in the 

endosomal compartment of the newly infected cell. The unprocessed HA of human influenza viruses and 

LPAIVs could be cleaved by soluble proteases in the extracellular compartment by tryptase clara, plasmin and 

mini-plasmin. Alternatively, the HA could be also processed by the TTSPs TMPRSS2, TMPRSS4 and HAT in 

the route to the cell membrane (for TMPRSS2) or at the cell surface during insertion into the cellular membrane 
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(for HAT). The cellular locations for HA cleavage by TMPRSS4 is at present unclear [Figure was taken from 

Bertram et al., 2010]. 

 

Subtilisin-like proteases 

Highly pathogenic avian influenza viruses are activated by subtilisin-like proteases in the 

trans-Golgi network (TGN) of productively infected cells. These proteases are ubiquitously 

expressed and thus allow systemic infection resulting in severe disease. Two members of the 

protein family, named furin and PC5/6 (pro-protein convertase 5/6), were identified to 

activate the influenza virus HA by cleavage [Remacle et al., 2008]. 

The endoprotease furin is the product of the fur gene, which is located upstream of the c-

fes/fps proto-oncogene [Roebroek et al., 1986]. It is responsible for the processing of several 

cellular pro-proteins (like proalbumin and insulin pro-receptor) in the secretory pathway 

[Nakayama, 1997] and plays a key role in embryonic development [Thomas, 2002]. In 

addition, furin activates several viral fusion proteins, including the spike protein of several 

mouse hepatitis coronavirus (MHV) strains and of human immunodeficiency virus 

[Hallenberger et al., 1992; de Haan et al., 2004]. Furin is mainly expressed in the Golgi 

apparatus, but is also found at the cell surfaces [Nakayama, 1997; Thomas, 2002]. The furin 

consensus sequence is R-X-K/R-R. The HA cleavage site of HPAIV comprises this sequence 

[Molloy et al., 1992] and Stieneke-Gröber and colleagues identified furin as the cellular factor 

responsible for activation of HPAIV (Figure 7) [Stieneke-Gröber et al., 1992]. Peptides 

spanning the consensus sequence and non-peptidic furin inhibitors were shown to suppress 

spread of HIV and influenza virus [Stieneke-Gröber et al., 1992; Hallenberger et al., 1992]. 

Furin also activates several bacterial toxins, including anthrax toxin and diphtheria toxin 

[Klimpel et al., 1992; Molloy et al., 1992; Tsuneoka et al., 1993]. Another member of the 

subtilisin-like protein family, PC5/6, can also activate the HAs of HPAIV and, as shown for 

furin, activation occurs in the TGN [Horimoto et al., 1994]. In summary, furin and to a lesser 

degree PC5/6 constitutes a therapeutic target in clinically important viral and bacterial 

diseases. 

 

Extracellular and endosomal trypsin-like proteases 

Low pathogenic avian influenza viruses and human influenza viruses bear a monobasic 

cleavage site and are believed to be cleaved extracellularly by various trypsin-like proteases 

(Figure 6). Consequently, uncleaved HA is incorporated into progeny viral particles 

[Lazarowitz et al., 1971; Compans, 1973], at least in some cellular systems, and addition of 

trypsin, plasmin or related proteases to the culture medium strongly increases the infectivity 
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of these viruses [Appleyard and Maber, 1974; Lazarowitz and Choppin, 1975; Klenk et al., 

1975; 1977].  

For instance, an HA-activating protease was isolated from chicken embryos, which are used 

as experimentally hosts for influenza virus amplification in the laboratory [Gotoh et al., 1990]. 

The protease was found to be similar to the blood clotting factor X, a member of the pro-

thrombin family, and localized to tissues in direct contact with allantoic and amniotic fluids, 

in which virus growth was detected [Ogasawara et al., 1992]. Also Sendai virus and non-

pathogenic Newcastle disease viruses as well as paramyxoviruses were activated by the 

isolated factor X-like protease [Gotoh et al., 1990; Ogasawara et al., 1992]. However, the 

contribution of the factor X-like protease to influenza virus spread in chicken embryos is 

unknown. 

Proteases potentially responsible for cleavage activation of mammalian influenza viruses were 

isolated from various animal tissues, including rat lungs. Examples for these enzymes are 

tryptase Clara, which is produced by bronchial epithelial Clara cells, mini-plasmin, which is 

generated in epithelial cells of the upward divisions of bronchioles and ectopic anionic trypsin 

I, which is located in the stromal cells in peri-bronchiolar regions [Kido et al., 1992; 

Murakami et al., 2001; Towatari et al., 2002]. The distinct expression patterns of theses 

proteases suggest that different enzymes might activate influenza viruses in different sections 

of the respiratory tract [Kido et al., 1992; Ogasawara et al., 1992; Murakami et al., 2001; 

Towatari et al., 2002], although evidence for a role of these proteases in influenza virus 

spread in vivo remains to be established. Finally, the efficiency of HA activation by soluble 

proteases might be modulated by naturally occurring inhibitors of these enzymes, like 

secretory leukoprotease inhibitor and pulmonary surfactant, which were both shown to inhibit 

viral replication in vitro and in vivo [Kido et al., 2007]. 

Development of severe disease upon influenza virus infection is often due to a bacterial 

superinfection [Scheiblauer et al., 1992; Kuiken and Taubenberger, 2008]. Interestingly, 

certain bacteria, including Staphylococcus aureus and Aerococcus viridans, were shown to 

secrete influenza virus activating proteases and to exacerbate disease in influenza virus 

infected mice [Tashiro et al., 1987a; 1987b]. Whether a similar mechanism – augmentation of 

viral spread due to expression of HA-activating proteases by bacterial pathogens – is 

operational in humans is at present unknown. In summary, several soluble trypsin-like 

proteases can activate influenza viruses. However, for most of these enzymes (with the 

exception of bacterial proteases) an important role in influenza virus spread in the host 

remains to be established. 
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Proteolytic activation of HA mediated by NA 

Two influenza viruses rely on their NA protein to accomplish efficient proteolytic activation 

of HA: The laboratory strain A/WSN/33 (H1N1) and the 1918 influenza virus (H1N1). The 

A/WSN/33 was obtained by extensive passaging of the parental virus, WS/33, in different 

animals and exhibits a broadened tropism, in particular neurotropism, relative to the parental 

virus. In contrast to other human influenza viruses, A/WSN/33 replicates in cultured cells in 

the absence of exogenous trypsin [Choppin, 1969; Castrucci and Kawaoka, 1993] and 

Lazarowitz and colleagues found that serum plasminogen was essential for trypsin-

independent replication [Lazarowitz et al., 1973]. Genetic analyses by Schulman and Palese 

indicated that the A/WSN/33 NA was critical for HA cleavage-activation [Schulman and 

Palese, 1977] with adequate NA glycosylation being important for neurovirulence [Li et al., 

1993]. Goto and Kawaoka connected the above discussed observations by demonstrating that 

A/WSN/33 NA binds plasminogen, which upon conversion to plasmin, activates HA (Figure 

6) [Goto and Kawaoka, 1998]. Amino acids N146 (N2 numbering), which should miss a 

oligosaccharide side chain [Goto and Kawaoka, 1998] and residue L453, which is conserved 

among the NAs of the N1 subtype [Goto et al., 2001], were found to be essential for 

plasminogen recruitment by NA.  

 

 
Figure 6: Schematic representation of plasminogen-mediated HA cleavage. Plasminogen binds to a lysine at the 

C-terminus of A/WSN/33 NA. Bound plasminogen is activated to plasmin by plasminogen activator (most likely 

of cellular origin). The enzymatically active plasmin then cleaves HA0 into HA1 and HA2 subunits [Figure 

adapted from Goto and Kawaoka, 1998]. 

 

The 1918 influenza virus replicated in the dog kidney cell line (MDCK) with high efficiency 

in the absence of trypsin and trypsin-independent spread was dependent on the presence of the 

1918 NA [Tumpey et al., 2005]. Analysis of 1918 NA revealed the presence of the L453 

crucial for plasminogen binding, but also showed the presence of the glycosylation signal 
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incompatible with plasminogen recruitment by A/WSN/33 [Reid et al., 2000]. These 

observations indicate that the 1918 NA, like the A/WSN/33 NA, might facilitates HA 

cleavage by recruiting a protease, which might not be identical to plasminogen. Alternatively, 

the 1918 NA might bind a factor which promotes plasminogen conversion into plasmin, like 

annexin II, which was shown to be incorporated into influenza virus particles and to support 

viral replication by activating plasminogen in an NA-independent manner [LeBouder et al., 

2008; 2010]. 

 

Type II transmembrane serine proteases (TTSPs) 

A study conducted with primary human adenoid epithelial cells (HAECs), which model the 

upper respiratory tract of humans, demonstrated that activation of human influenza viruses 

was cell-associated and mediated by a serine protease [Zhirnov et al., 2002]. These results 

suggest that proteolytic activation of human influenza viruses and potentially also LPAIV 

might be accomplished by unknown serine proteases. 

A seminal study by Böttcher and colleagues revealed that type II transmembrane serine 

proteases (TTSPs) might be the elusive proteases responsible for activation of human 

influenza viruses and LPAIV (Figure 7). They could show that TMPRSS2 (transmembrane 

serine protease 2) and HAT (human airway trypsin-like protease) cleavage-activate the HA of 

all influenza subtypes (H1, H2, H3) which were previously pandemic in humans [Böttcher et 

al., 2006]. These findings were confirmed by Wang and colleagues [Wang et al., 2008] and a 

recent study identified two further TTSPs, MSPL (mosaic serine protease large form) and its 

splice variant TMPRSS13 as activating enzymes for HPAIV with a low efficiency recognition 

site for furin [Okumura et al., 2010]. Notably, other enveloped viruses are also activated by 

TTSPs. Thus, the human metapneumovirus (HMPV), a paramyxovirus, is activated by 

TMPRSS2 to allow multiplicative replication in target cells constitutively expressing the 

serine protease [Shirogane et al., 2008] and TMPRSS2 also activates the SARS-CoV spike 

protein for virus-cell and cell-cell fusion [Matsuyama et al., 2010; Shulla et al., 2011]. Finally, 

TMPRSS11a, another TTSP, enhances SARS-CoV entry into human bronchial epithelial cells 

[Kam et al., 2009]. 

The TTSPs are an emerging family of proteases with important functions in embryonic 

development and tissue homeostasis. Furthermore, dysregulated expression of these proteases 

is involved in several diseases, including cancer. The TTSPs exhibit a characteristic domain 

organization: a short intracellular N-terminus, a transmembrane domain and a large 

extracellular C-terminus (Figure 8). The C-terminus consists of several protein domains and 
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their arrangement allows the division of TTSPs into four subfamilies: the matriptase 

subfamily, the corin subfamily, the hepsin/TMPRSS subfamily comprising e.g. TMPRSS2 

and MSPL, and the HAT/DESC subfamily comprising e.g. HAT and TMPRSS11a [Szabo et 

al., 2003; Szabo and Bugge, 2008; Choi et al., 2009; Bertram et al., 2010].  

 

 
Figure 8: Domain organization of human TTSPs. The human TTSPs are grouped into four subfamilies based on 

the similarity in domain structure and phylogenetic analysis of the serine protease domains: the matriptase, the 

corin, the hespin/TMPRSS and the HAT/DESC subfamilies. Each diagram was drawn using the web-based 

SMART software (http://smart.embl-heidelberg.de) with the TTSP amino acid sequences obtained from 

GenBank. Letters H, D and S in the serine protease domain (active) indicate the position of the three catalytic 

residues histidine, aspartate and serine, respectively. Letter A in the serine protease domain (inactive) indicates a 

serine to alanine exchange. CUB (Cls/Clr, urchin embryonic growth factor and bone morphogenic protein-1 

domain); DESC-1 (differentially expressed squamous cell carcinoma gene 1); FRZ (frizzled domain); HAT 

(human airway trypsin-like protease); LDLA (low-density lipoprotein receptor domain class A); MAM (a meprin, 

A5 antigen and receptor protein phosphatase m domain); MSPL (mosaic serine protease long-form); Polyserase-

1 (polyserine protease-1); SEA (a single sea urchin sperm protein, enteropeptidase, agrin domain); SR 

(scavenger receptor cysteine-rich domain); TM (transmembrane domain) [Figure was taken from Choi et al., 

2009]. 
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TMPRSS2 

The serine protease TMPRSS2 (also known as epitheliasin) is highly expressed in prostate 

epithelial cells and lower levels of TMPRSS2 mRNA have also been detected in epithelia of 

the gastrointestinal, urogenital and respiratory tracts [Donaldson et al., 2002; Szabo et al., 

2003; Szabo and Bugge, 2008]. The extracellular domain of TMPRSS2 is composed of low-

density lipoprotein receptor domain class A (LDLA), scavenger receptor cysteine-rich domain 

(SR) and serine protease domain [Szabo et al., 2003; Szabo and Bugge, 2008; Choi et al., 

2009; Bertram et al., 2010].  

In the lung, TMPRSS2 was shown to affect the regulation of the epithelial sodium channel, 

which controls the airway surface liquid volume and thus the efficiency of mucociliary 

clearance [Donaldson et al., 2002]. Furthermore, the tmprss2 gene was shown to be involved 

in prostate cancer development mainly due to recombination with genes encoding for ETS (E-

twenty six) family transcription factors [Szabo et al., 2003; Szabo and Bugge, 2008; Choi et 

al., 2009; Bertram et al., 2010]. 

Like other TTSPs, TMPRSS2 is generated as a zymogen and needs to be proteolytically 

activated, which may result in the release of an enzymatically active protease in the 

extracellular space [Afar et al., 2001; Szabo and Bugge, 2008]. Whether the released enzyme 

can activate influenza virus is controversial [Garten et al., 2004; Böttcher-Friebertshäuser et 

al., 2010]. A study by Garten and colleagues demonstrate influenza replication in culture 

mediated by recombinant soluble TMPRSS2, which might be able to activate influenza 

viruses in the extracellular space of the human lung [Garten et al., 2004]. In contrast, a work 

by Böttcher-Friebertshäuser and colleagues showed only marginal enzymatic activity of 

soluble forms which was not sufficient to support the cleavage of HA [Böttcher-

Friebertshäuser et al., 2010]. These results demonstrate that the membrane-bound and not the 

soluble form of TMPRSS2 could be responsible for activation of influenza.  

 

TMPRSS4 

Messanger RNA for TMPRSS4 was detected in the gastrointestinal tract, kidney, eye, skin, 

and lung [Szabo et al., 2003; Szabo and Bugge, 2008; Chaipan et al., 2009]. Until now, 

comprehensive data on TMPRSS4 protein expression in normal tissues are not available. 

Similar to TMPRSS2, TMPRSS4 belongs to the hepsin/TMPRSS subfamily and its 

extracellular domain consists of LDLA, SR and a serine protease domain [Szabo et al., 2003; 

Szabo and Bugge, 2008; Choi et al., 2009; Bertram et al., 2010]. The physiological functions 

of TMPRSS4 are incompletely understood. Like several TTSP proteins, TMPRSS4 can 
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modulate ion channel activity [Garcia-Caballero et al., 2008; Szabo and Bugge, 2008] where 

dysregulated expression was found to be associated with several cancers, including gastric, 

liver, lung, ovarian, pancreatic, and thyroid cancer [Choi et al., 2008].  

 

HAT 

The HAT mRNA, like TMPRSS2 mRNA, was detected in many tissues including the 

respiratory and gastrointestinal tract [Szabo and Bugge, 2008]. Protein localization studies in 

human airway demonstrate HAT expression on bronchial ciliated epithelial cells and their 

cilia [Takahashi et al., 2001]. The extracellular domain of HAT, like those of all members of 

the HAT/DESC subfamily, exhibits the simplest modular structure of all TTSPs and consists 

of a single SEA domain and a serine protease domain. 

Under inflammatory conditions in chronic airway diseases (like asthma), high amounts of 

HAT are released in the airway fluids [Yasuoka et al., 1997; Yamaoka et al., 1998; Szabo and 

Bugge, 2008] and might activate influenza viruses in the extracellular compartment. However, 

a study by Böttcher-Friebertshäuser and colleagues showed, like for TMPRSS2, low 

proteolytic activity of soluble recombinant HAT which was not sufficient to activate influenza 

HA [Böttcher-Friebertshäuser et al., 2010]. Human airway trypsin-like protease is involved in 

mucus production, deposition of fibrin in the airway lumen, activation of the protease-

activated receptor 2 (PAR-2), and proteolytic inactivation of urokinase receptor (uPA) 

[Yoshinaga, et al., 1998; Miki at al., 2003; Chokki et al., 2004; Chokki et al., 2005; Beaufort 

et al., 2007]. 

 

Summary 

Type II transmembrane serine proteases were shown to activate human influenza viruses in 

transfected cells and it was proposed that these proteins, and potentially related ones, might be 

responsible for influenza virus activation in the infected host. However, it is unclear if 

endogenously expressed TTSPs activate influenza viruses. The highly pathogenic 1918 

influenza virus and the related virus A/WSN/33 both employ their NAs to promote HA 

activation. The A/WSN/33 facilitates HA activation by recruiting plasminogen, but the role of 

this preprotease in 1918 NA-dependent activation of 1918 HA is unclear. 
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4. Aim of the study 

 

The hemagglutinin (HA) of influenza viruses mediates viral entry into target cells. Host cell 

proteases activate HA by cleavage and activation is essential for viral infectivity. Highly 

pathogenic avian influenza viruses are cleaved by subtilisin-like proteases, but little is known 

about the proteases facilitating the activation of low pathogenic avian influenza viruses and 

human influenza viruses. A landmark study by Böttcher and colleagues suggested that type II 

transmembrane serine proteases (TTSP) can activate human influenza viruses, at least upon 

expression in transfected cells. However, it is currently unclear if these proteases are 

expressed in viral target cells and if endogenous expression supports viral spread. The highly 

pathogenic 1918 influenza virus and the laboratory adapted virus A/WSN/33 employ their 

neuraminidase (NA) proteins to facilitate HA activation. The NA of A/WSN/33 facilitates 

activation of HA by recruiting the preprotease plasminogen, but the molecular mechanism 

underlying HA activation by the 1918 NA is unknown. 

The first aim of this study was to determine if 1918 NA, like A/WSN/33 NA, binds to 

plasminogen and thereby facilitates HA activation. For this, plasminogen binding to 1918 NA 

was to be examined in fluorescence-activated cell sorting (FACS)-based assays and HA 

cleavage was to be assessed by Western blot. In addition, lentiviral pseudotyping was to be 

employed to analyze if A/WSN/33 NA can functionally replace 1918 NA. Finally, in 

collaboration with colleagues at BSL4 facilities, it was to be assessed if NA-dependent 

activation of the 1918 influenza virus is a universal phenomenon or if this process is restricted 

to certain target cell lines. 

The second aim of the study was to determine if HA-activating TTSPs are endogenously 

expressed in viral target cells and facilitate viral spread. To this end, TTSP expression in cell 

lines was to be analyzed on the mRNA and protein level and was to be correlated with the 

ability of influenza virus to spread in the absence of an exogenously added HA-activating 

protease. Finally, knock-down of protease expression by siRNA was to be used to determine 

the relevance of specific proteases for influenza virus activation, and immunohistochemistry 

was to be employed to determine if the respective proteases are expressed in viral target cells 

in the human lung. 
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6. Discussion 

 

6.1 First manuscript: Proteolytic activation of the 1918 influenza virus hemagglutinin 

 

The 1918 influenza virus is responsible for the most devastating pandemic in human history. 

Since the sequence of the complete viral genome is available, reconstruction of the virus by 

reverse genetics allows the analysis of the factors contributing to the extraordinary high 

virulence [Tumpey et al., 2005]. Studies using reassortant viruses that contain gene segments 

of the 1918 influenza virus and well characterized seasonal influenza viruses showed that HA 

and NA represent determinants of virulence [Kobasa et al., 2004; Pappas et al., 2008; 

Tumpey et al., 2004]. Consequently, the analysis of the interaction of the 1918 influenza virus 

HA and NA with host cell factors is of particular interest. Notably, the virus spreads in 

cultured MDCK cells in the absence of exogenous trypsin in an NA-dependent manner 

[Tumpey et al., 2005], suggesting a role of NA in HA activation. A similar observation has 

been previously reported for A/WSN/33, a close relative of the 1918 influenza virus, and has 

been linked to the ability of A/WSN/33 NA to recruit plasminogen, which, upon conversion 

to plasmin, can activate HA [Goto and Kawaoka, 1998; Goto et al., 2001]. The goal of the 

present study was to elucidate if the trypsin-independent spread of the 1918 influenza virus is 

also due to plasminogen recruitment by NA and, in case of a negative answer, to investigate 

which proteases can activate the 1918 HA. 

The investigation of the biological properties of the 1918 influenza virus needs to be 

conducted in a laboratory providing a high level of biocontainment. In order to be able to 

analyse 1918 HA activation without the risk of accidental infection with the 1918 influenza 

virus, a lentiviral vector system was used. For this, an env-defective human 

immunodeficiency virus-derived vector was transiently co-expressed with 1918 HA, NA and 

M2, resulting in the release of HIV particles pseudotyped with HA, NA and M2 

(pseudotypes), as expected from the well documented property of retroviruses to incorporate 

heterologous proteins in their envelope [Sandrin et al., 2003]. The generation of infectious 

pseudotypes, bearing influenza virus surface proteins, requires the presence of both HA and 

NA. Although NA is usually not required to facilitate HA cleavage, the receptor-destroying 

activity of the protein is necessary for release of infectious particles from the virus-producing 

cell [Modrow et al., 2003; Bouvier and Palese, 2008; Taubenberger and Kash, 2010] and in 

the absence of NA mainly HA-free particles are released [Bosch et al., 2001]. Hemagglutinin 

is essential for binding of the viral particle to the target cell and for fusion of the viral and the 
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endosomal membranes [Modrow et al., 2003; Bouvier and Palese, 2008; Taubenberger and 

Kash, 2010]. In agreement with these findings the presence of 1918 NA or 1918 HA alone in 

virus producing cells was not sufficient to confer infectivity to the particles released. 

Pseudotypes bearing both 1918 HA and 1918 NA were infectious, but only upon treatment 

with trypsin, indicating that in 293T cells the presence of 1918 NA was not sufficient to 

mediate 1918 HA activation. Indeed, Western blot analysis of 1918 HA- and 1918 NA- 

bearing virions revealed an HA size of approximately 75 kDa, which is expected for 

uncleaved HA [Elliot et al., 2006], while trypsin treatment reduced the HA size to 

approximately 50 kDa, the size expected for the HA1 subunit [Elliot et al., 2006]. Finally, the 

additional incorporation of 1918 M2 in pseudotypes bearing 1918 HA and 1918 NA reduced 

viral infectivity due to decreased particle incorporation of HA in the presence of M2. In 

natural infection, small amounts of the M2 protein are incorporated into influenza viral 

particles and the ion channel function of M2 plays an important role in uncoating and, for 

some viruses, in maturation [Betakova, 2007]. For lentiviruses pseudotyped with the fowl 

plaque virus HA, M2 expression was found to increase viral infectivity [McKay et al., 2006]. 

The contradictory observations reported in this study and our analysis could be explained by 

the usage of a different influenza virus M2 proteins and pseudotyping systems, or by 

differences in M2 expression levels. In sum, these observations indicate that 1918 NA-

dependent activation of 1918 HA is not a general phenomenon, but might depend on the viral 

producer cell type (293T cells in our system and MDCK cells in the published study [Tumpey 

et al., 2005]). 

Next, it was addressed if 1918 HA, NA bearing pseudotypes might exhibit residual but 

potentially biologically relevant infectivity (in the absence of trypsin treatment) upon 

optimization of infection conditions. The concentration of virions onto target cells by 

centrifugation, a procedure termed spinoculation [O’Doherty et al., 2000], can substantially 

increase viral infectivity. Spinoculation allowed infectious entry 1918 HA, NA bearing 

pseudotypes into 293T and MDCK cells in the absence of trypsin treatment, although 

infection efficiency was clearly reduced compared to trypsin-treated viruses. These 

observations suggested that 293T and MDCK cells express proteases, which can activate 1918 

HA on incoming virions, but activation is inefficient. The role of the endosomal/lysosomal 

cysteine proteases cathepsin B and L in the activation of the 1918 HA was assessed, since 

these proteins activate the glycoproteins of Ebola virus, SARS-CoV, and the fusion protein of 

Hendra virus [Chandran et al., 2005; Pager and Dulch, 2005; Simmons et al., 2005]. However, 

a cysteine protease inhibitor, which was shown to block Ebola virus and SARS-CoV entry 
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[Chandran et al., 2005; Simmons et al., 2005], could not inhibit the infectivity of 1918 

influenza virus HA, NA bearing pseudotypes. These data suggest the involvement of another 

class of proteases in the low level cleavage-activation of pseudotypes bearing the 1918 HA 

and NA. 

The NA protein of A/WSN/33, which is closely related to the 1918 influenza virus, recruits 

plasminogen from serum and thereby facilitates cleavage-activation of NA [Goto and 

Kawaoka, 1998; Goto et al., 2001]. In agreement with these findings, binding of plasminogen 

to A/WSN/33 NA was detected and it could be demonstrated that pseudotypes bearing 

A/WSN/33 HA and NA are infectious in the absence of trypsin treatment [Taubenberger, 

1998]. In contrast, the 1918 NA was unable to bind plasminogen and incorporation of 

A/WSN/33 NA into pseudotypes bearing 1918 HA did not render the respective viruses 

infectious. These observations indicate that plasminogen capture by 1918 NA is not the 

mechanism allowing the previously reported trypsin independent spread of the 1918 virus in 

MDCK cells [Tumpey et al., 2005]. Interestingly, binding of plasminogen to 1918 HA 

expressing cells was detected, but the significance of this finding for influenza virus biology 

is at present unclear. However, it is tempting to speculate that plasminogen recruitment by 

1918 HA contributes to viral spread either by promoting HA activation or by facilitating an as 

yet unappreciated cleavage event involved in viral replication. Of note, plasminogen is bound 

by the cellular protein annexin II, which facilitates the conversion of plasminogen into 

plasmin [LeBouder et al., 2008]. Annexin II has been detected in influenza virus particles 

[LeBouder et al., 2008] and it has been suggested that virion associated annexin II promotes 

viral spread by mediating HA cleavage [LeBouder et al., 2010]. It is therefore conceivable 

that 1918 NA recruits annexin II or another plasminogen-activating factor and thereby 

promotes activation of 1918 HA. Alternatively, 1918 NA might promote 1918 HA cleavage 

by a completely different, so far unappreciated mechanism.  

Based on our findings with 1918 HA, NA bearing pseudotypes generated in 293T cells (see 

above), the possibility was explored that the trypsin-independent spread of the 1918 influenza 

virus, which was observed in the MDCK cell line [Tumpey et al., 2005], might be a cell type 

specific phenomenon. To further test this hypothesis, it was assessed whether lysates prepared 

from different cell lines were able to activate 1918 HA, NA bearing viruses. The lysates of 

MDCK cells, but not those from 293T cells increased the infectivity of 1918 HA, NA bearing 

pseudoparticles. However, the infectivity rate of 1918 HA, NA bearing pseudoparticles upon 

spinoculation of MDCK and 293T cells resided in the same range, suggesting that differential 

recruitment of endosomal proteases might not account for the differential activation of NA 
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protein by cell lysates. Instead, NA might recruit a protease during transport through the 

secretory pathway or at the cell surface of the virus-producing MDCK but not 293T cells. In 

any case, it needs to be noted that the cleavage-activation of 1918 HA, NA bearing 

pseudotypes by MDCK, but not 293T cell lysates, was inefficient. This may be due to the 

HA-activating protease unfolding its full activity only upon incorporation into an intact lipid 

membrane or a specific subcellular compartment. To further explore the potential cell type-

dependence of activation of 1918 HA by 1918 NA, replication of the authentic 1918 influenza 

virus in MDCK cells and the human hepatoma cell line Huh-7 in the presence and absence of 

trypsin was compared. In agreement with published results [Tumpey et al., 2005], it was 

found that the 1918 influenza virus replicated in MDCK cells in the presence or absence of 

trypsin with the same kinetics and viral peak titers. In contrast, replication in Huh-7 cells was 

only robust in the presence of trypsin, indicating that these cells do not express a 1918 HA 

activating protease. Collectively, activation of 1918 HA by 1918 NA is cell type dependent 

and the responsible cellular protease and the underlying molecular mechanism remain to be 

elucidated. 

Influenza virus infection in humans is largely restricted to the respiratory tract [Skehel and 

Wiley, 2000], which expresses the receptors for viral entry and is also believed to express 

HA-activating proteases. A study by Böttcher and colleagues identified the enzymes 

TMPRSS2 and HAT, two members of the class of type II transmembrane serine proteases 

(TTSPs), as candidate proteases for activation of different influenza A virus subtypes (H1, H2, 

H3) in the human respiratory tract [Böttcher et al., 2006; 2009]. Therefore, these serine 

proteases as well as other members of the TTSPs could also be involved in the activation of 

the 1918 influenza virus. The co-expression of TMPRSS2 or TMPRSS4 with 1918 HA 

resulted in 1918 HA cleavage in a 1918 NA-independent manner and allowed generation of 

1918 HA, NA bearing pseudotypes, which were infectious in the absence of trypsin treatment. 

The detection of TMPRSS4 mRNA in human lung tissue, which was previously found to 

express TMPRSS2 mRNA as well [Donaldson et al., 2002], indicates that these proteases 

might facilitate spread of the 1918 influenza virus in human lung [Szabo et al., 2003; Szabo 

and Bugge, 2008]. In contrast, TMPRSS4 mRNA was not detected in 293T, Huh7 and 

MDCK cells, in agreement with the finding that the former two cell lines do not allow trypsin-

independent 1918 HA activation and that trypsin-independent viral spread in MDCK cells 

requires the recruitment of a still unknown host cell protease by 1918 NA. Finally, it is 

noteworthy that cleavage of 1918 HA by TMPRSS2 and TMPRSS4 leads to the production of 

HA1 subunits of slightly different sizes and these size differences might be due to cleavage of 
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HA at different sites or, more likely, differential glycosylation. Taken together, TMPRSS2 

and TMPRSS4 can activate 1918 HA in cell culture and might promote viral spread in 

infected individuals. While TMPRSS2 had previously been implicated in influenza virus 

activation [Böttcher et al., 2006; 2010], the protease TMPRSS4 was identified as a new TTSP, 

capable of activating the 1918 influenza virus HA.  

 

 

6.2 Second manuscript: TMPRSS2 and TMPRSS4 facilitate trypsin-independent spread 

of influenza virus in Caco-2 cells 

 

The cleavage activation of influenza virus HA is essential for viral infectivity. Polybasic 

cleavage sites of highly pathogenic avian influenza viruses (HPAIVs) are recognized by 

ubiquitously expressed subtilisin-like proteases, allowing systemic viral spread and 

development of severe disease. In contrast, the monobasic cleavage sites of low pathogenic 

avian influenza viruses (LPAIVs) and human influenza viruses are recognized by trypsin-like 

proteases, the expression of which is believed to be restricted to the respiratory tract or 

gastrointestinal tract in waterfowl/and gastrointestinal tract in poultry [Steinhauer, 1999]. 

Consequently, viral spread is limited to the aforementioned organs and usually results in only 

mild symptoms [Steinhauer, 1999]. The identity of proteases activating viruses with a 

monobasic cleavage site is at present not well defined. Recently, a new class of trysin-like 

serine proteases, named TTSPs, were proposed to activate viruses with a monobasic cleavage 

site [Böttcher et al., 2006; 2009; Böttcher-Friebertshäuser et al., 2010]. However, these 

studies had exclusively been conducted with cell lines transfected to express the proteases in 

question. It was therefore assessed if endogenous protease expression in cell lines could 

activate influenza HA and correlate with the ability to support trypsin-independent influenza 

virus spread. 

We and others had previously shown that the TTSPs TMPRSS2 and TMPRSS4 can activate 

influenza HA [Böttcher et al., 2006; 2009; Chaipan et al., 2009; Böttcher-Friebertshäuser et 

al., 2010]. Based on these findings, it was first tested whether other members of the TTSP 

family can activate influenza viruses. The serine protease hepsin, which is expressed in high 

levels in the liver, but is also detected in the thymus, lung, pancreas, prostate and kidney 

[Tsuji et al., 1991; Szabo and Bugge, 2008] was able to cleave the influenza virus HA into its 

subunits HA1 and HA2. The HA1 subunits generated by TMPRSS2 on the one side and 

hepsin/TMPRSS4 on the other side were of slightly different sizes and differential HA 
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glycosylation was shown to be responsible for these size differences. How TTSP expression 

impacts HA glycosylation and if this effect occurs in infected cells remains to be determined. 

Interestingly, hepsin expression was unable to confer infectivity to HA bearing pseudotypes 

or to PR8 (H1N1) influenza virus, despite the incorporation of cleaved HA into virions. Why 

hepsin failed to activate influenza virus HA is at present unclear, but might be explained by 

differences in quantitative cleavage compared to TMPRSS2 and TMPRSS4. 

Next, it was determined if TMPRSS2 and TMPRSS4 were not only able to activate HA 

incorporated into lentiviral pseudotypes, but could confer infectivity to replication competent 

influenza viruses. Spread of the PR8 (H1N1) influenza virus, which bears a monobasic 

cleavage site, in 293T cells was about 10-fold augmented by expression of TMPRSS2 and 

TMPRSS4 relative to control cells and a similar effect was seen upon trypsin treatment. In 

contrast, expression of TMPRSS2 and TMPRSS4 had no effect on spread of an influenza 

virus with a polybasic cleavage site, as expected. The relatively high background measured in 

these experiments resulted from the usage of already activated viruses, generated in 

embryonated hen eggs, which express HA-activating proteases. Thus, TMPRSS2 and 

TMPRSS4 can activate replication-competent influenza viruses when exogenously expressed 

in cell lines.   

Based on these observations, it was then investigated if cell lines susceptible to influenza 

virus infection express TMPRSS2 and TMPRSS4 and if expression allows viral spread in the 

absence of trypsin treatment. Viral spread in 293T, Huh7 and Vero E6 cells was examined, 

which are known to support influenza virus replication only upon the addition of an 

exogenous protease [Lazarowitz and Choppin, 1975; Govorkova et al., 1995; de Wit et al., 

2004; Chaipan et al., 2009]. In contrast, the Caco-2 cell line, which was derived from 

intestinal epithelium [Pinto et al., 1983; Jumarie and Malo, 1991], was reported to allow 

influenza virus replication in the absence of an exogenous protease [Zhirnov and Klenk, 

2003], suggesting that these cells might express an HA-activating protease, potentially 

TMPRSS2 and/or TMPRSS4. Indeed, TMPRSS2 and TMPRSS4 mRNA was detected by 

quantitative reverse transcription PCR in this cell line and TMPRSS2 protein was detected by 

Western blot. Evidence for expression of TMPRSS4 protein was not obtained, due to the lack 

of an appropriate antibody. Next, it was examined if HA was cleaved in Caco-2 cells. 

Transient expression of HA in Caco-2 but not 293T cells resulted in the generation of an HA 

fragment corresponding to HA1. The cleavage of HA in Caco-2 cells resulted in HA-

activation, since pseudotypes generated in Caco-2 but not 293T cells were infectious in the 

absence of trypsin treatment and PR8 (H1N1) replicated in Caco-2 cells with similar 
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efficiency in the presence and absence of trypsin. The ability of Caco-2 cells to generate 

infectious HA-bearing pseudotypes indicates that the HA is activated during the passage of 

the constitutive secretory pathway. In contrast, activation did not occur during viral entry into 

Caco-2 cells, since pseudotypes bearing non-activated HA were unable to infect Caco-2 cells. 

This observation is compatible with a recent publication, which demonstrates that TMPRSS2 

cleaves newly synthesized HA within the cell and is not able to activate HA on incoming 

viruses [Böttcher-Friebertshäuser et al., 2010]. However, the results contrast those reported by 

Zhirnov and Klenk [Zhirnov and Klenk, 2003], who suggested that proteolytic activation of 

HA can occur during viral uptake in Caco-2 cells. This discrepancy might be explained by the 

different experimental procedures used in both studies: Zhirnov and colleagues used 

replication-competent influenza viruses instead of pseudoparticles and might have employed 

different cell culture conditions [Zhirnov and Klenk, 2003]. Regardless, Zhirnov and Klenk as 

well as the present study both observed efficient activation of influenza virus in Caco-2 cells 

in the absence of trypsin, raising the question whether TMPRSS2 and TMPRSS4 are 

responsible for HA-activation in Caco-2 cells. 

In order to assess the role of TMPRSS2 and TMPRSS4 in HA-activation in Caco-2 cells, 

siRNA-mediated knockdown was employed. Knockdown of either TMPRSS2 or TMPRSS4 

markedly reduced PR8 (H1N1) spread in the absence but not in the presence of trypsin while 

the spread of a virus with a polybasic cleavage site was not affected. Thus, both TMPRSS2 

and TMPRSS4 can support viral spread in Caco-2 cells. Why the knockdown of TMPRSS2 

could not be rescued by TMPRSS4 and vice versa is at present unclear. It can be speculated, 

however, that expression of both proteases is linked and that knockdown of one protease 

affected expression of the other – an effect that would have remained unnoticed due to the 

absence of reagents for detection of TMPRSS4 protein.  

To allow influenza virus replication in humans, TMPRSS2 and TMPRSS4 need to be 

expressed in viral target cells. Human influenza viruses infect cells which express 

glycoproteins or glycolipids modified with α-2,6-linked sialic acid (SA) [Skehel and Wiley, 

2000; Modrow et al., 2003; Bouvier and Palese, 2008; Taubenberger and Kash, 2010]. 

Pandemic influenza viruses, including the Swine-origin influenza virus 2009, are able to 

spread in the alveolar epithelium and infection of this tissue is associated with the 

development of viral pneumonia [Kuiken and Taubenberger, 2008; Taubenberger and Morens, 

2008; Yeh et al., 2010]. The analysis of human lung tissues by immunohistochemistry 

revealed co-expression of TMPRSS2 and α-2,6-linked SA in type II pneumocytes and 

alveolar macrophages, suggesting that TMPRSS2 might support viral replication in these cells. 
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A study by van Riel and colleagues demonstrated that human influenza viruses preferentially 

bind to type I pneumocytes and to a lesser degree to type II pneumocytes and occasionally to 

macrophages [van Riel et al., 2007]. In contrast, a recent study showed that the 2009 H1N1 

virus mainly infects type II pneumocytes [Shieh et al., 2010] and it is conceivable that 

TMPRSS2 supports viral spread in these cells. Expression of TMPRSS2 was also detected in 

the colon, stomach, and kidney [Paoloni-Giacobino et al., 1997; Jacquinet et al., 2001; Szabo 

and Bugge, 2008], and might be responsible for the rare extrapulmonary viral spread in 

humans [Kuiken and Taubenberger, 2008; Lucas et al., 2008]. The expression of TMPRSS4 

protein in human lung remains to be determined. 

In summary, the present study showed for the first time that endogenously expressed 

TMPRSS2 and TMPRSS4 can facilitate the spread of a human influenza virus in cell culture 

and potentially constitute targets for therapeutic intervention. Previous work unambiguously 

established that inhibition of proteolytic activation is a suitable strategy to suppress influenza 

virus spread in cell culture, animals, and in infected humans [Zhirnov et al., 1982; 1984; 

Garten et al., 1989; Stieneke-Gröber et al., 1992; Böttcher et al., 2009; Böttcher-

Friebertshäuser et al., 2010]. Our results suggest that at least two proteases, TMPRSS2 and 

TMPRSS4, must be targeted to efficiently suppress viral spread. However, inhibition of only 

one of these proteases reduced viral replication in Caco-2 cells and might be sufficient to 

obtain a therapeutic benefit. One way to address the relative importance of TMPRSS2 and 

TMPRSS4 for influenza virus spread are knockout mice. Tmprss2 knockout mice are 

available and do not display an obvious phenotype in the absence of expression [Kim et al., 

2006] and are thus ideally suited for this endeavour.  
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List of abbreviations 

A   Alanine 

A.D.   Lateinisch: a dato (since this day) 

CDC   Centers of Disease Control and Prevention 

CM2   Influenza C virus minor envelope protein 

cRNA    Complementary ribonucleic acid 

CUB  Cls/Clr, urchin embryonic growth factor and bone morphogenic 

protein-1 domain  

D   Aspartate 

DESC-1   Differentially expressed squamous cell carcinoma gene 1 

ETS   E-twenty six 

FP   Fusion peptide 

FRZ    Frizzled domain HAT (human airway trypsin-like protease 

GP   Glycoprotein 

H   Histidine 

HA   Hemagglutinin 

HAEC   Human adenoid epithelial cell 

HAT   Human airway trypsin-like protease 

HEF   Hemagglutinin-esterase-fusion protein 

HMPV   Human metapneumovirus 

HPAIV  High pathogenic avian influenza virus 

ICTV   International Committee on Taxonomy of Viruses 

kb   Kilo bases 

kDA   Kilo Dalton 

LAIV   Live-attenuated influenza vaccine 

LDLA    Low-density lipoprotein receptor domain class A 

LPAIV   Low pathogenic avian influenza virus 

M1   Matrix 1 protein 

M2   Matrix 2 protein 

MAM    Meprin, A5 antigen and receptor protein phosphatase m domain 

MDCK  Mardin-Darby Canine Kidney cell line 

MHV   Mouse hepatitis coronavirus 
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mRNA   Messanger ribonucleic acid 

MSPL   Mosaic serine protease large form 

NA   Neuraminidase 

NEP   Nuclear export protein 

NP   Nucleoproteins 

NS1   Non-structural protein 1 

NS2   Non-structural protein 2 

ORF   Open reading frame 

PA   Polymerase acidic protein 

PAR-2   Protease-activated receptor 2 

PB1   Polymerase basic protein 1 

PB2   Polymerase basic protein 2 

PC5/6   Pro-protein convertase 5/6 

R   Arginine 

RNA   Ribonucleic acid 

RKI   Robert Koch-Institute 

S   Serine 

SA   Sialic acid 

SARS-CoV  Severe Acute Respiratory Syndrome-Coronavirus 

SEA    Single sea urchin sperm protein, enteropeptidase, agrin domain 

SR    Scavenger receptor cysteine-rich domain 

SsRNA  Single-stranded ribonucleic acid 

TGN   Trans-Golgi network 

TIV   Trivalent inactivated influenza vaccine 

TM    Transmembrane domain 

TTSP   Type II transmembrane serine protease 

uPA   Urokinase receptor 

vRNA   Viral ribonucleic acid 

vRNP   Viral ribonucleoprotein 

WHO   World Health Organization 
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