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Kurzzusammenfassung

Die Klassifikation von Cluster-Kippalgebren bis auf derivierte Äquivalenz ist ein wichtiges Pro-
blem in der Darstellungstheorie. Solche Klassifikationen gibt es bereits für die Dynkin Typen An
(Buan und Vatne) und E6,7,8 (B., Holm und Ladkani). Als nächsten Schritt sollte man diese Klassi-
fikation für die Typen Ãn und Dn angehen; das ist der Hauptgegenstand dieser Arbeit.

Ausgehend von einer “Kategorifizierung” der Cluster Algebren von Fomin und Zelevinsky haben
Buan, Marsh und Reiten die sogenannten Cluster-Kippalgebren eingeführt. Allgemein werden Clus-
ter-Kippalgebren, die zu einem azyklischen Köcher Q korrespondieren, als Endomorphismenalgebren
von Cluster-Kippobjekten in der Cluster Kategorie CQ definiert. Für Cluster-Kippalgebren gibt es
den Begriff der “Mutation”. Hierbei wird eine Cluster-Kippalgebra in eine andere mutiert. Einige
wohlbekannte klassische Konstruktionen der Darstellungstheorie, wie zum Beispiel Spiegelungsfunk-
toren, werden durch diesen Begriff verallgemeinert. Diese Mutationen lassen sich durch sogenannte
“Köchermutation” auf Köcher mit Relationen übertragen. Insbesondere kann man bei algebraisch
abgeschlossenem Körper K eine Cluster-Kippalgebra in der Form KQ′/I ′ als Köcher mit Relationen
angeben. Der Köcher Q′ ist dabei mutationsäquivalent zum azyklischen Köcher Q und die Relationen
sind durch Q′ bestimmt, wie Buan, Iyama, Reiten und Smith gezeigt haben.

In dieser Arbeit erzielen wir eine explizite Beschreibung der Klasse aller Köcher, die zu irgend-
einem Köcher vom Typ Ãn mutationsäquivalent sind. Dann wird diese Klasse in ihre verschiedenen
Mutationsklassen unterteilt. Zu diesem Zweck führen wir für jeden Köcher vier kombinatorische
Parameter ein und beweisen, dass die unterschiedlichen Mutationsklassen von gewissen Summen
dieser Parameter abhängig sind. Anschließend konstruieren wir explizite Kipp-Komplexe für Cluster-
Kippalgebren vom Typ Ãn, mit deren Hilfe wir, unter Verwendung eines Algorithmus von Avella-
Alaminos und Geiß, eine vollständige Klassifikation von Cluster-Kippalgebren vom Typ Ãn bis auf
derivierte Äquivalenz erreichen. Tatsächlich können wir zeigen, dass die beschränkte derivierte Ka-
tegorie solch einer Algebra von den vier einzelnen kombinatorischen Parametern abhängt.

Für Cluster-Kippalgebren vom Typ Dn können wir nur eine etwas gröbere Klassifikation erzielen.
Hierbei greifen wir auf den Begriff der “guten Mutationsäquivalenz” zurück, der etwas stärker ist als
derivierte Äquivalenz. Wir geben eine komplette Klassifikation für Cluster-Kippalgebren vom Typ
Dn bis auf gute Mutationsäquivalenz an. Dabei wird in jeder Klasse eine kanonische Normalform
dieser Algebren ausgezeichnet. Darüber hinaus können wir weitere derivierte Äquivalenzen zwischen
Cluster-Kippalgebren vom Typ Dn identifizieren, die nicht durch gute Mutationen gegeben sind.
Basierend auf der Klassifikation bis auf gute Mutationsäquivalenz und diesen zusätzlichen derivierten
Äquivalenzen, schlagen wir Standardformen für die derivierten Äquivalenzklassen vor.

Unter Verwendung bekannter numerischer Invarianten sind wir in der Lage, einige der Standard-
formen vom Typ Dn bis auf derivierte Äquivalenz zu unterscheiden. Insbesondere werden allge-
meine Formeln für die Cartan Determinanten vom Typ Dn hergeleitet. Darüber hinaus berechnen
wir die charakteristischen Polynome der sogenannten “Asymmetrie Matrizen” für gewisse Cluster-
Kippalgebren vom Typ Dn, unter Zuhilfenahme der entsprechenden Formeln für Typ An.

Diese Invarianten führen zu einer weitreichenden derivierten Äquivalenzklassifikation von Cluster-
Kippalgebren vom Typ Dn. Um eine vollständige Klassifikation zu erreichen, müssten allerdings noch
einige diffizile Fragen geklärt werden.

Schlagworte: Cluster-Kippalgebra, derivierte Äquivalenz, Köchermutation, gute Mutation
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Abstract

An important problem in representation theory is obtaining a derived equivalence classification
for cluster-tilted algebras. Derived equivalence classifications have been found so far for cluster-tilted
algebras of Dynkin type An by Buan and Vatne and for Dynkin types E6,7,8 by the author together
with Holm and Ladkani. A natural next step is to find a classification for types Ãn and Dn; this is
the concern of this thesis.

Cluster-tilted algebras were introduced by Buan, Marsh and Reiten arising from a ‘categorifica-
tion’ of the cluster algebras introduced by Fomin and Zelevinsky. Generally, cluster-tilted algebras
corresponding to an acyclic quiver Q are defined as the endomorphism algebras of cluster-tilting ob-
jects in the cluster category CQ. For cluster-tilted algebras there is a theory of ‘mutation’ where one
cluster-tilted algebra is mutated into another generalising some classical concepts in representation
theory. This mutation can be seen at the level of quivers with relations in the form of ‘quiver mu-
tation’. In particular, these algebras can be constructed explicitly by quivers with relations KQ′/I ′,
where K is an algebraically closed field. Buan, Iyama, Reiten and Smith showed that the quiver Q′

is mutation equivalent to the acyclic quiver Q and the relations are uniquely determined by Q′.
We give an explicit description of the class of quivers which are mutation equivalent to any quiver

of type Ãn. We then separate this class into the different mutation classes of Ãn-quivers. For this we
define four combinatorial parameters for every quiver, and prove that the different mutation classes
depend on certain sums of these parameters. Subsequently, we provide explicit tilting complexes for
cluster-tilted algebras of type Ãn and using these together with an algorithm of Avella-Alaminos
and Geiß, we get a complete classification of cluster-tilted algebras of type Ãn up to derived equiv-
alence. Indeed, we prove that the bounded derived category of such an algebra depends on the four
combinatorial parameters mentioned above.

We introduce another notion of equivalence, called ‘good mutation’ equivalence, which is slightly
stronger than derived equivalence, and give a complete classification of cluster-tilted algebras of type
Dn up to good mutation equivalence together with canonical forms. We can also find further derived
equivalences between cluster-tilted algebras of type Dn which are not given by good mutations.
Building on the results of the good mutation equivalence classification and these further derived
equivalences, we suggest standard forms for the derived equivalence classes.

Using some known numerical invariants, we distinguish some of the standard forms of type Dn up
to derived equivalence. In particular, we derive formulae for the determinants of the Cartan matrices
of cluster-tilted algebras of type Dn, and for the characteristic polynomials of the asymmetry matrices
of cluster-tilted algebras of type An and of certain cluster-tilted algebras of type Dn.

These invariants yield a far reaching derived equivalence classification of cluster-tilted algebras
of type Dn, but some subtle questions in this classification remain open.

Keywords: cluster-tilted algebra, derived equivalence, quiver mutation, good mutation
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CHAPTER 1

Introduction

In 2002 Fomin and Zelevinsky introduced cluster algebras in order to create a combinatorial
framework for canonical bases and total positivity in semisimple algebraic groups. They have since
gone on to have important and diverse applications in combinatorics, Lie theory, algebraic geometry,
representation theory, integrable systems, Teichmüller theory, Poisson geometry and string theory in
physics (via recent work on quivers with (super)potentials, see Derksen, Weyman, Zelevinsky [28]
and Labardini-Fragoso [41])

Cluster algebras (without coefficients) are subrings of the field Q(x1, . . . , xn) of rational functions
in n indeterminates, and defined via a set of generators constructed inductively. These generators
are called cluster variables and are grouped into overlapping subsets of fixed finite cardinality called
clusters. The induction process begins with a pair (x, B), called a seed, where x is an initial cluster
and B is an integral skew-symmetrizable n× n-matrix.

An essential ingredient of this process is an operation on the integral n×n-matrices called matrix
mutation. Since there is a natural one-to-one correspondence between integral skew-symmetric n×n-
matrices and finite quivers with n vertices having no loops and no oriented 2-cycles, mutation can be
defined directly on the level of quivers.

A cluster algebra is said to be of finite type if the number of cluster variables is finite. An
important result of Fomin and Zelevinsky in [32] classifies the cluster algebras of finite type in terms
of Dynkin diagrams. The cluster variables are then in bijection with the almost positive roots of the
corresponding root system, that is, the roots which are positive or opposite to simple roots. This
classification is analogous to the classification of representation-finite quivers by Gabriel in [33]. Note
that the analogy is not exact because the cluster algebras of finite type are classified by all Dynkin
diagrams whereas quivers of finite representation type are classified only by the simply-laced Dynkin
diagrams of type A, D and E.

In an attempt to ‘categorify’ cluster algebras (without coefficients), cluster categories were in-
troduced by Buan, Marsh, Reineke, Reiten and Todorov in [18]. More precisely, these are orbit
categories of the form CQ = Db(KQ)/τ−1[1] where Q is an acyclic quiver, i.e. a quiver without ori-
ented cycles, Db(KQ) is the bounded derived category of the finite dimensional (left) KQ-modules
over an algebraically closed field K and τ and [1] are the Auslander-Reiten translation and shift func-
tor on the triangulated category Db(KQ), respectively. A more detailed description can be found
in Section 2.4. Remarkably, these cluster categories are again triangulated categories by a result of
Keller [39].

Tilting modules play an important role in the representation theory of finite dimensional algebras.
The algebras of the form End(T ) for a tilting module T over a path algebra KQ, called tilted algebras,
form a central class of algebras. This motivates studying the cluster-tilted algebras more closely, which
are those of the form EndCQ(T ), where T is a cluster-tilting object in CQ (i.e. a maximal object with
no self-extensions, see Buan, Marsh, Reineke, Reiten and Todorov in [18] and Section 2.4). It is
known from Caldero and Keller in [27] (see also Buan, Caldero, Keller, Marsh, Reiten and Todorov
in [16]) that there is a one-to-one correspondence between the set of indecomposable objects without
self-extensions of CQ and the set of cluster variables in the corresponding cluster algebra A(Q). This
induces a correspondence between clusters and cluster-tilting objects.

A cluster-tilted algebra corresponding to an acyclic quiver Q can be constructed explicitly by a
quiver with relations KQ′/I ′, where the quiver Q′ is mutation equivalent to the quiver Q and the
relations are uniquely determined by its quiver (see Buan, Iyama, Reiten and Smith in [17]).

9



10 1. INTRODUCTION

Cluster-tilted algebras have several interesting properties, e.g. their representation theory can
be completely understood in terms of the representation theory of the corresponding path algebra
of a quiver (see Buan, Marsh and Reiten in [20]). In particular, the Auslander-Reiten-quiver of a
cluster-tilted algebra can be obtained directly from the Auslander-Reiten-quiver of the corresponding
path algebra. Cluster-tilted algebras have been studied by various authors, see for instance [4], [5],
[19] or [26].

In recent years, a focal point in the representation theory of algebras has been the investigation
of derived equivalences of algebras. Since a lot of properties and invariants of rings and algebras are
preserved by derived equivalences, it is important for many purposes to classify classes of algebras
up to derived equivalence, instead of Morita equivalence. For instance, the class of self-injective
algebras is closed under derived equivalence (see Al-Nofayee in [1]) and for self-injective algebras the
representation type is preserved under derived equivalences (see Krause [40] and Rickard [47]). It
has been also proved by Rickard in [48] that the class of symmetric algebras is closed under derived
equivalences. Additionally, we note that derived equivalent algebras have the same number of pairwise
non-isomorphic simple modules and isomorphic centres.

In this work, we are concerned with the problem of derived equivalence classification of cluster-
tilted algebras of type Ãn. Additionally, we are going to address this problem for cluster-tilted
algebras of Dynkin type Dn. The quivers of cluster-tilted algebras of type Ãn (resp., Dn) are exactly
the quivers in the mutation classes of Ãn (resp., Dn) and the corresponding relations were determined
by Assem, Brüstle, Charbonneau-Jodoin and Plamondon in [3] and by Buan, Marsh and Reiten
in [21], respectively. A derived equivalence classification has been achieved so far for cluster-tilted
algebras of Dynkin type An by Buan and Vatne [23]; see also the work of Murphy on the more general
case of m-cluster-tilted algebras of type An [45]. A complete derived equivalence classification has
also been given by the author together with Holm and Ladkani in [12] for Dynkin types E6,7,8.

Our first aim in Chapter 3 is to give a description of the mutation classes of Ãn-quivers. These
mutation classes are known to be finite (for example see Fomin, Shapiro and Thurston in [30] or
Buan and Reiten in [22], stated as Theorem 2.1.4 in this work). The second purpose of this chapter
is to describe when two cluster-tilted algebras of type Q have equivalent derived categories, where Q
is a quiver whose underlying graph is Ãn.

The first step is to compute all quivers which are mutation equivalent to any quiver of type
Ãn, i.e. all quivers which are mutation equivalent to any non-oriented (n + 1)-cycle. Note that
for an oriented (n + 1)-cycle we get the mutation class of Dn+1 (see for instance Vatne in [53] or
Lemma 3.1.1). In order to determine all quivers mutation equivalent to Ãn, we define a class of
quivers Qn (see Definition 3.1.5), as follows:

Definition. Let Qn be the class of connected quivers with n+ 1 vertices which satisfy the following
conditions:

(i) There exists precisely one full subquiver which is a non-oriented cycle of length ≥ 2.
(ii) For each arrow x

α−→ y in this non-oriented cycle, there may (or may not) be a vertex zα
which is not on the non-oriented cycle, such that there is an oriented 3-cycle of the form

x y

zα

α .
Apart from the arrows of these oriented 3-cycles there are no other arrows incident to
vertices on the non-oriented cycle.

(iii) If we remove all vertices in the non-oriented cycle and their incident arrows, the result is a
disjoint union of rooted quivers of type A (see Definition 2.5.4), one for each zα.

To show that this class contains all quivers mutation equivalent to some quiver of type Ãn we
prove in Lemma 3.1.7 that this class is closed under quiver mutation.

The next step is to separate this class into the different mutation classes of Ãn-quivers. Since each
quiver in Qn can be embedded into the plane, we fix one of these embeddings. Thus, we can speak
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r1

s1

r2

s2

Figure 1.1. Normal form for quivers in Qn.

of clockwise and anti-clockwise oriented arrows of the (unique) non-oriented cycle. Then we define
four combinatorial parameters r1, r2, s1 and s2 for any quiver Q ∈ Qn in Definition 3.1.9. Roughly
speaking, these parameters count the numbers of arrows and oriented 3-cycles in Q according to the
different orientations of the arrows in the non-oriented cycle.

Subsequently, we prove that every quiver in Qn with parameters r1, r2, s1 and s2 can be mutated
to a normal form as in Figure 1.1 without changing the parameters.

Using this result we can show that every quiver in Qn with parameters r1, r2, s1 and s2 is
mutation equivalent to some non-oriented cycle with r1 + 2r2 arrows oriented in one direction and
s1 +2s2 arrows oriented in the other direction. Hence, we can prove Theorem 3.1.13 which then gives
a complete description of the mutation classes of Ãn-quivers:

Theorem. Let Q1, Q2 ∈ Qn with parameters r1, r2, s1 and s2, respectively r̃1, r̃2, s̃1 and s̃2. Then
Q1 is mutation equivalent to Q2 if and only if r1 + 2r2 = r̃1 + 2r̃2 and s1 + 2s2 = s̃1 + 2s̃2 (or
r1 + 2r2 = s̃1 + 2s̃2 and s1 + 2s2 = r̃1 + 2r̃2).

The second aim of Chapter 3 is to get a complete classification of cluster-tilted algebras of type
Ãn up to derived equivalence. It turns out that the combinatorial parameters r1, r2, s1 and s2 are
sharp for derived equivalence (see Theorem 3.2.2), i.e.

Theorem. Two cluster-tilted algebras of type Ãn are derived equivalent if and only if their quivers
have the same parameters r1, r2, s1 and s2 (up to changing the roles of ri and si, i ∈ {1, 2}).

To prove this theorem, we first show that every cluster-tilted algebra of type Ãn with parameters
r1, r2, s1 and s2 is derived equivalent to a cluster-tilted algebra which corresponds to a quiver in
normal form (see Lemma 3.2.1). We then use an algorithm determined by Avella-Alaminos and
Geiß in [10] to compute the parameters r1, r2, s1 and s2 as combinatorial derived invariants for any
cluster-tilted algebra of type Ãn.

In Chapters 4 and 5 we deal with cluster-tilted algebras of Dynkin type Dn. The quivers in the
mutation class of Dn were classified by Vatne in [53] who divided the mutation class into four types
which we shall denote I, II, III and IV. These types are defined as gluing of rooted quivers of type
A to certain ‘skeleta’ (see Section 4.1 later in the thesis for a precise description). In addition, the
corresponding relations are known by Buan, Marsh and Reiten in [21, Theorem 4.1]. Hence, we are
left with the problem of finding a classification of cluster-tilted algebras of type Dn up to derived
equivalence.

Chapter 4 deals with so-called good mutations (see below) and proves a result on derived equiv-
alences, whilst Chapter 5 looks at some invariants associated with these derived equivalences. Both
chapters are required to provide a partial classification of cluster-tilted algebras of type Dn up to
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derived equivalence. The classification, while not complete, is far reaching. A major obstacle to
obtaining a complete classification is the computation of some polynomial invariants, which is com-
putationally intensive. However, up to D14 the computation of these polynomial invariants can be
done by brute force; they were computed by a program written by Ladkani, the results of which
appear in our joint work (together also with Holm) [13, Section 2.3]. The subtlety of the classifica-
tion beyond D14 arises because the polynomial invariants are not perfect, indeed the first example of
derived inequivalent cluster-tilted algebras with the same polynomial invariants occurs in type D15

(see [13, Example 2.26]). Hence, the problem of distinguishing between certain of the cluster-tilted
algebras of type Dn is quite delicate.

In [43] Ladkani described a procedure to determine when two cluster-tilted algebras whose quivers
are related by a mutation are also derived equivalent. Such quiver mutations are called good mutations
(for more details see Section 4.2.1). Thus, the first aim of Chapter 4 is to find all the good mutations
for cluster-tilted algebras of type Dn and we get a complete classification up to good mutation
equivalence.

In Sections 4.2.2 and 4.2.3 we determine all the good mutations for cluster-tilted algebras of
type An and Dn. Using these results we can achieve a complete classification of the cluster-tilted
algebras of Dynkin type Dn up to good mutation equivalence and we provide an algorithm for the
problem of describing when two cluster-tilted algebras are good mutation equivalent. In particular, we
can divide the cluster-tilted algebras of typeDn into eight types of different good mutation equivalence
classes in Theorem 4.2.36. The main result of the good mutation equivalence classification can be
stated as follows:

Theorem. There is an explicit finite list of canonical forms representing each good mutation equiva-
lence class of cluster-tilted algebras of Dynkin type Dn. See Theorem 4.2.36 for the explicit descrip-
tion.

Following on, we can find further derived equivalences between cluster-tilted algebras of type Dn

which are not given by good mutations. In particular, we obtain derived equivalences for algebras
related by a good double mutation. This derived equivalence consists of two algebra mutations, where
the intermediate algebra is not a cluster-tilted algebra. Additionally, we recall a result about derived
equivalences for the self-injective cluster-tilted algebras. Note that the determination of self-injective
cluster-tilted algebras is due to Ringel in [51], but the derived equivalence classification is originally
due to Asashiba in [2].

Building on the results of the good mutation equivalence classification and these further de-
rived equivalences, we give six types of standard form for derived equivalence, this list is stated as
Theorem 4.3.9.

In Chapter 5 we distinguish some of the standard forms of type Dn up to derived equivalence. For
this we use some known numerical invariants. In particular, we derive formulae for the determinants
of the Cartan matrices of cluster-tilted algebras of type Dn in Theorem 5.2.1:

Theorem. Let Q be a quiver which is mutation equivalent to Dn for n ≥ 4. Let Q′ and Q′′ be the
rooted quivers of type A occurring in the types I, II and III. Let t(Q′) and t(Q′′) be the numbers of
oriented 3-cycles in Q′ and Q′′, respectively.

(I) If Q is of type I, then detCQ = 2t(Q
′) = detCQ′ .

(II) If Q is of type II, then detCQ = 2 · 2t(Q′)+t(Q′′) = 2 · detCQ′ · detCQ′′ .
(III) If Q is of type III, then detCQ = 3 · 2t(Q′)+t(Q′′) = 3 · detCQ′ · detCQ′′ .
(IV) For a quiver Q of type IV with central cycle of length m ≥ 3, let Q(1), . . . , Q(r) be the rooted

quivers of type A glued to the spikes and let t(Q(j)) be the number of oriented 3-cycles in
Q(j). In addition, let c(Q) be the number of vertices on the central cycle which are part of
two (consecutive) spikes. Then

detCQ = (m+ c(Q)− 1) ·
r∏
j=1

2t(Q
(j)) = (m+ c(Q)− 1) ·

r∏
j=1

detCQ(j) .
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As a consequence, in Corollary 5.2.4 we are able to distinguish any two distinct standard forms
of Theorem 4.3.9 except for one standard form. That is, there exists one standard form for which
members of this class may be derived equivalent to algebras of the other classes and which, for the
sake of the introduction, we shall call the ‘exceptional standard form’. This standard form contains
many cases of cluster-tilted algebras of type IV. This is the source of the subtlety in obtaining a
complete classification.

The second invariant of derived equivalence we use in this chapter is the characteristic polynomial
of the so-called asymmetry matrix S = CC−T corresponding to the Cartan matrix C. We stress that
the asymmetry matrix and its characteristic polynomial are well-defined whenever the Cartan matrix
is invertible over Q, as follows from Ladkani in [42, Section 3.3]. In the special case when the algebra
has finite global dimension, the asymmetry matrix, or better minus its inverse −CTC−1, is related to
the Coxeter transformation, and its characteristic polynomial is known as the Coxeter polynomial of
the algebra. In [15] Boldt has determined a method to determine the Coxeter polynomial of certain
split finite-dimensional algebras by reducing it to the computation of certain ‘smaller’ polynomials
and we will use this reduction formula for our computations.

We derive formulae for the characteristic polynomials of the asymmetry matrices for the cluster-
tilted algebras of type An in Proposition 5.3.6 and for the types I, II and III of type Dn, and for
certain cluster-tilted algebras of type IV in Propositions 5.3.10, 5.3.11 and 5.3.12:

Proposition. Let Q be the quiver of a cluster-tilted algebra of type An. Then the characteristic
polynomial of the asymmetry matrix is given by

χSQ(x) = (x+ 1)t−1
(
xs+t+2 + (−1)s+1

)
,

where t = t(Q) is the number of oriented 3-cycles in Q and s = s(Q) is the number of arrows in Q
which are not part of any oriented 3-cycle.

Proposition. Consider a cluster-tilted algebra of type Dn with quiver Q. Let Q′ and Q′′ be the
rooted quivers of type A occurring in Q. Let t(Q′) and t(Q′′) be the numbers of oriented 3-cycles in
Q′ and Q′′, respectively, and let s(Q′) and s(Q′′) be the numbers of arrows in Q′ and Q′′, which are
not part of any oriented 3-cycle.

(I) If Q is of type I, then

χSQ(x) = (x+ 1)t(x− 1)
(
xs+t+2 + (−1)s

)
where s = s(Q′) and t = t(Q′).

(II/III) If Q is of type II or type III, then

χSQ(x) = (x+ 1)t+1(x− 1)
(
xs+t+2 + (−1)s+1

)
where s = s(Q′) + s(Q′′) and t = t(Q′) + t(Q′′).

(IV) If Q is of type IV, then we have the following:
(a) If Q is an oriented cycle of length n without spikes then

χSQ(x) =

{
xn − 1, if n is odd,(
x
n
2 − 1

)2
, if n is even.

(b) If Q is a quiver of the form
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2
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4 b

Q′

with central cycle of length b, then

χSQ(x) = (x+ 1)t(xb − 1)
(
xs+t+b + (−1)s+1

)
where s = s(Q′) and t = t(Q′).

(c) If Q is a quiver of the form

Q′

then

χSQ(x) = (x+ 1)t−1(x− 1)
(
xs+t+4 + 2 · xs+t+3 + (−1)s−1 · 2x+ (−1)s−1

)
where s = s(Q′) and t = t(Q′).

Using these polynomials, we can distinguish between cluster-tilted algebras of type II and some
cluster-tilted algebras with ‘exceptional standard form’, namely, those of type IV (c). However,
this is only a small improvement because it remains to distinguish many cluster-tilted algebras with
‘exceptional standard form’ from those of the other standard forms.

The thesis is organised as follows. In Chapter 2 we collect some preliminaries about quivers with
relations, quiver mutation, derived equivalences, Cartan matrices and cluster-tilted algebras. We also
recall the explicit description of cluster-tilted algebras of Dynkin type An as quivers with relations as
given by Buan and Vatne in [23], since these are needed for the definitions of cluster-tilted algebras
of types Ãn and Dn.

In Chapter 3 we provide the complete classification of cluster-tilted algebras of type Ãn up to
derived equivalence. In particular, in Section 3.1, we give an explicit description of the mutation
classes of quivers of type Ãn, and we recall the relations for cluster-tilted algebras of type Ãn (as
determined by Assem, Brüstle, Charbonneau-Jodoin and Plamondon in [3]). In Section 3.2 we prove
the main result of this chapter, i.e. we show when two cluster-tilted algebras of type Ãn are derived
equivalent.

In Chapter 4 we establish derived equivalences for cluster-tilted algebras of type Dn. In Sec-
tion 4.1 we give the quivers in the mutation class of Dn and the corresponding relations (as found
by Vatne in [53] and by Buan, Marsh and Reiten in [21]). In Section 4.2 we collect the basic notions
about mutations of algebras (due to Ladkani in [43]) and we determine all the good mutations for
cluster-tilted algebras of Dynkin types An and Dn. In particular, we can obtain a complete classifi-
cation of the cluster-tilted algebras of type Dn up to good mutation equivalence. In Section 4.3 we
present further derived equivalences between cluster-tilted algebras of type Dn which are not given
by good mutations. Subsequently, we provide standard forms for derived equivalence, and prove the
main result of this chapter.

In Chapter 5 we derive invariants of derived equivalence for cluster-tilted algebras of type An
and Dn. Section 5.2 contains formulae for the determinants of the Cartan matrices of cluster-tilted
algebras of type Dn. This invariant is used in the thesis to distinguish some cluster-tilted algebras of
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type Dn up to derived equivalence. Continuing this theme we calculate the characteristic polynomials
of the asymmetry matrices for cluster-tilted algebras of types An and I, II and III of type Dn, and
for certain cluster-tilted algebras of type IV in Section 5.3.
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CHAPTER 2

Background and Notation

In this chapter we collect some background material that will be needed later in the thesis. We
will also give some examples and fix our notation.

2.1. Quivers with relations and quiver mutation

In this section we present the basic notions about quivers with relations and quiver mutations.
By a quiver we always mean a finite directed graph Q, consisting of a finite set of vertices Q0 and
a finite set of arrows Q1 between them. The maps s : Q1 → Q0 and t : Q1 → Q0 map each arrow
to its starting point and its target point respectively. Special vertices are sinks (i.e. vertices without
outgoing arrows) and sources (i.e. vertices without incoming arrows). The underlying graph of a
quiver Q is the graph obtained from Q by replacing the arrows in Q by undirected edges.

A path is an ordered sequence of arrows α = αn . . . α2α1 with t(αi) = s(αi+1) for 1 ≤ i < n. For
such a path α define s(α) = s(α1) to be its start vertex and t(α) = t(αn) to be its end vertex. For
every vertex i ∈ Q0 we also have a trivial path ei of length zero with s(ei) = t(ei) = i.

A quiver Q′ with maps s′, t′ : Q′1 → Q′0 is a subquiver of a quiver Q if Q′0 ⊆ Q0, Q′1 ⊆ Q1 and
where t′(α) = t(α) ∈ Q′0, s′(α) = s(α) ∈ Q′0 for any arrow α ∈ Q′1. A subquiver is called a full
subquiver if for any two vertices i and j in the subquiver, the subquiver also will contain all arrows
between i and j present in Q. An oriented cycle is a subquiver of a quiver whose underlying graph
is a cycle, and whose arrows are all oriented in the same direction. By contrast, a non-oriented cycle
is a subquiver of a quiver whose underlying graph is a cycle, but not all of its arrows are oriented
in the same direction. An acyclic quiver is a quiver without oriented cycles. Throughout the thesis,
unless explicitly stated, we assume that quivers are connected.

Now, let Q be a quiver and K be a field. We can form the path algebra KQ of a quiver Q,
where the basis of KQ is given by all paths in Q, including the trivial paths ei at each vertex i of
Q. Multiplication in KQ is defined by concatenation of paths. Since our convention is to read paths
from right to left, the product of two paths α and β is defined to be the concatenated path αβ if
s(α) = t(β) and zero otherwise. The unit element of KQ is the sum of all trivial paths in Q, i.e.
1KQ =

∑
i∈Q0

ei. The set {ei : i ∈ Q0} of all trivial paths ei is a complete set of primitive orthogonal

idempotents for KQ.

Example 2.1.1.

(i) Let Q be the following quiver

1 α

consisting of a single vertex and a single loop. The K-basis of the path algebra KQ is
{e1, α, α

2, . . . } and the multiplication is given by

e1α
l = αle1 = αl, for all l ≥ 0,

αlαk = αl+k, for all l, k ≥ 0,

where α0 = e1. Hence, KQ is isomorphic to the polynomial algebra K[x] in one indetermi-
nate x.

(ii) Let Q be an A3-quiver with the following orientation

17
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α β

1 2 3 .
Then the path algebra KQ has as K-basis {e1, e2, e3, α, β, βα}. The multiplication is defined
by concatenation of paths, i.e. the multiplication table is given by

e1 e2 e3 α β βα
e1 e1 0 0 0 0 0
e2 0 e2 0 α 0 0
e3 0 0 e3 0 β βα
α α 0 0 0 0 0
β 0 β 0 βα 0 0
βα βα 0 0 0 0 0

.

Then KQ is isomorphic to the 3× 3 lower triangular matrix algebra

T3(K) =

 K 0 0
K K 0
K K K


with ei 7→ Eii, α 7→ E21, β 7→ E32 and βα 7→ E31 (where the Eij denote the elementary
matrices).

Let Q be a quiver and rad(KQ) be the ideal of KQ generated by all arrows of Q. An ideal
I ⊆ KQ is called admissible if there exists m ≥ 2 such that radm(KQ) ⊆ I ⊆ rad2(KQ). A relation
in Q with coefficients in K is a K-linear combination k1α1 + · · ·+ kmαm of paths αi in Q having the
same starting point and the same end point. If m = 1, we call the relation a zero-relation. A relation
of the form α1 − α2 is called a commutativity relation. Let (ρj)j∈J be a set of relations for Q such
that the ideal I generated by all the ρj is admissible. Then the algebra KQ/I is said to be a quiver
with relations.

We now recall the definition of quiver mutation which was introduced by Fomin and Zelevinsky
in [31].

Definition 2.1.2. Let Q be a quiver without loops and oriented 2-cycles. The mutation of Q at a
vertex k to a new quiver µk(Q) is obtained as follows:

(1) Add a new vertex k∗.
(2) Suppose that the number of arrows i→ k in Q equals a, the number of arrows k → j equals

b and the number of arrows j → i equals c ∈ Z. Then we have c−ab arrows j → i in µk(Q).
Here, a negative number of arrows means arrows in the opposite direction.

(3) For any arrow i→ k (resp., k → j) in Q add an arrow k∗ → i (resp., j → k∗) in µk(Q).
(4) Remove the vertex k and all its incident arrows.

No other arrows are affected by this operation. Note that steps (2) and (3) should be carried out for
all possible pairs i, j of vertices in Q.

Example 2.1.3. Now, we compute some mutations of small quivers of type A, D and Ã; for the
corresponding (extended) Dynkin diagrams see Figure 2.1.

(i) First, we consider the quiver Q of type A3 again.

1 2 3
If we mutate at vertex 2 we have a = 1 arrow from vertex 1 to vertex 2, b = 1 arrow from
vertex 2 to vertex 3 and no arrows from vertex 3 to vertex 1. Thus, we have c − ab = −1
arrow from vertex 3 to vertex 1 in µ2(Q), i.e. there is one arrow from vertex 1 to vertex 3:

1 3

2∗

.
(ii) Next we consider the following quiver Q of type Ã2:
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1 2

3

.
If we mutate at vertex 2 there is a = 1 arrow 1 → 2, b = 1 arrow 2 → 3 and one arrow
1 → 3, i.e. c = −1. Thus, we have c − ab = −2 arrows 3 → 1 in µ2(Q), i.e. there are two
arrows from vertex 1 to vertex 3:

1

3

2∗ .
(iii) Finally, consider the quiver Q of type D4 below:

1 2

3

4 .
If we mutate at vertex 2 there is a = 1 arrow 1 → 2, b1 = 1 arrow 2 → 3 and no arrows
between vertex 3 and vertex 1. Thus, we have c1 − ab1 = −1 arrow 3 → 1 in µ2(Q), i.e.
there is one arrow from vertex 1 to vertex 3. Moreover, we have b2 = 1 arrow 2→ 4 and no
arrows between vertex 4 and vertex 1. Thus, we have c2 − ab2 = −1 arrow 4→ 1 in µ2(Q),
i.e. there is one arrow from vertex 1 to vertex 4:

1

4

3

2∗

.

Quiver mutation is an involution, that is, we have µk(µk(Q)) = Q. A special case of quiver
mutation is the mutation at a sink or a source. In this case, the mutation only reverses the arrows
incident with the mutated vertex. Two quivers are called mutation equivalent (sink/source equivalent)
if one can be obtained from the other by a finite sequence of mutations (at sinks and/or sources).
The mutation class of a quiver Q is the class of all quivers mutation equivalent to Q. The mutation
class of a quiver Q can be either finite or infinite. If Q has a finite mutation class, then Q is called a
quiver of finite mutation type.

The classification of the quivers with a finite mutation class has recently been settled in [29].
We point out that the classification of acyclic quivers with finite mutation type has been obtained
in [22]:

Theorem 2.1.4 (Buan and Reiten [22]). Let Q be a finite acyclic quiver. Then the mutation class
of Q is finite if and only if Q has at most two vertices, or Q is a Dynkin quiver of type A, D, E or
an extended Dynkin quiver of type Ã, D̃, Ẽ.

See Figure 2.1 for an illustration of the (extended) Dynkin diagrams of types A, D, E, Ã, D̃
and Ẽ.

Furthermore, we have the following well-known lemma, see for example Fomin and Zelevinsky in
Proposition 9.2 in [32].

Lemma 2.1.5. If two quivers Q,Q′ have the same underlying graph and that graph is a tree, then Q
and Q′ are mutation equivalent.
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An : • • . . . • n vertices

Dn :
•

• • . . . •
n vertices

E6 :
•

• • • • •

E7 :
•

• • • • • •

E8 :
•

• • • • • • •

Ãn :
•

nnnnnnnnnnnn

PPPPPPPPPPPP

• • . . . • •
n+ 1 vertices

D̃n :
• •

• • . . . • •
n+ 1 vertices

Ẽ6 :

•

•

• • • • •

Ẽ7 :
•

• • • • • • •

Ẽ8 :
•

• • • • • • • •

Figure 2.1. The (extended) Dynkin diagrams of types A, D, E, Ã, D̃ and Ẽ. For
each quiver of type A, D, E, D̃ and Ẽ, the orientation of the edges can be chosen

arbitrarily (see Lemma 2.1.5). For a quiver of type Ã different choices of the
orientations may give different mutation classes (see Lemma 3.1.3).
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Proof. We will show that any two orientations of a tree are mutation equivalent. More precisely,
using induction on the number of vertices of Q, we will show that we can arbitrarily orient the arrows
of Q by applying a sequence of sink/source mutations.

If Q consists only of a single vertex, there is nothing to prove. Otherwise, we choose a vertex
l ∈ Q0 of valency 1 (such a vertex exists since Q is a tree, i.e. Q contains no cycles) and apply the
induction assumption to the quiver obtained from Q by deleting the vertex l and the incident arrow,
which we denote by Q\{l}. So we are able to arbitrarily reorient the arrows of Q\{l} by a sequence
of sink/source mutations. The remaining arrow between the unique vertex adjacent to l and l can
then be given an arbitrary orientation by a (sink/source) mutation at l. �

Now we give an example of a quiver with infinite mutation class.

Example 2.1.6. Let Q be the following quiver:
•1 // •2 //// •3 .

We claim that doing a mutation first at vertex two and then at vertex three and repeating this
m-times, i.e. (µ3 ◦ µ2)m(Q), will give a quiver of the following form

•2

  BBBBBBBB

  BBBBBBBB

•1

2m+1
>>||||||||

•3
2m

oo

,

i.e. there are 2m+ 1 arrows from vertex 1 to vertex 2 and 2m arrows from vertex 3 to vertex 1. We
shall show this by induction on m.

If we first mutate at vertex 2, and then mutate at vertex 3, we get the following quivers:

µ2(Q) =

•2

~~||||||||

•1 //// •3

``BBBBBBBB

``BBBBBBBB
, µ3(µ2(Q)) =

•2

  BBBBBBBB

  BBBBBBBB

•1

>>||||||||

>>||||||||

>>||||||||
•3oo oo

.

Thus, we have 2m + 1 = 3 arrows from vertex 1 to vertex 2 and 2m = 2 arrows from vertex 3 to
vertex 1.

Now, let Q′ be the quiver which we get after applying (µ3 ◦µ2)m. Suppose, by induction, Q′ has
the form

•2

  BBBBBBBB

  BBBBBBBB

•1

2m+1
>>||||||||

•3
2m

oo

.

Then mutation first at vertex 2 and then at vertex 3 leads to

µ2(Q′) =

•2
2m+1

~~||||||||

•1 2m+2
// •3

``BBBBBBBB

``BBBBBBBB , µ3(µ2(Q′)) =

•2

  BBBBBBBB

  BBBBBBBB

•1

2(m+1)+1
>>||||||||

•3
2(m+1)

oo

.

Hence, by induction, the iterated mutation (µ3 ◦ µ2)m(Q) has the form as claimed. Note that we
have constructed a sequence of mutations where the number of arrows is increasing after each step.
Thus, the mutation class of Q is infinite.
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2.2. Derived equivalences and tilting complexes

In this section, we briefly review the fundamental results on derived equivalences. First, we
recall some background and the definition of a derived category following [37]. There are many good
references for this material, see for example [35] and [40] amongst many others.

We start with an abelian category A. The set of all morphisms from objects X to Y in A
is denoted by HomA(X,Y ). Then the category of complexes C(A) has as objects complexes, i.e.
sequences of objects Xn ∈ A and morphisms dn : Xn → Xn+1

. . . −→ Xn−1 dn−1

−→ Xn dn−→ Xn+1 −→ . . .

such that dndn−1 = 0 for all n. The morphisms of complexes f : X → Y are sequences f = (fn)n∈Z
of morphisms fn : Xn → Y n in A such that dnfn = fn+1dn for all n. A complex X = (Xn, dn) is
a stalk complex, if there exists n0 such that Xn0 6= 0 and Xn = 0 for all n 6= n0. The object Xn0 is
then called the stalk. Note that each object X of A can be identified with a stalk complex with stalk
X in degree zero. Thus, there is a full embedding of A into the category of complexes C(A).

Morphisms f, g : X → Y in C(A) are called homotopic, denoted f ∼ g, if there exist maps
sn ∈ HomA(Xn, Y n−1) such that fn − gn = dn−1sn + sn+1dn for all n. We define the homo-
topy category K(A): its objects are the same as those in C(A) and the morphisms are given by
equivalence classes HomK(A)(X,Y ) = HomC(A)(X,Y )/Ht(X,Y ), where Ht(X,Y ) = {f : X → Y :
f homotopic to zero}.

For any k ∈ Z we have the shift functor [k] : K(A) → K(A) defined on objects by (X[k])n =
Xn+k, dnX[k] = (−1)kdn+k

X and on morphisms by f [k] : X[k] → Y [k], f [k]n = fn+k for all n ∈ Z. In
particular, we have an automorphism [1] : K(A)→ K(A).

For f : X → Y in C(A) the mapping cone M(f) ∈ C(A) is defined by

M(f)n = Xn+1 ⊕ Y n and dnM(f) =

 dnX[1] 0

fn+1 dnY

 ,

where dnX[1] = −dn+1
X . Furthermore, we have the canonical morphisms α(f) : Y → M(f), α(f)n =(

0
idY n

)
and β(f) : M(f)→ X[1], β(f)n =

(
idXn+1 0

)
, and the diagram

X
f−→ Y

α(f)−→M(f)
β(f)−→ X[1]

is called a standard triangle in K(A). The homotopy category K(A) is a triangulated category
(due to Verdier [54]), if one defines distinguished triangles to be isomorphic (in K(A), i.e. homotopy
equivalent) to a standard triangle. For the definition of a triangulated category and formal properties
see for instance [38] and [46].

The nth-cohomology of a complex X in C(A) is the quotient module Hn(X) = ker(dn)/im(dn−1).
In the derived category of A, denoted D(A), we are interested in objects up to isomorphism in co-
homology, so we formally invert morphisms in K(A) which induce isomorphisms in cohomology, the
so-called quasi-isomorphisms. More precisely, a morphism f : X → Y is a quasi-isomorphism if for
all n the map Hn(f) : Hn(X) → Hn(Y ), x + im(dn−1

X ) 7→ f(x) + im(dn−1
Y ), is an isomorphism. In

particular, the class of quasi-isomorphisms S in K(A) forms a multiplicative system (which is anal-
ogous to the corresponding concept in classical ring theory) which is compatible with triangulation.
One then defines the derived category D(A) to be the ‘localisation’ of K(A) with respect to S:

D(A) := K(A)[S−1].

Let L : K(A)→ D(A) denote the localisation functor. Then it can be shown that there is a unique
triangulated structure on D(A) such that L is a triangulated functor and any functor F : K(A)→ B,
where B is any category, such that F (s) is an isomorphism for all s ∈ S factors uniquely through L.
The details of the construction are quite technical and require some set-theoretic considerations. An
exposition of the proof is given in [35, Chapter 1, §3], and the set-theoretic considerations are dealt
with in, among other places, [55, Chapter 10]. Note that in K(A) an object X is quasi-isomorphic to
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its projective and injective resolutions, so that in D(A), X becomes isomorphic to them and hence
can be identified with all its projective and injective resolutions.

From now on let K be an algebraically closed field. All algebras are assumed to be finite di-
mensional K-algebras. For a K-algebra A the bounded derived category of finite dimensional (left)
A-modules, i.e. the derived category of bounded complexes, is denoted by Db(A-mod), or short-hand
by Db(A). Note that all modules will be assumed to be left modules in the following.

Before we recall the results on derived equivalences we will say a few words on the derived
category of a path algebra A = KQ of a Dynkin quiver Q. For the proofs and more details we refer
to [34].

The indecomposable objects in Db(A) are determined as follows:

Lemma 2.2.1 (Happel [34]). Let A = KQ be the path algebra of a Dynkin quiver Q and let X be an
indecomposable object in Db(A). Then X is quasi-isomorphic to a stalk complex with indecomposable
stalk.

A good way of illustrating such a category is to draw the so-called Auslander-Reiten-quiver/AR-
quiver (when it exists). Note that all the categories occurring in this thesis have Auslander-Reiten-
triangles or Auslander-Reiten-sequences and hence, one can, in principle, draw the AR-quiver. The
vertices are given by the isomorphism classes of the indecomposable objects and the arrows are the
irreducible maps. We can describe the AR-quiver of the bounded derived category of A = KQ (Q a
Dynkin quiver) in terms of the AR-quiver of A: let Γ = ΓA be the AR-quiver of A. Denote by Γ[i] a
copy of Γ for i ∈ Z. Recall that the indecomposable projective modules as well as the indecomposable
injective modules are indexed by the vertices of Q. Then we denote by Γ̃ the quiver obtained from the
disjoint union

⋃̇
i∈ZΓ[i] by adding an arrow from the injective module Ia[i] to the projective module

Pb[i+ 1] whenever there is an arrow from a to b in Q.

Theorem 2.2.2 (Happel [34]). Let A = KQ be the path algebra of a Dynkin quiver Q. The
AR-quiver Γ(Db(A)) is Γ̃.

For a Dynkin quiver Q the infinite translation quiver ZQ is constructed as follows (see Riedtmann
in [50]): (ZQ)0 = Z × Q0 = {(n, x) : n ∈ Z, x ∈ Q0}. For each arrow α : x → y in Q1, there exist
two arrows

(n, α) : (n, x)→ (n, y) and (n, α′) : (n− 1, y)→ (n, x)
in (ZQ)1, and these are all arrows in (ZQ)1. Then τ : ZQ→ ZQ is the automorphism of ZQ taking
(n, x) to (n − 1, x) and (n, α) to (n − 1, α) for all n ∈ Z, x ∈ Q0 and α ∈ Q1. τ is called the
Auslander-Reiten translation. In the usual way of drawing ZQ in the literature the AR-translation
shifts each copy of Q one to the left (for instance see Example 2.2.4 below).

Corollary 2.2.3 (Happel [34]). Let A = KQ be the path algebra of a Dynkin quiver Q. Then
Γ(Db(A)) = ZQ.

Example 2.2.4. Let A = KQ be the path algebra of a linearly oriented A3-quiver:
α β

1 2 3 .
In order to draw the Auslander-Reiten quiver we want to describe all the indecomposable A-modules.
We have a decomposition A = A · 1 =

⊕
i∈Q0

Aei and hence, the (left) A-modules Pi = Aei are
the indecomposable projective A-modules. These are spanned by all paths starting at i, that is,

P1 = span{e1, α, βα} =:
1
2
3

, P2 = span{e2, β} =: 2
3 and P3 = span{e3} =: 3.

The injective indecomposable A-modules are denoted by Ii = HomK(eiA,K), i ∈ {1, 2, 3}, and

we get I1 = P1/span{α, βα} =: 1, I2 = P1/span{βα} =: 1
2 and I3 ∼= P1.

Finally, the simple A-modules are denoted by Si, i ∈ {1, 2, 3}, and we get S1
∼= I1, S2 =

span{e2, β}/span{β} =: 2 and S3
∼= P3.

Thus, the AR-quiver of A is given by
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3 2 1

2
3

1
2

1
2
3

τ .
Then the AR-quiver of the bounded derived category Db(A) is

3 2 1

2
3

1
2

1
2
3

1
2[1]
3

2[1]3

3[1] 2[1] 1[1]

1[1]2

τ
.

Note that 1
2 is quasi-isomorphic to its projective resolutions and 2

3 is quasi-isomorphic to its

injective resolutions. Hence, the fat arrows in the picture can be constructed as follows:

projective resolution of 1
2 : 0 → 3 →

1
2
3

→ 0

↓ id ↓ 0
3[1] : 0 → 3 → 0

injective resolution of 2
3[1] : 0 →

1
2
3

→ 1 → 0

↑ 0 ↑ id
1 : 0 → 1 → 0

Recall that two algebras A and B are called derived equivalent if Db(A) and Db(B) are equivalent
as triangulated categories. A famous theorem of Rickard [49] characterises derived equivalence in
terms of so-called tilting complexes, whose definition is given now.

Definition 2.2.5. A tilting complex T over A is a bounded complex of finitely generated projective
A-modules satisfying the following conditions:

(i) HomDb(A)(T, T [i]) = 0 for all i 6= 0, where [.] denotes the shift functor in Db(A);
(ii) the category add(T ) (i.e. the full subcategory consisting of direct summands of finite di-

rect sums of T ) generates the homotopy category Kb(PA) of projective A-modules as a
triangulated category (that is, Kb(PA) is the smallest triangulated category which contains
add(T )).

Example 2.2.6. Let A be the path algebra of the quiver
α β

1 2 3 .
Recall that the projective indecomposable A-modules Pi = Aei, i ∈ {1, 2, 3}, are spanned by all
paths starting at i, i.e. we have P1 = span{e1, α, βα}, P2 = span{e2, β} and P3 = span{e3}. Any
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homomorphism ϕ : Aej → Aei of left A-modules is uniquely determined by ϕ(ej) ∈ ejAei, the
K-vector space generated by all paths in Q from vertex i to vertex j that are non-zero in A. Since
we deal with left modules and read paths from right to left, a nonzero path from vertex i to j

gives a homomorphism Pj → Pi by right multiplication. Thus, we have homomorphisms P2
α−→ P1,

e2 7→ e2αe1, β 7→ βαe1, P3
β−→ P2, e3 7→ e3βe2 and P3

βα−→ P1, e3 7→ e3βαe1, and scalar multiples of
these homomorphisms. In the following we are dealing with a basis of the space of homomorphisms,
i.e. we will often ignore the scalars.

Hence, we can form a complex T =
⊕3

i=1 Ti with

T1 : 0 → P1 → 0
T2 : 0 → P2 → 0

T3 : 0 → P3
β−→ P2 → 0

where T1 and T2 are concentrated in degree zero and T3 is concentrated in degrees −1 and 0.
We claim that T is a tilting complex over A. First we have to check that HomKb(A)(T, T [i]) = 0

for i 6= 0 since this then also holds in the localised category Db(A). This is clear for |i| ≥ 2 since T
is concentrated in two degrees.

We begin with possible maps T3 → T3[1] and T3 → T3[−1]:

0 → P3
β−→ P2 → 0

↓ β
0 → P3

β−→ P2 → 0
↓ 0

0 → P3
β−→ P2 → 0

The first homomorphism is homotopic to zero. In the second case there is no non-zero homomorphism
P2 → P3 since there is no non-zero path from vertex 3 to vertex 2 in the quiver of A.

Next we consider possible maps T3 → Tj [1], j 6= 3. These maps are given by a map of complexes
as follows

0 → P3
β−→ P2 → 0

↓
0 → Q → 0

where Q could be either P1 or P2. There exist non-zero homomorphisms of complexes. But they
are all homotopic to zero since every path from vertex 1 or 2 to vertex 3 ends with β. Thus, every
homomorphism P3 → Q can be factored through the map β : P3 → P2. Immediately from the
definition we see that Hom(T, Tj [1]) = 0 for j 6= 3 and thus we have shown that Hom(T, T [1]) = 0.
Note that we already have Hom(T, T [−1]) = 0 since there are no non-zero homomorphisms from P1

or P2 to P3.
Secondly we have to show that add(T ) generates Kb(PA) as a triangulated category. We denote

by Pk[n] the stalk complex with Pk concentrated in degree −n. Since P1[0] and P2[0] occur as
summands of T , P1[0] and P2[0] are in add(T ) and therefore P1[n] and P2[n] are in the triangulated
category generated by add(T ) for all n. Thus, we have to check that P3[n] also is in the triangulated
category generated by add(T ).

There exists a homomorphism of complexes f from P2[0] to the complex T3 : 0→ P3
β−→ P2 → 0

given by idP2 in degree zero. Its mapping cone is M(f) : 0 → P2 ⊕ P3
(id,β)−→ P2 → 0 and we want to

check that M(f) is homotopy equivalent to P3[1]. For this, we define maps g := (0, id) : M(f)→ P3[1]
and h := (−β, id) : P3[1]→M(f). We can see that gh = id and hg ∼ id and so M(f) ∼ P3[1].

Hence, there is a triangle of the form

P2[0]︸ ︷︷ ︸
∈add(T )

f−→ T3︸︷︷︸
∈add(T )

→ P3[1]→ P2[1]︸ ︷︷ ︸
∈add(T )

It follows that P3[1] is in the triangulated category generated by add(T ) and therefore also P3[n] for
all n.
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Having all these stalk complexes of the projective indecomposable modules in the triangulated
category generated by add(T ) implies that add(T ) generates Kb(PA) as a triangulated category
since the smallest triangulated category containing the three indecomposable projectives is precisely
Kb(PA).

Additionally, we note that the mapping cone of a map f : Pi[0]→ Pj [0] is M(f) : 0→ Pi[0]
f−→

Pj [0]→ 0 and we can construct all bounded complexes of projective modules.

Theorem 2.2.7 (Rickard [49]). Two algebras A and B are derived equivalent if and only if there
exists a tilting complex T for A such that the endomorphism algebra EndDb(A)(T ) ∼= B.

Although Rickard’s theorem gives us a criterion for derived equivalence, it does not give a decision
process nor a constructive method to produce tilting complexes. Thus, given two algebras A and B
in concrete form, it is usually still unknown whether they are derived equivalent or not, as we do not
know how to construct a suitable tilting complex or to prove the non-existence of such.

In Section 3.2 we will also need the following Proposition:

Proposition 2.2.8 (Rickard [49]). If A and B are derived equivalent algebras, then the opposite
algebras Aop and Bop are derived equivalent.

2.3. Computation of Cartan matrices

Let A = KQ/I be an algebra given by a quiver Q = (Q0, Q1) with relations with unit element∑
i∈Q0

ei+I. We recall that we have a decomposition A = A ·1 =
⊕

i∈Q0
Aei and hence, the (left) A-

modules Pi = Aei are the indecomposable projective A-modules. The Cartan matrix CA = (cij) of A
is the n×n-matrix whose entries are cij = dimK HomA(Pj , Pi), where n = |Q0|. Any homomorphism
ϕ : Aej → Aei of left A-modules is uniquely determined by ϕ(ej) ∈ ejAei, the K-vector space
generated by all paths in Q from vertex i to vertex j that are non-zero in A. In particular, we have
cij = dimK ejAei so that computing entries of the Cartan matrix for A reduces to counting paths in
the quiver Q which are non-zero in A.

Example 2.3.1. First, we consider two quivers which are in the mutation class of Ã2. The third
quiver is a quiver in the mutation class of D4.

(i) First, we have a look at the path algebra of the following quiver Q:

1 2

3

α3 α2

α1
.

Its Cartan matrix is

 1 1 2
0 1 1
0 0 1

.

(ii) Now consider an algebra which corresponds to the quiver below

1 2

3

α1

α3 α4
α2

where we have three zero-relations α1α3, α2α1 and α3α2. Note that the paths α3α4 and

α4α1 are not zero. Thus, we can compute the Cartan matrix to be

 2 1 1
1 1 2
1 0 1

.

(iii) Finally, we consider an algebra which corresponds to the quiver
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1 2

4

3

α3

α1 α2

α4 α5

with four zero-relations α1α3, α3α2, α4α3, α3α5 and one commutativity relation α2α1 =

α5α4. Then we can compute the Cartan matrix to be


1 1 1 1
1 1 0 0
0 1 1 0
0 1 0 1

.

To calculate the endomorphism algebra EndDb(A)(T ) of a tilting complex T over the algebra A,
we can use the following statement which explicitly gives the Cartan matrix of the endomorphism
algebra in terms of the tilting complex and the Cartan matrix of A.

Proposition 2.3.2 (Happel [34]). For an algebra A let Q = (Qr)r∈Z and R = (Rs)s∈Z be bounded
complexes of projective A-modules. Then∑

i

(−1)i dimK HomDb(A)(Q,R[i]) =
∑
r,s

(−1)r−s dimK HomA(Qr, Rs).

In particular, if Q and R are direct summands of the same tilting complex then

dimK HomDb(A)(Q,R) =
∑
r,s

(−1)r−s dimK HomA(Qr, Rs).

Example 2.3.3. Let A be the path algebra of the following quiver Q
α β

1 2 3 .
We look at the tilting complex of Example 2.2.6 again, i.e. T =

⊕3
i=1 Ti with T1 = P1[0], T2 = P2[0]

and T3 = 0 → P3
β−→ P2 → 0 in degrees −1 and 0. We want to calculate E := EndDb(A)(T ). First,

we compute the Cartan matrix of A as

 1 1 1
0 1 1
0 0 1

 and then we also compute the Cartan matrix

of E by the formula given in Proposition 2.3.2 and get

 1 1 0
0 1 0
0 1 1

.

Next, we define homomorphisms of complexes between the summands of T which correspond to
the arrows of the quiver Q′ of E. Note that the homomorphisms are opposite to the arrows of the
quiver since we read paths from right to left (and thus, a map Pi → Pj corresponds to an arrow
j → i).

The identity map id : P2 → P2 (in degree zero) gives rise to an embedding id : T2 → T3 and we
have the homomorphism α : T2 → T1 since there is the arrow α from vertex 1 to vertex 2 in Q. There
are no other non-zero homomorphisms between the summands of T and thus, we get the quiver Q′

of E as follows
α

1 2 3
id

.
According to the Cartan matrix of E there are also no relations in Q′. Hence, by Theorem 2.2.7, A
is derived equivalent to E which is the path algebra of the quiver Q′.

2.4. Cluster-tilted algebras

In this section we assume that all quivers are without loops and oriented 2-cycles. We will give
the general definition of a cluster-tilted algebra which was introduced by Buan, Marsh and Reiten
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in [20]. However, in this thesis we will only deal with explicit descriptions of cluster-tilted algebras
as quivers with relations. We begin with the definition of a cluster category which was given in [18].

Definition 2.4.1. Let Q be an acyclic quiver. The cluster category CQ is the orbit category of the
bounded derived category Db(KQ) modulo the functor τ−1[1], where τ denotes the Auslander-Reiten
translation and [1] is the shift functor on the triangulated category Db(KQ).

The Auslander-Reiten translation is defined in terms of almost split sequences, see for instance [7]
and [9]. However, in this thesis we will not need this description. We will only need to know its
action on the Auslander-Reiten-quiver (for the Dynkin case see Section 2.2).

Example 2.4.2. LetA = KQ be the path algebra of a linearly orientedA3-quiver as in Example 2.2.4.
From the AR-quiver of Db(A) we can find the AR-quiver of the cluster category CA3 as

3 2 1

2
3

1
2

1
2
3

1
2[1]
3

2[1]3

3[1]

τ

since 2[1] ∼= 3, 1
2 [1] ∼= 2

3 and 3[2] ∼=
1
2
3

.

Objects in CQ are the objects in Db(KQ) and morphisms from X to Y are given by

HomCQ(X,Y ) =
⊕
p∈Z

HomDb(KQ)(X, (τ
−1[1])pY ).

That is, there are more morphisms in CQ than in Db(KQ). Furthermore, one defines Ext1
CQ(X,Y ) =

HomCQ(X,Y [1]).

Example 2.4.3. We look at the algebra of Example 2.4.2 again. Then there are additional maps:

2
3[1] → 3 , since 2

3[1] → (τ−1[1])3 = 2[1] ∼= 3

1
2
3
[1] → 2

3 , since
1
2
3
[1] → (τ−1[1])23 = 1

2[1] ∼= 2
3

.

A crucial role is played by the cluster-tilting objects in the cluster category CQ which are in
bijection with the clusters in the corresponding cluster algebra (see [27]).

Definition 2.4.4. An object T of CQ is called a cluster-tilting object if Ext1
CQ(T, T ) = 0 and T is

maximal with respect to this property, that is, if Ext1
CQ(T ⊕ X,T ⊕ X) = 0, then X is a direct

summand of a direct sum of copies of T (i.e. X is in add(T )).
The endomorphism algebras of these cluster-tilting objects are called cluster-tilted algebras of

type Q.

Example 2.4.5. Let A be the algebra as in Example 2.4.2. Since Ext1
CQ(X,Y ) = HomCQ(X,Y [1]),

we can define the following two cluster-tilting objects:

T ′ =
1
2
3
⊕ 2

3 ⊕ 3 and T ′′ =
1
2
3
⊕ 1⊕ 3 .

We now examine the corresponding endomorphism algebras. The quivers Q′ and Q′′ of the cluster-
tilted algebras End(T ′) and End(T ′′) look as follows:
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1
2
3

2
3 3Q′ =

,

1
2
3

3

1

Q′′ =

.
Since we read paths from right to left the arrows of these quivers are opposite to the homomorphisms,
e.g. in Q′′ we have an arrow 3→ 1 since there is a map 1→ 2[1] ∼= 3.

In End(T ′) all the non-trivial homomorphisms are non-zero, i.e. there are no relations in Q′. In
End(T ′′) the three paths of length two in the oriented 3-cycle Q′′ are zero. These relations are given
by the three zero-maps as follows:

1 → 2[1] → 3[2] ∼=
1
2
3

1
2
3

→ 1 → 2[1] ∼= 3

3 →
1
2
3

→ 1

It is known by [19] that for any quiver Q′ mutation equivalent to Q, there is a cluster-tilted
algebra whose quiver is Q′. Moreover, by [17], it is unique up to isomorphism. Hence, there is a
bijection between the quivers in the mutation class of an acyclic quiver Q and the isomorphism classes
of cluster-tilted algebras of type Q.

When Q is a Dynkin (resp., extended Dynkin) quiver of type A, D or E (resp., Ã, D̃ or Ẽ) the
corresponding cluster-tilted algebras are said to be of Dynkin type (resp., extended Dynkin type).
Cluster-tilted algebras of Dynkin type have been investigated in [21], where it is shown that they
are Schurian and moreover they can be defined by using only zero- and commutativity relations that
can be extracted from their quivers in an algorithmic way. Recall that an algebra is Schurian if the
entries of its Cartan matrix are only 0 or 1. The relations of a cluster-tilted algebra of type Ã have
been determined in [3] - they can be defined by using only zero-relations (see Section 3.1.2).

2.5. Cluster-tilted algebras of type An

In this section we recall the explicit description of cluster-tilted algebras of Dynkin type A, as
quivers with relations. These are important objects in the definitions of cluster-tilted algebras of
types Ã and D.

Recall that a quiver of Dynkin type An is a quiver with n ≥ 1 vertices and underlying graph the
Dynkin diagram An. Since the orientation of the edges can be chosen arbitrarily (see Lemma 2.1.5),
we will start with the following directed graph

•1 // •2 // . . . // •n .
The quivers which are mutation equivalent to An have been explicitly determined by Buan and Vatne
in [23]. They can be characterised as follows.

Definition 2.5.1. The neighbourhood of a vertex x in a quiver Q is the full subquiver of Q on the
subset of vertices consisting of x and the vertices which are targets of arrows starting at x or sources
of arrows ending at x.

Proposition 2.5.2 (Buan and Vatne [23]). Let n ≥ 2. A quiver is mutation equivalent to An if
and only if it has n vertices, the neighbourhood of each vertex is one of the nine depicted in Figure 2.2,
and there are no cycles in its underlying graph apart from those induced by oriented cycles contained
in neighbourhoods of vertices.
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Figure 2.2. The nine possible neighbourhoods of a vertex • in a quiver which is
mutation equivalent to An, n ≥ 2. The three in the top row are the possible

neighbourhoods of a root in a rooted quiver of type A.

Now we present the relations of the quivers of cluster-tilted algebras of type An, which were given
in [25], and more generally for all Dynkin types in [21].

Remark 2.5.3. Given a quiver Q mutation equivalent to An, the relations defining the corresponding
cluster-tilted algebra AQ (which has Q as its quiver) are obtained as follows: any oriented 3-cycle

γ

α β

in Q gives rise to three zero-relations αγ, βα, γβ. There are no other relations.

For the definition of cluster-tilted algebras of types Ã and D we need special kinds of quivers
and cluster-tilted algebras of type A, whose definitions we now recall.

Definition 2.5.4. A rooted quiver of type A is a pair (Q, z) where Q is a quiver which is mutation
equivalent to An for some n ≥ 1, and z is a vertex of Q (the root) whose neighbourhood is one of the
three appearing in the top row of Figure 2.2 if n ≥ 2. The rooted quiver of type A is called attached
to the root z. If the root is clear from context, we do not mention it explicitly.

Remark 2.5.5. All vertices in a rooted quiver of type A have valency at most four. Moreover, the
root z has valency at most two and, if z has valency 2, then z is a vertex in an oriented 3-cycle.



CHAPTER 3

Type Ãn

The results of this chapter appeared in the author’s paper [11].

3.1. Cluster-tilted algebras of type Ãn

3.1.1. Mutation classes of Ãn-quivers. Quivers of type Ãn are just cycles with n+1 vertices.
If the cycle is oriented, then we get the mutation class of Dn+1 (see for instance Type IV in type D
in [53] or Lemma 3.1.1 below). If the cycle is non-oriented, we get what we call the mutation classes
of Ãn.

Lemma 3.1.1. The oriented n-cycle is mutation equivalent to Dn.

Proof. Let Q be the following quiver of type Dn

•1

•3

aaCCCC

}}{{{{
•4oo . . .oooo •n .oo

•2
Then we get an oriented cycle by applying the following sequence of mutations: µ2, µ3, µ4, . . . , µn.

�

Starting with a non-oriented (n+ 1)-cycle, we first have to fix one drawing of this cycle, i.e. one
embedding into the plane. Thus, we can speak of clockwise and anti-clockwise oriented arrows. But
we have to consider that this notation is only unique up to reflection of the cycle, i.e. up to changing
the roles of clockwise and anti-clockwise oriented arrows.

The following proposition is well-known. Since we could not find a suitable reference, we provide
a proof for the convenience of the reader.

Proposition 3.1.2. Let Q be a non-oriented cycle of length n + 1. Let s be the number of arrows
in Q which are oriented in the clockwise direction, and let r be the number of arrows in Q which are
oriented in the anti-clockwise direction. Then Q is sink/source equivalent to a quiver as depicted in
Figure 3.1.

r s

Figure 3.1

31
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Proof. First, we note that mutating at sinks or sources does not change the numbers of clockwise
and anti-clockwise oriented arrows. Since the cycle is non-oriented there exist at least one sink and
one source. Furthermore, the number of sinks equals the number of sources in Q and they appear
alternately in the cycle.

We begin with an arbitrary source S1 and move along the cycle in the clockwise direction until
we find the next source S2. If S2 = S1, then Q is of the required form.

Thus, let S2 6= S1. Then there is one sink x1 between S1 and S2. If we mutate at S2,

x1

S1

S2 x2

mutation
 

at S2

x1

S1

S2

the vertex x2 which follows S2 in the anti-clockwise direction is a new source or it is already x1. If
it is x1, this first step is finished. If it is a new source, we mutate at this source and continue this
procedure until the vertex which follows the mutated source in the anti-clockwise direction is not a
source, i.e. until this vertex is the sink x1:

x1

S1

S2

Hence, the sink x1 moves one arrow in the clockwise direction, i.e. there is one more arrow in the
(oriented) path between S1 and the new sink x1.

In the next step, we move again from S1 along the cycle in the clockwise direction and search for
the next source. Doing this iteratively, the sink x1 moves one arrow in the clockwise direction after
each step, i.e. this procedure ends with the required form. �

Thus, if two non-oriented cycles of length n+1 have the same parameters r and s (up to changing
the roles of r and s), then they are mutation equivalent. Lemma 6.8 in [30] proves that the converse
also holds:

Lemma 3.1.3 (Fomin, Shapiro and Thurston, Lemma 6.8 in [30]). Let C1 and C2 be two
non-oriented cycles, so that in C1 (resp., C2) there are s (resp., s̃) arrows oriented in the clockwise
direction and r (resp., r̃) arrows oriented in the anti-clockwise direction. Then C1 and C2 are
mutation equivalent if and only if the unordered pairs {r, s} and {r̃, s̃} coincide.

Thus, two non-oriented cycles of length n + 1 are mutation equivalent if and only if they have
the same parameters r and s (up to changing the roles of r and s).
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zα3

zα2

zα4

zα1

α1

α3

α4

α2

Qα2

Qα3

Qα1

Qα4

Figure 3.2. Quiver in Qn.

Remark 3.1.4. The ‘if’ part of Lemma 3.1.3 is exactly Proposition 3.1.2. The ‘only if’ part is a
consequence of some involved results regarding cluster algebras arising from marked Riemann surfaces
with triangulations. The precise technical details are beyond the scope of this thesis, the interested
reader is directed to [30] Lemma 6.8, Theorem 13.3 and Proposition 14.1.

Next we will provide an explicit description of the set of all quivers which are mutation equivalent
to any non-oriented cycle. This description is similar to the description of Type IV in type D in [53],
see also Definition 4.1.4. At the end of this section, we will separate this class into the different
mutation classes of Ãn-quivers.

Definition 3.1.5. Let Qn be the class of connected quivers with n + 1 vertices which satisfy the
following conditions (see Figure 3.2 for an illustration):

(i) There exists precisely one full subquiver which is a non-oriented cycle of length ≥ 2. Thus,
if the length is two, it is a double arrow.

(ii) For each arrow x
α−→ y in this non-oriented cycle, there may (or may not) be a vertex zα

which is not on the non-oriented cycle, such that there is an oriented 3-cycle of the form

x y

zα

α .

Apart from the arrows of these oriented 3-cycles there are no other arrows incident to
vertices on the non-oriented cycle.

(iii) If we remove all vertices in the non-oriented cycle and their incident arrows, the result is
a disjoint union of rooted quivers of type A, one for each zα (which we call Qα in the
following).

Remark 3.1.6. There can be more than one non-oriented cycle in a quiver of Qn, but not as a ‘full’
subquiver, e.g.
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1 2

34

contains exactly one full non-oriented cycle 1 → 2 ← 3 → 1. The cycle 1 → 2 ← 3 ← 4 ← 1 is also
non-oriented, but it is not a full subquiver.

Our convention is to choose only one of the double arrows to be part of the oriented 3-cycle in
the following case

α

and we will always choose the ‘upper’ arrow denoted by α.

Notation. Whenever we draw an edge
j k

the direction of the arrow between j and k is not
important for this situation; and whenever we draw a cycle

it is an oriented 3-cycle.

Lemma 3.1.7. Qn is closed under quiver mutation.

Proof. Let Q be a quiver in Qn and let i be some vertex. Note that the subquivers Q1 and Q2

highlighted in the pictures are rooted quivers of type A again.

If i is a vertex in one of the rooted quivers Qα of type A, but not one of the roots zα connecting this
rooted quiver of type A to the rest of the quiver Q, then mutation at i leads to a quiver µi(Q) ∈ Qn
since type A is closed under quiver mutation (see Proposition 2.5.2).

It therefore suffices to check what happens when we mutate at the other vertices. We will consider
the following four cases.

1) Let i be one of the roots zα, in particular not on the non-oriented cycle. For the situation
where the rooted quiver Qα of type A consists only of one vertex, we can look at the first mutated
quiver in case 2) below since quiver mutation is an involution. Thus, we have the following three
cases and their special cases where the non-oriented cycle is a double arrow:

j k

i

α

ml

Q1 Q2

or

j k

i

α

l

Q1

or

j k

i

α

l

Q1

,
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j k

i

α

ml

Q1 Q2

or

j k

i

α

l

Q1

or

j k

i

α

l

Q1

.

Then mutation at i leads to the following six quivers which have a non-oriented cycle one arrow
longer than for Q, and this is indeed a non-oriented cycle since the arrows j → i→ k have the same
orientation as α before.

i

j k

l m

Q1 Q2

or

i

j k

l

Q1

or

i

j k

l

Q1

i

j k

l m

Q1 Q2

or i

j k

l

Q1

or i

j k

l

Q1

The vertices l and m have at most two incident arrows in the quivers Q1 and Q2 since they had
at most four (resp., three) incident arrows in Q (see the description of quivers mutation equivalent
to quivers of type A in Section 2.5). Furthermore, if l or m has two incident arrows in the quiver Q1

or Q2, then these two arrows form an oriented 3-cycle as in Q. Thus, the mutated quiver µi(Q) is
also in Qn.

2) Let i be a vertex on the non-oriented cycle, and not part of any oriented 3-cycle. Then the
following three cases can occur:

j k

i

or
j k

i

or
j k

i

,

and mutation at i leads to
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j k
α

i

or
j k

i

or
j k

i

.

If i is a sink or a source in Q, the non-oriented cycle in µi(Q) is of the same length as before and
µi(Q) is in Qn. If there is a path j → i → k in Q, then the mutation at i leads to a quiver µi(Q)
which has a non-oriented cycle one arrow shorter than in Q.

Note that in this case the non-oriented cycle in Q consists of at least three arrows and, thus, the
non-oriented cycle in µi(Q) has at least two arrows. Thus, the mutated quiver µi(Q) is also in Qn.

3) Let i be a vertex on the non-oriented cycle which is part of exactly one oriented 3-cycle. Then
four cases can occur, but two of them have been dealt with by the second and third mutated quiver
in case 1) since quiver mutation is an involution. Thus, we only have to consider the following two
situations and their special cases where the non-oriented cycle is a double arrow.

i

j k

l

Q1

mutation
←→
at i

i

j k

l

Q1

ij

l

Q1

mutation
←→
at i

Q1

l

j i

After mutating at vertex i, the non-oriented cycle has the same length as before. Moreover, l has
the same number of incident arrows as before. Hence, µi(Q) is in Qn.

4) Let i be a vertex on the non-oriented cycle which is part of two oriented 3-cycles. Then three
cases can occur, but one of them has been dealt with by the first mutated quiver in case 1). Thus,
we only have to consider the following two situations and their special cases where the non-oriented
cycle is a double arrow.



3.1. CLUSTER-TILTED ALGEBRAS OF TYPE Ãn 37

i

j k

l m

Q1 Q2

mutation
←→
at i

i

j k

m l

Q2 Q1

ij

l

Q1

m

Q2

mutation
←→
at i

Q1

l

j i

Q2

m

After mutating at vertex i, the non-oriented cycle has the same length as before. Moreover, l and
m have the same numbers of incident arrows as before. Thus, the mutated quiver µi(Q) is in Qn. �

Remark 3.1.8. It is easy to see that all orientations of a circular quiver of type Ãn are in Qn (except
the oriented case; but this leads to the mutation class of Dn+1, see Lemma 3.1.1). Since Qn is closed
under quiver mutation, every quiver which is mutation equivalent to some quiver of type Ãn is in Qn
too.

Now we fix one drawing of a quiver Q ∈ Qn, i.e. one embedding into the plane, without arrow-
crossing. Thus, we can again speak of clockwise and anti-clockwise oriented arrows of the non-oriented
cycle. But we have to consider that this notation is only unique up to reflection of the non-oriented
cycle, i.e. up to changing the roles of clockwise and anti-clockwise oriented arrows. We define four
parameters r1, r2, s1 and s2 for a quiver Q ∈ Qn as follows:

Definition 3.1.9. Let r1 be the number of arrows which are not part of any oriented 3-cycle and
which fulfil one of the following two conditions:

(1) These arrows are part of the non-oriented cycle and they are oriented in the anti-clockwise
direction, see the left hand picture of Figure 3.3.

(2) These arrows are not part of the non-oriented cycle, but they are part of a rooted quiver
Qα of type A and the corresponding arrow α is oriented in the anti-clockwise direction, see
the right hand picture of Figure 3.3.

Let r2 be the number of oriented 3-cycles which fulfil one of the following two conditions:

(1) These cycles share one arrow α with the non-oriented cycle and α is oriented in the anti-
clockwise direction, see the left hand picture of Figure 3.4.

(2) These cycles are part of a rooted quiver Qα of type A and the corresponding arrow α is
oriented in the anti-clockwise direction, see the right hand picture of Figure 3.4.

Similarly, we define the parameters s1 and s2 with ‘clockwise’ instead of ‘anti-clockwise’.
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α

zα

Qα

Figure 3.3. Illustration for the parameter r1.

α α

zα

Qα

Figure 3.4. Illustration for the parameter r2.

Example 3.1.10. We denote the arrows which count for the parameter r1 by and the
arrows which count for s1 by . Furthermore, the oriented 3-cycles of r2 are denoted by

and the oriented 3-cycles of s2 are denoted by .

(i) Consider the following quiver Q1 ∈ Q6,

.

Here, we have r1 = 1, r2 = 0, s1 = 2 and s2 = 2.
Note that this example illustrates the affect of the choice made between the two arrows

occurring in the double arrow. Taking the other arrow would interchange the roles of ri
and si.

(ii) Consider the quiver Q2 ∈ Q8 of the following form

.

Now, we have r1 = 1, r2 = 2, s1 = 0 and s2 = 2.
(iii) The last quiver Q3 ∈ Q16 is of the following form
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and we have r1 = 3, r2 = 3, s1 = 4 and s2 = 2.

Lemma 3.1.11. If Q1 and Q2 are quivers in Qn, and Q1 and Q2 have the same parameters r1, r2, s1

and s2 (up to changing the roles of ri and si, i ∈ {1, 2}), then Q2 can be obtained from Q1 by iterated
mutation, where all the intermediate quivers have the same parameters as well.

Proof. It is enough to show that all quivers in Qn with parameters r1, r2, s1 and s2 can be
mutated to a quiver in normal form, see Figure 3.5, without changing the parameters r1, r2, s1

and s2.

r1

s1

r2

s2

Figure 3.5. Normal form for quivers in Qn.

In such a quiver, r1 is the number of arrows in the non-oriented cycle which are not part of
an oriented 3-cycle and which are oriented in the anti-clockwise direction, and s1 is the number of
arrows in the non-oriented cycle which are not part of an oriented 3-cycle and which are oriented
in the clockwise direction. Furthermore, r2 is the number of oriented 3-cycles sharing one arrow α
with the non-oriented cycle and α is oriented in the anti-clockwise direction and s2 is the number of
oriented 3-cycles sharing one arrow β with the non-oriented cycle and β is oriented in the clockwise
direction (see Definition 3.1.9).

We divide this process into five steps.
Step 1: Let Q be a quiver in Qn. We move all oriented 3-cycles of Q which are part of a

rooted quiver of type A towards the oriented 3-cycle which is attached to them and
which shares one arrow with the non-oriented cycle.

Method: Let C and C ′ be a pair of neighbouring oriented 3-cycles in Q (i.e. no arrow in the
(possibly non-oriented) path between them is part of an oriented 3-cycle) such that
the length of the unique minimal (possibly non-oriented) path between them is at
least one. By a ‘non-oriented path’ we mean a sequence of arrows αl, . . . , α1, where
we do not require that s(αi+1) = t(αi) for all i ∈ {1, . . . , l − 1}.
We want to move C and C ′ closer together by mutation.
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C C ′

x

y z

Qx

Qz

Q1

Q2
2

1

3 4

In the picture the Qi are subquivers of Q. Note that the arguments for a quiver with
arrow 3→ 4 are analogous and that these mutations can also be used if the arrows
between 3 and y are part of the non-oriented cycle (see Step 4).
Mutating at vertex 3 will produce a quiver µ3(Q) which looks as follows:

C ′C∗

2 3

1

4 y

x

z
Q2

Q1 Qx

Qz

.
Thus, the length of the (possibly non-oriented) path between C∗ and C ′ is one less
than the length of the (possibly non-oriented) path between C and C ′ and there is
a path of length one between C∗ and Q2.
In the situation of Step 1, i.e. if C is part of a rooted quiver Qα of type A, the
parameters r1, r2, s1 and s2 are left unchanged since mutation at vertex 3 does not
change the numbers of arrows and oriented 3-cycles in Qα.
If the arrows between 3 and y are part of the non-oriented cycle in Q, i.e. we are
in the situation of Step 4, we observe the following: suppose that the arrow 2 → 3
is part of the non-oriented cycle in Q. Then mutation at vertex 3 just changes
the order of the arrows in the non-oriented cycle, but not the number of clockwise
and anti-clockwise oriented arrows. Thus, the parameters are left unchanged. Now
suppose that the arrow 3→ 1 is part of the non-oriented cycle in Q. Then mutation
at vertex 3 moves the arrow 4→ 3 into the rooted quiver of type A attached to C∗.
However, the parameters remain unchanged since 4 → 3 and 3 → 1 have the same
orientation in the non-oriented cycle of Q.
Thus, after Step 1, we get a quiver where all oriented 3-cycles of the rooted quivers
of type A are close to the non-oriented cycle, with no arrow interfering.

Step 2: We move all oriented 3-cycles onto the non-oriented cycle.

Method: Let C be an oriented 3-cycle which shares the root zα with an oriented 3-cycle Cα
sharing an arrow α with the non-oriented cycle. Then we mutate at the vertex zα:

C

α

Cα

zα

12

54

mutation
 

at zα
zα

12

54

Hence, both of the oriented 3-cycles share one arrow with the non-oriented cycle and
these arrows are oriented as α before. Thus, the parameters r1, r2, s1 and s2 are left
unchanged. Furthermore, the length of the non-oriented cycle increases by 1.
By iterated mutation of this kind, we produce a quiver where all the oriented 3-cycles
share an arrow with the non-oriented cycle and the rooted quivers of type A are just



3.1. CLUSTER-TILTED ALGEBRAS OF TYPE Ãn 41

quivers with underlying graph a Dynkin diagram of type A.

Step 3: We move all arrows onto the non-oriented cycle.

Method: This is a similar process as in Step 2: let Cα be an oriented 3-cycle which shares
an arrow α with the non-oriented cycle. All arrows β attached to Cα can be moved
into the non-oriented cycle by iteratively mutating at the root zα. After mutating,
all these arrows have the same orientation as α in the non-oriented cycle (see the
pictures below). Thus, the parameters r1, r2, s1 and s2 are left unchanged.

a) Cα

zα

α

β

mutation
 

at zα

Cα∗

α∗β∗ zα

b) Cα

α

β

zα

mutation
 

at zα

Cα∗

α∗ β∗zα

Hence, we produce a quiver where all the rooted quivers of type A consist of just a
single vertex.

Step 4: Move oriented 3-cycles along the non-oriented cycle to get the form of Figure 3.6.

Method: First, we number all oriented 3-cycles by C1, . . . , Cr2+s2 in such a way that Ci+1

follows Ci in the anti-clockwise direction. As in Step 1 (assuming that the arrows
between 3 and y are part of the non-oriented cycle), we can move an oriented 3-
cycle Ci towards Ci+1, without changing the orientation of the arrows, i.e. without
changing the parameters r1, r2, s1 and s2.
Note that if the arrow 3→ 1 (in the first picture of Step 1) is part of the non-oriented
cycle, then mutation at vertex 3 moves one arrow into a rooted quiver of type A, i.e.
this arrow is no longer part of the non-oriented cycle. However, we can reverse its
direction by mutating at a sink or a source, respectively, and insert this arrow into
the non-oriented cycle again by mutation as in Step 3:

4

3 1

2

z

x

y

µ3
 

4 1

3

2

y z

x

µ3◦µ2
 

4 3

2

1

y

x

z
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C1

C2

C3

Cr2+s2

r1 + s1r2 + s2

Figure 3.6. Normal form of Step 4.

Doing this iteratively, we produce a quiver as in Figure 3.6, with r1 +s1 arrows which
are not part of any oriented 3-cycle and r2 + s2 oriented 3-cycles sharing one arrow
with the non-oriented cycle.

Step 5: Changing the orientation on the non-oriented cycle to the orientation of Figure 3.5.

Method: The part of the non-oriented cycle without oriented 3-cycles can be moved to the
desired orientation of Figure 3.5 via sink/source mutations, without mutating at the
‘end’ vertices which are attached to oriented 3-cycles. In this process, the parameters
r1 and s1 are left unchanged.
Each oriented 3-cycle shares one arrow with the non-oriented cycle. If all of these
arrows are oriented in the same direction, the quiver is in the required form (with
r2 = 0 or s2 = 0). Thus, we can assume that there are at least two arrows of the
non-oriented cycle which are part of two neighbouring oriented 3-cycles Ci and Ci+1,
respectively, and these arrows are oriented in opposite directions. If we mutate at
the connecting vertex of Ci and Ci+1, the directions of these arrows are changed:

xi1 3

2 4

Ci+1 Ci
mutation
←→
at xi xi1 3

4 2

C∗i+1 C∗i

Hence, these mutations act like sink/source mutations at the non-oriented cycle and
the parameters r2 and s2 are left unchanged. Thus, we can mutate at such connecting
vertices as in the part without oriented 3-cycles to reach the desired orientation of
Figure 3.5.

�

Theorem 3.1.12. Let Q ∈ Qn with parameters r1, r2, s1 and s2. Then Q is mutation equivalent to
a non-oriented cycle of length n+ 1 with parameters r = r1 + 2r2 and s = s1 + 2s2.

Proof. We can assume that Q is in normal form (see Lemma 3.1.11) and we label the root
vertices as in Figure 3.7. Mutation at the vertex xi of an oriented 3-cycle

Ci

xi

leads to two arrows of the following form
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xi

Thus, after mutating at all the xi, the parameter r2 is zero and we get r := r1 + 2r2 arrows
oriented anti-clockwise. Similarly, we get s := s1 + 2s2 arrows oriented clockwise. Hence, mutating
at all the xi and yi leads to a quiver with underlying graph Ãn as follows:

r1 + 2r2 s1 + 2s2

.

Since there is a non-oriented cycle in every Q ∈ Qn, these parameters r and s are non-zero. Thus,
the cycle above is also non-oriented. Hence, Q is mutation equivalent to a non-oriented cycle with
r = r1 + 2r2 arrows oriented anti-clockwise and s = s1 + 2s2 arrows oriented clockwise. �

r1

s1

r2

s2

x1x2

y1y2

xr2

ys2

Figure 3.7. Normal form of a quiver in Qn.

Theorem 3.1.13. Let Q1, Q2 ∈ Qn with parameters r1, r2, s1 and s2, respectively r̃1, r̃2, s̃1 and
s̃2. Then Q1 is mutation equivalent to Q2 if and only if r1 + 2r2 = r̃1 + 2r̃2 and s1 + 2s2 = s̃1 + 2s̃2

(or r1 + 2r2 = s̃1 + 2s̃2 and s1 + 2s2 = r̃1 + 2r̃2).

Proof. The ‘if’ part follows from Theorem 3.1.12. The ‘only-if’ part follows from Theorem
3.1.12 and Lemma 3.1.3. �

3.1.2. Relations for cluster-tilted algebras of type Ãn. In general, cluster-tilted algebras
are defined as endomorphism algebras of cluster-tilting objects in a cluster category [20] (see Sec-
tion 2.4). However, a cluster-tilted algebra of type Ãn can be constructed explicitly by a quiver with
relations KQ/I, where the quiver Q is in one of the mutation classes of Ãn [19] and the relations are
uniquely determined by its quiver [17].

It is known from [3] and [6] that the ideal I of relations can be generated by all paths of length
two in the oriented 3-cycles, i.e. in each oriented 3-cycle
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γ

α β

we have three zero-relations αγ, βα and γβ.

Remark 3.1.14. According to our convention after Remark 3.1.6 there are only three zero-relations
in the following quiver

γ

δ
β α

and here, these are αδ, βα and δβ.

Thus, a cluster-tilted algebra of type Ãn is gentle. We recall the definition of gentle algebras:

Definition 3.1.15. We call A = KQ/I a special biserial algebra if the following properties hold:
(1) Each vertex of Q is the starting point of at most two arrows and the end point of at most

two arrows.
(2) For each arrow α in Q there is at most one arrow β such that αβ /∈ I, and at most one

arrow γ such that γα /∈ I.
A is gentle if moreover:

(3) The ideal I is generated by paths of length 2.
(4) For each arrow α in Q there is at most one arrow β′ with t(α) = s(β′) such that β′α ∈ I,

and there is at most one arrow γ′ with t(γ′) = s(α) such that αγ′ ∈ I.

3.2. Derived equivalence classification of cluster-tilted algebras of type Ãn

In this section we provide a complete classification of cluster-tilted algebras of type Ãn up to
derived equivalence.

Lemma 3.2.1. Let A = KQ/I be a cluster-tilted algebra of type Ãn. Let r1, r2, s1 and s2 be the
parameters of Q which are defined in Definition 3.1.9. Then A is derived equivalent to a cluster-tilted
algebra corresponding to a quiver in normal form as in Figure 3.5.

Proof. First note that the Cartan determinant of a cluster-tilted algebra A of type Ãn is
detCA = 2r2+s2 (see [36, Theorem 1]). It follows that the number of oriented 3-cycles r2 + s2

is invariant under derived equivalence. [10, Proposition B] implies that the number of arrows is
invariant under derived equivalence, i.e. the number r1 + s1 is also an invariant. Later, we shall show
in the proof of Theorem 3.2.2 that even the parameters r1, r2, s1 and s2 themselves are invariants of
derived equivalence.

Our strategy in this proof is to go through the proof of Lemma 3.1.11 and define a tilting complex
for each mutation in the five steps. We show that if we mutate at some vertex k of the quiver Q and
obtain a quiver µk(Q), then the two corresponding cluster-tilted algebras are derived equivalent.

Step 1 Let A be a cluster-tilted algebra of type Ãn. We suppose that there is at least one
oriented 3-cycle C in a rooted quiver of type A. Then we mutate at vertex 3 in this
rooted quiver of type A as in the following situation

α3 α4

α1α2

1

2 3 4
Q2

Q1 Qx

Qz

x

y z

C

.

For a quiver with arrow 3→ 4 we refer to the end of this step.
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Using the relations described in Section 3.1.2 we can compute the (partial) Cartan

matrix of A to be


1 1 0 0 . . .
0 1 1 0 . . .
1 0 1 0 . . .
1 0 1 1 . . .
...

...
...

...
. . .

.

Since we deal with left modules and read paths from right to left, a non-zero path
from vertex i to j gives a homomorphism Pj → Pi by right multiplication where
Pi = Aei are the indecomposable projective A-modules. Hence, two arrows α : i→ j
and β : j → k give a path βα from i to k and the corresponding homomorphism
Pk → Pi is also denoted by βα.

In the situation above, we have homomorphisms P3
α3−→ P2 and P3

α4−→ P4 and
we can define a bounded complex of projective A-modules T =

⊕n+1
i=1 Ti, where

Ti : 0 → Pi → 0, i ∈ {1, 2, 4, . . . , n + 1}, are complexes concentrated in degree zero

and T3 : 0→ P3
(α3,α4)−→ P2 ⊕ P4 → 0 is a complex concentrated in degrees −1 and 0.

Now we want to show that T is a tilting complex. Since we can show as in Ex-
ample 2.2.6 that the second condition of Definition 2.2.5 is always fulfilled for all
such two-term complexes of indecomposable projective modules we need, it suffices
to prove the first condition. That is, we show that HomKb(A)(T, T [i]) = 0 for i 6= 0
since this then also holds in the localised category Db(A).

Since condition (i) is obvious for all |i| ≥ 2 we begin with possible maps T3 → T3[1]
and T3 → T3[−1],

0 → P3
(α3,α4)−→ P2 ⊕ P4 → 0

↓ ψ
0 → P3

(α3,α4)−→ P2 ⊕ P4 → 0
↓ 0

0 → P3
(α3,α4)−→ P2 ⊕ P4 → 0

where ψ ∈ Hom(P3, P2 ⊕ P4) and (α3, 0), (0, α4) is a basis of this space.
The first homomorphism ψ is homotopic to zero. In the second case there is no
non-zero homomorphism P2 ⊕ P4 → P3 (as we can see in the Cartan matrix of A).

Now consider possible maps T3 → Tj [1], j 6= 3. These maps are given by a map of
complexes as follows

0 → P3
(α3,α4)−→ P2 ⊕ P4 → 0

↓
0 → Q → 0

where Q can be any Pj such that there is a non-zero path from vertex j to vertex
3. There exist non-zero homomorphisms of complexes, but they are all homotopic
to zero since every path from vertex j to vertex 3 ends with α3 or α4. It follows
that every homomorphism from P3 → Q can be factored through the map (α3, α4) :
P3 → P2 ⊕ P4. Immediately from the definition we see that Hom(T, Tj [1]) = 0 for
j 6= 3 and thus we have shown that Hom(T, T [1]) = 0.

Finally, we have to consider maps Tj → T3[−1] for j 6= 3. These are given as follows

0 → Q → 0
↓

0 → P3
(α3,α4)−→ P2 ⊕ P4 → 0
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where Q can be any Pj such that there is a non-zero path from vertex 3 to vertex
j. However, no non-zero map can be zero when composed with both α3 and α4

since the path α1α4 is not a zero-relation. So the only homomorphism of complexes
Tj → T3[−1], j 6= 3, is the zero map.

It follows that HomKb(A)(T, T [i]) = 0 in the homotopy category and then this also
holds in the derived category Db(A). Hence, T is indeed a tilting complex for A.

By Rickard’s Theorem 2.2.7, E := EndDb(A)(T ) is derived equivalent to A. Using the
alternating sum formula of Happel’s Proposition 2.3.2 we can compute the Cartan

matrix of E to be


1 1 1 0 . . .
0 1 0 0 . . .
0 1 1 1 . . .
1 0 0 1 . . .
...

...
...

...
. . .

.

We define homomorphisms in E as follows

Q1 Qx

32 4 y z(0, id)(id, 0)
Q2

1 x

Qz

(α2, 0) α1α4

C∗

.

Now we have to check the relations, up to homotopy. Clearly, the homomorphism
(α2α1α4, 0) in the oriented 3-cycle C∗ containing the vertices 1, 3 and 4 is zero since
α2α1 was zero in A. Furthermore, the composition of (α2, 0) and (0, id) yields a
zero-relation. The last zero-relation in this oriented 3-cycle is the composition of
(0, id) and α1α4: this homomorphism is homotopic to zero

0 0

00 P3 P2 ⊕ P4

P1

α1

(α3, α4)

(0, α1α4)

since α1α3 = 0 in A. The relations in all the other oriented 3-cycles of this quiver
are the same as in the quiver of A. Thus, we have defined homomorphisms between
the summands of T corresponding to the arrows of the quiver which we obtain after
mutating at vertex 3 in the quiver of A. We have shown that they satisfy the defining
relations of this algebra and the Cartan matrices agree. Thus, A is derived equivalent
to E, where the quiver of E is the same as the quiver we obtain after mutating at
vertex 3 in the quiver of A. Furthermore, Aop is derived equivalent to Eop (see
Proposition 2.2.8) and this proves the claim in the situation with an arrow 3→ 4 in
Step 1 of Lemma 3.1.11.
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Step 2 Let A be a cluster-tilted algebra of type Ãn with corresponding quiver

3

α1

α5
4 5

α6

α3

α4

α2

2 1

where the dashed line indicates the non-oriented cycle.

If the arrows between the vertices 2 and 1 along the dashed line of the non-oriented
cycle are not all oriented in the same direction, then the (partial) Cartan matrix of

A is



1 0 1 0 1 . . .
1 1 0 0 0 . . .
0 1 1 0 1 . . .
0 1 1 1 0 . . .
0 0 0 1 1 . . .
...

...
...

...
...

. . .


.

If the arrows between the vertices 2 and 1 along the dashed line of the non-oriented
cycle are all oriented in the same direction, i.e. there is a path 2  1, then the

(partial) Cartan matrix of A is



1 0 1 0 1 . . .
2 1 1 0 1 . . .
1 1 2 0 1 . . .
1 1 2 1 1 . . .
0 0 0 1 1 . . .
...

...
...

...
...

. . .


.

Now let T =
⊕n+1

i=1 Ti be a bounded complex of projective A-modules, where Ti :
0→ Pi → 0, i ∈ {1, 2, 4, . . . , n+ 1}, are complexes concentrated in degree zero and

T3 : 0→ P3
(α2,α6)−→ P1 ⊕ P4 → 0 is a complex concentrated in degrees −1 and 0. We

leave it to the reader to verify that this is indeed a tilting complex.

By Theorem 2.2.7 of Rickard, E := EndDb(A)(T ) is derived equivalent to A. Us-
ing the alternating sum formula of Happel’s Proposition 2.3.2 we can compute the

(partial) Cartan matrices of E to be



1 0 0 0 1 . . .
1 1 1 0 0 . . .
1 0 1 1 0 . . .
0 1 0 1 0 . . .
0 0 1 1 1 . . .
...

...
...

...
...

. . .


in the first case and



1 0 0 0 1 . . .
2 1 1 0 1 . . .
1 0 1 1 0 . . .
1 1 0 1 1 . . .
0 0 1 1 1 . . .
...

...
...

...
...

. . .


in the second case.
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Then we define homomorphisms in E as follows

3

4 5
(0, id) (0, α5)

(id, 0)(α1, 0)
12

α3α6 α4α2

.
Now we have to check the relations, up to homotopy. Clearly, the homomorphisms
(α1α3α6, 0) and (0, α5α4α2) are zero since α1α3 and α5α4 were zero in A. Ad-
ditionally, the compositions of (α1, 0) and (0, id) and of (0, α5) and (id, 0) yield
zero-relations. The path from vertex 3 to vertex 2 is zero since α3α2 = 0 and thus,
(0, α3α6) is homotopic to zero. Similarly, the path from vertex 3 to vertex 5 is zero
since α4α6 = 0 and hence, (α4α2, 0) is homotopic to zero. The relations in all the
other oriented 3-cycles of this quiver are the same as in the quiver of A.

Hence, A is derived equivalent to E, where the quiver of E is the same as the quiver
we obtain after mutating at vertex 3. Moreover, by Proposition 2.2.8, Aop is derived
equivalent to Eop.

Step 3 Let A be a cluster-tilted algebra of type Ãn with corresponding quiver

1 2

3

4

α1

α2α3

α4

where the dashed line indicates the non-oriented cycle. The other case with an arrow
3→ 4 can be dealt with Proposition 2.2.8 using opposite algebras.

If the arrows between the vertices 1 and 2 along the dashed line of the non-oriented
cycle are not all oriented in the same direction, then the (partial) Cartan matrix of

A is


1 1 0 0 . . .
0 1 1 0 . . .
1 0 1 0 . . .
1 0 1 1 . . .
...

...
...

...
. . .

.

If the arrows between the vertices 1 and 2 along the dashed line are all oriented in
the same direction, i.e. there is a path 1 2, then the (partial) Cartan matrix of A

is


1 2 1 0 . . .
0 1 1 0 . . .
1 1 2 0 . . .
1 1 2 1 . . .
...

...
...

...
. . .

.

We define a tilting complex T as follows: let T =
⊕n+1

i=1 Ti be a bounded complex of
projective A-modules, where Ti : 0→ Pi → 0, i ∈ {1, 2, 4, . . . , n+ 1}, are complexes

concentrated in degree zero and T3 : 0 → P3
(α2,α4)−→ P2 ⊕ P4 → 0 is a complex

concentrated in degrees −1 and 0.
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By Theorem 2.2.7, E := EndDb(A)(T ) is derived equivalent to A. Using the alter-
nating sum formula of Happel’s Proposition we can compute the (partial) Cartan

matrices of E to be


1 1 1 0 . . .
0 1 0 0 . . .
0 1 1 1 . . .
1 0 0 1 . . .
...

...
...

...
. . .

 in the first case and


1 2 1 0 . . .
0 1 0 0 . . .
0 1 1 1 . . .
1 1 0 1 . . .
...

...
...

...
. . .


in the second case.

Then we define homomorphisms in E as follows

4
(0, id)

(id, 0)(α1, 0)
1 2

3

α3α4

.

We leave it to the reader to verify that these homomorphisms satisfy the defining
relations of the corresponding cluster-tilted algebra.

Hence, A is derived equivalent to E, where the quiver of E is the same as the quiver
we obtain after mutating at vertex 3. Additionally, Aop is derived equivalent to Eop

by Proposition 2.2.8.

Step 4 Let A be a cluster-tilted algebra of type Ãn with corresponding quiver

1
2

4

3

α1 α4

α2α3

where the dashed line indicates the non-oriented cycle. The other case with an arrow
2→ 4 has been dealt with by Step 3 in this proof.

If the arrows between the vertices 1 and 4 along the dashed line are not all oriented in

the same direction, then the (partial) Cartan matrix of A is


1 1 0 0 . . .
0 1 1 0 . . .
1 0 1 0 . . .
0 1 1 1 . . .
...

...
...

...
. . .

.

If the arrows between the vertices 1 and 4 along the dashed line are all oriented in
the same direction, then we consider the following two cases: if there is a path 1 4,

then the (partial) Cartan matrix of A is


1 2 1 1 . . .
0 1 1 0 . . .
1 1 2 1 . . .
0 1 1 1 . . .
...

...
...

...
. . .

 and if there is a path

4 1, then the (partial) Cartan matrix of A is


1 1 0 0 . . .
0 1 1 0 . . .
1 0 1 0 . . .
1 2 1 1 . . .
...

...
...

...
. . .

.



50 3. TYPE Ãn

We define a tilting complex T =
⊕n+1

i=1 Ti where Ti : 0 → Pi → 0, i ∈
{1, 3, 4, . . . , n+1}, are concentrated in degree zero and T2 : 0→ P2

(α1,α4)−→ P1⊕P4 → 0
is concentrated in degrees −1 and 0.

By Theorem 2.2.7, E := EndDb(A)(T ) is derived equivalent to A. Using the alter-
nating sum formula of Happel’s Proposition we can compute the (partial) Cartan

matrices of E to be


1 0 0 0 . . .
1 1 0 1 . . .
1 1 1 0 . . .
0 0 1 1 . . .
...

...
...

...
. . .

 in the first case,


1 0 1 1 . . .
1 1 1 2 . . .
1 1 2 1 . . .
0 0 1 1 . . .
...

...
...

...
. . .

 in

the second case and


1 0 0 0 . . .
2 1 0 1 . . .
1 1 1 0 . . .
1 0 1 1 . . .
...

...
...

...
. . .

 in the third case.

Then we define homomorphisms in E as follows
3

1
2

4
(id, 0) (0, id)

α2α4(α3, 0)

.

We leave it to the reader to verify that these homomorphisms satisfy the defining
relations of the corresponding cluster-tilted algebra.

Hence, A is derived equivalent to E, where the quiver of E is the same as the quiver
we obtain after mutating at vertex 2.

Step 5 The first mutations in Step 5 are sink/source mutations. These mutations correspond
to APR-tilting and this is a well-known case (see [8]).

Now let A be a cluster-tilted algebra of type Ãn with corresponding quiver

1 3

2 4

5α1 α6

α2α3 α4 α5

where the dashed line indicates the non-oriented cycle.

If the arrows between the vertices 1 and 3 along the dashed line are not
all oriented in the same direction, then the (partial) Cartan matrix of A is

1 0 0 1 1 . . .
1 1 0 0 0 . . .
0 1 1 0 1 . . .
0 0 1 1 0 . . .
0 1 0 1 1 . . .
...

...
...

...
...

. . .


.
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If the arrows between the vertices 1 and 3 along the dashed line are all oriented in
the same direction, e.g. there is a path 1  3, then the (partial) Cartan matrix of

A is



1 1 1 1 2 . . .
1 2 1 0 1 . . .
0 1 1 0 1 . . .
0 0 1 1 0 . . .
0 1 0 1 1 . . .
...

...
...

...
...

. . .


.

We define a tilting complex T =
⊕n+1

i=1 Ti where Ti : 0 → Pi → 0, i ∈
{1, . . . , 4, 6, . . . , n + 1}, are concentrated in degree zero and T5 : 0 → P5

(α1,α6)−→
P1 ⊕ P3 → 0 is concentrated in degrees −1 and 0.

By Theorem 2.2.7, E := EndDb(A)(T ) is derived equivalent to A. Using
the alternating sum formula of Happel’s Proposition we can compute the (par-

tial) Cartan matrices of E to be



1 0 0 1 0 . . .
1 1 0 0 1 . . .
0 1 1 0 0 . . .
0 0 1 1 1 . . .
1 0 1 0 1 . . .
...

...
...

...
...

. . .


in the first case and



1 1 1 1 0 . . .
1 2 1 0 1 . . .
0 1 1 0 0 . . .
0 0 1 1 1 . . .
1 1 2 0 1 . . .
...

...
...

...
...

. . .


in the second case.

Then we define homomorphisms in E as follows

1 3

4 2

5(id, 0) (0, id)

α4α1 α2α6(0, α5) (α3, 0)

.

We leave it to the reader to verify that these homomorphisms satisfy the defining
relations of the corresponding cluster-tilted algebra.

Hence, A is derived equivalent to E, where the quiver of E is the same as the quiver
we obtain after mutating at vertex 5.

We have shown that we obtain a quiver of a derived equivalent cluster-tilted algebra by all
mutations in the proof of Lemma 3.1.11. Hence, every cluster-tilted algebra A = KQ/I of type Ãn
is derived equivalent to a cluster-tilted algebra with a quiver in normal form which has the same
parameters as Q. �

Our next aim is to prove the main result for the derived equivalence classification:

Theorem 3.2.2. Two cluster-tilted algebras of type Ãn are derived equivalent if and only if their
quivers have the same parameters r1, r2, s1 and s2 (up to changing the roles of ri and si, i ∈ {1, 2}).

First, we recall some background from [10]. Let A = KQ/I be a gentle algebra, where Q =
(Q0, Q1) is a connected quiver. A permitted path of A is a non-zero path C = αl . . . α2α1, i.e.
αi+1αi 6= 0 for all i ∈ {1, 2, . . . , l− 1}. A maximal permitted path C is called a non-trivial permitted
thread, i.e. for all β ∈ Q1 neither Cβ nor βC is a permitted path. Similarly a forbidden path
of A is a path Π = αl . . . α2α1 formed by pairwise different arrows in Q with αi+1αi = 0 for all
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i ∈ {1, 2, . . . , l− 1}. A maximal forbidden path Π is called a non-trivial forbidden thread, that is, for
all β ∈ Q1 neither Πβ nor βΠ is a forbidden path.

We also define trivial threads for some vertices. Let v ∈ Q0 such that #{α ∈ Q1 : s(α) = v} ≤ 1,
#{α ∈ Q1 : t(α) = v} ≤ 1 and if β, γ ∈ Q1 are such that s(γ) = v = t(β) then γβ 6= 0. Then we
consider ev, the trivial paths of length zero, as a trivial permitted thread in v and denote it by hv. Let
HA be the set of all permitted threads of A, trivial and non-trivial. Similarly, for v ∈ Q0 such that
#{α ∈ Q1 : s(α) = v} ≤ 1, #{α ∈ Q1 : t(α) = v} ≤ 1 and if β, γ ∈ Q1 are such that s(γ) = v = t(β)
then γβ = 0, we consider ev as a trivial forbidden thread in v and denote it by pv. Note that certain
paths can be permitted threads and forbidden threads simultaneously, see for instance the second
algebra in Example 3.2.3 below.

Example 3.2.3. Consider the following quiver corresponding to a cluster-tilted algebra of type Ã3

1 2

4

3

α1 α3

α2

β1,1 β1,2

with three zero-relations β1,2α2, β1,1β1,2 and α2β1,1. The permitted paths are the trivial paths
e1, . . . , e4, the arrows α1, α2, α3, β1,1, β1,2 and the two paths α2α1 and β1,2α3. It follows that the
non-trivial permitted threads are β1,1, α2α1 and β1,2α3. Since there is no trivial permitted thread,
HA = {β1,1, α2α1, β1,2α3}.

The forbidden paths are the trivial paths e1, . . . , e4, the arrows α1, α2, α3, β1,1, β1,2, the paths
β1,2α2, β1,1β1,2, α2β1,1 and the three paths β1,1β1,2α2, α2β1,1β1,2, β1,2α2β1,1 for the oriented 3-cycle.
These are all of them since a forbidden path has pairwise different arrows. Hence, the non-trivial
forbidden threads are α1, α3, β1,1β1,2α2, α2β1,1β1,2 and β1,2α2β1,1.

There is one vertex v ∈ Q0 with #{α ∈ Q1 : s(α) = v} ≤ 1 and #{α ∈ Q1 : t(α) = v} ≤ 1, and
this is vertex 3. Additionally, there are the two arrows β1,2 and β1,1 with s(β1,1) = 3 = t(β1,2) and
β1,1β1,2 = 0. Hence, p3 := e3 is a trivial forbidden thread.

Now, consider the following quiver of type Ã1

1 2
α1

α2 .

Here, the two arrows α1 and α2 are both, non-trivial permitted threads and non-trivial forbidden
threads.

From now on let A = KQ/I be a cluster-tilted algebra of type Ãn. By Lemma 3.2.1, we can
assume that Q is in normal form with notations as in Figure 3.8 (where r0 := r1+r2 and s0 := s1+s2).

Then the set HA of all permitted threads is formed by hv1 , . . . , hvr1−1 , hvr0+1 , . . . , hvr0+s1−1 ,
γs2,2αr0αr0−1 . . . α2α1, βr2,2αr0+s0αr0+s0−1 . . . αr0+2αr0+1, β1,1, β1,2β2,1, . . . , βr2−1,2βr2,1, γ1,1,
γ1,2γ2,1, . . . , γs2−1,2γs2,1.

Additionally, the forbidden threads of A are px1 , . . . , pxr2 , py1 , . . . , pys2 , α1, . . . , αr1 , αr0+1,
. . . , αr0+s1 and αr1+jβj,1βj,2, βj,2αr1+jβj,1, βj,1βj,2αr1+j for j ∈ {1, . . . , r2}, and αr0+s1+lγl,1γl,2,
γl,2αr0+s1+lγl,1, γl,1γl,2αr0+s1+l for l ∈ {1, . . . , s2} (i.e. each oriented 3-cycle gives three non-trivial
forbidden threads as in Example 3.2.3).

Our next aim is to describe the relations in Q by using two functions σ, ε : Q1 → {1,−1} as in
[24, Section 3]. These functions satisfy the following three conditions:

(1) If β1 6= β2 are arrows with s(β1) = s(β2), then σ(β1) = −σ(β2).
(2) If γ1 6= γ2 are arrows with t(γ1) = t(γ2), then ε(γ1) = −ε(γ2).
(3) If β and γ are arrows with s(γ) = t(β) and γβ 6= 0, then σ(γ) = −ε(β).

Note that each vertex of Q is the starting point of at most two arrows and the end point of at most
two arrows.
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v0v1

vr1−1

xr2 ys2

x1 y1

vr1

vr1+1

α1

αr1+1

αr1

β1,1 γ1,1

γ1,2β1,2

βr2,1
γs2,2

γs2,1
βr2,2

vr0+1

αr0+1

vr0−1 vr0αr0 αr0+s0

vr0+s1+1

vr0+s0−1

αr0+s1+1

vr0+s1

αr0+s1

vr0+s1−1

Figure 3.8. A quiver in normal form.

We can extend these functions to threads of A as follows: for a non-trivial thread H = αl . . . α2α1

of A define σ(H) := σ(α1) and ε(H) := ε(αl). For a trivial permitted thread hv, v ∈ Q0, there is
some αi+1 ∈ Q1 with s(αi+1) = v and some αi ∈ Q1 with t(αi) = v, for i ∈ {1, . . . , r1 − 1, r0 +
1, . . . , r0 + s1 − 1}. We define

σ(hv) = −ε(hv) := −σ(αi+1) or(3.2.1)

σ(hv) = −ε(hv) := ε(αi),(3.2.2)

and these definitions are consistent because of condition (3) above.
For a trivial forbidden thread pv, v ∈ Q0, there exists βj,1 ∈ Q1 (resp., γl,1 ∈ Q1) with s(βj,1) =

v (resp., s(γl,1) = v) and βj,2 ∈ Q1 (resp., γl,2 ∈ Q1) with t(βj,2) = v (resp., t(γl,2) = v) for
j ∈ {1, . . . , r2} (resp., l ∈ {1, . . . , s2}). We define

σ(pv) = ε(pv) := −σ(βj,1) = −ε(βj,2)(3.2.3)

(resp., σ(pv) = ε(pv) := −σ(γl,1) = −ε(γl,2)).(3.2.4)

That is, we agree that σ(βj,1) = ε(βj,2) and σ(γl,1) = ε(γl,2), respectively. Note that conditions (3.2.3)
and (3.2.4) are required in order to ensure Algorithm 3.2.4 works.

Now, we define the functions σ and ε for all arrows in Q. First, we choose

σ(αi) = 1, ε(αi) = −1 for all i = 1, . . . , r0

σ(αi) = −1, ε(αi) = 1 for all i = r0 + 1, . . . , r0 + s0
.

Then condition (1) is satisfied since σ(α1) = −σ(αr0+1), condition (2) is satisfied since ε(αr0) =
−ε(αr0+s0), and condition (3) is satisfied since σ(αi+1) = −ε(αi) for i ∈ {1, . . . , r0−1, r0 +1, . . . , r0 +
s0 − 1}.

Applying conditions (1), (2) and (3) we automatically get

ε(βj,1) = 1 for all j = 1, . . . , r2

σ(βj,2) = −1 for all j = 1, . . . , r2

ε(γl,1) = −1 for all l = 1, . . . , s2

σ(γl,2) = 1 for all l = 1, . . . , s2

.

By (3.2.3) and (3.2.4), σ(βj,1) = ε(βj,2) and σ(γl,1) = ε(γl,2) for j ∈ {1, . . . , r2} and l ∈
{1, . . . , s2}, respectively. We will choose
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σ(βj,1) = 1 for all j = 1, . . . , r2

ε(βj,2) = 1 for all j = 1, . . . , r2

σ(γl,1) = −1 for all l = 1, . . . , s2

ε(γl,2) = −1 for all l = 1, . . . , s2

.

According to the conditions (3.2.1), (3.2.2), (3.2.3) and (3.2.4), we define the functions σ and ε
for the trivial permitted threads as

σ(hvi) = −ε(hvi) = −σ(αi+1) = ε(αi) = −1 for all i = 1, . . . , r1 − 1
σ(hvi) = −ε(hvi) = −σ(αi+1) = ε(αi) = 1 for all i = r0 + 1, . . . , r0 + s1 − 1

and for the trivial forbidden threads as
σ(pxj ) = ε(pxj ) = −σ(βj,1) = −ε(βj,2) = −1 for all j = 1, . . . , r2

σ(pyl) = ε(pyl) = −σ(γl,1) = −ε(γl,2) = 1 for all l = 1, . . . , s2
.

Now there is a combinatorial algorithm (stated in [10]) to produce certain pairs of natural
numbers, by using only the quiver with relations which defines a gentle algebra. In the algorithm
we are going forward through permitted threads and backwards through forbidden threads in such a
way that each arrow and its inverse is used exactly once.

Algorithm 3.2.4 (Avella-Alaminos and Geiß [10]). The algorithm is as follows:
(1) (a) Begin with a permitted thread H0 of A.

(b) If Hi is defined, consider Πi the forbidden thread which ends in t(Hi) and such that
ε(Hi) = −ε(Πi).

(c) Let Hi+1 be the permitted thread which starts in s(Πi) and such that σ(Hi+1) =
−σ(Πi).
The process stops when Hk = H0 for some natural number k. Let m =

∑
1≤i≤k

l(Πi−1),

where l() is the length of a path, i.e. the number of arrows of the path. We obtain the
pair (k,m).

(2) Repeat the first step of the algorithm until all permitted threads of A have occurred as some
Hi, or as H0.

(3) If there are oriented cycles in which each pair of consecutive arrows forms a relation, we get
a pair (0,m) for each of those cycles, where m is the length of the cycle.

(4) Define φA : N2 → N, where φA(k,m) is the number of times the pair (k,m) arises in the
algorithm.

Notation. For α ∈ Q1 we define α−1 by s(α−1) := t(α), t(α−1) := s(α) and (α−1)−1 = α; and for
a path C = αl . . . α2α1 we define C−1 := α−1

1 α−1
2 . . . α−1

l . Additionally, we define e−1
v := ev for a

trivial path.

Example 3.2.5. Consider the following quiver Q as in Example 3.2.3

1 2

4

3

α1 α3

α2

β1,1 β1,2

with three zero-relations β1,2α2, β1,1β1,2 and α2β1,1.
First, we use the definitions above to get the functions σ and ε for all arrows in Q:

σ(α1) = 1, ε(α1) = −1
σ(α2) = 1, ε(α2) = −1
σ(α3) = −1, ε(α3) = 1
σ(β1,1) = 1, ε(β1,1) = 1
σ(β1,2) = −1, ε(β1,2) = 1

.

By (3.2.3) we also get
σ(p3) = ε(p3) = −σ(β1,1) = −ε(β1,2) = −1
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for the trivial forbidden thread p3.
Let H0 = β1,2α3 and Π0 = p3 with ε(β1,2α3) = ε(β1,2) = −ε(p3) = 1. Note that β1,2α2β1,1 does

not qualify for Π0 since ε(β1,2α2β1,1) = ε(β1,2) 6= −ε(H0). Then H1 = β1,1 is the permitted thread
which starts in s(Π0) = 3 and σ(β1,1) = −σ(Π0) = 1. Now Π1 = α1 since it is the forbidden thread
which ends in vertex t(H1) = 1 and ε(Π1) = −ε(H1) = −ε(β1,1) = −1. Note that β1,1β1,2α2 does not
qualify for Π1 since ε(β1,1β1,2α2) = ε(β1,1). Then H2 = β1,2α3 = H0, k = 2 and m = l(Π0)+ l(Π1) =
0+1 = 1. The corresponding pair is (2, 1) = (r0, r1), where r0 = r1 +r2. We can write this as follows:

H0 = β1,2α3 Π−1
0 = p3

H1 = β1,1 Π−1
1 = α−1

1

H2 = H0

→ (2, 1)
If we continue with the algorithm we obtain the second pair (1, 1) = (s0, s1), s0 = s1 + s2, in the

following way:
H0 = α2α1 Π−1

0 = α−1
3

H1 = H0

→ (1, 1)
Finally, we get one pair (0, 3) for the oriented 3-cycle. Thus, we obtain φA(2, 1) = 1, φA(1, 1) = 1
and φA(0, 3) = 1.

The function φA defined in Algorithm 3.2.4 is invariant under derived equivalence:

Lemma 3.2.6 (Avella-Alaminos and Geiß [10], Theorem A). Let A and B be gentle algebras.
If A and B are derived equivalent, then φA = φB.

Proof of Theorem 3.2.2. Let A = KQ/I be a cluster-tilted algebra of type Ãn with param-
eters r1, r2, s1 and s2 as defined in Definition 3.1.9. By Lemma 3.2.1, A is derived equivalent to a
cluster-tilted algebra A′ = KQ′/I ′ with quiver Q′ in normal form, and the same parameters r1, r2,
s1 and s2. We define r0 := r1 + r2 to be the number of arrows in the non-oriented cycle of Q′ which
are oriented in the anti-clockwise direction. Similarly, let s0 := s1 + s2 be the number of arrows in
the non-oriented cycle of Q′ which are oriented in the clockwise direction. We consider the quiver Q′

with notations as given in Figure 3.8.
First, we recall the definitions of the functions σ and ε from above:

σ(αi) = 1, ε(αi) = −1 for all i = 1, . . . , r0

σ(αi) = −1, ε(αi) = 1 for all i = r0 + 1, . . . , r0 + s0

σ(βj,1) = 1, ε(βj,1) = 1 for all j = 1, . . . , r2

σ(βj,2) = −1, ε(βj,2) = 1 for all j = 1, . . . , r2

σ(γl,1) = −1, ε(γl,1) = −1 for all l = 1, . . . , s2

σ(γl,2) = 1, ε(γl,2) = −1 for all l = 1, . . . , s2

σ(hvi) = −1, ε(hvi) = 1 for all i = 1, . . . , r1 − 1
σ(hvi) = 1, ε(hvi) = −1 for all i = r0 + 1, . . . , r0 + s1 − 1
σ(pxj ) = −1, ε(pxj ) = −1 for all j = 1, . . . , r2

σ(pyl) = 1, ε(pyl) = 1 for all l = 1, . . . , s2

Hence, we can apply Algorithm 3.2.4 as follows: let H0 = hv1 and Π0 = α1 with ε(hv1) =
−ε(α1) = 1. Then H1 is the permitted thread which starts in s(Π0) = v0 and σ(H1) = −σ(Π0) = −1,
that is βr2,2αr0+s0αr0+s0−1 . . . αr0+2αr0+1. Now Π1 = pxr2 since it is the forbidden thread which ends
in xr2 and ε(Π1) = −ε(H1) = −ε(βr2,2) = −1. Note that βr2,2αr0βr2,1 does not qualify for Π1 since
ε(βr2,2αr0βr2,1) = ε(βr2,2) 6= −ε(H1). Then H2 = βr2−1,2βr2,1 is the permitted thread starting in xr2
and σ(Π1) = −σ(H2) = −σ(βr2,1) = −1. Thus, Π2 = pxr2−1 with ε(H2) = ε(βr2−1,2) = −ε(Π2) = 1.
Note that βr2−1,2αr0−1βr2−1,1 does not qualify for Π2 since ε(βr2−1,2αr0−1βr2−1,1) = ε(βr2−1,2) 6=
−ε(H2). Continuing in this way, we get Hr2 = β1,2β2,1 and Πr2 = px1 . Then Hr2+1 = β1,1 is the
permitted thread which starts in s(Πr2) = x1 with σ(Hr2+1) = σ(β1,1) = −σ(Πr2) = 1. Now Πr2+1 =
αr1 since it is the forbidden thread which ends in vr1 and ε(Πr2+1) = −ε(Hr2+1) = −ε(β1,1) = −1.
Again β1,1β1,2αr1+1 does not qualify for Πr2+1 since ε(β1,1β1,2αr1+1) = ε(β1,1) 6= −ε(Hr2+1). Then
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Hr2+2 = hr1−1 is the permitted thread starting in vr1−1 and σ(Πr2+1) = −σ(Hr2+2) = 1. Thus,
Πr2+2 = αr1−1 with ε(Hr2+2) = −ε(Πr2+2) = 1. Continuing in this way, we obtain Hr0−1 = hv2 and
Πr0−1 = α2. Then Hr0 = hv1 = H0. We can write this as follows:

H0 = hv1 Π−1
0 = α−1

1

H1 = βr2,2αr0+s0αr0+s0−1 . . . αr0+2αr0+1 Π−1
1 = pxr2

H2 = βr2−1,2βr2,1 Π−1
2 = pxr2−1

...
...

Hr2 = β1,2β2,1 Π−1
r2 = px1

Hr2+1 = β1,1 Π−1
r2+1 = α−1

r1

Hr2+2 = hvr1−1 Π−1
r2+2 = α−1

r1−1
...

...
Hr0−1 = hv2 Π−1

r0−1 = α−1
2

Hr0 = H0

m = l(Π0) + l(Πr2+1) + l(Πr2+2) + · · ·+ l(Πr0−1)
= 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸

((r0−1)−r2)−times

= 1 + (r0 − 1)− r2

= r0 − r2

= r1

→ (r0, r1)

If we continue with the algorithm we obtain the second pair (s0, s1) in the following way:

H0 = hvr0+1 Π−1
0 = α−1

r0+1

H1 = γs2,2αr0αr0−1 . . . α2α1 Π−1
1 = pys2

H2 = γs2−1,2γs2,1 Π−1
2 = pys2−1

...
...

Hs2 = γ1,2γ2,1 Π−1
s2 = py1

Hs2+1 = γ1,1 Π−1
s2+1 = α−1

r0+s1

Hs2+2 = hvr0+s1−1 Π−1
s2+2 = α−1

r0+s1−1
...

...
Hs0−1 = hvr0+2 Π−1

s0−1 = α−1
r0+2

Hs0 = H0

→ (s0, s1)

Finally, we get r2 + s2 pairs (0, 3) for the oriented 3-cycles. Thus, we obtain φA(r0, r1) = 1,
φA(s0, s1) = 1 and φA(0, 3) = r2 + s2, where r0 = r1 + r2 and s0 = s1 + s2.

Now, let A and B be two cluster-tilted algebras of type Ãn with parameters r1, r2, s1, s2 and
r̃1, r̃2, s̃1, s̃2, respectively. From above we can conclude that φA = φB if and only if r1 = r̃1, r2 = r̃2,
s1 = s̃1 and s2 = s̃2 or r1 = s̃1, r2 = s̃2, s1 = r̃1 and s2 = r̃2, which ends up being the same quiver
(up to isomorphism).

Hence, if A is derived equivalent to B, we know from Lemma 3.2.6 that φA = φB and thus, that
the parameters are the same. Otherwise, if A and B have the same parameters, they are both derived
equivalent to the same cluster-tilted algebra with a quiver in normal form. �



CHAPTER 4

Type Dn

The results of this chapter are a joint work with Thorsten Holm and Sefi Ladkani. These results
appeared in [13], except for the proof of Proposition 4.2.47.

4.1. Cluster-tilted algebras of type Dn

Recall that a quiver of Dynkin type Dn is a quiver with n ≥ 4 vertices and underlying graph the
Dynkin diagram Dn. Since the orientation of the edges can be chosen arbitrarily (see Lemma 2.1.5),
we will start with the following directed graph

•1
!!CCCC

•3 // . . . // •n .

•2

=={{{{

We recall the description by Vatne [53] of the quivers which are mutation equivalent to Dn, and
the relations defining the corresponding cluster-tilted algebras following [21]. It is convenient to use
the language of the gluing of rooted quivers of type A (see Definition 2.5.4 for a definition of these
quivers).

Definition 4.1.1. Let Q be a quiver, called a skeleton, and let c1, c2, . . . , ck be k ≥ 0 distinct vertices
of Q. The gluing of k rooted quivers of type A, say (Q(1), z1), (Q(2), z2), . . . , (Q(k), zk), to Q at the
vertices c1, . . . , ck is defined as the quiver obtained from the disjoint union Q ∪̇Q(1) ∪̇ . . . ∪̇Q(k) by
identifying each vertex ci with the corresponding root zi, for 1 ≤ i ≤ k.

Remark 4.1.2. Given relations (i.e. linear combinations of parallel paths) on the skeleton Q, they
induce relations on the gluing, namely, by taking the union of all the relations on Q,Q(1), . . . , Q(k),
where the relations on the rooted quivers of type A are those stated in Remark 2.5.3.

Definition 4.1.3. Let Q be a quiver mutation equivalent to An (see Proposition 2.5.2). We denote
by s(Q) the number of arrows in Q which are not part of an oriented 3-cycle, and by t(Q) the number
of oriented 3-cycles in Q.

A cluster-tilted algebra of Dynkin type Dn belongs to one of the following four families, which
are called types, and are defined as the gluing of rooted quivers of type A to certain skeleta. Note
that in view of Remark 4.1.2, it is enough to specify the relations on the skeleton. For each type we
define parameters which will be useful when referring to the cluster-tilted algebras of that type.
Type I The gluing of a rooted quiver Q′ of type A at the vertex c of one of the three skeleta:

•a
!!CCCCC

•c
}}{{{{{

•b

•a
!!CCCCC

•c

•b

=={{{{{

•a

•c ,
||yyyyy

bbEEEEE

•b
as in the following picture:

57
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Q′

a

b

c

.
The parameters are

(
s(Q′), t(Q′)

)
.

Type II The gluing of two rooted quivers Q′ and Q′′ of type A at the vertices c′ and c′′, respectively,
of the following skeleton:

•b
β

||zzzzzz

•c′′ ε // •c′ ,
α

bbFFFFFF

γ||yyyyyy

•a
δ

bbDDDDDD

with the commutativity relation βα − δγ, and the zero-relations αε, γε, εβ, εδ as in the following
picture:

Q′′ Q′

a

b

c′c′′

.
The parameters are

(
s(Q′), t(Q′), s(Q′′), t(Q′′)

)
.

Type III The gluing of two rooted quivers Q′ and Q′′ of type A at the vertices c′ and c′′, respectively,
of the following skeleton:

•b
β

||zzzzzz

•c′′

γ ""DDDDDD •c′ ,
α

bbFFFFFF

•a
δ

<<yyyyyy

with the four zero-relations γβα, δγβ, αδγ, βαδ, as in the following picture:

Q′′ Q′

b

a

c′′ c′

.
Like in type II, the parameters are

(
s(Q′), t(Q′), s(Q′′), t(Q′′)

)
.

Type IV The gluing of r ≥ 0 rooted quivers Q(1), . . . , Q(r) of type A at the vertices c1, . . . , cr of a
skeleton Q(m, {i1, . . . , ir}), see Figure 4.1 below.

Definition 4.1.4. Given integers m ≥ 3, r ≥ 0 and an increasing sequence 1 ≤ i1 < i2 < · · · < ir ≤
m, we define the quiver with relations Q(m, {i1, . . . , ir}):

(a) Q(m, {i1, . . . , ir}) has m + r vertices, labelled 1, 2, . . . ,m together with c1, c2, . . . , cr, and
its arrows are {

i→ (i+ 1)
}

1≤i≤m ∪
{
cj → ij , (ij + 1)→ cj

}
1≤j≤r,
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where i+ 1 is considered modulo m, i.e. 1, if i = m.
The full subquiver on the vertices 1, 2, . . . ,m is thus an oriented cycle of length m, called

the central cycle, and for every 1 ≤ j ≤ r, the full subquiver on the vertices ij , ij + 1, cj is
an oriented 3-cycle, called a spike.

(b) The relations on Q(m, {i1, . . . , ir}) are:
• The paths ij , ij + 1, cj and cj , ij , ij + 1 are zero for all 1 ≤ j ≤ r (note that we indicate

a path by the sequence of vertices it traverses);
• For any 1 ≤ j ≤ r, the path ij + 1, cj , ij equals the path ij + 1, . . . , 1, . . . , ij of length
m− 1 along the central cycle;
• For any i 6∈ {i1, . . . , ir}, the path i + 1, . . . , 1, . . . , i of length m − 1 along the central

cycle is zero.

1

2

34

5

6

m

c1

c2

c3

Q(1)

Q(2)

Q(3)

i1

i1 + 1

i2i2 + 1
||

i3

i3 + 1

Figure 4.1. A quiver of a cluster-tilted algebra of type Dn in type IV.

The parameters are encoded as follows. If r = 0, that is, there are no spikes and hence no
attached rooted quivers of type A, the quiver is just an oriented cycle, thus parameterized by its
length m ≥ 3.

In all other cases, due to rotational symmetry, we define the distances d1, d2, . . . , dr by

d1 = i2 − i1, d2 = i3 − i2, . . . , dr−1 = ir − ir−1, dr = i1 +m− ir
so that m = d1 + d2 + · · ·+ dr, and encode the cluster-tilted algebra by the sequence of triples

(4.1.1)
(
(d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
where sj = s(Q(j)), tj = t(Q(j)) are the numbers of arrows and oriented 3-cycles in the rooted quiver
Q(j) of type A glued at the vertex cj of the jth spike.

Remark 4.1.5. Note that the cluster-tilted algebras of type III can be viewed as a degenerate
version of type IV, namely corresponding to the skeleton Q(2, {1, 1}) with central cycle of length
two (hence it is “invisible”) with all spikes present. Thus, one can regard type III quivers with
parameters (s(Q′), t(Q′), s(Q′′), t(Q′′)) as ‘formal’ type IV quivers with parameters ((1, s(Q′), t(Q′)),
(1, s(Q′′), t(Q′′))). It turns out that this point of view is consistent with the constructions of good
mutations and double mutations as well as with the computations of determinants presented later.
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Notation. Throughout this chapter, for a quiver Q which is mutation equivalent to an acyclic quiver,
i.e. to a quiver without oriented cycles, we denote by AQ the corresponding cluster-tilted algebra
and its Cartan matrix by CQ.

4.2. Good mutation equivalence classification of cluster-tilted algebras of type Dn

4.2.1. Mutations of algebras and good quiver mutations. We recall the notion of mu-
tations of algebras from [43]. These are local operations on an algebra A producing new algebras
derived equivalent to A.

Let A = KQ/I be an algebra given as a quiver with relations. Let k be a vertex of Q at
which there are no loops, i.e. no arrows k → k. Consider the following two complexes of projective
A-modules

T−k (A) =
(
Pk

f−→
⊕
j→k

Pj
)
⊕
(⊕
i 6=k

Pi
)
, T+

k (A) =
(⊕
k→j

Pj
g−→ Pk

)
⊕
(⊕
i 6=k

Pi
)

where the map f is induced by all the maps Pk → Pj corresponding to the arrows j → k ending at
k, the map g is induced by the maps Pj → Pk corresponding to the arrows k → j starting at k, the
term Pk lies in degree −1 in T−k (A) and in degree 1 in T+

k (A), and all other terms are in degree 0.

Definition 4.2.1. Let A be an algebra given as a quiver with relations and k a vertex at which there
are no loops.

(a) We say that the negative mutation of A at k is defined if T−k (A) is a tilting complex over
A. In this case, we call the algebra µ−k (A) := EndDb(A)(T

−
k (A)) the negative mutation of A

at the vertex k.
(b) We say that the positive mutation of A at k is defined if T+

k (A) is a tilting complex over A.
In this case, we call the algebra µ+

k (A) := EndDb(A)(T
+
k (A)) the positive mutation of A at

the vertex k.

Remark 4.2.2. By Rickard’s Theorem 2.2.7, the negative and positive mutations of an algebra A at
a vertex, when defined, are always derived equivalent to A.

There is a combinatorial criterion to determine whether a mutation at a vertex is defined, see [43,
Prop. 2.3]. Since the algebras we will be dealing with in this chapter are Schurian, i.e. the entries
of their Cartan matrices are only 0 or 1, we shall only state the criterion for this case, as it takes a
particularly simple form.

Proposition 4.2.3 (Ladkani [43]). Let A be a Schurian algebra.
(a) The negative mutation µ−k (A) is defined if and only if for any non-zero path k  i starting

at k and ending at some vertex i, there exists an arrow j → k such that the composition
j → k  i is non-zero.

(b) The positive mutation µ+
k (A) is defined if and only if for any non-zero path i k starting

at some vertex i and ending at k, there exists an arrow k → j such that the composition
i k → j is non-zero.

Remark 4.2.4. To prove Proposition 4.2.3 one has to determine necessary and sufficient conditions
on T−k (A) and T+

k (A) to be tilting complexes, i.e. T−k (A) and T+
k (A) satisfy conditions (i) and (ii)

of Definition 2.2.5. As in Example 2.2.6 one can show that condition (ii) is satisfied for all such
complexes T−k (A) and T+

k (A). It remains to check that condition (i) is equivalent to conditions (a)
and (b) of Proposition 4.2.3, respectively; this is a straightforward calculation.

Remark 4.2.5. When k is a sink or a source in Q, exactly one of the mutations is defined. That
is, µ−k (A) is defined for a sink k and µ+

k (A) is defined for a source k. This follows immediately from
Proposition 4.2.3.

Example 4.2.6.
(1) Let AQ be the path algebra of the following quiver Q

•1 // •2 // •3 .
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Using Remark 4.2.5, we see that at vertex 1, only µ+
1 (AQ) is defined, whereas at vertex

3, only µ−3 (AQ) is defined. Now we consider the two possible mutations at vertex 2. The
negative mutation µ−2 (AQ) is defined since the combination of the arrow 2 → 3 with the
arrow 1→ 2 is not zero. A standard calculation yields that µ−2 (AQ) is given by the following
quiver with zero-relation.

•2
}}{{{{

•1 // •3
By the same argument, the positive mutation µ+

2 (AQ) is also defined and it is given by the
following quiver with zero-relation:

•2

•1 // •3 .

bbFFFF

(2) Let AQ be the algebra given by the following quiver with full zero-relations

•2
}}{{{{

•1 // •3 .

bbFFFF

It is easy to see that all the mutations µ−k (AQ) and µ+
k (AQ), k ∈ {1, 2, 3}, are not defined

since all path of length two are zero in AQ.

For cluster-tilted algebras of Dynkin type, the statement of Theorem 5.3 in [43], linking more
generally mutation of cluster-tilting objects in 2-Calabi-Yau categories with mutations of their endo-
morphism algebras, takes the following form.

Proposition 4.2.7 (Ladkani [43]). Let Q be mutation equivalent to a Dynkin quiver and let k be a
vertex of Q.

(a) Aµk(Q)
∼= µ−k (AQ) if and only if the two algebra mutations µ−k (AQ) and µ+

k (Aµk(Q)) are
defined.

(b) Aµk(Q)
∼= µ+

k (AQ) if and only if the two algebra mutations µ+
k (AQ) and µ−k (Aµk(Q)) are

defined.

This motivates the following definition.

Definition 4.2.8. When (at least) one of the conditions in the proposition holds, we say that the
quiver mutation of Q at k is good, since it implies the derived equivalence of the corresponding
cluster-tilted algebras AQ and Aµk(Q). When neither of the conditions in the proposition hold, we
say that the quiver mutation is bad.

Remark 4.2.9. It follows from Propositions 4.2.3 and 4.2.7 that there is an algorithm which decides,
given a quiver which is mutation equivalent to a Dynkin quiver, whether or not a mutation at a
vertex is good.

Example 4.2.10.
(1) Let AQ be the same algebra as in Example 4.2.6 (1). We have seen that both algebra

mutations µ−2 (AQ) and µ+
2 (AQ) are defined. Mutation at vertex 2 yields the algebra Aµ2(Q)

which is given by the oriented 3-cycle with full zero-relations as in Example 4.2.6 (2). We
have seen that both mutations µ−2 (Aµ2(Q)) and µ+

2 (Aµ2(Q)) are not defined. It follows that
neither of the two conditions in Proposition 4.2.7 hold and the quiver mutation at vertex 2
is bad.

(2) Let AQ be the algebra of the following quiver Q with full zero-relations in the oriented
3-cycle:

•3
""FFFF

•1 // •2

=={{{{ •4 .oo
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The negative mutation µ−2 (AQ) at vertex 2 is defined since the path 1, 2, 3 is not zero in AQ
(note that we indicate a path by the sequence of vertices it traverses). Mutation at vertex
2 yields the algebra Aµ2(Q) which is given by the following quiver with full zero-relations in
the oriented 3-cycle:

•3
!!CCCC

•1

=={{{{ •2oo // •4 .

Since the path 3, 2, 4 is not zero, the positive mutation µ+
2 (Aµ2(Q)) at vertex 2 is defined.

Thus, condition (a) of Proposition 4.2.7 is fulfilled and the quiver mutation at vertex 2 is
good. Indeed, Aµ2(Q)

∼= µ−2 (AQ) and the two algebras AQ and Aµ2(Q) are derived equivalent.

Definition 4.2.11. Two cluster-tilted algebras (of Dynkin type) with quivers Q′ and Q′′ are called
good mutation equivalent if one can obtain Q′′ from Q′ by performing a sequence of good mutations.
In other words, if there exists a sequence of vertices k1, k2, . . . , kl such that setting Q0 = Q′ and
Qj = µkj (Q

j−1) for 1 ≤ j ≤ l, and denoting by Aj the cluster-tilted algebra with quiver Qj , then
Q′′ = Ql and for any 1 ≤ j ≤ l we have Aj = µ−kj (Aj−1) or Aj = µ+

kj
(Aj−1).

Remark 4.2.12. Any two cluster-tilted algebras which are good mutation equivalent are also derived
equivalent.

Unlike in Dynkin types A and E, where the quivers of any two derived equivalent cluster-tilted
algebras are connected by a sequence of good mutations (see Section 4.2.2 for type A and [12,
Theorem 1.1] for type E), this is no longer the case in type D (see Section 4.3). Therefore, we need
also to consider mutations of algebras going beyond the family of cluster-tilted algebras (which is not
closed under derived equivalence, see Section 4.3.1).

Definition 4.2.13. Let Q and Q′ be quivers with vertices k and k′ such that µk(Q) = µk′(Q′). We
call the sequence of the two mutations from Q to Q′ (first at k and then at k′) a good double mutation
if both algebra mutations µ−k (AQ) and µ+

k′(AQ′) are defined and, moreover, they are isomorphic to
one another.

By definition, for quivers Q and Q′ related by a good double mutation, the cluster-tilted algebras
AQ and AQ′ are derived equivalent. Note, however, that we do not require the intermediate algebra
µ−k (AQ) ∼= µ+

k′(AQ′) to be a cluster-tilted algebra (see Section 4.3.1 for examples in type III and type
IV; in particular, Corollaries 4.3.2 and 4.3.4).

4.2.2. Good mutations for rooted quivers of type A. Since rooted quivers of Dynkin type
A are important building blocks of the quivers of cluster-tilted algebras of type Dn, we first determine
all the good mutations for cluster-tilted algebras of type An. It turns out that the quivers of derived
equivalent cluster-tilted algebras of type An are connected by sequences of good mutations. Note
that the derived equivalence classification of cluster-tilted algebras of type An is originally due to
Buan and Vatne [23].

Definition 4.2.14. Let Q be a quiver of a cluster-tilted algebra of type An. The standard form of Q
is the following quiver consisting of s(Q) arrows which are not part of an oriented 3-cycle and t(Q)
oriented 3-cycles arranged as follows:

(4.2.1) •
������

•
������

•c // • // . . . // • // •

YY2222
. . . • // •

YY2222
.

The standard form of a rooted quiver (Q, c) of type A is a rooted quiver of type A as in (4.2.1)
consisting of s(Q) arrows which are not part of an oriented 3-cycle and t(Q) oriented 3-cycles with
the vertex c as the root. If s(Q) = 0, then the root c is a vertex of an oriented 3-cycle.

For a rooted quiver (Q, c) of type A, we call a mutation at a vertex other than the root c a
mutation outside the root.
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1

◦
!!CCCC

• µ−•

◦

•

aaCCCC
µ+
• good

2a

◦
!!CCCC

•

◦

aaCCCC
µ−•

◦

•

aaCCCC

!!CCCC

◦

µ+
• good

2b

◦
!!CCCC

•
}}{{{{

◦

µ−• , µ
+
•

◦

��

•

aaCCCC

◦

=={{{{

none bad

3

◦
!!CCCC

•
}}{{{{

◦ // ◦

aaCCCC
µ−•

◦

��

•

aaCCCC

!!CCCC

◦

=={{{{ ◦

µ+
• good

4

◦
!!CCCC ◦oo

•
}}{{{{

=={{{{

◦ // ◦

aaCCCC
µ−• , µ

+
•

◦

��

◦
}}{{{{

•

aaCCCC

!!CCCC

◦

=={{{{ ◦

OO

µ−• , µ
+
• good

Table 4.1. The neighbourhoods in Dynkin type A and their mutations.

Proposition 4.2.15. Any two rooted quivers of type A with the same numbers of arrows and oriented
3-cycles can be connected by a sequence of good mutations outside the root.

Remark 4.2.16. It is enough to show that a rooted quiver of type A can be transformed to its
standard form via good mutations outside the root.

We begin by characterising the good mutations in Dynkin type An.

Lemma 4.2.17. Let Q be a quiver mutation equivalent to An. Then a mutation of Q is good if and
only if it does not change the number of oriented 3-cycles.

Proof. Each row of Table 4.1 displays a pair of neighbourhoods of a vertex • in such a quiver
related by a mutation (at •). Using the description of the relations of the corresponding cluster-tilted
algebras as in Remark 2.5.3, we can use Proposition 4.2.3 and easily determine, for each entry in the
table, which of the negative µ−• or the positive µ+

• mutations are defined. Then Proposition 4.2.7
tells us whether or not the quiver mutation is good.

By examining the entries in the table, we see that the only bad mutation occurs in row 2b, where
an oriented 3-cycle is created (or destroyed). �

Proof of Proposition 4.2.15. In view of Remark 4.2.16, we provide an algorithm for the
mutation to the standard form as in Definition 4.2.14 (similar to the procedures in [23] and in
Lemma 3.1.11): let Q be a rooted quiver of type A which has at least one oriented 3-cycle (otherwise
we get the desired orientation of a standard form by sink/source mutations as in 1 and 2a of Table 4.1).
For any oriented 3-cycle C in Q denote by vC the unique vertex of the oriented 3-cycle having minimal
distance to the root c (this distance could be zero, if the root is a vertex of the oriented 3-cycle C).
Choose an oriented 3-cycle C1 in Q such that to the vertices of the oriented 3-cycle 6= v1 := vC1 only
linear parts are attached; denote them by p1 and p2, respectively. Note that such an oriented 3-cycle
C1 exists since Q is a finite quiver; and the linear parts p1 and p2, respectively, could also consist of
just a single vertex.
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v1

C1
c

p

p2

p1

Denote by C2, . . . , Ck the other oriented 3-cycles along the (possibly non-oriented) path p from vertex
v1 to the root c (if such cycles exist). Recall that by a ‘non-oriented path’ we mean a sequence of
arrows αl, . . . , α1, where we do not require that s(αi+1) = t(αi) for all i ∈ {1, . . . , l − 1}.

v1

C1

p

p2

p1

c
C2C3Ck

Q2Q3Qk

α

Now we move all subquivers p2, Q2, . . . , Qk onto the (possibly non-oriented) path p1, α, p. For this we
use the same mutations as in the Steps 1, 2 and 3 in the proof of Lemma 3.1.11. Note that in Steps
2 and 3 of Lemma 3.1.11 we move oriented 3-cycles and arrows onto a non-oriented cycle. However,
these mutations can also be used to move such cycles and arrows onto a (possibly non-oriented) path.
All of this can be done with the good mutations presented in Table 4.1. Thus, we get a new complete
set of oriented 3-cycles {C1, C

′
2, . . . , C

′
l} on the (possibly non-oriented) path from vertex x to the

root c:

v1

c
C ′

2C ′
3 C1C ′

l

x .

Next we move all the oriented 3-cycles along the (possibly non-oriented) path between vertex x and
the root c to the right hand side, i.e. towards x. For this we use the same mutations as in Step 4 in
the proof of Lemma 3.1.11. Note that in Step 4 of Lemma 3.1.11 we move oriented 3-cycles along a
non-oriented cycle. However, these mutations can also be used to move such cycles along a (possibly
non-oriented) path. We then obtain a quiver of the form

c
C1C ′2C ′l

y1 y2 .

To get the desired orientation of a standard form as in (4.2.1) we use the following mutations. If
s(Q) 6= 0 we orient the part without oriented 3-cycles by sink/source mutations as in 1 and 2a of
Table 4.1, without mutating at vertex y1 which is attached to an oriented 3-cycle. If t(Q) 6= 0 we
use mutations as in Step 5 in the proof of Lemma 3.1.11 (see also row 4 of Table 4.1) to orient the
part consisting only of oriented 3-cycles. Note that these mutations act like sink/source mutations
at the (possibly non-oriented) path between vertex y1 and vertex y2. The orientation of the oriented
3-cycle C1 does not matter, since we can just flip it in the picture above. �
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As a consequence, we get the following theorem which also follows from the results of [23].

Theorem 4.2.18. Let Q be a quiver of a cluster-tilted algebra of Dynkin type An. Then Q can be
transformed via a sequence of good mutations to its standard form as in Definition 4.2.14. Moreover,
two standard forms are derived equivalent if and only if they coincide.

4.2.3. Good mutations in type Dn. First we consider quivers of types I, II and III. The good
mutations involving these quivers are given in Tables 4.2, 4.3 and 4.4 below. In each row of these
tables, we list:

(a) The quiver, where Q, Q′, Q′′ and Q′′′ are rooted quivers of type A;
(b) Which of the algebra mutations (negative µ−• , or positive µ+

• ) at the distinguished vertex •
are defined;

(c) The (Fomin-Zelevinsky) mutation of the quiver at the vertex •; and for the corresponding
cluster-tilted algebra of the mutated quiver:

(d) Which of the algebra mutations at the vertex • are defined.
(e) Based on these, we determine whether or not the mutation is good, see Proposition 4.2.7.

To check whether or not a mutation is defined, we use the criterion of Proposition 4.2.3. Observe
that since the gluing process introduces no new relations, it is enough to assume that each rooted
quiver of type A consists of just a single vertex. Since there is at most one arrow between any two
vertices, we indicate a path by the sequence of vertices it traverses.

First we observe the following: the distinguished vertices of the first two rows I.1 and I.2 of
Table 4.2 are sinks and sources, respectively. Hence, the results follow with Remark 4.2.5.

The correctness of all the other results listed in Tables 4.2, 4.3 and 4.4 is proved in the lemmas
below.

Lemma 4.2.19 (I.3a, I.3b). (a) Consider the two cluster-tilted algebras A and A′ with the
following quivers

•1
!!CCCC

•0 // •3

•2

=={{{{

•1
}}{{{{

•3 // •0 .

ccFFFF

||xxxx

•2

aaCCCC

Then the mutations µ−0 (A) and µ+
0 (A) are defined, whereas µ−0 (A′) and µ+

0 (A′) are not
defined.

(b) Consider the two cluster-tilted algebras A and A′ with the following quivers
•1

•0

aaCCCC

}}{{{{
•3oo

•2

•1
}}{{{{

•0 // •3 .

ccFFFF

||xxxx

•2

aaCCCC

Then the mutations µ−0 (A) and µ+
0 (A) are defined, whereas µ−0 (A′) and µ+

0 (A′) are not
defined.

Proof. We use the criterion of Proposition 4.2.3.
(a) Since the arrow 1 → 0 (or 2 → 0) does not appear in any relation in A, its composition

with any non-zero path starting at 0 is non-zero. Thus, the negative mutation µ−0 (A) is
defined. Similarly, since 0 → 3 does not appear in any relation of A, its composition with
any non-zero path that ends at 0 is non-zero, and the positive mutation µ+

0 (A) is also
defined.

The two algebra mutations µ−0 (A′) and µ+
0 (A′) are not defined since the two composi-

tions of the arrow 3→ 0 with the arrows 0→ 1 and 0→ 2, respectively, vanish in A′.
(b) Since the arrow 3→ 0 does not appear in any relation in A, the negative mutation µ−0 (A) is

defined. Similarly, the positive mutation µ+
0 (A) is defined since the arrow 0→ 1 (or 0→ 2)

does not appear in any relation.
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I.1

•
��????

Q

◦

??����

µ+
•

•

Q

__????

◦

??����

µ−• good

I.2

◦
��====

• Qoo

◦

@@����

µ−•

◦

•

^^====

������
// Q

◦

µ+
• good

I.3a

◦
��====

• // Q

◦

@@����

µ−• , µ
+
•

◦
������

Q // •

^^====

������

◦

__????

none bad

I.3b

◦

•

^^====

������
Qoo

◦

µ−• , µ
+
•

◦
������

• // Q

__????

������

◦

^^====

none bad

I.4a

◦
��====

•
������

// Q

◦

µ−• , µ
+
•

Q

��????

◦

??����

  BBBB •oo

◦

>>||||

none bad

I.4b

◦
��====

•
������

Qoo

◦

µ−• , µ
+
•

Q

��????

•

??����

  BBBB ◦oo

◦

>>||||

none bad

I.4c

◦
��==== Q′′

��

•
������

>>}}}}

◦ Q′

``AAAA
µ−• , µ

+
•

◦

��

// Q′′

~~}}}}

•

^^====

  AAAA

◦

@@����
Q′oo

none bad

I.5a

◦
��==== Q′′

��

•

>>}}}}

◦

@@����
Q′

``AAAA
µ−•

◦
~~}}}}

Q′′ // •

^^====

������
// Q′

◦

``AAAA

µ+
• good

I.5b

◦ Q′′

��

•

^^====

������

>>}}}}

◦ Q′

``AAAA
µ+
•

◦
������

Q′′ // • // Q′

``@@@@

~~~~~~

◦

^^====

µ−• good

Table 4.2. Mutations involving type I quivers.
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II.1

•
~~}}}}

Q′′ // Q′

``@@@@

~~~~~~

◦

``AAAA

µ−• , µ
+
•

•
  @@@@

Q′′

>>}}}}
Q′

~~~~~~

◦

``AAAA

none bad

II.2

◦
~~}}}}

Q′′ // •

^^====

������
Q′oo

◦

``AAAA

µ−•

◦
������

Q′′ •oo // Q′

``@@@@

~~~~~~

◦

^^====

µ+
• good

II.3

◦
�������

Q′

��~~~~~

Q′′ // •

\\:::::

�������
��@@@@@

◦

__>>>>>
Q′′′

OO

µ−• , µ
+
•

Q′′′

��@@@@@
◦

�������

•
��~~~~~

// Q′

^^====

������

Q′′

OO

◦

\\:::::

µ−• , µ
+
• good

Table 4.3. Mutations involving type II quivers.

III.1

◦
�������

Q′

������

Q′′

  AAAA
•

\\:::::

◦

@@����

µ−•

◦
�������

��::::: Q′oo

Q′′

  AAAA
•

������

@@����

◦

OO

µ+
• good

III.2

◦
~~}}}}

Q′′

��>>>>>
•

^^====

��====

◦

BB�����
Q′

µ+
•

◦
~~}}}}

��====

Q′′

��>>>>>
•

�������

◦

OO

// Q′

^^====
µ−• good

III.3

◦
�������

Q′

��~~~~~

Q′′

��>>>>>
•

\\:::::

��@@@@@

◦

BB�����
Q′′′

OO

µ−• , µ
+
•

◦
�������

��::::: Q′oo

Q′′

��>>>>>
•

�������

??~~~~~

◦

OO

// Q′′′

__@@@@@

none bad

Table 4.4. Mutations involving type III quivers.

The two algebra mutations µ−0 (A′) and µ+
0 (A′) are not defined since the two composi-

tions of the arrows 1→ 0 and 2→ 0, respectively, with the arrow 0→ 3 vanish in A′.

�

Lemma 4.2.20 (I.4a - I.4c). (a) Consider the two cluster-tilted algebras A and A′ with the
following quivers

•1
!!CCCC

•0
}}{{{{

// •3

•2

•3
##FFFF

•1

=={{{{

!!CCCC •0 .oo

•2

<<xxxx
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Then the mutations µ−0 (A) and µ+
0 (A) are defined, whereas µ−0 (A′) and µ+

0 (A′) are not
defined.

(b) Consider the two cluster-tilted algebras A and A′ with the following quivers

•1
!!CCCC

•0
}}{{{{

•3oo

•2

•3
##FFFF

•0

=={{{{

!!CCCC •2 .oo

•1

<<xxxx

Then the mutations µ−0 (A) and µ+
0 (A) are defined, whereas µ−0 (A′) and µ+

0 (A′) are not
defined.

(c) Consider the two cluster-tilted algebras A and A′ with the following quivers

•1
!!CCCC •4

��

•0
}}{{{{

=={{{{

•2 •3

aaCCCC

•1

��

// •4
||xxxx

•0

aaCCCC

##FFFF

•2

=={{{{ •3 .oo

Then the mutations µ−0 (A) and µ+
0 (A) are defined, whereas µ−0 (A′) and µ+

0 (A′) are not
defined.

Proof. We use the criterion of Proposition 4.2.3.

(a) Since the arrow 1→ 0 does not appear in any relation in A, its composition with any non-
zero path starting at 0 is non-zero. Thus, the negative mutation µ−0 (A) is defined. Similarly,
since the arrow 0→ 2 (or 0→ 3) does not appear in any relation of A, its composition with
the arrow 1→ 0 is non-zero, and the positive mutation µ+

0 (A) is also defined.
The two algebra mutations µ−0 (A′) and µ+

0 (A′) are not defined since the two composi-
tions of the arrows 2→ 0 and 3→ 0, respectively, with the arrow 0→ 1 vanish in A′.

(b) Since the arrow 1→ 0 (or 3→ 0) does not appear in any relation in A, the negative mutation
µ−0 (A) is defined. Similarly, the positive mutation µ+

0 (A) is defined since the arrow 0 → 2
does not appear in any relation.

The two algebra mutations µ−0 (A′) and µ+
0 (A′) are not defined since the two composi-

tions of the arrow 2→ 0 with the arrows 0→ 1 and 0→ 3, respectively, vanish in A′.
(c) Since the arrow 1→ 0 does not appear in any relation of A, the negative mutation µ−0 (A) is

defined. Similarly, since 0→ 2 does not appear in any relation of A, the positive mutation
µ+

0 (A) is also defined.
Now consider A′. The path 0, 1, 2 is non-zero, as it equals 0, 3, 2, but both compositions

2, 0, 1, 2 and 4, 0, 1, 2 vanish because of the zero-relations 2, 0, 1 and 4, 0, 1, hence µ−0 (A′) is
not defined. Similarly, the path 1, 2, 0 is non-zero, as it equals 1, 4, 0, but both compositions
1, 2, 0, 1 and 1, 2, 0, 3 vanish because of the zero-relations 2, 0, 1 and 2, 0, 3, showing that
µ+

0 (A′) is not defined.

�

Lemma 4.2.21 (I.5a, I.5b). (a) Consider the two cluster-tilted algebras A and A′ with the
following quivers

•1
!!CCCC •4

��

•0

=={{{{

•2

=={{{{ •3

aaCCCC

•1
}}{{{{

•4 // •0

aaCCCC

}}{{{{
// •3 .

•2

aaCCCC

Then the mutations µ−0 (A) and µ+
0 (A′) are defined, whereas µ+

0 (A) and µ−0 (A′) are not
defined.
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(b) Consider the two cluster-tilted algebras A and A′ with the following quivers

•1 •4

��

•0

aaCCCC

}}{{{{

=={{{{

•2 •3

aaCCCC

•1
}}{{{{

•4 // •0 // •3 .

ccFFFF

||xxxx

•2

aaCCCC

Then the mutations µ+
0 (A) and µ−0 (A′) are defined, whereas µ−0 (A) and µ+

0 (A′) are not
defined.

Proof. (a) Since the arrow 1 → 0 (or 2 → 0) does not appear in any relation of A, the
negative mutation µ−0 (A) is defined. But µ+

0 (A) is not defined since the composition of the
arrow 3→ 0 with 0→ 4 vanishes. Similarly for A′: the positive mutation µ+

0 (A′) is defined
since the arrow 0→ 3 does not appear in any relation, and µ−0 (A′) is not defined since the
composition of the arrow 0→ 1 with the arrow 4→ 0 vanishes.

(b) The negative mutation µ−0 (A) is not defined since the composition of the arrow 0→ 4 with
3 → 0 vanishes in A. The positive mutation µ+

0 (A) is defined since the arrow 0 → 1 (or
0→ 2) does not appear in any relation of A.

µ−0 (A′) is defined since the arrow 4→ 0 does not appear in any relation in A′, and the
positive mutation µ+

0 (A′) is not defined since the composition of the arrow 1→ 0 with the
arrow 0→ 3 vanishes in A′.

�

Lemma 4.2.22 (II.1, II.2). (a) Consider the two cluster-tilted algebras A and A′ with the
following quivers

•0
}}{{{{

•1 // •2

aaCCCC

}}{{{{

•3

aaCCCC

•0
##FFFF

•1

=={{{{ •2 .
||xxxx

•3

aaCCCC

Then the mutations µ−0 (A) and µ+
0 (A) are defined, whereas µ−0 (A′) and µ+

0 (A′) are not
defined.

(b) Consider the two cluster-tilted algebras A and A′ with the following quivers

•3
}}{{{{

•2 // •0

aaCCCC

}}{{{{
•1oo

•4

aaCCCC

•3
}}{{{{

•2 •0oo // •1 .

ccFFFF

||xxxx

•4

aaCCCC

Then the mutations µ−0 (A) and µ+
0 (A′) are defined, whereas µ+

0 (A) and µ−0 (A′) are not
defined.

Proof. (a) The two algebra mutations µ−0 (A) and µ+
0 (A) are defined since the composition

of the arrow 2→ 0 with 0→ 1 is not zero in A (as it equals the path 2, 3, 1).
Now consider A′. The path 0, 2, 3 is non-zero, but the composition 1, 0, 2, 3 vanishes in

A′, hence µ−0 (A′) is not defined. Similarly, the path 3, 1, 0 is non-zero, but the composition
3, 1, 0, 2 vanishes in A′, showing that µ+

0 (A′) is not defined.
(b) Since the arrow 1 → 0 does not appear in any relation of A, the negative mutation µ−0 (A)

is defined. But µ+
0 (A) is not defined since the two compositions of the arrow 2 → 0 with

the arrows 0→ 3 and 0→ 4, respectively, vanish in A.
The positive mutation µ+

0 (A′) is defined since the arrow 0→ 2 does not appear in any
relation, and µ−0 (A′) is not defined since the two compositions of the arrow 0→ 1 with the
arrows 3→ 0 and 4→ 0, respectively, vanish in A′.

�
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Lemma 4.2.23 (II.3). Let A be one of the cluster-tilted algebras with the quivers given below

•1
}}{{{{

•3
α

}}{{{{

•4 α′ // •0

aaCCCC

β′}}{
{{{

β !!CCCC

•2

aaCCCC
•5

OO •5
α

!!CCCC •1
α′

}}{{{{

•0
β}}{{{{ β′

// •3 .

ccFFFF

||xxxx

•4

OO

•2

aaCCCC

Then both algebra mutations µ−0 (A) and µ+
0 (A) are defined.

Proof. Indeed, let p = γ2γ1 be a non-zero path starting at vertex 0 written as a concatenation
of arrows. Note that p could also be just a single arrow. If p 6= β, then the composition p · α is not
zero, whereas otherwise the composition β · α′ is not zero, hence µ−0 (A) is defined.

Similarly, if p = γ2γ1 is a non-zero path ending at 0, then the composition β · p is not zero if
p 6= α, and otherwise β′ · α is not zero, hence µ+

0 (A) is defined as well. �

Lemma 4.2.24 (III.1, III.2). (a) Consider the two cluster-tilted algebras A and A′ with the
following quivers

•3
������

•1
~~}}}}}

•
2

��>>>> •0

``AAAAA

•4

>>}}}}}

•3
}}{{{{

!!CCCC •1oo

•2
!!CCCC •0
}}{{{{

=={{{{

•4

OO

.

Then the mutations µ−0 (A) and µ+
0 (A′) are defined, whereas µ+

0 (A) and µ−0 (A′) are not
defined.

(b) Consider the two cluster-tilted algebras A and A′ with the following quivers

•3
}}{{{{

•2
!!CCCC •0

aaCCCC

!!CCCC

•4

=={{{{ •1

•3
}}{{{{

!!CCCC

•2
!!CCCC •0
}}{{{{

•4

OO

// •1 .

ccFFFF

Then the mutations µ+
0 (A) and µ−0 (A′) are defined, whereas µ−0 (A) and µ+

0 (A′) are not
defined.

Proof. We use the criterion of Proposition 4.2.3.

(a) The negative mutation µ−0 (A) is defined since the arrow 1 → 0 does not appear in any
relation. The path 2, 4, 0 is non-zero in A, but the composition 2, 4, 0, 3 vanishes, hence
µ+

0 (A) is not defined.
The negative mutation µ−0 (A′) is not defined since the composition of the arrow 0→ 1

with 3 → 0 vanishes in A′. The positive mutation µ+
0 (A′) is defined since the composition

of the arrow 3→ 0 with 0→ 4 is non-zero in A, as it equals the path 3, 2, 4.
(b) The path 0, 3, 2 is non-zero in A, but the composition 4, 0, 3, 2 vanishes, hence µ−0 (A) is not

defined. The positive mutation µ+
0 (A) is defined since the arrow 0→ 1 does not appear in

any relation of A.
The negative mutation µ−0 (A′) is defined since the composition of the arrow 0→ 4 with

3 → 0 is non-zero in A, as it equals the path 3, 2, 4. The positive mutation µ+
0 (A′) is not

defined since the composition of the arrow 1→ 0 with 0→ 4 vanishes in A′.

�
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Lemma 4.2.25 (III.3). Consider the two cluster-tilted algebras A and A′ with the following quivers

•4
}}{{{{

•1
α

}}{{{{

•2
!!CCCC •0

β′aaCCCC

β !!CCCC

•5 α′

=={{{{ •3

OO •4
}}{{{{

!!CCCC •1oo

•2
!!CCCC •0
}}{{{{

=={{{{

•5

OO

// •3

aaCCCC
.

Then the mutations µ−0 (A) and µ+
0 (A) are defined, whereas µ−0 (A′) and µ+

0 (A′) are not defined.

Proof. Let p = γ2γ1 be a non-zero path in A starting at vertex 0 (written as a concatenation
of at most two arrows). If p 6= β, then the composition p · α is not zero. If p = β, then β · α′ is not
zero, hence µ−0 (A) is defined. Similarly, if p = γ2γ1 is a non-zero path in A ending at vertex 0, then
the composition β · p is not zero if p 6= α and otherwise β′ · α is not zero. It follows that µ+

0 (A) is
defined as well.

Now consider A′: the path 0, 5, 4 is non-zero in A′, as it equals 0, 1, 4, but both compositions
3, 0, 5, 4 and 4, 0, 5, 4 = 4, 0, 1, 4 vanish because of the zero-relations 3, 0, 5 and 4, 0, 1. Thus, µ−0 (A′)
is not defined. Similarly, the path 5, 4, 0 is non-zero in A′, as it equals 5, 3, 0, but both compositions
5, 4, 0, 1 and 5, 4, 0, 5 = 5, 3, 0, 5 vanish because of the zero-relations 4, 0, 1 and 3, 0, 5. It follows that
µ+

0 (A′) is not defined. �

Now we consider quivers of type IV. The good mutations involving these quivers are given in
Table 4.5. In this table, the dotted lines indicate the central cycle, and the two vertices at the
sides may be identified. The proof that all the mutations listed in Table 4.5 are good relies on the
Lemmas 4.2.26 - 4.2.34 below.

Mutations at vertices on the central cycle are discussed in Lemmas 4.2.26, 4.2.30 and 4.2.34,
whereas mutations at the spikes are discussed in Lemmas 4.2.27 and 4.2.32. The moves IV.1a and
IV.1b in Table 4.5 follow from Corollary 4.2.28. The moves IV.2a and IV.2b follow from Corol-
lary 4.2.33. Lemma 4.2.34 implies that there are no additional good mutations involving type IV
quivers.

Lemma 4.2.26. Let m ≥ 2 and consider a cluster-tilted algebra A of type IV with the quiver

(4.2.2)

•0
xxppppp

•1

��

•m
iiRRRRRRR

((RRRR

Q+

88ppp
Q−

vvl l l

•2
ffM M M

•m−1

OO

having a central cycle 0, 1, . . . ,m and optional spikes Q− and Q+ (which coincide when m = 2).
Then:

(a) µ−0 (A) is defined if and only if the spike Q− is present.
(b) µ+

0 (A) is defined if and only if the spike Q+ is present.

Proof. We use the criterion of Proposition 4.2.3.
(a) The negative mutation µ−0 (A) is defined if and only if the composition of the arrow m→ 0

with any non-zero path starting at 0 is not zero. This holds for all such paths of length
smaller thanm−1, so we only need to consider the path 0, 1, . . . ,m−1. Now, the composition
m, 0, 1, . . . ,m − 1 vanishes if Q− is not present, and otherwise equals the (non-zero) path
m, v−,m− 1 where v− denotes the root of Q−.

(b) The positive mutation µ+
0 (A) is defined if and only if the composition of the arrow 0 → 1

with any non-zero path ending at 0 is not zero. This holds for all such paths of length
smaller than m− 1, so we only need to consider the path 2, . . . ,m, 0. Now, the composition
2, . . . ,m, 0, 1 vanishes if Q+ is not present, and otherwise equals the (non-zero) path 2, v+, 1
where v+ denotes the root of Q+.

�
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IV.1a

•
xxrrrr
◦

��

◦
ffLLLL

%%KKKK

Q
yyssss

◦ ◦

OO
µ−•

•
��1

111

◦

FF

��
◦oo // Q

������

◦ ◦

XX1111
µ+
•

IV.1b

•
xxrrrr
◦

��

◦
ffLLLL

Q

99ssss

◦
eeKKKK

◦

OO
µ+
•

•
��1

111

Q // ◦

FF

��
◦oo

◦

YY3333
◦

XX1111
µ−•

IV.2a

Q′

%%KKKK

•
wwpppp
◦

OO

◦
ffLLLL

&&LLLL

Q′′

xxrrrr
◦

OO µ−•

Q′ •oo

��/
////

◦

GG����� ◦oo // Q′′

������

◦

XX1111

µ+
•

IV.2b

Q′

��
•

xxrrrr

99ssss

◦

��

◦
ggNNNN

Q′′
88rrrr

◦
ffLLLL

µ+
•

•

��/
//// Q′oo

Q′′ // ◦

GG�����

��
◦oo

◦

ZZ6666

µ−•

Table 4.5. Good mutations involving type IV quivers.

Lemma 4.2.27. Let m ≥ 3 and consider a cluster-tilted algebra A′ of type IV with the quiver

(4.2.3)

•0

��66666

Q+
//___ •1

DD					

��					
•moo //___ Q−

��	
	

	

•2

[[7
7

7
•

ZZ44444

having a central cycle 1, 2, . . . ,m and optional spikes Q− and Q+. Then:
(a) µ−0 (A′) is defined if and only if the spike Q− is not present.
(b) µ+

0 (A′) is defined if and only if the spike Q+ is not present.

Proof. We use the criterion of Proposition 4.2.3.
(a) The negative mutation µ−0 (A′) is defined if and only if the composition of the arrow 1→ 0

with any non-zero path starting at 0 is not zero. For the path 0,m, the composition 1, 0,m
equals the path 1, 2, . . . ,m and hence it is non-zero. This shows that µ−0 (A′) is defined when
Q− is not present. When Q− is present, the path 0,m, v− to the root v− of Q− is non-zero,
but the composition 1, 0,m, v− equals the path 1, 2, . . . ,m, v− which is zero since the path
m− 1,m, v− vanishes.

(b) The positive mutation µ+
0 (A′) is defined if and only if the composition of the arrow 0→ m

with any non-zero path ending at 0 is not zero. For the path 1, 0, the composition 1, 0,m
equals the path 1, 2, . . . ,m and hence it is non-zero. This shows that µ+

0 (A′) is defined
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when Q+ is not present. When Q+ is present, the path v+, 1, 0 from the root v+ of Q+ is
non-zero, but the composition v+, 1, 0,m equals the path v+, 1, 2, . . . ,m which is zero since
the path v+, 1, 2 vanishes.

�

Corollary 4.2.28. Let A be a cluster-tilted algebra corresponding to a quiver as in (4.2.2) with m ≥ 3
and let A′ be the one corresponding to its mutation at 0, as in (4.2.3). The following table lists which
of the algebra mutations at 0 are defined for A and A′ depending on whether the optional spikes Q−
or Q+ are present (“yes”) or not (“no”).

Q− Q+ A A′

yes yes µ−0 , µ
+
0 none bad

yes no µ−0 µ+
0 good

no yes µ+
0 µ−0 good

no no none µ−0 , µ
+
0 bad

Remark 4.2.29. Note that if m = 2 in (4.2.2) of Lemma 4.2.26 (and Q− is present), then mutation
at vertex 0 leads to a quiver of type III (and the quiver mutation is bad as in Table 4.3 II.1). This
quiver of type III is indeed a degenerate version of (4.2.3) for m = 2 (see Remark 4.1.5).

Lemma 4.2.30. Let m ≥ 2 and consider cluster-tilted algebras A− and A+ of type IV with the
following quivers

Q0

&&MMMMM

•0
wwooooo

•1

OO

•m
ggOOOOO

''NNN

Q−
wwo o o

•

OO

Q0

��
•0

xxppppp

88qqqqq

•1

��

•m
ggOOOOO

Q+

88ppp

•2
ffN N N

(4.2.4)

having a central cycle 0, 1, . . . ,m and optional spikes Q− and Q+, respectively. Then:

(a) µ+
0 (A−) is never defined;

(b) µ−0 (A−) is defined if and only if the spike Q− is present;
(c) µ−0 (A+) is never defined;
(d) µ+

0 (A+) is defined if and only if the spike Q+ is present.

Proof.

(a) Let v0 denote the root of Q0. Then the path v0, 0 is non-zero whereas v0, 0, 1 is zero.
(b) Since the path v0, 0, 1 is zero, the composition of the arrow v0 → 0 with any non-trivial

path starting at 0 is zero. Therefore, the negative mutation at 0 is defined if and only if the
composition of the arrow m → 0 with any non-zero path starting at 0 is not zero, and the
proof goes in the same manner as in Lemma 4.2.26.

(c) Let v0 denote the root of Q0. Then the path 0, v0 is non-zero whereas m, 0, v0 is zero.
(d) Since the path m, 0, v0 is zero, the composition of the arrow 0 → v0 with any non-trivial

path ending at 0 is zero. Therefore, the positive mutation at 0 is defined if and only if the
composition of the arrow 0 → 1 with any non-zero path ending at 0 is not zero, and the
proof goes in the same manner as in Lemma 4.2.26.

�

Remark 4.2.31. Note that if m = 2 in (4.2.4) of Lemma 4.2.30, then the two cluster-tilted algebras
A− and A+ with optional spikes Q− and Q+ present are the same as the cluster-tilted algebras
appearing at the right hand side of III.2 and III.1 in Table 4.4, respectively.
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Lemma 4.2.32. Let m ≥ 3 and consider cluster-tilted algebras A′− and A′+ of type IV with the
following quivers

Q0 •0oo

��555555

•1

EE





 •moo //___ Q−

���
�

�

•

ZZ55555

•0

��555555 Q0
oo

Q+
//___ •1

EE







��					
•moo

•2

[[7
7

7

(4.2.5)

having a central cycle 1, . . . ,m and optional spikes Q− and Q+, respectively. Then:
(a) µ+

0 (A′−) is always defined;
(b) µ−0 (A′−) is defined if and only if the spike Q− is not present;
(c) µ−0 (A′+) is always defined;
(d) µ+

0 (A′+) is defined if and only if the spike Q+ is not present.

Proof.

(a) Let v0 denote the root of Q0. Then the composition of any non-zero path ending at 0 with
the arrow 0→ v0 is not zero.

(b) Since the composition of the arrow 1→ 0 with any non-zero path whose first arrow is 0→ v0

is not zero, we only need to consider paths whose first arrow is 0 → m. The proof is then
the same as in Lemma 4.2.27.

(c) Let v0 denote the root of Q0. Then the composition of any non-zero path starting at 0 with
the arrow v0 → 0 is not zero.

(d) Since the composition of the arrow 0 → m with any non-zero path whose last arrow is
v0 → 0 is not zero, we only need to consider paths whose last arrow is 1→ 0. The proof is
then the same as in Lemma 4.2.27.

�

Corollary 4.2.33. Let A− and A+ be cluster-tilted algebras corresponding to quivers as in (4.2.4)
with m ≥ 3 and let A′− and A′+ be the ones corresponding to their mutations at 0, as in (4.2.5).
The following tables list which of the algebra mutations at 0 are defined for A−, A′−, A+ and A′+
depending on whether the optional spikes Q− or Q+ are present (“yes”) or not (“no”).

Q− A− A′−
yes µ−0 µ+

0 good
no none µ−0 , µ

+
0 bad

Q+ A+ A′+
yes µ+

0 µ−0 good
no none µ−0 , µ

+
0 bad

Lemma 4.2.34. Let m ≥ 2 and consider a cluster-tilted algebra A of type IV with the following
quiver

Q′′

&&MMMMM Q′

��
•0

wwooooo

88qqqqq

•1

OO

•m
ggOOOOO

having a central cycle 0, 1, . . . ,m. Then the algebra mutations µ−0 (A) and µ+
0 (A) are never defined.

Proof. Denote by v′, v′′ the roots of Q′ and Q′′, respectively.
Consider the path 0, 1, . . . ,m. It is non-zero, since it equals the path 0, v′,m. However, its

composition with the arrow v′′ → 0 is zero since the path v′′, 0, 1 vanishes, and its composition
with the arrow m → 0 is zero as well, since it equals m, 0, v′,m and the path m, 0, v′ vanishes. By
Proposition 4.2.3, the mutation µ−0 (A) is not defined.

Now, consider the path 1, . . . ,m, 0. It is non-zero, since it equals the path 1, v′′, 0. However,
its composition with the arrow 0 → v′ is zero since the path m, 0, v′ vanishes, and its composition
with the arrow 0 → 1 is zero as well, since it equals 1, v′′, 0, 1 and the path v′′, 0, 1 vanishes. By
Proposition 4.2.3, the mutation µ+

0 (A) is also not defined. �
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4.2.4. Main theorem for good mutation equivalences. In this section we state the results
concerning the good mutation equivalence classification in type Dn.

Proposition 4.2.35. Given two quivers which are mutation equivalent to Dn in parametric notation
(i.e. specified by their type I,II,III,IV and the parameters), there is an algorithm which decides whether
or not the corresponding cluster-tilted algebras are good mutation equivalent.

We also provide a list of ‘canonical forms’ for good mutation equivalence.

Theorem 4.2.36. A cluster-tilted algebra of type Dn is good mutation equivalent to one (and only
one) of the cluster-tilted algebras with the following quivers:

(a) Dn (i.e. type I with a linearly oriented An−2 quiver attached):

•
��????

• // . . . // • ;

•

??����

(b) Type II as in the following figure, where S, T ≥ 0 and S + 2T = n− 4:

•
������

•
������

•
������

• // • 1 //

__????

������
. . . S // • 1 // •

YY2222
. . . • T // •

YY2222
;

•

__????

(c) Type III with parameters (S, T1, 0, T2) as in the following figure, with S ≥ 0, the non-negative
integers T1, T2 are considered up to rotation of the sequence (T1, T2), i.e. up to interchanging
T1 and T2, and S + 2(T1 + T2) = n− 4:

•
��2

222 •
��2

222 •
������

•
������

•
������

•

EE���� •T2oo . . . •

EE���� •1oo

��???? • 1 //

__????
. . . S // • 1 // •

YY2222
. . . • T1 // •

YY2222
;

•

??����

(d1) Type IV with a central cycle of length n without any spikes:
1

2

3 n− 2

n− 1

n

;
(d2,1) Type IV with parameter sequence (as defined in Definition 4.1.4)(

(1, S, 0), (1, 0, 0), . . . , (1, 0, 0)
)

for some S ≥ 0, where the number of the triples is b ≥ 3 such that n = 2b + S and the
attached rooted quiver of type A is linearly oriented of type AS+1:

2

13

4 b

1 2 S

;
(d2,2) Type IV with parameter sequence(

(1, S, T1), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b1

, (1, 0, T2), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b2

, . . . , (1, 0, Tl), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
bl

)



76 4. TYPE Dn

which is a concatenation of l ≥ 1 sequences with positive numbers of triples b1, b2, . . . , bl
whose sum is not smaller than 3, with S ≥ 0 and T1, . . . , Tl > 0 considered up to rotation
of the sequence (

(b1, T1), (b2, T2), . . . , (bl, Tl)
)
,

n = 2(b1 + · · · + bl + T1 + · · · + Tl) + S and the attached rooted quivers of type A are in
standard form:

1T2 1 Tl

1S1T1

;
(d3,1) Type IV with parameter sequence(

(1, 0, 0), . . . , (1, 0, 0), (3, S1, 0), . . . , (3, Sa, 0)
)

for some a > 0, where the number of the triples (1, 0, 0) is b ≥ 0, the sequence of non-
negative integers (S1, . . . , Sa) is considered up to a cyclic permutation, n = 4a+ 2b+ S1 +
· · ·+Sa and the attached rooted quivers of type A are in standard form (i.e. linearly oriented
AS1+1, . . . , ASa+1):

1S1 1 Sa

1 S2 ;
(d3,2) Type IV with parameter sequence which is a concatenation of l ≥ 1 sequences of the form

γj =


(
(1, 0, Tj), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

bj

, (3, Sj,1, 0), (3, Sj,2, 0), . . . , (3, Sj,aj , 0)
)

if bj > 0,

(
(3, Sj,1, Tj), (3, Sj,2, 0), . . . , (3, Sj,aj , 0)

)
otherwise,

where each sequence γj for 1 ≤ j ≤ l is defined by non-negative integers aj and bj not both
zero. The integer bj is the number of triples with distance 1. For each j there is a sequence
of aj non-negative integers Sj,1, . . . , Sj,aj and a positive integer Tj. Note that we require
that not all the aj are zero. All these numbers are considered up to rotation of the l-term
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sequence((
b1, (S1,1, . . . , S1,a1), T1

)
,
(
b2, (S2,1, . . . , S2,a2), T2

)
, . . . ,

(
bl, (Sl,1, . . . , Sl,al), Tl

))
,

they satisfy n =
∑l
j=1(4aj + 2bj + Sj,1 + · · ·+ Sj,aj + 2Tj), and the attached rooted quivers

of type A are in standard form.
That is, the quiver is a concatenation of l ≥ 1 quivers γj of the form

γj =



1

Tj

1

Sj,1Sj,2

11

Sj,aj

if bj > 0,

1

Sj,2

11

Sj,aj
Sj,1

1

Tj

if bj = 0,

where the last vertex of γl is glued to the first vertex of γ1.

For the proofs we start by describing all the good mutations determined in the previous subsec-
tion using the parametric notation of Section 4.1 which will be useful later. Note that by Propo-
sition 4.2.15, any two rooted quivers of type A with the same parameters s(Q) and t(Q) are good
mutation equivalent. Thus, two quivers which are mutation equivalent to Dn with the same type and
parameters are indeed equivalent by good mutations, so the parametric notation makes sense.

Each row of Table 4.6 describes a good mutation between two quivers of cluster-tilted algebras
of type Dn given in parametric form. All entries in that table follow immediately from the Tables 4.2
- 4.5. The numbers s′, s′′, s′′′, t′, t′′, t′′′ are arbitrary, non-negative integers, and correspond to the
parameters of the rooted quivers Q′, Q′′, Q′′′ of type A appearing in the corresponding pictures of
Tables 4.2, 4.3 and 4.4 (indicated by the column “Move”). Additionally, the numbers s1, s2, t1, t2
are arbitrary, non-negative integers, and correspond to the parameters of the rooted quivers of type
A appearing in Table 4.5; and the numbers d1, d2 are positive integers according to the distances
between the spikes appearing in the corresponding pictures of Table 4.5.

Remark 4.2.37. A careful look at Table 4.6 shows that one can regard type III quivers with pa-
rameters (s′, t′, s′′, t′′) as ‘formal’ type IV quivers with parameters

(
(1, s′, t′), (1, s′′, t′′)

)
(see also

Remark 4.1.5). Indeed, the good mutation moves III.1 and III.2 in Table 4.6 then become just
specific cases of moves IV.2b and IV.2a, respectively.

By looking at the first six rows of the table we can immediately draw the following conclusions:

Lemma 4.2.38. Consider quivers of type I or II.
(a) The set consisting of the quivers of type I or II is closed under good mutations.
(b) The set consisting of all the orientations of a Dn diagram is closed under good mutations.
(c) A quiver of type I with parameters (s, t+1) for some s, t ≥ 0 is equivalent by good mutations

to one of type II with parameters (s+ 1, t, 0, 0).
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Move Type Parameters Type Parameters Remarks
I.1 I (s′, t′) I (s′, t′)
I.2 I (s′ + 1, t′) I (s′ + 1, t′)
I.5a I (s′ + s′′, t′ + t′′ + 1) II (s′ + 1, t′, s′′, t′′)
I.5b I (s′ + s′′, t′ + t′′ + 1) II (s′, t′, s′′ + 1, t′′)
II.2 II (s′ + 1, t′, s′′, t′′) II (s′, t′, s′′ + 1, t′′)
II.3 II (s′ + s′′′, t′ + t′′′ + 1, s′′, t′′) II (s′, t′, s′′ + s′′′, t′′ + t′′′ + 1)
III.1 III (s′ + 1, t′, s′′, t′′) IV

(
(2, s′, t′), (1, s′′, t′′)

)
III.2 III (s′ + 1, t′, s′′, t′′) IV

(
(1, s′, t′), (2, s′′, t′′)

)
IV.1a IV

(
(d1, s1, t1), (d2, s2, t2), . . .

)
IV

(
(1, s1, t1), (d1 − 2, 0, 0), (d2, s2, t2), . . .

)
d1 ≥ 4

IV.1b IV
(
(d1, s1, t1), (d2, s2, t2), . . .

)
IV

(
(d1 − 2, s1, t1), (1, 0, 0), (d2, s2, t2), . . .

)
d1 ≥ 4

IV.2a IV
(
(2, s1, t1), (d2, s2, t2), . . .

)
IV

(
(1, s1, t1), (d2, s2 + 1, t2), . . .

)
IV.2b IV

(
(2, s1, t1), (d2, s2, t2), . . .

)
IV

(
(1, s1 + 1, t1), (d2, s2, t2), . . .

)
Table 4.6. All good mutations in parametric form.

(d) A quiver of type II with parameters (s′, t′, s′′, t′′) is equivalent by good mutations to one of
type II with parameters (s′ + s′′, t′ + t′′, 0, 0).

(e) Two quivers of type II with parameters (s1, t1, 0, 0) and (s2, t2, 0, 0) are equivalent by good
mutations if and only if s1 = s2 and t1 = t2.

Proof. (a) All good mutation moves I.1 - II.3 in Table 4.6 involving quivers of type I or
type II yield a quiver of type I and type II, respectively.

(b) Any orientation of a Dn diagram is a quiver of type I with parameters (s, 0). Hence, the only
possible good mutations for such a quiver are the ones appearing in I.1 and I.2, respectively.
Then the claim follows since the number of oriented 3-cycles remains unchanged in both
moves.

(c) Let Q be a quiver of type I with parameters (s, t + 1). By applying the good mutation
moves 1, 2a, 3 and 4 of Table 4.1, we can assume that Q has the following form

•
α
==== Q′′

��

•

>>}}}}

• β

����
Q′

``AAAA

where the orientations of α and β can be chosen arbitrarily. Using again the good mutation
moves 1, 2a, 3 and 4 of Table 4.1, we can transform the rooted quiver of type A to the
following form (similar to the proof of Proposition 4.2.15)

•
α 3333 •

��3
333 •

��3
333

•

EE���� •oo . . . •

EE���� •oo •oo . . . • •oo

•
β ����

and this quiver of type I has still the parameters (s, t+ 1). Using move I.1 of Table 4.2 we
can assume that α and β are oriented as follows:

•
��3

333 •
��3

333 •
��3

333

•

EE���� •oo . . . •

EE���� •oo •oo . . . • •oo .

•

EE����

Applying I.5a of Table 4.2 yields a quiver of type II with parameters (s+ 1, t, 0, 0).
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(d) Let Q be a quiver of type II with parameters (s′, t′, s′′, t′′). By applying the good mutation
moves 1, 2a, 3 and 4 of Table 4.1, we can assume that the second rooted quiver Q′′ of type
A is in standard form as in (4.2.1):

•
��1

111 •
��1

111 •
�������

•

FF •t′′oo . . . •

FF •1oo •s′′oo . . . • •1oo // Q′

``@@@@

~~~~~~
.

•

^^=====

If s′′ 6= 0, we can apply move II.2 s′′-times and get a quiver of type II with parameters
(s′ + s′′, t′, 0, t′′):

•
��1

111 •
��1

111 •
�������

•

FF •t′′oo . . . •

FF •1oo // •

^^=====

�������
•1oo . . . • Q′

s′′oo .

•

^^=====

If t′′ 6= 0, we can apply move II.3 t′′-times to get a quiver of type II with parameters
(s′ + s′′, t′ + t′′, 0, 0).

(e) Follows from Proposition 4.2.15 and Theorem 4.2.18.
�

Lemma 4.2.39. Consider quivers of type III.
(a) A quiver of type III with parameters (s′ + 1, t′, s′′, t′′) is good mutation equivalent to one of

type III with parameters (s′, t′, s′′ + 1, t′′).
(b) A quiver of type III with parameters (s′, t′, s′′, t′′) is good mutation equivalent to one of type

III with parameters (s′ + s′′, t′, 0, t′′).

Proof. (a) We have

III(s′ + 1, t′, s′′, t′′) III.1−−−→ IV
(
(2, s′, t′), (1, s′′, t′′)

)
' IV

(
(1, s′′, t′′), (2, s′, t′)

)
III.2−−−→ III(s′′ + 1, t′′, s′, t′) ' III(s′, t′, s′′ + 1, t′′)

where the isomorphisms follow from rotational symmetries.
(b) Follows from the first part.

�

Remark 4.2.40. The previous lemma shows that in type III, it is possible to move linear parts in
the rooted quivers of type A from side to side by using good mutations. It is not possible, however,
to move oriented 3-cycles by good mutations (see III.3 in Table 4.4 and Example 4.3.5 below).

For the next two lemmas we need the following terminology for spikes in quivers of type IV.
Spikes are consecutive if the distance (di) between them is 1. A spike is free if the attached rooted
quiver of type A consists of just a single vertex.

Lemma 4.2.41. Consider quivers of type IV. A free spike at the end of a group of at least two
consecutive spikes can be moved by good mutations to the next group of consecutive spikes. In other
words, the two quivers with parameters

(
(1, s, t), (d, 0, 0), . . .

)
and

(
(d, s, t), (1, 0, 0), . . .

)
are connected

by good mutations.

Proof. Since the free spike is at the end of a group of at least two consecutive spikes, the
distance d is at least two. Then(

(1, s, t), (d, 0, 0), . . .
) IV.1a−−−→

(
(d+ 2, s, t), . . .

) IV.1b−−−→
(
(d, s, t), (1, 0, 0), . . .

)
.

�
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Lemma 4.2.42. Arrows in a rooted quiver of type A attached to a spike in a group of consecutive
spikes in a quiver of type IV can be moved by good mutations to a rooted quiver attached to any spike
in that group. Note that by ‘arrows’ we mean arrows which are not part of an oriented 3-cycle.

Proof. It suffices to show that the two quivers with parameters
(
(1, s1, t1), (d2, s2 + 1, t2), . . .

)
and

(
(1, s1 + 1, t1), (d2, s2, t2), . . .

)
are good mutation equivalent. Indeed,(

(1, s1, t1), (d2, s2 +1, t2), . . .
) IV.2a−−−→

(
(2, s1, t1), (d2, s2, t2), . . .

) IV.2b−−−→
(
(1, s1 +1, t1), (d2, s2, t2), . . .

)
.

�

Now we prove Proposition 4.2.35 and Theorem 4.2.36. We first observe that, by Lemma 4.2.38,
the set of quivers of types I or II is closed under good mutations, and moreover the lemma completely
characterises good mutation equivalence among these quivers in terms of their parameters, leading to
the classes (a) and (b) in Theorem 4.2.36. We also observe that the cyclic quiver of type IV without
any spikes does not admit any good mutations, thus it falls into a separate equivalence class (d1).
Therefore we are left to deal with only quivers of types III and IV (with spikes). Before describing
the algorithm, we introduce some notation.

Notation. Given r ≥ 1 and a non-empty subset I ⊆ {1, 2, . . . , r}, we define the following two
partitions of the set {1, 2, . . . , r}. Write the elements of I in increasing order 1 ≤ i1 < i2 < · · · < il ≤ r
for l = |I|, and define the intervals

i+1 = {i1, i1 + 1, . . . , i2 − 1} i−1 = {il + 1, . . . , r, 1, . . . , i1}
i+2 = {i2, i2 + 1, . . . , i3 − 1} i−2 = {i1 + 1, . . . , i2 − 1, i2}

...
...

i+l = {il, . . . , r, 1, . . . , i1 − 1} i−l = {il−1 + 1, . . . , il − 1, il}
We call the partition i+1 ∪ i+2 ∪ · · · ∪ i+l the positive partition defined by I. Similarly, we call i−1 ∪ i−2 ∪
· · · ∪ i−l the negative partition defined by I.

Notation. We partition the set of positive integers as N1 ∪N2 ∪N3, where

N1 = {1}, N2 = {n ≥ 2 : n is even}, N3 = {n ≥ 3 : n is odd} .

Notation. Given a sequence
(
(d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
of triples of non-negative integers

and a subset I of {1, . . . , r}, we define the quantities

a(I) = |{i ∈ I : di ∈ N3}|,

b(I) = |{i ∈ I : di ∈ N1}|+
∑

i∈I : di∈N2

di
2

+
∑

i∈I : di∈N3

di − 3
2

,

s(I) = |{i ∈ I : di ∈ N2}|+
∑
i∈I

si.

Notation. We call two sequences (v0, v1, . . . , vm−1) and (w0, w1, . . . , wm−1) cyclic equivalent if there
is some 0 ≤ j ≤ m such that wi = v(i+j) mod m for all 0 ≤ i < m.

Definition 4.2.43. We define the set S of good mutation parameters as a disjoint union of the
following five sets. We also define an equivalence relation ∼ on S inside each set, and agree that
elements from different sets are inequivalent.

(c) Triples (T1, T2, S) of non-negative integers. (T1, T2, S) ∼ (T ′1, T
′
2, S
′) if and only if S = S′

and (T1, T2), (T ′1, T
′
2) are cyclic equivalent, i.e. (T ′1, T

′
2) = (T1, T2) or (T ′1, T

′
2) = (T2, T1).

(d2,1) Pairs (b, S) with b ≥ 3 and S ≥ 0. (b, S) ∼ (b′, S′) if and only if b = b′ and S = S′.
(d2,2) Pairs ((

(b1, T1), (b2, T2), . . . , (bl, Tl)
)
, S
)
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for some l ≥ 1, where the numbers bj , Tj are positive, b1 + · · · + bl ≥ 3 and S ≥ 0.
Two such pairs are equivalent if and only if S = S′ and

(
(b1, T1), (b2, T2), . . . , (bl, Tl)

)
,(

(b′1, T
′
1), (b′2, T

′
2), . . . , (b′l, T

′
l )
)

are cyclic equivalent.
(d3,1) Pairs

(
b, (S1, . . . , Sa)

)
where b ≥ 0 and (S1, . . . , Sa) is a sequence of a > 0 non-negative

integers. Two such pairs are equivalent if and only if b = b′ and (S1, . . . , Sa), (S′1, . . . , S
′
a)

are cyclic equivalent.
(d3,2) Sequences((

b1, (S1,1, . . . , S1,a1), T1

)
,
(
b2, (S2,1, . . . , S2,a2), T2

)
, . . . ,

(
bl, (Sl,1, . . . , Sl,al), Tl

))
,

of any length l ≥ 1, where for any 1 ≤ j ≤ l the numbers aj , bj are non-negative integers
not both zero, (Sj,1, . . . , Sj,aj ) is a (possibly empty) sequence of aj non-negative integers
and Tj is a positive integer. The relation ∼ is just cyclic equivalence.

Remark 4.2.44. It is easy to decide whether or not two good mutation parameters are equivalent,
because this only involves checking for cyclic equivalence.

Now we are able to describe the algorithm.

Algorithm 4.2.45 (Good mutation class). Let(
(d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
be a non-empty sequence of triples of non-negative integers such that

• di ≥ 1 and si, ti ≥ 0 for all 1 ≤ i ≤ r,
• d1 + d2 + · · ·+ dr ≥ 2 and (d1, . . . , dr) 6= (2).

This sequence parametrises a quiver of type III (see Remark 4.1.5) or a quiver of type IV with spikes.
The algorithm then outputs the class (c), (d2,1), (d2,2), (d3,1) or (d3,2) and the corresponding good
mutation parameters of that class as specified in Definition 4.2.43. The algorithm is as follows:

1. Compute the subsets

ID = {1 ≤ i ≤ r : di ∈ N3}, IT = {1 ≤ i ≤ r : ti > 0}.
2. If ID = ∅ and IT = ∅, set b, S as

b = b({1, 2, . . . , r}), S = s({1, 2, . . . , r}).
If b ≥ 3, we are in class (d2,1) with good mutation parameters (b, S). Otherwise we are in
class (c) with good mutation parameters (0, 0, S).

3. If ID = ∅ and IT 6= ∅, enumerate the elements of IT in increasing order as IT = {i1 < i2 <
· · · < il} with l = |IT |, and set bj , Tj for 1 ≤ j ≤ l and S as

bj = b(i+j ), Tj = tij , S = s({1, 2, . . . , r}).

If b1 + · · ·+ bl ≥ 3, we are in class (d2,2) with good mutation parameters
(
((b1, T1), (b2, T2),

. . . , (bl, Tl)), S
)
. Otherwise, we are in class (c) with good mutation parameters (T1, 0, S) if

l = 1 or (T1, T2, S) if l = 2.
4. If ID 6= ∅ and IT = ∅, enumerate the elements of ID in increasing order as ID = {i1,1 <
i1,2 < · · · < i1,a} and set a, b and S1, . . . , Sa as

a = a({1, 2, . . . , r}) = |ID|, b = b({1, 2, . . . , r}), Sj = s(i−1,j).

We are in class (d3,1) with good mutation parameters
(
b, (S1, . . . , Sa)

)
.

5. If ID 6= ∅ and IT 6= ∅, enumerate the elements of IT in increasing order as IT = {i1 < i2 <
· · · < il} with l = |IT |. For any 1 ≤ j ≤ l,
• Enumerate the elements of i+j ∩ ID (where the positive partition is taken with respect

to the subset IT ) in the order they appear within the interval i+j as ij,1 < ij,2 < · · · <
ij,a(i+j ).
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• Set aj , bj , Tj and Sj,1, . . . , Sj,aj as
aj = a(i+j ), bj = b(i+j ), Tj = tij , (Sj,1, . . . , Sj,aj ) =

(
s(i−j,1), s(i−j,2), . . . , s(i−

j,a(i+j )
)
)

with the positive partition taken with respect to IT and the negative one with respect
to ID.

We are in class (d3,2) with good mutation parameters((
b1, (S1,1, . . . , S1,a1), T1

)
,
(
b2, (S2,1, . . . , S2,a2), T2

)
, . . . ,

(
bl, (Sl,1, . . . , Sl,al), Tl

))
.

Algorithm 4.2.45 computes a map Σ : Q → S from the set Q of all quivers of types III or IV
(with spikes) to the set S of good mutation parameters. On the other hand, the canonical forms
stated in Theorem 4.2.36 can be viewed as a map Q : S → Q. In particular, the numerical data in
Definition 4.2.43 and Theorem 4.2.36 are the same. We also have two natural equivalence relations
on the sets S and Q: the equivalence relation ∼ defined on S via cyclic equivalence, and the good
mutation equivalence on Q, which we also denote by ∼.

Now we present examples for Algorithm 4.2.45.

Example 4.2.46. The numbering of the examples refers to the steps in Algorithm 4.2.45.

2a) Let q = ((1, 1, 0), (2, 0, 0), (4, 2, 0)) be a sequence of triples corresponding to the following
quiver (with the rooted quivers of type A in standard form):

.

In the first step of Algorithm 4.2.45 we have to compute the sets ID and IT , but both
sets are empty. Thus, we are in Step 2 of the algorithm. Then b = b({1, 2, 3}) = 4 ≥ 3
and S = s({1, 2, 3}) = 5 and thus, we are in class (d2,1) with good mutation parameters
(b, S) = (4, 5). According to Theorem 4.2.36 these correspond to a quiver in canonical form
with parameter sequence ((1, 5, 0), (1, 0, 0), (1, 0, 0), (1, 0, 0)):

.

2b) Let q = ((1, 1, 0), (2, 2, 0)) be a sequence corresponding to the following quiver (with the
rooted quivers of type A in standard form):

.
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Since both sets ID and IT are empty, we are in Step 2 of the algorithm. Then b = 2 < 3
and S = 4 and thus, we are in class (c) with good mutation parameters (0, 0, S) = (0, 0, 4).
Then the canonical form of Theorem 4.2.36 has parameters (4, 0, 0, 0) and quiver

.

3a) Let q = ((1, 1, 0), (2, 0, 1), (4, 2, 1)) be a sequence corresponding to the following quiver (with
the rooted quivers of type A in standard form):

.

The set ID is empty and IT = {2, 3}. Thus, we are in Step 3 of the algorithm. We
compute i+1 = 2+ = {2} and i+2 = 3+ = {3, 1}. Then we get b1 = b(i+1 ) = 1 and
b2 = b(i+2 ) = 3, i.e. b1 + b2 = 4 ≥ 3. Additionally, we have S = s({1, 2, 3}) = 5
and T1 = t2 = 1, T2 = t3 = 1. We are in class (d2,2) with good mutation parameters(
((b1, T1), (b2, T2)), S

)
=
(
((1, 1), (3, 1)), 5

)
, and the corresponding canonical form has pa-

rameter sequence ((1, 5, 1), (1, 0, 1), (1, 0, 0), (1, 0, 0)):

.

3b) Let q = ((1, 1, 0), (2, 2, 1)) be a sequence corresponding to the following quiver (with the
rooted quivers of type A in standard form):

.

The set ID is empty and IT = {2}. Hence, we are in Step 3 of the algorithm. We compute
i+1 = 2+ = {2, 1} and get b1 = b({2, 1}) = 2 < 3. Additionally, we have S = s({1, 2}) = 4
and T1 = t2 = 1. Hence, we are in class (c) with good mutation parameters (T1, 0, S) =
(1, 0, 4). The corresponding canonical form has parameters (4, 1, 0, 0):
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.

3c) Let q = ((1, 1, 1), (2, 2, 1)) be a sequence corresponding to the following quiver (with the
rooted quivers of type A in standard form):

.

The set ID is empty and IT = {1, 2}. Hence, we are in Step 3 of the algorithm. We compute
i+1 = 1+ = {1}, i+2 = 2+ = {2} and get b1 = 1, b2 = 1, i.e. b1 + b2 = 2 < 3. We also have
S = 4 and T1 = t1 = 1, T2 = t2 = 1. We are in class (c) with good mutation parameters
(T1, T2, S) = (1, 1, 4). The corresponding canonical form has parameters (4, 1, 0, 1)

.

4) Let q = ((1, 1, 0), (3, 0, 0), (5, 2, 0)) be a sequence corresponding to the following quiver (with
the rooted quivers of type A in standard form):

.

The set IT is empty and ID = {2, 3}. Thus, we are in Step 4 of the algorithm. We compute
i−1,1 = 2− = {1, 2} and i−1,2 = 3− = {3} and get S1 = s(i−1,1) = 1, S2 = s(i−1,2) = 2. We
also have a = a({1, 2, 3}) = |ID| = 2 and b = b({1, 2, 3}) = 2. We are in class (d3,1) with
good mutation parameters (b, (S1, S2)) = (2, (1, 2)). The corresponding canonical form has
parameter sequence ((1, 0, 0), (1, 0, 0), (3, 1, 0), (3, 2, 0))
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.
5) Let q = ((1, 1, 0), (2, 0, 1), (5, 0, 0), (3, 1, 1)) be a sequence corresponding to the following

quiver (with the rooted quivers of type A in standard form):

.
We compute the sets IT = {2, 4} and ID = {3, 4}. Thus, we are in Step 5 of the algorithm.
Additionally, we compute i+1 = 2+ = {2, 3} and i+2 = 4+ = {4, 1}. We also have a1 =
a({2, 3}) = 1, a2 = a({4, 1}) = 1 and b1 = b({2, 3}) = 2, b2 = b({4, 1}) = 1. Then we get
i+1 ∩ID = {3}, i+2 ∩ID = {4} and hence, i−1,1 = 3− = {1, 2, 3} and i−2,1 = 4− = {4}. Finally,
we have T1 = t2 = 1, T2 = t4 = 1 and (S1,1) = (s(i−1,1)) = (2), (S2,1) = (s(i−2,1)) = (1).
We are in class (d3,2) with good mutation parameters ((b1, (S1,1), T1), (b2, (S2,1), T2)) =
((2, (2), 1), (1, (1), 1)). According to Theorem 4.2.36 the corresponding canonical form has
parameter sequence ((1, 0, 1), (1, 0, 0), (3, 2, 0)︸ ︷︷ ︸

γ1

, (1, 0, 1), (3, 1, 0)︸ ︷︷ ︸
γ2

)

.

The correctness of the output of Algorithm 4.2.45 is guaranteed by the following proposition.



86 4. TYPE Dn

Proposition 4.2.47. Let q, q′ ∈ Q and σ, σ′ ∈ S.
(1) If q ∼ q′ then Σ(q) ∼ Σ(q′).
(2) If σ ∼ σ′ then Q(σ) ∼ Q(σ′).
(3) If σ ∈ S then Σ(Q(σ)) = σ. In other words, applying Algorithm 4.2.45 to a canonical form

as in Theorem 4.2.36 recovers the parameters of that form.
(4) If q ∈ Q then there exists σ ∈ S such that q ∼ Q(σ). In other words, a quiver can be

transformed by good mutations to a quiver in canonical form as in Theorem 4.2.36.

Proof. Let q = ((d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)) ∈ Q and let Q2 and Q≥4 be the subsets
of Q consisting of the elements q with d1 = 2 and d1 ≥ 4, respectively. According to Table 4.6 (moves
III.1 - IV.2b) and Lemmas 4.2.39, 4.2.41 and 4.2.42 we can define five functions,

µ0 : Q → Q, µ1a, µ1b : Q≥4 → Q, µ2a, µ2b : Q2 → Q,
corresponding to the rotation and good mutation moves as follows:

µ0(q) =
(
(d2, s2, t2), . . . , (dr, sr, tr), (d1, s1, t1)

)
,

and if d1 ≥ 4,

µ1a(q) =
(
(1, s1, t1), (d1 − 2, 0, 0), (d2, s2, t2), . . . , (dr, sr, tr)

)
,

µ1b(q) =
(
(d1 − 2, s1, t1), (1, 0, 0), (d2, s2, t2), . . . , (dr, sr, tr)

)
.

Finally, if d1 = 2, that is, q =
(
(2, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
, we set

µ2a(q) =
(
(1, s1, t1), (d2, s2 + 1, t2), . . . , (dr, sr, tr)

)
,

µ2b(q) =
(
(1, s1 + 1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
.

Note that the use of this notation for good mutations is different from the use of notation for mutations
elsewhere in this thesis. In particular, the subscript refers to the type of good mutations in Table 4.6
rather than the vertex at which the mutation is performed. This will not cause any ambiguity because
it is used only in the proof of this proposition.

(1) We have to check that Σ(µ(−)(q)) ∼ Σ(q) for (−) ∈ {0, 1a, 1b, 2a, 2b}. Note that since
the parameter sequence ((d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)) is defined up to rotation,
Σ(µ0(q)) ∼ Σ(q) ensures that the output of Algorithm 4.2.45 is well-defined.

First we look at µ0(q). We indicate the parameters of Σ(µ0(q)) by a zero. We observe that
|ID| = |I0

D| and |IT | = |I0
T |.

• If ID = IT = ∅, then b0 = b({1, . . . , r}) = b, S0 = s({1, . . . , r}) = S, and thus,
Σ(q) = Σ(µ0(q)).
• Suppose ID 6= ∅ and IT = ∅, i.e. we are in Step 4 of Algorithm 4.2.45. Then a0 =
|I0
D| = |ID| = a and b0 = b({1, . . . , r}) = b.

If i1,1 = 1, i.e. d1 ∈ N3, then

i01,j =

{
i1,j+1 − 1, for 1 ≤ j < a

i1,1 − 1 ≡ r, for j = a
.

Thus, S0
j = s((i01,j)

−) = Sj+1 for 1 ≤ j < a and S0
a = s((i01,a)−) = S1.

Then Σ(q) = (b, (S1, . . . , Sa)) and Σ(µ0(q)) = (b, (S2, . . . , Sa, S1)). Hence, Σ(q) and
Σ(µ0(q)) are cyclic equivalent.
If i1,1 ≥ 2, i.e. d1 /∈ N3, then i01,j = i1,j − 1 for 1 ≤ j ≤ a. Thus, S0

j = Sj for all j and
Σ(q) = Σ(µ0(q)).
• Suppose ID = ∅ and IT 6= ∅, i.e. we are in Step 3 of Algorithm 4.2.45. Then S0 =
s({1, . . . , r}) = S.
If i1 = 1, i.e. t1 > 0, then

i0j =

{
ij+1 − 1, for 1 ≤ j < l

i1 − 1 ≡ r, for j = l
.
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Thus, b0j = b((i0j )
+) = bj+1 for 1 ≤ j < l and b0l = b((i0l )

+) = b1. Additionally,
T 0
j = t0ij = Tj+1 for 1 ≤ j < l and T 0

l = t0il = ti1 = T1.
If b1+· · ·+bl ≥ 3, then Σ(q) = (((b1, T1), . . . , (bl, Tl)), S) and Σ(µ0(q)) = (((b2, T2), . . . ,
(bl, Tl), (b1, T1)), S) are cyclic equivalent.
If b1 + · · ·+ bl < 3 and l = 1, then Σ(q) = (T1, 0, S) = Σ(µ0(q)).
If b1 + · · ·+ bl < 3 and l = 2, then Σ(q) = (T1, T2, S) ∼ (T2, T1, S) = Σ(µ0(q)).
If i1 ≥ 2, i.e. t1 = 0, then i0j = ij − 1 for all 1 ≤ j ≤ l. Thus, b0j = bj , T 0

j = Tj for
1 ≤ j ≤ l and Σ(q) = Σ(µ0(q)).
• Finally, suppose ID 6= ∅ and IT 6= ∅, i.e. we are in Step 5 of Algorithm 4.2.45.

As above, we get

i0j =


ij+1 − 1, for 1 ≤ j < l and i1 = 1
i1 − 1 ≡ r, for j = l and i1 = 1
ij − 1, for i1 > 1

.

Now we look at (i0j )
+ ∩ I0

D.
If i1 = 1, then

i0j,p =

{
i1,p, for j = l

ij+1,p − 1, for 1 ≤ j < l
,

for 1 ≤ p ≤ a(i+1 ) and 1 ≤ p ≤ a(i+j+1), respectively.
Then a0

j = a((i0j )
+) = aj+1, a0

l = a1, b0j = bj+1, b0l = b1, T 0
j = Tj+1 and T 0

l = T1 for
all 1 ≤ j < l. Continuing, we get (S0

j,1, . . . , S
0
j,aj

) = (Sj+1,1, . . . , Sj+1,aj+1) for j < l

and (S0
l,1, . . . , S

0
l,al

) = (S1,1, . . . , S1,a1).
Hence, Σ(q) = ((b1, (S1,1, . . . , S1,a1), T1), . . . , (bl, (Sl,1, . . . , Sl,al), Tl)) is equivalent to
Σ(µ0(q)) = ((b2, (S2,1, . . . , S2,a2), T2), . . . , (bl, (Sl,1, . . . , Sl,al), Tl), (b1, (S1,1, . . . ,
S1,a1), T1)).

If i1 ≥ 2, then i0j,p = ij,p − 1 mod r, for 1 ≤ j ≤ l and 1 ≤ p ≤ a(i+j ). Thus, a0
j = aj ,

b0j = bj , T 0
j = Tj , (S0

j,1, . . . , S
0
j,aj

) = (Sj,1, . . . , Sj,aj ) for 1 ≤ j ≤ l and Σ(q) = Σ(µ0(q)).

Now, we consider µ1a/1b(q). We indicate the parameters of Σ(µ1a/1b(q)) by a prime. Observe

that |ID| = |I ′D| and |IT | = |I ′T | since for d1 ≥ 4 we have d1 − 2 ∈
{
N3 if d1 ∈ N3

N2 if d1 ∈ N2

.

• If ID = IT = ∅, then b′ = b since the distance 1 in (1, s1, t1) and (1, 0, 0), respectively,
counts one in b′ and the distance d1 − 2 in (d1 − 2, 0, 0), resp. (d1 − 2, s1, t1), counts
one less in b′ than d1 in b. In addition, S′ = S since d1 − 2 ∈ N2 if d1 ∈ N2. Hence,
Σ(q) = Σ(µ1a/1b(q)).

• Suppose ID 6= ∅ and IT = ∅, i.e. we are in Step 4 of Algorithm 4.2.45. Then a′ =
|I ′D| = |ID| = a and b′ = b with the same arguments as above.
If 1 ∈ ID, i.e. d1 ≥ 4 is odd, then also d1 − 2 ≥ 2 is odd and 2 ∈ I ′D for µ1a(q) or
1 ∈ I ′D for µ1b(q), respectively. Then

i′1,1 =

{
2, for µ1a(q)
1, for µ1b(q)

,

and i′1,j = i1,j + 1 for j > 1. Thus, S′j = s((i′1,j)
−) = Sj for all 1 ≤ j ≤ a and

Σ(q) = Σ(µ1a/1b(q)).

If 1 /∈ ID, i.e. d1 ≥ 4 is even, then d1− 2 ≥ 2 is also even. Moreover, 1 /∈ I ′D for µ1a(q)
and 2 /∈ I ′D for µ1b(q), respectively, since the distances are one. Then i′1,j = i1,j + 1,
i′1,1 ≥ 3 and 1, 2 ∈ (i′1,1)− = {i′1,a + 1, . . . , r, 1, . . . , i′1,1}. Hence, S′j = s((i′1,j)

−) = Sj
for all j and Σ(q) = Σ(µ1a/1b(q)).
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• Suppose ID = ∅ and IT 6= ∅, i.e. we are in Step 3 of Algorithm 4.2.45.
If i1 = 1, i.e. t1 > 0, then also i′1 = 1 for µ1a/b(q) and 2 ∈ (i′1)+ = {i′1, i′1 +1, . . . , i′2−1}
since i′2 ≥ 3. Hence, S′ = S and T ′j = Tj for all 1 ≤ j ≤ l. The only possible difference
between Σ(q) and Σ(µ1a/b(q)) may occur for the parameters b1 and b′1, respectively.
However, b′1 = b1 since the distance 1 in (1, s1, t1) (resp., (1, 0, 0)) counts one in b′1 and
the distance d1 − 2 in (d1 − 2, 0, 0) (resp., (d1 − 2, s1, t1)) counts one less in b′1 than d1

in b. Thus, Σ(q) = Σ(µ1a/1b(q)).
If i1 ≥ 2, i.e. t1 = 0, then i′1 ≥ 3 for µ1a/b(q) and 1, 2 ∈ (i′l)

+ = {i′l, . . . , r, 1, . . . , i′1−1}.
Hence, S′ = S and T ′j = Tj for all 1 ≤ j ≤ l. Using the same arguments as above we
get b′l = bl. Thus, Σ(q) = Σ(µ1a/1b(q)).

• Finally, suppose ID 6= ∅ and IT 6= ∅, i.e. we are in Step 5 of Algorithm 4.2.45. As
above we get

i′j =

{
1, if i1 = 1 and j = 1
ij + 1, if (i1 = 1 and j ≥ 2) or (i1 ≥ 2)

.

Then

(i′j)
+ =


i+1 ∪ {i2}, if i1 = 1 and j = 1
((i+l ) + 1) ∪ {1}, if i1 ≥ 2 and j = l

(i+j ) + 1, otherwise
,

where (i+j ) + 1 means that each element of i+j has increased by one.
Now we look at (i′j)

+ ∩ I ′D. For µ1a(q) we get i′j,p = ij,p + 1 for all 1 ≤ j ≤ l,
1 ≤ p ≤ a((i′j)

+) and thus, a((i′j)
+) = a(i+j ) = aj for all j.

For µ1b(q) we have to consider two cases. If d1 /∈ N3, i.e. 1 /∈ ID, then i′j,p = ij,p + 1
for all j, p and thus a((i′j)

+) = a(i+j ) = aj for all j. If d1 ∈ N3, i.e. 1 ∈ ID, then

i′j,p =

{
1, if (i1 = 1 and j = p = 1) or (i1 ≥ 2 and j = l, p = a((i′l)

+))
ij,p + 1, otherwise

.

However, a((i′j)
+) = a(i+j ) = aj since if 1 ∈ ID, then 1 ∈ I ′D and 2 /∈ I ′D.

Using the same arguments as the case ID = ∅, IT 6= ∅, we get b((i′j)
+) = b(i+j ) = bj

for all j. We also get S′j,p = s((i′j,p)
−) = Sj,p and thus, Σ(q) = Σ(µ1a/1b(q)).

At the end, we look at µ2a/2b(q). We indicate the parameters of Σ(µ2a/2b(q)) by a prime.
We observe that ID = I ′D and IT = I ′T since we only change d1 = 2 to d′1 = 1 and s1, s2.
• If ID = IT = ∅, then b′ = b since d1 = 2 is replaced by d′1 = 1 and both count one

in b and b′, respectively. Additionally, S′ = S since there is only one more arrow in
µ2a/2b(q) than in q, and there is also one distance less in N2 in µ2a/2b(q) (namely, d′1).
Thus, Σ(q) = Σ(µ2a/2b(q)).

• Let ID 6= ∅ and IT = ∅, i.e. we are in Step 4 of Algorithm 4.2.45. Then a′ = |ID| = a
and b′ = b using the same arguments as above.
i′1,j = i1,j for all 1 ≤ j ≤ a′ = a and S′j = s((i′1,j)

−) = Sj for all 2 ≤ j ≤ a.
Moreover, since d1 = 2 and d′1 = 1 we have 1 /∈ ID and i′1,1 = i1,1 ≥ 2. Thus,
1, 2 ∈ i−1,1 = {i1,a + 1, . . . , r, 1, . . . , i1,1}. We get the following table for the indices 1
and 2 in s(i−1,1):

q µ2a(q) µ2b(q)
distances d1 = 2, d2 1, d2 1, d2

arrows s1, s2 s1, s2 + 1 s1 + 1, s2

Thus, S′1 = s(i−1,1) = S1 is the same in all three cases and Σ(q) = Σ(µ2a/2b(q)).
• Let ID = ∅ and IT 6= ∅, i.e. we are in Step 3 of Algorithm 4.2.45.

We have i′j = ij for all 1 ≤ j ≤ l and thus, T ′j = Tj for all j. S′ = S with the same
arguments as the case ID = IT = ∅. In addition, b′j = bj for all 2 ≤ j ≤ l.
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The only possible differences may occur for the parameter b′1. However, b′1 = b(i+1 ) =
b({i1, i1 + 1, . . . , i2 − 1}) = b1 since the distance 1 of (1, s1, t1) (resp., (1, s1 + 1, t1))
counts one in b′1 and this is the same as the distance d1 = 2 counts in b1. Hence,
Σ(q) = Σ(µ2a/2b(q)).
• Finally, let ID 6= ∅ and IT 6= ∅, i.e. we are in Step 5 of Algorithm 4.2.45.

We have i′j = ij for all 1 ≤ j ≤ l and thus, i′j,p = ij,p for all 1 ≤ j ≤ l and 1 ≤ p ≤ a(i+j ),
a′j = aj and T ′j = Tj for all j. In addition, b′j = bj for all 1 ≤ j ≤ l with the same
arguments as the case ID = ∅, IT 6= ∅.
The only possible differences may occur for the parameter S′1,1. However, S′1,1 =
s(i−1,1) = S1,1 with the same arguments as the case ID 6= ∅, IT = ∅ and thus, S′j,p = Sj,p
for all j and for all p. Hence, Σ(q) = Σ(µ2a/2b(q)).

We have shown that Σ(µ(−)(q)) ∼ Σ(q) for (−) ∈ {0, 1a, 1b, 2a, 2b}.
(2) Let σ, σ′ ∈ S with σ ∼ σ′. Since elements from different sets of S are inequivalent (see

Definition 4.2.43) σ and σ′ have to be in the same set. Thus, we have to consider five
different cases.
(c) Let σ = (T1, T2, S) and σ′ = (T ′1, T

′
2, S
′). Since σ ∼ σ′ we get S = S′ and (T1, T2) is

cyclic equivalent to (T ′1, T
′
2), i.e. σ′ = σ or σ′ = (T2, T1, S). In the first case it is clear

that Q(σ) = Q(σ′), so suppose that σ′ = (T2, T1, S). Then Q(σ) = ((1, S, T1)(1, 0, T2))
and Q(σ′) = ((1, S, T2)(1, 0, T1)). Now, we apply µ2a(µ−1

2b ) to Q(σ) S-times and get
Q(σ) ∼ ((1, 0, T1), (1, S, T2)). Then Q(σ′) = µ0((1, 0, T1), (1, S, T2)) and thus, Q(σ) ∼
Q(σ′).

(d2,1) Let σ = (b, S) and σ′ = (b′, S′). Then (b, S) ∼ (b′, S′) if and only if b = b′ and S = S′.
Thus, σ = σ′ and Q(σ) = Q(σ′).

(d2,2) Let σ =
(
((b1, T1), (b2, T2), . . . , (bl, Tl)), S

)
and σ′ =

(
((b′1, T

′
1), (b′2, T

′
2), . . . , (b′l, T

′
l )), S

′).
Then S = S′ and

(
((b1, T1), (b2, T2), . . . , (bl, Tl)), S

)
is cyclic equivalent to

(
((b′1, T

′
1),

(b′2, T
′
2), . . . , (b′l, T

′
l )), S

′). Hence, it suffices to show the claim for σ′ =
(
((b2, T2), . . . ,

(bl, Tl), (b1, T1)), S
)
.

We get

Q(σ) =
(
(1, S, T1), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

b1

, (1, 0, T2), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b2

, . . . ,

(1, 0, Tl), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
bl

)
,

Q(σ′) =
(
(1, S, T2), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

b2

, (1, 0, T3), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b3

, . . . ,

(1, 0, Tl), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
bl

, (1, 0, T1), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b1

)
.

By applying µ2a(µ−1
2b ) to Q(σ) S-times we can shift the S arrows to the second triple

to get

Q(σ) ∼
(
(1, 0, T1), (1, S, 0), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

b1

, (1, 0, T2), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b2

, . . . ,

(1, 0, Tl), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
bl

)
.

Then using µ0 we can shift the triple (1, 0, T1) to the end of the sequence. Iteratively
repeating this procedure, we obtain the desired order of Q(σ′).

(d3,1) Let σ = (b, (S1, . . . , Sa)) and σ′ = (b′, (S′1, . . . , S
′
a)). Then b = b′ and (S1, . . . , Sa)

is cyclic equivalent to (S′1, . . . , S
′
a). It suffices to show that Q(σ) ∼ Q(σ′) for σ′ =

(b, (S2, . . . , Sa, S1)).
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Then

Q(σ) = ((1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b

, (3, S1, 0), (3, S2, 0), . . . , (3, Sa, 0)),

Q(σ′) = ((1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b

, (3, S2, 0), . . . , (3, Sa, 0), (3, S1, 0)).

If b = 0, then Q(σ′) = µ0(Q(σ)).
If b = 1, then we can apply µ2b(µ−1

2a ) to Q(σ) S1-times to shift the S1 arrows to the
first triple to get

Q(σ) ∼ ((1, S1, 0), (3, 0, 0), (3, S2, 0), . . . , (3, Sa, 0)).

Applying µ1b(µ−1
1a ) leads to

Q(σ) ∼ ((3, S1, 0), (1, 0, 0), (3, S2, 0), . . . , (3, Sa, 0)).

Using µ0 we then get that Q(σ) ∼ Q(σ′).
Now suppose that b ≥ 2. First, we explain the operations we need to obtain the quiver
Q(σ′) from the quiver Q(σ). Afterwards, we explain what happens with these quivers
in each step:

Step Result
i) µb−1

0 µb−1
0 (Q(σ)) = ((1, 0, 0), (3, S1, 0), (3, S2, 0), . . . , (3, Sa, 0),

(1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
(b−1)

)

ii) (µ2b(µ−1
2a ))S1 = ((1, S1, 0), (3, 0, 0), (3, S2, 0) . . . , (3, Sa, 0), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

(b−1)

)

iii) ((µ2b(µ−1
2a ))S1 ◦ µ−1

0 )b−1 = ((1, S1, 0), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
(b−1)

, (3, 0, 0), (3, S2, 0) . . . , (3, Sa, 0))

iv) µb−1
0 = ((1, 0, 0), (3, 0, 0), (3, S2, 0), . . . , (3, Sa, 0), (1, S1, 0),

(1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
(b−2)

)

v) (µ−1
0 (µ−1

1a ))b−1 = ((1, S1, 0), (3 + 2(b− 1), 0, 0), (3, S2, 0), . . . , (3, Sa, 0))

vi) µ−1
1a = ((3 + 2b, S1, 0), (3, S2, 0), . . . , (3, Sa, 0))

vii) µb1b = ((3, S1, 0), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b

, (3, S2, 0) . . . , (3, Sa, 0))

viii) µ0 = ((1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b

, (3, S2, 0) . . . , (3, Sa, 0), (3, S1, 0))

= Q(σ′)

Steps Explanation
i) rotation of the quiver to be able to apply µ−1

2a

ii) - iii) arrows attached to the last spike of the big group of consecutive spikes
will be moved to the first spike of this group

iv) rotation of the quiver to be able to apply µ−1
1a

v) - vi) all free spikes of the big group of consecutive spikes will be destroyed
vii) the same number b of free spikes will be built up (in the next group)

viii) rotation to get Q(σ′)
(d3,2) Let

σ =
(
(b1, (S1,1, . . . , S1,a1), T1), (b2, (S2,1, . . . , S2,a2), T2), . . . , (bl, (Sl,1, . . . , Sl,al), Tl)

)
,

σ′ =
(
(b′1, (S

′
1,1, . . . , S

′
1,a1

), T ′1), (b′2, (S
′
2,1, . . . , S

′
2,a2

), T ′2), . . . , (b′l, (S
′
l,1, . . . , S

′
l,al

), T ′l )
)
.
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Then by Definition 4.2.43 σ and σ′ are cyclic equivalent. Without loss of generality let

σ′ =
(
(b2, (S2,1, . . . , S2,a2), T2), . . . , (bl, (Sl,1, . . . , Sl,al), Tl), (b1, (S1,1, . . . , S1,a1), T1)

)
.

By Theorem 4.2.36 part (d3,2), Q(σ) is a concatenation of l ≥ 1 sequences γj and Q(σ′)
is a concatenation of l ≥ 1 sequences γ′j , where γ′j = γ(j+1) mod l for all 1 ≤ j ≤ l. Since
the last vertex of γl (resp., γ′l) is glued to the first vertex of γ1 (resp., γ′1), Q(σ) and
Q(σ′) are the same quivers (up to rotation).

Thus, we have shown that if σ ∼ σ′ then Q(σ) ∼ Q(σ′).
(3) Let σ ∈ S. We indicate the parameters of Σ(Q(σ)) by a prime.

(c) σ = (T1, T2, S), then Q(σ) = ((1, S, T1), (1, 0, T2)). Now we apply Algorithm 4.2.45 and
we have to consider three cases:

If T1 = T2 = 0, then ID = IT = ∅. We are in Step 2 of the algorithm and obtain b =
b({1, 2}) = 2. We get as good mutation parameters (0, 0, S) and hence, Σ(Q(σ)) = σ.

If T1, T2 > 0, then ID = ∅ and IT = {1, 2} 6= ∅. We are in Step 3 of the algorithm. We
get i+1 = {1}, i+2 = {2}, b1 = b({1}) = 1 and b2 = b({2}) = 1. Since b1 + b2 < 3 and
l = 2, we obtain as good mutation parameters (T1, T2, S) and hence, Σ(Q(σ)) = σ.

If T1 > 0 and T2 = 0, then ID = ∅ and IT = {1} 6= ∅. Note that the case T1 = 0 and
T2 > 0 is similar since (T1, T2), (T2, T1) are cyclic equivalent. We are in Step 3 of the
algorithm and get i+1 = {1, 2}, b1 = 2 < 3. Since l = 1, we obtain as good mutation
parameters (T1, 0, S) and hence, Σ(Q(σ)) = σ.

(d2,1) σ = (b, S), b ≥ 3, S ≥ 0 and Q(σ) = ((1, S, 0), (1, 0, 0), . . . , (1, 0, 0)) of length b. Now
we apply Algorithm 4.2.45. We have ID = IT = ∅. Thus, we are in Step 2 of the
algorithm and get b′ = b, S′ = S. Hence, Σ(Q(σ)) = σ.

(d2,2) σ =
(
((b1, T1), (b2, T2), . . . , (bl, Tl)), S

)
with l ≥ 1, bj , Tj > 0, b1 + · · · + bl ≥ 3 and

S ≥ 0. Then

Q(σ) =
(
(1, S, T1), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

b1

, (1, 0, T2), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b2

, . . . ,

(1, 0, Tl), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
bl

)
is a concatenation of l ≥ 1 sequences of positive lengths b1, b2, . . . , bl.

We apply the algorithm and get ID = ∅, IT = {1, b1 + 1, b1 + b2 + 1, . . . ,
( l−1∑
i=1

bi

)
+ 1}.

Thus, we are in Step 3 with ij =
(j−1∑
i=1

bi

)
+ 1 and i+j =

{(j−1∑
i=1

bi

)
+ 1, . . . ,

j∑
i=1

bi

}
,

1 ≤ j ≤ l. Additionally, we get S′ = S, b′j = b(i+j ) = |{i ∈ i+j : di = 1}| = bj and
T ′j = tij = Tj , 1 ≤ j ≤ l. Hence, Σ(Q(σ)) = σ.

(d3,1) σ =
(
b, (S1, . . . , Sa)

)
where b ≥ 0 and (S1, . . . , Sa) is a sequence of a > 0 non-

negative integers. Then Q(σ) =
(
(1, 0, 0), . . . , (1, 0, 0), (3, S1, 0), . . . , (3, Sa, 0)

)
, where

the number of the triples (1, 0, 0) is b. By applying Algorithm 4.2.45 we get ID =
{b+ 1, . . . , b+ a} and IT = ∅. Thus, we are in Step 4 and get i1,j = b+ j, 1 ≤ j ≤ a,

i−1,j =

{
{1, . . . , b+ 1}, j = 1
{b+ j}, 1 < j ≤ a .

Additionally, we get a′ = |ID| = a, b′ = b and S′j = s(i−1,j) = Sj for all 1 ≤ j ≤ a.
Hence, Σ(Q(σ)) = σ.

(d3,2) σ =
((
b1, (S1,1, . . . , S1,a1), T1

)
,
(
b2, (S2,1, . . . , S2,a2), T2

)
, . . . ,

(
bl, (Sl,1, . . . , Sl,al), Tl

))
with l ≥ 1. For any 1 ≤ j ≤ l the numbers aj , bj are non-negative integers not both
zero, (Sj,1, . . . , Sj,aj ) is a (possibly empty) sequence of aj non-negative integers and
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Tj > 0. Then Q(σ) is a concatenation of l ≥ 1 sequences of the form

γj =


(
(1, 0, Tj), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

bj

, (3, Sj,1, 0), (3, Sj,2, 0), . . . , (3, Sj,aj , 0)
)

if bj > 0,

(
(3, Sj,1, Tj), (3, Sj,2, 0), . . . , (3, Sj,aj , 0)) otherwise.

We can consider bj ≥ 0 for all 1 ≤ j ≤ l, since the computations for both cases bj > 0
and bj = 0 are the same. We get

IT = {1, b1 + a1 + 1, (b1 + a1) + (b2 + a2) + 1, . . . ,
( l−1∑
i=1

(bi + ai)
)

+ 1} and

ID =
{
b1 + 1, . . . , b1 + a1, (b1 + a1) + (b2 + 1), . . . , (b1 + a1) + (b2 + a2), . . . ,( l−1∑
i=1

(bi + ai)
)

+ (bl + 1), . . . ,
l∑
i=1

(bi + ai)
}
.

Thus, we are in Step 5 of the algorithm and have

i+j =
{(j−1∑

i=1

(bi + ai)
)

+ 1, . . . ,
j∑
i=1

(bi + ai)
}

and

i+j ∩ ID =


{(j−1∑

i=1

(bi + ai)
)

+ (bj + 1), . . . ,
j∑
i=1

(bi + ai)
}
, if aj > 0

∅, if aj = 0

.

Additionally, we get a′j = a(i+j ) = aj , b′j = b(i+j ) = |{i ∈ i+j : di = 1}| = bj and

i−1,k = (b1 + k)− =

{
{1, . . . , b1 + 1}, if k = 1
{b1 + k}, if 2 ≤ k ≤ a1

,

i−j,k =
((j−1∑

i=1

(bi + ai)
)

+ (bj + k)
)−

=


{(j−1∑

i=1

(bi + ai)
)

+ 1, . . . ,
(j−1∑
i=1

(bi + ai)
)

+ (bj + 1)
}
, if k = 1

{(j−1∑
i=1

(bi + ai)
)

+ (bj + k)
}
, if 2 ≤ k ≤ aj

for 2 ≤ j ≤ l.
Thus, we have

S′1,k = s(i−1,k) =


b1+1∑
i=1

si = S1,1, if k = 1

s({b1 + k}) = S1,k, if 2 ≤ k ≤ a1

and

S′j,k = s(i−j,k) =

{
Sj,1, if k = 1
Sj,k, if 2 ≤ k ≤ aj

for 2 ≤ j ≤ l.

Hence, Σ(Q(σ)) = σ.
We have thus shown that applying Algorithm 4.2.45 to a canonical form as in Theorem 4.2.36
recovers the parameters of that form.

(4) Let q = ((d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)).
If q is a quiver of type III, i.e. q = ((1, s1, t1), (1, s2, t2)), then by Lemma 4.2.39 the

corresponding cluster-tilted algebra is good mutation equivalent to one in class (c) of The-
orem 4.2.36. In particular, there exists σ = (t1, t2, s1 + s2) ∈ S with Q(σ) ∼ q.
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Now suppose that q is a quiver of type IV with some spikes.
• If all the distances di ∈ N1 ∪ N2, then we proceed as follows: by iteratively applying

the good mutation move IV.1b of Table 4.6 we can repeatedly shorten all the distances
di ≥ 4 by 2 until they become 2 (this corresponds to µ1b). By applying the good
mutation move IV.2b of Table 4.6 we can further shorten any distance 2 to a distance
of 1 (this corresponds to µ2b). Thus, we get a parameter sequence where all the new
distances are 1:

q ∼ ((1, s̃1, t1), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b1

, (1, s̃2, t2), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b2

, . . . ,

(1, s̃r, tr), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
br

),

with

bi =

{
di
2 − 1, if di ∈ N2

0, if di = 1
and s̃i =

{
si + 1, if di ∈ N2

si, if di = 1
.

If these new distances sum up to 2, then by Lemma 4.2.39 the corresponding cluster-
tilted algebra is good mutation equivalent to one in class (c) of Theorem 4.2.36. In par-
ticular, q could be either ((2, s1, t1), (1, s2, t2)) ∼ ((1, s1 + 1, t1), (1, s2, t2)), ((2, s1, t1),
(2, s2, t2)) ∼ ((1, s1 + 1, t1), (1, s2 + 1, t2)) or ((4, s1, t1)) ∼ ((1, s1 + 1, t1), (1, 0, 0)).
Then σ can be chosen to be either (t1, t2, s1 +s2 +1), (t1, t2, s1 +s2 +2) or (t1, 0, s1 +1)
with Q(σ) = ((1, s1 + s2 + 1, t1), (1, 0, t2)), Q(σ) = ((1, s1 + s2 + 2, t1), (1, 0, t2)) or
Q(σ) = ((1, s1 + 1, t1), (1, 0, 0)).

Otherwise, if these new distances sum up to at least 3, we will get one of the classes
(d2,1) or (d2,2) of Theorem 4.2.36. In particular, by Lemma 4.2.42, we can successively
move all the arrows of the attached rooted quivers of type A and concentrate them on
the first spike, i.e. on the first triple in the sequence. Note that by ‘arrows’ we mean
arrows which are not part of an oriented 3-cycle. This can be done using the operations
µ2b(µ−1

2a ) and µ0.

This yields the canonical form of (d2,1), if there are no oriented 3-cycles in the rooted
quivers of type A. That is,

q ∼ ((1,
r∑
i=1

s̃i, 0), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸(
r∑
i=1

bi

)
+(r−1)

),

with
r∑
i=1

s̃i =
r∑
i=1

si + |{i ∈ {1, . . . , r} : di ∈ N2}| = s({1, . . . , r}). The length of the

sequence is
( r∑
i=1

bi

)
+r =

( ∑
di∈N2

di
2 −1

)
+r =

( ∑
di∈N2

di
2

)
+ |{i ∈ {1, . . . , r} : di = 1}| =

b({1, . . . , r}). Then the corresponding σ is given by σ = (b({1, . . . , r}), s({1, . . . , r})).
If there is at least one oriented 3-cycle in a rooted quiver of type A we get the canonical
form of (d2,2) as follows:

q ∼ ((1,
r∑
i=1

s̃i, t1), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b1

, (1, 0, t2), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b2

, . . . ,

(1, 0, tr), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
br

),

with
r∑
i=1

s̃i =
r∑
i=1

si + |{i ∈ {1, . . . , r} : di ∈ N2}| = s({1, . . . , r}) and bi as above.
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Now, let |{1 ≤ i ≤ r : ti > 0}| = l and denote the elements of this set by i1 < i2 <
· · · < il. If necessary, i.e. if t1 = 0, we shift all the arrows of the rooted quivers of type
A to the triple which contains ti1 . That is,

q ∼ ((1,
r∑
i=1

s̃i, ti1), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
bi1

, (1, 0, ti2), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
bi2

, . . . ,

(1, 0, til), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
bil

),

with

bij =
( ∑
ij≤i≤ij+1−1, di∈N2

di
2
− 1
)

+ (ij+1 − ij)

=
( ∑
ij≤i≤ij+1−1, di∈N2

di
2

)
+ |{ij ≤ i ≤ ij+1 − 1 : di = 1}|

= b({ij , . . . , ij+1 − 1}) = b(i+j ), 1 ≤ j < l,

bil =
( r∑
i=il, di∈N2

di
2
− 1
)

+
( i1−1∑
i=1, di∈N2

di
2
− 1
)

+ (r − il + i1)

=
( ∑
i∈i+l , di∈N2

di
2

)
+ |{i ∈ i+l : di = 1}|

= b(i+l ).

Thus, the corresponding σ is given by σ = (((b(i+1 ), ti1), (b(i+2 ), ti2), . . . , (b(i+l ), til)),
s({1, . . . , r})).
• Otherwise, when there is at least one distance di ∈ N3, we proceed as follows: by

iteratively applying the good mutation move IV.1a of Table 4.6 we can repeatedly
shorten all the distances di ≥ 4 by 2 until they become 2 or 3 (this corresponds to
µ1a). By applying the good mutation move IV.2b of Table 4.6 we can further shorten
any distance 2 to a distance of 1 (this corresponds to µ2b). Thus, we get a parameter
sequence where all the new distances are either 1 or 3. In particular, for each triple
(di, si, ti) we get

(di, si, ti) 



(1, si, ti), if di = 1
(1, si + 1, ti), if di = 2
(3, si, ti), if di = 3
(1, si, ti), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

bi

, (1, 1, 0), if di ∈ N2\{2}

(1, si, ti), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
bi

, (3, 0, 0), if di ∈ N3\{3}

with

bi =

{
di−2

2 − 1, if di ∈ N2\{2}
di−3

2 − 1, if di ∈ N3\{3}
.

If there are no oriented 3-cycles in the attached rooted quivers of type A, that is, ti = 0
for all 1 ≤ i ≤ r, we observe the following: consider a group of consecutive spikes, by
Lemma 4.2.42, inside this group we can concentrate the attached rooted quivers of
type A at the last spike in that group, thus creating free spikes at the beginning of
the group. Note that by the ‘last’ spike we mean the last spike in the direction of the
orientation of the central cycle. This can be done by using the operations µ2a(µ−1

2b )
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and µ0. Then, by Lemma 4.2.41, the free spikes at the beginning of this group can
be moved to the previous group, i.e. the group of (consecutive) spikes immediately
preceding, with respect to the orientation of the central cycle, the group which we
started with. This can be done by applying the operations µ1a(µ−1

1b ) and µ0. In this
way, we can move all spikes of this group of consecutive spikes except one to the previous
group, thus creating a single spike with some linear rooted quiver of type A attached.
Iteratively repeating this procedure for all the previous groups of consecutive spikes,
we can eventually merge all groups of at least two consecutive spikes into one large
group, with all the other spikes being single spikes. In other words, the sequence of
distances will look like (1, 1, . . . , 1, 3, 3, . . . , 3). In this large group of consecutive spikes,
we concentrate the linear rooted quivers of type A at the last spike, yielding exactly
the canonical form appearing in (d3,1). That is,

q ∼ ((1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸
b

, (3, sij , 0), . . . , (3, sia , 0), (3, si1 , 0), . . . , (3, sij−1 , 0))

(2)
∼ ((1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

b

, (3, si1 , 0), (3, si2 , 0), . . . , (3, sia , 0)),

where i1 < i2 < · · · < ia are the elements of the set {1 ≤ i ≤ r : di ∈ N3},

sij =
(∑
i∈i−j

si

)
+ |{i ∈ i−j : di ∈ N2}| = s(i−j )

for 1 ≤ j ≤ a, and

b =
∑

1≤i≤r, di∈N2

di
2

+
∑

1≤i≤r, di∈N3

di − 3
2

+ |{1 ≤ i ≤ r : di = 1}| = b({1, . . . , r}).

The corresponding σ is then given by σ = ((b({1, . . . , r}), (s(i−1 ), . . . , s(i−a ))).

If there is at least one oriented 3-cycle in the attached rooted quivers of type A,
we proceed in a similar way as above: consider a group of consecutive spikes. By
Lemma 4.2.42, inside this group we can concentrate all arrows of the attached rooted
quivers of type A at the last spike in that group. Note that by ‘arrows’ we mean
arrows which are not part of an oriented 3-cycle. This can be done using the operations
µ2a(µ−1

2b ) and µ0. Then, by Lemma 4.2.41, we can move all the possible free spikes at the
beginning of this group to the previous group (by applying the operations µ1a(µ−1

1b ) and
µ0). Then we iteratively repeat this procedure for all the previous groups of consecutive
spikes. Having done this procedure for all of these groups, we consider the group with
which we started again, and possibly move all arrows of the attached rooted quivers of
type A to the last spike in that group.
Thus, for each rooted quiver of type A with at least one oriented 3-cycle, we get a
partial quiver with parameter sequence γj as in the canonical form appearing in (d3,2).
That is, the cluster-tilted algebra corresponding to q is good mutation equivalent to a
cluster-tilted algebra whose quiver is a concatenation of l := |{1 ≤ i ≤ r : ti > 0}| ≥ 1
sequences

γij =


(
(1, 0, tij ), (1, 0, 0), . . . , (1, 0, 0)︸ ︷︷ ︸

bij

, (3, Sj,1, 0), . . . , (3, Sj,aij , 0)
)

if bij > 0,

(
(3, Sj,1, tij ), (3, Sj,2, 0), . . . , (3, Sj,aij , 0) otherwise,

where the elements of the set |{1 ≤ i ≤ r : ti > 0}| are denoted by i1 < i2 < · · · < il.

bij =
∑

i∈i+j , di∈N2

di
2

+
∑

i∈i+j , di∈N3

di − 3
2

+ |{i ∈ i+j : di = 1}| = b(i+j )
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is the number of triples with distance 1 and

aij = |{i ∈ i+j : di ∈ N3}| = a(i+j )

is the number of triples with distance 3 in γij , 1 ≤ j ≤ l. In addition, denote the ele-
ments of {i ∈ i+j : di ∈ N3} in the order they appear within the interval as ij,1, . . . , ij,aij .
Then

Sj,k =
∑
i∈i−j,k

si +
∑

i∈i−j,k, di∈N2

1 = s(i−j,k),

for all 1 ≤ j ≤ l and 1 ≤ k ≤ aij . The corresponding σ is then given by

σ = ((bi1 , (S1,1, . . . , S1,ai1
), ti1), . . . , (bil , (Sl,1, . . . , Sl,ail ), til))

= ((b(i+1 ), (s(i−1,1), . . . , s(i−
1,a(i+1 )

)), ti1), . . . , (b(i+l ), (s(i−l,1), . . . , s(i−
l,a(i+l )

)), til)).

Hence, a quiver can be transformed by good mutations to a quiver in canonical form as in
Theorem 4.2.36.

�

This completes the proof of Proposition 4.2.35 and Theorem 4.2.36.

4.3. Derived equivalences for cluster-tilted algebras of type Dn

4.3.1. Good double mutations in types III and IV. The good double mutations we con-
sider in this section consist of two algebra mutations. The first takes a cluster-tilted algebra A to
a derived equivalent algebra which is not cluster-tilted, whereas the second takes that algebra to
another cluster-tilted algebra A′, thus obtaining a derived equivalence of A and A′.

Lemma 4.3.1. Let m ≥ 3 and consider a cluster-tilted algebra A = AQ̃ of type IV with the quiver Q̃
as in the left picture

Q′′ // Q′

�������

•0

[[66666

��66666

Q− //___ •1

CC�����

�������
•moo //___ Q+

��	
	

	

•2

[[7
7

7
•

ZZ44444

Q′′

&&MMMMM Q′

��
•0

wwooooo

88qqqqq

•1

OO

��

•m
ggOOOOO

''NNN

Q−

77ppp
Q+

wwp p p

•2
ggN N N

•

OO

having a central cycle 1, . . . ,m and optional spikes Q− and Q+. Let µ0(Q̃) denote the mutation of
Q̃ at the vertex 0, as in the right picture. Then:

(a) µ−0 (A) is always defined and is isomorphic to the quotient of the cluster-tilted algebra Aµ0(Q̃)

by the ideal generated by the path p given by

p =

{
1, 2, . . . ,m, 0 if the spike Q− is present,
2, . . . ,m, 0 otherwise.

(b) µ+
0 (A) is always defined and is isomorphic to the quotient of the cluster-tilted algebra Aµ0(Q̃)

by the ideal generated by the path p given by

p =

{
0, 1, . . . ,m if the spike Q+ is present,
0, 1, . . . ,m− 1 otherwise.

Proof. Let A = AQ̃ be the cluster-tilted algebra corresponding to the quiver Q̃ depicted as
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Q+Q−
1 m

2 m− 1

a b
Q′′ Q′

α6

α7 α8

α3

α5

α4 α2

α1

0

.

It is easily seen using Proposition 4.2.3 that the negative mutation µ−0 (A) and the positive
mutation µ+

0 (A) are defined (since α4α1 6= 0 and α3α2 6= 0). In order to describe them explicitly, we
recall that µ−0 (A) = EndDb(A)(T

−
0 (A)) and µ+

0 (A) = EndDb(A)(T
+
0 (A)), where

T−0 (A) =
(
P0

(α1,α2)−−−−−→ (P1 ⊕ Pb)
)
⊕
(⊕
i6=0

Pi
)

=: L0 ⊕
(⊕
i 6=0

Pi
)
,

T+
0 (A) =

(
(Pm ⊕ Pa)

(α3,α4)−−−−−→ P0

)
⊕
(⊕
i 6=0

Pi
)

=: R0 ⊕
(⊕
i6=0

Pi
)
.

• First we compute the Cartan matrix of µ−0 (A) from the Cartan matrix of A by only changing
the row and column of vertex 0 according to Happel’s alternating sum formula of Proposi-
tion 2.3.2. Hence, it is given by

Cµ−0 (A) =

0 1 m a b 2 (m− 1) · · ·
0 1 1 1 0 1 1 1 · · ·
1 0 1 1 1 0 1 1 · · ·
m 1 1 1 0 0 1 ? · · ·
a 1 0 0 1 1 0 0 · · ·
b 0 0 1 0 1 0 0 · · ·
2 1/ 0 1/0 1 0 0 1 1 · · ·

(m− 1) 1 1 1 0 0 ? 1 · · ·
...

...
...

...
...

...
...

...

where the entries 1/0 depend on whether or not Q− is present (i.e. 1 if Q− is present and 0
if Q− is not present). One of the question marks depends on whether or not Q+ is present
and the other on the (undrawn) rest of the non-oriented cycle. The boxes around 0 indicate
the path p of Lemma 4.3.1 (a), that is, Cµ−0 (A) is just the Cartan matrix of the cluster-tilted
algebra corresponding to the right hand quiver in Lemma 4.3.1 except for these two boxes.

Corresponding to each arrow of the following quiver we define a homomorphism of
complexes between the summands of T−0 (A) (in the opposite direction).
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Q− Q+

a b
Q′′ Q′

1

2

m

m− 1

0

α (α6, 0)

β(0, α5)

α7 α8

α4α1 α3α2

First we have the embeddings α := (id, 0) : P1 → L0 and β := (0, id) : Pb → L0 (in
degree zero). Moreover, we have the homomorphisms α4α1 : Pa → P1, α3α2 : Pm → Pb,
(α6, 0) : L0 → Pm and (0, α5) : L0 → Pa. All the other homomorphisms are as before.

Now we have to show that these homomorphisms satisfy the defining relations of the
algebra Aµ0(Q̃)/I(p), up to homotopy, where I(p) is the ideal generated by the path p

stated in Lemma 4.3.1 (a). Clearly, the composition of (0, α5) and α and the composition
of (α6, 0) and β are zero-relations. The composition of α3α2 and (α6, 0) is zero as before.
There is one commutativity relation between vertex 0 and vertex m. This is given by the
two homomorphisms from Pm[0] to the first and second summand of L0. These are indeed
the same since (0, α3α2) is homotopic to (α8 . . . α7, 0) (and α8 . . . α7 = α3α1 6= 0 in A). The
path from vertex 0 to vertex a is zero since α4α2 = 0 and thus, (α4α1, 0) is homotopic to zero.
There is no non-zero path from vertex 1 to vertex 0 since (0, α5α4α1) = 0 = (α6α8 . . . α7, 0).
This corresponds to the path p in the case that Q− is present and is marked in the Cartan
matrix by a box. If Q− is not present, then the path from vertex 2 to vertex 0 is already
zero since (α6α8 . . . , 0) = 0 which is also marked in the Cartan matrix above. Thus, µ−0 (A)
is isomorphic to the quotient of the cluster-tilted algebra Aµ0(Q̃) by the ideal generated by
the path p.

• Now we compute the Cartan matrix of µ+
0 (A) from the Cartan matrix of A by only changing

the row and column of vertex 0 according to Happel’s alternating sum formula of Proposi-
tion 2.3.2. Thus, it is given by

Cµ+
0 (A) =

0 1 m a b 2 (m− 1) · · ·
0 1 1 0 0 1 1 1/ 0 · · ·
1 1 1 1 1 0 1 1 · · ·
m 1 1 1 0 0 1 1/0 · · ·
a 1 0 0 1 1 0 0 · · ·
b 0 0 1 0 1 0 0 · · ·
2 1 ? 1 0 0 1 1 · · ·

(m− 1) 1 1 1 0 0 ? 1 · · ·
...

...
...

...
...

...
...

...

where the entries 1/0 depend on whether or not Q+ is present (i.e. 1 if Q+ is present and 0
if Q+ is not present). One of the question marks depends on whether or not Q− is present
and the other on the (undrawn) rest of the non-oriented cycle. The boxes around 0 indicate
the path p of Lemma 4.3.1 (b), that is, Cµ+

0 (A) is just the Cartan matrix of the cluster-tilted
algebra corresponding to the right hand quiver in Lemma 4.3.1 except for these two boxes.

Now corresponding to each arrow of the following quiver we define a homomorphism of
complexes between the summands of T+

0 (A).
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Q− Q+

a b
Q′′ Q′

1

2

m

m− 1

0

α7 α8

β (0, α5)

α
(α6, 0)α4α1 α3α2

First we have the embeddings α := (id, 0) : R0 → Pm and β := (0, id) : R0 → Pa (in
degree zero). Moreover, we have the homomorphisms α4α1 : Pa → P1, α3α2 : Pm → Pb,
(α6, 0) : P1 → R0, and (0, α5) : Pb → R0. All the other homomorphisms are as before.

We leave it to the reader to verify the defining relations of the algebra Aµ0(Q̃)/I(p) other
than the path p. There is no non-zero path from vertex 0 to vertex m since (0, α3α2α5) =
(α8 . . . α7α6, 0) is zero. This corresponds to the path p in Lemma 4.3.1 (b) in the case that
Q+ is present and is marked in the Cartan matrix by a box. If Q+ is not present then the
path from vertex 0 to vertex m−1 is already zero since (. . . α7α6, 0) = 0 which is also marked
in the Cartan matrix above. Hence, µ+

0 (A) is isomorphic to the algebra Aµ0(Q̃)/I(p), where
p is the path stated in Lemma 4.3.1 (b).

�

Corollary 4.3.2. The two cluster-tilted algebras of type IV with quivers

Q′′ // Q′

�������

•0

[[66666

��66666

Q′′′ // •1

CC�����

�������
•moo

•2

[[88888

Q′′′ // Q′′

�������

•1

[[88888

��66666

•2

CC������ •0oo // Q′

�������

•m

\\888888

(where Q′, Q′′ and Q′′′ are rooted quivers of type A) are related by a good double mutation (at the
vertex 0 and then at 1).

Proof. Denoting the algebra defined as the cluster-tilted algebra of the quiver on the left as
AL, and that on the right as AR, we see that µ−0 (AL) ∼= µ+

1 (AR), since by Lemma 4.3.1 these algebra
mutations are isomorphic to the quotient of the cluster-tilted algebra of the quiver

Q′′

��55555

Q′′′ // •1

DD					

��					
•0oo // Q′

�������

•2

[[88888
•m

[[66666

by the ideal generated by the path 1, 2, . . . ,m, 0. �

There is an analogue of Lemma 4.3.1 for cluster-tilted algebras of type III:
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Lemma 4.3.3. Consider the cluster-tilted algebra A = AQ̃ of type III whose quiver Q̃ is shown in
the picture on the left, where Q′, Q′′ and Q′′′ are rooted quivers of type A.

•1
%%KKKKK Q′′

��
Q′′′

88rrrrr
•0

yyttttt

99rrrrr

•2
ffLLLLL

Q′

eeLLLLL

Q′′

��
•1

88qqqqq

��
Q′′′

88ppppp •0
ffMMMMM

��
•2

88qqqqq
ffNNNNN

Q′

ffMMMMM

Let µ0(Q̃) denote the mutation of Q̃ at the vertex 0, as in the picture on the right. Then:

(a) µ−0 (A) is always defined and is isomorphic to the quotient of the cluster-tilted algebra Aµ0(Q̃)

of type IV by the ideal generated by the path 1, 2, 0.
(b) µ+

0 (A) is always defined and is isomorphic to the quotient of the cluster-tilted algebra Aµ0(Q̃)

of type IV by the ideal generated by the path 0, 1, 2.

Proof. Let A = AQ̃ be the cluster-tilted algebra corresponding to the quiver Q̃ depicted as

0

1

2 3

4

5

Q′′

Q′

Q′′′
α4

α1
α2

α3 α5

α6

α7

.

It is easily seen using Proposition 4.2.3 that the negative mutation µ−0 (A) and the positive
mutation µ+

0 (A) are defined (since α5α4 6= 0 and α1α7 6= 0).
We recall that µ−0 (A) = EndDb(A)(T

−
0 (A)) and µ+

0 (A) = EndDb(A)(T
+
0 (A)), where

T−0 (A) =
(
P0

(α4,α7)−−−−−→ (P1 ⊕ P3)
)
⊕
(⊕
i6=0

Pi
)

=: L0 ⊕
(⊕
i 6=0

Pi
)
,

T+
0 (A) =

(
(P2 ⊕ P4)

(α1,α5)−−−−−→ P0

)
⊕
(⊕
i6=0

Pi
)

=: R0 ⊕
(⊕
i 6=0

Pi
)
.

• First we compute the Cartan matrix of µ−0 (A) from the Cartan matrix of A by only changing
the row and column of vertex 0 according to Happel’s alternating sum formula of Proposi-
tion 2.3.2. Hence, it is given by

Cµ−0 (A) =



1 1 1 1 0 0 · · ·
0 1 1 0 1 0 · · ·
1 1 1 0 0 1 · · ·
0 0 1 1 0 1 · · ·
1 0 0 1 1 0 · · ·
0 1 0 0 1 1 · · ·
...

...
...

...
...

...


where the box around 0 indicates the path 1, 2, 0 of Lemma 4.3.3 (a), that is, Cµ−0 (A) is just
the Cartan matrix of the cluster-tilted algebra corresponding to the right hand quiver in
Lemma 4.3.3 except for this box.

Corresponding to each arrow of the following quiver we define a homomorphism of
complexes between the summands of T−0 (A) (in the opposite direction).
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1

2

0

4

3

5
Q′′′

Q′′

Q′

β

(0, α6)α

(α3α2, 0)

α1α7

α2

α3

α1α4

α5α4

First we have the embeddings α := (id, 0) : P1 → L0 and β := (0, id) : P3 → L0 (in
degree zero). Moreover, we have the homomorphisms α1α4 : P2 → P1, α5α4 : P4 → P1,
α1α7 : P2 → P3, (0, α6) : L0 → P4 and (α3α2, 0) : L0 → P2. All the other homomorphisms
are as before.

Now we have to show that these homomorphisms satisfy the defining relations of the
algebra Aµ0(Q̃)/I(1, 2, 0), up to homotopy, where I(1, 2, 0) is the ideal generated by the path
1, 2, 0 stated in Lemma 4.3.3 (a).

There are six zero-relations in µ−0 (A). The path 5, 1, 2 is zero since α1α4α3 = 0, the
path 1, 2, 5 is zero since α2α1α4 = 0, the path 3, 2, 0 is zero since (α3α2α1α7, 0) = 0, the
path 2, 0, 3 is zero since the composition of (α3α2, 0) and β is zero, the path 4, 0, 1 is zero
since the composition of (0, α6) and α is zero and the path 0, 1, 4 is zero since α5α7 =
0 and thus, (α5α4, 0) is homotopic to zero. Additionally, there are two commutativity
relations in µ−0 (A). There is one between vertex 0 and vertex 2, and this is given by
the two homomorphisms from P2[0] to the first and second summand of L0. These are
indeed the same since (α1α4, 0) is homotopic to (0, α1α7). It is easily seen that the second
commutativity relation is between vertex 2 and vertex 1. There is no non-zero path from
vertex 1 to vertex 0 since (0, α6α5α4) = 0 = (α3α2α1α4, 0). This corresponds to the path
1, 2, 0 and is marked in the Cartan matrix by a box.

Thus, µ−0 (A) is isomorphic to the quotient of the cluster-tilted algebra Aµ0(Q̃) by the
ideal generated by the path 1, 2, 0.

• Now we compute the Cartan matrix of µ+
0 (A) from the Cartan matrix of A by only changing

the row and column of vertex 0 according to Happel’s alternating sum formula of Proposi-
tion 2.3.2. Hence, it is given by

Cµ+
0 (A) =



1 1 0 1 0 0 · · ·
1 1 1 0 1 0 · · ·
1 1 1 0 0 1 · · ·
0 0 1 1 0 1 · · ·
1 0 0 1 1 0 · · ·
0 1 0 0 1 1 · · ·
...

...
...

...
...

...



where the box around 0 indicates the path 0, 1, 2 of Lemma 4.3.3 (b), that is, Cµ+
0 (A) is just

the Cartan matrix of the cluster-tilted algebra corresponding to the right hand quiver in
Lemma 4.3.3 except for this box.

Now corresponding to each arrow of the following quiver we define a homomorphism of
complexes between the summands of T+

0 (A).



102 4. TYPE Dn

1

2

0

4

3

5
Q′′′

Q′′

Q′

β

(0, α6)α

(α3α2, 0)

α1α7

α2

α3

α1α4

α5α4

First we have the embeddings α := (id, 0) : R0 → P2 and β := (0, id) : R0 → P4 (in
degree zero). Moreover, we have the homomorphisms α1α4 : P2 → P1, α5α4 : P4 → P1,
α1α7 : P2 → P3, (0, α6) : P3 → R0 and (α3α2, 0) : P1 → R0. All the other homomorphisms
are as before.

We leave it to the reader to verify the defining relations of Aµ0(Q̃)/I(0, 1, 2) other than
the path 0, 1, 2. There is no non-zero path from vertex 0 to vertex 2 since (0, α1α7α6) = 0
= (α1α4α3α2, 0). This corresponds to the path 0, 1, 2 and is marked in the Cartan matrix
by a box. Thus, µ+

0 (A) is isomorphic to the quotient of the cluster-tilted algebra Aµ0(Q̃) by
the ideal generated by the path 0, 1, 2.

�

Corollary 4.3.4. The cluster-tilted algebras of type III with quivers

•1
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Q′′′

88rrrrr
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(where Q′, Q′′ and Q′′′ are rooted quivers of type A) are related by a good double mutation (at 0 and
then at 1).

Proof. Denoting the algebra defined as the cluster-tilted algebra of the quiver on the left as
AL, and that on the right as AR, we see that µ−0 (AL) ∼= µ+

1 (AR), since by Lemma 4.3.3 these algebra
mutations are isomorphic to the quotient of the cluster-tilted algebra of the quiver

Q′′
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•1
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��
Q′′′

88ppppp •0
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��
•2

88qqqqq
ffNNNNN

Q′

ffMMMMM

by the ideal generated by the path 1, 2, 0. �

The good double mutations considered in this section consist of two algebra mutations. The first
takes a cluster-tilted algebra A to a derived equivalent algebra which is not cluster-tilted. The second
then takes that algebra to another cluster-tilted algebra A′, thus obtaining a derived equivalence of A
and A′. The following example shows that these derived equivalences cannot, in general, be obtained
by performing a sequence of only good mutations. In other words, any sequence of algebra mutations
connecting A and A′ must pass through an algebra which is not cluster-tilted. Thus, the situation in
Dynkin type D is somewhat more complicated than that in types A and E, where any two derived
equivalent cluster-tilted algebras can be connected by a sequence of good mutations (see Section 4.2.2
for type A and [12, Theorem 1.1] for type E).
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Example 4.3.5. The two cluster-tilted algebras of type D8 with quivers,
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������

•
������

•
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YY2222
// •

YY2222
// •

YY2222

•

EE����

•

������
•

������
•

������

• // •

XX2222

��2
222 •

XX2222
// • ,

ZZ5555

•

FF����

of type III are derived equivalent but cannot be connected by a sequence of good mutations. Indeed,
the mutations at all the vertices of the quiver on the right hand side are bad (see cases 2b, II.1 and
III.3 in Tables 4.1, 4.3 and 4.4).

4.3.2. Main theorem for derived equivalences. First we recall a result about derived equiv-
alences for self-injective cluster-tilted algebras.

The self-injective cluster-tilted algebras were determined by Ringel in [51]. They are all of Dynkin
type Dn, n ≥ 3. Fixing the number n of vertices, there are one or two such algebras depending on
whether n is odd or even. Namely, there is the algebra corresponding to the cycle of length n
without spikes, and when n = 2m is even, there is also the one of type IV with parameter sequence(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)

)
of length m.

The following lemma shows that these two algebras are in fact derived equivalent.

Lemma 4.3.6 (Asashiba [2]). Let m ≥ 3. Then the cluster-tilted algebra of type IV with a central
cycle of length 2m without any spike is derived equivalent to that of type IV with parameter sequence(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)

)
of length m.

Remark 4.3.7. We denote the vertices and the arrows of the cycle of length 2m as in the picture
below.

1

2

3 2m− 2

2m

2m− 1

α1

α2

α2m

α2m−1

α2m−2

Then the result of Lemma 4.3.6 can also be proved using the tilting complex

T =
( m⊕
i=1

(
P2i

α2i−1−−−−→ P2i−1

))
⊕
( m⊕
i=1

P2i−1

)
where the terms P2i−1 are always in degree 0.

Remark 4.3.8. There is no sequence of good mutations connecting the two self-injective algebras
above. Indeed, none of the algebra mutations at any vertex is defined (see Lemma 4.2.26 for the
algebra corresponding to the oriented n-cycle, and Lemmas 4.2.27 and 4.2.34 for the algebra with
parameter sequence

(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)

)
). The smallest such pair occurs in type D6; the

corresponding quivers are shown below.

•
������

•oo

•
��2

222 •

YY2222

• // •

EE����

• // •
������

// •
������

•

YY2222
// •

YY2222

������

•

YY2222

Now we will provide ‘standard forms’ for derived equivalence for cluster-tilted algebras of type Dn.

Theorem 4.3.9. A cluster-tilted algebra of type Dn is derived equivalent to one of the cluster-tilted
algebras with the following quivers, which we call ‘standard forms’ for derived equivalence:
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(a) Dn (i.e. type I with a linearly oriented An−2 quiver attached):

•
��????

• // . . . // • ;

•

??����

(b) Type II as in the following figure, where s, t ≥ 0 and s+ 2t = n− 4:

•
������

•
������

•
������

• // • 1 //

__????

������
. . . s // • 1 // •

YY2222
. . . • t // •

YY2222
;

•

__????

(c) Type III as in the following figure, where s, t ≥ 0 and s+ 2t = n− 4:

•
������

•
������

•
������

•
��???? • 1 //

__????
. . . s // • 1 // •

YY2222
. . . • t // •

YY2222
;

•

??����

(d1) (only when n is odd) Type IV with a central cycle of length n without spikes, as in the
following picture:

1

2

3 n− 2

n− 1

n

;

(d2) Type IV with parameter sequence(
(1, s, t), (1, 0, 0), . . . , (1, 0, 0)

)
of length b ≥ 3, with s, t ≥ 0 such that n = 2b + s + 2t, and the attached rooted quiver of
type A is in standard form:

2

13

4 b

1 s 1 t

;

(d3) Type IV with parameter sequence(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0), (3, s1, t1), (3, s2, t2), . . . , (3, sk, tk)

)
for some k > 0, where the number of triples (1, 0, 0) is b ≥ 0, the non-negative integers
s1, t1, . . . , sk, tk are considered up to rotation of the sequence(

(s1, t1), (s2, t2), . . . , (sk, tk)
)
,

n = 4k + 2b+ s1 + 2t1 + · · ·+ sk + 2tk > 4 and the attached rooted quivers of type A are in
standard form:
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Type Parameters Type Parameters
III (s′ + s′′, t′ + t′′ + 1, s′′′, t′′′) III (s′, t′, s′′ + s′′′, t′′ + t′′′ + 1)
IV

(
(1, s′ + s′′, t′ + t′′ + 1), (d2, s

′′′, t′′′), . . .
)

IV
(
(1, s′, t′), (d2, s

′′ + s′′′, t′′ + t′′′ + 1), . . .
)

Table 4.8. Good double mutations in parametric form.

1s11

1 s2 1 1 sk 1

sk−11 1 tk−11s31

tk

t3

t2

t1

.

To prove Theorem 4.3.9, we now turn to good double mutations as determined in Section 4.3.1.
They are presented in parametric form in Table 4.8, based on Corollaries 4.3.2 and 4.3.4. Using them,
we can obtain further transformations of quivers of types III and IV described in the next lemmas.

Lemma 4.3.10. Consider quivers of type III.
(a) A quiver of type III with parameters (s′, t′ + 1, s′′, t′′) is equivalent by good mutations and

good double mutations to one of type III with parameters (s′, t′, s′′, t′′ + 1).
(b) A quiver of type III with parameters (s′, t′, s′′, t′′) can be transformed using good mutations

and good double mutations to one of type III with parameters (s′ + s′′, t′ + t′′, 0, 0).

Proof. (a) There is at least one oriented 3-cycle in Q′. By applying the good mutation
moves 1, 2a, 3 and 4 of Table 4.1 we can assume that this oriented 3-cycle is directly attached
to the oriented 4-cycle, that is, there are no intermediate arrows between this 3-cycle and
the oriented 4-cycle. Then the statement follows from the first row of Table 4.8.

(b) Follows from the first part together with Lemma 4.2.39.
�

Lemma 4.3.11. Oriented 3-cycles in a rooted quiver of type A attached to a spike in a group of
consecutive spikes in a quiver of type IV can be moved by good mutations and good double mutations
to a rooted quiver attached to any spike in that group.

Proof. It suffices to show that the two quivers with parameters
(
(1, s1, t1), (d2, s2, t2 + 1), . . .

)
and

(
(1, s1, t1 + 1), (d2, s2, t2), . . .

)
are equivalent by good mutations and good double mutations. By

applying the good mutation moves 1, 2a, 3 and 4 of Table 4.1 we can assume that there is at least
one oriented 3-cycle in Q(2) of the first quiver which is directly attached to the spike, that is, there
are no intermediate arrows between this 3-cycle and the spike. Then setting (s′′, t′′) = (0, 0) in the
second row of Table 4.8 shows this equivalence. �
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Remark 4.3.12. By regarding type III quivers as ‘formal’ type IV quivers (as in Remarks 4.1.5
and 4.2.37), the first row of Table 4.8 becomes a specific instance of the second.

Proof of Theorem 4.3.9. Given a quiver Q of a cluster-tilted algebra of Dynkin type Dn, we
show how to find a quiver in one of the standard forms of Theorem 4.3.9 whose cluster-tilted algebra
is derived equivalent to that of Q.

First we note that by applying the algorithm in the proof of Proposition 4.2.15 we can transform
any rooted quiver of type A to a standard form as in Definition 4.2.14.

Let Q be a quiver of type I. If Q is any orientation of a Dn diagram, then by Lemma 4.2.38 (b)
we can transform it by good mutations to a quiver in the class (a) in Theorem 4.3.9, thus proving the
derived equivalence for this case. If Q contains at least one oriented 3-cycle, then by Lemma 4.2.38 (c)
we can transform it by good mutations to a quiver of type II.

Now suppose that Q is a quiver of type II, then by Lemma 4.2.38 (d) we can transform it by
good mutations to a quiver in the class (b) in Theorem 4.3.9.

Similarly, if Q is of type III, then by Lemma 4.3.10 (b) the corresponding cluster-tilted algebra
is derived equivalent to one in class (c) in the theorem.

Let Q be a quiver of type IV. If it is a cycle without any spikes, we distinguish two cases. If the
number of vertices is even, then by Lemma 4.3.6 the corresponding cluster-tilted algebra is derived
equivalent to another one in type IV with spikes. Otherwise, it gives rise to the standard form (d1).

If Q is of type IV with some spikes, let
(
(d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
be its parameters.

By iteratively applying the good mutations IV.1a or IV.1b (see Table 4.6 for parametric notation)
we can repeatedly shorten all the distances di ≥ 4 by 2 until they become 2 or 3. By applying the
good mutations IV.2a or IV.2b (see Table 4.6 for parametric notation) we can shorten further any
distance 2 to a distance of 1. Thus we get a parameter sequence where all distances are either 1 or 3.

If all the distances are 1, we distinguish two cases. If all the distances sum up to at least 3, then
by Lemma 4.2.42 and Lemma 4.3.11 we can successively move all the arrows and oriented 3-cycles of
the attached rooted quivers of type A and concentrate them on a single spike, yielding the standard
form of (d2). If the distances sum up to 2, then by Remark 4.1.5 this is a quiver of type III (and
Lemma 4.3.10 (b) yields the standard form (c)).

Otherwise, when there is at least one distance of 3, we observe the following. If all the distances
are 3, we are in class (d3). Therefore, we may assume that there is at least one distance of 1, i.e.
we can consider a group of consecutive spikes. By Lemma 4.2.42 and Lemma 4.3.11, inside such a
group we can always concentrate the attached rooted quivers of type A at one of the spikes in the
group, thus creating a free spike at the end of the group. By Lemma 4.2.41 this free spike can then
be moved to the beginning of the next group. In this way, we can move all spikes of the group except
one to the next group, thus creating a single spike with some rooted quiver of type A attached.

Continuing in this way, we can eventually merge all groups of at least two consecutive spikes into
one large group, with all the other spikes being single spikes. In other words, the sequence of distances
will look like (1, 1, . . . , 1, 3, 3, . . . , 3). In this large group of consecutive spikes, we can concentrate the
rooted quivers of type A at the last spike, yielding exactly the standard form appearing in (d3). �



CHAPTER 5

Invariants of derived equivalence

Section 5.1 is a brief review of background material. The results of Section 5.2 are a joint work
with Thorsten Holm and Sefi Ladkani, and appeared in [13]. The results of Section 5.3 are new in
this thesis.

5.1. Asymmetry matrices

Let A be a finite-dimensional K-algebra and let P1, . . . , Pn be a complete collection of pairwise
non-isomorphic indecomposable projective A-modules. The Cartan matrix of A is then the n × n
matrix CA defined by (CA)ij = dimK HomA(Pj , Pi) (see Section 2.3). An important invariant of
derived equivalence is given by the following well-known proposition. For a proof see the proof of
Proposition 1.5 in [14], and also [12, Prop. 2.6].

Proposition 5.1.1. Let A and B be two finite-dimensional, derived equivalent algebras. Then the
matrices CA and CB represent equivalent bilinear forms over Z, that is, there exists P ∈ GLn(Z)
such that PCAPT = CB, where n denotes the number of indecomposable projective modules of A and
B (up to isomorphism).

In general, to decide whether two integral bilinear forms are equivalent is computationally inten-
sive. Therefore, it is useful to introduce somewhat weaker invariants that are computationally easier
to handle. In order to do this, assume further that CA is invertible over Q. In this case one can
consider the rational matrix SA = CAC

−T
A (here C−TA denotes the inverse of the transpose of CA),

known in the theory of non-symmetric bilinear forms as the asymmetry of CA.

Proposition 5.1.2. Let A and B be two finite-dimensional, derived equivalent algebras with invertible
(over Q) Cartan matrices. Then we have the following assertions, each implied by the preceding one:

(a) There exists P ∈ GLn(Z) such that PCAPT = CB.
(b) There exists P ∈ GLn(Z) such that PSAP−1 = SB.
(c) There exists P ∈ GLn(Q) such that PSAP−1 = SB.
(d) The matrices SA and SB have the same characteristic polynomial.

Proof. If A and B are derived equivalent algebras then condition (a) follows from [42, Corol-
lary 3.13]. In particular, this corollary follows from a sequence of technical lemmas regarding the
Euler form and the Möbius function of a poset (see [42, Section 3]). We only check that each assertion
is implied by the preceding one:

(a) ⇒ (b) If CB = PCAP
T for some P ∈ GLn(Z), then

SB = CBC
−T
B = (PCAPT )(P−TC−TA P−1)

= P (CAC−TA )P−1 = PSAP
−1.

(b) ⇒ (c) This implication is clear.
(c) ⇒ (d) If PSAP−1 = SB for some P ∈ GLn(Q), then SA and SB are similar over Q and thus, SA

and SB have the same characteristic polynomial. That is, since

P (xE − SA)P−1 = xE − PSAP−1 = xE − SB ,
we get

det(xE − SB) = det(P ) det(xE − SA) det(P−1) = det(xE − SA).

�

107
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Since the determinant of the Cartan matrix is also invariant under derived equivalence (see [14,
Proposition 1.5]), we obtain the following discrete invariant of derived equivalence.

Definition 5.1.3. For an algebra A with invertible Cartan matrix CA over Q, we define its associated
polynomial as (detCA) · χSA(x), where χSA(x) is the characteristic polynomial of the asymmetry
matrix SA = CAC

−T
A .

Remark 5.1.4. The matrix SA (or better, minus its inverse −CTAC−1
A ) is related to the Coxeter

transformation which has been widely studied in the case when A has finite global dimension (so
that CA is invertible over Z), see [44]. The characteristic polynomial is then known as the Coxeter
polynomial of the algebra.

5.2. Cartan determinants of cluster-tilted algebras of type Dn

The main tool for distinguishing the various standard forms appearing in Theorem 4.3.9 is the
computation of numerical invariants of derived equivalence. We start by computing the formulae for
the determinants of the Cartan matrices of all cluster-tilted algebras of type Dn.

Notation. Throughout this section, for a quiver Q which is mutation equivalent to a Dynkin quiver,
we denote by AQ the corresponding cluster-tilted algebra and its Cartan matrix by CQ.

The following theorem was obtained independently by Vatne in [52].

Theorem 5.2.1. Let Q be a quiver which is mutation equivalent to Dn for n ≥ 4. Using the notation
from Section 4.1 we have the following formulae for the determinants of the Cartan matrices of the
corresponding cluster-tilted algebras.

(I) If Q is of type I, then detCQ = 2t(Q
′) = detCQ′ .

(II) If Q is of type II, then detCQ = 2 · 2t(Q′)+t(Q′′) = 2 · detCQ′ · detCQ′′ .
(III) If Q is of type III, then detCQ = 3 · 2t(Q′)+t(Q′′) = 3 · detCQ′ · detCQ′′ .
(IV) For a quiver Q of type IV with central cycle of length m ≥ 3, let Q(1), . . . , Q(r) be the

rooted quivers of type A glued to the spikes and let c(Q) be the number of vertices on the
central cycle which are part of two (consecutive) spikes, i.e. c(Q) = |{1 ≤ j ≤ r : dj = 1}|,
cf. (4.1.1). Then

detCQ = (m+ c(Q)− 1) ·
r∏
j=1

2t(Q
(j)) = (m+ c(Q)− 1) ·

r∏
j=1

detCQ(j) .

By using that the Cartan determinant of a cluster-tilted algebra of type An is a power of 2 (see
Proposition 5.2.6 below), we immediately obtain the following.

Corollary 5.2.2.
(a) A cluster-tilted algebra of type II is not derived equivalent to any cluster-tilted algebra of

type III.
(b) A cluster-tilted algebra of type II is not derived equivalent to any cluster-tilted algebra of

type IV whose Cartan determinant is not a power of 2.

Note that the determinant alone is not enough to distinguish types II and IV, an example already
occurs in type D5.

Example 5.2.3. The Cartan matrices of the cluster-tilted algebra of type II with parameters (1, 0, 0, 0)
and the one of type IV with parameters

(
(3, 1, 0)

)
whose quivers are given by

•
��~~~~

• // •

__@@@@

��~~~~
// •

•

__@@@@

•
��~~~~

��@@@@

•
��@@@@ •
��~~~~

// •

•

OO

have both determinant 2. But the characteristic polynomials of their asymmetries differ, namely
x5−x3+x2−1 and x5−2x3+2x2−1, respectively, as we will show in Propositions 5.3.11 and 5.3.12 (c).
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Corollary 5.2.4. Any two distinct standard forms of Theorem 4.3.9 which are not of the class (d3)
are not derived equivalent.

Proof. We show how to distinguish between standard forms which are not of class (d3). First,
observe that when the number, n, of vertices is odd, the standard form in class (d1) corresponds to the
unique self-injective cluster-tilted algebra with n vertices (see Section 4.3.2) hence it is distinguished
by the fact that self-injectivity is invariant under derived equivalence (see [1, Theorem 3]).

The standard forms in all other classes (except (d3)) can be distinguished by the determinants
of their Cartan matrices. These are given in the list below:

1
(a)

2t+1

(b)
3 · 2t
(c)

(2b− 1) · 2t
(d2) ,

from which it is clear how to distinguish between the standard forms (since b ≥ 3 in (d2)). �

Remark 5.2.5. There is no known example of two distinct standard forms of Theorem 4.3.9 which
are derived equivalent.

Now, we want to prove Theorem 5.2.1. As the quivers of cluster-tilted algebras of type Dn

are defined by gluing of rooted quivers of type A, it is also useful to have formulae for cluster-
tilted algebras of Dynkin type An. Since cluster-tilted algebras of type An are gentle, the Cartan
determinants can be obtained as a special case of [36, Theorem 1] where formulae for the Cartan
determinants of arbitrary gentle algebras are given; for a simplified proof for the special case of
cluster-tilted algebras of type An see also [23, Proposition 4.1].

Proposition 5.2.6. Let Q be a quiver mutation equivalent to a Dynkin quiver of type An. Then the
Cartan matrix of the cluster-tilted algebra corresponding to Q has determinant detCQ = 2t(Q).

To prove Theorem 5.2.1, we shall first show a useful reduction lemma. We need the following
notation: if Q is a quiver and V a set of vertices in Q, then Q \ V is the quiver obtained from Q by
removing all vertices in V from Q and all arrows incident to them.

Lemma 5.2.7. Let Q be a quiver in the mutation class of a quiver of Dynkin type Dn, i.e. Q is of
one of the types I,II,III,IV given in Section 4.1.

(i) Suppose Q contains a vertex a of valency 1. Then detCQ = detCQ\{a}.
(ii) Suppose that Q contains an oriented 3-cycle with vertices a, b, c (in this order, i.e. there

is an arrow from b to c etc.) where a and b have valency 2 in Q and where the quiver
Q′ = Q \ {a, b} is mutation equivalent to a quiver of Dynkin type A or D. Then detCQ =
2 · detCQ\{a,b} = 2 · detCQ′ .

Proof. (i) Since taking transposes does not change the determinant we can assume that
a is a sink. Then the Cartan matrix of the cluster-tilted algebra corresponding to Q has
the form

CQ =


1 0 · · · 0
∗
... CQ\{a}
∗


from which the desired formula follows directly by Laplace expansion.

(ii) In the cluster-tilted algebra corresponding to Q, every product of two consecutive arrows
in the oriented 3-cycle a, b, c is zero. Moreover, in the quiver Q \ {a} there is a one-to-one
correspondence between non-zero paths starting in c and non-zero paths starting in b by
extending any of the former paths by the arrow from b to c (in fact, by the unique relations
in the cluster-tilted algebra all these extensions remain non-zero). Therefore, the Cartan
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matrix of the cluster-tilted algebra corresponding to Q has the form

CQ =



1 1 0 0 · · · · · · 0
0 1 1 ∗1 · · · · · · ∗n
1 0 1 ∗1 · · · · · · ∗n
∗ 0 ∗
...

...
... CQ\{a,b,c}

...
...

...
∗ 0 ∗


where the first three rows are labelled by a, b and c, respectively. The entries marked by ∗i
are really the same in the rows for b and c because of the one-to-one correspondence just
mentioned. Note that in the row for a (the first row) and in the column for b (the second
column) we have 0s except the two 1s indicated because of the zero-relations in the oriented
3-cycle with vertices a, b, c.

Denote by rv the row in the above matrix corresponding to the vertex v. We now
perform an elementary row operation, namely replace the first row ra by ra− rb + rc. Then
we get

detCQ = det



2 0 0 0 · · · · · · 0
0 1 1 ∗1 · · · · · · ∗n
1 0 1 ∗1 · · · · · · ∗n
∗ 0 ∗
...

...
... CQ\{a,b,c}

...
...

...
∗ 0 ∗


= 2 · detCQ\{a,b}

where the last equality follows directly by Laplace expansion (with respect to the row of a
and then the column of b).

�

We will also need three additional lemmas dealing with skeleta of type IV, i.e. the rooted quivers
of type A consist of just one vertex.

Lemma 5.2.8. Let Q be a quiver of type IV which contains no spikes at all, i.e. it is just an oriented
cycle of length m ≥ 3. Then detCQ = m− 1.

Proof. We have

detCQ = det


1 · · · · · · 1 0
0 1 · · · · · · 1
1

. . . . . .
...

...
. . . . . .

...
1 · · · 1 0 1

 = (−1)m−1 det


0 1 · · · 1
1 0

...
...

. . . 1
1 · · · 1 0

 = m− 1,

where, for the last equality, we have used the following formula whose verification is a standard
exercise in linear algebra: for all a, b ∈ K, K any field, we have

det


b a · · · a

a b
...

...
. . . a

a · · · a b

 = (b− a)m−1(b+ (m− 1)a).

�

Lemma 5.2.9. Let Q be a quiver of type IV with parameter sequence
(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)

)
of length m ≥ 3, in other words, it is an oriented cycle of length m with all spikes present. Then
detCQ = 2m− 1.
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1

2

3

l

l + 2

l + 1

m

m+ 1

m+ 2

m+ l

Figure 5.1

Proof. By Lemma 4.3.6, the cluster-tilted algebra AQ is derived equivalent to the one corre-
sponding to the cycle of length 2m. Since the determinant of the Cartan matrix is invariant under
derived equivalence, the result now follows from Lemma 5.2.8. �

Lemma 5.2.10. Let Q be a skeleton of type IV with central cycle of length m ≥ 3 on which not
all spikes are present. Let c(Q) be the number of vertices on the central cycle which are part of two
(consecutive) spikes. Then detCQ = m+ c(Q)− 1.

Proof. We shall closely look at one group of l ≥ 1 consecutive spikes in Q and label the vertices
as in Figure 5.1. Then the Cartan matrix has the following shape:

CQ =



1 1 · · · 1 1 · · · 1 0 0 0 · · · 0 0 · · · · · · 0
1 1 · · · 1 1 · · · · · · 1 1 0 · · · 0 0 · · · · · · 0
...

...
...

...
...

...
. . . . . .

...
...

1 1 · · · 1 1 · · · · · · 1 0 · · · 1 0 0 · · · · · · 0
1 1 · · · 1 1 1 · · · 1 0 0 · · · 1 0 · · · · · · 0
1 1 · · · 1 0 0 · · · 0
1 1 · · · 1 ? ? 0 0 · · · 0 ? ?
...

...
... ? ?

...
...

... ? ?
1 1 · · · 1 0 0 · · · 0
1 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0 0 · · · 0
0 1

...
...

... 1
. . .

...
...

...
. . . 0

...
... 0

. . . . . . 0
...

...
0 · · · 0 1 0 · · · · · · 0 0 · · · 1 1 0 0 · · · 0
0 · · · · · · 0 0 · · · · · · 0
...

... ? ?
...

... ? ?
0 · · · · · · 0 0 · · · · · · 0



.

The two highlighted rows correspond to the vertices l + 1 and m+ l, respectively. For each vertex j
let rj be the row of CQ corresponding to j.

Note that the column m+ l of CQ has only two non-zero entries, namely in rows l+ 1 and m+ l.
We first replace row rl+1 by rl+1 − rm+l + rl − r1 (in case l = 1 this indeed means just rl+1 − rm+l).
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Then column m+ l has only one non-zero entry, that on the diagonal; Laplace expansion along this
column yields a new matrix C̃.

We consider the (l + 1)th row in this new matrix which has the form(
1 1 · · · 1 0 1 1 · · · 1 N 0 0 · · · 0 0 · · · · · · 0

)
where the number N at position (l + 1,m) is equal to 0 if l = 1 and equal to 2 if l > 1.

In case l = 1 we see that C̃ is equal to the Cartan matrix of the cluster-tilted algebra corresponding
to the quiver Q \ {m+ l}. This means that when computing the Cartan determinant we can remove
isolated spikes, i.e. spikes which are not neighbouring any other spike.

In this case l = 1 the statement of the lemma follows immediately by induction on the number
of spikes (with the case of no spikes treated earlier in Lemma 5.2.8 as the base of the induction). In
fact, removing the isolated spike does not change the determinant (as we have just seen), and also
the formula given in the lemma is not affected by removing an isolated spike.

Let us turn to the more complicated case l > 1 (which we shall also show by induction). If l > 1,
the matrix C̃ is equal to the Cartan matrix of Q \ {m+ l}, except for the (l+ 1,m)-entry which is 2
in C̃, but 1 in CQ\{m+l}.

To compare the determinants in this case we use the following easy observation. Let C = (cij)
and C̃ = (c̃ij) be two matrices which only differ at the (k, h)-entry. Then

det C̃ − detC = (−1)k+h(c̃kh − ckh)Ckh

where Ckh is the matrix obtained from C (or C̃) by removing row k and column h.
Applied to our situation we get

det C̃ − detCQ\{m+l} = (−1)l+1+m(2− 1) detCl+1,m = (−1)l+1+m detCl+1,m.

Since det C̃ = detCQ we can rewrite this to get

detCQ = detCQ\{m+l} + (−1)l+1+m detCl+1,m.

By induction on the number of spikes of Q (with the case of no spikes treated earlier as the base of
the induction) we can deduce that detCQ\{m+l} = m+ c(Q)− 2 and hence

detCQ = m+ c(Q)− 2 + (−1)l+1+m detCl+1,m.(5.2.1)

To prove the assertion of the lemma we therefore have to show that (−1)l+1+m detCl+1,m = 1.
We keep the labelling of the rows and columns also for Cl+1,m (i.e. there is no row with label

l + 1 or m+ l, and no column with label m or m+ l). For convenience, the vertices 1, . . . ,m on the
cycle will be called cycle vertices and the remaining vertices will be called outer vertices.

Note that in Cl+1,m we have 0s on the diagonal in all rows indexed by cycle vertices which have
no spike attached. More precisely, the rows corresponding to cycle vertices are of the form(

1 · · · 1 1 · · · 1 0 · · · 0 1 0 · · · 0 0 · · · 0
)

if the vertex has a spike attached, and(
1 · · · 1 0 1 · · · 1 0 · · · 0 0 · · · 0

)
if there is no spike attached to the vertex.

For each cycle vertex j 6= 1 with no spike attached we perform the elementary row operation
replacing rj by rj − r1; this gives a unit vector with −1 on the diagonal. Laplace expansion along all
these rows removes from Cl+1,m all rows and columns corresponding to cycle vertices (not equal to
vertex 1) with no spikes attached; for the determinant we thus get a sign (−1)m−p(Q)−1 where p(Q)
is the total number of spikes of Q.
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The matrix obtained after this removal process has rows indexed by vertex 1, the cycle vertices
with spikes attached except vertex l+ 1, and the outer vertices except vertex m+ l. It has the form

1 1 · · · · · · · · · 1 1 0 · · · · · · 0
1 1 · · · · · · · · · 1 1 1 0 · · · 0
...

...
...

... 0 1
. . .

...
1 1 · · · · · · · · · 1 1

...
. . . . . . 0

1 1 · · · · · · · · · 1 1 0 · · · 0 1
1

. . .
1 ? ?

0 1 ? ?
. . . . . .

0 1


where in the lower left block the crucial 0 on the main diagonal occurs in the column labelled by
vertex l (because the row indexed by m+ l has been removed).

Now for each cycle vertex j with a spike attached we replace the row rj by rj − r1, giving a
unit vector. Consecutive Laplace expansion along these rows removes all columns corresponding to
outer vertices (and all rows corresponding to cycle vertices with spikes attached). For each of these
Laplace expansions we get a sign (−1)p(Q)+1 and there are p(Q)− 1 such expansions in total, giving
an overall sign of (−1)p(Q)2−1 = (−1)p(Q)−1.

We are left with a p(Q)× p(Q)-matrix of the form

1 1 · · · · · · · · · 1 1
1

. . .
1

0 1
. . . . . .

0 1


.

We expand consecutively along the last rows until we get a l × l-matrix of the form
1 1 · · · 1
1

. . .
1 0

 .

Laplace expansion along the last column leads to the determinant (−1)l+1.
Summarising our arguments, we get

detCl+1,m = (−1)m−p(Q)−1 · (−1)p(Q)−1 · (−1)l+1 = (−1)m+l−1.

Substituting this into equation (5.2.1) we get the following expression for the Cartan determinant
of Q

detCQ = m+ c(Q)− 2 + (−1)l+1+m detCl+1,m

= m+ c(Q)− 2 + (−1)l+1+m(−1)m+l−1 = m+ c(Q)− 1

which is exactly the formula claimed in Lemma 5.2.10. �

Proof of Theorem 5.2.1. (I) Applying part (i) of Lemma 5.2.7 twice gives detCQ =
detCQ\{a,b}. By definition Q′ = Q\{a, b} is a quiver of Dynkin type A, thus detCQ′ = 2t(Q

′)

by Proposition 5.2.6. Clearly, t(Q) = t(Q′) for quivers of type I and hence

detCQ = detCQ\{a,b} = detCQ′ = 2t(Q
′) = 2t(Q).
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(II) Let Q be a quiver of type II. By applying Lemma 5.2.7 inductively we can shrink each of
the quivers Q′ and Q′′ (which are of Dynkin type A) to one vertex where, for the Cartan
determinant of the corresponding cluster-tilted algebra, we get a factor 2 for each oriented
3-cycle we remove (see part (i) and (ii) of Lemma 5.2.7). Thus, we get

detCQ = 2t(Q
′) · 2t(Q′′) · detCQ̃(5.2.2)

where Q̃ is the skeleton with vertices a, b, c′, c′′ obtained after shrinking both Q′ and Q′′ to
one vertex. Labelling the rows and columns in the order a, b, c′, c′′ the cluster-tilted algebra

corresponding to Q̃ has Cartan matrix CQ̃ =


1 0 0 1
0 1 0 1
1 1 1 1
0 0 1 1

 which has determinant 2.

This gives the desired formula as

detCQ = 2t(Q
′) · 2t(Q′′) · detCQ̃ = 2t(Q

′)+t(Q′′)+1 = 2 · detCQ′ detCQ′′ .

(III) Completely analogous to the previous argument in type II we can shrink the subquivers Q′

and Q′′ of any quiver of type III to one vertex, ending up with an oriented 4-cycle Q̃. La-
belling the rows and columns in the order a, b, c′, c′′ the cluster-tilted algebra corresponding

to this 4-cycle has Cartan matrix CQ̃ =


1 1 1 0
1 1 0 1
0 1 1 1
1 0 1 1

 which has determinant 3. As

above we then get

detCQ = 2t(Q
′) · 2t(Q′′) · detCQ̃ = 3 · 2t(Q′)+t(Q′′) = 3 · detCQ′ detCQ′′ .

(IV) If there are no spikes at all, the result follows from Lemma 5.2.8. Otherwise, by Lemma 5.2.7
we can again assume that all the rooted quivers Q(1), . . . , Q(r) of type A attached to the
spikes have been shrunk to one vertex, yielding a factor

r∏
j=1

2t(Q
(j)) =

r∏
j=1

detCQ(j)

for the Cartan determinant detCQ. The result then follows from Lemmas 5.2.9 and 5.2.10.
�

Now we list further properties of the Cartan determinant for derived equivalences.

Proposition 5.2.11. Let Q be a quiver which is mutation equivalent to Dn. Then

detCQ ≤
3
4
· 2n/2,

with equality if and only if Q is of type III with the attached rooted quivers of type A consisting only
of oriented 3-cycles.

For the proof, we need the following lemmas.

Lemma 5.2.12. Let Q be a quiver mutation equivalent to An+1. Then detCQ ≤ 2n/2, with equality
if and only if there are only oriented 3-cycles in Q.

Proof. We denote by s the number of arrows in Q which are not part of an oriented 3-cycle,
and by t the number of oriented 3-cycles in Q. Then n = s+2t and by Proposition 5.2.6, detCQ = 2t,
and the result follows. �

Lemma 5.2.13. Let Q be a skeleton of type IV. Then detCQ ≤ 3
4 · 2n/2, where n is the number of

vertices of Q, with equality if and only if Q is a cycle of length 4.
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Proof. Let m ≥ 3 be the length of the central cycle and 0 ≤ r ≤ m the number of spikes on
that cycle. Then n = m+ r ≥ 3 and by Theorem 5.2.1,

detCQ ≤ (m− 1) + r = n− 1.

Now, one can easily show that an := 3
4 · 2n/2 − n + 1 > 0 and (an) is monotonically increasing

for any n ≥ 5. Hence, the result follows since n− 1 < 3
4 · 2n/2 for any n ≥ 3 except n = 4. For n = 4

we have that either m = 3 and r = 1, so that detCQ = 2 < 3, or that m = 4 and r = 0, and then
detCQ = 3, yielding the only case where equality holds. �

Proof of Proposition 5.2.11. We use Theorem 5.2.1 and proceed according to the type of Q.
(I) If Q is of type I and Q′ is the attached rooted quiver of type A with n′ + 1 vertices, then

n′ = n− 3 and by Lemma 5.2.12,

detCQ = detCQ′ ≤ 2(n−3)/2 =
√

2
4
· 2n/2 < 3

4
· 2n/2.

(II) If Q is of type II and Q′, Q′′ are the attached rooted quivers of type A with n′ + 1 and
n′′ + 1 vertices, then n′ + n′′ = n− 4 and by Lemma 5.2.12,

detCQ = 2 · detCQ′ · detCQ′′ ≤ 2 · 2(n−4)/2 =
2
4
· 2n/2 < 3

4
· 2n/2.

(III) If Q is of type III and Q′, Q′′ are the attached rooted quivers of type A with n′ + 1 and
n′′ + 1 vertices, then n′ + n′′ = n− 4 and by Lemma 5.2.12,

detCQ = 3 · detCQ′ · detCQ′′ ≤ 3 · 2(n−4)/2 =
3
4
· 2n/2

with equality if and only if Q′ and Q′′ consist only of oriented 3-cycles.
(IV) Finally, if Q is of type IV, we may assume that it is not a cycle of length 4 (as this case

falls into type III). Let m be the length of the central cycle, r be the number of spikes and
Q(1), . . . , Q(r) be the corresponding rooted quivers of type A attached, with n1+1, . . . , nr+1
vertices, respectively.

Then n = m+ r + n1 + · · ·+ nr, and by Theorem 5.2.1

detCQ = (m+ c(Q)− 1) ·
r∏
i=1

detCQ(i)

where (m+ c(Q)− 1) is the determinant of the skeleton of type IV with m+ r vertices (see
Lemmas 5.2.8, 5.2.9 and 5.2.10).

Hence by Lemmas 5.2.13 and 5.2.12,

detCQ <
3
4
· 2(m+r)/2 · detCQ(1) · detCQ(2) · . . . · detCQ(r)

≤ 3
4
· 2(m+r)/2 · 2n1/2 · 2n2/2 · . . . · 2nr/2 =

3
4
· 2n/2

so the assertion holds in this case as well.
�

Corollary 5.2.14. Let Q and Q′ be quivers of derived equivalent cluster-tilted algebras of type Dn.
If Q is of type III with its rooted quivers of type A consisting only of oriented 3-cycles, then so is Q′.

Proposition 5.2.15. Two standard forms of skeleta of type IV appearing in Theorem 4.3.9 with the
same number of vertices and the same Cartan determinant are isomorphic.

Proof. First observe that when the number of vertices is odd, the standard form in class (d1) is
distinguished from (d2) and (d3) by the fact that self-injectivity is invariant under derived equivalence
(see [1, Theorem 3]). Hence, we suppose that Q is a standard form of a skeleton of type IV with
some spikes. Recall that according to Theorem 4.3.9, the corresponding parameters are(

(1, 0, 0), . . . , (1, 0, 0), (3, 0, 0), . . . , (3, 0, 0)
)
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with the numbers of (1, 0, 0) and (3, 0, 0) entries being b ≥ 0 and k ≥ 0, respectively, so that Q is
controlled by the two numbers b and k.

Then the number of vertices of Q is 4k + 2b, the length of the central cycle is m = 3k + b, and
the Cartan determinant is thus given by Theorem 5.2.1(IV) as detCQ = (m− 1) + b = 3k + 2b− 1.

Now if Q′ is another standard form corresponding to the numbers b′ and k′ having the same
number of vertices and the same Cartan determinant as Q, then

4k + 2b = 4k′ + 2b′,

3k + 2b− 1 = 3k′ + 2b′ − 1,

hence b′ = b and k′ = k. �

Corollary 5.2.16. Two standard forms of skeleta of type IV are derived equivalent if and only if they
are isomorphic.

5.3. Characteristic polynomials of the asymmetry matrices

Since the determinants of the Cartan matrices of all cluster-tilted algebras of types An and
Dn do not vanish, we can consider their asymmetry matrices and the corresponding characteristic
polynomials.

5.3.1. Methods to determine characteristic polynomials of the asymmetry matrices.
In this section we provide methods to determine the characteristic polynomials of the asymmetry
matrices for cluster-tilted algebras of type Dn. We also compute these polynomials for cluster-tilted
algebras of type An.

First we provide a method to determine the characteristic polynomials of the asymmetry matrices.
We reduce the determination of the characteristic polynomials to the computation of certain ‘smaller’
polynomials. For this, we recall some background from [15].

Let Q be a quiver, v a vertex of Q and p a path in Q. We say that p properly passes through v if
p can be written in the form p = p2evp1 with paths p1, p2 in Q of length ≥ 1 and ev the trivial path
corresponding to v. Moreover, an admissible ideal I of relations in KQ is called v-separated when I
can be generated as an ideal by a set R of relations such that for every

∑
i λipi ∈ R with λi ∈ K\{0}

and distinct paths pi in Q, none of the pi properly passes through v. We denote by Q\{v} the quiver
obtained from Q by deleting the vertex v and all incident arrows. The union of quivers is given by
the union of the vertex sets Q0 and the disjoint union of the arrow sets Q1. In [15, Theorem 2.2]
there is a formula for determining the characteristic polynomial of the matrix ΦQ := −CTC−1, where
C := CKQ/I , given as follows:

Theorem 5.3.1 (Boldt [15]). Let Γ1,Γ2 be two quivers with (Γ1)0 ∩ (Γ2)0 = {v} and let Q be the
union of Γ1 and Γ2. Suppose that I ⊂ KQ is an v-separated ideal of relations such that AQ := KQ/I
is finite dimensional. Let Γ′1 = Γ1\{v} and Γ′2 = Γ2\{v}, and define the algebras AΓ1 , AΓ′1 , AΓ2 ,
AΓ′2 canonically:

AΓi = KΓi/(I ∩KΓi) and AΓ′i
= KΓ′i/(I ∩KΓ′i) for i = 1, 2.

If the determinant det(CAQ) = det(CAΓ1
) det(CAΓ2

) is non-zero, the characteristic polynomial of ΦQ
is

χΦQ(x) = χΦΓ1
(x) · χΦΓ′2

(x) + χΦΓ′1
(x) · χΦΓ2

(x)− (x+ 1) · χΦΓ′1
(x) · χΦΓ′2

(x).

Example 5.3.2. Let A = KQ be the path algebra of the following quiver of type A3.

1 2 3
We can choose v = 2 since there are no relations in A. Thus Γ1 and Γ2 are both quivers of type A2

and the corresponding Cartan matrices of AΓ1 and AΓ2 , respectively, have the same shape CAΓ1
=

CAΓ2
=
(

1 1
0 1

)
. Then Γ′1 and Γ′2 are both quivers consisting of just a single vertex, hence, the

Cartan matrices of AΓ′1 and AΓ′2 are just CAΓ′1
= CAΓ′2

= 1.
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Next, we compute the matrices ΦΓ1 , ΦΓ2 , ΦΓ′1 and ΦΓ′2 and the corresponding characteristic
polynomials to be

ΦΓ1 = ΦΓ2 = −CTAΓ1
C−1
AΓ1

=
(
−1 0
−1 −1

)(
1 −1
0 1

)
=
(
−1 1
−1 0

)
,

ΦΓ′1 = ΦΓ′2 = −CTAΓ′1
C−1
AΓ′1

= −1 · 1 = −1,

χΦΓ1
(x) = χΦΓ2

(x) =
∣∣∣∣ x+ 1 −1

1 x

∣∣∣∣ = x2 + x+ 1,

χΦΓ′1
(x) = χΦΓ′2

(x) = x+ 1.

Using Theorem 5.3.1 we then get the following expression for the characteristic polynomial of ΦQ:

χΦQ(x) = χΦΓ1
(x) · χΦΓ′2

(x) + χΦΓ′1
(x) · χΦΓ2

(x)− (x+ 1) · χΦΓ′1
(x) · χΦΓ′2

(x)

= 2(x2 + x+ 1)(x+ 1)− (x+ 1)3

= (x+ 1)(2x2 + 2x+ 2− x2 − 2x− 1)

= (x+ 1)(x2 + 1).

With the help of Theorem 5.3.1, we get a formula for the characteristic polynomial of the asym-
metry matrix as follows:

Proposition 5.3.3. Let Γ1, Γ2, Γ′1, Γ′2 and AQ be as in Theorem 5.3.1. Then the characteristic
polynomial of the asymmetry matrix SQ = CAQC

−T
AQ

is given by

χSQ(x) = χSΓ1
(x) · χSΓ′2

(x) + χSΓ′1
(x) · χSΓ2

(x)− (x− 1) · χSΓ′1
(x) · χSΓ′2

(x).

Proof. Let C := CAQ and let n be the number of vertices of Q. Since C−1CT = C−1(CTC−1)C,
the matrices C−1CT and CTC−1 have the same characteristic polynomial. Thus, ΦQ = −CTC−1

and −CC−T = (−C−1CT )T have the same characteristic polynomial as well. Then, we get

χΦQ(x) = χ−CC−T (x) = det(xE + CC−T )

= (−1)n det(−xE − CC−T )
= (−1)nχSQ(−x).(5.3.1)

Now, suppose that the number of vertices of Γ1 is k and thus, the number of vertices of Γ2 is n−k+1.
Hence, the number of vertices of Γ′1 is k − 1 and the number of vertices of Γ′2 is n− k. Using (5.3.1)
we can rewrite the formula in Theorem 5.3.1 as follows:

(−1)nχSQ(−x) = (−1)kχSΓ1
(−x) · (−1)n−kχSΓ′2

(−x) + (−1)k−1χSΓ′1
(−x) · (−1)n−k+1χSΓ2

(−x)

−(x+ 1) · (−1)k−1χSΓ′1
(−x) · (−1)n−kχSΓ′2

(−x)

= (−1)nχSΓ1
(−x) · χSΓ′2

(−x) + (−1)nχSΓ′1
(−x) · χSΓ2

(−x)

−(x+ 1) · (−1)n−1χSΓ′1
(−x) · χSΓ′2

(−x).

Now let y = −x. We get

χSQ(y) = χSΓ1
(y) · χSΓ′2

(y) + χSΓ′1
(y) · χSΓ2

(y)− (−y + 1) · (−1)2n−1χSΓ′1
(y) · χSΓ′2

(y)

= χSΓ1
(y) · χSΓ′2

(y) + χSΓ′1
(y) · χSΓ2

(y)− (y − 1) · χSΓ′1
(y) · χSΓ′2

(y).

�

We will also need the following well-known lemma.

Lemma 5.3.4. Let M be a circulant n× n-matrix, i.e. a matrix of the form
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M =


c0 c1 c2 · · · cn−2 cn−1

cn−1 c0 c1 · · · cn−3 cn−2

cn−2 cn−1 c0 · · · cn−4 cn−3
...

...
...

...
...

c1 c2 c3 · · · cn−1 c0

.

The eigenvectors of such a circulant matrix are given by

yj = (1, ωj , ω2
j , . . . , ω

n−1
j )T , with ωj = (e

2πi
n )j , j = 0, 1, . . . , n− 1,

and the corresponding eigenvalues are then given by

λj =
n−1∑
k=0

ckω
k
j , j = 0, 1, . . . , n− 1.

As a consequence, the determinant of such a circulant matrix can be computed as:

(5.3.2) det(M) =
n−1∏
j=0

λj =
n−1∏
j=0

(c0 + c1ωj + c2ω
2
j + · · ·+ cn−1ω

n−1
j ),

or equivalently (when taking the transpose):

(5.3.3) det(M) =
n−1∏
j=0

(c0 + cn−1ωj + cn−2ω
2
j + · · ·+ c1ω

n−1
j ).

Example 5.3.5. Let M be a circulant n× n-matrix with entries c0 = x, c1 = −1 and cl = 0 for all
l ∈ {2, . . . , n− 1}, i.e. M has the following shape

M =



x −1 0 · · · 0 0
0 x −1 · · · 0 0
0 0 x · · · 0 0
...

...
...

...
...

0 0 0 · · · x −1
−1 0 0 · · · 0 x

.

Then by (5.3.2) we get

det(M) =
n−1∏
j=0

(c0 + c1ωj + c2ω
2
j + · · ·+ cn−1ω

n−1
j )

=
n−1∏
j=0

(x− ωj)

=
n−1∏
j=0

(x− ωj), for ω := ω1 = e
2πi
n

= (x− 1)(x− ω)(x− ω2) · · · (x− ωn−1)

= (xn − 1).

With the help of these results, we can compute the characteristic polynomials of the asymmetry
matrices for cluster-tilted algebras of type An.

Notation. For a quiver Q mutation equivalent to a Dynkin quiver, we denote by χSQ(x) the char-
acteristic polynomial of the asymmetry matrix of the Cartan matrix CQ of the cluster-tilted algebra
corresponding to Q.

Proposition 5.3.6. Let Q be the quiver of a cluster-tilted algebra of type An. Then

χSQ(x) = (x+ 1)t−1
(
xs+t+2 + (−1)s+1

)
where t = t(Q) is the number of oriented 3-cycles in Q and s = s(Q) is the number of arrows in Q
which are not part of any oriented 3-cycle.
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Proof. Let Q be a quiver which is mutation equivalent to An. By using the derived equivalence
classification of cluster-tilted algebras of type An (see [23, Theorem 5.1] or Theorem 4.2.18), we can
assume that Q has the following shape

1 2 3 s s+ 1 s+ 3

s+ 2

s+ 2t− 1

s+ 2t

s+ 2t+ 1

since by Proposition 5.1.2 the characteristic polynomial of the asymmetry matrix SQ is invariant
under derived equivalence. Here, s is the number of arrows which are not part of an oriented 3-
cycle and t is the number of oriented 3-cycles in Q. Note that this is not the standard form as in
Definition 4.2.14. However, Q can be easily transformed to this shape using similar methods as in
the proof of Proposition 4.2.15.

Now we want to determine the characteristic polynomial of the asymmetry matrix SQ. For this,
we consider the cases s = 0, s = 1 and s ≥ 2.

Case 1) Let s = 0, i.e. Q has the following shape (up to derived equivalence)

1 3 2t− 1 2t+ 1

2t2

.

By using the elementary matrices Eij , with entries (Eij)kl =

{
1 if k = i, l = j

0 otherwise
, we can write the

Cartan matrix of the corresponding cluster-tilted algebra as follows:

C = E +
2t∑
i=1

Ei,i+1 +
t−1∑
i=1

E2i,2i+2 +
t∑
i=1

i∑
j=1

E2i+1,2i+1−2j ,

that is, C has the following form

C =



1 1 0
0 1 1 1
1 0 1 1 0
0 0 0 1 1 1
1 0 1 0 1 1 0
0 0 0 0 0 1 1 1
1 0 1 0 1 0 1 1 0
...

...
...

...
...

...
. . .

0 0 0 0 0 0 · · · 0 1 1 1
1 0 1 0 1 0 · · · 1 0 1 1 0
0 0 0 0 0 0 · · · 0 0 0 1 1
1 0 1 0 1 0 · · · 1 0 1 0 1



.(5.3.4)

Then we can compute the inverse of the Cartan matrix and the asymmetry matrix SQ = C ·C−T
to be

C−1 =
1
2
(
E −

t−1∑
k=1

E2k+1,2k+1 −
2t∑
k=1

Ek,k+1 +
2t+1∑
k=2

Ek,k−1 +
t∑

k=1

E2k−1,2k+1 −
t∑

k=1

E2k+1,2k−1

)
,

SQ =
t∑
l=1

E2l+1,1 +
t∑
l=1

E2l−1,2l +
t−1∑
l=1

E2l,2l+2 −
t−1∑
l=1

E2l+1,2l+1 + E2t,2t+1.
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That is, the matrices C−1 and SQ have the following shapes

C−1 =
1
2
·



1 −1 1
1 1 −1
−1 1 0 −1 1

1 1 −1
−1 1 0 −1 1

1 1 −1
−1 1 0 −1 1

. . .

−1 1 0 −1 1
1 1 −1
−1 1 1


,(5.3.5)

SQ =



0 1 0
0 0 0 1
1 0 −1 1 0
0 0 0 0 1
1 0 0 −1 1 0
0 0 0 0 1
1 0 0 −1 1 0
0 0 0 0 1
...

. . .
. . .

. . .

1 −1 1 0
0 0 0 1
1 0 0 0



.(5.3.6)

First we prove the formula for C−1:

C · C−1 =
1
2

(
E −

t−1∑
k=1

E2k+1,2k+1 −
2t∑
k=1

Ek,k+1 +
2t+1∑
k=2

Ek,k−1 +
t∑

k=1

E2k−1,2k+1 −
t∑

k=1

E2k+1,2k−1

+
2t∑
k=1

Ek,k+1 −
t−1∑
k=1

E2k,2k+1 −
2t−1∑
k=1

Ek,k+2 +
2t∑
k=1

Ek,k +
t−1∑
k=1

E2k,2k+3 −
t∑

k=1

E2k,2k−1

+
t−1∑
k=1

E2k,2k+2 −
t−1∑
k=1

E2k,2k+3 +
t−1∑
k=1

E2k,2k+1 +
t∑

k=1

k∑
l=1

E2k+1,2k+1−2l

−
t∑

k=2

k−1∑
l=1

E2k+1,2k+1−2l −
t∑

k=1

k∑
l=1

E2k+1,2k+2−2l +
t∑

k=2

k−1∑
l=1

E2k+1,2k−2l

+
t∑

k=1

k∑
l=1

E2k+1,2k+3−2l −
t∑

k=2

k−1∑
l=1

E2k+1,2k−1−2l

)

The six double sums at the end reduce to

t∑
k=1

E2k+1,2k−1 −
t∑

k=1

E2k+1,2k +
t∑

k=1

E2k+1,2k+1.
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Simplifying the first part of the expression for C · C−1 and putting this together with the reduced
expression for the six double sums gives

C · C−1 =
1
2

(
E −

t−1∑
k=1

E2k+1,2k+1 +
2t+1∑
k=2

Ek,k−1 −
t∑

k=1

E2k+1,2k−1 +
2t∑
k=1

Ek,k

−
t∑

k=1

E2k,2k−1 +
t∑

k=1

E2k+1,2k−1 −
t∑

k=1

E2k+1,2k +
t∑

k=1

E2k+1,2k+1

)
=

1
2

(
E +

2t+1∑
k=1

Ek,k

)
= E .

Now we verify the formula for the asymmetry matrix SQ:

C · C−T =
(
E +

2t∑
i=1

Ei,i+1 +
t−1∑
i=1

E2i,2i+2 +
t∑
i=1

i∑
j=1

E2i+1,2i+1−2j

)

· 1
2

(
E −

t−1∑
k=1

E2k+1,2k+1 −
2t∑
k=1

Ek+1,k +
2t+1∑
k=2

Ek−1,k +
t∑

k=1

E2k+1,2k−1 −
t∑

k=1

E2k−1,2k+1

)
=

1
2

(
E −

t−1∑
k=1

E2k+1,2k+1 −
2t∑
k=1

Ek+1,k +
2t+1∑
k=2

Ek−1,k +
t∑

k=1

E2k+1,2k−1 −
t∑

k=1

E2k−1,2k+1

+
2t∑
k=1

Ek,k+1 −
t−1∑
k=1

E2k,2k+1 −
2t∑
k=1

Ek,k +
2t−1∑
k=1

Ek,k+2 +
t∑

k=1

E2k,2k−1 −
t−1∑
k=1

E2k,2k+3

+
t−1∑
k=1

E2k,2k+2 −
t−1∑
k=1

E2k,2k+1 +
t−1∑
k=1

E2k,2k+3 +
t∑

k=1

k∑
l=1

E2k+1,2k+1−2l

−
t∑

k=2

k−1∑
l=1

E2k+1,2k+1−2l −
t∑

k=2

k−1∑
l=1

E2k+1,2k−2l +
t∑

k=1

k∑
l=1

E2k+1,2k+2−2l

+
t∑

k=2

k−1∑
l=1

E2k+1,2k−1−2l −
( t∑
k=1

E2k+1,2k+1 +
t∑

k=2

k−1∑
l=1

E2k+1,2k+1−2l

))
The six double sums reduce to

t∑
k=1

E2k+1,1 +
t∑

k=1

E2k+1,2k +
t∑

k=2

E2k+1,1 −
t∑

k=2

E2k+1,2k−1.

Similarly to the computation of C · C−1 the expression for C · C−T simplifies to

C · C−T =
1
2

(
E2t+1,2t+1 −

t−1∑
k=1

E2k+1,2k+1 −
2t∑
k=1

Ek+1,k + 2
2t∑
k=1

Ek,k+1 +
t∑

k=1

E2k+1,2k−1

−
t∑

k=1

E2k−1,2k+1 −
t−1∑
k=1

E2k,2k+1 +
2t−1∑
k=1

Ek,k+2 +
t∑

k=1

E2k,2k−1 +
t−1∑
k=1

E2k,2k+2

−
t−1∑
k=1

E2k,2k+1 +
t∑

k=1

E2k+1,1 +
t∑

k=1

E2k+1,2k +
t∑

k=2

E2k+1,1 −
t∑

k=2

E2k+1,2k−1

−
t∑

k=1

E2k+1,2k+1

)
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=
1
2

(
−2

t−1∑
k=1

E2k+1,2k+1 + 2
2t∑
k=1

Ek,k+1 + E31 −
t∑

k=1

E2k−1,2k+1 − 2
t−1∑
k=1

E2k,2k+1

+ 2
t−1∑
k=1

E2k,2k+2 +
t∑

k=1

E2k−1,2k+1 + 2
t∑

k=2

E2k+1,1 + E31

)
=

1
2

(
−2

t−1∑
k=1

E2k+1,2k+1 + 2
t∑

k=1

E2k−1,2k + 2E2t,2t+1 + 2
t∑

k=1

E2k+1,1 + 2
t−1∑
k=1

E2k,2k+2

)
= SQ.

Next we compute the characteristic polynomial χSQ(x):

χSQ(x) = det(xE − SQ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0
0 x 0 −1
−1 0 (x + 1) −1 0
0 0 x 0 −1
−1 0 0 (x + 1) −1 0
0 0 x 0 −1
−1 0 0 (x + 1) −1 0
0 0 x 0 −1
...

. . .
. . .

. . .

−1 (x + 1) −1 0
0 0 x −1
−1 0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(5.3.7)

We expand the determinant along columns using Laplace’s formula. Laplace expansion along every
odd column of the original matrix, except for the first and the last one (i.e. along the 3rd, 5th, . . . ,
(2t− 1)th column), leads to a determinant of a (t+ 2)× (t+ 2)-matrix

χSQ(x) = (x+ 1)t−1·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1
0 x −1
0 x −1
0 x −1
...

. . .
. . .

0 x −1
−1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

This matrix is a circulant matrix as in Example 5.3.5 with entries c0 = x, c1 = −1, cl = 0 for all
l 6= 0, 1, and determinant xt+2 − 1.

Hence, we get the characteristic polynomial χSQ(x) as

χSQ(x) = (x+ 1)t−1(xt+2 − 1),

which is exactly the formula given in Proposition 5.3.6 in case s = 0.

Case 2) Let s = 1, i.e. Q has the following shape (up to derived equivalence)

3 2t+ 1

1 2 4 2t 2t+ 2 .

By using the elementary matrices Eij , we can write the Cartan matrix of the corresponding cluster-
tilted algebra as follows:

C = E +
t+1∑
i=1

E2i,1 +
2t+1∑
i=2

Ei,i+1 +
t∑
i=2

E2i−1,2i+1 +
t+1∑
i=2

i−1∑
j=1

E2i,2i−2j ,
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that is, C has the following form

C =



1 0 0 · · · 0

1 1 1 0
0 0 1 1 1
1 1 0 1 1 0
0 0 0 0 1 1 1
1 1 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1
1 1 0 1 0 1 0 1 1 0
...

...
...

...
...

...
...

. . .

0 0 0 0 0 0 0 · · · 0 1 1 1
1 1 0 1 0 1 0 · · · 1 0 1 1 0
0 0 0 0 0 0 0 · · · 0 0 0 1 1
1 1 0 1 0 1 0 · · · 1 0 1 0 1



.

Then we can compute the inverse of the Cartan matrix and the asymmetry matrix SQ = C ·C−T
to be

C−1 =
1
2
(
E + E11 − 2E21 −

t−1∑
k=1

E2k+2,2k+2 −
2t+1∑
k=2

Ek,k+1 +
2t+1∑
k=2

Ek+1,k

+
t∑

k=1

E2k,2k+2 −
t∑

k=1

E2k+2,2k

)
,

SQ = E11 − E12 −
t∑
l=1

E2l,2l +
t∑
l=1

E2l,2l+1 +
t∑
l=2

E2l−1,2l+1 +
t+1∑
l=1

E2l,1 + E2t+1,2t+2,

that is, the matrices C−1 and SQ have the following shapes

C−1 =
1
2
·



2

−2 1 −1 1
1 1 −1
−1 1 0 −1 1

1 1 −1
−1 1 0 −1 1

1 1 −1
−1 1 0 −1 1

. . .

−1 1 0 −1 1
1 1 −1
−1 1 1



,

SQ =



1 −1

1 −1 1 0
0 0 0 0 1
1 0 0 −1 1 0
0 0 0 0 1
1 0 0 −1 1 0
0 0 0 0 1
1 0 0 −1 1 0
...

. . .

1 −1 1 0
0 0 0 1
1 0 0 0



.
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First we verify the formula for C−1:

C · C−1 =
1
2

(
E + E11 − 2E21 −

t−1∑
k=1

E2k+2,2k+2 −
2t+1∑
k=2

Ek,k+1 +
2t+1∑
k=2

Ek+1,k +
t∑

k=1

E2k,2k+2

−
t∑

k=1

E2k+2,2k + 2
t+1∑
k=1

E2k,1 +
2t+1∑
k=2

Ek,k+1 −
t−1∑
k=1

E2k+1,2k+2 −
2t∑
k=2

Ek,k+2 +
2t+1∑
k=2

Ekk

+
t∑

k=2

E2k−1,2k+2 −
t∑

k=1

E2k+1,2k +
t∑

k=2

E2k−1,2k+1 −
t∑

k=2

E2k−1,2k+2 +
t∑

k=2

E2k−1,2k

+
t+1∑
k=2

k−1∑
l=1

E2k,2k−2l − 2
t+1∑
k=2

E2k,1 −
t+1∑
k=3

k−2∑
l=1

E2k,2k−2l −
t+1∑
k=2

k−1∑
l=1

E2k,2k+1−2l

+
t+1∑
k=3

k−2∑
l=1

E2k,2k−1−2l +
(t+1∑
k=2

E2k,2k +
t+1∑
k=3

k−2∑
l=1

E2k,2k−2l

)
−

t+1∑
k=3

k−2∑
l=1

E2k,2k−2−2l

)
The six double sums reduce to

t∑
k=1

E2k+2,2k −
t+1∑
k=2

E2k,2k−1.

Simplifying again gives

C · C−1 =
1
2

(
2E +

2t+1∑
k=2

Ek+1,k −
t∑

k=1

E2k+2,2k −
t∑

k=1

E2k+1,2k +
t∑

k=1

E2k+2,2k −
t+1∑
k=2

E2k,2k−1

)
= E .

Now we prove the formula for SQ:

C · C−T =
(
E +

t+1∑
i=1

E2i,1 +
2t+1∑
i=2

Ei,i+1 +
t∑
i=2

E2i−1,2i+1 +
t+1∑
i=2

i−1∑
j=1

E2i,2i−2j

)
· 1

2

(
E + E11 − 2E12

−
t−1∑
k=1

E2k+2,2k+2 −
2t+1∑
k=2

Ek+1,k +
2t+1∑
k=2

Ek,k+1 +
t∑

k=1

E2k+2,2k −
t∑

k=1

E2k,2k+2

)
=

1
2

(
E + E11 − 2E12 −

t−1∑
k=1

E2k+2,2k+2 −
2t+1∑
k=2

Ek+1,k +
2t+1∑
k=2

Ek,k+1 +
t∑

k=1

E2k+2,2k

−
t∑

k=1

E2k,2k+2 + 2
t+1∑
k=1

E2k,1 − 2
t+1∑
k=1

E2k,2 +
2t+1∑
k=2

Ek,k+1 −
t−1∑
k=1

E2k+1,2k+2 −
2t+1∑
k=2

Ekk

+
2t∑
k=2

Ek,k+2 +
t∑

k=1

E2k+1,2k −
t∑

k=2

E2k−1,2k+2 +
t∑

k=2

E2k−1,2k+1 −
t∑

k=2

E2k−1,2k

+
t∑

k=2

E2k−1,2k+2 +
t+1∑
k=2

k−1∑
l=1

E2k,2k−2l −
t+1∑
k=3

k−2∑
l=1

E2k,2k−2l −
t+1∑
k=3

k−2∑
l=1

E2k,2k−1−2l

+
t+1∑
k=2

k−1∑
l=1

E2k,2k+1−2l +
t+1∑
k=3

k−2∑
l=1

E2k,2k−2−2l −
(t+1∑
k=2

E2k,2k +
t+1∑
k=3

k−2∑
l=1

E2k,2k−2l

))
The six double sums reduce to

2
t+1∑
k=2

E2k,2 − E42 −
t∑

k=2

E2k+2,2k +
t+1∑
k=2

E2k,2k−1.
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Simplifying again gives

C · C−T =
1
2

(
E11 + E2t+2,2t+2 + E11 − 2E12 − 2

t∑
k=2

E2k,2k − E2t+2,2t+2 −
t+1∑
k=2

E2k,2k−1

+ 2
2t+1∑
k=2

Ek,k+1 +
t∑

k=1

E2k+2,2k + 2
t∑

k=2

E2k−1,2k+1 + 2
t+1∑
k=1

E2k,1 − 2
t+1∑
k=1

E2k,2

− 2
t∑

k=2

E2k−1,2k + 2
t+1∑
k=2

E2k,2 −
t∑

k=2

E2k+2,2k +
t+1∑
k=2

E2k,2k−1 − E42

)
=

1
2

(
2E11 − 2E12 − 2

t∑
k=2

E2k,2k + 2
t∑

k=1

E2k,2k+1 + 2E2t+1,2t+2 + 2
t∑

k=2

E2k−1,2k+1

+ 2
t+1∑
k=1

E2k,1 − 2E22

)
= SQ.

Finally we compute the characteristic polynomial χSQ(x):

χSQ(x) = det(xE − SQ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x− 1) 1
−1 (x + 1) −1 0
0 0 x 0 −1
−1 0 0 (x + 1) −1 0
0 0 x 0 −1
−1 0 0 (x + 1) −1 0
0 0 x 0 −1
−1 0 0 (x + 1) −1 0
0 0 x 0 −1
...

. . .
. . .

. . .

−1 (x + 1) −1 0
0 0 x −1
−1 0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Laplace expansion along every even column of the original matrix, except for the second and the last
one (i.e. along the 4th, 6th, . . . , 2tth column), leads to a determinant of a (t+ 3)× (t+ 3)-matrix

χSQ(x) = (x+ 1)t−1·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(x− 1) 1
−1 (x + 1) −1
0 x −1
0 x −1
0 x −1
0 x −1
...

. . .
. . .

0 x −1
−1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Now we expand along the first column to get

χSQ(x) = (x+ 1)t−1 · (x− 1) ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

(x + 1) −1
x −1

x −1
x −1

. . .
. . .

x −1
x

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (x+ 1)t−1 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
x −1

x −1
x −1

. . .
. . .

x −1
x

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (x+ 1)t−1 · (−1)t+5 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(x + 1) −1

x −1
x −1

. . .
. . .

x −1
x −1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, we have

χSQ(x) = (x+ 1)t−1 ·
(
(x− 1)(x+ 1)xt+1 + xt+1 + (−1)t+5 · (−1)t+1

)
= (x+ 1)t−1 ·

(
(x2 − 1)xt+1 + xt+1 + (−1)2t+6

)
= (x+ 1)t−1 ·

(
xt+1 · (x2 − 1 + 1) + 1

)
= (x+ 1)t−1 ·

(
xt+3 + 1

)
,

which is exactly the formula given in Proposition 5.3.6 in case s = 1.

Case 3) Finally, we compute the formula of χSQ(x) for s ≥ 2 using induction on s (with the two
cases s = 0 and s = 1 as the base of the induction).

To apply Proposition 5.3.3, we need the following notations for the quiver Q

Γ2

v = 2

Γ1

where Γ1 is a quiver of type A2 and Γ2 is a rooted quiver of type A with parameters s − 1 and t.
Additionally, Γ′1 = Γ1\{2} is just a single vertex and Γ′2 = Γ2\{2} is a rooted quiver of type A with
parameters s− 2 and t.
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We compute the Cartan matrices, the asymmetry matrices and their characteristic polynomials
of the cluster-tilted algebras corresponding to the quivers Γ1 and Γ′1 as

CAΓ1
=
(

1 0
1 1

)
,

SΓ1 = CAΓ1
C−TAΓ1

=
(

1 0
1 1

)
·
(

1 −1
0 1

)
=
(

1 −1
1 0

)
,

χSΓ1
(x) =

∣∣∣∣ x− 1 1
−1 x

∣∣∣∣ = x2 − x+ 1,

CAΓ′1
= 1,

SΓ′1 = CAΓ′1
C−TA′Γ1

= 1,

χS′Γ1
(x) = x− 1.

Hence, we get by Proposition 5.3.3

χSQ(x) = χSΓ1
(x) · χSΓ′2

(x) + χSΓ′1
(x) · χSΓ2

(x)− (x− 1) · χSΓ′1
(x) · χSΓ′2

(x)

= (x2 − x+ 1) · χSΓ′2
(x) + (x− 1) · χSΓ2

(x)− (x− 1)2χSΓ′2
(x).

Using the induction hypothesis for Γ2 and Γ′2, we have

χSQ(x) = (x2 − x+ 1)(x+ 1)t−1(xs+t + (−1)s−1) + (x− 1)(x+ 1)t−1(xs+t+1 + (−1)s)

− (x− 1)2(x+ 1)t−1(xs+t + (−1)s−1)

= (x+ 1)t−1
(
(x2 − x+ 1− (x− 1)2)(xs+t + (−1)s−1) + (x− 1)(xs+t+1 + (−1)s)

)
= (x+ 1)t−1

(
x(xs+t + (−1)s−1) + xs+t+2 − xs+t+1 + (−1)sx+ (−1)s+1

)
= (x+ 1)t−1(xs+t+2 + (−1)s+1),

and this proves Proposition 5.3.6 in case s ≥ 2. �

Now we derive another method to determine the characteristic polynomials of the asymmetry
matrices for certain cluster-tilted algebras of type Dn.

Lemma 5.3.7. Let A := AQ be the cluster-tilted algebra of type Dn corresponding to the following
quiver Q

Γ1

Γ′1
v

Γ2

2

3

4

2t− 1

2t

1

where Γ′1 is the skeleton of type I,II,III or IV and Γ′2 = Γ2\{v} is the quiver consisting of the vertices
1, 2, . . . , 2t. Furthermore, let t ≥ 1 be the number of oriented 3-cycles in Γ2. Then the characteristic
polynomial of ΦQ = −CTC−1 is given by

χΦQ(x) = (x− 1)t−1(xt+1 + (−1)t+1) ·
(
χΦΓ1

(x)− (x+ 1)χΦΓ′1
(x)
)

+ χΦΓ′1
(x) · χΦΓ2

(x).



128 5. INVARIANTS OF DERIVED EQUIVALENCE

Proof. We shall use the same methods as Boldt used in the proof of Theorem 5.3.1. We also need
the following notation. For every e ∈ (Γ′1)0, let ae := dimK eAv = ]{paths from vertex v to vertex e}.
Note that dimK vAe = 0 for all e ∈ (Γ′1)0. Similarly, for every e ∈ (Γ′2)0, let be := dimK eAv and
b̃e := dimK vAe. We consider a, b and b̃ as column vectors with entries ae, be and b̃e, respectively,
and write C, C1, C2, C ′1 and C ′2 instead of CA, CAΓ1

, CAΓ2
, CAΓ′1

and CAΓ′2
.

Then the Cartan matrices of AΓ1 and AΓ2 are given by

C1 =

(
C ′1 0
aT 1

)
,

C2 =

(
1 bT

b̃ C ′2

)
,

where the last row and column of C1 and the first row and column of C2 belong to the vertex v.
Moreover, bT = (1, 0, . . . , 0) and b̃T = (0, 1, 0, 1, . . . , 0, 1). We then get the Cartan matrix of A as

C =

 C ′1 0 0
aT 1 bT

b̃aT b̃ C ′2

 .

Note that all paths between Γ′1 and Γ′2 traverse the vertex v. Hence, the lower left block of C is b̃aT

and the upper right block is 0 (since there are no non-zero paths from Γ′1 to Γ′2).
Let M and N be invertible matrices such that N = SMST for some invertible matrix S. Then we

will write M ∼ N . Note that in this case S(−MTM−1)S−1 = −NTN−1, and therefore, −MTM−1

and −NTN−1 have the same characteristic polynomial.
Thus, we have

C1 ∼
(

E −a
0T 1

)(
C ′1 0
aT 1

)(
E 0
−aT 1

)
=

(
C ′1 −a
0T 1

)
=: F1,

C2 ∼
(

1 0T

−b E

)(
1 bT

b̃ C ′2

)(
1 −bT
0 E

)
=

(
1 0T

b̃− b C ′2 − b̃bT

)
=: F2,

C ∼

 E −a 0
0T 1 0T

0 −b E


 C ′1 0 0

aT 1 bT

b̃aT b̃ C ′2


 E 0 0
−aT 1 −bT

0 0 E



=

 C ′1 −a 0
0T 1 0T

0 b̃− b C ′2 − b̃bT

 =: F.

Let G := C ′2− b̃bT with b̃bT =


0
1
0
1 0...
0
1

. We will compute the inverse matrices of F1, F2 and F . For

this, we need to know that C ′1 and G are invertible. Since C ′1 is the Cartan matrix of a cluster-tilted
algebra corresponding to the skeleton Γ′1 of type I, II, III or IV, we have det(C ′1) 6= 0 by Theorem 5.2.1.
We see that the matrix G is invertible by direct calculation, the inverse is given in (5.3.8) below.
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Hence, we can compute F−1
1 , F−1

2 and F−1 to be

F−1
1 =

(
C ′−1

1 C ′−1
1 a

0T 1

)
,

F−1
2 =

(
1 0T

G−1(b− b̃) G−1

)
,

F−1 =

 C ′−1
1 C ′−1

1 a 0
0T 1 0T

0 G−1(b− b̃) G−1

 .

Then Φ1 := ΦΓ1 = −CT1 C−1
1 , Φ2 := ΦΓ2 = −CT2 C−1

2 and ΦQ = −CTC−1 have the same
characteristic polynomials as

−FT1 F−1
1 =

(
Φ′1 Φ′1a

aTC ′−1
1 aTC ′−1

1 a− 1

)
,

−FT2 F−1
2 =

(
(b− b̃)TG−1(b− b̃)− 1 (b− b̃)TG−1

−GTG−1(b− b̃) −GTG−1

)
,

−FTF−1 =

 Φ′1 Φ′1a 0
aTC ′−1

1 (∗) (b− b̃)TG−1

0 −GTG−1(b− b̃) −GTG−1

 ,

where Φ′1 := ΦΓ′1 , Φ′2 := ΦΓ′2 and (∗) = aTC ′−1
1 a− 1 + (b− b̃)TG−1(b− b̃).

Now, let

α := −(x+ 1),

α1 := (x+ 1)− aTC ′−1
1 a,

α2 := (x+ 1)− (b− b̃)TG−1(b− b̃),
such that α1 +α+α2 = x−(∗). Together with Lemma 2.3 in [15] (also stated below as Lemma 5.3.8)
we get

χ−FTF−1(x) =

∣∣∣∣∣ xE − Φ′1 −Φ′1a
−aTC ′−1

1 α1

∣∣∣∣∣ · ∣∣xE +GTG−1
∣∣

+ χΦ′1(x) ·
∣∣∣∣∣ α2 −(b− b̃)TG−1

GTG−1(b− b̃) xE +GTG−1

∣∣∣∣∣
+ α · χΦ′1(x) ·

∣∣xE +GTG−1
∣∣

= χΦ1(x) · χ−GTG−1(x) + χΦ′1(x) · χΦ2(x)− (x+ 1) · χΦ′1(x) · χ−GTG−1(x).

Hence, we need the characteristic polynomial of the matrix −GTG−1 to complete the proof.

The matrices G, G−1 and −GTG−1 are 2t× 2t-matrices and given as follows (compare with the
matrices in Case 2) of the proof of Proposition 5.3.6):

G = E −
t∑
i=1

E2i,1 +
t∑
i=2

i−1∑
j=1

E2i,2j +
2t−1∑
i=1

Ei,i+1 +
t−1∑
i=1

E2i−1,2i+1,

G−1 =
1
2

(
2t−1∑
i=1

Ei+1,i +
t∑
i=1

E2i−1,2i−1 +
t−1∑
i=1

E2i,2i+2 + E2t,2t −
2t−1∑
i=1

Ei,i+1 −
t−1∑
i=1

E2i+2,2i

)
,

−GTG−1 = E1,2t −
t−1∑
i=1

E2i,2t +
t−1∑
i=1

E2i,2i −
t∑
i=1

E2i,2i−1 −
t−1∑
i=1

E2i+1,2i−1.
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For t = 1, we get G =
(

1 1
−1 1

)
, G−1 =

1
2

(
1 −1
1 1

)
and −GTG−1 =

(
0 1
−1 0

)
. In

this case we compute the characteristic polynomial to be χ−GTG−1(x) = x2 + 1 which is exactly
(x− 1)t−1(xt+1 + (−1)t+1) for t = 1.

Now let t > 1. Then the matrices G, G−1 and −GTG−1 have the following shapes:

G =



1 1 1 0 · · · 0

−1 1 1 0
0 0 1 1 1

−1 1 0 1 1 0
0 0 0 0 1 1 1

−1 1 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1

−1 1 0 1 0 1 0 1 1 0
...

...
. . .

0 0 0 0 0 0 0 · · · 0 1 1 1
−1 1 0 1 0 1 0 · · · 1 0 1 1 0

0 0 0 0 0 0 0 · · · 0 0 0 1 1
−1 1 0 1 0 1 0 · · · 1 0 1 0 1



,

G−1 =
1
2
·



1 −1

1 0 −1 1
0 1 1 −1

−1 1 0 −1 1
1 1 −1
−1 1 0 −1 1

1 1 −1
−1 1 0 −1 1

...
. . .

−1 1 0 −1 1
1 1 −1

0 −1 1 1



,(5.3.8)

−GTG−1 =



0 0 1
−1 1 −1
−1 0 0

−1 1 −1
−1 0 0

−1 1 −1
−1 0 0

. . .
...

−1 1 −1
−1 0 0

−1 0



.

We compute the characteristic polynomial of −GTG−1 to be
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χ−GTG−1(x) =
∣∣xE +GTG−1

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 −1
1 x− 1 1
1 0 x 0

1 x− 1 1
1 0 x 0

1 x− 1 1
1 0 x 0

. . .
. . .

...

1 x− 1 1
1 0 x 0

1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We expand along every even column of the original matrix, except for the last one. Thus, we expand
(t− 1)-times and get

χ−GTG−1(x) = (x− 1)t−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1
1 x 0

1 x 0
1 x 0

. . .
. . .

...

1 x 0
1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Now, we expand along the first row and get the following two t× t-matrices:

χ−GTG−1(x) = (x− 1)t−1
(
x ·

∣∣∣∣∣∣∣∣∣∣∣∣

x
1 x

1 x
. . .

. . .

1 x
1 x

∣∣∣∣∣∣∣∣∣∣∣∣
+ (−1)t+3 ·

∣∣∣∣∣∣∣∣∣∣∣∣

1 x
1 x

1 x
. . .

. . .

1 x
1

∣∣∣∣∣∣∣∣∣∣∣∣
)

= (x− 1)t−1(xt+1 + (−1)t+1).

Finally, we obtain that the characteristic polynomial of the asymmetry matrix is

χ−FTF−1(x) = χΦ1(x) · (x− 1)t−1(xt+1 + (−1)t+1) + χΦ′1(x) · χΦ2(x)

−(x+ 1) · χΦ′1(x) · (x− 1)t−1(xt+1 + (−1)t+1)

= (x− 1)t−1(xt+1 + (−1)t+1) ·
(
χΦ1(x)− (x+ 1)χΦ′1(x)

)
+ χΦ′1(x) · χΦ2(x),

which is exactly the formula claimed in Lemma 5.3.7. �

Lemma 5.3.8 (Boldt [15]). Let R be a commutative ring, and F ∈Mn(R) a matrix of the following
form

F =

 F1 f1 0
gT1 α1 + α+ α2 gT2
0 f2 F2

 ,

where F1 ∈Mn1(R), F2 ∈Mn2(R), n1 + n2 + 1 = n, α, α1, α2 ∈ R, f1, g1 ∈ Rn1 and f2, g2 ∈ Rn2 .
Then

|F | =
∣∣∣∣∣ F1 f1

gT1 α1

∣∣∣∣∣ |F2|+ |F1|
∣∣∣∣∣ α2 gT2
f2 F2

∣∣∣∣∣+ α|F1||F2|.

Proof. Expand the determinant of F along the (n1 + 1)th column. Then expand

∣∣∣∣∣ F1 f1

gT1 α1

∣∣∣∣∣
along the last column and

∣∣∣∣∣ α2 gT2
f2 F2

∣∣∣∣∣ along the first column. �
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Corollary 5.3.9. Let A := AQ be the same cluster-tilted algebra of type Dn as in Lemma 5.3.7 and
t ≥ 1. Then the characteristic polynomial of the asymmetry matrix SQ is given by

χSQ(x) = (x+ 1)t−1(xt+1 + 1) ·
(
χSΓ1

(x)− (x− 1) · χSΓ′1
(x)
)

+ χSΓ′1
(x) · χSΓ2

(x).

Proof. Recall that by (5.3.1) in the proof of Proposition 5.3.3 we have

χΦQ(x) = (−1)nχSQ(−x),

or equivalently,

χSQ(x) = (−1)nχΦQ(−x),

where n is the number of vertices of Q.
Now, suppose that the number of vertices of Γ1 is k and thus, the number of vertices of Γ2 is

n− k + 1 = 2t+ 1. Hence, the number of vertices of Γ′1 is k − 1 and the number of vertices of Γ′2 is
n− k = 2t. Note that n = 2t+ k. We can rewrite the formula in Lemma 5.3.7 as follows:

χSQ(x) = (−1)nχΦQ(−x)

= (−1)n
(

(−x− 1)t−1((−x)t+1 + (−1)t+1) ·
(
χΦΓ1

(−x)− (−x+ 1)χΦΓ′1
(−x)

)
+ χΦΓ′1

(−x)χΦΓ2
(−x)

)
= (−1)n

(
(−1)t−1(x+ 1)t−1(−1)t+1(xt+1 + 1)

(
(−1)kχSΓ1

(x) + (x− 1)(−1)k−1χSΓ′1
(x)
)

+ (−1)k−1χSΓ′1
(x)(−1)n−k+1χSΓ2

(x)
)

= (−1)n
(

(x+ 1)t−1(xt+1 + 1)(−1)k
(
χSΓ1

(x)− (x− 1)χSΓ′1
(x)
)

+ (−1)nχSΓ′1
(x)χSΓ2

(x)
)

= (−1)n+k(x+ 1)t−1(xt+1 + 1)
(
χSΓ1

(x)− (x− 1)χSΓ′1
(x)
)

+ χSΓ′1
(x)χSΓ2

(x).

Since n+ k = 2t+ 2k, we get the desired formula

χSQ(x) = (x+ 1)t−1(xt+1 + 1)
(
χSΓ1

(x)− (x− 1)χSΓ′1
(x)
)

+ χSΓ′1
(x)χSΓ2

(x).

�

5.3.2. Polynomials for type Dn. We derive the characteristic polynomials of the asymmetry
matrices for cluster-tilted algebras of types I, II and III of Dynkin type Dn and for certain cases
of type IV. Combining this with Theorem 5.2.1, we get the corresponding associated polynomials.
Using these it is possible to distinguish several further standard forms of Theorem 4.3.9 up to derived
equivalence.

Note that these associated polynomials are not a complete list of all the associated polynomials
of type Dn. However, up to D14, the the full list of associated polynomials can be obtained by direct
computation. This, together with Theorem 4.3.9, gives a complete derived equivalence classification
up to D14 (see [13, Section 2.3]).

Proposition 5.3.10. Consider a cluster-tilted algebra of type Dn with quiver Q of type I and param-
eters as defined in Section 4.1. Then

χSQ(x) = (x+ 1)t(x− 1)
(
xs+t+2 + (−1)s

)
where s = s(Q′) and t = t(Q′).

Proof. We only have to compute the polynomial for t = 0 and s ≥ 0 since a quiver of type I
with parameters (s, t + 1) for some s, t ≥ 0 is equivalent by good mutations to one of type II with
parameters (s+1, t, 0, 0) (see Lemma 4.2.38 (c)). Thus, for t ≥ 1, we can consider a quiver of type II.

If s = 0, we get a quiver of type A3. Thus, let s ≥ 1. The quiver of a cluster-tilted algebra of
type I with t = 0 looks as follows (up to sink/source equivalence)
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1

2

3 4 s+ 2 s+ 3

.

We can use the formula given in Proposition 5.3.3 for v = 3 since there are no relations in this
cluster-tilted algebra. Let Γ1 be the quiver consisting of the vertex set {1, 2, 3} and the corresponding
incident arrows. Thus, Γ′1 = Γ1\{3} consists of just two single vertices. Let Γ2 be the linearly
oriented type A quiver consisting of the vertex set {3, . . . , s + 3} and let Γ′2 = Γ2\{3}. Thus, using
Proposition 5.3.6, we get

χSΓ1
(x) =

x4 − 1
x+ 1

,

χSΓ2
(x) =

xs+2 + (−1)s+1

x+ 1
,

χSΓ′2
(x) =

xs+1 + (−1)s

x+ 1
.

We also have

χSΓ′1
(x) = (x− 1)2.

Hence, using Proposition 5.3.3, the polynomial can be computed as

χSQ(x) = χSΓ1
(x) · χSΓ′2

(x) + χSΓ′1
(x) · χSΓ2

(x)− (x− 1) · χSΓ′1
(x) · χSΓ′2

(x)

=
x4 − 1
x+ 1

· x
s+1 + (−1)s

x+ 1
+ (x− 1)2 · x

s+2 + (−1)s+1

x+ 1

−(x− 1) · (x− 1)2 · x
s+1 + (−1)s

x+ 1

=
xs+1 + (−1)s

x+ 1
(
x3 − x2 + x− 1− (x− 1)3

)
+ (x− 1)2 · x

s+2 + (−1)s+1

x+ 1

=
xs+1 + (−1)s

x+ 1
(
2x(x− 1)

)
+ (x− 1)2 · x

s+2 + (−1)s+1

x+ 1

=
x− 1
x+ 1

(
2x(xs+1 + (−1)s) + (x− 1)(xs+2 + (−1)s+1)

)
=

x− 1
x+ 1

(
xs+3 + xs+2 + (−1)sx+ (−1)s

)
= (x− 1)(xs+2 + (−1)s),

which is exactly the formula given in Proposition 5.3.10 in case t = 0. �

Proposition 5.3.11. Consider a cluster-tilted algebra of type Dn with quiver Q of type II or type
III, and parameters as defined in Section 4.1. Then

χSQ(x) = (x+ 1)t+1(x− 1)
(
xs+t+2 + (−1)s+1

)
where s = s(Q′) + s(Q′′) and t = t(Q′) + t(Q′′).

Proof.
Type II: Let Q be a quiver of type II. Using the derived equivalence classification of cluster-tilted
algebras of type A (see [23, Theorem 5.1] or Theorem 4.2.18) and the fact that we can move the
rooted quivers of type A in type II from side to side (see II.2 and II.3 in Tables 4.3 and 4.6), we can
assume that Q has the following shape
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4 5

3

1

2
s+ 3 s+ 4 s+ 6

s+ 5 2t+ s+ 3

2t+ s+ 4

since by Proposition 5.1.2 the characteristic polynomial of the asymmetry matrix SQ is invariant
under derived equivalence.

Case 1) Let s > 1. We can use the formula given in Proposition 5.3.3 since, with vertex v = 5,
the ideal I is v-separated. Let Γ1 be the quiver consisting of the vertex set {1, . . . , 5} and the
corresponding incident arrows. Thus, Γ′1 = Γ1\{5} is the quiver of the skeleton of type II. Let Γ2 be
the rooted quiver of type A consisting of the vertex set {5, . . . , 2t+ s+ 4} and thus, Γ′2 = Γ2\{5} is
a rooted quiver of type A with parameters s− 2 and t. Thus, with Proposition 5.3.6, we get

χSΓ2
(x) = (x+ 1)t−1(xs+t+1 + (−1)s),

χSΓ′2
(x) = (x+ 1)t−1(xs+t + (−1)s−1).

Since the quivers of Γ1 and Γ′1 are small, we can compute their asymmetry matrices and the corre-
sponding characteristic polynomials by hand to get

χSΓ′1
(x) = (x+ 1)(x− 1)(x2 − 1),

χSΓ1
(x) = (x+ 1)(x− 1)(x3 + 1).

Using Proposition 5.3.3, we obtain the following expression for the polynomial:

χSQ(x) = χSΓ1
(x) · χSΓ′2

(x) + χSΓ′1
(x) · χSΓ2

(x)− (x− 1) · χSΓ′1
(x) · χSΓ′2

(x)

= (x+ 1)(x− 1)(x3 + 1)(x+ 1)t−1(xs+t + (−1)s−1)

+ (x+ 1)(x− 1)(x2 − 1)(x+ 1)t−1(xs+t+1 + (−1)s)

− (x− 1)(x+ 1)(x− 1)(x2 − 1)(x+ 1)t−1(xs+t + (−1)s−1)

= (x+ 1)t(x− 1)
(

2xs+t+3 + (−1)s−1x3 + xs+t + 2(−1)s−1 + (−1)sx2 − xs+t+1

− (x+ 1)(xs+t+2 + (−1)s−1x2 − xs+t + (−1)s)
)

= (x+ 1)t(x− 1)
(
xs+t+3 + xs+t+2 + (−1)s+1x+ (−1)s+1

)
= (x+ 1)t+1(x− 1)(xs+t+2 + (−1)s+1).

This is exactly the formula given in Proposition 5.3.11 in case s > 1 (i.e. Proposition 5.3.11 is proven
for type II in this case).

Case 2) Let s = 1. If t = 0, we can compute the characteristic polynomial χSQ(x) to be
χSQ(x) = (x + 1)(x − 1)(x3 + 1) which is exactly the formula given in Proposition 5.3.11 in case
s = 1, t = 0. Thus, let t > 0. We can use the formula given in Corollary 5.3.9. Let Γ1 be the quiver
consisting of the vertex set {1, . . . , 5} and the corresponding incident arrows. Thus, Γ′1 = Γ1\{5}
is the quiver of the skeleton of type II. Let Γ2 be the rooted quiver of type A consisting of only t
oriented 3-cycles. As in Case 1) we have

χSΓ1
(x) = (x+ 1)(x− 1)(x3 + 1),

χSΓ′1
(x) = (x+ 1)(x− 1)(x2 − 1),

χSΓ2
(x) = (x+ 1)t−1(xt+2 − 1).
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Using Corollary 5.3.9, the polynomial can be computed to be

χSQ(x) = (x+ 1)t−1(xt+1 + 1) ·
(
χSΓ1

(x)− (x− 1) · χSΓ′1
(x)
)

+ χSΓ′1
(x) · χSΓ2

(x)

= (x+ 1)t−1(xt+1 + 1)
(

(x+ 1)(x− 1)(x3 + 1)− (x− 1)(x+ 1)(x− 1)(x2 − 1)
)

+ (x+ 1)(x− 1)(x2 − 1)(x+ 1)t−1(xt+2 − 1)

= (x+ 1)t(x− 1)
(

(xt+1 + 1)
(
(x3 + 1)− (x− 1)(x2 − 1)

)
+ (x2 − 1)(xt+2 − 1)

)
= (x+ 1)t(x− 1)

(
(xt+1 + 1)(x2 + x) + xt+4 − xt+2 − x2 + 1

)
= (x+ 1)t(x− 1)

(
xt+4 + xt+3 + x+ 1

)
= (x+ 1)t+1(x− 1)(xt+3 + 1),

which is exactly the formula given in Proposition 5.3.11 in case s = 1.

Case 3) Now we assume that s = 0. Up to derived equivalence, the quiver of the corresponding
cluster-tilted algebra looks as follows

4

3

1

2

5

6 2t+ 4

2t+ 3

2t+ 2

.

We denote the rooted quiver of type A which begins with vertex 4 and ends with vertex 2t + 4 by
A := A2t+1. We compute the Cartan matrix, its inverse and the corresponding asymmetry matrix of
the cluster-tilted algebra corresponding to Q to be the following:

C =



1 0 0 1 1
1 1 1 1 1 0
0 0 1 1 1

0 1 0
0 0 0
0 1 0
...

...
... CA

0 0 0
0 1 0


,

C−1 =
1
2
·



1 1 −1 −1
−1 1 −1 1 0
−1 1 1 −1

1 −1 1
0 0 0
...

...
... 2C−1

A

0 0 0


−1

2
E44,

SQ =



0 0 −1 0 1
0 0 0 0 1 0
−1 0 0 0 1

0 1 0
0 0 0
0 1 0
...

...
... (∗)

0 0 0
0 1 0


, (∗) = SA −

t+1∑
i=1

E2i−1,1 = SA−



1
0
1
... 0
0
1


,
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where CA is the Cartan matrix of A as in (5.3.4), C−1
A is the inverse as in (5.3.5) and SA is the

asymmetry matrix as in (5.3.6) (see Case 1) in the proof of Proposition 5.3.6).
Hence, SQ is a (2t+4)×(2t+4)-matrix and the characteristic polynomial χSQ(x) has the following

form:

χSQ(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 1 0 −1
0 x 0 0 −1 0
1 0 x 0 −1

0 −1 0
0 0 0
0 −1 0

...
...

... xE − SA +


1
0
1
... 0

0
1


0 0 0
0 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

First, we exchange column 2 and column 4 and afterwards, we add the (new) second column to the
(new) fourth column to get

χSQ(x) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 1 0 −1
0 0 0 x −1 0
1 0 x 0 −1

0 (x + 1) 0
0 0 0
...

...
... xE − SA

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Laplace expansion along the second column leads to

χSQ(x) = −(x+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 −1
0 0 x −1 0
1 x 0 −1

xE − SA

0 without
1st row

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now, we add the first column to the fourth column to get

χSQ(x) = −(x+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣

x 1 0 (x− 1)
0 0 x −1 0
1 x 0 0

xE − SA

0 without
1st row

∣∣∣∣∣∣∣∣∣∣∣∣
.

We expand along the third row to get

χSQ(x) = −(x+ 1)

∣∣∣∣∣∣∣∣∣∣∣

1 0 (x− 1) 0 · · · 0

0 x −1 0 · · · 0
0 xE − SA
... without

0 1st row

∣∣∣∣∣∣∣∣∣∣∣
+x(x+ 1)

∣∣∣∣∣∣∣∣∣∣∣

x 0 (x− 1) 0 · · · 0

0 x −1 0 · · · 0
0 xE − SA
... without

0 1st row

∣∣∣∣∣∣∣∣∣∣∣
.

Since the lower right hand matrix is then xE − SA (see (5.3.7) in Case 1) of the proof of Proposi-
tion 5.3.6), we can compute the characteristic polynomial as follows:

χSQ(x) = −(x+ 1)χSA(x) + x2(x+ 1)χSA(x)

= (x+ 1)(x2 − 1)χSA(x)
= (x+ 1)2(x− 1) · (x+ 1)t−1(xt+2 − 1)
= (x+ 1)t+1(x− 1)(xt+2 − 1).
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This is exactly the formula given in Proposition 5.3.11 in case s = 0. Hence, Proposition 5.3.11 is
proven for type II.

Type III: Let Q be a quiver of type III. Using the derived equivalence classification of cluster-tilted
algebras of type A (see [23, Theorem 5.1] or Theorem 4.2.18) and Lemma 4.3.10 (b), we can assume
that Q has the following shape

4 5

3

1

2
s+ 3 s+ 4 s+ 6

s+ 5 2t+ s+ 3

2t+ s+ 4

since by Proposition 5.1.2 the characteristic polynomial of the asymmetry matrix SQ is invariant
under derived equivalence.

Case 1) Let s > 1. We can use the formula given in Proposition 5.3.3 since, with vertex v = 5,
the ideal I is v-separated. Let Γ1 be the quiver consisting of the vertex set {1, . . . , 5} and the
corresponding incident arrows. Thus, Γ′1 = Γ1\{5} is the quiver of the skeleton of type III. Let Γ2

be the rooted quiver of type A consisting of the vertex set {5, . . . , 2t+ s+ 4} and thus, Γ′2 = Γ2\{5}
is a rooted quiver of type A with parameters s− 2 and t. Thus, with Proposition 5.3.6, we get

χSΓ2
(x) = (x+ 1)t−1(xs+t+1 + (−1)s),

χSΓ′2
(x) = (x+ 1)t−1(xs+t + (−1)s−1).

Since the quivers of Γ1 and Γ′1 are small, we can compute their asymmetry matrices and the corre-
sponding characteristic polynomials by hand to get

χSΓ′1
(x) = (x+ 1)(x− 1)(x2 − 1),

χSΓ1
(x) = (x+ 1)(x− 1)(x3 + 1).

These are indeed the same polynomials as in Case 1) of type II. Hence, the computations are the
same as the computations in type II.

Case 2) Let s = 1. If t = 0, we can compute the characteristic polynomial χSQ(x) to be
χSQ(x) = (x + 1)(x − 1)(x3 + 1) which is exactly the formula given in Proposition 5.3.11 in case
s = 1, t = 0. Thus, let t > 0. We can use the formula given in Corollary 5.3.9. Let Γ1 be the quiver
consisting of the vertex set {1, . . . , 5} and the corresponding incident arrows. Thus, Γ′1 = Γ1\{5}
is the quiver of the skeleton of type III. Let Γ2 be the rooted quiver of type A consisting of only t
oriented 3-cycles. As in Case 1) we have

χSΓ1
(x) = (x+ 1)(x− 1)(x3 + 1),

χSΓ′1
(x) = (x+ 1)(x− 1)(x2 − 1),

χSΓ2
(x) = (x+ 1)t−1(xt+2 − 1),

and hence, the computations are the same as in type II.

Case 3) Now we assume that s = 0. Up to derived equivalence, the quiver of the corresponding
cluster-tilted algebra looks as follows



138 5. INVARIANTS OF DERIVED EQUIVALENCE

4

3

1

2

5

6 2t+ 4

2t+ 3

2t+ 2

.

We denote the rooted quiver of type A which begins with vertex 4 and ends with vertex 2t + 4 by
A := A2t+1. We compute the Cartan matrix, its inverse and the corresponding asymmetry matrix of
the cluster-tilted algebra corresponding to Q to be the following:

C =



1 1 1 0 0
0 1 1 1 1 0
1 0 1 1 1

1 1 0
0 0 0
1 1 0
...

...
... CA

0 0 0
1 1 0


,

C−1 =
1
3
·



1 −2 1 1
1 1 −2 1 0
1 1 1 −2

−2 1 1
0 0 0
...

...
... 3C−1

A

0 0 0


−2

3
E44,

SQ =



0 0 1 0 0
0 0 0 0 1 0
1 0 0 −1 1

0 1 0
0 0 0
0 1 0
...

...
... (∗)

0 0 0
0 1 0


, (∗) = SA −

t+1∑
i=1

E2i−1,1 = SA−



1
0
1
... 0
0
1


,

where CA is the Cartan matrix of A as in (5.3.4), C−1
A is the inverse as in (5.3.5) and SA is the

asymmetry matrix as in (5.3.6) (see Case 1) in the proof of Proposition 5.3.6).
We leave it to the reader to compute the characteristic polynomial of SQ since this computation

is similar to the computation in Case 3) of type II. �

Proposition 5.3.12. Consider a cluster-tilted algebra of type Dn with quiver Q of type IV and
parameters as defined in Section 4.1.

(a) If Q is an oriented cycle of length n without spikes then

χSQ(x) =

{
xn − 1, if n is odd,(
x
n
2 − 1

)2
, if n is even.

(b) If Q has parameter sequence
(
(1, s, t), (1, 0, 0), . . . , (1, 0, 0)

)
of length b ≥ 3 as in the picture

below
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2

13

4 b

Q′

then
χSQ(x) = (x+ 1)t(xb − 1)

(
xs+t+b + (−1)s+1

)
.

(c) If Q has parameters
(
(3, s, t)

)
as in the picture below

Q′

then

χSQ(x) = (x+ 1)t−1(x− 1)
(
xs+t+4 + 2 · xs+t+3 + (−1)s−1 · 2x+ (−1)s−1

)
.

By applying the Propositions 5.1.2, 5.3.11 and 5.3.12 (c) we immediately obtain the following.

Corollary 5.3.13. A cluster-tilted algebra of type II is not derived equivalent to a cluster-tilted algebra
of type IV with parameters

(
(3, s, t)

)
, and s, t not both zero.

Proof of Proposition 5.3.12. (a) Let Q be an oriented n-cycle without spikes. We number
the vertices in consecutive order along the cycle. Then we compute the Cartan matrix, its inverse
and the corresponding asymmetry matrix of the cluster-tilted algebra corresponding to Q as follows:

C =
n∑
i=1

n∑
j=1

Eij −
n∑
i=2

Ei,i−1 − E1,n,

C−1 =
1

n− 1

( n∑
i=1

n∑
j=1

Eij − (n− 1)
n−1∑
i=1

Ei,i+1 − (n− 1)En,1
)
,

SQ =
n∑
i=3

Ei,i−2 + E1,n−1 + E2,n,

that is,

C =



1 1 1 · · · 1 1 0
0 1 1 · · · 1 1 1
1 0 1 · · · 1 1 1
...

...
...

...
...

...

1 1 1 · · · 0 1 1
1 1 1 · · · 1 0 1


,

C−1 =
1

n− 1


1 −(n− 2) 1 1 · · · 1 1
1 1 −(n− 2) 1 · · · 1 1
...

...
...

...
...

...

1 1 1 1 · · · 1 −(n− 2)
−(n− 2) 1 1 1 · · · 1 1

,
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SQ =



0 0 0 · · · 0 1 0
0 0 0 · · · 0 0 1
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

...
...

...

0 0 0 · · · 1 0 0


.

Hence, SQ is a n× n-matrix and the characteristic polynomial χSQ(x) has the following shape:

χSQ(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 · · · 0 0 −1 0
0 x 0 · · · 0 0 0 −1
−1 0 x · · · 0 0 0 0
0 −1 0 · · · 0 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · −1 0 x 0
0 0 0 · · · 0 −1 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The matrix xE − SQ is a circulant matrix as in Lemma 5.3.4 with entries c0 = x, cn−2 = −1 and
cl = 0 for all l 6= 0, n− 2.

Using Equation (5.3.3) of Lemma 5.3.4 we get the characteristic polynomial χSQ(x) as follows:

χSQ(x) =
n−1∏
j=0

(x− ω2
j )

=
n−1∏
j=0

(x− ω2j)

= (x− 1)(x− ω2)(x− ω4) · · · (x− ω2(n−1)),

where ω := ω1 = e
2πi
n . Since

ord(ω2) =
ord(ω)

gcd(2, ord(ω))
=

{
n, if n is odd
n
2 , if n is even

,

we get the desired polynomials

χSQ(x) =

{
xn − 1, if n is odd
(x

n
2 − 1)2, if n is even

.

(b) Let Q be a quiver of type IV with parameter sequence
(
(1, s, t), (1, 0, 0), . . . , (1, 0, 0)

)
of

length b ≥ 3. Using the derived equivalence classification of cluster-tilted algebras of type A (see [23,
Theorem 5.1] or Theorem 4.2.18), we can assume that Q has the following shape

1

2

3

2b− 1 2b

2b− 5

2b+ 1 2b+ s− 1 2b+ s

2b+ s+ 1 2b+ 2t+ s− 1

2b+ 2t+ s
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since by Proposition 5.1.2 the characteristic polynomial of the asymmetry matrix SQ is invariant
under derived equivalence.

We denote the quiver of the corresponding skeleton consisting of the vertices 1, 2, . . . , 2b by the
symbol ♦. To compute the polynomial of the skeleton we use that the corresponding cluster-tilted
algebra is self-injective. Thus, it is derived equivalent to an oriented 2b-cycle (see Lemma 4.3.6) and
by Proposition 5.3.12 (a), the polynomial is given by

χS♦ = (xb − 1)2.

Indeed, this is exactly the formula given in Proposition 5.3.12 (b) in case s = t = 0, so this case is
proven.

However, we will need the matrices of the skeleton in the other computations for this type. Thus,
the Cartan matrix C♦, its inverse and the corresponding asymmetry matrix are given as follows:

C♦ =
b∑
i=1

b∑
j=1

E2i−1,2j−1 +
b∑
i=1

E2i−1,2i +
b−1∑
i=1

(E2i,2i − E2i,2i+1 + E2i,2i+1)

+E2b,1 + E2b,2 + E2b,2b,

C−1
♦ =

1
2b− 1

( b∑
i=1

b∑
j=1

E2i−1,2j−1 +
b∑
i=1

b∑
j=1

E2i,2j − 2
b∑
i=1

b∑
j=1

(E2i−1,2j + E2i,2j−1)

+(2b− 1)
(
−

b∑
i=1

E2i−1,2i−1 +
2b−1∑
i=1

Ei+1,i + E1,2b −
b−1∑
i=1

E2i+1,2i+1 − E1,2b−1

))
,

S♦ =
2b−2∑
i=1

Ei,i+2 + E2b−1,1 + E2b,2,

that is,

C♦ =



1 1 1 0 1 0 1 · · · 1 0 1 0
0 1 1 1 0 0 0 · · · 0 0 0 0
1 0 1 1 1 0 1 · · · 1 0 1 0
0 0 0 1 1 1 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · 0 1 1 1
1 0 1 0 1 0 1 · · · 1 0 1 1
1 1 0 0 0 0 0 · · · 0 0 0 1


,(5.3.9)

C−1
♦ =

1
2b− 1

·



−2b + 5 −2 4 −2 4 −2 4 · · · 4 −2 −2b + 5 2b− 3
2b− 3 1 −2 1 −2 1 −2 · · · −2 1 −2 1
−2b + 5 2b− 3 −2b + 5 −2 4 −2 4 · · · 4 −2 4 −2
−2 1 2b− 3 1 −2 1 −2 · · · −2 1 −2 1
4 −2 −2b + 5 2b− 3 −2b + 5 −2 4 · · · 4 −2 4 −2
...

...
...

...
...

...
...

...
...

...
...

−2 1 −2 1 −2 1 −2 · · · 2b− 3 1 −2 1
4 −2 4 −2 4 −2 4 · · · −2b + 5 2b− 3 −2b + 5 −2
−2 1 −2 1 −2 1 −2 · · · −2 1 2b− 3 1


,

(5.3.10)

S♦ =



0 0 1 0 0 · · · 0
0 0 0 1 0 · · · 0
0 0 0 0 1 · · · 0
...

...
...

...
...

...

0 0 0 0 0 · · · 1
1 0 0 0 0 · · · 0
0 1 0 0 0 · · · 0


.(5.3.11)
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We leave it to the reader to verify the expressions for the matrices C−1
♦ and S♦ since the computations

are very long, but straightforward.
To compute the polynomials in the cases s > 1 and s = 1, we need the polynomial of the

cluster-tilted algebra corresponding to the quiver in the following case.

Case 1) Let s = 1 and t = 0, that is, Q is a quiver of type IV with parameter sequence
((1, 1, 0), (1, 0, 0), . . . , (1, 0, 0)),

1

2

3

2b− 1 2b

2b− 5

2b+ 1

.

The Cartan matrix, its inverse and the corresponding asymmetry matrix are given as follows:

C =


0

C♦
...
0

1 1 0 · · · 0 1 1

, C−1 =


0

C−1
♦

...
0

0 0 0 · · · 0 −1 1

,

SQ =



0
...

S♦ 0
−1
−1
−1

0 1 0 · · · 0 0 0


.

Note that the last row of C−1 is as shown because the last row of C♦ is the same as the last row of
C (except for the last column).

The asymmetry matrix SQ is a (2b+1)×(2b+1)-matrix and the characteristic polynomial χSQ(x)
has the following shape:

χSQ(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...

xE − S♦ 0
1
1
1

0 −1 0 · · · 0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 −1 0 · · · 0 0 0 0
0 x 0 −1 · · · 0 0 0 0
0 0 x 0 · · · 0 0 0 0
0 0 0 x · · · 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 · · · x 0 −1 1
−1 0 0 0 · · · 0 x 0 1
0 −1 0 0 · · · 0 0 x 1

0 −1 0 0 · · · 0 0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

First, we expand along the last row to get

χSQ(x) = (−1)2b+4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0
0 0 −1 0
0 x 0 −1
0 0 x 0
...

...
...

...
. . .

0 0 0 0 · · · 0 −1 0 0
0 0 0 0 · · · x 0 −1 1
−1 0 0 0 · · · 0 x 0 1
0 0 0 0 · · · 0 0 x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+x · χS♦(x).



5.3. CHARACTERISTIC POLYNOMIALS OF THE ASYMMETRY MATRICES 143

Then we successively expand along every even row of this matrix, except for the (2b − 2)th and the
2bth row (i.e. along the 2nd, 4th, 6th, . . . , (2b−4)th row). Hence, we expand (b−2)-times. This yields
a (b+ 2)× (b+ 2)-matrix

χSQ(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0
0 x −1 0
0 0 x −1
0 0 0 x
...

...
...

...
. . .

0 0 0 0 · · · x −1 0 0
0 0 0 0 · · · 0 0 −1 1
−1 0 0 0 · · · 0 x 0 1
0 0 0 0 · · · 0 0 x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+x · χS♦(x).

Laplace expansion along the bth row then yields the following two (b+ 1)× (b+ 1)-matrices:

χSQ(x) = (−1)2b+2 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0
0 x −1 0
0 0 x −1
0 0 0 x
...

...
...

...
. . .

0 0 0 0 · · · x −1 0
−1 0 0 0 · · · 0 x 1
0 0 0 0 · · · 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (−1)2b+2 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0
0 x −1 0
0 0 x −1
0 0 0 x
...

...
...

...
. . .

0 0 0 0 · · · x −1 0
−1 0 0 0 · · · 0 x 0
0 0 0 0 · · · 0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ x · χS♦(x).

Finally, we expand along the last rows of these two matrices to get two circulant b× b-matrices with
determinant (xb − 1) (see Example 5.3.5). Thus,

χSQ(x) = (xb − 1) + x(xb − 1) + x(xb − 1)2

= (xb − 1)(xb+1 + 1).

This is exactly the formula given in Proposition 5.3.12 (b) in case t = 0, s = 1 (i.e. Proposi-
tion 5.3.12 (b) is proven in this case).

Case 2) If s > 1 we can use the formula given in Proposition 5.3.3 since, with vertex v = 2b+ 1,
the ideal I is v-separated. Let Γ1 be the quiver consisting of the vertex set {1, . . . , 2b + 1}, i.e. Γ1

is a quiver with parameter sequence ((1, 1, 0), (1, 0, 0), . . . , (1, 0, 0)). Thus, Γ′1 = Γ1\{2b + 1} is the
quiver of the skeleton ♦. Let Γ2 be the quiver consisting of the vertex set {2b + 1, . . . , 2b + 2t + s}
and thus, Γ′2 = Γ2\{2b+ 1}. With Proposition 5.3.6 and the computations above we get

χSΓ1
(x) = (xb − 1)(xb+1 + 1),

χSΓ′1
(x) = (xb − 1)2,

χSΓ2
(x) = (x+ 1)t−1(xs+t+1 + (−1)s),

χSΓ′2
(x) = (x+ 1)t−1(xs+t + (−1)s−1).
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Hence, using Proposition 5.3.3, the polynomial can be computed as

χSQ(x) = χSΓ1
(x) · χSΓ′2

(x) + χSΓ′1
(x) · χSΓ2

(x)− (x− 1) · χSΓ′1
(x) · χSΓ′2

(x)

= (xb − 1)(xb+1 + 1)(x+ 1)t−1(xs+t + (−1)s−1)

+ (xb − 1)2(x+ 1)t−1(xs+t+1 + (−1)s)

− (x− 1)(xb − 1)2(x+ 1)t−1(xs+t + (−1)s−1)

= (x+ 1)t−1(xb − 1)
(
xs+t+b+1 + xs+t + (−1)s−1xb+1 + (−1)s−1

)
+ (x+ 1)t−1(xb − 1)

(
xs+t+b+1 − xs+t+1 + (−1)sxb + (−1)s+1

)
+ (x+ 1)t−1(xb − 1)

(
−xs+t+b+1 + xs+t+b + xs+t+1 − xs+t

+ (−1)sxb+1 + (−1)s−1xb + (−1)s+1x+ (−1)s
)

= (x+ 1)t−1(xb − 1)(xs+t+b+1 + xs+t+b + (−1)s+1x+ (−1)s+1)

= (x+ 1)t(xb − 1)(xs+t+b + (−1)s+1),

which is exactly the formula given in Proposition 5.3.12 (b) in case s > 1.

Case 3) Let s = 1. We can assume that t > 0 since the polynomial for the case t = 0 is
χSQ(x) = (xb − 1)(xb+1 + 1) as computed in Case 1).

We can use the formula given in Corollary 5.3.9. Let Γ1 be the quiver consisting of the vertex
set {1, . . . , 2b + 1}. Thus, Γ′1 = Γ1\{2b + 1} is the quiver of the skeleton ♦. Let Γ2 be the quiver
consisting of the vertex set {2b + 1, . . . , 2b + 2t + 1}. With Proposition 5.3.6 and the computations
at the beginning of this part of the proof we get

χSΓ1
(x) = (xb − 1)(xb+1 + 1),

χSΓ′1
(x) = (xb − 1)2,

χSΓ2
(x) = (x+ 1)t−1(xt+2 − 1).

Thus, using Corollary 5.3.9, the polynomial can be computed to be

χSQ(x) = (x+ 1)t−1(xt+1 + 1) ·
(
χSΓ1

(x)− (x− 1) · χSΓ′1
(x)
)

+ χSΓ′1
(x) · χSΓ2

(x)

= (x+ 1)t−1(xt+1 + 1)
(

(xb − 1)(xb+1 + 1)− (x− 1)(xb − 1)2
)

+ (xb − 1)2(x+ 1)t−1(xt+2 − 1)

= (x+ 1)t−1(xb − 1)
(

(xt+1 + 1)
(
(xb+1 + 1)− (x− 1)(xb − 1)

)
+ (xb − 1)(xt+2 − 1)

)
= (x+ 1)t−1(xb − 1)

(
(xt+1 + 1)(xb + x) + xt+b+2 − xb − xt+2 + 1

)
= (x+ 1)t−1(xb − 1)(xt+b+2 + xt+b+1 + x+ 1)

= (x+ 1)t(xb − 1)(xt+b+1 + 1),

which is exactly the formula given in Proposition 5.3.12 (b) in case s = 1.

Case 4) Now we assume that s = 0. Up to derived equivalence, the quiver of the corresponding
cluster-tilted algebra has the form
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1

2

3

2b− 1 2b

2b− 5

2b+ 1

2b+ 2 2b+ 2t

2b+ 2t− 1

.

Let A be the quiver with vertex set {2b+ 1, 2b+ 2, . . . , 2b+ 2t}, i.e.

2b+ 1 2b+ 2 2b+ 2t ,

and corresponding matrices

CA =



1 1 1 0 · · · 0
0 1 1 0
0 0 1 1 1
0 1 0 1 1 0
0 0 0 0 1 1 1
0 1 0 1 0 1 1 0
0 0 0 0 0 0 1 1 1
0 1 0 1 0 1 0 1 1 0
...

...
...

...
...

...
...

. . .

0 0 0 0 0 0 0 · · · 0 1 1 1
0 1 0 1 0 1 0 · · · 1 0 1 1 0
0 0 0 0 0 0 0 · · · 0 0 0 1 1
0 1 0 1 0 1 0 · · · 1 0 1 0 1



,

C−1
A =

1
2
·



2 −2
1 −1 1
1 1 −1
−1 1 0 −1 1

1 1 −1
−1 1 0 −1 1

1 1 −1
−1 1 0 −1 1

. . .

−1 1 0 −1 1
1 1 −1
−1 1 1



,
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SA =



0 0 1
−1 0 1 0
0 0 0 0 1
−1 1 0 −1 1 0
0 0 0 0 0 1
−1 1 0 0 −1 1 0
0 0 0 0 0 1
−1 1 0 0 −1 1 0
...

...
. . .

−1 1 −1 1 0
0 0 0 0 1
−1 1 0 0 0



.

Now we compute the Cartan matrix, its inverse and the corresponding asymmetry matrix of the
cluster-tilted algebra corresponding to Q as the following block matrices:

C =



0
...

C♦ 0
1
1
1

0 0 0 · · · 0 0
1 1 0 · · · 0 1
0 0 0 · · · 0 0
1 1 0 · · · 0 1 CA
...

...
...

...
...

0 0 0 · · · 0 0
1 1 0 · · · 0 1



,

C−1 =



0 0

C−1
♦

...
... 0

0 0
− 1

2
1
2

1
2

− 1
2

0 C−1
A

0
...

0


+

1
2
·(−E2b,2b − E2b+1,2b+1 + E2b+1,2b+2

+E2b+2,2b+1 − E2b+2,2b+2),

SQ =



0
...

S♦ 0
1
1
1

0 0 0 · · · 0
0 1 0 · · · 0
0 0 0 · · · 0
0 1 0 · · · 0 (∗)
...

...
...

...

0 0 0 · · · 0
0 1 0 · · · 0



−(E2b−2,2b + E2b−1,2b + E2b,2b),
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(∗) = SA +
t+1∑
i=1

E2i,1 −
t+1∑
i=1

E2i,2 = SA+



0 0
1 −1
0 0
1 −1
...

... 0
0 0
1 −1


,

where C♦ is the Cartan matrix of the skeleton as in (5.3.9), C−1
♦ is the inverse as in (5.3.10) and S♦

is the asymmetry matrix as in (5.3.11).
Hence, SQ is a (2b + 2t) × (2b + 2t)-matrix and the characteristic polynomial χSQ(x) has the

following shape:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 −1 0 0 0
0 x 0 −1 0 0
0 0 x 0 −1 0
0 0 0 x 0 0
0 0 0 0 x 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · x 0 −1 0 0
0 0 0 0 0 · · · 0 x 0 0 −1
−1 0 0 0 0 · · · 0 0 x 1 −1
0 −1 0 0 0 · · · 0 0 0 (x + 1) −1

0 x 0 −1 0 0
−1 0 (x + 1) −1 0 0
0 0 0 x 0 −1
−1 0 0 0 (x + 1) −1
0 0 0 0 0 x
−1 0 0 0 0 0
...

...
...

...
...

...
. . .

0 0 0 0 0 0 · · · 0 −1 0
−1 0 0 0 0 0 · · · (x + 1) −1 0
0 0 0 0 0 0 · · · 0 x −1
−1 0 0 0 0 0 · · · 0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We expand along every even column in the matrix SA +

t+1∑
i=1

E2i,1 −
t+1∑
i=1

E2i,2, i.e. in the lower

right hand matrix, except for the last one, to get:

χSQ(x) = (x+ 1)t−1·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 −1 0 0 0
0 x 0 −1 0 0
0 0 x 0 −1 0
0 0 0 x 0 0
0 0 0 0 x 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · x 0 −1 0 0
0 0 0 0 0 · · · 0 x 0 0 −1
−1 0 0 0 0 · · · 0 0 x 1 −1
0 −1 0 0 0 · · · 0 0 0 (x + 1) −1

0 x −1 0 0
0 0 x −1 0
0 0 0 x −1
0 0 0 0 x
...

...
...

...
...

. . .

0 0 0 0 0 · · · x −1 0
0 0 0 0 0 · · · 0 x −1
−1 0 0 0 0 · · · 0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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Now, we expand along the last row to get the following two (2b+ t)× (2b+ t)-matrices:

χSQ(x) = (x+ 1)t−1(−1)2b+t+4 ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0 0 0
0 0 −1 0 0 0
0 x 0 −1 0 0
0 0 x 0 −1 0
0 0 0 x 0 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 0 −1 0 0
0 0 0 0 0 · · · x 0 0 −1
−1 0 0 0 0 · · · 0 x 1 −1
0 0 0 0 0 · · · 0 0 (x + 1) −1

x −1 0 0 0
0 x −1 0 0
0 0 x −1 0
0 0 0 x −1
...

...
...

...
...

. . .

0 0 0 0 0 · · · −1 0
0 0 0 0 0 · · · x −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ (x+ 1)t−1x ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 −1 0 0 0
0 x 0 −1 0 0
0 0 x 0 −1 0
0 0 0 x 0 0
0 0 0 0 x 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · x 0 −1 0 0
0 0 0 0 0 · · · 0 x 0 0 −1
−1 0 0 0 0 · · · 0 0 x 1 −1
0 −1 0 0 0 · · · 0 0 0 (x + 1) −1

x −1 0 0
0 x −1 0
0 0 x −1
0 0 0 x
...

...
...

...
. . .

0 0 0 0 · · · x −1
0 0 0 0 · · · 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Finally, we use Lemma 5.3.14 below to get

χSQ(x) = (x+ 1)t−1 ·
(

(−1)t · (x+ 1)(−xb + 1) · (−1)t + x · (x+ 1)(x2b−1 − xb−1) · xt
)

= (x+ 1)t ·
(
−xb + 1 + xt+1(x2b−1 − xb−1)

)
= (x+ 1)t(xb − 1)(xt+b − 1),

which is exactly the formula given in Proposition 5.3.12 (b) in case s = 0. Hence, Proposition 5.3.12 (b)
is proven.

(c) Let Q be a quiver of type IV with parameters ((3, s, t)). Using the derived equivalence
classification of cluster-tilted algebras of type A (see [23, Theorem 5.1] or Theorem 4.2.18), we can
assume that Q has the following shape
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4 5

3

1

2
s+ 3 s+ 4 s+ 6

s+ 5 2t+ s+ 3

2t+ s+ 4

since by Proposition 5.1.2 the characteristic polynomial of the asymmetry matrix SQ is invariant
under derived equivalence.

Case 1) If s > 1 we can use the formula given in Proposition 5.3.3 since, with vertex v = 5,
the ideal I is v-separated. Let Γ1 be the quiver consisting of the vertex set {1, . . . , 5} and the
corresponding incident arrows. Thus, Γ′1 = Γ1\{5} is the quiver of the skeleton ((3, 0, 0)). Let Γ2 be
the quiver consisting of the vertex set {5, . . . , 2t+ s+ 4} and thus, Γ′2 = Γ2\{5} is a rooted quiver of
type A with parameters s− 2 and t. Thus, using Proposition 5.3.6, we get

χSΓ2
(x) = (x+ 1)t−1(xs+t+1 + (−1)s),

χSΓ′2
(x) = (x+ 1)t−1(xs+t + (−1)s−1).

Since the quivers of Γ1 and Γ′1 are small, we can compute their asymmetry matrices and the corre-
sponding characteristic polynomials by hand to get

χSΓ1
(x) = (x− 1)(x4 + x3 − x2 + x+ 1),

χSΓ′1
(x) = (x+ 1)(x− 1)(x2 − 1).

Hence, a straightforward computation using Proposition 5.3.3 yields the polynomial,

χSQ(x) = χSΓ1
(x) · χSΓ′2

(x) + χSΓ′1
(x) · χSΓ2

(x)− (x− 1) · χSΓ′1
(x) · χSΓ′2

(x)

= (x− 1)(x4 + x3 − x2 + x+ 1)(x+ 1)t−1(xs+t + (−1)s−1)

+ (x+ 1)(x− 1)(x2 − 1)(x+ 1)t−1(xs+t+1 + (−1)s)

− (x− 1)(x+ 1)(x− 1)(x2 − 1)(x+ 1)t−1(xs+t + (−1)s−1)

= (x− 1)(x+ 1)t−1
(

(x4 + x3 − x2 + x+ 1)(xs+t + (−1)s−1)

+ (x+ 1)(x2 − 1)(xs+t+1 + (−1)s)− (x2 − 1)2(xs+t + (−1)s−1)
)

= (x− 1)(x+ 1)t−1
(

(x3 + x2 + x)(xs+t + (−1)s−1) + (x3 + x2 − x− 1)(xs+t+1 + (−1)s)
)

= (x− 1)(x+ 1)t−1(xs+t+4 + 2xs+t+3 + (−1)s−12x+ (−1)s−1).

This is exactly the formula given in Proposition 5.3.12 (c) in case s > 1 (i.e. Proposition 5.3.12 (c)
is proven in this case).

Case 2) Let s = 1. If t = 0, the characteristic polynomial is χSQ(x) = (x−1)(x4 +x3−x2 +x+1)
= (x+1)−1(x−1)(x5 +2x4 +2x+1). Thus, let t > 0. We can use the formula given in Corollary 5.3.9.
Let Γ1 be the quiver consisting of the vertex set {1, . . . , 5} and the corresponding incident arrows.
Thus, Γ′1 = Γ1\{5} is the quiver of the skeleton ((3, 0, 0)). Let Γ2 be the rooted quiver of type A
consisting only of t oriented 3-cycles. As in Case 1) we have

χSΓ1
(x) = (x− 1)(x4 + x3 − x2 + x+ 1),

χSΓ′1
(x) = (x+ 1)(x− 1)(x2 − 1),

χSΓ2
(x) = (x+ 1)t−1(xt+2 − 1).
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Hence, using Corollary 5.3.9, we obtain the following expression for the polynomial:

χSQ(x) = (x+ 1)t−1(xt+1 + 1) ·
(
χSΓ1

(x)− (x− 1) · χSΓ′1
(x)
)

+ χSΓ′1
(x) · χSΓ2

(x)

= (x+ 1)t−1(xt+1 + 1)
(

(x− 1)(x4 + x3 − x2 + x+ 1)− (x− 1)(x+ 1)(x− 1)(x2 − 1)
)

+ (x+ 1)(x− 1)(x2 − 1)(x+ 1)t−1(xt+2 − 1)

= (x+ 1)t−1(x− 1)
(

(xt+1 + 1)
(
(x4 + x3 − x2 + x+ 1)− (x2 − 1)2

)
+ (x+ 1)(x2 − 1)(xt+2 − 1)

)
= (x+ 1)t−1(x− 1)

(
(xt+1 + 1)(x3 + x2 + x) + (x3 + x2 − x− 1)(xt+2 − 1)

)
= (x+ 1)t−1(x− 1)(xt+5 + 2xt+4 + 2x+ 1),

which is exactly the formula given in Proposition 5.3.12 (c) in case s = 1.

Case 3) Now we assume that s = 0. Up to derived equivalence, the quiver of the corresponding
cluster-tilted algebra looks as follows

4

3

1

2

5

6 2t+ 4

2t+ 3

2t+ 2

.

We denote the rooted quiver of type A which begins with vertex 4 and ends with vertex 2t + 4 by
A := A2t+1. Computing the Cartan matrix, its inverse and the corresponding asymmetry matrix of
the cluster-tilted algebra corresponding to Q gives

C =



1 1 1 1 1
0 1 1 0 0 0
1 0 1 0 0

0 0 1
0 0 0
0 0 1
...

...
... CA

0 0 0
0 0 1


,

C−1 =
1
2
·



1 −1 1 −1
1 1 −1 −1 0
−1 1 1 1

1 −1 −1
0 0 0
...

...
... 2C−1

A

0 0 0


−1

2
E44,
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SQ =



0 0 1 −1 1
0 0 1 −1 0 0
1 0 0 0 0

0 −1 1
0 0 0
0 −1 1
...

...
... (∗)

0 0 0
0 −1 1


, (∗) = SA −

t+1∑
i=1

E2i−1,1 = SA−



1
0
1
... 0
0
1


,

where CA is the Cartan matrix of A as in (5.3.4), C−1
A is the inverse as in (5.3.5) and SA is the

asymmetry matrix as in (5.3.6) (see Case 1) in the proof of Proposition 5.3.6).
Hence, SQ is a (2t+4)×(2t+4)-matrix and the characteristic polynomial χSQ(x) has the following

form:

χSQ(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 −1 1 −1
0 x −1 1 0 0
−1 0 x 0 0

0 1 −1
0 0 0
0 1 −1

...
...

... xE − SA +


1
0
1
... 0

0
1


0 0 0
0 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

First, we add the third column to the second column. Then we exchange column 3 and column 4
and afterwards, we add the (new) third column to the (new) fourth column to get

χSQ(x) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 1 0 −1
0 (x− 1) 1 0 0 0
−1 x 0 x 0

0 0 (x + 1)
0 0 0
...

...
... xE − SA

0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Laplace expansion along the third column leads to

χSQ(x) = −

∣∣∣∣∣∣∣∣∣
0 (x− 1) 0 0 0
−1 x x 0

0 xE − SA

∣∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣∣
x −1 0 −1 0
−1 x x 0

0 xE − SA

∣∣∣∣∣∣∣∣∣
+(x+ 1)

∣∣∣∣∣∣∣∣∣∣∣

x −1 0 −1
0 (x− 1) 0 0 0
−1 x x 0

xE − SA

0 without
1st row

∣∣∣∣∣∣∣∣∣∣∣
= −(x− 1)χSA(x) + (x2 − 1)χSA(x) + (x+ 1)

∣∣∣∣∣∣∣∣∣∣∣

x −1 0 −1
0 (x− 1) 0 0 0
−1 x x 0

xE − SA

0 without
1st row

∣∣∣∣∣∣∣∣∣∣∣
.

Now, we add the first column to the fourth column to obtain
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χSQ(x) = χSA(x)(−x+ 1 + x2 − 1) + (x+ 1)

∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 (x− 1)
0 (x− 1) 0 0 0
−1 x x −1

xE − SA

0 without
1st row

∣∣∣∣∣∣∣∣∣∣∣∣
.

We expand along the second row to get

χSQ(x) = x(x− 1)χSA(x) + (x+ 1)(x− 1)

∣∣∣∣∣∣∣∣∣∣∣

x 0 (x− 1) 0 · · · 0

−1 x −1 0 · · · 0
0 xE − SA
... without

0 1st row

∣∣∣∣∣∣∣∣∣∣∣
.

Next, we expand along the first column. Note that the lower right hand matrix is xE − SA again
(see (5.3.7) in Case 1) of the proof of Proposition 5.3.6).

χSQ(x) = x(x− 1)χSA(x) + (x+ 1)(x− 1)
(
x · χSA(x) +

∣∣∣∣∣∣∣
0 (x− 1) 0 · · · 0

xE − SA

without
1st row

∣∣∣∣∣∣∣
)

= χSA(x) · x(x− 1)(x+ 2) + (x+ 1)(x− 1)

∣∣∣∣∣∣∣
0 (x− 1) 0 · · · 0

xE − SA

without
1st row

∣∣∣∣∣∣∣
We compute the determinant of the last (2t+ 1)× (2t+ 1)-matrix as follows (compare with the

matrix (5.3.7) in Case 1) of the proof of Proposition 5.3.6):

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 (x− 1) 0
0 x 0 −1
−1 0 (x + 1) −1 0
0 0 x 0 −1
−1 0 0 (x + 1) −1 0
0 0 x 0 −1
−1 0 0 (x + 1) −1 0
0 0 x 0 −1
...

. . .
. . .

. . .

−1 (x + 1) −1 0
0 0 x −1
−1 0 0 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Laplace expansion along every odd column of this matrix, except for the first and the last one (i.e.
along the 3rd, 5th, . . . , (2t− 1)th column), leads to a determinant of a (t+ 2)× (t+ 2)-matrix

(x+ 1)t−1·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 (x− 1)
0 x −1
0 x −1
0 x −1
...

. . .
. . .

0 x −1
−1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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Now, we expand along the first column to get

(x+ 1)t−1(−1)t+4 ·

∣∣∣∣∣∣∣∣∣∣∣∣

(x− 1)
x −1

x −1
x −1

. . .
. . .

x −1

∣∣∣∣∣∣∣∣∣∣∣∣
= (x+ 1)t−1(−1)t+4(−1)t(x− 1)
= (x+ 1)t−1(x− 1).

Altogether we get

χSQ(x) = χSA(x) · x(x− 1)(x+ 2) + (x+ 1)(x− 1)(x+ 1)t−1(x− 1)

= (xt+2 − 1)(x+ 1)t−1(x− 1)(x2 + 2x) + (x2 − 1)(x+ 1)t−1(x− 1)
= (x+ 1)t−1(x− 1)(xt+4 + 2xt+3 − x2 − 2x+ x2 − 1)
= (x+ 1)t−1(x− 1)(xt+4 + 2xt+3 − 2x− 1),

which is exactly the formula given in Proposition 5.3.12 (c) in case s = 0. Thus, Proposition 5.3.12 (c)
is proven. �

Lemma 5.3.14. Let b ≥ 3. The determinants of the following (2b)× (2b)-matrices are given by

(a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0 0
0 0 −1 0 0
0 x 0 −1 0
0 0 x 0 −1
0 0 0 x 0

. . .
...

...
...

...
...

. . .
. . .

0 0 0 0 0 · · · 0 −1 0 0
0 0 0 0 0 · · · x 0 0 −1
−1 0 0 0 0 · · · 0 x 1 −1
0 0 0 0 0 · · · 0 0 (x + 1) −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (x+ 1)(−xb + 1),

(b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 −1 0 0
0 x 0 −1 0
0 0 x 0 −1
0 0 0 x 0
0 0 0 0 x
...

...
...

...
...

. . .

0 0 0 0 0 · · · x 0 −1 0
0 0 0 0 0 · · · 0 x 0 0
−1 0 0 0 0 · · · 0 0 x 1
0 −1 0 0 0 · · · 0 0 0 (x + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (x+ 1)(x2b−1 − xb−1).

Proof. (a) First, let χ(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0 0
0 0 −1 0 0
0 x 0 −1 0
0 0 x 0 −1
0 0 0 x 0

. . .
...

...
...

...
...

. . .
. . .

0 0 0 0 0 · · · 0 −1 0 0
0 0 0 0 0 · · · x 0 0 −1
−1 0 0 0 0 · · · 0 x 1 −1
0 0 0 0 0 · · · 0 0 (x + 1) −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We successively expand along every even row of the original matrix, except for the last
one (i.e. along the 2nd, 4th, . . . , (2b − 2)th row). Hence, we expand (b − 1)-times. In the
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first b − 2 expansions, each non-zero entry is −1 and these −1s occur in the secondary
diagonal. Hence, in the first b − 2 expansions we get a sign +1. In the last expansion,
the entry −1 occurs as the (b, b + 2)-entry, giving a sign −1. Thus, we get the following
(b+ 1)× (b+ 1)-matrix:

χ(x) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0 0
0 x −1 0 0
0 0 x −1 0
0 0 0 x −1
0 0 0 0 x
...

...
...

...
...

. . .

0 0 0 0 0 · · · x −1 0
−1 0 0 0 0 · · · 0 x 1
0 0 0 0 0 · · · 0 0 (x + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Laplace expansion along the last row yields a circulant b×b-matrix with determinant (xb−1)
(see Example 5.3.5). Hence,

χ(x) = −(x+ 1)(xb − 1) = (x+ 1)(−xb + 1).

(b) Now, let χ(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 −1 0 0
0 x 0 −1 0
0 0 x 0 −1
0 0 0 x 0
0 0 0 0 x
...

...
...

...
...

. . .

0 0 0 0 0 · · · x 0 −1 0
0 0 0 0 0 · · · 0 x 0 0
−1 0 0 0 0 · · · 0 0 x 1
0 −1 0 0 0 · · · 0 0 0 (x + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

We successively expand along the (2b− 2)th, (2b− 4)th, . . . , 4th, 2nd row of the original
matrix, i.e. we expand (b− 1)-times, and get the (b+ 1)× (b+ 1)-matrix

χ(x) = xb−1·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x −1 0 0
0 x −1 0
0 0 x −1
0 0 0 x
...

...
...

...
. . .

0 0 0 0 · · · x −1 0
−1 0 0 0 · · · 0 x 1
0 0 0 0 · · · 0 0 (x + 1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Laplace expansion along the last row yields a circulant b × b-matrix with determinant
(xb − 1) (see Example 5.3.5), that is,

χ(x) = xb−1(x+ 1)(xb − 1) = (x+ 1)(x2b−1 − xb−1).

�
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