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Abstract

Ultracold quantum gases are manipulable and robust systems for probing
fundamental condensed-matter physics problems, for applications in quan-
tum optics and quantum information [1], and for understanding atomic and
molecular physics [2]. Loading ultracold quantum gases in artificial periodic
potentials of light (optical lattices), opened novel control possibilities and, in
many cases, lead to structures beyond those achievable in typical condensed-
matter systems [3]. One highlight was the observation of the Mott insulator to
superfluid transition [4–6] where strong correlation effects can be observed [7].
Ultracold quantum gases in optical lattices are also viewed as quantum sim-
ulators [8] since certain important Hamiltonians, which serve as a model for
testing fundamental theoretical concepts of quantum many-body effects, can
be accessed cleanly by optical manipulation. This Thesis is focused on the
analysis of ultra-cold gases loaded in optical lattices.

The physics of dipolar gases is interesting due to the long-range anisotropic
character of the dipole-dipole interactions. Polar gases in optical lattices offer
fascinating new perspectives for many-body effects. In this Thesis, we study
polar bosons in ladder-like potentials, which are characterized by the appear-
ance of two kinds of superfluids: the pair-superfluid and the two-superfluid.
We show that the presence of a direct pair-superfluid to Mott insulator tran-
sition significantly distorts the shape of the Mott lobes. In particular, the
lowest boundary of the first Mott lobe acquires a marked re-entrant config-
uration which has very relevant consequences if an external harmonic trap
is added to the system. The wedding cake structure of Mott and superfluid
phases shows a counter-intuitive behavior, since the Mott shells broaden when
the hopping increases.

Another remarkable scenario for novel many-body physics is given by
spinor lattice gases, where the particles have an internal structure composed
of several Zeeman sub-levels. The competition between internal (spin) and ex-
ternal degrees of freedom leads to a rich physics concerning both ground-state
properties and dynamics. In this work we consider two different spinor lat-
tice systems, namely, spin-3/2 fermions and spin-1 bosons. We mainly focus
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on the hard-core Mott regime (one particle per site) and thus, the problems
reduce to the analysis of effective spin models.

The fermionic spin-3/2 model constitutes the smallest system where hard-
core fermions undergo spin-changing collisions. We consider the dynamics
after a spin flip in a fully polarized gas loaded in a 1D optical lattice. We show
that the interplay between quadratic Zeeman effect (QZE) and spin-changing
collisions leads to the possibility of a novel type of repulsively bound states of
exciton-like and bi-exciton-like excitations. These states may be highly meta-
stable, showing intriguing dynamics depending on the system parameters.

Secondly, we analyze the ground-state magnetic properties of spin-3/2
chains in the presence of both QZE and spin-changing collisions. We con-
sider the regime where the scattering length of the channel with total spin 2
is larger than that of total spin 0. In this regime, a dimerized (spin Peierls)
state is expected in absence of an external field. We show that when the QZE
grows, the system undergoes a phase transition between the dimerized phase
and an isotropic pseudo-spin-1/2 Heisenberg anti-ferromagnet. We resolve
this transition by means of level spectroscopy, showing that it belongs to the
Kosterlitz-Thouless universality class.

Furthermore, we consider the case of repulsive spin-1 bosons in the anti-
ferromagnetic domain, where for no quadratic Zeeman coupling a dimerized
phase is expected. We show that for a sufficiently large positive QZE the
system undergoes a Kosterlitz-Thouless transition into an XY -nematic phase.
On the other hand, for large enough negative QZE, the system undergoes an
Ising-like phase transition into a polar phase. Both phase transitions are again
studied using level spectroscopy.

The numerical results of this Thesis were obtained with the matrix product
states techniques and with Lanczos diagonalization. We describe the methods
and their implementation in detail.

Keywords: Ultracold Quantum Gases, Spinor Gases, 1D systems.



Zusammenfassung

Ultrakalte Quantengase sind manipulierbare und robuste Systeme, die die
Untersuchtung fundamentaler Fragen der Physik der kondensierten Materie
ermöglichen, wie z. B. die Beobachtung des Überganges von einem Mott-
Isolator zu einem Superfluid [4–6]. Weiterhin sind Anwendungen in der Quan-
tenoptik und der Quanteninformation [1] sowie in der Atom- und Molekülphysik
von Bedeutung. Setzt man solche ultrakalten Quantengase in ein optisches
Gitter ein, so kann man künstliche Systeme der Festkörperphysik zu schaf-
fen [3], in denen sich Effekte starker Korrelationen beobachten lassen [7]. Ultra-
kalte Quantengase sind auch als Quantensimulatoren [8] geeignet, da optischer
Zugriff auf spezielle Hamiltonians möglich ist. Diese Arbeit widmet sich der
Untersuchung ultrakalter Gase in optischen Gittern.

Die Physik dipolarer Gase wird durch die Anisotropie und die lange Re-
ichweite der Dipol-Wechselwirkung interessant; polare Gase in optische Git-
tern bieten neue Möglichkeiten zur Untersuchung von Vielteilchen-Systemen.
In dieser Arbeit untersuchen wir polare Bosonen in Leiter-ähnlichen Poten-
tialen, bei denen zwei Arten von Superfluiden auftreten: das Paar-Superfluid
und das Zwei-Superfluid. Es wird gezeigt, dass die Anwesenheit des Paar-
Superfluids denn Mott-Isolator-Übergang beeinflusst und die Mott-Zungen
we-sentlich abändert, insbesondere an der untersten Grenze der ersten Mott-
Zunge. Die dort entstehende Konfiguration ist für die experimentelle Sit-
uation relevant, bei der ein externes harmonisches Potential angelegt wird.
Die Torten-ähnliche Struktur der Mott- und superfluiden Phase zeigt ein be-
merkenswertes Verhalten, bei dem sich die Mott-Schalen bei Erhöhung des
Tunnelns vergrößern.

Spinor Gitter-Gase, bei denen Teilchen eine interne Struktur aus mehreren
Zeeman-Niveaus haben, sind ein anderes interessantes Szenario für neue Viel-
Teilchen-Phyik. Der Wettbewerb zwischen den inneren (Spin) und äußeren
Freiheitsgraden führt zu reichhaltiger Physik bei den Grundzustandseigen-
schaften und bei der Dynamik. In dieser Arbeit betrachten wir zwei ver-
schiedene Spinor-Gittergase, nämlich Fermionen mit Spin 3/2 und Bosonen
mit Spin 1. Wir betrachten das Mott Regime (ein Teilchen pro Gitterplatz),
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so dass die Fragestellung sich auf die Analyse effektiver Modelle reduziert.
Das fermionische Spin 3/2-Modell stellt das kleinste System dar, bei dem

Teilchen mit festem Kern so streuen können, dass der Spin geändert wird. Wir
betrachten die Dynamik eines voll polarisierten Gases im eindimensionalen
optischen Gitter nach einem Spinflip. Wir zeigen, dass das Wechselspiel des
quadratischen Zeemaneffektes und der Spinflip-Prozesse zu einen neuartigen
Bindungszustand der Anregunen von Exzitonen- und Bi-Exzitonen-Typ führt.
Diese Zustände sind i. A. metastabil und führen zu interessanter Dynamik.

Als nächstes betrachten wir die magnetischen Eigenschaften des Grundzu-
standes der Spin-3/2-Ketten im Beisein des quadratischen Zeemaneffektes und
Spin-ändernder Streuung. Wir betrachten das Regime, wo die Streulänge des
Kanals mit Gesamtspin 2 größer ist als die des Kanals mit Gesamtspin 0. Hier
erwartet man einen dimerisierten Zustand, wenn kein externes Feld angelegt
ist. Wir zeigen, dass bei Vergrößerung des quadratischen Zeemanefektes das
System einen Phasenübergang vom dimerisierten Regime zum isotropen Spin-
1/2 Heisenberg Antiferromangneten hat. Dieser Übergang wird mit Hilfe von
Niveauspektroskopie aufgelöst, und es wird gezeigt, dass er vom Kosterlitz-
Thouless-Typ ist.

Desweiteren wird repulsive Spin-1 Bosonen in einer antiferromagnetis-
chen Domäne, wo in Abwesenheit der qudratischen Zeemankopplung eine
dimerisierte Phase erwartet wird, untersucht. Wir zeigen, dass für eine genügend
große positive quadratische Zeemankopplung das System einen Phasenübergang
vom Kosterlitz-Thouless-Typ in die XY -nematische Phase hat. Für eine
genügend große negative Zeemannkopplung andererseits gibt es einen Ising-
artigen Phasenübergang zu einer polaren Phase. Beide Phasenübergänge wer-
den durch Niveauspektroskopie untersucht.

Die numerischen Untersuchungen dieser Arbeit wurden mit Hilfe der Ma-
trix Product State-Technik und der Lanczos-Diagonalisierung durchgeführt.
Beide Methoden und ihre Implementierung werden im Detail beschrieben.

Schlagwörter: Ultrakalte Quantengase, Spinorgase, 1D systemen.
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CHAPTER

ONE

Ultracold atoms in optical lattices

Since antiquity, attempts to describe the behavior of the different materials
saw the rise of several theories such as optics, thermodynamics and solid state
physics. Moreover, at the beginning of the 20th century the failure on the de-
scription of physical systems gave birth to new and revolutionary ideas that
later on transformed into the well-known and nowadays accepted theory of
quantum mechanics. Thermodynamics was one of the most challenged theo-
ries from the classical era and, just by exploration of its frontiers, S. N. Bose
was able to predict a quite spectacular phenomenon that was further devel-
oped by A. Einstein: the condensation of particles at very low temperatures
into the ground state of the system [9,10]. Unfortunately for them, the real-
ization of the so called Bose-Einstein Condensate (BEC) was not possible at
that time, a fate in which their prediction was not alone.

Several years later when quantum mechanics was growing, band theory
was able to successfully describe the electric properties of materials. In spite
of that, in 1937 J. H. de Boer and E. J. W. Verwey pointed out that some
transition metal oxides expected to be conductors under such theory behave
actually as insulators [11]. In short, N. Mott and R. Peierls studied the problem
and concluded that this anomaly is the result of neglecting, in the at that
time current theory, the electron-electron interaction when sharing the same
atom [12]. In 1963 J. Hubbard proposed the simplest model that takes into
account both the kinetic energy of the electrons and the local interaction
between them [13]. The model was solved with the use of the Bethe ansatz by
Lieb and Wu in 1968 [14] and since then several extensions have been done,
for instance, the inclusion of long range interactions in the extended Hubbard
model and the boson counterpart: the Bose-Hubbard Hamiltonian. However,
an experimental realization with total control of the system parameters was
again not yet possible.

In time, rather simple ideas from quantum optics developed into the promis-
ing technique of laser cooling that would allow, afterwards, scientists to achieve
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the required temperatures for the formation of a BEC. Some of the methods
are:

Doppler cooling: Consists on three sets of counter propagating laser beams
slightly detuned from some atomic transition of the atom cloud to be
cooled. When an atom travels with a finite velocity towards the beam
source “sees” a higher light frequency due to the Doppler effect. In
this way, the detuning can be compensated allowing a photon to be
absorbed and later on emitted in some other arbitrary direction. After
several absorption-emission processes the result is a decreasing kinetic
energy of the atom proportional to its velocity (optical molasses). The
minimum temperature achievable by this method is TD = ~γ/2kB, where
~ is the reduced Planck constant, kB is the Boltzmann constant and γ
is the line-width of the transition [15].

Sisyphus cooling: Two counter-propagating laser beams orthogonally po-
larized form a standing sinusoidal electric potential. When a dipole,
good approximation for an atom, is moving to one of the potential max-
ima, it loses kinetic energy. If at the maximum the atom is optically
pumped to a second (dressed) state in a potential valley, it starts to
climb up once more to one potential maximum while decreasing even
further its velocity. This technique reaches the recoil temperature of
Tr = ~

2k2/2mkB ∼ 1µK, where k is the wave vector of the emitted
photon that causes the recoil and m the mass of the particle [16].

Evaporative cooling: Let us consider a gas on a trap where the particles
are constantly colliding. When decreasing adiabatically the trap depth,
the “hottest” particles will overpass the trap boundaries and escape
carrying out an amount of kinetic energy higher than the average per
particle, allowing the gas to cool down. This method allows for reaching
temperatures of the order of ∼ 100nK, or even lower [17].

The development and implementation of the laser-cooling techniques by
S. Chu, C. Cohen-Tannoudji and W. D. Phillips was honored with the Nobel
price in 1997 [18]. And thanks to it in 1995 the first BEC, by the group of
E. A. Cornell and C. E. Wiemann [19] besides the independent work of W.
Ketterle [20], was achieved, and again honored with the prestigious reward [21].
Furthermore, the superfluid to Mott insulator transition was observed seven
years later by M. Greiner et al [6]. These achievements have attracted a huge
interdisciplinary interest from scientists working in disparate fields as quantum
optics, condensed-matter physics, non-linear physics, quantum information
and computer science. In this chapter, we focus on the basic Hamiltonian
modeled by cold lattice bosons, the Bose-Hubbard Hamiltonian. We also
explore numerical and analytical approaches in order to investigate the ground
state properties the model.
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I.1 The Hamiltonian

Let us consider a d-dimensional repulsively-interacting gas of spin-less bosons
of mass m loaded onto an optical lattice that generates the potential

(I.1) V0(~x) =

d∑

j=1

V0,j sin2(kxj),

where k is the wave vector of the laser light: We consider an additional external
trapping potential VT(~x) slowly variating in the scale of the lattice site. Thus,
the Hamiltonian Ĥ for the boson field operator ψ̂(x) is [5]

Ĥ =

∫

d3x ψ̂†(~x)

[

− ~
2

2m
∇2 + V0(~x) + VT(~x)

]

ψ̂(~x)

+
2πas~

2

m

∫

d3x ψ̂†(~x)ψ̂†(~x)ψ̂(~x)ψ̂(~x),

(I.2)

where the interaction potential is approximated by a short-range pseudo-
potential with the s-wave scattering length as. Here, we consider that all
the relevant energies of the system are small enough to neglect the existence
of the second band, associated to the periodic potential, leaving only the first
one under consideration. Within this approximation, it is possible to expand
the field operator in the basis of the Wannier functions, ωi(~r) (maximally
localized at site i)

(I.3) ψ̂(~x) =
∑

i

b̂iwi(~x),

being b̂i the annihilator operator of a boson at the site i. The creator operator
b̂†i is defined similarly. They obey, naturally, the canonical commutation rela-

tion
[

b̂i, b̂
†
j

]

= δj
i and form the number operator n̂i = b̂†i b̂i. By plugging the

definition for the field operator into the Hamiltonian (I.2) we have the well
known expression of the Bose-Hubbard Hamiltonian (BHH)

(I.4) Ĥ =
∑

i

[

−t
z∑

δ=1

(

b̂†i b̂i+δ + b̂†i+δ b̂i

)

+
U

2
n̂i(n̂i − 1) + ǫin̂i

]

,

where z = 2d is the number of nearest-neighbors or coordination number
explored by δ, U quantizes the strength of the on-site repulsion in a given
lattice site, t is the hopping rate between neighboring sites, and ǫi describes



4 CHAPTER I. ULTRACOLD ATOMS IN OPTICAL LATTICES

the energy offset of each lattice site. The values of those parameters are

U =
4πas~

2

m

∫

d3x|wi(~x)|4,(I.5)

t =

∫

d3xw⋆
i (~x)

[

− ~
2

2m
∇2 + V0(~x)

]

wi+δ(~x),(I.6)

ǫi =

∫

d3xVT(~x)|wi(~x)|2 ≈ VT(~xi).(I.7)

In the resulting Hamiltonian of Eq. (I.4), we have neglected higher order terms
like the tunneling to next-nearest neighbors and inter-site interactions, which
typically are much smaller, at least when considering short-range interacting
gases.

If we consider the grand-canonical ensemble of particles, we have to include
the chemical potential µ as well just by adding the term −µ∑i n̂i = −µN̂ .
A pioneering analysis of the system my means of mean field theory (MF) was
done in 1989 by Fischer et al. [4], showing the existence of two different phases.
Let us have a look into that MF approach.

I.2 Mean field theory

We will focus on the ground state properties of the Hamiltonian (I.4) by means
of the MF where second order coupling between the number fluctuations in
different sites is totally neglected. As a result, this method is not a good
approximation for one dimensional systems where the fluctuations play a key
role.

Let us redefine the creation operator by using the superfluid (SF) order
parameter

(I.8) Ψ ≡ 〈b̂i〉 = 〈b̂†i 〉.

We introduce fluctuations around this mean value b̂i = Ψ + ∆b̂i. Hence, the
hopping term of the Hamiltonian takes the form

(I.9) −t
∑

i,δ

b̂†i b̂i+δ ≈ zt
∑

i

[

Ψ2 − Ψ
(

b̂†i + b̂i

)]

.

Then, the Hamiltonian becomes the sum over local Hamiltonians Ĥ =
∑

i Ĥi

where at each site we have Ĥi = Ĥ0 + tĤ1. After setting ǫi = 0 and dropping
the site dependence, we thus have

Ĥ0 =
U

2
n̂(n̂− 1) − µn̂+ ztΨ2,(I.10)

Ĥ1 = − zΨ(b̂† + b̂).(I.11)
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E
(0)
n

E
(0)
n−1 = E

(0)
n + U(n− 1) + µ

E
(0)
n+1 = E

(0)
n − Un− µ

Figure I.1: On-site eigenstates for the Bose-Hubbard Hamiltonian with t = 0.
When considering the state |n〉 with n particles, the virtual states are |n− 1〉 and
|n + 1〉 in the mean field approximation.

The main features of this problem can be analyzed by perturbation theory
on the hopping parameter t, which is considered small-enough. The first
step is to read-off the eigen-energies of the Hamiltonian Ĥ0 which is already
diagonal in the Fock basis, E

(0)
n = Un(n − 1)/2 − µn + ztΨ2 and apply the

well-known second order expression

(I.12) E(2)
n =

∑

ν

gν
|〈n|Ĥ1|ν〉|2

E
(0)
n − E

(0)
ν

.

In this case, the virtual states |ν〉 are the result of the ladder operators that
appear on the hopping term Ĥ1 which act on the unperturbed eigen-states as

b̂†|n〉 =
√
n+ 1|n+ 1〉,(I.13)

b̂|n〉 =
√
n|n− 1〉,(I.14)

whose energies are depicted in Fig. I.1 and their multiplicity is gν = 1. Then,
after putting together all this, the expression for the energy up to second order
in the hopping parameter t for a state with an average number of particles n̄
is given by

(I.15) En̄ =
U

2
n̄(n̄− 1) − µn̄+ ztΨ2

(

1 +
ztn

U(n̄− 1) + µ
− zt(n + 1)

Un̄ − µ

)

︸ ︷︷ ︸

rn̄

.

The ground state requires this energy to be minimal, thus we have three
possibilities. If

rn̄ > 0 The energy is minimized only if Ψ = 0. This means that the number
of particles has no fluctuations and, since all the sites are considered
identical (ǫi ≡ 0), the total number of particles is commensurate with
the total number of sites L, or in other words N̂ = n̄L with n̄ integer.
Hence, even though there is a finite hopping, the particles tend to be
very localized making the system fall into a Mott insulator (MI) phase.

rn̄ < 0 In this case, in order to minimize the energy Ψ 6= 0. Local fluctuations
in the number of particles are allowed and, although [Ĥ, N̂ ] = 0, the
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total number of particles is no longer commensurate with the system
size. This fluctuation in the number of particles comes from the fact
that they move throughout the lattice and the system enters into the
superfluid state.

rn̄ = 0 When the superfluid to Mott insulator phase transition takes place,
the energy of the two phases coincide. This will allow us to depict
the ground-state phase diagram for the system since this is exactly the
transition boundary.

After setting rn̄ = 0 and equating for µ̃ ≡ µ/U as a function of n̄ and
t̃ ≡ t/U we have

(I.16) µ̃± =
1

2

[

(2n̄− 1) − zt̃±
√

1 − 2zt̃(2n̄+ 1) + (zt̃)2

]

.

In Fig. I.2 the parabolic form of the MI lobes is depicted from Eq. (I.16)
taking z = 4 and n̄ = 0, 1, 2, 3.

 0

 1

 2

 3

 0  0.05  0.1  0.15

µ
/
U

t/U

SF

MI1

MI2

MI3

SCE
MF

Figure I.2: MI and SF boundaries for two dimensional lattices showing the dif-
ference between MF and SCE predictions. MIn̄ is the Mott insulating lobe with
n̄-commensurate.

In the following two sections we introduce, in the frame work of the Bose-
Hubbard model, two important ideas which we will employ throughout this
work. They are the strong-coupling expansion and the correlation functions.
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I.3 Strong coupling expansion

Perturbation theory in the hopping term can be further exploited to approx-
imately calculate the phase boundaries between the MI and the SF without
neglecting the quantum fluctuations in the way MF does. This idea was devel-
oped by J. K. Freericks and H. Monien in 1996 [22] giving very good analytical
results for both one and higher dimensional systems.

The main idea is to take the Hamiltonian (I.4) in the atomic limit, where
only the on-site part is left since t → 0, as the initial Hamiltonian. Then,
use the kinetic term as a perturbation on the eigen-states of the atomic part.
Three initial states are considered: the unperturbed MI, characterized by a
commensurate filling, and defective superfluid states with an extra particle or
an extra hole respectively.

Let us first consider the Mott state with n̄ particles per site, MIn̄, given
by the expression

(I.17) |φMI(n̄)〉(0) =
∏

i

1√
n̄!

(b†i )
n̄|∅〉,

where |∅〉 denotes the vacuum state. The action of the kinetic term on this
state is to make a particle hop into any of the z neighboring sites. This
process, regarding Eq. (I.12), can be summarized as follows

State Ẽν gν −Ẽ(2)
ν /zt̃2

Ẽ
(0)
MI = n̄L [(n̄ − 1)/2 − µ̃]

Ẽ
(0)
Mott + 1 zL Ln̄(n̄+ 1)

where the tilde denotes the normalization in units of the on-site repulsive
interaction U . By plugging these results into the perturbation term (I.12), we
obtain for the Mott state energy up to second order in the hopping

(I.18) ẼMI(n̄) = n̄L

[
1

2
(n̄− 1) − µ̃− zt̃2(n̄ + 1)

]

.

An identical procedure is applied to the defect state

(I.19) |φp(n̄)〉(0) =
1√
L

∑

i

b̂†i |φMI(n̄)〉(0)√
n̄ + 1

,

that describes a superfluid system with an extra particle on top of the MIn̄.
It is important to note that in this case we have a contribution from the first
order in perturbation theory, as shown in the next scheme, since one hopping
of the extra particle on top of the Mott gives an state that also lies on the
same manifold as the original one.
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Initial state ∆̃
(0)
p

n̄− µ̃

Equivalent state −Ẽ(1)
p /zt̃

n̄+ 1

where ∆̃p = Ẽ
(0)
p − Ẽ

(0)
MI . The second order in perturbation theory is more

elaborated that in the case of the Mott, but still quite straightforward. A
picture of the virtual states, the energies and the degeneracy is presented in
the next table.

Virtual states Ẽν gν −Ẽ(2)
ν /zt̃2

Ẽ
(0)
p + 1 z(L− 1) (L − 1)n̄(n̄ + 1)

Ẽ
(0)
p + 2 z n̄(n̄+2)

2

In the same way as in the MF procedure, by equating the MI energy with
the SF energy and solving for µ̃ we are able to predict, within the approxi-
mation, the upper boundary of the MI lobe. The strong coupling expansion
(SCE) thus gives

(I.20) µ̃+(n̄) = n̄− (n̄+ 1)zt̃+
1

2
n̄2zt̃2.

The procedure is finally applied to an state with an extra hole on top of
the MIn̄. Again, first and second order terms in perturbation theory have a
non vanishing contribution. First we have the hole hopping that keeps the
system in the same manifold.

Initial state ∆̃
(0)
h

−(n̄− 1) + µ̃

Equivalent state −Ẽ(1)
p /zt̃

n̄

And for the second order, the states that are connected by the Hamiltonian
with |φp(n̄)〉(0) that are out of the manifold, their degeneracy and contribution
are

Virtual states Ẽν gν −Ẽ(2)
ν /zt̃2

Ẽ
(0)
h + 1 z(L− 1) (L − 1)n̄(n̄ + 1)

Ẽ
(0)
h + 2 z (n̄2−1)

2
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Combining the matrix elements and the energies we retrieve, finally, the
expression for the lower boundary of the Mott is

(I.21) µ̃−(n̄) = (n̄− 1) + n̄zt̃− 1

2
zt̃2(n̄+ 1)2.

In Fig. I.2 the SCE predictions are compared with the ones of MF and
in Fig. I.3 with those of the matrix product state (MPS) technique described
below. From the figures is clear that the SCE approach is far better approx-
imation that the MF one since the description of the boundaries agrees with
the MPS results almost up to the tip. Moreover, the use of higher order SCE
could lead to even better agreements.

 0  0.1  0.2  0.3

 0

 1

 2

µ
/
U

t/U

MI1

MI2

SF

Figure I.3: Comparison between SCE calculation of the Mott lobes from Eq. (I.20)
and (I.21) for 1D lattices, z = 2, and MPS numerical results, which are depicted as
follows, in grey scale the commensurate fillings and in white the incommensurate
fillings. From the fact that L = 18, the width of the commensurate SF is finite
and the tip is not spot directly. However, for lower values of t/U we can see a very
good agreement.

I.4 Correlation functions

In this section, we will briefly discuss the behavior of correlation functions in
1D systems of lattice bosons, which characterize the properties of the different
phases. To this aim, we introduce the single-particle correlation function

(I.22) G(∆) = 〈b̂†0b̂∆〉,
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)

∆

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1  2  3  4  5  6

(b)

G(
∆

)

∆

Figure I.4: Plot of the correlation function (I.22) for the ground state of the Bose-
Hubbard Hamiltonian using variational MPS calculation taking a system size of
L = 60, an entropy parameter χ = 20 and a hopping t = 0.05, within both (a)
the Mott-Insulator phase for µ = 1/2 where it shows an exponential decay, and
(b) the superfluid phase for µ = 1 where an algebraic decay is observed. The line
represents the best fit.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2  0.25

µ
/
U

t/U

Figure I.5: Comparison between MPS and SCE calculation of the phase-space for
the Bose-Hubbard model. In gray the set of states with a correlation function
G(∆) that decays exponentially and on white those with an polynomial decay.

where 0 indicates the center of the chain. This correlation function decays ex-
ponentially to zero within the Mott insulator regime. On the other hand, it has
a Luttinger-liquid (polynomial) decay within the superfluid region. G(∆) may
be calculated by means of matrix product state techniques (MPS), described
in detail in chapter VII. Figure I.4 shows the behavior of the single-particle
correlation function for a MI case and for a SF one. As expected, the distinc-
tion between the two phases can be clearly seen even at the Mott tip where
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the average number of particles per site gives no difference. In figure I.5 the
results of the analysis of the correlation function are presented besides the
SCE results. A very good agreement is clear.

A particular value of the correlation function is G(0) = 〈n̂0〉, which is the
density at the middle of the chain. A parameter space scan of it is depicted in
Fig. I.3 showing, as mentioned above, an excellent agreement with the SCE
results.

I.5 The harmonic trap

Figure I.6: Trapping potential plus the optical lattice. A simple local density
approximation predicts that the state of the system will show a wedding cake

shape in the density.

Up to this point we have just considered the homogeneous Bose-Hubbard
Hamiltonian (ǫi = 0), showing the existence of two distinct phases. In the
presence of an additional confinement, that varies slowly in comparison to the
lattice parameter, we may approximate, as in Eq. I.7, ǫi ≈ VT(~xi). This leads
to an effective local chemical potential µ(~xi) = µ0 − VT(~xi), where µ0 is the
global chemical potential. As a result, the system explores different regions
of the homogeneous phase diagram depending on spatial position. Therefore,
a wedding-cake structure of Mott plateaux and SF regions occurs. A scheme
of this idea is shown in Fig. I.6.

A local density approximation can be done in order to calculate the den-
sity profile from bosonization techniques and the result is very close to the one
retrieved from the DMRG method [23]. This DMRG is equivalent to the vari-
ational MPS method we employed already and we can directly over-impose
the harmonic trapping potential to the Hamiltonian (I.4) by setting ǫi = ǫ0i

2.

The MPS results of the density profile 〈n̂i〉, for a harmonic confinement,
are presented in Fig. I.7 for several values of the hopping t. A wedding-cake
structure is clearly visible. When the parameter t increases, the Mott-shells
get thinner and finally melt down. This scenario is very intuitive since the
mobility of the particles increases and the insulator is thus less stable.
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Figure I.7: Variational-MPS results for a one-dimensional Bose gas in presence of
an optical lattice and a harmonic trap. (a) Density profile of the ground state with
L = 60. The wedding cake structure is clearly visible. (b) Scheme of the Mott
phases and the scan done by the trap for the three different values of t̃ = t/U .

I.6 Overview

This thesis is devoted to the physics of ultra-cold gases in optical lattices.
And thus, it is structured as follows:

Chapter II deals with the problem of polar bosons loaded into ladder-like
lattices. By means of MPS and SCE calculations, we determine the phase
diagram, characterized by three phases. A pair-superfluid phase characterized
by superfluid of composites with a particle at opposite legs, a two-superfluid
that presents individual superfluids at each legs, and the Mott insulator. We
show that the direct transition between the Mott insulator to pair-superfluid
results in distorted Mott lobes, which may acquire a remarkable re-entrant
character. The later scenario leads to a counter-intuitive behavior of the
Mott plateaux in the presence of an external harmonic confinement.

In chapter III we briefly introduce spinor gases and we calculate the effective
Hamiltonian for spin-3/2 fermions in 1D optical lattices. Then, we analyze
in chapters IV and V the ground-state magnetic properties of spin-3/2 chains
in the presence of both QZE and spin-changing collisions. In particular, we
study the regime a2 > a0, where aF is the s-wave scattering length for the
collision channel with total spin F . In this regime, a dimerized (spin Peierls)
state is expected in absence of QZE. Our results show that when the QZE
grows, the system undergoes a phase transition between the dimerized regime
and an isotropic pseudo-spin-1/2 Heisenberg anti-ferromagnet. We analyze
this phase transition by means of level spectroscopy showing that it belongs
to the Kosterlitz-Thouless universality class.

Chapter VI is devoted to the case of repulsive spin-1 bosons in the anti-
ferromagnetic domain. In the absence of QZE a dimerized phase is expected.
We show that for a sufficiently large and positive QZE the system undergoes
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a Kosterlitz-Thouless phase transition to an XY -nematic phase. On the con-
trary, for large enough but negative QZE, the system undergoes an Ising-like
phase transition into a polar phase. Both transitions are studied using level
spectroscopy.

The numerical results presented throughout the Thesis have been obtained
with both matrix-product-states techniques and Lanczos diagonalization. In
chapter VII we describe the methods and the details of their implementation.
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Polar lattice bosons
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CHAPTER

TWO

Polar bosons in optical ladder-like potentials

We analyze the Mott-insulator phases of dipolar boson gases placed in two
paralell but unconnected 1D optical lattices. The short-range interactions
keep the 1D systems independent, whereas the long-range dipole-dipole in-
teraction induces a direct Mott-insulator to pair-superfluid transition which
significantly modifies the boundaries of the Mott insulator phase. In particu-
lar, the lowest boundary of the first Mott lobe may acquire a re-entrant shape
as a function of the hopping rate, which is retained in higher dimensions. We
discuss the consequences of this effect on the spatial Mott-insulator plateaux
in experiments with additional harmonic confinement, showing that counter-
intuitively the plateaux may become wider for increasing hopping. These
results are also applicable to non-dipolar boson-boson mixtures.

II.1 Dipolar quantum gases

We have already analyzed how the interactions play a significant role in the
physics of ultracold particles. In particular for the case of 1D optical lattices,
we have seen that by tuning the on-site interaction strength U , the BHH
presents a phase transition between an insulating Mott regime and a superfluid
one. However, this interaction is short range and therefore its action is limited
to one-site effects. Interestingly, long-range effects, in particular the dipole-
dipole interaction (DDI), cannot always be neglected. Furthermore, the DDI
may significantly alter the physics of quantum gases, as it has been shown in
recent analytical studies and experiments [24].

Apart from the long range, one of the main characteristics of the DDI is
that it is anisotropic. This fact can bee intuitively understood by thinking in
two side-by-side dipoles as shown in figure II.1. If they are parallel to each
other then they repel, as in (a). On the other hand, if they are anti-parallel
then they attract each other, as in (b). In the case of parallel (polarized)
dipoles, their relative position is also important, since side-by-side they repel
each other, but in a head-to-tail configuration they attract each other, as in

17
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(a) (b)

(c)

(d)

θr

Figure II.1: Anisotropy of the dipolar-dipolar interaction.

(c) . Henceforth we will consider polarized dipoles, like the ones in (d), for
which the interaction potential is

(II.1) VDDI(θ, r) =
Cdd

4π

1 − 3 cos2 θ

r3
.

For magnetic dipoles Cdd is µ0µ
2, µ0 is the vacuum permeability and µ

is the permanent magnetic moment of the particles. In the case of electric
dipoles with moment d, Cdd = d2/ε0 where ε0 is the vacuum permittivity.
Equation (II.1) shows clearly that the DDI is both long-range, since it decays
as 1/r3, and anisotropic, as can bee seen from its 1 − 3 cos2 θ dependence.
Note in particular that for the magic angle θm, defined by cos2θm = 1/3, the
DDI vanishes. This fact is employed later on in this chapter.

The peculiar behavior of the DDI has important consequences in the BEC
stability [25–27] and excitations [28]. BEC stability has been recently studied in
experiments with Cr in 3D traps, where the BEC may become unstable against
collapse [29] and in 2D traps, where the DDI may allow instabilities without
collapse characterized by the formation of an inelastic soliton gas [30]. Par-
ticularly dipolar BECs present a non-local non-linearity, resembling nematic
crystals [31], that leads to novel physics, such as stable 2D bright solitons [32,33]

and stable 3D dark solitons [34]. Moreover, the momentum dependence of the
DDI gives place to the appearance of a roton-like minimum in the dispersion
law of elementary excitations, which may result in roton instability [35]. This
instability may lead either to local collapses [36] or to stabilized modulated
density profiles in sufficiently tight traps [37]. The influence of the DDI is also
crucial in the properties of Fermi gases [38–43], and in the physics of strongly
correlated systems [44–48].

Due to their strong electric dipole moment, polar molecules are ideal can-
didates to show dipolar effects and thus quantum degenerate gases of polar
molecules are one of the primary targets of current experiments. Progress
has been made recently in cooling of molecules, with techniques such as stark
deceleration [49] or buffer-gas cooling [50–52], but the densities and temperatures
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achieved so far are still orders of magnitude away from quantum degenerate
regime. A very promising approach to degeneracy, actively explored by several
groups [53,54], is to start from already ultra cold atomic mixtures and then use
a Feshbach resonance to create heteronuclear molecules [55]. Crated in a highly
excited vibrational state, they must then be brought to the rotational ground
state, for instance by photo association using STIRAP processes, as demon-
strated lately [56]. Recent experiments at JILA on KRb molecules are just
slightly below the phase-space density required for quantum degeneracy [57].

II.1.a Optical lattices and the DDI

The special features of the DDI lead to novel physics in lattice gases, and in
particular to significant new terms in the Bose-Hubbard Hamiltonian. The
on-site parameter U is given by two contributions Us and UDDI. The first one
arises from the s-wave scattering shown already in Eq. (I.5), and the second
one is due to the on-site DDI

(II.2) UDDI =
1

2π3

∫

ṼDDI(~q)ñ
2(~q)d3q,

where

(II.3) ṼDDI(~q) =
Cdd

3

(
2q2

z − q2
x − q2

y

q2

)

and ñ(~q) are the Fourier transforms of the dipole potential and density, re-
spectively [58]. Interestingly, the long-range character of the DDI leads to the
appearance of significant inter-site interactions, a qualitatively novel fact com-
pared to non-polar gases. The inter-site interaction between particles at two
sites ~i and ~i+~l, is characterized by the coupling constant

(II.4) U ′
~l

=

∫

d3r

∫

d3r′ω~i(~r)ω~i+~l(
~r′)VDD(~r − ~r′).

For a deep enough square optical lattice, this expression reduces to

(II.5) U ′
~l
≈ VDD(~lλ),

where λ is the lattice constant. Then, a lattice of polarized bosons, as sketched
in Fig II.2, in described by an extended Bose-Hubbard Hamiltonian of the form

(II.6) Ĥ = −t
∑

〈~i~j〉1

b̂†i b̂j +
∑

i

[
U

2
n̂i(ni − 1) − µn̂i

]

+
∑

~l

∑

〈~i~j〉~l

U ′
~l

2
n̂~in̂~j ,

where 〈~i~j〉~l are all the possible sites ~i and ~j with a distance ~l between them.
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Figure II.2: Scheme of a gas of polarized dipoles in a single 2D layer.

The extended Bose-Hubbard Hamiltonian has been extensively studied [24].
Novel phases result from inter-site interactions as the charge-density wave
(checkerboard) characterized by an insulating phase with modulated density,
and the supersolid phase that presents the coexistence of superfluidity and a
periodic spatial modulation of the density which is different from the lattice
period [59–61]. 1D lattice systems of spinless bosons interacting with long-range
interactions possess a further insulating gapped phase, namely a Haldane in-
sulator [62]. This insulator resembles the famous Haldane gapped phase in
quantum spin-1 chains [63]. Unlike in the checkerboard case, the Haldane in-
sulator does not break the translational symmetry of the lattice. However, it
is characterized by an underlying hidden order which consists of a nontrivial
ordering of the fluctuations which appear in alternating order separated by
strings of equally populated sites of arbitrary length [64].

II.2 The Hamiltonian of two interacting chains

In the following, we consider a ladder-like lattice made of two neighbor one-
dimensional optical lattices loaded with dipolar bosons. The ladder legs are
disconnected in the sense that no particle can tunnel from one wire to the
other. This scheme can be achieved by micro-magnetic confinement [65] or us-
ing sufficiently strong two-dimensional optical lattices [66]. In the latter case,
the required two-site configuration may be generated by super-lattice tech-
niques or by selectively emptying one-dimensional sites neighboring the de-
sired pair. The configuration is presented in Fig. II.3.

We will focus mostly on interlayer effects, and hence we consider a con-
figuration for which only the (attractive) dipole-dipole interaction between
particles at the same rung and different wire plays a significant role. This is
the case when the dipoles are oriented forming an angle θm with the axis of
the wires such that cos2 θm = 1/3 (the magic angle, discussed in section II.1).
Under that condition, the dipole-dipole interaction between neighbor particles
at the same wire vanishes, whereas for particles in the same rung and differ-
ent wires is attractive. There is, in principle, an additional nonzero diagonal
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t

t

U

U

−U ′

(a) Ladder potential loaded with bosons.

θm

(b) The bosons are
dipolar particles ori-
ented along the magic

angle.

Figure II.3: Scheme of the system under consideration in this chapter. A
ladder-like potential loaded with boson dipolar particles. (a) Each wire
can be considered independently with the Bose-Hubbard Hamiltonian. (b)
When the particles are all oriented along the magic angle only intra-rung
interactions are relevant creating an attractive potential.

dipole-dipole interaction between particles in different wires and neighboring
rungs. These terms can be negligible by considering the spacing between rungs
larger than the separation between the two wires by a factor γ. In that case
the spurious diagonal interaction has a factor (1 + 2

√
2γ)/(1 + γ2)5/2(≈ 0.03

for γ = 3) smaller than that between sites in the same rung. Of course, for
other dipole and lattice configurations, the dipole-dipole interaction between
sites belonging to the same wire cannot be neglected, and interesting physics
can be expected [67].

All these considerations can be summed up into the following Hamiltonian,

(II.7) Ĥ =
∑

α=1,2

Ĥ
(α)
B − U ′

∑

i

n̂
(1)
i n̂

(2)
i ,

with U,U ′ > 0 and

Ĥ
(α)
B = − t

∑

〈i,j〉

(

b̂
(α)†
i b̂

(α)
j + h.c.

)

+
U

2

∑

i

n̂
(α)
i (n̂

(α)
i − 1) − µ

∑

i

n̂
(α)
i

(II.8)

where b̂
(α)
i , b̂

(α)†
i , and n̂

(α)
i are, respectively, the annihilation, creation, and

number operators at the site i on the wire α. The hopping probability between
neighboring sites i and j in each wire is described by t, U represents the on-site
interactions which are a combination of short-range and dipolar contributions,
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(a) (b)

Figure II.4: Schematic diagram of the superfluid phases present in the ground
state of the Hamiltonian (II.7). (a) Pair superfluid where the super fluid is made
of particles and (b) Two superfluid where each wire has an independent superfluid.

and we consider the same chemical potential µ for both wires. Atoms in
sites at the same rung interact attractively by the dipole-dipole interaction,
which is characterized by a coupling −U ′. The image of the system can be
further simplified just by looking at the system as a one-dimensional Bose-
Bose mixture with an on-site intra-species repulsive interaction U and an
attractive inter-species interaction −U ′. Under this picture, is even more clear
the appearance of the pair superfluid (PSF) phase that plays a significant role
in the physics of the system [68].

The PSF phase refers to the creation of correlated rung pairs of particles in
the ladder when the inter-species interaction is large enough. However, for a
larger hopping parameter and a weak inter-species interaction the creation of
pairs may be uncorrelated giving place to a new phase where two independent
SF are present, one in each specie. We denominate this last phase as the two
superfluid (2SF). These two phases are depicted in Fig. II.4.

In the following we will proceed as in the previous chapter. First, we
make use of the SCE to obtain the phase boundaries for all the possible filling
factors and dimensions. Latter we compare those analytical results with the
numerical ones from MPS calculations.

II.3 Strong coupling analysis

Following the procedure developed in section I.3, we use the SCE in the hop-
ping t̃ = t/U ≪ U ′/U = Ũ ′ in order to calculate the Mott-lobe boundaries.
The first step is to get the Mott energy from the perturbation of a Mott state
with n̄ particles per site. Afterwards, we put a correlated (same rung) pair
of particles on top of the MIn̄ to recreate the PSF and then we apply the
perturbation theory again. By equating the two corrected energies we can
calculate the interface as the function µ̃(t̃). We proceed in an analog way for
the transition to the 2SF phase but instead of correlated pairs we use totally
uncorrelated pairs.
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It is important to note that no finite perturbation theory will reproduce
faithfully the tip of the Mott insulator as in the case of the BHH. With this
method, the correlation functions cannot be calculated either. However, we
can do the calculation for all the Mott phases and for high dimensions by
considering different values for the number of neighbor sites z.

II.3.a The MIn̄

The unperturbed Mott insulator is described by the Fock state

(II.9) |φMI(n̄)〉(0) =
∏

i,α

1√
n̄!

(

b
(α)†
i

)n̄

|∅〉,

where |∅〉 is the vacuum, i = 1, . . . , L and α = 1, 2. The first-order term does
not appear since just like in the case of a single wire, all the odd terms vanish.
On the other hand, for the second order we have to consider the following
eigenstates and energies using the same notation as in chapter I

State Ẽν gν −Ẽ(2)
ν /2zt̃2

Ẽ
(0)
MI = n̄L

[

(n̄ − 1) − Ũ ′n̄ − 2µ̃
]

Ẽ
(0)
MI + 1 2zL Ln̄(n̄ + 1)

And from it we have the corrected energy up to 2nd order as

(II.10) ẼMI(n̄) = n̄L
[

(n̄− 1) − Ũ ′n̄− 2µ̃− 2zt̃2(n̄+ 1)
]

.

As we already discussed, there are two possible phase transitions when
starting from the Mott: either to the PSF or to the 2SF. For a small enough
hopping we expect that the dipole-dipole interaction term dominates and
therefore the transition goes towards the PSF phase. For larger values of
t̃, the particles are more free to move and the rung composites are not longer
stable. In this case, we expect that the transition takes place between the
MI and the 2SF. Here, we will calculate the PSF-boundaries and the 2SF-
boundaries for each filling factor. The intersection between the two regions
will define the actual Mott lobe. This construction is shown in Fig. II.5.

II.3.b Pair superfluid

Upper boundary. Again, we apply the same procedure to the “defect” state

(II.11) |φp(n̄)〉(0) =
1√
L

∑

i

b̂
(2)†
i b̂

(1)†
i

n̄+ 1
|φMI(n̄)〉(0),
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µ̃

t̃

Figure II.5: Definition of the Mott lobe from the intersection (gray) of the PSF
lobe calculation (white) and the one from 2SF (black).

that creates a correlated pair of particles. In this case, only second order terms
contribute. This comes from the fact that in order to shift the composite, made
of the two extra correlated particles, two hopping terms should act. Therefore,
first order sends us away of the considered manifold. However, the number of
virtual states is higher than in the case of just one chain.

State Ẽν gν −Ẽ(2)
ν /2zt̃2

∆̃
(0)
p = 2n̄ − 2µ̃

− Ũ ′(2n̄ + 1)

Ẽ
(0)
p + 1 2z(L− 2) (L − 2)n̄(n̄ + 1)

Ẽ
(0)
p + Ũ ′ 4z 2(n̄+1)2

Ũ ′

Ẽ
(0)
p + 2 − Ũ ′ 2z n̄(n̄+2)

2−Ũ ′

In the table we considered that ∆̃
(0)
p = Ẽ

(0)
p (n̄)− Ẽ

(0)
MI(n̄). As a result we have

the following expression for the energy

Ẽp(n̄) = ẼMI(n̄) + 2n̄− Ũ ′(2n̄+ 1) − 2µ̃

− 2zt̃2
[
2(n̄+ 1)2

Ũ ′
+
n̄(n̄ + 2)

2 − Ũ ′
− 2n̄(n̄+ 1)

]

.
(II.12)

After equating the Mott and the PSF energies, the upper lobe boundary
becomes

µ̃PSF
+ (n̄) = n̄− Ũ ′

2
(2n̄+ 1)

− zt̃2
[
2(n̄+ 1)2

Ũ ′
+
n̄(n̄+ 2)

2 − Ũ ′
− 2n̄(n̄+ 1)

]

.

(II.13)
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Lower boundary. Once more, we will apply the procedure to the state with
a particular “defect”. This time it consists of correlated pair of holes created
on top of the Mott state. Therefore, the unperturbed state can be written as

(II.14) |φh(n̄)〉(0) =
1√
L

∑

i

b̂
(2)
i b̂

(1)
i

n̄
|φMI(n̄)〉(0).

By the same reasoning as before, no odd terms contribute to the energy.
Hence, the first non-zero correction is the second order term that can be build
based on the following virtual states and their corresponding contribution:

State Ẽν gν -Ẽ
(2)
ν /2zt̃2

∆̃
(0)
h = −2(n̄ − 1)

− Ũ ′(1− 2n̄) + 2µ̃

Ẽ
(0)
h + 1 2z(L− 2) (L − 2)n̄(n̄ + 1)

Ẽ
(0)
h + Ũ ′ 4z 4n̄2

Ũ ′

Ẽ
(0)
h + 2 − Ũ ′ 2z (n̄2−1)

2−Ũ ′

After we equate the resulting energy with the one of the Mott given by (II.10)
and solve for the chemical potential, we get for the lower boundary the function

µ̃PSF
− (n̄) = n̄− 1 +

Ũ ′

2
(1 − 2n̄)

+ zt̃2
[
2n̄2

Ũ ′
+

(n̄2 − 1)

2 − Ũ ′
− 2n̄(n̄ + 1)

]

.

(II.15)

This solution is particularly interesting since for n̄ = 1 and U ′ > U/2 the
slope of the lowest boundary changes from positive to negative. This will affect
the shape of the Mott shells when a trap is added. For U ′ > U(29−

√
73)/24 ≈

0.8253̄U the effect is present in the second lobe although for larger lobes no
inversion occurs.

It is important to note that this re-entrant scenario is independent on the
dimension of the system, because the coordination number z factorizes out. In
Fig. II.6 one can see the distortion of the Mott lobes for different values of the
attractive interaction U ′. Furthermore, another interesting result is that for
low enough hopping, the Mott gap boundaries are quadratic and not linear as
in the case of no inter-wire interaction. This is a direct result of the vanishing
of the first order terms in the perturbation theory.
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Figure II.6: MI-PSF transition from SCE calculation for z = 2 and (a) U ′ = U/4,
(b) U ′ = U/2 where the MI1 lowest boundary is independent of the hopping,
(c) U ′ = 3U/4 where the MI1 lowest boundary has an opposite slope and (d)
U ′ = 9U/10 where the MI2 lobe has a slightly inverted lower boundary.

II.3.c Two superfluid

Now we will focus on the calculation of the interface between the Mott in-
sulator and the phase where the creation of particles is not correlated, the
two superfluid phase. In this case, we have a contribution from first order
perturbation theory because the hopping of one particle (hole) is, of course,
not correlated to the position of the other extra particle (hole) on the other
chain.

Upper boundary. In an analogous way as above, we will add a particle in
each wire on top of the Mott phase. The main difference is that the particles
do not share the same rung and thus, they do not see each other at all. As
before, the process is summarized with the help of similar schemes.

The first order contribution to the energy is provided by the eigenstates:



II.3. STRONG COUPLING ANALYSIS 27

Initial state ∆̃
(0)
p

2
[

n̄(1 − Ũ ′) − µ̃
]

Equivalent state −Ẽ(1)
p /2zt̃

n̄+ 1

For the second order, we have to consider the following virtual states:

Virtual states Ẽν gν −Ẽ(2)
ν /2zt̃2

Ẽ
(0)
p + 1 2z(L− 3) (L − 3)n̄(n̄ + 1)

Ẽ
(0)
p + 1 − Ũ ′ 2z n̄(n̄+1)

1−Ũ ′

Ẽ
(0)
p + 1 + Ũ ′ 2z n̄(n̄+1)

1+Ũ ′

Ẽ
(0)
p + 2 2z n̄(n̄+2)

2

After summing all the terms up and equating with the Mott energy for the
chemical potential, the upper boundary of the Mott insulator to two superfluid
transition is given by

(II.16) µ̃2SF
+ (n̄) = n̄(1 − Ũ ′) − zt̃(1 + n̄) + zn̄t̃2

(4 + 5n̄)Ũ ′2 − n̄

2(Ũ ′2 − 1)
.

Although this expression seems to be rather complicated, it has a very
interesting limit for Ũ ′ → 0,

(II.17) lim
Ũ ′→0

µ̃2SF
+ (n̄) = n̄− zt̃(1 + n̄) +

1

2
zn̄2 t̃2.

Note that this limit coincides with Eq. (I.20) that describes the upper lobe
boundary for one chain. This lead us to the intuitive conclusion that when
no interaction is present, the superfluid state of the two chains is, of course,
completely independent. From this point of view, the idea behind the 2SF
becomes more clear.

Lower boundary. In an identical procedure, we have the following states
for the first order term:
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Initial state ∆̃
(0)
p

2
[

1 − n̄(1 − Ũ ′) + µ̃
]

Equivalent state −Ẽ(1)
p /2zt̃

n̄

And regarding the virtual states, we consider:

Virtual states Ẽν gν −Ẽ(2)
ν /2zt̃2

Ẽ
(0)
p + 1 2z(L− 3) (L − 3)n̄(n̄ + 1)

Ẽ
(0)
p + 1 + Ũ ′ 2z n̄(n̄+1)

1+Ũ ′

Ẽ
(0)
p + 1 − Ũ ′ 2z n̄(n̄+1)

1−Ũ ′

Ẽ
(0)
p + 2 2z n̄2−1

2

Thus, finally the lower boundary of the MI to 2SF transition is described by
the formula

(II.18) µ̃2SF
− (n̄) = n̄(1 − Ũ ′) − 1 + n̄zt̃− zt̃2(1 + n̄)

n̄(5Ũ ′2 − 1) − 1 + Ũ ′2

2(Ũ ′2 − 1)
.

Applying the procedure described in the diagram II.5, one can see that the
MI lobes have a notorious change as shown in Fig. II.7 for 2D and 3D systems.
From Fig. is clear that for Ũ ′ > 1/2 the re-entrant scenario is still present
since the transition from Mott to pair superfluid holds for small values of t̃ as
discussed above. One inportant characteristic of the presented lobes is that
the tip shape changes and in general the lobe gets shorter. However, we recall
that the SCE is far from exact at this region.

II.4 Correlation fucntions

In order to distinguish between the ground-state phases present of the Hamil-
tonian (II.7), we employ the convenient correlation function of Eq. (I.22). An
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Figure II.7: Phase space for a bi-layer system with inter-layer attractive interaction
at the same site from SCE calculation (a) U ′ = U/4, (b) U ′ = U/2 and (c)
U ′ = 3U/4. (d) Three dimensional system, with U ′ = 3U/4. The re-entrant
scenario is still present.

analogous function can be defined for each wire of the ladder as

(II.19) G(α)
1 (∆) = 〈b̂(α)†

0 b̂
(α)
∆ 〉.

In the case of U ′ = 0, when the two wires are completely independent,
it shows an exponential decay for the MI and a polynomial decay for the
superfluid when calculated on either wire. This distiction should hold in the
presence of DDI. Since, no correlation between the wires is considered in
G(α)

1 (∆), it clearly identifies the 2SF when a polynomial decay is presented.
In order to characterize the pair superfluid we have to study the correla-

tion function decay of the composites made of same-rung correlated particles
(holes). We define the composite annihilator operator at the rung i as

(II.20) B̂i ≡ b̂
(1)
i b̂

(2)
i ,

and the extended composite correlation function, or equivalently the two par-
ticle correlation function, as

(II.21) G2(∆) = 〈B̂†
0B̂∆〉 ≡ 〈b̂(2)†0 b̂

(1)†
0 b̂

(1)
∆ b̂

(2)
∆ 〉.
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Figure II.8: The functions G(α)
1 (∆) and G2(∆) for a ladder like potential with

µ = −0.15U , U ′ = 3U/4 and several values of t̃. The three phases can be directly
characterized by the decay of the correlation functions by fitting to a power law
decay presented here as a line.

The G2(∆) correlation function provides information about the existence of
flow of pair-superfluidity.

Our MPS results for G(α)
1 (∆) and G2(∆) are displayed in Fig. II.8 in a

log− log scale where the distinction between the phases is more evident. In
the following table, a guide of how to read-off the ground state phases from
the decay of the different correlation functions is presented:

State G(α)
1 (∆) G2(∆)

Mott Exponential Exponential
PSF Exponential Polynomial
2SF Polynomial Polynomial

PSF to 2SF transition. One of the main advantages of the MPS method
is that it is also possible to calculate the interface between the two different
superfluid phases. As an example, we explored in detail the lowest Mott
insulator lobe. The resulting phase space is depicted in Fig. II.9 where it is
also compared with the SCE results.
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Figure II.9: First Mott-insulator lobe for a ladder potential with attractively in-
teracting rungs for L = 18, χ = 20 and (a)U ′ = U/4, (b) U ′ = U/2 and (c)
U ′ = 3U/4. The different phases are depicted with white (2SF), blue (PSF) and
red (MI). The lines are the theoretical results from SCE where white is the tran-
sition MI-PSF and black MI-2SF.

From the figure, it is very clear that the SCE description is excellent for the
Mott to PSF phase transition that takes place at very small hopping values
and the agreement with the MPS results is notable. In particular, the shape of
the lower boundary and its change in slope is very well reproduced matching
to the MPS calculations. However, for larger values of t̃, there is a clear
discrepancy between both results. In order to explain this, several sources
of error can be recalled such as the finite size of the MPS calculation and



32 CHAPTER II. POLAR BOSONS IN LADDERS

the open boundary condition that were considered in contrast to the periodic
boundary conditions taken for the SCE. On the other hand, from the results
given in the previous chapter, we know that at the tip of the Mott-insulator
the SCE fails. One can also see that the discrepancy is even higher for larger
values of |U ′| although the validity range for the same theory with the PSF
increases. The connection between the two boundaries in SCE also fails since
we considered the two extremes: first, totally uncorrelated and second, totally
correlated pairs. Indeed, there is a parameter regime for which one can find
a slight correlation between extra particles at neighboring rungs.

Although the details of the MPS algorithms are presented in detail in
chapter VII, we would like to point out here an important issue concerning
the numerical MPS calculations, related to the complexity of the correlation
functions involved. In general, each one of them has a total number of oper-
ations of the order of O(χ4d2∆) ∼ 107, where d − 1 is the maximal number
of particles allowed per site and χ is the matrix dimension. This makes the
whole calculation of the phase space a costly procedure since each scanning
requires about 104 calculations for each value of U ′. Moreover, those calcula-
tions are done after retrieving the ground state from the variational method
at each point of the phase space. In conclusion, the MPS result are very re-
liable at a high computational cost that excludes the possibility of exploring
higher values of the filling factor. However, some additional interaction may
be added to the system such as an intra-wire nearest neighbor interaction.

II.5 External harmonic trap

In section I.5 we commented that the presence of a harmonic trap leads to
a wedding-cake structure of the phases if the local chemical potential at the
center lies on a Mott phase and the extremes on a superfluid. Since the
lower boundary of the Mott lobes usually has a positive slope as a function of
the hopping, by increasing the hopping the Mott shell shrinks, reflecting the
intuitive image that the larger the mobility of the particles, the less insulating
the material becomes. However, in the case of the ladder-like potential with
rung attractive interaction, the lower boundary of the first Mott may have a
negative slope in the hopping and thus, we expect that when a harmonic trap
is over imposed we may get the counter-intuitive effect that the Mott shells
would expand as the mobility increases.

Figure II.10 shows the MPS calculation of the system when an external
trapping potential is added. The chosen values for the trap are such that
the center of the ladder has a chemical potential laying in the Mott region
and along the wires the system explore lower values of µ̃ in a way that the
system reaches a filling of zero at the extremes. In this way we impose the
system to form a Mott-insulating core surrounded by a superfluid shell [69].
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Figure II.10: Mott shells of a ladder-like potential with rung attractive interactions
and a trap ǫ̃i = µ̃0 − Ω̃i2 for t̃ = 0 (�), t̃ = 0.05 (•) and t̃ = 0.1 (N).

The results coincide with our expectations. For Ũ ′ < 1/2 the Mott shell
shrinks at t̃ increases (panels (a) and (b)). In the critical case of Ũ ′ = 1/2
the shell is independent of the hopping and thus it remains steady (panel (c)),
and finally, for Ũ ′ > 1/2 the Mott shell gets wider (d). This striking result
challenges the intuitive expectations coming from the usual BHH.
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CHAPTER

THREE

Spin 3/2 fermions in 1D optical lattices

When the complexity of a system is increased, novel physics may appear
in both dynamical processes and ground state properties. In the previous
chapter, we analyze the influence of the dipole-dipole interaction on a system
in a ladder-like potential. Another interesting novel feature of cold atoms
is provided by their internal structure. Spinor gases of atoms with several
internal degrees of freedom, are thus a natural object of research on this field.
Thus, in this chapter, we briefly discuss the physics of spinor gases, specially
the case of spin-3/2 fermions in one dimensional optical lattices.

In previous chapters we conclude that ultra-cold gases in optical lattices
offer an extraordinary controllable environment for the analysis of many-body
phenomena. In particular, one of the breaking-ground experiments show the
realization of the Mott-Insulator to super-fluid phase transition with Bose
gases [6], and even, more recently, the manipulation of two component Fermi
systems in order to observe the Mott insulator to metal transition [70,71].

Multicomponent quantum systems are a rich source of physics and thus,
in the following chapters, we focus on spinor gases. More specifically, in this
one we introduce the topic of spinor gases in optical lattices and develop the
effective Hamiltonian of hard-core spin-3/2 fermions in the Mott regime in the
presence of a quadratic Zeeman coupling. This Hamiltonian presents a wealth
of physics. The next chapter is devoted to the dynamics of repulsively-bound
states that can be builded on top of a polarized eigenstate of this system.
Chapter V deals with the ground state properties of the effective spin-3/2
Hamiltonian.

III.1 Spinor gases

Spinor gases, formed by atoms with several available Zeeman sub-states,
present an exceedingly rich physics caused by the interplay between internal
and external degrees of freedom [72]. For instance, inter-atomic interactions

37
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lead to spin-changing processes in which population is transferred coherently
between different Zeeman sub-levels. This fascinating effect has attracted a
large interest, mostly in the realm of spinor BEC [73,74]. The breakthrough
of spinor condensates came with the development of dipole traps, since it
is possible to confine all the components of a spinor BEC. The spin-1 Na
condensate was the first achievement in this respect [75], followed by 87Rb con-
densates of spin-1 and spin-2 particles [76,77]. Furthermore, spin-3 BEC may
be reached with Cr [78]. From the the theoretical side, spinor condensates have
been focus of deep research including ground state properties [79,80], coherent
spin mixing [81–86], spinor vortices [87,88], spin textures and domains [89,90] and,
spin squeezing and entanglement [91,92].

On the other hand, spinor fermions have recently become the focus of a
rapidly growing interest, motivated by experiments on BEC-BCS crossover in
two-component fermions [7] and the availability of multicomponent fermions,
including three-component Li gases [93], spin-3/2 fermions such as 135Ba and
137Ba [94], and Fermi-degenerate Yb [95]. Multicomponent fermions present a
wealth of novel phases. Pseudo-spin-1 fermions allow for color superfluidity
and trions [96–100], whereas attractive spin-3/2 gases allow for the possibility of
quartet formation [101–105].

Furthermore, spinor lattice gases offer novel physics most relevantly on
the field of quantum magnetism, including anti-ferromagnetic order in spin-
1/2 fermions [106], and even more intriguing phases for higher spins [96,107,108].
In particular, rich physics is expected for repulsive spin-3/2 fermions [109,110],
which at quarter filling may undergo a MI transition. Contrary to spin-1/2
case, the MI of spin-3/2 presents in one dimension two distinct magnetic
phases given by a gapless spin liquid or a gapped dimerized phase, depending
on the interatomic interactions. While for spin-1/2 spin-changing collisions
are absent and the quadratic Zeeman effect (QZE) is irrelevant, the latter is
crucial for higher spins, as shown in spinor condensates [87,111–113]. In spite of
its experimental relevance, the QZE is mostly ignored in the analysis of the
magnetic properties.

III.1.a Short-range interactions in spinor condensates

As we discussed in previous chapters, in ultra cold gases, due to the extremely
low energies considered, the most relevant interactions come from two-body
s-wave collisions. However, on this analysis we neglected the spin degree of
freedom.

Let us consider two identical particles with mas M and spin S. Since
the total spin of the system during the collision is given by ~F = ~S1 + ~S2,
the possible values are thus F = 2S, 2S − 1, ..., 0 (F is conserved during the
collision). However, depending on the statistical nature of the particles not
all F are allowed. In the fermionic case, the total two-particle wave-function
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should be anti-symmetric and since s-wave collisions are characterized by a
symmetric spatial part, the spin part should remain anti-symmetric. The
opposite holds for the bosons for which the two-body wave-function should
always be symmetric. As a consequence for fermions with half-integer spin
and bosons with integer spin, only channels with F even are possible.

m1

m2

m3

m4

Figure III.1: Graphic scheme of a spin-changing collision that conserves the spin
projection.

Furthermore, the isotropic nature of the short-range interactions preserves
the pair spin projection along the quantization axis. This can be expressed
by

(III.1) m1 +m2 = m3 +m4,

as shown in Fig. III.1. The spin projection conservation can be realized in two-
non-equivalent ways. First, spin-preserving processes that take place when
the outgoing particles are of the same kind as the incoming ones. This case
means m1 = m4 and m2 = m3 in the figure. However, a more striking event
may occur, the spin-changing collision (SCC) process, where the population
of the different Zeeman sub-levels is redistributed, for instance ±1

2
→ ±3

2
.

Throughout the following chapters, we will see that this process participates
actively in the ground-state properties and dynamics of spinor gases.

Let us now resume the analysis of the s-wave collision when the spin is
considered. In this case, the corresponding pseudo-potential is reduced to

(III.2) V̂ (~r1 − ~r2) = δ(~r1 − ~r2)

2S∑

F=0

gF P̂F ,

where the coupling strength for the F -channel is defined by

(III.3) gF =
4π~2aF

M
,

with aF the corresponding scattering length and P̂F the projection operator
onto a two-particle state with total spin-F , given by

(III.4) P̂F =

F∑

m=−F

|F,m〉〈F,m|.
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Since those projectors are defined in the basis of the composed spin, they have
to be re-expressed it terms of the incoming spins by means of the Clebsch-
Gordan coefficients CF,m

m1,m2
= 〈m1, m2|F,m〉,

(III.5) |F,m〉 =
S∑

m1,m2=−S

CF,m
m1,m2

|m1, m2〉.

Finally, the explicit expression of P̂F in terms of the spin operators is

(III.6) P̂F = N
∏

m6=F

[

Ŝ1 · Ŝ2 −
m(m+ 1)

2
+ S(S + 1)

]

,

where N is a normalization constant. Below, we calculate explicitly this
operators for particular examples when spin-3/2 fermions are considered. In
this chapter, we discuss the derivation of an effective spin Hamiltonian for
hard core spin-3/2 fermions in 1D lattices considering the QZE. We employ
this Hamiltonian extensively in chapters IV and V.

III.2 Effective spin Hamiltonian without QZE

We consider spin-3/2 fermions loaded in a deep one-dimensional optical lattice,
such that at low filling only the lowest band is relevant. In this regime,
the physics is given by the interplay between the nearest neighbor hopping,
characterized by t, the externally controllable QZE parameterized by q and
the s-wave collisions.

As mentioned above, the fermionic character of the particles requires the
total wave function to be anti-symmetric. Therefore, from the Pauli exclusion
principle, only two different channels are open for collision, namely, the chan-
nels with total spin F = 0 and F = 2. By using the projectors (III.4), the two
channels g0 and g2 lead to the following interaction Hamiltonian

1

G
ĤI = (1 + g)

[

ψ̂†
− 3

2

ψ̂†
− 1

2

ψ̂− 1
2
ψ̂− 3

2
+ ψ̂†

− 3
2

ψ̂†
1
2

ψ̂ 1
2
ψ̂− 3

2

+ψ̂†
− 1

2

ψ̂†
3
2

ψ̂ 3
2
ψ̂− 1

2
+ ψ̂†

1
2

ψ̂†
3
2

ψ̂ 3
2
ψ̂ 1

2

]

+
[

ψ̂†
− 3

2

ψ̂†
3
2

ψ̂ 3
2
ψ̂− 3

2
+ ψ̂†

− 1
2

ψ̂†
1
2

ψ̂ 1
2
ψ̂− 1

2

]

+ g
[

ψ̂†
− 3

2

ψ̂†
3
2

ψ̂ 1
2
ψ̂− 1

2
+ ψ̂†

− 1
2

ψ̂†
1
2

ψ̂ 3
2
ψ̂− 3

2

]

,

(III.7)

where G = (g2 + g0)/2 is the energy unit (G ≡ 1 henceforth) and

(III.8) g =
g2 − g0

g2 + g0
.



III.3. EFFECTIVE SPIN HAMILTONIAN WITH QZE 41

Note that the last term in Eq. (III.7) characterizes spin-changing collisions,
in which atoms in ±1/2 are transferred into ±3/2 and vice versa. It is clear
that g is the coupling constant for SCC. All interactions preserve the overall
magnetization, and hence, when an external magnetic field is added the linear
Zeeman effect has no influence whatsoever on the dynamics.

The effective Hamiltonian of the system with one particle per site can be
calculated with the help of the two-sites spin-manifold projectors [114]

P̂i,j(0) =
(
~̂
Si · ~̂Sj − λ1)(

~̂
Si · ~̂Sj − λ2)(

~̂
Si · ~̂Sj − λ3)

(λ0 − λ1)(λ0 − λ2)(λ0 − λ3)
,(III.9)

P̂i,j(2) =
(
~̂
Si · ~̂Sj − λ0)(

~̂
Si · ~̂Sj − λ1)(

~̂
Si · ~̂Sj − λ3)

(λ2 − λ0)(λ2 − λ1)(λ2 − λ3)
,(III.10)

where λF = 1
2
[F (F + 1) − 15

2
] and

~̂
Si ≡ (Ŝx

i , Ŝ
y
i , Ŝ

z
i ) is the vector of spin

matrices defined on the site i. The final expression for the Hamiltonian reads

(III.11) Ĥeff =
∑

〈ij〉

[

ǫ0P̂ij(0) + ǫ2P̂ij(2)
]

.

with ǫF = −4t2/gF
[115]. In nature, typically the values of a0 and a2, and thus

g0 and g2, are typically similar. However, they may be variated by means of
micro-wave dressing [116] or optical Feshbach resonances [117]. In the relevant
case of g0 = g2, the effective Hamiltonian reduces to

(III.12) Ĥeff = −4t2

g0

∑

〈ij〉

[

P̂ij(0) + P̂ij(2)
]

,

where

(III.13) P̂ij(0) + P̂ij(2) =
9

16
(
~̂
Si · ~̂Sj) −

11

36
(
~̂
Si · ~̂Sj)

2 − 1

9
(
~̂
Si · ~̂Sj)

3 +
99

64
,

showing explicitly bilinear, biquadratic and bicubic terms. This is a consistent
result since for spin-F systems the corresponding Hamiltonian has a polyno-

mial form in
~̂
Si · ~̂Sj with power 2F . This effective spin model also exhibits

a uniform SU(4) symmetry and an exact solution has been obtained by the
Bethe-ansatz method [118].

III.3 Effective spin Hamiltonian with QZE

Up to now, we considered no external magnetic field since any liner Zeeman
effect can be gauged out. However, the quadratic Zeeman coupling may play
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an important role since it imposes a gap between the manifold of spin pro-
jections m = ±1/2 and m = ±3/2. The effect of the QZE is enhanced by
the spin-changing collisions. The total Hamiltonian, with the addition of the
hopping term and the chemical potential, is hence

Ĥ = − t
∑

im

(

ψ̂†
imψ̂i+1m + ψ̂†

i+1mψ̂im

)

− µ
∑

im

ψ̂†
imψ̂im + q

∑

im

m2ψ̂†
imψ̂im + ĤI,

(III.14)

For t≪ G and a sufficiently large chemical potential, the system enters into
the Mott insulator phase with one particle per site. Under these conditions,
the charge degrees of freedom are frozen and the spin degrees of freedom
are characterized by an effective super-exchange Hamiltonian, that can be
calculated by perturbation theory in the hopping.

The diagonalization of the unperturbed Hamiltonian is straightforward as
shown below, where gray balls represent spin m = ±1/2 particles, white balls
m = ±3/2 ones and the dashed ball a hole.

For the manifold of one particle (hole) per site the eigenstates and the
corresponding eigenenergies are

State Energy

0

,
1
4
q − µ

,
9
4
q − µ

For two particles per site on the channel F = 2 with spin projection
mF 6= 0:

State Energy

, , ,
5
2
q + (1 + g) − 2µ

The last pair of states to be considered are those with mF = 0. In this case,
the SCC plays a significant role exchanging population among them, thus we
have to diagonalize the small matrix

(III.15)

(
1
2
q g
g 9

2
q

)

,

that acts on the states and . Giving as a result the eigenstates
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State Energy

= cos θ + sin θ λ+ − 2µ

= − sin θ + cos θ λ− − 2µ

where

tan θ =
1

g

[

2q +
√

4q2 + g2
]

,(III.16)

λ± =1 +
5

2
q ±

√

4q2 + g2.(III.17)

Now, Van-Vleck perturbation theory is used in order to retrieve the ef-
fective spin Hamiltonian [119]. We will follow the example of a spin changing
process in order to calculate the expression

(III.18) 〈n|Ĥ(2)
eff |n′〉 =

1

2

∑

ν

〈n|Ĥt|ν〉〈ν|Ĥt|n′〉
[

1

En −Eν
+

1

En′ −Eν

]

,

where |n〉 are the two-sites states with exactly one particle on each site and
|ν〉 are the intermediate virtual states with pairs of particles on a single site.
As an example, we consider the Hamiltonian matrix element that couples the
states and which contains the SCC.

• Consider the initial state whose energy is 1
2
q − 2µ.

• The perturbation Hamiltonian, that is the hopping, sends both particles

together in the state with an amplitude t.

• Here we project into the eigenstates of the unperturbed Hamiltonian,
for instance to .

• In order to make the hopping back, we again project to the state .

• The perturbation acts on the state sending one particle to the empty
space, so we retrieve the desired target state .

A complete scheme of this procedure is depicted Fig. III.2, with all the
possible paths from the initial state to the target state. The final result reads

csc = 2 sin θ cos θ

[ 5
2
q − λ+

(1
2
q − λ+)(9

2
q − λ+)

−
5
2
q − λ−

(1
2
q − λ−)(9

2
q − λ−)

]

,

(III.19)
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t t

tt

cos θ

cos θcos θ

cos θ

sin θsin θ

− sin θ− sin θ

csc

Figure III.2: Tree of the different processes that lead to the super-exchange mecha-
nism of spin changing between the two spin manifolds. Initially two particles with
spin −1/2 and +1/2 respectively became a pair −3/2 +3/2.

An analog procedure can be done to calculate the remaining coefficients
by scanning all the possible sources and target states, giving the values

c3/2 =2t2
[

cos2 θ
9
2
q − λ+

+
sin2 θ

9
2
q − λ−

]

,(III.20)

c1/2 =2t2
[

cos2 θ
1
2
q − λ−

+
sin2 θ

1
2
q − λ+

]

,(III.21)

c2 = − 2t2

g + 1
.(III.22)

The coefficient c|m| characterizes the super-exchange between neighbor
sites with local magnetizations m and −m, excluding SCC, while c2 does
the same for pairs with |mF | = 2, or in other words pairs m and m′ such that
|m| 6= |m′|. Finally, csc connects the manifold of ±3/2 with ±1/2 through a
super-exchange with spin-changing collisions.

Note that the coefficients diverge for qc = ±(g2 − 1)/4 when the energy of
at least one virtual state coincides with the energy of some real states. In this
case, the Mott becomes unstable and the charge modes cannot be neglected.
This case is out of the scope of this Thesis and we consider henceforth cases
up to the vicinity of the resonances. By combining the coefficients and the
states together, the effective Hamiltonian is

(III.23) Ĥeff =
∑

i

Ĥi,i+1 + q
∑

i,m

m2n̂m,i,
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where n̂m,i = ψ̂†
m,iψ̂m,i is the number particle operator for the m-component

of the spin at the site i, and

Ĥi,j =c2
∑

|m|6=|m′|

[

n̂m,in̂m′,j − ψ̂†
m,iψ̂

†
m′,jψ̂m,jψ̂m′,i

]

+

3
2∑

|m|= 1
2

c|m|

[

n̂m,in̂−m,j − ψ̂†
m,iψ̂

†
−m,jψ̂m,jψ̂−m,i

]

+ csc

{[

ψ̂†
− 1

2
,i
ψ̂†

1
2
,j
− ψ̂†

1
2
,i
ψ̂†
− 1

2
,j

] [

ψ̂ 3
2
,iψ̂− 3

2
,j − ψ̂− 3

2
,iψ̂ 3

2
,j

]

+ h.c.
}

.

(III.24)

This resulting Hamiltonian has a complicated expression in terms of the
spin operators. However, the matrix representation of it is quite simple and
allow numerical calculations in a very direct way. In the next chapters, we
make use of this feature in order to characterize both dynamics and ground
state properties.
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CHAPTER

FOUR

Repulsively bound exciton-biexciton

states in spin-3/2 chains

In this chapter, we show that the interplay between spin-changing collisions
and quadratic Zeeman coupling provides a novel mechanism for the forma-
tion of repulsively bound composites in high spin fermionic gases. In order
to illustrate this idea, spin flips in an initially polarized hard-core 1D Mott
insulator of spin 3/2-fermions are considered. The analysis of the conditions
for the existence of these bound states and a discussion of their intriguing
properties is also presented. It is shown that the effective mass and stability
of the composites depend non-trivially on the spin-changing collisions, the
quadratic Zeeman effect and the initial exciton localization. At the end of
the chapter, the stability of the composites against inelastic collisions is also
demonstrated. This fact opens the possibility of novel quantum composite
phases.

The great advantage of optical lattices over standard condensed-matter
systems, where the interactions with phonons would lead to a large dimer
population damping, is that they provide a dissipation free environment to a
large extent, allowing for a suitable scenario for the study of the intriguing
physics of meta-stable bound states and other transient phenomena far from
equilibrium [48].

Due to the natural discreteness that optical lattices offer, novel possibil-
ities of composite formation are allowed with ultracold atoms. For instance,
the local on-site dimer formation in lattices with attractive interaction [120,121]

and fermionic composites in Bose-Fermi mixtures [122]. An even more strik-
ing effect of the lattice discreteness, is provided by the recent observation of
repulsively bound atomic pairs (doublons) at a given lattice site, which are
dynamically stable in the absence of dissipation [70,123]. Repulsively on-site
bound pairs of spin-1/2 fermions are formed since the large interaction energy
of the doublon cannot be released by the maximal kinetic energy for two atoms
in the lowest band, which in turn is proportional to the hopping energy [124].
The dependence of the doublon life time on the interaction strength has been

47



48 CHAPTER IV. REPULSIVELY BOUND STATES IN SPIN-3/2

U

t

Figure IV.1: Doublon stability in an optical lattice. When the repulsive interaction
is large enough in comparison to the hopping, U ≫ t, energy conservation forces
the particles to remain together in a single site.

use to to detect antiferromagnetic order and probe the nature of quasi-particle
excitations in a fermionic Mott insulator employing optical lattice modulation
spectroscopy [125,126]. Furthermore, the modulation of the lattice, generates a
crossover in the nature of doublon-hole excitations from a Fermi Golden Rule
regime to damped Rabi oscillations [127]. This kind of excitations has been
widely studied and possible applications in cooling techniques and even solar
cells have been proposed [128–130].

It is important to note that repulsively bound pairs are stable under col-
lisions with each other for sufficiently large interaction where, by energy ar-
guments, the elastic scattering between pairs is the only open channel. This
means that even a relatively dense quantum lattice gas of these objects can
be long-lived. However, the dynamics of the collisions and details of the de-
cay depend crucially on lattice depth and the local density of pairs across the
lattice [123].

Our main goal in this chapter is to show that a completely different mech-
anism based on the interplay between spin-changing collisions (SCC) and
quadratic Zeeman effect (QZE) may sustain a novel type of composites for
repulsive high-spin lattice fermions. We illustrate this physics for the case of
hard-core 1D spin-3/2 in a Mott insulator where the particle in each site is
initially polarized in the z component of the spin projection m = −3/2. We
also show that spin flips into m = +3/2 may lead to two types of composites
formed by an exciton, that is a pair of a particle with m = +3/2 and a hole of
m = −3/2; and an anti-symmetric biexciton which is made of two m = −3/2
holes and two particles with m = +1/2 and m = −1/2. A simple scheme can
be seen in Fig. IV.2.

We characterize the dynamics and stability of exciton and biexciton com-
posites and we found that they exhibit a non-trivial dependence on the spin-
changing interactions, the quadratic Zeeman effect and the center of mass
momentum. Finally, we show that inelastic-composite-composite interactions
may be very inefficient, opening exciting possibilities for many-body compos-
ite gases.
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+ 1
2

+ 3
2

− 3
2

− 1
2

(a) The considered background state is a fully polarized Mott
insulator at quarter filling with M = −3L/2 where L is the
system size.

(b) Exciton. (c) Biexciton.

Figure IV.2: Background state (a) and excitations considered in this chapter. An
single spin flip into m = 3/2 consist of the annihilation of the state m = −3/2
and the creation of m = 3/2 and hence an exciton (a). When the exciton interacts
with the background it can become a biexciton made of two m = −3/2 holes and
two particles with m = 1/2 and m = −1/2 respectively (b).

IV.1 Single-flip excitations

We consider an initial background state, |φBG〉, in which all hard-core fermions
are polarized into the state m = −3/2 and we assume that the system is in
the Mott-insulator regime and therefore no empty sites are present. The state
has a total magnetization M = −3L/2, where L is the number of lattice
sites. Note that the state is stable because the collisions preserve M. Fur-
thermore, this state is both experimentally and theoretically straightforward
to implement where in the latter case it is described by the expression

(IV.1) |φBG〉 =

L∏

i=1

ψ†
− 3

2
,i
|∅〉,

which is an eigenstate of the system such that Ĥeff|φBG〉 = EBG|φBG〉 where
EBG ≡ 9

4
qL. The state is sketched in Fig. IV.2(a). On top of this state, we

impose excitations of the form

(IV.2) |m, j〉 ≡ ψ̂†
m,jψ̂− 3

2
,j|φBG〉,

which have actually an exciton-like character. This can be understood from
the fact that they are formed by a particle (with m 6= −3/2) and a hole (in
m = −3/2). A clear scheme of the excitons is presented in Fig. IV.2 in panels
(b) and (c) respectively.

The simplest exciton-like perturbation consists of the creation of one exci-
ton of either spin ±1

2
at any place of the chain. Without losing any generality,

we consider the 1
2
-exciton |1

2
, j〉. The underlying Hamiltonian of such pertur-

bation can be obtained straightforward from (III.23), recalling that only the
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c2 processes contribute and that the total magnetization is preserved, giving

(IV.3) 〈1
2
, i|Ĥeff − EBG|12 , j〉 = (2c2 − 2q)δj

i − c2
[
δj+1
i + δj−1

i

]
,

with δj
i the Kronecker delta.

In this case, the Hamiltonian can be diagonalized since the 1
2
-exciton prop-

agates freely throughout the lattice with an energy E2(k) − 2q where

(IV.4) Em(k) = 2cm(1 − cos k).

with k the center-of-mass momentum of the 1
2
-exciton. We find an analo-

gous case when we consider the exciton |3
2
, j〉 with g ≡ 0. Since the spin-

changing collisions vanish, the manifolds ±3/2 and ±1/2 are totally indepen-
dent. Therefore, we have

(IV.5) 〈3
2
, i|Ĥeff − EBG|32 , j〉 = 2c3/2δ

j
i − c3/2

[
δj+1
i + δj−1

i

]
,

that leads to the dispersion relation E3/2(k) just by taking m = 3/2 on the
Eq. (IV.4).

IV.2 Exciton-biexciton repulsively bound states

When the spin-changing collisions are included, the creation of the exciton
|3
2
, i〉 on top of the background will show a very different scenario, since one

biexciton may be created at expense of the exciton. Such biexciton is described
by

(IV.6) |m, j : −m, j + 1〉 ≡ ψ̂†
m,jψ̂

†
−m,j+1ψ̂− 3

2
,j+1ψ̂− 3

2
,j|φBG〉.

An image of this kind of states is displayed in Fig. IV.2(c). A further super-
exchange process may split up the recently created biexciton into two sepa-
rated ±1

2
-excitons by swapping one of them with the neighboring background

spins. Following processes of the same kind will drag the ±1
2
-excitons fur-

ther away reducing on each step the probability of recombination. This sug-
gests that the exciton will tend always to dissolve into separated ±1

2
-excitons.

However, contrary to this expectation, repulsively bound states can be formed,
where the exciton gets dressed with the biexciton becoming stable and robust.

In order to focus into this phenomenon, let us first have a look into the
full effect of the Hamiltonian on the exciton |3

2
, j〉:

[

Ĥeff − EBG

]

|3
2
, j〉 = − c3/2

[
|3
2
, j + 1〉 + |3

2
, j − 1〉

]
+ 2c3/2|32 , j〉

+ csc
[
|1
2
, j : −1

2
, j + 1〉 − | − 1

2
, j : 1

2
, j + 1〉

+| − 1
2
, j − 1 : 1

2
, j〉 − |1

2
, j − 1 : −1

2
, j〉
]
.

(IV.7)
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(a) (b)

Figure IV.3: Scheme of the states |k±, ∆〉 for L odd and periodic boundary condi-
tions. When one of the exciton moves from a distance (L− 1)/2 to (L + 1)/2, the
description of the state changes from |k+

(L−1)/2〉 (a) to |k−

(L−1)/2〉 (b).

The first two terms are those we already knew from the case with no SCC,
and can be solved in the center-of-mass momentum frame work. The second
term, interestingly, suggests that only anti-symmetrical combinations of biex-
citons are reachable by the exciton. According to this regard, we introduce
the Fourier transformed states [131]

|k, 3
2
〉 ≡ 1√

L

L∑

j=1

eikj|3
2
, j〉,(IV.8)

|k±,∆〉 ≡ 1√
L

L∑

j=1

eik(j+∆/2)| ± 1
2
, j : ∓1

2
, j + ∆〉,(IV.9)

with the constrain 0 < ∆ ≤ (L − 1)/2 and the number of sites L odd. They
are depicted Fig. IV.3. ∆ is interpreted as the distance between the two
±1

2
-excitons. From those states one can also define the symmetric and anti-

symmetric counter parts

(IV.10) |kS,A,∆〉 =
1√
2

[
|k+,∆〉 ± |k−,∆〉

]
.

It is easy to verify that the symmetric states are decoupled by calculating the
underlying Hamiltonian that acts on this manifold. Then, we have

ĤS
eff(k) =(2c2 − 4q)|kS, 1〉〈kS, 1| + 4(c2 − q)

∑

j>1

|kS, j〉〈kS, j|

− 2c2 cos
k

2

∑

j

[
|kS, j + 1〉〈kS, j| + h.c.

]
;

(IV.11)

so the
{
|kS, j〉

}
form a closed set and, because of that, we will not consider

them any further.
In the remaining manifold, for a given momentum k, the underlying Hamil-

tonian for the coupled system of exciton and the anti-symmetric states can
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be written in the form

Ĥ
A, 3

2
eff =EA

1 |kA, 1〉〈kA, 1| + 4(c2 − q)
∑

j>1

|kA, j〉〈kA, j|

− 2c2 cos
k

2

∑

j

[
|kA, j + 1〉〈kA, j| + h.c.

]

+ E3/2(k)|k, 3
2
〉〈k, 3

2
| + Ωsc(k)

[

iei
k
2 |k, 3

2
〉〈kA, 1| + h.c.

]

,

(IV.12)

where Ωsc(k) = 2
√

2csc sin(k/2) and EA
1 = 2(c2 + c1/2 − 2q).

From the numerical treatment point of view, the advantage of this refor-
mulation of the problem lays on the significant reduction of the matrix to
diagonalize. When all the states are taken into account as in Eq. (III.23), the
Hilbert space dimension is L2 and the full diagonalization of the system would
be rather costly, allowing up to a few dozens of sites. However, in order to
diagonalize (IV.12), one deals with a tridiagonal L×L matrix, making possible
to consider a number of sites of the order of hundred or even more.

An example of the typical spectrum is shown in Fig. IV.4. On it, the
similarity to the spectrum of self-bound repulsive pairs of spin-1/2 fermions
is quite clear [123]. The unbounded biexciton solutions form a continuous band
(sea) due to their free relative motion with an effective hopping Ω2(k) =
2c2 cos(k/2) that leads to the dispersion

(IV.13) EB(k, kr) = 4(c2 − q) + 2Ω2(k) cos kr,

where kr is the relative momentum of the pair. In the figure, it is also clear the
appearance of up to three bound states, resembling also the case of repulsive
spin-1/2 fermions with nearest neighbor interactions [131]. Moreover, there is
a band of bound pairs above the sea of unbounded biexcitons in both cases
(a) and (b). This band has the dispersion relation

(IV.14) ES(k) = 2c2(1 − cos2(k/2)) − 4q,

belonging to the symmetric manifold. As we mentioned above, this band
is completely decoupled from the exciton. Henceforth, we will focus on the
analysis of the remaining bands where the dressed exciton becomes stable.

IV.2.a Pairing of excitons and anti-symmetric biexcitons

The remaining pair of bounded states are composed by a linear combination
of the exciton |k, 3

2
〉, the anti-symmetric biexciton |kA, 1〉 and the unbounded

biexcitons |kA,∆〉 with a probability amplitude that decay exponentially on
∆ as shown in Fig. IV.5. Therefore, in order to understand the structure of
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Figure IV.4: Band spectrum for the excitations as a function of the quasi-
momentum k, for q = −4G and L = 121. The dots are the results of the exact

diagonalization of the Hamiltonian Ĥ
A, 3

2

eff while the open circles are the result of
the band analysis using the ansatz (IV.15) in section IV.2.a and with triangles the
band structure of the Hamiltonian (IV.24). In (a) the two bands E±

λ (k) are very
well defined for g = 0.8G, while for g = −0.5G in (b) and g = 0.2G in (c), they are
immersed in the sea of unbounded biexcitons and thus the analytical description
fails.

those states, we introduce an ansatz that fits to the observed behavior:

(IV.15) |φk〉 = cosα

(L−1)/2
∑

∆=1

(−1)∆−1e−(∆−1)/γ |kA,∆〉 + i sinα|k, 3
2
〉,
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Figure IV.5: Numerically retrieved probability distribution for the dressed exciton
with q = −10t2, g = 0.5, k = π/8 and L = 121 in semi-log scale. The point for
∆ = 0 represents |〈φk|k, 3

2 〉|2. For ∆ ≥ 1 a clear exponential decay is presented.

where the exponent gives information about the localization length γ. Now
we impose |φk〉 to be an eigenstate of the system

(IV.16) Ĥ
A, 3

2
eff |φk〉 = Eγ(k)|φk〉,

that becomes the transcendent equation for γ

4(c2 − q) + 2Ω2(k) cosh(1/γ) =
1

2
Γ+(k)

± 1

2

√

Γ2
−(k) + 4Ω2

sc(k),
(IV.17)

where

(IV.18) Γ±(k) = EA
1 + Ω2(k)e

1/γ ± E3/2(k).

Each bound state is related to a different solution γ±, and therefore we are
able to reproduce the two corresponding bands. In order to do so, we need to
know the relation between the energy and the localization length. Considering
Eq. (IV.16) for any unbounded biexciton with ∆ > 1 we obtain

(IV.19) E±
γ (k) = 4(c2 − q) + 2Ω2(k) cosh(1/γ±(k)).

The results of the numerical solution of Eq. (IV.17) were used to calculate
the band diagram, depicted in Fig. IV.4 with open circles, by plugging them
into the dispersion relation (IV.19). An excellent agreement with the exact
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Figure IV.6: Phase diagram of the number of bound states: 0(black), 1(grey) and
2(white), for k = 0 (a), k = π/2 (b) and k = π (c). The hopping is the constant
t = 0.1G. The two black parabolas are the resonances where the approximation
of one particle per site breaks down.

diagonalization of the Hamiltonian (IV.12) can be seen. This correspondence
shows that the ansatz (IV.15) reproduces faithfully the shape of the wave
function while the localization length remains finite.

In order to determine when the ansatz fails, we note that for a given
momentum k, the gap ∆B(k) between the closest band to the unbounded
biexcitons sea and the sea itself can be calculated from Eq. (IV.13) and (IV.19).
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The size of the gap is

(IV.20) ∆B(k) = 2Ω2(k)

[

1 − cosh

(
1

γ±(k)

)]

.

From this result it is clear that when this gap reduces, the localization length
increases, diverging for ∆B → 0. In this limit, the biexciton is no longer
a bound state. Since γ±(k) depends non-trivially on the system parameters
(QZE, SCC and exciton momentum) the existence of both the biexciton and
the exciton bound states will also show an intricate relation with the sys-
tem parameters. In Fig. IV.6 a scan of the number of bound states on the
parameter space at several values of the momentum is presented.
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Figure IV.7: Exciton contribution into the exciton dressed state. At k = 0 there
is no dressing while for k ∼ ±π it is only of about 30%.

When the localization length is small enough, it is possible to neglect the
coupling to the the unbounded biexcitons and to consider only the two bands
of bound states. This condition is fulfilled when the matrix element that
couples the biexciton with the unbounded sea is much smaller that the gap.
This requirement reduces to

(IV.21)

∣
∣
∣
∣

c1/2

c2
− 1

∣
∣
∣
∣
≫ 1.

Then, neglecting the biexciton sea, the underlaying Hamiltonian (IV.12)
becomes

Ĥ
A, 3

2
eff (k) =E3/2(k)|k, 3

2
〉〈k, 3

2
| + EA

1 |kA, 1〉〈kA, 1|
+ Ωsc(k)

[

iei
k
2 |k, 3

2
〉〈kA, 1| + h.c.

]

.
(IV.22)
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This Hamiltonian holds for the white regions in Fig. IV.6 where the two bands
are isolated. Moreover, with the transformation

(IV.23)

(
|k, 3

2
〉

|kA, 1〉

)

=

(

i cosα sinαei
k
2

− sinαe−i k
2 −i cosα

)(
|φ+

k 〉
|φ−

k 〉

)

the hamiltonian becomes

Ĥ
A, 3

2
eff (k) =

[
E3/2(k) cos2 α + EA

1 sin2 α + 4 cosα sinα sin(k/2)
]
|φ+

k 〉〈φ+
k |

+
[
E3/2(k) sin2 α + EA

1 cos2 α− 4 cosα sinα sin(k/2)
]
|φ−

k 〉〈φ−
k |,

(IV.24)

with the mixing angle

(IV.25) tanα =
EA

1 − E3/2(k) +
√
[
EA

1 − E3/2(k)
]2

+ 4Ω2
sc(k)

Ω2
sc(k)

.

From the equations above and the Fig. IV.7, where a plot of cos2 α is
shown, it is even more clear that the bands correspond to both exciton with
a biexciton dressing and vice versa. The band structure of this Hamiltonian
is also displayed on Fig. IV.4(a).

IV.3 Dynamical properties of the bound pairs

The contribution of the exciton to the bound states (sin2 α±) is important for
the understanding of the dynamics after a spin-flip. In order to calculate α
we use the projected Schrödinger equation

(IV.26) 〈k, 3
2
|ĤA, 3

2
eff |φk〉 = iE±

γ (k) sinα,

and the dispersion relation (IV.19). After equating for the mixing angle α, we
get

(IV.27) tanα±(k) =
1

Ωsc(k)

[
E±

γ (k) − Ω2(k)e
−1/γ±(k) − EA

1

]
.

Here we analyze two interesting extreme cases. First, at exactly k = 0,
where the center of mass of the initial perturbation is maximally delocalized,
the coefficient that mixes the exciton with the set of biexcitons vanishes, or in
other words Ωsc(k = 0) ≡ 0. Then, α = π/2 and therefore, one of the bound
states is a pure exciton with energy E−

γ (0) = E3/2(0) while the other one is a
linear combination of the biexcitons |kA,∆〉 with eigenenergy

(IV.28) E+
γ (0) = EA

1 +
2c22

c2 + c1/2 − 2q
.
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Figure IV.8: Time evolution of the width of the exciton wave packet for t = 0.1G,
g = 0.8G, qt2/G = −4 and L = 100. The solid line plots results without spin-
changing collisions and the dashed line the case when such interaction is included.
The initial state is a square wave-packet of 10 sites wide.

For this particular state, the localization length is given by

(IV.29) γ+(0) =

[

ln

(

1 +
c1/2 − 2q

c2

)]−1

.

The second extreme case, when the perturbation is highly localized, has
a very distorted dynamics. This can be understood from the fact that the
coupling between the exciton and the biexciton and consequently the sea of
unbounded biexcitons is rather strong. This leads to the dissolution of the
exciton when at least for some momentum interval only one of the two bands
has a finite localization length.

IV.3.a Delocalized spin-flip excitations

When no SCC are allowed, the effective mass of the excitons M∗0
3
2

at k = 0

can be obtained using the dispersion relation E3/2(k) from (IV.4) as

(IV.30) M∗0
3
2

=
1

2c3/2
.

However, this is not generally the case. Although for a very delocalized
spin-flip (k ≈ 0), the spin-3/2 exciton is in itself one of the bound sates, the
SCC significantly distorts the effective mass of the exciton:

(IV.31)
1

M∗
3
2

≈ 1

M∗0
3
2

− 2c2sc
c2 + c1/2 − 4q

.
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Figure IV.9: Density plot of the spin chain magnetization on time for an initial
Gaussian wave packet of one exciton at 〈i2〉 = 10 with t = 0.1G, qt2/G = −4,
g = 0.8G and L = 100 . (a) For k = 0 the wave packet gets wider with two com-
ponents. (b) For k = π/2 there are two clearly distinguishable outgoing packets
corresponding to the two bound states that the exciton projects into.

Note that the two effective masses differ notoriously since they even may have
opposite sign. This fact modifies radically the exciton wave-packet dynamics.
A particular example is illustrated in Fig. IV.8, where an initially wide spin-
3/2 wave packet diffuses throughout the lattice in very different ways in the
presence or absence of SCC.
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In the case of a wave packet centered on a given finite momentum k0,
the mixture between the states |k, 3

2
〉 and |kA,∆〉 is higher. Thus, the con-

tributions of both bounded states will be reflected in the dynamics. Since
each component has a different group velocity, two out-going wave-packets
are expected. This remarkable behavior is depicted in Fig. IV.9(b).

IV.3.b Localized spin-flip excitations

Up to now, we have analyzed the system when the conditions are such that
at least two bands exist for a wide enough range of momentum. In this case,
any initial state of excitons will be projected into the dressed states |φ±

k 〉
that evolve independently. However, the situation is markedly different if the
initial perturbation is strongly localized and thus all the momenta within the
Brillouin zone contribute. In the particular case of the two totally isolated
bands, still the projection into the bound states holds and two outgoing wave
packets can be seen. Moreover, if the initial configuration is such that k = 0
two opposite propagating packets appear as shown in Fig. IV.10(a). However,
from Fig. IV.6 is then clear that for a large set of parameters only one or
even zero bands exists. This means that the localization length diverges at
least for one of the bound states and the population of unbounded biexcitons
is significant, dissolving the initial exciton. A clear example of this evolution
is shown in Fig. IV.10(b). Although the same initial conditions as in (a)
where taken, no clear outgoing wave-packet is visible, on the contrary a strong
diffusion occurs.

IV.4 Multiple spin-flip excitations

Up to this point, we have considered the dynamics after single-flip excitations.
Although single spin flips may be created using state-of-the-art techniques for
single addressing [132,133], in a typical experiment, however, more than one
spin-flip will be induced. As a result, several excitons will be simultaneously
created, hence opening the possibility of inelastic exciton-exciton collisions
which may open a decay channel for them into unbounded biexciton pairs.
The various initial spin-flip excitations result in a complicated many-body
non-equilibrium dynamics for the created bound composites. In order to eval-
uate this multi-exciton dynamics, we have performed time-dependent MPS
calculations for 1, 3 and 5 non-localized excitons.

As shown in Fig. IV.11, where the conditions are set for the two bands of
the bounded states to be isolated, the population of excitons remains stable
even after a time long enough for several collisions to take place. During the
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Figure IV.10: Time evolution of the local magnetization when the initial flip is
spatially localized. The system parameters are qt2/G = −4 and L = 100. (a)
g = 0.8G where the two bands are completely separated and thus defined wave
packets can be seen. (b) g = −0.5G where one of the bands immerses into the
biexciton sea. In the latter case, no defined wave packet is seen.

first time unit, there is a small population loss in

(IV.32) N 3
2
(τ) =

∑

k

|〈k, 3
2
|k, 3

2
〉τ |2,

of about 4% due to the projection into the bound states |φ±
k 〉 and 1% into the

unbounded sea. Thereafter, no further considerable loss is observed since in
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the 4 consequent time units only up to 1% is missing (the relevant time unit is
the given by the inverse of the super-exchange coupling t2/G). This shows that
inelastic exciton-exciton collisions are very inefficient when the exciton lays on
its stable regime, i.e. the white regions of Fig. IV.6. Hence, multiple spin-flip
excitations lead to an out-of-equilibrium highly-metastable many body state.
The system, thus, may be understood as a basically stable gas of composites,
that are actually excitons with a “biexciton dressing”, opening interesting
perspectives for quantum composite gases. As an example, note that although
the excitons present an effective nearest neighbor attraction with strength
−2c3/2, this interaction becomes irrelevant at low momenta k → 0 compared
to the infinite on-site repulsion due to Pauli exclusion principle. Therefore,
the low momentum properties of the 1D excitons will be as those of a Tonks-
Girardeau gas.
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Figure IV.11: Time evolution of the number of excitons. Lower panel N 3
2
(τ) and

upper panel NB(τ) = N 3
2
(τ) +

∑

k |〈kA
0 |kA

0 〉τ |2, both with t = 0.1G, g = 0.6,

qt2/G = −4 and L = 30, for the case of 1 (dotted) , 3 (dashed) and 5 (solid) spin
flips non-localized on a initial square wave-packet of 10 sites wide.

Apart of the losses of the population, one can see oscillations on top of its
average value. This Rabi-like oscillations come from the presence of the two
bounded states |φ±

k 〉 and their coupling. The amplitude of such oscillation is
considerably small since, as discussed in the previous section, when the system
is spatially non-localized and k = 0 the main contribution to the bound states
comes from the exciton. However, those oscillations are clearly damped due to
the presence of different momenta with, of course, different Rabi frequencies.
When more oscillations contribute, the damping is accordingly increased. This
effect is visible when rising the number of initial spin-flip excitations.
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CHAPTER

FIVE

Mott phases of hard-core spin-3/2 fermions in 1D optical

lattices

In this chapter we concentrate on the influence of the quadratic Zeeman effect
on the Mott-insulator phases of hard-core 1D spin-3/2 fermions. A SU(2) ⊗
SU(2) symmetry leads for a large enough QZE to an isotropic pseudospin-1/2
Heisenberg anti-ferromagnet. When the QZE is reduced, the system undergo
a phase transition into a gapped dimerized phase trough a Kosterlitz-Thouless
transition. In order to determine this phase boundary, we make use of the
level spectroscopy method. The infinite system size scaling gives information
about the universality class of such phase transition.

V.1 Spin chains

The analysis of spin chains and in general, spin lattices, constitutes the core
of the quantum magnetism theory. The best known Hamiltonian describing a
spin lattice is the so-called Heisenberg Hamiltonian

(V.1) ĤH =
∑

〈ij〉
Jij
~̂
Si · ~̂Sj,

where the sign of Jij defines the favorable alignment of the pair of spins at i
and j. In the case of Jij > 0, the energy of the system is reduced when the
corresponding spins are anti-parallel and the exchange is anti-ferromagnetic.
The ferromagnetic case occurs when Jij < 0 and the spins tend to remain
parallel. This basic Hamiltonian may be effectively obtained for the case of
spin-1/2 fermions within the Mott insulator phase. We would like to note that
such Mott insulators of spin-1/2 fermions have recently achieved in pioneering
experiments [70,71].

Super-exchange (i.e. second order) processes lead to an effective Heisen-
berg model with Jij = t2/U , where t is the hopping rate and U denotes on-site
interactions. As a consequence, the system favors an anti-ferromagnetic Néel

65
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ordering in 3D lattices. The anti-ferromagnetic nature of the coupling results
from the fermionic nature of the particles, since two parallel spins cannot
lower the energy via virtual hopping because they cannot occupy the same
site.

We would like to note that, although, as mentioned above, Mott insulators
have been observed in spin-1/2 fermions, current experiments are still over the
entropies necessary to observe Néel ordering (∼ 0.35kB per particle) [134]. The
analysis of novel cooling techniques towards these temperatures constitute
nowadays a very active research field [106,134–137].

In this chapter we are interested in the magnetic properties of spin-3/2
fermions. As already mentioned in previous chapters, spin-3/2 fermions con-
stitute the lowest spin fermionic system with spin-changing collisions in the
hard-core regime. Moreover the QZE, contrary to the case of spin-1/2 systems,
cannot be neglected, as has been shown in experiments on spinor BECs [72,73,76,112,113].
In spite of that, the effects of QZE on the magnetic properties of spin-3/2
fermions have not been considered in the literature up to now.

V.2 Phase diagram of spin-3/2 fermions in 1D

optical lattices at quarter filling

Before entering into the full detail of the problem we want to focus on, let
us establish a framework by considering the general Hamiltonian from Eq.
(III.14), that describes a fermionic gas of spin-3/2 particles loaded into a 1D
optical lattice. We set q = 0 and impose quarter filling, or in other words, we
consider in average one particle per site. Although the system seems to be
quite restricted, it still shows a rich physics reflected in the magnetic properties
of the ground state when the two parameters, g2 and g0, are scanned. Figure
V.1 depicts the corresponding phase diagram [110,138].

The phase diagram is characterized by several phases. For g > 0 and
g2 ≥ g0, the system is a gapless spin liquid with 3 gapless spin-modes. This
phase thus includes the SU(4) line g0 = g2 whose exact solution was retrieved
by Bethe-ansatz [118]. On this line, the manifold of spin±1/2 and the one for
spin±3/2 coexist but are independent. The addition of a QZE is equivalent to
two chemical potentials corresponding to each manifold. In this way, the sys-
tem can be considered as a two band model where only one manifold survives
for |q| > 2Gt2 ln 2 [139].

For g2 < 0 and |g2| large enough, the attractive interactions will force the
four components to cluster all together in a quartet forming a charge density
wave. However, for g0 > 0 the repulsion along the F = 0 channel splits the
quartets apart occupying thus two sites, without vanishing the cluster corre-
lation. Thus, the system goes from a quarter Cooper to a Quartet superfluid.

Finally the last region is characterized by the formation of singlet pairs.
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Figure V.1: Ground state phase diagram for a fermionic spin-3/2 gas loaded into
a 1D optical lattice at quarter filling. The solid lines separate the three present
phases, namely the spin liquid, quarteting and a dimerized phase. The two later
present internal domains. When g0 > the dimers occupy two sites as well as the
quartet Cooper.

When g0 < 0 the involved particles live on a single site and the charge density
wave structure is observed. This singlet Cooper pairs are again split into two
sites when the F = 0 channel becomes repulsive and the dimerization of spin
Peierls order is reached. The latest phase is characterized by a long range
order given by

(V.2) lim
n→∞

〈D̂iD̂i+n〉 = f0, width D̂i = (−1)i ~̂Si( ~̂Si−1 − ~̂Si+1).

where f0 is a finite value. By increasing g0 while keeping g2 constant, we end
up again at the spin liquid phase through a Kosterlitz-Thouless-like transition
at g2 = g0 (g = 0).

V.3 1D Mott fermionic spin-3/2 effective

Hamiltonian in the hard-core regime

Our starting point is the Hamiltonian given by the Eq. (III.23) and (III.24),
that describes the effective Hamiltonian of spin-3/2 fermion gas loaded into
an deep enough optical lattice. We also considered a chemical potential and
a small enough hopping such that the system shows a MI phase with just one
particle per site. In this case, the charge is fixed and the magnetic structure
of the gas depends only on the spin. Thus, we recall the Hamiltonian

(V.3) Ĥeff =
∑

i

Ĥi,i+1 + q
∑

i,m

m2n̂m,i,
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where

Ĥi,j =c2
∑

|m|6=|m′|

[

n̂m,in̂m′,j − ψ̂†
m,iψ̂

†
m′,jψ̂m,jψ̂m′,i

]

+

3
2∑

|m|= 1
2

c|m|

[

n̂m,in̂−m,j − ψ̂†
m,iψ̂

†
−m,jψ̂m,jψ̂−m,i

]

+ csc

{[

ψ̂†
− 1

2
,i
ψ̂†

1
2
,j
− ψ̂†

1
2
,i
ψ̂†
− 1

2
,j

] [

ψ̂ 3
2
,iψ̂− 3

2
,j − ψ̂− 3

2
,iψ̂ 3

2
,j

]

+ h.c.
}

.

(V.4)

and

c3/2 =2t2
[

cos2 θ
9
2
q − λ+

+
sin2 θ

9
2
q − λ−

]

,(V.5)

c1/2 =2t2
[

cos2 θ
1
2
q − λ−

+
sin2 θ

1
2
q − λ+

]

,(V.6)

c2 = − 2t2

g + 1
,(V.7)

csc =2 sin θ cos θ

[ 5
2
q − λ+

(1
2
q − λ+)(9

2
q − λ+)

−
5
2
q − λ−

(1
2
q − λ−)(9

2
q − λ−)

]

.

(V.8)

with λ± = 1 + 5
2
q ±

√

4q2 + g2, tan θ = (2q +
√

4q2 + g2)/g. We consider in
detail the case g > 0 where the dimerized (spin-Peierls) phase is localized for
small enough q [140]. The nature and the characteristics of the g < 0 phases lie
out of the scope of this Thesis (see PhD Thesis of K. Rodŕıguez [141]).

M 3
2

M 1
2

2q

Figure V.2: Scheme of the separation of the two present pseudospin-1/2 manifolds
in the spin-3/2 system when the QZE is added.

Limit of |q| → ∞: pseudospin-1/2 IHAFM

In this extreme case, the manifold of m = ±1/2, M 1
2
, and m = ±3/2, M 3

2
, are

completely separated by an energy difference much larger than the coupling
term between them csc, as shown in Fig. V.2. Therefore, an underlying
Hamiltonian can be calculated in order to observe the spectral properties of
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the system in that limit. Then, the Hamiltonian Ĥi,j on the manifold Mm

reads,

(V.9) Ĥi,j = cm

[

n̂m,in̂−m,j − ψ̂†
m,iψ̂

†
−m,jψ̂m,jψ̂−m,i

]

,

whereas the QZE term becomes the constant Eq = qLm2. For q > 0 we
end up in the manifold M 1

2
and for q < 0, in M 3

2
. With the help of the

pseudospin-1/2 operators

Š
z[m]
i =n̂m,i − n̂−m,i,(V.10)

Š
+[m]
i =ψ̂†

m,iψ̂−m,i,(V.11)

Š
−[m]
i =ψ̂†

−m,iψ̂m,i;(V.12)

it is possible to construct a more intuitive expression for the underlying Hamil-
tonian. So we have,

(V.13) Ĥ
[m](0)
eff = −2cm

∑

i

[

~̌S
[m]
i · ~̌S [m]

i+1 −
1

4
Îi,j

]

+ Eq.

where, in this limit the coefficient takes the value

(V.14) lim
q→±∞

−2cm = 4t2 > 0,

showing that the system projects into a pseudospin-1/2 isotropic Heisenberg
anti-ferromagnet.

Case of |q| ≫ csc: J1 − J2 model

Since the SCC takes states out and into the considered manifold Mm, Van-
Vleck perturbation theory allows us to analyze the behavior of the system
for large but finite QZE. Up to second order in csc, we reach the IHAFM
Hamiltonian

(V.15) Ĥ
[ 1
2
](2)

eff ≈ −2

(

c1/2 +
2csc

c1/2 − c3/2 − 2q

)
∑

i

[

~̌S
[m]
i · ~̌S [m]

i+1 −
1

4
Îi,j

]

,

where the constant Eq has been ignored. An analogous situation is given for
m = 3/2.

Due to the anti-ferromagnetic interactions, one expects the ground state to
show an anti-parallel ordering in the spins and thus a vanishing total magneti-
zation, M[m] =

∑

i〈Š
z[m]
i 〉 = 0. The first excited state on top of this singlet is

given by an spin flip, and has hence spin 1. Thus, this state is a degenerated
triplet. This is important for the spectroscopy calculation shown below.
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Figure V.3: Energy spectrum of the IHAFM for large (a) q < 0 and (b) q > 0. The
solid thin line is the ground state which is a singlet with M[m] = 0, the thick line
is the triplet set of first excited states and the dashed line is the second excited
state. (b) and (c) are classical cartoons of both the ground and the first excited
states when M 3

2
is favored.

In Fig. V.3 the spectrum of the Hamiltonian V.15 is shown for both limiting
cases (a) negative and (b) positive QZE. Moreover, an sketch of the ground
and first excited states is also presented in panels (c) and (d) respectively,
from a classical point of view.

If we go further in perturbation theory, we end up with an anti-ferromagnetic
Hamiltonian with next-nearest neighbor exchange:

(V.16) Ĥ
[m](3)
eff ≈

∑

i

[

J1
~̌S

[m]
i · ~̌S [m]

i+1 + J2
~̌S

[m]
i · ~̌S [m]

i+2 + q
(

Š
z[m]
i

)2
]

.

This model, the frustrated J1−J2 spin-1/2 anti-ferromagnetic chain, presents
a KT phase transition at J1(g, q)/J2(g, q) ≈ 4 [142]. This is the first indicator
that a phase transition is present on the spin-3/2 system and gives a hint
that the universality class of such transition. However, numerical calculations
considering all four components must be performed to confirm this conjecture.
Note that Eq. (V.16) maintains a rotational symmetry. This isotropy is kept
in any order of perturbation theory, being the result of a hidden SU(2)⊗SU(2)
symmetry, which in turn results from the SO(5) symmetry of the Hamiltonian
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with q = 0 [110]. The SU(2)generators for each manifold M 3
2

and M 1
2

are

Šz[m] =
1

2

∑

i

Š
z[m]
i ,(V.17)

Š+[m] =
∑

i

Š
+[m]
i ,(V.18)

Š−[m] =
∑

i

Š
−[m]
i ,(V.19)

V.4 Level spectroscopy.

The Kosterlitz-Thouless phase transition is an infinite order one. This means
that it is not possible to discern it from the ground state behavior. However,
in a case like the system we are studying, the structure of the spectrum is
different at each side of the transition. On the IHAFM, we already analyzed
the low energy spectrum getting a sole ground state with zero magnetization
and a three-fold degenerate first excited state with M = 0,±1.

(a)

! !

(b)

Figure V.4: Cartoon picture of the main structure of the spin Peierls state. Two
consecutive spins associate and the spatial symmetry is broken (a). For final
systems one of the two possible associations is not longer the ground state (b).

For q = 0, it is known that the system presents a dimerized (spin Peierls)
state [110], as we discussed above. This state breaks the translational symmetry
by one site but still has a translation symmetry every 2 sites. Therefore, in the
thermodynamic limit, the ground state is two-fold degenerate. Nonetheless,
for finite systems this degeneracy is lifted with an exponentially small gap in
the system size. Thus, the first excited and the ground state are both singlets
with total magnetization M = 0. Figure V.4 depicts a classical sketch of the
dimerized phase.

We hence know that the fist excited state within the dimerized region is a
singlet with total magnetization zero, while on the IHAFM we have a triplet
with total spin one. Since the Hamiltonian preserves the total magnetization,[

Ĥeff,M̂
]

= 0, the levels can only lie on a given subspace and thus a level

crossing should be observed, as in Fig. V.5. The point where the level crossing
is found provides the phase transition boundary for a given system size L.
Afterwards, a finite-size scaling is used to determine the phase transition line
in the thermodynamic limit.
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Figure V.5: Expected behavior of the system spectrum for given g when scanning
q. In the two extremes the first exited state is a triplet while in the neighbor of
q = 0 it is a singlet. Since the KT transition has infinite order, the ground energy
is smooth and shows no evidence of it.

Numerically speaking, the system under consideration has a huge dimen-
sion, dim(Ĥeff) = 4L. However, the Hamiltonian is described by a sparse ma-
trix and thus the Lanczos method is suitable (for detais see chapter VII). Fur-
thermore, we can consider only the manifolds of total magnetization M = 0
and M = 1. This reduces the dimension of the numerical system notoriously
allowing us to explore larger systems. For instance for L = 10, the original
matrix size is 410 = 1048576 ≈ 106, but on the manifolds we have dimensions
dim(M = 0) = 116304 and dim(M = 1) = 112035, which is about 10% of
the total. Moreover, since the system has a SU(2) ⊗ SU(2) symmetry the
necessary system dimension can be further reduced. In particular, for the
example above we have dim(Ĥeff;M = 0, Šz = 0) = 63504. That is about 5%
of the initial dimension. More intricate methods for further reduction may be
applied, such as momentum conservation. However, they are time consuming
and therefore not always optimal.

The numerical results of the level crossing are depicted in Fig. V.6(a) for
several system sizes. Since the systems behaves symmetrically with respect
of q, we considered here only q < 0 that favors the manifold M 3

2
. In order

to calculate the boundary between the phases we scan the spectrum of the
system for several values of the SCC parameter g. The triplet-singlet level
crossing spots the phase transition point q

3/2
c (g) for this particular value of g.

However, the numerical results are performed for finite systems with periodic
boundary conditions and since we are interested in the thermodynamic limit
of the phase boundaries a finite size scaling is needed. The scaling shows not
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Figure V.6: Phase transition boundary. (a) The boundary for several system
sizes. The finite size scaling at g = 0.5 in (b) reveals the expected qc(g) in the
thermodynamic limit. In (c), comparison between the Lanczos results and the
J1 − J2 model from Eq. V.16.



74 CHAPTER V. MOTT PHASES OF SPIN-3/2 CHAINS

only information about the boundary for L → ∞ but also the universality
class of the phase transition. As shown in the panel (b) of the figure, a
fitting of 1/L2 is suitable to describe the boundary tendency when increasing
the system size. Hence, this confirms a Kosterlitz-Thouless-like class for the
aforementioned phase transition [143].

Finally the panel (c) shows a comparison between the Lanczos procedure
and the results from the J1 − J2 model with third order perturbation theory
described by Eq. (V.16). For the later, the coefficients J1 and J2 where
numerically computed and we plot the curve corresponding to the coefficients
ratio J1/J2 = 4. Those curves present a good agreement for g > 0.4.

On the other hand, for g ≪ 1 the finite size effects are strong and the
scaling is non-reliable. This comes from the fact that the gap reduces ex-
ponentially for small enough values of the SCC and thus, at some point, it
becomes numerically zero closing at the same time the possibility of spectral
analysis. In particular for the extreme of g = 0 the physics changes radically.
On this line, the system becomes exactly solvable [118], being characterized by
a commensurate-incommensurate transition as discussed below.

From the behavior of the system in perturbation theory, a rich physics is
expected in more general potential topologies like ladders and square lattices.
In the case of ladders, an Ising phase transition from a rung-singlet to a
columnar dimer with increasing frustration is expected [144], due to the terms
that induce frustration in the diagonal exchange. For square lattices a possible
second order phase transition showing deconfined criticality is present when
going from the Néel state to a spin disordered state because of the the third
neighbor exchanges.

V.5 Complete phase diagram

As we discussed in section V.2, two phases are present in the Mott regime at
quarter filling of fermionic spin-3/2 gases loaded in 1D optical lattices. They
are the dimerized phase and the spin liquid phase. For q = 0 a Kosterlitz-
Thouless phase transition takes place between them at g = 0. As shown above,
the physics gets richer when the quadratic Zeeman coupling is added [140,141].

With the QZE, the g = 0 point becomes a line, whose physics can be
understood by means of a two-band model [139], where atoms with m = ±1/2
(±3/2) act as fermions at the lowest (second) band, and the QZE difference
2q resembles the band gap. For q̃ < q̃cr ≡ 2 ln 2 ≃ 1.386 the magnetic order is
suppressed due to “orbital” effects, and the system has three massless spinons.
On the contrary for q̃ > q̃cr the “orbital” degeneracy is lifted, and the man-
ifolds ±1/2 and ±3/2 completely decouple in the ground state. When this
occurs, τ = N 3

2
+N− 3

2
−N 1

2
−N− 1

2
saturates to 1, and the system reduces, as

mentioned above, to a pseudo-spin-1/2 IHAFM with J = 4t2/G. Therefore at
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Figure V.7: Phase diagram for spin-3/2 fermions in a 1D optical lattice at quarter
filling in the Mott regime and a quadratic Zeeman coupling. The density plot
represents the chirality τ , the squares plot the singlet-triplet crossing in the exci-
tation spectrum, the circles the jump of the exponent γ to −1 and the white curve
the J/J2 = 4 line resulting from a strong-coupling analysis, and the sole triangle
points the critical qcr expected from two-band theory.

q̃cr there is PT from a gapless spin-liquid into a gapless AF pseudo-spin-1/2
chain. At the phase transition the exponent γ jumps to −1 [139]. This point
was calculated numerically using MPS retrieving the value q̃ ≃ 1.35, in good
agreement with the analytical result [140,141]. The numerical results are also
consistent with 1 − τ ∼ √

q̃cr − q̃ when approaching the phase transition for
growing q. Hence at g = 0 and q̃cr there is a commensurate-incommensurate
transition between the two gapless phases [145]. Moreover, g = 0 and q̃cr is a
multicritical point for three phases: spin-liquid, pseudo-spin-1/2 IHAFM, and
the dimerized phase.

The g < 0 case lies beyond the scope of this Thesis, however, further details
can be seen in [140] and the PhD Thesis of K. Rodŕıguez [141]. The region g < 0
smoothly connects with g = 0 since perturbations from g = 0 into g < 0 are
(marginally) irrelevant in the renormalization group (RG) sense [110] and the
symmetry dynamically enlarges to SU(4). One could hence expect that the
g < 0 region behaves similarly to the g = 0 case for growing q. There is,
however, an important distinction, since for g 6= 0 τ is not a good quantum
number, never saturating for finite q [146]. A plausible scenario for g ≤ 0 is
that the QZE induces a commensurate-incommensurate phase transition, so
that chirality-non-conserving processes remain irrelevant all the way, and do
not modify the nature of the transition which takes place at g = 0. MPS
calculations confirm this scenario [140,141].
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CHAPTER

SIX

AFM phases of spin-1 boson spin chains

We study the phase diagram of anti-ferromagnetic repulsively interacting spin-
1 bosons in optical lattices at unit filling, showing that an externally induced
quadratic Zeeman effect may lead to a rich physics characterized by various
phases and phase transitions. Our work provides a quantitative guide for
the experimental analysis of various types of field-induced quantum phase
transitions in spin-1 lattice bosons. These transitions, which are precluded
in spin-1/2 systems, may be realized using an externally modified quadratic
Zeeman coupling, similar to recent experiments with spinor condensates in
the continuum.

As shown in previous chapters, one of the features of the spin-3/2 system is
the high symmetry it presents. In particular, when the QZE is considered, the
splitting of the two manifolds M 1

2
and M 3

2
leads to a SU(2)⊗SU(2) symmetry.

This way, the system shows a behavior that depends only on the magnitude
of the QZE |q|. Also, this symmetry was further exploited numerically for the
reduction of the effective Hilbert space dimension.

A completely different situation is presented when spin-1 systems are con-
sidered. In this case the local magnetization takes the values m = ±1, 0 and
the corresponding manifolds M1 and M0 have distinct properties. Considering
only M1, it resembles the case of pseudo-spin-1/2 bosons, whereas M0 would
be a spin-less boson system. This fact breaks the symmetry on the QZE and
therefore a different behavior for q > 0 and q < 0 is expected. Therefore, three
phases and two phase transitions are field-induced for anti-ferromagnetic in-
teractions. As we show below, they are a Kosterlitz-Thouless transition from
a XY -Nematic phase to a dimerized phase and an Ising transition from the
dimerized phase to a Large-D phase.

77
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VI.1 Effective Hamiltonian in absence of QZE

Our starting point is the case of q ≡ 0. Spin-1 gases are the simplest spinor
system beyond the two-component ones. Depending on the inter-particle in-
teraction, which is given itself by the s-wave scattering lengths a0,2, the system
presents either a ferromagnetic (a0 > a2) or an anti-ferromagnetic (a0 < a2)
ground state. Experimentally, it is possible to reproduce both cases. For
example, for the first, 87Rb in F = 1 is ferromagnetic [147] while 23Na is anti-
ferromagnetic (AFM) [90]. In the following we focus on the AFM case.

On the other hand, several studies have been done when the gas is loaded in
an optical lattice. For instance, for the AFM a wealth of quantum phases have
been predicted [148,149]. In particular for the relevant case of one-dimensional
systems, which is our main focus, an important result is that the quantum fluc-
tuations lead to a spontaneously dimerized ground state [150–157]. It is known
that the specific case when a0 = a2 has a highly degenerate ground state and
an enlarged SU(3) symmetry [158]. Most of the spin-1 species have scatter-
ing lengths in the vicinity of this point, where small external perturbations
may produce considerable effects by reducing the system symmetry and thus
favoring specific phases.

The starting point of the analysis is the Hamiltonian that describes a
spinful gas in an optical lattice when the charge degree of freedom is frozen.
In particular, we focus on 1D lattices and S = 1. Thus we have

ĤS =
2∑

n=1

∑

〈ij〉
Jij(n)

(
~̂
Si · ~̂Sj

)n

= J
L∑

i=1

[

cos θ
(
~̂
Si · ~̂Si+1

)

+ sin θ
(
~̂
Si · ~̂Si+1

)2
]

,

(VI.1)

where J ≡ J(g0, g2) and θ ≡ θ(g0, g2) are elaborated functions of the inter-
action strengths as we will show below [159,160]. Thus, the properties of the
ground state as well as the excitations are determined by θ since J acts like
an energy scale. The phase diagram is shown in Fig. VI.1.

The diagram is divided into the anti-ferromagnetic and the ferromagnetic
domains. The latter is the case when π

2
< θ < 5π

4
≡ −3π

4
and in the figure it

is dashed. The exactly solvable highly symmetric SU(3) point θ = −3π
4

marks
the beginning of the anti-ferromagnetic region [159]. The repulsive interaction
interval expands from it till another exactly solvable point at θ = −π/2, the
Klumper-Barber-Batchelor (KBB) point [161,162]. This is our region of interest
when the QZE is added and thus it is shaded in the figure. We just consider
these regions because they are easily accessible using spin-1 bosons in optical
lattices. We note, however that more elaborate ideas, although quite involved
experimentally, may allow for the observations of all gapped phases in Fig.
VI.1 [159].
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Figure VI.1: Spin-1 MI ground-state phase diagram with no external fields. The
exactly solvable points are: θ = π/4 the Uimin-Lai-Sutherland point, tan θ = 1/3
the Affleck-Kennedy-Lieb-Tasaki (AKLT) point, θ = −π/4 the Takhtajan-Babujan
point, θ = −π/2 the Klumper-Barber-Batchelor point and θ = −3π/4 the highly
symmetric SU(3) point.

The dimer phase continues up to the Takhtajan-Babujan critical point [163,164],
θ = −π/4, where a second-order phase transition takes place into the Haldane
region. Within this region two important points should be highlighted. First
the Heisenberg point at θ = 0 and the Affleck-Kennedy-Lieb-Tasaki (AKLT)
point which is described with an exact valance bound wave function [165]. Fi-
nally, at the Uimin-Lai-Sutherland critical point [118], θ = π/4, a phase transi-
tion occurs into a gapless phase.

As for the spin-3/2 case, the interactions preserve magnetization, M, and
hence the linear Zeeman effect may be gauged out, note however that the
specific phase diagram depends on M [166]. Contrary to that, the QZE plays
a crucial role in spinor gases, but its effects have been barely explored. The
only contribution, including this coupling, has been done with a mean-field
treatment in 3D. It shows that for a finite magnetization, the coupling leads
to a nematic-ferromagnetic (or partially magnetic) transition [167].

VI.2 System with QZE

Let us now focus on the specifics of the problem we want to work in. We
consider a repulsively interacting ultracold spin-1 bosons in a 1D optical lat-
tice prepared in a balanced mixture of zero total magnetization, M = 0.
Analogously, the interactions are characterized by the coupling constants g0,2

defined as in Eq. (III.3). At integer filling, the system is in the MI regime when
the interaction constants fulfill g0,2 ≪ t. Using, as in the previous chapter,
the Van-Vleck effective theory up to second order, the effective Hamiltonian
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of the system is given by the normalized bilinear-biquadratic spin expression

(VI.2) Ĥeff =
∑

i

[

cos θ
(
~̂
Si · ~̂Si+1

)

+ sin θ
(
~̂
Si · ~̂Si+1

)2

−D
(

Ŝz
i

)2
]

;

where

tan θ =
g0 + 2g2

3g0
,(VI.3)

D = q
3g0g2

2t2
√

2(5g2
0 + 2g0g2 + 2g2

2)
.(VI.4)

The AFM regime with repulsive interactions belongs to the interval −3
4
π <

θ < −1
2
π, where the dominant correlations are of spin-nematic (quadrupolar)

type [156,168].

M1

M0

D

Figure VI.2: Scheme of the separation of the two manifolds in the spin-1 system
when the QZE is added.

For large enough values of |D| two manifolds split, namely the M1 with a
pseudospin-1/2 character and M0 with a spinless-like character. An scheme
of the splitting is presented in Fig. VI.2. Depending on the sign of the QZE
parameter either of them is favored.

VI.2.a XY -Nematic to dimerized phase transition

Let us consider the case of D > 0. Here, the m = ±1 components are favored
and the ground state would lay on the corresponding manifold M1. The
ground state on this manifold is clearly different from the dimerized one and
thus a phase transition is expected between them.

+1

−1
0

(a)
+1

−1
0

(b)

Figure VI.3: (a) Cartoon of the ground state in the XY -Nematic and (b) the first
excited state with clear total magnetization M = 2.

Following the level crossing procedure used in the previous chapter, we first
have to establish the individual low energy excitations present on each phase.
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In the thermodynamic limit the dimerized phase has a two-fold degenerate
ground state. When the system is reduced to a finite size, this degeneracy
is lifted and a gap opens. Therefore, the ground and the first excited states
have a vanishing total magnetization. On the other hand for large D > 0, the
anti-ferromagnetic interaction on the manifold M1 will structure the system
in such way that the ground state has total magnetization zero as well, but
the first excited state would have a magnetization of M = ±2 as depicted
in Fig. VI.3. The point where this two phases coexist D+

c lays on the dimer
upper phase boundary for a given system size L.

The most efficient way to calculate numerically the level crossing, is to cal-
culate the low energy spectrum of the system for several sizes with the Lanczos
method. After that, the thermodynamic limit boundary can be estimated with
the proper finite size scaling. The main challenge for the method is the huge
Hilbert space dimension involved in the calculation. However, we can restrict

ourselves to the different magnetization manifolds since
[

Ĥeff,M̂
]

≡ 0. Under

this constrain, we reduce the matrix size from 3L to

(VI.5) dim(M = 0) =

L/2
∑

n=0

L!

(L− 2n)!n!n!
,

when considering the zero magnetization manifold. As an example, let us take
L = 14. That implies a Hilbert dimension of dim(Ĥeff) = 414 = 268435456 ≈
2.7 × 108. However, we only require a vector with dimension dim(M = 0) =
616227 to fully describe the ground state, which means that only 0.3% is
indeed necessary. Furthermore, for the XY -Nematic phase, only the manifold
of M = 2 is relevant which is even smaller with dimension

(VI.6) dim(M = 2) =

L/2
∑

n=0

L!

(L− 2n− 2)!n!(n + 2)!
,

that for the case of L = 14 takes the value dim(M = 2) = 502593.
The results of the numerical calculation for the level crossing are plotted

in Fig. VI.4, where a scan on the θ interval was performed. In this way, the
curve D+

c (θ;L) is retrieved for each computationally accessible system size.
Then, it is possible to evaluate the infinite system limit for each value of θ
by fitting the behavior of the crossing point. An excellent agreement with an
inverse quadratic behavior of L is observed. This highlights the universality
class of the phase transition setting it as one of the Kosterlitz-Thouless type.

One of the features of the phase transition line D+
c (θ) is that it closes when

θ → θSU(3) = −3
4
π. In the vicinity of this point, the gap between the ground

and first excited state in the dimer region is numerically speaking zero, and
therefore the level crossing cannot be discerned. However, the exponential
reduction of this gap and the universality class of the phase transition can be
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Figure VI.4: Numerical results of the level crossing by Lanczos diagonalization for
several system sizes. The expected boundary in the thermodynamic limit is given
by the function D+

c (θ) shown as a thick line. The inner panel shows the excellent
fitting of the finite size scaling in 1/L2 for a particular value of θ.

predicted by means of a low-energy effective field theory around the highly
symmetric point θSU(3)

[169]. The numerical results are thus consistent with
that picture showing the robustness of the treatment.

VI.2.b Large-D to dimerized phase transition

In strong contrast to the spin-3/2 case, for spin-1 chains with QZE, the sym-
metry on the sign of it is broken. When D < 0, only one component is favored,
as can be seen in Fig. VI.2. This changes the physics of the underlying system.
We already know that for D = 0 the ground state presents a dimerized phase.
On the other extreme, for large enough |D| ≫ 1 but D < 0, the system un-
dergoes a transition towards a state with absolutely no m = ±1 components
so-called the large-D phase or polar phase.

The ground state goes smoothly from a state composed only by m = 0
towards the dimer as |D| decreases, following a path on the manifold of total
zero magnetization. In despite of that, from Fig. VI.5, it is clear that there
is a change in the magnetization of the first excited state at different phases.
Since it changes from M = 0 in the dimer region to M = 1 in the large-D,
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Figure VI.5: (a) Cartoon of the ground state in the large-D. (b) the first excited
state with clear total magnetization M = 1.

they must cross each other at the phase boundary. Because of that, the level
crossing spectroscopy is again useful in the localization of the phase transition
line D−

c (θ).
Again, the main advantage of the phases belonging to different manifolds

with constant magnetization is that, we can restrict ourselves to the underly-
ing Hamiltonians.
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Figure VI.6: Numerical results of the level crossing for several system sizes. The
boundary in the thermodynamic limit is given D−

c (θ) shown as a thick line. The
inner panel is the finite size scaling in 1/L for a given θ.

The numerical procedure is analogous to the already analyzed cases of
spin-3/2 and spin-1 for D > 0. The important value is the dimension of the
manifold

(VI.7) dim(M = 1) =

(L+1)/2
∑

n=0

L!

(L− 2n− 1)!n!(n + 1)!
,
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Figure VI.7: Mott phases of anti-ferromagnetic interacting spin-1 bosons at unit
filling with the corresponding phase transitions.

which for L = 14 takes the value dim(M = 1) = 585690. However, several
difficulties where found as can be seen in Fig. VI.6. First, for L ≥ 10,
the boundary presents two sections where the right one grows and the left
one shrinks and therefore is expected to vanish, numerically speaking, at the
thermodynamic limit. This also agrees with the low energy field theory that
predicts an exponentially small dimer region in the vicinity of θSU(3) for D <
0 [169]. The right section would form, in the thermodynamic limit, the actual
dimer phase domain. However, as a second difficulty, for L < 10 this region
vanishes, contradicting the analytical predictions.

These difficulties encouraged us to go up to L = 16 sites. It is important to
note that for this particular system size, the manifolds are much bigger being
dim(M = 0) ≈ 5.2 × 106 and dim(M = 1) ≈ 4.3 × 106. This requires much
more computational effort than the previous ones since the matrix dimension
grows one order of magnitude and the diagonalization procedure goes like
O(dim2). This traduces into an effort hundred times harder.

A third difficulty was found when the finite system scaling was being done.
In this respect, fitting to a function only going as either 1/L (Ising) or 1/L2

(KT) failed. Therefore, a linear combination of them was done with the
results displayed on the inner panel of Fig. VI.6. As a consequence of this, the
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universality class of the phase transition cannot be entirely defined and thus
other procedure has to be performed such as the determination of the central
charge at D = 0 [169,170]. The result is that this phase transition belongs to
the Ising universality class.

Finally, Fig. VI.7 shows the expected thermodynamic limit transition lines
and the different domains that they separate. This map can be used as a
guideline for the experimental exploration of the aforementioned phases.
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CHAPTER

SEVEN

Numerical Methods

The high complexity of the quantum many body systems often requires though
numerical calculations. In the most of the cases, the complexity is such that
super computers are required. However, novel ideas in the field of computa-
tional physics and quantum computing had brought to light powerful algo-
rithms able to solve those problems with a notoriously reduced computational
effort. Of course, the main feature of the algorithms is the creative way of
exploit the physical symmetries and relevant quantities, in order to reduce
not only the effective dimension of the problem but the complexity involved.
Throughout this thesis, we have made use of mainly two methods, the MPS
toolbox and the Lanczos algorithm. In this final chapter we describe these
methods in detail, as well as their implementation which constituted a large
part of this PhD work.

VII.1 Representation and Speed-up

VII.1.a Scheme

Along this chapter, a lot of formulas and equations are related to very com-
plicated matrix-like products. The use of indexes can be very tedious and
confusing. Besides, the point can be lost within such complicated expres-
sions. In order to show a complete and clear development of the different
topics, is quite convenient to represent the tensors and all the related oper-
ations in a schematic form. The basics of the tensor representation can be
described as

• Any object with several entries is called tensor and is represented by a
box.

• The rank of a tensor T is given by the number of outgoing lines it
has. For instance a matrix is a 2-rank tensor and therefore it can be
represented by

89
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T

• Any line that connects two objects represents a sum over a dummy
index. For instance, let C = AB be a matrix-matrix multiplication. In
terms of the matrix elements this expression reads

Cij =
∑

k

AikBkj;

but in terms of boxes it is

A BC =
.

• In a tensorial equation the number of free lines denotes the rank of the
outcoming tensor, as is shown above.

• States are represented by kets(bras). To clarify this, let us have a look to
a ket |φ〉 that describes the state of a given system. In a particular basis
{|n〉}, |φ〉 can be written as a linear combination of the basis elements

|φ〉 =
∑

n

cn|n〉.

The coefficients can be packed into an object ~c, that has several entries
and can thus be represented by a box. So we finally have,

|φ〉 = c |n〉.

In order to get practice with the notation, we will represent the calculation of
an expected value by using the box scheme. The first object we need is the
bra asociated with |φ〉,

〈φ| = c⋆ 〈n′|.

Now we can consider the operator Ô.

〈φ|Ô|φ〉 =
∑

n′

∑

n

c⋆n′On′ncn,
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〈φ|Ô|φ〉 =

c⋆

c⋆

c

c〈n′|Ô|n〉

= Ô
,

where On′n = 〈n′|Ô|n〉. It is important to notice that the right hand side has
no free lines, therefore it represents a tensor with rank zero, that is just a
number, as expected from the left hand side. A clear example of this can be
made by calculating the trace of a matrix:

Tr(T) = T
,

where is at both sides of the equation we have a scalar number.

VII.1.b Product Optimization

When two matrices are multiplied not only their rank will contribute to the
complexity of the calculation but their dimensions. For example, let A be a
2-rank tensor, so it is a matrix with dimension d1 × d2, and B another matrix
with dimension d2 × d3. Then, the product of this two matrices, represented
by the matrix C, has a dimension d1 × d3. Therefore, we have to compute
d1×d3 matrix elements and for each one of them we have to make a sum with
d2 elements. This shows that the number of operations we have to do in order
to perform the product C = AB goes like O(d1d2d3).

As we will see below, the calculation of several expected values can lead
to very complicated expressions and products in the MPS formalism. As
an example, we will have a look into the calculation of the following matrix
product that resembles the calculation of a MPS norm or a expected value.
So using sum notation over duplicated indexes the expression is given by

(VII.1) C = Aα
ββ′Aα⋆

ββ′′′Bα′

β′β′′Bα′⋆
β′′′β′′

A

A⋆

B

B⋆

=

,

where thin lines have dimension d (α’s) and thick ones χ ≫ d (β’s). This
calculation can be done basically in two ways:

1. Starting with the matrices depicted on the same column we have a num-
ber of operations of the order of O(χ3d) and the remaining calculation
will take about O(χ2).
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2. Multiplying the matrices in the same row. This takes O(χ3d2). Then
make the remaining product in O(χ2d2) operations.

The total complexity for the second option is then the largest of the two inter-
nal products by a factor of d. From this short analysis is easy to conclude that
the first method is more efficient for the calculation of C. The same analysis
is aplied to several other calculations in order to speed-up the performance of
the algorithm.

VII.2 Matrix Product States

In 1992 S. White proposed a new numerical method able to approximate
as much as desired the ground state of one-dimensional lattice Hamiltonians
such as the Bose-Hubbard model. This method was based on renormalization
techniques applied to an optimized way to express the density matrix of a
block within the system under consideration and therefore the method received
the name density matrix renormalization group or DMRG [171]. In time, this
method would be further developed for both ground state properties [172,173]

and dynamical problems [174] based on the matrix product state ansatz [175]. In
the following, we review the main ideas behind the MPS ansatz.

VII.2.a The Ansatz

Let us consider a multipartite one dimensional quantum system made of a
chain of L sites each one with an internal dimension d, and an arbitrary state
|φ〉 that describes the full system. The total Hilbert space can thus be written
as H =

⊗L
s=1 Hs with a total dimension dL, where Hs is the Hilbert space of

the site s. Furthermore, the state |φ〉 cannot be expressed as a direct product
of states belonging to the different sites.

1 2 3 L − 3 L − 2 L − 1 L

αL
αL−1

αL−2 ωαLωαL−1ωαL−2

Figure VII.1: System under consideration and a small succesion of splittings.

However, since for a bipartite system, whose Hilbert space can be written
as the tensor product H = Hα ⊗Hω, it is possible to express any state by the
Schmidt decomposition [176]

(VII.2) |φ〉 =
∑

i

λi|αi〉|ωi〉.
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We can rewrite |φ〉 by a sequence of splitting and decomposition as depicted
in Fig. VII.1. In each step, we separate the last site of the current sub-chain
|αs+1〉 getting

(VII.3) |αs+1〉 =
∑

αs

λαs|αs〉|ωαs(αs+1)〉.

The two set of states {|αs〉} and {|ωαs(αs+1)〉} are bases of the corresponding
sub-spaces, and the λαs are non-negative numbers that hold the relation

(VII.4)
∑

αs

λ2
αL

= 1,

since the coefficients λ2
αs

are the eigenvalues of the reduced density matrix
corresponding to either sub-system. Thus,

(VII.5)
∑

αs

λ2
αs

ln(λ2
αs

) = Ss,

is the entanglement entropy between them.
The basis {|ωαs(αs+1)〉} may not be the most convenient set to express

the state of the site s. Therefore, we transform such state into a known local
basis {|ns〉} through

(VII.6) |ωαs(αs+1)〉 =
d∑

ns=1

Γns
αsαs+1

|ns〉.

Under this transformation, |αs+1〉 becomes

|αs+1〉 =
∑

αsns

λαsΓ
ns
αsαs+1

|αs〉|ns〉

=
∑

αsns

Ans
αsαs+1

|αs〉|ns〉,
(VII.7)

where Ans
αsαs+1

≡ λαsΓ
ns
αsαs+1

are in general complex coefficients. From the ex-
pression above, it is clear that after packing together the resuls of the succesive
splitting and decomposing, the total state |φ〉 can be written as

(VII.8) |φ〉 =
∑

α1···αL

∑

n1···nL

An1
α2

· · ·Ans
αsαs+1

· · ·AnL
αL
|n1〉 · · · |ns〉 · · · |nL〉.

This expression is exact since no approximation has been done. From
the numerical point of view, however, this is still not convenient because
still the total number of coefficients is exponentially big. In order to make
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the expression computable, we introduce a first approximation by imposing a
truncation χ in the range of the indexes αs. This is justified by the fact that

(VII.9) λαs ∼ e−καs ,

where κ > 0 [174]. This means that the truncation process discard the states
with less weight, and therefore the representation of the state can be as faithful
as desired.

It is important to note that at the middle of the chain αL/2 = 1, ..., dL/2

without imposing any cut-off. In the particular case of hard-core bosons in
a chain with L = 20 sites this quantity takes the value 210 = 1024, so the
total number of entries for the matrix A

nL/2
αL/2αL/2+1 is 2(210)2 ≈ 2× 106. In the

following we will assume a uniform cut-off for all the matrices and from this we
have that the total number of entries used to represent a given state is Ldχ2.
It is very important to note that the number of elements grows linearly with
the lenght of the chain, and hence the manipulation is only polynomically
complex.

In order to simplify the expressions further, we will introduce the double
index sum notation and schematic diagrams to represent matrices as intro-
duced in VII.1. Thus, the box As represents the matrix Ans

αsαs+1
at the site

s and every line that connects two boxes represents a summation over the
indexes with thick lines being summations over the α’s and thin lines over
n’s. So the state |φ〉 looks like

|φ〉 = A1 As AL

|n1〉 |ns〉 |nL〉

The MPS representation for a given state is not unique since several sets of
matrices can have the same final product, then, one can choose a convenient
way to express a given state in order to compute expected values or any other
quantity with the least effort.

VII.2.b Basic Examples of MPS

As we already discussed, the MPS ansatz is a suitable technique to approx-
imately represent not too entangled states of a one-dimensional array of L
sites with only a polynomically big number of elements. Here, a set of par-
ticular examples are shown with the purpose of giving a closer idea of the
computational calculations actually done throughout this Thesis. First, the
MPS representation of a Fock state will be shown and later, we will consider
a two-site system with a spin singlet.
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General Structure of the MPS Tensor

Before starting with the examples of the MPS tensor, it is important to clarify
the way the MPS ansatz is manipulated. The general structure can be then
depicted by a matrix whose columns enumerate the L sites and the rows
enumerate the d local states. This is

(VII.10) A =

sites →

local
basis
↓






A|1〉1 · · · A|1〉s · · · A|1〉L
...

. . .
...

. . .
...

A|d〉1 · · · A|d〉s · · · A|d〉L






,

where the sub-matrices Ans have dimension χ× χ. The internal structure of
each sub-matrix is

(VII.11) Ans =

αs+1 →

αs

↓






Ans
11 · · · Ans

1χ
...

. . .
...

Ans
χ1 · · · Ans

χχ






.

This particular choice for organizing the elements of the MPS is very con-
venient for the further manipulation in the calculation of expected values and
correlation functions. Now, let us continue with the examples.

Fock States

In the frame work of cold atoms, bosons loaded in one-dimensional optical
lattices fulfill the requirements for a system to be described by an MPS. The
local basis is given by the Fock states that count the number of particles at
the site s. A particular example for L = 3 is

(VII.12) |φ〉 = |01〉 ⊗ |22〉 ⊗ |13〉,

where the sub-index labels the site and the ket |ns〉 is the Fock state for ns

particles. Therefore |φ〉 represents a system with no particle in its first site,
two in the second and one in the third. For simplicity, it is assumed that the
maximal number of particles allowed in a single site is 2. This is physically
the case if there is a strong-enough on-site interaction. But the mechanism
that generates such system is not the focus of the current discussion.

The construction of an MPS state is based on the Schmidt decomposition
of states, starting by splitting the last site and so on. However, for the case of
a Fock state this is already done since the state is separable and at each site
we are using the local basis. The exact size of the matrices with no cut-off is
χ = 1 since there is no entanglement between the parts, and therefore we can
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describe the system just by a set of numbers instead of matrices. In order to
see that, consider the general MPS representation for the state

|01〉|22〉|13〉 =An1
1 A

n2
11A

n3
1 |n1〉|n2〉|n3〉.(VII.13)

By equating both states it is possible to read off the matrix elements of the
MPS

A01
11 = A21

11 = A13
11 = 1,

otherwise they are zero. From the matrix elements, we can reconstruct the
whole Matrix Product State as a 2-rank tensor as follows

(VII.14) A(φ) =

s = 1 2 3
n0

n1

n2





1 0 0
0 0 1
0 1 0




.

Let us consider the inverse procedure in which we know the MPS repre-
sentation of a given state |φ〉 and we want to retrieve it in the corresponding
Fock basis. By taking the matrix A(φ) one can see that the number of sites
is L = 3 and each site has 3 internal states. Therefore, the general state for
this kind of system can be written as

(VII.15) |φ〉 =
∑

~n

c~n|~n〉,

where ~n = (n1, n2, n3). The name of the ansatz comes from the fact that
the coefficient related to a given Fock element ~n is the product of the tensor
elements corresponding to it. In other words for ~n = (01, 02, 03) one has to
consider

(VII.16)

s = 1 2 3
n0

n1

n2





1 0 0
0 0 1
0 1 0




,

that gives c(01,02,03) = 1×0×0 = 0. Then it is clear that the only non vanishing
product is

(VII.17)

s = 1 2 3
n0

n1

n2





1 0 0
0 0 1
0 1 0




,

that corresponds to the coefficient ~n = (01, 21, 13) and therefore the state is
exactly the state we expected |φ〉 = |012213〉.
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It is important to notice that since the coefficient c~n depends only on the
product of the corresponding elements, several tensors can be constructed in
order to reproduce a given state. For instance, the matrix

(VII.18) Ã(φ) =

s = 1 2 3
n0

n1

n2





1
2

0 0
0 0 3
0 2

3
0




,

will produce the very same result. This implies that an optimization can be
done in order to compute with the least effort any required calculation. As
we will see below, this optimization is performed using the properties of the
singular value decomposition and unitary matrices.

In a more general case, entanglement between two sites has to be consid-
ered and the cut-off is consequently larger, χ > 1. As a very straightforward
example we will consider a spin singlet.

Spin singlet

Entanglement plays a significant role in the description of states via MPS,
since the Schmidt decomposition has larger number of components as the
entanglement between the two sub-systems increases. In this section, a singlet
of two spins 1/2 is considered where each spin is located on a different site.
This restrict ourselves to the parameters d = 2 and L = 2. Then, the starting
points are the state |φ〉 and its MPS representation

|φ〉 =
1√
2
(| ↑1↓2〉 − | ↓1↑2〉)

=An1
α A

n2
α |n1n2〉, ni = {↑i, ↓i}.

(VII.19)

As we can see, the state |φ〉 has already the form of a decomposed state where
the bases of the sub-systems are the corresponding eigenstates of the spin
projection along z. From it, we can see that χ = 2 and therefore α = 1, 2. A
possible set of tensor elements is given by

(VII.20) A↑1
1 A

↓2
1 = −A↓1

2 A
↑2
2 =

1√
2
,

and all others vanish. To test this statement, let us build the state that the
tensor

(VII.21) A =







(
1√
2

0
) (

0
1

)

(

0 − 1√
2

) (
1
0

)
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represents, where the first row represents | ↑〉 and the second | ↓〉, by calcu-
lating the coefficients on the two-spin basis as follows

c↑1↑2 =
(

1√
2

0
)

·
(

0
1

)

= 0

c↑1↓2 =
(

1√
2

0
)

·
(

1
0

)

=
1√
2

c↓1↑2 =
(

0 − 1√
2

)

·
(

0
1

)

= − 1√
2

c↓1↓2 =
(

0 − 1√
2

)

·
(

1
0

)

= 0.

(VII.22)

By summing up these results with the corresponding two-site basis elements,
we retrieve the initial spin singlet. Once more, it is important to note that
the MPS tensor is not unique.

An interesting feature of the MPS is that it allows a direct calculation
of expected values. As an example in this case, let us compute the total
magnetization of the system which is the sum over the magnetization on each
site. This is expressed by

(VII.23) M =
2∑

i=1

〈Ŝz
i 〉,

where Ŝz
i is defined as

(VII.24) Ŝz
i =

1

2
(| ↑i〉〈↑i | − | ↓i〉〈↓i |).

Since {| ↑i〉, | ↓i〉} is the local base, the magnetization is represented by the
diagonal matrix

(VII.25) Sz
i =

1

2

(
1 0
0 −1

)

.

Let us focus on the expected value of such operator on the singlet state |φ〉 in
its MPS representation. Thus, initially considering i = 1 we have

〈φ|Ŝz
1 |φ〉 =A

n′
1⋆

α′
2
A

n′
2⋆

α′
2
〈n′

1n
′
2|Ŝz

1A
n1
α2
An2

α2
|n1n2〉

=
(

A
n′

1⋆

α′
2
An1

α2
〈n′

1|Ŝz
1 |n1〉

)(

A
n′

2⋆

α′
2
An2

α2
〈n′

2|n2〉
)

=[E1(m̂1)]α2α′
2
[E2(Î2)]α2α′

2

=Tr
[

E1(Ŝz
1)E

2(Î2)
]

(VII.26)
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where in general Ei(Ôi) is the transfer matrix of the operator Ôi at the site
i [177]. A detailed explanation of it will be presented in the following sections.
In this example, the calculation of this matrix is quite straightforward giving

E1(Ŝz
1) =

(
1√
2

0

0 − 1√
2

)

1

2

(
1 0
0 −1

)( 1√
2

0

0 − 1√
2

)

=

(
1
4

0
0 −1

4

)

,

E2(Î2) =

(
0 1
1 0

)(
1 0
0 1

)(
0 1
1 0

)

=

(
1 0
0 1

)

,

(VII.27)

and therefore

〈φ|Ŝz
1 |φ〉 =Tr

[(
1
4

0
0 −1

4

)(
1 0
0 1

)]

=0.

(VII.28)

An analogous calculation will show that 〈φ|Ŝz
2 |φ〉 = 0 and thus the total

magnetization also vanishes as expected.
We have analyzed the way a expected value is calculated within the MPS

framework. And although the results are quite direct, it is clear that for
larger and more complex systems the expressions involved are tedious and
long. Because of that, henceforth the box notation is much more useful to
point out the important quantities and procedure leaving behind the indexes
and the sum notation.

VII.2.c Orthogonalization of the states

Let |φ〉 be a state that describes a system with L sites each one with internal
dimension d. It can be written in the form of a MPS as

(VII.29) |φ〉 = An1
α2

· · ·Ans
αsαs+1

· · ·AnL
αL
|n1〉 · · · |ns〉 · · · |nL〉.

In order to calculate any local observable on a given site s such as 〈φ|Ôs|φ〉,
it is necesary the computation of the transfer matrices Es(Î) defined by

Es(Î) =

As

As⋆

αs αs+1

α′

s α′

s+1

〈n′

s|Î|ns〉
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(VII.30) = A
n′

s⋆
α′

sα′
s+1
Ans

αsαs+1
〈n′

s|Î|ns〉.

In a closer look to the structure of the transfer matrices, one realizes that
they are the product of the matrix As with its self-Hermitian conjugate,

E
αsαs+1

α′
sα′

s+1
(Î) =A

n′
s⋆

α′
sα′

s+1
Ans

αsαs+1
〈n′

s|Î|ns〉
=Ans⋆

α′
sα′

s+1
Ans

αsαs+1

Eγs

γ′
s
(Î) =A⋆

γ′
sns
Ansγs

Es(Î) =As†As.

(VII.31)

where we introduced the index γs ≡ (αs, αs+1), rearranged the indexes and
performed the sum over n′

s.
Up to now, we did not assume any particular structure for the matrix As

although we already saw that the MPS representation is not unique and we
can select the most convenient one. Moreover, the last equation tells us that if
As is an unitary matrix the corresponding transfer matrix Es(Î) is in itself an
identity matrix. This is a huge advantage since it always appears in products
and therefore can be ignored saving O(χ4d) operations. This encourages us
to develop a procedure to keep most As matrices unitary. A standard way to
do so is through the Singular Value Decomposition (SVD) as follows [178]

• Let us consider first the matrix related with the site s = 1 and its
Singular Value Decomposition (SVD)

(VII.32) An1
α2

=
∑

β2

Un1
β2
dβ2Vβ2α2 ,

by definition, the matrices U1 and V2 are unitary. So we will replace the
matrix An1

α2
with the elements of Un1

b2
. In this way, the matrix associated

with s = 1 is already orthogonal. However, we have to keep the state
unaffected. Therefore we cluster together the matrices d2 and V2 to the
matrix to the right, namely A2.

• This is simple to see when we consider not only the first but the second
matrix, so we have

∑

α2

An1
α2
An2

α2α3
=
∑

α2

∑

β2

Un1
β2

(
dβ2Vβ2α2A

n2
α2α3

)

=
∑

β2

Un1
β2
Ãn2

β2α3
.

(VII.33)

• From this point on, the procedure should change a bit since the matrices
have three indexes instead of two. To solve this problem, we will combine
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the indexes ns and βs as just one index νs before perfoming the SVD.
In particular, for s = 2 we have

Ãn2

β2α3
=Ãν2α3

=
∑

β3

Uν2β3dβ3Vβ3α3

=
∑

β3

Un2
β2β3

dβ3Vβ3α3 .

(VII.34)

Once more, we take the unitary matrix U2 as the matrix describing the
site s = 2 and the rest should be multiplied to the matrix A3 to form
the updated matrix Ã3. It is important to note that the unitarity of U2

is expressed as

(VII.35) I = U2†U2,

or, explicitly

δβ3

β′
3

=
∑

ν

U⋆
ν2β′

3
Uν2β3

=
∑

β2

∑

n2

Un2⋆
β2β′

3
Un2

β2β3
.

(VII.36)

• We proceed in the same way moving the non-unitary matrices to the
right on each step. However, we cannot go beyond s = L − 1. This
guarantees us that when computing the norm of the state, only the last
site contributes reducing the complexity of the calculation by L which
in several cases may be of the order of 50.

A more clear way to display the previous procedure on the state |φ〉 is
given by

|φ〉 =

=

=

A1 A2 A3

A3

As

As

As

AL

AL

AL

U1

U1 Ã2

U2 Ã3

|n1〉

|n1〉

|n1〉

|n2〉

|n2〉

|n2〉

|n3〉

|n3〉

|n3〉

|ns〉

|ns〉

|ns〉

|nL〉

|nL〉

|nL〉

,

where on each step we perform a SVD and the product with the matrix at the
right. Although this procedure is very useful, often it is necessary to compute
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expected values of operators at a middle point on the chain. Therefore, it
would be convenient to implement a similar procedure starting from the right
and moving to the left.

When performing the SVD to the left, the indexes have to be treated in a
different way. In order to visualize this let us consider the last matrix

(VII.37) AnL
αL

=
∑

βL

UαLβL
dβL

V nL
βL
,

once more, the very last matrix VL is unitary. By following an analog proce-
dure as above, we should compact all the information contained in the matrices
UL and dL together with AL−1. Then, let us consider the last two matrices

∑

αL

AnL−1
αL−1αL

AnL
αL

=
∑

αL

∑

βL

(

AnL−1
αL−1αL

UαLβL
dβL

)

V nL
βL

=
∑

βL

Ã
nL−1

αL−1βL
V nL

βL
.

(VII.38)

With this procedure we can keep changing the matrices recursively to
unitary ones starting from both extremes. At the end, we will have only a
non-unitary matrix with the whole information of the system. So the final
expression reads,

|φ〉 = U1 Us−1 As Vs+1 VL

|n1〉 |ns−1〉 |ns〉 |ns+1〉 |nL〉

(VII.39) = Un1
α2

· · ·Uns−1
αs−1αs

Ans
αsαs+1

V ns+1
αs+1αs+2

· · ·V nL
αL

|n1〉 · · · |nL〉.

Now we want to manipulate the matrices Us altogether. To do so, we will
show by induction that the vector

(VII.40) |αs〉 =
∑

α1···αs−1

∑

n1···ns−1

Un1
α2

· · ·Uns−1
αs−1αs

|n1〉 · · · |ns−1〉,

is orthonormalized. This will simplify significatively any observable calcula-
tion later on. By now, let focus in the following inner product of the left
matrices

〈α′
s|αs〉 =

U1 Uk Us−1

U1⋆ Uk⋆ Us−1⋆

=
[

E1(Î) · · ·Ek(Î) · · ·Es−1(Î)
]αs

α′
s

,
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where in this particular case
[

Ek(Î)
]αkαk+1

α′
kα′

k+1

=U
n′

k⋆

α′
kα′

k+1
Unk

αkαk+1
〈n′

k|nk〉

=Unk⋆
α′

kα′
k+1
Unk

αkαk+1
.

(VII.41)

For the induction procedure we are going to assume that

(VII.42)
[

E1(Î) · · ·Ek−1(Î)
]αk

α′
k

= δαk

α′
k
,

so we have that
[

E1(Î) · · ·Ek(Î)
]αk+1

α′
k+1

=
[

E1(Î) · · ·Ek−1(Î)
]αk

α′
k

[

Ek(Î)
]αkαk+1

α′
kα′

k+1

=Unk⋆
α′

kα′
k+1
Unk

αkαk+1
δ

α′
k

αk

=Unk⋆
αkα′

k+1
Unk

αkαk+1
.

(VII.43)

This final result is exactly the result of the unitarity defined by Eq. (VII.36)
after changing the name of the dummy variables βs to αs. Therefore, we have

(VII.44)
[

E1(Î) · · ·Ek(Î)
]αk+1

α′
k+1

= δ
αk+1

α′
k+1
.

The final part of the demonstration is that the assumption is correct for the
first site. However, this is granted by Eq. (VII.32).

The result showed in Eq. (VII.44) is valid for any k < s, where s is the site
where the information is kept. The most important result of this calculation
is then

(VII.45) 〈α′
s|αs〉 = δαs

α′
s
.

An analog procedure shows that the right part also can be described by a
state

(VII.46) |ωαs+1〉 =
∑

αs+2···αL

∑

ns+1···nL

V ns+1
αs+1αs+2

· · ·V nL−1
αL−1αL

V nL
αL
,

with the property

(VII.47) 〈ω′
αs+1

|ωαs+1〉 = δ
αs+1

α′
s+1
.

This ensures us that a very compact form of writing the state is given by
the expression

(VII.48) |φ〉 =
∑

nsαsαs+1

Ans
αsαs+1

|αs〉|ns〉|ωαs+1〉,

where all the information is kept in the non-unitary matrix As. The real
power of this way of expressing the MPS comes when expected values or
correlation functions are calculated, since much less computational effort has
to be employed. Thus, let us analyze how to compute single site-expected
values.
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VII.2.d Expected values

The MPS is a representation of the state of the system and therefore, it
contains all the information regarding the observables. In order to extract
such information from it, it is important to develop further the analysis of
this representation. To introduce us to this calculation, we consider here the
expected value of the identity operator that lead us directly to the calculation
of the norm of a given orthonormalized MPS state.

〈φ|φ〉 =Ans
αsαs+1

A
n′

s⋆
α′

sα′
s+1

〈αs|α′
s〉〈ns|s′s〉〈ωαs+1|ω′

αs+1
〉

=Ans
αsαs+1

Ans⋆
αsαs+1

=Tr
[

Es(Î)
]

.

(VII.49)

This expression has a complexity O(χ2d) which is much smaller than the
initial expectation of O(χ4dL). For any local observable, we have only to
replace Îs by Ôs and thus the complexity rises to O(χ2d(d + 1)) which is
still low enough. Nonetheless, for two-sites or more, operators the complexity
increases significantly since the intermediate transfer have to be taken into
account. In order to study this problem, we consider here a more complex
observable.

One kind of observables that becomes very important in the case of one-
dimensional quantum systems is the set of correlations. In particular, first
order correlation functions such as the density-density correlation or the ma-
trix elements of the one-particle density matrix are clear examples of this (see
chapters I and II). A general way to express them is

(VII.50) G∆(Ôs
1, Ô

s+∆
2 ) = 〈φ|Ôs

1Ô
s+∆
2 |φ〉,

where the operators Ôs
1 and Ôs+∆

2 are independent operators that act on the
sites s and s + ∆ respectively and |φ〉 is a state that can be written in the
form of a orthogonalized MPS that collects the information at the site k < s.
By making use of the orthogonal matrices, the correlation function can be
written as

Ak

Ak⋆

As

As⋆

Ai

Ai⋆

As+∆

As+∆⋆

Îk Ôs Î i Îs+∆G∆(Ôs
1, Ô

s+∆
2 ) =

(VII.51) = Tr

[(
s−1∏

i=k

Ei(Î)

)

Es(Ôs)

(
s+∆−1∏

j=s+1

Ej(Î)

)

Es+∆(Ôs+∆)

]

.
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Where all the transfer matrices related to the sites outside the interval [k, s+∆]
are equal to the identity. This simple example shows both the power and the
complexity of the MPS. On one side, it is possible to compute correlation
functions which are not always retrieved in other approaches. On the other
side, this calculation requires a computational effort that goes like O(χ4d(s+
∆ − k)) which is quite high but still polynomial.

Although the initial procedure seems to be quite complex, it is possible to
adapt other algorithms, such as the time evolution or the variational method
for ground state calculations, to keep the matrices orthonormalized and thus
keep the complexity of the system under control.

VII.2.e Time evolution

One of the methods to perform time evolution calculations on a MPS is an
algorithm called Time Evolving Block Decimation [175]. The main idea behind
it is to make use of the fact that many one-dimensional lattice Hamiltonians
can be written as the sum over two-site operators. Thus, if a small enough
time step is considered then the time evolution operator can be decomposed
into the product of smaller evolution operators. This algorithm works as
follows:

1. The time evolution of the system is given by the Schrödinger equation

(VII.52) i~
∂

∂t
|φ(t)〉 = Ĥ|φ(t)〉,

whose formal solution is

(VII.53) |φ(t)〉 = e−
i
~
Ĥt|φ(0)〉,

where the initial state of the system is described by the initial condition
|φ(0)〉.

2. The system is composed by an array of L sites with up to nearest-
neighbor interaction and hopping. That suggests the splitting of the
Hamiltonian into two parts Ĥeven and Ĥodd where

(VII.54) Ĥparity =
∑

i:parity

Ĥi,i+1

3. For a small enough time step (δt → 0), it is possible to employ the
Suzuki-Trotter approximation for the time-evolution operator

(VII.55) e−
i
~
Ĥδt ≈ e−

i
~
Ĥevenδte−

i
~
Ĥoddδt.
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1 2 3 4 5

Ĥ12

Ĥ23

Ĥ34

Ĥ45

Ĥodd =

Ĥeven =

+

+

+ · · ·

+ · · ·

Furthermore, since each term in Ĥparity commutes with each other it is
possible to express

(VII.56) e−
i
~
Ĥparityδt =

∏

i:parity

e−
i
~

Ĥi,i+1δt.

From this expression, it follows that in order to perform the total time
step δt it is only necessary to consider how to apply the two-sites evo-
lution operator into the state represented by a MPS and repeat the
procedure sweeping over all the even site-pairs and afterwards for the
odd ones.

As Vs+1

Û δt
s,s+1

|ns〉 |ns+1〉

(a) Two-site time evolution
operator acting on the MPS.

|ns〉 |ns+1〉

Θs,s+1

(b) The result of the matrix
product in the last step leads
to a non-MPS.

|ns〉 |ns+1〉

Ũs Ãs+1

(c) A SVD is performed in
order to project the state
into an MPS. The updated
state may have a bigger di-
mension due to entangle-
ment during the time evolu-
tion.

Figure VII.2: Schematic Time Evolving Bloch Decimation algorithm on an Ma-
trix Product State. The Suzuki-Trotter decomposition allows the time evolution
operator to act only on a pair of sites.

4. Then, in one step of the sweeping, the two-sites time evolution operation
acts on the orthogonalized MPS |φ(t)〉 as follows. First, let s be the site
with no unitary matrix, that means that to the left and to the right of
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it the matrices are orthonormalized, Ui for i < s and Vi for i > s as
shown in Eq. (VII.48). The evolution operator is applied on s and its
nearest neighbor, for instance the right one s+ 1. That is

|φ(t+ δts)〉 =e−
i
~
Ĥs,s+1δt|φ(t+ dts−2)〉

=e−
i
~
Ĥs,s+1δtAns

αsαs+1
V ns+1

αs+1αs+2
|αs〉|nsns+1〉|ωs+2〉

=Θnsns+1
αsαs+2

|αs〉|nsns+1〉|ωs+2〉.
(VII.57)

5. In order to recover the ansatz, it is necesary to recalculate the updated
matrices Ũs and Ãs+1, so we let the matrix at the site s orthogonalized
whereas the one at s + 1 is not. This can be done by performing a
singular value decomposition of the system. It will split the matrix
Θs,s+1 into two parts and we can select one of them to be unitary and
by this, keeping the total MPS orthogonal. For example, if the swap is
going to the right the matrix chosen to be unitary is the one to the left,
in this case Ũs.

Θnsns+1
αsαs+2

=

χ′
∑

α̃s+1=1

Ũns
αsα̃s+1

(

dα̃s+1V
ns+1

α̃s+1αs+2

)

=

χ′
∑

α̃s+1=1

Ũns
αsα̃s+1

Ã
ns+1

α̃s+1αs+2
.

(VII.58)

6. Note that in general χ′ 6= χ and hence the size of the MPS matrices can
increase. The optimal matrix dimension can be calculated by

(VII.59)

χop∑

i

di = 1 − ǫ,

where ǫ≪ 1 is the threshold of the desired precision.

7. Once the matrices are resized according to the optimal χop, the result
is plugged back in the evolving MPS, giving

(VII.60) |φ(t+ δts)〉 = Ũns
αsα̃s+1

Ã
ns+1

α̃s+1αs+2
|αs〉|nsns+1〉|ωs+2〉.

8. In order to keep the state orthogonalized and ready for the next two-
sites evolution operator, it is necesary to pass the information to the
site s + 2. Recalling that the operation is performed over all the even
and later on the odd sites. Thus, a new singular value decomposition
between the sites s+ 1 and s + 2 is

|φ(t+ δts)〉 =Ã
ns+1

α̃s+1αs+2
V ns+2

αs+2αs+3
|α̃s+1〉|ns+1ns+2〉|ωs+2〉

=Ũ
ns+1

α̃s+1αs+2
Ans+2

αs+2αs+3
|α̃s+1〉|ns+1ns+2〉|ωs+2〉,

(VII.61)
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Start

Get Ĥ
Get |φ(0)〉

s = 1

Ĥ →∏
e−

i
~

Ĥe
i,i+1δt∏ e−

i
~

Ĥo
i,i+1δt

|φ(0)〉 = An1
α2

V n2
α2α3

|n1n2〉|ωα3〉

Θs,s+1 = AsUs,s+1Vs+1

Θs,s+1 → ŨsÃs+1

|φ̃(dts)〉 = ŨsÃs+1|αs〉|nsns+1〉|ωαs+2〉
|φ̃(dts)〉 = Ũs+1Ãs+2|αs+1〉|ns+1ns+2〉|ωαs+3〉

s ≤ L − 1 s+ = 2

1

1

1

0

0

0

Θs,s+1 = UsUs,s+1As+1

Θs,s+1 → ÃsṼs+1

|φ̃(dts)〉 = ÃsṼs+1|αs〉|nsns+1〉|ωαs+2〉
|φ̃(dts)〉 = Ãs−1Ṽs|αs−1〉|nsns+1〉|ωαs+2〉

s ≥ 2 s− = 2

Give |φ(t)〉

t < tfint+ = δt

End

Figure VII.3: Flowchat of the TEBD algorithm.

where the state |α̃s+1〉 = Ũns
αsα̃s+1

|αs〉|ns〉 holds

(VII.62) 〈α̃s+1|α̃′
s+1〉 = δ

α̃′
s+1

α̃s+1
.

9. The algorithm repeats the procedure from step (4) sweeping all the even
and then odd sites.
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VII.2.f Ground state

The ground-state calculation is a variational method that takes the tensor
elements of As as variational parameters [172,177]. Consider that the energy of
the system can be expressed as a function of the tensor related to the site s and
that the state |φ〉 has been orthogonalized with the information concentrated
at the same place. This assumption is expressed as

(VII.63) E(A†s) =
〈φ(A†s)|Ĥ|φ(As)〉
〈φ(A†s)|φ(As)〉 ,

where the MPS state is

(VII.64) |φ(As)〉 = Ans
αsαs+1

|αs〉|ns〉|ωαs+1〉.

The denominator is quite straightforward and from Eq. (VII.49) gives

(VII.65) 〈φ(A†s)|φ(As)〉 = ~A†s · ~As,

where the vector ~As indicates that all the elements of the tensor As have been
piled up in a column and hence it has only one index γ ≡ γ(nsαsαs+1). This
way of writing the expected values is called quadratic form [178].

The calculation of the quadratic form of the numerator is slightly more
complicated and thus is shown below. However, the final result reads,

(VII.66) 〈φ(A†s)|Ĥ|φ(As)〉 = ~A†sH ~As,

where H is a matrix with dimension χ2d that fully represents the Hamiltonian.
The ground state calculation with the variational method requires to minimize
the energy, this condition leads to

∂E

∂ ~A†s
=

∂

∂ ~A†s

[
~A†sH ~As

~A†s · ~As

]

=

(

~A†s · ~As
)

H ~As −
(

~A†sH ~As
)

~As

(

~A†s · ~As
)2

=
H ~As −E ~As

~A†s · ~As

=0

(VII.67)

In other words, since we assume that ~A†s · ~As 6= 0, being actually the unity
for an orthonormalized state, the eigensystem

(VII.68) H ~As = E ~As,
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Start

Get Ĥ

s = 1

s = 1

∆ = 1
Ans

αsαs+1
random

|φ〉 = An1
α2
|n1〉|ωα2〉

E = ∞

〈Ĥ〉 → Hs

Hs ~A0 = E0
~A

ǫ = E − E0

~A0 → Ans
αsαs+1

or

s = L
ǫ < ε

Stop

1

1

0

0

s+ = ∆

D∗ = −1

E = E0

Give E0

Give |φ〉

Figure VII.4: Flowchart of the variational method applied to the MPS ansatz for
a given precision ε and a Hamiltonian Ĥ .

has to be solved in order to minimize the system energy. The eigenvector ~As
0

with the lowest eigenvalue E0 will provide the tensor elements for an updated
version of the matrix Ãs. Then, the routine proceeds to orthogonalize the
system by putting the information on the site s+1 for instance, and calculates
the new updates elements Ãs+1.

The algorithm is thus

1. Orthogonalize the system putting the information into the site s = 1.

2. Calculate the effective Hamiltonian for the site H and solve the eigen-
problem.

3. Take the eigenvector asociated to the lowest eigenvalue in order to up-
date the matrix As.
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Figure VII.5: Energy convergence. The MPS variational procedure described in
section VII.2.f shows and exponential convergence of the energy depicted in the
plot where E is the variational energy and EGS is the final value.

4. Orthogonalize the system moving the information to the next site, it can
be either at the left or at the right depending on the swapping direction.

5. If the change in the energy E0 is below a given numerical threshold then
stop, otherwise go to step 2.

This variational method offers the opportunity to calculate the ground
state properties of Hamiltonians for which the Hilbert space is exponentially
big with only a polynomically big ansatz. Furthermore, the convergence is
exponentially fast as shown in the Fig. VII.5, making it a powerful tool for
one-dimensional lattice Hamiltonians.

Calculation of the Hamiltonian quadratic form

The quadratic form of the Hamiltonian depends on the system under con-
sideration. As an example we consider the one-dimensional Bose-Hubbard
Hamiltonian (I.4). Thus we have

Ĥ =
∑

i

[

−t
(

b̂†i b̂i+1 + b̂†i+1b̂i

)

+
U

2
n̂i(n̂i − 1) − µn̂i

]

=Ĥl + Ĥls + Ĥs + Ĥsr + Ĥr,

(VII.69)
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with the definitions

Ĥl =
∑

i<s

[
U

2
n̂i(n̂i − 1) + −µn̂i

]

− t
∑

i<s−1

[

b̂†i b̂i+1 + h.c.
]

,

Ĥls = − t
(

b̂†s−1b̂s + h.c.
)

,

Ĥs =
U

2
n̂s(n̂s − 1) + (ǫs − µ)n̂s,

Ĥsr = − t
(

b̂†s+1b̂s + h.c.
)

,

Ĥr =
∑

i>s

[
U

2
n̂i(n̂i − 1) + −µn̂i

]

− t
∑

i>s

[

b̂†i b̂i+1 + h.c.
]

(VII.70)

where the site s has been isolated and the system divided into three parts, the
left (l) the right (r) and the site. Each local Hamiltonian has the corresponding
subindex, and the interaction between the parts is indicated with double index,
for instance ls, when considering the left part and the site. The quadratic form
of the Hamiltonian comes from the expected value

〈φ(A†s)|Ĥ|φ(As)〉 = Ans
αsαs+1

A
n′

s⋆
α′

sα′
s+1

〈α′
s|〈n′

s|〈ω′
αs+1

|Ĥ|αs〉|ns〉|ωαs+1〉

= Ans
αsαs+1

A
n′

s⋆
α′

sα′
s+1

[H]α
′
sα′

s+1n′
s

αsαs+1ns

(VII.71)

where using Eq. (VII.46) and (VII.40) we have

[H]α
′
sα′

s+1n′
s

αsαs+1ns
=〈α′

s|Ĥl|αs〉δn′
s

ns
δ

ωα′
s+1

ωαs+1

+ Trαs−1

(

Es−1(Î)
)

〈n′
s−1n

′
s|Ĥls|ns−1ns〉δ

ωα′
s+1

ωαs+1

+ 〈n′
s|Ĥs|ns〉δαs

αs
δ

ωα′
s+1

ωαs+1

+ Trαs+2

(

Es+1(Î)
)

〈n′
sn

′
s+1|Ĥsr|nsns+1〉δαs

αs

+ 〈ωα′
s+1

|Ĥr|ωαs+1〉δn′
s

ns
δ

α′
s+1

αs+1 .

(VII.72)

The terms 〈α′
s|Ĥl|αs〉 and 〈ωα′

s+1
|Ĥr|ωαs+1〉 lead, of course, to similar expres-

sions that can be used recursively in order to compute efficiently the quadratic
form of the Hamiltonian. The typical terms are

(VII.73) 〈n′
s|Ĥs|ns〉 =

[
U

2
ns(ns − 1) + (ǫs − µ)ns

]

δn′
s

ns
,

and

〈n′
sn

′
s+1|Ĥsr|nsns+1〉 = −t

(√
ns

√

ns+1 + 1δ
n′

s
ns−1δ

n′
s+1

ns+1+1

+
√
ns + 1

√
ns+1δ

n′
s

ns+1δ
n′

s+1

ns+1−1

)

.
(VII.74)
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VII.3 Lanczos

The Lanczos algorithm is a technique that can be used to solve Hermitian
sparse eigenproblems

(VII.75) H~φ = E~φ,

when only the extreme eigenvalues are required. The method consists on
successive applications of H into an initial random vector ~ψ. This process
generates the basis {~ψn}, where ~ψn = Hnψ. Note that if n→ ∞ then ψn/|ψn|
tends to the eigenvector with the largest eigenvalue. Once this basis is orthog-
onalized by Gram-Schmidt decomposition the vectors ~φn are transformed into
the Lanczos vectors that generate the so-called Krylov space. The Hamilto-
nian projection onto that space is a tri-diagonal matrix T that can be solved
by much simpler methods such as the QR decomposition [179]. When the num-
ber of elements in the Krylov space equals the dimension of the Hamiltonian
matrix, the result is equivalent to a full diagonalization. However, one of
the advantages of this method is that accurate enough information about the
ground-state can be retrieved after a small number of iterations [180].

Figure VII.6: General structure of the Hamiltonian that may be solved by Lanczos.
It is a sparse matrix and if there is a conserved quantity then it shows a block
structure. The main idea is to take the relevant part and transform it into a
tri-diagonal matrix.

In order to compare the power of the method, we recall that a full diag-
onalization of the system requires O(d3) operations, where d = dim(H). For
the Lanczos algorithm, only matrix vector multiplication is required which
goes like O(d2). In the case of a sparse matrix, this quantity can be further
reduced since not all operations are necessary to perform and therefore the al-
gorithm scales as ∼ O(d). The most expensive calculation we have performed
was for the calculation of the ground state of a spin-1 chain with L = 16 in
chapter VI. In that example, d = 5.2×106, which would require O(1.2×1020)
operations with the full diagonalization technique.



114 CHAPTER VII. NUMERICAL METHODS

Nowadays, several codes had been developed in order to implement the
most efficient algorithm. One of those, ARPACK [181] has been used and im-
plemented in our calculations. Although the main core of the algorithm is
externally implemented, we provide the method with the most efficient way
of computing the matrix vector multiplication H~ψ. Besides that, several fur-
ther implementations can be done in order to reduce the computational effort.
Here, we list a few of the most straightforward methods.

Before going into the detail of the different implementations, it is worth
to point out that the method depends strongly on the basis in which the
Hamiltonian is written. As an example, let us consider a double-well system
of spin-1/2 fermions. On each site, it is possible to have d = 4 different states
and thus d = 42 total number of states for the whole system. Now, we can
impose the different restrictions to the system:

Constrain

N̂ Ŝz Mott

X

X

XX

X XX

XXX

XX

XX

X

Figure VII.7: Total basis of two sites and spin-1/2 fermions. Depending on the
restrictions done to the system, several elements are neglected. In this case, we
restrict to N = 2, Sz = 0 within the Mott insulator of one particle per site.

• Particle number conservation:

The Hubbard Hamiltonian has the property that [Ĥ, N̂ ] = 0 and there-
fore we can restrict ourselves to a manifold with constant number of
particles. There are several procedures to conserve such quantity like
using a chemical potential in a grand-canonical ensemble. However, if
we work exactly in the canonical ensemble, the system dimension is
reduced, as well as the possibility of error.

In the case of spinful particles, the condition of total conserved magne-
tization applies exactly in the same way as the conservation of particles.

• Symmetry implementation: Several non-trivial symmetries can be im-
plemented in similar ways. In particular, as mentioned in chapter V,
the spin-3/2 chain has a SU(2) ⊗ SU(2) symmetry that is exploited to
retrieve the ground state properties with the Lanczos method.
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• Momentum conservation:

The translational symmetry of several Hamiltonians can be also useful
in the reduction of the effective dimension of the problem. The main
idea is to pack all the translationally equivalent states into one state that
represents them all. The cost of this procedure comes when a state is
retrieved and the routine has to search what class this state belongs to.
This procedure can be very long if the basis is big. However, this problem
can be solved if one expresses the Hamiltonian in the momentum space.
Unfortunately, this may ruin the efficiency in the implementation of
other symmetries. Nonetheless, this symmetry is particularly interesting
when considering the problem of excitons formed on top of a polarized
spin-3/2 chain in the Mott regime, as discussed in chapter III.
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CHAPTER

EIGHT

Conclusions and outlook

In this Thesis, we have considered different problems regarding both polar
bosons and spinor gases in one-dimensional optical lattices. We start in chap-
ter I introducing the Bose-Hubbard Hamiltonian, analyzing by energy consid-
erations (SCE) and correlation functions (MPS) the boundaries between the
Mott insulator and the superfluid.

In chapter II, we have analyzed the physics of dipolar gases in unconnected
parallel one-dimensional optical lattices [182]. The presence of the non-local
dipole-dipole interaction between wires induces a direct Mott insulator to
pair superfluid phase transition that distorts notoriously the shape of the
Mott lobes. The most dramatic effect can be observed on the lowest Mott
lobe boundary where for a critical strong attractive interaction it becomes
constant as a function of the hopping and for an even stronger interaction it
changes its slope. This sets a re-entrant configuration that is also present in
higher dimensions and up to the second Mott lobe.

This particular effect leads to a highly non-trivial behavior of the Mott
insulator plateaux in experiments with an axial harmonic confinement [183]. In
fact, for small enough hopping, the Mott plateaux may become insensitive
to the mobility of the particles, or even counter-intuitively, grow for larger
hopping values.

It is also important to emphasize that these results apply to two-component
Bose gases, and thus they lead to very interesting predictions for experiments
in boson mixtures loaded into optical lattices, where the long-range interac-
tions may give rise to exotic new states such as pair-super-solids [67,184].

In chapter III, we studied that spin flips on top of a polarized repulsive
high-spin Fermi gas may lead to formation of novel types of bound compos-
ites, which we illustrated for the case of 1D spin-3/2 hard-core fermions in
the Mott phase. In that case the composites are formed by an exciton-like
excitation and an anti-symmetric biexcitons-like one. Intriguing dynamics
and stability properties of the composites result from a non-trivial interplay
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between SCC, QZE and exciton momentum. We have explored and shown
the high stability of the exciton gas against inelastic interactions. This opens
exciting possibilities for the creation of intricate novel quantum composite
phases.

In chapter V, we saw that spin-3/2 fermions present a rich diagram of
Mott phases as a function of the scattering lengths and the QZE. Various
types of phase transitions are predicted between a gapped dimerized phase, a
gapless spin-liquid and an isotropic Heisenberg anti-ferromagnet. The latter
phase occurs at large-enough QZE and is protected by a high SU(2)⊗ SU(2)
symmetry which remains at any QZE, contrary to the case of spinor bosons.

These phases and phase transitions may be revealed in experiments with
four-component fermions in optical lattices, under similar entropy and temper-
ature requirements to those demanded for Néel ordering in spin-1/2 fermions
in 3D lattices. This comes from the fact that the observation of the dimerized
phase requires a temperature (T ) scale with an upper bound provided by the
spin gap ∆, which is maximal at g ∼ 1 and q = 0, being from our results
∆ ≃ t2/g0.

The different phases may be experimentally characterized by different
means, including monitoring τ in standard Stern-Gerlach-like experiments
in time-of-flight, and using Faraday rotation [185]. Finally, note that with a
shallow harmonic trap along the lattice, the MI phase occupies the central
region, surface effects are negligible and our results apply.

In chapter VI, we have calculated the boundaries of the dimer phase in
one-dimensional spin-1 chains with anti-ferromagnetic interactions under the
influence of a external field that generates a quadratic Zeeman coupling. The
calculations were done following the level crossing method and the spectra
were calculated using the Lanczos exact diagonalization technique. The com-
putational analysis of the system allows us to reduce both the matrix dimen-
sion and the number of operations required.

As a result three different regions are delimited. For a large enough and
positive QZE, a XY -Nematic phase is found. By lowering the magnitude of
the external field, an Kosterlitz-Thouless phase transition takes place and the
ground state of the system transforms into a dimerized state. When crossing
the line of zero external field, the manifold of local magnetization zero begins
to be favored. As the QZE increases in absolute value, the state losses its
m = ±1 components and it transforms through a Ising phase transition into
a polar state on the large-D region.

The field induced phase transitions may be explored in 23Na which presents
anti-ferromagnetic coupling. Besides, the external field that generates the
quadratic Zeeman coupling may be controlled by microwave and optical tech-
niques [186,187].

We stress that such field-induced transitions are fundamentally precluded
in spin-1/2 systems, due to the conservations of magnetization. Moreover, the
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field-induced phase transitions discussed in this and the previous chapters,
constitute a novel qualitative feature of spinor gases. we would like to note
that similar transitions have been recently observed for spin-1 BEC’s in the
bulk [73,90].

The results of this Thesis open interesting perspectives for future studies.
Polar molecules in ladder-like potentials (as those studied in chapter II) may
present pair-supersolid phases in presence of inter-rung interactions [67]. Other
phases (as Haldane-like insulators) may occur in the presence of tunneling
between the wires [188] .

The rich physics of spinor lattice gases in the presence of QZE has been
only partially unveiled in chapters V and VI. An even richer physics may occur
for higher fillings (i.e. Mott of 2 particles per site for spin-3/2 fermions) and
for ladder-like potentials. Exciting new developments will surely follow in this
sense.
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[134] R. Jördens, L. Tarruell, D. Greif, T. Uehlinger, N. Strohmaier,
H. Moritz, T. Esslinger, L. De Leo, C. Kollath, A. Georges, V. Scarola,
L. Pollet, E. Burovski, E. Kozik and M. Troyer, Phys. Rev. Lett. 104,
180401 (2010).



BIBLIOGRAPHY 129

[135] A. Koetsier, R. A. Duine, I. Bloch and H. T. C. Stoof, Phys. Rev. A 77,
023623 (2008).

[136] J. Catani, G. Barontini, G. Lamporesi, F. Rabatti, G. Thalhammer,
F. Minardi, S. Stringari and M. Inguscio, Phys. Rev. Lett. 103, 140401
(2009).

[137] J.-S. Bernier, C. Kollath, A. Georges, L. De Leo, F. Gerbier, C. Salomon
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