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ABSTRACT 
 

 

 

 

The development, homeostasis, and regeneration after injury of the cardiovascular system 

comprise a huge array of factors and mechanisms which have to work in a temporal and 

spatial organized fashion. Myocardial infarction is a highly prevalent ischemic disease and 

multiple studies have demonstrated that only arteriogenesis has considerable ability to fully 

restore blood flow, which is absolutely critical for the regeneration of all ischemic organs. 

Notch signalling constitutes an evolutionary conserved pathway and – as activators of the 

pathway – the Notch ligands play a critical role. The ligand Delta-like 1 (Dll1) has been 

associated with the maintenance of arterial identity during development and peripheral limb 

arteriogenesis in the adult. Yet, its function in the coronary vasculature and in cardiac 

remodelling has not been analyzed to date. This study identifies the Notch ligand Dll1 as 

critical regulator of developmental/neonatal coronary arteriogenesis and provides evidence 

that Dll1 is involved in cardiac recovery after myocardial infarction. 

To analyse expression and role of Dll1 in adult hearts, Dll1+/lacZ reporter mice were the 

focus of this study, serving as Dll1-lacZ reporter and Dll1 heterozygous strain. In the heart, 

Dll1 expression was specific for endothelium of coronary arteries >20µm. Coronary artery 

analysis revealed a reduced number of conductance vessels (>20 µm), but an increased 

number of arterioles <20 µm. Data suggest a model of the coronary artery phenotype, were 

reduced levels of Dll1 impairs developmental/neonatal coronary arteriogenesis, becoming 

evident in the adult by a reduced coronary vessel size in the heart basis and causing a 

reduced number of vessels reaching more distal heart areas. Altered development of the 

coronary vasculature caused reduced heart weight and size in Dll1 heterozygous animals, 

but body weight and size, as well as cardiac function were unchanged. Data demonstrated a 

relationship where the smaller heart size with concurrent normal body weight is 

compensated by an elevated ejection fraction, resulting in a normal stroke volume and 

cardiac output. This finding elucidated the normal 18 month survival of Dll1 heterozygous 

mice. In addition, monocyte subset analyses demonstrated reduced total monocyte numbers 

and reduced Ly-6Clo monocytes in Dll1 heterozygous spleen tissue.  

To define the role of Dll1 in response to myocardial infarction, mice were subjected to 

permanent LAD occlusion. Whereas wildtype (WT) control animals demonstrated 
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functional remodelling and preservation of cardiac function, Dll1 heterozygous animals 

exhibited features of adverse remodelling: increased inflammation, infarct expansion, 

progressive dilation and hypertrophy, and complete lack of arteriogenesis, resulting in 

infarct size enlargement, ventricular dysfunction and progressive mortality. Adverse 

remodelling in Dll1 heterozygotes was rather based on altered infarct healing mechanisms, 

than on the extent of the initial ischemic incidence. There is evidence to suggest that 

impaired arteriogenesis and enhanced inflammation are direct effects of diminished Dll1 

levels, whereas infarct expansion, and progressive dilation and hypertrophy are rather 

downstream effects. These data highlight the importance of Dll1 mediated Notch signalling 

for correct compensation and functional remodelling to preserve ventricular function after 

myocardial infarction.  

Dll1 was selectively expressed in the heart in arterial endothelium of large coronary arteries 

and Dll1 expression was upregulated after infarction. However, at least in a setting of 

myocardial infarction by permanent LAD occlusion, this study provided first evidence that 

endothelial Dll1 is not the major determinant causing adverse remodelling effects upon 

absence. Data rather identified an extravascular role of Dll1 in infarct healing, adumbrating 

a role in the monocyte/macrophage system, but the exact site and mode of action remains an 

open question which will have to be addressed by future studies.  
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ZUSAMMENFASSUNG 
 

 

 

 

Die Entwicklung, Homöostase und Regeneration des kardiovaskulären Systems umfassen 

eine enorme Anzahl an Faktoren und Mechanismen, die in zeitlich und räumlich geregelter 

Art und Weise zusammenwirken müssen. Der Herzinfarkt ist eine weit verbreitete 

ischämische Erkrankung und vielfache Studien haben belegt, dass Arteriogenese erheblich 

zur Wiederherstellung des Blutflusses beiträgt. Dies ist absolut kritisch für die Regeneration 

aller ischämischen Organe. Das Notch Signalsystem ist ein evolutionär erhaltener 

Signalweg, in dem die Notch Liganden eine kritische Rolle spielen, da sie den Signalweg 

aktivieren. Der Ligand Delta-like 1 (Dll1) wurde bis jetzt mit der Erhaltung der arteriellen 

Identität während der Gefäßentwicklung und mit peripherer Arteriogenese im Bein in 

Verbindung gebracht. Seine Funktion in koronaren Blutgefäßen und im kardialen 

Remodelling ist bislang noch nicht untersucht worden. Die vorliegende Studie identifiziert 

den Notch Liganden Dll1 als kritischen Regler in der entwicklungs/neonatalen koronaren 

Arteriogenese und erbringt Beweise, dass Dll1 an der kardialen Genesung nach einem 

Herzinfarkt beteiligt ist. 

Um die Expression und Rolle von Dll1 im erwachsenen Herzen zu analysieren. standen 

Dll1+/lacZ Reportermäuse im Mittelpunkt dieser Studie. Diese fungierten sowohl als Dll1-

lacZ Reporter, als auch als Dll1 heterozygoter Mausstamm. Im Herzen wurde die 

Expression von Dll1 spezifisch im Endothel von Koronararterien nachgewiesen, die größer 

als 20 µm waren. Eine Analyse der Koronararterien ergab, dass die Anzahl der 

Konduktanzgefäße (>20 µm) signifikant verringert war, während die Anzahl der 

Widerstandsgefäße (<20 µm) erhöht war. Die Daten legen ein Modell des koronaren 

Phänotyps nahe, in dem verringerte Pegel von Dll1 die koronare Arteriogenese während der 

Entwicklung und postnatal beeinträchtigen. Dies wird im Erwachsenenalter ersichtlich 

durch eine reduzierte Größe der Koronararterien in der Herzbasis und hat zur Folge, dass 

eine verringerte Anzahl an Gefäßen distale Herzareale erreichen. Die beeinträchtigte 

Entwicklung der Koronargefäße bewirkte eine Reduktion des Herzgewichts und der 

Herzgröße in Dll1 heterozygoten Tieren, während Körpergröße und –gewicht, sowie 

Herzfunktion unverändert waren. Daten zeigen einen Zusammenhang in dem das geringere 

Herzgewicht bei gleichbleibendem Körpergewicht ausgeglichen wird durch eine Erhöhung 
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der Ejektionsfraktion. Dies führt zu normalem Schlagvolumen und Herzminutenvolumen 

und erklärt das normale Überleben der Tiere über 18 Monate. Zusätzlich zeigte die Analyse 

von Monozyten eine verringerte Gesamtzahl der Monozyten, sowie eine verringerte Anzahl 

von Ly6Clo Monozyten in der Milz von Dll1 heterozygoten Mäusen.  

Um die Rolle von Dll1 während der Reaktion auf einen Herzinfarkt zu bestimmen, wurden 

Mäuse einer permanenten LAD Ligation unterzogen. Während Wildtyptiere (WT) 

funktionelles Remodelling und Erhaltung der kardialen Funktion aufwiesen, zeigten Dll1 

heterozygote Mäuse Merkmale von adversem Remodelling: erhöhte Entzündung, 

Infarktexpansion, fortschreitende Dilatation und Hypertrophie und komplettes Fehlen von 

Arteriogenese, was im Ganzen eine Ausdehnung der Infarktgröße, ventrikuläre Dysfunktion 

und progressive Sterblichkeit zur Folge hatte. Adverses Remodelling in Dll1 heterozygoten 

Tieren war eher auf veränderte Infarktheilung zurückzuführen, als auf das Ausmaß des 

ursprünglichen, ischämischen Vorfalls. Vieles weist darauf hin, dass beeinträchtigte 

Arteriogenese und erhöhte Entzündung direkte Folgen verminderter Dll1 Pegel sind, 

während Infarktexpansion und progressive Dilatation und Hypertrophie eher nachgeordnete 

Ereignisse sind. Diese Daten zeigen die Wichtigkeit des Dll1 vermittelten Notch 

Signalweges in ordnungsgemäßer Kompensation und funktionellem Remodelling zur 

Erhaltung der ventrikulären Funktion nach einem Herzinfarkt.  

Dll1 war spezifisch im Endothel großer Koronararterien nachzuweisen und die Expression 

von Dll1 war nach einem Herzinfarkt erhöht. Die vorliegende Studie konnte jedoch erste 

Nachweise erbringen (zumindest im Rahmen eines Herzinfarktes durch permanente LAD 

Ligation), dass nicht endotheliales Dll1 der bestimmende Faktor ist, der bei Fehlen adverses 

Remodelling bewirkt. Erste Ergebnisse zeigen eher eine extravaskuläre Rolle von Dll1 in 

der Infarktheilung und deuten auf eine Funktion im Monozyten/Makrophagensystem hin. 

Der genaue Wirkungsort und die Funktionsweise bleiben allerdings offene Fragen, die von 

zukünftigen Studien beleuchtet werden müssen.  

 

 

 

 

Stichwörter: Dll1, Arteriogenese, Herzinfarkt 
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1. INTRODUCTION 
 

 

 

 

The development, homeostasis, and regeneration after injury of the cardiovascular system 

comprise a huge array of factors and mechanisms which have to work in a temporal and 

spatial organized fashion (Darland and D’Amore, 2001). Notch signalling constitutes an 

evolutionary conserved pathway which plays a pivotal role in the cardiovascular system; as 

activators of the pathway the Notch ligands play a critical role.  

In order to provide the reader with all background information needed for an informed 

understanding of this dissertation, this chapter will give an overview of the cardiovascular 

system and healing mechanisms after myocardial infarction. Notch signalling and the ligand 

Dll1 will be reviewed with more detail to the currently available literature.  

 

1.1 The cardiovascular system 

1.1.1 Cardiogenesis 

 
The development of the heart follows the same pattern in all vertebrates. The organ is 

formed from precardiac cells which are arranged in bilateral clusters in the anterior lateral 

plate mesoderm. The bilateral fields merge to form the so-called cardiac crescent which then 

fuses along the midline and forms the primitive heart tube. This straight heart tube contains 

an external myocardial and an internal endocardial layer and also holds a polarity in which 

the prospective tissues of the aortic sac, outflow tract, right ventricle, left ventricle, and atria 

are present in anterior to posterior order along the tube. During the next phase, the heart 

tube undergoes a rightward looping process (cardiac looping) which is necessary for the 

alignment of the inflow and outflow tracts. The final 4-chambered structure of the heart is 

achieved by formation of the valves and septa. These originate from a subset of endocardial  

cells that line the interior of the heart at specific locations (so-called cardiac cushions). 

These cells undergo a transition to mesenchymal tissue and differentiate to the fibrous tissue 

of the valves and septa. The foetal heart is already connected to the pulmonary trunk and 

aorta to ensure the separate pulmonary and systemic blood circulation after birth (Darland 
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and D’Amore, 2001; Kirby and Waldo, 2002; Zaffran and Frasch, 2002; Buckingham et al., 

2005; Chen et al., 2005). 

 

1.1.2 Development of blood vessels 

 
The vascular system develops in the embryo, when its nutritional needs are not longer met 

by diffusion. The blood vessels form independently and do not sprout from the heart; in fact, 

the heart is connected afterwards and it does not begin to pump until the vascular system has 

established its first circulatory loops (Gilbert, 2006).  

 
Blood vessel formation 

During development, blood vessels form by temporally separate processes – vasculogenesis, 

angiogenesis and arteriogenesis. During vasculogenesis hemangioblasts from the mesoderm 

congregate in blood islands: the inner cells of the islands differentiate to become 

hematopoietic cells, while the outer cells become angioblasts. Subsequently, angioblasts 

multiply and differentiate into endothelial cells which then assemble to form a primary 

vascular plexus (Figure 1.1 A). Important factors during vasculogenesis include fibroblast 

growth factor (FGF) and vascular endothelial growth factor (VEGF) which are required for 

hemangioblast generation from the mesoderm (FGF) and enable angioblast differentiation, 

and assembly and patterning of vessels (VEGF). In the following, the primary vascular 

plexus is remodelled by angiogenesis. Through sprouting, intussusception, recruitment of 

supporting cell types, and selective pruning of some vessel connections, a mature vascular 

network is generated. Angiogenesis is regulated by a number of signalling pathways, 

including the VEGF pathway, the TGF-β pathway, the Angiopoietin/Tie receptor pathway, 

the ephrin/Eph receptor pathway and the Notch signalling pathway (Risau and Flamme, 

1995; Risau, 1997; Carmeliet, 2000; Iso et al., 2003; Limbourg et al., 2005; Gilbert, 2006). 

After the onset of circulation, the vascular system is shaped by physiologic factors (like 

flow and shear stress). Accordingly, mature arteries are formed by arteriogenesis which 

includes pericyte and smooth muscle cell migration and differentiation, basal lamina 

modifications, and elastogenesis in elastic arteries (Risau, 1997; Carmeliet, 2000; Smart et 

al., 2009).  

 
Angiogenesis 

During sprouting angiogenesis endothelial cells are stimulated by growth factors which 

induces the production of proteases (Figure 1.1 A). The following degradation of the 
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extracellular matrix (ECM) allows endothelial cells to invade the surrounding tissue, where 

they migrate and proliferate to form a sprout. The sprout then elongates and a lumen is 

formed, followed by the recruitment of periendothelial cells as pericytes and smooth muscle 

cells (SMCs) which is critical for vessel stability. The process of non-sprouting 

angiogenesis – or intussusception – describes the splitting of pre-existing vessels to form 

new vessels. The emerging vascular plexus is remodelled to a system with small and large 

vessels, resulting in a pattern resembling a tree - therefore, this process is called pruning 

(Risau, 1997; Gerwins et al., 2000). 

Angiogenesis is characterized by strict regulation. The vessels develop in an organized 

fashion to the need of nutrients and oxygen in a tissue. Once the need is met, production of 

the stimulatory factor terminates and endothelial cells become quiescent (Gerwins et al., 

2000). 

 
Arterial/venous specification 

Already before the onset of circulation, blood vessels are specified as artery or vein. 

Although in the past physiologic factors from the circulation were believed to determine 

vessel identity, evidence now shows that at least some steps of genetic control precede 

regulation by hemodynamic factors (Torres-Vásquez et al., 2003; Adams, 2003). Actually, 

already the primary plexus contains two different kinds of endothelial cells: arterial 

endothelial cells expressing ephrin-B2 and venous endothelial cells expressing EphB4 (an 

ephrin-B2 receptor) (Wang et al., 1998), representing precursors of arteries and veins, 

respectively. Bidirectional signalling of ephrin-B2 – EphB4 interaction facilitates the 

establishment of an arterial-venous boundary by restriction of endothelial cell migration. 

Thereby signalling ensures that arterial capillaries connect only to venous ones and that only 

capillaries of the same type fuse to create larger vessels (Adams, 2003; Torres-Vásquez et 

al., 2003; Gilbert, 2006; Swift and Weinstein, 2009). 

 

1.1.3 Coronary vessel development 

 
At an early stage of heart development – when the primitive heart tube has been formed, 

myocardial expansion starts and the heart transitions to form a multilayered organ – 

diffusion does no longer satisfy tissue needs and the heart requires a committed vascular 

system. Coronary vessel development (Figure 1.1 C) involves vasculogenesis, angiogenesis 

and arteriogenesis.  
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The major origin of the coronary vasculature is the proepicardium (PE), a structure that is 

formed on the surface of the heart and is composed of PE mesothelial cells. These cells 

migrate to the developing heart and envelope its surface, forming the epicardium and a 

matrix-rich subepicardial space. During the process of epicardium expansion and migration 

over the heart, a subpopulation of the epicardial cells separate and undergo epithelial-to-

mesenchymal transformation (EMT). Epicardial EMT starts at the base of the heart and 

moves towards the apex. The generated epicardium derived cells (EPDCs) populate the 

subepicardial space and the myocardium; they give rise to coronary SMCs, pericytes, 

fibroblasts and cardiomyocytes. However, the origin of coronary endothelial cells is 

controversially discussed: different studies in various model organisms showed endothelial 

precursors originating not only from EPDCs, but also from angioblasts in the PE and 

subepicardial space, from invagination of the endocardium, or migratory cell populations 

coming from another tissue, like the liver. Yet, independent of origin, endothelial precursor 

cells and EPDCs in the subepicardial space migrate over the heart and into the myocardium. 

The cells never come into contact with the heart lumen, as coronary vessels will receive 

blood from the aorta and not from the heart, and as blood flow from the lumen into the 

developing myocardium without an established vasculature would be disastrous. The 

endothelial precursors coalesce and form a primary capillary vascular plexus, followed by 

remodelling and patterning processes to form a network. Vessel growth is directed towards 

the base of the heart, eventually connecting to the aorta (aorta and the aortic arches are 

derived from the neural crest) and onset of perfusion. Upon perfusion, capillaries are 

remodelled to arteries by arteriogenesis: wall matrix enrichment, and EPDC recruitment to 

form SMCs and pericytes. Recruitment and differentiation proceeds in a proximal-to-distal 

direction, starting at the coronary ostia (to form the main trunk of the coronary arteries) and 

progressing towards the heart apex (forming the small precapillary arterioles) (Reese et al., 

2002; Luttun and Carmeliet, 2003; Fernández, 2004; Tomanek, 2005; Smart et al., 2009).  

Furthermore, once flow is established, remodelling of the system has to take place to 

establish the hierarchy of the arterial tree. Thereby, flow through the coronary arterial 

system serves as stimulus and initiates the increase of diameter of the main coronary arteries 

and provokes the regression of selected vascular channels by apoptosis (Figure 1.1 D) 

(Tomanek, 2005).  

The coronary vasculature continues to grow after birth to account for the increasing needs of 

a still growing heart and organism, until an adult coronary system is established (Luttun and 

Carmeliet, 2003; Smart et al., 2009).  
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As described, coronary vasculature formation involves a series of complex processes and a 

number of molecular factors and mechanisms regulate each of these steps. Among many 

other factors, Gata4 has been implicated with the formation of the PE (Watt et al., 2004) and 

mice deficient for Tbx5 or VCAM fail to form the epicardium from the PE (Hatcher et al., 

2004; Kwee et al., 1995). Thymosin β-4 is involved in vasculogenesis and EPDC migration 

(Smart et al., 2007), and FGF-2 and VEGF are the best characterized regulators of coronary 

angiogenesis (Tomanek and Zheng, 2002; Carmeliet et al., 1999). Principal pathways of 

coronary arteriogenesis involve PDGF (platelet derived growth factor) and Notch signalling 

(Smart et al., 2009). 

 

1.1.4 The adult cardiovascular system 

 
Circulation and vessel morphology 

The cardiovascular circulation plays a number of roles in the adult: not only does this 

include blood, metabolite and waste product transport, but also serves hormonal 

communication and rapid deployment of immune responses throughout the body.  

In the adult, deoxygenated blood enters the heart via the right atrium and is pumped by the 

right ventricle to the lungs through the pulmonary trunk. Oxygenated blood returns to the 

left atrium and is pumped through the aorta to the systemic circulation by the left ventricle. 

The following hierarchical system of elastic arteries, muscular arteries, arterioles, capillaries, 

venules and veins ensures the most effective transport obeying physical laws of fluid 

movement (Buckingham et al., 2005; Gilbert, 2006; Eble and Niland, 2009). 

Arteries and veins are both composed of an inner endothelial layer (tunica intima), internal 

elastic tissue, smooth muscle cell layer (tunica media), external elastic tissue and fibrous 

connective tissue (tunica adventitia) (order from inside to outside). While arteries withstand 

flow forces with thick layers of SMCs and extracellular matrix, veins are adapted to lower 

pressure with thin walls and valves to prevent backflow of blood. Capillaries are stabilized 

by pericytes (Adams, 2003; Torres-Vázquez et al., 2003).  

 
Coronary artery anatomy 

The coronary arteries originate from the aorta, just above the aortic valve: the left coronary 

artery and the right coronary artery (Figure 1.1 E). They travel well-defined routes in the 

epicardium along the heart and give rise to branches that penetrate the myocardium. The left 

coronary artery supplies blood to the left ventricle and left atrium; it divides into the left 

circumflex artery and the left anterior descending artery (LAD). The circumflex encircles 
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the heart muscle, supplying the lateral and back side of the heart, the LAD supplies the front 

left side of the heart. The right coronary artery supplies blood to the right ventricle, right 

atrium, sinoatrial node and the atrioventricular node. The venous return courses over the 

heart surface with accompanying arteries (Reese et al., 2002).  

 

The coronary artery tree of the mouse is different from human, particularly with regard to 

the blood supply of the septum. Analyses of mice (C57BL6/J background) showed a 

variable origin of the septal coronary artery from the right coronary artery (55%), the left 

coronary artery (35%) and dual origins from both (10%) (Salto-Tellez et al., 2004). 

However, bifurcation of the left coronary artery to the LAD and the circumflex artery was 

invariant and a constant ligation of the LAD immediately below the left auricular level 

showed a statistically significant reproducible infarct size (Salto-Tellez et al., 2004). 

 
Neovascularization and arteriogenesis 

In contrast to active vessel growth in the embryo and neonate, blood vessels and 

endothelium acquire a quiescent state in the adult. Only upon stress or pathologic conditions, 

does the vascular bed expand by vasculogenesis, angiogenesis, and arteriogenesis (meaning 

in the adult, the maturation of pre-existing arterioles to large muscular collateral arteries) 

(Luttun and Carmeliet, 2003; Simons, 2005; Stavrou, 2008). 

Restoration of blood flow is absolutely critical for regeneration after myocardial infarction 

and for all ischemic organs in general. Although angiogenesis is induced after ischemia, its 

contribution to blood flow regeneration is limited as only a 2-3x increase in blood flow can 

be achieved and as capillaries – lacking a muscular wall – are not designed for long-distance 

transport tasks. Only arteriogenesis has a considerable ability to fully restore blood flow, 

achieving a 20-30x increase of flow; it describes an active growth rather than passive 

dilation due to changed blood pressure (Deindl and Schaper, 2005; Simons, 2005; Heil et al., 

2006).  

Rather than ischemia, initial triggers of arteriogenesis are physical forces such as increased 

shear which is induced by redirection of blood flow into pre-existing arteriolar connections 

that interconnect proximal and distal side branches of an occluded artery (Deindl and 

Schaper, 2005; Heil et al., 2006). The increased fluid shear stress activates the endothelium 

which starts to signal (Figure 1.1 B). Signalling promotes adhesion and invasion of 

monocytes, which then leads to the production of growth factors and proteases. In the 

following, the ECM is lysed and elastolysis takes place. The corresponding increase in 

circumferential wall tension provides a proliferative stimulus for SMCs which change their 
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phenotype, become mobile, move towards the intima and proliferate. Proliferation is 

directed towards the media and outer layers, resulting in a larger vessel. As a consequence 

of vessel growth, shear stress is reduced and endothelial activation and signalling stops. 

SMC proliferation continues until wall thickness has reached values comparable with 

normal circumferential wall tension (Schaper, 2004). 

 
Heart function 

Heart function is described by multiple factors. The stroke volume (SV) describes the 

volume of blood ejected per beat during systole. The stroke volume depends on the force of 

contraction which itself is influenced by cardiomyocyte contractility. However, the ventricle 

does not eject the whole blood volume it contains; the portion ejected is called the ejection 

fraction (EF). The cardiac output (CO) describes the volume of blood flowing through the 

systemic circulation. It is calculated by multiplication of the heart rate with the stroke 

volume (Huether and McCance, 2000).  

 
 
 
 
 
 
 
 
 
 
 
 
- for figure 1.1 refer to the following page 22 - 

 
Figure 1.1  The cardiovascular system. (A) Schematic outline of vasculogenesis and angiogenesis. 

In vasculogenesis endothelial cells form the primitive vascular plexus. The following angiogenesis includes 
protease induction, migration, proliferation and differentiation (adapted from Gerwins et al., 2000). (B) 

Schematic outline of arteriogenesis in the adult (growth of collateral arteries). In the adult, quiescent 
endothelium in collateral arteriolar connections becomes activated by shear stress and the process of 
arteriogenesis is activated, forming large collateral conductance arteries with several layers of smooth muscle 
cells (adapted from van Royen et al., 2001). (C) Schematic representation of heart and coronary 

development in the mouse. The primitive heart tube is supplied with oxygen by diffusion. After heart looping, 
the epicardium proliferates and migrates over the heart, closely followed by the formation of a primitive 
vasculature. The primitive vasculature expands by sprouting of new vessels from pre-existing ones and is 
transformed into a more organized network with smaller and larger vessels. Once the network connects to the 
aorta, the vessels become invested with a smooth muscle cell coat and a fibroblast-rich adventitia (adapted 
from Luttun and Carmeliet, 2003). (D) Remodelling of the coronary vasculature after opening of the ostia. 
Prior to formation of the ostia the vasculature consists of endothelial-lined channels with numerous 
anastomoses (illustration on left). When coronary flow is established, the vasculature remodels by recruiting 
(1) smooth muscle cells to form arteries; (2) increase the diameters of the main channels, and (3) eliminating 
many anastomotic channels via apoptosis (illustration on right) (adapted from Tomanek, 2005). (E) Coronary 

artery anatomy. Schematic representation showing the course of the left and right coronary arteries (adapted 
from Texas Heart Institute, 2010). 
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1.2 Myocardial infarction 

1.2.1 Healing after myocardial infarction – an overview 

 
Myocardial infarction (MI) is induced by coronary artery occlusion, triggering numerous 

responses at the cellular and molecular level (Tiyyagura and Pinney, 2006). Infarct healing 

can be divided into three overlapping phases: (1) inflammation, (2) proliferation and (3) 

maturation (Frangogiannis, 2006). In humans, repair requires up to two months; infarcts in 

smaller experimental animals such as mice heal substantially faster (Laflamme and Murry, 

2005). 

The sudden ischemic condition after infarction leads to cardiomyocyte death throughout the 

region supplied by the affected artery. (1) Cardiomyocyte necrosis triggers a vigorous 

inflammatory response: activation of chemokines and cytokine cascades leads to the 

recruitment of leukocytes into the infarcted area, and neutrophils and macrophages clear the 

wound of cell and matrix debris. (2) In the following, activated macrophages direct the 

formation of granulation tissue by releasing cytokines and growth factors. At this stage, the 

inflammatory response is finished and expression of inflammatory mediators is suppressed. 

The granulation tissue is rich in proliferating fibroblasts and endothelial cells. Consequently, 

neovasculature is formed and activated myofibroblasts produce ECM proteins. (3) At the 

end, the granulation tissue matures to form scar tissue; therein the remaining viable 

myocytes are realigned and attached in the collagen scar matrix (Pfeffer, 1995; Laflamme 

and Murry, 2005; Frangogiannis, 2006; Frangogiannis, 2008). 

In addition, infarct healing is also associated with changes in ventricular architecture and 

geometry. Cardiac remodelling is initially necessary to compensate for the loss of 

cardiomyocytes and decrease of contractile function. It describes the normal adaptive 

changes to preserve ventricular function (i.e. necrosis and apoptosis, inflammation, fibrosis, 

matrix modulation, hypertrophy and compensating dilation, angiogenesis and 

arteriogenesis). However, the extent of remodelling is proportional to the mass of infarcted 

myocardium. Especially after large infarcts profound changes take place, involving massive 

chamber dilation, wall thinning, cardiac hypertrophy and increased spherical shape of the 

ventricle, resulting in progressive contractile dysfunction and chronic heart failure. This 

process of adverse cardiac remodelling is not only influenced by the initial infarct size, but 

also by alterations in the healing process (Tiyyagura and Pinney, 2006; Whelan et al., 2007; 

Frangogiannis, 2008). 
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1.2.2 Cardiomyocyte death 

 
In the mammalian heart, a constant supply of oxygen is essential for the maintenance of 

cellular processes and, consequently, cardiac function and viability. Thus, an ischemic 

myocardial insult triggers cardiomyocyte death (Figure 1.2 A) within the infarct zone 

initially via necrosis. Necrosis describes the death of cells by oxygen/nutrient deprivation so 

that cellular functions cannot be sustained and a general unorganized breakdown of cell 

organelles takes place; necrosis initiates a broad inflammatory response. The acute necrotic 

phase is followed by cycles of cell death in the border zone and the remote myocardium 

which are mainly attributed to apoptosis, but necrosis and autophagy take place as well. 

(Apoptosis is an energy requiring process, directed by a highly structured gene program to 

shut down cellular functions and removal of the cell with minimal consequences for the 

surrounding tissue. Autophagy is a response to cell starvation under conditions of chronic 

metabolite or other stress and involves the degradation of most long-lived proteins and some 

organelles.) The third phase of cell death is characterized by a general loss of 

cardiomyocytes in the remote myocardium and is predominantly associated with autophagy 

(Dorn and Diwan, 2008). 

 

1.2.3 Inflammatory response 

 
Innate immunity 

After myocardial infarction, the discharge of intracellular components from necrotic cells 

triggers a profound immune response by activating innate immune processes, including 

complement activation, reactive oxygen species (ROS) generation, and Toll-like receptor -

mediated pathways which initiate the nuclear factor (NF)-κB system (Frangogiannis, 2008; 

Frantz et al., 2009). 

The NF-κB system is an essential element in the control of cytokine, chemokine and 

adhesion molecule expression in the ischemic myocardium. The system is activated by 

numerous agents including cytokines and ROS. Genes regulated by the NF-κB family of 

transcription factors are involved in the inflammatory response, cell adhesion and growth 

control. Animals studies on mice harbouring different mutations of proteins involved in NF-

κB signalling showed contradictory findings, i.e. an injurious role, as well as a 

cytoprotective role. These results reflect the diversity of cellular processes and molecular 

pathways affected by the system. NF-κB is one of the most important regulator of pro-

inflammatory gene expression, but it is also involved in cell survival, has proliferative 
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effects and influences ECM modulation by regulating MMP (matrix metalloproteinases) 

synthesis (Frangogiannis, 2008). 

After activation of the innate immune system, inflammatory mediators are released and 

inflammatory cells are attracted to the ischemic zone (Frantz et al., 2009). 

 
Humoral immune response 

Cytokine cascades have been shown to be activated in infarcted myocardium and the 

proinflammatory cytokines TNF-α, IL-1 and IL-6 are consistently found in experimental 

models of MI. Complement, ROS and NF-κB stimulate cytokine synthesis in resident and 

blood-derived cells. TNF-α exhibits various functions, including the suppression of cardiac 

contractility, enhancement of cardiomyocyte apoptosis and the stimulation of expression of 

other cytokines and chemokines. It triggers adhesion molecule expression by leukocytes and 

endothelial cells, and regulates ECM modulation via the reduction of collagen synthesis and 

enhancement of MMP activity in fibroblasts. IL-1 signalling plays a role in the activation of 

inflammation and fibrogenic pathways and might be involved in adverse remodelling 

processes. IL-6 is expressed in mononuclear cells and cardiomyocytes in the infarcted area. 

It exhibits effects on cardiomyocytes by promoting cardiac hypertrophy, but also by 

protecting myocytes from apoptosis (Frangogiannis, 2008).  

A further feature of the inflammatory phase after MI is the induction of chemokines. 

Chemokines comprise a family of small polypeptides and are divided into subfamilies based 

on their cysteine residues (Frangogiannis, 2008). They are synthesized by various cells of 

the immune system and by non-immune cells including endothelial cells. Chemokines 

function primarily as chemoattractants for phagocytic cells. Some chemokines appear to be 

involved in angiogenesis mediation (Frantz et al., 2009).  

 
Cellular immune response 

Activated platelets are the first cells to be recruited. They aggregate in the wound, 

contribute to the formation of the fibrin-based provisional matrix and release various 

chemokines, cytokines and growth factors. They initiate the complement system and direct 

the inflammatory response to the site of injury (Frangogiannis, 2008).  

Next to the platelets, leukocytes infiltrate the injured myocardium; there exists a correlation 

between the level of leukocyte infiltration and extension of the infarcted area (Bodi et al., 

2008). Neutrophils are recruited early after infarction and release oxidants and proteases, 

secrete mediators of cell recruitment, and phagocytose cell debris and dead cells (Frantz et 

al., 2009). In addition, neutrophils contribute to initial ECM degradation by MMP 
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production. The migration of neutrophils into the infarcted zone is based on adhesive 

interactions with activated vascular endothelial cells and diapedesis through the vessel wall 

(Frangogiannis, 2008).  

As neutrophil numbers decline, monocytes infiltrate the infarcted myocardium from 

capillaries and become the predominant phagocytic cell type in the wound. After monocyte 

recruitment, these blood-derived cells differentiate and mature to macrophages. This process 

is not well investigated, but probably involves the growth factors M-CSF and GM-CSF. 

Differentiated macrophages are responsible for the clearance of dead cells and debris, and 

apoptotic neutrophils and cardiomyocytes. They produce MMPs and TIMPs, and cytokines 

and growth factors, thereby regulating ECM modulation, growth of fibroblasts and 

angiogenesis (Frangogiannis, 2008).  

Another important finding was that peripheral blood monocytes are a heterogeneous 

population and two monocyte subsets have been identified (Geissmann et al., 2003) in a 

murine model which participate in the infarct response (Nahrendorf et al., 2007). The group 

showed that the modulation of the chemokine expression profile after MI sequentially and 

actively recruits Ly-6Chi (Gr1hiCCR2+CX3CR1lo) and Ly-6Clo (Gr1loCCR2-CX3CR1hi) 

monocytes. (Ly-6C/G (Gr1) is a monocyte marker, CX3CR1 and CCR2 are chemokine 

receptors.) Ly-6Chi monocytes dominate early in the inflammatory phase, bringing about 

phagocytic, proteolytic and inflammatory functions; Ly-6Clo monocytes dominate rather in 

the proliferative phase and show enhanced healing properties via myofibroblast 

accumulation, angiogenesis, and collagen deposition (Nahrendorf et al., 2007).  

Mast cells are multifunctional resident cells which are mainly localized close to vessels in 

the heart. Mast cells produce and release a wide variety of inflammatory and pro-fibrotic 

agents, like TGF-β, FGF, VEGF, and gelatinase A and B; these factors are involved in 

fibroblast growth, ECM modulation and angiogenesis (Frangogiannis, 2008). 

Cardiac fibroblasts are present in normal myocardium and proliferate and infiltrate the 

wound after MI. Fibroblasts in the infarct undergo a differentiation to myofibroblasts which 

express contractile proteins (as α-smooth muscle actin (SMA)) and exhibit an enhanced 

migratory and proliferative activity (Porter and Turner, 2009). Myofibroblasts mediate scar 

contraction (Jugdutt, 2003) and are the main source of collagen mRNA in the healing 

infarct; they appear during the formation of the granulation tissue and become apoptotic 

during maturation of the scar (Frangogiannis, 2008). 
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Resolution of the inflammatory infiltrate 

After the inflammatory phase, chemokine and cytokine synthesis is inhibited, suppressing 

continuous leukocyte recruitment and injury. This inhibition is crucial for optimal healing 

which requires the resolution of the inflammatory infiltrate and transition to fibrous tissue 

deposition (Frangogiannis, 2008).  

 

1.2.4 The role of extracellular matrix 

 
Extracellular matrix proteins not only provide structural and mechanical support, but also 

modulate cell signalling. After infarction, the ECM undergoes constant changes, thereby 

modulating the microenvironment and regulating cell behaviour. During the inflammatory 

phase, normal ECM is degraded and a fibrin-based transient matrix is formed. This matrix 

enables the migration and proliferation of infiltrating inflammatory, endothelial and stromal 

cells. Afterwards, the provisional matrix is lysed by proteolytic enzymes which are 

produced by the cells of the granulation tissue. The formed matrix is an organized network 

consisting of fibronectin and hyaluronan. As the wound matures, collagen is deposited and 

cross-linked to stabilize the scar and increasing the strength of the wound (Frangogiannis, 

2006). Further to structural matrix proteins (like collagen and fibronectin), matricellular 

proteins (like tenascin-C, thrombospondins, and osteopontin) are transiently expressed in 

healing infarcts. They do not have a structural function, but modulate cell behaviour by 

activating signalling pathways through binding of specific cell-surface receptors 

(Frangogiannis, 2006).  

Remodelling of the ECM is controlled by MMPs, which degrade matrix proteins and are 

inhibited by TIMPs (tissue inhibitors of metalloproteinases). Latent MMPs are present in 

normal heart tissue; they are upregulated and activated after infarction. Cytokines play a 

role in regulating MMP production by inflammatory cells and fibroblasts infiltrating the 

infarct zone. A balance of MMPs and TIMPs is critical for the modulation of the 

extracellular matrix (Frangogiannis, 2006). 

 

1.2.5 Neovascularization after infarction 

 
Formation of new blood vessels is critical for supplying the healing myocardium with 

oxygen and nutrients. Therefore, angiogenesis and arteriogenesis are an essential component 

of wound healing. After myocardial infarction, a network of neovessels is formed by 
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angiogenesis in the infarct region, as well as in the border zone to nourish the endangered 

tissue. In addition, the occlusion of a major artery provokes a change in blood flow, taking 

the path of lowest resistance via the collateral vessels into the periphery. Corresponding 

increased blood flow, hydrostatic pressure and shear stress induce arteriogenesis in the 

collaterals. As mentioned before, even a dense network of capillaries is not sufficient to 

substitute the flow of an occluded artery, only arteriogenesis can provide adequate perfusion. 

However, both are needed for infarct healing, as the capillary network in the infarct and 

border zone requires flow from the larger arteries upstream of the ischemic area, and in turn, 

large collateral arteries require a functional capillary network for efficient nutrient 

distribution (Markkanen et al., 2005).  

 

1.2.6 LV remodelling and adverse remodelling 

 
The sudden deprivation of cardiomyocytes after myocardial infarction leads to an abrupt 

loss of functioning myocardium and, consequently, decline in cardiac function (Figure 1.2 

B). In order to preserve ventricular function at least temporarily, acute compensation 

includes the increase in left-ventricular volume – achieved by cardiomyocyte lengthening – 

which enhances contractility in the noninfarcted myocardium. This principle is based on the 

Frank-Starling mechanism which describes a length-tension relationship in the heart and 

states that the greater the end-diastolic volume, the greater the stroke volume. Increased left-

ventricular volume, however, also leads to intensified wall stress. This is counteracted by 

scar formation in the infarcted area and by cardiomyocyte hypertrophy in the remote 

myocardium (Whelan et al., 2007). These processes can be considered beneficial or 

adaptive (Ferrari et al., 2009) in the infarct healing process and are summarized in the term 

ventricular remodelling (or cardiac remodelling) (Figure 1.2 B).  

Nonetheless, progressive – or chronic – remodelling is a key factor in the pathophysiology 

of ventricular dysfunction after myocardial infarction (Zornoff et al., 2009); in this context 

the term adverse remodelling is used 1. The major determinant of this process is the initial 

infarct size (Whelan et al., 2007), but also alterations in the infarct healing process can 

negatively influence the adaptive processes and cause dilation and dysfunction (Jugdutt, 

2003; Ferrari et al., 2009; Hori and Nishida, 2009; Zornoff et al., 2009). One of the first 

                                                 
1 For clarification of terminology: this thesis will continuously use “remodelling” in connection with beneficial, 
adaptive processes and “adverse remodelling” with regard to maladaptive processes leading to cardiac 
dysfunction. However, these terms are not universally applied throughout the literature. Although most studies 
and reviews confirm that “remodelling” is initially adaptive, the term is rather used to describe the progressive, 
pathological processes.  
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changes in adverse remodelling is infarct expansion: during the process of resorption of 

necrotic tissue and before extensive collagen deposition takes place, the tensile strength of 

the affected region is transiently reduced and the area most vulnerable. During this period 

the infarcted area can thin and elongate. This event is not caused by additional myocardial 

necrosis, but is a consequence of slippage between muscle bundles and cell rupture, leading 

to reduced myocyte numbers per wall thickness (Pfeffer and Braunwald, 1990; Tiyyagura 

and Pinney, 2006). Late modulations of adverse remodelling include responses of the 

remote myocardium. The initial compensative changes of heart architecture also induce 

increased loading conditions on the viable myocardium. This increase promotes further 

enlargement and hypertrophy of the healthy myocardium (Pfeffer, 1995). In addition, ECM 

responds to mechanical overload with an increase in collagen deposition, resulting in 

increased ventricular stiffness and dysfunction (Jugdutt, 2003; Hori and Nishida, 2009). In 

consequence, the whole ventricle dilates and a change in shape from ellipsoid to spherical is 

evident; the ventricle is thin-walled and exhibits poor contractile function. Reduced function 

becomes apparent by decreased ejection fraction; stroke volume and cardiac output cannot 

longer be compensated and decline as well. Consequently, adverse remodelling is associated 

with chronic heart failure in the long run (Whelan et al., 2007; Ferrari et al., 2009; Hori and 

Nishida, 2009).  
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Figure 1.2 Processes involved in 

myocardial infarction. (A) Schematic 

depicting cell death after myocardial 

infarction. Following the ischemic insult 
in myocardial infarction, necrosis is the 
predominant form of cell death in the 
ischemic myocardium, leading to cardiac 
myocyte loss. This is followed by waves 
of programmed cell death or apoptosis in 
the subacute phase as the predominant 
form of cardiomyocyte loss. In the 
chronic phase, autophagy emerges as the 
predominant mechanism of 
cardiomyocyte loss. The shaded area 
represents potentially salvageable 
myocardium by ‘cellular resuscitation’. 
Timeline for human processes (adapted 
from Dorn and Diwan, 2008). (B) 

Postinfarct myocardial remodelling. 

Thrombotic occlusion of a coronary 
artery leads to  myocyte death and the 
abrupt loss of functioning myocardium 
decreases contractile function. Acute 
compensation is provided by increases in 
left-ventricular volume (arrows) that 
augment function (the Frank-Starling 
mechanism) and neurohumoralfactors 
that increase contractility in the 
noninfarcted myocardium. Augmented 
wall stress, a deleterious effect of 
increased left-ventricular volume, is 
reduced by myocyte hypertrophy in the 
noninfarcted myocardium (doubleheaded 
arrows). Especially after larger infarcts, 
adverse remodelling (the term 
remodelling is used in the schematic) 
takes place where the left ventricle 
undergoes dilation (dashed arrows), wall 
thinning, and a change in shape from 
ovoid to spherical, causing reduced 
contractile function and chronic heart 
failure (adapted from Whelan et al., 
2007).  
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1.3 Notch signalling 

1.3.1 The Notch signalling pathway 

 
Notch signalling constitutes an evolutionary conserved pathway which plays a pivotal role 

in a broad spectrum of developmental and physiological processes, including the 

development of the central nervous system, the vasculature, or the heart, for example. Due 

to the transmembrane characteristic of both receptor and ligand, signalling requires direct 

cell-cell interactions and is consequently restricted to adjacent cells. In a context-dependent 

manner, signals transmitted through the Notch receptor direct cell-fate decisions, thereby 

promoting or suppressing cell proliferation, differentiation and cell death (Artavanis- 

Tsakonas et al., 1999; Bray, 2006; Kopan and Ilagan, 2009). 

 
Receptor and ligand basics 

In mammals, four Notch receptors (Notch1 – Notch4) and five Notch ligands (Jagged1 and 

2, and Delta-like1, 3 and 4) have been identified.  

Notch receptors are synthesized as single-chain precursor proteins. The N-terminal part of 

the extracellular domain of all receptors contains a variable number (29-36) of tandem 

epidermal growth factor (EGF) –like repeats (Figure 1.3 B). EGF repeats 11-12 mediate 

ligand interaction in trans (neighbouring cell interaction), whereas repeats 24-29 mediate 

interaction in cis (receptor and ligand on the same cell). EGF repeats are followed by a 

negative regulator region (NRR) which is composed of three Lin12/Notch (LNR) repeats 

and a heterodimerization domain. The NRR is critical in preventing receptor activation in 

ligand absence. The intracellular portion of the polypeptide contains the transmembrane 

domain, a RAM domain responsible for CSL protein interaction, nuclear localization 

sequences (NLSs), seven ankyrin repeats (ANK) responsible for interaction with other 

proteins, and a C-terminal PEST sequence necessary for protein degradation. The Notch 

precursor protein is modified in the endoplasmic reticulum by an O-fucosyl-transferase 

(fucosylation) and an O-glucosyl-transferase (glycosylation). Glycosylation is completed in 

the Golgi apparatus by Fringe. Glycosylation is necessary for the ability to bind ligands and 

for receptor specificity. In addition, in the Golgi the precursor protein is cleaved by Furin 

protease at the S1 cleavage site located in the heterodimerization domain. This cleavage 

converts the polypeptide into a NECD-NTMIC (Notch extracellular domain – Notch 

transmembrane and intracellular domain) heterodimer; the fragments are associated by 

noncovalent interactions. The functional, glycosylated heterodimer is finally transported to 
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the plasma membrane (Bray, 2006; Nemir and Pedrazzini, 2008; Niessen and Karsan, 2008; 

Kopan and Ilagan, 2009; Tien et al., 2009).  

The general structure of the Notch ligands includes three related motifs: an N-terminal DSL 

(Delta/Serrate/LAG-2) domain, specialized EGF repeats called DOS domain, and EGF 

repeats. Jagged proteins contain a cysteine rich domain in addition. DSL and DOS domains 

are involved in receptor binding (Bray, 2006; Kopan and Ilagan, 2009). Ligand activity is 

also modified by glycosylation (Fortini, 2009).  

In principle every Notch receptor can be activated by any DSL ligand, but tissue specific 

expression and posttranslational glycosylation (which modifies binding affinity) results in 

preferential specific receptor-ligand interaction (McCright, 2003; Nemir and Pedrazzini, 

2008; Niessen and Karsan, 2008). For example, modification of Notch by Fringe inhibits the 

activation by Jagged ligands, but stimulates the response of Notch to Delta ligands (Lai, 

2004). 

 
The Notch signalling cascade 

Before ligand binding, the Notch receptor is kept in an inactive state by an interaction of the 

LNR with the heterodimerization domain in the NRR. Ligand binding to the receptor 

(Figure 1.3 A) results in a conformational change, allowing access for the first proteolytic 

cleavage event mediated by TACE or Kuzbanian, both members of the ADAM-family of 

metalloproteases. The corresponding S2 cleavage site is located in the NRR and results in 

the discharging of the extracellular domain, leaving a membrane-tethered intermediate 

called Notch extracellular truncation (NEXT); the extracellular domain/ligand complex is 

transendocytosed into the signal-sending cell. The following cleavage event of NEXT is 

mediated by γ-secretase (a complex composed of presenilin, Pen-2, Aph-1, and nicastrin) at 

site S3/4, which is located in the transmembrane domain. This cleavage releases the Notch 

intracellular domain (NICD) which translocates to the nucleus and interacts with the DNA-

binding protein CSL (for CBF1 in humans, Su(H) in D. melanogaster and Lag-1 in C. 

elegans; CSL is also known in mice as RBP-J). In the absence of Notch signalling, CBF-1 

acts as transcriptional repressor in combination with a co-repressor complex containing 

SMRT/N-CoR, SHARP/MINT, SKIP, CIR and CtBP; the co-repressor complex is 

functionally linked to a histone deacetlyase, whose activity results in the transcriptionally 

repressed chromatin state. In the presence of Notch signalling, NICD binds to CBF-1 

through its RAM domain, displacing the co-repressor complex and recruiting the 

transcription coactivator Mastermind-like (MAML) (via the ANK domain). Thus, the 

transcriptional repressor is converted to a transcriptional activator. This activator complex 
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of CBF1/NICD/MAML recruits the histone acetyltransferase p300, thereby promoting a 

transcriptionally active chromatin state, induction of the transcription initiation and 

elongation complex and, ultimately, activation of Notch target genes (Lai, 2002; Kopan and 

Ilagan, 2009; Tien et al., 2009).  

Target genes of Notch signalling include basic helix-loop-helix (bHLH) transcription 

proteins of the Hes and Hey family (mammalian homologues of the Drosophila 

Hairy/Enhancer of Split). In mammals, Hes1, Hes5 and Hes7, as well as Hey1, Hey2 and 

HeyL are under control of Notch signalling and are considered as central regulators of cell 

fate-specific gene transcription. They act as direct transcriptional repressors by binding to 

specific DNA sequences on target gene promoters and as indirect repressors by interaction 

with other transcription factors. Other direct Notch targets include cyclin D1, p21, NF-κB 

transcription factors, EphrinB2 and SMA (Miele, 2006; Nemir and Pedrazzini, 2008; 

Niessen and Karsan, 2008). 

 
Regulation 

Notch signalling is regulated at various levels. Influencing availability by regulating 

expression levels of receptors and ligands is one of the simplest ways and, actually, 

expression patterns are influenced by other signalling pathways. In addition, surface 

expression and degradation after signalling are regulated by multiple processes including 

endocytosis, ubiquitination and proteolysis (Figure 1.3 A). Interestingly, endocytosis of the 

DSL ligands in the signal-sending cell mediates ubiquintination of the ligand. This 

ubiquitination is essential for ligand activation. Another example of regulation is control of 

Notch levels at the cell surface. Several E3 ubiquitin ligases are able to direct Notch 

receptors to lysosomal degradation or toward endosomal recycling. In addition, control of 

NICD turnover is critical to prevent prolonged or excessive signalling. In the activator 

complex, SKIP and MAML recruit kinases which phosphorylate NICD at the PEST 

domains; the following ubiquitination of the phosphorylated sites triggers NICD 

degradation (Nemir and Pedrazzini, 2008; Morrow et al., 2008; Fortini, 2009; Kopan and 

Ilagan, 2009). 

 
Modes of action 

Notch signalling acts by different modes of action. During lateral inhibition a group of 

equipotent cells all expresses equal amounts of both, receptor and ligand. Through a 

combination of intrinsic and extrinsic signals this balance is shifted and one cell begins to 

express more ligand. Consequently, Notch signalling is activated in the neighbouring cells. 
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Thereby, the ligand expressing cell assumes a particular cell fate and inhibits the 

immediately adjacent cells to assume the same fate. In the mechanism of lateral induction a 

cell is instructed to adopt a specific cell fate A in the absence of the Notch ligand. In the 

presence of the ligand provided by a different cell, Notch signalling is activated and the cell 

adopts another cell fate B. These Notch-mediated interactions segregate specific cell 

lineages from clusters of cells and induce boundary formation. A third mechanism describes 

the activation of Notch signalling in stem cells to maintain an undifferentiated state 

(Artavanis-Tsakonas et al., 1999; Borggrefe and Oswald, 2009).  

 
Non-canonical signalling 

The signalling pathway described so far is also known as the classical, canonical cascade. 

However, non-canonical DSL-independent proteins have also been shown to activate Notch 

signalling. These proteins include the adhesion molecules F3/Contactin, the EGF-repeat 

factor DNER, or the mammalian microfibrillar proteins MAGP-1 and MAGP-2 (Fortini, 

2009; Kopan and Ilagan, 2009).  

 

1.3.2 The role of Notch signalling in the cardiovascular system 

 

Developmental implications – heart and vascular morphogenesis 

In the developing heart Notch signalling is engaged in the process of heart looping by 

interfering in left-right symmetry determining mechanisms (Niessen and Karsan, 2007), 

cardiomyocyte differentiation (during heart tube formation differentiation is inhibited, but 

later during ventricular trabeculation differentiation to myocytes is promoted) (High and 

Epstein, 2008), and in EMT which is essential for valve and septa formation (Karsan, 2005). 

Expression analysis have revealed Notch1 and Notch2 as predominant receptors in the 

developing heart (Swiatek et al., 1994; McCright et al., 2001; Nemir and Pedrazzini, 2008). 

Delta-like 1 (Dll1) is expressed in the endocardium at the base of the trabeculae at E9.5, but 

not in the distal endocardium (Grego-Bessa et al., 2007; Nemir and Pedrazzini, 2008). 

Delta-like 4 (Dll4) is expressed around E8 in the cardiac crescent, but is later restricted to 

the ventricular endocardium (Benedito and Duarte, 2005; Nemir and Pedrazzini, 2008). 

Jagged 1 (Jag1) is found at E12.5 in the outflow tract, the atrioventricular canal, the 

ventricular trabeculae and the atrial myocardium (Loomes et al., 1999; Loomes et al., 2002; 

Nemir and Pedrazzini, 2008).   
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In addition, a wide variety of studies have proven the essential role of Notch receptors, 

ligands and downstream targets in vascular development during embryogenesis in mammals. 

Gene ablation experiments all have in common that Notch inhibition does not influence 

vasculogenesis, but prevents the conversion of the primary vascular plexus to the 

hierarchical vascular network of arteries, veins and capillaries. Thus, Notch signalling plays 

a more important role in angiogenesis. Null mutant mouse models (Notch1
-/-

, Notch2
-/-

, 

Notch1
-/-/Notch4

-/-
, Dll1

-/-
, Dll4

-/-
 and Jag1

-/-) show embryonic lethality due to 

cardiovascular abnormalities. Expression levels of Notch components are dynamic during 

development (spatially as well as temporarily). Notch1 is expressed in various tissues, 

including the heart and vascular endothelial cells. Notch3 is predominantly expressed in 

vascular SMCs and Notch4 is restricted to vascular endothelial cells. Dll1, Dll4, Jag1, and 

Jag2 are expressed in vascular endothelium; Jag1 is expressed in addition in SMCs and is 

involved in SMC maturation (Beckers et al., 1999; Krebs et al., 2000; Shutter et al., 2000; 

Nijjar et al., 2001; Villa et al., 2001; Iso et al., 2003; Karsan 2005; Hofmann and Iruela-

Arispe, 2007; Kume, 2009). 

 

Developmental implications – angiogenic sprouting 

Another important mechanism Notch signalling is involved in, is angiogenic sprouting with 

tip/stalk cell specification. The combined effect of tip cell migration and stalk cell 

proliferation results in vascular growth (Gerhardt et al., 2003; Hofman and Iruela-Arispe, 

2007).  

Vascular growth is guided by hypoxia. Hypoxic cells upregulate VEGF-A (a secreted VEGF 

form), leading to the formation of a gradient. Initially equipotent endothelial cells all 

express the VEGF-A receptor complex Kdr(VEGFR2)/Nrp1. Via the principle of lateral 

inhibition, the endothelial cell experiencing the highest VEGF-A concentration gains a 

competitive advantage and VEGF receptor activation leads to enhanced Dll4 expression (in 

concert with Foxc1 and Foxc2 transcription factors); this cell attains the tip cell phenotype. 

In consequence, Dll4 activates Notch signalling in the neighbouring cell, leading to 

downregulation of Kdr/Nrp1, thereby rendering this cell unresponsive to VEGF-A and 

lowering Dll4 expression. Thus, conversion to a tip cell is prevented and the cell adapts a 

stalk phenotype (Horowitz and Simons, 2008; Carmeliet et al., 2009; Kume, 2009; Phng and 

Gerhardt, 2009). By this mechanism VEGF and Dll4 signalling forms a negative-feedback 

loop, controlling tip cell selection and the frequency of sprouting (Horowitz and Simons, 

2008; Carmeliet et al., 2009). Inactivation of Dll4/Notch leads to the formation of a highly 

branched and dense vascular network, but vessels are nonproductive and inefficient in 
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oxygen delivery (Hellström et al., 2007; Hofmann and Iruela-Arispe, 2007; Siekmann and 

Lawson, 2007; Suchting et al., 2007).  

Tip cells lack a lumen and extent filopodia to explore growth factor signals and guidance 

cues in the surrounding tissue. Stalk cells enclose a luminal space, forming a tubule at the 

stalk of the vascular sprout (Gerhardt et al., 2003; Roca and Adams, 2007). VEGF induces 

migration of tip cells and proliferation of stalk cells, which is needed to form a new vessel 

branch (Carmeliet et al., 2009; Phng and Gerhardt, 2009). However, Notch signalling has 

been shown to promote a quiescent endothelial phenotype. So how could Notch activation 

in stalk cells promote endothelial cell proliferation during stalk elongation? Phng and co-

workers revealed that interaction of Nrarp, Notch and Wnt is required. Nrarp is a 

downstream target of Notch which counteracts Notch signalling by destabilizing NICD. 

Wnt signalling and Nrarp expression in stalk cells override Notch activity to induce cell-

cycle arrest and at the same time Notch prevents the stalk cells from becoming tip cells 

(Phng et al., 2009; Carmeliet et al., 2009).  

 
Developmental implications – arterial/venous specification 

As already mentioned before, there are significant molecular differences between 

endothelial cells in arteries (expressing ephrin-B2) and veins (expressing EphB4). These 

differences are generated by VEGF and Notch interactions in the lateral mesoderm. 

Analyses revealed that VEGF induces Notch signalling via the ligand Dll4 (Lawson et al., 

2002; Duarte et al., 2004; Gale et al., 2004; Roca and Adams, 2007). Angioblasts stimulated 

by Notch activate the expression of ephrin-B2 and other arterial markers, thereby 

establishing arterial endothelial identity (Zhong et al., 2000; Zhong et al., 2001; Lawson et 

al., 2002; Grego-Bessa et al., 2007; Phng and Gerhardt, 2009). Conversely, Notch signalling 

is suppressed by the venous transcription factor COUP-TFII (You et al., 2005) and 

accordingly less stimulated angioblasts express EphB4 and endothelial cells gain a venous 

identity (Adams, 2003; Torres-Vásquez et al., 2003; Gilbert, 2006; Al Haj Zen and 

Maddedu, 2009; Swift and Weinstein, 2009).  

 
Role in adults – myocardial infarction and heart stress response 

Although the engagement of Notch signalling in cardiovascular development has been the 

focus of a multitude of studies, its role in the postnatal heart and stressed conditions has 

attained less attention. Only in 2008 first studies attended to this topic. 

Gude et al. were the first to analyse Notch signalling following myocardial infarction and 

showed the activation of protective mechanisms in the myocardium, mediated by Notch 
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(Gude et al., 2008). In the mammalian heart endogenous Notch signalling is low (Gude et 

al., 2008, Collesi et al., 2008; Kratsios et al., 2010), but expression levels increase in 

response to acute infarction by permanent coronary occlusion (Gude et al., 2008). 4 days 

after infarction, NICD and Jag1 were detected in surviving cardiomyocytes of the border 

zone, whereas Dll4 was predominantly expressed in interstitial areas. Additional Hes1 

detection indicated active Notch signalling (Gude et al., 2008). The group treated infarcted 

hearts with an adenoviral vector expressing NICD and could show improved hemodynamic 

function, compared to control animals after 4 weeks. Further analyses revealed the 

relationship of HGF (hepatocyte growth factor), binding to its receptor c-Met (increased in 

hypertrophic and infarcted cardiac tissue) which in turn induces Delta expression, Notch 

activation and Hes1 expression. Among others, c-Met activates ERK and Akt/PKB survival 

signalling in the heart. As Notch1 signalling enhances Akt activity, results suggest Notch 

signalling as mediator of cell survival (Gude et al., 2008).  

Another study analyzed the role of Notch signalling in cardiac hypertrophy and found that 

the adaptive response of the heart to stress is controlled via Notch1 (Croquelois et al., 2008). 

Microarray and RT-PCR analyses showed activated genes of Notch1, Jag1, RBP-J and Hes1 

in hypertrophic and dilated adult hearts. Notch1 was detected in cardiomyocytes and 

mesenchymal cardiac precursors and was stimulated by Jag1 on cardiomyocytes. Using a 

mouse model of cardiac specific Notch1 deletion, the group showed aggravated hypertrophy, 

development of fibrosis, impaired cardiac function and increased mortality. The conclusion 

of the study stated that (a) in cardiomyocytes, Notch represses cardiac gene expression and 

prevents excessive, detrimental hypertrophy and (b) in cardiac precursors Notch regulates 

proliferation and differentiation (Croquelois et al., 2008). 

Other in vitro studies revealed that Notch activation induces cell-cycle re-entry in quiescent 

cardiomyocytes (Collesi et al., 2008; Campa et al., 2008; Kratsios et al., 2010). 

The most recent and second study focusing on Notch involvement after myocardial 

infarction was performed by Kratsios and co-workers. The group analyzed effects of 

sustained Notch1 activation after myocardial infarction, using an inducible cardiomyocyte-

specific NICD1 mouse model or by intramyocardial delivery of a Notch1 pseudoligand. 

These approaches resulted in increased survival rates, improved functional performance, 

and decreased myocardial injury by promoting antiapoptotic mechanisms and 

cardiomyocyte survival. In addition, minimized fibrosis and enhanced neovascularisation 

could be observed (Kratsios et al., 2010). 
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Figure 1.3  Notch signalling. (A) The Notch signalling pathway. Post-translational processing of the 
Notch preprotein involves glycosylation and fucosylation (POFUT1), as well as cleavage by the protease furin. 
Fringe-mediated glycosylation modulates Notch responses to ligands. Modification by the E3 ubiquitin ligases 
Mib and Neur enable DSL proteins to signal through Notch. Notch receptor activity is modulated by 
ubiquitination involving Nedd4 and deltex proteins. After ligand binding, Notch is processed by 
ADAM10/TACE and γ-secretase. Nuclear translocation of the NICD and its interaction with RBP-J/CSL and 
the coactivator Mam trigger the expression of target genes such Hey and Hes (adapted from Roca and Adams, 
2007). (B) Domain organization of Notch receptors and ligands. (A) Notch receptor organization – for a 

A 

B 
(Roca and Adams, 2007) 

(adapted from Kopan and Ilagan, 2009) 
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detailed description see text. NRR: negative regulatory region, LNR: Lin12-Notch repeats, HD: 
heterodimerization domain, TMD: transmembrane domain, NLS: nuclear localization sequence, ANK: ankyrin 
repeats, TAD: transactivation domain, PEST: proline/glutamic acid/serine/threonine-rich motifs, NECD-
NTMIC: Notch extracellular domain-Notch transmembrane and intracellular domain. (B) DSL/EGF ligand 
organization (adapted from Kopan and Ilagan, 2009).  

 
 

1.3.3 Involvement of Notch signalling in immunity mediated wound repair 

 
Already described in the chapter dealing with myocardial infarction, the inflammatory 

response involves the recruitment of two distinct and complementary monocyte subsets 

(Nahrendorf et al., 2007). Recruited monocytes differentiate to macrophages at the area of 

inflammation (Gordon and Taylor, 2005). Ly-6Chi monocytes dominate early in the 

inflammatory phase, whereas Ly-6Clo monocytes dominate rather in the proliferative phase 

and show enhanced healing properties (Nahrendorf et al., 2007). Polarized macrophages are 

classified as M1 (classical activated macrophages) with pro-inflammatory function and M2 

(alternatively activated macrophages), associated with tissue repair and angiogenesis 

(Mosser and Edwards, 2008; Limbourg et al., in review). Just recently Limbourg and co-

workers could provide evidence that Notch signalling is involved in macrophage 

differentiation. In vitro experiments revealed that cultures of PBMC (peripheral blood 

monocytes)-derived macrophages showed active Notch signalling and an M2 typical 

phenotype. Inhibition of Notch signalling resulted in macrophages of inflammatory M1 

phenotype (Limbourg et al., in review). Next, the group tested the hypothesis that by 

regulating macrophage polarization, Notch signalling regulates the inflammatory and 

regeneration response after ischemia. In a M2 macrophage-deficient mouse model, effects 

of cultured M2 macrophages and cultured Notch-deficient M1 macrophages were studied. 

Cells were injected into ischemic muscles after hindlimb ischemia. Without treatment, mice 

showed impaired recovery from ischemia. Treatment with M2 macrophages resulted in 

decreased necrosis and increased angiogenesis, arteriogenesis and arterial branching in the 

ischemic muscle. Recruitment of CD45+ leukocytes to the ischemic muscle was reduced 

and tissue necrosis suppressed. In contrast, injection of Notch-deficient M1 macrophages 

resulted in significantly reduced angiogenesis and arteriogenesis; tissue necrosis was 

increased. CD45+ leukocyte recruitment, corresponding inflammatory response and fibrosis 

was enhanced and prolonged, consistent with the development of chronic inflammation. 

These results were consistent with the role of macrophage subsets in inflammation and 

tissue recovery, and proved an according involvement of Notch signalling (Limbourg et al., 

in review).  



INTRODUCTION 
_________________________________________________________________________________________ 

_________________________________________________________________________________________ 
40 

1.4 The Notch ligand Delta-like 1 (Dll1) 

1.4.1 Dll1 – further insights  

 
The focus of this thesis is the Notch ligand Dll1. Interaction of Dll1 with Notch in trans 

activates Notch signalling, whereas interaction in cis inhibits the pathway (Dyczynska et al., 

2007). Apart from its role in the cardiovascular and immune system – which will be 

discussed in more detail in the following –, Dll1 is involved in a multitude of processes in 

different stages of development and tissues, including for example cell differentiation in 

pancreas development (Apelqvist et al., 1999), differentiation and proliferation during inner 

ear development (Brooker et al., 2006), and specification of vertebral identity (Cordes et al., 

2004; Rubio-Aliaga et al., 2007).  

 

In addition to directional signalling through the Notch receptors, further studies have also 

shown results which indicate that not only NICD interacts with other proteins, but also the 

intracellular domain (ICD) of some ligands may initiate cascades in the ligand-expressing 

cell (keyword bi-directional signalling) (LaVoie and Selkoe, 2003; Pfister et al., 2003; 

Rubio-Aliaga et al., 2007). Evidence shows that – in analogy to Notch receptor processing – 

Dll1 undergoes an ADAM-mediated ectodomain cleavage, followed by presenilin/γ-

secretase proteolysis of the membrane-tethered C-terminal fragment; the resultant Dll1 ICD 

can enter the nucleus (LaVoie and Selkoe, 2003; Six et al., 2003, Dyczynska et al., 2007). 

However, it is unclear whether cleavage is a constitutive event in the absence of a Notch 

signal, or if it is regulated by a soluble or membrane-associated interacting partner (like 

Notch) (Six et al., 2003). In addition, the role of the shedded extracellular domain has not 

been clarified (Six et al, 2003; Mishra-Gorur et al., 2002). Proteolytic ligand processing 

results in the downregulation of Notch signalling in the neighbouring cell (Qi et al., 1999; 

Mishra-Gorur et al., 2002; Dyczynska et al., 2007). However, in the condition of receptor 

and ligand expression on the same cell, effects of ligand processing have not been clarified 

(Dyczynska et al., 2007).  

Analysis of interactions of the Dll1 ICD identified Acvrinp1, a MAGUK family member 

(Pfister et al., 2003). Expression analyses in mouse embryos showed partly overlapping, but 

also distinct patterns in the central nervous system and the expression of Acvrinp1 was 

altered (i.e. premature expression) in Dll1 null-mutant embryos (Pfister et al., 2003). 

Another study found Dll1 ICD in the nucleus of neural stem cells in the developing mouse 

(Hiratochi et al., 2007). In this context, Dll1 ICD bound specifically to the transcription 
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factors Smad2, Smad3 and Smad4, thereby enhancing Smad-dependent transcription and 

mediating TGF-β/Activin signalling (Hiratochi et al., 2007).  

 

1.4.2 Dll1 in the cardiovasculature 

 
Dll1 in heart development 

Dll1 is expressed in the endocardium at the base of the trabeculae at E9.5 (Grego-Bessa et 

al., 2007). However, standard targeted Dll1 mutants did not show obvious cardiac defects at 

this time point, which suggests functional redundancy of this ligand and/or signalling is 

maintained by Dll4, which shows an identical expression pattern in the trabeculae (Grego-

Bessa et al., 2007). 

 
Dll1 in vasculature development 

A complete Dll1 knockout is lethal around embryonic day 12 (E12) due to severe bleeding. 

However, lethality is based rather on defects in surrounding tissues, than on vascular 

functions (Hrabé de Angelis et al., 1997; Gessler, 2009). Embryos heterozygous for Dll1 are 

phenotypically normal and survive until adulthood, despite significantly reduced Notch 

activity (Hrabé de Angelis et al., 1997; Beckers et al., 1999; Schuster-Gossler et al., 2007).  

 

Early vascular patterning in the mouse embryo is mediated by the Notch ligand Dll4. Of all 

ligands which are expressed in arterial endothelial cells (Dll1, Dll4, Jag1, and Jag2), only 

Dll4 is expressed at E8.5 and its expression is limited to vascular endothelial cells (Krebs et 

al., 2000; Kume, 2009). Dll4 acts downstream of VEGF and is the critical ligand in arterial 

specification (see chapter 1.3.2) (Gessler, 2009).  

In contrast, Dll1 is expressed in vascular endothelium of late embryonic stages (Hrabé de 

Angelis et al., 1997; Beckers et al., 1999; Limbourg et al., 2007). Sörensen et al. showed 

specific expression of Dll1 in fetal arterial endothelial cells beginning at E13.5 (Sörensen et 

al., 2009). The group analysed embryos with reduced levels of Dll1 or endothelial-specific 

Dll1 ablation and found lost Notch1 activation, reduced VEGFR2, Nrp1 and ephrinB2 

expression, and upregulation of COUP-TFII after E13.5. As Dll4 expression was unchanged 

in these animals, Dll4 appears to be required for arterial specification, whereas Dll1 

mediated Notch activity is required in large arteries to maintain arterial identity in 

embryonic development (Sörensen et al., 2009). This finding suggests that there is a switch 

which renders Dll4 incapable to sustain Notch activity, arterial marker expression and vein 

marker suppression (Gessler, 2009). In normal conditions, COUP-TFII suppresses Nrp1 
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expression and arterial differentiation in venous endothelium (You et al., 2005; Sörensen et 

al., 2009). Sörensen et al. revealed that VEGFR2 and Nrp1 (together forming the VEGF-A 

receptor complex) downregulation in mutant arteries preceded COUP-TFII expression. This 

indicates that Dll1-mediated Notch1 activation upregulates VEGFR2 and Nrp1, thereby 

enhancing VEGF-A responsiveness of arterial endothelial cells (Sörensen et al., 2009; 

Kume, 2009). Thus, the group showed that Dll1 positively regulates VEGF signalling, 

which constitutes a contrasting function to Dll4 in growing capillaries where Dll4-mediated 

Notch signalling occurs downstream of VEGF (Kume, 2009). Summarizing, the study 

showed that there are functions of Dll1/Notch signalling which cannot be compensated by 

other ligands, and revealed a novel connection were in arteries Dll1/Notch1 facilitate VEGF 

sensitivity (Gessler, 2009). 

 

Furthermore, Dll1 has been implicated in smooth muscle differentiation and maturation. 

Together with Jag1, Dll1 are the primary ligands on arterial endothelial cells, inducing the 

expression of Notch3 and Jag1 in the neighbouring mural cells. This subsequently promotes 

and maintains the differentiated mural cell phenotype (High et al., 2008; Liu et al., 2009; 

Kume, 2009) 

 
Dll1 in adult vasculature 

Due to embryonic lethality of Dll1-/- mice, postnatal analyses are reduced to Dll1 

heterozygotes (Dll1+/-) which survive to adulthood.  

In the adult cardiovascular system Dll1 is selectively expressed in arterial endothelial cells. 

It is not found in capillaries, venous endothelial cells or other cell types present in the heart 

(Limbourg et al., 2007). The basal role of Dll1 in the adult vasculature has not been studied 

so far, but Limbourg and co-workers discovered a critical role of Dll1 in postnatal 

arteriogenesis (Limbourg et al., 2007). In the mouse model of hindlimb ischemia the 

expression of Dll1 was induced, Notch signalling activated, ephrin-B2 upregulated, and 

perivascular cells expressed VEGF and EphB4 while arteries grew. Analogous analyses in 

ischemia-induced Dll+/- animals revealed the absence of endothelial Notch activation and 

ephrin-B2 induction. Perivascular VEGF expression and microvascular angiogenesis were 

not altered, but arteriogenesis and blood flow recovery were severely impaired (Limbourg et 

al., 2007). In vitro studies showed that VEGF and FGF synergistically induced Dll1 with 

corresponding Notch activation. This activation was necessary and sufficient to regulate 

ephrin-B2 expression and induced branching and vascular network formation (Limbourg et 

al., 2007). The group proposes a model of postnatal arteriogenesis in which the relationship 
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of Dll1 induction by angiogenic growth factors activates Notch signalling and ephrin-B2 

expression; this mediates remodelling and outward growth of the collateral artery towards 

an EphB4 enriched environment (Limbourg et al., 2007). The observed transient induction 

of Dll1 in connection with the previous finding of reciprocal Dll1 inhibition by activated 

Notch receptors might possibly explain the termination of arteriogenesis through Dll1 

downregulation after persistent Notch activation (Artavanis-Tsakonas et al., 1999; 

Limbourg et al., 2007). 

 

In contrast to Dll1, Dll4 is not expressed in larger arteries, but only in capillaries and 

microvessels; the ligand is not involved in regulating postnatal arteriogenesis (Limbourg et 

al., 2007). In the adult, Dll4 is rather associated with tumour angiogenesis (tip/stalk cell 

determination) and is expressed in tumour vasculature (Mailhos et al., 2001; Patel et al., 

2005; Hainaud et al., 2006; Kume, 2009). 

 

1.4.3 Dll1 involvement in haematopoiesis  

 
Notch signalling is involved in numerous processes of haematopoietic maturation. Hozumi 

and co-workers analysed ligand expression and found Dll1 expression in lymphoid tissues: 

in specific stromal cells of the thymus and in B cells and dentritic cells in the spleen 

(Hozumi et al., 2004). Based on the Cre/LoxP system the group generated inducible Dll1 

knockouts and confirmed deletion in all lymphoid tissues. These animals demonstrated a 

complete loss of splenic marginal zone B cells, but T cell development was unaffected 

(Hozumi et al., 2004). Thus, the group concluded that Dll1 was not required for Notch1 

activation at the branch point of T cell – B cell development, but Dll1 was essential for the 

generation of marginal zone B cells. Marginal zone B cells are a particular B cell subset 

which is derived from already committed B lineage cells, mediated by Notch2. The 

interaction of Dll1 with Notch2 for marginal zone B cell development was rather based on 

interaction of precursor with environmental cells, than between equivalent precursors. 

Consequently, Notch signalling is required for lymphocyte development in vivo, but varying 

receptor/ligand interactions are responsible in different developmental steps (Hozumi et al., 

2004). 

Another study analysed Dll1 expression on murine peripheral monocytes and macrophages. 

Moriyama et al. found Dll1 expression on a substantial part of Ly-6Clo monocytes (related 

to healing properties), whereas no Dll1 expression was detected on Ly-6Chi monocytes 
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(inflammatory properties) (Moriyama et al., 2008). Dll1 was expressed on a considerable 

fraction of splenic macrophages (CD11bhi/CD68+/F4/80+/Gr-1-). Further characterization of 

macrophages from the spleen showed higher CD40 expression on Dll1-negative 

macrophages, compared to Dll1-expressing macrophages. No difference in expression was 

observed for CD80, CD86, CD14 and MHC class II, comparing Dll1-positive and -negative 

monocytes/macrophages (Moriyama et al., 2008).  
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1.5 Objectives and hypotheses 

 
Development and regeneration after injury of the cardiovascular system require a huge array 

of factors and mechanisms which have to work in a temporal and spatial organized fashion 

(Darland and D’Amore, 2001). Myocardial infarction is a highly prevalent ischemic disease 

and multiple studies have demonstrated that only arteriogenesis has considerable ability to 

fully restore blood flow, which is absolutely critical for the regeneration of all ischemic 

organs (Deindl and Schaper, 2005; Simons, 2005; Heil et al., 2006). Notch signalling 

constitutes an evolutionary conserved pathway which plays a pivotal role in the 

cardiovascular system, and – as activators of the pathway – the Notch ligands play a critical 

role. The ligand Delta-like 1 (Dll1) has been associated with the maintenance of arterial 

identity during development (Sörensen et al., 2009) and is a critical regulator of postnatal 

peripheral limb arteriogenesis (Limbourg et al., 2007). These findings in combination with 

specific Dll1 expression in arterial endothelium raised the question about its function in 

coronary arteries and in arteriogenesis after myocardial infarction. 

 
Consequently, the aim of this study was to characterize the involvement of the Notch ligand 

Dll1 in arterial patterning of coronaries in the adult and its role in ischemic stress responses 

after myocardial infarction.  

 
Hypotheses  

1. A reduced level of Dll1 impairs the development of the coronary arterial system. 

2. Arteriogenesis is a critical factor of infarct compensation and positively influences 

cardiac remodelling. 

3. Dll1 is involved in arteriogenesis post MI; its specific arterial endothelial expression 

suggests that endothelial Dll1 mediates this arteriogenesis. 

4. (Partial) loss of Dll1 impairs arteriogenesis and infarct recovery, leading to adverse 

remodelling. 

 
Questions 

1. The findings of Notch involvement in macrophage differentiation and expression of 

Dll1 on a fraction of monocytes and macrophages give rise to the question of the 

involvement of Dll1 in inflammatory mediated infarct repair mechanisms. 



MATERIALS AND METHODS 
_________________________________________________________________________________________ 

_________________________________________________________________________________________ 
46 

2. MATERIALS AND METHODS  
 

 

 

 

2.1 Materials 

2.1.1 Chemicals, reagents, and buffers 

 

Table 2.1    Chemicals and reagents 

Reagents A-M Company Reagents M-Z Company 

1kb DNA ladder Invitrogen  Miglyol Caelo 

2-mercaptoethanol Invitrogen M-MLV RT buffer 5x Promega 

2-methylbutane Roth 
M-MLV Reverse 
Transcriptase Promega 

Acetone J.T. Baker MP Bio-Rad  

Acrylamide mix 30% 
(Rotiphorese Gel 30) Roth NaCl  Roth 

Agarose (Seakem LE) Lonza NaCl solution 0.9% B. Braun  

ApopTag® Plus Fluorescein 
In Situ Apoptosis Kit Chemicon  Naphthol-AS-BI-phosphate Sigma-Aldrich 

APS Roth Neu-Fuchsin Fluka 

Bradford reagent  
(Roti-Quant) Roth NH4Cl Sigma 

Bromphenol blue Roth Nitrocellulose membrane Roth 

BSA Roth OCT compound Sakura 

Chloroform J.T. Baker PBS Lonza 

Complete Mini, EDTA 
Protease Inhibitor Tablets Roche PBS w/Ca2+, Mg2+ Lonza 

DAPI Roth 
PCR buffer A 10x 
(10x PCR buffer) Qiagen  

DEPC AppliChem PFA Sigma-Aldrich 

Dimethylformamide Sigma-Aldrich Phenol/Chloroform AppliChem 

DMSO AppliChem Phloxin B Merck 

dNTP mix Invitrogen Phosphomolybdic acid Merck 

EDTA Roth Picric acid Sigma-Aldrich 

EGTA  Roth Picrosirius red (Direkt red 80)  Sigma-Aldrich 

Eosin G Merck PMSF Sigma-Aldrich 

EtOH  J.T. Baker Propandiol Merck 

Fc Blocking reagent BD Pharmingen Proteinase K  Roche  
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Table 2.1    - continued -  

FCS Biochrom Protein ladder Bio-Rad 

Fluorescence mounting 
medium Dako Q-solution 5x Qiagen 

Formaldehyde Sigma-Aldrich RNaseOUTTM
 Invitrogen 

Glacial acetic acid Sigma-Aldrich Rompun Bayer 

Glutaraldehyde Sigma-Aldrich SDS Roth 

Glycerol Sigma-Aldrich Serum - Goat  Sigma-Aldrich 

Glycine Sigma-Aldrich Serum - Donkey  Dianova  

HCl Merck  Sodiumnitrite Merck 

Heparin Ratiopharm Sucrose Roth 

Isofluran Baxter Tamoxifen (free base) Sigma-Aldrich 

Isopropanol J.T. Baker Taq polymerase (genotyping) made in-house 

K-ferricyanide Sigma-Aldrich  Taq polymerase (PCR) Qiagen  

K-ferrocyanide  Sigma-Aldrich TEMED Sigma-Aldrich 

Kaiser's glycerol gelatine Merck Tris-base  Roth 

KCl Sigma-Aldrich Tris-HCl  Roth 

Ketanest Pfizer Pharma  TritonX-100  Merck  

KHCO3 Sigma Trizol peqLab 

Levamisol Sigma-Aldrich Tween-20 Merck  

Liquid nitrogen Linde Vitro-clud R. Langenbrinck 

Mayer’s Hemalum Sigma-Aldrich 
Western LightningTM 
Chemiluminescence Reagent PerkinElmer  

Methanol Roth X-gal  peqLab 

MgCl2 AppliChem Xylol (Roticlear) Roth 

 

Table 2.2    Buffers and solutions  

Solution Composition 

Anaesthesia 
cocktail 

250 µl 2%  Rompun, 4 ml Ketanest (25 mg/ml), ad 10 ml isot. NaCl  

Antibody dilution 
buffer 

PBS, 0.3% Triton X-100, 1% BSA 

Blocking buffer 
PBS, 0.3% Triton X-100, 5% Serum (donkey or goat serum, depending on the 
species of the secondary antibody) 

Evan’s blue 
solution  

2% Evan’s blue in NaCl 0.9% 

Eosin/phloxin 
solution 

86.6 ml 96% EtOH, 1.1 ml 10% Phloxin B, 11.1 ml 2% Eosin G, 1.1 ml Glacial 
acetic acid 

FACS wash buffer PBS, 4% FCS, 2 mM sodium EDTA 

FACS AB mix 1 
480 µl FACS wash buffer, 5 µl B220-PE, 5 µl DX5-PE, 5 µl Ly-6G-PE, 5 µl 
NK1.1-PE, 5 µl F4/80-Biotin, 5 µl CD11c-Biotin, 5 µl I-Ab-Biotin, 1 µl CD90-PE 

FACS AB mix 2 480 µl FACS wash buffer, 2.5µl Ly-6C-FITC, 5µl Strep-PerCP, 5µl CD11b-APC 
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Table 2.2    - continued -   

IH solution A 44 ml 0.05 M Tris-HCl, 15 ml 0.2M Propandiol, 25 mg Levamisol 

IH solution B 13 mg Sodiumnitrite, 312µl ddH2O, 125 µl Neu-Fuchsin solution (5% in 2N HCl) 

IH solution C 31 mg Naphthol-AS-BI-phosphate, 375 µl Dimethylformamide 

KCl arrest solution  2.5 ml 1M KCl, 2ml Heparin 25000U, ad 50 ml PBS (w/Ca2+, Mg2+); filtered 

LacZ  staining 
solution 

1.25 ml X-gal (20 mg/ml), 0.5 ml 0.5M K-ferricyanide, 0.5 ml 0.5 M K-
ferrocyanide, 48 ml LacZ wash buffer 

LacZ wash buffer PBS, 2 mM MgCl2  

Laemmli buffer 
50% Glycerol, 160 mM Tris-HCl, 5% 2-mercaptoethanol, 2% SDS, 0.01% 
Bromphenol blue 

PCR buffer B 10x 0.25 M KCl, 0.1 M Tris-HCl pH 8.8, 0.1% TritonX-100 

PCR buffer C 10x 0.5 M KCl, 0.1 M Tris-HCl pH 8.5, 20 mM MgCl2, 50% DMSO 

Perfusion solution 1.5% PFA, 0.1% Glutaraldehyde, PBS w/Ca2+, Mg2+; filtered 

Protein lysis buffer 
40 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton 
X-100, 1 mM Na3VO4, 1 mM PMSF, 1x complete mini EDTA-free inhibitor 
cocktail 

Resolving gel (8%) 
To prepare 10 ml: 4.6 ml H2O, 2.7 ml 30% Acrylamide mix, 2.5 ml 1.5 M Tris-
base pH 8.8, 100 µl 10% SDS, 100 µl 10% APS, 6 µl TEMED 

SDS running buffer 25 mM Tris-base, 200 mM Glycine, 0.1% SDS, pH 8.5 

Stacking gel (5%) 
To prepare 5 ml: 3.4 ml H2O, 0.83 ml 30% Acrylamide mix, 0.63 ml 1.0 M Tris-
base pH 6.8, 50 µl 10% SDS, 50 µl 10% APS, 5 µl TEMED  

Stripping buffer 62.5 mM Tris-HCl, 2% SDS, 100 mM 2-mercaptoethanol, pH 6.8 

TAE 40 mM Tris-base, 1 mM EDTA 

Tail lysis buffer 0.1 M Tris-HCl pH 8.5, 5 mM EDTA, 0.2% SDS, 200µg/ml Proteinase K 

TAM solution 20mg/ml Tamoxifen in Miglyol; sterile filtered 

TBS (IH) 0.05 M Tris-HCl, 0.74 M NaCl, pH 7.4-7.6 

TBS 10x (WB) For 1 liter: 24.2g Tris-base, 80g NaCl, pH 7.6 

TBST (WB) 1x TBS with 0.1% Tween-20 

TE 10 mM Tris-HCl pH 7.5, 1 mM EDTA 

Transfer buffer 25 mM Tris-base, 200 mM Glycine, 20% Methanol 

TTC solution  2% TTC in PBS 

Whole blood lysis 
buffer 

8.34 g NH4Cl, 1.09 g KHCO3, 10 ml 1% EDTA, ad 1000 ml aqua dest. 

 

2.1.2 Antibodies 

 

Table 2.3    Primary antibodies 

Name Company; product number Host 
Application, 

dilution 

anti-αααα-smooth muscle actin –
Cy3 (SMA-Cy3) 

Sigma; C 6198 Mouse, monoclonal IF, 1:100 
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Table 2.3    - continued - 

anti-αααα-smooth muscle actin –
FITC (SMA-FITC) 

Sigma; F 3777 Mouse, monoclonal IF, 1:100 

anti-Actin Sigma; A 2066 Rabbit, polyclonal  WB, 1:5000 

anti-mouse CD45 BD Pharmingen; 550539 Rat, monoclonal IH ,1:100 

anti-mouse CD206 AbD Serotec; MCA2235 Rat, monoclonal IF, 1:100 

anti-Dll1 (H-265) 
Santa Cruz Biotechnology;  
sc-9102 

Rabbit, polyclonal WB, 1:1000 

anti-rat Dll1 R&D Systems; AF3970 
Sheep, 
polyclonal 

IF, 1:100 

anti-mouse F4/80-RPE AbD Serotec; MCA497PE 
Rat , 
monoclonal 

IF, 1:100 

Biotinylated Griffonia 

(Bandeiraea) Simplicifolia 
Lectin I, Isolectin B4 (IB4-
biotin) 

Linaris/ Vector Laboratories;   
B-1205 

 IF, 1:100 

FITC Griffonia (Bandeiraea) 

Simplicifolia Lectin I, 
Isolectin B4 (IB4-FITC) 

Linaris/ Vector Laboratories;   
FL-1201 

 IF , 1:100 

Wheat Germ Agglutinin 
(WGA)-Rhodamine 

Linaris/ Vector Laboratories;   
RL-1022 

 IF, 1:100 

 

Table 2.4    Secondary antibodies 

Antibody Company; product number Host 
Application, 

dilution 

Avidin D-Texas Red Linaris; RAT2006  IF, 1:150 

Strepavidin-AP DakoCytomation; D 0396  IH, 1:100 

anti-rabbit HRP 
Santa Cruz Biotechnology;  
sc-2317 

Donkey WB, 1:4000 

anti-rat Biotin DakoCytomation; E0468 Rabbit IH, 1:100 

anti-rat FITC 
Dianova/ Jackson ImmunoResearch; 
112-095-167 

Goat IF, 1:100 

anti-sheep PE 
Dianova/ Jackson ImmunoResearch ; 
713-116-147 

Donkey IF, 1:100 

 

Table 2.5    FACS antibodies 

Antibody Company; product number Reactivity 

B220-PE BD Pharmingen; 553089 Mouse, human 

CD11b-APC BD Pharmingen; 553312 Mouse, human 

CD11c-Biotin BD Pharmingen; 553800 Mouse 

CD90-PE BD Pharmingen; 553005 Mouse 

DX5-PE BD Pharmingen; 553858 Mouse 

F4/80-Biotin Serotec; MCA497 Mouse 

I-Ab-Biotin BD Pharmingen; 553550 Mouse 

Ly-6G-PE BD Pharmingen; 551461 Mouse 
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Table 2.5    - continued - 

Ly-6C-FITC BD Pharmingen; 553104 Mouse 

NK1.1-PE BD Pharmingen; 557391 Mouse 

Strep-PerCP BD Pharmingen; 554064 - 

 

2.1.3 Primers 

 
Primers were synthesized and purchased from Sigma-Aldrich. 
 

Table 2.6    Genotyping primers 

Name Sequence 5’ to 3’ 

L/F LacZ/Dll1 KO CAA ATT CAG ACG GCA AAC 

R Melta 38 ATC CCT GGG TCT TTG AAG AAG 

Cre1 GCC TGC ATT ACC GGT CGA TGC AAC GA 

Cre2 GTG GCA GAT GGC GCG GCA ACA CCA TT 

R1295 GCG AAG AGT TTG TCC TCA ACC  

R523 GGA GCG GGA GAA ATG GAT ATG  

R26F2 AAA GTC GCT CTG AGT TGT TAT 

Dll1 plox right GAG AGT ACT GGA TGG AGC AAG 

Dll1 plox left CAC ACC TCC TAC TTA CCT GA 

 

 

2.1.4 Microscopes and imaging software 

 
Microscopes 

- Zeiss Axio Observer.Z1 fluorescence microscope system equipped with bright-

field and fluorescent light optics and cameras AxioCamMR3 and 

AxioCamMR3_2 

- Zeiss  Stemi 2000-C equipped with a with a Axiocam ICc1 camera 

Table 2.7    Semiquantitative RT-PCR primers 

Name Sequence 5’ to 3’ Product size 

mDll1 left TGC AGG AGT TCG TCA ACA AG 

mDll1 right GTG CTC GTC ACA CAC AAA CC 
458 bp 

18SrRNA-F CCT GCG GCT TAA TTT GAC TC 

18SrRNA-R GGC CTC ACT AAA CCA TCC AA 
510 bp 
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- Leica DM4000B microscope equipped with a light polarization system and a 

DFC 320 camera  

 
Imaging software 

- AxioVision Release 4.6 (full version) 

- AxioVision LE 4.7 (free download version) 

- ImageJ 1.40g 

- Leica QWin V3 with Applet Runner “Flächenmessung maskiert von TIF” 

- Adobe Photoshop CS3 

 

 

2.2 Mice handling and animal experiments 

2.2.1 Mouse strains, breeding, and handling 
 
In the course of the thesis, 3 mouse strains were used: Dll1+/lacZ, VECad-Cre-ERT2/Dll1lox/lox , 

and VECad-Cre-ERT2/ROSA26R. 

 
Dll1+/lacZ (Hrabé de Angelis et al., 1997) mice were bread on an isogenic 129S1/SvImJ 

background. These animals carry a lacZ-reporter gene on the second allele, instead of Dll1; 

thereby serving as Dll1-lacZ reporter, as well as Dll1 heterozygous strain. LacZ 

identification mimics endogenous Dll1 expression (Hrabé de Angelis et al., 1997; Beckers 

et al., 1999). Mice homozygous for the loss-of-function allele of Dll1 Dll1lacZ/lacZ die around 

day 12 of embryonic development (Hrabé de Angelis et al., 1997; Rubio-Aliaga et al., 

2007). Heterozygous mutant mice were bread by crossing heterozygous males with non-

transgenic females. Non-transgenic littermates (WT) served as controls.  

 
To answer the question if Dll1 acts from the endothelium, an inducible endothelial Dll1 

knockout mouse strain: VECad-Cre-ERT2/Dll1lox/lox was generated on a mixed C57Bl/J 

background; the strain was termed eDll1 KO after induction. 

The VECad-Cre-ERT2 mouse line expressed a tamoxifen-inducible Cre-recombinase (Cre-

ERT2) under control of the vascular endothelial cadherin promoter (VECad) (Monvoisin et 

al., 2006). The VECad promoter has been shown to be active in the endothelium during 

embryonic development and in adult organs (Gory et al., 1999; Alva et al., 2006). The 

inducible activity of the Cre-ERT2 is based on the principle that ERT2 (a mutant form of the 

estrogen receptor ligand-binding domain) is a specific receptor for tamoxifen (the 
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biologically active form 4-hydroxytamoxifen is a metabolic product) and is unresponsive to 

natural estrogens. In the absence of tamoxifen, Cre-ERT2 protein remains in the cytoplasm, 

thereby preventing Cre-mediated recombination in the nucleus (Monvoisin et al., 2006).  

The homozygous floxed Dll1 (Dll1lox/lox) mouse strain (Hozumi et al., 2004) carried loxP 

sequences flanking Dll1 exons 3 and 4; exon 4 encodes the DSL region which is essential 

for binding to the Notch receptor. Cre-mediated recombination removed the floxed region 

and generated a termination codon by frameshift. 

VECad-Cre-ERT2/Dll1lox/lox animals were generated by mating over 2 generations. First 

VECad-Cre-ERT2 transgene-positive animals were mated with Dll1lox/lox animals. VECad-

Cre-ERT2/Dll1+/lox F1 animals were again mated with Dll1lox/lox mice, generating amongst 

others VECad-Cre-ERT2/Dll1lox/lox. The strain was maintained by continuous crossing of 

VECad-Cre-ERT2/Dll1lox/lox with Dll1lox/lox mice. Dll1 knockout was induced by tamoxifen 

injection as described in chapter 2.2.3. Non-transgenic littermates, i.e. VECad-Cre-ERT2 

negative animals (-/Dll1lox/lox) which had also been treated with tamoxifen served as controls 

(CTRL).  

 
To verify the specificity and efficiency of induction of the VECad-Cre-ERT2 strain, mice 

were crossed with ROSA26R reporter mice (Soriano, 1999; Monvoisin et al., 2006). These 

mice contain at the ROSA locus a lacZ gene and upstream of the gene a floxed stop cassette. 

Upon Cre recombinase activity, the stop cassette is excised and lacZ expression is driven 

and β-galactosidase activity can be detected by X-gal staining.  

Homozygous floxed VECad-Cre-ERT2/ROSA26R animals were generated and maintained 

using the same scheme as described for the VECad-Cre-ERT2/Dll1lox/lox mouse strain. 

Cre activity and reporter gene expression was induced by tamoxifen injection as described. 

Non-transgenic littermates, i.e. VECad-Cre-ERT2 negative animals (-/ROSA26R) which had 

also been treated with tamoxifen served as controls (CTRL). 

 
After separation from the mother, pups were fitted with an ear tag displaying a unique 4-

digit number for identification and a tail biopsy was taken for determination of the genotype.  

 
All animal studies were performed with permission of the State of Niedersachsen, and in 

compliance with the German Law for the Protection of Animals and the NIH Guide for the 

Care and Use of Laboratory Animals. 
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2.2.2 Genotyping 

 
DNA isolation from mouse tail biopsies 

Tail clips were obtained from 4 week old mice (weaning age) and incubated in 300µl tail 

lysis buffer on a shaker at 450 rpm and 56°C overnight. After vortexing, 300 µl 

phenol/chloroform was added, briefly suspended by vortex and centrifuged for 10 min at 

13000 rpm. 200 µl of the supernatant was carefully transferred to a new tube and the 

containing genomic DNA precipitated by addition of 600 µl 100% ethanol (EtOH), 

thorough shaking and incubation for 10 min at room temperature. The DNA was pelleted by 

centrifugation for 3 min at 9000 rpm, the supernatant removed and the pellet washed with 

500 µl 70% EtOH. After another centrifugation for 3 min at 9000 rpm and removal of the 

supernatant, the DNA pellet was air dried and reconstituted in 100 µl TE buffer. To 

inactivate DNases and dissolve the pellet completely, the DNA was incubated for 2 h at 

56°C. The genomic DNA solution was stored at 4°C, or for long-term storage at -20°C.  

 
PCR 

Dll1-lacZ PCR 

Reaction composition  PCR program  

 
30.5 µl   ddH2O 
     5 µl   10x PCR buffer B 
     5 µl   15 mM MgCl2 

     1 µl   10 mM dNTP-mix 
     1 µl   Primer L/F LacZ/Dll1 KO 
     1 µl   Primer R Melta 38 
  2.5 µl   DMSO 
     2 µl   Taq polymerase 
     2 µl   genomic DNA 
 

 
   1.      94°C   3 min 
   2.      94°C   30 sec 
   3.      53°C   30 sec 
   4.      72°C   45 sec 
   5.  repeat step 2-4 39x 
   6.      72°C   7 min 
 

The PCR product was run on a 1% agarose gel. A band of 580 bp indicated the Dll1-lacZ allele; no band 
indicated the wildtype allele. The PCR was always performed with appropriate controls, i.e. wildtype, 
Dll1-lacZ, and H2O. 

 

VE-Cadherin -Cre
ERT2

 PCR 

Reaction composition  PCR program  

 
   18 µl   ddH2O 
  2.5 µl   10x PCR buffer C 
  0.5 µl   10 mM dNTP-mix 
     1 µl   Primer Cre1 
     1 µl   Primer Cre2 
     1 µl   Taq polymerase 
     1 µl   genomic DNA 
 

 
   1.      94°C   3 min 
   2.      94°C   45 sec 
   3.      61°C   45 sec 
   4.      72°C   1 min 
   5.  repeat step 2-4 33x 
   6.      72°C   7 min 
 

The PCR product was run on a 1% agarose gel. A band indicated the presence of the VE-Cadherin-
CreERT2 transgene. The PCR was always performed with appropriate controls, i.e. wildtype, VE-
Cadherin-CreERT2 transgene positive, and H2O. 
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Rosa26R PCR 

Reaction composition  PCR program  

 
    9.5 µl   ddH2O 
    2.5 µl   10x PCR buffer A 
       5 µl   Q-solution 
    1.5 µl   25mM MgCl2 
    0.5 µl   10 mM dNTP-mix 
       1 µl   Primer R1295 
       1 µl   Primer R523 
       1 µl   Primer R26F2 
       1 µl   Taq polymerase 
       2 µl   genomic DNA 
 

 
   1.      93°C   3 min 
   2.      93°C   30 sec 
   3.      58°C   30 sec 
   4.      72°C   1 min 
   5.  repeat step 2-4 37x 
   6.      72°C   7 min 
 

The PCR product was run on a 1% agarose gel. A band at 500 bp showed the wildtype allele; a band at 
250 bp showed the ROSA26R floxed allele. The PCR was always performed with appropriate controls, 
i.e. wildtype, ROSA26R heterozygous floxed, ROSA26R homozygous floxed, and H2O. 

 

Dll1 flox/flox PCR 

Reaction composition  PCR program  

 
     40 µl   ddH2O 
       5 µl   10x PCR buffer C 
       1 µl   10 mM dNTP-mix 
       1 µl   Primer Dll1 plox left 
       1 µl   Primer Dll1 plox right 
       1 µl   Taq polymerase 
       1 µl   genomic DNA 
 

 
   1.      94°C   3 min 
   2.      94°C   30 sec 
   3.      54°C   30 sec 
   4.      72°C   30 sec 
   5.  repeat step 2-4 29x 
   6.      72°C   10 min 
 

The PCR product was run on a 2% agarose gel. A band at 204 bp showed a wildtype allele; a band at 238 
bp showed a Dll1 floxed allele. The PCR was always performed with appropriate controls, i.e. wildtype, 
Dll1 flox heterozygous, Dll1 flox homozygous, and H2O. 

 

2.2.3 Knockout induction 

 
For induction of Cre recombinase activity in VECad-Cre-ERT2/Dll1lox/lox and VECad-Cre-

ERT2/ROSA26R mice, animals 8 weeks of age were treated. Therefore, 100 µl TAM 

solution was applied by intraperitoneal injection on 5 consecutive days, which is equivalent 

to a treatment of 10 mg tamoxifen per animal in total (Monvoisin et al., 2006). After 

completion of treatment, animals were left for 9 days before analysis or infarction by LAD 

occlusion surgery. 

 

2.2.4 Echocardiography 

 
Functional heart analysis was performed by means of echocardiography. Mice were 

analysed under continuous sedation by isofluran inhalation (1-3%), after fur removal at the 

chest using hair removal cream. Left ventricular, two-dimensional long-axis images were 
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obtained in B- and M-mode by transthoracic echocardiography using a VisualSonics Vevo 

770 High-Resolution Imaging System equipped with a 30MHz RMV-707B scanning head. 

Calculation basics are summarized in the following tables; calculations were automatically 

performed by the software based on the measured parameters.  

 

Table 2.8    Left-ventricular parameter description (VisualSonics) 

Parameter Description Measurement type Units 

Endo Area; d (LVED area) LV endocardial area; diastole  Polygon area mm² 

Endo Area; s LV endocardial area; systole Polygon area mm² 

Endo Major; d LV endocardial major axis; diastole Linear distance mm 

Endo Major; s LV endocardial major axis; systole Linear distance mm 

Heart Rate Heart rate  BPM 

LVEDV Left ventricular end-diastolic volume   (Calculation) µl 

LVESV Left ventricular end-systolic volume   (Calculation) µl 

SV Stroke volume (Calculation) µl 

EF Ejection fraction (Calculation) % 

CO Cardiac output (Calculation) µl/min 

 

Table 2.9    Calculations (VisualSonics) 

LV parameter  Formula  

LVEDV 
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2.2.5 Permanent LAD ligation surgery 

 
Ten- to twelve-week-old mice were subjected to permanent left anterior descending 

coronary artery (LAD) ligation. Therefore, mice were anaesthetized by isoflurane inhalation, 

intubated and ventilated with oxygen supplemented with isoflurane (1.5%) using a rodent 

ventilator. The chest wall was shaved and the mouse placed on a heating pad to maintain 

body temperature at 37°C. A thoracotomy was performed in the second left intercostal space 

and the left coronary artery was permanently ligated with a simple interrupted suture 

(Prolene monofil 6-0) at the site approximately 1 mm below the edge of the left cardiac 

auricle. The chest wall was closed in two layers: the ribs were adapted with a line of 3 

simple interrupted sutures (Polyester braided 5-0). Muscles were placed back into position 

with a simple interrupted suture (Silk braided 6-0). The skin was closed with 3 horizontal 

mattress sutures (Polyester braided 5-0). Mice were extubated as they started to breathe 

spontaneously and allowed to recover. Antibiotic prophylaxis was not given, but no 

apparent infection was observed in any animal during the course of study.  

Sham operation involved thoracotomy and suturing, without LAD occlusion.  

 

2.2.6 Perfusion fixation, tissue embedding, and cryosectioning 

 
For various baseline and infarcted heart analyses, in situ fixation and processing of diastolic 

arrested hearts was performed. (Perfusion fixation was not done if protein or RNA was 

isolated or for FACS analysis of spleen tissue) Therefore, mice were narcotised with 

approximately 0.4 ml anaesthesia cocktail, the chest cavity opened and the heart and aorta 

exposed. After opening of the right atrium, all solutions were perfused through the heart 

retrograde through the aorta with a pressure of 80 mm Hg. The heart was arrested in diastole 

by perfusion of KCl arrest solution until beating of the heart stopped, followed by 10 ml ice-

cold perfusion solution.  

The heart was taken out, placed in 15% sucrose solution (in PBS w/Ca2+ Mg 2+) for 2-4 h in 

ice, followed by 30% sucrose solution (in PBS w/Ca2+ Mg 2+) overnight at 4°C. Tissue was 

embedded in OCT-compound, snap frozen in 2-methylbutane cooled in liquid nitrogen and 

stored at -20°C until further processing. 

Frozen tissue (complete hearts, collection of sections starting below level of the atria) was 

cut into 10 µm sections with a cryotome. Two times 3 sections were placed on one 

microscope slide, dried at room temperature for 2 h and stored at -20°C.  
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2.3 Basic methodology 

2.3.1 Staining protocols 

 
Evan’s blue and TTC staining 

For Evan’s blue and TTC staining, mice were narcotised with approximately 0.4 ml 

anaesthesia cocktail, the chest cavity opened and the heart exposed. The heart was perfused 

with 0.3 ml Evan’s blue solution by injection through the right ventricle. The stained heart 

was excised, washed gently in PBS on ice, placed in a mould of aluminium foil, and a 

solution of 3% agarose in PBS added. After cooling and solidifying, the fixed heart was cut 

cross-sectional into 6 equal pieces using a razorblade device and the agarose removed again. 

The pieces were incubated in pre-warmed TTC solution at 37°C for 10 minutes, transferred 

to 3% formaldehyde solution and analysed.  

 
H&E staining 

For H&E staining, cryosections were immediately used from -20°C. 

1. Fix in 70% EtOH for 1 min, followed by rinsing with ddH2O  

2. Stain with Mayer’s Hemalum for 3 min 

3. Rinse with tap water and fix by dipping in 0.5% HCl in EtOH 

4. Remove unspecific staining with warm running tap water for 10 min 

5. Immerse for 15 sec in 80% EtOH, then for 15 sec in 96% EtOH 

6. Stain with eosin/phloxin solution for 3 sec 

7. Dehydrate in ascending alcohol series 2 min each: 90% EtOH , 96% EtOH,  100% 

EtOH and 100% EtOH 

8. Clear with Xylol for 10 min and mount with coverslips and Vitro-clud 

 
Immunofluorescence staining  

For immunofluorescence staining, frozen cryosections were fixed in 4% PFA for 15 min at 

room temperature. After 3 washes in PBS for 5 min each, sections were incubated with 

blocking buffer (containing serum of the same species as the secondary antibody) for 1 h in 

a humidified chamber. After removal of the blocking solution, primary antibody diluted in 

antibody dilution buffer was added and incubated in a humidified chamber at 4°C overnight. 

Next, the slides were washed three times with PBS for 5 min each, followed by incubation 

with the appropriate secondary antibody diluted in antibody dilution buffer for 2 h in a dark 

humidified chamber. For co-staining, slides were washed three times for 5 min with PBS 

and incubated with the second primary antibody in antibody dilution buffer for 2 h in a 
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humidified chamber. The sections were washed again three times in PBS for 5 min, the 

second secondary antibody added and incubated for 2 h in a humidified chamber, in case the 

primary antibody was not directly coupled. After another 3 washes with PBS, nuclei were 

stained using DAPI solution (0.5 µg/ml in ddH2O) for 2 min, sections washed with PBS, 

dipped shortly in ddH2O and mounted with fluorescence mounting medium. 

 
Immunohistochemistry 

For immunohistochemistry staining based on an alkaline phosphatase (AP)-coupled avidin-

biotin system, frozen cryosections were dried for 5 min and fixed in acetone for 10 min at 

room temperature. The sections were left for 1 min to let the acetone evaporate and 

incubated with primary antibody (diluted in TBS/1% BSA) for 1 h at room temperature in a 

humidified chamber. After three 5 min washes with TBS, a biotin-coupled secondary 

antibody (diluted in TBS/1% BSA) was added and incubated for 1h in a humidified 

chamber. Sections were washed three times with TBS for 5 min each and incubated with 

streptavidin-AP conjugate (diluted in TBS) for 1 h. During another three washes with TBS 

for 5 min, developing solution was prepared by giving IH solution B to IH solution A and 

then adding IH solution C. Sections were incubated in filtered developing solution for 10 

min and washed shortly with tap water three times. For counterstaining, Mayer’s Hemalum 

was used for 2 min and washing performed with tap water for 10 min. Slides were mounted 

using liquefied Kaiser’s glycerol gelatine.   

 
LacZ staining 

For LacZ staining, cryosections were transferred from -20°C to precooled PBS/0.2% 

glutaraldehyde and fixed for 10 min at 4°C. After 3 washing steps with LacZ wash buffer 

for 5 minutes each, staining was done with LacZ staining solution at 37°C overnight with 

protection from light. For tissue counterstaining with eosin, sections were washed in PBS 

and rinsed in 70% EtOH, followed by steps 6 to 8 of the H&E staining protocol.  

 
Picrosirius red staining 

For picrosirius red staining, cryosections were washed in tap water for 10 min and ddH2O 

for 5 min. To prevent background staining, sections were immersed in 0.2% 

phosphomolybdic acid for 5 min, followed by staining in filtered 0.1% picrosirius red in 

saturated picric acid overnight. Excess staining was removed by dipping in 0.01N HCl, and 

dehydrated and fixed by dipping in 70% EtOH and rinsing in 100% EtOH for 3 min twice. 

Sections were cleared with Xylol for 10 min and mounted with coverslips and Vitro-clud. 
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TUNEL staining 

TUNEL staining of cryosections was performed using the ApopTag® Plus Fluorescein In 

Situ Apoptosis Detection Kit according to the manufacturer’s instructions. Therefore, 

cryosections (immediately used from -20°C) were fixed in 1% paraformaldehyde in PBS for 

10 min at room temperature, washed in PBS for 5 min twice, post-fixed in precooled 

ethanol:acetic acid 2:1 for 5 min at -20°C and washed again in PBS for 5 min twice. Excess 

liquid was removed and the sections circled with a delimiting pen. Equilibration buffer was 

applied on the sections and incubated for 5 min. The liquid was removed and working 

strength TdT enzyme added and incubated in a humidified chamber at 37°C for 1 h. The 

reaction was stopped by washing of the slides in working strength stop/wash buffer for 10 

min at room temperature, followed by 3 washes in PBS for 1 min each. Next, anti-

digoxigenin conjugate was added and incubated in a dark humidified chamber for 30 min at 

room temperature. After 4 washing steps in PBS for 2 min each, nuclei were counterstained 

in DAPI solution (0.5 µg/ml in ddH2O) for 2 min, washed with PBS, dipped shortly in 

ddH2O and mounted with fluorescence mounting medium.  

 

2.3.2 RNA isolation and RT-PCR 

 
Total RNA isolation 

For Dll1 expression analysis after myocardial infarction, total RNA was isolated from the 

apex part of the heart (i.e. lower half; infarcted or sham control) of wildtype animals. For 

verification of endothelial Dll1 knockout after tamoxifen treatment, whole hearts and aorta 

samples were used.  

Heart tissue sample was homogenized in the presence of 1 ml Trizol reagent and incubated 

for 5 min at room temperature to permit complete dissociation of nucleoprotein complexes. 

(Aorta samples were homogenized in 0.4 ml Trizol and the following reagent volumes 

downscaled accordingly.) After addition of 0.2 ml chloroform the solution was shaken 

vigorously for 15 sec and incubated for 3 min. The sample was centrifuged at 13000 rpm for 

15 min at 4°C, the upper aqueous phase transferred to a fresh tube and 0.5 ml isopropanol 

added and left for 10 min in order to precipitate RNA. Following another centrifugation at 

13000 rpm and 4°C, the supernatant was removed and the RNA pellet washed with 1 ml 

75% EtOH by vortexing and centrifugation at 7500 rpm and 4°C for 5min. After supernatant 

removal, the pellet was air-dried briefly and reconstituted in 20 µl TE buffer. Integrity of 
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isolated total RNA was verified on an agarose gel; quality and concentration were measured 

on a NanoDrop® ND-1000. RNA samples were stored at -20°C. 

 
Reverse transcription-PCR (RT-PCR) and PCR 

RT-PCR 

Procedure Master mix per sample 

 
1. 1 µg total RNA was used and the volume adjusted to 

12 µl with DEPC-H2O 
2. 2 µl 10 µM oligo(dT)18 primer was added and  

incubated at 70°C for 5 min, followed by immediate 
cooling on ice for 5 min 

3. 11 µl of the master mix was added, incubated at 42°C 
for 60 min and the enzyme reaction stopped at 70°C 
for 15 min 
 

 
 2.75 µl   DEPC–H2O 
      5 µl   5x M-MLV RT reaction buffer 
 1.25 µl   10 mM dNTP-mix 
      1 µl   RNaseOUTTM 
      1 µl   M-MLV Reverse Transcriptase 
 

 

PCR 

mDll1 PCR  18S rRNA PCR  

 
Reaction composition 
    15.90 µl   ddH2O 
        2.5 µl   10x PCR buffer C 
           2 µl   5x Q-solution 
        0.5 µl   10 mM dNTP-mix 
           1 µl   Primer mDll1 left 
           1 µl   Primer mDll1 right 
        0.1 µl   Taq polymerase 
           2 µl   cDNA 
 
Program 
   1.      95°C   3 min 
   2.      95°C   45 sec 
   3.      60°C   45 sec 
   4.      72°C   90 sec 
   5.  repeat step 2-4 37x 
   6.      72°C   7 min 
 

 
 Reaction composition 
    11.40 µl   ddH2O 
        2.5 µl   10x PCR buffer A 
           5 µl   5x Q-solution 
        1.5 µl   25 mM MgCl2 
        0.5 µl   10 mM dNTP-mix 
           1 µl   Primer 18SrRNA-F 
           1 µl   Primer 18SrRNA-R 
        0.1 µl   Taq polymerase 
           2 µl   cDNA 
 
Program 
   1.      95°C   5 min 
   2.      95°C   10 sec 
   3.      57°C   30 sec 
   4.      72°C   30 sec 
   5.  repeat step 2-4 24x 
   6.      72°C   7 min 
 

PCR products were detected by electrophoresis through a 1% agarose gel in TAE buffer. 

 

2.3.3 Protein isolation and Western blotting 

 
Protein isolation 

Protein was isolated from the apex part of the heart (i.e. lower half; infarcted or sham 

control) of wildtype animals. Tissue samples were washed in PBS once, homogenized with 

0.5 ml ice-cold 1x protein lysis buffer and incubated for 30 min on ice. Next, the protein 

lysate was cleared by centrifugation at 13000 rpm and 4°C for 10 min, the supernatant 
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transferred to a fresh tube and the protein sample stored at -80°C. Protein concentration was 

measured based on Bradford.  

 
SDS-PAGE 

Samples were prepared by dilution in Laemmli buffer, boiled at 95°C for 5 min, cooled on 

ice for 1 min and centrifuged for 5 min at 13000 and 4°C to eliminate any protein 

aggregates and thereby reduce background staining.  

A SDS-polyacrylamide gel (5% stacking gel, 8% resolving gel) was loaded with 20 µg 

protein per sample. Proteins were separated in a vertical electrophoresis chamber unit with 

SDS running buffer at 115V for about 1 h 45 min. 

 
Western blot 

The separated proteins were transferred from the SDS-PAGE gel to a nitrocellulose 

membrane by wet tank electroblotting in transfer buffer for 2 hours at 360 mA. 

For specific protein detection, the membrane was washed with TBST for 5 min at room 

temperature and unspecific antibody binding blocked by incubation in 5% MP/TBST for 1 h. 

The primary antibody was diluted in 5% MP/TBST and incubated with the membrane at 

4°C overnight. After three 5 min washes with TBST, HRP-conjugated secondary antibody 

diluted in 5% MP/TBST was added and incubated for 1 h at room temperature. The blot was 

washed three times with TBST for 5 min each and the protein-HRP system detected using 

Western LightningTM Chemiluminescence Reagent according to the manufacturer’s 

instructions. 

 
Western blot stripping  

For removal of primary and secondary antibody after detection, blots were stripped for re-

use. Therefore, the membrane was incubated in stripping buffer at 60°C for 1 h and washed 

thoroughly in TBST at least three times for 10 min. Afterwards, blots could be blocked and 

incubated with antibody again. 

 

2.3.4 FACS analysis  

 
Spleen tissue to be analysed by FACS was squeezed with the rough surface of two 

microscope slides and carefully collected adding FACS wash buffer. The solution was 

centrifuged for 7 min at 300g, the supernatant discarded and the pellet resuspended using 1 

ml FACS wash buffer. Afterwards, 10 ml whole blood lysis buffer was added and the 
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mixture incubated for 10 min at room temperature with occasional vortexing. The solution 

was washed once by centrifugation for 7 min at 300g and the pellet resuspended by FACS 

wash buffer. To remove debris, the mixture was sieved through a 30 µm cell strainer. 

Following, the solution was centrifuged for 7 min at 300g, counted and resuspended with 

FACS wash buffer to obtain a concentration of 5 million cells per 300 µl solution. The 

resultant cell solution was divided into FACS tubes with 300 µl cell solution per sample. 5 

µl Fc Blocking reagent was added per sample and incubated for 10 min at 4°C. Afterwards, 

50 µl FACS antibody mix 1 was added, vortexed and incubated for 30 min at 4°C. After 2 

washing steps for 7 min at 300g, 250 µl washing buffer was added and 50 µl FACS 

antibody mix 2. The solution was vortexed, incubated for 30 min at 4°C, washed twice by 

centrifugation for 7 min at 300g, FACS wash buffer added and FACS analysis performed on 

a BD FACSCalibur.  

 

 

2.4 Data analyses 

2.4.1 Dll1 positive vessel threshold size 

 
To determine the minimal size of Dll1 positive vessels, cryosections from the middle 

portion of Dll1+/lacZ baseline hearts stained with lacZ were analyzed; 1 section per animal 

and 8 animals in total were used. From each section the inner circumference of all lacZ 

positive vessels was measured and the corresponding diameter calculated. The smallest 

diameter determined was defined as Dll1 positive minimal vessel size. 

 

2.4.2 SMA positive vessel quantification 

 
In a baseline setting, SMA positive vessels were evaluated in SMA immunofluorescent 

stained sections counterstained with DAPI. 4 animals per group were used and from each 

animal 3 parallel sections from the basis and 3 sections from the apex of the heart were 

analyzed. From each complete section the inner circumference of all SMA positive vessels 

was measured and the according inner diameter calculated. Vessels were organized 

according to their diameter in groups of <20 µm (resistance vessels), 20-50 µm, 50-100µm 

and >100 µm (conductance vessels). The final mean data were normalized to the section 

area to account for the difference in heart size of WT versus Dll1+/lacZ animals and expressed 

as the number of SMA positive vessels per 1 mm².  
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For quantification of arteriogenesis, SMA positive vessels were measured in 

immunofluorescence stained sections from the middle portion of the heart, 7 days after 

infarction and compared with values from the same middle portion of the heart in baseline 

conditions. Arteriogenesis was evaluated on one section per animal analyzing both border 

zones present. To account for the variance in shape of infarction and wall thickness in the 

border zone, a grid was used for the analysis. The grid with a square size of 0.25 mm² 

(500x500 µm) was placed so that 1/3 of the square area was located in the infarcted and 2/3 

located in the non-infarcted area of the border zone (refer to Figure 2.1), as more 

arteriogenesis was expected to take place in the viable myocardium. The number of squares 

was variable, depending on the shape and wall thickness. The grid was placed using images 

with a 50x magnification; actual vessel measurement was performed on 100x images. The 

inner circumference of all SMA positive vessels within the grid was measured and the 

according diameter calculated accordingly. Only structures showing a clear circular 

structure were scored as vessels, as especially the infarcted area showed at times strong 

staining but without clear visible vascular structures (see Figure 2.1) (myofibroblasts 

expressing SMA). The vessel number per group (<20 µm, 20-50µm, and >50 µm) was 

normalized according to the number of squares analyzed; therefore arteriogenesis was 

expressed as the number of SMA positive vessels per 0.25 mm². 4 and 8 animals per group 

were analyzed under baseline and 7 day infarction conditions, respectively.  

 

 

 

Figure 2.1 Example of grid placement for quantification of arteriogenesis. SMA (red) and DAPI 
(blue) immunofluorescent image with 50x magnification, showing grid placement so that 1/3 of the grid area is 
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located in the infarcted area and 2/3 in the non-infarcted myocardium. The white line demarks the border 
between the infarcted and non-infarcted areas. Actual measurement of vessels within the grid was performed 
using images with 100x magnification. Only structures showing a clear circular structure were scored as vessel.  

 

2.4.3 LAD domain measurement 

 
For quantification of the LAD domain, mice underwent LAD ligation surgery (without 

closing of the chest wall), immediately followed by Evan’s blue staining and processing of 

the heart. The area of the myocardium not stained in blue represented the area supplied by 

the LAD. Images were taken from both sides of all 6 heart pieces and the LAD domain 

calculated as the mean of all 12 measured values. The LAD domain was expressed as 

percent of the total section area and corresponds to the area-at-risk after in the myocardial 

infarction experiment setting. Six animals per group were analyzed.  

 

2.4.4 Infarct size and other LV parameters  

 
Infarct size  

1 day after induction of myocardial infarction, infarct size was determined by Evan’s blue 

and TTC staining. The area of the myocardium not stained with Evan’s blue represents the 

area-at-risk (AAR), where infarcted areas (MI) appear pallid, and viable myocardium red 

(example shown in Figure 2.2 A). Images were taken from both sides of all 6 heart pieces. 

Areas were traced manually in the digital images and automatically measured by the 

computer. AAR was expressed as percent of the total section area and the mean of all 12 

measured values from each heart was calculated. MI area was expressed as percent of the 

total section area and the mean of all 12 measured values from each heart determined. For 

calculation of the ratio MI/AAR, individual area values (pallid area over red area) were 

calculated and the mean determined from each heart. 

Analysis of the infarct size (Pfeffer et al., 1979, Pfeffer et al., 1984; Takagawa et al., 2007) 

of animals 7 and 28 days after permanent LAD ligation was performed on H&E stained 

sections. Per heart, 5 equally distributed sections were stained, digital images taken and 

parameters measured by computer-aided planimetry. Omitting the right ventricle in all 

measurements, from each section the length of the scar and noninfarcted myocardium of the 

endocardial and epicardial surfaces was determined (example shown in Figure 2.2 B). For 

each slide the infarct size was calculated using the formula: 
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d = endocardial infarct length (mm) 

 

The total infarct size (MI) from each heart was calculated as average of all sections: 
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Figure 2.2 Example staining and parameter measurement for infarct size determination. (A) 
Evan’s blue and TTC staining for MI 1d infarct analysis. (B) LV parameter assessment for MI 7d and MI 28d 
infarct size determination on H&E stained sections.  
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Epicardial parameters 

Epicardial parameters were measured as described above. From each heart, average values 

from all 5 sections were used for epicardial circumference, as well as epicardial infarct 

length and epicardial remote length.  

 
Septum and left-ventricular wall thickness 

Septum and wall thickness were measured on the same H&E stained sections as used for the 

determination of infarct size. However, only the middle 3 sections were used for 

quantification. Parameters were measured by computer-aided planimetry (manual tracing 

and automatic measurement by the computer) and for each heart the average value from all 

3 sections taken.  

 

2.4.5 CSA, myocyte density, and capillary density 

 
Mean cross-sectional area (CSA), myocyte density, and capillary density were measured on 

WGA, isolectin B4, and DAPI immunofluorescent co-stained cryosections, delineating cell 

membranes, capillaries and nuclei, respectively. Staining was performed on sections from 

the central portion of the heart.  

For CSA, randomly picked fields within the remote area were selected and the myocyte 

cross-sectional area measured of at least 100 cells in which the nucleus and a clear staining 

of the cell borders was visible. Myocyte outlines were traced manually in digital images and 

automatically measured by the software. CSA was expressed as the mean cell area from 3 

animals with 3-4 random fields per animal, for each group. 

Myocyte and capillary density were measured by manually counting total cardiomyocyte 

and capillary numbers in a defined field located in the remote area with a size of 0.08 mm². 

3 fields per animal and 3 animals per group were analyzed. Myocyte density was expressed 

as myocyte number per field and capillary density as number of capillaries per myocyte.  

 

2.4.6 Apoptosis  

 
Apoptosis was evaluated on TUNEL stained cryosections from the middle portion of the 

infarction. The total number of TUNEL positive cells was manually counted in digital 

images with a 200x magnification and the tissue area measured in each image to account for 

wall thinning after infarction. For each image the number of TUNEL positive cells was 

corrected for the actual area and taken as number of apoptotic cells per 0.5 mm². 3 images 
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each were counted from the remote, border zone and infarct area. 3, 6, and 5 animals per 

genotype were analyzed in the groups 3, 7, and 28 days after infarction, respectively.  

 

2.4.7 Fibrosis 

 
Quantification of collagen density was performed on picrosirius red stained sections 

(staining collagen in red on a yellow tissue background) from the middle portion of the 

infarcted area. Collagen was assessed in digital images of 400x magnification taken with 

bright-field and polarized light. Collagen quantification was performed by computer-based 

planimetry (the colour space was defined by the user and the area measured by the software) 

on bright-field images and collagen density expressed as collagen positive area in percent of 

the total tissue area. 3 images per area were evaluated from baseline myocardium and 

remote, border zone and infarcted areas 28 days post infarction; 4 animals per group were 

used. The quality of the newly formed collagen was evaluated on polarized light images 

showing thick, closely packed mature collagen fibres by orange-red birefringency and 

loosely packed, less cross-linked and immature collagen fibres by yellow-green 

birefringency (Whittaker et al., 1994; Whittaker, 1998). 

 

2.4.8 CD45 positive area 

 
The area of CD45 positive cells was measured on CD45 immunohistochemically stained 

sections. Two images per area were taken with a 100x magnification from the baseline 

myocardium and remote, border zone and infarct area in MI settings. By computer-based 

planimetry (the colour space was defined by the user and the area measured by the software), 

CD45 positive area (red stained cells on a blue stained tissue background) was measured 

and expressed as CD45+ cell area in percent of the total tissue area from each image. 3 to 9 

animals per group were analysed baseline and 3, 7, and 28 days after infarction.  

 

2.4.9 Statistics 

 
Data were collected in a blinded fashion. Results were expressed as mean ± SEM. 

Differences between two groups were analyzed by Student’s t test. The survival curve after 

MI was determined according to Kaplan-Meier and data compared by Log-rank test (Cox-

Mantel). A two-sided P value of 0.05 or less was considered statistically significant. 
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3. RESULTS  
 

 

 

 

3.1 Baseline phenotype of Dll1
+/lacZ

 mice  

3.1.1 Selective endocardial and coronary endothelial expression of Dll1 in 

coronary arteries >20 µm  

 
Analysis of Dll1 expression by lacZ staining of whole hearts and heart sections of adult 

Dll1+/lacZ animals revealed a distinctive expression in the endocardium and endothelium of 

coronary arteries (Figure 3.1 A), but no expression was detected in veins or capillaries. As 

expected, wildtype (WT) control animals did not show any staining (data not shown). The 

observed expression pattern was in accordance with Dll1 expression in the adult vasculature 

described by Limbourg et al. (2007).  

As not all arteries showed lacZ staining in the heart sections, a Dll1 positive vessel 

threshold size was determined. Evaluation of lacZ positive vessels showed that 95.8% had a 

diameter above or equal to 20 µm, whereas only a minor number (4.2%) revealed a diameter 

lower than 20 µm (Figure 3.1 C). Consequently, allowing for biological variance, a 

threshold size of selective Dll1 expression can be set to coronary arteries with a minimal 

inner diameter of 20 µm. All arteries above 20 µm showed Dll1 expression.  
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Figure 3.1 Specific endocardial and coronary endothelial expression of Dll1 in arterial vessels >20 
µm. (A-B) Dll1 expression depicted by lacZ staining of (A) heart sections and (B) whole-mount heart of 
Dll1+/lacZ mice. (b) and (c) depict close-ups of the marked sections in (a). Figures showing expression in the 
endocardium and endothelium of coronary arteries, but not veins or capillaries. Scale bar (a) 500µm, (b-c) 
100µm; A: artery, V: vein. (C) Diameter determination of lacZ positive vessels showing 95.8% of positive 
arteries having a diameter above 20 µm. Allowing for biological variance, a threshold size of selective Dll1 
expression can be set to coronary arteries with a minimal inner diameter of 20 µm. (Vessel numbers depict the 
entire analysis of n=8 animals.) 

 

 

 

3.1.2 Dll1 regulates heart size, but does not impair cardiac function 

 

To analyse long-term effects of Dll1 heterozygosity, a 18 months follow up was carried out 

using Dll1+/lacZ animals. Animals were viable, fertile and healthy. Survival data showed no 

difference in life expectancy in comparison to WT animals (Figure 3.2 A), indicating that 

Dll1 heterozygosity did not cause major congenital malformations. Mice revealed no gross 

morphological abnormalities of the heart. 

Body weight and body size - as determined by femur length measurement – was comparable 

in animals 18 months of age (Figure 3.2 B) (Body weight, WT: 37.5 ± 3.1 g vs. Dll1+/lacZ: 

34.8 ± 2.8 g, n = 10/7, P = n.s.; Femur length (FL), WT: 1.71 ± 0.07 cm vs. Dll1+/lacZ: 1.70 ± 

0.07 cm, n = 10/7, P = n.s.). Interestingly however, hearts from Dll1 heterozygous mice 

were smaller (Heart weight (HW), WT: 0.221 ± 0.041 g vs. Dll1+/lacZ: 0.156 ± 0.054 g, n = 

10/7, P = 0.037; Ratio HW/FL (g/cm), WT: 0.128 ± 0.020 vs. Dll1+/lacZ: 0.092 ± 0.032, n = 

10/7, P = 0.026).  

A 

B C 

a b c 
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This finding was confirmed by echocardiographic analysis of left-ventricular mass (LV 

mass) and left-ventricular end-diastolic area (LVED area) on mice 10 weeks of age. 

Calculated LV mass and directly measured LVED area were significantly reduced in 

Dll1+/lacZ animals (Figure 3.3) (LV mass, WT: 108.2 ± 6.2 mg vs. Dll1+/lacZ: 73.3 ± 11.9 mg, 

n = 7/7, P = 0.0002; LVED area, WT: 12.04 ± 1.58 mm² vs. Dll1+/lacZ: 9.72 ± 1.67 mm², n = 

12/11, P = 0.028). Further functional heart analyses revealed normal heart rates, but 

interestingly the calculated ejection fraction (EF) was significantly increased in Dll1 

heterozygotes (Heart rate, WT: 423 ± 44 BPM vs. Dll1+/lacZ: 435 ± 37 BPM, n = 12/11, P = 

n.s.; EF, WT: 65.9 ± 8.5% vs. Dll1+/lacZ: 74.3 ± 6.1%, n = 12/11, P = 0.044). Calculated 

stroke volume (SV) and cardiac output (CO), however, were comparable with WT animals 

(SV, WT: 25.21 ± 5.06 µl vs. Dll1+/lacZ: 25.09 ± 7.12 µl, n = 12/11, P = n.s.; CO, WT: 10.65 

± 2.51 ml/min vs. Dll1+/lacZ: 11.16 ± 3.72 ml/min, n = 12/11, P = n.s.).  

These data imply, that the smaller heart size in Dll1 heterozygous mice (with normal body 

weight) is compensated by a higher ejection fraction, resulting in a normal stroke volume 

and – as the heart rate is equal – comparable cardiac output. This finding elucidates the 

normal survival of Dll1 heterozygous mice.  

 

 

 

 

 
Figure 3.2 Normal survival, but smaller heart size in heterozygous Dll1 mice. (A) Kaplan-Meier 
curve showing unvaried long-term survival comparing WT and Dll1+/lacZ mice. (B) Morphometric analyses of 
mice at an age of 18 months revealing unchanged body weight and body size (femur length measurement), but 
smaller heart size in Dll1 heterozygotes, compared to WT. (A-B) n=10/7; *P<0.05. 

 

 

B A 
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Figure 3.3  Unimpaired cardiac function of Dll1

+/lacZ
 mice. Echocardiographic study (mice 10 weeks 

old) confirming a smaller heart size in Dll1+/lacZ animals by measurement of LVED area and LV mass 
determination. Measured heart rates were comparable, but the calculated ejection fraction was increased in 
Dll1 heterozygotes. Calculated stroke volume and cardiac output were comparable with WT data. n=12/11 
(LV mass n=7/7); *P<0.05, **P<0.01. 

 

 

 

3.1.3 Dll1 regulates the coronary artery phenotype 

 

As Notch signalling has been shown to play an essential role in vascular development, we 

analysed effects of Dll1 heterozygosity on adult coronary vasculature. 10 weeks old animals 

were evaluated and SMA positive vessels - identifying arteries - quantified in heart sections. 

Analyses in the basis part of the heart (directly below the atria) (Figure 3.4 A) showed a 

significantly reduced number of medium and large conductance vessels (>20 µm) in 

Dll1+/lacZ animals (Number of vessels 20-50 µm per mm², WT: 2.92 ± 0.43 vs. Dll1+/lacZ: 

1.14 ± 0.35, P = 0.002; Number of vessels 50-100 µm per mm², WT: 0.44 ± 0.02 vs. 

Dll1+/lacZ: 0.25 ± 0.06, P = 0.004; Number of vessels >100 µm per mm², WT: 0.30 ± 0.06 vs. 

Dll1+/lacZ: 0.12 ± 0.03, P = 0.006). On the other hand, the number of resistance vessels 

smaller 20 µm, i.e. vessels not showing Dll1 expression, was significantly elevated (Number 
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of vessels <20 µm per mm², WT: 14.40 ± 0.79 vs. Dll1+/lacZ: 22.88 ± 2.15, P = 0.002). 

Quantification of vessel numbers in the apex heart region revealed again a reduced number 

of conductance vessels bigger than 20 µm, yet the number of resistance vessels smaller 20 

µm was also significantly reduced in this part, in contrast to the basis analysis (Number of 

vessels <20 µm per mm², WT: 21.04 ± 3.71 vs. Dll1+/lacZ: 13.88 ± 0.71, P = 0.033; Number 

of vessels 20-50 µm per mm², WT: 2.91 ± 0.60 vs. Dll1+/lacZ: 0.98 ± 0.42, P = 0.008; 

Number of vessels 50-100 µm per mm², WT: 0.53 ± 0.17 vs. Dll1+/lacZ: 0.18 ± 0.04, P = 

0.028; Number of vessels >100 µm per mm², WT: 0.11 ± 0.06 vs. Dll1+/lacZ: 0.01 ± 0.01, P = 

0.027).  

This finding is reasonable as it shows that in Dll1 heterozygous mice coronary vessel size is 

smaller from the start and therefore a reduced number of vessels will reach more distant 

regions – apex – of the heart.  

 

The finding of a decreased number of conductance vessels in Dll1 heterozygous hearts 

raised the question if there is a difference in area that is supplied by the left anterior 

descending artery (LAD). To answer this question, Evan’s blue staining was performed 

immediately after LAD occlusion, leaving the area supplied by the LAD unstained (red) and 

staining the rest of the heart in blue. Area quantification (Figure 3.4 B) demonstrated a 

significantly smaller LAD domain in Dll1+/lacZ animals, in comparison to WT (LAD domain 

in % of LV area, WT: 41.75 ± 4.71 vs. Dll1+/lacZ: 14.11 ± 2.38, n = 6/6, P = 3E-6).  

 

These data describe an adult coronary artery phenotype in Dll1 heterozygous animals which 

is based on developmental mechanisms. During heart development, arteriogenesis 

propagates after onset of perfusion and continues after birth to satisfy the increasing needs 

of a growing heart. It is evident, that reduced Dll1 level impair developmental/neonatal 

coronary arteriogenesis (the number of large conductance vessels is already decreased in 

neonates; data not shown), resulting in an adult phenotype.  

In addition, data indicate a correlation between heart size and coronary vasculature. 

Impaired development of the coronary vasculature due to reduced levels of Dll1 presumably 

caused reduced heart weight and seize.  
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Figure 3.4 The coronary artery phenotype is regulated by Dll1. (A) Immunofluorescence staining of 
SMA (red) and nuclei (blue) in sections from basis and apex regions of WT and Dll1+/lacZ hearts (mice 10 
weeks old), and corresponding quantification categorized by vessel size. Basis analysis shows an increased 
number of resistance vessels <20µm, but fewer conductance vessels >20µm, whereas apex quantification 
shows less resistance and conductance vessels. n=4/4 (3 parallel sections each); scale bar 100µm; *P<0.05, 
**P<0.01. (B) Evan’s blue staining and corresponding quantification depicting the area supplied by the left 
anterior descending artery (LAD) in red. In Dll1+/lacZ mice the LAD domain is smaller than in WT hearts. 
n=6/6; **P<0.01. 
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3.1.4 Decreased number of total monocytes and Ly-6C
lo

 monocytes in Dll1
+/lacZ 

spleen tissue, but not in blood  

 

Notch signalling has been shown to be associated with monocyte/macrophage 

differentiation. Thus, FACS analyses were performed (Figure 3.5) from blood and spleen 

tissue and monocyte subsets characterized under basal conditions. Subsets were determined 

as described by Nahrendorf et al. (2007): monocytes and their lineage descendants were 

defined as CD11bhi (CD90/B220/CD49/NK1.1/Ly-6G)lo mononuclear cells; these were 

further divided into Ly-6Chi (F4/80/CD11c)lo monocytes and Ly-6Clo (F4/80/CD11c)lo 

monocytes (Ly-6Clo (F4/80/CD11c)hi defines macrophages/dendritic cells) (Nahrendorf et 

al., 2007). 

Quantification of FACS data revealed a comparable total cell number in spleen tissue of WT 

and Dll1 heterozygous animals (Spleen-total cell number, WT: 73,988,462 ± 7,247,438 vs. 

Dll1+/lacZ: 57,218,182 ± 5,341,709, n = 12/11, P = n.s.). However, monocyte cell numbers 

were significantly reduced in Dll1+/lacZ animals (Spleen-monocytes (by gating), WT: 

13,643,913 ± 1,189,418 vs. Dll1+/lacZ: 8,858,182 ± 1,025,864, n = 12/11, P = 0.005; Spleen-

monocytes (gating and CD11b+), WT: 1,061,198 ± 107,283 vs. Dll1+/lacZ: 717,733 ± 

121,529, n = 12/11, P = 0.041). Monocyte subset analyses of Ly-6Chi cells showed 

decreased numbers in Dll1 heterozygotes, but lower levels didn’t show significance 

(Spleen-Ly-6Chi monocytes, WT: 508,790 ± 53,747 vs. Dll1+/lacZ: 346,543 ± 73,293, n = 

12/11, P = n.s.(0.068)). The number of Ly-6Clo monocytes in Dll1 heterozygous spleen 

tissue was significantly lower compared to WT (Spleen-Ly-6Clo monocytes, WT: 153,634 ± 

15,963 vs. Dll1+/lacZ: 104,005 ± 14,077, n = 12/11, P = 0.027).  

In contrast to spleen analyses, circulating monocytes and monocyte subsets from the blood 

did not show significant changes in Dll1 heterozygotes, compared to WT (Blood-total cell 

number per ml, WT: 2,678,072 ± 213,781 vs. Dll1+/lacZ: 2,865,559 ± 279,792, n = 16/12, P = 

n.s; Blood-monocytes per ml (by gating), WT: 213,045 ± 26,433 vs. Dll1+/lacZ: 228,592 ± 

24,761, n = 16/12, P = n.s.; Blood-monocytes per ml (gating and CD11b+), WT: 108,466 ± 

11,234 vs. Dll1+/lacZ: 98,779 ± 12,131, n = 16/12, P = n.s.; Blood-Ly-6Chi monocytes per ml, 

WT: 78,190 ± 8,076 vs. Dll1+/lacZ: 66,126 ± 9,925, n = 16/12, P = n.s.; Blood-Ly-6Clo 

monocytes per ml, WT: 24,325 ± 2,870 vs. Dll1+/lacZ: 24,141 ± 2,138, n = 16/12, P = n.s.).  

These data suggest that in the adult Dll1 is involved in monocyte and monocyte subset 

generation in the spleen and not in the generation of circulating monocytes in the blood, 

although another study proposes that the spleen does not likely produce monocytes, but 

rather serves as site for monocyte storage (Swirski et al., 2009).  
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Figure 3.5 Decreased number of total monocytes and Ly-6C
lo

 monocytes in Dll1
+/lacZ

 spleen tissue, 

but not in blood. (A) Graphic representation of FACS analysis of mouse spleen tissue. (B) Quantification of 
FACS analyses showing a comparable total cell number in the spleen of WT and Dll1+/lacZ mice. Analysis of 
monocytes revealed significantly reduced monocyte numbers in Dll1+/lacZ spleen. The number of Ly-6Chi 

monocytes was not altered, but Ly-6Clo monocyte numbers were significantly decreased in Dll1 heterozygotes, 
compared to WT. n=12/11; *P<0.05, **P<0.01. (C) FACS analysis of circulating monocytes from the blood 
showing no significant changes in Dll1 heterozygotes, compared to WT. n=16/12; *P<0.05. 
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3.2 Healing after myocardial infarction in Dll1
+/lacZ

 animals 

3.2.1 Reduced expression of Dll1 increases infarct size and impairs cardiac 

function 4 weeks post MI 

 
The second part of the study dealt with the ischemic stress response in Dll1 heterozygous 

animals after myocardial infarction (MI), employing a permanent LAD ligation model. 

Constant ligation of the LAD immediately below the left auricular level has been shown to 

result in a statistically significant reproducible infarct size (Salto-Tellez et al., 2004). 

 

One important parameter for the assessment of the initial myocardial infarction is the area-

at-risk (AAR). This area describes the extent of the infarct-affected myocardial tissue (i.e. 

tissue within the distal perfusion bed of the ligated coronary artery). The AAR consists of 

true infarcted areas and viable myocardium. The viable myocardium within the AAR can be 

rescued by healing mechanisms and reperfusion, which is important to prevent infarct 

enlargement. The AAR is determined by Evan’s blue staining: the area of the myocardium 

not stained in blue represents the AAR. Within the AAR, infarcted areas (MI) appear pallid, 

and viable myocardium red. 

Analysis of infarcted hearts 1 day after operation (Figure 3.6 A) revealed a significantly 

smaller AAR in Dll1 heterozygous animals, as expected with respect to LAD domain data 

(AAR (% of LV), WT: 40.0 ± 2.8 vs. Dll1+/lacZ: 12.8 ± 2.1, n = 3/3, P = 0.0007). However, 

the relative fraction of the infarct area of the AAR was not significantly altered (Ratio 

MI/AAR, WT: 0.475 ± 0.040 vs. Dll1+/lacZ: 0.417 ± 0.050, n = 3/3, P = n.s.).  

In accordance, Dll1+/lacZ animals exhibit an initial smaller infarct size, compared to WT 1 

day post MI (Figure 3.6 B). The high initial infarct size in WT animals increased slightly, 

but not significantly 7 days after infarction and stayed constant in the following 3 weeks. In 

contrast and although infarcts were initially smaller in Dll1 heterozygous animals, infarct 

size continued to increase over time, resulting finally in significantly larger infarcts in 

Dll1+/lacZ mice 4 weeks after infarction, compared to WT animals (Infarct size MI 1d, WT: 

24.5 ± 1.6 % vs. Dll1+/lacZ: 8.0 ± 0.6 %, n = 3/3, P = 0.0003; Infarct size MI 7d, WT: 35.4 ± 

10.8 % vs. Dll1+/lacZ: 27.5 ± 8.0 %, n = 12/12, P = n.s.; Infarct size MI 28d, WT: 36.9 ± 

13.3 % vs. Dll1+/lacZ: 49.4 ± 9.3 %, n = 12/14, P = 0.049; WT - MI 1d vs. MI 7d P = n.s.; 

WT - MI 7d vs. MI 28d P = n.s.; WT - MI 1d vs. MI 28d P = n.s.; Dll1+/lacZ - MI 1d vs. MI 

7d P = 0.010; Dll1+/lacZ - MI 7d vs. MI 28d P = 3E-5; Dll1+/lacZ - MI 1d vs. MI 7d P = 1E-5).  
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One important aspect after infarction is cardiac function. Echocardiographic analyses of 

ejection fraction and stroke volume were consistent with infarct size data. After a higher 

baseline ejection fraction in Dll1 heterozygotes (described earlier in chapter 3.1.2), EF was 

significantly reduced in both groups 7 days after infarction (Figure 3.7 A). In the following 

3 weeks EF was stable in WT animals, whereas a further decrease was apparent in Dll1+/lacZ 

mice (EF Baseline, WT: 65.9 ± 8.5 % vs. Dll1+/lacZ: 74.3 ± 6.0 %, n = 12/11, P = 0.045; EF 

MI 7d, WT: 38.2 ± 3.6 % vs. Dll1+/lacZ: 46.4 ± 7.4 %, n = 7/8, P = n.s.; EF MI 28d, WT: 36.0 

± 11.3 % vs. Dll1+/lacZ: 21.5 ± 7.3 %, n = 12/13, P = 0.024; WT - BL vs. MI 7d P = 1E-5; 

WT - MI 7d vs. MI 28d P = n.s.; WT - BL vs. MI 28d P = 4E-5; Dll1+/lacZ - BL vs. MI 7d P 

= 1E-6; Dll1+/lacZ - MI 7d vs. MI 28d P = 8E-5; Dll1+/lacZ - BL vs. MI 28d P = 2E-11).  

In accordance, WT mice showed a decreased stroke volume 7 days post infarction, but 

constant values 28 days after ligation (Figure 3.7 B). In infarcted Dll1 heterozygous animals 

stroke volume decreased slightly, but not significantly after 7 days. 28 days after MI, the 

stroke volume was strongly deteriorated and significantly lower than in WT animals (SV 

Baseline, WT: 25.2 ± 5.1 µl vs. Dll1+/lacZ: 25.1 ± 7.1 µl, n = 12/11, P = n.s.; SV MI 7d, WT: 

19.3 ± 3.3 µl vs. Dll1+/lacZ: 23.1 ± 6.4 µl, n = 7/8, P = n.s.; SV MI 28d, WT: 17.9 ± 4.7 µl vs. 

Dll1+/lacZ: 10.7 ± 2.3 µl, n = 12/13, P = 0.022; WT - BL vs. MI 7d P = 0.042; WT - MI 7d vs. 

MI 28d P = n.s.; WT - BL vs. MI 28d P = 0.025; Dll1+/lacZ - BL vs. MI 7d P = n.s.; Dll1+/lacZ 

- MI 7d vs. MI 28d P = 0.003; Dll1+/lacZ - BL vs. MI 28d P = 0.0009). 

In addition, assessment of LV dilation was performed by echocardiographic measurement of 

LVED area (Figure 3.7 C). Although in WT no significant change of LVED area was 

determined when comparing baseline to MI 7d or MI 7d to MI 28d, some degree of dilation 

was still observed, as the LVED area significantly increased when comparing baseline to MI 

28d data. In Dll1+/lacZ mice, however, strong dilation was observed by a significant increase 

in LVED area from baseline via day 7 to day 28 post infarction (LVED area Baseline, WT: 

12.04 ± 1.58 mm² vs. Dll1+/lacZ: 9.72 ± 1.67 mm², n = 12/11, P = 0.028; LVED area MI 7d, 

WT: 14.24 ± 2.59 mm² vs. Dll1+/lacZ: 13.47 ± 3.02 mm², n = 7/8, P = n.s.; LVED area MI 

28d, WT: 15.45 ± 2.51 mm² vs. Dll1+/lacZ: 20.41 ± 4.11 mm², n = 12/13, P = 0.041; WT - BL 

vs. MI 7d P = n.s.; WT - MI 7d vs. MI 28d P = n.s.; WT - BL vs. MI 28d P = 0.025; 

Dll1+/lacZ - BL vs. MI 7d P = 0.024; Dll1+/lacZ - MI 7d vs. MI 28d P = 0.009; Dll1+/lacZ - BL 

vs. MI 28d P = 7E-6).  

 

These data point to functional remodelling (infarct size stabilization, compensation of 

cardiac function and moderate dilation (as expected based on the Frank-Starling 
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mechanism)) in WT animals post infarction, whereas in Dll1 heterozygous mice increase of 

infarct size, functional deterioration and strong left-ventricular dilation provide first 

evidence for adverse remodelling. 

 

 

 

 

 

 
Figure 3.6 Increased infarct size in Dll1 heterozygous mice 4 weeks post infarction. (A) 1 day 
infarction analysis of area-at-risk (AAR) and infarct area by Evan’s blue and TTC staining, showing a 
decreased AAR, but comparable ratio of infarct area to AAR. n=3/3; **P<0.01. (B) Quantification and graphic 
representation of infarct size 1 day (Evan’s blue and TTC staining), 7 days and 28 days (H&E staining) after 
infarction. The initial infarct size is smaller in Dll1 heterozygotes, but increases significantly in the analyzed 
course of 4 weeks after MI, whereas the initial larger infarct size in WT mice is compensated and stays 
constant over time. MI 1d n=3/3, MI 7d n=12/12, MI 28d n=12/14; *P<0.05, **P<0.01; n.s.: not significant.  
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Figure 3.7 Diminished levels of Dll1 cause impaired cardiac function and strong LV dilation 4 

weeks after MI. (A-C) Echocardiographic analyses of ejection fraction, stroke volume and LVED area after 
infarction. (A) Decreased ejection fraction in both, WT and Dll1+/lacZ hearts 7 days after infarction. In the 
following course of time EF is stable in WT, but decreases further in Dll1 heterozygotes. (B) In accordance, 
the stroke volume is constant in WT animals 4 weeks after infarction, after an initial decrease. Dll1+/lacZ 
animals show no significant change of SV 7 days after infarction, but a strong deterioration in the following. 
(C) Analysis of LVED area showing a small, but significant increase after MI in WT animals, comparing 
baseline to MI 28d. Dll1 heterozygous animals, however, revealing a significant increase in LVED area after 
infarction, indicating strong left ventricular dilation. (A-C) Baseline n=12/11, MI 7d n=7/8, MI 28d n=12/13; 
*P<0.05, **P<0.01; n.s.: not significant. 

 

 

 

3.2.2 Impaired LV remodelling after infarction in Dll1 heterozygous mice  

 
Increased dilation and infarct expansion in Dll1

+/lacZ
 animals 

To quantify left-ventricular geometry in relation to infarct area, heart sections were 

measured and epicardial circumference data collected – including the distinction of remote 
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(non-infarcted) and infarct fraction in MI conditions (Figure 3.8 A, B). Baseline analysis 

confirmed a smaller heart size of Dll1+/lacZ animals. WT animals displayed a small, but not 

significant increase in epicardial circumference, whereas hearts of Dll1 heterozygous 

animals showed massive dilation by a significant increase in epicardial circumference from 

baseline via day 7 to day 28 after LAD ligation (Epic. circ. Baseline, WT: 13.29 ± 0.53 mm 

vs. Dll1+/lacZ: 11.93 ± 0.66 mm, n = 7/6, P = 0.037; Epic. circ. MI 7d, WT: 13.50 ± 1.19 mm 

vs. Dll1+/lacZ: 12.99 ± 0.68 mm, n = 12/12, P = n.s.; Epic. circ. MI 28d, WT: 13.92 ± 1.18 

mm vs. Dll1+/lacZ: 15.14 ± 1.89 mm, n = 12/14, P = n.s.; WT - BL vs. MI 7d P = n.s.; WT - 

MI 7d vs. MI 28d P = n.s.; WT - BL vs. MI 28d P = n.s.; Dll1+/lacZ - BL vs. MI 7d P = 0.036; 

Dll1+/lacZ - MI 7d vs. MI 28d P = 0.006; Dll1+/lacZ - BL vs. MI 28d P = 0.010). After 

infarction, the fraction of infarct and remote length of the epicardial circumference was 

unchanged in WT animals, comparing day 7 and day 28 after infarction, which is reasonable 

as infarct size was constant during this period as well (WT, Remote length MI 7d: 9.22 ± 

1.77 mm vs. Remote length MI 28d: 9.67 ± 1.34 mm, P = n.s.; WT, Infarct length MI 7d: 

4.28 ± 1.67 mm vs. Infarct length MI 28d: 3.91 ± 1.87 mm, P = n.s.). With respect to 

fractions in infarcted Dll1+/lacZ mice, infarct length increased significantly from day 7 to day 

28 post infarction and remote length decreased (Dll1+/lacZ, Remote length MI 7d: 9.28 ± 0.95 

mm vs. Remote length MI 28d: 7.65 ± 1.40 mm, P = 0.019; Dll1+/lacZ, Infarct length MI 7d: 

3.71 ± 0.94 mm vs. Infarct length MI 28d: 7.49 ± 1.73 mm, P = 3E-5). The decrease in 

remote length directly reflects the increase in infarct size, whereas the increase in infarct 

length also is an indicator for heart dilation, as the infarct scar appears to wear out and 

explains the increase in total epicardial circumference.  

The assumption that the infarct scar wears out in the course of time was also observed based 

on wall thickness data (equivalent to infarct thickness and a measure of infarct scar 

thinning) (Figure 3.8 C). WT animals showed a significant reduction of wall thickness 

directly after infarction, i.e. in 7 day analyses, but no further decrease during the following 3 

weeks. Dll1+/lacZ animals did not show a thinner wall after infarction – which might be 

reasoned by the smaller infarct size –, but a significant decrease was apparent from day 7 to 

day 28 after operation, resulting in significantly thinner LV walls in comparison to WT 

animals after 28 days (Wall thickness Baseline, WT: 0.97 ± 0.07 mm vs. Dll1+/lacZ: 0.83 ± 

0.07 mm, n = 7/6, P = 0.017; Wall thickness MI 7d, WT: 0.62 ± 0.13 mm vs. Dll1+/lacZ: 0.78 

± 0.14 mm, n = 12/12, P = 0.030; Wall thickness MI 28d, WT: 0.51 ± 0.08 mm vs. 

Dll1+/lacZ: 0.32 ± 0.07 mm, n = 12/14, P = 0.0004; WT - BL vs. MI 7d P = 0.0001; WT - MI 
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7d vs. MI 28d P = n.s.; WT - BL vs. MI 28d P = 1E-7; Dll1+/lacZ - BL vs. MI 7d P = n.s.; 

Dll1+/lacZ - MI 7d vs. MI 28d P = 0.0000001; Dll1+/lacZ - BL vs. MI 28d P = 2E-8). 

Infarct expansion (thinning and elongation of the infarcted area) after myocardial infarction 

is an indicator of adverse remodelling. The strong increase of infarct portion of the 

epicardial circumference and the strong decrease of left-ventricular wall thickness show that 

in Dll1 heterozygous animals infarct expansion takes place after MI.   

 

More pronounced ventricular and myocyte hypertrophy in Dll1 heterozygotes 

Another aspect of infarct response is hypertrophy. Moderate cardiomyocyte hypertrophy in 

the remote myocardium is a part of compensatory remodelling, to counteract intensified 

wall stress. In adverse remodelling, however, increasing loading conditions lead to 

progressive hypertrophy.  

Characterization of ventricular hypertrophy was performed on septum thickness data 

(equivalent to the remote myocardium) (Figure 3.8 D). Data illustrated a slight increase in 

WT animals which was only apparent, comparing baseline and MI 28d time points. Dll1 

heterozygous mice did not show shifted data at first. 4 weeks after infarction, however, 

animals demonstrated a strong and highly significant increase in septum thickness (Septum 

thickness Baseline, WT: 1.31 ± 0.11 mm vs. Dll1+/lacZ: 1.09 ± 0.16 mm, n = 7/6, P = 0.039; 

Septum thickness MI 7d, WT: 1.45 ± 0.29 mm vs. Dll1+/lacZ: 1.21 ± 0.22  m, n = 12/12, P = 

n.s.; Septum thickness MI 28d, WT: 1.63 ± 0.19 mm vs. Dll1+/lacZ: 1.60 ± 0.26 mm, n = 

12/14, P = n.s.; WT - BL vs. MI 7d P = n.s.; WT - MI 7d vs. MI 28d P = n.s.; WT - BL vs. 

MI 28d P = 0.017; Dll1+/lacZ - BL vs. MI 7d P = n.s.; Dll1+/lacZ - MI 7d vs. MI 28d P = 0.003; 

Dll1+/lacZ - BL vs. MI 28d P = 0.002).  

As second measure, myocyte hypertrophy was determined by analysis of cardiomyocyte 

cross-sectional area (CSA) (Figure 3.9 A). CSA analysis showed smaller myocytes under 

baseline conditions in Dll1 heterozygous animals. After infarction, both WT and Dll1+/lacZ 

mice revealed a highly significant increase in CSA (CSA Baseline, WT: 273 ± 46 µm² vs. 

Dll1+/lacZ: 214 ± 42 µm², n = 3/3, P = 7E-32; CSA MI 7d, WT: 291 ± 65 µm² vs. Dll1+/lacZ: 

237 ± 46 µm², n = 3/3, P = 6E-21; CSA MI 28d, WT: 320 ± 84 µm² vs. Dll1+/lacZ: 389 ± 95 

µm², n = 3/3, P = 6E-12; WT - BL vs. MI 7d P = 0.004; WT - MI 7d vs. MI 28d P = 0.0003; 

WT - BL vs. MI 28d P = 1E-9; Dll1+/lacZ - BL vs. MI 7d P = 5E-7; Dll1+/lacZ - MI 7d vs. MI 

28d P = 1E-69; Dll1+/lacZ - BL vs. MI 28d P = 1E-74). Yet, Dll1 heterozygous conditions 

showed a more pronounced enlargement of myocyte size, giving final CSA values 



RESULTS 
_________________________________________________________________________________________ 

_________________________________________________________________________________________ 
82 

significantly larger than final myocyte size in WT animals and a respective stronger 

myocyte hypertrophy after MI.  

In correspondence with CSA data, the number of myocytes per field (Figure 3.9 B) was 

higher in Dll1 heterozygotes under baseline conditions. After infarction myocyte numbers 

decreased slightly, but not significantly in WT animals. Dll1+/lacZ mice revealed a significant 

reduction of myocyte numbers comparing 7 and 28 days post infarction (Myocytes per field 

Baseline, WT: 210 ± 18 vs. Dll1+/lacZ: 236 ± 22, n = 3/3, P = 0.042; Myocytes per field MI 

7d, WT: 201 ± 21 vs. Dll1+/lacZ: 213 ± 26, n = 3E-5; WT - BL vs. MI 7d P = n.s.; WT - MI 

7d vs. MI 28d P = n.s.; WT - BL vs. MI 28d P = 0.002; Dll1+/lacZ - BL vs. MI 7d P = n.s.; 

Dll1+/lacZ - MI 7d vs. MI 28d P = 6E-6; Dll1+/lacZ - BL vs. MI 28d P = 6E-8). 

These results show that in WT animals hypertrophy takes place, as expected in 

compensatory remodelling. However, in Dll1 heterozygous animals absolute differences of 

myocyte size and septum thickness are higher (although hearts are smaller), indicating that 

hypertrophy is more pronounced in Dll1 heterozygous than in WT animals, adding another 

aspect of adverse remodelling.  
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Figure 3.8 Infarct expansion and increased ventricular dilation and hypertrophy in Dll1 

heterozygous animals. (A) Graphic representation and (B) quantification of epicardial circumference 
measurement including remote and infarct fraction after MI. Analysis showing increased infarct length and 
increased total epicardial circumference 28 days after infarction under Dll1+/lacZ conditions, in compliance with 
infarct size and LVED area analyses. (C) Examination of left ventricular wall thickness showing strong 
thinning in both WT and Dll1+/lacZ after MI, but stronger first in WT animals 7 days post infarction and later in 
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Dll1+/lacZ (over the following 3 weeks of analysis). (D) Septum thickness showing weak hypertrophy in WT 
animals after infarction. Strong hypertrophy is apparent by an increase in septum thickness in Dll1 
heterozygous conditions 4 weeks after infarction. (B-D) Baseline n=7/6, MI 7d n=12/12, MI 28d n=12/14. 
*P<0.05, **P<0.01; n.s.: not significant. 

 

 

 

 

 
Figure 3.9 Myocyte hypertrophy in Dll1

+/lacZ
 mice. (A) Analysis of cross-sectional area (CSA) 

revealing smaller myocytes under baseline conditions in diminished Dll1 conditions, but a stronger increase in 
CSA and respective stronger myocyte hypertrophy after MI, in comparison to infarcted WT conditions. (B) In 
correspondence with CSA, the number of myocytes per field is higher under baseline conditions, but decreases 
stronger after infarction in Dll1+/lacZ animals. (A-B) n=3/3 (3-4 fields each); *P<0.05, **P<0.01; n.s.: not 
significant. (C) Representative immunofluorescence images used for quantification of CSA, myocyte density 
and capillary density in WT and Dll1+/lacZ heart sections. Staining shows WGA (red) to mark cell membranes, 
capillaries by isolectin B4 (green), and nuclei by DAPI (blue). Scale bar 50µm. 
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Lower apoptotic response to MI in Dll1 heterozygous mice  

Myocardial infarction triggers an ischemic stress response and induces cell death. To assess 

the involvement of cell death by apoptosis, TUNEL staining was performed. Evaluation 

(Figure 3.10) demonstrated low, comparable baseline values in WT and Dll1+/lacZ animals 

(Apoptotic cells per 0.5 mm² - Baseline, WT: 0.09 ± 0.17 vs. Dll1+/lacZ: 0.18 ± 0.31, n = 5/5, 

P = n.s.). 3 days after infarction the number of apoptotic cells was significantly elevated in 

WT animals in all areas – remote, border zone and infarct –, compared to Dll1+/lacZ; WT 

values MI 3d were significantly higher than baseline data (MI 3d , Apoptotic cells per 0.5 

mm² - Remote, WT: 4.21 ± 3.77 vs. Dll1+/lacZ: 0.22 ± 0.37, n = 3/3, P = 0.049; Apoptotic 

cells per 0.5 mm² - Border zone, WT: 67.16 ± 43.18 vs. Dll1+/lacZ: 6.97 ± 3.46, n = 3/3, P = 

0.022; Apoptotic cells per 0.5 mm² - Infarct, WT: 89.25 ± 65.77 vs. Dll1+/lacZ: 11.62 ± 1.32, 

n = 3/3, P = 0.029). 7 days after infarction, WT animals showed an increase in apoptotic 

cells in the remote area, but a decreased number of apoptotic cells in the border zone and the 

infarct area. Dll1 heterozygous mice showed elevated levels of apoptotic cells in all three 

areas when compared to MI 3d, but data were still below WT level (MI 7d , Apoptotic cells 

per 0.5 mm² - Remote, WT: 11.04 ± 14.06 vs. Dll1+/lacZ: 3.66 ± 6.09, n = 6/6, P = n.s.; 

Apoptotic cells per 0.5 mm² - Border zone, WT: 33.47 ± 18.82 vs. Dll1+/lacZ: 18.12 ± 7.65, n 

= 6/6, P = n.s.; Apoptotic cells per 0.5 mm² - Infarct, WT: 75.78 ± 43.08 vs. Dll1+/lacZ: 33.72 

± 10.47, n = 6/6, P = 0.033). 4 weeks after infarction the apoptotic response has completely 

ceased in WT and Dll1+/lacZ hearts in all areas (MI 28d , Apoptotic cells per 0.5 mm² - 

Remote, WT: 0.27 ± 0.43 vs. Dll1+/lacZ: 0.00 ± 0.00, n = 4/5, P = n.s.; Apoptotic cells per 0.5 

mm² - Border zone, WT: 0.80 ± 0.64 vs. Dll1+/lacZ: 1.84 ± 1.57, n = 4/5, P = n.s.; Apoptotic 

cells per 0.5 mm² - Infarct, WT: 0.00 ± 0.00 vs. Dll1+/lacZ: 4.88 ± 4.88, n = 4/5, P = n.s.).  

Consequently - on the basis of the time points analysed -, Dll1+/lacZ animals reveal a lower 

extent of apoptosis after myocardial infarction. However, to answer if reduced apoptotic cell 

numbers are based on the initial smaller infarct size or as direct effect of Dll1 heterozygosity, 

more time points would have to be analyzed. Only with more time points a statement could 

be made if apoptotic response is rather time-shifted and increases later than in WT. Though, 

even if apoptosis is in fact decreased in Dll1 heterozygous mice, obviously massive cell 

death does occur as apparent on the increase in infarct size. In principle, necrosis and 

autophagy can contribute to cell death. Although necrosis is rather connected with acute cell 

death in the infarcted area immediately after MI, it is possible that due to impaired 

arteriogenesis in Dll1 heterozygotes, ischemia is prolonged and necrosis persists. This is 

especially important for the cardiomyocytes at risk in the border zone and could explain the 
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increase in infarct size. However, persistent ischemia due to impaired arteriogenesis could 

also cause increased autophagy and corresponding effects on infarct size. Therefore, 

additional quantification of necrosis and autophagy would be needed to answer which type 

of cell death is altered in Dll1 heterozygous animals. In addition, not only cardiomyocytes 

undergo cell death after MI. Also other cell types associated with infarct response like 

inflammatory cells or myofibroblasts undergo apoptosis in a time-dependent manner. It is 

possible that altered cell infiltration might account for the observed difference in apoptotic 

cells.  

 

 

 

 

 
Figure 3.10 Lower apoptotic response after myocardial infarction in Dll1

+/lacZ
 mice, compared to 

WT. Quantification of apoptosis (TUNEL staining) showing increased numbers of apoptotic cells per area in 
WT heart sections 3 days after infarction, but not in Dll1 heterozygotes. 7 days after infarction the number of 
apoptotic cells has decreased in WT. Numbers slightly increased in all areas under Dll1 heterozygous 
conditions, but were still below WT levels. 4 weeks after infarction the apoptotic response has completely 
ceased in both conditions and all areas. MI 3d n=3/3 (3 fields per zone), MI 7d n=6/6 (3 fields per zone), MI 
28d n=4/5 (3 fields per zone); *P<0.05, **P<0.01; n.s.: not significant. 
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Increased fibrotic response in the infarct zone of Dll1
+/lacZ 

animals
 
 

As the wound matures, collagen is deposited and cross-linked to stabilize the scar. Collagen 

maturation and organized alignment increases the strength of the wound. A disorganized, 

immature collagen matrix cannot withstand the cardiac load, leading to dilation and a higher 

probability of rupture. Deposition of interstitial collagen in the noninfarcted myocardium 

has a negative influence as it is associated with ventricular stiffness in the remote area.  

Sirius red polarization microscopy of collagen fibres (Figure 3.11 A) demonstrated in both 

groups – WT and Dll1 heterozygous – thick, tightly packed mature fibres (orange-red) in the 

border zone and the infarct zone, 28 days after infarction. No loosely assembled, immature 

fibres (yellow-green) could be observed. Quantification of collagen fractional areas (Figure 

3.11 B) showed comparable and low baseline values. 4 weeks after infarction, no changes in 

collagen density were observed in the remote area of WT and Dll1+/lacZ animals compared to 

baseline, indicating that interstitial myocardial fibrosis did not occur in both genotypes. 

Analysing border zone and infarct areas 4 weeks after infarction, increased collagen density 

was apparent, resulting in comparable values in the border zone and higher collagen density 

in the infarct zone of Dll1 heterozygous mice, compared to WT (Collagen density - Baseline, 

WT: 0.60 ± 0.37 % vs. Dll1+/lacZ: 0.53 ± 0.35 %, n = 4/4, P = n.s.; Collagen density - Remote 

MI 28d, WT: 0.68 ± 0.33 % vs. Dll1+/lacZ: 0.45 ± 0.14 %, n = 4/4, P = n.s.; Collagen density 

- Border zone MI 28d, WT: 37.50 ± 5.40 % vs. Dll1+/lacZ: 42.50 ± 9.20 %, n = 4/4, P = n.s.; 

Collagen density - Infarct MI 28d, WT: 67.10 ± 9.30 % vs. Dll1+/lacZ: 85.40 ± 4.40 %, n = 

4/4, P = 0.0003).  

Thus, fibrosis analysis revealed mature collagen fibres with increased collagen deposition in 

Dll1 heterozygotes. Increased collagen deposition after infarction is actually associated with 

LV stiffness and dysfunction, whereas decreased collagen deposition (below normal) can 

lead to LV dilation (Jugdutt, 2003). However, although increased collagen is observed in 

Dll1 heterozygous animals after myocardial infarction, it is not possible to conclude that this 

is directly related to increased stiffness and dysfunction, as in Dll1 heterozygous mice the 

final infarct size is bigger than in WT animals. Based on the experiments performed it is not 

possible to tell if collagen deposition is adequate for the corresponding infarct size, or if it is 

above or below adequate collagen levels. Collagen fibre maturation and organization in the 

scar seemed not be impaired.  
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Figure 3.11 Increased fibrotic response in the infarct zone of Dll1

+/lacZ
 hearts 4 weeks post MI. (A) 

Representative bright field (left panel) and polarized light (corresponding right panel) images of collagen 
deposition visualized by Sirius red staining. Scale bar 50µm. (B) Fibrosis analysis by collagen quantification 
showing comparable collagen content under baseline conditions in WT and Dll1 heterozygous heart sections. 4 
weeks post infarction, collagen density is not increased in remote areas of both genotypes. Border zone areas 
show increased, but comparable levels of collagen deposition in WT and Dll1+/lacZ hearts, whereas infarct areas 
show higher collagen levels with increased fibrosis in Dll1 heterozygous mice. Baseline n=4/4 (3 fields per 
zone), MI 28d n=4/4 (3 fields per zone); **P<0.01; n.s.: not significant. 

 

 

 

3.2.3 Increased inflammatory response to MI in Dll1 heterozygous mice 

 
Enhanced leukocyte infiltration in Dll1

+/lacZ
 animals 

To assess inflammatory processes after infarction, in a first analyses leukocytes were 

identified by CD45 immunohistochemistry staining (Figure 3.12). Quantification of the area 

occupied by CD45+ cells showed significantly higher leukocyte infiltration in the border 

zone and infarct area of Dll1+/lacZ mice, compared to WT, 3 days after myocardial infarction. 

At the same time point of analysis leukocyte infiltration in the remote area was low and 

comparable in both genotypes (MI 3d n=3/3 , CD45+ cell area - Remote, WT: 2.1 ± 0.4 % 

vs. Dll1+/lacZ: 3.0 ± 1.0 %, P = n.s.; CD45+ cell area - Border zone, WT: 26.5 ± 3.8 % vs. 

Dll1+/lacZ: 44.3 ± 8.2 %, P = 0.021; CD45+ cell area - Infarct, WT: 41.2 ± 5.0 % vs. 

Dll1+/lacZ: 81.8 ± 7.7 %, P = 0.002). 7 days post MI, levels of CD45+ cells significantly 

increased in the remote area of both genotypes, with a stronger progress in Dll1 

heterozygotes. CD45+ cell area in the border zone and the infarct zone of WT animals 

stayed constant, but decreased significantly in both areas of Dll1+/lacZ mice, giving 

comparable final values at this time point (MI 7d n=6/9 , CD45+ cell area - Remote, WT: 

A B 
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4.8 ± 1.0 % vs. Dll1+/lacZ: 6.1 ± 1.6 %, P = 0.034; CD45+ cell area - Border zone, WT: 33.4 

± 6.0 % vs. Dll1+/lacZ: 27.2 ± 11.0 %, P = n.s.; CD45+ cell area - Infarct, WT: 51.9 ± 20.3 % 

vs. Dll1+/lacZ: 48.7 ± 19.1 %, P = n.s.; WT Remote - MI 3d vs. MI 7d P = 0.002; WT Border 

zone - MI 3d vs. MI 7d P = n.s.; WT Infarct - MI 3d vs. MI 7d P = n.s; Dll1+/lacZ Remote - 

MI 3d vs. MI 7d P = 0.004; Dll1+/lacZ Border zone - MI 3d vs. MI 7d P = 0.020; Dll1+/lacZ 

Infarct - MI 3d vs. MI 7d P = 0.014). 4 weeks after myocardial infarction, leukocyte 

infiltration has ceased in all areas of both, WT and Dll1+/lacZ animals (MI 28d n=5/7 , 

CD45+ cell area - Remote, WT: 0.1 ± 0.1 % vs. Dll1+/lacZ: 0.2 ± 0.1 %, P = n.s.; CD45+ cell 

area - Border zone, WT: 2.1 ± 1.2 % vs. Dll1+/lacZ: 1.3 ± 1.2 %, P = n.s.; CD45+ cell area - 

Infarct, WT: 5.9 ± 3.6 % vs. Dll1+/lacZ: 6.2 ± 5.0 %, P = n.s.). 

These data show initially enhanced leukocyte infiltration in Dll1 heterozygotes, but total 

leukocyte numbers also decline earlier than in WT conditions. Increased leukocyte 

infiltration 3 days after infarction was especially intriguing with regard to the initial smaller 

infarct size in Dll1 heterozygotes, indicating a misbalance of inflammation to the 

corresponding infarct size. 

 

Time shifted, increased macrophage infiltration in Dll1 heterozygotes  

Identification of mature macrophages was performed by F4/80 immunofluorescence 

staining (Figure 3.13). 3 days post MI, microscopy showed high macrophage infiltration in 

the infarct zone, as well as in the border zone (infarct side) of WT animals, but not in the 

remote. Dll1 heterozygous mice did not show macrophage infiltration in the remote and 

border zone; the infarct area revealed only sporadic F4/80 positive cells. However, 7 days 

after infarction Dll1+/lacZ animals exhibited a massive increase of macrophages in all three 

zones: remote, border zone and infarct. At this time point macrophages in the infarct zone of 

WT mice were still apparent, but numbers subsided.  

These observations indicate an increased, but time shifted infiltration of macrophages in 

Dll1 heterozygotes after myocardial infarction. This poses the question which cell types 

account for the early increased leukocyte infiltration and requires further investigation. In 

addition, cardiac repair requires the containment of inflammation into the infarct area; 

extension into the remote can cause matrix degradation in this area and contribute to adverse 

remodelling (Frangogiannis, 2008). With this regard, the observed infiltration of F4/80 

macrophages in the remote of Dll1 heterozygous infarcted hearts is of special importance . 
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Figure 3.12 Enhanced leukocyte infiltration after MI in Dll1

+/lacZ
 mice. (A) Quantification of 

leukocyte infiltration by CD45 staining showing elevated levels at first in the border zone and infarcted area of 
Dll1 heterozygous mice 3 days after infarction in comparison to WT. 7 days post MI, increased CD45+ cell 
area is more prominent in the remote of Dll1+/lacZ than in WT animals. 4 weeks after infarction leukocyte 
infiltration has ceased in all areas of WT and Dll1+/lacZ heart sections. MI 3d n=3/3 (2 fields per area), MI 7d 
n=6/9 (2 fields per area), MI 28d n=5/7 (2 fields per area); *P<0.05, **P<0.01; n.s.: not significant. (B) 
Representative immunohistochemical staining of CD45 (red) counterstained with hemalum (blue). Scale bar 
100µm. 
 

B 
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Figure 3.13 Time shifted, increased macrophage infiltration in Dll1 heterozygotes. Immuno- 
fluorescence staining of WT and Dll1+/lacZ heart sections showing macrophages by F4/80 (red), capillaries and 
vessel endothelium by isolectin B4 (green) and nuclei using DAPI (blue). Fluorescence microscopy revealing 
macrophage infiltration in infarcted area of WT animals 3 days after infarction, but not in Dll1 heterozygous 
mice. 7 days after infarction, Dll1 heterozygotes show a massive increase of macrophages in all three zones – 
remote, border zone and infarct – , whereas in WT animals macrophage infiltration has subsided.  

 

 

Lower M2 macrophage infiltration in Dll1
+/lacZ

 infarcted hearts  

To identify alternative activated macrophages (M2) associated with repair mechanisms, 

CD206 immunofluorescence staining was performed (Figure 3.14). Microscopy of heart 

sections 3 days after infarction demonstrated relatively high levels of CD206 positive cells 

in the infarct and border zone of WT animals, as well as single M2 macrophages in the 

remote. In comparison, Dll1 heterozygous animals showed significantly reduced M2 

macrophage infiltration in all three areas: remote, border zone and infarct. Analyses 7 days 

post MI exhibited in WT animals even increased CD206 positive cell numbers in the infarct 

zone and relatively constant values (comparing to MI 3d) in the border zone and the remote. 

In Dll1+/lacZ animals the already low number of CD206 positive cells even declined and only 

sporadic M2 macrophages were visible in the remote and the infarct area.  

These analyses show that M2 macrophage infiltration is lower and subsides even earlier 

than in WT animals, indicating reduced initiation of healing and repair in Dll1 

heterozygotes. 
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Figure 3.14 Lower M2 macrophage infiltration in Dll1

+/lacZ
 infarcted hearts. Immunofluorescence 

microscopy showing M2 macrophages by CD206 (green) and nuclei using DAPI (blue). Staining reveals 
CD206 positive cells in the remote, border zone and infarct in WT sections 3 days and 7 days after MI. 
Dll1+/lacZ animals show lower CD206 positive cell numbers in all areas 3 days after infarction, which are even 
reduced 7 days post MI. Scale bar 50µm. 

 

 

 

3.2.4 Dll1 expression is upregulated after myocardial infarction 

 
To determine where Dll1 exerts its function (leading to adverse remodelling in Dll1 

heterozygous mice), Dll1 expression was analysed after LAD ligation by lacZ staining in 

Dll1+/lacZ animals, and RNA and protein analyses in WT heart tissue.  

Molecular expression analyses of WT left-ventricular heart tissue showed an upregulation of 

Dll1 on RNA and protein level after infarction, compared to sham operated controls (Figure 

3.15 A, B). Both, RNA and protein pattern, demonstrated an increase in expression level 

from baseline via day 1 to day 3 post infarction, followed by reduced levels – but still above 

sham conditions – at day 7 after MI again.  

Determination of Dll1 expression pattern by lacZ staining of infarcted heart sections of 

Dll1+/lacZ animals (Figure 3.15 C), illustrated that 7 days post MI endothelial Dll1 is still 

present in arterial vessels of the remote area. In the border zone, as well as in the infarct 

zone Dll1 expression is increased and can be detected in vascular structures. Based on this 
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simple staining a further classification of Dll1 positive vessels to arteries or veins was not 

possible. In addition, in all three areas – remote, border zone and infarct – other Dll1 

positive structures could be detected which looked rather like single cells than vascular 

structures. Further analyses 28 days post MI revealed a strong decrease of Dll1 expression 

in the border and infarct zone; only sporadic vessels and single cells stained lacZ positive. 

In the remote, however, Dll1 expression retained similar to remote staining 7 days post MI 

and to baseline staining in unstressed myocardium.  

To further characterize and classify Dll1 positive structures, immunofluorescence co-

staining was performed (Figure 3.15. D) comparing WT and Dll1+/lacZ, baseline and 

infarcted heart sections. By immunofluorescence, no Dll1 expression could be detected in 

baseline myocardium of WT and Dll1+/lacZ tissue, which likely reflects the different 

sensitivities of the detection techniques. Likewise, no vessels in the remote, border zone and 

infarct of WT and Dll1+/lacZ conditions 3 and 7 days post MI showed Dll1 expression by 

fluorescence. The only exception were sporadic Dll1 positive arteries (Figure 3.15 D - 

arrow) and single cells (Figure 3.15 D - arrow heads) in the border zone of WT animals 3 

days after infarction. This finding implies that low Dll1 expression levels and therefore low 

fluorescence levels could not be detected by fluorescence microscopy with the antibodies 

applied. Only structures expressing Dll1 above a certain threshold level – as sporadic 

arteries and cells in the border zone of WT animals 3 days after infarction – exhibited 

enough fluorescence intensity to be detectable.  

These findings show induction of Dll1 in vessels in the border zone after MI, which is of 

special importance, as the border zone is the area that responds with arteriogenesis.  
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Figure 3.15 Dll1 expression is induced after MI. (A) Dll1 RNA and (B) protein levels are increased 
directly after MI in infarcted LV samples of WT mice hearts. (C) LacZ (blue) and eosin (red) counterstaining 
in infarcted heart sections of Dll1+/lacZ mice showing increased Dll1 expression in the border and infarct zone 7 
days post MI, in vascular structures, as well as in single cells. 28 days after MI Dll1 expression is decreased 
again, but retains normal in the remote area. Scale bar 50µm. (D) Immunofluorescence staining of WT and 
Dll1+/lacZ heart sections showing Dll1 (red), SMA (green) and nuclei (blue). Fluorescence microscopy 
revealing Dll1 expression only in sporadic vessels (arrow) and single cells (arrow heads) in the border zone of 
WT sections, 3 days post MI. Scale bar 50µm.  
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3.2.5 Reduced expression of Dll1 impairs arteriogenesis, but not angiogenesis 

after myocardial infarction 

 
Formation of new blood vessels is critical for supplying the healing myocardium with 

oxygen and nutrients. Therefore, angiogenesis and arteriogenesis are an essential component 

of wound healing. Although angiogenesis provides the capillary network for efficient 

nutrient distribution, only arteriogenesis can provide adequate perfusion necessary for the 

regeneration after myocardial infarction. Within this regard, of special importance is the 

border zone, as this area contains the cardiomyocytes at risk which can be rescued by 

reperfusion.  

Analyzing angiogenesis after infarction by quantification of capillaries per cardiomyocyte 

(Figure 3.16 A), WT animals illustrated an increase in capillaries comparing baseline to MI 

7d. 28 days after infarction, no further changes in capillary density were observed. In 

relation, Dll1+/lacZ mice also showed an increase in capillary density, but only comparing MI 

7d and MI 28d conditions, not directly after infarction comparing baseline to MI 7d 

(Capillaries per cardiomyocyte - Baseline, WT: 1.14 ± 0.14 vs. Dll1+/lacZ: 1.18 ± 0.08, n = 

3/3, P = n.s.; Capillaries per cardiomyocyte – MI 7d, WT: 1.32 ± 0.06 vs. Dll1+/lacZ: 1.15 ± 

0.05, n = 3/3, P = 0.0001; Capillaries per cardiomyocyte – MI 28d, WT: 1.34 ± 0.05 vs. 

Dll1+/lacZ: 1.31 ± 0.20, n = 3/3, P = n.s.; WT - BL vs. MI 7d P = 0.009; WT - MI 7d vs. MI 

28d P = n.s.; Dll1+/lacZ - BL vs. MI 7d P = n.s.; Dll1+/lacZ - MI 7d vs. MI 28d P = 0.048).  

To analyze arteriogenesis 7 days after infarction, SMA positive vessels in the border zone 

were quantified (Figure 3.16 B). Examining WT data, a highly significant increase of vessel 

numbers was observed in resistance vessels smaller 20 µm and in conductance vessels from 

20-50 µm, comparing baseline and MI 7d time points. Vessel numbers above 50 µm were 

not significantly different (Number of vessels <20 µm per 0.25 mm², WT BL: 4.18 ± 0.85 

vs. WT MI 7d: 9.10 ± 1.19, n = 4/9, P = 2E-6; Number of vessels 20-50 µm per 0.25 mm², 

WT BL: 0.73 ± 0.13 vs. WT MI 7d: 1.01 ± 0.15, n = 4/9, P = 0.009; Number of vessels >50 

µm per 0.25 mm², WT BL: 0.17 ± 0.03 vs. WT MI 7d: 0.14 ± 0.12, n = 4/9, P = n.s.). This 

response to infarction was completely missing in Dll1 heterozygous mice, where no change 

of vessel number could be observed in any vessel size (Number of vessels <20 µm per 0.25 

mm², Dll1+/lacZ BL: 4.72 ± 1.02 vs. Dll1+/lacZ MI 7d: 4.23 ± 0.41, n = 4/8, P = n.s.; Number 

of vessels 20-50 µm per 0.25 mm², Dll1+/lacZ BL: 0.27 ± 0.10 vs. Dll1+/lacZ MI 7d: 0.21 ± 

0.12, n = 4/8, P = n.s.; Number of vessels >50 µm per 0.25 mm², Dll1+/lacZ BL: 0.07 ± 0.02 

vs. Dll1+/lacZ MI 7d: 0.06 ± 0.06, n = 4/8, P = n.s.).  
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Therefore, the level of angiogenic response is similar in both experimental groups, but 

delayed in Dll1 heterozygous animals. This is probably a direct effect of the smaller initial 

infarct size. However, diminished levels of Dll1 cause a complete lack of arteriogenic 

response, as illustrated by a complete absence of vessel growth. This impaired 

arteriogenesis after MI in Dll1 heterozygotes adds yet another aspect to the obvious adverse 

remodelling that is taking place in these animals.  

 

 

 

 
Figure 3.16 Impaired arteriogenesis, but not angiogenesis in Dll1 heterozygous mice. (A) 
Comparable, but delayed angiogenesis 4 weeks post infarction in WT and Dll1+/lacZ animals shown by an 
increase of capillaries per cardiomyocyte. In WT the increase is prominent 7 days after MI, whereas in 
Dll1+/lacZ the increase is only visible 28 days post infarction. (Representative immunofluorescence images 
Figure 3.10 C.) n=3/3 (3-4 fields each). (B) Quantification of arteriogenesis in the border zone 7 days post MI 
categorized by vessel size. WT animals showing a strong increase of vessels <50µm, in comparison to baseline 
WT conditions, whereas in Dll1+/lacZ hearts this infarct response is missing. Baseline n=4/4 (3 sections each), 
MI 7d n=9/8 (2 border zones each); *P<0.05, **P<0.01; n.s.: not significant. 
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3.2.6 Altered mortality of Dll1 heterozygous mice after myocardial infarction 

 
Data clearly indicated adverse remodelling taking place in Dll1 heterozygous animals. As 

adverse remodelling is associated with chronic heart failure and death, a survival analysis 

was performed after LAD ligation. 

Examination of survival after permanent LAD occlusion operation resulted in a high 

mortality of WT animals within the first 7 days after infarction (Figure 3.17 A). Dll1 

heterozygous mice displayed a significantly lower incidence of death during the first 7 days 

after LAD ligation, as determined by Log-rank test (WT: 22 of 68 animals died, equivalent 

to a survival of 69%; Dll1+/lacZ : 8 of 61 animals died, equivalent to a survival of 87%; P = 

0.0085). Within the following 3 weeks mortality in WT animals decelerated and reached a 

constant level of survival, whereas mortality in Dll1+/lacZ animals accelerated. Final survival 

4 weeks after infarction was comparable in both groups (Figure 3.17 B) (WT: 5 of 68 

animals died, equivalent to a final survival of 60%; Dll1+/lacZ: 21 of 61 animals died, 

equivalent to a 28 day survival of 52%; P = n.s.).  

 
 
 
 

 

Figure 3.17 Altered mortality of Dll1 heterozygous mice post infarction. Kaplan-Meier curves 
showing (A) decreased mortality within 7 days after MI and (B) subsequent increased mortality within the 
following 3 weeks in Dll1 heterozygotes, compared to WT. Final survival 4 weeks post MI was comparable in 
both groups. n=68/61; **P<0.01; n.s.: not significant.. 
 
 
 
 
These data demonstrate the initially beneficial effect of the developmental/neonatal 

coronary artery phenotype in Dll1 heterozygous animals, evident on the initial smaller 

infarct size and improved 1 week survival after myocardial infarction. However, whereas 
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functional remodelling is apparent in constant survival in WT animals over time, adverse 

remodelling is again implicated by an increased long-term mortality in Dll1 heterozygotes. 

Although final survival 4 weeks after infarction did not show significant differences, 

additional follow-up analyses beyond 4 weeks would be of major interest. A further 

mortality would be expected in Dll1 heterozygotes in support of adverse remodelling 

associated with proceeding dysfunction and progressive heart failure.  
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3.3 Not endothelial Dll1 is the major determinant in infarct healing  

 
As Dll1 was selectively expressed in the arterial endothelium and upregulated and detected 

mainly in vascular structures in the heart after myocardial infarction, we hypothesized that 

endothelial Dll1 contributes to the infarct phenotype in Dll1 heterozygous animals described 

in the previous chapter 3.2. To investigate this hypothesis, an inducible endothelial Dll1 

knockout mouse strain VECad-Cre-ERT2/Dll1lox/lox (termed eDll1 KO after induction) was 

generated and analyzed. Due to the inducibility of the system, animals did not possess the 

confounding developmental/neonatal coronary artery phenotype of Dll1+/lacZ animals.  

 
To verify the specificity and efficiency of induction of the VECad-Cre-ERT2 strain, a 

homozygous floxed VECad-Cre-ERT2/ROSA26R strain was used (for detailed description 

and according references on mouse strains see methodology chapter 2.2.1). Vascular 

endothelial cadherin (VECad) promoter specific Cre expression was characterized by lacZ 

staining in induced VECad-Cre-ERT2/ROSA26R animals and revealed specific, 

panendothelial activity in major arteries and veins, as well as in capillaries of various mouse 

tissues (Figure 3.18 A).   

 
Verification of Dll1 downregulation in eDll1 KO animals was performed on RNA level by 

RT-PCR (Figure 3.18 C). 7 days after knockout induction, analysis revealed decreased Dll1 

RNA levels in the heart and aorta, in comparison to appropriate controls (CTRL - Cre 

negative animals (-/Dll1lox/lox) which had also been treated with the inducing agent 

tamoxifen). 

Survival analyses demonstrated unchanged survival of eDll1 KO mice after induction, in 

comparison to CTRL (Figure 3.18 D), indicating no impairment of life expectancy due to 

tamoxifen treatment or endothelial Dll1 knockout.  

Investigation of infarct size 4 weeks after myocardial infarction (Figure 3.18 E) revealed 

comparable values in CTRL and eDll1 KO conditions (Infarct size, CTRL: 39.41 ± 10.92 % 

vs. eDll1 KO: 33.74 ± 10.62 %, n = 10/12, P = n.s.).  

This result was in contrast to the expected outcome and disproves the formulated hypothesis. 

Obviously, endothelial Dll1 is not the major determinant causing the adverse remodelling 

phenotype observed in Dll1 heterozygous animals. However, further analyses especially of 

Dll1 expression and arteriogenesis, but also of inflammation, dilation, hypertrophy and 

cardiac function would be needed to elucidate exact differences of MI response in Dll1+/lacZ 

and eDll1 KO animals. 
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Figure 3.18 Characterization, verification and analysis of endothelial Dll1 knockout animals 

demonstrating that endothelial Dll1is not the major determinant causing adverse remodelling after MI. 

(A) Scheme of VECad-Cre-ERT2/ROSA26R  transgenic mice and characterization of promoter specific Cre 
expression by lacZ staining. Analysis after induction showing panendothelial activity in major arteries and 
veins, as well as in capillaries of various mouse tissues (lower panel). Corresponding VeCad-Cre negative 
controls did not show lacZ activity (upper panel). Scale bar 50µm. (B) Scheme of VECad-Cre-ERT2/Dll1lox/lox 

transgenic mice (termed eDll1 KO after induction). (C) Verification of Dll1 downregulation in eDll1 KO 
conditions 7 days after knockout induction showing decreased RNA levels in heart and aorta, in comparison to 
respective controls. (D) Kaplan-Meier curve showing unchanged survival of eDll1 KO mice after knockout 
induction. n=5/7. (E) Infarct size analysis 4 weeks post infarction showing comparable infarct size under 
control and eDll1 KO conditions. n=10/12; n.s.: not significant. 
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4. DISCUSSION 
 

 

 

 

Heart, vasculature and immune system development and maintenance are complex 

processes involving a multitude of signalling pathways; the importance of Notch signalling 

and its wide variety of sites of action and effects has been proven by several studies. 

The aim of this study was to characterize the involvement of the Notch ligand Dll1 in 

arterial patterning of coronaries in the adult and its role in the ischemic stress response after 

myocardial infarction.  

 

4.1 Baseline phenotype of Dll1
+/lacZ

 mice  

4.1.1 Reduced levels of Dll1 do not cause fatal congenital malformations  

 
This study analyzed Dll1+/lacZ mice, which were first described by Hrabé de Angelis et al. in 

1997. As first study providing data from a long-term analysis, our results showed that Dll1 

heterozygous animals are viable, fertile and healthy. Animals showed a normal life span (18 

months analysis compared to WT), indicating that Dll1 heterozygosity did not cause major 

and fatal congenital malformations.  

 

4.1.2 Dll1 regulates a heart and coronary artery phenotype 

 

Gravimetric data showed comparable body weight and size, but various analyses 

demonstrated reduced heart weight and size in Dll1 heterozygous animals, although no 

gross morphological changes of the heart were observed. Echocardiographic, morphometric 

and gravimetric analyses showed a consistent picture of the Dll1+/lacZ heart: decreased LV 

mass, smaller LVED area, reduced epicardial circumference, smaller LV wall thickness, 

decreased septum thickness (young animal analyses) and reduced heart weight (old animal 

analysis).  

In contrast, cardiac function was not impaired in these animals. Data demonstrated that the 

smaller heart size with concurrent normal body weight is compensated by an elevated 
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ejection fraction, resulting in a normal stroke volume and cardiac output. This finding 

elucidates the normal long-term survival of Dll1 heterozygous mice. 

 

In addition, changes in the coronary artery system were evident. In the adult mouse heart, 

Dll1 was expressed in the endocardium and the coronary endothelium of arteries with a 

diameter above 20 µm. Adult Dll1 heterozygous animals showed at the heart base a 

significantly reduced number of vessels bigger than 20 µm (conductance vessels), but an 

increase of vessels smaller than 20 µm (resistance vessels); the heart apex exhibited reduced 

vessel numbers of all sizes. The domain supplied by the LAD was significantly smaller.  

These data suggest a model were in Dll1 heterozygous mice coronary vessel size is smaller 

from the start and only a reduced number of vessels will reach more distal heart areas 

(Figure 4.1). 

 

 

 

Figure 4.1  Proposed model of the coronary 

artery phenotype in Dll1 heterozygous mice. 
Reduced levels of Dll1 impair 
developmental/neonatal coronary arteriogenesis, 
becoming evident in the adult by a reduced 
coronary vessel size in the heart basis and causing a 
reduced number of vessels reaching more distal 
heart areas.  
 

 

 

 

 

 

 

However, these data describe a phenotype in the adult, which is generated based on 

preceding mechanisms. During development, coronary vessels are formed by 

vasculogenesis and angiogenesis, generating a coronary plexus throughout the heart. Only 

upon connection to the aorta and corresponding perfusion, arteriogenesis takes place. 

Arteriogenesis propagates in a proximal-to-distal direction, forming the main coronary 

arteries first and proceeding to precapillary arterioles; the coronary plexus is remodelled 

into larger vessels ramifying into smaller branches. After birth, angiogenesis and 

arteriogenesis continue in order to compensate for the increasing needs of a growing heart 
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until adulthood (approximately P21 in the mouse) (Luttun and Carmeliet, 2003; Fernández, 

2004).  

In addition, biomechanical forces resulting from fluid flow also affect vascular development 

(Darland and D’Amore, 2001). The construction of blood vessels is not only influenced by 

genetic programs, but blood vessels also underlie basic laws of fluid dynamics. 

Requirements of effective fluid transport are met by large tubes, while diffusion of nutrients 

requires slow blood flow. However, if fluid under constant pressure moves from a large-

diameter tube to a small-diameter tube, its velocity increases. Consequently, evolution 

payed its tribute to these physical constraints by the establishment of the hierarchy of the 

vascular system: many smaller vessels branching out from a larger one. The sum of the 

cross-sectional area of all branching smaller vessels is greater than that of the larger vessel, 

thereby decreasing blood flow velocity for effective diffusion (Gilbert, 2006).  

Sörensen et al. have shown that Dll1 is expressed in endothelial cells of large arteries, 

beginning at E13.5 (Sörensen et al., 2009), a time just before perfusion starts and 

arteriogenesis is initiated (E14). In addition, Sörensen and co-workers used embryos with 

reduced Dll1 levels and found a reduced lumen of the aorta and other large arteries, but the 

thickness of the arterial walls was not altered (Sörensen et al., 2009).  

Taking all these implications into account, I can only speculate about the underlying 

relationship leading to the coronary phenotype apparent in the adult Dll1 heterozygous 

mouse: I suspect that vasculogenesis and angiogenesis are not altered during coronary 

development, resulting in the same starting situation of the coronary plexus before onset of 

perfusion and arteriogenesis. Dll1 haploinsufficiency results in an impaired arteriogenesis in 

the following developmental and neonatal steps, evident in reduced coronary artery growth 

and vessel size, proceeding in a proximal-to-distal direction. However, Dll1 most probably 

does not directly influence reduced number of big vessels and at the same time an increased 

number of small vessels. I suspect the increased number of vessels smaller 20 µm do be a 

rather indirect effect. Based on fluid dynamic constraints and the fact that the stroke volume 

is normal, I postulate that due to the general smaller coronary artery lumen in Dll1 

heterozygotes, fluid velocity is increased in these vessels and during remodelling of the 

coronary vascular system this is compensated by the establishment of an increased number 

of small vessels.  

 

It is evident, that Dll1 haploinsufficiency impairs developmental/neonatal coronary 

arteriogenesis (the number of large conductance vessels is already decreased in neonates; 
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data not shown), resulting in an adult phenotype. However, this study did not analyse Dll1 

expression during embryonic and neonatal development and no statement is possible 

regarding the question if there is a threshold of vessel size were Dll1 acts. This question is 

of importance as to the underlying mechanism which gives rise to reduced vessels bigger 

than 20 µm, but increased vessel numbers smaller than 20 µm in the adult. Although the 

basis of the coronary phenotype of Dll1 heterozygous animals lies before adulthood, it is 

striking that under normal adult conditions Dll1 is expressed in endothelium of vessels 

bigger than 20 µm, the same vessel category that is actually reduced in Dll1 heterozygotes.  

 

Other studies have shown a role of PDGF-B signaling in coronary arteriogenesis during 

development (Hellström et al., 1999; Van den Akker et al., 2008). Pdgf-b
-/- mouse embryos 

show dilated coronary arteries and reduced number of coronary vSMCs. The group of Van 

den Akker propose that coronary vessel dilation was based on lack of physical support. 

They suggest a relationship in which the loss of PDGF-B production in endothelial cells 

impairs their function of recruitment of stabilizing vSMCs (Van den Akker et al., 2008).  

Jag1 and Dll1 are involved in SMC differentiation and maturation. Jag1 and Dll1 on 

endothelial cells induce SMCs to express Notch3 and Jag1, which subsequently promotes 

and maintains the differentiation phenotype of SMCs (Kume, 2009).  

Sörensen et al. provided evidence that endothelial Dll1 activity maintains arterial identity. 

However, loss of Dll1 activity in fetal vessels and downregulation of arterial markers had 

surprisingly little effect on vessel morphology. Only reduced arterial lumen, but no changes 

in wall thickness were evident (Sörensen et al., 2009).  

In accordance with data from Sörensen et al. (Sörensen et al., 2009), the present study 

showed reduced coronary vessel size in the adult. In addition, the observed coronary artery 

phenotype in Dll1 heterozygous animals suggests, that vSMC recruitment is sufficient to 

maintain their role of physical support and dilation does not occur. Reduced levels of Dll1 

in heterozygous animals are either still sufficient for vSMC recruitment and/or effects are 

sustained by Jag1 function. However, whereas vSMC recruitment is sufficient for vessel 

support, it seems not to be adequate for normal coronary vessel growth.   

 

Moreover, data indicate a correlation between decreased heart size, coronary vasculature 

phenotype and smaller cardiomyocyte size in Dll1 heterozygous mice.  

Already other studies have posed the question regarding the relationship of endothelial cell 

mass and organ size. Meaning, is one heart larger than another because it has more vessels 
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or does it have more vessels because it is larger (Simons, 2005)? Results of studies 

examining various organs indicate that the former is true, i.e. the vasculature determines 

organ size (Simons, 2005).  

Therefore, altered development of the coronary vasculature due to reduced levels of Dll1 

presumably caused reduced heart weight and size. However, the question remains why the 

cardiomyocytes are smaller. Smaller heart size can be due to smaller cardiomyocytes, but in 

theory it is also possible that smaller heart size would be based on reduced cardiomyocyte 

numbers.  

 

Limitations of the study and outstanding questions 

 
One crucial aspect of this study which could not be realized so far due to technical problems, 

is the visualization of the coronary artery tree. Three-dimensional visualization and 

comparison of the coronary arteries of WT and Dll1 heterozygous animals could disclose 

the correctness of the proposed model and give information on the coronary branching 

pattern. 

Furthermore, exact tracing of Dll1 expression in coronary arteries during embryonic 

development might be able to answer if Dll1 is only expressed in arterial vessels which will 

grow to become larger than 20 µm in the adult. However, then the new question is raised, 

about the underlying mechanisms which initiate Dll1 expression in a small vessel supposed 

to become large, whereas no Dll1 expression takes place in a small vessel destined to 

remain small. In addition, the question remains why the number of arterial vessels smaller 

than 20 µm is increased at the heart basis: is this a direct or indirect effect of reduced Dll1 

levels? 

Another aspect not mentioned so far is tissue ischemia due to reduced perfusion. Although 

heart function and survival are not impaired in Dll1 heterozygotes, it would be interesting to 

know if mice exhibit tissue ischemia and if the apex part is more affected than the heart base. 

To assess tissue ischemia expression of HIF1α and VEGF could be analyzed. 

 

4.1.3 Dll1 is involved in monocyte generation in the spleen 

 

Monocytes have been shown to constitute a heterogeneous population where Ly-6Chi 

monocytes exhibit pro-inflammatory functions and Ly-6Clo monocytes are associated with 

wound healing tasks (Geissmann et al., 2003; Nahrendorf et al., 2007). Moreover, a recent 

study has identified the spleen as major source of monocytes (Swirski et al., 2009). The 
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group showed that Ly-6Chi and Ly-6Clo monocytes in the spleen resembled their blood 

counterparts in morphology, function and differentiation potential. More importantly, the 

study also showed evidence that after ischemic myocardial injury splenic monocytes exit the 

spleen en masse, accumulate in injured tissue and participate in wound healing. Splenic 

monocytes contributed to healing to a much higher extent than bone marrow and blood 

monocyte pools; without splenic monocytes healing after MI was impaired. However, data 

also suggested that the spleen does not likely produce monocytes, but rather serves as site 

for monocyte storage (Swirski et al., 2009). 

Dll1 has been shown to be involved in selected steps of B- and T-cell generation. However, 

a role in monocyte subset generation has not been implicated to date. In this study, 

monocyte subset analyses revealed that absolute monocyte numbers are significantly 

decreased in the spleen of Dll1 heterozygous animals. The number of Ly-6Chi monocytes 

seemed to be decreased in Dll1 heterozygotes, but lower levels just didn’t show significance. 

Yet, the number of Ly-6Clo monocytes was significantly decreased in Dll1 heterozygous 

mice, compared to WT. Surprisingly however, circulating monocytes in the blood were not 

altered in Dll1 heterozygous mice.  

These data suggest that in the adult Dll1 is involved in monocyte and monocyte subset 

generation in the spleen. As circulating monocytes in the blood were not altered, results 

imply that the spleen is involved in monocyte production, in contrast to the finding of 

Swirski and co-workers which suggest only a monocyte storage function of the spleen 

(Swirski et al., 2009). Though, if the spleen in fact does not produce monocytes, data would 

imply selective monocyte recruitment of the spleen in Dll1 heterozygotes.   

 

4.2 Healing after myocardial infarction in Dll1
+/lacZ

 animals 

4.2.1 Functional LV remodelling in WT animals post infarction 

 
Functional healing processes after myocardial infarction were apparent in WT animals. 1 

day after LAD occlusion a moderate initial infarct size was determined. In the following 

course of time infarct size was stabilized as seen on a slight, but not significant increase of 

infarct size. In accordance, ejection fraction and stroke volume significantly decreased after 

MI, but no further long term deterioration was observed.  

As expected (acute compensation by the Frank-Starling mechanism), left-ventricular 

dilation was apparent, but moderate (slight, but significant increase of LVED area and 

epicardial circumference). Thinning of the left-ventricular free wall was also observed in 
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WT animals, but significant thinning took place in the first week after infarction probably 

mainly based on normal cardiomyocyte necrosis and no further thinning was apparent in the 

following. Therefore, infarct expansion (thinning and elongation of the infarcted area rather 

associated with myocyte slippage than necrosis) seemed not to be a problem in WT animals.  

In addition, cardiomyocyte hypertrophy in the remote myocardium is a part of 

compensatory remodelling, to counteract intensified wall stress. Myocyte hypertrophy in the 

remote was revealed in WT animals, but the increase of cross-sectional area was moderate, 

becoming only evident upon 4-week analyses. In accordance, moderate ventricular 

hypertrophy was evident by a small increase of septum thickness.  

Myocardial infarction does not only trigger acute cell death by necrosis (mainly in the 

infarcted zone), but also by apoptosis at later stages of MI (mainly in the remote and border 

zone). Analyses revealed a significant increase of apoptotic cells in all heart areas 3 days 

after infarction. In the following (7 day analysis), cell numbers decreased in the border zone 

and infarct area in WT animals, but in the remote a further increase of apoptotic cell 

numbers was observed. 4 weeks after infarction, the apoptotic response had completely 

subsided in all areas.  

Collagen deposition is needed for scar formation and tissue stabilization. A disorganized, 

immature collagen matrix cannot withstand the cardiac load, leading to dilation and a higher 

probability of rupture. Deposition of interstitial collagen in the noninfarcted myocardium 

has a negative influence as it is associated with ventricular stiffness in the remote area. As 

expected, mature, organized collagen fibres were observed in the infarct area 4 weeks after 

infarction, but no interstitial fibrosis in the remote was visible. 

Analyses of the inflammatory response in WT animals after infarction revealed strong, 

increasing and persistent leukocyte infiltration in the border zone and infarct. 4 weeks after 

infarction, leukocyte infiltration had completely ceased. Identification of general 

macrophages showed infiltration in the infarct area 3 days after infarction and in the 

following a decline of macrophage numbers. M2 macrophages were already apparent 3 days 

after infarction in all 3 areas and infiltration was stable until 7 days after MI.  

Formation of new blood vessels is critical for supplying the healing myocardium with 

oxygen and nutrients. Therefore, angiogenesis and arteriogenesis are an essential component 

of wound healing. Although angiogenesis provides the capillary network for efficient 

nutrient distribution, only arteriogenesis can provide adequate perfusion necessary for the 

regeneration after myocardial infarction. Within this regard, of special importance is the 

border zone, as this area contains the cardiomyocytes at risk which can be rescued by 
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reperfusion. Angiogenesis in WT animals was demonstrated by an increase in capillary 

density immediately after infarction, arteriogenesis in the border zone was proven by an 

increase in numbers of arterial vessels smaller 50 µm. 

 

Taking all these data together, WT animals showed adaptive compensation and healing after 

myocardial infarction. Obviously, functional remodelling took place in WT animals, 

explaining the stable long-term survival rate and highlighting the importance of these 

processes and their control mechanisms. 

 

4.2.2 Dll1 is upregulated after myocardial infarction  

 

Baseline, Dll1 was expressed in arterial endothelium of the heart. RNA and protein analyses 

revealed an upregulation of Dll1 after myocardial infarction. Expression levels were 

strongest at day 3 after infarction, but even at day 7 expression levels were still above sham 

operated levels. LacZ staining revealed baseline Dll1 expression 4 weeks after infarction.  

Surprisingly, Dll1-lacZ staining and Dll1-immunofluoresence analyses did not show 

comparable results. Whereas lacZ staining illustrated enhanced Dll1 expression in vascular 

structures and sporadic single cells in the infarcted area, immunofluorescence did not show 

baseline Dll1 expression and only single arterial vessels and cells in the border zone stained 

positive for Dll1.  

Preceding studies using the mouse model of Dll1+/lacZ (and Dll1lacZ/lacZ) have shown evidence 

that lacZ identification mimics endogenous Dll1 expression during development and in the 

adult (Hrabé de Angelis et al., 1997; Beckers et al., 1999; Micely-Libby et al., 2007), and 

have even been shown to be more sensitive than Dll1 mRNA detection by in situ-

hybridization (Beckers et al., 1999). Therefore, Dll1 expression analysis by lacZ staining 

rather illustrated true Dll1 expression, than analyses by immunofluorescence did in this 

study; differences of detected expression likely reflect the different sensitivities of the two 

detection techniques. Although the antibody used for Dll1 immunofluorescence has been 

proven to work in other tissues, like in the hindlimb muscle (Limbourg et al., 2007), it 

seemed less potent in the heart. Obviously, the low Dll1 expression level and therefore low 

fluorescence level could not be detected by fluorescence microscopy and only structures 

expressing Dll1 above a certain threshold level exhibited enough fluorescence intensity to 

be detectable. Further trials using various Dll1 antibodies showed also positive staining in 

various tissues, but just not in the heart. This limitation clearly poses a large problem, as a 
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further characterization of Dll1 positive structures (identified by lacZ) is of major 

importance for further studies: the present experiments could not reveal if Dll1 upregulation 

takes only place in arteries, or maybe even in veins, and the allocation of Dll1 single cells to 

monocytes, macrophages or another inflammatory or non-inflammatory cell type would be 

of importance as well.  

 

4.2.3 Dll1 heterozygous animals exhibit features of adverse remodelling after 

myocardial infarction  

 
Analyses of Dll1 heterozygous animals in response to myocardial infarction showed an 

initial smaller infarct size. Due to the statistical relevance of this finding, this was most 

probably not caused by operational variations of the LAD ligation (mice analyzed had the 

same background and were in fact littermates). Instead, the smaller initial infarct size was 

rather based on the earlier described and discussed developmental/postnatal coronary artery 

phenotype. As the LAD domain is already smaller in Dll1 heterozygous mice, occlusion of 

the LAD at the same site as in WT animals affects a smaller heart region. In accordance, the 

area-at-risk was smaller in Dll1+/lacZ, but the infarct fraction of the area-at-risk was the same, 

demonstrated on a comparable ratio MI/AAR (analyses 1 day after LAD occlusion). This 

finding suggested that reduced levels of Dll1 during coronary artery development can result 

in a beneficial effect when the organism suffers a myocardial infarction in adulthood. 

Surprisingly however, the infarct size demonstrated a drastic increase from day 1 via day 7 

to day 28 post infarction in Dll1 heterozygous mice, indicating that the beneficial effect is 

not retained. In accordance, cardiac analyses revealed a strong functional deterioration in 

the course of time, illustrated on ejection fraction and stroke volume data.  

In addition, Dll1 heterozygous mice showed strong, progressive left-ventricular dilation 

which was beyond normal infarct compensation, as apparent on the loss of cardiac function. 

Dilation was demonstrated by a massive increase in LVED area and epicardial 

circumference. Infarct expansion as indicator of adverse remodelling was observed in 

Dll1+/lacZ mice and evident by the increase of infarct portion of the epicardial circumference 

and a strong decrease of left-ventricular wall thickness. Furthermore, a strong increase in 

cross-sectional myocyte area and correspondingly decreased myocytes per field, as well as a 

significantly increased septum thickness was detected. This strong, progressive 

cardiomyocyte and ventricular hypertrophy represented further events taking place in Dll1 

heterozygotes that are indicators of adverse remodelling.  
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Surprisingly, characterization of apoptotic cell death in response to MI showed reduced 

general apoptosis in Dll1 heterozygotes. However, to answer if reduced apoptotic cell 

numbers are in fact a direct effect of Dll1 heterozygosity or rather based on the initial 

smaller infarct size, more time points would have to be analyzed. Only with more time 

points a statement could be made if apoptotic response is rather time-shifted and increases 

later than in WT, due to smaller infarcts. Though, even if apoptosis is in fact decreased in 

Dll1 heterozygous mice, obviously massive cell death does occur as apparent on the 

increase in infarct size. In principle, necrosis and autophagy can contribute to cell death as 

well. Although necrosis is rather connected with acute cell death in the infarcted area 

immediately after MI, it is possible that due to impaired arteriogenesis in Dll1 heterozygotes, 

ischemia is prolonged and necrosis persists. This is especially important for the 

cardiomyocytes at risk in the border zone and could explain the increase in infarct size. 

However, persistent ischemia due to impaired arteriogenesis could also cause increased 

autophagy and corresponding effects on infarct size. Therefore, additional quantification of 

necrosis and autophagy would be needed to answer which type of cell death is altered in 

Dll1 heterozygous animals. 

4 weeks after infarction, fibrosis analysis revealed mature collagen fibres with increased 

collagen deposition in Dll1 heterozygotes, but no interstitial fibrosis. Increased collagen 

deposition (above normal) after infarction is actually associated with LV stiffness and 

dysfunction, whereas decreased collagen deposition can lead to LV dilation (Jugdutt, 2003). 

However, although increased collagen is observed in Dll1 heterozygous animals after 

myocardial infarction, it is not possible to conclude that this is directly related to increased 

stiffness and dysfunction. As in Dll1 heterozygous mice the final infarct size is bigger than 

in WT animals, based on the experiments performed it is not possible to tell if collagen 

deposition is adequate for the corresponding infarct size, or if it is above or below adequate 

collagen levels. Collagen fibre maturation and organization in the scar seemed not be 

impaired.  

Striking results were also determined with respect to the inflammation response after 

infarction. Increased leukocyte infiltration 3 days after infarction was especially intriguing 

with regard to the initial smaller infarct size in Dll1 heterozygotes, indicating a misbalance 

of inflammation to the corresponding infarct size. Further identification of macrophages 

revealed delayed, but increased macrophage infiltration in Dll1 heterozygotes. This poses 

the question which cell types account for the early increased leukocyte infiltration and 

requires further investigation. In addition, cardiac repair requires the containment of 
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inflammation into the infarct area; extension into the remote can cause matrix degradation in 

this area and contribute to adverse remodelling (Frangogiannis, 2008). With this regard, the 

observed infiltration of F4/80 macrophages in the remote of Dll1 heterozygous infarcted 

hearts is of special importance and might be a contributor to the increase in infarct size. 

Staining of M2 macrophages demonstrated highly reduced cell numbers and infiltration 

ceased even earlier than in WT animals, indicating impaired initiation of healing and repair 

in Dll1 heterozygotes. Although no direct differentiation of Ly-6Clo monocytes to M2 tissue 

macrophages has been proven to date, the involvement of both cell types in healing 

processes have been shown by various studies (Nahrendorf et al., 2007; Swirski et al., 2009; 

Limbourg et al., in review). Furthermore, Swirski and co-workers have proven that splenic 

monocytes are recruited to the site of ischemic myocardial injury and regulate inflammation 

(Swirski et al., 2009). Therefore, the observation of reduced basal Ly-6Clo monocyte 

numbers in Dll1 heterozygous mouse spleen tissue and lower M2 macrophage infiltration 

after infarction is striking. However, data can only give first hints of processes happening in 

Dll1 heterozygotes. Clearly more markers distinguishing leukocyte cell types, monocytes, 

and M1 and M2 macrophages (preferably by FACS analysis which allows quantification) 

are needed for an informed statement of alterations in inflammatory processes initiated after 

myocardial infarction in Dll1 heterozygous mice.  

Another aspect which should be mentioned at this point is Dll1 expression. As mentioned 

before, lacZ staining and even immunofluorescence did not only show endothelial Dll1 

staining, but also sporadic single cells. Moriyama et al. have demonstrated Dll1 expression 

on a considerable fraction of macrophages in the spleen (Moriyama et al., 2008). In this 

heart study, however, sporadic single Dll1 positive cells in the myocardium did not 

resemble the massive monocyte/macrophage infiltration observed, highlighting again the 

importance of characterization of Dll1 positive structures.  

Characterization of angiogenesis showed a comparable, but delayed increase in capillary 

density. Probably the delay is a direct effect of the smaller initial infarct size. This result is 

in correspondence with unimpaired angiogenesis in a setting of hindlimb ischemia in Dll1 

heterozygotes by Limbourg and co-workers. The group demonstrated Dll1-independent 

regulation of microvascular angiogenesis, possibly through Dll4 which is expressed in adult 

microvessels (Limbourg et al., 2007). Analogous to impaired arteriogenesis in the same 

setting of hindlimb ischemia (Limbourg et al., 2007), analyses of arteriogenesis after 

myocardial infarction in this study revealed that diminished levels of Dll1 caused a 

complete lack of arteriogenic response, as illustrated by the complete absence of vessel 
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growth. As the importance of postnatal arteriogenesis for the restoration of blood flow and 

rescue of an ischemic organ has been proven by various studies (Limbourg et al., 2007; 

Deindl and Schaper, 2005; Simons, 2005), impaired arteriogenesis after MI in Dll1 

heterozygotes adds yet another aspect to the obvious adverse remodelling that is taking 

place in these animals.  

 

Clearly, this study could provide evidence for adverse remodelling processes taking place 

after myocardial infarction in Dll1 heterozygous animals, leading to progressive mortality. 

However, survival was just followed 4 weeks after LAD occlusion. Longer follow-up would 

be needed to support the theory of adverse remodelling, demonstrating proceeding 

dysfunction and progressive heart failure in Dll1 heterozygous mice. 

 

As adverse remodelling is demonstrably not caused by the initial infarct size in Dll1 

heterozygous mice, infarct healing must be affected in these animals. Although no clear 

statement about cause-effect relationship can be done based on the present data, other 

studies have shown an involvement of Dll1 and Notch signalling in arteriogenesis and 

inflammation (Limbourg et al., 2007; Moriyama et al., 2008; Limbourg et al., in review). I 

suggest that impaired arteriogenesis and altered inflammation are direct causes of reduced 

Dll1 levels; other factors like infarct expansion, increased dilation and increased 

hypertrophy are rather indirect effects caused by impaired arteriogenesis and altered 

inflammation, altogether leading to adverse remodelling, increasing infarct size and 

corresponding progressive dysfunction.  

 

Nevertheless, one major limitation of the study is the initial smaller infarct size in Dll1 

heterozygotes which is based on the confounding developmental coronary artery phenotype. 

This bias makes the exact comparison of infarction-induced processes difficult with respect 

to timing and absolute data; only the general trend can be compared between WT and 

Dll1+/lacZ animals. To solve this problem a general, inducible Dll1 knockout would have to 

be analyzed. 

 

4.2.4 Not endothelial Dll1 is the major determinant in infarct healing  

 
As basal expression and upregulation of Dll1 after MI was most apparent in arterial 

endothelium, the most obvious hypothesis implicated that endothelial Dll1 contributed to 
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the observed adverse remodelling phenotype after infarction. Therefore, an inducible, 

panendothelial Dll1 knockout mouse model which also brought about the advantage of 

absence of the confounding developmental coronary artery phenotype was evaluated. 

Surprisingly however, adverse remodelling could not be reproduced in these mice, as 

apparent on a comparable infarct size 4 weeks after LAD occlusion (compared to infarcted 

controls). Obviously, endothelial Dll1 is not the major determinant causing the adverse 

remodelling phenotype observed in Dll1 heterozygous animals. However, only endpoint 

infarct size was determined in this study. Further analyses especially of Dll1 expression and 

arteriogenesis, but also of inflammation, dilation, hypertrophy and cardiac function would 

be needed to elucidate exact differences of MI response in Dll1+/lacZ and eDll1 KO animals. 

 

Besides, no other studies have detected Dll1 in infarcted hearts and cardioprotective Notch 

signalling in stressed hearts has been rather associated with Notch1/Jag1 signalling (Gude et 

al., 2008; Croquelois et al., 2008; Kratsios et al., 2010). Apart from endothelial staining, 

this study only detected Dll1 in sporadic single cells which did not reflect massive 

inflammatory infiltration. It is questionable if under normal conditions Dll1 expressing cells 

enter the infarcted myocardium and activate present Notch receptors but cannot be detected 

by the methods applied in this study. First data shown in this study indicate another 

possibility: Dll1 acts outside the heart by regulating monocyte/macrophage differentiation. 

This regulation might occur directly in the spleen, although our data contradict data of 

another study which identifies only a storage role of the spleen (Swirski et al., 2009). 

Therefore, detailed analysis of the site and mode of action of Dll1 after myocardial 

infarction will be a main task of future studies.  
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5. CONCLUSION 
 

 

 

 

This study provides evidence that the Notch ligand Dll1 is involved in 

developmental/neonatal coronary arteriogenesis. Dll1 regulates coronary artery growth and 

number, thereby directly influencing heart size. In addition, first evidence is apparent of 

Dll1 engagement in monocyte generation in the spleen.  

 

In response to myocardial infarction, data demonstrate the importance of Dll1 for correct 

compensation and functional remodelling to preserve ventricular function. Reduced levels 

of Dll1 cause adverse remodelling, progressive infarct size enlargement and ventricular 

dysfunction rather based on altered infarct healing mechanisms, than on the extent of the 

ischemic incident. I suggest direct effects of diminished Dll1 levels leading to impaired 

arteriogenesis and enhanced inflammation, whereas infarct expansion, and progressive 

dilation and hypertrophy are rather downstream effects.  

 

Dll1 is selectively expressed in the heart in arterial endothelium of large coronary arteries 

and Dll1 expression is upregulated after infarction. However, at least in a setting of 

permanent myocardial infarction by permanent LAD occlusion, this study provides first data 

showing that not endothelial Dll1 is the major determinant causing adverse remodelling 

effects upon reduction/absence. Data rather point to an extravascular role of Dll1 in infarct 

healing, adumbrating a role in the monocyte/macrophage system, but the exact site and 

mode of action remains an open question which will have to be addressed by future studies.  
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