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Zusammenfassung 
 
Die Zahl der Salmonella-Infektionen mit gesundheitlicher und wirtschaftlicher Bedeutung ist seit 

Mitte der 1980er Jahre angestiegen. In einigen europäischen Staaten wurde ein bis zu zwanzigfacher 

Anstieg der Fälle beobachtet. 

Trotz der genetischen Verwandtschaft der mehr als 2500 Serovaren von Salmonella (S.) enterica 

zeigen sie eine erhebliche Vielfalt in der Art und Schwere der Erkrankung die sie hervorrufen, und in 

ihrem Wirtsspektrum. Die Aufnahme neuer Gene durch horizontalen Gentransfer wird weithin als der 

Hauptmechanismus angesehen, der die Evolution der Salmonella-Pathogenität vorantreibt. 

Bakteriophagen spielen in diesem Prozess eine wichtige Rolle. Ein vielversprechender Ansatz zum 

besseren Verständnis der am Salmonella-Wirtsspektrum und der Salmonella-Virulenz beteiligten 

Faktoren ist der Vergleich des Prophagengehalts verschiedener Salmonella-Serovaren. 

Im ersten Teil dieser Studie wurden durch eine in-silico Genomanalyse fünf Prophagen im Genom des 

S. Enteritidis Stammes SE125109 identifiziert, welche ФSE10, ФSE12, ФSE12A, ФSE14 und ФSE20 

genannt wurden. Diese Prophagen-Regionen wurden vollständig annotiert und für die Annotierung des 

S. Enteritidis Stammes SE125109 verwendet. 

Eine repräsentative S. Enteritidis Stammsammlung mit Isolaten verschiedener Phagentypen und 

Herkünfte und nicht-Enteritidis-Isolate wurden mittels PCR auf das Vorhandensein der zuvor 

identifizierten Prophagen-Abschnitte hin untersucht. Die PCR-Reaktionen wurden so entworfen, dass 

sie jeweils das 5’-Ende, 3’-Ende oder die Mitte der jeweiligen Prophagen replizieren. Dieser Teil der 

Untersuchung wurde durch Microarray-Experimente ausgewählter S. Enteritids Isolate verschiedener 

Phagentypen aus der Stammsammlung komplementiert. Die PCR-Ergebnisse zeigten eine 

Konservierung des Prophagengehalts für die S. Enteritidis-Isolate, wobei die Isolate der Phagentypen 

9b, 11 und 20 die größte Variation zeigten. Die Microarray-Experimente zeigten hingegen eine 

deutliche Variabilität zwischen den Isolaten der verschiedenen Phagentypen. Innerhalb der zum 

gleichen Phagentyp gehörenden Isolate konnte eine starke Homogenität beobachtet werden. Die 

Prophagenbereiche scheinen aus einer Zusammenstellung von Phagengenen, die auch in anderen 

Serovaren vorhanden sind, zu bestehen. Diese werden jeweils entsprechend rekombiniert. 

Im letzten Abschnitt dieser Arbeit wurden Untersuchungen zur spontanen Induktion von 

Bakteriophagen in Form eines klassischen Fisk-Tests durchgeführt. In diesen Untersuchungen zeigten 

die zu den Phagentypen 8, 9b, 11, 13a und 20 gehörenden Isolate das individuellste Verhalten in 

Bezug auf Phagenfreisetzung und –empfänglichkeit. Dies stimmte mit den PCR- und Microarray-

Ergebnissen überein, bei denen diese Phagentypen sich am meisten von den Phagentyp 4-Isolaten zu 

unterscheiden schienen, was darauf hindeutet, dass sie wahrscheinlich einen anderen Satz Prophagen 

beinhalten. 
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Abstract 
 
The number of Salmonella infections of economic and health significance has increased since the mid 

1980s and some European countries witnessed a 20-fold increase in incidents. Besides the genetic 

relatedness of the more than 2500 Salmonella enterica serovars, they show a considerable variety in 

severity and characteristics of the diseases they cause and in their host range. The acquisition of new 

genes by horizontal gene transfer is widely regarded as the main mechanism driving the evolution of 

Salmonella pathogenicity. Bacteriophages play a major role in this process. A promising approach to 

reveal more knowledge about the factors involved in Salmonella host range and virulence is to 

compare the prophage content of different Salmonella serovars. 

In the first part of this study five prophage regions were identified in the genome of Salmonella 

Enteritidis 125109 by in silico genome analysis, which were named ФSE10, ФSE12, ФSE12A, 

ФSE14 and ФSE20. These prophage regions were fully annotated and included into the annotation of 

the Salmonella Enteritidis 125109 genome. 

A representative strain collection containing S. Enteritidis isolates covering different phage types and 

origins as well as non-Enteritidis isolates was screened by PCR for the presence of the previously 

identified prophage regions. The PCR reactions were designed to target the 5’-, 3’- and central region 

of the respective prophages. This part of the study was complemented by microarray analysis of 

selected S. Enteritidis isolates from the strain collection covering different phage types. According to 

the PCR results, the prophage content seemed to be quite conserved between the S. Enteritidis isolates, 

with those isolates belonging to the phage types 9b, 11 and 20 showing the biggest variation, but the 

microarray results showed the prophage content to differ enormously between the isolates belonging 

to different phage types. Homogeneity in prophage content could be seen in isolates belonging to the 

same phage type. The prophage locations seemed to consist of an assortment of phage genes also 

present in other serovars that are recombined frequently. 

In the last part of this study spontaneous phage release experiments were performed as a classical Fisk 

test. In these the isolates belonging to phage types 8, 9b, 11, 13a and 20 showed the most unique 

behaviour in terms of phage induceability and susceptibility, which is in accordance with the PCR and 

microarray results where these phage types seemed to be the most diverse from phage type 4 isolates, 

indicating them to putatively harbour a different set of prophages. 

 

Keywords: Salmonella Enteritidis, prophage, virulence genes 
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1 Introduction 

 

1.1 Salmonella as a source of human food-poisoning 

 

The genus Salmonella consists of the two species enterica and bongori. While the latter is 

represented by 17 serotypes and associated with disease in cold-blooded animals, the species 

enterica contains over 2,500 serovars (Smith-Palmer et al., 2003) and is responsible for a 

variety of diseases in warm-blooded animals including gastroenteritis and typhoid fever, 

depending on the nature of the infected host and on the serovar of the infecting bacteria. The 

subspecies IIIa (arizonae) in the species enterica is usually associated with disease in cold-

blooded organisms, but occasionally responsible for systemic disease in humans (Blanc-

Potard et al., 1999; Chan et al., 2003; Wain et al., 2001). 

Based on infection biology and pathogenesis, Salmonella enterica can be divided into two 

groups. One group consists of a smaller number of “host specialized” serovars causing 

systemic typhoid-like disease in a restricted range of host species like Salmonella Typhi in 

humans and chimpanzees or Salmonella Pullorum and Gallinarum in poultry. Salmonella 

Gallinarum is non-motile and causes a septicaemic disease primarily in chickens and turkeys, 

which is referred to as fowl typhoid. It does not colonise the gut well (Berchieri et al., 2001; 

Poppe, 2000). The larger number of serovars belongs to the second group that consists of 

“host generalists” like Salmonella Typhimurium and Salmonella Enteritidis, which infect a 

wide range of animals (including wild rodents, poultry, pigs and cattle). They are motile and 

capable of efficiently colonising the gut. In a range of hosts including humans they cause 

gastroenteritis, in mice they cause systemic infection, while an asymptomatic chronic 

infection is seen in chickens. Chickens infected with Salmonella Enteritidis often do not show 

any signs of illness at all. (Alokam et al., 2002; Bäumler et al., 1998; Encheva et al., 2007; 

Uzzau et al., 2000; Wigley et al., 2001). While the host generalists tend to colonize young 

animals, which suggests that they struggle to adapt to a fully mature immune system, do 

 the host-adapted serovars, on the other hand, tend to cause disease with equal frequency in all 

age groups and are more virulent, which is illustrated by the higher mortality rates they exhibit 

(Bäumler et al., 1998). The Salmonella serovars Gallinarum and Enteritidis are believed to 

arise from a common ancestor together with Salmonella Pullorum, which is considered to be a 

biotype of Salmonella Gallinarum (Li et al., 1993). 
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The number of Salmonella infections that are of worldwide economic and health significance 

has increased since the mid 1980s, and some European countries witnessed a 20-fold increase 

in incidents during the last 15-20 years (Hartung, 1992; WHO, 1997). The Salmonella 

serovars Gallinarum, Pullorum and Enteritidis are of major economic importance concerning 

animal disease, while Salmonella Enteritidis phage type 4 (PT4) together with Salmonella 

Typhimurium definitive type 104 (DT104) are the main cause of human zoonotic infections 

(Smith-Palmer et al., 2003). In the EU Salmonella infects an estimated 160,000 individuals 

every year. The costs of foodborne Salmonella infections are estimated at up to 2.8 billion 

Euro annually (European Union 2002). The Economic Research Service (ERS) of the United 

States Department of Agriculture (USDA) has published similar data for the United States: 

Annual economic costs due to foodborne Salmonella infections add up to $2.9 billion, and the 

number of infections is even higher than in the EU and is estimated to reach 1.4 million 

annual cases (ERS 2004). 

The consumption of poultry meat and eggs, which represent a major source of cheap high 

energy protein for much of the world, is believed to be the main cause for Salmonella 

infections in humans. For this reason control programmes to limit Salmonella infections in 

poultry are being developed in many countries (Zhang-Barber et al., 1999; Immerseel, van et 

al., 2002). In the case of S. Enteritidis, an epidemiological association with eggs is observed, 

which is probably caused by still undefined intrinsic characteristics (reviewed in Gantois et 

al., 2009). The majority of the foodborne cases of Salmonellosis reported worldwide since the 

mid-1980s were caused by S. Enteritidis, and 80 % of the 371 outbreaks with a known source 

that were registered in the US between 1985 and 1999 were egg-associated (Patrick et al., 

2004). 62.5 % of the 165,023 confirmed human Salmonellosis cases reported through the 

European Surveillance System (TESSy) in 2006 were caused by S. Enteritidis followed by 

12.9 % caused by S. Typhimurium. All other serotypes were responsible for less than 2 % of 

the cases in humans (EFSA, 2007a). A link between eggs and human S. Enteritidis infections 

is clearly illustrated by the observation that eggs and egg products were most often identified 

as the food vehicles in the S. outbreaks (Braden, 2006; Gantois et al., 2009). An EU-wide 

analysis of faecal and dust samples from layer houses showed 30.8 % of the 5.310 

commercial large-scale laying hen holdings to be Salmonella positive, with S. Enteritidis 

being the most prevalent serotype found in 52.3 % of the holdings. The observation that 

almost 50 % of the isolates from layer farms were non-Enteritidis isolates didn’t match with 

the findings seen in the table eggs, of which 0.8 % were Salmonella positive in the EU in 

2006 (EFSA, 2007b). S. Enteritidis could be confirmed in more than 90 % of the positive 



Introduction 

 3 

eggs, which indicates S. Enteritidis to possess intrinsic properties that allow a specific 

interaction with the egg components or the hen’s reproductive organs, although the data has to 

be interpreted cautious because the sampling points were not specified (EFSA, 2007b: 

Gantois et al., 2009). 

 

1.2 Approaches to infection control 

 

The economic necessities that are connected with the poultry slaughter process make it much 

more practical to control the Salmonella infection on the poultry farm than trying to do that in 

the slaughterhouse. In many countries including the EU a treatment of table eggs is not 

allowed, which also requires Salmonella control on the layer farm (HMSO, 1995; European 

Union, 1991). Totally Salmonella-free poultry can be raised, but this requires a number of 

cost intensive measures as described for example in the OIE terrestrial animal health code 

including enclosed poultry housing facilities and strict control of feed quality, hygiene and 

management (OIE, 2009a; OIE, 2009b). Additionally, the consumption of meat and eggs from 

poultry raised in a free range system and the rearing of poultry in small “back-yard” flocks in 

developing countries make the application of improved hygiene to poultry raised under these 

conditions quite difficult and lead to increased environmental contamination with Salmonella. 

Under high temperatures open sided poultry houses add to the risk of environmental infection. 

The costs and impracticability of the necessary improvements in hygiene and management to 

achieve Salmonella free poultry flocks make biological measures important actions in the 

control programmes set up to control Salmonella infections in poultry. These biological 

approaches include the use of antibiotics, competitive exclusion (CE) products and vaccines 

or combinations of these measures (Zhang-Barber et al., 1999). 

Antibiotics have been increasingly used as growth promoting agents for many years. The 

application of such antibiotics has been discussed very critically during the last years, because 

the widespread use of antibiotics in livestock production has been connected with the rise of 

multiple drug resistant bacteria (Threlfall et al., 1998; Wray and Davies, 2000). Another 

problem is the appearance of unwanted antibiotic residues in animal products, which 

essentially boosted public concerns regarding the use of antibiotics in feed. As a consequence, 

most of the antibiotics have been banned within the European Union as growth promoters 

since the end of June 1999 (Immerseel, van 2004). 
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Competitive exclusion, also named the ‘Nurmi concept’ or exclusion flora (EF) consists of the 

administration of cultures of intestinal flora to newly hatched chickens to enhance the 

resistance of the chicks to intestinal infections. The cultures are derived from gut contents of 

adult, healthy birds (Nurmi and Rantala, 1973). As the bacterial composition of the 

administrated suspensions is unknown and not defined, such treatments are not acceptable to 

regulatory agencies in some countries. Therefore, efforts have been made to identify those 

components of the intestinal microflora, which are responsible for the protective effect in 

chicks. The aim of this research is to identify bacteria that could be used alone or in mixtures 

of defined cultures to protect chicks from Salmonella colonisation as an alternative to the 

undefined solutions currently used. The successfully used mixtures contain about 50 isolates 

of different bacteria. Since the mechanism of the protection is not yet fully understood, it is 

difficult to select the required strains, and prospects in developing efficient defined 

preparations are not yet very promising (Stavric, 1992). 

 

1.3 Vaccination 

 

The vaccination of poultry has become one of the most important measures to control 

Salmonella infections of the birds because of the costs, impracticability and disadvantages of 

the other approaches mentioned above. Live vaccines produce better protection than killed 

vaccines. Killed vaccines have been tested with varying results and only stimulate antibody 

production (Barrow, 1996; Chatfield et al., 1993). They may also lead to poor immune 

protection due to the destruction of relevant antigens during vaccine preparation and the fast 

destruction and elimination of the vaccine from the inoculated animals (Barrow, 1991). They 

can present only those antigens that were induced under the conditions of the fermentation 

process (Barrow and Wallis, 2000). Their protective efficacy is additionally restricted by their 

low immunogenicity in unprimed hosts and the fact that they do not induce cytotoxic T cells 

(Nagaraja and Rajashekara, 1999). Furthermore killed vaccines do not elicit secretory IgA 

responses, which play an important role in protecting mucosal surfaces (Barrow and Wallis, 

2000). 

Live vaccines reduce the colonisation of the intestine more efficiently. They stimulate a 

prevailing Th1 rather than a Th2 response. The Th1 response is assumed to be important for 

the elimination of the bacteria from the gut or the tissues. Studies from Desmidt et al. showed 

that the administration of live Salmonella to 1-day-old chicks activated an antibody response 
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to the LPS antigen from day 18 post infection (Desmidt et al., 1997). There is only little 

knowledge about the starting point of a specific cellular immune response in the chicken after 

the administration of the live Salmonella. Newly hatched chickens have an immunity gap 

during their first days of life due to their immunological immaturity. But also non-specific 

resistance effects to invasion and intestinal colonisation with a number of Salmonella 

challenge strains are conferred by live vaccines. These effects are based on colonisation 

exclusion and neutrophil infiltration, which leads to a reduced invasion and enteritis (Foster et 

al., 2003; Immerseel, van et al., 2002). Little is known about the mechanism underlying this 

early colonisation inhibition, but it is believed that microbiological and host-related factors 

contribute to the effect. In vitro studies by Zhang-Barber et al. support the hypothesis that the 

colonisation-inhibition is a microbiological effect aroused by growth suppression because of 

the absence of an utilizable carbon source or electron acceptor (Zhang-Barber et al., 1997). 

Live vaccines should meet certain conditions in terms of efficacy and safety. They should 

provide an effective protection against intestinal and systemic infection. At the same time 

they have to be avirulent for man. The public acceptance of live vaccines will probably 

increase with the risen awareness of food poisoning caused by Salmonella infections. 

Considering practicability and costs, the ideal administration route of live vaccines for poultry 

is orally via drinking water, feed, or by spray (Zhang-Barber et al., 1999). The vaccine strain 

should be avirulent in chicken but stimulate maximum immunity through high invasiveness. 

As residual virulence may lead to vertical transmission, the vaccine should not produce 

disease in the offspring and not decrease performance. Protection nevertheless should last as 

long as possible. In broilers the protection should last a matter of weeks (Zhang-Barber et al., 

1999). As chickens are very susceptible to Salmonella infection during the first days of their 

life, as mentioned above, a protection against Salmonella infection at this point is only 

successful through competitive exclusion because of the immunological immaturity of the 

chicks and the time a protective immunity needs to develop. For this reason live vaccines that 

show competitive exclusion effects should be used. 

In general, live vaccines should be cleared from the animal within a certain time period. 

Therefore, attenuated Salmonella strains, which do not revert to virulence, should be used 

(Immerseel, van 2004). However, the degree of attenuation must be adapted to the chicken’s 

lower susceptibility to Salmonella infections in terms of achieving an optimised vaccine 

action. For this reason virulence should not be reduced as strongly as in other vaccine strains 

(Linde et al., 1997). The Salmonella vaccine strains that are currently developed possess 

defined nonreverting mutations of metabolic functions and virulence factors. The metabolic 
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functions affected by these mutations include the biosynthesis of aromatic amino acids (aroA, 

aroC, and aroD), purines (purA, purE), adenylate cyclase (cya) and the cyclic AMP receptor 

protein (crp) (Cooper et al., 1990, 1992, 1994a, 1994b; Hassan and Curtis, 1990; McFarland 

and Stocker, 1987). In vaccine strains with an attenuated virulence, the mutations usually 

have an impact on the phoP/phoQ two-component regulatory system or the genes located in 

SPI 2 (Medina et al., 1999; Raupach and Kaufmann 2001). 

At the present time there are a number of Salmonella live vaccines licensed in the EU. In 

other countries, a different range of live vaccines is available, and there are also countries that 

do not allow vaccination with live vaccines at all. The currently licensed live vaccines are 

genetically undefined mutants of Salmonella Enteritidis, Salmonella Typhimurium and 

Salmonella Gallinarum. In future, the use of defined deletion mutants as vaccine strains 

should be favoured for many reasons. These include a higher stability, a better understanding 

of the strain itself, and the mechanisms underlying its virulence and colonisation, and the 

feasibility of a good differentiation between wild-type and vaccine strains for example by 

PCR. All these properties of a defined deletion mutation will lead to a bigger acceptance of 

the use of a strain as a vaccine strain for a live vaccine by the public and regulatory agencies 

responsible for the licensing of new vaccines. 

Currently, Lohmann Animal Health (LAH) offers two very effective Salmonella live 

vaccines, a Salmonella Enteritidis (AviPro® SALMONELLA VAC E) and a Salmonella 

Typhimurium (AviPro® SALMONELLA VAC T) vaccine. The vaccine strains are drift 

mutants carrying minus mutations in essential enzymes and metabolic compartments, which 

lead to longer generation times resulting in a decreased virulence. As the metabolic 

compartments are points of action for antibiotics, the mutative structural changes 

simultaneously produce an antibiotic resistance in the mutant strains through a loss of 

antibiotic binding sites. This resistance has no effect on therapeutic mechanisms, but is used 

to identify the vaccine strain (Linde et al., 1997). In the Salmonella live vaccines produced by 

LAH, the following metabolic compartments are genetically altered by the use of 

chromosomal antibiotic-resistant mutations: RNA polymerase (giving resistance to 

Rifampicin (Rif)) and ribosomal protein S12 (giving resistance to Streptomycin (Sm)) in 

AviPro® SALMONELLA VAC E, and RNA polymerase (giving resistance to Rifampicin 

(Rif)) and gyrase (giving resistance to nalidixic acid (Nal)) in AviPro® SALMONELLA VAC 

T (Linde et al., 1997). A cell membrane mutation increasing the cell’s permeability to 

erythromycin and other antibiotics acts as an additional marker optimising the vaccine strain 

(Hancock, 1984; Vaara, 1993). By definition by the WHO, it also serves as an attenuation 
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marker (WHO, 1972). It provides the vaccine strain with three additional safety functions: (1) 

a limitation of the shedding of the vaccine strain to a maximum of 21 days (Linde et al., 1993; 

Hahn et al., 1993); (2) a reduced survival of the strain in the environment resulting in a faster 

elimination in the faeces (Linde and Randhagen, 1986), and (3) a fourfold increased 

sensitivity to antibiotics such as doxycycline, chloramphenicol and others used in human 

medicine (and also to quinolines for the Sm/Rif metabolic drift combination) (Linde, 1993). 

Orally administered live vaccines can be inactivated by bile if they are sensitive to bile and 

surfactant. AviPro® SALMONELLA VAC T possesses a reversion of bile and surfactant 

sensitivity to bile and surfactant tolerance (Rtt), which inhibits the inactivation by bile. This 

reversion is an anti-epidemic marker that reduces shedding and leads to a shortened survival 

time in the environment (Linde, 1982; Linde et al., 1987). AviPro® SALMONELLA VAC E 

is supersensitive to quinolones (Ssq), especially ciprofloxaxin. This feature is simultaneously 

a safety and therapeutical marker, as ciprofloxaxin is the most effective antibiotic in the 

therapy of Salmonella infections (Simon and Stille, 1993; Linde et al., 1993). 

 

1.4 Salmonella enterica and modern approaches to taxonomy 

 

As enterobacteria Salmonella share a common ancestor together with Escherichia coli. The 

genera diverged between 100 and 150 million years ago (Euzéby, 1999; Ochman and Wilson 

1987). Their genomes share extensive regions of homology, and the order of orthologous 

genes is strongly conserved (Krawiec and Riley, 1990; Sanderson, 1976). Probably this core 

of conserved genes is responsible for efficient transmission between hosts and survival in the 

intestine (Thomson et al., 2004). However, differences between the genomes exist as a result 

of DNA inversions, deletions and insertions and the presence or absence of a plasmid (Liu 

and Sanderson 1996; Wain et al., 2001). The integration of novel DNA sequences into the 

genome is preferred at specific sites: between the rrn (rRNA) operons and in the TER 

(terminus of replication) region. At these sites the rearrangements can be tolerated without 

affecting the cells’ fitness, while it is strongly selected against rearrangements at other sites 

during evolution (Achtman and Pluschke, 1986; Alokam et al., 2002; Liu and Sanderson 

1996). The insertion sites of bacteriophages frequently lie within transfer RNA (tRNA) genes. 

The association of horizontally acquired DNA with tRNA genes indicates a bacteriophage 

origin for the DNA integrated at these integration sites (Campbell, 2003a; Wain et al., 2001). 
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Genome rearrangements and homologies in the genome of different Salmonella serovars have 

been analysed by broad spectrum of methods including pulsed-field gel electrophoresis 

(PFGE) (Liu and Sanderson, 1995), multilocus enzyme electrophoresis (MLEE) (e.g. Boyd et 

al., 2003), PCR, DNA-DNA hybridisation (e.g. Porwollik et al., 2004), DNA sequencing (e.g. 

McClelland et al., 2001; Parkhill et al., 2001) and microarray analysis (e.g. Porwollik et al., 

2004; Thomson et al., 2004). For the different Salmonella serovars investigated, sequence 

identities of house-keeping genes and 16S rRNA of 96-99 % have been found (Porwollik and 

Mc Clelland, 2003). Despite this genetic relatedness among the Salmonella enterica serovars, 

they show a big variability in their pathogenic properties, as they differ deeply in their disease 

spectrum and host range as mentioned above. This adaptation to a broad range of ecological 

niches while maintaining a high degree of genetic relatedness may be based on the occurrence 

of lateral gene transfers, which are responsible for qualitative leaps in evolution of many 

bacterial species and mean the transfer of foreign genetic material into recipient cells 

(Porwollik and McClelland, 2003). Several mobile genetic elements (insertion sequences, 

plasmids, pathogenicity islands and bacteriophages) have been associated with the horizontal 

transfer of virulence genes (Davis and Waldor, 2002). 

 

1.5 The Salmonella life cycle: infection, disease and bacterial virulence 

determinants 

 

Salmonella enterica has a complex life cycle in infected animals, and a large number of 

virulence genes have been identified that contribute to the two key virulence traits involved in 

the interaction of bacteria and host cells: Salmonella enterica invades into nonphagocytic 

cells like the epithelial cell of the gastrointestinal mucosa. It is also a facultative intracellular 

pathogen that can withstand phagocytosis by macrophages and replicate inside eucaryotic 

host cells (Blanc-Potard et al., 1999; Hansen-Wester et al., 2004). A huge number of 

virulence factors contribute to the multiple steps involved in the infection process. 

Approximately 4 % of the Salmonella Typhimurium genome is believed to be required for 

fatal infection of mice, covering over 200 virulence genes, each of which might make only a 

small contribution to overall pathogenesis (Bowe et al., 1998; Ho et al., 2002). 

Additionally, the survival of the bacteria in the host seems to be based on an accurate balance 

of many gene products acting at the right time in the correct location (Bowe et al., 1998). 

These genes are located on plasmids or within the chromosome as islets of single or few 
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virulence genes or as large cassettes composed of a series of genes and operons. At least 17 of 

such large Salmonella pathogenicity islands (SPIs), which contribute to a coordinated 

expression of virulence genes, have been previously identified. Some of them have already 

been studied extensively and are characterized briefly below. The acquisition of SPIs 

represent major events in the evolution of bacterial pathogens, because their incorporation by 

horizontal transfer from a different bacterial genus can transform a normally benign organism 

into a pathogen in a single step. SPIs usually have a GC-content lower than that of the rest of 

the chromosome and are often inserted into tRNA genes, which indicates a bacteriophage 

origin (Chiu et al., 2005; Hensel, 2004; Marcus et al., 2000; Vernikos and Parkhill, 2006; 

Wain et al., 2001). SPI 1 controls the ability to invade epithelial cells and is required for 

Salmonella-induced apoptosis of macrophages (Chen et al., 1996; Collazo and Galan, 1997; 

Marcus et al., 2000; Mills et al., 1995). SPI 2 contains genes necessary for intramacrophage 

survival and systemic infection (Ochman et al., 1996; Shea et al., 1996). The acquisition of 

SPI 2 marked the divergence of Salmonella into the two species Salmonella enterica and 

Salmonella bongori, which was together with the acquisition of SPI 1 a “quantum leap” in 

Salmonella evolution (Groisman and Ochman, 1996). Two of the genes encoded by SPI 3 are 

related to the transport of magnesium at low Mg2+ conditions, while they seem not to be 

required for virulence in mice but might be involved in other aspects of pathogenesis like 

chronic infection and host specificity (Blanc-Potard and Groisman, 1997, Blanc-Potard et al., 

1999). Sequence analysis suggests that SPI 4 encodes a type I secretion system and it has 

been speculated that SPI 4 is involved in the secretion of a cytotoxin. A locus within SPI 4 is 

required for intramacrophage survival. The main function of SPI 4 remains to be determined 

(Bäumler et al., 1994; Marcus et al., 2000; Mecsas and Strauss, 1996; Wong et al., 1998). SPI 

5 finally contains genes that mediate the enteropathogenesis of Salmonella (Wallis and 

Galyov, 2000; Wood et al., 1998). Like many other pathogenic bacteria, Salmonella employ 

type III secretion systems to translocate bacterial effector proteins directly into the cytosol of 

host cells and to modulate responses of host cells through interactions with eukaryotic 

proteins (Galan and Collmer, 1999; Hueck, 1998; Mirold et al., 2001; Wallis and Galyov, 

2000). Effector proteins, which are translocated by the SPI 1-encoded type III secretion 

system, mediate early stages of the infection (Galan and Collmer, 1999; Wallis and Galyov, 

2000). The SPI 2 encodes a type III secretion system (T3SS), which plays a central role in 

systemic infections by Salmonella enterica and for the intracellular phenotype as it is used to 

translocate a set of effector proteins into the host cell. The effector proteins modify host cell 

functions enabling intracellular survival and replication of the bacteria (Hansen-Wester et al., 
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2004; Hensel, 2000). The virulence of mutant strains deficient in SPI 2 is severely attenuated, 

and these strains are deficient in intracellular survival and proliferation. In contrast to SPI 1, 

the SPI 2 locus is only present in Salmonella enterica and not in Salmonella bongori and its 

acquisition is thought to be a major step towards successful systemic colonisation of host 

organisms (Bäumler, 1997). After cloning of the SPI 2 virulence locus, it could be 

functionally transferred into SPI 2-negative Salmonella bongori (Hansen-Wester et al., 2004). 

The transfer of the SPI 2 locus and a single effector locus did not confer the ability to cause 

systemic infections to Salmonella bongori, probably due to the absence of further gene loci 

outside the SPI 2 locus, which encode additional members of the group of STE (Salmonella 

translocated effector) proteins that have to be present to produce the full phenotype of 

intracellular virulence (Hansen-Wester et al., 2004). 

 

1.6 Bacteriophages 

 

The name bacteriophage was introduced by the Canadian bacteriologist Felix Hubert 

d’Herelle working at the Institute Pasteur in Paris for a bacteriolytic substance that he isolated 

from faeces in 1917 (d’Herelle, 1917; Adams, 1959). It means “eater of bacteria” and usually 

the short form “phages” is used today (Adams, 1959). d’Herelle shares credit for the 

discovery of phages with the British bacteriologist Frederick William Twort, who 

independently described an acute infectious disease of staphylococci that produced marked 

changes in colony morphology in 1915 (Adams, 1959; Twort, 1915). Twort considered a 

filterable virus analogous to the viruses of animals and plants to be responsible for his 

observations (Adams, 1959; Twort, 1915). Today bacteriophages are universally recognized 

to form a group of bacteria-specific viruses (Adams, 1959). Most bacteria are susceptible to 

infection by bacteriophages, and bacteriophages can be found in all habitats of bacteria 

including plants, animals, soil, lake and marine waters (Griffiths et al., 1999). They are 

believed to be evolving since 3 billion years or more, and their population size is estimated to 

be in the order of 1031, making phages to be the majority of organisms on Earth (Hendrix, 

2005). 

Based on their infection cycle, bacteriophages can be divided into two groups, virulent phages 

and temperate phages. Virulent phages are always lytic. They infect and lyse the host cell, 

resulting in progeny phages. After attachment of the phage to a bacterium, it injects its genetic 

material into the bacterial cytoplasm. Strong viral promoters control the genes of virulent 
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phages, and the machinery of the bacterial cell is taken over by turning off the synthesis of 

bacterial components. The phage genetic material is replicated in high copy numbers, and the 

bacterial synthetic system is redirected to make phage components. The new bacteriophage 

virions are assembled and the host cell finally bursts releasing 100-200 phage particles that 

can start a new lytic cycle. The second group, temperate phages, can undergo a lytic cycle 

under certain conditions, but more often they integrate into the bacterial chromosome at 

specific insertion sites, very often tRNA genes. The inserted phage, which is referred to as a 

prophage in this condition, is replicated along with the bacterial chromosome, and the 

lysogenic state can be transmitted genetically through many bacterial generations. A 

lysogenic bacterium, carrying a prophage is resistant to subsequent infection, because 

immunity is conferred by the presence of the prophage. Specific phage repressors act to 

prevent the autonomous replication of the phage DNA and the expression of phage functional 

proteins required for the lytic cycle. The prophage can be induced by exogenous physical or 

chemical stress factors that cause DNA damage. The prophage can than excise from the 

bacterial chromosome and enter a lytic cycle, leading to lysis of its host cell and the 

production of a large number of progeny phages (Ackermann, 1998; Campbell, 2003b; 

Canchaya et al., 2004; Griffiths et al., 1999; Yang et al., 2006). Traditionally, lysogenic 

cultures were induced by UV light or mitomycin C. (Bainbridge, 2000; Gemski et al., 1978; 

Yee et al., 1993). Nevertheless, a variety of other inducing agents has been described, 

including hycanthone, chlorophenols, and hydrogen peroxide (DeMarini et al., 1990; 

Figueroa-Bossi and Bossi, 1999; Shungu and Cook, 1974). The SOS regulon allows bacteria 

to withstand DNA damaging agents (Walker, 1984). In E. coli it comprises at least 20 genes 

whose expression is regulated by LexA and RecA and is involved in physiological responses 

like DNA repair and mutagenesis (Lewis et al., 1994; Peterson et al., 1988; Walker, 1984). 

DNA damage activates RecA, which enables the autoproteolytic inactivation of the SOS 

repressor LexA and subsequent derepression of the SOS-regulated genes (Little et al., 1980; 

Little, 1983; Little 1984; Little 1991). Components of the SOS regulon including the recA 

locus have also been identified in S. Typhimurium (Pierré and Paoletti, 1983). The RecA 

protein promotes the autoproteolytic cleavage of prophage repressors like cI enabling the 

prophage to enter the lytic cycle (Bainbridge, 2000; Craig and Robets, 1980; Herskowitz and 

Hagen, 1980; Yang et al., 2006). In many lambda-strains the repressor protein is thermo labile 

at 45 ° C, so that lysogenic cultures can be induced by a short treatment at this temperature 

(Bainbridge, 2000). Phages can also enter the lytic phase in the absence of inducing agents, 

which is referred to as spontaneous induction. This is believed to be a property of the host 
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bacterium and not one of the prophage itself, and it occurs likely due to spontaneous DNA 

damage. Recent studies have shown that for some phages, like for example P22, it occurs with 

the onset of host stationary phase (Abedon, 2008; Lunde et al., 2003; Lwoff, 1953; Ramirez 

et al., 1999). The extent of DNA damage necessary for induction varies between phage strains 

(Little, 2005). The spontaneous induction rate of Stx-encoding phages has been shown to be 

much higher than that of lambdoid phages, and a study of the spontaneous production of 

phages by P. pyocyanea revealed that one bacterium in 600 produces phages spontaneously 

(Bail, 1921; Delbruck, 1950; Livny and Friedmann, 2004; Lwoff, 1953). When a lysogen 

carries two lambdoid prophages with different repressors, usually both prophages in the same 

cell are induced (Livny and Friedmann, 2004). It has been described that the spontaneous 

production of inducible phages is much higher than the spontaneous production of non-

inducible phages (Lwoff, 1953). 

 

1.7 Prophages as determinants of bacterial virulence 

 

In addition to those virulence genes present in SPIs, other virulence-related Salmonella genes 

that have probably been acquired horizontally can be found in bacteriophages. Bacterial hosts 

can be transformed from a non-pathogenic strain to a virulent strain or a strain with increased 

virulence by bacteriophages encoding virulence genes in a process called phage lysogenic 

conversion. These virulence factors are located on a number of morphologically diverse 

bacteriophages that belong to the virus families Podoviridae (short tail stub), Siphoviridae 

(long flexible non-contractile tail), Myoviridae (contractile tail) and Inoviridae (filamentous). 

Within one family, bacteriophages with little sequence homology among each other or with 

characteristics similar to members of another family can be found because the current 

classification for the first three bacteriophage families is based on virion morphology (Boyd 

and Bruessow, 2002; Lawrence at al., 2002). 

The proteins encoded by the bacteriophages, which are involved in lysogenic conversion, 

provide mechanisms to invade host tissues, damage host cells and avoid host immune 

defences. The ecological success of a lysogenic bacterium contributes to the dissemination of 

bacteriophage genes and is also in the interest of the bacteriophage for this reason (Boyd and 

Bruessow, 2002). 

The lysogenic transformation by bacteriophages is efficient and does not require intimate 

contact between bacteria (Miao and Miller, 1999). It allows the acquisition and exchange of 
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virulence factors on a much more rapid time scale (Ho et al., 2002). Bacteriophages can carry 

large blocks of DNA. They can withstand hostile conditions, which eliminate bacterial 

populations, and the DNA important to a bacterial population can be preserved, until a host 

for lysogenic conversion is reintroduced into the environmental niche. The DNA can be 

spread directly into an entire population of bacteria, which eliminates the necessity for clonal 

expansion of a specific population (Miao and Miller, 1999). 

Toxins as bacteriophage-encoded virulence factors have been found in a range of both Gram-

negative and Gram-positive bacteria (reviewed in Bishai and Murphy 1988; Wagner and 

Waldor, 2002) since in 1951 it was discovered that the diphtheria toxin is encoded on the β-

phage genome from Corynebacterium diphtheriae (Freeman, 1951; Uchida et al., 1971). The 

structural genes encoding botulinum toxins C1 and D (Eklund et al., 1971; Eklund et al., 

1972; Fujii et al., 1988; Inoue and Iida, 1970; Inoue and Iida, 1971) streptococcal 

erythrogenic toxin (Goshorn and Schlievert, 1989; Johnson and Schlievert, 1984; Weeks and 

Ferretti, 1984), staphylococcal enterotoxin A (Betley and Mekalanos, 1985; Casman, 1965; 

Coleman et al., 1989; Jarvis and Lawrence, 1971), Shiga toxins 1 and 2 (Stx1 and Stx2) 

(McDonough and Butterton, 1999), the Shiga-like toxins (SLT) of E. coli (Huang et al., 1986; 

Newland et al., 1985; Strockbine, et al., 1986; Willshaw et al., 1985), Pseudomonas cytotoxin 

(Hayashi et al., 1990; Nakayama et al., 1999), and cholera toxin (CT) (Waldor and 

Mekalanos, 1996) are further examples for bacteriophage-encoded virulence factors. The 

genes are located in the genomes of temperate bacteriophages that confer toxinogenicity upon 

their hosts (Bishai and Murphy, 1988). Besides toxins, there are other potential virulence 

factors encoded by bacteriophages. Among these are enzymes that alter the antigenic 

properties of lipopolysaccharide (LPS) (Waldor, 1998). Since it was first shown in 1971 that 

O-antigen genes were encoded by phage ε from Salmonella (Wright 1971), bacteriophage-

encoded O-antigen modification genes have been detected in a range of Gram-negative 

bacteria. The O-antigen modification proteins produce antigenic variation. This alters the host 

recognition of the infecting bacteria and enables the bacteria to avoid the host immune system 

(Boyd and Bruessow, 2002). 

Many of the genes for virulence and host adaptation in Salmonella are encoded either adjacent 

to bacteriophage-like elements or by temperate bacteriophages (Boyd and Bruessow, 2002). 

These will be discussed in more detail below and include effector proteins, which are 

translocated by a type III secretion system and are required for uptake by intestinal epithelial 

cells. Other examples are a copper, zinc superoxide dismutase (SodC), which probably 

mediates bacterial defence against the oxidative burst (De Groote et al., 1997; Farrant et al., 
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1997) and neuraminidase (Figueroa-Bossi et al., 2001). Proteins involved in bacterial 

attachment to host cells can be added to the list of bacteriophage-encoded virulence factors 

(Karaolis et al., 1998; Karaolis et al., 1999; Kovach et al., 1996). 

A range of bacteriophage-encoded virulence genes has been described for Salmonella 

Typhimurium. Among the prophages described for S. Typhimurium are two prophage-like 

elements named Gifsy-1 and Gifsy-2, which carry a sequence reportedly transcriptionally 

activated during Salmonella adaptation to oxidative stress (Figueroa-Bossi and Bossi, 1999; 

Wong and Mc Clelland, 1994). These lambdoid bacteriophages have the same relative gene 

order as the prototype phage lambda (Ho et al., 2002). Genetic analysis indicates that the 

Gifsy-2 bacteriophage significantly contributes to Salmonella pathogenesis. Salmonella 

Typhimurium strains that are cured of Gifsy-2 are attenuated over 100-fold in their virulence 

in mice, indicating that Gifsy-2 contributes virulence factors to its host (Figueroa-Bossi and 

Bossi, 1999; Ho et al., 2002). One of these factors is SodCl. The sodCl gene encodes a 

periplasmatic Cu/Zn superoxide dismutase, which probably increases the virulence of serovar 

Typhimurium by reducing the antimicrobial effects of the oxidative burst produced by host 

macrophages (De Groote et al., 1997; Farrant et al., 1997). Salmonella Typhimurium strains 

mutant in sodCl are attenuated in macrophages as well as in mice (De Groote et al., 1997; 

Farrant et al., 1997). Another virulence factor encoded by Gifsy-2 identified by deletion 

analysis is gtgE. The gtgE-gene encodes a putative protein of 228 amino acids for which no 

significant homologues in other bacteria have been detected so far (Ho et al., 2002). The 

contribution of the Gifsy-1 prophage to virulence, which is undetectable in the presence of the 

Gifys-2, as Gifsy-2 can fully substitute for Gifsy-1, becomes significant in cells lacking 

Gifsy-2 but containing the sodC gene in the chromosome. This indicates that Gifsy-1 carries 

one or more virulence genes besides sodC that have functional equivalents in Gifsy-2 and also 

verifies the role of Gifsy-2-encoded SodC protein for Salmonella virulence (Figueroa-Bossi 

and Bossi, 1999). One virulence gene that has been identified in the Gifsy-1 genome is gipA, 

which is involved in the bacterial colonisation of the small intestine and necessary for 

Salmonella survival in the Peyer’s patches (Stanley et al., 2000). Similar to these findings, 

gtgE and sodC1, which are carried by the Gifsy-2AO-bacteriophage in Salmonella 

Abortusovis have been identified as the main virulence determinants contributing to virulence 

in lambs for this serovar (Bacciu et al., 2004). Gifsy-2 also contains the gene grvA, which 

encodes GrvA that probably decreases the virulence of Salmonella Typhimurium in a wild-

type situation in mice most likely by affecting the bacteria’s resistance to toxic oxygen. grvA 

is therefore termed an antivirulence gene (Ho and Slauch, 2001).  
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The survival of Salmonella Typhimurium within macrophages is an essential virulence 

property and requires a coordinated transcriptional activation of virulence genes. The two-

component transcriptional system PhoP/PhoQ comprising the transcriptional activator PhoP 

and the sensor-kinase PhoQ responds to signals within the acidified macrophage phagosome 

environment to induce phoP-activated gene (pag) transcription, but PhoP/PhoQ-dependent 

genes are not necessarily macrophage specific (Alpuche Aranda et al., 1992; Belden and 

Miller, 1994; Miller et al., 1989; Valdivia and Falkow; 1997). The lambdoid prophage Gifsy-

3 is present in the Salmonella Typhimurium strain ATCC14028. Gifsy-3 contains the 

phoP/phoQ-activated pagJ gene, but bacteria cured of this prophage showed no detectable 

attenuation in their ability to cause systemic infection and death in mice after oral inoculation 

(Figueroa-Bossi et al., 2001). Gifsy-3 also contains a gene for the secreted leucine repeat 

protein (SspH1), which is a substrate of a type III secretion system. Further members of this 

family of bacteriophage-encoded virulence proteins that share translocation signals and are 

translocated by a type III secretion system include the SseI protein of Gifsy-2 and the putative 

GogB protein of Gifsy-1 (Figueroa-Bossi et al., 2001; Miao and Miller, 2000). The P2-like 

phage SopEΦ contains the sopE gene, which codes for another effector protein translocated 

via a type III secretion system in Salmonella Typhimurium (Hardt et al., 1998a). SopE 

stimulates cytosceletal reorganisation and Jun N-terminal kinase (JNK) activation in a 

CDC42- and Rac-1-dependent manner. Purified SopE has also been shown to stimulate 

GDP/GTP nucleotide exchange in several Rho GTPases in vitro (Hardt et al., 1998b). SopE 

increases the pathogenicity of Salmonella Typhimurium in calves (Zhang et al., 2002). A 

bacteriophage released from Salmonella Typhimurium strain LT2 has been identified as a 

lambda-like phage Fels-1. It carries the nanH gene that codes for a neuramidinase for which 

the importance in pathogenesis is not clearly defined, but which is present mainly in 

pathogenic isolates suggesting a role in virulence (Figueroa-Bossi et al., 2001; Boyd and 

Bruessow, 2002). Fels-1 was also found to encode a novel sodC gene, sodCIII. 

The repertoire of translocated effector proteins varies even between closely related 

Salmonella strains and is believed to define host specificity and epidemic virulence. 

Lysogenic conversion with a sopE-encoding bacteriophage is one of the mechanisms allowing 

Salmonella to modify the effector protein repertoire in order to optimise the interaction with 

host animals. This can lead to the emergence of new epidemic clones and adaptation to new 

animal hosts (Mirold et al., 2001). In Salmonella Typhimurium and Salmonella Typhi, SopE 

is encoded by a P2-like phage. Contrary to that, it is encoded in a lambda-like bacteriophage 

in the Salmonella serovars Hadar, Gallinarum, Enteritidis and Dublin (Mirold et al., 2001). 
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This indicates that the same bacterial virulence factor can move horizontally between 

different Salmonella serovars via lysogenisation with a certain bacteriophage, and it can be 

transferred between different types of bacteriophages, which increases the flexibility of the 

reassortment of effector protein repertoires by avoiding restrictions caused by immunity 

functions or the occupancy of attachment sites by resident prophages (Mirold et al., 2001). 

The organisation of the phage-encoded virulence modules (morons) as independent 

transcriptional units allows autonomous expression even from repressed prophages, which 

ensures that the virulence factors can be transferred freely between phages, without affecting 

orderly and timely gene expression (Hendrix et al., 2000; Mirold et al., 2001). These 

autonomous genetic modules were termed morons in accordance with the fact that their 

addition to the genome means that there is “more DNA” than there is without the element 

(Juhala et al., 2000). 

In addition to the virulence factors encoded in the chromosome, like SPIs and bacteriophages, 

many Salmonella serovars harbour virulence plasmids that play an important role in the 

systemic infection of experimental animals after oral inoculation and enhance the strains’ 

virulence. The virulence plasmids are involved in the ability of Salmonella to invade from the 

intestines into deeper tissues, such as the mesenteric lymph nodes and spleens, after oral 

inoculation of mice. The plasmids contain highly homologous Salmonella plasmid virulence 

genes (spv), which are involved in systemic infection by increasing the replication rate of the 

bacteria in host tissues. The spv genes can enhance the severity of the enteric infection and 

produce lethal disease in those serovars which carry virulence plasmids (Gulig, 1990; Gulig et 

al., 1997; Libby et al., 1997; Marcus et al., 2000). 

 

1.8 Salmonella genes, genomes and virulence 

 

Many of the Salmonella genes that have been identified as genes required for virulence and 

particularly for intracellular survival and multiplication are also regarded as housekeeping 

genes, entitling genes expressed in all cells and coding for molecules necessary for basic 

maintenance and essential cellular functions (Turner et al., 2003). Among those are genes 

affecting DNA supercoiling like hupA and hns (Harrison et al., 1994; Turner et al., 1998). A 

lot of genes are associated with environmental sensing and transcriptional regulation: cya/crp, 

ompR/envZ, phoP/phoQ, rpoS, and rpoE (Chatfield et al., 1991; Curtiss et al., 1987; Fang et 

al., 1992; Humphreys et al., 1999; Miller et al., 1989). To resist bacterial stress induced by 
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the intracellular environment, another set of genes is required: htrA, clpB, and dksA (Chatfield 

et al., 1992; Turner et al., 1998; Webb et al., 1999). To develop full virulence, genes related 

with the biosynthesis of nutrients like purines, pyrimidines, and aromatic amino acids, are 

required, too (Fields et al., 1986; Hoiseth and Stocker, 1981). The same has been described 

for genes involved in the uptake of mineral nutrients and trace elements like Mg2+, Fe2+, and 

Cu2+ for Salmonella and other bacteria (Heithoff et al., 1997; Wang et al., 1996). The 

simultaneous prevention of the synthesis and high-affinity transport of the primary nitrogen 

donor glutamine attenuates the virulence of Salmonella Typhimurium (Klose and Mekalanos, 

1997). Salmonella invading the gastrointestinal tract encounter anaerobic stress, which has 

been suggested to enhance their virulence: anaerobically grown Salmonella serovars Typhi 

and Typhimurium showed higher cell surface hydrophobicity, induced expression of five 

outer membrane proteins (OMPs) and significantly higher levels of antioxidant enzymes like 

superoxide dismutase (SOD) and catalase (Kapoor et al., 2002; Singh et al., 2000).  

As mentioned earlier, Salmonella show considerable variability in severity and characteristics 

of the diseases they cause and have extremely different host ranges besides their genetic 

relatedness (Porwollik and Mc Clelland, 2003). The virulence functions determining an 

epidemic strain and the genetic determinants of Salmonella host range have remained largely 

unknown (Figueroa-Bossi et al., 2001; Mirold et al., 2001). The acquisition of new genes by 

horizontal gene transfer is widely regarded as the main mechanism driving the evolution of 

Salmonella pathogenicity (Bäumler, 1997; Boyd and Bruessow, 2002; Ochman et al., 2000; 

Porwollick and McClelland, 2003). Bacteriophages play a major role in the movement of 

virulence factors among bacteria (Bacciu et al., 2004; Cheetham and Katz, 1995; Figueroa-

Bossi et al., 2001; Miao and Miller, 1999; Miao and Miller, 2000; Waldor, 1998). The genetic 

mechanisms, which facilitate the integration of bacterial virulence factors into bacteriophage 

genomes and transfer of morons between different bacteriophages are not yet completely 

understood and have moved into the focus of scientific interest (Hendrix et al., 2000; Mirold 

et al., 2001). With the availability of multiple complete bacterial genome sequences, the 

important role of prophages in the diversification of strains within a bacterial species has been 

shown for example for Streptococcus (Beres et al., 2002) or E. coli (Ohnishi et al., 2001) by 

comparative bacterial genomics. A promising approach to reveal more knowledge about the 

factors involved in Salmonella host range and virulence is to compare and analyse the 

prophage content of different Salmonella serovars based on the available Salmonella 

sequence data, which will be one main objective of this study. 
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During the course of this study the genomes of the Salmonella strains Salmonella Enteritidis 

PT4, Salmonella Typhimurium DT104 and SL1344, Salmonella Gallinarum 287/91 and 

Salmonella Bongori 12419 were sequenced by the Sanger Institute in Cambridge. The 

sequencing of the 4,809,037 bp genome of Salmonella Typhi CT18 had already been 

completed and was published by the group that performed the sequencing, including the 

Sanger Institute (Parkhill et al., 2001). The CT18 strain harbours two plasmids, a 218,150 bp 

multiple drug resistance incH1 plasmid (pHCM1), and a 106,516 bp cryptic plasmid 

(pHCM2). The chromosome contains 4,599 coding sequences (CDS), 204 of these are 

predicted to be pseudogenes, which is a remarkably high number for an organism capable of 

growing in- and outside of the host. 124 of the pseudogenes have been inactivated by the 

introduction of a stop codon or single frameshift. 27 are the remains of integrases, insertion 

sequence (IS) transposases and genes of bacteriophage origin. 75 of the pseudogenes are 

believed to be involved in housekeeping functions (Parkhill et al., 2001). A lot of mutations 

have been found in genes probably involved in virulence or host interaction. These include 

components of seven of the twelve chaperone-usher fimbrial operons (Townsend et al., 2001), 

genes, which are within or associated with previously described SPIs (Blanc-Potard et al., 

1999; Hensel et al., 1999; Tsolis et al., 1999) and genes coding for type-III-secreted effector 

proteins (Bakshi et al., 2000; Miao and Miller, 2000). With 59 %, a greater proportion of 

pseudogenes than expected lies within islands unique to Salmonella Typhi relative to E. coli, 

as for all genes, this proportion is only 33 % (Parkhill et al., 2001). The inactivation of many 

of the mechanisms of host interaction resulting from this distribution may be an approach to 

explain the host restriction of Salmonella Typhi compared to other Salmonella serovars 

(Parkhill et al., 2001). In general, the genomes of Salmonella Typhi and E. coli (Blattner et 

al., 1997) are essentially collinear along their entire length. Most of the differences are the 

result of insertions, deletions or replacements, but there are also some cases of small gene 

blocks being translocated. Among the larger of the 290 blocks containing genes unique to 

Salmonella Typhi compared to E. coli are the previously described SPIs 1-5. There are also at 

least five more islands with the characteristics of SPIs (SPI 6-10) and 7 prophage elements 

(Parkhill et al., 2001). Additionally, there are many insertions of smaller gene blocks and 

individual genes, which may be involved in pathogenicity. While the gene clusters unique to 

Salmonella Typhi in comparison to E. coli probably contribute to the adaptation to 

environmental niches and to pathogenicity, the conserved genes may be needed for the basic 

lifestyle of enteric bacteria that requires intestine colonisation, environmental survival and 

transmission (Parkhill et al., 2001). 
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The comparison of Salmonella Typhi CT18 with Salmonella Typhimurium LT2 (Mc Clelland 

et al., 2001) shows that Salmonella Typhi is much closer related to Salmonella Typhimurium 

than to E. coli. Only 13 % of the genes are unique to Salmonella Typhi compared to 

Salmonella Typhimurium, and 11 % of the genes are unique to Salmonella Typhimurium 

compared to Salmonella Typhi (Parkhill et al., 2001). Analogous with E. coli, the differences 

are not limited to a few large blocks. 42 unique genes are single gene insertions, and 103 

genes are located in insertions of 5 genes or less. These unique insertions include the phages 

ST10, ST15, ST18 and ST48 and SPIs 7, 8 and 10 (Parkhill et al., 2001). 

The pHCM1 plasmid with 249 CDS / 8 pseudogenes encodes resistances to multiple drugs, 

including all of the first-line drugs used for the treatment of typhoid fever. Genes, apparently 

virulence-associated have not been found on pHCM1 (Parkhill et al., 2001). The second 

plasmid, pHCM2, contains 131 CDS / no pseudogenes and is phenotypically cryptic. It shares 

over 56 % of its sequence with the plasmid pMT1 from Yersinia pestis (Hu et al., 1998), 

which encodes the main virulence-associated determinants of Yersinia pestis. The CDS 

unique to pHCM2 show similarities to several bacteriophage genes and genes with direct or 

indirect involvement in DNA biosynthesis and replication including a gene cluster encoding 

genes similar to thymidylate synthetase, dihydrofolate reductase, ribonuclease H and 

ribonucleotide diphosphate reductase and also a putative primosomal gene cluster (Parkhill et 

al., 2001). These genes form an integral part of the primase replication complex in the 

bacteriophage T4 (Jing et al., 1999). Plasmids related to pHCM2 have been found in 

Salmonella Typhi strains from Southeast Asia only, while most Salmonella Typhi strains do 

not harbour this plasmid (Parkhill et al., 2001). 

The complete genome sequence of Salmonella Typhimurium LT2 has been published by a 

group in the US (McClelland et al., 2001). The genome consists of 4,857,432 bp and harbours 

a 93,939 bp virulence plasmid (pSLT). The publishing group compared the data with genome 

data from eight related enterobacteria (Salmonella Typhi CT181, Salmonella Paratyphi A, 

Salmonella Paratyphi B, Salmonella arizonae, Salmonella bongori, E. coli K122, E. coli 

O157:H73 and K. pneumoniae) to determine the distribution of close homologues of the 

Salmonella Typhimurium LT2 genes. The chromosome contains 4,489 CDS, and 55 % of 

these have close homologues in all eight of the other bacterial genomes that it was compared 

to (McClelland et al., 2001). In contrast to Salmonella Typhi CT18 with 204 pseudogenes, 

                                                 
1 Parkhill et al., 2001 

2 Blattner et al., 1997 

3 Perna et al., 2001 
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only 39 pseudogenes have been detected in the genome of Salmonella Typhimurium LT2, 

which might allow Salmonella Typhimurium to infect a broader range of hosts compared to 

Salmonella Typhi (McClelland et al., 2001). 145 of the 204 pseudogenes in Salmonella Typhi 

are present as intact genes in Salmonella Typhimurium. Only 23 are present as pseudogenes 

in Salmonella Typhimurium as well (Parkhill et al., 2001). Usually, the consequences of the 

loss of function for the pseudogenes in Salmonella Typhimurium are unclear, because the 

function of the intact homologues in other organisms is unknown. Some pseudogenes may be 

unrecognised, because there is no intact homologue available for 11 % of the Salmonella 

Typhimurium genome (McClelland et al., 2001). Some genes are only found in Salmonella, 

and 1,106 CDS in this group have a close homologue in at least one of the other five 

Salmonella from the comparative analysis. Many of the pathogenesis-associated genes like 

invasion genes, genes coding for type-III-secreted proteins and some secretory system genes 

are in this group (McClelland et al., 2001). In the comparative analysis, close homologues 

have been found in one or more of the other three subspecies I genomes (Salmonella Typhi, 

Salmonella Paratyphi A and Salmonella Paratyphi B), but not in the five other genomes 

including Salmonella arizonae and Salmonella bongori for 352 CDS, indicating that these 

may include genes for specialisation of subspecies I to warm-blooded animals. 121 CDS have 

no close homologues in any of the eight genomes from the comparative analysis. A + T-rich 

CDS are almost threefold over-represented among those genes with no close homologues 

outside of subspecies I, indicating that these genes might have been acquired from a A + T-

rich source (McClelland et al., 2001). The Salmonella Typhimurium LT2 genome contains 

four functional prophages: Gifsy-1 and -2 and Fels-1 and -2. The comparative analysis 

showed that these phages are not present in the eight other genomes, but homologues have 

been found for some of the genes, which are probably parts of related prophages in these 

genomes. By homology to other bacteriophages, a previously unknown bacteriophage or 

phage remnant that includes the genes STM4201 and STM4219 has been detected in the 

Salmonella Typhimurium LT2 genome (McClelland et al., 2001). 

The pSLT plasmid (Matsui et al., 2001) contains 108 CD / 6 pseudogenes. Close homologues 

in Salmonella Typhi, Salmonella Parathyphi A or Salmonella Parathyphi B have been found 

for only three CDS, because these strains do not harbour this plasmid. Close homologues in 

plasmids from other Salmonella serovars have been found for 50 pSLT genes (McClelland et 

al., 2001). 

A group including members of the Pathogen Sequencing Unit at the Sanger Institute, 

Cambridge, UK has performed an in silico analysis of the prophage-like elements harboured 
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by Salmonella Typhi CT18 and compared these against 40 other Salmonella isolates by DNA 

microarray technology utilizing the available sequence data from the sequencing of 

Salmonella Typhi (Deng et al., 2003; McClelland et al., 2001) and Salmonella Typhimurium 

(Parkhill et al., 2001; Thomson et al., 2004). This study indicated Salmonella Typhimurium 

to harbour the lysogenic bacteriophages Gifsy-1, -2 and –3, Fels-2 and the P2-like phage 

SopE (Figueroa-Bossi et al., 1997; Figueroa-Bossi and Bossi, 1999; Hardt et al., 1998a; Miao 

and Miller, 1999; Mirold et al., 1999; Thomson et al., 2004). In a detailed bioinformatic 

analysis displaying regions unique to Salmonella Typhi with respect to Salmonella 

Typhimurium seven prophages or prophage-like elements were identified in the Salmonella 

Typhi genome, representing 3.76 % of the genome: ST10, ST15, ST18, ST27, ST35, SopEST 

(ST44) and ST46. ST10 and ST18 have extensive regions of sequence similar to lambdoid 

phages, whereas ST15 is a chimera with similarities to P2-family phages, bacteriophages Mu 

and lambda. ST46 has a high similarity to the satellite phages of the P4-family (Thomson et 

al., 2004). It lies within the SPI 10 region of Salmonella Typhi CT18 and appears to retain 

many of the essential genes for phage proliferation (Briani et al., 2001; Pierson and Kahn, 

1987; Thomson et al., 2004). The prophage-like elements ST27, ST35 and SopEST share 

significant sequence homology with each other and members of the Myoviridae. They are 

very similar to members of the P2-family (Bertani and Bertani, 1971; Thomson et al., 2004). 

A global comparison of the two sequenced Salmonella Typhi genomes (CT18 and Ty2) 

showed that most of the prophage-like regions are similar for both isolates (Deng et al., 2003; 

Parkhill et al., 2001; Thomson et al., 2004). Differences include ST18, which is totally absent 

from Salmonella Typhi Ty2 and a novel P4-family prophage (ST2-27), which is only present 

in Salmonella Typhi Ty2. In Salmonella Typhi, the location and orientation of ST10 and 

ST15 has been altered by a chromosomal inversion (Deng et al., 2003; Thomson et al., 2004). 

Compared to Salmonella Typhimurium LT2, ST27, ST35 and SopEST are similar to the P2-

family Fels-2 phage (Parkhill et al., 2001; Pelludat et al., 2003; Pickard et al., 2003; Thomson 

et al., 2004). SopEST and ST35 showed high levels of similarity to the sequenced SopE phage 

from Salmonella Typhimurium DT204. The genetic organisation and gene complement of 

these putative phages most closely matches the E. coli bacteriophage 186 (Mirold et al., 1999; 

Pelludat et al., 2003; Thomson et al., 2004). DNA microarray data showed that all of the 

Salmonella Typhi isolates tested hybridised to the majority of the SopEST-like phage genes, 

including the sopE virulence gene itself (Thomson et al., 2004). A significant level of 

hybridisation could also be seen for all Salmonella Paratyphi A isolates tested (36 out of 46 

SopEST phage genes). Interestingly enough these data suggest that both Salmonella enterica 
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serovars, which are associated with invasive disease in humans, harbour complete SopEST 

phage (Thomson et al., 2004). Hybridisation of DNA from other Salmonella serovars to the 

SopEST genes was limited. Salmonella Typhimurium LT2 showed no hybridisation to sopE, 

which is absent from this strain, and weak hybridisation to many of the SopEST structural and 

replicative genes, which may be in part caused by cross-hybridisation to the Fels-2 phage, 

which shows strong similarity on the amino acid level, but only limited similarity on the DNA 

level (Thomson et al., 2004). Apart from the Salmonella Typhi isolates, none of the 

Salmonella serovars showed hybridisation to the ST27 genes. Nevertheless, all tested 

Salmonella serovars, including Salmonella bongori, showed strong hybridisation to the iroA 

iron uptake locus, which is located directly downstream of the ST27 invertase gene (Bäumler 

et al., 1996; Thomson et al., 2004). Some of the Salmonella enterica serovars hybridised to 

regions within ST35. Two Salmonella Montevideo isolates and the Salmonella Dublin strain 

S16 hybridised strongly to the ST35 central region (Thomson et al., 2004). Combining these 

data with the signals obtained for SopEST genes suggests that these serovars harbour one or 

more prophages that are hybrids of SopEST and ST35 (Thomson et al., 2004), an event that 

has been previously observed in many bacteriophages (Hendrix, 2002; Juhala et al., 2000). 

ST10 and ST18 have sequence similarities with the lambda-like phages Fels-1, Gifsy-1 and 

Gifsy-2 (Figueroa-Bossi et al., 1997; McClelland et al., 2001; Thomson et al., 2004). For 

ST15 only a weak similarity to a prophage-like locus in Salmonella Typhimurium LT2 could 

be detected (McClelland et al., 2001; Thomson et al., 2004). In conclusion, the comparative 

analysis by Thomson et al. revealed that Salmonella Typhimurium LT2, Salmonella Typhi 

CT18 and Ty2 harbour a diverse range of prophage-like elements, which add considerable 

diversity to their genomes. In contrast to other Salmonella-specific DNA elements, which are 

generally conserved between Salmonella enterica serovars like SPIs, the unique combination 

of prophage-like elements distinguishes the genome of Salmonella Typhi (Chan et al., 2003; 

McClelland et al., 2000; McClelland et al., 2001; Parkhill et al., 2001; Thomson et al., 2004). 

The results of the comparative analysis by Thomson et al. and the identified prophage-like 

elements in Salmonella Typhi and Salmonella Typhimurium was the basis for the 

comparative analysis to identify prophage-like elements in the genome of Salmonella 

Enteritidis in this study. 
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1.9 Objectives of this study 

 

(I) Comparative in silico analysis of the genome of Salmonella Enteritidis 125109 with the 

existing Salmonella Typhi and Salmonella Typhimurium genomes for the presence and 

organisation of prophages in the genome. 

 

(II) PCR based screening of the prophage content identified in the in silico analysis of 

SE125109 within the same phage type and other phage types in S. Enteritidis, and in other 

Salmonella serovars. 

 

(III) Microarray based analysis of the prophage content in different S. Enteritidis phage types 

selected based on the results of the PCR screening. 

 

(IV) Microbiological investigations of spontaneous release and induceability of prophages in 

Salmonella Enteritidis. 

 

The genome comparison will identify sequence fragments in the S. Enteritidis genome with 

high similarity to prophages which might be associated with virulence genes. BLAST and 

FAST-A searches will be used to identify a possible gene function for these fragments. The 

results of this analysis will be used for annotation of the prophage regions in the S. Enteritidis 

genome and will contribute to the complete annotation of the S. Enteritidis genome performed 

by the Pathogen Sequencing Unit at the Sanger Institute, Cambridge, UK. 

This study should produce a wider knowledge of the prophage content of S. Enteritidis and 

their association with Salmonella virulence. In subsequent studies the obtained information 

can be used for comparison with the genomes of other Salmonella serovars like S. Gallinarum 

to produce a wider knowledge and understanding of the mechanisms underlying the different 

host spectra, disease characteristics and colonisation properties observed in different 

Salmonella serovars. This knowledge can be included in the criteria applied on the selection 

of candidate vaccine strains and in the development of future, genetically modified 

Salmonella live vaccines with defined virulence properties. 

This study is integrated into a scientific network. At the Institute of Animal Health, Compton 

Laboratory, Compton, Newbury, UK, other members of the group of Paul A. Barrow have 

used the same Salmonella sequence data to look at other aspects of Salmonella virulence 
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including fimbrial genes, SPIs, and genes associated with Salmonella energy generation and 

storage. The entire work is integrated into the SUPASALVAC project (FP7 505523) funded 

by the European Union, which deals with the production of Salmonella-free broilers by live-

vaccine induced innate resistance to colonisation and invasion and novel methods to eliminate 

vaccine and field strains. 
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2 Material and Methods 

2.1 Material 

2.1.1 Laboratory Apparatus 

 

Apparatus Type Manufacturer 

Stereomicroscope Stemi 2000 Zeiss 

Colony Counter  IUL Instruments 

Digital Camera DS-5M Nikon 

Digital Camera Control Unit DS-L1 Nikon 

Gel Electrophoresis Apparatus Agagel Standard without cooling Whatman Biometra 

Polaroid Camera DS 34 Polaroid 

Power Supply M 200 / 2.0 Biorad 

Spectrophotometer Lambda 2 PerkinElmer 

Steam Pot  Varioklav 

Thermocycler Mastercycler gradient eppendorf 

Thermocycler T1 Biometra 

UV-Transilluminator TFX-20M Vilber Lourmat 

Centrifuge Biofuge Fresco Heräus 

Centrifuge Micro Centaur Sanyo 

Sonicator Virsonic 300 Virtis 

Hybridization Chamber 10 Slide Chamber Genetix 

Microarray Scanner Axon 4000B Axon Instruments, Inc. 

Table 2-1: Laboratory Apparatus 
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2.1.2 Software 

 

OLIGO 4.1 Primer Analysis Software, National Biosciences, Inc. Plymouth, MN, USA 

Artemis Release 6 (Java2), Genome Research Limited, The Sanger Centre, Hinxton, 

Cambridge, UK 

ACT Artemis Comparison Tool, Release 3, Genome Research Limited, The Sanger Centre, 

Hinxton, Cambridge, UK 

GACK 3.631, Department of Microbiology and Immunology, Stanford University Medical 

Center, Stanford, CA, USA 

Genepix, MDS, Inc., Toronto, Canada 

GeneSpring 7.2, Silicon Genetics, Agilent Technologies, Inc, Santa Clara, CA, USA 

Table 2-2: Software 
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2.1.3 Chemicals and Products 

 

Substance Company 

Agarose Merck KgaA 

Cryobank Mast Diagnostica GmbH 

dCTP-Cy3, dCTP-Cy5 GE Healthcare 

DNA standard size marker 

lambda DNA Hind φX174 DNA Hae III 
Finnzymes Oy 

Enteroclon anti-Salmonella sera Sifin GmbH 

Ethidium bromide 1 % solution Carl Roth GmbH + Co. KG 

TAE buffer 50X, DNA typing grade GIBCO BRL 

DyNAzyme II DNA polymerase Finnzymes Oy 

dNTP Mix Finnzymes Oy 

LifterSlips Nunc, Thermo Fisher Scientific 

Mg2+-free DyNAzyme buffer Finnzymes Oy 

Mg2+-solution Finnzymes Oy 

MgSO4 * 7 H2O Merck KgaA 

Mitomycin C from Streptomyces caespitosus Sigma-Aldrich 

Tryptose Phosphate invitrogen 

Standard I Nutrient Agar Merck KgaA 

Standard I Nutrient Solution Merck KgaA 

Columbia Blood Agar heipha Dr. Müller GmbH 

PCR Primer Whatman Biometra 

NucleoSpin® Tissue Kit Macherey-Nagel 

NaAc Sigma-Aldrich 

Swarm Agar Sifin GmbH 

Trizma Base Sigma-Aldrich 

Trizma HCl Sigma-Aldrich 

BioPrime® DNA Labeling System invitrogen 

AutoSeq G-50 Dye Terminator Removal Kit GE Healthcare 

Membrane filters 0.45 µm Sartorius 

Yeast t-RNA Sigma-Aldrich 

Table 2-3: Chemicals and Products 
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2.1.4 Salmonella strain collection 

 

To check whether the putative prophage regions identified by in silico analysis in the 

sequenced S. Enteritidis strain SE125109 are representative for the whole serovar, a strain 

collection was set up. This collection contains S. Enteritidis strains representing different 

phage types. For a few isolates however, the phage type was unknown. To make this 

collection more representative, isolates coming from different sources (species; geographical 

regions) were included into the collection. It was especially focussed on having phage type 4 

isolates from various sources in the collection to be able to analyze if the sequenced strain 

SE125109 is typical for prophage content of S. Enteritidis phage type 4 isolates. To complete 

the picture, non-Enteritidis isolates both from group D1, which also harbours S. Enteritidis 

and from other groups were added to the strain collection. 

The strains in the strain collection were characterized by the methods described below and 

used for the PCR-based screening for the presence of the putative prophage regions identified 

in SE125109. Based on the results of the PCRs, a panel of 11 strains was selected for further 

analysis by DNA microarray as described below. The available information for the strains in 

the strain collection is displayed in Table 2-4. 
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Group Serovar Strain PT Source Provided by 
      
D1 S. Enteritidis 125109  4 human food poisoning Dr. Barrow, IAH, Compton, UK 
 S. Enteritidis Leipzig 4 vaccine parent strain Prof. Linde, University of Leipzig, Germany 
 S. Enteritidis VAC E1 4 vaccine strain Lohmann Animal Health, Cuxhaven, Germany 
 S. Enteritidis FUR Working Seed 4 modified candidate vaccine strain Dr. Rabsch, RKI, Wernigerode, Germany 

 S. Enteritidis 05-00229 4 calf, faeces Dr. Schroeter, BfR, Berlin, Germany 

 S. Enteritidis 04-01518 4 cattle, diagnostic sample Dr. Schroeter, BfR, Berlin, Germany 

 S. Enteritidis 05-00213 4 pig, faeces Dr. Schroeter, BfR, Berlin, Germany 

 S. Enteritidis 05-00264 4 horse, diagnostic sample Dr. Schroeter, BfR, Berlin, Germany 

 S. Enteritidis 04-00319 4 dog, faeces Dr. Schroeter, BfR, Berlin, Germany 

 S. Enteritidis 03-01771-1 4 colubrid, faeces Dr. Schroeter, BfR, Berlin, Germany 

 S. Enteritidis 1004 4 reisolate, chickbox Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 1007 4 reisolate, chickbox Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 03-03058 4 duck Dr. Rabsch, RKI, Wernigerode, Germany 

 S. Enteritidis 02-02864 4 goose Dr. Rabsch, RKI, Wernigerode, Germany 

 S. Enteritidis 125589 4 human food poisoning, invH Dr. Methner, FLI, Jena, Germany 

 S. Enteritidis 1135 4 broiler, liver Dr. Bolte, Vechta, Germany 

 S. Enteritidis Salmovac SE  4 vaccine strain IDT, Dessau, Germany 

 S. Enteritidis K482/91  4 layer, ileoceacal tonsil Prof. Urbaneck, Dessau, Germany 

 S. Enteritidis 04-03158 1 dog, diagnostic sample Dr. Schroeter, BfR, Berlin, Germany 
 S. Enteritidis 02-07368 1 chicken, meconium Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 02-07381 1 surface swab Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 02-07396 1 chicken, sock swab Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 02-00900 4b sheep, organ sample Dr. Schroeter, BfR, Berlin, Germany 

 S. Enteritidis 451/02 6a reisolate, caecum Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 809/02 6a reisolate, meconium Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 05-01906 8 calf, diagnostic sample Dr. Schroeter, BfR, Berlin, Germany 
 S. Enteritidis 03-01087 8 sheep, diagnostic sample Dr. Schroeter, BfR, Berlin, Germany 

 S. Enteritidis K1298/05 8 chicken, sock swab Lohmann Tierzucht, Cuxhaven, Germany 

 S. Enteritidis 03-03059 9b duck Dr. Rabsch, RKI, Wernigerode, Germany 
 S. Enteritidis 04-03092 11 cat, diagnostic sample Dr. Schroeter, BfR, Berlin, Germany 
 S. Enteritidis 03-03561 13a pig Dr. Schroeter, BfR, Berlin, Germany 
 S. Enteritidis 02-00191 20 duck Dr. Rabsch, RKI, Wernigerode, Germany 
 S. Enteritidis 02-06391 21 duck Dr. Rabsch, RKI, Wernigerode, Germany 
 S. Enteritidis 05-01372 21 horse, faeces Dr. Schroeter, BfR, Berlin, Germany 

 S. Enteritidis 518/02 21 reisolate, sock swab Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 04-03909 21c cattle Dr. Schroeter, BfR, Berlin, Germany 
 S. Enteritidis 86/360 34 broiler-breeder Dr. Terzolo, INTA, Mar del Plata, Argentina 

 S. Enteritidis 1005 na* reisolate, chickbox Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 1006 na* reisolate, chickbox Dr. Löhren, PHW-Group, Rechterfeld, Germany 

 S. Enteritidis 7497 na turkey Lohmann Tierzucht, Cuxhaven, Germany 

 S. Enteritidis 7499 na turkey Lohmann Tierzucht, Cuxhaven, Germany 

 S. Enteritidis 7661 na turkey Lohmann Tierzucht, Cuxhaven, Germany 

 S. Enteritidis 1607 na  Lohmann Tierzucht, Cuxhaven, Germany 

 S. Enteritidis K229/63 na  Lohmann Tierzucht, Cuxhaven, Germany 

 S. Enteritidis K482/91  4 layer, ileoceacal tonsil Prof. Urbaneck, Dessau, Germany 

 S. Enteritidis F971/82 (669) na chicken Lohmann Tierzucht, Cuxhaven, Germany 

      

 S. Gallinarum K517/94-5 na nr Dr. Barrow, IAH, Compton, UK 

 S. Eastbourne S2 (R22) na nr Lohmann Animal Health, Cuxhaven, Germany 
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Group Serovar Strain PT Source Provided by 

      

B S. Typhimurium 576 na nr Dr. Barrow, IAH, Compton, UK 

 S. Indiana R1 na nr Dr. Zucker, FU Berlin, Berlin, Germany 

 S. Saint Paul 898/1 na nr Dr. Böhland, Deersheim, Germany 

 S. Agona 533-4  na nr Dr. Böhland, Deersheim, Germany 

 S. Paratyphi B B 1086/00 na nr Dr. Miko, BfR, Berlin, Germany 

 S. Stanley R20 na nr Lohmann Animal Health, Cuxhaven, Germany 

      

C1 S. Virchow V1 na nr Dr. Müller-Molenar, Köthen, Germany 

 S. Infantis 6633 na nr Dr. Methner, FLI, Jena, Germany 

      

C2-3 S. Hadar 18UM na nr Dr. Methner, FLI, Jena, Germany 

 S. Albany 2713 na nr Dr. Löhren, PHW-Group, Rechterfeld, Germany 

      

E1 S. Anatum 4279 na nr Prof. Linde, University of Leipzig, Germany 

      

E4 S. Senftenberg 1331/7 na nr Dr. Müller-Molenar, Köthen, Germany 

      

I S. Yoruba 322 SII na nr I. Wiebelitz, Möckern, Germany 

Table 2-4: Salmonella strain collection featuring the Salmonella strains used in this study. The isolates 

printed in bold were selected for the microarray analysis. 

1AviPro® SALMONELLA VAC E 

* serologically rough; na: information not available; nr: not relevant 

 

2.1.5 Media 

 

All media were prepared using demineralised water. 

 

Tryptose Phosphate Broth (TPB) (per 1l) 

 

250 mg MgSO4 

30 g tryptose phosphate 

 

pH 7.4 

autoclave 20 min at 121 ° C 
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Standard I Nutrient Agar 

 

Typical composition per 1l: 

 

15 g peptones 

3 g yeast extract 

6 g sodium chloride 

1 g D(+) glucose 

12 g agar-agar 

 

pH 7.5 

 

Preparation: 

 

37 g Standard I Nutrient Agar per 1l 

autoclave 20 min at 121 ° C 

 

The solid agar was stored at 4 ° C for up to 3 months after autoclaving. Before use it was 

distributed to petri dishes after melting in a steam pot. 

 

A semi-solid Standard I Nutrient Agar containing only 50 % of the agar concentration of the 

regular Standard I Nutrient Agar was used in the phage induction experiments. To produce 

this agar, only half of the regular amount of Standard I Nutrient Agar was used, substituted 

with the corresponding amount of Standard I Nutrient Bouillon. 
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Typical composition of the semi-solid agar per 1l: 

 

15 g peptones 

3 g yeast extract 

6 g sodium chloride 

1 g D(+) glucose 

6 g agar-agar 

 

pH 7.5 

 

Preparation: 

 

18.5 g Standard I Nutrient Agar and 

12.5 g Standard I Nutrient Bouillon per 1l 

autoclave 20 min at 121 ° C 

 

Columbia Blood Agar 

 

Typical composition per 1l: 

 

23 g special peptone 

1 g starch 

5 g sodium chloride 

50 ml sheep blood 

14 g agar 

 

pH 7.3 

 

semisolid 
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2.2 Methods 

2.2.1 Identity testing of the Salmonella used for the analyses 

 

All bacterial strains received for the strain collection used for the analyses of this study were 

tested for their identity. The strains received were inoculated onto blood agar and standard I 

agar and incubated overnight at 37 ° C. After a visual control of culture purity and 

morphology, the bacteria were inoculated from the blood agar or the standard I agar plate onto 

swarm agar and again incubated overnight at 37 ° C. Slide agglutination was performed with 

the bacteria grown on the swarm agar according the manufacturer’s manual. In case of S. 

Enteritidis strains Enteroclon anti-Salmonella sera O 9 and H g,m were used. For non-

Enteritidis strains Enteroclon anti-Salmonella polyspecific group sera were used. Identity 

testing of the strains by slide agglutination was used as one criterion for inclusion of the 

strains into this study together with the Salmonella spp. PCR and the Salmonella Enteritidis 

PCR described below. 

 

2.2.2 Long term storage of bacteria from the strain collection 

 

The bacteria were stored using a cryobank system according to the manufacturer’s instruction 

at -80 ° C. 

 

2.2.3 Genome comparisons for the analysis of the prophage content in 

Salmonella Enteritidis strain SE125109 

 

To identify prophage regions in the S. Enteritidis PT4 genome recently sequenced by the 

Sanger Centre, Hinxton, Cambridge, UK (http://www.sanger.ac.uk/Projects/Salmonella/), the 

sequence data of the sequenced strain SE125109 was compared with the published annotated 

complete genomes of S. Typhi CT18 (GenBank accession number: AL513382; Parkhill et al., 

2001) and S. Typhimurium LT2 (GenBank accession number: AE006468; McClelland et al., 

2001). The strain SE125109 chosen for the sequencing was isolated from an outbreak of 

human foodpoisoning in the United Kingdom that was traced back to a poultry farm. The 

strain is highly virulent in newly hatched chickens and is also invasive in laying hens, 
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resulting in egg contamination (Barrow 1991; Barrow and Lovell 1991). The sequencing of 

the strain is further described in Thomson et al., 2008. 

The genome comparisons were based on the identified prophage regions in the genomes of S. 

Typhi CT18 and S. Typhimurium LT2 and the results of a comparative in silico analysis 

(Thomson et al., 2004), in which the prophage-like elements harboured by S. Typhi CT18 

were compared with 40 other Salmonella isolates by DNA microarray technology. 

The annotated S. Typhi CT18 and S. Typhimurium LT2 genomes were uploaded into the 

Artemis software (Rutherford et al., 2000) to display the known prophages and their genomic 

organisation in these genomes. The Artemis software is a tool that allows the visualization 

and annotation of a DNA sequence, and it is especially useful in analysing the compact 

genomes of bacteria, archaea and lower eukaryotes. The results of any analysis or sets of 

analyses can be viewed in the context of the sequence and its six-frame translation. The 

software is available under the GNU General Public License from the Sanger Centre website 

(http://www.sanger.ac.uk/Software/Artemis). It is implemented in Java, and is available for 

UNIX, GNU/Linux, BSD, Macintosh and MS Windows systems. Sequences and annotation 

can be read and written directly in EMBL, GenBank and GFF format. It can also read 

sequences in FASTA or raw format. 

All known prophage genes from the S. Typhi CT18 and S. Typhimurium LT2 genomes were 

extracted from these genomes and saved in FASTA format using the Artemis software. Each 

of these genes was then individually blasted against the S. Enteritidis PT4 genome using the 

“blast 2 sequences” tool (Tatusova and Madden, 1999) available from the NCBI homepage 

(http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi) with standard settings to locate 

similar genes or gene fragments in the raw sequence of the S. Enteritidis PT4 genome. In 

addition to that each of these genes was also blasted against all GenBank, EMBL, DDBJ and 

PDB sequences using BLASTN 2.2.10 (Altschul et al., 1997) to find similarities to known 

sequences of other Salmonella strains besides S. Typhi CT18 and S. Typhimurium LT2 

including other S. Typhimurium and S. Typhi strains, already annotated S. Enteritidis 

fragments and other Salmonella serovars already present in the database and to other closely 

related Enterobacteriaceae. The Artemis Comparison Tool (ACT) (Carver et al., 2005) was 

used for the comparison of the S. Enteritidis genome with the S. Typhi CT18 and S. 

Typhimurium LT2 genomes to identify prophage regions in the S. Enteritidis genome, and to 

analyse the genomic structure of these putative prophages. ACT is a DNA sequence 

comparison viewer based on Artemis, which allows an interactive visualisation of 

comparisons between complete genome sequences and associated annotations. The Artemis 
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components used to display the sequence are powerful tools for searching and analysis. The 

software is available from the Sanger Centre website 

(http://www.sanger.ac.uk/Software/ACT/) and distributed under the terms of the GNU 

General Public License. Like Artemis, ACT is written in Java and runs on UNIX, 

GNU/Linux, Macintosh and MS Windows systems. It can read complete EMBL and 

GENBANK entries or sequence in FASTA or raw format. Extra sequence features can be in 

EMBL, GENBANK or GFF format. The sequence comparison displayed by ACT can be 

generated with several different programmes; BLASTN, TBLASTX or Mummer comparisons 

between genomic DNA sequences, or orthologue tables generated by reciprocal FASTA 

comparison between protein sets. Regions of similarity, insertions and rearrangements at any 

level from the whole genome to base-pair differences can be identified. 

Due to the high similarity of the ФSE20 prophage region found in SE125109, the genome of 

SE125109 was also directly compared to the genome of Salmonella phage ST64B (GenBank 

accession number: AY055382) using ACT. To additionally identify other bacteriophages in 

the S. Enteritidis genome that are not present in the genomes of S. Typhimurium and S. Typhi, 

a database was set up containing the known bacteriophage sequences from the NCBI-website 

(http://www.ncbi.nlm.nih.gov/genomes/static/phg.html). This database was used to perform a 

BLAST analysis against the S. Enteritidis genome to detect any of these bacteriophages in this 

genome. The putative bacteriophage genes and prophage elements detected in the ACT-based 

genome comparison and the BLAST analyses were annotated in the S. Enteritidis PT4 

genome using the ACT software. All relevant hits that were obtained in the “blast 2 

sequences” analyses and all hits to Enterobacteriaceae that were obtained in the BLASTN 

analyses were annotated in the S. Enteritidis genome in a first step to enable the visualisation 

of clusters of putative bacteriophage genes. These clusters were then subject to manual 

curation using gene synteny. ORFs automatically displayed in Artemis in the non-annotated S. 

Enteritidis PT4 genome present in the previously identified clusters of bacteriophage genes 

were checked for their affiliation with the identified putative prophages. 

After identification of the putative prophage regions in S. Enteritidis, the G + C content of 

these regions was analysed using the Artemis software. 

Additionally, an analysis to identify pseudogenes and a Pfam-analysis will be performed at 

the Sanger Institute. Pfam is a large collection of multiple sequence alignments and hidden 

Markov models covering many common protein families. It is very useful to automatically 

assign a new protein to an existing protein family, even if the homology is weak (Bateman et 

al., 2004). 
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2.2.4 DNA extraction 

 

The NucleoSpin® Tissue Kit from Macherey-Nagel was used for the isolation of DNA from 

bacteria for use in the PCR applications. The basic principle underlying the DNA extraction 

with this kit is the reversible binding of DNA to a silica membrane depending on the ion 

concentration. A protocol modified for the extraction of DNA from bacteria was used. 

For the DNA isolation, all bacteria were grown as overnight cultures at 37 ° C under 

permanent shaking. 9 ml of TPB were inoculated with one bead from the Cryobank system 

used for the long-term storage of bacteria. 

1 ml of the overnight culture was centrifuged for 5 min at 8,000 x g in a Heräus Biofuge 

Fresco. The supernatant was removed and the pellet was carefully resuspended in 180 µl 

buffer T1 by pipetting up and down. 25 µl proteinase K solution were added and the mixture 

was carefully vortexed. The samples were incubated over night at 56 ° C. To remove RNA, 

20 µl of a 20 mg/ml RNase solution were added to the samples and after vortexing the 

samples were incubated at room temperature for 5 min. 200 µl buffer B3 were added to the 

samples. After vortexing they were incubated at 70 ° C for 10 min. The samples were 

vortexed briefly, then 210 µl (96-100 %) ethanol were added to the samples and they were 

vortexed vigorously. The samples were loaded onto NucleoSpin® Tissue columns that were 

placed into 2 ml collection tubes. The columns were centrifuged for 1 min at 11,000 x g in a 

Heräus Biofuge Fresco. The flow-through was discarded and 500 µl buffer BW were added in 

a first washing step. After centrifugation for 1 min at 11,000 x g in a Heräus Biofuge Fresco, 

the flow-through was again discarded and 600 µl buffer B5 were added in a second washing 

step. After another centrifugation step with the same parameters, the flow-through was again 

discarded. To dry the silica membrane another similar centrifugation step followed. To elute 

the isolated DNA, the NucleoSpin® Tissue columns were placed into a 1.5 ml eppendorf 

reaction tube and 100 µl elution buffer BE prewarmed to 70 ° C were added onto the column. 

After incubation at room temperature for 1 min, the DNA was eluted from the columns in a 

final centrifugation step of 11,000 x g for 1 min in the Heräus Biofuge Fresco. 

The DNA concentration was determined as described in 2.2.5. With final DNA concentrations 

between 45 ng/µl and 60 ng/µl, 1 µl of DNA solution was used in the consecutive PCR 

applications. The DNA was stored at –20 ° C.  

 

The components of the NucleoSpin® Tissue Kit were prepared and stored according to the 

manufacturer’s manual. 
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An RNase solution free of DNase was produced according to Sambrook et al., 1989. 100 mg 

RNase were dissolved in 5000 µl of 0.01 M NaAc solution (pH 5.2). The solution was 

incubated at 100 ° C for 15 min to deactivate DNases. To adjust the pH-level, 500 µl of a 1 M 

Tris Cl solution (pH 8.0) were added. Aliquots of the RNase solution were stored at –20 ° C. 

 

2.2.5 Determination of DNA concentration by UV-spectroscopy 

 

The DNA concentration in aqueous solutions was determined by measurement of the 

absorption at a wavelength of 260 and 280 nm (A 260 and A 280) in QS 1000 quartz cuvettes 

using a Lambda 2 UV/VIS spectrophotometer (Perkin Elmer). The DNA solutions were 

diluted 1:50 in H2O dest. (10 µl DNA solution + 490 µl H2O dest.). Measurements were made 

against water as a blank value. Purity of DNA was determined by measuring the A 260 / A 

280 ratio. The A 260 / A 280 ratio was expected to be 1.7-2.0 to indicate pure DNA. The 

DNA concentration was calculated according to Sambrook et al., 1989, using the following 

formula: 

 

[dsDNA] ( )
1000

260A  Dilution   50
µg/µl

××
=  

 

2.2.6 Polymerase Chain Reaction (PCR)4 

 

2.2.6.1 General principle 

 

The polymerase chain reaction is an in vitro method, which allows the amplification of 

defined DNA fragments using two specific oligonucleotide primers. The primers hybridize to 

opposite strands and flank the region of interest in the target DNA. The principle of the PCR 

technique was first described in 1986 by Mullis et al., and it was first applied to the 

amplification of human β-globin DNA for the prenatal diagnosis of sickle cell anaemia by a 

group in the Human Genetics Department at Cetus (Embury et al., 1987; Saiki et al., 1985; 

Saiki et al., 1986). It is based on a repetitive series of cycles, which involves a heat-related 

                                                 

4 The PCR process is protected under U.S. Patents 4,683,202, 4,683,195, and 4,965,188, or their foreign counterparts, 

owned by Roche Molecular Systems, Inc. and F. Hoffmann-La Roche Ltd ("Roche"). 
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template denaturation, the annealing of the primers and the extension of the annealed primers 

by a thermostable DNA polymerase. Under ideal conditions, the amplification of the target 

fragment whose termini are defined by the 5’ ends of the primers is exponentially. 

PCR technique was used in this study for a screening analysis of DNA from different 

Salmonella isolates for the presence of the four prophage regions identified in the genome 

comparisons: ФSE10, ФSE12/ФSE12A, ФSE14 and ФSE20. Additionally, two PCRs, of 

which one was specific for the genus Salmonella and the other one was initially believed to be 

specific for the serovar Salmonella Enteritidis were applied to characterize the strains used in 

the further analyses. 

 

2.2.6.2 PCRs for the characterisation of the used strains 

 

Two PCRs that are currently being evaluated in collaboration with Alejandra Velilla, Instituto 

Nacional de Tecnología Agropecuaria (INTA), Balcarce, Buenos Aires, Argentina, were used 

for the characterisation of the strains in the strain collection. 

 

2.2.6.2.1 Salmonella spp. PCR 

 

The Salmonella spp. PCR was modified after the PCR described by Way et al., 1993 for the 

specific detection of Salmonella spp. The sequences of the primer pair used for this reaction 

are shown in Table 2-5. The target for the PCR is the phoP/phoQ locus, which is part of the 

phosphorylation regulon regulating the expression of genes involved in virulence and 

macrophage survival in Salmonella (Miller et al., 1989). 

 

Primer Pair Name Sequence 

PhoPBis Forward 5’-TATGCGCGGTAGCGGCGTGTTGT-3’ 

PhoBBis Reverse 5`-GGCAATGATCTGCCCGGCGTATTGT-3’ 

Table 2-5: Primer pair sequence for Salmonella spp. PCR 

 

The reactions were performed in a volume of 25 µl in 0.2 ml eppendorf PCR tubes using a 

Biometra thermocycler T1. The composition of the reaction mixture is shown in Table 2-6. 
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 Final concentration Volume per reaction  

dd H2O  20.25 µl 

10 x buffer MgCl2 free 1 x 2.5 µl 

50 mM MgCl2 1,5 mM 0.75 µl 

PhoPBis Forward 0,1 µM 0.025 µl 

PhoBBis Reverse 0,1 µM 0.025 µl 

25 mM dNTP-Mix 200 µM 0.2 µl 

DyNAzyme 0,5 U 0.25 µl 

template DNA  1 µl 

Table 2-6: Composition of the reaction mixture for the Salmonella spp. PRC 

 

The PCR programme used for the reaction is shown in Table 2-7. 

 

Step Temperature Time Cycles 

Initial Denaturation 95 ° C 10 min 1 

Denaturation 95 ° C 30 sec 

Annealing 63 ° C 30 sec 

Elongation 72 ° C 1 min 

35 

Final Elongation 72 ° C 7 min 1 

Table 2-7: PCR programme for Salmonella spp. PCR 

 

To ensure the reagents used did not contain any contaminations, one reaction without addition 

of any template DNA was used as a negative control. DNA from the sequenced strain 

SE125109 was used as a template in another reaction as a positive control to ensure the 

overall function of the PCR. 

 

2.2.6.2.2 Salmonella Enteritidis PCR 

 

The Salmonella Enteritidis PCR was modified after the PCR described by Agron et al., 2001, 

which was initially believed to be specific for Salmonella Enteritidis. The sequences of the 
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primer pair used for this reaction are shown in Table 2-8. The target for the PCR is the lygD 

gene, which is part of the Sdf I region according to Agron et al., 2001. 

 

Primer Pair Name Sequence 

SdfI SE1063 Forward 5’-TGTGTTTTATCTGATGCAAGAG-3’ 

SdfI SE1063 Reverse 5’-CGTTCTTCTGGTACTTACGATG-3’ 

Table 2-8: Primer pair sequence for Salmonella Enteritidis PCR 

 

The reactions were performed in a volume of 25 µl in 0.2 ml eppendorf PCR tubes using a 

Biometra thermocycler T1. The composition of the reaction mixture is shown in Table 2-9. 

 

 Final concentration Volume per reaction  

dd H2O  20.25 µl 

10 x buffer MgCl2 free 1 x 2.5 µl 

50 mM MgCl2 1,5 mM 0.75 µl 

SdfI SE1063 Forward 0,1 µM 0.025 µl 

SdfI SE1063 Reverse 0,1 µM 0.025 µl 

25 mM dNTP-Mix 200 µM 0.2 µl 

DYNAzyme 0,5 U 0.25 µl 

template DNA  1 µl 

Table 2-9: Composition of the reaction mixture for the Salmonella Enteritidis PCR 

 

The PCR programme used for the reaction is shown in Table 2-10. 

 

Step Temperature Time Cycles 

Initial Denaturation 95 ° C 10 min 1 

Denaturation 95 ° C 30 sec 

Annealing 60 ° C 30 sec 

Elongation 72 ° C 1 min 

35 

Final Elongation 72 ° C 7 min 1 

Table 2-10: PCR programme for Salmonella spp. PCR 
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To ensure the reagents used did not contain any contaminations, one reaction without addition 

of any template DNA was used as a negative control. DNA from the sequenced strain 

SE125109 was used as a template in another reaction as a positive control to ensure the 

overall function of the PCR. 

 

2.2.6.3 Development and optimisation of specific PCRs for prophage screening 

 

2.2.6.3.1 Selection of target sequences and design of primers 

 

A PCR-based screening of DNA from different Salmonella isolates for the presence of the 

four previously identified prophage loci ФSE10, ФSE12/ФSE12A, ФSE14 and ФSE20 was 

performed. Three target sequences were chosen for each of the four bacteriophage loci: 

 

1. The 5’-end of the prophage region with primers that amplify a region overlapping the 

border between the Salmonella genome and the 5’-end of the prophage region. 

2. The 3’-end of the prophage region with primers that amplify a region overlapping the 

border between the 3’-end of the prophage region and the Salmonella genome. 

Due to an adjustment of the definite location of the putative prophage regions 

ФSE12A and ФSE20, after the PCR primers had been designed and the PCR based 

screening had been performed, the PCRs targeting the 3’-end in these putative 

prophage locations are located wholly within the putative prophage location. 

3. A region from within the bacteriophage locus with primers that amplify a region of 

interest conserved in relation to the prophage regions used for the genome 

comparisons: 

a) the putative conserved effector protein gene sseI in ФSE10 

(SEN0916), 

b) the putative conserved effector protein gene sopE in ФSE12 

(SEN1155), 

c) a region highly conserved in relation to the S. Typhimurium 

prophage ST18 in ФSE14 with the genes SEN1385 and 

SEN1386, 
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d) the immC region, a superinfection immunity system highly 

conserved in relation to ST64B from S. Typhimurium in 

ФSE20 (1955). 

 

The primers used for the analyses where designed using the DNA/RNA Primer Analysis 

Software OLIGO 4.1. Primers were designed to have melting temperatures (Td5) around 60 ° 

C. Primer positions were chosen to produce products sized between 788 and 1,014 bp. The 

primers were synthesized by Whatman Biometra. A complete list of the primers used with 

their sequences can be found in Table 2-13. 

 

2.2.6.3.2 Optimisation of PCR conditions 

 

Standard PCRs were performed in a volume of 25 µl in 0.2 ml eppendorf PCR 8-strip tubes. 

To find the optimal reaction conditions for every set of primers, each set was tested at 

different MgCl2 concentrations (2 mM, 4 mM and 6 mM) and different annealing 

temperatures for each of the different MgCl2 concentrations. To test out different annealing 

temperatures, the eppendorf Mastercycler gradient thermocycler, which allows creating a 

temperature gradient between the individual reaction tubes, was used. A default temperature 

of 58 ° C was used with a gradient of 10 ° C. The default temperature was adjusted, if no 

satisfying results were obtained. This procedure allowed the determination of optimised PCR 

conditions for each set of primers by choosing those conditions, which gave a good product 

yield and a specific amplification of the target sequence. See Table 2-11 for the PCR 

programme used for the optimisation of the annealing temperature. 

                                                 

5 Oligonucleotide Tm calculated according to the nearest neighbour method by the Oligo 4.1 software. 
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Step Temperature Time Cycles 

Initial Denaturation 94 ° C 4 min 1 

Denaturation 94 ° C 30 sec 

Annealing 

58 ° C 

R= 3.0 ° C / sec 

G= 10 ° C 

30 sec 

Elongation 72 ° C 1 min 

30 

Final Elongation 72 ° C 7 min 1 

R= Ramp Increment; G= Gradient 

Table 2-11: PCR programme for temperature optimisation 

 

The volumes and final concentrations of the PCR components used for the optimisation of the 

MgCl2 concentrations are shown in Table 2-12. 

 

 
Final 

concentration 

Volume per 

reaction  

Final 

concentration 

Volume per 

reaction 

Final 

concentration 

Volume per 

reaction 

 2 mM MgCl2 4 mM MgCl2 6 mM MgCl2 

dd H2O  19.25 µl  18.25 µl  17.25 µl 

10 x buffer 

MgCl2 free 
1 x 2.5 µl 1 x 2.5 µl 1 x 2.5 µl 

50 mM 

MgCl2 
2 mM 1 µl 4 mM 2 µl 6 mM 3 µl 

Primer F 1 µM 0.25 µl 1 µM 0.25 µl 1 µM 0.25 µl 

Primer B 1 µM 0.25 µl 1 µM 0.25 µl 1 µM 0.25 µl 

10 mM 

dNTP-Mix 
200 µM 0.5 µl 200 µM 0.5 µl 200 µM 0.5 µl 

DYNAzyme 0.5 U 0.25 µl 0.5 U 0.25 µl 0.5 U 0.25 µl 

template 

DNA 
 1 µl  1 µl  1 µl 

Table 2-12: Composition of the reaction mixture for the optimisation of the MgCl2 concentrations (25 µl 

reactions) 
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The primers used for the screening of the bacteriophage loci with the optimal annealing 

temperatures and MgCl2 concentrations determined in the optimisation experiments described 

above are shown in Table 2-13. 

 

Primer Pair Name Sequence Annealing 

Temperature 

MgCl2- 

Concentration 

SE10_5N_F 5’-TGCACATCATAGTAGTGGTGAA-3’ 

SE10_5N_B 5’-TTATAGATAGCGTAAGCCACTTC-3’ 
61.5 ° C 4 mM 

Target: SEN0908A / SEN0909 

expected product size: 887 bp 

SE10_3_F 5’-CGGTCAAGATACCAGGTAATAT-3’ 

SE10_3_B 5’-TATCACTATTCAAGCAGTTTGC-3’  
61.5 ° C 4 mM 

Target: SEN0921 

expected product size: 984 bp 

SE10_SSEI_F 5’-TGTAAATTTATAAAGGTTTTTTGTT-3’ 

SE10_SSEI_B 5’-TGCGCTTACATTTTACCTATTA-3’ 
56.1 ° C 2 mM 

Target: SEN0916 (sseI) 

expected product size: 999 bp 

SE12_5N_F 5’-GCTTTGTGATCCATCCAATA-3’ 

SE12_5N_B 5’-ACCCGGATACCAGAGATTAA-3’ 
58.8 ° C 4 mM 

Target: SEN1131 

expected product size: 986 bp 

SE12_3_F 5’-GTTAATACCCACCAGCAGTTC-3’ 

SE12_3_B 5’-GTTACAGGATGCAGTGGATCT-3’ 
64 ° C 2 mM 

Target: SEN1170 

expected product size: 997 bp 

SE12_SOPE_N_F 5’-GGCTATTATTTTGATGGTTGA-3’ 

SE12_SOPE_N_B 5’-TGTACATATAAAAGGAGCATTACC-3’ 
56.1 ° C 4 mM 

Target: SEN1155 

expected product size: 892 bp 

SE14_5N_F 5’-TTTCTTCGACGATTTTATATTCT-3’ 

SE14_5N_B 5’-GAAGATGGCAAAACATTTATG-3’ 
56.1 ° C 2 mM 

Target: SEN1378 

expected product size: 980 bp 
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Primer Pair Name Sequence Annealing 

Temperature 

MgCl2- 

Concentration 

SE14_3_F 5’-GAAAACACTGGACACACAGAAT-3’ 

SE14_3_B 5’-GCAATACAATATCCGATGATAGT-3’ 
64 ° C 2 mM 

Target: SEN1396A / 1398 

expected product size: 976 bp 

SE14_CONSERVED_F 5’-CCATTAAGAAAGTTATGACAGTGA-3’ 

SE14_CONSERVED_B 5’-ATTTCAACTAGAAGCAAGAATCA-3’ 
56.1 ° C 4 mM 

Target: SEN1385 / SEN1386 

expected product size: 991 bp 

SE20_5_F 5’-AGCTTGTGAGCTAAAGAAGATAA-3’ 

SE20_5_B 5’-TACCTGATGAAGGCAGAGTAATA-3’ 
56.1 ° C 4 mM 

Target: SEN1919A 

expected product size: 1,014 bp 

SE20_3_F 5’-GATGTATTGAAAATGAACTGGAA-3’ 

SE20_3_B 5’-AGGTTTACCAGAAGAGGTATAGC-3’ 
59 ° C 4 mM 

Target: SEN1966 / SEN1967 

expected product size: 788 bp 

SE20_IMMC_F 5’-ACGTGCTGTAACGTATAACCA-3’ 

SE20_IMMC-B 5’-GCTCTATGAGTGCAAATTACATT-3’ 
56.1 ° C 2 mM 

Target: SEN1955 

expected product size: 966 bp 

Table 2-13: Primers used for bacteriophage screening with optimal annealing temperatures and MgCl2 

concentrations 

 

2.2.6.4 Application of the PCR for the screening of prophage presence 

 

The primer-pairs shown in Table 2-13 were used to screen the strains from the strain 

collection described in 2.1.4 for the presence of the bacteriophages ФSE10, ФSE12/ФSE12A, 

ФSE14 and ФSE20. 

The reactions were performed in a volume of 25 µl in 0.2 ml eppendorf PCR tubes using a 

Biometra thermocycler T1. Depending on the optimised conditions evaluated as described in 

2.2.6.3.2, the reaction mixtures for final MgCl2 concentrations of 2 mM and 4 mM shown in 
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Table 2-12 were used. The respective PCR programmes used for the screening reactions are 

shown in Table 2-14. 

 

Step Temperature Time Cycles 

Initial Denaturation 94 ° C 4 min 1 

Denaturation 94 ° C 30 sec 

Annealing 

Depending on respective 

primer pair  

(see Table 2-13) 

30 sec 

Elongation 72 ° C 1 min 

30 

Final Elongation 72 ° C 7 min 1 

Table 2-14: PCR programme for prophage screening 

 

To ensure the reagents used did not contain any contaminations, one reaction without addition 

of any template DNA was used as a negative control. DNA from the sequenced strain 

SE125109 was used as a template in another reaction as a positive control to ensure the 

overall function of the PCR. This template should always give positive results in the PCR 

with all primer pairs used, as the sequence data used for the design of the respective primers 

was generated by the Sanger Institute using DNA from this strain. 

 

2.2.6.5 Analysis of the PCR products 

 

2.2.6.5.1 Agarose gel electrophoresis 

 

Agarose gel electrophoresis was used to analyse the obtained PCR products. Gel 

electrophoresis is a commonly used technique for the analysis of proteins and nucleic acids. 

Molecules are separated under the influence of an electrical field on the basis of their 

movement trough a gel. The negatively charged DNA molecules migrate to the anode. The 

movement of the molecules is slowed down by the agarose gel, which allows their separation 

by size. The mobility of linear DNA through agarose gels is inversely proportional to the log10 

of their molecular weight with shorter molecules moving faster. DNA moves slower in gels 

with higher agarose concentrations and faster at higher voltages. Corresponding to the 
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expected size of the PCR products, 1.0 % agarose gels were used for the analysis of the PCR 

products from the prophage screening experiments and 1.5 % agarose gels for the analysis of 

the products of the S. Enteritidis and Salmonella spp. PCR. 

To prepare the agarose gels, agarose was mixed with 1 x TAE-buffer to the desired 

concentration and then heated in a microwave oven until the agarose was completely melted 

and a clear solution was obtained. After cooling the solution to a temperature of about 60 ° C, 

the gel was carefully poured into the gel tray equipped with a sample comb. The gel 

polymerised when it was cooled down to room temperature. After removing the casting gates, 

the tray was placed in the electrophoresis chamber (Agagel Standard, Whatman Biometra) 

and covered with 1 x TAE-buffer, which was used as running buffer. For the gel-

electrophoretic analysis of the PCR products, 10 µl of each sample were mixed with 5 µl 

loading buffer. These samples were then loaded onto the gel after the sample comb had been 

carefully removed from the gel. A ready to use prestained mix of a lambda DNA Hind III 

digest and a φX174 DNA Hae III digest provided by Finnzymes was used as a DNA standard 

size marker. 5 µl of the DNA standard size marker were loaded onto the gel. 

Depending on the expected PCR product size and the gel concentration, the following 

voltages and running times were used: 

 

Bacteriophage screening PCR: 

 

1.0 % agarose gel, expected PCR product size: 788-1,014 bp. 

100 V for 30 min 

 

 

Salmonella spp. PCR and S. Enteritidis PCR: 

 

1.5 % agarose gel, expected PCR product sizes: 293 bp for the Sdf I fragment and 412 bp for 

the PhoPBis fragment. 

60 V for 10 min followed by 75 V for 60 min 

 

2.2.6.5.2 Visualization and analysis of the separated DNA fragments 

 

The agarose gels were stained for 30 min in a 0.0001 % ethidium bromide solution after the 

electrophoretic separation of the DNA fragments. Ethidium bromide is commonly used as a 
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nucleic acid stain. It intercalates between the bases of the DNA. When exposed to ultraviolet 

light, it will fluoresce with a red-orange colour, intensifying almost 20-fold after binding to 

DNA. The gel was placed on an ultraviolet transilluminator (TFX-20M UV-Transilluminator, 

Vilber Lourmat), which emits UV-light of 312 nm wavelength to visualize the 

ehtidiumbromide-stained DNA-fragments. The sizes of the PCR products were verified by 

comparing the products’ position on the gel with those of the DNA size marker. Polaroid 

photographs of the gels were taken for documentation using a DS 34 Polaroid camera. 

 

2.2.6.6 Buffers and solutions used for PCR and agarose gel electrophoresis 

 

Mg2+-free DyNAzyme buffer (10X) dNTP mix 

  

100 mM Tris-HCl 10 mM dATP 

500 mM KCl 10 mM dCTP 

1 % Triton X-100 10 mM dGTP 

 10 mM dTTP 

 

Mg2+-solution 

50 mM MgCl2  

 

TAE-buffer (50X stock solution) Gel loading buffer 

 

2 M Tris-acetate 40 % (w/v) saccharose 

50 mM EDTA 0.25 % (w/v) bromphenolblue 

 in 6X TAE-buffer 

TAE-buffer (1X) 

 Ethidium bromide staining solution 

40 mM Tris-acetate (0.0001 % solution) 

1 mM EDTA 

pH 8.3 1000 ml 1 x TAE buffer 

 100 µl 1 % Ethidium bromide solution 
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DNA standard size marker 

lambda DNA Hind φX174 DNA Hae III (Finnzymes) 

Fragment size (in bp): 23.130, 9.416, 6.557, 4.361, 2.322, 2.027, 1.353, 1.078, 872, 603, 564, 

310, 281, 271, 234, 194, 125, 118, and 72 

 

2.2.7 Microarray experiments 

 

Microarray technology was used in this study to detect the presence or absence of the genes 

located in the previously identified putative prophage locations and the genes in their direct 

vicinity. Additionally, the presence of the genes comprising the prophage locations in S. 

Typhi CT18 and S. Typhimurium LT2 in the eleven isolates tested was analysed as well. 

 

2.2.7.1 Overview of application for microarray technology 

 

Microarray technology can be used in gene expression analysis, gene discovery and gene 

mapping, diagnostics and drug discovery (Anon. 2002, Microarray Handbook). 

In differential gene expression analysis, levels of specific transcripts in two or more RNA 

samples are compared to identify differences in the abundance and identity of the transcripts 

they contain (Anon. 2002, Microarray Handbook). While one of the samples is the control, 

the others are derived from cells whose response or status is being investigated. This gives 

information about the cell state and the activity of genes. Changes in mRNA levels are related 

to proteome changes as they are precursors of translated proteins (Anon. 2002, Microarray 

Handbook). The effects of treating cells with chemicals, the consequences of over-expression 

of regulatory factors in transfected cells and the comparison of mutant strains with parental 

strains for the discovery of functional pathways have been investigated through differential 

gene expression (Anon. 2002, Microarray Handbook). Differential gene expression analysis 

has been applied to all kinds of tissues, plants, yeast and bacteria (Baldwin et al., 1999; 

Braxton and Bedilion, 1998; Mirnics et al., 2001; Schulze and Downward, 2001; Berkum, van 

and Holstege, 2001). In gene discovery and gene mapping, microarrays have been utilized in 

the identification of new genes for the annotation of genomes and in the identification of 

functional regulatory elements leading to the understanding of gene regulation (Lieb et al., 

2001; Shoemaker et al., 2001). In addition to that they have been applied to the analysis of 

genomic fragments derived from genomic analysis methods like genomic mismatch scanning 
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and representational difference analysis, and for the prediction of splice variants, the analysis 

of single nucleotide polymorphisms (SNPs) and mutations, and for sequencing (Drobyshev et 

al., 1997; Hu et al., 2001; Larsen et al., 2001; Meltzer 2001; Sapolsky et al., 1999). In the 

field of drug discovery, microarrays have been useful during different stages of the drug 

discovery process including the identification of potential drug targets and the analysis of 

their toxic properties and their function modes by examining the expression profiles they 

induce (Gray et al., 1998; Jain 2000; Lockhardt and Winzeler, 2000; Meltzer, 2001; van 

Berkum, van et al., 2001). 

 

2.2.7.2 General principle of microarray technology 

 

A DNA-microarray is an ordered collection of microspots, in which each spot contains a 

single defined species of a nucleic acid. The microarray technique evolved from Southern 

blotting and has been rapidly adopted as a flexible method for analysing large numbers of 

nucleic acid fragments in parallel. It is based on the hybridisation of two single-stranded 

nucleic acid molecules due to sequence complementarity (Anon. 2002, Microarray Handbook; 

Gabig and Wegrzyn, 2001; Southern et al., 1999; Wikipedia contributors, 2007). In 1995 and 

1996 the first papers, in which the term “microarray” was used, were published by the group 

of P.O. Brown at Stanford University (Schena et al., 1995; Schena et al., 1996). Despite the 

diversity of technical solutions that have been developed, all microarray systems share the 

following key components (Anon. 2002, Microarray Handbook): 

• an array, which contains immobilized nucleic acid sequences (targets) on a matrix 

• one or more labelled samples that are hybridised with the array (probes) 

• a detection system to quantify the hybridisation signal. 

There are two different types of DNA-microarrays: spotted microarrays and oligonucleotide 

arrays. Spotted microarrays are also known as two-channel or two-colour microarrays. In 

spotted microarrays, oligonucleotides, cDNA or small fragments corresponding to mRNAs 

are immobilised by high-speed robots on a solid surface e.g.: membranes, glass or silicon 

chips (Gabig and Wegrzyn, 2001; Lockhart et al., 1996; Schena et al., 1995; Schena et al., 

1996; Wikipedia contributors, 2007). Spotted microarrays are used for large-scale screening 

and expression studies in many cases. The sample DNAs used for the spotting of this type of 

array are amplified by PCR. In prokaryotes chromosomal DNA is amplified by gene-specific 

primers. The PCR products representing specific genes have a size of about 0.6-2.4 kb. After 
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purification of the PCR products by precipitation or gel filtration, they can be spotted onto a 

matrix to produce the array (Gabig and Wegrzyn, 2001). 

Oligonucleotide arrays are fabricated either by in situ light-directed chemical synthesis or by 

conventional synthesis followed by immobilisation of the prefabricated oligonucleotides on a 

glass substrate (Gabig and Wegrzyn, 2001; McGall et al., 1997; Wodicka et al., 1997). These 

arrays with short nucleotides of up to 25 bp are useful for the detection of mutations and 

expression monitoring, gene discovery and mapping (Gabig and Wegrzyn, 2001). The 

oligonucleotides can be designed to distinguish between alternative splicing variants or 

different alleles of a gene (Anon. 2002, Microarray Handbook). 

Membranes commonly used as matrixes are nitrocellulose and charged nylon membranes 

(Gingeras et al., 1987). Glass-based arrays are usually printed on microscope slides that are 

coated with poly-lysine, amino silanes or amino-reactive silanes to enhance the 

hydrophobicity of the slide and the adherence of the deposited DNA (Gabig and Wegrzyn, 

2001; Schena et al., 1996). Amino-modified DNA can be attached to slides that have been 

modified with aldehyde groups (Anon. 2002, Microarray Handbook). In a final step, the 

deposited DNA is split single-stranded by a heat or alkali treatment (Gabig and Wegrzyn, 

2001). The probes to be analyzed, which usually represent pools of cellular RNA or DNA are 

converted to a labelled population of nucleic acids consisting of several thousands of different 

labelled nucleic acid fragments that can be hybridized with a microarray and subsequently 

detected (Gabig and Wegrzyn, 2001; Anon. 2002, Microarray Handbook). Fluorescent dyes, 

especially the cyanine dyes Cy3 and Cy5 are predominantly used for labelling in microarray 

analysis. Fluorescent dyes offer a high sensitivity of detection and enable quantitative 

measurements. Choosing dyes with different pairs of excitation and detection wavelengths 

gives the opportunity to detect two or more different signals in one experiment to perform 

comparative analyses of two or more samples on one array. This reduces the experimental 

error because the hybridization conditions are the same for the samples on the same array 

(Anon. 2002, Microarray Handbook). The cyanine dyes Cy3 and Cy5 belong to a family of 

fluors that consist of a chemically-related group of fluorescent dyes whose emission spectra 

span the spectrum of visible light. They share a core structure, which consists of two 

heterocyclic indocyanine ring structures joined by a polymethine bridge. This bridge is 

different in each of the dyes, additional pairs of conjugated C atoms in the chain result in a 

wavelength shift of approximately 100 nm. The absorbance maximum is at 550 nm for Cy3 

and at 649 nm for Cy5. Cy3 and Cy5 have become the most commonly used pair of Cy dyes 

because they give bright fluorescent signals and possess a high photostability. Their 
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fluorescence is only minimally affected by factors such as pH level or the presence of DMSO. 

Because of their good spectral separation, each can be excited at a different wavelength and 

their emissions can be detected separately (Anon. 2002, Microarray Handbook). The 

excitation efficiency is usually highest when the dye’s absorption maximum correlates closely 

with the excitation wavelength of the imaging system (Anon. 2002, Microarray Handbook). 

Accurate information can only be obtained from microarray experiments if the labelled 

nucleic acids hybridize to their complementary target efficiently and with high specificity. 

The length of the labelled fragments strongly influences the efficiency and specificity of the 

hybridization reaction with probes consisting of fragments of 200-500 bp length giving 

optimal results (Anon. 2002, Microarray Handbook). To label samples for gene expression 

microarray analysis, several strategies based on molecular biology or chemical reactions have 

been developed. They must neither be biased towards any nucleotide sequences nor label 

differently transcripts of different sizes or sequences that are expressed at different levels so 

that all information present in the original transcript population are still present in the labelled 

form (Anon. 2002, Microarray Handbook). Labelling strategies for expression analysis have 

in common that they start with an RNA population. Only a small proportion of about 1.5 - 2.5 

% of the cellular RNA is mRNA. As most of the cellular RNA is ribosomal RNA, specific 

techniques are used in most cases to separate mRNA from ribosomal RNA prior to labelling 

and hybridisation (Anon. 2002, Microarray Handbook). 

Labelling strategies based on molecular biology utilise enzymes to convert mRNA into new 

populations of RNA or DNA. One strategy is to convert an mRNA population into a labelled 

first-strand cDNA population by copying the transcripts into cDNA molecules in a reaction 

catalyzed by a reverse transcriptase. Modified CyDye nucleotides are incorporated into the 

newly synthesized cDNA. In an alternative strategy, mRNA is converted into first-strand 

cDNA containing aminoallyl-dUTP. After elimination of mRNA templates, the amine groups 

in the cDNA are reacted with CyDye-NHS esters to generate a fluorescently labelled cDNA. 

The smaller aminoallyl nucleotides used in this cDNA post labelling method are more 

efficiently incorporated than CyDye nucleotides resulting in a higher yield and longer 

fragments. A more random attachment of labels compared to the first-strand DNA labelling 

method is achieved with this method because the sequences of the cDNAs being labelled do 

not have a major impact on the labelling outcome. Besides that the labelling process is 

independent of the structure of different fluorescent dyes resulting in an equal labelling 

intensity for each dye when different dyes are used. The yield of the labelled probe, the 

optimal labelling density and an equal labelling with different flours are critical factors in the 
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preparation of labelled probes for microarray analysis. To degrade the RNA template after 

cDNA synthesis RNase H can be used to digest the RNA component of the RNA-DNA 

heterohybrid. Alternatively the RNA strands can be degraded by raising the pH of the probe 

solution. The degradation is necessary to prevent the labelled probe from hybridizing with the 

original template instead of the microarray target during the microarray hybridization (Anon. 

2002, Microarray Handbook). Oligo(dT) primers can be used in labelling reactions to select 

mRNA from total RNA as they will hybridize with the poly-A-tail in the transcripts. This 

method will result in only one copy of cDNA that contains primarily 3’ sequences synthesized 

from each transcript. It is not suitable for bacterial mRNA as it lacks poly-A tails. To produce 

probes that contain sequences that are derived from all parts of transcripts, random primers 

can be used. Both priming strategies can also be combined. Another option is the use of 

specific primers, but this is more cost intensive, as a new set of primers has to be prepared for 

each different microarray. However, an advantage of this method is that only those sequences 

analyzed on the microarray are labelled. When using a chemical labelling method, mRNA can 

be directly labelled by coupling of modified CyDye reagent to RNA molecules. No RNA 

modification is required before labelling (Anon. 2002, Microarray Handbook). To label DNA 

a modified random prime labelling method can be used. This is a practical solution for 

genomic microarrays, although direct chemical labelling methods can be used as well. The 

use of random prime labelling methods is not recommended because of the necessity of two 

different enzymes to convert mRNA into a labelled form (Anon. 2002, Microarray 

Handbook). After labelling it is necessary to purify the labelled nucleic acids regardless of the 

labelling strategy to remove unincorporated fluorescent dye. The labelled probes can than be 

hybridized with the microarray. 

The hybridization process involves the annealing of a single-stranded nucleic acid to a 

complementary target strand. The binding of the labelled probe molecules to the sample on 

the slide highlights complementary sequences. The signal intensity is proportional to the 

amount of immobilized sample. The target molecules must be in excess of the corresponding 

labelled probe because the hybridization signal will be saturated otherwise (Anon. 2002, 

Microarray Handbook). The procedure usually starts with a pre-hybridization step, in which 

the spotted slide is incubated in a buffer in the absence of probe. During pre-hybridization, 

badly adhered target is removed. It might otherwise wash off during hybridization and then 

hybridize with probe in solution, which decreases the hybridization signal. The pre-treatment 

ensures that the target is available for hybridization through its denaturating condition. 

Additionally pre-hybridization is used to block all sites on the slide surface that could bind the 
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probe non-specific to lower the background (Anon. 2002, Microarray Handbook). The 

hybridization procedure can be carried out either using automated instruments or as a 

manually performed process. In this case usually the coverslip method is used. The 

hybridization buffer containing a known amount of labelled probe is placed on the slide 

surface and carefully covered with a coverslip. If two or more colours were used for the 

labelling of the probe, it is important to use exactly the same amount of probe labelled with 

each dye. This prevents the results from being in favour of one of the probes. Hybridization 

buffers normally vary in their composition but usually contain a buffering component to 

stabilize the pH level, a detergent, which allows the buffer to flow easily under the coverslip 

through a reduced surface tension, and compounds that act as rate enhancers and volume 

excluders or speed up the hybridisation and lower the Tm (Anon. 2002, Microarray 

Handbook). To prevent non-specific hybridization of the probe to common genetic elements, 

probe blocking should be performed. Usually blocking agents are added to the hybridization 

buffer containing the labelled probe prior to the application of the buffer to the slide. The 

solution should be heated to denature any double-stranded DNA. The blocking can then take 

place before the hybridization reaction is started. The slide is incubated in a humid 

environment to prevent the evaporation of the hybridization buffer for up to 16 h afterwards. 

The probe is in contact with the targets on the slide and will adhere to the target if the 

sequence homology is good. After completion of the hybridization, the slides are washed to 

remove probes with little or no homology and buffer. Normally SSC/SDS solutions of 

different concentrations are used for the post-hybridization washes. The primary wash 

solutions have high salt content and remove most of the hybridization buffer components. The 

consecutive wash solutions with a lower salt content should remove loosely bound probes and 

any remaining salt from the primary wash. Labelled probes with high homology will remain 

attached to the target and are available for detection (Anon. 2002, Microarray Handbook). 

After hybridization and washing, the fluorescent signals of the labelled probes bound to 

individual spots on the array can be detected with a confocal laser scanner. To scan 

microarrays that were hybridized with probes labelled with dyes with different pairs of 

excitation and detection wavelengths like the cyanine dyes Cy3 and Cy5, dual-wavelength 

confocal laser scanners are used. Wavelengths of 532 nm and 635 nm are required for Cy3 

and Cy5 respectively (Iida and Nishimura, 2002). The separately scanned images of each of 

the two probes are subsequently combined and coloured by means of a computer software. 

The scanned signal intensities of Cy3 and Cy5 should be at the same level to allow an 

accurate comparison of two samples. Due to in most cases different RNA or DNA starting 
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volumes of the labelled samples, the signal intensities of Cy3 and Cy5 must be adjusted to be 

as close as possible using sets of positive control genes. 

To simplify the normalization of signal intensities between samples, an adjustment of 

scanning levels is usually made during the scanning process (Iida and Nishimura, 2002). The 

hybridized microarray should be scanned immediately after the washing because the 

fluorescent dyes loose signal intensity with time. Especially in the case of Cy5, the 

fluorescent signal intensity can also decrease due to the repeated scanning of the microarray 

(Hal, van et al., 2000). To enable the identification of experimental errors in microarray 

experiments, the slides should contain replicate spots of each target. As stated above, 

microarray experiments should contain a series of controls to ensure the accuracy of the 

obtained data. DNA from organisms that are only distantly related to the organisms being 

studied is spotted onto the microarray slides as a negative control. This DNA should not 

hybridize with any labelled probe and therefore not produce any signal at all (Anon. 2002, 

Microarray Handbook). DNA labelled with CyDye flours is spotted onto the array as a 

positive control to verify the efficient binding of the target DNA to the slide surface during 

the hybridization and washing. Placing positive controls on different locations of the slides 

eases the spotfinding process by providing clearly detectable signals in known positions 

regardless of the probes used (Anon. 2002, Microarray Handbook). Housekeeping genes, 

which are expressed relatively consistently can be included in microarray experiments as 

controls to ensure proper hybridization. They can also be used as a normalization factor. 

Besides using different nucleic acid starting volumes in the labelling reaction, also relative 

incorporation levels of Cy3- and Cy5-labelld nucleotides during the labelling reaction and 

differences in the efficiency of detection of Cy3 and Cy5 by the detection system within the 

scanner can lead to differences between the relative Cy3 and C5 signals from one slide to 

another. To be able to compare ratio data between slides, the ratio data needs to be normalized 

to correct for experimental variations (Anon. 2002, Microarray Handbook). Two different 

approaches are usually used as normalization strategies (Duggan et al., 1999). When a general 

normalization method is applied, all target genes are considered for normalization (Hardwick 

et al., 1999; Ross et al., 2000). When a large-scale microarray consisting of thousands of 

genes is used, the Cy3 / Cy5 ratios are very likely to show a “bell-shaped curve” A similar 

situation for the Cy3 / Cy5 ratio can be expected when two probes are derived from closely 

related samples. The transcriptional levels of many genes are expected to be unchanged in this 

case. When divergent samples are compared, the transcriptional level may become more 

varied possibly resulting in a deviated distribution of the Cy3 / Cy5 rations towards one 
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sample. The same can happen when a small-scale microarray with hundreds or fewer genes is 

used. In such cases, a second approach, which is based on sets of selected normalization 

control spots such as housekeeping genes should be used (Iida and Nishimura, 2002; Lashkari 

et al., 1997; Loftus et al., 1999; Stephan et al., 2000). 

 

2.2.7.3 Microarray based analysis of prophage content in different S. Enteritidis 

phagetypes 

 

A Salmonella microarray as described below was used in this study to further investigate 

eleven isolates from the Salmonella strain collection. These were chosen based on the results 

of the PCR screening and are marked in bold in Table 2-4, which shows the strain collection. 

Strains that belonged to different phage types and showed varying patterns in the PCR 

analysis were selected. Additionally three different isolates belonging to the phage type 4 and 

including the vaccine strain AviPro® SALMONELLA VAC E and its parent strain Leipzig 

were included into the panel of the eleven strains to analyse if there is homogeneity of the 

prophage content within the same phage type and if there are differences between the vaccine 

strain and its parent strain in the putative prophage locations. 

 

2.2.7.3.1 Salmonella Microarray 

 

The PCR-product spotted Salmonella Microarray Generation IV constructed at the Sanger 

Institute, Cambridge, UK was used for the microarray analyses in this study. The Salmonella 

Microarray Generation IV is an extension of the previously described Salmonella Microarray 

Generation I and III (Anjum et al., 2005; Bishop, et al., 2005; Cooke et al., 2007, Thomson et 

al., 2004). The Generation IV array includes additional coding sequences from the Salmonella 

genomes being sequenced at The Wellcome Trust Sanger Institute 

(http://www.sanger.ac.uk/Projects/Salmonella/). Therefore it is an essentially non-redundant 

array containing features representing the following nine genomes: S. Typhi CT18, S. Typhi 

Ty2, S. Typhimurium LT2, S. Typhimurium DT104, S. Typhimurium SL1344, S. Enteritidis 

125109, S. Gallinarum 287/91, S. Paratyphi A ATTC9150, and S. bongori 12419. 
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2.2.7.3.2 DNA labelling 

 

The microarray experiments were performed as dye-swap experiments to prevent any bias in 

the data from uneven labelling. Each sample of interest and the reference DNA (SE125109) 

was labelled once with Cy3 and once with Cy5. The DNA used for the microarray 

experiments was isolated with the NucleoSpin® Tissue Kit as described in 2.2.4. A modified 

random-primed oligo-labeling method was used to label the DNA with Cy dyes as described 

below. 

A total of 2 µg DNA were diluted with TE to a total volume of 21 µl. The samples were 

sonicated on ice for 10 sec at level 2 with a Virsonic 300 sonicator (Virtis) to fragmentize the 

DNA and then mixed with 20 µl of 2.5X random primer solution followed by an incubation of 

the reaction mixtures at 100 ° C for 5 min. The tubes with the reaction mixtures were then 

snap-chilled on ice for 5 min. After spinning down the reaction mixtures for 15 sec at 2000 

rpm in a Micro Centaur centrifuge (Sanyo), they were placed back on ice where 5 µl of 10X 

dNTP mix were added. 3 µl of the respective Cy-labelled dCTP (dCTP-Cy3 or dCTP-Cy5) 

were added to each tube. The exposure of the Cy dyes to light was kept to a minimum. 1 µl of 

Klenow enzyme (from BioPrime® DNA Labeling System) was added to each reaction 

mixture. Klenow polymerase incorporates Cy3- or Cy5-labelled dCTP in a DNA synthesis 

reaction that is primed with random octamer primers. After spinning down for 15 seconds at 

2000 rpm (Micro Centaur centrifuge), they were incubated at 37 ° C for 2 h protected from 

light. 5 µl of stop buffer (from BioPrime® DNA Labeling System) were added to each 

reaction mixture. To purify the labelled nucleic acids AutoSeq G-50 columns (GE Healthcare) 

were used. To prepare the columns the resin was resuspended by gentle vortexing. After 

snapping of the bottom closure and loosening of the cap by one-quarter turn, the columns 

were placed in collections tubes for support and then centrifuged for 1 minute at 2,000 x g 

(Micro Centaur centrifuge). The column was then placed in a 1.5 ml eppendorf reaction tube 

and the labelled nucleic acids to be purified were slowly applied to the centre of the angled 

surface of the compacted resin bed. Special care was taken not to disturb the resin and not to 

allow any of the liquid to flow around the sides of the bed. The purified sample was collected 

at the bottom of the tube after spinning of the column for 1 min at 2,000 x g (Micro Centaur 

centrifuge). The labelled experimental DNA was pooled with the labelled reference DNA. 

Afterwards 1/10 volume of 3M NaAc pH 5.2 (11 µl) and 3 volumes of ethanol (100 %, RT, 

363 µl) were added, the components were mixed and then stored at -70 ° C for 30 min to 

precipitate the DNA. After centrifugation at RT for 10 min at 13,000 rpm (Micro Centaur 
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centrifuge), the supernatant was removed and 100 µl of ethanol (70 %, 4 ° C) were added to 

the purple pellet. Following a spin of 5 min at 13,000 rpm (Micro Centaur centrifuge), most 

of the supernatant was removed and a quick spin step of 5 sec was performed before the 

remaining supernatant was carefully removed with a pipette. The pellet was left at the air at 

room temperature to dry for 5 minutes. 30 µl of hybridization buffer and 6 µl of yeast t-RNA 

were added to each pellet, which was then resuspended with a pipette. The hybridization 

mixtures were placed in a temperature block at 100 ° C for 5 minutes and then left to cool 

down at RT for 10 minutes. After spinning the tubes for 15 sec to remove evaporated liquid 

from the lids they were gently vortexed. 

 

2.2.7.3.3 Slide hybridization 

 

The microarray slide and the LifterSlips to be used were cleaned immediately before use with 

pressurized air to remove dust. The hybridization mixture was transferred onto the middle of 

an inverted clean 60 x 25 mm LifterSlip. A microarray slide was then slowly lowered with the 

DNA side onto the LifterSlip carefully avoiding bubbles and misplacement. 

A Whatman filter paper with the inside dimensions of a Genetix hybridization chamber was 

moistened with 1.5 ml of 15 x SSC and then placed in the chamber. The microarrays were 

then put into the hybridization chamber and incubated at 49 ° C for 16 h in a hybridization 

oven. 

After the hybridization the microarrays were removed from the hybridization oven and 

immediately placed into a staining jar filled with wash solution 1 (2 x SSC, filter sterilized). 

The LifterSlip was left to fall off by itself. The microarray slides were then put into a slide 

rack and washed in a staining jar filled with 100 ml of solution 1 at room temperature for 5 

min with gentle shaking. The microarray slides in the slide rack were then transferred to wash 

solution 2 to be washed for 5 min at 65 ° C with gentle shaking as before. After repeating this 

washing step once with fresh wash solution 2, the microarray slides in the slide rack were 

transferred to wash solution 3 to be washed for 5 min at 65 ° C with gentle shaking. This 

washing step was repeated once with fresh wash solution 3. The microarray slides were then 

dried by centrifugation in the slide rack at 1200 rpm for 3 min and stored protected from light 

to be scanned. 
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2.2.7.3.4 Microarray data acquisition 

 

The microarray slides were scanned using an Axon 4000B scanner and the Genepix software 

was used to quantify the signal intensities. Quality control software features were routinely 

used. For each of the two fluorophores used, a separate scan was done and the images were 

then combined for analysis. A bounding box, fitted to the size of the DNA spots was placed 

over each array element. A scatter plot was visualized before normalization for the quick and 

easy comparison of slide replicates (1 forward and 1 reverse slide). Data from spots that were 

marred by dust particles or hybridization artefacts were excluded from further analysis. A gal 

file containing the feature name and any comment related to its synthesis (ID column, “A” for 

PCR failure”) as well as its coordinates in the array was created by M. Fookes and A. Ivens at 

the Sanger Institute, Cambridge, UK and loaded into the software. For each hybridised slide, a 

set of two tif files (one for each channel), a settings file (gps) and a results file (gpr) were 

created. 

 

2.2.7.3.5 Microarray data analysis and validation 

 

The Genepix results file (gpr) for each slide was slightly modified. Those array features, for 

which the percentage of pixels greater than two standard deviations (2SD) were below 85 % 

in at least one of the channels were labelled as marginal “M” in the flags column. 

The modified gpr files were imported into GeneSpring 7.2 (Silicon Genetics), a software 

package designed to display and analyze microarray data. For normalization, for each array 

feature the median pixel intensity for the local background was subtracted from the median 

pixel intensity of the feature independently of their status as being flagged “A” for bad or “M” 

for marginal. The slides were marked as “Forward” or “Reverse” with “Forward” representing 

cy5/cy3; test strain/control reference) for dye swap transformation. The intensities of the test 

strain per feature or spot were divided by those of the control strain and finally normalised per 

slide to the median. For all values of the control reference below 0.001 the value of 0.001 was 

used instead. Three commonly applied methods were used for the analysis of the normalized 

ratio data to determine the presence or absence of the respective genes (Cooke et al., 2007; 

Witney et al., 2005): 
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a) Twofold cut off: 

An arbitrary cut off of twofold was used for the identification of those genes present or 

absent in the tested strain in relation to the reference strain. The twofold cut off is the 

default on the GeneSpring microarray analysis software V7.2 (Silicon Genetics). For all 

strains the upper cut off was set at a ratio of 2 and the lower ratio at a ratio of 0.5. All 

results with a ratio below 0.5 were deemed to be absent or divergent to the reference 

strain, for all other results the genes were deemed to be present. 

 

b) 3SD: 

Instead of using a fixed-value cut off for all arrays as described above, a cut off based on 

the variation in the ratio data of the core genes was determined for each strain. The subset 

of coregenes, defined as those genes being present in all strains analysed, was determined 

by identifying those genes with a ratio between 0.5 and 2 on every single array. A total of 

3625 coregenes was determined for the strains analysed in this study. The standard 

deviation of ratios for genes within the subset of coregens was calculated for each strain to 

measure variation in the data. Then the ratio cut offs were set at 3 standard deviations 

(3SD) on either side of the median value for each strain. For each test strain, the standard 

deviation was calculated independently. The values that have been determined for the 

individual strains are shown in Table 2-15: 

 

Strain PT M 3SD M+3SD M-3SD 

       

125109 4 0.99700005 0.29561043 1.29261048 0.70138962 

Leipzig 4 0.98568227 0.34385855 1.32954082 0.64182372 

VAC E
1 

4 0.99820102 0.35932268 1.35752370 0.63887833 

04-03158 1 0.99237950 0.32878321 1.32116271 0.66359629 

03-01906 8 0.99450055 0.43643306 1.43093361 0.55806749 

03-03059 9b 0.99874554 0.33747977 1.33622531 0.66126576 

04-03092 11 1.01138960 0.32175189 1.33314149 0.68963771 

03-03561 13a 0.99863550 0.34268979 1.34132529 0.65594571 

02-00191 20 0.99136540 0.44272596 1.43409136 0.54863944 

02-06391 21 0.99735770 0.34822164 1.34557934 0.64913606 

04-03909 21c 0.99263288 0.39117163 1.38380450 0.60146125 

Table 2-15: Values determined for median (M); 3 standard deviations (3SD), and 3 standard deviations on 

either side of the median (M+3SD and M-3SD). As these figures were used for actual calculations, 8 

decimal places are displayed in the table. 

1AviPro® SALMONELLA VAC E 
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For all ratios above the M-3SD values the genes were deemed to be present, while for the 

other ratios they were deemed to be absent. 

 

c) GACK 

The gene calling software GACK was used as the third method for the analysis of the 

normalized ratio data. The programme is based on log2 ratios with trinary analysis and 

uses the distribution of the ratio data for each strain to classify genes based on the 

probability that a gene is either present or absent/divergent (Kit et al., 2002). 

 

The gene calling status has been determined by these three methods and was then recorded for 

each of the methods in a binary way with 1 indicating a present gene and 0 indicating an 

absent or divergent gene. 

For the analysis of the obtained data, the gene calling statuses for the putative prophage genes 

present in SE125109 and the genes in the direct vicinity of the putative prophage locations 

were extracted from the overall data set of almost 143,000 individual results for all strains 

analysed by microarray in this study. Additionally, the gene calling statuses for those genes 

comprising the prophage locations in S. Typhi CT18 and S. Typhimurium LT2, which were 

also used for the in silico analysis of the prophage content in SE125109, were also extracted 

from the overall data set for all strains analysed by microarray in this study. 

 

2.2.7.4 Buffers and solutions used for the microarray experiments 

 

TE-buffer pH 8.0 

 

10 mM Tris-HCl 

1 mM EDTA 

 

2.5X random primer solution (component of invitrogen BioPrime® DNA Labeling System) 

 

125 mM Tris-HCl pH 6.8 

12.5 mM MgCl2 

25 mM 2-mercaptoethanol 

750 µg/ml oligodeoxyribonucleotide primers (random octamers) 
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10X dNTP mix 

 

1.2 mM dATP 

1.2 mM dGTP 

1.2 mM dTTP 

0.6 mM dCTP 

in 

10 mM Tris pH 8.0 

1 mM EDTA 

 

Klenow Fragment (large fragment of DNA Polymerase I) 

(component of invitrogen BioPrime® DNA Labeling System) 

 

40 U/µl Klenow Fragment in 

50 mM potassium phosphate pH 7.0 

100 mM KCl 

1 mM DTT 

50 % Glycerol 

 

Stop buffer (component of invitrogen BioPrime® DNA Labeling System) 

 

0.5 m EDTA pH 8.0 

 

Hybridization buffer 

 

5 x SSC 

6 x Denhardt’s solution 

60 mM TrisHCl pH 7.6 

0.12 % sarkosyl 

48 % formamide 

sterile filtered 
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Wash solution 1 Wash solution 2 Wash solution 3 

 

2 x SSC 0.1 x SSC 0.1 x SSC 

sterile filtered 0.1 % SDS sterile filtered 

 sterile filtered 

 

2.2.8 Phage release and induction experiments 

 

2.2.8.1 Analysis of the inducibility of temperate bacteriophages 

 

To investigate the inducibility of the temperate prophages identified in the genome 

comparisons, chemically and physically inducing agents were applied to duplicate samples of 

the sequenced strain SE125109 that was used for the genome comparisons in this study. As a 

control, a pair of samples without exposure to inducing agents was incubated accordingly. 

A modified version of the soft-top agar overlay technique described by Adams (Adams, 1950) 

was used to detect bacteriophages released after induction of the temperate bacteriophages 

present in the strain investigated. 

 

2.2.8.1.1 Culture conditions for strains used in the induction experiments 

 

The strain used for the induction experiments (SE125109) and the indicator strain (STm 576) 

used for the detection of bacteriophages released after induction of the temperate 

bacteriophages present in the strain investigated were grown as overnight cultures at 37 ° C 

under permanent shaking. 9 ml of TPB were inoculated with one bead from the Cryobank 

system used for the long-term storage of bacteria. As a control for media sterility, TPB 

without inoculation was incubated similarly. 
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2.2.8.1.2 Induction of the temperate bacteriophages 

 

2.2.8.1.2.1 Chemical induction using mitomycin C 

 

Mitomycin C was used as a chemical inducer in the induction experiments according to the 

method described by Mirold et al. (Mirold et al., 1990). A mitomycin C stock solution was 

prepared according to 2.2.8.1.3. 150 µl of the fresh overnight culture described in 2.2.8.1.1 

were diluted in 1.5 ml TPB supplemented with 3 µl of the mitomycin C stock solution (final 

mitomycin C concentration: 2 µg/ml) and incubated at 37 ° C for 6 h. One duplicate pair of 

each sample was incubated under permanent shaking, while another duplicate pair was 

incubated without shaking. 

 

2.2.8.1.2.2 Physical induction using UV light 

 

UV light with a wavelength of 312 nm was used for the physical induction of the temperate 

bacteriophages present in the strain investigated. 150 µl of the fresh overnight culture 

described in 2.2.8.1.1 were diluted in 1.5 ml TPB and transferred to a 55 mm dish. The petri 

dishes were irradiated with UV light for 30 sec by placing them on the TFX-20M UV-

Transilluminator. The samples were incubated at 37 ° C for 6 h afterwards. 

 

2.2.8.1.3 Preparation of mitomycin C stock solution 

 

Mitomycin C stock solution (2 µg/µl) 

5 mg Mitomycin C were dissolved in 2.5 µl ddH2O. 50 µl aliquots were stored at – 20 ° C. 

 

2.2.8.1.4 Preparation of purified phage lysates 

 

After incubation, the samples were processed by centrifugation at 10,000 x g for 5 min at 4 ° 

C. Filtration trough 0.45 µm membrane filters then purified the supernatant. The lysates were 

stored in 1.5 ml eppendorf tubes at 4 ° C. To test the sterility of the lysates after the 

membrane filtration, material was streaked out onto Columbia blood agar plates with 10 µl 
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inoculation loops. The blood agar plates were incubated for 48 hours at 37 ° C. If no growth 

could be detected on the plates after this incubation time, the lysates were considered to be 

sterile. 

 

2.2.8.1.5 Preparation of the soft top test agar 

 

A semi-solid Standard I Nutrient Agar was prepared according to 2.1.5. The molten agar was 

cooled down to a temperature of 45 ° C. 2 ml of the liquid agar were substituted with 100 µl 

of a fresh overnight culture of the Salmonella Typhimurium strain STm 576. The mixture was 

poured into 55 mm petri dishes to become solid. 

 

2.2.8.1.6 Analysis of the phage lysates on soft top test agar 

 

To test the purified phage lysates described in 2.2.8.1.4 for released phages, 5 µl each of the 

purified supernatants to be tested were spotted onto the soft top test agar plates described in 

2.2.8.1.5 at four different locations as shown in Figure 2-1. The plates were incubated 

overnight at 37 ° C. They were then checked at each of the positions where phage lysates had 

been spotted onto the plates for the formation of plaques within the bacterial lawn that had 

grown during the overnight incubation. 

 

 

 

 

 

 

Figure 2-1: Positions of the phage lysate spots on the soft-top test agar. 

 

2.2.8.2 Analysis of the spontaneous release of temperate bacteriophages 

 

The spontaneous release of temperate bacteriophages from the strains analysed in the 

microarray experiments was assayed by a spot test method modified from Schickelmaier and 
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Schmieger based on the classic Fisk method (Fisk, R.T., 1942; Schickelmaier and Schmieger, 

1995). 

 

2.2.8.2.1 Culture conditions for the spontaneous release of temperate bacteriophages 

 

All strains used for the assay were grown as overnight cultures at 37 ° C under permanent 

shaking. 9 ml of TPB were inoculated with one bead from the Cryobank system used for the 

long-term storage of bacteria. As a control for media sterility, TPB without inoculation was 

incubated similarly. 

 

2.2.8.2.2 Preparation of purified phage lysates 

 

To prepare purified phage lysates, 1.5 ml of the overnight cultures with the strains to be tested 

and the control without inoculation were each purified by filtration trough 0.45 µm membrane 

filters. The lysates were stored in 1.5 ml eppendorf tubes at 4 ° C. To test the sterility of the 

lysates after the membrane filtration, material was streaked out onto Columbia blood agar 

plates with 10 µl inoculation loops. The blood agar plates were incubated for 48 hours at 37 ° 

C. If no growth could be detected on the plates after this incubation time, the lysates were 

considered to be sterile. 

 

2.2.8.2.3 Cross-screening for the susceptibility of strains for phage infection and 

detection of the released phages 

 

To test strains for their susceptibility for phage infection, 1 ml of the overnight culture of the 

strain to be tested was transferred onto a 92 mm Standard-I agar plate and evenly distributed 

on the plate by carefully agitating the plate into all directions. After the overnight culture 

solution had permeated into the plate for 5 min, the excess volume of solution was removed 

from the plate. The plates were now given 20 min to dry on their surface. 

To test the purified phage lysates described in 2.2.8.2.2 for spontaneously released phages 

that are capable of infecting other Salmonella strains, the lysates were applied onto the 

Standard-I-agar plates coated with the overnight cultures to be tested as described above. Up 

to 20 positions where the lysates to be tested could be spotted onto the plates were marked. At 
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each of these position 20 µl of the purified phage lysate to be tested or the control was spotted 

onto the dried Standard-1-agar plate as shown in Figure 2-2, and the lysate was given time to 

dry. The plates with the lysate spots were incubated overnight at 37 ° C. They were then 

checked at each of the positions where phage lysates had been spotted onto the plates for the 

formation of plaques within the bacterial lawn that had grown during the overnight 

incubation. After keeping the plates at room temperature for up to 72 hours, they were 

checked for the formation of plaques again. In accordance with Fisk (1942), the phage action 

can sometimes be seen following the initial incubation but is most often detectable more 

clearly after the plates have been kept at room temperature. The plates were checked for the 

formation of plaques with a colony counter (IUL Instruments) and a binocular (Zeiss). Photo 

documentation was made using a Nikon DS-5M digital camera. 

 

 

 

 

 

 

 

 

 

 

Figure 2-2: Positions of the phage lysate spots on the agar plate. 
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3 Results 

 

3.1 Genome analysis 

 

The genome data generated in this work was integrated into the full annotation of the S. 

Enteritidis PT4 genome done by “The Pathogen Sequencing Unit”, The Wellcome Trust 

Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK and submitted 

to EMBL under the accession number S. Enteritidis PT4 genome AM933172. The overall 

results of the full annotation of the S. Enteritidis PT4 genome and its comparison to S. 

Gallinarum 287/91 have been published in Genome Research (Thomson et al., 2008) and the 

publication includes results from this study. 

Four clusters of putative bacteriophage genes were detected in the genome of S. Enteritidis 

PT4. These led to the identification of 5 prophage-like elements as a result of the genome 

comparisons described above. The S. Enteritidis prophages were named ФSE10, ФSE12, 

ФSE12A, ФSE14 and ФSE20 after their position in the genome and are described in detail 

below. The position of the identified prophage regions are displayed in the Circular 

representation of the S. Enteritidis PT4 chromosome published in Thomson et al., 2008. 

Orthologues of the CDS present in the S. Enteritidis prophages described below that are 

present in non-prophage locations in S. Typhimurium or S. Typhi are not mentioned unless 

there is evidence for genes of importance being taken up by these prophage regions as they 

are often only single scattered remnants found isolated in the genome. 
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Figure 3-1: Circular representation of the S. Enteritidis PT4 chromosome (from Thomson et al., 2008): 
From the outside in, the outer circle 1 marks the position of regions of difference. Circle 2 shows the size in base 
pairs. Circles 3 and 4 show the position of CDS transcribed in a clockwise and anti-clockwise direction, 
respectively (for colour codes see below); circle 5 shows the position of S. Enteritidis PT4 pseudogenes. Circles 
6 and 8 show the position of S. Enteritidis PT4 genes that have orthologs (by reciprocal FASTA analysis) in S. 

Typhimurium strain LT2 (all CDS coloured green) and S. Gallinarum strain 287/91 (all CDS coloured blue), 
respectively. Circles 7 and 9 show the position of S. Enteritidis PT4 genes that lack orthologs (by reciprocal 
FASTA analysis) in S. Typhimurium strain LT2 (all CDS coloured pink) and S. Gallinarum strain 287/91 (all 
CDS coloured gray), respectively. Circle 10 shows the position of S. Enteritidis PT4 rRNA operons (red). Circle 
11 shows a plot of G + C content (in a 10-kb window). Circle 12 shows a plot of GC skew ([G _ C]/[G + C]; in a 
10-kb window). Genes in circles 3 and 4 are colour-coded according to the function of their gene products: dark 
green, membrane or surface structures; yellow, central or intermediary metabolism; cyan, degradation of 
macromolecules; red, information transfer/cell division; cerise, degradation of small molecules; pale blue, 
regulators; salmon pink, pathogenicity or adaptation; black, energy metabolism; orange, conserved hypothetical; 
pale green, unknown; and brown, pseudogenes. 
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3.1.1 ФSE10 

 

The prophage remnant ФSE10 extends over a range of 8,186 bps (1013381-1021566) and is 

predicted to encode 8 intact CDS (coding sequences) and 5 pseudogenes (see Table 3-1). 

ФSE10 is similar in parts to regions of the lambda-like phage Gifsy-2, but also harbours one 

pseudogene (SEN0914) with similarity to a gene encoding a putative tail fibre assembly 

protein (STM2705) in the P2-like phage Fels-2 from S. Typhimurium. Orthologues of some 

of the genes present in Gifsy-2 that are found in ФSE10 are also carried by other prophages 

present in S. Typhimurium or S. Typhi. In these cases they are also listed in Table 3-1. Two 

genes in ФSE10 (SEN0910 and SEN0912) encode hypothetical phage proteins for that no 

putative function could be assigned by the applied comparison methods. 

 

CDS genome location  putative gene function orthologue genes carried by 

SEN0908A 

pseudogene 

1013381..1013578 phage integrase (remnant) 

similar to E. coli putative 

transposase 

STM1005 

STY1011 

Gifsy-2 

ST10 

SEN0909 

pseudogene 

1013579..1013812 prophage 

exodeoxyribonuclease 

(remnant) 

similar to enterohemolysin 1 

in E. coli 

STM1008.S 

STM2633.S 

STY2074 

Gifsy-2 

Gifsy-1 

ST18 

SEN0910 1013812..1014334 hypothetical phage protein   

SEN0912 1014335..1015051 hypothetical phage protein   

SEN0912A 1015048..1016757 chimeric prophage tail protein 

(the product of a deletion 

event) 

STM0926 

STM1049 

STM2588 

Fels-1 

Gifsy-2 

Gifsy-1 

SEN0913 1016757..1017338 phage tail fibre assembly 

protein 

STM0927 

STM1050 

STM2586 

STM2704 

Fels-1 

Gifsy-2 

Gifsy-1 

Fels-2 

SEN0914 

pseudogene 

1017342..1017557 putative tail fibre assembly 

protein (remnant) 

STM2705 

STY1073 

STY2013 

Fels-2 

ST10 

ST18 
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CDS genome location  putative gene function orthologue genes carried by 

SEN0916 1017816..1018784 sseI 

putative type III secreted 

protein 

STM1051 Gifsy-2 

SEN0916A 

pseudogene 

1018882..1019300 putative insertion sequence 

protein (remnant) 

STM1052 Gifsy-2 

SEN0917 1019432..1020058 hypothetical phage protein STM1053 Gifsy-2 

SEN0918 

pseudogene 

1020127..1020366, 

1020368..1020421 

 

 

hypothetical phage protein STM1054 Gifsy-2 

SEN0920 1020418..1021104 gtgE 

prophage-encoded virulence 

factor 

STM1055 Gifsy-2 

SEN0921 1021375..1021566 gtgF 

prophage-encoded virulence 

protein 

STM1056 Gifsy-2 

Table 3-1: ФSE10 gene content 

 

3.1.2 ФSE12/ФSE12A 

 

The prophage remnants ФSE12 and ФSE12A are located adjacent to each other. ФSE12 is 

predicted to be 17,753 bps in size (1226471-1244223) and to encode 17 intact CDS and 8 

pseudogenes (see Table 3-2). Like ФSE10, ФSE12 is similar in parts to regions of the 

lambda-like phage Gifsy-2. Orthologues of some of the genes present in Gifsy-2 are also 

carried by other prophages present in S. Typhimurium or S. Typhi. In these cases they are also 

listed in Table 3-2. The 5’-end of ФSE12 seems to have a different origin as it shows more 

similarity to a lambda-like ST18 phage from S. Typhi. Two genes in ФSE12 (SEN1134 and 

SEN1140) encode hypothetical phage proteins for that no putative function could be assigned 

by the applied comparison methods. One gene (SEN1136) shows a weak similarity to a 

putative phage protein from ST10, another gene (SEN1139) shows a weak similarity to the 

phage antitermination protein Q found in Gifsy-1. The very 3’-end of ФSE12 harbours the 
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sopE gene found in the P2-like phage SopE in S. Typhimurium and a pseudogene encoding a 

fragment of a putative site-specific DNA invertase that has probably been truncated following 

the acquisition of the adjoining sopE gene locus. Only separated by one gene conserved 

between different Salmonella serovars that encodes a hypothetical protein (SEN1157), 

ФSE12A lies directly adjacent to ФSE12. ФSE12A is predicted to extend over a range of 

8040 bps (1246083-1254122) and to encode 4 intact CDS and 8 pseudogenes (see Table 3-2). 

The genes and pseudogenes identified in ФSE12A display a mosaic of genes from related 

bacteriophages (ST10, ST18, Gifsy-1, Gifsy-2 and Fels-1). There is a strong similarity 

between ФSE12A and the CS 40 island in S. Typhimurium. One gene in ФSE12A (SEN1163) 

encodes a putative phage membrane protein for that no similarity in the phages used for the 

comparisons was found, and the two pseudogenes SEN1171 and SEN1171A do only show 

similarities to the CS 40 island in S. Typhimurium mentioned above but not to any of the 

phages used for the comparisons. 

 

CDS genome location  putative gene function orthologue genes carried by 

SEN1131 

 

1226471..1227550 putative integrase 

similar to many 

bacteriophage integrases e.g. 

bacteriophage HK022 

integrase 

STY2077 ST18 

SEN1132 1227525..1227803 putative excisionase 

similar to phage excisionases 

e.g. E. coli excisionase xis, 

and bacteriophage lambda 

excisionase xis 

STY2076 ST18 

SEN1133 1228217..1230196 putative phage-encoded 

hydrolase 

STY2004 adjacent to 

5’-end of 

ST18 

SEN1134 1230217..1230453 putative phage membrane 

protein 
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CDS genome location  putative gene function orthologue genes carried by 

SEN1135 1230491..1230613 hokW 

phage-encoded Hok-like 

membrane protein 

STY2054 

(similar to cell-

killing genes 

toxin/antitoxin 

system comprised 

of two overlapping 

transcriptional 

units (hok/mok); 

this CDS is 

equivalent to hok 

(host cell killing)) 

 

ST18 

SEN1136 1230831..1231133 hypothetical phage protein STY1033 

(weak similarity) 

ST10 

SEN1137 1231197..1231796 hypothetical phage protein STY2052 

STM1020 

ST18 

Gifsy-2 

SEN1138 

pseudogene 

1231868..1232020 ninG protein (remnant) STY1035 

STM1021 

STM2619 

ST10 

Gifsy-2 

Gifsy-1 

SEN1139 1232150..1232839 phage antitermination protein 

Q 

STM2617 

(weak similarity) 

Gifsy-1 

SEN1140 1232930..1233460 hypothetical phage protein   

SEN1141 

pseudogene 

1233694..1233744 hypothetical phage protein STM1024 

STY1038 

STY2045 

Gifsy-2 

ST10 

ST18 

SEN1142 1233834..1234283 putative phage lipoprotein STM1025 

STY1039 

Gifsy-2 

ST10 
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CDS genome location  putative gene function orthologue genes carried by 

SEN1143 1234644..1235330 pipA 

putative bacteriophage-

encoded virulence protein 

STM1026 (gtgA) 

STM2614 (gogA) 

(pipA present on 

SPI-5 in many 

Salmonella 

serovars) 

Gifsy-2 

Gifsy-1 

SEN1144 1235591..1235935 putative bacteriophage holin STM1027 

STM2613 

Gifsy-2 

Gifsy-1 

SEN1145 1235919..1236371 nucD 

putative phage lysozyme 

STM1028 

STM2612 

Gifsy-2 

Gifsy-1 

SEN1146 1236389..1236868 putative phage lysozyme STM1029 

STM2611.S 

STM0908 

Gifsy-2 

Gifsy-1 

Fels-1 

SEN1147 

pseudogene 

1237076..1237387 putative phage terminase, 

small subunit 

(remnant) 

STM1030 Gifsy-2 

SEN1148 

pseudogene 

1237389..1237646 ompX 

phage attachment and 

invasion protein 

(remnant) 

STM1043 

STM0920 

Gifsy-2 

Fels-1 

SEN1149 1237763..1238296 sodCI 

phage-encoded superoxide 

dismutase [Cu-Zn] precursor 

STM1044 Gifsy-2 

SEN1150 1238386..1239081 phage minor tail protein STM1045 

STM2592 

STM0921 

Gifsy-2 

Gifsy-1 

Fels-1 

SEN1151 

pseudogene 

1239091..1239351 phage tail assembly protein 

(remnant) 

STM1046 

STM2591 

STM0922 

Gifsy-2 

Gifsy-1 

Fels-1 

SEN1152 

pseudogene 

1239351..1241717, 

1241719..1242585 

phage tail fibre protein 

involved in host recognition 

(remnant) 

STM1048/1048.1N 

STM2589 

STM0925.S 

Gifsy-2 

Gifsy-1 

Fels-1 
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CDS genome location  putative gene function orthologue genes carried by 

SEN1154 

pseudogene 

1242641..1242934 ycdD 

tail fibre assembly protein 

(remnant) 

STM1050 

STM2586 

STM0927 

STM2704 

STY1075 

Gifsy-2 

Gifsy-1 

Fels-1 

Fels-2 

ST10 

SEN1155 1243136..1243858 sopE 

type III secretion system, 

secreted effector protein 

STY4609 SopE 

SEN1156 

pseudogene 

1244065..1244223 putative site-specific DNA 

invertase (fragment) 

STY1075 

STY1643 

STY4608 

ST10 

ST15 

SopE 

End of ФSE12 

SEN1157 1244338..1245138 conserved hypothetical 

protein 

  

Beginning of ФSE12A 

SEN1158 

pseudogene 

1246083..1246978 intE 

putative phage integrase 

(remnant) 

STY2077 ST18 

SEN1160 

pseudogene 

1247057..1247556 recE 

exodeoxyribonuclease VIII 

(remnant) 

STM1009 

STY2632 

STY2073 

Gifsy-2 

Gifsy-1 

ST18 

SEN1161 

pseudogene 

1247719..1247907, 

1247911..1247967 

phage-encoded chitinase 

protein (remnant) 

STM0907 

STY1042 

Fels-1 

ST10 

SEN1162 1247964..1248497 exported phage protein STM0908 

STY1043 

Fels-1 

ST10 

SEN1163 1248754..1248921 putative phage membrane 

protein 

  

SEN1164 1249229..1249720 putative phage terminase; 

small subunit 

STM0909 Fels-1 

SEN1165 

pseudogene 

1249707..1249863, 

1249865..1250274 

putative phage terminase; 

large subunit (remnant) 

STM0910 

STM1031 

Fels-1 

Gifsy-2 
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CDS genome location  putative gene function orthologue genes carried by 

SEN1167 

pseudogene 

1250279..1252325 mig-3 

this CDS has been subject to 

multiple deletion events and 

contains sequence 

resembling phage tail 

assembly protein (remnant) 

and phage tail collar protein 

(remnant) 

STM1049 

STM1050 

STM2586 

STM2587 

STM2588 

STM0926 

STM0927 

STM2706 

STY3691 

Gifsy-2 

Gifsy-2 

Gifsy-1 

Gifsy-1 

Gifsy-1 

Fels-1 

Fels-1 

Fels-2 

ST35 

SEN1170 1252422..1252622 pagK 

phage-encoded pagK 

(phoPQ-activated protein) 

STM2585A Gifsy-1 

SEN1171 

pseudogene 

1253079..1253201 transposase (remnant)   

SEN1171A 

pseudogene 

1253530..1253696 pagM 

phage-encoded pagM 

(phoPQ-activated protein) 

  

SEN1171B 

pseudogene 

1253979..1254122 putative DNA invertase 

(remnant) 

STY1075 ST10 

Table 3-2: ФSE12 gene content 

 

3.1.3 ФSE14 

 

ФSE14, the third prophage-like region in the S. Enteritidis genome, is predicted to extend 

over a distance of 12,642 bps (1469390-1482031) and to encode 18 intact CDS and 3 

pseudogenes (see Table 3-3). While most of the genes code for putative phage proteins and 

show similarities to genes of the lambda-like phage ST18 from S. Typhi, there are also some 

genes harboured in ФSE14, for which no significant database hits revealing similarities to 

known genes were found. Additionally, one gene (SEN1394) with some similarity to a gene 

found in ST10 is present in ФSE14. A homologue of the lygE gene was found in ФSE14 but 
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not included into the final annotation of SE125109 by the Sanger Institute. It has been 

included into Table 3-3 for information. 

 

CDS genome location  putative gene function orthologue genes carried by 

SEN1378 

(pseudogene) 

1469415..1469723 putative phage integrase 

(remnant) 

  

SEN1379 1469680..1470303 putative phage-encoded 

exodeoxyribonuclease (lygA) 

  

SEN1380 1470325..1470642 predicted phage protein 

(lygB) 

  

SEN1381 1470727..1470948 FtsZ inhibitor protein  

(kil/ydaD) 

STY2070 ST18 

SEN1382 1471371..1471907 putative phage membrane 

protein (lygC) 

  

SEN1383 1472555..1473022 predicted phage protein 

(lygD) 

  

SENXXXX* 1473126..1473479 (lygE)   

SEN1384 1473295..1473624 putative phage-encoded 

DNA-binding protein (lygF) 

STY2060 ST18 

SEN1385 1473786..1474340 putative phage membrane 

protein 

STY2058 ST18 

SEN1386 1474337..1475269 predicted phage protein STY2057 ST18 
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CDS genome location  putative gene function orthologue genes carried by 

SEN1387 1475696..1475851 

 

 

 

 

 

 

 

 

 

 

 

 

 

1475639..1475851 

 

regulatory peptide whose 

translation enables hokC 

expression; small toxic 

peptide (hokC) 

 

 

 

 

 

 

 

 

 

 

regulatory peptide whose 

translation enables hokC 

expression (MokW); 

regulator of hokC 

STY2054 

(similar to cell-

killing genes 

toxin/antitoxin 

system 

comprised of two 

overlapping 

transcriptional 

units (hok/mok); 

this CDS is 

equivalent to hok 

(host cell 

killing)) 

 

STY2054A 

(host cell-killing 

modulation 

protein, similar 

to cell-killing 

genes 

toxin/antitoxin 

system 

comprised of two 

overlapping 

transcriptional 

units (mok/hok); 

this CDS is 

equivalent to mok 

(modulation of 

host cell killing)) 

 

ST18 

 

 

 

 

 

 

 

 

 

 

 

 

 

ST18 

SEN1388 1476127..1476312 predicted phage protein   
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CDS genome location  putative gene function orthologue genes carried by 

SEN1389 1476375..1476974 hypothetical protein STY2052 ST18 

SEN1390 1476974..1477264 putative bacteriophage 

protein 

STY2051 ST18 

SEN1391 1477141..1477797 hypothetical protein STY2050 ST18 

SEN1392 1479296..1479544 predicted phage protein   

SEN1393 1479968..1480363 putative bacteriophage 

protein 

  

SEN1394 1480457..1480744 putative prophage membrane 

protein 

STY1041 ST10 

SEN1395 1480741..1481286 conserved phage protein   

SEN1396 1481283..1481492 putative phage-encoded 

exported protein 

  

SEN1396A 

pseudogene 

1481726..1481776 part of a duplicated sequence   

SEN1398 

pseudogene 

1481828..1482031 putative lambdoid prophage 

rac integrase 

  

*(not included into annotation by Sanger Institute) 

Table 3-3: ФSE14 gene content 

 

3.1.4 ФSE20 

 

The prophage ФSE20 is predicted to be 40,664 bps in length (2018460-2059123) and to 

encode 51 CDS (see Table 3-4). It is highly similar in sequence and gene order to the S. 

Typhimurium DT64 lambda-like phage ST64B. An intact version of the SER t-RNA present 

at the 3’-end of ФSE20 is repeated as a fragment at the 5’-end of ФSE20 probably as a 

consequence of the insertion of the phage. While the 5’-end of ФSE20 shows almost no 

differences to ST64B, some genes different to ST64B but within the same gene order were 

identified in the 3’-part of ФSE20. Some of the genes in ФSE20 show similarities to genes 

harboured by the S. Typhimurium phage ST10. Single genes in ФSE20 also show similarities 

to genes from bacteriophages Gifsy-1, P22, P27, ФK02 and SfV. Orthologues of some of the 

genes present in ST64B that are found in ФSE20 are also carried by other prophages present 

in S. Typhimurium or S. Typhi. In these cases they are also listed in Table 3-4. Five genes in 
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ФSE20 (SEN1945, SEN1946, SEN1957, SEN1957A and SEN1959) encode hypothetical 

phage proteins for that no putative function could be assigned by the applied comparison 

methods. Two additional putative prophage genes which were identified in ФSE20 by their 

high similarity in sequence and gene order to ST64B were not included into the final 

annotation of SE125109 by the Sanger Institute. These putative genes have been included into 

Table 3-4 for information. 

A transposase of probable phage origin which is carried by the S. Gallinarum strain 287/91 as 

well, is present close to the 5’-end of ФSE20 (SEN1915). The 3’-end of ФSE20 is flanked by 

a pseudogene coding for a phage integrase remnant (SEN1968) also carried by the S. 

Gallinarum strain 287/91. Another gene present at this location (SEN1970) codes for a phage 

integrase which is again also present in the S. Gallinarum strain 287/91. It shows partial 

similarity to a gene (STY4821) carried by the S. Typhi phage ST64 and another gene carried 

by S. Typhi outside a phage location (STY4680). 

 

CDS genome location  putative gene function orthologue genes 

(putative function in 

ST64B) 

carried 

by 

SEN1919A 2018787..2019008 phage-encoded DNA-

binding protein 

sb27 

(DNA invertase pin 

protein) 

STY1075 

ST64B 

 

 

ST10 

SEN1920 2019221..2020228 phage protein sseK3 

sb26 

(hypothetical protein) 

ST64B 

 

SEN1921 2020513..2021082 putative phage tail 

protein 

sb25 

(probable tail fibre 

assembly protein) 

STM1050 

STM2704 

STM2705 

ST64B 

 

 

Gifsy-2 

Fels-2 

Fels-2 
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CDS genome location  putative gene function orthologue genes 

(putative function in 

ST64B) 

carried 

by 

SEN1922 2021082..2022644 putative phage tail fibre 

protein 

sb24 

(tail protein) 

STM1049 

STM2706 

STY1072 

STY2014 

ST64B 

 

Gifsy-2 

Fels-2 

ST10 

ST18 

SEN1923 2022631..2023218 putative phage tail 

protein 

sb23 

(putative tail protein) 

ST64B 

 

SEN1924 2023221..2024300 phage protein 2 genes in ST64B: 

sb22 

(putative tail protein) 

sb21 

(putative head assembly 

protein) 

 

ST64B 

 

ST64B 

 

SEN1925 2024293..2024706 phage protein sb20 

(putative tail protein) 

ST64B 

SEN1926 2024711..2025244 putative phage baseplate 

protein 

sb19 

(putative base plate 

assembly protein) 

ST64B 

SEN1927 2025244..2026302 phage tail protein sb18 

(tail protein) 

ST64B 

SEN1928 2026299..2027639 hypothetical protein sb17 

(tail/DNA circulation 

protein) 

ST64B 

SEN1929 2027673..2029601 phage tape-measure 

protein 

sb16 

(tail protein) 

ST64B 

SEN1930 2029686..2030012 phage protein sb15 

(hypothetical protein) 

ST64B 

SEN1931 2030009..2030365 phage tail tube protein sb14 

(tail tube protein) 

ST64B 
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CDS genome location  putative gene function orthologue genes 

(putative function in 

ST64B) 

carried 

by 

SEN1932 2030365..2031861 phage tail sheath protein sb13 

(tail sheath protein ) 

ST64B 

SEN1932A 2031851..2032015 bacteriophage SfV 

hypothetical protein 

sb12 

(hypothetical protein) 

ST64B 

SEN1933 2032019..2032579 phage protein sb11 

(hypothetical protein) 

ST64B 

SEN1934 2032576..2033088 phage protein sb10 

(hypothetical protein) 

ST64B 

SEN1935 2033060..2033464 phage protein sb9 

(hypothetical protein) 

ST64B 

SEN1935A 2033461..2033784 phage protein sb8 

(hypothetical protein) 

ST64B 

SEN1936 2033864..2035093 bacteriophage SfV 

phage major capsid 

protein 

gene size and order 

similar to sb6 

(major capsid protein 

precursor) 

ST64B 

SEN1937 2035103..2035705 phage pro-head protease gene size and order 

similar to sb5 

(pro-head protease) 

ST64B 

SEN1938 2035698..2036948 phage portal protein gene size and order 

similar to sb4 

(portal protein) 

ST64B 

SEN1939 2037064..2038794 bacteriophage P27 

phage terminase (large 

subunit) 

gene size and order 

similar to sb2 

(terminase large subunit) 

ST64B 

SEN1940 2038794..2039234 putative phage terminase 

(small subunit) 

gene size and order 

similar to sb1 

(terminase small 

subunit) 

ST64B 

SEN1941 2039378..2039728 phage protein sb56 

(hypothetical protein) 

ST64B 
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CDS genome location  putative gene function orthologue genes 

(putative function in 

ST64B) 

carried 

by 

SEN1942 2039752..2040291 putative exported phage 

protein 

STY1043 ST10 

SEN1943 2040288..2040905 putative phage-encoded 

lysozyme 

sb52 

(lytic enzyme [putative 

glycohydrolase]) 

STM0907 

STY1042 

ST64B 

 

 

Fels-1 

ST10 

SENXXXX* 

 

2040905..2041186 putative prophage 

membrane protein 

gene size and order 

similar to sb51 

(lysis protein [holin]) 

STY1041 

ST64B 

 

 

ST10 

SEN1944 2041173..2041562 putative prophage 

membrane protein 

STY1040 ST10 

SEN1945 2041651..2042223 phage membrane protein   

SEN1946 2042236..2043327 exported phage protein   

SEN1947 2043359..2044111 putative prophage 

antitermination protein 

STY1036 ST10 

SEN1948 2044125..2045114 phage protein two genes in ST64B: 

sb47 

(hypothetical protein) 

sb48 

(hypothetical protein) 

 

ST64B 

 

ST64B 

 

SEN1949 2045122..2045982 phage protein (similar to 

KilA in the N-terminal 

region) 

sb46 

(hypothetical protein) 

ST64B 

 

SEN1949A 2045999..2046388 rusA (crossover junction 

endodeoxyribonuclease 

rusA) 

sb45 

(holiday-junction 

resolvase) 

ST64B 
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CDS genome location  putative gene function orthologue genes 

(putative function in 

ST64B) 

carried 

by 

SEN1950 2046397..2047278 putative DNA methylase STY1014 

gene size and order 

similar to sb44 

(putative DNA 

methyltransferase) 

ST10 

ST64B 

 

SEN1951 2047275..2047748 phage protein gene size and order 

similar to sb43 

(putative transcriptional 

activator) 

ST64B 

 

SEN1952 2047745..2048719 phage protein gene order similar to 

sb42 

(putative replication 

protein) 

ST64B 

 

SEN1953 2048937..2050094 phage immunity protein sb41 

(putative antirepressor) 

ST64B 

 

SEN1954 2050091..2050645 putative phage-encoded 

DNA-binding protein 

sb40 

(hypothetical protein) 

ST64B 

 

SEN1955 2050996..2051691 phage-encoded 

transcriptional regulator 

sb38 

(regulatory protein) 

ST64B 

 

SEN1957 2052158..2052409 phage protein   

SEN1957A 2052419..2052880 phage protein   

SEN1959 2052979..2053896 phage-encoded 

recombination associated 

protein 

  

SEN1960 2053991..2054530 phage protein sb35 

(hypothetical protein) 

ST64B 

 

SENXXXX* 2054601..2054831 putative phage protein sb34 

(hypothetical protein) 

ST64B 

SEN1961 2054828..2055343 phage protein sb33 

(hypothetical protein) 

ST64B 
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CDS genome location  putative gene function orthologue genes 

(putative function in 

ST64B) 

carried 

by 

SEN1962 2055340..2055699 bacteriophage P22, 

Salmonella phage 

epsilon34, 

phage protein 

STM2623 

at 3’-end of gene also 

short region with 

similarity to: 

STM1017 

STY1024 

STY1025 

Gifsy-1 

 

 

 

Gifsy-2 

ST10 

ST10 

SEN1963 2055971..2056264 bacteriophage ФKO2, 

phage protein 

  

SEN1964 2056261..2057124 phage protein STY1027 

gene size and order 

similar to sb31 

(hypothetical protein) 

ST10 

ST64B 

 

SEN1965 2057121..2057690 phage protein sb30 

(endodeoxyribonuclease) 

ST64B 

 

SEN1965A 2057715..2057957 phage protein sb29 

(hypothetical protein) 

ST64B 

SEN1966 2057959..2058948 phage integrase sb28 

(integrase protein) 

ST64B 

*(not included into annotation by Sanger Institute) 

Table 3-4: ФSE20 gene content; orthologues in ST64B printed in bold represent a 100 % identity in amino 

acid sequence. 

 

3.1.5 G + C content 

 

Results of the G + C content analysis of the putative prophage regions identified in S. 

Enteritidis 125109 in comparison to that of the prophage regions in S. Typhi CT18 and S. 

Typhimurium LT2 are displayed in Table 3-5: 
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S. Enteritidis 125109 

prophage G + C content 

ФSE10 45.81 % 

ФSE12 48.86 % 

ФSE12A 48.74 % 

ФSE14 45.15 % 

ФSE20 50.59 % 

  

host G + C content 52.17 % 

 

S. Typhi CT18 (Parkhill et al., 2001) 

ST10 50.65 % 

ST15 54.75 % 

ST18 50.67 % 

ST27 52.62 % 

ST35 51.84 % 

sopE 51.57 % 

ST46 48.88 % 

  

host G + C content 52.09 % 

 

S. Typhimurium LT2 (McClelland et al., 2001) 

Gifsy-1 51.22 % 

Gifsy-2 51.18 % 

Fels-1 52.68 % 

Fels-2 52.57 % 

  

host G + C content 52.22 % 

Table 3-5: G + C content of the putative prophage regions identified in S. Enteritidis 125109 in 

comparison to that of the prophage regions in S. Typhi CT18 and S. Typhimurium LT2. 
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3.2 PCR results 

 

3.2.1 Salmonella spp. and Salmonella Enteritidis PCR 

 

Two PCRs were used for the characterization of the isolates in the strain collection. The 

Salmonella spp. PCR for the specific detection of Salmonella spp. targets the phoP/phoQ 

locus. The Salmonella Enteritidis PCR for the detection of S. Enteritidis targets the lygD gene. 

Results for the visualization and analysis of the separated DNA fragments from the 

Salmonella spp. and S. Enteritidis PCR by agarose gel electrophoresis are shown in Table 3-6. 
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Group Serovar Strain PT Salmonella spp. PCR S. Enteritidis PCR 
      

D1 S. Enteritidis 125109 4 + + 
 S. Enteritidis Leipzig 4 + + 
 S. Enteritidis VAC E1 4 + + 
 S. Enteritidis FUR Working Seed 4 + + 
 S. Enteritidis 05-00229 4 + + 
 S. Enteritidis 04-01518 4 + + 
 S. Enteritidis 05-00213 4 + + 
 S. Enteritidis 05-00264 4 + + 
 S. Enteritidis 04-00319 4 + + 
 S. Enteritidis 03-01771-1 4 + + 
 S. Enteritidis 1004 4 + + 
 S. Enteritidis 1007 4 + + 
 S. Enteritidis 03-03058 4 + + 
 S. Enteritidis 02-02864 4 + + 
 S. Enteritidis 125589 4 + + 
 S. Enteritidis 1135 4 + + 
 S. Enteritidis Salmovac SE  4 + + 
 S. Enteritidis K482/91  4 + + 
 S. Enteritidis 04-03158 1 + + 
 S. Enteritidis 02-07368 1 + + 
 S. Enteritidis 02-07381 1 + + 
 S. Enteritidis 02-07396 1 + + 
 S. Enteritidis 02-00900 4b + + 
 S. Enteritidis 451/02 6a + + 
 S. Enteritidis 809/02 6a + + 
 S. Enteritidis 05-01906 8 + + 
 S. Enteritidis 03-01087 8 + + 
 S. Enteritidis K1298/05 8 + + 
 S. Enteritidis 03-03059 9b + + 
 S. Enteritidis 04-03092 11 + - 
 S. Enteritidis 03-03561 13a + + 
 S. Enteritidis 02-00191 20 + - 
 S. Enteritidis 02-06391 21 + + 
 S. Enteritidis 05-01372 21 + + 
 S. Enteritidis 518/02 21 + + 
 S. Enteritidis 04-03909 21c + + 
 S. Enteritidis 86/360 34 + + 
 S. Enteritidis 1005 na* + + 
 S. Enteritidis 1006 na* + + 
 S. Enteritidis 7497 na + + 
 S. Enteritidis 7499 na + + 
 S. Enteritidis 7661 na + + 
 S. Enteritidis 1607 na + + 
 S. Enteritidis K229/63 na + + 
 S. Enteritidis F971/82 (669) na + + 
      

 S. Gallinarum K517/94-5 na + - 
 S. Eastbourne S2 (R22) na + - 
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Group Serovar Strain PT Salmonella spp. PCR S. Enteritidis PCR 
      

B S. Typhimurium 576 na + - 
 S. Indiana R1 na + - 
 S. Saint Paul 898/1 na + - 
 S. Agona 533-4  na + - 
 S. Paratyphi B B 1086/00 na + - 
 S. Stanley R20 na + - 
      

C1 S. Virchow V1 na + - 
 S. Infantis 6633 na + - 
      

C2-3 S. Hadar 18UM na + - 
 S. Albany 2713 na + - 
      

E1 S. Anatum 4279 na + - 
      

E4 S. Senftenberg 1331/7 na + - 
      

I S. Yoruba 322 SII na + - 

Table 3-6: PCR results for the Salmonella spp. and the Salmonella Enteritidis PCR. 

1AviPro® SALMONELLA VAC E 

* serologically rough; na: information not available 

 

The Salmonella spp. PCR was positive for all samples tested and produced products of the 

expected length of 412 bp. The Salmonella Enteritidis PCR produced products of the 

expected length of 293 bp for all S. Enteritidis isolates except those of phage type 11 and 

phage type 20. For all non-Enteritidis samples tested in this study no amplification of the 

target sequence was detected in the S. Enteritidis PCR. 
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3.2.2 PCRs for screening of prophage presence 

 

The presence of the previously identified prophage loci ФSE10, ФSE12/ФSE12A, ФSE14 

and ФSE20 in the strains of the strain collection was analyzed in a PCR based screening. 

 

3.2.2.1 ФSE10 

 

The isolates of the strain collection described in 2.1.4 were screened for the presence of the 

previously identified prophage locus ФSE10 with three PCRs targeting the 5’-end, the 3’-end 

and the central part of the prophage region respectively. The primer sequences and their target 

genes are displayed in Table 2-13. Results for the visualization and analysis of the separated 

DNA fragments from the PCR-based screening are shown in Table 3-7. 
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Group Serovar Strain PT SE10_5N SE10_SSEI SE10_3  
       
D1 S. Enteritidis 125109 4 + + + 
 S. Enteritidis Leipzig 4 + + + 
 S. Enteritidis VAC E1 4 + + + 
 S. Enteritidis FUR Working Seed 4 + + + 

 S. Enteritidis 05-00229 4 + + + 

 S. Enteritidis 04-01518 4 + + + 

 S. Enteritidis 05-00213 4 + + + 

 S. Enteritidis 05-00264 4 + + + 

 S. Enteritidis 04-00319 4 + + + 

 S. Enteritidis 03-01771-1 4 + + + 

 S. Enteritidis 1004 4 + + + 

 S. Enteritidis 1007 4 + + + 

 S. Enteritidis 03-03058 4 + + + 

 S. Enteritidis 02-02864 4 + + + 

 S. Enteritidis 125589 4 + + + 

 S. Enteritidis 1135 4 + + + 

 S. Enteritidis Salmovac SE  4 + + + 

 S. Enteritidis K482/91  4 + + + 

 S. Enteritidis 04-03158 1 + + + 
 S. Enteritidis 02-07368 1 + + + 

 S. Enteritidis 02-07381 1 + + + 

 S. Enteritidis 02-07396 1 + + + 

 S. Enteritidis 02-00900 4b + + + 

 S. Enteritidis 451/02 6a + + + 

 S. Enteritidis 809/02 6a + + + 

 S. Enteritidis 05-01906 8 + + + 
 S. Enteritidis 03-01087 8 + + + 

 S. Enteritidis K1298/05 8 + + + 

 S. Enteritidis 03-03059 9b - + + 
 S. Enteritidis 04-03092 11 - + + 
 S. Enteritidis 03-03561 13a + + + 
 S. Enteritidis 02-00191 20 - + + 
 S. Enteritidis 02-06391 21 + + + 
 S. Enteritidis 05-01372 21 + + + 

 S. Enteritidis 518/02 21 + + + 

 S. Enteritidis 04-03909 21c + + + 
 S. Enteritidis 86/360 34 + + + 

 S. Enteritidis 1005 na* + + + 

 S. Enteritidis 1006 na* + + + 

 S. Enteritidis 7497 na + + + 

 S. Enteritidis 7499 na + + + 

 S. Enteritidis 7661 na + + + 

 S. Enteritidis 1607 na + + + 

 S. Enteritidis K229/63 na + + + 

 S. Enteritidis F971/82 (669) na + + + 

       

 S. Gallinarum K517/94-5 na - - - 
 S. Eastbourne S2 (R22) na - - - 
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Group Serovar Strain PT SE10_5N SE10_SSEI SE10_3 

       

B S. Typhimurium 576 na - + + 

 S. Indiana R1 na - - - 
 S. Saint Paul 898/1 na - - - 
 S. Agona 533-4  na - - - 
 S. Paratyphi B B 1086/00 na - - - 
 S. Stanley R20 na - - + 

       

C1 S. Virchow V1 na - - - 
 S. Infantis 6633 na - - + 

       

C2-3 S. Hadar 18UM na - - + 

 S. Albany 2713 na - - - 
       

E1 S. Anatum 4279 na - - - 
       

E4 S. Senftenberg 1331/7 na - - + 

       

I S. Yoruba 322 SII na - - - 

Table 3-7: PCR results for the screening analysis of the putative prophage location ФSE10 in the strains 

of the strain collection. 

1AviPro® SALMONELLA VAC E 

* serologically rough; na: information not available 

 

The PCR targeting the sseI gene and the PCR targeting the 3’-end of the putative prophage 

region ФSE10 were positive for all S. Enteritidis isolates tested and produced products of the 

expected length of 984 bp for the SE10_3 primer pair and 999 bp for the SE10_SSEI primer 

pair. The PCR targeting the 5’-end of the putative prophage region ФSE10 produced products 

of the expected length of 887 bp for the SE10_5 primer pair for all S. Enteritidis isolates 

tested except for those belonging to the phage types 9b, 11 and 20. For the non-Enteritidis 

isolates tested, amplification of the target sequence was detected in case of the SE10_SSEI for 

S. Typhimurium only, and in case of the SE10_3 primer pair for the serovars Typhimurium, 

Stanley, Infantis, Hadar and Senftenberg. The SE10_5 primer pair did not amplify the target 

region in any of non-Enteritidis isolates tested. 
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3.2.2.2 ФSE12/ФSE12A 

 

The isolates of the strain collection described in 2.1.4 were screened for the presence of the 

previously identified prophage locus ФSE12/ФSE12A with three PCRs targeting the 5’-end, 

the 3’-end and the central part of the prophage region respectively. The primer sequences and 

their target genes are displayed in Table 2-13. Results for the visualization and analysis of the 

separated DNA fragments from the PCR-based screening are shown in Table 3-8. 

Group Serovar Strain PT SE12_5N SE12_SOPE_N SE12_3 
       
D1 S. Enteritidis 125109 4 + + + 
 S. Enteritidis Leipzig 4 + + + 
 S. Enteritidis VAC E1 4 + + + 
 S. Enteritidis FUR Working Seed 4 + + + 

 S. Enteritidis 05-00229 4 + + + 

 S. Enteritidis 04-01518 4 + + + 

 S. Enteritidis 05-00213 4 + + + 

 S. Enteritidis 05-00264 4 + + + 

 S. Enteritidis 04-00319 4 + + + 

 S. Enteritidis 03-01771-1 4 + + + 

 S. Enteritidis 1004 4 + + + 

 S. Enteritidis 1007 4 + + + 

 S. Enteritidis 03-03058 4 + + + 

 S. Enteritidis 02-02864 4 + + + 

 S. Enteritidis 125589 4 + + + 

 S. Enteritidis 1135 4 + + + 

 S. Enteritidis Salmovac SE  4 + + + 

 S. Enteritidis K482/91  4 + + + 

 S. Enteritidis 04-03158 1 + + + 
 S. Enteritidis 02-07368 1 + + + 

 S. Enteritidis 02-07381 1 + + + 

 S. Enteritidis 02-07396 1 + + + 

 S. Enteritidis 02-00900 4b + + + 

 S. Enteritidis 451/02 6a + + + 

 S. Enteritidis 809/02 6a + + + 

 S. Enteritidis 05-01906 8 + + + 
 S. Enteritidis 03-01087 8 + + + 

 S. Enteritidis K1298/05 8 + + + 

 S. Enteritidis 03-03059 9b + + + 
 S. Enteritidis 04-03092 11 + + + 
 S. Enteritidis 03-03561 13a + + + 
 S. Enteritidis 02-00191 20 + + - 
 S. Enteritidis 02-06391 21 + + + 
 S. Enteritidis 05-01372 21 + + + 

 S. Enteritidis 518/02 21 + + + 

 S. Enteritidis 04-03909 21c + + + 
 S. Enteritidis 86/360 34 + + + 

 S. Enteritidis 1005 na* + + + 

 S. Enteritidis 1006 na* + + + 

 S. Enteritidis 7497 na + + + 

 S. Enteritidis 7499 na + + + 

 S. Enteritidis 7661 na + + + 

 S. Enteritidis 1607 na + + + 

 S. Enteritidis K229/63 na + + + 

 S. Enteritidis F971/82 (669) na + + + 

       

 S. Gallinarum K517/94-5 na + + + 

 S. Eastbourne S2 (R22) na + - + 
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Group Serovar Strain PT SE12_5N SE12_SOPE_N SE12_3 

       

B S. Typhimurium 576 na + - + 

 S. Indiana R1 na - - - 
 S. Saint Paul 898/1 na + - + 

 S. Agona 533-4  na - - - 
 S. Paratyphi B B 1086/00 na - - - 
 S. Stanley R20 na + - + 

       

C1 S. Virchow V1 na - + + 

 S. Infantis 6633 na + + + 

       

C2-3 S. Hadar 18UM na - + + 

 S. Albany 2713 na - - - 
       

E1 S. Anatum 4279 na + - + 

       

E4 S. Senftenberg 1331/7 na - - - 
       

I S. Yoruba 322 SII na - - - 

Table 3-8: PCR results for the screening analysis of the putative prophage location ФSE12/ФSE12A in the 

strains of the strain collection. 

1AviPro® SALMONELLA VAC E 

* serologically rough; na: information not available 

 

The three PCRs targeting the 5’-end, the sopE gene and the 3’-end of the putative prophage 

region ФSE12/ФSE12A were positive for all S. Enteritidis isolates tested with the exception 

of the isolate belonging to phage type 20, for which the PCR was negative with the SE12_3 

primer pair. The PCR products had the expected length of 986 bp for the SE12_5N primer 

pair, 892 bp for the SE12_SOPE_N primer pair and 997 bp for the SE12_3 primer pair. 

For the non-Enteritidis isolates tested, amplification with all three primer pairs was detected 

for S. Gallinarum and S. Infantis. For five isolates the PCR gave positive results with the 

SE12_5N primer pair and the SE12_3 primer pair only (serovars Typhimurium, Eastbourne, 

Saint Paul, Stanley and Anatum), while for S. Virchow and S. Hadar positive PCR results 

were obtained with the SE12_SOPE_N primer pair and the SE12_3 primer pair. 
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3.2.2.3 ФSE14 

 

The isolates of the strain collection described in 2.1.4 were screened for the presence of the 

previously identified prophage locus ФSE14 with three PCRs targeting the 5’-end, the 3’-end 

and the central part of the prophage region respectively. The primer sequences and their target 

genes are displayed in Table 2-13. Results for the visualization and analysis of the separated 

DNA fragments from the PCR-based screening are shown in Table 3-9. 

Group Serovar Strain PT SE14_5N SE14_CONSERVED SE14_3 S. Enteritidis PCR 
        
D1 S. Enteritidis 125109 4 + + + + 
 S. Enteritidis Leipzig 4 + + + + 
 S. Enteritidis VAC E1 4 + + + + 
 S. Enteritidis FUR Working Seed 4 + + + + 
 S. Enteritidis 05-00229 4 + + + + 
 S. Enteritidis 04-01518 4 + + + + 
 S. Enteritidis 05-00213 4 + + + + 
 S. Enteritidis 05-00264 4 + + + + 
 S. Enteritidis 04-00319 4 + + + + 
 S. Enteritidis 03-01771-1 4 + + + + 
 S. Enteritidis 1004 4 + + + + 
 S. Enteritidis 1007 4 + + + + 
 S. Enteritidis 03-03058 4 + + + + 
 S. Enteritidis 02-02864 4 + + + + 
 S. Enteritidis 125589 4 + + + + 
 S. Enteritidis 1135 4 + + + + 
 S. Enteritidis Salmovac SE  4 + + + + 
 S. Enteritidis K482/91  4 + + + + 
 S. Enteritidis 04-03158 1 + + + + 
 S. Enteritidis 02-07368 1 + + + + 
 S. Enteritidis 02-07381 1 + + + + 
 S. Enteritidis 02-07396 1 + + + + 
 S. Enteritidis 02-00900 4b + + + + 
 S. Enteritidis 451/02 6a + + + + 
 S. Enteritidis 809/02 6a + + + + 
 S. Enteritidis 05-01906 8 + + + + 
 S. Enteritidis 03-01087 8 + + + + 
 S. Enteritidis K1298/05 8 + + + + 
 S. Enteritidis 03-03059 9b + + - + 
 S. Enteritidis 04-03092 11 - - - - 
 S. Enteritidis 03-03561 13a + + + + 
 S. Enteritidis 02-00191 20 - - - - 
 S. Enteritidis 02-06391 21 + + + + 
 S. Enteritidis 05-01372 21 + + + + 
 S. Enteritidis 518/02 21 + + + + 
 S. Enteritidis 04-03909 21c + + + + 
 S. Enteritidis 86/360 34 + + + + 
 S. Enteritidis 1005 na* + + + + 
 S. Enteritidis 1006 na* + + + + 
 S. Enteritidis 7497 na + + + + 
 S. Enteritidis 7499 na + + + + 
 S. Enteritidis 7661 na + + + + 
 S. Enteritidis 1607 na + + + + 
 S. Enteritidis K229/63 na + + + + 
 S. Enteritidis F971/82 (669) na + + + + 
        

 S. Gallinarum K517/94-5 na - - - - 
 S. Eastbourne S2 (R22) na - - - - 
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Group Serovar Strain PT SE14_5N SE14_CONSERVED SE14_3 S. Enteritidis PCR 

        

B S. Typhimurium 576 na - - - - 
 S. Indiana R1 na - - - - 
 S. Saint Paul 898/1 na - - - - 
 S. Agona 533-4  na - - - - 
 S. Paratyphi B B 1086/00 na - - - - 
 S. Stanley R20 na - - - - 
        

C1 S. Virchow V1 na - - - - 
 S. Infantis 6633 na - - - - 
        

C2-3 S. Hadar 18UM na - - - - 
 S. Albany 2713 na - - - - 
        

E1 S. Anatum 4279 na - - - - 
        

E4 S. Senftenberg 1331/7 na - - - - 
        

I S. Yoruba 322 SII na - - - - 

Table 3-9: PCR results for the screening analysis of the putative prophage location ФSE14 in the strains 

of the strain collection. The results of the Salmonella Enteritidis PCR are shown for comparison. 

1AviPro® SALMONELLA VAC E 

* serologically rough; na: information not available 

 

The three PCRs used for the analysis of the putative prophage region ФSE14 target the 5’-

end, a region highly conserved in relation to the S. Typhimurium prophage ST18 and the 3’-

end of ФSE14. The PCR products had the expected length of 980 bp for the SE14_5N primer 

pair, 991 bp for the SE14_CONSERVED primer pair and 976 bp for the SE14_3 primer pair. 

All three PCRs were positive positive for all S. Enteritidis isolates tested with the exception of 

the isolates belonging to phage types 11 and 20 that did not produce PCR products with any 

of the three primer pairs. For the phage type 9b isolate, no positive PCR result was obtained 

with the primer pair targeting the 3’-end of ФSE14. 

For the non-Enteritidis isolates tested, amplification was not detected with any of the three 

primer pairs. The results from the Salmonella Enteritidis PCR discussed above are included 

into the result table for comparison. 
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3.2.2.4 ФSE20 

 

The isolates of the strain collection described in 2.1.4 were screened for the presence of the 

previously identified prophage locus ФSE20 with three PCRs targeting the 5’-end, the 3’-end 

and the central part of the prophage region respectively. The primer sequences and their target 

genes are displayed in Table 2-13. Results for the visualization and analysis of the separated 

DNA fragments from the PCR-based screening are shown in Table 3-10. 

Group Serovar Strain PT SE20_5 SE20_IMMC SE20_3 
       
D1 S. Enteritidis 125109 4 + + + 
 S. Enteritidis Leipzig 4 + + + 
 S. Enteritidis VAC E1 4 + + + 
 S. Enteritidis FUR Working Seed 4 + + + 

 S. Enteritidis 05-00229 4 + + + 

 S. Enteritidis 04-01518 4 + + + 

 S. Enteritidis 05-00213 4 + + + 

 S. Enteritidis 05-00264 4 + + + 

 S. Enteritidis 04-00319 4 + + + 

 S. Enteritidis 03-01771-1 4 + + + 

 S. Enteritidis 1004 4 + + + 

 S. Enteritidis 1007 4 + + + 

 S. Enteritidis 03-03058 4 + + + 

 S. Enteritidis 02-02864 4 + + + 

 S. Enteritidis 125589 4 + + + 

 S. Enteritidis 1135 4 + + + 

 S. Enteritidis Salmovac SE  4 + + + 

 S. Enteritidis K482/91  4 + + + 

 S. Enteritidis 04-03158 1 + + + 
 S. Enteritidis 02-07368 1 + + + 

 S. Enteritidis 02-07381 1 + + + 

 S. Enteritidis 02-07396 1 + + + 

 S. Enteritidis 02-00900 4b + + + 

 S. Enteritidis 451/02 6a + + + 

 S. Enteritidis 809/02 6a + + + 

 S. Enteritidis 05-01906 8 - - - 
 S. Enteritidis 03-01087 8 - - - 
 S. Enteritidis K1298/05 8 - - - 
 S. Enteritidis 03-03059 9b - - - 
 S. Enteritidis 04-03092 11 - - + 
 S. Enteritidis 03-03561 13a - - - 
 S. Enteritidis 02-00191 20 + - - 
 S. Enteritidis 02-06391 21 + + + 
 S. Enteritidis 05-01372 21 + + + 

 S. Enteritidis 518/02 21 + + + 

 S. Enteritidis 04-03909 21c (+) (+) - 
 S. Enteritidis 86/360 34 + + + 

 S. Enteritidis 1005 na* + + + 

 S. Enteritidis 1006 na* + + + 

 S. Enteritidis 7497 na + + + 

 S. Enteritidis 7499 na + + + 

 S. Enteritidis 7661 na + + + 

 S. Enteritidis 1607 na + + + 

 S. Enteritidis K229/63 na - - - 
 S. Enteritidis F971/82 (669) na - - - 
       

 S. Gallinarum K517/94-5 na - - - 
 S. Eastbourne S2 (R22) na - - - 
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Group Serovar Strain PT SE20_5 SE20_IMMC SE20_3 

       

B S. Typhimurium 576 na - + + 

 S. Indiana R1 na - - - 
 S. Saint Paul 898/1 na - - - 
 S. Agona 533-4  na - - - 
 S. Paratyphi B B 1086/00 na - - - 
 S. Stanley R20 na - - - 
       

C1 S. Virchow V1 na - - - 
 S. Infantis 6633 na - - - 
       

C2-3 S. Hadar 18UM na - - - 
 S. Albany 2713 na - - - 
       

E1 S. Anatum 4279 na - + - 
       

E4 S. Senftenberg 1331/7 na - - - 
       

I S. Yoruba 322 SII na - - - 

Table 3-10: PCR results for the screening analysis of the putative prophage location ФSE20 in the strains 

of the strain collection. 

1AviPro® SALMONELLA VAC E 

* serologically rough; na: information not available; nr: not relevant 

 

The three PCRs used for the analysis of the putative prophage region ФSE20 were positive 

for most of the S. Enteritidis isolates from the strain collection analysed. The PCR products 

had the expected length of 1,014 bp for the SE20_5 primer pair targeting the 5’-end, 966 bp 

for the SE20_IMMC primer pair targeting the immC region, a superinfection immunity 

system highly conserved in relation to the S. Typhimurium phage ST64B and 788 bp for the 

SE20_3 primer pair targeting the 3’-end of ФSE20. No PCR products were generated with 

any of the primer pairs for isolates belonging to the phage types 8, 9b and 13a and for two 

isolates of unknown phage type. For the phage type 11 isolate, production of PCR products 

was observed with the SE20_3 primer pair only, while for the phage type 20 isolate, this was 

the case with the SE20_5 primer pair only. The results for the phage type 21c isolates were 

unclear, no amplification was seen for the SE20_3 primer pair, and the two other PCRs 

seemed not to work properly as only weak bands were obtained when the products were 

analyzed by gel electrophoresis. In case of the non-Enteritidis isolates, the SE20_3 primer 

pair led to the amplification of the target sequence for S. Typhimurium and S. Anatum, and 

with S. Typhimurium a PCR product was also obtained with the SE20_IMMC primer pair. All 

other serovars did not give positive PCR results with any of the three primer pairs. 
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3.3 Microarray experiments 

 

Based on the results of the PCR screening of the strain collection, eleven isolates were chosen 

to be analyzed in a microarray analysis for the presence of the individual genes located in the 

putative prophage locations previously identified and the genes in their direct vicinity. 

Additionally, the presence of the genes comprising the prophage locations in S. Typhi CT18 

and S. Typhimurium LT2 in these isolates was analysed as well. 

A total of almost 143,000 individual results was generated in these experiments (4,331 

screened and validated PCR products spotted onto the array x 11 isolates x analysis by three 

statistical methods). It would of course go far beyond the scope of this study to individually 

analyse this tremendous amount of data. The data relevant for this study was therefore 

analysed in a stringently condensed way. 

 

3.3.1 ФSE10 

 

Results for the analysis of the gene calling statuses of the genes present in the putative 

prophage ФSE10 and the genes in the direct vicinity of ФSE10 are shown in Table 3-11 for 

those of these genes represented on the microarray together with the PCR results for the PCR 

based screening of ФSE10 for the selected isolates. 

 

   Microarray results PCR results 

Strain PT Prophage adjacent region* SE10_5N SE10_SSEI SE10_3  

125109 4 + + + + + 

Leipzig 4 + + + + + 

VAC E1 4 + + + + + 

04-03158 1 + + + + + 

05-01906 8 + + + + + 

03-03059 9b + + - + + 

04-03092 11 5’:- + - + + 

03-03561 13a + + + + + 

02-00191 20 + + - + + 

02-06391 21 + + + + + 

04-03909 21c + + + + + 

Table 3-11: Microarray results in comparison to the PCR results for the putative prophage location 

ФSE10 in selected isolates. 

1AviPro® SALMONELLA VAC E 

* comprising the four neighbouring genes on the array at the 5’- and the 3’-end respectively 
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The genes of the putative prophage region ФSE10 represented on the microarray were present 

in all isolates analysed except for the phage type 11 isolate according to the microarray data. 

In the phage type 11 isolate the genes SEN0910 – SEN0912A at the 5’-end of the putative 

prophage seem to be absent. The genes in the direct vicinity of the putative prophage location 

were present in all isolates tested including the phage type 11 isolate at the 5’- and the 3’-end. 

 

3.3.2 ФSE12/ФSE12A 

 

Results for the analysis of the gene calling statuses of the genes present in the putative 

prophage ФSE12/ФSE12A and the genes in the direct vicinity of ФSE12/ФSE12A are shown 

in Table 3-12 for those of these genes represented on the microarray together with the PCR 

results for the PCR based screening of ФSE12/ФSE12A for the selected isolates. 

 

   Microarray results PCR results 

Strain PT Prophage adjacent region* SE12_5N SE12_SOPE_N SE12_3 

125109 4 + + + + + 

Leipzig 4 + + + + + 

VAC E1 4 + + + + + 

04-03158 1 + + + + + 

05-01906 8 + + + + + 

03-03059 9b + + + + + 

04-03092 11 + + + + + 

03-03561 13a + + + + + 

02-00191 20 + 3':- + + - 

02-06391 21 + + + + + 

04-03909 21c + + + + + 

Table 3-12: Microarray results in comparison to the PCR results for the putative prophage location 

ФSE12/ФSE12A in selected isolates. 

1AviPro® SALMONELLA VAC E 

* comprising the four neighbouring genes on the array at the 5’- and the 3’-end respectively 

 

The genes of the putative prophage region ФSE12/ФSE12A represented on the microarray 

could be detected in all tested isolates according to the microarray data. Only in the phage 

type 9b isolate the microarray data did not indicate the presence of the putative pseudogene 

SEN1152. The genes in the direct vicinity of the putative prophage location ФSE12/ФSE12A 

were present in all isolates tested except for the phage type 20 isolate, where the genes 

SEN1174, SEN1176 and SEN 1178 adjacent to the 3’-end of the putative phage locus seemed 

to be missing. 
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3.3.3 ФSE14 

 

Results for the analysis of the gene calling statuses of the genes present in the putative 

prophage ФSE14 and the genes in the direct vicinity of ФSE14 are shown in Table 3-13 for 

those of these genes represented on the microarray together with the PCR results for the PCR 

based screening of ФSE14 for the selected isolates. 

 

   Microarray results PCR results 

Strain PT Prophage adjacent region* SE14_5N SE14_CONSERVED SE14_3 

125109 4 + + + + + 

Leipzig 4 + + + + + 

VAC E1 4 + + + + + 

04-03158 1 + + + + + 

05-01906 8 + + + + + 

03-03059 9b 3': - + + + - 

04-03092 11 - + - - - 

03-03561 13a + + + + + 

02-00191 20 - + - - - 

02-06391 21 + + + + + 

04-03909 21c + + + + + 

Table 3-13: Microarray results in comparison to the PCR results for the putative prophage location 

ФSE14 in selected isolates. 

1AviPro® SALMONELLA VAC E 

* comprising the four neighbouring genes on the array at the 5’- and the 3’-end respectively 

 

According to the microarray data, the genes of the putative prophage region ФSE14 present 

on the microarray could be detected in most of the strains tested. For the isolates belonging to 

the phage types 11 and 20 however, all genes except for one gene seemed to be absent. 

Interestingly, there was evidence for a gene similar to the STY2007 gene being present in 

these two isolates which in return was absent from the isolates belonging to all other phage 

types tested. The STY2007 gene comprises the gene bordering the 5’-end of the S. Typhi 

CT18 phage ST18. The isolate belonging to phage type 9b seemed to be lacking the genes 

SEN1393, SEN1394 and SEN1395 at the 3’-end of the putative prophage region ФSE14 and 

the gene SEN1384 according to the microarray data. The genes in the direct vicinity of the 

putative prophage location ФSE14 were present in all isolates tested. 
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3.3.4 ФSE20 

 

Results for the analysis of the gene calling statuses of the genes present in the putative 

prophage ФSE20 and the genes in the direct vicinity of ФSE20 are shown in Table 3-14 for 

those of these genes represented on the microarray together with the PCR results for the PCR 

based screening of ФSE20 for the selected isolates. 

 

   Microarray results PCR results 

Strain PT Prophage adjacent region* SE20_5 SE20_IMMC SE20_3 

125109 4 + + + + + 

Leipzig 4 + + + + + 

VAC E1 4 + + + + + 

04-03158 1 + + + + + 

05-01906 8 - + - - - 

03-03059 9b - 5': + - - - 

04-03092 11 50 %; 3':+ + - - + 

03-03561 13a 67 %; PCR - + - - - 

02-00191 20 33 %; 5': +  + + - - 

02-06391 21 + + + + + 

04-03909 21c - + (+)  (+)  - 

Table 3-14: Microarray results in comparison to the PCR results for the putative prophage location 

ФSE20 in selected isolates. 

1AviPro® SALMONELLA VAC E 

* comprising the four neighbouring genes on the array at the 5’- and the 3’-end respectively 

 

The results obtained in the analysis of the microarray data for the genes of the putative 

prophage region ФSE20 present on the microarray were more diverse than those obtained for 

the other putative prophage regions of SE125109. ФSE20 seemed to be present in the isolates 

belonging to the phage types 1, 4 and 21, with some indication that the gene SEN1937 was 

absent in the phage type 1 isolate and the gene 1949A was absent in the phage type 4 VAC E 

isolate. The absence of ФSE20 was indicated by the microarray data for the isolates belonging 

to the phage types 8, 9b and 21c, with the genes SEN 1921, SEN1943 and SEN1944 probably 

being present in the phage type 9b isolate and the genes SEN1921, SEN1922, SEN1944, 

SEN1950 and SEN1964 probably being present in the phage type 21c isolate. The phage type 

11, 13a and 20 isolates showed a scattered distribution of genes being present and absent in 

small blocks in the analysis of the microarray data. In the phage type 11 isolate, about 50 % of 

the genes of the putative prophage region ФSE20 present on the array were detected including 

those located at the 3’-end (SEN1921 - SEN1932, SEN1943 – SEN1946, SEN1948 – 

SEN1950, SEN1953, SEN1954, SEN1957A, SEN1960 and SEN1964 – SEN1966). In the 
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phage type 13a isolate, two thirds of the genes were detected with all target genes for the 

PCR-based screening being absent or not present on the array (SEN1921 – SEN1935 and 

SEN1941). In the phage type 20 isolate about one third of the genes being present mainly 

located at the 5’-end (SEN1920 - SEN1935, SEN1944 and SEN1953). The genes in the direct 

vicinity of the putative prophage location ФSE20 were present in all isolates tested except for 

the phage type 9b isolate where there was evidence for absence of the genes (SEN1967 – 

SEN1971) adjacent to the 3’-end of the putative prophage region ФSE20. However, the phage 

type 20 isolate was missing the SEN1986 gene. 

 

3.3.5 Presence of prophage genes from S. Typhimurium LT2S and S. Typhi 

CT18 

Summarized results for the analysis of the gene calling statuses of the genes comprising the 

prophage locations in S. Typhi CT18 and S. Typhimurium LT2 for the S. Enteritidis isolates 

included into the microarray experiments are shown in Table 3-15 and Table 3-16. The 

number of genes present in the respective isolates according to the microarray data are given 

in relation to the total number of genes of the respective prophages represented on the array. 

 

Strain PT Gifsy-1 Gifsy-2 Fels-1 Fels-2 

125109 4 2/23 10/22 2/6 3/66 

Leipzig 4 2/23 10/22 1/6 5/66 

VAC E1 4 3/23 9/22 2/6 5/66 

04-03158 1 3/23 10/22 3/6 23/66 

05-01906 8 3/23 10/22 3/6 57/66 

03-03059 9b 9/23 16/22 6/6 58/66 

04-03092 11 22/23 22/22 3/6 58/66 

03-03561 13a 2/23 10/22 0/6 60/66 

02-00191 20 9/23 21/22 1/6 7/66 

02-06391 21 2/23 9/22 1/6 4/66 

04-03909 21c 16/23 9/22 0/6 5/66 

Table 3-15: Summarized results for the presence of the genes comprising the prophage locations in S. 

Typhimurium LT2 in the S. Enteritidis isolates according to microarray data.  

1AviPro® SALMONELLA VAC E 
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Strain PT ST10 ST15 ST18 ST27 ST35 sopE ST48 

125109 4 7/24 5/5 8/27 1/1 0/30 2/29 0/1 

Leipzig 4 6/24 4/5 9/27 1/1 0/30 2/29 0/1 

VAC E1 4 6/24 4/5 8/27 1/1 0/30 2/29 0/1 

04-03158 1 8/24 4/5 12/27 1/1 6/30 9/29 0/1 

05-01906 8 4/24 5/5 10/27 1/1 29/30 22/29 1/1 

03-03059 9b 12/24 5/5 18/27 1/1 27/30 29/29 1/1 

04-03092 11 18/24 4/5 4/27 1/1 28/30 26/29 1/1 

03-03561 13a 2/24 4/5 11/27 1/1 28/30 22/29 1/1 

02-00191 20 12/24 4/5 7/27 1/1 0/30 4/29 0/1 

02-06391 21 6/24 4/5 8/27 1/1 0/30 2/29 0/1 

04-03909 21c 6/24 4/5 12/27 1/1 0/30 0/29 0/1 

Table 3-16: Summarized results for the presence of the genes comprising the prophage locations in S. 

Typhi CT18 in the S. Enteritidis isolates according to microarray data. 

1AviPro® SALMONELLA VAC E 

 

According to the microarray data, all S. Enteritidis isolates tested harboured genes from the 

genes comprising the prophage locations in S. Typhi CT18 and S. Typhimurium LT2. At the 

same time it could also be seen from the microarray data that genes from all prophage 

locations in S. Typhi CT18 and S. Typhimurium LT2 were harboured in at least some of the S. 

Enteritidis isolates tested. Certain patterns and tendencies in the correlation between the 

prophage content of S. Typhi CT18 and S. Typhimurium LT2 and the putative prophage 

content in the Enteritidis isolates tested could be seen from the analysis of the microarray 

data. While the isolates belonging to the phage types 4 and 21 seemed to harbour only few of 

the prophage genes from S. Typhi CT18 and S. Typhimurium LT2, a much higher proportion 

of these genes seemed to be present in the isolates belonging to the phage types 8, 9b, 11, and 

13a. The content of S. Typhi CT18 and S. Typhimurium LT2 prophage genes for the isolates 

belonging to the phage types 1, 20 and 21c seemed to be somewhere in between these two 

groups. For some of the prophages present in S. Typhi CT18 and S. Typhimurium LT2, only 

very few genes of the respective prophage were present on the array, while for other 

prophages the proportion of these genes was much higher. Due to this inhomogenicity no 

statement could be made in relation to a preference for any of these prophages to be 

harboured in S. Enteritidis with the available microarray. 
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3.4 Prophage release and induction experiments 

 

3.4.1 Prophage induction experiments 

 

The inducibility of the temperate prophages in SE125109 by chemically and physically 

inducing agents was tested. A smooth bacterial lawn had grown on the soft top test agar after 

the overnight incubation. The dried drops were still clearly visible where the phage lysates to 

be tested were spotted onto the agar. The formation of plaques within these spots as a result of 

lysis by previously induced prophages could not be detected in any case. There was now 

difference at all visible between the control samples and the samples that had been exposed to 

mitomycin C or those that had been exposed to UV light. Detailed results for all samples 

tested can be seen in Table 3-17. 

 

Sample Plaque Formation 

Mitomycin without shaking 1 - 

Mitomycin without shaking 2 - 

Mitomycin permanent shaking 1 - 

Mitomycin permanent shaking 2 - 

UV exposure 1 - 

UV exposure 2 - 

Sample without inducing agents 1 - 

Sample without inducing agents 2 - 

Control sample (non-inoculated media only) 1 - 

Control sample (non-inoculated media only) 2 - 

Table 3-17: Analysis of plaque formation on the soft top test agar with lysates from the phage induction 

experiments 

 

The bacteria in the control group as well as in the different induction groups continued to 

multiply during the 6 h incubation time of the induction experiments. This was noticeable by 

the increasing turbidity of the samples. Any quantitative effect of the inducing agents on the 
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bacterial growth rate was not investigated. All supernatants were sterile in the sterility tests 

performed. 

 

3.4.2 Spontaneous prophage release experiments 

 

The spontaneous release of temperate bacteriophages and the susceptibility of these strains to 

infection by spontaneously released phages were investigated in a cross-screening experiment 

by a spot test method using the strains analysed in the microarray experiments as described in 

paragraph 2.2.8.2 of the methods section. 

Sample photos of the obtained results with and without plaque formation in the tester strains 

are shown in Figure 3-2. A smooth bacterial lawn had grown on the agar plates used for the 

bacteriophage detection after the overnight incubation. The boundaries of the dried drops with 

the supernatants were still clearly visible where the phage lysates to be tested were spotted 

onto the agar. At all locations where the control samples containing only media without 

inoculation were applied onto the test agar, no plaque formation could be detected. At the 

other locations, where the supernatants of the overnight cultures were applied as processed 

phage lysates, plaque formation could be detected in some cases. Detailed results for all 

samples tested can be seen in Table 3-18. All supernatants were sterile in the sterility tests 

performed. 
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a) b) 

 

      

c) d) 

Figure 3-2: Sample pictures for the results of the spontaneous phage induction experiments: The 

boundaries of the dried drops with the supernatants are clearly visible. Picture a) shows the result for a 

sample that did not induce plaque formation, pictures b) – d) are examples for cases in which plaque 

formation was induced by the supernatant applied to the tester strain. 
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  supernatant applied to the tester strain 

  medium 125109 Leipzig  VAC E
1 

04-03158 05-01906 03-03059 04-03092 03-03561 02-00191 02-06391 04-03909 

tester strain phage type   PT4 PT4 PT4 PT1 PT8 PT9b PT11 PT13a PT20 PT21 PT21c 

125109 PT4 - - - - - - - + + - - - 

Leipzig PT4 - - - - - - - + + - - - 

VAC E
1 

PT4 - - - - - - - + + - - - 

04-03158 PT1 - - - - - - - + + - - + 

05-01906 PT8 - + + + - - - + + - - - 

03-03059 PT9b - - - - - - - + - - - + 

04-03092 PT11 - - - - - - - - + - - - 

03-03561 PT13a - - - - - - - - - - - - 

02-00191 PT20 - - - - - - - - - - - - 

02-06391 PT21 - - - - - - - + + - - + 

04-03909 PT21c - + + + + - - + + - + - 

Table 3-18: The formation of plaques in the tester strains is shown in relation to the respective supernatants applied for the experiments based on the classic Fisk 

method. 

1AviPro® SALMONELLA VAC E 
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4 Discussion 

 

4.1 Genome analysis 

 

The number of 5 prophages found in S. Enteritidis is in accordance with the 5 lysogenic 

phages Gifsy-1, -2 and -3, Fels-2 and the P2-like phage SopE identified in the genome of S. 

Typhimurium (Figueroa-Bossi and Bossi, 1999; Figueroa-Bossi et al., 1997; Hardt et al., 

1998a; Miao and Miller 1999; Mirold et al., 1999; Thomson et al., 2004), and the seven 

prophages or prophage-like elements which were identified in the S. Typhi genome: ST10, 

ST15, ST18, ST27, ST35, SopEST (ST44) and ST46 (Thomson et al., 2004). 

 

4.1.1 ФSE10 

 

The putative prophage ФSE10 is similar in parts to regions of the lambda-like phage Gifsy-2, 

which has been shown to significantly contribute to pathogenesis in S. Typhimurium 

(Figueroa-Bossi and Bossi, 1999; Ho et al., 2002). Gifsy-2 is probably defective in the S. 

Typhimurium strain LT2 but active in ACTT14028s (Bossi and Figueroa-Bossi, 2005). S. 

Typhimurium strains cured of Gifsy-2 were over 100-fold attenuated in their virulence in 

mice indicating that Gifsy-2 contributes virulence factors to its host (Figueroa-Bossi and 

Bossi, 1999; Ho et al., 2002). Like Gifsy-2, ФSE10 was found to encode the highly conserved 

virulence determinants sseI, gtgE and gtgF (Ho et al., 2002). Gifsy-2 genes with homology to 

known virulence factors individually had no significant effect on the S. Typhimurium 

virulence in intra-peritoneal competition assays. This could be explained by the fact that some 

genes had been acquired only recently by the Gifsy-2 phage and have not evolved or adapted 

to the appropriate regulatory circuitry or that the products of these genes might perform 

redundant functions. In case of the gtgA gene for example, a second nearly identical copy of 

the gene of Gifsy-2 is present in the Gifsy-1 prophage (Ho et al., 2002). 

The expression of the S. Typhimurium sseI-gene is dependent on the SPI2-encoded two-

component regulatory system SsrA/SsrB, and is transcriptionally induced in macrophages 

(Miao and Miller, 2000; Uzzau et al. 2001; Worley et al., 2000). The SseI protein has been 

described as a Salmonella-translocated effector (TSE), which is translocated via the SPI-2 
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T3SS into host cells (Ehrbar and Hardt, 2005, Miao and Miller, 2000; Uzzau et al. 2001; 

Worley et al., 2000). It is present in most S. Typhimurium strains and co-localizes with the 

polymerizing actin cytoskeleton through interactions of its N-terminal domain with the actin 

cross-linking protein filamin (Miao et al., 2003). The first 142 amino acid residues of SseI 

and SspH2 (another S. Typhimurium virulence factor; see ФSE20 for more information) are 

89 % identical suggesting that several TSEs might use a common amino acid sequence to 

direct translocation (Miao et al., 1999; Miao and Miller, 2000). The role of sseI for 

Salmonella virulence is unclear, as mutations in this gene had very little effect on virulence 

(Ho et al., 2002; Ruiz-Albert et al., 2002). 

As mentioned before, the gtgE-gene encodes a putative protein of 228 amino acids in 

Salmonella for which no significant homologues in other bacteria have been detected so far. 

The biochemical function of GtgE is still unknown, but gtgE has been shown to be the major 

virulence determinant carried by Gifsy-2 besides sodCI (Ho et al., 2002). 

The gtgF-gene is predicted to code for a small protein of only 63 amino acids in S. 

Typhimurium which shows 76 % identity to the Salmonella virulence protein MsgA (Ho et 

al., 2002). Mutations of the msgA-gene were found to have an effect on mouse virulence and 

macrophage survival (which has been shown to be essential for virulence in mice by Fields et 

al., 1986) in S. Typhimurium (Gunn et al., 1995), while deletion of the gtgF-gene had no 

significant effect on virulence (Ho et al., 2002). Another homologue which is 48 % identical 

to GtgF is SrfE, which has been identified as the product of a gene regulated by the SsrA/SsrB 

regulatory system like the sseI-gene (Worley et al., 2000). Interestingly, the second major 

virulence determinant which is carried by Gifsy-2, sodCI (Ho et al., 2002) and the virulence 

determinant gtgA (Ho et al., 2002) are not conserved in ФSE10. Probably, ФSE10 is a phage 

remnant only because many of the genes required for phage proliferation are either missing 

from ФSE10 or are degenerated to pseudogenes by frameshifts and insertions. 

 

4.1.2 ФSE12/ФSE12A 

 

ФSE12 is similar in parts to regions of Gifsy-2 like ФSE10, while the 5’-end of ФSE12 seems 

to have a different origin as it shows more similarity to ST18. 

ФSE12 harbours the well-conserved sodCI gene. The sodCI gene encodes a periplasmatic 

Cu/Zn superoxide dismutase ([Cu,Zn]-SOD), which is likely to be important for the survival 

of S. Enteritidis in the host. 
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Superoxide dismutases (SODs) catalyse the conversion of superoxide anions into hydrogen 

peroxide and oxygen (McCord and Fridovich, 1969). The fact that bacterial [Cu,Zn]-SODs 

are located in the periplasm while superoxide is not able to cross the cytoplasmic membrane 

suggests that they provide protection to periplasmatic or membrane constituents from 

superoxide generated outside the cell or conceivably in the periplasm by phagocytic cells 

(Battistoni, A., 2003; Benov et al., 1995; Farrant et al., 1997; Hassan and Fridovich, 1979; 

Lynch and Kuramitsu, 2000). Studies in cultured macrophages and mice have shown a 

consistent contribution of SodCI to virulence for Salmonella (S. Typhimurium, S. Dublin, S. 

Choleraesuis and S. Enteritidis) and E. coli (Ammendola et al., 2005; Battistoni et al., 2000; 

De Groote et al., 1997; Fang et al., 1999; Farrant et al., 1997; Figueroa-Bossi et al., 2006; 

Krishnakumar et al., 2004; Pacello et al., 2008; Sansone et al., 2002; Sly et al., 2002; Uzzau 

et al., 2002). SodCI is believed to be essential for the intracellular survival of virulent 

Salmonella within host cells (Ammendola et al., 2008). S. Typhimurium sodCI mutants 

showed reduced survival in macrophages and attenuated virulence in mice (De Groote et al., 

1997; Farrant et al., 1997). SodCI is known to protect the bacterium from phagocytic 

superoxide during infection, and factors enhancing bacterial resistance to the oxidative burst 

of phagocytes are believed to play an important role in influencing the outcome of infection in 

normal hosts (De Groote et al., 1997; Farrant et al., 1997; Krishnakumar et al., 2007). In S. 

Typhimurium sodCI is carried by Gifsy-2, and its presence in genomic regions containing 

sequences derived from bacteriophages or phage remnants indicates a selective pressure to 

maintain sodCI in Salmonella (Ammendola et al., 2005; Ammendola et al., 2008; Figueroa-

Bossi et al., 2006). 

In Gifsy-2, a gene encoding the integral outer membrane protein X (OmpX) is located next to 

the sodCI-gene. In general, outer membrane proteins (Omps) promote adherence to and 

invasion of host cells, resistance to complement-mediated killing, survival in macrophages, 

and internalization in epithelial cells (Cirillo et al., 1996; Otto and Hermansson, 2004). Gram-

negative bacteria causing invasive disease must resist the bactericidal action of complement, 

and the presence of specific Omps has been shown to be critical for this resistance (Joiner, 

1988; Vogt and Schulz, 1999). OmpX was first described in Enterobacter cloacae, but 

homologues like PagC, Lom, Rck and Ail were identified in other Gram-negative bacteria 

(Barondess and Beckwith, 1990; De Kort et al., 1994; Dupont et al., 2004; Heffernan et al., 

1992; Mecsas et al., 1995; Miller et al., 1990; Miller et al., 2001; Pulkkinen and Miller, 1991; 

Stoorvogel et al., 1991). Is has been shown that the surface loops of these proteins are 

involved in virulence (Beer and Miller, 1992). Cloning of the ompX gene on a multicopy 
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plasmid into Enterobacter cloacae and E. coli conferred decreased susceptibility to several β-

lactams and quinolones (Stoorvogel et al., 1987). The exact role of OmpX remains to be 

investigated although it has been suggested that it binds to foreign proteins on the cell surface, 

which is possibly part of a cellular defence mechanism. Cell adhesion and invasion might be 

achieved through this binding affinity (De Kort et al., 1994; Stoorvogel et al., 1987; 

Stoorvogel et al., 1991; Vogt and Schulz, 1999). In Enterobacter OmpX contributed to 

invasion of host cells, its role in E. coli, however, remains unclear: the deletion of ompX led to 

increased cell-surface contact in fimbriated strains and decreased contact in a non-fimbriated 

strain (Otto and Hermansson, 2004). In ФSE12 there is evidence for a CDS encoding OmpX, 

but the CDS has degenerated and is thought to be a pseudogene. The complete gene is present 

at a non-phage location in S. Enteritidis (SEN0778) which might explains why it probably 

could have become degenerated in ФSE12 without negative effect on S. Enteritidis. 

ФSE12 also contains a gene (SEN1143) with similarity to the gogA-gene carried by Gifsy-1 

and the gtgA-gene carried by Gifsy-2 (Figueroa-Bossi et al., 2001; Wood et al., 1998). These 

genes show a high similarity to the pipA-gene (Figueroa-Bossi et al., 2001; Wood et al., 

1998). Mutations in the pipA-gene have been shown to affect the enteropathogenicity of S. 

Dublin in a model using bovine ligated ileal loops (Wood et al., 1998). Only minor effects on 

the ability of S. Dublin to cause systemic disease in mice were seen, although in other 

experiments pipA has been shown to be preferentially expressed under conditions known to 

induce SPI-2 genes to contribute to the development of systemic disease in mice (Knodler et 

al., 2002; Wood et al., 1998). PipA is encoded on SPI-5 in many Salmonella serovars 

including S. Dublin, S. Typhimurium; S. Typhi and S. Enteritidis (Figueroa-Bossi et al., 2001; 

Wood et al., 1998). In S. Enteritidis the putative pipA gene is flanked by short fragments with 

similarity to regions present in the ST10 and ST18 phages carried by S. Typhimurium which 

is in accordance with the fact that the 5’-end of ФSE12 seems to have a different origin as it 

shows more similarity to a lambda-like ST18 phage from S. Typhi. Overlapping SEN1154 a 

small fragment with similarity to a putative DNA invertase present at the very 3’-end of ST10 

(STY1075) is present in ФSE12. This is an indicator for multiple recombination events that 

have happened in ФSE12 during S. Enteritidis evolution. The virulence determinants sodCI 

and gtgA carried by Gifsy-2 which were not conserved in ФSE10 as mentioned above are 

present in ФSE12 completing the set of virulence genes found in Gifsy-2 for S. Enteritidis 

PT4. 

ФSE12 also carries the sopE-gene which is another T3SS secreted effector protein (Hardt et 

al., 1998a). As mentioned earlier, it is known to activate the Jun N-terminal kinase (JNK) in a 
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CDC42- and Rac-1-dependent manner, to stimulate cytosceletal reorganisation and to 

modulate host-cell RhoGTPase function via a non-covalent interaction (Hardt et al., 1998b; 

Rudolph et al., 1999). In S. Typhimurium and S. Typhi, SopE is encoded on a moron which is 

widespread in the Salmonellae and carried by several different bacteriophage families (Mirold 

et al., 2001). As already mentioned before, it is encoded in the P2-like phage SopEΦ in S. 

Typhimurium and S. Typhi, and in a lambda-like bacteriophage in the Salmonella serovars 

Hadar, Gallinarum, Enteritidis and Dublin (Mirold et al., 2001). SopE was the first type III 

effector protein that has been identified in the genome of different non-related bacteriophages 

(Mirold et al., 2001). Most of the S. Typhimurium isolates harbouring the SopEΦ-phage 

belong to the small group of epidemic strains that have been responsible for a large 

percentage of human and animal Salmonellosis and have persisted for a long period of time 

(Mirold et al., 1999). S. Typhimurium LT2 does not possess the sopE gene (McClelland et al., 

2001). 

In S. Enteritidis carriage of sopE may have contributed to its epidemiological success. The 

sopE-gene was identified in all isolates of phage types 1, 4, 6, 8, 11 and 13 but in only a few 

isolates of PT14b and 21 by Prager et al. (2000). The PTs 1,4,6,8 and 13 were 

epidemiologically important in the UK at the time of their investigations while PT14b was 

relatively uncommon at that time (Communicable Disease Surveillance Centre, 2002). In an 

investigation by Hopkins and Threlfall (2004) using real-time PCR and sequencing, all S. 

Enteritidis isolates that came from humans in England and Wales in 2001 were positive for 

sopE. In addition to the improved interaction between Salmonella and the host due to carriage 

of the sopE-encoding phage, lysogeny by this phage may result in a population of sopE-

positive strains through killing of sensitive bacteria. This may be an additional advantage over 

sopE-negative strains (Bossi, 2003; Hopkins and Threlfall, 2004). 

The hokW gene, which is part of the hok-sok postsegregational killing system, is conserved in 

the 5-region region of ФSE12 for which another origin is supposed due to its similarity to 

ST18. The hok-sok system belongs to a group of “addiction modules” that have been 

described mainly in a number of prokaryotic extrachromosomal elements responsible for the 

postsegregational killing effect (Aizenman et al., 1996). Usually the addiction modules 

consist of two genes: the product of one is long lived and toxic, while the product of the 

second is short lived and antagonizes the toxic effect (Aizenman et al., 1996). In case of the 

hok-sok system, the Hok mRNA is very stable and can be translated into Hok killer protein. 

The translation of the Hok mRNA is inhibited by the small unstable Sok antisense RNA, 

which is subject to rapid degradation by nucleases. The translation of hok is coupled to an 
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overlapping reading frame termed mok, whose translation is tightly regulated by Sok RNA. 

Through this mechanism Sok RNA regulates hok translation indirectly through mok. The 

system mediates plasmid stabilization by killing of plasmid-free cells (Gerdes et al., 1986a, b; 

Thisted et al., 1995). The first described regulatable chromosomal addiction module is the 

mazEF system in E. coli which consists of the two genes mazE and mazF located in the rel 

operon (Aizenman et al., 1996; Hazan et al., 2001; Metzger et al., 1988). It is believed to be 

responsible for programmed cell death in E. coli regulated by 3’,5’-bispyrophosphate and may 

serve as a mechanism for altruistic cell death: during extreme conditions of starvation part of 

the starved cells lyse, thereby enabling the survival of the rest of the cell population 

(Aizenman et al., 1996). In E. coli a coupling between the chromosomal mazEF system and 

the extrachromosomal phd-doc-System has been described (Hazan et al., 2001). The role of 

the hokW gene present in the Salmonella prophage ФSE12 remains unclear. 

 

ФSE12A displays a mosaic of genes from related bacteriophages (ST10, ST18, Gifsy-1, 

Gifsy-2 and Fels-1) and the locus of its integration resembles the CS 40 island which in S. 

Typhimurium contains various loci linked to pathogenicity, such as mig-3, pagK-pagO and 

sopE2 interspersed with putative phage genes (Bakshi et al., 2000; Balbontín et al., 2008; 

Gunn et al., 1998; Stender et al., 2000; Valdivia and Falkow, 1997). The CS 40 island has 

been described as being made of two separate islets lying side by side, one carrying mig-3 and 

pagK-pagO and the other containing the sopE2 gene (Balbontín et al., 2008). There is a 

strong similarity between the CS 40 island in S. Typhimurium and ФSE12A in S. Enteritidis 

with homologues of the mig-3, pagK and pagM genes being present in the ФSE12A prophage 

as putative genes or pseudogenes, and pagO and sopE2 being present in the direct vicinity of 

the 3’-end of ФSE12A. While in S. Typhimurium the lack of a recognizable attachment site at 

the right end of the insert and the apparent defective nature of the presumptive integrase gene 

STM1871 suggests that the sopE2 islet was acquired earlier and has since suffered extensive 

decay, this might also be true in the case of S. Enteritidis with the ФSE12A prophage 

containing the mig-3, pagK and pagM genes being the most recent acquisition (Balbontín et 

al., 2008). 

When promoters with intracellular-dependent activity were identified in S. Typhimurium 

using differential fluorescence induction, mig-3 was identified as one macrophage-inducible 

gene downstream of one of these promoters (Valdivia and Falkow, 1997). The mig-3 gene is 

present within an ORF with homology to phage tail-fibre assembly proteins and likely 

represents a promoter within an integrated phage in S. Typhimurium (Valdivia and Falkow, 
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1997). It is regulated by the PhoP/PhoQ two-component regulatory system in S. Typhimurium 

(Valdivia and Falkow, 1997). In ФSE12A the mig-3-gene is present as a pseudogene. 

pagK and pagM were identified as PhoP/PhoQ-activated genes by TnphoA mutagenesis in S. 

Typhimurium (Belden and Miller, 1994). pag-gene products are involved in a late stage of 

bacterial parasitism of macrophages as transcriptional activation occurs 3 to 5 hours after 

phagocytosis when the phagosom pH drops below 5.0 (Alpuche Aranda et al., 1992). 

Database analysis showed no similarities at the DNA level or with the predicted protein 

translation to any publicly available database sequences for pagK and pagM (Carnell et al., 

2007; Gunn et al., 1998). The analysis by Gunn et al. showed 90 % identity between pagK 

and pagJ which are located within duplicated regions of the chromosome and were only 

found in S. Typhimurium and S. Enteritidis (Gunn et al., 1998). Both serotypes have a broad 

host range, while those serotypes that did not hybridize to their pagK specific probe are 

strictly human pathogens, which made Gunn and co-workers suggest a possible correlation of 

these genes and host range (Gunn et al., 1998). Analysis of the DNA close to the pagK, pagM 

and pagJ genes revealed a strong similarity of non-coding segments to a variety of proteins 

including transposases, DNA invertases phage proteins and proteins encoded on plasmids 

which appear to be left behind from previous recombination events (Gunn et al., 1998). 

Therefore this region was believed to be a dynamic region of the chromosome in which 

sections were obtained by Salmonella through inter-species transmissions and that mobility of 

a functional transposon or phage may have been responsible for the duplication of pagK and 

pagJ (Gunn et al., 1998). TnphoA insertions in pagK, pagM and pagJ have been shown to 

result in a virulence defect in the BALB7c mouse model and significantly reduced survival 

within macrophages (Belden and Miller, 1994). Strains with mutations in the pagK gene were 

also attenuated in their ability to colonize the intestinal tract in a porcine model of infection 

(Carnell et al., 2007). Belden and Miller speculate that a cumulative effect of expression of 

several pag-encoded proteins could result in resistance to defensins. An altered membrane 

charge, electrical potential or lipid content due to an aggregate change in a large number of 

bacterial proteins could change defensin interaction with bacterial membranes (Belden and 

Miller, 1994). Deletions of the pagK, pagM and pagJ genes individually or in any 

combination however, did not attenuate strain virulence (Gunn et al., 1998). One possible 

explanation for these surprising findings is that the Pag-PhoA fusion exhibits a dominant-

negative effect on virulence through interaction with virulence factors which may include 

other PAG. A similar protein may substitute upon a deleted pag loci resulting in a functional 

interaction with the virulence factor (Gunn et al., 1998). Redundancies and the level of 
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complexity will make it difficult to identify those PAG essential for virulence (Gunn et al., 

1998). In S. Typhimurium a gene encoding a PagK-like protein is also carried in phage Gifsy-

1. In ФSE12A, the pagK gene lies adjacent to the pseudogene with similarity to the mig-3 

gene, and a pseudogene with similarity to pagM lies in close vicinity to the pagK gene. 

 

ФSE12 and ФSE12A are putative phage remnants with many of the genes required for phage 

proliferation being absent or degenerated. The presence of many pseudogenes and genes also 

present in a combination of related bacteriophages indicates a number of recombination 

events that have happened during S. Enteritidis evolution. Remnants of ФSE12A are also 

present at the same location in S. Typhimurium LT2 and probably represent the most ancient 

phage insertion that has been maintained in these two Salmonella lineages. 

 

4.1.3 ФSE14 

 

ФSE14 seems to be a remnant of a bacteriophage with most of the genes encoding putative 

phage proteins with similarities to genes of the lambda-like phage ST18 from S. Typhi. For 

some of the genes harboured in ФSE14 no significant database hits revealing similarities to 

known genes were found. The overlapping reading frames putatively encoding hok/mok from 

the hok/sok post segregational killing system are conserved in SEN1387 in ФSE14 in relation 

to ST18. The function of this post segregational killing system has been explained above. 

Adjacent to this gene, several more genes are highly conserved in relation to ST18. These 

encode putative phage proteins. Database searches revealed no further information about a 

probable function of the encoded proteins, but their high conservation indicates that these 

genes are important for S. Enteritidis. Besides many phage structural genes, ST18 encodes an 

orthologue of lambda replication protein GpO, the cell division inhibitor and phage 

maintenance protein Kil, CII, which regulates lysogeny, an orthologue of the 

enterohemolysin-associated protein Ehly-1 and the exodeoxyribonuclease RecA involved in 

recombination (Thomson et al., 2004). Genes similar to the primary and secondary lambda 

repressors Cro and CI, genes that encode products involved in DNA restriction and 

modification, an orthologue of the lar-gene involved in restriction allevation and modification 

enhancement in E. coli are also harboured in ST18. Interestingly, there is only one CDS 

(SEN1381) in ФSE14 with similarity to the gene encoding Kil in ST18, while CDS with 

similarity to all other genes encoding the above-mentioned proteins in ST18 are missing in 

ФSE14. In the defective lambdoid E. coli prophage Rac, the kil gene encodes a small protein 



Discussion 

 117 

which is an inhibitor of bacterial septation (Conter et al., 1996). Differently from previously 

described inhibitors of septation, kil is able to abolish rod shape when strongly expressed 

(Conter et al., 1996). The inhibition of septation is relieved by excess of FtsZ, a protein 

responsible for the formation of a cytoskeletal ring at the leading edge of the bacterial division 

septum (Bi and Lutkenhaus, 1991; Conter et al., 1996). In addition the CRP-cAMP boosts the 

efficiency of the inhibitor suggesting that either the target or a coinhibitor operating together 

with Kil is CRP-cAMP regulated (Conter et al., 1996). The role of the kil gene conserved in 

ФSE14 remains unclear. 

Agron et al. identified a region unique to serovar Enteritidis strains using suppression 

subtractive hybridization (Agron et al., 2001). The region harbours six ORFs (lygA to lygF; 

“linked to the ydaO gene”) and was named Sdf I (Agron et al., 2001). On the 5’-end of the 

Sdf I region a copy of a gene with near-perfect identity to the E. coli gene ydaO encoding a 

tRNA-thiolase was identified (Agron et al., 2001). Nucleotide sequence comparisons with 

database sequences showed a near-perfect match at each end of the Sdf I region to two widely 

separated regions of the S. Typhi genome suggesting that this region is the site of a major 

rearrangement with respect to S. Enteritidis (Agron et al., 2001). Similarity to database 

sequences was not high enough to provide sufficient evidence to ascribe functions to the 

putative proteins encoded by this region (Agron et al., 2001). LygA shows similarity to 

exonuclease VIII of S. Typhimurium, LygC exhibits weak similarity to the E. coli phage 

superinfection exclusion protein B, while LygD shows even weaker similarity to phage 

lambda repressor cI (Agron et al., 2001). LygF shows some similarity to a hypothetical 

protein of E. coli O157:H7 prophage CP-933R (Agron et al., 2001). LygE and F overlap to a 

large extent, which may indicate that one, the other, or both are not genes (Agron et al., 

2001). The deduced amino acid sequences of lygB and lygE did not show any similarity to 

database sequences with a protein BLAST search in the analysis done by Agron and co-

workers (Agron et al., 2001). 

The Sdf I region was identified in all clinical S. Enteritidis samples tested by PCR, but lacking 

from some phage type reference strains (Agron et al., 2001). Agron et al. therefore claimed 

Sdf I to be a robust marker for pathogenic S. Enteritidis strains (Agron et al., 2001). This 

claim will be discussed in detail below as part of the discussion of the results obtained in this 

study using a S. Enteritidis PCR based on the findings of Agron et al. and the PCRs used for 

the screening of the strains for the ФSE14 locus. 

The Sdf I region constitutes the 5’-region of ФSE14 and contains the genes lygA-lygF. A 

homologue of the ydaO gene (SEN1377) is present adjacent to the 5’-end of ФSE14. There is 
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evidence for the presence of the lygE gene in ФSE14, but this gene was not included into the 

annotation of SE125109 by the Sanger Institute. The unique presence of this region in S. 

Enteritidis, and its existence in all clinical samples tested might indicate that it was acquired 

by integration of an active phage during the evolution of S. Enteritidis and influences S. 

Enteritidis pathogenicity. The findings of this study confirm the assumption by Agron and co-

workers that the Sdf I region comprises a phage remnant due to the similarity of the lygF 

deduced amino acid sequence to a hypothetical protein of an E. coli cryptic phage. 

 

4.1.4 ФSE20 

 

ФSE20 is highly similar in sequence and gene order to the S. Typhimurium DT64 lambda-like 

phage ST64B. The phage ST64B was isolated from S. Typhimurium DT64 strain 2558 

together with phage ST64T (Mmolawa et al., 2002). Crude and CsCl-purified phages ST64B 

and ST64T could not be distinguished by electron microscopy (Mmolawa et al., 2002). 

ST64B is inducible by mitomycin C but could not be propagated on any of the strains tested 

and failed to produce plaques on many diverse Salmonella and E. coli strains (Mmolawa et 

al., 2002; 2003a). Although ST64B has a genomic architecture similar to that of phage 

lambda, its genome is clearly a mosaic composed of genes from phages of diverse bacterial 

groups including Gram-positive organisms (Mmolawa et al., 2003b). ST64B is unlikely to be 

able to mediate transduction and is predicted not to have a tail as the tail genes are probably 

non-functional due to the insertion of virulence gene fragments (Mmolawa et al., 2003b). The 

complete phage ST64T which propagates autonomously in the above mentioned S. 

Typhimurium strain might trans-activate the defective genome of ST64B and compensates for 

some ST64B deficiencies other than the interrupted tail genes allowing partially complete 

virions to be produced (Mmolawa et al., 2003b). An analysis of the ST64B genome revealed 

that two putative genes (sb 21 and sb22) laying adjacent to each other in different reading 

frames in the tail operon are similar to the two halves of an uninterrupted ORF in other 

phages, including P27 and Mu (Figueroa-Bossi and Bossi, 2004). An analysis of ST64B 

revertants arising spontaneously in cultures revealed a fusion of the sb21 and sb22 ORFs into 

a single reading frame. This suggests that in ST64B a +1 frameshift mutation has occurred in 

ST64B leading to its inability to produce infectious virions. The apparent lack of visible tails 

in the ST64B phage preparations by Mmolawa et al., is consistent with this theory (Figueroa-

Bossi and Bossi, 2004; Mmolawa et al., 2003b). The reactivation of the phage can be 

achieved by a reversion of the +1 frameshift mutation (Figueroa-Bossi and Bossi, 2004). 
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Interestingly in ФSE20 sb21 and sb22 are present as one consecutive ORF. This might 

indicate that in S. Enteritidis the introduction of ST64B happened before it occurred in S. 

Typhimurium, introducing the region without the mutation into S. Enteritidis while the same 

region was introduced into S. Typhimurium after occurrence of the +1 frameshift mutation. 

Alternatively, S. Enteritidis and S. Typhimurium both acquired the unmutated gene and the 

mutation happened in S. Typhimurium at a later time point while it did not occur in S. 

Enteritidis. It is even possible that a transfer of the unmutated ST64B from S. Typhimurium to 

S. Enteritidis happened and the mutation occurred in S. Typhimurium then sometime 

afterwards. The effect of these findings on ФSE20 induction will be discussed below. 

Fragments of the virulence-associated genes sopE, sspH2 and orgA are present in putative tail 

and tail fibre genes in ST64B (Mmolawa et al., 2003b). In ФSE20 fragments of these genes 

are also present in putative tail and tail fibre genes. In the SopEФ phage harboured by S. 

Typhimurium the sopE gene is flanked by sequences resembling tail and tail fibre genes of 

P2-like phages (Hardt et al., 1998a). The role of sopE for Salmonella virulence has been 

extensively discussed above already. Interestingly, besides the fragment present in ФSE20 the 

complete sopE gene is also harboured in ФSE12 indicating its putative importance for S. 

Enteritidis. 

SspH2 and SseI both belong to a group of TSEs that are translocated into host cells via the 

SPI-2 T3SS (Ehrbar and Hardt, 2005, Miao et al., 1999; Miao and Miller, 2000; Uzzau et al. 

2001; Worley et al., 2000). As mentioned earlier, the first 142 amino acid residues of SseI and 

SspH2 are 89 % identical suggesting that several TSEs might use a common amino acid 

sequence to direct translocation (Miao et al., 1999; Miao and Miller, 2000). Because sseI is 

believed to have evolved more recently than sspH2, it is hypothesized that sseI was generated 

by recombination of the N-terminal domain of sspH2 with novel DNA encoding the C-

terminal domain (Miao and Miller, 2000). Like SseI, SspH2 also co-localizes with the 

polymerizing actin cytoskeleton through interactions of its N-terminal domain with the actin 

cross-linking protein filamin (Miao et al., 2003). SspH2 was also found to interact with 

profilin and to alter the rate of actin polymerization in vitro (Miao et al., 2003). It co-localized 

with vacuole-associated actin polymerizations (VAP) induced by intracellular bacteria 

through the SPI 2 T3SS suggesting that it functions to reduce or remodel VAP (Miao et al., 

2003). In spite of the effect of SspH2 on actin polymerization in vitro, no alteration in VAP 

morphology was observed for ∆sspH2 Salmonella mutants. This lack of phenotype may be 

explained by functional redundancy among effectors which is believed to be a common theme 

in SPI 1 and SPI 2 T3SS effectors (Miao et al., 2003). Like sseI, sspH2 transcription is 
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induced in the intracellular environment dependent upon the SPI 2-encoded two-component 

regulatory system SsrA/SsrB (Miao et al., 1999; Miao and Miller, 2000). In S. Typhimurium 

Ssph2 has been shown to contribute to virulence in calves probably being important for 

permitting the bacteria to persist in the host rather than causing efflux and diarrhoea (Miao et 

al., 1999). Recently SspH2 has been attributed to a growing class of bacterial effector proteins 

that harness and subvert the eukaryotic ubiquitination pathway representing a remarkable 

example of biochemical mimicry of host cell biology. The actual targets of the SspH2 ligase 

activity have yet to be identified (Quezada et al., 2009). 

When the p60 protein of Listeria was fused to Ssph2, the overexpression of this hybrid 

protein from a medium-copy-number vector led to simultaneous p60-specific CD4 and CD8 

T-cell priming. Therefore SspH2 might be an attractive carrier molecule for antigen delivery 

when T-cell immune responses against complex microbes (or tumours) are needed (Panthel et 

al., 2005). Putative homologues of SspH2 are present in other pathogens including Shigella 

and Yersinia and sequences similar to sspH2 were found in most of the Salmonella serotypes 

tested indicating a central role of this gene in the virulence strategies of Salmonella (Miao et 

al., 1999). sspH2 appears to be located within a lysogenic bacteriophage in S. Typhimurium 

(Miao and Miller, 2000). As described for sopE above, besides the fragment present in 

ФSE20 the complete sspH2 gene is also harboured in S. Enteritidis 125109 (SEN2224) 

flanked by pseudogenes of probable phage origin. The conservation of the gene indicates its 

putative importance for S. Enteritidis. 

The orgA gene has been first identified in a screening of oxygen-regulated genes that were 

required for bacterial invasion into Hep-2 cells by S. Typhimurium (Jones and Falkow, 1994). 

orgA seems to be required for passage through the intestinal epithelium and the Peyer’s 

patches (Jones and Falkow, 1994). S. Typhimurium orgA mutants were non-invasive and 

showed reduced virulence after oral infection in mice (Jones and Falkow, 1994). The mutation 

prevented the invasion and destruction of M cells and the mutants had a general defect in 

secretion of invasion effector proteins (Penheiter el al., 1997). orgA encodes a type III 

secretory component and the phenotype of the orgA mutants indicated that OrgA is an integral 

component of the invasion secretion apparatus that transports specific effector proteins into 

the host cell to induce the uptake of the pathogen into the cell (Klein et al., 2000; Penheiter et 

al., 1997). orgA is similar to the mxiK gene in Shigella, which is a putative component of the 

type III secretion system in that pathogen (Allaoui et al., 1992). Besides the fragment present 

in ФSE20 the complete orgA gene is also present in SPI 1 in S. Enteritidis 125109 

(SEN2712). The fact that all three genes (sopE, sspH2 and orgA ) are present as complete 
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genes in S. Enteritidis 125109 underlines their putative importance for Salmonella virulence 

and explains why they probably could have become degenerated to fragments in ФSE20 

without negative effect on S. Enteritidis. 

S. Typhimurium mutants lacking the entire ST64B prophage behaved like the virulent wild-

type strain in invasion and intracellular proliferation and survival assays performed in cultures 

macrophage, epithelial, and fibroblast cell lines (Alonso et al., 2005). The mutants were also 

able to compete with the wild-type virulent strain for colonization of target organs as liver and 

spleen and penetrated the intestinal epithelium efficiently. When administered orally they 

produced systemic disease (Alonso et al., 2005). The results indicate that none of the genes 

encoded in ST64B are required for S. Typhimurium pathogenesis in the murine typhoid model 

(Alonso et al., 2005). The presence of fragments of the virulence-associated genes sopE, 

sspH2 and orgA in ST64B nevertheless suggests that ST64B might have played a role in the 

transfer of virulence determinants, and it is obvious that the gene fragments can not contribute 

to virulence in the murine model. 

By comparison to known secreted proteins from enterohemorrhagic E. coli and Citrobacter 

rodentium SseK1 and SseK2 were identified in S. Typhimurium (Kujat Choy et al., 2004). 

SseK1 and SseK2 were found to be translocated into host cells (Kujat Choy et al., 2004). 

During in vitro growth SseK1 was a substrate for secretion by both the SPI 1 and the SPI 2-

encoded T3SS while the pattern of SseK2 protein expression suggested that it is co-ordinately 

regulated with the SPI 2 T3SS (Kujat Choy et al., 2004). The sb26 gene from ST64B was 

found to be a homologue of sseK1 and sseK2 and is therefore proposed to be named sseK3 

(Kujat Choy et al., 2004). The possibility that sseK1 and sseK2 were acquired by horizontal 

gene transfer is strengthened by this finding (Kujat Choy et al., 2004). Effects of SseK1 and 

SseK2 on the virulence of S. Typhimurium were not evident using ∆ssK1, ∆ssK2 and 

∆ssK1/∆ssK2 mutants during infection of tissue culture cells or susceptible mice (Kujat Choy 

et al., 2004). The absence of SseK1 and/or SseK2 possibly may have been complemented by 

sb26 (Kujat Choy et al., 2004). These findings do not allow a statement to be made on the 

function of the sb26 gene in ST64B or its homologue in ФSE20. 

ST64B harbours a region likely to be the immunity C region (immC) (Mmolawa et al., 

2003b). It consists of the putative genes for a CI repressor, a Cro-like protein and a CII-like 

gene product. The immC region is involved in the movement of phage into either the lytic or 

lysogenic cycles in bacteriophage lambda (Ptashne et al., 1980). 

When a bacterial population is infected by a temperate bacteriophage, most of the cells 

display a lytic response in which the virus multiplies and lyses the cells killing them, while a 
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fraction of the cells enters the lysogenic state in which the viral DNA has integrated into the 

bacterial chromosome and is transmitted to the bacterial progeny (Thieffry and Thomas, 

1995). In the lysogenic state the product of the cI gene acts as a repressor blocking the 

expression of all other phage genes und conferring immunity towards infection with the same 

type of virus to the bacterium (Thieffry and Thomas, 1995). Concentrations of CI circulating 

at low levels in the cytoplasm of the cell enables it to bind to corresponding operator sites on 

any superinfecting phage DNA having a similar immC region which prevents the expression 

of lytic genes by the superinfecting phage (Poteete, 1988). The decision of whether or not the 

cI gene will be expressed and immunity will be established is subject to a precise control in 

which four phage genes (cI, cro, cII and N) interact (Echols, H. 1986; Eisen et al., 1970; 

Herskowitz and Hagen, 1980; Oppenheim et al., 1970; Ptashne et al., 1986; Reichardt, 1975). 

The cI gene is normally switched on by the product of gene cII which acts as a trigger 

(Thieffry and Thomas, 1995). The cI gene will remain on as its product activates its own 

synthesis while the other bacteriophage genes including the cII gene which had just been 

switched on will be switched off (Thieffry and Thomas, 1995). The cro gene exerts a negative 

control on cI, directly and indirectly by impairing the expression of cII (Thieffry and Thomas, 

1995). 

Despite its inability to infect a host, it is possible that the immC region of ST64B can 

influence phage-type designation in strains in which it is present as a prophage (Tucker and 

Heuzenroeder, 2004). It has been demonstrated that the immC region can mediate phage-type 

conversion when present on a high-copy number plasmid which confirms the likelihood of 

this region being functional in ST64B (Tucker and Heuzenroeder, 2004). 

Generally speaking, phage-type conversion or an altered sensitivity to the typing panel can be 

the result of the acquisition of a temperate phage which resides in the host strain as a 

prophage (Tucker and Heuzenroeder, 2004). Although classical phage typing has been used in 

epidemiology for many years, it is a highly empirical method requiring an experienced 

operator (Tucker and Heuzenroeder, 2004). The obtained results and how the determined 

phage types relate to each other genetically are currently not rationally explained (Tucker and 

Heuzenroeder, 2004). In case of the Anderson typing system it has been suggested that phage 

typing system might not be working properly anymore when the original stocks of phages are 

exhausted (Schmieger, 1999). This is caused by the fact that recombination of typing phages 

with endogenous phages within the strains used for propagation of the panel could yield new 

phages with different plaquing characteristics (Schmieger, 1999). This, together with the fact 

that phage-type conversion or an altered sensitivity to the typing panel can be the result of the 
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acquisition of a temperate phage which resides in the host strain as a prophage, demonstrate 

the advantages of developing a rational typing system based on the genetic properties of 

bacterial strains belonging to different phage types (Tucker and Heuzenroeder, 2004). The 

knowledge of phage-encoded genes as resulting from this work is one important factor for the 

development of such a system which at a later stage could be improved by utilizing 

microarray technology. Data generated with such a system should always be seen in the 

context of the epidemiological data generated with the classical system of phage typing. 

Ideally, a connection between the classical phage-types and the molecular types should be 

drawn. 

 

4.1.5 G + C content 

 

The G + C content of bacterial genomes varies between 25 and 75 % for unclear reasons 

(Sueoka, 1962). It is considered to be a phylogenetic characteristic of a species, which in the 

case of S. enterica averages 52 % (Aoyama et al., 1994; Bäumler et al., 1997). This is in 

accordance with the G + C content percentages previously published for S. Typhi CT18 of 

52.09 % and S. Typhimurium LT2 of 52.22 % and the G + C content of 52.17 % determined 

for the S. Enteritidis strain 125109 (McClelland et al., 2001; Parkhill et al., 2001). 

Interestingly, all putative prophage regions identified in S. Enteritidis 125109 have lower G + 

C contents of between 45.15 and 50.59 % than their host strain while the G + C content of the 

prophages found in S. Typhi CT18 and S. Typhimurium LT2 average around the G + C 

content of their host strains with some prophages having lower and some having higher G + C 

contents than the host strains. Although the G + C contents of the putative S. Enteritidis 

prophages are not especially low, a differing G + C content might indicate that these segments 

were obtained horizontally from other organisms probably with a lower G + C content. 

The genomes of bacteria that like obligatory pathogens or symbionts rely on their host for 

survival have been found to have a low G + C content (Rocha and Danchin, 2002). Genetic 

elements like chromosomes, plasmids, phages and insertion sequences using the cell’s 

replication machinery might be expected to have the same G +C content as the host (Rocha 

and Danchin, 2002). Exceptions to this rule are thought to indicate recent horizontal transfer, 

and unusual G + C contents have been utilized for the identification of such elements in 

bacterial genomes (Karlin, 2001; Moszer et al., 1999). The horizontally acquired elements are 

progressively altered towards the average nucleotide composition of the host genome 

(Lawrence and Ochman, 1998). An analysis of bacteriophages, plasmids and insertion 
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sequences which might also be regarded as 'intracellular pathogens', showed that like the 

obligatory pathogens and symbionts, these elements also have a significantly lower G + C 

content than their hosts (Rocha and Danchin, 2002). Temperate phages have smaller biases 

towards low G + C content than filamentous phages [-1.4 % versus -4.2 %] (Rocha and 

Danchin, 2002). Prophages replicate vertically with the bacterial chromosome and hence are 

subject to alteration towards the host G + C content resulting in smaller G + C deviations, 

while filamentous phages are not integrated into the host’s genome (Rocha and Danchin, 

2002). Therefore they are not subject to alteration towards the host G + C content, but because 

they replicate in a replicating bacterial cell, the evolution of higher A + T content will be 

beneficial due to the higher energy cost and limited availability of G and C over A and T/U 

(Rocha and Danchin, 2002). Additionally, when resources get depleted in the bacterial cell, 

the relative availability of A and T increases, and mis-incorporation of these nucleotides 

might produce a bias towards higher A + T content (Rocha and Danchin, 2002). 

In general, in bacterial genomes the individual increase in fitness of each C/G to A/T mutation 

is unlikely to carry a sufficient advantage to allow frequent fixation (Sueoka, 1993). If a 

mutational bias however, has a selective advantage or if it hitchhikes with a selective mutation 

it can take place (Sueoka, 1993). The lower G + C content of the putative prophages found in 

S. Enteritidis 125109 could possibly be explained in the context of the results obtained by 

Rocha and Danchin. 

 

4.2 PCR results 

 

4.2.1 Salmonella spp. and Salmonella Enteritidis PCR 

 

Amplification of the target sequence could be detected for all samples tested with the 

Salmonella spp. PCR in this study. This was one minimum inclusion criteria for the strains to 

be used in this study besides the results obtained in the slide agglutination. 

The Salmonella Enteritidis PCR was positive for all S. Enteritidis isolates tested except for 

those of phage type 11 and phage type 20. These findings did not come unexpected and were 

also mentioned by Agron and co-workers in their initial publication of the PCR (Agron et al., 

2001). The Sdf I region was identified by suppression subtractive hybridization and found to 

be unique to S. Enteritidis including a wide range of clinical and environmental samples 

(Agron et al., 2001). While no PCR products were amplified from 73 non-Enteritidis isolates, 
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clear positive results were obtained when 33 S. Enteritidis strains from various environmental 

sources comprising 11 phage types were tested (Agron et al., 2001). When the primer pair 

targeting the Sdf I region was used to test 37 phage type reference strains of S. Enteritidis 

from the National Veterinary Services Laboratory (NVSL), the phage types 6A, 9A, 11, 16, 

20 and 27 did not lead to the amplification of a PCR product (Agron et al., 2001). Two 

clinical phage type 9A strains and four clinical phage type 6A strains were nevertheless 

identified by PCR with the Sdf I primer pair (Agron et al., 2001). Based on these results they 

claim Sdf I to be a robust marker for pathogenic S. Enteritidis strains. A clear relationship 

between phage typing and the presence of Sdf I was lacking (Agron et al., 2001). This shows 

the limitations of conventional phage typing and once again demonstrates the necessity of 

developing a rational typing system based on the genetic properties of bacterial strains 

belonging to different phage types. 

A PCR with a primer pair internal to Sdf I showed the same results regarding the incoherent 

detection of certain phage types seen with the original primer pair (Agron et al., 2001). This 

makes point mutations in the primer binding sites an unlikely explanation, and Agron and co-

workers speculate that in some of the reference strains they tested the Sdf I region might have 

been lost during laboratory passage while selection maintained this region in environmental 

isolates tested (Agron et al., 2001). 

Clinical samples for phage types 11, 16, 20 and 27 were not available from the Centers for 

Disease Control and Prevention (CDC) to Agron and co-workers. They therefore suggest that 

infections from these phage types are extremely rare (Agron et al., 2001). Contrary to this 

assumption, clinical samples for a phage type 11 strain (diagnostic sample originating from a 

cat) and a phage type 20 strain (originating from a duck) were available for this study from 

the National Reference Laboratories at the Bundesinstitut für Risikobewertung (BfR) and the 

Robert Koch-Institut (RKI). This together with findings from this study which indicate that 

the Sdf I region is localized in the putative prophage region ФSE14 make it appear more 

likely that negative PCR results are linked to the absence of the putative prophage ФSE14 

which harbours the Sdf I regions as the target of the PCR. All non-Enteritidis samples tested 

in this study did not produce positive PCR results in the S. Enteritidis PCR confirming the 

uniqueness of the Sdf I region for this serovar. 

A growing number of DNA based detection methods for Salmonella have been published 

currently. Many of those are real-time PCR methods (e.g. Hadjinicolaou et al., 2009; Malorny 

et al., 2007; Pan and Liu, 2002; Woodward and Kirwan, 1996), but there has also a method 

based on loop-mediated isothermal amplification (LAMP) capable of rapid, sensitive, and 
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specific detection of the O9 group of Salmonella been published recently (Okamura et al., 

2008). 

Most of the PCR assays target the sefA gene encoding a fimbrial antigen termed SEF14, 

which has been found in some 7,500 S. Enteritidis isolates representing all phage types, 

according to Woodward and Kirwan (e.g. Hadjinicolaou et al., 2009; Pan and Liu, 2002; 

Woodward and Kirwan, 1996). However, it is not specific enough to identify only S. 

Enteritidis as the gene is unique to Salmonella serogroup D serovars which include amongst 

others S. Typhi, S. Gallinarum or S. Pullorum (Malorny et al., 2007). The assay published by 

Malorny and co-workers targets the Prot6e gene located on the S. Enteritidis specific 60-kb 

virulence plasmid (Malorny et al., 2007). 75 out of the 79 S. Enteritidis isolates tested in that 

study gave positive PCR results, but interestingly the only phage type 11 isolate in that study 

gave a negative PCR result and harboured a plasmid that differed in size (Malorny et al., 

2007). Therefore it would be interesting to test other phage type 11 (and phage type 20 

isolates that were not included into the study by Malorny and co-workers) to see if these all 

give negative PCR results. In this case their PCR could not compensate for the lack of 

specificity seen in the PCR published by Agron and co-workers (Agron et al., 2001; Malorny 

et al. 2007). The published results for the LAMP assay included 119 S. Enteritidis isolates, 

but no phage types were specified, so that no statement can be made about any influence of 

the phage type on the results obtained with that method (Okamura et al., 2008). The findings 

from this study show the importance of including isolates representing all phage types into 

assay validation procedures to ensure that the assay which is being validated really possesses 

the specificity in the detection of S. Enteritidis that is being claimed. Probably this is true for 

assays specifically detecting other serovars as well. 

 

4.2.2 PCRs for screening of prophage presence 

 

4.2.2.1 ФSE10 

 

The putative prophage region ФSE10 seemed to be conserved within S. Enteritidis across 

almost all phage types tested, with the 3’-end and the target region containing the conserved 

effector protein gene sseI being present in all S. Enteritidis isolates of the strain collection 

similar to their presence in SE125109. The negative PCR results that were obtained with the 

SE10_5 primer pair for those S. Enteritidis isolates belonging to the phage types 9b, 11 and 20 
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could be explained by point mutations in this region preventing one or both of the SE10_5 

primers from binding to their target region or by a different integration of the phage or 

assortment of the phage genes in the 5’-region. The pseudogenes SEN0908A and SEN0909 

present at the 5’-end of the ФSE10 region are an indicator for this region not being essential 

for the Salmonella host allowing for mutations in this region while the effector protein gene 

sseI seems to be well conserved. 

Since the ФSE10 region has been described as being closely related to the Gifsy-2 region 

present in S. Typhimurium, it is not surprising to see positive PCR results for the SE10_SSEI 

primer pair and the SE10_3 primer pair in this serovar as well. Maybe for the same reasons 

mentioned for the S. Enteritidis phage types 9b, 11 and 20, the SE10_5 primer pair did not 

amplify the target region in S. Typhimurium. Positive PCR results in case of the SE10_3 

primer pair for the serovars Stanley, Infantis, Hadar and Senftenberg might as well indicate 

the frequent rearrangements of fragments present in ФSE10 or Gifsy-2 in these serovars as 

well. Interestingly, no positive PCR results were obtained for the two other group D serovars 

Gallinarum and Eastbourne tested in this study. This is in accordance with results from the S. 

Gallinarum sequence analysis that indicated the absence of the putative prophage ФSE10 in S. 

Gallinarum (Thomson et al., 2008). 

 

4.2.2.2 ФSE12/ФSE12A 

 

Like ФSE10, the putative prophage region ФSE12/ФSE12A seems to be conserved within S. 

Enteritidis across all phage types tested as indicated by the positive PCR results obtained for 

all three primers pairs: SE12_5N; SE12_SOPE_N and SE12_3. The negative PCR result seen 

for the phage type 20 isolate with the SE12_3 primer pair as the only exception can probably 

also be explained by point mutations in this region or by a different integration of the phage or 

assortment of the phage genes at the 3’-end. 

Confirming the results from the S. Gallinarum sequence analysis that indicated the presence 

of the putative prophage locus ФSE12/ФSE12A in this serovar, all three PCRs were positive 

when the S. Gallinarum DNA was used as a template (Thomson et al., 2008). The same PCR 

results for S. Infantis suggest presence of the prophage locus ФSE12/ФSE12A also in this 

serovar. The finding that for five non-Enteritidis isolates (serovars Typhimurium, Eastbourne, 

Saint Paul, Stanley and Anatum) the PCR gave positive results with the SE12_5N primer pair 

and the SE12_3 primer pair but not with the SE12_SOPE_N primer pair is somewhat 

surprising because one would assume a conservation of this probable virulence determinant. 
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A possible explanation are the pseudogenes flanking the sopE gene in S. Enteritidis which 

might be mutated in other serovars in a way that prevent one or both SE12_SOPE_N primers 

from binding to the target DNA. SopE is known to be encoded on a moron widespread in the 

Salmonellae and carried by several different bacteriophage families (Mirold et al., 2001). 

Positive PCR results for S. Virchow and S. Hadar with the SE12_SOPE_N primer pair and the 

SE12_3 primer pair but not with the SE12_5N primer pair might result from a different 5’-end 

in these two serovars. In S. Enteritidis 125109 the 5’-end of the putative prophage locus 

ФSE12/ФSE12A seems to have a different origin than the rest of the locus. In S. Virchow and 

S. Hadar this 5’-end might come from another source than it does in S. Enteritidis. 

 

4.2.2.3 ФSE14 

 

The results obtained with the PCRs targeting the putative prophage region ФSE14 perfectly 

match with the results obtained in the Salmonella Enteritidis PCR. The ФSE14 region is 

conserved among almost all S. Enteritidis tested in this study with the exception of phage 

types 11 and 20 which were also negative in the Salmonella Enteritidis PCR. This is an 

additional strong indication for the absence of the ФSE14 region including the Sdf I region in 

these S. Enteritidis phage types as discussed for the Salmonella Enteritidis PCR. More 

detailed studies looking at a higher number of isolates comprising those phage types that were 

negative in the Salmonella Enteritidis PCR will be a valuable tool to gain more information 

on the relationship between the phage type and the presence or absence of the ФSE14 region, 

and a possible connection with the pathogenicity of strains as indicated by Agron and co-

workers (Agron et al., 2001). The lack of amplification with the SE14_3 primer pair in the 

phage type 9b isolate might be the result of a mutation that prevents one or both of the 

SE14_3 primers from binding to the target DNA or by a different integration of the phage or 

assortment of the phage genes at the 3’-end. As supposed by the presence of the pseudogenes 

SEN1396A and SEN1398 at the 3’-end of the ФSE14 this region might not be essential for 

the Salmonella host allowing for mutations. 

The lack of amplification for all three PCRs with all non-Enteritidis isolates tested confirms 

the results obtained with the Salmonella Enteritidis PCR and underlines the uniqueness of the 

putative prophage region ФSE14 for S. Enteritidis. The absence of this region is in accordance 

with findings from the S. Gallinarum genome analysis which were also not able to locate this 

region in the genome of S. Gallinarum (Thomson et al., 2008). Interestingly, no amplification 

with the SE14_CONSERVED primer pair was seen with the S. Typhimurium isolate although 
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the primers were designed to target a region in S. Enteritidis which is believed to be highly 

conserved in relation to the S. Typhimurium prophage ST18 by the genome comparisons 

performed in this study. 

 

4.2.2.4 ФSE20 

 

The putative prophage region ФSE20 seems to be present in most of the S. Enteritidis phage 

types. Interestingly it appears to be absent from the phage types 8, 9b and 13a. The phage type 

8 and 13a isolates did not pop up in the screening for the presence of the other putative 

prophage locations in S. Enteritidis in this study. The two isolates of unknown phage type 

which were also PCR negative for all three ФSE20 targeted PCRs might as well belong to one 

of these phage types. Phage ST64B, to which ФSE20 is highly similar in sequence and gene 

order has been found to be present in only some S. Typhimurium isolates as well (Alonso et 

al., 2005). The positive PCR result with the SE20_3 primer pair with a phage type 11 isolate 

and with the SE20_5 primer pair with a phage type 20 isolate might indicate that in these 

phage types only fragments of the putative prophage region ФSE20 are present or that 

significant mutations or phage rearrangements have happened in these phage types. The 

unclear results seen in the phage type 21c isolate cannot be explained from the available PCR 

data, but one possible explanation might also be mutations that have affected the binding of 

the primers to their target sequences resulting in no or incomplete amplification of the target 

sequence. 

The putative prophage region ФSE20 seems to be quite unique to S. Enteritidis. Although the 

genome analysis that was part of this study revealed a high similarity to phage ST64B from S. 

Typhimurium DT64, positive PCR results were obtained only with the SE20_IMMC primer 

pair and the SE20_3 primer. So at least between the S. Typhimurium isolate used in this study 

and SE125109 there seems to be a relevant difference in genome sequence. The positive PCR 

with the SE20_IMMC primer pair using S. Anatum DNA as the target might be caused by 

fragments of the immC region which is also present in this serovar. The PCR results confirm 

the assumed absence of ФSE20 in S. Gallinarum that was based on the genome comparisons 

(Thomson et al., 2008). 
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4.2.3 General discussion of the PCR based screening 

 

The PCRs designed in this study turned out to be a valuable tool for the screening of both the 

S. Enteritidis and non-Enteritidis isolates in the strain collection for the presence of the 

putative prophage regions identified in the genome analysis. The prophage content was quite 

conserved between the S. Enteritidis isolates. No differences were seen within the same phage 

type, and the large number of phage type 4 isolates from different sources strongly indicates 

the representative character of the sequenced S. Enteritidis strain 125109 for phage type 4 

isolates in terms of prophage content. Based on the PCR data, no effect could be seen for 

isolates from different sources and different countries of isolation. Also between the 

attenuated vaccine strain AviPro® SALMONELLA VAC E and its parent strain Leipzig no 

differences could be detected in the prophage content based on the PCR screening. 

Isolates belonging to the phage types 11 and 20, and to some extent also the isolate belonging 

to phage type 9b showed the most differences in the pattern of positive PCR reactions 

compared to the sequenced strain. The PCR results obtained for the non-Enteritidis isolates 

showed that the prophage content of S. Enteritidis comprises a characteristic pattern for this 

serovar, but the bacteriophages seem to form a pool that is rearranged in different patterns in 

other serovars which all display a different mosaic of genes from this pool. This becomes 

obvious through the scattered pattern of positive PCR reactions in the non-Enteritidis isolates. 

Remarkably, all PCR products that were obtained when DNA from the non-Enteritidis 

isolates was used as the template had the expected lengths that were calculated based on the 

sequence of SE125109. This seems to indicate that in those cases when amplification of the 

target sequence took place, the target seems to be relatively conserved as the length is always 

maintained. Stronger mutations or rearrangements might have interfered with the PCR to a 

larger extent inhibiting the formation of any PCR products. 

To get a deeper insight into the conservation and the differences in bacteriophage content in 

the S. Enteritidis isolates belonging to different phage types, isolates were selected for a 

microarray analysis based on the results of the PCR screening. 
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4.3 Microarray experiments 

 

4.3.1 ФSE10 

 

The analysis of the microarray data obtained for the genes present in the putative prophage 

region ФSE10 confirm the conservation of this region within S. Enteritidis across almost all 

phage types tested which has already been seen in the PCR-based screening. The PCR results 

match quite well with the microarray data. The microarray data indicates the absence of the 

genes SEN0910 – SEN 0912A at the 5’-end of ФSE10 in the phage type 11 isolate, which 

also gave negative PCR results with the SE10_5 primer pair targeting this region. 

Interestingly, the genes flanking the 5’-end of ФSE10 are conserved in the phage type 11 

isolate making no difference to all other isolates tested. Probably there seems to be a different 

integration of the phage in the phage type 11 isolate or some of the genes at the 5’-end might 

have been lost. While there was also no amplification obtained with the SE10_5 primer pair 

for the phage types 9b and 20 isolates, the microarray data indicates the presence of the 

complete putative prophage region ФSE10 in these isolates. However, the pseudogenes 

SEN0908A and SEN0909 located at the 5’-end of ФSE10, which are the target for the 

SE10_5 primer pair, are not present on the microarray used for the analysis, so that no direct 

statement on the presence of SEN0908A and SEN0909 can be made based on the microarray 

results. As already mentioned in the context of the PCR results, the presence of two 

pseudogenes (SEN0908A and SEN0909) at the 5’-end of the ФSE10 region indicates this 

region not to be essential for the Salmonella host allowing for mutations in this region while 

the effector protein gene sseI seems to be well conserved. These mutations or even the loss of 

the whole pseudogene might explain the negative PCR results seen in the phage type 9b and 

20 isolates despite conservation of the rest of the 5’-end of the ФSE10 region according to the 

microarray data. 

 

4.3.2 ФSE12/ФSE12A 

 

Results from the PCR-based screening which had already indicated that like ФSE10, the 

putative prophage region ФSE12/ФSE12A seems to be conserved within S. Enteritidis across 

all phage types tested, could be confirmed by the analysis of the microarray data obtained for 
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the genes present in ФSE12/ФSE12A. The ФSE12/ФSE12A genes represented on the 

microarray could be detected in all tested isolates according to the microarray data. The 

observation that from the microarray data no indication for the presence of the pseudogene 

SEN1152 in the phage type 9b isolate could be seen can probably be explained by the 

pseudogene character of SEN1152. It seems not to be important for the Salmonella host as it 

has mutated to a pseudogene in SE125109 and therefore further mutations or even the 

complete loss of the pseudogene would probably have no effect on the host. The negative 

PCR result seen for the phage type 20 isolate with the SE12_3 primer pair was not reflected in 

the microarray results at first view, because this isolate did not show differing results in the 

microarray for the genes of the putative prophage region ФSE12/ФSE12A. A closer look 

however, points out to a probable explanation for these findings. Only one gene from the very 

5’-end of ФSE12A is present on the microarray while all other genes are allocated to ФSE12. 

The absence of the region targeted by the SE12_3 primer pair would therefore not have been 

visible from the microarray data. Nevertheless, the phage type 20 isolate was the only isolate 

showing divergent results in the analysis of the genes in the vicinity of ФSE12/ФSE12A with 

the genes SEN1174, SEN1176 and SEN 1178 adjacent to the 3’-end of ФSE12/ФSE12A 

seemed to be missing, which is a strong indication for a different integration of the phage or 

assortment of the phage genes at the 3’-end. 

 

4.3.3 ФSE14 

 

The microarray data for the genes of the putative prophage region ФSE14 present on the 

microarray completely matches with the results from the PCR based screening. According to 

PCR results and microarray results ФSE14 is present in the isolates of most of the phage types 

tested. The absence of ФSE14 from the isolates belonging to phage types 11 and 20 as 

indicated by the PCR results was also seen in the microarray data. The observation of a gene 

similar to the STY2007 gene from S. Typhi CT18 being present in these two isolates which in 

return was absent from the isolates belonging to all other phage types tested suggests that this 

gene was lost during the integration of ФSE14. The location of the STY2007 gene in S. Typhi 

right at the 5’-end of the ST18 phage indicates that this gene might be left over from previous 

phage integration events in the S. Enteritidis isolates belonging to phage types 11 and 20 at a 

location possibly being a hot spot for phage integrations. 

In the PCR based screening no amplification was seen with the SE14_3 primer pair targeting 

the 3’-end of the putative prophage region ФSE14 in the phage type 9b isolate. This result is 
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also very well reproduced in the analysis of the microarray data, where there is evidence that 

of those genes represented on the array the genes SEN1393, SEN1394 and SEN1395 at the 

3’-end of the phage type 9b isolate are missing probably due to different integration of the 

phage or assortment of the phage genes at the 3’-end. As discussed in the context of the PCR 

results already, the pseudogene-character SEN1396A and SEN1398 present at the 3’-end of 

the ФSE14 might indicate that this region is not essential for the Salmonella host allowing for 

mutations. The absence of the SEN1384 gene in the same phage type 9b can not be explained 

with the available data. 

The region neighbouring both ends of the putative prophage region ФSE14 seems to be 

unaffected by the presence or absence of ФSE14 as the genes in the direct vicinity were 

present in all isolates tested independent of the ФSE14 presence. 

 

4.3.4 ФSE20 

 

In case of the putative prophage region ФSE20 the situation is much more complicated than 

for the other putative prophage regions seen in SE125109. However, the results of the 

analysis of the microarray data are in good correlation with the results of the PCR-based 

screening. The microarray data for the isolates belonging to the phage types 1, 4 and 21 

indicated presence for all genes of the putative prophage region ФSE20 that are present on the 

array. This was also the result of the respective PCR reactions for these phage types. For the 

isolates belonging to the phage types 8, 9b and 21c the microarray data suggested absence of 

ФSE20 which was also reflected by the PCR results for these phage types. The unclear PCR 

results seen for the phage type 21c isolate should be regarded as negative in the context of the 

microarray results. The microarray data revealed a scattered distribution of genes being 

present and absent in small blocks for the remaining isolates belonging to the phage types 11, 

13a and 20. While this was already assumed from the PCR results received for the phage type 

11 and 20 isolates, the PCR results for the phage type 13a isolate suggested absence of 

ФSE20 in this isolate. The microarray data however, gave strong evidence for approximately 

two thirds of the genes being present in this isolate. An obvious explanation for this at first 

sight contrary results can be found when a detailed look at the target genes of the PCR 

reactions is taken. The individual genes were either missing in the phage type 13a isolate 

(SEN1955) or in some cases not even present on the array (5’-end target). However, the 

SEN1920 gene, which contains the binding site for the reverse primer of the PCR targeting 

the 5’-end of ФSE20 is present on the array and its absence in the isolates belonging to the 



Discussion 

 134 

phage types 8, 9b, 11, 13a, and 21c matches very good with the negative PCR results obtained 

with these isolates in the respective PCR. In case of the target genes of the 3’-end PCR, the 

SEN1966 gene is absent in the isolates belonging to the phage types 8, 9b, 13a, 20 and 21c, 

which is in accordance with the obtained PCR results. Interestingly, the microarray data 

indicates absence of the SEN1967 gene, which contains the binding site for the reverse primer 

targeting the 3’-end of ФSE20 in the phage type 21 isolate, but the PCR result was 

nevertheless positive for this isolate. A possible explanation for this observation might be a 

mutation in this gene, which prevents binding to the target sequence on the microarray while 

the PCR primer still seemed to be able to bind to its target. Therefore it is important to keep in 

mind that the PCR reactions are only valid for a screening analysis while the microarray was 

able to give more definite results on the presence or absence of the putative phage locations in 

SE125109. The absence or presence of isolated single genes in the putative phage locations or 

in their direct vicinity as seen in the microarray data show that the prophages are dynamic 

regions where mutations and rearrangements take place so that these regions should not be 

considered to be of static nature. 

 

4.3.5 Presence of prophage genes from S. Typhimurium LT2S and S. Typhi 

CT18 

 

The genome analysis of SE125109 had already shown the presence of various S. Typhi CT18 

and S. Typhimurium LT2 prophage genes in the 4 putative prophage regions identified in the 

S. Enteritidis PT4 strain. The analysis of microarray data for the presence of genes from the S. 

Typhi CT18 and S. Typhimurium LT2 prophages in the S. Enteritidis isolates tested was able 

to confirm these findings and to illustrate the frequent exchange and rearrangement of genes 

belonging to what could be seen as a pool of phage genes. An individual set of these genes 

seemed to be present in each serovar and also each phage type. This shows why all S. 

Enteritidis isolates tested harboured genes from S. Typhi CT18 and S. Typhimurium LT2 

prophages, as well as genes from all prophage locations in S. Typhi CT18 and S. 

Typhimurium LT2 were harboured in at least some of the S. Enteritidis isolates tested. 

Findings that isolates belonging to the phage types 4 and 21 seemed to harbour only few of 

the prophage genes from S. Typhi CT18 and S. Typhimurium LT2 according to the 

microarray data while a much higher proportion of these genes seemed to be present in the 

isolates belonging to the phage types 8, 9b, 11, 13a could possibly be explained in the context 
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of the overall prophage content in the S. Enteritidis isolates. Those isolates harbouring more 

of the prophage genes from S. Typhi CT18 and S. Typhimurium LT2 seemed to be lacking the 

ST64B phage in part or total in the putative prophage location ФSE20. This might be caused 

by the presence of one phage conferring immunity towards infection with the same type of 

virus to the bacterium. In a microarray-based study by the working group of Michael 

McClelland using a different array, two groups of S. Enteritidis isolates were determined 

based on the presence of a subset of phage regions (Porwollik et al., 2005). They were 

grouped based on absence / presence patterns for regions similar to the phages ST64B, Fels-2, 

ST27 and ST35. These two groups were seen to almost perfectly overlap with the separation 

into phage type 4-like isolates (including phage types 1, 4, 4b, 6, 7 and 24) and phage type 8-

like strains (including phage types 2, 8, 13a and 23) based on LPS core structure (Guard-

Petter, 1999; Liebana et al., 2002; Porwollik et al., 2005). These LPS differences are thought 

to make the strains resistant or susceptible to a phage present in the current typing scheme 

(Porwollik et al., 2005; Ward et al., 1987). 

A comparison of the findings by Porwollik and co-workers with the results from this study 

showed some consent but more detailed information obtained in this study stress also some 

differences. In addition to that isolates belonging to phage types not included into the study by 

Porwollik and co-workers were also analysed in this study. A comparison of the results has 

been compiled in Table 4-1. As there was only one gene from the S. Typhi CT18 phage ST27 

present on the array used in this study, results for this phage were not included into Table 4-1. 

 

Strain PT 
ФSE20 
(ST64B-like) Fels-2 ST35 

Group 
according to 

Porwollik et al. 

125109 4 + 3/66 0/30 PT 4-like 

Leipzig 4 + 5/66 0/30 PT 4-like 

VAC E1 4 + 5/66 0/30 PT 4-like 

04-03158 1 + 23/66 6/30 PT 4-like 

05-01906 8 - 57/66 29/30 PT 8-like 

03-03059 9b - 58/66 27/30 na 

04-03092 11 50 %; 3':+ 58/66 28/30 na 

03-03561 13a 67 %; PCR - 60/66 28/30 PT 8-like 

02-00191 20 33 %; 5': +  7/66 0/30 na 

02-06391 21 + 4/66 0/30 na 

04-03909 21c - 5/66 0/30 na 

Table 4-1: Comparison of prophage content results from this study with results by Porwollik et al., 2005. 

1AviPro® SALMONELLA VAC E 

 

The results for the phage type 4 and 8 isolates match very well with the results by Porwollik 

et al., and the phage type 21 and 9b isolates show a similar pattern but such phage types were 
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not included into the study by Porwollik and co-workers. In their study, Porwollik and 

colleagues put 6 different isolates belonging to phage type 13a into the PT 8-like group and 

found the ST64B-like phage to be absent in these isolates. Microarray data from this study 

however, indicated parts of the ST64B-like phage being present in several scattered small 

blocks of few genes totalling up to about 67 % of those genes represented on the array. 

Therefore it is unclear whether a phage type 13a isolate with a different phage content was 

used in this study or if the array used by Porwollik and co-workers wasn’t able to detect the 

ST64B genes in the phage type 13a isolates. It would be of interest to test their isolates with 

the array used for this study. The phage type 11 isolate from this study showed a similar 

pattern like the phage type 13a isolate; no such isolate was tested by Porwollik and co-

workers. The phage type 1 isolate tested in this study carries some Fels-2-like genes while the 

isolate tested by Porwollik and co-workers seemed to lack Fels-2-like genes and was therefore 

categorized in the PT 4-like group. This might be explained by the same reasons as for the 

phage type 13 a isolate, and it has to be kept in mind that there were only 26 of the Fels-2-like 

genes tested with the array used by Porwollik and colleagues while there were 66 Fels-2-like 

genes present on the array used in this study allowing a more accurate analysis. All facets of 

phage presence and absence in parts or total seem possible, and the phage type 20 isolate 

which harbours only part of the ST64B-like genes while lacking the Fels-2-like genes seems 

like the phage type 1 isolate to be somewhere in between the PT 4-like and the PT 8-like 

group with respect to the prophage content. The phage type 21c isolate tested in this study 

finally pointed up that lack of the ST64B phage did not necessarily coincide with presence of 

the Fels-2 and ST35-like genes as this isolate seemed to lack all of them. 

 

4.3.6 General discussion of microarray results 

 

The microarray analyses that were part of this study generated a tremendous amount of data. 

From this data set those data relevant for the scope of this study had to be extracted and 

analysed. Having done this, the array data was able to confirm some of the results obtained by 

the methods used in the first parts of this study and the assumptions that arose from the 

interpretation of these data. The microarray data gave a deeper, much more detailed insight 

into the putative prophage repertoire of the different S. Enteritidis phage types and was 

therefore also able to clarify and complement the data from the genome analysis and the PCR-

based screening, making it a very valuable tool for the analysis of the S. Enteritidis prophage 

content. It became obvious that the prophage content differs enormously between the isolates 
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belonging to different phage types, and the whole spectra of presence and absence of phages 

in part or in total is possible. The putative phage locations seemed to consist of an assortment 

of phage genes also present in other serovars that are recombined frequently. The information 

obtained in these microarray experiments is by definition unidirectional. Only those putative 

genes present on the sequenced strains and represented on the array could be detected, but not 

those specific to other isolates of the same serovar unless they are present in a similar way in 

other serotypes represented on the array. 

The three isolates belonging to the phage type 4 tested in this study showed only minor 

differences in the microarray data confirming homogeneity in prophage content within the 

same phage type that was already indicated by the PCR-based screening. There were no 

obvious differences between the vaccine strain AviPro® SALMONELLA VAC E and its 

parent strain Leipzig visible in the microarray data in relation to the prophage content and this 

was in accordance with the already known difference responsible for the attenuation of the 

vaccine strain that are not associated with prophage locations. 

The GACK method seemed to be the most stringent of the three statistical methods applied 

and it was therefore used preferably for the final judgement to determine the presence or 

absence of a gene from the microarray data. 

 

4.4 Prophage release and induction experiments 

 

4.4.1 Prophage induction experiments 

 

To investigate the inducibility of the temperate prophages previously identified in the genome 

comparisons, UV irradiation and mitomycin C, as one physically and one chemically inducing 

agent traditionally used for the induction of lysogenic cultures were applied to duplicate 

samples of SE125109. 

No induction of any of the prophages could be detected with the experimental model used in 

this study. The genome analysis had already indicated the putative prophages ФSE10, 

ФSE12/ФSE12A and ФSE14 to be phage remnants that are very unlikely to be inducible. For 

ФSE20 however, the genome analysis suggested that this prophage is probably inducible. As 

mentioned before, its S. Typhimurium analogue ST64B was isolated together with phage 

ST64T, and ST64B was inducible by mitomycin C but could not be propagated on any of the 

strains tested and failed to produce plaques on many diverse Salmonella and E. coli strains 



Discussion 

 138 

(Mmolawa et al., 2002; 2003a). A +1 frameshift mutation in ST64B is believed to be 

responsible for its inability to produce infectious virions, and reactivation of the phage can be 

achieved by a reversion of the +1 frameshift mutation (Figueroa-Bossi and Bossi, 2004). As 

the +1 frameshift mutation is not present in ФSE20, it should be active like the ST64B 

revertants which lack the +1 frameshift mutation and arise spontaneously in cultures 

(Figueroa-Bossi and Bossi, 2004). Nevertheless no induction of ФSE20 was seen in the 

experiments of this study. It might be possible that in S. Typhimurium additional genes are 

required for the activation of the phage like it has been suggested that the complete phage 

ST64T which propagates autonomously in the above mentioned S. Typhimurium strain might 

trans-activate the defective genome of ST64B and compensates for some ST64B deficiencies 

(Mmolawa et al., 2003b). The genes might be lacking in SE125109. But also the experimental 

model chosen might be the reason why no phage induction could be detected. The indicator 

strain STm 576 used in the phage induction experiments might not have been ideal for the 

detection of released S. Enteritidis phages after induction. An indicator strain belonging to the 

same serovar might have had a higher probability for being susceptible to infection by the 

released phages. As hydrogen peroxide treatment has been shown to induce Gifsy-1 more 

effectively than mitomycin C in S. Typhimurium, the use of other inducing agents than UV 

irradiation and mitomycin C, like for example hydrogen peroxide might have been an 

alternative to induce any of the prophages in SE125109 (Figueroa-Bossi and Bossi, 1999). As 

the experiments focussing on the spontaneous release of phages from the S. Enteritidis 

isolates tested which were done in parallel and are discussed below produced interesting 

results very quickly, the route of phage induction wasn’t followed any further in this study. 

However, other inducing agents or a different indicator strain could have lead to the detection 

of phage induction in SE125109. 

 

4.4.2 Spontaneous prophage release experiments 

 

As expected, no plaques were detected in any of the tester strains, when only medium was 

applied as a control. This confirms that the formation of the plaques detected is induced by the 

supernatants applied to the tester strains, and that the plaques themselves are not formed 

spontaneously. For all strains no plaques were seen when supernatants produced by the same 

strain were used. This is in accordance with the immunity against infection with the same 

bacteriophage when this phage is already present as a prophage in the respective strain. For 

the three phage type 4 isolates tested, the same pattern for plaque formation caused by 
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supernatants derived from this strains was seen with the whole set of tester strains. On the 

other hand, when the three phage type 4 isolates were used as tester strains, the whole set of 

supernatants caused the same patterns of plaque formation for these three strains. This is in 

accordance with findings from the previous analyses indicating a high level of homogeneity 

with respect to the prophage contents within the same phage type. 

Several different patterns were distinguishable for the strains belonging to different phage 

types. While no plaque formation was seen when the phage type 13a and 20 isolates where 

used as the tester strains, the isolates belonging to the phage types 8 and 21c showed plaque 

formation with many of the supernatants tested. The other isolates behave somewhat in 

between and produce plaques with a few of the supernatants only. If the results are analysed 

from the perspective of the supernatants, the supernatants of the isolates belonging to the 

phage types 11 and 13a behaved in a very special way, as they were able to induce plaque 

formation in almost all tester strains. The supernatants from the phage type 8, 9b and 20 

isolates on the contrary were not able to induce plaque formation in any of the tester strains 

used. It is not possible to directly correlate the results from the spontaneous phage release 

experiments with the results from the analysis of the prophage content. The patterns found do 

not necessarily correlate. While for example the supernatants derived from the phage types 8 

and 20 showed a similar pattern in the plaque formation they induced, they differed in the 

analysis of the prophage content with ФSE20 being probably present in the phage type 8 and 

absent in the phage type 20 isolate. On the other hand, the same prophage pattern was seen for 

the phage type 4 and 21 isolates, but these did not show the same pattern in the spontaneous 

phage release experiments both as the tester strain, as well as when they were used for the 

production of the supernatants. All possible combinations and differences can of course not be 

discussed here. The combinations mentioned above are examples only to illustrate that from 

the data generated in this study the prophage content and the lysis patterns can not be put into 

relation to each other. This is probably due to the fact that especially the non phage type 4 

isolates included into this study might contain other or additional prophages to those 

identified in the phage type 4 isolates which could not be detected in the PCR analysis as this 

was based on the prophage content of SE125109 and not with the microarray analysis because 

phages not represented on the array could of course as well not be detected. These other or 

additional prophages could then give immunity against infection with certain phages present 

in the respective supernatants tested to these strains or in the cases when the supernatants 

produced from these strains were used spontaneously release their specific phages to these 

supernatants which could then infect some of the tester strains. Nevertheless, the spontaneous 
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phage release experiments were able to highlight certain phage types like 8, 9b, 11, 13a and 

20. These are exactly those phage types that already popped up as being the most diverse from 

the page type 4 isolates in the PCR based screening and the microarray analysis which 

together is a strong indication for them to harbour a different set of prophages. As discussed 

in the previous chapter, ФSE20 is the prophage most likely to be intact in SE125109 so that it 

could be released. However, the results obtained in the spontaneous phage release 

experiments do not allow to make a statement if this phage has been released from the phage 

type 4 isolates and induced plaque formation in some of the tester strains, as ФSE20 has been 

found to be absent from the isolates belonging to the phage types 8, 9b and 21c, but plaque 

formation could be detected with the supernatants from the phage type 4 isolates in the phage 

type 8 and 21c isolates only. Certainly, further analysis of the released phages, what would 

have been out of the scope of this study, for example by phage specific PCRs would be 

interesting to gain more knowledge of the prophage content in different S. Enteritidis phage 

types. 

 

4.5 Conclusions and outlook 

 

Putative genes encoding virulence factors were found within the prophage regions identified 

in SE125109 in this study. The important role of bacteriophages in the movement of virulence 

factors among bacteria and their association with such virulence factors is supported by these 

findings. While in many cases the virulence associated effector proteins were highly 

conserved, the genes required for phage proliferation had obviously degenerated. This may 

suggest an important role for these virulence factors, although the presence of phage-encoded 

virulence genes themselves is not enough to determine if they are important to the 

pathogenicity of S. Enteritidis. Knock-out experiments targeting these genes would be a 

promising approach to further investigate the role of these putative virulence genes. 

Nevertheless the redundant character of the Salmonella genome might cover some of the 

effects posed by the knock-out of certain genes. The prophage regions identified in SE125109 

display a mosaic of genes from related bacteriophages and the virulence associated genes that 

are carried by these prophages are also carried and distributed by a wide range of other 

bacteriophages isolated from other Salmonella serovars. The differences in the prophage 

content of S. Enteritidis PT4 (PT4), S. Typhimurium LT2 (LT2), and S. Gallinarum 287/91 

(SGAL) are displayed in Figure 4-1. S. Enteritidis PT4 (PT4) and S. Typhimurium LT2 (LT2) 
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diverged from a common ancestor and already contained the prophage region ФSE12A (or 

ФSG12A in S. Gallinarum 287/91 respectively) before this divergence. Afterwards the 

prophage region ФSE12 (or ФSG12 in S. Gallinarum 287/91 respectively) were taken up. The 

divergence of S. Enteritidis PT4 and S. Gallinarum 287/91 then resulted in bigger differences 

in prophage content: While ФSE10, ФSE14 and ФSE20 are present in S. Enteritidis PT4, they 

are absent from S. Gallinarum 287/91. ФSE10 and ФSE12 present in S. Enteritidis PT4 are 

similar to Gifsy-2 present in S. Typhimurium LT2. 

A set of virulence genes harboured in one prophage in certain Salmonella serovars might be 

found in two prophages in other serovars. In this study this was shown for gtgE and sodCI, 

which are both harboured in Gifsy-2 in S. Typhimurium, while in S. Enteritidis gtgE is part of 

ФSE10 and sodCI is part of ФSE12. These findings reinforce the important role 

bacteriophages play in the movement of virulence factors among bacteria providing each 

serovar with an individual set of virulence-genes as a main mechanism driving the evolution 

of Salmonella pathogenicity. The rising number of sequenced bacterial genomes allows 

further comparisons like those performed for S. Enteritidis in this study that will probably lead 

to a better understanding of the prophage content and exchange between different Salmonella 

serovars and might help in understanding the relationship between these serovars. 

While the PCR results obtained in this study indicated the prophage content to be conserved 

between the S. Enteritidis isolates, with those isolates belonging to the phage types 9b, 11 and 

20 showing the biggest variation, the microarray results revealed a prophage content 

enormously differing between the isolates belonging to different phage types. No differences 

in the prophage content with the same phage type were seen irrespective of the source of the 

isolates tested (animal species, sampled organ, geographical region). Further genome research 

including additional phage types not included in this study would certainly be illuminating. 

A proteome analysis or a gene expression analysis using a RNA microarray could lead to a 

deeper understanding of the importance of putative effector proteins present in the prophage 

locations in relation to their distribution between the different phage types. 

It would also be possible to analyse the virulence of the different phage types in a chicken or 

mouse model to relate this to the virulence gene content. 

Finally, an analysis of the released phages by further development of the PCRs used in the 

screening experiments would be a useful tool complementing the methods used in this study 

which proofed to deliver valuable data on the S. Enteritidis prophage content. 
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Figure 4-1: The line diagram illustrates the differences in prophage content of S. Enteritidis PT4 (PT4), S. 

Typhimurium LT2 (LT2), and S. Gallinarum 287/91 (SGAL). It is based on the assumption that following 

the divergence of S. Enteritidis PT4 and S. Typhimurium LT2 from a common ancestor S. Enteritidis PT4 

and S. Gallinarum 287/91 have subsequently diverged. Branches are not intended to infer phylogenetic 

distance (modified from Thomson et al., 2008). 
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Abbreviations 

 

° C degree Celsius 

3SD 3 standard deviations 

A adenosine 

ACT Artemis Comparison Tool 

BfR Bundesinstitut für Risikobewertung 

BLAST basic local alignment search tool 

bp base pair(s) 

C cytosine 

CDC Center for Disease Control 

CDS coding sequences 

CE competitive exclusion 

CT cholera toxin 

dATP deoxyadenosine triphosphate 

dCTP deoxycytidine triphosphate 

dd distilled deionized 

DDBJ DNA Data Bank of Japan 

dGTP deoxyguanosine triphosphate 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic acid 

dNTP deoxynucleotide triphosphate 

DT definitive type 

DTT Dithiothreitol 

dTTP deoxythymidine triphosphate 

E Escherichia 

EDTA ethylenediaminetetraacetic acid 

EF exclusion flora 

EMBL European Molecular Biology Laboratory 

ERS Economic Research Service 

FLI Friedrich-Loeffler-Institut 

FU Freie Universität 

G guanine 
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GDP guanosine 5’-diphosphate 

GFF generic file format 

gpr genepix results file 

gps genepix settings file 

GTP guanosine 5’-triphosphate 

IAH Institute for Animal Health 

IDT Impfstoffwerk Dessau-Tornau 

IUPAC International Union of Pure and Applied Chemistry 

IS insertion sequence 

JNK Jun N-terminal kinase 

LAH Lohmann Animal Health 

LAMP loop mediated isothermal amplification 

LPS lypopolysaccharide 

M median 

MLEE multilocus enzyme electrophoresis 

na not available 

Nal nalidixic acid 

NCBI National Center for Biotechnology Information 

nr not relevant  

NVSL National Veterinary Services Laboratory 

OMP outer membrane protein 

ORF open reading frame 

PCR polymerase chain reaction 

PDB Protein Data Bank 

PFGE pulsed-field gel electrophoresis 

PHW Paul-Heinz Wesjohann 

PT phage type 

Rif rifampicin 

RKI Robert Koch-Institut 

RNA ribonucleic acid 

rpm revolutions per minute 

rRNA ribosomal ribonucleic acid 

RT room temperature 

S Salmonella 
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SDS sodium dodecyl sulphate 

SLT Shiga-like toxins 

Sm streptomycin 

SNP single nucleotide polymorphisms 

SOD superoxide dismutase 

SPI Salmonella pathogenicity island 

SSC Saline-Sodium-Citrate 

STE Salmonella translocated effector 

T thymine 

T3SS type III secretion system 

TAE tris-acetate EDTA buffer 

Td2 melting temperature 

TER terminus of replication 

tif tagged image file 

TPB tryptose phosphate broth 

Tris tris(hydroxymethyl)aminomethane 

tRNA transfer ribonucleic acid 

U units 

UK United Kingdom 

US United States 

USDA United States Department of Agriculture 

UV ultraviolet 

WHO World Health Organization 

 

Abbreviations and symbols not mentioned are explained in the text. The International System 

of Units was used for physical units; chemicals were named according to IUPAC. 
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