Umpolung von Allyl-Palladium-Komplexen und Anwendung in

der Synthese von Naturstoff-Fragmenten

Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover

> zur Erlangung des Grades Doktorin der Naturwissenschaften - Dr. rer. nat. genehmigte Dissertation

> > von

Dipl.-Chem. Monika Vogt geboren am 01.05.1982 in Göttingen

2010

Die vorliegende Arbeit wurde in der Zeit von März 2007 bis April 2010 unter der Anleitung von Herrn Prof. Dr. Andreas Kirschning am Institut für Organische Chemie der Gottfried Wilhelm Leibniz Universität Hannover angefertigt

Hierdurch erkläre ich, dass die vorliegende Dissertation selbständig verfasst und alle benutzten Hilfsmittel sowie eventuell zur Hilfeleistung herangezogene Institutionen vollständig angegeben wurden.

Die Dissertation wurde nicht schon als Diplom- oder ähnliche Prüfungsarbeit verwendet.

Hannover, den 15.04.10

Referent:Prof. Dr. A. KirschningKoreferent:Prof. Dr. M. BoysenTag der Promotion:09.06.2010

Meinen Eltern

Zusammenfassung

Monika Vogt

Umpolung von Allyl-Palladium-Komplexen und Anwendung in der Synthese von Naturstoff-Fragmenten

Schlagworte: Palladiumkatalyse - Umpolung - Geldanamycin

Die asymmetrische Palladium-katalysierte allylische Substitution stellt eine der wichtigsten Kreuzkupplungen in der organischen Synthesechemie dar. Die dabei *in situ* gebildeten π -Allyl-Palladium-Komplexe fungieren als Allyl-Kation-Äquivalente, welche von einer Vielzahl an Nucleophilen angegriffen werden können. Dabei entsteht in Abwesenheit entsprechender Liganden bevorzugt das lineare Regioisomer. Durch Transmetallierung der gebildeten Allyl-Palladium-Komplexe mit beispielsweise Zink, Indium oder Bor erfolgt eine Reaktivitätsumkehr (Umpolung) unter Bildung eines nucleophilen Allyl-Komplexes, welcher nachfolgend mit Elektrophilen reagieren kann. Der große Vorteil der Umpolungsreaktion liegt in der bevorzugten Bildung der verzweigten Regioisomere, welche zwei neue Stereozentren und eine terminale Doppelbindung beinhalten. Da derartige Strukturelemente häufig in polyketidischen Naturstoffen zu finden sind, wäre ein rascher und einfacher Zugang zu solchen Struktureinheiten erstrebenswert.

Aus diesem Grund wurde in der vorliegenden Arbeit eine stereoselektive Palladiumkatalysierte Umpolungsstrategie unter Verwendung von Diethylzink bzw. Bis(pinakol)boronat **44** entwickelt. In beiden Fällen konnten die besten Ergebnisse hinsichtlich der Diastereoselektivitäten unter substratkontrollierten Bedingungen erzielt werden, wobei im Falle des Boronats **44** deutlich höhere Ausbeuten (60-80%) und Selektivitäten (*d.r.* 5:1 bis >50:1) erzielt werden konnten. Des Weiteren wurden in beiden Fällen ausschließlich die verzweigten Produkte erhalten.

Um die Anwendbarkeit der entwickelten Umpolungsmethodik mit Boronat **44** auf komplexere Substrate zu demonstrieren, wurde diese abschließend auf die Synthese eines vereinfachten *seco*-Progeldanamycinderivates **45** angewendet. Letzteres soll nach erfolgreicher Synthese einem genetisch veränderten Geldanamycinproduzenten (*Streptomyces hygroscopicus* K390-61-1) zugefüttert werden, um mutasynthetisch ein neues Geldanamycinderivat zu erzeugen. Im Rahmen dieser Arbeit konnte das Westfragment unter Einbindung der Umpolungsstrategie in 19 Stufen und einer Gesamtausbeute von 3.5% erfolgreich synthetisiert werden.

Abstract

Monika Vogt

Umpolung of Allyl-Palladium Complexes and Application in Natural Product Synthesis

Keywords: Palladium catalysis - Umpolung - Geldanamycin

Asymmetric palladium catalysed allylic alkylations are one of the most powerful C-C-forming reactions in organic synthesis. The π -allyl-palladium complexes generated *in situ* during these reactions serve as allyl cation equivalents which react with a variety of nucleophiles. In the absence of special ligands formation of the linear product is favoured. In the presence of zinc, indium, or boron, the reactivity of the π -allyl-palladium complexes can be reversed from electrophilic to nucleophilic. One feature of this umpolung reaction is the exclusive generation of the branched product. Thus, two new stereogenic centres and a terminal double bond are formed making the umpolung highly attractive for natural product synthesis, namely polyketides.

Therefore, a stereocontrolled palladium catalysed umpolung allylation of aldehydes employing bis(pinacol)boronate 44 or diethylzinc was developed in this Ph.D. thesis. Concerning the diastereoselectivity the best results were obtained under substrate-controlled conditions in both cases, whereby utilisation of the boronate 44 resulted in higher yields (60-80%) and selectivities (*d.r.* 5:1 to >50:1). Also in both cases, the branched products were formed exclusively.

Finally, the application of the developed umpolung methodology utilising boronate **44** was demonstrated in the synthesis of the simplified *seco*-progeldanamycin derivative **45** which will be added to a mutated geldanamycin producing strain (*Streptomyces hygroscopicus* K390-61-1) in a mutasynthetic approach to obtain a novel geldanamycin derivative. In this work the western fragment was successfully synthesised in 19 steps and 3.5% overall yield by utilisation of the developed umpolung strategy.

Inhaltsverzeichnis

1	Abkürzungsverzeichnis	1
2	Einleitung	3
	2.1 Palladium-katalysierte Umpolungsreaktionen	3
	2.2 Geldanamycin	13
3	Zielsetzung	21
	3.1 Palladium-katalysierte Umpolung mit Diethylzink	21
	3.2 Palladium-katalysierte Umpolung mit Bis(pinakol)boronat	
	und Anwendung in der Synthese eines Geldanamycinderivates	21
4	Beschreibung und Diskussion	23
	4.1 Stereoselektive Palladium-katalysierte Umpolung	
	mit Diethylzink	23
	4.2 Stereoselektive Palladium-katalysierte Umpolung	
	mit Bis(pinakol)boronat	34
	4.3 Synthese des <i>seco</i> -Progeldanamycinderivates 45	53
5	Zusammenfassung und Ausblick	70
	5.1 Zusammenfassung	70
	5.2 Ausblick	72
6	Experimenteller Teil	75
	6.1 Allgemeine Hinweise	75
	6.2 Synthese der Verbindungen aus Kapitel 4.1	77
	6.3 Synthese der Verbindungen aus Kapitel 4.2	88
	6.4 Palladium-katalysierte Umpolungsreaktionen	95
	6.5 Synthese der Verbindungen aus Kapitel 4.3	111

1 Abkürzungsverzeichnis

Ac	Acetyl
ACP	Acyl Carrier Protein
ΔHRΔ	3-Amino-5-hydroxybenzoesäure
20	wässrig
Äq.	Äquivalent
Ar	Aryl
	A cyltransferase
ΔΤΡ	Adenosintrinhosnhat
hor	herechnet
Boo	tart Butylovycorbonyl
Bu	Putul
Bu	Bulyi Konzontration
COSY	
	correlation spectroscopy
CSA C==	Campnorsultome actu
Cy	Cyclonexyl
d	lag
ð	chemische Verschiebung
dba	Dibenzylidenaceton
DC	Dünnschichtchromatographie
DCC	Dicyclohexylcarbodiimid
DEAD	Diethylazodicarboxylat
DEPT	distorsionless enhancement by polarisation transfer
dest.	destilliert
DIBAL-H	Diisobutylaluminiumhydrid
DIC	Diisopropylcarbodiimid
4-DMAP	4-Dimethylaminopyridin
DME	1,2-Dimethoxyethan
DMF	<i>N</i> , <i>N</i> -Dimethylformamid
DMP	DESS-MARTIN-Periodinan
DMSO	Dimethylsulfoxid
DNA	deoxyribonucleic acid
E/Z	entgegen/zusammen (Doppelbindungskonfiguration)
ee	enantiomeric excess
EE	Ethylacetat
ER	Enoylreduktase
ESI	electrospray ionisation
Et	Ethyl
et al.	et alii (und andere)
FG	Fluchtgruppe
g	Gramm
ef.	gefunden
h	Stunde
HMBC	heteronuclear multiple bond correlation
HMOC	heteronuclear multiple quantum coherence
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectrometry
Hsn90	heat shock protein 90
HSOC	heteronuclear single quantum coherence
INVC	neteronuciear single quantum concrete

J	skalare Kopplungskonstante
Kat.	Katalysator
kat.	katalytisch
konz.	konzentriert
KR	Ketoreduktase
KS	Ketosynthase
L	Liter
μ	mikro
m	milli
М	molar
Me	Methyl
min	Minute
n	nano
<i>n</i> -BuLi	<i>n</i> -Butyllithium
Ν	Normal
NMR	nuclear magnetic resonance
nOe	nuclear Overhauser effect
NRPS	nicht-ribosomale Peptidsynthetase
PCC	Pyridiniumchlorochromat
PE	Petrolether
PEPPSI	pyridine-enhanced precatalyst preparation stabilization and initiation
PG	protection group
Ph	Phenyl
PKS	Polyketidsynthase
ppm	parts per million
PPTS	Pyridinium-p-toluolsulfonat
Pr	Propyl
quant.	quantitativ
RT	Raumtemperatur
Sdp.	Siedepunkt
Smp.	Schmelzpunkt
SNAc	<i>N</i> -Acetylcysteaminyl
TBAF	Tetrabutylammoniumfluorid
TBAI	Tetrabutylammoniumiodid
TBDPS	tertButyldiphenylsilyl
TBS	tertButyldimethylsilyl
Tf	Triflat
TFA	Trifluoressigsäure
THF	Tetrahydrofuran
TPAP	Tetrapropylammoniumperruthenat(VII)
UPLC	ultra performance liquid chromatography
UV	ultraviolett

2 Einleitung

Eine der größten Herausforderungen in der organischen Chemie stellt nach wie vor die Synthese komplexer Naturstoffe dar, welche als Leitstruktur Bedeutung für die Entdeckung neuer Wirkstoffe haben.¹ Erst die Entwicklung neuer und effektiver chemischer Reaktionen ermöglicht die gezielte Synthese solcher komplexen Moleküle, weshalb das Gebiet der Methodenentwicklung eines der umfassendsten in der organischen Synthesechemie darstellt. Von besonderem Interesse ist dabei der stereoselektive Aufbau acyclischer Strukturelemente, welche häufig in der Totalsynthese komplexer Naturstoffe, insbesondere in der Synthese von Polyketiden, zu finden sind. Dabei stellen mittlerweile vor allem Übergangsmetall-katalysierte Reaktionen ein unverzichtbares synthetisches Werkzeug dar, da sie die Einführung diverser Heteroatome, wie z. B. Stickstoff durch die BUCHWALD-HARTWIG-Reaktion,² und die C-C-Verknüpfung einzelner Fragmente ermöglichen.³

Aufgrund des stetigen Bedarfs an neuen Methoden bzw. der Weiterentwicklung bekannter Reaktionen und da die meisten der bestehenden Methoden nicht hinreichend auf ihre Anwendbarkeit bezüglich komplexer Substrate untersucht sind, befasst sich diese Arbeit mit der Entwicklung einer Palladium-katalysierten Umpolung, welche für die Synthese komplexer Naturstoff-Fragmente geeignet wäre. Um die Anwendbarkeit der Methode auf komplexere Substrate zu demonstrieren, soll die Umpolungsreaktion im letzten Teil dieser Arbeit als Schlüsselschritt zum Aufbau eines offenkettigen Geldanamycinderivates genutzt werden.

2.1 Palladium-katalysierte Umpolungsreaktionen

2.1.1 Übergangsmetall-katalysierte allylische Alkylierung

Unter der Vielzahl an bekannten Übergangsmetall-katalysierten Reaktionen stellt vor allem die asymmetrische Übergangsmetall-katalysierte allylische Alkylierung eine der fundamentalsten und wichtigsten Kreuzkupplungsreaktionen in der organischen Synthese dar,⁴ welche für eine Reihe von Übergangsmetallen, wie beispielsweise Nickel, Palladium,

¹ a) Ganesan, A. *Curr. Opin. Chem. Biol.* **2008**, *12*, 306-317; b) Butler, M. S. *Nat. Prod. Rep.* **2008**, *25*, 475-516; c) Paterson, I.; Anderson, A. A. *Science* **2005**, *310*, 451-453; d) Clardy, J.; Walsh, C. T. *Nature* **2004**, *432*, 829-837.

² a) Hamann, B. C.; Hartwig, J. F. *J. Am. Chem. Soc.* **1998**, *120*, 7369-7370; b) Mann, G.; Hartwig, J. F. *J. Am. Chem. Soc.* **1996**, *118*, 13109-13110; c) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. *J. Am. Chem. Soc.* **1996**, *118*, 10333-10334.

³ Torborg, C.; Beller, M. Adv. Synth. Catal. 2009, 351, 3027-3043.

⁴ Reviews: a) Marshall, J. A. Chem. Rev. **2000**, 100, 3163-3185; b) Trost, B. M. J. Org. Chem. **2004**, 69, 5813-5837.

Platin, Ruthenium, Wolfram und Molybdän, beschrieben ist.⁵ Allgemein erfolgt bei dieser Art von Substitution zunächst die Koordination eines Metallkomplexes an eine Doppelbindung unter Verlust einer Fluchtgruppe in allylischer Position. Der so gebildete, elektrophile π -Allyl-Metallkomplex **2** kann anschließend unter Dekomplexierung des Metalls von einem Nucleophil angegriffen werden, wobei, je nach Angriffspunkt des Nucleophils, zwei mögliche Produkte erhalten werden können (TSUJI-TROST-Reaktion) (*Schema 1*).

Schema 1: Allgemeiner Verlauf einer Übergangsmetall-katalysierten allylischen Substitution.

Einer der größten Vorteile dieser Reaktion liegt in ihrer Vielseitigkeit begründet, da beispielsweise diverse Mechanismen zur Kontrolle der Enantioselektivität der Reaktion zur Verfügung stehen, wobei die asymmetrische Induktion meist durch die Verwendung eines chiralen Metall-Liganden erfolgt.^{4b} Ein typischer Mechanismus zur Steuerung der Enantioselektivität beinhaltet die Unterscheidung zwischen den prochiralen Seiten der allylischen Doppelbindung, wobei der enantiodiskriminierende Schritt erst nach der Ionisierung des Allylsubstrates, also nach der Bildung des π -Allyl-Metallkomplexes, stattfindet (**A**, *Schema 2*).^{4b,5a}

⁵ a) Trost, B. M.; Van Vranken, D. L. *Chem. Rev.* **1996**, *96*, 395-422; b) Denmark, S. E.; Fu, J. *Chem. Rev.* **2003**, *103*, 2763-2793.

Schema 2: Mögliche Mechanismen zur Enantiodiskriminierung in allylischen Substitutionen.^{5a}

Die beiden anderen gezeigten möglichen Mechanismen beruhen zum einen auf der Differenzierung der enantiotopen Enden der allylischen Doppelbindung durch die Bevorzugung eines der beiden Angriffspunkte (\mathbf{B}) und zum anderen auf der Desymmetrisierung von *meso*-Verbindungen durch unterschiedliche Ionisierbarkeit der prochiralen Fluchtgruppen (\mathbf{C}).

Ein weiteres Beispiel für die Diversität der asymmetrischen Übergangsmetall-katalysierten Alkylierung ist die Vielzahl an unterschiedlichen Bindungen, die durch sie geknüpft werden können. So ermöglicht sie, abhängig von der Wahl der Reaktionspartner, den Zugang zu C-H-, C-N-, C-O-, C-S- und C-C-Bindungen.^{4a}

Wie oben bereits erwähnt, können bei der Übergangsmetall-katalysierten allylischen Substitution, je nach Angriffspunkt des Nucleophils, zwei Regioisomere gebildet werden (siehe *Schema 1*). Erfolgt der nucleophile Angriff am höher substituierten Allylterminus, wird das verzweigte Produkt **3b** erhalten, während ein Angriff am weniger gehinderten Zentrum das lineare Produkt **3a** ergibt. Im einfachsten Fall ist die Regiochemie der Reaktion durch die Wahl des Übergangsmetall-Katalysators steuerbar. So führt die Verwendung von Palladium-Katalysatoren in Abwesenheit von speziellen Liganden bevorzugt zur Bildung des linearen

Produkts **3a**,^{6,7b} während mit Molybdän,⁷ Wolfram⁸ oder Iridium^{6a,9} bevorzugt das verzweigte Produkt **3b** erhalten wird (*Schema 3*).

Schema 3: Kontrolle der Regiochemie durch die Wahl des Übergangsmetall-Katalysators.^{6a}

Im Falle des Palladiums scheint der nucleophile Angriff vor allem durch sterische Effekte beeinflusst zu werden, wie an der Umsetzung mit dem 1,1,3-Phenylallylsystem 4 deutlich wird, da nur das gezeigte Regioisomer 6 erhalten wurde (*Schema 4*).¹⁰

Schema 4: Asymmetrische Allylierung unter Angriff der weniger gehinderten Allylposition.¹⁰

Prinzipiell ist die Regiochemie bei Palladium-katalysierten allylischen Alkylierungen jedoch auch von der Struktur und der elektronischen Natur der eingesetzten Substrate abhängig und kann durch den Einsatz entsprechender Liganden beeinflusst werden. So konnte beispielsweise bei der Umsetzung von Vinyloxiran **8** mit Phthalimid **7** unter Verwendung des gezeigten TROST-Liganden zum einen ein Enantiomerenüberschuss von >98% erzielt werden, und zum anderen die Regioselektivität, bezogen auf das gezeigte Regioisomer **9** im Vergleich zu der Reaktion ohne Ligand, deutlich gesteigert werden (>70:1) (*Schema 5*).^{5a}

¹⁰ a) Auburn, P. R.; Mackenzie, P. B.; Bosnich, B. J. Am. Chem. Soc. **1985**, 107, 2033; b) Dawson, G. J.; Williams, J. M. J.; Coote, S. J. Tetrahedron Lett. **1995**, 36, 461.

⁶ a) Miyabe, H.; Takemoto, Y. *Synlett* **2005**, *11*, 1641-1655; b) Trost, B. M.; Hung, M.-H. *J. Am. Chem. Soc.* **1984**, *106*, 6837.

⁷ a) Trost, B. M.; Lautens, M. J. Am. Chem. Soc. **1982**, 104, 5543; b) Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. **1998**, 120, 1104-1105.

⁸ a) Trost, B. M.; Hung, M.-H. J. Am. Chem. Soc. **1983**, 105, 7757; b) Trost, B. M.; Tometzki, G. B.; Hung, M.-H. J. Am. Chem. Soc. **1987**, 109, 2176.

⁹ a) Bartels, B. G.; Yebra, C.; Helmchen, G. *Eur. J. Org. Chem.* **2003**, 1097-1103; b) Itoh, J.; Han, S. B.; Krische, M. J. *Angew. Chem.* **2009**, *121*, 6432-6434.

Schema 5: Enantioselektive allylische Alkylierung von Phtalimid 7.^{5a}

Bezüglich des Reaktionsmechanismusses der Übergangsmetall-katalysierten allylischen Substitution wurden vor kurzem neue Erkenntnisse von LLOYD-JONES veröffentlicht, welcher einen kontraintuitiven Ligandeneinfluss auf die Reaktionsgeschwindigkeit der TSUJI-TROST-Reaktion beschreibt.¹¹ Bisher wurde angenommen, dass der kationische Allyl-Metall-Komplex **12**, der durch einen nucleophilen Angriff in das Alkylierungsprodukt **10** überführt werden kann, den Ruhezustand des Katalysecyclus darstellt (*Schema 6*, **A**).

Schema 6: Modifizierter Katalysecyclus der TSUJI-TROST-Reaktion nach LLOYD-JONES.¹¹

¹¹ Evans, L. A.; Fey, N.; Harvey, J. N.; Hose, D.; Lloyd-Jones, G. C.; Murray, P.; Orpen, A. G.; Osborne, R.; Owen-Smith, G. J. J.; Purdie, M. *J. Am. Chem. Soc.* **2008**, *130*, 14471-14473.

In der Arbeit von LLOYD-JONES konnte jedoch durch verschiedene Experimente bewiesen werden, dass der nucleophile Angriff auf den Allyl-Komplex **12** (k_{Nu}) zwar ein limitierender Faktor der Gesamtreaktion ist, der Allyl-Metall-Komplex **12** jedoch reversibel und in niedriger Konzentration gebildet wird. Dies hat die Konkurrenz des nucleophilen Angriffs mit der Rückreaktion des kationischen Allyl-Komplexes **12** zur Folge, weshalb die erneute Ionenpaarung, unter Bildung des prä-koordinierten Allyl-Komplexes **11**, den tatsächlichen limitierenden Reaktionschritt der allylischen Alkylierung darstellen muss ($k_{Rück}$ vs. k_{Nu}) und der prä-koordinierte Komplex **11** den eigentlichen Ruhezustand der Katalysereaktion. Des Weiteren konnte gezeigt werden, dass, bei Verwendung geeigneter elektronenliefernder Liganden, katalytische Mengen NaBAr'F (siehe *Schema 6*) die Rückreaktion bzw. die Rückbildung des Ionenpaars unterdrücken können, so dass die Gesamtreaktion beschleunigt wird (*Schema 6*, **B**).

Insgesamt betrachtet eröffnet die asymmetrische Übergangsmetall-katalysierte allylische Substitution aufgrund ihrer Flexibilität eine Vielzahl von Möglichkeiten und vereinfacht so den Aufbau komplexer Moleküle.¹² Allerdings ist sie aufgrund der elektrophilen Natur des *in situ* gebildeten π -Allyl-Metallkomplexes auf die Reaktion mit Nucleophilen beschränkt.

2.1.2 Umpolung von Allyl-Palladium-Komplexen

Eine mögliche Erweiterung dieser Methodik besteht in der Umpolung des gebildeten Allyl-Metallkomplexes durch Transmetallierung unter Bildung eines nucleophilen Metallkomplexes, welcher nachfolgend von Elektrophilen, z.B. Aldehyden, angegriffen werden kann (Reaktivitätsumkehr). Dabei wird, im Gegensatz zu der TSUJI-TROST-Reaktion, ohne die Notwendigkeit eines entsprechenden Liganden stets bevorzugt das verzweigte Produkt **18b** erhalten, welches ein häufiges Strukturelement in polyketidischen Naturstoffen darstellt (*Schema 7*).

¹² Ausgewählte Beispiele: a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. **1999**, *121*, 3543; b) Trost, B. M.; Dirat, O.; Dudash, J., Jr.; Hembre, E. J. Angew. Chem. Int. Ed. **2001**, *40*, 3658.

Schema 7: Palladium-katalysierte elektrophile und nucleophile Allylierung.

Als Umpolungsreagenzien sind prinzipiell eine Reihe von Metallen geeignet, wie beispielsweise Zink,¹³ Indium,^{6a} Zinn¹⁴ oder Bor.¹⁵

Die erste Palladium-katalysierte Allylierung von Aldehyden wurde 1987 unter Verwendung von Zink als Umpolungsreagenz von BROWN *et al.* beschrieben.¹⁶ Die Reaktion wurde nachfolgend von TAMARU *et al.* detailliert untersucht und weiterentwickelt, wobei anstelle des Zinks Diethylzink und anstelle der Allylacetate die entsprechenden Allylalkohole verwendet wurden (*Schema 8*).¹⁷

Schema 8: Zink vermittelte Umpolung nach TAMARU.^{16d}

Prinzipiell ergeben sich drei mögliche Methoden, um die Stereoselektivität dieser Reaktion zu beeinflussen und somit die Konfiguration der neu gebildeten Stereozentren zu steuern. Zum einen kann ein chiraler Palladium-Katalysator verwendet werden, welcher den Angriff des Umpolungsreagenzes steuert oder es wird ein chiraler Zinkligand verwendet, welcher den Angriff des Elektrophils lenkt. Die dritte Möglichkeit besteht in der Anwendung substratkontrollierter Bedingungen.

¹³ Tamaru, Y. J. Organometallic Chem. **1999**, 576, 215-231.

¹⁴ Takahara, J. P.; Masuyama, Y.; Kurusu, Y. J. Am. Chem. Soc. 1992, 114, 2577-2586.

¹⁵ Beispielsweise: Kimura, I.; Kiyama, T.; Tomizawa, T.; Horino, S.; Tanaka, Y.; Tamaru, Y. *Tetrahedron Lett.* **1999**, *40*, 6795-6798.

¹⁶ Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem. **1987**, *52*, 3702-3704.

¹⁷ a) Yasui, Y. G.; Yajima, T.; Taniseki, Y.; Fugami, A.; Tamaru, Y. *Tetrahedron Lett.* **1993**, *34*, 7619-7622;

b) Tamaru, Y.; Tanaka, A.; Yasui, K.; Goto, S.; Tanaka, S. Angew. Chem. Int. Ed. Engl. 1995, 34, 787-789;

c) Kimura, M.; Shimizu, M.; Shibata, K.; Tazoe, M.; Tamaru, Y. Angew. Chem. Int. Ed. 2003, 42, 3392-3395;

d) Kimura, M.; Shimizu, M.; Tanaka, S.; Tamaru, Y. Tetrahedron 2005, 61, 3709-3718.

Die ersten asymmetrischen Varianten der Dialkylzink-vermittelten Palladium-katalysierten Allylierung von Aldehyden basieren auf dem Konzept der Reagenzkontrolle und wurden vor kurzem von ZANONI *et al.*¹⁸ und FERINGA *et al.*¹⁹ publiziert, wobei mit den von FERINGA verwendeten Phosphoramiditliganden die bisher höchsten Enantioselektivitäten in derartigen Reaktionen erzielt werden konnten (*Schema 9*).

Schema 9: Asymmetrische Zink-vermittelte Allylierung nach FERINGA.¹⁹

Aufgrund der durchgeführten mechanistischen Studien wurde von FERINGA folgender Reaktionsmechanismus für die gezeigte Umpolungsreaktion postuliert (*Schema 10*):

Schema 10: Postulierter Mechanismus der Umpolungsreaktion mit Diethylzink.¹⁹

¹⁸ Zanoni, G.; Gladiali, S.; Marchetti, A.; Piccinini, P.; Tredici, I.; Vidari, G. Angew. Chem. Int. Ed. 2004, 43, 846-849.

¹⁹ Howell, G. P.; Minaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2006, 4, 1278-1283.

Dabei erfolgt die Umpolung nicht durch eine Transmetallierung des Allyl-Palladium-Komplexes **A** auf einen Allyl-Zink-Komplex, sondern durch Alkylierung des Palladium-Komplexes durch das Diethylzink unter Bildung des nucleophilen Komplexes **B**, welcher nachfolgend mit dem jeweiligen Aldehyd über den gezeigten Übergangszustand zum entsprechenden Produkt **23** reagiert. Da das Zink laut dieses Mechanismusses nicht als Transmetallierungsreagenz fungiert, dürften folglich chirale Zinkliganden keinen Einfluss auf die Stereoselektivität der Reaktion haben, so dass nur zwei Möglichkeiten zur Stereokontrolle verbleiben. Entweder es wird ein chiraler Palladium-Katalysator verwendet oder die Reaktion verläuft unter Substratkontrolle.

Eine weitere Möglichkeit zur Umpolung eines *in situ* gebildeten π -Allyl-Palladium-Komplexes besteht in der Verwendung von Bor anstelle von Zink. Auch diese Reaktion wurde bereits durch TAMARU *et al.* beschrieben, wobei als Umpolungsreagenz Triethylboran verwendet wurde, dessen Verwendung ähnliche Ergebnisse ergab wie die Umpolung mit Diethylzink.¹⁵ Eine Weiterentwicklung dieser Methode erfolgte 2006 durch SZABÓ *et al.*, welche durch die *in situ* Generierung von Allylboronaten mit Palladium-Pincer-Komplexen und direkt anschließender Allylierung von Aldehyden die stereoselektive Synthese von Homoallylalkoholen in einem Schritt ermöglicht (*Schema 11*).²⁰

Schema 11: Stereoselektive Eintopf-Reaktion zur Generierung von Homoallylalkoholen mit Hilfe von Palladium-Pincer-Komplexen.^{20c}

Im Gegensatz zu den zuvor beschriebenen Umpolungen mit Diethylzink verläuft die von SZABÓ entwickelte Allylierung sowohl reagenz- als auch substratkontrolliert. Im ersten Schritt, der Borylierung des Allylalkohols, erfolgt durch die Verwendung des Palladium-Pincer-Komplexes die selektive Generierung des (E)-Allylboronats **32**. Die Borylierung beginnt mit der Aktivierung des Allylalkohols **26** durch Boronsäure **27** unter Bildung des Boronsäureesters **28**, welcher anschließend in das eigentliche Allylierungsreagenz **32**

²⁰ a) Szabó, K. J. *Synlett* **2006**, 811-824; b) Sebelius, S.; Olsson, V. J.; Wallner, O. A.; Szabó, K. J. *J. Am. Chem. Soc.* **2006**, *128*, 8150-8151; c) Selander, N.; Kipke, A.; Sebelius, S.; Szabó, K. J. *J. Am. Chem. Soc.* **2007**, *129*, 13723-13731.

umgesetzt wird (*Schema 12*). Der Mechanismus dieser katalytischen Umsetzung konnte bisher nicht detailliert geklärt werden. Aufgrund der Analogie zu den entsprechenden Stannylierungsreaktionen²¹ postulierte SZABÓ jedoch den in *Schema 12* gezeigten Mechanismus.^{20c} Dabei wird angenommen, dass die Boronatgruppe des Diboronats **28** zunächst auf den Palladium-Pincer-Komplex **30** übertragen wird, um anschließend die aktivierte Hydroxyfunktion des Allylboronats **29**, unter Bildung der Allylboronsäure **32**, substituieren zu können.

Die darauf folgende eigentliche Allylierung, welche über einen sechsgliedrigen ZIMMERMANN-TRAXLER-Übergangszustand ÜZ I verläuft, wird durch sterische Wechselwirkungen zwischen den Substraten bestimmt, so dass die Reaktion insgesamt mit hoher Regio- und Stereoselektivität verläuft.

Schema 12: Mechanismus der stereoselektiven Allylierung nach SZABÓ.^{20c}

²¹ a) Kjellgren, J.; Sundén, H.; Szabó, K. J. J. Am. Chem. Soc. **2004**, *126*, 474; b) Kjellgren, J.; Sundén, H.; Szabó, K. J. J. Am. Chem. Soc. **2005**, *127*, 1787.

Prinzipiell ist die Reaktion von Allylboronsäuren bzw. Allylboronaten **34** mit Aldehyden bekannt und wurde in den 1980er Jahren von HOFFMANN und ROUSH entwickelt.²² Diese Crotylborierungen wurden unter substratkontrollierten Bedingungen durchgeführt, mit dem Unterschied, dass zum einen das jeweilige Allylboronat bzw. –boran zuvor synthetisiert und isoliert und nicht *in situ* erzeugt wurde und zum anderen α -chirale Aldehyde verwendet wurden (*Schema 13*).

Schema 13: Crotylborierung nach HOFFMANN und ROUSH.²²

Die größten Vorteile der hier beschriebenen Bor-vermittelten Umpolungsreaktionen liegen zum einen in der hohen Regio- und Diastereoselektivität begründet und zum anderen in der milden Natur der verwendeten Bor-Reagenzien, welche eine hohe Toleranz gegenüber diversen funktionellen Gruppen aufweisen.^{20c}

2.2 Geldanamycin

2.2.1 Allgemeines

Wie zuvor bereits erwähnt, stellen die bei den vorgestellten Umpolungsreaktionen bevorzugt gebildeten, verzweigten Produkte ein typisches Strukturelement in vielen polyketidischen Naturstoffen dar. Als Beispiele seien hier das gezeigte Geldanamycin **36** und Amphotericin B **37** genannt (*Abbildung 1*).

Abbildung 1: Die Polyketide Geldanamycin 36 und Amphotericin B 37.

²² a) Hoffmann, R. W.; Weidmann, U. *Chem. Ber.* **1985**, 3966-3979; b) Roush, W. R.; Adam, M. A.; Walts, A. E.; Harris, D. J. *J. Am. Chem. Soc.* **1986**, *108*, 3422-3434.

Geldanamycin gehört der Substanzklasse der Ansamycine an, einer bedeutenden Gruppe natürlich vorkommender Wirkstoffe.²³ Letztere weisen als gemeinsame Strukturmerkmale die C7-N-Einheit des aromatischen Kerns, welche dem Startmolekül der Polyketidsynthese, der 3-Amino-5-hydroxybenzoesäure (AHBA), entstammt und das Polyketid-Rückgrat, welches in Form eines Henkels (Griechisch "*ansa*") den Makrozyklus schließt, auf. Entsprechend ihrer aromatischen Kerne werden die Ansamycine in zwei Gruppen unterteilt, wobei die erste Gruppe die auf benzolischen Ringsystemen basierenden Ansamycine umfasst und die zweite Gruppe die auf naphthalinischen basierenden Systeme (*Abbildung 2*).

Benzolische Ansamycine

Abbildung 2: Beispiele für benzolische und naphthalinische Ansamycine.²³

Das Geldanamycin, welches zu den benzolischen Ansamycinen zählt, wurde 1970 von DEBOER *et al.* aus dem Gram positiven Bodenbakterium *Streptomyces hygroscopicus* var. *geldanus* var. *nova* isoliert und zeigt eine mäßige *in vitro* Aktivität gegenüber Einzellern, Bakterien und Pilzen.²⁴ Des Weiteren konnte eine *in vivo* Aktivität gegenüber dem Parasiten *Syphacia oblevata* nachgewiesen werden, sowie eine hohe Wirksamkeit in Form der 50% igen

²³ Stratmann, A. *Biospektrum* **2004**, *3*, 249-253.

²⁴ DeBoer, C.; Meulman, P. A.; Wnuk, R. J.; Peterson, D. H. J. Antibiot. 1970, 23, 442-447.

Wachstumsinhibierung (GI₅₀) im nanomolaren Bereich bezüglich 60 getesteter tierischer Zelllinien.²⁵

2.2.2 Biosynthese

Geldanamycin wird als Sekundärmetabolit des oben genannten Bakterienstamms über eine modulare Polyketidsynthase synthetisiert, wobei die einzelnen Module aus Domänen bestehen, welche die polyketidische Kettenverlängerung durch CLAISEN-Kondensation und anschließende Reduktion oder Dehydratisierung katalysieren.²⁶

Ausgehend von 3-Amino-5-hydroxybenzoesäure (AHBA), welche bei allen Ansamycinen als Starteinheit dient und über eine Variante des Shikimat-Biosynthesewegs aufgebaut wird,²⁷ erfolgen insgesamt sieben Kettenverlängerungsschritte, wobei eine Malonyl-, vier Methylmalonyl- und zwei Methoxymalonyl-Verlängerungseinheiten eingeführt werden. Anschließend erfolgen die Cyclisierung zum Progeldanamycin **56** durch eine Amidsynthase, sowie die nachstehenden postketidischen Transformationen: Oxidation an C-21, Oxidation an C-17 gefolgt von einer *O*-Methylierung, Carbamoylierung an C-7 und schließlich eine Dehydrierung an C-4,5 (*Schema 14*).²³

²⁵ Supko, J. G.; Hickmann, R. L.; Grever, M. R.; Malspeis, L. *Cancer Chemother. Pharmacol.* **1995**, *36*, 305-315.

²⁶ a) Rascher, A.; Hu, Z.; Buchanan, G. O.; Reid, R.; Hutchinson, C. R. Appl. Environ. Microbiol. 2005, 71, 4862-4871; b) Eichner, S. Diplomarbeit 2007, Leibniz Universität Hannover.

²⁷ Arakawa, K.; Müller, R.; Mahmud, T.; Yu, T.-W.; Floss, H. G. J. Am. Chem. Soc. 2002, 124, 10644-10645.

Schema 14: Schematische Darstellung der Geldanamycin-Biosynthese.^{26b}

2.2.3 Geldanamycin als Hsp90-Inhibitor

Hsp90 ist eine molekulares Chaperon ("Hilfsprotein"), welches der Familie der Hitzeschock-Proteine angehört und zählt zu den so genannten Stressproteinen.²⁸ Letztere übernehmen eine Schutzfunktion für die unter Stress gesetzte Zelle, wobei neben Hitze auch Kälte, Schwermetalle, UV-Licht, Trockenheit, pH-Wert-Veränderungen, Salzkonzentrationen und freie Radikale ("oxidativer Stress") als Stressoren wirken.²⁹ Als Stressprotein ist eine der Hauptaufgaben des Hsp90 die Rückfaltung unter Stresseinwirkung denaturierter bzw. fehlgefalteter Proteine (*Schema 15*).

Schema 15: Rückfaltung fehlgefalteter Proteine durch Hsp90.

Des Weiteren ist das Hsp90 aufgrund seines Chaperon-Charakters in die Signaltransduktion und die Apoptose involviert, sowie in der Faltung und Aktivierung für den Zellzyklus wichtiger Proteine.³⁰

Das eigentliche Interesse an Hsp90-Inhibitoren rührt jedoch von der Tatsache her, dass Hsp90 mit mindestens vier onkologisch wichtigen Proteinen interagiert, welche essentiell für das Überleben und das Wachstum von Tumorzellen sind.³¹ Eines dieser vier Proteine ist das p53, welches eigentlich als Tumorsuppressor agiert und unter anderem in die DNA-Reparatur involviert ist, jedoch in mutierter Form eine kritische Rolle bei der Entstehung von Krebs spielt und in etwa 50% aller bösartigen, menschlichen Tumore gefunden wird. Insofern stellt das Hsp90 ein interessantes Targetmolekül dar, da eine Inhibierung dieses Proteins die

²⁸ Ritossa, F. M. *Experimentia* **1962**, *18*, 571-573.

²⁹ Neckers, L.; Lee, Y.-S. *Nature* **2003**, *425*, 357-359.

³⁰ Kamal, A.; Boehm, M. F.; Burrows, F. *Trends Mole. Med.* **2004**, *10*, 283-290.

³¹ Ochel, H.-J.; Eichhorn, K.; Gademann, G. Cell Stress and Chaperones 2001, 6, 105-112.

Unterbrechung einer Vielzahl von Signalkaskaden bedeuten würde, welche das Überleben und Wachstum von Krebszellen sichern.³²

Das Geldanamycin **36** stellt einen solchen Hsp90-Inhibitor dar, da es die Fähigkeit besitzt, an die *N*-terminale Bindungstasche des Hsp90 anzubinden.^{33,34} Dadurch kommt es beispielsweise zu einer Destabilisierung des oben beschriebenen Heteroproteinkomplexes mit mutiertem p53 und zum Verlust der Eigenschaften als Chaperon. Letzteres führt unter anderem auch zur Inhibierung der Faltung der für die Krebsbildung relevanten Proteine, was letztlich zur Degradation dieser Proteine führt. Aufgrund seiner chemischen Instabilität und Hepatoxizität ist Geldanamycin **36** an sich jedoch als Medikament ungeeignet, weshalb das Interesse an Geldanamycin-Derivaten, die eine möglichst geringe Toxizität und unverändert hohe Bindungsaffinität zu Hsp90 aufweisen, groß ist.³⁵

2.2.4 Mutasynthese

Viele Naturstoffe weisen eine biologische Aktivität auf, weshalb sie als Leitstrukturen Bedeutung in der Entwicklung neuer Wirkstoffe besitzen.¹ Aufgrund ihrer Komplexität stellt die chemische Totalsynthese solcher pharmakologisch interessanter Strukturen und ihrer Derivate jedoch nach wie vor eine der größten Herausforderungen in der organischen Chemie dar. Auch die häufig für die Derivatisierung von Naturstoffen angewendete Semisynthese ist, zum einen durch die Komplexität des Naturstoffs selbst und zum anderen durch die jeweiligen funktionellen Gruppen des Moleküls, in ihren Möglichkeiten beschränkt.

Eine Alternative zur Total- und Semisynthese bieten biosynthetisch orientierte Konzepte, welche in relativ kurzer Zeit den Aufbau von Substanzbibliotheken ermöglichen und die Entwicklung zeitintensiver Syntheseverfahren umgehen.³⁶ Ein Beispiel hierfür ist die Vorläufer-dirigierte Biosynthese, bei der dem Wildtypstamm eines Naturstoffproduzenten während der Fermentation Derivate von Biosyntheseintermediaten zugeführt werden (*Abbildung 3*, Fall II). Aufgrund der Konkurrenz zwischen den synthetisch erzeugten Vorläufern und den natürlichen Biosyntheseintermediaten sind die Ausbeuten der erzeugten Derivate jedoch meist relativ gering.

³² Neckers, L.; Ivy, S. P. Curr. Opin. Oncol. 2003, 15, 419-424.

³³ Whitesell, L.; Lindquist, S. L. Nature 2005, 5, 761-772.

³⁴ Ommoha, S. C.; Mukund, S. R., Coulstock, E. T.; Sengerová, B.; Shaw, J.; McLaughlin, S. H.; Jackson, S. E. *J. Mol. Biol.* **2007**, *372*, 287-297.

³⁵ Le Brazidec, J.-Y.; Kamal, A.; Busch, D.; Thao, L.; Zhang, L.; Timony, G.; Grecko, R.; Trent, K.; Longh, R.; Salazar, T.; Khan, S.; Burrows, F.; Boehm, M. F. *J. Med. Chem.* **2004**, *47*, 3865-3873.

³⁶ Kirschning, A.; Taft, F.; Knobloch, T. Org. Biomol. Chem. 2007, 5, 3245-3259.

Abbildung 3: Verschiedene biosynthetische Konzepte.³⁶

Eine Erweiterung der Vorläufer-dirigierten Biosynthese stellen sowohl die Mutasynthese³⁷ als auch die kombinatorische Biosynthese³⁶ dar, wobei in letzterer die Gene verschiedener Mikroorganismen miteinander kombiniert werden, um so "Hybrid-Organismen" zu erzeugen, welche aufgrund der veränderten Biosynthesewege neue Naturstoffe produzieren (*Abbildung 3*, Fall IV).

Die Mutasynthese kombiniert hingegen die Möglichkeiten der chemischen Synthese und der Biosynthese und beinhaltet die Verwendung genetisch manipulierter Mikroorganismen bei denen ein Schlüsselschritt der Biosynthese blockiert ist, wodurch die Produktion des Naturstoffs nicht mehr möglich ist (*Abbildung 3*, Fall III).³⁸ Durch Zuführung geeigneter Biosyntheseintermediate (Mutasynthone) kann die Biosynthese jedoch wieder angeregt werden, so dass mit Hilfe modifizierter Mutasynthone neue Naturstoffderivate erzeugt werden können. Die Voraussetzungen für die Anwendung eines mutasynthetischen Ansatzes sind deshalb die Kenntnis des detaillierten Biosynthesewegs des Sekundärmetaboliten, um entsprechende Mutanten des jeweiligen Organismus erzeugen zu können, sowie eine bekannte natürliche Leitstruktur, um das Design von Mutasynthonen zu ermöglichen.

³⁷ Weist, S.; Süssmuth, R. D. Appl. Microbiol. Biotechnol. 2005, 68, 141-150.

 ³⁸ a) Shier, W. T.; Rinehart Jr., K. L.; Gottlieb, D. *Proc. Natl. Acad. Sci. USA* 1969, *63*, 198-204; b) Rinehart Jr., K. L. *Jpn. J. Antibiot.* 1979, *32*, Suppl. S32-46.

Im Falle des Geldanamycins **36** konnten bereits diverse Derivate auf diesem Weg erzeugt werden, wobei in allen Fällen AHBA-Blockmutanten verwendet wurden.³⁹

³⁹ a) Kim, W.; Lee, J. S.; Lee, D.; Cai, X. F.; Shin, J. C.; Lee, K.; Lee, C.-H.; Ryu, S.; Paik, S.-G.; Lee, J. J.; Hong, Y.-S. *ChemBioChem.* **2007**, *8*, 1491-1494; b) PCT Int. Appl. Pub. No.: US2008/0188450 A1, **2008**;
c) Menzella, H. G.; Tran, T.-T.; Carney, J. R.; Lau-Wee, J.; Galazzo, J.; Reeves, C. D.; Carreras, C.; Mukadam, S.; Eng, S.; Zhong, Z.; Timmermans, P. B. M. W. M.; Murli, S.; Ashley, G. W. *J. Med. Chem.* **2009**, *52*, 1518-1521; d) Eichner, S.; Floss, H. G.; Sasse, F.; Kirschning, A. *ChemBioChem.* **2009**, *10*, 1801-1805.

3 Zielsetzung

Die vorliegende Arbeit beschäftigt sich primär mit der Umpolung von Allyl-Palladium-Komplexen, wobei die Reaktion zum einen unter Verwendung von Diethylzink und zum anderen unter Verwendung von Bis(pinakol)boronat **44** als Umpolungsreagenz untersucht werden soll. Abschließend soll die Bor-vermittelte Umpolungsstrategie als Schlüsselschritt in der Synthese eines Geldanamycinderivates **45** angewendet werden.

3.1 Palladium-katalysierte Umpolung mit Diethylzink

Die Untersuchungen zur Umpolung mit Diethylzink im ersten Teil dieser Arbeit sollen auf der Basis der zuvor von KLAAS MENNECKE optimierten Reaktionsbedingungen durchgeführt werden.⁴⁰ Da letzterer bereits den Einfluss chiraler Liganden auf die Umpolungsreaktion untersucht hat und die literaturbekannten Umpolungsmethoden mit Diethylzink bisher nur unter reagenzkontrollierten Bedingungen untersucht wurden, befasst sich die vorliegende Arbeit in diesem Abschnitt vor allem mit der Untersuchung der Umpolungsreaktion unter substratkontrollierten Bedingungen. Dabei soll insbesondere der Einfluss eines chiralen Allylsubstrates auf die Stereoselektivität der Umpolungsreaktion untersucht werden, welches zusätzlich einen Metall-koordinierenden Liganden enthält (*Schema 16*).

Schema 16: Substratkontrollierte Umpolungsreaktion mit Diethylzink.

3.2 Palladium-katalysierte Umpolung mit Bis(pinakol)boronat 44 und Anwendung in der Synthese eines Geldanamycinderivates 45

Im zweiten Teil dieser Arbeit soll eine milde Umpolungsmethode unter Verwendung von Bis(pinakol)boronat **44** entwickelt werden, welche auch für die Synthese komplexer Syntheseintermediate geeignet ist. Aus diesem Grund sollen die größten Vorteile der zuvor vorgestellten Arbeiten von SZABÓ,²⁰ HOFFMANN und ROUSH,²² die *in situ* Generierung der Allylboronate sowie ein hohes Maß an Stereokontrolle durch den Einsatz α -chiraler Aldehyde, in dieser Arbeit miteinander verknüpft werden (*Schema 17*).

⁴⁰ Mennecke, K. *Dissertation* **2007**, Leibniz Universität Hannover.

Schema 17: Umpolungsreaktion mit Bis(pinakol)boronat 44 unter substratkontrollierten Bedingungen.

Des Weiteren soll die Bor-vermittelte Umpolungsstrategie im letzten Teil der vorliegenden Arbeit als Schlüsselschritt in der Synthese eines *seco*-Progeldanamycinderivates **45** fungieren, welches an C-2, C-6, C-7 und C-8 hinsichtlich des Substitutionsmusters vereinfacht ist, um die Anwendbarkeit der entwickelten Methode auf komplexe Substrate zu demonstrieren (*Schema 18*).

Schema 18: Synthese des vereinfachten Geldanamycinderivates 45 unter Anwendung der Bor-vermittelten Umpolungsreaktion.

Nach erfolgreicher Synthese des offenkettigen Geldanamycinderivates **45**, soll dieses in einem mutasynthetischen Ansatz als fortgeschrittenes Mutasynthon einer Geldanamycin-Blockmutante (*Streptomyces hygroscopicus* K390-61-1) zugefüttert werden, um so ein neues Geldanamycinderivat zu erzeugen.

4 Beschreibung und Diskussion der Ergebnisse

4.1 Stereoselektive Palladium-katalysierte Umpolung mit Diethylzink

4.1.1 Vorarbeiten⁴⁰

Die optimierten Reaktionsbedingungen der Palladium-katalysierten Umpolung mit Diethylzink wurden bereits von KLAAS MENNECKE,⁴⁰ anhand eines Modellsystems bestehend aus Zimtacetat und Cyclohexylcarbaldehyd, ermittelt, wobei das *anti*-Produkt **58** mit leichter Bevorzugung erhalten wurde (*syn:anti* 1:3.5) (*Schema 19*).

Schema 19: Modellsystem zur Optimierung der Reaktionsbedingungen. Bedingungen: a) 10 mol% Pd-Katalysator, 40 mol% Ligand, 3.2 Äq. Et₂Zn, THF, 0°C \rightarrow RT, 24 h, 95% (*syn:anti* 1:3.5).

Als Palladiumkatalysator konnten diverse Palladiumquellen verwendet werden [z.B. $Pd(PPh_3)_4$, $Pd_2(dba)_3$ und $(PdallylCl)_2$], wobei in allen nachfolgenden Reaktionen standardmäßig 10 mol% $Pd(OAc)_2$ mit 40 mol% *n*-Tributylphosphan als Ligand verwendet wurde. Aufgrund der hohen Ausbeuten (~ 95%) wurde als Lösungsmittel THF gewählt, obwohl in Toluol etwas höhere Selektivitäten erzielt werden konnten. Als Reaktionstemperatur wurde ein Bereich von 0°C bis Raumtemperatur gewählt.

Nach Ermittlung der optimalen Reaktionsbedingungen wurde der Einfluss chiraler Katalysatoren auf die Diastereoselektivität der Umpolungsreaktion untersucht, wobei sowohl chirale Palladium- als auch chirale Zinkkatalysatoren verwendet wurden (Reagenzkontrolle). Da sowohl die chiralen Palladium- als auch die chiralen Zinkkomplexe nur einen sehr geringen Einfluss auf die Stereoselektivität der Reaktion hatten, wurde nachfolgend der Einfluss chiraler Substrate untersucht (Substratkontrolle). Dazu wurden zunächst verschiedene α -chirale Aldehyde unter den standardisierten Kupplungsbedingungen mit (*rac*)-3-Buten-2-methylcarbonat umgesetzt (*Tabelle 1*).

Tabelle 1: Einfluss α -chiraler Aldehyde auf die Diastereoselektivität der Umpolungsreaktion mit Diethylzink. Bedingungen: a) 10 mol% Pd(OAc)₂, 40 mol% *n*-Bu₃P, 3.2 Äq. Et₂Zn, THF, 0°C \rightarrow RT, 18 h.

Die besten Ergebnisse hinsichtlich der Selektivität konnten unter Verwendung des TBDPS-geschützten (*S*)-Milchsäurealdehyds **62** erzielt werden, was vermutlich auf den sehr unterschiedlichen sterischen Anspruch der beiden α -Substituenten zurückzuführen ist.⁴¹ Da in allen Fällen jedoch alle vier möglichen Diastereomere erhalten wurden, wurde anschließend der Einfluss chiraler, sterisch anspruchsvoller Allylsubstrate untersucht (*Schema 20*).

Schema 20: Palladium-katalysierte Umpolung mit Diethylzink unter Verwendung eines sterisch gehinderten chiralen Allylcarbonats. Bedingungen: 10 mol% Pd(OAc)₂, 40 mol% *n*-Bu₃P, 3.2 Äq. Et₂Zn, THF, 0°C \rightarrow RT, 18 h, 33% [*d.r.* ~ 1:5 (*syn, syn : syn, anti*)].

Unter den optimierten Standardbedingungen konnte so die beste Selektivität erzielt werden, da nur zwei der möglichen vier Diastereomere gebildet wurden, wobei das *syn, anti*-Produkt **65b** deutlich bevorzugt war.

⁴¹ Roush, W. R. J. Org. Chem. 1996, 56, 4151-4157.

4.1.2 Synthese des Allylsubstrates 74 zur Einführung der Liganden

Da unter Verwendung eines sterisch anspruchsvollen, chiralen Allylsubstrates die besten Ergebnisse hinsichtlich der Diastereoselektivität der Umpolungsreaktion erzielt werden konnten, sollte nachfolgend versucht werden, die Selektivität durch Einführung eines Metallkoordinierenden Liganden in das allylische Substrat weiter zu erhöhen.

Die Synthese des chiralen Allylsubstrates erfolgte ausgehend von (S)-Milchsäureethylester 66. Dieser wurde zunächst unter Standardbedingungen in den entsprechenden Silvlether 67 überführt und anschließend in das entsprechende Weinrebamid 68 umgesetzt.⁴² Die darauf folgende Reduktion mit DIBAL-H lieferte Aldehyd 62 in quantitativer Ausbeute (Schema 21).

Schema 21: Synthese des (S)-Milchsäurealdehyds 62. Bedingungen: a) TBDPSCI, Imidazol, 4-DMAP, THF, $0^{\circ}C \rightarrow 40^{\circ}C$, quant.; b) MeONHMe*HCl, *i*-PrMgCl, THF, -20^{\circ}C, 92\%; c) DIBAL-H, THF, -78^{\circ}C, quant..

Aldehyd 62 sollte nachfolgend durch eine Olefinierungsreaktion in den α,β -ungesättigten Ester 69 überführt werden (Tabelle 2).

Tabelle 2: Old	efinierungsreaktionen des Ald OTBDPS	lehyds 62 .	OTBDPS		
	620	,	69	0₂Et	
Eintrag	Olefinierungsreagenz	Lösungsmittel	Temperatur [°C]	Zeit	Aubeute [%] (E:Z)
1	O II (EtO) ₂ PCO ₂ Et, LiHMDS	THF	-78	24 h	92 (2:1)
2	Ph ₃ P CO ₂ Et	Chloroform	55	24 h	86 (2:1)
3	Ph ₃ P CO ₂ Et	Toluol	80	6 d	90 (11:1)

⁴² Paterson, I.; Wallace, D. J.; Cowden, C. J. Synthesis **1998**, 639-652.

Unter HORNER-WADSWORTH-EMMONS- und unter standardisierten WITTIG-Bedingungen konnte nur eine geringe (*E*)-Selektivität erzielt werden. Nach Optimierung der Reaktionsbedingungen konnten jedoch sowohl die Ausbeute als auch die Selektivität erfolgreich gesteigert werden (Eintrag 3, *Tabelle 2*).⁴³

Ester **69** wurde anschließend mit DIBAL-H in Allylalkohol **70** überführt. Nach Pivaloat-Schützung des primären Alkohols und Entfernung der Silylschutzgruppe wurde Allylalkohol **72** in einer Gesamtausbeute von 67 % über 7 Stufen erhalten (*Schema* 22).

Schema 22: Darstellung des Allylalkohols 72. Bedingungen: a) DIBAL-H, CH₂Cl₂, -60°C, 90%; b) PivCl, Pyridin, 0°C \rightarrow RT, 94%; c) TBAF, THF, 0°C, 96%.

Da sich die Pivaloat-Schutzgruppe in späteren Versuchen verschiedene Liganden in Allylalkohol **72** einzuführen als problematisch erwies, wurde die Pivaloat-Gruppe durch eine TBS-Gruppe ersetzt (*Schema 23*).

Schema 23: Austausch der Pivaloat-Schutzgruppe gegen eine TBS-Gruppe. Bedingungen: a) TBAF, THF, 0°C, 45%; b) TBSCl, NEt₃, CH₂Cl₂, -30°C, 84%.

Dazu wurde der zuvor synthetisierte Allylalkohol **70** mit TBAF in das entsprechende Diol **73** überführt, welches anschließend durch Umsetzung mit TBSCl und Imidazol bei 0°C silyliert wurde. Da unter den standardisierten Bedingungen der disilylierte Alkohol als Hauptprodukt erhalten wurde und die Gesamtausbeute sehr niedrig war (37%), wurde die TBS-Schützung nachfolgend modifiziert. Durch Verwendung von Triethylamin anstelle von Imidazol und tieferen Temperaturen konnte die Gesamtausbeute auf 84% erhöht werden, wobei ausschließlich das gewünschte Produkt **74** erhalten wurde.

⁴³ Roulland, E.; Monneret, C.; Florent, J. C. *Tetrahedron Lett.* **2003**, *44*, 4125-4128.

4.1.3 Synthese der Palladium-koordinierenden Liganden

Wie zuvor bereits erwähnt, sollte der Einfluss eines, an das Allylsubstrat **74** gebundenen, Metall-koordinierenden Liganden auf die Diastereoselektivität der Palladium-katalysierten Umpolung mit Diethylzink untersucht werden (*Schema 24*).

Schema 24: Substratkontrollierte Palladium-katalysierte Umpolung mit Diethylzink unter Verwendung eines Metall-koordinierenden Liganden.

Dieses Konzept ist bereits von BREIT bekannt, welcher *o*-Diphenylphosphinobenzoesäure (*o*-DPPBA) als koordinierenden Liganden in Rhodium-katalysierten substratdirigierten, diastereoselektiven Hydroformylierungen verwendet hat.⁴⁴ Da es sich bei der untersuchten Umpolungsreaktion jedoch um eine allylische Substitutionsreaktion handelt, bei der Esterfunktionen als Fluchtgruppen fungieren, sollte die Anbindung der Liganden durch Veresterung prinzipiell vermieden werden. Aufgrund dessen wurden die Liganden als Benzylhalogenide dargestellt, um sie mittels einer Substitutionsreaktion (WILLIAMSON-Ethersynthese) in den Allylalkohol einführen zu können. Als Metall-koordinierende Funktionen sollten entweder Amino- oder, angelehnt an BREIT, Phosphinogruppen fungieren.

4.1.3.1 Synthese der N-haltigen Liganden

Die Dimethylaminogruppe sollte aufgrund ihrer Größe als Modellfunktion dienen, weshalb das kommerziell erhältliche Anthranilsäurederivat **78** als Ausgangssubstanz ausgewählt wurde. Dieses wurde zunächst durch Reduktion mit Natriumborhydrid in Allylalkohol **79** überführt,⁴⁵ welcher nachfolgend in das entsprechende Benzylhalogenid **80** umgesetzt werden sollte (*Schema 25*).

Schema 25: Synthese des N-haltigen Liganden 80. Bedingungen: a) NaBH₄, ZnCl₂, THF, Rückfluss, 61%.

⁴⁴ Breit, B. Angew. Chem. **1996**, 108, 3021-3023.

⁴⁵ Yamakawa, T.; Masaki, M.; Nohira, H. Bull. Chem. Soc. Jpn. 1991, 64, 2730-2734.

Fintrag	Dagganzian	L ägun gamittal	Temperatur
Emuag	Reagenzien	Losungsmitter	[°C]
1	Ph ₃ P, NBS	THF	$0 \rightarrow RT$
2	Ph ₃ P, CBr ₄	CH_2Cl_2	RT
2	Ph ₃ P, Imidazol,	CH ₂ Cl ₂	DT
3	Br ₂		K I
4	PBr ₃ , Pyridin	Et ₂ O	RT
5	HBr (62%ig)		100
6	SOCl ₂	CH_2Cl_2	0
7	SOCl ₂ ,		DT
/	Benzotriazol	CH_2CI_2	KI

Tabelle 3: Reaktionsbedingungen zur Überführung des Benzylalkohols 79 in das entsprechendeBenzylhalogenid 80.

Um Benzylalkohol 79 in das entsprechende Bromid 80a zu überführen wurde der Alkohol zunächst bei Raumtemperatur mit NBS und Triphenylphosphan umgesetzt,⁴⁶ wobei jedoch weder Edukt noch Produkt isoliert werden konnten (Tabelle 3). Daraufhin wurden verschiedene Varianten der APPEL-Reaktion durchgeführt (Eintrag 2 und 3),⁴⁷ die, ebenso wie die Umsetzung mit Phosphortribromid⁴⁸, kein Produkt lieferten. Abschließend wurde versucht, Benzylalkohol 79 mittels siedendem Bromwasserstoff in das Bromid 80a zu überführen (Eintrag 5)⁴⁹, wobei nach beendeter Reaktion ein Teil des Edukts reisoliert werden konnte, jedoch kein Produkt erhalten wurde. Da bei fast allen Versuchen, das Benzylbromid 80a zu synthetisieren, nur die Zersetzung des Edukts zu beobachten war und keine definierbaren Produkte isoliert werden konnten, wurde im Folgenden versucht, das 80b entsprechende Chlorid durch Umsetzung mit Thionylchlorid darzustellen (Eintrag 6 und 7)⁵⁰. Trotz Variation der Reaktionsbedingungen konnte auch auf diesem Weg kein Produkt erhalten werden und es fand ausschließlich Zersetzung statt. Diese Beobachtungen lassen vermuten, dass sowohl bei der Bromierung als auch bei der Chlorierung das gewünschte Produkt gebildet wird, es aber aufgrund der Reaktivität der Dimethylaminogruppe sofort wieder zerfällt, so dass weder Produkt noch Edukt isoliert

⁴⁶ Babu, G.; Orita, A.; Otera, J. Org. Lett. 2005, 7, 4641-4643.

⁴⁷ a) Appel, R. Angew. Chem. **1975**, 87, 863-874; b) Kwon, S.; Myers, A. G. J. Am. Chem. Soc. **2005**, 127, 16796-16797.

⁴⁸ Andrus, M. B.; Meredith, E. L.; Sekhar, S. B. B. V. Org. Lett. **2001**, *3*, 259-262.

⁴⁹ Gabriel, S.; Posner, T. *Chem. Ber.* **1894**, *27*, 3509-3525.

⁵⁰ a) Yamada, M.; Yura, T.; Morimoto, M.; Harada, T.; Yamada, K.; Honma, Y.; Kinoshita, M.; Sugiura, M. J.

Med. Chem. 1996, 39, 596-604; b) Chaudan, S. S.; Akamanchi, K. G. Synlett 1999, 11, 1763-1765.

werden können. Deshalb wurde nachfolgend versucht, die Hydroxyfunktion des Benzylalkohols **79** anstatt in ein Halogenid, in das korrespondierende Mesylat⁵¹ oder Trichloracetimidat⁵² zu überführen (*Schema 26*).

Schema 26: Überführung des Benzylalkohols 79 in das entsprechende Mesylat 81 bzw. Trichloracetimidat 82.

Da auch diese Reaktionen nicht die gewünschten Produkte lieferten, sondern zur Zersetzung des Benzylakohols führten, sollten die *N*-haltigen Liganden nachfolgend mittels einer BUCHWALD-HARTWIG-Reaktion synthetisiert werden (siehe 4.1.4).

4.1.3.2 Synthese der P-haltigen Liganden

Die *P*-haltigen Liganden sollten ausgehend von kommerziell erhältlichem Dimethylbenzylamin **86** synthetisiert werden (*Schema* 27).⁵³

Schema 27: Darstellung des Phosphanliganden **88**. Bedingungen: a) *i. n*-BuLi, Et₂O, 0°C \rightarrow RT, *ii.* Ph₂PCl, Et₂O, -78°C \rightarrow RT, 92%; b) Chlorameisensäureethylester, Benzol, Rückfluss, 35%.

Durch *ortho*-Lithiierung des Benzylamins und anschließender Reaktion mit Diphenylphosphanchlorid wurde zunächst Arylphosphan **87** erhalten, welches abschließend mit Chlorameisensäureethylester in das entsprechende Benzylchlorid **88** überführt wurde. Der Vorteil der *ortho*-Lithiierung besteht in der Möglichkeit verschiedene Phosphane in den aromatischen Liganden einführen zu können, so dass die Synthese diverser Arylphosphane leicht möglich ist.

⁵¹ Mori, A.; Mizusaki, T.; Ikawa, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. *Tetrahedron* **2006**, *63*, 1270-1280. ⁵² Confalone, P. N. J. *Heterocyclic Chem.* **1990**, *27*, 31-56.

⁵³ a) Wang, A. E.; Xie, J. H.; Wang, L. X.; Zhou, Q. L. *Tetrahedron* **2005**, *61*, 259-266; b) Bhattacharyya, S. J. Org. Chem. **1995**, *60*, 4928-4929; c) Barbaro, P.; Curaro, A.; Herrmann, J.; Nesper, R.; Pregosin, P. S.; Salzmann, R. Organomet. **1996**, *15*, 1879-1888.

4.1.4 Anbindung der synthetisierten Liganden an Allylsubstrat 72 bzw. 74

Der zuvor synthetisierte Phosphan-Ligand **88** wurde unter den Standardbedingungen einer Benzylschützung mit Allylalkohol **72** umgesetzt (*Tabelle 4*).⁵⁴

 Tabelle 4: Einführung des P-haltigen Liganden 88 in Allylsubstrat 72.

Trotz der Zugabe von TBAI und Variation des Lösungsmittels konnte jedoch weder bei Raumtemperatur noch bei erhöhter Temperatur eine Reaktion beobachtet werden. Da bei allen durchgeführten Reaktionen etwa 95% des Liganden reisoliert werden konnten, liegt die Vermutung nahe, dass das Benzylchlorid **88** zu wenig reaktiv ist, um mit Allylalkohol **72** reagieren zu können. Da eine Überführung des Chlorids in das entsprechend reaktivere Bromid bzw. Iodid nicht möglich war, wurde das Allylsubstrat **72** zunächst mit Benzylbromid umgesetzt, um einen eventuellen Einfluss der Pivaloat-Gruppe auf die Benzylierungsreaktion zu untersuchen (*Schema 28*).

Schema 28: Benzylierung des Allylsubstrates 72.

Da auch mit Benzylbromid keine Reaktion zu beobachten war und aufgrund der mangelnden Reaktivität des Benzylchlorids **88**, wurde die Syntheseroute wie folgt modifiziert (*Schema 29*).

⁵⁴ Petri, A. F.; Kühnert, S. M.; Scheufler, F.; Maier, M. E. Synthesis 2003, 6, 940-955.

Schema 29: Modifizierte Syntheseroute zur Anbindung der Liganden an Allylalkohol 74. Bedingungen: a) TBAF, THF, 0°C, 45%; b) TBSCl, NEt₃, CH₂Cl₂, -30°C, 84%; c) *i*. NaH, TBAI, THF, RT, *ii*. *o*-Brombenzylbromid.

Der silylgeschützte Allylalkohol 74 konnte unter den gezeigten Bedingungen in das Bromid 91 überführt werden und sollte nachfolgend entweder durch BUCHWALD-HARTWIG-Reaktion in das entsprechende Amin 92 oder durch *ortho*-Lithiierung in das entsprechende Phosphan 93 überführt werden (*Tabelle 5*). Durch anschließende Entschützung der Silylgruppe und Veresterung des primären Alkohols könnte so das fertig modifizierte Allylsubstrat 94 erhalten werden.

Fintrog	Paganzian	Lögungemittel	Temperatur	
Linuag	Keagenzien	Losungsmitter	[°C]	
1	Morpholin, PEPPSI TM -Ipr,	DME	DT	
1	KO ^t Bu	DIVIE	KI	
2	Morpholin, PEPPSI TM -Ipr,		$RT \rightarrow 40$	
2	NaO'Bu	DME		
3	<i>n</i> -BuLi, Ph ₂ PCl	THF	-78	
4	t-BuLi, Ph ₂ PCl	THF	-78	
5	Ph ₂ PCl, Zn, NiCl ₂ (dppe)	DME	100-110	
	(1.5 mol%)	DMF		
6	HPPh ₂ , Herrmann I ^a , KOAc	DME	180	
		DMF	(Mikrowelle)	

Tabelle 5: Bedingungen für die Umsetzung des Bromids 91 in das entsprechende Amin 92 bzw. Phosphan 93.

^a Herrmann I:

Zur Einführung der Aminofunktion durch BUCHWALD-HARTWIG-Reaktion mit Morpholin konnte weder unter standardisierten Bedingungen (Eintrag 1)⁵⁵ noch unter modifizierten Bedingungen (Eintrag 2) das gewünschte Produkt erhalten werden. Da in beiden Fällen weder Edukt noch Produkt isoliert werden konnte, liegt die Vermutung nahe, dass der Palladium-Katalysator mit der Doppelbindung des Allylsubstrates **91** reagiert anstatt in die Kohlenstoff-Brom-Bindung zu insertieren, was letztlich zur Zersetzung des Edukts führt.

Zur Einführung der Diphenylphosphino-Funktion wurde Bromid **91** zunächst lithiiert und anschließend mit Diphenylphosphanchlorid umgesetzt (Eintrag 3 und 4).⁵⁶ Da unter diesen Bedingungen kein Produkt isoliert werden konnte, wurde nachfolgend versucht, den Phosphanrest Metall-katalysiert anzubinden. Dazu wurde Bromid **91** zunächst mit Diphenylphosphanchlorid und Zinkstaub unter Nickel-Katalyse umgesetzt (Eintrag 5).⁵⁷ Da auch bei dieser Reaktion nur Zersetzung zu beobachten war, wurde abschließend versucht, die Phosphaneinheit Palladium-katalysiert einzuführen (Eintrag 6).⁵⁸

Da auf keinem dieser Wege die gewünschten Produkte erhalten werden konnten, wurde nachfolgend die von BREIT verwendete *o*-Diphenylphosphinobenzoesäure mit Allylsubstrat **74** verestert und in das entsprechende Allylcarbonat **97** überführt (*Schema 30*).⁴⁴

Schema 30: Veresterung von *o*-DPPBA mit Allylsubstrat 74. Bedingungen: a) DIC, DMAP, CH_2Cl_2 , RT, 80%; b) TBAF, THF, 0°C \rightarrow RT, 95%; c) Chlorameisensäuremethylester, Pyridin, DMAP, CH_2Cl_2 , 0°C \rightarrow RT, quant..

Prinzipiell sollte, wie bereits erwähnt, eine Anbindung des Liganden mittels Veresterung vermieden werden, da Ester in der Palladium-katalysierten Umpolungsreaktion als Fluchtgruppe fungieren. Aufgrund der Tatsache, dass jedoch weder eine Amino- noch eine Phosphanfunktion in Benzylether **91** eingeführt werden konnte und da in Arbeiten von KAZMEIER *et al.* gezeigt wurde, dass in Gegenwart des

⁵⁵ a) Mann, G.; Hartwig, J. J. Am. Chem. Soc. **1996**, 118, 13109-13110; b) Palucki, M.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. **1996**, 118, 10333-10334.

⁵⁶ Rückert, T.; Brunner, H. Monatshefte f. Chemie **1998**, 129, 339-354.

⁵⁷ Ager, D. J.; East, M. B.; Eisenstadt, A.; Laneman, S. A. *Chem. Commun.* **1997**, 2359-2360.

⁵⁸ Stadler, A.; Kappe, O. Org. Lett. **2002**, *4*, 3541-3543.

o-Diphenylphosphinobenzoesäureesters ein zweiter, labilerer Ester chemoselektiv als Abgangsgruppe fungiert,⁵⁹ wurde Allylcarbonat **97** synthetisiert. Anhand dieser Modellsubstanz sollte nachfolgend der zusätzliche Einfluss eines Palladium-koordinierenden Liganden auf die Diastereoselektivität der Umpolungsreaktion mit Diethylzink untersucht werden.

4.1.5 Palladium-katalysierte Umpolung mit Diethylzink

Der zuvor synthetisierte Allylester **97**, welcher die Diphenylphosphinofunktion als Metallkoordinierde Gruppe enthält, wurde unter verschiedenen Reaktionsbedingungen mit Cyclohexylcarbaldehyd **20** umgesetzt (*Tabelle 6*).

Tabelle 6: Umsetzung des Allylcarbonats 97 unter Palladium-katalysierten Umpolungsbedingungen.

^a $10 \mod \% Pd(OAc)_2 \pmod{40 \mod \% n-Bu_3P}$.

^b 10 mol% Pd(OAc)₂ und 10 mol% PPh₃.

Es konnte jedoch weder unter standardisierten Reaktionsbedingungen noch unter modifizierten Bedingungen Produkt erhalten werden. Da in allen Fällen kein Edukt reisoliert werden konnte, scheint das Palladium in jedem Fall an die Doppelbindung des

⁵⁹ Lindner, T.; Kazmeier, U. Adv. Synth. Catal. 2005, 347, 1687-1695.

⁶⁰ Kimura, M.; Tomizawa, T.; Horino, Y.; Tanaka, S.; Tamaru, Y. *Tetrahedron Lett.* **2000**, *41*, 3627-3629.

⁶¹Araki, S.; Kamei, T.; Hirashita, T.; Yamamura, T.; Kawai, M. Org. Lett. 2000, 2, 847-849.

Allylcarbonats **97** unter Bildung eines Allyl-Palladium-Komplexes zu addieren. Dabei sollte theoretisch, aufgrund der höheren Reaktivität, ausschließlich das Carbonat als Fluchtgruppe fungieren, so dass Allylkomplex **100** bevorzugt gebildet werden sollte (*Schema 31*).

Schema 31: Bildung der möglichen Allyl-Palladium-Komplexe 100 und 101.

Prinzipiell könnte jedoch auch der Benzylester als Abgangsgruppe fungieren, wobei Allylkomplex **101** gebildet werden würde. Da jedoch weder das gewünschte Produkt **98**, noch das aus Komplex **101** resultierende Produkt isoliert werden konnte und ausschließlich Zersetzung zu beobachten war, liegt die Vermutung nahe, dass die beiden potentiellen Fluchtgruppen auch als solche agieren, so dass weder Edukt noch Nebenprodukte isolierbar sind. Diese Vermutung wird auch durch die Beobachtungen KAZMEIERS gestützt, welcher neben geringen Ausbeuten an Produkt in ähnlichen Allylierungsreaktionen ebenfalls nur Zersetzung beobachten konnte.

Aufgrund dieser Ergebnisse und der bis dahin erzielten mäßigen Ausbeuten und Selektivitäten und vor allem aufgrund der durch die Verwendung des Diethylzinks bedingten harschen Reaktionsbedingungen, die in vorhergehenden Versuchen zur teilweisen Zersetzung der Edukte geführt haben, wurde nachfolgend an der Entwicklung einer milderen Palladiumkatalysierten Umpolungsmethode mit Bis(pinakol)boronat gearbeitet.

4.2 Stereoselektive Palladium-katalysierte Umpolung mit Bis(pinakol)boronat 44

4.2.1 Vorarbeiten⁶²

Die Optimierung der Reaktionsbedingungen erfolgte, analog der Umpolungsreaktion mit Diethylzink, anhand eines Modellsystems bestehend aus Zimtacetat **49** und Cyclohexylcarbaldehyd **20** und wurde von SASCHA CEYLAN durchgeführt (*Tabelle 7*).⁶² Neben der Untersuchung diverser katalytischer Systeme und Lösungsmittel wurden auch die

⁶² Ceylan, S. *Dissertation*, Leibniz Universität Hannover.

Reaktionszeit und die Reaktionstemperatur modifiziert, wobei mit einer Reaktionszeit von 20 Stunden und einer Temperatur von 40°C die besten Ergebnisse erzielt werden konnten.

Tabelle 7: Ermittlung der optimalen Reaktionsbedingungen der Palladium-katalysierten Umpolung mitBis(pinakol)boronat 44. Allgemeine Bedingungen: 1.2 Äq. Boronat 44, 1.0 Äq. Aldehyd 20, 1.2 Äq. Acetat 49,10 mol% Katalysator, 40°C, 20 h.

^a Isolierte Ausbeute, d.r. > 20:1.

Die Verwendung von $Pd_2(dba)_3$ (10 mol%) oder (PdallylCl)₂ in DMSO ergaben, wie zu erwarten, die besten Ergebnisse (Eintrag 4 und 5).⁶³ Andere Palladiumkatalysatoren führten zu niedrigeren Ausbeuten (Eintrag 3 und 7) oder erwiesen sich als vollständig ineffizient (Eintrag 1, 2 und 6). Insgesamt konnten mit DMSO als Lösungsmittel die besten Ergebnisse

⁶³ Ishiyama, T.; Ahiko, T.; Miyaura, N. *Tetrahedron Lett.* **1996**, *37*, 6889-6892.

erzielt werden, während in Dichlormethan und Tetrahydrofuran keine Reaktion zu beobachten war.

Zur Aufklärung der relativen Stereochemie des Kupplungsprodukts **58** wurde dieses zunächst ozonisiert, mit Lithiumaluminiumhydrid reduziert und das resultierende Diol in das entsprechende Acetonid **103** überführt (*Schema 32*).

Schema 32: Synthese des Acetonids **103** zur Aufklärung der relativen Stereochemie. Bedingungen: a) *i*. O₃, CH₂Cl₂, -78°C, *ii*. Me₂S; b) LiAlH₄, THF; c) PPTS, Dimethoxypropan, CH₂Cl₂, 80% über drei Stufen.

Anlehnend an die Methode von RYCHNOWSKY *et al.* konnte die *anti*-Konfiguration des Acetonids **103** durch die Analyse der Kopplungskonstanten ermittelt werden,⁶⁴ wobei, im Gegensatz zu der zuvor untersuchten Umpolungsreaktion mit Diethylzink, ausschließlich das *anti*-Produkt **58** erhalten wurde. Des Weiteren konnte eine deutlich höhere Ausbeute erzielt werden. Da in allen Fällen das *anti*-Produkt **58** gebildet wurde, scheint die Reaktion über das intermediäre (*E*)-Allylboronat **50** zu verlaufen (*Tabelle 7*).

Nachdem geeignete Reaktionsbedingungen ermittelt werden konnten, wurde nachfolgend der Einfluss eines chiralen Reagenzes auf die Stereoselektivität der Umpolungsreaktion untersucht, unter Verwendung der chiralen Boronate **104** und **105** (*Tabelle 8*).⁶⁵

Tabelle 8: Ergebnisse zur asymmetrische Allylierung unter Verwendung der chiralen Diboronate **104** und **105**. Bedingungen: 1.2 Äq. des jeweiligen Diboronats, 1.0 Äq. Aldehyd **20**, 1.2 Äq. Acetat **49**, 10 mol% Pd₂(dba)₃, DMSO, 40°C, 20 h.

⁶⁴ Rychnowski, S.; Skalitzky, D. J. *Tetrahedron Lett.* **1990**, *31*, 945-948. Die große Kopplungskonstante von J = 10.8 Hz legt eine *anti*-Konfiguration nahe.

⁶⁵ Sebelius, S.; Szabó, K. J. Eur. J. Org. Chem. 2005, 2539-2547.

Eintrag	Diboronat	Ausbeute [%] (ee) ^a
1	104 (L)	39 (43)
2	104 (D)	41 (62)
3	105 (+)	60 (21)
4	105 (-)	50 (19)

^a Isolierte Ausbeute. *ee*'s wurden durch chirale GC-Analyse bestimmt.

Bei Verwendung der chiralen Diboronate **104** konnten nur mäßige Ausbeuten und mäßige *ee*-Werte erzielt werden. Mit den enantiomerenreinen Boronaten **105** konnten zwar die Ausbeuten verbessert werden, die *ee*-Werte verschlechterten sich jedoch. Eine mögliche Ursache hierfür könnte in der Reaktionstemperatur liegen, da die Bildung des intermediären Allylboronats leicht erhöhte Temperaturen erfordert, die Selektivität der Allylierung im Allgemeinen jedoch wesentlich höher bei tiefen Temperaturen ist.

Aufgrund dieser Ergebnisse wurde das Konzept der Reagenzkontrolle verworfen und stattdessen nachfolgend das Konzept der Substratkontrolle untersucht.

4.2.2 Palladium-katalysierte Umpolung mit Boronat 44 unter substratkontrollierten Bedingungen

Zur Untersuchung der Palladium-katalysierten Umpolung mit Boronat 44 unter substratkontrollierten Bedingungen, sollten verschiedene α -chirale Aldehyde verwendet werden. Prinzipiell entspricht eine Umpolung dieser Art den von HOFFMANN und ROUSH entwickelten Crotylborierungen, bei denen ein substituiertes Allylboran oder Allylboronat mit einem α -chiralen Aldehyd umgesetzt wird (*Schema 33*).^{22b,66}

⁶⁶ a) Hoffmann, R. W.; Brinkmann, H. *Chem. Ber.* **1990**, *123*, 2395-2401; b) Hoffmann, R. W.; Brinkmann, H.; Frenking, G. *Chem. Ber.* **1990**, *123*, 2387-2394.

Schema 33: Substratkontrollierte Crotylierung nach HOFFMANN und ROUSH.^{22b,66}

Bei der Reaktion von α -methylsubstituierten Aldehyden mit (*E*)-Crotylboronat **106** wurde sowohl von HOFFMANN als auch von ROUSH bevorzugt die Bildung des 4,5-*syn*-3,4-*anti*-Produkts **107a** beobachtet, was dem *Cram*-Produkt entspricht, während bei der Umsetzung mit (*Z*)-Crotylboronat **106** das 4,5-*anti*-3,4-*syn*-Produkt **107b** erhalten wird, welches dem *anti-Cram*-Produkt entspricht. Laut HOFFMANN und ROUSH liegt die Ursache dieser Selektivitäten hauptsächlich in sterischen Wechselwirkungen begründet, welche die jeweiligen Übergangszustände der Crotylierungsreaktion begünstigen oder destabilisieren (*Abbildung 4*).^{22b,66b}

Abbildung 4: Übergangszustände der Crotylierung nach HOFFMANN und ROUSH.^{22b,66b}

Übergangszustand I stellt den energetisch günstigsten Übergangszustand bei der Umsetzung eines α -chiralen Aldehyds mit (*E*)-Crotylboronat **106** dar, welcher zur Bildung des *Cram*-Produkts **107a** führt. Da die Methylgruppe des (*Z*)-Crotylboronats **106** den Übergangszustand I aufgrund der sterischen Wechselwirkungen mit den Substituenten des Aldehyds destabilisieren würde, verläuft die Bildung des *anti-Cram*-Produkts **107b** über den Übergangszustand II. Der wesentliche Unterschied zwischen der klassischen Crotylborierung nach HOFFMANN und ROUSH und der hier untersuchten Umpolungsreaktion besteht in der *in situ* Generierung der jeweiligen Allylboronate, durch die eine vorherige Darstellung und Isolierung dieser labilen Intermediate vermieden werden kann. Des Weiteren benötigen die Crotylborierungen nach HOFFMANN eine deutlich längere Reaktionszeit (ca. 4 Tage).

Als chirale Modellsubstrate wurden verschiedene α -oxysubstituierte Aldehyde sowie (2*S*)-Phenylpropanal **109** gewählt und mit Zimtacetat **49** und racemischem 3-Buten-2-methylacetat **54** unter den standardisierten Umpolungsbedingungen umgesetzt (*Tabelle 9*).

Tabelle 9: Substratkontrollierte Allylierung α -chiraler Aldehyde. Bedingungen: 1.2 Äq. Boronat 44, 1.0 Äq. Aldehyd, 1.2 Äq. Acetat, 10 mol% Pd₂(dba)₃, DMSO, 40°C, 20 h.

R^{1} R^{2} R^{3} O Ac	 $ \begin{array}{c} $	+ $R^{1} \overline{5} \overline{1} \overline{3}$
	ŌН	ОН
	svn	anti

			Syn	ann
Eintrag	Acetat	Aldehyd	Hauptprodukt	Ausbeute [%] $(d.r.)^{a}$
1	OAc 54	OTBDPS	OTBDPS OH	73 (10:1)
2	OAc Ph 49	OTBDPS	OTBDPS OH Ph''' 111	80 (5:1)
3	OAc 54	OTBS 0 108	OTBS OH ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40 (5:1)
4	OAc 54	OTBDPS Ph 63	OTBDPS Ph,,OH 113	65 (7:1)
5	OAc Ph 49	OTBDPS Ph 63	OTBDPS Ph Ph 114	60 ^{b.62}
6	OAc 54	Ph 109	Ph OH 115	54 (5:1)
7	OAc Ph 49	Ph 109	Ph Ph ^{""} 116	58 ^{b,62}

^a Isolierte Ausbeute. Der *d.r.* wurde mittels der ¹H-NMR-Spektren bestimmt.

^b Es wurde kein 4,5-*anti*-Produkt erhalten.

In allen Fällen konnten gute Ausbeuten und bemerkenswert hohe Selektivitäten erreicht werden, wobei das 4,5-syn-Produkt stets mit deutlicher Bevorzugung gebildet wurde, was die bereits geäußerte Vermutung bestätigt, dass die Umpolungsreaktion über das intermediäre (*E*)-Allylboronat verläuft.

Aufgrund dieser viel versprechenden Ergebnisse, sollte die entwickelte Umpolungsmethodik nachfolgend auf komplexere Substrate erweitert werden, um ihre Anwendbarkeit in der Naturstoffsynthese zu demonstrieren. Hierzu wurden verschiedene fortgeschrittene Syntheseintermediate aus der institutseigenen Substanzdatenbank ausgewählt und, wenn nötig, entsprechend modifiziert. Neben den Allylalkoholen **121**⁶⁷ und **123**⁶⁷ wurde zusätzlich der aromatische Allylalkohol **125**, welcher aus der in Kapitel 4.3 beschriebenen Synthese des Geldanamycinderivates **45** stammt, als allylisches Substrat ausgewählt und ebenfalls in das entsprechende Acetat überführt (*Schema 34*).⁶⁷

Schema 34: Acetylierung der Allylbausteine 121, 123 und 125. Bedingungen: a) Acetylchlorid, Pyridin, CH₂Cl₂, 0°C.

Die komplexen Aldehyde 127,⁶⁷ 128,⁶⁷ 129,⁶⁷ 130⁶⁷ und 132⁶⁸ wurden unmittelbar vor der Umpolungsreaktion durch DESS-MARTIN-Oxidation aus den entsprechenden Alkoholen synthetisiert, während Aldehyd 131 durch Reduktion des korrespondierenden Weinrebamids dargestellt wurde. Anschließend wurden die komplexen Allylacetate unter den standardisierten Reaktionsbedingungen der Umpolung mit (*S*)-Milchsäurealdehyd 62 oder Cyclohexylcarbaldehyd 20 umgesetzt, während die komplexen Aldehyde unter den gleichen Bedingungen mit racemischem 3-Buten-2-methylacetat 54 versetzt wurden (*Tabelle 10*).

⁶⁷ Die Allylalkohole sowie die Vorläufer der Aldehyde wurden der Substanzdatenbank des Instituts für Organische Chemie der Leibniz Universität Hannover entnommen.

⁶⁸ Der entsprechende Alkohol wurde von ANNE PIEPER zur Verfügung gestellt. Detaillierte Synthese: Frenzel, T.; Brünjes, M.; Quitschalle, M.; Kirschning, A. *Org. Lett.* **2006**, *8*, 135-138.

Tabelle 10: Stereoselektive Palladium-katalysierte Umpolung mit komplexen Substraten. Bedingungen: 1.2 Äq. Boronat **44**, 1.0 Äq. Aldehyd, 1.2 Äq. Acetat, 10 mol% Pd₂(dba)₃, DMSO, 40°C, 20 h.

^a Isolierte Ausbeute. Der *d.r.* wurde mittels der ¹H-NMR-Spektren bestimmt.

^b SM = Startmaterial; bezogen auf das jeweilig eingesetzte komplexere Substrat.

^c Aufgrund des hohen Verunreinigungsgrads des Produkts konnte kein *d.r.* bestimmt werden.

43

Im Falle der beiden komplexen Allylacetate 122 und 123 konnte das jeweilige Acetat nach beendeter Reaktion nahezu vollständig bzw. zu etwa 60% reisoliert werden, was die Vermutung nahe legt, dass die Acetate aufgrund ihrer Struktur zu unreaktiv sind, um einen Allyl-Komplex mit dem Palladiumkatalysator zu bilden (Eintrag 1 und 2). So könnte die TBDPS-Gruppe des Acetats 122 aufgrund ihrer Größe und Nähe zur allylischen Doppelbindung einen störenden Einfluss auf die Addition des Palladiums haben. Wahrscheinlicher ist jedoch, dass das Substitutionsmuster der Doppelbindung für eine derartige Reaktion ungeeignet ist.⁶⁹ Im Falle des Acetats 123 stellt vermutlich das der allylischen Doppelbindung direkt benachbarte quartäre Kohlenstoffatom eine zu große sterische Hinderung dar, was durch die Tatsache, dass mit Carbonat 64 ein sehr gutes Ergebnisse hinsichtlich der Ausbeute und Selektivität erzielt werden konnte, unterstützt wird (Eintrag 3). Aufgrund dieser Ergebnisse sollte die Verwendung des aromatischen Acetats 126 theoretisch ebenso gut möglich sein, da die Doppelbindung ebenso wenig gehindert sein sollte wie im zuvor getesteten Carbonat 64. Allerdings scheint in diesem Fall der aromatische Substituent oder die Gesamtgröße des Acetats 126 problematisch zu sein, da das Kupplungsprodukt nur in einer Ausbeute von 19% erhalten werden konnte, während ca. 58% des korrespondierenden Allylalkohols 191 reisoliert werden konnten (Eintrag 4). Letzteres spricht dafür, dass die Bildung des Palladium-Allyl-Komplexes zwar stattfindet, die Addition des Boronats 44 jedoch gehindert ist. Des Weiteren konnte kein Diastereomerenverhältnis bestimmt werden, da das Produkt nicht von den Verunreinigungen getrennt werden konnte, so dass keine sauberen NMR-Spektren erhalten werden konnten, die eine eindeutige Zuordnung der Signale ermöglicht hätten.

Ebenso scheinen die Aldehyde 128 und 129 zu wenig reaktiv zu sein, um unter den Bedingungen der Umpolungsreaktion mit dem gebildeten Allyl-Palladium-Komplex zu reagieren, da sie ebenfalls zum Teil bzw. nahezu vollständig reisoliert werden konnten (Eintrag 6 und 7). Da sich Alkoxyalkyl-Schutzgruppen bereits in vorhergehenden Versuchen als ungeeignet erwiesen,⁷⁰ könnte die in beiden Aldehyden vorhandene MOM-Gruppe die mögliche Ursache für die Reaktivitätsminderung sein. Bei Umsatz des Aldehyds 127 konnte Zersetzung beobachtet werden, vermutlich nur was an einer Reaktion des Palladiumkatalysators mit dem Diensystem des Aldehyds liegt (Eintrag 5).

⁶⁹ a) Araki, S.; Kamei, T.; Hirashita, T.; Yamamura, H.; Kawai, M. *Org. Lett.* **2000**, *2*, 847-849; b) Kimura, M.; Shimizu, M.; Tanaka, S.; Tamaru, Y. *Tetrahedron* **2005**, *61*, 3709-3718.

⁷⁰ Es wurde auch versucht, MEM-geschützten (*S*)-Milchsäurealdehyd unter den Bedingungen der Palladiumkatalysierten Umpolungsreaktion mit Diethylzink⁴⁰ und Bis(pinakol)boronat **44** umzusetzen, wobei in beiden Fällen kein Produkt erhalten werden konnte.

Aldehyd **131** konnte erfolgreich mit Acetat **54** unter den Umpolungsbedingungen umgesetzt werden, wobei das 4,5-*syn*-Produkt in guter Ausbeute und sehr guter Selektivität erhalten wurde (Eintrag 9), während mit Aldehyd **132** unter den Standardbedingungen zunächst kein Produkt erhalten werden konnte. Erst nach leichter Modifizierung der Zugabereihenfolge der Reagenzien konnte das Kupplungsprodukt **135** in guter Ausbeute erhalten werden, wobei das 4,5-*syn*-Produkt jedoch nur mit leichter Bevorzugung gebildet wurde (Eintrag 10). Diese vergleichsweise niedrige Selektivität könnte auf die α -Substitution des Aldehyds **132** zurückzuführen sein, da die α -ständige Methylgruppe aufgrund der Planarität der benachbarten Doppelbindung in diesem Fall zu klein sein könnte, um einen ausreichend großen stereodirigierenden Effekt zu haben.

Prinzipiell könnten aber auch die dem α -Zentrum benachbarten Substituenten im Molekül einen Einfluss auf die Diastereoselektivität der Umpolungsreaktion haben. So könnte beispielsweise die ausgesprochen hohe Selektivität des Aldehyds **131** durch einen zusätzlichen stereodirigierenden Effekt des *syn*-ständigen β -Zentrums verursacht werden, während die vergleichsweise niedrige Selektivität des Aldehyds **132**, neben den bereits oben genannten Gründen, auf einen möglichen negativen Einfluss der *anti*-ständigen TBS-Gruppe zurückgeführt werden könnte.

Insgesamt betrachtet konnten unter substratkontrollierten Reaktionsbedingungen gute bis sehr gute Ergebnisse bezüglich der Ausbeuten und Diastereoselektivitäten der Palladiumkatalysierten Umpolungsreaktion erzielt werden und auch die prinzipielle Anwendbarkeit dieser Methodik auf komplexe Substrate konnte erfolgreich demonstriert werden.

4.2.3 Strukturaufklärung der Kupplungsprodukte

Die Struktur des Kupplungsprodukts **115** konnte durch den direkten Vergleich mit den Literaturdaten bestätigt werden.^{66a}

Zur Strukturaufklärung des Kupplungsprodukts **113** wurde zunächst die Silylschutzgruppe fluoridinduziert gespalten und das resultierende Diol **136** anschließend in das cyclische LEY-Acetal **137** überführt (*Schema 35*).⁷¹

⁷¹ a) Priepke, H. W. M.; Warriner, S. L.; Ley, S. V. Angew. Chem. Int. Ed. Engl. **1994**, *33*, 2290-2292.

b) Montchamp, J. L.; Tian, F.; Hart, M. E.; Frost, J. W. J. Org. Chem. **1996**, *61*, 3897-3899. c) Liu, H.; Nasi, R.; Jayakanthan, K.; Sim, L.; Heipel, H.; Rose, D. R.; Pinto, B. M. J. Org. Chem. **2007**, *72*, 6562-6572.

Schema 35: Synthese des LEY-Acetals 137. Bedingungen: a) TBAF, THF, 0°C \rightarrow RT, 81%; b) 2,3-Butandion, Trimethyl-*o*-formiat, CSA, MeOH, 35°C, 38%.

Aufgrund der konformativen Stabilität von sechsgliedrigen Ringsystemen, konnte die 4,5-*syn*-3,4-*anti*-Konfiguration des Kupplungsprodukts **113** durch ¹H-NMR-Experimente einwandfrei bestimmt werden (*Abbildung 5*).

Abbildung 5: Ausgewählte nOe-Kontakte des cyclischen Acetals 137.

Nachfolgend wurde versucht, Kupplungsprodukt **110** analog in das entsprechende LEY-Acetal zu überführen, was jedoch trotz modifizierter Reaktionsbedingungen nicht gelang. Von der Überführung des korrespondierenden Diols in ein 5-Ring-Acetonid bzw. -Acetal wurde aufgrund der konformativen Instabilität von fünfgliedrigen Ringen abgesehen, da diese keine eindeutigen Rückschlüsse auf die Konfiguration der Stereozentren ermöglichen. Stattdessen wurde versucht, das Kupplungsprodukt **110** in die Säure **140** zu überführen, um intramolekular das sechsgliedrige Lacton **141** bilden zu können (*Schema 36*).

Schema 36: Geplante Synthese des Lactons **141**. Bedingungen: a) *i*. NaH (60%ig), THF, 0°C, *ii*. Me₂SO₄, 86%; b) *i*. BH₃*SMe₂, THF, RT, *ii*. NaOH, H₂O₂, 26%; c) CrO₃, H₂SO₄, Aceton, RT, 64%.

Dazu wurde zunächst der freie sekundäre Alkohol des Kupplungsprodukts 110 methyliert, wobei die besten Ergebnisse mit Dimethylsulfat erzielt werden konnten. Anschließend erfolgte eine Hydroborierung-Oxidation, welche Alkohol 139 lieferte. Durch die nachfolgende JONES-Oxidation wurde Säure 140 erhalten. Da diese, trotz der unpolaren Silylschutzgruppe und der Methoxygruppe, stark polar war, konnte keine Reinigung durch wässrige Aufarbeitung und nachfolgende Säulenchromatographie erfolgen. Stattdessen wurde das Reaktionsgemisch direkt durch HPLC-Chromatographie gereinigt. Aufgrund der Polarität konnte nur eine massenspektroskopische Analyse durchgeführt werden, da die Säure in keinem der vorhandenen deuterierten Lösungsmittel für die ¹H-NMR-Spektroskopie gelöst werden konnte. Die anschließende Überführung der Säure in das korrespondierende Lacton 141 konnte trotz der Anwendung verschiedenster Methoden nicht realisiert werden. Die Behandlung ähnlicher Systeme mit wässriger Flusssäurelösung (40%ig) in Acetonitril bei Raumtemperatur führte zur spontanen Cyclisierung der Säure in das entsprechende Lacton.⁷² Im vorliegenden Fall konnte unter diesen Bedingungen jedoch keine Lactonisierung beobachtet werden. Auch alternative Fluoridquellen und die Zugabe von Aktivierungsreagenzien (4-DMAP, DIC) führten nicht zur gewünschten Reaktion. Aufgrund dessen wurde nachfolgend das Nebendiastereomer des Kupplungsprodukts 110

isoliert, die Silylgruppe wurde entfernt und das resultierende Diol **142** in das entsprechende Diacetat **143** überführt (*Schema 37*).

Schema 37: Synthese des Diacetats 143. Bedingungen: a) TBAF, THF, 0°C \rightarrow RT, quant.; b) Ac₂O, 4-DMAP, EtOAc, 0°C \rightarrow RT, quant..

Die Konfiguration des Diacetats **143** konnte anschließend durch den direkten Vergleich mit den Literaturdaten bestätigt werden.⁷³ Aufgrund der Tatsache, dass die Umpolungsreaktion über das intermediär gebildete (*E*)-Allylboronat verläuft, können nur zwei mögliche Produkte gebildet werden: Homoallylalkohol *syn*-**110** und *anti*-**110**. Da die Konfiguration des Nebenprodukts *anti*-**110** durch den Literaturdatenvergleich einwandfrei bestätigt wurde, muss

⁷² Huber, I.; Schneider, F. Helv. Chim. Acta **1994**, 77, 1065-1075.

⁷³ Toshima, K.; Jyojima, T.; Yamaguchi, H.; Noguchi, T.; Yoshida, T.; Murase, H.; Nakata, M.; Matsumura, S. *J. Org. Chem.* **1997**, *62*, 3271-3284.

das hauptsächlich gebildete Produkt **110** die gezeigte 4,5-*syn*-Konfiguration aufweisen, so dass auch dessen Konfiguration als bewiesen angesehen werden kann.

Die Strukturaufklärung des Kupplungsprodukts **134** erfolgte in Anlehnung an die Methode von RYCHNOWSKY *et al.* durch Analyse des sechsgliedrigen Acetals **144** (*Schema 38*).⁶¹

Schema 38: Synthese des Acetonids 144. Bedingungen: a) TBAF, THF, RT, 65%; b) Dimethoxypropan, PPTS, CH₂Cl₂, RT, 67%.

Basierend auf den ¹³C-NMR-Signalen der Methylgruppen (δ : 30.1, 19.6 ppm) wurde die 4,5-*syn*-Konfiguration bestätigt.

Im Falle des Kupplungsprodukts **135** erfolgte die Aufklärung der absoluten Stereochemie des sekundären Alkohols mittels Analyse der MOSHER-Ester (*Schema 39*).⁷⁴

Schema 39: Darstellung der MOSHER-Ester. Bedingungen: a) (*S*)-Mosherchlorid, 4-DMAP, NEt₃, CH₂Cl₂, RT, quant.; b) (*R*)-Mosherchlorid, 4-DMAP, NEt₃, CH₂Cl₂, RT, 94%.

Die Bestimmung der absoluten Konfiguration eines sekundären Alkohols nach der MOSHER-Methode erfolgt durch die Analyse der ¹H-NMR-Daten der diastereomeren MOSHER-Ester [hier: (*R*)-**145** und (*S*)-**145**], welche durch Versterung der entsprechenden Hydroxygruppe mit den beiden Enantiomeren des α -Methoxy- α -trifluormethylphenylessigsäurechlorids dargestellt werden. Durch den Phenylring ist jeweils eine Seite der diastereomeren MOSHER-Ester abgeschirmt, was in einer geringen Änderung der chemischen Verschiebung des einen Esters gegenüber dem anderen resultiert (*Abbildung 6*).

⁷⁴ a) Dale, A. J.; Mosher, H. S. *J. Am. Chem. Soc.* **1973**, *24*, 512-519; b) Hoye, T. R.; Jeffrey, C. S.; Shao, F. *Nature Protocols* **2007**, *2*, 2451-2458.

Abbildung 6: Allgemeine Abbildung zur Analyse sekundärer Alkohole nach MOSHER. $\Delta \delta^{SR}$ beschreibt die Differenz der chemischen Verschiebung der jeweiligen Protonen des (*S*)- und (*R*)-Esters.

Im vorliegenden Fall konnte durch die Analyse der ¹H-NMR-Daten der MOSHER-Ester (R)-145 und (S)-145 die gezeigte 4,5-*syn*-Konfiguration des Kupplungsprodukts 135 bestätigt werden (*Tabelle 11*).

	(S)-Mosherester 145	(R)-Mosherester 145	$\Delta \delta^{S,R} = (\delta_{\rm S} - \delta_{\rm R})$
	δ [ppm]	δ [ppm]	
H-2	5.65	5.70	-0.05
H-3	2.46	2.48	-0.02
H-5	2.69	2.66	+0.03
H-6	5.12	5.09	+0.03

 Tabelle 11: Ausgewählte ¹H-NMR-Daten der MOSHER-Ester (R)-145 und (S)-145.

Für alle anderen Kupplungsprodukte (111, 112, 114 und 116) wurde in Analogie zu den aufgeklärten Strukturen 110, 115, 134 und 135 ebenfalls die 4,5-*syn*-Konfiguration des Hauptprodukts angenommen.

4.2.4 Studien zur Aufklärung des Reaktionsmechanismus

Mechanistisch betrachtet verläuft die Palladium-katalysierte Umpolungsreaktion mit Boronat 44 vermutlich nach dem in *Schema 40* gezeigten Katalysecyclus.⁶²

Schema 40: Katalysecyclus der Umpolungsreaktion.

Die Reaktion beginnt mit der oxidativen Addition des Palladium(0)katalysators an das Allylsubstrat **54** unter Bildung des π -Allyl-Palladium-Komplexes **A**.⁷⁵ Aufgrund der Analogie zu anderen Dimetallreagenzien, wie beispielsweise Hexaalkyl-/-aryldisilanen (R₃Si-SiR₃) oder Distannanen (R₃Sn-SnR₃), erfolgt nachfolgend vermutlich ein Ligandenaustausch am Palladium unter Bildung des Allyl-Komplexes **C**, wobei der Acetatrest durch das Boronat ersetzt wird.^{76,77} Durch einen anschließenden nucleophilen Angriff wird das intermediäre Allylboronat (*E*)-**106** gebildet, welches durch Reaktion mit dem jeweiligen Aldehyd in das Kupplungsprodukt **D** und durch nachfolgende Hydrolyse in den entsprechenden Homoallylalkohol überführt werden kann. Da der Ligandenaustausch grundsätzlich in Gegenwart stark koordinierender Liganden (z.B. Phosphane oder Halogenide) erschwert ist, spricht die Tatsache, dass bei Verwendung von Phosphan-haltigen katalytischen Systemen keine Reaktion zu beobachten war (*Tabelle 7*, Eintrag 1 und 2), für einen solchen mechanistischen Ablauf der hier untersuchten Umpolungsreaktion.

Aufgrund der Tatsache, dass bei allen durchgeführten Reaktionen stets das entsprechende 3,4-*anti*-Produkt erhalten wurde, muss die Umpolungsreaktion über das sterisch weniger gehinderte (E)-Allylboronat **106** verlaufen, weshalb nur zwei mögliche Produkte gebildet werden können (*Abbildung 7*).

⁷⁵ Tsuji, J. Palladium Reagents and Catalysis: Innovations, in: Organic Synthesis, Wiley, Chichester, 1995.

⁷⁶ Ishiyama, T.; Ahiko, T.-A.; Miyaura, N. *Tetrahedron Lett.* **1996**, *37*, 6889-6892.

⁷⁷ a) Tsuji, Y.; Funato, M.; Ozawa, M.; Ogiyama, H.; Kajita, S.; Kawamura, T. J. Org. Chem. **1996**, *61*, 5779-5787; b) Macsári, I.; Hupe, E.; Szabó, K. J. J. Org. Chem. **1999**, *64*, 9547-9556.

Abbildung 7: Mögliche Übergangszustände der Palladium-katalysierten Umpolung mit Boronat 44.^{22,66}

Für die Entstehung des bevorzugt gebildeten 4,5-*syn*-Produkts ist der von HOFFMANN und ROUSH postulierte FELKIN-ANH-artige Übergangszustand **I** verantwortlich, während Übergangszustand **III** zur Bildung des 4,5-*anti*-Produkts führt.^{22,66} Da bei HOFFMANN und ROUSH bei der Umsetzung von α -oxysubstituierten Aldeyhden mit (*E*)-Allylboronaten das 4,5-*anti*-Produkt mit leichter Bevorzugung gebildet wurde, wurde zusätzlich der elektronisch günstigere CORNFORTH-Übergangszustand **II** für die Entstehung dieses Produkts verantwortlich gemacht.

Insgesamt betrachtet waren die Selektivitäten bei Reaktionen zwischen α -oxysubstituierten Aldehyden und (*E*)-Allylboronaten jedoch sowohl bei HOFFMANN als auch bei ROUSH sehr gering. Um die von HOFFMANN und ROUSH entwickelte Methode und die Palladium-katalysierte Umpolung direkt miteinander vergleichen zu können, wurden die bei beiden beschriebenen Aldehyde **146** und **147** unter den Palladium-katalysierten Umpolungsbedingungen und die Aldehyde **62** und **109** unter den HOFFMANN- bzw. ROUSH-Bedingungen umgesetzt (*Tabelle 12*).

Eintrag	Aldehyd	Bedingungen	Ausbeute [%]	d.r. (syn:anti)
1	OBn 	Hoffmann ^{a,d}	97	1:1.1 ^{63a}
		Pd-katalysierte Umpolung ^c	79	3:1
2	OTBDPS 	HOFFMANN ^a	quant.	1:1
		ROUSH ^b	97	1.3:1
		Pd-katalysierte Umpolung ^c	73	10:1
3		Roush ^{b,d}	50	1:1 ^{20b}
		Pd-katalysierte Umpolung ^c	58	1.3:1
4	Ph 0 109	Hoffmann ^{a,d}	53	3:1 ^{63a}
		Roush ^b	88	3:1
		Pd-katalysierte Umpolung ^c	54	5:1

Tabelle 12: Selektivitätsvergleich zwischen der Palladium-katalysierten Umpolung und den Crotylborierungen nach HOFFMANN und ROUSH.

^a HOFFMANN-Bedingungen: 1.0 Äq. Aldehyd, 1.0 Äq. (E)-Crotylboronat **106**, 3 d, RT.

^b ROUSH-Bedingungen: 1.2 Äq. Aldehyd, 1.0 Äq. (E)-Crotylboronat **106**, CH₂Cl₂, -78°C.

^c Palladium-katalysierte Umpolung: 10 mol% Pd₂dba₃, 1.0 Äq. Aldehyd, 1.2 Äq. Allylacetat **54**, 1.2 Äq. Bis(pinakol)boronat **44**, DMSO, 40°C, 20 h.

^d Literaturwert.

In allen Fällen konnte unter den Palladium-katalysierten Umpolungsbedingungen eine deutlich höhere Selektivität erzielt werden als unter den HOFFMANN- und ROUSH-Bedingungen, wobei letztere meist etwas höhere Ausbeuten ergaben. Des Weiteren wurde das 4,5-*syn*-Produkt, wie zuvor bereits erwähnt, mit deutlicher Bevorzugung erhalten.

Da sich die Palladium-katalysierte Umpolungsmethodik augenscheinlich nur durch die *in situ* Generierung der Allylboronate von den von HOFFMANN und ROUSH entwickelten Methoden unterscheidet und somit prinzipiell über die gleichen ZIMMERMANN-TRAXLER-Übergangszustände verlaufen sollte, wurde nachfolgend der Einfluss der in der Palladium-katalysierten Reaktion vorhandenen Additive auf die Diastereoselektivität der Crotylborierung von Aldehyd **62** nach HOFFMANN untersucht (*Tabelle 13*).

Tabelle 13: Einfluss verschiedener Additive auf die Diastereoselektivität der Crotylborierung nach HOFFMANN. Bedingungen: a) Additiv, 3 d, RT; b) Triethanolamin, 1 d, RT.

OTBDPS 0 62	+ B 0 a, b (E)-106 (E)-106	$\xrightarrow{\text{TBDPSO}} \underbrace{\begin{array}{c} \vdots \\ 5 \\ \vdots \\ 0 \\ \hline \\ 0 \\ 4,5 - syn \end{array}} +$	TBDPSO 5 3 OH 4,5-anti
Eintrag	Additive oder modifizierte Bedingungen	Ausbeute [%]	d.r. (syn:anti)
1	keine (HOFFMANN-Bedingungen)	quant.	1:1
2	Pd_2dba_3 (10 mol%)	79	1:1
3	DMSO	47	1:1
4	40°C	49	1:1
5	Boronat 44 (1.2 Äq.), Pd ₂ dba ₃ (10 mol%), DMSO, 40°C	quant.	1:1
6	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ 148 \end{array} \end{array} \\ (1.2 \ \ \ddot{A}q.) \end{array}$	80	1.7:1
7	Pinakolboran (1.2 Äq.)	66	1:1

Bei Zugabe des Palladiumkatalysators konnte kein Einfluss auf die Selektivität der Reaktion beobachtet werden (Eintrag 2). Auch die Anwesenheit von DMSO als Lösungsmittel und Erhöhung der Reaktionstemperatur auf 40°C zeigten keinen Einfluss auf die Diastereoselektivität, während die Ausbeuten deutlich reduziert wurden (Eintrag 3 und 4). Durch Zugabe eines Reaktionsgemischs bestehend aus Boronat **44**, Pd₂dba₃ und DMSO und zusätzliche Erhöhung der Temperatur auf 40°C konnte das Kupplungsprodukt in quantitativer Ausbeute isoliert werden, während die Selektivität unverändert blieb (Eintrag 5). Abschließend wurden der Crotylierungsreaktion Pinakolboran bzw. Boronat **148** zugefügt, da Bor-haltige Lewis-Säuren als mögliche Nebenprodukte während der Palladium-katalysierten Umpolungsreaktion gebildet werden könnten (Eintrag 6 und 7). Die Zugabe von Pinakolboran zeigte keinen Einfluss auf die Selektivität, während im Falle des Boronats 148 eine leichte Bevorzugung des 4,5-syn-Produkts beobachtet werden konnte. Letzteres könnte ein Indiz für die intermediäre Bildung des Acetat-substituierten Pinakolboronats A sein, welches als Lewis-Säure an der Produktbildung der Umpolungsreaktion beteiligt sein könnte (siehe Katalysecyclus, Schema 40). Da sich die Synthese des vermutlichen Intermediats jedoch nicht realisieren ließ (Tabelle 14), konnte ein möglicher Einfluss auf die Diastereoselektivität bisher untersucht werden. dass der detaillierte Reaktionsmechanismus nicht so der Umpolungsreaktion noch nicht vollständig geklärt werden konnte.

		он — Х —	\rightarrow AcO-B A	
Eintrag	Pinakolboran	Essigsäure	Lösungsmittel	Temperatur
		(100%ig)		[°C]
1	1.0 Äq.	1.0 Äq.	keines	RT
2	1.0 Äq.	1.0 Äq.	CH_2Cl_2	RT
3	1.0 Äq.	1.5 Äq.	CH_2Cl_2	RT bis 30

Tabelle 14: Reaktionsbedingungen zur Darstellung des Acetat-substituierten Boronats A.

Insgesamt betrachtet konnten jedoch Ergebnisse mit der entwickelten gute Ausbeuten Umpolungsmethodik hinsichtlich der und Selektivitäten unter substratkontrollierten Bedingungen erzielt werden und auch die Anwendbarkeit auf komplexere Substrate konnte erfolgreich demonstriert werden. Deshalb sollte die entwickelte Methode nachfolgend als Schlüsselreaktion in Synthese eines der seco-Progeldanamycinderivates 45 angewendet werden.

4.3 Synthese des seco-Progeldanamycinderivates 45

4.3.1 Retrosynthetischer Ansatz I

Da die zuvor entwickelte Palladium-katalysierte Umpolungsmethodik eine der Schlüsselreaktionen in der Synthese des an C-2, C-6, C-7 und C-8 vereinfachten *seco*-Progeldanamycinderivates **45** darstellen sollte, wurde als erster retrosynthetischer Hauptschnitt die Metathese zum Aufbau der Doppelbindung zwischen C-8 und C-9 gewählt, die zu dem gezeigten West- und Ostfragment führt (*Schema 41*).

Schema 41: Erste Retrosynthese des *seco*-Progeldanamycinderivates 45. Schlüsselschritte: Palladiumkatalysierte Umpolung und EvANS-Alkylierung.

Die Synthese des Ostfragments sollte ausgehend von (*rac*)-2-Hex-5-enyloxiran **153** erfolgen und, ebenso wie die Metathese, von SASCHA CEYLAN durchgeführt werden, so dass die eigentliche Aufgabe in der vorliegenden Arbeit die Synthese des Westfragments war.

Zum Aufbau der Stereozentren an C10 und C11 des Westfragments sollte die Umpolungsstrategie angewendet werden. Die chiralen Zentren des Aldeyhds **53**, welcher das Schlüsselintermediat der Synthese des Westfragments darstellt, sollten durch EVANS-Alkylierungen aufgebaut werden, was zu Benzylbromid **152** als Startbaustein führt. Dessen Synthese sowie die erste EVANS-Alkylierung wurden bereits von MARCO BRÜNJES entwickelt und optimiert und wurden in der vorliegenden Arbeit analog durchgeführt.^{68,78}

4.3.1.1 Synthetische Studien zur Darstellung des Aldehyds 53 durch EVANS-Alkylierung

53 sollte Die Synthese des Aldehyds ausgehend von 3-Hydroxy-5nitrobenzoesäuremethylester 155 beginnen, welcher von TOBIAS KNOBLOCH zur Verfügung gestellt wurde und in zwei Stufen, ausgehend von kommerziell erhältlichem wurde.79 3,5-Dinitrobenzoesäuremethylester 154. synthetisiert Die phenolische Hydroxygruppe des Methylesters 155 wurde zunächst MOM-geschützt und der Methylester 156 anschließend in guter Ausbeute durch Reduktion mit DIBAL-H in den entsprechenden Benzylalkohol 157 überführt (Schema 42).

⁷⁸ Brünjes, M. *Dissertation*, Leibniz Universität Hannover, **2007**.

⁷⁹ Knobloch, T. *Dissertation*, Leibniz Universität Hannover, **2010**.

Schema 42: Synthese des Aldehyds 53 durch Evans-Alkylierung.

Bedingungen: a) *i*. NaH (80%ig), THF, 0°C, *ii*. MOMCl, RT, 88%; b) DIBAL-H, THF, -78°C \rightarrow RT, 91%; c) Ph₃P, CBr₄, CH₂Cl₂, RT, 95%; d) NaI, Aceton, RT, 99%; e) Oxazolidinon (*S*)-164, LDA, THF, -78°C \rightarrow -35°C, 99% (*d*.*r*.> 50:1); f) LiBH₄, Et₂O, 0°C, quant.; g) Ph₃P, Imidazol, I₂, CH₂Cl₂, 71%; h) Oxazolidinon (*R*)-165, LDA, THF, -78°C \rightarrow RT.

Dieser wurde nachfolgend durch eine APPEL-Reaktion in das korrespondierende Benzylbromid **158** umgesetzt. Nach anschließender FINKELSTEIN-Reaktion konnte das so synthetisierte Benzyliodid **159** in der ersten, bereits etablierten, EVANS-Alkylierung umgesetzt werden, wobei das Oxazolidinon **160** in nahezu quantitativer Ausbeute als einziges Diastereomer isoliert werden konnte. Die darauf folgende reduktive Entfernung des Auxiliars mit Lithiumborhydrid ergab den Homobenzylalkohol **161** in quantitativer Ausbeute. Durch Umsetzung mit Triphenylphosphan, Imidazol und Iod konnte das entsprechende Homobenzyliodid **162** in guter Ausbeute erhalten werden. Daran anschließend sollte die zweite EVANS-Alkylierung mit dem Methoxy-substituierten Oxazolidinon (R)-165 erfolgen, welches ausgehend von Phenylalanin auf bekanntem Wege synthetisiert wurde (*Schema 43*).⁸⁰

Schema 43: Darstellung des (*R*)-Oxazolidinons **165**. Bedingungen: a) *i*. AcCl, MeOH, RT, 12 h, *ii*. NaHCO₃, H₂O; b) Chlorameisensäureethylester, RT, 4 h; c) NaBH₄, CaCl₂, THF/EtOH (1:2), RT, 12 h; d) K₂CO₃, 90°C, 50 mbar, 4 h, 79% über 4 Stufen; e) *i*. *n*-BuLi, THF, -78°C, *ii*. Chlorameisensäureethylester, 92%.

Die zweite EVANS-Alkylierung des Benzyliodids **162** mit (*R*)-Oxazolidinon **165** wurde zunächst unter den zuvor bereits etablierten Standardbedingungen durchgeführt, wobei kein Produkt erhalten wurde (siehe *Schema 42*). Deshalb wurden die Reaktionsbedingungen nachfolgend modifiziert. Da jedoch trotz einer Verlängerung der Reaktionszeit sowie Erhöhung der Reaktionstemperatur kein Produkt gebildet wurde, sondern stets etwa 90% des eingesetzten Benzyliodids **162** reisoliert werden konnten und aufgrund der Tatsache, dass EVANS-Alkylierungen zum einen zu den eher selten beschriebenen Reaktionen gehören und zum anderen die hier beschriebene Alkylierung mit dem Oxazolidinon **165** bisher nicht bekannt ist, wurde nachfolgend von einer EVANS-Alkylierung zum Aufbau des Stereozentrums an C-12 abgesehen.

4.3.2 Retrosynthetischer Ansatz II

Da der Aufbau des Stereozentrums an C-12 nicht durch eine EVANS-Alkylierung realisiert werden konnte, musste die Synthese des Schlüssel-Aldehyds **53** überdacht werden, während die übrigen zuvor entwickelten retrosynthetischen Schnitte bestehen bleiben sollten. Als alternative Reaktion zur Installation des chiralen Zentrums an C-12 wurde die asymmetrische Formylierung nach KIRSCHNING gewählt, durch die Methylester **168** erhalten werden sollte (*Schema 44*).

⁸⁰ a) Lewis, N.; McKillop, A.; Taylor, R. J. K.; Watson, R. J. *Synth. Commun.* **1995**, *25*, 561-568. b) Ku, T. W.; Kondrad, K. H.; Gleason, J. G. *J. Org. Chem.* **1989**, *54*, 3487-3491.

Schema 44: Alternative Synthese des Westfragments. Schlüsselschritte: Palladium-katalysierte Umpolung und asymmetrische Formylierung.

4.3.2.1 Synthetische Studien zur Darstellung des Aldehyds 53 durch asymmetrische Formylierung

In der von KIRSCHNING *et al.* entwickelten asymmetrischen Formylierung erfolgt zunächst die Homologisierung eines Aldehyds durch Umsetzung mit einem Phosphor-stabilisierten Formyl-Anion-Äquivalent, gefolgt von der enantioselektiven Einführung der Hydroxyfunktion an C-2 und gleichzeitigen Freisetzung der maskierten Formylgruppe an C-1.⁸¹

Als Formyl-Anion-Äquivalent wird dabei Dimethoxymethyldiphenylphosphanoxid verwendet, welches zunächst durch Behandlung mit LDA bei -110°C in das entsprechende Anion **171** überführt wird und anschließend mit dem entsprechenden Aldehyd **170** in einer WITTIG-HORNER-Reaktion in das stabile Phosphanoxid **172** umgesetzt wird (*Schema 45*).

⁸¹ Kirschning, A.; Dräger, G.; Jung, A. Angew. Chem. Int. Ed. Engl. 1997, 36, 253-255.

Schema 45: Mechanismus der asymmetrischen Formylierung nach KIRSCHNING.⁸¹

Die Einhaltung der Reaktionstemperatur von -110°C ist dabei essentiell, da das erzeugte, tiefrote Anion bei höheren Temperaturen nicht stabil ist. Das gebildete Phosphanoxid **172** wird nachfolgend durch Umsetzung mit KO^tBu in das entsprechende Ketenacetal **173** überführt, welches durch asymmetrische SHARPLESS-Dihydroxylierung in das Diol **174** umgesetzt werden kann. Letzteres zerfällt spontan unter Freisetzung des α -Hydroxymethylesters **168**. Durch anschließende Methylierung des sekundären Alkohols und Reduktion des Esters könnte so der Aldeyhd **53** erhalten werden.

Um den für die Formylierung benötigten Aldehyd **170** darzustellen, wurde der zuvor bereits synthetisierte Homobenzylalkohol **161** durch eine MITSUNOBU-Reaktion in das entsprechende Cyanid **175** überführt, welches nachfolgend reduktiv in den Aldehyd **170** umgesetzt werden sollte (*Tabelle 15*).

O ₂ N OMOM 161	OH a O ₂ N OMON OMON 175	$ \xrightarrow{i}_{i} CN \xrightarrow{b} $	02N OMOM 170
Eintrag	Reagenzien	Bedingungen	Ergebnis
1	DIBAL-H, THF	-78°C, 2 h	Spuren
2	DIBAL-H, Toluol	-60°C, 24 h	Spuren
3	DIBAL-H, Toluol	$-78^{\circ}C \rightarrow RT, 24 h$	Zersetzung
4	<i>i</i> . NaOH, EtOH/H ₂ O (1:1) <i>ii</i> . LiAlH ₄ , Et ₂ O	<i>i</i> . Rückfluss <i>ii</i> . 0°C → RT	Zersetzung

Tabelle 15: Darstellung des Aldehyds **170** aus Cyanid **175**. Bedingungen: a) Ph₃P, DEAD, Acetoncyanohydrin, Et₂O, 0°C \rightarrow RT, 84%; b) siehe Tabelle.

Da weder unter standardisierten Reaktionsbedingungen (Eintrag 1), noch unter modifizierten Reduktionsbedingungen (Eintrag 2 und 3) ein ausreichend großer Umsatz in den Aldehyd **170** oder den korrespondierenden Alkohol erzielt werden konnte, wurde nachfolgend versucht das Cyanid **175** zuerst in die entsprechende Säure und diese durch anschließende Reduktion mit Litiumaluminiumhydrid in den korrespondierenden Alkohol zu überführen (Eintrag 4).^{82,83} Da auch diese Umsetzung nicht gelang, sollte der Aldehyd **170** wie in *Schema 46* dargestellt synthetisiert werden.

Schema 46: Alternative Synthese des Aldehyds **170**. Bedingungen: a) PCC, CH₂Cl₂, RT, quant.; b) Ph₃PCH₂Br, *n*-BuLi, THF, 0°C, 51%; c) siehe *Tabelle 16*.

Der Homobenzylalkohol **161** konnte durch Oxidation mit PCC in quantitativer Ausbeute in den entsprechenden Aldehyd **176** überführt werden, während mit anderen Oxidationsmethoden wie DESS-MARTIN- und TPAP-Oxidation kein Produkt erhalten werden

⁸² Chu, W.; Xu, J.; Zhou, D.; Zhang, F.; Jones, L. A.; Wheeler, K. T.; Mach, R. H. *Bioorg. Med. Chem.* **2009**, *17*, 1222-1231.

⁸³ Stivala, C. E.; Zakarian, A. J. Am. Chem. Soc. **2008**, 130, 3774-3776.

konnte. Durch anschließende WITTIG-Reaktion konnte das Alken **177** in mäßiger Ausbeute isoliert werden.⁸⁴ Dieses sollte nachfolgend entweder durch Hydroborierung-Oxidation oder Epoxidierung-Ringöffnung in den Alkohol **178** überführt werden (*Tabelle 16*).

Eintrag	Bedingungen	Ergebnis	
1	9-BBN, THF, $0^{\circ}C \rightarrow RT$, dann	Keine Reaktion	
1	H ₂ O ₂ /NaOH	Kenne Keaktion	
2	BH ₃ *SMe ₂ , THF, 0°C, dann	Zaraatzung	
Z	H ₂ O ₂ /NaOH	Zeisetzung	
3	<i>m</i> -CPBA, CH ₂ Cl ₂ , $0^{\circ}C \rightarrow RT$	Zersetzung	

Tabelle 16: Überführung des Alkens 177 in Alkohol 178.

Da weder durch Hydroborierung-Oxidation noch durch Epoxidierung und nachfolgender Ringöffnung der gewünschte Alkohol **178** erhalten werden konnte, wurde die Synthese erneut modifiziert.

Dazu sollte anstelle der zuvor durchgeführten Methylen-WITTIG-Reaktion, eine Olefinierung zu dem Enolether **179** erfolgen, welcher anschließend durch Behandlung mit Säure den Aldehyd **170** freisetzen sollte (*Schema 47*).⁸⁵

Schema 47: Modifizierte Synthese des Aldeyhds 170. Bedingungen: a) PCC, CH₂Cl₂, RT, quant.; b) Ph₃PCHOMeCl, KO^{*t*}Bu, THF, 0°C, 7%; c) 1 M HCl, THF, 60°C.

Die Umsetzung des Aldehyds **176** in den Enolether **179** konnte zwar mit verhältnismäßig niedriger Ausbeute realisiert werden, jedoch konnte nach der Behandlung von letzterem mit 1 M Salzsäure kein Produkt isoliert werden, sondern nur Zersetzung beobachtet werden.

⁸⁴ Das, S.; Abraham, S.; Sinha, S. C. Org. Lett. 2007, 9, 2273-2276.

⁸⁵ Prakesch, M.; Bijian, K.; Campagna-Slater, V.; Quevillon, S.; Joseph, R.; Wie, C.-Q.; Sesmilo, E.; Reayi, A.; Poondra, R. R.; Barnes, M. L.; Leek, D. M.; Xu, B.; Lougheed, C.; Schapira, M.; Alaoui-Jamali, M.; Arya, P. *Bioorg. Med. Chem.* **2008**, *16*, 9596-9602.

Da auf keiner der beschriebenen Syntheserouten der benötigte Aldehyd **170** ausgehend von Homobenzylalkohol **161** erhalten werden konnte, müsste die gesamte Darstellung des Aldehyds **170** überdacht und eine neue Synthesestrategie entwickelt werden. Zuvor sollte jedoch sichergestellt werden, dass das Substrat an sich für die asymmetrische Formylierung geeignet ist, da in den bisher bekannten Beispielen kein vergleichbares Substrat verwendet wurde. So wurde nachfolgend der Homobenzylaldehyd **176** unter den Formylierungsbedingungen umgesetzt (*Schema 48*).

Schema 48: Asymmetrische Formylierung von Homobenzylaldehyd 176. Bedingungen: a) Dimethoxymethyldiphenylphosphanoxid, 2 M LDA, THF, -110°C; b) *i*. KO^tBu, THF, 0°C, *ii*. α -AD-Mix, *t*-BuOH/H₂O (1:1), 0°C.

Nach beendeter Reaktion konnten jedoch nur Spuren des Methylesters **180** massenspektroskopisch nachgewiesen werden. Aufgrund dieses Ergebnisses und der Tatsache, dass die prinzipielle Durchführbarkeit der Methode am Beispiel von Benzaldehyd erfolgreich überprüft werden konnte, wurde nachfolgend von der asymmetrischen Formylierung als Schlüsselreaktion abgesehen und die Retrosynthese des Aldehyds **53** erneut überdacht.

4.3.3 Retrosynthetischer Ansatz III

Da die asymmetrische Formylierung in diesem Fall nicht angewendet werden konnte, sollte das Stereozentrum an C-12 des Aldehyds **53** alternativ durch eine Kombination aus asymmetrischer Epoxidierung und regioselektiver Ringöffnung aufgebaut werden (*Schema 49*).

Schema49:DritterretrosynthetischerAnsatzzurSynthesevonAldehyd53.Schlüsselschritte:SHARPLESS-Epoxidierung und regioselektive Ringöffnung.

Des Weiteren sollten in diesem Ansatz die Schutzgruppen verändert werden, um beispielsweise einen ungünstigen Einfluss der Nitrogruppe auszuschließen.

4.3.3.1 Synthetische Studien zur Darstellung des Aldehyds 53 durch SHARPLESS-Epoxidierung

Da die Nitrogruppe in dieser Synthese durch eine Aminogruppe ersetzt werden sollte, musste zunächst das entsprechende Benzylbromid **186** dargestellt werden. Dieses wurde, analog der bereits etablierten Synthese von MARCO BRÜNJES, ausgehend von 3,5-Dihydroxybenzoesäure in sechs Stufen synthetisiert und nachfolgend durch FINKELSTEIN-Reaktion in das entsprechende Benzyliodid **187** überführt, wobei letzteres in einer Gesamtausbeute von 65% über sieben Stufen erhalten werden konnte (*Schema 50*).⁷⁸

Schema 50: Synthese des Benzyliodids 187. Bedingungen: a) konz. NH₃, NH₄Cl, 180°C, 40 h; b) Acetylchlorid, MeOH, 65°C, 36 h, 79% über 2 Stufen; c) Boc₂O, NaHCO₃/THF, RT, quant.; d) TBDPSCl, Imidazol, 4-DMAP, CH₂Cl₂, 30°C, 12 h, 88%; e) DIBAL-H, THF, -78°C \rightarrow RT, 98%; f) PPh₃, CBr₄, CH₂Cl₂, RT, 30 min., 99%; g) NaI, Aceton, RT, 15 min., 97%.

Das so synthetisierte Benzyliodid **187** wurde durch EVANS-Alkylierung mit dem (*S*)-Oxazolidinon **164** in reproduzierbarer Ausbeute in das Alkylierungsprodukt **188** überführt. Die anschließende reduktive Entfernung des Auxiliars ergab den Homobenzylalkohol **189** (*Schema 51*).

Schema 51: Darstellung des Homobenzylalkohols 189. Bedingungen: a) (S)-Oxazolidinon 164, 2 M LDA, THF, -78°C \rightarrow -35°C, 12 h, 52%; b) LiBH₄, Et₂O, H₂O, 0°C, 90 min., 72%.

Homobenzylalkohol **189** konnte durch DESS-MARTIN-Oxidation in quantitativer Ausbeute in den entsprechenden Aldehyd überführt werden, welcher sofort in einer WITTIG-Reaktion in den α,β -ungesättigten Ester **190** umgesetzt wurde, wobei ausschließlich das (*E*)-Isomer in sehr guter Ausbeute erhalten wurde (*Schema 52*).

Schema 52: Synthese des 1,2-Diols 193 durch SHARPLESS-Epoxidierung und regioselektive Ringöffnung. Bedingungen: a) DMP, NaHCO₃, CH₂Cl₂, 0°C \rightarrow RT, quant.; b) Ph₃PCHCO₂Et, CHCl₃, 50°C, 12 h, quant. (*E:Z* > 50:1); c) DIBAL-H, THF, -78°C, 75%; d) D-(-)-DET, *t*-BuOOH, Ti(O^{*i*}Pr)₄, CH₂Cl₂, -20°C, 2 d, 94% (*d.r.* > 50:1); e) DIBAL-H, Et₂O, 0°C, 3 h, 86%; f) TBSOTf, 2,6-Lutidin, CH₂Cl₂, 0°C, 20 min., 76%.

Ester **190** wurde durch Reduktion mit DIBAL-H in den korrespondierenden Allylalkohol **191** umgesetzt, welcher anschließend mittels SHARPLESS-Epoxidierung in das Epoxid **192** überführt wurde, wobei ausschließlich das gezeigte Diastereomer erhalten wurde. Durch nachfolgende regioselektive Ringöffnung mit DIBAL-H konnte das Diol **193** in guter Ausbeute isoliert werden. Nach TBS-Schützung der primären Alkoholfunktion wurde Alkohol **194** in guter Ausbeute erhalten, wobei unter den angegebenen Bedingungen nur etwa 5% des disilylierten Nebenprodukts isoliert werden konnten.

Zur Überprüfung der absoluten Konfiguration wurde der sekundäre Alkohol **194** in guter Ausbeute in die entsprechenden MOSHER-Ester überführt und NMR-spektroskopisch untersucht (*Schema 53*).⁷⁴

Schema 53: Darstellung der MOSHER-Ester (*S*)-195 und (*R*)-195. Bedingungen: a) (*R*)-Mosherchlorid, 4-DMAP, NEt₃, CH₂Cl₂, RT, 95%; b) (*S*)-Mosherchlorid, 4-DMAP, NEt₃, CH₂Cl₂, RT, quant..

Durch Analyse der ¹H-NMR-Daten konnte die gezeigte (*S*)-Konfiguration des sekundären Alkohols eindeutig bewiesen werden (*Tabelle 17*).

	(S)-Mosherester 195	(R)-Mosherester 195	$\Delta \delta^{S,R} = (\delta_{\rm S} - \delta_{\rm R})$
	δ [ppm]	δ [ppm]	
H-1	3.62	3.52	+0.09
H-2	5.21	5.16	+0.05
H-4	1.39	1.60	-0.21
H-5a	2.18	2.31	-0.13

Tabelle 17: Ausgewählte ¹H-NMR-Daten der MOSHER-Ester (S)-195 und (R)-195.

Nach den erfolgreich durchgeführten Schlüsselreaktionen, der SHARPLESS-Epoxidierung und regioselektiven Ringöffnung, zum Aufbau des im Aldehyd **53** enthaltenen Stereozentrums an C-12, sollte der sekundäre Alkohol nachfolgend methyliert werden (*Tabelle 18*).

BocHN BocHN OTBS OTBS ŌMe ÕΗ **ÓTBDPS ÓTBDPS** 194 200 Temperatur Eintrag Reagenzien Ausbeute $[^{\circ}C]$ 1 NaH, THF, MeI 0 unsauber 2 NaH, THF, MeI $0 \rightarrow 40$ unsauber 3 NaH, DMF, MeI $0 \rightarrow 40$ kein Umsatz Ag₂O, MeI, THF RT 4 kein Umsatz 5 NaH, THF, Me₂SO₄ $0 \rightarrow 40$ geringer Umsatz Me₃OBF₄, Protonenschwamm, 63%^a 6 RT CH_2Cl_2

Tabelle 18: Ergebnisse zur Methylierung des sekundären Alkohols an C-12.

^a Nach Entschützung und HPLC-Reinigung.

Unter Verwendung von Natriumhydrid und Methyliodid fand keine saubere Reaktion statt, sondern es konnte die Bildung zahlreicher Nebenprodukte beobachtet werden (Eintrag 1 und 2). Bei Verwendung von DMF anstelle von THF als Lösungsmittel konnte keine Reaktion beobachtet werden, ebenso wie bei der Umsetzung mit Silber(I)oxid (Eintrag 3 und 4). Mit Dimethylsulfat als Methylierungsreagenz konnte zumindest ein geringer, jedoch nicht zufriedenstellender Umsatz erzielt werden (Eintrag 5). Die Methylierung gelang schließlich unter Verwendung von Trimethyloxoniumtetrafluoroborat in Kombination mit Protonenschwamm, wobei als Nebenprodukt das N,O-methylierte Produkt isoliert werden

konnte (Eintrag 6).⁸⁶ Da die Polarität von letzterem in etwa der des gewünschten Produkts entsprach, konnte das Nebenprodukt erst nach der Freisetzung des primären Alkohols durch präparative HPLC abgetrennt werden, so dass Methylether **201** in einer Ausbeute von 63% über zwei Stufen erhalten wurde.

Die sich an die Methylierung anschließende Entschützung des primären Silylethers gestaltete sich zunächst problematisch (*Tabelle 19*).

BocHN OTBDPS 200 OTBDPS		BocHN OTE 201	OH OMe BDPS
Eintrag	Reagenzien	Temperatur [°C]	Ausbeute [%]
1	HCl/MeOH (3 M)	RT	Zersetzung
2	HF*Pyridin, THF	0	Zersetzung
3	TBAF, THF	0	Zersetzung
4	ZnBr ₂ /H ₂ O, CH ₂ Cl ₂	40-50	Zersetzung
5	LiBF ₄ , CH ₃ CN/CH ₂ Cl ₂ (1:1)	RT	quant.

Tabelle 19: Entschützung des primären Silylethers 200.

Die selektive Entfernung des primären Silylethers in Gegenwart der phenolischen TBDPS-Gruppe konnte unter standardisierten Reaktionsbedingungen weder unter sauren Bedingungen noch fluoridinduziert realisiert werden (Eintrag 1-3). Auch die Verwendung von Zinkbromid, welches als selektives Entschützungsreagenz beschrieben ist, erbrachte kein Ergebnis (Eintrag 4).⁸⁷ Erst unter Einsatz von Lithiumtetrafluoroborat⁸⁸ konnte der primäre Alkohol erfolgreich, mit sehr guter Ausbeute, freigesetzt werden (Eintrag 5).

Zur Vollendung des Westfragments musste der primäre Alkohol **201** nachfolgend noch oxidiert und unter den Palladium-katalysierten Kupplungsbedingungen mit Acetat **54** umgesetzt werden. Die Überführung des Alkohols **201** in den entsprechenden Aldehyd **53** gelang mittels DESS-MARTIN-Oxidation, wobei der Aldehyd **53** in sehr guter Ausbeute erhalten werden konnte und nachfolgend direkt unter den Umpolungsbedingungen umgesetzt wurde (*Schema 54*).

⁸⁶ Vintonyak, V. V.; Maier, M. E. Org. Lett. 2008, 10, 1239-1242.

⁸⁷ Crouch, R. D.; Polizzi, J. M.; Cleiman, R. A.; Yi, J.; Romany, C. A. Tetrahedron Lett. 2002, 43, 7151-7153.

⁸⁸ Ferraboschi, P.; Santaniello, E.; Tingoli, M.; Aragozzini, F.; Molinari, F. *Tetrahedron Asymm.* **1993**, *4*, 1931-1940.

Schema 54: Vollendung des Westfragments. Bedingungen: a) DMP, NaHCO₃, CH₂Cl₂, 0°C \rightarrow RT, quant.; b) 10 mol% Pd₂dba₃, 1.2 Äq. Allylacetat 54, 1.2 Äq. Boronat 44, 1.0 Äq. Aldeyhd 53, DMSO, 40°C, 20 h, 50% (*d.r.* ~ 1.4:1).

Auch die Umsetzung des Aldehyds **53** unter den Palladium-katalysierten Umpolungsbedingungen konnte erfolgreich durchgeführt werden, wobei das Westfragment in einer Ausbeute von 50% und einer Selektivität von 1.4:1 erhalten wurde. Sowohl die erzielte Ausbeute als auch die Selektivität spiegeln die bereits zuvor, bei der Umpolung komplexer Substrate, ermittelten Ergebnisse wider (siehe *Tabelle 10*).

Aufgrund der verhältnismäßig niedrigen Selektivität der Kupplungsreaktion, sollte nachfolgend überprüft werden, ob die α -Methoxygruppe des Aldehyds **53** möglicherweise zu klein ist, um die Diastereoselektivität der Reaktion ausreichend beeinflussen zu können. Deshalb wurde das bei der Silylierung des 1,2-Diols **193** erhaltene disilylierte Nebenprodukt **202** nachfolgend mit PPTS entschützt, der so erhaltenen primäre Alkohol **203** oxidiert und unter den Palladium-katalysierten Umpolungsbedingungen mit Acetat **54** umgesetzt (*Schema 55*).

Schema 55: Synthese des TBS-geschützten Westfragments. Bedingungen: a) PPTS, MeOH, RT, 35%; b) DMP, NaHCO₃, CH₂Cl₂, 0°C \rightarrow RT, quant.; c) 10 mol% Pd₂dba₃, 1.2 Äq. Allylacetat 54, 1.2 Äq. Boronat 44, 1.0 Äq. Aldeyhd 204, DMSO, 40°C, 20 h, 46% (*d.r.*~ 1:1).

Das TBS-geschützte Westfragment konnte in vergleichbarer Ausbeute (46%) und ähnlicher Selektivität (1:1) isoliert werden, wobei in diesem Fall keines der beiden Diastereomere mit sichtbarer Bevorzugung gebildet wurde. Insofern scheint die Ursache, der bei der Darstellung des Westfragments erzielten Selektivität nicht in der Substitution des α -Substituenten zu liegen, da zuvor mit TBS-geschütztem Milchsäurealdehyd **108** gute Ergebnisse erzielt werden konnten (siehe *Tabelle 9*). Möglicherweise bedingt der aromatische Substituent in Kombination mit der verhältnismäßig langen Alkylkette die Probleme bei der Palladiumkatalysierten Umpolung, da sich auch schon die Verwendung des aromatischen Acetats **126** als Allylkomponente in der Kupplungsreaktion als schwierig erwies (siehe *Tabelle 10*). Insgesamt konnte das Westfragment jedoch erfolgreich, unter Anwendung der entwickelten

Umpolungsmethodik, in 19 Stufen und einer Gesamtausbeute von 3.5% synthetisiert werden.

4.3.4 Synthese des Ostfragments und Verknüpfung der beiden Fragmente⁶²

Die Synthese des Ostfragments sowie die Metathese wurden, wie bereits erwähnt, von SASCHA CEYLAN durchgeführt.

In der ursprünglich geplanten Synthese (siehe *Schema 41*) sollte das Ostfragment vor der Verknüpfung mit dem Westfragment bereits die SNAc-Ester-Funktion enthalten. Aufgrund der hohen Reaktivität dieser Estergruppe wurde die ursprüngliche Syntheseroute jedoch so modifiziert, dass die SNAc-Ester-Funktion erst nach der Metathese und nachfolgender Entschützung des aromatischen Substituenten mittels einer WITTIG-Reaktion eingeführt werden sollte, um mögliche Nebenreaktionen zu vermeiden (*Schema 56*).

Schema 56: Modifizierte Syntheseroute zur Darstellung des vereinfachten seco-Progeldanamycinderivates 45.

Das modifizierte Ostfragment **205** konnte in drei Stufen ausgehend von (*rac*)-Oxiran **153** in einer Gesamtausbeute von 69% erhalten werden (*Schema 57*).^{89,90}

Schema 57: Darstellung des modifizierten Ostfragments **205**. Bedingungen: a) HIO₄, H₂O, 0°C; b) NaBH₄, EtOH, 0°C, 73% über 2 Stufen; c) Acetylchlorid, Pyridin, CH₂Cl₂, 0°C, 95%.

Nach Darstellung des Acetats **205**, wurde die Metathese zur Verknüpfung der beiden Hauptfragmente untersucht, welche nach Optimierung der Reaktionsbedingungen unter Verwendung des GRUBBS-HOYVEDA-Katalysators II erfolgreich durchgeführt werden konnte, wobei ausschließlich das (*E*)-konfigurierte Kupplungsprodukt **206** in zufrieden stellender Ausbeute erhalten wurde (*Schema 58*).

Schema 58: a) GRUBBS-HOYVEDA II, DCE, 40°C, 24 h, 64% (E:Z > 50:1); b) NaBH₄, EtOH, 15 h, quantitativer Umsatz.

Auch die nachfolgende Freisetzung des primären Alkohols durch Behandlung mit Natriumborhydrid konnte erfolgreich durchgeführt werden, so dass die Synthese des *seco*-Progeldanamycinderivates **45** in absehbarer Zeit abgeschlossen sein sollte.

⁸⁹ Taylor, R. E.; Galvin, G. M.; Hilfiker, K. A.; Chen, Y. J. Org. Chem. **1998**, 63, 9580-9583.

⁹⁰ Die analytischen Daten aller in diesem Kapitel gezeigten Verbindungen werden in der Dissertation von SASCHA CEYLAN veröffentlicht.

5 Zusammenfassung und Ausblick

5.1 Zusammenfassung der Ergebnisse

Im ersten Teil dieser Arbeit wurden die von KLAAS MENNECKE⁴⁰ begonnenen Studien zur Palladium-katalysierten Umpolung mit Diethylzink abgeschlossen. Dabei wurde versucht, den Einfluss chiraler Allylsubstrate auf die Stereoselektivität der Umpolungsreaktion durch die Einführung eines Palladium-koordinierenden Liganden zu erhöhen. Dazu wurde zunächst ein Phosphan-haltiges Benzylhalogenid synthetisiert, welches nachfolgend durch Veretherung in das chirale Allylsubstrat 74 eingeführt werden sollte (*Schema 59*, A). Da dies nicht realisiert werden konnte, wurde zunächst *o*-Brombenzylbromid an das Allylsubstrat 74 angebunden, welches anschließend in das entsprechende Phosphan 92 bzw. Amin 93 überführt werden sollte (*Schema 59*, B).

Schema 59: Darstellung der chiralen Allylsubstrate für die Umpolungsreaktion mit Diethylzink.

Aufgrund der Tatsache, dass das Arylbromid nicht modifiziert werden konnte, wurde abschließend, in Anlehnung an die Arbeiten von BREIT *et al.*, *o*-Diphenylphosphinobenzoesäure in den Allylalkohol **74** eingeführt (*Schema 59*, **C**).⁴⁴ Nach Überführung des Silylethers in das entsprechende Carbonat **97**, wurde dieses unter den

standardisierten Umpolungsbedingungen umgesetzt. Es konnte jedoch nur die Zersetzung des Allylsubstrates **97** beobachtet werden. Dies ist vermutlich auf die Tatsache zurückzuführen, dass sowohl das Carbonat als auch der Benzylester in dieser Reaktion als Fluchtgruppe fungieren können, so dass weder das Edukt noch Nebenprodukte isoliert werden konnten. Deshalb konnte ein möglicher zusätzlicher Einfluss eines Metall-koordinierenden Liganden auf die Stereoselektivität der Umpolungsreaktion mit Diethylzink nicht näher untersucht werden. Da jedoch auch in den zuvor durchgeführten Studien nur mäßige Ausbeuten und Selektivitäten erzielt werden konnten und vor allem aufgrund der durch die Verwendung des Diethylzinks bedingten harschen Reaktionsbedingungen, sollte im zweiten Teil dieser Arbeit eine mildere Umpolungsmethode entwickelt werden.

Anlehnend an die Arbeiten von SAZBÓ *et al.* wurde als Umpolungsreagenz Bis(pinakol)boronat **44** gewählt und zunächst die Reaktionsbedingungen optimiert.^{20,62} Anschließend wurde die Umpolungsreaktion unter reagenzkontrollierten Bedingungen untersucht, wobei keine zufrieden stellenden Ergebnisse hinsichtlich der Stereoselektivitäten erhalten wurden. Deshalb wurde nachfolgend, analog der von HOFFMANN und ROUSH entwickelten Crotylierungen, der Einfluss α -chiraler Aldehyde auf die Stereoselektivität der Umpolungsreaktion untersucht. Unter diesen substratkontrollierten Bedingungen konnten gute Ergebnisse hinsichtlich der Ausbeuten (60-80%) sowie sehr gute Diastereoselektivitäten (*d.r.* 5:1 bis >50:1) erzielt werden, wobei in allen Fällen ausschließlich das verzweigte Regioisomer isoliert werden konnte und das 4,5-*syn*-Produkt stets bevorzugt gebildet wurde (*Schema* 60).

Schema 60: Umpolung mit Bis(pinakol)boronat 44 unter substratkontrollierten Bedingungen.

Die Ursache für die Bevorzugung des 4,5-*syn*-Produkts konnte trotz der durchgeführten Mechanismusstudien nicht abschließend geklärt werden, jedoch konnte die Anwendbarkeit

dieser Umpolungsstrategie auf komplexe Substrate an verschiedenen Beispielen demonstriert werden.

Im dritten Teil der vorliegenden Dissertation sollte die Totalsynthese des offenkettigen, vereinfachten Geldanamycinderivates **45** bearbeitet werden, wobei die Aufgabe im Wesentlichen in der Synthese des Westfragments mit Hilfe der zuvor entwickelten Umpolungsmethode bestand. Auch dieser Teil der Arbeit konnte erfolgreich abgeschlossen werden, da das Westfragment in 19 Stufen, ausgehend von 3,5-Dihydroxybenzoesäure **181**, und einer Gesamausbeute von 3.5% synthetisiert werden konnte (*Schema 61*).

Schema 61: Synthese des seco-Progeldanamycinderivates 45.

Insgesamt betrachtet konnte unter Verwendung von Bis(pinakol)boronat 44 eine milde Umpolungsmethodik entwickelt werden, welche durch die in situ Generierung der Allylboronate zum einen die Synthese komplexerer Allylboronate ermöglicht und zum anderen zugleich die Isolierung dieser labilen Intermediate umgeht. Des Weiteren konnten unter substratkontrollierten Bedingungen sehr hohe Regio- und Diastereoselektivitäten erzielt werden, wobei sowohl einfache als auch komplexere Substrate gute Ergebnisse lieferten. Abschließend konnte die Anwendbarkeit der entwickelten Methodik in der Darstellung komplexer Naturstoffe **Beispiel** der Synthese des Westfragments am des seco-Progeldanamycinderivates 45 erfolgreich demonstriert werden.

5.2 Ausblick

Neben der Aufklärung des detaillierten Reaktionsmechanismus der Umpolungsreaktion mit Bis(pinakol)boronat **44** könnten ergänzende Studien bezüglich der Verwendung komplexer Allylsubstrate durchgeführt werden. Prinzipiell konnte in dieser Arbeit am Beispiel des Carbonats **64** gezeigt werden, dass die Umsetzung anspruchsvollerer Allylsubstrate möglich ist, so dass auch der Einfluss chiraler Allylsubstrate auf die Diastereoselektivität der Reaktion mit Hilfe verschiedener Allylbausteine untersucht werden könnte (*Schema 62*).

Schema 62: Substratkontrolle durch Verwendung chiraler Allylsubstrate.

Des Weiteren könnte, insbesondere bei Verwendung komplexerer Allylsubstrate, der Einfluss der Fluchtgruppe auf die Ausbeute und den Verlauf der Reaktion untersucht werden. Abschließend könnten dann verschiedene komplexe Allylsubstrate mit sterisch anspruchsvolleren, α -chiralen Aldehyden umgesetzt werden. Im Falle einer erfolgreichen Umsetzung könnte die entwickelte Umpolungsreaktion zukünftig nicht nur prinzipiell auf die Umsetzung eines komplexeren Aldehyds bzw. Allylsubstrates mit einem einfachen Aldehyd bzw. Allylsubstrat angewendet werden, sondern auch die Verknüpfung fortgeschrittener Syntheseintermediate ermöglichen.

Da die Synthese des seco-Progeldanamycinderivates 45 bei Beendigung dieser Arbeit noch nicht vollständig abgeschlossen war, konnten die geplanten mutasynthetischen Verfütterungsexperimente noch nicht durchgeführt werden. Hinsichtlich der Anzahl der noch zu verbleibenden Modifizierungen, sollte die Synthese des Derivates 45 jedoch in Kürze beendet sein, so dass die Verfütterung an den genetisch veränderten Geldanamycinproduzenten (Streptomyces hygroscopicus K390-61-1) bald durchgeführt werden könnte. Ziel dieses Experiments wäre vor allem die Überprüfung, ob prinzipiell auch fortgeschrittene Mutasynthone eingesetzt werden können, da im Falle des Geldanamycins bisher nur kleine, aromatische Moleküle verfüttert wurden, jedoch grundsätzlich an anderen Beispielen von Ansamycin-Antibiotika gezeigt werden konnte, dass die Verwendung komplexerer Mutasynthone möglich ist.^{91,36} Des Weiteren würde eine erfolgreiche Verfütterung zur Erzeugung eines neuen Geldanamycinderivates führen, welches hinsichtlich seiner biologischen Aktivität untersucht werden könnte (Schema 63).

⁹¹ Ward, S. L.; Desai, R. P.; Hu, Z.; Gramajo, H.; Katz, L. J. Ind. Microbiol. Biotechnol. 2007, 34, 9-15.

Schema 63: Verfütterung des offenkettigen Geldanamycinderivates 45 als fortgeschrittenes Mutasynthon und mögliche Mutasyntheseprodukte.

6 Experimenteller Teil

6.1 Allgemeine Hinweise

Gerätschaften

Alle Reaktionen mit luft- oder feuchtigkeitsempfindlichen Reagenzien wurden unter Inertgasatmosphäre (Stickstoff oder Argon) durchgeführt. Die entsprechenden Glasgeräte wurden vor der Verwendung im Vakuum ausgeheizt, Spritzen und Kanülen wurden bei 90 °C getrocknet und mit Inertgas gespült.

Lösungsmittel und Reagenzien

Lösungsmittel für den Einsatz in feuchtigkeitsempfindlichen Reaktionen wurden nach Standardverfahren⁹² getrocknet und unter Stickstoffatmosphäre aufbewahrt bzw. frisch destilliert eingesetzt: Diethylether (Et₂O) und Tetrahydrofuran (THF) wurden über Natriumdraht refluxiert mit Benzophenon als Indikator, Dichlormethan (CH₂Cl₂) wurde über Calciumhydrid refluxiert. Alle weiteren absoluten Lösungsmittel wurden käuflich erworben (FLUKA, ACROS). Bei sauerstoffsensiblen Reaktionen wurde das Lösungsmittel vor Gebrauch durch Spülen mit Inertgas oder durch wiederholtes Ausfrieren im Vakuum (freeze-pump-thaw degassing) entgast. Alle Reagenzien, deren Herstellung nicht angegeben ist, stammen von den Firmen ACROS, ALDRICH, FLUKA und ABCR. Bei wässrigen Lösungen handelt es sich um gesättigte Lösungen, sofern nicht anders angegeben.

Säulenchromatographie

Säulenchromatographie wurde mit Kieselgel der Firmen FLUKA (Korngröße 40-63 μ m), MACHERY-NAGEL (Korngröße 40-63 μ m) oder PROSEP (Korngröße 20-45 μ m) bei leichtem Überdruck durchgeführt. Die eingesetzten Lösungsmittel wurden einfach destilliert, das Eluentenverhältnis ist in den entsprechenden Versuchsvorschriften angegeben.

Dünnschichtchromatographie

Für die Dünnschichtchromatographie wurden mit Kieselgel beschichtete Aluminiumfolien vom Typ 60 F_{254} der Firma MERCK verwendet. Die Indikation erfolgte durch

⁹² W. L. F. Armarego, D. D. Perrin, *Purification of Laboratory Chemicals*, 4th Ed., Butterworth and Heinemann, Oxford **1996**.

Fluoreszenzdetektion ($\lambda = 254$ nm) und durch unterschiedliche Färbereagenzien⁹³ (Anisaldehyd-, Kaliumpermanganat- oder Ninhydrin-Tauchreagenz) mit anschließender Wärmebehandlung.

HPLC

Analytische HPLC wurde an einer Hewlett Packard 1050 series HPLC-Anlage mit UV-Detektion ($\lambda = 248$ nm) durchgeführt. Als stationäre Phase wurde eine LiChrospher 100 RP-18 (5 µm) Säule der Firma MERCK benutzt.

Präparative HPLC wurde an einer MERCK HITACHI LaChrome HPLC-Anlage (Pumpe L-7150, Interface D-7000, Diode Array Detector L-7450) durchgeführt. Die verwendeten organischen Lösungsmittel wurden von der Firma ACROS bezogen und vor Gebrauch im Ultraschallbad entgast. Wasser wurde zunächst über eine Filterkartusche gereinigt und anschließend doppelt destilliert. Die verwendeten Säulen und Betriebsbedingungen sind in den entsprechenden Versuchsvorschriften angegeben.

NMR-Spektroskopie

Die Aufnahme von ¹H-NMR Spektren erfolgte mit den Geräten DPX-200 (200 MHz), AVS-400, DPX-400 (400 MHz) und DRX-500 (500 MHz) der Firma BRUKER bei Raumtemperatur. Das verwendete Solvens ist jeweils angegeben, kalibriert wurde auf das durch den Restprotonengehalt des Lösungsmittels verursachte Signal.⁹⁴ Die Angabe der chemischen Verschiebung δ erfolgt in ppm, die der Kopplungskonstanten *J* in Hertz (Hz), die Multiplizitäten werden wie folgt abgekürzt: s = Singulett, d = Dublett, t = Triplett, q = Quartett, qu = Quintett, se = Sextett, sep = Septett, m = Multiplett. Vor der Multiplizitätsangabe stehende Abkürzungen geben an: d = doppelt, b = breites Signal.

¹³C-NMR Spektren wurden mit den Geräten AVS-400, DPX-400 (100 MHz) und DRX-500 (125 MHz) der Firma BRUKER aufgenommen. Das verwendete Solvens ist jeweils angegeben, kalibriert wurde auf das vom Lösungsmittel verursachte Signal.⁹⁴ Die Angabe der chemischen Verschiebung δ erfolgt in ppm, die angegebenen Multiplizitäten entsprechen denen entkoppelter Spektren: p = primär, s = sekundär, t = tertiär, q = quartär. Die Anzahl der an den jeweiligen Kernen α -ständigen Wasserstoffatome wurde nach der DEPT 90 / DEPT 135 Methode bestimmt.

⁹³ J. Leonard, B. Lygo, G. Procter, *Praxis der organischen Chemie*, Hrsg. der dt. Übersetzung G. Dyker, 2. Aufl., VCH-Verlag, Weinheim **1996**, 144.

⁹⁴ H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. **1997**, 62, 7512-7515.

Sofern nötig wurden für eine vollständige Interpretation ¹H-¹H-Korrelationsspektren (COSY), ¹H-¹³C-Korrelationsspektren (HMQC, HMBC, HSQC) oder nOe-Experimente durchgeführt. Bei den Kopplungen mit anderen NMR-aktiven Kernen (³¹P) handelt es sich ausschließlich um Dubletts, es wird lediglich die Kopplungskonstante J_{P-C} (in Hz) angegeben.

Massenspektrometrie

Hochaufgelöste Massenspektren (HRMS) wurden mit einem MICROMASS LCT mit Lock-Spray-Einheit gemessen. Die Injektion erfolgte im Loop-Modus in einer HPLC-Anlage der Firma WATERS (Alliance 2695). Alternativ wurden die Messungen an einer Acquity-UPLC (WATERS) Anlage gekoppelt mit einem Q-Tof Premier Massenspektrometer (WATERS) im Lock-Spray-Modus gemessen. Die Ionisierung erfolgte durch Elektrospray-Ionisation (ESI) oder durch chemische Ionisation bei Atmosphärendruck (APCI). MS/MS-Fragmentierungsexperimente wurden mit Argon als Kollisionsgas bei einer Kollisionsenergie von 15 bis 35 eV durchgeführt. Angegeben sind berechnete und gefundene Masse.

Des Weiteren wurden einige Massenspektren (EI) mit einem FINNIGAN MAT 312 bei einem Ionisierungspotential von 70 eV aufgenommen.

Drehwerte

Spezifische optische Rotationen [α] wurden bei 20°C mit einem Polarimeter Typ 341 der Firma PERKIN-ELMER in einer 10 cm Quarzglasküvette bei $\lambda = 589.3$ nm (Natrium-D-Linie) gemessen. Die Angabe der Drehwerte erfolgt in 10⁻¹ ° cm² g⁻¹, wobei die Konzentration c definitionsgemäß in 10 mg mL⁻¹ angegeben ist.

Schmelzpunkte

Unkorrigiert; die Schmelzpunktbestimmung erfolgte an einem Gerät vom Typ IA-9200 der Firma ELECTROTHERMAL bzw. vom Typ OptiMelt der Firma SRS.

6.2 Synthese Verbindungen aus Kapitel 4.1

(2S)-(tert.-Butyldiphenylsiloxy)-propionsäureethylester 67

15 g (127.0 mmol, 1.0 Äq.) L-Milchsäureethylester wurden unter Argonatmosphäre in 300 mL trockenem THF gelöst und auf 0°C gekühlt. Anschließend wurden 10.4 g

Äq.) 41.9 (152.4 mmol, 1.2 Imidazol, (152.4)1.2 Äq.) g mmol, tert.-Butyldiphenylsilylchlorid und 0.16 g (1.2 mmol, 0.01 Äq.) 4-DMAP zugegeben und die Lösung 30 min. bei 0°C gerührt. Daraufhin wurde die Lösung auf 40°C erwärmt und über Nacht gerührt. Nach Abkühlen auf Raumtemperatur wurde die Lösung mit NaHCO₃-Lösung versetzt und die Phasen getrennt. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (PE:EE 40:1 \rightarrow 20:1) wurde das Produkt 67 in quantitativer Ausbeute (127.0 mmol) als leicht gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.70-7.66 (m, 4H, Ph), 7.45-7.34 (m, 6H, Ph), 4.27 (q, *J* = 6.8 Hz, 1H, H-2), 4.02 (q, *J* = 7.1 Hz, 2H, H-4), 1.37 (d, *J* = 6.8 Hz, 3H, H-3), 1.15 (t, *J* = 7.1 Hz, 3H, H-5), 1.10 (s, 9H, Si'Bu) ppm; ¹³<u>C-NMR</u> (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 173.8 (q, C-1), 136.0 (t, Ph), 135.8 (t, Ph), 133.7 (q, Ph), 133.3 (q, Ph), 129.8 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 69.1 (t, C-2), 60.6 (s, C-4), 26.9 (p, Si'Bu), 21.4 (p, C-3), 19.3 (q, Si'Bu), 14.1 (p, C-5) ppm; <u>GCMS:</u> *m*/*z* für C₁₇H₁₉O₃Si [M-^{*i*}Bu]⁺: ber. 299.1 gef. 299.1.

(2S)-(tert.-Butyldiphenylsiloxy)-N-methoxy-N-methyl-propionamid 68

15 g (42.1 mmol, 1.0 Äq.) Ester **67** und 10.3 g (105.2 mmol, 2.5 Äq.) *N,O*-Dimethylhydroxylamin-hydrochlorid wurden unter Argonatmosphäre in 115 mL trockenem THF gelöst und auf -20°C gekühlt. Anschließend wurden 105.2 mL (210.4 mmol, 5.0 Äq.) Isopropylmagnesiumchlorid über 1 h zugetropft. Nach beendeter Zugabe wurde die Lösung 30 min. bei -20 °C gerührt, auf 0°C erwärmt und weitere 30 min. gerührt. Anschließend wurde die Reaktionslösung mit NH₄Cl-Lösung versetzt und mit Ether verdünnt. Nach Trennung der Phasen wurde die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach Flash-Chromatographie (PE:EE 10:1 → EE) wurden 17.4 g (46.8 mmol, 92%) des Produkts **68** als farbloser Feststoff erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 4H, Ph), 7.45-7.32 (m, 6H, Ph), 4.52 (q, *J* = 6.4 Hz, 1H, H-2), 3.07 (s, 3H, H-4), 3.03 (s, 3H, H-5), 1.36 (d, *J* = 6.4 Hz, 3H, H-3), 1.08 (s, Si'Bu) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 136.2 (t, Ph), 135.9 (t, Ph), 133.9 (q, Ph), 133.5 (q, Ph), 129.8 (t, Ph), 127.6 (t, Ph), 66.7 (p, C-5), 60.7 (t, C-2), 32.3 (p, C-4), 26.9 (p,Si'Bu), 20.8 (p, C-3), 19.4 (q, Si'Bu) ppm; **HRMS:** *m/z* für

 $C_{17}H_{20}NO_3Si [M+H]^+$: ber. 314.1207 gef. 314.1293; <u>Smp.</u>: 65°C; $[\alpha]_D^{20} = -19^\circ (c \ 1, CH_2Cl_2)$ [Lit. (Enantiomer): +12.1° (c 1.4, CHCl₃)].

Die analytischen Daten stimmen mit den Literaturdaten überein.⁹⁵

(2S)-(tert.-Butyldiphenylsiloxy)-propionaldehyd 62

OTBDPS

2.5 g (6.73 mmol, 1.0 Äq.) Amid **68** wurden unter Argonatmosphäre in 45 mL trockenem THF gelöst, auf -78°C gekühlt und über 1 h mit 28 mL (33.6 mmol, 5.0 Äq.) DIBAL-H versetzt. Nach 30 min. bei -78°C wurden 9.6 mL Essigester zugetropft. Nach 5 min. wurde Kalium-Natrium-Tartrat-Lösung (10 %ig, aq.) zugegeben, die Lösung mit CH₂Cl₂ verdünnt und auf Raumtemperatur erwärmt. Nach Trennung der Phasen wurde die wässrige Phase zweimal mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Der Aldehyd **62** wurde in quantitativer Ausbeute (6.73 mmol) erhalten und ohne weitere Aufarbeitung in Ester **69** umgesetzt.

(4S)-(E)-Ethyl-4-(tert.-butyldiphenylsiloxy)-pent-2-enoat 69

Der zuvor erhaltene Aldehyd **62** wurde in 45 mL Toluol gelöst und mit 3.5 g (10.1 mmol, 1.5 Äq.) Triphenylphosphanyliden-Essigsäureethylester versetzt. Die Reaktionslösung wurde auf 80°C erwärmt und 6 Tage bei dieser Temperatur gerührt. Nach Einengen der Reaktionslösung im Vakuum und säulenchromatographischer Reinigung (PE:EE 20:1) wurden 2.3 g (6.07 mmol, 90%, $E/Z \sim 11:1$) des Produkts **69** als farbloses Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.63 (m, 4H, Ph), 7.46-7.35 (m, 6H, Ph), 6.91 (dd, *J* = 15.4, 1.7 Hz, 1H, H-3), 6.02 (dd, *J* = 15.4, 4.6 Hz, 1H, H-2), 4.47 (ddq, *J* = 6.4, 4.6, 1.7 Hz, 1H, H-4), 4.20 (q, *J* = 7.0 Hz, 2H, H-6), 1.30 (t, *J* = 7.0 Hz, 3H, H-7), 1.14 (d, *J* = 6.4 Hz, 3H, H-5), 1.10 (s, 9H, Si'Bu) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 166.9 (q, C-1), 151.5 (t, C-3), 135.8 (t, Ph), 135.4 (t, Ph), 134.1 (t, Ph), 133.5 (t, Ph), 129.8 (t, Ph), 127.7 (t, Ph), 119.2 (t, C-2), 68.7 (t, C-4), 60.4 (s, C-6), 27.1 (p, Si'Bu), 23.4 (p, C-5), 19.3 (q, Si'Bu), 14.4 (p,C-7) ppm; <u>HRMS:</u> *m/z* für C₁₉H₂₁O₃Si [M+H]⁺: ber. 325.1254 gef. 325.1363; [α]_D²⁰ = -44.9° (*c* 1.35, CH₂Cl₂).

⁹⁵ Xie, W.; Zou, B.; Pei, D.; Ma, D. Org. Lett. 2005, 7, 2775-2777.

(E)-(4S)-(tert.-Butyldiphenylsiloxy)-pent-2-en-1-ol 70

0.38 g (0.99 mmol, 1.0 Äq.) Ester **69** wurden unter Argonatmosphäre in 8.2 mL trockenem CH_2Cl_2 gelöst und auf -60°C gekühlt. Anschließend wurden über 15 min. 2.1 mL (2.49 mmol, 2.5 Äq.) DIBAL-H zugetropft und die Reaktionslösung 2 h bei -60°C gerührt. Danach wurden 0.8 mL Essigester zugetropft. Nach weiteren 5 min. wurde die Lösung mit Kalium-Natrium-Tartrat-Lösung (10%ig, aq.) versetzt, mit CH_2Cl_2 verdünnt und auf Raumtemperatur erwärmt. Anschließend wurden die Phasen getrennt, die wässrige Phase mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen über Na_2SO_4 getrocknet und im Vakuum eingeengt. Es wurden 0.31 g (0.91 mmol, 90%) des Produkts als farbloses Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.69-7.66 (m, 4H, Ph), 7.45-7.34 (m, 6H, Ph), 5.65 (dd, *J* = 15.5, 5.8 Hz, 1H, H-3), 5.55 (ddd, *J* = 15.5, 5.2, 0.9 Hz, 1H, H-2), 4.34 (ddq, *J* = 6.1, 5.8, 0.9 Hz, 1H, H-4), 4.33 (d, *J* = 5.2 Hz, 2H, H-1), 1.17 (d, *J* = 6.1 Hz, 3H, H-5), 1.07 (s, 9H, Si'Bu) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 136.2 (t, Ph), 136.1 (t, Ph), 136.0 (t, Ph), 134.5 (q, Ph), 134.4 (q, Ph), 129.7 (t, Ph), 129.6 (t, Ph), 129.1 (t, C-3), 128.3 (t, C-2), 127.8 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 125.4 (t, Ph), 69.7 (t, C-4), 63.2 (s, C-1), 27.1 (p, Si'Bu), 24.3 (p, C-5), 19.3 (q, Si'Bu) ppm; **HRMS:** *m/z* für C₁₇H₁₉O₂Si [M+H]⁺: ber. 283.1149 gef. 283.0925; [α]_D²⁰ = -13.2° (*c* 1.3, CH₂Cl₂).

(4S)-(E)-2,2-Dimethylpropionsäure-4-(tert.-butyldiphenylsiloxy)-pent-2-enylester 71

0.31 g (0.89 mmol, 1.0 Äq.) Alkohol **70** wurden unter Argonsatmosphäre in 2 mL abs. Pyridin gelöst und auf 0°C gekühlt. Anschließend wurden 0.12 mL (0.98 mmol, 1.1 Äq.) Pivaloylchlorid zugegeben und die Reaktionslösung auf Raumtemperatur erwärmt. Nach 2 h bei Raumtemperatur wurde die Reaktionslösung im Vakuum eingeengt, der Rückstand in Essigester aufgenommen, mit NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingeengt. Es wurden 0.35 g (0.82 mmol, 94%) des Produkts als hellgelbes Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.69-7.63 (m, 4H, Ph), 7.44-7.32 (m, 6H, Ph), 5.74 (dd, *J* = 15.4, 5.8 Hz, 1H, H-3), 5.57 (ddt, *J* = 15.4, 5.9, 1.1 Hz, 1H, H-2), 4.46 (d,

 $J = 5.9 \text{ Hz}, 2\text{H}, \text{H-1}, 4.31 \text{ (ddq}, J = 6.1 \text{ Hz}, 5.8, 1.1 \text{ Hz}, 1\text{H}, \text{H-4}), 1.19 \text{ (s}, 9\text{H}, \text{H-8}), 1.14 \text{ (d}, J = 6.1 \text{ Hz}, 3\text{H}, \text{H-5}), 1.06 \text{ (s}, 9\text{H}, \text{Si'Bu) ppm}; \frac{13}{\text{C-NMR}} \text{ (100 MHz, CDCl}_3, \text{CDCl}_3 = 77.16 \text{ ppm}): \delta 178.3 \text{ (q, C-6}), 138.6 \text{ (q, Ph}), 138.2 \text{ (t, C-2}), 136.0 \text{ (t, Ph}), 135.9 \text{ (t, Ph}), 135.5 \text{ (q, Ph}), 134.5 \text{ (t, Ph}), 134.1 \text{ (t, Ph}), 129.7 \text{ (t, Ph}), 129.6 \text{ (t, Ph}), 127.6 \text{ (t, Ph}), 127.5 \text{ (t, Ph}), 123.0 \text{ (t, C-3)}, 69.5 \text{ (t, C-4)}, 64.3 \text{ (s, C-1)}, 38.8 \text{ (q, C-7)}, 27.3 \text{ (p, C-8)}, 27.1 \text{ (p, Si'Bu)}, 24.1 \text{ (p, C-5)}, 19.3 \text{ (q, Si'Bu) ppm}; \frac{\text{HRMS:}}{\text{HRMS:}} m/z \text{ für C}_{18}\text{H}_{23}\text{OSi} \text{ [M+H]}^+: \text{ber. 283.1513 gef.}$

(4S)-(E)-2,2-Dimethylpropionsäure-4-hydroxy-pent-2-enylester 72

1.54 g (3.62 mmol, 1 Äq.) Silylether **71** wurden in 61 mL THF gelöst und auf 0°C gekühlt. Anschließend wurden 1.71 g (5.43 mmol, 1.5 Äq.) TBAF in 31 mL THF zugetropft und die Reaktionslösung über Nacht bei Raumtemperatur gerührt. Nach Beendigung der Reaktion durch Zugabe von NH₄Cl- Lösung wurden die Phasen getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (Pentan:Et₂O 1:1) wurden 648 mg (3.48 mmol, 96%) des Produkts als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, Aceton-d₆, Aceton-d₅ = 2.05 ppm): δ 5.85-5.70 (m, 2H, H-2 und H-3), 4.66 (ddq, J = 6.3, 5.9, 1.2 Hz, 1H, H-4), 4.52 (dd, J = 6.3, 0.7 Hz, 2H, H-1), 4.25 (s, 1H, H-6), 1.17 (d, J = 1.2 Hz, 3H, H-5), 1.16 (s, 9H, H-9) ppm; ¹³<u>C-NMR</u> (100 MHz, Aceton-d₆, Aceton-d₆ = 205.87, 30.60 ppm): δ 177.6 (q, C-7), 139.4 (t, C-3), 123.1 (t, C-2), 67.2 (t, C-4), 64.4 (s, C-1), 38.8 (q, C-8), 26.7 (p, C-9), 23.5 (p,C-5) ppm; <u>HRMS :</u> m/z [EI] für C₅H₈O [M+e]: ber. 84.0575 gef. 84.0574 ; $[\alpha]_D^{20} = +1.7^{\circ}$ (*c* 2.2, CH₂Cl₂).

(4S)-(E)-4-(tert.-Butyldiphenylsiloxy)-pent-2-enyl-methylcarbonat 64

1.52 g (3.81 mmol, 1.0 Äq.) Alkohol **70** wurden unter Argonatmosphäre in 28 mL trockenem CH_2Cl_2 gelöst und auf 0°C gekühlt. Es wurden 0.78 mL (9.53 mmol, 2.5 Äq.) trockenes Pyridin und 93 mg (0.76 mmol, 0.2 Äq.) DMAP zugegeben. Anschließend wurden langsam 0.61 mL (7.62 mmol, 2.0 Äq.) Chlormethylformiat zugetropft und die Reaktionslösung auf

Raumtemperatur erwärmt. Nach 2 h wurde die Reaktion durch Zugabe von $1N \text{ KHSO}_4$ -Lösung beendet und die Phasen getrennt. Die wässrige Phase wurde mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen über Na_2SO_4 getrocknet und im Vakuum eingeengt. Nach Flash-Chromatographie (PE:EE 5:1) wurden 1.09 g (2.73 mmol, 72%) des Produkts erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.68-7.62 (m, 4H, Ph), 7.44-7.33 (m, 6H, Ph), 5.79 (dd, *J* = 15.3, 5.4 Hz, 1H, H-3), 5.60 (dt, *J* = 15.3, 6.1 Hz, 1H, H-2), 4.53 (d, *J* = 6.1 Hz, 2H, H-1), 4.31 (dq, *J* = 6.4, 5.4 Hz, 1H, H-4), 3.78 (s, 3H, H-7), 1.13 (d, *J* = 6.4 Hz, 3H, H-5), 1.06 (s, 9H, Si'Bu) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 155.7 (q, C-6), 139.6 (t, C-3), 136.0 (t, Ph), 135.9 (t, Ph), 134.4 (q, Ph), 134.0 (q, Ph), 129.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 122.0 (t, C-2), 69.4 (t, C-4), 68.0 (s, C-1), 54.8 (p, C-7), 27.1 (p, Si'Bu), 24.5 (p, C-5), 19.3 (q, Si'Bu) ppm; **HRMS:** Aufgrund der Labilität des Moleküls war keine Massenmessung möglich.; [α]_D²⁰ = -31.2° (*c* 1.0, CH₂Cl₂).

(4S)-(E)-Pent-2-en-1,4-diol 73

1.99 g (5.86 mmol, 1.0 Äq.) Silylether **70** wurden in 77 mL THF gelöst und auf 0°C gekühlt. Anschließend wurden 2.77g (8.79 mmol, 1.5 Äq.) TBAF in 38 mL THF langsam zu der vorgekühlten Lösung gegeben. Nach beendeter Zugabe wurde auf Raumtemperatur erwärmt und die Reaktionslösung über Nacht gerührt. Die Reaktion wurde durch Zugabe von NH₄Cl-Lösung beendet, die Phasen getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (PE:EE 2:1 → EE) wurden 267 mg (2.61 mmol, 45%) des Produkts erhalten.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.87-5.76 (m, 2H, H-2 und H-3), 4.35 (dq, J = 6.2, 5.3 Hz, 1H, H-4), 4.15 (d, J = 4.5 Hz, 2H, H-1), 1.59 (s, 2H, 2 x OH), 1.28 (d, 3H, J = 6.2 Hz, H-5) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 135.6 (t, C-2), 129.0 (t, C-3), 68.3 (t, C-4), 63.1 (s, C-1), 23.4 (p, C-5) ppm; <u>HRMS:</u> m/z [EI] für C₅H₈O [M+H]⁺: ber. 85.0648 gef. 85.0574; $[\alpha]_D^{20}$ = +4.5° (*c* 1.7, CH₂Cl₂).

(4S)-(E)-(tert.-Butyldimethylsiloxy)-pent-2-en-4-ol 74

62 mg (608 µmol, 1.0 Äq.) Diol **73** wurden unter Argonatmosphäre in 2 mL trockenem CH_2Cl_2 gelöst und auf $-30^{\circ}C$ gekühlt. Anschließend wurden 90 µL (669 µmol, 1.1 Äq.) Triethylamin und 100 mg (663 µmol, 1.09 Äq.) TBSCl zugegeben. Nach 2 h bei $-30^{\circ}C$ wurde die Reaktionslösung mit NH₄Cl-Lösung versetzt, auf Raumtemperatur erwärmt und mit CH_2Cl_2 verdünnt. Nach Trennung der Phasen wurde die wässrige Phase mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach Flash-Chromatographie (PE:EE 5:1) wurden 111 mg (513 µmol, 84%) des Produkts als farbloses Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.75-5.73 (m, 2H, H-2 und H-3), 4.35-4.29 (m, 1H, H-4), 4.17-4.16 (m, 2H, H-1), 1.56-1.49 (m, 1H, OH), 1.27 (m, 3H, H-5), 0.90 (s, 9H, Si^{*t*}Bu), 0.06 (s, 6H, SiMe₂) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 134.1 (t, C-2), 129.4 (t, C-3), 68.4 (t, C-4), 63.2 (s, C-1), 23.3 (p, Si^{*t*}Bu), 22.7 (p, C-5), 18.8 (q, Si^{*t*}Bu), -5.0 (p, SiMe₂) ppm; <u>HRMS:</u> *m*/*z* [EI] für C₇H₁₅O₂Si [M-^{*t*}Bu]⁺: ber. 159.08 gef. 159.08; $[\alpha]_D^{20} = -1.3^\circ$ (*c* 1, CH₂Cl₂).

2-(Dimethylamino)-benzylalkohol 79

0.5 g (2.79 mmol, 1.0 Äq.) Methyl-2-dimethylaminobenzoat wurden in 14 mL THF gelöst und vorsichtig mit 0.16 g (4.19 mmol, 1.5 Äq.) Natriumborhydrid und 0.29 g (2.09 mmol, 0.75 Äq.) Zink(II)chlorid versetzt. Die resultierende Lösung wurde 2 h unter Rückfluss erhitzt. Die Reaktion wurde unter Kühlung im Eisbad durch Zugabe von NH₄Cl-Lösung beendet. Nach Zugabe von Chloroform wurden die Phasen getrennt, die organische Phase mit Wasser und NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingeengt. Es wurden 0.26 g (1.72 mmol, 61%) des Produkts als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.28-7.20 (m, 2H, ArH), 7.17-7.14 (m, 1H, ArH), 7.10-7.06 (m, 1H, ArH), 5.60 (s, 1H, H-8), 4.82 (s, 2H, H-7), 2.72 (s, 6H, H-9) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 152.1 (q, C_{aromat}), 135.3 (q,

C_{aromat.}), 128.5 (t, C_{aromat.}), 128.3 (t, C_{aromat.}), 124.6 (t, C_{aromat.}), 120.2 (t, C_{aromat.}), 65.1 (s, C-7), 44.7 (p, C-9) ppm; <u>**HRMS**</u>: *m/z* für C₉H₁₄NO [M+H]⁺: ber. 152.1075 gef. 152.107.

N,N-Dimethyl-o-(diphenylphosphino)benzylamin 87

1.01 g (7.40 mmol, 1.0 Äq.) Dimethylbenzylamin wurden bei Raumtemperatur unter Argonatmosphäre zu 3.5 mL (8.7 mmol, 2.5 M, 1.2 Äq.) *n*-Butyllithium gegeben. Anschließend wurde die Reaktionslösung mit 10 mL trockenem Ether verdünnt und 24 h bei Raumtemperatur stehen gelassen. Die gebildeten Kristalle wurden durch starkes Rühren wieder gelöst. Anschließend wurden 5 mL trockener Ether zugegeben, die Lösung auf -78°C gekühlt und tropfenweise mit 1.4 g (6.52 mmol, 0.9 Äq.) Diphenylphosphanchlorid versetzt. Nach beendeter Zugabe wurde die Reaktionslösung auf Raumtemperatur erwärmt und 1 h gerührt. Die Reaktion wurde durch die Zugabe von 30 mL Wasser beendet. Nach Phasentrennung wurde die wässrige Phase mit Ether extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Es wurden 2.2 g (6.88 mmol, 92%) des Produkts als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.68-7.08 (m, 14H, ArH), 3.55 (s, 2H, H-7), 2.00 (s, 6H, H-8) ppm; ³¹<u>P-NMR</u> (400 MHz): δ = -14.12 ppm; <u>HRMS</u>: *m/z* für C₂₁H₂₃NP [M+H]⁺: ber. 320.1563 gef. 320.1568.

o-Diphenylphosphinobenzylchlorid 88

1.0 g (3.13 mmol, 1.0 Äq.) Amin **87** wurden in 14.5 mL Benzol gelöst, mit 0.44 g (4.07 mmol, 1.3 Äq.) Ethylchloroformiat versetzt und 6 h unter Rückfluss erhitzt. Nach Abkühlen auf Raumtemperatur wurde die Lösung im Vakuum eingeengt. Die anschließende Flash-Chromatographie (Hexan:Toluol 3:1) ergab 0.34 g (1.09 mmol, 35%) des Produkts als farblosen Feststoff.

<u>**H-NMR**</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.55-7.51 (m, 1H, ArH), 7.40-7.21 (m, 12H, ArH), 6.97-6.94 (m, 1H, ArH), 4.88 (d, $J_{\rm H,P}$ = 1.7 Hz, 2H, H-7) ppm; <u>**³¹P-NMR**</u>

(400 MHz, CDCl₃): δ = -15.72 ppm; <u>**HRMS**</u>: *m/z* für C₁₉H₁₇ClP [M+H]⁺: ber. 311.0756 gef. 311.0758; <u>**Smp.**</u>: 85-88°C.

(4S)-(E)-[(2-Brombenzyloxy)-pent-2-enyloxy]-tert-butyldimethylsilan 91

Es wurden 15 mg (370 µmol, 60%ige Suspension in Mineralöl, 1.6 Åq.) NaH unter Argonatmosphäre in 1.2 mL trockenem THF suspendiert und mit 3 mg (6.93 µmol, 0.03 Äq.) TBAI versetzt. Anschließend wurden 50 mg (231 µmol, 1.0 Äq.) Alkohol **74** in 0.6 mL trockenem THF gelöst und zu der NaH-Suspension gegeben. Nach 1 h bei Raumtemperatur wurden 191 mg (762 µmol, 3.3 Äq.) *o*-Brombenzylbromid zugegeben und die Reaktionslösung über Nacht unter Lichtausschluss gerührt. Nach beendeter Reaktion wurde die Lösung mit Wasser versetzt, die Phasen getrennt, die wässrige Phase mit Ether extrahiert, die vereinigten organischen Phasen mit Wasser gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (PE:EE 5:1) und anschließender Reinigung mit Amberlyst A-21 wurden 39 mg (101 µmol, 44%) des Produkts erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.60-7.45 (m, 3H, ArH), 7.36-7.29 (m, 1H, Ph), 7.20-7.11 (m, 1H, Ph), 5.77 (dt, *J* = 15.5, 3.9 Hz, 1H, H-2), 5.67 (dd, *J* = 15.5, 6.9 Hz, 1H, H-3), 4.52 (dd, *J* = 44.3, 13.3 Hz, 2H, H-6), 4.21 (d, *J* = 3.9 Hz, 2H, H-1), 4.01 (dq, *J* = 6.9, 6.4 Hz, 1H, H-4), 1.32 (d, *J* = 6.4 Hz, 3H, H-5), 0.91 (s, 9H, Si^tBu), 0.08 (s, 6H, SiMe₂) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 138.4 (q, C_{aromat.}), 137.6 (q, C_{aromat.}), 132.6-125.4 (t, 20 Signale, C_{aromat.} und C-2 und C-3), 122.8 (q, C_{aromat.}), 121.1 (q, C_{aromat.}), 76.1 (t, C-4), 69.5 (s, C-6), 63.3 (s, C-1), 29.5 (p, Si^tBu), 21.6 (p, C-5), 18.5 (q, Si^tBu), -5.0 (p, SiMe), -5.1 (p, SiMe) ppm; <u>HRMS:</u> *m/z* [EI] für C₁₄H₂₀O₂SiBr [M^{-t}Bu]⁺: ber. 327.0415 gef. 327.0415; [α]_{*p*}²⁰ = -17.0° (*c* 1.3, CH₂Cl₂).

(4*S*)-(*E*)-2-Diphenylphosphinobenzoesäure-4-(*tert*.-butyldimethylsiloxy)-1-methylbut-2-enyl-ester 95

0.93 g (4.28 mmol, 1.0 Äq.) Alkohol 74 wurden unter Argonatmosphäre in 9 mL trockenem CH_2Cl_2 gelöst und nacheinander mit 1.34 (4.28 mmol, 1.0 Äq.) g o-Diphenylphosphinobenzoesäure, 0.52 g (4.28 mmol, 1.0 Äq.) 4-DMAP und 0.54 g (4.28 mmol, 1.0 Äq.) DIC versetzt. Nach 19 h bei Raumtemperatur wurde die Reaktionslösung im Vakuum eingeengt und das Rohprodukt durch Flash-Chromatographie (PE:EE 5:1) gereinigt. Es wurden 1.72 g (4.28 mmol, quant.) des Produkts 95 als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 8.07-8.03 (m, 1H, ArH), 7.41-7.35 (m, 2H, ArH), 7.32-7.31 (m, 6H, ArH), 7.28-7.24 (m, 4H, ArH), 6.91-6.88 (m, 1H, ArH), 5.74 (dt, J = 15.4, 4.4 Hz, 1H, H-3), 5.65 (dd, J = 15.4, 5.9 Hz, 1H, H-2), 5.50 (dq, J = 5.9, 6.1 Hz, 1H, H-1), 4.12 (d, J = 4.4 Hz, 2H, H-4), 1.24 (d, J = 6.1 Hz, 3H, H-5), 0.90 (s, 9H, Si^{*t*}Bu), 0.06 (s, 6H, SiMe₂) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 166.1 (q, C-6), 140.1 (q, $J_{C,P} = 26.8$ Hz, $C_{aromat.}$), 138.2 (q, $J_{C,P} = 11.6$ Hz, $C_{aromat.}$), 138.1 (q, $J_{C,P} = 11.5$ Hz, $C_{aromat.}$), 134.4 (t, $C_{aromat.}$), 134.0 (t, $J_{C,P} = 6.3$ Hz, $C_{aromat.}$), 131.5 (t, C-3), 130.6 (t, $J_{C,P} = 2.8$ Hz, $C_{aromat.}$), 129.2 (t, C-2), 128.5 (t, $J_{C,P} = 1.5$ Hz, $C_{aromat.}$), 128.4 (t, $J_{C,P} = 7.0$ Hz, $C_{aromat.}$), 128.2 (t, $C_{aromat.}$), 128.7 (t, C-1), 63.1 (s, C-4), 26.0 (p, Si^{*t*}Bu), 20.2 (p, C-5), 18.5 (q, Si^{*t*}Bu), -5.0 (p, SiMe₂) ppm; **HRMS:** m/z für C₃₀H₃₈O₃PSi [M+H]⁺: ber. 505.2328 gef. 505.2321; $[\alpha]_D^{20} = -13.8^{\circ}$ (c 1.8, CH₂Cl₂).

(4S)-(E)-2-Diphenylphosphinobenzoesäure-4-hydroxy-1-methylbut-2-enylester 96

1.22 g (2.41 mmol, 1.0 Äq.) Silylether **95** wurden in 10 mL THF gelöst und auf 0°C gekühlt. Anschließend wurden 1.15 g (3.63 mmol, 1.5 Äq.) TBAF in 10 mL THF

zugetropft und die Lösung über Nacht bei Raumtemperatur gerührt. Nach Beendigung der Reaktion durch Zugabe von NH₄Cl-Lösung wurden die Phasen getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (PE:EE 5:1 \rightarrow 1:1) wurden 841 mg (2.15 mmol, 89%) des Produkts erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 8.10-8.06 (m, 1H, ArH), 7.43-7.37 (m, 2H, ArH), 7.34-7.33 (m, 6H, ArH), 7.30-7.26 (m, 4H, ArH), 6.93-6.90 (m, 1H, ArH), 5.81 (dt, J = 15.1, 4.2 Hz, 1H, H-3), 5.62 (dd, J = 15.1, 6.2 Hz, 1H, H-2), 5.50 (dq, J = 6.2, 4.6 Hz, 1H, H-1), 4.09 (d, J = 4.2 Hz, 2H, H-4), 1.61 (s, 1H, OH), 1.28 (d, J = 4.6 Hz, 3H, H-5) ppm; ¹³<u>C-MMR</u> (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ = 166.2 (q, C-6), 140.1 (q, $J_{C,P} = 26.8$ Hz, Caromat.), 138.3 (q, $J_{C,P} = 11.5$ Hz, Caromat.), 138.2 (q, $J_{C,P} = 11.5$ Hz, Caromat.), 134.9 (q, $J_{C,P} = 1.3$ Hz, Caromat.), 134.4 (t, Caromat.), 134.2 (t, $J_{C,P} = 1.3$ Hz, Caromat.), 134.0 (t, $J_{C,P} = 1.3$ Hz, Caromat.), 132.0 (t, C-3), 131.1 (t, Caromat.), 130.7 (t, $J_{C,P} = 2.8$ Hz, Caromat.), 130.6 (t, C-2), 128.6 (t, $J_{C,P} = 1.7$ Hz, Caromat.), 128.5 (t, $J_{C,P} = 0.5$ Hz, Caromat.), 128.4 (t, $J_{C,P} = 0.5$ Hz, Caromat.), 128.3 (t, Caromat.), 71.5 (t, C-1), 62.9 (s, C-4), 20.2 (p, C-5) ppm; **HRMS:** m/z für C₂₄H₂₄O₃P [M+H]⁺: ber. 391.1463 gef. 391.1464; $[\alpha]_D^{20} = -11.1^{\circ}$ (c 1.1, CH₂Cl₂).

(4*S*)-(*E*)-2-Diphenylphosphinobenzoesäure-4-methoxycarbonyloxy-1-methyl-but-2enylester 97

841 mg (2.15 mmol, 1.0 Äq.) des Alkohols **96** wurden unter Argonatmosphäre in 16 mL trockenem CH_2Cl_2 gelöst, auf 0°C gekühlt und mit 0.44 mL (5.38 mmol, 2.5 Äq.) trockenem Pyridin und 53 mg (0.43 mmol, 0.2 Äq.) DMAP versetzt. Anschließend wurden 0.34 mL (4.30 mmol, 2.0 Äq.) Chlormethylformiat tropfenweise zugegeben und die Reaktion über Nacht bei Raumtemperatur gerührt. Nach Beendigung der Reaktion durch Zugabe von 1N KHSO₄-Lösung wurden die Phasen getrennt, die wässrige Phase dreimal mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach Flash-Chromatographie (PE:EE 2:1) wurden 706 mg (1.57 mmol, 73%) des Carbonats **97** erhalten.

¹<u>H-NMR</u> (400 MHz, Aceton-d₆, Aceton-d₅ = 2.05 ppm): δ 8.06-8.03 (m, 1H, ArH), 7.52-7.45 (m, 2H, ArH), 7.38-7.36 (m, 6H, ArH), 7.26-7.22 (m, 4H, ArH), 6.94-6.91 (m, 1H, ArH), 5.83-5.73 (m, 2H, H-2 und H-3), 5.42 (ddq, J = 6.4, 4.0, 2.3 Hz, 1H, H-1), 4.56 (d, J = 4.0 Hz, 2H, H-4), 3.73 (s, 3H, OMe), 1.24 (d, J = 6.4 Hz, 3H, H-5) ppm; ¹³C-NMR (100 MHz, Aceton-d₆, Aceton-d₆ = 29.84 ppm): δ 166.6 (q, C-6), 156.3 (q, C-7), 140.8 (q, $J_{C,P} = 27.6$ Hz, Caromat.), 139.3 (q, $J_{C,P} = 2.8$ Hz, Caromat.), 139.2 (q, $J_{C,P} = 3.0$ Hz, Caromat.), 136.2 (q, $J_{C,P} = 20.3$ Hz, Caromat.), 135.1 (t, Caromat.), 134.9 (t, $J_{C,P} = 1.9$ Hz, Caromat.), 134.7 (t, $J_{C,P} = 1.7$ Hz, Caromat.), 134.6 (t, Caromat.), 132.9 (t, C-2), 131.4 (t, $J_{C,P} = 2.8$ Hz, Caromat.), 129.6 (t, Caromat.), 129.4 (t, Caromat.), 126.4 (t, C-3), 71.9 (t, C-1), 67.9 (s, C-4), 55.1 (p, OMe), 20.3 (p, C-5) ppm; **HRMS:** *m*/*z* für C₂₆H₂₅O₅PNa [M+Na]⁺: ber. 471.1337 gef. 471.1344; $[\alpha]_D^{20} = -12.6^{\circ}$ (*c* 1.0, CH₂Cl₂).

6.3 Synthese Substrate aus Kapitel 4.2

(2S)-(tert.-Butyldiphenylsiloxy)-propionaldehyd 62

Die Darstellung erfolgte wie zuvor beschrieben (6.2).

(2S)-(tert.-Butyldimethylsiloxy)-milchsäureethylester 217

15 g (127.0 mmol, 1.0 Äq.) L-Milchsäureethylester wurden unter Stickstoffatmosphäre in 300 mL trockenem THF gelöst und auf 0°C gekühlt. Anschließend wurden nacheinander 10.4 g (152.4 mmol, 1.2 Äq.) Imidazol, 0.16 g (1.2 mmol, 0.01 Äq.) 4-DMAP und 22.9 g (152.4 mmol, 1.2 Äq.) TBSCl zugegeben. Nach 30 min. bei 0°C wurde die Reaktionslösung auf Raumtemperatur erwärmt und bis zum vollständigen Umsatz gerührt. Die Reaktion wurde durch Zugabe von NH₄Cl-Lösung beendet und mit CH₂Cl₂ verdünnt. Nach Trennung der Phasen wurde die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen wurden über Na₂SO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Chromatographie (PE:EE 20:1) wurden 29.7 g (127.0 mmol, quant.) des Produkts erhalten. ¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 4.30 (q, *J* = 6.8 Hz, 1H, H-2), 4.19 (q, *J* = 7.1 Hz, 2H, H-4), 1.39 (d, *J* = 6.8 Hz, 3H, H-3), 1.27 (t, *J* = 7.1 Hz, 3H, H-5), 0.89 (s, 9H, Si'Bu), 0.10 (s, 3H, SiMe), 0.07 (s, 3H, SiMe) ppm; ¹³C-NMR (125 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 174.2 (q, C-1), 69.6 (t, C-2), 60.8 (s, C-4), 25.8 (p, Si'Bu), 21.4 (p, C-3), 18.4 (q, Si'Bu), 14.3 (p, C-5), -4.7 (p, SiMe), -5.1 (p, SiMe) ppm; <u>HRMS:</u> *m/z* [EI] für C₇H₁₆O₃Si [M-^{*t*}Bu]⁺: ber. 175 gef. 175.

(2S)-(tert.-Butyldimethylsiloxy)-propionaldehyd 108

Die Darstellung erfolgte analog der bereits beschriebenen Reduktion mit DIBAL-H aus dem Ester **217**. Der Aldehyd wurde in quantitativer Ausbeute erhalten und direkt weiter umgesetzt.

(2R)-Phenyl-2-(tert.-butyldiphenylsiloxy)-2-methylacetat 218

Die Synthese erfolgte analog der Silylierung von (2*S*)-(*tert*.-Butyldiphenylsiloxy)propionsäureethylester **67** (**6.2**). Das Rohprodukt (4.02 g, 9.95 mmol) wurde direkt zum Weinrebamid **219** umgesetzt.

(2R)-(tert.-Butyldiphenylsiloxy)-N-methyl-2-phenylacetamid 219

Die Synthese des Weinrebamids **219** erfolgte analog der Darstellung von (2*S*)-(*tert*.-Butyldiphenylsiloxy)-*N*-methoxy-*N*-methyl-propionamid **68** (**6.2**). Es wurden 4.13 g (9.54 mmol, 64%) Weinrebamid **219** über zwei Stufen erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.77-7.27 (m, 15H, Ph), 5.45 (s, 1H, H-2), 2.97 (s, 3H, H-4), 2.96 (s, 3H, H-3), 1.07 (s, 9H, Si'Bu) ppm; ¹³<u>C-NMR</u> (125 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 139.4 (q, Ph), 136.3 (t, Ph), 135.9 (t, Ph), 133.5 (t, Ph), 133.4 (t, Ph), 129.9 (t, Ph), 129.7 (t, Ph), 128.4 (t, Ph), 128.0 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 128.4 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 127.5 (t, Ph), 128.4 (t, Ph

Ph), 72.6 (p, C-4), 60.3 (t, C-2), 32.5 (p, C-3), 26.9 (p, Si'Bu), 19.5 (q, Si'Bu) ppm; <u>**HRMS**</u>: m/z [EI] für C₂₂H₂₂NO₃Si [M+H]⁺: ber. 376 gef. 376; $[\alpha]_D^{20} = -50.1^\circ$ (*c* 3.5, CHCl₃).

(2R)-(tert.-Butyldiphenylsiloxy)-2-phenylacetaldehyd 63

Die Darstellung des Aldehyds **63** erfolgte analog der Synthese von (2*S*)-(*tert.*-Butyldiphenylsiloxy)-propionaldehyd **62** durch Reduktion des korrespondierenden Weinrebamids (**6.2**). Der quantitativ erhaltene Aldehyd wurde direkt in der nachfolgenden Kupplungsreaktion eingesetzt.

(2R)-Phenylpropionaldehyd 109

40 mg (294 μ mol, 1.0 Äq.) (2*R*)-Phenylpropanol wurden unter Argonatmosphäre in 30 mL trockenem CH₂Cl₂ gelöst und mit 30 mg (353 μ mol, 1.2 Äq.) NaHCO₃ versetzt. Nach Zugabe von 149 mg (353 μ mol, 1.2 Äq.) DMP-Reagenz wurde die Reaktionslösung 1 h unter Lichtausschluss gerührt. Die Reaktion wurde durch Zugabe von NaHCO₃- und Na₂S₂O₃-Lösung (1:1) beendet und mit CH₂Cl₂ verdünnt. Die Phasen wurden getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen mit NaHCO₃- und NaCl-Lösung gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach Flash-Chromatographie (PE:EE 10:1) wurden 16 mg (119 μ mol, 40%) des Aldehyds erhalten.

Der Aldehyd wurde direkt in der nachfolgenden Kupplungsreaktion eingesetzt.

(2R, 3R)-3-(tert.-Butyldimethylsiloxy)-2,4-dimethyl-pent-4-enal 131

Die Darstellung erfolgte wie oben beschrieben durch Reduktion des entsprechenden Weinrebamids⁶² (**6.2**). Der quantitativ erhaltene Aldehyd wurde direkt in der nachfolgenden Kupplungsreaktion eingesetzt.

(2*S*, 5*R*)-5-(*tert*.-Butyldimethylsiloxy)-7-(4-methoxybenzyloxy)-2,4-dimethyl-hept-3enal 132

Die Synthese erfolgte aus dem entsprechenden Alkohol⁶⁸ durch DESS-MARTIN-Oxidation analog der Darstellung des Aldeyhds **109**. Der Aldehyd wurde in quantitativer Ausbeute erhalten und ohne weitere Reinigung in der nachfolgenden Kupplungsreaktion eingesetzt.

(2*S*, 4*S*, 5*S*, 6*R*)-7-(*tert*.-Butyldiphenylsiloxy)-5-methoxymethyl-2,6-dimethyl-heptan-1,4-diol 220

10 mg (17 µmol, 1.0 Äq.) (2*S*, 4*S*, 5*S*, 6*R*)-7-(*tert.*-Butyldiphenylsiloxy)-1-(triethylsiloxy)-5-methoxymethyl-2,6-dimethyl-heptan-4-ol⁶⁷ wurden in 0.5 mL MeOH gelöst und mit einem Tropfen TFA versetzt. Nach beendeter Reaktion wurde die Lösung durch Zugabe von NaHCO₃-Lösung neutralisiert. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinten organischen Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Chromatographie (PE:EE 5:1) wurden 4 mg (9 µmol, 50%) des Produkts als farbloses Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.66-7.62 (m, 4H, SiPh), 7.45-7.37 (m, 6H, SiPh), 4.65 (s, 2H, *CH*₂OCH₃), 3.74-3.69 (m, 1H, H-4), 3.60-3.53 (m, 4H, H-1 und H-7), 3.45-3.42 (m, 1H, H-5), 3.39 (s, 3H, CH₂OC*H*₃), 1.94-1.85 (m, 2H, H-2 und H-6), 1.57 (bs, 2H, 2 x O*H*), 1.47-1.32 (m, 2H, H-3), 1.05 (s, 9H, Si'Bu), 0.95 (d, *J* = 6.8 Hz, 3H, H-8), 0.74 (d, *J* = 6.8 Hz, 3H, H-9) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 135.7 (t, C_{aromat}), 135.7 (t, C_{aromat}), 133.5 (q, C_{aromat}), 133.5 (q, C_{aromat}), 129.9 (t, C_{aromat}), 127.8 (t, C_{aromat}), 98.9 (s, *C*H₂OCH₃), 85.9 (t, C-5), 70.5 (t, C-4), 69.1 (s, C-1), 65.5 (s, C-7), 56.0 (p, CH₂OCH₃), 38.5 (s, C-3), 37.3 (t, C-6), 34.7 (t, C-2), 27.0 (p, Si'Bu), 19.3 (p, Si'Bu), 18.2 (p, C-8), 10.4 (p, C-9) ppm; <u>HRMS:</u> *m/z* für C₂₇H₄₂O₅SiNa [M+Na]⁺: ber. 474.2802 gef. 474.2811; [α]²⁰_p = +1.1° (*c* 0.4, CH₂Cl₂).

(2*S*, 4*S*, 5*S*, 6*R*)-7-(*tert*.-Butyldiphenylsiloxy)-5-methoxymethyl-2,6-dimethyl-4-oxoheptanal 128

Aldehyd **128** wurde wie oben beschrieben durch DESS-MARTIN-Oxidation dargestellt und ohne weitere Reinigung direkt in der nächsten Reaktion eingesetzt.

(rac)-3-Buten-2-methylcarbonat 59

1.0 g (13.87 mmol, 1.0 Äq.) 3-Buten-2-ol wurden unter Argonatmosphäre in 25 mL trockenem CH_2Cl_2 gelöst und auf 0°C gekühlt. Nach Zugabe von 1.36 mL (16.64 mmol, 1.2 Äq.) trockenem Pyridin und 0.34 g (2.774 mmol, 0.2 Äq.) DMAP wurde die Lösung tropfenweise mit 1.44 mL (18.03 mmol, 1.3 Äq.) Chlorameisensäuremethylester versetzt und anschließend auf Raumtemperatur erwärmt. Die Reaktion wurde nach 4 h durch Zugabe von 1N KHSO₄-Lösung beendet und die Phasen wurden getrennt. Die wässrige Phase wurde mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen über Na_2SO_4 getrocknet und im Vakuum eingeengt. Nach Flash-Chromatogaphie (Pentan:Et₂O 10:1) wurden 755 mg (5.801 mmol, 42%) des Produkts als hellgelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.87 (ddd, *J* = 17.2, 10.7, 4.6 Hz, 1H, H-3), 5.29 (dq, *J* = 6.8, 4.6 Hz, 1H, H-2), 5.17 (dd, *J* = 17.2, 10.7 Hz, 2H, H-4), 3.77 (s, 3H, H-6), 1.37 (d, *J* = 6.8 Hz, 3H, H-1) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 155.2 (q, C-5), 137.2 (s, C-4), 116.6 (t, C-3), 75.3 (t, C-2), 54.7 (p, C-6), 20.1 (p, C-1) ppm; **HRMS:** Aufgrund der Molekülmasse erbrachte die massenspektroskopische Untersuchung kein eindeutiges Ergebnis.

(rac)-3-Buten-2-methylacetat 54

5.0 g (69.33 mmol, 1.0 Äq.) 3-Buten-2-ol wurden unter Argonatmosphäre in 157 mL trockenem CH_2Cl_2 gelöst und auf 0°C gekühlt. Anschließend wurden 5.4 mL (76.27 mmol, 1.1 Äq.) trockenes Pyridin zugegeben und die Reaktionslösung langsam mit 6.0 mL (74.18 mmol, 1.07 Äq.) Acetylchlorid versetzt. Nach 90 min. wurde die Reaktion durch

Zugabe von 40 mL Wasser beendet und die Phasen wurden getrennt. Die organische Phase wurde mit NaCl-Lösung und Wasser gewaschen, über Na₂SO₄ getrocknet und im Vakuum eingeengt. Es wurden 7.8 g (68.34 mmol, 99%) des Produkts als hellgelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.82 (ddd, J = 17.2, 10.6, 6.2 Hz, 1H, H-3), 5.32 (dq, J = 6.6, 6.2 Hz, 1H, H-2), 5.22 (d, J = 17.2 Hz, 1H, H-4a), 5.12 (d, J = 10.6 Hz, 1H, H-4b), 2.04 (s, 3H, H-6), 1.29 (d, J = 6.6 Hz, 3H, H-1) ppm; ¹³<u>C-NMR</u> (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 170.4 (q, C-5), 137.8 (t, C-3), 115.8 (s, C-4), 71.0 (t, C-2), 21.4 (p, C-1), 20.0 (p, C-6) ppm.

Die analytischen Daten stimmen mit den Literaturdaten überein.⁹⁶

(4S, E)-1-Acetoxy-5-(tert.-Butyldiphenylsiloxy)-2,4-dimethyl-pent-2-en 122

Aco
$$\begin{array}{c} 1 \\ 2 \\ 6 \end{array} \begin{array}{c} 3 \\ 4 \\ 0 \\ 7 \end{array}$$
 OTBDPS

Das Acetat wurde analog der obigen Vorschrift aus (4S, E)-5-(*tert*.-Butyldiphenylsiloxy)-2,4-dimethyl-pent-2-en-1-ol⁶⁷ dargestellt. Es wurden 547 mg (1.32 mmol, 78%) des Produkts als farbloses Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.67-7.64 (m, 4H, Ph), 7.44-7.34 (m, 6H, Ph), 5.24 (dq, *J* = 9.2, 1.4 Hz, 1H, H-3), 4.42 (s, 2H, H-1), 3.48 (d, *J* = 6.4 Hz, 2H, H-5), 2.64 (dtq, *J* = 9.2, 6.5, 6.4 Hz, 1H, H-4), 2.05 (s, 3H, OAc), 1.61 (d, *J* = 1.4 Hz, 3H, H-6), 1.04 (s, 9H, Si'Bu), 0.99 (d, *J* = 6.5 Hz, 3H, H-7) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 171.0 (q, OAc), 135.8 (t, Ph), 135.7 (t, Ph), 134.1 (q, Ph), 134.0 (q, Ph), 132.5 (t, C-3), 130.5 (q, C-2), 129.7 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 70.2 (s, C-1), 68.4 (s, C-5), 35.3 (t, C-4), 26.9 (p, Si'Bu), 21.1 (p, OAc), 19.4 (q, Si'Bu), 17.1 (p, C-7), 14.3 (p, C-6) ppm; **HRMS:** *m/z* für C₂₅H₃₄O₃NaSi [M+Na]⁺: ber. 433.2175 gef. 433.2177.

(rac)-(E)-4,4-Dimethyl-5-oxiranyl-pent-2-en-acetat 123

Das Acetat wurde analog der obigen Vorschrift aus (rac)-(E)-4,4-Dimethyl-5-oxiranylpent-2-en-1-ol⁹⁷ dargestellt. Es wurden 29 mg (147 µmol, quant.) des Produkts als hellgelbes Öl erhalten.

⁹⁶ Potuzak, J. S.; Moilanen, S. B. J. Am. Chem. Soc. 2005, 127, 13796-13797.

⁹⁷ Der Allylalkohol wurde von RICHARD DEHN zur Verfügung gestellt: Dehn, R. *Dissertation*, Leibniz Universität Hannover, **2010**.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.78 (d, J = 15.7 Hz, 1H, H-3), 5.53 (dt, J = 15.7, 6.4 Hz, 1H, H-2), 4.54 (d, J = 6.4 Hz, 2H, H-1), 2.89 (dddd, J = 5.5, 5.1, 2.8, 2.1 Hz, 1H, H-6), 2.72 (dd, J = 5.1, 3.5 Hz, 1H, H-7a), 2.39 (dd, J = 5.5, 3.5 Hz, 1H, H-7b), 2.06 (s, 3H, OAc), 1.52 (d, J = 2.8 Hz, 2H, H-5a), 1.51 (d, J = 2.1 Hz, 1H, H-5b), 1.12 (s, 3H, H-8), 1.10 (s, 3H, H-8) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 170.9 (q, OAc), 144.8 (t, C-3), 120.8 (t, C-2), 65.4 (s, C-1), 49.5 (t, C-6), 46.9 (s, C-7), 45.4 (s, C-5), 36.0 (q, C-4), 27.7 (p, C-8), 27.0 (p, C-8), 21.1 (p, OAc) ppm; <u>HRMS:</u> *m/z* für C₁₁H₁₈O₃Na [M+Na]⁺: ber. 221.1154 gef. 221.1163.

5-[(3-*tert*.-Butoxycarbonylamino)-5-(*tert*.-butyldiphenylsiloxy)-phenyl]-4-methylpent-2-enylacetat 126

Das Acetat wurde analog der obigen Vorschrift aus dem entsprechenden Allylalkohol **191** (siehe, Kapitel 6.4.2) dargestellt. Es wurden 198 mg (0.336 mmol, 97%) des Produkts als farbloses Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 4H, SiPh), 7.43-7.33 (m, 6H, SiPh), 5.57 (dd, *J* = 15.3, 6.6 Hz, 1H, H-3), 5.35 (dt, *J* = 15.3, 6.4 Hz, 1H, H-2), 4.41 (d, *J* = 6.4 Hz, 2H, H-1), 2.44-2.37 (m, 1H, H-5a), 2.20-2.10 (m, 2H, H-5b und H-4), 2.04 (s, 3H, OAc), 1.48 (s, 9H, 'Bu), 1.07 (s, 9H, Si'Bu), 0.74 (d, *J* = 6.4 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 171.0 (q, OAc), 155.9 (q, C_{aromat}), 152.6 (q, C_{aromat}), 142.1 (q, C_{aromat}), 141.2 (t, C-3), 139.0 (q, C_{aromat}), 135.6 (t, C_{aromat}), 133.0 (q, C_{aromat}), 129.9 (t, C_{aromat}), 127.8 (t, C_{aromat}), 122.2 (t, C-2), 115.4 (t, C_{aromat}), 112.2 (t, C_{aromat}), 107.7 (t, C_{aromat}), 80.4 (q, 'Bu), 65.4 (s, C-1), 43.0 (s, C-5), 37.6 (t, C-4), 28.4 (p, 'Bu), 26.6 (p, Si 'Bu), 21.1 (p, OAc), 19.5 (p, C-6), 19.0 (q, Si'Bu) ppm; <u>HRMS:</u> *m/z* für C₃₅H₄₆NO₅Si [M + H]⁺: ber. 588.3145 gef. 588.3139; [α]_D²⁰ = -13.3° (*c* 1.2, CH₂Cl₂).

6.4 Palladium-katalysierte Umpolungsreaktionen

6.4.1 Allgemeine Vorschrift der Pd-katalysierten Umpolung mit Diethylzink unter Verwendung achiraler Liganden

3 mg (14 µmol, 0.1 Äq.) Palladium(II)acetat wurden unter Argonatmosphäre in 0.4 mL trockenem, entgasten THF gelöst, tropfenweise mit 14 µL (55 µmol, 0.4 Äq.) *n*-Bu₃P versetzt und 30 min. unter Lichtausschluss bei Raumtemperatur gerührt. Die Katalysator-Lösung wurde auf 0°C gekühlt und tropfenweise mit dem entsprechenden Allylcarbonat oder Allylacetat (151 µmol, 1.1 Äq.) in absolutem, trockenen THF versetzt. Nach 5 min. wurden 0.43 mL (438 µmol, 3.2 Äq.) Diethylzink-Lösung zugetropft und die Reaktionslösung 30 min. bei 0°C gerührt. Anschließend wurde der jeweilige Aldehyd (137 µmol, 1.0 Äq.) zugegeben und die Lösung über Nacht unter Rühren auf Raumtemperatur erwärmt. Die Reaktion wurde durch die tropfenweise Zugabe von NH₄Cl-Lösung beendet und für1 h gerührt. Anschließend wurden die Phasen getrennt, die wässrige Phase mit Ether extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach Reinigung durch Flash-Chromatographie wurden die entsprechenden Produkte erhalten.

6.4.2 Allgemeine Vorschrift der Pd-katalysierten Umpolung mit Diethylzink unter Verwendung chiraler Liganden

5 mg (14 µmol, 0.1 Äq.) Allylpalladiumchlorid-Dimer wurden unter Argonatmosphäre in 0.4 mL trockenem, entgasten THF gelöst, mit dem jeweiligen chiralen Liganden (55 µmol, 0.4 Äq.) versetzt und 2 h bei Raumtemperatur unter Lichtausschluss gerührt. Anschließend wurde die Katalysator-Lösung auf 0°C gekühlt und mit den entsprechenden Allylcarbonaten (151 µmol, 1.1 Äq.) und Diethylzink-Lösung (438 µmol, 1.0 M, 3.2 Äq.) versetzt. Nach 30 min. wurde Cyclohexylcarbaldehyd (137 µmol, 1.0 Äq.) zugegeben und die Reaktionslösung über Nacht bei Raumtemperatur gerührt. Die Reaktion wurde durch Zugabe von NH₄Cl-Lösung beendet, mit Essigester verdünnt und 1 h bei Raumtemperatur gerührt. Anschließend wurden die Phasen getrennt, die wässrige Phase mit Ether extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung wurden die entsprechenden Kupplungsprodukte erhalten.

6.4.3 Allgemeine Vorschrift der Pd-katalysierten Umpolung mit Bis(pinakol)diboronat

Prozedur A: 29 mg (28.8 μ mol, 0.1 Äq.) Pd₂(dba)₃-Chloroformaddukt wurden unter Stickstoffatmosphäre in 3 mL trockenem, entgasten DMSO gelöst und mit dem jeweiligen Aldehyd (288 μ mol, 1.0 Äq.) und dem entsprechenden Allylcarbonat oder Allylacetat (346 μ mol, 1.2 Äq.) versetzt. Nach 10 min. wurde Bis(pinakol)boronat (346 μ mol, 1.2 Äq.) zugegeben und die Lösung über Nacht bei 40°C gerührt. Nach beendeter Reaktion wurden 3 mL Wasser zugefügt und die Lösung 1 h bei Raumtemperatur gerührt. Anschließend wurde die wässrige Phase mit Ether extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und im Vakuum eingeengt. Nach Flash-Chromatographie wurden die jeweiligen Kupplungsprodukte erhalten.

Prozedur B: 29 mg (28.8 µmol, 0.1 Äq.) Pd₂(dba)₃-Chloroformaddukt wurden unter Stickstoffatmosphäre in 3 mL trockenem, entgasten DMSO gelöst und mit dem entsprechenden Allylcarbonat oder Allylacetat (346 µmol, 1.2 Äq.) versetzt. Nach 10 min. wurde Bis(pinakol)boronat (346 µmol, 1.2 Äq.) zugegeben und die Lösung 15 min. auf 40°C erwärmt. Nach Zugabe des jeweiligen Aldehyds (288 µmol, 1.0 Äq.) wurde die Reaktionslösung über Nacht bei 40°C gerührt. Nach beendeter Reaktion wurden 3 mL Wasser zugefügt und die Lösung 1 h bei Raumtemperatur gerührt. Anschließend wurde die wässrige Phase mit Ether extrahiert, die vereinigten organischen Phasen über MgSO4 getrocknet und Vakuum eingeengt. Nach Flash-Chromatographie wurden die jeweiligen im Kupplungsprodukte erhalten.

6.4.4 Allgemeine Vorschrift der Crotylierungsreaktionen nach HOFFMANN^{66a}

Der entsprechende Aldehyd (0.173 mmol, 1.0 Äq.) und (*E*)-Crotylboronsäurepinakolester (0.173 mmol, 1.0 Äq.) wurden unter Stickstoffatmosphäre in einen Kolben gegeben und 3 Tage bei Raumtemperatur gerührt. Die Reaktion wurde durch Zugabe von Triethanolamin (0.173 mmol, 1.0 Äq.) beendet, mit 1.2 mL PE/CH₂Cl₂ (1:1) verdünnt und einen Tag bei Raumtemperatur gerührt. Anschließend wurde die Lösung im Vakuum eingeengt und der Rückstand säulenchromatographisch gereinigt.

6.4.5 Allgemeiner Hinweis zur Reinigung der Kupplungsprodukte

Eine der Hauptverunreinigungen der Kupplungsprodukte sind dba-Reste, welche dem verwendeten Palladium-Katalysator entstammen. Zur besseren Abtrennbarkeit dieser Verunreinigungen wurde das Rohprodukt der Umpolungsreaktion in einigen Fällen einer

Reduktion mit DIBAL-H unterzogen. Durch anschließende säulenchromatographische Reinigung konnte so das saubere Kupplungsprodukt ohne Verluste erhalten werden.

6.4.6 Analytische Daten der Kupplungsprodukte

(1S, 2R, 3S)-3-(tert.-Butyldiphenylsiloxy)-1-cyclohexyl-2-vinylbutan-1-ol 65b

Die Darstellung erfolgte analog der Vorschrift der Diethylzink-vermittelten Umpolungsreaktion. Das Produkt wurde als hellgelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.66 (m, 4H, Ph), 7.45-7.36 (m, 6H, Ph), 6.06 (ddd, *J* = 17.4, 10.0, 2.2 Hz, 1H, H-5), 5.14 (dd, *J* = 10.0, 1.8 Hz, 1H, H-6a), 5.01 (dd, *J* = 17.4, 1.8 Hz, 1H, H-6b), 4.04 (dq, *J* = 6.1, 4.4 Hz, 1H, H-3), 3.70 (dd, *J* = 9.4, 2.0 Hz, 1H, H-1), 3.00 (d, *J* = 2.0 Hz, 1H, OH), 2.11 (ddd, *J* = 9.4, 4.4, 2.2 Hz, 1H, H-2), 2.01-1.98 (m, 1H, Cy), 1.73-1.58 (m, 4H, Cy), 1.36-1.20 (m, 5H, Cy), 1.09 (d, *J* = 6.1 Hz, 3H, H-4), 1.05 (s, 9H, Si'Bu) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 136.3 (t, Ph), 136.2 (t, Ph), 136.1 (t, C-5), 134.1 (q, Ph), 132.9 (q, Ph), 130.0 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.6 (t, Ph), 117.7 (s, C-6), 77.3 (t, Cy), 74.2 (t, C-1), 73.7 (t, C-3), 40.6 (t, C-2), 29.5 (s, Cy), 28.8 (s, Cy), 27.2 (p, Si'Bu), 26.6 (s, Cy), 26.1 (s, Cy), 26.0 (s, Cy), 21.9 (p, C-4), 19.5 (q, Si'Bu) ppm; **HRMS:** *m*/*z* [EI] für C₂₄H₃₁O₂Si [M+H]⁺: ber. 379 gef. 379; Ausbeute: 33% (*syn,anti:syn,syn* ~ 5:1).

(1R, 2R, 3S)-3-(tert.-Butyldiphenylsiloxy)-1-cyclohexyl-2-vinylbutan-1-ol 65a

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als hellgelbes Öl erhalten. ¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.74-7.66 (m, 4H, SiPh), 7.47-7.32 (m, 6H, SiPh), 6.16-6.02 (m, 1H, H-5), 5.33 (dd, *J* = 10.4, 2.1 Hz, 1H, H-6a), 5.08 (dd, *J* = 17.4, 2.1 Hz, 1H, H-6b), 4.10-4.01 (m, 1H, H-3), 3.60 (dd, *J* = 5.4, 5.4 Hz, 1H, H-1), 2.55 (s, 1H, OH), 2.02 (ddd, *J* = 9.5, 5.4, 2.3 Hz, 1H, H-2), 1.73-1.29 (m, 10H, Cy), 1.03 (s, 9H, Si^tBu), 0.94 (d, *J* = 6.1 Hz, 3H, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 136.1 (t, Ph), 136.0 (t, Ph), 134.9 (q, Ph), 134.9 (t, C-5), 134.7 (t, C-5), 134 Ph), 127.9 (t, Ph), 127.4 (t, Ph), 119.7 (s, C-6), 76.6 (t, C-1), 72.2 (t, C-3), 53.7 (t, C-2), 40.0 (t, Cy), 29.9 (s, Cy), 27.2 (s, Cy), 27.1 (s, Cy), 27.1 (p, Si'Bu), 26.5 (s, Cy), 26.1 (s, Cy), 22.6 (p, C-4), 19.4 (q, Si'Bu) ppm; **HRMS:** m/z [EI] für C₂₄H₃₁O₂Si [M+H]⁺: ber. 379 gef. 379; Ausbeute: 87% (*syn,anti:syn,syn* ~ 4:1).

(2S, 3S, 4S)-2-(tert.-Butyldiphenylsiloxy)-4-methyl-5-hexen-3-ol 110

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als farbloses Öl erhalten. ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.70- 7.68 (m, 4H, Ph), 7.45- 7.35 (m, 6H, Ph), 5.80 (ddd, J = 16.5, 10.3, 7.5 Hz, 1H, H-5), 4.96 (d, J = 10.3 Hz, 1H, H-6a), 4.93 (d, J = 16.5 Hz, 1H, H-6b), 3.85 (dq, J = 6.0, 5.5 Hz, 1H, H-2), 3.20 (ddd, J = 5.9, 5.5, 4.7 Hz, 1H, H-3), 2.51 (d, J = 4.7 Hz, 1H, H-8), 2.29 (ddq, J = 7.5, 6.9, 5.9 Hz, 1H, H-4), 1.06 (s, 9H, Si'Bu), 1.01 (d, J = 6.0 Hz, 3H, H-1), 0.97 (d, J = 6.9 Hz, 3H, H-7) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 140.3 (t, C-5), 136.0 (t, Ph), 136.0 (t, Ph), 135.4 (q, Ph), 134.3 (q, Ph), 129.9 (t, Ph), 127.8 (t, Ph), 115.0 (s, C-6), 79.5 (t, C-3), 71.1 (t, C-2), 40.5 (t, C-4), 27.2 (p, Si'Bu), 20.1 (p, C-7), 19.5 (q, Si'Bu), 17.6 (p, C-1) ppm; **HRMS**: m/z für C₁₉H₂₃O₂Si [M-'Bu]⁺: ber. 311.1462 gef. 311.1465; $[\alpha]_D^{20}$ = -5.6° (c 1.0, CH₂Cl₂); Ausbeute: 73% (*syn/anti~* 10:1).

(2S, 3R, 4R)-2-(tert.-Butyldiphenylsiloxy)-4-methyl-5-hexen-3-ol anti-110

Das Produkt wurde als farbloses Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.70- 7.63 (m, 4H, Ph), 7.46- 7.36 (m, 6H, Ph), 5.81 (ddd, J = 16.0, 9.9, 7.4 Hz, 1H, H-5), 5.05 (dd, J = 16.0, 1.8 Hz, 2H, H-6a), 5.03 (dd, J = 9.0, 1.8 Hz, 2H, H-6b), 3.91 (dq, J = 6.5, 3.2 Hz, 1H, H-2), 3.31 (ddd, J = 7.7, 3.2, 2.7 Hz, 1H, H-3), 2.34 (d, J = 2.7 Hz, 1H, H-8), 2.19 (dd, J = 7.7, 7.4 Hz, 1H, H-4), 1.11 (s, 3H, H-7), 1.07 (s, 9H, Si*t*-Bu), 0.74 (d, J = 6.5 Hz, 3H, H-1) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ = 141.3 (t, C-5), 135.9 (t, Ph), 135.9 (t, Ph), 134.1 (q, Ph), 133.7 (q, Ph), 129.9 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 114.7 (s, C-6), 78.2 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 114.7 (s, C-6), 78.2 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 114.7 (s, C-6), 78.2 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 114.7 (s, C-6), 78.2 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 114.7 (s, C-6), 78.2 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 114.7 (s, C-6), 78.2 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 114.7 (s, C-6), 78.2 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 114.7 (s, C-6), 78.2 (t, Ph), 129.8 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 114.7 (s, C-6), 78.2 (t, Ph), 129.8 (t, Ph), 127.8 (t,

C-3), 70.6 (t, C-2), 39.6 (t, C-4), 27.1 (p, Si'Bu), 19.3 (q, Si'Bu), 16.1 (p, C-7), 15.9 (p, C-1) ppm; **<u>HRMS</u>**: m/z für C₁₉H₂₃O₂Si [M-'Bu]⁺: ber. 311.1462 gef. 311.1465; $[\alpha]_D^{20} = -5.4^\circ$ (c 1.7, CH₂Cl₂); Ausbeute: 73% (*syn/anti~* 10:1).

(2S, 3S, 4S)-2-(tert.-Butyldiphenylsiloxy)-4-phenyl-5-hexen-3-ol 111

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als farbloses Öl erhalten. ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.64-7.56 (m, 4H, SiPh), 7.47-7.32 (m, 6H, SiPh), 7.15-7.11 (m, 3H, Ph), 6.81-6.79 (m, 2H, Ph), 6.03 (ddd, *J* = 17.1, 8.1, 8.0 Hz, 1H, H-5), 4.98 (dd, *J* = 17.1, 8.0 Hz, 2H, H-6), 3.86 (ddd, *J* = 9.0, 2.9, 1.4 Hz, 1H, H-3), 3.58 (dq, *J* = 6.4, 2.9 Hz, 1H, H-2), 3.18 (dd, *J* = 9.0, 8.1 Hz, 1H, H-4), 2.54 (d, *J* = 1.4 Hz, 1H, OH), 1.04 (bs, 12H, H-1 und Si'Bu) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 140.2 (q, Ph), 139.9 (t, C-5), 135.9 (t, SiPh), 135.9 (t, SiPh), 133.9 (q, SiPh), 133.6 (q, SiPh), 129.9 (t, SiPh), 129.7 (t, SiPh), 128.7 (t, Ph), 127.9 (t, SiPh), 127.8 (t, Ph), 127.6 (t, SiPh), 126.5 (t, Ph), 116.1 (s, C-6), 76.8 (t, C-3), 70.1 (t, C-2), 52.6 (t, C-4), 27.2 (p, Si'Bu), 19.2 (q, Si'Bu), 15.5 (p, C-1) ppm; **HRMS:** *m/z* für C₂₈H₃₄O₂SiNa [M+Na]⁺: ber. 453.2226 gef. 453.2218; Aubeute: 71% (*syn/anti*~ 5:1). Da beide Diastereomere nicht voneinander getrennt werden konnten, konnte kein Drehwert bestimmt werden.

(2S, 3R, 4R)-2-(tert.-Butyldiphenylsiloxy)-4-phenyl-5-hexen-3-ol anti-111

Das Produkt wurde als farbloses Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ = 7.70- 7.63 (m, 4H, Ph), 7.46- 7.36 (m, 6H, Ph), 5.82 (ddd, *J* = 16.6, 11.1, 7.4 Hz, 1H, H-5), 5.03 (dd, *J* = 16.6, 11.1 Hz, 2H, H-6), 3.90 (dq, *J* = 6.5, 3.2 Hz, 1H, H-2), 3.31 (ddd, *J* = 8.6, 3.2, 2.9 Hz, 1H, H-3), 2.35 (d, *J* = 2.9 Hz, 1H, H-8), 2.19 (dq, *J* = 8.6, 7.4 Hz, 1H, H-4), 1.11 (s, 3H, H-7), 1.07 (s, 9H, Si'Bu), 0.74 (d, *J* = 6.5 Hz, 3H, H-1) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 141.9 (q, Ph), 138.9 (t, C-5), 136.0 (t, SiPh), 135.9 (t, SiPh), 134.1 (q, SiPh), 133.3 (q, SiPh), 129.9 (t, SiPh), 129.7 (t, SiPh), 128.6 (t, SiPh), 128.3 (t, Ph), 127.8 (t, Ph), 127.6 (t, SiPh), 126.5 (t, Ph), 116.5 (s, C-6), 78.5 (t, C-3), 70.2 (t, C-2), 53.3 (t, C-4), 27.2 (p, Si^tBu),

20.8 (p, C-1), 19.4 (q, Si^tBu) ppm; <u>**HRMS**</u>: m/z für C₂₈H₃₄O₂SiNa [M+Na]⁺: ber. 453.2226 gef. 453.2218; Aubeute: 71% (*syn/anti*~ 5:1). Da beide Diastereomere nicht voneinander getrennt werden konnten, konnte kein Drehwert bestimmt werden.

(2S, 3S, 4S)- 2-(tert.-Butyldimethylsiloxy)-4-methyl-5-hexen-3-ol 112

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als hellgelbes Öl erhalten. ¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.89 (ddd, *J* = 17.1, 10.3, 8.4 Hz, 1H, H-5), 5.03 (d, *J* = 10.3 Hz, 1H, H-6a), 5.01 (d, *J* = 17.1 Hz, 1H, H-6b), 3.77 (dq, *J* = 6.0, 5.5 Hz, 1H, H-2), 3.14 (ddd, *J* = 5.5, 4.7, 4.5 Hz, 1H, H-3), 2.43 (d, *J* = 4.7 Hz, 1H, O*H*), 2.29 (ddq, *J* = 8.4, 7.2, 4.5 Hz, 1H, H-4), 1.15 (d, *J* = 6.0 Hz, 3H, H-1), 1.09 (d, *J* = 7.2 Hz, 3H, H-7), 0.90 (s, 9H, Si'Bu), 0.09 (s, 6H, 2 x SiMe) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 140.3 (t, C-5), 114.9 (s, C-6), 79.2 (t, C-3), 69.8 (t, C-2), 40.5 (t, C-4), 25.9 (p, Si'Bu), 20.3 (p, C-1), 18.1 (q, Si'Bu), 17.8 (p, C-8), -3.8 (p, SiMe), -4.7 (p, SiMe) ppm; **HRMS:** *m*/*z* für C₉H₁₉O₂Si [M-^{*i*}Bu]⁺: ber. 187.1149 gef. 187.1155; [α]²⁰_D = -3.4° (*c* 0.8, CH₂Cl₂).

(2R, 3R, 4R)-2-Phenyl-4-methylhex-5-en-3-ol 115

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als hellgelbes Öl erhalten. ¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.43-7.39 (m, 1H, Ph), 7.35-7.29 (m, 2H, Ph), 7.23-7.19 (m, 2H, Ph), 5.83 (ddd, *J* = 17.4, 11.0, 7.2 Hz, 1H, H-5), 5.13 (d, *J* = 11.0 Hz, 1H, H-6a), 5.04 (d, *J* = 17.4 Hz, 1H, H-6b), 3.50 (ddd, *J* = 6.1, 6.1, 5.4 Hz, 1H, H-3), 2.85 (dq, *J* = 7.0, 6.1 Hz, 1H, H-2), 2.20 (ddq, *J* = 7.2, 6.8, 6.1 Hz, 1H, H-4), 1.51 (d, *J* = 5.4 Hz, 1H, OH), 1.32 (d, *J* = 7.0 Hz, 3H, H-1), 1.05 (d, *J* = 6.8 Hz, 3H, H-7) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 145.1 (q, Ph), 139.5 (t, C-5), 128.6 (t, Ph), 127.8 (t, Ph), 126.4 (t, Ph), 116.6 (s, C-6), 79.4 (t, C-3), 43.2 (t, C-2), 40.6 (t, C-4), 17.4 (p, C-7), 16.4 (p, C-1) ppm; **HRMS:** *m*/*z* für C₁₃H₁₉O [M+H]⁺: ber. 191.1430 gef. 191.0863; [α]_D²⁰ = +22.5° (*c* 1.0, CH₂Cl₂); Ausbeute: 54% (*syn/anti~* 5:1).

Die analytischen Daten stimmen mit den Literaturdaten überein.^{66a}

(2R, 3R, 3R)-2,4-Diphenylhex-5-en-3-ol 116

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als hellgelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.48-7.18 (m, 10H, Ph), 6.17 (ddd, 1H, J = 17.6, 9.9, 9.2 Hz, H-5), 5.22 (dd, 1H, J = 9.9, 1.7 Hz, H-6a), 5.09 (d, 1H, J = 17.6 Hz, H-6b), 3.99-3.94 (m, 1H, H-3), 3.32 (dd, 1H, J = 9.2, 6.8 Hz, H-4), 2.78-2.71 (m, 1H, H-2), 1.75 (d, 1H, J = 3.4 Hz, OH), 1.30 (d, 3H, J = 7.2 Hz, H-1) ppm; ¹³C NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 145.4 (q, Ph), 142.5 (q, Ph), 138.1 (t, C-5), 129.2 (t, Ph), 128.8 (t, Ph), 128.2 (t, Ph), 128.1 (t, Ph), 127.0 (t, Ph), 126.7 (t, Ph), 118.3 (p, C-6), 78.8 (t, C-3), 54.1 (t, C-4), 42.2 (t, C-2), 15.3 (p, C-1) ppm; <u>HRMS:</u> *m/z* für C₁₈H₂₁O [M+H]⁺: ber. 253.1587 gef. 253.1570; $[\alpha]_{D}^{20} = +14.6^{\circ}$ (*c* 1.0, CH₂Cl₂).

(1R, 2R, 3R)-1-(tert.-Butyldiphenylsiloxy)-3-methyl-1-phenyl-pent-4-en-2-ol 113

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als hellgelbes Öl erhalten. ¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.63-7.07 (m, 15H, Ph), 5.76 (ddd, J = 17.9, 11.0, 8.2 Hz, 1H, H-4), 4.91 (d, J = 11.0 Hz, 1H, H-5a), 4.78 (d, J = 17.9 Hz, 1H, H-5b), 4.54 (d, J = 6.7 Hz, 1H, H-1), 3.66 (ddd, J = 6.7, 3.5, 2.0 Hz, 1H, H-2), 2.80 (d, J = 2.0 Hz, 1H, H-7), 1.87 (ddq, J = 8.2, 6.7, 3.5 Hz, 1H, H-3), 1.01 (s, 9H, Si'Bu), 0.96 (d, J = 6.7 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): $\delta = 140.9$ (q, Ph), 139.1 (t, C-4), 136.1 (t, Ph), 135.9 (t, Ph), 133.7 (q, Ph), 133.0 (q, Ph), 129.8 (t, Ph), 129.6 (t, Ph), 128.1 (t, Ph), 127.8 (t, Ph), 127.7 (t, Ph), 115.6 (s, C-5), 80.7 (t, C-2), 79.7 (t, C-1), 38.8 (t, C-3), 27.1 (p, Si'Bu), 19.5 (q, Si'Bu), 18.8 (p, C-6) ppm; <u>HRMS:</u> m/zfür C₂₈H₃₄O₂SiNa [M+Na]⁺: ber. 453.2226 gef. 453.2237; $[\alpha]_D^{20} = -43.5 \circ (c 2.3, CH_2Cl_2)$; Ausbeute: 65% (*syn/anti~*7:1).

(1R, 2R, 3S)-1-(tert.-Butyldiphenylsiloxy)-1,3-diphenylpent-4-en-2-ol 114

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): 7.64-7.62 (m, 2H, Ph), 7.45-7.30 (m, 6H, Ph), 7.21-7.14 (m, 8H, Ph), 7.08-7.05 (m, 4H, Ph), 6.17 (ddd, J = 17.3, 9.8, 9.4 Hz, 1H, H-4), 5.08 (dd, J = 9.8, 1.5 Hz, 1H, H-5a), 4.87 (dd, J = 17.3, 1.5 Hz, 1H, H-5b), 4.61 (d, J = 7.9 Hz, 1H, H-1), 4.07-4.03 (m, 1H, H-2), 3.03 (dd, J = 9.4, 3.1 Hz, 1H, H-3), 3.00 (d, J = 3.1 Hz, 1H, OH), 1.00 (s, 9H, Si'Bu) ppm; ¹³C NMR (100 MHz, CDCl₃) δ : 143.1 (q, Ph), 141.1 (q, Ph), 136.9 (t, C-4), 136.4 (t, Ph), 136.2 (t, Ph), 133.8 (q, Ph), 133.1 (q, Ph), 130.1 (t, Ph), 129.9 (t, Ph), 128.6 (t, Ph), 128.5 (t, Ph), 128.3 (t, Ph), 128.2 (t, Ph), 128.1 (t, Ph), 127.9 (t, Ph), 127.6 (t, Ph), 126.6 (t, Ph), 117.8 (s, C-5), 79.5 (t, C-2), 78.1 (t, C-1), 50.8 (t, C-3), 27.3 (p, Si'Bu), 19.7 (q, Si'Bu) ppm; **HRMS:** m/z für C₃₃H₃₆O₂Si₁Na [M+Na]⁺ : ber. 515.2392 gef. 515.2382; $[\alpha]_{D}^{20} = -21.3^{\circ}$ (c 1.0, CH₂Cl₂).

(2S, 3S, 4S)-2-(Benzyloxy)-4-methyl-5-hexen-3-ol 221

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als farbloses Öl erhalten. ¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.37-7.28 (m, 5H, Ph), 5.86 (ddd, J = 16.9, 10.9, 7.5 Hz, 1H, H-5), 5.03 (dd, J = 16.9, 10.9 Hz, 2H, H-6), 4.66 (d, J = 11.2 Hz, 1H, CH₂Ph), 4.41 (d, J = 11.2 Hz, 1H, CH₂Ph), 3.49 (dq, J = 6.1, 5.1 Hz, 1H, H-2), 3.30 (ddd, J = 5.1, 4.6, 3.0 Hz, 1H, H-3), 2.54 (d, J = 3.0 Hz, 1H, H-8), 2.36 (ddq, J = 7.5, 6.8, 4.6 Hz, 1H, H-4), 1.20 (d, J = 6.1 Hz, 3H, H-1), 1.08 (d, J = 6.8 Hz, 3H, H-7) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 139.9 (t, C-5), 138.5 (q, Ph), 128.5 (t, Ph), 127.9 (t, Ph), 127.8 (t, Ph), 115.3 (s, C-6), 78.3 (t, C-3), 76.7 (t, C-2), 71.0 (s, CH₂Ph), 40.4 (t, C-4), 17.8 (p, C-7), 15.5 (p, C-1) ppm; <u>HRMS:</u> m/z für C₁₄H₂₀O₂Na [M + Na]⁺: ber. 243.1361 gef. 243.1365; $[\alpha]_{D}^{20} = +16.5$ ° (c 1.2, CH₂Cl₂); Ausbeute: 79% (*syn/anti*~ 3:1).

Die analytischen Daten stimmen mit den Literaturdaten überein.^{66a,98}

⁹⁸ S. F. Martin; W. Li J. Org. Chem. 1989, 54, 6129-6133.
(2S, 3S, 4S)-2-(Benzyloxy)-4-methyl-5-hexen-3-ol anti-221

Das Produkt wurde als farbloses Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.37-7.27 (m, 5H, Ph), 5.86 (ddd, J = 16.8, 11.0, 7.5 Hz, 1H, H-5), 5.10 (dd, J = 16.8, 11.0 Hz, 2H, H-6), 4.61 (d, J = 11.6 Hz, 1H, CH₂Ph), 4.49 (d, J = 11.6 Hz, 1H, CH₂Ph), 3.60-3.51 (m, 2H, H-2 + H-3), 2.42 (dq, J = 7.5, 6.8 Hz, 1H, H-4), 1.98 (s, 1H, H-8), 1.22 (d, J = 6.1 Hz, 3H, H-1), 0.99 (d, J = 6.8 Hz, 3H, H-7) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 140.6 (t, C-5), 138.6 (q, Ph), 128.5 (t, Ph), 127.8 (t, Ph), 115.5 (s, C-6), 76.5 (t, C-3), 75.8 (t, C-2), 70.7 (s, CH₂Ph), 39.6 (t, C-4), 16.5 (p, C-7), 13.8 (p, C-1) ppm; **HRMS:** *m*/*z* für C₁₄H₂₀O₂Na [M + Na]⁺: ber. 243.1361 gef. 243.1365; $[\alpha]_D^{20} = +8.8^{\circ}$ (*c* 1.2, CHCl₃); Ausbeute: 79% (*syn/anti*~ 3:1). Die analytischen Daten stimmen mit den Literaturdaten überein.^{66a}

(3R, 4R, 5S, 6R)-6-(tert.-Butyldimethylsiloxy)-3,5,7-trimethylocta-1,7-dien-4-ol 134

Die Darstellung erfolgte analog Prozedur A. Das Produkt wurde als farbloses Öl erhalten. ¹<u>H NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.72 (ddd, 1H, *J* = 17.1, 9.6, 9.3 Hz, H-2), 5.11 (d, 1H, *J* = 17.1 Hz, H-1a), 5.09 (d, 1H, *J* = 9.67 Hz, H-1b), 4.93 (s, 1H, H-8a), 4.87 (s, 1H, H-8b), 4.07 (d, 1H, *J* = 7.9 Hz, H-6), 3.22 (m, 1H, H-4), 2.90 (bs, 1H, OH), 2.29-2.23 (m, 1H, H-3), 1.77-1.73 (m, 1H, H-5), 1.66 (s, 3H, H-11), 0.94-0.90 (m, 15H, H-9, H-10 und Si^{*t*}Bu), 0.07 (s, 6H, SiMe₂); ¹³<u>C NMR</u> (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 146.1 (q, C-7), 142.1 (t, C-2), 116.1 (s, C-1), 113.2 (s, C-8), 80.3 (q, C-7), 75.0 (t, C-4), 42.5 (t, C-5), 38.0 (t, C-3), 26.1 (p, Si^{*t*}Bu), 18.4 (q, Si^{*t*}Bu), 17.5 (p, C-11), 16.7 (p, C-10), 8.1 (p, C-9), -4.4 (p, SiMe), -4.9 (p, SiMe); <u>HRMS</u>: *m*/*z* für C₁₇H₃₄O₂SiNa [M+Na]⁺: ber. 321.2226 gef. 321.2226; $[\alpha]_{p}^{20}$ = -4.1° (*c* 1.6, CH₂Cl₂); Ausbeute: 60% (*syn/anti*~ 12:1). (2*R*)-2-[3-(*tert*.-Butyldiphenylsiloxy)-5-(*tert*.-butoxycarbonylamino)-benzyl]-3cyclohexylhydroxymethylpent-4-en 133

Die Darstellung erfolgte analog Prozedur B. Das Produkt wurde als gelbes Öl erhalten. Aufgrund des Verunreinigungsgrads und der geringen Menge, konnten keine ausreichend sauberen NMR-Spektren erhalten werden, die eine genaue Zuordnung der einzelnen Signale ermöglicht hätten, so dass auch das Diastereomerenverhältnis nicht ermittelt werden konnte. **HRMS:** m/z für C₄₀H₅₅NO₄NaSi [M+Na]⁺: ber. 664.3798 gef. 664.3797.

(3*S*, 4*S*, 5*S*, 8*R*)-8-(*tert*.-Butyldimethylsiloxy)-10-(4-methoxybenzyloxy)-3,5,7trimethyl-deca-1,6-dien-4-ol 135

Die Darstellung erfolgte analog Prozedur B. Das Produkt wurde als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.26-7.24 (m, 2H, ArH), 6.88-6.86 (m, 2H, ArH), 5.79 (ddd, *J* = 17.2, 10.3, 7.2 Hz, 1H, H-2), 5.20 (d, *J* = 9.8 Hz, 1H, H-6), 5.09 (dd, *J* = 17.2, 10.3 Hz, 2H, H-1), 4.42 (d, *J* = 11.4 Hz, 1H, CH₂PMB), 4.36 (d, *J* = 11.4 Hz, 1H, CH₂PMB), 4.13 (dd, *J* = 7.3, 5.6 Hz, 1H, H-8), 3.80 (s, 3H, OMe), 3.49-3.38 (m, 2H, H-10), 3.19-3.15 (m, 1H, H-4), 2.46 (ddq, *J* = 9.8, 6.9, 6.4 Hz, 1H, H-5), 2.36 (ddq, *J* = 7.2, 7.0, 4.4 Hz, 1H, H-3), 1.80-1.70 (m, 2H, H-9), 1.55 (s, 3H, H-13), 1.38 (d, *J* = 6.1 Hz, 1H, OH), 1.06 (d, *J* = 7.0 Hz, 3H, H-11), 0.94 (d, *J* = 6.4 Hz, 3H, H-12), 0.87 (s, 9H, Si'Bu), 0.02 (s, 3H, SiMe), -0.01 (s, 3H, SiMe) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 159.2 (q, C_{aromat}.), 139.4 (t, C-2), 137.3 (q, C-7), 130.8 (q, C_{aromat}.), 129.4 (t, C_{aromat}.), 128.1 (t, C-6), 116.5 (s, C-1), 113.8 (t, C_{aromat}.), 79.2 (t, C-4), 75.1 (t, C-8), 72.8 (s, CH₂PMB), 67.1 (s, C-10), 55.4 (p, OMe), 40.8 (t, C-5), 36.8 (s, C-9), 36.0 (t, C-3), 25.9 (p, Si'Bu), 18.3 (q, Si'Bu), 17.4 (p, C-11), 16.2 (p, C-12), 11.7 (p, C-13), -4-4 (p, SiMe), -4.9 (p, SiMe) ppm; **HRMS:** *m/z* für C₂₇H₄₆O₄SiNa [M + Na]⁺: ber. 485.3063 gef. 485.3052; [α]²⁰ = -4.3° (c 0.3, CH₂Cl₂); Ausbeute: 57% (*synlanti~* 1.5:1).

(3R, 4R, 5S, 8R)-8-(tert.-Butyldimethylsiloxy)-10-(4-methoxybenzyloxy)-3,5,7-

trimethyl-deca-1,6-dien-4-ol anti-135

Das Produkt wurde als gelbes Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.26-7.24 (m, 2H, ArH), 6.88-6.86 (m, 2H, ArH), 5.80 (ddd, *J* = 17.1, 10.4, 8.8 Hz, 1H, H-2), 5.31 (d, *J* = 9.8 Hz, 1H, H-6), 5.09 (dd, *J* = 17.1, 10.4 Hz, 2H, H-1), 4.42 (d, *J* = 11.4 Hz, 1H, CH₂PMB), 4.37 (d, *J* = 11.4 Hz, 1H, CH₂PMB), 4.17 (dd, *J* = 5.4, 5.1 Hz, 1H, H-8), 3.80 (s, 3H, OMe), 3.50-3.36 (m, 2H, H-10), 3.16 (ddd, *J* = 4.4, 2.3, 2.0 Hz, 1H, H-4), 2.52 (ddq, *J* = 9.8, 6.6, 4.4 Hz, 1H, H-5), 2.31-2.21 (m, 1H, H-3), 1.86-1.68 (m, 2H, H-9), 1.65 (d, *J* = 2.3 Hz, 1H, OH), 1.66 (s, 3H, H-13), 1.03 (d, *J* = 6.8 Hz, 3H, H-11), 0.93 (d, *J* = 6.6 Hz, 3H, H-12), 0.86 (s, 9H, Si'Bu), 0.03 (s, 3H, SiMe), -0.00 (s, 3H, SiMe) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 159.2 (q, C_{aromat.}), 140.6 (t, C-2), 139.6 (q, C-7), 130.8 (q, C_{aromat.}), 129.4 (t, C_{aromat.}), 126.6 (t, C-6), 116.0 (s, C-1), 113.8 (t, C_{aromat.}), 78.4 (t, C-4), 75.2 (t, C-8), 72.8 (s, CH₂PMB), 67.0 (s, C-10), 55.4 (p, OMe), 41.8 (t, C-3), 36.8 (s, C-9), 35.4 (t, C-5), 25.9 (p, Si'Bu), 19.1 (q, Si'Bu), 18.3 (p, C-11), 17.6 (p, C-12), 11.7 (p, C-13), -4.4 (p, SiMe), -4.9 (p, SiMe) ppm; **HRMS:** *m/z* für C₂₇H₄₆O₄SiNa [M + Na]⁺: ber. 485.3063 gef. 485.3052; Ausbeute: 57% (*syn/anti~* 1.5:1).

6.4.7 Strukturaufklärung der Kupplungsprodukte

(2S, 3S, 4S)-tert.-Butyldiphenylsiloxy-3-methoxy-4-methyl-hex-5-en 138

13 mg (326 µmol, 60%ige Suspension in Mineralöl, 1.5 Äq.) Natriumhydrid wurden unter Argonsatmosphäre in 0.8 mL trockenem THF suspendiert und auf 0°C gekühlt. Anschließend wurden 80 mg (217 µmol, 1.0 Äq.) Alkohol **110** in 0.8 mL trockenem THF zugetropft. Nach 15 min. bei 0°C wurden 41 µL (434 µmol, 2.0 Äq.) Dimethylsulfat zugetropft und die Reaktionslösung auf Raumtempertaur erwärmt. Nach Beendigung der Reaktion durch Zugabe von NH₄Cl-Lösung wurde die wässrige Phase mit CH₂Cl₂ extrahiert. Die vereinten organischen Phasen wurden über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Chromatographie (PE:EE 10:1) wurden 71 mg (174 µmol, 86%) des Produkts **138** als farbloses Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.74-7.67 (m, 4H, Ph), 7.44-7.35 (m, 6H, Ph), 5.87 (ddd, *J* = 16.4, 9.4, 7.3 Hz, 1H, H-5), 4.98 (d, *J* = 16.4 Hz, 1H, H-6a), 4.94 (d, *J* = 9.4 Hz, 1H, H-6b), 3.95 (dq, *J* = 6.1, 5.5 Hz, 1H, H-2), 3.28 (s, 3H, H-8), 2.81 (dd, *J* = 5.9, 5.5 Hz, 1H, H-3), 2.50 (ddq, *J* = 7.3, 6.8, 5.9 Hz, 1H, H-4), 1.08 (d, *J* = 6.8 Hz, 3H, H-7), 1.06 (s, 9H, Si'Bu), 0.99 (d, *J* = 6.1 Hz, 3H, H-1) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 141.5 (t, C-5), 136.1 (t, Ph), 135.6 (t, Ph), 134.9 (q, Ph), 134.1 (q, Ph), 129.7 (t, Ph), 129.3 (t, Ph), 127.8 (t, Ph), 114.0 (s, C-6), 88.9 (t, C-3), 70.5 (t, C-2), 60.2 (p, C-8), 39.0 (t, C-4), 27.1 (p, Si'Bu), 19.3 (q, Si'Bu), 18.9 (p, C-1), 18.3 (p, C-7) ppm; **HRMS:** *m/z* für C₂₄H₃₄O₂SiNa [M+Na]⁺: ber. 405.2226 gef. 405.2244; [α]²⁰_D = -13.3 (*c* 1.2, CH₂Cl₂).

(5S, 4S, 3S)-5-(tert.-Butyldiphenylsiloxy)-4-methoxy-3-methylhexan-1-ol 139

7 mg (18 μ mol, 1.0 Äq.) Alken **138** wurden unter Stickstoffatmosphäre in 0.2 mL trockenem THF gelöst und auf 0°C gekühlt. Anschließend wurde 1 Tropfen BH₃*SMe₂ zugegeben. Nach 30 min. bei 0°C wurde die Reaktionslösung auf Raumtemperatur erwärmt und weitere 2 h gerührt. Abschließend wurde die Reaktion durch Zugabe von 30 μ L NaOH (2 M) und 20 μ L H₂O₂ (30%ig) beendet und über Nacht gerührt. Nach Trennung der Phasen wurde die wässrige Phase mit CH₂Cl₂ extrahiert, über MgSO₄ getrocknet und im Vakuum eingeengt. Die anschließende säulenchromatographische Reinigung lieferte 2 mg (5 μ mol, 26%) des primären Alkohols **139**.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.73-7.69 (m, 4H, SiPh), 7.44-7.35 (m, 6H, SiPh), 4.03 (dq, J = 6.6, 4.9 Hz, 1H, H-5), 3.71-3.66 (m, 1H, H-1a), 3.59-3.53 (m, 1H, H-1b), 3.28 (s, 3H, OMe), 2.79 (dd, J = 6.4, 4.9 Hz, 1H, H-4), 2.29 (bs, 1H, OH), 1.93-1.87 (m, 1H, H-3), 1.72-1.63 (m, 1H, H-2a), 1.50-1.42 (m, 1H, H-2b), 1.06 (s, 9H, Si'Bu), 1.04 (d, J = 6.6 Hz, 3H, H-6), 1.01 (d, J = 6.4 Hz, 3H, H-7) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 136.1 (t, Ph), 134.8 (q, Ph), 134.1 (q, Ph), 129.8 (t, Ph), 129.6 (t, Ph), 127.7 (t, Ph), 127.6 (t, Ph), 89.6 (t, C-4), 70.2 (t, C-5), 60.7 (s, C-1), 60.1 (p, OMe), 35.9 (s, C-2), 31.8 (t, C-3), 27.2 (p, Si'Bu), 19.4 (q, Si'Bu), 18.9 (p, C-1), 17.9 (p, C-7) ppm; **HRMS:** m/z für C₂₄H₃₆O₃SiNa [M+Na]⁺: ber. 423.2326 gef. 423.2433.

(2S, 3R, 4R)- 4-Methyl-hex-5-en-2,3-diol 142

16 mg (43 µmol, 1.0 Äq.) Silylether *anti*-**110** wurden in THF gelöst und auf 0°C gekühlt. Anschließend wurden 21 mg (65 µmol, 1.5 Äq.) TBAF in THF zugetropft und die Reaktionslösung über Nacht bei Raumtemperatur gerührt. Nach Zugabe von NH₄Cl-Lösung wurden die Phasen getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und im Vakuum eingeengt. Nach Flash-Chromatographie (PE:EE 10:1 \rightarrow EE) wurden 3 mg (23 µmol, 54%) des Produkts als hellgelbes Öl erhalten.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.82 (ddd, *J* = 16.0, 10.4, 7.9 Hz, 1H, H-5), 5.15 (dd, *J* = 16.0, 10.4 Hz, 2H, H-6), 3.89-3.83 (m, 1H, H-2), 3.39 (dd, *J* = 7.2, 3.7 Hz, 1H, H-3), 2.32 (ddq, *J* = 7.9, 7.2, 6.8 Hz, 1H, H-4), 1.90 (bs, 2H, H-8), 1.20 (d, *J* = 6.4 Hz, 3H, H-1), 1.02 (d, *J* = 6.8 Hz, 3H, H-7) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 140.8 (t, C-5), 116.4 (s, C-6), 77.6 (t, C-3), 68.7 (t, C-2), 40.9 (t, C-4), 17.0 (p, C-7), 16.5 (p, C-1) ppm; **HRMS:** *m*/*z* [EI] für C₆H₉ [M-CO₂H₅]³⁺ : ber. 81.0688 gef. 81.0492; $[\alpha]_D^{20} = -0.6^{\circ}$ (*c* 0.3, CH₂Cl₂).

(2S, 3R, 4R)-2,3-Diacetoxy-4-methyl-hex-5-en 143

$$\begin{array}{c} OAc & 7 \\ \hline 1 & 2 & 4 \\ OAc & 5 \end{array}$$

2 mg (15 µmol, 1.0 Äq.) Diol **142** wurden unter Stickstoffatmosphäre in Essigester gelöst und auf 0°C gekühlt. Anschließend wurden nacheinander 4 mg (34 µmol, 2.2 Äq.) 4-DMAP und 4 mg (38 µmol, 2.5 Äq.) Acetanhydrid zugegeben und die Reaktionslösung auf Raumtemperatur erwärmt. Nach beendeter Reaktion wurden ein Tropfen Ethanol und 0.1 mL Wasser zugegeben und mit CH₂Cl₂ verdünnt. Die Phasen wurden getrennt und die wässrige Phase wurde mit CH₂Cl₂ extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung wurden 2 mg (9.33 µmol, 62%) des Produkts als farbloses Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 5.68 (ddd, *J* = 17.7, 9.5, 8.5 Hz, 1H, H-5), 5.04-4.95 (m, 4H, H-6, H-3 und H-2), 2.43 (dq, *J* = 7.1, 8.1 Hz, 1H, H-4), 2.07 (s, 3H, OAc),

2.01 (s, 3H, OAc), 1.20 (d, J = 6.4 Hz, 3H, H-1), 1.02 (d, J = 7.1 Hz, 3H, H-7) ppm; $\frac{13}{C}$ -<u>NMR</u> (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 170.6 (q, OAc), 170.3 (q, OAc), 139.3 (t, C-5), 115.8 (s, C-6), 76.6 (t, C-3), 69.5 (t, C-2), 39.6 (t, C-4), 21.3 (p, OAc), 21.0 (p, OAc), 16.9 (p, C-7), 14.7 (p, C-1) ppm; <u>HRMS</u>: m/z für C₁₁H₁₈O₄Na [M+Na]⁺: ber. 237.1103 gef. 237.1114; $[\alpha]_D^{20} = -40.0^\circ$ (c 0.2, CH₂Cl₂) [Lit.: -44.3° (c 0.87, CHCl₃)].

Die analytischen Daten stimmen mit den Literaturdaten überein.⁷³

(1R, 2R, 3R)-3-Methyl-1-phenyl-pent-4-en-1,2-diol 136

25 mg (58 µmol, 1.0 Äq.) Silylether **113** wurden in 0.6 mL THF gelöst und auf 0°C gekühlt. Anschließend wurden 27 mg (87 µmol, 1.5 Äq.) TBAF in 0.6 mL THF zugetropft und die Reaktionslösung auf Raumtemperatur erwärmt. Nach 1 h wurde die Reaktion durch Zugabe von NH₄Cl-Lösung beendet. Die Phasen wurden getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über Na₂SO₄ getrocknet und im Vakuum eingeengt. Flash-Chromatographie (PE:EE 10:1 \rightarrow EE) ergab 9 mg (46.8 µmol, 81%) des Produkts als hellgelbes Öl.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.36-7.35 (m, 4H, Ph), 7.33-7.29 (m, 1H, Ph), 5.91 (ddd, *J* = 17.3, 10.3, 7.8 Hz, 1H, H-4), 5.15 (d, *J* = 10.3 Hz, 1H, H-5a), 5.06 (d, *J* = 17.3 Hz, 1H, H-5b), 4.59 (dd, *J* = 8.2, 4.3 Hz, 1H, H-1), 3.57 (ddd, *J* = 8.2, 4.1, 4.0 Hz, 1H, H-2), 2.73 (d, *J* = 4.3 Hz, 1H, H-6), 2.37 (d, *J* = 4.0 Hz, 1H, H-7), 2.22 (ddq, *J* = 7.8, 7.0, 4.1 Hz, 1H, H-3), 1.08 (d, *J* = 7.0 Hz, 3H, H-8) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ = 141.4 (q, Ph), 139.27 (t, C-4), 128.6 (t, Ph), 128.1 (t, Ph), 126.9 (t, Ph), 116.7 (s, C-5), 79.0 (t, C-1), 75.2 (t, C-2), 39.7 (t, C-3), 17.8 (p, C-8) ppm; **HRMS**: *m/z* für C₁₂H₁₇O₂ [M+H]⁺: ber. 191.1150 gef. 191.1161; [α]_D²⁰ = -37.0° (*c* 0.6, CH₂Cl₂).

(5R, 6R, 7R)-2,3-Dimethoxy-2,3-dimethyl-5-(7-methylallyl)-6-phenyl-[1, 4]-dioxan 137

13.3 mg (69 μ mol, 1.0 Äq.) Diol **136** wurden unter Argonatmosphäre in 0.4 mL trockenem Methanol gelöst und nacheinander mit 7 mg (83 μ mol, 1.2 Äq.) 2,3-Butandion, 45 mg (428 μ mol, 6.2 Äq.) Trimethyl-*o*-formiat und 0.7 mg (2.76 μ mol, 0.04 Äq.) CSA versetzt. Anschließend wurde die Reaktionslösung über Nacht bei 35°C gerührt. Nach Abkühlen auf Raumtemperatur wurde Triethylamin zugegeben und die Lösung im Vakuum eingeengt. Der Rückstand wurde säulenchromatographisch gereinigt (PE:EE 20:1). Es wurden 8 mg (26 μ mol, 38%) des Produkts als hellgelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.41-7.39 (m, 2H, Ph), 7.36-7.30 (m, 3H, Ph), 6.00 (ddd, *J* = 17.2, 10.3, 9.0 Hz, 1H, H-8), 5.06 (d, *J* = 10.3 Hz, 1H, H-9), 4.91 (d, *J* = 17.2 Hz, 1H, H-9), 4.54 (d, *J* = 9.8 Hz, 1H, H-6), 3.71 (dd, *J* = 9.8, 2.0 Hz, 1H, H-5), 3.27(s, 3H, H-11), 3.25 (s, 3H, H-11), 1.93 (ddq, *J* = 9.0, 7.1, 2.0 Hz, 1H, H-7), 1.33 (s, 3H, H-12), 1.30 (s, 3H, H-12), 1.00 (d, *J* = 7.1 Hz, 3H, H-10) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 139.5 (t, C-8), 138.5 (q, Ph), 128.5 (t, Ph), 128.4 (t, Ph), 128.3 (q, Ph), 115.6 (t, C-9), 99.0 (q, C-2), 98.9 (q, C-3), 75.2 (t, C-5), 73.5 (t, C-6), 48.0 (p, C-11), 47.8 (p, C-11), 38.4 (t, C-7), 18.7 (p, C-10), 17.9 (p, C-12), 17.8 (p, C-12) ppm; **HRMS**: *m/z* für C₁₇H₂₃O₃ [M-OMe]⁺: ber. 275.1642 gef. 275.1762; [α]_D²⁰ = +61.7 ° (*c* 0.4, CH₂Cl₂).

Mosherester des syn, anti-Alkohols 135

3 mg (6.5 µmol, 1.0 Äq.) Alkohol **135** wurden unter Stickstoffatmosphäre in 0.6 mL trockenem CH₂Cl₂ gelöst und nacheinander mit 3 µL (19 µmol, 3.0 Äq.) Triethylamin, einer katalytischen Menge 4-DMAP und 4 µL (19 µmol, 3.0 Äq.) des jeweiligen Mosherchlorids versetzt. Nach beendeter Reaktion wurde NH₄Cl-Lösung zugegeben und die Phasen getrennt. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (PE:EE 10:1) wurde der resultierende (*R*)-Ester in quantitativer Ausbeute erhalten. Der (*S*)-Ester wurde in 94% Ausbeute erhalten.

HRMS: m/z für C₃₇H₅₃F₃O₆SiNa [M + Na]⁺: ber. 701.3461 gef. 701.3447.

	(S)-Mosherester 145	(R)-Mosherester 145	$\Delta \delta^{S,R} = (\delta_{\rm S} - \delta_{\rm R})$
	δ [ppm]	δ [ppm]	
H-2	5.65	5.70	-0.05
H-3	2.46	2.48	-0.02
H-5	2.69	2.66	+0.03
H-6	5.12	5.09	+0.03
H-8	4.11	4.10	+0.01
H-11	0.93	0.97	-0.04
H-12	0.80	0.72	+0.08

Ausgewählte ¹H-NMR-Daten:

6.5 Synthese der Verbindungen aus Kapitel 4.3

6.5.1 Synthese der EVANS-Auxiliare

(4S)-4-Benzyl-3-propionyl-2-oxazolidinon 16499

Das Oxazolidinon **164** wurde nach einer Vorschrift von ORGAN *et al.* dargestellt und in quantitativer Ausbeute erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.32-7.28 (m, 3H, Ph), 7.18-7.16 (m, 2H, Ph), 4.67-4.61 (m, 1H, H-4), 4.19-4.11 (m, 2H, H-5), 3.30 (dd, *J* = 13.3, 3.0 Hz, 1H, CH₂Ph), 3.01-2.84 (m, 2H, H-7), 2.77 (dd, *J* = 13.3, 9.5 Hz, 1H, CH₂Ph), 1.20 (t, *J* = 7.3 Hz, 3H, H-8) ppm; ¹³C-NMR (100 MHz, CDCl₃, CHCl₃ = 77.16 ppm): δ 174.2 (q, C-6), 153.6 (q, C-2), 135.4 (q, C_{aromat.}), 129.5 (t, C_{aromat.}), 129.0 (t, C_{aromat.}), 127.4 (t, C_{aromat.}), 66.3 (s, C-5), 55.3 (t, C-4), 38.0 (s, CH₂Ph), 29.3 (s, C-7), 8.4 (p, C-8) ppm; $[\alpha]_D^{20}$ = +66.6° (*c* 1.0, CH₂Cl₂) [Lit.: +93.7° (*c* 1.04, EtOH)].

Die analytischen Daten stimmen mit den Literaturdaten überein.⁹⁹

(4R)-3-Methoxyacetyl-4-benzyl-2-oxazolidinon 165

Oxazolidinon **165** wurde analog einer Vorschrift von GLEASON *et al.* synthetisiert und in einer Ausbeute von 92% erhalten.^{80b}

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.35-7.28 (m, 3H, Ph), 7.21-7.19 (m, 2H, Ph), 4.73-4.67 (m, 1H, CHBn), 4.62 (d, *J* = 4.4 Hz, 2H, CH₂-Ph), 4.31-4.22 (m, 2H, CH₂OMe), 3.51 (s, 3H, OMe), 3.32 (dd, *J* = 13.3, 3.4 Hz, 1H, CH₂O), 2.82 (dd, *J* = 13.3, 9.3 Hz, 1H, CH₂O) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 170.1 (q, COCH₂OMe), 153.5 (q, OCON), 135.0 (q, Ph), 129.5 (t, Ph), 129.1 (t, Ph), 127.5 (t, Ph), 72.3 (s, CH₂Ph), 67.4 (s, CH₂OMe), 59.6 (p, OMe), 54.8 (t, CHBn), 37.8 (s, CH₂O) ppm; **HRMS**: *m*/z für C₁₃H₁₅NO₄Na [M+Na]⁺: ber. 272.0899 gef. 272.0898; [α]_D²⁰ = -87.5° (*c* 1.0, CH₂Cl₂).

⁹⁹ M.G. Organ; Y.V. Bilokin; S. Bratovanov J. Org. Chem. 2002, 67, 5176-5183.

6.5.2 Darstellung der aromatischen Synthesebausteine

3-Methoxymethyl-5-nitrobenzoesäuremethylester 156

0.23 g (7.609 mmol, 80%ige Suspension in Mineralöl, 1.5 Åq.) NaH wurden unter Stickstoffamosphäre in 4 mL trockenem THF suspendiert und auf 0°C gekühlt. Anschließend wurden 1.0 g (5.073 mmol, 1.0 Äq.) 3-Hydroxy-5-nitro-benzoesäuremethylester **155** in 4 mL trockenem THF zu der Suspension getropft. Nach 2 h bei Raumtemperatur wurden 1.1 mL (15.22 mmol, 3.0 Äq.) MOMCl in 4 mL trockenem THF zugegeben und die Reaktion weitere 2 h bei Raumtemperatur gerührt. Daraufhin wurde das THF im Vakuum entfernt und der Rückstand in Ether und 0.1 M NaOH aufgenommen. Die wässrige Phase wurde mit Ether extrahiert, die vereinten organischen Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (PE:EE 10:1 \rightarrow 5:1) wurden 1.08 g (4.477 mmol, 88%) des Produkts als hellgelber Feststoff erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 8.49-8.48 (m, 1H, ArH), 8.06-8.05 (m, 1H, ArH), 8.00-7.99 (m, 1H, ArH), 5.28 (s, 2H, CH₂OCH₃), 3.96 (s, 3H, COOCH₃), 3.49 (CH₂OCH₃) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 164.9 (q, COOCH₃), 157.8 (q, C_{aromat.}), 149.2 (q, C_{aromat.}), 132.7 (q, C_{aromat.}), 123.2 (t, C_{aromat.}), 117.7 (t, C_{aromat.}), 115.3 (t, C_{aromat.}), 94.7 (s, CH₂OCH₃), 56.6 (p, CH₂OCH₃), 52.9 (p, COOCH₃) ppm; <u>HRMS:</u> *m/z* für C₁₀H₁₂NO₆ [M + H]⁺: ber. 242.0665 gef. 242.0661; <u>Smp.:</u> 77.4°C.

3-Methoxymethyl-5-nitrobenzylalkohol 157

Unter Stickstoffatmosphäre wurden 1.08 g (4.477 mmol, 1.0 Äq.) Methylester **156** in 12 mL trockenem THF gelöst und auf -78°C gekühlt. Anschließend wurden 13.4 mL (13.4 mmol, 1.0 M, 3.0 Äq.) DIBAL-H langsam zugetropft und die Temperatur dabei schrittweise auf -30°C erhöht. Nach beendeter Zugabe wurde die Reaktionslösung bei Raumtemperatur über Nacht gerührt. Die Reaktion wurde durch Zugabe von Essigester beendet und nach ca. 5 min. mit Kalium-Natrium-Tartrat (10%ig, aq.) und CH₂Cl₂ versetzt. Die Phasen wurden getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die

vereinigten organischen Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Chromatographie (PE:EE 2:1) wurden 869 mg (4.076 mmol, 91%) des Produkts erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.87 (s, 1H, ArH), 7.79 (s, 1H, ArH), 7.36 (s, 1H, ArH), 5.24 (s, 2H, CH₂OCH₃), 4.77 (d, J = 4.9 Hz, 1H, CH₂OH), 3.49 (s, 3H, CH₂OCH₃), 2.00 (t, J = 4.9 Hz, 1H, OH) ppm; ¹³C-NMR (100 MHz, CDCl₃, CHCl₃ = 77.16 ppm): δ 157.9 (q, C_{aromat.}), 149.3 (q, C_{aromat.}), 144.0 (q, C_{aromat.}), 120.5 (t, C_{aromat.}), 114.8 (t, C_{aromat.}), 110.3 (t, C_{aromat.}), 94.6 (s, CH₂OCH₃), 64.1 (s, CH₂OH), 56.4 (p, CH₂OCH₃) ppm; **HRMS:** [EI] *m/z* für C₉H₁₁NO₅ [M]⁺: ber. 213.0637 gef. 213.0638.

3-Methoxymethyl-5-nitrobenzylbromid 158

1.53 g (7.177 mmol, 1.0 Äq.) Benzylalkohol **157** wurden unter Stickstoffatmosphäre in 60 mL trockenem CH₂Cl₂ gelöst und nacheinander mit 2.3 g (8.612 mmol, 1.2 Äq.) Triphenylphosphan und 2.9 g (8.612 mmol, 1.2 Äq.) Tetrabrommethan versetzt. Nach beendeter Reaktion wurde das Lösungsmittel im Vakuum entfernt und der Rückstand auf Kieselgel aufgezogen. Die anschließende Flash-Chromatographie (PE:EE 5:1 → 2:1) lieferte 1.87 g (6.818 mmol, 95%) des Produkts als braunen Feststoff.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.90 (s, 1H, ArH), 7.82 (s, 1H, ArH), 7.37 (s, 1H, ArH), 5.24 (s, 2H, CH₂OCH₃), 4.48 (s, 2H, CH₂Br), 3.49 (p, 3H, CH₂OCH₃) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 158.0 (q, C_{aromat}), 149.3 (q, C_{aromat}), 140.6 (q, C_{aromat}), 123.0 (t, C_{aromat}), 117.3 (t, C_{aromat}), 111.2 (t, C_{aromat}), 94.7 (s, CH₂OCH₃), 56.5 (p, CH₂OCH₃), 31.3 (s, CH₂Br) ppm; **Smp:** 61°C.

3-Methoxymethyl-5-nitrobenzyliodid 159

1.87 g (6.773 mmol, 1.0 Äq.) Bromid **158** wurden in 29 mL Aceton gelöst, mit 1.54 g (10.16 mmol, 1.5 Äq.) Natriumiodid versetzt und 2 h bei Raumtemperatur gerührt. Nach beendeter Reaktion wurde dest. Wasser zugegeben, die Phasen getrennt, die wässrige Phase mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen mit NaCl-Lösung

gewaschen, über MgSO₄ getrocknet und im Vakuum eingeengt. Es wurden 2.16 g (6.705 mmol, 99%) des Produkts als grüner Feststoff erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.87 (s, 1H, ArH), 7.77 (s, 1H, ArH), 7.34 (s, 1H, ArH), 5.23 (s, 2H, CH₂OCH₃), 4.43 (s, 2H, CH₂I), 3.49 (p, 3H, CH₂OCH₃) ppm; ¹³C-NMR (100 MHz, CDCl₃, CHCl₃ = 77.16 ppm): δ 158.0 (q, C_{aromat.}), 149.3 (q, C_{aromat.}), 142.3 (q, C_{aromat.}), 122.7 (t, C_{aromat.}), 117.0 (t, C_{aromat.}), 110.7 (t, C_{aromat.}), 94.7 (s, CH₂OCH₃), 56.5 (p, CH₂OCH₃), 2.4 (s, CH₂I) ppm; <u>Smp:</u> 82.5°C.

(4*S*, 2*R*)-3-{[3-methoxymethyl-5-nitrophenyl]-2-methylpropanoyl}-4benzyloxazolidin-2-on 160

524 mg (2.245 mmol, 1.63 Äq.) (S)-Oxazolidinon **164** wurden unter Argonatmosphäre in 19 mL trockenem, entgastem THF gelöst und auf −78°C gekühlt. Anschließend wurde langsam frisch hergestelltes LDA (2.245 mmol, 1.63 Äq.) zugetropft und die Lösung für 5 min. auf −40°C erwärmt. Nach erneutem Abkühlen auf −78°C wurden 445 mg (1.377 mmol, 1.0 Äq.) Benzyliodid **159** in 7 mL trockenem, entgastem THF langsam zugegeben und die Reaktionslösung über 2 h auf −35°C erwärmt und über Nacht bei dieser Temperatur gerührt. Die Reaktion wurde durch Zugabe von NH₄Cl-Lösung beendet. Nach Erwärmen auf Raumtemperatur wurde das THF im Vakuum entfernt, die wässrige Phase mit Essigester extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und im Vakuum eingeengt. Bei der anschließenden Flash-Chromatographie (PE:EE 10:1 → 2:1) wurden 582 mg (1.363 mmol, 99%) des diastereomerenreinen Produkts als hellgelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.79 (s, 1H, ArH), 7.75 (s, 1H, ArH), 7.31-7.23 (m, 4H, Ph), 7.09- 7.08 (m, 2H, ArH und Ph), 5.21 (s, 2H, CH₂OCH₃), 4.71-4.65 (m, 1H, H-6), 4.22- 4.05 (m, 3H, CH₂Ph und H-2), 3.45 (s, 3H, CH₂OCH₃), 3.23 (dd, J = 13.3, 7.3 Hz, 1H, H-1), 3.15 (dd, J = 13.4, 3.2 Hz, 1H, H-5), 2.72 (dd, J = 13.3, 7.5 Hz, 1H, H-1), 2.63 (dd, J = 13.4, 9.3 Hz, 1H, H-5), 1.21 (d, J = 6.8 Hz, 3H, H-7) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 175.8 (q, C-3), 157.7 (q, C_{aromat}), 153.1 (q, C-4), 149.2 (q, C_{aromat}), 142.4 (q, C_{aromat}), 135.1 (q, C_{aromat}), 129.4 (t, C_{aromat}), 129.0 (t, Ph), 127.5 (t, Ph), 123.7 (t, Ph), 117.7 (t, C_{aromat}), 109.4 (t, C_{aromat}), 94.6 (s, CH₂OCH₃), 66.2 (s, CH₂Ph), 56.4 (p, CH₂OCH₃), 55.3 (t, C-6), 39.4 (s, C-1), 39.4 (t, C-2), 37.9 (s, C-5), 16.9 (p, C-7)

ppm; **<u>HRMS</u>**: m/z für C₂₂H₂₄N₂O₇Na [M + Na]⁺: ber. 451.1481 gef. 451.1468; $[\alpha]_D^{20} = +12.5^{\circ}$ (*c* 1.4, CH₂Cl₂).

(2R)-3-[3-methoxymethyl-5-nitrophenyl]-2-methylpropan-1-ol 161

582 mg (1.358 mmol, 1.0 Äq.) Oxazolidinon **160** wurden unter Stickstoffatmosphäre in 12.5 mL trockenem Ether gelöst, mit 24 μ L (1.0 Äq.) Wasser versetzt und auf 0°C gekühlt. Anschließend wurden 68 mg (2.988 mmol, 2.2 Äq.) Lithiumborhydrid zugegeben. Nach 2 h wurde die Reaktion durch Zugabe von NH₄Cl-Lösung beendet. Die Phasen wurden getrennt, die wässrige Phase mit Essigester extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (PE:EE 1:1) wurden 381 mg (1.358 mmol, quant.) des Produkts als hellgelber Feststoff erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.73 (s, 1H, ArH), 7.70 (s, 1H, ArH), 7.17 (s, 1H, ArH), 5.22 (s, 2H, CH₂OCH₃), 3.52 (d, J = 5.8 Hz, 2H, H-3), 3.49 (s, 3H, CH₂OCH₃), 2.88 (dd, J = 13.3, 6.3 Hz, 1H, H-1a), 2.47 (dd, J = 13.3, 8.3 Hz, 1H, H-1b), 2.02- 1.93 (m, 1H, H-2), 0.92 (d, J = 6.8 Hz, 3H, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 157.6 (q, C_{aromat}), 149.2 (q, C_{aromat}), 143.9 (q, C_{aromat}), 123.6 (t, C_{aromat}), 117.5 (t, C_{aromat}), 108.9 (t, C_{aromat}), 94.7 (s, CH₂OCH₃), 67.2 (s, C-3), 56.4 (p, CH₂OCH₃), 39.4 (s, C-1), 37.5 (t, C-2), 16.3 (p, C-4) ppm; <u>HRMS:</u> *m*/*z* für C₁₂H₁₇NO₅Na [M + Na]⁺: ber. 278.1004 gef. 278.1003; $[\alpha]_D^{20}$ = +15.2° (*c* 1.0, CH₂Cl₂); <u>Smp:</u> 125.2 °C.

(2R)-3-[3-methoxymethyl-5-nitrophenyl]-2-methylpropyliodid 162

50 mg (0.196 mmol, 1.0 Äq.) Homobenzylalkohol **161** wurden unter Stickstoffatmosphäre in 6 mL trockenem CH₂Cl₂ gelöst. Anschließend wurden nacheinander 112 mg (0.431 mmol, 2.2 Äq.) Triphenylphosphan, 29 mg (0.431 mmol, 2.2 Äq.) Imidazol und 125 mg (0.490 mmol, 2.5 Äq.) Iod zugegeben. Nach ca. 1 h wurde die Reaktion durch Zugabe von Na₂S₂O₃-Lösung beendet und die Phasen wurden getrennt. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinten organischen Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde säulenchromatographisch (PE:EE 3:1) gereinigt. Es wurden 51 mg (0.139 mmol, 71%) des Produkts als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.75 (s, 1H, ArH), 7.70 (s, 1H, ArH), 7.19 (s, 1H, ArH), 5.23 (s, 2H, CH₂OCH₃), 3.49 (s, 3H, CH₂OCH₃), 3.20 (dd, *J* = 9.8, 5.0 Hz, 1H, H-1a), 3.11 (dd, *J* = 9.8, 5.5 Hz, 1H, H-1b), 2.77 (dd, *J* = 13.7, 6.8 Hz, 1H, H-3a), 2.57 (dd, *J* = 13.7, 7.0 Hz, 1H, H-3b), 1.78 (ddddq, *J* = 7.0, 6.8, 6.2, 5.5, 5.0 Hz, 1H, H-2), 1.01 (d, *J* = 6.2 Hz, 3H, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 157.8 (q, Caromat.), 149.3 (q, Caromat.), 142.9 (q, Caromat.), 123.5 (t, Caromat.), 117.4 (t, Caromat.), 109.2 (t, Caromat.), 94.7 (s, CH₂OCH₃), 56.5 (p, CH₂OCH₃), 42.3 (s, C-3), 36.3 (t, C-2), 20.6 (t, C-4), 16.1 (s, C-1) ppm; <u>HRMS:</u> *m*/*z* für C₁₂H₁₆INO₄Na [M+Na]⁺: ber. 388.0022 gef. 388.0020; [α]_D²⁰ = -24.2° (*c* 0.8, CH₂Cl₂).

(2R)-3-[3-methoxymethyl-5-nitrophenyl]-2-methylpropanal 176

500 mg (1.959 mmol, 1.0 Äq.) Homobenzylalkohol **161** wurden in 6.5 mL CH₂Cl₂ gelöst und mit 646 mg Kieselgur versetzt. Anschließend wurden 646 mg (2.938 mmol, 1.5 Äq.) PCC hinzugegeben und die Suspension bei Raumtemperatur gerührt. Nach beendeter Reaktion wurde das Reaktionsgemisch über Kieselgel filtriert und das Lösungsmittel im Vakuum entfernt. Der Aldehyd **176** wurde in quantitativer Ausbeute als braunes Öl erhalten und ohne weitere Reinigung in die nächste Reaktion eingesetzt.

(4R)-5-[Nitro-5-methoxymethylphenyl]-4-methylpent-2-ensäureethylester 222

1.959 mmol (1.0 Äq.) Aldehyd **176** wurden in 7.5 mL Chloroform gelöst und mit 1.03 g (2.939 mmol, 1.5 Äq.) Triphenylphosphanyliden-Essigsäureethylester versetzt. Die Lösung wurde auf 40°C erwärmt und über Nacht bei dieser Temperatur gerührt. Nach beendeter Reaktion wurde das Lösungsmittel im Vakuum entfernt und der Rückstand auf Kieselgel aufgezogen. Nach säulenchromatographischer Reinigung (PE:EE 5:1 \rightarrow 2:1) wurden 303 mg (0.937 mmol, 48%) des diastereomerenreinen (*E*)-Produkts als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.74 (s, 1H, ArH), 7.66 (s, 1H, ArH), 7.12 (s, 1H, ArH), 6.89 (dd, *J* = 15.7, 7.1 Hz, 1H, H-3), 5.74 (d, *J* = 15.7 Hz, 1H, H-2), 5.21 (s, 2H, CH₂OCH₃), 4.17 (q, *J* = 7.0 Hz, 2H, OCH₂CH₃), 3.48 (s, 3H, CH₂OCH₃), 2.83-2.77 (m, 1H, H-5a), 2.70- 2.62 (m, 2H, H-5b und H-4), 1.27 (t, *J* = 7.0 Hz, 3H, OCH₂CH₃), 1.08 (d, *J* = 6.4 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 166.6 (q, C-1), 157.7 (q, C_{aromat}), 152.1 (t, C-3), 149.2 (q, C_{aromat}), 142.7 (q, C_{aromat}), 123.4 (t, C_{aromat}), 120.9 (s, C-2), 117.4 (t, C_{aromat}), 109.3 (t, C_{aromat}), 94.7 (s, CH₂OCH₃), 60.4 (s, OCH₂CH₃), 56.4 (p, CH₂OCH₃), 42.1 (s, C-5), 37.9 (t, C-4), 18.9 (p, C-6), 14.3 (p, OCH₂CH₃) ppm; **HRMS:** *m/z* für C₁₆H₂₁NO₆Na [M+Na]⁺: ber. 346.1267 gef. 346.1266; [α]_D²⁰ = -40.1° (*c* 1.7, CH₂Cl₂).

(4R)-5-[Nitro-5-methoxymethylphenyl]-4-methylpent-2-en-1-ol 223

283 mg (875 μ mol, 1.0 Äq.) Ester **222** wurden unter Stickstoffatmosphäre in 8.5 mL trockenem CH₂Cl₂ gelöst und auf -78°C gekühlt. Anschließend wurden 2.2 mL (2.188 mmol, 1.0 M in Hexan, 2.5 Äq.) DIBAL-H zugetropft. Nach beendeter Reaktion wurden 2 mL Essigester zugegeben und nach ca. 5 min. mit Kalium-Natrium-Tartrat-Lösung (10%ig, aq.) und CH₂Cl₂ verdünnt. Nach Erwärmen auf Raumtemperatur wurde die Lösung ca. 2.5 h gerührt. Anschließend wurden die Phasen getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und im Vakuum eingeengt. Es wurden 243 mg (0.866 mmol, 99%) des Produkts als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71 (s, 1H, ArH), 7.66 (s, 1H, ArH), 7.12 (s, 1H, ArH), 5.62 (dd, *J* = 15.6, 6.8 Hz, 1H, H-3), 5.54 (dt, *J* = 15.6, 5.3 Hz, 1H, H-2), 5.21 (s, 2H, CH₂OCH₃), 4.06 (d, *J* = 5.3 Hz, 2H, H-1), 3.49 (s, 3H, CH₂OCH₃), 2.70 (dd, *J* = 13.3, 7.2 Hz, 1H, H-5a), 2.63 (dd, *J* = 13.3, 6.8 Hz, 1H, H-5b), 2.49 (dddq, *J* = 6.8, 6.8, 6.8, 6.8 Hz, 1H, H-4), 1.03 (d, *J* = 6.8 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 157.4 (q, C_{aromat}), 149.1 (q, C_{aromat}), 143.6 (q, C_{aromat}), 136.7 (t, C-3), 128.8 (t, C-2), 123.5 (t, C_{aromat}), 117.6 (t, C_{aromat}), 109.1 (t, C_{aromat}), 94.6 (s, CH₂OCH₃), 63.6 (s, C-1), 56.4 (p, CH₂OCH₃), 43.1 (s, C-5), 37.9 (t, C-4), 19.9 (p, C-6) ppm; **HRMS**: *m/z* für C₁₄H₁₉NO₅Na [M+Na]⁺: ber. 304.1161 gef. 304.1162; $[\alpha]_D^{20} = -24.3^{\circ}$ (*c* 0.9, CH₂Cl₂).

(4R, 2R, 3R)-5-[Nitro-3-methoxymethylphenyl]-4-methyl-2,3-oxiranyl-pentan-1-ol 224

0.42 g ausgeheiztes Molsieb (4 Å) wurden unter Stickstoffatmosphäre in 2.3 mL trockenem CH₂Cl₂ suspendiert und auf -20°C gekühlt. Anschließend wurden 7 μ L (37 μ mol, 1.2 Äq.) D-(-)-DET und 9 μ L (31 μ mol, 1.0 Äq.) Ti(O^{*i*}Pr)₄ zugegeben. Nach 30 min. wurden 8 μ L (40 μ mol, 5.0 M, 1.3 Äq.) ^{*i*}BuOOH zugegeben und die Lösung weitere 30 min. bei -20°C gerührt. Danach wurden 9 mg (31 μ mol, 1.0 Äq.) Alkohol **223** in 0.4 mL trockenem CH₂Cl₂ zugetropft und die Reaktionslösung 24 h bei -20°C gerührt. Das Reaktionsgemisch wurde über Kieselgur abfiltriert und die Reaktion anschließend durch die Zugabe von 1.3 mL 2N NaOH beendet. Nach dreistündigem Rühren bei Raumtemperatur wurden die Phasen getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Chromatographie (PE:EE 2:1→ EE) wurden 6 mg (20 μ mol, 65%) des Epoxids als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.75 (s, 1H, ArH), 7.70 (s, 1H, ArH), 7.17 (s, 1H, ArH), 5.22 (s, 2H, CH₂OCH₃), 3.92 (dd, J = 12.4, 1.7 Hz, 1H, H-1a), 3.65 (dd, J = 12.4, 3.4 Hz, 1H, H-1b), 3.49 (s, 3H, CH₂OCH₃), 3.01-2.96 (m, 2H, H-2 und H-5a), 2.85 (dd, J = 7.3, 2.2 Hz, 1H, H-3), 2.61 (dd, J = 13.1, 7.8 Hz, 1H, H-5b), 1.75 (dddq, J = 7.8, 7.3, 7.0, 6.9 Hz, 1H, H-4), 0.93 (d, J = 6.9 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 157.7 (q, C_{aromat.}), 142.7 (q, C_{aromat.}), 123.6 (t, C_{aromat.}), 117.6 (t, C_{aromat.}), 109.1 (t, C_{aromat.}), 94.7 (s, CH₂OCH₃), 61.6 (s, C-1), 59.6 (t, C-3), 57.7 (t, C-2), 56.4 (p, CH₂OCH₃), 40.3 (s, C-5), 37.3 (t, C-4), 15.5 (p, C-6) ppm; <u>HRMS:</u> *m/z* für C₁₄H₁₉NO₆Na [M+Na]⁺: ber. 320.1110 gef. 320.1105; $[\alpha]_D^{20}$ = +2.0° (*c* 0.3, CH₂Cl₂).

(2R)-3-[3-Methoxymethyl-5-nitro-phenyl]-2-methylpropylcyanid 175

102 mg (399 μ mol, 1.0 Äq.) Homobenzylalkohol **161** wurden unter Stickstoffatmosphäre in 1.1 mL trockenem Ether gelöst, auf 0°C gekühlt und mit 210 mg (799 μ mol, 2.0 Äq.) Triphenylphosphan versetzt. Anschließend wurden 366 μ L (799 μ mol, 2.0 Äq.) DEAD zugetropft. Nach 10 min. wurden 42 μ L (459 μ mol, 1.15 Äq.) Acetoncyanohydrin in 0.5 mL trockenem Ether zugetropft und die Reaktionslösung über Nacht bei Raumtemperatur gerührt. Nach beendeter Reaktion wurde die Lösung über Kieselgel filtriert und das Lösungsmittel im Vakuum entfernt. Nach Flash-Chromatographie (PE:EE 5:1) wurden 89 mg (335 µmol, 84%) des Produkts als gelbes Öl erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.77 (s, 1H, ArH), 7.68 (s, 1H, ArH), 7.16 (s, 1H, ArH), 5.23 (s, 2H, CH₂OCH₃), 3.49 (s, 3H, CH₂OCH₃), 2.78 (dd, *J* = 13.6, 7.1 Hz, 1H, H-3a), 2.69 (dd, *J* = 13.6, 7.1 Hz, 1H, H-3b), 2.37- 2.16 (m, 3H, H-1 und H-2), 1.12 (d, *J* = 6.4 Hz, 3H, H-4) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 157.9 (q, C_{aromat.}), 149.4 (q, C_{aromat.}), 142.0 (q, C_{aromat.}), 123.4 (t, C_{aromat.}), 118.2 (q, CN), 117.1 (t, C_{aromat.}), 109.5 (t, C_{aromat.}), 94.7 (s, CH₂OCH₃), 56.5 (p, CH₂OCH₃), 41.8 (s, C-3), 32.2 (t, C-2), 24.0 (s, C-1), 19.3 (p, C-4) ppm; <u>HRMS:</u> *m/z* für C₁₃H₁₆N₂O₄Na [M + Na]⁺: ber. 287.1008 gef. 287.1005; [α]_D²⁰ = -9.8° (*c* 0.6, CH₂Cl₂).

3-Amino-5-hydroxybenzoesäuremethylester 182⁷⁸

22.5 g (146 mmol, 1.0 Äq.) 3,5-Dihydroxybenzoesäure **181**, 19.1 g (358 mmol, 2.45 Äq.) Ammoniumchlorid und 67.5 mL (30%) konz. Ammoniak wurden in einer Stahlbombe (Modell T304, PARR INSTRUMENT COMPANY) für 40 h auf 180 °C erhitzt. Nach dem Abkühlen wurde das Reaktionsgemisch im Vakuum eingeengt, in 500 mL Methanol aufgenommen, vorsichtig mit 20.8 mL (292 mmol, 2.0 Äq.) Acetylchlorid versetzt und für 36 h unter Rückfluss erhitzt. Das Methanol wurde im Vakuum entfernt, der Rückstand in Eiswasser aufgenommen und mit Ether extrahiert. Der wässrige Rückstand wurde mit NaHCO₃-Lösung neutralisiert und mit Essigester extrahiert. Die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und im Vakuum konzentriert. Umkristallisation (MeOAc:CHCl₃ = 1:5) lieferte 19.4 g Methylester **182** (116 mmol, 79%) als farblosen Feststoff.

¹<u>H-NMR</u> (400 MHz, Aceton-d₆, Aceton-d₅ = 2.05 ppm): δ 8.29 (bs, 1H, OH), 6.86 (dd, *J* = 2.2, 1.4 Hz, 1H, ArH), 6.77 (dd, *J* = 2.2, 1.4 Hz, 1H, ArH), 6.42 (dd, *J* = 2.2, 2.2 Hz, 1H, ArH), 4.83 (s, 2H, NH₂), 3.80 (s, 3H, OMe) ppm; ¹³<u>C-NMR</u> (100 MHz, Aceton-d₆, Aceton-d₆ = 29.84 ppm): δ 167.1 (q, COOMe), 158.6 (q, C_{aromat.}), 150.2 (q, C_{aromat.}), 132.2 (q, C_{aromat.}), 107.5 (t, C_{aromat.}), 105.8 (t, C_{aromat.}), 105.3 (t, C_{aromat.}), 51.5 (p, OMe) ppm; <u>HRMS:</u> *m/z* für C₈H₉NO₃ [M-H]⁻: ber. 166.0504 gef. 166.0498; **Smp.:** 125 °C (Lit.: 125 - 127 °C).

3-(tert.-Butoxycarbonylamino)-5-hydroxybenzoesäuremethylester 183⁷⁸

19.4 g (116 mmol, 1.0 Äq.) Methylester **182** wurden in einem 1:4 Gemisch THF/NaHCO₃-Lösung (400 mL) gelöst und mit 25.3 g (116 mmol, 1.0 Äq.) Boc₂O versetzt. Nach 1 h wurde 11.8 g (139 mmol, 1.2 Äq.) NaHCO₃ zugegeben und die Mischung für 44 h bei Raumtemperatur gerührt. Das THF wurde im Vakuum entfernt, die verbliebene wässrige Phase mit Essigester extrahiert und die vereinigten organischen Phasen über Na₂SO₄ getrocknet. Nach Entfernen des Lösungsmittels im Vakuum lieferte Umkristallisation (Chloroform) 31 g (116 mmol, quant.) des Produkts als farblose Kristalle.

¹<u>H-NMR</u> (400 MHz, Aceton-d₆, Aceton-d₅ = 2.05 ppm): δ 8.60 (s, 1H), 8.51 (bs, 1H), 7.73 (s, 1H, ArH), 7.40 (s, 1H, ArH), 7.13 (s, 1H, ArH), 3.84 (s, 3H, OMe), 1.48 (s, 9H, ^{*t*}Bu) ppm; ¹³<u>C-NMR</u> (100 MHz, Aceton-d₆, Aceton-d₆ = 29.84 ppm): δ 167.1 (q, COOMe), 158.6 (q, C_{aromat}), 153.6 (q, NCO), 142.0 (q, C_{aromat}), 132.5 (q, C_{aromat}), 111.4 (t, C_{aromat}) , 110.8 (t, C_{aromat}), 110.4 (t, C_{aromat}), 80.2 (q, ^{*t*}Bu), 52.2 (p, OMe), 28.4 (p, ^{*t*}Bu) ppm; <u>HRMS:</u> *m/z* für C₁₃H₁₈NO₅ [M+H]⁺: ber. 268.1185 gef. 268.1181; **Smp.:** 144°C (Lit.: 146 °C).

3-(*tert*.-Butoxycarbonylamino)-5-(*tert*.-butyldiphenylsiloxy)-benzoesäuremethylester 184⁷⁸

23.5 g (87.92 mmol, 1.0 Äq.) des Phenols **183** wurden unter Stickstoffatmosphäre in 220 mL trockenem CH₂Cl₂ gelöst und nacheinander mit 7.19 g (105.36 mmol, 1.2 Äq.) Imidazol, 1.08 g (8.79 mmol, 0.1 Äq.) 4-DMAP und 23.5 mL (92.5 mmol, 1.05 Äq.) TBDPSCl versetzt. Nach beendeter Reaktion wurde NH₄Cl-Lösung zugegeben und die Phasen wurden getrennt. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (PE:EE 20:1 \rightarrow 10:1) wurden 39.1 g (77.36 mmol, 88%) des Produkts als farbloser Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.72- 7.69 (m, 4H, SiPh), 7.61 (s, 1H, ArH), 7.45- 7.35 (m, 6H, SiPh), 7.08 (s, 1H, ArH), 6.92 (s, 1H, ArH), 6.29 (s, 1H, NH), 3.78 (s, 3H, OMe), 1.46 (s, 9H, ^{*t*}Bu), 1.09 (s, 9H, Si^{*t*}Bu) ppm; ¹³C-NMR (100 MHz, CDCl₃,

CDCl₃ = 77.16 ppm): δ 166.6 (q, COOMe), 156.2 (q, C_{aromat.}), 152.4 (q, NCO'Bu), 139.4 (q, C_{aromat.}), 134.9 (t, C_{aromat.}), 132.5 (q, C_{aromat.}), 131.8 (q, C_{aromat.}), 130.1 (t, C_{aromat.}), 129.8 (q, C_{aromat.}), 127.8 (t, C_{aromat.}), 115.6 (t, C_{aromat.}), 114.3 (t, C_{aromat.}), 112.4 (t, C_{aromat.}), 80.9 (q, ^{*t*}Bu), 52.2 (p, OMe), 28.4 (p, ^{*t*}Bu), 26.7 (p, Si'Bu), 19.6 (q, Si'Bu) ppm; <u>**HRMS:**</u> *m/z* für C₂₉H₃₅NO₅SiNa [M + Na]⁺: ber. 528.2182 gef. 528.2187.

3-(tert.-Butoxycarbonylamino)-5-(tert.-butyldiphenylsiloxy)-benzylalkohol 185⁷⁸

Die Darstellung des Benzylalkohols **185** erfolgte analog der oben beschriebenen Reduktion mit DIBAL-H. Nach Flash-Chromatographie (PE:EE 5:1 \rightarrow 1:1) wurden 6.93 g (14.5 mmol, 98%) des Alkohols **185** erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71- 7.69 (m, 4H, SiPh), 7.42- 7.34 (m, 6H, SiPh), 7.08 (s, 1H, ArH), 6.56 (s, 1H, ArH), 6.40 (s, 1H, ArH), 6.25 (s, 1H, NH), 4.43 (d, *J* = 5.8 Hz, 2H, CH₂OH), 1.46 (s, 9H, ^{*t*}Bu), 1.08 (s, 9H, Si^{*t*}Bu) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 156.3 (q, C_{aromat.}), 152.6 (q, CNO), 143.0 (q, C_{aromat.}), 139.4 (q, C_{aromat.}), 135.6 (t, C_{aromat.}), 132.8 (t, C_{aromat.}), 130.0 (q, C_{aromat.}), 127.9 (t, C_{aromat.}), 109.7 (t, C_{aromat.}), 109.1 (t, C_{aromat.}), 80.6 (q, ^{*t*}Bu), 65.2 (s, CH₂OH), 28.4 (p, ^{*t*}Bu), 26.6 (p, Si^{*t*}Bu), 19.5 (q, Si^{*t*}Bu) ppm; <u>HRMS:</u> *m/z* für C₂₈H₃₅NO₄SiNa [M + Na]⁺: ber. 500.2233 gef. 500.2226.

3-(tert.-Butoxycarbonylamino)-5-(tert.-butyldiphenylsilanyloxy)-benzylbromid 186⁷⁸

Das Bromid **186** wurde analog der oben beschriebenen APPEL-Reaktion dargestellt. Nach Flash-Chromatographie (PE:EE 10:1) wurden 13.65 g (25.25 mmol, 99%) des Produkts als braun-roter Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.73–7.69 (m, 4H, SiPh), 7.46–7.35 (m, 6H, SiPh), 7.16 (s, 1H, ArH), 6.58 (s, 1H, ArH), 6.44 (s, 1H, ArH), 6.28 (bs, 1H, NH), 4.23 (s, 2H, CH₂Br), 1.48 (s, 9H, ^{*t*}Bu), 1.10 (s, 9H, Si^{*t*}Bu) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 156.3 (q, C_{aromat.}), 152.5 (q, ^{*t*}Bu), 139.6 (q, C_{aromat.}), 139.5 (q, C_{aromat.}), 135.6 (t, C_{aromat.}), 132.7 (t, C_{aromat.}), 130.1 (t, C_{aromat.}), 128.0 (t, C_{aromat.}), 115.3 (t, C_{aromat.}),

111.9 (t, $C_{aromat.}$), 109.9 (t, $C_{aromat.}$), 80.8 (q, ^{*t*}Bu), 33.4 (s, CH_2Br), 28.4 (p, ^{*t*}Bu), 26.6 (p, Si^{*t*}Bu), 19.6 (q, Si^{*t*}Bu) ppm; <u>**HRMS**</u>: m/z für $C_{28}H_{35}BrNO_3Si$ [M+H]⁺: ber. 540.1570 gef. 540.1566.

3-(tert.-Butyldiphenylsiloxy)-5-(tert.-butoxycarbonylamino)-benzyliodid 18778

Die FINKELSTEIN-Reaktion erfolgte wie oben beschrieben. Es wurden 1.05 g (1.787 mmol, 97%) des Benzyliodids **187** als brauner Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ = 7.70-7.68 (m, 4H, SiPh), 7.45-7.35 (m, 6H, SiPh), 7.11 (s, 1H, ArH), 6.53-6.52 (m, 1H, ArH), 6.39-6.38 (m, 1H, ArH), 6.22 (s, 1H, NH), 4.18 (s, 2H, CH₂), 1.47 (s, 9H, ^{*t*}Bu), 1.08 (s, 9H, Si^{*t*}Bu) ppm; ¹³<u>C-NMR</u> (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 156.2 (q, NHCOO), 140.9 (q, C_{aromat}), 139.5 (q, C_{aromat}), 135.6 (t, C_{aromat}), 132.6 (q, C_{aromat}), 130.1 (t, C_{aromat}), 128.0 (t, C_{aromat}), 115.1 (t, C_{aromat}), 111.5 (t, C_{aromat}), 109.5 (t, C_{aromat}), 80.6 (q, ^{*t*}Bu), 28.4 (p, ^{*t*}Bu), 26.6 (p, ^{*t*}Bu), 19.5 (q, ^{*t*}Bu), 5.5 (s, CH₂I) ppm; <u>HRMS</u>: *m/z* für C₂₈H₃₄INO₃SiNa [M+Na]⁺: ber. 610.1250 gef. 610.1244.

(4*S*, 2*R*)-3-{3-[3-(*tert*.-Butyldiphenylsiloxy)-5-(*tert*.-butoxycarbonylamino)-phenyl]-2methylpropanoyl}-4-benzyloxazolidin-2-on 188⁷⁸

Die EVANS-Alkylierung erfolgte wie oben beschrieben. Nach säulenchromatographischer Reinigung (PE:EE $3:1 \rightarrow 2:1$) wurden 1.52 g (2.19 mmol, 52%) des diastereomerenreinen Oxazolidinons **188** als weisser Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.70-7.67 (m, 4H, ArH), 7.42-7.30 (m, 9H, ArH), 7.11-7.09 (m, 2H, ArH), 6.85 (bs, 1H, ArH), 6.71 (bs, 1H, ArH), 6.27 (bs, 1H, ArH), 6.22 (bs, 1H, NH), 4.70-4.60 (m, 1H, CHBn), 4.20-4.09 (m, 2H, CH₂CHBn), 3.87-3.78 (m, 1H, CHCH₃), 3.15 (dd, *J* = 13.4, 3.0 Hz, 1H, CH₂Ph), 2.93 (dd, *J* = 13.1, 6.1 Hz, 1H, CH₂CHCH₃), 2.59 (dd, *J* = 13.4, 9.5 Hz, 1H, CH₂Ph), 2.32 (dd, *J* = 13.1, 8.3 Hz, 1H, CH₂CHCH₃), 1.44 (s, 9H, ^{*t*}Bu), 1.06 (s, 9H, Si^{*t*}Bu), 0.92 (d, *J* = 6.4 Hz, 3H, CH₃) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 176.5 (q, NCOCH), 156.0 (q, C_{aromat}), 153.0 (q, NCOO), 152.5 (q, NCOO), 140.9 (q, C_{aromat}), 139.3 (q, C_{aromat}), 135.6 (t, C_{aromat}), 135.4 (t, C_{aromat}), 132.9 (q, C_{aromat}), 132.8 (q, C_{aromat}), 129.9 (t, C_{aromat}), 129.5 (t, C_{aromat}), 129.0 (t, C_{aromat}), 127.9 (t, C_{aromat}), 127.5 (t, C_{aromat}), 127.3 (t, C_{aromat}), 115.8 (t, C_{aromat}), 112.1 (t, C_{aromat}), 108.2 (t, C_{aromat}), 83.0 (q, ^{*t*}Bu), 66.1 (s, CH₂O), 55.3 (t, CHN), 39.6 (s, CH₂Ph), 39.5 (t, CHCH₃), 38.0 (s, CH₂CH), 28.4 (p, ^{*t*}Bu), 26.6 (p, Si^{*t*}Bu), 19.5 (q, Si^{*t*}Bu), 16.2 (p, CH₃) ppm; <u>**HRMS**</u>: m/z für C₄₁H₄₈N₂O₆SiNa [M+Na]⁺: ber. 715.3179 gef. 715.3158; $[\alpha]_D^{20} = -19.5^{\circ}$ (*c* 0.2, CHCl₃).

(2*R*)-3-[3-(*tert*.-Butyldiphenylsiloxy)-5-(*tert*.-butoxycarbonylamino)-phenyl]-2-methylpropan-1-ol 189⁷⁸

Die Abspaltung des Auxiliars erfolgte wie oben beschrieben unter Verwendung von LiBH₄. Nach säulenchromatographischer Reinigung (PE:EE 3:1) wurden 187 mg (0.359 mmol, 72%) des Produkts als weisser Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 4H, ArH), 7.43-7.37 (m, 6H, ArH), 6.80 (bs, 1H, ArH), 6.68 (bs, 1H, ArH), 6.25 (bs, 1H, ArH), 6.09 (s, 1H, NH), 3.26 (dd, *J* = 10.6, 5.4 Hz, 1H, CH₂OH), 3.17 (dd, *J* = 10.6, 5.6 Hz, 1H, CH₂OH), 2.39 (dd, *J* = 13.3, 6.8 Hz, 1H, ArCH₂), 2.15 (dd, *J* = 13.3, 7.5 Hz, 1H, ArCH₂), 1.66-1.58 (m, 1H, CHCH₃), 1.48 (s, 9H, ^{*t*}Bu), 1.25 (s, 1H, OH), 1.07 (s, 9H, Si'Bu), 0.70 (d, *J* = 6.8 Hz, 3H, CH₃) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 156.0 (q, C_{aromat}), 152.6 (q, NCOO), 142.4 (q, C_{aromat}), 139.2 (q, C_{aromat}), 135.6 (q, C_{aromat}), 133.0 (q, C_{aromat}), 129.9 (t, C_{aromat}), 127.9 (t, C_{aromat}), 115.5 (t, C_{aromat}), 112.1 (t, C_{aromat}), 107.5 (t, C_{aromat}), 82.7 (q, ^{*t*}Bu), 67.3 (s, CH₂OH), 39.6 (s, ArCH₂), 37.4 (t, CHCH₃), 28.4 (p, ^{*t*}Bu), 26.5 (p, Si'Bu), 19.5 (q, Si'Bu), 16.5 (p, CH₃) ppm; **HRMS**: *m/z* für C₃₁H₄₁NO₄SiNa [M+Na]⁺: ber. 542.2703 gef. 542.2701; $[\alpha]_D^{20} = +0.4^{\circ}$ (*c* 1.0, CHCl₃).

(2*R*)-3-[3-(*tert*.-Butyldiphenylsiloxy)-5-(*tert*.-butoxycarbonylamino)-phenyl]-2methylpropyliodid 225

Die Synthese des Benzyliodids **225** erfolgte wie bereits oben beschrieben. Nach Flash-Chromatographie (PE:EE 2:1) wurden 64 mg (96 μ mol, quant.) des Produkts als hellgelber Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 4H, Ph), 7.44-7.40 (m, 2H, Ph), 7.38-7.34 (m, 4H, Ph), 6.80 (bs, 1H, ArH), 6.72 (bs, 1H, ArH), 6.28 (bs, 1H, NH), 6.10 (bs, 1H, ArH), 2.98 (dd, *J* = 9.5, 4.4 Hz, 1H, C*H*₂I), 2.81 (dd, *J* = 9.5, 6.1 Hz, 1H, C*H*₂I), 2.32 (dd, *J* = 13.4, 7.3 Hz, 1H, C*H*₂Ar), 2.24 (dd, *J* = 13.4, 6.8 Hz, 1H, C*H*₂Ar), 1.49 (s, 9H, ^{*t*}Bu), 1.45-1.37 (m, 1H, C*H*CH₃), 1.09 (s, 9H, Si^{*t*}Bu), 0.78 (d, *J* = 6.8 Hz, 3H, CHC*H*₃) ppm; ¹³C-<u>NMR</u> (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 156.1 (q, C_{aromat}), 152.6 (q, NCO), 141.6 (q, C_{aromat}), 139.3 (q, C_{aromat}), 135.6 (t, C_{aromat}), 132.9 (q, C_{aromat}), 130.0 (q, C_{aromat}), 127.9 (t, C_{aromat}), 115.3 (t, C_{aromat}), 112.0 (t, C_{aromat}), 108.0 (t, C_{aromat}), 80.5 (q, ^{*t*}Bu), 42.5 (s, CH₂Ar), 36.4 (t, CHCH₃), 28.4 (p, ^{*t*}Bu), 26.6 (p, Si^{*t*}Bu), 20.7 (p, CH₃), 19.5 (q, Si^{*t*}Bu), 17.2 (s, CH₂I) ppm; <u>**HRMS**</u>: *m*/*z* für C₃₁H₄₁INO₃Si [M+H]⁺: ber. 630.1900 gef. 630.1927; [α]²⁰_{*D*} = -41.2 ° (*c* 0.4, CH₂Cl₂).

(2*R*)-3-[3-(*tert*.-Butyldiphenylsiloxy)-5-(*tert*.-butoxycarbonylamino)-phenyl]-2methylpropanal 226

1.02 g (1.972 mmol, 1 Äq.) des Benzylalkohols **189** wurden unter Stickstoffatmosphäre in trockenem CH₂Cl₂ gelöst, auf 0°C gekühlt und mit 201 mg (2.367 mmol, 1.2 Äq.) NaHCO₃ versetzt. Anschließend wurde 1.0 g (2.367 mmol, 1.2 Äq.) DMP-Reagenz zugegeben und die Reaktionslösung ca. 1 h bei Raumtemperatur gerührt. Die Reaktion wurde durch Zugabe von Na₂S₂O₃- und NaHCO₃-Lösung (1:1) beendet. Nach Phasentrennung wurde die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen mit NaHCO₃-Lösung gewaschen, über MgSO₄ getrocknet und im Vakuum eingeengt. Das Produkt wurde in quantitativer Ausbeute (1.972 mmol) als orange-braunes Öl erhalten und ohne weitere Reinigung in der nächsten Reaktion eingesetzt.

(4*R*)-5-[*tert*.-Butoxycarbonylamino-5-(*tert*.-butyldiphenylsiloxy)-phenyl]-4methylpent-2-ensäureethylester 190

Die WITTIG-Reaktion erfolgte analog der obigen Vorschrift, wobei in diesem Fall eine Reaktionstemperatur von 50°C gewählt wurde. Nach säulenchromatographischer Reinigung (PE:EE 5:1) wurden 2.31 g (3.944 mmol, quant.) des diastereomerenreinen (E)-Produkts als braun-roter Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.46-7.34 (m, 10H, Ph), 6.81 (dd, J = 15.8, 6.8 Hz, 1H, H-3), 6.79 (s, 1H, ArH), 6.64 (s, 1H, ArH), 6.24 (s, 1H, NH), 6.09 (s, 1H, ArH), 5.63 (d, J = 15.8 Hz, 1H, H-2), 4.16 (q, J = 7.1 Hz, 2H, H-7), 2.52-2.48 (m, 1H, H-5), 2.27 (dq, J = 6.8, 6.7 Hz, 1H, H-4), 2.23-2.17 (m, 1H, H-5), 1.48 (s, 9H, ¹Bu), 1.27 (t, J = 7.1 Hz, 3H, H-8), 1.07 (s, 9H, Si'Bu), 0.78 (d, J = 6.7 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CHCl₃ = 77.16 ppm): δ 166.9 (q, HNCO), 156.1 (q, C-1), 153.6 (t, C-3), 152.6 (q, C_{aromat}), 141.5 (q, C_{aromat}), 139.2 (q, C_{aromat}), 133.0 (q, C_{aromat}), 133.0 (q, C_{aromat}), 130.0 (t, C_{aromat}), 128.7 (t, C_{aromat}), 128.5 (t, C_{aromat}), 127.9 (t, C_{aromat}), 119.8 (t, C-2), 115.3 (t, C_{aromat}), 112.0 (t, C_{aromat}), 107.9 (t, C_{aromat}), 60.2 (s, C-7), 42.2 (s, C-5), 37.9 (t, C-4), 28.4 (p, ¹Bu), 26.6 (p, Si'Bu), 19.5 (q, Si'Bu), 18.4 (p, C-6), 14.4 (p, C-8) ppm; **HRMS:** m/z für C₃₅H₄₅NO₅SiNa [M + Na]⁺:ber. 610.2965 gef. 610.2968; $[\alpha]_D^{20} = -18.9^{\circ}$ (c 1.3, CH₂Cl₂).

(4*R*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4methylpent-2-enol 191

Der Allylalkohol **191** wurde wie oben beschrieben durch Reduktion mit DIBAL-H dargestellt. Nach Flash-Chromatographie (PE:EE $5:1 \rightarrow 2:1$) wurden 1.63 g (2.788 mmol, 75%) des Produkts als hellgelber Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 4H, Ph), 7.43-7.33 (m, 6H, Ph), 6.91 (s, 1H, ArH), 6.46 (s, 1H, ArH), 6.23 (s, 1H, NH), 6.14 (s, 1H, ArH), 5.50 (dd, J = 15.5, 6.9 Hz, 1H, H-3), 5.39 (dt, J = 15.5, 5.5 Hz, 1H, H-2), 3.98 (t, J = 5.5 Hz, 2H, H-1), 2.40-2.35 (m, 1H, H-5), 2.30-2.25 (m, 1H, H-5), 2.33 (dq, J = 6.9, 6.5 Hz, 1H, H-4), 1.73 (s, 1H, OH), 1.47 (s, 9H, 'Bu), 1.08 (s, 9H, Si'Bu), 0.79 (d, J = 6.5 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 155.8 (q, NCO), 152.8 (q, C_{aromat}), 142.4 (q, C_{aromat}), 138.6 (q, C_{aromat}), 138.0 (t, C-3), 135.6 (t, C_{aromat}), 133.0 (q, C_{aromat}), 130.0 (t, C_{aromat}), 127.8 (t, C-2), 115.7 (t, C_{aromat}), 112.9 (t, C_{aromat}), 107.7 (t, C_{aromat}), 63.9 (s, C-1), 43.3 (s, C-5), 37.7 (t, C-4), 28.4 (p, 'Bu), 26.6 (p, Si'Bu), 19.7 (q, Si'Bu), 19.5 (p, C-6) ppm; **HRMS:** *m*/z für C₃₃H₄₄NO₄Si [M + H]⁺: ber. 546.3040 gef. 546.3031; $[a]_D^{20} = -1.1^{\circ}$ (*c* 1.0, CH₂Cl₂).

(4*R*, 2*R*,3*R*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4methyl-2, 3-oxiranylpentan-1-ol 192

Die SHARPLESS-Epoxiderung wurde analog der oben beschriebenen Vorschrift durchgeführt. Nach Flash-Chromatographie (PE:EE 2:1) wurden 1.23 g (2.201 mmol, 94%) des Epoxids als weisser Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.70-7.69 (m, 4H, SiPh), 7.41-7.33 (m, 6H, SiPh), 6.85 (s, 1H, ArH), 6.61 (s, 1H, ArH), 6.25 (s, 1H, NH), 6.12 (s, 1H, ArH), 3.80 (ddd, J = 12.3, 5.9, 2.6 Hz, 1H, H-1), 3.56 (ddd, J = 12.3, 6.9, 4.3 Hz, 1H, H-1), 2.84 (ddd, J = 4.3, 2.6, 2.4 Hz, 1H, H-2), 2.69 (dd, J = 6.8, 2.4 Hz, 1H, H-3), 2.61 (dd, J = 13.3, 5.1 Hz, 1H, H-5), 2.22 (dd, J = 13.3, 8.5 Hz, 1H, H-5), 1.72 (dd, J = 6.9, 5.9 Hz, 1H, OH), 1.53-1.49 (m, 1H, H-4), 1.47 (s, 9H, 'Bu), 1.07 (s, 9H, Si'Bu), 0.59 (d, J = 6.8 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 156.0 (q, NCO), 152.7 (q, Caromat.), 141.4 (q, Caromat.), 139.1 (q, Caromat.), 135.6 (t, Caromat.), 135.5 (t, Caromat.), 133.0 (q, Caromat.), 132.9 (q, Caromat.), 130.0 (t, Caromat.), 129.9 (t, Caromat.), 127.9 (t, Caromat.), 127.8 (t, Caromat.), 115.6 (t, Caromat.), 112.3 (t, Caromat.), 107.9 (t, Caromat.), 61.8 (s, C-1), 59.8 (t, C-3), 57.0 (t, C-2), 40.1 (s, C-5), 36.4 (t, C-4), 28.4 (p, 'Bu), 26.6 (p, Si'Bu), 19.5 (q, Si'Bu), 14.7 (p, C-6) ppm; HRMS: *m/z* für C₃₃H₄₃NO₅SiNa [M + Na]⁺: ber. 584.2808 gef. 584.2809; [*α*]²⁰_{*p*} = + 2.2° (*c* 0.9, CH₂Cl₂).

(4*R*, 2*S*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4methyl-1,2-pentandiol 193

1.23 g (2.189 mmol, 1.0 Äq.) des Epoxids **192** wurden unter Stickstoffatmosphäre in 82 mL trockenem Ether gelöst und auf 0°C gekühlt. Anschließend wurden 10.9 mL (10.94 mmol, 1.0 M, 5.0 Äq.) DIBAL-H zugetropft und die Reaktionslösung auf Raumtemperatur erwärmt. Nach beendeter Reaktion wurden 4.2 mL Essigester zugegeben und anschließend Kalium-Natrium-Tartrat (10%ig, aq.) und CH₂Cl₂ hinzugefügt. Die Phasen wurden getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach säulenchromatographischer Reinigung (PE:EE 1:1 → EE) wurden 1.06 g (1.882 mmol, 86%) des Produkts als weisser Schaum erhalten.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 4H, SiPh), 7.41-7.34 (m, 6H, SiPh), 6.80 (s, 1H, ArH), 6.63 (s, 1H, ArH), 6.26 (s, 1H, NH), 6.11 (s, 1H, ArH), 3.72-3.65 (m, 1H, H-2), 3.52 (ddd, *J* = 10.8, 5.8, 3.3 Hz, 1H, H-1), 3.30 (ddd, *J* = 10.8, 7.3, 4.0 Hz, 1H, H-1), 2.31 (dd, *J* = 13.3, 6.6 Hz, 1H, H-5), 2.19 (dd, *J* = 13.3, 7.8 Hz, 1H, H-5), 1.86 (dd, *J* = 5.8, 4.0 Hz, 1H, H-7), 1.77 (d, *J* = 4.4 Hz, 1H, H-8), 1.73- 1.64 (m, 1H, H-4), 1.47 (s, 9H, ^{*i*}Bu), 1.31 (ddd, *J* = 13.8, 9.3, 4.6 Hz, 1H, H-3), 1.07 (s, 9H, Si¹Bu), 0.97 (ddd, *J* = 13.8, 9.7, 3.9 Hz, 1H, H-3), 0.69 (d, *J* = 6.4 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 155.9 (q, CON), 152.7 (q, Caromat.), 142.6 (t, Caromat.), 139.0 (q, Caromat.), 135.6 (t, Caromat.), 133.0 (q, Caromat.), 129.9 (t, Caromat.), 127.8 (t, Caromat.), 115.5 (t, Caromat.), 112.4 (t, Caromat.), 107.8 (t, Caromat.), 80.5 (q, ^{*i*}Bu), 70.1 (t, C-2), 67.5 (s, C-1), 44.0 (s, C-5), 39.7 (s, C-3), 30.8 (t, C-4), 28.4 (p, ^{*i*}Bu), 26.6 (p, Si^{*i*}Bu), 19.5 (q, Si^{*i*}Bu), 19.2 (p, C-6) ppm; **HRMS:** *m*/*z* für C₃₃H₄₅NO₅SiNa [M + Na]⁺: ber. 586.2965 gef. 586.2964; $[\alpha]_D^{20} = -11.0^{\circ}$ (*c* 0.6, CH₂Cl₂).

(4*R*, 2*S*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4methyl-1-(tert.-butyldimethylsiloxy)-2-pentanol 194

1.06 g (1.880 mmol, 1.0 Äq,) des Diols **193** wurden unter Stickstoffatmosphäre in 73 mL trockenem CH₂Cl₂ gelöst und auf 0°C gekühlt. Anschließend wurden 0.22 mL (1.880 mmol, 1.0 Äq.) 2,6-Lutidin und 0.43 mL (1.880 mmol, 1.0 Äq.) TBSOTf zugegeben und die Reaktion ca. 15 min. bei 0°C gerührt. Die Reaktion wurde durch Zugabe von NH₄Cl-Lösung beendet. Nach Trennung der Phasen wurde die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Chromatographie (PE:EE 20:1 \rightarrow 5:1) wurden 973 mg (1.428 mmol, 76%) des Produkts als weisser Schaum erhalten und 74 mg (0.093 mmol, 5%) des disilylierten Produkts.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 4H, SiPh), 7.40-7.33 (m, 6H, SiPh), 6.77 (s, 1H, ArH), 6.64 (s, 1H, ArH), 6.23 (s, 1H, NH), 6.14 (s, 1H, ArH), 3.65 (ddddd, *J* = 7.4, 3.7, 3.4, 3.4, 2.0 Hz, 1H, H-2), 3.51 (dd, *J* = 9.8, 3.4 Hz, 1H, H-1), 3.30 (d, *J* = 9.8, 7.4 Hz, 1H, H-1), 2.39 (dd, *J* = 13.2, 5.9 Hz, 1H, H-5), 2.23 (d, *J* = 3.4 Hz, 1H, H-7), 2.12 (dd, *J* = 13.3, 8.5 Hz, 1H, H-5), 1.81- 1.72 (m, 1H, H-4), 1.47 (s, 9H, ^{*i*}Bu), 1.36- 1.29 (m, 1H, H-3), 1.07 (s, 9H, Si ^{*i*}Bu), 0.98- 0.93 (m, 1H, H-3), 0.89 (s, 9H, Si ^{*i*}Bu), 0.66 (d, *J* = 6.4 Hz, 3H, H-6), 0.06 (s, 6H, SiMe₂) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 155.9 (q, C_{aromat}), 152.6 (q, NCO), 142.9 (q, C_{aromat}), 139.0 (q, C_{aromat}), 135.6 (t, C_{aromat}), 133.1 (q, C_{aromat}), 129.9 (t, C_{aromat}), 127.8 (t, C_{aromat}), 115.6 (t, C_{aromat}), 112.2 (t, C_{aromat}), 107.6 (t, C_{aromat}), 80.4 (q, ^{*i*}Bu), 69.7 (t, C-2), 67.9 (s, C-1), 44.2 (s, C-5), 39.6 (s, C-3), 31.0 (t, C-4), 28.4 (p, ^{*i*}Bu), 26.6 (p, Si^{*i*}Bu), 26.0 (p, Si^{*i*}Bu), 19.5 (q, Si^{*i*}Bu), 18.9 (p, C-6), 18.4 (q, Si^{*i*}Bu), -5.1 (p, SiMe), -5.2 (p, SiMe) ppm; **HRMS:** *m*/*z* für C₃₉H₅₉NO₅Si₂Na [M + Na]⁺: ber. 700.3830 gef. 700.3838; [α]²⁰/₂₀ = -4.7 ° (*c* 1.8, CH₂Cl₂).

MOSHER-Ester des sekundären Alkohols 194

Die Darstellung der MOSHER-Ester erfolgte analog der in Kapitel 6.3.7 beschriebenen Vorschrift. Nach Flash-Chromatographie (PE:EE 5:1) wurden 5 mg (5.60 μ mol, 95%) des (*S*)-Esters und 6 mg (5.899 μ mol, quant.) des (*R*)-Esters erhalten.

HRMS: m/z für C₄₉H₆₆F₃NO₇Si₂Na [M+Na]⁺: ber. 916.4228 gef. 916.4205.

	(S)-Mosherester 195	(R)-Mosherester 195	$\Delta \delta^{S,R} = (\delta_{\rm S} - \delta_{\rm R})$
	δ [ppm]	δ [ppm]	
H-1	3.62	3.52	+0.09
H-2	5.21	5.16	+0.05
H-4	1.39	1.60	-0.21
H-5a	2.18	2.31	-0.13
H-5b	2.05	2.16	-0.11
H-6	0.63	0.69	-0.06

Ausgewählte ¹H-NMR-Daten:

(4*R*, 2*S*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4methyl-1-(tert.-butyldimethylsiloxy)-2-methoxypentan 200

486.5 mg (0.717 mmol, 1.0 Äq.) Alkohol **194** wurden unter Stickstoffatmosphäre in 13 mL trockenem CH_2Cl_2 gelöst und nacheinander mit 535 mg (2.510 mmol, 3.5 Äq.) Protonenschwamm und 262 mg (1.794 mmol, 2.5 Äq.) Me₃OBF₄ versetzt. Nach ca. 1 h bei Raumtemperatur wurde die Reaktion durch Zugabe von dest. Wasser beendet und die Phasen getrennt. Die wässrige Phase wurde mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen mit 1 N HCl und NaHCO₃-Lösung gewaschen, über MgSO₄ getrocknet und im Vakuum eingeengt. Der hellgelbe, ölige Rückstand wurde direkt ohne weitere Reinigung in der nächsten Reaktion eingesetzt.

(4*R*, 2*S*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4-methyl-2methoxy-1-pentanol 201

354 mg (0.512 mmol, 1.0 Äq.) Silylether **200** wurden in 3.5 mL Acetonitril und 3.5 mL CH₂Cl₂ gelöst und mit 1.54 mL (1.536 mmol, 1.0 M, 3.0 Äq.) LiBF₄ versetzt. Nach beendeter Reaktion wurde NaHCO₃-Lösung zugegeben und die Phasen getrennt. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Chromatographie (PE:EE 2:1) wurden 235 mg hellgelbes Öl erhalten, welches nachfolgend via HPLC (Gradient: 80:20 H₂O:MeOH \rightarrow 100% MeOH in 70 min., Flussrate 15 mL min.⁻¹) gereinigt wurde. Es wurden 184 mg (0.317 mmol, 62%) des Produkts als weisser Schaum erhalten und 4 mg (6.758 µmol, 1.3%) des *N*,O-methylierten Nebenprodukts als hellgelbes Öl.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 4H, SiPh), 7.41-7.33 (m, 6H, SiPh), 6.77 (s, 1H, ArH), 6.66 (s, 1H, ArH), 6.26 (s, 1H, NH), 6.11 (s, 1H, ArH), 3.61-3.58 (m, 1H, H-1a), 3.40-3.35 (m, 1H, H-1b), 3.30 (s, 3H, OMe), 3.28-3.22 (m, 1H, H-2), 2.38 (dd, *J* = 13.2, 5.8 Hz, 1H, H-5a), 2.07 (dd, *J* = 13.2, 8.7 Hz, 1H, H-5b), 1.85 (s, 1H, OH), 1.66- 1.59 (m, 1H, H-4), 1.48 (s, 10H, 'Bu und H-3a), 1.07 (s, 10H, Si'Bu und H-3b), 0.65 (d, *J* = 6.8 Hz, 3H, H-6) ppm; ¹³C-NMR (100 MHz, CDCl₃, CDCl₃ = 77.16 ppm): δ 155.9 (q, NCO), 152.6 (q, Caromat.), 142.7 (q, Caromat.), 139.0 (q, Caromat.), 135.6 (t, Caromat.), 133.0 (q, Caromat.), 129.9 (t, Caromat.), 127.8 (t, Caromat.), 115.5 (t, Caromat.), 112.2 (t, Caromat.), 107.7 (t, Caromat.), 80.4 (q, 'Bu), 79.6 (t, C-2), 64.3 (s, C-1), 57.0 (p, OMe), 44.0 (s, C-5), 37.9 (s, C-3), 31.4 (t, C-4), 28.4 (p, 'Bu), 26.6 (p, Si'Bu), 19.5 (p, C-6), 19.5 (q, Si'Bu) ppm; **HRMS:** *m/z* für C₃₇H₄₈NO₅Si [M + H]⁺: ber. 578.3454 gef. 578.3467; $[\alpha]_D^{20} = + 5.0^{\circ}$ (*c* 1.1, CH₂Cl₂).

¹H-NMR-Daten des Nebenprodukts: ¹H-NMR (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.70-7.68 (m, 4H, SiPh), 6.54 (s, 1H, ArH), 6.45 (s, 1H, ArH), 6.32 (s, 1H, ArH), 3.64-3.61 (m, 1H, H-1a), 3.41-3.37 (m, 1H, H-1b), 3.32 (s, 3H, OMe), 3.29-3.25 (m, 1H, H-2), 3.01 (s, 3H, NMe), 2.45 (dd, *J* = 13.3, 5.4 Hz, 1H, H-5a), 2.11 (dd, *J* = 13.3, 8.5 Hz, 1H, H-5b), 1.84 (bs, 1H, OH), 1.70-1.63 (m, 1H, H-4), 1.57-1.50 (m, 1H, H-3), 1.37 (s, 9H, ^tBu), 1.09 (s, 9H, Si^tBu), 0.68 (d, *J* = 6.4 Hz, 3H, H-7) ppm.

(4*R*, 2*S*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4-methyl-2methoxy-1-pentanal 53

100 mg (0.173 mmol, 1.0 Äq.) Alkohol **201** wurden unter Stickstoffatmosphäre in 15 mL trockenem CH₂Cl₂ gelöst und auf 0°C gekühlt. Anschließend wurden nacheinander 18 mg (0.208 mmol, 1.2 Äq.) NaHCO₃ und 88 mg (0.208 mmol, 1.2 Äq.) DMP-Reagenz zugegeben und die Reaktionslösung auf Raumtemperatur erwärmt. Nach ca. 1h wurde die Reaktion durch Zugabe von Na₂S₂O₃- und NaHCO₃-Lösung (1:1) beendet und etwa 45 min. bei Raumtemperatur gerührt. Die Phasen wurden getrennt, die wässrige Phase mit CH₂Cl₂ extrahiert, die vereinigten organischen Phasen mit NaHCO₃-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Produkt wurde quantitativ (0.173 mmol) als gelbes Öl erhalten und ohne weitere Reinigung in der nächsten Reaktion eingesetzt.

(4*R*, 2*S*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4-hydroxy-5-methoxy-3,7-dimethyl-oct-2-en (Westfragment)

3 mg (2.6 µmol, 0.1 Äq.) Pd₂(dba)₃ Chloroformaddukt wurden unter Stickstoffatmosphäre in 0.3 mL trockenem und entgastem DMSO gelöst. Anschließend wurden 4 mg (31 µmol, 1.2 Äq.) Allylacetat **54** hinzugefügt und 10 min. bei Raumtemperatur gerührt. Danach wurden 8 mg (31 µmol, 1.2 Äq.) Bis(pinakol)boronat zugegeben und 15 min. bei 40°C gerührt. Abschließend wurden 15 mg (26 µmol, 1.0 Äq.) des frisch hergestellten Aldehyds **53** in 0.5 mL trockenem und entgastem DMSO zugegeben und die Reaktion 20 h bei 40°C gerührt. Nach beendeter Reaktion wurden 2 mL dest. Wasser zugegeben und 1 h bei Raumtemperatur gerührt. Die wässrige Phase wurde mit Ether extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (PE:EE 10:1 \rightarrow 2:1) wurden 8 mg (8.58 µmol, 33%) des Produkts als farbloses Öl erhalten. Das Diastereomerenverhältnis betrug ~1.4:1, wobei aufgrund der Untrennbarkeit der beiden Diastereomere nicht bekannt ist, welches der beiden bevorzugt gebildet wird.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71- 7.68 (m, 7H, SiPh), 7.43- 7.33 (m, 11H, SiPh), 6.81 (s, 1H, ArH), 6.77 (s, 1H, ArH), 6.66 (s, 1H, ArH), 6.63 (s, 1H, ArH), 6.25 (s, 2H, NH), 6.15 (s, 1H, ArH), 6.14 (s, 1H, ArH), 5.90-5.75 (m, 2H, H-2 und H-2_{dia}), 5.12- $4.93 \text{ (m, 4H, H-1 und H-1_{dia})}, 3.53 \text{ (dd, } J = 7.8, 3.7 \text{ Hz}, 1\text{H}, \text{H-4}_{dia}), 3.30 \text{ (s, 3H, OMe_{dia})}, 3.27 \text{ Hz}$ (s, 3H, OMe), 3.23- 3.20 (m, 2H, H-4 und H-5_{dia}), 3.18- 3.12 (m, 1H, H-5), 2.43 (dd, J = 13.3, 5.8 Hz, 1H, H-8a_{dia}), 2.34 (dd, J = 13.3, 6.1 Hz, 1H, H-8a), 2.28- 2.17 (m, 2H, H-3 und H-3_{dia}), 2.14- 2.05 (m, 2H, H-8b und H-8b_{dia}), 1.76-1.72 (m, 1H, H-7_{dia}), 1.67- 1.62 (m, 1H, H-7), 1.60- 1.58 (m, 1H, H-6a_{dia}), 1.53 (s, 15H, 2 x ^tBu), 1.47-1.44 (m, 1H, H-6a), 1.37-1.10 (m, 2H, H-6b und H-6b_{dia}), 1.07 (s, 15H, 2 x Si^tBu), 1.04 (d, J = 6.8 Hz, 3H, H-9), 0.94 (d, J = 6.8 Hz, 3H, H-9_{dia}), 0.69 (d, J = 6.4 Hz, 3H, H-10), 0.63 (d, J = 6.8 Hz, 3H, H-10_{dia}) ppm; $\frac{^{13}\text{C-NMR}}{(100 \text{ MHz}, \text{CDCl}_3, \text{CHCl}_3 = 77.16 \text{ ppm})}$: δ 155.9 (q, NCO), 155.9 (q, NCO_{dia}), 152.6 (q, Caromat.), 143.0 (q, Caromat.), 142.9 (q, Caromat.), 141.3 (t, C-2_{dia}), 140.1 (t, C-2), 139.1 (q, C_{aromat.}), 139.0 (q, C_{aromat.}), 135.6 (t, C_{aromat.}), 135.6 (t, C_{aromat.}), 135.6 (t, C_{aromat.}), 133.1 (q, Caromat.), 133.0 (q, Caromat.), 133.0 (q, Caromat.), 129.9 (t, Caromat.), 129.9 (t, Caromat.), 129.9 (t, Caromat.), 129.9 (t, Caromat.), 127.8 (t, Caromat.), 127.8 (t, Caromat.), 127.8 (t, Caromat.), 115.5 (s, C-1_{dia}), 115.5 (s, C-1), 115.4 (t, C_{aromat}), 115.3 (t, C_{aromat}), 112.3 (t, C_{aromat}), 112.2 (t, C_{aromat}), 107.6 (t, C_{aromat}), 80.4 (q, ^tBu), 79.9 (t, C-5_{dia}), 79.8 (t, C-5), 76.1 (t, C-4), 73.8 (t, C-4_{dia}), 57.6 (p, OMe), 57.2 (p, OMe_{dia}), 44.6 (s, C-8_{dia}), 44.3 (s, C-8), 40.7 (t, C-3), 39.8 (t, C-3_{dia}), 37.2 (s, C-6), 35.3 (s, C-6_{dia}), 31.3 (t, C-7), 30.9 (t, C-7_{dia}), 28.4 (p, ^tBu), 26.6 (p, Si ^tBu), 19.7 (p, C-10_{dia}), 19.5 (q, Si'Bu), 18.7 (p, C-10), 17.7 (p, C-9), 16.2 (p, C-9_{dia}); HRMS: m/z für $C_{38}H_{54}NO_5Si [M+H]^+$: ber. 632.3771 gef. 632.3770.

(4*R*, 2*S*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4-methyl-2-(*tert*.-butyldimethylsiloxy)-1-pentanol 203

16.5 mg (21 µmol, 1.0 Äq.) disilyliertes Diol **202** wurden in 0.2 mL Methanol gelöst und mit 0.5 mg (2.1 µmol, 0.1 Äq.) PPTS versetzt. Nach beendeter Reaktion wurde die Lösung im Vakuum eingeengt, der Rückstand in CH₂Cl₂ aufgenommen und mit NaCl-Lösung versetzt. Die wässrige Phase wurde mit CH₂Cl₂ extrahiert, über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Nach Flash-Chromatographie (PE:EE 20:1 \rightarrow 5:1) wurden 5 mg (7.35 µmol, 35%) des Produkts erhalten und 14 mg (18 µmol, 85%) des Edukts reisoliert.

¹**H-NMR** (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 4H, SiPh), 7.43-7.33 (m, 6H, SiPh), 6.79 (s, 1H, ArH), 6.59 (s, 1H, ArH), 6.20 (s, 1H, NH), 6.13 (s, 1H, ArH), 3.72 (dddd, *J* = 7.0, 5.3, 5.1, 3.7 Hz, 1H, H-2), 3.48 (ddd, *J* = 11.0, 6.0, 3.7 Hz, 1H, H-1a), 3.34 (ddd, *J* = 11.0, 6.3, 5.1 Hz, 1H, H-1b), 2.38 (dd, *J* = 13.3, 6.1 Hz, 1H, H-5a), 2.08 (dd, *J* = 13.3, 8.5 Hz, 1H, H-5b), 1.78 (dd, *J* = 6.3, 6.0 Hz, 1H, OH), 1.64-1.58 (m, 1H, H-4), 1.47 (s, 9H, 'Bu), 1.43 (ddd, *J* = 14.0, 7.0, 1.7 Hz, 1H, H-3a), 1.14 (ddd, *J* = 14.0, 8.3, 5.3 Hz, 1H, H-3b), 1.07 (s, 9H, Si'Bu), 0.86 (s, 9H, Si'Bu), 0.64 (d, *J* = 6.4 Hz, 3H, H-6), 0.04 (s, 3H, SiMe), 0.01 (s, 3H, SiMe) ppm; ¹³C-NMR (100 MHz, CDCl₃, CHCl₃ = 77.16 ppm): δ 155.9 (q, NCO), 142.9 (q, Caromat.), 139.9 (q, Caromat.), 135.6 (t, Caromat.), 133.1 (q, Caromat.), 129.9 (t, Caromat.), 127.8 (t, Caromat.), 115.4 (t, Caromat.), 112.1 (t, Caromat.), 107.6 (t, Caromat.), 80.4 (q, 'Bu), 71.1 (t, C-2), 66.9 (s, C-1), 44.0 (s, C-5), 41.2 (s, C-3), 30.9 (t, C-4), 28.4 (p, 'Bu), 26.6 (p, Si'Bu), 26.0 (p, Si'Bu), 19.7 (q, Si'Bu), 19.5 (p, C-6), 18.2 (q, Si'Bu), -4.2 (p, SiMe), -4.3 (p, SiMe) ppm; **HRMS:** *m*/*z* für C₃₉H₆₀NO₅Si₂ [M+H]⁺: ber. 678.4005 gef. 678.4102; $[\alpha]_{20}^{20} = + 2.6^{\circ}$ (*c* 0.5, CH₂Cl₂).

(4*R*, 2*S*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4-methyl-2-(*tert*.-butyldimethylsiloxy)-1-pentanal 204

18 mg (27 µmol, 1.0 Äq.) Alkohol **203** wurden unter Stickstoffatmosphäre in 2.3 mL trockenem CH_2Cl_2 gelöst und auf 0°C gekühlt. Anschließend wurden nacheinander 3 mg (32 µmol, 1.2 Äq.) NaHCO₃ und 14 mg (32 µmol, 1.2 Äq.) DMP zugegeben und die Reaktion auf Raumtempertur erwärmt. Nach 1 h wurde die Reaktion durch Zugabe von Na₂S₂O₃- und NaHCO₃-Lösung (1:1) beendet und 45 min. bei Raumtemperatur gerührt. Nach Trennung der Phasen wurde die wässrige Phase mit CH_2Cl_2 extrahiert. Die vereinten organischen Phasen wurden mit NaHCO₃-Lösung gewaschen, über MgSO₄ getrocknet und im Vakuum eingeengt. Der quantitativ (27 µmol) erhaltene Aldehyd **204** wurde direkt in der folgenden Umpolungsreaktion eingesetzt.

4*R*, 2*S*)-5-[*tert*.-Butoxycarbonylamino-3-(*tert*.-butyldiphenylsiloxy)-phenyl]-4-hydroxy-5-(*tert*.-butyldimethylsiloxy)-3,7-dimethyl-oct-2-en (Westfragment)

3 mg (2.7 µmol, 0.1 Äq.) Pd₂(dba)₃ Chloroformaddukt wurden unter Stickstoffatmosphäre in 0.2 mL trockenem und entgastem DMSO gelöst. Anschließend wurden 4 mg (32 µmol, 1.2 Äq.) Allylacetat **54** hinzugefügt und 10 min. bei Raumtemperatur gerührt. Danach wurden 8 mg (32 µmol, 1.2 Äq.) Bis(pinakol)boronat zugegeben und 15 min. bei 40°C gerührt. Abschließend wurden 27 µmol (1.0 Äq.) des frisch hergestellten Aldehyds **204** in 0.4 mL trockenem und entgastem DMSO zugegeben und die Reaktion 20 h bei 40°C gerührt. Nach beendeter Reaktion wurden 2 mL dest. Wasser zugegeben und 1 h bei Raumtemperatur gerührt. Die wässrige Phase wurde mit Ether extrahiert, die vereinigten organischen Phasen über MgSO₄ getrocknet und im Vakuum eingeengt. Nach säulenchromatographischer Reinigung (PE:EE 10:1) wurden 9 mg (15.1 µmol, 56%) des Produkts als gelbes Öl erhalten. Das Diastereomerenverhältnis betrug 1:1. Da die erhaltenen Diastereomere nicht voneinander getrennt werden konnten, sind nachfolgend die Misch-¹H- NMR-Daten angegeben.

¹<u>H-NMR</u> (400 MHz, CDCl₃, CHCl₃ = 7.26 ppm): δ 7.71-7.69 (m, 8H, SiPh), 7.41-7.33 (m, 12H, SiPh), 6.81 (bs, 1H, ArH), 6.77 (bs, 1H, ArH), 6.62 (bs, 1H, ArH), 6.57 (bs, 1H, ArH), 6.22-6.19 (m, 2H, 2 x N*H*), 6.15 (bs, 1H, ArH), 6.13 (bs, 1H, ArH), 5.93-5.72 (m, 2H, 2 x H-2), 5.10-4.93 (m, 4H, 2 x H-1), 3.81-3.78 (m, 1H, H-5_{dia}), 3.69-3.65 (m, 1H, H-5), 3.34-3.32 (m, 1H, H-4_{dia}), 3.12-3.08 (m, 1H, H-4), 2.43-2.35 (m, 2H, H-8a und H-8a_{dia}), 2.22-2.13 (m, 2H, 2 x H-3), 2.11-2.03 (m, 2H, H-8b und H-8b_{dia}), 1.81-1.69 (m, 2H, 2x H-7), 1.46 (s, 18H, 2 x 'Bu), 1.38-1.24 (m, 4H, 2 x H-6), 1.07 (s, 18H, 2 x Si'Bu), 0.95-0.94 (m, 3H, H-9), 0.92-0.90 (m, 3H, H-9_{dia}), 0.87 (s, 18H, 2 x Si'Bu), 0.86-0.66 (m, 6H, 2 x H-10), 0.05-0.01 (m, 12H, 4 x SiMe) ppm; **HRMS:** *m*/*z* für C₄₃H₆₆NO₅Si₂ [M+H]⁺: ber. 732.4480 gef. 732.4478.

Die detaillierte Zuordnung der Signale im ¹³C-NMR war aufgrund der verhältnismäßig geringen Substanzmenge und der Tatsache, dass ein Diastereomerengemisch vorlag nicht möglich.

7 Anhang

Anhang

136

138

Anhang

8 6.9105

Anhang

Danksagung

Ich danke meinem Doktorvater, Prof. Dr. Andreas Kirschning, herzlich für die Aufnahme in seinen Arbeitskreis, für die Unterstützung während meiner Doktorarbeit und für die interessante Themenstellung.

Herrn Prof. Dr. Mike Boysen möchte ich für die Übernahme des Koreferats danken.

Mein großer Dank gilt Dr. Gerald Dräger, der durch seine Hilfsbereitschaft, nicht nur in Fragen der HPLC oder MS, vieles vereinfacht und dadurch wesentlich zur angenehmen Arbeitsatmosphäre beigetragen hat.

Den drei Damen aus dem Sekretariat danke ich für die schnelle Abwicklung bürokratischer Dinge. Monika Griese und Kristina Struckmeier möchte ich außerdem noch für diverse Wollutensilien und die Einführung in die Strickkunst danken.

Den Mitgliedern der spektroskopischen Abteilung, Dr. Jörg Fohrer, Monika Rettstadt, Dagmar Körtje und Rainer Nöthel danke ich für die schnelle Hilfe bei Notfall-Massen bzw. Notfall-NMRs.

Meinen ehemaligen Laborkollegen, Dr. Florian Taft, Sascha Ceylan, Jana Franke, Dr. Santosh Mhaske und Thomas "Frodo" Schmidt, danke ich für die angenehme und freundschaftliche Arbeitsatmosphäre, wobei ich mich vor allem bei Thomas für die interessanten Diskussionen nicht-chemischer Natur bedanken möchte, durch die selbst die langen Abende am Ende dieser Arbeit erleichtert wurden.

Simone Eichner, Anja Heutling, Andreas Kipke, Andreas Krause, Thomas Schmidt, Sascha Ceylan und Daniel Schmidtke danke ich für das Korrekturlesen dieser Arbeit bzw. das "Korrekturhören".

Spezieller Dank gilt meinem Mitstreiter Sascha "der Motivator" Ceylan, der durch seine unkomplizierte, direkte und freundschaftliche Art wesentlich zum Gelingen dieser Arbeit beigetragen hat und mich darüber hinaus sogar dazu gebracht hat gerne Fahrrad zu fahren [©].

Mein besonderer Dank gilt außerdem allen aktiven und ehemaligen Kollegen, nicht nur für die Hilfe bei der Lösung chemischer Probleme sondern vor allem für die gemeinsamen ausser-chemischen Aktivitäten, die zur angenehmen Arbeitsatmosphäre beigetragen haben. Dafür möchte ich mich insbesondere bei Dr. Richard Dehn, Dr. Martin Bock, Simone Eichner, Anja Heutling, Kirsten Harmrolfs, Sascha Ceylan, Jens Wegner, Dr. Ludovic Coutable, Dr. Florian Taft, Andreas Kipke, Thomas Schmidt, Anne Pieper, Jenny Barbier, Nadin Schläger, Dr. Antonella Migliorini, Yi Su und Andreas Krause bedanken.

Nicht zuletzt möchte ich mich ganz besonders herzlich bei meinen Eltern, meinen Geschwistern Alex und Caro und meinen Großeltern bedanken, die mich während meiner gesamten Ausbildung stets unterstützt und motiviert haben. Danke, dass ihr mir das ermöglicht habt. Ebenso großer Dank gebührt Daniel Schmidtke, der mir stets verständnisvoll zur Seite stand und somit wesentlich zum Gelingen dieser Arbeit beigetragen hat.

Curriculum Vitae

Persönliche Daten

Monika Vogt, geboren am 01.05.1982 in Göttingen, ledig

Studium	
seit 03/2007	Promotion am Institut für Organische Chemie der Leibniz
	Universität Hannover (Prof. Dr. Andreas Kirschning)
	"Umpolung von Allyl-Palladium-Komplexen und Anwendung
	in der Synthese von Naturstoff-Fragmenten"
07/2006-01/2007	Diplomprüfungen und Diplomarbeit am Institut für Organische
	Chemie der Leibniz Universität Hannover (Prof. Dr. Andreas
	Kirschning)
	"Silylsubstituierte C1-Bausteine als Formyl-Dianion-Äquivalente"
10/2005-11/2005	Schwerpunktpraktikum am Chemischen Institut der Universität
	Göteborg, Schweden (Dr. Morten Grötli und Dr. Martina Lahmann)
	"Modified Synthesis for Preparing a protected 3-Azido-a-
	D-ribofuranose"
10/2001-01/2007	Chemiestudium an der Leibniz Universität Hannover
Schulbildung	
1988-2001	Schulausbildung
06/2001	Abitur, Goethe Gymnasium Kassel
Lehre	
seit 04/2007	Tätigkeit als Seminarleiterin bei Solvay Pharmaceuticals GmbH in
	Hannover
	"Organische Synthesechemie"

Publikationen

[1] "*Studies on the 1,2-Brook rearrangement of bissilyl ketones*", M. Vogt, S. Luiken, A. Migliorini, M. A. Loreto, A. Kirschning *Synlett* **2009**, *3*, 429-432.

[2] "Studies on the stereocontrolled palladium catalysed umpolung allylation of aldehydes with allyl acetates", M. Vogt, S. Ceylan, A. Kirschning Tetrahedron **2010**, doi:10.1016/j.tet.2010.04.133.

Wissenschaftliche Vorträge

[1] "*Silylsubstituierte C1-Bausteine als Dianion-Äquivalente"*, Brook Symposium, Clausthal, **2006**.

[2] "Umpolung von Allyl-Palladium-Komplexen", Brook Symposium, Hannover, 2007.

[3] "*Umpolung of Allyl-Palladium Complexes and Applications in Asymmetric Synthesis*", 3rd German Hungarian Workshop, Paderborn, **2008**.

Ausgewählte Posterpräsentationen

[1] "*Studies on Bis(dimethylphenylsilyl)ketone as potential Formyl-Dianion-Equivalent*", GDCh Wissenschaftsforum, Ulm, **2007**.

[2] "Stereocontrolled Palladium Catalysed Umpolung Allylation of Aldehydes with Allyl Acetates", 21st International Symposium: Synthesis in Organic Chemistry, Oxford (UK), 2009.