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ZusammenfassungIn dieser Arbeit behandele ih die Verbindung von Geometrie und logarithmish konformenFeldtheorien. Dabei betrahte ih zwei vershiedene geometrishe Situationen: in Teil I dastopologishe A-Modell mit Einbettungsabbildung x : R×S1 → CP
1 und in Teil II konforme,fermionishe Geister auf dem Torus.Das A-Modell lässt sih in eine Form bringen, in der das Pfadintegral eine δ-Distributionauf dem Modulraum der Instantonen ist. Integriert man die Abhängigkeit von S1 heraus, er-hält man eine Morsetheorie auf der universellen Überlagerung �LCP1 des Loop-Raumes. DerenNiedrigenergie-Zustandsräume lassen sih in Zellen dieser Mannigfaltigkeit störungstheo-retish bestimmen und durh Darstellungsräume des Chiralen de Rham-Komplexes beshrei-ben. Unter der Annahme, dass die Darstellungstheorien des A-Modelles und des Chiralende Rham Komplexes übereinstimmen, betrahte ih im Folgenden den Chiralen de Rham-Komplex. Die Zustandsräume sind lokale, induzierte Darstellungen der Symmetrie, die durhdas Gradientenfeld der Morsefunktion erzeugt wird. Entsprehend einer Hypothese von E.Frenkel, A. Losev und N. Nekrasov führt eine Verallgemeinerung dieser lokalen Darstellungenals Distributionen auf �LCP1 zu quantenexakten Zuständen der Theorie. Auf diesen Zustän-den muss der Hamiltonoperator durh zusätzlihe Terme korrigiert werden. Ih diskutiere dieDarstellungstheorie der quantenexakten Zustände und bestimme die Deformationsterme desHamiltonoperators. Ih zeige, dass diese eine geometrishe Deutung als Kohomologieopera-toren in einem Komplex global erweiterter lokaler Darstellungsräume haben. Zuletzt zeigeih, dass den zusätzlihen Termen im Hamiltonoperator der Morsetheorie eine logarithmisheErweiterung des hiralen de Rham-Komplexes entspriht.Die konformen, fermionishen Geister aus Teil II transformieren sih in irreduziblen Darstel-lungen der Monodromiegruppe Z2. Ih zeige, dass die durh sie beshriebene konformeFeldtheorie logarithmish erweitert werden muss, sobald man zu den Darstellungen derMonodromiegruppe Felder assoziiert, die sih frei auf dem Parameterraum CP

1 \ {0,1,∞}bewegen. Das Tripletmodell stellt eine minimale logarithmishe Erweiterung dieser Theoriedar und bildet die Grundlage meines letzten Kapitels. Darin drüke ih die spektrale Kurveder SU (2)-Seiberg-Witten Theorie durh die Charaktere des Tripletmodelles aus, und führeebenfalls das Präpotential auf dieses Modell zurük, indem ih es als Funktion des Modulusder spektralen Kurve gewinne.
Schlagworte: Nihtlineares Sigma Modell, Logarithmish Konforme Geister, Seiberg Wit-ten Theorie
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AbstractThis thesis is about the relation of geometry and logarithmi onformal �eld theories. Ionsider two di�erent geometri settings: in part I the topologial A-model with embedding
x : R×S1 →CP

1, and in part II onformal, fermioni ghosts on the torus.The A-model an be transformed suh that the path integral yields a δ distribution onthe moduli spae of instantons. Integrating out the dependeny on S1, one obtains Morsetheory on the universal over �LCP1 of loop spae. Its low-energy state spae an be derivedperturbatively in ells of this manifold, and an be modelled by the representations of thehiral de Rham omplex. Assuming that the representation theory of the A-model andthe hiral de Rham omplex are idential, I onsider the hiral de Rham omplex in thefollowing. The state spaes are loal, indued representations of the symmetry generated bythe gradient vetor �eld of the Morse funtion. Aording to a onjeture of E. Frenkel, A.Losev and N. Nekrasov, a generalization of these loal representations as distributions on
�LCP1 leads to nonperturbative states of the theory. On these states, the Hamiltonian mustbe orreted by additional terms. I disuss the representation theory of the nonperturbativestates and determine the terms whih deform the Hamiltonian. They have a geometrisigni�ane as ohomology operators in a omplex of globally extended loal representationspaes. Eventually, I prove that a logarithmi extension of the hiral de Rham omplexorresponds the additional terms in the Hamiltonian.The onformal, fermioni ghosts of part II transform in irreduible representations of themonodromy group Z2. I show that the onformal �eld theory of these �elds has to be loga-rithmially extended as soon as the representations of the monodromy goup are allowed tomove freely on the parameter spae CP

1 \ {0,1,∞} of the torus. The triplet model onsti-tutes a minimal logarithmi extension of this theory and is fundamental for my last hapter.Therein I obtain the spetral urve of SU (2) Seiberg-Witten theory in terms of haraters ofthe triplet model. Further, I trae bak the prepotential to that model by expressing it as afuntion of the torus modulus of the spetral urve.
Key words: Nonlinear Sigma Model, Logarithmi Conformal Ghosts, Seiberg Witten Theory
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Introduction 1This thesis was initiated by my interest in the relation between geometry and physis. It wassine I got to know the publiation of V. G. Knizhnik [Kni87℄ that I wanted to investigatethe geometri signi�ane of the aspets whih render a onformal �eld theory logarithmi.Knizhnik onsiders holomorphi di�erential forms on algebrai surfaes whih are branhedoverings of CP1 and have a global Zn monodromy group. The di�erential forms an be iden-ti�ed with onformal fermioni ghosts, and the monodromy group has an indued ation onthese �elds, whih thus fall into n irreduible representations. In the spirit of onformal �eldtheory (CFT), these representations are realized by loating the onformal �elds isomorphito the respetive highest weight vetors at the branh points. In mathematial terms, thisamounts to restriting the di�erential forms to a neighborhood of a branh point and toonsidering representation theory thereon.If the algebrai surfae has branh points ei , i ∈ {1, . . . ,2N }, N ≥ 2, one may turn the surfaeinto a family of topologially equivalent surfaes by allowing 2N−3 branh points to vary over
CP

1 \
⋃2N−3

i=1
{ei }. This helps to extrat further geometri information, suh as degeneraieswhen branh points are fusing, or periods, whih satisfy di�erential equations with respetto the �oating parameters.Although my investigations started with the work of Knizhnik, I will disuss this settingin the seond part of my thesis. There, I will onsider the CFT realization of both, degen-eraies and periods for the algebrai surfae being a torus. The di�erential equation for itsperiods is realized as the nullstate ondition for the odd representation of the monodromygroup Z2. Therefore, the four-point funtion of the so-alled twist �eld orresponding tothis representation is proportional to the periods of the torus. In partiular, it ontainslogarithms and the fusion of two branh points, whih is simulated by the operator produtexpansion (OPE) of two suh �elds, yields a doublet representation of the symmetries of theonformal fermioni ghost system. The Hamiltonian is not diagonalizable on this doublet,whih signi�es that the CFT has to be extended to a logarithmi onformal �eld theory(LCFT). The minimalisti way to do this will lead to the triplet model, as explained by M.Flohr in [Flo98℄.This setting has been the starting point for my publiation with M. Flohr [VF07℄. As thetorus is the spetral urve of pure gauge, SU (2) Seiberg-Witten theory, we wanted to expressthe prepotential in terms of haraters of the triplet model. Although we only obtained theprepotential in terms of the torus modulus, whih equals the ratio of twist �eld four-pointfuntions, we have been able to determine the spetral urve by means of suh haraters.This will be the subjet of hapter 9 in part II.
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The origin for my seond main projet, desribed in part I of this thesis, is the workof E. Frenkel, A. Losev and N. Nekrasov [FLN06, FLN08℄, who investigated Morse theoryand the topologial A-model beyond their topologial setors. What is implied by thoseonsiderations?(Cohomologial) topologial �eld theories deal with global geometri objets on manifolds,in partiular with di�eomorphism invariants that are in the ohomology of some nilpotentoperator Q, alled Behi-Rouet-Stora-Tyutin (BRST) harge due to its properties. It hasan ation on the �elds and state spaes of the theory and the elements in its ohomologylasses omprise what is alled the topologial setor of a �eld theory.Under ertain irumstanes a �eld theory has in addition to its topologial setor further�dynamial� states and observables. While the ohomology of Q is invariant under di�eo-morphisms, this is not the ase for the dynamial setor. Hene, the dynamial degreesof freedom should in priniple desribe part of the loal geometry of the target or domainmanifold.In [FLN06℄, Frenkel, Losev and Nekrasov onsider the situation desribed above for Morsetheory with a �rst order Lagrangian on a Kähler manifold X with saled metri λg , λ ∈R
>0.The perturbative spetrum of this theory inludes topologial as well as dynamial states.If X is supplemented with an additional struture, these states have their support on thedesending manifolds of the gradient vetor �eld of the Morse funtion. Moreover, thesubmanifolds yield a disjoint over of X , and so do the perturbative state spaes.The loal geometry of X an be aessed employing the dynamial states. For λ→ ∞,the Hamiltonian beomes the Lie derivative in diretion of the gradient vetor �eld of theMorse funtion. The perturbative state spaes whih survive that limit turn into loallyde�ned indued representations of the symmetry generated by the gradient �eld. This is,metaphorially, what an observer loated on a desending manifold would expet to see.However, Frenkel, Losev and Nekrasov laim that there are nonperturbative e�ets throughwhih the observer obtains additional insights into the loal representations of the Hamil-tonian on X . They propose that the nonperturbative state spaes are obtained by ex-tending the perturbative state spaes as distributions to X and their analysis shows thatthe thus globalized representations are the loal ohomology groups in a omplex alled theglobal Grothendiek-Cousin omplex, [Kem78℄. This omplex has a ohomology operator,the Grothendiek-Cousin operator (GCO), whih ompounds the loal representation spaesand appears as an additional term in the Hamiltonian. The observer is thus onfrontedwith a Hamiltonian whih an not be diagonalized on all dynamial states � a situation wellknown in the theory of logarithmi CFTs.My initial interest in the work of Frenkel, Losev and Nekrasov [FLN06℄ arose from theirproposal that the topologial A-model in the large volume limit is an LCFT beyond itstopologial setor. In [FLN08℄, they redue the A-model with embedding x : R

1 ×S1 →CP
1
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to the Morse theory of [FLN06℄ by integrating out the dependene on S1. In partiular,one an derive the perturbative state spaes and it appears that they an be modelled byrepresentation spaes of the onformal supersymmetri ghosts (CSb) with target spae CP
1.It is now suggestive to assume that at least the representation theory of the A-model in thelarge volume limit equals that of the CSb and the theories an, aordingly, be substituted.Furthermore, Frenkel, Losev and Nekrasov propose the deformation of the Hamiltonian,but do not analyze the extension of the representation spaes in detail. Moreover, in orderto prove their onjeture that the A-model is an LCFT in the large volume limit and beyondits topologial setor, it is not su�ient to onsider the underlying Morse theory. A loga-rithmi deformation of the CSb has to be found, whih yields the orret extensions of theperturbative representation spaes and adds the deformation terms to the Hamiltonian. Itis only then, that the Grothendiek-Cousin operators an be interpreted as the zero modesof the logarithmi improvement terms whih deform the energy momentum tensor. Parts ofthose onsiderations have been addressed in my seond publiation with M. Flohr [VF09℄.As mentioned above, this thesis has two parts, the �rst treats the logarithmi extension ofthe CSb underlying the A-model, the seond is about fermioni ghosts on the torus and theirrelation to Seiberg-Witten theory. Before I start with an outline, I will brie�y omment on theappendix, whih serves to supplement the main part. In appendix A I summarize and speifythe basi ingredients of a topologial �eld theory [BBRT91, Wit82, Wit88a, Wit88b℄. Inappendix B.1 I brie�y explain how the topologial A-model is obtained by twisting an N = 2supersymmetri sigma model and note down the supersymmetry of this theory [Mar05℄. Thelast appendix C is the foundation of another publiation, wherein I study the possibility togeneralize the approah of Frenkel, Losev and Nekrasov [FLN08℄, by whih they deform theHamiltonian of the A-model, to a deformation of the assoiated CSb.

Part I In the following hapter 2, I will start with a disussion of Morse theory. Therein, thegeometri origin of the deformation operators is disussed and the onditions on the targetspae manifold are �xed. This hapter follows the publiation of Frenkel, Losev and Nekrasov[FLN06℄, but some subtle points are treated in more detail. In partiular this onerns theextension of the perturbative representation spaes. I will propose an alternative ansatz forthe extension, whih relies on a priniple by whih I an enlarge the representation spaes.This ansatz is appliable in the ontext of the A-model.In hapter 3, I will introdue the A-model with target spae CP
1 and take the large volumelimit. Reduing the thus obtained theory to Morse theory, I will derive the perturbative statespaes and explain why they an be modelled by the CSb. Beause the A-model is de�nedon CP

1, it is neessary to make hart transitions. For the CSb, these transitions are de�nedthrough the hiral de Rham omplex, whih I will also introdue. My method to derivethe deformation of the Hamiltonian di�ers again from that of Frenkel, Losev and Nekrasov
3



[FLN08℄. It relies ruially on bosonization, whih I will disuss in detail. It will be importantthat the holomorphi and anti-holomorphi �halves� of the CSb are onsidered together, notonly beause of anomalies ourring but also beause the GCOs are omposed of both parts.Indeed, I will explain that this omposition onstrains the representation spaes and thesymmetries of the theory.Having determined the perturbative representation spaes, their extensions, and the Gro-thendiek-Cousin operators that mediate between them, I will then move bak from Morsetheory to the onformal �eld theory. In hapter 4, I will use the method of Fjelstad etal. [FFH+02℄ to deform the CSb logarithmially. I will do that in suh a way that therepresentation spaes are extended onsistently and that the GCOs are added to the Hamil-tonian. This has an e�et on the operator produt algebra of the �elds, but neither on thesupersymmetry nor the onformal symmetry of the CSb.I will onlude this part of the thesis with a brief summary and disussion in hapter 5.
Part II In part two I will onentrate on the fermioni onformal ghosts on branhed over-ings of CP1 [Kni87℄. After a brief motivation in hapter 6, I will speify the algebrai surfaesunder onsideration and introdue the onformal ghosts in hapter 7. Sine they will havenontrivial operator produt expansions in a neighborhood of a branh point it is neessaryto extend the representation spaes by the representations of the monodromy group.In the the subsequent hapter 8, I will derive by geometri arguments that the fermionighosts on the torus neessarily omprise a logarithmi onformal �eld theory. The minimalversion is the triplet model [Flo98℄, whih I will introdue in hapter 8.3.In the last hapter 9, I will explain how the spetral torus of pure gauge Seiberg-Wittentheory an be obtained from ertain haraters of the triplet model and note down anexpression of the prepotential whih is given ompletely in terms of quantities of this LCFT.The thesis will be onluded with a summary and a disussion of open questions in thelast hapter 10.
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I

Supersymmetric Ghosts with Values

on the Sphere





Morse Theory 2This hapter has three parts. My starting point will be Morse theory on a general Riemanniansurfae X with saled metri λg and sympleti form ω.Firstly, I will prepare the topologial setor of this theory by breaking CPT invariane andby making loalization on the instantons expliit. This amounts to onseutively puttingonstraints on X . The onstraints will be suh that the instanton setors are well de�ned andthat the gradient �eld orresponding to the Morse funtion deomposes X into submanifolds,to eah of whih one an perturbatively assoiate a state spae. Among those, there areexited states whih are not saled out in the large volume limit λ→∞.Frenkel et al. proposed [FLN06℄ that the state spaes in the limit λ→∞, when generalizedas distributions on X , omprise the nonperturbative low energy spetrum. In setions 2.4and 2.5 I will disuss some onsequenes of this assumption for Morse theory on CP
1, mainlyfollowing their publiation but also with an additional disussion of the ohomology of thesuperharge, as well as a di�erent method for extending the state spaes as distributions. Themost important observation will be that observables whih inlude exterior derivatives areno longer diagonalizable on all states. In partiular, this onerns the Hamiltonian and thusdraws a similarity to logarithmi onformal �eld theories. Rather, those operators intermixthe state spaes whih formerly have been loated in di�erent harts.Finally, I will disuss the physial and geometrial meaning of this sort of non-loality,whih is due to the non-topologial states.This hapter will be onluded with a generalization of the toy model to a lass of manifolds

X and will be the basis for an understanding and analysis of the Morse theory underlyingthe topologial A-model. My explanations rely mostly on [FLN06, BBRT91, Wit82℄.
2.1 The Path Integral Point of ViewIn terms of the strutures just introdued, the Morse theory I will onsider onsists of aRiemannian surfae X , a smooth embedding x : Σ ⊆ R → X , its Grassmann valued super-partner ψ and another Grassmann valued quantity π, whih is the onjugate momentum of
ψ. The Eulidean metri g on X is saled by some parameter λ ∈ R

>0 and, without loss ofgenerality, I �x a onnetion D to be the Levi-Civita onnetion, de�ned with positive signon ∂
∂xµ : Dν

∂
∂xµ = ∂

∂xλΓ
λ
νµ.
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Let f : X → R be Morse, i.e. single valued and with isolated ritial points xc : d f (xc ) = 0,and denote further by Dtψ
µ = dψµ

dt +Γ
µ

λσ
dxλ

dt ψσ the pullbak of D to Σ and by ∇µ f := gµν∂ν fthe gradient of f . In loal oordinates, the ation I am interested in is
Sλ =

∫

Σ

(1

2
λgµν

dxµ

dt

dxν

dt
+

1

2
λgµν∂µ f ∂ν f

+ iπµ∇tψ
µ− iπµ

(
Dα∇µ f

)
ψα+

1

2λ
R
µν

αβ
πµπνψ

αψβ
)
dt .

(2.1.1)In the following setions I will extrat its topologial setor, seleting either the instantonsor anti-instantons and by speifying several onditions on X .Sine d f (xc ) = 0, the Hessian H (x)[γ] := Dγ(d f )(x), γ ∈ Tx X does not depend on the hoieof the onnetion at a ritial point xc . In loal oordinates it reads Hµν(xc ) = ∂µ∂ν f (xc ).There exists a basis eµ of tangent vetors at Txc
X in whih it is diagonal with eigenvalues

κc µ : H (xc) eµ = κc µ eµ. The ondition that the ritial points are isolated is equivalent tothe ondition that H (xc) has no zero eigenvalues. Sine the Hessian does not depend on theonnetion, it is reasonable to de�ne an index for every ritial point
ind(xc ) = #{µ : κc µ < 0}, (2.1.2)whih is a topologial invariant.In order to see what the lassial solutions are, I will for a moment onentrate on thebosoni part. One an apply the so-alled �Bogomlny trik� to �nd the absolute minima ofthe ation:

Sbos =
∫

Σ

(
λ

2

(
dxµ

dt
∓∇µ f

)2

±λ
d f

dt

)
dt . (2.1.3)Sine it was positive semi-de�nite before, I obtain a lower bound

Sbos ≥
∣∣∣∣
∫

Σ

d f

∣∣∣∣ , (2.1.4)whih is satis�ed by the gradient trajetories
dxµ

dt
±∇µ f = 0. (2.1.5)These are the lassial bosoni solutions to δS = 0. There are three kinds, depending on theboundary onditions. The vauum on�gurations are solutions of

dxµ

dt
= 0 ∧ ∇µ f (x) = 0, (2.1.6)whih is satis�ed by onstant loops, i.e. the ritial points xc . If there exists more than oneritial point, say {x+, x−}, there are also instanton (−∇ f ) and anti-instanton on�gurations(+∇ f ) :

dxµ

dt
±∇µ f (x) = 0 , x(±∞) = x± (2.1.7)where w.l.o.g. I �xed some initial and �nal time. From (2.1.4) one an onlude that theinstantons satisfy f (x+) > f (x−) and the anti-instantons f (x+) < f (x−).
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2.1.1 Making CPT Breaking and Localization ManifestThe anti-instantons an be exluded from the lassial minima by subtrating λ
∫

d f fromthe ation (2.1.1). This term does not depend on the metri and is hene topologial. It,however, breaks CPT invariane as one would expet for a theory without anti-instantons.1In order to make the loalization property manifest, I massage the ation S −λ
∫

d f into a�rst order form, by introduing a Lagrangian multiplier pµ. Viewed as part of the integrationkernel exp{−S} in the path integral, I may now onsider, equivalently to (2.1.1):
Sλ =

∫

Σ

(
− ipµ

(
dxµ

dt
− gµν∂ν f

)
+

1

2λ
gµνpµpν

+ iπµ

(
Dtψ

µ− (Dα∇µ f )ψα
)
+

1

2λ
R
µν

αβ
πµπνψ

αψβ
)
dt .

(2.1.8)In the limit λ→∞, the integral kernel turns into a δ distribution on instanton moduli spae,whih makes loalization expliit. Indeed, for �nite λ, the instantons still ontribute witha weight fator e−2λ|f (x+)− f (x−)| to orrelation funtions, but for λ → ∞ their ontributiondisappears. On the ontrary, the instantons ontribute with a onstant weight fator 1 forany value of λ.Let vµ(x) := ∇µ f (x) be the vetor �eld assoiated with f and p ′
µ := pµ +Γ

λ
µνψ

νπλ. Theation in the large volume limit an now be written as:
S∞ =−i

∫

Σ

(
p ′
µ

(
dxµ

dt
−vµ

)
−πµ

(
dψµ

dt
−ψα∂αvµ

))
dt . (2.1.9)It is invariant under the following susy transformations

[Q , xµ] =ψµ, [Q ,ψµ] = 0 [Q∗, xµ] = 0, [Q∗,ψµ] = vµ

[Q ,πµ] = p ′
µ, [Q , p ′

µ] = 0 [Q∗,πµ] = 0, [Q∗, p ′
µ] = 0

(2.1.10)and moreover, the Lagrangian is Q-exat, L =−i[Q ,πµ

(
dxµ

dt −vµ
)
] and thus is the Hamiltonian.This is roughly the model I am going to onsider. However, I will need some more infor-mations on the instanton moduli spae, espeially in order to �nd onstraints on the targetmanifold. There will be serveral obstales whih have to be resolved and I will list them up,whenever I enounter one. In the following and for onveniene, I will leave away the primefor p ′

µ.
2.1.2 The Instanton Moduli SpaceThe instanton equation dxµ

dt = vµ(x) gives rise to a sympletormorphism of X , i.e. Lvω= 0:
φv : X ×Σ→ X x 7→φv (x, t ) = x(t ) , (2.1.11)

1Though for the model under consideration CPT is really CT, I will follow the terminology of Frenkel, Losev and

Nekrasov [FLN06]. For a more detailed discussion of CPT breaking, c.f. section 2.2.4.
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where x(t ) is an instanton solution and φv (·, t ) determines a one parameter group in t . Bymeans of this �ow equation of v one an try to �nd a partition of X into submanifoldswhih is generated by the �xed points of v . These will be the desending Xc and asendingmanifolds X c :
X (c)

c :=
{

x ∈ X : lim
t→ (+)

− ∞
φv (x, t )= xc

}
. (2.1.12)If xc is a nondegenerate ritial point and φv a di�eormorphism, they are indeed submanifolds[AR67, pg. 87f℄ and inherit the tangent spaes de�ned by the �ow lines.For the following reason I demand that a deomposition of X into desending and asendingmanifolds exists. In setion 2.2.4 I will explain that the state spaes will be loalized aroundthe �xed points of v . A deomposition of X in terms of, say, desending manifolds is usefulbeause one an then anonially assoiate to eah suh submanifold a state spae Fα andthese over X . Therefore:

❏ The target manifold X has a (Bialyniki-Birula) deomposition
X =⊔

α∈A Xα =⊔
α∈A X α with respet to v .The instanton moduli spaes are de�ned by means of desending and asending manifolds

M (α,β) := Xα∪X β , (2.1.13)and under further onditions it is possible to alulate the dimension of this moduli spae.Let xc be a ritial point, I an hoose loal oordinates suh that it is loated at the origin.In its neighborhood I an approximate a solution of the instanton equation by a line ele-ment y = xc +x and by making a Taylor expansion around the ritial point. This yields tolowest order dt xµ−H
µ
ν (0)xν = 0, whith Hessian H evaluated at xc = 0. Thus, loally aroundthe �xed point, the diretions along whih H has positive eigenvalues span the tangentspae of the desending manifold while the others span the tangent spae of the asendingmanifold. Therefore, at least in a neighborhood of a �xed point xc , T Xc ≃ R

dimX−ind(xc ) or
≃C

dimCX− 1
2

ind(xc ) while for the asending manifold T X c ≃ R
ind(xc ) or ≃C

1
2

ind(xc ). The general-ization of this ondition is as follows:
❏ Let ( f , X ,λg ) allow for Morse-Smale transversality, i.e.

∀ x ∈M (α,β), ∀ α,β : dim Tx Xα+dim Tx X β−dim X = dim
(
Tx Xα∪Tx X β

).One an now alulate
dimR M (α,β) = ind(β)− ind(α) . (2.1.14)The Morse-Smale ondition yiels a nie desription of the tangent spaes of X in terms ofinstanton �ow lines. Espeially the dimensions of the instanton moduli spaes are naturalnumbers inluding zero, restrited by the dimension of the target manifold, and there are nodimensional degeneraies. Sine it is expressed by the Morse indees, the dimension of theinstanton moduli spae is a topologial invariant. Morse-Smale transversality does further
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restrit the �ow lines to move from �xed points with lower to �xed points with higher Morseindex.There is another, physially inspired way to alulate the dimension of the instanton mod-uli spae [H+03, se. 10.5.2℄. Consider an instanton solution x : dt xµ− vµ(x) = 0, xµ(−∞) =
x
µ
α, xµ(∞) = x

µ

β
. Again, I will move in the solution spae of this di�erential operator toanother solution y = x +ηz, where η > 0 is an in�nitesimally small number. The urve y isan instanton solution if the displaement z satis�es D−z := ( dt −H (x(t )) ) z = 0, z(±∞) = 0to the order η. For every t I may hoose a basis of eigenvetors of H (x(t )) with eigenvalues

κµ(t ) whih spans the tangent spae Tx(t )X . The operator D− is diagonal in this basis andhas homogeneous solutions
zµ(t ) = eµexp(

∫t

0
κµ(τ)dτ) , (2.1.15)where eµ diagonalizes D− at t = 0. These solutions have the orret boundary onditions if

κµ(−∞) > 0 and κµ(∞) < 0.There are two possible senarios. The �rst is that the dimension of the solution spaeequals the dimension of the eigenspae of the Hessian. This is the ase if none of theeigenvalues κµ(t ) hanges its sign from a negative to a positive value when passing from
t =−∞ to t =∞. If this is satis�ed, dimRM (α,β) = ind(β)−ind(α) = #{µ : κµ(−∞) > 0, κµ(∞) <
0} = dimkerD−. In the seond senario there exist eigenvalues whih hange their signs fromnegative to positve value. They belong to homogeneous solutions of the di�erential operator
D+ := dt +H (x(t )). In that general ase, the di�erene ind(β)− ind(α) an be written as

dimRM (α,β) =dim kerD−−dim kerD+ . (2.1.16)The operators D∓ appear in the equations of motion for the fermions ψµ and πµ, re-spetively. Under the assumption that the dimension of the instanton moduli spae equals
dim kerD−, it further equals the number of linear independent solutions of D−ψ0,l = 0, l =
1. . . d , d = dimM (α,β), whereas πµ has no �zero modes�. This leads to the seletion rule thatobservables have to ontain a produt ∏d

l=1
ψ0,l , if the orrelation funtion is not to be zero.The reason is that the path integral is a δ distribution on the homogeneous solutions of D−and the instanton on�gurations x0

〈O〉 =
∫

M (α,β)

∏

l=1...d

ψ0,l O |M (α,β) . (2.1.17)An integral over Grassmann variables is zero if the integrand is not a volume form, and in thenext setion I will make lear that, indeed, the zero modes of ψ have a geometri meaning asdi�erentials on X . From the disussion above I onlude that they are physially signifyingthe presene of instantons, and the number of fermioni insertions ounts the dimension oftheir moduli spae.2
2In the fermionic bc-system, that I will discuss in the next chapter, it will also be necessary to insert "zero-modes" in
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2.2 The Canonical Point of ViewThe Morse ation (2.1.9) has an immediate interpretation in terms of geometri quantitiesof the target manifold X . The best plae to understand this is the anonial formulation ofthe theory. Reshu�eling the terms in (2.1.9), I an read o� the lassial Hamiltonian in thelarge volume limit3
H∞ = vµ (ipµ)+ψα∂α vµ(iπµ) . (2.2.1)Reonsidering (2.1.10), an immediate hoie how to quantize onsists in relating the ��eld�-oordinates with geometri quantities in the following way:bosons: fermions:
xµ xµ ψµ dxµ

ipµ ∂µ iπµ ιµ

(2.2.2)The Hamiltonian above and the superharges Q and Q∗ an now be rewritten as
Q = d, Q∗ = ιv , H∞ =Lv = {Q ,Q∗} , (2.2.3)and they have a anonial ation on di�erential forms on X . The geometri data satisfythe usual quantization rules [pµ, xν] = −iδνµ, [πµ,ψν] = −iδνµ for the superbraket, and inpartiular

Q = iψµpµ . (2.2.4)In the following I will reprodue the deformations desribed for the path integral ansatz forthe anonial formalism of Morse theory. The idea behind this is to see what the spetrumof the Hamiltonian in the large volume limit looks like and to investigate if there remain wellde�ned exited states in this limit. I will again start with the ation (2.1.1) before takingthe large volume limit and the target manifold (X ,λg ), endowed with an inner produt ondi�erential forms η,χ ∈Ω
•(X )

〈η,χ〉 :=
∫

X
(⋆ η̄)∧χ . (2.2.5)The bar denotes omplex onjugation, if neessary, and ⋆ the Hodge operator.4 The Hamil-tonian orresponding to the ation (2.1.1) with Morse funtion f is obtained from the

correlation functions. These do, however, not represent instantons because they are mappings between isomor-

phic representation spaces, cf. section 3.4.1 and section 8.3. On the contrary, instantons relate different vacuum

configurations (they are highest weight vectors of different representations).
3This classical Hamiltonian is not bounded from below. However, in section 2.4, I will derive it from the canonically

quantized Hamiltonian with λ 6= 0 by deforming the spectrum in a specific way, cf. [FLN06]. Thereby one obtains

states which are not in the closure of Ω•
d

(X ) with respect to the L2 norm, but on which one can define an orthog-

onal pairing and whose eigenvalues with respect to the canonically quantized H∞ are positive semidefinit (when

considered perturbatively, c.f. section 2.5). Analogous will be satisfied for the A-model.

4On volume elements ⋆ dxµ1 ∧·· ·dxµk =
p
|g |

(dimRX−k)!
ǫ
µ1···µk
νk+1···νdim X

dxν1 ∧·· ·dxνk and ǫµ1···µdimR X
=+1 for even per-

mutations.
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superharges
Q =dλ = e−λ f deλ f = d+λ d f ∧ ,

Q† =d†
λ
= eλ f d†e−λ f =

1

λ
d† + ι∇ f ,

(2.2.6)as
H =∆λ =

1

2
{Q ,Q†} =

1

2

(
λ−1

∆+λ‖d f ‖2 +K f

)
, (2.2.7)where, ‖d f ‖2 = ι∇ f d f , K f = L∇ f +L

†
∇ f
, L

†
∇ f

= {d†,d f } and ∆ = {d,d†}. Conjugation † isde�ned with respet to the inner produt. Let me emphasize, that up to now CPT is notbroken and the two superharges are indeed onjugate. However, in the large volume limitCPT will be violated and this makes the di�erene between the dagger and the star, forinstane for the superharge in (2.2.3).
2.2.1 On the CohomologyAs I explained in the introdution and in appendix A, the topologial states are in theohomology of the superharge Q. Under ertain onditions on X , that I will onentrate onin this setion, the ohomology of Q is isomorphi to the kernel of the Hamiltonian.The superharges above are obtained by a similarity transformation of d and d†, and Ian hene arry over the results on the de Rham di�erential to the more general situation inMorse theory, in partiular that H•

dλ
(X ) ≃ H•

d
(X ). If X is a real manifold whih is moreoverompat, oriented and without boundary, there exists a unique Hodge deomposition

Ω
k
dλ

(X )= dλΩ
k−1
dλ

(X )⊕d†
λ
Ω

k+1
dλ

(X )⊕Ω
k
∆λ

(X ) , (2.2.8)where Ω
k
∆λ

(X ) denotes the harmoni forms on X with respet to H =∆λ [Nak03℄. If suh adeomposition exists and moreover an inner produt like (2.2.5) one an show that H•
dλ

(X )≃
Ω

•
∆λ

(X ).5 Thus, in order to identify the ohomology of the superharge with the groundstates of the Hamiltonian it would be sensible to invoke that whenever X is real, it shouldalso be ompat, oriented and without boundary.If X is a ompat Kähler manifold there exist unique, orthogonal Hodge deompositionsfor the Dolbeault derivatives ∂λ and ∂̄λ. Notie that in this ase dλ = ∂λ+ ∂̄λ and similar forthe onjugate. Sine ∆dλ
= 2∆∂λ = 2∆∂̄λ

[Nak03℄, one �nds that H
p,q

∂λ
(X ) ≃Ω

p,q

∆dλ

(X ) and thesame is true for the onjugate di�erential forms. Therefore:
❏ Let X be a ompat Kähler manifold or, if real, ompat, oriented and without bound-ary.

5Let ω ∈Ω
•
∆λ

(X ), then 〈ω,∆λω〉 = 0 = ‖dλω‖2 +‖d†
λ
ω‖2 and this proves that a harmonic form is closed under dλ and

d†
λ

. The Hodge decomposition is orthogonal and therefore the harmonic forms are not exact with respect to dλ.
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The next setion will larify that the isomorphy between the ohomology of the superhargeand the kernel of the Hamiltionian will survive CPT breaking if λ<∞. For λ→∞ this willstill be true at least for X =CP
1 and I will prove this in setion 2.4.1.

2.2.2 Implementing CPT Breaking and LocalizationThe transformations I have done on the path integral in setion 2.1.1 an be translated tothe anonial point of view by onsidering orrelation funtions of topologial observablesand states
〈ω, e (tn−t+)H

One (tn−1−tn)H . . .e (t1−t2)H
O1e (t−−t1)H ·χ〉 =

∫

X×X
[⋆ ω̄(x+)]∧χ(x−)

∫

Σ→X : x(t−)=x− , x(t+)=x+
On(tn)∧·· ·∧O1(t1)e−S .

(2.2.9)Sine the topologial setor is supposed to be invariant under subtrating the exat term
∫x+

x−
d f = f (x+)− f (x)+ f (x)− f (x−) from the ation, this must have an e�et on the operatorsand states. Expetation values of topologial observables, alulated with an Hamiltonianin whih CPT is manifestly broken by the additional term, must equal the undeformedexpetation values. Therefore, the states and observables in the CPT-broken phase aresubjet to the following transformations of the physial ounterparts6

χ 7→ eλ f χ

⋆ ω̄ 7→ e−λ f
⋆ ω̄

O 7→ eλ f
Oe−λ f

and in partiular Q 7→ d

Q† 7→ Q∗
λ
= 2ιv +λ−1d†

H 7→ Hλ =Lv + 1
2λ∆

(2.2.10)Let me emphasize that all operators transform in the same way and the mappings aboveare not similarity transformations. Therefore, the new Hamiltonian is not self-onjugate anymore and I rather put a ∗ than a †.One may now allow the transformed Hamiltonian not only to at on topologial but alsoon dynamial states. Still, for �nite values of λ, the new Hamiltonian has the same spetrumas H beause the in-states have just gained a phase. In partiular, the isomorphy betweenthe superharge ohomology and the ground states is still valid, though the theory is notunitary any more and the in- and out-states are no longer onneted by an inner produt(I will disuss the out states in setion 2.2.4). The Morse theory with broken CPT andthe one determined by (2.2.7) have the same ohomologies with respet to the superharge,sine H•
dλ

≃ H•
d
. Moreover, for �nite λ, H•

d
≃Ω

•
∆λ

≃Ω
•
Hλ
, suh that dimΩ

•
∆λ

= dim Hλ. Thesedimensions are a topologial invariants and thus should not be a�eted by taking λ→∞.
6The exponent eλ f := eλ( f (x)− f (x−)) for the “ket” and e−λ f = e−λ( f (x)− f (x+)) for the “bra”.
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2.2.3 The Instanton Moduli Space RevisitedAording to the onsiderations of the last setions, the topologial states are elements ofthe de Rham ohomology of d. In the following I will onsider observables ω̂ whih anbe identi�ed with di�erential forms ω on X , substituting ψµ with dxµ. Integrating out theonjugate momenta, the quantum mehanial Greens funtion between two ritial points
x± is

G
(x+,t+)
(x−,t−) [ω̂1 . . .ω̂n] =

∫

M (−,+)
sgn det

(
δ
µ
α

d

dt
−∂αvµ

) ∧

k=1...n

φ∗ v (ωk , tk) . (2.2.11)By φ∗ v (ωk , tk) I denote the push forward of the di�eomorphism (2.1.11), evaluating ω alongthe �ow lines, and I assume that these operators are time ordered.
The Partition Function One of the most famous of suh Greens funtions is the (super-symmetri) partition funtion

Z (T )=
∫

X
δ(x+−x−)δ(ψ+−ψ−)G

(x+,t+)
(x−,t−) [1] =

∑

c∈A

sgn det
(
−H

µ
ν (xc )

)
. (2.2.12)The set A enompasses the ritial points, T = t+− t− is the time period and the periodiboundary onditions ause loalization on the �ow lines that are loops, i.e. the vauumon�gurations. The operator d

dt does not ontribute to the sign of the determinant beauseof these boundary onditions.7 The supersymmetri partition funtion an also be writtenin terms of the Hamiltonian, using (2.2.9):
Z (T )= str eHT = tr (−)F eHT , (2.2.13)where (−)F gives a minus sign on fermions (forms with odd degree) and plus on bosons(even degree). Sine the exited eigenstates of H are always boson-fermion pairs due tosupersymmetry, the partition funtion ounts the di�erene in the number of fermioni andbosoni ground states Z (T ) = trΩ•
∆λ

(−)F . Thus, if X is suh that the harmoni di�erentialforms are isomorphi to the de Rham ohomology,
Z (T )=

∑
n

(−)n dimR H n
Qλ

(X ,R) . (2.2.14)A areful reader might have objetions against this derivation, beause it is not obvious howto interpret the trae if CPT is broken. However, for �nite values of λ, the in- and out-statesare isomorphi and the spetrum of the Hamiltonian is basially the same, suh that theequation above remains orret.
7This is nicely explained in [BBRT91]. Due to periodic boundary conditions one can make an expansion in Fourier

modes xµ(t) =∑
n∈Z x

µ
n eint and the same holds for the other coordinates. For simplicity let X be one dimensional.

The Hessian is diagonal in the tangent basis of flow lines at xc with eigenvalues λc . Hence, in that basis and at xc ,

the sign of the determinant is: sgn det
(∏

n∈Z(−in +λc )
)
. Only the zero mode contributes with a sign for the others

square to a positive number.
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Correlation Functions with Observables To be topologial, more general orrelationfuntions inluding observables have to be zero on Qλ-exat observables. Notie, that Qλ = dand using Stokes formula this implies the ondition
∫

M (−,+)
d φ∗ v (ω, t ) = 0. (2.2.15)This an be obtained by demanding that the boundary ∂M (−,+) vanishes. In the followingI will, however, �x another property of X suh that the integral yields zero.In order to yield non-trivial orrelation funtions, the observables must have a total formdegree of dim M (−,+). In partiular, if the dimension of ∂M (−,+) in the equation abovewas less than the form degree of φ∗ v (ω, t ), the orrelation funtion would also vanish, andthis is what I am going to enfore in the following.First, I have to ensure that ∂M (−,+) is a submanifold suh that an integration of di�er-ential forms on this spae is de�ned. In order to investigate ∂M (−,+), I take the losure ofthe desending and asending manifolds X− and X +. Sine X is ompat these losures areompat. If the following ondition holds

❏ The Xα and X α are strati�ations of X , i.e. X α = ∪β∈A≥α Xβ where A≥α is the set ofritial points with index greater or equal ind xα and similar X
α = ∪β∈A≤α X β wherenow A≤α ounts lower indiesthere is a anonial ompati�ation of the instanton moduli spaes

M (−,+) =
(
∪α∈A≥− Xα

)⋂(
∪β∈A≤+ X β

)
(2.2.16)and thus their boundaries will be manifolds [Hut02℄.If X is Kähler, the analysis is immediate. All indies are even valued, as one has aholomorphi and antiholomorphi part. The superharge is Qλ = ∂+ ∂̄ and raises the totalform degree by one. Hene, under the orrelation funtion and after invoking Stokes formula,the di�erential form has degree (dim M (−,+)−1). Beause the ompati�ed instanton modulispae an be rewritten as

M (−,+) =
⋃

αi∈A>− , β j∈A<+

M (−,+)×M (−,β j )×M (αi ,β j )×M (β j ,+) , (2.2.17)the boundary must also have even dimension, as it onsists of instanton moduli spaes beingglued together. Therefore, the orrelation of an exat di�erential form must be zero in thisase.If X is a real manifold, the situation is more ompliated and I know of no general argu-ment. Due to that lak of knowledge I will restrit to
❏ The manifold X be Kähler.
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2.2.4 The Out-StatesThe in- and out-states are related by a CPT transformation: F
∓
out = CPT ·F±

in
, where +denotes partiles and − anti-partiles. Formally, an in-state an be written as

ωin =
∫

x(t ): (−∞,0], x(−∞)=x−, x(0)=x

∏

i

O (ti ) e−Sλ , (2.2.18)where the boundary ondition x− de�nes a vauum on�guration, and CPT ats by onju-gation ω 7→ ⋆ ω̄ and time reversal. Thus, if the theory were unitary the out states wouldbe of the form ωout =⋆ω̄in. Under that irumstanes, there exists an hermitian inner pro-dut and the out-states an be identi�ed with the in-states. However, in the ase underonsideration and due to the additional term, CPT ats non-trivially on the Lagrangian
Lλ(t ) = L(t )−λ dt f (x(t )), (2.1.8),

Lλ(t ) 7→ Lλ(−t )+2λ
d

dt
f (x(−t )) , (2.2.19)and the extra term indiates that the theory is not unitary.8When deomposing the thus transformed Lagrangian in analogy with setion 2.2.2, theout-states obtain a phase fator e−2λ f and thus

ωout = e−2λ f
⋆ ω̄in . (2.2.20)For �nite values of λ, the out-states are still isomorphi to the in-states, but in the limit

λ→∞, this is not anonially valid.
The In-States in the Vicinity of a Critical PointIn setion 2.1.2 I wrote that the states are loalized around the ritial points of f . This isde�nitely the ase for the topologial states. To see this I onsider (2.2.7) and undertake thesemilassial analysis in analogy to Witten [Wit82℄.Taking into aount that the onjugate derivative in real oordinates and for an evendimensional manifold X is d† =−ιµ∇µ, the operator K f an be written in a simpler way:

H =
1

2

(
λ−1

∆+λ‖d f ‖2 +Hν
µ(x) [dxµ, ιν]

)
. (2.2.21)If λ→∞, the potential energy will grow, and this enfores the low energy states to loalizearound the ritial points. In this ase it is ustomary to undertake a Taylor expansion

8However, notice that for a vacuum configuration the extra term yields zero and CPT invariance is not affected.
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around a ritial point in order to study the low energy spetrum.9 Thus, I hoose loal o-ordinates x (Riemann normal oordinates respetively Kähler normal oordinates [HIN02℄),in whih the ritial point xc is at the origin xc = 0, the metri is approximately Eulidean,i.e. gµν =δµν and ∂λgµν(0) = 0, and the Hessian is diagonal, H
µ
ν (0) = δ

µ
ν κµ. The Hamiltonianan now be approximated as

2H (pert) =
∑
µ

(
−λ−1

(
∂µ

)2 +λ(κµxµ)2 +κµ[dxµ, ιµ]
)
+O(x3)

≃
∑
µ

(
2λ−1H

µ

bos
−κµ(−)Fµ

)
.

(2.2.22)The operator Fµ equals one if the di�erential form ontains dxµ and zero, else. The bosonipart is just a sum over independent harmoni osillators, and sine [H
µ

bos
, (−)Fµ ] = 0 theseoperators an be diagonalized simultaneously. From the eigenvalues

E =
∑
µ

(
|κµ|(2nµ+1)−κµ(−)Fµ

)
, nµ ∈N∪ {0} (2.2.23)one an onlude that the vauum on�gurations are unique and the form degree must equalthe index of xc . Namely, κµ 6= 0 sine f is Morse, and nµ = 0 for vauum on�gurations.Let me onlude with some remarks. Firstly, for the lass of target manifolds underonsideration, the perturbative ground states equal the atual ground states. The reason isas follows: In general, the perturbative ground states might get lifted to massive states dueto nonperturbative e�ets. However, there is a pairing of massive fermions and bosons due tosupersymmetry. On a Kähler manifold, all ground states have an even form degree and a liftto an exited state would yield bosons, only. This does not onform with supersymmetry,suh that on a Kähler manifold the number of ritial points must equal the number ofground states. This does not mean that nonperturbative e�ets an not be observed onexited states.Further, I would like to emphasize that due to the saling of the metri with λ, thereremain �nite energy ontributions in the large volume limit. These exited states do alsoloalize on the asending and desending manifolds. Namely, the in-states take the form(2.2.18), and when λ 7→∞ they loalize on the gradient trajetories. Sine x(−∞) must be a

9Notice, however, that such an expansion destroys the kinematics of the theory. Further, it demands that a partic-

ular vacuum configuration is selected around which the Hamiltonian is expanded. This might promote the idea

that it would be necessary to distinguish a “physical” from “other” vacua, while further it destroys the topological

properties of the theory such as instantons. Behind these drawbacks, Taylor approximating around a fixed back-

ground has, is hidden the idea that for a theory on curved target spaces there should be distinguished a “free”

from an “interacting” part in the Hamiltonian respectively the Lagrangian, just as is common in quantum theories

on flat spaces. The careful reader will find that the approach of Frenkel, Losev and Nekrasov [FLN06], though it

heavily relies on a proposal on the nonperturbative states and makes use of the Taylor ansatz in order to obtain

the perturbative states, tries to overcome this rationality, cf. section 2.4. At least the nontrivial topolology will be

preserved.
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ritial point xc , these states have their support on the desending manifolds Xc . Therefore,the in-states are assoiated to the desending manifolds that over X . By the same argumentthe exited out-states are supported on the asending manifolds.The ground states, extended by those exited states, will be foused on in the following.Before, I will brie�y summarize the onstraints on X that I have obtained.
2.3 Summary of the Constraints on XIn the last two setions, I have transformed a general Morse theory in suh a way that themain ingredients whih make a topologial theory integrable are manifest: breaking of CPTinvariane and loalization. I have disussed the relation between the anonial and pathintegral point of view. I had to put several onstraints on the target manifold X in order toahieve that there exists a topologial setor. Now I would like to add a last onstraint.I always assumed that f is Morse and derived a vetor �eld v =∇ f as a gradient of thisfuntion. In the situation of the A-model it will be important to reverse the logi and startfrom a given vetor �eld v . For the transformations (2.2.10), the existene of suh a potentialis essential. It is in general not guaranteed that v an be expressed in terms of a gradient of aunique potential f . However, if X is a ompat, simply onneted, sympleti manifold and
v is a sympletomorphism, one an invoke de Rham duality H 1(X ) ≃ H1(X ) = 0 and onludethat ω := ιv g is an exat one-form ω= d f . Consequently, for every vetor �eld v there existsa unique and single-valued funtion f suh that v =∇ f .

❏ Let X be ompat and simply onneted.I have been as unrestritive as possible and at the end of my disussions it appears thatI had to put the same onstraints as those used by Frenkel, Losev and Nekrasov [FLN06℄.Here is the summary of the onditions:
➀ The target manifold X is a ompat, simply onneted, oriented Kähler manifold withEulidean metri λg .
➁ There is a Morse funtion f : M →R suh that M has a Bialyniki-Birula deompositionby means of the desending and asending manifolds.
➂ The desending and asending manifolds are Morse-Smale transversal.
➃ The desending and asending manifolds are strati�ations of X .The main side-e�et of the transformations is that the theory is no longer unitary andtherefore the out- and in-states are not related by an inner produt. The in-states aresupported on the desending manifolds Xc and for the vauum states I used the argumentof [Wit82℄ in order to see that their form degree equals the index of the �xed point xc .
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2.4 Morse Theory on X =CP
1In this setion I am going to review the toy model onsidered in [FLN06℄. Many features ofthe Morse theory underlying the topologial A-model an already be studied by this example.The most important aspet will be that the Hamiltonian is not diagonalizable due to theexited states.The toy model is de�ned on X =CP

1 with inhomogeneous oordinates z, z̄, endowed withthe Fubini-Study metri λg =λ dz⊗dz̄
(1+|z|2)2 and a Morse funtion f = 1

4
|z|2−1
|z|2+1

. I do further assumethat the topology of CP1 is the Zariski topology. The vetor �eld assoiated with the Morsefuntion is a generator of the C
× symmetry of X , v = z∂z + z̄∂z̄ .10 It has �xed points {0,∞}and the orresponding desending manifolds are obtained from the �ow equation dz(t )

dt =
ζ[z(t )], ζ= z∂z . The point {0} is repulsive with ind(0) = 0 and has an assoiated desendingmanifold X0 =C0, where C0 =CP

1\{∞}. The other �xed point {∞} is attrative with ind(∞) = 2and desending manifold C∞ = {∞}. The Hamiltonian before the transformations reads
H =−

2

λ
(1+|z|2)2∂z∂z̄ +

λ

2

|z|2

(1+|z|2)2
+

1−|z|2

1+|z|2
(Fz +Fz̄ −1). (2.4.1)The rationale behind the work of Frenkel, Losev and Nekrasov [FLN06℄ is now as follows.It is not possible to derive the spetrum of the Hamiltonian H . Therefore, one may use thetrik to break CPT invariane (H 7→ Hλ) and move to the large volume limit λ→∞. TheHamiltonian will then be the Lie derivative in diretion of the vetor �eld v , f. (2.2.10). Theadvantage is that this is a linear operator whih is better tratable. However, if this operatoris onsidered in its own right and independent from the physial Hamiltonian, it is not learwhat the spetrum looks like. Firstly, sine H∞ =Lv is not bounded from below, one mightget states with negative energy Eigenvalues. Seondly, it is an operator on di�erential formson CP

1 but it is not obvious what kind of di�erential forms should be allowed. If one allowedonly smooth di�erential forms, due to the shape of the vetor �eld v this would restrit theEigenvetors of Lv to the spae of onstant di�erential forms and these have Eigenvalue zero.They would only over the topologial setor but not the dynamial. In order to overomethese di�ulties, Frenkel et al. go bak to the physial Hamiltonian H and onsider itsapproximation as an harmoni osillator (2.2.22) in the harts around the ritial points of
v . It turns out that the thus obtained eigenstates survive the large volume limit and beomeeigenstates of Lv with support on the desending manifolds. This is, however, only theperturbative spetrum and Frenkel et al. have to invoke a hypothesis on how to obtain thenonperturbative states, whih I will explain at the end of this setion.11
10The Lie algebra of C× is generated by v = z∂z + z̄∂z̄ and u = i(z∂z − z̄∂z̄ ). The group elements are eφv and eφu with

φ ∈R.
11In their publication, Frenkel et al. [FLN06, pg. 7] claim that their approach should be viewed as an alternative to the

usual Gaussian perturbation theory. Their method, they say, captures the nontrivial topology (and perhaps even
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Below, I will derive the low energy states loally around the ritial points in the harts C0and C∞ :=CP
1 \ {0}. In the large volume limit, their supports turn out to be the desendingmanifolds. As already disussed in setion 2.2.4, the perturbatively obtained ground statesare the exat ground states for the global theory.In order to treat the situation in the harts around {0} and {∞} at the same time, I introduea onstant k ∈ {±1} that distinguishes if the the �xed point is attrative or repulsive. Therespetive Morse potential and its gradient are v = k(z∂z + z̄∂z̄ ), f = 1

2
k |z|2 for both harts,where k = +1 simulates the �xed point {0} and k = −1 the �xed point {∞}. Notie that Inegleted the onstant in the Taylor expansion of f beause it is irrelevant for the analysisof the spetrum of the Hamiltonian, the Morse potential does only enter the Hamiltonian interms of ∇ f . The oordinate z is already a Kähler normal oordinate in a neighborhood of

z = 0, g (z) = 1+O(|z|2), and the Hamiltonian is perturbatively given by (2.2.22)
H (pert) =−

2

λ
∂z∂z̄ +

λ

2
k2|z|2 +k(Fz +Fz̄ −1). (2.4.2)The eigenfuntions are the Laguerre Polynomials

Ψn,m =
(
π(λk)(n+m−1)n!m!

)− 1
2 e

1
2
λ|k |zz̄∂m

z ∂n
z̄ e−λ|k |zz̄dzp ∧dzq , (2.4.3)with Eigenvalues En.m,p,q = n +m +1+k(p +q −1) and n,m ∈N∪ {0}, p, q ∈ {0,1}.When I apply the transformations (2.2.10) and (2.2.20), the sign of k matters. In analogywith [FLN06℄ I start with k = 1, i.e. {0} is repulsive. The in- and out-states of the transformedtheory are now

Ψ
(in,λ)
n,m =

1

λn+m
e−λzz̄ ∂m

z ∂n
z̄ e−λzz̄ ,

Ψ
(out,λ)
n,m =

λ

2π n!m!
∂n

z ∂
m
z̄ e−λzz̄ i

2
dz ∧dz̄ .

(2.4.4)Whith the normalization above, the limit λ→∞ makes sense and the resulting states willhave the same Eigenvalues as the original ones.If k =−1 and {0} is attrative, the r�le of the in- and out-states are exhanged and hene,the in-state for an attrative �xed point is just the out-state above. Taking the large volumelimit, the in-states beome polynomials in z and z̄. The out-states are funtionals on the in-states, and a partial integration makes transparent that the exponential is a representation
the geometry) of the configuration space. Using the harmonic oscillator approximation, they, however, do rely on

the Gaussian approximation and on an hypothesis about the nonperturbative state spaces. Although this is a slight

drawback, I still find their attempt and results of great importance, in particular concerning the question of how to

quantize quantum field theories on curved manifolds without destroying their kinematics and/or their topological

properties such as instantons or symmetries between different vacuum configurations. By the Gaussian approxi-

mation, an interacting part is distinguished from a free part (leading to a linear equation of motion) of the theory. I

consider it a necessary question to ask, if it makes sense at all, to make such a distinction in a quantum field theory

on curved manifolds.
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of the Dira distribution. Therefore, when λ→∞,
Ψ

(in,λ)
n,m → zn z̄m ,

Ψ
(out,λ)
n,m →

1

n!m!
∂n

z ∂
m
z̄ δ(2)(z, z̄)

i

2
dz ∧dz̄ .

(2.4.5)The perturbative situation on X =CP
1 is now as follows: On the desending manifold C0,the in-states are given by

H0 =F0 ⊗F̄0 , F0 =C[[z]]⊗∧[[dz]] ·1|C0
, ∆0 = 1|C0

(2.4.6)and ∆0 is the vauum on�guration. The expression C[[·]] denotes a power series and ∧the exterior produt. The operators ∂z and ιz annihilate the vauum 1|C0
. The in-statesassoiated with the desending manifold {∞} are elements of H∞ =F∞⊗F̄∞ with

H∞ =C[[∂ω,∂ω̄]]⊗∧[[ιω, ιω̄]] ·∆∞ , ∆∞ =
i

2
δ2(ω,ω̄) dω∧dω̄ . (2.4.7)The loal oordinate ω belongs to the hart C∞ and i

2δ
(2)(ω,ω̄) dω∧dω̄ is annihilated by ωand dω.For the out-states, the r�les of the state spaes are interhanged. The out-states at {0} arethe δ-distributions and take the form of the in-states at {∞}. They loalize on the asendingmanifold X 0 = {0}. The out states at {∞} loalize on the asending manifold X ∞ = C∞ andare given by polynomials. Moreover, there exist well de�ned pairings between the in- andout-states at the ritial points. Indeed, the integral

∫

Xc

Ψ
(out,∞)
c ∧Ψ

(in,∞)
c , c ∈ {0,∞} (2.4.8)yields a produt of Kroneker symbols and thus has a �nite value, whereby Ψ

(·,∞)
c denotesan in- or out-state in the large volume limit on the desending manifold Xc , respetivelyasending manifold X c .The perturbative state spaes above motivated Frenkel et al. to make an assumption aboutthe nonperturbative state spaes, [FLN06℄.

❏ Frenkel, Losev and Nekrasov onjeture that the nonperturbative, low energy statesare obtained by extending the perturbative states, as obtained by the Taylor approxi-mation, as distributions on CP
1.In partiular, this implies work on the polynomials. Their proposal an be motivated bythree observations. Firstly, the state spae around {∞} an immediately be onsidered asa spae of distributions de�ned on CP

1. From this point of view it would make sense toput the other state spae on an equal footing. Seondly, the perturbative states obtainedabove are Eigenstates of the Hamiltonian H∞ =Lv , f. eqn. (2.2.10), when restrited as anoperator to the respetive harts on whih the state spaes live. This Hamiltonian is a linear
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operator whih only indiretly depends on the metri by means of the ondition that thegradient vetor �eld is a sympletomorphism. Therefore, its Taylor approximation around avauum on�guration simply equals its restrition to the hart of this point. This logi an bereversed, the �perturbative� Hamiltonian in a hart an be extended to the full Hamiltonianwhen its domain is extended to CP
1. Therefore, one might assume that in an analogous wayone obtaines the nonperturbative states from the perturbative ones by also extending theirdomain to CP

1. And lastly, it would be nie to extend the de�nition of (2.4.8) to CP
1.The onsequene of the onjeture above is that the �globalized� polynomials will be thesoure for the Hamiltonian being non-diagonalizable. This will be the subjet of the followingsetion.

2.4.1 Polynomial Distributions on CP
1Denote by D⊗Λ

a,b the spae of �test forms� on CP
1, whih is the spae of smooth di�erentialforms on CP

1 with form degree (a,b) and ompat support. In this setion, I will extend thepolynomial zν z̄µ as a distribution on test funtions for arbitrary ν,µ ∈C, ν−µ ∈Z, and similaras distribution forms dual to D⊗Λ
a,b. In partiular, the vauum state 1C0

an immediatelybe generalized by de�ning it to be the distribution form ∆0 ating on a di�erential form
η ∈D⊗Λ

1,1 aording to
∆0(η) =

∫

C0

η . (2.4.9)In order to work out the extension for general polynomials, I will �rstly onentrate onpolynomials on C. If the exponents n and m are allowed to be negative integers, they mayhave poles at z = 0 and it will be neessary to regularize them and to generalize them asdistributions on C.This situation will appear for CP
1 in the hart C∞ around {∞}, and I will generalize theformer disussion to this ase. Thereby, the polynomials with support in C0 will be extendedas distributions on CP

1 in the sense de�ned for the polynomials on C.Most results of this setion are obtained by using the de�nitions of Gel'fand and Shilov[GS64℄. The extension to CP
1 is handmade and the main results of this setion (2.4.29)equals that of [FLN06, pg. 55℄, though I hose a di�erent approah.

The Case CLet d2z := i
2

dz ∧dz̄ and denote by ∫ an integration over C with this measure. Let further
ν, µ ∈C, ν−µ ∈Z and D be the funtions with ompat support on C. The polynomial in

∫
zνz̄µφ , φ ∈D , n := ν−µ ∈Z (2.4.10)
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is analyti in ν, µ and loally integrable if the real part of s := ν+µ is ℜ(s) >−2, suh that theintegral above de�nes a distribution on test funtions φ. One an understand this, writingthe expression in angular oordinates
∫

zν z̄µφ=
∫∞

0
r s+1

(∫2π

0
φ(r e iα,r e−iα) e inαdα

)
dr . (2.4.11)If ℜ(s) = −2 there might be a logarithmi pole and loal integrability fails in a subset on-taining the origin. For integer values less than −2 there will be poles as explained below. Intwo steps I will generalize (2.4.10) as a distribution for more general values of ν and µ.

Analytic Continuation to ℜ(s) > −2−m , m ∈ N, s ∉ Z Firstly, it is possible to ontinue(2.4.10) analytially to ℜ(s)>−2−m, s ∉Z. Suppose that ℜ(s) >−2 and add 0 in a way suhthat later the singularities for ℜ(s) >−2−m will be extrated:
∫

zν z̄µφ=
∫

|z|≤1
zν z̄µ

(
φ(z, z̄)−

m−1∑

k+l=0

φ(k ,l)(0,0)

k !l !
zk z̄ l

)

+
∫

|z|>1
zν z̄µφ+2π

m−1∑

k+l=0

φ(k ,l)(0,0)

k !l !

δl−k ,n

k + l + s +2
,

(2.4.12)where φ(k ,l)(z, z̄) := ∂k
z∂

l
z̄φ(z, z̄). The last term is minus the insertion under the integral,integrated over in polar oordinates. The thus obtained equation above is analyti in ν, µup to simple singularities at s =−l −k−2 ∧ n = l −k or equivalently at ν=−k−1 ∧ µ=−l −1.Hene, it an be analytially ontinued. If further m is suh that −m−2 <ℜ(s) <−m−1, onean simplify this expression:

∫
zν z̄µφ=

∫
zνz̄µ

(
φ(z, z̄)−

m−1∑

k+l=0

φ(k ,l)(0,0)

k !l !
zk z̄ l

)
. (2.4.13)The point is, that in this ase, the last term in (2.4.12) an be expressed as

−
∫

|z|>1
zνz̄µ

m−1∑

k+l=0

φ(k ,l)(0,0)

k !l !
zk z̄ l , (2.4.14)sine k + l + s +2 < 0. In detail that an be seen in polar oordinates. It is now reasonableto de�ne (2.4.10) as equation (2.4.13) if ℜ(s) < −2 ∧ s ∉ Z, as one an always hoose m asabove.

Analytic Continuation to s ∈Z<−1 The transition to s ∈Z<−1 is done by subtrating thesingular term, say at s = −m − 1, and taking the limit s → −m − 1 with �xed n = l − k orequivalently one an take the limit ν→−k −1 ∧ µ→−l −1. From (2.4.12) one an see, that
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this pole orresponds to k + l = m −1, whih is the highest order term in
∫

z−k−1z̄−l−1φ : = lim
ν→−k −1

µ→−l −1

∫(
zν z̄µ−2π

(−)k+l

k !l !

δ(k ,l)(z, z̄)

m +1+ s

)
φ(z, z̄)

=
∫

z−k−1z̄−l−1

(
φ(z, z̄)−

m−2∑

a+b=0

φ(a,b)(0,0)

a!b!
za z̄b

−
∑

a+b=m−1

φ(a,b)(0,0)

a!b!
za z̄bθ(1−|z|)

)
.

(2.4.15)

This equation follows from (2.4.13). Firstly, one splits up the integral into an integration over
|z| ≤ 1 and one over its omplement. The term with polynomial degree a +b = m −1 underthe integral over |z| > 1 an be extrated and anels to zero with the term subtrated in in�rst line of (2.4.15). Therefore, the theta-funtion appears, whereby θ(x) = 1 if x ≥ 0, x ∈ Rand 0 otherwise.
Differentiating It is important to notie that due to the appearane of the theta funtionin the ase s ∈Z<−1, di�erentiating is not a trivial task. Using the property of the derivativeon distributions one obtains

∫(
∂z z−k−1z̄−l−1

)
φ=

∫(
(−k −1)z−k−2z̄−l−1 −

2π(−)k+l

l !(k +1)!
δ(k+1,l)(z, z̄)

)
φ , (2.4.16)and similar for ∂z̄ .

The Case CP
1The polynomials (2.4.10) on C with positive exponents equal to the polynomial states (2.4.6)loalized on C0. They are well de�ned on this hart, however not around {∞}. In order toobtain the nonperturbative states by extending them as distributions on CP

1, I will make twosteps. Gri�ths and Harris [GH78, pg. 373℄ suggest that distributions on general manifoldsshould be de�ned loally in harts. Therefore, I will �rstly de�ne the polynomials as distribu-tions on test funtions D0/∞ with ompat support in the harts C0/∞ of CP1, whereby theiration on D∞ is of partiular importane. Under this proedure, the generalized polynomialsan be viewed as a diret sum of funtionals, eah of wih is de�ned as a distribution on testfuntions D∞ and D0 respetively, i.e. H
(in) ext .−→ D

∗
0 ⊕D

∗
∞. Seondly, by eqn. (2.4.31) I willde�ne a pairing of out- and in-states, following Frenkel et al. [FLN06℄. The nonperturbativestates will thereby be de�ned on smooth di�erential forms on CP

1, whih are also test formssine CP
1 is ompat.Let φ be an element in D0 ⊗Λ

a,b with support on the ompat subset {0}. Consequently,
∫

zν z̄µφ=
∫

|z|≤1
zν z̄µφ+

∫

|z|>1
zνz̄µφ ,

∫
· =

∫

CP1
· , (2.4.17)
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is well de�ned.12 Using the analysis for X = C, the seond term on the right hand side anfurther be given a meaning on test funtions with support on the ompat subset {∞} ∈CP
1.Rewriting z =ω−1 in oordinates on C

×, the integral above yields ∫
zνz̄µφ=

∫
|z|≤ǫ zν z̄µφ(z, z̄)+

∫
|ω|<ǫ−1 ω−ν−2ω̄−µ−2φ(ω−1,ω̄−1) and by means of (2.4.15) this expression an now be de�nedon φ ∈ D∞⊗Λ

a,b. Setting w.l.o.g. ǫ = 1, the polynomial distribution ating on D0/∞ splitsinto a diret sum
∫

zν z̄µφ :=
∫

D
ω−ν−2ω̄−µ−2φ̂(ω,ω̄)+

∫

D
zµ z̄νφ(z, z̄) , (2.4.18)whereby φ̂(ω,ω̄) :=φ(ω−1,ω̄−1) and D is the unit disk around {0}. The �rst integral amountsto zero if φ ∈D0 while this is true for the seond integral if φ ∈D∞.

Differential Operators In order to analyze the ation of di�erential operators on the thusgeneralized states, I will now introdue another notation in aordane with Frenkel, Losevand Nekrasov [FLN06℄. Thus, denote every polynomial distribution (form) of the type(2.4.18) with n,m ∈N by
|n,m, p, q〉0 ∈ (D∗

0 ⊕D
∗
∞)⊗Λ

p,q , p, q ∈ {0,1} ,

|n,m, p, q〉0 [φ] :=
{ ∫

D ω−ν−2ω̄−µ−2φ̂(ω,ω̄)+
∫

D zµ z̄νφ(z, z̄) ,

0 if n,m < 0, p, q > 1
,

(2.4.19)and similarly the in-states build from δ distributions by
|n,m, p, q〉∞ [φ̂] :=

i

2

(−)m+n

n!m!

∫
δ(m,n)(ω,ω̄) dωp ∧dω̄q ∧ φ̂ . (2.4.20)I an now generalize the notion of an exterior derivation on suh distribution forms bymeans of

∂|n,m, p, q〉0/∞ [φ] := (−)p+q+1|n,m, p, q〉0/∞ [∂φ] . (2.4.21)In order to alulate the derivative of (2.4.19) for the ase φ ∈D∞, I have to apply ∂= dω∧∂ω:
∂|n,m, p, q〉0 [φ] = (−)p+q+1|n,m, p, q〉0 [∂ωφ̂(ω,ω̄) dωa+1 ∧dω̄b ]

= (−)p+q i

2

∫(
∂ωω

−n−2p−2a ω̄−m−2q−2b
)

×dωp ∧dω̄q ∧ φ̂(ω,ω̄) dωa+1 ∧dω̄b .

(2.4.22)Without loss of generality, I set p = a = 0 and keep the other degrees of freedom
∂|n,m, p, q〉0 [φ] =

i

2

∫(
∂ωω

−nω̄−m−2q−2b
)
dω∧dω̄q ∧ φ̂

=
2π(−)n+m−1

n!(m +2q +2b −1)!

∫
δ(n,m+2b+2q−1)(ω,ω̄)dω∧dω̄q ∧ φ̂

−n|n −1,m, p +1, q〉0 [φ] .

(2.4.23)

12For convenience I shift the test functions always to the right, also if they represent out-states. This will not have an

effect on the results of the following sections.
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For φ ∈D0 one obtains the �rst term on the right but with another sign. To summarize,
∂|n,m, p, q〉0 =n|n −1,m, p +1, q〉0

∣∣
D0

−n|n −1,m, p +1, q〉0

∣∣
D∞

+2π|n,m +2q −1, p +1, q〉∞ .
(2.4.24)Calulating the exterior derivative of (2.4.20) is not so tehnial, it turns out to be

∂|n,m, p, q〉∞ =−(n +1)|n +1,m, p +1, q〉∞ (2.4.25)and the prefator omes from the normalization of the state.Another important di�erential operator is the interior produt ιζ with some vetor �eld
ζ= z∂z (in loal oordinates on C0). The point is, that the Hamiltonian is given by the Liederivative on suh polynomial distribution forms. Again, I make use of

ιζ|n,m, p, q〉0 [φ] := (−)p+q+1 |n,m, p, q〉0 [ιζφ] . (2.4.26)Sine ζ=−ω∂ω in C∞, the ation of the interior produt is
ιζ|n,m, p, q〉0 =±|n +1,m, p −1, q〉0 , �−� on D∞⊗Λ

(a,b) . (2.4.27)The ation on a distribution |n,m, p, q〉∞ is derived analoguousely by means of some partialintegration (again, I �x the non-trivial values p = 1 = a ):
ιζ|n,m, p, q〉∞ [φ̂] = (−)p+q+1 |n,m, p, q〉∞ [−ωφ̂(ω,ω̄) dωa−1 ∧dω̄b ]

=
i

2

(−)q

n!m!

∫
δ(ω,ω̄)dωp ∧dω̄q ∧

(
−n ∂n

ω∂
m
ω̄ φ̂(ω,ω̄)+O (ω)

)
dωa−1 ∧dω̄b

=−|n −1,m, p −1, q〉∞ [φ̂] .

(2.4.28)In the alulation above I used the fat that the delta funtion loalizes on ω= 0 and thereforethe terms proportional to ω vanish. Now I an alulate the Lie derivative for any of theloal test funtions
Lζ|n,m, p, q〉0 = (n +p)|n,m, p, q〉0−2π|n +2p −1,m +2q −1, p, q〉∞ ,

Lζ|n,m, p, q〉∞ = (n +1−p)|n,m, p, q〉∞ .
(2.4.29)Thus, due to the extension as distributions, the operators inluding exterior di�erentialsare in general not diagonal on |n,m, p, q〉0. These states get mixed with states |n,m, p, q〉∞on whih the operators have a one-dimensional representation. In partiular, the analytiextension of the exited states to X = CP

1 makes it neessary that the spaes of in-statesan not be onsidered independently, rather one has to take a diret sum of the extendedstate spaes H 0 ⊕H ∞.13 Here, the underline shall denote the state spaes extended asdistributions.
13Notice, that by the proposal of Frenkel et al. on the nonperturbative states, the topological features of the theory are

preserved, in particular all vacuum configurations are taken into account. In section 2.5, I will argue that also the

instantons will be present and geometrically meaningful.
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❏ If H is a perturbative state spae related with some desending manifold, I will denoteits extension to X as H .In setion 2.5, I will further speify the di�erene between the unextended and extendedrepresentation spaes and operators.
The Out-States as Dual States In order to allow an ation of the in-states on the out-states, whih are not all test funtions, one has to de�ne an adequate pairing. Thereby, thepolynomial states will gain an ation on smooth di�erential forms on CP

1 while the splitting(2.4.18) will be preserved.As explained in setion 2.4, up to some normalization fator, the out-states are de�ned bythe right hand sides of (2.4.19) with the r�le of the in-states exhanged [FLN06℄
∞〈n,m, p, q |[φ]=

i

2

{ ∫
D z−n−2 z̄−m−2 dzp ∧dz̄q ∧φ+

∫
D ωnω̄m dωp ∧dω̄q ∧ φ̂ ,

0 if n,m < 0

0〈n,m, p, q | =
i

2

(−)m+n

n!m!

∫
δ(m,n)(z, z̄) dzp ∧dz̄q ∧ φ .

(2.4.30)Thus, |n,m, p, q〉0/∞ are test forms if restrited to C0, and distribution forms in a neighbor-hood of {∞}, whereas 0/∞〈n,m, p, q | are test forms on C∞ and distributions around {0}. Forthat reason, it makes sense to generalize the pairing for in and out states for distributions,setting [FLN06℄
∫

X
Ψ

(out) ∧Ψ
(in) :=

∫

D
Ψ

(out) ∧Ψ
(in) +

∫

X−D
Ψ

(out) ∧Ψ
(in) . (2.4.31)Assumed that the δ distributions split into a part of value 0 and the distribution, this pairingis �ne on all ombinations of nonperturbative states but on ∞〈n,m, p, q |n′,m′, p ′, q ′〉0. It isstill true that no distribution is paired with another distribution, however, the distributionalpolynomials get evaluated on funtions on whih they are not de�ned. The way out is toset this pairing to zero, whih equals the de�nition by Frenkel, Losev and Nekrasov, f.[FLN06℄.14 Under these irumstanes,

i 〈n,m, p, q |n′,m′, p ′, q ′〉 j = δn,n′δm,m′ ,δp+p′ ,1δq+q ′ ,1δi , j , i , j ∈ {0,∞} . (2.4.32)and the nonperturbative states may at on smooth di�erential forms (when expanded in theharts). Aording to (2.4.31) the spae of distributional polynomial states remains a diretsum, onsisting of a distribution and a funtion. I will denote this property by
H 0 =H0 ⊕H

∗
0 , (2.4.33)

14They define ∞〈n,m,1,1|n′ ,m′,0,0〉0 := PV
(∫

ǫ<|z|<1 zn′−n−2 z̄m′−m−2 +
∫
ǫ′<|ω|<1ω

n−n′
ω̄m−m′)

, whereby

PV ( f (ǫ,ǫ′)) equals the value of f which is independent of ǫ,ǫ′ and w.l.o.g. I chose some values for the form

degrees.
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whereby H
∗
0 means the distributional part ating on D∞⊗Λ

a,b by (2.4.15) and on polynomialfuntions aording to the de�nition above, while H0 is the perturbative, unextended partloalized on C0 and ating on funtions on this hart. Notie that suh a splitting is notneessary for the δ distributions whih are already globally de�ned on CP
1.

Cohomology of the Supercharge I will now �ll in the missing details for my assertionin setion 2.2.2, that the ohomology of the superharge is not a�eted by taking λ→∞,and that it still equals the spae of ground states.The kernel of Q∞ = ∂+ ∂̄ is generated by {|n,m,1,1〉0/∞, |0,0,0,0〉0}. Among these, thestates |n,m,1,1〉∞, n,m ≥ 1 are in the image of Q∞. For n ≥ 1, one �nds that ∂[ |n,m,0,1〉0+
2π
n
|n − 1,m + 1,1,1〉∞ ] = ±n|n − 1,m,1,1〉0 and similar for the antiholomorphi di�erential.Therefore |n,m,1,1〉0, ∀n,m ≥ 0 belongs to the image of the superharge. Consequently,the ohomology of Q∞ is e�etively restrited to {|0,0,0,0〉0, |0,0,1,1〉∞}, whih are just theground states. By a diret alulation one �nds, that the solutions of H∞|n,m, p, q〉0/∞ = 0,

H∞ =Lζ+Lζ̄ equal the kernel of Q∞, whih proves the assertion above.
2.5 Interpretation of the ExtensionExtending the states assoiated with the desending manifolds to distributions on X wasthe soure for a sort of non-loality. Some state spaes whih formerly were restrited tolive in di�erent harts, are now intermixed by operators ontaining exterior di�erentials.In this setion, I will speify between what state spaes this happens. Moreover, this kindof non-loality an only be seen on the exited, non-topologial states, and therefore mustbe analyzed as an e�et of the broken topologial phase. Therefore, ertain aspets of thegeometry of the target manifold should beome visible. To takle those, I will deouplethe intermixing e�et in the operators, extrating the mathematially responsible parts.My disussion follows Frenkel et al. [FLN06℄, but also inludes my own interpretations, inpartiular that of non-loality as an instanton e�et.
Perturbative States and Naive OperatorsPerturbatively, the state spaes under onsideration are assoiated with the desending ma-nifolds and inlude the part of the low lying spetrum whih has a �nite energy spetrumin the limit λ → ∞. I will all these the perturbative spaes of states. They seem to beindependent from eah other, in that they are loally de�ned on the desending manifoldsand do not intermix under the ation of observables. This hanges for the exited states, assoon as they are extended to X .
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Besides distinguishing the perturbative states from the extended ones, I will further in-trodue what I all naive operators. They at on the extended states as if they were atingon the perturbative ones. For instane, the naive Hamiltonian is diagonal on all extendedstates, L
(naive)
ζ

|n,m, p, q〉0 = (n +p)|n,m, p, q〉0 ∀ n,m, p, q, whereas the full Hamiltonian annow be deomposed Lζ =L
(naive)
ζ

+ g. I will also de�ne a representation of this Hamiltonianon the perturbative states in the following way. Instead of g, onsider the operator δ := g◦e,wherein e denotes the extension H i
e→H i , i ∈ {0,∞}. Consequently, δ ats on H i and thefull Hamiltonian an be represented on the perturbative states by Lζ+δ.

❏ For the rest of my thesis I will �x the following notation. Let O be an operator atingon the perturbative state spae H . I will denote the same operator, ating on theextended state spae H by O = O +gO , wherein really O = O
(naive). For onveniene Iuse this abuse of notation, it will always be possible to onlude from the ontext if Odenotes the operator ating on H or O

(naive), ating on H .The additional operator g is supposed to make loal geometri aspets of the target spaevisible (in ontrast to the global, topologial invariants), and auses that the Hamiltonian isnot reduible on all states: non-reduibility of the Hamiltonian an be viewed as an e�et ofthe broken topologial phase. More ventured, I am tempted to say that the additional terman be understood as an e�et of target spae gravity, sine beyond the topologial phase,invariane under di�eomorphisms is broken down to invariane under the isometries of somebakground metri.
The Local Geometry behind the Deformation TermIn order to understand what kind of geometry beomes visible in the deformation operator
δ, I will now disuss its proper interpretation as a Grothendiek-Cousin operator (GCO), f.[FLN06, Har67, Kem78, Har70℄.The Hamiltonian Lv represents the ation of φv (·, t ), indued on di�erential forms, f.(2.1.11). Therefore, the perturbative state spaes an be interpreted as representations ofthe symmetry generated by the gradient vetor �eld v = z∂z + z̄∂z̄ assoiated to the Morsefuntion. The target manifold X =CP

1 is thene overed by di�erent representation spaes,eah of whih is supported on a desending (asending) manifold.Frenkel et al. [FLN06℄ had the idea to desribe those loal representations by means ofsheaves on X .15 Let X be endowed with the Zariski topology, then X0 =C0 is an open subsetwhile X∞ = X \ X0 is losed. The representation H0 an now be desribed as follows. Thehomogeneous rational funtions OX [n]∞ on X that are regular exept for a pole of order n > 0

15For a definition of sheaves and an introduction, cf. [GH78, Har70, Gat02].
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at {∞} form a sheave on CP
1. Aording to setion 2.4.1, I an identify

H0 \ {∆0} =
⊕

|n−m|>0, n,m≥0

Γ(X0,OX [n,m]∞) , (2.5.1)whereby OX [n,m]∞ = OX [n]∞⊗ ŌX [m]∞ and Γ(U ,OX [n,m]∞) denotes the setions of thosepolynomials, restrited to the open subset U ⊂ X .16 In partiular, the restrition to X0 isinjetive, and the analysis of setion 2.4.1 implies that the sequene
0 →

⊕

n,m>0

Γ(X ,OX [n,m]∞) →H0 \ {∆0}
δ→H∞ \ {∆∞} → 0 (2.5.2)is exat. It summarizes the extension of the loal (irreduible) representations to (non-reduible but indeomposable) representations de�ned globally X .It would be nie, if not only H0 ould be related with the theory of sheaves, but also

H∞. Sine the support of H∞ is a losed set but sheaves are de�ned on open sets, somegeneralization will be neessary. This will lead to the theory of loal ohomology [Har67℄.Let F be a sheaf on X , Z ⊂ X a losed set and U ⊂ X an open set suh that Z ⊂U . Thesupport of a setion s ∈ F (U ) := Γ(U ,F ) is {p ∈ U : sp 6= 0}, where sp is the germ of s in thestalk Fp .17 The setions of F with support in Z are de�ned to be the subgroup ΓZ (X ,F ) ofsetions F (U ), whose support is in Z . The setions with support on losed subsets will be atthe heart of the interpretation of H∞.The term �loal ohomology� enters the work of Frenkel et al. [FLN06℄ through a pub-liation of G. Kempf [Kem78℄, wherein the sequene (2.5.2) appears as an example in theintrodution. A huge part of the paper is dediated to an analysis of the following set-ting. Given a topologial spae X , �ltered by losed subsets X = Z0 ⊇ Z1 ⊇ ·· ·Zn ⊃ ; andsupplemented with a sheaf F . Kempf derives an exat sequene whih he alls a �globalGrothendiek-Cousin omplex�:
0→ Γ(X ,F )→ H 0

Z0/Z1

δ1→ H 1
Z1/Z2

δ2→ H 2
Z2/Z3

δ3→···H n
Zn

→ 0. (2.5.3)Here, I shortened H i
Zi /Zi+1

(X ,F ) = H i
Zi /Zi+1

, H n
Zn /; = H n

Zn
, and the spaes H i

Zi /Zi+1
denote (ab-strat) ohomology groups, assoiated with the quotient presheaf ΓZi

(X ,F )/ΓZi+1
(X ,F ). Theseare the so-alled loal ohomology groups.By omparison, for the toy model on X = CP

1 one has F =
⊕

n,m>0 OX [n,m]∞ and thelosed sets X ⊃ {∞} ⊃ ;. Consequently, H∞ \ {∆∞} an be identi�ed with the �rst loalohomology group H 1
∞(X ,F ). This is the mathematial answer to the question what sort ofloal geometry of X gets visible due to the exited states. Beause the omplex above isalled Grothendiek-Cousin omplex,

16The sections of Γ(X0,OX [n,m]∞) are polynomials in the inhomogeneous coordinates and thus obey the equiva-

lence relation C
2 \ {0} ∋ ( f , g ) ∼ λ( f , g ), f ∈ C \ {< 0} of the homogeneous coordinates. Therefore, I may take the

direct sum.
17Let {Ui } denote an open covering of X , a stalk Fp of F at p ∈ X is the set of pairs (Ui , si ), p ∈Ui , whereby si ∈ Γ(Ui )

modulo si |Ui ∩U j
= s j |Ui∩U j

. An equivalence class in Fp is called a germ, and I denoted it by sp [Har70, Gat02].
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❏ the operator δ is alled the Grothendiek-Cousin operator (GCO). I will also denotethe operator g in δ = g ◦ e as Grothendiek-Cousin operator, whih I am onsideringwill always be evident from the ontext.
Non-locality as an Effect of InstantonsThe additional term δ has besides the geometri a further physial interpretation. It ontainsthe nonperturbative e�ets due to the presene of instantons. Instantons, onsidered astunneling solutions, an be viewed as non-loal �eld on�gurations that proure some ofthe struture of the theory as de�ned in the hart around the repulsive �xed point {∞} tothe one de�ned in the other hart around the attrative �xed point {0}. Sine there are noanti-instantons this does not apply the other way around. This makes it obvious that onemight onsider the following: The Grothendiek-Cousin operator δ mixes the state spae H0with H∞, but not the other way around, and in that sense it mimis the instantons.
Mixing of Holomorphic and Antiholomorphic PartsA further speiality of the Grothendiek-Cousin operator is that it mixes the holomorphiand antiholomorphi parts. In partiular, it ontributes only on states whih are not purelyholomorphi or antiholomorphi. From (2.4.29) follows that kerδ= {|n,0, p,0〉0, |0,m,0, q〉0 :

n,m ≥ 0, p, q ∈ {0,1}}. For that reason, as soon as the exited spetrum is onsidered, the the-ory an not be divided into an holomorphi and antiholomorphi �half�. Just as the existeneof non-diagonalizable operators, this is a typial harateristi of logarithmi onformal �eldtheories [DF08℄.
2.6 Generalization to General Target ManifoldsIn the following setions I will generalize the disussion to a larger lass of manifolds X ,again relying on [FLN06℄. For onveniene I will restrit my onsiderations to the in-states.Furthermore, I will restrit to Morse funtions with the property that their gradient vetor�eld equals v = xa∂a +x ā∂ā, where xa and x ā are loal oordinates on X .
2.6.1 The Perturbative State SpacesThe perturbative state spaes loalize on the desending manifolds, thus I will �rst startwith a generalization of those.Let Xα be a desending manifold with ritial point xα whih has an index ind(xa ) =
dimCX −nα. By oordinates along Xα I understand (holomorphi) oordinates x1, . . . , xnα
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suh that Xα is the hyperplane de�ned by the zero set of the omplementary, transversaloordinates xnα+1, . . . , xdimCX . In the toy model, there exists one holomorphi oordinate zalong X0 ≃ C and no transversal oordinate, whereas X∞ = {∞} is zero dimensional and hasjust a transversal oordinate z.Now the perturbative state spaes an be generalized. In the toy model, the vauumassoiated with X0 was the harateristi funtion in the oordinate along X0, whereas thevauum assoiated with X∞ was a Dira distribution. This an be generalized as follows:
❏ A ground state ∆α is a distribution form de�ned by ∫

X ∆α∧η=
∫

Xα
η|Xα

on di�erentialforms η ∈Ωd(X ).Again, in the toy model, the exited states on X0 are polynomials in the oordinates along
Xα multiplied with the exterior algebra again along X0. The exited states assoiated with
X∞ whih has only transversal oordinates, are polynomials in interior derivatives and simplederivatives along the transversal oordinates. This is also anonially generalized:

❏ The exited states assoiated with Xα are given by
(C[[xa]]⊗∧[[dxa]] )a=1,...,nα

⊗ (C[[∂a]]⊗∧[[ιa]] )a=nα+1,...,dimC X ·∆α.
2.6.2 The Grothendieck-Cousin OperatorsIn order to determine the Grothendiek-Cousin operators for the more general ase I will usetwo properties of δ as determined before.The �rst property is that the Grothendiek-Cousin operator is a mapping between di�erentrepresentation spaes whih are loally de�ned in harts of X , and that it appears in anexat sequene of the kind (2.5.3). This is, however, too general. In the situation of thetoy model, the GCO is a mapping between two state spaes of relative odimension one, i.e.
{∞} ≺C0 = codim({∞},Cc

0) = 1, where the upperase c denotes taking the losure. In order topreserve this property, one must further onstrain X and the sheaf F . I will not artiulatethose onditions and refer the reader to the publiation of [Th04℄. Under the onditionsexplained there and whih will always be satis�ed in this theses, X and F are suh that theGrothendiek-Cousin operators are mappings between representation spaes on desendingmanifolds with relative odimension one, (Zi \ Zi+1) ≺ (Zi−1 \ Zi ) = 1. This restrits the statespaes between whih Grothendiek-Cousin operators exist:
❏ The GCOs are mapping between perturbative state spaes whose desending manifoldshave relative odimension one.

∃ δi : H i−1
Zi−1/Zi

→ H i
Zi /Zi+1

⇔ (Zi \ Zi+1) ≺ (Zi−1 \ Zi ) . (2.6.1)The seond property does not make use of the full geometri analysis desribed in setion2.4.1 and is more heuristi. The situation of the topologial A-model I am going to introdue
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in the next hapter, will lead to an analysis of an in�nite dimensional manifold. Thus, I donot know how to transfer the results above from its roots. When it omes to determine theGCOs, I will rather searh after an adequate extension e of the perturbative representationspaes, suh that I �nd operators g whih have the properties of ohomology operators onthe extended omplex. Thus, in order to determine the extension, I will make use of thefollowing observation:I have explained that the polynomials, extended as distributions, fall into a diret sumof funtionals on test funtions in harts � respetively via (2.4.31) this might be used formore general funtions (2.4.33) if X is ompat. The observation I will onentrate on isthat the di�erent funtionals, naturally de�ned on the di�erent harts of X , all have thesame quantum numbers with respet to the naive Hamiltonian, f.i. in (2.4.33), H0 and H
∗
0are degenerate. Therefore, I propose that the analyti extension e should be performed suhthat the loal spetrum in a ertain hart, for instane H0, is enlarged by adding the diretsum of the possible missing �dual� states, on whih the naive Hamiltonian is degenerate.The mapping g is then a mapping from this dual part onto the loal ohomology group atthe other hart, say around {∞} :

❏ The GCOs at non-trivially on the �dual part� of the spetrum of the naive Hamilto-nian, obtained by an extension of the state spae
HXα

e→ H Xα
=HXα

⊕H
∗
Xα

g→HXβ
→ 0, (2.6.2)where Xβ ≺ Xα and HXα

denotes the states on whih the symmetries of the theorybeome degenerate.Instead of determining the Grothendiek-Cousin omplex from the roots, in the followinghapter I will make use of this heuristi reipe.
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From the A-Model to Morse Theory 3This hapter has again three parts. I will suessively reprodue the situation of the lasthapter for the topologial A-model, reformulating it as an in�nite sum of Morse theories ofthe kind just onsidered. Thereby, I will obtain its perturbative representation spaes. Itwill be possible to identify them with representations of onformal supersymmetri ghosts,whih I will further substitute for the A-model. Bosonization of the onformal theory willenable me to derive the Grothendiek-Cousin operators and propose the extension of theperturbative state spaes. Due to the properties of the Grothendiek-Cousin operators itis then evident that if the topologial A-model is a onformal �eld theory, it must be alogarithmi onformal �eld theory beyond its topologial setor. The main referene of thishapter is the publiation of Frenkel et al. [FLN08℄.In the �rst part, I will massage the topologial A-model, [Wit88b, Mar05, DVV91℄, intoa �rst order form suh that in the large volume limit, it yields a δ distribution on theinstantons. The ation thus obtained is that of a supersymmetri bc-system, and I will allit the topologial supersymmetri bc-system (Tb).In the seond part, 3.2 - 3.6, I will reverse the diretion of analysis of [Wit88b℄ and derivethe super quantum mehanis assoiated with the Tb, as was done by Frenkel et al. [FLN08℄.The result will be a theory that is not yet Morse and demands two further steps to reproduethe situation of the last hapter. I will disuss how to do that in setion 3.2 and afterwardsrestrit my onsiderations to the target manifold X =CP
1, f. setion 3.3. I will then derivethe perturbative state spaes assoiated with the desending manifolds orresponding to the�xed points {0,∞} ∈ CP

1. They an be modeled by some onformal supersymmetri ghostsystem (CSb) that I introdue in 3.4. In order to formulate the CSb on CP
1, it is neessaryto implement hart transitions. Therefore, I have to further introdue the hiral de Rhamomplex, invented by Malikov et al. [MSV99℄, f. setion 3.5.1.That the representation spaes of the Morse theory behind the Tb an be modeled by aonformal �eld theory raises the question whether this ould be true for the A-model itself.I will only touh lightly on that question, pg. 52f, and otherwise assume that the CSbwill simulate all aspets relevant for the perturbative low energy spetrum of Morse theorybehind the A-model.In the last part, starting with 3.6, I will extend the perturbative representations to the non-perturbative spetrum and introdue the in�nite dimensional analogues of the Grothendiek-Cousin operators. This analysis is done for the CSb, and I again assume that it generalizesto the A-model. The most important step will be to bosonize the CSb. To do that, I will
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use and generalize the methods desribed in [FMS86, Fri85, FF91, FF90℄, f. 3.6.2. Thiswill enable me to analyze the algebrai properties of the representation theory for the per-turbative and nonperturbative states of the Morse theory underlying the A-model. Someparts of that investigation have been published in [VF09℄. My approah di�ers from that ofFrenkel et al. [FLN08℄, who relied on a publiation of Malikov [Bor01℄. Motivated by a priorwork of Frenkel and Losev [FL07℄, they proposed that the Grothendiek-Cousin operatoris the zero mode of a partiular �eld, whih is part of a vertex algebra onstituted by theCSb after rewriting it in logarithmi oordinates and extending it by additional �eld zeromodes. My approah will make use of the bosonized CSb and of the method of logarithmideformation invented by Fjelstad et al. [FFH+02℄. I will disuss the approah of Frenkel,Losev and Nekrasov and its relation to the method I have hosen in an appendix C.
3.1 Massaging the A-modelThe A-model is a two dimensional �eld theory with an N = 2 (N = (2,2)) worldsheet super-symmetry [Mar05℄, f. appendix B.1. I will start with preparing the topologial setor of thismodel and with the transformation of its integration kernel in the path integral to a deltadistribution. For this purpose, let Σ = CP

1 with loal metri h = dz ⊗dz̄ and volume form
d2z := i

2 dz∧dz̄, as before. The indies µ, ν will denote loal oordinates σµ : σ1 = t , σ2 =σ on
Σ onsidered as a real manifold. The omplex oordinates are z = t +iσ, z̄ = t −iσ. Further, Iwill need the epsilon symbol ǫz̄z =−ǫzz̄ = 2i, as de�ned by 1

2ωµνdxµ∧dxν =: 1
2ωµνǫ

µν ·d2z. Thetarget manifold X be a simply onneted, onneted, ompat Kähler manifold with metri
λg . I denote its loal holomorphi oordinates as xa with small latin letters a = 1, . . . ,dimC Xand similarly the anti-holomorphi oordinates as x ā.The A-model, without auxiliary �elds, has the ation

S =
∫

Σ

d2z
{
λgab̄(∂z xa∂z̄ x b̄ +∂z̄ xa∂z x b̄ + iπa Dzψ

b̄ + iπb̄Dz̄ψ
a)−

1

2λ
Rab̄cd̄ πaπb̄ψcψd̄

}
, (3.1.1)where the embedding x is a Grassmann even and ψ a Grassmann odd salar on Σ and withvalues in x∗(T 1,0 X ), πa ∈ Γ(Σ,Ω1,0(Σ)⊗ x∗(Ω1,0(X ))) is Grassmann odd and similar holds for

πā.1 The ovariant derivative, for instane on ψa , is given by Dz̄ψ
a = ∂z̄ψ

a +Γ
a
bc
∂z̄ xbψc . Iwill all the Grassmann odd �elds fermions, though they have the wrong statistis.Among others (f. appendix B.1), this theory has a symmetry generated by

1The reader who is puzzled by the presence of λ−1 in the last term in (3.1.1) might consider the following. Take the

usual action with metric g and not λg . Call the fermionic one form ρā , its indices are lowered with g
ab̄

. Now

introduce λg and identify πā = ρā , where πā is the corresponding field lowered by λgab̄ . Then Ra
bc̄d

ρaρ
bψc̄ψd ≃

λ−1R̃a
bc̄d

πaπ
bψc̄ψd because ρa =λ−1(λgab̄π

b̄), whereas R̃a
bc̄d

= Ra
bc̄d

and I omitted the tilde in the action.
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δ= κ++Q+++κ−−Q−− :
δxa = κ++ψa , δx ā = κ−−ψā ,
δψa = 0 , δψā = 0 ,
δπa = 2iκ−− ∂z̄ xa +κ++

Γ
a
bc
πbψc , δπā = 2iκ++ ∂z x ā +κ−−

Γ
ā

b̄c̄
πb̄ψc̄ . (3.1.2)From the transformation of the fermions one an onlude that the holomorphi embeddings

∂z̄ xa = 0 = ∂z x ā are �xed points of that symmetry. These are alled instantons, whereasthe antiholomorphi ones, whih are �xed points of another symmetry generator, are alledanti-instantons. The nilpotent generator Q0 = Q++ +Q−− is independent of the geometryof the domain manifold in the sense that [Pµ,Q0] = 0, as an be derived from the relation
[Q0,Gµ] = Pµ, where Gµ is another supersymmetry generator, f. appendix B.1.The ation above has more than just instantons as �xed points. In the following I will makeloalization on instanton on�guration spae manifest, in order to satisfy ➄ of A. Therefore,I will again apply the Bogomolny trik and add a term whih exludes the anti-instantons(i.e. antiholomorphi embeddings) from the global minima of the ation. When I write theLagrangian in �rst order form and integrate over the S1 oordinate, the ation will have thesame shape as the Morse theory of the last hapter.
Excluding the Anti-InstantonsConsider the bosoni part of the ation, it an alternatively be written as

∫

Σ

d2z
(
2|∂z xa |2 −x∗(ωK )

) or ∫

Σ

d2z
(
2|∂z̄ xa |2 +x∗(ωK )

)
, (3.1.3)where ωK = i

2λgab̄ dxa ∧dx b̄ is the Kähler form. Obviously, the ation has both sorts ofinstantons as global minima. In order to exlude the anti-instantons I subtrat ∫
Σ

x∗(ωK )from the ation above. The transformed ation
Sλ =

∫

Σ

d2z

(
2λgab̄ ∂z̄ xa∂z x b̄ + iπa Dz̄ψ

a + iπb̄Dzψ
b̄ −

1

2λ
Rab̄cd̄ πaπb̄ψcψd

)
(3.1.4)does not have the full supersymmetry of the former one but still the symmetry generated by

Q++ and Q−− .The pullbak x∗(ωK ) of the Kähler form is a volume form on Σ and hene topologialwith respet to the domain manifold. However, it is de�ned with respet to the targetspae metri λg and the question remains if it hanges the topologial setor of the theory.Sine the Kähler form is losed, the integral ∫
Σ

x∗(ωK ) =
∫

x∗(Σ)ωK does only depend onthe ohomology lass of β := x∗(Σ) ∈ H2(X ,Z). Namely under a smooth mapping f : X → X ,
gp (U ,V ) 7→ g f (p)( f∗U , f∗V ) the homology lasses are not hanged. Thus, aording to [Nak03℄,
x∗(ωK ) and ( f ◦ x)∗(ωK ) are in the same ohomology lass. Therefore, the integral above
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is invariant under a smooth hange of the Kähler form, respetively the metri and thetopologial setor is not hanged by exluding the anti-instantons.By the hoie of β, the instanton on�guration spaes an be distinguished. A familiarway to make that visible in the ation is to introdue the analogue of a theta angle. Insteadof subtrating ∫
Σ

x∗(ωK ) from (3.1.1), one adds a losed, omplex two form with real partproportional to the Kähler form B = Bab̄ d xa ∧d x b̄ := τ−ωK on X , τ= τab̄dxa ∧dx b̄ . Withthis de�nition
Sτ,τ̄= Sλ+

∫

Σ

x∗(τ) (3.1.5)and the last term yields the �theta angle�. Sine τ is a losed di�erential form on X , theintegral again depends only on the homology lass β. In order to preserve τ, the limit λ→∞is reformulated as the ondition that τ̄ab̄ := Bab̄ −
iλ
2

gab̄ →−i∞, whilst τ = const. . In thefollowing, I will not make use of the theta angle τ.
First Order Formalism and the Supersymmetric bc-SystemTo make loalization expliit, I introdue a Lagrangian multiplier p = pa dzdxa +p ā dz̄dx āand rewrite the ation in �rst order form
Sλ =

∫

Σ

d2z
[
− ipa∂z̄ xa − ip ā∂z x ā + iπa Dz̄ψ

a + iπā Dzψ
ā +

1

2λ

(
g ab̄ pa pb̄ −Rab̄cd̄ πaπb̄ψcψd̄

) ]
.

(3.1.6)In the large volume limit λ→∞, the exponential of the ation beomes a delta funtion onthe instanton moduli spaes while the ation itself beomes what is alled a supersymmetrighost or b-system
S∞ =

∫

Σ

d2z
(
−ipa∂z̄ xa − ip ā∂z x ā + iπa∂z̄ψ

a + iπā∂zψ
ā
)

, (3.1.7)where I rede�ned p ′
a := pa +Γ

b
ac ψcπb and already left the prime away in the formula above.The supersymmetry takes the simple form

[Q0, xa] =ψa , [Q0, x ā ] =ψā ,
[Q0, p ā] = 0 , [Q0, pa ] = 0 ,
[Q0,πā] = p ā , [Q0,πa ] = pa , (3.1.8)in analogy with (2.1.10), and Q0 plays the r�le of the BRST operator. In setion 3.5.1 it willbeome lear in what respet Q0 an be identi�ed with the de Rham di�erential. The ation

S∞ is Q0-exat
S∞ =

∫

Σ

d2z [Q0,−i(πa∂z̄ xa +πā∂z x ā)] , (3.1.9)and I will all it the topologial bc-system (Tb). It will be the main harater in thefollowing.
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Remark: Let me onlude the large volume limit with a remark on the symmetries of theTb. The ation (3.1.7) has an additional bosoni axial symmetry in analogy with (B.0.4),that the original ation did not have. Therefore, it seems that in the large volume limit, thetheory aquires an additional anomaly. In setion 4.2 I will prove, that the bosoni axialsymmetry will be broken by the Grothendiek-Cousin operators.
3.2 The Morse Theory behind the A-modelIn analogy with Frenkel et al. [FLN08℄, I will now reverse the analysis of Witten [Wit88b℄to obtain the super quantum mehanis (SQM) underlying the Tb. It will di�er in twoaspets from the model of hapter 2. The target manifold will not be simply onneted andthe ritial manifold of the Morse funtion will not be zero-dimensional, suh that additionalsteps have to be taken to redue the super quantum mehanis derived from the Tb to theMorse theory disussed in the last hapter. Afterwards, I will restrit to the ase X =CP

1 insetion 3.3.To extrat the Morse theory, let Σ=R×S1 with loal oordinates z = t + iσ. For a �xed t ,the embedding xa |t (σ) is an element of loop spae LX :=
{
γ ∈C∞(S1, X ) : γ is ontratible}and an be represented by a Fourier series

xa |t (σ) =
∑

n∈Z
xa

n e−inσ . (3.2.1)Similar holds for the other �elds, for instane pa |t (σ) =
∑

n∈Z paneinσ. The modes xa
n are loaloordinates on LX and one an reformulate the Tb as a SQM on LX by integrating out thedependene on S1. Up to irrelevant prefators, the holomorphi part of the ation yields

S∞ =−i

∫
dt

(
pa,−n[∂t xa

n −v a
n (x)]−πa,−n[∂tψ

a
n −ψb

n∂b v a(x)]
)

(3.2.2)and similar holds for the antiholomorphi one. Summation over n is understood and
v a

n (x)∂an := −nxa
n

∂
∂xa

n
. The Lagrangian an be interpretedd as an in�nite sum Lagrangiansof the kind (2.1.9), if the vn are interpreted as omponents of the gradient �elds of a Morsefuntion.The gradient �elds are assoiated with the generator of loop rotations ∂σ. It is representedon the loops x by means of the vetor �eld v(x) =−i∂σxa∂a + i∂σx ā∂ā , ∂a := ∂

∂xa and on theoordinates of LX by integrating over the parameter σ, ∫
S1 v a(x)∂a =

∑
n v a

n∂an. Therefore,the �xed points of v are the onstant loops, i.e. points on X . These are the zero modes xa
0 .Consequently, the �xed points of the gradient �eld are not isolated but omprise what isalled a �ritial manifold�, whih in the situation above is X ⊂ LX .Another way to see this is by analyzing the spetrum of the Hessian Haa n = −n. Theoordinates xa

n with n > 0 belong to negative eigenvalues and thus are oordinates on the
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asending manifold, oordinates with n < 0 belong to the desending manifolds while thezero modes xa
0 are oordinates at whih the Hessian is indi�erent.The instanton equation an be written as the �ow equation generated by the vetor �eld

v :
∂t xa −v a(x) = ∂t xa + i∂σxa = 0, (3.2.3)whih is nothing else but the ondition of holomorphiity ∂z̄ xa = 0. In loal oordinates of

LX the instanton equation is
∂t xa

n −v a
n(x) = 0, v a

n(x) =−nxa
n . (3.2.4)However, the SQM above di�ers in two aspets from the one of the last hapter. Firstly, theritial points are not isolated and seondly, the target manifold LX is onneted but not sim-ply onneted. This latter observation raises the question whether there exists a funtion fsuh that d f = ιv gγ. Here, gγ is the indued Kähler metri gγ(η1,η2) :=

∫
S1 λg |γ(η1(σ),η2(σ)),

η1/2 ∈ Γ(TγLX ), TγLX := γ∗T X are vetor �elds along the loop γ, and the ontration is un-derstood as ιv gγ[η] =
∫

S1 λg |γ(v(σ),η(σ)). In the next setion I will introdue a potential suhthat the vetor �eld v an be obtained as its gradient. The potential will, however, not besingle-valued on loop spae.
3.2.1 The PotentialOn a simply onneted, sympleti manifold, every sympletomorphism an be expressed asa gradient of some potential.2 The universal over of loop spae L̃X := {(γ, γ̃) | γ ∈ LX , γ̃ : D →
X s.t. γ= γ̃|∂D }/ ∼, where ∼ means equivalene under homotopy and D is the omplex unitdisk, is a simply onneted and sympleti manifold (with the indued Kähler metri).In the situation of the last hapter, I subtrated a term −λ

∫
d f to get rid of the anti-instantons. It trivially determines the Morse funtion. This motivates to try

fγ(γ̃) :=−
∫

D
γ̃∗(ωK ) (3.2.5)as a andidate for the Morse funtion on L̃X . Indeed, taking the exterior derivative andevaluating it in the diretion of a smooth vetor �eld η ∈ TγLX , one obtains an appropriateone form on the boundary d fγ(γ̃)[η] =−

∫
S1 ωK (∂σγ,η) = ιv gγ[η], while the orthogonal, radialdiretion does not ontribute. However, the potential is only single-valued on L̃X but multi-valued on LX , namely

fγ(γ̃) = fγ(γ̃′)−
∫

S2
(γ̃• γ̃′)∗(ωK ) (3.2.6)

2A symplectomorphism is a vector field v s.t. Lv ωK = d ιv ωK = 0, with ωK the symplectic form. If the manifold is

simply connected, a closed one form is already exact and ιvωK = d f for some f .

40



when two disks γ̃ and γ̃′ with the same boundary γ are glued together (whih I denoted by the
• ). The sphere S2 is the generator of H2(X ,Z) and ounts the omponents of u−1(X ), X ⊂ LXin the universal over u : L̃X → LX . More illustrative, in the ase X = CP

1 it ounts thenumber of times the disks are wrapped around X .That the potential is multi-valued on loop spae has an impat on the spae of states andI will disuss that in setion 3.3.1. For the time being, let me note that under the mapping
u, LX fans out into leaves in L̃X , distinguished by H2(X ,Z). Aording to Frenkel et al.[FLN08℄, I will denote these leaves as L̃X n , n ∈ H2(X ,Z).
3.2.2 Isolating the Critical PointsI will now approah the seond problem and isolate the ritial points. This is done bydeforming the instanton �ow equation. The deformation will be suh that the �xed point setis redued to the points {0,∞} ∈ X . Frenkel et al. do ahieve this by introduing an additionaltarget spae symmetry into the ation, whih for the ase X =CP

1 will be a generator of the
C
× symmetry of X [FLN08℄.The starting point is the supersymmetri bc-system (3.1.7) whih I generalize in analogyto the Morse theory ation (2.1.9)

S :=
∫

Σ

d2z
(
−ipa [∂z̄ xa +µV a(x)]+ iπa [∂z̄ψ

a +µ∂bV a(x)ψb ]+c.c.
)

, (3.2.7)where µ ∈ R. This step an be understood as a deformation of the vetor �eld v(x) =
−i∂σxa∂a + i∂σx ā∂ā aording to v(x) 7→ V (x) = v(x)−µ V (x). The instanton equation ishanged to

∂z̄ xa +µV a (x) = ∂t xa −V
a (x)= 0 (3.2.8)and its ritial points are solutions of V

a (x) = 0.In order to approah the situation of the last hapter, it would be nie if in the situation
X =CP

1 these were again {0,∞} ∈ X . This an be ahieved by hoosing the additional vetor�eld to be V (x) = xa∂a + x ā∂ā , whih is a generator of the C
× symmetry of CP1. Assumedthat the omposite vetor �eld V (x) is not degenerate, the ritial manifold redues to theintersetion of the ritial manifolds of V and v , whih onsists of the points {0} and {∞} ∈CP

1.A deformation of the gradient vetor �eld must be followed by a rede�nition of the Morsefuntion f

fγ(γ̃) 7→ −
∫

D
γ̃∗(ωK )− iµ

∫

S1
HV (γ,σ)dσ , (3.2.9)where HV is the solution of dHV (γ,σ)[η] = ωK (V ,η), η ∈ TγLX . The deformation term onlydepends on the boundary γ and, hene, does not ontribute with an additional term to(3.2.6).
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The Deformation as “Gauging” the TheoryIn the ase of the symmetry I have just implemented, the ation further simpli�es to
S =

∫

Σ

d2z
(
−ipa (∂z̄ +µ)xa + iπa (∂z̄ +µ)ψa +c.c.

)
, (3.2.10)where µ now looks like a gauge onnetion. Frenkel et al. give this interpretation a meaningby reonsidering the original ation as a quantum mehanial system [FLN08℄. I will followtheir disussion for the bosoni part whih thus takes the form

Sbos =−i

∫

R

[∫

S1
(pa∂t xa +p ā∂t x ā)dt ∧dσ−dt H (x, p)

]
, (3.2.11)with H (x, p)= p[v ], p[v ]=

∫
S1

(
pa (−i∂σxa)+p ā (i∂σx ā )

)
dσ. The Hamiltonian H (x, p) ouplesto the one form dt on R and one might be tempted to onsider the more general situationwhere it is a representation of some Lie algebra oupling to a gauge potential A(t )dt =

AL(t )H L(x, p)dt with [H L, H M ] = f LM
N H N .3In order to interpret the deformation as a sort of gauging, I let X = CP

1 and hoose
H 1 := p[V ], H 2 := p[U ] where U (x) = i(xa∂a − x ā∂ā) is the U (1) = R/2πZ generator on X and
V = xa∂a + x ā∂ā . These Hamiltonians are indeed representations of the Lie algebra of C

×with [H 1, H 2] = 0. The deformation of the ation an then be interpreted as a deformationof the Hamiltonian H (x, p)dt 7→ H (x, p)dt − AL(t )H Ldt with A1 = µ and A2 = ρ. The form ofthe ation (3.2.7), now inluding fermions, is reprodued when de�ning A z̄ :=µ+ iρ, µ,ρ ∈R

S =
∫

Σ

d2z
(
− ipa [∂z̄ xa + A z̄ V a(x)]− ip ā [∂z x ā + Az V ā (x)]

+ iπa [∂z̄ψ
a + A z̄ ∂bV a(x)ψb ]+ iπā [∂zψ

ā + Az ∂b̄V ā (x)ψb̄ ]
)

.

(3.2.12)and spei�ally, for the disussion above, when setting ρ = 0. For �nite time evolutions,the holonomy of A is invariant under the U (1) gauge transformation ρ 7→ ρ + 2πn
T , µ 7→ µ.However, the gauge �eld is not quantized and I will only use the name �gauged�, if I wantto expliitely distinguish the ation (3.2.10), from now on alled the �gauged� Tb, from theation (3.1.7).

3.3 Perturbative Morse Description of the A-ModelFrom now on I will restrit my onsiderations to the ase X =CP
1. Furthermore, I will write

x for the homolorphi and x̄ the anti-holomorphi target spae omponents and similar forthe other �elds. I assume that these oordinates are the inhomogeneous oordinates on CP
1.The ation I am going to onsider is the deformed one (3.2.10) with µ ∈ (−1,0).4

3The idea behind this is that exp{
∫

A(t)Hdt} can either be considered as a propagator, A = 1, or the holonomy of a

gauge field.
4The gauge field component µ is not allowed to be an integer since otherwise V would be degenerate. This will

become evident in equation (3.3.5).

42



In the onseutive setion I will determine the perturbative state spaes of the underlyingMorse theory. After I will start with some general disussion of the in-state spaes and thendetermine the state spae loated on the desending manifold with �xed point {0} ∈ CP
1 insetion 3.3.2. In order to derive the perturbative state spae on the desending manifoldwith �xed point {∞} ∈CP

1, it is neessary to make a hart transition, and I will explain howthis works in setion 3.3.3.
3.3.1 The Perturbative State SpacesIn the last hapter and partiularly setion 2.6, the perturbative state spaes assoiated witha desending manifold Xc have been obtained as

(
C[[xµ]]⊗∧[[dxµ]]

)
µ=1,...,nc

⊗
(
C[[∂µ]]⊗∧[[ιµ]]

)
µ=nc+1,...,dimR X

·∆c ,wherein dxµ are di�erential forms on and xµ are the oordinates along Xc whih has dimR Xc =
nc , while the derivatives are in the transversal diretions. The vauum state ∆c was thevolume form on Xc , extended in the transversal diretions as a distribution.This situation arries over to the Morse theory behind the supersymmetri bc-system upto a peuliarity. Sine LX is not simply onneted, the perturbative state spaes and alsothe desending manifolds will be branhed. On every leaf, the situation is however the sameas in the toy model of the last hapter.
Branching of the State SpacesIn the Morse theory of hapter 2, the perturbative states orresponding to a desendingmanifold Xc have been obtained by solving H (pert)

Ψ= EΨ, and taking the large volume limitof eλ f
Ψ, f. 2.4. These states should be related with those of the Morse theory behind theA-model with ation Sλ = S −

∫
Σ

x∗(ωK ).Inluding the points {±∞} ∈ R suh that Σ ≃ S2, I an split the integral
∫

S2 x∗(ωK ) =
∫

D γ̃− ∗ (ωK )−
∫

D γ̃+ ∗
(ωK ). Here, (γ̃− • γ̃+)∗ = x∗, γ̃− overs the hemisphere of

CP
2 inluding a repulsive �xed point and γ̃+ overs the other hemisphere of X , inluding anattrative �xed point. Therefore, the ket states of the super quantum mehanis on loopspae and assoiated with some desending manifold LXc , are of the form

Ψ0 = e
∫

D γ̃− ∗(ωK )
Ψ (3.3.1)with Ψ a di�erential form on LX . Sine the integrand is not a total derivative, Ψ0 dependson the integration �path�. In partiular, from the disussion in setion 3.2.1 follows that thestates are homotopially distinguished by H2(X ,Z), whih measures how often Σ is wrapped
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around X . Consequently, one an distinguish a stak of Hilbert spaes by the winding number
n via the relation

Ψn := e
∫

n∈H2 (X ,Z) γ̃
− ∗(ωK )

Ψ0 , Ψn+m = e
∫

n∈H2 (X ,Z) γ̃
− ∗(ωK )

Ψm . (3.3.2)The full state spae of in-states, orresponding to some ritial point xc ∈ LX , is the tensorprodut of the state spaes with a spei� wrapping number,
H

in
c :=

⊗

n∈H2(X ,Z)

H
in
c ,n . (3.3.3)However, sine all states are isomorphi by a multipliation with

qn := e
∫

n∈H2 (X ,Z) γ̃
− ∗(ωK )

, (3.3.4)I will restrit my disussion to H
in
c ,0.5

3.3.2 The Perturbative State Space on L̃X 0,kThe operator q may serve to distinguish not only the leaves of the state spaes but alsothe instanton setors (f. pg. 37) and the leaves L̃X k . Therefore, I will assoiate the k thinstanton setor with the k th branh and the k th setor of the state spae. Every leaf L̃X kontains Xk ≃ X and the preimages of the ritial points with respet to u : L̃X → LX . Due to(3.3.2), the instanton equation looks the same on all leaves, and I will denote the desendingmanifolds orresponding to some preimage xc ,k ∈ Xk of a ritial point xc ∈ X by L̃X c ,k . Theperturbative state spaes will be assoiated with these desending manifolds.The perturbative state spaes follow from the knowledge of the oordinates on the de-sending manifolds, .f. setion 2.6. Therefore, I onsider the instanton equation (3.2.4) forthe gauged Tb in a neighborhood of {0} ∈ X0,k

dt xn − (−n −µ)xn = 0, µ ∈ (−1,0) , (3.3.5)wherein the xn are oordinates of L̃X k for an arbitrary k. By means of the Hessian Hn =
−(n+µ) one an distinguish the diretions of the tangent spae along the desending manifold
L̃X 0,k . They belong to positive eigenvalues and are thus the {xn}n≤0, inluding the ritialpoint x0 = 0. The di�erential forms on L̃X 0,k are the modes {ψn}n≤0, and ψ0 an be identi�edwith the usual holomorphi di�erential form dx0 on the zero mode part X0,k ⊂ L̃X 0,k, X0,k ⊂ Xkof the desending manifold:

xn ≃ xn , ψn ≃ dxn . (3.3.6)The momenta, onjugate to xn and ψn , n ≤ 0 are also oordinates along the desendingmanifold. These are the modes ip−n and iπ−n with n ≥ 0, and they may be identi�ed withgeometri data aording to
ip−n ≃ ∂n , iπ−n ≃ ιn . (3.3.7)

5Frenkel et al. considered a different operator q with τ in the exponent, cf. section 3.1 and [FLN08].
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These oordinates satisfy the onditions for a anonial quantization [pn , xm] =−iδn,−m and
[πn ,ψm] =−iδn,−m . Consequently, the perturbative state spae on L̃X 0,k , k = 0, now inludingthe antiholomorphi part, must ontain the span

H
in
0,0 =C[xn , x̄n ,ψn ,ψ̄n]n≤0 ⊗C[pn , p̄n ,πn , π̄n]n<0 ·∆0 , (3.3.8)where

∆0 = ΞL̃X 0,0
(ψ1ψ2 · · · )(ψ̄1ψ̄2 · · ·) ,

ΞL̃X 0,0
∼

∏

n>0,m≥0

δ(2)(xn , x̄n)δ(2)(ψn ,ψ̄n)δ(2)(pm , p̄m)δ(2)(πm , π̄m)
(3.3.9)ats like a harateristi funtion along L̃X 0,0 and a distribution in the other oordinates.I have been arful with stating that the state spae ontains (3.3.8) and not with laimingthat it equals this spae. The reason is that I want to relate the perturbative state spaesof Morse theory to a onformal �eld theory. If in the spirit of Morse theory the �eld modesare interpreted as simple oordinates or di�erentials, it makes sense to allow for Taylorexpansions and thus for power series. However, the representations of CFTs are usuallyspanned by polynomials [KR87℄. Yet, if this related CFT will be formulated on CP
1 thisondition must be relaxed for the zero modes, f. setion 3.5.1.An alternative way to identify the desending manifolds is to onsider the instanton �owequation (3.2.3) for x(z) in the gauged Tb and after a hange to radial oordintates ω =

t + iσ 7→ exp ω∈C
×

(
∂z̄ +

µ

z̄

)
x(z) = 0. (3.3.10)To derive this, it is neessary to remember that A = Aωdω+ Aω̄dω̄ and Aω̄ = µ transformslike a one form, A z̄ = Aω̄

∂ω̄
∂z̄
. In partiular, if I add the point {0} to C

× and onsider theinstanton �ow equation of the Morse theory to the vauum on�guration {0} ∈ X when z 7→ 0(⇔ t 7→ −∞), i.e. invoking x(0) = 0, the solutions
x(z) = |z|−2µ

∑

n≤0

xn z−n , x(0) = 0, µ ∈ (−1,0) (3.3.11)reprodue the �ow lines along the desending manifold and thus along the state spae (3.3.8).6In the equation above I have saled x with the �homogeneity� |z|2µ. It would have beensu�ient to multiply z̄µ, however, the solution x would then have been multi-valued. Single-valuedness of the �elds and of orrelation funtions is a property demanded by onformal�eld theories, and I antiipated this in the solution above.
6The solutions ascending to {0} ∈ X0,0 require a different boundary condition: x(∞) = 0. Notice further, that closing

C
× to the disk C

×∪ {0} ≃ D and demanding x(0) = 0 identifies x ∈ LX with an element in L̃X .
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3.3.3 The Perturbative State Space on L̃X ∞,kIn order to derive the state spae on L̃X ∞,0, it is at suggestive to make a oordinate transitionfor x ∈ LX

x(σ) 7→ x̃(σ) = x̃ne−inσ := [x(σ)]−1 , (3.3.12)where I de�ne x(σ)−1 = x−1
0

∑∞
n=0(−)n x−n

0 ∆x(σ)n by a Taylor expansion and with help of
∆x(σ) =

∑
k 6=0 xk e−ikσ. For the only mode being inverted one has to assume that x0 6= 0.Notie, that the inverse [x(σ)]−1 is well de�ned beause x0 has the meaning as a simpleoordinate on CP

1.Under this oordinate transition, the instanton �ow equation (3.2.8) is hanged to
∂t x̃n − (−n +µ)x̃n = 0, (3.3.13)or alternatively in radial oordinates z = exp t + iσ for x̃(z) to

(
∂z̄ −

µ

z̄

)
x̃(z) = 0. (3.3.14)This mirrors, that the ation (3.2.10) is not invariant under oordinate hanges.7 In analogyto the disussion in the last setion, I an now add the point {∞} = {x̃0 = 0} ∈ X∞,0 to C

× andsolve the instanton equation with boundary ondition x̃(0) = 0 (z → 0 ⇔ t →−∞), in orderto extrat the oordinates along the desending manifold L̃X ∞,0. The single-valued solutionfor x̃ reads
x̃(z) = |z|2µ

∑

n<0

x̃n z−n , (3.3.15)and similar holds for ψ̃. The other �eld modes along L̃X ∞,0 an now indiretly be obtained asthe modes onjugate to those of x̃ and ψ̃. Therefore, the perturbative state spae on L̃X ∞,0equals
H

in
∞,0 =C[x̃n , ¯̃xn ,ψ̃n , ¯̃ψn]n<0 ⊗C[p̃n , ¯̃pn , π̃n , ¯̃πn]n≤0 ·∆∞ , (3.3.16)with

∆∞ =ΞL̃X ∞,0
(ψ0ψ1 · · ·)(ψ̄0ψ̄1 · · · ) ,

ΞL̃X ∞,0
∼

∏

n≥0,m>0

δ(2)(xn , x̄n)δ(2)(ψn ,ψ̄n)δ(2)(pm , p̄m)δ(2)(πm , π̄m) .
(3.3.17)This �ts with an analysis of the eigenvalues of the Hessian H̃n =−n +µ.

3.4 Relation to Conformal Supersymmetric GhostsOn a �rst sight, these state spaes equal partiular representations of the onformal super-symmetri bc-system (CSb) with domain manifold C
× and target spae C. I will �rst give

7The composition x 7→ x−1, µ 7→ −µ is a symmetry of the action.
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a brief introdution to the CSb whih should larify this relation. Afterwards, I am goingto explain why I am areful with identifying the CSb and the Tb, though I will arguethat the perturbative state spaes of the Morse theory underlying the gauged Tb an bemodelled by the CSb.I assume that the reader has a basi knowledge of CFTs, otherwise she or he may onsult[Fri85, Gin88, Gab00℄.
3.4.1 The Conformal Supersymmetric bc-SystemAs long as it is not logarithmially extended [DF08℄, the CSb is assumed to split into(equivalent) holomorphi and antiholomorphi halves. For the moment I will start with theholomorphi part.
Representation TheoryLet the domain manifold be C

× with oordinates z = et+iσ and the target spae be C. TheCSb onsists of bosoni �elds x(z) =
∑

n∈Z xn z−n and p(z) =
∑

n∈Z pn z−n−1, whose modesde�ne a Heisenberg algebra [pn , xm] =−iδn,−m , and of the superpartners ψ(z) =
∑

n∈Zψn z−n ,and πn =
∑

n∈Zπn z−n−1 whih omprises a Cli�ord algebra [πn ,ψm] =−iδn,−m .8 There existsa whole stak of �harged� representations
xn |p〉− = 0 =ψn |p〉+ , n >−p , pn |p〉− = 0 =πn|p〉+ , n ≥ p (3.4.1)with p ∈Z [FF91, Fri85℄. In the ase of the fermions, these representation spaes are equiv-alent beause all highest weight states are related by

|p〉+ =ψ−p+1 · · ·ψ0|0〉+ , p ≥ 0,

|p〉+ = ip πpπp+1 · · ·π−1|0〉+ , p < 0.
(3.4.2)This does not hold for the bosoni representation spaes, as I am going to disuss in setion3.6.2. This observation will be of ruial importane for the existene of the Grothendiek-Cousin operators.The representation spaes are graded by some bosoni and fermioni U (1) urrents j−(z)=

−i : x(z)p(z) : and j+(z) =−i : ψ(z)π(z) :, where normal ordering is de�ned in the |0〉± vauum.9Under that ondition, |p〉ǫ has harge −ǫp, where ǫ=+1 for fermions and −1 for the bosons.The �eld modes satisfy [ j−n , xm] = −xn+m , [ j−n , pm] = pn+m, [ j+n ,ψm] = −ψn+m , [ j+n ,πm] =
πn+m and the urrents omprise Lie Heisenberg algebras [ j ǫn , j ǫm] = ǫnδn,−m. Aording to

8Remember, that [·, ·] denotes the superbracket.
9I use : · : as a C-linear mapping such that λ : a +b :=: λa +λb :,λ ∈C.
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Feigin and Frenkel [FF91℄, I will denote the thus graded representation spaes as M ǫ(p) =
⊕

l∈Z M ǫ(p)l , where l is the U (1) harge.To the algebra of the �eld modes orresponds the operator produt algebra of the �elds.It is represented on the p vaua by means of the operator produt expansions (OPEs)
x(z)p(ω) =

i

z −ω

( z

ω

)p
, ψ(z)π(ω) =

−i

z −ω

( z

ω

)p
,

p(z)x(ω) =
−i

z −ω

(ω
z

)p
, π(z)ψ(ω) =

−i

z −ω

(ω
z

)p
.

(3.4.3)The Virasoro algebra is represented on these spaes by the energy momentum tensor
T (z) = i : p(z)∂z x(z)−π(z)∂zψ(z) : , T (z) =

∑

n∈Z
Tn z−n−2 . (3.4.4)It an be obtained from the �elds

G (z)= i : π(z)∂z x(z) : and Q(z) = i : p(z)ψ(z) : (3.4.5)by T (z)= [Q0,G (z)], where Q0 =
∮

0 Q(z). These �elds together with the fermioni U (1) hargede�ne a twisted N = 2 superonformal algebra [DVV91℄. Sine the bosoni and fermioniparts ontribute with opposite entral harges cǫ = −2ǫ, the omposite system has entralharge zero.The basi �elds have onformal weights
∆T (x) = 0 =∆T (ψ) and ∆T (p) = 1 =∆T (π) (3.4.6)and the ommutation relations with the Virasoro generators are [Tn , xm] = −(m +n)xm+n,

[Tn , pm] =−mpn+m and analogously for the fermions. In partiular, one has [ j ǫ0,T0] = 0 andthe Hamiltonian respets the grading of the representation spaes M ǫ(p)l .
The Antiholomorphic PartThe antiholomorphi urrents neessarily have to be taken into aount, when the CSb getsrelated to the Tb. Two reasons are that the Tb has an anomaly free vetorial urrent andthe entral harge is zero. These e�ets an be ahieved for the CSb, only if the holomorphiand antiholomorphi parts are both onsidered.I de�ne the antiholomorphi urrents to be

j̄+(z̄) =+i : ψ̄(z̄)π̄(z̄) : , j̄−(z̄) =+i : x̄(z̄)p̄(z̄) : , (3.4.7)with representation spaes just as before. Aording to my hoie of sign in that de�nition,the grading is, however, di�erent, namely M̄ ǫ(p̄) =
⊕

l∈Z M̄ ǫ(p̄)l , j̄ ǫ0 |p̄〉ǫ = ǫp̄ |p̄〉ǫ. Sine
j ǫV (z, z̄) = j ǫ(z)+ j̄ ǫ(z̄) ,

j ǫA(z, z̄) = j ǫ(z)− j̄ ǫ(z̄)
(3.4.8)
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are the vetorial and axial urrents, respetively, the hoie above invokes that the holomor-phi-antiholomorphi representation spaes M ǫ(p, p̄) =
⊕

l ,s∈Z M ǫ(p)l⊗M̄ ǫ(p̄)s are graded withrespet to the vetorial urrents. At this stage, this hoie is a question of onveniene,however, when the CSb is logarithmially deformed, the bosoni axial symmetry will bebroken, whih I am going to explain in setion 4.2.Conerning the other �elds in the antiholomorphi half, they are de�ned in ompleteanalogy with the holomorphi senario. The full Virasoro algebra ats on M ǫ(p, p̄) by meansof
T −(z, z̄) = i : ∂z x(z)p(z)+∂z̄ x̄(z̄)p̄(z̄) : ,

T +(z, z̄) = i : ∂zψ(z)π(z)+∂z̄ψ̄(z̄)π̄(z̄) :
(3.4.9)under whih the state |p, p̄〉ǫ := |p〉ǫ⊗|p̄〉ǫ has onformal weight

∆T ǫ(|p, p̄〉ǫ) =
1

2
ǫ[p(p −1)+ p̄(p̄ −1)] , (3.4.10)as follows from alulating (T ǫ

0 + T̄ ǫ
0 )|p, p̄〉. Together with the superharges

Q(z, z̄) = i : p(z)ψ(z)+ p̄(z̄)ψ̄(z̄) : and G(z, z̄)= i : π(z)∂z x(z)+ π̄(z̄)∂z̄ x̄(z̄) : , (3.4.11)the omplete CSb determines a twisted N = (2,2) superonformal algebra.
Ground StatesThe full, supersymmetri theory has several states with weight zero, i.e. all ombinations of
|0〉± and |1〉±. However, only one of them, |0,0〉 := |0,0〉−⊗|0,0〉+, is a onformally invariantground state. This an be seen by applying T±1. For instane, the state |1,1〉, whereby

|p, p̄〉 := |p, p̄〉−⊗|p, p̄〉+ , (3.4.12)has weight zero but is not invariant under T±1. A omputation shows that T−1|1,1〉 = i(x−1p0+
ψ−1π0)|1,1〉 6= 0, and similar for the antiholomorphi part.
Correlation Functions and UnitarityLike the Tb, the CSb is not unitary. I will now disuss, how that an be understood as ane�et of the anomaly q of the urrents

T (z) j ǫ(ω) =
q

(z −ω)3
+

j ǫ(z)

(z −ω)2

[Tn , j ǫm] =−m j ǫn+m +
q

2
n(n +1)δn,−m

, q= ǫ . (3.4.13)
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Similar holds for the antiholomorphi part with q̄=−ǫ. The appearane of the anomaly for
T1 means that j ǫ(z) is not invariant under SL(2,C)/Z2 transformations. Under a holomorphitransformation z 7→ f (z), the urrents aquire an additional term

j ǫ(z)= j ǫ( f (z))∂z f +
q

2

∂2
z f

∂z f
. (3.4.14)The quantities that make non-unitarity manifest are the orrelation funtions. These are

C-bilinear mappings (|q〉,φ(z)|p〉) = q 〈φ(z)〉p ∈ C, whereby φ is an arbitrary ombination ofquasi-primary �elds and their �eld modes. This pairing is de�ned suh, that the adjointof φ(z) is obtained by the transformation z 7→ z−1, whih maps an inoming to an outgoing�eld.10 Moreover, it shall be SL(2,C) invariant and respet the operator produt algebra(OPA) in the sense that q〈b(z)c(ω)〉p = b(z)c(ω) for appropriate q, p.11 What is meant by�appropriate� will be lari�ed below.The adjoint urrents, in the sense above, are given by
j ǫ † (ω) = z−2 j ǫ(z−1) , j̄ ǫ

†
(ω) = z̄−2 j̄ ǫ(z̄−1) ,

j ǫ †
k

= −q δk ,0 − j ǫ−k
, j̄ ǫ

†
k = −q̄ δk ,0 − j̄ ǫ−k

.
(3.4.15)Due to the di�erent sign of q = ǫ and q̄ = −ǫ, the adjoint of the vetorial urrent remainsanomaly free. If, however, the holomorphi part is onsidered separately, the anomalies dueto z 7→ z−1 have to be ompensated, if the orrelation funtions are supposed to be SL(2,C)invariant. Therefore, they have to satisfy

(|q〉, j ǫ(z)φ(ω)|p〉) = ( j ǫ
†

(ω)|q〉,φ(ω)|p〉) . (3.4.16)In partiular, for the zero mode ( j ǫ0
† |q〉, |p〉) = ([−q+ q]|q〉, |p〉) != (|q〉,−p|p〉) = (|q〉, j ǫ0|p〉),and the state dual to |p〉 is given by (| −p +q〉, ·). In the following I will use the notation

〈p| = (|q〉, ·), suh that
〈q |p〉 = δq,−p+q . (3.4.17)The same line of arguments holds if any ombination of �elds is inserted, and the non-trivialorrelation funtions are subjet toCorr(q, p)=
{

q〈φ(z)〉p : J(φ) = q +p −q
}

, (3.4.18)whereby J(φ) denotes the total harge of that ombination. The harge q is alled a bak-ground harge, it auses that the dual �bra� and �ket� states determine a pairing but not asalar produt.
10This conjugation shall not be confused with the definition of the dual states I have used in (2.2.5). The adjoint fields

here are different, for they are not the antiholomorphic counter parts.
11Usually, one also demands that correlation functions be single valued. This can be achieved by including the anti-

holomorphic half, and the way how to do that is restricted by the demand to build a single-valued quantity.
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3.4.2 Identifying the State SpacesThe Fok spae of the CSb in the representation on |0,0〉 equals
H0 =C[xn , x̄n ,ψn ,ψ̄n]n≤0 ⊗C[pn , p̄n ,πn , π̄n]n<0 · |0,0〉 , (3.4.19)whih seems to be idential with the perturbative state spae (3.3.8) on L̃X 0,0, when the �eldmodes are related and under ∆0 ≃ |0,0〉. This is further promoted by the observation thatupon anonial quantization, the loop spae oordinates and �eld modes satisfy the sameommutation relations, f. pg. 44. However, the identi�ation fails to be exat with respetto the quantum numbers of the �eldmodes and states.Moreover, aording to (3.4.1) and if the CSb were onsidered on the hart of CP1 in-luding the point {∞}, the representation
H∞ =C[x̃n , ¯̃xn ,ψ̃n , ¯̃ψn]n<0 ⊗C[p̃n , ¯̃pn , π̃n , ¯̃πn]n≤0 · �|1,1〉 (3.4.20)should struturally be identi�ed with the perturbative state spae of Morse theory (3.3.16),putting H

in
∞,0 ≃ H∞ and ∆∞ ≃ �|1,1〉. It is, however, not yet lear how to de�ne the CSbon CP

1 and, in partiular, how to implement hart transitions. This has been takled byMalikov, Shehtman and Vaintrob [MSV99℄, and will be the subjet of setion 3.5.1. BeforeI disuss this topi, I will extend the CSb by introduing the homogeneities, appropriateto aomodate the quantum numbers. Moreover, I will brie�y disuss the onsequenes itwould have if one related the CSb without homogeneity to the ungauged Tb. This willtouh the question if the Tb an be identi�ed with a CFT.
The CSbc with HomogeneityFor onveniene, I will restrit my onsiderations to the hart around 0 ∈ CP

1. The Hamil-tonian of the Morse desription of the topologial bc-system (3.2.10) is
H =−i

∑

n∈Z
(µ+n)(xn p−n +ψnπ−n + x̄n p̄−n + ψ̄nπ̄−n)

=
∑

n∈Z
(LVn

+L
V̄n

) , Vn =−(µ+n)xn∂n , V̄n = (Vn)
(3.4.21)and due to the shift by µ di�ers from T0 =T +

0 +T̄ +
0 +T −

0 +T̄ −
0 . One an overome this mismathof energies by rede�ning the �elds of the CSb:

x(z) =
∑

n∈Z.

xn z−n |z|−2µ , p(z) =
∑

n∈Z
pn z−n−1|z|2µ , (3.4.22)and similar for the fermions [FLN08℄. As has been the ase for the Morse theory, the �eldsare not holomorphi any more. Indeed, the equation of motion for the onformal �eld x withhomogeneity µ equals the instanton equation of Morse theory (

∂z̄ + µ
z̄

)
x(z) = 0. Furthermore,
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the boundary ondition whih seleted the desending manifold for Morse theory has been
x(0) = 0 and led to the expansion (3.3.11). In ase of the CSb, this boundary onditionis realized by plugging in the representation |0,0〉 and onsidering the on-shell expansion of
x(z), i.e.

x(z)|0,0〉−= |z|−2µ
∑

n≤0

xn z−n|0,0〉 . (3.4.23)The �eld rede�nitions introdue tadpoles due to the inhomogeneity. Calulating T (z)T (ω),one �nds that the stress tensor should be orreted
T ǫ(z) 7→ T ǫ(z)+

ǫµ(µ+1)

2z2
, T̄ ǫ(z̄) 7→ T̄ ǫ(z̄)−

ǫµ(µ+1)

2z̄2
, (3.4.24)where T ǫ, T̄ ǫ are de�ned as before but with the rede�ned �elds. However, the full stresstensor has no tadpoles and its zero mode equals the Hamiltonian of the Morse theory, T0 = H .Indeed, [T0, xn] = (−µ−n)xn , [T0, pn] = (µ−n)pn and similar for the other �eld modes. Thehighest weight states obtain new onformal weights of value ∆T ǫ (|p〉ǫ) = ǫ

2 (p −µ)(p −µ−1),while the entral harges for the bosons and the fermions are still the same. The U (1) hargesare also orreted by tadpoles,
j ǫ(z) 7→ j ǫ(z)+

ǫµ

z
, j̄ ǫ(z̄) 7→ j̄ ǫ(z̄)−

ǫµ

z̄
, (3.4.25)while the harge anomalies are not a�eted. Thus, the states |p〉ǫ and |p̄〉ǫ have U (1) hargesof value −ǫ(p −µ) and ǫ(p̄ −µ), while the harges of the �eld modes are insensitive to µ.Let me onlude that for the CSb with homogeneity one may identify

H
in
0,0 ≃H0 , ∆0 ≃ |0,0〉 , (3.4.26)and the �eld modes and states have the orret quantum numbers.

3.4.3 What if the Gauge Field is Absent?Having stated a orrespondene between the low energy spetrum of the gauged Morse theoryon the desending manifold L̃X 0,0 and the CSb with homogeneity, one might now ask, ifthe CSb with µ = 0 were the appropriate theory to desribe the Morse theory of the Tbwithout gauge �eld? The Hamiltonians are idential and the �eld modes have the sameenergies. I will now argue, that suh a relation fails, beause the Tb without gauge �eldhas more topologial states than the ordinary CSb.
The Topological States of Morse Theory without HomogeneitySine the Hessian is inde�nite on the zero modes, these oordinates are neither transversaloordinates nor oordinates along the desending manifold. Moreover, they have zero energy
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and in priniple may be multiplied to the ground states. Thus, there are not suh strongonstraints on the ground states as in the situation with gauge �eld.A �rst onsequene is that in the zero modes the ground states are smooth di�erentialforms on X =CP
1 with respet to the de Rham di�erential d, i.e. elements of Ω•

d
(X ) [FLN08℄.To omprise ground states in the sense of topologial states, this spae must be furtherrestrited by the BRST ondition Q0∆0 = 0. In analogy with (2.2.4) and in oordinates ofloop spae, the BRST harge for the Morse theory equals

Q0 = i
∑

n∈Z
(ψn p−n + ψ̄n p̄−n) . (3.4.27)In partiular, its zero mode part an be identi�ed with the usual de Rham derivative d= ∂+∂̄on X . Sine CP

1 has Betti numbers dim H 0
d

(X ,R) = dim H 2
d

(X ,R) = 1 and dim H 1
d

(X ,R) = 0,all losed di�erential forms must have an even form degree, i.e. an even number of ψ0, ψ̄0.Consequently, the zero mode part of the topologial states omprises even graded di�erentialforms on X , and there do not exist states with an odd number of ψ0..In ontrast, if µ ∈ (−1,0), the zero modes have non-vanishing energy and are not subjet tothe restrition via Q0. In partiular, this signi�es that the theory with gauge �eld inludesdi�erential forms with odd numbers of ψ0,ψ̄0.
The Ungauged Morse Theory is not Canonically Related to the CSbcThe representation spae for the CSb onsists of polynomials in the zero modes and not ofsmooth di�erential forms. However, in my oppinion this is not the main aspet whih makesthe di�erene to the Morse theory with µ = 0, as laimed by Frenkel et al. in [FLN08, pg.32℄. As already mentioned on pg. 45, the zero modes will be allowed to appear in powerseries, when the CSb is generalized to the hiral de Rham omplex [MSV99℄. Rather, thedi�erene lies in the following observation. The ground states in the Morse type theory donot neessarily fatorize into holomorphi and antiholomorphi (target spae) oordinates,in general there do not exist holomorphi and antiholomorhpi funtions h and h̄ suh that
f (x0, x̄0)ψ

p
0 ψ̄

q
0 = [h(x0)ψ

p
0 ] · [h̄(x̄0)ψ̄

q
0 ]. In ordinary onformal �eld theories this is, however,the ase beause the Virasoro algebra fatorizes. Therefore, the vauum setor of the CSbis smaller than that of the Tb when µ= 0.That the holomorphi and antiholomorphi parts do not fatorize is a property whih isalso typial for logarithmi onformal �eld theories. However to the best of my knowledge,this is still untypial for the ground states. At least it indiates that if the Tb withoutgauge �eld is onformal, it an not be an ordinary onformal �eld theory.
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3.5 Conformal Supersymmetric Ghosts on CP
1In the last setion I have obtained the perturbative state spaes of the Morse theory un-derlying the Tb. The most important observation has been that they an be modelledby representations of the onformal supersymmetri bc-system (CSb). However, this rela-tion had the drawbak that the CSb is not globally de�ned on CP

1, suh that I ould notreprodue the hart transition of the Morse theory on the level of the CSb.I will now larify how the CSb an be formulated globally on CP
1 and introdue thehiral de Rham omplex [MSV99℄. This setion will onlude the analysis of the perturbativerepresentation theory of the Morse theory underlying the Tb.

3.5.1 The Chiral de Rham ComplexThe hiral de Rham omplex generalizes the usual de Rham omplex on X to a largeromplex Ω
•
Q0

(X ), de�ned on a sheaf of vertex algebras on X . In the ontext of the A-model, it will be the Dolbeault omplex with is generalized by the ohomology operator
Q0 = ∂+D, [∂,D] = 0, Q

2
0 = 0. Hereby, ∂ denotes the holomorphi (Dolbeault) di�erential on

X , and the vertex algebra under onsideration is the holomorphi CSb with homogeneity, f.setion 3.4.1. Its superharge Q0 = i
∑

n∈Zψn p−n will play the r�le of the generalized exteriordi�erential.
Local Vertex Algebra of the CSbcConsider the holomorphi CSb with homogeneity and embedding x : Σ→C0 ⊂ X =CP

1. Foronveniene, I hoose the representation to be M ǫ(0) on |0〉 = |0〉+⊗|0〉−.The state spae an be identi�ed with the polynomials in the modes
P0 =C[xn ,ψn , ]n≤0 ⊗C[pn ,πn]n<0 (3.5.1)and one an de�ne a so-alled vertex operator, onstituting an isomorphy between �elds andstates

Y (x0, z)= x(z) , Y (x−n , z)=
1

n!
∂n

z x(z) , n < 0,

Y (p−1, z)= p(z) , Y (p−n , z)=
1

n!
∂n

z p(z) , n <−1,

(3.5.2)and similar for the other �elds. For any monomial y1 · · · yk whih is built by elements yi ∈
{xn , pm ,ψn ,πm}n≤0,m<0 the vertex operator is generalized by means of

Y (y1 · · · yk , z) =: Y (y1, z) · · ·Y (yk , z) : , (3.5.3)
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and this further extends to polynomials. In order to simplify notations, I will equivalentlywrite Y (y1 · · · yk , z) = y1 · · · yk (z).Due to their transformation property under Q0 and their onformal weights, at least for
µ = 0, the zero modes an be identi�ed with the geometri data on X , as has already beendone for the Morse theory, f. (3.3.6) and (3.3.7). On that grounds, it would be nie toextend the de�nition of the vertex algebra to power series in the zero modes. I will adoptthe approah of [MSV99, pg. 449f℄ to the situation µ 6= 0. Let f (x0) be a power series andde�ne Y ( f (x0), z) by the Taylor expansion

Y ( f (x0), z) :=
∞∑

n=0

∆x(z)n 1

n!
∂n
|z|−2µx0

f (|z|−2µx0) , ∆x(z) = |z|−2µ
∑

k 6=0

xk z−k . (3.5.4)One an write ∆x(z)n =
∑

k∈Z ck (|z|)z−k , wherein ck (|z|) is an in�nite sum of monomials of thekind {|z|−2µxn}n 6=0. On any |v〉 ∈C[xn , pn ,ψn ,πn]n<0⊗C[[x0,ψ0]] · |0〉, ck (|z|) breaks down to a�nite sum and thus Y ( f (x0), z) is a well de�ned endomorphism on that spae. The thus gen-eralized �elds an be multiplied by any polynomial �eld g (y)(z), y ∈ {xn , pm ,ψn ,πm}n≤0,m<0

Y (g (y) f (x0), z) =: Y (g (y), z)Y ( f (x0), z) : . (3.5.5)The inverse operation, to obtain a state given a �eld, works by
f (y)= Y ( f (y), z)|µ=0 · |0〉

∣∣
z=0

, (3.5.6)where Y ( f (y), z) is an arbitrary �eld. Thus, Y de�nes an isomorphism between states and�elds.
Local Extension of the de Rham ComplexSine the zero modes an be identi�ed geometri data on X , the superharge Q0 takes therequired form Q0 = ∂+d−+d+, d− :=

∑
n<0 p−nψn and d+ =

∑
n>0 p−nψn on P0. Malikov etal. [MSV99℄ prove, that there is a quasiisomorphism (Ω,∂) → (P0,Q0), where Ω = C[x0,ψ0].That means, ∂ does only at on the subsetor of the zero modes and ommutes with d±and the ohomologies are the same H•

∂
(Ω) ≃ H•

Q0
(P0). The proof is made by suessivelyalulating the ohomologies of d+ and d− and an be generalized to Ω = C[[x0,ψ0]] and

P0 = C[xn , pn ,ψn ,πn]n<0 ⊗C[[x0,ψ0]], f. [MSV99, pg. 448℄. Thus, loally, the de Rhamomplex generalizes to a omplex of vertex algebras under Q0.
Chart TransitionsIn order to extend the loal setting to CP

1, it is espeially important to give the mapping
X0,0 \ {0} ≃C

× ∋ x0 7→ x−1
0 a meaning on the level of �elds.
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Firstly, on the level of �eld zero modes p0 ats as a derivative and thus a ommutationwith x−1
0 an be de�ned as [p0, x−1

0 ] = −[p0, x0]x−2
0 . Now, in analogy with (3.5.4), the �eldorresponding to x−1

0 an be delared to equal
Y (x−1

0 , z) = |z|2µx−1
0

∞∑

n=0

(−)n |z|2nµx−n
0 ∆x(z)n , (3.5.7)where I de�ne Ỹ (x̃0, z) = Y (x−1

0 , z). For onveniene, I will also use the notation Ỹ (x̃0, z) =
x̃(z) = |z|2µ

∑
n∈Z x̃n z−n. Notie, that in analogy with (3.4.2), the transformed �eld x̃ satis�esthe equation of motion (∂z̄ − µ

z̄
)x̃(z) = 0.In the same spirit as above, Malikov et al. generalize hart transitions of the other zeromodes to hart transitions of �elds. Let f : x0 7→ φx = f (x0) be an invertible oordinatetransformation with f ∈C[[x0]]. Sine they an be related to geometri quantities on X , theother �eld zero modes transform aording to

φx = f (x0) , φψ =
∂ f

∂x0
ψ0 ,

φp =
∂ f −1

∂φx
p0 +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψ0π0 , φπ =

∂ f −1

∂φx
π0 .

(3.5.8)Here, Malikov et al. assume that the ation orresponding to the CSb equals (3.1.7), where
pa is rather p ′

a = pa+Γ
b
acψ

cπb. The transformation of Γ 7→
(
∂ f −1

∂φx

)2 ∂ f

∂x0
Γ+ ∂2 f −1

∂φ2
x

∂ f

∂x explains why
p0 above does not transform homogeneousely. The �elds orresponding to the power seriesabove are now de�ned to be

φx (z) = f (x0)(z) , φψ(z) =:
∂ f

∂x0
(z)ψ(z) : ,

φp (z) =:
∂ f −1

∂φx
(z)p(z)+

∂2 f −1

∂φ2
x

∂ f

∂x0
(z)ψ(z)π(z) : , φπ(z) =:

∂ f −1

∂φx
(z)π(z) : .

(3.5.9)This de�nition is not obtained by simply using the vertex operator on the �eld modes above.The reason is twofold. Firstly, Y is not de�ned on π0 and p0 sine they are not part of P0.Seondly, the de�nition is suh that the transformed �elds are again primary �elds.In a next step, that I will not reprodue, the authors verify that the transformed �eldspreserve the ommutation rules (3.4.3). The ambitioned reader may hek this for thefollowing example, making use of the relation
f (x)(z)p(ω) =

∂ f

∂x0
(ω) x(z)p(ω) (3.5.10)and similar for p(z) f (x)(ω). In terms of the �eld modes, this amounts to [p0, f (x0)] =

[p0, x0]∂x0
f (x0).
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Example in Logarithmic Coordinates A partiular example that I will make use of inappendix C is the CSb in logarithmi oordinates x0 7→ exp x0. The thus transformed �eldsare
φx (z) =: ex(z) : , φp (z) =: e−x(z)

[
p(z)−ψ(z)π(z)

]
: ,

φψ(z) =: ex(z)ψ(z) : , φπ(z) =: e−x(z)π(z) : .
(3.5.11)A oordinate transition φx 7→φ−1

x hanges the sign of the �elds {x, p,ψ,π} above.
The Vertex Operator Algebra in the New Fields The vertex algebra in terms of the�elds in (3.5.9) is obtained in analogy to (3.5.2) and (3.5.3). The question is indeed not howthe �elds are onstituted, but how to get bak the �eld modes in the new oordinates. Thisis obtained by (3.5.6). In partiular, for a monomial y1

n1
· · · y N

nN
, where yk

n is a �eld modeamong P0, one an speify the orresponding states in the new oordinates aording to
φy 1

n1
···y N

nN
|0〉 = [φy 1

n1
(z)]n1

· · · [φy N
nN

(z)]nN
· |0〉 , (3.5.12)where [φy (z)]n denotes the �eld mode (φy )n in the expansion φy (z) = |z|2µ

∑
n∈Z(φy )n z−n−∆.Important examples are the omposite �elds Q(z), T (z), G (z) and j±(z). Take, for instane,

φQ(z) = i : φp (z)φψ(z) :, aording to the disussion above this �eld is obtained as φQ(z) =
Y (iφp−1

φψ0
, z). Is it possible to further express the �eld modes (state) in terms of the originalones and thereby obtain a formulation in terms of the original �elds? In the new oordinates,the state orresponding to the superharge reads

φQ|0〉 = i

(
∂ f −1

∂φx
p +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψπ

)

−1

(z)

(
∂ f

∂x0
ψ

)

0

(z) · |0〉 =

i

[(
∂ f −1

∂φx

)

0

p−1

][(
∂ f

∂x0

)

0

ψ0

]
· |0〉 +

i

[(
∂ f −1

∂φx

)

−1

p0 +
(
∂ f −1

∂φx
p +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψ

)

−1

π0

](
∂ f

∂x0

)

0

ψ0 · |0〉 ,where I noted down all modes that potentially ontribute non-trivially. To normal order theexpression above, I ommute them to the right suh that
i(φp )−1(φψ)0 · |0〉 = ip−1ψ0 · |0〉 +

[(
∂2 f

∂x2
0

)

0

(
∂ f −1

∂φx

)

−1

ψ0 +
(
∂2 f −1

∂φ2
x

∂ f

∂x0
ψ

)

−1

(
∂ f

∂x0

)

0

]
· |0〉 .Here, I used (3.5.10) in order to alulate the ommutator [p0, x0]. Now, the fat that (

∂2 f

∂x2
0

)

0
=

−
(
∂ f

∂x0

)3

0

(
∂2 f −1

∂φ2
x

)
0
, and (

∂ f −1

∂φx

)
−1

(
∂ f

∂x0

)
0
=−

(
∂ f

∂x0

)
−1

(
∂ f −1

∂φx

)
0
allows to simplify the expression above,and one ends up with

φQ(z) =Q(z)+∂z

[
∂φx

(
log

∂ f −1

∂φx

)
φψ(z)

]
. (3.5.13)
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In partiular, sine the �orretion� to Q is only a derivative in z, the zero mode is invariantunder a oordinate hange, i.e. Q0 = φQ 0, the ohomology harge of the hiral de Rhamsystem must already globally de�ned on X .This observation holds for the zero modes of the fermioni urrent, and also the stresstensor T (z) is globally de�ned on X , as follows from:
φ j+(z) = j+(z)+∂z log

(
∂ f

∂x0

)
, φG (z) =G (z) (3.5.14)and T (z) = [Q0,G (z)]. Consequently, the j+0 operator, that measures the fermioni harge,and the BRST operator are well de�ned on the hiral de Rham omplex and j+0 determinesa grading of the sheaf. The bosoni U (1) urrent does not transform in a partiular nie way,as the reader might want to hek. In logarithmi oordinates one gets

φ j−(z) =− j+(z)− ip(z) , (with φx (z) = ex (z)) . (3.5.15)

The CSbc on CP
1The outome of the former setions is that I an loally write down the CSb and applyhart transitions. In order to formulate the theory globally on CP

1, the loal vertex algebrashave to be glued together.Let
F0 :=C[[x0,ψ0]]⊗C[xn,ψn]n<0 ⊗C[pn ,πn]n<0 · |0〉 . (3.5.16)together with Y be the CSb on C0 and
F∞ =C[[x̃0,ψ̃0]]⊗C[x̃n,ψ̃n]n<0 ⊗C[p̃n , π̃n]n<0 · |0̃〉 (3.5.17)with Ỹ another CSb on C∞. To both, I an apply x0 7→ x−1

0 = x̃0, x̃0 7→ x̃−1
0 = x0 and formulatethe theories on the overlap C

×. By means of (3.5.9), Y 7→ Ỹ and vie versa, and the vertexalgebras an be glued together
F

× =C[[x−1
0 ,ψ0]]⊗C[xn,ψn]n<0 ⊗C[pn ,πn]n<0 ⊗·|0〉

≃C[[x̃−1
0 ,ψ̃0]]⊗C[x̃n,ψ̃n]n<0 ⊗C[p̃n , π̃n]n<0 ⊗·|0̃〉 .

(3.5.18)This heuristially onludes the interpretation of the CSb as a sheaf on CP
1.12

Sheaves with Support In order to disuss the hiral de Rham omplex assoiated to thetopologial A-model it is neessary to extend the analysis to setions with support in losed
12For a rigorous prove that the CSbc on CP

1 and more general manifolds X constitutes a sheaf, cf. [MSV99].
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or loally losed subsets.13 In partiular, the perturbative state spae on L̃X∞,0 are modeledby
F

1
∞ =C[x̃n ,ψ̃n]n<0 ⊗C[p̃n , π̃n]n≤0 · |1̃〉 , (3.5.19)whih is the holomorphi part of (3.4.20), and not by F∞.While the fermioni part of thatspae an be identi�ed with the one in F∞, beause all these representations are isomorphi(3.4.2), this is not true for the bosons.I will not attempt to enlarge the analysis of the Chiral de Rham omplex to (loally)losed subsets. I will rather assume that this an be done and that F0 and F

1
∞ are part ofa sequene similar to (2.5.3) or (2.6.2).

3.6 Beyond the Perturbative RepresentationsIn the last setions, I have desribed the perturbative state spaes of the A-model on targetspae X =CP
1. While the ground states are already globally and nonperturbatively de�nedon X , the exited states may be sensitive to nonperturbative orretions whih destroy theirloal harater, 2.5. One distinguished plae where these orretions appear is the Hamilto-nian, and the main task in the following setions will be to determine the analogues of theGrothendiek-Cousin operators of hapter 2. Throughout my thesis, I will denote these anal-ogous operators as �Grothendiek-Cousin operators�, though the term may not be orretfor the in�nite dimensional setting.In order to determine the Grothendiek-Cousin operators, I will bosonize the CSb in thespirit of Feigin and Frenkel [FF90, FF91℄ and of Friedan, Martine and Shenker [FMS86,Fri85℄. Thereby, I obtain the GCOs in a spei� formulation of the vertex algebra of theCSb. As already mentioned, this desription di�ers from the one used by Frenkel et al.[FLN08℄, and extends the analysis of [FF90, FF91, FMS86, Fri85℄.Moreover, I will disuss the interpretation of the GCOs as ohomology operators. In thebosonized desription of the vertex algebras de�ned by (3.5.16) and (3.5.19), it will beometransparent that the GCOs are the bosoni analogues of the sreening operator for the purelyfermioni bc-system, f. [FFH+02℄.

3.6.1 Existence of Grothendieck-Cousin OperatorsThe Grothendiek-Cousin operators δ are mappings between the perturbative state spaes
H0/∞,n subjet to the ondition (2.6.1):

∃ δ : H in
∞/0,n →H

in
0/∞,k ⇔ L̃X 0/∞,n ≺ L̃X ∞/0,k . (3.6.1)

13A locally closed set is a set which is an intersection of an open with a closed set.
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Therefore, one has to larify whih desending manifolds satisfy L̃X 0/∞,n ≺ L̃X ∞/0,k . I oweEdward Frenkel a nie proof of the fat that L̃X ∞,n ≺ L̃X 0,n and L̃X 0,n+1 ≺ L̃X ∞,n.The proof starts with reonsidering the situation of Morse theory on CP
1 in setion 2.4.The target manifold is de�ned as CP1 := (C2\{0})/C×, where C2\{0} ∋ ( f , g ) ∼λ( f , g ), λ ∈C

× arethe homogeneous oordinates.14 In terms of homogeneous oordinates, when identifying thevetors (0,1) with {0} ∈CP
1 and (1,0) with {∞} ∈CP

1, one an desribe now X0 as the C
× orbitof ( f ,1) and X∞ as the C

× orbit of (1,0). These reprodue the inhomogeneous oordinates for
X0 by z = f ∈C, whereas for X∞ it is ω= 0 and X∞ ≃ {∞}. One an now proof that X∞ ≺ X0by letting f 6= 0 and ( f ,1) ∼ (1, f −1)

f →∞−→ (1,0).The spae �LCP1 an analogously be de�ned by (C[[z]]×C[[z]]− {0})/C×[[z]] with vetors
C[[z]]×C[[z]] ∋ ( f (z), g (z)) ∼ λ(z)( f (z), g (z)), λ ∈ C

×[[z]]. Here, C[[z]] denotes the spae ofpower series in z with f (z) =
∑

n≤0 fn z−n, where z ∈ D, and similar holds for g (z).In the situation under disussion µ ∈ (−1,0), and the desending manifolds L̃X 0/∞,n or-respond to solutions of the instanton equation with boundary ondition x(0) = 0. As dis-ussed in 3.4.2, in a neighborhood of {0} ∈ CP
1 they read x(z) = |z|−2µ∑

n≥0 x−n zn and L̃X 0,khas inhomogeneous oordinates {xn}n≤0. In a neighborhood around {∞} one has solutions
x̃(z) = |z|2µ

∑
n≥1 x−n zn and inhomogeneous oordinates {x̃n}n≤−1 on L̃X ∞,k , f. setion 3.3.3.The desending manifold L̃X 0,k an now be desribed as the orbit of ( f (z), g (z)) under

C
×[[z]], whereby

f (z) ∈ zk |z|−µC[[z]] , g (z) = (1+O(z))zk |z|µ ∈ zk |z|µC[[z]] .Analogously, L̃X ∞,k is obtained as the orbit of ( f (z), g (z)) with
g (z) ∈ zk+1|z|µ ·C[[z]] , f (z) = (1+O(z))zk |z|−µ ∈ zk |z|−µC[[z]] ,and g is proportional to an additional fator of z in order to yield the orret expansionindex in x̃(z) = |z|2µ

∑
n≥1 x−n zn. Moreover, I have assumed that z 6= 0 and saled the powerseries by zk in order to distinguish the index by H2(X ,Z). Without loss of generality I set

µ= 0 and prove below that ➊ L̃X ∞,k ≺ L̃X 0,k and ➋ L̃X 0,k+1 ≺ L̃X∞,k .
➊ Let ( f (z), g (z)) = zk ( fk + O(z),1 + O(z)) be an element of L̃X 0,k with fk 6= 0, then

( f (z), g (z)) ∼ zk (1+O(z), f −1
k

+O(z))
gk→∞−→ zk (1+O(z), zh(z)) with h ∈ C[[z]], and this is anelement of L̃X ∞,k .

➋ Let ( f (z), g (z)) = zk (1 + O(z), gk+1z + O(z2)) be in ∈ L̃X ∞,k with gk+1 6= 0, then
( f (z), g (z)) ∼ zk (g−1

k+1
+O(z), z +O(z2))

gk+1→∞−→ zk+1(h(z),1+O(z)), where h(z)∈C[[z]], and thisis an element of L̃X 0,k+1.
14In the former sections I have considered the descending manifolds X0 ≃C and X∞ ≃ {∞} always in inhomogeneous

coordinates.
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To onlude, in the situation that X =CP
1 and the gauge �eld is determined by µ ∈ (−1,0),there exist two sorts of Grothendiek-Cousin operators

δ1 : H
in
∞,n →H

in
0,n ,

δ2 : H
in
0,n+1 →H

in
∞,n .

(3.6.2)

3.6.2 Chiral BosonizationThe method of hiral bosonization goes bak to Friedan, Martine and Shenker [FMS86℄ andstarts with the holomorphi (or antiholomorphi) part of the CSb. In the following, I willgeneralize this approah to the CSb with homogeneity µ.In order to treat the bosons and fermions in one and the same formalism, I resale the�elds of the CSb in 3.4.1
ǫ=− : x 7→ b− , ip 7→ c− ,

ǫ=+ : ψ 7→ b+ , iπ 7→ c+ ,
(3.6.3)whereby the index ǫ disriminates bosons, ǫ=−, from fermions, ǫ=+. The basi idea of hiralbosonization is to express the Heisenberg and Cli�ord algebras and their representations interms of Heisenberg Lie algebras A

ǫ(h) :
[Jǫn , Jǫm] = ǫnδn,−m (3.6.4)with representation

Jǫnν
ǫ
h = hδn,0 ·νǫh , n ≥ 0, h ∈C , (3.6.5)and equally for the antiholomorphi part. I de�ne the �elds orresponding to Jǫ as

Jǫµ(z) = Jǫ(z)+
ǫµ

z
, Jǫ(z)Jǫ(ω) =

ǫ

(z −ω)2
,

J̄ǫµ(z̄) = J̄ǫ(z̄)−
ǫµ

z̄
, J̄ǫ(z̄) J̄ǫ(ω̄) =

ǫ

(z̄ − ω̄)2
.

(3.6.6)The di�erent signs for the holomorphi and antiholomorphi �elds will be understandablewhen it omes to math the Heisenberg Lie algebras with the CSb. The ation of theVirasoro algebra on these representations is given by
TJǫ (z) = ǫ :

1

2
Jǫµ(z)2 +α0∂z Jǫµ(z) : , T̄ J̄ǫ (z̄) = ǫ :

1

2
J̄ǫµ(z̄)2 + ᾱ0∂z̄ J̄ǫµ(z̄) : . (3.6.7)Taking the OPE between TJǫ and Jǫµ yields

TJǫ (z)Jǫµ(ω) =
−2α0

(z −ω)3
+

Jǫµ(z)

(z −ω)2
, (3.6.8)
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and similar for the antiholomorphi situation. Thus, I set α0 = −1
2
ǫ, ᾱ0 = 1

2
ǫ, in order toobtain the same bakground harges as for the CSb, f. (3.4.13). Notie, that now

TJǫ (z)=
ǫ

2
(Jǫ(z)2 −ǫ∂z Jǫ(z))+

µ

z
Jǫ(z)+

ǫ

2

µ(µ+1)

z2
,

T̄Jǫ (z̄)=
ǫ

2
( J̄ǫ(z̄)2 +ǫ∂z̄ J̄ǫ(z̄))−

µ

z̄
J̄ǫ(z̄)+

ǫ

2

µ(µ+1)

z̄2
.

(3.6.9)The entral harge for the holomorphi as well as the antiholomorphi part is given by c Jǫ =
(1−3ǫ) and νǫ

h,h̄
:= νǫ

h
⊗νǫ

h̄
is a highest weight vetor with onformal weight ∆TJǫ+T̄ J̄ǫ

(νǫ
h,h̄

) =
1
2
ǫ[h(h +ǫ)+ h̄(h̄ −ǫ)+2µ(µ+1)]+µ(h − h̄) and harges h +ǫµ, h̄ −ǫµ.Bosonization means to de�ne an ation of the Cli�ord and Heisenberg algebras on thesespaes. Therefore, one introdues the operators

V ǫ(r, z)=: exp
(
rφǫ(z)

)
:= eǫrφǫ

0 |z|2rµzǫr Jǫ0
∑

n∈Z
V ǫ

n (r )z−n

= eǫrφ0 |z|2rµzǫr Jǫ0 e−ǫr
∑

n<0
Jǫn
n

z−n

e−ǫr
∑

n>0
Jǫn
n

z−n

, r ∈C\ {0}

(3.6.10)and similar operators for the antiholomorphi �eld, whereby the bosoni salar �elds are
φǫ(z) =µ log z̄ +ǫ

∫z

Jǫµ(ω)dω =µ log |z|2 +ǫ

(
φǫ

0 + Jǫ0 log z −
∑

n 6=0

Jǫn

n
z−n

)
,

φ̄ǫ(z̄) =µ log z +ǫ

∫z̄

J̄ǫµ(ω̄)dω̄=−µ log |z̄|2 +ǫ

(
φ̄ǫ

0 + J̄ǫ0 log z̄ −
∑

n 6=0

J̄ǫn

n
z̄−n

) (3.6.11)with [φ0, Jǫn] = −ǫδn,0 = [φ̄0, J̄ǫn]. The vertex algebra is de�ned by taking derivatives andproduts of the operators V ǫ, just as for the CSb. The OPE of two �elds V ǫ in the vauum
νǫ

h
is

V ǫ(r, z)V ǫ(s,ω) = (z −ω)ǫr s |z|2rµ|ω|2sµzǫrhωǫsh : V ǫ(r, z)V ǫ(s,ω) : ,

V̄ ǫ(r, z̄)V̄ ǫ(s,ω̄) = (z̄ − ω̄)ǫr s |z|−2rµ|ω|−2sµ z̄ǫrh ω̄ǫsh : V̄ ǫ(r, z̄)V̄ ǫ(s,ω̄) :
(3.6.12)the harge of V ǫ an be read o� from

Jǫ(z)V ǫ(r,ω) =
r

z −ω
V ǫ(r,ω)+

ǫ

r
∂ωV ǫ(r,ω) (3.6.13)to be of the value r for the holomorphi and also for the antiholomorphi �eld. Taking theOPE with the energy momentum tensors, their onformal weights read

∆TJǫ
(V ǫ(r, z)) =

1

2
ǫ r (r +ǫ) , ∆T̄ J̄ǫ

(V̄ ǫ(r, z̄)) =
1

2
ǫ r (r −ǫ) . (3.6.14)In partiular, the operator

eǫrφ0 : A
ǫ
− 1

2
ǫ
(h) →A

ǫ
− 1

2
ǫ
(h + r ) , νǫh 7→ νǫh+r , (3.6.15)
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and hene also V ǫ(r, z), are mappings between di�erent representations of the Heisenberg Liealgebra. In addition, the shift operator orretly hanges the onformal weight of the highestweight vetor νǫ
h

[(TJǫ )0, eǫrφ0 ] ·νǫh = (
1

2
ǫ r (r +ǫ)+ǫr h) ·eǫrφ0νǫh , (3.6.16)and similar for the antiholomorphi operator. Therefore, introduing the operators V ǫmakes an extension of the Heisenberg Lie modules to the modules ⊕

l∈ZA
ǫ
− 1

2
ǫ
(h + l ) and

⊕
l∈Z Ā

ǫ
1
2
ǫ
(h̄ + l ), neessary, whereby l distinguishes setors of di�erent U (1) harges, mea-sured by Jǫ0 and J̄ǫ0.

Bosonizing FermionsIn the fermioni ase, the ation of the Cli�ord algebra of the bc-system is generated by
c+(z) ≃V +(+, z) , c̄+(z̄) ≃ V̄ +(−, z̄) ,

b+(z) ≃V +(−, z) , b̄+(z̄)≃ V̄ −(+, z̄) ,
(3.6.17)and ⊕

l∈ZA
+
− 1

2

(−p + l ) ≃ M+(p) and ⊕
l∈ZA

+
1
2

(p̄ + l )≃ M̄+(p̄) [FF91℄.Indeed, the �elds above have the orret OPEs (3.4.3) inluding the homogeneity and,when I further identify
j+(z)+

µ

z
≃ J+µ (z) , j̄+(z̄)−

µ

z̄
≃ J̄+µ (z̄) ,

T +(z) ≃ TJ+ (z) , T̄ +(z̄) ≃ T̄ J̄+ (z̄) ,

(3.6.18)also the orret harges and onformal weights. In partiular, the vertex operators aboveat on ν+−p,p̄ like the original �elds b+ and c+ on |p, p̄〉+. The �eld modes an be determinedby the Fourier expansions, for instane for V +(−, z),
V +(−, z)ν−p = |z|−2µzp e−φ0

∑

n≤0

V +
n (−)z−nν−p

= |z|−2µ
∑

m≤−p

e−φ0V +
m+p (−)z−mν−p

(3.6.19)in analogy with b+(z)|p〉+ = |z|−2µ∑
n≤−p b+

n z−n|p〉+, and similar holds for the other �eldmode V +(+, z). The �eld modes inherit the orret ommutation relations from the OPEs.Moreover,
|p, p̄〉+ ≃ ν+−p,p̄ (3.6.20)and these states have the same onformal weight and axial and vetorial harges.
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Bosonizing BosonsIn the bosoni ase [FF91, FF90℄ one has to inlude an auxiliary fermioni bc-system beauseof the wrong entral harge. Thus, I introdue fermioni salars ξ(z), ξ̄(z̄) and fermioni �eldsof weight one η(z), η̄(z̄) (all these �elds do not have a homogeneity). The urrents and thestress tensor are de�ned as before, see setion 3.4.1.The operators
c−(z) ≃V −(+, z)⊗η(z), c̄−(z̄) ≃V −(−, z̄)⊗ η̄(z̄) ,

b−(z) ≃V −(−, z)⊗∂zξ(z) , b̄−(z̄) ≃V −(+, z̄)⊗∂z̄ ξ̄(z̄)
(3.6.21)have the orret OPE to de�ne an ation of the Heisenberg algebra on a subspae of

N (p, p̄) =
(
⊕

l∈Z
A

−
1
2

(p + l )⊗A
+
ηξ,− 1

2

(l )

)
⊗

(
⊕

s∈Z
Ā

−
− 1

2

(−p̄ + s)⊗Ā
+
ηξ,+ 1

2

(s)

)
, (3.6.22)where I impliitly assumed that the auxiliary part may be bosonized as before. The adequatesubspae will be determined in the next setion. For onveniene, whenever I onsider the(anti)holomorphi part alone, I will use the notation (N̄ (p)) N (p̄) in the following. Thespae N (p) ollets all possible Verma modules by the �elds above and by their derivativesrepresented on the states . . . , ν−p+1|−1〉ηξ, ν−p |0〉ηξ, ν−p−1|1〉ηξ , . . . .To prove that the spaes above respet the OPE of the bosoni ghosts, on has to take intoaount that the bosonized �elds are tensored s.t., c−(z)b−(ω) ≃V −(+, z)∂zξ(z)V −(−,ω)η(ω) .Moreover, sine the auxiliary part and the �elds V − have the same U (1) harges in (3.6.21),the vertex algebra is graded with the same harges for the ηξ-system and the vertex operatorsas above, whih explains the summation indies. For the same reason I may identify

j−(z)−
µ

z
≃ J−(z) =

1

2

(
J−µ (z)+ jηξ(z)

)
, j̄−(z̄)+

µ

z̄
≃ J̄−(z̄) =

1

2

(
J̄−µ (z̄)+ j̄ηξ(z̄)

)
. (3.6.23)These urrents measure the harge of the representation spaes. In setion 4.2 I will argue,that the oupling of the auxiliary urrent with J−µ auses that the bosons do not introduean additional anomaly into the theory. Similarly, the stress tensor of the bc-system ats likea sum of the stress tensors of the parts of the bosonized system

T −(z) ≃TJ− (z) − : ∂zξ(z)η(z) : , T̄ −(z̄)≃ T̄ J̄− (z̄) − : ∂z̄ ξ̄(z̄)η̄(z̄) : . (3.6.24)The �elds in (3.6.21) have the orret onformal weights and harges under these identi�-ations and they omprise the relations (3.4.1) on ν−p,−p̄⊗|0,0〉ηξ. However, only if the bosoniaxial symmetry was broken, one an determine states that have the same bosoni vetorialharge as the orresponding states of the non bosonized CSb. Sine the axial symmetry willbe broken due to the GCOs, I will now assume this to be true. Under these irumstanes
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and for p = p̄, the state |p, p〉− has the same quantum numbers as ν−p,−p ⊗|0,0〉ηξ. Therefore,I will identify
|p, p〉− ≃ ν−p,−p ⊗|0,0〉ηξ . (3.6.25)Notie, that only the diagonal (p = p̄) representation spaes N (p, p) will be relevant for ananalysis of the A-model.

Grading of N (p, p) The spaes N (p, p̄) are graded by the zero modes of
JN (z, z̄) =

1

2

{
[J−µ (z)− jηξ(z)]− [ J̄−µ (z̄)− j̄ηξ(z̄)]

}
, (3.6.26)whih further respet the grading by onformal weight and the fermion number. The urrent

JN generates a third symmetry besides the vetorial and axial symmetries, whih is dueto the extension of the bosons by the auxiliary fermions. Due to the ombination of theurrents J−µ and jηξ, JN is anomaly free. Still, also this symmetry will be broken due tothe Grothendiek-Cousin operators, whih ensures that JN does not enter the theory as anadditional symmetry.
Possible Vacuum Representations The ondition of zero onformal weight is satis�edby the states that onsist of all possible ombinations of ν−p,q |s, t〉ηξ with p, s, t ∈ {0,1} and
q ∈ {0,−1}. Here is the olletion of suh states in the representation N (1,1), that will beomeimportant in the following setions

ν−1,0|0,1〉ηξ
ν−1,−1|0,0〉ηξ ν−0,0|1,1〉ηξ

ν−0,−1|1,0〉ηξ

. (3.6.27)The states in the middle have zero vetorial harge and omprise a doublet within N (1,1).The state on the top has a vetorial harge of value 1, and the lowest state has harge −1.However, only the state ν−1,−1|0,0〉ηξ is an element of the representation spae of the bosonizedbosons, as I will explain below. The state ν−0,0|1,1〉ηξ will later obtain the interpretation asthe logarithmi partner of ν−0,0|0,0〉ηξ ∈ N (0,0).A further remark has to be made. If JN gets broken as a symmetry of the theory, thereis no reason why ν−0,0|0,0〉ηξ should be in a di�erent multiplet than ν−0,0|1,1〉ηξ. Indeed,only then, those two states an be logarithmi partners, beause there is no way to furtherdeompose the two-dimensional representation of the Hamiltonian on these states by meansof an additional symmetry.
Restriction of N (p, p̄) The representation spae N (p, p̄) above is not yet the orret repre-sentation of the Heisenberg algebra de�ned by b− and c−. Due to the absene of the zero
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modes ξ0 and ξ̄0, the vertex algebras must be ontained in the intersetion of the kernels of
η0 and η̄0 and the spae N (p, p̄) is too large.In addition, from Feigin's and Frenkel's analysis in [FF91℄ it follows that the orretrepresentation spae for the holomorphi part (without loss of generality) oinides with thekernel of η0: The kernel of η0 is obtained by applying ( jηξ)n , ηn with n ∈ Z and ξn , n 6= 0to |0〉ηξ. Consequently, the representation spae of the bosonized bosons equals the kernelof η0 if η, ∂zξ and jηξ an be expressed in terms of the �elds b, c and V −. This is possibleby means of jηξ(z) =−∂zφ(z), ∂zξ(z) = 1

2
∂z b−(z)⊗V −(+, z) and η(z) = ∂z c−(z)⊗V −(−, z). Thesame holds for the antiholomorphi �elds.Therefore, M−(p, p) ≃ N (p, p), whereby the overline denotes the intersetion of the equi-valene lasses N (p) and N̄ (p) of �eld operators modulo η0 and η̄0, respetively.This result yields a nie heuristi interpretation why the instanton e�ets are supposedto be found within the bosoni part of the CSb and not within the fermioni. Due to thepresene of c+0 and b+

0 in the �eld operator algebra, the representations of the fermionighosts on ν+0 and ν+−1 are isomorphi. For the fermions, there exists only one fundamentalvauum, namely ν+0 sine it has the highest symmetry.15 On the other hand, the bosonirepresentations on ν−0 ⊗ |0〉ηξ and ν−1 ⊗ |0〉ηξ are di�erent, for ξ0 is absent as a dynamialdegree of freedom and η0 is e�etively set to zero in the operator algebra, as argued above.The bosoni ghosts an thus be onsidered to omprise dynamial degrees of freedom in thepresene of di�erent bakground vaua. For these reasons, the harged representations ofthe bosons may serve as a soure for instantons, to be introdued additionally to the bosonighosts, interpolating between those bakgrounds. These explanations will obtain an exatmathematial sense in terms of the Grothendiek-Cousin operators.
Summary of the Main FactaIn order to desribe the perturbative state spaes of the gauged topologial A-model interms of bosonized bosons, it is su�ient to restrit the representation spae to the diagonalsituation p = p̄. As a result, M−(p, p)≃ N (p, p) and the highest weight vetor is now uniquelydetermined by |p, p〉 ≃ νp,−p ⊗|0,0〉ηξ. In partiular, only the state ν−1,−1|0,0〉 in the diamond(3.6.27) is an element of N (1,1).The perturbative state spaes for the A-model on CP

1 an now be identi�ed with thebosonized representation spaes
H

in
0,0 =F0 ⊗F̄0 ≃ [

⊕

s,s ′
A

+
− 1

2

(s)⊗Ā
+
1
2

(s′)]⊗N (0,0) ,

H
in
∞,0 =F

1
∞⊗F̄

1
∞ ≃ [

⊕

s,s ′
A

+
− 1

2

(s)⊗Ā
+
1
2

(s′)]⊗N (1,1) ,
(3.6.28)

15I will discuss the representation theory of the conformal ghost systems more detailed in section 8.3.
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where I used that all fermioni representation spaes are equivalent (.f. (3.4.2)), and onse-quently ⊕
s A

+
− 1

2

(s +p)≃
⊕

s A
+
− 1

2

(s).The stress tensor and fundamental �elds are derived above. The superharge, must also beomposed by bosoni and fermioni �elds. An immediate alulation proves that the �elds
Q(z)=V +(−, z)⊗V −(+, z)⊗η(z) , Q̄(z̄) = V̄ +(+, z̄)⊗ V̄ −(−, z̄)⊗ η̄(z̄) (3.6.29)have the orret OPEs with the bosonized �elds to be identi�ed with the superharge

Q(z, z̄) =Q(z)+Q̄(z̄).I will now approah the question what operators may serve to de�ne the Grothendiek-Cousin operators.
3.6.3 The GCOs and the Cohomology InterpretationBy (3.6.15), the nilpotent operator c+0 ≃ eφ

+
0 is a ohomology operator

· · ·→A
+
− 1

2

(−p)
eφ+

0−→A
+
− 1

2

(−p +1) →··· , (3.6.30)f. [FFH+02℄. However, sine it onnets isomorphi representation spaes, this operator annot be the GCO mapping between F0 and F
1
∞. As just explained, the di�erene betweenthe perturbative state spaes must be rooted in the bosoni setor.The extension of N (p, p̄) to N (p, p) by means of eφ

−
0 ξ0 and e−φ̄

−
0 ξ̄0 permits a nontrivialation of η0 and η̄0. Thereby, one obtains a omplex for the bosoni setor in analogy to thefermioni one, above. The r�le of c0 for the purely fermioni bc-system is now played by thenilpotent operator η0η̄0 : N (p, p̄) → N (p −1, p̄ −1). Therefore [FF91℄, it an be interpretedas a ohomology operator for the omplex

· · ·→ N (p, p̄)
η0η̄0−→ N (p −1, p̄ −1) →··· , (3.6.31)whose grading is measured by JN , sine [ JN 0+ J̄N 0 ,η0η̄0] =−η0η̄0. Notie, that in priniple Iould de�ne di�erent omplexes using other ombinations of η0 and η̄0 ating on N (p, p̄), forinstane η0 + η̄0. However, for the representation spaes of the gauged A-model the relation

p = p̄ has neessarilty to be satis�ed and this restrits the hoie to η0η̄0 up to a prefator.To speify the ohomology of η0η̄0, I will now determine the image of this operator.Consider the omplement N (p, p)/N (p, p) of N (p, p) in N (p, p). Sine N (p, p) denotes theintersetion of the kernels of η0 and η̄0 onsidered independently, this spae must not beequal to the kernel of η0η̄0. Indeed, it is just a subspae. For instane, N (1,1) does notinlude the states ν−1,0⊗|0,1〉ηξ and ν−0,−1|1,0〉ηξ whih are sent to zero by η0η̄0. I will all theexpression
NL(p, p)=

(
⊕

l ,s∈Z
A

−
1
2

(l )⊗A
+
ηξ,− 1

2

(l )⊗Ā
−
− 1

2

(s)⊗Ā
+
ηξ, 1

2

(s)

)

η0,η̄0=0

ν−p−1,−p+1|1,1〉 (3.6.32)
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the �logarithmi extension� of N (p −1, p −1). With this de�nition I an now split
N (p, p)= NL(p, p)⊕N (p, p)⊕R(p, p) ,

R(p, p)=
(
N (p)⊗ N̄L(p)

)
⊕

(
NL(p)⊗ N̄ (p)

)
,

(3.6.33)wherein NL(p) and N̄L(p) signify the holomorphi respetively antiholomorphi half of (3.6.32).One an now extrat the image of η0η̄0, namely
imη0η̄0

(NL(p, p)) = N (p −1, p −1). (3.6.34)Therefore, the p th ohomology lass of η0η̄0 is
H

p

η0η̄0
= R(p, p) . (3.6.35)This result di�ers from the situation where only the holomorphi or antiholomorphi partsare onsidered. In the ase when η0 is taken for the ohomology operator, the ohomologyof this operator is trivial.As a onsequene of the following disussion, the loal ohomology spaes in the analogueof the Grothendiek-Cousin omplex will, however, not be the ohomology spaes of η0η̄0.

The First GCO δ1In setion 2.6.2, I made two formal assumptions on the Grothendiek-Cousin operators.The �rst was, that it is a mapping between the perturbative spaes of states if the desen-ding manifolds have relative odimension one. The seond was the observation, that theGrothendiek-Cousin operator is basially ating on the �dual part� of the eigenstates of thenaive Hamiltonian. In the Morse theory on CP
1 this was obtained by extending its spetrumby the missing states with the same quantum numbers. I will make use of this in order topropose that N (1,1) is the appropriate extension, f. 34

0→H
in
∞,0

e−→H
in
∞,0 = M+(0,0)⊗N (1,1)

g1−→H
in
0,0 → 0. (3.6.36)I will restrit my onsideration to the holomorphi part. The representation N (1) is generatedby the ation of N = {η−ne−φ

−
0 , ξ−neφ

−
0 , J−

−n}n<0 on ν−1 ⊗|0〉ηξ. The spetrum an in analogywith the fermioni bc-system [FFH+02℄ be framed by the extremal states
ν−

0 |1〉ηξ× •ν−
1 |0〉ηξ

ν−
−1|2〉ηξ× .................... •ν−

2 |−1〉ηξ

ν−
−2|3〉ηξ× ............................... •ν−

3 |−2〉ηξ

ν−
−3|4〉ηξ× ..................................... •ν−

4 |−3〉ηξ
... ...................................... ...
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The horizontal axis is saled by the U (1) harge of J−(z), while the vertial axis distinguishesthe onformal weights. The states denoted by × are not ontained in N (1), and I will nowexplain that they appear due to an extension by the �dual� states. Generalizing the reipeof setion 2.6.2, those have to be hosen suh that they have the same quantum numbers ashave the extremal states in N (1).An extremal state ν−r |s〉ηξ ∈ N (p), r, s ∈ Z must be subjet to the ondition r + s = p.Moreover, it has onformal weight −1
2 r (r −1)+ 1

2 s(s −1). The onformal weight is invariantunder r 7→ −r +1 and/or s 7→ −s +1, while the grading is in general not invariant under thosetransformations. The ases in whih the grading is preserved are values of r and s that solve
r + s = 1. Therefore, dual states in that sense only exist in the representation N (1). I willargue below, that this already overs the situation of the gauged A-model. Thus, for p = 1the dual states are exatly those, whih extend N (1) to N (1).The ohomology operator η0η̄0 for (3.6.31) has now the desired properties to be identi�edwith g1. Thus, up to a prefator, whih is hosen to �t with the results of the followinghapter 4, I set

δ1 = 2 η0η̄0 ◦e , g1 = 2η0η̄0 , (3.6.37)whereby e denotes the extension N (1,1) → N (1,1).
The Second GCO δ2The seond GCO already follows from the disussion above. This an be seen by a methodthat I owe Edward Frenkel.In setion 2.5, I promoted the idea to interpret the GCOs as operators that mimi theinstantons. Consequently, an observer on the hart L̃X 0,0 and alulating with states H

in
0,0gets some insight into the perturbative state spaes around {∞} ∈ X . Beause there are noanti-instantons, no states of H

in
0,0 will appear to an observer on L̃X ∞,0.16In order to �see� the instantons that �ow from {0} to {∞}, the observer has to move tothe other hemisphere and onsider the states H

in
∞,0, where the instantons introdue statesof H

in
0,1, f. (3.6.2). This movement should not hange the physis, and thus is invoked bythe omposite mapping x 7→ x̃, µ 7→ −µ, whih leaves the ation (3.2.10) invariant. Also the�ow equation remains struturally the same and turns into (∂z̄ + µ

z̄
)x̃ = 0.There is an additional e�et on the state spaes whih an not be seen from the ation.Considering x 7→ x−1, µ 7→ −µ and the instanton �ow equations, one ould onlude that

F
1
∞ →F∞, F0 →F

1
0 , where the states are de�ned as in equations (3.5.16) and (3.5.19), re-spetively (in adequate oordinates). However, one has to take are of the fat that the state

16These would be mimicked by the presence of ξ0ξ̄0 in the Hamiltonian.
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spaes are weighted by exp{
∫

D γ̃− ∗ (ωK )+
∫

n∈H2(X ,Z) γ̃
− ∗ (ωK )}, f. eqns. (3.3.1) and (3.3.2).Intuitively, a oordinate transformation has to move the disk D to the other hemisphere,whih an be done by wrapping it one around CP

1. Therefore, x 7→ x−1, µ 7→ −µ shouldbe aompanied by the transformation ∫
D γ̃∗(ωK ) 7→

∫
D γ̃∗(ωK )+

∫
S2 x̃∗(ωK ), and this adds tothe operator qn 7→ qn+1. The theory is then rather invariant under x 7→ x̃, µ 7→ −µ and anadditional multipliation of the transformed spaes of in-states with q−1.17The seond GCO an now be derived from δ1. The reason is that if the theory is invariantunder x 7→ x̃, µ 7→ −µ and a multipliation of the states with q−1, the globally de�nedHamiltonian must also be invariant under this mapping. Therefore, under this transition,

δ1 7→ δ2 suh that
δ2 = 2 η̃0 ˜̄η0 ◦e , g2 = 2η̃0 ˜̄η0 . (3.6.38)In that way, δ2 is ating on q−1
H

in
0,1 ≃ H

in
0,0. Beause the GCOs are struturally the same,it is su�ient to restrit my investigations to δ1, whih I will do in the rest of my thesis.

3.6.4 ConclusionIn (3.6.28) I have summarized the perturbative state spaes that will serve as the CFT modelfor the representations of the Tb with gauge �eld. The �ground� states of the A-model areidenti�ed with
∆0 ≃ ν+0,0 ⊗ν−0,0|0,0〉ηξ , ∆∞ ≃ ν+−1,1 ⊗ν−1,−1|0,0〉ηξ (3.6.39)The Grothendiek-Cousin operators appear in an extension of the perturbative state spaesthat is analoguousely to that of pg. 34. If have noted down that extension for δ1 in (3.6.36).The Grothendiek-Cousin operators add to the Hamiltonian, that has an ation on thenonperturbative representations aording to pg. 30 :

H = H +g1 +g2 ≃ T 0 = T0 + T̄0 +g1 +g2 . (3.6.40)With these data, I onlude my analysis of the low-energy, nonperturbative Morse theorybehind the gauged A-model. In the following hapter, I will extend the fous on the quantummehanial operators to the �elds. I will prove that a spei� logarithmi transformation ofthe CSb on CP
1 adds the Grothendiek-Cousin operators to the Hamiltonian and furtherdeforms the stress tensor and �elds. The following analysis again shifts the attention bakfrom Morse theory [FLN06, FLN08℄, to �eld theory [VF09℄.

17Because of (2.2.9), the operators are not affected by this transformation of q .
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The A-Model beyond Topology 4In the last hapter I have onsidered the Morse theory underlying the A-model in the largevolume limit (Tb). Using the reipe of hapter 2, I have derived its nonperturbative statespaes and the Grothendiek-Cousin operators mapping between them. The representationspaes have been modelled by a onformal supersymmetri bc-system (CSb).One of the main proposals of Frenkel et al. was that, if there orresponds a onformal�eld theory to the �gauged� Tb, beyond the topologial setor it must be a logarithmionformal �eld theory [FLN06, FLN08℄. However, they did not push forward their proposaland introdue the logarithmi CFT. This will be the subjet in the following and onludepart one of my thesis. The hapter is grounded on and also extends my publiation with M.Flohr, [VF09℄.Firstly, I will aommodate a method by Fjelstad et al. [FFH+02℄, whih allows for alogarithmi extension of onformal �eld theories. The extension will be suh that the Virasoroalgebra as well as supersymmetry are preserved and the Grothendiek-Cousin operators ofsetion 4.2 are added to the Hamiltonian. The logarithmi deformation a�ets not only theHamiltonian but also the operator produt algebra (OPA) of the �elds and the other modesof the stress tensor. I will disuss those e�ets and onlude the hapter with a proof thatthe logarithmi extension implies the extension of the perturbative state spaes H
in
0,0 and

H
in
∞,0 as desribed in setion 3.6.3.

4.1 The Method of Logarithmic DeformationFjelstad et al. invented a onstrutive method to deform CFTs to logarithmi CFTs [FFH+02℄.The main idea is to enlarge the representation spae of any hiral (antihiral) CFT systema-tially, by introduing additional �eld modes and tensoring their representation spae tothe one of the CFT. Thereby, the stress tensor gains an additional term whih ats on thetensored vetor spae suh that some of the Virasoro generators yield higher-dimensional,non-reduible representations.
4.1.1 Extension of the FieldsLet C denote some hiral algebra of onformal �elds and F the orresponding representationspae with onformally invariant highest weight vetor |0〉F . I will further require that thereexists a fermioni �eld E (z) ∈C of weight one suh that E0|0〉F = 0 and E (z)E (ω) = 0. Fjelstad
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et al. deform the �elds f (z) ∈C by introduing an odd graded vetor spae K with operators
ǫ and ρ and a vetor |0〉K ∈K , suh that [ǫ,ρ] = 1K and ρ|0〉K = 0 [FFH+02℄. In order tohave an isomorphism between �elds and states, they de�ne a new �eld e(z)

e(z)= 1F ⊗ǫ−
∫z

E (ω)dω⊗1K ,

∫z

E (ω)dω= E0 log z −
∑

n 6=0

En

n
z−n

(4.1.1)orresponding to |0〉F ⊗ǫ|0〉K . This �extension �eld� determines a deformation map on f ∈C

f (z) 7→ f (z)= : exp{−ρe(0)} : f (z) , (4.1.2)whih extends the algebra of �eld modes by the additional zero modes ǫ and ρ. The ationof e on a �eld F (z) = f (z)⊗σ, σ ∈ End(K ), is de�ned by means of the OPE
e(z)F (ω)=

(
−[E , f ]1 log(ω− z)+

∑

n≥1

1

n

[E , f ]n+1

(z −ω)n

)
⊗σ , (4.1.3)wherein [E , f ]n denotes the ontribution with pole of order n in the OPE of E with f , i.e.

E (z) f (ω) =
∑

n≥0

[E , f ]n (ω)

(z−ω)n . In partiular, the energy momentum tensor gets deformed to
T (z) 7→ T (z) = T (z)+

ρ

z
E (z) . (4.1.4)In my opinion, further extensions of the �elds generating the symmetries of the theoryshould be made, whih Fjelstad et al. did not take into aount. Namely, for e to make senseas a �eld, ǫ should have the same quantum numbers as E , whih imposes further onditionson ǫ and ρ. Suppose, for instane, that there exists a urrent j aording to whih E hassome harge qE . Only if this urrent is extended by an additional zero mode

j (z) 7→ j (z)⊗1K +1F ⊗qE
ρ

z
, (4.1.5)the �eld e has a well de�ned harge. From the ommutation relation of ǫ with ρ then followsthat ρ must have harge −qE . These additional extensions are not an integral part in thedeformation by the extension �eld e, however, in the ase of the CSb this will be the ase,f. setion 4.2.

4.1.2 Extension of the Representation TheoryDue to the additional term, the Virasoro algebra has two-dimensional representations onertain omposite �elds
Ψ f (z) =− : e(z) f (z) : . (4.1.6)Their OPE with the stress tensor yields1

T (z)Ψ f (ω) =
∑

m≥3

[E , f ]m−1

(z −ω)m
+
∆T ( f )Ψ f + [E , f ]1

(z −ω)2
+
∂ωΨ f

z −ω
, (4.1.7)

1I thank J. Fuchs who pointed out to me that I have to use the definition of normal ordering and contraction for

interacting fields, (i.e. fields that have not just one singular term proportional to the identity in the OPE): a(z) : bc :

(ω) =
∮
ω

dζ
ω−ζ (a(z)b(ζ)c(ω)+ (−)Fa Fb b(ζ)a(z)c(ω)) , cf. [DFMS97].
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whih means for the state spae that the ground state has now a logarithmi partner
E∗

0 ǫ · |0〉F ⊗|0〉K , due to [ǫ,ρ]= 1K . Here, E∗
0 is de�ned by [E0,E∗

0 ] = 1.Indeed, this kind of logarithmi deformation auses an extension of the state spaes. Let
|0〉 := |0〉F ⊗|0〉K and denote by F

′ the Fok representation of C on that vetor. Obviously
F ≃F

′. However, by the onstrution above, there is a new state ǫ|0〉 orresponding to theextension �eld e, and a representation F
′′ of C thereon. The extended representation spaean be identi�ed with F :=F

′⊕F
′′ and the deformed �elds mix F

′ and F
′′. In setion 4.2.5,the spae F

′′ will take the r�le of the �dual part� that extends the perturbative state spaeof the Morse theory behind the A-model.
4.1.3 The Fermionic bc-SystemAs a ruial example for the A-model, I will now onsider the auxiliary ηξ-system of setion3.6.2 and apply to it the method of Fjelstad et al. [FFH+02℄.The �elds onstituting the vertex algebra are deformed to

ξ(z) 7→ ξ(z) = ξ(z)+ρ log z ,

η(z) 7→ η(z) = η(z) ,

Tηξ(z) 7→ T ηξ(z) =Tηξ(z)+ρ η(z)z−1 ,

jηξ(z) 7→ j
ηξ

(z)= jηξ(z)+ρz−1 −ρ η(z) log z ,

(4.1.8)and extended by the new �eld
e(z)= ǫ−

∫z

η(ω)dω . (4.1.9)The additional �eld modes ρ and ǫ satisfy [ǫ,ρ] = 1K and ρ|0〉K = 0 for some |0〉K ∈ K ,whereby K is an odd graded Vetor spae. They extend the state spae of the originalfermioni bc-system M+
ηξ

(0) → M+
ηξ

(0)⊗K , |0〉ηξ 7→ |0〉ηξ ⊗ |0〉K . The CFT de�ned by the�elds above exhibits logarithms in the OPE and a non-degenerate stress tensor
ξ(z)e(ω) = log(z −ω) ,

T ηξ(z)Ψξ(ω) =
0 ·Ψξ(ω)+1

(z −ω)2
+
∂ωΨξ(ω)

z −ω
,

(4.1.10)wherein Ψξ(z) =− : e(z)ξ(z) : is the logarithmi partner of the identity operator on M+
ηξ

(0)⊗K .In partiular, the extra term in the Hamiltonian
T ηξ 0

= Tηξ 0
+ρ η0 (4.1.11)looks similar to the GCOs if ρ was adjusted to be η̄0 and the ηξ-system was identi�ed withthe auxiliary fermions of setion 3.6.2. Before I adapt the deformation to this situation inthe next setion, a omment on the the OPE of ξ with e is indispensable.
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Due to the logarithm, the orrelator of ξ with η yields a multi-valued funtion. This anbe resolved by inluding the antiholomorphi setor and restriting the variable z̄, usuallyonsidered to be independent from z, to be the omplex onjugate. Thus, the observationin the last hapter, that the GCOs mix up the holomorphi and antiholomorphi parts ofthe CSb, �ts with a typial situation in a CFT whih exhibits logarithms in OPEs. Thedeformed fermioni bc-system anonially demands that the holomorphi and antiholomor-phi parts are onsidered together. Still, for onveniene I will often restrit my disussionto the holomorphi �half�.Moreover, the logarithm in the OPE of e with ξ auses that Möbius ovariane is broken.Indeed, under (z,ω) 7→ eλ(z,ω), λ 6= 0, I �nd that ξ(z)e(ω) 7→ log (eλ(z −ω)) 6= ξ(z)e(ω). Thissigni�es that e an not enter the onformal �eld theory as an additional dynamial �eld. Itjust serves to deform the �eld algebra and to extend the representation spaes.
4.2 Introducing the GCOsI will now disuss, how the bosons of the CSb an be logarithmially extended in a way, suhthat the Hamiltonian and extended representation spaes over the situation of the Morsetheory behind the A-model, f. hapter 3. From setion 3.6.2 it is already lear that thedeformation has to be applied to the bosons of the CSb. Above, I have further motivatedthat the auxiliary fermions will be the main haraters.In the following setion, I will propose a spei� logarithmi extension e and analyze itse�ets on the �eld algebra. The Hamiltonian will turn out niely, and I will �ll in themissing argument why the logarithmi deformation breaks the bosoni axial symmetry andthe symmetry generated by JN , f. (3.6.26).Setion 4.2.5 onludes this analysis. Therein, I will explain that the �eld e does not onlydeform the �eld algebra but also extends the representation spae in a way, suh that theresults of the last hapter are reprodued.
4.2.1 Extension of the FieldsIn order to introdue the Grothendiek-Cousin operator g1, I �x the representation of thebosoni bc-system to be N (1,1). The seond GCO an be obtained after a hart transitionof the CSb to the other hemisphere and just in the same manner as desribed below.
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The GCOs are mixing holomorphi and anti-holomorphi (target-spae) oordinates. There-fore, I set K = M̄+
ηξ

(0), K̄ = M+
ηξ

(0) and de�ne the additional �elds
e(z)=e−φ̄

−
0

(
1M+

ηξ
⊗ ξ̄0 −

∫z

η(ω)dω⊗1M̄+
ηξ

)
,

ē(z̄) =eφ
−
0

(
ξ0 ⊗1M̄+

ηξ
−1M+

ηξ
⊗

∫z̄

η̄(ω̄)dω̄

)
.

(4.2.1)By this means, the holomorphi part is extended by the antiholomorphi part and vieversa. Having introdued the �eld modes eφ
−
0 and e−φ̄

−
0 does not only extend N (1,1) in thedesired way, but it is also neessary beause it is now a bosoni system to whih I apply thedeformation.De�ning the �eld transformations as

f (z, z̄) 7→ f (z, z̄)=: exp
[
−e(0) ·eφ̄

−
0 η̄0 −e−φ

−
0 η0 · ē(0)

]
: f (z, z̄) , (4.2.2)the stress tensor of the ηξ-system is deformed to

T ηξ(z, z̄) =
(

Tηξ(z)+
1

z
η(z)η̄0

)
+

(
T̄ηξ(z̄)+

1

z̄
η0η̄(z̄)

)
. (4.2.3)The deformation further implies

T ηξ n
+ T̄ ηξ n

= Tηξ n
+ T̄ηξ n

+ηn η̄0 +η0η̄n (4.2.4)on the �eld modes and leads to the desired result (3.6.40). As I have already mentioned,not only the Hamiltonian but also the other modes of the Virasoro generator are deformed.This e�et is invisible in the Morse theory desription, and I will therefore disuss someonsequenes at the end of this hapter. In the following, I will refer to the deformationterms in the stress tensor as �Grothendiek-Cousin �elds�, whih I will denote by
g1(z) =

1

z
η(z)η̄0 , ḡ1(z̄) =

1

z̄
η0η̄(z̄) . (4.2.5)In addition, the transformation a�ets the bosoni �elds in N (1,1)

b−(z) =V −(−, z)⊗
(
∂zξ(z)− η̄0z−1

)
, b̄

−
(z̄) = V̄ −(+, z̄)⊗

(
∂z̄ ξ̄(z̄)+η0 z̄−1

)

c−(z) =V −(+, z)⊗η(z) , c̄−(z̄)= V̄ −(−, z̄)⊗ η̄(z̄)
(4.2.6)and

T −(z)= T −(z)+g1(z) , T̄
−

(z̄) = T̄ −(z̄)+ ḡ1(z̄) ,

j
ηξ

(z) = jηξ(z)− log z η(z)η̄0 , j̄
ηξ

(z̄) = j̄ηξ(z̄)+ log z̄ η0η̄(z̄) ,

J−(z, z̄) = J−(z, z̄) , Q(z, z̄) =Q(z, z̄) ,

(4.2.7)whereas the superharge Q(z, z̄) =Q(z)+Q̄(z̄), Q(z) =V +(−, z)⊗η(z)V −(+, z) is not deformed,f. eqn. (3.6.29). Hene, the topologial setor of the theory is insensible to this proedure.
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In addition, the zero mode of the vetorial urrent J−
V
= (J−+ J̄−)+( j

ηξ
+ j̄

ηξ
) is not orreted,whih means that it still measures the same quantum numbers as the undeformed one.This is not only an inidental remark, there is another reason why the vetorial urrent ispreferential. As explained before, for e and ē to have well de�ned harges, the holomorphiand antiholomorphi urrents have to be generalized. Consider the a�eted holomorphiauxiliary urrent jηξ. The harge of ξ̄0 is measured by j̄ηξ and yields the same value as theharge of η under jηξ. Therefore, it must be ompleted by the antiholomorphi urrent insuh a way, that the total auxiliary urrent is vetorial. Sine the auxiliary urrent is oupledto J− via (3.6.23), this is inherited by J−. This explains my laim that for the partiulardeformation above, the extension of the symmetry generating �elds and the extension by

e, ē is the same.In order to further speify my omments on the symmetries of the deformed theory, Iwill now disuss how the logarithmi deformation indeed breaks all symmetries whose gene-rators ontain the axial urrent of the auxiliary ηξ-system. Moreover, I will onsider ifsupersymmetry and the Virasoro algebra are a�eted.
4.2.2 Notes on the SymmetriesThe axial symmetry of the auxiliary system is broken by the presene of the deformationterm in the Hamiltonian. To see this, I alulate the ommutator

∮
dz [η0η̄0, j

ηξ
(z)]±

∮
dz̄ [η0η̄0, j̄

ηξ
(z̄)] =−η0η̄0 ±η0η̄0 . (4.2.8)Therefore, only the zero mode of the vetorial urrent ommutes with the deformed Hamilto-nian, whereas this fails for the axial symmetry. This onludes the proof that the urrents JNof eqn. (3.6.26) and J−−J̄− of eqn. (3.6.23) do not omprise symmetries of the logarithmiallydeformed CSb.On the other hand, this is not true for supersymmetry and onformal symmetry. Thereason is that besides in the expression j

ηξ
, only derivatives of the �eld ξ enter the extended�eld algebra. Sine all deformation terms are proportional to zero modes of η(z) and η̄(z̄),the logarithmi extension does not spoil the ommutation relations and, hene, preservesupersymmetry and the Virasoro algebra.The absene of ξ has two further onsequenes that I will now disuss.

4.2.3 Exceptional Logarithmic PartnersA �rst onsequene is that the �eld Ψb− (z) =− : e(z)b−(z) : has no logarithmi partner,2
T −(z)Ψb− (ω) =

e−φ̄
−
0 V −(−,ω)

(z −ω)3
+
∂ωΨb− (ω)

z −ω
. (4.2.9)

2Due to the anomaly of the holomorphic current jηξ, (4.1.7) does not apply and one has to derive the OPE by hand.
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On the other hand, Ψ jηξ(z) =− : e(z) jηξ(z) :, and other ombinations : φ(z)Ψ jηξ(z) :, φ a �eldin the CSb, have logarithmi partners. In partiular,
T (z)Ψ jηξ(ω) =

−e(ω)

(z −ω)3
+
Ψ jηξ(ω)+∂ωe(ω)

(z −ω)2
+
∂ωΨ jηξ(ω)

z −ω
. (4.2.10)This turns the logarithmially deformed CSb into an exeptional ase among logarithmionformal �eld theories. Namely, itsU (1) urrent breaks the SL(2,C) symmetry and therefore,the logarithmially deformed CSb is an example for an LCFT whose basi Jordan blok isnot a primary �eld [Flo03, pg. 4516℄.

4.2.4 On the Necessity to Deform the FermionsIn setion 4.1 I have onsidered the ηξ-system in its own right and argued that the extension�eld e should not be part of the dynamial �elds beause it breaks Möbius ovariane. Sine
ξ is not a �eld in the vertex algebra of the bosonized bosons, I an not exlude e and ē fromthe dynamial �elds by this argument. However, if I treated them as additional dynamial�elds in the CSb, I would expet that I also have to logarithmially deform the fermionisetor, in order to supply the extension �elds with their supersymmetri partners. I denotethe fermions as in the last hapter by b+ and c+, an extension as desribed in setion 4.1.3an be performed

e+(z) = b̄+
0 −

∫z

c+(ω)dω , ē+(z̄) = b+
0 −

∫z̄

c̄+(ω̄)dω̄ ,

f +(z, z̄) 7→ f +(z, z̄) =: exp
[
−e+(0)c̄0 −c+0 ē+(0)

]
: f +(z, z̄)

(4.2.11)and the zero modes of the bosoni and fermioni extension �elds are related by supersym-metry
[Q0,eφ

−
0 ξ0] = e−φ

+
0 ≃ b+

0 , [Q0,e−φ
+
0 ] = eφ

−
0 ξ0 . (4.2.12)However, eqn. (4.1.10) forbids that e+ and ē+ an be onsidered as dynamial �elds in thefermioni setor. Therefore, it is again impossible to interpret e and ē as dynamial �elds inthe CSb.Sine supersymmetry was already preserved without deforming the fermions, it is notdemandatory that the fermions are logarithmially extended. On the other hand, to the bestof my knowledge there is nothing to be said against it, and I will argue below that, if thereader wishes to logarithmially extend the fermions, this will not a�et the representationtheory of the CSb and thus the results of hapter 3.

4.2.5 Extension of the State SpaceAlthough ξ(z), ξ̄(z̄) are not part of the dynamial �elds, the zero modes ξ0 and ξ̄0 areintrodued by the extension �elds e, ē and thus extend the state spae. I will now prove
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that the extension is as in equations (2.6.2) and (3.6.36):
N (1,1)

e,ē−→ N (1,1)
g1−→ N (0,0) . (4.2.13)Firstly, I will restrit my onsiderations to the auxiliary ηξ-system in order to illustrate twoaspets. As stated above, this will show that a logarithmi deformation of the fermions inthe CSb does not interfere with the extension of the representation spaes. Furthermore,the essential r�le of the oupling between the bosonized bosons and the auxiliary fermionswill beome evident. Seondly, I will explain how the logarithmi extension indeed leads to(4.2.13). By an expliit alulation of the ation of the Grothendiek-Cousin �elds on thatextended spae, I will substantiate the impat of the additional �eld modes that are invisiblein the Morse theory desription.Aording to the deformation rule (4.2.2), the �elds e, ē and their omposite eē extend theground state |0,0〉ηξ of the ηξ-system by the new states ξ0|0,0〉ηξ, ξ̄0|0,0〉ηξ and ξ0ξ̄0|0,0〉ηξ.This extends the representation spae as desribed in setion 4.1,

⊕

l ,r

A
+
− 1

2

(l )⊗Ā
+
1
2

(r ) →
(
⊕

l ,s

A
+
− 1

2

(l )⊕A
+
− 1

2

(s −1)

)
⊗

(
⊕
r,m

Ā
+
1
2

(r )⊕Ā
+
1
2

(m +1)

)
. (4.2.14)In partiular, the logarithmi partners are modelled on the representation spae with highestweight state ξ0ξ̄0|0,0〉ηξ,

T ηξ 0
|1,1〉ηξ = 0 · |1,1〉− |0,0〉ηξ , (4.2.15)while T ηξ 0

is diagonal on the other representations. Therefore, one would naively assumethat the logarithmi extension of the original state spae equals M+
ηξ L

(1,1) =
⊕

l ,s (A +
− 1

2

(l−1)⊗

Ā
+
1
2

(s+1)), in analogy with the bosonized bosons eqn. (3.6.32). This state spae is, however,isomorphi to the one de�ned by the partner �elds, ⊕
l ,s A

+
− 1

2

(l )⊗ Ā
+
1
2

(s), beause ξ0 and ξ̄0are part of the �eld algebra. This is the reason, why the ηξ-system alone is not apable ofexplaining the di�erent nature of H
in
0,0 and H

in
∞,0.Fortunately, the extension of the state spae of the full supersymmetri bc-system is moreompliated beause the algebra of the auxiliary fermioni �eld does not fatorize. The newhighest weight states, introdued by e and ē, are rather

eφ
−
0 ξ0

e−φ̄
−
0 ξ̄0

eφ
−
0 −φ̄−

0 ξ0ξ̄0





·ν−1,−1 ⊗|0,0〉ηξ =





ν−0,−1 ⊗|1,0〉ηξ
ν−1,0 ⊗|0,1〉ηξ
ν−0,0 ⊗|1,1〉ηξ

, (4.2.16)and the extension �elds �ll in the missing states in the diamond (3.6.27). The algebra of�eld modes
⊕

l ,s∈Z
A

−
1
2

(l )⊗A
+
ηξ,− 1

2

(l )⊗Ā
−
− 1

2

(s)⊗Ā
+
ηξ, 1

2

(s)

∣∣∣∣∣
η0,η̄0=0

(4.2.17)
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is now represented on those states, and
N (1,1)

e,ē−→ [N (1)⊕NL(1)]⊗ [N̄ (1)⊕ N̄L(1)] = N (1,1) , (4.2.18)wherein the logarithmi extension NL(1,1) of N (0,0) appears, f. eqn. (3.6.32).
The Action of the Grothendieck-Cousin OperatorI an now substantiate the ation of T ηξ on NL(1,1)⊗R(1,1), f. setion 3.6.2. Therefore, Ionsider the states

χ(l)
0 :=O (J−)ηr1

· · ·ηri
ξk1

· · ·ξk j
·νi− j+1|0〉ηξ ,

χ(l)
1 :=O (J−)ηr1

· · ·ηri
ξk1

· · ·ξk j
·νi− j |1〉ηξ ,

r1 < ·· · < ri < 0, k1 < ·· · < ki < 0, l = i − j ,

(4.2.19)wherein O (J−) is a monomial in J−
−n , n > 0. They are elements of the Virasoro module with�xed harge l + 1

2 , measured by J−
0 .3 I will denote these modules by N (1)l and NL(1)l , respe-tively, whih immediately generalizes to the ompositions N (1,1)l ,l̄ , NL(1,1)l ,l̄ and R(1,1)l ,l̄by means of

χ(l ,l̄ )
s,s̄ := χ(l)

s ⊗ χ̄(l̄ )
s̄ , s, s̄ ∈ {0,1} . (4.2.20)The ation of T ηξ n

= Tηξ n
+ηn η̄0 on suh states is as follows.For the zero mode, whih is the Grothendiek-Cousin operator, I obtain

T ηξ 0
·χ(l ,l̄ )

s,s̄ = Eχ ·χ(l ,l̄ )
s,s̄ −N N̄ χ(l ,l̄ )

0,0 , (4.2.21)where I used N := (−)i+ī+ j+ j̄δs,∞ and N̄ := (−)i+ī+ j+ j̄δs̄ ,∞. The deformed Hamiltonian isnon-diagonal only on the states in NL(1,1), as I have already disussed in setion 3.6.3.For the other modes of the stress tensor with n 6= 0, I �nd
T ηξ n

·χ(l ,l̄ )
s,s̄ = Tηξ n

·χ(l ,l̄ )
s,s̄ + (−)s

N̄ ηn ·χ(l ,l̄ )
s,0 , (4.2.22)and T ηξ n

is in general not diagonal if the states are in R(1,1)⊕NL(1,1).For all modes of the Virasoro �eld it is true that the ground state ν−1,−1|0,0〉ηξ is not sensiblefor the logarithmi extension, as it is annihilated by all modes of the Grothendiek-Cousin�eld.
3The value of 1

2 is due to the fact that I consider solely the holomorphic part.
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4.2.6 ConclusionI have logarithmially deformed the CSb in suh a way that it inludes the situation of theMorse theory behind the A-model in the large volume limit. Thereby, also the �elds andtheir OPA was deformed, and I have disussed the e�ets on the symmetries of the CSb.In partiular, the stress tensor obtained improvement terms
T (z, z̄) = T (z, z̄)+g1(z, z̄)+g2(z, z̄) ,

g1(z, z̄) = η(z)η̄0 +η0η̄(z̄) , g2(z, z̄) = η̃(z)¯̃η0 + η̃0
˜̄η(z̄) ,

(4.2.23)whih I alled Grothendiek-Cousin �elds. Above, I inluded the seond of these �elds thatis determined by a hart transition. The Grothendiek-Cousin operators break the bosoniaxial symmetry, as well as the symmetry JN whih distinguishes the hains in the omplexof extended bosoni representation spaes, f. setion 3.6.3. For this reason, the states in
NL(1,1) and the orresponding �elds an be interpreted as the logarithmi partners of thestates and �elds in the representation N (0,0).
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Summary and Conclusion 5In my �rst part of this thesis I have investigated the geometri signi�ane of the improve-ment terms in the Hamiltonian of the logarithmi onformal bc-system with target X =CP
1.Taking the perspetive of its underlying Morse theory on loop spae, I may now onludethe following.The zero modes of the improvement terms are the in�nite dimensional analogues of loalohomology operators (Grothendiek-Cousin operators � GCOs) in a omplex of extendedrepresentation spaes of the Hamiltonian, whereby extension means that the representa-tion spaes are extended by their missing dual part in the sense disussed in setion 2.6.2.Therefore, the logarithmi onformal bc-system on CP

1 is a �eld theoreti appliation of theGrothendiek-Cousin omplex as onsidered by G. Kempf [Kem78℄, an interpretation alreadydisussed by Frenkel, Losev and Nekrasov in [FLN08℄.The same authors interpreted the extension as the transition from perturbative to non-perturbative state spaes, by whih the zero modes of the improvement terms gain a seondinterpretation. They mimi the instantons beoming visible in the dynamial setor of thetheory. This interpretation is in addition promoted by the fat that the GCOs are mappingsin a spei� diretion, whih is determined by a �ltration of the loal representation spaes.This diretion onforms with the diretion into whih the instantons �ow with growing time.I will now brie�y summarize the steps I have taken.
Morse Theory and Induced Representations In hapter 2, I have onsidered Morsetheory on a ompat Kähler manifold X , f. [FLN06℄. It was neessary to onstrain X in orderto guarantee that a non-empty topologial setor would exist. After several transformationswhih left the topologial setor invariant, I ould massage the ation into a �rst order form,suh that the path integral would manifestly loalize on the instantons. In partiular, thisspoiled CPT invariane and the transformed theory lost its former unitarity.The speiality of this Morse theory has been that the metri was saled with some positive,real-valued parameter λ, and that, hene, it got possible to move in the moduli spae of thetheory. Two phases of Morse theory have been of speial importane, the phase when λ 6=∞and the large volume limit λ→∞. For �nite λ, the representation spaes of the Hamiltonianare isomorphi to the representation spaes of the unitary theory. In the large volume limitit is not possible to make suh a statement in general, besides for the topologial setor,whih is insensitive to the value of λ.
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The most important impat of the saled metri was that the perturbative spetrum of theHamiltonian inluded apart from the topologial further dynamial states. For the situationthat the target manifold is X =CP
1, these perturbative state spaes survived the large volumelimit and beame indued representations of the symmetry generated by the gradient �eldof the Morse funtion.The perturbative representation spaes were de�ned loally on the so-alled desendingmanifolds. These are the submanifolds into whih X is deomposed by means of the gradientvetor �eld. Frenkel et al. laimed that if the loal representation spaes were extended asdistributions to X , they did omprise the nonperturbative low energy spetrum of the theory,f. [FLN08℄. I have extended the perturbative spetrum in a manner whih di�ers from thatused by Frenkel et al. [FLN06℄. The Hamiltonian turned out to be no longer diagonalon the thus obtained representation spaes. I did then deompose it into a trivial partand an operator whih is responsible for that e�et. The thus obtained operator entang-led the extended representation spaes and, by omparison, ould be identi�ed with theloal ohomology operator (GCO) of a partiular Grothendiek-Cousin omplex [Kem78℄.Therefore, the GCO makes it possible to take an insight into the struture of the induedrepresentations of the symmetry generated by the gradient �eld of the Morse funtion. Inpartiular, this is an insight into the exited spetrum of the Morse theory and thus an e�etbeyond the topologial setor.Due to the GCO the Hamiltonian is indeomposable on ertain dynamial states and alsomixes the holomorphi and antiholomorphi target spae oordinates. These aspets aretypial for logarithmi onformal �eld theories and it is, hene, reasonable to generalize thisonept to two-dimensional �eld theories, [FLN08℄.

A Field Theory Application In hapter 3 I have onsidered the A-model with domainmanifold Σ = R×S1 and target spae X = CP
1. The target spae was again supplementedwith a metri saled by λ, f. [FLN08℄. Sine many physiists and mathematiians assumethat there exists a point in the moduli spae of this theory where it is onformal [FL07,MSV99, DVV91℄, it was a good starting point for generalizing the disussion of the lasthapter to a �eld theory and, additionally, for analyzing the meaning of the Grothendiek-Cousin operators in a onformal �eld theory.As in the situation of Morse theory, I transformed the A-model into a �rst order shapeby breaking CPT invariane and taking the large volume limit. Under this treatment, theA-model took the form of a supersymmetri bc-system whih I alled the �topologial bc-system� (Tb). Struturally, it looks like the onformal supersymmetri bc-system (CSb),and I assumed that the representation theory for both systems is the same.Having integrated out the dependene of S1, the Tb turns into an in�nite sum of superquantum mehanial theories on loop spae LX , whih look similar to the Morse theory
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onsidered before. In order to attain the full analogy, it was neessary to add another vetor�eld to the gradient vetor �eld, whih ensured that the ritial manifold redued to singularpoints. Like Frenkel, Losev and Nekrasov [FLN08℄, I have alled this proedure as �gauging�and denoted the thus obtained Tb as the gauged Tb. Moreover, in order to obtain a Morsefuntion for the gradient vetor �eld it was neessary to lift the theory from loop spae toits universal over.The Morse funtion thus obtained was multi-valued on loop spae. Therefore, the preim-ages of LX in its universal over fanned out into in�nitely many leaves, distinguished byhomology lasses in H2(X ,Z). In the same manner, the perturbative state spaes and thedesending manifolds were distinguished. However, the state spaes were isomorphi, and Iould restrit my onsideration to one of those setors.Analyzing the Hessian of the Morse funtion, I ould determine the oordinates of thedesending manifolds in this setor. Beause of the analogy to the Morse theory of hapter2, I then ould note down the perturbative representation spaes whih loalize on thesesubmanifolds. It turned out that they ould be modeled by representation spaes of theCSb.In order to de�ne the CSb on X =CP
1 it was neessary to explain how hart transitionswork, and I introdued the hiral de Rham omplex [MSV99℄ to lose this gap.To determine the Grothendiek-Cousin operators, I had to �nd the loal representationspaes between whih suh operators intermediate. As it turned out, there exist two suhoperators whih, however, are related by a hart transition omposed with a rede�nitionof the additional vetor �eld I had used to redue the ritial manifold to isolated points.Therefore, it was su�ient to disuss only one Grothendiek-Cousin operator.In order to obtain this GCO, I assumed that I may substitute the CSb for the A-model.Having adjusted and generalized the method of hiral bosonization [FMS86℄, I ould derivea ohomology operator in a long exat sequene of partiular state spaes. The perturbativestate spaes of the Tb are part of this sequene, and I ould extend them in suh a way thatthe GCOs have been extrated as the ohomology operators in the short exat sequenesof perturbative state spaes. Thise GCOs deform the Hamiltonian of the CSb and arenon-diagonalizable on a subspae of dynamial state spaes.In the last hapter I disussed the question whih deformation of the CSb orrespondsto the deformation of the Hamiltonian by the Grothendiek-Cousin operator [VF09℄.

Logarithmic Deformation of the Chiral de Rham Complex The GCOs made it nees-sary to reonsider the hiral de Rham omplex. I looked for a logarithmi extension of thistheory whih would produe the GCOs within the Hamiltonian and extend the state spaes
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in the appropriate way. For this purpose, I have suessfully aommodated the method oflogarithmi deformation invented by Fjelstad et al. [FFH+02℄.Sine it must be applied to the bosoni subsetor of the CSb, this raised the questionif, due to supersymmetry, it was not neessary to further deform the fermioni part. I haveargued that supersymmetry did not demand this. Nevertheless, if the fermioni part is inaddition logarithmially deformed, this does not a�et the representation theory of the CSb.Moreover, the logarithmi deformation did neither destroy the Virasoro algebra nor super-symmetry. Yet, it spoiled all anomalous symmetries by whih the Tb exeeded the A-modelwith �nite values of λ. I onsider this as an additional on�rmation that the logarithmideformation of the hiral de Rham omplex might be neessary, if the dynamial setor ofthe Tb is taken into aount.Another interesting aspet has been that the basi Jordan bloks in the doublets of loga-rithmi partners are always omprised by �elds whih are not primary. In this respet, thetheory is exeptional among logarithmi onformal �eld theories [Flo03℄.
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II

Conformal Fermionic Ghosts on the

Torus





Motivation 6In the last part of my thesis I have investigated the onformal supersymmetri bc-systemwith target manifold CP
1. Under the assumptions that this theory desribes the topologialA-model in the large volume limit and that it has a partiular nonperturbative spetrum onthe desending manifolds of its underlying Morse theory, it beame neessary to logarith-mially deform this CFT. The improvement terms in the stress tensor thereby inherited aninterpretation as loal ohomology operators and of instanton ontributions.This time I will onsider a di�erent geometri setting, whih again gives rise to a log-arithmi extension, now of the fermioni onformal bc-system.1 In this setting, the CFThas target spae C, whereas the domain manifold is an algebrai surfae T

n,m with globalmonodromy group Zn as a branhed overing of CP1. This situation has been disussed byV. Knizhnik [Kni87℄ for the non-logarithmi situation, and extended to the triplet model, inase that Tn,m is the torus, by M. Flohr [Flo98℄. The triplet model [Kau95, GK96, Gab03℄, isnot the same LCFT as the one I have disussed in the ontext of the A-model. It inludes thesituation of the last hapter but also exeeds it, in partiular it ontains additional twistedrepresentations whih mimi the branh points.In the following hapters I will disuss two topis related with this setting. Firstly, I willargue from a purely geometri point of view that a logarithmi extension of the bc-systemon the torus is unavoidable. Seondly, sine the torus is the spetral urve of pure gauge,
SU (2) Seiberg-Witten (SW) theory [SW94℄, I will redue the prepotential and the spetralurve of this theory to quantities in the triplet model [VF07℄.In hapter 7 I will introdue the bc-system on the algebrai surfaes T

n,m along the linesof [Kni87℄. The monodromy group will be responsible for additional, twisted representationswhih mimi the branh points.In the following hapter 8, I will restrit my onsiderations to the ase that the algebraisurfae is a torus. Sine the twisted representations mimi the branh points, there will exista geometri argument why the bc-system must be logarithmi. This works by relating theLegendre family, whih is a one parameter family of tori, to the nullvetor ondition of thetwist �elds. The minimal logarithmi CFT ontaining these representations is the tripletmodel whih I will brie�y introdue.The last hapter 9 will be on pure gauge, SU (2) Seiberg-Witten theory. After some intro-dutionary remarks, I will explain how its spetral urve an be expressed in terms of triplet
1Since I will only treat this theory in the following, I will often refer to it as “the bc-system”.
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haraters and how the prepotential an be obtained as a funtion of the torus modulus.Sine this modulus equals the ratio of the four-point funtions of the twist �elds it is pos-sible to determine the prepotential, and therefore this partiular Seiberg-Witten theory, bymeans of quantities of the triplet model.
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Fermionic Ghosts on Algebraic Curves 7In this hapter I will summarize how Knizhnik formulates the onformal fermioni bc-systemon a spei� lass of algebrai surfaes whih are branhed overings of CP1, [Kni87℄. Theirmonodromy group ats on the �elds whih thereby fall into irreduible representations. Thehighest weight vetors of those representations an again be related with onformal (twist)�elds that simulate the e�ets of the branh points.
7.1 The Algebraic SurfacesEvery ompat Riemannian surfae an be obtained from a zero set of some polynomial intwo variables by an inlusion of �nitely many points [Fre09℄. Therefore, I will trade suhalgebrai surfaes for ompat Riemannian surfaes in the following. Partiularly, I aminterested in the lass of polynomials

T
n,m =

{
(y, x) ∈C× (CP1 \ {ei }) : P(y, x) = yn −

nm∏

i=1

(x −ei )= 0

}
, n,m ∈N , (7.1.1)with ei 6= e j , ∀i 6= j , and in those desribing ellipti urves, subjet to the restrition n = 2and m = 2. I am partiularly interested in the ellipti urves, beause they beome tori whenompati�ed and the spetral urve of pure gauge Seiberg-Witten theory with SU (2) gaugegroup is a torus.The projetion p : (y, x) 7→ x, yields a overing (loally biholomorphi mapping) of Σ =

CP
1 \ {ei } by T

n,m, and the Monodromy group has a global representation on di�erentialforms on Σ due to the global Zn symmetry. In an open neighborhood U (e) of a branh point
e ∈ Σ, there exists an open set V (e) ⊂ p−1(U (e)) and biholomorphi mappings φV and φ̃U ,suh that the following diagram ommutes, [Fre09℄

T
n,m : V (e)

φV→ D∗ z

p ↓ ↓ p̃ ↓

Σ : U (e)
φ̃U→ D∗ zn

. (7.1.2)Hereby, D∗ denotes the unit disk without the point e, whih I set to 0 without loss ofgenerality. Therefore, in a neighborhood of a branh point e, the overing looks like p̃(z) =
e + zn with inverse

p̃−1(z)= (z −e)1/n . (7.1.3)By (z−e)1/n I denote the whole stak of the n solutions to this equation, and whih I label by
l mod n, l ∈N. Whenever I want to distinguish a speial root, I will denote it by (z−e)1/n|Vl

.
89



When ompatifying the algebrai urve, the mapping φV is analytially extended to thesymbol p−1(e) by setting φV (p−1(e)) = 0. For this reason, though it is not quite orret, Iwill all (V (e),φV ) a hart around p−1(e).In the following I will desribe how Knizhnik introdues the fermioni bc-system on theleaves of the overing and how the branh points introdue a stak of loal representationsof the theory on additional bakground �elds.
7.2 The Fermionic bc-System on T

n,mKnizhnik de�nes a fermioni bc-system on the algebrai surfae T
n,m. It onsists of a salar�elds b and a one-form c whih he onsiders in the representation on |0〉, f. setion 3.4.1.These �elds desribe the purely holomorphi (and purely antiholomorphi) di�erential formson the surfae.1 Due to the loal biholomorphism, one an onsider these �elds on thedi�erent sheets l and in loal oordinates z on Σ. For instane b(l)(z) = b ◦p−1|Vl

(z), where
Vl is an open subset of the l th sheet, not inluding a branh point.2 Similar holds for theone-form c. These �elds have an ation whih due to the loal biholomorphisms an beformulated on Σ

S(l) =
∫

Σ

d2z c (l)(z)∂z̄ b(l)(z) . (7.2.1)Aordingly, the total state spae is a tensor produt of n equivalent highest weight states,in partiular
|0〉 =

n−1⊗

l=0

|0〉l . (7.2.2)On every sheet, the stress tensor is de�ned as in setion 3.4.1 and the same holds for the�elds. In partiular, their operator produt expansion yields
b(l)(z)c (l ′)(z ′) =

δl ,l ′

z − z ′ . (7.2.3)

7.2.1 Around the Branch PointsSine analyti transitions between all sheets are possible in a hart around a branh point,this situation is more deliate. To visualize this, I depited the Riemannian surfae of pz,below.
1I will only consider fermionic fields b and c in this part of my thesis. Therefore, I will omit the index + used in section

3.4.1.
2In a chart I will allow myself the abuse of notation to equivalently denote by z a local coordinate onΣ or its preimage

on T
n,m .
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Let U (e) be a neighborhood of a branh point e. Thedi�erent paths between the sheets, along whih fun-tions on T
n,m an be analytially ontinued, an belassi�ed by means of the monodromy group relatedto e. It is de�ned as follows.Let γ ∈ π1(U (e), z0) be a losed path starting and ending at z0 and enlosing at most thebranh point e, and denote by γ̃l the (unique) lift of γ starting on the lth sheet at ql ,

p̃(ql ) = z0.3 The monodromy group permutes the elements of the �ber p−1(z0) = {q0, · · · , qn−1}and is de�ned by the ation
µγ ·ql = γ̃l (1) . (7.2.4)It is isomorphi to the group of roots de�ned by ql 7→ q(l+k) mod n = e

2πik
n ql , k ∈Zn, and thusto Zn.The monodromy group indues a representation on the �elds by means of

µ̂γ ·b(ql ) = b(γ̃l (1)) , (7.2.5)and similar for c. In a hart without branh point, the points ql an again be projeted on
Σ suh that this relation holds for �elds b(l) and c (l).Sine T

n,m is globally Zn symmetri, the representation of the monodromy group anbe diagonalized simultaneously for every branh point. This is obtained by the Fouriertransformations
bk (z) =

n−1∑

l=0

ek+1−n(l )b(l)(z)

ck (z) =
n−1∑

l=0

ēk+1−n(l )c (l)(z)

, em(l )= e2πil m
n , k = 0, . . . ,n −1. (7.2.6)The monodromy group now introdues the boundary onditions

µ̂ : bk (z) 7→ e−2πi k+1−n
n bk (z) , ck (z) 7→ e+2πi k+1−n

n ck (z) , (7.2.7)and the n di�erent Fourier transformations distinguish n di�erent irreduible representationsof this group. The domain of bk and ck is p−1(U ) =⊔
l∈{0,...,n−1} Vl , where U does not ontain abranh point. While before it was reasonable to separate the �elds together with the di�erentsheets, the idea to entangle them in one equation is natural in a neighborhood of a branhpoint. The most important onsequene is that the urrents an now be de�ned also in aneighborhood of a branh point and as the single-valued �elds

jk (z) =− : bk (z)ck (z) : . (7.2.8)

3Composing such loops defined with respect to different branch points, one can generate all possible loops enclo-

sing one or several branch points. Therefore, and due to the global Zn symmetry, it is sufficient that I restrict my

discussion to one branch point.
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Operator Product Expansions Sine the sheets of the algebrai surfae are overlappingin a neighborhood of a branh point, the �elds may have nontrivial OPEs in this region. Tosee this, Knizhnik starts with two loal �elds b(l)(z) and c (l ′)(ω), z ∈ p−1(U )|Vl
, ω ∈ p−1(U )|Vl ′ ,whih are loated lose to a branh point e. Applying a hart transition to a neighborhoodof e, z 7→ y = (z −e)1/n |Vl (e) and ω 7→ y ′ = (ω−e)1/n |Vl ′ (e) one ends up with

b(l)(z)c (l ′)(ω) =
n−1

z −ω

n−1∑

r=0

(
y ′

y

)r+1−n

. (7.2.9)Here, I used that in the presene of a branh point b(l)(y)c (l ′)(y ′) = (y − y ′)−1, even if l 6= l ′. Inorder to apply this to the �elds in the Fourier expansion, I will use that the basis elements
em(l ) de�ne a salar produt

em · ēs =
n−1∑

l=0

em−s (l )=
{

n if ∃ t ∈Z : t n = m − s

0 else (7.2.10)whih an be applied to bk and ck . Combining it with the OPEs above, one ends up with
bk (z) ·ck ′(ω) =δk ,k ′

1

z −ω

n−1∑

r=0

(
y ′

y

)r+1−n

(7.2.11)This quantity has to respet the transformation (7.2.7), in partiular letting z enirle e,this must result in a phase shift of bk . Indeed, the produt above yields a fator (yn)−
r+1−n

n 7→
e−2πi r+1−n

n (yn)−
r+1−n

n , whih restrits r to r
!= k, and the sum ollapses to this single term.Extending yn around y ′ n , one obtains

bk (z) ·ck ′(ω) =
(

1

z −ω
−

k+1−n
n

ω−e
+ : bk (ω)ck (ω) :+O(z −ω)

)
. (7.2.12)For k = k ′, this result should be ompared with the de�nition of the urrent

jk (ω) = lim
z→ω

[−bk (z)ck (ω)+ (z −ω)−1] . (7.2.13)Therefore, Knizhnik onludes that the additional term due to the branh point indiatesthe presene of some bakground �eld, serving as a soure for the additional harge qk

jqk
(z) = jk (z)+

qk

z −e
, qk =

k +1−n

n
, k = 1, . . . ,n −1. (7.2.14)

7.2.2 The Twisted RepresentationsMotivated by the disussion above, I will now extend the representation theory of setion3.4.1 to harges with values in the rational numbers, suh that
bk (z)ck (ω)|qk〉 = (z −ω)−1

(ω
z

)qk

|qk〉 . (7.2.15)
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Here, I assume that normal ordering is again de�ned with respet to |0〉 and bk n |qk〉 = 0,
n > 0, ck n |qk〉 = 0, n ≥ 0. This representation is meant to exist loally in a hart around abranh point e whih I have set to e = 0.Due to the monodromy, the �elds in the di�erent setors are supposed to have a new seriesexpansion in this representation

bk (z) =
∑

n∈Z
bk n z−n−qk , ck (z) =

∑

n∈Z
ck n z−n+qk−1 , (7.2.16)whih must have an impat on the omposite �elds. Take for instane the the stress tensor.Firstly, it aquires additional terms

Tqk
(z) = Tk (z)+

1

2

qk(qk +1)

z2
(7.2.17)due to the OPE above. Seondly, it is build from bk and ck whih are now in the represen-tation (7.2.16) on |qk〉. Therefore, the modes gain a shift by the harge qk

Tqk m
=

∑

n∈Z
(n −qk) : bk −n ck n+m : +

1

2
qk (qk +1)δm,0 . (7.2.18)and the �eld modes have new onformal weights [ Tqk 0

, bk n] = (−n−qk) bk n and [ Tqk 0
, ck n] =

(−n + qk ) ck n. On the other hand, [ jqk 0
, bk n] = − bk n and [ jqk 0

, ck n] = ck n , as before,and the U (1) harges are not a�eted. The state |qk〉 has harge qk , onforming with thedisussion in the last setion, and onformal weight 1
2

qk (qk +1), also f. setion 3.4.2.To onlude this setion on the representation theory of the bc-system on |qk〉, notie thatthe U (1) urrent behaves under Möbius transformations as in equation (3.4.14). Therefore,the representation on |qk〉 is not unitary and it inherits the bakground harge q= 1 alreadyobtained in setion 3.4.1.
Twist FieldsFrom the CFT point of view there should orrespond a unique �eld to this representationwhih has the same quantum numbers and whih is �xed at the position of the branh point.Formally, I will denote this isomorphism by the mapping ∗ : µqk

(0)∗|0〉 = |qk〉 wherein µqk
(0)is the �eld orresponding to |qk〉 and |0〉 =

⊗n−1
l=0

|0〉l .4 For onveniene, I will omit the ∗ ina orrelator and write · · ·µqk
(0)∗|0〉 = · · ·µqk

(0)〉0, f. setion 3.4.1.In order to represent a branh point, µqk
(0) should respet the monodromy property ofthe �elds bk and ck , i.e.

bk (e2πiz)µqk
(0) = e−2πiqk bk (z)µqk

(0) ,

ck (e2πiz)µqk
(0) = e2πiqk ck (z)µqk

(0) .
(7.2.19)

4Formally, if V0 is the vector space generated from |0〉 and the fields b,c, Vqk
denotes the vector space on whch the

µqk
are represented, ∗ ∈End(Vqk

)×V0 →Vqk
.
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Consequently, the boundary onditions (7.2.7) are represented on the bc-system by meansof these �elds. If the indued boundary onditions are non-trivial, i.e. qk 6∈Z, it is ommonto all µqk
a �twist �eld� [Gin88℄ and the representation of the bc-system on the respetivestate |qk〉 a �twisted representation�.The monodromy ondition imposed on the �eld µqk

allows for a whole stak of twist �eldswith harge qk +n , n ∈Z, alled �exited twist �elds�. For instane the operator
µqk−1(0) =µqk

(0) bk 0 (7.2.20)de�nes a �eld of harge qk −1 and with onformal weight 1
2

qk (qk +1)−qk . Similarly, otherexited twist �elds an be generated by an ation of the modes of bk and ck . However,beause they are in the same representation of the monodromy group, all these exitedtwist �elds belong to the same representation on |qk〉. The operator µqk
(0) bk 0 is speialsine it formally an be identi�ed with µqk

(0)|1〉, whereby |1〉 is the seond possible, howevernot onformally invariant, vauum representation in the CSb. It played the r�le of thelogarithmi partner of |0〉 in setion 4.1.3. This time, however, the onformal weights of
µqk

(0) and µqk
(0) bk 0 are not the same and both �elds an not be logarithmi partners.

7.2.3 ConclusionDue to the ation of the monodromy group and in addition to the representation on theonformally invariant state |0〉, the fermioni bc-system on T
n,m falls into n representations,eah of whih is omprised by the �elds bk and ck , k ∈ {0, . . . ,n −1}, with the �eld algebradesribed by (7.2.15) and represented on µqk

(e) respetively |µqk
〉. These representationsare loally de�ned in the sense that the �elds µqk

(e) are �xed at a branh point e andthe operator produt algebra (7.2.15) is de�ned in a neighborhood of this point. However,sine the monodromy group is Zn for every branh point, it is su�ient to onsider therepresentation theory in a hart inluding a single branh point. The urrents jk de�nedby the �elds in these representations are single-valued on Σ and yield the same quantumnumbers for any value of k. This is not true for the stress tensor, whih measures di�erentweights depending on the partiular representation.
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On Twist Fields and Torus Periods 8It is the ahievement of M. Flohr to have related the twisted bc-system on T
2,2 to SU (2)SW theory, [Flo98, Flo04℄. Thereby, he took three ruial steps. Firstly, Flohr �released�the twist �elds and onsidered the branh points as dynamial degrees of freedom on CP

1.As a onsequene, the question arised how the operator produt algebra gets enlarged whenOPEs between these �elds are taken into aount and whih �elds must be added in orderto lose this algebra. The answer to this question was the seond step Flohr had taken, heproposed that the bc-system on the torus should be identi�ed with the so-alled triplet model[GK96, Roh96, Kau95℄. Finally, he argued that if the bc-system on the torus is identi�edwith the triplet model it is possible to desribe the main data of SU (2) SW in terms oforrelation funtions of this theory.In this hapter I will motivate the hoie of the triplet model but take a more geometriapproah than that of Flohr. From this will follow that it is neessary to release the twist�elds in order to desribe the fundamental parameters of the torus (its periods and theirratio). As a onsequene I will then further dedue that the bc-system on the torus must beextended to a logarithmi CFT, and the triplet model will be the minimalisti extension.In the �rst setion, I will release the branh points and transform the algebrai urve T
2,2into the �Legendre family�. This formulation is anonial in order to study small movementsin the moduli spae of tori. In partiular, the periods of the tori satisfy a hypergeometridi�erential equation in the moduli parameter [CMSP03℄.In the following setion 8.2, I will identify this di�erential equation with the nullvetorondition on the twist �eld µ− 1

2
[Flo98, Flo04, Flo03, Gab03℄, whih again relies on thepossibility that the branh points may vary. This will explain why it is neessary to extendthe bc-system to an LCFT.The hapter will be onluded with a brief disussion of the representation theory ofthe bc-system and a brief introdution of the triplet model as the minimalisti logarithmiextension inludeing the twist �elds.

8.1 The Legendre FamilyThe algebrai urve T
2,2 an be transformed into a polynomial of third order

Eλ : y2(z;λ) = z(z −1)(z −λ) , λ ∈CP
1 \ {∞,0,1} (8.1.1)
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by means of SL(2,C) transformations of z and y .1 Indeed, every ompat Riemannian surfaeof genus one is the set of zeros of a polynomial of this form for some λ [Jos02, FB00℄.Therefore, the moduli spaes of the two desriptions of tori are equivalent, T2,2 ≃ Eλ. Thebranh points are now positioned at {∞,0,1,λ}, and Eλ an be onsidered to be parametrizedby λ ∈CP
1 \{∞,0,1}. This makes the Legendre family partiularly nie to study variations ofthe orresponding equivalene lasses of tori as funtions of λ, or to study the singularitiesof Eλ whih are evident in terms of λ. I will denote the spae ME = CP

1 \ {∞,0,1} as themoduli spae of the Legendre family Eλ, with oordinate λ.
8.1.1 Relation to the Lattice TorusIn what sense an a variation in λ evoke a movement between di�erent equivalene lassesof tori? The anonial parameter to distinguish or identify equivalene lasses of tori is theratio τ of the periods of a torus in the lattie desription.Below I will argue that eah non-singular member of the Legendre family is equivalent toa lattie torus

C/Lλ− {[0]} , Lλ = { mΠD (λ)+nΠ(λ) , τ(λ) =±
ΠD (λ)

Π(λ)
, ℑ(τ) > 0, m,n ∈Z } , (8.1.2)whereby the hoie of sign in the de�nition of τ is suh as to ustomize ℑ(τ) > 0 [FB00℄.Without loss of generality I will assume that after some resaling of the periods I mayhoose the plus sign. The periods of Lλ are desribed in terms of ohomology lasses of Eλ.The di�erential form

̟(z;λ) =
dz

y(z;λ)
(8.1.3)is holomorphi and without zeros on Eλ .2 Therefore, it is losed with respet to the de

1Without loss of generality, e4 6= 0. Apply the following transformations and some redefinition of y

z 7→
e4z

z +e−1
4

⇒ y2 7→ y ′ 2 =
3∏

i=1

(e4 −ei )(z −u1)(z −u2)(z −u3) , ui = ei [e4(e4 −ei )]−1 .

The change of variables z 7→ (u1 −u2)z +u1 and another appropriate redefinition of y ′ yield the desired result,

whereby λ= u3−u1
u1−u2

.
2This is most obvious in the Weierstrass formulation of Eλ, [FB00]. Let Lλ be the lattice corresponding to Eλ. One

may again redefine Eλ by z 7→ 41/3z + λ+1
3 which yields the Weierstrass normal form

X (g2 , g3) : y2 = 4z3 −g2 z −g3 , y, z ∈C

g2 = 41/3

3
(λ2 −λ+1), g3 = 1

27
(λ+1)(2λ2 −5λ+2).

(8.1.4)

This curve is called Weierstrass normal form because the Weierstrass function

℘(z) = 1

z2
+

∑

ω∈Lλ\{0}

(
1

(z −ω)2
− 1

ω2

)
, (8.1.5)

satisfies the differential equation

℘′(z)2 = 4℘(z)−g2℘(z)−g3℘(z) . (8.1.6)
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Rham di�erential and has a well de�ned ohomology lass. By means of de Rham duality,this ohomology lass an be de�ned to be the dual of some homology lass in H1(Eλ,Z),whih, without loss of generality, is generated by the yles as depited below,
α β

PSfrag replaements
∞ u10and with intersetion number 1. Denote by α∗ and β∗ the basis for H 1(Eλ,Z) dual to α and

β, i.e. ∫
αα

∗ = 1, ∫
αβ

∗ = 0. The ohomology lass of ̟ is given by an expansion in this basisas
[̟] =α∗

∫

α
̟+β∗

∫

β
̟ . (8.1.7)Thus, if [γ]∈ H1(Eλ,Z), [γ]= mα+nβ , m,n ∈Z one �nds that

∫

[γ]
[̟] = m

∫

α
̟+n

∫

β
̟ . (8.1.8)Sine the ellipti integrals like ∫

α̟ take their values on Lλ (f. the explanation in the footnoteon pg. 96), I an identify
ΠD (λ) =

∫

α
̟ , Π(λ)=

∫

β
̟ (8.1.9)and interpret (8.1.8) as the representative for [γ] on C/Lλ.

8.1.2 A Differential Equation for the PeriodsThe homotopy lass [̟(λ)] and, if the yles are �xed, also the periods ΠD and Π, satisfy ahypergeometri di�erential equation
λ(λ−1)

d2̟(λ)

dλ2
+ (2λ−1)

d̟(λ)

dλ
+

1

4
̟(λ) = 0, (8.1.10)whereby ̟ is the representative of [̟] and the di�erential equation is zero up to exat forms.The following nie proof is taken from [CMSP03℄. The quantity [̟(λ)] =ΠD (λ)α∗+Π(λ)β∗an be interpreted as a di�erential form on

H 1(E ,Z) :=
⋃

λ∈CP1\{∞,0,1}

H 1(Eλ,Z) . (8.1.11)

The Weierstrass function is periodic in Π and ΠD and is defined on C/Lλ. It induces a conformal equivalence

between X (g2 , g3) and C/Lλ− {[0]}, via [z] 7→ (℘(z),℘′(z)), whereby [0] is taken out since ℘ has a pole at this point

[FB00]. Let γ(t) be a curve onC/Lλ which does not pass a zero of℘′. Omitting [·] for convenience, dγ(t) = ℘′(γ)
℘′(γ)

dγ=
d℘(γ)
℘′(γ)

, and the elliptic integral E(γ) =
∫
γ

d℘
℘′ is formally the inverse of ℘, mapping X (g2 , g3) to C/Lλ. This integrand,

restricted to a curve which is not passing a zero of ℘′, is a holomorphic one form and thus closed. It can be

identified with ̟ on Eλ.
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The derivative ∂λ = d
dλ

denotes the the ovariant di�erential on this spae, whereby theonnetion is hosen suh that α∗ and β∗ are (loally) onstant. Then, formally, ∂λ[̟(λ)] =
∂λΠD (λ)α∗ +∂λΠ(λ)β∗ = [∂λ̟(λ)]. For this relation to make sense, one has to prove that
∂λ̟(λ) is indeed a representative of a ohomology lass of E . Take the representative ̟(λ),then

∂λ̟(λ) =
1

2
[z(z −1)(z −λ)3]−

1
2 dz (8.1.12)is a meromorphi one-form. However, its pole has a multipliity greater equal two at (y, z)=

(0,λ) =: P , suh that it nevertheless de�nes a ohomology lass. Namely, in a neighborhoodof P , y(z) is invertible and one an write y2 = h(y)
λ(λ−1) (z(y)−1), whereby h(y) is holomorphiin y and h(0) = 1. Solving for z and expanding h(y)−1 around y = 0 yields z = λ+O(y2).Now, with y2(z) = p(z) one has ̟ = 2

dy

∂z p(z) , and inserting the approximation for z yields
̟= 2

dy

λ(λ−1)
+O(y−2). Thus, plugging in again z −λ=O(y2),

∂λ̟(λ) =
1

2

̟(λ)

z −λ
=

dy

λ(λ−1)(z −λ)
+O(y−2) ∼

dy

λ(λ−1)y2
+O(y−3) . (8.1.13)The following remarks onlude the proof. By Stokes theorem, the residuum of a one-formdepends only on the ohomology lass. Therefore, the sequene

0→ H 1(E ,Z)
rest r i ct i on−→ H 1(E \ {P },Z)

∮
P→ 0. (8.1.14)is exat and ∂λ̟(λ) is a ohomology lass on E and not just on E \{P }. Sine ̟ and ∂λ̟ areboth ohomology lasses and H 1(E ,Z) has two generators, every other ohomology lass anbe expanded in these two. In partiular

A(λ)∂2
λ̟+B (λ)∂λ̟+C (λ)̟= 0, (8.1.15)modulo an exat form. A alulation reveals that f = [z(z − 1)(z −λ)−3]

1
2 satis�es d f =

(z −1)∂λ̟+ z∂λ̟−2z(z −1)∂2
λ
̟. Using z = z −λ+λ in this equation and (z −λ)∂λ̟ = 1

2̟,
(z −λ)∂2

λ
̟= 3

2∂λ̟ yields the di�erential equation for the periods.
8.1.3 Solutions for the PeriodsThis di�erential equation is a speial ase of the hypergeometri equation

(
λ(λ−1)

d2

dλ2
+ [(a +b +1)λ−c]

d

dλ
+ab

)
F = 0, (8.1.16)with a = b = 1

2 and c = 1. Its solutions are the hypergeometri funtions F (a,b;c |λ), lassi�edfor instane in [E+85℄. In the ase under onsideration, the solution spae may be spannedby the funtions
F1(λ) = F ( 1

2 , 1
2 ;1|λ) , F2(λ) = iF ( 1

2 , 1
2 ;1|1−λ) . (8.1.17)
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Erdelyi de�nes the funtion F ( 1
2

, 1
2

;1|λ) by an integral representation whih yields an analyti,single-valued funtion on C\R≥0 [E+85℄. Its loal form in a neighborhood of λ= 0 equals
F ( 1

2
, 1

2
;1|λ) =

1

π

∞∑

n=0

(
Γ( 1

2
+n)

Γ( 1
2 )n!

)2

[kn − log(1−λ)](1−λ)n , (8.1.18)whereby |1−λ| < 1 , |arg(1−λ)| <π and
kn = 2ψ(n +1)−2ψ( 1

2 +n) , ψ(λ) = ∂λ logΓ(λ) . (8.1.19)In this shape (8.1.18), it is evident that the solutions F1 and F2 of the di�erential equationfor the periods have logarithmi singularities at λ= 1 and λ= 0, respetively.Both solutions F1 and F2 get, however, mixed whenever λ passes the branh ut between
0 and 1. The results are again taken from [E+85℄, who used the relation

1

2
πF1(λ)−

i

2
log (1−λ)F2(λ) =

1

2

∞∑

n=0

(
Γ( 1

2
+n)

Γ( 1
2 )n!

)2

kn(1−λ)n , (8.1.20)to obtain
µ0 :

(
F1

F2

)
7→

(
1 0

2 1

)(
F1

F2

)
, µ1 :

(
F1

F2

)
7→

(
1 −2

0 1

)(
F1

F2

)
, (8.1.21)whereby µ0 and µ1 denote the operation of enirling the branh points 0 and 1, one.The group generated by the matries above is alled the �global monodromy group� of Eλ[CMSP03℄. Due to the monodromy property, the hoie of the solutions F1 and F2 has nofundamental meaning. Indeed, given the lattie de�ned by the periods F1, F2, all latties inthe orbit of the monodromy group are idential. For this reason, the periods orrespondingto di�erent algebrai surfaes are lassi�ed by the global monodromy groups and vie versa.

8.2 LCFT-fication of the Legendre FamilyThe Legendre family has a �oating branh point, whereas in Knizhniks approah all branhpoints were �xed. Therefore, in order to �nd a �eld theoreti expression for the periods, Iwill now reinvestigate the fermioni bc-system on T
2,2 and reformulate the branh points asdynamial degrees of freedom. Behind this work stands a pile of publiations on the LCFT at

c =−2, on my table are staked up in partiular the referenes [Flo98, Flo03, Flo04, Kau95,Gab03, Gur93℄.Until now, the bc-system on T
2,2 onsists of two di�erent loal representations |q0/1〉 inevery hart whih ontains a branh point, and one globally de�ned representation on |0〉with support on Σ. The following list summarizes the representations and �elds I have
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disussed in hapter 7:reps. harges J weights ∆ �elds domain
|0〉 0 0 1(z) Σ

|0̃〉 := |q1〉 0 0 1̃(ei ) :=µ0(ei ) {ei }

|µ〉 := |q0〉 −1
2

−1
8

µ(ei ) :=µ− 1
2

(ei ) {ei }

|σ〉 := b0 0 |q0〉 −3
2

3
8 σ(ei ) := b0 0µ− 1

2
(ei ) {ei }

(8.2.1)Only, the latter two rows denote twist �elds, whereas the �rst representations have trivialmonodromy. Notie that the untwisted representations have the same quantum numbers andmight be logarithmi partners, whereas this is not true for the twist �elds. The dynamial�elds represented on these spaes are the �elds b(z) and c(z). I have distinguished theirrepresentations by an index k suh that for instane b(z) denoted the representation on |0〉and bk (z) the representation on |qk〉. For onveniene I will now drop this index.It is neessary to release the �elds representing the branh points in order to reproduethe situation of the Legendre family. The branh point oordinates and orresponding �eldsmay then move on CP
1, and the bakground �elds beome additional dynamial quantities.In this sense, the orresponding loal representations beome global representations on Σand by a onformal transformation of the algebrai surfae as desribed in the last setion,one may identify {ei }i=1,...,4 = {0,1,∞,λ} ∈CP

1, λ ∈ME .As soon as twist the �elds related to the branh points are released, the question ariseswhat the operator produt algebra looks like. In partiular, I would like to be able toalulate orrelation funtions of the kind
{
〈

s∏

l=1

Ol

n∏

i=1

φi (zi )
m∏

j=1

µqk j
(ω j )〉 6= 0,

zi ∈Σ , ω j ∈CP
1

∑
i J(i )+

∑
j J( j )+

∑
k J(l )] =−1

}
, (8.2.2)whereby φi an be b(z) or c(z) and 〈·〉 = 0〈·〉0, f. setion 3.4.1. The ondition ∑
i J(i )+

∑
j J( j )+

∑
k J(l ) =−1 is neessary to anel the bakground harge q= 1. This is aomplished by theoperators Ol , whih denote any non-dynamial quantities and whih I will all �sreeningoperators�, for this reason. For instane, b0 is a sreening operator in 〈b01(z)〉 = 〈0|1〉 = 1.

8.2.1 A Hypergeometric Equation for the Twist FieldsFor the moment, I am interested in orrelation funtions inluding the twist �elds µ− 1
2
.They are promising andidates to simulate the periods of the Legendre family beause theyintrodue some monodromy and, hene, mimi the non-trivial behaviour of the branh points.To alulate orrelation funtions, it is helpful to searh for restritions suh as nullvetoronditions. Indeed, the representation |µ〉 satis�es a nullvetor ondition at level 2

(T−2 +2T 2
−1)|µ〉 = 0, (8.2.3)
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whih signi�es that the four-point funtion has to satisfy a hypergeometri di�erential equa-tion [Gur93, Flo03℄,
〈c0 µ(∞)µ(1)µ(0)µ(λ)〉 =λ

1
4 (λ−1)

1
4 F (λ) ,

λ(λ−1)
d2F (λ)

dλ2
+ (2λ−1)

dF (λ)

dλ
+

1

4
F (λ) = 0.

(8.2.4)Thus, up to a prefator, the four-point funtion of the µ �elds reprodues the periods of theLegendre family and, without loss of generality, I hoose the two solutions to be F1 and F2as in (8.1.3). The orresponding four point funtions now equals
〈c0 µ(∞)µ(1)µ(0)µ(λ)〉k =λ

1
4 (λ−1)

1
4 Fk(λ) , k ∈ {1,2} , (8.2.5)and should be ompared with

Π(λ) = F ( 1
2 , 1

2 ,1|λ) , ΠD (λ) = iF ( 1
2 , 1

2 ,1|λ) . (8.2.6)Consequently, the orrelation funtions above and the periods of the Legendre family de�neequivalent tori and their quotient yields the same fundamental parameter3
τ(λ) =

ΠD (λ)

Π(λ)
=

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉2

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉1
(8.2.7)Applying the monodromy group (8.1.21), I an rede�ne the periods without hanging theunderlying lattie torus. In this respet, the �onformal bloks� in the orrelation funtionsare not uniquely determined.

8.2.2 The Necessity of a Logarithmic ExtensionThe neessity for a logarithmi extension of the bc-system on the torus an now be seenfrom the operator produt expansion between the twist �elds, whih was originally derivedby V. Gurarie [Gur93℄. To explain this, I will, however, follow a publiation of M. Gaberdielin [Gab03℄. A general solution of the nullvetor ondition equals
F (λ) = A F1(λ)+B [F1(λ) log (λ)+H (λ)] , (8.2.8)whereby F1 and H are regular at z = 0, and I used (8.1.20) as well as λ 7→ 1−λ to reformulate

F2(λ) = i
π

(
F1(λ) logλ+H

). In the expression above it is immediate that the OPE betweentwo �elds µ must ontain logarithms and splits into two parts. Namely, if two of the �elds inthe four-point funtion are shifted to a neighborhood of in�nity and treated as a bakground�eld Ω(∞), the orrelation funtion still has to respet the OPE by its de�nition. Thus,
µ(z)µ(ω) = (z −ω)

1
4 (φ1(ω)+φ2(ω) log (z −ω)) , (8.2.9)

3Two tori are equivalent, iff their lattices differ by some nonzero complex number L = aL′, a ∈ C \ {0}. This is more

general than saying that two tori are identical, i.e. L = L′. The identical tori are related by the global monodromy

group, cf. section 8.1.
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with A = 〈Ω(∞)φ1(0)〉 , B = 〈Ω(∞)φ2(0)〉. Gaberdiel uses a further trik whih allows todetermine the �elds φi . He lets λ enirle 0 in the OPE with the other twist �elds shiftednearby in�nity, whih yields
〈Ω(∞)e2πiT0µ(λ)µ(0)〉 =λ

1
4 (A+2πiB +B log(λ)) . (8.2.10)Thus, with φi |0〉 =: |φi 〉 he obtains

T0|φ2〉 = 0, T0|φ1〉 = |φ2〉 . (8.2.11)I have enountered suh an equation already in (4.1.10) and thus may onlude that thefermioni bc-system on the torus unavoidably has to be logarithmially extended, whereby
φ2(z) = 1(z) and φ1(z) = Ψb(z), f. hapter 4. The �elds 1(z) and Ψb(z) have the sameonformal weights and U (1) harges, as is demanded for logarithmi partners of the Vira-soro algebra. In (8.2.1) already appears a set of �elds and representations subjet to thatonstraint. Therefore, I laim that for the fermioni bc-system on Eλ,

µ(z)µ(ω) = (z −ω)
1
4 (1̃(ω)+1(ω) log (z −ω)) ,

1̃(z)=Ψb(z) , |0̃〉 = b0|0〉⊗ǫ|0〉K ,
(8.2.12)and all �elds in the untwisted setor have to be logarithmially extended in analogy withhapter 4.

8.3 The Triplet ModelThe triplet model is an LCFT whih ontains the logarithmially extended untwisted setoras well as the twisted representations [GK96, Roh96, Kau95℄. To the best of my knowledge,this model is in addition the LCFT whose operator produt algebra loses on the represen-tations noted down in (8.2.1) with a minimal amount of additional representations added.Its basi ingredient is an additional symmetry whih restrits and ontrols the possible rep-resentations. In order to make this expliit, I will omment on the means whih restrit therepresentation spaes of a onformal �eld theory. Therefore, I will �rstly introdue what Iunderstand under a physially eligible representation, and thereafter disuss the impat ofthe additional symmetries and nullstate onditions whih lead to the triplet model.
8.3.1 Symmetries and RepresentationsThe OPE of the twist �elds ould be reonstruted due to a nullstate ondition whih madeit neessary to extend the representation of the fermioni bc-system on |µ〉 by |0〉 and |0̃〉.Behind this stands a general feature of CFTs. Sine the �elds and states are supposed
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to be isomorphi, obtaining knowledge of the operator produt algebra of the �elds andstudying the possible representation spaes are two sides of the same medal. This knowledgeis basially dedued from nullstates and symmetries. To explain how this works, I mustspeify what I understand under a �physially relevant� representation spae.In setion 3.4.1, I have de�ned a olletion of representations on harged states |p〉,however, not all of them are �physially� reasonable. In the situation of a CFT for instane,the �physial� representation spaes should be build on states whih preserve onformal sym-metry. This ondition would have restrited the bc-system to be build solely on |0〉, whihis the only SL(2,C) invariant state among the states |p〉, p ∈Z. On the other hand, sine the
bc-system breaks unitarity, it is not possible to onstrut a thoroughly �physial� theory,anyway, and it was neessary to inlude the dual state 〈1| to aount for the bakgroundharge. Therefore, I will restrit the representations as follows:
Restriction by Symmetries:Let C ∪S be some operator produt algebra of holomorphi �elds, whereby I have extratedthe part S onsisting of the symmetry generators T , for the interior Virasoro symmetry,and Sa(z) , a = 1. . . A for additional exterior symmetries. These symmetries are subjet to
[Sa

0 ,T0] = 0, [Sa
0 ,Sb

0 ] = 0, and I assume that there exists a unique SL(2,C) invariant state |0〉, onwhih they are diagonal. In the spirit of the onsequenes a logarithmi deformation alongthe lines of [FFH+02℄ implies, I understand by a physially eligible representation (PER) of
C ∪S a multiplet M (φ)K of vetors |φ,k〉 , k = 1, . . . ,K subjet to the following onditions:

➀ REPRESENTATION OF THE OPA: In the representation on M (φ)K , the �elds in C have amode expansion
Φ(z) =Φ

(naive)(z)+ Φ̃(z) , Φ
(naive)(z)=

∑

n∈Z
Φn z−n−∆T (Φ)whereby Φ̃∈ End(M (φ)K )((z, z−1))[log z]. For all k, |φ,k〉 is annihilated by Φn , Φ̃n , n >

0.4 The set of states {|φ,k〉 ∈ M (φ)K : Φ̃(z)|φ,k〉 = 0} is not empty. The operatorprodut algebra of the �elds in C is represented on |φ,k〉 ∀ k.
➁ INTERIOR SYMMETRY: On every |φ,k〉, the �eld T an be deomposed as

T (z) = T (naive)(z)+g(z) ,suh that the ation of the �eld modes in T (naive) =
∑

n∈ZT (naive)
n z−n−2 on |φ,k〉 doesnot lead out of the k th setor, and the zero mode is diagonal. The other �eld g(z) ∈

End(MK )((z, z−1)) permutes the elements of the multiplet. Hene, the eigenvalue ∆φ of
T (naive)

0 is a quantum number of M (φ)K . Moreover, I assume that the OPA of T with the
4In order to avoid indices which are not integers, I do not assume that the field modes Φn have conformal weight −n.
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�elds in C is preserved and that there exists some |φ,k〉 ∈ {|φ,k〉 ∈ M (φ)K : Φ̃(z)|φ,k〉 = 0}suh that g(z)|φ,k〉 = 0.
➂ EXTERIOR SYMMETRY: I assume that the �elds Sa(z) ∈ S have expansions and repre-sentations of the kind

Sa (z) = Sa (naive)
(z)+gSa (z) (8.3.1)with ga

S ∈ End(MK )((z, z−1))[log z]. The �elds Sa (naive) and gSa shall enjoy analogueproperties as were demanded for T on any |φ,k〉. The onditions [ Sa (naive)
0 ,T (naive)

0 ] = 0and [ Sa (naive)
0 , Sb (naive)

0 ] = 0 shall be valid suh that the eigenvalues of Sa (naive)
0 are quan-tum numbers of M (φ)K . I do further assume that there exists some �non-logarithmi�states |φ,k〉 ∈ {|φ,k〉 ∈ M (φ)K : Φ̃(z)|φ,k〉 = 0 = g(z)|φ,k〉} subjet to gSa (z)|φ,k〉 = 0 ∀a.

➃ FIELD-STATE CORRESPONDENCE: There exists an isomorphism ∗ suh that φk (0)∗|0〉 =
|φ,k〉 ∀ k de�nes an element φk ∈ End(Mk )((z, z−1))[log z]. I assume that the symmetrygenerators T (z) and Sa(z) have OPEs with the �elds φk whih take the generi formfor the naive �elds and do not lead out of the representation. Consequently, φk hasthe same quantum numbers as |φ,k〉 with respet to T (naive) and Sa (naive). The OPE of
g(z) and gSa (z) with φk , ontains �elds φk ′ , k 6= k ′ or their derivatives, orrespondingto the ation of those operators on a state |φ,k〉.

➄ IRREDUCIBILITY: If there exist isomorphi representations MK ≃ M ′
K , i.e. the �eldalgebra C ontains a bijetive linear mapping between the modules generated from Con these spaes, I treat them as equivalene lasses and �hoose� the set of vetors whihis annihilated by the maximal amount of symmetry generators T (naive)

n , S(naive) a
n , n ∈Zas representative.By this means it is lear that the PERs are also representations of ertain symmetries andan thus be lassi�ed and restrited.

Some Examples The holomorphi- antiholomorphi fermioni bc-system of hapter 4 hasfour PERs if the zero modes b, b̄ and c , c̄ are exluded. The states |0,0〉 and |1,1〉 yield adoublet, the o�-diagonal states |0,1〉 and |1,0〉 singlet representations. The representationswith higher harge are not PERs, beause there exist modes in the �eld algebra whih atas isomorphisms. If, as desribed in hapter 4, it is logarithmially extended, the PERs arepreserved. The reason is that even though the modes b0 and b̄0 enter the extension �elds,these an not add to the �eld algebra, for it would break Möbius ovariane, f. setion4.1.3.Similar arguments for other senarios lead to the following tabular, wherein �+� denotesthe theory with zero modes, �−� the theory without zero modes and all states without tildeor ǫ are non-logarithmi:
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bc-system unextended PERs logarithmially extended PERsholo + |0〉
{
|0〉, |0̃〉

}holo − |0〉 , |1〉
{
|0〉, |0̃〉

}
, |0〉⊗ǫ|0〉K , |1〉⊗ |0〉Kholo-anti + |0,0〉 { |0,0〉, |1,1〉 }holo-anti − { |0,0〉, |1,1〉 } , |0,1〉 , |1,0〉 { |0,0〉, |1,1〉 } , |0,1〉 , |1,0〉

Restriction by NullstatesThis exampli�es that the ondition of irreduibility puts onstraints on the theory. Anotherexample is the twist state |µ〉, whih has a potential subrepresentation on a nullstate, f.setion 8.2.1. This state was, however, idential to zero, suh that the submodule generatedby it already was exluded. Still, it may happen that there are subrepresentations on ve-tors |N 〉 ∈ spanC

{∏
n,i φi ni

|0〉} : φi ni
∈C ∪S , ni < 0

} whih do not vanish identially. Themodules build on suh vetors must be divided out, whih is e�etively the same as setting
|N 〉 = 0. This must be aompanied by the ondition that any orrelation funtion whihinludes the �eld N (z) orresponding to |N 〉 must vanish, and this is equivalent to requiringthat in the representation on any M (φ)K

gN (z)|φ,k〉 = 0, N (naive)
0 |φ,k〉 = 0, ∀k . (8.3.2)If N (naive)

0 is onstituted by the zero modes of ertain symmetry generators, this restrits thepossible eigenvalues of those generators and thus the possible representation spaes.
8.3.2 Realization of the Triplet ModelThe triplet model results from an additional SU (2) symmetry in the logarithmi fermioni
bc-system.5 The additional symmetry introdues new nullstate onditions and thus restritsthe PERs [GK96, Roh96, Kau95℄.The su(2) Lie algebra is realized in terms of the (naive part of the) zero modes of the �eldgenerators W a

n orresponding to the �elds6
W 1(z)=−∂2

z e(z)∂z e(z) ,

W 2(z)=
1

2

[
∂2

z e(z)∂z b(z)+∂2
z b(z)∂z e(z)

]
,

W 3(z)=−∂2
z b(z)∂z b(z) .

(8.3.3)

5This also works for the non-logarithmic fermionic bc-system without zero modes, which is a special case.
6For the logarithmic case, one may set b0 = 0 = c0, ad libitum. If the non-logarithmic situation is considered, set in

addition ǫ= ρ = 0.
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The �eld modes W a
n extend the Virasoro algebra by

[T m ,T n] = (m −n)T m+n −
1

6
m(m2 −1)δm,−n ,

[T m ,W a
n ] = (2m −n)W a

m+n ,

[W a
m ,W b

n ] = g ab

(
2(m −n)Λm+n +

1

20
(m −n)(2m2 +2n2 −mn −8)T m+n

−
1

120
m(m2 −1)(m2 −4)δm,−n

)

+ f ab
c

(
5

14
(2m2 +2n2 −3mn −4)W c

m+n +
12

5
V c

m+n

)
,

(8.3.4)

whereby Λ(z) =: T 2(z) : − 3
10∂

2
z T (z) and V a(z) =: T (z)W a (z) : − 3

14∂
2
zW a (z). The metri is sym-metri with g ab =δab and the struture onstants are those of su(2), namely f ab

c = iǫabc .Gaberdiel and Rhosiepe also note down the nullstates whih are deisive for the determi-nation of the possible representations. The ondition that the zero modes of the naive partof the orresponding null�eld on a PER be zero yields
∆

2
φ(8∆φ+1)(8∆φ−3)(∆φ−1) |φ,k〉 = 0 (8.3.5)for arbitrary multiplets M (φ)K , and is aompanied by

[W a
0 ,W b

0 ](naive) |φ,k〉 =
2

5
(6∆φ−1) f ab

c W c (naive)
0 |φ,k〉 . (8.3.6)Consequently, the only allowed PERs fall into representations of su(2) and are states withhighest weights {

0,−1
8

, 3
8

,1
}. This extends the representations listed in (8.2.1) in a minimal-isti way.

8.3.3 CharactersIn the next hapter I will determine the prepotential of pure gauge, SU (2) Seiberg-Wittenin terms of some haraters of the triplet model. Therefore, I will onlude this hapter byquoting the ones relevant for my onsiderations.H. G. Kaush, [Kau95℄, proposed that ertain primary �elds in the Ka table, for instanethose in the �augmented� minimal model c6,3 with onformal weights
∆r,s =

1

8
((2r − s)2 −1), 0 < r < 3, 0 < s < 6, (8.3.7)an be identi�ed with the �elds appearing in the non-logarithmi triplet model. Indeed,the �elds in the augmented minimal model have the orret quantum numbers and the �eldwhih by suh is the analogue of µ also has the orret nullstate ondition, f. [Flo03, RRS08℄.
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By this analogy, Kaush onluded that the haraters of the non-logarithmi triplet modelare those of the augmented minimal model
χ− 1

8
(q)=

Θ0,2(q)

η(q)
, χ 3

8
(q)=

Θ2,2(q)

η(q)
,

χ0(q) =
1

2

(
Θ1,2(q)

η(q)
−η2(q)

)
, χ1(q) =

1

2

(
Θ1,2(q)

η(q)
+η2(q)

)
,

(8.3.8)with Jaobi-Riemann theta funtions Θr,s (q) =
∑

n∈Z q
(2kr+s)2

4s , Dedekind η funtion de�ned by
η(q) = q

1
24

∏
n∈N(1−qn) and q = e2πiτ. The parameter τ is the modulus of some lattie torus.These haraters were ompleted by [GK96, Flo96℄ to math with the logarithmiallyextended triplet model. However, I will not make use of the additional haraters and referthe interested reader to the literature just ited.Now, I have everything together to relate the triplet model to Seiberg-Witten theory.
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Relation to Seiberg-Witten Theory 9In this hapter I will determine the spetral torus of pure gauge, SU (2) Seiberg-Wittentheory in terms of haraters of the triplet model. Moreover, I will obtain the prepotentialas a funtion of the torus modulus τ, whih an be expressed as the ratio of the four-pointfuntions of the twist �eld µ in this theory, (8.2.7). It follows, that this spei� Seiberg-Witten theory is ompletely determined by the triplet model.Firstly, I will start with a brief introdution to Seiberg-Witten theory and disuss its spe-tral urve. The relation to the triplet model will be disussed in setion 9.2 and summarizesthe results of [VF07℄.
9.1 Some Words on Seiberg-Witten TheoryIn [SW94℄, N. Seiberg and E. Witten derived the full prepotential F (inluding instantons)of the low energy e�etive ation for N = 2 supersymmetry with gauge group SU (2). Interms of N = 1 �elds, this theory is desribed by a family of Lagrangians

LA =
1

8π
ℑ

(∫
d4θ Ā AD +

∫
d2θ τ(A)W αWα

)
, AD =

dF (A)

dA
, τ=

d2
F (A)

dA2
. (9.1.1)The spaetime metri has a Minkowskian (mostly minus) signature and, with the exeptionthat I use another normalization for the Pontrjagin index, 1

8π2

∫
S4 F ∧F ∈Z [Ber96℄, I stik tothe onventions of [Bil96℄. The prepotential F is holomorphi in the expetation value A ofthe N = 1 hiral multiplet 〈Φ〉 = 1

2 Aσ3.The Lagrangian above has its domain on the e�etive vauum on�gurations while themassive Goldstone bosons are integrated out. By the term �e�etive vauum� I mean thatfor nonvanishing values of 〈Φ〉 the SU (2) gauge symmetry is broken to U (1) and the thusobtained �eld on�gurations do not enjoy the full symmetry of the theory. Furthermore, assoon as the salar �eld is in an e�etive vauum on�guration, all other partiles have thesame property for they belong to the same N = 2 multiplet.In the following I will only motivate the basi geometri fats whih lead to the spetralurve of this theory and to its interpretation as a torus. The reader interested in the details,is refered to the literature [Bil96, SW94, DP99, Ler97℄. Afterwards, I will relate the spetraltorus to the triplet model.
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9.1.1 The Spectral Curve of SW TheoryThere is a remnant of the larger SU (2) symmetry hidden behind the hoie of A, namelyunder rotations by π around the �rst or seond axis of the gauge group, A 7→ −A and theseare equivalent gauge on�gurations. Thus, rather than 〈Φ〉, it is reasonable to onsider theCasimir 〈tr Φ
2〉 as a gauge invariant parameter. If φ is the salar �eld in the hiral multiplet

Φ, the Casimir yields some u = 〈tr φ2〉. The parameter spae of u ∈C onstitutes the modulispae of gauge inequivalent e�etive vaua MSW , and thus of the family LA(u) =Lu . Formallyone an add {∞} to MSW , whih is a singular point for Lu .In general, the moduli spae MSW has singularities at those values of u at whih thee�etive ation is not de�ned or inadequate to desribe the massless setor. Besides {∞},these are the points u at whih massive �eld modes whih have been integrated out turnmassless, f. [SW94, Bil96, DP99, Ler97℄.Seiberg and Witten argued [SW94℄ that there should exist two additional singular points
{s,−s}∈MSW , suh that

MSW =CP
1 \ {∞, s,−s} . (9.1.2)The parametrization in terms of u = 〈tr φ2〉 seems to make the setting more di�ult. Thereason is that the inverse of 〈φ〉 7→ 〈tr φ2〉 has two roots in terms of u. Indeed, the analysis ofSeiberg and Witten revealed that the paramtetrization in 〈φ〉 yields a two-sheeted overingof MSW . Therefore, A, AD and in partiular F are not single-valued in u.The partile spetrum for Seiberg-Witten theory is bound to satisfy the mass formula[DP99℄

Z (u)=na(u)+maD(u) , (9.1.3)whereby a and aD are the salar �eld omponents in A and AD , respetively, n orrespondsto an eletri harge and m to a magneti harge. By this means, the spetrum an be reado� from some lattie torus. In addition, ℑ(τ(u)) > 0 by requiring that ℑ(τ) shall serve as ametri on the spae of vauum on�gurations a and aD [Bil96, SW94℄. The relation above(9.1.3) is the spetral torus desribing the massive partiles in Seiberg-Witten theory. Thesingularities in MSW orrespond to those values of a and aD for whih the torus beomessingular.
9.1.2 Modular TransformationsThe spetral torus does only deserve its name �torus�, if it is possible to prove that thephysis behind it is invariant under modular SL(2,Z) transformations. As already mentionedin setion 8.2.1, the orbit of a lattie torus under SL(2,Z) ollets all equivalent tori. Thus, Iwill in the following explain that the partition funtion of Seiberg Witten theory is modularinvariant.
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The Lagrangians
LA =

1

8π



∫

d2θ ℑ
[
τ(A)W αWα

]
+

1

2

∫
dθ4

(
AD

A

)†

I

(
AD

A

)
 , I =

(
0 i

−i 0

)
(9.1.4)are invariant under (

AD

A

)
7→ M (n)

(
AD

A

)
, M (n)=

(
1 n

0 1

)
, n ∈Z . (9.1.5)While M †I M = I , one obtains a shift of the oupling onstant τ= θ(u)

2π
+ 4πi

g 2(u)

τ=
dAD

dA
7→ τ+n (9.1.6)whih adds an, however, irrelevant term to the theta angle

τ(u)+n =
θ(u)+2nπ

2π
+

4πi

g 2(u)
. (9.1.7)To see this, I have used the onventions of Bilal, W αWα|θ2 = 1

4
(Fµν− iF̃µν)(Fµν − iF̃µν)+ . . .[Bil96℄ and the observation that sine 1

8π2

∫
S4 F ∧F ∈ Z the shift does not ontribute to thepartition funtion1

Z [u]= exp{

∫
d4x iLu} . (9.1.8)The partition funtion is further invariant under a duality whih inverts the gauge oupling.This is obtained by a Legendre transformation

FD (AD ) =F (A)− A AD , (9.1.9)suh that
τD (AD ) =−

dA

dAD
=−

1

τ(A)
, (9.1.10)whilst the ation looks struturally as before with new onjugate oordinate ∂AD

FD = −A.How this transformation is implemented for the N = 1 formulation of the theory is disussedin full detail in [Bil96, SW94℄. Physially, it onstitutes an analyti extension of F to thestrong (respetively low) oupling regime. From another point of view, the ation of theseond generator exhanges the r�les of aD and a and thus magneti and eletri harges.For me it was important to note that the partition sum build from the Lagrangians Lu isindeed invariant under the ellipti modular group
SL(2,Z)= 〈

(
1 1

0 1

)
,

(
0 1

−1 0

)
〉 . (9.1.11)The ation of this group is thus well de�ned on the spetral torus whih onsequently deservesits name.

1This is an abuse of denotation. The partition function is rather Z =
∫
MSW

Z [u]du, for some appropriate measure

du on MSW .
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It is now suggestive to reinterpret the family of Lagrangians Lu and substitute the pa-rameter A(u) by the torus modulus τ(u). Thereby, Lu 7→Lτ and the family of Lagrangiansgets parametrized over the spae of inequivalent tori. This would be a �rst step towards aCFT approah to Seiberg-Witten theory.
9.2 The Spectral Curve and Triplet CharactersIn the following, I will explain how the family of Lagrangians Lu an be reformulated interms of τ. This was one main part in my publiation with M. Flohr, [VF07℄. At this time, wesearhed after an expression of F in terms of haraters of the triplet model, whih was theseond main part. This was enouraged by some former work of Flohr on a orrespondenebetween Seiberg-Witten theory and the triplet model [Flo04, Flo98℄ and by a publiationof W. Nahm [Nah96℄. In his papers, Flohr ould express the spetral urve in terms oforrelation funtions of the triplet model. Nahm, on the other hand, proposed that it shouldbe possible to ombine a and aD into a modular form of weight −1, for whih he noted downthe following expression in terms of τ:

c(τ) = aD (u(τ))−τa(u(τ)) ∼
η2(τ

2
)

η4(τ)
. (9.2.1)It is not possible to express c in terms of haraters of ordinary CFTs, sine they have havemodular weight zero. On the other hand, the haraters χ0 and χ1 of the triplet modelontain both a term η2 whih has modular weight one. Therefore, it seemed reasonable totry to obtain c in terms of haraters of the triplet model. Indeed, we ould determine c interms of haraters of the triplet model but not the prepotential.I will now explain by whih steps c ould be artiulated solely by means of triplet haratersand by whih the prepotential F ould be determined as a funtion of τ.

9.2.1 The Spectral Curve in Terms of τThe Moduli spae MSW =CP
1 \{∞,±s} of Lu onforms with the moduli spae of the spetraltorus, as follows from setion 9.1.1. Therefore, it is reasonable to relate to the spetral torusan algebrai urve of the form

ỹ2 = (z − s)(z + s)(z −u) . (9.2.2)In analogy with the disussion in setion 8.1.1, one an de�ne a di�erential one-form
˜̟ (z;u)=

dz

ỹ(z;u)
(9.2.3)with respet to the urve above, �x two branh uts [∞···u] and [−1 · · ·1] and a hoieof yles, and derive the periods integrating over ˜̟ . In order to make use of the results
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of setions 8.1.2 and 8.1.3, I substitute z = 2z −1 under the orresponding integrals. Thistransforms the algebrai urve above into the Legendre form suh that
Π̃D (λ) = (2s)−

1
2

∫
α̟(λ)

Π̃(λ) = (2s)−
1
2

∫
β̟(λ)

, λ(u)=
u + s

2s
, (9.2.4)with ̟ as de�ned in (8.1.3). The periods thus obtained an be expressed in terms of (8.1.17)and de�ne a torus lattie with moduli parameter

τ(λ) = i
F ( 1

2
, 1

2
;1|1−λ)

F ( 1
2 , 1

2 ;1|λ)
, (9.2.5)wherein λ is a funtion of u. Notie, that τ an diretly be related to the triplet model andbe derived by means of the twist �eld four-point funtions (8.2.7).In [E+85, Vol. 2, pg. 354f℄, I have found several hoies for the inverse λ(τ) of (9.2.5). Sineall of them are onneted by modular (i.e. SL(2,Z)) transformations, I hose without loss ofgenerality

λ(τ) =
(
θ3(τ)

θ2(τ)

)4

, (9.2.6)whereby
θ2(τ) = 2

∞∑

n=0

q(τ)
1
2

(n+ 1
2

)2

, θ3(τ) = 1+2
∞∑

n=1

q(τ)
1
2

n2

, θ4(τ) = 1+2
∞∑

n=1

(−)n q
1
2

n2

(9.2.7)are the Jaobi theta funtions and as before q = exp{2πiτ}, f. setion 8.3.3. This hoie of
λ is in onordane with the publiations [HK07, ABK08℄, whih appeared during the timewhen M. Flohr and I published our work. Given λ, one obtains u by means of the relation in(9.2.4) and, after some Maple gymnastis, it was possible to express this quantity in termsof the Dedekind η funtion [VF07℄

u(τ) =
s

8

((
η(τ4 )

η(τ)

)8

+8

)
. (9.2.8)Substituting this for u yields a new parametrization of the family of Lagrangians Lu by τ.

The Periods of the Spectral CurveThe question remains, what a and aD look like in terms of τ. The periods Π̃D and Π̃ are notidential with a and aD , however they are related by means of the modulus τ, demandingthat it equals the modulus of the spetral urve
τ=

ΠD

Π

!=
daD

da
⇔ ΠD (u)= ∂u aD (u) , Π(u)= ∂u a(u) . (9.2.9)
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Thus, a and aD an be derived from a one-form ̟SW , alled the Seiberg-Witten di�erential,whih satis�es ∂u̟SW = ˜̟ (u). Integrating this ondition, one ends up with
aD (u)=

∮

α
̟SW (u) , a(u)=

∮

β
̟SW (u) , ̟SW =

(z −u)dz

ỹ
+exat . (9.2.10)The solutions to these integrals have been derived in di�erent ways. One is by noting that for�xed ontours, the periods aD and a satisfy again some Hypergeometri di�erential equationwhih yields [Ler97℄
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−

1

4
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1
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s2

u2

)
.

(9.2.11)Substituting the result for u(τ), this gives the spetral urve in terms of τ.
The Spectral Curve in Terms of Triplet CharactersThe seond main result of [VF07℄ was the modular one-form c, f. (9.2.1), expressed byharaters of the triplet model. It is already lear that the denominator of this quantitymust ontain χ1 −χ0, sine it is a modular form of weight one. After some trials and errorswith series expansions in Maple, I ould prove that

c(τ) =
i
p

s

π

(χ− 1
8
−χ 3

8

χ1 −χ0

)
(9.2.12)with the haraters as in (8.3.8). This expression equals the one proposed by Nahm, f.(9.2.1) and [Nah96℄. Thus, up to the expliit parameter τ, I have obtained a and aD interms of haraters, namely

a(τ) =−
dc(τ)

dτ
, aD (τ) =

(
1−τ

d

dτ

)
c(τ) . (9.2.13)Below, I will argue that the full prepotential an now be written as a funtion of τ.

The Prepotential in Terms of τM. Matone derived in [Mat95℄ the relation:
F (u)=

1

2
a(u)aD(u)− iπu . (9.2.14)This works as follows. The periods of the spetral urve (9.1.3) an be transformed under

SL(2,Z), whih leads to
a AD +b A = ÃD =

dF̃

dA

dA

dÃ
. (9.2.15)
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Integrating this expression, I �nd that
F̃ =

1

2
ac A2

D +
1

2
bd A2 +bc A AD +F . (9.2.16)The ombination

F (a)−
1

2
aaD (9.2.17)is invariant under the monodromy group of the spetral urve, whih is generated by

M∞ =
(
−1 2

0 −1

)
, Ms =

(
1 0

−2 1

)
, M−s = M−1

s ·M∞ . (9.2.18)This group an be determined by expanding (9.2.11) around u0 ∈ {∞,±s} and by letting
u enirle eah of these points, i.e. u −u0 7→ exp{2πi}(u −u0), [Bil96, SW94, DP99, Ler97℄.Sine (9.2.17) is invariant under the monodromy group, it an be identi�ed with u, whihparametrizes the equivalene lass of periods a, aD under this group.Inserting the results on a and aD above and that on u, (9.2.8), I end up with

F (τ) =
1

2

[
τ

(
dc(τ)

dτ

)2

−c(τ)
dc(τ)

dτ

]
−

iπs

8

[(
η(τ

4
)

η(τ)

)8

+8

]
. (9.2.19)Thus, in our paper [VF07℄, Flohr and I obtained all basi quantities of SU (2) Seiberg-Wittentheory, inluding the instanton ontributions, in terms of τ. In partiular, we determinedthe spetral urve by means of haraters of the triplet model.
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Conclusion 10In this thesis, I have been onerning myself with geometry as a soure for a logarithmideformation of onformal �eld theories. In this ontext I have been investigating two di�erentgeometri senarios.The �rst has been the onformal supersymmetri bc-system on R
1×S1 with target manifold

CP
1. The soure for its logarithmi deformation is the extension of its loal representationspaes to spaes of distribution forms on CP

1. In partiular, the bosons had to be loga-rithmially deformed, beause it turned out that they desribe the di�erent vauum setorswhih are ompounded by the instantons.The seond has been the purely fermioni onformal bc-system, with domain on a branhedovering of CP1 and with global monodromy group. This time, the target spae is C and thesoure for the logarithmi deformation onsists in the twisted representations of the mon-odromy group.In order to onlude my work, I will now bundle the questions whih remained open anddeserve further investigation from my point of view.
Bosons on Branched Coverings It would be interesting, also with an eye towards thesupersymmetri onformal bc-system, to study bosoni ghosts on branhed overings. Therepresentations of the monodromy group are analogous to those of the fermions, and theoperator produt algebra is also quite similar. If the algebrai surfae is again a torus,it might be the ase that the four-point funtion of the bosoni twist �elds also revealsinformation about its periods for the following reason. It would be valuable, if there wasa way to not only bosonize the bosoni ghosts but also the bosoni twist �elds. Sinethe bosonized ghosts must be extended by an auxiliary fermioni system, I ould imaginethat similar works for the twist �elds, suh that the situation might again be redued toonsiderations of fermioni ghosts on the torus.
Holomorphic Mappings between Compact Riemannian Surfaces The two senariosthat I have onsidered might be related by another publiation of Frenkel and Losev [FL07℄.There, the authors onsider the CSb with domain and target manifold CP

1. In general,the holomorphi funtions (i.e. solutions to the instanton equation) an be lassi�ed in threetypes: onstant funtions, meromorphi funtions and funtions with higher rami�ations.
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Frenkel and Losev laim that the transition from the onformal CSb with target C
× tothe onformal CSb with target CP

1 must be aompanied by an inlusion of meromorphifuntions. Therefore, the solutions to the instanton equation must exeed the subspae ofonstant vauum on�gurations. Consequently, Frenkel and Losev interpret the additionalmeromorphi funtions as instanton e�ets.They further propose that the CSb on CP
1 an be modelled by the CSb on C

×, ifthe ation of the latter is enlarged by additional operators. These operators would thenmimi the extension of the vauum on�gurations to meromorphi funtions. In [FLN08℄,the same authors proposed that those deformation terms in the ation are idential to theGrothendiek-Cousin �elds.In appendix C, I have tried to prove that the approah of Frenkel and Losev [FL07℄ to theCSb on CP
1 is isomorphi to my approah in part one of this thesis. This was only suessfulfor the Grothendiek-Cousin operator and the representation spaes. In partiular, I ouldnot determine an isomorphy between the respetive Grothendiek-Cousin �elds.It would be favorable if the isomorphy did exist and ould be proven.

From the Large Volume Limit Back to Physics If the extended representation spaesof the theories onsidered in part one of my thesis are indeed the nonperturbative statespaes, a new kind of perturbation theory should be possible, whih does neither destroy thekinematis, indued by the urved target spae, nor the topologial features � in partiularone retains all vauum solutions, not running into the putative fatual onstraint to selet apartiular bakground. This new perturbation theory onsists in varying the saling paramter
λ of the metri, thus moving away from the large volume limit in the moduli spae of metris.Frenkel, Losev and Nekrasov suggest to hek if the non-diagonal representations of theHamiltonian disappear for �nite values of λ, by whih the anti-instantons get reanimated,[FLN06, pg. 89f℄. There is an even more important reason for trying this kind of perturbationtheory. The state spaes in the large volume limit have been obtained by a suession oftransformations of the physial spetrum of the unitaryMorse theories underlying the modelsunder onsideration. The rationale was to derive the perturbative spetrum, multiply it bysome exponential by whih unitarity is broken, go to the large volume limit and derive thenonperturbative states by a onjeture. The way bak to physis would onsequently beto turn the saling parameter �nite and divide the proposed nonperturbative states by theexponential whih broke unitarity. It is inevitable to apply the perturbation theory desribedabove in order to obtain information about the former physial theory. If the onjeture onthe nonperturbative state spaes was orret, one would thereby gain information on thenonperturbative setor of the (more) physial theory.
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The Prepotential of Seiberg-Witten Theory Maybe I was wrong and, after all, it is pos-sible to express the moduli parameter u, f. (9.2.8), of pure gauge SU (2) Seiberg-Wittentheory in terms of haraters of the triplet model. At least, I did not prove the ontrary.One should look for ombinations of the haraters that are invariant under the monodromygroup (9.2.18) of the spetral torus.
The Partition Function of Seiberg-Witten Theory It would be nie if the partition fun-tion of pure gauge SU (2) Seiberg-Witten theory ould be written in terms of haraters ofsome CFT. In [NO03℄, N. Nekrasov and A. Okounkov laim that the dual partition funtionequals a orrelation funtion of free fermions, and possibly the orresponding CFT an bespei�ed.
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Topological Field Theories AIn this hapter, I will speify what I understand under the topologial setor of a �eld theory.This short summary is along the lines of [BBRT91, Wit82, Wit88a, Wit88b℄.Let (X , g ) be a sympleti, oriented Riemannian manifold with Eulidean metri g , (Σ,h)another suh manifold and x : Σ→ X an embedding. The �elds will be setions of some Z2graded vetor bundle over Σ, and I assume that there exists an ation for the �eld theory.The ingredients of the topologial setor are:
➀ An operator Q, the BRST harge, wih is odd graded and globally de�ned on X and

Σ. The BRST harge has a nilpotent ation on the �elds and state spaes.
➁ Topologial state spaes and topologial observables in the ohomology of the BRSTharge. Furthermore, I assume that the state spaes have dual vetor spaes and awell de�ned pairing. The ohomology of Q is invariant under smooth variations of themetris g and h.
➂ Even graded and Q-exat �elds Tg and Th , the stress tensors with respet to X and Σ.In other words, the Lagrangian must be a ombination of terms that are Q-exat ormetri independent.
➃ Correlation funtions whih an be obtained from a path integral. They vanish if oneplugs into them a Q-exat observable and Q-losed �elds.
➄ A transformation of the ation into a �rst order form by whih the toplogial setorloalizes on the vauum on�gurations and exlusively on the instantons.What onsequenes follow from these attributes? If Σ ⊆ R×M , there exists a generatorof time translations H =

∫
M Th 00. This operator is Q-exat and all orrelation funtions of

Q-losed �elds vanish if it is inserted. Consequently, the topologial setor does not ontaindynamial �elds.For the same reason, if a topologial and a Q-exat observable is inserted into the orre-lation funtion and one varies it with respet to the metris h or g , the variation vanishes.Therefore, the values of the orrelation funtions in the topologial setor do not dependon the metris de�ned on Σ and X . In physis, suh di�eomorphism invariants are alled�topolgial invariants�, and the topologial setor of a �eld theory is said to be generallyovariant. In this thesis, I use the term topologial in this sense.Provided that the ation is Q-exat, the topologial setor is invariant under global saletransformations of h and g , namely for any set of topologial observables the variation of thepath integral in the saling parameter yields a orrelation funtion of a Q-exat operator.Theories with Q-exat ations are alled ohomologial, and I will only deal with this lass.
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Due to invariane under global sale transformations, the orrelation funtions loalize onthe lassial solutions, and the topologial setor is semilassially exat.Invariane under global salings does not signify that the theory is onformally invariant.This additionally requires invariane under analyti loal resalings of the respetive metri.
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From the Sigma to the A-Model BIn this setion I want to note down the symmetries of the N = (2,2) supersymmetri sigmamodel and explain how the A-model is derived by the twisting proedure, f. [Mar05℄. Letthe onventions be as in hapter 3. The topologial A-model and the sigma model with
N = (2,2) worldsheet supersymmetry di�er in the spin of the fermioni �elds and otherwisehave the same ation (3.1.1). The supersymmetry is generated by QαI , where I = +,− arethe indees of the R-harge and α=+,− the Lorentz indees of the U (1) Lorentz symmetry:

[Qα+,Qβ−] = γ
µ

αβ
Pµ , [J (e),Q±I ] =±

1

2
Q±I . (B.0.1)The braket is a superommutator and J (e) is the generator of Lorentz transformations. Thegamma matries are γ1

αβ
= δαβ and γ2

αβ
= diag(i,−i), and the super�elds transform under

δ= καI QαI (καI is a Grassmann valued onstant), f. [Mar05, pg 73℄:
δxa =κ++ ψa +κ−+ πa , δx ā =κ−− ψā +κ+− πā ,
δψa = 2iκ+− ∂z xa −κ−+

Γ
a
bc
πbψc , δψā = 2iκ−+ ∂z̄ x ā −κ+−

Γ
ā

b̄c̄
πb̄ψc̄ ,

δπa = 2iκ−− ∂z̄ xa +κ++
Γ

a
bc
πbψc , δπā = 2iκ++ ∂z x ā +κ−−

Γ
ā

b̄c̄
πb̄ψc̄ . (B.0.2)These are the supersymmetries of the sigma model.The internal R-symmetry allows for an axial and a non-anomalous vetorial fermioni U (1)urrent:

J (v)
z =−iλ : gab̄π

b̄ψa : , J (v)
z̄ =+iλ : gab̄π

aψb̄ : ,

J (a)
z =−iλ : gab̄π

b̄ψa : , J (a)
z̄ =−iλ : gab̄π

aψb̄ : .
(B.0.3)They generate rotations of the fermionsvet: (πā ,ψa ) 7→ eiθ(πā ,ψa ) , (πa ,ψā ) 7→ e−iθ(πa ,ψā)axial: (ψa ,ψā) 7→ eiθ(ψa ,ψā ) , (πa ,πā) 7→ e−iθ(πa ,πā) .
(B.0.4)The superharges transform aording to these symmetries as

[ J (v)
z 0 ,Q+±] =±Q+± , [ J (v)

z̄ 0
,Q−±] =∓Q−± ,

[ J (a)
z 0 ,Q+±] =±Q+± , [ J (a)

z̄ 0
,Q−±] =±Q−± ,

(B.0.5)suh that in partiular [J (a)
0 ,Q] =Q and the ohomology of Q is graded by the axial harge.In general, the axial U (1) symmetry is (partially) broken.
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B.1 Twisting/Gauging the Sigma ModelI will now speify the �elds for the sigma model, the A-model an then be obtained by arede�nition of the Lorentz generatorJ (e). This proedure is alled twisting or gauging.To make the transformation properties of the fermioni �elds under Lorentz transforma-tions expliit, I will introdue the spin-onnetion ω, pretending that Σ is not �at. Thefermions have now the properties πa
z̄ , ψa ∈Γ(Σ,S±⊗x∗(T X )) and πā

z , ψā ∈Γ(Σ,S±⊗x∗(T X̄ )).The bar over the latter tangent bundle denotes a setion into the anti-holomorphi part,
S± are the spinor bundles of positive and negative hirality and Γ means a setion. The�elds ψa and πā

z have spin +1
2 and the other fermions have spin −1

2 . The onnetion on
S±⊗x∗(T X )→Σ is obtained by D= D(S) ⊗1x∗(T X ) +1S ⊗x∗(D(T X )), for instane

Dz̄ψ
a = ∂z̄χ

a +
i

2
ωz̄ψ

a +Γ
a
bc∂z̄ xbψc . (B.1.1)Under the vetorial symmetry, ψa and πa

z̄ transform with weight +1
2
while the others haveweight −1

2 and the bosons are invariant. The transformation properties of the superhargesare listed below, and I inluded already the e�et of rede�ning the Lorentz group:
Ue (1)×Uv (1) Ue ′(1)×Uv (1)

Q++ (+1
2 ,+1) (0,+1)

Q−+ (−1
2 ,+1) (1,+1)

Q+− (+1
2 ,−1) (−1,−1)

Q−− (−1
2 ,−1) (0,−1)

(B.1.2)

This rede�nition is aording to J (e ′) := J (e) − 1
2 J (v).1 Sine it is not possible to disriminateeither of the U (1) symmetries, this rede�nition is an equivalene relation of the theory inase Σ is �at. One then still has the full supersymmetry. However, when passing to non-�atdomain manifolds, only the salar superharges survive, for they do not depend on the metrior any related quantities suh as the Levi-Civita onnetion.After twisting it is reasonable to de�ne new symmetry harges, a salar and a one formon Σ, as follows:

Q :=Q+++Q−− , Gz :=Q+− , G z̄ :=Q−+ . (B.1.3)They are subjet to the propery Q2 = 0, [Q ,Gµ] = Pµ and de�ne the topologial algebra of thethus obtained A-model with BRST harge Q. The fermions have a new spin with respetto J (e ′). The �eld ψ is a Grassman valued salar �eld while π = πza dzdxa +πz̄ ā dz̄dx ā isa selfdual one-form. This explains why twisting is the same as oupling the theory to the
Uv (1) urrent (i.e. �gauging� the theory) aording to S 7→ S+ 1

4

∫
Σ

hµνωµ J (v)
ν . With respet to

1The choice of sign is for convenience and follows [Mar05, Wit88b].
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Q, the �elds now transform with δ := κQ , κ−− = κ = κ++, k±∓ = 0 and the rest an be reado� tabular B.0.2:
δxa = κχa δx ā = κψā

δψa = 0 δψā = 0

δπa
z̄ = 2iκ ∂z̄ xa +κ Γ

a
bc
πb

z̄ψ
c δπā

z = 2iκ ∂z x ā +κ Γ
ā

b̄c̄
πb̄

zψ
c̄

(B.1.4)From that tabular one also �nds that there is a fermioni �xed point on the holomorphi
∂z̄ xa = ∂z x ā = 0 embeddings. These are alled instantons.2

2For J (e′) = J (e) + 1
2 J (v), the BRST charge would be Q =Q+−+Q−+ and localization is on the anti-instantons ∂z xa =

∂z̄ x ā = 0.
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The Toric CSbc - Unfinished CFrenkel et al. [FLN08℄ use a di�erent representation of the CSb in order to derive theGrothendiek-Cousin operators. It goes bak to a publiation of Borisov [Bor01℄ and hastwo promising features. Firstly, the �elds in the CSb are not bosonized and the assumedGrothendiek-Cousin �eld is also expressed in terms of the original �elds. Seondly, it islinked to another work of Frenkel with Losev [FL07℄, in whih they already proposed thatthe Tb on CP
1, onsidered as a CSb, should be deformed beyond its topologial setor.In [VF09℄ I used Frenkels and Losevs formalism in addition to the one desribed in setions3.6.2 and 3.6.3. Thereby, I wanted to math my results with those of Frenkel et al. in [FLN08,FL07℄. Beause it onerned my own investigations, I will brie�y disuss the question if bothapproahes are isomorphi. Unfortunately, I ould not identify the Grothendiek-Cousin�elds, whereas I might have found a positive result for their zero modes, the Grothendiek-Cousin operators.

C.1 Deformation by Holomorphic CompletionThere exists another paper of Frenkel with Losev [FL07℄, wherein the authors onsider theTb without �gauge� �eld. One of the subjets was the question, how to takle that theoryif formulated on nontrivial target spaes. The idea of the authors was as follows.Frenkel and Losev started with the assumption that if Σ= CP
1 and X = C/2πiZ, the Tbis an ordinary CSb. Sine Σ is ompat, the solutions of the instanton equation ∂z̄ x = 0are the onstant embeddings, whih they interpret as vauum on�gurations. Thus, thissenario only allows to take insight into the topologial setor.If, however, X was ompati�ed to CP

1, there appear further nontrivial holomorphi map-pings, f. [Jos02℄, whih Frenkel and Losev onsequently interpret as instanton solutionsbeyond the topologial regime. It is not lear if the Tb with target CP1 is onformal. How-ever, Frenkel and Losev they assumed that this is the ase if the target spae is C/2πZ.Therefore, they searhed after a method whih allows to redue the situation of X =CP
1 tothe free CSb on C/2πiZ, however, now deformed by additional operators. These operatorssupposedly give an insight into the dynamial setor of the Tb and, hene, must inheritsome information about the loal geometry of the Tb on CP

1.By taking out of Σ sets of pairs of zeros and poles ω±
k
, Frenkel and Losev supplementedthe onstant holomorphi by meromorphi embeddings, onstant as CP1 \{ω±

k
} →C/2πiZ and
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with simple poles and zeros at ω±
k
, k ∈ N. Thus, they end up with a stak of overings

x : CP
1 →CP

1, distinguished by the number k of singular points of x. Notie, however, thatthe overings are not branhed sine Frenkel and Losev did neglet the embeddings withhigher rami�ation.Frenkel and Losev interpreted the meromorphi funtions as a generalization of the CSbby an inlusion of instantons, whereby the degree k measures the instanton setor. Sine thesingularities of those funtions should appear in their vauum expetation values, Frenkeland Losev onluded that the ation of the CSb with target C/2πiZ must be deformed. Inorder to analyze that, they made a hart transition to logarithmi oordinates as desribedin setion 3.5.1. This is also reasonable beause the equivalene lasses C/2πiZ are naturallyexpressed by means of the exponential. The vauum expetation value of an instantonsolution should now yield
〈φx (z)〉S+δS = c +

n∑

i=1

[log(z −ω+
i )− log(z −ω−

i )] , (C.1.1)where S +δS is the deformed CSb ation. Frenkel and Losev proposed that this hange inthe ation is aused by an additional term
δL(z, z̄) =−λ[Ψ+(z, z̄)+Ψ−(z, z̄)]π(z)π̄(z̄) , λ= 1, (C.1.2)withΨ±(z, z̄)=Ψ±(z)Ψ̄±(z̄), Ψ±(z) = exp{±i

∫z
p(ω)dω} and, similar, Ψ̄±(z̄)= exp{±i

∫z̄
p̄(ω̄)dω̄}.Beause λ is dimensionless, this deformation an be interpreted as a movement in the modulispae of onformal theories.By means of a method of Zamolodhikov [Zam89℄, Frenkel and Losev alulated the impatof these deformations on general �elds F (z) of the CSb. This amounts to applying theStokes-Green theorem (integral of motion) to1

∂z̄ Fδ(z, z̄) =
∮

z
dζ δL(ζ, z̄)F (z). (C.1.3)Of partiular interest are the deformations of the stress tensor and the superharge. Aalulation reveals that the stress tensor is not deformed, whereas the integral of motion forthe superharge yields

Q̃ =
∮{

dz Qδ(z, z̄)+dz̄ [Ψ+(z, z̄)−Ψ−(z, z̄)] π̄(z̄)
}

, (C.1.4)whih is similar to the expression in [FL07, pg. 67℄.Frenkel et al. refer to these results in their later work [FLN08, pg. 97℄. They propose thatthe zero modes of the operators in (C.1.2)
iπ(z)Ψ−(z) , − iπ̃(z)Ψ̃+(z) , (C.1.5)

1This integral of motion is the first order correction (in λ) to ∂z̄ F = 0 [Zam89]. In principle, since λ is dimensionless,

one has to include corrections to all orders.
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are idential with the ohomology operators η0η̄0 in the ontext of hiral bosonization, andmoreover with the Grothendiek-Cousin operators [FLN08, pg. 93f℄. They onlude that thesuperharge in the ontext of their later work is deformed just the same way as in (C.1.4),[FLN08, pg. 97℄.Sine the integral of motion (C.1.3) does not introdue the Grothendiek-Cousin operators,I looked for another CFT method that would deform the stress tensor in the appropriateway and also the superharge aording to (C.1.4). This was the method by Fjelstad et al.[FFH+02℄, that I used in hapter 4. By that means, I derived a deformation of the stresstensor and of the superharge whih was similar to [FL07, FLN08℄, f. [VF09℄. In the samepubliation I ould also argue, that the ohomology of the deformed superharge on the statespae is not hanged by the deformation. Thus, everything seemed to be nie.However, I did not hek if the assumed Grothendiek-Cousin �eld of (C.1.2) is well de�nedon the harged representation spaes, whih is mandatory. Nor did I really extend Borisovsvertex algebra to harged representations and then prove isomorphism to the representationsI have onsidered in hapter 3. Some steps into that diretion I have done, however onlysuper�ially, in [VF09℄, and in this hapter I wanted to omplete them. However, I ouldnot determine either the representation spaes orretly, or the �elds in (C.1.2) an notbe the Grothendiek-Cousin �elds, though their zero modes satisfy the properties of theGrothendiek-Cousin operators.
C.2 The Cohomology Operators in Logarithmic CoordinatesIn order to simplify my disussion, I will set the homogeneity µ to zero.The CSb in logarithmi oordinates, f. setion 3.5.1, does not over the situation of theCSb on C/2πiZ. Sine the exponential is invariant under 2πiZ, the �eld algebra should beextended by some winding number operator Ω and its onjugate Ω

∗ : [Ω,Ω∗] = 1. This yieldsBorisovs' vertex algebra [Bor01℄, whih is onstituted by
φx (z) =: eW (z) : , φip (z) =: e−W (z)[−∂zU (z)+ j+(z)] : ,

φψ(z) =: eW (z)ψ(z) : , φiπ(z) = i : e−W (z)π(z) : ,
(C.2.1)and the symmetrie �elds

φ j+(z) = j+(z)+∂zW (z) , φ j−(z) =− j+(z)+∂zU (z) ,

φG (z) = i : π(z)∂zW (z) : , φQ(z) =Q(z)+∂zψ(z) ,

φT (z) =− : ∂zW (z)∂zU (z)+ i∂zψ(z)π(z) : .

(C.2.2)Above I used Q(z) =−i : ∂zU (z)ψ(z) : and
U (z) =Ω

∗− i

∫′ z

p(ω)dω , W (z) =Ω log z +x(z) , (C.2.3)
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and the prime at the integral means that no additional �integration onstant� should beintrodued.Borisov interprets U and W as the salar �elds related to ertain �urrents� of bosonson a two dimensional lattie, suh that in analogy with (3.6.11) W (z) = −
∫z

J (1)(ω)dω and
U (z) = −

∫z
J (2)(ω)dω, with J (1)(z) = −Ωz−1 −∂z x(z) and J (2)(z) = ip(z). The Heisenberg Lieommutation relations are only satis�ed between J (1) and J (2), [J (1)

n , J (2)
m ] =−nδn,−m . Further,

[U0, J (1)
0 ] =−[Ω∗,Ω] = 1, as is expeted for �bosoni� urrents, while [W0, J (2)

0 ] = [x0, ip0] =−1.Aording to the idea to interpret the urrents as two omponents on a lattie, it is nowreasonable to onsider �elds V (l , s, z)=: elW (z)+sU (ω) : , l , s ∈Z.I will all the vertex algebra de�ned by (C.2.1), (C.2.2) and extended by V (0, s, z) as thetori CSb.
Remark In the ontext of the hiral de Rham omplex, the introdution of V (0, s, z) meansthat one has to generalize the state spae further to power series in the zero modes p0. Thisis a �rst instane wherein Borisovs' onstrution exeeds the usual CSb.
Representation SpacesIn order to inlude harged representations, I de�ne |p, q |l , s〉 ∈ F (p, q |l , s) := F (p|l , s)⊗M+(q)and try the Ansatz

xn |p, q |l , s〉 = 0, n >−p , n 6= 0 , pn |p, q |l , s〉 = 0, n ≥ p , n 6= 0 ,
ip0 |p, q |l , s〉 = l |p, q |l , s〉 , Ω |p, q |l , s〉 = s |p, q |l , s〉 ,
ψn |p, q |l , s〉 = 0, n >−q , πn |p, q |l , s〉 = 0, n ≥ q . (C.2.4)This exeeds the disussion of Borisov [Bor01℄ who onsidered the situation p = q = 0. It willnow be neessary to see if the operator produt algebra is well de�ned on the representationsabove.Firstly, the representation spaes for the tori CSb must inlude states that are iso-morphi to V (l , s, z). This isomorphism is obtained by exp

{
l ′x0

}
|p, q |l , s〉 = |p, q |l + l ′, s〉 and

exp
{

s′Ω∗}
|p, q |l , s〉= |p, q |l , s + s′〉. In the language of vertex operators,

Y
(
|0,0|l ,0〉, z

)
= exp{lW (z)} , Y

(
|0,0|0, s〉, z

)
= exp{sU (z)} . (C.2.5)This makes expliit that the vertex algebra de�ned by (C.2.1) does not lead out of a spei�representation with a �xed value of s, sine it does not inlude Ω
∗. I will denote by F (p, q |l , s)the vertex algebra of these �elds with �xed value s and Ω

∗ exluded. Moreover, I de�nenormal ordering in the �eld modes to be taken with respet to |0,0|0,0〉.In the representation F (p, q |l , s), the �elds of (C.2.1) have the OPEs
φx (z)φip (ω) =

−1

z −ω

( z

ω

)p+s
, φψ(z)φiπ(ω) =

−1

z −ω

( z

ω

)q+s
. (C.2.6)
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When ating on a highest weight state, the mode expansions of the �elds inherits the inho-mogeneity in terms of a shift in the index, for instane
φx (z)|p, q |l , s〉 = zs

∞∑

n=0

cn(|z|)z−n |p, q |l , s〉 = ex0
∑

n≤−p−s, n 6=0

(φx )n+s z−n |p, q |l , s〉 (C.2.7)and similar for the other �elds. In partiular, up to the speial r�le of x0, when s = 0, the�eld mode expansion equals that for the CSb. Thus, the CSb has a representation on therepresentation spaes above. The OPEs between the symmetry �elds and the dynamial�elds (C.2.1) follow aordingly.The onformal weights and U (1) harges of the highest weight states equal
∆φT

(|p, q |l , s〉)=−
1

2
p(p −1)+

1

2
q(q −1)+ l s ,

(φ j−)0 |p, q |l , s〉 = q − l , (φ j+)0 |p, q |l , s〉 =−q + s ,

(C.2.8)and the operators measuring these quantum numbers ommute with eah other. The �eld
V (l ′, s′, z) shifts the onformal weight of |p, q |l , s〉 by

T0 ·el ′x0+s ′Ω∗
|p, q |l , s〉 = (l s′+ l ′s) |p, q |l + l ′, s + s′〉 , (C.2.9)and has a bosoni and fermioni U (1) harge of value −l ′ and 0, respetively. In the subsetorwith s = 0 and Ω

∗ exluded, all �elds in (C.2.1) have the same onformal weights and U (1)harges as the �elds of the usual CSb, wih follows from the OPEs and setion 3.5.1, andthere is not operator leading out of that representation.
OPEs of the Operators V (l , s, z)If I restrit my disussion to the onformal vauum |0,0|0,0〉, I an derive an OPE betweenthe �elds V (l , s, z) :

esU (z)elW (ω) = (z −ω)−l s : esU (z)elW (ω) : , in F (0,0|0,0) . (C.2.10)It turns out, however, that I am not able to takle the OPE in the harged representationspaes in any reasonable way. Namely, if p 6= 0, I �nd that
exp

[
−i

∫z

p(ζ)x(ω)dζ

]
= exp

[
−

∫z (
ω

ζ

)p dζ

ζ−ω

]
. (C.2.11)

Remark It seems that the harged representations that I have de�ned do not lead to nieresults for the OPE betweeen elW and esU .
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Identification of the CSbcDue to the results above, the CSb is a subsetor of the tori CSb with s = 0 and Ω
∗exluded. I will now identify the bosoni and fermioni parts of the CSb within F (p, q |l ,0).Notie, that the term �identi�ation�, signi�ed by �≃�, is only appropriate up to the speialr�le played by x0.The representations F (p, q |l ,0) are graded by the bosoni and fermioni U (1) harges,

F (p, q |l ,0)=
⊕

n,m∈Z
F (p, q +n|l +n −m,0) , (C.2.12)whereby n and m ount the fermioni and bosoni harges, respetively. I made no distintionbetween ⊕

n M+(q)n and ⊕
n M+(q −n), sine the fermioni representation spaes are allisomorphi, f. (3.4.2).

The Fermionic Subsector The fermioni part of the CSb appears in the tori CSb asthe subspae F (0, q |q,0) ≃ M+(q). Indeed, φψ and φiπ have the orret OPE on |0, q |q,0〉and the appropriate quantum numbers with respet to T +(z) and φ j+(z). In partiular, thisholds for |0, q |q,0〉, suh that I set |0, q |q,0〉 ≃ |q〉+ ∈ M+(q).
The Bosonic Subsector The bosoni subsetor is given by F (p,0|−p,0) ≃ N (p). Namely,the �elds have the orret OPE on |p,0|−p,0〉 and the quantum numbers as expeted, suhthat I set |p,0|−p,0〉 ≃ν−p ⊗|0〉ηξ ∈ N (p).
The Grothendieck-Cousin OperatorsIn order to derive the Grothendiek-Cousin operators, I used the reipe to extend the bosonirepresentation spae by the missing degenerate part, f. setions 2.6.2 and 3.6.3. The a�etedrepresentation spae takes now the form F (1,0|−1,0) and I have to look for a state that hasthe same quantum numbers as the hightes weight vetor |1,0|−1,0〉.The states |p,0| − p,0〉 , | − p + 1,0|p − 1,0〉 and |p − 1,1| − p + 1,1〉 do all have the sameonformal weight, but only |p,0| −p,0〉 and |p −1,1| −p +1,1〉 have the same U (1) harges(both with respet to the bosoni and the fermioni harge). Therefore, the analogue of
eφ

−
0 ξ0 : N (1) → N (1) should be the mapping e0 : |1,0|1,0〉 7→ |1,1|1,1〉. Moreover, I proposethat the logarithmi extension NL(1) is now the representation of (C.2.1) on |0,1|0,1〉, and Iwill denote that by FL(1,0|−1,0),In analogy with the disussion in setion 3.6.3, I am looking for an operator g, suh that

F (1,0|−1,0) ∋ |1,0|−1,0〉 e0→ |0,1|0,1〉 ∈ FL(1,0|−1,0)

↓ g

|0,0|0,0〉 ∈ F (0,0|0,0)

. (C.2.13)
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The operator
g= iπ0e−Ω

∗
(C.2.14)does the job. Moreover, it satis�es ∮

0 dω [g,φ(ω)] = 0 for all �elds φ in (C.2.1). Therefore,the sequene
· · ·→ F (p,0|−p,0)

g−→ F (p −1,0|−p +1,0) →··· (C.2.15)is exat, whereby F (p,0|−p,0) = F (p,0|−p,0)⊕FL(p,0|−p,0) are the extended representationspaes.In that respet, it is reasonable to identify g with the ohomology operator η0 in setion3.6.3, and with the Grothendiek-Cousin operator.
The Grothendieck-Cousin FieldTo generalize the operator above to the Grothendiek-Cousin �eld, it is at hand to try theAnsatz

i : π(z)e−U (z) : . (C.2.16)Indeed, when the �elds φ of (C.2.1) are in the representation F (0,0|0,0), one may alulatethe OPEs by means of (C.2.10) and derive that
∮

z
dω i : π(z)e−U (z) : φ(ω) = 0. (C.2.17)For instane, use

iπ(z)e−U (z)φip (ω) =−
i : π(ω)e−U (ω)−W (ω) :

(z −ω)2
. (C.2.18)This alulation, however, turns nontrivial if the representation spae is harged, f. (C.2.11).For that reason, I ould not derive the Grothendiek-Cousin �eld in terms of Borisovs' vertexalgebra.
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