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Abstract 

 

Size exclusion based virus filtration is a robust virus clearance technology for biotech- and plasma 

derived therapeutics. The filters are especially effective in the removal of small non-enveloped viruses 

of about 20 nm diameter, that are resistant to heat and solvent or detergent based inactivation methods. 

However, the fine porous membrane structure, required for high resolution protein/virus separation, 

makes the method highly sensitive to impurities and solute/membrane interactions. This is especially 

true for demanding streams like plasma derived therapeutics for intravenous administration, containing 

pooled immunoglobulin G (IgG) of over thousands of blood donors, whose filtration is often observed 

to be throughput limited.  

In a first part, the mechanisms governing virus retention were characterized. Using a bacteriophage 

based evaluation method, the impact of various structural factors such as membrane heterogeneity, 

asymmetry, orientation and protein concentration on virus retention was demonstrated. According to 

these results, the optimal membrane structure and evaluation conditions were determined in order to 

ensure effective virus clearance under a large variety of operating conditions.  

In a second part, the main mechanisms involved in membrane fouling were elucidated. Zeta potential 

measurements of the membrane material together with isoelectric focusing of the pooled IgG 

containing solution revealed strong electrostatic interactions that impact filterability, depending on the 

protonation state of proteins. However, at near neutral pH-values, corresponding to the standard 

stabilization conditions for the majority of plasma-derived therapeutics, unspecific adsorption is 

mainly driven by hydrophobic interactions. The data suggested that a small subset of hydrophobic 

monomeric IgG can dramatically impact the filterability of the whole pooled IgG mixture.  

In a last part, strategies to overcome these limitations were tested. Innovative automated high 

throughput methods for performance testing were developed to allow the parallel characterization of a 

large variety of materials generated by electron-beam initiated graft modification. Finally, a high 

capacity membrane, exhibiting high viral clearance efficiency and fouling resistant properties due to 

efficient shielding of the hydrophobic surface, was developed. 

 

Keywords: virus filtration, membrane modification, hydrophobic interactions, immunoglobulin. 
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Kurzfassung 

 

Die auf Größenausschluß basierende Virenfiltration ist eine sehr effektive 

Virenabreicherungstechnologie für biotechnologisch hergestellte oder vom Plasma isolierte 

therapeutische Moleküle. Die dafür verwendeten Membranfilter sind besonders effizient gegen 20 nm 

große nicht-umhüllte Viren, die durch thermische und chemische Behandlungen nicht deaktiviert 

werden können. Aufgrund der feinen porösen Struktur, die für hochauflösende Virus/Protein 

Auftrennung erforderlich ist, weisen solche Membranen eine hohe Empfindlichkeit gegenüber 

Verunreinigungen und Protein/Membran Wechselwirkungen auf. Dies wird besonders beim gepoolten 

Immunoglobulin G aus dem Plasma von tausenden Blutspendern beobachtet. Die Filtrationsleistung 

bei derartigen Lösungen ist oft niedrig.  

In dem ersten Teil dieser Arbeit wurden die Mechanismen identifiziert, die für die Virenrückhaltung 

relevant sind. Dank einer auf Bakteriophagen basierten Charakterisierungsmethode, konnte der 

Einfluss wichtiger struktureller Parameter wie Membran Heterogenität, Asymmetrie, Ausrichtung und 

Proteinkonzentration auf die Virenrückhaltung evaluiert werden. Dadurch konnten die optimale 

Membranstruktur sowie Testbedingungen bestimmt werden, um die Abreicherung von Viren unter 

zahlreichen Betriebsbedingungen zu sichern.  

In einem zweiten Teil, wurden die Hauptverblockungsmechanismen aufgeklärt. Die Messung des 

Zeta-Potentials an der Membranoberfläche sowie die Isoelektrische Fokussierung der in der Lösung 

enthaltenden Immunoglobulin machten den Einfluss von elektrostatische Wechselwirkungen sowie die 

Abhängigkeit von Protonierungszustand der Proteinen in der Lösung deutlich. Bei neutralen pH-

Werten allerdings, die typischerweise für die Formulierung und Stabilisierung der meisten Plasma 

Produkte verwendet werden, konnte gezeigt werden, dass die Verblockung der Membran 

hauptsächlich durch hydrophobe Wechselwirkungen verursacht wird. Die Ergebnisse zeigten 

außerdem, dass eine kleine Teilmenge von hydrophoben Immunoglobulin-Monomeren die 

Filtrierbarkeit der gesamten Proteinlösung dramatisch beeinflussen kann.  

In dem letzten Teil der Arbeit wurden Strategien zur Minderung der oben genannten 

Leistungslimitierung vorgeschlagen. Hochdursatz-Charakterisierungsmethoden zur 

Leistungsbewertung wurden entwickelt. Diese erlaubten die parallele Charakterisierung von 

verschiedenen Materialien, die durch Elektronstrahlen initiierte Graft-Modifizierung hergestellt 

wurden. Durch die effiziente Beschichtung der hydrophoben Oberfläche wurde eine hoch kapazitive 

Membran entwickelt, welche außerdem ein hohes Virenabreicherungspotenzial aufweist. 

 

Schlagwörter: Virenfiltration, Membranmodifizierung, hydrophobe Wechselwirkungen, 

Immunoglobulin 
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1 Introduction 
 
The increasing need for plasma derived therapeutics is a constant challenge for the 

pharmaceutical industry. New advances in all production steps are needed to attain both high 

purity and recovery at minimal costs: from the capturing of the targeted therapeutical 

molecule to its purification and formulation. However, besides qualitative and economic 

considerations, the product safety, especially in regards to virus contaminants, remains the 

most challenging issue in many manufacturing processes. In the past, contamination of source 

plasma by enveloped viruses (HIV, HCV) has led to the contamination of plasma derived 

therapeutics and, at last, to patient infection. In response, several viral safety strategies were 

adopted by the industry to significantly minimize the risk of viral contamination. These 

strategies typically include source plasma control, donor screening and integration of multiple 

orthogonal clearance steps within the product manufacturing. State-of-the-art clearance of 

large enveloped viruses is ensured by heat or chemical/detergent treatments, exposure to low 

pH, adsorption to chromatographic media or size exclusion based techniques. Currently, 

product safety concerns are principally focused on the clearance of smaller non-enveloped 

viruses that are resistant to existing thermal and chemical inactivation methods. 

 

Virus filtration is a robust, size exclusion based virus clearance technology. The membranes 

used allow the passage of molecules up to 8-12 nm while retaining virus particles with a 

diameter of at least 20 nm. Therefore, this clearance strategy is especially effective in the 

removal of small non-enveloped viruses like e.g. parvoviruses. Furthermore, the tight 

membranes used are inert and do not damage the targeted product and consequently high 

product recovery is achieved in most applications.   

 

One major issue governing virus filtration is membrane fouling, causing a marked decrease of 

the permeate flux during the filtration process. This phenomenon is especially observed with 

feed streams containing pooled immunoglobulin G (IgG) of thousands of blood donors. For 

this particular application, commercially available virus filters do not always meet the 

performance specifications required by the industry, which are: high filtration capacity, to 

reduce the membrane surface area required for this cost intensive step, and high viral safety, 

since these products are typically injected intravenously to people with reduced immune 

capabilities. 
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The main object of the present work was the development of a membrane exhibiting high 

virus retention and filtration capacity for high plugging plasma derivatives. This work 

comprised the three following objectives: 

 

Description of the mechanisms governing virus retention. In this part a bacteriophage-

based model parvovirus was developed to assess the virus retention capacity of porous 

materials. This model was used to determine the impact of various factors like membrane 

heterogeneity, orientation and morphology on virus retention, the optimum product 

configuration and, finally, to define the required membrane specifications regarding virus 

retention and facilitate up-scaling. 

 

Elucidation of the dominant mechanisms involved in membrane fouling. In this part, the 

influence of the operating conditions, solute-to-membrane interactions and solute size 

distribution on membrane fouling was investigated. The dominant parameters affecting the 

filtration performance of pooled IgGs were identified and strategies to overcome these 

limitations are discussed. 

 

Development of a high capacity virus retentive membrane. In this last part, different 

materials with various structure and surface properties, generated by electron-beam initiated 

surface graft modification, were tested in respect of filtration capacity and virus retention. A 

high throughput screening characterization system was developed to enhance the screening 

and performance testing of membrane modified under various conditions. Finally a complete 

product concept, comprising a low binding porous material operated at determined optimum 

conditions is proposed. 
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2 Size exclusion based virus removal  

2.1 Virus clearance in the pharmaceutical Industry 

2.1.1 Regulatory aspects and state-of-the-art in virus clearance. 

 
Virus contamination poses a threat to the safety of biopharmaceuticals [1-4]. This is 

especially true for therapeutics that are sourced from mammalian fluids like plasma derived 

coagulation factors or immunoglobulins. In order to address the risk of contamination, 

regulatory mandates were designed to reduce the risk of virus transmission in the plasma pool 

used in the manufacturing process [5]. These mandates typically include donor selection, 

testing of donations and plasma pools for specific relevant viruses (HBV, HCV, HIV and 

HTLV) [1, 5-8] and have contributed significantly to the increased safety of plasma 

derivatives in the last two decades. However, in spite of these measures, viruses still have 

been detected in plasma pools and plasma derived coagulation factors (factors VIII and IX) 

have been responsible for transmission of HIV, hepatitis viruses, and parvoviruses [9-15]. For 

this reason, additional clearance steps are necessary to ensure product safety and minimize the 

risk of contamination.  

 

Depending on their mode of clearance, these additional virus clearance methods are classified 

as virus removal strategies, which aim at (mechanical) reduction of viral numbers, or virus 

inactivation methods where the objective is irreversible loss of viral infectivity [5]. Virus 

inactivation methods typically include heat, UV and chemical/detergent treatments or low pH. 

In contrast, virus removal strategies are mostly based on adsorptive mechanisms using 

chromatography techniques or molecular sieving in the case of virus filtration [3, 6, 8, 16-19]. 

The choice of a definite technique or method combination is not only guided by clearance 

efficiency but also by the characteristics and stability of the target molecule under the 

conditions inherent to the method. Methods like heat or chemical treatment can, for instance, 

lead to changes in the conformation or even denaturation of the therapeutic molecule of 

interest [20, 21] and could have a dramatic impact on its biological activity. Furthermore, an 

ideal clearance method should be robust or, in other terms, efficient under a large variety of 

operating or solution related conditions. It should also have a broad spectrum of clearance 

(either through inactivation or removal) of viruses [5].  

 

Besides the strategies specifically designed for virus clearance, virus removal or inactivation 

can also be achieved as a consequence of routine processing and purification operations. 
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Many unit operations that are part of the manufacturing process co-incidentally provide virus 

clearance. Operations that are typically incorporated in the purification process e.g. 

clarification, centrifugation, extraction, precipitation or chromatography techniques, may 

physically remove viruses from the solution due to size exclusion, charge related or 

adsorptive mechanisms. Furthermore, virus inactivation can also be a consequence of pH or 

solvent change during processing. This is especially true in the case of immunoglobulin G 

(IgG) that are isolated from human plasma by performing the well-established cold ethanol 

fractionation, which also provides very effective viral inactivation [22]. The use of low pH-

buffer for elution of target molecules from chromatography columns is another typical 

example of an inactivation operation that is not specifically dedicated to virus clearance [23]. 

 

The clearance efficiency is evaluated in terms of log10 reduction value (LRV), which is the 

ratio of viral concentration per unit volume in the pre-treatment suspension to concentration 

per unit volume in the post-treatment suspension.  

 

For every manufacturing process, the minimum level of viral clearance to be attained is 

evaluated by a risk assessment. The major factors influencing the viral safety of 

biotherapeutics and that are considered in the risk calculation are the following [24]:  

• The species of origin of the starting material since non-human viruses are less 

susceptible to infect humans. 

• The degree of source variability of starting material, since products derived from 

pooled human plasma pose a higher risk compared to products derived from well-

characterized cell banks. 

• The different operation and purification units and their potential for virus reduction. 

• The existence of specific viral clearance steps implemented in the process. 

From the determined risk calculations will result the amount of virus clearance efficiency that 

is required for a given manufacturing process. As an additional safety margin, regulatory 

agencies encourage manufacturers to validate processes, able to remove or inactivate >6 log10 

more virus than is estimated to be present in the starting material.  

 

The targeted viral clearance efficiency for therapeutics derived from human plasma typically 

exceeds 20 orders of magnitude. Since such degree of clearance cannot be achieved by a 

single unit operation, multiple orthogonal clearance methods operating in concert are needed. 

The term orthogonal means and can be here replaced by “based on different separation or 
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inactivation principles”. Since each viral clearance method, individually, may have 

limitations, their use in an integrated manner provides overlapping and complementary levels 

of protection [5]. Besides the implementation of a multiple orthogonal clearance strategy into 

the purification process, regulatory agencies also emphasize the presence of at least one 

clearance method effective against small non-enveloped viruses [25], which are not 

eliminated substantially by the large majority of existing thermal and chemical inactivation 

methods [26]. Table 2.1 gives an overview of clearance methods used in the manufacture of 

biotherapeutics. 

 
Table 2.1: Overview of clearance methods used in the manufacture of biotherapeutics and their respective 

efficiency against enveloped and non-enveloped viruses. 

 Technology 
Efficient against non-

enveloped viruses 

Efficient against 

enveloped viruses 

chromatography  √ 
Virus removal  

Virus filtration √ √ 

Heat inactivation  √ 

S&D  √ 

Low pH  √ 
Virus inactivation 

UV-C √ √ 

S&D: solvent and detergent 

UV-C: shortwave UV (100-280 nm) 

 

As already mentioned in the introduction, product safety concerns are currently focused on 

the clearance of small non enveloped parvoviruses. Parvoviruses are small (18-26 nm) non-

enveloped icosahedral structures containing a single-stranded DNA molecule. In contrast to 

enveloped viruses, parvoviruses have no lipid bilayer envelope around the viral protein capsid 

and consequently exhibit high resistance against solvent and detergent, but also against heat 

and dessication. One particular challenging virus that belongs to the parvoviradae family is 

the human parvovirus B19. B19 virus is a common human pathogen associated with a wide 

variety of diseases [27] and also a frequent contaminant of blood donations and plasma 

derived therapeutics [28]. Since B19 virus also exhibits high resistance to many inactivation 

methods, virus filtration remains the most effective technology to ensure the absence of such 

contaminants in the final product [16, 18, 19, 29-31]. 

 

In order to ensure that the total viral clearance targeted is achieved, the potential of virus 

clearance for each of the manufacturing unit operations has to be evaluated. Typically, virus 
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clearance evaluation studies are conducted at scale down conditions due to logistic and 

economic limitations. However, the scale down must be a true representation of what occurs 

in the manufacturing process. For this reason, the impact of critical operating parameters on 

viral clearance, such as volume, flow rate, contact time, product load and, in some cases, 

device design or geometry has first to be evaluated to determine if they have to be conserved 

at small scale. Finally, Evaluation should be performed under conditions that constitute a 

“worst-case” scenario in order to demonstrate the minimum clearance efficiency an operation 

unit can provide. As an example, worst-case conditions for S&D treatment are provided at 

low detergent concentrations combined with short exposure times. 

 

 

2.1.2 Virus detection methods 

 
Evaluation of the viral clearance efficiency necessitates methods to detect and quantify the 

virus particles remaining in the post-treatment solution. There are several available detection 

methods: infectivity assays, molecular probes, biochemical assays, morphological assays, and 

antibody production tests (in animals). The particular viral detection will depend on the 

objective of the test, what is being tested and other issues. For example, the effectiveness of a 

virus clearance unit operation is commonly assessed using infectivity tests, though PCR-based 

assays are being increasingly used. To estimate the non-infectious retroviral burden, assays of 

choice include morphological (electron microscopy) or biochemical assays. 

 

Infectivity assays are standard assays for validation studies [32]. They involve the inoculation 

of susceptible cell lines with the specific virus, followed by observation of cytopathic effects, 

for example, formation of plaques, focus forming units or induction of abnormal cellular 

morphology, as a consequence of the infection [5].  The main type of in vitro infectivity assay 

commonly used to estimate virus titer is the plaque-forming assay. In a first step, the process 

solution is spiked with a concentrated virus stock solution and used as a feed solution for the 

unit operation, whose clearance efficiency has to be assessed. Several dilutions of the post-

treatment solution are used to infect cells, which are kept stable in an overlay of agarose to 

limit virus spreading. When each infected cell produces virus and eventually lyses, only the 

immediately adjacent cells become infected. Each group of infected cells is referred to as a 

plaque. Uninfected cells surround the plaques. After several infection cycles, the infected cells 

in the center of the plaques begin to lyse and the peripheral infected cells remain surrounded 

by uninfected cells. This phenomenon causes the light passing through the infected cells to 
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refract differently than the surrounding uninfected cells, and the counting of plaque forming 

units (pfu/mL) can be performed either by the naked eye or by light microscopy 

 

The plaque-forming assay offers extreme sensitivity and is especially useful when the virus is 

present at extremely low titers. However, the requirement for a different assay system for 

each virus (due to the cell culture-specific infectivity) makes biological assays cumbersome. 

For this reason, bacterial viruses, also referred to as bacteriophages, are commonly used by 

filter manufacturers to evaluate the size exclusion properties of their virus removal filters and 

by some end users for preliminary evaluation of size-based filtration under process conditions 

[33-35]. Bacteriophages are not pathogen for humans, are available at different sizes and are 

consequently adequate for development phases. Furthermore, the cultivation of the 

corresponding bacterial host cell does not necessitate expensive culture media and the result 

of the plaque-forming assay can already be obtained 12 hours after inoculation.  

 

Molecular probes, such as hybridization or RT-PCR assays [32, 36], are being increasingly 

used because of their specificity and the rapidity of results. These methods, in general, detect 

the presence of specific nucleic acid sequences (DNA and RNA) but cannot differentiate 

between infectious or non-infectious particles. Additionally, the method is applicable only 

when the genomic sequence of the virus is known and stable in regards to mutation [36]. 

Furthermore, quantitative PCR is especially relevant if the viral agent cannot be grown in 

vitro. It should also be mentioned, that a negative PCR result does not prove unequivocally 

the absence of viruses (infectious or not), due to limitations in assay sensitivity. 

 

Finally, biochemical assays such as reverse transcriptase assays, radiolabel incorporation into 

nucleic acids, radioimmunoassay, immunofluorescence and Western blot are also used for 

virus detection. However these tests are semi-quantitative. These assays also detect enzymes 

with optimal activity under the test conditions and their interpretation may be difficult due to 

the presence of cellular enzymes or other background material [5]. 
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2.1.3 Performance aspects of virus filtration 

 
Virus filtration is a robust, size exclusion based virus clearance technology [1]. This clearance 

strategy is especially effective in the removal of small non-enveloped viruses that are resistant 

to heat and solvent or detergent based inactivation methods [19, 31]. The membranes used, 

allow the passage of molecules up to 8-12 nm while retaining viruses with a diameter of at 

least 20 nm and may at present be the only method allowing both virus reduction and 

recovery of 90-95 % protein activity [1].  

 

Since the presence of only a small number of abnormally large pores will permit excessive 

virus leakage, virus filters must be manufactured so as to eliminate all macro defects [37]. 

Ideally they should exhibit a homogeneous pore structure and a narrow pore size distribution. 

Typically, commercial virus filters have a complex multilayer structure to ensure the absence 

of defect paths [18]. They are available both as flat sheet or hollow fiber (HF) modules. Table 

2.2 gives an overview of commercially available virus filters used for the removal of small 

non-enveloped viruses. 

 
Table 2.2: Overview of commercially virus filters against small non-enveloped viruses and their characteristics 

Virus filter name Type Material Structure Claimed LRV 

Millipore NFP Flat sheet Hydrophilic PVDF Strong asymmetric (composite) >4 log10 

Pall DV20 Flat sheet Hydrophilic PVDF Symmetric >3 log10 

Sartorius Virosart CPV Flat sheet Hydrophilic PES Slightly asymmetric >4 log10 

Asahi Planova 20N HF Regenerated cellulose Slightly asymmetric >4 log10 

 

Virus filter were originally designed for use in tangential flow filtration (TFF) with the fluid 

adjacent to the membrane. However the simplicity and lower capital cost of normal flow 

filtration (NFF), also referred to as dead-end filtration, has led to the widespread use of virus 

filters specifically designed for NFF [37]. In contrast to TFF, where the membrane surface is 

continuously swept by the tangential flux, NFF is significantly more sensitive to phenomena 

such as concentration polarization and fouling. Membrane fouling is characterized by a 

marked decrease of permeability as a function of permeated solution volume per membrane 

area and can have dramatic economic consequences. This is especially true in the case of 

virus filtration since the used membrane filters are single-use products and thus discarded 

after processing. Furthermore, the fine porous membrane structure, required to permit high 

resolution protein/virus separation, makes the method highly sensitive to impurities. The 
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complex multilayer structure of the virus filtration membranes features selective pores that are 

only slightly larger than the size of the proteins [18]. The presence of protein aggregates or 

high molecular weight molecules in the product stream can lead to pore plugging, resulting in 

throughput limitation [29, 37].  

 

To prevent this issue, virus filtration is usually performed near the end of the purification 

process, where the product contains a low level of contaminants [18] or following a 

prefiltration step. Recently, Bolton et al. [29] reported the use of a diatomaceous earth based 

depth filter situated upstream to the virus filter. The prefilter provided a dramatic increase of 

filtration capacity for solution containing human IgG by removing the species responsible for 

fouling. However, the dominant foulant of most virus filters is the protein product [18] and 

throughput limitations remain difficult to overcome for many applications. Syedain et al. [18] 

demonstrated the importance of the membrane structure and orientation in fouling phenomena 

using a composite membrane. This membrane consisted of a thick skin layer that was 

supported on a more open membrane substructure and was consequently exhibiting a strong 

asymmetric structure (see also section 2.2.1). Higher filtration capacity was obtained with the 

more open side facing the feed solution, allowing protein aggregates or large foulants to be 

captured within the macroporous substructure and protecting the fouling sensitive skin layer 

[18, 20, 37].  

 

Beside the fact that membrane fouling can be associated with additional cost and product loss, 

membrane fouling also may have an impact on virus safety. Many articles reported that the 

virus reduction capability of some virus removal filters sometimes decreases with increasing 

flow decay [16, 38]. Bolton et al. [16] proposed an explanation to this phenomenon based on 

pore selectivity. Considering that the membrane also contains a small amount of pores that are 

somewhat larger than viruses, The gradual plugging of small pores will result in an increase 

of the relative proportion of solution that pass through the larger pores, leading to virus 

breakthrough. Additionally, strong flow decay can also complicate the collection of sample 

when the sample volume necessary for testing is not achievable [39]. In both cases, this can 

lead to product failure during expensive validation studies.  

 

As already mentioned in the introductive part, pooled IgG purified from human plasma are 

therapeutic solutions, whose filtration is often observed to be throughput limited. Large 

filtration surface area is required to process such solutions. In contrast to the production of 
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recombinant proteins or monoclonal antibodies (Mab), purification processes in the plasma 

fractionation industry are old, well-established processes and the produced IgG containing 

therapeutics are products with low added value. Consequently, filtration capacity is one of the 

most important factors for the selection of a virus filter in such applications.  

 

 
2.2 Production of virus retentive polymer membranes 

2.2.1 Membrane preparation by immersion precipitation 

 
The large majority of commercial flat sheet virus filter are phase inversion membranes 

obtained by immersion precipitation. Phase inversion membranes can be prepared from a 

large variety of polymers. The only requirement is that the polymer must be soluble in a 

solvent or solvent mixture [40] and must be film forming. Typical polymers used for the 

fabrication of virus retentive membranes are polyethersulfone (PES) and polyvinyldifluoride 

(PVDF). The preparation of flat membranes on a semi-technical or technical scale is shown 

schematically in Figure 2.1.  

 

 
Figure 2.1: Schematic drawing depicting the preparation of flat membrane by immersion precipitation 

 
The polymer solution also referred to as the casting solution or dope is cast directly upon a 

supporting layer by means of a casting knife. The casting thickness can vary between 30 and 

300 µm. The cast film is then immersed in a non-solvent bath where exchange between the 

solvent and non-solvent occurs. The non-solvent begins to diffuse into the polymer solution 

and the solvent begins to diffuse into the coagulation bath due to their concentration gradient, 

bringing the composition of the polymer solution into the miscibility gap of the ternary phase 

diagram. Hence the polymer solution decomposes into 2 phases: a polymer-rich phase and a 

polymer-poor phase. The former results in a rigid, structural form of the membrane, while the 

latter gives a porous substructure of the membrane. Liquid-liquid phase separation (also 
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referred to as liquid-liquid demixing) continues to form the final membrane structure until the 

polymer-rich phase is solidified by gellation and/or crystallization of the polymer (also called 

solid-liquid demixing) [40, 41].  

 

Since the performance and selectivity of the membrane strongly depends on its morphology, it 

is of great importance to identify and control the parameters that will provide the membrane 

with adequate final structure properties. 

 

The basic principle of controlling membrane structures from a crystallizable polymer is the 

competition between the liquid-liquid demixing process and the solid-liquid demixing or 

crystallization process [42]. In general, the liquid-liquid demixing process engenders cellular 

pores whereas the crystallization forms interlinked crystalline particles [43]. Typical factors 

influencing the performance and structural properties of phase inversion membrane are:  

• choice of polymer, solvent and non-solvent 

• composition of casting solution, of coagulation bath 

• crystallization behavior of the polymer 

• temperature of casting solution and coagulation bath 

• exposure time with the gas phase. 

 

Wang et al. examined the effect of the polymer dissolving temperature on the morphology and 

crystallization of PVDF membranes. The study pointed out that high dissolution temperatures 

generate membrane structure with larger cell size observed by electron microscopy in the 

cross section. Many researchers also demonstrated that the addition of inorganic salt in the 

casting solution could affect the final structure and the permeability and selectivity 

characteristics of produced phase inversion membranes [44-46].   

 

Another factor that impacts the morphology of membrane prepared by immersion 

precipitation is the composition change in the polymer solution prior to immersion into the 

coagulation bath [42, 47]. Young et al. obtained more symmetric membrane structures while 

increasing the exposure time of the cast film with the gas phase [42]. Buennomena et al. 

demonstrated that absorption of humidity from the air brings the cast film closer to demixing 

conditions when hygroscopic solvents are used. It reduces the gradient of the water 

concentration in the nascent membrane film upon contact with the coagulation bath and thus 

promotes a more homogeneous nucleation and symmetric morphology [43]. 
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Asymmetric membranes prepared by phase inversion techniques typically exhibit a very thin 

selective layer (skin) supported by a more open porous structure. These membranes generally 

present great advantages regarding permeability. For a given selectivity, asymmetric 

membranes generally may exhibit higher flow permeation rates compared to symmetric 

membranes due to decreased flow resistance. As already mentioned in section 2.1.3, some 

commercial virus retentive membranes are asymmetric composite membranes. Such particular 

membrane also consists of a thin dense skin layer that is supported by a porous sublayer. 

However, in this case the two layers originate from different polymeric materials. The 

advantage of composite membrane is that each layer can be optimized independently to obtain 

optimal membrane performance with respect to selectivity, permeability and chemical or 

thermal stability [40].   

 

 

2.2.2 Graft surface modification of polymeric membranes 

 

The large majority of membranes prepared by phase-inversion are made of rather 

hydrophobic polymers and the produced porous material typically exhibits low surface 

energies [48-50]. This presents several disadvantages regarding wettability as well as 

adsorption of solutes. For some membrane related processes such as virus filtration, protein 

adsorption can lead to dramatic performance decreases and consequently, additional costs due 

to larger required filtration surface area and decreased product recovery may occur.   

 

Therefore, the aim of surface modification often is to minimize undesired interaction 

occurring between the porous material and the solute in order to increase the filtration 

performance. Two alternative approaches can be distinguished.  “Grafting to” is performed by 

coupling polymers to surfaces, while during the “Grafting from” approach, monomers are 

polymerized using an initiation at the surface. The former has the potential advantage that the 

structure of the polymer to be grafted is well characterized. However the grafting densities 

which may be achieved are limited and the coupling reactions require special efforts [48].  In 

the case of grafting from, considerably higher grafting density can be attained since the 

method involves the initiation of a polymerization reaction at the membrane surface. However 

the modification process often is more difficult to control and various chain length and 

grafting densities can be obtained. 
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Chemical reaction onto the membrane surface can be realized either via derivatization of 

intrinsic functional groups onto the membrane polymer or by degradation of the membrane 

material for the activation of reactions. However most of the established polymer used in 

membrane production like e.g. PES or PVDF are inert and lack convenient end groups for 

heterogeneous functionalization [51]. In contrast, activation of chemical reactions by 

controlled degradation of polymers can be easily realized by high-energy radiation (γ- or 

electron-beam), plasma or UV irradiation. 

 

Excitation with high energy irradiation has a low selectivity and bond scissions in the volume 

of the membrane material cannot be avoided [48]. However, initiating sites are rapidly created 

directly upon irradiation, which obviates the need for chemical initiators. E-beam can operate 

at high dose rates and the depth of penetration can be controlled by the E-beam energy [52]. 

The radiation process is employed at room temperature. It is also free from contamination as 

no catalyst or additives are required [53].  

 

Excitation with UV irradiation also presents some advantages compared to other technologies. 

It can be performed at mild reaction conditions and low temperature, high selectivity is 

possible by choosing the excitation wavelength [54, 55] and similarly to electron-beam 

irradiation, it can be integrated into continuous manufacturing processes simply and cost-

efficiently [48]. However photo-initiated processes remain surface selective and grafting 

reaction onto the pore inner surface cannot be achieved efficiently with this technology and is 

then more appropriate for membrane used in tangential flow mode (TFF).  

 

Reported “grafting to” reactions were mostly performed on UF and MF membranes. 

Hydrophilic polymers such as PEG [56] or PVP [57] were used in order to minimize protein 

adsorption. 

In the case of grafting from reactions, functional monomers such as acrylates, acrylamides 

derivates and other vinyl monomers have been used almost exclusively until now [58-62]. 

“Grafting from” reaction proceeds in 3 different ways: pre-irradiation, mutual irradiation 

technique and peroxidation [63]. In the pre-irradiation technique, the membrane or polymer 

backbone is first irradiated in vacuum or in the presence of an inert gas to generate stable free 

radicals. The membrane is then impregnated with the monomer solution. In the mutual 

irradiation technique, the polymeric membrane and the monomer are irradiated 
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simultaneously. The main disadvantage of this technique is the probable formation of 

homopolymers, which does not occur using the pre-irradiation approach. At last in the 

peroxidation grafting method, the membrane is subjected to radiation in the presence of 

oxygen to form hydroperoxides. The stable peroxy products are then treated with the 

monomer at high temperature and decompose to radicals, which can initiate the 

polymerization. The reaction of acrylate derivatives with free radicals is proposed in Figure 

2.2  

 
Figure 2.2: Electron beam or photoinitiated polymerization reaction of acrylate derivatives. 

 
Free radicals are generated by UV-irradiation or by electron beam irradiation. The created 

free radicals react at the β-position of the α,β unsaturated carbonyle compounds to form a new 

free radical, stabilized by mesomerie, which can couple with another monomeric molecule. 

The reaction propagates until termination to form polymer chains that can be stabilized using 

a crosslinker agent if needed. Typically it consists of a bi- or polyfunctional acrylate 

derivative [64] and  allows the formation of stable networks. These networks are sometimes 

referred to as to hydrogels, due to their ability to swell upon contact with water. Recently, 

Susanto et al. demonstrated the fouling resistant properties of thin-layer hydrogel composite 

membranes that have been prepared by photograft polymerization of hydrophilic monomers 

(poly(ethylene glycol) methacrylate PEGMA and N,N-methylene bisacrylamide MBAA) onto 

PES UF-membranes [61]. 
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3 Characterization of dominant mechanisms governing virus retention 

3.1 Retention assessment with PP7-bacteriophages 

 
The logarithmic reduction value (LRV) gives access to the retention efficiency. The LRV 

value corresponds to the ratio between virus concentration in the post-treatment solution and 

virus concentration in the pre-treated/filtered solution.  

 

As already mentioned in section 2.1.2, virus logarithmic reduction values can be precisely 

determined using a plaque-forming assay. However, this particular detection method is a time 

and resource consuming process that involves at least 6-7 days of cultivation. The method is 

routinely used for validation studies, where the virus retention efficiency of a process 

operation unit has to be assessed accurately with a definite type of virus. However, it remains 

inadequate for development and screening phases where various materials and operating 

conditions have to be characterized rapidly.  

 

At the present time, no indirect methods, based for example on measurements of the 

membrane pore size or flow characteristics, have shown consistent correlation with LRV. The 

use of the bacteriophage PP7, a small 25 nm, non-enveloped ss-RNA Pseudomonas phage 

from the Leviviridae family as a conceivable model virus for retention testing has been 

already described in the literature [38] and presents many advantages. First it has a size 

similar to the porcine parvovirus (PPV), commonly used as a B19 virus model for validation 

studies and is also not a human pathogen. Furthermore, its use does not require special 

virology equipment or laboratories and the final LRV result is already available the day 

following the infection. Last but not least, the high concentrated bacteriophage stock solution 

(107 particle/mL) necessary to assess high LRV values is economically more attractive than 

the corresponding virus containing stock solutions, due to the high cost and resources 

involved in their purification and concentration.  

 

The set up of a typical spiking study with bacteriophages PP7 at Sartorius-Stedim Biotech 

(SSB) is shown in Figure 3.1. 
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Figure 3.1: Experimental set-up used for spiking study with the bacteriophage PP7 and evaluation of the 

retention efficiency of virus retentive membrane material. The system allows for 16 filtration experiments in 

parallel.  

 
As already mentioned, the process solution is spiked with a high concentrated PP7-stock 

solution. The method allows precise LRV evaluation of at least 7 logPP7 since the minimum 

initial concentration of the bacteriophage containing solution is 1·107 pfu/mL. Therefore this 

value also corresponds to the detection limit of the method. Several dilutions of the obtained 

filtrate solution are mixed with a diluted bacterial preculture of Pseudomonas aeruginosa, 

mixed with nutrient broth agar and finally overlaid on the surface of a solid nutrient agar 

plate. After overnight incubation, the formed plaques on the plate surface are counted. Figure 

3.2 gives an example of plaques formed on the surface of an agar plate. 

 
Figure 3.2: Plaques formed on the surface of an agar plate, after infection of Pseudomonas aeruginosa with the 

bacteriophage PP7.  
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The plaque assay described above is routinely used at SSB for quality controls regarding the 

release of Virosart® CPV, the commercially available virus filter at SSB. This filter product 

is validated for at least 4 log removal of bacteriophage PP7 and consists of 2 superposed 

layers of a polyethersulfone (PES) based flat sheet membrane. In order to achieve a high 

packing density, which is synonym of large surface area, the membrane material is pleated 

before sealing into the filter device. Small-scale devices, referred to as Minisart capsules and 

having a surface area of 5 cm2, are also available at SSB and are typically used as well for 

validation studies as for product release (see also Figure 3.3). In both cases, the obtained LRV 

results are of great importance to determine if the product meets (or not) the required 

specifications.  

 

 
Figure 3.3: a small scale filter device at SSB, also referred to as a Minisart module. Membrane surface area: 5 

cm2 

 

Such studies are however mostly performed on filters in the final product configuration and 

do not consider parameters that may affect virus retention independently, e.g. the membrane 

orientation, impact of membrane pleating and protein-virus interactions. Furthermore, due to 

multilayer configurations, the retention efficiency of such devices cannot be assessed 

accurately when the LRV exceeds the limit of detection. Then, useful information regarding 

the membrane heterogeneity and its retentive properties may be overlooked, despite of their 

importance for up-scaling predictions.  

 

The aim of this part is to elucidate how far the membrane orientation, the pore size 

distribution, the membrane structure and the presence of proteins in the solution can impact 

virus retention. Answering these questions will provide new insights into the mechanisms 

governing virus retention. This will also be useful for fixing the membrane structure 

requirements and to determine the optimum evaluation conditions, which should represent a 

“worst case” scenario for the membrane. Finally, the gained knowledge will contribute to the 
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development of prediction tools for up-scaling in order to prevent product failure at 

manufacturing scale. 

 

 

3.2 Membrane orientation 

 

Very often, membranes prepared by immersion precipitation exhibit an asymmetrical 

structure. This structure can be more or less pronounced depending on various physical 

parameters along the casting process. It depends, amongst other things, on the 

solvent/nonsolvent composition of the gaseous phase and can be controlled by changing the 

evaporation time of the solvent from the cast film before immersion. The definitive membrane 

morphology is permanently fixed in the coagulation bath. In general, membranes exhibiting a 

strong asymmetry are obtained when the cast film is abruptly immersed into the coagulation 

bath. The resulting structure consists then of a coarse layer with open pores on one side and a 

fine skin structure with tighter pores on the other side. In contrast, longer exposure to the 

gaseous phase before immersion will provide membranes having a more symmetric structure 

(see also section 2.2.1). 

 

In contrast to ultrafiltration (UF) that is conventionally operated in tangential flow mode 

(TFF), virus filtration is typically performed by normal flow filtration (NFF). Operation in the 

NFF mode offers several advantages over TFF, including higher flow rates, easier integration 

into a production environment and lower capital expenditure [65]. For all of these reasons, 

virus filtration by NFF is preferred by a large majority of manufacturers.  

 

In the case of ultrafiltration, the membrane side with tighter pores or skin side is typically 

placed towards the feed solution. The deposited molecules are then sheared from the 

membrane surface by the tangential flowing stream. This orientation presents the advantage 

that the solutes are rarely entrapped in the membrane structure, resulting in increased 

operating time. However, in the case of NFF and especially of virus filtration, viral particles 

accumulate as a cake on top of or within the filter porous medium and it remains unclear 

which membrane orientation or/and which degree of asymmetry provides higher retention.  

 

In order to illustrate the impact of membrane morphology on retention properties, 2 PES-

based membranes with distinctive structure properties were tested. Both material structures 
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were analyzed by scanning electron microscopy. Figure 3.4 reveals that the membrane on the 

right presents a strong asymmetric structure with pores of 500 nm on one side and tighter 

pores of approximately 50 nm on the other side, also referred to as “skin side”. In contrast, the 

slight asymmetric morphology of the second membrane exhibits pore sizes varying from 200 

nm to 50 nm. For this last structure the retentive layer with the smaller pores (approx. 50 nm) 

is located 10 µm below the represented “skin side”, which exhibits here pores larger than 100 

nm. 

 

  
Membrane side with open pores 

  
Membrane side with tighter pores (“skin side”) 

Figure 3.4: Scanning electron microscopy of 2 different PES membranes. Magnification: 200000x. Left: 

membrane with a slight asymmetric. Right: structure membrane with a strong asymmetric structure. Approx. 

membrane thickness: 100-110 µm.  

 
Filtration experiments were performed using the two different membrane structures described 

above. For each membrane morphology, both orientations “skin-up” and “skin-down” were 

tested. As already mentioned, the term skin refers to the membrane side with the tighter pores. 
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Consequently, in the skin-up configuration, the skin side of the membrane is placed towards 

the feed solution.  

 

Small scale devices with the designated configuration were prepared. Filtration of 50 mL of a 

107pfu/mL PP7-bacteriophage solution was then carried out at constant operating pressure. 

All solutions were previously prefiltered using membranes having a nominal pore size of 

0.1µm to remove small aggregates or impurities that may be present in the solution. This 

prefiltration was performed throughout this work before all filtration experiments. The 

increase of the filtrate volume as a function of time was assessed by weighing the collected 

filtrate. The virus titer in the filtrate was then determined as described in section 8.5.1 

 

The obtained filtration curves for both membrane types as well as the corresponding flow rate 

as a function of time are shown in Figure 3.5 and Figure 3.6 respectively.  

 

 
Figure 3.5: Filtration of a 50 mM Phosphate buffer solution spiked with 107 PP7-Phage/mL. Two different 

membrane structures: slight asymmetric (on the left) and strong asymmetric (on the right) and two different 

membrane orientations: skin up and skin down were tested. Constant operating transmembrane pressure (TMP): 

2 bars. 
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Figure 3.6: Orientation dependent decrease of the permeate flux measured on two membranes exhibiting a 

different degree of asymmetry.  

 
Retention properties of the different membranes or/and filter configuration are illustrated in 

Figure 3.7. For each membrane type and configuration, membrane materials that originated 

from two different casting batches and exhibiting different flow characteristics were used.  
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Figure 3.7: Impact of membrane orientation and asymmetry on PP7-bacteriophage retention.  

 

The overall higher flow rate measured on strong asymmetric membranes illustrates the impact 

of the membrane structure on its flow characteristics. Typically, asymmetric membrane 

structures provide larger permeability since flow resistance principally occurs in the tight skin 

layer of the membrane. In the case of membranes with a low degree of asymmetry, flow 

resistance occurs along the whole membrane thickness, resulting in decreased flow rates. 

 

The data presented in Figure 3.6 demonstrate that the skin-up orientation leads to a marked 

decrease of the permeate flow rate during the filtration process. In contrast, no decrease of the 

flow rate was observed for the skin-down configuration. Similar differences between the two 

filter configurations were observed in regards to PP7-retention. For both tested membrane 

structures, higher LRV were achieved when the membrane side with larger pores was facing 

the feed solution. Furthermore, the LRV and flow rates differences between both filter 

configurations appear to be more pronounced in the case of membrane exhibiting strong 

asymmetric structures.  

 

The marked decrease of the permeate flux observed for skin-up orientations can be explained 

through the blockage of pores with bacteriophage particles. When the skin side is facing the 

feed solution, PP7 retention is mainly ensured on the surface of the thin membrane skin, 

where pore plugging dramatically affects the measured permeate flux. One can assume that 

the retentive skin layer possesses a distribution of pore sizes and that a fraction of pores are 
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somewhat larger than viruses. As the filtration progresses, the small pores become gradually 

plugged by bacteriophage particles. The proportion of the flow through larger pores 

progressively increases, resulting in PP7-breakthrough. A similar hypothesis was proposed by 

Bolton et al. [16] to explain the mechanisms of LRV decline in virus filtration studies.  

 

In contrast, the skin-down orientation may be less affected by mechanisms based on pore size 

selectivity. Here the coarse structure layer placed towards the feed stream may act as a depth 

filter. Such filters are well known for retaining large masses of particles before becoming 

plugged [66]. Particles are retained throughout the filter media rather than just on the surface. 

Decrease of permeate flux is practically not observed, since the pore flow distribution is less 

affected on the skin side, where flow resistance principally takes place. Finally, the 

entrapment of PP7 particles in the tortuous porous medium may occur due either to adsorptive 

or size exclusion based mechanisms. 

 

On the basis of data obtained in this study, it appears that skin down configurations provide 

both higher LRV and permeate flux over the entire filtration process than skin-up 

configurations. At equal retention, strong asymmetric membranes exhibit a 4 times higher 

permeability than membranes with a rather symmetric structure. Next steps will aim to clarify 

if the apparent suitability of strong asymmetric structure for virus retention is also ensured in 

the presence of high plugging product streams like pooled IgG. 

 

 

3.3 Effect of flow decay on retention 

 

Previous experiments have shown that the retentive efficiency of virus filter may be reduced 

when a decrease of permeate flux is observed. Virus filtration is typically performed on 

process solutions that may contain high concentrations of protein, or protein with high fouling 

tendency. For such applications, decrease of the permeate flux is also a common issue, that 

may also enhance pore size selectivity, modify flow distribution in the pores, and finally 

impact retention efficiency. Furthermore, conceivable interactions between bacteriophage-

particles and proteins could also have an influence on LRV and have to be examined. The 

understanding of such mechanisms is essential to determine the optimum experimental 

conditions for the evaluation of LRV of future materials.  
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In order to see the influence of protein presence on LRV, different IgG-containing solution 

were spiked with PP7-bacteriophage at 1·107 pfu/mL. The IgG concentration of the three 

tested solutions was 0 g/L, 1 g/L and 2 g/L. Filtration experiments were carried out using 3 

membranes with different structure properties: two of them exhibited a similar slight 

asymmetric morphology but different permeability and retentive properties. The third 

membrane had a strong asymmetric structure and a LRV comparable to the more retentive 

slightly asymmetric membrane. Table 3.1 summarizes the structures properties and 

performance characteristics of these membranes.  

 
Table 3.1: Structure properties and performance characteristics of used membranes 

 
Membrane 

asymmetry 

Permeability with water 

[L·min-1·cm-2] at 2 bar 

LRV after filtration of 50 mL of  50 mM KPi- 

buffer spiked with 107 Pfu/mL PP7 

Membrane A Slight 0,52 ± 0,01 2,0 ± 0,5 

Membrane B Slight 0,40 ± 0,01 5,0 ± 0,9 

Membrane C strong 1,9 ± 0,05 4,8 ± 0,8 

 

 

For all tested membranes and spiked IgG solutions, filtrate fractions were collected during the 

filtration process. The bacteriophage titer at collecting time was determined in each fraction in 

order to monitor the LRV progression over the entire filtration process. In parallel, the 

decrease of permeability as a function of time was measured by weighing the collected filtrate 

quantity. All filtration experiments were performed with the skin-down orientation, which 

provide higher LRV and lower flow rate variability than skin-up orientation. The influence of 

the membrane morphology and IgG-concentration on the decrease of permeate flux is 

illustrated in Figure 3.8. The determined LRV in the collected fractions are shown for all 

tested membranes and IgG concentrations in Figure 3.9. 
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Figure 3.8: Influence of the membrane structure and of the IgG-concentration on decrease of permeate flux 

during PP7-removal. Tested solutions: 0 g/L, 1 g/L and 2 g/L IgG in 50 mM KPi-buffer spiked with PP7-phages 

at 107 pfu/mL.  

 
Figure 3.9: Phage clearance of different IgG-containing solutions with 3 membrane filters exhibiting distinctive 

structure properties. The 3 different solutions with IgG concentrations of 0 g/L, 1 g/L and 2 g/L were spiked with 

PP7-bacteriophages at 107 pfu/mL. 

 
For all membrane types, stronger flow decay was observed with increasing IgG-

concentrations. This suggests that the membrane pores become gradually fouled by proteins 

during the whole filtration process, probably due to size exclusion or adsorptive mechanisms. 

Figure 3.8 also reveals the trade-off relationship between LRV and filtration capacity. The 

two membranes with similar morphologies but different retention efficiencies exhibited 

dissimilar filtration behaviors. Higher resistance to fouling and higher protein passage was 

achieved by the membrane with lower retention.  

 

Considering the two membranes with equal retentive properties but different morphologies, it 

appears that strong asymmetric structures are particularly sensitive to fouling. Despite of the 

considerably higher water permeability typically featured by asymmetric membranes, 
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dramatic flow decreases were observed in the presence of proteins. Complete plugging of the 

membrane was even achieved after filtration of only 10 mL of a 2 g/L IgG-solution. 

 

In the absence of proteins, no variation of permeability was observed over the entire filtration 

process with the 3 tested membranes. However, measurement of the PP7-titer in each 

collected filtrate fraction pointed out that LRV declines with increasing filtrate volume, 

reinforcing the theory of pore selectivity described in section 2.1.3 As the filtration 

progresses, smaller pores become progressively plugged by phage particles, leading to the 

alteration of the flow distribution. After a certain processing time, a point is reached at which 

permeate flow through large pores represents a relatively high proportion of the overall liquid 

flow and bacteriophage breakthrough can occur. This phenomenon explains the decline of 

LRV without protein that was observed with all tested membrane structures.   

 

Figure 3.9 also suggests that the presence of IgG in the spiked challenge solution does not 

only impact the permeate flux, but also the retentive properties of all tested membranes. This 

is especially true for strong asymmetric membranes, whose retention capabilities are 

dramatically reduced at increased IgG-concentrations. This shows that flow decay due to 

membrane fouling also affects LRV. The thin retentive skin layer, characteristic of such 

asymmetric structure, appears to be particularly sensitive to membrane fouling and become 

plugged early, even with moderate amounts of IgG-containing solution. Additionally, the 

presence of proteins in the feed medium enhances the selective plugging of pores with smaller 

size and induces LRV decline.  

 

However, in the case of membrane exhibiting a more symmetric morphology, higher retention 

is achieved with spiked IgG-solutions than in the absence of protein. Here the flow-decay-

versus-LRV relationship observed on asymmetric structures is not applicable anymore and 

additional, more complex, mechanisms are involved. As described in the previous section, the 

more symmetric porous structure of membrane A and B may act as a depth filter and retain 

particles throughout the filter media rather than just in a thin skin layer. This may minimize 

membrane fouling phenomena but also prevent alteration of the flow distribution. Phage 

retention appears to be dominated by other mechanisms like pore constriction due to 

adsorption of protein to the specific surface area or bacteriophage-IgG interactions. Both 

hypothesis may explain the higher retention attained with IgG-containing solutions.  
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In conclusion, the LRV progression for this particular membrane structure may result from 

two separated mechanisms occurring at different stages. During the first stage of the filtration, 

LRV decline due to pore selectivity may be the dominating mechanism, whose effects may 

vary depending on the protein concentration and pore size distribution. In a second stage, as a 

certain amount of feed solution has passed through the membrane filter, pore constriction may 

overlap pore selectivity mechanisms and lead to an overall higher retention capacity. 

 

According to the results obtained in this part, it appears that membranes with slight 

asymmetric structure present the best compromise between retention and filtration capacity. 

Retention evaluation must be conducted with viral spikes that represent a “worst case” 

challenge. For that reason, retention testing on membrane exhibiting similar structure 

properties should be further performed without protein.  

 

 
3.4 Prediction model for precise retention targeting 

 
Section 2.1.2 reported the suitability of bacteriophages as model parvoviruses for virus 

retention testing. It is known that virus retention is strongly depending on the membrane pore 

size distribution. Furthermore, a noticeable variability in the retention was observed within 

filtration experiments performed in the previous sections. These tests were performed using 

small filter devices. This variability is probably due to the membrane heterogeneity and may 

be less pronounced for bigger devices containing larger surface area. On the one hand, testing 

using small filter devices is convenient for development purposes due to lower buffers and 

solutions requirements. On the other hand, in a set of satisfying small filter devices, a 

defective test device, exhibiting a low or even no retention, does not weight statistically or can 

even be considered as an outliner. However, a similar defect can have dramatic consequences 

for larger filter devices and lead to virus breakthrough. Thus there is a need for a predicting 

tool able to evaluate how far the variability in the retention can impact the retention 

characteristics of an upscaled filtration device. Such a tool is essential to define the 

specifications (average LRV and allowed variability) that have to be met at small scale in 

order to target assigned retention efficiency with high scale filter devices.   

 

The main goal of the following study was to develop a mathematical model that is able to 

predict the LRV of an upscaled filter device, based on the average retention, the retention 
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variability obtained with small devices and the chosen filter configuration like e.g. the number 

of membrane layers.  

 

 
3.4.1 Influence of membrane heterogeneity  

 
In a first part, the impact of membrane heterogeneity on bacteriophage retention was 

investigated. A representative number of filter devices containing one membrane disc with a 

surface area of 5 cm2 were built and their retention characteristics were assessed using the 

bacteriophage based determination method described in section 3.1. Each membrane disc that 

was sealed into the device originated from the same membrane casting batch. The average 

targeted retention during the membrane casting process was about 4 logsPP7 in order to 

minimize the probability for a filter sample to exceed the detection limit of 7 logsPP7 inherent 

to the method. 

 

The LRV was determined for each filter device after filtration of 50 mL of a solution with a 

bacteriophage concentration > 107 phages/mL. The average filtration flow rate was also 

determined for each device as described in section 8.4.1. At the same time, large-scale 

filtration cartridges (approx. surface area: 0.2 m2) were built using the same material to allow 

comparison between results obtained using the prediction tool and the ones determined 

experimentally. The membrane material was comprised between two layers of protecting 

fleece material and then pleated. (see Figure 3.10). The pleats were achieved by back-and-

forth folding of the flat membrane upon itself and allow for an increased packing density. 

 

 
 

Figure 3.10: Assembly of a large scale filtration device containing a membrane surface area of 0,2 m2. The 

membrane is comprised between 2 layers of protecting fleece material, pleated (left) and sealed into a filtration 

cartridge (right). 
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The same solution volume-to-surface area-ratio as used in small scale devices was considered. 

The data obtained on small scale devices was grouped within LRV-classes as follows: 

]m;m+1] when m<n≤m+1, with n = measured LRV and the corresponding probability P(n) 

was calculated using the following equation: 

    (Eq. 3.1) 

The experimental data were then fitted using a normal Gaussian distribution (see Figure 3.11). 

The obtained parameters were respectively an average LRV µ of 4.5 and a standard deviation 

σ of 0.91. 

 
Figure 3.11: Probability density function of LRV using small scale filter devices. The membranes sealed into 

the filter devices all originate from the same membrane casting batch. The effective filtration surface area was 

5 cm2. The experimental data (n=96) was grouped in LRV intervals and fitted using a normal Gaussian 

distribution. The obtained parameters are: µ=4,5; σ=0,91. 

 

According to the obtained regression coefficient of 0,993, the heterogeneity of the produced 

membrane in regard to Phage-retention can be described by a normal Gaussian distribution 

(see Eq. 3.2). 

         (Eq. 3.2) 

 

 



Dominant mechanisms governing virus retention 

33 

The logarithmic reduction value measured on a small scale filter device, hereafter referred to 

as  n is defined by: 

      (Eq. 3.3) 

Where NSi and NSf are the number of viruses contained initially in the feed solution and in the 

filtrate respectively.  

 

Small scale devices may be considered as finite surface areas building the discretization 

scheme of a larger filter device. The expected logarithmic reduction value LRVB of such a 

device is described by:  

         (Eq. 3.4) 

and          (Eq. 3.5) 

where X refers to the number of finite surface elements comprised in the larger filter device. 

NBf is the number of bacteriophages collected downstream to the large filter and also 

corresponds to the sum of particles that have passed through each small scale filter devices. 

        (Eq. 3.6) 

Substituting Eq. 4.3 for NSf, Eq. 4.6 can be rewritten as 

  (Eq. 3.7) 

        (Eq. 3.8) 

Since P(n)=f(n;µ,σ), the expression above shows that the average retention µ and the 

associated standard deviation σ, measured on small scale devices are determining for the 

retention efficiency of larger filtration devices.  

 

However, it should be pointed out that Eq. 3.8 does not consider flow rate differences 

between the tested small scale devices. The flow rate in each small scale device, referred to as 

JS(n), was measured within these experiments. Figure 3.12 clearly shows that higher flow 

rates are observed on filters exhibiting lower retention. This suggests the existence of an 

inhomogeneous flow distribution within the large scale filter and shows that particle passage 
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predominantly occurs through membrane domains with higher flow rate. Furthermore, these 

results also pointed out that small flow rates differences can have dramatic consequences on 

the phage retention efficiency.  

 
Figure 3.12: linear correlation between LRV and filtration flow J(n) rate measured on  small scale filter devices.  

The filtration experiments were performed at constant pressure P=2bars 

 

One can assume that differences in the JS(n) values will impact the number of phages retained 

by each finite surface element. As a consequence, the number of phage NBi that is processed 

by each surface element becomes a function of n. Nevertheless, the total number of phages 

initially contained in the feed solution NBi and passing through the large scale device at a flow 

rate JB remains unchanged. 

         (Eq. 3.9) 

       (Eq. 3.10) 

Where is the mean flow rate across a finite surface element.   

 (Eq. 3.11) 

        (Eq. 3.12) 
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After substitution of NBi with Eq. 3.4, the expected LRV of a large scale filter device is 

expressed by Eq. 3.13  

       (Eq. 3.13) 

Finally, the expected LRV of the up-scaled filter device was determined theoretically as a 

function of µ and σ using the following expression: 

      (Eq. 3.14) 

Where b is the upper boundary. The interval length Δn was chosen according to the following 

expression: 

          (Eq. 3.15) 

Using this predicting tool, the logarithmic reduction value expected in a large scale filtration 

device can be evaluated according to the statistical parameters µ and σ, determined using a set 

of small scale filter devices. These parameters describe respectively the average retention 

efficiency and the heterogeneity of the membrane material used for the fabrication of such 

devices. Figure 3.13 illustrates the strong impact of the membrane heterogeneity on 

bacteriophage retention. Theoretical LRV-values were predicted by varying σ and µ. The 

model shows, as expected, that up-scaling issues are not observed with ideal membrane 

materials exhibiting a narrow pore size distribution and having a σ value close to zero. On the 

contrary, a high σ value indicates a large pore size distribution that strongly affects the 

retention efficiency of the filter device. 

 

In order to rate the reliability of the prediction tool, the LRVB obtained theoretically using the 

parameters µ and σ from Figure 3.11 were then compared to the logarithmic reduction value 

measured experimentally on large scale filter devices containing the same monolayer 

membrane material. 
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Figure 3.13: Impact of the average phage retention and membrane heterogeneity on the logarithmic reduction 

value of large scale filter devices (left).  LRV-prediction of an up-scaled filtration device containing one layer of 

the experimentally considered membrane material: LRVB= 3,4 (right) 

 

The corresponding results are summarized in Table 3.2. 

 
Table 3.2: Comparison of the LRV determined experimentally on a 0,2 m2 large scale filter device with LRV 

calculated using the predicting tool. 

LRV of an up-scaled filter device calculated theoretically 

Flow rate not considered Flow rate considered 

LRV determined experimentally on 

filter device with a 0.2 m2 surface 

area (4 repeats) 

3,64 3,46 3,7 ± 0,4 

 

The results obtained experimentally are in accordance with the logarithmic reduction values 

determined using the model described above. Assuming that the assembled small and large 

scale devices did not contain any defects, the prediction tool appears to provide valuable 

approximation of LRV obtained after up-scaling. These results show once again the impact of 

membrane heterogeneity on the retention efficiency, but also that the contribution of the 

inhomogeneous flow distribution on virus breakthrough is minimal.  
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3.4.2 Influence of membrane layer configuration 

 
A conceivable alternative to improve the retention efficiency of a virus filter is to increase the 

number of membrane layer contained in the device. An important feature of logarithms is that 

they reduce multiplication to addition and a filter device containing two superposed 

membrane layers may exhibit a two times higher retention compared to the corresponding 

monolayer configuration. Furthermore such a multilayer configuration would not require 

membrane material with tighter pores to permit higher retention and protein passage may not 

be affected. However, the resulting filter permeability will decrease due to increased flow 

resistance.  

 

The use of small scale devices containing multiple membrane layers is not always adequate 

for precise up-scaling predictions, since such devices may exhibit LRV that exceed the 

detection limit. For that reason, the retention efficiency of a large scale multilayer filter device 

should be based on results obtained with monolayer small scale devices. Thus the model 

developed in the previous section may be suitable for multilayer prediction if the two 

following mathematically obvious hypothesis are confirmed experimentally: the additivity of 

LRV and the inversely proportional relationship between flow rate and number of layers. 

 

Small scale devices containing 1, 2 and 3 layers of a membrane material with a targeted 

retention of 1-2 logs were assembled. Under such conditions, even the 3-layer-configuration 

should not provide LRV higher than 6. In order to ensure that the pressure applied on each 

membrane layer was similar for all filter devices, the filtrations experiments were performed 

at a constant operating pressure of 1, 2 and 3 bars respectively. LRV determinations were then 

determined according to the method described in previous section. 

 

Figure 3.14 shows that the 3 different filter configurations all exhibit an equal LRV 

normalized to the number of membrane layers, confirming that LRVs are additive. As also 

expected, the resistance to the flow increased proportionally to the number of membrane 

layer, and equal flow rates were obtained with the 3 different device configurations when 

operated at proportionally increasing pressures.  
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Figure 3.14: LRV and Flow rates measured on small scale devices containing 1, 2 and 3 layers of the same 

membrane material .Depending on the layer configuration, the operating pressure was set to 1, 2 and 3 bars 

respectively.  (number of repeats=8) 

 

Based on these confirmations, the developed prediction tool can be used to evaluate the 

retention capacity of an up-scaled multilayer filtration device. Since the convolution of two 

Gaussians, characterized by the parameters [µ1;σ1] and [µ2;σ2]  is another Gaussian with the 

parameters [µ3;σ3] where: 

          (Eq. 3.16) 

and 

,         (Eq. 3.17) 

Under the condition that similar membrane material is used in the multilayer filter device, 

P(n) is now described by: 

         (Eq. 3.18) 

Where k corresponds to the number of membrane layers building the large scale device. µ and  

σ represent as before the statistical parameters determined experimentally on monolayer small 

scale devices. 

Besides the observed improvement of the retention efficiency, Eq 3.17 and 3.16 also show 

that increasing the layer number amplifies the membrane heterogeneity. This phenomenon is 

illustrated in Figure 3.15, where the LRV distribution of a double and triple layer 
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configuration were simulated, based on the parameters determined experimentally in the 

previous section. 

 
Figure 3.15: Simulated probability density function of LRV obtained with small scale devices containing 2 and 

3 membrane layers. The used membrane material is characterized by the statistical parameters: µ=4,5 and σ=0,91  

 

Considering the LRV additivity and the flow resistance proportionality regarding multilayer 

configurations, the experimentally determined J(n) can now be written as: 

        (Eq. 3.19) 

As described in Eq. 3.19 and illustrated in Figure 3.16, the impact of the flow rate on phage 

retention is strongly reduced when the number of membrane layers k contained in the device 

increases. Therefore the use of multiple membrane layer contributes to homogenize the flow 

rate distribution in the device, whose impact on phage retention can be considered as 

negligible in large scale filter devices. 

 

After replacement of both J(n) and P(n), Eq. 3.14 was used to predict the LRV of a large scale 

filter device, containing 2 membrane layers, at various µ and σ values. A 3-dimensional 

representation of this prediction is shown exemplarily in Figure 3.17. In the mean time, 0,2 m2 

large scale filter devices, containing 2 membrane layers were assembled. The same membrane 

material and assembly procedure as in section 3.4.1 was considered. As previously described, 
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the retention efficiency of the assembled large scale devices was assessed using PP7-

bacteriophages as virus-like particles.  

 
Figure 3.16: LRV-dependent filtration flow rate simulated on small scale devices containing 2 and 3 membrane 

layers. 

 

 
Figure 3.17: Impact of the average Phage retention and membrane heterogeneity on the logarithmic reduction 

value of large scale filter devices containing 2 membrane layers. 
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The experimentally determined LRV are summarized in Table.3.3 and compared with the 

predicted LRV.  

 
Table.3.3: Comparison of the LRV determined experimentally on a 0,2 m2 large scale filter device with the LRV 

calculated using the predicting tool. The number of membrane layers considered was 2 

LRV of an up-scaled filter device calculated theoretically 

Flow rate not considered Flow rate considered 

LRV determined experimentally 

on filter device with a 0,2 m2 

surface area (4 repeats) 

6,44 6,28 5,9 ± 0,3 

 

Similar to results obtained in the previous section, where monolayer large scale devices were 

used, predicted LRVs are in accordance with predicted values when multilayer configurations 

are considered. Since the values determined experimentally lie close to the limit of detection 

inherent to the testing method, the LRV determined experimentally may have been 

underestimated.  

 

 

3.5 Conclusion 

 
In a first part, dominant mechanisms governing virus retention were identified. Using 

bacteriophage PP7 as a parvovirus-like-particle, the impact of the structure properties, the 

membrane orientation and the protein concentration in the spiked medium were analyzed. 

According to the results obtained within this part, a suitable virus retentive membrane should 

not exhibit a strong asymmetric structure due to pore size selectivity mechanisms and 

alteration of the flow distribution over the processing time. The side with the larger pores 

should be placed towards the feed solution, also referred to as skin down orientation, to 

provide higher LRV.  

 

If the main goal of a spiking study is to evaluate the performance of new developed retentive 

materials, proteins should be absent from the feed solution, in order to avoid overestimating 

clearance values. In contrast, validation studies should be conducted at conditions that 

correspond to process scales and using the real process solution.  
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Generally, spiking studies are typically performed at scale down conditions due to logistic and 

economic limitations. However, successful up-scaling necessitates the availability of efficient 

prediction tools that are able to predict the performance of filter devices with larger surface 

area, taking into account membrane heterogeneity, retention properties and layer 

configuration measured on small scale devices.  

 

The second part focused on the development of such a prediction tool, whose suitability was 

confirmed by comparison with experimental data. Consistent LRV predictions in large scale 

filtration devices were achieved using a set of data measured on small scale devices with a 

400 times lower surface area. This was true for devices containing one single membrane layer 

as well as for configurations consisting of 2 superposed membrane layers. The results also 

illustrated the suitability of small-scale devices to evaluate the LRV of larger filtration 

devices. This is of great importance since manufacturing processes are typically validated 

based on downscale devices. Furthermore the valuable predictions obtained also argue for 

reliable device construction and for the absence of defects due to product related issues like 

pleating or sealing. 
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4 Characterization of dominant mechanisms governing membrane fouling 
 
Besides the insurance of robust virus retention, an important feature required for a 

competitive virus filter is high filtration capacity. The membrane should be able to filter large 

amounts of process solution and ensure high product recovery.   

 

One issue governing the performance of size exclusion based virus filtration is membrane 

fouling, a marked decrease of permeability as a function of permeated solution volume per 

membrane area, as was illustrated in the previous section. 

 

It has been reported that membrane/solute interactions can significantly impact protein 

filterability [67, 68]. Adsorption of protein to the membrane surface due to hydrophobic or 

electrostatic interactions depends on the surface properties of both protein and membrane in a 

given solution environment. Electrostatic attraction/repulsion is less prominent at higher salt 

concentrations [69] or at pH-values near to the isoelectric point (PI) of the protein of interest 

[68, 70-74]. Additionally, hydrophobic interactions can also lead to adsorption of proteins on 

porous materials made of rather hydrophobic polymers like e.g. polysulfone (PS), 

polyethersulfone (PES) or polyvinyldifluoride (PVDF) [48]. 

 

Plasma derived therapeutics for intravenous administration, containing pooled 

immunoglobulin G (IgG) of over thousand of blood donors, are typical high plugging protein 

streams, whose filtration is often observed to be throughput limited. IgG consists of four 

polypeptide chains; two identical heavy chains and two identical light chains connected by 

disulfide bonds regions. Each chain consists of two different regions: the constant region and 

the variable region. The constant region is identical in all antibodies of the same isotype, and 

consequently in all antibodies contained in such therapeutic solutions. In contrast, the variable 

region exhibit a high degree of variability in order to interact with a large variety of antigens 

and confer passive immunity to deficient people which have decreased or abolished antibody 

production capabilities [8, 21]. However, the variability in the amino acid residues may 

diversify the electrical and hydrophobic properties of the IgG contained in the therapeutic 

mixture and, consequently, increase the number of interactions potentially leading to 

membrane fouling. 
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The main objective of this part is to determine how far adsorption due to electrostatic or 

hydrophobic interaction can impact the filtration performance of pooled IgGs. This involves 

the characterization of electrostatic and hydrophobic properties of both membrane and protein 

solution under a variety of operating conditions as well as the evaluation of their relative 

contribution to membrane fouling. 

 
4.1 Electrostatic solute-membrane interactions 

 
Many researchers have used the membrane surface charge as a correlating parameter to study 

fouling characteristics, with the greatest fouling typically observed under conditions where 

solute and membrane have opposite net charge [75, 76]. 

 

 The pH of a solution has been found to be a major factor influencing protein adsorption to 

membrane filter [70]. Proteins have a net positive charge at pH-values below the isoelectric 

point (pI). Under these conditions and depending of the charge carried by the membrane, 

electrostatic attraction or repulsion can occur and lead to irreversible protein adsorption.   

 

In order to be able to predict and consequently to prevent such mechanisms, it is necessary to 

determine the pI or pI-distribution of the concerned protein or protein mixture, respectively. 

The surface charge of the considered membrane also has to be characterized. This can be 

achieved by measurement of the zeta potential, which often is assumed to be an indirect, 

relative description of the membrane surface charge. 

 

4.1.1 Isoelectric point distribution of pooled Immunoglobulins 

 
2D-gelelectrophoresis was performed in order to determine the pI-distribution of the pooled 

IgG-preparation. 2D-gelelectrophoresis is an established technique that allows separation of 

proteins by isoelectric point in the first dimension and by mass in the second dimension. The 

obtained 2D-gelectrophoregram is shown in Figure 4.1. 
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Figure 4.1: Image of 2D-gelelectrophoresis of pooled IgG isolated from blood plasma. (A) Heavy chain, (B) 

Light chain. 

Figure 4.1 shows that the pI-ranges are 5-9.5 and 6.5-9.5 for the IgG-light chain and IgG-

heavy chain respectively. The longer pI-distribution of the light chain compared to the heavy 

chain is due to the relative size of the IgG variable domain in comparison to the entire chain. 

Variations of the pI are mainly due to the amino acid composition in variable domains. The 

amino acid ratio between the variable region and the entire chain is approximately one fourth 

for the heavy chain and one half for the light chain. The high pI-diversity of the pooled IgG-

preparation shows how changes in the amino acid sequence can confer a large variety of 

electrical properties to the protein mixture. The pI-ranges measured in this work are consistent 

to the pI-range determined by Bolton et al. in a polyclonal human IgG solution [29]. Even 

though isoelectric focusing was not performed with the protein in its native conformation, the 

average pI of pooled IgG is assumed to be close to 8.  

 

4.1.2 Electrical properties of membrane surface 

 

The zeta-potential is related to the charge functionality at the membrane-solution interface 

and also to the solution pH and electrolyte composition. At the boundary between solids and 

electrolyte solutions, the distribution of electrical charges differs from that in the bulk phase. 

A schematic of a typical ion distribution near a negatively-charged surface is shown in Figure 

4.2. The charges on the solid surface are compensated by counter ions, forming an immobile 

layer (stern layer) and a diffuse double layer [77]. The surface of shear defines the region at 

which the fluid becomes mobile and is situated just beyond the outer Stern surface. The 

electrical potential at the surface of shear is defined as the zeta potential ζ and is typically 
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used to characterize the electrical properties at the solid surface. Zeta-potential measurements 

at different pH-values were performed in a flat sheet tangential module using an 

electrophoretic light scattering (ELS) based zeta-potential analyzer. The pH dependence of 

the ζ-potential was determined in 10-2 M KCl electrolyte solutions. The pH-value was varied 

in the interval of pH 2 to 7 by addition of 0,1 M HCl or KOH solution. Determination of the 

zeta-potential under alkaline conditions (pH>7) was not possible with the used apparatus.  

 
Figure 4.2: ion distribution near a negatively charged surface 

Two different solid materials were tested. The PES based membrane material with a slight 

asymmetric morphology, analyzed in section 3.2 and the same material previously coated 

with pooled IgG. The coating process consisted in the overnight incubation of membrane 

material in a high concentrated (50g/L) IgG solution. Typically, this treatment leads to a shift 

of the pI of the membrane to the pI of the adsorbed protein [78, 79]. Here the membrane acts 

as a support material and allows indirectly the determination of the electrical properties of 

adsorbed proteins as a function of the pH value with the same experimental apparatus. A 

similar design of experiment was used by Nakamura et al. to estimate protein/membrane 

electrostatic interactions [79]. A more detailed description of the testing procedure is given in 

section 8.3.2 

 

Figure 4.3 shows the ζ-potential as a function of pH-value. The virus retentive membrane 

exhibits negative ζ-potential values over the entire pH-range studied. The data suggest that the 

isoelectric point of the membrane lies close to pH=2. Very similar results were obtained from 

Susanto et al. [61] on PES based commercial UF-membranes having a MWCO of 100 kDa.  

In the case of membrane coated with IgG, positive ζ-potential values were measured over the 

whole pH-range. These values are in accordance with the average pI of the IgG mixture 
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evaluated by 2D-gelelectrophoresis, since proteins have a positive net charge at pH-values 

below the pI. Lower absolute ζ-potential intensities were observed at pH-values close to the pI 

and the highest absolute ζ-potential intensities at strong acidic conditions (pH 2,2) where the 

proteins are almost fully protonated. 

 
Figure 4.3: pH dependence of the zeta potential of a PES based virus retentive membrane and of pooled IgG 

adsorbed to the surface of the same membrane material. Number of repeats=3 

 
Membrane and IgG have opposite charges over the entire measured range. Since greatest 

fouling is typically observed under conditions where the solute and membranes have opposite 

net charge [75, 76], electrostatic solute/membrane interactions may predominantly occur at 

pH-values below 8 and may be particularly marked at acidic pH-values. Further 

measurements of unspecific protein adsorption may confirm this hypothesis. 

 

 

4.1.3 pH-dependent protein adsorption 

 

Measurement of unspecific protein adsorption is routinely performed at SSB to characterize 

the protein binding capacity of new developed membrane materials but also for product 

release. Since determination of small amount of adsorbed protein is not possible by classical 
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measurement of the concentration decrease in the bulk, the method used here is derived from 

a protein determination method: the BCA-assay.  

 

The method utilizes bicinchoninic acid (BCA) for the detection of Cu+ ions, which are 

formed after reduction of Cu2+ by proteins in an alkaline environment. A purple colored 

reaction product is formed by the chelation of two molecules of BCA with one cuprous ion 

(Cu+). Protein quantification is performed by measuring the absorbance at 562 nm. The 

procedure of the method used to assess the amount of proteins bound on the membrane 

surface is schematically described in Figure 4.4. 

 

 
Figure 4.4: Schematic representation of the BCA-assay based procedure for the determination of unspecific 

protein adsorption 

 
Membrane material is incubated more than 12 hours in a protein containing solution to ensure 

the diffusion of proteins into the fine porous structure. The method only determines the 

protein amount that is irreversibly bound to the membrane, since the washing steps used to 

remove unbound species lead to desorption of reversibly bound solutes. However, protein 

adsorption involves a change of conformation upon contact with the surface and is often 

described as irreversible in the literature [80-84].  

 

In order to allow comparison of membrane materials exhibiting different morphologies, 

porosities and thicknesses, the amount of bound protein is normalized to the internal 

membrane surface area determined by BET measurements. A more detailed description of the 

experimental procedure is explained in section 8.4.3 

 

PES-membrane disks were incubated overnight in buffered IgG solutions at different protein 

concentrations. Different buffers were used to allow the measurement at different pH-values. 
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Since the presence of salts can also affect the protein adsorption behavior, the ionic strength 

was set to a common value of 30 mM for all tested buffered IgG solutions. Figure 4.5 shows 

the obtained adsorption isotherms as a function of the pH-value.  

 

 
Figure 4.5: Adsorption isotherms of IgG to a PES based membrane under different pH-conditions. The ionic 

strength was equal in all tested buffers. Number of repeats: 3 

 
The data were fitted using a monolayer Langmuir adsorption model, a simple non linear 

adsorption model. Eq. 4.1 describes the relationship between adsorbed and bulk concentration 

at steady state. 

          (4.1) 

With Q the amount of protein adsorbed, Qmax the maximum amount of protein that can be 

adsorbed by building a monolayer, kl the Langmuir constant that represents the solute/solid 

phase affinity and c the concentration of compound in the bulk. 

 

It should be mentioned that the Langmuir model is extensively used in the literature to 

describe protein adsorption mechanisms [81, 82, 85]. The main assumptions of this model are: 

- one molecule adsorbs to only one site and the number of sites is limited 

- Molecules adsorb by building a monolayer 
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- Lateral interactions between molecules cannot occur 

- The adsorption is irreversible. 

Results obtained in Figure 4.5 confirm that adsorption of protein to the membrane surface is 

not a reversible process. The BCA based method used here involves a washing step post-

adsorption that may desorb all reversibly bound molecules. One explanation proposed by 

Ramsden [81] for the irreversibility of the adsorption process is the denaturation of the 

molecule by its interactions with the surface. Paradoxically, despite the fact that the 

assumptions involved in Langmuir isotherms are seldom satisfied in the case of protein 

adsorption, it often provides fittings in good agreement with many systems [85, 86].  

 

Higher adsorptions were obtained under strong acidic conditions. In contrast, low 

solute/membrane interactions were observed at pH-values closed to the pI of pooled IgG 

evaluated by 2D-gelelectropheris and confirmed by ζ-potential measurements. Figure 4.6 

illustrates how the unspecific adsorption values obtained at an IgG concentration of 2 µg/µL 

correlate with the zeta potential intensities measured on membranes coated with IgG.  

 
Figure 4.6: Correlation between unspecific adsorption and zeta-potential of adsorbed IgG under different pH 

conditions. 

Strong electrostatic interactions are obtained when proteins are almost fully protonated. At pH 

values close to the average pI of the immunoglobulin mixture, these interactions are 

dramatically reduced. The valuable correlation obtained also points out that the intensity of 
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the negative zeta potential values, measured on the membrane surface without proteins, does 

not impact significantly the pH dependent adsorption of IgG, which appears to be mostly 

dominated by the protonation state of the considered proteins.  

 

Additionaly, filtration experiments with IgG containing solutions were performed at different 

pH-values (see Figure 4.7). The same buffers as for the adsorption experiments were used. 

Stronger flow decay is observed at pH-values at which the protein protonation state is the 

highest and correlates with the unspecific adsorption values measured under similar 

conditions.  

 
Figure 4.7: Influence of pH on flow decay during the filtration of 5g/L IgG-solutions. Filtration experiments 

were performed at a constant transmembrane pressure of 1 bar. All tested buffers were set to an equal ionic 

strength. 

Within this study, the wide distribution of electrical properties of IgG from human plasma 

was demonstrated. The results suggest, that changes in the pH-value can dramatically impact 

the filtration performance of pooled IgG. Strong acidic conditions lead to a complete 

protonation of all proteins contained in the pool and consequently, enhance their irreversible 

binding onto the negatively charged membrane surface. However, such extreme pH 

conditions do not concern commercially pooled IgG for therapeutic purposes, which are 

typically stabilized in buffers at near-neutral pH-values. Under such conditions, adsorption 

due to electrostatic interactions is relatively low and may not be the dominant mechanism 

involved in membrane fouling.  



Dominant mechanisms governing membrane fouling 

52 

 

4.2 Hydrophobic solute-membrane interactions 

 
One can assume that adsorption driven by hydrophobic interactions dominates at pH-value 

near to the pI of the protein [69]. Variability in the amino acid composition does not only 

induce a wide pI-distribution but also may impact the hydrophobicity distribution of pooled 

IgG from human plasma. In order to evaluate the impact of hydrophobicity on the filtration 

performance of pooled IgG, the following strategy was proposed: 

 
Figure 4.8: Fractionation strategy used to analyze solute/membrane hydrophobic interactions with pooled IgG. 

 
The proposed strategy consists of the following steps: 

- Fractionation of IgGs according to their hydrophobicity using Hydrophobic Interaction 

Chromatography (HIC). Since the separation is based on adsorptive mechanisms, the 

collected fractions should all exhibit a similar molecular size distribution.  

- Desalting of the collected protein fractions in order to discriminate salt dependent 

adsorptive behavior. 

- Determination of unspecific adsorption, filtration performance and molecular size 

distribution of IgG fractions generated by HIC. 

 

4.2.1 Fractionation by Hydrophobic Interaction Chromatography (HIC) 

 
Hydrophobic Interaction Chromatography (HIC) is a separation technique that uses 

hydrophobicity properties to separate proteins. In this type of chromatography, hydrophobic 

Pooled IgG 
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groups such as phenyl, octyl or butyl are attached to the stationary column. The conditions for 

the separation are the opposite of those used for ion exchange chromatography. Initialy, a 

buffer with a high salt concentration is applied to the column. Non chaotropic salts like 

ammoniumsulfate compete with the hydratation layer at the protein surface and reduces its 

solvation. As a result, the hydrophobic sites of the protein become more exposed and adsorb 

to the hydrophobic medium.  Bound proteins are eluted by gradually decreasing the salt 

concentration. More hydrophilic proteins will be eluted first while proteins with a strong 

hydrophobic character will need very low salt concentrations to desorb from the stationary 

phase. 

 

In order to determine how far the variability in the amino acid composition can influence the 

hydrophobicity profile of pooled IgG isolated from human plasma, HIC was performed here 

at neutral pH-value. A stepwise elution using 3 different ammonium sulfate concentrations 

was performed and 3 different IgG peaks corresponding to 3 different degrees of 

hydrophobicity were collected (see Figure 4.9). 

 
Figure 4.9: Fractionation of pooled IgG from human plasma by Hydrophobic Interaction Chromatography. 

Column: Phenyl HP (GE Healthcare); Flowrate: 3mL/min; Loading buffer: 1M (NH4)2SO4, 50 mM phosphate 

buffer, pH: 7.0; Elution buffer: 50 mM phosphate buffer, pH: 7.0. 

 
The proteins contained in the first and in the third fraction are respectively the most 

hydrophilic and the most hydrophobic components of the IgG mixture. The HIC 

chromatogram of the eluted IgG fractions in Figure 4.9 shows that polyclonal IgGs also 

exhibit a wide hydrophobicity distribution. It should be mentioned, that dissolution of protein 
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in ammoniumsulfate can, in some cases, lead to protein denaturation, potentially generating 

more hydrophobic molecules [87]. Furthermore, a similar separation profile may also be 

observed when the protein binding capacity of the column is exceeded. Thus, in order to 

ensure that the collected fractions effectively consisted of IgGs with different hydrophobicity 

that were present in the initial mixture, the HIC column was loaded with each protein fraction 

separately. The stepwise elution was repeated rigorously and, in every case, the different 

fractions/peaks were obtained with the identical elution volume.  

 

Since high concentrations of non-chaotropic salts enhance the hydrophobic properties of 

proteins, the collected fractions were desalted using gel filtration (Sephadex G25) and set to a 

common concentration for further adsorption analysis and filtration experiments.  

 

4.2.2 Correlation between hydrophobicity and unspecific protein adsorption 

 
Measurement of the unspecific adsorption on virus retentive membranes was performed as 

described in section 8.3.1 with the different IgG fractions generated by HIC. The 

corresponding adsorption isotherms are shown in Figure 4.10. 

 

 
Figure 4.10: Adsorption isotherms of unfractionated IgG and IgG fractions generated by HIC to a PES based 

virus retentive membrane. 

 
The obtained data clearly demonstrate the strong correlation between hydrophobicity of the 

fractions generated by HIC and the unspecific adsorption to the PES based virus retentive 
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membrane. The proteins contained in the most hydrophobic fraction (247 mL elution volume) 

were also the most adsorbing components of the protein mixture, while the two first collected 

fractions (183 and 208 mL elution volume), containing less hydrophobic molecules, did not 

exhibit strong interactions with the virus retentive membranes. The results also show how the 

most hydrophobic proteins contained in the IgG pool can strongly impact the adsorption 

behavior of the whole IgG mixture. According to the peak surface area ratios in Figure 4.9, 

the strong adsorbing IgGs represent less than one third of the complete eluted protein amount.  

 

 

4.2.3 Filterability of immunoglobulin fractions 

 
As a next step, filtration experiments with the collected IgG fractions were performed. All 

protein solutions were set to a common protein concentration of 1 g/L to allow comparison. 

The decrease of permeability as a function of the filtration volume is shown in Figure 4.11 for 

all tested protein solutions.  

 

Figure 4.11: Filtration of different IgG fractions generated by HIC and of unfractionated pooled IgGs. The 

filtration experiments were performed at a constant transmembrane pressure of 1 bar. Protein concentration in all 

different fractions: 1 g/L 

 
Similarly to the results obtained at different pH-values (see section 4.1.3), a consistent 

correlation between fouling propensity and degree of adsorption to the membrane could also 
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be observed within the following filtration experiments. Higher decrease of the permeability 

was obtained by filtering the high adsorbing proteins from the third IgG-fraction. In contrast a 

less marked decrease of the filtration flow rate was observed with the first protein fraction that 

contained the most hydrophilic IgGs. These results also illustrate how a small subset of 

molecules with a strong hydrophobic character can dominate the filterability of the whole 

pooled IgG mixture.  

 

 

4.2.4 Molecular size of Immunoglobulin fractions 

 
As already mentioned, the distribution of hydrophobicity observed on pooled IgG may be due 

to differences in the amino acid composition. Another conceivable possibility to explain 

hydrophobicity changes is the presence of different amount of protein aggregates in the IgG-

fractions, which are often described as more hydrophobic than the corresponding monomeric 

molecule [88]. 

 

SEC-analysis was performed in order to determine the molecular size distribution of the 

proteins contained in the different fractions. As shown in Figure 4.12, very similar elution 

profiles were obtained for all protein containing fractions.  

 
However, it should be mentioned that SEC is efficient in the separation of small aggregates of 

2 or 3 monomers, but does not allow a precise detection and quantification of non-covalent 

aggregates that can be disrupted during the process [89-93]. Consequently it cannot be 

excluded that the obtained elution profiles do not correspond to the real aggregation state in 

the different solution. 

 
The protein fractions do not contain notable levels of aggregate, reinforcing the hypothesis 

that adsorption and not size exclusion may be the main mechanism involved in this 

throughput limited filtration process. The more hydrophobic fraction may consist of 

denaturated IgG monomers or IgGs with more hydrophobic variable regions.  
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A B 

C D 

Figure 4.12: SEC-chromatograms of IgG fractions generated by HIC. A: unfractionated pooled IgG, B: first 

fraction, C: second fraction, D: third fraction. Column: PSS Proteema 300 Å, flowrate: 1 mL/min, elution buffer: 

300 mM NaCl in 50 mM phosphate buffer pH 6.8, sample volume: 10 µL. 

 

4.3 Adsorptive aspects of protein aggregation 

 
Due to small size differences between viruses and therapeutic proteins, the performance of 

virus filtration often is sensitive to protein aggregates [16, 29, 39, 65, 94]. For this reason, 

virus filtration is typically performed with highly purified therapeutical solutions near the end 

of the manufacturing process. However, small amount of aggregates as dimers or trimers may 

be still present in the end formulated solution despite the resources involved in their removal. 

Wang et al have shown that hydrophobicity increases with the degree of aggregation [88]. 

Besides the obvious size exclusion based mechanism, adsorption due to increased 

hydrophobicity may also be involved in the entrapment of aggregates in the membrane 

structure.  

 

In order to analyse the impact of adsorptive mechanisms in the retention of molecule 

aggregates, Bovine serum albumin (BSA) was used as a model protein due to its ability to 

form aggregates [95]. Theoretically, BSA-dimers or trimers should not be retained due to their 
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size. Due to the complexity to produce BSA solution with a definite amount of protein 

aggregates, SEC experiments of different commercially available lyophilized BSA-lots were 

performed to preselect an aggregate containing BSA.  

 

Similarly to plasma isolated IgG, fractionation of the chosen BSA using HIC was performed 

as described above and the 3-step elution was repeated (see Figure 4.13).  

 
Figure 4.13: Fractionation of aggregates containing BSA by Hydrophobic Interaction Chromatography. 

Column: Phenyl HP (GE Healthcare); Flowrate: 3mL/min; Loading buffer: 1,5M (NH4)2SO4, 50 mM phosphate 

buffer, pH: 7.0; Elution buffer: 50 mM phosphate buffer, pH: 7.0. 

 
Three BSA fractions with increasing hydrophobicity (starting with fraction 1) were collected 

and used as samples for SDS-PAGE analysis under reducing and non reducing conditions.  In 

the mean time, their adsorption behaviour to virus retentive membrane was tested as described 

in the previous section. The corresponding adsorption isotherms of the 3 fractions separated 

by HIC are shown in Figure 4.14.  
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Figure 4.14: Adsorption isotherms of unfractionated BSA and BSA fractions generated by HIC on virus 

retentive membranes.  

 
Here the three obtained fractions consisted of BSA fractions with different molecular size 

distribution. The SEC and SDS-PAGE analysis (Figure 4.15 and Figure 4.16) revealed that 

the hydrophobicity differences between the different fractions correlates with the amount of 

molecular aggregates in the fractions.  

 
  

 

Monomer  

rel. Area 

[%] 

 

 

Dimer  

rel. Area 

[%] 

 

 

Trimer*  

rel. Area 

[%] 

Fraction 1 67.07 25.88 7.05 

Fraction 2 42.47 35.78 21.75 

Fraction 3 37.19 29.35 32.61  
*: consists of trimers + larger protein aggregates. 

Figure 4.15: Determination of relative amount of protein aggregates in BSA-fractions generated by HIC using 

SEC: Column: PSS Proteema 300Å, flowrate: 1 mL/min, elution buffer: 300 mM NaCl in 50 mM Phosphate 

buffer pH 6.8, sample volume: 10 µL.  
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Figure 4.16: SDS-PAGE under reducing (A) and non reducing conditions (B) of different BSA-fractions 

obtained by HIC. 1: first fraction, 2: second fraction, 3: unfractionated BSA, 4: third fraction.  

 
The most hydrophobic protein fraction was the fraction containing the highest level of protein 

aggregates. The results obtained strongly support the hypothesis of Wang et al. that the 

hydrophobicity of proteins increases with the degree of aggregation [88], i.e. a dimer is more 

hydrophobic than a monomer, a trimer more than a dimer, and so on. 

 
Aggregate formation is frequently associated with changes in the protein conformation that 

can bring internal hydrophobic sites to become more exposed at the protein surface, resulting 

in higher hydrophobicity. Thus, the aggregate containing fraction was also strongly adsorbing 

on the membrane. It is often believed, that the entrapment of larger protein aggregates in the 

membrane matrix is only guided by size exclusion mechanisms [29, 96, 97].  The obtained 

results demonstrate how increased protein adsorption can be obtained in the presence of 

protein aggregates, suggesting that fouling is initiated by adsorptive mechanisms. 

Furthermore, the similar gel chromatograms obtained under reducing and non reducing 

conditions indicate that these aggregates may consist of covalently bound monomeric 

molecules that are not linked by disulfide bridges. Otherwise, only one band corresponding to 

monomeric molecules would have been observed under reducing conditions as the buffer 

contained both SDS and DTT, which separate, unfold and solubilise the different 

subunits/monomers of the protein complex/aggregate.  

 

 

 

 



Dominant mechanisms governing membrane fouling 

61 

4.4 Conclusion 

 
The data obtained within this study demonstrated how membrane fouling during virus 

filtration is mainly caused by irreversible adsorptive mechanisms. Such mechanisms are 

predominantly driven by electrostatic interactions when the considered protein is highly 

protonated. In the case of pooled IgG that exhibit an isoelectric point between approx. 5 and 

9, strong adsorption to the negatively charged PES based membrane occurs when the pH-

value in the surrounding environment is lower than 5. At pH-values close to neutral, and 

corresponding to the standard stabilization conditions for the majority of plasma derived 

therapeutics, unspecific adsorption is mainly driven by hydrophobic interactions.  

 

A small subset of molecules with a strong hydrophobic character can dramatically affect the 

filterability of the whole solution.  It can consist of protein aggregates like dimers or trimers 

but also of monomeric molecules exhibiting higher hydrophobicity.  

 

In the case where foulants consist of impurities or aggregates that were not removed within 

previous purification steps, the use of a prefilter upstream of the virus filtration step is a 

conceivable alternative to attain higher throughput [29]. Furthermore it is known that product 

aggregates are potent inducers of immune responses to therapeutic protein products [98] and, 

consequently, the final presence of a minimal amount of protein aggregates in the product 

should be ensured. However, in the case of pooled IgG from human plasma, the foulants 

responsible for throughput limitations, are a part of the product and their removal may induce 

a loss in therapeutical activity. 

 

For these reasons, reducing the hydrophobic interactions between the target protein and the 

membrane surface can prevent fouling without changing the therapeutical efficiency. In the 

first case it can be achieved by decreasing the salt concentration or changing the buffer 

composition. This alternative is not always accepted because it requires additional desalting 

operations and possible issues regarding the stabilization of the protein in the solution. 

 

Another conceivable alternative is to optimize the surface properties of the considered 

membrane in order to reduce its hydrophobicity. The next part will focus on the development 

of a high capacity virus retentive membrane, exhibiting reduced interactions with high 

plugging streams, while ensuring high virus retention. 
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5 High capacity virus retentive membrane  

 
Previously obtained data suggested, that unspecific adsorption due to hydrophobic 

interactions is mainly responsible for the throughput limitations observed while processing 

pooled IgG from human plasma. 

 

Surface modification is a well established technology to prevent fouling in membrane related 

processes that are typically facing highly plugging solutions like natural organic matter in 

waste water treatment or complex culture media in sterile filtration. For these particular 

applications, many researchers reported the development of membranes exhibiting anti-

fouling and low protein binding properties by coating the surface with hydrophilic polymers 

[58-62, 99]. Such low protein binding coating materials, sometimes referred to as hydrogels 

due to their swelling tendency, are the result of grafting reaction of hydrophilic polymers onto 

the membrane surface (see also section 2.2.2). One great advantage of this technology is, that 

hydrophobic PES based membrane materials can also be used as support matrix since the 

grafted hydrophilic layer acts as a barrier and provides a sterical shielding of the surface. 

Consequently, antifouling properties are combined with properties characterizing membranes 

made of rather hydrophobic polymers, which are: high mechanical and chemical resistance 

and high porosity [48, 61, 100].   

 

As already mentioned in section 2.2.2, Electron beam initiated graft modification present 

many advantages compared to other excitation methods or chemical graft polymerization 

[49]. Two alternative approaches are distinguished. ‘Grafting-to’ is performed by coupling 

polymers to surfaces, while during ‘grafting-from’ monomers are polymerized using an 

initiation at the surface [48]. The potential advantages and limitations of both approaches 

have been already reported in section 2.2.2. 

 

The main goal of this part was the development of a virus retentive membrane with high anti-

fouling properties for highly plugging streams like e.g. pooled IgG from human plasma. Here 

E-beam initiated graft polymerization was used for the surface grafting of hydrophilic 

polymer onto the surface of PES based virus retentive membranes. The impact of the graft 

polymerization on solute/membrane interactions as well as on virus retention was analyzed 

within this study. 
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5.1 High throughput automated characterization of filtration capacity 

 

An attractive approach to characterize normal flow filters and to determine the maximal 

filtration capacity is the Vmax analysis [101]. Its determination is based on the pore 

constriction model [97, 101-104]. The membrane capacity Vmax represents the maximum 

volume of fluid that will pass through the filter before it becomes completely plugged and the 

filtration data can be extrapolated to longer filtration times using the linearized form of the 

pore constriction model: 

         (Eq. 5.1) 

Where V is the total filtrate volume collected over time t and Q0 is the initial volumetric 

filtrate flow rate. Then, Vmax can be evaluated by plotting the time-to-volume-ratio t/V against 

the time t and then by taking the inverse of the slope (see Eq. 5.1). Flow decay data obtained 

over only a short filtration time suffice to determine the maximum filtration capacity after 

extrapolation. Consequently, this method is particularly appreciated in the case of tight virus 

filters, whose characterization is a time consuming process due to their low permeability. 

 

However, the development of a new generation virus filter with optimized surface properties 

involves the testing of a large variety of materials grafted with various polymers at different 

concentrations, irradiation doses under a large variety of operating conditions. In order to 

rapidly identify the optimum modifications parameters and save resources, a large number of 

tests have to be conducted in parallel. This experimentation approach, often referred to as 

High Throughput Screening (HTS) has become more significant in the last decades with the 

improvement of robotics and the development of liquid handling devices and sensitive 

detectors.  

 

Membrane permeability and Vmax-value are the key parameters to characterize the filtration 

performance of new developments. Since their determination is particularly time consuming 

with moderately to high plugging solutions, a conceivable possibility to improve the testing 

throughput is the use of an automated manipulator system. Such a HTS system for the 

determination of filtration capacity was developed within this project and is shown in Figure 

5.1. 
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Figure 5.1: Image of a HTS filtration module allowing 48 filtrations in parallel. The corresponding preformed 

membrane in 6x8 format is shown on the bottom left corner of the picture (left). Automated manipulator system 

allowing the continuous determination of the retentate volume using the level detection feature of pipeting 

needles (right). 

 
The automated manipulator system allows the simultaneous testing of 48 membrane disks 

having an effective surface area of 0.56 cm2 in each filtration module. The system features 

four sampling needles with aspirating and dispensing functions carried by a robotic arm. 

Transmembrane pressure (TMP) is set by applying vacuum downstream to the membrane 

filter.  The conductivity based level detection featured by the pipeting needles was used to 

determine the solution volume remaining in the wells. A schematic representation of the 

detection principle is shown in the appendices in Figure 8.1. The data obtained (volume and 

time) were collected and the permeability and Vmax-value were calculated automatically.  

 

The main advantage of the method is the high number of filtration experiments that can be 

conducted in parallel at a high degree of accuracy and reproducibility. The system can 

combine measurements with buffer and other media to assess respectively permeability and 

capacity in one run. Furthermore, only a small quantity of expensive IgG solution is needed 

for each filtration experiment (approx. 7 mL). 
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5.2 Electron-beam initiated graft modification 

5.2.1 Screening of promising combination of mono and bifunctional vinyl compounds 

 
As already described extensively, many patents and scientific articles reported successful 

graft polymerization reactions onto membrane surfaces using vinyl monomers and acrylate 

derivatives. 

 

Radiation induced graft polymerization can be divided into different categories: mutual 

irradiation or preirradiation grafting. In the first case the membrane is impregnated with the 

monomer -and crosslinker- containing media and directly irradiated. In contrast preirradiation 

is performed before the impregnation to ensure that the graft polymerization only propagates 

from the surface [53] and prevent the formation of homopolymers. However, this way to 

operate necessitates a strict oxygen free environment, which is not always easy to implement 

at pilot scale. 

 

Within this study, the mutual irradiation mode was used, due to its operational simplicity. 

Different combinations of monomers and crosslinkers were tested in a matrix form, and 

aqueous solutions containing a crosslinker and a monomer at respective concentration of 1% 

and 5% were prepared. This represents a crosslinker/monomer ratio of 1/5 and corresponds 

roughly to ratios typically used for graft polymerization as described in the literature. The 

different compounds were chosen according to the literature as well as the following 

prioritization: Pricing, availability and toxicity, which are determining for processes at 

industrial scale. Table 5.1 summarizes the different mono- and bifunctional compounds 

chosen for the modification screening. 
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Table 5.1: List of vinyl monomers and crosslinking agents used for modification screening 

Monofunctional vinyl compounds 

2-Hydroxypropyl acrylate HPA 
 

Ethylenglycol metacrylate EGMA 
 

Poly(ethylenglycol metacrylate) PEGMA 

 
Bifunctional vinyl compounds 

3-acryloyloxy-2-hydroxypropyl 

methacrylate 
AHM 

 

Tetraethylenglycol divinylether TEGDVE 
 

Tetraethylenglycol diacrylate TEGDA 

 
 

 

For screening purposes, membrane sheets were formed as a 6x8 arrangement, ready to adapt 

on the 48 supporting frits of the filtration module. The interstices between the disks were 

compressed to avoid liquid connections between the membrane disks and to allow targeted 

impregnation. Such a preformed membrane is shown in Figure 5.1. After impregnation, the 

membranes were then irradiated at 25 kGy to initiate the polymerization. The remaining 

monomer solution in the pores after irradiation was removed by 2 successive extractions in 

isopropanol and water. After drying, measurement of unspecific protein adsorption, 

permeability and capacity determinations were carried out using the HTS automated 

manipulator system described in section 5.1. The corresponding data is presented in Figure 

5.2.  
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A 

B 

C 

Figure 5.2: Screening of different monomer/crosslinker combinations. Total concentration: 6% in dionized 

water. Crosslinker/Monomer ratio 1/5.  A: Measurement of unspecific protein adsorption was performed with an 

IgG concentration of 2g/L. B: Permeability was measured with 50 mM phosphate buffer pH: 7. C: Capacity was 

measured with a 5 g/L IgG-solution in 50 mM Phosphate buffer pH: 7. TMP=0,9 bars. Reference refers to 

unmodified PES-based membrane material. Number of repeats: 6 

 
E-beam initiated graft polymerization resulted in significantly decreased adsorption values for 

all tested crosslinker/monomer combinations.  The matrix representation pointed out some 

systematic trends. Lowest unspecific adsorptions were measured on membrane modified 
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using hydroxypropyl acrylate (HPA) as a monomer. In contrast, membrane modified with 

Polyethylenglycol metacrylate (PEGMA) exhibited the highest adsorption values with IgG. It 

appears that the size of the monomer used may impact the adsorption behavior on created 

surfaces. Similar UV initiated graft polymerization, performed by Taniguchi et al. on 

commercial PES based UF membrane, also demonstrated that small monomer molecules are 

more reactive and lead to higher degree of grafting [105]. Furthermore, the size of the 

molecule may also impact the network density of the formed protecting layer and lead to 

increased shielding properties.  

 

No significant differences were observed between the 2 acrylate based crosslinker: 3-

acryloyloxy-2-hydroxypropyl methacrylate (AHM) and tetraethylenglycol diacrylate 

(TEGDA). However, crosslinking using Tetraethylenglycol divinylether (TEGDVE) did not 

lead to similarly low adsorption values. The lowest unspecific protein adsorption was 

measured on membrane modified with the HPA/TEGDA combination. 

 

Figure 5.2 also illustrated how graft polymerization can impact the membrane permeability. 

For all tested modified membranes lower permeability compared to the reference unmodified 

material were achieved. Strong correlations were observed between low unspecific adsorption 

and low permeability, which may describe the degree of pore constriction and the thickness of 

the formed layer. Membranes modified with the low MW monomers HPA and EGMA and the 

crosslinkers AHM and TEGDA were characterized by low permeability values. In contrast, 

the loss of permeability was less pronounced for membranes modified with TEGDVE as a 

crosslinker.  

 

High filtration capacity should be theoretically attained by membranes exhibiting low 

unspecific protein adsorption and high permeability, which depends of the membrane 

structure. The use of TEGDVE as a crosslinker results in a moderated decrease of both 

unspecific adsorption and permeability. This leads to a higher overall filtration capacity in 

combination with all tested monomers. In the case of membranes using AHM as a crosslinker, 

the measured filtration capacity strictly correlated with the low membrane permeability and 

no significant improvement of the filtration performance with pooled IgG was observed.  

However, in the case of TEGDA and particularly in the presence of HPA and EGMA as mono 

functional molecules, the capacity appeared to be principally determined by the protein 

binding characteristics of the membrane. The highest capacity was obtained using the 
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HPA/TEGDA based modification, which provides the membrane with very low adsorptive 

properties, but which also significantly increases the flow resistance in the membrane. 

 

Despite of the low measured permeability, the HPA/TEGDA combination appears here to be 

the most promising modification system to attain higher filtration throughput. Due to reduced 

interactions with pooled IgG, higher capacity compared to the unmodified reference material 

was observed. Pore constriction due to the formation of a protective low adsorptive polymer 

layer on the membrane surface remains the most probable explanation for the observed 

decrease of permeability. It should be mentioned, that pore constriction also may provide the 

membrane with increased virus retentive properties, since these are mainly based on a size 

exclusion mechanism. For all these reasons, the HPA/TEGDA combination was chosen as a 

modification strategy. Next steps will focus on the optimum modification conditions, which 

include crosslinker/monomer ratio as well as irradiation dose, in order to determine the best 

compromise between flow and adsorptive characteristics.   

  

 

5.2.2 Optimum crosslinker/monomer ratio in regard to unspecific adsorption 

 

The previous section demonstrated, that graft polymerization using the mono-bifunctional 

vinyl monomer combination HPA/TEGDA leads to drastically increased filtration capacity 

with pooled IgG. The main goal of this part is to determine the optimum modification 

conditions regarding filtration performance. Using the HTS characterization system, different 

crosslinker/monomer ratios were used for modification at different irradiation doses. The 

influence of these parameters on permeability, unspecific protein adsorption and filtration 

capacity was analyzed. The total concentration of vinyl compound was kept at 6% (w/w) and 

the relative amounts of monomer and crosslinker were varied. The ratio R was calculated as 

follow: 

           (5.2) 

So that R=0 describes a 6% concentrated solution without crosslinker and R=2 a solution that 

contains 2% monomer and 4% crosslinker. Figure 5.3 shows the influence of the 

crosslinker / monomer concentration ratio at different irradiation doses.  
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Figure 5.3: Influence of crosslinker / monomer ratio and irradiation dose on adsorptive properties of modified 

membranes. Number of repeats: 6 

 
The data show, that the same minimal adsorption value was achieved at almost all tested 

concentration ratios. It can also be seen, that higher adsorption values were systematically 

obtained in the absence of crosslinker. This suggests, that polymerized chains alone cannot 

prevent solute/membrane interactions and necessitate a minimal amount of crosslinking agent 

to form a stable shielding network around the porous matrix. The data also demonstrates, that 

a relatively low irradiation dose is sufficient to initiate the grafting reaction and doses higher 

than 25 kGy appear not to further improve the membrane surface properties.  

 

5.2.3 Impact of modification conditions on membrane filtration performance 

 
Figure 5.4 illustrates how the modification conditions can impact membrane permeability. In 

contrast to adsorption values, which were not affected by a variation of dose, changes in 

permeability were obtained at increased irradiation doses. These differences are mainly due to 

the increase number of initiation sites at the membrane surface, since the polymerization 

period in a non-oxygen free environment may be short. It can be also seen, that increased 

crosslinker concentrations lead to an increase of the membrane flow resistance at all tested 

irradiation doses. Strong decrease of permeability were observed up to a crosslinker / 

monomer ratio of 0,5 (2% TEDGDA and 4% HPA). Further increase of the crosslinker 

concentration does not significantly impact the permeability, which asymptotically 
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approaches a minimum value. In that case, the amount of polymer grafted to the membrane 

surface appears to be limited by the size of the pores.   

  

 
Figure 5.4: Influence of crosslinker / monomer ratio and irradiation dose on flow characteristics of modified 

membranes. Permeability measurements were performed using the HTS-characterization system at a constant 

TMP of 0,9 bar. Number of repeats: 6 

 
Using the HTS characterization system, the filtration capacity of the different membrane 

material generated at different irradiation doses and crosslinker / monomer ratios was 

determined. The obtained data are summarized in Figure 5.5. The highest filtration capacity 

was obtained at an irradiation dose of 25 kGy and a crosslinker / monomer ratio of 0,2 (1% 

TEGDA and 5% HPA). A similar capacity profile and optimum TEGDA/HPA ratio was 

obtained at all tested irradiation doses. This suggests again, that the irradiation energy 

necessary to initiate the polymerization is relatively low, and that a further increase of the 

irradiation dose does not lead to significantly higher capacity values. It appears also that high 

filtration capacity is the result of an optimum balance between low unspecific adsorption and 

high permeability. As already mentioned, such conditions are attained with a crosslinker / 

monomer ratio of 0.2. Below this value, moderate decrease of permeability is achieved, but at 

the same time inefficient shielding of the membrane surface is attained. Above this value, the 

apparently efficient shielding of the membrane surface cannot compensate the strong loss of 

permeability, which mainly affects the resulting filtration capacity.  
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Figure 5.5: Influence of crosslinker / monomer ratio and irradiation dose on the filtration capacity of modified 

membranes. Vmax determinations were performed using the HTS-characterization system at a constant TMP of 

0,9 bar. Number of repeats: 6 

 
Within these experiments, it was possible to find out which optimum conditions for 

modification were necessary to significantly improve the filter capacity with therapeutic 

solutions containing pooled IgGs. However, the mechanisms involved in the loss of 

permeability and shielding properties of the protecting layer grafted onto the membrane 

surface remain unclear. Next steps will focus on the elucidation of these mechanisms but also 

on the determination of the virus retentive properties of the new developed membrane 

material. 

 

5.2.4 Structure and swelling properties of new developed porous material 

 
In order to better understand the mechanisms involved in the loss of permeability, 

determination of the degree of grafting (DG) was performed as described in section 8.7.2 by 

weighing the amount of polymer bound to the membrane surface. The corresponding data 

obtained at an irradiation dose of 25 kGy are shown in Figure 5.6, together with specific 

membrane surface areas determined by BET measurements. Figure 5.4 pointed out that 

modified membranes still exhibit high permeability without crosslinker in the impregnation 

solution. However, high degree of grafting and low BET surface area were achieved 

compared to the reference material. This shows that the absence of crosslinker allows the 

grafting of an almost similar mass of polymer onto the membrane surface without providing 
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the membrane with high flow resistance. Higher crosslinker concentration does not result in 

significantly higher measured DG, but in a strong decrease of the water permeability up to 1/5 

of the initial permeability when a crosslinker-to-monomer-ratio R=2 is considered. For this 

particular case, the DG value measured corresponds to a weight increase of approx. 3-4 %. 

This amount of grafted polymer appears to be underestimated, considering the corresponding 

loss of permeability. The formed three-dimensional crosslinked polymer network seems to act 

as a hydrogel, swelling upon contact with water and may explain the permeability behavior 

observed on membranes modified with crosslinker.  

 

 
Figure 5.6: Influence of crosslinker / monomer concentration ratio on the degree of grafting and specific 

membrane surface area. DG was measured by weighing the membrane before and after modification. The 

unspecific membrane surface area was assessed by BET measurements. Irradiation dose: 25 kGy. 

 
In order to confirm the assumption that the layer formed on the membrane surface consists of 

a hydrogel swelling upon contact with water, permeability measurements with air were 

performed and the air-to-water permeability ratio was determined.  
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Figure 5.7: Influence of crosslinker / monomer ratio on the swelling properties of modified membranes. Air and 

water permeability were measured respectively at 10 mbar and 1 bar.  

 
Figure 5.7 demonstrates the influence of the crosslinking agent on the swelling properties of 

modified membranes. The decrease of air permeability corresponds to the decrease of porosity 

occurring during graft polymerization. One assumes, that the grafted polymer does not swell 

with water, a proportional decrease of the water permeability should be measured and a 

similar air-to-water permeability ratio would be expected for all tested membrane materials. 

However, the data show, that the increase of the concentration of TEGDA in the solution 

dramatically affects the water permeability, but does not lead to a proportional decrease of the 

air permeability. The resulting air-to-water permeability ratio, corresponding to the hydrogel 

swelling ability, also increases with the addition of crosslinker up to a crosslinker/monomer 

ratio R=1. Above this value, a further increase of the crosslinker/monomer ratio does not 

result in a further increase of the hydrogel swelling ability. As already explained, the amount 

of polymer grafted onto the membrane surface may be sterically limited by the size of the 

pores.   

 

To sum up, a low protein binding membrane was generated by electron beam initiated graft 

polymerization. Using a system comprising a mono- and a bifunctional acrylate derivative, 

efficient graft polymerization onto the membrane surface was achieved and a membrane 

exhibiting higher filtration capacity due to lower unspecific protein adsorption was developed.  
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The crosslinked polymer network formed acts as a hydrogel, swelling upon contact with 

water, which provides an efficient shielding of the hydrophobic membrane surface and 

prevents possible interactions with solutes. However, the formed swelling layer also 

negatively impacts the membrane permeability, being less than a third of its initial value after 

modification. Since membrane permeability is often associated with pore size and porosity, 

the size exclusion based retentive properties of the new generated material may also differ 

from the non-modified reference material. Furthermore, section 3.2 reported that virus 

retention also might be affected by adsorptive mechanisms. In this case, the low protein 

binding properties of the modified membrane may have disadvantageous effects on virus 

retention. Eventually, the improvement of the membrane capacity only can be evaluated at 

comparable virus retentive properties. For this reason, the next part will focus on the 

optimization of the structure of the basis membrane before modification and on the evaluation 

of the virus retentive properties of the newly developed membrane material. 

 

 

5.3 Trade-off between filtration capacity and retention 

 

Membrane material exhibiting improved filtration capacity with pooled IgG was developed in 

the previous section. The fabrication of such low protein binding porous material consists of 

two main production steps:  

- The casting of a membrane with adequate structure properties, or in other terms, with a 

slight asymmetric structure (see section 3.2). 

- The optimization of the membrane surface properties using electron beam initiated 

surface graft modification under the conditions described in the previous section. 

 

E-beam initiated graft polymerization leads to the formation of a hydrogel onto the membrane 

surface with fouling resistant properties but may also alter the pore size distribution. Section 

3.3 already pointed out the trade-off relationship between filtration capacity and virus 

retention. Wider pores typically lead to a significant gain in filtration capacity, but may also 

dramatically affect the retentive properties of the membrane. For this reason, it is essential to 

determine how far the modification associated pore narrowing as well as the reduction of 

membrane-to-protein interactions can impact virus retention. 
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In order to obtain the optimal compromise between filtration capacity and virus retention, 

different membrane material, exhibiting incrementally increasing pore sizes, were casted. The 

production of material, exhibiting various pore sizes but similar morphology, is empirically 

achieved by changing the casting conditions.  

 

This reference material was then modified under the conditions determined in the previous 

section: the membranes were impregnated in a monomer solution containing respectively 5 % 

HPA and 1 % TEGDA and irradiated at 25 kGy. After 2 successive extractions in isopropanol 

and water, the membranes were dried at 100 °C for 30 min. Permeability, filtration capacity 

and LRV of the produced material were then determined. 

 

Figure 5.8 shows the performance characteristics of the casted membrane material before and 

after graft modification. As already discussed, graft modification with the above mentioned 

parameters results in a dramatic decrease of permeability, which was observed here for all 

tested membrane material. The most pronounced loss of permeability was measured on 

membrane exhibiting the tighter pores (1/5 of initial permeability value). This result is 

expected, since equal amount of grafted polymer will result in different degree of pore 

narrowing, depending of the pore diameter of the initial material. 

 

In the case of non modified casted material, also referred to as reference material, 

permeability increase does not result in a proportional increase of the filtration capacity. This 

is especially true for permeability values ranging from 0,2 to 0,35 mL⋅min-1⋅cm-2⋅bar-1, where 

no capacity improvement was measured. This data suggests that the filtration capacity of the 

reference membrane material is dominated by adsorptive mechanisms. Wider pores do not 

lead to higher protein passage due to high membrane/solute interactions. 

 

In contrast, in the case of modified membranes, the improvement of the filtration capacity 

proportionally correlates with the increase of permeability and, consequently, with the 

enlargement of the pores. Here, the filtration capacity appears to be less affected by 

adsorptive mechanisms. Due to efficient shielding of the membrane surface, unspecific 

protein adsorption is significantly reduced and filtration capacity is predominated by size 

exclusion mechanisms. These results also illustrate how small permeability differences can 

have dramatic consequences regarding protein passage and filtration capacity.  
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Figure 5.8: Filtration capacity Vs Permeability for various membrane materials exhibiting different pore sizes 

but similar morphology. Both parameters were measured before and after the modification process using the 

automated HTS-characterization system at a TMP of 0,9 bars. Number of repeats: 6 

 
The virus retentive capacity of the different membrane materials was also assessed before and 

after graft modification using the bacteriophage based determination method described in 

section 3.1. The Vmax value was then plotted against the corresponding LRV, in order to 

highlight the trade-off relationship between filtration capacity and bacteriophage retention 

(see Figure 5.9).   
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Figure 5.9: Trade-off between filtration capacity and bacteriophage retention before and after graft 

polymerization. Number of repeats: 6 

 
The data shows, as expected, that the graft modification of a given reference material leads to 

an increase of its LRV value. For the two reference membranes that were exhibiting LRV > 0, 

the retention efficiency was improved approx. by a factor 5 after modification.  

 

The data also illustrates, how moderate LRV decreases can lead to considerable capacity 

improvements. The chosen graphical representation also allows the direct comparison of 

Vmax-values at equal LRV. Within the LRV range considered here, e-beam initiated graft 

polymerization results in an increase by a factor 2,5-3 of the filtration capacity compared to 

the reference material. No differences between both materials as regards capacity could be 

observed at a LRV above the limit of detection and the obtained values may be then 

underestimated. 

 

 
5.4 Applicability of the development 

 
Previous sections reported the development of a new high capacity membrane material for 

virus filtration. The development as well as the evaluation of the capacity of this new material 

was achieved using a buffered model solution containing 5g/L polyclonal antibodies. Since 
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fouling also depends on the physicochemical properties of the contained solutes in a given 

environment, the filtration performance may vary with different process solutions. In this part, 

the following different process antibody solutions, reflecting different process stages and 

therapeutic applications, were obtained from proprietary sources and tested using the HTS-

characterization system on modified and unmodified membrane material: 

- A highly purified therapeutic solution (before final formulation) containing a highly 

concentrated monoclonal antibody (20 g/L mAb) in PBS-buffer obtained by cell 

cultivation.  

- A process intermediate bulk obtained after successive protein A and IEX 

chromatography and containing polyclonal antibodies (pAb) isolated from human 

plasma. Protein concentration is 8 g/L in 10 mM acetate buffer pH: 5,0. 

- A formulated therapeutic solution for intravenous administration containing 10 g/L 

polyclonal antibodies (pAb) from human plasma stabilized in 10 mM acetate buffer 

pH: 4,8. 

 

The corresponding Vmax-values and filtration curves are shown in Table 5.2 and Figure 5.10 

respectively. To better illustrate the performance particularities between both membrane 

materials, buffer filtration curves were added in order to better compare the two membrane’s 

filtration behavior. 

 
Table 5.2: Comparison of filtration capacity obtained with two different membrane materials for various real 

process solutions. Both membranes have a LRV of 5 with PP7-bacteriophages. Filtration experiments were 

performed using the HTS-characterization system at a constant TMP of 0,9 bar.  

Filtration capacity Vmax [L/m2] 
Process solution 

Untreated membrane Modified membrane 

mAb 8 g/L in PBS-buffer pH: 6,2 

(purified antibody) 
778 ± 130 801 ± 264 

pAb 8 g/L in acetate buffer pH: 5 

(process intermediate) 
70 ± 12 170 ± 20 

pAb 10 g/L in acetate buffer pH: 4,8 

(final product formulation) 
79 ± 13 193 ± 17 
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Figure 5.10: Filtration performance of new development (right) compared to unmodified virus retentive 

membrane (left) with different real process antibody solutions. Both membranes have a LRV of 5 with PP7-

bacteriophages. Filtration experiments were performed using the HTS-characterization system at a constant TMP 

of 0,9 bar.  

 

As already mentioned, the swelling ability of the modified membrane leads to increased flow 

resistance within the fine porous structure and to decreased permeability with buffer 

compared to the untreated material. This property explains the different flow behavior 

obtained with buffer alone. The mAb-containing solution appears to foul the untreated 

membrane moderately. In contrast to polyclonal IgG from human plasma, this biotech-derived 

product does not contain proteins with a strong hydrophobic character that preferably binds to 

the membrane surface. Furthermore, since the measured pI of this protein is close to 7, the 

chosen stabilizing PBS-buffer (pH: 6,2) should not induce strong electrostatic interactions 

with the membrane surface (see section 4.1). In contrast, strong decay of the permeate flow 

was obtained with both solutions containing similar concentrations of polyclonal 

immunoglobulins and the obtained results illustrate again the high fouling propensity of 

solution containing pooled IgG from human plasma. With these two solutions, complete 

membrane plugging was almost achieved after 4 hours of filtration through the untreated 

membrane material.  
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Using the modified material, a more linear increase of the permeate volume as a function of 

time was obtained for all tested process solutions. This results in overall higher measured 

Vmax-values. With the mAb-containing solution, no decrease of the permeate flux was 

observed at all and the extrapolation method used to estimate the Vmax-value has led to high 

standard deviation values. Minimum flow decay must be observable during the filtration 

process to allow the extrapolation based Vmax-determination to provide reliable results.  

Nevertheless, these results pointed out the low suitability of modified membranes for 

moderately plugging therapeutic solution due to unfavorable low permeability. However, for 

applications where the surface properties are more determining than the flow characteristics, 

higher filtration capacities are achieved. This is especially true for both process solutions 

containing pooled IgGs, where the use of the newly developed membrane resulted in 

increased filtration capacity by a factor of approx. 2,5 compared to the non-modified material. 

The obtained filtration curves also illustrate the low product- or solution-dependent properties 

of the new developed membrane material. These results also confirmed the suitability of the 

IgG-containing model solution used during the screening phase, since a similar improvement 

of the capacity was obtained with real process solutions containing pooled IgGs. 

 

5.5 Conclusion 

 
Within this part a high capacity membrane for size exclusion based virus removal was 

developed. Using an electron beam and an innovative high throughput characterization 

system, graft polymerization and characterization of different combinations of acrylate 

derivatives were performed respectively at different concentrations and irradiation doses. 

Modification experiments revealed, that an irradiation dose of 25 kGy is enough to achieve 

maximal grafting densities under the experimental conditions and mutual irradiation approach 

chosen here. Graft polymerization on PES-based membrane using the mono-functional vinyl-

compound 2-hydroxypropyl acrylate (HPA) and the bi-functional vinyl-compound 

tetraethylenglycol diacrylate (TEGDA) at a concentration ratio of 5% / 1% resulted in a 

decrease of the unspecific protein adsorption and permeability due to the formation of a 

swelling hydrogel. The grafted hydrogel provides the modified membrane with fouling 

resistant properties and reduced membrane-to-solute interactions due to efficient shielding of 

the hydrophobic membrane surface. With the tested IgG containing model solution, an 

increased filtration capacity by a factor of 2,5 compared to the non-treated material was 

achieved at equal virus-retentive properties.  
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The suitability of the developed material was also evaluated with solutions originating from 

different manufacturing processes and stages. It appears that the developed membrane 

material is especially suitable for high plugging therapeutic solutions containing polyclonal 

antibodies like e.g. pooled IgG from human plasma. However, as regards capacity, the 

developed membrane remains unable to compete with unmodified, high permeable 

membranes when moderately plugging solution, such as biotech-derived solutions containing 

monoclonal antibodies, are used.  



General conclusion and outlook 

83 

 
6 General conclusion and outlook 
 

The main objective of this PhD thesis was the development of a high capacity membrane for 

size exclusion based virus removal. The membrane had to feature high retentive properties 

against small non-enveloped viruses and high filtration capacity for high plugging therapeutic 

solutions e.g. pooled immunoglobulin from human plasma.  

 

To achieve this goal, new insights about mechanisms governing virus filtration were 

provided. Particularly, the considerable impact of the membrane structure on virus retention 

was demonstrated. The obtained data illustrated the low suitability of membranes exhibiting 

strong asymmetric structures for virus removal. It has been shown, that these structures are 

especially susceptible for virus breakthrough when flow decay and fouling occur. “Worst 

case” testing conditions are used for the evaluation of virus filters. However, these conditions 

are often met in current processes in the presence of proteins. In the light of these results, it 

appears that “worst case” testing conditions have to be clarified and defined for every filter 

device, especially within evaluation studies, when the viral safety of a determined process 

operation unit is validated.  

 

Virus clearance by size-exclusion based filtration is often assumed to be robust and media 

and/or protein independent. It was shown within this study, that the fouling-driven decrease of 

the permeate rate during the filtration process may also influence the clearance efficiency. 

Consequently, different retention characteristics may be obtained with solutions containing 

molecules exhibiting different fouling propensity, or with solutions having different salt and 

additive composition, since it may influence the hydrophobic or electrostatic properties of the 

contained solute. Therefore, evaluation of virus retention should be performed with the real 

process solution. 

 

The work realized in this PhD-thesis also demonstrated that virus filtration is a scalable 

technology. Using a prediction tool, which considers relevant factors such as membrane 

heterogeneity or layer configuration, it was possible to estimate the LRV obtained at a larger 

scale. These results also indicated the reliability of device manufacturing at SSB. Generally, 

since the presence of defects can have dramatic consequences leading to virus breakthrough, 

it is essential to consider the use of multiple layer configurations as an additional security. 

Furthermore, the trade-off relationship existing between virus retention and filtration capacity 
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shows that the use of a combination of two membrane layers will provide higher capacity than 

a single membrane exhibiting similar retention.  

 

Retention testing with real parvoviruses could not be performed within this work. It was 

evaluated here using bacterial viruses having the same diameter as the smallest pathogen 

parvovirus B19. Since the separation is based on size exclusion it is highly probable that the 

high capacity membrane developed here also exhibits similar retention against such viruses. 

Similarly to therapeutic protein, adsorption of viruses due to electrostatic or hydrophobic 

interaction also probably occurs during the filtration. This phenomenon may lead to 

overestimated LRV and may also differ between viruses having the same size but different 

surface properties. Furthermore, interaction between immunoglobulins and viruses due to 

antigen recognition may also be particularly pronounced for therapeutic solution containing 

pooled IgG and lead to unexpected higher retention values. Future works could focus on the 

elucidation of such phenomena. The composition of the buffer used for retention testing may 

also have a great impact on the obtained results due to changes in the protonation state and 

surface hydrophobicity of the considered virus but also of its infectivity. As a consequence, 

developing membrane materials able to prevent protein-membrane interactions is probably the 

most appropriate approach to ensure that molecular sieving is the dominant mechanism 

involved in virus retention and to guarantee the clearance of a large variety of viruses.  

 

An important preliminary work for the design of a virus retentive membrane with adequate 

surface properties was also the elucidation of the mechanisms governing membrane fouling. 

In the case of therapeutics solution containing pooled immunoglobulin from human plasma, 

fouling is mainly due to adsorptive mechanisms. Electrostatic interactions with negatively 

charged membranes occur at pH-value below 4,8, where all proteins contained in the mixture 

are highly protonated. At higher pH-values adsorption is dominated by hydrophobic 

interactions. The results showed that pooled IgGs exhibit a wide hydrophobicity distribution 

and contain hydrophilic proteins but also species with a stronger hydrophobic character. 

Based on these observations, it appeared that removing a part of the product by using for 

example an adsorptive prefilter prior to the virus filtration step may lead to capacity increase. 

However it would also have a negative impact on the therapeutic activity by removing an 

active part of the product.  
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In order to attain higher filtration capacity and to ensure that high product recovery is 

achieved, membrane modification was carried out using electron beam initiated graft 

polymerization. A low protein binding membrane exhibiting an approximately 2,5-3 times 

higher capacity than the reference membrane material at equal retention was developed within 

this work. The developed membrane consists of a PES-based matrix coated with a swelling 

hydrogel. The formed hydrogel provides the membrane with low protein binding properties 

due to efficient shielding of the hydrophobic matrix surface. One important feature of this 

new development is its ability to filter with similar productivity a large variety of different 

process solution, originating from different processes and purification stages. This feature 

provides a clear benefit regarding capacity as well as up-scaling ability.  

 

However, due to insufficient permeation rate, the membrane developed in this work is clearly 

restricted to plugging streams, e.g. in the plasma fractionation industry and does not appear as 

appropriate for biotech-derived therapeutics, which usually lead to less fouling. For this 

reason, the next challenge is the optimization of the flow characteristics of such low protein 

binding membranes.  

 

First, particular attention should be paid on the optimization of the basis material for 

modification. Higher permeability can be achieved with more asymmetric membrane 

structure. Modification of such asymmetric structures would combine low adsorption 

properties with high flow rate. In this case, modification of the membrane surface may also 

reduce fouling and gradual pore plugging phenomena that are mainly responsible for virus 

breakthrough. Another conceivable alternative to increase the permeation rate is the increase 

of the membrane surface area contained in the considered device. This can be achieved by 

optimizing the membrane pleating strategy but also by using hollow fibers, whose high 

surface-to-volume ratio allows high packing densities.  

 

Besides the optimization of the membrane structure, higher permeability can be also attained 

by optimizing the modification process. A better control of the polymerization reaction and of 

the hydrogel thickness may also allow the fabrication of more permeable membranes. 

Alternative “grafting from” approaches such as pre-irradiation or peroxidation involve the 

creation of free radicals at the membrane surface only and may also prevent the formation of 

homopolymers, which increase the flow resistance in the membrane. Additionally, it could 

also reduce the amount of extractable compounds that may contaminate the filtrate. In 
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contrast to the pre-irradiation approach that requires a strict oxygen free environment, the 

peroxide-based grafting method may be easier to implement with the pilot scale e-beam 

available at SSB. In this case the membrane would be subjected to radiation in the presence of 

oxygen to form stable hydroxy peroxides. These would be then decomposed to form the free 

radicals necessary to initiate the reaction.   

 

In conclusion, virus filtration performance mainly depends on three interacting properties, 

which are retention, capacity and permeability. Asymmetric membranes with small pores 

typically exhibit high retention and permeability but low capacity. As a consequence, high 

membrane surface area is required to allow the filtration of a large solution volume in a 

minimum processing time. In contrast, membranes with larger pores will allow high 

permeability and capacity but low retention. The membrane developed in this work features 

high retention and high capacity for high plugging protein solutions but low permeability. 

Consequently, it has a great potential for the plasma fractionation industry since the low 

added value on the product makes the saved filter resources more valuable than the time lost 

in filtration.  
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8 Appendices 

8.1 List of abbreviation 

 

Abbreviation 

AHM	  

BCA	  

DG	  

DTT	  

e-‐beam	  

EGMA	  

ELS	  

HBV	  

HCV	  

HF	  

HIV	  

HIC	  

HPA	  

HTLV	  

HTS	  

IgG	  

LRV	  

mAb	  

MBAA	  

MF	  

MWCO	  

NFF	  

pAb	  

PEG	  

PEGMA	  

PES	  

pfu	  

pI	  

PPV	  

Name 

3-acryloyloxy-2-hydroxypropyl methacrylate	  

Bicinchoninic	  acid	  

Degree	  of	  grafting	  

Dithitreitol	  

Electron	  beam	  

Ethylenglycol metacrylate	  

electrophoretic	  light	  scattering	  

Hepatitis	  B	  virus	  

Hepatitis	  C	  virus	  

Hollow	  fiber	  

Human	  immunodeficiency	  virus	  

Hydrophobic	  interaction	  chromatography	  

2-Hydroxypropyl acrylate	  

Human	  T-‐lymphotropic	  virus	  

High	  throughput	  screening	  

Immunoglobulin	  G	  

Logarithmic	  reduction	  value	  

Monoclonal	  antibody	  

N,N-‐methylene	  bisacrylamide	  	  

Microfiltration	  

Molecular	  weight	  cut-‐off	  

Normal	  flow	  filtration	  

Polyclonal	  antibody	  

Poly(ethylene	  glycol)	  

Poly(ethylene	  glycol)	  methacrylate	  

Polyethersulfone	  

Plaque	  forming	  unit	  

Isolelectric	  point	  

Porcine	  Parvovirus	  
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Abbreviation 

PS	  

PVDF	  

PVP	  

RT-‐PCR	  

S&D	  

SDS	  

ss-‐RNA	  

SSB	  

TEGDA	  

TEGDVE	  

TFF	  

TMP	  

UF	  

UV-‐C	  

	  

Name 

Polysulfone	  

Polyvinylidenfluoride	  

Polyvinylpirrolidone	  

Real-‐time	  polymerase	  chain	  reaction	  

Solvent	  and	  detergent	  

Sodium	  dodecylsulfate	  

Single-‐strain	  ribonucleic	  acid	  

Sartorius	  Stedim	  Biotech	  

Tetraethylenglycol diacrylate	  

Tetraethylenglycol divinylether	  

Tangential	  flow	  filtration	  

Transmembrane	  pressure	  

Ultrafiltration	  

Shortwave	  ultraviolet	  

 

8.2 Materials 

8.2.1 Equipments 

Equipment manufacturer 

Zinsser LISSY automated manipulator 

Software: Zinsser WinLissy 
Zinsser Analytic GmbH, Germany 

Synergy 2 multi-mode plate reader 

Software:  Gen5 Data Analysis 
BioTek, Winooski USA 

Densometer Gurley 4150  Inspiratech 2000 Ltd, United Kingdom 

Laboratory Electro-Beam Accelerator 400 Electron Crosslinking AB, Germany 

Gemini V surface analyzer Micromeritics, Norcross, USA 

VacPrep 061 degasser Micromeritics, Norcross, USA 

Zeta Potential analyzer (Delsa™ Nano) Beckman Coulter, Fullerton, USA 

PTA-Line Bendtsen P62400 PTI Paper testing Instruments, Germany 

Electron beam equipment EC-LAB 400 Crosslinking AB, Sweden 

Chromatography system: Äkta explorer GE Healthcare, Pittsburg, USA 

HiPrep™ 26/10 Desalting Column 
prepacked with Sephadex G25 

GE Healthcare, Pittsburg, USA 
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Equipment manufacturer 

16/10 HiLoad Phenyl-sepharose HP GE Healthcare, Pittsburg, USA 

PDA 100 Detector for HPLC  Dionex, USA 

ASI 100 Automated Injector for HPLC Dionex, USA 

STH 585 column oven for HPLC Dionex, USA 

P580 Pump for HPLC Dionex, USA 

SEC column Proteema 300Å PSS Polymer Standards Service, Germany 

Stainless steel 5L pressure tank Sartorius-Stedim Biotech, Göttingen, Germany 

Stainless steel filter holder 200 mL Sartorius-Stedim Biotech, Göttingen, Germany 

Precision balance CPA Sartorius Mechatronics, Göttingen, Germany 

 

8.2.2 Membranes 

 
All membranes used in this work were provided by Sartorius-Stedim Biotech (Göttingen, 

Germany)  

- Prefiltration of IgG containing media: Sartopore 2, 0.1 µm 

- Sterile filtration of bacteriophage containing solution: Sartopore 2, 0.2 µm 

 
8.2.3 Chemicals & culture media 

 

Chemicals manufacturer 

KH2PO4 Sigma Aldrich, St. Louis, USA 

2-mercaptoethanol Acros Organics, Geel, Belgium 

Acetone Sigma Aldrich, St. Louis, USA 

Trichloroacetic acid TCA Sigma Aldrich, St. Louis, USA 

3-(3-Cholamidopropyl)dimethylammonio-1-

propanesulfonate CHAPS 

Sigma Aldrich, St. Louis, USA  

Dithiotreitol DTT Sigma Aldrich, St. Louis, USA 

Bromophenol blue Sigma Aldrich, St. Louis, USA 

Sodium dodecylsulfate SDS Sigma Aldrich, St. Louis, USA 

Coomassie brilliant blue Serva, Heidelberg, Germany 

Duracryl SDS PAGE gel Genomics solutions, Ann Arbor, USA 

Laemmli sample buffer Bio-Rad, Hercules, USA 

Tris/glycine/SDS buffer Fisher Scientific, Waltham, USA 
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Chemicals manufacturer 

Silver staining Pierce Biotechnology, Rockford, 

U.S.A 

Tris/HCl gels 12% acrylamide  Bio-Rad, Hercules, USA 

Iodoacetamide Sigma Aldrich, St. Louis, USA 

K2HPO4 Sigma Aldrich, St. Louis, USA 

Protein solution. Pooled human Immunoglobulins 

(IgGs) (Cytoglobin® 5% against Cytomegalovirus) 

Bayer AG, Wien, Austria 

3-Hydroxypropylacrylate (HPA) Sigma Aldrich, St. Louis, USA 

Tetraethylenglycol divinylether (TEGDVE) Sigma Aldrich, St. Louis, USA 

3-acryloyloxy-2-hydroxypropyl methacrylate 

(AHM) 

Sigma Aldrich, St. Louis, USA 

Poly(ethylenglycol metacrylate) (PEGMA) Sigma Aldrich, St. Louis, USA 

Ethylenglycol metacrylate (EGDA) Sigma Aldrich, St. Louis, USA 

Tetraethylenglycol diacrylate (TEGDA) Sigma Aldrich, St. Louis, USA 

Bicinchoninic acid assay BCA™ Protein Assay Fisher Scientific, Waltham, USA 

2-Propanol Sigma Aldrich, St. Louis, USA 

Nutrient broth agar (BD213000) BD diagnostics, New Jersey USA 

Nutrient broth (BD 234000) BD diagnostics, New Jersey USA 

 

8.2.4 Bacteriophage and bacterial strains 

Name Strain 

Pseudomonas aeruginosa  1C Fa. ATCC 15692-B2 

Pseudomonas aeruginosa Bacteriophage PP7 Fa. ATCC 15692-B2 

 

 

8.3 Characterization of membrane surface properties 

8.3.1 Measurement of unspecific protein adsorption 

 
A dilution serie of the collected samples was performed. A microtiter plate was used to allow 

parallel measurement. Each well contained one membrane disk and was filled with 200 µL of 

each protein dilution. After overnight incubation with agitation, the membrane was washed 3 

times with buffer and BCA reagent (BCATM Protein Assay, Pierce) was added to each well. 

After the colorimetric reaction, the absorption at 582 nm in each well was measured (Synergy 
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2 multi-mode plate reader, Biotek). The adsorbed protein concentration on each membrane 

disc was calculated from a linearly regressed IgG calibration curve. Then, the determined 

adsorption was normalized with the membrane surface area, determined by BET-

measurements and plotted against the protein concentration in the remaining solution.  

 

 

8.3.2 Measurement of zeta-potential 

Zeta-potential of flat surfaces were measured with a zeta potential analyzer (Delsa™ Nano, 

Beckman-Coulter) using electrophoretic light scattering. Zeta potential measurements of the 

outer membrane surface were performed at 25°C with ultrapure water (Arium, Sartorius-

Stedim Biotech) buffered with 10 mM KCl. Membrane isoelectric points measurements were 

performed from pH 2.2 to pH 7.0 by adding small quantities of HCl with a titrator. Each 

measurement was repeated three times to ensure reproducibility. 

 
8.4 Characterization of membrane structure properties 

8.4.1 Air and liquid permeability 

 

Measurement of liquid permeability in standard stainless steel filter holder 

10m mM phosphate buffer pH: 7,2 was used to perform the measurement. The filtration 

device (Minisart) was connected to the stainless steel filter holder (Sartorius-Stedim Biotech), 

which was then filled with the solution to be tested. The filtration tube was hermetically 

closed and connected to a stainless steel pressurized tank (Sartorius-Stedim Biotech). After 

setting the pressure, the valve above the cylinder was opened and the filtration started. The 

increase of the collected filtrate as a function of time was measured by weighing (precision 

balance CPA). 

 

Measurement of liquid permeability in automated characterization system 

An automated manipulator system (Zinsser Lissy) was used for Vmax and permeability 

measurements. The measurement principle is illustrated in Figure 8.1. The liquid detection 

feature of the pipetting needles was used to measure the volume decrease in the wells as a 

function of time. Membrane sheets were preformed in a 6x8 well arrangement in order to 

easily adapt to the supporting frits of the filtration unit. The filtration unit consists of three 

different parts as was shown in Figure 5.1: The collecting part in which the filtered liquid is 

collected; the supporting part, which consist of an 6x8 arrangement of supporting frit on 

which the membrane is laid; the reservoir part, which contains the solution to be filtered.  
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Figure 8.1: Schematic representation of the liquid level detection in filtration experiments. 

The membrane sheet was wet with dionized water and placed on the supporting part of the 

filtration unit. The different solutions were filled into the corresponding bottles and the 

measurement was started. The automated manipulator system was programmed to fill the 

different well with the solution to be tested. 4 mL and 7 mL were used to allow a precise 

measurement of membrane permeability and filtration capacity respectively. A controlled 

vaccum (negative pressure of 0,9 bar) was applied in the collecting part of the filtration unit 

and the measurement was automatically started. A data set with 5 values (Volume/Time) 

within 30 minutes was obtained and the slope of the linear regression was used to calculate 

the permeability J (mL⋅min-1⋅cm-2⋅bar-1) as described in Eq. 8.1.  

          (Eq. 8.1) 

with A the filtration surface area in cm2 

and P: the operating pressure in bar 
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Measurement of air permeability 

Membrane disks having a diameter of 70 mm were cut and tested using a air permeability 

testing instrument (PTA-Line Bendtsen P62400) at a pressure of 10 mbar. After the 

measurement the same membrane disk was used for liquid permeability testing as described 

above. 

 

8.4.2 Electron microscopy 

 
SEM imaging was performed using FEI Quanta 200F FEG-SEM scanning electron 

microscope (FEI, Hilsboro, Oregon, USA). 

Membrane samples were washed with deionised water and dried for 30 min at 30°C. 

Perpendicular and tangential cuts were performed using a freezing microtome (Leica 

CM30505 cryostat and Leica CE/CN knife holder, Leica Microsystems Nussloch GmbH).  

For investigations using ETD detector, sputter coating (K550 Sputter Coater, Emitech Ltd.) 

was performed with gold (approx. 150 Angstroms thin layer) at 35 mA during 3 min under 

vacuum (0.01 mbar). 

 

 

8.4.3 BET surface area 

 

Membrane internal surface area was measured using the Gemini V BET surface analyzer 

(Micromeritics, USA).  

 

Measurement principle 

The system uses physical adsorption and capillary condensation principles to obtain 

information about the surface area and porosity of a solid material. A sample contained in an 

evacuated sample tube is cooled to cryogenic temperature, then is exposed to analysis gas at a 

series of precisely controlled pressures. With each incremental pressure increase, the number 

of gas molecules adsorbed on the surface increases. The equilibrated pressure (P) is compared 

to the saturation pressure (Po) and their relative pressure ratio (P/Po) is recorded along with 

the quantity of gas adsorbed by the sample at each equilibrated pressure. As adsorption 

proceeds, the thickness of the adsorbed film increases. Any micropores in the surface are 

filled first, then the free surface becomes completely covered, and finally the larger pores are 

filled by capillary condensation. The process may continue to the point of bulk condensation 
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of the analysis gas. Then, the desorption process may begin in which pressure systematically 

is reduced resulting in liberation of the adsorbed molecules. As with the adsorption process, 

the changing quantity of gas on the solid surface at each decreasing equilibrium pressure is 

quantified. These two sets of data describe the adsorption and desorption isotherms. Analysis 

of the shape of the isotherms yields information about the surface and internal pore 

characteristics of the material. The schematic of the BET surface analyzer is shown in Figure 

8.2 

 
Figure 8.2: schematic of the Gemini BET surface analyzer 

Procedure 

Membrane samples (15 cm2) disks were cut in approx. 2 mm stripes and placed into the 

sample tube. Moisture was removed from the tube by using the Vacprep 061 degasser 

(Micromeritics, USA) operating 2 hours at 120°C under vacuum. After weighing the dried 

sample, the tube was connected to the analyzer and liquid nitrogen was filled into the dewar. 

Then the analysis was started. 

 

8.5 Determination of the filtration performance: 

8.5.1 Determination of virus retention with bacteriophage PP7 

 
For this experiment the Pseudomonas aeruginosa Bacteriophage PP7 (Fa. ATCC 15692-B2) 

was chosen due to its size similarity with small non-enveloped viruses. A bacteriophage 
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solution with a start concentration higher than 1·107 pfu/mL in 50 mM phosphate buffer pH: 

7.0 was sterile filtered (Sartopore 2, 0.2 µm, Sartorius-Stedim Biotech, Germany) and 50 mL 

of the prepared solution was then filtered using virus retentive filters as described in section 

8.4.1 at a positive transmembrane pressure (TMP) of 1 bar. 100 µL of the obtained filtrate 

was mixed with 900 µL of nutrient broth (BD 234000, BD diagnostics) and the obtained 

solution was then used for the next 1:10 dilution step.  300 µL of a bacterial preculture 

(Pseudomonas aeruginosa 1C Fa. ATCC 15692-B2) with an optical density of 2 were diluted 

in 30 mL of nutrient broth. Then 150 µL of this diluted bacterial culture were added to 150 µL 

of each bacteriophage dilution and mixed thoroughly. After 10 min incubation at room 

temperature, 2.5 mL of nutrient broth agar (BD 213000, BD diagnostics) were added to the 

mixture and overlaid on the surface of a solid nutrient agar plate. After 18-24h incubation at 

37°C the plaques on the plate were counted. The virus log reduction value (LRV) was 

calculated using the following equation: 

         Eq. 8.2 

Where C0 and Cf represent the concentration of bacteriophage in the feed medium and in the 

filtrate respectively. 

 

 

8.5.2 Filtration capacity  

 

Measurement of the filtration capacity was performed at constant pressure with the standard 

filter holder (Sartorius-Stedim Biotech, Göttingen, Germany) or with the high throughput 

automated measurement system (Lissy, Zinsser, germany) as described in section 8.4.1. 

The filtration capacity Vmax was determined using the linearized form of the pore constriction 

model: 

         (Eq. 8.3) 

Where V is the total filtrate volume (in liters) collected over time t and Q0 is the initial 

volumetric filtrate flow rate. Vmax was evaluated by plotting the time-to-volume-ratio t/V 

against the time t and then by taking the inverse of the slope (see Eq. 8.4). 

Vmax in L/m2 was then calculated as follow: 

€ 

Vmax =
Slope
A

          (Eq. 8.4) 
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with A: the filtration surface area in m2 

 

8.6 Physico-chemical properties of therapeutic protein solutions 

8.6.1 Protein fractionation by hydrophobic interaction chromatography (HIC) 

 
The protein solutions were diluted in a 1 M (NH4)2SO4, 50 mM phosphate-buffer and 80 mL 

of the sample with a final concentration of 5g/L were loaded on a phenyl HIC-column (16/10 

Hiload Phenyl-sepharose HP, GE Healthcare). The used chromatography system was an Äkta 

(GE lifescience) explorer system. The protein fractions were eluted stepwise by different 

ammonium sulfat concentrations. The collected fractions were desalted (Sephadex G25, GE 

Healthcare) and concentrated by ultrafiltration (Vivaspin 20, Sartorius-Stedim Biotech). The 

obtained desalted fractions were adjusted to a common concentration of 2g/L by measurement 

of the extinction at 280 nm and addition of 50 mM phosphate buffer and used as samples for 

measurement of the unspecific protein adsoprtion, filtration experiments, SDS-PAGE and 

SEC-analysis.  

 
8.6.2 Size exclusion chromatography (SEC) 

 
SEC was performed by loading 100 µL of the protein samples to the column (PSS Proteema 

300Å) with a diol guard column. The separation was operated under isocratic conditions with 

a flowrate of 1mL/min and an elution buffer of 300mM NaCl in 50mM phosphate buffer pH 

6.8. The different protein populations were detected by measuring the absorbance at 280 nm. 

 

8.6.3 2D-gelelectrophoresis 

 
The IgG-solution was precipitated by adding 3 volumes of chilled (-20°C) 13.3% 

TCA/0.093% 2-mercaptoethanol in acetone, followed by incubation overnight at -20°C. 

Samples were centrifuged at 5 000 × g at -20°C and pellets were resuspended in chilled (-

20°C) acetone, containing 0.07% 2-mercaptoethanol. Samples were spun again at 5 000 × g at 

-20°C. All acetone was removed by drying at 30°C. The pellets were then redissolved at 30°C 

in CHAPS buffer (7 M urea, 2 M thiourea, 2% CHAPS, 2% ampholytes 3–10, 65 mM DTT, 

0.1% bromophenol blue) to a concentration of 2.5 mg/ml. 400 µL (1 mg) of this solution were 

loaded onto an 18 cm immobilized pH 3–10 nonlinear gradient strip (GE Healthcare) and 

passively rehydrated for 16 hours. The strips were then focused to 100,000 Vh (Genomic 

Solutions Investigator), equilibrated in 10 ml equilibration buffer I (6 M urea, 375 mM 

Tris/HCl pH 7.4, 2% SDS, 2% glycerol, 2% DTT), followed by 10 ml equilibration buffer II 
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(6 M urea, 375 mM Tris/HCl pH 7.4, 2% SDS, 2% glycerol, 2% iodoacetamide), and applied 

to an 8–18% gradient Duracryl SDS PAGE gel (Genomic Solutions). The gels were stained 

with Coomassie brilliant blue. 

 
8.6.4 SDS-PAGE 

SDS/PAGE was used to characterize molecular-size distributions. Samples were diluted in 

Laemmli sample buffer (Bio-Rad), with or without the addition of 5% (v/v) DTT (2-

mercaptoethanol; Acros Organics, Geel, Belgium). Samples with DTT were incubated for 10 

min at 95°C in order to reduce disulphide bonds. After this denaturation step, the samples and 

a proteinmarker were loaded on Tris/HCl-containing gels with a 12% (w/v) acrylamide 

concentration (Bio-Rad Laboratories). The gels were electrophoresed in Tris/glycine/SDS 

buffer (Fisher Scientific) and stained by silver staining (Pierce Biotechnology, Rockford, IL, 

U.S.A.). 

 
8.7 Electron beam initiated surface modification 

8.7.1 Graft modification with vinyl monomers 

 
Sample preparation 

Membrane sheets (100x200 mm) were impregnated in the monomer solution for 1 minute at 

room temperature. After impregnation, the membrane was placed between two layers of 30 

µm thin PE-film and pressed to remove the excess monomer solution. The superposed 

sandwich configuration was then placed into the drawer of the laboratory electron beam (EC-

LAB400, Crosslinking AB). 

 

For screening experiments, membrane sheets were formed as a 6x8 arrangement, ready to 

adapt on the 48 supporting frits of the filtration module. The automated manipulator system 

(Lissy Zinsser) was used to pipet 11 µL of the different monomer solutions on each 

preformed disk of the membrane sheet. The membrane was then placed into 2 layers of PE 

film to prevent evaporation and then into the drawer of the laboratory electron beam (see 

Figure 8.3). 
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Figure 8.3: Laboratory electron beam equipment EC-LAB 400 

 

Irradiation of sample 

A high voltage of 190 keV was set on the e-beam equipment to ensure the complete 

penetration of electrons along the whole membrane thickness. After placing the membrane in 

the irradiation drawer/chamber, the forming process was started. During the forming process, 

high voltage controlled discharges are used to clean the electron accelerator. Dust particles, 

oil residue, hydrocarbons or other contamination inside the accelerator head can be burned off 

and / or pumped out through the vacuum system during forming. The accelerator is forming at 

approx. 8 kV above the high voltage set point value and needs at least 5 minutes at the 

forming voltage before the accelerator is formed. After the forming process the irradiation 

dose was entered in the control panel and the beam operation was started.  

 

Extraction of the samples 

After the irradiation process, the membrane samples were removed and placed inside an 

extraction bath with isopropanol to remove the remaining monomer solution. After 30 min 

agitation, the solvent was removed and replaced by dionized water and agitated again 30 min. 

After the extraction process the membranes were dried 30 min at 100 °C.  

 

8.7.2 Degree of grafting 

 

Degree of grafting was determined by weighing the dried membrane before and after the 

modification process. Typically, this experiment was performed parallel to BET-
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measurements, where samples have to be weighted and dried. Similarly to BET-

measurements, membrane samples disks (15 cm2) were cut in approx. 2 mm stripes and 

placed into a previously dried and weighted sample tube. Moisture was removed from the 

tube by using the Vacprep 061 degasser (Micromeritics, USA) operating 2 hours at 120°C 

under vacuum. Degree of grafting DG in µg/cm2 was calculated as described in Eq. 8.5. 

         (Eq. 8.5) 

with mi and mf: the sample mass in µg before and after the modification respectively 

and A: the sample surface area. 

 

8.7.3 Membrane swelling 

 

Membrane swelling was characterized by using the ratio between air and water permeability 

as described in section 8.4.1.  
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